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Preface

It has been our privilege to serve as the program chairs for CAV 2017, the 29th
International Conference on Computer-Aided Verification. CAV 2017 was held in
beautiful Heidelberg, Germany, during July 22–28, 2017. The pre-conference work-
shops took place at the Crowne Plaza Hotel in Heidelberg City Centre. The main
conference took place at the Stadthalle by the river Neckar.

The CAV conference series is dedicated to the advancement of the theory and
practice of computer-aided formal analysis of hardware and software systems. The
conference covers the spectrum from theoretical results to concrete applications, with
an emphasis on practical verification tools and the algorithms and techniques that are
needed for their implementation. CAV considers it vital to continue spurring advances
in hardware and software verification while expanding to new domains such as bio-
logical systems and computer security.

Out of 191 submissions to the conference, we chose 50 regular papers and seven
tool papers. These papers cover a wide range of topics and techniques, from algo-
rithmic and logical foundations of verification to practical applications in distributed,
networked, and cyber-physical systems. One direction of topical interest is the
increasingly sophisticated combination of “traditional’’ techniques for reasoning and
search with data-driven techniques. The program featured invited talks by Chris
Hawblitzel (Microsoft), Marta Kwiatkowska (Oxford), and Viktor Vafeiadis
(MPI-SWS), as well as invited tutorials, by Loris D’Antoni and Mayur Naik. As
traditional, one of the winners of the CAV award also gave a presentation. We also had
a special workshop to celebrate David Dill’s many contributions to CAV on the
occasion of his 60th birthday.

In addition to the main conference, CAV hosted the Verification Mentoring
Workshop for junior scientists entering the field and six pre-conference technical
workshops: the Workshop on Synthesis (SYNT), Satisfiability Modulo Theories
(SMT), Verified Software: Theories, Tools, and Experiments (VSTTE), Design and
Analysis of Robust Systems (DARS), Formal Approaches to Explainable Verification
(FEVER), and Numerical Software Verification (NSV).

Organizing a conference is a community effort. The Program Committee for CAV
consisted of 56 members; we kept the number large to ensure each PC member would
have a reasonable number of papers to review and be able to provide thorough reviews.
In addition, we used 104 external reviewers. All together, the reviewers drafted over
730 reviews and put in enormous effort in ensuring a good-quality program.

This year, we made artifact evaluation mandatory for tool submissions and optional
but encouraged for regular submissions. We used an artifact evaluation committee of
26 members. Our goal for artifact evaluation was to provide friendly “beta-testing” to
tool developers; we recognize that developing a stable tool on a cutting-edge research
topic is certainly not easy and we hope the constructive comments provided by the
AEC were of help to the developers. Needless to say we were impressed by the quality



of the artifacts and in fact all accepted tools passed artifact evaluation. We are grateful
to the reviewers for their outstanding efforts in making sure each paper got a fair
chance.

We would like to thank Eva Darulova for chairing the workshop organization
process, Barbara Jobstmann and Thomas Wahl for managing sponsorship and student
fellowships, respectively, Mikaël Mayer for maintaining the CAV website, and the
always helpful Steering Committee members Orna Grumberg, Aarti Gupta, Daniel
Kroening, and Kenneth McMillan. We worked closely with Pavithra Prabhakar,
Andrey Rybalchenko, and Damien Zufferey, who organized the Verification Mentoring
Workshop. Finally, we would like to thank Roslyn Stricker, who helped us tremen-
dously in the administration and organization of CAV.

We hope that you find the proceedings of CAV 2017 thought provoking!

July 2017 Rupak Majumdar
Viktor Kunčak
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Fast Verification of Fast Cryptography
for Secure Sockets (Invited Paper)

Chris Hawblitzel

Microsoft Research, Redmond, USA

Abstract. The Everest project is a joint effort between Microsoft Research,
INRIA, and CMU to build a formally verified replacement for core HTTPS
components, including the TLS protocol, cryptographic primitives, and certifi-
cate processing. The goal is to build an efficient implementation of these
components, and the cryptographic primitives are especially critical to perfor-
mance. Therefore, the project has developed verified hand-written assembly
language implementations of common cryptographic primitives such as AES,
SHA, and Poly1305.

This talk will present an overview of Everest, its verified assembly language
cryptography, and the tools used to verify the code, including Vale, Dafny, F*,
and Z3. It will discuss challenges in using such tools to verify low-level cryp-
tographic code, including the need to reason about bit-level operations, large
integers, and polynomials. A key challenge is the speed of the verification, and
the talk will discuss ongoing efforts to combine tactics with SMT solving to
make verification fast without sacrificing automation.
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Abstract. Deep neural networks have achieved impressive experimen-
tal results in image classification, but can surprisingly be unstable with
respect to adversarial perturbations, that is, minimal changes to the
input image that cause the network to misclassify it. With potential
applications including perception modules and end-to-end controllers for
self-driving cars, this raises concerns about their safety. We develop
a novel automated verification framework for feed-forward multi-layer
neural networks based on Satisfiability Modulo Theory (SMT). We focus
on safety of image classification decisions with respect to image manip-
ulations, such as scratches or changes to camera angle or lighting con-
ditions that would result in the same class being assigned by a human,
and define safety for an individual decision in terms of invariance of
the classification within a small neighbourhood of the original image.
We enable exhaustive search of the region by employing discretisation,
and propagate the analysis layer by layer. Our method works directly
with the network code and, in contrast to existing methods, can guar-
antee that adversarial examples, if they exist, are found for the given
region and family of manipulations. If found, adversarial examples can
be shown to human testers and/or used to fine-tune the network. We
implement the techniques using Z3 and evaluate them on state-of-the-
art networks, including regularised and deep learning networks. We also
compare against existing techniques to search for adversarial examples
and estimate network robustness.

1 Introduction

Deep neural networks have achieved impressive experimental results in image
classification, matching the cognitive ability of humans [23] in complex tasks
with thousands of classes. Many applications are envisaged, including their use
as perception modules and end-to-end controllers for self-driving cars [15]. Let
R

n be a vector space of images (points) that we wish to classify and assume
that f : Rn → C, where C is a (finite) set of class labels, models the human
perception capability, then a neural network classifier is a function f̂(x) which
approximates f(x) from M training examples {(xi, ci)}i=1,..,M . For example,
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a perception module of a self-driving car may input an image from a camera
and must correctly classify the type of object in its view, irrespective of aspects
such as the angle of its vision and image imperfections. Therefore, though they
clearly include imperfections, all four pairs of images in Fig. 1 should arguably
be classified as automobiles, since they appear so to a human eye.

Classifiers employed in vision tasks are typically multi-layer networks, which
propagate the input image through a series of linear and non-linear operators.
They are high-dimensional, often with millions of dimensions, non-linear and
potentially discontinuous: even a small network, such as that trained to classify
hand-written images of digits 0–9, has over 60,000 real-valued parameters and
21,632 neurons (dimensions) in its first layer. At the same time, the networks
are trained on a finite data set and expected to generalise to previously unseen
images. To increase the probability of correctly classifying such an image, reg-
ularisation techniques such as dropout are typically used, which improves the
smoothness of the classifiers, in the sense that images that are close (within ε
distance) to a training point are assigned the same class label.

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

Unfortunately, it has been observed in [13,36] that deep neural networks,
including highly trained and smooth networks optimised for vision tasks, are
unstable with respect to so called adversarial perturbations. Such adversarial per-
turbations are (minimal) changes to the input image, often imperceptible to the
human eye, that cause the network to misclassify the image. Examples include
not only artificially generated random perturbations, but also (more worryingly)
modifications of camera images [22] that correspond to resizing, cropping or
change in lighting conditions. They can be devised without access to the train-
ing set [29] and are transferable [19], in the sense that an example misclassified
by one network is also misclassified by a network with a different architecture,
even if it is trained on different data. Figure 1 gives adversarial perturbations
of automobile images that are misclassified as a bird, frog, airplane or horse by
a highly trained state-of-the-art network. This obviously raises potential safety
concerns for applications such as autonomous driving and calls for automated
verification techniques that can verify the correctness of their decisions.

Safety of AI systems is receiving increasing attention, to mention [10,33],
in view of their potential to cause harm in safety-critical situations such as
autonomous driving. Typically, decision making in such systems is either solely
based on machine learning, through end-to-end controllers, or involves some
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combination of logic-based reasoning and machine learning components, where
an image classifier produces a classification, say speed limit or a stop sign, that
serves as input to a controller. A recent trend towards “explainable AI” has led
to approaches that learn not only how to assign the classification labels, but
also additional explanations of the model, which can take the form of a justifi-
cation explanation (why this decision has been reached, for example identifying
the features that supported the decision) [17,31]. In all these cases, the safety
of a decision can be reduced to ensuring the correct behaviour of a machine
learning component. However, safety assurance and verification methodologies
for machine learning are little studied.

The main difficulty with image classification tasks, which play a critical role
in perception modules of autonomous driving controllers, is that they do not
have a formal specification in the usual sense: ideally, the performance of a clas-
sifier should match the perception ability and class labels assigned by a human.
Traditionally, the correctness of a neural network classifier is expressed in terms
of risk [37], defined as the probability of misclassification of a given image,
weighted with respect to the input distribution μ of images. Similar (statisti-
cal) robustness properties of deep neural network classifiers, which compute the
average minimum distance to a misclassification and are independent of the data
point, have been studied and can be estimated using tools such as DeepFool [25]
and cleverhans [27]. However, we are interested in the safety of an individual
decision, and to this end focus on the key property of the classifier being invari-
ant to perturbations at a given point. This notion is also known as pointwise
robustness [12,18] or local adversarial robustness [21].

Contributions. In this paper we propose a general framework for automated
verification of safety of classification decisions made by feed-forward deep neural
networks. Although we work concretely with image classifiers, the techniques
can be generalised to other settings. For a given image x (a point in a vector
space), we assume that there is a (possibly infinite) region η around that point
that incontrovertibly supports the decision, in the sense that all points in this
region must have the same class. This region is specified by the user and can be
given as a small diameter, or the set of all points whose salient features are of
the same type. We next assume that there is a family of operations Δ, which
we call manipulations, that specify modifications to the image under which the
classification decision should remain invariant in the region η. Such manipula-
tions can represent, for example, camera imprecisions, change of camera angle,
or replacement of a feature. We define a network decision to be safe for input x
and region η with respect to the set of manipulations Δ if applying the manip-
ulations on x will not result in a class change for η. We employ discretisation
to enable a finite exhaustive search of the high-dimensional region η for adver-
sarial misclassifications. The discretisation approach is justified in the case of
image classifiers since they are typically represented as vectors of discrete pixels
(vectors of 8 bit RGB colours). To achieve scalability, we propagate the analy-
sis layer by layer, mapping the region and manipulations to the deeper layers.
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We show that this propagation is sound, and is complete under the additional
assumption of minimality of manipulations, which holds in discretised settings.
In contrast to existing approaches [28,36], our framework can guarantee that a
misclassification is found if it exists. Since we reduce verification to a search for
adversarial examples, we can achieve safety verification (if no misclassifications
are found for all layers) or falsification (in which case the adversarial examples
can be used to fine-tune the network or shown to a human tester).

We implement the techniques using Z3 [8] in a tool called DLV (Deep Learn-
ing Verification) [2] and evaluate them on state-of-the-art networks, including
regularised and deep learning networks. This includes image classification net-
works trained for classifying hand-written images of digits 0–9 (MNIST), 10
classes of small colour images (CIFAR10), 43 classes of the German Traffic Sign
Recognition Benchmark (GTSRB) [35] and 1000 classes of colour images used
for the well-known imageNet large-scale visual recognition challenge (ILSVRC)
[4]. We also perform a comparison of the DLV falsification functionality on the
MNIST dataset against the methods of [28,36], focusing on the search strategies
and statistical robustness estimation. The perturbed images in Fig. 1 are found
automatically using our tool for the network trained on the CIFAR10 dataset.

This invited paper is an extended and improved version of [20], where an
extended version including appendices can also be found.

2 Background on Neural Networks

We consider feed-forward multi-layer neural networks [14], henceforth abbrevi-
ated as neural networks. Perceptrons (neurons) in a neural network are arranged
in disjoint layers, with each perceptron in one layer connected to the next layer,
but no connection between perceptrons in the same layer. Each layer Lk of a
network is associated with an nk-dimensional vector space DLk

⊆ R
nk , in which

each dimension corresponds to a perceptron. We write Pk for the set of percep-
trons in layer Lk and nk = |Pk| is the number of perceptrons (dimensions) in
layer Lk.

Formally, a (feed-forward and deep) neural network N is a tuple (L, T, Φ),
where L = {Lk | k ∈ {0, . . . , n}} is a set of layers such that layer L0 is the input
layer and Ln is the output layer, T ⊆ L × L is a set of sequential connections
between layers such that, except for the input and output layers, each layer has an
incoming connection and an outgoing connection, and Φ = {φk | k ∈ {1, . . . , n}}
is a set of activation functions φk : DLk−1 → DLk

, one for each non-input layer.
Layers other than input and output layers are called the hidden layers.

The network is fed an input x (point in DL0) through its input layer, which
is then propagated through the layers by successive application of the activation
functions. An activation for point x in layer k is the value of the corresponding
function, denoted αx,k = φk(φk−1(...φ1(x))) ∈ DLk

, where αx,0 = x. For percep-
tron p ∈ Pk we write αx,k(p) for the value of its activation on input x. For every
activation αx,k and layer k′ < k, we define Prek′(αx,k) = {αy,k′ ∈ DLk′ | αy,k =
αx,k} to be the set of activations in layer k′ whose corresponding activation in
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layer Lk is αx,k. The classification decision is made based on the activations in
the output layer by, e.g., assigning to x the class arg maxp∈Pn

αx,n(p). For sim-
plicity, we use αx,n to denote the class assigned to input x, and thus αx,n = αy,n

expresses that two inputs x and y have the same class.
The neural network classifier N represents a function f̂(x) which approx-

imates f(x) : DL0 → C, a function that models the human perception
capability in labelling images with labels from C, from M training examples
{(xi, ci)}i=1,..,M . Image classification networks, for example convolutional net-
works, may contain many layers, which can be non-linear, and work in high
dimensions, which for the image classification problems can be of the order of
millions. Digital images are represented as 3D tensors of pixels (width, height
and depth, the latter to represent colour), where each pixel is a discrete value in
the range 0. . .255. The training process determines real values for weights used
as filters that are convolved with the activation functions. Since it is difficult
to approximate f with few samples in the sparsely populated high-dimensional
space, to increase the probability of classifying correctly a previously unseen
image, various regularisation techniques such as dropout are employed. They
improve the smoothness of the classifier, in the sense that points that are ε-close
to a training point (potentially infinitely many of them) classify the same.

In this paper, we work with the code of the network and its trained weights.

3 Safety Analysis of Classification Decisions

In this section we define our notion of safety of classification decisions for a neural
network, based on the concept of a manipulation of an image, essentially per-
turbations that a human observer would classify the same as the original image.
Safety is defined for an individual classification decision and is parameterised
by the class of manipulations and a neighbouring region around a given image.
To ensure finiteness of the search of the region for adversarial misclassifications,
we introduce so called “ladders”, nondeterministically branching and iterated
application of successive manipulations, and state the conditions under which
the search is exhaustive.

Safety and Robustness. Our method assumes the existence of a (possibly
infinite) region η around a data point (image) x such that all points in the region
are indistinguishable by a human, and therefore have the same true class. This
region is understood as supporting the classification decision and can usually be
inferred from the type of the classification problem. For simplicity, we identify
such a region via its diameter d with respect to some user-specified norm, which
intuitively measures the closeness to the point x. As defined in [18], a network
f̂ approximating human capability f is said to be not robust at x if there exists
a point y in the region η = {z ∈ DL0 | ||z − x|| ≤ d} of the input layer
such that f̂(x) �= f̂(y). The point y, at a minimal distance from x, is known
as an adversarial example. Our definition of safety for a classification decision
(abbreviated safety at a point) follows he same intuition, except that we work
layer by layer, and therefore will identify such a region ηk, a subspace of DLk

, at
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each layer Lk, for k ∈ {0, . . . , n}, and successively refine the regions through the
deeper layers. We justify this choice based on the observation [11,23,24] that deep
neural networks are thought to compute progressively more powerful invariants
as the depth increases. In other words, they gradually transform images into a
representation in which the classes are separable by a linear classifier.

Assumption 1. For each activation αx,k of point x in layer Lk, the region
ηk(αx,k) contains activations that the human observer believes to be so close to
αx,k that they should be classified the same as x.

Intuitively, safety for network N at a point x means that the classification
decision is robust at x against perturbations within the region ηk(αx,k). Note
that, while the perturbation is applied in layer Lk, the classification decision is
based on the activation in the output layer Ln.

Definition 1. [General Safety] Let ηk(αx,k) be a region in layer Lk of a neural
network N such that αx,k ∈ ηk(αx,k). We say that N is safe for input x and
region ηk(αx,k), written as N, ηk |= x, if for all activations αy,k in ηk(αx,k) we
have αy,n = αx,n.

We remark that, unlike the notions of risk [37] and robustness of [12,18], we
work with safety for a specific point and do not account for the input distribution,
but such expectation measures can be considered, see Sect. 6 for comparison.

Manipulations. A key concept of our framework is the notion of a manip-
ulation, an operator that intuitively models image perturbations, for example
bad angles, scratches or weather conditions, the idea being that the classifi-
cation decisions in a region of images close to it should be invariant under
such manipulations. The choice of the type of manipulation is dependent on
the application and user-defined, reflecting knowledge of the classification prob-
lem to model perturbations that should or should not be allowed. Judicious
choice of families of such manipulations and appropriate distance metrics is par-
ticularly important. For simplicity, we work with operators δk : DLk

→ DLk

over the activations in the vector space of layer k, and consider the Euclidean
(L2) and Manhattan (L1) norms to measure the distance between an image
and its perturbation through δk, but the techniques generalise to other norms
discussed in [12,18,19]. More specifically, applying a manipulation δk(αx,k) to
an activation αx,k will result in another activation such that the values of
some or all dimensions are changed. We therefore represent a manipulation
as a hyper-rectangle, defined for two activations αx,k and αy,k of layer Lk

by rec(αx,k, αy,k) = ×p∈Pk
[min(αx,k(p), αy,k(p)), max(αx,k(p), αy,k(p))]. The

main challenge for verification is the fact that the region ηk contains potentially
an uncountable number of activations. Our approach relies on discretisation in
order to enable a finite exploration of the region to discover and/or rule out
adversarial perturbations.

For an activation αx,k and a set Δ of manipulations, we denote by
rec(Δ,αx,k) the polyhedron which includes all hyper-rectangles that result
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from applying some manipulation in Δ on αx,k, i.e., rec(Δ,αx,k) =⋃
δ∈Δ rec(αx,k, δ(αx,k)). Let Δk be the set of all possible manipulations for layer

Lk. To ensure region coverage, we define valid manipulation as follows.

Definition 2. Given an activation αx,k, a set of manipulations V (αx,k) ⊆ Δk

is valid if αx,k is an interior point of rec(V (αx,k), αx,k), i.e., αx,k is in
rec(V (αx,k), αx,k) and does not belong to the boundary of rec(V (αx,k), αx,k).

Figure 2 presents an example of valid manipulations in two-dimensional
space: each arrow represents a manipulation, each dashed box represents a
(hyper-)rectangle of the corresponding manipulation, and activation αx,k is an
interior point of the space from the dashed boxes.

δ1δ1

δ2δ2

δ3δ3

δ4δ4

αx,kαx,k

Fig. 2. Example of a set {δ1, δ2, δ3, δ4} of valid manipulations in a 2-dimensional space

Since we work with discretised spaces, which is a reasonable assumption
for images, we introduce the notion of a minimal manipulation. If applying a
minimal manipulation, it suffices to check for misclassification just at the end
points, that is, αx,k and δk(αx,k). This allows an exhaustive, albeit impractical,
exploration of the region in unit steps.

A manipulation δ1k(αy,k) is finer than δ2k(αx,k), written as δ1k(αy,k) ≤
δ2k(αx,k), if any activation in the hyper-rectangle of the former is also in the
hyper-rectangle of the latter. It is implied in this definition that αy,k is an
activation in the hyper-rectangle of δ2k(αx,k). Moreover, we write δk,k′(αx,k)
for φk′(...φk+1(δk(αx,k))), representing the corresponding activation in layer
k′ ≥ k after applying manipulation δk on the activation αx,k, where δk,k(αx,k) =
δk(αx,k).

Definition 3. A manipulation δk on an activation αx,k is minimal if there does
not exist manipulations δ1k and δ2k and an activation αy,k such that δ1k(αx,k) ≤
δk(αx,k), αy,k = δ1k(αx,k), δk(αx,k) = δ2k(αy,k), and αy,n �= αx,n and αy,n �=
δk,n(αx,k).

Intuitively, a minimal manipulation does not have a finer manipulation that
results in a different classification. However, it is possible to have different classi-
fications before and after applying the minimal manipulation, i.e., it is possible
that δk,n(αx,k) �= αx,n. It is not hard to see that the minimality of a manip-
ulation implies that the class change in its associated hyper-rectangle can be
detected by checking the class of the end points αx,k and δk(αx,k).
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Bounded Variation. Recall that we apply manipulations in layer Lk, but check
the classification decisions in the output layer. To ensure finite, exhaustive cov-
erage of the region, we introduce a continuity assumption on the mapping from
space DLk

to the output space DLn
, adapted from the concept of bounded

variation [9]. Given an activation αx,k with its associated region ηk(αx,k), we
define a “ladder” on ηk(αx,k) to be a set ld of activations containing αx,k and
finitely many, possibly zero, activations from ηk(αx,k). The activations in a lad-
der can be arranged into an increasing order αx,k = αx0,k < αx1,k < ... < αxj ,k

such that every activation αxt,k ∈ ld appears once and has a successor αxt+1,k

such that αxt+1,k = δk(αxt,k) for some manipulation δk ∈ V (αxt,k). For the
greatest element αxj ,k, its successor should be outside the region ηk(αx,k), i.e.,
αxj+1,k /∈ ηk(αx,k). Given a ladder ld, we write ld(t) for its t + 1-th activa-
tion, ld[0..t] for the prefix of ld up to the t+1-th activation, and last(ld) for the
greatest element of ld. Figure 3 gives a diagrammatic explanation on the ladders.

δkδk

δkδk

δkδk

δkδk

δkδk

δkδk

αx,k = αx0,kαx,k = αx0,k
αx1,kαx1,k

αx2,kαx2,k

αxj ,kαxj ,k

αxj+1,kαxj+1,kηk(αx,k)ηk(αx,k)

Fig. 3. Examples of ladders in region ηk(αx,k). Starting from αx,k = αx0,k, the acti-
vations αx1,k...αxj ,k form a ladder such that each consecutive activation results from
some valid manipulation δk applied to a previous activation, and the final activation
αxj ,k is outside the region ηk(αx,k).

Definition 4. Let L(ηk(αx,k)) be the set of ladders in ηk(αx,k). Then the
total variation of the region ηk(αx,k) on the neural network with respect to
L(ηk(αx,k)) is

V (N ; ηk(αx,k)) = sup
ld∈L(ηk(αx,k))

∑

αxt,k∈ld\{last(ld)}
diffn(αxt,n, αxt+1,n)

where diffn : DLn
× DLn

→ {0, 1} is given by diffn(αx,n, αy,n) = 0 if αx,n =
αy,n and 1 otherwise. We say that the region ηk(αx,k) is a bounded varia-
tion if V (N ; ηk(αx,k)) < ∞, and are particularly interested in the case when
V (N ; rk(αy,k)) = 0, which is called a 0-variation.
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The set L(ηk(αx,k)) is complete if, for any ladder ld ∈ L(ηk(αx,k)) of
j + 1 activations, any element ld(t) for 0 ≤ t ≤ j, and any manipulation
δk ∈ V (ld(t)), there exists a ladder ld′ ∈ L(ηk(αx,k)) such that ld′[0..t] = ld[0..t]
and ld′(t + 1) = δk(ld(t)). Intuitively, a complete ladder is a complete tree, on
which each node represents an activation and each branch of a node corresponds
to a valid manipulation. From the root αx,k, every path of the tree leading to a
leaf is a ladder. Moreover, the set L(ηk(αx,k)) is covering if the polyhedra of all
activations in it cover the region ηk(αx,k), i.e.,

ηk(αx,k) ⊆
⋃

ld∈L(ηk(αx,k))

⋃

αxt,k∈ld\{last(ld)}
rec(V (αxt,k), αxt,k). (1)

Based on the above, we have the following definition of safety with respect to
a set of manipulations. Intuitively, we iteratively and nondeterministically apply
manipulations to explore the region ηk(αx,k), and safety means that no class
change is observed by successive application of such manipulations.

Definition 5. [Safety wrt Manipulations] Given a neural network N , an input
x and a set Δk of manipulations, we say that N is safe for input x with respect
to the region ηk and manipulations Δk, written as N, ηk,Δk |= x, if the region
ηk(αx,k) is a 0-variation for the set L(ηk(αx,k)) of its ladders, which is complete
and covering.

It is straightforward to note that general safety in the sense of Definition 1
implies safety wrt manipulations, in the sense of Definition 5.

Theorem 1. Given a neural network N , an input x, and a region ηk, we have
that N, ηk |= x implies N, ηk,Δk |= x for any set of manipulations Δk.

In the opposite direction, we require the minimality assumption on
manipulations.

Theorem 2. Given a neural network N , an input x, a region ηk(αx,k) and a
set Δk of manipulations, we have that N, ηk,Δk |= x implies N, ηk |= x if the
manipulations in Δk are minimal.

Theorem 2 means that, under the minimality assumption over the manipula-
tions, an exhaustive search through the complete and covering ladder tree from
L(ηk(αx,k)) can find adversarial examples, if any, and enable us to conclude
that the network is safe at a given point if none are found. Though comput-
ing minimal manipulations is not practical, in discrete spaces by iterating over
increasingly refined manipulations we are able to rule out the existence of adver-
sarial examples in the region. This contrasts with partial exploration according
to, e.g., [12,25]; for comparison see Sect. 7.
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4 The Verification Framework

In this section we propose a novel framework for automated verification of safety
of classification decisions, which is based on search for an adversarial misclas-
sification within a given region. The key distinctive distinctive features of our
framework compared to existing work are: a guarantee that a misclassification
is found if it exists; the propagation of the analysis layer by layer ; and working
with hidden layers, in addition to input and output layers. Since we reduce ver-
ification to a search for adversarial examples, we can achieve safety verification
(if no misclassifications are found for all layers) or falsification (in which case the
adversarial examples can be used to fine-tune the network or shown to a human
tester).

4.1 Layer-by-Layer Analysis

We first consider how to propagate the analysis layer by layer, which will involve
refining manipulations through the hidden layers. To facilitate such analysis, in
addition to the activation function φk : DLk−1 → DLk

we also require a mapping
ψk : DLk

→ DLk−1 in the opposite direction, to represent how a manipulated
activation of layer Lk affects the activations of layer Lk−1. We can simply take
ψk as the inverse function of φk. In order to propagate safety of regions ηk(αx,k)
at a point x into deeper layers, we assume the existence of functions ηk that map
activations to regions, and impose the following restrictions on the functions φk

and ψk, shown diagrammatically in Fig. 4.

Definition 6. The functions {η0, η1, . . . , ηn} and {ψ1, . . . , ψn} mapping activa-
tions to regions are such that

1. ηk(αx,k) ⊆ DLk
, for k = 0, . . . , n,

2. αx,k ∈ ηk(αx,k), for k = 0, . . . , n, and
3. ηk−1(αi,k−1) ⊆ ψk(ηk(αx,k)) for all k = 1, . . . , n.

η0(αx,0)η0(αx,0)

αx,0αx,0

αx,kαx,k

ηk(αx,k)ηk(αx,k)

αx,nαx,n

ηn(αx,n)ηn(αx,n)

layer 0 layer k layer n

ηk−1(αx,k−1)ηk−1(αx,k−1)

αx,k−1αx,k−1

ψkψk

layer k-1

DL0DL0 DLk−1DLk−1

DLk
DLk DLnDLn

φkφk

Fig. 4. Layer by layer analysis according to Definition 6



Safety Verification of Deep Neural Networks 13

Intuitively, the first two conditions state that each function ηk assigns a region
around the activation αx,k, and the last condition that mapping the region ηk

from layer Lk to Lk−1 via ψk should cover the region ηk−1. The aim is to compute
functions ηk+1, . . . , ηn based on ηk and the neural network.

The size and complexity of a deep neural network generally means that deter-
mining whether a given set Δk of manipulations is minimal is intractable. To
partially counter this, we define a refinement relation between safety wrt manip-
ulations for consecutive layers in the sense that N, ηk,Δk |= x is a refinement of
N, ηk−1,Δk−1 |= x if all manipulations δk−1 in Δk−1 are refined by a sequence of
manipulations δk from the set Δk. Therefore, although we cannot theoretically
confirm the minimality of Δk, they are refined layer by layer and, in discrete
settings, this process can be bounded from below by the unit step. Moreover, we
can work gradually from a specific layer inwards until an adversarial example is
found, finishing processing when reaching the output layer.

The refinement framework is given in Fig. 5. The arrows represent the impli-
cation relations between the safety notions and are labelled with conditions if
needed. The goal of the refinements is to find a chain of implications to justify
N, η0 |= x. The fact that N, ηk |= x implies N, ηk−1 |= x is due to the constraints
in Definition 6 when ψk = φ−1

k . The fact that N, ηk |= x implies N, ηk,Δk |= x
follows from Theorem 1. The implication from N, ηk,Δk |= x to N, ηk |= x under
the condition that Δk is minimal is due to Theorem 2.

We now define the notion of refinability of manipulations between layers.
Intuitively, a manipulation in layer Lk−1 is refinable in layer Lk if there exists
a sequence of manipulations in layer Lk that implements the manipulation in
layer Lk−1.

Definition 7. A manipulation δk−1(αy,k−1) is refinable in layer Lk if there
exist activations αx0,k, . . . , αxj ,k ∈ DLk

and valid manipulations δ1k ∈
V (αx0,k), . . . , δj

k ∈ V (αxj−1,k) such that αy,k = αx0,k, δk−1,k(αy,k−1) = αxj ,k,
and αxt,k = δt

k(αxt−1,k) for 1 ≤ t ≤ j. Given a neural network N and an input
x, the manipulations Δk are a refinement by layer of ηk−1,Δk−1 and ηk if, for
all αy,k−1 ∈ ηk−1(αz,k−1), all its valid manipulations δk−1(αy,k−1) are refinable
in layer Lk.

N, η0 |= xN, η0 |= x N, η1 |= xN, η1 |= x N, η2 |= xN, η2 |= x N, ηk |= xN, ηk |= x

N, η1,Δ1 |= xN, η1,Δ1 |= x N, η2,Δ2 |= xN, η2,Δ2 |= x N, ηk,Δk |= xN, ηk,Δk |= x

ΔkΔk is minimal

Fig. 5. Refinement framework

We have the following theorem stating that the refinement of safety notions
is implied by the “refinement by layer” relation.
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Theorem 3. Assume a neural network N and an input x. For all layers k ≥ 1,
if manipulations Δk are refinement by layer of ηk−1,Δk−1 and ηk, then we have
that N, ηk,Δk |= x implies N, ηk−1,Δk−1 |= x.

We note that any adversarial example of safety wrt manipulations
N, ηk,Δk |= x is also an adversarial example for general safety N, ηk |= x. How-
ever, an adversarial example αx,k for N, ηk |= x at layer k needs to be checked
to see if it is an adversarial example of N, η0 |= x, i.e. for the input layer. Recall
that Prek′(αx,k) is not necessarily unique. This is equivalent to checking the
emptiness of Pre0(αx,k) ∩ η0(αx,0). If we start the analysis with a hidden layer
k > 0 and there is no specification for η0, we can instead consider checking the
emptiness of {αy,0 ∈ Pre0(αx,k) | αy,n �= αx,n}.

4.2 The Verification Method

We summarise the theory developed thus far as a search-based recursive veri-
fication procedure given below. The method is parameterised by the region ηk

around a given point and a family of manipulations Δk. The manipulations are
specified by the user for the classification problem at hand, or alternatively can
be selected automatically, as described in Sect. 4.4. The vector norm to iden-
tify the region can also be specified by the user and can vary by layer. The
method can start in any layer, with analysis propagated into deeper layers, and
terminates when a misclassification is found. If an adversarial example is found
by manipulating a hidden layer, it can be mapped back to the input layer, see
Sect. 4.5.

Algorithm 1. Given a neural network N and an input x, recursively perform
the following steps, starting from some layer l ≥ 0. Let k ≥ l be the current layer
under consideration.

1. determine a region ηk such that if k > l then ηk and ηk−1 satisfy Definition 6;
2. determine a manipulation set Δk such that if k > l then Δk is a refinement

by layer of ηk−1,Δk−1 and ηk according to Definition 7;
3. verify whether N, ηk,Δk |= x,

(a) if N, ηk,Δk |= x then
i. report that N is safe at x with respect to ηk(αx,k) and Δk, and
ii continue to layer k + 1;

(b) if N, ηk,Δk �|= x, then report an adversarial example.

We implement Algorithm 1 by utilising satisfiability modulo theory (SMT)
solvers. The SMT problem is a decision problem for logical formulas with respect
to combinations of background theories expressed in classical first-order logic
with equality. For checking refinement by layer, we use the theory of linear real
arithmetic with existential and universal quantifiers, and for verification within a
layer (0-variation) we use the same theory but without universal quantification.
The details of the encoding and the approach taken to compute the regions and
manipulations are included in Sect. 4.4. To enable practical verification of deep
neural networks, we employ a number of heuristics described in the remainder
of this section.
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4.3 Feature Decomposition and Discovery

While Theorems 1 and 2 provide a finite way to verify safety of neural network
classification decisions, the high-dimensionality of the region ηk(αx,k) can make
any computational approach impractical. We therefore use the concept of a fea-
ture to partition the region ηk(αx,k) into a set of features, and exploit their
independence and low-dimensionality. This allows us to work with state-of-the-
art networks that have hundreds, and even thousands, of dimensions.

Intuitively, a feature defines for each point in the high-dimensional space DLk

the most explicit salient feature it has, e.g., the red-coloured frame of a street sign
in Fig. 10. Formally, for each layer Lk, a feature function fk : DLk

→ P(DLk
)

assigns a small region for each activation αx,k in the space DLk
, where P(DLk

) is
the set of subspaces of DLk

. The region fk(αx,k) may have lower dimension than
that of Dk. It has been argued, in e.g. [16] for natural images, that natural data,
for example natural images and sound, forms a high-dimensional manifold, which
embeds tangled manifolds to represent their features. Feature manifolds usually
have lower dimension than the data manifold, and a classification algorithm
is to separate a set of tangled manifolds. By assuming that the appearance of
features is independent, we can manipulate them one by one regardless of the
manipulation order, and thus reduce the problem of size O(2d1+...+dm) into a set
of smaller problems of size O(2d1), . . . , O(2dm).

The analysis of activations in hidden layers, as performed by our method,
provides an opportunity to discover the features automatically. Moreover, defin-
ing the feature fk on each activation as a single region corresponding to a specific
feature is without loss of generality: although an activation may include multi-
ple features, the independence relation between features suggests the existence
of a total relation between these features. The function fk essentially defines for
each activation one particular feature, subject to certain criteria such as explicit
knowledge, but features can also be explored in parallel.

Every feature fk(αy,k) is identified by a pre-specified number dimsk,f of
dimensions. Let dimsk(fk(αy,k)) be the set of dimensions selected according to
some heuristic. Then we have that

fk(αy,k)(p) =
{

ηk(αx,k)(p), if p ∈ dimsk(fk(αy,k))
[αy,k(p), αy,k(p)] otherwise. (2)

Moreover, we need a set of features to partition the region ηk(αx,k) as follows.

Definition 8. A set {f1, . . . , fm} of regions is a partition of ηk(αx,k), writ-
ten as π(ηk(αx,k)), if dimsk,f (fi) ∩ dimsk,f (fj) = ∅ for i, j ∈ {1, . . . , m} and
ηk(αx,k) = ×m

i=1fi.

Given such a partition π(ηk(αx,k)), we define a function acts(x, k) by

acts(x, k) = {αy,k ∈ x | x ∈ π(ηk(αx,k))} (3)

which contains one point for each feature. Then, we reduce the checking of 0-
variation of a region ηk(αx,k) to the following problems:
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– checking whether the points in acts(x, k) have the same class as αx,k, and
– checking the 0-variation of all features in π(ηk(αx,k)).

In the above procedure, the checking of points in acts(x, k) can be con-
ducted either by following a pre-specified sequential order (single-path search)
or by exhaustively searching all possible orders (multi-path search). In Sect. 5 we
demonstrate that single-path search according to the prominence of features can
enable us to find adversarial examples, while multi-path search may find other
examples whose distance to the original input image is smaller.

4.4 Selection of Regions and Manipulations

The procedure summarised in Algorithm 1 is typically invoked for a given image
in the input layer, but, providing insight about hidden layers is available, it can
start from any layer Ll in the network. The selection of regions can be automated,
as described below.

For the first layer to be considered, i.e., k = l, the region ηk(αx,k) is
defined by first selecting the subset of dimsk dimensions from Pk whose activa-
tion values are furthest away from the average activation value of the layer1.
Intuitively, the knowledge represented by these activations is more explicit
than the knowledge represented by the other dimensions, and manipulations
over more explicit knowledge are more likely to result in a class change. Let
avgk = (

∑
p∈Pk

αx,k(p))/nk be the average activation value of layer Lk. We let
dimsk(ηk(αx,k)) be the first dimsk dimensions p ∈ Pk with the greatest values
|αx,k(p) − avg| among all dimensions, and then define

ηk(αx,k) = ×p∈dimsk(ηk(αx,k))[αx,k(p) − sp ∗ mp, αx,k(p) + sp ∗ mp] (4)

i.e., a dimsk-polytope containing the activation αx,k, where sp represents a small
span and mp represents the number of such spans. Let Vk = {sp,mp | p ∈
dimsk(ηk(αx,k))} be a set of variables.

Let d be a function mapping from dimsk(ηk(αx,k)) to {−1, 0,+1} such that
{d(p) �= 0 | p ∈ dimsk(ηk(αx,k))} �= ∅, and D(dimsk(ηk(αx,k))) be the set of
such functions. Let a manipulation δd

k be

δd
k(αy,k)(p) =

⎧
⎨

⎩

αy,k(p) − sp if d(p) = −1
αy,k(p) if d(p) = 0
αy,k(p) + sp if d(p) = +1

(5)

for activation αy,k ∈ ηk(αx,k). That is, each manipulation changes a subset of
the dimensions by the span sp, according to the directions given in d. The set
Δk is defined by collecting the set of all such manipulations. Based on this, we
can define a set L(ηk(αx,k)) of ladders, which is complete and covering.

Determining the Region ηk According to ηk−1. Given ηk−1(αx,k−1) and
the functions φk and ψk, we can automatically determine a region ηk(αx,k)
1 We also considered other approaches, including computing derivatives up to several

layers, but for the experiments we conduct they are less effective.
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satisfying Definition 6 using the following approach. According to the func-
tion φk, the activation value αx,k(p) of perceptron p ∈ Pk is computed from
activation values of a subset of perceptrons in Pk−1. We let V ars(p) ⊆ Pk−1

be such a set of perceptrons. The selection of dimensions in dimsk(ηk(αx,k))
depends on dimsk−1(ηk−1(αx,k−1)) and φk, by requiring that, for every p′ ∈
dimsk−1(ηk−1(αx,k−1)), there is at least one dimension p ∈ dimsk(ηk(αx,k))
such that p′ ∈ V ars(p). We let

dimsk(ηk(αx,k)) = {arg max
p∈Pk

{ |αx,k(p) − avgk| | p′ ∈ V ars(p)} | p′ ∈

dimsk−1(ηk−1(αx,k−1))} (6)

Therefore, the restriction of Definition 6 can be expressed with the following
formula:

∀αy,k−1 ∈ ηk(αx,k−1) : αy,k−1 ∈ ψk(ηk(αx,k)). (7)

We omit the details of rewriting αy,k−1 ∈ ηk(αx,k−1) and αy,k−1 ∈ ψk(ηk(αx,k))
into Boolean expressions, which follow from standard techniques. Note that this
expression includes variables in Vk, Vk−1 and αy,k−1. The variables in Vk−1 are
fixed for a given ηk−1(αx,k−1). Because such a region ηk(αx,k) always exists, a
simple iterative procedure can be invoked to gradually increase the size of the
region represented with variables in Vk to eventually satisfy the expression.

Determining the Manipulation Set Δk According to ηk(αx,k),
ηk−1(αx,k−1), and Δk−1. The values of the variables Vk obtained from the
satisfiability of Eq. (7) yield a definition of manipulations using Eq. (5). How-
ever, the obtained values for span variables sp do not necessarily satisfy the
“refinement by layer” relation as defined in Definition 7. Therefore, we need to
adapt the values for the variables Vk while, at the same time, retaining the
region ηk(αx,k). To do so, we could rewrite the constraint in Definition 7 into
a formula, which can then be solved by an SMT solver. But, in practice, we
notice that such precise computations easily lead to overly small spans sp, which
in turn result in an unacceptable amount of computation needed to verify the
relation N, ηk,Δk |= x.

To reduce computational cost, we work with a weaker “refinable in layer Lk”
notion, parameterised with respect to precision ε. Given two activations αy,k

and αm,k, we use dist(αy,k, αm,k) to represent their distance.

Definition 9. A manipulation δk−1(αy,k−1) is refinable in layer Lk with pre-
cision ε > 0 if there exists a sequence of activations αx0,k, . . . , αxj ,k ∈ DLk

and
valid manipulations δ1k ∈ V (αx0,k), . . . , δd

k ∈ V (αxj−1,k) such that αy,k = αx0,k,
δk−1,k(αy,k−1) ∈ rec(αxj−1,k, αxj ,k), dist(αxj−1,k, αxj ,k) ≤ ε, and αxt,k =
δt
k(αxt−1,k) for 1 ≤ t ≤ j. Given a neural network N and an input x, the manip-
ulations Δk are a refinement by layer of ηk, ηk−1,Δk−1 with precision ε if, for
all αy,k−1 ∈ ηk−1(αx,k−1), all its legal manipulations δk−1(αy,k−1) are refinable
in layer Lk with precision ε.
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Comparing with Definition 7, the above definition replaces δk−1,k(αy,k−1) =
αxj ,k with δk−1,k(αy,k−1) ∈ rec(αxj−1,k, αxj ,k) and dist(αxj−1,k, αxj ,k) ≤ ε. Intu-
itively, instead of requiring a manipulation to reach the activation δk−1,k(αy,k−1)
precisely, this definition allows for each δk−1,k(αy,k−1) to be within the hyper-
rectangle rec(αxj−1,k, αxj ,k). To find suitable values for Vk according to the
approximate “refinement-by-layer” relation, we use a variable h to represent the
maximal number of manipulations of layer Lk used to express a manipulation
in layer k − 1. The value of h (and variables sp and np in Vk) are automatically
adapted to ensure the satisfiability of the following formula, which expresses the
constraints of Definition 9:

∀αy,k−1 ∈ ηk(αx,k−1)∀d ∈ D(dimsk(ηk(αx,k−1)))∀δd
k−1 ∈ Vk−1(αy,k−1)

∃αy0,k, . . . , αyh,k ∈ ηk(αx,k) : αy0,k = αy,k ∧ ∧h−1
t=0 αyt+1,k = δd

k(αyt,k)∧
∨h−1

t=0 (δd
k−1,k(αy,k) ∈ rec(αyt,k, αyt+1,k) ∧ dist(αyt,k, αyt+1,k) ≤ ε).

(8)

It is noted that sp and mp for p ∈ dimsk(ηk(αx,k)) are employed when expressing
δd
k. The manipulation δd

k is obtained from δd
k−1 by considering the corresponding

relation between dimensions in dimsk(ηk(αx,k)) and dimsk−1(ηk−1(αx,k−1)).
Adversarial examples shown in Figs. 8, 9, and 10 were found using single-path

search and automatic selection of regions and manipulations.

4.5 Mapping Back to Input Layer

When manipulating the hidden layers, we may need to map back an activa-
tion in layer k to the input layer to obtain an input image that resulted in
misclassification, which involves computation of Pre0(αy,k) described next. To
check the 0-variation of a region ηk(αx,k), we need to compute diffn(αx,n, αy,n)
for many points αy,x in ηk(αx,k), where diffn : DLn

× DLn
→ {0, 1} is given

by diffn(αx,n, αy,n) = 0 if αx,n = αy,n and 1 otherwise. Because αx,n is
known, we only need to compute αy,n. We can compute αy,n by finding a point
αy,0 ∈ Pre0(αy,k) and then using the neural network to predict the value αy,n.
It should be noted that, although Pre0(αy,k) may include more than one point,
all points have the same class, so any point in Pre0(αy,k) is sufficient for our
purpose.

To compute αy,0 from αy,k, we use functions ψk, ψk−1, . . . , ψ1 and compute
points αy,k−1, αy,k−2, . . . , αy,0 such that

αy,j−1 = ψj(αy,j) ∧ αy,j−1 ∈ ηj−1(αx,j−1)

for 1 ≤ j ≤ k. The computation relies on an SMT solver to encode the functions
ψk, ψk−1, . . . , ψ1 if they are piecewise linear functions, and by taking the corre-
sponding inverse functions directly if they are sigmoid functions. It is possible
that, for some 1 ≤ j ≤ k, no point can be found by SMT solver, which means
that the point αy,k does not have any corresponding point in the input layer. We
can safely discard these points. The maxpooling function ψj selects from every
m ∗ m dimensions the maximal element for some m > 0. The computation of
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the maxpooling layer ψj−1 is combined with the computation of the next layer
ψj , that is, finding αy,j−2 with the following expression

∃αx,j−1 : αy,j−2 = ψj−1(ψj(αy,j))∧αy,j−1 ∈ ηj−1(αx,j−1)∧αy,j−2 ∈ ηj−2(αx,j−2)

This is to ensure that in the expression αy,j−2 = ψj−1(ψj(αy,j)) we can reuse
m ∗ m − 1 elements in αx,j−2 and only need to replace the maximal element.

Figures 8, 9, and 10 show images obtained by mapping back from the first
hidden layer to the input layer.

5 Experimental Results

The proposed framework has been implemented as a software tool called DLV
(Deep Learning Verification) [2] written in Python, see Appendix of [20] for
details of input parameters and how to use the tool. The SMT solver we employ
is Z3 [8], which has Python APIs. The neural networks are built from a widely-
used neural networks library Keras [3] with a deep learning package Theano [6]
as its backend.

We validate DLV on a set of experiments performed for neural networks
trained for classification based on a predefined multi-dimensional surface (small
size networks), as well as image classification (medium size networks). These net-
works respectively use two representative types of layers: fully connected layers
and convolutional layers. They may also use other types of layers, e.g., the ReLU
layer, the pooling layer, the zero-padding layer, and the dropout layer. The first
three demonstrate the single-path search functionality on the Euclidean (L2)
norm, whereas the fourth (GTSRB) multi-path search for the L1 and L2 norms.

The experiments are conducted on a MacBook Pro laptop, with 2.7 GHz
Intel Core i5 CPU and 8 GB memory.

Two-Dimensional Point Classification Network. To demonstrate exhaus-
tive verification facilitated by our framework, we consider a neural network
trained for classifying points above and below a two-dimensional curve shown in
red in Figs. 6 and 7. The network has three fully-connected hidden layers with
the ReLU activation function. The input layer has two perceptrons, every hidden
layer has 20 perceptrons, and the output layer has two perceptrons. The network
is trained with 5,000 points sampled from the provided two-dimensional space,
and has an accuracy of more than 99%.

For a given input x = (3.59, 1.11), we start from the input layer and define
a region around this point by taking unit steps in both directions

η0(αx,0) = [3.59−1.0, 3.59+1.0]×[1.11−1.0, 1.11+1.0] = [2.59, 4.59]×[0.11, 2.11]

The manipulation set Δ0 is shown in Fig. 6: there are 9 points, of which the point
in the middle represents the activation αx,0 and the other 8 points represent the
activations resulting from applying one of the manipulations in Δ0 on αx,0. Note
that, although there are class changes in the region η0(αx,0), the manipulation
set Δ0 is not able to detect such changes. Therefore, we have that N, η0,Δ0 |= x.
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Fig. 6. Input layer Fig. 7. First hidden layer (Colour
figure online)

Now consider layer k = 1. To obtain the region η1(αx,1), the tool selects two
dimensions p1,17, p1,19 ∈ P1 in layer L1 with indices 17 and 19 and computes

η1(αx,1) = [αx,1(p1,17)−3.6, αx,1(p1,17)+3.6]×[αx,1(p1,19)−3.52, αx,1(p1,19)+3.52]

The manipulation set Δ1, after mapping back to the input layer with function
ψ1, is given as Fig. 7. Note that η1 and η0 satisfy Definition 6, and Δ1 is a refine-
ment by layer of η0,Δ0 and η1. We can see that a class change can be detected
(represented as the red coloured point). Therefore, we have that N, η1,Δ1 �|= x.

Image Classification Network for the MNIST Handwritten Image
Dataset. The well-known MNIST image dataset contains images of size 28×28
and one channel and the network is trained with the source code given in [5]. The
trained network is of medium size with 600,810 parameters, has an accuracy of
more than 99%, and is state-of-the-art. It has 12 layers, within which there are
2 convolutional layers, as well as layers such as ReLU, dropout, fully-connected
layers and a softmax layer. The images are preprocessed to make the value of
each pixel within the bound [0, 1].

Given an image x, we start with layer k = 1 and the parameter set to at
most 150 dimensions (there are 21632 dimensions in layer L1). All ηk,Δk for
k ≥ 2 are computed according to the simple heuristic mentioned in Sect. 4.2
and satisfy Definitions 6 and 7. For the region η1(αx,1), we allow changes to the
activation value of each selected dimension that are within [−1, 1]. The set Δ1

includes manipulations that can change the activation value for a subset of the
150 dimensions, by incrementing or decrementing the value for each dimension
by 1. The experimental results show that for most of the examples we can find
a class change within 100 dimensional changes in layer L1, by comparing the
number of pixels that have changed, and some of them can have less than 30
dimensional changes. Figure 8 presents examples of such class changes for layer
L1. We also experiment on images with up to 40 dimensional changes in layer
L1; the tool is able to check the entire network, reaching the output layer and
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claiming that N, ηk,Δk |= x for all k ≥ 1. While training of the network takes
half an hour, finding an adversarial example takes up to several minutes.

8 to 0 2 to 1 4 to 2 2 to 3 9 to 4

6 to 5 4 to 6 9 to 7 0 to 8 7 to 9

Fig. 8. Adversarial examples for a neural network trained on MNIST

Image Classification Network for the CIFAR-10 Small Image Dataset.
We work with a medium size neural network, trained with the source code from
[1] for more than 12 h on the well-known CIFAR10 dataset. The inputs to the
network are images of size 32× 32 with three channels. The trained network has
1,250,858 real-valued parameters and includes convolutional layers, ReLU layers,
max-pooling layers, dropout layers, fully-connected layers, and a softmax layer.

As an illustration of the type of perturbations that we are investigating,
consider the images in Fig. 9, which correspond to the parameter setting of up to
25, 45, 65, 85, 105, 125, 145 dimensions, respectively, for layer k = 1. The
manipulations change the activation values of these dimensions. Each image is
obtained by mapping back from the first hidden layer and represents a point
close to the boundary of the corresponding region. The relation N, η1,Δ1 |= x
holds for the first 7 images, but fails for the last one and the image is classified
as a truck. Intuitively, our choice of the region η1(αx,1) identifies the subset of
dimensions with most extreme activations, taking advantage of the analytical
capability of the first hidden layer. A higher number of selected dimensions
implies a larger region in which we apply manipulations, and, more importantly,
suggests a more dramatic change to the knowledge represented by the activations
when moving to the boundary of the region.

Fig. 9. An illustrative example of mapping back to input layer from the Cifar-10
mataset: the last image classifies as a truck.

We also work with 500 dimensions and otherwise the same experimental
parameters as for MNIST. Figure 13 in Appendix of [20] gives 16 pairs of original
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images (classified correctly) and perturbed images (classified wrongly). We found
that, while the manipulations lead to human-recognisable modifications to the
images, the perturbed images can be classified wrongly by the network. For each
image, finding an adversarial example ranges from seconds to 20 min.

Image Classification Network for the ImageNet Dataset. We also con-
duct experiments on a large image classification network trained on the popular
ImageNet dataset. The images are of size 224 × 224 and have three channels.
The network is the model of the 16-layer network [34], called VGG16, used by
the VGG team in the ILSVRC-2014 competition, downloaded from [7]. The
trained network has 138,357,544 real-valued parameters and includes convolu-
tional layers, ReLU layers, zero-padding layers, dropout layers, max-pooling lay-
ers, fully-connected layers, and a softmax layer. The experimental parameters
are the same as for the previous two experiments, except that we work with
20,000 dimensions.

Several additional pairs of original and perturbed images are included in
Figure 14 in Appendix of [20]. In Fig. 10 we also give two examples of street sign
images. The image on the left is reported unsafe for the second layer with 6346
dimensional changes (0.2% of the 3,211,264 dimensions of layer L2). The one on
the right is reported safe for 20,000 dimensional changes of layer L2. It appears
that more complex manipulations, involving more dimensions (perceptrons), are
needed in this case to cause a class change.

Fig. 10. Street sign images. Found an adversarial example for the left image (class
changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions. (Colour figure online)

5.1 The German Traffic Sign Recognition Benchmark (GTSRB)

We evaluate DLV on the GTSRB dataset (by resizing images into size 32 * 32),
which has 43 classes. Figure 11 presents the results for the multi-path search. The
first case (approx. 20 min to manipulate) is a stop sign (confidence 1.0) changed
into a speed limit of 30 miles, with an L1 distance of 0.045 and L2 distance
of 0.19. The confidence of the manipulated image is 0.79. The second, easy,
case (seconds to manipulate) is a speed limit of 80 miles (confidence 0.999964)
changed into a speed limit of 30 miles, with an L1 distance of 0.004 and L2
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distance of 0.06. The confidence of the manipulated image is 0.99 (a very high
confidence of misclassification). Also, a “go right” sign can be easily manipulated
into a sign classified as “go straight”.

“stop”
to “30m speed limit”

“80m speed limit”
to “30m speed limit”

“go right”
to “go straight”

Fig. 11. Adversarial examples for the network trained on the GTSRB dataset by multi-
path search

Figure 16 in [20] presents additional adversarial examples obtained when
selecting single-path search.

6 Comparison

We compare our approach with two existing approaches for finding adversarial
examples, i.e., fast gradient sign method (FGSM) [36] and Jacobian saliency map
algorithm (JSMA) [28]. FGSM calculates the optimal attack for a linear approx-
imation of the network cost, whereas DLV explores a proportion of dimensions
in the feature space in the input or hidden layers. JSMA finds a set of dimen-
sions in the input layer to manipulate, according to the linear approximation (by
computing the Jacobian matrix) of the model from current output to a nomi-
nated target output. Intuitively, the difference between DLV’s manipulation and
JSMA is that DLV manipulates over features discovered in the activations of
the hidden layer, while JSMA manipulates according to the partial derivatives,
which depend on the parameters of the network.

Experiment 1. We randomly select an image from the MNIST dataset.
Figure 12 shows some intermediate and final images obtained by running the
three approaches: FGSM, JSMA and DLV. FGSM has a single parameter,
ε, where a greater ε represents a greater perturbation along the gradient of
cost function. Given an ε, for each input example a perturbed example is
returned and we test whether it is an adversarial example by checking for mis-
classification against the original image. We gradually increase the parameter
ε = 0.05, 0.1, 0.2, 0.3, 0.4, with the last image (i.e., ε = 0.4) witnessing a class
change, see the images in the top row of Fig. 12. FGSM can efficiently manip-
ulate a set of images, but it requires a relatively large manipulation to find a
misclassification.
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Fig. 12. FGSM vs. JSMA vs. DLV, where FGSM and JSMA search a single path
and DLV multiple paths. Top row: Original image (7) perturbed deterministically by
FGSM with ε = 0.05, 0.1, 0.2, 0.3, 0.4, with the final image (i.e., ε = 0.4) misclassified
as 9. Middle row: Original image (7) perturbed deterministically by JSMA with ε = 0.1
and θ = 1.0. We show even numbered images of the 12 produced by JSMA, with the
final image misclassified as 3. Bottom row: Original image (7) perturbed nondetermin-
istically by DLV, for the same manipulation on a single pixel as that of JSMA (i.e.,
sp ∗ mp = 1.0) and working in the input layer, with the final image misclassified as 3.

For the JSMA approach, we conduct the experiment on a setting with para-
meters ε = 0.1 and θ = 1.0. The parameter ε = 0.1 means that we only consider
adversarial examples changing no more than 10% of all the pixels, which is suf-
ficient here. As stated in [29], the parameter θ = 1.0, which allows a maximum
change to every pixel, can ensure that fewer pixels need to be changed. The
approach takes a series of manipulations to gradually lead to a misclassification,
see the images in the middle row of Fig. 12. The misclassified image has an L2

(Euclidean) distance of 0.17 and an L1 (Manhattan) distance of 0.03 from the
original image. While JSMA can find adversarial examples with smaller distance
from the original image, it takes longer to manipulate a set of images.

Both FGSM and JSMA follow their specific heuristics to deterministically
explore the space of images. However, in some cases, the heuristics may omit
better adversarial examples. In the experiment for DLV, instead of giving fea-
tures a specific order and manipulating them sequentially, we allow the program
to nondeterministically choose features. This is currently done by MCTS (Monte
Carlo Tree Search), which has a theoretical guarantee of convergence for infinite
sampling. Therefore, the high-dimensional space is explored by following many
different paths. By taking the same manipulation on a single pixel as that of
JSMA (i.e., sp ∗ mp = 1.0) and working on the input layer, DLV is able to find
another perturbed image that is also classified as 3 but has a smaller distance
(L2 distance is 0.14 and L1 distance is 0.02) from the original image, see the
images in the last row of Fig. 12. In terms of the time taken to find an adver-
sarial example, DLV may take longer than JSMA, since it searches over many
different paths.

Experiment 2. Table 1 gives a comparison of robustness evaluation of the three
appraoches on the MNIST dataset. For FGSM, we vary the input parameter ε
according to the values {0.1, 0.2, 0.4}. For DLV, we select regions as defined
in Sect. 4.4 on a single path (by defining a specific order on the features and
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Table 1. FGSM vs. DLV (on a single path) vs. JSMA

FGSM
(ε = 0.1)

(0.2) (0.4) DLV
(dimsl = 75)

(150) (450) JSMA
(θ = 0.1)

(0.4)

L2 0.08 0.15 0.32 0.19 0.22 0.27 0.11 0.11

L1 0.06 0.12 0.25 0.04 0.06 0.09 0.02 0.02

% 17.5% 70.9% 97.2% 52.3% 79% 98% 92% 99%

manipulating them sequentially) for the first hidden layer. The experiment is
parameterised by varying the maximal number of dimensions to be changed, i.e.,
dimsl ∈ {75, 150, 450}. For each input image, an adversarial example is returned,
if found, by manipulating fewer than the maximal number of dimensions. When
the maximal number has been reached, DLV will report failure and return the
last perturbed example. For JSMA, the experiment is conducted by letting θ
take the value in the set {0.1, 0.4} and setting ε to 1.0.

We collect three statistics, i.e., the average L1 distance over the adversarial
examples, the average L2 distance over the adversarial examples, and the success
rate of finding adversary examples. Let Ld(x, δ(x)) for d ∈ {1, 2} be the distance
between an input x and the returned perturbed image δ(x), and diff(x, δ(x)) ∈
{0, 1} be a Boolean value representing whether x and δ(x) have different classes.
We let

Ld =
∑

x in test set diff(x, δ(x)) × Ld(x, δ(x))
∑

x in test set diff(x, δ(x))

and

% =
∑

x in test set diff(x, δ(x))
the number of examples in test set

We note that the approaches yield different perturbed examples δ(x).
The test set size is 500 images selected randomly. DLV takes 1–2 min to

manipulate each input image in MNIST. JSMA takes about 10 min for each
image, but it works for 10 classes, so the running time is similar to that of DLV.
FGSM works with a set of images, so it is the fastest per image.

For the case when the success rates are very high, i.e., 97.2% for FGSM with
ε = 0.4, 98% for DLV with dimsl = 450, and 99% for JSMA with θ = 0.4, JSMA
has the smallest average distances, followed by DLV, which has smaller average
distances than FGSM on both L1 and L2 distances.

We mention that a smaller distance leading to a misclassification may result
in a lower rate of transferability [29], meaning that a misclassification can be
harder to witness on another model trained on the same (or a small subset of)
data-set.

7 Related Work

AI safety is recognised an an important problem, see e.g., [10,33]. An early
verification approach for neural networks was proposed in [30], where, using the
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notation of this paper, safety is defined as the existence, for all inputs in a region
η0 ∈ DL0 , of a corresponding output in another region ηn ⊆ DLn

. They encode
the entire network as a set of constraints, approximating the sigmoid using con-
straints, which can then be solved by a SAT solver, but their approach only
works with 6 neurons (3 hidden neurons). A similar idea is presented in [32]. In
contrast, we work layer by layer and obtain much greater scalability. Since the
first version of this paper appeared [20], another constraint-based method has
been proposed in [21] which improves on [30]. While they consider more general
correctness properties than this paper, they can only handle the ReLU activa-
tion functions, by extending the Simplex method to work with the piecewise
linear ReLU functions that cannot be expressed using linear programming. This
necessitates a search tree (instead of a search path as in Simplex), for which a
heuristic search is proposed and shown to be complete. The approach is demon-
strated on networks with 300 ReLU nodes, but as it encodes the full network it
is unclear whether it can be scaled to work with practical deep neural networks:
for example, the MNIST network has 630,016 ReLU nodes. They also handle
continuous spaces directly without discretisation, the benefits of which are not
yet clear, since it is argued in [19] that linear behaviour in high-dimensional
spaces is sufficient to cause adversarial examples.

Concerns about the instability of neural networks to adversarial examples
were first raised in [13,36], where optimisation is used to identify misclassifica-
tions. A method for computing the perturbations is also proposed, which is based
on box-constrained optimisation and is approximate in view of non-convexity of
the search space. This work is followed by [19], which introduced the much faster
FGSM method, and [22], which employed a compromise between the two (iter-
ative, but with a smaller number of iterations than [36]). In our notation, [19]
uses a deterministic, iterative manipulation δ(x) = x + εsign(�xJ(x, αx,n)),
where x is an image in matrix representation, ε is a hyper-parameter that can
be tuned to get different manipulated images, and J(x, αx,n) is the cross-entropy
cost function of the neural network on input x and class αx,n. Therefore, their
approach will test a set of discrete points in the region η0(αx,0) of the input
layer. Therefore these manipulations will test a lasso-type ladder tree (i.e., a
ladder tree without branches) L(ηk(αx,k)), which does not satisfy the covering
property. In [26], instead of working with a single image, an evolutionary algo-
rithm is employed for a population of images. For each individual image in the
current population, the manipulation is the mutation and/or crossover. While
mutations can be nondeterministic, the manipulations of an individual image are
also following a lasso-type ladder tree which is not covering. We also mention
that [38] uses several distortions such as JPEG compression, thumbnail resizing,
random cropping, etc., to test the robustness of the trained network. These dis-
tortions can be understood as manipulations. All these attacks do not leverage
any specific properties of the model family, and do not guarantee that they will
find a misclassified image in the constraint region, even if such an image exists.

The notion of robustness studied in [18] has some similarities to our defini-
tion of safety, except that the authors work with values averaged over the input
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distribution μ, which is difficult to estimate accurately in high dimensions. As
in [22,36], they use optimisation without convergence guarantees, as a result
computing only an approximation to the minimal perturbation. In [12] point-
wise robustness is adopted, which corresponds to our general safety; they also
use a constraint solver but represent the full constraint system by reduction to
a convex LP problem, and only verify an approximation of the property. In con-
trast, we work directly with activations rather than an encoding of activation
functions, and our method exhaustively searches through the complete ladder
tree for an adversarial example by iterative and nondeterministic application of
manipulations. Further, our definition of a manipulation is more flexible, since
it allows us to select a subset of dimensions, and each such subset can have a
different region diameter computed with respect to a different norm.

8 Conclusions

This paper presents an automated verification framework for checking safety of
deep neural networks that is based on a systematic exploration of a region around
a data point to search for adversarial manipulations of a given type, and propa-
gating the analysis into deeper layers. Though we focus on the classification task,
the approach also generalises to other types of networks. We have implemented
the approach using SMT and validated it on several state-of-the-art neural net-
work classifiers for realistic images. The results are encouraging, with adversarial
examples found in some cases in a matter of seconds when working with few
dimensions, but the verification process itself is exponential in the number of
features and has prohibitive complexity for larger images. The performance and
scalability of our method can be significantly improved through parallelisation.
It would be interesting to see if the notions of regularity suggested in [24] permit
a symbolic approach, and whether an abstraction refinement framework can be
formulated to improve the scalability and computational performance.
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Abstract. The semantics of concurrent programs is now defined by a
weak memory model, determined either by the programming language
(e.g., in the case of C/C++11 or Java) or by the hardware architecture
(e.g., for assembly and legacy C code). Since most work in concurrent
software verification has been developed prior to weak memory consis-
tency, it is natural to ask how these models affect formal reasoning about
concurrent programs.

In this overview paper, we show that verification is indeed affected:
for example, the standard Owicki-Gries method is unsound under weak
memory. Further, based on concurrent separation logic, we develop a
number of sound program logics for fragments of the C/C++11 memory
model. We show that these logics are useful not only for verifying con-
current programs, but also for explaining the weak memory constructs
of C/C++.

1 Introduction

In a uniprocessor machine with a non-optimizing compiler, the semantics of a
concurrent program is given by the set of interleavings the memory accesses of its
constituent threads, a model which is known as sequential consistency (SC) [15].
In multiprocessor machines and/or with optimizing compilers, however, more
behaviors are possible; they are formally described by what is known as a weak
memory model. Simple examples of such “weak” behaviors are in the SB (store
buffering) and LB (load buffering) programs below:

x := 1;
a := y; //0

y := 1;
b := x; //0 (SB)

a := x; //1
y := 1;

b := y; //1
x := 1; (LB)

Assuming all variables are 0 initially, the weak behaviours in question are the
ones in which a and b have the values mentioned in the program comments. In
the SB program on the left this behaviour is allowed by all existing weak memory
models, and can be easily explained in terms of reordering: the hardware may
execute the independent store to x and load from y in reverse order. Similarly,
the behaviour in the LB program on the right, which is allowed by some memory
models, can be explained by reordering the load from x and the subsequent store
to y. This explanation remains the same whether the hardware itself performs
c© Springer International Publishing AG 2017
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out-of-order execution, or the compiler, as a part of its optimisation passes,
performs these transformations, and the hardware runs a reordered program.

In this paper, we will address two questions:

1. How do such non-SC behaviours affect existing techniques for verifying con-
current programs?

2. How can we verify concurrent programs in spite of weak memory behaviours?

For the first question, we will note that even rather basic proof methods for SC
concurrency are unsound under weak memory. Specifically, in Sect. 2, we will
show that this is the case for the Owicki-Gries (OG) proof method [21].

To answer the second question, there are two main approaches. One approach
is to determine a class of programs for which weak memory consistency does
not affect their correctness. One such a class of programs are data-race-free
(DRF) programs, namely programs that under SC semantics have no concurrent
conflicting accesses (two accesses to the same location, at least one of which
a write). Ensuring that a memory model ascribes only SC behaviours to DRF
programs has become a standard sanity requirement for weak memory models [1].
For specific memory models, one can develop larger classes of programs, whose
behaviour is unaffected by the weak memory consistency (e.g., [3,12,20]).

An alternative approach is to develop proof techniques for reasoning directly
about programs under a certain weak memory model. To do so, we usually take
an existing proof technique that has been developed for SC concurrency and
adapt it to make it sound under a specific weak memory model. We may then
further extend the method to make the proof technique more useful for reasoning
about specific weak memory features. As an example of this approach, in [13],
we applied it to the OG proof method by weakening OG’s non-interference check
to restore its soundness under release-acquire (RA) consistency.

In this paper, we will focus on this latter approach, but apply it to concurrent
separation logic (CSL) [19]. Compared with OG, CSL is much better suited for
reasoning under weak memory consistency, because by default it can reason only
about DRF programs. As such, it is trivially sound under weak memory. We will
then gradually extend CSL with features suitable for reasoning about the various
synchronisation primitives provided by C11, and conclude with a discussion of
some remaining challenges. In order to keep the exposition as simple as possible,
I will elide inessential technical details and not discuss the soundness proofs of
the presented proof rules. The missing details can be found in [5,6,25,27,28].

2 Owicki-Gries is Unsound Under Weak Memory!

To motivate why developing program logics for weak memory consistency is
non-trivial, we start by showing that the Owicki-Gries (OG) system is unsound.

In 1976, Owicki and Gries [21] introduced a proof system for reasoning about
concurrent programs, which formed the basis of rely/guarantee reasoning. Their
system includes the usual Hoare logic rules for sequential programs, a rule for
introducing auxiliary variables, and the following parallel composition rule:
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{
P1

}
c1

{
Q1

} {
P2

}
c2

{
Q2

}
the two proofs are non-interfering

{
P1 ∧ P2

}
c1 ‖ c2

{
Q1 ∧ Q2

}

This rule allows one to compose two verified programs into a verified concurrent
program that assumes both preconditions and ensures both postconditions. The
soundness of this rule requires that the two proofs are non-interfering, namely
that every assertion R in the one proof is stable under any {P}x := e (guarded)
assignment in the other and vice versa; i.e., for every such pair, R ∧ P � R[e/x].

The OG system relies quite heavily on sequential consistency. In fact, OG
is complete for verifying concurrent programs under SC [22], and is therefore
unsound under any weakly consistent memory semantics. Auxiliary variables are
instrumental in achieving completeness—without them, OG is blatantly incom-
plete; e.g., it cannot verify that

{
x = 0

}
x := x + 1 ‖ x := x + 1

{
x = 2

}
where

“:=” denotes atomic assignment.
Nevertheless, many useful OG proofs do not use auxiliary variables, and one

might wonder whether such proofs are sound under weak memory models. This
is sadly not the case. Figure 1 presents an OG proof that the SB program cannot
return a = b = 0 whereas under all known weak memory models it can in fact do
so. Intuitively speaking, the proof is invalid under weak memory because the two
threads may have different views of memory before executing each command.
Thus, when thread II terminates, thread I may perform a := y reading y = 0
and storing 0 in a, thereby invalidating thread II’s last assertion.

Fig. 1. OG proof that SB cannot return a = b = 0.

3 RC11 Preliminaries

For concreteness, we will now introduce a simple programming language con-
taining all the features of RC11, the rectified version of the C/C++11 memory
model due to Lahav et al. [14]. Programs are given by the following grammar:

e ::= x | n | e + e | e − e | e ≤ e | . . .

c ::= skip | c; c | c ‖ c | if e then c else c | while e do c | x := e |
[e]o := e | x := [e]o | x := CASo(e, e, e) | x := alloc | fenceo

o ::=na | rlx | acq | rel | acq-rel | sc
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Expressions, e, are built out of program variables, constants and arithmetic
and logical operators. Commands, c, contain the empty command, sequential
and parallel composition, conditionals and loops, assignments to local variables,
memory accesses (loads, stores, und compare and swap), allocation, and fences.

Memory accesses are annotated with an access mode, o, which indicates the
level of consistency guarantees provided by the access, which in turn determines
its implementation cost.

The weakest access mode is non-atomic (na), which is intended for normal
data loads and stores. Races on non-atomic accesses are treated as program
errors: it is the responsibility of the programmer to ensure that such races never
occur. The remaining access modes are intended for synchronisation between
threads and, as such, allow races. The strongest and most expensive mode are
sequentially consistent (sc) accesses, whose primary purpose is to restore the
simple interleaving semantics of sequential consistency [15] if a program (when
executed under SC semantics) has races only on SC accesses. Weaker than SC
atomics are acquire (acq) loads and release (rel) stores,1 which can be used to
perform “message passing” between threads without incurring the implemen-
tation cost of a full SC access; and weaker and cheaper still are relaxed (rlx)
accesses, which provide only minimal synchronisation guarantees.

RC11 also supports language-level fence instructions, which provide finer-
grained control over where hardware fences are to be placed and can be used
in conjunction with relaxed accesses to synchronise between threads. Fences are
also annotated with an access mode, o ∈ {acq, rel, acq-rel, sc}.

We will discuss the semantics of these access modes and fences in more detail
as we introduce program logic rules to reason about them.

4 Reasoning About Non-atomic Accesses Using CSL

We start with non-atomics, which have to be accessed in a data-race-free (DRF)
fashion. To reason about them, it is natural to consider O’Hearn’s concurrent
separation logic (CSL) [19], because it rules out data races by construction.
In CSL, accessing a memory location, �, requires the command to have the
permission to access that location in its precondition in the form of a points-to
assertion, � �→ v. This formula asserts that the memory at location � stores the
value v, moreover it gives permission to the bearer of this assertion to access and
possibly modify the contents of memory at location �. Formally, the permission
is generated by the allocation rule and required in the preconditions of the load
and store rules.

{
emp

}
x := alloc

{
x �→ }

(alloc)
{
� �→ v

}
x := [�]na

{
� �→ v ∧ x = v

}
(r-na)

{
� �→ v

}
[�]na := v′ {

� �→ v′} (w-na)

1 The acquire mode is meant to be used for loads, whereas the release mode for stores:
there is also a combined acquire-release (acq-rel) mode that can be used for CAS.
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The load rule further asserts that the value read is the one recorded in the
points-to assertion, while the store rule allows one to update this value.

Fig. 2. Proof rules of CSL (without resource invariants).

The other CSL rules are listed in Fig. 2: these include the standard rules from
Hoare logic (skip, assign, seq, if, while), the parallel composition rule (par),
the consequence rule (conseq), the disjunction and existential elimination rules
(disj, ex), and the frame rule (frame). In our presentation of the rules, we
exclude any mention of “resource invariants” and the rules for dealing with
them, as we will not ever directly use this feature of the logic. In preparation for
the extensions in the next section, our formulation of the consequence rule uses
ghost implication (�) instead of normal logical implication. Ghost implication is
a generalisation of normal implication that in addition allows frame-preserving
updates to any ghost resources mentioned in the assertions.

CSL’s parallel composition rule requires the preconditions of the two threads
to be disjoint (i.e., P1 ∗ P2), which (together with the load and store rules)
precludes the two threads of accessing the same location simultaneously. The
disjointness conditions of the rule check that each thread does not modify any
of the variables appearing in the other thread’s program or specification.

5 RSL: Reasoning About Release-Acquire
Synchronisation

Next, let us consider C11’s acquire loads and release stores, whose main mode
of use is to establish synchronisation between two threads. The basic synchroni-
sation pattern is illustrated by the following “message passing” idiom:
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[x]na := 1;
[y]rel := 1;

a := [y]acq; //1
if a 
= 0 then b := [x]na; //0 (MP)

Here, assuming that initially [x] = [y] = 0, the program cannot read a = 1 and
b = 0. According to C11, when an acquire load reads from a release store, this
results in a synchronisation. As a result, any memory access happening before
the release store (by being performed previously either by the same thread or
by some previously-synchronising thread) also happens before the acquire load
and any access happening after it. In the MP program, this means that the
[x]na := 1 write happens before the b := [x]na load, and thus the reading thread
must return b = 1 in the case it read a = 1.

To reason about release and acquire accesses, Vafeiadis and Narayan [28]
introduced relaxed separation logic (RSL), which extends CSL assertions with
two new assertion forms:

P,Q ::= . . . | W(�,Q) | R(�,Q)

These represent the permission to perform a release store or an acquire load
respectively, and attach to location � a mapping Q from values to assertions. This
mapping describes the manner in which the location � is used by the program.
We can roughly consider it as an invariant stating: “if location � holds value v,
then the assertion Q(v) is true.”

At any point in time, a non-atomic location may be converted into an atomic
location with the following ghost implication:

� �→ v ∗ Q(v) � W(�,Q) ∗ R(�,Q) (mk-atom)

In the antecedent of the ghost move, the invariant should hold for the value of
the location; as a result, we get the permissions to write and read that location.

RSL’s release write rule
{
W(�,Q) ∗ Q(v)

}
[�]rel := v

{
W(�,Q)

}
(w-rel)

says that in order to do a release write of value v to location �, we need to have
a permission to do so, W(�,Q), and we have to satisfy the invariant specified
by that permission, namely Q(v). After the write is done, we no longer own the
resources specified by the invariant (so that readers can obtain them).

The acquire read rule
{
R(�,Q)

}
x := [�]acq

{
R(�,Q[x:=emp]) ∗ Q(x)

}
(r-acq)

complements the release write rule. To perform an acquire read of location �,
one must have an acquire permission for �. Just as with a release permission,
an acquire permission carries a mapping Q from values to assertions. In case of
an acquire permission, this mapping describes what resource will be acquired by
reading a certain value; so if the value v is read, resource Q(v) is acquired.
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This rule is slightly complicated by a technical detail. In the postcondition,
we cannot simply retain the full acquire permission for location �, because that
would enable us to read the location again and acquire the ownership of Q(v) a
second time. To prevent this, the acquire permission’s mapping in the postcon-
dition becomes Q[x:=emp] � λy. if y=x then emp else Q(y).

As a simple application of these rules, Fig. 3 shows a slightly abbreviated
proof of the MP program. Initially, the rule mk-atom is applied to set up the
invariant for location y. By the parallel composition rule, the first thread receives
the permission to access x (specifically, x �→ 0) and the release write permission
to y, which it uses to transfer away the x �→ 1 resource. The second thread starts
with the acquire read permission and uses it to get hold of the invariant of y,
which, in the case that a 
= 0, gives enough permission to the thread to access
x non-atomically and establish b = 1. In the proof outline, we often use the
consequence rule to forget permissions that are no longer relevant.

Fig. 3. Proof outline of MP using the invariant Q(v) � (v = 0 ∨ x �→ 1).

To allow multiple concurrent readers and writers, RSL’s write permissions
are duplicable, whereas its read permissions are splittable as follows:

W(�,Q) �� W(�,Q) ∗ W(�,Q) (w-split)
R(�, λv.Q1(v) ∗ Q2(v)) �� R(�,Q1) ∗ R(�,Q2) (r-split)

The reason why read permissions cannot simply be duplicated is the same as
why the read permission is modified in the postcondition of the r-acq rule. If
read permissions were made duplicable, then multiple readers would incorrectly
be able to acquire ownership of the same resource.

6 FSL: Reasoning About Relaxed Accesses and Fences

Next, let us consider relaxed accesses. Unlike release stores and acquire loads,
relaxed accesses do not synchronise on their own, but only when used together
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with release/acquire fences. Consider the following variant of the MP example
using relaxed accesses and fences.

[x]na := 1;
fencerel;
[y]rlx := 1

a := [y]rlx; //1
if a 
= 0 then
fenceacq;
b := [x]na

end-if

(MP-fences)

Like MP, MP-fences also satisfies the postcondition, a = 0∨b = 1 (and so do the
variants where either thread is replaced by the corresponding thread of MP), but
if we remove any of the fences, the program will have undefined behaviour. (The
reason for the latter is that in the absence of synchronisation, the non-atomic
x-accesses are racy.)

In essence, we can think of resource transfer in the following way. When
releasing a resource by a combination of a release fence and a relaxed write, at
the fence we should decide what is going to be released, and not use that resource
until we send it away by doing the write. Conversely, when acquiring a resource
using a relaxed read together with an acquire fence, once we do the read, we
know which resources we are going to get, but we will not be able to use those
resources until we reach the synchronisation point marked by the acquire fence.

To formally represent this intuition, fenced separation logic (FSL) [5] intro-
duces two modalities into RSL’s assertion language:

P,Q ::= . . . | �P | P

We use � to mark the resources that have been prepared to be released, and 
to mark those waiting for an acquire fence. We require the invariants appearing
in W(�,Q) and R(�,Q) permissions to contain no modalities, a condition called
normalisability in [5]. In essence, these modalities are meant to appear only in
the proof outlines of individual threads and to never be nested.

FSL supports all the rules we have seen so far. In addition, it has rules for
relaxed accesses and fences. The rule for relaxed writes is almost exactly the
same as w-rel.

{
W(�,Q) ∗ �Q(v)

}
[�]rlx := v

{
W(�,Q)

}
(w-rlx)

As in w-rel, we have to have a write permission as well as the resource specified
by its attached invariant. The only additional requirement is that the latter
resource has to be under the � modality stating that it can be released by a
relaxed write. As we will later see, this ensures that any writes transferring away
non-empty resources are placed after a release fence.

Similarly, the rule for relaxed reads differs from r-acq only in a single modal-
ity appearance:

{
R(�,Q)

}
x := [�]rlx

{
R(�,Q[x:=emp]) ∗ Q(x)

}
(r-rlx)



38 V. Vafeiadis

While after acquire read, we gain ownership of the resource described by the R
permission, in the case of a relaxed read, we get the same resource under the 
modality. This makes the resource unusable before we reach an acquire fence.

The fence rules simply manage the two modalities as follows:
{
P

}
fencerel

{�P
}

(f-rel)
{P

}
fenceacq

{
P

}
(f-acq)

Release fences protect resources that are to be released by putting them under
the � modality, while acquire fences clear the  modality making resources
under it usable.

Figure 4 shows a proof outline of MP-fences using the rules presented in this
section. Except for the treatment modalities, the proof itself essentially identical
to that of MP. In the first thread, we use a combination of f-rel and the frame
rule to put only x �→ 1 under the � modality. In the second thread, after the
relaxed load, we use the consequence rule to forget the unnecessary R permission
and push the  modality under the disjunction.

Fig. 4. Proof outline of MP-fences using the invariant Q(v) � (v = 0 ∨ x �→ 1).

7 Reasoning About Read-Modify-Write Instructions

Next, consider compare-and-swap, which is a typical example of a read-modify-
write (RMW) instruction. CASo(�, v, v′) reads the location � and if its value is
v, it updates it atomically to v′. If CAS reads some value other than v, then
the update is not performed. In either case, CAS returns the value read. The
o ∈ {rlx, rel, acq, acq-rel, sc} tells us the type of event generated by a successful
CAS operation.

To reason about CAS, we introduce a new type of assertion:

P,Q ::= . . . | U(�,Q)
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which denotes the permission to perform a CAS on location �. As with the W
and R assertions, it records a mapping from values to assertions, which governs
the transfer of resources via a CAS operation.

The U permission is obtained in a similar fashion as the W and R permissions.
At any point in time, a non-atomic location may be converted into an atomic
location with the following ghost implication:

� �→ v ∗ Q(v) � U(�,Q) (mk-atom-u)

The update permission U is duplicable, and interacts with the W and R permis-
sions, allowing us to perform not only updates, but also reads and writes, when
holding an update permission.

U(�,Q) �� U(�,Q) ∗ U(�,Q) (u-split)
U(�,Q) �� U(�,Q) ∗ W(�,Q) (uw-split)
U(�,Q) �� U(�,Q) ∗ R(�, λv. emp) (ur-split)

According to uw-split, when holding the U(�,Q), we also have W(�,Q), allow-
ing us to write to � using the appropriate atomic write rule. On the other hand,
ur-split tells us that we are allowed to read when holding the U(�,Q) permis-
sion, but we cannot gain any ownership (more precisely, no matter the value
read, the acquired resource will always be the empty resource emp).

We next consider the following rule for the acquire-release CAS.2

Q(v) =⇒ A ∗ T pure(ϕ)
P ∗ T =⇒ Q(v′) P ∗ Q(v) =⇒ ϕ

{
U(�,Q) ∗ P

}
x := CASacq-rel(�, v, v′)

{
x = v ∧ U(�,Q) ∗ A ∧ ϕ ∨
x 
= v ∧ U(�,Q) ∗ P

} (cas-ar)

In the precondition, we have permission to perform the CAS and some further
resource, P , to be transferred away if the CAS succeeds.

If the CAS succeeds, we have at our disposal the resource Q(v), which is
split into two parts, A, and T . Resource A is the part that we are going to
acquire and keep it for ourselves in the postcondition. Resource T will remain
in the invariant Q. The second premise requires that the resource P (which we
have in our precondition) together with the resource T (which we left behind
when acquiring ownership) are enough to satisfy Q(v′), thus reestablishing the
invariant for the newly written value. If, in addition to merely reestablishing
the invariant, we manage to prove some additional facts, ϕ, we can carry those
facts into the postcondition. It is required, however, for these facts to be pure,
meaning that the assertion ϕ is a logical fact and does not say anything about
the ownership of resources or the state of the heap.
2 This rule was proposed by Alex Summers and is a slightly stronger than the one in

[6]. Its soundness has been established in Coq alongside with the other FSL rules.
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If the CAS fails, then no resource transfer occurs, and the postcondition
contains the same resources as the precondition.

Fig. 5. Rules for the other kinds of CAS weaker than acq-rel. All of these rules implic-
itly have the same premises as the CAS-AR rule.

The rules for the other types of CAS accesses are slight modifications of the
cas-ar rule in the same vein as the ones that get us from r-acq and w-rel to
r-rlx and w-rlx (see Fig. 5). Namely, wherever the access type is relaxed, �
and  modalities are introduce to ensure a proper fence placement. Since the
premises in these rules are the same as in cas-ar, we avoid repeating them.

– A release CAS is treated as a release write and a relaxed read. Therefore, in
cas-rel sends away P without any restrictions, but the acquired resource, A,
is placed under the  modality, requiring the program to perform a acquire
fence before accessing the resource.

– Conversely, for an acquire CAS, the resource to be transferred away is under
the � modality requiring a release fence before the CAS, while the resource
acquired is immediately usable.

– A relaxed CAS is relaxed as both read and write. This is reflected in the
cas-rlx rule by having both modalities in play.

Fig. 6. Lock library verification using Q(v) � (J ∨ v �= 0) and Lock(�) � U(�, Q).
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Finally, Fig. 6 presents a proof outline for verifying a spinlock implementation
as an example of using the CAS rules. In these proof outlines, the use of the
consequence rule is left implicit. Specifically, in mk-lock, we apply the mk-atom-
u rule to generate the update permission; in acquire-lock, we apply the ur-split
rule to generate a read permission, while in release-lock, we apply the uw-split
rule to generate a write permission.

8 GPS: Adding Protocols

The assertions so far have attached an invariant, Q, to each location that is
meant to be used atomically. While such simple invariants suffice for reasoning
about simple ownership transfer patterns, on their own they are too weak for
establishing even basic coherence properties. Consider, for example, the following
program, where initially [x] = 0.

[x]rlx := 1;
[x]rlx := 2

a := [x]rlx;
b := [x]rlx

(COH)

Although RC11 ensures that a ≤ b in every execution of this program, it is not
possible to establish this postcondition with the separation logic rules we have
seen thus far. To achieve this, we need a more expressive logic incorporating
some limited form of rely-guarantee reasoning (e.g., as already available in OG).

A convenient way to support such reasoning has emerged in the context of
program logics for SC concurrency, such as CAP [4], CaReSL [26], TaDA [23],
and Iris [9], in the form of protocols. The idea is to attach to each atomic location
an acyclic state transition system describing the ways in which the value of the
location can be updated, and to have assertions talk about the current state of
a location’s protocol. Formally a protocol, τ , is a tuple 〈Στ ,�τ ,Qτ 〉, where Στ

is the (non-empty) set of protocol states, �τ is a partial order on Στ relating
a state to its possible future states, and Qτ is a mapping from protocol states
and values to assertions, attaching an invariant about the value of the location
to each protocol state.

We extend the language of assertions with two new assertion forms:

P,Q ::= . . . | WPτ (�, s) | RPτ (�, s)

which assert that � is governed by the protocol τ and its current state is reach-
able from the state s. WPτ (�, s) represents an exclusive write permission to the
protocol, whereas RPτ (�, s) is a duplicable read permission. As usual, these per-
missions can be generated from a points-to assertion with a ghost move.

� �→ v ∗ τ(s, v) � WPτ (�, s)
WPτ (�, s1) ∗ WPτ (�, s2) ⇒ false
WPτ (�, s1) ∗ RPτ (�, s2) ⇔ WPτ (�, s1) ∧ s2 �τ s1

RPτ (�, s1) ∗ RPτ (�, s2) ⇔ ∃s.RPτ (�, s) ∧ s1 �τ s ∧ s2 �τ s
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Consider the following two simplified proof rules for relaxed reads and writes.

emp ⇒ Qτ (s′, v) ∧ s �τ s′
{
WPτ (�, s)

}
[�]rlx := v

{
WPτ (�, s′)

}
∀s′ �τ s. Qτ (s′, x) ⇒ ϕ pure(ϕ)

{
RPτ (�, s)

}
x := [�]rlx

{∃s′.RPτ (�, s′) ∧ ϕ
}

To perform a relaxed write, the thread must own the exclusive write permission
for that location; it then has to chose a future state s′ of the current state and
establish the invariant of that state. Since it is a relaxed write, no ownership
transfer is possible (at least without fences). So, in this somewhat simplified
rule, we require Qτ (s′, v) to hold of the empty heap.

Conversely, to perform a relaxed read, the thread must own a shared read
permission for that location stating that it is at least in state s. It then knows
that the location is in some future protocol state s′ of s, and gets to know that
the invariant of Qτ holds for that state and the value that it read. Since the
read is relaxed, to avoid incorrect ownership transfers, the postcondition gets
only the pure part of this invariant.

Fig. 7. Proof outline of COH using the protocol 〈{0, 1, 2}, ≤, λ(s, v). s = v〉.

These rules can be extended to use the FSL modalities to allow ownership
transfer in combination with fences, but even these basic rules are sufficient for
verifying the COH example. Returning to the example, we take as the protocol
τ of x to consist of three states ordered linearly (0 �τ 1 �τ 2), each saying that
x has the respective value. Pictorially, we have:

0 1 2 Qτ (s, v) � s = v

The proof outline for COH is rather straightforward and is shown in Fig. 7. In
the writer thread, each write moves to the next state. In turn, the reader can
assert that each read gets a value greater or equal to the last state it observed.

Besides protocols, GPS also introduced ghost state in the form of ghost
resources and escrows/exchanges. These features enable GPS to support owner-
ship transfer over release-acquire synchronization. For an explanation of these
features, we refer the reader to [10,25,27].
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A Note About the Different Versions of GPS. GPS was initially developed by
Turon et al. [27] for a fragment of the programming language of Sect. 3 con-
taining only non-atomic and release/acquire accesses. It was later extended by
Tassarotti et al. [25] with “exchanges” and used to verify a version of the RCU
algorithm. Later, Kaiser et al. [10] developed a slight variant of GPS within the
Iris framework featuring a simpler “single writer” rule. All these three works had
their soundness proofs verified in Coq, but cannot handle relaxed accesses. In
a different line of work, He et al. [7] have extended GPS to also cover relaxed
accesses albeit without a mechanised soundness proof.

9 Conclusion: Challenges Ahead

In this section, we will review three main challenges in this line of work. The
first two have to do with the soundness of the presented logic, while the third
has to do with their practical usage.

9.1 Soundness Under Weaker Memory Models

All the program logics discussed so far have been proved sound with respect
to the RC11 weak memory model [14], which forbids load-store reordering for
atomic accesses. Reordering a relaxed-atomic load past a later relaxed-atomic
store, however, is allowed in some weaker memory models, such as the “promis-
ing” model of Kang et al. [11], as it is key to explaining the weak behaviour of
the LB example from the introduction.

Fig. 8. FSL proof outline of LB+dep where Q(v) � v = 0 ∨ z �→ 0.

Extending the soundness of these logics to weaker models permitting the
weak behaviour of LB is rather challenging. In fact, FSL with its current model
of assertions (not discussed in this paper but presented in [5]) is unsound under
such models as shown by the proof outline in Fig. 8.

Under the assumption that z �→ 0 ∗ �z �→ 0 is unsatisfiable (used in the
middle of thread I to deduce that Q(a) ∗�z �→ 0 =⇒ a = 0∧ z �→ 0), the proof
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establishes that a = 0, whereas the program in question may clearly yield a = 1
if the load and the store of thread I are reordered. Although z �→ 0 ∗ �z �→ 0 is
unsatisfiable in the current model of assertions, it is quite possible to devise a
different model of assertions, according to which the aforementioned assertion is
satisfiable, and thus potentially restore the soundness of FSL under some weaker
memory models.

9.2 Reasoning About SC Accesses and Fences

As the reader will have noticed, in this paper we have not presented any rules
for reasoning about sc atomics. Naturally, since sc atomics are stronger than
the release/acquire ones, the presented release/acquire rules are also sound for
sc accesses and fences. The question is whether we can get any stronger proof
rules for sc accesses and fences.

For sc fences, it seems quite likely that we can get better rules. An sc fence
can be thought of as a combination of a acq-rel fence and an acq-rel RMW over
a ghost location. Therefore, we should be able to extend the Hoare triples with
a global invariant, J , which can be accessed at sc fences:

J ∗ P ∗ P ′ � J ∗ Q ∗ Q′

J � {
P ∗ P ′} fencesc

{
Q ∗ �Q′} (f-sc)

Such an invariant may also be used for providing rules for sc accesses. The
fragment of RC11 restricted to accesses only of na or sc kind corresponds exactly
to the language targeted by CSL [19] (by treating sc accesses as being surrounded
by atomic blocks). Thus, for this fragment at least, one can easily derive sound
rules for sc accesses from the CSL rules involving resource invariants. The open
question is whether one can extend the soundness of such rules to the full RC11
model, especially in cases where the same location may accessed both using sc
and non-sc accesses.

9.3 Tool Support

The soundness proofs of the aforementioned adaptations of separation logic have
all been mechanised in the Coq proof assistant (see RSL [28], FSL [5], GPS [27],
FSL++ [6]) together with some example proofs. Nevertheless, doing proofs in
those program logics in Coq without any additional infrastructure is quite cum-
bersome. What is very much needed is some support for more automated proofs.

Such support already exists for various flavours of (concurrent) separation
logic. There exist a wide range of tools, from fully automated ones for suitable
fragments of the logic to tactic libraries for assisting the manual derivation of
mechanised proofs (e.g., [2,8,9,16–18]). For the work described here, the two
most relevant tools are probably Viper [17] and the Iris framework [9].

Viper [17] is a generic program verifier for resource-based logics. Recently,
Summers and Müller [24] have encoded versions of the RSL/FSL proof rules into
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Viper and have used them to verify among other examples a slightly simplified
version of the ARC library verified in [6]. While their encoding is not expressive
enough to verify the actual ARC implementation, it is much more convenient to
use for the programs falling in its domain than the FSL’s Coq formalisation.

Iris [9] is a generic logical framework built around a higher-order variant of
separation logic. It is deeply embedded in Coq and comes with a useful set of Coq
tactics for doing proofs in that framework. In recent work, Kaiser et al. [10] have
encoded a slight variant of GPS into Iris (thereby reproving its soundness within
Iris) and have used Iris’s infrastructure to get a convenient way of constructing
GPS proofs in Coq.
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Abstract. Symbolic automata and transducers extend finite automata
and transducers by allowing transitions to carry predicates and func-
tions over rich alphabet theories, such as linear arithmetic. Therefore,
these models extend their classic counterparts to operate over infinite
alphabets, such as the set of rational numbers. Due to their expres-
siveness, symbolic automata and transducers have been used to verify
functional programs operating over lists and trees, to prove the correct-
ness of complex implementations of BASE64 and UTF encoders, and
to expose data parallelism in computations that may otherwise seem
inherently sequential. In this paper, we give an overview of what is cur-
rently known about symbolic automata and transducers as well as their
variants. We discuss what makes these models different from their finite-
alphabet counterparts, what kind of applications symbolic models can
enable, and what challenges arise when reasoning about these formalisms.
Finally, we present a list of open problems and research directions
that relate to both the theory and practice of symbolic automata and
transducers.

1 Introduction

This paper summarizes the recent results in the theory and applications of sym-
bolic automata and transducers, which are models for reasoning about lists and
trees over complex domains. Finite automata and transducers are used in many
applications in software engineering, including software verification [13], text
processing [7], and computational linguistics [38]. Despite their many applica-
tions, these models suffer from a major drawback: in the most common forms
they can only handle finite and small alphabets.

To overcome this limitation, symbolic automata and transducers allow tran-
sitions to carry predicates and functions over a specified alphabet theory, such as
linear arithmetic, and therefore extend finite automata to operate over infinite
alphabets, such as the set of rational numbers. Despite this generality, symbolic
models retain many of the good properties of their finite-alphabet counterparts
and have enabled new applications such as verification of string sanitizers [30],
analysis of tree-manipulating programs [23], and program synthesis [33].
c© Springer International Publishing AG 2017
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Despite this success, traditional algorithms that work over finite alphabets
have been proven hard to generalize to the symbolic setting, making the design
of algorithms for symbolic models challenging and theoretically interesting. In
certain cases, properties that hold for finite alphabets stop holding in the sym-
bolic setting—e.g., while it is decidable to check whether a finite state transducer
is injective, the same problem is undecidable for symbolic finite transducers.

Intention and Organization. The intention of this paper is to give an overview
of what is currently known about symbolic automata and transducers. At the
same time, we take this opportunity to present new properties that were not
formally investigated in earlier papers and explain to the reader what differenti-
ates symbolic models from their finite-alphabet counterparts. We also show what
applications have been made possible thanks to the models we present.

In summary, the paper describes:

– The existing results on symbolic finite automata, their extensions (Sect. 2),
and their applications (Sect. 3);

– The existing results on symbolic finite transducers, their extensions (Sect. 4),
and their applications (Sect. 5); and

– A brief list of the current challenges and open problems related to symbolic
automata and transducers (Sect. 6).

Related Work. It should be noted that the concept of automata with predicates
instead of concrete symbols was first mentioned in [59] and was discussed in [49]
in the context of natural language processing. This paper focuses on work done
following the definition of symbolic finite automata presented in [55], where pred-
icates have to be drawn from a decidable Boolean algebra. The term symbolic
automata is sometimes used to refer to automata over finite alphabets where the
state space is represented using BDDs [43]. This meaning is different from the
one described in this paper.

Finally, it is hard to describe all the work related to symbolic automata in one
paper and the authors curate an updated list of papers on symbolic automata and
transducers [3]. Many of the algorithms we discuss in this paper are implemented
in the open source libraries AutomataDotNet (in C#) [1] and symbolicautomata
(in Java) [4], and many of the benchmarks used in the applications cited in this
paper are available in the open source collection of benchmarks AutomatArk [2].

2 Symbolic Automata

In symbolic automata, transitions carry predicates over a Boolean algebra. For-
mally, an effective Boolean algebra A is a tuple (D, Ψ, [[ ]],⊥,�,∨,∧,¬) where D
is a set of domain elements; Ψ is a set of predicates closed under the Boolean
connectives, with ⊥,� ∈ Ψ ; the component [[ ]]: Ψ → 2D is a denotation function
such that (i) [[⊥]] = ∅, (ii) [[�]] = D, and (iii) for all ϕ,ψ ∈ Ψ , [[ϕ∨ψ]] = [[ϕ]]∪[[ψ]],
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and [[¬ϕ]] = D \ [[ϕ]]. We also require that checking satisfi-
ability of ϕ—i.e., whether [[ϕ]] �= ∅—is decidable.
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In practice, an (effective) Boolean algebra is implemented as an API with
corresponding methods implementing the Boolean operations.

Example 1 (Equality Algebra). The equality algebra over an arbitrary set D has
an atomic predicate ϕa for every a ∈ D such that [[ϕa]] = {a} as well as predicates
⊥ and �. The set of predicates Ψ is the Boolean closure generated from the
atomic predicates—e.g., ϕa ∨ ϕb and ¬ϕa where a, b ∈ D are predicates in Ψ .

Example 2 (SMT Algebra). Consider a fixed type τ and let Ψ be the set of all
quantifier free formulas with one fixed free variable x of type τ . Intuitively, SMTτ

with is a Boolean algebra representing a restricted use of an SMT solver such
as Z3 [24]. Formally, SMTτ = (D, Ψ, [[ ]],⊥,�,∨,∧,¬), where D is the set of all
elements of type τ , Ψ is the set of all quantifier free formulas containing a single
uninterpreted constant x : τ , the true predicate � is x = x, the false predicate
⊥ is x �= x, and the Boolean operations are the corresponding connectives in
SMT formulas. The interpretation function [[ϕ]] is defined using the operations
of satisfiability checking and model generation provided by an SMT solver. For
example, we can imagine that SMTZ is the algebra in which elements have
type τ = Z and predicates are in integer linear arithmetic. Examples of such
predicates are ϕ>0(x) def= x > 0 and ϕodd(x) def= x%2 = 1.

We can now define symbolic finite automata, which are finite automata over
a symbolic alphabet, where edge labels are replaced by predicates.

Definition 1. A symbolic finite automaton (s-FA) is a tuple M=(A, Q, q0, F,Δ)
where A is an effective Boolean algebra, Q is a finite set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, and Δ ⊆ Q × ΨA × Q is a finite set
of transitions.

Elements of D are called characters and finite sequences of characters are
called strings—i.e., elements of D∗. A transition ρ = (q1, ϕ, q2) ∈ Δ, also denoted
q1

ϕ−→ q2, is a transition from the source state q1 to the target state q2, where ϕ
is the guard or predicate of the transition. For a character a ∈ D, an a-transition
of M , denoted q1

a−→ q2 is a transition q1
ϕ−→ q2 such that a ∈ [[ϕ]].

An s-FA M is deterministic if, for all transitions (q, ϕ1, q1), (q, ϕ2, q2) ∈ Δ,
if q1 �= q2 then [[ϕ1 ∧ ϕ2]] = ∅—i.e., for each state q and character a there is at
most one a-transition from q.

A string w = a1a2 . . . ak is accepted at state q iff, for 1 ≤ i ≤ k, there exist
transitions qi−1

ai−→ qi such that q0 = q and qk ∈ F . We refer to the set of
strings accepted at q as the language of M accepted at q, denoted as Lq(M); the
language accepted by M is L(M) = Lq0(M).

It is convenient to work with s-FAs that are normalized and have at most one
transition from any state to another. For any two states p and q in Q we define
Δ(p, q) def=

∨{ϕ | (p, ϕ, q) ∈ Δ} where
∨ ∅ def= ⊥. We can then define the normal-

ized representation of an s-FA where for every two states p and q, we assume a

single transition p
Δ(p,q)−−−−→ q. Equivalently, in this normalized representation Δ is
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a function from Q×Q to Ψ with Δ(p, q) = ⊥ when there is no transition from p

to q. We also define dom(p) def=
∨{ϕ | ∃q : (p, ϕ, q) ∈ Δ}, to denote the set of all

characters for which there exists a transition from a state p. A state p of M is
complete if [[dom(p)]] = DA; p is partial otherwise. Observe that p is partial iff
¬dom(p) is satisfiable. The s-FA M is complete if all states of M are complete;
M is partial otherwise.

Example 3. Examples of s-FAs are Mpos and Mev/odd in Fig. 1. These two s-
FAs have 1 and 2 states respectively, and they both operate over the Boolean
algebra SMTZ from Example 2. The s-FA Mpos accepts all strings consisting
only of positive numbers, while the s-FA Mev/odd accepts all strings of even
length consisting only of odd numbers. For example, Mev/odd accepts the string
[2, 4, 6, 2] and rejects strings [2, 4, 6] and [51, 26]. The product automaton of Mpos

and Mev/odd, Mev/odd × Mpos, accepts the language L(Mpos) ∩ L(Mev/odd).
Both s-FAs are partial—e.g., neither of them has transitions for character −1.

q0

ϕ>0

q0 q1
ϕodd

ϕodd
q0 q1

ϕodd ∧ ϕ>0

ϕodd ∧ ϕ>0

q0

ϕ>0

¬ϕ>0
s

�

(a) (b) (c) (d)

Fig. 1. Symbolic automata, (a) Mpos; (b) Mev/odd; (c) Mev/odd ×Mpos; (d) Mc
pos.

2.1 Interesting Properties

In this section, we illustrate some basic properties of s-FAs and show how these
models differ from finite automata. A key characteristic of all s-FAs algorithms
is that there is no explicit use of characters because D may be infinite and
the interface to the Boolean algebra does not directly support use of individual
characters.

Similarly to what happens for finite automata, nondeterminism does not add
expressiveness for s-FAs.

Theorem 1 (Determinizability [55]). Given an s-FA M one can effectively
construct a deterministic s-FA Mdet such that L(M) = L(Mdet).

The determinization algorithm is similar to the subset construction for automata
over finite alphabets, but also requires combining predicates appearing in differ-
ent transitions. If M contains k inequivalent predicates and n states, then the
number of distinct predicates in Mdet is at most 2k and the number of states is
at most 2n. In other words, in addition to the classic state space explosion risk
there is also a predicate space explosion risk.

Since s-FAs can be determinized, we can show that s-FAs are closed under
Boolean operations using variations of classic automata constructions.
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Theorem 2 (Boolean Operations [55]). Given s-FAs M1 and M2 one can
effectively construct s-FAs M c

1 and M1 × M2 such that L(M c
1 ) = D∗

A \ L(M1)
and L(M1 × M2) = L(M1) ∩ L(M2).

The intersection of two s-FAs is computed using a variation of the classic
product construction in which transitions are “synchronized” using conjunction.
For example, the intersection of Mpos and Mev/odd from Example 3 is shown
in Fig. 1(c).

To complement a deterministic partial s-FA M , M is first completed by
adding a new non-final state s with loop s

�−→ s and for each partial state p

a transition p
¬dom(p)−−−−−−→ s. Then the final states and the non-final states are

swapped in M c. Following this procedure, the complement of Mpos from Exam-
ple 3 is shown in Fig. 1(d).

Next, s-FAs enjoy the same decidability properties of finite automata.

Theorem 3 (Decidability [55]). Given s-FAs M1 and M2 it is decidable to
check if M1 is empty—i.e., whether L(M1) = ∅—and if M1 and M2 are language-
equivalent—i.e. whether L(M1) = L(M2).

Checking emptiness requires checking what transitions are satisfiable and, once
unsatisfiable transitions are removed, any path reaching a final state from an
initial state represents at least one accepting string. Equivalence can be reduce
to emptiness using closure under Boolean operations.

Algorithms have also been proposed for minimizing deterministic s-FAs [18],
for checking language inclusion [34], for computing forward bisimulations of s-
FAs [21], and for learning s-FAs from membership and equivalence queries [25].

Alphabet Equivalence Classes. Classic automata can only describe sequences
over finite alphabets. Despite this limitation, there is a way to convert every
s-FA M into a finite automaton that, in some sense, preserves the set of all
strings accepted by the s-FA. Although the set S of all predicates appearing
in a given s-FA (or finite collection of s-FAs over the same alphabet alge-
bra) operate over an infinite domain, the set of maximal satisfiable Boolean
combinations Minterms(S)—also called minterms—of such predicates induces
a finite set of equivalence classes. In order to perform operations over one
or more s-FAs M̄ by using classical automata algorithms, one can consider
Σ = Minterms(Predicates(M̄)) as the induced finite alphabet and replace each
original transition p

ϕ−→ q by the transitions {p
c−→ q | c ∈ Σ,SAT(c ∧ ϕ)} and

consequently treat the automata as classic finite automata over the alphabet Σ.

Example 4. Consider the two s-FAs Mpos and Mev/odd in Fig. 1. Then

S = Predicates(Mpos,Mev/odd) = {ϕ>0, ϕodd}
and

Σ = Minterms(S)={ϕodd ∧ ϕ>0︸ ︷︷ ︸
a

,¬ϕodd ∧ ϕ>0︸ ︷︷ ︸
b

, ϕodd ∧ ¬ϕ>0︸ ︷︷ ︸
c

,¬ϕodd ∧ ¬ϕ>0︸ ︷︷ ︸
d

}
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Then, as a DFA over the finite alphabet Σ, Mpos has the transitions
{(q0, a, q0), (q0, b, q0)} and Mev/odd has the transitions {(q0, a, q1), (q0, c, q1),
(q1, a, q0), (q1, c, q0)}. In the product Mpos × Mev/odd only the a-transitions
remain.

Intuitively, using only the predicates in Σ there is no way to, for example,
distinguish the number 1 from the number 3—i.e., given any string s, if one
replaces any element 1 in s with the element 3, the new sequence s′ is accepted
by the s-FA iff s is also accepted by the s-FA. �

Using this argument, every s-FA M can be compiled into a symbol-
ically equivalent finite automaton over any alphabet Minterms(S) where
Predicates(M) forms a subset of S and S is a finite subset of Ψ . This idea, also
referred to as predicate abstraction, is often used in program verification [26].

In general, computing the set Minterms(M) def= Minterms(Predicates(M))
is an expensive procedure that generate exponentially many predicates. The
following theorem exactly characterizes the size of the set Minterms(M).

Theorem 4 (Number of minterms). Let M be a complete and normalized
s-FA with n states. Then |Minterms(M)| ≤ 2(n

2). If M is deterministic then
|Minterms(M)| ≤ 2n log2 n.

Proof. Let S = Predicates(M). Since M is normalized we have |Δ| ≤ n2 and so
|S| ≤ n2, and since |Minterms(S)| ≤ 2|S| the first claim follows. Assume now
that M is deterministic. Then every source state pi of M , for i < n, defines a
partition Pi of D such that |Pi| ≤ n because M is normalized, where each part
of Pi is defined by the guard of a transition from pi. Given two partitions Pi

and Pj of D let Pi � Pj denote the coarsest partition of D that refines both Pi

and Pj . Then {[[μ]] | μ ∈ Minterms(S)} =
∏

i<n Pi. Since, for every i, |Pi| ≤ m

implies |∏i<n Pi| ≤ mn, the following holds: |Minterms(S)| ≤ nn = 2n log2 n. �

2.2 Parametric Complexities

In the previous paragraphs we did not discuss the complexities of the presented
algorithms. Since s-FAs are parametric in an underlying alphabet theory, the
complexities of the algorithms must in some way depend on the complexities of
performing certain operations in the alphabet theory.

For example, checking emptiness of an s-FA requires checking satisfiability of
all predicates in the s-FA and the complexity depends on “how costly” it is to
check satisfiability of such predicates. Another issue arises from algorithms that
generate new predicates that did not belong to the original s-FAs. In particu-
lar, repeated predicate conjunctions, unions, and complementations will cause
predicates to grow in size and might therefore result in satisfiability queries
with higher costs. This peculiar aspect of s-FAs opens a new set of complexity
questions that have not been studied in classic automata theory.

Let’s consider again the problem of checking emptiness of an s-FA. In classic
automata, this problem has complexity O(kn) where k is the size of the alphabet
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and n is the number of states in the automaton. For an s-FA M , if we assume that
the largest predicate in M has size 	 and f(x) is the cost of checking satisfiability
of predicates of size x in the underlying alphabet theory, then checking emptiness
has complexity O(m · f(	)), where m is the number of transitions in the s-
FA M . Observe also that for s-FAs it is reasonable to work with normalized
representations which implies that m is at most n2 and m is independent of the
alphabet size and the total size of M is O(m	).

For certain problems, the complexities can get more complicated and different
algorithms will have different incomparable complexities. For example, consider
the problem of minimizing a deterministic s-FA. For classic automata, there are
two algorithms for solving this problem: (i) Moore’s algorithm, which has com-
plexity O(kn2); (ii) Hopcroft’s algorithm, which has complexity O(kn log n).
It is therefore clear that Hopcroft’s algorithm has better asymptotic complexity
than Moore’s algorithm. In the case of s-FAs, the situation is more complicated.
For an s-FAs M with n states and m transitions, if we assume that the largest
predicate in M has size 	 and f(x) is the cost of checking satisfiability of pred-
icates of size x in the underlying alphabet theory, the symbolic adaptation of
Moore’s algorithm has complexity O(mn·f(	)), while the symbolic adaptation of
Hopcroft’s algorithm has complexity O(m log n ·f(n	)). For s-FAs, the two algo-
rithms have somewhat orthogonal theoretical complexities: Hopcroft’s algorithm
saves a logarithmic factor in terms of state complexity, but this saving comes
at the cost of running more expensive satisfiability queries on predicates of size
n	. Given the recent advances in satisfiability procedures, the second algorithm
behaves better in practice.

2.3 Variants

Symbolic automata have been extended in various ways. Symbolic alternating
automata (s-AFA) together with a practical equivalence algorithm are presented
in [17]. s-AFAs are equivalent in expressiveness to s-FAs, but achieve succinct-
ness by extending s-FAs with alternation [14] and, despite the high theoretical
complexity, this model can at times be more practical than s-FAs. A very com-
mon extension of s-FAs is to allow multiple initial states, in particular when
dealing with nondeterministic s-FAs [21].

Symbolic tree automata (s-TA) operate over trees instead of strings. s-FAs
are a special case of s-TAs in which all nodes in the tree have one child or are
leaves. s-TAs have the same closure and decidability properties as s-FAs [52].
Moreover, the minimization algorithms for s-FAs has been extended to s-TAs
[20].

Symbolic visibly pushdown automata (s-VPA) operate over nested words,
which are used to model data with both linear and hierarchical structure such—
e.g., XML documents and recursive program traces. s-VPAs can be determinized
and have the same closure and decidability properties of s-FAs [16].

All the previous extensions show cases in which adapting classic models to
the symbolic setting does not affect closure and decidability properties. This
is not the case for Symbolic Extended Finite Automata (s-EFA) [19]. s-EFAs
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are symbolic automata in which each transition can read more than a single
character. In this model, predicates apply to finite tuples of elements up to a
fixed length, but the semantics flattens the tuples.

Formally, the domain D of A is assumed to contain tuples to enable the use of
multiple variables in this setting. There are predicates IsTup k for checking if an
element is a k-tuple for k ≥ 1 and there are projection terms xi or variables such
that for a k-tuple a = (a1, . . . , ak), and 1 ≤ i ≤ k, [[xi]](a) = ai. For example,
using equality or disequality, one can relate elements of tuples. A predicate over
k-tuples is called k-ary.

Example 5. A predicate IsTup 2∧x1 �= x2 ∧ϕ is satisfiable iff there exists a ∈ D
such that a is a pair (a1, a2) and a1 �= a2, and [[ϕ]](a1, a2) holds. �

Thus, if [(a, b, c), (d), (e, f)] ∈ L(M) where M is a considered as an s-FA
then [a, b, c, d, e, f ] ∈ Le(M) when M is considered as an s-EFA. Each individual
transition guard must uniquely define the length k of the tuple that determines
its arity. For example, the following transition reads two adjacent symbols x1

and x2 and checks whether the two symbols are equal:

p
x1=x2−−−−→

2
q.

While for automata over finite alphabet adding the the ability to consume multi-
ple characters in a single transition does not increase expressiveness, s-EFAs are
strictly more expressive than s-FAs. Moreover, s-EFAs lack many of the desir-
able properties s-FAs enjoy: s-EFAs are not closed under Boolean operations,
nondeterministic s-EFAs are strictly more expressive than their deterministic
counterpart, it is undecidable to check whether two s-EFAs are equivalent, or
even to check whether their intersection is empty. An important subclass of s-
EFAs, called Cartesian s-EFAs [19], has the same expressive power as s-FAs
and allows transitions with lookahead but the guards must be predicates whose
atoms only mention one variable at a time. Thus the atom x1 = x2 would not
be allowed. A related problem, called monadic decomposition [54] arises if we
want to decide if a predicate can be effectively transformed into an equivalent
Cartesian form.

3 Symbolic Automata in Practice

The development of the theory of symbolic automata is motivated by concrete
practical problems. Here we discuss some of them.

3.1 Analysis of Regular Expressions

The connection between automata and regular expressions has been studied for
more than 50 years. However, real-world regular expressions are much more
complex than the simple model described in a typical theory of computation
course. In particular, in practical regular expressions the size of the alphabet
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is 216 due to the widely adopted UTF16 standard of Unicode characters. The
inability of classic automata to efficiently handle large alphabets is what started
the study of symbolic automata.

Using s-FAs, the alphabet of Unicode characters can be modeled as a the-
ory of bit-vectors where predicates are represented as Binary Decision Diagrams
(BDDs) over such bit-vectors [31] or using bit-vector arithmetic in Z3 [55]. These
representations turned out to be a viable way to model practical regular expres-
sions and led to advanced analysis in the context of parametrized unit testing in
the tool PEX [48], automatic SQL query exploration in QEX [56], and random
password generation [18].

In applications that perform many Boolean operations on the regular
expressions—e.g., in text processing and analysis of string-manipulating pro-
grams [7,57]—s-FAs may generate very large number of states despite their suc-
cinct alphabet representations. The extension of s-FAs with alternation, s-AFAs,
can succinctly represent Boolean combinations of s-FAs and it was shown to be
an effective model for checking equivalence of complex combinations of regular
expressions.

3.2 Other Applications

Thanks to the symbolic treatment of the alphabet, symbolic automata are an
executable model and can be used to generate efficient code. This idea has
been used to achieve speed-ups in regular expression processing [45] and XML
processing [16].

Recently, s-VPAs have been used in the context of static analysis of program
failures to succinctly model properties of control-flow graphs [40]. This model
is particularly helpful in modelling properties of inter-procedural programs with
many different functions. In this setting, a classic automaton will need to have
number of states and transitions proportional to the number of functions—i.e.,
when a function f is invoked, push a state remembering the name f on a stack
and pop it at the function return. On the other hand, symbolic visibly pushdown
automata can model this call/return interaction symbolically with a single tran-
sition that simply requires the function that is currently returning to have the
same name as the last called function.

4 Symbolic Transducers

In this section, we present symbolic finite transducers, which are symbolic
automata that can produce outputs. The presentation here follows the origi-
nal definition from [57] but omits type annotations. In addition to predicates
we use expressions for representing anonymous functions that we call function
terms. Let A be a Boolean algebra as defined in Sect. 2. The set of function terms
is denoted by Λ and a term f ∈ Λ denotes a function [[f ]] over D, such that if
f, g ∈ Λ then g(f) ∈ Λ and it is such that for every a ∈ D:

[[g(f)]](a) = [[g]]([[f ]](a)).
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Similarly, if ϕ ∈ Ψ and f ∈ Λ then ϕ(f) ∈ Ψ such that, for a ∈ D:

a ∈ [[ϕ(f)]] ⇔ [[f ]](a) ∈ [[ϕ]].

Moreover, f = g is an equality predicate in ΨA such that, for a ∈ D:

a ∈ [[f = g]] ⇔ [[f ]](a) = [[g]](a).

Observe that f = g does not mean [[f ]] = [[g]]. We write f �= g for ¬f = g. Thus,
f �= g is satisfiable iff [[f ]] �= [[g]].

Furthermore, there is an identity (function) term x ∈ Λ such that, for all
a ∈ D, [[x]](a) = a, and for all c ∈ D there is a constant term c ∈ Λ such that
for all a ∈ D, [[c]](a) = c.

Example 6. Predicate ϕ ∧ f �= g is satisfiable iff there exists a ∈ [[ϕ]] such that
[[f ]](a) �= [[g]](a)—i.e., when f and g are not equivalent wrt ϕ. Predicate f �= c
for a given c ∈ D is satisfiable iff f does not denote the constant function c. �

Terms are typically typed but we omit type annotations here. We call such an
extended (effective) Boolean algebra with the additional components an (effec-
tive) label algebra.

Definition 2. A Symbolic Finite Transducer (s-FT) T is a tuple (A, Q, q0,Δ, F )
where: A is an effective label algebra; Q is a finite set of states; q0 ∈ Q is the
initial state; Δ is a finite subset of Q × Ψ × Λ∗ × Q called transitions; F ⊆ Q is
the set of final states.

In a transition (p, ϕ, f̄ , q), also denoted p
ϕ/f̄−−→ q, f̄ is called the output.

Observe that an s-FT in which all the transitions output the empty list corre-
sponds to an s-FA. We also call the s-FA that is obtained from an s-FT T by
removing the output component its domain automaton, DOM (T ).

Example 7. Let A correspond to integer linear arithmetic. So Λ contains terms
such as x%2 (x modulo 2), and Ψ contains atomic predicates such as x > 0. Here
x has type Z. The following are two examples of s-FTs:

T1 = (A, {p}, p, {p
x>0/[x,x]−−−−−−→ p}, {p}),

T2 = (A, {q}, q, {q
x%2 �=0/[x]−−−−−−−→ q, q

x%2=0/[]−−−−−−→ q}, {q}).

Here, T1 accepts only positive numbers and duplicates them and T2 deletes all the
even numbers. For example, on input [1, 2, 3], the s-FT T1 outputs [1, 1, 2, 2, 3, 3],
while the s-FT T2 outputs [1, 3]. �

We now define the semantics of s-FTs. In the remainder of the section, let
T = (A, Q, q0,Δ, F ) be a fixed s-FT. For each transition r in Δ we define the
set [[r]] of corresponding concrete transitions as follows.

[[p
ϕ/[f1,...,fk]−−−−−−−→ q]] def= {(p, a) �→ ([[[f1]](a), . . . , [[fk]](a)], q) | a ∈ [[ϕ]]}
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Intuitively, a transition p
ϕ/f̄−−→ q reads one input symbol a in state p that satisfies

the guard ϕ and produces a sequence of output symbols by applying the output
functions in f̄ to a and enters state q. In the following, let [[Δ]] def=

⋃
r∈Δ[[r]] and

let s1 ·s2 denote the concatenation of two sequences s1 and s2. We let D∗ denote
a disjoint universe from D of sequences of elements over D, to avoid the possible
ambiguity as far as concatenation is concerned.

Definition 3. For u = [a1, a2, . . . , an], v ∈ D∗, q ∈ Q, q′ ∈ Q, define q
u/v−−→→T q′

iff either u = v = [] and q = q′, or there is n ≥ 1 and {(pi−1, ai) �→ (vi, pi)}n
i=1 ⊆

[[Δ]] such that v = v1 ·v2 · · · vn, q = p0, and q′ = pn. The transduction of T is the

relation TT ⊆ D∗ × D∗ such that TT (u, v) ⇔ ∃q ∈ F : q0
u/v−−→→ q. Let TT (u) def=

{v | TT (u, v)}. Finally, he domain of T is defined as dom(T ) def= {u ∈ D∗ | ∃v :
TT (u, v)}, and the range of T is defined as ran(T ) def= {v ∈ D∗ | ∃u : TT (u, v)}.

The s-FT T is deterministic when [[Δ]] is a partial function from Q × D to
D∗ ×Q. The s-FT T is single-valued or functional if, for all u, |TT (u)| ≤ 1—i.e.,
TT represents a partial function over D∗. Observe that if T is deterministic then
T is also functional. Both the s-FTs in Example 7 are deterministic.

4.1 Interesting Properties

In this section, we illustrate some of the basic properties of s-FTs and show
what aspects differentiate these models from finite transducers [38], their finite-
alphabet counterpart. First, while both the domain and the range of a finite
state transduction are definable using a finite automaton, this is not the case for
s-FTs. By a regular language here we mean a language accepted by an s-FA.

An s-FT T admits quantifier elimination if for every transition
(p, ϕ, [fi]ki=1, q) in T where k ≥ 1 one can effectively compute a predicate ψ ∈ Ψ
such that the following is true: for all b ∈ D, we have b ∈ [[ψ]] iff b is a k-tuple
(bi)k

i=1 such that there exists a ∈ [[ϕ]] such that bi = [[fi]](a) for 1 ≤ i ≤ k. In
other words, computation of ψ corresponds to eliminating the quantifier ∃y from
∃y : ϕ(y) ∧ ∧k

i=1 xi = fi(y). Note that the predicate ψ is a k-ary predicate.

Theorem 5 (Domain and Range Languages). Given an s-FT T , one can
compute an s-FA DOM (T ) such that L(DOM (T )) = dom(T ) and, provided
that T admits quantifier elimination, there is an s-EFA RAN (T ) such that
Le(RAN (T )) = ran(T ).

In general, the range of an s-FT is not regular.

Example 8. Take an s-FT T with a single transition q
ϕodd (x)/[x,x]−−−−−−−−→ q that dupli-

cates its input if the input is odd. Then ran(T ) is not regular, but it can be
accepted by the s-EFA with one transition q

x1=x2−−−−→
2

q. �

s-FTs are closed under sequential composition. This is a property that enables
several interesting program analyses [30] and optimizations.



58 L. D’Antoni and M. Veanes

Theorem 6 (Closure under Composition [57]). Given two s-FTs T1 and
T2, one can compute an s-FT T2(T1) such that for u, v ∈ D∗,

TT2(T1)
(u, v) ⇔ ∃w : TT1

(u,w) ∧ TT2
(w, v).

We illustrate the role of the substitution operator ·(·) in a label algebra in

the context of computing T2(T1). Consider the transition p
ϕ/[f1,f2]−−−−−−→ p′ in T1

and the transitions q
ψ/[g]−−−→ q′ γ/[h]−−−→ q′′ in T2. The set of states QT2(T1) of the

composed transducer is a reachable subset of Q1×Q2. The initial state of T2(T1)
is (q0T1

, q0T2
). When a state (p, q) is explored then the transition

(p, q)
ϕ∧ψ(f1)∧γ(f2)/[g(f1),h(f2)]−−−−−−−−−−−−−−−−−−→ (p′, q′′)

is constructed from the above transitions where the substitution operator is
applied to construct the combined guard and output functions. The composed
transition is omitted if ϕ ∧ ψ(f1) ∧ γ(f2) is unsatisfiable.

Example 9. Recall T1 and T2 from Example 7. Consider T = T2(T1). Then
QT = {(p, q)}. There are four composed candidates for the transitions in ΔT

but only the following two have satisfiable guards:

(p, q)
x>0∧x%2 �=0∧x%2 �=0/[x,x]−−−−−−−−−−−−−−−−−→ (p, q), (p, q)

x>0∧x%2=0∧x%2=0/[]−−−−−−−−−−−−−−−→ (p, q)

Therefore T , given a list of positive numbers, duplicates all odd numbers and
deletes the even ones. For example, on input [1, 2, 3], T outputs [1, 1, 3, 3]. �

The following result follows from the closure properties of s-FAs and the
closure under composition of s-FTs.

Corollary 1 (Type-checking). Given an s-FTs T and s-FAs MI and MO,
the following problem is decidable: check if for all v ∈ L(MI): TT (v) ⊆ L(MO).

For example, using the type-checking algorithm one can prove that, for every
input list, the transducer T from Example 9 always outputs a list of odd numbers
of even length.

Checking whether two s-FTs are equivalent is in general undecidable (already
over finite alphabets [29]). However, the problem becomes decidable when the
two s-FTs are functional (single-valued), which is itself a decidable property to
check.

Theorem 7 (Decidable functionality [57]). Given an s-FTs T it is decidable
to check whether T is functional.

Theorem 8 (Decidable functional equivalence [57]). Given two functional
s-FTs T1 and T2 it is decidable to check whether TT1

= TT2
.
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Both theorems use a more general decision problem that decides for two s-
FTs T1 and T2, if for all u, v, w ∈ D∗ it is true that if TT1

(u, v) and TT2
(u,w) then

v = w. The algorithm of this decision problem [57, Fig. 3] uses the disequality
operator �= and, in particular, the predicates shown in Example 6.

We conclude this section with an interesting property that is decidable for
classic finite state transducers [27] but undecidable for s-FTs. We say that an
s-FT T is injective if for all u, v ∈ D∗ we have TT (u) ∩ TT (v) = ∅.

Theorem 9 (Undecidable injectivity [33]). Given a deterministic s-FT T ,
it is undecidable to check whether T is injective.

The proof of undecidability presented in [33, Theorem 4.8] is given for s-EFTs
and is based on showing that it is undecidable to check whether there exist two
different accepting paths for the same string in the s-EFA RAN (T ). It is easy
to show that the theorem also holds for s-FTs since every s-EFA in this theory
can be produced as the range language of some s-FT.

4.2 Variants

Symbolic finite transducers have been extended in various ways. The basic exten-
sion of s-FTs is to consider finalizers—i.e., specific transitions that are used to
output final sequences upon end of input. Finite state transducers with finalizers
are called subsequential [6,46]. Finalizers enable certain scenarios not possible
without sacrificing determinism. Consider for example a decoder that decodes a
string by replacing all patterns "&amp;" by the character "&". If the input string
ends with for example "&amp" the decoder will need to output "&amp" instead
of "&" upon reaching the end of the input and finding out that ";" is missing.
Similarly, for capturing minimality, s-FTs may also be extended with initial out-
puts [44]. For many purposes it is enough to imagine that D is extended with
two new symbols that are used exclusively to detect start and end of an input
sequence. In a typed universe this approach is cumbersome and complicates the
notion of composition by requiring bookkeeping and special treatment of the
extra symbols which have to be taken outside the type domain.

Similarly to how s-EFAs extend s-FAs, Symbolic Extended Finite Transduc-
ers (s-EFT) are symbolic transducers in which each transition can read more than
a single character. Essentially, the definition of TT changes to T e

T , similar to the
change from L(M) to Le(M), where the input is flattened. s-EFA already lack
many desirable properties and s-EFTs further add to this list. s-EFTs are not
closed under composition and equivalence is undecidable even for deterministic
s-EFTs. However, equivalence becomes decidable when for every transition that
reads n characters using a predicate ϕ(x1, . . . , xn), one can replace the predicate
with an equivalent disjunction of predicates of the form ϕ1(x1)∧. . .∧ϕn(xn) [19].

A further extension of s-FTs, called s-RTs, incorporates the notion of
bounded look-back and roll-back in form of roll-back-transitions, not present in
any other transducer formalisms, to accommodate default or exceptional behav-
ior [50]. The key application is to simplify handling of default transitions such
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as the followings: if none of those patterns matches then read and output the
next input character “as is”. Having to hand-code state machines for such cases
gets complicated and error prone very quickly—e.g., see [57, Fig. 7].

s-FTs have also been extended with registers [57] and are called symbolic
transducers. The key motivation is to support loop-carried data state, such as
the maximal number seen so far. This model is closed under composition, but
most decision problems for it are undecidable, even emptiness.

A further extension of symbolic transducers uses branching transitions, which
are transitions with multiple target states in form of if-then-else structures [45].
The purpose is to better facilitate code generation by maintaining code struc-
ture, sharing, and predicate evaluation order for deterministic transducers. For

example, instead of two separate transitions p
ϕ/f̄−−→ q and p

¬ϕ/ḡ−−−→ r, there is a

single branching transition p �→ if ϕ then (f̄ , q) else (ḡ, r). If there is one branch-
ing transition per state then determinism is built-in. One can of course apply
the same idea to s-FAs.

Symbolic tree transducers (s-TT) operate over trees instead of strings. s-FTs
are a special case of s-TTs in which all nodes in the tree have one child or are
leaves. s-TTs are only closed under composition when certain assumptions hold
and their properties are studied in [28]. Equivalence of a restricted class of s-TTs
is shown decidable in [51]. s-TTs with regular look-ahead are studied in [23].

5 Symbolic Transducers in Practice

Here we provide a high-level overview of the main applications involving symbolic
finite transducers and their variants.

5.1 Analysis of String Encoders and Sanitizers

The original motivation for s-FTs came from analysis of string sanitizers [30].
String sanitizers are particular string to string functions over Unicode designed
to encode special characters in text that may otherwise trigger malicious code
execution in certain sensitive contexts, primarily in HTML pages. Thus, sani-
tizers provide a first line of defence against cross site scripting (XSS) attacks.
When sanitizers can be represented as s-FTs, one can, for example, decide if
two sanitizers A and B commute—i.e., if TA(B) = TB(A)—if a sanitizer A is
idempotent—i.e., if TA(A) = TA—or if A cannot be compromised with an input
attack vector—i.e., if ran(A) ⊆ SafeSet. Checking such properties can help to
ensure the correct usage of sanitizers.

One drawback of s-FTs is that they consider one input element at a time.
While this is often sufficient for individual character-based transformations
appearing in common sanitizers, in more complex transformations, such as
BASE64 encoders and decoders, it is often necessary to be able to look at a
group of characters at once in order to decode them. For example, a BASE64
encoder reads three characters at a time and outputs complex combinations and



The Power of Symbolic Automata and Transducers 61

bit-level transformations of the bits appearing in the characters. This is the orig-
inal motivation behind s-EFTs, which are studied in [19]. Using s-EFTs one can
prove that efficient implementations of BASE64 or UTF encoders and decoders
correctly invert each other. Recently, s-EFTs have been used to automatically
compute inverses of encoders that are correct by construction [33].

Variants of algorithms for learning symbolic automata and transducers have
been used to automatically extract models of PHP input filters [12] and string
sanitizers [8]. In these applications, symbolic automata and transducers have
enabled modelling of programs that were beyond the reach of existing automata-
learning algorithms.

Symbolic transducers have also been used to perform static analysis of func-
tional programs that operate over lists and trees [23]. In particular, symbolic
tree transducers were used to verify HTML sanitizers, to check interference of
augmented reality applications submitted to an app store, and to perform defor-
estation, a technique to speed-up function composition, in functional language
compilation.

5.2 Code Generation and Parallelization

Symbolic transducers can be used to expose data parallelism in computations
that may otherwise seem inherently sequential. This idea builds on the property
that the state transition function of a DFA can be viewed as a particular kind
of matrix multiplication operation which is associative and therefore lends itself
to parallelization [39]. This property can be lifted to the symbolic setting and
applied to many common string transformations expressed as symbolic trans-
ducers [58].

Using closure under composition, complex combinations of symbolic trans-
ducers can be composed in a manner that supports efficient code generation. The
main context where this has been evaluated is in log/data processing pipelines
that require loop-carried state for data processing [45]. In this context the sym-
bolic transducers have registers and use branching rules that are rules with
multiple target states in form of if-then-else structures. The main purpose of the
branching rules is to support serial code generation.

Symbolic automata and transducers also provide the backbone of DReX, a
declarative language for efficiently executing regular string transformations in
a single left-to-right pass over the input [7]. DReX has also been extended to
stream numerical data computations using a “numerical” extension of symbolic
transducers [36].

6 Open Problems and Future Directions

We conclude this paper with a list of open theoretical questions that are unique
to symbolic automata and transducers, as well as a summary of what unexplored
applications could benefit from these models.



62 L. D’Antoni and M. Veanes

6.1 Adapting Efficient Algorithms for Finite Alphabets

Several algorithms for classic finite automata are based on efficient data struc-
tures that directly leverage the fact that the alphabet is finite. For example,
Hopcroft’s algorithm for automata minimization, at each step, iterates over the
alphabet to find potential ways to split state partitions [32]. It turns out that
this iteration can be avoided in symbolic automata using satisfiability checks on
certain carefully crafted predicates [18].

Paige-Tarjan’s algorithm for computing forward bisimulations of nondeter-
ministic finite automata is similar to Hopcroft’s algorithm for DFA minimiza-
tion [5,41]. The efficient implementation of Paige-Tarjan’s algorithm presented
in [5] keeps, for every symbol a in the alphabet, for every state q in the automa-
ton, and for every state partition P , a count of how many transitions from q
on symbol a reach the partition P . Using this data-structure, the algorithm can
compute the partition of forward-bisimilar states in time O(km log n). Unlike
Hopcroft’s algorithm, this algorithm is hard to adapt to the symbolic setting.
In fact, the current adaptation has complexity O(2m log n + 2mf(n	)) [21]. In
contrast, the simpler O(km2) algorithm for forward bisimulations can be easily
turned into a symbolic O(m2f(	)) algorithm [21]. This example shows how it
can be hard to convert the most efficient algorithms for automata over finite
alphabets to the symbolic setting. In fact, it remains open whether an efficient
symbolic adaptation of Paige-Tarjan’s algorithm exists.

Another example of this complexity of adaptation is the algorithm for check-
ing equivalence of two nondeterministic unambiguous finite automata [47]. This
algorithm checks equivalence of two automata in polynomial time by “counting”
how many strings of all lengths smaller or equal than some small length the two
automata accepts. These numbers can only be computed if the alphabet is finite
and it is unclear whether one can efficiently adapt this algorithm to the symbolic
setting.

Some symbolic models are still not well understood because they do not have
a finite automata counterpart. In particular, s-EFAs do not enjoy many good
properties, but it is possible that they have practical subclasses—e.g., determin-
istic, unambiguous, etc.—with good properties.

Finally, the problem of learning symbolic automata has only received limited
attention [25], and there is an opportunity to develop interesting new theories
in this domain. Classic learning algorithm require querying an oracle for all
characters in the alphabet and this is impossible for symbolic automata. On the
other hand, the learner simply needs to learn the predicates on each transition
of the s-FA, which might require a finite number of queries to the oracle [25].
This is a common problem in computational learning theory and there is an
opportunity to apply concepts from this domain to the problem of learning
symbolic automata.

6.2 Theoretical Treatments

Complexity and expressiveness. In classic automata theory, the complexities of
the algorithms are given with respect to the number of states and transitions
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in the automaton. We discussed in Sect. 2 how the complexities of symbolic
automata and transducers operations depend on the complexities of performing
certain operations in the alphabet theory. Existing structural complexity results
for automata algorithms only dwell on state size, but we showed how certain
algorithms pose trade-off between state complexity and alphabet complexity in
the case of symbolic automata. Exactly understanding these trade-offs is an
interesting research question.

There has been a lot of interest in providing algebraic and co-algebraic treat-
ments of classic automata theory [11]. These abstract treatments are helping us
understand the essence of classic algorithms and are simplifying complex proofs
that were otherwise tedious. It is unclear how to extend these notions to symbolic
models, making the problem intriguing from a theoretical standpoint.

Combination with Nominal Automata. In data words, each character is a pair
(a, d) where a is an element of the finite alphabet and d is a data element
over an infinite potentially ordered domain. Various models of automata have
been introduced for data words [9]. In these models, data elements at differ-
ent positions can be compared using a predefined operator—e.g., equality—but
individual data elements cannot be checked against predicates in a Boolean alge-
bra. Nominal automata [37] provide an elegant algebraic model for describing
computations on data words and combining nominal automata with symbolic
automata is an interesting research direction: on one hand we know that s-EFA
do not enjoy good theoretical properties because they allow comparisons between
different characters, and on the other hand nominal automata enjoy decidable
properties by restricting what operations one can use to compare data elements.

6.3 New Potential Applications

SMT Solving with Sequences. SMT solvers such as Z3 [24] have drastically
changed the world of programming languages and turned previously unsolvable
problems into feasible ones. The recent interest in verifying programs operating
over sequences has created a need for extending existing SMT solving techniques
to handle sequences over complex theories [22,53]. Solvers that are able to handle
strings, typically do so by building automata and then performing complex oper-
ations over such automata [35]. Existing solvers only handle strings over finite
small alphabets [35] and s-FAs have the potential to impact the way in which
such solvers for SMT are built. Recently, Z3 [24] has started incorporating s-FAs
to reason about sequences. The SMT community has also been discussing how
to integrate sequences and regular expressions into the SMT-lib standard [10].

Security. Dalla Preda et al. recently investigated how to use s-FAs to model
program binaries [15]. s-FAs can use their state space to capture the control
flow of a program and their predicates to abstract the I/O semantics of basic
blocks appearing in the programs. This approach unifies existing syntactic and
semantic techniques for similarity of binaries and has the promise to lead us to
better understand techniques for malware detection in low-level code. The same
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authors recently started investigating whether, using s-FTs, the same techniques
could be extended to perform analysis of reflective code—i.e., code that can self-
modify itself at runtime [42].

7 Conclusion

Symbolic automata and transducers have proven to be a versatile and power-
ful model to reason about practical applications that were beyond the reach of
models that operate over finite alphabets. In this paper, we summarized what
theoretical results are known for symbolic models, described the numerous exten-
sions of symbolic automata and transducers, and clarified why these models are
different from their finite-alphabet counterparts. We also presented the following
list of open problems we hope that the research community will help us solve:
Can we provide theoretical treatments of the complexities of the algorithms for
symbolic models? Can we extend algorithms for automata over finite alpha-
bets to the symbolic setting? Can we combine symbolic automata with other
automata models such as nominal automata? Can we use symbolic automata
algorithms to design decision procedures for the SMT theory of sequences?
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put. Sci. 4, 47–57 (1977)

47. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problems for unam-
biguous regular expressions, grammars, and automata. In: SFCS 1981, pp. 74–81,
October 1981

48. Tillmann, N., Halleux, J.: Pex–white box test generation for .NET. In: Beckert, B.,
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Abstract. A central challenge in software analysis concerns balanc-
ing different competing tradeoffs. To address this challenge, we pro-
pose an approach based on the Maximum Satisfiability (MaxSAT) prob-
lem, an optimization extension of the Boolean Satisfiability (SAT) prob-
lem. We demonstrate the approach on three diverse applications that
advance the state-of-the-art in balancing tradeoffs in software analysis.
Enabling these applications on real-world programs necessitates solving
large MaxSAT instances comprising over 1030 clauses in a sound and
optimal manner. We propose a general framework that scales to such
instances by iteratively expanding a subset of clauses while providing
soundness and optimality guarantees. We also present new techniques to
instantiate and optimize the framework.

1 Introduction

Designing a suitable software analysis is a challenging endeavor. Besides the fact
that any non-trivial analysis problem is undecidable in general, various practical
aspects drive the need for assumptions and approximations: program behav-
iors that the analysis intends to check may be impossible to define precisely
(e.g., what constitutes a security vulnerability), computing exact answers may
be prohibitively costly (e.g., worst-case exponential in the size of the analyzed
program), and parts of the analyzed program may be missing or opaque to the
analysis. These theoretical and practical issues in turn necessitate balancing var-
ious competing tradeoffs in designing an analysis, such as soundness, precision,
efficiency, and user effort.

Constraint-based analysis [3] is a popular approach to software analysis. The
core idea underlying this approach is to divide a software analysis task into two
separate steps: constraint generation and constraint resolution. The former pro-
duces constraints from a given program that constitute a declarative specification
of the desired information about the program, while the latter then computes
the desired information by solving the constraints. This approach provides many
benefits such as separating the analysis specification from the analysis implemen-
tation, and allowing to leverage sophisticated off-the-shelf constraint solvers. Due
to these benefits, the constraint-based approach has achieved remarkable success,
as exemplified by the many applications of SAT and SMT solvers.
c© Springer International Publishing AG 2017
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Existing constraint-based analyses predominantly involve formulating and
solving a decision problem, which is ill-equipped to handle the tradeoffs involved
in software analysis. A natural approach to address this limitation is to extend
the decision problem to allow incorporating optimization objectives. These objec-
tive functions serve to effectively formulate various tradeoffs while preserving the
benefits of the constraint-based approach.

Maximum Satisfiability [1], or MaxSAT for short, is one such optimization
extension of the Boolean Satisfiability (SAT) problem. A MaxSAT instance com-
prises a system of mixed hard and soft clauses, wherein a soft clause is simply
a hard clause with a weight. The goal of a (exact) MaxSAT solver is to find a
solution that is sound, i.e., satisfies all the hard clauses, and optimal, i.e., maxi-
mizes the sum of the weights of satisfied soft clauses. Thus, hard clauses enable
to enforce soundness conditions of a software analysis while soft clauses enable
to encode different tradeoffs.

We demonstrate a MaxSAT based approach to balancing tradeoffs in software
analysis. We show the versatility of this approach using three diverse applications
that advance the state-of-the-art. The first concerns automated verification with
the goal of finding a cheap yet precise program abstraction for a given analysis.
The second concerns interactive verification with the goal of overcoming the
incompleteness of a given analysis in a manner that minimizes the user’s effort.
The third concerns static bug detection with the goal of accurately classifying
alarms reported by a given analysis by learning from a subset of labeled alarms.

Enabling these applications on real-world programs necessitates solving large
MaxSAT instances comprising over 1030 clauses in a sound and optimal manner,
which is beyond the reach of existing MaxSAT solvers. We propose a lazy ground-
ing framework that scales to such instances by iteratively expanding a subset
of clauses while providing soundness and optimality guarantees. The framework
subsumes many grounding techniques in the literature. We also present two new
grounding techniques, one bottom-up and one top-down, as instantiations of the
framework. Finally, we propose two techniques, eager grounding and incremental
solving, to optimize the framework.

The rest of the paper is organized as follows. Section 2 reviews the syntax and
semantics of MaxSAT and its variants. Section 3 presents our three applications
and demonstrates how to formulate them using MaxSAT. Section 4 presents our
techniques and framework for MaxSAT solving. Section 5 surveys related work,
Sect. 6 discusses future directions, and Sect. 7 concludes.

2 Background

In this section, we cover basic definitions and notations. We begin by defining
the MaxSAT problem and its variants (Sect. 2.1). The input for MaxSAT is a
CNF formula obtained by grounding a logic formula. Next, we introduce the
logic used in subsequent sections (Sect. 2.2).
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2.1 MaxSAT

The MaxSAT problem is a variant of the SAT problem. Given a propositional
boolean formula in CNF whose clauses can be weighted, it seeks a model that
maximizes the sum of the weights of the satisfied clauses. These concepts are
defined formally in the next section in a more general setting. We illustrate them
in this section using an example.

1

2

3

4

edges:
¬x1 ∨ x2

¬x2 ∨ x3

¬x3 ∨ x1

¬x2 ∨ x4

source:
x4

bias:

¬x(1)
1

¬x(1)
2

¬x(1)
3

¬x(1)
4

Fig. 1. A simple digraph and its representation as a propositional CNF formula.
A clause with no weight is a hard clause; for example, x4 is the same as x

(∞)
4 .

Consider the graph in Fig. 1. We can represent its edges by clauses which are
implications. We can then ask which vertices are reachable from certain source
vertices. Suppose we choose vertex 4 to be the source. Then, a possible model
is x1 = x2 = x3 = x4 = 1, but it is not the expected one. We include a bias to
indicate that variables be 0, if at all possible. The bias clauses have weight 1.
None of the other clauses (encoding edges or sources) should be violated at the
expense of a bias clause. Thus, we should pick their weight to be high enough. In
this example, 5 would suffice. But, to avoid having to specify this high-enough
weight, we allow ∞ as a weight. We call clauses with infinite weight hard ; and
we call clauses with finite weight soft. This leads to the most general form of the
MaxSAT problem, called weighted partial MaxSAT, or WPMS for short. We use
this form throughout the paper. We state its decision version below.

Problem 1 (WPMS). Given a weight w and a weighted propositional CNF for-
mula φ :=

∧
i ϕ

(wi)
i , decide if φ has a model for which the weight of the satisfied

soft clauses is ≥ w.

2.2 Relational First-Order Logic with Weights

Propositional logic is too low level and too inefficient for our needs. Let us
see why on the example in Fig. 1. There, we have two distinct concepts: the
digraph structure, and the notion of reachability. However, we could not keep
these concepts apart: our choice of how to represent edges is very much driven
by the goal of performing reachability queries. In this section, we will see that it
is possible to keep these concepts distinct if we move to quantifier-free relational
first-order logic with weights. Moreover, this representation is not only more
convenient, but also enables faster solving through lazy grounding.
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First-order logic has been extended with quantitative notions in many ways:
possibility theory [19], Bayesian probabilities [29], Markov logic networks [18],
and others. Here, we present a simple extension with weights, for which ground
formulas correspond to MaxSAT instances.

Fig. 2. Syntax for quantifier-free relational first-order logic with weights.

Figure 2 shows the standard syntax for quantifier-free relational first-order
logic formulas in CNF, but it also introduces weights on clauses. We assume a
countable set of variables (x, y, z, . . .), and countable sets of symbols for constants
(a, b, c, . . .) and relations (P,Q,R, . . .). A term is a constant symbol or a variable.
Each relation has a fixed arity k, and takes k terms as arguments. A literal �
is either a relation or its negation; the former is a positive literal, the latter is a
negative literal. A clause ϕ is a disjunction of literals. A weight w is a nonnegative
real number. A weighted clause ϕ(w) is a clause ϕ together with a weight w. A
weighted formula φ is a conjunction of weighted clauses. As usual, we interpret
variables as universal. Occasionally, we emphasize that formula φ uses variables
x1, . . . , xn by writing φ(x1, . . . , xn); similarly for clauses.

Without weights, one usually defines the semantics of formulas by specifying
how they evaluate to a boolean. With weights, we define the semantics of for-
mulas by specifying how they evaluate to a weight, which is a nonnegative real.
In both cases, the evaluation is done on a model.

A (finite) model σ = 〈U, {cσ
i }, {P σ

i }〉 consists of a finite universe U together
with an interpretation of (i) each constant symbol ci as an element cσ

i of U , and
(ii) each kary relation symbol Pi as a kary relation P σ

i ⊆ Uk. This is a standard
setup [36, Chap. 2].

Fig. 3. Semantics for quantifier-free relational first-order logic with weights.

Figure 3 shows the semantics for quantifier-free relational first-order logic
with weights. A clause/formula is said to be ground if it contains no variable
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occurrence. A ground clause ϕ is said to hold in a model σ when it contains a
literal that holds in σ. A ground positive literal P (c1, . . . , cn) holds in σ when
(c1, . . . , cn) ∈ P σ; a ground negative literal ¬P (c1, . . . , cn) holds in σ when
(c1, . . . , cn) /∈ P σ. For a clause ϕ(x1, . . . , xn) we define #σ(ϕ) to be the number
of groundings of ϕ that hold in σ. Given a model σ, the value of a weighted
clause ϕ(w) is w · #σ(ϕ), and the value [[φ]]σ of a formula φ is the sum of the
values of its clauses.

In the rest of the paper, we shall see how several practical problems concern-
ing software analysis (abstraction refinement, user interaction, identifying likely
bugs) can be phrased as instances of the following problem.

Problem 2. Given a formula φ, find a model σ that maximizes the weight [[φ]]σ.

As in the case of WPMS, we allow infinite weights as a shorthand for very
large weights. It is possible to show that the above problem is equivalent to the
problem of exact MAP inference for Markov logic networks [18].

Example 1. Now let us revisit the example from Fig. 1. This time we represent
the problem by a formula φ with the following clauses:

edges: bias: reachability:
edge(1, 2) ¬path(x, y)(1) path(x, x)
edge(2, 3) ¬edge(x, y)(1) path(x, z) ∨ ¬path(x, y) ∨ ¬edge(y, z)
edge(3, 1)
edge(2, 4)

There are several things to note here. First, we disentangled the representation
of the digraph from the queries we want to perform. The digraph structure is rep-
resented by the relation edgeσ, which is specified by 5 clauses: 4 hard and 1 soft.
The notion of reachability is represented by the relation pathσ, which is specified
by 3 clauses: 2 hard and 1 soft. The maximum weight we can achieve is [[φ]]σ = 15,
for example by using model σ = 〈U, 1σ, 2σ, 3σ, 4σ, edgeσ, pathσ〉 with universe
U = {1σ, 2σ, 3σ, 4σ}, and relations edge = {(1σ, 2σ), (2σ, 3σ), (3σ, 1σ), (2σ, 4σ)}
and path =

({1σ, 2σ, 3σ} × {1σ, 2σ, 3σ, 4σ}) ∪ {(4σ, 4σ)}.

We will often omit the superscript σ when there is no danger of confusing
a symbol with what it denotes. Further, in all our applications we will have
constant symbols to denote all elements of the universe, so we will omit listing
the constant symbols explicitly. Thus, for the model in Example 1, we simply
write σ = 〈edge, path〉. On the topic of simplifying notation, we note that clauses
are often definite Horn; that is, they contain exactly one positive literal. These
should be thought of as implications. So, for definite Horn clauses, we may write

�+1 ∧ . . . ∧ �+n
(w)→ �+ instead of

(
�−
1 ∨ . . . �−

n ∨ �+
)(w).

We remark that the development so far would also work if instead of
quantifier-free clauses ϕ we would have arbitrary first-order logic formulas. In
particular, we could still define the notion of a weight [[φ]]σ in the same way,
and Problem2 would not change. However, we found this fragment to be expres-
sive enough for many applications (see Sect. 3), and it has the advantage that
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its groundings are WPMS instances. For this, we need to see ground literals as
boolean variables in a WPMS instance.

Example 2. Recall Example 1. For each ground literal path(a, b) we introduce
a boolean variable pab. Then, for example, the clause ¬path(x, y)(1) leads to
16 WPMS clauses, each containing one boolean variable: p

(1)
11 , p

(1)
12 , p

(1)
13 , . . .

3 Applications

We demonstrate our MaxSAT based approach to tackle the central challenge of
balancing different tradeoffs in software analysis. We do so by illustrating the
approach on three mainstream applications: automated verification (Sect. 3.1),
interactive verification (Sect. 3.2), and static bug detection (Sect. 3.3). Specifi-
cally, we use the graph reachability analysis from Example 1 as an instance to
explain how we can augment a conventional analysis in a systematic and general
manner to balance these tradoffs. Throughout, we observe a recurring theme
of using weights for encoding two conceptually different quantities: costs and
probabilities.

3.1 Automated Verification

A key challenge in automated verification concerns finding a program abstraction
that balances efficiency and precision. A common approach to achieve such a
balance is to use a strategy called CEGAR (counter-example guided abstraction
refinement) [17]. To apply this strategy, however, analysis designers often resort
to heuristics that are specialized to the analysis task at hand. In this section, we
show how to systematically apply CEGAR to constraint-based analyses.

Fig. 4. Example program.

Example. Consider the program in Fig. 4. We are interested in analyzing its
aliasing properties; in particular, we want to check if the two assertions at labels
q1 and q2 hold. Functions id1 and id2 simply return their argument. It is easy to
see that the assertion at q1 holds but the assertion at q2 does not. To conclude
this, however, an analysis must reason precisely about the calls to functions
id1 and id2. When id1 is called from f, its variable v is of course different from
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its variable v when called from g. Thus, the analysis should track two variants of
v, one for each context. In general, however, the analysis cannot track all possible
contexts, because there may be an unbounded number of them due to recursive
functions. It may be prohibitively expensive to track all contexts even if there
are a bounded number of them. So, for both theoretical and practical reasons,
some contexts cannot be distinguished. In our example, not distinguishing the
two contexts leads to considering variable v in id1 to be the same, no matter
from where id1 is called. Alternatively, the calls and returns to and from id1
are modelled by jumps: the return becomes a nondeterministic jump because
it can go back to either f or g. This causes the analysis to conclude that the
assertion at q1 might fail. Indeed, one can start the execution at the beginning
of f, jump into id1 when it is called, but then ‘return’ after the call to id1 in g,
and then continue until q1 is reached. In summary, on the one hand, we cannot
distinguish all contexts for efficiency reasons; and on the other hand, merging
contexts can lead to imprecision.

Fig. 5. Digraph model of the example program in Fig. 4. Nodes 1, 2, and 3 stand for
the basic blocks of function f; nodes 4, 5, and 6 stand for the basic blocks of function g;
nodes 7 and 8 stand for the bodies of id1 and id2, respectively. Nodes 7′ and 7′′ are
clones of 7; nodes 8′ and 8′′ are clones of 8. Edges representing matching calls and
returns have the same label.

In Fig. 5, we formulate an analysis that can answer whether assertions at
q1 and q2 hold. Our formulation is similar to the reachability problem we saw
earlier in Example 1. The main difference is that edges have labels, which allows
us to use them selectively.

path(x, x)
path(x, y) ∧ edge(y, z, u) ∧ abs(u) → path(x, z) (Path-Def)

We have two ways to model the call from f to id1: by inlining or by a jump.
Intuitively, abs(a1) means we use inlining, and abs(a0) means we use a jump.

To show that the assertion at q1 holds, we need to show that there is no path
from 1 to 6, for some choice of how to model each function call. To this end, we
proceed as follows. First, we introduce the hard constraint ¬path(1, 6). Second,
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we implement a CEGAR loop. In each iteration, we have some choice of how
to model each function call. We can represent this choice either by selectively
generating edges, or by selectively deactivating some edges. For example, we
could include all edges but deactivate some of them by including clauses

¬abs(a1) ¬abs(b1) ¬abs(c1) ¬abs(d1)
This would prevent inlining from being used. In Fig. 5, we see a path from 1 to 6
that uses only edges with labels from {a0, b0, c0, d0}. This means that ¬path(1, 6)
is inconsistent with modelling all function calls by jumps. Thus, we should change
how we model some function calls. We prefer to keep as many jumps as possible
so that we do as little inlining as possible:

abs(a0)(1) abs(b0)(1) abs(c0)(1) abs(d0)(1)

The solver could answer with a model in which abs = {a0, b0, c0}. In that case,
in the next iteration we inline the call from g to id2, by including clauses

abs(a0)(1) abs(b0)(1) abs(c0)(1) ¬abs(d0)
¬abs(a1) ¬abs(b1) ¬abs(c1) abs(d1)

Now the solution will have to disrupt the path 1 a0→ 7 b0→ 5 d1→ 8′′ d1→ 6, by
not including one of a0 and b0 in abs. Suppose the solver answers with abs =
{a0, c0, d1}. Then, in the next CEGAR iteration we try to model both calls
from g by inlining.

abs(a0)(1) ¬abs(b0) abs(c0)(1) ¬abs(d0)
¬abs(a1) abs(b1) ¬abs(c1) abs(d1)

The solver returns abs = {a0, b1, c0, d1}. Since the maximum possible weight
was achieved, we know that no further refinement is needed: there exists a way
to model function calls that allows us to conclude the assertion at q1 holds.

General Case. The core idea is to formulate the problem of finding a good
abstraction as an optimization problem on a logic with weights (see Problem 2).
In general, the encoding of the program need not be a digraph, and the analysis
need not be reachability. However, the abstraction will often select between dif-
ferent ways of modeling program semantics, and will be represented by a relation
similar to the relation abs in our example. Accordingly, we model the program,
the analysis, and the query by a formula φ, without relying on its structure.
We define the space of abstractions to be a boolean assignment to sites. (In our
example, the sites are the four function calls.) Suppose the current abstraction is
A : Site → {0, 1}. Then, we ask for a model of maximum weight for the formula

φ ∧
( ∧

A(s)=0

abs(s0)(1) ∧ ¬abs(s1)
)

∧
( ∧

A(s)=1

¬abs(s0) ∧ abs(s1)
)
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For each s ∈ Site, we have two constant symbols, s0 and s1. If the formula
has a model of maximum weight, which is the number of imprecise sites, then
the query is proven. If the formula has no model that satisfies all its hard clauses,
then no abstraction can prove the query. Otherwise, by inspecting the model,
we can find a more precise abstraction to try next.

We refer the reader to [70] for instantiations of this approach to pointer
analysis and typestate analysis of Java programs.

Discussion. One can design an automated analysis that balances efficiency and
precision as follows: (1) design a basic constraint-based analysis; (2) parameterize
the analysis; and (3) find a good abstraction by solving an optimization problem.
We saw a simple example of an analysis which tracked information flow in a
program. There are, however, many other analyses that use constraint-based
formulations [11,32,64–66].

What does it mean to parameterize an analysis? Compare Example 1 with
Fig. 5. In one we have edges; in the other we have edges that can be activated or
deactivated. By constraining the relation abs, we were able to model function
calls either by jumps (cheap) or by inlining (expensive). The intuition is that
inlining is expensive due to nesting. This intuition also holds for other context
sensitivity mechanisms, such as k-CFA and k-object sensitivity. Thus, there is
often a way to introduce a relation abs that tells us, for each of several sites in
the program, whether to use cheap or expensive semantics.

Finally, once the relation abs is introduced, we can implement the CEGAR
loop sketched above, which achieves efficiency by increasing precision selectively.
In [70], multiple queries are handled simultaneously: the result of the CEGAR
loop is to classify assertions into those verified and those impossible to verify.
By the latter, we mean that they would not be verified by the most expen-
sive abstraction, if we were to try it. But the CEGAR loop will typically reach
the conclusion that an assertion is impossible to verify without actually trying
the most expensive abstraction. Another extension [24] describes an alternate
CEGAR strategy that considers not only the relative cost of different abstrac-
tions but also their probability of success.

3.2 Interactive Verification

Sound analyses produce a large number of alarms which include a small number
of real bugs. Users then sift through these alarms, classifying them into false
alarms and real bugs. In other words, a computer and a user collaborate on
finding bugs: in a first phase, the computer does its work; in a second phase,
the user does their work. In certain situations, however, it is possible to reduce
the total amount of work done by the user by interleaving: the computer and
the user take turns at doing small amounts of work. The idea is that we should
let users perform certain tasks they are better suited for and we should use the
results of their work to guide the computer’s work.
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Fig. 6. First source-sink information-flow example: if some edges are spurious, then
some source-sink flows are interrupted.

Example. Consider the information-flow example from Fig. 6. We wish to know
if there are paths from sources to sinks. If the analysis runs with no help from
the user, it presents the following alarms:

path(1, 6) path(1, 7) path(2, 6) path(2, 7) path(8, 6) path(8, 7)

After inspecting all 6 alarms, the user decides that all of them are false alarms.
Now consider an alternative scenario. Suppose the analysis suspects that the

edges marked as a and b may be spurious. Then, before presenting a large set of
alarms to the user, it may be beneficial to ask the user if a or b are spurious. If
a is spurious, then 4 alarms disappear; if b is spurious, then 6 alarms disappear.
It is therefore better to ask the user about edge b. We can formulate this choice
of question, between a and b, as an optimization problem.

As before (Sect. 3.1), we use labels on edges. The definition of reachability
remains as in (Path-Def). But here labels represent something different: we use
labels a and b to identify each of the possibly spurious edges, and we use one
extra label c for all the other edges.

edge(3, 4, a) edge(1, 2, c) edge(2, 3, c) edge(8, 4, c)
edge(4, 5, b) edge(5, 6, c) edge(5, 7, c) abs(c)

We require that the non-spurious edges are selected, and that at most one of the
other edges are deselected:

abs(c) abs(a) ∨ abs(b)

Finally, we want a maximum number of alarms to disappear:

¬path(1, 6)(1) ¬path(2, 6)(1) ¬path(8, 6)(1)

¬path(1, 7)(1) ¬path(2, 7)(1) ¬path(8, 7)(1)

For the formula built with the clauses described so far, the model of maximum
weight has abs = {a, c} and weight 6. We interpret this to mean that edge b
may rule out 6 alarms.

General Case. We wish to save user time by bringing to their attention root
cause of imprecision in the analysis that may be responsible for many false
alarms. The core idea is to formulate the problem of finding a good question to
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ask the user as an optimization problem on a logic with weights (Problem2). As
before (Sect. 3.1), we assume that the analysis is described by some formula φ,
and we assume the existence of a special relation abs. In addition, we also assume
that we are given a list �+1 , . . . , �+n of grounded positive literals that represent
alarms. Then, we ask for a model of maximum weight for the formula

φ ∧
( n∧

i=1

(¬�+i
)(1)

)

∧
( ∧

1≤i<j≤m

abs(ai) ∨ abs(aj)
)

∧ abs(c)

The constants a1, . . . , am identify the possibly spurious edges, while the con-
stant c marks all the other edges. In a model of maximum weight, at most one
of a1, . . . , am will be missing from the relation abs. The missing constant iden-
tifies the question we should ask the user. The maximum weight is the number
of alarms that will be classified as false, should the user answer ‘no’. If none
of a1, . . . , am is missing from abs, then none of the alarms can be caused by
imprecision of the analysis.

We refer the reader to [69] for instantiations of this approach to datarace
analysis and pointer analysis of Java programs.

Discussion. What if the user labels an edge as spurious when in fact it is not? In
this case, real bugs may be missed, even though the original analysis is sound.
One can define a notion of relative soundness to accommodate this situation:
bugs are not missed as long as the user makes no mistakes in handling the analy-
sis’ output. Another approach would be to check the users’ answers, which would
feasible if the user not only answers ‘yes’/‘no’ but also offers extra information in
the form of a certificate that supports their answer. This approach is adopted by
the Ivy tool [51], which asks the user for help in finding an inductive invariant,
but checks inductiveness.

Another possible concern is that the term
∧

1≤i<j≤m abs(ai)∨abs(aj), which
is used to ensure that we search for a single spurious edge, grows quadrati-
cally. There exist efficient but non-obvious ways to encode such cardinality con-
straints [21,63] and there also exist ways to handle them directly in satisfiability
solvers [55]. These techniques also work for other cardinalities: we can ask what
is the best set of ≤ k possibly spurious edges, which may be necessary if the
disappearance of any single spurious edge does not rule out any alarm. By a
more involved process, it is also possible to maximize the expected number of
alarms ruled out per spurious edge [69].

3.3 Static Bug Detection

In the previous section, we saw how user feedback can be used to reduce the
number of false alarms produced by a sound analysis. While in theory we deal
mostly with sound analyses, in practice, analysis designers must make pragmatic
assumptions [37]. In this section, we assume that we start from such an analysis,
which could be described as a bug finder. In this situation, we want to avoid
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not only false positives but also false negatives. The approach we take is to
probabilistically learn from user ‘likes’ and ‘dislikes’ on bug reports. Based on
this feedback, the analysis adjusts the approximations it makes.

1

2

3 4

5

6

7

8

9

source

sink

Fig. 7. Second source-sink information-flow example: if many flows with the same
source lead to false bug reports, then other flows from the same source are likely to
also lead to false bug reports.

Example. Figrue 7 gives an information-flow example, similar to the one in the
previous section (Sect. 3.2). This time, however, edges are not labeled, so we
use the simple definition of reachability from Example 1. While each edge in the
graph is always valid, a path computed by the analysis can be spurious due to
the approximations applied.

On this example, the analysis produces 10 reports, corresponding to the cross
product of the 2 sources with the 5 sinks. There reports are mixed true alarms
and false alarms. Suppose that all reports with node 2 as the source are false
alarms because path(2, 4) is spurious. Typically, this is where the interaction
between the analysis and the user stops, and the user has to inspect each report
manually. In this case, the user can quickly get frustrated due to high false
positive rate (50%).

To address this challenge, we allow the analysis to incorporate user feedback
and therefore produce results that are more desirable to the user. For instance,
if the user inspects path(2, 5) and path(2, 6) and determines them to be false
alarms, we incorporate this feedback and suppress path(2, 7), path(2, 8), and
path(2, 9), which are derived for the same root cause. To achieve this effect, we
need to address two challenges:

1. How can we enable a conventional analysis to incorporate user feedback in a
systematic and automatic manner?

2. How can we generalize the impact of feedback on limited reports to others?

For the first challenge, we notice that it is impossible to directly incorporate
user feedback in a conventional analysis, which formulates the analysis problem
as a decision problem. In such a decision problem, all clauses are hard, which
makes the analysis rigid and define a single set of reports that cannot be changed.
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As a result, if we directly add the aforementioned user feedback as hard clauses
¬path(2, 5) and ¬path(2, 6), it will make the constraint system inconsistent.
Ideally, we want the ability to occasionally ignore certain clause groundings that
can introduce imprecision and therefore guide the analysis to produce results
that are more desirable to the user.

Our approach addresses this challenge by attaching weights to certain clauses
whose groundings can introduce false alarms and therefore convert them from
hard into soft. Intuitively, the weight of a clause represents the analysis writer’s
confidence in it: the higher weight it has, the less likely the writer thinks it
will introduce imprecision. These weights can be specified by the analysis writer
manually or automatically learnt from training programs whose bug reports are
fully labeled using standard algorithms [61]. The clauses that are considered
precise remain as hard clauses.

The above transformation results in a probabilistic analysis specified in logic
with weights, which defines a distribution of outputs rather than a single output.
We call this analysis probabilistic as the clause groundings now hold with some
probability. And the final set of bug reports is the most likely one that maximizes
the sum of the weights of the satisfied clause groundings. Moreover, it allows us
to incorporate user feedback as new clauses in the system, which will change
the output distribution and the set of bug reports. Since the user can make
mistakes, we also add user feedback as soft clauses to the system, whose weights
represent the user’s confidence in them and can be also trained from labeled
data. Intuitively, the bug reports produced after feedback are the ones that the
analysis writer and the analysis user will most likely agree upon.

For the example analysis, we observe that reflexivity of path always holds,
while transitivity of path can introduce imprecision. As a result we attach a
weight to the clause which encodes transitivity, say 100. We also add user feed-
back as clauses ¬path(2, 5)(200) and ¬path(2, 6)(200). We attach high weights
to user feedback clauses as we assume the user is confident in the feedback. As
a result, we obtain the analysis specification with user feedback in logic with
weights below:

Rules: Bias: Feedback:
path(x, x) ¬edge(x, y)(1) ¬path(2, 5)(200)

path(x, y) ∧ edge(y, z)
(100)−→ path(x, z) ¬path(x, y)(1) ¬path(2, 6)(200)

We now discuss how our approach addresses the second challenge, of general-
izing user feedback from some reports to others. We observe that all five false
alarms are derived due to the spurious fact path(2, 4), which reveals a more
general insight about false alarms: most false alarms are symptoms of a few root
causes. Rectifying these few root causes (path(2, 4) in the example) can signif-
icantly improve the analysis precision. We illustrate how our approach achieves
this effect by studying the MaxSAT instance generated by the above analysis
specification with feedback:
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c1 : path(2, 2) ∧
c2 : path(2, 3) ∨ ¬path(2, 2) ∨ ¬edge(2, 3)(100) ∧
c3 : path(2, 4) ∨ ¬path(2, 3) ∨ ¬edge(2, 4)(100) ∧
c4 : path(2, 5) ∨ ¬path(2, 4) ∨ ¬edge(4, 5)(100) ∧
c5 : path(2, 6) ∨ ¬path(2, 4) ∨ ¬edge(4, 6)(100) ∧
c6 : path(2, 7) ∨ ¬path(2, 4) ∨ ¬edge(4, 7)(100) ∧
c7 : path(2, 8) ∨ ¬path(2, 4) ∨ ¬edge(4, 8)(100) ∧
c8 : path(2, 9) ∨ ¬path(2, 4) ∨ ¬edge(4, 9)(100) ∧
f1 : ¬path(2, 5)(200) ∧
f2 : ¬path(2, 6)(200) ∧

...

For the purpose of illustration, we only show the clauses that are related to
the false alarms. In addition, we elide the bias clauses and assume that the
computed model is always minimal. We notice that clauses c1-c5 form a con-
flict with the feedback clauses f1 and f2. As a result, a model of the MaxSAT
instance cannot satisfy all of them. To maximize the sum of the weights of sat-
isfied soft clauses, the model will violate c3 while satisfying the other aforemen-
tioned clauses. Hence, variables path(2, 4), path(2, 5), path(2, 6) will be set to
false in the solution. Since the computed model is minimal, variables path(2, 7),
path(2, 8), path(2, 9) will also be set to false, which correspond to the other
false alarms that are derived from path(2, 4). Hence, we successfully generalize
the impact of the feedback on reports path(2, 5) and path(2, 6) by eliminating
their common root cause path(2, 4), which in turn suppresses the other three
false alarms that are derived from it.

General Case. We now discuss the general recipe for our approach. It is divided
into an offline learning phase and an online inference phase. The offline phase
takes a conventional analysis specified by an analysis writer and produces a prob-
abilistic analysis specified in logic with weights. It produces the weight for each
clause by learning it from training programs whose bug reports are fully labeled.
The online phase applies the probabilistic analysis on a program supplied by the
analysis user and produces bug reports in an interactive way. In each iteration,
the user selects and inspects a subset of reports produced by the analysis, and
provides positive or negative feedback. The analysis incorporates the feedback
and update the reports for the next iteration. This interaction continues until
all the bug reports are resolved.

We refer the reader to [39] for instantiations of this approach to datarace
analysis and monomorphic call site analysis of Java programs.

Discussion. This approach is similar to the one introduced in Sect. 3.2 as they
both improve the analysis accuracy by incorporating user effort. However, while
the previous approach requires the user to inspect intermediate analysis facts, the
current approach directly learns from user feedback on end reports. As a result,
the previous approach requires the user to understand intermediate analysis
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results but the current approach does not. On the other hand, the previous
approach can guarantee the soundness of the result if the user always gives
correct answers, while the current approach may introduce false negatives due
to its probabilistic nature. Hence, the current approach is more suitable for bug
finding whereas the previous approach can be applied in interactive verification.

4 Techniques

We present techniques we have developed for MaxSAT solving. While primarily
motivated by the domain of software analysis, they are general enough to be
applicable to other domains too such as Big Data analytics and statistical AI.

We present a framework embodying our general approach (Sect. 4.1). We then
present two techniques as instantiations of the framework (Sect. 4.2). Finally, we
present two techniques that enable to optimize the framework (Sect. 4.3).

4.1 Framework

Our framework targets the problem of finding a model of a relational first-
order logic formula with weights. The standard approach consists of two phases:
grounding and solving. In the grounding phase, the formula is reduced to a
WPMS instance by instantiating all variables with all possible constants. In
the solving phase, the WPMS instance is solved using an off-the-shelf WPMS
solver. Both phases are challenging to scale: in the grounding phase, naively
instantiating all variables with all possible constants can lead to an intractable
WPMS instance (comprising upto 1030 clauses); in the solving phase, the WPMS
problem itself is also a combinatorial optimization problem, known for its
intractability [4,41]. We address both these challenges by interleaving the two
phases in an iterative lazy grounding process that progressively expands a subset
of clauses while providing soundness and optimality guarantees.

Fig. 8. Architecture of our lazy grounding framework for solving large MaxSAT
instances. It scales by iteratively expanding a workset comprising a subset of clauses
in the input MaxSAT instance. Our bottom-up and top-down grounding techniques,
and many others in the literature, are instances of this framework.
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Algorithm 1. Lazy Grounding Framework.
Input: (H, S): hard and soft clauses of input instance.
Output: ν: sound and optimal solution (assumes H is satisfiable).

1 (φ, ψ) ← Init(H, S)
2 (ν, w) ← (∅, 0)
3 while true do
4 (φ′, ψ′) ← Ground(H, S, ν, φ, ψ)
5 (ν′, w′) ← MaxSAT(φ ∪ φ′, ψ ∪ ψ′)
6 if Done(φ, φ′, ψ, ψ′, w, w′) then return ν
7 (φ, ψ) ← (φ ∪ φ′, ψ ∪ ψ′)
8 (ν, w) ← (ν′, w′)

The architecture of our framework is depicted in Fig. 8 and its overall algo-
rithm is presented as Algorithm 1. For elaboration, we divide a weighted logic
formula into separate hard clauses (denoted by H) and soft clauses (denoted by
S). The framework is parametric in three procedures: Init, Ground, and Done.
It begins by invoking the Init procedure on line 1 to compute an initial set of
hard clauses φ and soft clauses ψ. Next, it executes the loop defined on lines
3–8. In each iteration of the loop, the algorithm keeps track of a pair comprising
the new solution ν′ and its weight w′, which is the sum of the weights of the soft
clauses satisfied by ν′. On line 4, it invokes the Ground procedure to compute
the set of hard clauses φ′ and soft clauses ψ′ to ground next. Typically, φ′ and ψ′

correspond to the set of hard and soft clauses violated by the previous solution
ν. On line 5, the current hard and soft clauses and the newly grounded hard and
soft clauses are fed to an off-the-shelf WPMS solver to produce a new solution
ν′ and its corresponding weight w′. Initially, the solution is empty with weight
zero (line 2). Next, on line 6, the algorithm checks if ν satisfies the terminating
condition by invoking the Done procedure. If not, then on line 7, both sets of
grounded clauses φ′ and ψ′ are added to the corresponding sets of grounded hard
clauses φ and grounded soft clauses ψ respectively. Accordingly, the solution ν
and its corresponding weight w are updated as well.

Different instantiations of the three procedures that parameterize our frame-
work yield different grounding algorithms proposed in the literature [14,34,38,
40,49,50,53]. We broadly classify instantiations of the framework into two cat-
egories akin to top-down and bottom-up approaches to Datalog evaluation [2].
We next present one instantiation that we have developed in each category.

4.2 Instantiations

Applications built upon constraint-based approaches are typically only con-
cerned with the assignment to certain variables of interest, which we refer to
as queries. The bottom-up approach computes an assignment to all variables
from which one can subsequently extract the assignment to queries. The top-
down approach, on the other hand, only grounds clauses that are needed to



84 X. Si et al.

Algorithm 2. Bottom-Up Approach
1 Procedure Init(H,S)
2 (φ, ψ) ← (∅, ∅)
3 return (φ,ψ)

4 Procedure Ground(H, S, ν, φ, ψ)
5 (φ, ψ) ← (∅, ∅)
6 foreach h ∈ H do
7 if ν � [[h]]σ then φ ← φ ∪ [[h]]σ

8 foreach (w, h) ∈ S do
9 if ν � [[h]]σ then ψ ← ψ ∪ {(w, ρ) | ρ ∈ [[h]]σ}

10 return (φ,ψ)

11 Procedure Done(φ, φ’, ψ, ψ’, w, w’)
12 return φ′ = ∅ ∧ w = w′

compute the assignment to queries. This approach offers significant performance
gains when queries comprise a small fraction of all variables, which is the case in
many applications. We introduced the top-down approach for MaxSAT in [71].

Bottom-Up Approach. Algorithm 2 presents our bottom-up instantiation from
[38]. Procedure Init returns an empty set of hard ground clauses and an empty
set of soft ground clauses (line 2). For each hard clause in the input instance,
procedure Ground checks if the current solution violates any of its groundings and
includes those violated ground clauses as new hard clauses (lines 6–7). Similarly,
Ground also includes violated soft ground clauses (lines 8–9), and they share the
same weight as the corresponding soft clause in the input instance. Given hard
and soft ground clauses and the corresponding solutions from two successive
iterations, procedure Done checks whether the current solution is a sound and
optimal solution. Specifically, Done returns true if no hard clauses in the input
instance are violated (i.e., φ′ = ∅) and the weight of the current solution equals
the weight of the last solution (i.e., w = w′). Intuitively, it means that we cannot
improve the solution further even we consider more ground clauses.

SoftCegar [14] and Cutting Plane Inference (CPI) [50,53] are instances of the
bottom-up approach. SoftCegar uses a slight variant that grounds all the soft
clauses upfront but lazily grounds the hard clauses, while CPI employs a more
conservative instantiation of Done.

Top-Down Approach. A top-down approach aims to find a partial assignment
to queries such that there exists a completion of it that is a sound and optimum
solution to the full problem. Algorithm3 shows a naive top-down instantiation.
More advanced instantiations are presented in [71]. The Init procedure returns
all soft and hard ground clauses that involve at least one of the queried variables
(denoted by Q) (lines 3–6). For ease of exposition, the pseudo code of the Init
procedure explicitly enumerates all ground clauses. In practice, it is implemented
using symbolic approaches such as SQL queries [49] for efficiency. The Ground
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Algorithm 3. Top-Down Approach
1 Procedure Init(H,S)
2 (φ, ψ) ← (∅, ∅)
3 foreach (w, h) ∈ S do
4 foreach ρ ∈ [[h]]σ do
5 if any variable of ρ ∈ Q then ψ ← ψ ∪ {(w, ρ)}
6 initialize φ in a similar way without considering weights
7 return (φ,ψ)

8 Procedure Ground(H, S, ν, φ, ψ)
9 (φ′, ψ′) ← (∅, ∅)

10 V ← variables used in φ ∪ ψ
11 foreach (w, h) ∈ S do
12 foreach ρ ∈ [[h]]σ do
13 if (w, ρ) /∈ ψ ∧ ν � ρ ∧ any variable of ρ ∈ V then
14 ψ′ ← ψ′ ∪ {(w, ρ)}

15 update φ′ in a similar way without considering weights
16 w ← evaluate(ψ, ν)
17 (ν′, w′) ← MaxSAT(φ ∪ φ′, ψ ∪ ψ′)
18 if φ′ = ∅ ∧ w = w′ then
19 return (∅, ∅)
20 else
21 ψ′

s ← {(w, ρ) ∈ ψ′ | ν′ |= ρ}
22 return (φ′, ψ′

s)

23 Procedure Done(φ, φ’, ψ, ψ’, w, w’)
24 return φ′ = ∅ ∧ ψ′ = ∅

procedure returns ground clauses that may help improve the current solution.
To achieve this goal, it first searches for ground clauses (φ′, ψ′) that (1) are
not in the work set, but (2) share variables with clauses int it, and (3) are not
satisfied by the current solution ν (line 9–15). Then it checks whether the current
solution ν violates any ground hard clauses in φ′ and whether the weight of the
solution can be improved by considering (φ′, ψ′) (line 16–22). It checks the latter
condition by computing the solution (denoted by ν′) to (φ ∪ φ′, ψ ∪ ψ′) and the
corresponding weight (denoted by w′) (line 16–17). If neither condition holds,
it returns empty sets of ground clauses and concludes that the current solution
cannot be improved further. Otherwise, it returns the hard ground clauses in φ′

that are violated by ν and the soft ground clauses in ψ′ that are satisfied by ν′

as these ground clauses will highly likely improve the current solution. It follows
that the top-down approach terminates when Ground returns empty sets. The
correctness of Algorithm 3 is proved in [71].
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Algorithm 4. Optimization with eager proofs
1 Procedure Init(H, S)
2 (φ, ψ) ← (∅, ∅)
3 φ′ ←initial facts
4 while φ′

� φ do
5 φ ← φ ∪ φ′

6 foreach h ∈ H do
7 foreach ρ ∈ [[h]]σ do
8 if ρ =

∧n
i=1 ti =⇒ t0 then

9 if
∧n

i=1 ti ∈ φ then
10 φ′ ← φ′ ∪ {t0}

11 return (φ,ψ)

12 Procedure Done(φ, φ’, ψ, ψ’, w, w’)
13 return φ′ = ∅ ∧ w = w′

4.3 Optimizations

We introduce two optimizations to further improve the efficiency of our frame-
work: eager grounding and incremental solving.

Eager Grounding. Our first observation is that most constraints in domains
like software analysis are Horn clauses. Horn clauses form a set of proof-tree
like structures. When one of them is violated by the solution of the current
iteration in lazy grounding, many others will be violated in the next iteration,
which in turn will cause a chain effect in the subsequent iterations. We can
avoid such chain effects by eager proof exploitation [38], which computes an
optimal initial grounding for Horn clauses. The Init procedure of Algorithm 4
shows the optimization with eager proofs, which starts with initial facts as hard
clauses and iteratively applies Horn clauses to derive new facts as hard clauses.
Theorem 1 shows the optimality of the Init procedure. Though Theorem 1 gives
no guarantee of the necessity to ground soft Horn clauses upfront, we find that
it is also helpful in practice. The eager proof exploitation procedure can be
efficiently implemented using an off-the-shelf Datalog engine.

Theorem 1 (Optimal initial grounding for Horn clauses). Init in
Algorithm4 grounds all necessary hard Horn clauses and no more hard Horn
clauses need to be grounded in later phases.

Proof. See the proof in Appendix A of [38]. ��

Incremental Solving. Our framework generates a sequence of MaxSAT
instances such that the instance in the next iteration is obtained by adding
new hard or soft clauses to the instance in the current iteration. Formally,
we have a sequential MaxSAT problem: (φ1, ψ1), (φ2, ψ2), ..., (φn, ψn), with
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Algorithm 5. Fu&Malik Algorithm with partial weights [4, 14]
Input: φ = φH ∪ φS

Output: optimal solution to φ
1 while true do
2 (st, ν, φC) ← SAT(φ, A)
3 if st = SAT then return ν // optimal solution to φ
4 VR ← ∅ // relax variables of the core

5 wmin ← min{w|c ∈ φC ∧ (w, c) ∈ φS}
6 foreach c ∈ φC do
7 if (w, c) ∈ φS then
8 VR ← VR ∪ {r} // r is a fresh relaxation variable

9 φ ← φ \ {(w, c)} ∪ {(w − wmin, c), (wmin, c ∨ r)} // split soft

clauses

10 if VR = ∅ then return unsat // no soft clauses in the core

11 φ ← φ ∪ CNF (
∑

r∈VR
r ≤ 1) // add hard cardinality constraint

φk ⊆ φk+1, ψk ⊆ ψk+1. A straightforward solution is to independently solve each
instance (φk, ψk) using an off-the-shelf MaxSAT solver. We propose an incre-
mental MaxSAT solving technique [60] to solve the sequential MaxSAT problem
more efficiently.

The unsat core-guided MaxSAT algorithm, also known as Fu&Malik
algorithm [23], forms the basis of many popular MaxSAT algorithms [4,41,43,
46]. Algorithm 5 shows the Fu&Malik algorithm extended with partial weights.
The algorithm iteratively calls a SAT solver and relaxes an unsatisfiable subfor-
mula. Initially, φ consists of all hard and soft clauses from the input instance.
In each iteration, it calls a SAT solver on φ, which returns a triple (st, ν, φC).
If st is satisfiable, ν is the optimal solution; otherwise, φC is an unsatisfiable
subformula (or UNSAT core) of φ. Then, it computes the minimum weight wmin

of the soft clauses in the UNSAT core (line-5). It then splits each soft clause in
the UNSAT core into two: one with the same clause but with weight reduced by
wmin, and the other with the original clause relaxed by a newly created variable
and with weight wmin (lines 6–9). If there are no soft clauses in the UNSAT core,
it returns UNSAT as there exists a conflict in hard clauses (line-10). Otherwise,
a new hard clause is added to φ stating that at most one of the soft clauses in
the UNSAT core can be relaxed (line-11).

There are two levels of incrementality we can explore to improve Algorithm5.
Similar to the sequential MaxSAT problem, solving an individual MaxSAT
instance involves a sequence of SAT problems. So, the first level of incrementality
is to use the SAT solver incrementally. Martins et al. [43] propose an incremen-
tal blocking technique to leverage incremental SAT solving [20]. We propose the
second level of incrementality which is across MaxSAT instances. The key idea is
to reuse UNSAT cores by slightly revising Algorithm 5. When the k-th MaxSAT
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instance is solved1 at line-5, instead of returning the solution and exiting, we
output the current solution for the k-th instance, then read the newly added
clauses (φk+1 \ φk, ψk+1 \ ψk) for the (k + 1)-th instance, and jump to line-3.
This approach is correct because the addition of new soft or hard clauses does
not invalidate any of the previously found UNSAT cores.

An interesting empirical observation is that incremental solving does not
always improve performance; on the contrary, it may even deteriorate perfor-
mance. This is because UNSAT cores with low weight discovered in earlier
instances can cause too many splits of soft clauses, especially when soft clauses
with high weights are added later. To resolve this issue, we propose a restart
mechanism, which restarts the current MaxSAT instance solving after detecting
any low quality cores. We empirically find that the number of splits of each indi-
vidual soft clause is an effective quality measurement, and that restarting after
the number of splits is more than 5 achieves best performance on our applica-
tions.

5 Related Work

We survey work on MaxSAT applications and techniques for MaxSAT solving.

Applications. MaxSAT has been widely used in many domains [6,13,15,22,
25,30,31,33,56,67,68,72]. The Linux package manage tool OPIUM [67] uses
MaxSAT to find the optimal package install/uninstall configuration. Walter et
al. [68] apply MaxSAT in industry automotive configurations. Zhu et al. [72]
apply MaxSAT to localize faults in integrated circuits. By combining bounded
model checking and MaxSAT, BugAssist [31] performs error localization for
C programs, and ConcBugAssist [33] finds concurrency bugs and recommends
repairs. Jin and Orso[30] show how to improve the performance and accu-
racy of error localization using MaxSAT. To detect malware in Android apps,
ASTROID [22] automatically learns semantic malware signatures by using
MaxSAT to find the maximally suspicious common subgraph from a few sam-
ples of a malware family. Besides, MaxSAT is also helpful in visualization [13],
industrial designs [15,56], reasoning about biological networks [25], and various
data analysis tasks [6].

Techniques. There are a number of different approaches for exact MaxSAT
solving, including branch-and-bound based, satisfiability-based, unsatisfiability-
based, and their combinations [5,8,26,28,42,43,45–47]. The most successful of
these on real-world instances, as witnessed in annual MaxSAT evaluations [1],
perform iterative solving using a SAT solver as an oracle in each iteration [5,46].
Such solvers differ primarily in how they estimate the optimal cost (e.g., linear
or binary search), and the kind of information that they use to estimate the cost
(e.g. cores, the structure of cores, or satisfying assignments). Many algorithms
have been proposed that perform search on either upper bound or lower bound
1 We assume hard clauses can be satisfied; otherwise hard clauses of all future instances

will be unsatisfied and we can exit immediately.
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of the optimal cost [5,45–47], Some algorithms efficiently perform a combined
search over both bounds [26,28]. A drawback of the most sophisticated com-
bined search algorithms is that they modify the formula using expensive Pseudo
Boolean (PB) constraints that increase the size of the formula and potentially
hurt the solver’s performance. A recent approach [8] avoids this problem by
using succinct formula transformations that do not use PB constraints and can
be applied incrementally. Lastly, similar to our optimizations in Sect. 4.3, many
other techniques (e.g. [7,27]) also focus on optimizing Horn clauses.

6 Future Directions

We plan to extend our approach in three directions to further advance constraint-
based analysis using MaxSAT: constraint languages, solver techniques, and
explainability of solutions.

Language Features. As discussed in Sect. 2, since propositional formulae are
too low-level for effectively specifying software analyses, we use relational first-
order logic with weights as our constraint language. While it suffices for applica-
tions and analyses described in our previous work [24,39,69,70], it can be further
improved with richer features, two of which we discuss below.

While the current logic excels at specifying analysis problems that can be
succinctly expressed in relational domains, it has difficulties in expressing analy-
sis problems in integer, real, string, and other domains. Akin to how Satisfiability
Modulo Theories (SMT) extends SAT, we can handle these domains by incorpo-
rating their corresponding theories in our language via techniques similar to the
Nelson-Oppen approach. One emerging language for such problem is Maximum
Satisfiability Modulo Theories (MaxSMT) [9,10,16,35,48,58,59].

The other feature is the support for the least fixpoint operator, as almost
all software analyses involve computing the least fixpoint of certain equations.
Our current constraint language supports this operator indirectly by requiring
additional soft clauses to bias the solution to a minimal model. However, a built-
in least fixpoint operator would be much more preferred. First, it eliminates the
need for the aforementioned soft constraints which can complicate the process
of analysis design as they may interact with other soft constraints. Secondly,
by including the operator explicitly in the language, the underlying solver can
exploit more efficient algorithms that are specialized for handling least fixpoints.

Solver Techniques. We describe four techniques that can further improve the
effectiveness of our solving framework.

Magic Sets Transformation. Akin to their counterparts in Datalog evalu-
ation, the top-down approaches and the bottom-up approaches have different
advantages and disadvantages. One promising idea to combine their benefits
without their drawbacks is Magic Set transformation [54]. The idea is to apply
the bottom-up approaches but rewrite the constraint formulation so that the
constraint solving is driven by the demand of queries. In this way, we are able to
only consider the clauses that are related to the queries while leveraging efficient
solvers of the bottom-up approaches.
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Lifted Inference. While our current grounding-based framework effectively
leverages advances in MaxSAT solvers, it loses the high-level information while
translating problems in our constraint language into low-level propositional for-
mulae. Lifted inference [12,44,52,57,62] is a technique that aims to solve the
constraint problem symbolically without grounding. While lifted inference can
effectively avoid grounding large propositional formulae for certain problems, it
fails to leverage existing efficient propositional solvers. One promising direction
is to combine lifted inference with our grounding approach in a systematic way.

Compositional Solving. By exploiting modularity of programs, we envision
compositional solving as an effective approach to improve the solver efficiency.
The idea is to break a constraint problem into more tractable subproblems and
solve them independently. It is motivated by the success of compositional and
summary-based analysis techniques in scaling to large programs.

Approximate Solving. Despite all the domain insights we exploit, MaxSAT is
a combinatorial optimization problem, which is known for its intractability. As
a result, there will be pathological cases where none of the aforementioend tech-
niques are effective. One idea to address this challenge is to investigate approx-
imate solving, which trades precision for efficiency. Moreover, to trade precision
for efficiency is a controlled manner, it is desirable to design an algorithm with
tunable precision.

Explainability. Software analyses often return explanations along with the
results, which are invaluable to their usability. For example, a typical bug finding
tool not only returns the software defects it finds but also inputs that can trigger
these defects. However, in the case of constraint-based analysis, the underlying
constraint solver must provide explanations of the solutions to enable such func-
tionality. While SAT and SMT solvers provide such information in the form
of resolution graphs (in the case of satisfiable results) and UNSAT cores (in
the case of unsatisfiable results), how to provide explanations for optimization
solvers remains an open problem.

7 Conclusion

We proposed a MaxSAT based approach to tackle the central challenge of bal-
ancing different tradeoffs in software analysis. We demonstrated the approach
on mainstream applications concerning automated verification, interactive veri-
fication, and static bug detection. The MaxSAT instances posed in these appli-
cations transcend the reach of existing MaxSAT solvers in terms of scalability,
soundness, and optimality. We presented a lazy grounding framework to solve
such instances. We proposed new grounding techniques as instantiations of this
framework as well as optimizations to the framework.
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Abstract. Deep neural networks have emerged as a widely used and
effective means for tackling complex, real-world problems. However, a
major obstacle in applying them to safety-critical systems is the great dif-
ficulty in providing formal guarantees about their behavior. We present
a novel, scalable, and efficient technique for verifying properties of deep
neural networks (or providing counter-examples). The technique is based
on the simplex method, extended to handle the non-convex Rectified
Linear Unit (ReLU ) activation function, which is a crucial ingredient
in many modern neural networks. The verification procedure tackles
neural networks as a whole, without making any simplifying assump-
tions. We evaluated our technique on a prototype deep neural network
implementation of the next-generation airborne collision avoidance sys-
tem for unmanned aircraft (ACAS Xu). Results show that our technique
can successfully prove properties of networks that are an order of mag-
nitude larger than the largest networks verified using existing methods.

1 Introduction

Artificial neural networks [7,32] have emerged as a promising approach for cre-
ating scalable and robust systems. Applications include speech recognition [9],
image classification [23], game playing [33], and many others. It is now clear that
software that may be extremely difficult for humans to implement can instead
be created by training deep neural networks (DNN s), and that the performance
of these DNNs is often comparable to, or even surpasses, the performance of
manually crafted software. DNNs are becoming widespread, and this trend is
likely to continue and intensify.

Great effort is now being put into using DNNs as controllers for safety-
critical systems such as autonomous vehicles [4] and airborne collision avoidance
systems for unmanned aircraft (ACAS Xu) [13]. DNNs are trained over a finite
set of inputs and outputs and are expected to generalize, i.e. to behave cor-
rectly for previously-unseen inputs. However, it has been observed that DNNs
can react in unexpected and incorrect ways to even slight perturbations of their
inputs [34]. This unexpected behavior of DNNs is likely to result in unsafe sys-
tems, or restrict the usage of DNNs in safety-critical applications. Hence, there
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is an urgent need for methods that can provide formal guarantees about DNN
behavior. Unfortunately, manual reasoning about large DNNs is impossible, as
their structure renders them incomprehensible to humans. Automatic verifica-
tion techniques are thus sorely needed, but here, the state of the art is a severely
limiting factor.

Verifying DNNs is a difficult problem. DNNs are large, non-linear, and non-
convex, and verifying even simple properties about them is an NP-complete prob-
lem (see Sect. I of the supplementary material [15]). DNN verification is experi-
mentally beyond the reach of general-purpose tools such as linear programming
(LP) solvers or existing satisfiability modulo theories (SMT ) solvers [3,10,31],
and thus far, dedicated tools have only been able to handle very small networks
(e.g. a single hidden layer with only 10 to 20 hidden nodes [30,31]).

The difficulty in proving properties about DNNs is caused by the presence
of activation functions. A DNN is comprised of a set of layers of nodes, and the
value of each node is determined by computing a linear combination of values
from nodes in the preceding layer and then applying an activation function to
the result. These activation functions are non-linear and render the problem
non-convex. We focus here on DNNs with a specific kind of activation func-
tion, called a Rectified Linear Unit (ReLU ) [27]. When the ReLU function is
applied to a node with a positive value, it returns the value unchanged (the
active case), but when the value is negative, the ReLU function returns 0 (the
inactive case). ReLUs are very widely used [23,25], and it has been suggested
that their piecewise linearity allows DNNs to generalize well to previously unseen
inputs [6,7,11,27]. Past efforts at verifying properties of DNNs with ReLUs have
had to make significant simplifying assumptions [3,10]—for instance, by consid-
ering only small input regions in which all ReLUs are fixed at either the active
or inactive state [3], hence making the problem convex but at the cost of being
able to verify only an approximation of the desired property.

We propose a novel, scalable, and efficient algorithm for verifying properties
of DNNs with ReLUs. We address the issue of the activation functions head-
on, by extending the simplex algorithm—a standard algorithm for solving LP
instances—to support ReLU constraints. This is achieved by leveraging the piece-
wise linear nature of ReLUs and attempting to gradually satisfy the constraints
that they impose as the algorithm searches for a feasible solution. We call the
algorithm Reluplex, for “ReLU with Simplex”.

The problem’s NP-completeness means that we must expect the worst-case
performance of the algorithm to be poor. However, as is often the case with
SAT and SMT solvers, the performance in practice can be quite reasonable; in
particular, our experiments show that during the search for a solution, many
of the ReLUs can be ignored or even discarded altogether, reducing the search
space by an order of magnitude or more. Occasionally, Reluplex will still need to
split on a specific ReLU constraint—i.e., guess that it is either active or inactive,
and possibly backtrack later if the choice leads to a contradiction.

We evaluated Reluplex on a family of 45 real-world DNNs, developed as an
early prototype for the next-generation airborne collision avoidance system for
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unmanned aircraft ACAS Xu [13]. These fully connected DNNs have 8 layers
and 300 ReLU nodes each, and are intended to be run onboard aircraft. They
take in sensor data indicating the speed and present course of the aircraft (the
ownship) and that of any nearby intruder aircraft, and issue appropriate naviga-
tion advisories. These advisories indicate whether the aircraft is clear-of-conflict,
in which case the present course can be maintained, or whether it should turn
to avoid collision. We successfully proved several properties of these networks,
e.g. that a clear-of-conflict advisory will always be issued if the intruder is suffi-
ciently far away or that it will never be issued if the intruder is sufficiently close
and on a collision course with the ownship. Additionally, we were able to prove
certain robustness properties [3] of the networks, meaning that small adversarial
perturbations do not change the advisories produced for certain inputs.

Our contributions can be summarized as follows. We (i) present Reluplex,
an SMT solver for a theory of linear real arithmetic with ReLU constraints; (ii)
show how DNNs and properties of interest can be encoded as inputs to Reluplex;
(iii) discuss several implementation details that are crucial to performance and
scalability, such as the use of floating-point arithmetic, bound derivation for
ReLU variables, and conflict analysis; and (iv) conduct a thorough evaluation
on the DNN implementation of the prototype ACAS Xu system, demonstrating
the ability of Reluplex to scale to DNNs that are an order of magnitude larger
than those that can be analyzed using existing techniques.

The rest of the paper is organized as follows. We begin with some background
on DNNs, SMT, and simplex in Sect. 2. The abstract Reluplex algorithm is
described in Sect. 3, with key implementation details highlighted in Sect. 4. We
then describe the ACAS Xu system and its prototype DNN implementation that
we used as a case-study in Sect. 5, followed by experimental results in Sect. 6.
Related work is discussed in Sect. 7, and we conclude in Sect. 8.

2 Background

Neural Networks. Deep neural networks (DNNs) are comprised of an input
layer, an output layer, and multiple hidden layers in between. A layer is com-
prised of multiple nodes, each connected to nodes from the preceding layer using
a predetermined set of weights (see Fig. 1). Weight selection is crucial, and is
performed during a training phase (see, e.g., [7] for an overview). By assigning
values to inputs and then feeding them forward through the network, values
for each layer can be computed from the values of the previous layer, finally
resulting in values for the outputs.

The value of each hidden node in the network is determined by calculating
a linear combination of node values from the previous layer, and then applying
a non-linear activation function [7]. Here, we focus on the Rectified Linear Unit
(ReLU) activation function [27]. When a ReLU activation function is applied to
a node, that node’s value is calculated as the maximum of the linear combination
of nodes from the previous layer and 0. We can thus regard ReLUs as the function
ReLU(x) = max (0, x).
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Input #1
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Input #5
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Output #2

Output #3

Output #4

Output #5

Fig. 1. A fully connected DNN with 5 input nodes (in green), 5 output nodes (in red),
and 4 hidden layers containing a total of 36 hidden nodes (in blue). (Colour figure
online).

Formally, for a DNN N , we use n to denote the number of layers and si to
denote the size of layer i (i.e., the number of its nodes). Layer 1 is the input
layer, layer n is the output layer, and layers 2, . . . , n − 1 are the hidden layers.
The value of the j-th node of layer i is denoted vi,j and the column vector
[vi,1, . . . , vi,si ]

T is denoted Vi. Evaluating N entails calculating Vn for a given
assignment V1 of the input layer. This is performed by propagating the input
values through the network using predefined weights and biases, and applying
the activation functions—ReLUs, in our case. Each layer 2 ≤ i ≤ n has a weight
matrix Wi of size si×si−1 and a bias vector Bi of size si, and its values are given
by Vi = ReLU(WiVi−1 + Bi), with the ReLU function being applied element-
wise. This rule is applied repeatedly for each layer until Vn is calculated. When
the weight matrices W1, . . . Wn do not have any zero entries, the network is said
to be fully connected (see Fig. 1 for an illustration).

Figure 2 depicts a small network that we will use as a running example. The
network has one input node, one output node and a single hidden layer with two
nodes. The bias vectors are set to 0 and are ignored, and the weights are shown
for each edge. The ReLU function is applied to each of the hidden nodes. It is
possible to show that, due to the effect of the ReLUs, the network’s output is
always identical to its input: v31 ≡ v11.

v11

v21

v22

v31

1.0

−1.0

1.0

1.0

Hidden
layer

Input
layer

Output
layer

Fig. 2. A small neural network.
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Satisfiability Modulo Theories. We present our algorithm as a theory solver
in the context of satisfiability modulo theories (SMT).1 A theory is a pair T =
(Σ, I) where Σ is a signature and I is a class of Σ-interpretations, the models
of T , that is closed under variable reassignment. A Σ-formula ϕ is T -satisfiable
(resp., T -unsatisfiable) if it is satisfied by some (resp., no) interpretation in I. In
this paper, we consider only quantifier-free formulas. The SMT problem is the
problem of determining the T -satisfiability of a formula for a given theory T .

Given a theory T with signature Σ, the DPLL(T ) architecture [28] provides a
generic approach for determining the T -satisfiability of Σ-formulas. In DPLL(T ),
a Boolean satisfiability (SAT) engine operates on a Boolean abstraction of the
formula, performing Boolean propagation, case-splitting, and Boolean conflict
resolution. The SAT engine is coupled with a dedicated theory solver, which
checks the T -satisfiability of the decisions made by the SAT engine. Splitting-
on-demand [1] extends DPLL(T ) by allowing theory solvers to delegate case-
splitting to the SAT engine in a generic and modular way. In Sect. 3, we present
our algorithm as a deductive calculus (with splitting rules) operating on conjunc-
tions of literals. The DPLL(T ) and splitting-on-demand mechanisms can then
be used to obtain a full decision procedure for arbitrary formulas.

Linear Real Arithmetic and Simplex. In the context of DNNs, a particu-
larly relevant theory is that of real arithmetic, which we denote as TR. TR con-
sists of the signature containing all rational number constants and the symbols
{+,−, ·,≤,≥}, paired with the standard model of the real numbers. We focus on
linear formulas: formulas over TR with the additional restriction that the mul-
tiplication symbol · can only appear if at least one of its operands is a rational
constant. Linear atoms can always be rewritten into the form

∑
xi∈X cixi �� d,

for �� ∈ {=,≤,≥}, where X is a set of variables and ci, d are rational constants.
The simplex method [5] is a standard and highly efficient decision procedure

for determining the TR-satisfiability of conjunctions of linear atoms.2 Our algo-
rithm extends simplex, and so we begin with an abstract calculus for the original
algorithm (for a more thorough description see, e.g., [35]). The rules of the cal-
culus operate over data structures we call configurations. For a given set of vari-
ables X = {x1, . . . , xn}, a simplex configuration is either one of the distinguished
symbols {SAT, UNSAT} or a tuple 〈B, T, l, u, α〉, where: B ⊆ X is a set of basic
variables; T , the tableau, contains for each xi ∈ B an equation xi =

∑
xj /∈B cjxj ;

l, u are mappings that assign each variable x ∈ X a lower and an upper bound,
respectively; and α, the assignment, maps each variable x ∈ X to a real value.
The initial configuration (and in particular the initial tableau T0) is derived
from a conjunction of input atoms as follows: for each atom

∑
xi∈X cixi �� d, a

new basic variable b is introduced, the equation b =
∑

xi∈X cixi is added to the

1 Consistent with most treatments of SMT, we assume many-sorted first-order logic
with equality as our underlying formalism (see, e.g., [2] for details).

2 There exist SMT-friendly extensions of simplex (see e.g. [17]) which can handle TR-
satisfiability of arbitrary literals, including strict inequalities and disequalities, but
we omit these extensions here for simplicity (and without loss of generality).
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tableau, and d is added as a bound for b (either upper, lower, or both, depend-
ing on ��). The initial assignment is set to 0 for all variables, ensuring that all
tableau equations hold (though variable bounds may be violated).

The tableau T can be regarded as a matrix expressing each of the basic
variables (variables in B) as a linear combination of non-basic variables (variables
in X \ B). The rows of T correspond to the variables in B and its columns to
those of X \ B. For xi ∈ B and xj /∈ B we denote by Ti,j the coefficient cj of
xj in the equation xi =

∑
xj /∈B cjxj . The tableau is changed via pivoting: the

switching of a basic variable xi (the leaving variable) with a non-basic variable
xj (the entering variable) for which Ti,j 	= 0. A pivot(T, i, j) operation returns
a new tableau in which the equation xi =

∑
xk /∈B ckxk has been replaced by

the equation xj = xi

cj
−

∑
xk /∈B,k �=j

ck
cj

xk, and in which every occurrence of xj in
each of the other equations has been replaced by the right-hand side of the new
equation (the resulting expressions are also normalized to retain the tableau
form). The variable assignment α is changed via update operations that are
applied to non-basic variables: for xj /∈ B, an update(α, xj , δ) operation returns
an updated assignment α′ identical to α, except that α′(xj) = α(xj)+ δ and for
every xi ∈ B, we have α′(xi) = α(xi) + δ · Ti,j . To simplify later presentation we
also denote:

slack+(xi) = {xj /∈ B | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))

slack−(xi) = {xj /∈ B | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))

The rules of the simplex calculus are provided in Fig. 3 in guarded assignment
form. A rule applies to a configuration S if all of the rule’s premises hold for S. A
rule’s conclusion describes how each component of S is changed, if at all. When
S′ is the result of applying a rule to S, we say that S derives S′. A sequence of
configurations Si where each Si derives Si+1 is called a derivation.

Pivot1
xi ∈ B, α(xi) < l(xi), xj ∈ slack+(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Pivot2
xi ∈ B, α(xi) > u(xi), xj ∈ slack−(xi)

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

Update
xj /∈ B, α(xj) < l(xj) ∨ α(xj) > u(xj), l(xj) ≤ α(xj) + δ ≤ u(xj)

α := update(α, xj , δ)

Failure
xi ∈ B, (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

UNSAT

Success
∀xi ∈ X . l(xi) ≤ α(xi) ≤ u(xi)

SAT

Fig. 3. Derivation rules for the abstract simplex algorithm.

The Update rule (with appropriate values of δ) is used to enforce that non-
basic variables satisfy their bounds. Basic variables cannot be directly updated.



Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks 103

Instead, if a basic variable xi is too small or too great, either the Pivot1 or the
Pivot2 rule is applied, respectively, to pivot it with a non-basic variable xj . This
makes xi non-basic so that its assignment can be adjusted using the Update
rule. Pivoting is only allowed when xj affords slack, that is, the assignment for
xj can be adjusted to bring xi closer to its bound without violating its own
bound. Of course, once pivoting occurs and the Update rule is used to bring xi

within its bounds, other variables (such as the now basic xj) may be sent outside
their bounds, in which case they must be corrected in a later iteration. If a basic
variable is out of bounds, but none of the non-basic variables affords it any slack,
then the Failure rule applies and the problem is unsatisfiable. Because the tableau
is only changed by scaling and adding rows, the set of variable assignments that
satisfy its equations is always kept identical to that of T0. Also, the update
operation guarantees that α continues to satisfy the equations of T . Thus, if all
variables are within bounds then the Success rule can be applied, indicating that
α constitutes a satisfying assignment for the original problem.

It is well-known that the simplex calculus is sound [35] (i.e. if a derivation
ends in SAT or UNSAT, then the original problem is satisfiable or unsatisfiable,
respectively) and complete (there always exists a derivation ending in either SAT
or UNSAT from any starting configuration). Termination can be guaranteed if cer-
tain strategies are used in applying the transition rules—in particular in picking
the leaving and entering variables when multiple options exist [35]. Variable selec-
tion strategies are also known to have a dramatic effect on performance [35]. We
note that the version of simplex described above is usually referred to as phase
one simplex, and is usually followed by a phase two in which the solution is
optimized according to a cost function. However, as we are only considering
satisfiability, phase two is not required.

3 From Simplex to Reluplex

The simplex algorithm described in Sect. 2 is an efficient means for solving prob-
lems that can be encoded as a conjunction of atoms. Unfortunately, while the
weights, biases, and certain properties of DNNs can be encoded this way, the
non-linear ReLU functions cannot.

When a theory solver operates within an SMT solver, input atoms can be
embedded in arbitrary Boolean structure. A näıve approach is then to encode
ReLUs using disjunctions, which is possible because ReLUs are piecewise linear.
However, this encoding requires the SAT engine within the SMT solver to enu-
merate the different cases. In the worst case, for a DNN with n ReLU nodes,
the solver ends up splitting the problem into 2n sub-problems, each of which
is a conjunction of atoms. As observed by us and others [3,10], this theoretical
worst-case behavior is also seen in practice, and hence this approach is practi-
cal only for very small networks. A similar phenomenon occurs when encoding
DNNs as mixed integer problems (see Sect. 6).

We take a different route and extend the theory TR to a theory TRR of reals
and ReLUs. TRR is almost identical to TR, except that its signature additionally
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includes the binary predicate ReLU with the interpretation: ReLU(x, y) iff y =
max (0, x). Formulas are then assumed to contain atoms that are either linear
inequalities or applications of the ReLU predicate to linear terms.

DNNs and their (linear) properties can be directly encoded as conjunctions
of TRR-atoms. The main idea is to encode a single ReLU node v as a pair of
variables, vb and vf , and then assert ReLU(vb, vf ). vb, the backward-facing vari-
able, is used to express the connection of v to nodes from the preceding layer;
whereas vf , the forward-facing variable, is used for the connections of x to the
following layer (see Fig. 4). The rest of this section is devoted to presenting an
efficient algorithm, Reluplex, for deciding the satisfiability of a conjunction of
such atoms.

v11

vb
21

vb
22

vf
21

vf
22

v31

1.0

−1.0

1.0

1.0

ReLU

ReLU

Input
layer

Output
layer

Hidden
Layer

Fig. 4. The network from Fig. 2, with ReLU nodes split into backward- and forward-
facing variables.

The Reluplex Procedure. As with simplex, Reluplex allows variables to tem-
porarily violate their bounds as it iteratively looks for a feasible variable assign-
ment. However, Reluplex also allows variables that are members of ReLU pairs
to temporarily violate the ReLU semantics. Then, as it iterates, Reluplex repeat-
edly picks variables that are either out of bounds or that violate a ReLU, and
corrects them using Pivot and Update operations.

For a given set of variables X = {x1, . . . , xn}, a Reluplex configuration is
either one of the distinguished symbols {SAT, UNSAT} or a tuple 〈B, T, l, u, α,R〉,
where B, T, l, u and α are as before, and R ⊂ X × X is the set of ReLU con-
nections. The initial configuration for a conjunction of atoms is also obtained
as before except that 〈x, y〉 ∈ R iff ReLU(x, y) is an atom. The simplex transi-
tion rules Pivot1, Pivot2 and Update are included also in Reluplex, as they are
designed to handle out-of-bounds violations. We replace the Success rule with
the ReluSuccess rule and add rules for handling ReLU violations, as depicted in
Fig. 5. The Updateb and Updatef rules allow a broken ReLU connection to be
corrected by updating the backward- or forward-facing variables, respectively,
provided that these variables are non-basic. The PivotForRelu rule allows a basic
variable appearing in a ReLU to be pivoted so that either Updateb or Updatef can
be applied (this is needed to make progress when both variables in a ReLU are
basic and their assignments do not satisfy the ReLU semantics). The ReluSplit
rule is used for splitting on certain ReLU connections, guessing whether they
are active (by setting l(xi) := 0) or inactive (by setting u(xi) := 0).
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Updateb
xi /∈ B, 〈xi, xj〉 ∈ R, α(xj) �= max (0, α(xi)), α(xj) ≥ 0

α := update(α, xi, α(xj) − α(xi))

Updatef
xj /∈ B, 〈xi, xj〉 ∈ R, α(xj) �= max (0, α(xi))

α := update(α, xj ,max (0, α(xi)) − α(xj))

PivotForRelu
xi ∈ B, ∃xl. 〈xi, xl〉 ∈ R ∨ 〈xl, xi〉 ∈ R, xj /∈ B, Ti,j �= 0

T := pivot(T, i, j), B := B ∪ {xj} \ {xi}

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0

ReluSuccess
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈xb, xf 〉 ∈ R. α(xf ) = max (0, α(xb))

SAT

Fig. 5. Additional derivation rules for the abstract Reluplex algorithm.

Introducing splitting means that derivations are no longer linear. Using the
notion of derivation trees, we can show that Reluplex is sound and complete (see
Sect. II of the supplementary material [15]). In practice, splitting can be managed
by a SAT engine with splitting-on-demand [1]. The näıve approach mentioned
at the beginning of this section can be simulated by applying the ReluSplit rule
eagerly until it no longer applies and then solving each derived sub-problem
separately (this reduction trivially guarantees termination just as do branch-and-
cut techniques in mixed integer solvers [29]). However, a more scalable strategy
is to try to fix broken ReLU pairs using the Updateb and Updatef rules first,
and split only when the number of updates to a specific ReLU pair exceeds
some threshold. Intuitively, this is likely to limit splits to “problematic” ReLU
pairs, while still guaranteeing termination (see Sect. III of the supplementary
material [15]). Additional details appear in Sect. 6.

Example. To illustrate the use of the derivation rules, we use Reluplex to solve
a simple example. Consider the network in Fig. 4, and suppose we wish to check
whether it is possible to satisfy v11 ∈ [0, 1] and v31 ∈ [0.5, 1]. As we know that
the network outputs its input unchanged (v31 ≡ v11), we expect Reluplex to be
able to derive SAT. The initial Reluplex configuration is obtained by introducing
new basic variables a1, a2, a3, and encoding the network with the equations:

a1 = −v11 + vb
21 a2 = v11 + vb

22 a3 = −vf
21 − vf

22 + v31

The equations above form the initial tableau T0, and the initial set of
basic variables is B = {a1, a2, a3}. The set of ReLU connections is R =
{〈vb

21, v
f
21〉, 〈vb

22, v
f
22〉}. The initial assignment of all variables is set to 0. The

lower and upper bounds of the basic variables are set to 0, in order to enforce the
equalities that they represent. The bounds for the input and output variables are
set according to the problem at hand; and the hidden variables are unbounded,
except that forward-facing variables are, by definition, non-negative:
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variable v11 vb
21 vf

21 vb
22 vf

22 v31 a1 a2 a3

lower bound 0 −∞ 0 −∞ 0 0.5 0 0 0
assignment 0 0 0 0 0 0 0 0 0
upper bound 1 ∞ ∞ ∞ ∞ 1 0 0 0

Starting from this initial configuration, our search strategy is to first fix any
out-of-bounds variables. Variable v31 is non-basic and is out of bounds, so we
perform an Update step and set it to 0.5. As a result, a3, which depends on v31,
is also set to 0.5. a3 is now basic and out of bounds, so we pivot it with vf

21, and
then update a3 back to 0. The tableau now consists of the equations:

a1 = −v11 + vb
21 a2 = v11 + vb

22 vf
21 = −vf

22 + v31 − a3

And the assignment is α(vf
21) = 0.5, α(v31) = 0.5, and α(v) = 0 for all other vari-

ables v. At this point, all variables are within their bounds, but the ReluSuccess
rule does not apply because α(vf

21) = 0.5 	= 0 = max (0, α(vb
21)).

The next step is to fix the broken ReLU pair 〈vb
21, v

f
21〉. Since vb

21 is non-
basic, we use Updateb to increase its value by 0.5. The assignment becomes
α(vb

21) = 0.5, α(vf
21) = 0.5, α(v31) = 0.5, α(a1) = 0.5, and α(v) = 0 for all other

variables v. All ReLU constraints hold, but a1 is now out of bounds. This is fixed
by pivoting a1 with v11 and then updating it. The resulting tableau is:

v11 = vb
21 − a1 a2 = vb

21 + vb
22 − a1 vf

21 = −vf
22 + v31 − a3

Observe that because v11 is now basic, it was eliminated from the equation for
a2 and replaced with vb

21 − a1. The non-zero assignments are now α(v11) = 0.5,
α(vb

21) = 0.5, α(vf
21) = 0.5, α(v31) = 0.5, α(a2) = 0.5. Variable a2 is now too

large, and so we have a final round of pivot-and-update: a2 is pivoted with vb
22

and then updated back to 0. The final tableau and assignments are:

v11 = vb
21 − a1

vb
22 = −vb

21 + a1 + a2

vf
21 = −vf

22 + v31 − a3

variable v11 vb
21 vf

21 vb
22 vf

22 v31 a1 a2 a3

lower bound 0 −∞ 0 −∞ 0 0.5 0 0 0
assignment 0.5 0.5 0.5 −0.5 0 0.5 0 0 0
upper bound 1 ∞ ∞ ∞ ∞ 1 0 0 0

and the algorithm halts with the feasible solution it has found. A key observation
is that we did not ever split on any of the ReLU connections. Instead, it was
sufficient to simply use updates to adjust the ReLU variables as needed.

4 Efficiently Implementing Reluplex

We next discuss three techniques that significantly boost the performance of
Reluplex: use of tighter bound derivation, conflict analysis and floating point
arithmetic. A fourth technique, under-approximation, is discussed in Sect. IV of
the supplementary material [15].
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Tighter Bound Derivation. The simplex and Reluplex procedures naturally
lend themselves to deriving tighter variable bounds as the search progresses [17].
Consider a basic variable xi ∈ B and let pos(xi) = {xj /∈ B | Ti,j > 0} and
neg(xi) = {xj /∈ B | Ti,j < 0}. Throughout the execution, the following rules can
be used to derive tighter bounds for xi, regardless of the current assignment:

deriveLowerBound
xi ∈ B, l(xi) <

∑
xj∈pos(xi)

Ti,j · l(xj) +
∑

xj∈neg(xi)
Ti,j · u(xj)

l(xi) :=
∑

xj∈pos(xi)
Ti,j · l(xj) +

∑
xj∈neg(xi)

Ti,j · u(xj)

deriveUpperBound
xi ∈ B, u(xi) >

∑
xj∈pos(xi)

Ti,j · u(xj) +
∑

xj∈neg(xi)
Ti,j · l(xj)

u(xi) :=
∑

xj∈pos(xi)
Ti,j · u(xj) +

∑
xj∈neg(xi)

Ti,j · l(xj)

The derived bounds can later be used to derive additional, tighter bounds.
When tighter bounds are derived for ReLU variables, these variables can

sometimes be eliminated, i.e., fixed to the active or inactive state, without split-
ting. For a ReLU pair xf = ReLU(xb), discovering that either l(xb) or l(xf ) is
strictly positive means that in any feasible solution this ReLU connection will
be active. Similarly, discovering that u(xb) < 0 implies inactivity.

Bound tightening operations incur overhead, and simplex implementations
often use them sparsely [17]. In Reluplex, however, the benefits of eliminating
ReLUs justify the cost. The actual amount of bound tightening to perform can
be determined heuristically; we describe the heuristic that we used in Sect. 6.

Derived Bounds and Conflict Analysis. Bound derivation can lead to situ-
ations where we learn that l(x) > u(x) for some variable x. Such contradictions
allow Reluplex to immediately undo a previous split (or answer UNSAT if no pre-
vious splits exist). However, in many cases more than just the previous split can
be undone. For example, if we have performed 8 nested splits so far, it may be
that the conflicting bounds for x are the direct result of split number 5 but have
only just been discovered. In this case we can immediately undo splits number
8, 7, and 6. This is a particular case of conflict analysis, which is a standard
technique in SAT and SMT solvers [26].

Floating Point Arithmetic. SMT solvers typically use precise (as opposed
to floating point) arithmetic to avoid roundoff errors and guarantee sound-
ness. Unfortunately, precise computation is usually at least an order of mag-
nitude slower than its floating point equivalent. Invoking Reluplex on a large
DNN can require millions of pivot operations, each of which involves the mul-
tiplication and division of rational numbers, potentially with large numerators
or denominators—making the use of floating point arithmetic important for
scalability.

There are standard techniques for keeping the roundoff error small when
implementing simplex using floating point, which we incorporated into our imple-
mentation. For example, one important practice is trying to avoid Pivot opera-
tions involving the inversion of extremely small numbers [35].

To provide increased confidence that any roundoff error remained within an
acceptable range, we also added the following safeguards: (i) After a certain
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number of Pivot steps we would measure the accumulated roundoff error; and
(ii) If the error exceeded a threshold M , we would restore the coefficients of the
current tableau T using the initial tableau T0.

Cumulative roundoff error can be measured by plugging the current assign-
ment values for the non-basic variables into the equations of the initial tableau
T0, using them to calculate the values for every basic variable xi, and then mea-
suring by how much these values differ from the current assignment α(xi). We
define the cumulative roundoff error as:

∑

xi∈B0

|α(xi) −
∑

xj /∈B0

T0i,j · α(xj)|

T is restored by starting from T0 and performing a short series of Pivot steps
that result in the same set of basic variables as in T . In general, the shortest
sequence of pivot steps to transform T0 to T is much shorter than the series of
steps that was followed by Reluplex—and hence, although it is also performed
using floating point arithmetic, it incurs a smaller roundoff error.

The tableau restoration technique serves to increase our confidence in the
algorithm’s results when using floating point arithmetic, but it does not guar-
antee soundness. Providing true soundness when using floating point arithmetic
remains a future goal (see Sect. 8).

5 Case Study: The ACAS Xu System

Airborne collision avoidance systems are critical for ensuring the safe opera-
tion of aircraft. The Traffic Alert and Collision Avoidance System (TCAS ) was
developed in response to midair collisions between commercial aircraft, and is
currently mandated on all large commercial aircraft worldwide [24]. Recent work
has focused on creating a new system, known as Airborne Collision Avoidance
System X (ACAS X ) [19,20]. This system adopts an approach that involves
solving a partially observable Markov decision process to optimize the alerting
logic and further reduce the probability of midair collisions, while minimizing
unnecessary alerts [19,20,22].

The unmanned variant of ACAS X, known as ACAS Xu, produces horizontal
maneuver advisories. So far, development of ACAS Xu has focused on using a
large lookup table that maps sensor measurements to advisories [13]. However,
this table requires over 2 GB of memory. There is concern about the memory
requirements for certified avionics hardware. To overcome this challenge, a DNN
representation was explored as a potential replacement for the table [13]. Initial
results show a dramatic reduction in memory requirements without compromis-
ing safety. In fact, due to its continuous nature, the DNN approach can some-
times outperform the discrete lookup table [13]. Recently, in order to reduce
lookup time, the DNN approach was improved further, and the single DNN was
replaced by an array of 45 DNNs. As a result, the original 2 GB table can now
be substituted with efficient DNNs that require less than 3 MB of memory.
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A DNN implementation of ACAS Xu presents new certification challenges.
Proving that a set of inputs cannot produce an erroneous alert is paramount
for certifying the system for use in safety-critical settings. Previous certification
methodologies included exhaustively testing the system in 1.5 million simulated
encounters [21], but this is insufficient for proving that faulty behaviors do not
exist within the continuous DNNs. This highlights the need for verifying DNNs
and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

Network Functionality. The ACAS Xu system maps input variables to action
advisories. Each advisory is assigned a score, with the lowest score corresponding
to the best action. The input state is composed of seven dimensions (shown in
Fig. 6) which represent information determined from sensor measurements [20]:
(i) ρ: Distance from ownship to intruder; (ii) θ: Angle to intruder relative to
ownship heading direction; (iii) ψ: Heading angle of intruder relative to ownship
heading direction; (iv) vown: Speed of ownship; (v) vint: Speed of intruder; (vi) τ :
Time until loss of vertical separation; and (vii) aprev: Previous advisory. There
are five outputs which represent the different horizontal advisories that can be
given to the ownship: Clear-of-Conflict (COC), weak right, strong right, weak
left, or strong left. Weak and strong mean heading rates of 1.5 ◦/s and 3.0 ◦/s,
respectively.

Ownship

vown

Intruder

vint

ρ

ψ

θ

Fig. 6. Geometry for ACAS Xu horizontal logic table

The array of 45 DNNs was produced by discretizing τ and aprev, and produc-
ing a network for each discretized combination. Each of these networks thus has
five inputs (one for each of the other dimensions) and five outputs. The DNNs
are fully connected, use ReLU activation functions, and have 6 hidden layers
with a total of 300 ReLU nodes each.

Network Properties. It is desirable to verify that the ACAS Xu networks
assign correct scores to the output advisories in various input domains. Figure 7
illustrates this kind of property by showing a top-down view of a head-on
encounter scenario, in which each pixel is colored to represent the best action if
the intruder were at that location. We expect the DNN’s advisories to be con-
sistent in each of these regions; however, Fig. 7 was generated from a finite set
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of input samples, and there may exist other inputs for which a wrong advisory
is produced, possibly leading to collision. Therefore, we used Reluplex to prove
properties from the following categories on the DNNs: (i) The system does not
give unnecessary turning advisories; (ii) Alerting regions are uniform and do
not contain inconsistent alerts; and (iii) Strong alerts do not appear for high τ
values.
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Fig. 7. Advisories for a head-on encounter with aprev = COC, τ = 0s.

6 Evaluation

We used a proof-of-concept implementation of Reluplex to check realistic prop-
erties on the 45 ACAS Xu DNNs. Our implementation consists of three main
logical components: (i) A simplex engine for providing core functionality such as
tableau representation and pivot and update operations; (ii) A Reluplex engine
for driving the search and performing bound derivation, ReLU pivots and ReLU
updates; and (iii) A simple SMT core for providing splitting-on-demand ser-
vices. For the simplex engine we used the GLPK open-source LP solver3 with
some modifications, for instance in order to allow the Reluplex core to per-
form bound tightening on tableau equations calculated by GLPK. Our imple-
mentation, together with the experiments described in this section, is available
online [14].

Our search strategy was to repeatedly fix any out-of-bounds violations first,
and only then correct any violated ReLU constraints (possibly introducing new
out-of-bounds violations). We performed bound tightening on the entering vari-
able after every pivot operation, and performed a more thorough bound tight-
ening on all the equations in the tableau once every few thousand pivot steps.
Tighter bound derivation proved extremely useful, and we often observed that
after splitting on about 10% of the ReLU variables it led to the elimination of all
remaining ReLUs. We counted the number of times a ReLU pair was fixed via
Updateb or Updatef or pivoted via PivotForRelu, and split only when this number
reached 5 (a number empirically determined to work well). We also implemented
conflict analysis and back-jumping. Finally, we checked the accumulated roundoff
error (due to the use of double-precision floating point arithmetic) after every

3 www.gnu.org/software/glpk/.

www.gnu.org/software/glpk/
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5000 Pivot steps, and restored the tableau if the error exceeded 10−6. Most
experiments described below required two tableau restorations or fewer.

We began by comparing our implementation of Reluplex to state-of-the-art
solvers: the CVC4, Z3, Yices and MathSat SMT solvers and the Gurobi LP
solver (see Table 1). We ran all solvers with a 4 h timeout on 2 of the ACAS Xu
networks (selected arbitrarily), trying to solve for 8 simple satisfiable properties
ϕ1, . . . , ϕ8, each of the form x ≥ c for a fixed output variable x and a constant
c. The SMT solvers generally performed poorly, with only Yices and MathSat
successfully solving two instances each. We attribute the results to these solvers’
lack of direct support for encoding ReLUs, and to their use of precise arithmetic.
Gurobi solved 3 instances quickly, but timed out on all the rest. Its logs indicated
that whenever Gurobi could solve the problem without case-splitting, it did so
quickly; but whenever the problem required case-splitting, Gurobi would time
out. Reluplex was able to solve all 8 instances. See Sect. V of the supplementary
material [15] for the SMT and LP encodings that we used.

Table 1. Comparison to SMT and LP solvers. Entries indicate solution time (in
seconds).

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

CVC4 - - - - - - - -

Z3 - - - - - - - -

Yices 1 37 - - - - - -

MathSat 2040 9780 - - - - - -

Gurobi 1 1 1 - - - - -

Reluplex 8 2 7 7 93 4 7 9

Next, we used Reluplex to test a set of 10 quantitative properties φ1, . . . , φ10.
The properties, described below, are formally defined in Sect. VI of the supple-
mentary material [15]. Table 2 depicts for each property the number of tested
networks (specified as part of the property), the test results and the total dura-
tion (in seconds). The Stack and Splits columns list the maximal depth of nested
case-splits reached (averaged over the tested networks) and the total number of
case-splits performed, respectively. For each property, we looked for an input
that would violate it; thus, an UNSAT result indicates that a property holds,
and a SAT result indicates that it does not hold. In the SAT case, the satisfying
assignment is an example of an input that violates the property.

Property φ1 states that if the intruder is distant and is significantly slower
than the ownship, the score of a COC advisory will always be below a certain
fixed threshold (recall that the best action has the lowest score). Property φ2

states that under similar conditions, the score for COC can never be maximal,
meaning that it can never be the worst action to take. This property was discov-
ered not to hold for 35 networks, but this was later determined to be acceptable
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Table 2. Verifying properties of the ACAS Xu networks.

Networks Result Time Stack Splits

φ1 41 UNSAT 394517 47 1522384

4 TIMEOUT

φ2 1 UNSAT 463 55 88388

35 SAT 82419 44 284515

φ3 42 UNSAT 28156 22 52080

φ4 42 UNSAT 12475 21 23940

φ5 1 UNSAT 19355 46 58914

φ6 1 UNSAT 180288 50 548496

φ7 1 TIMEOUT

φ8 1 SAT 40102 69 116697

φ9 1 UNSAT 99634 48 227002

φ10 1 UNSAT 19944 49 88520

behavior: the DNNs have a strong bias for producing the same advisory they
had previously produced, and this can result in advisories other than COC even
for far-away intruders if the previous advisory was also something other than
COC. Properties φ3 and φ4 deal with situations where the intruder is directly
ahead of the ownship, and state that the DNNs will never issue a COC advisory.

Properties φ5 through φ10 each involve a single network, and check for con-
sistent behavior in a specific input region. For example, φ5 states that if the
intruder is near and approaching from the left, the network advises “strong
right”. Property φ7, on which we timed out, states that when the vertical sep-
aration is large the network will never advise a strong turn. The large input
domain and the particular network proved difficult to verify. Property φ8 states
that for a large vertical separation and a previous “weak left” advisory, the net-
work will either output COC or continue advising “weak left”. Here, we were
able to find a counter-example, exposing an input on which the DNN was incon-
sistent with the lookup table. This confirmed the existence of a discrepancy that
had also been seen in simulations, and which will be addressed by retraining the
DNN. We observe that for all properties, the maximal depth of nested splits was
always well below the total number of ReLU nodes, 300, illustrating the fact that
Reluplex did not split on many of them. Also, the total number of case-splits
indicates that large portions of the search space were pruned.

Another class of properties that we tested is adversarial robustness proper-
ties. DNNs have been shown to be susceptible to adversarial inputs [34]: correctly
classified inputs that an adversary slightly perturbs, leading to their misclassi-
fication by the network. Adversarial robustness is thus a safety consideration,
and adversarial inputs can be used to train the network further, making it more
robust [8]. There exist approaches for finding adversarial inputs [3,8], but the
ability to verify their absence is limited.
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We say that a network is δ-locally-robust at input point x if for every x′ such
that ‖x − x′‖∞ ≤ δ, the network assigns the same label to x and x′. In the
case of the ACAS Xu DNNs, this means that the same output has the lowest
score for both x and x′. Reluplex can be used to prove local robustness for a
given x and δ, as depicted in Table 3. We used one of the ACAS Xu networks,
and tested combinations of 5 arbitrary points and 5 values of δ. SAT results show
that Reluplex found an adversarial input within the prescribed neighborhood,
and UNSAT results indicate that no such inputs exist. Using binary search on
values of δ, Reluplex can thus be used for approximating the optimal δ value
up to a desired precision: for example, for point 4 the optimal δ is between
0.025 and 0.05. It is expected that different input points will have different local
robustness, and the acceptable thresholds will thus need to be set individually.

Table 3. Local adversarial robustness tests. All times are in seconds.

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01 Total

Result Time Result Time Result Time Result Time Result Time Time

Point 1 SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT 57 1064

Point 2 UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5 7394

Point 3 UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1 1452

Point 4 SAT 2 SAT 977 SAT 1168 UNSAT 656 UNSAT 7 2810

Point 5 UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6 20462

Finally, we mention an additional variant of adversarial robustness which
we term global adversarial robustness, and which can also be solved by Relu-
plex. Whereas local adversarial robustness is measured for a specific x, global
adversarial robustness applies to all inputs simultaneously. This is expressed by
encoding two side-by-side copies of the DNN in question, N1 and N2, operating
on separate input variables x1 and x2, respectively, such that x2 represents an
adversarial perturbation of x1. We can then check whether ‖x1 − x2‖∞ ≤ δ
implies that the two copies of the DNN produce similar outputs. Formally, we
require that if N1 and N2 assign output a values p1 and p2 respectively, then
|p1−p2| ≤ ε. If this holds for every output, we say that the network is ε-globally-
robust. Global adversarial robustness is harder to prove than the local variant,
because encoding two copies of the network results in twice as many ReLU nodes
and because the problem is not restricted to a small input domain. We were able
to prove global adversarial robustness only on small networks; improving the
scalability of this technique is left for future work.

7 Related Work

In [30], the authors propose an approach for verifying properties of neural net-
works with sigmoid activation functions. They replace the activation functions
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with piecewise linear approximations thereof, and then invoke black-box SMT
solvers. When spurious counter-examples are found, the approximation is refined.
The authors highlight the difficulty in scaling-up this technique, and are able to
tackle only small networks with at most 20 hidden nodes [31].

The authors of [3] propose a technique for finding local adversarial examples
in DNNs with ReLUs. Given an input point x, they encode the problem as a
linear program and invoke a black-box LP solver. The activation function issue
is circumvented by considering a sufficiently small neighborhood of x, in which
all ReLUs are fixed at the active or inactive state, making the problem convex.
Thus, it is unclear how to address an x for which one or more ReLUs are on the
boundary between active and inactive states. In contrast, Reluplex can be used
on input domains for which ReLUs can have more than one possible state.

In a recent paper [10], the authors propose a method for proving the local
adversarial robustness of DNNs. For a specific input point x, the authors attempt
to prove consistent labeling in a neighborhood of x by means of discretization:
they reduce the infinite neighborhood into a finite set of points, and check that
the labeling of these points is consistent. This process is then propagated through
the network, layer by layer. While the technique is general in the sense that
it is not tailored for a specific activation function, the discretization process
means that any UNSAT result only holds modulo the assumption that the finite
sets correctly represent their infinite domains. In contrast, our technique can
guarantee that there are no irregularities hiding between the discrete points.

Finally, in [12], the authors employ hybrid techniques to analyze an ACAS
X controller given in lookup-table form, seeking to identify safe input regions
in which collisions cannot occur. It will be interesting to combine our technique
with that of [12], in order to verify that following the advisories provided by the
DNNs indeed leads to collision avoidance.

8 Conclusion and Next Steps

We presented a novel decision algorithm for solving queries on deep neural net-
works with ReLU activation functions. The technique is based on extending the
simplex algorithm to support the non-convex ReLUs in a way that allows their
inputs and outputs to be temporarily inconsistent and then fixed as the algo-
rithm progresses. To guarantee termination, some ReLU connections may need
to be split upon—but in many cases this is not required, resulting in an efficient
solution. Our success in verifying properties of the ACAS Xu networks indicates
that the technique holds much potential for verifying real-world DNNs.

In the future, we plan to increase the technique’s scalability. Apart from mak-
ing engineering improvements to our implementation, we plan to explore better
strategies for the application of the Reluplex rules, and to employ advanced
conflict analysis techniques for reducing the amount of case-splitting required.
Another direction is to provide better soundness guarantees without harming
performance, for example by replaying floating-point solutions using precise
arithmetic [18], or by producing externally-checkable correctness proofs [16].
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Finally, we plan to extend our approach to handle DNNs with additional kinds
of layers. We speculate that the mechanism we applied to ReLUs can be applied
to other piecewise linear layers, such as max-pooling layers.
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Abstract. We consider the problem of developing automated techniques
for solving recurrence relations to aid the expected-runtime analysis of
programs. The motivation is that several classical textbook algorithms
have quite efficient expected-runtime complexity, whereas the corre-
sponding worst-case bounds are either inefficient (e.g., Quick-Sort), or
completely ineffective (e.g., Coupon-Collector). Since the main focus
of expected-runtime analysis is to obtain efficient bounds, we consider
bounds that are either logarithmic, linear or almost-linear (O(log n),
O(n), O(n · log n), respectively, where n represents the input size). Our
main contribution is an efficient (simple linear-time algorithm) sound
approach for deriving such expected-runtime bounds for the analysis of
recurrence relations induced by randomized algorithms. The experimen-
tal results show that our approach can efficiently derive asymptotically
optimal expected-runtime bounds for recurrences of classical random-
ized algorithms, including Randomized-Search, Quick-Sort, Quick-
Select, Coupon-Collector, where the worst-case bounds are either
inefficient (such as linear as compared to logarithmic expected-runtime
complexity, or quadratic as compared to linear or almost-linear expected-
runtime complexity), or ineffective.

1 Introduction

Static Analysis for Quantitative Bounds. Static analysis of programs aims to rea-
son about programs without running them. The most basic properties for static
analysis are qualitative properties, such as safety, termination, liveness, that for
every trace of a program gives a Yes or No answer (such as assertion violation
or not, termination or not). However, recent interest in analysis of resource-
constrained systems, such as embedded systems, as well as for performance
analysis, quantitative performance characteristics are necessary. For example,
the qualitative problem of termination asks whether a given program always
terminates, whereas the quantitative problem asks to obtain precise bounds on
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the number of steps, and is thus a more challenging problem. Hence the prob-
lem of automatically reasoning about resource bounds (such as time complexity
bounds) of programs is both of significant theoretical as well as practical interest.
Worst-Case Bounds. The worst-case analysis of programs is the fundamen-
tal problem in computer science, which is the basis of algorithms and com-
plexity theory. However, manual proofs of worst-case analysis can be tedious
and also require non-trivial mathematical ingenuity, e.g., the book The Art
of Computer Programming by Knuth presents a wide range of involved tech-
niques to derive such precise bounds [37]. There has been a considerable
research effort for automated analysis of worst-case bounds for programs,
see [23,24,26,27] for excellent expositions. For the worst-case analysis there
are several techniques, such as worst-case execution time analysis [46], resource
analysis using abstract interpretation and type systems [2,24,26,27,34], ranking
functions [7,8,15,17,41,42,44,47] as well as recurrence relations [2–4,21].

Expected-Runtime Bounds. While several works have focused on deriving worst-
case bounds for programs, quite surprisingly little work has been done to derive
precise bounds for expected-runtime analysis, with the exception of [20], which
focuses on randomization in combinatorial structures (such as trees). This is
despite the fact that expected-runtime analysis is an equally important pillar of
theoretical computer science, both in terms of theoretical and practical signifi-
cance. For example, while for real-time systems with hard constraints worst-case
analysis is necessary, for real-time systems with soft constraints the more rele-
vant information is the expected-runtime analysis. Below we highlight three key
significance of expected-runtime analysis.

1. Simplicity and desired properties: The first key aspect is simplicity: often
much simpler algorithms (thus simple and efficient implementations) exist
for expected-runtime complexity as compared to worst-case complexity.
A classic example is the Selection problem that given a set of n numbers and
0 ≤ k ≤ n, asks to find the k-th largest number (e.g., for median k = n/2).
The classical linear-time algorithm for the problem (see [16, Chap. 9]) is
quite involved, and its worst-case analysis to obtain linear time bound is
rather complex. In contrast, a much simpler algorithm exists (namely, Quick-
Select) that has linear expected-runtime complexity. Moreover, randomized
algorithms with expected-runtime complexity enjoy many desired properties,
which deterministic algorithms do not have. A basic example is Channel-
Conflict Resolution (see Example 7, Sect. 2.4) where the simple random-
ized algorithm can be implemented in a distributed or concurrent setting,
whereas deterministic algorithms are quite cumbersome.

2. Efficiency in practice: Since worst-case analysis concerns with corner cases
that rarely arise, many algorithms and implementations have much better
expected-runtime complexity, and they perform extremely well in practice. A
classic example is the Quick-Sort algorithm, that has quadratic worst-case
complexity, but almost linear expected-runtime complexity, and is one of the
most efficient sorting algorithms in practice.
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3. Worst-case analysis ineffective: In several important cases the worst-case
analysis is completely ineffective. For example, consider one of the text-
book stochastic process, namely the Coupon-Collector problem, where
there are n types of coupons to be collected, and in each round, a coupon
type among the n types is obtained uniformly at random. The process stops
when all types are collected. The Coupon-Collector process is one of
the basic and classical stochastic processes, with numerous applications in
network routing, load balancing, etc. (see [39, Chap. 3] for applications of
Coupon-Collector problems). For the worst-case analysis, the process
might not terminate (worst-case bound infinite), but the expected-runtime
analysis shows that the expected termination time is O(n · log n).

Challenges. The expected-runtime analysis brings several new challenges as com-
pared to the worst-case analysis. First, for the worst-case complexity bounds, the
most classical characterization for analysis of recurrences is the Master Theorem
(cf. [16, Chap. 1]) and Akra-Bazzi’s Theorem [1]. However, the expected-runtime
analysis problems give rise to recurrences that are not characterized by these the-
orems since our recurrences normally involve an unbounded summation resulting
from a randomized selection of integers from 1 to n where n is unbounded. Sec-
ond, techniques like ranking functions (linear or polynomial ranking functions)
cannot derive efficient bounds such as O(log n) or O(n · log n). While expected-
runtime analysis has been considered for combinatorial structures using gen-
erating function [20], we are not aware of any automated technique to handle
recurrences arising from randomized algorithms.

Analysis Problem. We consider the algorithmic analysis problem of recurrences
arising naturally for randomized recursive programs. Specifically we consider the
following:

– We consider two classes of recurrences: (a) univariate class with one vari-
able (which represents the array length, or the number of input elements, as
required in problems such as Quick-Select, Quick-Sort etc.); and (b) sep-
arable bivariate class with two variables (where the two independent vari-
ables represent the total number of elements and total number of successful
cases, respectively, as required in problems such as Coupon-Collector,
Channel-Conflict Resolution). The above two classes capture a large
class of expected-runtime analysis problems, including all the classical ones
mentioned above. Moreover, the main purpose of expected-runtime analy-
sis is to obtain efficient bounds. Hence we focus on the case of logarithmic,
linear, and almost-linear bounds (i.e., bounds of form O(log n), O(n) and
O(n · log n), respectively, where n is the size of the input). Moreover, for
randomized algorithms, quadratic bounds or higher are rare.

Thus the main problem we consider is to automatically derive such efficient
bounds for randomized univariate and separable bivariate recurrence relations.

Our Contributions. Our main contribution is a sound approach for analysis of
recurrences for expected-runtime analysis. The input to our problem is a recur-
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rence relation and the output is either logarithmic, linear, or almost-linear as
the asymptotic bound, or fail. The details of our contributions are as follows:

1. Efficient algorithm. We first present a linear-time algorithm for the univari-
ate case, which is based on simple comparison of leading terms of pseudo-
polynomials. Second, we present a simple reduction for separable bivariate
recurrence analysis to the univariate case. Our efficient (linear-time) algo-
rithm can soundly infer logarithmic, linear, and almost-linear bounds for
recurrences of one or two variables.

2. Analysis of classical algorithms. We show that for several classical algorithms,
such as Randomized-Search, Quick-Select, Quick-Sort, Coupon-
Collector, Channel-Conflict Resolution (see Sects. 2.2 and 2.4 for
examples), our sound approach can obtain the asymptotically optimal
expected-runtime bounds for the recurrences. In all the cases above, either
the worst-case bounds (i) do not exist (e.g., Coupon-Collector), or (ii) are
quadratic when the expected-runtime bounds are linear or almost-linear (e.g.,
Quick-Select, Quick-Sort); or (iii) are linear when the expected-runtime
bounds are logarithmic (e.g., Randomized-Search). Thus in cases where
the worst-case bounds are either not applicable, or grossly overestimate the
expected-runtime bounds, our technique is both efficient (linear-time) and
can infer the optimal bounds.

3. Implementation. Finally, we have implemented our approach, and we present
experimental results on the classical examples to show that we can efficiently
achieve the automated expected-runtime analysis of randomized recurrence
relations.

Novelty and Technical Contribution. The key novelty of our approach is an auto-
mated method to analyze recurrences arising from randomized recursive pro-
grams, which are not covered by Master theorem. Our approach is based on
a guess-and-check technique. We show that by over-approximating terms in a
recurrence relation through integral and Taylor’s expansion, we can soundly infer
logarithmic, linear and almost-linear bounds using simple comparison between
leading terms of pseudo-polynomials.

Due to page limit, we omitted some technical details. They can be found
in [12].

2 Recurrence Relations

We present our mini specification language for recurrence relations for expected-
runtime analysis. The language is designed to capture running time of recursive
randomized algorithms which involve (i) only one function call whose expected-
runtime complexity is to be determined, (ii) at most two integer parameters, and
(iii) involve randomized-selection or divide-and-conquer techniques. We present
our language separately for the univariate and bivariate cases. In the sequel, we
denote by N, N0, Z, and R the sets of all positive integers, non-negative integers,
integers, and real numbers, respectively.
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2.1 Univariate Randomized Recurrences

Below we define the notion of univariate randomized recurrence relations. First,
we introduce the notion of univariate recurrence expressions. Since we only con-
sider single recursive function call, we use ‘T’ to represent the (only) function
call. We also use ‘n’ to represent the only parameter in the function declaration.
Univariate Recurrence Expressions. The syntax of univariate recurrence
expressions e is generated by the following grammar:

e ::= c | n | ln n | n · ln n | 1
n

| T(n − 1) | T
(⌊n

2

⌋)
| T

(⌈n
2

⌉)

|
∑n−1

j=1 T(j)
n

| 1
n

·
(∑n−1

j=�n/2� T(j) +
∑n−1

j=�n/2� T(j)
)

| c · e | e+ e

where c ∈ [1,∞) and ln(�) represents the natural logarithm function with base
e. Informally, T(n) is the (expected) running time of a recursive randomized
program which involves only one recursive routine indicated by T and only one
parameter indicated by n. Then each T(�)-term in the grammar has a direct
algorithmic meaning:

– T(n − 1) may mean a recursion to a sub-array with length decremented by
one;

– T
(⌊

n
2

⌋)
and T

(⌈
n
2

⌉)
may mean a recursion related to a divide-and-conquer

technique;
– finally,

∑n−1
j=1 T(j)

n and 1
n ·

(∑n−1

j=�n
2 � T(j) +

∑n−1

j=�n
2 � T(j)

)
may mean a recursion

related to a randomized selection of an array index.

Substitution. Consider a function h : N → R and univariate recurrence expression
e. The substitution function, denoted by Subst(e, h), is the function from N into
R such that the value for n is obtained by evaluation through substituting h for
T and n for n in e, respectively. Moreover, if e does not involve the appearance
of ‘T’, then we use the abbreviation Subst(e) i.e., omit h. For example, (i) if
e = n + T(n − 1), and h : n 
→ n · log n, then Subst(e, h) is the function n 
→
n + (n − 1) · log(n − 1), and (ii) if e = 2 · n, then Subst(e) is n 
→ 2n.

Univariate Recurrence Relation. A univariate recurrence relation G =
(eq1, eq2) is a pair of equalities as follows:

eq1 : T(n) = e; eq2 : T(1) = c (1)

where c ∈ (0,∞) and e is a univariate recurrence expression. For a univariate
recurrence relation G the evaluation sequence Eval(G) is as follows: Eval(G)(1) =
c, and for n ≥ 2, given Eval(G)(i) for 1 ≤ i < n, for the value Eval(G)(n)
we evaluate the expression Subst(e,Eval(G)), since in e the parameter n always
decreases and is thus well-defined.

Finite vs Infinite Solution. Note that the above description gives a compu-
tational procedure to compute Eval(G) for any finite n, in linear time in n
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through dynamic programming. The interesting question is to algorithmically
analyze the infinite behavior. A function TG : N → R is called a solution
to G if TG(n) = Eval(G)(n) for all n ≥ 1. The function TG is unique and
explicitly defined as follows: (1) Base Step. TG(1) := c; and (2) Recursive Step.
TG(n) := Subst(e, TG)(n) for all n ≥ 2. The algorithmic question is to reason
about the asymptotic infinite behaviour of TG.

2.2 Motivating Classical Examples

In this part we present several classical examples of randomized programs
whose recurrence relations belong to the class of univariate recurrence relations
described in Sect. 2.1. In all cases the base step is T(1) = 1, hence we discuss
only the recursive case.

Example 1 (Randomized-Search). Consider the Sherwood’s Randomized-
Search algorithm (cf. [38, Chap. 9]). The algorithm checks whether an integer
value d is present within the index range [i, j] (0 ≤ i ≤ j) in an integer array ar
which is sorted in increasing order and is without duplicate entries. The algo-
rithm outputs either the index for d in ar or −1 meaning that d is not present in
the index range [i, j] of ar. The recurrence relation for this example is as follows:

T(n) = 6 + 1
n · ( ∑n−1

j=�n/2� T(j) +
∑n−1

j=�n/2� T(j)
)

(2)

We note that the worst-case complexity for this algorithm is Θ(n). �
Example 2 (Quick-Sort). Consider the Quick-Sort algorithm [16, Chap. 7].
The recurrence relation for this example is:

T(n) = 2 · n+ 2 · (∑n−1
j=1 T(j))/n (3)

where T(n) represents the maximal expected execution time where n is the array
length and the execution time of pivoting is represented by 2 · n. We note that
the worst-case complexity for this algorithm is Θ(n2). �
Example 3 (Quick-Select). Consider the Quick-Select algorithm (cf. [16,
Chap. 9]). The recurrence relation for this example is

T(n)=4 + 2 · n+ 1
n ·

(∑n−1
j=�n/2� T(j) +

∑n−1
j=�n/2� T(j)

)
(4)

We note that the worst-case complexity for this algorithm is Θ(n2). �
Example 4 (Diameter-Computation). Consider the Diameter-Computa
tion algorithm (cf. [39, Chap. 9]) to compute the diameter of an input finite
set S of three-dimensional points. Depending on Eucledian or L1 metric we
obtain two different recurrence relations. For Eucledian we have the following
relation:

T(n) = 2 + n+ 2 · n · ln n+ (
∑n−1

j=1 T(j))/n; (5)
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and for L1 metric we have the following relation:

T(n) = 2 + n+ 2 · n+ (
∑n−1

j=1 T(j))/n (6)

We note that the worst-case complexity for this algorithm is as follows: for
Euclidean metric it is Θ(n2 · log n) and for the L1 metric it is Θ(n2). �
Example 5 (Sorting with Quick-Select). Consider a sorting algorithm which
selects the median through the Quick-Select algorithm. The recurrence rela-
tion is directly obtained as follows:

T(n) = 4 + T ∗(n) + T (�n/2�) + T (�n/2�) (7)

where T ∗(�) is an upper bound on the expected running time of Quick-Select
(cf. Example 3). We note that the worst-case complexity for this algorithm is
Θ(n2). �

2.3 Separable Bivariate Randomized Recurrences

We consider a generalization of the univariate recurrence relations to a class
of bivariate recurrence relations called separable bivariate recurrence relations.
Similar to the univariate situation, we use ‘T’ to represent the (only) function
call and ‘n’, ‘m’ to represent namely the two integer parameters.

Separable Bivariate Recurrence Expressions. The syntax of separable
bivariate recurrence expressions is illustrated by e, h and b as follows:

e ::= T (n,m − 1) | T(n, �m/2�) | T(n, �m/2�)

|
∑m−1

j=1 T(n, j)
m

| 1
m

·
(∑m−1

j=�m/2� T(n, j) +
∑m−1

j=�m/2� T(n, j)
)

| c · e | e+ e

h ::= c | ln n | n | n · ln n | c · h | h+ h b ::= c | 1
m

| lnm | m | m · lnm | c · b | b+ b

The differences are that (i) we have two independent parameters n,m, (ii) e
now represents an expression composed of only T-terms, and (iii) h (resp. b)
represents arithmetic expressions for n (resp. for m). This class of separable
bivariate recurrence expressions (often for brevity bivariate recurrence expres-
sions) stresses a dominant role on m and a minor role on n, and is intended to
model randomized algorithms where some parameter (to be represented by n)
does not change value.

Substitution. The notion of substitution is similar to the univariate case. Con-
sider a function h : N × N → R, and a bivariate recurrence expression e. The
substitution function, denoted by Subst(e, h), is the function from N × N into
R such that Subst(e, h)(n,m) is the real number evaluated through substituting
h, n,m for T, n,m, respectively. The substitution for h, b is defined in a similar
way, with the difference that they both induce a univariate function.
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Bivariate Recurrence Relations. We consider bivariate recurrence relations
G = (eq1, eq2), which consists of two equalities of the following form:

eq1 : T(n,m) = e+ h · b; eq2 : T(n, 1) = h · c (8)

where c ∈ (0,∞) and e, h, b are from the grammar above.

Solution to Bivariate Recurrence Relations. The evaluation of bivariate recur-
rence relation is similar to the univariate case. Similar to the univariate case, the
unique solution TG : N×N → R to a recurrence relation G taking the form (8) is
a function defined recursively as follows: (1) Base Step. TG(n, 1) := Subst(h)(n)·c
for all n ∈ N; and (2) Recursive Step. TG(n,m) := Subst(e, TG)(n,m) +
Subst(h)(n) · Subst(b)(m) for all n ∈ N and m ≥ 2. Again the interesting algo-
rithmic question is to reason about the infinite behaviour of TG.

2.4 Motivating Classical Examples

In this section we present two classical examples of randomized algorithms where
the randomized recurrence relations are bivariate.

Example 6 (Coupon-Collector). Consider the Coupon-Collector prob-
lem [39, Chap. 3] with n different types of coupons (n ∈ N). The randomized
process proceeds in rounds: at each round, a coupon is collected uniformly at ran-
dom from the coupon types the rounds continue until all the n types of coupons
are collected. We model the rounds as a recurrence relation with two variables
n,m, where n represents the total number of coupon types and m represents the
remaining number of uncollected coupon types. The recurrence relation is as
follows:

T(n, 1) = n · 1; T(n,m) = n/m+T(n,m − 1) (9)

where T(n,m) is the expected number of rounds. We note that the worst-case
complexity for this process is ∞. �
Example 7 (Channel-Conflict Resolution). We consider two network sce-
narios in which n clients are trying to get access to a network channel. This prob-
lem is also called the Resource-Contention Resolution [36, Chap. 13]. In
this problem, if more than one client tries to access the channel, then no client can
access it, and if exactly one client requests access to the channel, then the request
is granted. In the distributed setting, the clients do not share any information.
In this scenario, in each round, every client requests an access to the channel
with probability 1

n . Then for this scenario, we obtain an over-approximating
recurrence relation

T(n, 1) = n · 1; T(n,m) = (n · e)/m+T(n,m − 1) (10)

for the expected rounds until which every client gets at least one access to the
channel. In the concurrent setting, the clients share one variable, which is the
number of clients which has not yet been granted access. Also in this scenario,



126 K. Chatterjee et al.

once a client gets an access the client does not request for access again. For this
scenario, we obtain an over-approximating recurrence relation

T(n, 1) = 1 · 1; T(n,m) = 1 · e +T(n,m − 1) (11)

We also note that the worst-case complexity for both the scenarios is ∞. �

3 Expected-Runtime Analysis

We focus on synthesizing logarithmic, linear, and almost-linear asymptotic
bounds for recurrence relations. Our goal is to decide and synthesize asymp-
totic bounds in the simple form: d · f+ g, f ∈ {ln n, n, n · ln n}. Informally, f is the
major term for time complexity, d is the coefficient of f to be synthesized, and g
is the time complexity for the base case specified in (1) or (8).

Univariate Case: The algorithmic problem in univariate case is as follows:

– Input: a univariate recurrence relation G taking the form (1) and an expression
f ∈ {ln n, n, n · ln n}.

– Output: Decision problem. Output “yes” if TG ∈ O(Subst(f)), and “fail” oth-
erwise.

– Output: Quantitative problem. A positive real number d such that

TG(n) ≤ d · Subst(f)(n) + c (12)

for all n ≥ 1, or “fail” otherwise, where c is from (1).

Remark 1. First note that while in the problem description we consider the form
f part of input for simplicity, since there are only three possibilites we can simply
enumerate them, and thus have only the recurrence relation as input. Second,
in the algorithmic problem above, w.l.o.g, we consider that every e in (1) or (8)
involves at least one T(�)-term and one non-T(�)-term; this is natural since (i)
for algorithms with recursion at least one T(�)-term should be present for the
recursive call and at least one non-T(�)-term for non-recursive base step. �
Bivariate Case: The bivariate-case problem is an extension of the univariate
one, and hence the problem definitions are similar, and we present them suc-
cinctly below.

– Input: a bivariate recurrence relation G taking the form (8) and an expression
f (similar to the univariate case).

– Output: Decision problem. Output “yes” if TG ∈ O(Subst(f)), and “fail” oth-
erwise;

– Output: Quantitative problem. A positive real number d such that TG(n,m) ≤
d·Subst(f)(n,m)+c·Subst(h)(n) for all n,m ≥ 1, or “fail” otherwise, where c, h
are from (8). Note that in the expression above the term b does not appear
as it can be captured with f itself.

Recall that in the above algorithmic problems obtaining the finite behaviour
of the recurrence relations is easy (through evaluation of the recurrences using
dynamic programming), and the interesting aspect is to decide the asymptotic
infinite behaviour.
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4 The Synthesis Algorithm

In this section, we present our algorithms to synthesize asymptotic bounds for
randomized recurrence relations.

Main Idea. The main idea is as follows. Consider as input a recurrence relation
taking the form (1) and an univariate recurrence expression f ∈ {ln n, n, n · ln n}
which specifies the desired asymptotic bound. We first define the standard notion
of a guess-and-check function which provides a sound approach for asymptotic
bound. Based on the guess-and-check function, our algorithm executes the fol-
lowing steps for the univariate case.

1. First, the algorithm sets up a scalar variable d and then constructs the tem-
plate h to be n 
→ d ·Subst(f)(n)+c for a univariate guess-and-check function.

2. Second, the algorithm computes an over-approximation OvAp(e, h) of
Subst(e, h) such that the over-approximation OvAp(e, h) will involve terms
from nk, ln� n (for k, � ∈ N0) only. Note that k, � may be greater than 1, so
the above expressions are not necessarily linear (they can be quadratic or
cubic for example).

3. Finally, the algorithm synthesizes a value for d such that OvAp(e, h)(n) ≤ h(n)
for all n ≥ 2 through truncation of [2,∞) ∩ N into a finite range and a limit
behaviour analysis (towards ∞).

Our algorithm for bivariate cases is a reduction to the univariate case.

Guess-and-Check Functions. We follow the standard guess-and-check tech-
nique to solve simple recurrence relations. Below we first fix a univariate recur-
rence relation G taking the form (1). By an easy induction on n (starting from
the N specified in Definition 1) we obtain Theorem 1.

Definition 1 (Univariate Guess-and-Check Functions). Let G be a uni-
variate recurrence relation taking the form (1). A function h : N → R is a
guess-and-check function for G if there exists a natural number N ∈ N such
that: (1) (Base Condition) TG(n) ≤ h(n) for all 1 ≤ n ≤ N , and (2) (Inductive
Argument) Subst(e, h)(n) ≤ h(n) for all n > N .

Theorem 1 (Guess-and-Check, Univariate Case). If a function h : N → R

is a guess-and-check function for a univariate recurrence relation G taking the
form (1), then TG(n) ≤ h(n) for all n ∈ N.

We do not explicitly present the definition for guess-and-check functions in the
bivariate case, since we will present a reduction of the analysis of separable
bivariate recurrence relations to that of the univariate ones (cf. Sect. 4.2).

Overapproximations for Recurrence Expressions. We now develop tight
overapproximations for logarithmic terms. In principle, we use Taylor’s Theo-
rem to approximate logarithmic terms such as ln (n − 1), ln �n

2 �, and integral to
approximate summations of logarithmic terms. All the results below are technical
and depends on basic calculus.
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Proposition 1. For all natural number n ≥ 2:

(1) lnn− ln 2− 1

n − 1
≤ ln

⌊n
2

⌋
≤ lnn− ln 2; (2) lnn− ln 2 ≤ ln

⌈n
2

⌉
≤ lnn− ln 2+

1

n
.

Proposition 2. For all natural number n ≥ 2: lnn− 1
n−1 ≤ ln (n − 1)≤ lnn− 1

n .

Proposition 3. For all natural number n ≥ 2:

–
∫ n

1
1
x dx − ∑n−1

j=1
1
j ∈ [−0.7552,− 1

6

]
;

–
∫ n

1
lnxdx −

(∑n−1
j=1 ln j

)
− 1

2 · ∫ n

1
1
x dx ∈ [− 1

12 , 0.2701
]
;

–
∫ n

1
x · lnxdx −

(∑n−1
j=1 j · ln j

)
− 1

2 · ∫ n

1
lnxdx + 1

12 · ∫ n

1
1
x dx − n−1

2 ∈[− 19
72 , 0.1575

]
.

Note that Proposition 3 is non-trivial since it approximates summation of recip-
rocal and logarithmic terms up to a constant deviation. For example, one may
approximate

∑n−1
j=1 ln j directly by

∫ n

1
lnxdx, but this approximation deviates

up to a logarithmic term from Proposition 3. From Proposition 3, we establish a
tight approximation for summation of logarithmic or reciprocal terms.

Example 8. Consider the summation
∑n−1

j=�n
2 � ln j +

∑n−1

j=�n
2 � ln j (n ≥ 4). By

Proposition 3, we can over-approximate it as

2 ·
(

Γln n (n) +
1
12

)
−

(
Γln n

(⌈n

2

⌉)
+ Γln n

(⌊n

2

⌋)
− 0.5402

)

where Γln n(n) :=
∫ n

1
lnxdx − 1

2 · ∫ n

1
1
x dx = n · lnn − n − lnn

2 + 1. By using
Proposition 1, the above expression is roughly n · lnn − (1− ln 2) · n+ 1

2 · lnn+
0.6672 + 1

2·n . �
Remark 2. Although we do approximation for terms related to only almost-
linear bounds, Proposition 3 can be extended to logarithmic bounds with higher
degree (e.g., n3 lnn) since integration of such bounds can be obtained in closed
forms. �

4.1 Algorithm for Univariate Recurrence Relations

We present our algorithm to synthesize a guess-and-check function in form (12)
for univariate recurrence relations. We present our algorithm in two steps. First,
we present the decision version, and then we present the quantitative version that
synthesizes the associated constant. The two key aspects are over-approximation
and use of pseudo-polynomials, and we start with over-approximation.

Definition 2 (Overapproximation). Let f ∈ {ln n, n, n · ln n}. Consider a
univariate recurrence expression g, constants d and c, and the function h =
d · Subst(f) + c. We define the over-approximation function, denoted OvAp(g, h),
recursively as follows.
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– Base Step A. If g is one of the following: c′, n, ln n, n·ln n, 1
n , then OvAp(g, h) :=

Subst(g).
– Base Step B. If g is a single term which involves T, then we define OvAp(g, h)

from over-approximations Propositions 1–3. In details, OvAp(g, h) is obtained
from Subst(g, h) by first over-approximating any summation through Propo-
sition 3, then over-approximating any ln (n − 1),

⌊
n
2

⌋
,
⌈
n
2

⌉
, ln

⌊
n
2

⌋
, ln

⌈
n
2

⌉
by

Propositions 1 and 2. The details of the important over-approximations are
illustrated explicitly in Table 1.

– Recursive Step. We have two cases: (a) If g is g1 + g2, then OvAp(g, h) is
OvAp(g1, h)+OvAp(g2, h). (b) If g is c′ ·g′, then OvAp(g, h) is c′ ·OvAp(g′, h).

Table 1. Illustration for Definition 2 where the notations are given in the top-left
corner.

Notation Expression f, T-term Over-approximation

e1 T(n − 1) ln n, e1 ln n − 1
n

e2 T
(⌊

n
2

⌋)
ln n, e2 ln n − ln 2

e3 T
(⌈

n
2

⌉)
ln n, e3 ln n − ln 2 + 1

n

e4
1
n

·∑n−1
j=1 T(j) ln n, e4 ln n − 1 − lnn

2·n + 13
12 · 1

n

e5
1
n

·
(
∑n−1

j=
⌈
n
2

⌉ T(j) +
∑n−1

j=
⌊
n
2

⌋ T(j)

)

ln n, e5 ln n − (1 − ln 2) + lnn
2·n + 0.6672

n
+ 1

2·n2

f, T-term Over-approximation f, T-term Over-approximation

n, e1 n − 1 n · ln n, e1 n · ln n − ln n − 1 + 1
n

n, e2
n
2 n · ln n, e2

1
2 · n · ln n − ln 2

2 · n
n, e3

n+1
2 n · ln n, e3

n·lnn
2 − ln 2

2 · n + 1−ln 2
2 + lnn

2 + 1
2·n

n, e4
n−1
2 n · ln n, e4

n·lnn
2 − n

4 − lnn
2 + lnn

12·n + 0.5139
n

n, e5
3
4 · n − 1

4·n n · ln n, e5
3
4 · n · ln n − 0.2017 · n − 1

2 · ln n

−0.2698 + lnn
8·n + 1.6369

n
+ 1

2·n·(n−1) + 1
4·n2

Example 9. Consider the recurrence relation for Sherwood’s Randomized-
Search (cf. (2)). Choose f = ln n and then the template h becomes
n 
→ d · lnn + 1. From Example 8, we have that the over-approximation
for 6 + 1

n ·
(∑n−1

j=�n
2 � T(j) +

∑n−1

j=�n
2 � T(j)

)
when n ≥ 4 is 7 + d ·

[
lnn − (1 − ln 2) + lnn

2·n + 0.6672
n + 1

2·n2

] (
the second summand comes from an

over-approximation of 1
n ·

(∑n−1

j=�n
2 � d · ln j+ ∑n−1

j=�n
2 � d · ln j

))
. �

Remark 3. Since integrations of the form
∫

xk lnl xdx can be calculated in closed
forms (cf. Remark 2), Table 1 can be extended to logarithmic expressions with
higher order, e.g., n2 ln n. �
Pseudo-polynomials. Our next step is to define the notion of (univariate) pseudo-
polynomials which extends normal polynomials with logarithm. This notion
is crucial to handle inductive arguments in the definition of guess-and-check
functions.
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Definition 3 (Univariate Pseudo-polynomials). A univariate pseudo-
polynomial (w.r.t logarithm) is a function p : N → R such that there exist
non-negative integers k, � ∈ N0 and real numbers ai, bi’s such that for all n ∈ N,

p(n) =
∑k

i=0 ai · ni · lnn +
∑�

i=0 bi · ni. (13)

W.l.o.g, we consider that in the form (13), it holds that (i) a2
k+b2� �= 0, (ii) either

ak �= 0 or k = 0, and (iii) similarly either b� �= 0 or � = 0.

Degree of Pseudo-polynomials. Given a univariate pseudo-polynomial p in the
form (13), we define the degree deg(p) of p by: deg(p) = k+ 1

2 if k ≥ � and ak �= 0
and � otherwise. Intuitively, if the term with highest degree involves logarithm,
then we increase the degree by 1/2, else it is the power of the highest degree
term.

Leading term p. The leading term p of a pseudo-polynomial p in the form (13) is
a function p : N → R defined as follows: p(n) = ak · nk · lnn if k ≥ � and ak �= 0;
and b� ·n� otherwise; for all n ∈ N. Moreover, we let Cp to be the (only) coefficient
of p.

With the notion of pseudo-polynomials, the inductive argument of guess-and-
check functions can be soundly transformed into an inequality between pseudo-
polynomials.

Lemma 1. Let f ∈ {ln n, n, n · ln n} and c be a constant. For all univariate recur-
rence expressions g, there exists pseudo-polynomials p and q such that coefficients
(i.e., ai, bi’s in (13)) of q are all non-negative, Cq > 0 and the following asser-
tion holds: for all d > 0 and for all n ≥ 2, with h = d ·Subst(f)+c, the inequality
OvAp(g, h)(n) ≤ h(n) is equivalent to d · p(n) ≥ q(n).

Remark 4. In the above lemma, though we only refer to existence of pseudo-
polynomials p and q, they can actually be computed in linear time, because p
and q are obtained by simple rearrangements of terms from OvAp(g, h) and h,
respectively.

Example 10. Let us continue with Sherwood’s Randomized-Search. Again
choose h = d · ln n + 1. From Example 9, we obtain that for every n ≥ 4, the
inequality

d · lnn + 1 ≥ 7 + d ·
[
lnn − (1 − ln 2) +

lnn

2 · n
+

0.6672
n

+
1

2 · n2

]

resulting from over-approximation and the inductive argument of guess-and-
check functions is equivalent to d · [

(1 − ln 2) · n2 − n·lnn
2 − 0.6672 · n − 1

2

] ≥
6 · n2. �
As is indicated in Definition 1, our aim is to check whether OvAp(g, h)(n) ≤ h(n)
holds for sufficiently large n. The following proposition provides a sufficient and
necessary condition for checking whether d · p(n) ≥ q(n) holds for sufficiently
large n.
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Proposition 4. Let p, q be pseudo-polynomials such that Cq > 0 and all coef-
ficients of q are non-negative. Then there exists a real number d > 0 such that
d · p(n) ≥ q(n) for sufficiently large n iff deg(p) ≥ deg(q) and Cp > 0.

Note that by Definition 1 and the special form (12) for univariate guess-and-
check functions, a function in form (12) needs only to satisfy the inductive argu-
ment in order to be a univariate guess-and-check function: once a value for d
is synthesized for a sufficiently large N , one can scale the value so that the
base condition is also satisfied. Thus from the sufficiency of Proposition 4, our
decision algorithm that checks the existence of some guess-and-check function
in form (12) is presented below. Below we fix an input univariate recurrence
relation G taking the form (1) and an input expression f ∈ {ln n, n, n · ln n}.

Algorithm UniDec: Our algorithm, namely UniDec, for the decision problem
of the univariate case, has the following steps.

1. Template. The algorithm establishes a scalar variable d and sets up the tem-
plate d · f+ c for a univariate guess-and-check function.

2. Over-approximation. Let h denote d · Subst(f) + c. The algorithm calculates
the over-approximation function OvAp(e, h), where e is from (1).

3. Transformation. The algorithm transforms the inequality OvAp(e, h)(n) ≤
h(n) (n ∈ N) for inductive argument of guess-and-check functions through
Lemma 1 equivalently into d · p(n) ≥ q(n) (n ∈ N), where p, q are pseudo-
polynomials obtained in linear-time through rearrangement of terms from
OvAp(e, h) and h (see Remark 4).

4. Coefficient Checking. The algorithm examines cases on Cp. If Cp > 0 and
deg(p) ≥ deg(q), then algorithm outputs “yes” meaning that “there exists a
univariate guess-and-check function”; otherwise, the algorithm outputs “fail”.

Theorem 2 (Soundness for UniDec). If UniDec outputs “yes”, then there
exists a univariate guess-and-check function in form (12) for the inputs G and
f. The algorithm is a linear-time algorithm in the size of the input recurrence
relation.

Example 11. Consider Sherwood’s Randomized-Search recurrence relation
(cf. (2)) and f = ln n as the input. As illustrated in Examples 9 and 10, the
algorithm asserts that the asymptotic behaviour is O(lnn). �
Remark 5. From the tightness of our over-approximation (up to only constant
deviation) and the sufficiency and necessity of Proposition 4, the UniDec algo-
rithm can handle a large class of univariate recurrence relations. Moreover, the
algorithm is quite simple and efficient (linear-time). However, we do not know
whether our approach is complete. We suspect that there is certain intricate
recurrence relations that will make our approach fail.

Analysis of Examples of Sect. 2.2. Our algorithm can decide the following
optimal bounds for the examples of Sect. 2.2.

1. For Example 1 we obtain an O(log n) bound (recall worst-case bound is Θ(n)).
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2. For Example 2 we obtain an O(n · log n) bound (recall worst-case bound is
Θ(n2)).

3. For Example 3 we obtain an O(n) bound (recall worst-case bound is Θ(n2)).
4. For Example 4 we obtain an O(n · log n) (resp. O(n)) bound for Euclidean

metric (resp. for L1 metric), whereas the worst-case bound is Θ(n2 · log n)
(resp. Θ(n2)).

5. For Example 5 we obtain an O(n · log n) bound (recall worst-case bound is
Θ(n2)).

In all cases above, our algorithm decides the asymptotically optimal bounds
for the expected-runtime analysis, whereas the worst-case analysis grossly over-
estimate the expected-runtime bounds.

Quantitative Bounds. We have already established that our linear-time deci-
sion algorithm can establish the asymptotically optimal bounds for the recur-
rence relations of several classical algorithms. We now take the next step to
obtain even explicit quantitative bounds, i.e., to synthesize the associated con-
stants with the asymptotic complexity. To this end, we derive a following propo-
sition which gives explicitly a threshold for “sufficiently large numbers”. We first
explicitly constructs a threshold for “sufficiently large numbers”. Then we show
in Proposition 5 that Nε,p,q is indeed what we need.

Definition 4. (Threshold Nε,p,q for Sufficiently Large Numbers). Let p, q

be two univariate pseudo-polynomials p(n) =
∑k

i=0 ai · ni · lnn +
∑�

i=0 bi · ni,
q(n) =

∑k′

i=0 a′
i ·ni · lnn+

∑�′

i=0 b′
i ·ni such that deg(p) ≥ deg(q) and Cp, Cq > 0.

Then given any ε ∈ (0, 1), the number Nε,p,q is defined as the smallest natural
number such that both x, y (defined below) is smaller than ε:

– x = −1 +
∑k

i=0 |ai| · Ni·lnN
p(N) +

∑�
i=0 |bi| · Ni

p(N) ;

– y = −1deg(p)=deg(q) · Cq

Cp
+

∑k′

i=0 |a′
i| · Ni·lnN

p(N) +
∑�′

i=0 |b′
i| · Ni

p(N) .

where 1deg(p)=deg(q) equals 1 when deg(p) = deg(q) and 0 otherwise.

Proposition 5. Consider two univariate pseudo-polynomials p, q such that
deg(p) ≥ deg(q), all coefficients of q are non-negative and Cp, Cq > 0. Then

given any ε ∈ (0, 1), q(n)
p(n) ≤ 1deg(p)=deg(q)· Cq

Cp
+ε

1−ε for all n ≥ Nε,p,q (for Nε,p,q of
Definition 4).

With Proposition 5, we describe our algorithm UniSynth which outputs explicitly
a value for d (in (12)) if UniDec outputs yes. Below we fix an input univariate
recurrence relation G taking the form (1) and an input expression f ∈ {ln n, n, n ·
ln n}. Moreover, the algorithm takes ε > 0 as another input, which is basically
a parameter to choose the threshold for finite behaviour. For example, smaller ε
leads to large threshold, and vice-versa. Thus we provide a flexible algorithm as
the threshold can be varied with the choice of ε.

Algorithm UniSynth: Our algorithm for the quantitative problem has the fol-
lowing steps:
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1. Calling UniDec. The algorithm calls UniDec, and if it returns “fail”, then
return “fail”, otherwise execute the following steps. Obtain the following
inequality d · p(n) ≥ q(n) (n ∈ N) from the transformation step of UniDec.

2. Variable Solving. The algorithm calculates Nε,p,q for a given ε ∈ (0, 1) by
e.g. repeatedly increasing n (see Definition 4) and outputs the value of d
as the least number such that the following two conditions hold: (i) for all
2 ≤ n < Nε,p,q, we have Eval(G)(n) ≤ d · Subst(f)(n) + c (recall Eval(G)(n)

can be computed in linear time), and (ii) we have d ≥ 1deg(p)=deg(q)· Cq
Cp

+ε

1−ε .

Theorem 3 (Soundness for UniSynth). If the algorithm UniSynth outputs a
real number d, then d·Subst(f)+c is a univariate guess-and-check function for G.

Example 12. Consider the recurrence relation for Sherwood’s Randomized-
Search (cf. (2)) and f = ln n. Consider that ε := 0.9. From Examples 9 and 10,
the algorithm establishes the inequality d ≥ 6

(1−ln 2)− lnn
2·n − 0.6672

n − 1
2·n2

and finds
that N0.9,p,q = 6. Then the algorithm finds d = 204.5335 through the follow-
ings: (a) Eval(G)(2) = 7 ≤ d · ln 2 + 1; (b) Eval(G)(3) = 11 ≤ d · ln 3 + 1;
(c) Eval(G)(4) = 15 ≤ d · ln 4 + 1; (d) Eval(G)(5) = 17.8 ≤ d · ln 5 + 1;

(e) d ≥
6

1−ln 2+0.9

1−0.9 . Thus, by Theorem 1, the expected running time of the algo-
rithm has an upper bound 204.5335 · lnn + 1. Later in Sect. 5, we show that
one can obtain a much better d = 19.762 through our algorithms by choosing
ε := 0.01, which is quite good since the optimal value lies in [15.129, 19.762] (cf.
the first item R.-Sear. in Table 2). �

4.2 Algorithm for Bivariate Recurrence Relations

In this part, we present our results for the separable bivariate recurrence rela-
tions. The key idea is to use separability to reduce the problem to univariate
recurrence relations. There are two key steps which we describe below.

Step 1. The first step is to reduce a separable bivariate recurrence relation to a
univariate one.

Definition 5 (From G to Uni(G)). Let G be a separable bivariate recurrence
relation taking the form (8). The univariate recurrence relation Uni(G) from G
is defined by eliminating any occurrence of n and replacing any occurrence of h
with 1.

Informally, Uni(G) is obtained from G by simply eliminating the roles of h, n. The
following example illustrates the situation for Coupon-Collector example.

Example 13. Consider G to be the recurrence relation (9) for Coupon-
Collector example. Then Uni(G) is as follows: T(n) = 1

n + T(n − 1) and
T(1) = 1. �
Step 2. The second step is to establish the relationship between TG and TUni(G),
which is handled by the following proposition, whose proof is an easy induction
on m.
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Proposition 6. For any separable bivariate recurrence relation G taking the
form (8), the solution TG is equal to (n,m) 
→ Subst(h)(n) · TUni(G)(m).

Description of the Algorithm. With Proposition 6, the algorithm for separable
bivariate recurrence relations is straightforward: simply compute Uni(G) for G
and then call the algorithms for univariate case presented in Sect. 4.1.

Analysis of Examples in Sect. 2.4. Our algorithm can decide the following
optimal bounds for the examples of Sect. 2.4.

1. For Example 6 we obtain an O(n·logm) bound, whereas the worst-case bound
is ∞.

2. For Example 7 we obtain an O(n · logm) bound for distributed setting
and O(m) bound for concurrent setting, whereas the worst-case bounds are
both ∞.

Note that for all our examples, m ≤ n, and thus we obtain O(n · log n) and O(n)
upper bounds for expected-runtime analysis, which are the asymptotically opti-
mal bounds. In all cases above, the worst-case analysis is completely ineffective
as the worst-case bounds are infinite. Moreover, consider Example 7, where the
optimal number of rounds is n (i.e., one process every round, which centralized
Round-Robin schemes can achieve). The randomized algorithm, with one shared
variable, is a decentralized algorithm that achieves O(n) expected number of
rounds (i.e., the optimal asymptotic expected-runtime complexity).

5 Experimental Results

We consider the classical examples illustrated in Sects. 2.2 and 2.4. In Table 2 for
experimental results we consider the following recurrence relations G: R.-Sear.
corresponds to the recurrence relation (2) for Example 1; Q.-Sort corresponds
to the recurrence relation (3) for Example 2; Q.-Select corresponds to the
recurrence relation (4) for Example 3; Diam. A (resp. Diam. B) corresponds
to the recurrence relation (5) (resp. the recurrence relation (6)) for Example 4;
Sort-Sel. corresponds to recurrence relation (7) for Example 5, where we use
the result from setting ε = 0.01 in Q.-Select; Coupon corresponds to the
recurrence relation (9) for Example 6; Res. A (resp. Res. B) corresponds to the
recurrence relation (10) (resp. the recurrence relation (11)) for Example 7.

In the table, f specifies the input asymptotic bound, ε and Dec is the
input which specifies either we use algorithm UniDec or the synthesis algorithm
UniSynth with the given ε value, and d gives the value synthesized w.r.t the given
ε (� for yes). We describe d100 below. We need approximation for constants such
as e and ln 2, and use the interval [2.7182, 2.7183] (resp., [0.6931, 0.6932]) for tight
approximation of e (resp., ln 2).
The Value d100. For our synthesis algorithm we obtain the value d. The opti-
mal value of the associated constant with the asymptotic bound, denoted d∗, is
defined as follows. For z ≥ 2, let dz := max

{
TG(n)−c
Subst(f)(n) | 2 ≤ n ≤ z

}
(c is from
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(1)). Then the sequence dz is increasing in z, and its limit is the optimal con-
stant, i.e., d∗ = limz→∞ dz. We consider d100 as a lower bound on d∗ to compare
against the value of d we synthesize. In other words, d100 is the minimal value
such that (12) holds for 1 ≤ n ≤ 100, whereas for d∗ it must hold for all n, and
hence d∗ ≥ d100. Our experimental results show that the d values we synthesize
for ε = 0.01 is quite close to the optimal value.

We performed our experiments on Intel(R) Core(TM) i7-4510U CPU,
2.00GHz, 8GB RAM. All numbers in Table 2 are over-approximated up to
10−3, and the running time of all experiments are less than 0.02 seconds. From
Table 2, we can see that optimal d are effectively over-approximated. For exam-
ple, for Quick-Sort (Eq. (3)) (i.e., Q.-Sort in the table), our algorithm detects
d = 4.051 and the optimal one lies somewhere in [3.172, 4.051]. The experimental
results show that we obtain the results extremely efficiently (less than 1/50-th
of a second).

Table 2. Experimental results where all running times (averaged over 5 runs) are less
than 0.02 s, between 0.01 and 0.02 in all cases.

Recur. Rel f ε,Dec d d100 Recur. Rel f ε,Dec d d100

R.-Sear. ln n UniDec � 15.129 Sort-Sel. n · ln n UniDec � 16.000

0.5 40.107 0.5 50.052

0.3 28.363 0.3 24.852

0.1 21.838 0.1 17.313

0.01 19.762 0.01 16.000

Q.-Sort n · ln n UniDec � 3.172 Coupon n · lnm UniDec � 0.910

0.5 9.001 0.5 3.001

0.3 6.143 0.3 1.858

0.1 4.556 0.1 1.223

0.01 4.051 0.01 1.021

Q.-Select n UniDec � 7.909 Res. A n · lnm UniDec � 2.472

0.5 17.001 0.5 6.437

0.3 11.851 0.3 4.312

0.1 9.001 0.1 3.132

0.01 8.091 0.01 2.756

Diam. A n · ln n UniDec � 4.525 Res. B m UniDec � 2.691

0.5 9.001 0.5 6.437

0.3 6.143 0.3 4.312

0.1 4.556 0.1 3.132

0.01 4.525 0.01 2.756

Diam. B n UniDec � 5.918 - - - - -
0.5 13.001 - -
0.3 9.001 - -
0.1 6.778 - -
0.01 6.071 - -
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6 Related Work

Automated program analysis is a very important problem with a long tra-
dition [45]. The following works consider various approaches for automated
worst-case bounds [5,26,28–32,34,35,43] for amortized analysis, and the SPEED
project [22–24] for non-linear bounds using abstract interpretation. All these
works focus on the worst-case analysis, and do not consider expected-runtime
analysis.

Our main contribution is automated analysis of recurrence relations.
Approaches for recurrence relations have also been considered in the literature.
Wegbreit [45] considered solving recurrence relations through either simple dif-
ference equations or generating functions. Zimmermann and Zimmermann [48]
considered solving recurrence relations by transforming them into difference
equations. Grobauer [21] considered generating recurrence relations from DML
for the worst-case analysis. Flajolet et al. [19] considered allocation problems.
Flajolet et al. [20] considered solving recurrence relations for randomization
of combinatorial structures (such as trees) through generating functions. The
COSTA project [2–4] transforms Java bytecode into recurrence relations and
solves them through ranking functions. Moreover, The PURRS tool [6] addresses
finite linear recurrences (with bounded summation), and some restricted lin-
ear infinite recurrence relations (with unbounded summation). Our approach is
quite different because we consider analyzing recurrence relations arising from
randomized algorithms and expected-runtime analysis by over-approximation of
unbounded summations through integrals, whereas previous approaches either
consider recurrence relations for worst-case bounds or combinatorial structures,
or use generating functions or difference equations to solve the recurrence rela-
tions.

For intraprocedural analysis ranking functions have been widely stud-
ied [7,8,15,17,41,42,44,47], which have then been extended to non-recursive
probabilistic programs as ranking supermartingales [9–11,13,14,18]. However,
existing related approaches can not derive optimal asymptotic expected-runtime
bounds (such as O(log n), O(n log n)). Proof rules have also been considered for
recursive (probabilistic) programs in [25,33,40], but these methods cannot be
automated and require manual proofs.

7 Conclusion

In this work we considered efficient algorithms for automated analysis of ran-
domized recurrences for logarithmic, linear, and almost-linear bounds. Our work
gives rise to a number of interesting questions. First, an interesting theoretical
direction of future work would be to consider more general randomized recur-
rence relations (such as with more than two variables, or interaction between the
variables). While the above problem is of theoretical interest, most interesting
examples are already captured in our class of randomized recurrence relations as
mentioned above. Another interesting practical direction would be automated
techniques to derive recurrence relations from randomized recursive programs.
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Abstract. Markov automata combine non-determinism, probabilistic
branching, and exponentially distributed delays. This compositional vari-
ant of continuous-time Markov decision processes is used in reliability
engineering, performance evaluation and stochastic scheduling. Their
verification so far focused on single objectives such as (timed) reach-
ability, and expected costs. In practice, often the objectives are mutually
dependent and the aim is to reveal trade-offs. We present algorithms
to analyze several objectives simultaneously and approximate Pareto
curves. This includes, e.g., several (timed) reachability objectives, or vari-
ous expected cost objectives. We also consider combinations thereof, such
as on-time-within-budget objectives—which policies guarantee reaching
a goal state within a deadline with at least probability p while keeping the
allowed average costs below a threshold? We adopt existing approaches
for classical Markov decision processes. The main challenge is to treat
policies exploiting state residence times, even for untimed objectives.
Experimental results show the feasibility and scalability of our approach.

1 Introduction

Markov automata [1,2] extend labeled transition systems with probabilistic
branching and exponentially distributed delays. They are a compositional vari-
ant of continuous-time Markov decision processes (CTMDPs), in a similar vein as
Segala’s probabilistic automata extend classical MDPs. Transitions of a Markov
automaton (MA) lead from states to probability distributions over states, and
are either labeled with actions (allowing for interaction) or real numbers (rates of
exponential distributions). MAs are used in reliability engineering [3], hardware
design [4], data-flow computation [5], dependability [6] and performance eval-
uation [7], as MAs are a natural semantic framework for modeling formalisms
such as AADL, dynamic fault trees, stochastic Petri nets, stochastic activity
networks, SADF etc. The verification of MAs so far focused on single objectives
such as reachability, timed reachability, expected costs, and long-run averages [8–
12]. These analyses cannot treat objectives that are mutually influencing each
other, like quickly reaching a target is more costly. The aim of this paper is to
analyze multiple objectives on MAs at once and to facilitate trade-off analysis
by approximating Pareto curves.

c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 140–159, 2017.
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Consider the stochastic job scheduling problem of [13]: perform n jobs with
exponential service times on k identical processors under a pre-emptive schedul-
ing policy. Once a job finishes, all k processors can be assigned any of the m
remaining jobs. When n−m jobs are finished, this yields
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Fig. 1. Approx. Pareto curve
for stochastic job scheduling.

The largest-expected-service-time-first-policy
is optimal to minimize the expected time to com-
plete all jobs [13]. It is unclear how to sched-
ule when imposing extra constraints, e.g., requir-
ing a high probability to finish a batch of c
jobs within a tight deadline (to accelerate their
post-processing), or having a low average wait-
ing time. These multiple objectives involve non-
trivial trade-offs. Our algorithms analyze such
trade-offs. Figure 1, e.g., shows the obtained
result for 12 jobs and 3 processors. It approx-
imates the set of points (p1, p2) for schedules
achieving that (1) the expected time to complete
all jobs is at most p1 and (2) the probability to finish half of the jobs within an
hour is at least p2.

This paper presents techniques to verify MAs with multiple objectives. We
consider multiple (un)timed reachability and expected reward objectives as well
as their combinations. Put shortly, we reduce all these problems to instances
of multi-objective verification problems on classical MDPs. For multi-objective
queries involving (combinations of) untimed reachability and expected reward
objectives, corresponding algorithms on the underlying MDP can be used. In
this case, the MDP is simply obtained by ignoring the timing information, see
Fig. 2(b). The crux is in relating MA schedulers—that can exploit state sojourn
times to optimize their decisions—to MDP schedulers. For multiple timed reach-
ability objectives, digitization [8,9] is employed to obtain an MDP, see Fig. 2(c).
The key is to mimic sojourn times by self-loops with appropriate probabilities.
This provides a sound arbitrary close approximation of the timed behavior and
also allows to combine timed reachability objectives with other types of objec-
tives. The main contribution is to show that digitization is sound for all possible
MA schedulers. This requires a new proof strategy as the existing ones are tai-
lored to optimizing a single objective. All proofs can be found in an extended
version [14]. Experiments on instances of four MA benchmarks show encourag-
ing results. Multiple untimed reachability and expected reward objectives can
be efficiently treated for models with millions of states. As for single objectives
[9], timed reachability is more expensive. Our implementation is competitive to
PRISM for multi-objective MDPs [15,16] and to IMCA [9] for single-objective MAs.

Related Work. Multi-objective decision making for MDPs with discounting and
long-run objectives has been well investigated; for a recent survey, see [17].
Etessami et al. [18] consider verifying finite MDPs with multiple ω-regular
objectives. Other multiple objectives include expected rewards under worst-case
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Fig. 2. MA M with underlying MDP MD and digitization Mδ.

reachability [19,20], quantiles and conditional probabilities [21], mean pay-offs
and stability [22], long-run objectives [23,24], total average discounted rewards
under PCTL [25], and stochastic shortest path objectives [26]. This has been
extended to MDPs with unknown cost function [27], infinite-state MDPs [28]
arising from two-player timed games in a stochastic environment, and stochastic
two-player games [29]. To the best of our knowledge, this is the first work on
multi-objective MDPs extended with random timing.

2 Preliminaries

Notations. The set of real numbers is denoted by R, and we write R>0 = {x ∈
R | x > 0} and R≥0 = R>0 ∪ {0}. For a finite set S, Dist(S) denotes the set of
probability distributions over S. μ ∈ Dist(S) is Dirac if μ(s) = 1 for some s ∈ S.

2.1 Models

Markov automata generalize both Markov decision processes (MDPs) and con-
tinuous time Markov chains (CTMCs). They are extended with rewards (or,
equivalently, costs) to allow modelling, e.g., energy consumption.

Definition 1 (Markov automaton). A Markov automaton (MA) is a tuple
M = (S,Act ,→, s0, {ρ1, . . . , ρ�}) where S is a finite set of states with initial
state s0 ∈ S, Act is a finite set of actions with ⊥ ∈ Act and Act ∩ R≥0 = ∅,
– → ⊆ S × (Act ∪· R>0)×Dist(S) is a set of transitions such that for all s ∈ S

there is at most one transition (s, λ, μ) ∈ → with λ ∈ R>0, and
– ρ1, . . . , ρ� with � ≥ 0 are reward functions ρi : S ∪· (S × Act) → R≥0.

In the remainder of the paper, let M = (S,Act ,→, s0, {ρ1, . . . , ρ�}) denote an
MA. A transition (s, γ, μ) ∈ →, denoted by s

γ−→ μ, is called probabilistic if γ ∈
Act and Markovian if γ ∈ R>0. In the latter case, γ is the rate of an exponential
distribution, modeling a time-delayed transition. Probabilistic transitions fire
instantaneously. The successor state is determined by μ, i.e., we move to s′ with
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probability μ(s′). Probabilistic (Markovian) states PS (MS) have an outgoing
probabilistic (Markovian) transition, respectively: PS = {s ∈ S | s

α−→ μ, α ∈
Act} and MS = {s ∈ S | s

λ−→ μ, λ ∈ R>0}. The exit rate E(s) of s ∈ MS is

uniquely given by s
E(s)−−−→ μ. The transition probabilities of M are given by the

function P : S ×Act ×S → [0, 1] satisfying P(s, α, s′) = μ(s′) if either s
α−→ μ or

(
α = ⊥ and s

E(s)−−−→ μ
)

and P(s, α, s′) = 0 in all other cases. The value P(s, α, s′)
corresponds to the probability to move from s with action α to s′. The enabled
actions at state s are given by Act(s) = {α ∈ Act | ∃s′ ∈ S : P(s, α, s′) > 0}.
Example 1. Figure 2(a) shows an MA M. We do not depict Dirac probability
distributions. Markovian transitions are illustrated by dashed arrows.

We assume action-deterministic MAs: |{μ ∈ Dist(S) | s
α−→ μ}| ≤ 1 holds for

all s ∈ S and α ∈ Act . Terminal states s /∈ PS ∪ MS are excluded by adding a
Markovian self-loop. As standard for MAs [1,2], we impose the maximal progress
assumption, i.e., probabilistic transitions take precedence over Markovian ones.
Thus, we remove transitions s

λ−→ μ for s ∈ PS and λ ∈ R>0 which yields
S = PS ∪· MS. MAs with Zeno behavior, where infinitely many actions can be
taken within finite time with non-zero probability, are unrealistic and considered
a modeling error.

A reward function ρi defines state rewards and action rewards. When sojourn-
ing in a state s for t time units, the state reward ρi(s) ·t is obtained. Upon taking
a transition s

γ−→ μ, we collect action reward ρi(s, γ) (if γ ∈ Act) or ρ(s,⊥) (if
γ ∈ R>0). For presentation purposes, in the remainder of this section, rewards
are omitted. Full definitions with rewards can be found in [14].

Definition 2 (Markov decision process [30]). A Markov decision process
(MDP) is a tuple D = (S,Act ,P, s0, ∅) with S, s0,Act as in Definition 1
and P : S × Act × S → [0, 1] are the transition probabilities satisfying∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act.

MDPs are MAs without Markovian states and thus without timing aspects, i.e.,
MDPs exhibit probabilistic branching and non-determinism. Zeno behavior is
not a concern, as we do not consider timing aspects. The underlying MDP of an
MA abstracts away from its timing:

Definition 3 (Underlying MDP). The MDP MD = (S,Act ,P, s0, ∅) is the
underlying MDP of MA M = (S,Act ,→, s0, ∅) with transition probabilities P.

The digitization Mδ of M w.r.t. some digitization constant δ ∈ R>0 is an MDP
which digitizes the time [8,9]. The main difference between MD and Mδ is that
the latter also introduces self-loops which describe the probability to stay in
a Markovian state for δ time units. More precisely, the outgoing transitions of
states s ∈ MS in Mδ represent that either (1) a Markovian transition in M was
taken within δ time units, or (2) no transition is taken within δ time units –
which is captured by taking the self-loop in Mδ. Counting the taken self-loops
at s ∈ MS allows to approximate the sojourn time in s.
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Definition 4 (Digitization of an MA). For MA M = (S,Act ,→, s0, ∅) with
transition probabilities P and digitization constant δ ∈ R>0, the digitization of
M w.r.t. δ is the MDP Mδ = (S,Act ,Pδ, s0, ∅) where

Pδ(s, α, s′) =

⎧
⎪⎨

⎪⎩

P(s,⊥, s′) · (1 − e−E(s)δ) if s ∈ MS, α = ⊥, s �= s′

P(s,⊥, s′) · (1 − e−E(s)δ) + e−E(s)δ if s ∈ MS, α = ⊥, s = s′

P(s, α, s′) otherwise.

Example 2. Figure 2 shows an MA M with its underlying MDP MD and a
digitization Mδ for unspecified δ ∈ R>0.

Paths and Schedulers. Paths represent runs of M starting in the initial state.
Let t(κ) = 0 and α(κ) = κ, if κ ∈ Act , and t(κ) = κ and α(κ) = ⊥, if κ ∈ R≥0.

Definition 5 (Infinite path). An infinite path of MA M with transition prob-
abilities P is an infinite sequence π = s0

κ0−→ s1
κ1−→ . . . of states s0, s1, · · · ∈ S

and stamps κ0, κ1, · · · ∈ Act ∪· R≥0 such that (1)
∑∞

i=0 t(κi) = ∞, and for any
i ≥ 0 it holds that (2) P(si, α(κi), si+1) > 0, (3) si ∈ PS implies κi ∈ Act, and
(4) si ∈ MS implies κi ∈ R≥0.

An infix si
κi−→ si+1 of a path π represents that we stay at si for t(κi) time

units and then perform action α(κi) and move to state si+1. Condition (1)
excludes Zeno paths, condition (2) ensures positive transition probabilities, and
conditions (3) and (4) assert that stamps κi match the transition type at si.

A finite path is a finite prefix π′ = s0
κ0−→ . . .

κn−1−−−→ sn of an infinite path. The
length of π′ is |π′| = n, its last state is last(π′) = sn, and the time duration is
T (π′) =

∑
0≤i<|π′| t(κi). We denote the sets of finite and infinite paths of M by

FPathsM and IPathsM, respectively. The superscript M is omitted if the model
is clear from the context. For a finite or infinite path π = s0

κ0−→ s1
κ1−→ . . . the

prefix of π of length n is denoted by pref (π, n). The ith state visited by π is
given by π[i] = si. The time-abstraction ta(π) of π removes all sojourn times and

is a path of the underlying MDP MD: ta(π) = s0
α(κ0)−−−→ s1

α(κ1)−−−→ . . . . Paths of
MD are also referred to as the time-abstract paths of M.

Definition 6 (Generic scheduler). A generic scheduler for M is a measur-
able function σ : FPaths ×Act → [0, 1] such that σ(π, ·) ∈ Dist(Act(last(π))) for
each π ∈ FPaths .

A scheduler σ for M resolves the non-determinism of M: σ(π, α) is the prob-
ability to take transition last(π) α−→ μ after observing the run π. The set of
such schedulers is denoted by GMM (GM if M is clear from the context).
σ ∈ GM is deterministic if the distribution σ(π, ·) is Dirac for any π. Time-
abstract schedulers behave independently of the time-stamps of the given path,
i.e., σ(π, α) = σ(π′, α) for all actions α and paths π, π′ with ta(π) = ta(π′). We
write TAM to denote the set of time-abstract schedulers of M. GM is the most
general scheduler class for MAs. For MDPs, the most general scheduler class is
TA.
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2.2 Objectives

An objective Oi is a representation of a quantitative property like the probability
to reach an error state, or the expected energy consumption. To express Boolean
properties (e.g., the probability to reach an error state is below pi), Oi is com-
bined with a threshold �i pi where �i ∈ {<,≤, >,≥} is a threshold relation and
pi ∈ R is a threshold value. Let M, σ |= Oi �i pi denote that the MA M under
scheduler σ ∈ GM satisfies the property Oi �i pi.

Reachability Objectives. I ⊆ R is a time interval if it is of the form I = [a, b]
or I = [a,∞), where 0 ≤ a < b. The set of paths reaching a set of goal states
G ⊆ S in time I is defined as

♦IG = {π = s0
κ0−→ s1

κ1−→ · · · ∈ IPaths | ∃n ≥ 0: π[n] ∈ G and
I ∩ [t, t + t(κn)] �= ∅ for t = T (pref (π, n))}.

We write ♦G instead of ♦[0,∞)G. A probability measure PrMσ on sets of infinite
paths is defined, which generalizes both the standard probability measure on
MDPs and on CTMCs. A formal definition is given in [14].

Definition 7 (Reachability objective). A reachability objective has the
form P(♦IG) for time interval I and goal states G. The objective is timed if
I �= [0,∞) and untimed otherwise. For MA M and scheduler σ ∈ GM, let
M, σ |= P(♦IG) �i pi iff PrMσ (♦IG) �i pi.

Expected Reward Objectives. Expected rewards ERM
σ (ρj , G) define the expected

amount of reward collected (w.r.t. ρj) until a goal state in G ⊆ S is reached.
This is a straightforward generalization of the notion on CTMCs and MDPs. A
formal definition is found in [14].

Definition 8 (Expected reward objective). An expected reward objec-
tive has the form E(#j,G) where j is the index of reward function ρj and
G ⊆ S. For MA M and scheduler σ ∈ GM, let M, σ |= E(#j,G) �i pi iff
ERM

σ (ρj , G) �i pi.

Expected time objectives E(T , G) are expected reward objectives that consider
the reward function ρT with ρT (s) = 1 if s ∈ MS and all other rewards are zero.

3 Multi-objective Model Checking

Standard model checking considers objectives individually. This approach is not
feasible when we are interested in multiple objectives that should be fulfilled by
the same scheduler, e.g., a scheduler that maximizes the expected profit might
violate certain safety constraints. Multi-objective model checking aims to analyze
multiple objectives at once and reveals possible trade-offs.
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Fig. 3. Markov automaton and achievable points.

Definition 9 (Satisfaction of multiple objectives). Let M be an MA and
σ ∈ GM. For objectives O = (O1, . . . ,Od) with threshold relations � = (�1

, . . . ,�d) ∈ {<,≤, >,≥}d and threshold values p = (p1, . . . , pd) ∈ R
d let

M, σ |= O � p ⇐⇒ M, σ |= Oi �i pi for all 1 ≤ i ≤ d.

Furthermore, let achieveM(O � p) ⇐⇒ ∃σ ∈ GM such that M, σ |= O � p.

If M, σ |= O � p, the point p ∈ R
d is achievable in M with scheduler σ. The

set of achievable points of M w.r.t. O and p is {p ∈ R
d | achieveM(O � p)}.

This definition is compatible with the notions on MDPs as given in [16,18].

Example 3. Figure 3(b) and (c) depict the set of achievable points of the MA M
from Fig. 3(a) w.r.t. relations � = (≥,≥) and objectives (P(♦{s2}),P(♦{s4}))
and (P(♦{s2}),P(♦[0,2]{s4})), respectively. Using the set of achievable points,
we can answer Pareto, numerical, and achievability queries as considered in [16],
e.g., the Pareto front lies on the border of the set.

Schedulers. For single-objective model checking on MAs, it suffices to consider
deterministic schedulers [31]. For untimed reachability and expected rewards
even time-abstract deterministic schedulers suffice [31]. Multi-objective model
checking on MDPs requires history-dependent, randomized schedulers [18]. On
MAs, schedulers may also employ timing information to make optimal choices,
even if only untimed objectives are considered.

Example 4. Consider the MA M in Fig. 3(a) with untimed objectives
P(♦{s2}) ≥ 0.5 and P(♦{s4}) ≥ 0.5. A simple graph argument yields that
both properties are only satisfied if action α is taken with probability exactly
a half. Thus, on the underlying MDP, no deterministic scheduler satisfies both
objectives. On the MA however, paths can be distinguished by their sojourn
time in s0. As the probability mass to stay in s0 for at most ln(2) is exactly 0.5,
a timed scheduler σ with σ(s0

t−→ s1, α) = 1 if t ≤ ln(2) and 0 otherwise does
satisfy both objectives.

Theorem 1. For some MA M with achieveM(O � p), no deterministic time-
abstract scheduler σ satisfies M, σ |= O � p.
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The Geometric Shape of the Achievable Points. Like for MDPs [18], the set of
achievable points of any combination of aforementioned objectives is convex.

Proposition 1. The set {p ∈ R
d | achieveM(O � p)} is convex.

For MDPs, the set of achievable points is a convex polytope where the vertices
can be realized by deterministic schedulers that use memory bounded by the
number of objectives. As there are finitely many such schedulers, the polytope
is finite [18], i.e., it can be represented by a finite number of vertices. This result
does not carry over to MAs. For example, the achievable points of the MA from
Fig. 3(a) together with the objectives (P(♦{s2}),P(♦[0,2]{s4})) form the infinite
polytope shown in Fig. 3(c). The insight here is that for any sojourn time t ≤ 2
in s0, the timing information is relevant for optimal schedulers: The shorter the
sojourn time in s0, the higher the probability to reach s4 within the time bound.

Theorem 2. For some MA M and objectives O, the polytope {p ∈ R
d |

achieveM(O � p)} is not finite.

As infinite convex polytopes cannot be represented by a finite number of vertices,
any method extending the approach of [16] – which computes these vertices –
can only approximate the set of achievable points.

Problem Statement. For an MA and objectives with threshold relations, con-
struct arbitrarily tight over- and under-approximations of the achievable points.

4 Analysis of Markov Automata with Multiple Objectives

The state-of-the-art in single-objective model checking of MA is to reduce the
MA to an MDP, cf. [8–10], for which efficient algorithms exist. We aim to lift
this approach to multi-objective model checking. Assume MA M and objectives
O with threshold relations �. We discuss how the set of achievable points of
M relates to the set of achievable points of an MDP. The key challenge is to
deal with timing information—even for untimed objectives—and to consider
schedulers beyond those optimizing single objectives. We obtain:

– For untimed reachability and expected reward objectives, the achievable
points of M equal those of its underlying MDP, cf. Theorems 3 and 4.

– For timed reachability objectives, the set of achievable points of a digitized
MDP Mδ provides a sound approximation of the achievable points of M, cf.
Theorem 5. Corollary 1 gives the precision of the approximation.

4.1 Untimed Reachability Objectives

Although timing information is essential for deterministic schedulers, cf. Theo-
rem 1, timing information does not strengthen randomized schedulers:

Theorem 3. For MA M and untimed reachability objectives O it holds that
achieveM(O � p) ⇐⇒ achieveMD (O � p).
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The main idea for proving Theorem 3 is to construct for scheduler σ ∈ GMM

a time-abstract scheduler ta(σ) ∈ TAMD such that they both induce the
same untimed reachability probabilities. To this end, we discuss the connection
between probabilities of paths of MA M and paths of MDP MD.

Definition 10 (Induced paths of a time-abstract path). The set of
induced paths on MA M of a path π̂ of MD is given by

〈π̂〉 = ta−1(π̂) = {π ∈ FPathsM ∪ IPathsM | ta(π) = π̂}.

The set 〈π̂〉 contains all paths of M where replacing sojourn times by ⊥ yields π̂.
For σ ∈ GM, the probability distribution σ(π, ·) ∈ Dist(Act) might depend on
the sojourn times of the path π. The time-abstract scheduler ta(σ) weights the
distribution σ(π, ·) with the probability masses of the paths π ∈ 〈π̂〉.
Definition 11 (Time-abstraction of a scheduler). The time-abstraction of
σ ∈ GMM is defined as ta(σ) ∈ TAMD such that for any π̂ ∈ FPathsMD

ta(σ)(π̂, α) =
∫

π∈〈π̂〉
σ(π, α) dPrMσ (π | 〈π̂〉).

The term PrMσ (π | 〈π̂〉) represents the probability for a path in 〈π̂〉 to have
sojourn times as given by π. The value ta(σ)(π̂, α) coincides with the probability
that σ picks action α, given that the time-abstract path π̂ was observed.

Example 5. Consider the MA M in Fig. 2(a) and the scheduler σ choosing α at
state s3 iff the sojourn time at s0 is at most one. Then ta(σ)(s0

⊥−→ s3, α) =
1 − e−E(s0), the probability that s0 is left within one time unit. For π̄ = s0

⊥−→
s3

α−→ s6 we have

PrMσ (♦{s6}) = PrMσ (〈π̄〉) = 1 − e−E(s0) = PrMD
ta(σ)(π̄) = PrMD

ta(σ)(♦{s6}).

In the example, the considered scheduler and its time-abstraction induce the
same untimed reachability probabilities. We generalize this observation.

Lemma 1. For any π̂ ∈ FPathsMD we have PrMσ (〈π̂〉) = PrMD
ta(σ)(π̂).

The result is lifted to untimed reachability probabilities.

Proposition 2. For any G ⊆ S it holds that PrMσ (♦G) = PrMD
ta(σ)(♦G).

As the definition of ta(σ) is independent of the considered set of goal states
G ⊆ S, Proposition 2 can be lifted to multiple untimed reachability objectives.

Proof of Theorem 3 (sketch). By applying Proposition 2, we can show that
M, σ |= O � p ⇐⇒ MD, ta(σ) |= O � p for any scheduler σ ∈ GMM

and untimed reachability objectives O = (P(♦G1), . . . ,P(♦Gd)) with thresholds
� p. Theorem 3 is a direct consequence of this.
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4.2 Expected Reward Objectives

The results for expected reward objectives are similar to untimed reachability
objectives: An analysis of the underlying MDP suffices. We show the following
extension of Theorem 3 to expected reward objectives.

Theorem 4. For MA M and untimed reachability and expected reward objec-
tives O: achieveM(O � p) ⇐⇒ achieveMD (O � p).

To prove this, we show that a scheduler σ ∈ GMM and its time-abstraction
ta(σ) ∈ TA induce the same expected rewards on M and MD, respectively.
Theorem 4 follows then analogously to Theorem 3.

Proposition 3. Let ρ be some reward function of M and let ρD be its counter-
part for MD. For G ⊆ S we have ERM

σ (ρ,G) = ERMD
ta(σ)(ρ

D, G).

Notice that ρD encodes the expected reward of M obtained in a state s by
assuming the sojourn time to be the expected sojourn time 1/E(s). Although the
claim is similar to Proposition 2, its proof cannot be adapted straightforwardly.
In particular, the analogon to Lemma 1 does not hold: The expected reward
collected along a time-abstract path π̂ ∈ FPathsMD does in general not coincide
for M and MD.

Example 6. We consider standard notations for rewards as detailed in [14]. Let
M be the MA with underlying MDP MD as shown in Fig. 2. Let ρ(s0) = 1 and
zero otherwise. Reconsider the scheduler σ from Example 5. Let π̂α = s0

⊥−→
s3

α−→ s6. The probability PrMσ ({s0 t−→ s3
α−→ s6 ∈ 〈π̂α〉 | t > 1}) is zero since

σ chooses β on such paths. For the remaining paths in 〈π̂α〉, action α is chosen
with probability one. The expected reward in M along π̂α is:

∫

π∈〈π̂α〉
rewM(ρ, π) dPrMσ (π) =

∫ 1

0

ρ(s0) · t · E(s0) · e−E(s0)t dt = 1 − 2e−1.

The expected reward in MD along π̂α differs as

rewMD (ρD, π̂α) · PrMD
ta(σ)(π̂α) = ρD(s0,⊥) · ta(σ)(s0

⊥−→ s3, α) = 1 − e−1.

The intuition is as follows: If path s0
t−→ s3

α−→ s6 of M under σ occurs, we have
t ≤ 1 since σ chose α. Hence, the reward collected from paths in 〈π̂α〉 is at most
1 · ρ(s0) = 1. There is thus a dependency between the choice of the scheduler
at s3 and the collected reward at s0. This dependency is absent in MD as the
reward at a state is independent of the subsequent performed actions.

Let π̂β = s0
⊥−→ s3

β−→ s4. The expected reward along π̂β is 2e−1 for M and
e−1 for MD. As the rewards for π̂α and π̂β sum up to one in both M and MD,
the expected reward along all paths of length two coincides for M and MD.

This observation can be generalized to arbitrary MA and paths of arbitrary
length.
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Proof of Proposition 3 (sketch). For every n ≥ 0, the expected reward collected
along paths of length at most n coincides for M under σ and MD under ta(σ).
The proposition follows by letting n approach infinity.

Thus, queries on MA with mixtures of untimed reachability and expected
reward objectives can be analyzed on the underlying MDP MD.

4.3 Timed Reachability Objectives

Timed reachability objectives cannot be analyzed on MD as it abstracts away
from sojourn times. We lift the digitization approach for single-objective timed
reachability [8,9] to multiple objectives. Instead of abstracting timing informa-
tion, it is digitized. Let Mδ denote the digitization of M for arbitrary digitization
constant δ ∈ R>0, see Definition 4. A time interval I ⊆ R≥0 of the form [a,∞) or
[a, b] with dia := a/δ ∈ N and dib := b/δ ∈ N is called well-formed. For the remain-
der, we only consider well-formed intervals, ensured by an appropriate digitiza-
tion constant. An interval for time-bounds I is transformed to digitization step
bounds di(I) ⊆ N. Let a = inf I, we set di(I) = {t/δ ∈ N | t ∈ I} \ {0 | a > 0}.

We first relate paths in M to paths in its digitization.

Definition 12 (Digitization of a path). The digitization di(π) of path π =
s0

κ0−→ s1
κ1−→ . . . in M is the path in Mδ given by

di(π) =
(
s0

α(κ0)−−−→)m0
s0

α(κ0)−−−→ (
s1

α(κ1)−−−→)m1
s1

α(κ1)−−−→ . . .

where mi = max{m ∈ N | mδ ≤ t(κi)} for each i ≥ 0.

Example 7. For the path π = s0
1.1−−→ s3

β−→ s4
η−→ s5

0.3−−→ s4 of the MA M in
Fig. 2(a) and δ = 0.4, we get di(π) = s0

⊥−→ s0
⊥−→ s0

⊥−→ s3
β−→ s4

η−→ s5
⊥−→ s4.

The mi in the definition above represent a digitization of the sojourn times t(κi)
such that miδ ≤ t(κi) < (mi+1)δ. These digitized times are incorporated into
the digitization of a path by taking the self-loop at state si ∈ MS mi times.
We also refer to the paths of Mδ as digital paths (of M). The number |π̄|ds
of digitization steps of a digital path π̄ is the number of transitions emerging
from Markovian states, i.e., |π̄|ds = |{i < |π̄| | π̄[i] ∈ MS}|. One digitization step
represents the elapse of at most δ time units—either by staying at some s ∈ MS
for δ time or by leaving s within δ time. The number |di(π)|ds multiplied with
δ yields an estimate for the duration T (π). A digital path π̄ can be interpreted
as representation of the set of paths of M whose digitization is π̄.

Definition 13 (Induced paths of a digital path). The set of induced paths
of a (finite or infinite) digital path π̄ of Mδ is

[π̄] = di−1(π̄) = {π ∈ FPathsM ∪ IPathsM | di(π) = π̄}.
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For sets of digital paths Π we define the induced paths [Π] =
⋃

π̄∈Π [π̄]. To
relate timed reachability probabilities for M under scheduler σ ∈ GMM with
ds-bounded reachability probabilities for Mδ, relating σ to a scheduler for Mδ

is necessary.

Definition 14 (Digitization of a scheduler). The digitization of σ ∈ GMM

is given by di(σ) ∈ TAMδ such that for any π̄ ∈ FPathsMδ with last(π̄) ∈ PS

di(σ)(π̄, α) =
∫

π∈[π̄]

σ(π, α) dPrMσ (π | [π̄]).

The digitization di(σ) is similar to the time-abstraction ta(σ) as both schedulers
get a path with restricted timing information as input and mimic the choice of
σ. However, while ta(σ) receives no information regarding sojourn times, di(σ)
receives the digital estimate. Intuitively, di(σ)(π̄, α) considers σ(π, α) for each
π ∈ [π̄], weighted with the probability that the sojourn times of a path in [π̄]
are as given by π. The restriction last(π̄) ∈ PS asserts that π̄ does not end with
a self-loop on a Markovian state, implying [π̄] �= ∅.
Example 8. Let MA M in Fig. 2(a) and δ = 0.4. Again, σ ∈ GMM chooses α
at state s3 iff the sojourn time at s0 is at most one. Consider the digital paths
π̄m = (s0

⊥−→)ms0
⊥−→ s3. For π ∈ [π̄1] = {s0 t−→ s3 | 0.4 ≤ t < 0.8} we have

σ(π, α) = 1. It follows di(σ)(π1, α) = 1. For π ∈ [π̄2] = {s0 t−→ s3 | 0.8 ≤ t < 1.2}
it is unclear whether σ chooses α or β. Hence, di(σ) randomly guesses:

di(σ)(π̄2, α) =
∫

π∈[π̄2]

σ(π, α) dPrMσ (π | [π̄2]) =

∫ 1.0

0.8
E(s0)e−E(s0)t dt

∫ 1.2

0.8
E(s0)e−E(s0)t dt

≈ 0.55.

On Mδ we consider ds-bounded reachability instead of timed reachability.

Definition 15 (ds-bounded reachability). The set of infinite digital paths
that reach G ⊆ S within the interval J ⊆ N of consecutive natural numbers is

♦J
dsG = {π̄ ∈ IPathsMδ | ∃n ≥ 0: π̄[n] ∈ G and |pref (π̄, n)|ds ∈ J}.

The timed reachability probabilities for M are estimated by ds-bounded reacha-
bility probabilities for Mδ. The induced ds-bounded reachability probability for
M (under σ) coincides with ds-bounded reachability probability on Mδ (under
di(σ)).

Proposition 4. Let M be an MA with G ⊆ S, σ ∈ GM, and digitization Mδ.
Further, let J ⊆ N be a set of consecutive natural numbers. It holds that

PrMσ ([♦J
dsG]) = PrMδ

di(σ)(♦
J
dsG).

Thus, induced ds-bounded reachability on MAs can be computed on their dig-
itization. Next, we relate ds-bounded and timed reachability on MAs, i.e., we
quantify the maximum difference between time-bounded and ds-bounded reach-
ability probabilities.
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Example 9. Let M be the MA given in Fig. 4(a). We consider the well-formed
time interval I = [0, 5δ], yielding digitization step bounds di(I) = {0, . . . , 5}. The
digitization constant δ ∈ R>0 remains unspecified in this example. Figure 4(b)
illustrates paths π1, π2, and π3 of M. We depict sojourn times by arrow length.
A black dot indicates that the path stays at the current state for a multiple of
δ time units. All depicted paths reach G = {s3} within 5δ time units. However,
the digitizations of π1, π2, and π3 reach G within 5, 4, and 6 digitization steps,
respectively. This yields

π1, π2 ∈ ♦IG ∩ [♦di(I)
ds G] and π3 ∈ ♦IG \ [♦di(I)

ds G].

s0

s1

2

0.5

0.5

1

(a) MA M.

|
0

|
1

|
2

|
3

|
4

|
5

|
6 time

s0 s0 s1 s1π1: · · ·

s0 s0 s1 s1π2: · · ·

s0 s0 s0 s0 s0 s1 s1π3: · · ·

(b) Sample paths of M.

Fig. 4. MA M and illustration of paths of M (cf. Example 9).

Let λ = max{E(s) | s ∈ MS} be the maximum exit rate of M. For a �= 0
define

ε↓([a, b]) = ε↓([a,∞)) = 1 − (1 + λδ)dia · e−λa, ε↓([0, b)) = ε↓([0,∞]) = 0,

ε↑([a, b]) = 1 − (1 + λδ)dib · e−λb

︸ ︷︷ ︸
=ε↑([0,b])

+ 1 − e−λδ

︸ ︷︷ ︸
=ε↑([a,∞))

, and ε↑([0,∞)) = 0.

ε↓(I) and ε↑(I) approach 0 for small digitization constants δ ∈ R>0.

Proposition 5. For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization
constant δ ∈ R>0 and time interval I

PrMσ (♦IG) ∈ PrMσ ([♦I
dsG]) +

[
−ε↓(I), ε↑(I)

]

Proof (Sketch). The sets ♦IG and [♦di(I)
ds G] are illustrated in Fig. 5. We have

Prσ(♦IG) = Prσ([♦di(I)
ds G]) + Prσ(♦IG \ [♦di(I)

ds G]) − Prσ([♦di(I)
ds G] \ ♦IG).

One then shows

PrMσ (♦IG \ [♦di(I)
ds G]) ≤ ε↑(I) and PrMσ ([♦di(I)

ds G] \ ♦IG) ≤ ε↓(I).
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♦IG \ [♦di(I)
ds G] [♦di(I)

ds G] \ ♦IG♦IG ∩ [♦di(I)
ds G]

[♦di(I)
ds G]♦IG

Fig. 5. Illustration of the sets ♦IG and [♦di(I)
ds G].

To this end, show for any k ∈ N that 1− (1 + λδ)k · e−λδk is an upper bound for
the probability of paths that induce more then k digitization steps within the
first kδ time units. Then, this probability can be related to the probability of
paths in ♦IG \ [♦di(I)

ds G] and [♦di(I)
ds G] \ ♦IG, respectively.

From Propositions 4 and 5, we immediately have Corollary 1, which ensures
that the value PrMσ (♦IG) can be approximated with arbitrary precision by com-
puting PrMδ

di(σ)(♦
di(I)
ds G) for a sufficiently small δ.

Corollary 1. For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization
constant δ ∈ R>0 and time interval I

PrMσ (♦IG) ∈ PrMδ

di(σ)(♦
di(I)
ds G) +

[
−ε↓(I), ε↑(I)

]

This generalizes existing results [8,9] that only consider schedulers which max-
imize (or minimize) the corresponding probabilities. More details are given in
[14].

Next, we lift Corollary 1 to multiple objectives O = (O1, . . . ,Od). We define
the satisfaction of a timed reachability objective P(♦IG) for the digitization Mδ

as Mδ, σ |= P(♦IG) �i pi iff PrMδ
σ (♦di(I)

ds G) �i pi. This allows us to consider
notations like achieveMδ(O � p), where O contains one or more timed reachabil-
ity objectives. For a point p = (p1, . . . , pd) ∈ R

d we consider the hyperrectangle

ε(O,p) =
dą

i=1

[
pi − ε↓i , pi + ε↑i

]
⊆ R

d, where ε↑i =

{
ε↑(I) if Oi = P(♦IG)
0 if Oi = E(#j,G)

and ε↓i is defined similarly. The next example shows how the set of achievable
points of M can be approximated using achievable points of Mδ.

Example 10. Let O = (P(♦I1G1),P(♦I2G2)) be two timed reachability objectives
for an MA M with digitization Mδ such that ε↓1 = 0.13, ε↑1 = 0.22, ε↓2 = 0.07,
and ε↑2 = 0.15. The blue rectangle in Fig. 6(a) illustrates the set ε(O,p) for the
point p = (0.4, 0.3). Assume achieveMδ(O � p) holds for threshold relations
� = {≥,≥}, i.e., p is achievable for the digitization Mδ. From Corollary 1, we
infer that ε(O,p) contains at least one point p′ that is achievable for M. Hence,
the bottom left corner point of the rectangle is achievable for M. This holds for
any rectangle ε(O,q) with q ∈ A, where A is the set of achievable points of Mδ

denoted by the gray area1 in Fig. 6(b). It follows that any point in A− (depicted

1 In the figure, A− partly overlaps A, i.e., the green area also belongs to A.
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by the green area) is achievable for M. On the other hand, an achievable point
of M has to be contained in a set ε(O,q) for at least one q ∈ A. The red
area depicts the points R

d \ A+ for which this is not the case, i.e., points that
are not achievable for M. The digitization constant δ controls the accuracy of
the resulting approximation. Figure 6(c) depicts a possible result when a smaller
digitization constant δ̃ < δ is considered.

p

ε↓
1 ε↑

1

ε↓
2

ε↑
2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(a) The set ε(O,p).

p

A− A

R
2 \ A+

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(b) Coarse approximation.

p̃

Ã− Ã

R
2 \ Ã+

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(c) Refined approximation.

Fig. 6. Approximation of achievable points. (Color figure online)

The observations from the example above are formalized in the following
theorem. The theorem also covers unbounded reachability objectives by consid-
ering the time interval I = [0,∞). For expected reward objectives of the form
E(#j,G) it can be shown that ERM

σ (ρj , G) = ERMδ

di(σ)(ρ
δ
j , G). This claim is sim-

ilar to Proposition 3 and can be shown analogously. This enables multi-objective
model checking of MAs with timed reachability objectives.

Theorem 5. Let M be an MA with digitization Mδ. Furthermore, let O be
(un)timed reachability or expected reward objectives with threshold relations �
and |O| = d. It holds that A− ⊆ {p ∈ R

d | achieveM(O � p)} ⊆ A+ with:

A− = {p′ ∈ R
d | ∀p ∈ R

d : p′ ∈ ε(O,p) implies achieveMδ(O � p)} and

A+ = {p′ ∈ R
d | ∃p ∈ R

d : p′ ∈ ε(O,p) and achieveMδ(O � p)}.

5 Experimental Evaluation

Implementation. We implemented multi-objective model checking of MAs into
Storm [32]. The input model is given in the PRISM language2 and translated
into a sparse representation. For MA M, the implementation performs a multi-
objective analysis on the underlying MDP MD or a digitization Mδ and infers
(an approximation of) the achievable points of M by exploiting the results from
Sect. 4. For computing the achievable points of MD and Mδ, we apply the
approach of [16]. It repeatedly checks weighted combinations of the objectives

2 We slightly extend the PRISM language in order to describe MAs.
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(by means of value iteration [30] – a standard technique in single-objective MDP
model checking) to refine an approximation of the set of achievable points. This
procedure is extended as follows. Full details can be found in [33].

– We support ds-bounded reachability objectives by combining the approach
of [16] (which supports step-bounded reachability on MDPs) with techniques
from single-objective MA analysis [8]. Roughly, we reduce ds-bounded reach-
ability to untimed reachability by storing the digitized time-epoch (i.e., the
current number of digitization steps) into the state space. A blow-up of the
resulting model is avoided by considering each time-epoch separately.

– In contrast to [16], we allow a simultaneous analysis of minimizing and maxi-
mizing expected reward objectives. This is achieved by performing additional
preprocessing steps that comprise an analysis of end components.

The source code including all material to reproduce the experiments is available
at http://www.stormchecker.org/benchmarks.html.

Setup. Our implementation uses a single core (2 GHz) of a 48-core HP BL685C
G7 limited to 20 GB RAM. The timeout (TO) is two hours. For a model, a set
of objectives, and a precision η ∈ R>0, we measure the time to compute an η-
approximation3 of the set of achievable points. This set-up coincides with Pareto
queries as discussed in [16]. The digitization constant δ is chosen heuristically
such that recalculations with smaller constants δ̃ < δ are avoided. We set the
precision for value-iteration to ε = 10−6. We use classical value iteration; the
use of improved algorithms [34] is left for future work.

Results for MAs. We consider four case studies: (i) a job scheduler [13], see
Sect. 1; (ii) a polling system [35,36] containing a server processing jobs that
arrive at two stations; (iii) a video streaming client buffering received packages
and deciding when to start playback; and (iv) a randomized mutual exclusion
algorithm [36], a variant of [37] with a process-dependent random delay in the
critical section. Details on the benchmarks and the objectives are given in [14].

Table 1 lists results. For each instance we give the defining constants, the
number of states of the MA and the used η-approximation. A multi-objective
query is given by the triple (l,m, n) indicating l untimed, m expected reward,
and n timed objectives. For each MA and query we depict the total run-time
of our implementation (time) and the number of vertices of the obtained under-
approximation (pts).

Queries analyzed on the underlying MDP are solved efficiently on large mod-
els with up to millions of states. For timed objectives the run-times increase
drastically due to the costly analysis of digitized reachability objectives on the
digitization, cf. [9]. Queries with up to four objectives can be dealt with within
the time limit. Furthermore, for an approximation one order of magnitude better,
the number of vertices of the result increases approximately by a factor three.

3 An η-approximation of A ⊆ R
d is given by A−, A+ ⊆ R

d with A− ⊆ A ⊆ A+ and
for all p ∈ A+ exists a q ∈ A− such that the distance between p and q is at most η.

http://www.stormchecker.org/benchmarks.html
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Table 1. Experimental results for multi-objective MAs.

benchmark (♦,ER, ♦I) (♦,ER, ♦I) (♦,ER, ♦I) (♦,ER, ♦I)
N(-K) #states log10(η) pts time pts time pts time pts time

job scheduling (0, 3, 0) (0, 1, 1) (1, 3, 0) (1, 1, 2)

10-2 12 554
−2 9 1.8 9 41 15 435 16 2 322
−3 44 128 21 834 TO TO

12-3 116 814
−2 11 42 9 798 21 2 026 TO
−3 53 323 TO TO TO

17-2 4.6 · 106 −2 14 1 040 TO 22 4 936 TO
−3 58 2 692 TO TO TO

polling (0, 2, 0) (0, 4, 0) (0, 0, 2) (0, 2, 2)

3-2 1 020
−2 4 0.3 5 0.6 3 130 12 669
−3 4 0.3 5 0.8 7 3 030 TO

3-3 9 858
−2 5 1.3 8 23 6 2 530 TO
−3 6 2.0 19 3 199 TO TO

4-4 827 735
−2 10 963 20 4 349 TO TO
−3 11 1 509 TO TO TO

stream (0, 2, 0) (0, 1, 1) (0, 0, 2) (0, 2, 1)

30 1 426
−2 20 0.9 16 90 16 55 26 268
−3 51 8.8 46 2 686 38 1 341 TO

250 94 376
−2 31 50 15 5 830 16 4 050 TO
−3 90 184 TO TO TO

1000 1.5 · 106 −2 41 3 765 TO TO TO
−3 TO TO TO TO

mutex (0, 0, 3) (0, 0, 3)

2 13 476
−2 16 351 13 1 166
−3 13 2 739 TO

3 38 453 −2 15 2 333 TO

In addition, a lower digitization constant has then to be considered which often
leads to timeouts in experiments with timed objectives.

Comparison with PRISM [15] and IMCA [9]. We compared the performance of
our implementation with both PRISM and IMCA. Verification times are summa-
rized in Fig. 7: On points above the diagonal, our implementation is faster. For
the comparison with PRISM (no MAs), we considered the multi-objective MDP
benchmarks from [16,19]. Both implementations are based on [16]. For the com-
parison with IMCA (no multi-objective queries) we used the benchmarks from
Table 1, with just a single objective. We observe that our implementation is
competitive. Details are given in [14].
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Fig. 7. Verification times (in seconds) of our implementation and other tools.
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6 Conclusion

We considered multi-objective verification of Markov automata, including in
particular timed reachability objectives. The next step is to apply our algorithms
to the manifold applications of MA, such as generalized stochastic Petri nets to
enrich the analysis possibilities of such nets.
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Abstract. Probabilistic model checking provides formal guarantees on
quantitative properties such as reliability, performance or risk, so the
accuracy of the numerical results that it returns is critical. However,
recent results have shown that implementations of value iteration, a
widely used iterative numerical method for computing reachability prob-
abilities, can return results that are incorrect by several orders of magni-
tude. To remedy this, interval iteration, which instead converges simul-
taneously from both above and below, has been proposed. In this paper,
we present interval iteration techniques for computing expected accumu-
lated weights (or costs), a considerably broader class of properties. This
relies on an efficient, mainly graph-based method to determine lower and
upper bounds for extremal expected accumulated weights. To offset the
additional effort of dual convergence, we also propose topological inter-
val iteration, which increases efficiency using a model decomposition into
strongly connected components. Finally, we present a detailed exper-
imental evaluation, which highlights inaccuracies in standard bench-
marks, rather than just artificial examples, and illustrates the feasibility
of our techniques.

1 Introduction

Over the past twenty years, many algorithms, logics and tools have been devel-
oped for the formal analysis of probabilistic systems. They combine techniques
developed by the model-checking community with methods for the analysis of
stochastic models (see, e.g., [1,8,20]). A widely used model is Markov decision
processes (MDPs), which represent probabilistic systems with nondeterminism,
needed to model, for example, concurrency, adversarial behaviour or control.
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Various model checking problems on MDPs are reducible to the task of com-
puting extremal (maximal or minimal) probabilities of reaching a goal state,
ranging over all schedulers [2,4,12,15]. Schedulers, also often called policies,
adversaries or strategies, represent the possible ways of resolving nondetermin-
ism in an MDP. So extremal probabilities correspond to a worst-case or best-case
analysis, for example, the maximal or minimal probability of a system failure.

Weighted MDPs, i.e., MDPs where rational weights are attached to the state-
action pairs, provide a versatile modelling formalism that allows reasoning about,
e.g., extremal values for the expected accumulation of weights until reaching a
goal state. These might represent worst-case or best-case scenarios for expected
costs (e.g., execution time, energy usage) or utility values. To compute schedulers
that maximize or minimize the expected accumulated weight, one can rely on
techniques that are known for stochastic shortest path problems [7,16].

The computation of extremal values for reachability probabilities or expected
accumulated weights until reaching a goal can be done using linear program-
ming techniques or iterative computation schemes. In the context of probabilis-
tic model checking, the latter are more common since they typically scale to the
analysis of larger systems. Common techniques for this are value iteration [6],
policy iteration [21] or mixtures thereof [29]. We focus here on value iteration
which relies on a fixed-point characterization e∗ = f(e∗) of the extremal proba-
bility or expectation vector e∗ based on the Bellman equation [6] and computes
an approximation thereof by successive application of the fixed-point operator f .

In practice, a stopping criterion is required to determine when this itera-
tive approximation process can be safely terminated. For discounted variants of
expected accumulated weights, convergence is guaranteed and the discount fac-
tor can be used to derive a safe stopping criterion ensuring that the computed
vector fn(z) is indeed an ε-approximation of the desired discounted expectation
vector e∗ for a given tolerance ε > 0. (Here, z stands for the starting vector.)
For the purposes of model checking, however, non-discounted variants are usu-
ally preferred, in order to compute meaningful values for properties such as
execution time or energy usage, or indeed reachability probabilities, where dis-
counting makes little sense. For the non-discounted case, with some appropriate
preprocessing and model assumptions, convergence of value iteration can still be
guaranteed as the fixed-point operator f can shown to be contracting [7,16], but
sound stopping criteria are more difficult.

To check termination of value iteration, most practical implementations sim-
ply terminate when the last two vectors fn−1(z) and fn(z) differ by at most ε
with respect to the supremum norm. This prevalent stopping criterion is cur-
rently realized in widely used probabilistic model checkers such as PRISM [25],
MRMC [23] and IscasMC [19], as well as in other implementations such as the
MDP Toolbox [10]. However, recent results from Haddad and Monmege [18] have
shown that the results obtained from value iteration for reachability probabili-
ties with this naive stopping criterion can be extremely inaccurate. On our tests
using a simple example from [18], all three of the above model checkers fail. On
a small MDP with 41 states (see [3] for details), MRMC returns 0 and PRISM
returns ∼0.1943 where the correct result should be 0.5.
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So, [18] proposes a refinement of value iteration for computing maximal or
minimal reachability probabilities, called interval iteration. After some graph-
based preprocessing to ensure convergence, it relies on the monotonicity of the
fixed-point operator f and carries out the iterative application of f to two start-
ing vectors x and y such that fn(x) � e∗ � fn(y) for all n. Here, x is a lower
bound for the required probability vector e∗ and y is an upper bound. Thus, if all
entries of the vector fn(y)−fn(x) are smaller than ε, then both fn(x) and fn(y)
are sound ε-approximations of z. [18] does not report on experimental studies or
weights. So, it leaves open whether interval iteration is feasible in practice and
yields a reasonable way to ensure the reliability of the model-checking results.

Contribution. Inspired by the work of Haddad and Monmege [18], we present
an interval-iteration approach for computing maximal expected accumulated
(non-discounted) weights in finite-state MDPs with a distinguished goal state
final .1 The weights can be negative or positive numbers. To ensure the existence
of a deterministic memoryless scheduler maximizing the expected accumulated
weights until reaching final , we assume that the MDP is contracting in the sense
that the goal state will almost surely be reached, no matter which scheduler
or which starting state is selected.2 While the null vector x = 0 and the vector
y = 1 where all components have value 1 obviously yield correct lower resp. upper
bounds for any probability vector, the main problem for adapting the interval-
iteration approach to maximal or minimal expected accumulated weights is to
provide efficient algorithms for the computation of lower and upper bounds. We
provide here two variants to compute lower and upper bounds that are based on
bounds for the recurrence times of states under memoryless schedulers.

After presenting the foundations of the interval-iteration approach for
expected accumulated weights (Sect. 3), we propose topological interval itera-
tion, which embeds the basic algorithm into a stratified approach that speeds up
the computation time by treating the strongly connected components separately
(Sect. 4). Sections 5 and 6 will report on experimental results carried out with
an implementation of the interval-iteration approaches of [18] for reachability
probabilities and our approach for maximal or minimal expectations applied to
MDPs with non-negative weights. Proofs omitted in this paper, as well as fur-
ther details on our experiments, can be found in the appendix of the extended
version [3], which is available together with our implementation at http://
wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/.

1 Analogous statements are obtained for minimal expected total weights by multiply-
ing all weights with −1, applying the techniques for maximal expected weights and
finally multiplying the result with −1.

2 Thanks to the transformations proposed in [16], this assumption is no restriction if
the weights are non-negative and the objective is to maximize the expected accumu-
lated weight. For reasoning about minimal expected accumulated weights in MDPs
with non-negative weights as well as for the general case, weaker assumptions are
also sufficient (see [7,16]). Interval iteration under such relaxed assumptions will be
addressed in our future work.

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/
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Related Work. Bell and Haverkort [5] reported on serious problems with
the precision of the implementations for computing steady-state probabilities
in continuous-time Markov chains. Wimmer et al. [31] revealed several prob-
lems with the implementations of model checking algorithms for Markov chains
and properties of probabilistic computation tree logic (PCTL). They identified
several sources of imprecise results, including numerical problems with floating-
point arithmetic and issues that are specific to symbolic BDD-based implemen-
tations, and presented ideas for how such problems can be avoided.

Although [31] also identifies the widely used termination criterion for itera-
tive computation schemes as a potential source of inaccuracy, they do not pro-
vide a solution for it. To the best of our knowledge, the paper by Haddad and
Monmege [18] is the first one which addresses the termination problem of iter-
ative computation schemes for MDPs. However, [18] only considers extremal
probabilities and does not report on experimental studies. Prior to this, Brázdil
et al. [9] presented an extension of bounded real-time dynamic programming [27],
which also yields interval bounds for extremal probabilities in MDPs. The tech-
niques were extended to handle arbitrary MDPs and full LTL model check-
ing, but again focused on probabilities, not weights. We are not aware of any
efficiently realizable safe termination conditions of value iteration proposed for
expected (non-discounted) accumulated weights. The technique proposed here
follows the interval-iteration approach of [18]. While – after some appropri-
ate preprocessing – [18] can deal with 0 and 1 as lower resp. upper bound for
the desired minimal or maximal probabilities, efficient computation schemes for
lower and upper bounds for minimal or maximal expected accumulated weights
are not obvious.

In fact, such bounds can also be interesting for different purposes. In the con-
text of planning, [27] presents an efficient algorithm to compute an upper bound
for the minimal expected accumulated weight until reaching a goal, which they
call Dijkstra Sweep for Monotone Pessimistic Initialization (DS-MPI). This app-
roach (which we consider in the experiments in Sect. 6) is designed for MDPs
where all weights are non-negative. As it relies on the idea to generate a memory-
less scheduler and an upper bound for its expected accumulated weight, there is
no straightforward adaption of the approach of [27] to compute an upper bound
for the maximal expected accumulated weight.

Lastly, computation of exact extremal reachability probabilities in MDPs was
also considered by Giro [17], where, by exploiting the special structure of the
linear programs that need to be solved for reachability probabilities, the use of
simplex or other generic exact linear program solvers is avoided.

2 Preliminaries

Throughout the paper, we assume some familiarity with basic concepts of
Markov decision processes (MDPs), see, e.g., [22,30]. We briefly explain our
notations.

A plain MDP is a tuple M = (S,Act , P ) where S is a finite state space,
Act a finite set of actions, and P : S × Act × S → Q ∩ [0, 1] a function such
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that
∑

t∈S P (s, α, t) ∈ {0, 1} for all state-action pairs (s, α) ∈ S ×Act . If s ∈ S,
α ∈ Act and T ⊆ S then P (s, α, T ) =

∑
t∈T P (s, α, t). We write Act(s) for the

set of actions α ∈ Act such that
∑

t∈S P (s, α, t) = 1. State s is called a trap state
if Act(s) is empty. A path in M is a sequence π = s0 α0 s1 α1 s2 α2 . . . that alter-
nates between states and actions such that αi ∈ Act(si) and P (si, αi, si+1) > 0
for all i and such that π is either finite and ends in a state or infinite. π is called
maximal if π is either infinite or finite and π’s last state is a trap state. A (deter-
ministic) scheduler S for M, also called policy or adversary, is a function that
assigns to each finite path π ending in a non-trap state s an action in Act(s). S
is called memoryless if S(π) = S(π′) whenever π and π′ end in the same state.
We write PrSM,s, or simply PrSs , to denote the standard probability measure on
maximal paths induced by S, starting from state s. The notations Prmax

s (ϕ)
and Prmin

s (ϕ) will be used for the extremal probabilities for the event ϕ when
ranging over all schedulers. We often will use the LTL-like temporal modalities
♦ (eventually), � (always), © (next) and U (until) to specify measurable sets
of maximal paths.

A weighted MDP, briefly called MDP, is a tuple M = (S,Act , P,final ,wgt)
where (S,Act , P ) is a plain MDP as above, final ∈ S a distinguished trap
state and wgt : S × Act → Q is a weight function that might have positive
and negative values. Throughout the paper, we suppose that M is contract-
ing in the sense that PrSs (♦final) = 1 for all states s ∈ S. Given a finite
path π = s0 α0 s1 α1 . . . αn−1 sn, the accumulated weight of π is wgt(π) =
wgt(s0, α0) + wgt(s1, α1) + . . . + wgt(sn−1, αn−1). We write final to denote
the function that assigns to each finite path ending in final its accumulated
weight. Given a scheduler S for M, let E

S
s ( final) denote the expectation of

final under S for starting state s. We consider the value iteration for comput-
ing ε-approximations for Emax

M,s( final), or briefly E
max
s ( final), which is defined

as maxS E
S
s ( final) where S ranges over all schedulers. As M is supposed to be

contracting, ES
s ( final) is the expected total weight from s under S and there is

a deterministic memoryless scheduler S with E
max
s ( final) = E

S
s ( final) [7,22].

3 Interval Iteration for Weighted MDPs

Throughout the paper, M = (S,Act , P,final ,wgt) is a weighted MDP as in
Sect. 2 satisfying PrSs (♦final) = 1 for all states s ∈ S and schedulers S, i.e., that
the MDP is contracting. We start in Sect. 3.1 with a brief summary of known
fixed-point characterizations of the vector with maximal expected accumulated
weights that yield the foundations for the standard value iteration. Sections 3.2
and 3.3 then present the details of the interval iteration and efficient computation
schemes for lower and upper bounds for the maximal expected accumulated
weights.

3.1 Value Iteration in Weighted MDPs

In what follows, we briefly recall known (and some simple) facts about the
foundations of the value iteration to compute maximal expected total weights
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in MDPs. Let f : R|S| → R
|S| denote the following function. Given a vector

z = (zs)s∈S in R
|S| then f(z) = (fs(z))s∈S where ffinal(z) = 0 and

fs(z) = max
{
wgt(s, α) +

∑
t∈S P (s, α, t) · zt : α ∈ Act(s)

}

for all states s ∈ S \ {final}. The functions fn : R|S| → R
|S| are defined induc-

tively by f0 = id, f1 = f and fn+1 = f ◦ fn for n ∈ N, n � 1. Let e∗ = (e∗
s)s∈S

denote the vector with the maximal expected total weights for all states, i.e.,
e∗
s = E

max
s ( final). For z = (zs)s∈S ∈ R

|S| and z′ = (z′
s)s∈S ∈ R

|S| we then
write z � z′ if zs � z′

s for all s ∈ S. Furthermore, ‖ · ‖ denotes the supremum
norm for vectors in R

S . That is, ‖z‖ = maxs∈S |zs|.
The series (fn(z))n∈N converges to its unique fixed point e∗ monotonically

increasing if z � e∗ ∧ z � f(z) and decreasing if z � e∗ ∧ z � f(z) (see
[3]). This provides the basis for linear programming approaches to compute the
exact values e∗

s and for the value iteration that successively generates the vec-
tors z, f(z), f2(z)f3(z), . . . and finally returns one of the vectors fn(z) as an
approximation of e∗. However, there are two problems:

(P1) How to find a starting vector z with z � e∗∧z � f(z) or z � e∗∧z � f(z)?
(P2) How to check whether ‖fn(z)−e∗‖ < ε, given a tolerance ε > 0, a starting

vector z from (P1) and the first n+1 vectors z, f(z), . . . , fn(z) of the value
iteration?

Problem (P1). Problem (P1) is specific to the case of maximal or minimal
expectations, as (after some preprocessing to ensure the uniqueness of the fixed
point) the corresponding fixed-point operator f for reachability probabilities
guarantees that 0 � z � 1 implies 0 � f(z) � 1. For certain models with
syntactic restrictions, problem (P1) can be answered directly as the null vector
z = 0 is known to satisfy the conditions z � e∗ ∧ z � f(z) or z � e∗ ∧ z � f(z)
for monotonic convergence. Prominent examples are positive bounded MDPs
where each state s has an action α with wgt(s, α) � 0, or MDPs where all
weights are non-positive. In both cases, monotonic convergence of (fn(0))n∈N

can be guaranteed even for countable state spaces (see [30]). However, for MDPs
with negative and positive weights, it might be hard to find starting vectors
z that ensure monotone convergence, which requires to determine lower and
upper bounds for the maximal expected accumulated weight. To the best of our
knowledge, even for finite-state positive bounded MDPs, techniques to determine
an upper bound have not been addressed in the literature. Besides the algorithm
for lower bounds for MDPs with non-positive weights proposed in [27], we are
not aware of any technique proposed in the literature to find an appropriate
starting vector for the lower value iteration in weighted MDPs.

Example 3.1. To illustrate that there might be vectors z that do not lead to
monotonic convergence, e.g., with zs < e∗

s < fs(z) or e∗
s < zs < fs(z), even

when all weights are non-negative, consider the MDP M in Fig. 1 with three
states s1, s2 and s3 = final and P (s1, α, s2) = P (s1, β, s3) = 1, P (s2, β, s1) =
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s1s2 s3

α
6 β 1

β

1/2

1/2

Fig. 1. Markov decision process of Example 3.1. Only non-zero probabilities and
weights (in bold) are shown.

P (s2, β, s3) = 1/2, wgt(s1, α) = 6, wgt(s1, β) = 1, while P (·) = 0 and wgt(·) = 0
in all remaining cases. Then, e∗ = (12, 6, 0). For the starting vector z = (0, 9, 0)
we have f(z) = (15, 0, 0), in which case zs = 0 < e∗

s = 12 < fs(z) = 15 for
s = s1. Monotonic convergence can not even be guaranteed if the starting vector
z satisfies z � e∗ or z � e∗ as, for instance, z = (14, 10, 0) � (12, 6, 0) = e∗ but
f(z) = (16, 7, 0), i.e., e∗

s = 12 < zs = 14 < fs(z) = 16 for s = s1. �

Problem (P2). Many implementations of the value iteration terminate as soon
as ‖fn(z) − fn−1(z)‖ < ε for some user-defined tolerance ε > 0 and return the
vector fn(z). The problem is that fn(z) need not be an ε-approximation of the
vector e∗. This phenomenon has been first observed in [18] for value iteration
to compute (maximal or minimal) reachability probabilities in Markov chains or
MDPs. The following example is an adaption of an example provided in [18] for
reachability probabilities to the case of expected total weights and illustrates the
problem of premature termination potentially leading to serious imprecision.

Example 3.2. Let p ∈ Q with 0 < p < 1 and let C[p] be the Markov chain in
Fig. 2 with state space S = {s0, s1, . . . , sn−1, sn} where sn = final , transition
probabilities P (si, si+1) = p, P (si, s0) = 1 − p and weights wgt(sn−1) = p for
0 � i < n and P (·) = wgt(·) = 0 in all other cases.3 Then, Prs(♦final) = 1
and expected total weight e∗

s = 1 for s �= final . Now consider p = 1/2 and the
tolerance ε = 1/2n. The value iteration finds 0 < fn

s (0) − fn−1
s (0) = 1/2n+1 <

ε and therefore returns the vector fn(0), even though the difference between
fn(0) and the correct result e∗

s is significantly larger than ε, i.e., e∗
s − fn

s (0) =
1 − (1/2n+1 + 1/2n−i) � 3/8 > ε. (See [3].) �

s0 s1 sn−1 sn
p p p

1 − p

1 − p

1 − p

p

Fig. 2. Markov chain of Example 3.2. Only non-zero probabilities and weights (in bold)
are shown.
3 A Markov chain can be viewed as an MDP where Act is a singleton, say Act = {τ},

in which case we write P (s, t) rather than P (s, τ, t) and wgt(s) rather than wgt(s, τ).
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3.2 Lower and Upper Value Iteration

Following the ideas of [18], we present an approach with two value iterations that
generate sequences of vectors in Q

|S|: one that converges to the vector e∗ from
below (called lower value iteration) and one that converges to e∗ from above
(called upper value iteration). As soon as the vectors of the lower and the upper
value iteration differ by components by at most ε then ε-approximations of the
values e∗

s have been generated. In this way, we avoid problem (P2).
Both the lower and the upper value iteration rely on a preprocessing to

determine starting vectors x = (xs)s∈S and y = (ys)s∈S with

xfinal = yfinal = 0 and xs � e∗
s � ys for all s ∈ S \ {final} (*)

We then have fn(x) � e∗ � fn(y) for all n ∈ N and both sequences (fn(x))n∈N

and (fn(y))n∈N converge to e∗ (see [3]). Monotonicity does not hold in general
as fn

s (x) < fn−1
s (x) < e∗

s or e∗
s < fn−1

s (y) < fn
s (y) is possible (see Example 3.1).

However, with a slightly modified approach of the value iteration (see below)
the assumption x � f(x) or y � f(y) is irrelevant. This simplifies problem (P1).
The computation of starting vectors x and y satisfying (∗) will be addressed in
Sect. 3.3.

Modified Value Iteration. We suggest a mild variant of the standard value
iteration where monotonicity is ensured by construction. Suppose we are given
vectors x and y satisfying (∗). We define inductively vectors x(n) = (xn

s )s∈S and
y(n) = (yn

s )s∈S by x(0) = x, y(0) = y and for all n ∈ N and s ∈ S \ {final}:

x(n+1)
s = max

{
x(n)
s , fs

(
x(n)

)}
y(n+1)
s = min

{
y(n)
s , fs

(
y(n)

)}

and x
(n)
final = y

(n)
final = 0. Lemma3.3 (see [3] for its proof) states the essential

properties of the lower and upper value iteration.

Lemma 3.3. Suppose (∗) holds. Then:
(a) x(n) � e∗ � y(n) for all n ∈ N

(b) x(0) � x(1) � x(2) � . . . and lim
n→∞ x(n) = e∗

(c) y(0) � y(1) � y(2) � . . . and lim
n→∞ y(n) = e∗

Thanks to monotonicity, we can use a Gauss-Seidel-like iteration variant with
forward substitution that relies on an enumeration s1, s2, . . . , sN of all states
in S. The idea is to iterate values in sequence according to this enumeration.
Then, in each step, the already updated values of previous states can be re-used.
For this, we inductively define vectors x̃(n) = (x̃n

s )s∈S and ỹ(n) = (ỹn
s )s∈S by

x̃(0) = x, ỹ(0) = y and for all n ∈ N and s ∈ S \ {final}:

x̃(n+1)
s = max

{
x̃(n)
s , fs

(
x̃(n,i)

)}
ỹ(n+1)
s = min

{
ỹ(n)
s , fs

(
ỹ(n,i)

)}
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and x̃
(n)
final = ỹ

(n)
final = 0 where x̃(n,i) =

(
x̃
(n,i)
s

)
s∈S

with x̃
(n,i)
sj being x̃

(n+1)
sj for

j < i − 1 and x̃
(n)
sj otherwise. The definition of ỹ(n,i) is analogous. Then, by

induction and using the monotonicity of f we get the monotone convergence to
e∗ from below (resp. above) for the sequence (x(n))n∈N (resp. (y(n))n∈N.

3.3 Computing Starting Vectors

The remaining problem is to find an efficient method for computing starting
vectors x and y such that (∗) holds. For this, we first use the observation that, for
each memoryless deterministic scheduler S, the expected weight until reaching
final can be derived by multiplying the weights by the expected number of visits
to each of the states, as final is a trap state and is reached with probability 1:

E
S
s ( final) =

∑

t∈S

ζSs (t) · wgt(t,S(t)) (**)

where ζSs (t) denotes the expected number of times to visit t in the Markov chain
induced by S with starting state s and wgt(t,S(t)) is the weight for the action
that is selected by S in state t. Thus, if

ζ∗
s (t) � max

S
ζSs (t) for all s, t ∈ S \ {final} (***)

where S ranges over all memoryless deterministic schedulers then we may start
the lower and upper value iteration with the following vectors x = (xs)s∈S and
y = (ys)s∈S . The components for the trap state are xfinal = yfinal = 0. For each
state s, let Rs be the set of states reachable from s. We then define:

xs =
∑

t∈Rs

ζ∗
s (t) · wgtmin(t) ys =

∑

t∈Rs

ζ∗
s (t) · wgtmax(t)

Here, for t ∈ S \ {final}, wgtmin(t) = minW (t), wgtmax(t) = maxW (t) where
W (t) = {0} ∪ {wgt(t, β) : β ∈ Act(t)} and wgtmin(final) = wgtmax(final) = 0.
Then, (∗) follows from (∗∗) and (∗∗∗) as wgtmin(t) is non-positive and

ζ∗
s (t) · wgtmin(t) � ζSs (t) · wgt(t,S(t)) � ζ∗

s (t) · wgtmax(t)

for all states s, t ∈ S\{final} and all schedulers S. Moreover, ζSs (t) = 0 if t /∈ Rs.

Remark 3.4. For the special case of MDPs with non-negative weights, the start-
ing vector x obtained by our approach for the lower value iteration agrees with
the classical text-book approach (see, e.g., Sects. 7.2.4 and 7.3.3 in [30]). More
precisely, as wgt � 0 implies wgtmin = 0, the lower value iteration for approx-
imating the maximal expected total weight will be started with x(0) = 0. For
computing approximations of minimal expected total weights, we switch from
wgt to −wgt and then apply the lower and upper value iteration. As wgt � 0
implies (−wgt)max = 0 the upper value iteration will be started with the null
vector y(0) = 0, which corresponds to the classical approach. �
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We now present simple techniques to compute values ζ∗
s (t) satisfying (∗∗∗). If M

is acyclic then ζSs (t) � 1 for all states s, t. Thus, for acyclic MDPs we can deal
with ζ∗

s (t) = 1 for all states s, t. In the sequel, we suppose that M is cyclic.

Lemma 3.5. Let S be a memoryless deterministic scheduler. Then, for all
states s, t ∈ S \ {final}:

ζSs (t) =
PrSs (♦t)

1 − PrSt (©♦t)

As a consequence of Lemma 3.5 (see [3] for its proof) we get that to ensure (∗∗∗)
we can deal with any value

ζ∗
s (t) =

Prub
s (♦t)

1 − Prub
t (©♦t)

where Prub
t (©♦t) < 1 is an upper bound for Prmax

t (©♦t) and Prub
s (♦t) an upper

bound for Prmax
s (♦t). One option to obtain appropriate values Prub

t (©♦t) and
Prub

s (♦t) is to apply the upper value iteration proposed in [18] for an arbitrary
number of steps. However, this requires individual computations for each state
t, which becomes expensive for larger models.

Then, there is a tradeoff between providing good bounds using sophisticated
techniques and the time (and memory) requirements to compute such bounds. In
what follows, we present two simple graph-based techniques to compute upper
bounds for ζ∗

s (t). Both rely on the trivial bound 1 for Prmax
s (♦t), i.e., ζ∗

s (t)
depends on s only implicitly by the choice of the set Rs, and compute an upper
bound for the maximal recurrence probabilities Prmax

t (©♦t).

Upper Bound for Maximal Recurrence Probabilities (Variant 1). For
s ∈ S, we write Cs to denote the unique strongly connected component (SCC) of
M that contains s.4 For t ∈ S \ {final}, let Xt denotes the set of all state-action
pairs (s, α) with s ∈ Ct (hence Cs = Ct) and P (s, α,Ct) < 1 and let

qt = max
{
P (s, α,Ct) : (s, α) ∈ Xt

}

pt = min
{
P (s, α, u) : s, u ∈ Ct, α ∈ Act(s), P (s, α, u) > 0

}

Note that the assumption Prmin
t (♦final) = 1 for all t ensures that Xt is nonempty.

Let q = maxt qt and p denote the minimal positive transition probability in M,
i.e., p = min{P (s, α, t) : s ∈ S, α ∈ Act(s), P (s, α, t) > 0}. Then, 0 < p � pt < 1
and 0 < qt � q < 1.

Lemma 3.6. Let S be a memoryless deterministic scheduler. Then, for all
states t ∈ S \ {final} (see [3] for the proof):

PrSt (©♦t) � 1 − p
|Ct|−1
t · (1 − qt) � 1 − p|Ct|−1 · (1 − q).

4 Here, M is viewed as a directed graph with the node set S and the edge relation →
given by s → t iff there is some action α with P (s, α, t) > 0.
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Example 3.7. In the Markov chain C[p] of Example 3.2, we have PrC[p]si (©♦si) =
1−pn−i for i < n. If p � 1/2 then p = psi , q = qsi = 1−p and |Csi | = n. Hence,
the bounds in Lemma 3.6 are tight for state s0. �

We now define the values ζ∗
s (t) for variant 1 in two nuances (fine and coarse).

The fine variant is based on Prub
t (©♦t) = 1−p

|Ct|−1
t · (1− qt) and Prub

s (♦t) = 1:

ζ∗
s (t) =

1

p
|Ct|−1
t · (1 − qt)

for s, t ∈ S \ {final}. For the final state we put ζ∗
s (final) = 1. The coarse variant

is defined analogously, except that we deal with Prub
t (©♦t) = 1−p|Ct|−1 ·(1−q).

Using Lemmas 3.5 and 3.6 we obtain that (∗∗∗) holds.

Example 3.8. We regard again the Markov chain C[p] of Example 3.2. For the
weight function wgt of C[p] given by wgt(s0) = 1 and wgt(si) = 0, we obtain e∗

0 =
1/pn and e∗

i = 1/pn−1/pi for i = 1, . . . , n (see [3]). The expected number of visits
for si is ζ

C[p]
s0 (si) = pi−n. As the states s0, . . . , sn−1 constitute an SCC, the fine

and coarse variant yield the same bound for the maximal recurrence probability
from state s0, namely ζ∗

s0(si) = 1/pn for all i < n. Thus, the starting vector y
for the upper value iteration is (1/pn, 1/pn, . . . , 1/pn, 0) as s0 is reachable from
all states s �= final . In particular, ys0 = e∗

s0 is optimal. �

If the SCCs are large and their minimal positive transition probabilities are
small then the values ζ∗

s (t) tend to be very large. Better bounds for the maximal
recurrence probabilities Prmax

t (©♦t) are obtained by the following variant.

Upper Bound for Maximal Recurrence Probabilities (Variant 2). Let
S0 = {final}. We then define inductively Ti−1 = S0 ∪ . . . ∪ Si−1 and

Si =
{
s ∈ S \ Ti−1 : P (s, α, Ti−1) > 0 for all α ∈ Act(s)

}

The assumption mins∈S Prmin
s (♦final) = 1 yields that if Ti−1 is a proper subset of

S then Si is nonempty. Note that otherwise each state s ∈ S \Ti−1 has an action
αs with P (s, αs, Ti−1) = 0. But then P (s, αs, S \ Ti−1) = 1 − P (s, αs, Ti−1) = 1
for all states s ∈ S \ Ti−1. Let S be a memoryless deterministic scheduler with
S(s) = αs for all s ∈ S \ Ti−1. Then, PrSs (�¬Ti−1) = 1 for each s ∈ S \ Ti−1.
Hence, PrSs (♦final) = 0 for s ∈ S \ Ti−1. Contradiction. Thus, S = Tk for some
k � |S| and S is the disjoint union of the sets S0, S1, . . . , Sk. By induction on
i ∈ {0, 1, . . . , k} we define values dt ∈ ]0, 1] for the states t ∈ Si. In the basis of
induction we put dfinal = 1. Suppose 1 � i � k and the values du are defined for
all states u ∈ Ti−1. Then, for each state t ∈ Ti we define:

dt = min
{∑

u∈Ti−1
P (t, α, u) · du,t : α ∈ Act(t)

}

where du,t = 1 if Ct �= Cu and du,t = du if Cu = Ct. Recall that Ct denotes the
unique SCC containing t and that the values dt are positive as P (t, α, Ti−1) > 0
for all actions α ∈ Act(t). In the appendix of [3] we show:
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Lemma 3.9. Prmax
t (©♦t) � 1 − dt for each state t ∈ S

Using Lemma 3.5 and Lemma 3.9, condition (∗∗∗) holds for ζ∗
s (t) = 1/dt.

Example 3.10. Again, consider the Markov chain C[p] of Example 3.2. For the
weight function given by wgt(s) = 1 for s �= final , we obtain e∗

i = (1 −
pn−i)/(pn(1 − p)). With the first variant, we get the starting vector y for the
upper value iteration where ysi = n/pn for all states si with i < n. The
second variant generates the decomposition Si = {sn−i} for i = 0, 1, . . . , n.
Then ζ∗

s0(si) = ζ
C[p]
s0 (si) as PrC[p]s0 (♦si) = 1 and Prsi(©♦si) = 1 − pn−i (see

Example 3.7). Thus, the computed bound for the expected times to visit si
is the exact value ζ∗

s0(si) = dsi = pi−n. Here, index i ranges between 0
and n − 1. Thus, the second variant generates the starting vector y where
ysi =

∑n−1
j=0 pj−n = (1 − pn)(pn(1 − p)) for all states si with i < n, which

is optimal for i = 0. �

4 Topological Interval Iteration

To increase the efficiency of the value iteration, several authors proposed a strat-
ified approach that exploits the topological structure of the MDP [11,13,14]. In
such a topological value iteration, for each strongly connected component (SCC)
a value iteration is performed, which only updates the values for the states in this
particular SCC. As the SCCs are computed in their topological order from the
bottom up, values for the outgoing transitions of the current SCC have already
been computed. For models with more than one SCC, this approach has the
potential to reduce the number of state updates that are performed, as it avoids
updating the values for every state in each iteration step.

To adapt such a topological approach to interval iteration, the main challenge
is to ensure that the computed upper and lower bounds for the states in a given
SCC S are suitably precise to allow their effective utilization during the interval
iteration computation in those SCCs containing states that can reach S and
thus potentially depend on its values. While we formalize our approach for the
setting of maximal expected accumulated weights, the presented approach can be
easily adapted to a topological interval iteration for the computation of extremal
reachability probabilities in the setting of [18].

Given a subset of states Q ⊆ S and, for each state q ∈ Q, an upper bound
uq and a lower bound lq for the value e∗

M,q = e∗
q , i.e., lq � e∗

M,q � uq, we
induce two new MDPs that arise by discarding all transitions of the states q ∈ Q
and adding a new transition from q to a trap state with weight lq resp. uq.
Formally, we construct an MDP M↑ = (S,Act ′, P ′,final ,wgt↑) incorporating
the upper-estimate and an MDP M↓ = (S,Act ′, P ′,final ,wgt↓) incorporating
the lower estimate. We introduce a fresh action τ , i.e., Act ′ = Act ∪ {τ}, which
is the only action enabled in the Q-states and goes to final with probability 1,
replacing the original actions, i.e., P ′(s, α, t) = P (s, α, t) for all states s /∈ Q,
α ∈ Act , t ∈ S and, for all states q ∈ Q, P ′(q, τ,final) = 1 and P ′(q, α, t) = 0
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for all α ∈ Act , t ∈ S. The MDPs M↑ and M↓ differ in their weight functions,
with wgt↑(q, τ) = uq and wgt↓(q, τ) = lq for q ∈ Q while the weights for the
remaining state-action pairs remain unchanged, i.e., wgt↑(s, α) = wgt↓(s, α) =
wgt(s, α) for all s ∈ S \Q and α ∈ Act . Intuitively, the τ transitions simulate the
expected weight accumulated on the path fragments from states q ∈ Q until final ,
replacing it with the upper or lower bound, respectively. As Prmin

M (♦final) = 1,
we also have Prmin

M↑(♦final) = Prmin
M↓(♦final) = 1.

Lemma 4.1. With the notations as above (see [3] for the proof):

(a) e∗
M↓,s � e∗

M,s � e∗
M↑,s for all states s ∈ S

(b) If |uq − lq| < ε for all q ∈ Q, then | e∗
M↑,s − e∗

M↓,s | < ε for all s ∈ S.

We are now interested in performing an interval iteration in the setting where
we are given a desired precision threshold ε and lower and upper estimates lq and
uq for a subset of states. Here, we assume that the bounds are within the desired
precision, i.e., that |uq − lq| < ε and that lq � e∗

M,q � uq. As these estimates will
arise from the processing of previously handled SCCs, we can ensure that the
desired precision is indeed obtained. Let M↓ and M↑ be the two MDPs that are
induced by applying the transformation detailed above for the two estimates,
respectively. We now perform an interval iteration, but instead of performing
both iterations in the original MDP M, the iteration from above is performed in
M↑ and the iteration from below is performed in M↓ in an interleaved fashion.

Let xs and ys be lower and upper bounds for e∗
M,s, i.e., with xs � e∗

M,s � ys
for all s ∈ S, for example computed using the methods detailed in Sect. 3.3. We
obtain starting vectors x(0) (for the value iteration from below in M↓) and y(0)

(for the value iteration from above in M↑) by setting

x
(0)
s = xs − ε for s ∈ S \ Q and x

(0)
s = ls for s ∈ Q

y
(0)
s = ys + ε for s ∈ S \ Q and y

(0)
s = us for s ∈ Q

To ensure that x
(0)
s is indeed a lower bound for e∗

M↓,s for the states s ∈ S \Q, we
subtract ε. Lemma4.1(b) together with Lemma4.1(a) yields e∗

M↑,s − e∗
M↓,s < ε,

and as e∗
M↑,s is an upper bound for e∗

M,s we have e∗
M,s − e∗

M↓,s < ε. Then, due
to the assumption that xs � e∗

M,s, it is guaranteed that xs − ε � e∗
M↓,s. For the

upper bound y
(0)
s similar arguments apply when adding ε to the upper bound

computed for e∗
M.

The topological interval iteration for e∗
M and precision ε now works as follows.

We first compute lower and upper bounds xs and ys for e∗
M,s for all states in

M (see Sect. 3.3). We then apply standard algorithms to compute a topological
ordering C1, C2, . . . , Cn of the SCCs of M. We then process each SCC according
to the topological ordering, from the bottom up. We maintain the set Q of states
that are contained in SCCs that have already been processed, as well as upper
bounds uq and lower bounds lq for these states satisfying uq − lq � ε. The order
of processing ensures that the successor states for all transitions that do not
lead back to the current SCC are contained in Q. Let Ci be the current SCC.
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If it is a singleton SCC, i.e., containing just a single state s, we can derive us

and ls directly. In particular, for the final state we can set both values to 0. For
non-singleton SCCs, we consider the sub-MDP Mi of M containing the states
in Ci as well as all states not in Ci but reachable from Ci. The latter states are
all contained in Q. We then perform the interleaved interval iteration in M↓
and M↑ derived from Mi with the starting vectors derived from xs and ys and
the stopping criterion y

(n)
s − x

(n)
s < ε for all s ∈ Ci. Termination for Ci will

eventually occur as shown in [3]. Subsequently, we add all states s ∈ Ci to Q

and set ls = x
(n)
s and us = y

(n)
s . Having processed the SCC Ci, we proceed with

the next SCC in the topological order. Once all SCCs are processed, we return
the vectors (ls)s∈S and (us)s∈S , which contain lower and upper bounds for the
values e∗

M,s with precision ε. The correctness of the output follows from repeated
application of the termination and correctness proof for individual SCCs (see [3]).

5 Implementation

We have implemented the algorithms presented in this paper as an extension of
the PRISM model checker [25]. PRISM contains four major engines: an Explicit
engine and three other engines (Mtbdd, Hybrid, Sparse) that either partially
or fully rely on symbolic, MTBDD-based methods [28].

Interval Iteration. Since the performance of the different engines varies across
benchmarks, we have implemented interval iteration for all four, extending the
existing value iteration based implementations for computation of (extremal)
expected accumulated rewards and reachability probabilities in MDPs. More
complex probabilistic model checking problems often use these as a basic build-
ing block. Consequently, our interval iteration implementation is automatically
used there as well, for example in the context of LTL model checking. We also
implement interval iteration for discrete-time Markov chains (DTMCs), a spe-
cial case of MDPs, to facilitate further benchmarking. We assume non-negative
weights (rewards/costs), a limitation imposed by PRISM.

Our implementation supports, in addition to standard value iteration
updates, two other well known variants that are implemented in PRISM for
the standard value iteration approach as well: Jacobi-like updates (directly solv-
ing self-loop probabilities) and Gauss-Seidel-like updates. The latter are lim-
ited to the Explicit and Sparse engines due to the difficulty of a symbolic
implementation.

To be able to apply interval iteration for the computation of maximal reach-
ability probabilities, we support the quotienting of maximal end components as
proposed in [18]. This is required to ensure that the upper value iteration con-
verges. Interval iteration for minimal expectations is currently only supported
for the Explicit engine and if the MDP after preprocessing is contracting (this
is always true for the special case of DTMCs).
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Upper Bound Computation. For (extremal) reachability probabilities, the
upper bound (=1) and lower bound (=0) for the interval iteration is set directly.
For the (extremal) expected accumulated reward computation, we set the lower
bound to 0, and support variant 1 (coarse and fine) and variant 2 of the upper
bound algorithms of Sect. 3.3, computing a single upper bound for all states
(i.e., using Rs = S). For minimal expectations, we use the bound obtained for
E
max( final) from one of the variants, and can additionally obtain an upper

bound using the Dijkstra Sweep for Monotone Pessimistic Initialization (DS-
MPI) algorithm for obtaining upper bounds on the minimal expectations pro-
posed in [27], which we implemented for the Explicit engine.

Topological Iteration. Lastly, we also implemented both topological value
iteration and topological interval iteration (see Sect. 4) in the Explicit engine.

6 Experiments

We have carried out extensive experiments using the PRISM benchmark
suite [26], considering 294 model/property combinations in total. We give here
an overview of the results; further details can be found in the appendix of [3].

Accuracy. To gauge the prevalence of imprecise results due to early termina-
tion of value iteration, we have compared the PRISM results for the benchmark
instances against an exact result (if available) or the result obtained by interval
iteration. We use ε = 10−6 and evaluate both absolute and relative mode.5 Com-
paring the interval iteration results against the exact results (where available)
demonstrated that the interval iteration results indeed have the expected preci-
sion. We say that a value iteration result has a precision of less than 10−x if the
difference between the result and the reference value is larger than 10−x. When
the computations are done using relative termination checks, the precision is also
computed relatively. For absolute mode, the results of 67 of the 294 instances
were less precise than 10−6 (44 less precise than 10−5, 17 less than 10−4 and
2 less than 10−3, none of the benchmark instances had a precision of less than
10−2). Detailed statistics, for relative mode as well, can be seen in Table 1, which
shows the overall results of our accuracy check. A similar picture arises with the
relative termination check, however here the absolute imprecision is magnified
for values larger than 1.

The largest imprecision occurred for the “coin2.nm” model of the “consen-
sus” case study (with model parameter K = 16) and the “steps-max” expecta-
tion property. The exact result for this instance is 3267. In absolute mode, the
5 In addition to the termination check relying on the supremum norm (absolute check),

probabilistic model checkers often support a relative check, where the criterion
requires |z′

s − zs|/|zs| < ε to hold for all states s ∈ S, where z and z′ are the vectors
under comparison. This takes the magnitude of the individual values into account
and dynamically tightens the tolerance for values <1 and loosens it for values >1.



Interval Iteration for Markov Decision Processes 175

Table 1. Results of the accuracy benchmarks, split into the instances with probabil-
ity and expectation properties and whether comparison was against exact or interval
iteration results. Note that instances with precision less than 10−3 are also included in
the count for 10−4, etc.

Number of instances Precision less than
10−3 10−4 10−5 10−6

Prob., vs exact results, absolute 87 - 3 12 25

Prob., vs exact results, relative 87 - 3 9 21

Prob., vs interval iteration
results, absolute

97 - 1 1 9

Prob., vs interval iteration
results, relative

97 - 1 1 11

Expect., vs exact results,
absolute

41 2 5 10 20

Expect., vs exact results,
relative

41 2 6 12 20

Expect., vs interval iteration
results, absolute

69 - 3 9 13

Expect., vs interval iteration
results, relative

69 - 4 9 16

value iteration had the result 3266.9986814425756, while interval iteration had
3267.0000004994463. In relative mode, the imprecision is magnified in absolute
terms, i.e., the value iteration has the result 3262.69160811823 while interval
iteration yielded 3267.0016321821013. As can be seen here, interval iteration
yielded the expected precision, i.e., 6 correct fractional digits for absolute mode
and 6 correct first digits in relative mode. The second instance with precision of
less than 10−3 is for the same model but the “steps-min” property.

Overall, for the benchmark instances, the imprecision was not as grave as for
the example from [18]. However, in independent work on a simplified probabilis-
tic model of an error handler, inspired by [24], we encountered a non-artificial
model with probability results of 0.328597 (value iteration) vs 0.687089 (interval
iteration), with ε = 10−6. For details, see [3].

Quality of Upper Bounds and Cost of Interval Iteration. In another
experiment, we were interested in (1) the quality of the upper bounds obtained
by the various heuristics and (2) in the impact of using interval iteration (II)
instead of value iteration (VI). Figure 3 shows statistics for a comparison of the
variant 2 and the DS-MPI upper bound heuristics (for minimal expectations in
MDPs and expectations in DTMCs) for the benchmark instances using expected
rewards, ε = 10−6 and a relative termination check.

The upper plot shows upper bounds, compared to the maximal (finite) value
in the result vector. Clearly, no upper bound can be below that value. The
benchmark instances here are sorted by this maximal result value. The plot in
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the middle then shows the increase in the number of iterations that are car-
ried out for interval iteration compared to value iteration, e.g., an increase of
2 signifies that interval iteration required twice the number of iterations. Note
that we count the upper and lower iteration step as a single combined iteration.
To simplify the presentation, the plot in the middle omits a single data point,
consisting of a 32-fold increase from 5 to 159 iterations. The plot at the bot-
tom of Fig. 3 shows the corresponding increase in the time for model checking
(including precomputations, upper bounds computations and iterations). In this
plot, instances where all times are below 1 s are omitted due to their limited
informative value.
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Fig. 3. Top: maximal result value versus the upper bounds. Middle: increase
(2= double, . . . ) in the number of iterations. Bottom: increase in model checking time.
The x-axis of the plots represents the model/property instances, sorted by maximal
result value.

Generally, an increase in the number iterations required for interval iteration
compared to value iteration can be due to the lower iteration requiring more
iterations to reach a precise result or due to the number of iterations required
by the upper iteration to converge from the initial upper bound. As can be seen,
the DS-MPI heuristic (where applicable) generally provides much better upper
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Fig. 4. Number of multiplication operations for (topological) value and interval itera-
tion. The x-axis of both plots represents the model/property instances, sorted by the
number of multiplication operations for plain value iteration.

bounds than variant 2, often by several orders of magnitude. However, for the
benchmark instances, the number of required iterations does not rise by a similar
factor, indicating a certain insensitivity to the quality of the upper bound. Gen-
erally, the increase in iterations for interval iteration can be considered benign.
For the model checking times, a certain increase can be seen, which is to be
expected due to the additional work carried out. The largest relative increases
(on the left of the plot) are for instances where value iteration took less than 1 s,
while in general the increases remain modest.

In [3], we also evaluate the variant 1 heuristic. The bounds obtained using
this variant in general tend to be significantly larger and roughly half of the
benchmark instances had no variant 1 bound that could be represented as a
double-precision floating point number. However, there are instances where the
variant 1 and variant 2 bounds coincide and where the variant 1 computation is
faster. Additionally, we present and discuss similar experiments for the bench-
mark instances using probability computations. For those, the increase in the
number of iterations (and model checking time) is even more limited due to the
a priori availability of a rather good upper bound of 1 for probabilities.

Topological Iteration. Figure 4 shows statistics of experiments comparing
topological iteration against plain iteration. We considered the MDP benchmark
instances, using ε = 10−6 and absolute checks. As the topological approach does
not process all states in each iteration, we need a more fine grained measure of
the operations: The plot depicts the number of matrix element/vector element
multiplications, e.g., the operations P (s, α, t) · vt for MDPs and non-zero matrix
entries. The potential for the topological approach is clearly demonstrated, with
a reduction in the required multiplications often by an order of magnitude or
more. In general, such a reduction translates into a decreased running time as
well. Our experiments thus show that the known potential for topological value
iteration (see, e.g., [11]) transfers to topological interval iteration as well.
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7 Conclusion

In this paper, we have shown that interval iteration is a viable approach to deal
with the potential termination criterion problems raised by [18], providing higher
confidence in the correctness of the results of probabilistic model checkers. In
particular, we have shown how the approach of [18] can be successfully extended
for the context of expected accumulated weights. Clearly, even those situations
where the results obtained using the standard value iteration termination cri-
terion (or some particular parameter setting) happen to be sufficiently precise
are rendered problematic in practice due to the absence of any precision guar-
antees. Even with interval iteration, the orthogonal question of the precision of
the underlying floating-point computations remains and could be addressed by
maintaining bounds on their precision. In future work, we intend to extend the
implementation, e.g., using the additional knowledge provided by interval itera-
tion in threshold problems. Additionally, the upper and lower iterations can be
carried out in parallel, reducing the performance impact.

We will also focus on extending our results for the setting of non-contracting
MDPs. In the case of non-negative weights, our implementation for maximal
expectations handles non-contracting MDPs thanks to the preprocessing pro-
posed in [16], while for minimal expectations the vector obtained using DS-MPI
could be used as an upper starting vector, as [7] establishes the unique fixed-point
characterization and convergence of value iteration under relaxed assumptions
even for general weights. For general weighted MDPs, checking finiteness of the
expected weight is more involved. Our results on lower and upper bounds for
expectations might also be interesting for different purposes, e.g., in the context
of planning as outlined in [27].
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Abstract. The world is uncertain. Programs can be wrong. We address
the problem of repairing a program under uncertainty, where program
inputs are drawn from a probability distribution. The goal of the repair is
to construct a new program that satisfies a probabilistic Boolean expres-
sion. Our work focuses on loop-free decision-making programs, e.g., clas-
sifiers, that return a Boolean- or finite-valued result. Specifically, we pro-
pose distribution-guided inductive synthesis, a novel program repair tech-
nique that iteratively (i) samples a finite set of inputs from a probability
distribution defining the precondition, (ii) synthesizes a minimal repair
to the program over the sampled inputs using an smt-based encoding,
and (iii) verifies that the resulting program is correct and is seman-
tically close to the original program. We formalize our algorithm and
prove its correctness by rooting it in computational learning theory. For
evaluation, we focus on repairing machine learning classifiers with the
goal of making them unbiased (fair). Our implementation and evalua-
tion demonstrate our approach’s ability to repair a range of programs.

1 Introduction

Program repair is the problem of modifying a program P to produce a new pro-
gram P ′ that satisfies some desirable property. A majority of the investigations
in automatic program repair target deterministic programs and Boolean proper-
ties, e.g., assertion violations [10,17,20,22,27]. The world, however, is uncertain,
and program correctness is not always a Boolean, black-or-white property.

In this paper, we address the problem of automating program repair in the
presence of uncertainty. By uncertainty, we mean that the inputs to the program
are drawn from some probability distribution D. Thus, we have a probabilistic
precondition—for instance, the input x to a program P (x) may follow a Laplacian
distribution. The correctness property of interest is a probabilistic postcondition,
which we define as an expression over probabilities of program outcomes. For
instance, we might be interested in ensuring that P (r > 0) > 0.9—the program
returns a positive value at least 90% of the time—or that P (r1 > 0) > P (r2 >
0)—it is more likely that the return value r1 is positive than that r2 is positive.
We restrict our attention to loop-free programs that return Boolean-valued (or
finite-valued) results, e.g., machine learning classifiers that map inputs to a finite

c© Springer International Publishing AG 2017
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set of classes, and repairs that consist of altering real-valued constants in the
program.

Technique: Distribution-Guided Inductive Synthesis. To address the pro-
gram repair problem in the presence of uncertainty, we propose a novel program
synthesis technique that we call distribution-guided inductive synthesis (digits).
The overall flow of digits is illustrated in Fig. 1. Suppose we have a program P
such that {pre}P{post} does not hold. The goal of digits is to construct a new
program P ′ that is correct with respect to pre and post and that is semantically
close to P . To do so, digits tightly integrates three phases:

Precondition
sampler

Symbolic
synthesizer
(repair model)

Probabilistic

Fig. 1. Abstract, high-level view of distribution-guided inductive synthesis

Sampling: Since the precondition pre is a probability distribution, digits
begins by sampling a finite set S of program inputs from pre—we call S the
set of samples. The set S is used to sidestep having to deal with arbitrary dis-
tributions directly in the synthesis process.

Synthesis: The second step is a synthesis phase, where digits searches for a
set of candidate programs {P ′

1, . . . , P
′
n}—following a given repair model—where

each P ′
i classifies the set of samples S differently. Given that there are exponen-

tially many ways to partition the set S, digits employs a novel trie-like data
structure with conflict-driven pruning to avoid considering redundant partitions.

Quantitative verification: Every generated candidate program P ′ is checked
for correctness and for close semantic distance with P . Specifically, digits
employs an automated probabilistic inference technique.

Theory: Computational Learning. We formalize digits by posing it as a
learning algorithm, and rooting it in computational learning theory [18]. Using
the concept of the Vapnik–Chervonenkis (VC) dimension [7] of the repair model,
we show that the algorithm converges to the optimal program with a high prob-
ability when operating over postconditions that satisfy a benign property and
over repair models with a finite VC dimension, which holds for many repair
scenarios, e.g., sketching-like approaches [26].

Application: Repairing Biased Programs. Our primary motivation for this
work is repairing bias in decision-making programs, e.g., programs that decide
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whether to hire a person, to give them a loan, or other sensitive or potentially
impactful decisions like prison sentencing [5]. These programs can be generated
automatically as classifiers using machine learning or can be written by hand
using expert insight. The problem of algorithmic bias has received consider-
able attention recently, due to the increasing deployment of automated decision-
making in sensitive domains [12–14,16,19,23].

Existing notions of bias in the literature neatly correspond to probabilistic
postconditions. For instance, group fairness [11–14] stipulates that the proba-
bility that a minority job applicant is hired is almost the same as that of a
majority applicant being hired. We view the underlying population of appli-
cants as a probabilistic precondition and pose the problem of repairing biased
programs within our framework: the problem is to find a new, semantically close
program that is unbiased. We implemented our approach, digits, and applied it
to unbias a range of classification programs that were generated automatically.
Our results demonstrate (i) our technique’s ability to repair a range of programs
and (ii) the importance of our algorithmic contributions.

Contributions. We summarize our contributions as follows:

– We formalize the probabilistic program repair problem as an optimization
problem whose solution is a repaired program that satisfies some probabilistic
pre-/post-conditions.

– We present distribution-guided inductive synthesis, digits, a novel synthesis
methodology for automatically repairing loop-free programs under uncertain
inputs and probabilistic postconditions.

– We formalize correctness of our algorithm and prove its convergence using the
concept of VC dimension that is standard in computational learning theory
and machine learning.

– We present an implementation of our technique, digits. We apply digits
to the increasingly important problem of ensuring that decision-making pro-
grams are not biased, for a given particular notion of bias. Our thorough
evaluation demonstrates the utility of our approach and the importance of
our design decisions.

2 Illustrative Example

In this section, we illustrate the operation of digits on a very simple example
inspired by algorithmic bias problems [4].

Example Program. Consider the following program, hire:

fun h i r e (min , urank )
dec = 1 <= urank <= 10
re tu rn dec

hire is an extremely simplified automatic hiring program: it takes an applicant’s
information and decides whether to hire them or not, as indicated by the Boolean
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return variable dec. Specifically, hire takes as input the Boolean variable min,
which indicates whether an applicant belongs to an underrepresented minority,
and urank, which is a real-valued number indicating the rank of the university
they attended. hire only hires applicants who attended top-10 universities.

Probabilistic Precondition. Let us now consider a probabilistic precondition
for the program, which is a joint probability distribution over the variables min
and urank. Intuitively, the precondition paints a picture of the relation between
minority status and the university rank in the population of potential applicants.
Consider the following precondition pre:

min ∼ Bernoulli(0.1)
urank ∼ Gaussian(10, 10) + 5 ∗ 1(min)

Intuitively, 10% of the possible applicants are minorities, and the university rank
of an applicant is drawn from a Gaussian distribution centered at 10 (with std.
10), if the applicant is not a minority. Otherwise, if the applicant is a minority,
their university rank is a Gaussian centered around 15—as shown using the
indicator function, 1(min), which returns 1 when min is true and 0 otherwise.

Probabilistic Postcondition. The following postcondition formula asserts that
the probability of hiring minority applicants is at least 0.8 of the probability of
hiring majority applicants:

post � P(dec | min)
P(dec | ¬min)

> 0.8

This is one of the many properties proposed to formalize notions of fairness in
automated decision-making. This property is known as group fairness [13], and
it is inspired by employment guidelines in the United States [3].

The postcondition does not hold for hire: Even though hire does not access
the variable min, it only accepts applicants from top-10 universities, and, as per
pre, minority applicants are less likely to attend top-10 universities; in fact, the
value of the left hand side of post is ∼ 0.6.

Repair Model. We would like to automatically repair hire in order to make it
satisfy the postcondition. Additionally, we would like to avoid obvious repairs
that result in undesirable programs. For instance, the program that hires every-
one (return true) obviously satisfies the postcondition. To avoid such programs,
we look for a repair that minimizes the semantic distance between the new
program and the original program.

For our example, we will restrict the space of possible repairs as a sketch of
the original program—we call this the repair model :

fun h i r eRep (min , urank )
dec = �1 <= urank <= �2

re tu rn dec
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The repair model is a parametric program with two holes to fill, �1 and �2,
which we can replace with constants to produce a program that satisfies the
postcondition. Note that our approach is more general and not only restricted
to filling holes with constants.

Distribution-Guided Inductive Synthesis. Now that we have set up the
problem, we are ready to illustrate our approach. We are looking for a new
function hireRep that satisfies post and that minimizes the semantic distance
P(hire �= hireRep), which denotes the probability that hire and hireRep return
different outputs for the same input, which is distributed according to pre.

To find such a repair, we present distribution-guided inductive synthesis
(digits). digits begins by sampling a finite set of inputs S = {s1, . . . , sn} from
the precondition pre. The set of samples are used to guide the synthesis process
with concrete examples from the distribution. digits considers every possible
partition of the samples into positive and negative samples, (S+, S−). For every
such partition, it attempts to find a repair that returns true for all inputs in S+

and false for all inputs in S−. To perform the synthesis, we encode the search
problem as a quantifier-free first-order formula and ask an smt solver to find a
solution that corresponds to a filling of the holes. For each synthesized program,
digits uses probabilistic program verification techniques to check if the program
satisfies the postcondition and to quantify the semantic distance from hire.

There are two obvious issues here: (i) The number of partitions of a given set
S is exponential in |S|. (ii) The search finds an arbitrary repair at every step; how
do we ensure that we eventually find a repair that satisfies the postcondition?

First, while the number of partitions of S is exponential, digits employs
an efficient binary trie data structure to guide and prune the search space. For
instance, if there is no repair for a partition (S+, S−), digits utilizes unsat
cores to remember an unsatisfiable subset of the samples and ensure that sim-
ilar partitions are not considered, thus pruning away a large family of possible
partitions.

Second, we theoretically demonstrate elegant properties of digits that ensure
it converges to an optimal solution. The formalization is rooted in classic ideas
from computational learning theory, namely, VC dimension of our repair model.

Finding Repairs. digits iteratively increases the size of the sample set S by
drawing more samples from pre. The more samples it considers, the more likely
it synthesizes programs that are close to an optimal solution. Let us consider a
possible trajectory of digits. Figure 2 shows three programs that can be pro-
duced by digits in the course of sampling and synthesis. While all programs
satisfy the postcondition, the best repair is hireRep3, as it has the smallest dis-
tance from the original program hire. Specifically, hireRep hires all applicants
from the top-15 universities, making it the semantically closest one to hire.

3 The Probabilistic Repair Problem

In this section, we formally define the probabilistic repair problem.
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Fig. 2. Repairs synthesized by digits

Program Model. We consider a simple program model where a program is
written in a loop-free language whose syntax is defined below:

P := V ← E | if B then P else P | P P | return V

P is a program, V is the set of variables used in P , E is the set of linear
arithmetic expressions over V , and B is the set of Boolean expressions over V .
V ← E denotes assigning an expression to a variable. We assume that there is
a vector of variables v I in V that are inputs to the program and never appear
on the left-hand side of an assignment. We also assume there is a single Boolean
variable vr ∈ V that is returned by the program. All variables are real-valued
or Boolean. We always assume that programs are well-typed. Given a vector of
constant values c, where |c| = |v I |, we use P (c) to denote the result of executing
P on the input c.

Probabilistic Preconditions. Given a program P with variables V , we define a
probabilistic precondition pre as a joint probability distribution over the variables
v I . That is, we assume that the values of the inputs are initially drawn from the
probability distribution pre.

Formally, we think of the distribution pre as a probability space (Ω,F ,P):
Ω is the set of possible assignments to v I , F ⊆ 2Ω is a set of events, and
P : F → [0, 1] denotes the probability of an event.

We will be interested in two kinds of events:

1. Given a Boolean expression B over v I and vr, overloading notation, a prob-
ability expression P(B) denotes

P({c ∈ Ω | ∃r. P (c) = r ∧ B[v I/c, vr/r] = true})

where the notation B[x/y ] denotes B with all occurrences of x replaced by y .
That is, P(B) is the probability of drawing a sample c from the precondition
such that the program P returns a result satisfying B.

2. Suppose we are given two programs P and P ′ such that v I and v ′
I are of the

same length and type. We will use P(P �= P ′) to denote:

P({c ∈ Ω | P (c) �= P ′(c)})

That is, P(P �= P ′), which we call the semantic distance, is the probability
that the two programs return different results on the same input.
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1 Procedure digits(P, pre, post, R, n)
Input : Repair problem s.t. {pre}P{post} does not hold, and a number n
Output: Program P ′ ∈ R such that {pre}P{post} holds or ⊥

2 S ← ∅
3 for n times do
4 s ∼ pre
5 S ← S ∪ {s}
6 repairs ← ∅
7 foreach sets S+, S− that partition S do
8 P ′ ← repair(S+, S−)
9 if P ′ �= ⊥ and {pre}P ′{post} then

10 repairs ← repairs ∪ {P ′}
11 if repairs �= ∅ then
12 return P ′ ∈ repairs with minimal P(P �= P ′)
13 else
14 return ⊥

Algorithm 1. Distribution-Guided Inductive Synthesis

Probabilistic Postconditions. Given a program P and a precondition pre,
we would like to refer to the probability of the program to return a specific
set of values. To that end, we define a probabilistic postcondition, post, as an
inequality over terms of the form P(B), where B is a Boolean expression over
v I and vr. Specifically, a probabilistic postcondition is of the form e > c, where
c ∈ R and e is an arithmetic expression over terms of the form P(B), e.g.,
P(B1)/P(B2) > 0.75.

Program Correctness. Given a triple (P, pre, post), we say that P is correct
with respect to pre and post, denoted {pre}P{post}, iff post is true.

Repair Problem. The probabilistic repair problem is a tuple (P, pre, post, R),
where (P, pre, post) are as defined above, and R is a set of programs called the
repair model, i.e., the set of possible repairs. A solution to a repair problem is
a program P ′ ∈ R such that {pre}P ′{post} holds, and the semantic distance
P(P �= P ′) is minimal.

The semantic distance condition is present to try to preserve as much of the
original program behavior as possible.

4 Distribution-Guided Inductive Synthesis

In this section, we describe the distribution-guided inductive synthesis algorithm
(digits) for finding approximate solutions to the probabilistic repair problem.

digits, shown in Algorithm1, takes as input a repair problem and a number
n that bounds the search depth. digits first builds a set S of n samples from pre,
and then, for every possible way to split S into positive and negative examples
S+ and S−, it finds a candidate repair P ′ ∈ R consistent with S+ and S−. digits
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finally outputs the candidate repair semantically closest to P . Intuitively, digits
tries to inductively learn the correct repair from a finite set of samples.

Example 1. Recall the example from Sect. 2. Suppose we are given two samples
s1 = 12 and s2 = 17, where we only consider the variable urank in the sample,
as min is not used by the program. Suppose S+ = {12, 17} and S− = ∅. Then,
the program hireRep2 in Fig. 2 correctly classifies S+ and S−. Alternatively,
suppose we consider the sets S+ = {12} and S− = {17}. Then, a potential
repair is hireRep3. If we were to add a new sample s3 = 15, there would not be
a repair for the sets S+ = {12, 17} and S− = {15}.

To implement digits, one needs to provide two components: (a) the pro-
cedure repair that produces programs consistent with labeled examples and
(b) a (sound) probabilistic inference algorithm to (i) check whether the synthe-
sized program satisfies post, and (ii) compute the probability P(P �= P ′). In the
following we assume that such components are given. The digits algorithm is
relatively simple, but we show that it enjoys interesting convergence properties.

4.1 Convergence of Digits

In this section, we use classic concepts from computational learning theory to
show that, under certain assumptions, the digits algorithm quickly converges
to good repaired programs when increasing the size n of the sample set.

Throughout this section we assume we are given a program P , a repair model
R, a precondition pre, and a postcondition post, such that there exists an optimal
solution P ∗ ∈ R to the corresponding probabilistic program repair problem. The
relationship between P , R, the programs which satisfy post, and P ∗ is visualized
in Fig. 3(a). Given two programs P ′ and P ′′, we write Er(P ′, P ′′) = P(P ′ �= P ′′)
to denote the distance (error) between the two programs; we introduce this
additional notation to make the connections to computational learning theory
more explicit.

To state our main theorem, we need to recall the concept of Vapnik–
Chervonenkis (VC) dimension from computational learning theory [18]. Intu-
itively, the VC dimension captures the expressiveness of a certain concept class;
in our setting, the concept class is the repair model R. Given a set of examples
S, we say that the repair model R shatters S iff, for every two sets S+ and S−

that partition S, there exists a program P1 ∈ R such that (i) for every s ∈ S+,
P1(s) = true, and (ii) for every s ∈ S−, P1(s) = false. The VC dimension of the
repair model R is the largest integer k such that there exists a set of examples
S with cardinality k that is shattered by R.

Example 2. Consider the class of linear separators in R
2. For any collection and

classification of three non-colinear points in R
2, it is possible to construct a linear

separator that is consistent with that classification; therefore, linear separators
shatter any set of size 3. However, no linear separator can shatter any set of
four points—for example, the points {(0, 0), (1, 1)} cannot be separated from
{(1, 0), (0, 1)}; Thus, the VC dimension of linear separators is 3.
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We define the function VCcost(ε, δ, k) = 1
ε (4 log2(

2
δ ) + 8k log2(

13
ε )) [7], which

we will use in the following theorems.

Lemma 1 (Error Bound of digits). If the repair model R has finite VC
dimension k, then, for every program P ′ ∈ R, function repair, bounds ε > 0
and δ > 0, and set of samples S drawn from pre of size n ≥ VCcost(ε, δ, k),
there exist sets S+ and S− that partition S such that, with probability ≥ 1 − δ,
we have that Er(P ′,repair(S+, S−)) ≤ ε.

Lemma 1 extends the classic notion of learnability of concept classes with finite
VC dimension [7] to probabilistic program repair. Intuitively, if a repair model
R has finite VC dimension, any function that correctly synthesizes from finitely
many samples in pre will get arbitrarily close to a target solution—including
P ∗—with polynomially many samples. Lemma 1, however, does not guarantee
that the synthesis algorithm will find a program consistent with the postcondi-
tion.

Intuitively, we need to ensure that there are enough programs close to P ∗

that satisfy post; to do so, we reason about how the error on the repair problem
propagates to the error on the postcondition. Specifically, for a program P̂ and
α > 0, we define the set Bα(P̂ ) = {P ′ ∈ R | Er(P̂ , P ′) ≤ α}; in other words,
Bα(P̂ ) exactly characterizes a ball of programs in the repair model that are close
to P̂ . Now, we define a notion of robustness of the postcondition with respect to
a program P̂ : we say that the pair (P̂ , post) (or just P̂ when post is clear from
context) is α-robust iff

∀P ′ ∈ Bα(P̂ ). {pre}P ′{post}

Figure 3(b) visualizes how the convergence of digits follows from α-robustness:
if P̂ is α-robust, then digits invoked on a sufficiently large set of samples S will,
with high probability, encounter a split S+, S− where every program consistent
with that split is contained in Bα(P̂ ). Thus if P ′ is the result of repair(S+, S−),
then Er(P̂ , P ′) ≤ α and P ′ satisfies post. We can now give our main theorem,
which formalizes this property.

Theorem 1 (Convergence of digits). Assume that there exist an α > 0 and
program P̂ such that (P̂ ,post) is α-robust. Let k be the VC dimension of repair
model R. For all bounds 0 < ε ≤ α and δ > 0, for every function repair and
n ≥ VCcost(ε, δ, k), with probability ≥ 1 − δ we have that digits enumerates
a program P ′ with Er(P̂ , P ′) ≤ ε and {pre}P ′{post}.

Corollary 1 (Convergence to P ∗). In particular, if P ∗ is α-robust, and ε, δ,
and n are constrained as above, and digits(P,pre,post, R, n) = P ′, then with
probability ≥ 1 − δ we have that P ′ �= ⊥, Er(P ∗, P ′) ≤ ε, and {pre}P ′{post}.

Theorem 1 and Corollary 1 represent the heart of the convergence result. How-
ever, there are two major technicalities.
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R

post

P ∗P
P ∗ P̂

Bα(P̂ )

P ′

)b()a(

Fig. 3. Visualization of aspects of digits: (a) Programs that satisfy post are a subset of
R. (b) Samples split R into 16 regions, each with a candidate program. If P̂ is α-robust,
with high probability digits finds P ′ close to P̂ ; if P̂ is close to P ∗, so is P ′.

First, P ∗ usually is not α-robust; in particular, if there exists P ′ ∈ Bα(P ∗)
with Er(P, P ′) = Er(P, P ∗)−α, then P ∗ is not actually optimal. In other words,
We can expect P ∗ to lie on the boundary of the set of correct programs, as in
Fig. 3(a). However, Theorem 1 still guarantees that with high probability, digits
will find a solution arbitrarily close to any α-robust program P̂ ∈ R; if there exist
α-robust programs that are close to the optimal solution, digits still converges
to the optimal solution. We refine this notion in the following Corollary.

Corollary 2 (Weak convergence to P ∗). For α > 0, let A ⊆ R be the set of
programs P̂ where (P̂ ,post) is α-robust. Let Δ = minP̂∈A{Er(P ∗, P̂ )}. If ε, δ,
and n are constrained as above, and digits(P,pre,post, R, n) = P ′, then with
probability ≥ 1−δ we have that P ′ �= ⊥, Er(P ∗, P ′) ≤ Δ+ε, and {pre}P ′{post}.
Extensions of Corollary 2 still provide strong results on the convergence of dig-
its: for example, if P ∗ is not α-robust, but there exists an α-robust P̂ with
P ∗ ∈ Bα(P̂ ), then one can show limα→∞ Δ = 0; in this case, running digits for
sufficiently large n preserves the desired convergence result from Corollary 1.

Second, an optimal P ∗ that satisfies post may not actually exist. Suppose,
for example, that for some event E, post is the expression P(E) > 0.5, and
when evaluated on the input program P , PP (E) = 0.4. Then for every repaired
program P ′ with PP ′(E) = 0.5 + ε, there may exist P ′′ that satisfies post with
PP ′′(E) = 0.5 + ε

2 and Er(P, P ′′) = Er(P, P ′) − ε
2 ; the limit of this process

could give us P ∗ with PP ∗(E) = 0.5, but now P ∗ no longer satisfies post. To
resolve this, we take P ∗ to be the infimum with respect to Er(P, ·) of the set
{P ′ ∈ R | {pre}P ′{post}}. Since this P ∗ does not satisfy post, it is trivially not
α-robust, and we rely on the result of Corollary 2.

The convergence of digits relies on the existence of α-robust programs.
Theorem 1—which follows directly from α-robustness—gives us a way to check,
with high probability, whether any α-robust programs exist: we can run the
algorithm for the number of iterations given by Theorem1 for arbitrarily small
δ and just see whether any solution for the program repair problem is found. If
not, we can infer that with probability 1 − δ no α-robust programs exist. The
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success of digits in our evaluation (Sect. 6) suggests, as we might expect, that
this would be a pathological case.

4.2 Efficient Search Strategy and Data Structure

The digits algorithm is fairly abstract and opens many doors to optimizations.
In this section, we present a concrete data structure for implementing digits
and show how it can be used to run the repair algorithm on smaller inputs
than with a näıve implementation.

We propose to use a binary trie of height n to describe all the possible ways
to partition the set of samples S = {s1, . . . , sn} into two sets S+ and S−. In the
trie, each node at depth i corresponds to splitting on the sample si; a 0-labeled
edge (resp. 1-labeled edge) from depth i to depth i+1 denotes that, in this path,
si ∈ S− (resp. si ∈ S+).

We use {0, 1}≤n to denote the set of strings of length at most n over the
alphabet {0, 1}. A binary trie for a set of samples S = {s1, . . . , sn} is a function
f : {0, 1}≤n �→ R ∪ {⊥} that maps strings to repaired programs. Given a string
b = b1 . . . bk ∈ {0, 1}≤n, let S+

b (resp. S−
b ) be the set of all si ∈ S such that

bi = true (resp. bi = false). We define f(b1 . . . bk) as repair(S+
b , S−

b ).

Fig. 4. Trie ex.

One of the many advantages of using this trie rep-
resentation is that it allows us to dynamically increase
the sample set size n without restarting the algorithm:
whenever all strings of length at most n have been
exhausted, simply sample an additional point and com-
pute f for all strings of length n+1. Thus, instead of fix-
ing the sample size a priori, the algorithm can run con-
tinuously, adding more samples as needed, until meeting
some stopping criteria.

Example 3. Figure 4 shows a trie of height 2 for
Example 1. Here only consider the samples s1 and s2. Each layer in the trie
corresponds to a sample, and each node is assigned a candidate program consis-
tent with the samples. For example, f(0, 1) = P1 is a program consistent with
S+ = {17} and S− = {12}. Note that P1 is also consistent with S+ = {} and
S− = {12}, thus f(0) can also be P1.

Solution Propagation. Our first optimization builds on the idea illustrated at
the end of Example 3 and propagates solutions down the trie, therefore reducing
the number of times we call the function repair and the average number of
samples on which the function is called.

In the following we assume that the function repair has the following prop-
erty (this assumption simplifies our presentation, but does not affect convergence
of our algorithm): given two sets of samples S+, S− and a new sample s, (i) if
repair(S+, S−) = P ′ and P ′(s) = true, then repair(S+ ∪ {s}, S−) = P ′, and
(ii) if repair(S+, S−) = P ′ and P ′(s) = false, then repair(S+, S− ∪{s}) = P ′.
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To compute the binary trie of height n, we also need to compute repairs for
nodes b1 . . . bk such that k < n, and therefore it would seem we have to call
the function repair 2n+1 − 1 times instead of the 2n required by the digits
algorithm. The following theorem allows us to avoid this problem.

Theorem 2 (Solution propagation). Given a string b1 . . . bk ∈ {0, 1}≤n of
length k < n, if f(b1 . . . bk) = P ′ and P ′(sk+1) = b, then f(b1 . . . bkb) = P ′.

Informally, the above theorem states that the program corresponding to a certain
node has to be already consistent with one of the two labeling of the following
examples. Therefore, even though there are 2n+1 − 1 nodes in the binary trie,
we only need to call the function repair for half of the 2i nodes at depth i, or
2n nodes total.

Additionally, the calls to repair have fewer constraints: while the digits
algorithm as presented in Algorithm 1 always calls the function repair on
exactly n samples, when using the trie structure with solution propagation,
repair is called only on i samples at depth i. One can show that the average
number of samples used by repair asymptotically approaches n − 1.

Conflict-Driven Pruning. While solution propagation is a good strategy
for reusing successful solutions, we can also learn from the instances in which
repair returns ⊥. In particular, let’s say that for some string b = b1 . . . bk ∈
{0, 1}≤n, we have that f(b1 . . . bk) = ⊥. Trivially, we know that for every
b1 . . . bkbk+1 . . . bk+j ∈ {0, 1}≤n f(b1 . . . bkbk+1 . . . bk+j) = ⊥. Using this idea,
we can prune the search and avoid calling the function repair on partitions
that are trivially going to fail. More generally, when a failure occurs, we can
identify a subset of the labelings that caused the failure and use it to reduce the
set of explored nodes.

Theorem 3 (Conflict-driven pruning). Let b = b1, . . . , bk. Let b′ be a sub-
sequence of b, e.g., b2b10b11b20. If repair(S+

b′ , S
−
b′ ) = ⊥, then f(b1 . . . bk) = ⊥.

While detecting what subsets of the samples caused the failure can be hard, this
theorem can be used to vastly reduce the number of times the function repair
is called. In our implementation, we will use the unsatisfiable cores produced by
the smt solver to compute the subsets of the samples that induce failures.

5 Implementation

We implemented an instantiation of the digits algorithm in Python. The digits
algorithm is abstract and modular. Therefore, to implement it we need to provide
a number of components: a repair model R, the procedure repair that produces
programs consistent with labeled examples, and a probabilistic inference algo-
rithm to (i) check whether the synthesized program respects the postcondition,
(ii) compute the semantic difference between the synthesized program P ′ and
the original program P . In this section, we describe the concrete choices of these
components for our implementation.
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Repair Model. Since we are mostly interested in repairing machine learning
classifiers, a natural repair model R is only allowing modifications to real-valued
constants appearing in the program. These constants are essentially the weights
of the classifier.

Formally, let P be the program we are trying to repair, and let c1, . . . , cn

be all of the constants appearing in P . For simplicity, assume all constants
are different. Given constants d1, . . . , dk, we write P [c1/d1, . . . , cn/dn] to denote
the program in which each constant ci has been replaced with the constant di.
Finally, the set of allowed repairs is defined as

R = {P [c1/d1, . . . , cn/dn] | d1, . . . , dn ∈ R}.

We only consider programs containing linear real arithmetic expressions. As
such, our repair model can be viewed as a set of unions of polytopes with a
bounded number of faces (bounded by the size of the program). It can be shown
such polytopes have finite VC dimension [25], and therefore, so does our repair
model.

Repair Implementation. The implementation of repair(S+, S−) follows a
sketch-like approach [26], where we encode the program and the samples as a
formula whose solution is a filling of the holes defined by the repair model R.

Let P be the program we are trying to repair, and let c1, . . . , cn be all of
the constants appearing in P , as discussed above. We will first create a new
program PR = P [c1/h1, . . . , cn/hn], where h1, . . . , hn are fresh variables that do
not appear in P . We call hi holes. We now encode the program PR as a formula
as follows, using the function enc. To simplify the encoding, and without loss
of generality, we assume that PR is in static single assignment (ssa) form.

enc(v ← E) � v = �E� enc(P1 P2) � enc(P1) ∧ enc(P2)

enc(if B then P1 else P2) � (�B� ⇒ enc(P1)) ∧ (¬�B� ⇒ enc(P2))

where �B� is the denotation of an expression, which, in our setting, is a direct
translation to a logical statement. For example, �x + y > 0� � x + y > 0.

Once we have encoded the program PR as a formula ϕ, for each sample
si ∈ S+, we will construct the formula

ϕi � ∃V. ϕ[v I/si] ∧ vr = true

where V is the set of variables of P , which do not include the introduced holes
h1, . . . , hn. Similarly, for each sample si ∈ S−, we will construct the formula

ϕi � ∃V. ϕ[v I/si] ∧ vr = false

Finally, a model to the formula
∧

i ϕi is an assignment to the holes h1, . . . , hn

that corresponds to a program in the repair model R that correctly labels the
positive and negative examples. Specifically, repair(S+, S−) finds a model m |=∧

i ϕi and returns the program PR[h1/m(h1), . . . , hn/m(hn)], where m(hi) is the
value of hi in the model m. If

∧
i ϕi is unsatisfiable, then repair returns ⊥.
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Theorem 4 (Soundness and completeness of repair). Suppose we are
given a program P and the repair model R defined above, along with two sets of
samples S+ and S−. Then, if repair(S+, S−) returns a program P ′, P ′ must
appear in R and correctly classifies S+ and S−. Otherwise, there is no program
P ′ ∈ R that correctly classifies S+ and S−.

Probabilistic Inference. In our implementation, this component can be instan-
tiated with any probabilistic inference tool—e.g., psi [15]. We use the tool
FairSquare [4], which is also written in Python and has already been used to
verify fairness properties of decision-making programs. Moreover, unlike several
other tools, the inference algorithm used in FairSquare is sound and complete
and therefore meets the criteria of the digits algorithm.

To speed up the search, we use sampling to approximate the probabilistic
inference and quickly process obvious queries. At the end of the algorithm we
use FairSquare to verify the output of digits.

6 Evaluation

In this section, we evaluate the effectiveness of our algorithm on benchmarks
obtained by training machine learning models on an online dataset [1]. First, we
show that our algorithm can produce good repairs on many of the benchmarks.
Second, we illustrate the efficacy of the optimizations discussed in Sect. 4.2.

Benchmarks. We used an online dataset [1] comprised of 14 demographic fea-
tures for over 30,000 individuals to generate a number of classifiers and a prob-
abilistic precondition. The precondition uses a graph structure represented as a
probabilistic program: at each node, there is an inferred Gaussian distribution
for a variable, and the edges of the graph induce correlations between variables.

We generated support vector machines with linear kernels (svms) and deci-
sion trees (dts) to classify high- versus low-income individuals using the weka
data mining software [2] until we obtained 3 svms and 3 dts that did not satisfy
a probabilistic postcondition describing group fairness. In particular, we used
the following postcondition:

P(high income | female)
P(high income | male)

≥ 0.85

The learned models are small and employ at most three features. Most of the
generated models violated the postcondition because they were strongly influ-
enced by a particular feature, capital gain, which was highly correlated with
gender in the dataset.

The combined size of the precondition and decision-making program ranges
from 20 to 100 lines of code. Though this is a much smaller scale than industrial
applications of machine learning, the repair problems are highly non-trivial.



Repairing Decision-Making Programs Under Uncertainty 195

Effectiveness of Algorithm. Table 1 details the performance of digits on our
suite of benchmarks that were given 600 s to perform repair. For example, on
the dt labeled dt16, the table shows that in 584 s, digits was able to enumerate
all possible labelings for a set of 50 samples (the depth of the trie), and found
a solution satisfying the postcondition that differs from the original program
with probability 0.098. Despite the fact that there are 250 ≈ 1015 such labelings,
digits needed only to check 53,255 of these possibilities (nodes in the trie):
among these possibilities, digits calls repair for just 1,903 of the labelings
that have a consistent solution, avoiding 26,627 (93%) potential calls to repair
using solution propagation—each of these also avoids a call to the verification
oracle. Additionally, digits calls repair for just 1,064 of the labelings that are
inconsistent and return ⊥, avoiding 23,661 (95%) potential calls to repair that
would also return ⊥ using conflict-driven pruning.

It is visibly apparent that solution propagation and conflict-driven pruning
save many synthesis and verification queries. However, savings from conflict-
driven pruning are only possible once the depth of the search (the number of
constraints) is large enough that many labelings are inconsistent—when the
number of constraints exceeds the VC dimension of the repair model. Therefore,
we expect the instances with a more expressive repair model to perform worse.

Accordingly, Table 1 includes multiple results for each of the svms, where the
number of holes is varied: the svms compare an expression c0 + c1x1 + c2x2 + . . .
to 0, where each ci is replaced with a hole. The variants with fewer holes are

Table 1. Results of running digits on benchmarks with a 600 s best-effort period.
Solution propagation, conflict-driven pruning, and cost minimization are used for all.

Name Holes Result of digits Trie details

Samples Time (s) Sem. diff. Nodes Consistent Soln. prop. Incon. Unsat pruned

dt16 5 50 584 0.098 53, 255 1, 903 26, 627 1, 064 23, 661

dt44 3 91 553 0.03 68, 051 1, 741 34, 025 418 31, 867

dt4 2 79 594 0.14 94, 733 1, 746 47, 366 707 44, 914

svm3 4 16 561 0.067 7, 015 1, 000 3, 507 338 2, 170

3 23 587 0.0615 17, 977 1, 600 8, 988 388 7, 001

2 91 582 0.0455 123, 935 1, 980 61, 967 247 59, 741

1 661 599 0.0595 437, 583 662 218, 791 1, 305 216, 825

svm4 5 10 470 0.197 1, 523 508 761 100 154

4 13 507 0.204 4, 599 1, 018 2, 299 205 1, 077

3 22 559 0.195 14, 885 1, 424 7, 442 406 5, 613

2 83 598 0.04 92, 495 1, 674 46, 247 217 44, 357

1 628 600 0.044 395, 013 629 197, 506 1, 228 195, 650

svm5 6 8 410 0.1305 507 240 253 11 3

5 10 568 0.122 1, 693 632 846 64 151

4 13 559 0.1025 4, 587 1, 018 2, 293 194 1, 082

3 23 575 0.096 15, 361 1, 348 7, 680 332 6, 001

2 88 583 0.056 103, 649 1, 736 51, 824 224 49, 865

1 598 599 0.067 358, 203 599 179, 101 1, 176 177, 327
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generated by removing the holes for coefficients of xi in increasing order of
the mutual information between xi and gender, as per the precondition. The
last remaining hole allows only for the constant offset c0 to be changed. The
table illustrates the trade-off between expressivity and performance: though the
instances with more holes have a strictly larger repair model and thus have the
potential to contain solutions with better semantic difference, the search is slow,
and the trie cannot enumerate as large a set of samples: the synthesis queries
are over more variables and are more complex; more solutions are satisfiable, so
conflict-driven pruning does not provide the same advantages. In general, as the
number of holes decreases, the best solution has improving semantic difference
because the trie is explored deeper. This trend continues until the only hole that
remains is the constant offset, when the repair model is no longer expressive
enough to capture solutions with such a minimal difference.

Optimizations. Running digits as a trie allows solution propagation to avoid
a synthesis query for half of all explored nodes; additionally, when the queries are
performed, they are over smaller sets of constraints. Figure 5 (Left) illustrates
for the benchmark dt44 the time saved by using the trie structure instead of
explicitly enumerating the 2n possible labelings for a sample set of size n: each
point on the red line (labeled without solution propagation) indicates the amount
of time necessary to explicitly compute the 2n possibilities, while the blue line
(labeled with solution propagation) denotes the total time of exploring the trie
up to depth n. The plot illustrates that a run of digits using the trie structure’s
solution propagation provides exponential savings in the size of the sample sets.

Fig. 5. (Left) efficiency of solution propagation; (Right) efficacy of cost heuristic and
convergence of variance.

Syntactic Cost Minimization. Recall that our repair model consists of mod-
ifying the value of any real-valued constants in the program. As a heuristic
to quickly guide the search to better solutions, we introduce a notion of the
syntactic cost of a candidate repaired program. Specifically, if the original val-
ues of holes h1, . . . , hn are the values c1, . . . , cn, then we compute the cost as
∑

i

∣
∣
∣hi−ci

ci

∣
∣
∣; whenever we submit an smt query for a set of constraints, we require

that it approximately minimizes this cost function. The intuition is that since
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the behaviors of these programs are entirely determined by their constants’ val-
ues, the amount that these values are changed is correlated with the semantic
difference. Syntactic cost minimization is utilized in all our prior results.

Figure 5 (Right) contains the results of running digits on dt44 for 20 dif-
ferent random seeds using cost minimization, and the same 20 different random
seeds without using cost minimization. The solid lines denote the median value
for the best semantic difference across the 20 runs as a function of the depth
reached by the trie structure; the transparent region denotes the 90% confidence
interval of the best semantic difference across all runs. It illustrates two concepts:
first, that the use of the cost minimization heuristic allows for digits to converge
to better solutions faster. Second, it shows that while the variance between the
best solutions across the different runs is high for a small number of samples,
this variance decreases as the number of samples increases, suggesting digits is
robust with respect to the exact values of the sampled points.

7 Related Work

Program Repair and Synthesis. Automated repair has been studied in the
non-probabilistic setting [10,17,20,22,27]. Closest to our work is the tool Qlose,
which attempts to repair a program to match a set of test cases while attempting
to minimize a mixture of syntactic and semantic distances between the original
and repaired versions [10]. The approach in Qlose itself cannot be directly lifted
to probabilistic programs and postconditions because it relies on a finite set of
input-output examples—it finds candidates for repairs by making calls to an smt
solver with the hard constraint that the examples should be classified correctly.
In our setting, the output of the optimal repair on the samples is not known a
priori and our goal is to ultimately find a program that satisfies a probabilistic
postcondition over an infinite set of inputs. Several of Qlose’s general principles
do carry over: namely, using a sketch-based approach [26] to fix portions of the
code and minimizing semantic changes.

In probabilistic model checking, a number of works have addressed the model
repair problem, e.g., [6,9]. In this work, the idea is to modify transition probabil-
ities in finite-state Markov Decision Processes to satisfy a probabilistic temporal
property. Our setting is quite different, in that we are modifying a program
manipulating real-valued variables to satisfy a probabilistic postcondition.

Our problem of repairing probabilistic programs is closely related to the
synthesis of probabilistic programs. The technique of smoothed proof search [8]
approximates a combination of functional correctness and maximization of an
expected value as a smooth, continuous function. It then uses numerical meth-
ods to find a local optimum of this function, which translates to a synthesized
program that is likely to be correct and locally maximal. Unlike our approach,
smoothed proof search lacks formal convergence guarantees.

Stochastic Satisfiability. Our problem is closely related to, and subsumes,
the problem of e-majsat [21], a special case of stochastic satisfiability
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(ssat) [24] and a means for formalizing probabilistic planning problems.
e-majsat is of nppp complexity. In e-majsat, a formula has two sets of propo-
sitional variables, a deterministic and a probabilistic set. The goal is to find an
assignment of deterministic variables such that the probability that the formula
is satisfied is above a given threshold. Our setting is similar, but we operate over
formulas in linear real arithmetic and have an additional optimization objective
stipulating semantic closeness. The deterministic variables in our setting are the
holes defining the repair; the probabilistic variables are program inputs.

Algorithmic Fairness. Concerns of algorithmic fairness are recent, and there
are many competing fairness definitions [11–14,16]. Approaches to enforcing fair-
ness in machine-learned classifiers include altering the data to remove corre-
lations with protected attributes [13] and imposing a fairness definition as a
requirement of the learning algorithm [16]. However, the general problem pre-
sented in this paper of modifying an existing program (be it learned or manually
constructed) to meet a quantitative probabilistic property is novel.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant numbers 1566015 and 1652140.

A Proofs

Proof of Lemma 1. We cite the seminal result from [7] that if a well-behaved1

concept class C has VC dimension k, then for any 0 < ε, δ < 1 and sample
size at least max{ 4

ε log2
2
δ , 8k

ε log2
13
ε } drawn from probability distribution D

and labeled by their classification by the target concept c∗ ∈ C, any concept
c ∈ C consistent with those samples has errorD(c) ≤ ε with probability at least
1− δ. Here, errorD(c) is the probability that a sample drawn from D is classified
differently by c∗ versus c.

Our program model satisfies the benign measure-theoretic restriction of well-
behavior since it is equivalent to arbitrary collections of polytopes; therefore, for
any P ′ ∈ R, some labeling of the ≥ 4

ε log2
2
δ + 8k

ε log2
13
ε samples is consistent

with P ′, and therefore the theorem from [7] applies.

Proof of Theorem 1. By Lemma 1, we know that with probability ≥ 1 − δ,
one of the results P ′ = repair(S+, S−) will have Er(P̂ , P ′) ≤ ε. Since (P̂ , post)
is α-robust and ε ≤ α, then P ′ ∈ Bα(P̂ ), and so {pre}P ′{post} holds.

Proof of Corollary 1. This follows immediately from Theorem 1 by letting
P̂ = P ∗.

1 See [7] Appendix 1 for a discussion of well-behaved concept classes.
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Proof of Corollary 2. Observe that the Er function respects the triangle
inequality, i.e. Er(P1, P2) ≤ Er(P1, P3) + Er(P3, P2).

Er(P1, P2) = P(P1 �= P2)
= P(P1 �= P2 ∧ P1 �= P3) + P(P1 �= P2 ∧ P3 = P1)
= P(P1 �= P2 ∧ P1 �= P3) + P(P1 �= P2 ∧ P3 �= P2)
≤ P(P1 �= P3) + P(P3 �= P2)
= Er(P1, P3) + Er(P3, P2)

Thus if P̂ is α-robust and Er(P ∗, P̂ ) = Δ, we know P ′ has Er(P̂ , P ′) ≤ ε by
Theorem 1, and the triangle inequality gives us that Er(P ∗, P ′) ≤ Δ + ε.

Proof of Theorem 2. P ′ is consistent with the first k + 1 labeled samples if
and only if it is consistent with the k+1-th sample as well as the first k samples.

Proof of Theorem 3. Assume towards a contradiction that f(b1 . . . bk) �= ⊥,
but a subsequence b’ has repair(S+

b′ , S
−
b′) = ⊥. Then adding constraints, which

reduces the set of solutions, introduced a new solution.
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Abstract. Markov decision processes (MDPs) are standard models for
probabilistic systems with non-deterministic behaviours. Long-run aver-
age rewards provide a mathematically elegant formalism for expressing
long term performance. Value iteration (VI) is one of the simplest and
most efficient algorithmic approaches to MDPs with other properties,
such as reachability objectives. Unfortunately, a naive extension of VI
does not work for MDPs with long-run average rewards, as there is no
known stopping criterion. In this work our contributions are threefold.
(1) We refute a conjecture related to stopping criteria for MDPs with
long-run average rewards. (2) We present two practical algorithms for
MDPs with long-run average rewards based on VI. First, we show that
a combination of applying VI locally for each maximal end-component
(MEC) and VI for reachability objectives can provide approximation
guarantees. Second, extending the above approach with a simulation-
guided on-demand variant of VI, we present an anytime algorithm that
is able to deal with very large models. (3) Finally, we present experi-
mental results showing that our methods significantly outperform the
standard approaches on several benchmarks.

1 Introduction

The analysis of probabilistic systems arises in diverse application contexts of
computer science, e.g. analysis of randomized communication and security pro-
tocols, stochastic distributed systems, biological systems, and robot planning,
to name a few. The standard model for the analysis of probabilistic systems
that exhibit both probabilistic and non-deterministic behaviour are Markov deci-
sion processes (MDPs) [How60,FV97,Put94]. An MDP consists of a finite set
of states, a finite set of actions, representing the non-deterministic choices, and
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R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 201–221, 2017.
DOI: 10.1007/978-3-319-63387-9 10



202 P. Ashok et al.

a transition function that given a state and an action gives the probability dis-
tribution over the successor states. In verification, MDPs are used as models
for e.g. concurrent probabilistic systems [CY95] or probabilistic systems operat-
ing in open environments [Seg95], and are applied in a wide range of applica-
tions [BK08,KNP11].

Long-Run Average Reward. A payoff function in an MDP maps every infinite
path (infinite sequence of state-action pairs) to a real value. One of the most
well-studied and mathematically elegant payoff functions is the long-run average
reward (also known as mean-payoff or limit-average reward, steady-state reward
or simply average reward), where every state-action pair is assigned a real-valued
reward, and the payoff of an infinite path is the long-run average of the rewards
on the path [FV97,Put94]. Beyond the elegance, the long-run average reward is
standard to model performance properties, such as the average delay between
requests and corresponding grants, average rate of a particular event, etc. There-
fore, determining the maximal or minimal expected long-run average reward of
an MDP is a basic and fundamental problem in the quantitative analysis of
probabilistic systems.

Classical Algorithms. A strategy (also known as policy or scheduler) in an MDP
specifies how the non-deterministic choices of actions are resolved in every state.
The value at a state is the maximal expected payoff that can be guaranteed
among all strategies. The values of states in MDPs with payoff defined as the
long-run average reward can be computed in polynomial-time using linear pro-
gramming [FV97,Put94]. The corresponding linear program is quite involved
though. The number of variables is proportional to the number of state-action
pairs and the overall size of the program is linear in the number of transitions
(hence potentially quadratic in the number of actions). While the linear program-
ming approach gives a polynomial-time solution, it is quite slow in practice and
does not scale to larger MDPs. Besides linear programming, other techniques are
considered for MDPs, such as dynamic-programming through strategy iteration
or value iteration [Put94, Chap. 9].

Value Iteration. A generic approach that works very well in practice for MDPs
with other payoff functions is value iteration (VI). Intuitively, a particular one-
step operator is applied iteratively and the crux is to show that this iterative
computation converges to the correct solution (i.e. the value). The key advan-
tages of VI are the following:

1. Simplicity. VI provides a very simple and intuitive dynamic-programming
algorithm which is easy to adapt and extend.

2. Efficiency. For several other payoff functions, such as finite-horizon rewards
(instantaneous or cumulative reward) or reachability objectives, applying the
concept of VI yields a very efficient solution method. In fact, in most well-
known tools such as PRISM [KNP11], value iteration performs much better
than linear programming methods for reachability objectives.
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3. Scalability. The simplicity and flexibility of VI allows for several improve-
ments and adaptations of the idea, further increasing its performance and
enabling quick processing of very large MDPs. For example, when considering
reachability objectives, [PGT03] present point-based value-iteration (PBVI),
applying the iteration operator only to a part of the state space, and [MLG05]
introduce bounded real-time dynamic programming (BRTDP), where again
only a fraction of the state space is explored based on partial strategies.
Both of these approaches are simulation-guided, where simulations are used
to decide how to explore the state space. The difference is that the former
follows an offline computation, while the latter is online. Both scale well to
large MDPs and use VI as the basic idea to build upon.

Value Iteration for Long-Run Average Reward. While VI is standard for reach-
ability objectives or finite-horizon rewards, it does not work for general MDPs
with long-run average reward. The two key problems pointed out in [Put94,
Sects. 8.5, 9.4] are as follows: (a) if the MDP has some periodicity property,
then VI does not converge; and (b) for general MDPs there are neither bounds
on the speed of convergence nor stopping criteria to determine when the itera-
tion can be stopped to guarantee approximation of the value. The first problem
can be handled by adding self-loop transitions [Put94, Sect. 8.5.4]. However, the
second problem is conceptually more challenging, and a solution is conjectured
in [Put94, Sect. 9.4.2].

Our Contribution. In this work, our contributions are related to value iteration
for MDPs with long-run average reward, they range from conceptual clarification
to practical algorithms and experimental results. The details of our contributions
are as follows.

– Conceptual clarification. We first present an example to refute the conjecture
of [Put94, Sect. 9.4.2], showing that the approach proposed there does not
suffice for VI on MDPs with long-run average reward.

– Practical approaches. We develop, in two steps, practical algorithms instan-
tiating VI for approximating values in MDPs with long-run average reward.
Our algorithms take advantage of the notion of maximal end-components
(MECs) in MDPs. Intuitively, MECs for MDPs are conceptually similar to
strongly connected components (SCCs) for graphs and recurrent classes for
Markov chains. We exploit these MECs to arrive at our two methods:
1. The first variant applies VI locally to each MEC in order to obtain an

approximation of the values within the MEC. After the approximation in
every MEC, we apply VI to solve a reachability problem in a modified
MDP with collapsed MECs. We show that this simple combination of VI
approaches ensures guarantees on the approximation of the value.

2. We then build on the approach above to present a simulation-guided
variant of VI. In this case, the approximation of values for each MEC
and the reachability objectives are done at the same time using VI. For
the reachability objective a BRDTP-style VI (similar to [BCC+14]) is
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applied, and within MECs VI is applied on-demand (i.e. only when there
is a requirement for more precise value bounds). The resulting algorithm
furthermore is an anytime algorithm, i.e. it can be stopped at any time
and give an upper and lower bounds on the result.

– Experimental results. We compare our new algorithms to the state-of-the-
art tool MultiGain [BCFK15] on various models. The experiments show that
MultiGain is vastly outperformed by our methods on nearly every model.
Furthermore, we compare several variants of our methods and investigate the
different domains of applicability.

In summary, we present the first instantiation of VI for general MDPs with long-
run average reward. Moreover, we extend it with a simulation-based approach to
obtain an efficient algorithm for large MDPs. Finally, we present experimental
results demonstrating that these methods provide significant improvements over
existing ones.

Further Related Work. There is a number of techniques to compute or approxi-
mate the long-run average reward in MDPs [Put94,How60,Vei66], ranging from
linear programming to value iteration to strategy iteration. Symbolic and explicit
techniques based on strategy iteration are combined in [WBB+10]. Further, the
more general problem of MDPs with multiple long-run average rewards was first
considered in [Cha07], a complete picture was presented in [BBC+14,CKK15]
and partially implemented in [BCFK15]. The extension of our approach to
multiple long-run average rewards, or combination of expectation and vari-
ance [BCFK13], are interesting directions for future work. Finally, VI for MDPs
with guarantees for reachability objectives was considered in [BCC+14,HM14].

Proofs and supplementary material can be found in [ACD+17].

2 Preliminaries

2.1 Markov Decision Processes

A probability distribution on a finite set X is a mapping ρ : X �→ [0, 1], such that∑
x∈X ρ(x) = 1. We denote by D(X) the set of all probability distributions on

X. Further, the support of a probability distribution ρ is denoted by supp(ρ) =
{x ∈ X | ρ(x) > 0}.

Definition 1 (MDP). A Markov decision processes (MDP) is a tuple of the
form M = (S, sinit,Act ,Av,Δ, r), where S is a finite set of states, sinit ∈ S is
the initial state, Act is a finite set of actions, Av : S → 2Act assigns to every
state a set of available actions, Δ : S × Act → D(S) is a transition function
that given a state s and an action a ∈ Av(s) yields a probability distribution over
successor states, and r : S ×Act → R

≥0 is a reward function, assigning rewards
to state-action pairs.
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For ease of notation, we write Δ(s, a, s′) instead of Δ(s, a)(s′).
An infinite path ρ in an MDP is an infinite word ρ = s0a0s1a1 · · · ∈ (S ×

Act)ω, such that for every i ∈ N, ai ∈ Av(si) and Δ(si, ai, si+1) > 0. A finite
path w = s0a0s1a1 . . . sn ∈ (S × Act)∗ × S is a finite prefix of an infinite path.

A strategy on an MDP is a function π : (S × Act)∗ × S → D(Act),
which given a finite path w = s0a0s1a1 . . . sn yields a probability distribution
π(w) ∈ D(Av(sn)) on the actions to be taken next. We call a strategy memoryless
randomized (or stationary) if it is of the form π : S → D(Act), and memoryless
deterministic (or positional) if it is of the form π : S → Act . We denote the set
of all strategies of an MDP by Π, and the set of all memoryless deterministic
strategies by ΠMD. Fixing a strategy π and an initial state s on an MDP M
gives a unique probability measure P

π
M,s over infinite paths [Put94, Sect. 2.1.6].

The expected value of a random variable F is defined as Eπ
M,s[F ] =

∫
F dPπ

M,s.
When the MDP is clear from the context, we drop the corresponding subscript
and write P

π
s and E

π
s instead of Pπ

M,s and E
π
M,s, respectively.

End Components. A pair (T,A), where ∅ �= T ⊆ S and ∅ �= A ⊆ ⋃
s∈T Av(s),

is an end component of an MDP M if (i) for all s ∈ T, a ∈ A ∩ Av(s) we
have supp(Δ(s, a)) ⊆ T , and (ii) for all s, s′ ∈ T there is a finite path w =
sa0 . . . ans′ ∈ (T × A)∗ × T , i.e. w starts in s, ends in s′, stays inside T and
only uses actions in A.1 Intuitively, an end component describes a set of states
for which a particular strategy exists such that all possible paths remain inside
these states and all of those states are visited infinitely often almost surely. An
end component (T,A) is a maximal end component (MEC) if there is no other
end component (T ′, A′) such that T ⊆ T ′ and A ⊆ A′. Given an MDP M, the
set of its MECs is denoted by MEC(M). With these definitions, every state of
an MDP belongs to at most one MEC and each MDP has at least one MEC.

Using the concept of MECs, we recall the standard notion of a MEC quo-
tient [dA97]. To obtain this quotient, all MECs are merged into a single repre-
sentative state, while transitions between MECs are preserved. Intuitively, this
abstracts the MDP to its essential infinite time behaviour.

Definition 2 (MEC quotient [dA97]). Let M = (S, sinit,Act ,Av,Δ, r) be an
MDP with MECs MEC(M) = {(T1, A1), . . . , (Tn, An)}. Further, define MECS =⋃n

i=1 Ti as the set of all states contained in some MEC. The MEC quotient of
M is defined as the MDP M̂ = (Ŝ, ŝinit, Âct , Âv, Δ̂, r̂), where:

– Ŝ = S \ MECS ∪ {ŝ1, . . . , ŝn},
– if for some Ti we have sinit ∈ Ti, then ŝinit = ŝi, otherwise ŝinit = sinit,
– Âct = {(s, a) | s ∈ S, a ∈ Av(s)},

1 This standard definition assumes that actions are unique for each state, i.e. Av(s) ∩
Av(s′) = ∅ for s �= s′. The usual procedure of achieving this in general is to replace
Act by S × Act and adapting Av, Δ, and r appropriately.
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– the available actions Âv are defined as

∀s ∈ S \ MECS . Âv(s) = {(s, a) | a ∈ Av(s)}
∀1 ≤ i ≤ n. Âv(ŝi) = {(s, a) | s ∈ Ti ∧ a ∈ Av(s) \ Ai},

– the transition function Δ̂ is defined as follows. Let ŝ ∈ Ŝ be some state in the
quotient and (s, a) ∈ Av(ŝ) an action available in ŝ. Then

Δ̂(ŝ, (s, a), ŝ′) =

{∑
s′∈Tj

Δ(s, a, s′) if ŝ′ = ŝj ,

Δ(s, a, ŝ′) otherwise, i.e. ŝ′ ∈ S \ MECS .

For the sake of readability, we omit the added self-loop transitions of the form
Δ(ŝi, (s, a), ŝi) with s ∈ Ti and a ∈ Ai from all figures.

– Finally, for ŝ ∈ Ŝ, (s, a) ∈ Âv(ŝ), we define r̂(s, (s, a)) = r(s, a).

Furthermore, we refer to ŝ1, . . . , ŝn as collapsed states and identify them with
the corresponding MECs.

Example 1. Figure 1a shows an MDP with three MECs, Â = ({s2}, {a}), B̂ =
({s3, s4}, {a}), Ĉ = ({s5, s6}, {a})). Its MEC quotient is shown in Fig. 1b. 
Remark 1. In general, the MEC quotient does not induce a DAG-structure, since
there might be probabilistic transitions between MECs. Consider for example the
MDP obtained by setting Δ(s2, b, s4) = {s1 �→ 1

2 , s2 �→ 1
2} in the MDP of Fig. 1a.

Its MEC quotient then has Δ̂(Â, (s2, b)) = {s1 �→ 1
2 , B̂ �→ 1

2}.

Remark 2. The MEC decomposition of an MDP M, i.e. the computation of
MEC(M), can be achieved in polynomial time [CY95]. For improved algorithms
on general MDPs and various special cases see [CH11,CH12,CH14,CL13].
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(a) An MDP with three MECs.

s1

̂C
̂B

̂A

(s1, a),0
0.001

0.999
(s1, b),0

(s2, b),5

(b) The MEC quotient.

Fig. 1. An example of how the MEC quotient is constructed. By a, r we denote that
the action a yields a reward of r.
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Definition 3 (MEC restricted MDP). Let M be an MDP and (T,A) ∈
MEC(M) a MEC of M. By picking some initial state s′

init ∈ T , we obtain the
restricted MDP M′ = (T, s′

init, A,Av′,Δ′, r′) where

– Av′(s) = Av(s) ∩ A for s ∈ T ,
– Δ′(s, a, s′) = Δ(s, a, s′) for s, s′ ∈ T , a ∈ A, and
– r′(s, a) = r(s, a) for s ∈ T , a ∈ A.

Classification of MDPs. If for some MDP M, (S,Act) is a MEC, we call the
MDP strongly connected. If it contains a single MEC plus potentially some tran-
sient states, it is called (weakly) communicating. Otherwise, it is called multi-
chain [Put94, Sect. 8.3].

For a Markov chain, let Δn(s, s′) denote the probability of going from the
state s to state s′ in n steps. The period p of a pair s, s′ is the greatest common
divisor of all n’s with Δn(s, s′) > 0. The pair s, s′ is called periodic if p > 1
and aperiodic otherwise. A Markov chain is called aperiodic if all pairs s, s′ are
aperiodic, otherwise the chain is called periodic. Similarly, an MDP is called
aperiodic if every memoryless randomized strategy induces an aperiodic Markov
chain, otherwise the MDP is called periodic.

Long-Run Average Reward. In this work, we consider the (maximum) long-run
average reward (or mean-payoff ) of an MDP, which intuitively describes the
(maximum) average reward per step we expect to see when simulating the MDP
for time going to infinity. Formally, let Ri be a random variable, which for an
infinite path ρ = s0a0s1a1 . . . returns Ri(ρ) = r(si, ai), i.e. the reward observed
at step i ≥ 0. Given a strategy π, the n-step average reward then is

vπ
n(s) := E

π
s

(
1
n

n−1∑

i=0

Ri

)

,

and the long-run average reward of the strategy π is

vπ(s) := lim inf
n→∞ vπ

n .

The lim inf is used in the definition, since the limit may not exist in general for
an arbitrary strategy. Nevertheless, for finite MDPs the optimal limit-inferior
(also called the value) is attained by some memoryless deterministic strategy
π∗ ∈ ΠMD and is in fact the limit [Put94, Theorem 8.1.2].

v(s) := sup
π∈Π

lim inf
n→∞ E

π
s

(
1
n

n−1∑

i=0

Ri

)

= sup
π∈Π

vπ(s) = max
π∈ΠMD

vπ(s) = lim
n→∞ vπ∗

n .

An alternative well-known characterization we use in this paper is

v(s) = max
π∈ΠMD

∑

M∈MEC

P
π
s [♦�M ] · v(M), (1)

where ♦�M denotes the set of paths that eventually remain forever within M
and v(M) is the unique value achievable in the MDP restricted to the MEC M .
Note that v(M) does not depend on the initial state chosen for the restriction.
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Algorithm 1. ValueIteration

Input: MDP M = (S, sinit,Act ,Av, Δ, r), precision ε > 0
Output: w, s.t. |w − v(sinit)| < ε
1: t0(·) ← 0, n ← 0.
2: while stopping criterion not met do
3: n ← n + 1
4: for s ∈ S do
5: tn(s) = maxa∈Av(s)

(
r(s, a) +

∑
s′∈S Δ(s, a, s′)tn−1(s

′)
)

6: return 1
n
tn(sinit)

3 Value Iteration Solutions

3.1 Naive Value Iteration

Value iteration is a dynamic-programming technique applicable in many con-
texts. It is based on the idea of repetitively updating an approximation of the
value for each state using the previous approximates until the outcome is precise
enough. The standard value iteration for average reward [Put94, Sect. 8.5.1] is
shown in Algorithm1.

First, the algorithm sets t0(s) = 0 for every s ∈ S. Then, in the inner
loop, the value tn is computed from the value of tn−1 by choosing the action
which maximizes the expected reward plus successor values. This way, tn in fact
describes the optimal expected n-step total reward

tn(s) = max
π∈ΠMD

E
π
s

(
n−1∑

i=0

Ri

)

= n · max
π∈ΠMD

vπ
n(s).

Moreover, tn approximates the n-multiple of the long-run average reward.

Theorem 1 [Put94, Theorem 9.4.1]. For any MDP M and any s ∈ S we have
limn→∞ 1

n tn(s) = v(s) for tn obtained by Algorithm1.

Stopping Criteria. The convergence property of Theorem 1 is not enough to
make the algorithm practical, since it is not known when to stop the approx-
imation process in general. For this reason, we discuss stopping criteria which
describe when it is safe to do so. More precisely, for a chosen ε > 0 the stopping
criterion guarantees that when it is met, we can provide a value w that is ε-close
to the average reward v(sinit).

We recall a stopping criterion for communicating MDPs defined and proven
correct in [Put94, Sect. 9.5.3]. Note that in a communicating MDP, all states have
the same average reward, which we simply denote by v. For ease of notation,
we enumerate the states of the MDP S = {s1, . . . , sn} and treat the function
tn as a vector of values tn = (tn(s1), . . . , tn(sn)). Further, we define the relative
difference of the value iteration iterates as Δn := tn − tn−1 and introduce the
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span semi-norm, which is defined as the difference between the maximum and
minimum element of a vector w

sp(w) = max
s∈S

w(s) − min
s∈S

w(s).

The stopping criterion then is given by the condition

sp(Δn) < ε. (SC1)

When the criterion (SC1) is satisfied we have that

|Δn(s) − v| < ε ∀s ∈ S. (2)

Moreover, we know that for communicating aperiodic MDPs the criterion (SC1)
is satisfied after finitely many steps of Algorithm1 [Put94, Theorem 8.5.2]. Fur-
thermore, periodic MDPs can be transformed into aperiodic without affecting
the average reward. The transformation works by introducing a self-loop on each
state and adapting the rewards accordingly [Put94, Sect. 8.5.4]. Although this
transformation may slow down VI, convergence can now be guaranteed and we
can obtain ε-optimal values for any communicating MDP.

The intuition behind this stopping criterion can be explained as follows.
When the computed span norm is small, Δn contains nearly the same value in
each component. This means that the difference between the expected (n − 1)-
step and n-step total reward is roughly the same in each state. Since in each state
the n-step total reward is greedily optimized, there is no possibility of getting
more than this difference per step.

Unfortunately, this stopping criterion cannot be applied on general MDPs,
as it relies on the fact that all states have the same value, which is not true in
general. Consider for example the MDP of Fig. 1a. There, we have that v(s5) =
v(s6) = 10 but v(s3) = v(s4) = 5.

In [Put94, Sect. 9.4.2], it is conjectured that the following criterion may be
applicable to general MDPs:

sp(Δn−1) − sp(Δn) < ε. (SC2)

This stopping criterion requires that the difference of spans becomes small
enough. While investigating the problem, we also conjectured a slight variation:

||Δn − Δn−1||∞ < ε, (SC3)

where ||w||∞ = maxs∈S w(s). Intuitively, both of these criteria try to extend
the intuition of the communicating criterion to general MDPs, i.e. to require
that in each state the reward gained per step stabilizes. Example 2 however
demonstrates that neither (SC2) nor (SC3) is a valid stopping criterion.

Example 2. Consider the (aperiodic communicating) MDP in Fig. 2 with a para-
metrized reward value α ≥ 0. The optimal average reward is v = α. But the
first three vectors computed by value iteration are t0 = (0, 0), t1 = (0.9 · α, α),
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s0 s1

a,00.9 0.1

b,0.9 · α a,α

b,0

Fig. 2. A communicating MDP parametrized by the value α.

t2 = (1.8 · α, 2 · α). Thus, the values of Δ1 = Δ2 = (0.9 · α, α) coincide, which
means that for every choice of ε both stopping criteria (SC2) and (SC3) are
satisfied by the third iteration. However, by increasing the value of α we can
make the difference between the average reward v and Δ2 arbitrary large, so no
guarantee like in Eq. (2) is possible. 

3.2 Local Value Iteration

In order to remedy the lack of stopping criteria, we provide a modification of VI
using MEC decomposition which is able to provide us with an ε-optimal result,
utilizing the principle of Eq. (1). The idea is that for each MEC we compute an
ε-optimal value, then consider these values fixed and propagate them through
the MDP quotient.

Apart from providing a stopping criterion, this has another practical advan-
tage. Observe that the naive algorithm updates all states of the model even if
the approximation in a single MEC has not ε-converged. The same happens
even when all MECs are already ε-converged and the values only need to propa-
gate along the transient states. These additional updates of already ε-converged
states may come at a high computational cost. Instead, our method adapts to
the potentially very different speeds of convergence in each MEC.

The propagation of the MEC values can be done efficiently by transforming
the whole problem to a reachability instance on a modified version of the MEC
quotient, which can be solved by, for instance, VI. We call this variant the
weighted MEC quotient. To obtain this weighted quotient, we assume that we
have already computed approximate values w(M) of each MEC M . We then
collapse the MECs as in the MEC quotient but furthermore introduce new states
s+ and s−, which can be reached from each collapsed state by a special action
stay with probabilities corresponding to the approximate value of the MEC.
Intuitively, by taking this action the strategy decides to “stay” in this MEC and
obtain the average reward of the MEC.

Formally, we define the function f as the normalized approximated value,
i.e. for some MEC Mi we set f(ŝi) = 1

rmax
w(Mi), so that it takes values in

[0, 1]. Then, the probability of reaching s+ upon taking the stay action in ŝi is
defined as f(ŝi) and dually the transition to s− is assigned 1− f(ŝi) probability.
If for example some MEC M had a value v(M) = 2

3rmax, we would have that
Δ(ŝ, stay, s+) = 2

3 . This way, we can interpret reaching s+ as obtaining the
maximal possible reward, and reaching s− to obtaining no reward. With this
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intuition, we show in Theorem2 that the problem of computing the average
reward is reduced to computing the value of each MEC and determining the
maximum probability of reaching the state s+ in the weighted MEC quotient.

Definition 4 (Weighted MEC quotient). Let M̂ = (Ŝ, ŝinit, Âct , Âv, Δ̂, r̂)
be the MEC quotient of an MDP M and let MEC

̂S = {ŝ1, . . . , ŝn} be the set of
collapsed states. Further, let f : MEC

̂S → [0, 1] be a function assigning a value
to every collapsed state. We define the weighted MEC quotient of M and f as
the MDP Mf = (Sf , sf

init, Âct ∪ {stay},Avf ,Δf , rf ), where

– Sf = Ŝ ∪ {s+, s−},
– sf

init = ŝinit,
– Avf is defined as

∀ŝ ∈ Ŝ. Avf (ŝ) =

{
Âv(ŝ) ∪ {stay} if ŝ ∈ MEC

̂S ,

Âv(ŝ) otherwise,

Avf (s+) = Avf (s−) = ∅,

– Δf is defined as

∀ŝ ∈ Ŝ, â ∈ Âct \ {stay}. Δf (ŝ, â) = Δ̂(ŝ, â)

∀ŝi ∈ MEC
̂S . Δf (ŝi, stay) = {s+ �→ f(ŝi, s− �→ 1 − f(ŝi)},

– and the reward function rf (ŝ, â) is chosen arbitrarily (e.g. 0 everywhere),
since we only consider a reachability problem on Mf .

Example 3. Consider the MDP in Fig. 1a. The average rewards of the MECs are
v = {Â �→ 4, B̂ �→ 5, Ĉ �→ 10}. With f defined as in Theorem 2, Fig. 3 shows the
weighted MEC quotient Mf . 
Theorem 2. Given an MDP M with MECs MEC(M) = {M1, . . . , Mn}, define
f(ŝi) = 1

rmax
v(Mi) the function mapping each MEC Mi to its value. Moreover,

let Mf be the weighted MEC quotient of M and f . Then

v(sinit) = rmax · sup
π∈Π

P
π
Mf ,sf

init

(♦s+).

s1

̂C
̂B

̂A

s+s−

(s1, a)
0.001

0.999
(s1, b)

(s2, b)
4
106

10

1
5
10

5
10

Fig. 3. The weighted quotient of the MDP in Fig. 1a and function f =
{Â �→ 4

10
, B̂ �→ 5

10
, Ĉ �→ 10

10
}. Rewards and stay action labels omitted for readability.
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Algorithm 2. LocalVI

Input: MDP M = (S, sinit,Act ,Av, Δ, r), precision ε > 0
Output: w, s.t. |w − v(sinit)| < ε
1: f = ∅
2: for Mi = (Ti, Ai) ∈ MEC(M) do � Determine values for MECs
3: Compute the average reward w(Mi) on M , such that |w(Mi) − v(Mi)| < 1

2
ε,

4: f(ŝi) ← 1
rmax

w(Mi)

5: Mf ← the weighted MEC quotient of M and f
6: Compute p s.t. |p − supπ∈Π P

π

Mf ,s
f
init

(♦s+)| < 1
2rmax

ε � Determine reachability

7: return rmax · p

The corresponding algorithm is shown in Algorithm2. It takes an MDP and the
required precision ε as input and returns a value w, which is ε-close to the average
reward v(sinit). In the first part, for each MEC M the algorithm computes an
approximate average reward w(M) and assigns it to the function f (normalized
by rmax). Every MEC is a communicating MDP, therefore the value w(M) can
be computed using the naive VI with (SC1) as the stopping criterion. In the
second part, the weighted MEC quotient of M and f is constructed and the
maximum probability p of reaching s+ in Mf is approximated.

Theorem 3. For every MDP M and ε > 0, Algorithm2 terminates and is
correct, i.e. returns a value w, s.t. |w − v(sinit)| < ε.

For the correctness, we require that p is ε
2rmax

-close to the real maximum proba-
bility of reaching s+. This can be achieved by using the VI algorithms for reacha-
bility from [BCC+14] or [HM14], which guarantee error bounds on the computed
probability. Note that p can also be computed by other methods, such as linear
programming. In Sect. 4 we empirically compare these approaches.

3.3 On-Demand Value Iteration

Observe that in Algorithm 2, the approximations for all MECs are equally pre-
cise, irrespective of the effect a MEC’s value has on the overall value of the MDP.
Moreover, the whole model is stored in memory and all the MECs are computed
beforehand, which can be expensive for large MDPs. Often this is unnecessary,
as we illustrate in the following example.

Example 4. There are three MECs Â, B̂, Ĉ in the MDP of Fig. 1a. Furthermore,
we have that P

π
sinit

(♦Ĉ) ≤ 0.001. By using the intuition of Eq. (1), we see that
no matter where in the interval [0, rmax = 20] its value lies, it contributes to the
overall value v(sinit) at most by 0.001 · rmax = 0.02. If the required precision
were ε = 0.1, the effort invested in computing the value of Ĉ would not pay off
at all and one can completely omit constructing Ĉ.

Further, suppose that Â was a more complicated MEC, but after a few iter-
ations the criterion (SC1) already shows that the value of Â is at most 4.4.
Similarly, after several iterations in B̂, we might see that the value of B̂ is
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greater than 4.5. In this situation, there is no point in further approximating
the value of Â since the action b leading to it will not be optimal anyway, and
its precise value will not be reflected in the result. 
To eliminate these inefficient updates, we employ the methodology of bounded
real-time dynamic programming (BRTDP) [MLG05] adapted to the undis-
counted setting in [BCC+14]. The word bounded refers to keeping and updat-
ing both a lower and an upper bound on the final result. It has been shown
in [Put94,CI14] that bounds for the value of a MEC can be derived from the
current maximum and minimum of the approximations of VI. The idea of the
BRTDP approach is to perform updates not repetitively for all states in a fixed
order, but more often on the more important states. Technically, finite runs of
the system are sampled, and updates to the bounds are propagated only along
the states of the current run. Since successors are sampled according to the tran-
sition probabilities, the frequently visited (and thus updated) states are those
with high probability of being reached, and therefore also having more impact on
the result. In order to guarantee convergence, the non-determinism is resolved
by taking the most promising action, i.e. the one with the current highest upper
bound. Intuitively, when after subsequent updates such an action turns out to
be worse than hoped for, its upper bound decreases and a more promising action
is chosen next time.

Since BRTDP of [BCC+14] is developed only for MDP with the reacha-
bility (and LTL) objective, we decompose our problem into a reachability and
MEC analysis part. In order to avoid pre-computation of all MECs with the
same precision, we instead compute the values for each MEC only when they
could influence the long-run average reward starting from the initial state. Intu-
itively, the more a particular MEC is encountered while sampling, the more it
is “reached” and the more precise information we require about its value.

To achieve this, we store upper and lower bounds on its value in the functions
u and l and refine them on demand by applying VI. We modify the definition
of the weighted MEC quotient to incorporate these lower and upper bounds
by introducing the state s? (in addition to s+, s−). We call this construction
the bounded MEC quotient. Intuitively, the probability of reaching s+ from a
collapsed state now represents the lower bound on its value, while the probability
of reaching s? describes the gap between the upper and lower bound.

Definition 5 (Bounded MEC quotient). Let M̂ = (Ŝ, ŝinit, Âct , Âv, Δ̂, r̂)
be the MEC quotient of an MDP M with collapsed states MEC

̂S = {ŝ1, . . . , ŝn}
and let l, u : {ŝ1, . . . , ŝn} → [0, 1] be functions that assign a lower and upper
bound, respectively, to every collapsed state in M̂. The bounded MEC quotient
Ml,u of M and l, u is defined as in Definition 4 with the following changes.

– Sl,u = Ŝ ∪ {s?},
– Avl,u(s?) = ∅,
– ∀ŝ ∈ MEC

̂S . Δl,u(ŝ, stay) = {s+ �→ l(ŝ), s− �→ 1 − u(ŝ), s? �→ u(ŝ) − l(ŝ)}.
The unshortened definition can be found in [ACD+17, Appendix D].
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Algorithm 3. OnDemandVI

Input: MDP M = (S, sinit,Act ,Av, Δ, r), precision ε > 0, threshold k ≥ 2
Output: w, s.t. |w − v(sinit)| < ε
1: Set u(·, ·) ← 1, u(s−, ·) ← 0; l(·, ·) ← 0, l(s+, ·) ← 1 � Initialize
2: Let A(s) := arg maxa∈Avl,u(s) u(s, a)
3: Let u(s) := maxa∈A(s) u(s, a) and l(s) := maxa∈A(s) l(s, a)
4: repeat
5: s ← sl,u

init, w ← s � Generate path
6: repeat
7: a ← sampled uniformly from A(s)
8: s ← sampled according to Δl,u(s, a)
9: w ← w, a, s

10: until s ∈ {s+, s−, s?} or Appear(s, w) = k � Terminate path
11: if pop(w) = s? then � Refine MEC in which stay was taken
12: pop(w)
13: q̂ ← top(w)
14: Run VI on q̂, updating u and l, until u − l is halved
15: Update Δl,u(q̂, stay) according to Definition 5
16: else if Appear(s, w) = k then � Update EC-collapsing
17: OnTheFlyEc
18: repeat � Back-propagate values
19: a ← pop(w), s ← pop(w)
20: u(s, a) ←∑s′∈S Δ(s, a, s′) · u(s′)
21: l(s, a) ←∑s′∈S Δ(s, a, s′) · l(s′)
22: until w = ∅
23: until u(sinit) − l(sinit) < 2ε

rmax
� Terminate

24: return rmax · 1
2
(u(sinit) + l(sinit))

The probability of reaching s+ and the probability of reaching {s+, s?} give the
lower and upper bound on the value v(sinit), respectively.

Corollary 1. Let M be an MDP and l, u functions mapping each MEC Mi

of M to (normalized) lower and upper bounds on the value, respectively, i.e.
l(ŝi) ≤ 1

rmax
v(Mi) ≤ u(ŝi). Then

rmax · sup
π∈Π

P
π
Ml,u,sl,u

init

(♦s+) ≤ v(sinit) ≤ rmax · sup
π∈Π

P
π
Ml,u,sl,u

init

(♦{s+, s?}),

where Ml,u is the bounded MEC quotient of M and l, u.

Algorithm 3 shows the on-demand VI. The implementation maintains a par-
tial model of the MDP and Ml,u, which contains only the states explored by the
runs. It interleaves two concepts: (i) naive VI is used to provide upper and lower
bounds on the value of discovered end components, (ii) the method of [BCC+14]
is used to compute the reachability on the collapsed MDP.

In lines 6–10 a random run is sampled following the “most promising” actions,
i.e. the ones with maximal upper bound. The run terminates once it reaches
s+, s− or s?, which only happens if stay was one of the most promising actions.
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Procedure 4. OnTheFlyEc
1: for (Ti, Ai) ∈ MEC(Ml,u) do
2: Collapse (Ti, Ai) to ŝi in Ml,u

3: for s ∈ Ti, a ∈ Av(s) \ Ai do
4: u(ŝi, (s, a)) ← u(s, a)
5: l(ŝi, (s, a)) ← l(s, a)
6: Add the stay action according to Definition 5.

A likely arrival to s? reflects a high difference between the upper and lower
bound and, if the run ends up in s?, this indicates that the upper and lower
bounds of the MEC probably have to be refined. Therefore, in lines 11–15 the
algorithm resumes VI on the corresponding MEC to get a more precise result.
This decreases the gap between the upper and lower bound for the corresponding
collapsed state, thus decreasing the probability of reaching s? again.

The algorithm uses the function Appear(s, w) = |{i ∈ N | s = w[i]}| to count
the number of occurrences of the state s on the path w. Whenever we encounter
the same state k times (where k is given as a parameter), this indicates that
the run may have got stuck in an end component. In such a case, the algorithm
calls OnTheFlyEc [BCC+14], presented in Procedure 4, to detect and collapse
end components of the partial model. By calling OnTheFlyEc we compute the
bounded quotient of the MDP on the fly. Without collapsing the end components,
our reachability method could remain forever in an end component, and thus
never reach s+, s− or s?. Finally, in lines 18–22 we back-propagate the upper
and lower bounds along the states of the simulation run.

Theorem 4. For every MDP M, ε > 0 and k ≥ 2, Algorithm3 terminates
almost surely and is correct, i.e. returns a value w, s.t. |w − v(sinit)| < ε.

4 Implementation and Experimental Results

In this section, we compare the runtime of our presented approaches to estab-
lished tools. All benchmarks have been run on a 4.4.3-gentoo x64 virtual machine
with 3.0 GHz per core, a time limit of one hour and memory limit of 8GB. The
precision requirement for all approximative methods is ε = 10−6. We imple-
mented our constructions as a package in the PRISM Model Checker [KNP11].
We used the 64-bit Oracle JDK version 1.8.0 102-b14 as Java runtime for all
executions. All measurements are given in seconds, measuring the total user
CPU time of the PRISM process using the UNIX tool time.

4.1 Models

First, we briefly explain the examples used for evaluation. virus [KNPV09] mod-
els a virus spreading through a network. We reward each attack carried out
by an infected machine. Note that in this model, no machine can “purge” the
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virus, hence eventually all machines will be infected. cs nfail [KPC12] mod-
els a client-server mutual exclusion protocol with probabilistic failures of the
clients. A reward is given for each successfully handled connection. investor
[MM07,MM02] models an investor operating in a stock market. The investor
can decide to sell his stocks and keep their value as a reward or hold them
and wait to see how the market evolves. The rewards correspond to the value
of the stocks when the investor decides to sell them, so maximizing the aver-
age reward corresponds to maximizing the expected selling value of the stocks.
phil nofair [DFP04] represents the (randomised) dining philosophers without
fairness assumptions. We use two reward structures, one where a reward is
granted each time a philosopher “thinks” or “eats”, respectively. rabin [Rab82]
is a well-known mutual exclusion protocol, where multiple processes repeatedly
try to access a shared critical section. Each time a process successfully enters
the critical section, a reward is given. zeroconf [KNPS06] is a network protocol
designed to assign IP addresses to clients without the need of a central server
while still avoiding address conflicts. We explain the reward assignment in the
corresponding result section. sensor [KPC12] models a network of sensors send-
ing values to a central processor over a lossy connection. A reward is granted for
every work transition.

4.2 Tools

We will compare several different variants of our implementations, which are
described in the following.

– Naive value iteration (NVI) runs the value iteration on the whole MDP as
in Algorithm 1 of Sect. 3.1 together with the stopping criterion (SC2) conjec-
tured by [Put94, Sect. 9.4.2]. As the stopping criterion is incorrect, we will
not only include the runtime until the stopping criterion is fulfilled, but also
until the computed value is ε-close to the known solution.

– Our MEC decomposition approach presented in Algorithm 2 of Sect. 3.2 is
denoted by MEC-reach, where reach identifies one of the following reachabil-
ity solver used on the quotient MDP.

• PRISM’s value iteration (VI), which iterates until none of the values
change by more than 10−8. While this method is theoretically imprecise,
we did not observe this behaviour in our examples.2

• An exact reachability solver based on linear programming (LP) [Gir14].
• The BRTDP solver with guaranteed precision of [BCC+14] (BRTDP). This

solver is highly configurable. Among others, one can specify the heuristic
which is used to resolve probabilistic transitions in the simulation. This
can happen according to transition probability (PR), round-robin (RR) or
maximal difference (MD). Due to space constraints, we only compare to
the MD exploration heuristic here. Results on the other heuristics can be
found in [ACD+17, Appendix E]

2 PRISM contains several other methods to solve reachability, which all are imprecise
and behaved comparably in our tests.
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– ODV is the implementation of the on-demand value iteration as in Algorithm3
of Sect. 3.3. Analogously to the above, we only provide results on the MD
heuristic here. The results on ODV together with the other heuristics can also
be found in [ACD+17, Appendix E].

Furthermore, we will compare our methods to the state-of-the-art tool Multi-
Gain, version 1.0.2 [BCFK15] abbreviated by MG. MultiGain uses linear pro-
gramming to exactly solve mean payoff objectives among others. We use the
commercial LP solver Gurobi 7.0.1 as backend3. We also instantiated reach by
an implementation of the interval iteration algorithm presented in [HM14]. This
variant performed comparable to MEC-VI and therefore we omitted it.

Table 1. Runtime comparison of our approaches to MultiGain on various, reasonably
sized models. Timeouts (1h) are denoted by TO. Strongly connected models are denoted
by “scon” in the MEC column. The best result in each row is marked in bold, excluding
NVI due to its imprecisions. For NVI, we list both the time until the stopping criterion
is satisfied and until the values actually converged.

Model States MECs MG NVI MEC-VI MEC-LP MEC-BRTDP ODV

virus 809 1 3.76 3.50/3.71 4.09 4.41 4.40 TO

cs nfail4 960 176 4.86 10.2/TO 4.38 TO 9.39 16.0

investor 6688 837 16.75 4.23/TO 8.83 TO 64.5 18.7

phil-nofair5 93068 scon TO 23.5/30.3 70 70 70 TO

rabin4 668836 scon TO 87.8/164 820 820 820 TO

4.3 Results

The experiments outlined in Table 1 show that our methods outperform Multi-
Gain significantly on most of the tested models. Furthermore, we want to high-
light the investor model to demonstrate the advantage of MEC-VI over MEC-LP.
With higher number of MECs in the initial MDP, which is linked to the size of
the reachability LP, the runtime of MEC-LP tends to increase drastically, while
MEC-VI performs quite well. Additionally, we see that NVI fails to obtain correct
results on any of these examples.

ODV does not perform too well in these tests, which is primarily due to the
significant overhead incurred by building the partial model dynamically. This is
especially noticeable for strongly connected models like phil-nofair and rabin.
For these models, every state has to be explored and ODV does a lot of super-
fluous computations until the model has been explored fully. On virus, the bad
performance is due to the special topology of the model, which obstructs the
back-propagation of values.

3 MultiGain also supports usage of the LP solver lp solve 5.5 bundled with PRISM,
which consistently performed worse than the Gurobi backend.
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Moreover, on the two strongly connected models all MEC decomposition
based methods perform worse than naive value iteration as they have to obtain
the MEC decomposition first. Furthermore, all three of those methods need the
same amount of for these models, as the weighted MEC quotient only has a
single state (and the two special states), thus the reachability query is trivial.

In Table 2 we present results of some of our methods on zeroconf and sen-
sors, which both have a structure better suited towards ODV. The zeroconf
model consists of a big transient part and a lot of “final” states, i.e. states which
only have a single self-loop. sensors contains a lot of small, often unlikely-to-
be-reached MECs.

Table 2. Runtime comparison of our on-demand VI method with the previous
approaches. All of those behaved comparable to MEC-VI or worse, and due to space
constraints we omit them. MO denotes a memory-out. Aside from runtime, we further-
more list the number of explored states and MECs of ODV

Model States MEC-VI ODV ODV States ODV MECs

zeroconf(40,10) 3001911 MO 5.05 481 3

avoid 582 3

zeroconf(300,15) 4730203 MO 16.6 873 3

avoid 5434 3

sensors(2) 7860 18.9 20.1 3281 917

sensors(3) 77766 2293 37.2 10941 2301

On the zeroconf model, we evaluate the average reward problem with two
reward structures. In the default case, we assign a reward of 1 to every final state
and zero elsewhere. This effectively is solving the reachability question and thus
it is not surprising that our method gives similarly good results as the BRTDP
solver of [BCC+14]. The avoid evaluation has the reward values flipped, i.e. all
states except the final ones yield a payoff of 1. With this reward assignment, the
algorithm performed slightly slower, but still extremely fast given the size of the
model. We also tried assigning pseudo-random rewards to every non-final state,
which did not influence the speed of convergence noticeably. We want to highlight
that the mem-out of MEC-VI already occurred during the MEC-decomposition
phase. Hence, no variant of our decomposition approach can solve this problem.

Interestingly, the naive value iteration actually converges on zeroconf(40,10)
in roughly 20 min. Unfortunately, as in the previous experiments, the used incor-
rect stopping criterion was met a long time before that.

Further, when comparing sensors(2) to sensors(3), the runtime of ODV only
doubled, while the number of states in the model increased by an order of mag-
nitude and the runtime of MEC-VI even increased by two orders of magnitude.

These results show that for some models, ODV is able to obtain an ε-optimal
estimate of the mean payoff while only exploring a tiny fraction of the state
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space. This allows us to solve many problems which previously were intractable
simply due to an enormous state space.

5 Conclusion

We have discussed the use of value iteration for computing long-run average
rewards in general MDPs. We have shown that the conjectured stopping criterion
from literature is not valid, designed two modified versions of the algorithm and
have shown guarantees on their results. The first one relies on decomposition
into VI for long-run average on separate MECs and VI for reachability on the
resulting quotient, achieving global error bounds from the two local stopping
criteria. The second one additionally is simulation-guided in the BRTDP style,
and is an anytime algorithm with a stopping criterion. The benchmarks show
that depending on the topology, one or the other may be more efficient, and
both outperform the existing linear programming on all larger models. For future
work, we pose the question of how to automatically fine-tune the parameters of
the algorithms to get the best performance. For instance, the precision increase
in each further call of VI on a MEC could be driven by the current values of VI
on the quotient, instead of just halving them. This may reduce the number of
unnecessary updates while still achieving an increase in precision useful for the
global result.
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Abstract. STLInspector is a tool for systematic validation of Signal
Temporal Logic (STL) specifications against informal textual require-
ments. Its goal is to identify typical faults that occur in the process of
formalizing requirements by mutating a candidate specification. STLIn-
spector computes a series of representative signals that enables a require-
ments engineer to validate a candidate specification against all its
mutated variants, thus achieving full mutation coverage. By visual
inspection of the signals via a web-based GUI, an engineer can obtain
high confidence in the correctness of the formalization – even if she is
not familiar with STL. STLInspector makes the assessment of formal
specifications accessible to a wide range of developers in industry, hence
contributes to leveraging the use of formal specifications and computer-
aided verification in industrial practice. We apply the tool to several
collections of STL formulas and show its effectiveness.

Keywords: Specification validation · Temporal logic · STL · MTL ·
SMT · Mutation testing

1 Introduction

Recently, Signal Temporal Logic (STL) [14] became increasingly popular as a
specification formalism for requirements of cyber-physical systems (CPS) [13,17]
[1,5–7,9,20]. An STL specification can be thought of as a set of discrete and con-
tinuous signals that represent correct behavior of a CPS over time. Since many
safety-critical industrial systems are CPS, checking correctness of their behavior
is crucial. A variety of methods for checking STL specifications have been devel-
oped including signal monitoring [5,17], model-based falsification [1], and for-
mal verification of STL specifications [20]. However, to be able to trust the test-
ing/verification machinery, it is crucial to trust the formalization of requirements.
It has been observed that industrial requirements can be fairly nontrivial, thus
resulting in complex formulas that are not easily understandable [19]. If a formal
specification does not conform to the corresponding natural language require-
ment, which is the common representation of requirements in industry today,
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-63387-9 11
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verification results based on the specification are useless. Therefore, our tool
STLInspector addresses the problem of checking an STL specification against
an informal natural language requirement involving the requirements engineer
as an oracle. STLInspector provides the requirements engineer with a systematic
way of validating candidate STL specifications and gives her high confidence in
the correctness of the formalization.

We use the example given by Dokhanchi et al. [4] to illustrate the problem
and our solution. Suppose an engineer formalizes the textual requirement.

“At some time in the first 30 s, the vehicle speed (vel) will go over 100 km
h

and stay above 100 km
h for 20 s.”

by the STL formula

ϕc = F[0,30]((vel > 100) ⇒ G[0,20](vel > 100)). (1)

However, a test signal which is generated by STLInspector and depicted in Fig. 1
shows that ϕc does not conform to the textual requirement because the test
signal satisfies ϕc but not the textual requirement. The engineer can detect the
faulty specification by visual inspection of the signal which requires no knowledge
of STL or temporal logics in general. Hence, specification validation becomes
accessible to a wide range of developers in industry.

Fig. 1. A test signal – as visualized in STLInspector – that does not satisfy the textual
requirement. Yet the signal satisfies its formalization ϕc, thus revealing that ϕc is
incorrect.

STLInspector generates a series of such test signals that allows to show
absence of typical errors made during formalization and increases confidence
in its correctness. Inspired by ideas from mutation testing [3,10], typical classes
of errors are formalized by mutation operators. For instance, the stuck-at-one
operator produces the mutant ϕ′

c = F[0,30](true ⇒ G[0,20](vel > 100)) for ϕc

from above. A signal is generated which does only satisfy the mutant ϕ′
c but

not the candidate ϕc and thus represents a corner case of the formula ϕc. If the
engineer identifies the behaviour as non-conforming to the textual requirement,
the particular error associated with the mutation is shown to be absent. In this
sense, STLInspector provides coverage guarantees for the considered set of error
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classes. By adding additional mutation operators, the tool can easily be extended
to also handle domain specific error classes. Signal generation is performed using
an SMT encoding of STL formulas (Sect. 4). We apply the tool to several col-
lections of STL formulas and show its effectiveness (Sect. 5). STLInspector is an
academic prototype and available under Apache 2.0 license at https://github.
com/STLInspector.

Related Work: Vispec [9] is a tool that provides a graphical formalism based
on template patterns to formalize specifications without requiring knowledge
of temporal logics. STLInspector complements Vispec by enabling validation
of such formalizations. It is however not restricted to templates. Vispec was
extended by Dokhanchi et al. [4] to detect validity, redundancy and vacuity in
MTL formalizations. These properties can be considered simple mutations and
may be incorporated in STLInspector as a special case. Mutation testing has
been applied to specification validation [10, Section V.B] without considering
continuous-time signals. RATSY [2] is another tool that focuses on debugging
specifications via a game-based approach. In contrast to STLInspector, RATSY
specifications are based on a subset of PSL (expressively equivalent to ω-regular
languages). Thus, it cannot be applied to continuous-time and real-valued sig-
nals. EGRET is a similar tool for string-based specifications which generates
test strings for regular expressions [12].

Signal Temporal Logic: STL was introduced by Maler and Nickovic [13,14].
A signal s is a mapping from time to the valuation of Boolean and real-valued
variables. We consider bounded time signals only, i.e., s : [0, T ] → B

n ×R
m with

n Boolean variables P = {p1, . . . , pn} and m real-valued variables given by the
vector R = (r1, . . . , rm). STL is a logic to specify temporal properties of s. It
consists of Boolean variables, constraints on real-valued variables, logical and
temporal operators. We focus on the linear fragment of STL and signals whose
real-valued components are continuous. Its syntax is as follows.

α := p | DTR ≤ e, ϕ := α | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2

with p ∈ P , D ∈ R
m, e ∈ R, and I being an interval [a, b] with a, b ∈ R. Note

that STL semantics slightly differ across publications. We use the semantics as
published in [20] and omit its definition due to space restrictions. While there
exist different options to interpret unbounded time formulas over bounded time
signals, for practical purposes bounded time formulas seem to be sufficient.

2 Mutation Testing and Coverage

In this section, we give a short introduction on mutation testing based on Fraser
and Wotawa [8] and describe how we are able to guarantee that certain errors
are not present in an STL formula ϕ by a set of test signals. Mutation testing
involves the notion of a mutant of ϕ, i.e., another formula ϕ′ which is obtained by

https://github.com/STLInspector
https://github.com/STLInspector
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applying a syntactic modification to ϕ. For example, ϕ′
c = F[0,30]((vel < 100) ⇒

G[0,20](vel > 100)) is a mutation of ϕc in Eq. (1) where “>” is replaced by “<”
in the first constraint. This type of syntactic modification is made precise by the
relation replacement operator (rro):

rro(DTR ∼1 e) = {DTR ∼2 e| ∼2∈ RO,∼2 �=∼1} ∼1∈ RO

rro(X � Y ) = {x � Y |x ∈ rro(X)} ∪ {X � y|y ∈ rro(Y )} � ∈ BO

rro(� X) = {� x|x ∈ rro(X)} � ∈ MO

with RO = {≡, �=, >,≤, <}, BO = {∨,∧,→,U[a,b],R[a,b]}, and MO = {¬,F[a,b],
G[a,b],N[a]}1. For ϕc, the relation replacement operator produces the list rro(ϕc)
of 8 mutants including ϕ′

c.
A signal s distinguishes ϕ and a mutant ϕ′ if s |= ϕ and s �|= ϕ′ holds or

s �|= ϕ and s |= ϕ′ holds. In such a case, s is said to kill the mutant ϕ′. For each
such test signal s, the user must determine whether it conforms to the textual
requirement (↑) or not (↓). Four cases can be distinguished.

– s |= ϕ, s �|= ϕ′, ↑: error represented by ϕ′ is not present in ϕ
– s |= ϕ, s �|= ϕ′, ↓: ϕ contains illegitimate behavior
– s �|= ϕ, s |= ϕ′, ↑: ϕ′ contains legitimate behavior that is missing in ϕ
– s �|= ϕ, s |= ϕ′, ↓: error represented by ϕ′ is not present in ϕ

We consider the following mutation operators, which are adaptions of muta-
tion operators defined by Fraser and Wotawa [8] to real-valued and continuous-
time signals. In Sect. 5, we illustrate that they are in fact suitable to detect
errors.

– Relation replacement
– Temporal operator insertion
– Temporal interval replacement
– Missing temporal operator
– Atomic proposition negation
– Expression negation
– Operand replacement

– Logical operator replacement
– Temporal operator replacement
– Stuck at zero
– Stuck at one
– Missing condition
– Associate shift

Due to space restrictions, we do not give additional operator definitions
but refer to the documentation of STLInspector and the work by Fraser and
Wotawa [8] and Mayer [15]. For a given list of mutants M , the mutation cov-
erage of a set of signals can be defined as the percentage of mutants in M
which are killed by these signals, not considering mutants that are semantically
equivalent to the candidate formula. STLInspector generates sets of test signals
which have 100% mutation coverage for all mutants generated by the mutation
operators given above. Hence, we can guarantee that a formalization candidate
does not contain any errors from a finite set of error classes where each class is

1 Note that ϕ R[a,b] ψ = ¬(¬ϕ U[a,b] ¬ψ), F[a,b] ϕ = � U[a,b] ϕ, G[a,b] ϕ = ¬F[a,b] ¬ϕ,
N[a] ϕ = G[a,a] ϕ.
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represented by a finite set of mutants. If a formula contains multiple errors, we
cannot guarantee that the errors are detected unless there is a mutation opera-
tor for those specific multiple errors. However, the empirical evaluation in Sect. 5
indicates that we typically find errors also in the multiple error case. Note that
the tool can be easily adapted to similar notions of coverage, for instance UFC
and PICC [8].

3 Architecture of STLInspector

The tool is written in Python. STLInspector can be used as a command line
tool, via the browser-based graphical user interface, or integrated into existing
programs. In the following, we describe the GUI and the core components which
are structured as visualized in Fig. 2.

STL
Formula

STL
Parsing

Mutants
Generation

Test Signal
Generation

Test
Signals

Fig. 2. Structure of the core functionality.

STL Parsing: The STL formula – written in textual form – is parsed into a
syntax tree with Antlr [18]. The input format is described in the documentation.
Examples are G[1,3] vel >= 10 and vel == 0 U[0,30] seatBeltFastened.

Mutants Generation: In this component, all mutation operators listed in
Sect. 2 are applied to the input formula. Every mutation operator outputs a list
of mutants which are merged into one list containing all possible mutants.

Test Signal Generation: For a mutant ϕ′ of the STL formula ϕ, STLInspector
randomly chooses between the generation of a test signal s such that s |= ϕ∧¬ϕ′

and s |= ¬ϕ∧ϕ′ to avoid bias on the satisfaction of ϕ. A test signal s is generated
using the SMT encoding described in Sect. 4. Furthermore, it is checked whether
the test signal s can be used to kill additional mutants. Test signal generation
is repeatedly performed until a set S of test signals is obtained such that every
mutant – except equivalent mutants – is killed by at least one element of S.
Note that one test signal typically kills multiple mutants, thus less test signals
are required than mutants (Sect. 5).

Web-Based GUI: STLInspector includes a front-end similar to Jupyter [11].
The user can enter an STL formula and the corresponding informal textual
requirement. The front-end shows the generated test signals and the user decides
whether or not the signal satisfies the informal requirement. STLInspector out-
puts which one of the four cases of Sect. 2 applies. If an error was found, the
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user can change the STL candidate and continue the visual inspection. For one
STL candidate, the evaluation results of different users can be saved and easily
compared on the project overview page.

4 Test Signal Encoding and Generation

For a given STL formula ϕ, a test signal s which satisfies s |= ϕ is generated
using the SMT-solver Z3 [16]. In the following, the SMT encoding of s |= ϕ is
sketched. Time is partitioned into an alternating sequence of points and open
intervals, similar to Maler and Ničković [13], however with a fixed time step c:

IT = {{0}, (0, c), {c}, (c, 2c), . . .}, [0, T ] =
⋃

I∈IT
I

The parameters c and T are selected automatically where c must divide T and all
bounds of temporal operator intervals in the formula ϕ. Signals are generated
such that the value of Boolean variables is constant for intervals in IT . The
set of such signals satisfying a formula can be encoded as an SMT formula
using the rewriting technique by Roehm et al. [20]. For instance, the formula
ϕc = ϕ1U[0,1]ϕ2 can be rewritten as follows:

s |= ϕc ⇔ s |= (ϕ1U[0,0]ϕ2) ∨ (ϕ1U(0,1)ϕ2) ∨ (ϕ1U[1,1]ϕ2)
⇐ s |= ϕ2 ∨ (ϕ1 ∧ G(0,1)ϕ1 ∧ F(0,1)ϕ2) ∨ (ϕ1 ∧ G(0,1)ϕ1 ∧ F[1,1]ϕ2)

The rewritten formula can be expressed by the SMT formula ϕ0
2 ∨ (ϕ0

1 ∧ ϕ0.5
1 ∧

ϕ0.5
2 )∨(ϕ0

1∧ϕ0.5
1 ∧ϕ1

2) using ϕ0
1 = ϕ1, ϕ0.5

1 = G(0,1)ϕ1, etc., and solved by Z3 [16].
The encoding ensures that for a real variable, the continuous signal obtained
from piecewise linear interpolation of the sample points satisfies ϕ for the linear
fragment of STL. The full theory [15] is omitted due to space restrictions.

5 Evaluation

We evaluate the effectiveness of mutation-based test signals in finding errors by
two case studies. First, we use STLInspector to check STL formulas published as
part of the UnCoVerCPS EU project [21]. They identified 8 common requirement
patterns and formalized them by STL formulas and timed monitor automata.
Since the patterns contain unbounded operators, we replace them by bounded
ones. For the 4th requirement, one signal shows that the bounded STL formula
does not conform to the requirement. Furthermore, the same signal shows that
the original unbounded STL formula (as well as the monitor automaton) does
not conform to the requirement either2. Our second evaluation is based on data
of an online survey3 by Dokhanchi et al. [4]. They requested participants to
2 In fact, the proposed formula is equivalent to G[0,∞)(q ⇒ G[0,∞)(p ⇒ G[0,∞)p)),

which formalizes “after q, once p becomes true, p holds forever”.
3 We gratefully acknowledge the support of Bardh Hoxha and his colleagues to get

access to some results of their survey.
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write STL formalizations for several informal textual requirements. For each of
the 66 formalizations ϕi, that we have access to from the survey, we generate
a set Si of test signals with 100% mutation coverage. For each formalization,
STLInspector generates 6 test signals on average (minimum 3, maximum 11).
We check whether ϕi can be distinguished from the correct formalization ϕc

based on the test signals of Si. Out of the 66 formalizations with 31 being unique,
we are able to distinguish all of the 44 faulty ones (26 unique ones) from the
correct formalizations. Since we are able to detect all faulty formalizations with
our test generation, our list of mutation operators is sufficient to detect errors
for the given formalizations. Since 12 of the 26 unique faulty formalizations need
more than one mutation to transform them into the correct formula, we are able
to discover the faulty formalizations even in the case where we do not have a
guarantee to do so. We conclude from both case studies that mutation-based
specification validation with STLInspector helps in finding errors and increasing
confidence in correctness of STL formalizations.
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Abstract. To be practically useful, modern static analyzers must pre-
cisely model the effect of both, statements in the programming language
as well as frameworks used by the program under analysis. While impor-
tant, manually addressing these challenges is difficult for at least two
reasons: (i) the effects on the overall analysis can be non-trivial, and (ii)
as the size and complexity of modern libraries increase, so is the number
of cases the analysis must handle.

In this paper we present a new, automated approach for creating sta-
tic analyzers: instead of manually providing the various inference rules
of the analyzer, the key idea is to learn these rules from a dataset of pro-
grams. Our method consists of two ingredients: (i) a synthesis algorithm
capable of learning a candidate analyzer from a given dataset, and (ii)
a counter-example guided learning procedure which generates new pro-
grams beyond those in the initial dataset, critical for discovering corner
cases and ensuring the learned analysis generalizes to unseen programs.

We implemented and instantiated our approach to the task of learn-
ing JavaScript static analysis rules for a subset of points-to analysis and
for allocation sites analysis. These are challenging yet important prob-
lems that have received significant research attention. We show that our
approach is effective: our system automatically discovered practical and
useful inference rules for many cases that are tricky to manually identify
and are missed by state-of-the-art, hand tuned analyzers.

1 Introduction

Static analysis is a fundamental method for automating program reasoning with
a myriad of applications in verification, optimization and bug finding. While the
theory of static analysis is well understood, building an analyzer for a practical
language is a highly non-trivial task, even for experts. This is because one has
to address several conflicting goals, including: (i) the analysis must be scalable
enough to handle realistic programs, (ii) be precise enough to not report too
many false positives, (iii) handle tricky corner cases and specifics of the partic-
ular language (e.g., JavaScript), (iv) decide how to precisely model the effect of
the environment (e.g., built-in and third party functions), and other concerns.
Addressing all of these manually, by-hand, is difficult and can easily result in
suboptimal static analyzers, hindering their adoption in practice.

c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 233–253, 2017.
DOI: 10.1007/978-3-319-63387-9 12
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Problem Statement. The goal of this work is to help experts design robust static
analyzers, faster, by automatically learning key parts of the analyzer from data.

We state our learning problem as follows: given a domain-specific language L
for describing analysis rules (i.e., transfer functions, abstract transformers),
a dataset D of programs in some programming language (e.g., JavaScript), and
an abstraction function α that defines how concrete behaviors are abstracted, the
goal is to learn an analyzer pa ∈ L (i.e., the analysis rules) such that programs
in D are analyzed as precisely as possible, subject to α.

Key Challenges. There are two main challenges we address in learning sta-
tic analyzers. First, static analyzers are typically described via rules (i.e., type
inference rules, abstract transformers), designed by experts, while existing gen-
eral machine learning techniques such as support vector machines and neural
networks only produce weights over feature functions as output. If these existing
techniques were applied to program analysis [25,29], the result would simply be
a (linear) combination of existing rules and no new interesting rules would be
discovered. Instead, we introduce domain-specific languages for describing the
analysis rules, and then learn such analysis rules (which determine the analyzer)
over these languages.

The second and more challenging problem we address is how to avoid learn-
ing a static analyzer that works well on some training data D, but fails to
generalize well to programs outside of D – a problem known in machine learn-
ing as overfitting. We show that standard techniques from statistical learning
theory [23] such as regularization are insufficient for our purposes. The idea
of regularization is that picking a simpler model minimizes the expected error
rate on unseen data, but a simpler model also contradicts an important desired
property of static analyzers to correctly handle tricky corner cases. We address
this challenge via a counter-example guided learning procedure that leverages
program semantics to generate new data (i.e., programs) for which the learned
analysis produces wrong results and which are then used to further refine it. To
the best of our knowledge, we are the first to replace model regularization with
a counter-example guided procedure in a machine learning setting with large
and noisy training datasets.

We implemented our method and instantiated it for the task of learning
production rules of realistic analyses for JavaScript. We show that the learned
rules for points-to and for allocation site analysis are indeed interesting and
are missed by existing state-of-the-art, hand crafted analyzers (e.g., Facebook’s
Flow [5]) and TAJS (e.g., [17]).

Our main contributions are:

– A method for learning static analysis rules from a dataset of programs. To
ensure that the analysis generalizes beyond the training data we carefully
generate counter-examples to the currently learned analyzer using an oracle.

– A decision-tree-based algorithm for learning analysis rules from data that
learns to overapproximate when the dataset cannot be handled precisely.
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– An end-to-end implementation of our approach and an evaluation on the
challenging problem of learning tricky JavaScript analysis rules. We show
that our method produces interesting analyzers which generalize well to new
data (i.e. are sound and precise) and handle many tricky corner cases.

2 Our Approach

We begin by describing components of our learning approach as shown in Fig. 1.

(Section 6)

FindCounterExample

(Section 5)

Synthesize

Oracle

(tests analysis pa)

Synthesis

Over-
approximation

No analysis
satisfies D

No counter-examples:
return analysis pa

Candidate Analysis
pa ∈ L learned
on dataset D

Counter-example
〈x, y〉 /∈ D

D ← D ∪ {〈x, y〉}
Language L
Describing

Analysis Rules

Input
Dataset D

Program
Executions

Fig. 1. Overview of our approach to learning static analysis rules from data consisting
of three components – a language L for describing the rules, a learning algorithm and
an oracle – that interact in a counter-example based refinement loop.

Obtaining Training Data D. Our learning approach uses dataset of examples
D = {〈xj , yj〉}Nj=1 consisting of pairs 〈xj , yj〉 where xj is a program and yj is
the desired output of the analysis when applied to xj . In general, obtaining such
labeled training data for machine learning purposes is a tedious task. In our set-
ting, however, this process can be automated because: (i) in static analysis, there
is a well understood notion of soundness, namely, the analyzer must approximate
(in the sense of lattice ordering) the concrete program behaviors, and (ii) thus,
we can simply run a large amount of programs in a given programming lan-
guage with some inputs, and obtain a subset of the concrete semantics for each
program. We note that our learning method is independent of how the labels
are obtained. For example, the labels yj can be obtained by running static or
dynamic analyzers on the programs xj in D or they can be provided manually.

Synthesizer and Language L. To express interesting rules of a static analyzer,
we use a loop-free domain-specific language L with branches. The synthesizer
then takes as input the dataset D with a language L and produces a candidate
program analysis pa ∈ L which correctly handles the pairs in D. The synthesizer
we propose phrases the problem of learning a static analysis over L as a problem
in learning decision trees over L. These components are described in Sect. 5.
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Oracle. Our goal is to discover a program analysis that not only behaves as
described by the pairs in the dataset D, but one that generalizes to programs
beyond those in D. To address this challenge, we introduce the oracle component
(FindCounterExample) and connect it with the synthesizer. This component
takes as input the learned analysis pa and tries to find another program x for
which pa fails to produce the desired result y. This counter-example 〈x, y〉 is then
fed back to the synthesizer which uses it to generate a new candidate analyzer
as illustrated in Fig. 1. To produce a counter-example, the oracle must have
a way to quickly and effectively test a (candidate) static analyzer. In Sect. 6, we
present two techniques that make the testing process more effective by leveraging
the current set D as well as current candidate analysis pa (these techniques for
testing a static analyzer are of interest beyond learning considered in our work).

Counter-Example Guided Learning. To learn a static analyzer pa, the synthe-
sizer and the oracle are linked together in a counter-example guided loop. This
type of iterative search is frequently used in program synthesis [31], though its
instantiation heavily depends on the particular application task at hand. In our
setting, the examples in D are programs (and not say program states) and we also
deal with notions of (analysis) approximation. This also means that we cannot
directly leverage off-the-shelf components (e.g., SMT solvers) or existing syn-
thesis approaches. Importantly, the counter-example guided approach employed
here is of interest to machine learning as it addresses the problem of overfitting
with techniques beyond those typically used (e.g., regularization [23], which is
insufficient here as it does not consider samples not in the training dataset).

Practical Applicability. We implemented our approach and instantiated it to the
task of learning rules for points-to and allocation site analysis for JavaScript
code. This is a practical and relevant problem because of the tricky language
semantics and wide use of libraries. Interestingly, our system learned inference
rules missed by manually crafted state-of-the-art tools, e.g., Facebook’s Flow [5].

3 Overview

This section provides an intuitive explanation of our approach on a simple points-
to analysis for JavaScript. Assume we are learning the analysis from one training
data sample given in Fig. 2 (a). It consists of variables a, b and b is assigned an
object s0. Our goal is to learn that a may also point to that same object s0.

Points-to analysis is typically done by applying inference rules until fixpoint.
An example of an inference rule modeling the effect of assignment is:

VarPointsTo(v2, h) Assignment(v1, v2)

VarPointsTo(v1, h)
[Assign]

This rule essentially says that if variable v2 is assigned to v1 and v2 may point
to an object h, then the variable v1 may also point to this object h.
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var b = {}; // empty object s0
a = b;

Expected points-to set

D = {(a → {s0})}
(a) Training data

VarDeclaration:b

ObjectExpression:{}
Assignment

Identifier:a

Identifier:b

(b) Abstract syntax tree (AST) representation of (a)

fdesired(x) ::=

y if there is Assignment(x, y)

y if there is VarDeclaration:x(y)

⊥ otherwise

foverfit(x) ::=

y if y is VarDeclaration:y preceding x

y if there is VarDeclaration:x(y)

⊥ otherwise

(c) Learned functions to resolve points-to queries from (a)

Fig. 2. Example data for learning points-to analysis.

Domain specific language (DSL) for analysis rules. Consider the following gen-
eral shape of inference rules:

VarPointsTo(v2, h) v2 = f(v1)

VarPointsTo(v1, h)
[General]

Here, the function f takes a program element (a variable) and returns another
program element or ⊥. The rule says: use the function f to find a variable v2
whose points-to set will be used to determine what v1 points to. The Assign rule
is an instance of the General rule that can be implemented by traversing the
AST and checking if the parent node of x is of type Assignment and if x is its
first child. In this case, the right sibling of x is returned. Otherwise f returns ⊥.

Problem Statement. The problem of learning a points-to analysis can now be
stated as follows: find an analysis pa ∈ L such that when analyzing the programs
in the training data D, the resulting points-to set is as outlined in D.

The Overfitting Problem. Consider Fig. 2(b) which shows the AST of our exam-
ple. In addition to Assign, we need to handle the case of variable initialization
(first line in the program). Note that the dataset D does not uniquely determine
the best function f . In fact, instead of the desired one fdesired, other functions
can be returned such as foverfit shown in Fig. 2(c). This function inspects the
statement prior to an assignment instead of at the assignment itself and yet it
succeeds to produce the correct analysis result on our dataset D. However, this
is due to the specific syntactic arrangement of statements in the training data
D and may not generalize to other programs, beyond those in D.

Our Solution. To address the problem of overfitting to D, we propose a counter-
example guided procedure that biases the learning towards semantically mean-
ingful analyses. That is, the oracle tests the current analyzer and tries to find
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a counter-example on which the analysis fails. Our strategy to generating can-
didate programs is to modify the programs in D in ways that can change both
the syntax and the semantics of those programs. As a result, any analysis that
depends on such properties would be penalized in the next iteration of Synthesize.
As we show in the evaluation, our approach results in a much faster oracle than
if we had generated programs blindly. This is critical as faster ways of finding
counter-examples increase the size of the search space we can explore, enabling
us to discover interesting analyzers in reasonable time.

For example, a possible way to exclude foverfit is to insert an unnecessary
statement (e.g., var c = 1) before the assignment a = b in Fig. 2(a). Here, the
analysis defined by foverfit produces an incorrect points-to set for variable a (as
it points-to the value 1 of variable c). Once this sample is added to D, foverfit
is penalized as it produces incorrect results and the next iteration will produce
a different analysis until eventually the desired analysis fdesired is returned.

Soundness of the Approach. Our method produces an analyzer that is guaranteed
to be sound w.r.t to all of the examples in D. Even if the analyzer cannot
exactly satisfy all examples in D, the synthesis procedure always returns an
over-approximation of the desired outputs. That is, when it cannot match the
target output exactly, Synthesize learns to approximate (e.g., can return � in
some cases). A formal argument together with a discussion on these points is
provided in Sect. 5. However, our method is not guaranteed to be sound for all
programs in the programming language. We see the problem of certifying the
analyzer as orthogonal and complementary to our work: our method can be used
to predict an analyzer which is likely correct, generalize well, and to sift through
millions of possibilities quickly, while a follow-up effort can examine this analyzer
and decide whether to accept it or even fully verify it. Here, an advantage of
our method is that the learned analyzer is expressed as a program, which can be
easily examined by an expert, as opposed to standard machine learning models
where interpreting the result is nearly impossible and therefore difficult to verify
with standard methods.

4 Checking Analyzer Soundness

In this section, following [4], we briefly discuss what it means for a (learned)
analyzer to be sound. The concrete semantics of a program p include all of p’s
concrete behaviors and are captured by a function �p� : N → ℘(C). This function
associates a set of possible concrete states in C with each position in the program
p, where a position can be a program counter or a node in the program’s AST.

A static analysis pa of a program p computes an abstract representation of
the program’s concrete behaviors, captured by a function pa(p) : N → A where
(A,�) is typically an abstract domain, usually a lattice of abstract facts equipped
with an ordering � between facts. An abstraction function α : ℘(C) → A then
establishes a connection between the concrete behaviors and the abstract facts.
It defines how a set of concrete states in C is abstracted into an abstract element
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in A. The function is naturally lifted to work point-wise on a set of positions
in N (used in the definition below).

Definition 1 (Analysis Soundness). A static analysis pa is sound if:

∀p ∈ TL. α(�p�) � pa(p) (1)

Here TL denotes the set of all possible programs in the target programming
language (TL). That is, a static analysis is sound if it over-approximates the
concrete behaviors of the program according to the particular lattice ordering.

4.1 Checking Soundness

One approach for checking the soundness of an analyzer is to try and automat-
ically verify the analyzer itself, that is, to prove the analyzer satisfies Defini-
tion 1 via sophisticated reasoning (e.g., as the one found in [10]). Unfortunately,
such automated verifiers do not currently exist (though, coming up with one is
an interesting research challenge) and even if they did exist, it is prohibitively
expensive to place such a verifier in the middle of a counter-example learning
loop where one has to discard thousands of candidate analyzers quickly. Thus,
the soundness definition that we use in our approach is as follows:

Definition 2 (Analysis Soundness on a Dataset and Test Inputs). A
static analysis pa is sound w.r.t a dataset of programs P and test inputs ti if:

∀p ∈ P. α(�p�ti) � pa(p) (2)

The restrictions over Definition 1 are: the use of a set P ⊆ TL instead of TL
and �p�ti instead of �p�. Here, �p�ti ⊆ �p� denotes a subset of a program p’s
behaviors obtained after running the program on some set of test inputs ti.

The advantage of this definition is that we can automate its checking. We
run the program p on its test inputs ti to obtain �p�ti (a finite set of executions)
and then apply the function α on the resulting set. To obtain pa(p), we run the
analyzer pa on p; finally, we compare the two results via the inclusion operator �.

5 Learning Analysis Rules

We now present our approach for learning static analysis rules from examples.

5.1 Preliminaries

Let D = {〈xj , yj〉}Nj=1 be a dataset of programs from a target language TL
together with outputs that a program analysis should satisfy. That is, xj ∈ TL
and yj are the outputs to be satisfied by the learned program analysis.
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Definition 3 (Analysis Soundness on Examples). We say that a static
analysis pa ∈ L is sound on D = {〈xj , yj〉}Nj=1 if:

∀j ∈ 1 . . . N . yj � pa(xj) (3)

This definition is based on Definition 2, except that the result of the analysis is
provided in D and need not be computed by running programs on test inputs.

Note that the definition above does not mention the precision of the analysis
pa but is only concerned with soundness. To search for an analysis that is both
sound, precise and avoids obvious, but useless solutions (e.g., always returns �
element of the lattice (A,�)), we define a precision metric.

Precision Metric. First, we define a function r : TL×A×L → R that takes a pro-
gram in the target language, its desired program analysis output and a program
analysis and indicates if the result of the analysis is exactly as desired:

r(x, y, pa) = if (y �= pa(x)) then 1 else 0 (4)

We define a function cost to compute precision on the full dataset D as follows:

cost(D, pa) =
∑

〈x,y〉∈D
r(x, y, pa) (5)

Using the precision metric in Eq. 5, we can state the following lemma:

Lemma 1. For a program analysis pa ∈ L and a dataset D, if cost(D, pa) = 0,
then the analysis is sound according to Definition 3.

Proof: The proof is direct. Because cost(D, pa) = 0 and r is positive, then for
every 〈x, y〉 ∈ D, r(x, y, pa) = 0. This means that y = pa(x) and so y � pa(x),
which is as defined in Definition 3. �

5.2 Problem Formulation

Given a language L that describes analysis inference rules (i.e., abstract trans-
formers) and a dataset D of programs with the desired analysis results, the
Synthesize procedure should return a program analysis pa ∈ L such that:

1. pa is sound on the examples in D (Definition 3), and
2. cost(D, pa) is minimized.

The above statement essentially says that we would like to obtain a sound
analysis which also minimizes the over-approximation that it makes. As the space
of possible analyzers can be prohibitively large, we discuss a restriction on the
language L and give a procedure that efficiently searches for an analyzer such
that soundness is enforced and cost is (approximately) minimized.
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5.3 Language Template for Describing Analysis Rules

A template of the language L for describing analysis rules is shown in Fig. 3(a).
The template is simple and contains actions and guards that are to be instanti-
ated later. The statements in the language are either an action or a conditional
if-then-else statements that can be applied recursively.

(a)
a ∈ Actions g ∈ Guards

l ∈ L ::= a | g l l
(b) guard1

a1true

guard2
a2true

a3false

false

Fig. 3. (a) Syntax of a template language L with branches for expressing analysis rules.
(b) Example of a function from the L language shown as a decision tree.

An analysis rule of a static analyzer is expressed as a function built from
statements in L. As usual, the function is executed until a fixed point [4]. The
semantics of the if statements in pa is standard: guards are predicates (side-
effect free) that inspect the program being analyzed and depending on their
truth value, the corresponding branch of the if statement is taken. The reason
such if statements are interesting is because they can express analysis rules such
as the ones of our running example in Fig. 2.

We provide a formal semantics and detailed description of how the language L
is instantiated for learning points-to and allocation site analysis in an extended
version of this paper [1].

5.4 ID3 Learning for a Program Analyzer

A key challenge in learning program analyzers is that the search space of possible
programs over L is massive as the number of possible combinations of branches
and subprograms is too large. However, we note that elements of L can be
represented as trees where internal nodes are guards of if statements and the
leafs are actions as shown in Fig. 3(b). Using this observation we can phrase the
problem of learning an analyzer in L as the problem of learning a decision tree,
allowing us to adapt existing decision tree algorithms to our setting.

Towards that, we extend the ID3 [27] algorithm to handle action programs
in the leafs and to enforce soundness of the resulting analysis pa ∈ L. Similarly
to ID3, our algorithm is a greedy procedure that builds the decision tree in
a top-down fashion and locally maximizes a metric called information gain.

Our learning shown in Algorithm1 uses three helper functions that we define
next. First, the genAction function returns best analysis abest for a dataset D:

abest = genAction(D) = arg min
a∈Actions

cost(D, a) (6)
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That is, genAction returns the most precise program analysis consisting only of
Actions (as we will see later, an action is just a sequence of statements, without
branches). If abest is such that cost(D, abest) = 0, the analysis is both precise
and sound (from Lemma 1), which satisfies our requirements stated in Sect. 5.2
and we simply return it. Otherwise, we continue by generating an if statement.

Generating Branches. The ID3 decision tree learning algorithm generates
branches based on an information gain metric. To define this metric, we first
use a standard definition of entropy. Let the vector w = 〈w1, ..., wk〉 consist of
elements from a set C. Then the entropy H on w is:

H(w) = −
∑

c∈C

count(c,w)
k

log2

(
count(c,w)

k

)
(7)

where count(c,w) = | {i ∈ 1 . . . k | wi = c} |.
For a dataset d ⊆ D, let d = {xi, yi}|d|

i=1. Then, we define the following vector:

wabest

d = 〈r(xi, yi, abest) | i ∈ 1 . . . |d|〉 (8)

That is, for every program in d, we record if abest is a precise analysis (via the
function r defined previously). Let g ∈ Guards be a predicate that is to be
evaluated on a program x. Let Dg = {〈x, y〉 ∈ D | g(x)} and D¬g = D \ Dg.

The information gain on a set of examples D for analysis abest and predicate
guard g is then defined as:

IGabest(D, g) = H(wabest

D ) − |Dg|
|D| H(wabest

Dg ) − |D¬g|
|D| H(wabest

D¬g ) (9)

For a given predicate g, what the information gain quantifies is how many
bits of information about the analysis precision will be saved if instead of using
the imprecise analysis abest directly, we split the dataset with a predicate g.
Using the information gain metric we define genBranch as follows:

gbest = genBranch(abest,D) = arg max
g∈Guards

⊥IGabest(D, g) (10)

Here, arg max⊥ is defined to return ⊥ if the maximized information gain is 0, or
otherwise to return the guard g which maximizes the information gain.

Back to Algorithm 1, if genBranch returns a predicate with positive informa-
tion gain, we split the dataset with this predicate and call Synthesize recursively
on the two parts. In the end, we return an if statement on the predicate g and
the two recursively synthesized analysis pieces.

Approximation. If the information gain is 0 (i.e. gbest = ⊥), we could not find any
suitable predicate to split the dataset and the analysis abest has non-zero cost.
In this case, we define a function approximate that returns an approximate, but
sound program analysis – in our implementation we return analysis that loses
precision by simply returning �, which is always a sound analysis.



Learning a Static Analyzer from Data 243

def Synthesize(D)
Input: Dataset D = {〈xj , yj〉}N

j=1

Output: Program pa ∈ L
abest ← genAction(D)
if cost(D, abest) = 0 then return abest;
gbest ← genBranch(abest,D)
if gbest = ⊥ then return approximate(D) ;
p1 ← Synthesize({〈x, y〉 ∈ D | gbest(x)})
p2 ← Synthesize({〈x, y〉 ∈ D | ¬gbest(x)})
return if gbest then p1 else p2

Algorithm 1: Learning algorithm for programs from language L.

Note that this approximation does not return � for the entire analysis but
only for few of the branches in the decision tree for which the synthesis procedure
fails to produce a good program using both genAction and getBranch.

In terms of guarantees, for Algorithm1, we can state the following lemma.

Lemma 2. The analysis pa ∈ L returned by Synthesize is sound according to
Definition 3.

The proof of this lemma simply follows the definition of the algorithm and uses
induction for the recursion. For our induction base, we have already shown that
in case cost(D, abest) = 0, the analysis is sound. By construction, the analysis is
also sound if approximate is called. In our induction step we use the fact that
analyses p1 and p2 from the recursion are sound and must only show that the
composed analysis if gbest then p1 else p2 is also sound.

6 The Oracle: Testing an Analyzer

A key component of our approach is an oracle that can quickly test whether the
current candidate analyzer is sound, and if not, to find a counter-example. The
oracle takes as an input a candidate analyzer pa and the current dataset D used
to learn pa and outputs a counter-example program on which pa is unsound.
More formally, if PD = {x | 〈x, y〉 ∈ D}, our goal is to find a counter-example
program p ∈ TL such that p /∈ PD and the soundness condition in Definition 2
is violated for the given analysis pa and program p. That is, our oracle must
generate new programs beyond those already present in PD.

Key Challenge. A key problem the oracle must address is to quickly find
a counter-example in the search space of all possible programs. As we show
in Sect. 7, finding such a counter-example by blindly generating new programs
does not work as the search space of programs in TL is massive (or even infinite).

Speeding up the Search. We address this challenge by designing a general pur-
pose oracle that prioritizes the search in TL based on ideas inspired by state-of-
the-art testing techniques [11,22]. In particular, we generate new programs by
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performing modifications of the programs in PD. These modifications are care-
fully selected by exploiting the structure of the current analysis pa in two ways:
(i) to select a program in TL and the position in that program to modify, and
(ii) to determine what modification to perform at this position.

6.1 Choosing Modification Positions

Given a program x ∈ PD and analysis pa, we prioritize positions that are
read while executing the program analysis pa and changing them would trig-
ger different execution path in the analyzer pa itself (not the analyzed program).
Determining these positions is done by instrumenting the program analyzer and
recording the relevant instructions affecting the branches the analyzer takes.

For example, for Fig. 2(a), we defined the analysis by the function foverfit. For
this function, only a subset of all AST nodes determine which of the three cases
in the definition of foverfit will be used to compute the result of the analysis.
Thus, we choose the modification position to be one of these AST nodes.

6.2 Defining Relevant Program Modifications

We now define two approaches for generating interesting program modifications
that are potential counter-examples for the learned program analysis pa.

Modification via Equivalence Modulo (EMA) Abstraction. The goal of
EMA technique is to ensure that the candidate analysis pa is robust to certain
types of program transformations. To achieve this, we transform the statement
at the selected program position in a semantically-preserving way, producing
a set of new programs. That is, while the transformation is semantic-preserving,
it is also one that should not affect the result of the analysis pa.

More formally, an EMA transformation is a function Fema : TL ×N → ℘(TL)
which takes as input a program p and a position in the program, and produces
a set of programs that are a transformation of p at position n. If the analysis pa
is sound, then these functions (transformations) have the following property:

∀p′ ∈ Fema(p, n).pa(p) = pa(p′) (11)

The intuition behind such transformations is to ensure stability by explor-
ing local program modifications. If the oracle detects the above property is vio-
lated, the current analysis pa is unsound and the counter-example program p′ is
reported. Examples of applicable transformations are dead code insertion, vari-
able names renaming or constant modification, although transformations to use
can vary depending on the kind of analysis being learned. For instance, insert-
ing dead code that reuses existing program identifiers can affect flow-insensitive
analysis, but should not affect a flow-sensitive analysis. The EMA property is
similar to notion of algorithmic stability used in machine learning where the
output of a classifier should be stable under small perturbations of the input as
well as the concept of equivalence modulo inputs used to validate compilers [22].
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Modification via Global Jumps. The previous modifications always gener-
ated semantic-preserving transformations. However, to ensure better generaliza-
tion we are also interested in exploring changes to programs in PD that may not
be semantic preserving, defined via a function Fgj : TL × N → ℘(TL). The goal
is to discover a new program which exhibits behaviors not seen by any of the
programs in PD and is not considered by the currently learned analyzer pa.

Overall, as shown in Sect. 7, our approach for generating programs to test
the analysis pa via the functions Fgj and Fema is an order of magnitude more
efficient at finding counter-examples than naively modifying the programs in PD.

7 Implementation and Evaluation

In this section we provide an implementation of our approach shown in Fig. 1
as well as a detailed experimental evaluation instantiated to two challenging
analysis problems for JavaScript: learning points-to analysis rules and learning
allocation site rules. In our experiments, we show that:

– The approach can learn practical program analysis rules for tricky cases
involving JavaScript’s built-in objects. These rules can be incorporated into
existing analyzers that currently handle such cases only partially.

– The counter-example based learning is critical for ensuring that the learned
analysis generalizes well and does not overfit to the training dataset.

– Our oracle can effectively find counter-examples (orders of magnitude faster
than random search).

These experiments were performed on a 28 core machine with 2.60 Ghz
Intel(R) Xeon(R) CPU E5-2690 v4 CPU, running Ubuntu 16.04. In our imple-
mentation we parallelized both the learning and the search for the counter-
examples.

Training Dataset. We use the official ECMAScript (ECMA-262) conformance
suite (https://github.com/tc39/test262) – the largest and most comprehensive
test suite available for JavaScript containing over 20 000 test cases. As the suite
also includes the latest version of the standard, all existing implementations typ-
ically support only a subset of the testcases. In particular, the NodeJS interpreter
v4.2.6 used in our evaluation can execute (i.e., does not throw a syntax error)
15 675 tests which we use as the training dataset for learning.

Program Modifications. We list the program modifications used to instantiate
the oracle in Table 1. The semantic preserving program modifications that should
not change the result of analyses considered in our work Fema are: inserted
dead code, renamed variables and user functions, renamed parameters as well as
generated side-effect free expressions (e.g., declaring new variables). Note that
these mutations are very general and should apply to almost arbitrary property.
To explore new program behaviours by potentially changing program semantics
we use program modifications Fgj that change values of constants (strings and
numbers), add method arguments and parameters.

https://github.com/tc39/test262
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Table 1. Program modifications used to instantiate the oracle (Sect. 6) that generates
counter-examples for points-to analysis and allocation site analysis.

Program modifications

Fema Fgj

Adding dead code Adding method arguments

Renaming variables Adding method parameters

Renaming user functions Changing constants

Side-effect free expressions

7.1 Learning Points-to Analysis Rules for JavaScript

We now evaluate the effectiveness of our approach on the task of learning
a points-to analysis for the JavaScript built-in APIs that affect the binding
of this object. This is useful because existing analyzers currently either model
this only partially [5,12] (i.e., cover only a subset of Function.prototype API
behaviors) or not at all [16,24], resulting in potentially unsound results.

We illustrate some of the complexity for determining the objects to which
this points-to within the same method in Fig. 4. Here, this points-to different
objects depending on how the method is invoked and what values are passed in
as arguments. In addition to the values shown in the example, other values may
be seen during runtime if other APIs are invoked, or the method isBig is used
as an object method or as a global method.

global.length = 4;

dat = [5, 3, 9, 1];

isBig(value) {

value >=

.length;

}

// this points to global

dat.filter(isBig); // [5, 9]

// this points to boxed 42

dat.filter(isBig , 42); // []

// this points to dat object

dat.filter(isBig , dat); // [5, 9]

Fig. 4. JavaScript code snippet illustrating subset of different objects to which this

can point to depending on the context method isBig is invoked in.

Language L. To learn points-to analysis, we use a domain-specific language Lpt

with if statements (to synthesize branches for corner cases) and instructions to
traverse the JavaScript AST in order to provide the specific analysis of each
case. A detailed list of the instructions with their semantics is provided in [1].

Learned Analyzer. A summary of our learned analyzer is shown in Table 2. For
each API we collected all its usages in the ECMA-262 conformance suite, ranging
from only 6 to more than 600, and used them as initial training dataset for the
learning. In all cases, a significant amount of counter-examples were needed to
refine the analysis and prevent overfitting to the initial dataset. On average,
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Table 2. Dataset size, number of counter-examples found and the size of the learned
points-to analysis for JavaScript APIs that affect the points-to set of this.

Function name Dataset size Counter-examples found Analysis size∗

Function.prototype

call() 26 372 97 (18)

apply() 6 182 54 (10)

Array.prototype

map() 315 64 36 (6)

some() 229 82 36 (6)

forEach() 604 177 35 (5)

every() 338 31 36 (6)

filter() 408 76 38 (6)

find() 53 73 36 (6)

findIndex() 51 96 28 (6)

Array

from() 32 160 57 (7)

JSON

stringify() 18 55 9 (2)
∗ Number of instructions in Lpt (Number of if branches)

for each API, the learning finished in 14 min, out of which 4 min were used
to synthesize the program analysis and 10 min used in the search for counter-
examples (cumulatively across all refinement iterations). The longest learning
time was 57 min for the Function.prototype.call API for which we also learn
the most complex analysis – containing 97 instructions in Lpt. We note that even
though the APIs in Array.prototype have very similar semantics, the learned
programs vary slightly. This is caused by the fact that different number and
types of examples were available as the initial training dataset which also means
that the oracle had to find different types of counter-examples. We provide an
example of the learned analysis in [1].

7.2 Learning Allocation Site Analysis for JavaScript

We also evaluate the effectiveness of our approach on a second analysis task –
learning allocation sites in JavaScript. This is an analysis that is used inter-
nally by many existing analyzers. The analysis computes which statements or
expressions in a given language result in an allocation of a new heap object.

We illustrate the expected output and some of the complexities of allocation
site analysis on a example shown in Fig. 5. In JavaScript, there are various ways
for how an object can be allocated including creating new object without calling
a constructor explicitly (for example by creating new array or object expres-
sion inline), creating new object by calling a constructor explicitly using new,
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obj = {a: 7};

arr = [1, 2, 3, 4];

(obj.a == arr.slice (0,2)) { ... }

n = new Number (7);

obj2 = Object(obj);

{ ... } (err) { ... }

Allocation Sites
(new object allocated)

catch

new

var

var

var

var

try

if

Fig. 5. Illustration of program locations (underlined) for which the allocation site
analysis should report that a new object is allocated.

creating a new object by calling a method or new objects created by throwing an
exception. In addition, some of the cases might further depend on actual values
passed as arguments. For example, calling a new Object(obj) constructor with
obj as an argument does not create a new object but returns the obj passed
as argument instead. The goal of the analysis is to determine all such program
locations (as shown in Fig. 5) at which a new object is allocated.

Consider the following simple, but unsound and imprecise allocation site
analysis:

falloc(x) =
{
true if there is Argument:x or NewExpression:x

false otherwise

which states that a location x is an allocation site if it is either an argument
or a new expression. This analysis is imprecise because there are other ways to
allocate an object (e.g., when creating arrays, strings, boxed values or by calling
a function). It is also unsound, because the JavaScript compiler might not create
a new object even when NewExpression is called (e.g., new Object(obj) returns
the same object as the given obj).

Instead of defining tricky corner cases by hand, we use our approach to learn
this analyzer automatically from data. We instantiate the approach in a very
similar way compared to learning points-to analysis by adjusting the language
and how the labels in the training dataset are obtained (details provided in [1]).
For this task, we obtain 134 721 input/output examples from the training data,
which are further expanded with additional 905 counter-examples found during
99 refinement iterations of the learning algorithm. For this (much higher than
in the other analyzer) number of examples the synthesis time was 184 min while
the total time required to find counter-examples was 7 h.

The learned program is relatively complex and contains 135 learned branches,
including the tricky case where NewExpression does not allocate a new object.
Compared to the trivial, but wrong analysis falloc, the synthesized analysis marks
over twice as many locations in the code as allocation sites (≈21K vs ≈45K).

7.3 Analysis Generalization

We study how well the learned analyzer for points-to analysis works for unseen
data. First, we manually inspected the learned analyzer at the first iteration
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of the Synthesize procedure (without any counter-examples generated). We did
that to check if we overfit to the initial dataset and found that indeed, the initial
analysis would not generalize to some programs outside the provided dataset.
This happened because the learned rules conditioned on unrelated regularities
found in the data (such as variable names or fixed positions of certain function
parameters). Our oracle, and the counter-example learning procedure, however,
eliminate such kinds of non-semantic analyses by introducing additional function
arguments and statements in the test cases.

Overfitting to the initial dataset was also caused by the large search space of
possible programs in the DSL for the analysis. However, we decided not to restrict
the language, because a more expressive language means more automation. Also,
we did not need to provide upfront partial analysis in the form of a sketch [31].

Oracle Effectiveness for Finding Counter-Examples. We evaluate the effective-
ness of our oracle to find counter-examples by comparing it to a random (“black
box”) oracle that applies all possible modifications to a randomly selected pro-
gram from the training dataset. For both oracles we measure the average num-
ber of programs explored before a counter-example is found and summarize the
results in Table 3. In the table, we observe two cases: (i) early in the analysis
loop when the analysis is imprecise and finding a counter-example is easy, and
(ii) later in the loop when hard corner cases are not yet covered by the analysis.
In both cases, our oracle guided by analysis is orders of magnitude more efficient.

Table 3. The effect of using the learned analysis to guide the counter-example search.

Difficulty Programs explored until first counter-example is found

“Black box” Guided by analysis

Easy (≈60%) 146 13

Hard (≈40%) >3000 130

Is Counter-Example Refinement Loop Needed? Finally, we compare the effect of
learning with a refinement loop to “one-shot” learning without the loop, but with
more data provided up-front. For this experiment, we automatically generate
a huge dataset Dhuge by applying all possible program modifications (as defined
by the oracle) on all programs in D. For comparison, let the dataset obtained at
the end of the counter-example based algorithm on D be Dce. The size of Dce is
two orders of magnitude smaller than Dhuge.

An analysis that generalizes well should be sound and precise on both
datasets Dce and Dhuge, but since we use one of the datasets for training, we
use the other one to validate the resulting analyzer. For the analysis that is
learned using counter-examples (from Dce), the precision is around 99.9% with
the remaining 0.01% of results approximated to the top element in the lattice
(that is, it does not produce a trivially sound, but useless result). However, eval-
uating the analysis learned from Dhuge on Dce has precision of only 70.1% with
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the remaining 29.1% of the cases being unsound. This means that Dce indeed
contains interesting cases critical to analysis soundness and precision.

Summary. Overall, our evaluation shows that the learning approach presented
in our work can learn static analysis rules that handle various cases such as the
ones that arise in JavaScript built-in APIs. The learned rules generalize to cases
beyond the training data and can be inspected and integrated into existing static
analyzers that miss some of these corner cases. We provide an example of both
learned analyses in the extended version of this paper [1].

8 Related Work

Synthesis from Examples. Similar to our work, synthesis from examples typically
starts with a domain-specific language (DSL) which captures a hypothesis space
of possible programs together with a set of examples the program must satisfy
and optionally an oracle to provide additional data points in the form of counter-
examples using CEGIS-like techniques [31]. Examples of this direction include
discovery of bit manipulation programs [19], string processing in spreadsheets
[13], functional programs [7], or data structure specifications [9]. A recent work
has shown how to generalize the setting to large and noisy datasets [28].

Other recent works [15,18] synthesize models for library code by collecting
program traces which are then used as a specification. The key differences with
our approach are that we (i) use large dataset covering hundreds of cases and
(ii) we synthesize analysis that generalizes beyond the provided dataset.

Program Analysis and Machine Learning. Recently, several works have used
machine learning in the domain of program analysis for task such as probabilistic
type prediction [20,29], reducing the false positives of an analysis [25], or as a way
to speed up the analysis [2,14,26] by learning various strategies used by the
analysis. A key difference compared to our work is that we present a method to
learn the static analysis rules which can then be applied in an iterative manner.
This is a more complex task than [20,29] which do not learn rules that can infer
program specific properties and [2,14,25,26] which assume the rules are already
provided and typically learn a classifier on top of them.

Learning Invariants. In an orthogonal effort there has also been work on learning
program invariants using dynamic executions. For recent representative exam-
ples of this direction, see [8,21,30]. The focus of all of these works is rather
different: they work on a per-program basis, exercising the program, obtaining
observations and finally attempting to learn the invariants. Counter-example
guided abstraction refinement (CEGAR) [3] is a classic approach for learning an
abstraction (typically via refinement). Unlike our work, these approaches do not
learn the actual program analysis and work on a per-program basis.
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Scalable Program Analysis. Another line of work considers scaling program
analysis in hard to analyse domains such as JavaScript at the expense of analysis
soundness [6,24]. These works are orthogonal to us and follow the traditional
way of designing the static analysis components by hand, but in the future they
can also benefit from automatically learned rules by techniques such as ours.

9 Conclusion and Future Work

We presented a new approach for learning static analyzers from examples. Our
approach takes as input a language for describing analysis rules, an abstrac-
tion function and an initial dataset of programs. Then, we introduce a counter-
example guided search to iteratively add new programs that the learned analyzer
should consider. These programs aim to capture corner cases of the programming
language being analyzed. The counter-example search is made feasible thanks to
an oracle able to quickly generate candidate example programs for the analyzer.

We implemented our approach and applied it to the setting of learning
a points-to and allocation site analysis for JavaScript. This is a very challenging
problem for learning yet one that is of practical importance. We show that our
learning approach was able to discover new analysis rules which cover corner
cases missed by prior, manually crafted analyzers for JavaScript.

We believe this is an interesting research direction with several possible future
work items including learning to model the interfaces of large libraries w.r.t to
a given analysis, learning the rules for other analyzers (e.g., type analysis), or
learning an analysis that is semantically similar to analyses written by hand.
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Abstract. Interactive program synthesizers enable a user to communi-
cate his/her intent via input-output examples. Unfortunately, such syn-
thesizers only guarantee that the synthesized program is correct on the
provided examples. A user that wishes to guarantee correctness for all
possible inputs has to manually inspect the synthesized program, an
error-prone and challenging task.

We present a novel synthesis framework that communicates only
through (abstract) examples and guarantees that the synthesized pro-
gram is correct on all inputs. The main idea is to use abstract exam-
ples—a new form of examples that represent a potentially unbounded
set of concrete examples. An abstract example captures how part of
the input space is mapped to corresponding outputs by the synthesized
program. Our framework uses a generalization algorithm to compute
abstract examples which are then presented to the user. The user can
accept an abstract example, or provide a counterexample in which case
the synthesizer will explore a different program. When the user accepts a
set of abstract examples that covers the entire input space, the synthesis
process is completed.

We have implemented our approach and we experimentally show that
our synthesizer communicates with the user effectively by presenting on
average 3 abstract examples until the user rejects false candidate pro-
grams. Further, we show that a synthesizer that prunes the program
space based on the abstract examples reduces the overall number of
required concrete examples in up to 96% of the cases.

1 Introduction

We address the problem of interactive synthesis, where a user and synthesizer
interact to generate a program that captures the user’s intent. Interactive syn-
thesis enables users to express their intent by providing the synthesizer with
input-output examples. Unfortunately, such synthesizers only guarantee that
the synthesized program is correct on the provided examples. A user that wishes
to guarantee correctness for all possible inputs has to manually inspect the syn-
thesized program, an error-prone and challenging task.

Motivating Example. Eli Gold is a crisis manager at a respected law firm
that due to a crisis has to meet all office members personally. After setting up
times and storing the meeting times in an Excel spreadsheet (Fig. 1), Eli wants
c© Springer International Publishing AG 2017
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to send emails with a personal message notifying each member the time of the
meeting. He starts typing the messages in Excel. While typing the third message,
Flash Fill [21] (a PBE synthesizer integrated in Excel) synthesizes a program
and creates messages for all members on the list.

Fig. 1. Using flash fill to send meeting appointments.

At first glance, Flash Fill seems to have learned the correct program. How-
ever, careful inspection reveals that instead of the desired “Hi” greeting, the
message’s first word is an “H” followed by the second letter of the person’s
first name. This demonstrates the importance of inspecting the synthesis result
before relying on it to handle additional examples (e.g., lines 4–6 in the Excel
spreadsheet).

Goal. In this work, we wish to ensure correctness of the synthesized program
on all inputs, while still interacting with the user through examples.

Existing Techniques. Interactive synthesis with correctness guarantees can be
viewed as a special case of exact learning [10], where a learner (the synthesizer)
and a teacher (the user) interact to find the target concept known to the teacher.
In exact learning, the learner interacts with the teacher by asking two kinds of
questions: (i) membership questions, where the learner asks for the output of
a given input, and (ii) validation questions, where the learner asks whether a
hypothesis (a synthesized program) is correct and if not, asks for a counterex-
ample.

The popular counterexample-guided inductive synthesis (CEGIS) [41] app-
roach can be viewed as an instance of exact learning where the teacher is realized
as a verifier with a formal specification (rather than a user). The formal speci-
fication provides an efficient way to answer validation questions automatically.
Using validation questions ensures correctness on all inputs, but requires a formal
specification of the user intent, a specification which often does not exist.

In contrast, in programming by example (PBE), the user provides a set
of input-output examples which correspond to membership questions (and
answers). Classical PBE approaches (e.g., [5,29,33]) do not use any validation
questions, and never present the synthesized program to the user. These tech-
niques tradeoff exactness for ease of interaction with an end-user. In terms of
correctness, they only guarantee that the synthesized program is consistent with
the user-provided examples. Other techniques (e.g., [26]) obtain correctness but
make additional assumptions (see Sect. 6).
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Relying solely on membership questions is limited in its ability to ensure
correctness. Without validation queries or additional assumptions on the pro-
gram space, correctness is only guaranteed if the entire input space is covered
by membership questions (examples). When the input space is finite, this is usu-
ally impractical. When the input space is infinite, asking membership questions
about all inputs is clearly impossible.

Our Approach. We present a novel interactive synthesis framework that com-
municates with a user only through abstract membership queries—asking the
user whether an abstract example of the current candidate program should be
accepted or rejected—and guarantees that the synthesized program is correct
on all inputs. Abstract examples are a new form of examples that represent a
potentially unbounded set of concrete examples of a candidate program. Abstract
examples are natural for a user to understand and inspect (similarly to exam-
ples), and at the same time enable validation of the synthesis result without
enumerating all concrete examples (which is only possible for a finite domain,
and even then is often prohibitively expensive). In fact, an abstract membership
question can also be viewed as a partial validation question. Instead of presenting
the user with a program and asking him/her to determine whether it is correct
or not (a validation question), we present an abstract example, which describes
(declaratively) how the candidate program transforms part of the input space.
In this way, abstract examples allow us to perform exact synthesis without a
predefined specification.

Throughout the synthesis process, as the synthesizer explores the space of
candidate programs to find the one that matches the user intent, the synthesizer
presents to the user abstract examples of candidate programs. The user can
accept an abstract example, or provide a counterexample in which case the
synthesizer will explore a different candidate program. If the user accepts an
abstract example, he/she confirms the behavior of the candidate program on
part of the input space. That is, the synthesizer learns the desired behavior for
an unbounded number of concrete inputs. Thus, it can prune every program that
does not meet the confirmed abstract example. This pruning is correct even if
later the candidate program is rejected by another abstract example. Generally,
pruning based on an abstract example removes more programs than pruning
based on a concrete example. Thus, our synthesizer is likely to converge faster
to the target program compared to the current alternative (see Sect. 5). When
the user accepts a set of abstract examples that covers the entire input space,
our synthesizer returns the corresponding candidate program and the synthesis
process is completed.

A key ingredient of our synthesizer is a generalization algorithm, called L-
SEP. L-SEP takes a concrete example and a candidate program, and generalizes
the example to a maximally general abstract example consistent with the can-
didate program. To illustrate, consider our motivating example, and assume the
candidate program is the one synthesized by Flash Fill (that returns “H” fol-
lowed by the second letter of the person’s first name, etc.) and the initial concrete
example is the first member on the list (i.e., Diane). Our generalization algorithm
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produces the following abstract example:

a0a1A2 B C → Ha1 a0a1A2, please come to my office at C . -EG

This example describes the program behavior on the cells at columns A, B,
and C, for the case where the string at cell A has at least two characters, denoted
by a0 and a1, followed by a string sequence of an arbitrary size (including 0),
denoted by A2. For such inputs, the example describes the output as a sequence
consisting of: (i) the string “H” followed by a1, (ii) the entire string at A followed
by a comma, (iii) the string: “please come to my office at”, (iv) the string at C,
and (v) the string: “. -EG”.

This abstract example is presented to the user. The user rejects it and pro-
vides a concrete counterexample (e.g., line 4 in the Excel spreadsheet). Thus,
the synthesizer prunes the space of candidate programs and generates a new
candidate program. Eventually, the synthesizer generates the target program
(as a candidate program), and our synthesizer presents the following abstract
example:

A B C → Hi A, please come to my office at C . -EG

This time, the user accepts it. Since this abstract example covers the entire input
space, the synthesizer infers that this program captures the user intent on all
inputs and returns it. In general, covering the input space may require multiple
abstract examples.

We have implemented our synthesizer and experimentally evaluated it on
two domains: strings and bit vectors. Results indicate that our synthesizer can
communicate with the user effectively by presenting on average 3 abstract exam-
ples until the user rejects false candidate programs (on our most challenging
benchmark, consisting of programs that require a large number of examples to
differentiate them from the other programs). Further, results show that pruning
the program space based on the abstract examples reduces the overall number
of required concrete examples in up to 96% of the cases.

Main Contributions. The main contributions of this paper are:

– A new notion of abstract examples, which capture a (potentially unbounded)
set of concrete examples, and a realization via a language inspired by regular
expressions (Sect. 2).

– A generalization algorithm for learning a maximally generalizing abstract
example from a concrete example and a candidate program (Sect. 3).

– A novel synthesis framework that communicates only through abstract exam-
ples and guarantees that the synthesized program is correct on all inputs
(Sect. 4).

– An implementation and experimental evaluation that shows that our syn-
thesizer requires few abstract examples to reject false programs, and that it
reduces the number of concrete examples required to find the target program
(Sect. 5).
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2 Abstract Specifications and Sequence Expressions

In this section, we define the key terms pertaining to abstract examples. We
then present a special class of abstract examples for programs that manipulate
strings. For simplicity’s sake, from here on we assume that programs take one
input. This is not a limitation as multiple inputs (or outputs) can be joined
with a predefined delimiter (e.g., the inputs in the motivating example can be
considered as one string separated by spaces).

2.1 Abstract Examples

Program Semantics. The semantics of a program P is a function over a domain
D: �P � : D → D. We equate �P � with its input-output pair set: {(in, �P �(in)) |
in ∈ D}.

Abstract Examples. An abstract example ae defines a set �ae� ⊆ D×D, which
represents a partial function: if (in, out1), (in, out2) ∈ �ae�, then out1 = out2.
An abstract example ae is an abstract example for program P if �ae� ⊆ �P �. We
define the domain of ae to be dom(ae) = {in ∈ D | ∃out. (in, out) ∈ �ae�}.

Abstract Example Specifications. An abstract example specification of P is
a set of abstract examples A for P such that

⋃
ae∈A dom(ae) = D. Note that A

need not be finite and the example domains need not be disjoint.

2.2 Sequence Expressions

In this work, we focus on programs that manipulate strings, i.e., D = Σ∗ for a
finite alphabet Σ. Thus, it is desirable to represent abstract examples as expres-
sions that represent collections of concrete strings and can be readily interpreted
by humans. A prominent candidate for this goal is regular expressions, which are
widely used to succinctly represent a set of strings. However, regular expressions
are restricted to constant symbols (from Σ). Thus, they cannot relate outputs to
inputs, which is desirable when describing partial functions (abstract examples).
To obtain this property, we introduce a new language, Sequence Expressions
(SE), that extends regular expressions with the ability to relate the outputs to
their inputs via shared variables. We begin this section with a reminder of regu-
lar expressions, and then introduce the two types of sequence expressions: input
SEs, for describing inputs, and output SEs, for describing outputs.

Regular Expressions (RE). The set of regular languages over a finite alphabet
Σ is the minimal set containing ε, σ1, ..., σ|Σ| that is closed under concatenation,
union, and Kleene star. A regular expression r is a text representation of a
regular language over the symbols in Σ and the operators ·, |,∗ (concatenation,
or, and Kleene star).

Input SE Syntax. Figure 2(a) shows the grammar of input SEs. Compared to
RE, SEs are extended with three kinds of variables that later help to relate the
output to the input:
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SI ::= SI · SI | ε | σ | xR | XR | σk SO ::= SO · SO | ε | σ | x | f(x) | X | f(X) | σk

(a) Input SE (b) Output SE

Fig. 2. SE grammar: σ ∈ Σ, x ∈ x, X ∈ X, k ∈ K, R ∈ R, f ∈ F .

– Character variables, denoted x ∈ x, used to denote an arbitrary letter from
Σ.

– Sequence variables, denoted X ∈ X, used to denote a sequence of arbitrary
size.

– Star variables, denoted k ∈ K, used instead of the Kleene star to indicate
the number of consecutive repeating occurrences of a symbol. For example,
0k has the same meaning as the RE 0∗.

To eliminate ambiguity, in our examples we underline letters from Σ. For exam-
ple, xXa represents the set of words that have at least two letters and end with
an a (a ∈ Σ).

We limit each variable (i.e., x,X, k) to appear at most once at an input SE.
We also limit the use of a Kleene star to single letters from the alphabet. Also,
since the goal of each SE is to describe a single behavior of the program, we
exclude the ‘or’ operator. Instead, we extend the grammar to enable to express
‘or’ to some extent via predefined predicates that put constraints on the variables.
We denote these predicates by R ∈ R, and their meaning (i.e., the set of words
that satisfy them) by �R� ⊆ Σ∗. We note that we do not impose restrictions on
the set R, however our algorithm relies on an SMT-solver, and thus predicates
in R have to be encodable as formulas.

Some examples for predicates and their meaning are: �num� =
{w ∈ Σ∗ | w consists of digits only}, �anum� = {w ∈ Σ∗ |
w consists of letters and digits only}, �del� = {., \t, ; }, �no del� = Σ∗ \ �del�.
We assume that the predicate satisfied by any string, T, (where �T � = Σ∗) is
always in R. We abbreviate xT, XT to x,X. In the following, we refer to these as
atomic constructs: σ, xR,XR, σk. Given an input SE se we denote by xse, Xse,
and Kse the set of variables in se.

Input SE Semantics. To define the semantics, we first define interpretations
of an SE, which depend on assignments. An assignment env for an input SE
se maps every x ∈ xse to a letter in Σ, every X ∈ Xse to a sequence in Σ∗,
and every k ∈ Kse to a natural number (including 0). We denote by env[se] the
sequence over Σ obtained by substituting the variables with their interpretations.
Formally: (i) env[ε] = ε (ii) env[σ] = σ (iii) env[xR] = env(x) (iv) env[XR] =
env(X) (v) env[σk] = σenv(k) (vi) env[S1 · S2] = env[S1] · env[S2] (where ·
denotes string concatenation). An assignment is valid if for every xR and XR in
se, env(x), env(X) ∈ �R�. In the following we always refer to valid assignments.

The semantics of an input SE se, denoted by �se�, is the set of strings obtained
by the set of all valid assignments, i.e. �se� = {s ∈ Σ∗ | ∃env. env[se] = s}. For
example, �σ� = {σ}, �x� = Σ, �X� = Σ∗, and �σk� = {ε, σ, σσ, ...}.
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Output SE. Figure 2(b) shows the grammar of output SEs. Output SEs are
defined with respect to an input SE and they can only refer to its variables.
Formally, given an input SE se, an output SE over se is restricted to variables in
xse, Xse, and Kse. Unlike input SEs, an output SE is allowed to have multiple
occurrences of the same variable, and variables are not constrained by predicates.
In addition, output SEs can express invocations of unary functions over the
variables. Namely, the grammar is extended by f(x) and f(X), where x ∈ xse

and X ∈ Xse, and f : Σ → Σ∗ is a function.
An interpretation of an output SE is defined with respect to an assignment,

similarly to the interpretation of an input SE. We extend the interpretation
definition for the functions as follows: env[f(x)] = f(env(x)) and if env(X) =
σ1 · · · σn then env[f(X)] = f(σ1) · · · f(σn), i.e., env[f(X)] is the concatenation
of the results of invoking f on the characters of the interpretation of X. (If
env(X) = ε, env[f(X)] = ε.)

Input-Output SE Pairs. An input-output SE (interchangeably, an SE pair)
is a pair io = sein → seout consisting of an input SE, sein, and an output SE,
seout, defined over sein. Given io = sein → seout, we denote in(io) = sein and
out(io) = seout. The semantics of io is the set of pairs: �io� = {(sin, sout) ∈
Σ∗ × Σ∗ | ∃env. sin = env[in(io)] ∧ sout = env[out(io)]}. The domain of io is
dom(io) = �in(ae)�.

Example. An input-output SE for the pattern of column D based on columns
A,B in Fig. 1 is:

x0no delX1no del X2 → flowercase(x0).flowercase(X2)@lockhart-gardner.com

where x0 is a character variable, X1 and X2 are sequence variables and denotes
a column delimiter (taken from Σ). The predicate no del is satisfied by words
that do not contain a delimiter. The semantics of this SE pair is the set of all word
pairs whose first element is a string consisting of a first name, a delimiter, and a
last name, and the second element is the email address which is the sequence of
the first letter of the first name in lower case, a dot, the lower-cased last name,
and the suffix “@lockhart-gardner.com”.

2.3 Sequence Expressions as Abstract Examples

SE pairs provide an intuitive mean to describe relation between outputs to
inputs. In this work, we focus on learning abstract examples that can be
described with SE pairs. For simplicity’s sake, in the following we ignore pred-
icates and functions (i.e., R,F). Our definitions and algorithms can be easily
extended to arbitrary (but finite) sets R and F .

We say that an input-output SE is an abstract example if �io� describes a
partial function. Note that in general, an SE pair is not necessarily an abstract
example. For example, the pair ioXY = XY → XaY , can be interpreted to
(bbb, babb) (by env1 = {X �→ b, Y �→ bb}) and (bbb, bbab) (by env2 = {X �→
bb, Y �→ b}). Thus, �ioXY � is not a partial function and hence not an abstract
example.
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Given a program P , we say that an input-output SE is an abstract example
for P if �io� ⊆ �P �. Since �P � is a function, this requirement subsumes the
requirement of abstract example. Given an input SE sein, we say that an output
SE seout over sein is a completion of sein for P if sein → seout is an abstract
example for P .

Example. We next exemplify how SEs can provide an abstract example speci-
fication to describe a program behavior. Assume a user has a list of first names
and middle names (space delimited), some are only initials, and he/she wants
to create a greeting message of the form “Dear <name>”. The name in the
greeting is the first string if it is identified as a name, i.e., has at least two let-
ters; otherwise, the name is the entire string. For example: (i) Adam → Dear
Adam, (ii) Adam R. → Dear Adam, (iii) A. Robert → Dear A. Robert (iv) A.R.
→ Dear A.R.. In this example, we assume the predicate set contains the pred-
icates R = {T,name, other}, where �name� = {A, a, ..., Z, z}+ \ {A, a, ..., Z, z},
�other� = (Σ \ { })∗ \ �name�. An abstract example specification is: (i)
X0name → Dear X0 (ii) X0name X1 → Dear X0 (iii) X0other → Dear X0 (iv)
X0other X1 → Dear X0 X1.

Discussion. While SEs can capture many program behaviors, they have limi-
tations. One limitation is that an SE can only describe relations between output
characters to input characters, but not among input characters. For example,
it cannot capture inputs that are palindromes or inputs of the form XX (e.g.,
abab). This limitation arises because we chose input SEs to be (a subset of)
regular expressions, which cannot capture such languages. Also, tasks that are
not string manipulations are likely to have a specification that contains (many)
trivial abstract examples (i.e., concrete input-output examples). For example,
consider a program that takes two digits and returns their multiplication. Some
abstract examples describing it are X 1 → X and 1 X → X. However, the
specification also contains 9 2 → 18, 9 3 → 27, ..., 9 9 → 81. Also, an abstract
example specification consists of a set of independent abstract examples, with no
particular order. As a result, describing if-else rules requires encoding the nega-
tion of the “if” condition explicitly in order to obtain the same case splitting as
an if-else structure.

Generalization Order. We next define a partial order between SEs that are
abstract examples. This order is leveraged by our algorithm in the next section.
We call this order the generalization order and if an abstract example is greater
than another one, we say it is more general or abstract. We begin with defining
a partial order � on the atomic constructs of SEs, as follows:

X

x σk

σ

where σ ∈ Σ, x ∈ x, X ∈ X and k ∈ K.
We say that an input SE se′ is more general than se, se � se′, if its atomic

constructs are pointwise more general than the atomic constructs of se. Namely,
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for se = a1 · · · an and se′ = a′
1 · · · a′

n (where ai and a′
i are atomic constructs),

se � se′ if for every 1 ≤ i ≤ n, ai � a′
i. If se � se′ ∧ se 
= se′, we write se ≺ se′.

For example, abc ≺ abkc ≺ xY Z. In addition, we define that for any atomic
construct a, a 
� ε and ε 
� a. The generalization order implies the following:

Lemma 1. Let se, se′ be two input SEs. If se � se′, then �se� ⊆ �se′�.

The proof follows directly from the definition of � and the semantics of an input
SE. Note that the converse does not necessarily hold. For example, �XY � = �Z�,
but XY 
� Z and Z 
� XY . In fact, � may only relate SEs of the same length.
In practice, we partly support generalizations beyond � (see Sect. 3).

The generalization order of input SEs induces a generalization order on input-
output SEs: io � io′ if in(io) � in(io′). If io and io′ are abstract examples for
the same program P , this implies that �io� ⊆ �io′�. Moreover, in that case
�io� ⊆ �io′� if and only if �in(io)� ⊆ �in(io′)�. This observation enables our
algorithm to focus on generalizing the input SE instead of generalizing the pair
as a whole.

3 An Algorithm for Learning Abstract Examples

In this section, we describe L-SEP, our algorithm for automatically Learning an
SE Pair. This pair is an abstract example for a given program and it generalizes
a given concrete example. In Sect. 4, we will use L-SEP repeatedly in order to
generate an abstract example specification.

L-SEP (Algorithm 1) takes as input a program P (e.g., the program Flash Fill
learned) and a (concrete) input in (e.g., Diane). These two define the initial SE to
start with: (in, �P �(in)) (namely, the concrete example). The algorithm outputs
an input-output SE, io = sin → sout, such that (in, �P �(in)) ∈ �io� ⊆ �P �.
Namely, io generalizes (or abstracts) the concrete example and is consistent
with P . L-SEP’s goal is to find an io that is maximal with respect to �.

The high-level operation of L-SEP is as follows. First, it sets io = in →
�P �(in). Then, it gradually generalizes io while this results in pairs that are
abstract examples for P . The main insight of L-SEP is that instead of general-
izing io as a whole, it generalizes the input SE, in(io), and then checks whether
there is a completion of in(io) for P , namely an output SE over in(io) such that
the resulting pair is an abstract example for P . This is justified by the property
that io � io′ if and only if in(io) � in(io′).

3.1 Input Generalization

We now explain the pseudo code of L-SEP. After initializing io by setting sin = in
and sout = �P �(in), L-SEP stores in InCands the set of candidates generaliz-
ing sin (which are the input components of io’s generalizations). Then, a loop
attempts to generalize sin as long as InCand 
= ∅. Each iteration picks a minimal
element from InCands, s′

in, which is a candidate to generalize sin. To determine
if s′

in can generalize sin, findCompletion is called. If it succeeds, it returns s′
out



Synthesis with Abstract Examples 263

Algorithm 1. L-SEP(P , in)
1 sin = in; sout = �P �(in)
2 InCands = {s ∈ SEin | s � sin}
3 while InCands �= ∅ do
4 s′

in = pick a minimal element from InCands
5 s′

out = findCompletion(P , s′
in) // if succeeds, �s′

in → s′
out� ⊆ �P �

6 if s′
out �= ⊥ then

7 sin = s′
in ; sout = s′

out

8 InCands = InCands ∩ {s ∈ SEin | s � sin}
9 else

10 InCands = InCands \ {s ∈ SEin | s 	 s′
in}

11 return (sin, sout)

such that s′
in → s′

out is an abstract example for P . If it fails, ⊥ is returned.
Either way, the search space, InCands, is pruned: if the generalization succeeds,
then the candidates are pruned to those generalizing s′

in; otherwise, to those
except the ones generalizing s′

in. If the generalization succeeds, sin and sout are
updated to s′

in and s′
out.

Our next lemma states that if findCompletion returns ⊥, pruning InCands
does not remove input SE that have a completion for P . The lemma guarantees
that L-SEP cannot miss abstract examples for P because of this pruning.

Lemma 2. If s′′
in � s′

in and s′
in has no completion for P , s′′

in has no completion
for P .

Proof (sketch). We prove by induction on the number of generalization steps
required to get from s′

in to s′′
in. Base is trivial. Assume the last generalization

step is to replace a′
i in sin′ with a′′

i in s′′
in. If s′′

in has a completion s′′
out for P ,

then substitute a′′
i in s′′

out by a′
i to obtain a completion for s′

in. However, this
contradicts our assumption. ��

InCands. For ease of presentation, L-SEP defines InCand as the set of all
generalizations of in that remain to be checked, where initially it contains all
generalizations. However, the size of this set is exponential in the length of in,
and thus practically, L-SEP does not maintain it explicitly. Instead, it main-
tains two sets: MinCands, which records the minimal generalizations of the
current candidate sin that remain to be checked, and Pruned, which records the
minimal generalizations that were overruled (and hence none of their generaliza-
tions need to be inspected). Technically, in Line 2 and Line 8 L-SEP initializes
MinCands based on the current candidate sin by computing all of its minimal
generalizations. In Line 10 it removes from MinCand the generalization that
was last checked and failed, and also records this generalization in Pruned to
indicate that none of its generalizations needs to be inspected. Pruned is used
immediately after initializing MinCand in Line 8 to remove from MinCands
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any generalization that generalizes a member of Pruned – this efficiently imple-
ments the update of InCands in Line 10. Using this representation of InCands
we can now establish:

Lemma 3. The number of iterations of L-SEP is O(|in|2 · |R|2).
Proof. The number of iterations is at most the maximal size of MinCands mul-
tiplied by the number of initializations of MinCands based on a new candidate
sin in Line 8. The size of MinCands computed based on some sin is at most
|in| · (|R| + 1). This follows since a minimal generalization of sin differs from
sin in a single construct that is more general than the corresponding construct
in sin (with respect to the partial order of constructs). The number of initial-
izations of MinCands at Line 8 is bounded by the longest (possible) chain of
generalizations. This follows because each such initialization is triggered by the
update of sin to a more general SE. Since the longest chain of generalizations is
at most |in| · (|R| + 1), the number of iterations is O(|in|2 · |R|2). ��
Lemma 3 implies that MinCands and Pruned provide a polynomial represen-
tation of InCands (even though the latter is exponential). Further, the use of
these sets enables L-SEP to run in polynomial time because they provide a
quadratic bound on the number of iterations, and because findCompletion is
also polynomial, as we shortly prove.

Picking a Minimal Generalization. We now discuss how L-SEP picks a
minimal generalization of sin in Line 4. One option is to arbitrarily pick a min-
imal generalization. However, this greedy approach may result in a sub-optimal
maximal generalization, namely a maximal generalization that concretizes to
fewer concrete inputs than some other possible maximal generalization. On the
other hand, to obtain an optimal generalization, all generalizations that have a
completion have to be computed and only then the best one can be picked by
comparing the number of concretizations. Unfortunately, this approach results
in an exponential time complexity and is thus impractical. Instead, our imple-
mentation of L-SEP takes an intermediate approach: it considers all minimal
generalizations that have a completion and picks one that concretizes to a max-
imal number of inputs. To avoid counting the number of inputs (which may be
computationally expensive), our implementation employs the following heuris-
tic. It syntactically compares the generalizations by comparing the construct in
each of them that is not in sin (i.e., where generalization took place). It then
picks the generalization whose construct is maximal with respect to the order:
X > σk > x. If there are generalized constructs incomparable w.r.t. this order
(e.g., σk

1 vs. σk
2 ), one is picked arbitrarily.

3.2 Completion

findCompletion (Algorithm 2) takes P and an input generalization s′
in and

returns a completion of s′
in for P , if exists; or ⊥, otherwise.

Unlike input SEs, the fact that a certain candidate s′′
out is not a completion of

s′
in for P , does not imply that its generalizations are also not completions of s′

in.
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Algorithm 2. findCompletion(P , s′
in)

1 return findOutputPrefix(P ,s′
in, ε)

2 Function findOutputPrefix(P , s′
in, sprefout ):

3 if �s′
in → sprefout � ⊆ �P � then return sprefout

4 Cands = {s ∈ SEout(s
′
in) | s is an atomic construct}

5 while Cands �= ∅ do
6 sym = pick and remove a minimal element from Cands

7 if �s′
in → sprefout · sym� ⊆ {(in, op) | ∃os ∈ Σ∗.(in, op · os) ∈ �P �} then

8 sprefout = sprefout · sym

9 s′
out = findOutputPrefix(P , s′

in, sprefout )
10 if s′

out �= ⊥ then return s′
out

11 return ⊥

Thus, a pruning similar to the one of L-SEP may result in missing completions.
To exemplify this, consider a program P whose abstract example specification
is {xX → bX}. Assume that while L-SEP looks for a completion for s′

in = ax
it considers s′

out = ba, which is not a completion. Pruning SEs that are more
general than s′

out, will result in pruning the completion bx. Likewise, pruning
elements that are more specific than a candidate that is not a completion may
result in pruning completions.

Since the former pruning cannot be used to search the output SE,
findCompletion searches differently. Its search involves attempts to gradually
construct a completion s′

out construct-by-construct. If an attempt fails, it back-
tracks and attempts a different construction. This is implemented via the recur-
sive function findOutputPrefix. At each step, a current prefix spref

out (initially
ε) is extended with a single atomic construct sym (i.e., σ, x,X, σk). Then, it
checks whether the current extended construction is partially consistent with P
(Line 7). If the check fails, this extended prefix is discarded, thereby pruning its
extensions from the search space. Otherwise, the extended prefix is attempted
to be further extended. We next define partial consistency.

Definition 1. An SE pair s′
in → spref

out is partially consistent with P if for every
assignment env, env[spref

out ] is a prefix of �P �(env[s′
in]).

When s′
in is clear from the context, we say that spref

out is partially consistent
with P .

By the semantics definition, a pair s′
in → spref

out is partially consistent with
P if and only if �s′

in → spref
out � ⊆ {(in, op) | ∃os ∈ Σ∗.(in, op · os) ∈ �P �} (which

is the check of line 7). Partial consistency is a necessary condition (albeit not
sufficient) for spref

out · sym to be a prefix of a completion s′
out. Thus, if spref

out · sym
is not partially consistent, there is no need to check its extensions. Note that
even if a certain prefix spref

out · sym is partially consistent, it may be that this
prefix cannot be further extended (namely, the suffixes cannot be realized by
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an SE). In this case, this prefix will be discarded in later iterations and spref
out

will be attempted to be extended differently. This extension process terminates
when an extension results in a completion, in which case it is returned, or when
all extensions fail, in which case ⊥ is returned.

Lemma 4. The recursion depth of Algorithm2 is bounded by the length of
�P �(in).

Proof. Denote by n the length of �P �(in). Assume to the contrary that the
recursion depth exceeds n. Namely, the current prefix, spref

out , is strictly longer
than n. We show that in this case, the partial consistency check is guaranteed to
fail. To this end, we show an assignment env to s′

in such that env[spref
out ] is not

a prefix of �P �(env[s′
in]). Consider the assignment env that maps each variable

in s′
in to its original value in in (namely, env[s′

in] = in). This assignment maps
each variable to exactly one letter. By our assumption, the length of env[spref

out ]
is greater than n. Thus, env[spref

out ] (of length > n) cannot be a prefix of �P �(in)
(of length n). ��

3.3 Guarantees

Lemmas 3 and 4 ensure that both the input generalization and the completion
algorithms terminate in polynomial time. Thus, the overall runtime of L-SEP is
polynomial. Finally, we discuss the guarantees of these algorithms.

Lemma 5. findCompletion is sound and complete: if it returns s′
out, then

s′
out is a completion of s′

in for P , and if it returns ⊥, then s′
in has no completion

for P .

Soundness follows since findOutputPrefix returns s′
out only after validating

that �s′
in → s′

out� ⊆ �P �. Completeness follows since s′
out is gradually constructed

and every possible extension is examined.

Lemma 6. L-SEP is sound and complete: for every (in, out) pair, an SE pair
is returned, and if L-SEP returns an SE pair, then it is an abstract example
for P .

Soundness is guaranteed from findCompletion. Completeness follows since even
if all generalizations fail, L-SEP returns the concrete example as an SE pair.

Theorem 1. L-SEP returns an abstract example io for P such that
(in, �P �(in)) ∈ �io� and io is maximal w.r.t. �.

This follows from Lemmas 2 and 5, and since L-SEP terminates only when
InCands is empty (i.e., when there are no more input generalizations to explore).

We note that in our implementation, findCompletion runs heuristics instead
of the expensive backtracking. In this case, maximality is no longer guaranteed.
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3.4 Running Example

We next exemplify L-SEP on the (shortened) example from the introduction,
where we start from a concrete example in = Diane and we wish to obtain
the abstract example a0a1A2 → Ha1 a0a1A2. L-SEP starts with: sin = Diane
and sout = Hi Diane. It then picks a minimal candidate that generalizes sin. A
minimal candidate differs from sin in one atomic construct in some position i.
By �, if sin[i] = σ, then s′

in[i] is x or σk.
Assume that L-SEP first tests this minimal candidate: s′

in = Dk0 iane.
To test it, L-SEP calls findCompletion to look for a completion. The com-
pletion is defined over s′

in and in particular can use the variable k0. Then,
findCompletion invokes findOutputPrefix(P , Dk0 iane, ε). In the first call
of findOutputPrefix, all extensions of the current prefix, ε, except for H, fail
in the partial consistency check. This follows since the output of P always starts
with an ‘H’ (and not, e.g., with ‘Hk0 ’). Thus, a recursive call is invoked (only)
for the output SE prefix H. In this call, all extensions (i.e., Hσ or Hσk0) fail.
For example, Hi fails since the output prefix is not always “Hi” (e.g., P (DDiane)
= HD DDiane. Since the prefix H cannot be extended further, ⊥ is returned.
This indicates that the input generalization s′

in = Dk0 iane fails. Thus, L-SEP
removes from InCands all generalizations whose first construct generalizes Dk0 .

L-SEP then tests another minimal generalization: s′
in = x0iane. It then calls

findCompletion (which can use x0). As before, (only) the prefix SE H is found
partially consistent. Next, a second call attempts to extend H. This time, the
extension Hi succeeds because for all interpretations of x0iane, the output prefix
is “Hi”. The recursion continues, until obtaining and returning the completion
Hi x0iane.

When L-SEP learns that s′
in is a feasible generalization, it updates sin

and sout, and prunes InCands to candidates generalizing x0iane (for example,
InCands contains x0x1ane). Eventually, sin is generalized to s′

in = x0x1X2X3X4

with the completion s′
out = Hx1 x0x1X2X3X4. In a postprocessing step (per-

formed when L-SEP is done), X2X3X4 is simplified to Y , resulting in the abstract
example x0x1Y → Hx1 x0x1Y . Note that the last “generalization” is no longer
according to �.

4 Synthesis with Abstract Examples

In this section, we present our framework for synthesis with abstract examples.
We assume the existence of an oracle O (e.g., a user) that has fixed a target
program Ptar. Our framework is parameterized with a synthesizer S that takes
concrete or abstract examples and returns a consistent program. Note that the
guarantee to finally output a program equivalent to Ptar is the responsibility of
our framework, and not S. Nonetheless, candidate programs are provided by S.

Goal. The goal of our framework is to learn a program equivalent to the target
program. Note that this is different from the traditional goal of PBE synthesizers,
which learn a program that agrees with the target program at least on the
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observed inputs. More formally, our goal is to learn a program P ′ such that
�Ptar� = �P ′�, whereas PBE synthesizers that are given a set of input-output
examples E ⊆ D × D can only guarantee to output a program P ′′ such that
�Ptar� ∩ E = �P ′′� ∩ E.

Interaction Model. We assume that the oracle O can accept abstract examples
or reject them and provide a counterexample. If the oracle accepts an abstract
example io, then �io� ⊆ �Ptar�. If it returns a counterexample cex = (in′, out′),
then (i) (in′, out′) ∈ �Ptar�, (ii) (in′, out′) /∈ �io�, and (iii) in′ ∈ �in(io)�.

Operation. Our framework (Algorithm3) takes an initial (nonempty) set of
input-output examples E ⊆ D × D. This set may be extended during the exe-
cution. The algorithm consists of two loops: an outer one that searches for a
candidate program and an inner one that computes abstract examples for a
given candidate program. The inner loop terminates when one of the abstract
examples is rejected (in which case a new iteration of the outer loop begins) or
when the input space is covered (in which case the candidate program is returned
along with the abstract example specification).

The framework begins with initializing A to the empty set. This set accumu-
lates abstract examples that eventually form an abstract example specification
of Ptar. Then the outer loop begins (Lines 2–10). Each iteration starts by asking
the synthesizer for a program P consistent with the current set of concrete exam-
ples in E and abstract examples in A. Then, the inner loop begins (Lines 4–9).
At each inner iteration, an input in is picked and L-SEP(P, in) is invoked. When
an abstract example io is returned, it is presented to the oracle. If the oracle
provides a counterexample cex = (in′, out′), then �P � 
= �Ptar� (see Lemma 7).
In this case, E is extended with cex, and a new outer iteration begins. If the ora-
cle accepts the abstract example, io, the abstract example is added to A (since
it is an abstract example for Ptar). Conceptually, the synthesizer extends its set
of examples with more examples (potentially an infinite number). This (poten-
tially) enables faster convergence to Ptar (in case additional outer iterations
are needed). If the inner loop terminates without encountering counterexam-
ples, then A covers the input domain D. At this point it is guaranteed that
�P � = �Ptar� (see Theorem 2). Thus, P is returned, along with the abstract
example specification A. Note that A has already been validated and need not
be inspected again.

We remark that although abstract examples can help the synthesizer to con-
verge faster to the target program, still the convergence speed (and the number
of counterexamples required to converge) depends on the synthesizer (which is
a parameter to our framework) and not on L-SEP or our synthesis framework.

Lemma 7. If O(io) = (in′, out′) ( 
= ⊥), then �P � 
= �Ptar�.

Proof. From the oracle properties (in′, out′) ∈ �Ptar�, (in′, out′) /∈ �io�, and
in′ ∈ �in(io)�. Thus, there exists out′′ 
= out′ such that (in′, out′′) ∈ �io�. Since
by construction, �io� ⊆ �P �, it follows that (in′, out′′) ∈ �P �. Thus, �P � 
=
�Ptar�. ��
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Algorithm 3. synthesisWithAbstractExamples(E)
1 A = ∅ // initialize the set of abstract examples

2 while true do
3 P = S(E, A) // obtain a program consistent with the examples

4 while ∪io∈A�in(io)� �= D do // A does not cover D

5 Let in ∈ D \ ∪io∈A�in(io)� // obtain uncovered input

6 io = L-SEP(P, in) // learn abstract example

7 cex= O(io) // ask the oracle

8 if cex = ⊥ then A = A ∪ {io} // abstract example is correct

9 else E = E ∪ {cex} ; break // add a counterexample

10 return (P , A)

Theorem 2. Upon termination, Algorithm3 returns a program P s.t. �P � =
�Ptar�.

Proof. Upon termination, for every in ∈ D there exists io ∈ A s.t. in ∈ �in(io)�.
By construction �io� ⊆ �P �, thus (in, �P �(in)) ∈ �io�. By the oracle properties,
�io� ⊆ �Ptar�, thus (in, �Ptar�(in)) ∈ �io�. Altogether, �P �(in) = �Ptar�(in). ��
We emphasize that the interaction with the oracle (user) is only after obtaining
both a candidate program and an abstract example, and the goal of the interac-
tion is to determine whether the candidate program is correct. If the user rejects
an abstract example, it means he/she rejects the candidate program, in which
case the PBE synthesizer S looks for a new candidate program. In particular,
the interaction goal is not to confirm the correctness of the abstract examples
– L-SEP always returns (without any interaction) a correct generalization with
respect to the candidate program.

Example. We next exemplify our synthesis framework in the bit vector domain.
We consider a program space P defined inductively as follows. The identity
function and all constant functions are in P. For every op ∈ {Not,Neg} and
P ∈ P, op(P ) ∈ P, and for every op ∈ {AND,OR,+,−,SHL,XOR,ASHR} and
P1, P2 ∈ P, op(P1, P2) ∈ P. We assume a näıve synthesizer that enumerates
the program space by considering programs of increasing size and returning the
first program consistent with the examples. In this setting, we consider the task
of flipping the rightmost 0 bit, e.g., 10101 → 10111 (taken from the SyGuS
competition [3]). While this task is quite intuitive to explain through exam-
ples, phrasing it as a logical formula is cumbersome. Assume a user provides
to Algorithm 3 the set of examples E = {(10101, 10111)}. Table 1 shows the
execution steps taken by our synthesis framework: E shows the current set of
examples, P (x) shows the candidate program synthesized by the näıve synthe-
sizer, Abstract Examples shows the abstract examples computed by L-SEP and
Counterexample? is either No if the user accepts the current abstract exam-
ple (to its left) or a pair of input-output example contradicting the current
abstract example. In this example, L-SEP uses the set of functions F = {fneg}
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in the output SE, where fneg(0) = 1, fneg(1) = 0, and we abbreviate fneg(y)
with ȳ. Further, since the bit vector domain consists of vectors of a fixed size
(namely, Σn for a fixed n instead of Σ∗), the SE’s semantics in this domain
is defined as the suffixes of size n of its (normal) interpretation. Formally,
�se�n = {s ∈ Σn | ∃env. s is a suffix of env[se]}. The semantics of an input-
output SE is defined similarly. In the example, the first couple of programs are
eliminated immediately by the user, whereas the third program is eliminated
only after showing the third abstract example describing it. This enables the
synthesizer to prune a significant portion of the search space. Note that since
abstract examples are interpreted over fixed sized vectors (as explained above),

the last abstract example covers the input space: if k = n, the input is
n times
︷ ︸︸ ︷
11...1 ;

if k = 0, the input takes the form of b0...bn−10 (where the bi-s are bits); and if
0 < k < n, the input takes the form of b0...bn−k−101k.

Table 1. A running example for learning a program that flips the rightmost 0 bit with
our synthesis framework. Target program is Ptar(x) = OR(x + 1, x).

E P (x) Abstract examples Counterexample?

(10101,10111) P (x) = 10111 X → 10111 1 → 11

(10101,10111), (1,11) P (x) = OR(x, 2) X0x1x2 → X01x2 0 → 1

(10101,10111),
(1,11),(0,1)

P (x) = OR(x + 1, 1) X00x2 → X0x21
X00 → X01
X00x11 → X0x1x̄11

No No 11 → 111

(10101,10111),
(1,11),(0,1), (11,111)

P (x) = OR(x + 1, x) X001k → X01
k1 No

Leveraging Counterexamples for Learning Abstract Examples. A lim-
itation of L-SEP is that it only generalizes the existing characters of the con-
crete input. For example, consider a candidate program generated by S that
returns the first and last character of the string, which can be summarized
by the abstract example x0X1x2 → x0x2. If, in the process of generating an
abstract example specification for the candidate program, the first example pro-
vided by Algorithm 3 to L-SEP for generalization is ab, then it is generalized to
x0x1 → x0x1. On the other hand, if the first example is acb, then it is generalized
to x0X1x2 → x0x1, whose domain is a strict superset of the former’s domain.
This exemplifies that some inputs may provide better generalizations than oth-
ers. Although eventually our framework will learn the better generalizations, if
Algorithm 3 starts from the less generalizing examples, then the termination of
our framework is delayed, and unnecessary questions are presented to the oracle
(in our example, it will present x0x1 → x0x1, and then x0X1x2 → x0x2, which
are both accepted, but the former perhaps could be avoided). We believe that
the way to avoid this is by picking “good” examples. We leave the question of
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how to identify them to future work, but note that if the oracle is assumed to
provide “good” examples (e.g., representative) then Line 5 can be changed to
first look for an uncovered input in E.

5 Evaluation

In this section, we discuss our implementation and evaluate L-SEP and our syn-
thesis framework. We evaluate our algorithms in two domains: strings and bit
vectors (of size 8). The former domain is suitable for end users, as targeted by
approaches like Flash Fill or learning regular expressions. The latter domain is
of interest to the synthesis community (evident by the SyGuS competition [3]).
We begin with our implementation and then discuss the experiments. All exper-
iments ran on a Sony Vaio PC with Intel(R) Core(TM) i7-3612QM processor
and 8 GB RAM.

5.1 Implementation

We implemented our algorithms in Java. We next provide the main details.

Program Spaces. The program space we consider for bit vectors is the one
defined in the example at the end of Sect. 4.

The program space P we consider for the string domain is defined inductively
as follows. The identity function and all constant functions are in P. For every
P1, P2 ∈ P, concat(P1, P2) ∈ P.

For P ∈ P and integers i1, i2, Extract(P, i1, i2) ∈ P. For P1, P2 ∈ P, and a
condition e over string programs and integer symbols, ITE(e, P1, P2) ∈ P.

SE Spaces. In the bit vector domain we consider F = {fneg} where fneg(b) =
1 − b.

FindCompletion. To answer the containment queries (Lines 3 and 7), we use
the Z3 SMT-solver [15]. To this end, we encode the candidate program P and
the SEs as formulas.

Roughly speaking, an SE is encoded as a conjunction of sequence predicates,
each encodes a single atomic construct. A sequence predicate extends the equality
predicate with a start position and is denoted by t1

i= t2. An interpretation
d1, d2 for t1, t2 satisfies t1

i=t2 if starting from the ith character of d1 the next |d2|
characters are equal to d2. The term t1 is either a unique variable tin, representing
the input (for input SEs), or P (tin) (for output SEs). The term t2 can be (i) σ (a
letter from Σ), (ii) σk where k is a star variable, or (iii) a character or sequence

variable. For example, X0abk2x3 is encoded as: tin
0=X0∧ tin

|X0|
= a∧ (∀i.1+ |X0| ≤

i < 1 + |X0| + k2 → tin
i=b) ∧ tin

1+|X0|+k2= x3. Note that the positions can be a
function of the variables. In the string domain, the formulas are encoded in the
string theory (except for i and k2 that are integers). In the bit vector domain,
entities are encoded as bit vectors and i= is implemented with masks.
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Synthesis Framework. To check whether A covers the input domain and
obtain an uncovered input in if not, we encode the abstract examples in A
as formulas. We then check whether one of the concrete examples from E does
not satisfy any of these formulas. If so, it is taken as in. Otherwise, we check if
there is another input that does not satisfy the formulas, and if so it is taken as
in; otherwise the input domain is covered.

Synthesizer. Our synthesizer is a näıve one that enumerates the program space
by considering programs of increasing size and returning the first program con-
sistent with the examples. Technically, we check consistency by submitting the
formula P (in) = out to an SMT-solver for every (in, out) ∈ E. Likewise, P is
checked to be consistent with the abstract examples by encoding them as for-
mulas and testing whether they imply P . More sophisticated PBE synthesizers,
such as Flash-Fill, can in many cases be extended to handle abstract examples
in a straight-forward way.

5.2 Synthesis Framework Evaluation

In this section, we evaluate our synthesis framework on the bit vector domain.
We consider three experimental questions: (1) Do abstract examples reduce the
number of concrete examples required from the user? (2) Do abstract examples
enable better pruning for the synthesizer? (3) How many abstract examples are
presented to the user before he/she rejects a program? To answer these questions,
we compare our synthesis framework (denoted AE) to a baseline that implements
the current popular alternative (e.g., [41]) that guarantees that a synthesized
program is correct. The baseline acts as follows. It looks for the first program
that is consistent with the provided examples and then asks the oracle whether
this program is correct. The oracle checks whether there is an input for which
the synthesized program and the target program return different outputs. If so,
the oracle provides this input and its correct output to the synthesizer, which
in turn looks for a new program. If there is no such input, the oracle reports
success, and the synthesis completes. We assume a knowledgable user (oracle),
implemented by an SMT-solver, which is oblivious to whether the program is
easy for a human to understand, making the comparison especially challenging.

Benchmarks. We consider three benchmarks, B(4), B(6), and B(8), each con-
sists of 50 programs. A program is in B(n) if baseline required at least n examples
to find it. To find such programs, we randomly select programs of size 4, for each
we execute baseline (to find it), and if it required at least n examples, we add
it to B(n) and execute our synthesis framework (AE) to find the same (or an
equivalent) program.

Consistency of Examples. The convergence of these algorithms highly
depends on the examples the oracle provides. To guarantee a fair comparison, we
make sure that the same examples are presented to both algorithms whenever
possible. To this end, we use a cache that stores the examples observed by the
baseline. When our algorithm asks the oracle for an example, it first looks for
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an example in the cache. Only if none meets its requirements, it can ask (an
SMT-solver) for a new concrete example.

Results. Table 2 summarizes the results. It reports the following:

– #Concrete examples: the average number of concrete examples the oracle
provided, which is also the number of candidate programs.

– Spec-final: the average size of the final abstract example specification (after
removing implied abstract examples).

– #AE-intermediate: the average number of abstract examples shown to the
user before he/she rejected the corresponding candidate program.

– %Better/equal/worse than baseline: the percentage of all programs in the
benchmark that required fewer/same/more (concrete) examples than the
baseline.

We note that we observed that the time to generate a single abstract example
is a few seconds (≈ 6 s).

Results indicate that our synthesis framework (AE), which prunes the pro-
gram space based on the abstract examples, improves the baseline in terms of
the examples the user needs to provide. This becomes more significant as the
number of examples required increases: AE improves the baseline on B(4) by
22%, on B(6) by 30%, and on B(8) by 37%. Moreover, in each benchmark AE

performed worse than the baseline only in a single case – and the common case
was that it performed better (in B(8), AE performed better on all cases except
two).

Figure 3 provides a detailed evidence on the improvement: it shows for each
experiment (the x-axis) the number of concrete examples each algorithm required
(the y-axis). The figure illustrates that the improvement can be significant. For
example, in the 47th experiment, AE reduced the number of examples from 17
to 7.

The number of concrete examples is also the number of candidate programs
generated by the synthesizer. Thus, the lower number of examples indicates
that the abstract examples improve the pruning of the program space. Namely,

Table 2. Experimental results on the bit vector domain.

B(4) B(6) B(8)

AE Baseline AE Baseline AE Baseline

#Concrete examples
(candidate programs)

4.42 5.64 5.50 7.68 6.62 10.26

Spec-final 11.04 9.36 13.22

#AE-intermediate 1.98 2.00 3.23

%Better than baseline 68% 76% 96%

%Equal to baseline 30% 22% 2%

%Worse than baseline 2% 2% 2%
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Fig. 3. Detailed results for B(8).

abstract examples help the overall synthesis to converge faster to the target
program.

5.3 Abstract Example Specification Evaluation

In this section, we evaluate our generalization algorithm, L-SEP, in the string
domain and check how well it succeeds in learning small specifications. To this
end, we fix a program and a concrete example to start with and run L-SEP. We
repeat this with uncovered inputs until the set of abstract examples covers the
string domain. We then check how many abstract examples were computed.

The programs we considered are related to the motivating example. For each
program, we run five experiments. Each experiment uses a different Excel row
(lawyer) as the first concrete example. We note that our implementation assumes
that the names and meeting times are non-empty strings and are space-delimited.
Table 3 reports the programs and the average number of abstract examples.
Results indicate that the average number of abstract examples required to
describe the entire string domain is low.

Table 3. Experimental results on the string domain.

The string program #Abstract examples

Concatenates the string “Dear” to the last name 1

Concatenates the first letter of the first name to the last name 1

Concatenates the first letter of the first name to the last name
and to “@lockhart-gardner.com”

1

Generates the message presented in the motivating example 2

Concatenates the first two characters of the first name to the
third and forth characters of the last name and to the second
digit of the meeting time

6.57
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6 Related Work

In this section, we survey the work closely related to ours.

Learning Specifications. Learning regular languages from examples has been
extensively studied in the computational learning theory, under different models:
(i) identification in the limit (Gold [20]), (ii) query learning (Angluin [4]), and
(iii) PAC learning (Valiant [44]). Our setting is closest to Angluin’s setting that
defines a teacher-student model and two types of queries: membership (concrete
examples) and equivalence (validation). The literature has many results for this
setting, including learning automata, context-free grammars, and regular expres-
sions (see [37]). In the context of learning regular expressions, current algorithms
impose restrictions on the target regular expression. For example, [9] allows at
most one union operator, [27] prevents unions and allows loops up to depth 2 ,
[17] assumes that input samples are finite and Kleene stars are not nested, and
[6] assumes that expressions consist of chains that have at most one occurrence
of every symbol. In contrast, we learn an extended form of regular expressions
but we also impose some restrictions. In the context of learning specifications,
[43] learns specifications for programs in the form of logical formulas, which are
not intuitive for most users. Symbolic transducers [8,45] describe input-output
specifications, but these are more natural to describe functions over streams than
input manipulations.

Least General Generalization. L-SEP takes the approach of least general
generalization to compute an abstract example. The approach of least general
generalization was first introduced by Plotkin [32] that pioneered inductive logic
programming and showed how to generalize formulas. This approach was later
used to synthesize programs from examples in a PBE setting [31,35]. In contrast,
we use this approach not to learn the low-level program, but the high-level
specification in the form of abstract examples.

Pre/Post-condition Inference. Learning specifications is related to find-
ing the weakest pre-conditions, strongest post-conditions, and inductive invari-
ants [12,13,16,19,24,36]. Current inference approaches are mostly for program
analysis and aim to learn the conditions under which a bad behavior cannot
occur. Our goal is different: we learn the (good and bad) behaviors of the pro-
gram and present it through a high-level language.

Applications of Regular Expressions. There are many applications of reg-
ular expressions, for example in data filtering (e.g., [46]), learning XML files’
schemes (DTD) (e.g., [6,17]), and program boosting (e.g., [11]). All of these
learn expressions that are consistent with the provided examples and have no
guarantee on the target expression. In contrast, we learn expressions that pre-
cisely capture program specifications.

Synthesis. Program synthesis has drawn a lot of attention over the last
decade, and especially in the setting of synthesis from examples, known as PBE
(e.g., [1,5,14,18,21–23,25,28–30,33,34,38,39,47]). Commonly, PBE algorithms
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synthesize programs consistent with the examples, which may not capture the
user intent. However, some works guarantee to output the target program. For
example, CEGIS [41] learns a program via equivalence queries, and oracle-based
synthesis [26] assumes that the program space is finite, which allows them to
guarantee correctness by exploring all distinguishing inputs (i.e., without vali-
dation queries). Synthesis has also been studied in a setting where a specification
and the program’s syntax are given and the goal is to find a program over this
syntax meeting the specification (e.g., [2,7,40,42]).

7 Conclusion

We presented a novel synthesizer that interacts with the user via abstract exam-
ples and is guaranteed to return a program that is correct on all inputs. The
main idea is to use abstract examples to describe a program behavior on multi-
ple concrete inputs. To that end, we showed L-SEP, an algorithm that generates
maximal abstract examples. L-SEP enables our synthesizer to describe candidate
programs’ behavior through abstract examples. We implemented our synthesizer
and experimentally showed that it required few abstract examples to reject false
candidates and reduced the overall number of concrete examples required.
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Abstract. Probabilistic programming languages (PPLs) provide users
a clean syntax for concisely representing probabilistic processes and easy
access to sophisticated built-in inference algorithms. Unfortunately, writ-
ing a PPL program by hand can be difficult for non-experts, requiring
extensive knowledge of statistics and deep insights into the data. To
make the modeling process easier, we have created a tool that synthe-
sizes PPL programs from relational datasets. Our synthesizer leverages
the input data to generate a program sketch, then applies simulated
annealing to complete the sketch. We introduce a data-guided approach
to the program mutation stage of simulated annealing; this innovation
allows our tool to scale to synthesizing complete probabilistic programs
from scratch. We find that our synthesizer produces accurate programs
from 10,000-row datasets in 21 s on average.

1 Introduction

Probabilistic programming languages (PPLs) enable users who are not experts
in statistics to cleanly and concisely express probabilistic models [10,11,20].
They offer users simple abstractions and easy access to sophisticated statistical
inference algorithms [4,16,18,22] for analyzing their models.

However, writing a PPL model by hand is still challenging for non-
statisticians and non-programmers. First, understanding data is difficult.
Reviewing large amounts of data to develop a mental model is time-consuming,
and humans are prone to misinterpretations and biases. Second, translating
insights to a precise statistical model of the data is difficult. To write proba-
bilistic models that reflect their insights, users must first learn some probability
theory, understand the subtleties of various probability distributions, and express
the details of how different variables in a model should depend on each other.

For these reasons, we believe PPL models should be synthesized from datasets
automatically. PPL models offer an interesting point in the modeling design
space. Expressing models in PPLs does not make them more expressive or more
accurate, but it does give users access to powerful abstractions. They can easily
ask how likely an event is in a model, performing complicated inference tasks
with a single line of code. They can turn a generative model into a classifier or a
predictor in under a minute. They can hypothesize alternative worlds or insert

c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 279–304, 2017.
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interventions and observe how those edits change outcomes. The PPL synthesis
in this paper is not aimed at producing models that exceed the accuracy of state-
of-the-art ML on important problems, but we believe a PL-centric approach does
put usable, powerful models in the hands of non-experts.

To date, we know of one tool, PSketch [23], that synthesizes PPL programs.
PSketch takes as input a PPL sketch and a dataset. A sketch, in this case, is
a nearly complete PPL program, with some holes. Once a user expresses which
variables may affect each hole, PSketch synthesizes expressions to fill the holes.
While synthesizing partial PPL programs is already a tremendous step forward,
the sketch writing process still requires users to carefully inspect the data, write
most of the program structure, and specify causal dependencies. Ultimately, the
user still writes a piece of code that is quite close to a complete model.

We introduce DaPPer (Data-Guided Probabilistic Program Synthesizer), a
tool that synthesizes full PPL models from relational datasets. Our system
decomposes the PPL synthesis problem into three stages. In the first stage,
we generate a graph of dependencies between variables using one of three tech-
niques: including all possible dependencies, analyzing the correlation between
variables, or applying network deconvolution [8]. We use the dependency graph
to write a program sketch that restricts the program structure. Second, we fill
the holes in our sketch using a data-guided stochastic synthesis approach built
on top of simulated annealing. At each iteration of our search, we mutate the
candidate program and use the input dataset to tune some program parameters.
We follow PSketch in computing the candidate’s score—its likelihood given the
dataset—using Mixtures of Gaussian distributions. Finally, after we obtain an
accurate program from the prior stage, we use a redundancy reduction algorithm
to make the output program more readable while maintaining its accuracy.

We have evaluated our synthesizer on a suite of 14 benchmarks, a mix of
existing PPL models and models designed to stress our tool. Each benchmark
in the suite has 10,000 rows of training data and 10,000 rows of test data, both
generated from the same probabilistic model; thus, each benchmark is also asso-
ciated with a ground truth PPL program to which we can compare synthesized
programs. In our experiments, our synthesizer produced accurate models in 21 s
on average. To test whether our approach works on real data, we also used DaP-
Per to synthesize a model of airline delay data. Leveraging our target PPL’s
built-in inference functionality, we used this model to predict flight delays.

This paper makes the following contributions:

– We present a tool for synthesizing PPL models from data. To our knowledge,
this is the first synthesizer that generates full PPL models.

– We introduce a data-guided stochastic technique for generating candidate
programs. Data-guidance improves synthesis time by two orders of magnitude
compared to a data-blind approach.

– We compare three techniques for generating dependency graphs from data.
– We present an algorithm for improving program readability after synthesis

while maintaining accuracy. We can reduce the size of a synthesized program
by up to 8x with less than a 1% penalty in accuracy.
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2 Probabilistic Programs

Probabilistic programming languages are standard languages with two additional
constructs: (i) random variables whose values are drawn from probability distrib-
utions, and (ii) mechanisms for conditioning variable values on the observed val-
ues of other variables [12]. Although these constructs form a common backbone,
other language features vary greatly from PPL to PPL [10,11,20]. Probabilistic
programs offer a natural way to represent probabilistic models. For example, the
classic burglary model can be expressed with the PPL program in Fig. 1.

Fig. 1. The classic burglary model in BLOG (a PPL).

The output of a probabilistic program is not a value but a probability dis-
tribution over all possible values. While a deterministic program produces the
same value for a given variable during every execution, a probabilistic program
may produce different values. The value of each variable is drawn from one or
more probability distributions, as defined by the programmer. We can obtain an
approximation of the distribution of a variable by running the program many
times. For example, if we run the burglary program in Fig. 1 many times, we
observe that Burglary has the value true in approximately 0.001 of the execu-
tions. Alarm only becomes common if Burglary or Earthquake is true, but both
are rare, so running the programalso reveals that Alarm is often false.

Programmers can add observations in PPLs to obtain posterior probability
distributions conditioned on the observations. For example, if we run our sample
program with an observation statement obs JohnCalls = true, the program
rejects executions in which JohnCalls is false, and we observe that in many runs
Burglary is also true. For a thorough introduction to PPLs, we recommend [12].

3 System Overview

We will explain DaPPer with a working example, a model of how a student’s
tiredness and skill level affect performance on a test. The inputs to our tool
are a relational dataset (e.g. Table 1) and a hypothesis about the direction
of causal links between variables. Each column in a dataset is treated as a
variable in the output program, and each row represents an independent run
of the program. A causation hypothesis is an ordering of the dataset col-
umn identifiers; for our running example, the hypothesis might be tired →
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Table 1. Dataset with the
tiredness, skill level, and
test performance of several
students.

tired skill

Level

testPer

formance

True 10.591 27.437

False 12.862 67.976

False 8.727 70.787

True 10.333 31.113

True 11.440 31.592

Fig. 2. Running example, a program that
expresses a model of how a student’s tired-
ness and skill level affect test performance.

skillLevel → testPerformance. The order specifies the direction of depen-
dencies but does not restrict which variables are connected. From the given
order, we can conclude that if tired and testPerformance are related, tired
affects testPerformance, rather than testPerformance affecting tired. While
this means that our tool still demands some insights from users, they only have
to use their knowledge of the world to guess in which direction causality may
flow; that is, our tool does not ask ‘is there a relationship between tiredness and
test performance?’ but it asks ‘if there is a relationship between the two, does
tiredness affect test performance, or does test performance affect tiredness?’ In
Fig. 2, we show the ground truth program that produced the data in Table 1.

DaPPer generates PPL programs by decomposing the synthesis task into
three subtasks: (i) dependency graph generation, (ii) data-guided stochastic syn-
thesis, and (iii) redundancy reduction. In this section, we briefly discuss their
roles, and how they interoperate, as illustrated in Fig. 3.

Fig. 3. A system diagram illustrating the workflow of the synthesizer.

3.1 Dependency Graph Generation

The synthesizer’s first task is to determine whether any given random variable—
any given dataset column—depends on any other random variables. This prob-
lem corresponds to the model selection problem in Bayesian networks. In our con-
text, this is the dependency graph generation problem because a directed graph
of which variables affect which other variables defines a program structure.
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Fig. 4. The dependency graphs generated for the dataset sampled in Table 1.

Fig. 5. The program skeletons generated from the dependency graphs in Fig. 4. We
use ?? to represent a part of the program that we have not yet synthesized.

We explore three techniques for generating dependency graphs. First, a Com-
plete approach produces the largest possible dependency graph that the user’s
causation hypothesis permits. Second, a Simple Correlation approach adds edges
greedily in order of correlation, from highest to lowest, excluding edges for which
there already exists a path. Third, we use an existing Network Deconvolution
algorithm [8]. Given a dataset like the one in Table 1 and the causation hypothesis
represented by the order of the columns (tired → skillLevel → testPerformance),
the three techniques produce the dependency graphs depicted in Fig. 4.

Given a dependency graph, we generate a sketch. For each variable x depend-
ing on {x1, x2, ...}, we define x as a nested conditional expression with holes:

x ˜ if ( x1 ?? ?? )
then if ( x2 ?? ?? ) . . .
else if ( x2 ?? ?? ) . . .

For each condition (xi ?? ??), the first ?? is a comparison operator, and the
second ?? is an expression. Figure 5 shows the sketches generated from the depen-
dency graphs in Fig. 4.

3.2 Data-Guided Stochastic Synthesis

The second task is to complete the holes ?? in the program sketch generated by
the previous step. We use simulated annealing (SA) to complete this task.

In each SA iteration, DaPPer creates a new program candidate from a current
candidate by (i) mutating an expression, then (ii) deterministically updating all
parameters in the program associated with the mutated expression, using knowl-
edge about the data. Consider the candidate program in Fig. 6(a), a completion
of the Fig. 5(c) program sketch. To generate a new candidate, our tool randomly
mutates one condition, changing the RHS of a comparison from 15 to 16; this
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Fig. 6. One mutation of the program in Fig. 5(c). Pink highlights the changes. (Color
figure online)

produces the sketch in Fig. 6(b). With the condition changed, the parameters
for the distributions are out of date. DaPPer identifies all rows of the input data
in which skillLevel is less than 16, then uses those rows to select parameters
for the distributions in the true branch, and the remaining rows for the false
branch, producing the new program in Fig. 6(c).

To evaluate programs, DaPPer uses a custom likelihood estimation approach.

3.3 Redundancy Reduction

Sometimes the most accurate model that results from the synthesis step is a
model that distinguishes between many cases, even more than the ground truth.
Such models can be very large, often unreadable. Because our goal is to pro-
duce readable programs from which users can extract high-level insights, this is
undesirable for our purposes.

To improve the readability of our outputs, we developed a redundancy reduc-
tion algorithm that collapses similar branches. Because this is applied as a final
processing stage to an already synthesized program, the reduction process is
very fast, and users can easily and quickly tune the amount of reduction to their
needs, based on the output at hand.

4 Language

DaPPer generates programs from the grammar shown in Fig. 7. This grammar
represents a subset of the BLOG language [20], centered on the features necessary
for declaring random variables.1 While BLOG has many interesting features that
set it apart from other PPLs, such as open-universe semantics, our synthesized
programs do not make use of these. DaPPer needs only the features that allow it
to introduce random variables drawn from distributions and describe how they
depend on other random variables.

Many PPLs can express such programs, so many PPLs would be reasonable
target languages. We chose to synthesize programs in the BLOG language, but
with small changes to our code generator, DaPPer could easily target others.
1 We leave out details of type declarations, which BLOG requires and our tool syn-

thesizes, but which present no interesting technical challenges.
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Fig. 7. The subset of the BLOG language used by our synthesizer.

5 Generating Dependency Graphs

We use dependency graphs to generate a skeleton program structure, a program
with variable declarations and partial conditional expressions in their definitions,
but without the conditions or bodies. To generate these dependency graphs, we
have tested three approaches, which we describe here.

5.1 Complete

The complete approach constructs a dependency graph based on the assumption
that each variable depends on all other variables that precede it in the user’s
causation hypothesis. Note that this approach does not use the input dataset.
If the user provides the hypothesis A → B → C → D, the complete approach
produces a graph in which A depends on no other variables, B depends on {A},
C depends on {A,B}, and D depends on {A,B,C}.

If the causation hypothesis is correct, this approach is always sufficient to
express the ground truth. It breaks the outcomes into the largest number of
cases and thus theoretically allows the greatest customization of the program
to the input data. However, it may also introduce redundancy, distinguishing
between cases even when the distinction does not affect the outcome.

5.2 Correlation Heuristic

The correlation heuristic approach uses information from the input dataset as
well as the causation hypothesis. It calculates the correlation for every pair of
columns in the dataset. The pairs are sorted according to the effect size of the
correlation. We iterate through the sorted list of pairs, checking for each pair
(A,B) whether there is already a path in the dependency graph between A and
B. If yes, we do nothing. If no, we add an edge between A and B; the direction of
the edge is determined by the positions of A and B in the causation hypothesis
ordering. If we reach a point in the list of pairs where the correlation effect size
or statistical significance is very low, we stop adding edges.
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See AppendixA for a summary of how we produce correlation measures for
columns with incompatible types.

5.3 Network Deconvolution

Our final approach uses the network deconvolution algorithm, developed by Feizi
et al. [8], a method for inferring which nodes in a network directly affect each
other, based on an observed correlation matrix that reflects both direct and
indirect effects. To build a PPL model, we can observe the correlation between
each pair of columns, but should only condition a variable on the variables
that directly affect it. Thus, a direct link from x to y in network deconvolution
corresponds to an immediate dependence of y on x in a PPL model.

Network deconvolution takes as input a similarity matrix. We use a symmet-
ric square matrix of correlations, reflecting the association of each column with
each other column in the dataset. Each entry in the network deconvolution out-
put matrix represents the likelihood that a column pair is connected by a direct
edge. For each entry in the output matrix, we add an edge to the dependency
graph if it is above a low threshold.

6 Data-Guided Stochastic Synthesis

DaPPer applies simulated annealing (SA) to synthesize PPL programs. We use
an exponential cooling schedule and the standard Kirkpatrick acceptance prob-
ability function. To apply SA, we must generate new candidate programs that
are ‘adjacent’ to existing programs. Our synthesizer decomposes the process of
creating a new candidate program into two stages: make a random mutation
of the current candidate program (Sect. 6.1), then tune all parameters in the
affected subtree of the AST to best match the input dataset (Sect. 6.2). Once a
new candidate has been produced, SA scores the candidate to decide whether to
accept or reject it (Sect. 6.3).

6.1 Mutations

The first step in creating a new adjacent program is to randomly mutate the
current program. We allow three classes of mutation, described below.

Conditions. Our synthesizer is permitted to synthesize conditions of a restricted
form (see cond in Fig. 7). They must have a single identifier (fixed based on
the dependency graph) on the LHS, and an expression on the RHS. Because
we deterministically generate fixed RHSs for conditions with Boolean and cat-
egorical variables in the LHS (e.g., boolVar == true, boolVar == false), the
mutation process may not manipulate those conditions. Instead, its primary role
is to generate new RHSs for conditions associated with real-valued variables. To
alter a RHS, the mutator may: (i) replace any constant or use of a real-valued
variable with a new constant or real-valued variable, (ii) slightly adjust a current
constant, (iii) add, remove, or change a numOp, (iv) change a cmpOp.
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Branches. Less commonly, the mutator may add or remove a condition associ-
ated with a real-valued variable. The mutator may not alter the structure of the
dependency graph, but it may add a branch to an existing case split or remove
a branch if it has more than two.

Distribution Selection. Finally, the mutator may alter what type of distribu-
tion appears in the body of a conditional, for definitions of real-valued variables.
For instance, it may change a Gaussian to a UniformReal distribution.

6.2 Data Guidance

Once we obtain the control flow for a new candidate program from the mutator,
we tune the distribution parameters to fit the dataset. For each distribution
node in the abstract syntax tree, we identify the path condition associated with
the node. We convert the path condition into a filter on the input dataset.
For instance, consider the control flow in Fig. 8(a). To produce the parameter
for the first Boolean distribution node, we would produce the path condition
Burglary ∧ Earthquake. Using this as a filter over the input dataset would
produce the rows highlighted in Fig. 8(b). Once we have identified the subset of
the dataset consistent with a distribution’s path condition, we use the subset to
calculate appropriate distribution parameters. For instance, if the distribution
is a Gaussian, we calculate the mean and variance.

Fig. 8. Filtering a dataset for a path condition in the classic burglary model. (Color
figure online)

Once DaPPer completes this process for all distributions whose path condi-
tions are affected by the mutation, the candidate generation stage is complete.

6.3 Likelihood Estimation

To evaluate how well a program models a dataset, we must compute the like-
lihood L(P |D) of a candidate program P given the input data D. Computing
the exact likelihood [6] requires expensive integral computations, which makes
scoring slow. Thus, we adopt the method used by PSketch [23] for approximating
likelihood using Mixtures of Gaussian (MoG) distributions, which they show is
three orders of magnitude faster than precise likelihood calculation [23].
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The approach is to symbolically approximate every variable in a candi-
date program with MoG or Bernoulli distributions. We approximate real-valued
expressions using a MoG, whose probability density function (PDF) is:

MoG(x;n,w,μ,σ) =
n∑

i=1

wi · g(x;μi, σi)

where w,μ, and σ are vectors of size n, representing the weight, mean, and stan-
dard deviation of each Gaussian distribution in the mixture. The function g is the
PDF of a univariate Gaussian distribution. A Boolean expression is simply mod-
eled as a Bernoulli distribution, Brn(x; p). Therefore, we approximate each vari-
able v in a program as a MoG with the PDF MoGv(x) = MoG(x;nv,wv,μv,σv)
or a Bernoulli with the PDF Brn(x; pv).

The approximation of L(P |D) is the product of the likelihood of all possible
values of all variables from D given the program P :

L(P |D) =
∏

v∈PRV

∏

x∈D[v]

MoGv(x) ×
∏

v∈PBV

∏

x∈D[v]

Brn(x; pv)

where PRV is a set of real variables and PBV is a set of Boolean variables in the
program P that appear in data D. D[v] is a set of values of the variable v in D.

In addition to the distributions supported by PSketch, we add support for
categorical distributions and uniform distributions, which we describe here.

Categorical Distribution. A categorical distribution specifies probabilities
for each value in a finite discrete set. The PDF of a categorical distribution is:

Ctg(x; {(xi → pi)|i ∈ {1, ..., k}}) = pi whenx = xi

We introduce reduction rules to symbolically evaluate expressions with cat-
egorical distributions, shown in Fig. 9. The first rule evaluates an if expres-
sion, which may contain categorical distributions. The second rule evalu-
ates a case expression. Although a case expression can be desugared to
a nested if expression, the PDF that results is often less precise. In par-
ticular, case([(Ctgv(x) == x1, Y1), (Ctgv(x) == x2, Y2), ...]) can be desug-
ared to ite(Ctgv(x) == x1, Y1, ite(Ctgv(x) == x2, Y2, ...)), where Ctgv(x) =
Ctg(x; {(xi → pi)|i ∈ {1, ..., kv}}). When we evaluate the former expression, we
expect the resulting distribution to be the summation of Y1, Y2, ..., Yk−1, Yk

weighted by p1, p2, ..., pk−1, pk respectively. However, if we evaluate the latter
expression using the first rule, we will obtain the summation of Y1, Y2, ..., Yk−1,
Yk weighted by p1, (1−p1)p2, ..., (

∏k−2
i=1 (1−pi))pk−1,

∏k−1
i=1 (1−pi) respectively.

This is because the ite rule is designed for the scenario in which path condi-
tions are independent. Therefore, we introduce the case rule to handle case
expressions whose conditions are dependent and mutually exclusive in order to
obtain better likelihood estimations. The remaining rules in Fig. 9 define how to
evaluate ⊕ and ⊗ used in the ite and case rules.
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Fig. 9. Reduction rules to symbolically execute expressions that use categorical
distributions.

Uniform Real Distribution. A uniform real distribution has constant proba-
bility for any real number between a lower bound a and an upper bound b. The
PDF of a uniform real distribution is defined as:

Uniform(x; a, b) =

{
1

b−a ifa ≤ x ≤ b

0 otherwise

We approximate a uniform distribution as follows:

[[Uniform(x; a, b)]] := MoG(x;n,w,μ,σ)

where wi =
1
n

, μi = a + (i +
1
2
) · b − a

n
, σi =

b − a

n

We use n = 32. We can obtain better approximations by increasing n, but at
the cost of slower evaluation.

7 Redundancy Reduction

To improve the readability of our outputs, we have developed a simple redun-
dancy reduction algorithm that combines the similar branches of a given con-
ditional expression. The key idea is to compare the parameters of branches’
descendant distributions. For a pair of branches, we align the two sets of descen-
dant distributions according to their associated path condition suffixes. These
distribution pairs are the pairs that we combine if we collapse the branches into
a single branch for executions that satisfy either of their path conditions. The
decision to collapse them is based on both the differences in distribution pairs’
parameters and on how much data DaPPer used to tune them.

For a concrete example, recall that in the classic Burglary model, MaryCalls
does not depend on JohnCalls. After stochastic synthesis, we might see
the following snippet within the MaryCalls definition: if JohnCalls then
Boolean(0.010) else Boolean(0.008). The parameters of the distributions
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in these two branches are very close. Further, we know both parameters were
trained on a small number of rows. Given normal reduction parameters, this
would lead our algorithm to collapse the two branches into something like
Boolean(0.009) – essentially to conclude that MaryCalls does not depend
on JohnCalls.

Our algorithm accepts two user-selected threshold parameters. By manipu-
lating these parameters, users can explore different levels of readability without
having to re-synthesize. Reduction is applied as a fast post-processing step, after
the bulk of the synthesis is completed, so users can quickly and easily tune the
amount of redundancy reduction to their needs. They can choose to edit and
run analyzes on a readable version, knowing how much accuracy they have sac-
rificed, or they can temporarily adjust reduction parameters to extract high-level
insights about program structure without permanently sacrificing accuracy.

See AppendixB for the full algorithm and details of the motivation.

8 Limitations

We see several limitations of the current synthesizer, all of which suggest inter-
esting directions for future work.

Relational Input Data. Our approach handles only relational datasets, specif-
ically relational datasets that treat each row as an independent run of the pro-
gram. While there are many such datasets and our tool already allows us to model
many interesting processes, our current technique does not apply for datasets
that cannot be transformed into this format. Thus, we cannot take advantage
of some of the BLOG language’s more interesting features (e.g., open-universe
semantics, which allows programs in the language to represent uncertainty about
whether variables exist, or how many variables there are of a given type). For
our current synthesis model, we must know the number of variables.

Hidden Variables. Our synthesis model assumes there are no hidden variables,
that no additional columns of data about the world are necessary to produce
a correct output. Our decision to exclude hidden variables is one of the crucial
differences from the PSketch [23] approach. While PSketch is targeted at pro-
grammers looking to write functions that include randomness, we want our tool
to be accessible to scientists and social scientists modeling real world phenom-
ena. For these purposes, we expect that hypothesizing the existence of a hidden
variable—which may have no correspondence to any real world variable—would
only confuse the user and make output models less intelligible and less useful to
the target audience. We see the addition of optional hidden variable introduction
as an interesting technical challenge and a good direction for future work. How-
ever, we would never make hidden variable hypotheses the default. Although we
believe this is a improvement over PSketch from the perspective of our target
user, this is a limitation from the perspective of a PSketch user.

Restricted Grammar. For this first foray into synthesis of full PPL programs,
we selected a fairly restricted grammar. We examined many existing BLOG
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models and designed a grammar that would express the sorts of models people
already like to write. However, we find it easy to imagine models we would like
to obtain that cannot be expressed in our chosen subset of BLOG. Although this
may be the most serious limitation, it is also the most easily addressed, since we
can cleanly extend our technique by simply expanding the grammar and the set
of allowable mutations. Because each increase in the grammar size also expands
the search space, this will probably be more than a trivial extension. We expect
it may offer a good setting for exploring the use of a probabilistic language model
and weighted search for a program synthesis application.

9 Evaluation

We evaluated DaPPer on a suite of 14 benchmarks. Each benchmark con-
sists of 10,000 rows of training data, 10,000 rows of test data, and the
ground truth BLOG program used to generate both datasets. Some bench-
marks were taken directly from the sample programs packaged with the
BLOG language. Since these were quite simple, we also wrote new programs
to test whether our tool can synthesize more complex models. The DaPPer
source and all benchmark programs and associated datasets are available at
github.com/schasins/PPL-synthesis. DaPPer synthesized accurate programs for
all benchmarks, taking less than 21 s on average. We also used DaPPer to gen-
erate a model of a real flight delay dataset.

9.1 Dependency Graph Generation

We start with an exploration of how dependency graphs affect synthesis time
and accuracy. Recall that the Complete approach produces the largest possi-
ble dependency graph. The Correlation approach produces graphs smaller than
Complete graphs but usually larger than Network Deconvolution (ND) graphs.

Figure 10(a) shows how the choice of dependency graph affects synthesis time.
Each bar represents the average time DaPPer took to synthesize a program whose
score on the test dataset is within 10% of the ground truth program’s. Each syn-
thesis task ran for a fixed number of SA iterations. The Fig. 10(a) timing numbers
represent the first point during those iterations at which the current candidate
program achieves the target likelihood score on the test (holdout) dataset. For
all benchmarks except ‘students,’ all dependency graphs were sufficient to reach
the target accuracy within the allotted SA iterations. The average times to reach
the target accuracy using the Complete and Correlation approaches were 20.90
and 55.77 s, respectively. If we exclude ‘students,’ we can compare all three;
Complete averaged 12.54 s, Correlation 44.40, and ND 15.02.

We observe a number of trends playing out in the timing numbers. First,
Complete gains a small early time advantage by generating a dependency graph
without examining the input data, while Correlation and ND both face the
overhead of calculating correlations. This head start gave Complete the win for
the first six benchmarks. Second, using the dependency graph closest to that of

https://github.com/schasins/PPL-synthesis
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Fig. 10. Comparison of the three dependency graph generation approaches.

the ground truth confers a time advantage. If the ground truth dependency graph
is dense, Complete is typically closest, so Complete finishes first (e.g., ‘tugwar-
v1’). If the ground truth dependency graph is sparse, ND is usually closest, so ND
finishes first (e.g., ‘tugwar-v3’). Finally, if any approach eliminates a necessary
dependency, synthesis may fail to reach the target accuracy. Recall from Fig. 4
that ND dropped the direct dependence of testPerformance on tired. Thus,
ND never reached the target accuracy for the ‘students’ benchmark.

Next, we evaluate whether DaPPer’s performance is within the acceptable
range. We cannot make a direct comparison to the most similar tool, PSketch,
because the PSketch task is substantially different. Instead, we include some
PSketch performance numbers to give a sense of the acceptable timescale.
PSketch synthesized partial PPL programs using small datasets (100–400 rows)
in 146 s on average. Note that large datasets are desirable because they result in
more accurate programs, but they make synthesis slower because the likelihood
estimator must use all the data to calculate a score at each iteration. To synthe-
size part of the ‘burglary’ model, PSketch took 89 s, while DaPPer synthesized
a full ‘burglary’ model in 0.17 s. Again, since the tasks are very different, these
numbers do not indicate that DaPPer outperforms PSketch. However, we are
satisfied with DaPPer’s synthesis times overall.

Figure 10(b) shows the likelihood scores of the final synthesized programs on
the test datasets, normalized by the scores of the ground truth programs. Overall,
the scores reached by the Complete, Correlation, and ND approaches, averaged
across benchmarks, were 1.014, 1.024, and 1.051, respectively. As expected, larger
dependency graphs typically allowed the synthesizer to reach better scores. Thus,
Complete always produced likelihoods very close to those of the ground truth
programs, with Correlation performing slightly worse, and ND worst of all. Still,
even ND always produced likelihoods within 20% of the ground truth.

Given Complete’s dominance in both synthesis time and accuracy, we con-
clude that Complete is the best dependency graph approach of the three we
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tried. If we were to select an approach on a case-by-case basis, we would only
switch away from the Complete strategy when faced with a dataset for which
we strongly suspect the dependency graph is sparse, and even then only if faster
synthesis time is more critical than accuracy. The dominance of the Complete
approach drove us to develop our redundancy reduction algorithm, which allows
us to recover small, readable programs from large ones.

9.2 Data-Guided vs. Data-Blind Stochastic Synthesis

One of the primary innovations of our tool is its use of input data not only to
score candidate programs but also to generate them. We evaluate DaPPer against
DaPPer-blind. DaPPer-blind is a simple data-blind variation on our tool. It is
identical to DaPPer in every way except: (i) in addition to DaPPer mutations, it
may mutate distribution parameters and (ii) it does not run data-guided para-
meter adjustment after mutations.

Recall that after each mutation, DaPPer identifies affected distributions and
tunes their parameters to reflect the input data that corresponds to the new
path condition. Thus, the data-guided approach has the advantage of always
producing programs tuned to the input data. However, filtering the data and
calculating the appropriate parameters does impose a time penalty. For this rea-
son, DaPPer-blind can complete more mutations per unit of time than DaPPer.
Thus, it is not immediately clear which approach will perform better.

Fig. 11. Score over time for data-blind vs. data-guided synthesis. Lower is better.

Our empirical evaluation reveals that the data-guided approach outperforms
the data-blind approach. Figure 11 shows how the likelihood score changed over
time for five runs of DaPPer and DaPPer-blind, for each benchmark. While 100%
of the data-guided runs reached a likelihood within 10% of the ground truth’s
likelihood, only 36% of the data-blind runs reached that same target level. For
the data-guided runs, the average time to achieve the target likelihood was 20.9 s.
For the 36% of data-blind runs that did reach the target likelihood, the average
time was 151.6 s. Thus, using a data-guided program generation approach offers
at least a 7x speedup compared to a data-blind approach.
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We can acquire a better speedup estimate by including the benchmarks
for which the data-blind approach never reached the target accuracy. For each
benchmark, we identified the best (lowest) score that all runs managed to reach
(i.e. the best score of the worst run). Reaching these scores took data-blind syn-
thesis an average of 347.63 s and took data-guided synthesis an average of 0.54 s,
indicating that data-guidance provides a 648.9x speedup.

9.3 Redundancy Reduction

To explore the tradeoff between accuracy and readability, we evaluated how much
accuracy we lose by applying our redundancy reduction algorithm to our synthe-
sized programs. While Network Deconvolution offers small, readable programs
by default, the other techniques do not. In this section, we explore the effects
of redundancy reduction on programs synthesized using Complete dependency
graphs on a subset of the 14 benchmarks2. We observe up to a 7.9x reduction in
program size, with negligible decreases in accuracy.

Recall that we synthesize programs in which all AST leaf nodes are distri-
bution nodes. For this reason, the number of distribution nodes is the most
informative measure of program size and complexity.

As Fig. 12(a) reveals, the reduction process does not make program alter-
ations that substantially alter the likelihood score. However, it does significantly
reduce the size of the program, producing output programs that are much more
readable. Figure 12(b) shows the effects on program size, depicting the ratio of
the number of distribution nodes in the output to the number of distribution
nodes required to express the ground truth. We see that as the reduction para-
meter α increases, the synthesized programs ultimately converge to the ground
truth range, but do so gradually enough that the user can explore a variety of
different structures. As we see in Fig. 12(a), even when users set α quite aggres-
sively, the reduction algorithm does not tend to make merges that substantially
alter the likelihood score. Most importantly, we think the benefits for readability
and for extracting high-level insights are clear. For instance, in the case of the
‘healthiness’ model, reduction collapses a program with 127 distinct distribution
nodes to a much more readable program with 16 distribution nodes.

Overall, we find that redundancy reduction allows us to benefit from the
accuracy and fast synthesis times of the Complete approach without sacrificing
readability and editability. For a more concrete illustration of the resultant read-
ability, see AppendixC’s side-by-side comparison of a ground truth program and
a synthesized program after redundancy reduction.

9.4 Case Study: Airline Delay Dataset

Although testing on data for which we have a ground truth model is the best
way to investigate whether DaPPer produces correct programs, we also want to
2 We test on the subset of benchmarks for which we can align branches using exact

path condition matches. We expect to expand the path condition matching scheme
to align branches with close conditions in future work.
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Fig. 12. Effects of redundancy reduction with varying α parameter values.

be sure that DaPPer functions well on real data. To that end, we completed a
case study using our tool to produce a probabilistic model of a popular airline
delay dataset from the U.S. Department of Transportation [1]. We selected this
dataset because it has already been thoroughly studied, explored, and visualized.
Thus, although we lacked a ground truth PPL model for this dataset, we knew
from past work that we should expect delays to vary according to days of the
week [15] and to increase over the course of the day [35].

We ran DaPPer on a dataset with 447,013 rows. The output program indi-
cates that delays vary by day, reflecting the findings of Hofmann et al. [15]. It
also indicates that delays rise as the departure time (time of day) rises, reflecting
the findings of Wicklin et al. [35]. Taking advantage of BLOG’s built-in inference
algorithms, we used this model to predict flight delays on a holdout set of 10,000
dataset rows. On average, the model’s predictions were off by less than 15 min.
While 15 min is substantial, it is worth noting that delays in the dataset range
from −82 to 1971. For comparison, a baseline predictor that always guessed the
average flight delay had a root-mean-square-error (RMSE) of 39.4, while the
DaPPer predictor had an RMSE of 24.1.

10 Related Work

The body of research that addresses learning programs from data is far greater
than we can cover, encompassing the entire fields of machine learning and pro-
gram synthesis. Since we are interested in generating models that are both read-
able and probabilistic, we will limit our discussion to approaches that offer at
least one of those characteristics.

10.1 Readable and Probabilistic

Of the related work, our goals are most closely aligned with the goals of PSketch
[23]. The primary difference between our tool and PSketch is the target user.
We want DaPPer to be accessible to a user who would not manually code even a
partial PPL model. Naturally, this difference in target user comes with a number
of technical differences. First and foremost, while PSketch requires the user to
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write a program sketch—including specifying which variables may affect each
program hole—our tool requires no coding. This brings us to the second primary
difference, which is that while PSketch can work over any dataset for which the
user can write most of the model, our tool is targeted specifically at relational
datasets in which each row represents an independent draw from the model.
Third, our tool does not hypothesize the existence of hidden variables that do
not appear in the input dataset. Fourth, PSketch is designed for small datasets
(they tested on datasets up to size 400), while DaPPer is designed to handle
datasets with hundreds of thousands of rows. To make this feasible, DaPPer
uses data-guided mutations, while PSketch’s mutations are data-blind.

10.2 Readable and Deterministic

There has been a massive body of work in deterministic program synthesis and
program induction, some of which may be useful in future iterations of our tool.
Many synthesizers use off-the-shelf constraint solvers to search for candidate
programs and verify their correctness [13,32,33]. We cannot directly apply these
techniques to our problem since we do not have precise correctness constraints.
Some recent work uses constraint solving to synthesize programs that optimize a
cost function, with no precise correctness constraint [7]; unfortunately, this app-
roach is only applicable to cost functions without floating-point computations,
which makes it incompatible with likelihood estimation.

On the other hand, stochastic synthesis is a good fit for our problem. Our
synthesizer is among the many that apply simulated annealing. Other stochastic
synthesizers perform MCMC sampling [3,29]. Some use symbolic regression or
other forms of genetic programming [26,30,36,37]. In the future, we may inves-
tigate how varying the search technique affects DaPPer’s performance.

Some tools use enumerative search. Previous work has shown that enumera-
tive synthesizers outperform other synthesizers for some problems [2,3,5,25,34].
With custom pruning strategies, this may be another path to faster synthesis.

10.3 Unreadable and Probabilistic

The machine learning literature includes a rich body of work on learning Bayesian
networks. Mainstream techniques fall into two categories: constraint-based and
search-and-score. Constraint-based techniques focus on generating only the pro-
gram structure. Search-and-score treats the problems of learning program struc-
ture and learning program parameters together.

Constraint-based techniques use statistical methods (e.g., chi-squared and
mutual information) to identify relationships between variables in order to pro-
duce a network structure. In short, these techniques perform the same task as
the first stage of our synthesizer. We have intentionally factored out the genera-
tion of the dependency graph from the rest of the synthesis process, which makes
it easy to customize DaPPer with new structure learning approaches, including
constraint-based Bayesian learning approaches. This is a direction we hope to
explore in the future.
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Search-and-score techniques produce not just the network structure but a
complete Bayesian network. Often these techniques produce outputs that can
be translated directly to PPL programs. This makes them seem like a natural
fit with our goals. Unfortunately, existing Bayesian learning techniques cannot
produce readable models in the presence of continuous variables.

There are many search-and-score techniques for learning Bayesian networks
that can be applied to discrete variables [14,19]. To extend them to contin-
uous variables, one approach is standard discretization [17,31,38]. Where our
approach first synthesizes a program structure, then searches over the space of
conditionals, search-and-score first fixes the set of conditionals (via discretiza-
tion), then searches over the space of program structures. This approach leads
discretization-based tools to produce dense ASTs with high branching factors.
An alternative technique uses mixtures of truncated exponentials (MTEs) to do
discretization more flexibly [21,28]. Despite the attempt to reduce discretiza-
tion, this approach still produces models that use large sets of massive switch
statements with a different exponential distribution at each of hundreds of leaf
nodes. In short, discretized search-and-score methods produce models that are
difficult to read, understand, and adapt. The output models are accurate, but
they do not succinctly express high-level insights into data.

Aside from Bayesian networks, a new class of models called sum-product
networks (SPNs) [9,27] is both probabilistic and learnable. SPNs are not suitable
for our use case because they are much less readable and editable even than
machine-written Bayesian networks.

Although modeling multiple interacting variables is a more common goal,
some work learns probabilistic models of individual distributions. We know of one
tool designed to generate a fast sampler with outputs that mimic the distribution
of a set of input numbers [24]. If it is fed samples from a Gaussian distribution,
rather than learning that the input can be modeled by a Gaussian, it learns a fast
sampling procedure that produces Gaussian-like data. This tool does not meet
our needs because it can only model a single random variable, not interacting
variables, but also because its outputs are difficult to read and interpret.

11 Conclusion

This paper offers an alternative way for users without statistics expertise to
create probabilistic models of their data. DaPPer synthesizes models quickly
and produces human-readable PPL programs that users can explore, expand, and
adapt. We introduce data-guided program mutation, which allows PPL synthesis
to scale to generating full programs. We hope this extends the class of users
willing to venture into using probabilistic models. We believe offering users full
PPL programs without asking them to write even a single line of code is an
important step towards making PPLs more accessible.
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A Appendix: Correlation of Incompatible Types

For both the simple correlation and network deconvolution approaches to depen-
dency graph generation, we need to be able to measure the correlation between
every pair of columns in a dataset. Between columns with the same type, this is
relatively straightforward, but since we must produce correlation measures for
every pair, we must take a somewhat unusual approach.

As our correlation measure for the correlation technique and our similarity
score for deconvolution, we use Spearman correlation, a measure of rank correla-
tion. This measure is suitable for quantitative, ordinal, and dichotomous nominal
data. Thus it can be applied to all numeric distributions we use, as well as to
boolean distributions, which are nominal and dichotomous. In contrast, categor-
ical random variables are nominal but may take on more than two values. Many
categorical random variables are used to represent ordinal data (data with an
implied ranking, such as a variable with values ‘low’, ‘medium’, and ‘high’). On
the other hands, they may also be used for nominal data (data with no implied
ranking, such as a variable with values ‘linen’, ‘silk’, ‘cotton’). Also, even when
they are used for ordinal data, the mapping from values to ranks is not provided.
In other circumstances, for comparing nominal datasets, one might use nominal-
specific measures of association, such as Cramer’s V. However, for our purposes
(and especially for the network deconvolution technique), it is important that
all measures in the similarity matrix are comparable. Since a single dataset may
include both quantitative and nominal data, using different metrics for different
variable types would be unacceptable.

We address this problem with the observation that any categorical variable
can be replaced with a set of boolean variables (one for each value of the cat-
egorical variable) to produce an equivalent model. Then, any variable that has
a direct dependence on any of the boolean variables in the altered model would
have a direct dependence on the original categorical variable. Thus, for any cate-
gorical variable with m available values, we produce columns of data to represent
m boolean variables, one for each value v, such that the boolean variable takes
value true if and only if the categorical variable produces value v. To compare
the categorical variable with another variable A, we then calculate Spearman’s
rank correlation for each boolean variable with A. Our tool takes the conserv-
ative approach of using the highest correlation produced by any of the boolean
variables as the final correlation value.
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B Appendix: Reducing the Incidence of Redundant
Branches in Synthesized Programs

In this appendix, we describe our approach to reducing redundancy in program
structures.

B.1 Design

For a concrete illustration of redundancy reduction, consider our running exam-
ple. The output program from the synthesis step, shown in Fig. 13(a), contains
two similar branches. Our redundancy reduction approach aligns the distribu-
tions of the two branches (based on path conditions) and compares their para-
meters. Since both parameters are similar, our approach chooses to collapse the
branches, producing the output program in Fig. 13(b).

Fig. 13. When two different branches have very similar bodies, our redundancy reduc-
tion algorithm can merge them to make the output program smaller and more readable.
Pink highlights the reduction. (Color figure online)

As detailed in Algorithm 1, for each pair of distribution parameters, our
algorithm makes a decision on whether they match based on how close their
parameters are, but also on how much data was used to tune the parameters. If
one distribution is Boolean(.987) and the other is Boolean(.986), we are prob-
ably willing to collapse them. In contrast, if one distribution is Boolean(.987)
and the other is Boolean(.345), and both were tuned with many rows, we prob-
ably should not collapse them. However, if one of the distributions was tuned
with only two rows of data, we may believe the discrepancy comes only from
random chance and be willing to collapse them despite the large difference in
the parameters. In this regard, we believe our algorithm follows much the same
approach as a human programmer attempting to simplify such a program, com-
paring parameters, considering how much a parameter is likely to have been
affected by chance. When redundancy reduction collapses two branches, it next
tunes the distribution parameters for the descendant distributions.
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for each pair (b1, b2) of branches do
if not structureMatch(b1, b2) then

continue
end
match = True
for i in 0 to b1.distribs().length do

distrib1 = b1.distribs()[i] ; // the ith distribution in branch 1
distrib2 = b2.distribs()[i]

/* each distribution is associated with a rows value, the number of

dataset rows used to tune its parameters */
minNumRows = min(distrib1.rows, distrib2.rows)

/* if one of these distributions has params based on very little data,

expect it may reflect randomness rather than ground truth */
threshold = α/(minNumRows0.7) - β
for j in 0 to distrib1.length do

param1 = distrib1[j] ; // the jth param of distribution 1
param2 = distrib2[j]
match = match ∧ (| param1 - param2 | < threshold)

end

end
if match then

collapse(b1, b2)
end

end

Algorithm 1: A redundancy reduction algorithm for making synthesized pro-
grams more human-readable. The α and β parameters can be adjusted by the
user to control the size and readability of the output program.

Our algorithm uses two threshold parameters, α and β. Low α values lead
the algorithm to do little reduction, while high α values produce small, highly
reduced programs. The β parameter gives users direct control over the differ-
ence between parameter values that should always result in a reduction. For
instance, if users anticipate that they will not benefit from seeing separate
branches for Boolean(0.94) and Boolean(0.96), they should set β to 0.02
to indicate that parameters with differences no more than 0.02 should always be
collapsed, regardless of the amount of data used to estimate them. Although α is
the primary determinant of how aggressively the algorithm collapses branches,
users may find manipulation of β convenient if they know some magnitude of
difference is unimportant for their use cases.

Applying this algorithm after the synthesis process offers both advantages
and disadvantages. The primary and obvious disadvantage is that by reducing
redundancy after SA, we give up the opportunity to reduce the SA time by run-
ning on a smaller program structure. However, we believe the advantages may
make up for the reduction in synthesis time. With this approach, we allow SA to
use all the distinctions it can use to obtain high accuracy, and only eliminate dis-
tinctions from the learned program after the fact, when it is clear they have not
offered significant advantages. At this point in the process, redundancy reduc-
tion has access to all the information that has been learned during the earlier
synthesis stages, and can make very informed decisions about which conditions
to combine. It receives more information than the dependency graph generation
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stage receives. Also, as discussed in Sect. 7, because this modification is applied
as a post-processing step, the user can quickly and easily explore different read-
ability levels, tuning the amount of redundancy reduction to his or her needs.

We also feel this approach may be a more natural way to reduce program
sizes, compared to aggressive dependency graph approaches like Network Decon-
volution. This is because the individual branch collapse actions are intuitive to
human users and could even be presented to the programmer for approval.

Fig. 14. A side-by-side comparison of the ground truth ‘burglary’ program and the
program DaPPer synthesizes for the ‘burglary’ dataset. This program was synthesized
with the Complete dependency graph, then processed with redundancy reduction.

B.2 Future Work for Redundancy Reduction

Although we are satisfied with the outputs of the current redundancy reduction
technique, we are also interested in pursuing a more principled approach. The
current algorithm is excellent for allowing users to explore quickly, since it is fast
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and offers simple tuning parameters. It is also a clean way to handle many dif-
ferent distribution types with a unified algorithm. However, we see redundancy
reduction as a natural place to apply methods for identifying whether a differ-
ence is statistically significant. Rather than use our magnitude of difference vs.
magnitude of data heuristics, why not use real statistical hypothesis testing?

We see one potential drawback to this approach, which is that our redun-
dancy reduction approach is intended to increase readability rather than reduce
overfitting. We want users to be able to remove detail even when it is not the
result of random chance or overfitting. In short, users should be able to elim-
inate a distinction even if it is statistically significant. We intentionally placed
the redundancy reduction stage at the end so that users can quickly explore var-
ious levels of program size and readability, tuning programs to their individual
needs. If we transition to a more principled approach, we would want to find a
way to maintain this flexibility and the current level of user control. In future,
we expect to explore this direction.

C Appendix: Examples of Synthesized Programs

To give a sense of how readable DaPPer’s output programs are, we include
programs DaPPer produces for the two running examples we use throughout
the paper, ‘burglary’ (Fig. 14) and ‘students’ (Fig. 15).

Fig. 15. A side-by-side comparison of the ground truth ‘students’ program and a
program DaPPer synthesizes for the ‘students’ dataset. We use colors to highlight the
bodies of corresponding branches. This program was synthesized with the Correlation
dependency graph and did not require redundancy reduction.
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Abstract. In order to effectively analyze and build cyberphysical sys-
tems (CPS), designers today have to combat the data deluge problem,
i.e., the burden of processing intractably large amounts of data produced
by complex models and experiments. In this work, we utilize monotonic
parametric signal temporal logic (PSTL) to design features for unsu-
pervised classification of time series data. This enables using off-the-
shelf machine learning tools to automatically cluster similar traces with
respect to a given PSTL formula. We demonstrate how this technique
produces interpretable formulas that are amenable to analysis and under-
standing using a few representative examples. We illustrate this with case
studies related to automotive engine testing, highway traffic analysis, and
auto-grading massively open online courses.

1 Introduction

In order to effectively construct and analyze cyber-physical systems (CPS),
designers today have to combat the data deluge problem, i.e., the burden of
processing intractably large amounts of data produced by complex models and
experiments. For example, consider the typical design process for an advanced
CPS such as a self-driving car. Checking whether the car meets all its require-
ments is typically done by either physically driving the car around for millions
of miles [2], or by performing virtual simulations of the self-driving algorithms.
Either approach can generate several gigabytes worth of time-series traces of
data, such as sensor readings, variables within the software controllers, actu-
ator actions, driver inputs, and environmental conditions. Typically, designers
are interested not in the details of these traces, but in discovering higher-level
insight from them; however, given the volume of data, a high level of automation
is needed.

The key challenge then is: “How do we automatically identify logical struc-
ture or relations within such data?” One possibility offered by unsupervised
learning algorithms from the machine learning community is to cluster similar
behaviors to identify higher-level commonalities in the data. Typical clustering
c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 305–325, 2017.
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algorithms define similarity measures on signal spaces, e.g., the dynamic time
warping distance, or by projecting data to complex feature spaces. We argue later
in this section that these methods can be inadequate to learn logical structure
in time-series data.

In this paper, we present logical clustering, an unsupervised learning proce-
dure that utilizes Parametric Signal Temporal Logic (PSTL) templates to dis-
cover logical structure within the given data. Informally, Signal Temporal Logic
(STL) enables specifying temporal relations between constraints on signal val-
ues [3,10]. PSTL generalizes STL formulas by replacing, with parameters, time
constants in temporal operators and signal-value constants in atomic predicates
in the formula. With PSTL templates, one can use the template parameters as
features. This is done by projecting a trace to parameter valuations that cor-
respond to a formula that is marginally satisfied by the trace. As each trace is
projected to the finite-dimensional space of formula-parameters, we can then use
traditional clustering algorithms on this space; thereby grouping traces that sat-
isfy the same (or similar) formulas together. Such logical clustering can reveal
heretofore undiscovered structure in the traces, albeit through the lens of an
user-provided template. We illustrate the basic steps in our technique with an
example.

Consider the design of a lane-tracking controller for a car and a scenario
where a car has effected a lane-change. A typical control designer tests design
performance by observing the “overshoot” behavior of the controller, i.e., by
inspecting the maximum deviation (say a) over a certain duration of time (say, τ)
of the vehicle position trajectory x(t) from a given desired trajectory xref (t).
We can use the following PSTL template that captures such an overshoot:

ϕovershoot
def= F

(
lane change ∧ F(0,τ ] (x − xref > a)

)
(1)

When we project traces appearing in Fig. 1 through ϕovershoot, we find three
behavior-clusters as shown in the second row of the figure: (1) Cluster 0 with
traces that track the desired trajectory with small overshoot, (2) Cluster 1 with
traces that fail to track the desired trajectory altogether, and (3) Cluster 2 with
traces that do track the desired trajectory, but have a large overshoot value. The
three clusters indicate a well-behaved controller, an incorrect controller, and a
controller that needs tuning respectively. The key observation here is that though
we use a single overshoot template to analyze the data, qualitatively different
behaviors form separate clusters in the induced parameter space; furthermore,
each cluster has higher-level meaning that the designer can find valuable.

In contrast to our proposed method, consider the clustering induced by using
the dynamic time warping (DTW) distance measure as shown in Fig. 1. Note that
DTW is one of the most popular measures to cluster time-series data [17]. We
can see that traces with both high and low overshoots are clustered together
due to similarities in their shape. Such shape-similarity based grouping could be
quite valuable in certain contexts; however, it is inadequate when the designer
is interested in temporal properties that may group traces of dissimilar shapes.
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Fig. 1. An example of a pitfall when using the DTW measure compared to projec-
tion using a PSTL template. We perform spectral clustering [24] on a similarity graph
representation of 7 traces. Nodes of the graph represent traces and edges are labeled
with the normalized pairwise distance using (1) the DTW measure and (2) the Euclid-
ean distance between features extracted using the PSTL template ϕovershoot. Note how
under the DTW measure, the black and cyan traces are grouped together due to their
behavior before the lane change, despite the cyan trace having a much larger overshoot.
Contrast with the STL labeling in the second row, where both overshooting traces are
grouped together. The bottom right figure provides the projection of the traces w.r.t.
ϕovershoot with the associated cluster-labels shown in the second row.

In Sect. 3, we show how we can use feature extraction with PSTL templates
to group traces with similar logical properties together. An advantage of using
PSTL is that the enhanced feature extraction is computationally efficient for
the fragment of monotonic PSTL formulas [5,14]; such a formula has the prop-
erty that its satisfaction by a given trace is monotonic in its parameter values.
The efficiency in feature extraction relies on a multi-dimensional binary search
procedure [20] that exploits the monotonicity property.

A different view of the technique presented here is as a method to perform
temporal logic inference from data, such as the work on learning STL formulas
in a supervised learning context [5–7,18], in the unsupervised anomaly detection
context [15], and in the context of active learning [16]. Some of these approaches
adapt classical machine learning algorithms such as decision trees [7] and one-
class support vector machines [15] to learn (possibly, arbitrarily long) formulas
in a restricted fragment of STL. Formulas exceeding a certain length are often
considered inscrutable by designers. A key technical contribution of this paper
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is to show that using simple shapes such as specific Boolean combinations of
axis-aligned hyperboxes in the parameter space of monotonic PSTL to represent
clusters yields a formula that may be easier to interpret. We support this in
Sect. 4, by showing that such hyperbox-clusters correspond to STL formulas that
have length linear in the number of parameters in the given PSTL template, and
thus of bounded descriptive complexity.

Mining parametric temporal logic properties in a model-based design has
also been explored [12,14]. We note that our proposed methods does not require
such a model, which may not be available either due to the complexity of the
underlying system or lack of certainty in the dynamics. We also note that there is
much work on mining discrete temporal logic specifications from data (e.g. [21]):
our work instead focuses on unsupervised learning of STL properties relevant to
CPS.

The reader might wonder how much insight is needed by a user to select the
PSTL template to use for classification. We argue the templates do not pose a
burden on the user and that our technique can have high value in several ways.
First, we observe that we can combine our technique with a human-guided (or
automated) enumerative learning procedure that can exploit high-level template
pools. We demonstrate such a procedure in the diesel engine case study. Second,
consider a scenario where a designer has insight into the data that allows them
to choose the correct PSTL template. Even in this case, our method automates
the task of labeleing trace-clusters with STL labels which can then be used
to automatically classify new data. Finally, we argue that many unsupervised
learning techniques on time-series data must “featurize” the data to start with,
and such features represent relevant domain knowledge. Our features happen
to be PSTL templates. As the lane controller motivating example illustrates, a
common procedure that doesn’t have some domain specific knowledge increases
the risk of wrong classifications. This sentiment is highlighted even in the data
mining literature [22]. To illustrate the value of our technique, in Sect. 5, we
demonstrate the use of logic-based templates to analyze time-series data in case
studies from three different application domains.

2 Preliminaries

Definition 1 (Timed Traces). A timed trace is a finite (or infinite) sequence
of pairs (t0,x0), . . ., (tn,xn), where, t0 = 0, and for all i ∈ [1, n], ti ∈ R≥0,
ti−1 < ti, and for i ∈ [0, n], xi ∈ D, where D is some compact set. We refer to
the interval [t0, tn] as the time domain T .

Real-time temporal logics are a formalism for reasoning about finite or infi-
nite timed traces. Logics such as the Timed Propositional Temporal Logic [4],
and Metric Temporal Logic (MTL) [19] were introduced to reason about sig-
nals representing Boolean-predicates varying over dense (or discrete) time. More
recently, Signal Temporal Logic [23] was proposed in the context of analog and
mixed-signal circuits as a specification language for real-valued signals.
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Signal Temporal Logic. Without loss of generality, atoms in STL formulas
can be be reduced to the form f(x) ∼ c, where f is a function from D to
R, ∼∈ {≥,≤,=}, and c ∈ R. Temporal formulas are formed using temporal
operators, “always” (denoted as G), “eventually” (denoted as F) and “until”
(denoted as U) that can each be indexed by an interval I. An STL formula is
written using the following grammar:

I := (a, b) | (a, b] | [a, b) | [a, b]
ϕ := true | f(x) ∼ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

(2)

In the above grammar, a, b ∈ T , and c ∈ R. The always (G) and eventually (F)
operators are defined for notational convenience, and are just special cases of
the until operator: FIϕ � true UI ϕ, and GIϕ � ¬FI¬ϕ. We use the notation
(x, t) |= ϕ to mean that the suffix of the timed trace x beginning at time t
satisfies the formula ϕ. The formal semantics of an STL formula are defined
recursively:

(x, t) |= f(x) ∼ c ⇐⇒ f(x(t)) ∼ c is true
(x, t) |= ¬ϕ ⇐⇒ (x, t) 	|= ϕ
(x, t) |= ϕ1 ∧ ϕ2 ⇐⇒ (x, t) |= ϕ1 And (x, t) |= ϕ2

(x, t) |= ϕ1 UI ϕ2 ⇐⇒ ∃t1 ∈ t ⊕ I : (x, t1) |= ϕ2 ∧
∀t2 ∈ [t, t1) : (x, t2) |= ϕ1

We write x |= ϕ as a shorthand of (x, 0) |= ϕ.

Parametric Signal Temporal Logic (PSTL). PSTL [5] is an extension of
STL introduced to define template formulas containing unknown parameters.
Formally, the set of parameters P is a set consisting of two disjoint sets of
variables PV and PT of which at least one is nonempty. The parameter variables
in PV can take values from their domain, denoted as the set V . The parameter
variables in PT are time-parameters that take values from the time domain T .
We define a valuation function ν that maps a parameter to a value in its domain.
We denote a vector of parameter variables by p, and extend the definition of the
valuation function to map parameter vectors p into tuples of respective values
over V or T . We define the parameter space DP as a subset of V |PV | × T |PT |.

A PSTL formula is then defined by modifying the grammar specified in (2)
by allowing a, b to be elements of PT , and c to be an element of PV . An STL
formula is obtained by pairing a PSTL formula with a valuation function that
assigns a value to each parameter variable. For example, consider the PSTL
formula ϕ(c, τ) = G[0,τ ]x > c, with parameters variables c and τ . The STL
formula G[0,10]x > 1.2 is an instance of ϕ obtained with the valuation ν = {τ →
10, c → 1.2}.

Monotonic PSTL. Monotonic PSTL is a fragment of PSTL introduced as the
polarity fragment in [5]. A PSTL formula ϕ is said to be monotonically increasing
in parameter pi if condition (3) holds for all x, and is said to be monotonically
decreasing in parameter pi if condition (4) holds for all x.
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ν(pi) ≤ ν′(pi) =⇒ [x |= ϕ(ν(pi)) =⇒ x |= ϕ(ν′(pi))] (3)
ν(pi) ≥ ν′(pi) =⇒ [x |= ϕ(ν(pi)) =⇒ x |= ϕ(ν′(pi))] (4)

To indicate the direction of monotonicity, we now introduce the polarity of
a parameter [5], sgn(pi), and say that sgn(pi) = + if the ϕ(p) is monotonically
increasing in pi and sgn(pi) = − if it is monotonically decreasing, and sgn(pi) =
⊥ if it is neither. A formula ϕ(p) is said to be monotonic in pi if sgn(pi) ∈ {+,−},
and say that ϕ(p) is monotonic if for all i, ϕ is monotonic in pi.

While restrictive, the monotonic fragment of PSTL contains many formulas
of interest, such as those expressing steps and spikes in trace values, timed-
causal relations between traces, and so on. Moreover, in some instances, for
a given non-monotonic PSTL formula, it may be possible to obtain a related
monotonic PSTL formula by using distinct parameters in place of a repeated
parameter, or by assigning a constant valuation for some parameters (Example
in AppendixA).

Example 1. For formula (1), we can see that sgn(a) = −, because if a trace
has a certain overshoot exceeding the threshold a∗, then for a fixed τ , the trace
satisfies any formula where a < a∗. Similarly, sgn(τ) = +, as an overshoot over
some interval (0, τ∗] will be still considered an overshoot for τ > τ∗.

Orders on Parameter Space. A monotonic parameter induces a total order
�i in its domain, and as different parameters for a given formula are usually
independent, valuations for different parameters induce a partial order:

Definition 2 (Parameter Space Partial Order). We define �i as a total
order on the domain of the parameter pi as follows:

ν(pi) �i ν′(pi)
def=

{
ν(pi) ≤ ν′(pi) if sgn(pi) = +
ν(pi) ≥ ν′(pi) if sgn(pi) = − (5)

Under the order �i, the parameter space can be viewed as a partially ordered
set (DP ,�), where the ordering operation � is defined as follows:

ν(p) � ν′(p) def= ∀i : ν(pi) �i ν′(pi). (6)

When combined with Eqs. (3), (4) this gives us the relation that ν(p) �
ν′(p) implies that [ϕ(ν(p)) =⇒ ϕ(ν′(p))]. In order to simplify notation, we
define the subset of X that satisfies ϕ(ν(p)) as �ϕ(ν(p))�X . If X and p are
obvious from context, we simply write: �ϕ(ν)�. It follows that (ν � ν′) =⇒
(�ϕ(ν)� ⊆ �ϕ(ν′)�). In summary: � operates in the same direction as implication
and subset. Informally, we say that the ordering is from a stronger to a weaker
formula.

Example 2. For formula (1), the order operation � is defined as ν � ν′ iff
ν(τ) < ν′(τ) and ν(a) > ν′(a). Consider ν1(p) def= (τ : 0.1, a : −1.1) and
ν2(p) def= (τ : 3.3, a : −1.3). As sgn(a) = −, sgn(τ) = +, ν1 � ν2, and
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ϕovershoot(ν1(p)) =⇒ ϕovershoot(ν2(p)). Intuitively this means that if x(t) satis-
fies a formula specifying a overshoot > −1.1 (undershoot < 1.1) over a duration
of 0.1 time units, then x(t) trivially satisfies the formula specifying an undershoot
of < 1.3 over a duration of 3.3 time units.

Next, we define the downward closure of ν(p) and relate it to �ϕ(ν(p))�.

Definition 3 (Downward closure of a valuation). For a valuation ν, its
downward closure (denoted D(ν)) is the set {ν′ | ν′ � ν}.

In the following lemma we state that the union of the sets of traces satisfying
formulas corresponding to parameter valuations in the downward closure of a
valuation ν is the same as the set of traces satisfying the formula corresponding
to ν. The proof follows from the definition of downward closure.

Lemma 1.
⋃

ν′∈D(ν)�ϕ(ν′)� ≡ �ϕ(ν)�

Lastly, we define the validity domain of a set of traces and ϕ.

Definition 4 (Validity domain). Let X be a (potentially infinite) collection
of timed traces, and let ϕ(p) be a PSTL formula with parameters p ∈ P. The
validity domain1 V(ϕ(p),X) of ϕ(p) is a closed subset of DP , such that:

∀ν(p) ∈ V(ϕ(p),X) : ∀x ∈ X : x |= ϕ(ν(p)) (7)

Remark 1. The validity domain for a given parameter set P essentially contains
all the parameter valuations s.t. for the given set of traces X, each trace satisfies
the STL formula obtained by instantiating the given PSTL formula with the
parameter valuation.

Example 3. In Fig. 2, we show the validity domain of the PSTL formula (1) for
the three traces given in the subplot labeled STL cluster 0 in Fig. 1. The hatched
red region contains parameter valuations corresponding to STL formulas that are
not satisfied by any trace, while the shaded-green region is the validity domain
of the formula. The validity domain reflects that till the peak value a∗ of the
black trace is reached (which is the smallest among the peak values for the three
signals), the curve in τ -a space follows the green trace (which has the lowest
slope among the three traces). For any value of τ , for which a > a∗, the formula
is trivially satisfied by all traces.

3 Trace-Projection and Clustering

In this section, we introduce the projection of a trace to the parameter space of
a given PSTL formula, and discuss mechanisms to cluster the trace-projections
using off-the-shelf clustering techniques.

1 If X is obvious from context (or does not matter), we write V(ϕ(p), X) as V(ϕ).
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τ

Fig. 2. Validity domain and
projection of traces in STL
Cluster 0 from Fig. 1.

Trace Projection. The key idea of this paper is
defining a projection operation π that maps a given
timed trace x to a suitable parameter valuation2

ν�(p) in the validity domain of the given PSTL for-
mula ϕ(p). We would also like to project the given
timed trace to a valuation that is as close a repre-
sentative of the given trace as possible (under the
lens of the chosen PSTL formula).

One way of mapping a given timed trace to a
single valuation is by defining a total order � on
the parameter space by an appropriate linearization
of the partial order on parameter space. The total
order then provides a minimum valuation to which
the given timed trace is mapped.

Remark 2. For technical reasons, we often adjoin two special elements � and
⊥ to V(ϕ(p),X) such that ∀ν(p) ∈ V(ϕ(ν(p)),X), ⊥ � ν(p) � � and ∀x ∈
X, x |= ϕ(�(p)) and ¬(x |= ϕ(⊥(p))). These special elements mark whether
V(ϕ(ν(p))) is the whole parameter space or empty.

We present the lexicographic order on parameters as one possible lineariza-
tion; other linearizations, such as those based on a weighted sum in the parameter
space could also be used (presented in AppendixA for brevity).

Lexicographic Order. A lexicographic order (denoted �lex) uses the specifi-
cation of a total order on parameter indices to linearize the partial order. We
formalize lexicographic ordering as follows.

Definition 5 (Lexicographic Order). Suppose we are given a total order on
the parameters j1 > · · · > jn. The total order �lex on the parameter space DP
is defined as:

ν(p) �lex ν′(p) ⇐⇒ ∃jk ∈ (j1, . . . , jn) s.t. ν(pjk
) �i ν′(pjk

) and,
∀� < k, ν(pj�

) = ν′(pj�
). (8)

Note that for a given total or partial order, we can define inf and sup under
that order in standard fashion. Formally, the projection function using lexico-
graphic order is defined as follows:

πlex(x) = inf
�lex

{ν(p) ∈ V(ϕ(p), {x })} (9)

2 For canonicity, π need not be a function from timed traces to DP . For example, it
may be expedient to project a trace to a subset of DP . For simplicity, we defer more
involved projections to future exposition.
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Algorithm 1. Iterated Binary Search to compute πlex(x)
Input: x(t), ϕ(p), P, DP , (j1, . . . , jn), ε > 0, �lex

Result: πlex(x)
1 ν�(p) ← inf�lex DP ; νu(p) ← sup�lex

DP
2 if ¬(x |= ϕ(νu(p))) then return �
3 if x |= ϕ(ν�(p)) then return ⊥
4 for i = 1 to |P| do
5 while |νu(pi) − ν�(pi)| > εi do

6 ν(pi) ← 1
2

(
ν�(pi) + νu(pi)

)

7 if x |= ν(p) then νu(p) ← ν(p)

8 else ν�(p) ← ν(p)

9 return πlex(x) ← νu(p)

Computing πlex. To approximate πlex(x), we recall Algorithm 1 from [14] that
uses a simple lexicographic binary search3.

We begin by setting the interval to search for a valuation in V(ϕ(p)). We
set the initial valuation to � since it induces the most permissive STL formula.
Next, for each parameter, (in the order imposed by �lex), we perform bisection
search on the interval to find a valuation in V(ϕ(p)). Once completed, we return
the lower bound of the search-interval as it is guaranteed to be satisfiable (if a
satisfiable assignment exists).

Crucially, this algorithm exploits the monotonicity of the PSTL formula to
guarantee that there is at most one point during the bisection search where the
satisfaction of ϕ can change. The number of iterations for each parameter index
i is bounded above by log

⌈
sup(DP i)−inf(DP i)

εi

⌉
, and the number of parameters.

This gives us an algorithm with complexity that grows linearly in the number
of parameters and logarithmically in the desired precision.

Remark 3. Pragmatically, we remark that the projection algorithm is inherently
very parallel at the trace level and as such scales well across machines.

Example 4. For the running example (PSTL formula (1)), we use the order
a �lex τ . As sgn(a) = −, and sgn(τ) = +, lexicographic projection has the
effect of first searching for the largest a, and then searching for the smallest τ
such that the resulting valuation is in V(ϕovershoot). The projections of the three
traces from STL cluster 0 from Fig. 1 are shown in Fig. 2. We use the same color
to denote a trace and its projection in parameter space.

3 For simplicity, we have omitted a number of optimizations in Algorithm 1. For exam-
ple, one can replace the iterative loop through parameters with a binary search over
parameters.
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Fig. 3. Three clusters represented
using the level sets of Gaussian func-
tions learned from Gaussian Mixture
Models (GMMs) (see Example 5). The
user specifies the number of clusters
to discover (3 in this case), and spec-
ifies that the GMM algorithm use
a diagonal covariance matrix (which
restricts cluster shape to axis-aligned
ellipsoids).

Clustering and Labeling. What does
one gain by defining a projection, π? We
posit that applying unsupervised learn-
ing algorithms for clustering in DP lets
us glean insights about the logical struc-
ture of the trace-space by grouping traces
that satisfy similar formulas together. Let
L be a finite, nonempty set of labels. Let
Y ⊂ X represent a user-provided set of
traces. In essence, a clustering algorithm
identifies a labeling function � : Y → 2L

assigning to each trace in Y zero or more
labels. We elaborate with the help of an
example.

Example 5. In Fig. 3, we show a possi-
ble clustering induced by using Gaussian
Mixture Models4 (GMMs) for the trace-
projections for the traces in Fig. 1. The
figure shows that the traces colored green,
red and black are grouped in the same cluster; this matches the observation that
all three traces have behaviors indicating overshoots, but of reasonable magni-
tudes. On the other hand, traces colored magenta and yellow have no overshoot
and are grouped into a second cluster. The final cluster contains the blue and
cyan traces, both with a large overshoot.

Supposing the clustering algorithm reasonably groups traces satisfying sim-
ilar parameter valuations/logical formulas, one may ask: “Can we describe this
group of traces in terms of an easily interpretable STL formula?” Using an ellip-
soid to represent a cluster, unfortunately, the answer is negative.

Example 6. For the cluster labeled 0 in Fig. 1, in (10), we show the formula
describing the ellipsoidal cluster. Here the cis are some constants.

F
(
lane change ∧ F[0,τ ] (x − xref > a)

) ∧
(
(c1τ − c2)

2 + (c3a − c4)
2

< c25

)

(10)

It is clear that formula (10) is inscrutable, and actually represents an infinite
number of STL formulas. In case of GMMs, we can at least have an abstract
4 A GMM assumes that the given parameter space can be modeled as a random

variable distributed according to a set of Gaussian distributions with different mean
and variance values. A given parameter valuation is labeled l if the probability of the
valuation belonging to the lth Gaussian distribution exceeds the probability of the
valuation belonging to other distributions. Another way to visualize clusters in the
parameter space is by level-sets of the probability density functions associated with
the clusters. For example, for the lth cluster, we can represent it using the smallest
level-set that includes all given points labeled l.
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description of clusters using ellipsoid shapes in the parameter-space. If we use
spectral clustering (as described in Sect. 1), the representation of a cluster in the
parameter space is even less obvious. To mitigate this problem, we observe that
the distance between points in DP is a “good” proxy for whether they receive the
same label. Thus, another way to define the labeling function �, is via parameter
ranges. We argue that the use of axis-aligned hyperboxes enclosing points with
the same labels is a useful approximation of the clusters, particularly because as
we see in the next section, it has a compact STL encoding.

Remark 4. For a given set of points, the tightest-enclosing hyperbox may include
points that would not have received the same label by an off-the-shelf clustering
algorithm. This can lead to a scenario where hyperbox-clusters intersect (see
Fig. 5c in for an example). This means that we can now have points in the
parameter space that can have possibly two or more labels. We argue that this
can be addressed in two ways: (1) introduce a new hyperbox cluster for points
in the intersection, (2) indicate that points in the intersection represent traces
for which there is additional guidance required from the designer.

Hyperbox Clusters. In the previous section, we showed that we can construct
a labeling function � to assign labels to the user-provided set of traces Y . We
now see how we can extend this labeling function to all possible traces X.

Let ν�
def= supDP . A valid hyperbox B in the parameter space is defined in

terms of its extreme points (νs(p), νw(p)), (where νs � νw), where νs and νw

are the infimum and supremum resp. over the box w.r.t. �. Formally,

Definition 6 (Hyperbox)

B(νs, νw) def=
{∏

i[νs(pi), νw(pi)] if νw(pi) 	= ν�(pi)∏
i[νs(pi), νw(pi)] otherwise.

(11)

In other words, we assume that a hyperbox is open on all faces not connected
to the infimum of the box, unless the face is connected to the supremum of DP .
Let B denote the set of all such hyperboxes.

Definition 7 (Hyperbox Labeling Function). Given a trace x and a hyper-
box B, s.t. π(x) ∈ B, we define �box as the hyperbox labeling function from X to
2L as follows:

l ∈ �box(x) ⇐⇒ {π(x′) | x′ ∈ Y ∧ �(x′) = l} ⊂ B (12)

In other words, we only consider hyperboxes that contain the projections
of all traces with a specific label (say l), and then any trace that projects to
some point in the hyperbox gets all such labels l. We extend the definition
�box(x) to boxes, such that �B(B) = {l | π(x) ∈ B ∧ l ∈ �box(x)}. We note that
B∗ def= inf{B | l ∈ �B(B)} represents the smallest set containing all parameter
valuations that are labeled l. However, B∗ does not satisfy the definition of a
hyperbox as per Definition 6 as it is a closed set. Hence, we define an ε relaxation
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of this set as the smallest bounding hyperbox satisfying Definition 6 at Hausdorff
distance ε from B∗, and call it the ε-bounding hyperbox. In the next section, we
show how we can translate a cluster represented as an ε-bounding hyperbox to
an STL formula. We will further examine how, in some cases, we can represent
a cluster by a superset B′ of the ε-bounding hyperbox that satisfies l ∈ �B(B′),
but allows a simpler STL representation.

Example 7. For the example shown in Fig. 1, for each of the red, green and black
traces x, �box(x) = {0}, while for the blue and cyan traces, �box(x) = {2}. Any
hyperbox B satisfying Definition 6 that is a superset of the hyperbox enclosing
the red, green and black points shown in the bottom right figure has �B(B) = {0},
while the hyperbox shown in the figure is an ε-bounding hyperbox.

4 Learning STL Formulas from Clusters

A given ε-bounding hyperbox B simply specifies a range of valuations for the
parameters in a PSTL template ϕ. We now demonstrate that because ϕ is
monotonic, there exists a simple STL formula that is satisfied by the set of
traces that project to some valuation in B. Recall that we use �ϕ(ν)� to denote
the set of traces that satisfies ϕ(ν(p)). We define XB as the set of traces that
have a satisfying valuation in B: XB

def=
⋃

ν(p)∈B

�ϕ(ν(p))�.

Theorem 1. There is an STL formula ψB such that {x ∈ X | x |= ψB} ≡ XB.

Before proving this theorem, we introduce some notation:

Definition 8 (Essential Corners, EB). Let νw(p) = (w1, . . . , wn), and let
νs(p) = (s1, . . . , sn). A valuation corresponding to an essential corner has exactly
one i such that ν(pi) = si, and for all j 	= i, ν(pj) = wj.

Proof (Theorem 1). We first introduce the notion of essential corners of a box
B.

Note that B can be written in terms of downward closures of valuations:
B = D(νw)∩⋂

ν∈EB
D(ν). From Lemma 1, the set of traces satisfying a formula

in ϕ(D(ν)) is equivalent to �ϕ(ν)�. Further, using the equivalence between inter-
sections (∩) of sets of traces and conjunctions (∧) in STL, and equivalence of
set-complements with negations, we define ψB below and note that the set of
traces satisfying the formula ψB below is XB . �

ψB
def= ϕ(νw) ∧

∧

ν∈EB

¬ϕ(ν) (13)

Example 8. Consider the B ∈ B enclosing the projections for the yellow and
magenta traces (Cluster 1). The corner-points of the cluster in clockwise order
from bottom right corner are: (−1.3, 0.1), (−1.3, 3.3), (−1.1, 3.3), (−1.1, 0.1).
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Observe that as sgn(a) = − and sgn(τ) = +, νs = (a → −1.1, τ → 0.1), νw =
(a → −1.3, τ → 3.3). Thus, EB = {(−1.3, 0.1), (−1.1, 3.3)}. Thus:

ϕovershoot(a, τ) ≡ F
(
lane change ∧ F[0,τ ] (x − xref > a)

)

ψB ≡ ϕovershoot(−1.3, 3.3) ∧ ¬ϕovershoot(−1.3, .1) ∧ ¬ϕovershoot(−1.1, 3.3) (14)

Lemma 2. |ψB | ≤ (|P| + 1|)(|ϕ| + 2)

Proof. Recall from Definition 8 that corners in EB have exactly 1 param set
to si. There are |P| params, thus by pigeon hole principle, |EB | ≤ |P|. In ψB

for each corner in EB , the corresponding formula is negated, adding 1 symbol.
Between each |P|+1 instantiations of ϕ is a ∧. Thus |ψB | ≤ (|P|+1)(|ϕ|+2) �

Simplifying STL Representation. To motivate this section, let us re-examine
Example 8. From Fig. 1, we can observe that there is no hyperbox cluster to
the left of or above the chosen hyperbox cluster B, i.e., the one containing the
magenta and yellow trace-projection. What if we consider supersets of B that are
hyperboxes and have the same infimum point? For Example 8, we can see that
any hyperbox that extends to the supremum of the parameter space in τ or −a
direction would be acceptable as an enclosure for the yellow and magenta traces
(as there are no other traces in those directions). We formalize this intuition in
terms of relaxing the set of corners that can appear in EB .

Fig. 4. 2D shapes generated by different sub-
sets of corners.

For instance, suppose that we
replace EB in Eq. (13) with E′

B ,
where E′

B is any subset of the cor-
ners of B (excluding νw). We call
the collection of shapes induced by
this relaxation as B2. For |P| = 2,
the possible shapes of elements in
B2 are shown in Fig. 4. For conve-
nience, we use a bit-vector encod-
ing for hyperbox corners, where νs

corresponds to the bit-vector with
all 0s, νw has all 1s, and essential
corners are bit-vectors with exactly
one 0. Consider the L shaped
region, CL, created by E′

B = {00}.
The formula corresponding to CL has obviously less descriptive complexity than
EB = {01, 10}. Further notice, B2 \ B would have less descriptive complexity
than elements of B.

One critical feature that B2 (and thus B) has is comparable convexity :

Definition 9 (Comparable Convexity). If ∀ν, ν′ ∈ B ⊂ DP if ν � ν′ or
ν′ � ν then all convex combinations of ν and ν′ are in B.

Comparable convexity allows us to argue that one can gain some insight into
the set of traces by just examining the extremal cases and just “interpolating”
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the cases because of the associated parameters. We call these extremal cases the
“representatives” of a cluster.

Theorem 2. Each element in B2 is comparably convex. See Fig. 4 for examples.

Proof. Note that all elements of B ⊂ B2 are trivially comparably convex since
hyperboxes are convex. Thus we focus on elements of B2 \ B. Now observe that
any element C ∈ B2 is the union of a finite set, H, of boxes in B. C s.t. C =⋃

Bi∈H⊂B Bi where ν1 ∈ B1 and ν2 ∈ B2. If B1 ⊂ B2 or the other way around or
ν1 ∈ B1 ∩B2 or ν2 ∈ B1 ∩B2, then again there trivially the convex combination
of ν1 and ν2 is in C because hyperboxes are convex (and the intersection of two
hyperboxes is a hyperbox).

This leaves the case where ν1 ∈ B1 \ B2 and ν2 ∈ B2 \ B1 and neither
B1 ⊂ B2 nor B2 ⊂ B1. This implies that inf(B1) is not comparable to inf(B2).
W.L.O.G assume ν1 � ν2 and that the convex combination of ν1 and ν2 is
not a subset C. Note that the definition of downward closure and the fact that
ν1 � ν2 =⇒ ν1 ∈ B(sup(C), ν2)

def= B′. But, B′ is convex and B′ ⊂ B2 ⊂ C,
thus the convex combination of ν1 and ν2 is in C which is a contradiction. �

5 Case Studies

Implementation Details. We leveraged Breach [9] for performing projections
πlex, scikit-learn toolkit [11] for clustering and custom Python code for learn-
ing STL formulas for clusters. An IPython notebook with compressed versions of
the datasets studied in the case studies (and a replementation of πlex in Python)
is available for download at [1].

Diesel Engine. In this case study, we are provided with timed traces for a signal
representing the Exhaust Gas Recirculation (EGR) rate for an early prototype
of a Diesel Engine airpath controller. As the example comes from an automotive
setting, we suppress actual signal values for proprietary reasons. The controller
computes an EGR reference rate and attempts to track it. Typically, engineers
visually inspect the step-response of the control system and look for patterns such
as unusual overshoots, slow responsiveness, etc. The ST-Lib library [13] defines
a pool of PSTL formulas designed to detect violations of such properties. Using
a property from ST-Lib requires correctly setting the parameters in the PSTL
templates therein. In this case study, we show how we can use our technique
to determine parameters that characterize undesirable behavior. We focus on
two templates: Rising Step and Overshoot. Many ST-Lib formulas are “step-
triggered”, i.e., they are of the form: F(step∧φ) We first identify parameters for
the step template, as it is used as a primitive in further analysis. For example, in
the overshoot analysis we seek to characterize by what margin traces overshoot
the reference. We use the following templates for rising-step and overshoot:

step(m,w) � F(ẍ > m ∧ F[0,w](ẍ < −m)) (15)

ϕovershoot(c, w) � step∗ ∧ F[0,w](x − xr) > c (16)
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Equation (15) first reduces step detection (via a discrete derivative) to spike
detection and then applies the ST-Lib spike detection template (that introduces
a second derivative). As the view of PSTL is signal-centric, such operations
can be introduced as new timed traces of a new signal, and do not require
any modification of the logic. The step∗ that appears in Eq. (16) is result step
primitive we learn during our analysis. Finally, the lexicographic ordering used
in the projections of Eqs. (15) and (16) are: m �lex w and c �lex w resp. Finally,
each parameter is in R>0.

Experiments. We have 33 traces of variable time-length. As a preprocessing step,
we used a sliding window with a size of 1 second and a sliding offset of 0.5 s to
generate equal length traces. The sliding window size and the offset was chosen by
observation and experience to capture the significant local behaviors. In general,
such a selection could be automated based on statistical criteria. Further, as we
did not exploit the relationship between traces generated by the sliding window,
we effectively analyzed over 2 × 106 traces (1 GB). Each trace generated is then
prepossessed by numerically computing the second derivative5. After projecting
to the parameter space for each template, we normalize the parameters to lie
between 0, 1 and fit a Gaussian Mixture Model to generate labels, and learn the
STL formulas for each cluster.

Results. The Step template revealed 3 clusters (Fig. 5a), of which the cluster
labeled Step (Fig. 5b), was identified as an admissible “step” primitive. In picking

Fig. 5. DP for the overshoot and step experiments and representatives of select clusters.
5 As the discrete-time derivative can introduce considerable noise, we remark that the

discrete-time derivative can often be approximated by a noise-robust operation (such
as the difference from a rolling mean/median.).
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the appropriate bounding box in B we noted spikes have no inherit upper limit
to their peaks. Thus, we derived the characterizing STL: step∗ def= step(m∗, w∗),
where m∗, w∗ are suppressed for proprietary reasons. The overshoot analysis
revealed 5 clusters. We note that there are actually 2 distinct clusters which can
reasonably be called overshoots, given by label 1 and 4 in Fig. 5c. The interpreta-
tion, is that while the majority of the overshoots occur soon after the step, there
is a cluster that occurred later, either due to slow rise time or non-linear effects
causing the oscillation about the reference to increasing before dying away. In
either case, as with spike, we declare that any overshoot is still an overshoot as
the amplitude c rises. Thus for cluster 1 we again chose to use a box from B that
does not bound c. This lead to: ϕ∗

overshoot
def= ϕovershoot(c∗, w∗

2)∧¬ϕovershoot(c∗, w∗
1)

again suppressing values.

Traffic Behavior on the US-101 Highway. In order to model and pre-
dict driver behavior on highways, the Federal Highway Administration collected
detailed traffic data on southbound US-101 freeway, in Los Angeles [8]. The pre-
selected segment of the freeway is about 640 m in length and consists of five main
lanes and some auxiliary lanes. Traffic through the segment was monitored and
recorded through eight synchronized cameras, mounted on top of the buildings
next to the freeway. A total of 45 min of traffic data was recorded including
vehicle trajectory data providing lane positions of each vehicle within the study
area.

Here, we apply our method to analyze lane switching “aggressiveness” char-
acterized by how often a driver switches lanes and the dwell time in each lane
before switching. We focus on lanes 2, 3, and 4, ignoring the outer lanes 1 and 5
since they are used entering and exiting the freeway, and thus have qualitatively
different behavior. Each vehicle trajectory x(t), stores the lane position for the
vehicle, and we use the following STL formula to capture the dwell time in Li:

F
(
x 	= Li ∧ (F[0,ε]x = LiU[ε,τi]x 	= Li)

)
(17)

Results. For this experiment, from 4824 total vehicle trajectories, we discard tra-
jectories with no lane switching behavior and group them with the conservative
driving behaviors. We analyze the remaining 896 targeted trajectories that have
at least one lane-switch behavior, and each trajectory is at most 100 s long. As
all parameters are independent, lexicographic ordering has no impact on πlex.
After normalizing the parameters by centering and scaling, we apply GMMs to
label and generate bounding hyperboxes/STL formulas.

The resulting clusters are shown in Fig. 6a. Upon examining the representa-
tives,we classified the behaviors of each cluster into 4 groups:

– T1: No Weaving: only switching to adjacent lanes and never changing back.
– T2: Normal driving behavior, from switching to adjacent lanes and coming

back to overtake a slow vehicle in front.
– T3: Slightly aggressive behavior, weaving between 2 lanes.
– T4: Aggressive behavior, weaving between all three lanes.
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Fig. 6. (a) Lane Switching Behavior results. Columns: Cluster, parameters, cluster
type, num(traces). (b) shows the representatives of cluster 1, which upon the inspection
are qualitatively very different. The blue car moves from lane 5 to lane 4, remains for
≈60 s and then moves to lane 3. The red car appears to use lane 5 to pass another car,
move’s back into lane 4 and then to lane 3 shortly after. Inspecting the data, most of
cluster 1 large τ4 value. We subdivided the behavior further using a one class svm and
interpreted the small τ4 values as “aggressive”. New “aggressive” representatives given
in (c). (Color figure online)

The largest cluster, 0, contains behaviors without any weaving behavior.
Cluster 3 and 5 represent the weaving behavior involving 2 lanes. Cluster 6
represents aggressive behavior and one of the representative is shown in Fig. 6c.
We consider Cluster 7 as an anomaly for Cluster 2 as it has only 1 trajectory.

For clusters 1, 2, and 4, we cannot distinguish if drivers were rapidly weaving
or weaving within a short period of time, due to the scarcity of the data. As
seen in Fig. 6b, the representatives for cluster 1, demonstrated two different
behaviors; one involving rapid lane-switching (red trace), one where the driver
switched lanes more slowly (blue trace). Applying an additional 1-class SVM to
the points in cluster 1 was used to distinguish these two cases.

CPS Grader. Massively Open Online Courses (MOOCs) present instructors
the opportunity to learn from a large amount of collected data. For example,
the data could be clustered to identify common correct solutions and mistakes.
Juniwal et al. [16] demonstrated a semi-supervised procedure for a CPS MOOC;
this involved first using DTW and K-Nearest Neighbors (KNN) to cluster traces
of student solutions, and then picking representatives from clusters to ask the
instructor to label. From the labeled data, they extract a characterizing STL for-
mula given a PSTL template. The techniques demonstrated in this paper offer
an alternative approach that can overcome some limitations of [16]. Firstly, as
demonstrated in the opening example (see Fig. 1), DTW does not necessarily
group traces in a way consistent with their logical classification. Second, the
burden of labeling traces can still be quite large for instructors if the number
of clusters is very large. Instead, unsupervised our approach offers a fully unsu-
pervised approach (e.g., based on GMMs or K-Means) which still offers some
degree of confidence that elements in the same cluster are similar w.r.t. a given
PSTL template.
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The tests in [16] involved the simulation of an IRobot Create and student
generated controllers. The controller needed to navigate the robot up an incline
and around static obstacles. To test this, the authors created a series of parame-
terized environments and a set of PSTL formula that characterized failure. In
this work, we attempt to reproduce a somewhat arbitrary subset of the results
shown in [16] that required no additional preprocessing on our part.

Obstacle Avoidance. We focus on 2 tests centered around obstacle avoidance.
The authors used an environment where an obstacle is placed in front of a
moving robot and the robot is expected to bypass the obstacle and reorient
to it’s pre-collision orientation before continuing. The relevant PSTL formulas
were “Failing simple obstacle avoidance” and “Failing re-orienting after obstacle
avoidance” given below as ϕavoid and ϕreorient resp.:

ϕavoid(τ, ymin) = G[0,τ ](pos.y < ymin) (18)
ϕreorient(ymin, xmax) = G[0,τ ](pos.y < ymin ∨ pos.x > xmax) (19)

Results. A surprising observation for both templates is that the vast majority of
data is captured in a relatively small parameter range. Upon investigation, it was
revealed that the students were able to submit multiple solutions for grading—
each corresponding to a trace. This biased the dataset towards incorrect solutions
since one expects the student to produce many incorrect solutions and then a
few final correct solutions. As seen in Fig. 7a, the results imply that a classifier
for label 0, which corresponded to the robot not passing the obstacle, would have
a low misclassification rate when compared against the STL artifact from [16].
Moreover, for obstacle avoidance, there are two other families of correct solutions
uncovered. One is the set of traces that just barely pass the obstacle in time

Fig. 7. CPS Grader Study Results, w. V(ϕavoid), (c), from [16] included for comparison
(valuations in the green region of (c) correspond to mistakes). We note that in (b) we
are able to identify 3 modes of failure (obstacle not avoided, 2x obstacle avoided but
did not reorient), an insight not present in [16]. (Color figure online)
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(label 2 in Fig. 7a), and the other is the spectrum of traces that pass the minimum
threshold with a healthy margin (label 1 in Fig. 7a). For the reorient template,
we discovered 3 general types of behaviors (again with GMMs), see Fig. 7b. The
first (label 1) is a failure to move past the obstacle (echoing the large group under
the obstacle avoidance template). The other 3 groups seem to move passed the
obstacle, but two (labels 0 and 3) of them display failure to reorient to the
original orientation of 45◦. One could leverage this behavior to craft diagnostic
feedback for these common cases.

Conclusion. In this work we explored a technique to leverage PSTL to extract
features from a time series that can be used to group together qualitatively
similar traces under the lens of a PSTL formula. Our approach produced a simple
STL formula for each cluster, which along with the extremal cases, enable one
to develop insights into a set of traces. We then illustrated with a number of
case studies how this technique could be used and the kinds of insights it can
develop. For future work, we will study extensions of this approach to supervised,
semi-supervised, and active learning. A key missing component in this work is a
principled way to select a projection function (perhaps via learning or posterior
methods). Other possible extensions involve integration with systematic PSTL
enumeration, and learning non-monotonic PSTL formulas.
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A Appendix

Related Monotonic Formula for a Non-monotonic PSTL Formula

Example 9. Consider the PSTL template: ϕ(h,w) def= F((x ≤ h)∧F[0,w](x ≥ h)).
We first show that the given formula is not monotonic.

Proof. Consider the trace x(t) = 0. Keep fixed w = 1. Observe that h = 0,
x(t) satisfies the formula. If h = −1, then x(t) 	|= ϕ(h,w), since x(t) ≤ h is
not eventually satisifed. If h = 1, then x(0) ≤ 1 implying that for satisfaction,
within the next 1 time units, the signal must becomes greater than 1. The signal
is always 0, so at h = 1, the formula is unsatisfied. Thus, while increasing h
from −1 to 0 to 1, the satifaction has changed signs twice. Thus, ϕ(h,w) is not
monotonic.

Now consider the following related PSTL formula in which repeated
instances of the parameter h are replaced by distinct parameters h1 and
h2. We observe that this formula is trivially monotonic: ϕ((w, h1, h2))

def=
F

(
(x ≤ h1) ∧ F[0,w] (x ≥ h2)

)
.



324 M. Vazquez-Chanlatte et al.

Linearization Based on Scalarization
Borrowing a common trick from multi-objective optimization, we define a cost
function on the space of valuations as follows: J(ν(p)) =

∑|P|
i=1 λiν(pi). Here,

λi ∈ R, are weights on each parameter. The above cost function implicitly defines
an order �scalar, where, ν(p) �scalar ν′(p) iff J(ν(p)) ≤ J(ν′(p)). Then, the pro-
jection operation πscalar is defined as: πscalar(x) = argminν(p)∈∂V(ϕ(p))J(ν(p)).
We postpone any discussion of how to choose such a scalarization to future work.
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falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 21

4. Alur, R., Henzinger, T.A.: A really temporal logic. JACM 41(1), 181–203 (1994)
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9. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17
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Abstract. We present Montre, a monitoring tool to search patterns
specified by timed regular expressions over real-time behaviors. We use
timed regular expressions as a compact, natural, and highly-expressive
pattern specification language for monitoring applications involving
quantitative timing constraints. Our tool essentially incorporates online
and offline timed pattern matching algorithms so it is capable of find-
ing all occurrences of a given pattern over both logged and streaming
behaviors. Furthermore, Montre is designed to work with other tools
via standard interfaces to perform more complex and versatile tasks for
analyzing and reasoning about cyber-physical systems. As the first of its
kind, we believe Montre will enable a new line of inquiries and tech-
niques in these fields.

1 Introduction

Temporal behaviors are sequences of actions and observations in time generated
by various systems and the environment around us. A temporal pattern is a set
of compositions of different temporal behaviors satisfying some relations among
their components such as precedence and coincidence or possessing some prop-
erties such as repetition and a certain duration. Searching good [bad, desirable,
undesirable] patterns over their temporal behaviors is an important task while
we reason about systems and the environment.

Timed regular expressions (TREs) [2] extend regular expressions, a well-
established formalism for specifying sequences of symbols, with the notion of
real-time and timing constraints. Many patterns requiring both qualitative and
quantitative temporal properties can be specified by TREs in a compact and
natural way. Given a TRE that specifies a temporal pattern and a real-time
behavior the problem of timed pattern matching is defined as locating all seg-
ments that satisfy the expression. This problem has been solved by an offline
algorithm in [14]. It is further endowed with an online algorithm that incremen-
tally matches patterns over streaming behaviors [15].

In this paper, we describe Montre a new tool for timed pattern matching
whose applications are numerous and diverse. First of all, Montre can naturally
check execution traces of software and hardware systems against real time prop-
erties specified in TRE (e.g. [5,7]), thus complementing temporal logic based
c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 329–335, 2017.
DOI: 10.1007/978-3-319-63387-9 16
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Fig. 1. The work flow and extent of the monitoring tool Montre

property checkers such as [1,4,11]. Further, Montre can be used for specifica-
tion mining such as [3,8] as matching is a basic task for mining. Outside the
verification context, Montre has a potential use in temporal data mining [10]
and (vehicle or human) trajectory data mining [9,16] as it can label time seg-
ments with meaningful tags such as overtaking (another car) or sprinting. To
illustrate our tool in action, we present such an example from the domain of
sports analytics in Sect. 3 where we find all sprints of a soccer player.

2 Tool Description

The tool Montre essentially incorporates online and offline timed pattern
matching algorithms extended with some practical features such as anchors and
a Boolean layer. It takes a timed behavior and a timed regular expression as
inputs, and produces a finite set of two dimensional zones representing the (pos-
sibly uncountable) set of segments that watch the pattern. Montre provides a
standard text-based interface for easy integration with other tasks such as data
preparations and visualization as we consider them necessary but outside the
scope of Montre. In Fig. 1, we illustrate the work flow and extent of Montre,
and we give details for each component in the following.

Timed Behaviors. A timed behavior is a sequence of time segments where
each segment has a duration value and is associated with a set of propositional
variables that hold continuously in the segment. In general, we assume all propo-
sitions are concurrent. For example, (3, pq); (2, q); (2, p) is a timed behavior with
3 segments over propositions p and q. It means that p and q evaluate to true for
the first 3 time units, then q is true for 2 more time units, and then p is true for
2 time units again. We assume behaviors start at time 0; therefore, the example
behavior can be alternatively stated such that p holds from 0 to 3 and then 5 to
7 while q holds from 0 to 5.
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Table 1. Montre timed regular expression syntax

Timed Regular Expressions. An atomic timed regular expression corre-
sponds to a Boolean expression over a set of propositions, denoted by letters
p, q, r. These propositions can stand for predicates over real-valued variables.
Usual Boolean operators (!), (||), (&&) are used to build Boolean expressions.
We say that an atomic expression occurs on a time period (t, t′) if the correspond-
ing Boolean expression holds from t to t′ continuously. Complex timed regular
expressions are built from other expressions by using tre operators: sequential
composition (concatenation) (;), time restriction (%), choice (|), coincidence (&)
and zero-or-more repetition (*). Further, we add one-or-more repetition (+) and
two anchoring (<: and :>) operators to the set of operators. Typically parenthe-
ses are used to group expressions. We summarize all Boolean and tre operations
in Montre in Table 1.

Zones. For a proposition p that holds from t1 to t2, all sub-periods of (t1, t2)
satisfy the expression p. As shown in Fig. 2-(i), such a set of matches {(t, t′) | t1 ≤
t < t′ ≤ t2} can be represented on a two-dimensional plane as a triangular zone.
Then the match set of any atomic expression would be a union of such triangular
zones. A triangular zone is a special case of zones, which constitutes a restricted
class of convex polygons defined by orthogonal and diagonal constraints as shown
Fig. 2-(ii). Zones are basic data objects for timed pattern matching as unions of
zones are closed under Boolean and regular operations. It follows that the match
set of any timed regular expression over a timed behavior can be representable
by a finite union of zones.
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Fig. 2. (i) A triangular zone. (ii) A zone in general.

Implementation. Montre is a command line program1 that uses structured
text files for input/output specification. When invoked Montre parses the timed
regular expression passed as an argument and starts to reads the input file.
According to flags set by the user Montre would run in either online or offline
mode. For online mode it is possible that the input can be given interactively
using the command line or directed from another process as usual. At its core,
Montre contains our efficient zone manipulation library, libmontre, called
dynamically by top-level online and offline timed pattern matching algorithms.
As Boolean and regular operations over sets of zones are intensive numerical
computations, we have implemented libmontre in C++. In the implementation,
we use an integer-valued time model where all time values are represented by
integers for efficiency and accuracy reasons. For the majority of applications,
integers give us sufficient precision and range; and a proper scaling can be found.

We implement timed pattern matching algorithms in Pure2, a functional pro-
gramming language based on term rewriting with a support for native code com-
pilation and native calls to dynamic libraries. For the online algorithm [15], built
upon derivatives of regular expressions [12,13], we extensively use the rewriting
functionality when deriving an expression with respect to a newly observed seg-
ment. The offline algorithm [14] is a recursive computation over the syntax tree
of the expression; therefore, the role of Pure’s rewriting engine is minimal. The
worst case complexity is polynomial in the size of input behavior and expression
for the offline approach. For the online approach it is polynomial in the size of
the behavior and exponential in expression. In practice, however, we realisti-
cally assume patterns to be much shorter than behaviors and somewhat sparse
in them. Then we expect a linear-time performance in the size of input behav-
ior for both algorithms. Under these assumptions, Montre can process timed
behaviors with a size of 1M segments in a few seconds (offline) and a few hundred
seconds (online).

1 Available at http://github.com/doganulus/montre.
2 Available at http://purelang.bitbucket.io.

http://github.com/doganulus/montre
http://purelang.bitbucket.io
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3 An Illustrative Example

We present an example use of Montre on a data set obtained by tracking positions
of players in a real soccer match. In this example, we find all sprints performed by
a single player where a sprint is formally specified by a timed regular expression
over speed and acceleration behaviors. The data are obtained by a computer
vision algorithm with a frame rate of 10 Hz so we have a xy-coordinate for each
player on the field at every 100 milliseconds. Therefore we use milliseconds as
our base time unit for behaviors and expressions.

In order to specify a pattern for sprints, we need to address two issues in order:
(1) how to categorize continuous speed and acceleration axes, and (2) which
composition of these categories defines a sprinting effort best. Clearly, there
are no universal answers for these questions so we rely on the study [6] in the
following. First, we partition speed and acceleration axes into four categories
(near-zero, low, medium, and high), and we associate a letter for each category
in Table 2. For example, a period of medium speed, denoted by r, means the
speed value resides between 3.7 and 6 m/s during the period.

Often a sprint effort is characterized by any movement above a certain speed
threshold for a limited time. This gives us our first sprint pattern such that
a period of high speed between 1–10 s, formally written as follows:

(<:s:>)%(1000,10000) (P1)

Above we use anchor operators from both sides on the proposition s to obtain
only maximal periods that satisfy s; otherwise, any sub-period satisfies the pat-
tern as well. The operator % specifies that the duration is restricted to be in 1000
and 10000 milliseconds. Alternatively we may want to find other efforts starting
with high acceleration but not reaching top speeds necessarily. This gives us our
second sprint pattern such that a period of high acceleration followed by a period
of medium or high speed between 1–10 s, formally written as follows:

(<:g);(<:(r||s):>)%(1000,10000) (P2)

Notice that we do not use the right-anchor on g. This allows a medium or
high speed period to overlap with a high acceleration period as it is usually
the case that they are concurrent. Writing an equivalent pattern using classical

Table 2. Speed and acceleration thresholds [6].
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Fig. 3. The trajectory of a soccer player for 45 min on the field, and his sprinting
periods found by Montre for patterns P1-P3.

regular expressions over a product alphabet would be a very tedious task partly
due to a requirement to handle such interleavings explicitly (and the lack of
timing constraints). For TREs all propositions are considered to be concurrent
by definition, which results in concise and intuitive expressions. Finally we give
a third pattern to find rather short but intense sprints such that

(<:(f||g));((<:s:>)%(1000,2000)) (P3)

Then we visualize all sprints found by Montre for patterns P1-P3 in Fig. 3 over
the behavior of a single player during one half of the game (45 min.) containing
27 K data points that reduces to timed behaviors of 5K segments after pre-
processing. Note that we used Python to prepare data and visualize results.

4 Conclusions

Timed regular expressions can define many timed properties and Montre is the
first tool to check such properties and detect timed patterns. Its performance is
satisfactory for such monitoring tasks but we note that there is still some room
for optimization especially for the online algorithm. The example we presented
illustrates a complete Montre experience from raw data to visualization. As
seen defining good patterns and categories are important to achieve intended
results but it is not always obvious what a good pattern is. Such patterns should
be found in the future using (unsupervised) pattern mining methods. We believe
Montre would provide a good starting point for such research as it encapsulates
timed pattern matching with an easy-to-use interface.
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Abstract. We show how the requirements of the SENT communication
protocol between a magnetic sensor and an electronic control unit (ECU)
can be monitored in real time, with a monitor capable of processing 70
million samples per second. We elaborate on a complete flow from for-
malizing electrical and timing requirements using Signal Temporal Logic
(STL) and Timed Regular Expressions (TRE), to implementing run-
time monitors in FPGA hardware and evaluating the results in the lab.
For a class of asynchronous serial protocols, we define a procedure to
obtain monitors that are capable to recover after violations. We elabo-
rate on two different approaches to monitor the requirements of interest:
(i) temporal testers with SystemC, STL and High-Level Synthesis; (ii)
automata-based approach with TRE in HDL. We also present how the
results of the monitoring can be used for error logging to provide users
with extensive debugging information. Our approach allows to monitor
requirements-specification conformance in real time for long-term tests.

Keywords: Case study · Verification in industrial practice · Runtime
verification · Lightweight formal methods

1 Introduction

Strict safety standards (e.g. ISO 26262 [1]) force manufacturers in the automotive
industry to develop new system-verification methods. Formal verification [2] and
model-based design [3], although in principle capable of providing a formal proof
of a system correctness, have limitations when applied to real-world industrial
problems due to the complexity of the associated systems.

The verification and validation (V & V) phase in automotive electronic devel-
opment comprises extensive product testing under different scenarios, including
stress conditions. Runtime verification [4,5], a light-weight verification technique,
treats the system under investigation as a black-box, and reports system’s con-
formance to formal requirements in a current run. Since runtime verification can
c© Springer International Publishing AG 2017
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be applied non-intrusively to existing systems, it fits in the current V & V set-
ting very well, allowing a rigorous treatment and a traceability of requirements,
and enabling automated observation of specification compliance via monitoring.

In this case-study paper we report on the runtime verification of electrical
and timing requirements of the Single Edge Nibble Transmission (SENT [6])
protocol. The SENT is mainly used in automotive applications, for instance, in
an electronic power steering (EPS), or an electronic braking system (EBS). In
these applications sensors transfer data about rotation of a steering wheel or
position of a braking pedal, respectively; hence ensuring the correct information
transfer and runtime error detection is of utter importance.

The current industry practice relies on hard-crafted checkers, that lack diag-
nostics information and do not runtime-check the signals on the electrical level.
Existing tools for offline trace verification (e.g. the AMT [7]) are not directly
applicable in this context, due to the excessive size of the resulting traces: e.g.
if one records an analog signal, sampled at 70 MHz, for an hour of runtime in
an array of 16-bit integers, the trace will result in 504 Gb of data. Moreover, it
is also often the case that a long-term test takes several days of real-time exe-
cution. In order to be able to speed up the checking process and to produce the
monitoring results during the execution of the system, we translate high-level
specifications into monitors implemented in FPGA and run them in parallel with
the system under investigation. We propose an approach that allows to observe
the monitoring results in real time, track requirements to implementation, and
report violation and debugging information for the higher level analysis.

The contributions of this paper can be summarized as follows:

1. We propose a framework for generating monitors with recovery from a class
of high-level specifications;

2. We formalize the electrical and timing requirements of the SENT protocol in
STL and TRE specifications;

3. We evaluate our framework on the SENT case study, demonstrating the syn-
ergy between formal methods and industrial practice in a real-world setting.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work, and Sect. 3 provides the preliminaries. Section 4 presents formalization of
requirements in two formalisms, the necessary initial step for creating monitors.
Section 5 elaborates on runtime monitoring with recovery of asynchronous serial
protocols. Section 6 presents in depth the case study and experimental results.
Section 7 offers our concluding remarks and directions for future work.

2 Related Work

Runtime verification of formally defined properties is an extremely diverse
research area in terms of requirements-specification languages [8–14], approaches
to construct the monitors [15–18], and target applications [19–24].

The FoC framework of IBM [8,25] allows to generate monitors for Property
Specification Language (PSL) assertions. Although PSL allows to specify the
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evolution of a system, the formal semantics is based on the sequence of states
and does not include a notion of time explicitly. STL [26] and TRE [27], on the
other hand, were designed to deal with real time, and allow to precisely identify
time intervals of interest and bound temporal modalities to these intervals.

As far as hardware implementation is concerned, Schumann et al. [16] pro-
pose an FPGA implementation of runtime monitors for the UAV applications.
The authors construct FPGA monitors for security requirements and specify
possible attacks that a UAV might undergo. A Bayesian network on top of Met-
ric Temporal Logic (MTL) monitoring allows to estimate system health. The
authors do not take into account neither the recovery of monitors after viola-
tions nor the electrical characteristics of signals, and define their properties on a
higher level of abstraction. On the contrary, in our work we focus on formalizing
the electrical and timing requirements of a sequential protocol, with a special
emphasis on monitor recovery after capturing specification violations.

In a similar context we refer to the work of Reinbacher et al. [28]. The authors
present a framework for monitoring past-time Metric Temporal Logic (MTL)
specifications. In order to achieve the reconfigurability of the system, they intro-
duce an over-complex hardware architecture. In our case, we specifically target
asynchronous serial protocols, for which we find the TRE formalization with
simpler, automaton-based architecture more appropriate.

UPPAAL [29,30] is a well established tool for the verification of real-time sys-
tems which can be modeled with timed automata. This tool provides a descrip-
tion language for modelling, a simulator, and a model checker. In contrast, our
goal is to create a standalone monitor in order to verify a discrete time system
during runtime. Our monitors are ignorant of the model of the system. In addi-
tion, since we are using a formally proven translation from TREs to automata,
our monitors are correct by construction.

We are aware of several case studies on monitoring temporal logic specifica-
tions - the automotive bus standard [31], the DDR2 memory interface [19], typ-
ical automotive functional requirements [32]. All of these works focus on offline
monitoring and continuous-time semantics, which covers STL and does not con-
sider specifications based on regular expressions, and omit monitor recovery
aspects after capturing a violation. Although the authors in [33] runtime-verify
a subset of requirements of the PSI5, the protocol uses different encoding scheme
then the SENT; their emphasis is on how to apply runtime verification, and they
by and large avoid technical details. In contrast, we compare two formalisms and
implementations, to increase integration readiness level for the monitor itself and
eliminate the “single source of truth” aspect from the monitoring system.

In [12] the authors also use TREs with events to evaluate the performance of
a controller and sensor implementation. Orthogonally to our work, they define
measurement specifications over timed patterns.

3 Preliminaries

This section presents the specification languages that we use in this work to
state the requirements in a formal way.
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3.1 Signal Temporal Logic

Signal Temporal Logic [10] allows specification of properties defined over analog-
mixed signals. As the goal of the case study is to produce runtime monitors
in digital hardware (FPGA), the monitors operate on a finite representation
of originally real-valued signals (ADC is used for quantization and sampling
of continuously evolving voltage). For this purpose we interpret STL over dis-
crete time and finite-valued domain. Let w be a multi-dimensional signal of a
finite length, w : [0, d] �→ Pn ∪ Xm, where d ∈ N is a duration of the signal;
Pn = {p1, · · · , pn} and Xm = {x1, · · · , xm} are boolean (digital) and finite-
domain (analog) variables respectively. Analog variables Xm are interpreted over
a domain D = [0, γ] ⊆ N, where γ = 2r − 1, r ∈ N is defined by a resolution of
an ADC. The projection of the signal w to a component e ∈ P ∪ X is denoted
by πe(w). The syntax of an STL formula ϕ with past and future operators is
defined by the following grammar [34]:

ϕ := p |x ∼ c | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1 U Iϕ2 |ϕ1 S Iϕ2,

where p ∈ P , x ∈ X, c ∈ D, ∼ ∈ {<,≤}, I is a time interval [a, b], where a, b ∈ N

and 0 ≤ a ≤ b. For intervals of the type [a, a] we use a notation {a}. We derive
logical and temporal operators from the definition in a standard way: 
 = ϕ∨¬ϕ;
⊥ = ¬
; eventually ; once ; next ;
previous ; always ; historically .
We introduce two useful macros in our notation, which capture the change in
evaluation of a boolean component of w: for p ∈ P , and

.
The semantics of an STL formula is defined as follows:

(w, i) |= p ↔ πp(w)[i] = 

(w, i) |= x ∼ c ↔ πx(w)[i] ∼ c
(w, i) |= ¬ϕ ↔ (w, i) |= ϕ
(w, i) |= ϕ1 ∨ ϕ2 ↔ (w, i) |= ϕ1 or (w, i) |= ϕ2

(w, i) |= ϕ1 U Iϕ2 ↔ ∃j ∈ (i + I) ∩ T : (w, j) |= ϕ2

and ∀k : i < k < j, (w, k) |= ϕ1

(w, i) |= ϕ1 S Iϕ2 ↔ ∃j ∈ (i − I) ∩ T : (w, j) |= ϕ2

and ∀k : j < k < i, (w, k) |= ϕ1

The standard semantics of the future operators, i.e. is
defined s.t., the satisfaction of the formulae at the time step i depends on events
that happen in the future, namely at (i + I) ∩ T, which makes monitoring of
these specifications acausal. To overcome such limitation, our hardware monitors
comprise only past-temporal operators, and we use a procedure from [35] to
convert a formula with future operators to an equi-satisfiable past one.

3.2 Timed Regular Expressions

Timed regular expressions (TRE) [27] allow to pattern-match a specification over
a signal. As the authors in [12] mentioned, the fundamental difference between
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STL and TREs comes from a fact that the satisfaction of an STL formula is
computed for a time point, while the match of a TRE results in a time interval.
In this work we adapt the definition of TREs from [12] with an assumption of
interpreting TREs over discrete time. We reuse definitions of a signal and its
projection from the Sect. 3.1. To adhere to the definition from [12] and to allow
negation in TREs, we make the following assumption: for every boolean variable
pj ∈ Pn we admit a definition of a complementary variable p¬

j with an opposite
value of pj (to which we refer as ¬pj). Every analog variable xj ∈ Xm is allowed
to be used in TREs only in the form of xj ∼ c, where ∼ ∈ {< . ≤} and c ∈ D.
With every xj ∼ c we associate the boolean satisfaction variable pxj∼c; we then
analogously define p¬

xj∼c and refer to it as ¬(xj ∼ c).
A timed regular expression ψ is defined according to the following syntax [12]:

ψ := ε | q | ψ1 · ψ2 | ψ1 ∪ ψ2 | ψ1 ∩ ψ2 | ψ∗ | 〈ψ〉I

where q is of the form p, ¬p, x ∼ c or ¬(x ∼ c); I is a time interval [a, b] ⊆ N.
For improved readability, we will refer to discrete time instance i · T , where

T is discrete time step, simply as i. The semantics of timed regular expression
ϕ with respect to discrete signal w and time instances i ≤ i′ is given in terms of
satisfaction relation (w, i, i′) |= ϕ:

(w, i, i′) |= ε ↔ i = i′

(w, i, i′) |= q ↔ i ≤ i′ and ∀i′′ s.t. i ≤ i′′ < i′, πp(w)[i′′] = 1
(w, i, i′) |= ϕ1 · ϕ2 ↔ ∃i′′ s.t. i ≤ i′′ < i′, (w, i, i′′) |= ϕ1 and (w, i′′, i′) |= ϕ2

(w, i, i′) |= ϕ1 ∪ ϕ2 ↔ (w, i, i′) |= ϕ1 or (w, i, i′) |= ϕ2

(w, i, i′) |= ϕ1 ∩ ϕ2 ↔ (w, i, i′) |= ϕ1 and (w, i, i′) |= ϕ2

(w, i, i′) |= ϕ∗ ↔ (w, i, i′) |= ε or (w, i, i′) |= ϕ · ϕ∗

(w, i, i′) |= 〈ϕ〉I ↔ i′ − i ∈ I and (w, i, i′) |= ϕ

We reuse the notation {a} for intervals of the form [a, a]. We intro-
duce the following macros for describing transitions of a boolean signal:
enter(p)= 〈¬p〉{1} · 〈p〉{1} and exit(p)= 〈p〉{1} · 〈¬p〉{1}. We also use a super-
script with a TRE to denote a number of concatenations of this TRE (e.g. if ψ
is a TRE, then ψ3 stands for ψ · ψ · ψ). Finally, we use ψ+ as syntactic sugar for
ψ · ψ∗.

4 Formalization of the SENT Protocol

In this section we introduce the communication protocol under study: the Single
Edge Nibble Transmission Protocol (SENT), and then formalize a subset of its
electrical and timing requirements.

4.1 Single Edge Nibble Transmission Protocol

The SENT protocol is an industry standard (SAE J2716 [6]) for transmitting
data between a sensor and a controller.
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PAUSE SYNC ST D1 D2 D3 RC1 RC2 ND1 CRC PAUSE SYNC

FramexFramex−1 Framex+1

Fig. 1. A SENT frame starts with a mandatory synchronisation pulse (SYNC), followed
by a status nibble (ST), data nibbles (D1, D2, D3), rolling counters (RC1, RC2), bit
inverse of D1 (ND1), cyclic redundancy check (CRC), and finishes with an optional
pause.

SENT communication is unidirectional from a sensor to a controller; the
information is partitioned into frames with the structure shown in Fig. 1. The
transmitted data is split in four-bit data chunks, so-called nibbles, which encode
the data in their length. Each nibble has the shape depicted in Fig. 2, where
the length of the ‘H’ region determines the transmitted value (from 0 to 15). In
the case study we build runtime monitors for magnetic sensors, which transfer
angular information encoded in the three data nibbles D1–D3.

The SAE J2716 standard admits several frame configurations (e.g. the num-
ber of data nibbles may vary). SENT devices are configured prior to operation,
and the configuration does not change on-the-fly; we take this into account and
also assume that the frame structure is static and cannot change at runtime.

To be able to correctly decode sensor data, a controller needs to receive a
signal that satisfies electrical and timing requirements of the SENT protocol. We
now state these requirements formally, both in STL and TRE and elaborate on
checking the frame correctness. Figure 2 shows a SENT nibble and graphically
depicts the requirements to be checked. Table 1 presents in natural language a
subset of electrical and timing requirements of the SENT protocol.

hi2
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ml2

ml1
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lo1
low

mid

high

0
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Tfall

Trise

Tlow

Thigh

Nstart NendF L R H

Fig. 2. SENT nibble pulse: a pulse starts (Nstart) with a falling edge f, followed by a
low region l, followed by a rising edge r, followed by a high region h.
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Table 1. Requirements in natural language

Electrical interface requirements

1 The fall time from V1 to V2 must be no longer than Tfall μs F

2 The rise time from V2 to V1 must be no longer than Trise μs R

3 The signal stabilization time below low threshold V1 or
above high threshold V2 must be at least Tstable μs

STlow,L SThigh

Transmission properties of synchronization & nibble pulses

4 The synchronization pulse shall have a nominal period of
56 clock ticks

SYNC

5 Five clock ticks of the synchronization pulse shall be driven
low

L

6 All remaining clock ticks of the calibration/synchronization
pulse shall be driven high

SYNC, Hsync

7 Five clock ticks of the nibble pulse shall be driven low L

8 All remaining clock ticks of the nibble pulse shall be
driven high

NIBBLE, Hnibble

9 The minimum pulse period of Properties of
Synchronization shall be 12 clock ticks

NIBBLE, Hnibble

10 The maximum pulse period of the nibble pulse shall be 27
clock ticks

NIBBLE, Hnibble

4.2 Formalization in STL

Electrical Interface Requirements specify the duration of the slopes, as well as
the minimum stable time of the SENT signal. The STL formulae (Eqs. 1–4)
capture the temporal order in which the signal should cross voltage regions from
Fig. 2. F and R (Eqs. 1, 2) are the formal representations of falling and rising time
requirements (Table 1, Req. 1, 2). The signal stabilization requirement (Table 1,
Req. 3) is mapped to two STL formulae (Eqs. 3, 4) that deal separately with both
thresholds. The STL formulae are written using past temporal operators: in this
type of formulation a consequent should have happened before an antecedent (i.e.
the form “whenever at a time step i ϕ holds, ψ should have held at (i− I)∩T”).

F = enter(low) → mid S [0,Tfall] exit(high) (1)

R = enter(high) → mid S [0,Trise] exit(low) (2)

STlow = exit(low) → �- [0,Tstable] low (3)

SThigh = exit(high) → �- [0,Tstable] high (4)

Transmission Properties of Synchronization and Nibble Pulses. The synchro-
nization and the nibble pulse requirements (Table 1, 4–6 and 7–10 respectively)
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describe the timing properties these pulses should adhere to. A synchronization
pulse has a pre-defined length and is considered as the start of a frame. The
shape of synchronization and nibble pulses is to be checked as well (see Fig. 2).

To verify the form of the synchronization, nibble, and pause pulses, we split
each pulse in regions f, l, r, h (see Fig. 2) and check temporal precedence of
the regions. The total length of the pulses and the length of the low region l are
given in “clock ticks” (Table 1, 4–5, 7, 9–10), which are generated by a sensor’s
internal clock. Let us denote δ = (Trise +Tfall), then the allowed durations of the
h region for the nibble pulse and synchronization pulse are [7tick − δ, 22tick − δ]
and (51tick − δ), respectively. Similarly, the length of the h region of the pause
pulse is within the following bounds: [7tick − δ, 122tick − δ].

Requirements for L and H regions can be written directly in past-STL:

L = exit(low) → �- [0,5ticks] low (5)

Hsync = exit(high) → high S {51tick−δ} enter(high) (6)

Hnibble = exit(high) → high S [7tick−δ, 22tick−δ] enter(high) (7)

Hpause = exit(high) → high S [7tick−δ, 122tick−δ] enter(high) (8)

The general way of capturing precedence relation in STL is by using the
bounded until operator U I . As the authors in [36] show, the hardware implemen-
tation of U I is not scalable w.r.t. operator time bounds. In order to overcome
this issue, we avoid using nested U I operators in the formulation, and refor-
mulate the properties. Each SYNC, NIBBLE, and PAUSE patterns of the SENT
protocol are the requirements F, L, R, and the corresponding H{sync|nibble|pause}
requirement put in a sequence. In order to attain efficient hardware implementa-
tion, we (i) re-state assertions from ϕ → ψ to ψ ∧ ϕ, to capture the events when
the corresponding requirement has been satisfied; (ii) we then define precedence
relation with following macro: .
This allows to use hardware-cheap bounded historically and bounded once

operators and significantly reduce hardware resources.
The requirement for NIBBLE is then defined as follows (STL formulae for SYNC

and PAUSE are constructed analogously):
NIBBLE = (F∧enter ( low ) ) be f o r e [t1,t2] (L∧exit ( low ) )

be f o r e [t3,t4] (R∧enter ( high ) ) be f o r e [t5,t6] (Hnibble∧exit ( high ) )

The top-level FRAME requirement captures precedence relation between SYNC,
NIBBLEs, and the PAUSE. The monitor construction is compositional: a frame
correctness is reported only when all the lower-level requirements for all the
frame components (SYNC, NIBBLEs, PAUSE) are met.

4.3 Formalization in TRE

Although it is possible to formulate TREs in an STL-like style and express
the same intent: e.g. the requirements F† and R† match falling and rising time
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intervals of the signal; using the syntax features of the TRE and composing the
requirements hierarchically allows to obtain a concise and clear formalization for
the requirements of interest. F and R regions (Eqs. 9, 10) are defined as follows:
F = 〈mid〉[0,Tfall]; F† = exit(high)· 〈mid〉[0,Tfall] · enter(low) (9)

R = 〈mid〉[0,Trise]; R† = exit(low)· 〈mid〉[0,Trise] · enter(high) (10)

The L TRE (Eq. 11) combines the requirements 3 and 5 from Table 1. The
H TRE (Eq. 12) will match when the requirement 3 is fulfilled. The two are the
necessary building blocks for checking the shape of pulses:

L = 〈low〉[Tstable,5tick] (11)

H = 〈high〉[Tstable,127]
(12)

We are now able to define the TRE for synchronization, nibble, and pause
pulses as a concatenation of regions, restricting the length of the pulses with
appropriate time bounds. The SYNC TRE (Eq. 13) will match only when the
requirements 1–6 (Table 1) are met. The sensor signal will match the NIBBLE
TRE (Eq. 14) if the requirements 1–3, 7–10 are fulfilled.

SYNC = 〈F · L · R · H〉{56tick} (13)

NIBBLE = 〈F · L · R · H〉[12tick,27tick] (14)

PAUSE = 〈F · L · R · H〉[12tick,127tick] (15)

The frame and protocol requirements in TRE are formulated as follows:

SENT FRAME = SYNC · NIBBLE8 · PAUSE (16)

SENT PROTOCOL = (SENT FRAME)+ (17)

5 Runtime Monitoring with Recovery

A runtime monitor typically partitions the execution traces in those that either
satisfy or violate system’s specification, possibly providing a quantitative metric
of satisfaction (violation). However, for data-driven applications, such as serial
protocols, test executions may last for hours and it is required to continue mon-
itoring even after detecting errors. Similarly to compilers, a monitor in such a
case must be able to recover after observing a violation, collect the encountered
errors, and report them to the user.

For a class of serial protocols, the asynchronous serial protocols (e.g.
SENT [6], RS-232 [37], DMX512 [38], etc.), we propose a procedure to construct
monitors with error recovery. To apply monitoring with recovery, the protocol
must fulfil the following requirement: the devices communicate over a single
line, where synchronization symbol, control and payload data, respectively, are
multiplexed in time. As control signals are absent, the devices rely on the syn-
chronization symbol to successfully capture the beginning of a useful portion of
a frame.



Runtime Monitoring with Recovery of the SENT Communication Protocol 345

By creating runtime monitors with recovery, we are able to: (i) Continue
monitoring after detecting violations; (ii) Collect the errors and report them
together with their violation type.

5.1 TRE Monitors with Recovery

In the case of asynchronous serial protocols, the devices communicate with
sequences that form certain patterns over time; the communication is cyclic,
where the data is split in subsequently following frames. These protocols admit
a natural formalization in TREs: A frame begins with a unique synchronization
pattern (START), followed by n PAYLOAD patterns, and ends with a STOP pattern.
The asynchronous serial protocol is then defined as a sequence of frames:

ASYNC_SERIAL_PROTOCOL = FRAME+, (18)

FRAME = START · PAYLOADn · STOP. (19)

The above expression exactly generalizes the TRE formalization of the SENT
protocol from Sect. 4.3. It is important to mention that the Kleene star (*)
operator should not be used in the specification of START, PAYLOAD and STOP in
TREs, as these patterns are finite sequences of symbols; we use the Kleene star
operator only at the top TRE (i.e. Eq. 18).

The sketch of construction procedure for a monitor with recovery is shown
in Fig. 3. For each of the START, PAYLOAD, and STOP patterns, we construct the
corresponding automata with discrete-time clocks Astart, Apayload, and Astop,
respectively. We also create an additional copy of Astart, called Arec, which
enables the runtime monitor to recover from an error. In this work we take
an optimistic approach, and use a weak interpretation of regular expression over
finite traces. In case when a trace ends and only a prefix of the regular expression
is matched, we decide to accept the input sequence. Therefore all the states in
Astart, Apayload, and Astop are accepting. The automaton-construction procedure
from a given TRE, is adopted from [27] to the discrete interpretation of time.
The state transitions are protected by a set C of symbolic transition guards C,
where C = {cstart1 , . . . , cstartm , c

payload
1 , . . . , c

payload
p , c

stop
1 , . . . , c

stop
q }.

For each ci ∈ C we associate a complementary transition ¬ci to the global
error state. The error state silently transitions to the starting state of the recovery
automaton Arec which consumes garbage symbols until a correct synchronization
symbol is observed. The correct START pattern is a necessary pre-requisite for
a monitor to analyze subsequent frames, and for the decoder to analyze the
transferred data: as long as the synchronization symbol of the next frame is not
received, the recovery automaton Arec goes back to the error state.

We introduce a diagnostic variable out, defined over a finite set of symbolic
values: {ok, ok start, ok payload1,...,N, ok frame, rec, err1,...,m}. The values
have the following meaning: ok: the trace has been correct so far; ok start: the
starting synchronization symbol has been matched; ok payloadi: the ith payload
symbol has been matched; ok frame: the frame has met all the requirements;
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Fig. 3. Monitoring an asynchronous serial protocol with recovery (For clarity of the
presentation, we keep ε-transitions in the Fig. 3; these transitions are removed in imple-
mentation though keeping the monitor deterministic.)

rec: the monitor is in the recovery state; erri: the specification is violated by
an error of type i.

We then transform Astart, Apayload, Astop and Arec to transducers A′
start,

A′
payload, A′

stop and A′
rec as follows: (i) For each transition in Ai, we output

ok value; (ii) For each transition leading to a sink state, we output appropriate
ok {start|payload|frame} value; (iii) For each transition guarded by ¬ci we
output erri; (iv) For each recovery automaton transition, except the synchro-
nization symbol matching transition, we associate rec value. The transition in
A′

rec which matches synchronization symbol outputs ok start (see Fig. 3). For
the top-level expression FRAME, we create the automaton Aframe by concatenating
the Astart, Apayload, and Astop with ε transitions. This way the user is capable to
receive the information about the number of frames that meet the specification,
as well as errors and their type.



Runtime Monitoring with Recovery of the SENT Communication Protocol 347

5.2 STL Monitors with Recovery

The STL monitors are transducers (temporal testers [18]) by construction and
are composed hierarchically to output the satisfaction signal of the top-level
requirement. The sketch of construction procedure for monitoring with recovery
is as follows: (i) we first formalize the START, PAYLOAD, and STOP patterns in STL;
(ii) we then change the semantic meaning of STL assertions from (1) ϕ → ψ to (2)
ϕ∧ψ: in the first formulation the transducer outputs ‘1’ even if the requirement
has never been checked, and ‘0’ when the requirement has been violated (e.g.
the f requirement from Sect. 4.2 is fulfilled even the line stays always at ‘1’);
the second case the transducer manifests with the signal the precise time stamp
when the requirement has been satisfied (i.e. outputting ‘1’ when the correct
falling edge occurred); (iii) for each requirement we identify a set of possible
violations and assign an error code erri to each violation type. Each violation
is guarded by an STL assertion ϕ ∧ ¬ψ ∧ vi, where vi identifies a violation type
(e.g. mid S [Tfall+1,∞) exit(high) is a vi clause to capture the violation of the
type “too slow falling time” for the STL assertion f from Sect. 4.2).

Finally we check the temporal precedence of the START, n PAYLOAD sequences
and the STOP pattern with the before[t1,t2] macro defined in Sect. 4.2. Using
temporal testers allows to monitor all the requirements in parallel, and extending
with violation clauses vi provides the necessary debugging information.

6 Runtime Monitoring of the SENT Protocol

This section describes building runtime monitors in FPGA and evaluating the
results in industrial environment. A general overview of the framework is followed
by implementation and evaluation details.

6.1 From Requirements to Hardware Monitors

Figure 4 summarizes the process of creating runtime monitors; the proposed
framework is not limited to the SENT, and can be applied for other protocols
as well.

Requirements Formalization. The initial step for creating runtime monitors is
to obtain formal representation of the system requirements. Formal semantics
allows to eliminate ambiguities in interpretations and precisely define what is
to be monitored. In order to evaluate the power of different formalisms, and
to eliminate “single source of truth” from the system we use STL and TRE as
specification languages. This phase results in a set of formulae (STL & TRE)
which describe natural-language requirements.

For STL requirements we admit an automated pre-processing step (see Fig. 4)
to obtain formulae that allow efficient hardware realization: on the parse tree
of the formula we (i) eliminate duplicate sub-trees (Simplification); (ii) apply a
recursive procedure from [35] to convert bounded future STL temporal opera-
tors to an equi-satisfiable past operators, resulting in a causal formula with the
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Fig. 4. Monitor generation

past temporal operators only (Pastification). The second step is achieved by (i)
calculating the temporal depth D of the formula; (ii) re-writing a formula with
past operators which results in postponing a monitoring verdict by D.

Offline Evaluation. In this phase we evaluate monitors offline on short trace
fragments, previously recorded from an oscilloscope or an ADC via the Chipscope
[39] in order to speed-up debugging and identify implementation bottlenecks.

The monitors for STL formulae are built compositionally from the formula
parse tree [18]. With each node of the STL parse tree, which represents either
a temporal or a logical operator, we associate a transducer T which takes as
inputs satisfaction signals of its child nodes and outputs the satisfaction signal
for the corresponding operator. The satisfaction signal of the root node produces
output of the monitor. Behavioral STL Lib SystemC (see Fig. 4) is a SystemC
implementation of STL transducers, which are used to obtain a monitor. We use
SystemC simulation kernel to run the monitor on the pre-recorded traces.

The runtime monitors for the TRE requirements are also implemented in
hierarchical fashion: the A′

sync, A′
nibble, and A′

stop transducers are combined in
the top-level recovery automaton described in Sect. 5.1. We use Vivado Behav-
ioural Simulation to evaluate VHDL code of the top-level A′

frame transducer.

Runtime Monitoring in FPGA is the final phase; the monitors are synthesized
in a digital reconfigurable hardware and evaluated in the lab environment. After
the off-line phase we obtain the validated monitors for STL and TRE, which
follow different paths of hardware implementation.



Runtime Monitoring with Recovery of the SENT Communication Protocol 349

In case of STL monitoring, we use High-Level Synthesis [40] to generate HDL
code for monitors written in SystemC. During the HLS step, the SystemC mon-
itors are transformed to an equivalent synthesizable VHDL or Verilog. We use
an alternative implementation of transducers (Synthesizable STL Lib SystemC,
Fig. 4), which is suitable for HDL code generation. Behavioral and Synthesizable
implementations are functionally equivalent, but HLS imposes constraints on the
SystemC code to be hardware-synthesizeable. Keeping behavioral and synthesiz-
able versions allows quick prototyping using all C++ features and then produce
a hardware-optimized synthesized version.

Since transducers A′
sync, A′

nibble, A′
stop, and A′

frame in the TRE approach are
implemented in VHDL, we directly use Vivado Synthesis, Logic & Power Opti-
mization, Place & Route tools to obtain a bitstream for FPGA programming.

6.2 FPGA Implementation

We implemented runtime monitors for the SENT protocol in Xilinx Virtex 7
FPGA. The monitors are embedded in the Line Emulizer hardware (see Fig. 5),
which combines an analog front-end (AFE) capable to interface various sensors
with a high-performance Virtex 7 FPGA. This hardware also models a trans-
mission line with adjustable parameters between a sensor and an ECU.

Signal Generator Amplifier

Transmission
Line Model

STL &
TRE

Runtime
Mon.

Line Emulizer R©

SENT

A
F
E

Sensor Line Emulizer R©OscilloscopeChipscope

Fig. 5. Runtime monitoring of the SENT: hardware setup

The signal from the SENT sensor (see Fig. 5) comes to the Line Emulizer,
where it is passed through the AFE and sampled with a high-speed ADC, which
results in its finite value representation. During operation in a car, a sensor and
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Fig. 6. Runtime TRE monitoring: Vivado functional simulation

an ECU are placed in different locations, hence the sensor signal is affected by
a transmission line. To take into account the effects of physical wires, the sensor
signal is passed through a digital model of a transmission line. We attach the
STL and TRE runtime monitors at the end of the transmission line model (see
Fig. 5), to be able to report specification conformance at the receiver side, which
is important for proper signal decoding.

The STL and TRE monitors observe at 70 MHz the sensor signal affected
by the physical line, calculate verdicts at every clock cycle (i.e. 70 million times
per second), and output the result to the user via the Chipscope (Fig. 5). We
performed experiments with different models of the line, and conclude that the
appropriate line parameters are critical for ensuring the specification compliance.
The sensor signal passed through a line with a higher capacitance violates the
specification, since the falling and rising times are not met, which can be directly
observed from the monitor.

Table 2 reports the estimated FPGA hardware resources (flip-flops, FF &
look-up tables, LUT), and the estimated maximum clock period of the runtime
monitors. For each HLS-generated monitor we also present its generation time
and peak memory usage during HDL-code generation. The monitors in HLS
are constructed in a hierarchic fashion, hence the FRAME monitor (see Table 2)
subsumes monitors for other requirements and results the highest hardware foot-
print. The last row of the Table 2 reports the total hardware resources consumed
by the top-level TRE monitor: the direct hardware implementation results in an
order of magnitude lower footprint.

Figure 6 shows a result of offline evaluation for TRE requirements. The origi-
nal SENT signal is observed by the monitor, which outputs OK NIBBLE, OK SYNC
and the corresponding ERR signals. The figure depicts a nominal case, where all
the requirements are met.
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Table 2. STL monitors generation: FPGA & HLS resources

Requirement FF LUT Clock HLS: time HLS: memory

F HLS 61 118 5.81 ns 114.203 s 225 MB

L 53 85 4.24 ns 96.490 s 159 MB

R 61 113 5.81 ns 109.784 s 224ṀB

Hnibble 125 249 5.81 ns 175.716 s 225 MB

Hsync 28 407 5.81 ns 253.507 s 224 MB

Hpause 73 98 4.24 ns 162.637 s 212 MB

NIBBLE 435 1123 7.7 ns 394.671 s 611 MB

SYNC 207 1062 7.7 ns 723.690 s 605 MB

PAUSE 217 710 7.7 ns 206.767 s 317 MB

FRAME 1198 4322 7.7 ns 1675.52 s 1.39 GB

FRAME TRE 68 350 4.5 ns - -

Fig. 7. Runtime monitoring of the STL requirements

Runtime monitoring of the SENT signal against STL requirements is shown
in the Fig. 7. For this test case the optional pause pulse was deactivated, hence
the correct frame is manifested after observing eight correct nibbles (signals
OK NIBBLE, OK SYNC, OK FRAME). The OK NIBBLE signal is asserted when the
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corresponding precedence between the requirements F, L, R, and H is met. The
output of the monitors F, L, R, and H, and the corresponding sub-formulae are
presented in the lower part of the Fig. 7.

7 Conclusion and Outlooks

The case study focuses on assessing STL and TRE for formalizing requirements
of the SENT protocol and obtaining hardware monitors for these requirements.
We evaluate the two approaches in terms of applicability for formalizing typical
protocol requirements, consumption of hardware resources, and monitor reuse.

The hardware resource consumption in Table 2 shows that (i) both
approaches can be easily mapped to state-of-the-art FPGAs, (ii) STL-based
monitors consume an order of magnitude more resources than the TRE moni-
tors. Obtaining hardware monitors based on STL Synthesizable-SystemC library
requires an intermediate transformation using HLS, which comes at price of
increased hardware footprint. As described in the paper, TREs can be directly
translated to automata with recovery which admit efficient hardware realization.

Besides low-level hardware monitoring, which both of the approaches facil-
itate, SystemC STL monitors can be re-used to check SystemC models. Trace
verification in this setting happens during the runtime of the simulation kernel
and the monitoring results are obtained at the end of the run. The re-usability
of HLS-based monitors though comes at price of FPGA resource consumption.

We found both formalisms applicable for the SENT requirements formaliza-
tion. TREs allow natural formulation of requirements that are concerned with
repetitive sequences of groups of symbols, while formalizing precedence con-
straints with STL requires in general additional effort to be hardware-efficient.

As it is often the case, specifications comprise both textual and graphical
information; we would like to investigate how to combine the information from
both representations in a systematic way.
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Abstract. We present a monitoring approach for verifying systems at
runtime. Our approach targets systems whose components communi-
cate with the monitors over unreliable channels, where messages can be
delayed or lost. In contrast to prior works, whose property specification
languages are limited to propositional temporal logics, our approach han-
dles an extension of the real-time logic MTL with freeze quantifiers for
reasoning about data values. We present its underlying theory based on
a new three-valued semantics that is well suited to soundly and com-
pletely reason online about event streams in the presence of message
delay or loss. We also evaluate our approach experimentally. Our proto-
type implementation processes hundreds of events per second in settings
where messages are received out of order.

1 Introduction

Verifying systems at runtime can be accomplished by instrumenting system com-
ponents so that they inform monitors about the actions they perform. The
monitors update their states according to the information received and check
whether the properties they are monitoring are fulfilled or violated. Various
runtime-verification approaches exist for different kind of systems and property
specification languages, see for example [2,5,8,11,18,19,22].

Many of these specifications languages are based on temporal logics or finite-
state machines, which describe the correct system behavior in terms of infinite
streams of system actions. However, at any point in time, a monitor has only
partial knowledge about the system’s behavior. In particular, a monitor can at
best only be aware of the previously performed actions, which correspond to
a finite prefix of the infinite action stream. When communication channels are
unreliable, a monitor’s knowledge about the previously performed actions may
even be incomplete since messages can be lost or delayed and thus received out
of order. Nevertheless, a monitor should output a verdict promptly when the
monitored property is fulfilled or violated. Moreover, the verdict should remain
correct when some of the monitor’s knowledge gaps are subsequently closed.

Many runtime-verification approaches rely on an extension of the standard
Boolean semantics of the linear-time temporal logic LTL with a third truth value,
c© Springer International Publishing AG 2017
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proposed by Bauer et al. [10]. Namely, a formula evaluates to the Boolean truth
value b on a finite stream of performed actions σ if the formula evaluates to b on
all infinite streams that extend σ; otherwise, the formula’s truth value is unknown
on σ. This semantics, however, only accounts for settings where monitors are
always aware of all previously performed actions. It is insufficient to reason
soundly and completely about system behavior at runtime when, for example,
unreliable channels are used to inform the monitors about the performed actions.

In this paper, we present an extension of the propositional real-time logic
MTL [1,17], which we name MTL↓. First, MTL↓ comprises a freeze quantifier [16]
for reasoning about data values in action streams. The freeze quantifier ↓ can be
seen as a restricted version of the first-order quantifiers ∃ and ∀. More concretely,
at a position of the action stream, the formula ↓x.ϕ uniquely binds a data value
of the action at that position to the logical variable x.

Second, we equip MTL↓ with a new three-value semantics that is well suited
for settings where system components communicate with the monitors over unre-
liable channels. Specifically, we define the semantics of MTL↓’s connectives over
the three truth values t, f, and ⊥. We interpret these truth values as in Kleene
logic and conservatively extend the logic’s standard Boolean semantics, where
t and f stand for “true” and “false” respectively, and the third truth value ⊥
stands for “unknown” and accounts for the monitor’s knowledge gaps. The mod-
els of MTL↓ are finite words where knowledge gaps are explicitly represented.
Intuitively, a finite word corresponds to a monitor’s knowledge about the sys-
tem behavior at a given time and the knowledge gaps may result from message
delays, losses, crashed components, and the like. Critically in our setting, rea-
soning is monotonic with respect to the partial order on truth values, where ⊥
is less than t and f, and t and f are incomparable. This monotonicity property
guarantees that closing knowledge gaps does not invalidate previously obtained
Boolean truth values.

Third, we present an online algorithm for verifying systems at runtime with
respect to MTL↓ specifications. Our algorithm is based on, and extends, the
algorithm for MTL by Basin et al. [6] to additionally handle the freeze quantifier.
The algorithm’s output is sound and complete for MTL↓’s three-valued semantics
and with respect to the monitor’s partial knowledge about the performed actions
at each point in time.

Our algorithm works roughly as follows. It receives messages from the system
components describing the actions they perform. As with the algorithm in [6],
no assumptions are made on the order in which messages are received. The algo-
rithm updates its state for each received message. This state comprises a graph
structure for reasoning about the system behavior, i.e., computing verdicts about
the monitored property’s fulfillment. The graph’s nodes store the truth values
of the subformulas at the different times for the data values to which quantified
variables are frozen. In each update, the algorithm propagates data values down
to the graph’s leaves and propagates Boolean truth values for subformulas up
along the graph’s edges. When a Boolean truth value is propagated to a root
node of the graph, the algorithm outputs a verdict.
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Our main contribution is a runtime-verification approach that makes no
assumptions about message delivery. It handles a significantly richer specification
language than previous approaches, namely, an extension of the real-time logic
MTL with a quantifier for reasoning about the data processed by the monitored
system. Furthermore, our approach guarantees sound and complete reasoning
with partial knowledge about system behavior. Finally, we experimentally evalu-
ate the performance of a prototype implementation of our approach, illuminating
its current capabilities, tradeoffs, and performance limitations.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
relevant notation and terminology. In Sect. 3, we extend MTL with the freeze
quantifier and give the logic’s semantics. In Sect. 4, we describe our monitoring
approach, including its algorithmic details. In Sect. 5, we report on our experi-
mental evaluation. Finally, in Sects. 6 and 7, we discuss related work and draw
conclusions. Details that have been omitted due to space restrictions can be
found in [7].

2 Preliminaries

In this section, we introduce relevant notation and terminology.

Intervals. An interval I is a nonempty subset of Q≥0 such that if a, b ∈ I
then c ∈ I, for any c ∈ Q≥0 with a ≤ c ≤ b. We use standard notation and
terminology for intervals. For example, (a, b] denotes the interval that is left-
open with bound a and right-closed with bound b. Note that an interval I with
cardinality |I| = 1 is a singleton {τ} = [τ, τ ], for some τ ∈ Q≥0. An interval I
is unbounded if its right bound is ∞, and bounded otherwise. Let I − J :=
{τ − τ ′ | τ ∈ I and τ ′ ∈ J} ∩ Q≥0.

Partial Functions. For a partial function f : A � B, let def(f) := {a ∈
A | f(a) is defined}. If def(f) = {a1, . . . , an}, for some n ∈ N, we also write
[a1 
→ f(a1), . . . , an 
→ f(an)] for f , when f ’s domain A and its codomain B are
irrelevant or clear from the context. Note that [ ] denotes the partial function
that is undefined everywhere. Furthermore, for partial functions f, g : A � B,
we write f Ď g if def(f) ⊆ def(g) and f(a) = g(a), for all a ∈ def(f). We write
f [a 
→ b] to denote the update of a partial function f : A � B at a ∈ A, i.e.,
f [a 
→ b] equals f , except that a is mapped to b if b ∈ B, and a ∈ def(f [a 
→ b])
if b /∈ B.

Truth Values. Let 3 be the set {t, f,⊥}, where t (true) and f (false) denote the
standard Boolean values, and ⊥ denotes the truth value “unknown.” Table 1
shows the truth tables of some standard logical operators over 3. Observe that
these operators coincide with their Boolean counterparts when restricted to the
set 2 := {t, f}. We partially order the elements in 3 by their knowledge: ⊥ ≺ t and
⊥ ≺ f, and t and f are incomparable as they carry the same amount of knowledge.
Note that (3,≺) is a lower semilattice where � denotes the meet. We remark that
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Table 1. Truth tables for three-valued logical operators (strong Kleene logic).

the operators in Table 1 are monotonic. This ensures that reasoning is monotonic
in knowledge. Intuitively, when closing a knowledge gap, represented by ⊥, with
t or f, we never obtain a truth value that disagrees with the previous one.

Timed Words. Let Σ be an alphabet. A timed word over Σ is an infinite word
(τ0, a0)(τ1, a1) . . . ∈ (Q≥0 ×Σ)ω, where the sequence of τis is strictly monotonic
and nonzeno, that is, τi < τi+1, for every i ∈ N, and for every t ∈ Q≥0, there is
some i ∈ N such that τi > t.

3 Metric Temporal Logic Extensions

In this section, we extend the propositional real-time logic MTL [1,17] with a
freeze quantifier [16]. The logic’s three-valued semantics conservatively extends
the standard Boolean semantics and accounts for knowledge gaps during moni-
toring.

3.1 Syntax

Let P be a finite set of predicate symbols, where ι(p) denotes the arity of p ∈ P .
Furthermore, let V be a set of variables and R a finite set of registers. The syntax
of the real-time logic MTL↓ is given by the grammar:

ϕ ::= t
∣
∣ p(x1, . . . , xι(p))

∣
∣ ↓rx. ϕ

∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ ϕ UI ϕ,

where p ∈ P , x, x1, x2 . . . , xι(p) ∈ V , r ∈ R, and I is an interval. For the sake
of brevity, we limit ourselves to the future fragment and omit the temporal
connective for “next.” A formula is closed if each variable occurrence is bound
by a freeze quantifier. A formula is temporal if the connective at the root of the
formula’s syntax tree is UI . We denote by Sub(ϕ) the set of ϕ’s subformulas.

We employ standard syntactic sugar. For example, ϕ → ψ abbreviates (¬ϕ)∨
ψ, and �I ϕ (“eventually”) and �I ϕ (“always”) abbreviate t UI ϕ and ¬ �I ¬ϕ,
respectively. The nonmetric variants of the temporal connectives are also easily
defined, e.g., � ϕ := �[0,∞) ϕ. Finally, we use standard conventions concerning
the connectives’ binding strength to omit parentheses. For example, ¬ binds
stronger than ∧, which binds stronger than ∨, and the connectives ¬, ∨, etc.
bind stronger than the temporal connectives, which bind stronger than the freeze
quantifier. To simplify notation, we omit the superscript r in formulas like ↓rx.ϕ
whenever r ∈ R is irrelevant or clear from the context.
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Example 1. Before defining the logic’s semantics, we provide some intuition.
The following formula formalizes the policy that whenever a customer executes
a transaction that exceeds some threshold (e.g. $2,000) then this customer must
not execute any other transaction for a certain period of time (e.g. 3 days).

� ↓cidc.↓tid t.↓suma. trans(c, t, a)∧a ≥ 2000 → �(0,3] ↓tid t′.↓suma′.¬trans(c, t′, a′)

We assume that the predicate symbol trans is interpreted as a singleton rela-
tion or the empty set at any point in time. For instance, the interpretation
{(Alice, 42, 99)} of trans at time τ describes the action of Alice executing a
transaction with identifier 42 with the amount $99 at time τ . When the inter-
pretation is the empty set, no transaction is executed. We further assume that
when the interpretation of the predicate symbol trans is nonempty, the registers
cid , tid , and sum store (a) the transaction’s customer, (b) the transaction iden-
tifier, and (c) the transferred amount, respectively. If the interpretation is the
empty set, the registers store a dummy value, representing undefinedness.

The variables c, t, a, t′, and a′ are frozen to the respective register values. For
example, c is frozen to the value stored in the register cid at each point in time
and is used to identify later transactions from this customer. Furthermore, note
that, e.g., the variables t and t′ are frozen to values stored in the registers tid at
different times. The freeze quantifier can be seen as a weak form of the standard
first-order quantifiers [16]. Since a register stores exactly one value at any time,
it is irrelevant whether we quantify existentially or universally over a register’s
value. ��

3.2 Semantics

MTL↓’s models under the three-valued semantics are finite words (see Defini-
tion 2 below). Such a model represents a monitor’s partial knowledge about the
system behavior at a given point in time. This is in contrast to the models for
the standard Boolean semantics for MTL, which are infinite timed words and
capture the complete system behavior in the limit.

Definition 2. Let D be the data domain, a nonempty set of values with ⊥ ∈ D.
Observations are finite words with letters of the form (I, σ, �), where I is an

interval, σ : P � 2 ι∈N
Dι

, and � : R � D. We define observations inductively.

– The word
(

[0,∞), [ ], [ ]
)

of length 1 is an observation.
– If w is an observation, then the word obtained by applying one of the following

transformations to w is an observation.
(T1) Some letter (I, σ, �) of w, where |I| > 1, is replaced by the three-letter

word
(

I ∩ [0, τ), σ, �
)({τ}, σ, �

)(

I ∩ (τ,∞), σ, �
)

, where τ ∈ I and τ > 0.
If τ = 0, then (I, σ, �) is replaced by

({τ}, σ, �
)(

I ∩ (τ,∞), σ, �
)

.
(T2) Some letter (I, σ, �) of w, where |I| > 1 and I is bounded, is removed.
(T3) Some letter (I, σ, �) of w, where |I| = 1, is replaced by (I, σ′, �′), where

σ Ď σ′ and � Ď �′, and σ = σ′ or � = �′.
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For an observation w of length n ∈ N, let pos(w) := {0, . . . , n − 1}. We call
i ∈ pos(w) a time point in w if the interval Ii of the letter at position i in w is
a singleton. In this case, the element of Ii is the timestamp of the time point i.
We note that for any letter (I, σ, �) of an observation, if |I| > 1 then σ = � = [ ].

Example 3. A monitor’s initial knowledge is represented by the observation
w0 =

(

[0,∞), [ ], [ ]
)

. Suppose a transaction of $99 with identifier 42 from Alice is
executed at time 3.0. The monitor’s initial knowledge w0 is then updated by (T1)
and (T3) to w1 =

(

[0, 3.0), [ ], [ ]
)({3.0}, σ, �

)(

(3.0,∞), [ ], [ ]
)

, where σ(trans) =
{(Alice, 42, 99)} and � = [cid 
→ Alice, tid 
→ 42, sum 
→ 99]. If the monitor also
receives the information that no action has occurred in the interval [0, 3.0), then
its updated knowledge is represented by

({3.0}, σ, �
)(

(3.0,∞), [ ], [ ]
)

, obtained
from w1 by (T2). The information that no action has occurred in an interval
can be communicated explicitly or implicitly by the monitored system to the
monitor, for instance, by attaching a sequence number to each action. See [6]
for details. Finally, note that the interval of the last letter of any observation
is always unbounded. This reflects that a monitor is unaware of what it will
observe in the future. ��
Definition 4. The observation w′ refines the observation w, written w Ă1 w′,
iff w′ is obtained from w by one of the transformations (T1), (T2), or (T3). The
reflexive-transitive closure of Ă1 is Ď.

MTL↓’s three-valued semantics is defined by a function ϕ 
→ �w, i, ν |≈ ϕ� ∈ 3,
for a given observation w, time point i ∈ N, and partial valuation ν : V � D. We
define this function inductively over the formula structure. For a predicate sym-
bol p ∈ P , we write in the following p(x̄) instead of p(x1, . . . , xι(p)). Furthermore,
we abuse notation by abbreviating, e.g., ν(x1), . . . , ν(xn) as ν(x̄), for a partial val-
uation ν : V � D and variables x1, . . . , xn. Also, the notation x̄ ∈ def(ν) means
that x ∈ def(ν), for each x occurring in x̄. Finally, we identify the logic’s constant
symbol t with the Boolean value t ∈ 3, and the connectives ¬ and ∨ with the
corresponding three-valued logical operators in Table 1.

�w, i, ν |≈ t� := t

�w, i, ν |≈ p(x̄)� :=

⎧

⎨

⎩

t if x̄ ∈ def(ν), p ∈ def(σi), and ν(x̄) ∈ σi(p)
f if x̄ ∈ def(ν), p ∈ def(σi), and ν(x̄) ∈ σi(p)
⊥ otherwise

�w, i, ν |≈ ↓rx. ϕ� := �w, i, ν[x 
→ �i(r)] |≈ ϕ�

�w, i, ν |≈ ¬ϕ� := ¬�w, i, ν |≈ ϕ�

�w, i, ν |≈ ϕ ∨ ψ� := �w, i, ν |≈ ϕ� ∨ �w, i, ν |≈ ψ�

�w, i, ν |≈ ϕ UI ψ� :=
∨

j∈pos(w),j≥i

(

tpw(j) ∧ tcw,I(j, i) ∧ �w, j, ν |≈ ψ�∧
∧

i≤k<j

(

tpw(k) → �w, k, ν |≈ ϕ�
))
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The auxiliary functions tpw : pos(w) → 3 and tcw,I : pos(w) × pos(w) → 3, are
defined as follows, where Ik denotes the interval at position k ∈ pos(w) in w.

tpw(j) :=

{

t if j is a time point in w

⊥ otherwise

tcw,I(i, j) :=

⎧

⎪⎨

⎪⎩

t if τ − τ ′ ∈ I, for all τ ∈ Ii and τ ′ ∈ Ij

f if τ − τ ′ /∈ I, for all τ ∈ Ii and τ ′ ∈ Ij

⊥ otherwise

We comment on the semantics of ϕ UI ψ. The auxiliary functions account
for the positions in w that are not time points. For example, at position i, for a
position j ≤ i to be a “valid anchor” for the formula, j must be a time point (in
this case tpw(j) = t). Otherwise, the truth value ⊥ is used to express that it is not
yet known whether the interval at position j in w will contain a time point. Note
that using the truth value f would be incorrect since a refinement of w might
contain a time point with a timestamp in Ij . Furthermore, tcw,I(i, j) is used
to account for the metric constraint of the temporal connective. In particular,
tcw,I(i, j) is ⊥ if it is unknown in w whether the formula’s metric constraint
is always satisfied or never satisfied for the positions i and j. Finally, suppose
that ϕ’s truth value is f at a position k between j and i. If the interval Ik at
position k is not a singleton, the function tpw(k) “downgrades” this value to ⊥,
since it will be irrelevant in refinements of w that do not contain any time points
with timestamps in Ik.

Note that it may be the case that �w, i, ν |≈ ϕ� ∈ 2when i is not a time point in
w (i.e., Ii is not a singleton). A trivial example is when ϕ = t. In a refinement of w,
it might turn out that there are no time points with timestamps in Ii, and hence
a monitor should not output a verdict for the specification ϕ at position i in w.
We address this artifact by downgrading (with respect to the partial order ≺) a
Boolean truth value �w, i, ν |≈ ϕ� to ⊥ when i is not a time point. To this end, we
introduce the following variant of the semantics.

Definition 5. For a formula ϕ, an observation w, τ ∈ Q≥0, and ν a partial val-
uation, we define [w, τ, ν |≈ ϕ] := �w, i, ν |≈ ϕ�, provided that τ is the timestamp
of some time point i ∈ pos(w) in w, and [w, τ, ν |≈ ϕ] := ⊥, otherwise.

3.3 Properties

The following theorem states that MTL↓’s three-valued semantics is monotonic
in Ď (on observations and partial valuations) and � (on truth values). This
property is crucial for monitoring since it guarantees that a verdict output for
an observation stays valid for refined observations.

Theorem 6. Let ϕ be a formula, μ and ν partial valuations, u and v observa-
tions, and τ ∈ Q≥0. If u Ď v and μ Ď ν then [u, τ, μ |≈ ϕ] � [v, τ, ν |≈ ϕ].
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A similar theorem shows that MTL↓’s three-valued semantics conservatively
extends the standard Boolean semantics (see [7] for details). Intuitively speaking,
if a formula ϕ evaluates to a Boolean value for an observation at time τ ∈ Q≥0,
then ϕ has the same Boolean value at time τ for any timed word1 that refines
the observation. Formally, a timed word w′ refines an observation w, w Ď w′ for
short, if for every j ∈ N, there is some i ∈ pos(w), such that τj ∈ Ii, σi Ď σ′

j ,
and �i Ď �′j , where (I�, σ�, ��) and (τk, σ′

k, �′k), for 
 ∈ pos(w) and k ∈ N, are the
letters of w and w′, respectively.

We investigate next the decision problem that underlies monitoring.

Theorem 7. For an arbitrary formula ϕ, observation w, partial valuation ν,
time τ ∈ Q≥0, and truth value b ∈ 2, the question of whether [w, τ, ν |≈ ϕ]
equals b is PSPACE-complete.

In a propositional setting, the corresponding decision problem can be solved
in polynomial time using dynamic programming, where the truth values at the
positions of an observation are propagated up the formula structure. Note that
the truth value of a proposition at a position is given by the observation’s letter
at that position. This is in contrast to MTL↓, where atomic formulas can have
free variables and their truth values at the positions in an observation w may
depend on the data values stored in the registers and frozen to these variables at
different time points of w. Before truth values are propagated up, the bindings
of variables to data values must be propagated down.

4 Monitoring Algorithm

In this section, we present an online algorithm that computes verdicts for MTL↓

specifications. To support scalable monitoring, the computation is incremental in
that, when refining an observation according to the transformations (T1)–(T3),
the results from previous computations are reused, including the propagated
data values and Boolean values. We also define correctness requirements for
monitoring and establish the algorithm’s correctness.

4.1 Correctness Requirements

We define when a sequence of observations is valid for representing a monitor’s
knowledge over time. We assume that the monitor receives in the limit infi-
nitely many messages containing information about the system behavior. This
assumption is invalid if the system ever terminates. Nevertheless, we make this
assumption to simplify matters and it is easy to adapt the definitions and results
to the general case.

Definition 8. The infinite sequence w̄ = (wi)i∈N of observations is valid if
w0 = ([0,∞), [ ], [ ]) and wi Ĺ wi+1, for all i ∈ N.
1 We assume here that the timed words are over the alphabet Σ that consists of the

pairs (σ, �), where (i) σ is a total function over P with σ(p) ⊆ Dι(p) for p ∈ P , and
(ii) � is a total function over R with �(r) ∈ D for r ∈ R.
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Let M be a monitor and w̄ a valid sequence of observations. In the following,
we view wi as the input to M at iteration i. For the input wi, M outputs a set
of verdicts, which is a finite set of pairs (τ, b) with τ ∈ Q≥0 and b ∈ 2. We denote
this set by M(wi). Note that in practice, M would receive at iteration i > 0 a
message that describes just the differences between wi−1 and wi. Furthermore,
the wis can be understood as abstract descriptions of M ’s states over time,
representing M ’s knowledge about the system behavior, where w0 represents
M ’s initial knowledge. Also note that if the timed word v is the system behavior
in the limit, then wi Ď v, for all i ∈ N, assuming that components do not
send bogus messages. However, for every i ∈ N, there are infinitely many timed
words u with wi Ď u. Since messages sent to the monitor can be lost, it can even
be the case that there are timed words u with u = v and wi Ď u, for all i ∈ N.

Definition 9. Let M be a monitor, ϕ a formula, and w̄ a valid observation
sequence.

– M is observationally sound for w̄ and ϕ if for all partial valuations ν and
i ∈ N, if (τ, b) ∈ M(wi) then [wi, τ, ν |≈ ϕ] = b.

– M is observationally complete for w̄ and ϕ if for all partial valuations ν,
i ∈ N, and τ ∈ Q≥0, if [wi, τ, ν |≈ ϕ] ∈ 2 then (τ, b) ∈ ⋃

j≤i M(wj), for some
b ∈ 2.

We say that M is observationally sound if M is observational sound for all valid
observation sequences and formulas ϕ. The definition of M being observationally
complete is analogous.

It follows from Theorem 7 that there exist monitors for MTL↓ that are both
observationally sound and complete. This is in contrast to correctness require-
ments that demand that a monitor outputs a verdict as soon as the specification
has the same Boolean value on every extension of the monitor’s current knowl-
edge. It is easy to see that, for a given specification language, such monitoring
is at least as hard as checking satisfiability for the language. The propositional
fragment of MTL↓ is already undecidable [21]. Thus monitors satisfying such
strong requirements do not exist for MTL↓. For LTL, such stronger requirements
are standardly formalized using a three-valued “runtime-verification” semantics,
as introduced by Bauer et al. [11], and adopted by other runtime-verification
approaches, e.g. [9]. We refer to [7, Appendix A.2] for a formal definition of
these requirements in our setting.

Example 10. Consider the formula ϕ = �(p∧ �¬p). Under the classical Boolean
semantics, ϕ is logically equivalent to f, however not under our semantics. For
example, �w, 0, ν |≈ ϕ� = ⊥, for w =

(

[0,∞), [ ], [ ]
)

and any valuation ν. Given
a valid observation sequence w̄, an observationally sound and complete monitor
for w̄ and ϕ will first output the verdict (0, f) for the minimal i such that wi

contains a letter that assigns p to false. ��
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4.2 Monitoring Algorithm

We sketch the algorithm’s state, its main procedure, and its main data structure.
We provide further algorithmic details in [7].

4.2.1 Monitor State
Before explaining the algorithm, we first rephrase the MTL↓’s semantics such
that it is closer to the representation used by the monitor. Given an i ∈ N, a
position j ∈ pos(wi), and a subformula γ of ϕ, we denote by Φ

γ,Jj

i , where Jk is
the interval of the kth letter of wi, the propositional formula:

Φ
γ,Jj

i :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γJj if γ is atomic
¬αJj if γ = ¬α
αJj ∨ βJj if γ = α ∨ β
αJj if γ = ↓rx. α
∨

k≥j

(

tpJk ∧ tcJk,Jj
γ ∧ βJk ∧ ∧

j≤h<k(tpJh → αJh)
)

if γ = α UI β,

where αK , tpK , and tcH,K
ψ denote atomic propositions, for each proper subfor-

mula α of ϕ, each temporal subformula ψ of ϕ, and all intervals H,K of letters
in wi. Next, we define, for any partial valuation ν, the substitution θν

i of Boolean
values for these atomic propositions as follows:

θν
i (αJj ) := �wi, j, ν |≈ α� if �wi, j, ν |≈ α� ∈ 2,

θν
i (tpJj ) := tpwi

(j) if tpwi
(j) ∈ 2,

θν
i (tcJj ,Jk

αUIβ) := tcwi,I(j, k) if tcwi,I(j, k) ∈ 2,

and θν
i is undefined otherwise. In what follows, the symbol ≡ denotes semantic

equivalence between propositional formulas. It is easy to see that

θμ
i (Φγ,Jj

i ) ≡ �wi, j, ν |≈ γ� iff �wi, j, ν |≈ γ� ∈ 2,

where μ = ν[x 
→ �j(r)] if γ = ↓rx. α and μ = ν otherwise, with �j being the
third component of the jth letter of wi. Note that the formula θμ

i (Φγ,Jj

i ) tells us
more than the truth value �wi, j, ν |≈ γ�. Indeed, when θμ

i (Φγ,Jj

i ) ≡ b, for each
b ∈ 2, then we know not only that �wi, j, ν |≈ γ� = ⊥, but we also know what the
causes of uncertainty are, namely the direct subformulas α of γ and indexes k
with �wi, k, μ |≈ α� = ⊥.

The monitor maintains as state between its iterations a variant of the propo-
sitional formulas θμ

i (Φγ,Jj

i ). The reason for using variants is that it is not algo-
rithmically convenient to transform θμ

i (Φγ,J
i ) into θμ

i+1(Φ
γ,K
i+1 ), where K is an

interval (of a letter) in wi+1 that originates from the interval J in wi. Such a
transformation is needed for obtaining an incremental monitoring algorithm that
reuses information already computed at previous iterations.

The formulas that the monitors maintains, denoted Ψ
γ,Jj ,ν
i , can be obtained

from the formulas θμ
i (Φγ,Jj

i ) as follows. When γ is a nontemporal formula, then
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Ψ
γ,Jj ,ν
i equals θμ

i (Φγ,Jj

i ). When γ is a temporal formula α UI β, then, to each
disjunct for index k in Φ

γ,Jj

i , we add the subformula (tpJk ∨ αJk) as a conjunct.
This is sound, based on the equivalence tpJk ≡ tpJk ∧ (tpJk ∨αJk). Furthermore,
the monitor treats the subformulas (tpJk ∧βJk), (tpJh → αJh), and (tpJk ∨αJk)
in a special way: they are not simplified in Ψγ,J,ν

i when they are still needed
to obtain Ψγ,K,ν

i+1 . That is, even if one of the atomic propositions q of these
subformulas could be instantiated (i.e. q ∈ def(θμ

i )) this is not always done,
as explained in the next section. Instead, these three types of subformulas are
represented in Ψ

γ,Jj ,ν
i by the atomic propositions β̄Jk , ᾱJh , and ¯̄αJk , respectively.

Example 11. We illustrate here the definitions of the propositional formulas
Φγ,J,ν

i and Ψγ,J,ν
i for temporal formulas γ. We also suggest why variants of the

formulas θμ
i (Φγ,Jj

i ) are needed.
Let γ = pUq, where p and q are 0-ary predicates. Assume that in w1 we have

the intervals L = [0, τ1), N = {τ1}, and R = (τ1,∞), and in w2 we have the
intervals L1 = [0, τ0), L2 = {τ0}, L3 = (τ0, τ1), N , and R, with τ0 ∈ L. Assume
also that neither p nor q holds at τ1. Then

θ
[ ]
1 (Φγ,L

1 ) ≡ tpL ∧ qL θ
[ ]
2 (Φγ,L2

2 ) ≡ qL2 ∨ (tpL3 ∧ qL3 ∧ pL2)
Ψ

γ,L,[ ]
1 = q̄L ∧ ¯̄pL Ψ

γ,L2,[ ]
2 = q̄L2 ∨ (q̄L3 ∧ ¯̄pL3 ∧ p̄L2)

Note that pL is not an atomic proposition of Φγ,L
1 , while ¯̄pL is an atomic propo-

sition of Ψ
γ,L,[ ]
1 . This last fact allows the monitoring algorithm to obtain Ψ

γ,L2,[ ]
2

from Ψ
γ,L,[ ]
1 , by introducing the needed new propositions p̄L2 , p̄L3 , and ¯̄pL2 . ��

To recapitulate, the monitor’s state at iteration i consists of propositional
formulas Ψγ,J,ν

i , one for each subformula γ of ϕ, interval J occurring in a letter
of wi, where i is the current iteration, and partial valuation ν that is relevant
for the current subformula and position corresponding to J in wi. Intuitively,
a valuation ν is relevant for ψ and a position j ∈ pos(wi), if �wi, j, ν |≈ ψ�
is reached when unfolding the formula that defines �wi, k, [ ] |≈ ϕ�, for some
k ∈ pos(wi).2 For instance, [ ] is relevant for ϕ and any j ∈ pos(wi). Furthermore,
if ν is relevant for ↓rx. ψ and j, then ν[x 
→ �j(r)] is relevant for ψ and j.

Example 12. Let ϕ := ↓rx. �(0,1] p(x). For brevity, we treat the temporal con-
nective �(0,1] as a primitive. Also, for readability, we let α := �(0,1] p(x) and
β := p(x). Consider an observation w1 that has the same interval structure as in
the previous example and the second letter is (τ1, σ, �) with �(r) = d for some
data value d and p /∈ def(σ). The monitor’s state for w1 consists of the formulas:

Ψ
ϕ,K,[ ]
1 = αK , for any K ∈ {L,N,R}, Ψ

α,L,[ ]
1 = β̄L ∨ β̄N ∨ β̄R,

Ψ
β,K,[ ]
1 = βK , for any K ∈ {L,N,R}, Ψ

α,N,[x	→d]
1 = β̄R,

Ψ
β,R,[x	→d]
1 = βR, Ψ

α,R,[ ]
1 = β̄R.

2 We consider here that the formulas defining the semantics are first simplified.
E.g., assuming that �wi, j, ν |≈ α UI β� is reached, k ∈ pos(wi), and k ≥ j, if
tcwi,I(k, j) = f, then �wi, k, ν |≈ β� is not reached, otherwise (i.e. tcwi,I(k, j) �= f) it
is reached.
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Note that there are two relevant valuations for β and position 2 (which is the
position of the interval R in w1), namely [ ] and [x 
→ d]. This follows from the
definition and it corresponds to the fact that β̄R is an atomic proposition of a
formula both of the form Ψ

α,K,[ ]
1 (namely, when K ∈ {L,R}) and of the form

Ψ
α,K,[x	→d]
1 (namely, when K = N). ��

4.2.2 Main Procedure
The monitor’s pseudocode is shown in Listing 1. After initializing the monitor’s
state, the monitor loops. In each loop iteration, the monitor receives a message,
updates its state according to the information extracted from the message, and
outputs the computed verdicts.

We assume that each received message describes a new time point in an
observation, i.e., a letter of the form ({τ}, σ, �). Furthermore, we assume that
each received message m contains information that identifies the component that
has sent the message to the monitor and a sequence number, i.e., the number
of messages, including m, that the component has sent to the monitor so far.
Using this information, the monitor can detect complete intervals, i.e., the non-
singleton intervals that do not contain the timestamp of any message that the
monitor processes in later iterations. Thus, the received messages describe the
“deltas” of a valid observation sequence (cf. Sect. 4.1), where the next observa-
tion is obtained from the previous one by applying transformation (T1), followed
by (T3), possibly followed by several applications of (T2).

With the procedure NewMessage, the monitor receives a new message, for
instance over a channel or a log file. Next, the monitor parses the message to
recover the corresponding letter ({τ}, σ, �), the component, and the sequence
number. Afterwards, using the procedure Split, the monitor determines the inter-
val J that is split (namely, the one where τ ∈ J) and the resulting new, incom-
plete intervals, stored in the sequence new. Concretely, the intervals in new con-
sist of those intervals among J∩ [0, τ), {τ}, and J∩(τ,∞) that are not complete.
Note that new contains at least the singleton {τ}. The detection of complete
intervals by the Split procedure is done in the same manner as in [6].

Listing 1.
procedure Monitor(ϕ)

Init(ϕ)
loop

m ← NewMessage()
τ , σ, , comp, seq num := Parse(m)
J, new := Split(τ , comp, seq num)
NewTimePoint(ϕ, J, new)
foreach ↓rx. ψ in Sub(ϕ) with r ∈ def() do

PropagateDown(ψ, {τ}, x, (r))

foreach Ψp(x̄),{τ},ν �= nil with x̄ ∈ def(ϕ), p ∈ def(σ) do
b := (ν(x̄) ∈ σ(p))

Ψp(x̄),{τ},ν := b
PropagateUp(p(x̄), {τ}, b)

NewVerdicts()
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The remaining pseudocode updates the monitor’s state to reflect the new
observation. It first transforms formulas Ψγ,K,ν so that they reflect the interval
structure of the new observation, with NewTimePoint. Afterwards, the monitor
propagates the new data values down (the formula ϕ’s syntax tree) with Propa-
gateDown, and propagates newly obtained Boolean values up with PropagateUp.
The procedures NewTimePoint and PropagateUp are conceptually similar to anal-
ogous procedures given in [6], although the formulas Ψγ,K,ν were implicit in [6].
We outline next these three procedures. Finally, the monitor reports the verdicts
computed during the current iteration by calling the procedure NewVerdicts.

In the rest of the section, we use the convention that whenever γ or ν are not
specified in a formula Ψγ,Jj ,ν then we assume they are an arbitrary subformula
of ϕ and respectively an arbitrary partial valuation that is relevant for γ and j.

Adding a New Time Point. The procedure NewTimePoint builds new formulas
Ψγ,K,ν with K ∈ new from the corresponding formulas Ψγ,J,ν . It also updates
all formulas Ψγ,J,ν such that they use atomic propositions αK with K ∈ new
instead of αJ . For nontemporal formulas γ, the update is straightforward. For
instance, if γ = α∨β and Ψγ,J,ν = βJ , then Ψγ,K,ν = βK , for each K ∈ new. For
temporal formulas γ, the update is more involved, although it can be performed
easily by applying well-suited substitutions. To illustrate the kind of updates
that are needed, suppose for example that γ = αUI β and that Ψγ,J ′,ν , for some
J ′ < J , contains the atomic proposition ᾱJ . Then Ψγ,J ′,ν is updated by replacing
ᾱJ with the conjunct

∧

K∈new ᾱK . Finally, we note that formulas Ψγ,K,ν with
K = J and without atomic propositions αJ need not be updated.

Downward Propagation. Whenever a variable x is frozen to a data value at
time τ , the procedure PropagateDown updates the monitor’s state to account for
this fact. Concretely, this value is propagated according to the semantics through
partial valuations to atomic formulas p(ȳ). The propagation is performed by
starting from formulas Ψ↓rx.ψ,{τ},μ and recursively visiting formulas Ψα,K,ν with
α a subformula of ψ. For each visited formula, a new formula Ψα,K,ν[x	→(r)]

is created, where the new formula is simply a copy of Ψα,K,ν . Note that the
old formula Ψα,K,ν may still be relevant in the future. For instance, suppose a
value d is propagated from Ψ �I β,{τ},ν to Ψβ,K,ν , copying it to Ψβ,K,ν[x	→d], and
suppose also that β̄K is an atomic proposition in Ψ �I β,J ′,ν . Then Ψβ,K,ν might
be used again later when another data value d′ is propagated downwards from
Ψ �I β,{τ ′},ν with τ ′ ∈ J ′, to copy it to Ψβ,K,ν[x	→d′].

Upward Propagation. The procedure PropagateUp performs the following update
of the monitor’s state. When a formula Ψα,K,μ simplifies to a Boolean value b,
then this Boolean value is propagated up the syntax tree of ϕ as follows: αK is
instantiated to b in every formula Ψγ,J ′,ν that has αK as an atomic proposition,
except when γ is itself an atom of ϕ. The formula is then simplified (using rules
like z ∨ t ≡ t) and if it simplifies to a Boolean value then propagation continues
recursively. Note that γ is a parent of α. When Ψϕ,{τ ′},[ ] is simplified to a Boolean
value b′, then (τ ′, b′) is marked as a new verdict. Propagation starts from the
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atoms of ϕ. The Boolean value t is propagated from the atom t only once, in the
Init procedure. For an atom α = p(x̄), the monitor sets Ψp(x̄),{τ},μ to a Boolean
value, if possible, according to the semantics, for all relevant valuations μ.

Recall that for temporal formulas γ = α UI β, the formula Ψγ,J ′,ν contains
atomic propositions of the form ᾱK , ¯̄αK , and β̄K instead of αK and βK . These
atomic propositions are treated specially: they are not instantiated when K is
not a singleton and the value b to be propagated is t for β formulas and f
for α formulas (otherwise they are instantiated). This behavior corresponds to
the meaning of these atomic proposition given in Sect. 4.2.1. For instance, β̄K

stands for tpK ∨βK and thus it is not instantiated to t in Ψγ,J ′,ν when K is not
a singleton even when Ψγ,K,ν = t, because the existence of a time point in K is
not guaranteed: it might turn out that K is a complete interval. The propagation
will be done later for singletons {τ ′} with τ ′ ∈ K, if and when a message with
timestamp τ ′ arrives.

4.2.3 Data Structure
We have not yet described the data structure used in our pseudocode, which is
needed for an efficient implementation. The data structure that we use is similar
to that described in [6]. Namely, it is a directed acyclic graph. The graph’s nodes
are tuples of the form (ψ, J, ν), where ψ is a subformula of ϕ, J an interval, and
ν a partial valuation. Each node (γ, J, ν) stores the associated propositional
formula Ψγ,J,ν . Nodes are linked via triggers: a trigger of a node (α,K, μ) points
to a node (γ, J, ν) if and only if αK , ᾱK , or ¯̄αK is an atomic proposition of
Ψγ,J,ν , γ is a nonatomic formula, and μ = ν[x 
→ �i

j(r)] if γ = ↓rx. α and μ = ν
otherwise. Triggers are actually bidirectional: for any (outgoing) trigger there is
a corresponding ingoing trigger.

This data structure allows us to directly access, given a formula Ψα,K,μ, all the
formulas Ψγ,J,ν that have αK as an atomic proposition. Also, conversely, for any
formula Ψγ,J,ν the data structure allows us to directly access the formula Ψα,K,μ

for any atomic proposition αK of Ψγ,J,ν . These two operations are used for
upward and downward propagation respectively. We note also that a node for
which the associated propositional formula has simplified to a Boolean value
that has been propagated can be deleted.

Figure 1 illustrates the data structure at the end of iterations 0 and 1, that is,
corresponding to the observations w0 and w1, for the setting in Example 12. A
box in the figure corresponds to a node of the graph structure, where the node’s
formula is given by the row, the interval by the box’s column, and the valuation
by the box’s content. The valuation in the partially covered box in the lower
right corner is ν = [x 
→ d], the same as in the box in the middle of Fig. 1(b).
Arrows correspond to triggers.

4.2.4 Correctness
The following theorem establishes the monitor’s correctness. We refer to [7] for
proof details.
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↓x. �(0,1] p(x)

�(0,1] p(x)

p(x)

(a) for w0

[0,∞)

[ ]

[ ]

[ ]

(b) for w1

[0, τ1) {τ1} (τ1,∞)

[ ]

[ ]

[ ]

[ ]

ν

[ ]

[ ]

[ ]

[ ]

Fig. 1. Graph structures.

Theorem 13. Let w̄ be the valid observation sequence derived from the messages
received by Monitor. Furthermore, let ϕ be a closed MTL↓ formula. Monitor(ϕ)
is observationally complete and sound for w̄ and ϕ.

An important property class in monitoring are safety properties. We note
that our monitor is not limited to formulas in this class, and the monitor is
observationally complete and sound for any formula. For instance, for the formula
ϕ = � � p, which states that p holds infinitely often, the monitor will not output
a verdict, as expected. It is nevertheless observationally complete for any valid
observation sequence w̄, since [wi, τ, ν |≈ ϕ] = ⊥, for any i ∈ N, τ ∈ Q≥0, and
partial valuation ν.

Besides correctness requirements, time and space requirements are also
important. Recall Theorem 7 showing that the underlying decision problem is
PSPACE-complete. Furthermore, note that the monitor’s space usage cannot be
bounded in general, even in the setting without message loss and with in-order
delivery. To see this, consider the formula � ↓x.p(x) → �(0,∞) ¬p(x) stating that
the parameter of p events are fresh at each time point. Any monitor must store
the parameters seen. A thorough investigation of the time and space complexity
of the monitoring procedure is however left for future work.

5 Experiments

We have implemented our monitor in a prototype tool, written in the program-
ming language Go. Our tool either reads messages from a log file or over a UDP
socket. Our experimental evaluation focuses on the prototype’s performance in
settings with different message orderings.

Setup. We monitor the formulas in Fig. 2, which vary in their temporal require-
ments and the data involved. They express compliance policies from the banking
domain and are variants of policies that have been used in previous case stud-
ies [5]. Furthermore, we synthetically generate log files. Each log spans over 60
time units (i.e., a minute) and contains one event per time point. The number of
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� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000 → �[0,3] report(t) (P1)

� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000 → �(0,3] ↓tidt′ . ↓suma′ . trans(c, t′, a′) → a′ ≤ 2000 (P2)

� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000→ ↓tidt′ . ↓suma′ . trans(c, t′, a′) → t = t′) W report(t)
)

(P3)

� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000 → �[0,6] ↓tidt′ . ↓suma′ . trans(c, t′, a′) → �[0,3] report(t′) (P4)

Fig. 2. MTL↓ formulas used in the experimental evaluation.

events in a log is determined by the event rate, which is the approximate number
of events per time unit (i.e., a second). For each time point i, with 0 ≤ i < 60,
the number of events with a timestamp in the time interval [i, i + 1) is ran-
domly chosen within ±10% of the event rate. The events and their parameters
are randomly chosen such that the number of violations is in a provided range.
For instance, a log with event rate 100 comprises approximately 6000 events.
Finally, we use a standard desktop computer with a 2.8 GHz Intel Core i7 CPU,
8 GB of RAM, and the Linux operating system.

In-order Delivery. In our first setting, messages are received ordered by their
timestamps and are never lost. Namely, all events of the log are processed in the
order of their timestamps. Figure 3(a) shows the running times of our prototype
tool for different event rates. Note that each log spans 60 s and a running time
below 60 s essentially means that the events in the log could have been processed
online. The dashed horizontal lines mark this border.
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Fig. 3. Running times (where each data point shows the mean over five logs together
with the minimum and maximum, which are very close to the mean).

Out-of-Order Delivery. In our second setting, messages can arrive out of order
but they are not lost. We control the degree of message arrival disruption as
follows. For the events in a generated log file, we choose their arrival times,
which provide the order in which the monitor processes them. The arrival time
of an event is derived from the event’s timestamp by offsetting it by a random
delay with respect to the normal distribution with a mean of 10 time units and
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a chosen standard deviation. In particular, for an event’s timestamp τ and for
a standard deviation σ > 0, it holds that an arrival time τ ′ is in the interval
[τ +10−σ, τ +10+σ] with probability 0.68 and in [τ +10−2σ, τ +10+2σ] with
probability 0.95. For the degenerate case σ = 0, the reordered log is identical
to the original log. We remark that the mean value does not impact the event
reordering because it does not influence the difference between arrival times.

Figure 3(b) shows the prototype’s running times on logs with the fixed event
rate 100 for different deviations. For instance, for (P1), the logs are processed in
around 1 s when σ = 0 and in 3.5 s when σ = 10.

Interpretation. The running times are nonlinear in the event rate for all four for-
mulas. This is expected from Theorem 7. The growth is caused by the data values
occurring in the events. A log with a higher event rate contains more different
data values and the monitor’s state must account for those. As expected, (P1)
is the easiest to monitor. It has only one block of freeze quantifiers. Note that
(P1)–(P3) have two temporal connectives, where one is the outermost connec-
tive �, which is common to all formulas, whereas (P4) has an additional nesting
of temporal connectives. The time window is also larger than in (P1) and (P2).

Also expected, the running times increase when messages are received out
of order. Again, (P4) is worst. For (P1) and (P2), however, the growth rate
decreases for larger standard deviations. This is because, as the standard devi-
ation increases, all the events within the relevant time window for a given time
point arrive at the monitor in an order that is increasingly close to the uniformly
random one. The running times thus stabilize. Due to the larger time window,
this effect does not take place for (P4). The running times for (P3) increase more
rapidly than for (P1) and (P2) because of the data values and the “continuation
formula” of the derived unbounded temporal connective W (“weak until”).

To put the experimental results in perspective, we carried out two additional
experiments. First, we conducted similar experiments on formulas with their
freeze quantifiers removed and further transformed into propositional formulas;
see [7] for details. We make similar observations in the propositional setting.
However, in the propositional setting the running times increase linearly with
respect to the event rate and logs are processed several orders of magnitude
faster. Overall, one pays a price at runtime for the expressivity gain given by
the freeze quantifier. Second, we compared our prototype with the MONPOLY
tool [3]. MONPOLY’s specification language is, like MTL↓, a point-based real-
time logic. It is richer than MTL↓ in that it admits existential and universal
quantification over domain elements. However, MONPOLY specifications are
syntactically restricted in that temporal future connectives must be bounded
(except for the outermost connective �). Thus, (P3) does not have a counterpart
in MONPOLY’s specification language. MONPOLY handles the counterparts of
(P1), (P2), and (P4) significantly faster, up to three orders of magnitude. Com-
paring the performance of both tools should, however, be taken with a grain
of salt. First, MONPOLY only handles the restrictive setting where messages
must be received in-order. Second, MONPOLY outputs violations for specifica-
tions with (bounded) future only after all events in the relevant time window
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are available, whereas our prototype outputs verdicts promptly.3 Finally, while
MONPOLY is optimized, our prototype is not.

In summary, our experimental evaluation shows that one pays a high price
to handle an expressive specification language together with message delays.
Nevertheless, our prototype’s performance is sufficient to monitor systems that
generate hundreds of events per second, and the prototype can be used as a
starting point for a more efficient implementation.

6 Related Work

Runtime verification is a well-established approach for checking at runtime
whether a system’s execution fulfills a given specification. Various monitoring
algorithms exist, e.g., [2,5,11,19]. They differ in the specifications they can han-
dle (some of the specification languages account for data values) and they make
different assumptions on the monitored systems. A commonly made assumption
is that a monitor has always complete knowledge about the system behavior
up to the current time. Only a few runtime-verification approaches exist that
relax this assumption. Note that this assumption is, for instance, not met in
distributed systems whose components communicate over unreliable channels.

Closest to our work is the runtime-verification approach by Basin et al. [6].
We use the same system model and our monitoring algorithm extends their
monitoring algorithm for the propositional real-time logic MTL. Namely, our
algorithm handles the more expressive specification language MTL↓ and handles
data values. Furthermore, we present a semantics for MTL↓ that is based on
three truth values and uses observations instead of timed words. This enables
us to cleanly state correctness requirements and establish stronger correctness
guarantees for the monitoring algorithm. Basin et al.’s completeness result [6]
is limited in that it assumes that all messages are eventually received. Finally,
Basin et al. [6] do not evaluate their monitoring algorithm experimentally.

Colombo and Falcone [12] propose a runtime-verification approach, based
on formula rewriting, that also allows the monitor to receive messages out of
order. Their approach only handles the propositional temporal logic LTL with
the three-valued semantics proposed by Bauer et al. [10]. In a nutshell, their
approach unfolds temporal connectives as time progresses and special proposi-
tions act as placeholders for subformulas. The subsequent assignment of these
placeholders to Boolean truth values triggers the reevaluation and simplification
of the formula. Their approach only guarantees soundness but not completeness,
since the simplification rules used for formula rewriting are incomplete. Finally,
its performance with respect to out-of-order messages is not evaluated.

The monitoring approaches by Garg et al. [14] and Basin et al. [4], both
targeting the auditing of policies on system logs, also account for knowledge
3 For instance, for the formula �[0,3] p, if p does not hold at time point i with

timestamp τ , then our prototype outputs the corresponding verdict directly after
processing the time point i, whereas MONPOLY reports this violation at the first
time point with a timestamp larger than τ + 3.
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gaps, i.e., logs that may not contain all the actions performed by a system. Both
approaches handle rich policy specification languages with first-order quantifica-
tion and a three-valued semantics. Garg et al.’s approach [14], which is based on
formula rewriting, is however, not suited for online use since it does not process
logs incrementally. It also only accounts for knowledge gaps in a limited way,
namely, the interpretation of a predicate symbol cannot be partially unknown,
e.g., for certain time periods. Furthermore, their approach is not complete. Basin
et al.’s approach [4], which is based on their prior work [5], can be used online.
However, the problem of how to incrementally output verdicts as prior knowledge
gaps are resolved is not addressed, and thus it does not deal with out-of-order
events. Moreover, the semantics of the specification language handled does not
reflect a monitor’s partial view about the system behavior. Instead, it is given
for infinite data streams that represent system behavior in the limit.

Several dedicated monitoring approaches for distributed systems have been
developed [8,20,22]. These approaches only handle less expressive specification
languages, namely, the propositional temporal logic LTL or variants thereof. Fur-
thermore, none of them handles message loss or out-of-order delivery of messages,
problems that are inherent to such systems because of crashing components and
nonuniform delays in message delivery.

A similar extension of MTL with the freeze quantifier is defined by Feng et
al. [13]. Their analysis focuses on the computational complexity of the path-
checking problem. However, they use a finite trace semantics, which is less suit-
able for runtime verification. Out-of-order messages are also not considered.

Temporal logics with additional truth values have also been considered in
model checking finite-state systems. Closest to our three-valued semantics is the
three-valued semantics for LTL by Goidefroid and Piterman [15], which is based
on infinite words, not observations (Definition 2). Similar to (T3) of Definition 2,
a proposition with the truth value ⊥ at a position can be refined by t or f.
In contrast, their semantics does not support refinements that add and delete
letters, cf. (T1) and (T2) of Definition 2.

7 Conclusion

We have presented a runtime-verification approach to checking real-time specifi-
cations given as MTL↓ formulas. Our approach handles the practically-relevant
setting where messages sent to the monitors can be delayed or lost, and it pro-
vides soundness and completeness guarantees. Although our experimental eval-
uation is promising, our approach does not yet scale to monitor systems that
generate thousands or even millions of events per second. This requires addi-
tional research, including algorithmic optimizations. We plan to do this in future
work, as well as to deploy and evaluate our approach in realistic, large-scale case
studies.
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Abstract. We introduce LRT, a new Lagrangian-based ReachTube
computation algorithm that conservatively approximates the set of reach-
able states of a nonlinear dynamical system. LRT makes use of the
Cauchy-Green stretching factor (SF), which is derived from an over-
approximation of the gradient of the solution-flows. The SF measures
the discrepancy between two states propagated by the system solution
from two initial states lying in a well-defined region, thereby allowing
LRT to compute a reachtube with a ball-overestimate in a metric where
the computed enclosure is as tight as possible. To evaluate its perfor-
mance, we implemented a prototype of LRT in C++/Matlab, and ran
it on a set of well-established benchmarks. Our results show that LRT
compares very favorably with respect to the CAPD and Flow* tools.

1 Introduction

Bounded-time reachability analysis is an essential technique for ensuring the
safety of emerging systems, such as cyber-physical systems (CPS) and controlled
biological systems (CBS). However, computing the reachable states of CPS and
CBS is a very difficult task as these systems are most often nonlinear, and their
state-space is uncountably infinite. As such, these systems typically do not admit
a closed-form solution that can be exploited during their analysis.

For CPS/CBS, one can therefore only compute point solutions (trajectories)
through numerical integration and for predefined inputs. To cover the infinite
set of states reachable by the system from an initial region, one needs to conser-
vatively extend (symbolically surround) these pointwise solutions by enclosing
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them in reachtubes. Moreover, the starting regions of these reachtubes have to
cover the initial states region.

The class of continuous dynamical systems we are interested in this paper
are nonlinear, time-variant ordinary differential equations (ODEs):

x′(t) = F (t, x(t)), (1a)
x(t0) = x0, (1b)

where x : R → R
n. We assume that F is a smooth function, which guarantees

short-time existence of solutions. The class of time-variant systems includes the
class of time-invariant systems. Time-variant equations may contain additional
terms, e.g. an excitation variable, and/or periodic forcing terms.

For a given initial time t0, set of initial states X ⊂ R
n, and time bound

T > t0, our goal is to compute conservative reachtube of (1), that is, a sequence
of time-stamped sets of states (R1, t1), . . . , (Rk, tk) satisfying:

Reach ((t0,X ) , [ti−1, ti]) ⊂ Ri for i = 1, . . . , k,

where Reach ((t0,X ) , [ti−1, ti]) denotes the set of reachable states of (1) in the
interval [ti−1, ti]. Whereas there are many sets satisfying this requirement, of
particular interest to us are reasonably tight reachtubes; i.e. reachtubes whose
over-approximation is the tightest possible, having in mind the goal of proving
that a certain region of the phase space is (un)safe, and avoiding false positives.
In practice and for the sake of comparision with other methods, we compute a
discrete-time reachtube; as we discuss, a continuous reachtube can be obtained
using our algorithm.

Existing tools and techniques for conservative reachtube computation can be
classified by the time-space approximation they perform into three categories:
(1) Taylor-expansion in time, variational-expansion in space (wrapping-effect
reduction) of the solution set (CAPD [4,32,33], VNode-L [25,26], (2) Taylor-
expansion in time and space of the solution set (Cosy Infinity [3,21,22], Flow* [5,
6]), and (3) Bloating-factor-based and discrepancy-function-based [10,11]. The
last technique computes a conservative reachtube using a discrepancy function
(DF) that is derived from an over-approximation of the Jacobian of the vec-
tor field (usually given by the RHS of the differential equations) defining the
continuous dynamical system.

This paper proposes an alternative (and orthogonal to [10,11]) technique for
computing a conservative reachtube, by using a stretching factor (SF) that is
derived from an over-approximation of the gradient of the solution-flows, also
referred to as the sensitivity matrix [8,9], and the deformation tensor. An illus-
tration of our method is given in Fig. 1. BM0(x0, δ0) is a well-defined initial
region given as a ball in metric space M0 centered at x0 of radius δ0. The SF Λ
measures the discrepancy of two states x0, y0 in BM0 propagated by the solution
flow induced by (1), i.e. φt1

t0 . We can thus use the SF to bound the infinite set
of reachable states at time t1 with the ball-overestimate BM1(φ

t1
t0(x0), δ1) in an

appropriate metric (which may differ from the initial M0), where δ1 = Λ · δ0.
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Fig. 1. An overview of LRT. The figure shows one execution step of the LRT described
in detail in Sect. 3. The dashed arrows reflect the solution flow φ and the evolution of
state discrepancy.

Similar to [10], this metric is based on a weighted norm, yielding a tightest-
possible enclosure of the reach-set [7,17,19,20]. For two-dimensional system, we
present an analytical method to compute M1, but for higher dimensional sys-
tem, we solve a semi-definite optimization problem. Analytical formulas derived
for 2d case allow for faster computation. We point out that the output provided
by LRT can be used to compute a validated bound for the so-called finite-time
Lyapunov exponent (FTLE = 1

T ln(SF )) for a whole set of solutions. FTLE are
widely computed in e.g. climate research in order to detect Lagrangian coherent
structures.

We call this approach and its associated the LRT, for Lagrangian Reachtube
computation. The LRT uses analogues of Cauchy-Green deformation tensors
(CGD) from finite strain theory (FST) to determine the SF of the solution-flows,
after each of its time-step iterations. The LRT algorithm is described thoroughly
in Sect. 3.

To compute the gradient of the flows, we currently make use of the CAPD
C1 routine, which propagates the initial ball (box) using interval arithmetic.
The CAPD library has been certified to compute a conservative enclosure of the
true solution, and it has been used in many peer-reviewed computer proofs of
theorems in dynamical systems, including [12,15,31].

To evaluate the LRT’s performance, we implemented a prototype in
C++/Matlab and ran it on a set of eight benchmarks. Our results show that the
LRT compares very favorably to a direct use of CAPD and Flow* (see Sect. 4),
while still leaving room for further improvement. In general, we expect the LRT
to behave favorably on systems that exhibit long-run stable behavior, such as
orbital stability.

We did not compare the LRT with the DF-based tools [10,11], although
we would have liked to do this very much. The reason is that the publicly-
available DF-prototype has not yet been certified to produce conservative results.
Moreover, the prototype only considers time-invariant systems.
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The rest of the paper is organized as follows. Section 2 reviews finite-strain
theory and the Cauchy-Green-deformation tensor for flows. Section 3 presents
the LRT, our main contribution, and proves that it conservatively computes the
reachtube of a Cauchy system. Section 4 compares our results to CAPD and
Flow* on six benchmarks from [6,10], the forced Van der Pol oscillator (time-
variant system) [30], and the Mitchell Schaeffer cardiac cell model [23]. Section 5
offers our concluding remarks and discusses future work.

2 Background on Flow Deformation

In this section we present some background on the LRT. First, in Sect. 2.1 we
briefly recall the general FST, as in the LRT we deal with matrices analogous
to Cauchy-Green deformation tensors. Second, in Sect. 2.2 we show how the
Cauchy-Green deformation tensor can be used to measure discrepancy of two
initial states propagated by the flow inducted by Eq. (1).

2.1 Finite Strain Theory and Lagrangian Description of the Flow

In classical continuum mechanics, finite strain theory (FST) deals with the defor-
mation of a continuum body in which both rotation and strain can be arbitrarily
large. Changes in the configuration of the body are described by a displacement
field. Displacement fields relate the initial configuration with the deformed con-
figuration, which can be significantly different. FST has been applied, for exam-
ple, in stress/deformation analysis of media like elastomers, plastically-deforming
materials, and fluids, modeled by constitutive models (see e.g., [13], and the refer-
ences provided there). In the Lagrangian representation, the coordinates describe
the deformed configuration (in the material-reference-frame spatial coordinates),
whereas in the Eulerian representation, the coordinates describe the undeformed
configuration (in a fixed-reference-frame spatial coordinates).

Notation. In this section we use the standard notation used in the literature on
FST. We use X to denote the position of a particle in the Eulerian coordinates,
and x to denote the position of a particle in the Lagrangian coordinates. The
Lagrangian coordinates depend on the initial (Eulerian) position, and the time t,
so we use x(X, t) to denote the position of a particle in Lagrangian coordinates.

The displacement field from the initial configuration to the deformed config-
uration in Lagrangian coordinates is given by the following equation:

u(X, t) = x(X, t) − X. (2)

The dependence ∇Xu of the displacement field u(X, t) on the initial condition
X is called the material displacement gradient tensor, with

∇Xu(X, t) = ∇Xx(X, t) − I, (3)

where ∇Xx is called the deformation gradient tensor.
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We now investigate how an initial perturbation X + dX in the Eulerian
coordinates evolves to the deformed configuration dx(X + dX, t) in Lagrangian
coordinates by using (2). This is called a relative displacement vector:

dx(X + dX, t) = x(X + dX, t) − x(X, t) = u(X + dX, t) + dX − u(X, t),

As a consequence, for small dX we obtain the following approximate equality:

dx(X + dX, t) ≈ u(X + dX, t) − u(X, t). (4)

Now let us compute u(X+dX, t) by expressing du(X+dX, t) as with x(X+dX, t)
above. One obtains:

u(X + dX, t) = u(X, t) + du(X + dX, t) = u(X, t) + ∇Xu(X + dX, t)dX.

Now by replacing u(X +dX, t) in Eq. (4) above, one obtains the following result:

dx(X + dX, t) ≈ ∇Xx(X + dX, t)dX.

Several rotation-independent tensors have been introduced in the literature.
Classical examples include the right Cauchy-Green deformation tensor:

C = (∇Xx)T · ∇Xx. (5)

2.2 Cauchy-Green Deformation Tensor for Flows

Notation. By [x] we denote a product of intervals (a box), i.e. a compact and
connected set [x] ⊂ R

n. We will use the same notation for interval matrices. By
‖ · ‖2 we denote the Euclidean norm, by ‖ · ‖∞ we denote the max norm, we
use the same notation for the inducted operator norms. Let B(x, δ) denote the
closed ball centered at x with the radius δ. It will be clear from the context in
which metric space we consider the ball. By φt1

t0 we denote the flow inducted
by (1), by Dxφt1

t0 we denote the partial derivative in x of the flow with respect
to the initial condition, at time t1, which we call the gradient of the flow, also
refereed to as the sensitivity matrix [8,9].

Let us now relate the finite strain theory presented in Sect. 2.1 to the study
of flows inducted by the ODE (1). For expressing deformation in time of a con-
tinuum we first consider the set of initial conditions (e.g. a ball), which is being
evolved (deformed) in time by the flow φ. For the case of flows we have that
the positions in Eulerian coordinates are coordinates of the initial condition
(denoted here using lower case letters with subscript 0, i.e. x0, y0). The equiva-
lent of x(X, t) – the Lagrangian coordinates of X at time t is φt

t0(x0). Obviously,
the equivalent of u(X, t) is (φt

t0(x0) − x0), and the deformation gradient ∇Xx
here is just the derivative of the flow with respect to the initial condition Dxφt

t0
(sensitivity matrix).

In this section we show that deformation tensors arise in a study of discrep-
ancy of solutions of (1). First, we provide some basic lemmas that we use in
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the analysis of our reachtube-computation algorithm. We work with the metric
spaces that are based on weighted norms. We aim at finding weights, such that
the inducted matrix measures (also known as logarithmic norms for particular
cases) [7,17,19,20] provides to be smaller than those in the Euclidean norm for
the computed gradients of solutions.

Definition 1. Given positive-definite symmetric matrix M ∈ R
n×n we define

the M -norm of Rn vectors by

‖y‖M =
√

yT My. (6)

Given the decomposition
M = CT C,

the matrix norm inducted by (6) is

‖A‖M =
√

λmax ((CT )−1 · AT · M · A · C−1), (7)

where λmax(·) denotes the maximal eigenvalue of the matrix A.
Observe that the square-root is well defined, as λmax > 0, M is symmetric

positive definite, and hence, the matrix (CT )−1 ·AT ·M ·A·C−1 is also symmetric
positive definite.

Lemma 1. Consider the Cauchy problem (1). Let x0, y0 ∈ R
n be two initial

conditions at time t0. Let M ∈ R
n×n be a positive-definite symmetric matrix

and CT C = M be its decomposition. For t1 ≥ t0, it holds that

‖φt1
t0(x0)−φt1

t0(y0)‖M ≤
√

λmax

(
(CT )−1Dxφt1

t0(ξ)
T M Dxφt1

t0(ξ)C
−1

) ‖x0 − y0‖M

(8)

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1]. For the particular case of the
Euclidean norm, (8) takes the form

‖φt1
t0(x0) − φt1

t0(y0)‖2 ≤
√

λmax

((
Dxφt1

t0(ξ)
)T · Dxφt1

t0(ξ)
)

‖x0 − y0‖2. (9)

A proof can be found in AppendixA.

Remark 1. Let ξ ∈ R be a given vector. Observe that
(
Dxφt1

t0(ξ)
)T · Dxφt1

t0(ξ)
appearing in (9) is the right Cauchy-Green deformation tensor (5) for two given
initial vectors x0 and y0. We call the value

√
λmax appearing in (9) Cauchy-

Green stretching factor for given initial vectors x0 and y0, which is necessarily
positive as the CG deformation tensor is positive definite

√
λmax(·) > 0.

Lemma 1 is used when both of the discrepancy of the solutions at time t1 as
well as the initial conditions is measured in the same M -norm. In the practical
Lagrangian Reachtube Algorithm the norm used is being changed during the
computation. Hence we need another version of Lemma 1, where the norm in
which the discrepancy of the initial condition in measured differs from the norm
in which the discrepancy of the solutions at time t1 is measured.
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Lemma 2. Consider the Cauchy problem (1). Let x0, y0 ∈ R
n be two initial con-

ditions at time t0. Let M0,M1 ∈ R
n×n be positive-definite symmetric matrices,

and CT
0 C0 = M0, CT

1 C1 = M1 their decompositions respectively. For t1 ≥ t0, it
holds that

‖φt1
t0(x0) − φt1

t0(y0)‖M1

≤
√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
‖x0 − y0‖M0 ,

(10)

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1].

A proof can be found in Appendix A.

Remark 2. Given a positive-definite symmetric matrix M . We call the value
appearing in (10) (CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0 as the M0/M1-

deformation tensor, and the value
√

λmax as the M0/M1-stretching factor.

The idea behind using weighted norms in our approach is that the stretching
factor in M -norm (10) is expected to be smaller than that in the Euclidean norm
(9). Ultimately, this permits a tighter reachtube computation, whose complete
procedure is presented in Sect. 3.3.

3 Lagrangian Reachtube Computation

3.1 Reachtube Computation: Problem-Statement

In this section we provide first some lemmas that we then use to show that
our method-and-algorithm produces a conservative output, in the sense that it
encloses the set of solutions starting from a set of initial conditions. Precisely,
we define what we mean by conservative enclosures.

Definition 2. Given an initial set X , initial time t0, and the target time t1 ≥ t0.
We call the following compact sets:

– W ⊂ R
n a conservative, reach-set enclosure, if φt1

t0(x) ∈ W for all x ∈ X .
– D ⊂ R

n×n a conservative, gradient enclosure, if Dxφt1
t0(x) ∈ D for all x ∈ X .

Following the notation used in [10], and extending the corresponding definitions
to our time variant setting, we introduce the notion of reachability as follows:
Given an initial set X ⊂ R

n and a time t0, we call a state x in R
n as reachable

within a time interval [t1, t2], if there exists an initial state x0 ∈ X at time t0 and
a time t ∈ [t1, t2], such that x = φt

t0(x0). The set of all reachable states in the
interval [t1, t2] is called the reach set and is denoted by Reach((t0,X ), [t1, t2]).

Definition 3 ([10] Definition 2.4). Given an initial set X , initial time t0, and
a time bound T , a ((t0,X), T )-reachtube of System (1) is a sequence of time-
stamped sets (R1, t1), . . . , (Rk, tk) satisfying the following: (1) t0 ≤ t1 ≤ · · · ≤
tk = T , (2) Reach((t0,X ), [ti−1, ti]) ⊂ Ri,∀i = 1, . . . , k.
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Definition 4. Whenever the initial set X and the time horizon T are known
from the context we will skip the (X , [t0, T ]) part, and will simply use the name
(conservative) reachtube over-approximation of the flow defined by (1).

Observe that we do not address here the question what is the exact structure of
the solution set at time t initiating at X . In general it could have, for instance, a
fractal structure. We aim at constructing an over-approximation for the solution
set, and its gradient, which is amenable for rigorous numeric computations.

In the theorems below we show that the method presented in this paper can
be used to construct a reachtube over-approximation R. The theorems below is
the foundation of our novel Lagrangian Reachtube Algorithm (LRT) presented
in Sect. 3.3. In particular, the theorems below provide estimates we use for con-
structing R. First, we present a theorem for the discrete case.

3.2 Conservative Reachtube Construction

Theorem 1. Let t0 ≤ t1 be two time points. Let φt1
t0(x) be the solution of (1)

with the initial condition (t0, x) at time t1, let Dxφt1
t0 be the gradient of the flow.

Let M0,M1 ∈ R
n×n be positive-definite symmetric matrices, and CT

0 C0 = M0,
CT

1 C1 = M1 be their decompositions respectively. Let X = BM0(x0, δ0) ⊂ R
n

be a set of initial states for the Cauchy problem (1) (ball in M0-norm with the
center at x0, and radius δ0). Assume that there exists a compact, conservative
enclosure D ⊂ R

n×n for the gradients, such that:

Dxφt1
t0(x) ∈ D for all x ∈ X . (11)

Suppose Λ > 0 is such that:

Λ ≥
√

λmax

(
(CT

0 )−1DT M1DC−1
0

)
, for all D ∈ D. (12)

Then it holds that:

φt1
t0(x) ∈ BM1(φ

t1
t0(x0),Λ · δ0).

Proof. Let x0 be the center of the ball of initial conditions X = BM0(x0, δ0),
and let us pick x ∈ X . From Lemma 4 the discrepancy of the solutions initiating
at x0 and x at time t1 is bounded in M1-norm by:

‖φt1
t0(x0)−φt1

t0(x)‖M1 ≤ δ0

√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
,

where ξ = ωx0 +(1−ω)x for some ω ∈ [0, 1]. Obviously, ξ ∈ BM0(x0, δ0). Hence,
Dxφt1

t0(ξ) ∈ D. Moreover, if Λ > 0 satisfies (12), then

Λ ≥
√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
,

and φt1
t0(x) ∈ BM1(φ

t1
t0(x0),Λδ0). As x was chosen in an arbitrary way, we are

done. �
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The next theorem is the variant of Theorem 1 for obtaining a continuous
reachtube.

Theorem 2. Let φt1
t0(x) be the solution of (1) with the initial condition (t0, x)

at time t1, let Dxφt1
t0 be the gradient of the flow. Let M0,M1 ∈ R

n×n be positive
definite symmetric matrices, and CT

0 C0 = M0, CT
1 C1 = M1 be their decompo-

sitions respectively. Let X = BM0(x0, δ0) ⊂ R
n be a set of initial conditions for

the Cauchy problem (1) (ball in M0-norm). Assume that there exists {Dt}t∈[t0,t1]

– a compact t-parametrized set, such that

Dt ⊂ R
n×n for t ∈ [t0, t1],

Dxφt
t0(x) ∈ Dt for all x ∈ X , and t ∈ [t0, t1].

If Λ > 0 is such that for all D : D ∈ Dt for some t ∈ [t0, t1]

Λ ≥
√

λmax

(
(CT

0 )−1DT M1DC−1
0

)

Then for all t ∈ [t0, t1] it holds that

φt
t0(x) ∈ BM1(φ

t
t0(x0),Λ · δ0). (13)

Proof. It follows from the proof of Theorem 1 applied to all times t ∈ [t0, t1]. �
Corollary 1. Let T ≥ t0. Assume that that there exists {Dt}t∈[t0,T ] – a compact
t-parametrized set, such that

Dt ⊂ R
n×n for t ∈ [t0, T ],

Dxφt
t0(x) ∈ Dt for all x ∈ X , and t ∈ [t0, T ].

Then the existence of a ((t0,X), T )-reachtube of the system described
in Eq. (1) in sense of Definition 3, i.e. a sequence of time-stamped sets
(R1, t1), . . . , (Rk, tk) is provided by an application of Lemma 2. We provide an
algorithm computing the reachtube in Sect. 3.3.

Proof. Immediate application of Theorem2 shows that if the first segment
(R1, t1) is defined

(R1, t1) :=
⋃

t∈[t0,t1]

BM1(φ
t
t0(x0),Λ · δ0),

then it satisfies
Reach((t0,X ), [t0, t1]) ⊂ (R1, t1),

which is exactly provided by (13). The j-th segment (Rj , tj) for j = 2, . . . , k is
obtained by replacing in Theorem2 the time interval [t0, t1] with the interval
[tj−1, tj ] (Observe that the norm may be different in each step). �
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3.3 LRT: A Rigorous Lagrangian Computation Algorithm

We now present a complete description of our algorithm. In the next section we
prove its correctness. First let us comment on how in practice we compute a
representable enclosure for the gradients (11).

– First, given an initial ball BM0(x0, δ0) we compute its representable over-
approximation, i.e., a product of intervals (a box in canonical coordinates
[X] ⊂ R

n), such that BM0(x0, δ0) ⊂ [X].
– Next, using the C1-CAPD algorithm [32,33] all trajectories initiating in [X]

are rigorously propagated forward in time, in order to compute a conserv-
ative enclosure for

{
Dxφt1

t0(ξ)| ξ ∈ [X]
}

, the gradients. We use the notation
[Dxφt1

t0([X])] ⊂ R
n×n, to denote a representable enclosure (an interval matrix)

for the set of gradients
{
Dxφt1

t0(ξ)| ξ ∈ [X]
}

.

The norm of an interval vector ‖[x]‖ is defined as the supremum of the norms
of all vectors within the bounds [x]. For an interval set [x] ⊂ R

n we denote by
R

n ⊃ BM ([x], r) :=
⋃

x∈[x] BM (x, r), the union of the balls in M -norm of radius
r having the center in [x]. Each product of two interval matrices is overestimated
by using the interval-arithmetic operations.

Definition 5. We will call the rigorous tool the C1-CAPD algorithm, which is
currently used to generate conservative enclosures for the gradient in the LRT.

The output of the LRT are discrete-time reachtube over-approximation
cross-sections {t0, t1, . . . , tk}, tk = t0 + kT , i.e., reachtube over-approximations
BMj

(xj , δj) of the flow induced by (1) at time tj . We note that the algorithm
can be easily modified to provide a validated bounds for the finite-time Laypunov
exponent. We use the discrete-time output for the sake of comparison. However,
as a byproduct, a continuous reachtube over-approximation is obtained by means
of rough enclosures (Fig. 2) produced by the rigorous tool used and by applying
Theorem 2. The implementation details of the algorithm can be found in Sect. 4.

Fig. 2. Fine bounds provided at equally spaced time steps (colored), and coarse bounds
provided for the intermediate times by the rough enclosure (dotted boxes). (Color figure
online)

We are now ready to give the formal description of the LRT: (1) its inputs,
(2) its outputs, and (3) its computation.
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LRT: The Lagrangian Reachtube Algorithm
Input:

– ODE s (1): time-variant ordinary differential equations,
– T : time horizon, t0: initial time, k: number of steps, h = T/k: time step
– M0: initial positive-definite symmetric matrix defining the norm (6),
– [x0] ⊂ R

n: the initial bounds for the position of the center of the ball at t0,
– δ0 > 0: the radius of the ball (in M0 norm) about x0 at t0.

Output:

– {[xj ]}k
j=1 ⊂R

n×k: interval enclosures for ball centers xj at time t0 + jh,
– {Mj}k

j=1: norms defining metric spaces for the ball enclosures,
– {δj}k

j=1 ∈R
k
+: radiuses of the ball enclosures at xj for j = 1, . . . , k1.

Begin LRT

1. Set t1 = t0 +h. Propagate the center of the ball [x0] forward in time by the
time-step h, using the rigorous tool. The result is a conservative enclosure
for the solutions [φt1

t0([x0])] and the gradients [Dxφt1
t0([x0])].

2. Choose a matrix D ∈ [Dxφt1
t0([x0])], and compute a symmetric positive-

definite matrix M1, and its decomposition M1 = CT
1 C1, such that, it mini-

mizes the stretching factor for D. In other words, it holds that:
√

λmax

(
(CT

1 )−1DT M1DC−1
1

) ≤
√

λmax

(
(C̃T )−1DT M̃DC̃−1

)
, (14)

for all positive-definite symmetric matrices M̃ . In the actual code we find
the minimum with some resolution, i.e., we compute M1, such that it is
close to the optimal in the sense of (18), using the procedure presented in
Subsect. 3.6.

3. Decide whether to change the norm of the ball enclosure from M0 to M1 (if
it leads to a smaller stretching factor). If the norm is to be changed keep M1

as it is, otherwise M1 = M0,
4. Compute an over-approximation for BM0([x0], δ0), which is representable

in the rigorous tool employed by the LRT, and can be used as input to
propagate forward in time all solutions initiating in BM0([x0], δ0). This is a
product of intervals in canonical coordinates [X] ⊂ R

n, such that:

BM0([x0], δ0) ⊂ [X].

We compute the over-approximation using the interval arithmetic expression:

C−1
0 (C0 · [x0] + [−δ0, δ0]n)

1 Observe that the radius is valid for the Mj norm, BMj ([xj ], δj) ⊂ R
n for j = 1, . . . , k

is a conservative output, i.e. BMj ([xj ], δj) is an over-approximation for the set of
states reachable at time t1 starting from any state (t0, x), such that x ∈ X

Reach((t0, X ), tj) ⊂ BMj ([xj ], δj), for j = 1, . . . , k.

.
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5. Rigorously propagate [X] forward in time, using the rigorous tool over the
time interval [t0, t1]. The result is a continuous reachtube, providing bounds
for [Φt

t0([X])], and [DxΦt
t0([X])] for all t ∈ [t0, t1]. We employ an integration

algorithm with a fixed time-step h. As a consequence “fine” bounds are
obtained for t = t1. We denote those bounds by:

[φt1
t0([X])], [Dxφt1

t0([X])].

We remark that for the intermediate time-bounds, i.e., for:

[φt
t0([X])], for t ∈ (t0, t1) , (15)

the so-called rough enclosures can be used. These provide coarse bounds, as
graphically illustrated in Fig. 2 in the appendix.

6. Compute interval matrix bounds for the M0/M1 Cauchy-Green deformation
tensors:

[(
(CT

0 )−1 · [
Dxφt1

t0([X])
]T · CT

1

)
· (

C1 · [
Dxφt1

t0([X])
] · C−1

0

)]
, (16)

where CT
0 , C0 are s.t. CT

0 C0 = M0, and CT
1 , C1 are s.t. CT

1 CT = M1. The
interval matrix operations are executed in the order given by the brackets.

7. Compute a value Λ > 0 (M0/M1 stretching factor) as an upper bound for
the square-root of the maximal eigenvalue of each (symmetric) matrix in
(16):

Λ ≥
√

λmax (C),

for all C ∈
[(

(CT
0 )−1 · [

Dxφt1
t0([X])

]T · CT
1

)
· (

C1 · [
Dxφt1

t0([X])
] · C−1

0

)]
.

This quantity Λ can be used for the purpose of computation of validated
bound for the finite-time Lyapunov exponent

FTLE(BM0([x0], δ0)) =
1

t1 − t0
ln(Λprev · Λ),

where Λprev is the product of all stretching factors computed in previous
steps.

8. Compute the new radius for the ball at time t1 = t0 + h:

δ(t1) = Λ · δ(t0),

9. Set the new center of the ball at time t1 as follows:

[x1] = [φt1
t0([x0])].

10. Set the initial time to t1, the bounds for the initial center of the ball to
[x1], the current norm to M1, the radius in M1-norm to δ1 = Λ · δ0, and the
ball enclosure for the set of initial states to BM1([x1],Λ · δ(t0)). If t1 ≥ T
terminate. Otherwise go back to 1.

End LRT
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3.4 LRT-Algorithm Correctness Proof

In this section we provide a proof that the LRT, our new reachtube-computation
algorithm, is an overapproximation of the behavior of the system described by
Eq. (1). This main result is captured by the following theorem.

Theorem 3 (LRT-Conservativity). Assume that the rigorous tool used in the
Lagrangian Reachtube Algorithm (LRT) produces conservative gradient enclo-
sures for system (1) in the sense of Definition 2, and it guarantees the existence
of the solutions within time intervals. Assume also that the LRT terminates on
the provided inputs.

Then, the output of the LRT is a conservative reachtube over-approximation
of (1) at times {tj}k

j=0, that is:

Reach((t0,X ), tj) ⊂ BMj
([xj ], δj), for j = 1, . . . , k,

bounded solutions exists for all intermediate times t ∈ (tj , tj+1).

Proof. Let X = BM0([x0], δ0) be a ball enclosure for the set of initial states.
Without loosing generality we analyze the first step of the algorithm. The same
argument applies to the consecutive steps (with the initial condition changed
appropriately, as explained in the last step of the algorithm).

The representable enclosure [X] ⊂ R
n (product of intervals in canonical

coordinates) computed in Step 4 satisfies BM0([x0], δ0) ⊂ [X]. By the assumption
the rigorous-tool used produces conservative enclosures for the gradient of the
flow induced by ODEs (1). Hence, as the set [X] containing BM0([x0], δ0) is
the input to the rigorous forward-time integration procedure in Step 5, for the
gradient enclosure [Dxφt1

t0([X])] computed in Step 5, it holds that
{
Dxφt1

t0(x) for all x ∈ X} ⊂ [Dxφt1
t0([X])].

Therefore, the set [Dxφt1
t0([X])] can be interpreted as the set D, i.e., the compact

set containing all gradients of the solution at time t1 with initial condition in
BM0([x0], δ0) appearing in Theorem 1, see (11). As a consequence, the value Λ
computed in Step 7 satisfies the following inequality:

Λ ≥
√

λmax

(
(CT

1 )−1DT M0DC−1
1

)
, for all D ∈ D.

From Theorem 2 it follows that:

φt1
t0(x) ∈ BM1(φ

t1
t0([x0]),Λ · δ(t0)) for all x ∈ X ,

which implies that:

Reach((t0,X ), t1) ⊂ BM1([φ
t1
t0([x0])],Λ · δ(t0))

which proves our overapproximation (conservativity) claim. Existence of the
solutions for all times t ∈ (t0, t1) is guaranteed by the assumption about the
rigorous tool (in the step 5 of the LRT algorithm we use rough enclosures, see
Fig. 2). �
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3.5 Wrapping Effect in the Algorithm

A very important precision-loss issue of conservative approximations, and there-
fore of validated methods for ODEs, is the wrapping effect. This occurs when
a set of states is wrapped (conservatively enclosed) within a box defined in a
particular norm. The weighted M -norms technique the LRT uses (instead of the
standard Euclidean norm) is a way of reducing the effect of wrapping. More
precisely, in Step 7 of every iteration, the LRT finds an appropriate norm which
minimizes the stretching factor computed from the set of Cauchy-Green defor-
mation tensors.

However, there are other sources of the wrapping effect in the algorithm. The
discrete reachtube bounds are in a form of a ball in appropriate metric space,
which is an ellipsoidal set in canonical coordinates, see example on Fig. 3(a). In
Step 4 of the LRT algorithm, a representable enclosure in canonical coordinates
for the ellipsoidal reachtube over-approximation is computed. When the ellip-
soidal set is being directly wrapped into a box in canonical coordinates (how it is
done in the algorithm currently), the wrapping effect is considerably larger than
when the ellipsoidal set is wrapped into a rectangular set reflecting the eigen-
coordinates. We illustrate the wrapping effect using the following weighted norm
(taken from one of our experiments):

M =
[

7 −9.5
−9.5 19

]
(17)

Figure 3 shows the computation of enclosures for a ball represented in the
weighted norm given by M . It is clear from Fig. 1(c) that the box enclosure
of the ball in the eigen-coordinates (blue rectangle) is much tighter than the box
enclosure of it in the canonical coordinates (green square).

Fig. 3. (a) A ball in the weighted norm given by M of radius 1 (the ellipsoidal set).
(b) The ellipsoidal set in its eigen-coordinates (unrotated). (c) Wrapping the ellip-
soidal set in a box: blue rectangle in eigen-coordinates and green square in canonical-
coordinates. (Color figure online)

Step 6 of the LRT is another place where reducing the wrapping effect has the
potential to considerably increase the precision of the LRT. This step computes
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the product of interval matrices, which results in large overapproximations for
wide-intervals matrices. In fact, in the experiments considered in Sect. 4, if the
initial-ball radius is large, we observed that the overestimate of the stretching fac-
tor tends to worsen the LRT performance in reachtube construction, when com-
pared to a direct application of CAPD and Flow*. We plan to find workarounds
for this problem. One possible solution would be to use matrix decomposition,
and compute the eigenvalues of the matrix by using this decomposition.

3.6 Direct Computation of the Optimal M-norm

The computation of the optimal M -norm enables the estimation of the streching
factor. Step 7 of the LRT finds norm M1 and decomposes it as M1 = CT

1 C1,
such that, for a gradient matrix D the following inequality holds for all positive-
definite symmetric matrices M̃ :

√
λmax

(
(CT

1 )−1DT M1DC−1
1

) ≤
√

λmax

(
(C̃T )−1DT M̃DC̃−1

)
, (18)

Below we illustrate how to compute M1 for 2D systems. This can be gener-
alized to higher-dimensional systems.

(I) D has complex conjugate eigenvalues λ = α ± iβ. In this case w± iv is
the associated pair of complex conjugate eigenvectors, where w, v ∈ R

2. Define:

C =
[
w v

]−1

As a consequence we have the following equations:

CDC−1 =
[

α β
−β α

]
, and (CT )−1DT CT =

[
α −β
β α

]
,

Thus, one obtains the following results:

(CT )−1DT MAC−1 = ((CT )−1DT CT )(CDC−1) =
[
α2 + β2 0

0 α2 + β2

]
,

Clearly, one has that:

λmax((CT )−1DT MDC−1) = α2 + β2.

As the eigenvalues of (CT )−1DT MDC−1 are equal, it follows from the identity
of the determinants that the inequality below holds for any M̃ = C̃T C̃:

λmax((CT )−1DT MDC−1) ≤ λmax((C̃T )−1DT M̃DC̃−1)

(II) D has two distinct real eigenvalues λ1 �= λ2. In this case we do not find
a positive-definite symmetric matrix. However, we can find a rotation matrix,
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defining coordinates in which the stretching factor is smaller than in canonical
coordinates (M -norm). Let B ∈ R

2×2 be the eigenvectors matrix of D. Denote:

B−1DB = D̃ =
[
λ1 0
0 λ2

]
.

Let R be the rotation matrix

R =
[
c −s
s c

]
, c, s �= 0, hence, R−1D̃R =

[
λ1c2+λ2s2

c2+s2
(λ1−λ2)cs

c2+s2

− (λ1−λ2)cs
c2+s2

λ1c2+λ2s2

c2+s2

]

.

For s, c = 1 we have RT D̃T (RT )−1R−1D̃R =

[(
λ1+λ2

2

)2
0

0
(

λ1+λ2
2

)2

]

.

Therefore, we may set C = (BR)−1, which for λ1 < λ2 results in
λmax(CT DT (CT )−1C−1DC) < λmax(DT D), because

(
λ1+λ2

2

)2
< λ2

2.

(III) D ∈ R
n×n, where n > 2. In this case we call the Matlab engine part of

our code. Precisely, we use the external linear-optimization packages [16,24]. We
initially set γ = (λ1λ2 · · · λn)1/n. Then, using the optimization package, we try
to find M1 and its decomposition, such that:

√
λmax

(
(CT

1 )−1DT M1DC−1
1

) ≤ γ, (19)

If we are not successful, we increase γ until an M1 satisfying (19) is found.

4 Implementation and Experimental Evaluation

Prototype Implementation. Our implementation is based on interval arith-
metic, i.e. all variables used in the algorithm are over intervals, and all compu-
tations performed are executed using interval arithmetic. The main procedure
is implemented in C++, which includes header files for the CAPD tool (imple-
mented in C++ as well) to compute rigorous enclosures for the center of the ball
at time t1 in step 1, and for the gradient of the flow at time t1 in step 5 of the
LRT algorithm (see Sect. 3.3).

To compute the optimal norm and its decomposition for dimensions higher
than 2 in step 2 of the LRT algorithm, we solve a semidefinite optimization
problem. We found it convenient to use dedicated Matlab packages for that
purpose [16,24], in particular for Case 3 in Sect. 3.6.

To compute an upper bound Λ for the square-root of the maximal eigenvalue
of all symmetric matrices in some interval bounds, we used the VERSOFT pack-
age [27,28] implemented in Intlab [29]. To combine C++ and the Matlab/Intlab
part of the implementation, we use an engine that allows one to call Matlab
code within C++ using a special makefile. The source code, numerical data, and
readme file describing compilation procedure for LRT can be found online [14].

We remark that the current implementation is a proof of concept; in particu-
lar, it is not optimized in terms of the runtime—a direct CAPD implementation
is an order of magnitude faster. We will investigate ways of significantly improv-
ing the runtime of the implementation in future work.



Lagrangian Reachabililty 395

Experimental Evaluation. We compare the results obtained by LRT with
direct CAPD and Flow* on a set of standard benchmarks [6,10]: the Brussela-
tor, inverse-time Van der Pol oscillator, the Lorenz equations [18], a robot arm
model [2], a 7-dimensional biological model [10], and a 12-dimensional polyno-
mial [1] system. Additionally, we consider the forced Van der Pol oscillator [30]
(a time-variant system), and the Mitchell Schaeffer [23] cardiac cell model.

Our results are given in Table 1, and were obtained on a Ubuntu 14.04 LTS
machine, with an Intel Core i7-4770 CPU 3.40 GHz x 8 processor and 16 GB
memory. The results presented in the columns labeled (direct) CAPD and Flow*
were obtained using the CAPD software package and Flow*, respectively. The
internal parameters used in the codes can be checked online [14]. The com-
parison metric that we chose is ratio of the final and initial volume, and ratio
of the average and initial volume. We compute directly volumes of the reach-
tube over-approximations in form of rectangular sets obtained using CAPD,
and Flow* software. Whereas, the volumes of the reachtube over-approximations
obtained using the LRT algorithm are approximated by the volumes of the tight-
est rectangular enclosure of the ellipsoidal set, as illustrated on Fig. 3(c). The
results in nLRT column were obtained using a naive implementation of the LRT
algorithm, in which the metric space is chosen to be globally Euclidean, i.e.,
M0 = M1 = · · · = Mk = Id. For MS model the initial condition (i.c.) is in stable
regime. For Lorenz i.c. is a period 2 unstable periodic orbit. For all the other
benchmark equations the initial condition was chosen as in [10].

Some interesting observations about our experiments are as follows. Figure 4
illustrates that the volumes of the LRT reachtube of the forced Van der Pol
oscillator increase significantly for some initial time-steps compared to CAPD
reachtube (nevertheless reduce in the long run). This initial increase is related

Table 1. Performance comparison with Flow* and CAPD. We use the following abbre-
viations: B(2)-Brusselator, I(2)-Inverse Van der Pol oscillator, L(3)-Lorenz attractor,
F(2)-Forced Van der Pol oscillator, M(2)-Mitchell Schaeffer cardiac cell model, R(4)-
Robot arm, O(7)-Biology model, A(12)-Polynomial system (number inside parenthesis
denotes dimension). T: time horizon, dt: time step, ID: initial diameter in each dimen-
sion, (F/I)V: ratio of final and initial volume, (A/I)V: ratio of average and initial
volume. NA: Not applicable, Fail: Volume blow-up.

BM dt T ID LRT Flow* (direct) CAPD nLRT

(F/I)V (A/I)V (F/I)V (A/I)V (F/I)V (A/I)V (F/I)V (A/I)V

B(2) 0.01 20 0.02 7.7e−5 0.09 7.9e−5 0.15 Fail Fail Fail Fail

I(2) 0.01 20 0.02 4.3e−9 0.09 5e−9 0.12 7.4e−9 0.10 1.45 1.31

L(3) 0.001 2 1.4e−6 1.6e5 9.0e3 2.1e13 7.1e12 4.5e4 1.7e3 1.2e22 4.9e19

F(2) 0.01 40 2e−3 1.2e−42 1.01 NA NA 6.86e−4 0.18 5.64e7 3.21e5

M(2) 0.001 4 2e−3 0.006 0.22 0.29 0.54 0.29 0.52 4.01 2.24

R(4) 0.01 20 1e−2 2.2e−19 0.07 2.4e−15 0.31 2.9e−11 0.23 Fail Fail

O(7) 0.01 4 2e−4 71.08 34.35 272 5.1e4 4.3e3 620 Fail Fail

P(12)) 5e−4 0.1 0.01 5.25 4.76 290 64.6 280 62.4 19.4 6.2
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Fig. 4. Volume comparison for forced Van der Pol Oscillator.

to the computation of new coordinates, which are significantly different from
the previous coordinates, resulting in a large stretching factor in step 7 of the
LRT algorithm. Namely, we observed that it happens when the coordinates are
switched from Case II to Case I, as presented in Sect. 3.6. We, however, observe
that this does not happen in the system like MS cardiac model (see Fig. 5(a)).
We believe those large increases of stretching factors in systems like fVDP can
be avoided by smarter choices of the norms. We will further investigate those
possibilities in future work.

Table 1 shows that LRT does not perform well for Lorentz attractor compared
to CAPD (see also Fig. 5(b)), as the CAPD tool is current state of the art for
such chaotic systems. LRT, however, performs much better than Flow* for this
example. In all other examples, the LRT algorithm behaves favorably (outputs
tighter reachtube, compare (F/I)V) in the long run.

Fig. 5. Volume comparison in two important benchmarks
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5 Conclusions

We presented LRT, a rigorous procedure for computing ReachTube overapprox-
imations based on Cauchy-Green stretching factor computation, in Lagrangian
coordinates. We plan to pursue further research on our algorithm. One appeal-
ing possibility is to extend LRT to hybrid systems widely used in research on
cardiac dynamics, and many other fields of study.

We also plan to implement LRT with forward-in-time integration and
conservative-enclosures computation of the gradient, by just using a simple inde-
pendent code (instead of CAPD). By such a code we mean a rigorous integration
procedure based, for example, on the Taylor’s method. This code would directly
compute an interval enclosure for the Cauchy-Green deformation tensors in an
appropriate metric space. It would then be interesting to compare the wrapping-
reduction performance of such a code with the procedure described above.

Acknowledgments. Research supported in part by the following grants: NSF IIS-
1447549, NSF CPS-1446832, NSF CPS-1446725, NSF CNS-1445770, NSF CNS-
1430010, AFOSR FA9550-14-1-0261 and ONR N00014-13-1-0090.

A Proofs of the Lemmas in Sect. 2

Lemma 3. Consider the Cauchy problem (1). Let x0, y0 ∈ R
n be two initial

conditions at time t0. Let M ∈ R
n×n be a positive-definite symmetric matrix

and CT C = M be its decomposition. For t1 ≥ t0, it holds that

‖φt1
t0(x0)−φt1

t0(y0)‖M ≤
√

λ̂
(
(CT )−1

(
Dxφt1

t0(ξ)
)T

M Dxφt1
t0(ξ)C

−1
)

‖x0 − y0‖M

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1]. For the particular case of the
Euclidean norm, (8) takes the form

‖φt1
t0(x0) − φt1

t0(y0)‖2 ≤
√

λmax

((
Dxφt1

t0(ξ)
)T · Dxφt1

t0(ξ)
)

‖x0 − y0‖2.

Proof. Let ξ(ω) = ωx0 + (1 − ω)y0. From

∫ 1

0

Dxφt1
t0(ξ(ω)) dω =

1
x0 − y0

(
φt1

t0(x0) − φt1
t0(y0)

)
,

and the well known mean value theorem for integrals, it holds that

φt1
t0(x0) − φt1

t0(y0) = Dxφt1
t0(ξ̂)(x0 − y0)

for some ω̂ ∈ [0, 1], ξ(ω̂) = ξ̂. From taking norms in above equation we obtain

‖φt1
t0(x0) − φt1

t0(y0)‖ = ‖Dxφt1
t0(ξ̂)(x0 − y0)‖ ≤ ‖Dxφt1

t0(ξ̂)‖‖x0 − y0‖.
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Replacing ‖Dxφt1
t0(ξ̂)‖2 with the inducted Euclidean matrix norm we obtain (9).

If we use the weighted M -norm (6) we have for the matrix norm (7)

‖φt1
t0

(x0)−φt1
t0

(y0)‖M ≤
√

λmax((CT )−1
(
Dxφt1

t0
(ξ̂)
)T

M Dxφt1
t0

(ξ̂)C−1) ‖x0 − y0‖M

�
Lemma 4. Consider the Cauchy problem (1). Let x0, y0 ∈ R

n be two initial con-
ditions at time t0. Let M0,M1 ∈ R

n×n be positive-definite symmetric matrices,
and CT

0 C0 = M0, CT
1 C1 = M1 their decompositions respectively. For t1 ≥ t0, it

holds that

‖φt1
t0(x0) − φt1

t0(y0)‖M1

≤
√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
‖x0 − y0‖M0 ,

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1].

Proof. Let ξ = ωx0+(1−ω)y0 for some ω ∈ [0, 1]. We use the equality φt1
t0(x0)−

φt1
t0(y0) = Dxφt1

t0(ξ)(x0 − y0) derived in the proof of Lemma 1. Let us denote
A := Dxφt1

t0(ξ), and w = (x0 − y0). It holds that

‖φt1
t0

(x0) − φt1
t0

(y0)‖M1 = ‖Aw‖M1 =
√

(Aw)TM1(Aw) =
√

wT (ATM1A)w =√
wTCT

0 ((CT
0 )−1ATM1AC−1

0 )C0w ≤
√

λmax

(
(CT

0 )−1ATM1AC−1
0

)√
wTCT

0 C0w

=
√

λmax

(
(CT

0 )−1ATM1AC−1
0

) ‖w‖M0 ��
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Abstract. Control systems can be subject to outside inputs, environ-
mental effects, disturbances, and sensor/actuator inaccuracy. To model
such systems, linear differential equations with constrained inputs are
often used, ẋ(t) = Ax(t) + Bu(t), where the input vector u(t) stays in
some bound. Simulating these models is an important tool for detecting
design issues. However, since there may be many possible initial states
and many possible valid sequences of inputs, simulation-only analysis
may also miss critical system errors. In this paper, we present a scalable
verification method that computes the simulation-equivalent reachable
set for a linear system with inputs. This set consists of all the states that
can be reached by a fixed-step simulation for (i) any choice of start state
in the initial set and (ii) any choice of piecewise constant inputs.

Building upon a recently-developed reachable set computation tech-
nique that uses a state-set representation called a generalized star, we
extend the approach to incorporate the effects of inputs using linear pro-
gramming. The approach is made scalable through two optimizations
based on Minkowski sum decomposition and warm-start linear program-
ming. We demonstrate scalability by analyzing a series of large bench-
mark systems, including a system with over 10,000 dimensions (about
two orders of magnitude larger than what can be handled by existing
tools). The method detects previously-unknown violations in benchmark
models, finding complex counter-example traces which validate both its
correctness and accuracy.

1 Introduction

Linear dynamical systems with inputs are a powerful formalism for modeling
the behavior of systems in several disciplines such as robotics, automotive, and
feedback mechanical systems. The dynamics are given as linear differential equa-
tions and the sensor noise, input uncertainty, and modeling error make up the
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bounded input signals. For ensuring the safety of such systems, an engineer
would simulate the system using different initial states and input signals, and
check that each simulation trace is safe. While simulations are helpful in devel-
oping intuition about the system’s behavior, they might miss unsafe behaviors,
as the space of valid input signals is vast.

In this paper, we present a technique to perform simulation-equivalent reach-
ability and safety verification of linear systems with inputs. That is, given a
linear system ẋ(t) = Ax(t) + Bu(t), where x(t) is the state of the system and
u(t) is the input, we infer the system to be safe if and only if all the discrete
time simulations from a given initial set and an input space are safe. We restrict
our attention to input signals that are piecewise constant, where the value of
the input signal u(t) is selected from a bounded set U every h time units. We
consider piecewise constant input signals for two main reasons. First, the space
of all input signals spans an infinite-dimensional space and hence is hard to ana-
lyze. To make the analysis tractable, we restrict ourselves to piecewise constant
signals which can closely approximate continuous signals. Second, our approach
is driven by the desire to produce concrete counterexamples if the system has an
unsafe behavior. Counterexamples with input signals that are piecewise constant
can be easily validated using numerical simulations.

A well-known technique for performing safety verification is to compute the
reachable set, or its overapproximation. The reachable set includes all the states
that can be reached by any trajectory of the linear system with a valid choice
of inputs at each time instant. Typically, the reachable set is stored in data
structures such as polyhedra [12], zonotopes [14], support functions [16], or Tay-
lor models [8]. For linear systems, the effect of inputs can be exactly computed
using the Minkowski sum operation [15]. While being theoretically elegant, a
potential difficulty with this method is that Minkowski sum can greatly increase
the complexity of the set representation, especially in high dimensions and after
a large number of steps. This previously limited its application to reachability
methods where Minkowski sum is efficient: zonotopes and support functions.

In this paper, we demonstrate that it is possible to efficiently perform the
Minkowski sum operation using a recently-proposed generalized star represen-
tation and a linear programming (LP) formulation. The advantage of using the
generalized star representation is that the reachable set of an n-dimensional
linear system (without inputs) can be computed using only n+1 numerical sim-
ulations [10], making it scalable and fast. The method is also highly accurate
(assuming the input simulations are accurate). Furthermore, it is also capable of
generating concrete counterexamples, which is generally not possible with other
reachability approaches.

The contributions of this paper are threefold. First, we define the notion of
simulation-equivalent reachability and present a technique to compute it using
the generalized star representation, Minkowski sum, and linear programming.
Second, we present two optimizations which improve the speed and scalability
of basic approach. The first optimization leverages a key property of Minkowski
sum and decomposes the linear program that needs to be solved for verifica-
tion. The second optimization uses the result of the LP at each step to warm-
start the computation at the next time step. Third, we perform a thorough
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evaluation, examining the effect of each of the optimizations and comparing the
approach versus existing reachability tools on large benchmark systems rang-
ing from 9 to 10914 dimensions. The new approach successfully analyzes mod-
els over two orders of magnitude larger than the state-of-the-art tools, finds
previously-unknown errors in the benchmark systems, and generates highly-
accurate counter-example traces with complex input sequences that are exter-
nally validated to drive the system to an error state.

2 Preliminaries

2.1 Problem Definition

A system consists of several continuous variables evolving in the space of R
n.

States denoted as x and vectors denoted as v lie in R
n. A set of states S ⊆ R

n.
The set S1 ⊕S2

Δ= {x1 +x2 |x1 ∈ S1, x2 ∈ S2} is defined to be the Minkowski
sum of sets S1 and S2 , where x1 + x2 is addition of n-dimensional points.

The behaviors of control systems with inputs are modeled with differential
equations. In this work, we consider time-invariant affine systems with bounded
inputs given as:

ẋ(t) = Ax(t) + Bu(t); u(t) ∈ U, (1)

where A ∈ R
n×n and B ∈ R

n×m are constant matrices, and U ⊆ R
m is the

set of possible inputs. We assume that the system has m inputs and hence the
input function u(t) is given as u : R → R

m. Given a function u(t), a trajectory
of the system in Eq. 1 starting from the initial state x0 can be defined as a
function ξ(x0, u, t) that is a solution to the differential equation, d

dtξ(x0, u, t) =
Aξ(x0, u, t) + Bu(t). If u(t) is an integrable function, the closed form expression
to the unique solution to the differential equation is given as:

ξ(x0, u, t) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ)dτ. (2)

Fig. 1. The state reached at time t from
x0 + α1v1 + α2v2 is identical to ξ(x0, t) +
α1(ξ(x0+v1, t)−ξ(x0, t))+α2(ξ(x0+v2, t)−
ξ(x0, t)).

If u(t) is a constant function set
to the value of u0, then we abuse
notation and use ξ(x, u0, t) to rep-
resent the trajectory. If the input is
a constant 0, we drop the term u
and denote the trajectory as ξ(x, t).
For performing verification of linear
systems, we leverage an important
property often called the superposi-
tion principle. Given a state x0 ∈ R

n

and vectors v1, v2, . . . , vn ∈ R
n, and

α1, α2, . . . , αn ∈ R, we have

ξ(x0 +
n∑

i=1

αivi, t) = ξ(x0, t) +
n∑

i=1

αi(ξ(x0 + vi, t) − ξ(x0, t)). (3)
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An illustration of the superposition principle in 2-d is shown in Fig. 1.
We refer to the dynamics without the input (ẋ = Ax) as the autonomous

system and the system ẋ = Ax + Bu(t) as the system with the inputs. As men-
tioned in the introduction, we restrict our attention to inputs that are piecewise
constant. That is, the value of inputs are updated periodically with time period
h. The inputs stay constant for the time duration [k × h, (k + 1) × h]. A simu-
lation of such a system records the state of the system at time instants that are
multiples of h, the same as the period when the inputs get updated. A formal
definition of such a simulation is given in Definition 1.

Definition 1 (Fixed-Step Simulation of a System with Inputs). Given
an initial state x0, a sequence of input vectors u, and a time period h, the
sequence ρ(x0, u, h) = x0

u0−→ x1
u1−→ x2

u2−→ . . ., is a (x0, u, h)-simulation
of a system in Eq. 1 if and only if all ui ∈ U , and for each xi+1 we have that
xi+1 is the state of the trajectory starting from xi when provided with constant
input ui for h time units, xi+1 = ξ(xi, ui, h). Bounded-time variants are called
(x0, u, h, T )-simulations. We drop u to denote simulations where no input is
provided.

For simulations, h is called the step size and T is called time bound. The set
of states encountered by a (x0, u, h)-simulation is the set of states in R

n at the
multiples of the time step, {x0, x1, . . .}. Given a simulation ρ(x0, h, T ) as defined
in Definition 1, we can use the closed-form solution in Eq. 2 and substitute u to
obtain the relationship between xi and xi+1,

xi+1 = eAhxi + G(A, h)Bui (4)

where G(A, h) =
∑∞

i=0
1

(i+1)!A
ihi+1.

Definition 2 (Simulation-Equivalent Reachable Set). Given an initial
set Θ and time step h, the simulation-equivalent reachable set is the set of
all states that can be encountered by any (x0, u, h)-simulation starting from any
x0 ∈ Θ, for any valid sequence of input vectors u. This can also be extended to
a time-bounded version.

We define the system to be safe if and only if the simulation-equivalent reach-
able set and the unsafe set Δ are disjoint. In this paper, the initial set Θ, the
space of allowed inputs U , and the unsafe set Δ are bounded polyhedra (sets of
linear constraints).

2.2 Generalized Star Sets and Reachable Set Computation

Definition 3 (Generalized Star Set). A generalized star set (or gener-
alized star, or simply star) Θ is a tuple 〈c, V, P 〉 where c ∈ R

n is the center,
V = {v1, v2, . . . , vm} is a set of m vectors in R

n called the basis vectors, and
P : R

m → {�,⊥} is a predicate. The basis vectors are arranged to form the
star’s n × m basis matrix. The set of states represented by the star is given as

[[Θ]] = {x | x = c + Σm
i=1αivi such that P (α1, . . . , αm) = �}.
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Sometimes we will refer to both the tuple Θ and the set of states [[Θ]] as Θ. In
this work, we restrict the predicates to be a conjunction of linear constraints,
P (α) Δ= Cα ≤ d where, for p linear constraints, C ∈ R

p×m, α is the vector of
m-variables i.e., α = [α1, . . . , αm]T , and d ∈ R

p×1.

This definition is slightly more general than the one used in existing work [10],
where stars were restricted to having no more than n basis vectors. This gener-
alization is important when computing the input effects as a star. Any set given
as a conjunction of linear constraints in the standard basis can be immediately
converted to the star representation by taking the center as the origin, the n
basis vectors as the standard orthonormal basis vectors, and the predicate as
the original conjunction linear condition with each xi replaced by αi. Thus, we
can assume the set of initial states Θ is given as a star.

Reachable Set Computation With Stars. Due to the superposition princi-
ple, simulations can be used to accurately compute the time-bounded simulation-
equivalent reachable set for an autonomous (no-input) linear system from any
initial set Θ [6,10]. For an n dimensional system, only n + 1 simulations are
necessary. The algorithm, described more fully in AppendixA, takes as input
an initial set Θ, a simulation time step h, and time bound k × h, and returns a
tuple 〈Θ1, Θ2, . . . , Θk〉, where the sets of states that all the simulations starting
from Θ can encounter at time instances i × h is given as Θi.

In brief, the algorithm first generates a discrete time simulation ρ0 = s0[0],
s0[1], . . . , s0[k] of the system from the origin at each time step. Then, n simula-
tions are performed from the state which is unit distance along each orthonormal
vector from the origin, ρj = sj [0], sj [1], . . . , sj [k]. Finally, the reachable set at
each time instant i × h is returned as a star Θi = 〈ci, Vi, P 〉 where ci = ρ0[i],
Vi = {v1, v2, . . . , vn} where vj = ρj [i] − ρ0[i], and P is the same predicate as
in the initial set Θ. This accuracy of this approach is dependent on the errors
in the n + 1 input simulations, which in practice can often be made arbitrarily
small.

Given an unsafe set Δ as a conjunction of linear constraints, discrete-time
safety verification can be performed by checking if the intersection of each Θi∩Δ
is nonempty where Θi is the reachable set at time instant i × h. This can be
done by solving for the feasibility of a linear program which encodes (1) the
relationship between the standard orthonormal basis and the star’s basis (given
by the basis matrix), (2) the linear constraints on the star’s basis variables α
from the star’s predicate, and (3) the linear conditions on the standard basis
variables from the unsafe states Δ. An example reachable set computation using
this algorithm, and the associated LP formulation, is provided in AppendixB.

If the LP is feasible, then there exists a point in the star that is unsafe.
Further, the trace from the initial states to the unsafe states can be produced
by taking the basis point from the feasible solution (α = [α1, . . . , αn]T ) and
multiplying it by the basis matrix the star in every preceding time step. This
will give a sequence of points (one for every multiple of the time step) in the
standard basis, starting from the initial set up to a point in the unsafe states.
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2.3 Reachability of Linear Systems with Inputs

The reachable set of a linear system with inputs can be exactly written as the
Minkowski sum of two sets, the first accounting for the autonomous system
(no-input) and the second accounting for the effect of inputs [17]. From Eq. 4,
this relationship is expressed as Θi+1 = eAhΘi ⊕ G(A, h)BU. Here, the eAhΘi

represents the evolution of the autonomous system and G(A, h)BU represents
the effect of inputs for the time duration h. Representing U = G(A, h)BU and
expanding the above equation, we have

Θi+1 = eA(i+1)hΘ ⊕ eA(i)hU ⊕ eA(i−1)hU ⊕ . . . ⊕ eAhU ⊕ U . (5)

Here eA(i+1)hΘ is the set reached by the autonomous system and the rest of
the summation represents the accumulated effects of the inputs.

The performance of the algorithm based on Eq. 5 critically depends on the
efficiency of the Minkowski sum operation of the set representation that is used.
In particular, representations such as polytopes were dismissed because of the
high complexity associated with computing their Minkowski sum [17], driving
researchers to instead use zonotopes and support functions.

3 Reachability of Linear Systems with Inputs Using Stars

In this section, we first present the basic approach for adapting Eq. 5 for use with
generalized stars. We then present two optimizations which greatly improve the
efficiency of the approach when used for safety verification.

3.1 Basic Approach

Recall that the expression for the reachable set given in Eq. 5 is

Θi = eAi×hΘ ⊕ eA(i−1)×hU ⊕ eA(i−2)×hU ⊕ . . . ⊕ eAhU ⊕ U .

where eAi×hΘ is the reachable set of the autonomous system and the remain-
der of the terms characterize the effect of inputs. Consider the jth term in the
remainder, namely, eA(j−1)×hU . This term is exactly same as the reachable set
of states starting from an initial set U after (j − 1) × h time units, and evolving
according to the autonomous dynamics ẋ = Ax.

Furthermore, the set U = G(A, h)BU can be represented as a star 〈c, V, P 〉
with m basis vectors, for an n-dimensional system with m inputs. This is done by
taking the origin as the center c, the set G(A, h)B as the star’s n×m basis matrix
V , and using the linear constraints U as the predicate P , replacing each input ui

with αi. With this, a simulation-based algorithm for computing the reachable set
with inputs is given in Algorithm1, which makes use of the AutonomousReach
function that is the autonomous (no-input) reachability technique described in
Sect. 2.2.

Algorithm 1, which we refer to as the Basic approach, computes the reachable
set of the autonomous part for initial set Θ in line 1 and the effect of the input U
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input : Initial state: Θ0, influence of inputs: U0 = G(A, h)BU , time bound:
k × h

output: Reachable states at each time step: (Ω0, Ω1 . . . , Ωk)
1 〈Θ1, Θ2, . . . , Θk〉 ← AutonomousReach(Θ0, h, k × h) ;
2 〈U1, U2, . . . , Uk〉 ← AutonomousReach(U0, h, k × h) ;
3 S ← U0;
4 for i = 1 to k do
5 Ωi ← Θi ⊕ S;
6 S ← S ⊕ Ui;

7 end
8 return (Ω1 . . . , Ωk);

Algorithm 1. The Basic approach computes the reachable set of states at

each time step up to time k × h, where AutonomousReach is the reachable set

computation technique presented in Sect. 2.2. For safety verification each of the

returned stars should be checked for intersection with the unsafe states using LP.

in line 2. The simulation-based AutonomousReach computation avoids the need to
compute and multiply by matrix exponential at every iteration. The variable S in
the loop from lines 4 to 7 computes the Minkowski sum of Ui⊕Ui−1⊕. . .⊕U1⊕U0.
The correctness of this algorithm follows from the expression for the reachable set
given in Eq. 5. Note that although the computations of the Ui sets can be thought
of as using an independent call to AutonomousReach, they can be computed
more efficiently by reusing to simulations used to compute the Θi sets. Finally,
Algorithm 1 needs to perform Minkowski sum with stars, for which we propose
the following approach:

Minkowski Sum with Stars. Given two stars Θ = 〈c, V, P 〉 with m basis
vectors and Θ′ = 〈c′, V ′, P ′〉 with m′ basis vectors, their Minkowski is a new
star Θ = 〈c, V , P 〉 with m + m′ basis vectors and (i) c = c + c′, (ii) V is the list
of m + m′ vectors produced by joining the list of basis vectors of Θ and Θ′, (iii)
P (α) = P (αm)∧P ′(αm′). Here αm ∈ R

m denotes the variables in Θ, αm′ ∈ R
m′

denotes the variables for Θ′, and α ∈ R
m+m′

denotes the variables for Θ (with
appropriate variable renaming).

Notice that both the number of variables in the star and the number of
constraints grow with each Minkowski sum operation. In an LP formulation of
these constraints, this would mean that both the number of columns and the
number of rows grows at each step in the algorithm. However, even though the
constraint matrix is growing in size, the number of non-zero entries added to
the matrix at each step is constant, so, for LP solvers that use a sparse matrix
representation, this may not be as bad as it first appears.

Example 1 (Harmonic Oscillator with Inputs). Consider a system with dynamics
ẋ = y + u1, ẏ = −x + u2, where u1, u2 are inputs in the range [−0.5, 0.5] that
can vary at each time step, and the initial states are x = [−6,−5], y = [0, 1].
A plot of the simulation-equivalent reachable states of this system is shown in
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Fig. 2. A plot of the simulation-equivalent reachable states for Example 1 using a π
4

step size, and the associated linear constraints representing the set at time π
2

(after
two steps).

Fig. 2 (left). The trajectories of this system generally rotate clockwise over time,
although can move towards or away from the origin depending on the values
of the inputs. The LP constraints which define the reachable states at time π

2
are given in Fig. 2 (right). Simulations are used to determine the values of the
autonomous star’s basis matrix (the red encircled values in the matrix). At each
time step, the input-free basis matrix gets updated exactly as in the case where
there were no inputs. Rows 3–6 in the constraints come from the conditions on
the initial states. Additionally, at each step, two columns are added to the LP
in order to account for the effects of the two inputs in the model. Rows 7–10
are the conditions on the inputs from the first step, and rows 11–14 are from
the second step. The blue dotted values are the each step’s input star’s basis
matrix, U = G(A, h)B. The basis matrix of the combined star is the 2 by 6
matrix constructed by combining the matrices of the basis matrices from the
autonomous star and each of the input-effect stars, each of which are 2 by 2.
Notice that, at each step, both the number of rows and the number of columns
in the LP constraints gets larger, although the number of non-zero entries added
to the matrix is constant. To extract a counter-example trace to a reachable
state, the LP would be solved in order to give specific assignments to each of the
variables. The values of x and y would be the final position that is reachable,
that could be, for example, minimized or maximized in the LP. Then, α1 and
α2 indicate the initial starting position, u′

1 and u′
2 are the inputs to apply at the

first step, and u1 and u2 are the inputs to apply at the second step.

3.2 Minkowski Sum Decomposition for Efficient Safety Verification

Algorithm 1 computes the reachable set Ωi at each step [17] in line 5 based on
Eq. 5 for safety verification with respect to an unsafe set Δ. As noted in Sect. 3.1,
the number of variables in Ωi increases linearly with i and hence for high dimen-
sional systems, checking whether Ωi ∩ Δ = ∅ using linear programming becomes
increasingly difficult. To improve the scalability of safety verification, we observe
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that it is not necessary to compute Ωi in the star representation and then check
for intersection with Δ. Consider a specific case where Δ is defined as a half-
space v ·x ≥ a. Checking safety of Ωi with respect to Δ is equivalent to comput-
ing the maximum value of the cost function v · x over the set Ωi and checking if
maxv·x(Ωi) ≥ a. As Ωi is a Minkowski sum of several sets, computing maxv·x(Ωi)
is equivalent to computing the maximum value of v ·x for each of the sets in the
Minkowski sum and adding these maximum values. This property is described
rigorously in Proposition 1. This observation was first made in [17] for zonotopes
and the authors leverage this property to avoid computing Minkowski sum for
safety verification. In this paper, we explicitly state the property for Minkowski
sum of any two sets and any linear cost function and note that it is independent
of the data structure used for representing the sets.

Proposition 1. If S = S1 ⊕ S2, then maxv(S) = maxv(S1) + maxv(S2), where
maxv is defined as the maximum value of the cost function v · x, v is any n-
dimensional vector and v · x is the dot product.

Proof. Let p1 and p2 be states in S1 and S2 respectively which maximize the
dot product. From the definition of Minkowski sum, p1 + p2 = p ∈ S. Since
p is in S, maxv(S) ≥ p · v, and therefore maxv(S) ≥ p · v = p1 · v + p2 · v =
maxv(S1) + maxv(S2).

For the other inequality, let q be the point in S which maximizes the dot
product. By the definition of Minkowski sum, there exist two points q1 ∈ S1

and q2 ∈ S2 where q = q1 + q2. Therefore, q · v = q1 · v + q2 · v. Notice now
that maxv(S1) ≥ q1 · v and maxv(S2) ≥ q2 · v, and so we can substitute to get
maxv(S) = q · v ≤ maxv(S1) + maxv(S2).

Since both inequalities must hold, maxv(S) = maxv(S1) + maxv(S2). �

As Ωi = Θi ⊕ Ui−1 ⊕ U1 ⊕ U (Eq. 5), it follows from Proposition 1 that, for
safety verification in the case of unsafe set Δ

Δ= v · x ≥ a, it suffices to compute
maxv·x Uj for all j and maxv·x Θi; add these values; and compare the summation
with a. In the general case, the unsafe states Δ may be a conjunction of half-
planes, say (v1 · x ≥ a1) ∧ (v2 · x ≥ a2) ∧ . . . ∧ (vl · x ≥ al). For such instances,
if Ωi ∩ Δ �= ∅, it is a necessary condition that ∀j,maxvj ·x(Ωi) ≥ aj . Thus, we
do not compute the full Minkowski sum representation of Ωi until the above
necessary condition is satisfied. Informally, we perform lazy computation of Ωi.

Additionally, all the Uj ’s appearing in Minkowski sum formulation of Ωi also
appear in Ωi+1. Therefore, we keep a running sum of the maximum values for
each Uj for all the linear functions and check the necessary conditions for all
Ωi. Only after checking the necessary conditions, we computing the Minkowski
sum and formulate the linear program for checking Ωi ∩ Δ = ∅. We refer to this
approach, shown in Algorithm2, as the Decomp method.

The algorithm starts by extracting each constraint hyperplane’s normal direc-
tion and value in lines 1 and 2. Lines 9 and 10 compute the maximum over all the
normal directions in the sets Θi and Ui. The tuple μ accumulates the maximum
over all inputs up to the current iteration, whereas λ is recomputed at each step
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input : Initial state: Θ, influence of inputs: U , time bound: k × h, unsafe set: Δ
output: safe or unsafe

1 〈v1, v2, . . . , vl〉 ← NormalDirections(Δ);
2 〈a1, a2, . . . , al〉 ← NormalValues(Δ);
3 〈Θ1, Θ2, . . . , Θk〉 ← AutonomousReach(Θ, h, k × h);
4 〈U1, U2, . . . , Uk〉 ← AutonomousReach(U , h, k × h);
5 U0 ← U ;
6 Θ0 ← Θ ;
7 μ ← 〈0, 0, . . . , 0〉;
8 for i = 1 to k do
9 λ ← 〈maxv1(Θi), maxv2(Θi), . . . , maxvl(Θi)〉;

10 μ ← 〈μ[1] + maxv1(Ui−1), μ[2] + maxv2(Ui−1), . . . , μ[l] + maxvl(Ui−1)〉;
11 if ∀j ∈ {1, . . . , l}, λ[j] + μ[j] ≥ aj then
12 if Θi ⊕ Ui−1 ⊕ Ui−2 ⊕ . . . ⊕ U0 ∩ Δ 
= ∅ then
13 return unsafe;
14 end

15 end

16 end
17 return safe;

Algorithm 2. The Decomp algorithm uses Minkowski sum decomposition to

avoid needing to solve the full LP at each iteration.

based on the autonomous system’s current generalized star. Only if all the linear
constraints can exceed their constraint’s value (the check on line 11), will the
full LP be formulated and checked on line 12.

3.3 Optimizing with Warm-Start Linear Programming

In this section, we briefly outline the core principle behind warm-start optimiza-
tion and explain why it is effective in safety verification using generalized stars.
Consider a linear program given as maximize cT y, Subject to: Hy ≤ g where
y ∈ R

m. To solve this LP, we use a two-phase simplex algorithm [18]. First, the
algorithm finds a feasible solution and second, it traverses the vertices of the poly-
tope defined by the set of linear conditions in the m-dimensional space to reach
the optimal solution. Finding the feasible solution is performed using slack vari-
ables and the traversal among feasible solutions is done by relaxing and changing
the set of active constraints. The time taken for the simplex algorithm to termi-
nate is directly proportional to the time taken to find a feasible solution and the
number of steps in the traversal from the feasible solution to the optimal solution.

The warm-start optimization allows the user (perhaps using a solution to an
earlier linear program) to explicitly specify the initial set of active constraints.
Internally, the slack variable associated with these constraints are assigned to be
0. This can speed-up the running time of simplex in two ways. If the set of active
constraints gives a feasible solution, then the first phase of simplex terminates
without any further computation. Second, if the user-provided active constraints



Simulation-Equivalent Reachability of Large Linear Systems with Inputs 411

correspond to a feasible solution is close to the optimal solution, the steps needed
during the second phase are reduced.

Similar to [6], we have used warm-start optimization in this paper for improv-
ing the efficiency of safety verification. Warm-start optimization works in this
context because we use the generalized star representation for sets. Consider
two consecutive reachable sets of the autonomous system Θi = 〈ci, Vi, P 〉 and
Θi+1 = 〈ci+1, Vi+1, P 〉 represented as generalized stars. Consider solving a linear
program for maximizing a cost function v · x over Θi and Θi+1. These two stars
differ in the value of the center and the set of basis vectors, but the predicate
remains unchanged. Moreover, if we choose have small time-steps, the differ-
ence between the values of center and basis vectors is also small. Therefore, the
set of active constraints in the predicate P is often identical for the optimal
solutions. Even in the cases where the active constraints are not identical, the
corresponding vertices are often close, reducing the work needed.

In this paper, we feed the active constraints of the first linear program i.e.,
maximizing v · x over Θi as a warm-start to the second linear program, i.e.,
maximizing v · x over Θi+1. We apply the same principle for the input stars Ui

and Ui+1. Hence, the warm-start optimization can also be used together with
the Minkowski sum decomposition optimization.

4 Evaluation

We encoded the techniques developed in this paper into a tool named Hylaa
(HYbrid Linear Automata Analyzer). Using this tool, we first evaluate the effects
of each of the proposed optimizations on the runtime of reachability computa-
tion. Then, we evaluate the overall approach on a benchmark set of systems
ranging from 9 to 10914 coupled continuous variables. All of the measurements
are run on a desktop computer running Ubuntu 16.04 x 64 with an Intel i7-3930K
processor (6 cores, 12 threads) running at 3.5 GHz with 24 GB RAM.

4.1 Optimization Evaluation

We examine the effects of each of our proposed optimizations for computing
reachability for linear-time invariant systems with inputs. We compare the Basic
algorithm from Sect. 3.1, against the Decomp approach described in Sect. 3.2.
The Warm method is the enhancement of the Basic approach with warm-start
optimization as described in Sect. 3.3, and Hylaa is the approach used in our
tool, which uses both Minkowski sum decomposition and LP warm-start. For
reference, we also include measurements for the no-input system (NoInput),
which could be considered a lower-bound for the simulation-based methods if
the time to handle the inputs could be eliminated completely. Finally, we com-
pared the approach with both optimizations (Hylaa) with other state-of-the-art
tools which handle time-varying inputs. We used the support function scenario
in the SpaceEx [13] tool (SpaceEx), and the linear ODE mode with Taylor model
order 1 (fastest speed) in the Flow* [8] tool (Flow*).
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Fig. 3. The performance of the generalized star and linear programming approach for
reachability computation (Basic), is improved by the warm-start linear programming
optimization (Warm), but not as much as when the Minkowski sum decomposition opti-
mization is used (Decomp). Combining both optimizations works even better (Hylaa).
The reachability time for the system without inputs (NoInput) is a lower bound.

For evaluation, we use the harmonic oscillator with input system, as described
in Example 1. Recall that the full LP grows at each step both in terms of
the number of columns and the number of rows. The unsafe condition used
is x + y ≥ 100, which is never reached but must be checked at each step.

We varied the number of steps in the problem by changing the step size and
keeping the time bound fixed at 2π. We then measured the runtime for each
of the methods, recording 10 measurements in each case. Figure 3 shows the
results with both the average runtime (lines), and the runtime ranges over all
10 runs (slight shaded regions around each line). Each optimization is shown
to improve the performance of the method, with Minkowski sum decomposition
having a larger effect on this example compared with warm-start LP. The fully
optimized approach (Hylaa) is not too far from the lower bound computed by
ignoring the inputs in the system (NoInput). In the tool comparison shown in
Fig. 4, the approach is shown to be comparable to the other reachability tools,
and outperforms both SpaceEx and Flow* when the model has a large number
of steps.

4.2 High-Dimensional Benchmark Evaluation

We evaluated the proposed approach using a benchmark suite for reachability
problems for large-scale linear systems [20]. This consists of nine reachability
benchmarks for linear systems with inputs of various sizes, taken from “diverse
fields such as civil engineering and robotics.” For each benchmark, we also con-
sidered a variant with a weakened or strengthened unsafe condition, so that each
system would have both a safe and an unsafe case. For all the systems, we used
a step size of 0.005 and the original time bound of 20. The results are shown in
Table 1.
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Fig. 4. The performance of our optimized generalized star representation reachability
approach (Hylaa) is compared to state-of-the art tools which use support functions
(SpaceEx) and Taylor Models (Flow*) as the state set representation. As the number
of steps gets larger, our approach surpasses the other tools on this example.

Our Hylaa tool was able to successfully verify or disprove invariant safety
conditions for all of the models, including the MNA5 model, which has 10914
dimensions. To the best of our knowledge, this is significantly (about two orders
of magnitude) larger than any system that has been verified without using any
type of abstraction methods to reduce the system’s dimensionality.

We also attempted to run SpaceEx (0.9.8f) and Flow* (2.0.0) on the bench-
mark models1. With Flow*, in order to successfully run the Motor (9 dimensions)
benchmark, we needed to use a smaller step size (0.0002), and set the Taylor
Model order parameter to 20. For SpaceEx, we used the support function sce-
nario which only requires a step size parameter. In the Motor (9 dimensions)
benchmark, however, this required us to halve the step size to 0.0025 in order
for SpaceEx to be able to prove the unsafe error states were not reachable with
the original safety condition. Consistent with the earlier analysis [20], SpaceEx’s
computation only succeeded for the Motor (9 dimensions) and Building (49
dimensions) benchmarks.

We also ran the benchmarks toggling the different optimizations, and could
show cases where warm-start greatly improves performance, and even outper-
forms Decomp. In the Beam model, for instance, Warm completes the safe case
in about 4 min, whereas Decomp takes 12 min (using both optimizations takes
about 1.4 min).

One important difference to keep in mind is that SpaceEx and Flow* overap-
proximate reachability at all times, which is slightly different than simulation-
equivalent reachability computed by Hylaa. Unlike Hylaa, they may catch error

1 Performance comparisons are difficult since runtime depends on the parameters
used. Since the submission of this work, the Building model has been used as part of
a reachability tools competition [1], in which both SpaceEx and Flow* participated.
Using the parameters from the competition, which were hand-tuned by the tool
authors, is likely to produce better runtimes than what we achieved in this paper.
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Table 1. Benchmark results. Stars (*) indicate original specifications.

Model Dims Unsafe error

condition

Tool Time (s) Safe? CE error (Abs/Rel) CE time

Motor* 9 x1 ∈ [0.35, 0.4] ∧
x5 ∈ [0.45, 0.6]

Hylaa 2.3 s � - -

SpaceEx 6.8 s � - -

Flow* 13m 19 s � - -

Motor 9 x1 ∈ [0.3, 0.4] ∧
x5 ∈ [0.4, 0.6]

Hylaa 0.4 s 2.5·10−7/2.4·10−7 0.04

SpaceEx 9.6 s - -

Flow* 14m 11 s - -

Building* 49 x25 ≥ 0.006 Hylaa 2.7 s � - -

SpaceEx 59.8 s � - -

Building 49 x25 ≥ 0.004 Hylaa 0.9 s 4.4·10−8/1.8·10−6 0.07

SpaceEx 59.2 s - -

PDE* 85 y1 ≥ 12 Hylaa 3.8 s � - -

PDE 85 y1 ≥ 10.75 Hylaa 1.2 s 1.5·10−8/6.7·10−8 0.025

Heat* 201 x133 ≥ 0.1 Hylaa 11.8 s � - -

Heat 201 x133 ≥ 0.02 Hylaa 10.1 s 5.8·10−8/1.6·10−7 15.67

ISS 271 y3 /∈
[−0.0007, 0.0007]

Hylaa 1m 28 s � - -

ISS* 271 y3 /∈
[−0.0005, 0.0005]

Hylaa 1m 23 s 8.5·10−6/1.3·10−5 13.71

Beam 349 x89 ≥ 2100 Hylaa 1m 23 s � - -

Beam* 349 x89 ≥ 1000 Hylaa 1m 19 s 2.0·10−5/4.2·10−9 16.045

MNA1* 579 x1 ≥ 0.5 Hylaa 4m 4 s � - -

MNA1 579 x1 ≥ 0.2 Hylaa 3m 49 s 1.9·10−6/4.9·10−7 16.555

FOM 1007 y1 ≥ 185 Hylaa 4m 10 s � - -

FOM* 1007 y1 ≥ 45 Hylaa 1m 7 s 1.0·10−6/5.6·10−7 0.29

MNA5* 10914 x1 ≥ 0.2 ∨ x2 ≥
0.15

Hylaa 6 h 23m � - -

MNA5 10914 x1 ≥ 0.1 ∨ x2 ≥
0.15

Hylaa 37m 27 s 1.4·10−6/1.8·10−6 1.92

cases that occur between time steps. The cost of this is that there may also
be false-positives; they do not produce counterexample traces when a system
is deemed unsafe. For example, choosing too small of a Taylor Model order or
too large of a time step in Flow* can easily result in all states, [−∞,∞], to be
computed as potentially reachable for all variables, which is not useful.

Another important concern is the accuracy of result. Since the proposed
approach uses numerical simulations that may not be exact as well as floating-
point computations and a floating-point LP solver, there may be errors that
accumulate in the computation. To address the issue of accuracy, we examine
the counterexamples produced when the error condition is reachable.
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Fig. 5. Hylaa found a counterexample trace in the ISS model, generating a very specific
set of inputs to use at each point in time. The post-verification analysis (external, high-
accuracy simulation) confirms that the found violation is a true violation of the system.

Upon finding that an unsafe error state is reachable, Hylaa uses the approach
described in Example 1 to determine the initial point and inputs to use at each
step in order to reach the unsafe state. It creates a Python script using this start
point and inputs to perform a simulation with high accuracy parameters in order
to try to reproduce the counterexample error trace. We perform this check for
each of the benchmark systems where an error state is found, and compute the
l2-norm of the difference between the expected final point given by Hylaa and
the post-analysis high-accuracy simulation point. The values in the CE Error
column in Table 1 indicate that the counterexamples are highly-accurate on all
the models, both in terms of absolute and relative error.

Consider the structural model of component 1R (Russian Service Module) of
the International Space Station (ISS model, 271 dimensions). The high-accuracy
simulation of the counterexample trace found this system is shown in Fig. 5.
Here, the final point in the post-analysis simulation and the Hylaa’s predicted
final point differ, in terms of l2-norm, by around 10−5. The figure shows the
state of the output value (top) and the values of the three inputs at each point
in time, computed by Hylaa. This is an extremely complicated set of inputs that
would be difficult to find using random simulations.

We attempted to use a falsification tool on this system to try find the vio-
lation. A falsification tool [3,9,19] performs stochastic optimization to mini-
mize the difference between simulation runs and the violation region. We ran
S-Taliro [3] on this system for 2000 simulations, which took 4.5 hours, but it did
not find a violation.
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Exhaustive testing for this case would require checking simulations from each
of the corner points of the initial states (270 of the dimensions can be in an
initial interval range), multiplied by 8 combinations of choices of the 3 inputs
at each of the 2742 steps before a counterexample was found (Hylaa found the
counterexample at time 13.71). This would be 2270 ·82742 = 3.5 ·102557 individual
simulations, an unfathomably large number.

In communications with the benchmark authors, the original safety specifi-
cations for all the models were chosen based on simulations of the system while
holding the inputs constant. For some of the benchmarks, Hylaa was able to
find cases where the original safety specification was violated. For example, in
the ISS model, the shown error trace in Fig. 5 violates the original specification.
This was a bit unexpected, but possible since we are considering inputs which
can vary over time. When we kept the inputs constant in the ISS model, no
violation was found. In other systems, for example the Beam model, the coun-
terexample trace Hylaa finds has the same input values at every time step. This
shows the incompleteness (and danger) of pure simulation-based analysis, where
the safety specification was derived based on a finite set of simulations that did
not include the violation. As far as we are aware, the generalized star reacha-
bility approach is the first to find violations in the benchmark’s original safety
conditions, as well as the first approach to verify systems of this size.

5 Related Work

Early work on handling inputs for linear systems was done for the purpose of
creating abstractions that overapproximate behaviors of systems with nonlin-
ear dynamics [4]. In this approach, a bound on the input is used to bloat a
ball to account for the effect of any possible input. While sound, such an app-
roach does not give a tight result and could not be used to generate concrete
traces. Later, a formulation was given which explicitly used the Minkowski sum
operation [15], along with a reachability algorithm based on zonotopes, which
is a set representation that can efficiently compute both linear transformation
and Minkowski sum. This allowed for more precise tracking of the reachable
set of states, although the complexity of the zonotopes grew quadratically with
the number of discrete time steps performed, so a reduction step was used to
limit the expansion of the order of the zonotopes, leading to overapproxima-
tion. An important improvement removed this overapproximation by using two
zonotopes, one to track the time-invariant system and one to track the effects of
inputs [17]. The two zonotopes could be combined at any specific time step in the
computation to perform operations on the reachable set at that time instant such
as guard checks, but the time-elapse operation was done on the two zonotopes
separately. A similar approach was applied for a support functions representa-
tion rather than zonotopes [16], which also allows for efficient Minkowski sum.
The methods proposed in this paper also use this general approach, using the
generalized star set data structure rather than zonotopes. The difficulty with
this is that generalized star sets are similar to polytopes specified using hyper-
plane constraints, and the number of hyperplanes necessary to represent the
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Minkowski sum can become extremely large in high dimensions [11,21]. For sys-
tems with nonlinear dynamics, a different method using Taylor models can be
used for the time-elapse operation, with inputs given as bounded time-varying
uncertainties [7]. This method essentially replaces time-varying parameters by
their interval enclosure at every integration step.

Building on the time-elapse operation, a hybrid automaton reachability algo-
rithm needs to perform intersections with guard sets. For zonotopes, this can be
done by performing conversions to/from polytopes [2,15], although this process
may introduce overapproximation error. For support functions, this can be done
by converting to/from template polyhedra [13]. In non-linear reachability compu-
tation with Taylor models, guard intersections can leverage domain-contraction
and range-overapproximation (converting to other representations such as poly-
topes) [8]. Although not explored in this work, we believe this operation can be
done using generalized star sets, without conversions that may introduce error.

6 Conclusion

In this paper, we described a new approach for computing reachability for lin-
ear systems with inputs, using a generalized star set representation and linear
programming. Our approach is simulation-equivalent, which means that we can
detect an unsafe state is reachable if and only if a fixed-step simulation exists to
the unsafe states. Furthermore, upon reaching an unsafe state, a counter-example
trace is generated for the system designer to use.

The proposed method has unprecedented scalability. On the tested bench-
marks, we successfully analyzed a system with 10914 dimensions, whereas the
current state-of-the-art tools did not succeed on any model larger than 48 dimen-
sions. Such large models frequently arise by discretizing partial differential equa-
tions (PDEs). For example, a 100×100 grid over a PDE model results in a 10,000
dimensional model. Thus, we believe the proposed approach opens the door to
the computer-aided verification of PDE models with ranges of possible initial
conditions, inputs, and uncertainties.

A Reachability of Autonomous Systems using Stars

Here, we expand on the algorithm for computing simulation-equivalent reachabil-
ity for an autonomous (no-input) system. Given an initial set Θ as a conjunction
of linear predicates P , the algorithm generates one simulation from the center
origin and one simulation from state orthoi where orthoi is unit distance along
the ith vector in the orthonormal basis. The reachable set at a time instance is
computed as a new star 〈c′, V ′, P 〉 where the new center and the basis vectors
are calculated based on the simulations, but the predicate remains the same.
This simulation-based approach is also extremely easy to parallelize. It has been
shown to be quite scalable, and is capable of analyzing an certain affine 1000-
dimensional systems in 10–20 min [5,6].
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input : Initial set Θ
Δ
= P , time step: h, time bound: k · h

output: Reachable states at each time step: (Θ0, Θ1 . . . , Θk)
1 Sim0 ← ρ(origin, h, k · h);
2 for j = 1 to n do
3 Simj ← ρ(orthoj , h, k · h);
4 end
5 for i = 0 to k do
6 ci ← Sim0[i];
7 for j = 1 to n do
8 vj ← Simj [i] − Sim0[i];
9 end

10 Vi ← {v1, . . . , vn};
11 Θi ← 〈ci, Vi, P 〉;
12 end
13 return (Θ0, Θ1 . . . , Θk);

Algorithm 3. Computes the simulation-equivalent reachable set up to
time k · h from n + 1 simulations, for linear system without inputs.

The procedure is given in Algorithm 3. In the algorithm, Sim0 represents the
simulation starting from the origin and Simj represents the simulation starting
at unit distance along the jth orthonormal vector. Given a simulation Sim,
Sim[i] represents the ith state in the simulation, i.e., the state reached after i ·h
time units. Algorithm 3 computes the reachable set of the set Θ at time instance
i · h, returned as Θi as a generalized star with the center as Sim0[i], the jth

basis vector as Simj [i] − Sim0[i] and the same predicate P as the initial set.
Observe that for all Θi, the predicate in the star representation is the same, only
the center and the basis vectors change. Applying the Eq. 2, for the closed loop
system without the inputs, we have that Θi = eAi·hΘ. The correctness of this
algorithm is due to the superposition principle of linear systems [10].

B Example of Autonomous System Reachability

We go through an example computation using the autonomous (no-input) reach-
ability algorithm, and provide the associated LP formulation.

Example 2 (Harmonic Oscillator). Consider the 2-d harmonic oscillator with
dynamics ẋ = y, ẏ = −x, and initial states x = [−6,−5], y = [0, 1]. The trajec-
tories of this system rotate clockwise around the origin. A plot of the simulation-
equivalent reachable states of this system and the LP formulation at π

4 is shown
in Fig. 6. Given these constraints, linear programming can quickly determine
if unsafe states, provided as a conjunction of linear constraints, intersect with
the reachable states. As described above, simulations are used to determine the
values of the basis matrix (the red encircled values in the matrix), which gets
updated at each time step, while the rest of the constraints remains unchanged.
Rows 3–6 in the constraints come from the conditions on the initial states (the
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Fig. 6. Plot of the simulation-equivalent reachable states for the system in Example 2
with a step size of π

4
, and the associated LP formulation at π

4
. The red circled values

are the star’s basis matrix, which changes at each step. Rows 3–6 come from the initial
state constraints. Additional rows could be added to check for intersection with the
unsafe states.

predicate in the initial state star). The initial basis matrix is
(

1 0

0 1

)
, where each

column is the difference between a concrete simulation and the origin simula-
tion. Since this is a 2-dimensional system (n = 2), 3 (n + 1) simulations are
needed, one from the origin, one from

(
1

0

)
, and one from

(
0

1

)
. In this case, the

simulation from the origin always stays at
(

0

0

)
. After π

4 time, the simulation

from state
(

1

0

)
goes to

(
0.707

−0.707

)
and the simulation from state

(
0

1

)
goes to(

0.707

0.707

)
. Thus, the basis matrix at time π

4 , which is the one shown the figure, is(
0.707 0.707

−0.707 0.707

)
. At time π

2 , the basis matrix in the constraints would be
(

0 1

−1 0

)
.
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Abstract. Metric Interval Temporal Logic (MITL) was first proposed in
the early 1990s as a specification formalism for real-time systems. Apart
from its appealing intuitive syntax, there are also theoretical evidences
that make MITL a prime real-time counterpart of Linear Temporal Logic
(LTL). Unfortunately, the tool support for MITL verification is still lack-
ing to this day. In this paper, we propose a new construction from MITL
to timed automata via very-weak one-clock alternating timed automata.
Our construction subsumes the well-known construction from LTL to
Büchi automata by Gastin and Oddoux and yet has the additional ben-
efits of being compositional and integrating easily with existing tools.
We implement the construction in our new tool MightyL and report on
experiments using Uppaal and LTSmin as back-ends.

1 Introduction

The design of critical software that respect real-time specifications is a notori-
ously difficult problem. In this context, verification of programs against formal
specifications is crucial, in order to handle the thin timing behaviours. In the
untimed setting, a logic widely used both in academia and industry is Linear
Temporal Logic (LTL) [32]. A crucial ingredient of its success is the possibility
to translate LTL formulae into (Büchi) automata. In the real-time counterpart,
Metric Interval Temporal Logic (MITL) [3] has been introduced twenty years ago
where it was established that it can be translated into (Büchi) timed automata
(TA). Beyond verification of real-time software, there are numerous interests in
MITL from other domains, e.g. automated planning and scheduling [39], con-
trol engineering [18] and systems biology [6]. The translation from MITL to TAs
is complicated and has led to some simplified constructions, e.g. [17,28]. How-
ever, despite these efforts, the tool support for MITL is still lacking to this day.
To the best of our knowledge, the only implementation of an automata-based
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construction is described in [10,11], but is not publicly available. Since existing
verification tools based on timed automata have been around for quite some time
and have been successful (e.g. Uppaal [27] first appeared in 1995), it would be
preferable if such translation can be used with these tools.

In the present paper, we attempt to amend the situation by proposing a
more practical construction from MITL to (Büchi) timed automata. Compared
to [10,11], our construction has the following advantages:

1. While we also use one-clock alternating timed automata (OCATA) [30] as an
intermediate formalism, our construction exploits the ‘very-weakness’ of the
structure of OCATAs obtained from MITL formulae to reduce state space. In
particular, our construction subsumes LTL2BA [19] in the case of LTL.

2. The number of clocks in the resulting TA is reduced by a factor of up to two.
This is achieved via a more fine-grained analysis of the possible clock values
(see Sect. 5).

3. The construction is compositional : for each location of the OCATA A obtained
from the input MITL formula, we construct a ‘component’ TA and establish a
connection between the runs of A and the runs of the synchronous product of
these components. Thanks to this connection, we can give the output TA in
terms of components; this greatly simplifies the implementation, and speeds
up its execution.

4. The construction is compatible with off-the-shelf model-checkers: our tool
MightyL generates output automata in the Uppaal xml format which,
besides Uppaal [27] itself, can also be analysed by LTSmin [24] with opaal
front-end, TiAMo [9], ITS-tools [35], DiVinE [5], etc.

Related Work. There is already a number of MITL-to-TA constructions in the
literature [3,17,28]. However, most of them interpret MITL over signals (i.e. the
continuous semantics of MITL) and hence generate signal automata. This choice
unfortunately hinders the possibility to leverage existing tools based on classical
timed automata over timed words [2] and is probably one of the reasons why the
aforementioned constructions have never been implemented.1 We, following [4,
10,11,37] (among others), interpret MITL over timed words (i.e. the pointwise
semantics of MITL). Note that there have been some implementations that deal
with peculiar specification patterns over timed words (e.g. [1]). For MITL, apart
from [10,11] that we mentioned earlier, we are only aware of implementations
for rather restricted cases, such as the safety fragment of MITL0,∞ [12] or MITL
over untimed words [39]. Our construction subsumes all of these approaches.

Using alternating automata as an intermediate formalism is a standard app-
roach in LTL model-checking [36]. However, the translation from alternating
automata to Büchi automata may incur an exponential blow-up if the output
automaton is constructed explicitly [19]. For this reason, an on-the-fly approach
is proposed in [21], but it requires a specialised model-checking algorithm. Alter-
natively, [8] gives a symbolic encoding of alternating automata which can be used
1 Nonetheless, it has been argued that a continuous model of time is preferable from

a theoretical point of view; see e.g. [22].
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directly with NuSMV [13], but minimality of transitions (which may potentially
improve the performance of verification algorithms, cf. [21]) is difficult to enforce
in this setting (see also [14,34]). Our construction combines the advantages of
these approaches—it can be regarded as a symbolic encoding of OCATAs in TAs,
enforcing some minimality criteria on transitions for efficiency (see Sect. 6)—and
provides compatibility with existing tools that construct state spaces on-the-fly.
By contrast, [17,28], not based on OCATAs, also give the resulting automaton in
terms of smaller component automata, but they have to use specialised product
constructions to synchronise the components.

Apart from automata-theoretic approaches, [7] considers ‘bounded model-
checking’ which encodes the satisfiability problem for MITL (in the continuous
semantics) into an SMT problem (Satisfiability Modulo Theories) [15]. This app-
roach is complete when very large bounds (numbers of regions of equivalent TA)
are used, but such bounds are clearly impractical for current SMT solvers.

Outline. Section 2 starts with preliminary definitions of timed logics and (alter-
nating) timed automata. Sections 3, 4 and 5 then give our new translation from
formulae to generalised Büchi (timed) automata for LTL, MITL0,∞ (a fragment
of MITL where only intervals of the form [0, a], [0, a), [a,+∞), or (a,+∞) are
allowed), and full MITL, respectively. We report on our OCaml implementation
MightyL and some promising experiments on several benchmarks in Sect. 6.

2 Timed Logics vs (Alternating) Timed Automata

Timed Languages. Let AP be a finite set of atomic propositions, and Σ = 2AP.
A timed word over Σ is an infinite sequence ρ = (σ1, τ1)(σ2, τ2) · · · over Σ ×R

+

with (τi)i≥1 a non-decreasing sequence of non-negative real numbers. We denote
by TΣω the set of timed words over Σ. A timed language is a subset of TΣω.

Timed Logics. We consider the satisfiability and model-checking problem of
Metric Interval Temporal Logic (MITL), an extension of Linear Temporal Logic
(LTL) in which temporal operators can be labelled with non-singular timed
intervals (or [0, 0], which is the only singular interval we allow). Formally, MITL
formulae over AP are generated by the grammar

ϕ := p | ϕ ∧ ϕ | ¬ϕ | XIϕ | ϕ UI ϕ

where p ∈ AP and I is either a non-singular interval over R
+ with endpoints in

N ∪ {+∞} or [0, 0]. To simplify our explanations, we will only consider closed
non-singular intervals in the sequel, i.e. intervals of the form [a, b] or [a,+∞),
with 0 ≤ a < b < +∞. We let |I| be the length of the interval I: |[a, b]| = b − a
for 0 ≤ a < b < +∞ and |[a,+∞)| = +∞.

We consider the pointwise semantics and interpret MITL formulae over timed
words. The semantics of a formula ϕ in MITL is defined inductively: given ρ =
(σ1, τ1)(σ2, τ2) · · · ∈ TΣω, and a position i ≥ 1, we let
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– (ρ, i) |= p if p ∈ σi;
– (ρ, i) |= ϕ1 ∧ ϕ2 if (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2;
– (ρ, i) |= ¬ϕ if (ρ, i) �|= ϕ;
– (ρ, i) |= XIϕ if (ρ, i + 1) |= ϕ and τi+1 − τi ∈ I;
– (ρ, i) |= ϕ1 UI ϕ2 if there exists j ≥ i, (ρ, j) |= ϕ2, τj − τi ∈ I, and, for all

i ≤ k < j, (ρ, k) |= ϕ1.

We derive other Boolean operators with the following macros: ϕ1 ∨ ϕ2 ≡
¬(¬ϕ1 ∧ ¬ϕ2), � ≡ p ∨ ¬p, ⊥ ≡ ¬�, and ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2. We also define
other temporal operators as usual: the ‘eventually’ operator FIϕ ≡ �UI ϕ, the
‘globally’ operator GIϕ ≡ ¬FI¬ϕ, the ‘release’ operator ϕ1RI ϕ2 ≡ ¬((¬ϕ1)UI

(¬ϕ2)), and the ‘dual-next’ operator XIϕ ≡ ¬XI¬ϕ (contrary to LTL, it is not
true that ¬XIϕ ≡ XI¬ϕ). With the release and dual-next operators, we can
transform every formula ϕ into negative normal form, i.e. formulae using only
predicates of AP, their negations, and the operators ∨, ∧, UI , RI , XI , and XI .
To help the understanding, let us detail the semantics of ϕ1 RI ϕ2:

– (ρ, i) |= ϕ1 RI ϕ2 if for all j ≥ i such that τj − τi ∈ I, either (ρ, j) |= ϕ2, or
there exists i ≤ k < j such that (ρ, k) |= ϕ1.

We say that ρ satisfies the formula ϕ, written ρ |= ϕ if (ρ, 1) |= ϕ, and we
denote by �ϕ� the set of all timed words satisfying ϕ. When writing formulae, we
omit the trivial interval [0,+∞). LTL is the fragment of MITL where all operators
are labelled by [0,∞); and MITL0,∞ is the fragment where, in all intervals, either
the left endpoint is 0 or the right endpoint is +∞.

Timed Automata. Let X be a finite set of real valued variables, called clocks.
The set G(X) of clock constraints g over X is defined by g := � | g ∧ g | x �� c,
where �� ∈ {≤, <,≥, >}, x ∈ X and c ∈ N. A valuation over X is a mapping
v : X → R

+. We denote by 0 the valuation that maps every clock to 0, and
we write the valuation simply as a value in R

+ when X is a singleton. The
satisfaction of a constraint g by a valuation v is defined in the usual way and
noted v |= g, and we denote by �g� the set of valuations v satisfying g. For t ∈ R

+,
we let v + t be the valuation defined by (v + t)(x) = v(x) + t for all x ∈ X. For
R ⊆ X, we let v[R ← 0] be the valuation defined by (v[R ← 0])(x) = 0 if x ∈ R,
and (v[R ← 0])(x) = v(x) otherwise.

We introduce the notion of generalised Büchi timed automaton (GBTA) as an
extension of classical timed automata [2] with a generalised acceptance condition
(used by [20] in the untimed setting). AGBTA is a tuple A = (L,Σ, 	0,Δ,F) where
L is a finite set of locations, Σ is a finite alphabet, 	0 ∈ L is the initial location,
Δ ⊆ L×Σ×G(X)×2X ×L is the transition relation, and F = {F1, . . . , Fn}, with
Fi ⊆ L for all 1 ≤ i ≤ n, is the set of sets of final locations. A timed automaton
(TA), as described in [2], is a special case of GBTA where F = {F} is a single-
ton (F contains the accepting locations of the TA). A state of A is a pair (	, v)
of a location 	 ∈ L and a valuation v of the clocks in X. A run of A over the
timed word (σ1, τ1)(σ2, τ2) · · · ∈ TΣω is a sequence of states C0, C1, . . . where
(i) C0 = (	0,0) and (ii) for each i ≥ 0 such that Ci = (	, v), there is a transition
(	, σi+1, g, R, 	′) such thatCi+1 = (	′, v′), v+(τi+1−τi) |= g (assuming τ0 = 0) and
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v′ = (v+(τi+1−τi))[R ← 0]. By the generalised Büchi acceptance condition, a run
is accepting if and only if the set of locations that it visits infinitely often contains
at least one location from each set Fi, for all 1 ≤ i ≤ n. We let �A� be the set of
timed words on which there exist accepting runs of A.

Synchronisation of Timed Automata. In the following, we will consider
GBTAs described by synchronous products of several components. More pre-
cisely, given two GBTAs A1 = (L1, Σ, 	10,Δ

1,F1) and A2 = (L2, Σ, 	20,Δ
2,F2)

over disjoint sets of clocks, we define the GBTA A1 × A2 = (L,Σ, 	0,Δ,F)
obtained by synchronising A1 and A2. Its set of locations is L = L1 × L2,
with 	0 = (	10, 	

2
0). The acceptance condition is obtained by mimicking a disjoint

union of the generalised Büchi conditions: assuming F1 = {F1, . . . , Fn} and
F2 = {G1, . . . , Gm}, we let F = {F1 × L2, . . . , Fn × L2, L1 × G1, . . . , L

1 × Gm}.
Finally, ((	11, 	

2
1), σ, g, R, (	12, 	

2
2)) ∈ Δ if there exists (	11, σ, g1, R1, 	12) ∈ Δ1 and

(	21, σ, g2, R2, 	22) ∈ Δ2 such that g = g1 ∧ g2 and R = R1 ∪ R2. This definition
can be extended for the synchronisation of a set of GBTAs {Ai | i ∈ I}: the
product is then written as

∏
i∈I Ai.

One-Clock Alternating Timed Automata. One-clock alternating timed
automata (OCATA) [30] extend (non-deterministic) one-clock timed automata by
adding conjunctive transitions. Intuitively, a conjunctive transition spawns several
copies of the automaton that run in parallel from the targets of the transition. A
word is accepted if and only if all copies accept it. An example is shown in Fig. 1,
where the conjunctive transition is the hyperedge starting from 	0.

Formally, we consider a single clock x and, for a set L of locations, let Γ (L)
be the set of formulae defined by

γ := � | ⊥ | γ ∨ γ | γ ∧ γ | 	 | x �� c | x.γ

where c ∈ N, �� ∈ {≤, <,≥, >}, and 	 ∈ L. Compared to the clock constraints
defined above for TAs, Γ (L) allows non-determinism (∨ operator), locations as
atoms, and expressions of the form x.γ (meaning that x is reset in γ). An OCATA
is a tuple A = (L,Σ, 	0, δ, F ) where L is a finite set of locations, Σ is a finite
alphabet, 	0 ∈ L is the initial location, δ : L × Σ → Γ (L) is the transition
function, and F ⊆ L is the set of final locations. A state of A is a pair (	, v)
of a location in L and a valuation of the single clock x. Models of the formulae
in Γ (L), with respect to a clock valuation v ∈ R

+, are sets of states M :

– M |=v �; M |=v 	 if (	, v) ∈ M ; M |=v x �� c if v �� c; M |=v x.γ if M |=0 γ;
– M |=v γ1 ∧ γ2 if M |=v γ1 and M |=v γ2;
– M |=v γ1 ∨ γ2 if M |=v γ1 or M |=v γ2.

A set M of states is said to be a minimal model of the formula γ ∈ Γ (S) with
respect to a clock valuation v ∈ R

+ if and only if M |=v γ and there is no
proper subset M ′ ⊂ M with M ′ |=v γ. A run of A over a timed word ρ =
(σ1, τ1)(σ2, τ2) · · · ∈ TΣω is a rooted directed acyclic graph (DAG) G = (V,→)
with vertices of the form (	, v, i) ∈ L × R

+ × N, (	0, 0, 0) as root, and edges as
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�0 ∧ �1

Σ \ Σp

Σp \ Σq

Σp ∩ Σq

x := 0

Σ

x ≤ 1, Σq

Fig. 1. An OCATA accepting the language of G(p ⇒ F[0,1]q).

(�0, 0, 0) (�0, 0.42, 1)

(�0, 0.42, 2)

(�1, 0, 2)

(�0, 0.7, 3) . . .

Fig. 2. A run of the OCATA of Fig. 1 over (∅, 0.42)({p}, 0.42)({q}, 0.7) · · · .

follows: for every vertex (	, v, i), we choose a minimal model M of the formula
δ(	, σi+1) with respect to v + (τi+1 − τi) (again, τ0 = 0), and we have an edge
(	, v, i) → (	′, v′, i + 1) in G for every state (	′, v′) appearing in model M . Such
a run is accepting if and only if there is no infinite path in G that visit final
locations only finitely often. We let �A� be the set of timed words on which
there exist accepting runs of A.

It is also useful to see a run as a linear sequence of configurations (i.e. finite
sets of states) which gather all states at a given DAG level. Formally, from a
DAG G = (V,→) we extract the sequence of configurations K0,K1, . . . where
Ki = {(	, v) | (	, v, i) ∈ V } for all i ≥ 0.2

Example 1. Consider the OCATA of Fig. 1 on the alphabet Σ = 2{p,q}. For each
proposition π ∈ {p, q}, we write Σπ = {σ ∈ Σ | π ∈ σ}. A run over the timed
word (∅, 0.42)({p}, 0.42)({q}, 0.7) · · · is depicted in Fig. 2. It starts with the DAG
rooted in (	0, 0, 0) (initially, there is only one copy in 	0 with the clock equal
to 0). This root has a single successor (	0, 0.42, 1), which has two successors
(	0, 0.42, 2) and (	1, 0, 2) (after firing the conjunctive transition from 	0). Then,
(	1, 0, 2) has no successor since the empty model is a minimal model of the next
transition (the transition from 	1 points to no location). The associated sequence
of configurations starts by: {(	0, 0)}, {(	0, 0.42)}, {(	0, 0.42), (	1, 0)} · · ·

Each formula ϕ of MITL can be translated into an OCATA Aϕ that accepts
the same language [11,30], and with a number of locations linear in the number
of subformulae of ϕ. We recall the definition of Aϕ for the sake of completeness.
The set of locations of Aϕ contains: (i) ϕinit; (ii) all the subformulae of ϕ (that
we suppose to be in negative normal form) whose outermost operator is UI or
RI ; and (iiii) ψr for each subformulae ψ of ϕ whose outermost operator is XI

2 In the current (infinite-word) setting, we cannot define acceptance conditions in
terms of configurations as in [30].
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or XI . Its initial location is ϕinit, and the accepting locations of F are all the
subformulae of the form ϕ1 RI ϕ2. Finally, δ is defined inductively:

– δ(ϕinit, σ) = x.δ(ϕ, σ), δ(�, σ) = �, and δ(⊥, σ) = ⊥;
– δ(p, σ) = � if p ∈ σ, δ(p, σ) = ⊥ otherwise;
– δ(¬p, σ) = � if p /∈ σ, δ(¬p, σ) = ⊥ otherwise;
– δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ), and δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ);
– δ(ϕ1 UI ϕ2, σ) = (x.δ(ϕ2, σ) ∧ x ∈ I) ∨ (x.δ(ϕ1, σ) ∧ ϕ1 UI ϕ2 ∧ x ≤ sup I);
– δ(ϕ1 RI ϕ2, σ) = (x.δ(ϕ2, σ) ∨ x /∈ I) ∧ (x.δ(ϕ1, σ) ∨ ϕ1 RI ϕ2 ∨ x > sup I);
– δ(XIϕ, σ) = x.(XIϕ)r, and δ((XIϕ)r, σ) = x ∈ I ∧ x.δ(ϕ, σ);
– δ(XIϕ, σ) = x.(XIϕ)r, and δ((XIϕ)r, σ) = x /∈ I ∨ x.δ(ϕ, σ).

As already noticed in [11], the OCATA Aϕ produced from an MITL formula ϕ
is very-weak [19,26,29], i.e. it comes with a partial order on its locations such
that all locations appearing in δ(	, σ) are bounded above by 	 in this order.
For an OCATA Aϕ obtained from an MITL formula ϕ, the order is given by the
subformula order: ϕinit is the greatest element in the order, and a location ψ
is less than χ if ψ is a subformula of χ. We will also make use of the following
properties of δ: (i) if 	′ appears in δ(	, σ) then it is preceded by a clock reset if
and only if 	′ �= 	; and (ii) each 	′ either has no parent or has a unique parent,
i.e. there is a unique 	 �= 	′ such that 	′ appears in δ(	, σ) for some σ.

Theorem 2 ([11]). For all formulae ϕ of MITL, �Aϕ� = �ϕ�.

Remark 3. To ease the presentation, we use Boolean formulae over atomic propo-
sitions as transition labels. For instance, Σ \ Σp will be written as ¬p.

3 Compositional Removal of Alternation

The current and next two sections are devoted to explaining the core idea of our
construction: simulate the OCATA Aϕ obtained from an MITL formula ϕ by the
synchronous product of component Büchi timed automata, one for each temporal
subformula (i.e. a subformula whose outermost operator is temporal). The very-
weakness of Aϕ is crucial for our construction to work: a run of Aϕ is accepting
if and only if Aϕ does not get stuck at a non-accepting location in any branch.
Therefore, we can keep track of each location with a separate component and sim-
ply define a suitable Büchi acceptance condition on each such component.3 Our
compositional construction preserves the structure of the formula, and thus we
can hope that the model-checking tool (which is responsible for the composition)
takes this into account.4 At the very least, the model-checking tool can use an on-
the-fly approach in composition (as is indeed the case for Uppaal and LTSmin),
3 This is not possible for general (not very-weak) OCATAs since it might be the case

that a branch alternates between several non-accepting location without ever hitting
an accepting location.

4 The same idea underlies the antichain-based algorithms for LTL model-checking [38],
where the structure can be exploited to define a pre-order on the state space of the
resulting automaton.
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which is often faster in practice: the explicit construction of the whole product can
be avoided when there is an accepting run.

In what follows, let ϕ be an MITL formula over AP in negative normal form
and Aϕ be the OCATA obtained from ϕ with the translation described earlier.
For the sake of simplicity, we make the following assumptions:

– XI and XI do not appear in ϕ;
– each temporal subformula ψ of ϕ appears only once in ϕ.

Let Φ be the set of temporal subformulae of ϕ. We introduce a new atomic
proposition pψ for each subformula ψ ∈ Φ (i.e. for each non-initial location of
the OCATA Aϕ) and let APϕ be the set of these new atomic propositions. For
each (not necessarily temporal) subformula ψ of ϕ, we denote by Pψ the set
of atomic propositions pξ ∈ APϕ such that ξ is a top-level temporal subformula
of ψ, i.e. the outermost operator of ξ is UI or RI , yet ξ does not occur under the
scope of another UI or RI . For instance, PpUIq∨rUI(sRt) = {ppUIq, prUI(sRt)}.

Hintikka Sequences and Triggers. A Hintikka sequence of ϕ is a timed
word ρ′ over 2AP∪APϕ . Intuitively, Hintikka sequences can be regarded as an
instrumented version of timed words, where the extra atomic propositions from
APϕ are triggers that connect timed words to their runs in the OCATA Aϕ;
this is the central notion of our construction which, as we will prove, indeed
simulates the runs of Aϕ. Pulling the trigger pψ (i.e. setting pψ to true) at some
point means that ψ is required to hold at this point. However, the absence of a
trigger pξ does not mean that subformula ξ must not be satisfied—its satisfaction
is simply not required at this point. We denote by projAP(ρ′) the timed word
obtained by hiding all the atomic propositions in APϕ from ρ′. We also let
projAP(L) = {projAP(ρ′) | ρ′ ∈ L} for a timed language L over 2AP∪APϕ .

Formulae Over AP ∪ APϕ. We now introduce some syntactic operations on
Boolean combinations of atomic propositions in AP ∪ APϕ, that will be used to
construct the component Büchi automata later. Specifically, for a subformula ψ
of ϕ, we define formulae ψ, ∗ψ, ∼ψ, and ψ̂.

The formula ψ is obtained from ψ by replacing all top-level temporal sub-
formulae by their corresponding triggers. Formally, ψ is defined inductively as
follows (where p ∈ AP ∪ APϕ):

ψ1 ∧ ψ2 = ψ1 ∧ ψ2 ψ = ψ when ψ is � or ⊥ or p or ¬p

ψ1 ∨ ψ2 = ψ1 ∨ ψ2 ψ = pψ when ψ is ψ1 UI ψ2 or ψ1 RI ψ2 .

The formula ∗ψ, read as “do not pull the triggers of ψ”, will be used to ensure
that our component automata only follow the minimal models of the transition
function of Aϕ (we will see in Sect. 6 how crucial it is, for performance, to
generate only minimal models). It is the conjunction of negations of all the
atomic propositions in Pψ. As a concrete example,

∗((¬p ∨ ψ1 U ψ2) ∧ (q ∨ ψ3 R (ψ4 U ψ5))) = ¬pψ1Uψ2 ∧ ¬pψ3R(ψ4Uψ5).
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Fig. 3. The automata (a) Cinit and Cχ for (b) χ = ϕ1 U ϕ2, and (c) χ = ϕ1 R ϕ2.

The formula ∼ψ asserts that ψ is false and none of its triggers are activated:
∼ψ = ¬ψ ∧ ∗ψ. Finally, the formula ψ̂ is defined as mm(ψ) where mm(α) is
defined inductively as follows:

mm(p) = p mm(¬p) = ¬p mm(�) = � mm(⊥) = ⊥
mm(α1 ∨ α2) =

(
mm(α1) ∧ ∼α2

) ∨ (
mm(α2) ∧ ∼α1

) ∨ (
(α1 ∨ α2) ∧ ∗α1 ∧ ∗α2

)

mm(α1 ∧ α2) = mm(α1) ∧ mm(α2).

Intuitively, mm(α) is satisfiable if and only if α is satisfiable, but mm(α) only
permits models of α that are minimal with respect to the triggers it contains:
for mm(α1 ∨ α2) to be true, either mm(α1) is true and α2 does not hold, or vice
versa, or α1∨α2 is indeed true, but not because of any of the triggers it contains.

Component Büchi Automata for LTL. We are now ready to present the
construction for the case that ϕ is an LTL formula. Instead of building a mono-
lithic Büchi automaton Bϕ directly from the alternating automaton, as in [19],
we build small component Büchi automata that are language-equivalent to the
automaton Bϕ, once synchronised. There is an initial component Cinit, and a
component Büchi automaton Cχ, for each χ ∈ Φ (see Fig. 3). Consider, for
instance, the case χ = ϕ1 U ϕ2. Component Cχ has two locations 0 and 1 with
the following intended meaning: Cχ is in location 1 if and only if the trigger pχ

has been pulled in the past by Cinit, in which case pχ ∈ Pϕ, or by a unique
component Cψ1UIψ2 (or Cψ1RIψ2) such that pχ ∈ Pψ1 or pχ ∈ Pψ2 , and χ has
not been satisfied yet. When component Cχ is in location 1, we say that we have
an obligation for χ. To satisfy this obligation, we must see a letter in the future
where ϕ2 holds. Thus, there is a self-loop on location 1 whose label ensures that
ϕ2 does not hold (because of ∼ϕ2), while ϕ1 still holds (this is ensured by ϕ̂1,
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which also pulls a minimal set of triggers for ϕ1 to be satisfied). Cχ moves back
from 1 to 0 when ϕ2 holds, while no trigger of ϕ1 should be pulled at this instant
(which is translated by ∗ϕ1). From location 0, if we do not read trigger pχ, noth-
ing has to be checked and we do not pull any trigger. However, if pχ is pulled,
then, either ϕ2 holds right away and the obligation is fulfilled immediately, or
we jump to location 1. The component Cχ for the case χ = ϕ1 R ϕ2 is based on
a similar reasoning. We state the following proposition without proof as it will
be superseded by a stronger proposition in the next section.

Proposition 4. For all LTL formulae ϕ, projAP(�Cinit × ∏
χ∈Φ Cχ�) = �ϕ�.

Example 5. Consider the LTL formula G(p ⇒ Fq) that can be rewritten into
negative normal form as ϕ = ⊥ R (¬p ∨ � U q). Then, the three component
Büchi automata Cinit, Cϕ and CFq, after the constraints on the transitions are
simplified, are depicted on the top of Fig. 4, The automaton C = Cinit ×Cϕ ×CFq

is depicted in the middle of the figure. Once atomic propositions in APϕ are
projected away, one obtains an automaton isomorphic to the one at the bottom
of the figure that accepts �ϕ�.

4 The Case of MITL0,∞

We now describe how to lift the translation we described earlier to the timed
operators of MITL0,∞. The new components for U[0,a], R[0,a], and R[a,∞) are
depicted in Fig. 5. They have the same shape as the components for untimed
U and R (see Fig. 3); only the guards are changed to reflect the more involved
semantics of the timed operators. Observe that these automata have only one
clock. To understand why this is sufficient, consider the formula G(p ⇒ χ) with
χ = pU[0,2] q. After reading ({p}, 0)({p}, 0.4)({p}, 1), the OCATA Aϕ reaches the
configuration {(ϕ, 0), (χ, 0), (χ, 0.6), (χ, 1)}, meaning intuitively that, to satisfy
the formula, one must fulfil three obligations related to χ: to see q’s within 2,
1.4, and 1 time units, respectively. Hence, we can store the earliest obligation,
corresponding to (χ, 1), only (as already observed in [11]). Indeed, if the cor-
responding instance of χ is satisfied, it means that there will be a q occurring
within less that 1 time unit, which will also satisfy all the other obligations.
More generally, for operators U[0,a] and R[a,∞), it is always the case that only
the oldest obligation has to be stored, while for operators R[0,a] and U[a,∞), only
the earliest obligation has to be stored. This is translated in the components by
the absence/presence of resets on transitions that leave state 1 (which is reached
when an obligation is currently active) and read pχ.

For χ = ϕ1 U[a,∞) ϕ2, the situation is slightly more complicated, although
one clock is again sufficient. The corresponding component is in Fig. 6 and has
four locations. To understand why, consider the case when there is an obligation
for χ associated with the current valuation v ≥ a of clock x (Cχ is in location 1),
the current letter contains pχ and satisfies both ϕ̂1 and ϕ̂2. Since the trigger
has been pulled, Cχ should stay in the non-accepting location 1. On the other
hand, the pending obligation has also been fulfilled, and an accepting location
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Fig. 4. (a) Component Büchi automata for the formula ϕ = ⊥R(¬p∨	Uq); (b) Büchi
automaton obtained by the product of the components; (c) Büchi automaton obtained
by projecting away APϕ (and merging two identical locations).

should be visited. So, instead of staying in 1, Cχ moves to 1′ in this case: 1′ is a
copy of 1 as far as transitions are concerned, but it is accepting. The location 1′′

is used to deal with the situation where pχ is launched infinitely often but no
two occurrences of pχ are separated by more than a time units; in this case, we
non-deterministically move to 1′′ and add a new obligation (by resetting x) after
the current obligation has been verified. Notice that this problem cannot occur
for ϕ1 U ϕ2, or ϕ1 U[0,a] ϕ2: in these cases, the new obligation is immediately
fulfilled, and the automaton moves to the initial, accepting, location.

We now present the extension of Proposition 4 to the case of MITL0,∞. The
proof relies on a function that, given a formula γ = δ(	, σ) (where δ is the
transition function of Aϕ, 	 is a location of Aϕ, and σ ∈ Σ = 2AP) and a
minimal model M of γ with respect to a clock valuation v ∈ R

+, recovers the
set of triggers activated. Formally, we write trigϕ(M,γ, v) for the subset of APϕ

inductively defined by (the rule for x.γ where γ = δ(	, σ) for some 	 ∈ Φ has
precedence over the rule for x.(γ1 ∧ γ2) and x.(γ1 ∨ γ2)):



432 T. Brihaye et al.

Fig. 5. One-clock TA for the subformulae: (a) χ = ϕ1 U[0,a] ϕ2, (b) χ = ϕ1 R[0,a] ϕ2,
and (c) χ = ϕ1 R[a,∞) ϕ2.

– trigϕ(M,γ1 ∧ γ2, v) = trigϕ(M,γ1, v) ∪ trigϕ(M,γ2, v);

– trigϕ(M,γ1 ∨ γ2, v) =

{
trigϕ(M,γ1, v) if M |=v γ1

trigϕ(M,γ2, v) otherwise;
– trigϕ(M,x.γ, v) = {p	} ∪ trigϕ(M,γ, 0) if γ = δ(	, σ) for some 	 ∈ Φ;
– trigϕ(M,x.(γ1 ∧ γ2), v) = trigϕ(M,x.γ1, v) ∪ trigϕ(M,x.γ2, v);

– trigϕ(M,x.(γ1 ∨ γ2), v) =

{
trigϕ(M,x.γ1, v) if M |=v x.γ1

trigϕ(M,x.γ2, v) otherwise;
– trigϕ(M,γ, v) = ∅ otherwise.

Fig. 6. One-clock TA for the subformula χ = ϕ1 U[a,∞) ϕ2.
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Proposition 6. For all MITL0,∞ formulae ϕ, projAP(�Cinit × ∏
χ∈Φ Cχ�) = �ϕ�.

Proof (Sketch). Recall that Theorem 2 states that �ϕ� = �Aϕ�. Therefore, it
suffices to relate the accepting runs of the synchronous product of all component
Büchi timed automata C = Cinit × ∏

χ∈Φ Cχ with the accepting runs of Aϕ. Let
us consider a timed word ρ ∈ �Aϕ� and an accepting run G = (V,→) of Aϕ

over ρ. Let K0,K1, . . . be the sequence of configurations associated with G.
We first construct the instrumented timed word ρ′ over 2AP∪APϕ from ρ and

G by adding the triggers in APϕ according to the minimal models selected in G.
More precisely, for all i ≥ 0, we associate with every state (	, v) of Ki the pair
(γ	,v,M	,v) where γ	,v = δ(	, σi+1) and M	,v is the minimal model of γ	,v with
respect to v + τi+1 − τi chosen in G. We then gather all the triggers in Qi =⋃

(	,v)∈Ki
trigϕ(M	,v, γ	,v, v+τi+1−τi), and let ρ′ = (σ1∪Q1, τ1)(σ2∪Q2, τ2) · · · .

Then, it can be shown that each component has an accepting run over ρ′. By
definition, the generalised Büchi acceptance condition on C is fulfilled exactly
when the Büchi acceptance condition on each of the components is fulfilled. It
follows that C accepts ρ′, and hence ρ ∈ projAP(�C�). The other direction of the
proof consists of building an accepting run G of Aϕ over projAP(ρ′) from an
accepting run of C over ρ′ ∈ �C�. At each level of G, the truth values of the
triggers in ρ′ are used to guide the construction of minimal models. ��

5 Handling Full MITL

We can now extend our translation to full MITL, i.e. allowing operators U[a,b]

and R[a,b] with 0 < a < b < +∞. For these two types of operators, we cannot
rely on a single clock in the components anymore. For instance, consider the
formula ϕ = G(p ⇒ χ) with χ = F[1,2]q. Imagine that Aϕ reads the prefix

Fig. 7. How to split cases to satisfy the formula χ = ϕ1 U[a,b] ϕ2.
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({p}, 0)({p}, 0.5). At this point, its configuration is {(ϕ, 0), (χ, 0), (χ, 0.5)}. It
is not possible, as before, to drop one of the two states in location χ as the
following futures can happen: if we read ({q}, 1), obligation (χ, 0) is fulfilled but
not (χ, 0.5); if we read ({q}, 2.5) then the obligation (χ, 0.5) is fuilfilled but not
(χ, 0). Therefore, we must keep track of the two obligations separately. It is,
however, not clear how to find an a priori bound on the number of clocks. This
is the role of the interval semantics introduced in [11] for OCATAs resulting from
MITL formulae over infinite words. In this interpretation of OCATAs, valuations
of the clocks are no longer points but intervals meant to approximate sets of
(singular) valuations: (	, [α, β]) means that there are clock copies with valuations
α and β in 	, yet there could be more copies in 	 with valuations in (α, β). In
this semantics, we can merge non-deterministically two copies (	, [α1, β1]) and
(	, [α2, β2]) into a single copy (	, [α1, β2]) (assuming α1 ≤ β2), in order to keep the
number of clock copies below a fixed threshold, and thus obtain an equivalent TA.
It has been shown in [11] that, for the OCATA Aϕ, with ϕ ∈ MITL, the interval
semantics is sufficient to retain the language of the formula, with TAs having at
most M(ϕ) = |ϕ|×maxI∈Iϕ

(max(4×�inf(I)/|I|�+2, 2×�sup(I)/|I|�+2)) clocks,
where Iϕ is the set of intervals that appear in ϕ: more precisely, each subformula
with topmost operator UI (respectively, RI) contributes to 4 × �inf(I)/|I|� + 2
(respectively, 2 × �sup(I)/|I|� + 2) more clocks.

Our solution is twofold in this context: (i) we propose a better approximation
by intervals that allows us to cut, up to a factor of two, the number of clock
copies we must keep in memory; (ii) instead of a single TA, as in [11], we provide
a GBTA, with one component per temporal subformula of ϕ. The component TA
are much more involved than for MITL0,∞, thus we do not give them explicitly,
but rather explain the main ideas.

We start by developing our new merging strategy on an example, to explain
how it is different from [11]. Consider χ = ϕ1U[a,b]ϕ2 with 0 < a < b < +∞ and
the situation depicted in Fig. 7, where the trigger pχ is pulled at three positions of
time stamps τ1, τ2, and τ3. We suppose that ϕ1 holds at all three positions. The
picture presents four different cases corresponding to the four possible situations
where the occurrences of ϕ2 fulfil the three pending obligations. Case 1 is when
a position in [τ3 + a, τ1 + b] satisfies ϕ2, hence all three obligations are resolved
at once. This case can be checked using only clocks x3 and x1. In case 2, the first
obligation is resolved by an occurrence of ϕ2 with time stamp in [τ1 + a, τ2 + a),
while the two others are resolved by an occurrence in (τ1+b, τ2+b]. Thus, case 2
can be checked using only clocks x1 and x2. Now consider the remaining cases:
if no occurrences of ϕ2 appear in [τ1 + a, τ2 + a) ∪ [τ3 + a, τ1 + b], one occurrence
of ϕ2 must necessarily happen in [τ2 + a, τ3 + a), while the other should be in
(τ1 + b, τ3 + b], which can only be checked using three clocks x1, x2 and x3. We
avoid this by splitting this case into two further cases (cases 3 and 4) that can
be checked with only two clocks. Specifically, case 3 can be checked using only
clocks x2 and x3; and case 4 using only clocks x2 and x1.

Observe that these cases can be categorised into two groups: one where ϕ2

should occur in a single interval whose endpoints use two distinct clocks (case 1),
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another where ϕ2 should occur in two half-open intervals whose both endpoints
use the same two distinct clocks (cases 2, 3 and 4). In each of the two groups,
it must be understood how a new obligation (added by pulling the trigger pχ)
modifies the situation. With only one interval, if a new obligation for ϕ2 appear
as a new interval [τ + a, τ + b], either the new obligation is implied by the
current one, in which case we are done, or the two intervals intersect and we do
a further split (non-deterministically) into cases 1, 3 and 4, or they are disjoint
and we keep both intervals in memory. The latter situation cannot happen too
often since intervals are non-singular; more precisely, this will happen at most
�(inf(I)/|I|)+1� times (I = [a, b]). With two intervals, either the new obligation
is already implied by current obligations, or [τ + a, τ + b] is not implied by the
current obligations and we add this new interval in memory as before (again,
this cannot happen more than �(inf(I)/|I|) + 1� times).

In the end, following the same lines as [11], we can build a component Cχ for
each subformula χ = ϕ1U[a,b]ϕ2 with N(χ) = 2×�(inf(I)/|I|)+1�+2 clocks (the
two additional clocks are used to deal easily with some special cases), which is
roughly half of the previous bound on the number of clocks [11]. In the locations,
we can handle the clocks in pairs and use a queue of size N(χ)/2 to keep track
of which case we fall into and which clocks are used to represent the endpoints
of intervals. It follows that the number of locations is exponential in N(χ).
A similar construction, using 2 × �(inf(I)/|I|) + 1� clocks, builds a component
Cχ for each subformula χ = ϕ1R[a,b] ϕ2. In this case, we have to consider unions
of intervals, which are easier to deal with.

Theorem 7. For all MITL formulae ϕ, projAP(�Cinit × ∏
χ∈Φ Cχ�) = �ϕ�.

Proof (Sketch). We follow the same lines of the proof of Proposition 6, i.e. relat-
ing the accepting runs of Aϕ with the accepting runs of C = Cinit × ∏

χ∈Φ Cχ.
To show that �Aϕ� ⊆ projAP(�C�), we use the same construction of the Hintikka
sequence over 2AP∪APϕ . Note that we have the accepting run G, so that we know
in advance how each obligation is to be fulfilled in the future. In particular, we
use this knowledge to resolve the non-determinism in components of the form
Cϕ1U[a,b]ϕ2 or Cϕ1R[a,b]ϕ2 . The other direction is also similar. ��

6 Implementation

We have implemented our translation from MITL formulae to generalised Büchi
timed automata in a tool called MightyL, written in OCaml. From a formula ϕ,
it produces the GBTA C, described in previous sections, in the xml format used
by Uppaal, as well as the generalised Büchi condition written as a very simple
LTL formula. When the input formula is in MITL0,∞, the translation can be done
in polynomial time. For the general case, it runs in exponential time (assuming a
succinct encoding of constants, as is the case here). We can then use Uppaal [27]
to check the satisfiability of ϕ over finite timed words, or LTSmin [24] with opaal
front-end to check satisfiability over infinite timed words. To maximise compat-
ibility with model-checking tools, we use several helper variables in the output



436 T. Brihaye et al.

xml file, e.g. a Boolean variable for each atomic proposition and a loc variable
in each component for the current location. The synchronisation is done in a
round-robin fashion with a counter variable N: initially, N is set to 0, allowing
the model (to be model-checked) to take a transition and set the truth values
of the atomic propositions. Then, N loops from 1 to the number of components
of C, allowing each component to read the atomic propositions and take a cor-
responding transition. Finally, N is set back to 0 and we start over again. For
the finite-word case, this also enables to check that all components have been
synchronised properly (N = 0) while in the final location. Our tool is publicly
available, and can even be executed directly on the website

http://www.ulb.ac.be/di/verif/mightyl

Compared to the simplified version we studied in this article, MightyL also
allows for (semi-)open intervals. Since it can also deal with next and dual-next
operators, we can verify formulae like ¬X[1,2)p. All the following tests have been
performed on a MacBook Pro 2.7 GHz with 8Go RAM.

We check the satisfiability of MITL formulae on examples, inspired by
the benchmarks of [11,19]. For k ∈ N and an interval I, we consider the
satisfiable formulae: F (k, I) =

∧k
i=1FIpi, G(k, I) =

∧k
i=1GIpi, U(k, I) =

(· · · (p1 UI p2) UI · · · ) UI pk, R(k, I) = (· · · (p1 RI p2) RI · · · ) RI pk, and
θ(k, I) = ¬((

∧k
i=1GFpi) ⇒ G(q ⇒ FIr)). We also consider an example inspired

from motion planning problems via MITL specifications as in [25,31]. In this
benchmark, a robot must visit some target points t1, t2, t3, . . . , tk within given
time frames (in our case, ti must be seen in time frame [3(i − 1), 3i]), while
enforcing a safety condition G¬p. This specification is modelled by the satis-
fiable MITL formula μ(k) =

∧k
i=1F[3(i−1),3i]ti ∧ G¬p. In Table 1, we report on

the time taken by the execution of MightyL; LTSmin (split into the time taken
by opaal front-end to translate the model into C++ code, the compilation
time of the resulting C++ code, and the time taken by LTSmin for the actual
model-checking); and Uppaal, on all these examples (for the motion planning,

Table 1. Execution time for the satisfiability check of benchmarks of [11,19]. For
LTSmin, the three columns reported correspond to the translation into C++, the com-
pilation and the actual model-checking, respectively.

http://www.ulb.ac.be/di/verif/mightyl
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Table 2. Validity and redundancy checking of MITL formulae.

only finite words are relevant, hence we report only on the Uppaal running
time).

We also report on the benchmarks found in [16], where the debugging of for-
mal specifications of cyber-physical systems is reduced to MITL non-satisfiability.
More precisely, we check formulae for validity and redundancy. In [16], a formula
ϕ is called valid (with respect to a specification goal) if ϕ is neither unsatisfiable
nor a tautology, i.e. ϕ and ¬ϕ are both satisfiable. A conjunct ϕ1 of formula
ϕ =

∧k
i=1 ϕi is redundant if and only if

∧k
i=2 ϕi implies ϕ1. This is true if and

only if ψ =
∧k

i=2 ϕi ⇒ ϕ1 is valid, i.e. if and only if ¬ψ is not satisfiable. For
instance, F[0,30]p is redundant in F[0,30]p ∧F[0,20]p, and G[0,20]F[0,20]p is redun-
dant in G[0,20]F[0,20]p∧G[0,40]p∧F[20,40]�. We check the validity and redundancy
of several formulae considered in [16] and report the results in Table 2. For ref-
erence, we copy the execution time reported in [16] for these checks.5 We also
consider some new formulae specific to our pointwise semantics.

Finally, recall that one technical part of the constructions of component Büchi
timed automata is the minimal model simplification mm(ϕ). Our components
remain correct if we replace everywhere mm(ϕ) by ϕ (i.e. ϕ̂ simply becomes ϕ).
On some instances of the previous benchmarks, the influence on the execution
time of the satisfiability checks is tremendous (differences on the execution time
of MightyL negligible, since the tool always answers in less than a second).
For instance, over F (5, [0,∞)), LTSmin shows a 17% overhead. For F (5, [0, 2]),
LTSmin experiences a 5% overhead, while Uppaal has a 12% overhead. For
formulae F (5, [2,∞)), F (3, [1, 2]), F (5, [1, 2]), the situation is even worse since
Uppaal stops responding before the timeout of fifteen minutes. LTSmin also
hangs on F (3, [1, 2]) before the timeout. On the motion planning example, the
overhead is also significant for Uppaal, e.g. 80% for μ2, and, for μ3 and μ4,
Uppaal does not respond anymore before the timeout. Finally, on the two unsat-
isfiable examples of the redundancy check, LTSmin and Uppaal have overheads
of 70%/3% and 630%/230%, respectively.

7 Conclusion and Perspectives

In this work, we proposed a new compositional construction from MITL to timed
automata which we implemented the tool MightyL, enabling easy automata-
based model-checking of full MITL. For future work, since the structure of the
5 These numbers are only for reference and should not be taken as a direct comparison

since, contrary to us, [16] considers a bounded continuous semantics of MITL.
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formula is preserved in our construction, we want to investigate antichain-based
heuristics to allow more performance boost. For MightyL, we plan to add native
support for ECL [33] operators which eases the writing of specifications, as well
as past operators and counting operators [23].

Acknowledgements. We thank the reviewers of this article that help us clarify
its overall presentation. The third author would like to thank Andreas Engelbredt
Dalsgaard, Alfons Laarman and Jeroen Meijer for their technical help with opaal and
LTSmin.
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Abstract. We present the DryVR framework for verifying hybrid con-
trol systems that are described by a combination of a black-box simu-
lator for trajectories and a white-box transition graph specifying mode
switches. The framework includes (a) a probabilistic algorithm for learn-
ing sensitivity of the continuous trajectories from simulation data, (b) a
bounded reachability analysis algorithm that uses the learned sensitivity,
and (c) reasoning techniques based on simulation relations and sequen-
tial composition, that enable verification of complex systems under long
switching sequences, from the reachability analysis of a simpler system
under shorter sequences. We demonstrate the utility of the framework
by verifying a suite of automotive benchmarks that include powertrain
control, automatic transmission, and several autonomous and ADAS fea-
tures like automatic emergency braking, lane-merge, and auto-passing
controllers.

1 Introduction

The starting point of existing hybrid system verification approaches is the avail-
ability of nice mathematical models describing the transitions and trajecto-
ries. This central conceit severely restricts the applicability of the resulting
approaches. Real world control system “models” are typically a heterogeneous
mix of simulation code, differential equations, block diagrams, and hand-crafted
look-up tables. Extracting clean mathematical models from these descriptions is
usually infeasible. At the same time, rapid developments in Advanced Driving
Assist Systems (ADAS), autonomous vehicles, robotics, and drones now make
the need for effective and sound verification algorithms stronger than ever before.
The DryVR framework presented in this paper aims to narrow the gap between
sound and practical verification for control systems.
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Model Assumptions. Consider an ADAS feature like automatic emergency
braking system (AEB). The high-level logic deciding the timing of when and
for how long the brakes are engaged after an obstacle is detected by sensors is
implemented in a relatively clean piece of code and this logical module can be
seen as a white-box . In contrast, the dynamics of vehicle itself, with hundreds of
parameters, is more naturally viewed as a black-box . That is, it can be simulated
or tested with different initial conditions and inputs, but it is nearly impossible
to write down a nice mathematical model.

The empirical observation motivating this work is that many control systems,
and especially automotive systems, share this combination of white and black
boxes (see other examples in Sects. 2.1, 2.5, [21]). In this paper, we view hybrid
systems as a combination of a white-box that specifies the mode switches and
a black-box that can simulate the continuous evolution in each mode. Suppose
the system has a set of modes L and n continuous variables. The mode switches
are defined by a transition graph G—a directed acyclic graph (DAG) annotated
with allowed switching times. The black-box is a set of trajectories TL in R

n for
each mode in L.Instead of a closed form description of TL, we have a simulator ,
that can generate sampled data points on individual trajectories. Combining a
transition graph G, a set of trajectories TL, and a set of initial states, we obtain
a hybrid system for which executions, reachability, and trace containment can
be defined naturally.

A number of automotive systems we have studied are naturally represented
in the above style: in powertrain [30] and transmission [34] control systems the
mode transitions are brought about by the driver or the control algorithm,
and in either case it is standard to describe typical switching behavior using
time-triggered signals; in automatic emergency braking (AEB), merge and auto-
passing control, once the maneuver is activated, the mode transitions occur
within certain time intervals. Similar observations hold in other examples.

Safety Verification Algorithm. With black-box modules in our hybrid sys-
tems, we address the challenge of providing guaranteed verification. Our approach
is based on the idea of simulation-driven reachability analysis [15,16,22]. For a
given mode � ∈ L, finitely many simulations of the trajectories of � and a dis-
crepancy function bounding the sensitivity of these trajectories, is used to over-
approximate the reachable states. For the key step of computing discrepancy for
modes that are now represented by black-boxes, we introduce a probabilistic algo-
rithm that learns the parameters of exponential discrepancy functions from simu-
lation data. The algorithm transforms the problem of learning the parameters of
the discrepancy function to the problem of learning a linear separator for a set of
points in R

2 that are obtained from transforming the simulation data. A classi-
cal result in PAC learning, ensures that any such discrepancy function works with
high probability for all trajectories. We performed dozens of experiments with a
variety of black-box simulators and observed that 15–20 simulation traces typ-
ically give a discrepancy function that works for nearly 100% of all simulations.
The reachability algorithm for the hybrid system proceeds along the topologically
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sorted vertices of the transition graph and this gives a sound bounded verification
algorithm, provided the learned discrepancy function is correct.

Reasoning. White-box transition graphs in our modelling, identify the switch-
ing sequences under which the black-box modules are exercised. Complex sys-
tems have involved transition graphs that describe subtle sequences in which
the black-box modules are executed. To enable the analysis of such systems, we
identify reasoning principles that establish the safety of system under a com-
plex transition graph based on its safety under a simpler transition graph. We
define a notion of forward simulation between transition graphs that provides
a sufficient condition of when one transition graph “subsumes” another—if G1

is simulated by G2 then the reachable states of a hybrid system under G1 are
contained in the reachable states of the system under G2. Thus the safety of
the system under G2 implies the safety under G1. Moreover, we give a simple
polynomial time algorithm that can check if one transition graph is simulated
by another.

Our transition graphs are acyclic with transitions having bounded switching
times. Therefore, the executions of the systems have a time bound and a bounded
number of mode switches. An important question to investigate is whether estab-
lishing the safety for bounded time, enables one to conclude the safety of the
system for an arbitrarily long time and for arbitrarily many mode switches. With
this in mind, we define a notion of sequential composition of transition graphs
G1 and G2, such that switching sequences allowed by the composed graph are
the concatenation of the sequences allowed by G1 with those allowed by G2.
Then we prove a sufficient condition on a transition graph G such that safety
of a system under G implies the safety of the system under arbitrarily many
compositions of G with itself.

Automotive Applications. We have implemented these ideas to create the
Data-driven System for Verification and Reasoning (DryVR). The tool is able
to automatically verify or find counter-examples in a few minutes, for all the
benchmark scenarios mentioned above. Reachability analysis combined with
compositional reasoning, enabled us to infer safety of systems with respect to
arbitrary transitions and duration.

Related Work. Most automated verification tools for hybrid systems rely
on analyzing a white-box mathematical model of the systems. They include
tools based on decidability results [3,24,28], semi-decision procedures that over-
approximate the reachable set of states through symbolic computation [4,7,25],
using abstractions [1,5,8,38], and using approximate decision procedures for
fragments of first-order logic [33]. More recently, there has been interest in devel-
oping simulation-based verification tools [2,10–12,16,17,31]. Even though these
are simulation based tools, they often rely on being to analyze a mathematical
model of the system. The type of analysis that they rely on include instrumenta-
tion to extract a symbolic trace from a simulation [31], stochastic optimization
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to search for counter-examples [2,17], and sensitivity analysis [10–12,16]. Some
of the simulation based techniques only work for systems with linear dynam-
ics [26,27]. Recent work on the APEX tool [36] for verifying trajectory planning
and tracking in autonomous vehicles is related our approach in that it targets
the same application domain.

2 Modeling/Semantic Framework

We introduce a powertrain control system from [30] as a running example to
illustrate the elements of our hybrid system modeling framework.

2.1 Powertrain Control System

This system (Powertrn) models a highly nonlinear engine control system. The rel-
evant state variables of the model are intake manifold pressure (p), air-fuel ratio
(λ), estimated manifold pressure (pe) and intergrator state (i). The overall sys-
tem can be in one of four modes startup, normal, powerup, sensorfail. A Simulink R©

diagram describes the continuous evolution of the above variables. In this paper,
we mainly work on the Hybrid I/O Automaton Model in the suite of powertrain
control models. The Simulink R© model consists of continuous variables describ-
ing the dynamics of the powertrain plant and sample-and-hold variables as the
controller. One of the key requirements to verify is that the engine maintains the
air-fuel ratio within a desired range in different modes for a given set of driver
behaviors. This requirement has implications on fuel economy and emissions. For
testing purposes, the control system designers work with sets of driver profiles
that essentially define families of switching signals across the different modes.
Previous verification results on this problem have been reported in [14,18] on a
simplified version of the powertrain control model.

2.2 Transition Graphs

We will use L to denote a finite set of modes or locations of the system under
consideration. The discrete behavior or mode transitions are specified by what
we call a transition graph over L.

Definition 1. A transition graph is a labeled, directed acyclic graph G = 〈L,
V, E , vlab, elab〉, where (a) L is the set of vertex labels, also called the set of
modes, V the set of vertices, E ⊆ V×V is the set of edges, vlab : V → L is a vertex
labeling function that labels each vertex with a mode, and elab : E → R≥0×R≥0 is
an edge labeling function that labels each edge with a nonempty, closed, bounded
interval defined by pair of non-negative reals.

For cyclic graph with bounded number of switches and bounded time, we
can first unfold it to a required depth to obtain the DAG. Since G is a DAG,
there is a nonempty subset Vinit ⊆ V of vertices with no incoming edges and a
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nonempty subset Vterm ⊆ V of vertices with no outgoing edges. We define the set
of initial locations of G as Linit = {� | ∃ v ∈ Vinit, vlab(v) = �}. A (maximal) path
of the graph G is a sequence π = v1, t1, v2, t2, . . . , vk such that, (a) v1 ∈ Vinit,(b)
vk ∈ Vterm, and for each (vi, ti, vi+1) subsequence, there exists (vi, vi+1) ∈ E ,
and ti ∈ elab((vi, vi+1)). PathsG is the set of all possible paths of G. For a
given path π = v1, t1, v2, t2, . . . , vk its trace, denoted by vlab(π), is the sequence
vlab(v1), t1, vlab(v2), t2, . . . , vlab(vk). Since G is a DAG, a trace of G can visit
the same mode finitely many times. TraceG is the set of all traces of G.

0

startup

1

normal

2

normal

3

4

sensorfail

powerup

[5,10]

[10,15][5,10]

[5,10][10,15]

[20,25]

Fig. 1. A sample transition graph for Powertrain system.

An example transition
graph for the Powertrain
system of Sect. 2.1 is
shown in Fig. 1. The
set of vertices V =
{0, . . . , 4} and the vlab’s
and elab’s appear adja-
cent to the vertices and
edges.

Trace Containment. We will develop reasoning techniques based on reacha-
bility, abstraction, composition, and substitutivity. To this end, we will need
to establish containment relations between the behaviors of systems. Here
we define containment of transition graph traces. Consider transition graphs
G1, G2, with modes L1,L2, and a mode map lmap : L1 → L2. For a trace
σ = �1, t1, �2, t2, . . . , �k ∈ TraceG1 , simplifying notation, we denote by lmap(σ)
the sequence lmap(�1), t1, lmap(�2), t2, . . . , lmap(�k). We write G1 �lmap G2 iff
for every trace σ ∈ TraceG1 , there is a trace σ′ ∈ TraceG2 such that lmap(σ) is
a prefix of σ′.

Definition 2. Given graphs G1, G2 and a mode map lmap : L1 → L2, a relation
R ⊆ V1 × V2 is a forward simulation relation from G1 to G2 iff

(a) for each v ∈ V1init, there is u ∈ V2init such that (v, u) ∈ R,
(b) for every (v, u) ∈ R, lmap(vlab1(v)) = vlab2(u), and
(c) for every (v, v′) ∈ E1 and (v, u) ∈ R, there exists a finite set u1, . . . , uk such

that: (i) for each uj, (v, uj) ∈ R, and (ii) elab1((v, v′)) ⊆ ∪jelab2((u, uj)).

Proposition 1. If there exists a forward simulation relation from G1 to G2 with
lmap then G1 �lmap G2.

Sequential Composition of Graphs. We will find it convenient to define
the sequential composition of two transition graphs. Intuitively, the traces of the
composition of G1 and G2 will be those that can be obtained by concatenating
a trace of G1 with a trace of G2. To keep the definitions and notations simple,
we will assume (when taking sequential compositions) |Vinit| = |Vterm| = 1; this
is true of the examples we analyze. It is easy to generalize to the case when this
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does not hold. Under this assumption, the unique vertex in Vinit will be denoted
as vinit and the unique vertex in Vterm will be denoted as vterm.

Definition 3. Given graphs G1 = 〈L,V1, E1, vlab1, elab1〉 and G2 = 〈L,V2, E2,
vlab2, elab2〉 such that vlab1(v1term) = vlab2(v2init), the sequential composition
of G1 and G2 is the graph G1 ◦ G2 = 〈L,V, E , vlab, elab〉 where

(a) V = (V1 ∪ V2) \ {v2init)},
(a) E = E1 ∪ {(v1term, u) | (v2init, u) ∈ E2} ∪ {(v, u) ∈ E2 | v �= v2init},
(a) vlab(v) = vlab1(v) if v ∈ V1 and vlab(v) = vlab2(v) if v ∈ V2,
(a) For edge (v, u) ∈ E, elab((v, u)) equals (i) elab1((v, u)), if u ∈ V1, (ii)

elab2((v2init, u)), if v = v1term, (ii) elab2((v, u)), otherwise.

Given our definition of trace containment between graphs, we can prove a
very simple property about sequential composition.

Proposition 2. Let G1 and G2 be two graphs with modes L that can be sequen-
tial composed. Then G1 �id G1 ◦ G2, where id is the identity map on L.

The proposition follows from the fact that every path of G1 is a prefix of a
path of G1 ◦ G2. Later in Sect. 4.1 we see examples of sequential composition.

2.3 Trajectories

The evolution of the system’s continuous state variables is formally described
by continuous functions of time called trajectories. Let n be the number of
continuous variables in the underlying hybrid model. A trajectory for an n-
dimensional system is a continuous function of the form τ : [0, T ] → R

n, where
T ≥ 0. The interval [0, T ] is called the domain of τ and is denoted by τ.dom. The
first state τ(0) is denoted by τ.fstate, last state τ.lstate = τ(T ) and τ.ltime = T .
For a hybrid system with L modes, each trajectory is labeled by a mode in L.
A trajectory labeled by L is a pair 〈τ, �〉 where τ is a trajectory and � ∈ L.

A T1-prefix of 〈τ, �〉, for any T1 ∈ τ.dom, is the labeled-trajectory 〈τ1, �〉
with τ1 : [0, T1] → R

n, such that for all t ∈ [0, T1], τ1(t) = τ(t). A set of labeled-
trajectories TL is prefix-closed if for any 〈τ, �〉 ∈ TL, any of its prefixes are also in
TL. A set TL is deterministic if for any pair 〈τ1, �1〉, 〈τ2, �2〉 ∈ TL, if τ1.fstate =
τ2.fstate and �1 = �2 then one is a prefix of the other. A deterministic, prefix-
closed set of labeled trajectories TL describes the behavior of the continuous
variables in modes L. We denote by TLinit,� = {τ.fstate | 〈τ, �〉 ∈ TL}, the set of
initial states of trajectories in mode �. Without loss generality we assume that
TLinit,� is a connected, compact subset of Rn. We assume that trajectories are
defined for unbounded time, that is, for each � ∈ L, T > 0, and x ∈ TLinit,�, there
exists a 〈τ, �〉 ∈ TL, with τ.fstate = x and τ.ltime = T .

In control theory and hybrid systems literature, the trajectories are assumed
to be generated from models like ordinary differential equations (ODEs) and
differential algebraic equations (DAEs). Here, we avoid an over-reliance on the
models generating trajectories and closed-form expressions. Instead, DryVR
works with sampled data of τ(·) generated from simulations or tests.
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Definition 4. A simulator for a (deterministic and prefix-closed) set TL of tra-
jectories labeled by L is a function (or a program) sim that takes as input a mode
label � ∈ L, an initial state x0 ∈ TLinit,�, and a finite sequence of time points
t1, . . . , tk, and returns a sequence of states sim(x0, �, t1), . . . , sim(x0, �, tk) such
that there exists 〈τ, �〉 ∈ TL with τ.fstate = x0 and for each i ∈ {1, . . . , k},
sim(x0, �, ti) = τ(ti).

The trajectories of the Powertrn system are described by a Simulink R© dia-
gram. The diagram has several switch blocks and input signals that can be set
appropriately to generate simulation data using the Simulink R© ODE solver.

For simplicity, we assume that the simulations are perfect (as in the last
equality of Definition 4). Formal guarantees of soundness of DryVR are not
compromised if we use validated simulations instead.

Trajectory Containment. Consider sets of trajectories, TL1 labeled by L1 and
TL2 labeled by L2, and a mode map lmap : L1 → L2. For a labeled trajectory
〈τ, �〉 ∈ TL1, denote by lmap(〈τ, �〉) the labeled-trajectory 〈τ, lmap(�)〉. Write
TL1 �lmap TL2 iff for every labeled trajectory 〈τ, �〉 ∈ TL1, lmap(〈τ, �〉) ∈ TL∈.

2.4 Hybrid Systems

Definition 5. An n-dimensional hybrid system H is a 4-tuple 〈L, Θ,G, TL〉,
where (a) L is a finite set of modes, (b) Θ ⊆ R

n is a compact set of initial
states, (c) G = 〈L,V, E , elab〉 is a transition graph with set of modes L, and (d)
TL is a set of deterministic, prefix-closed trajectories labeled by L.

A state of the hybrid system H is a point in R
n × L. The set of initial states

is Θ×Linit. Semantics of H is given in terms of executions which are sequences of
trajectories consistent with the modes defined by the transition graph. An exe-
cution of H is a sequence of labeled trajectories α = 〈τ1, �1〉 . . . , 〈τk−1, �k−1〉, �k

in TL, such that (a) τ1.fstate ∈ Θ and �1 ∈ Linit, (b) the sequence path(α)
defined as �1, τ1.ltime, �2, . . . �k is in TraceG, and (c) for each pair of consecutive
trajectories, τi+1.fstate = τi.lstate. The set of all executions of H is denoted by
ExecsH. The first and last states of an execution α = 〈τ1, �1〉 . . . , 〈τk−1, �k−1〉, �k

are α.fstate = τ1.fstate, α.lstate = τk−1.lstate, and α.fmode = �1 α.lmode = �k.
A state 〈x, �〉 is reachable at time t and vertex v (of graph G) if there exists
an execution α = 〈τ1, �1〉 . . . , 〈τk−1, �k−1〉, �k ∈ ExecsH, a path π = v1, t1, . . . vk

in PathsG, i ∈ {1, . . . k}, and t′ ∈ τi.dom such that vlab(π) = path(α), v = vi,
� = �i, x = τi(t′), and t = t′ +

∑i−1
j=1 tj .The set of reachable states, reach tube,

and states reachable at a vertex v are defined as follows.

ReachTubeH = {〈x, �, t〉 | for some v, 〈x, �〉 is reachable at time t and vertex v}
ReachH = {〈x, �〉 | for some v, t, 〈x, �〉 is reachable at time t and vertex v}
Reachv

H = {〈x, �〉 | for some t, 〈x, �〉 is reachable at time t and vertex v}

Given a set of (unsafe) states U ⊆ R
n × L, the bounded safety verification

problem is to decide whether ReachH∩U = ∅. In Sect. 3 we will present DryVR’s
algorithm for solving this decision problem.
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Remark 1. Defining paths in a graph G to be maximal (i.e., end in a vertex in
Vterm) coupled with the above definition for executions in H, ensures that for a
vertex v with outgoing edges in G, the execution must leave the mode vlab(v)
within time bounded by the largest time in the labels of outgoing edges from v.

An instance of the bounded safety verification problem is defined by (a) the
hybrid system for the Powertrn which itself is defined by the transition graph of
Fig. 1 and the trajectories defined by the Simulink R© model, and (b) the unsafe
set (Up): in powerup mode, t > 4 ∧ λ /∈ [12.4, 12.6], in normal mode, t > 4 ∧ λ /∈
[14.6, 14.8].

Containment between graphs and trajectories can be leveraged to conclude
the containment of the set of reachable states of two hybrid systems.

Proposition 3. Consider a pair of hybrid systems Hi = 〈Li, Θi, Gi, TLi〉, i ∈
{1, 2} and mode map lmap : L1 → L2. If Θ1 ⊆ Θ2, G1 �lmap G2, and TL1 �lmap

TL2, then ReachH1 ⊆ ReachH2 .

2.5 ADAS and Autonomous Vehicle Benchmarks

This is a suite of benchmarks we have created representing various common
scenarios used for testing ADAS and Autonomous driving control systems. The
hybrid system for a scenario is constructed by putting together several individual
vehicles. The higher-level decisions (paths) followed by the vehicles are captured
by transition graphs while the detailed dynamics of each vehicle comes from a
black-box Simulink R© simulator from Mathworks R© [35].

Each vehicle has several continuous variables including the x, y-coordinates of
the vehicle on the road, its velocity, heading, and steering angle. The vehicle can
be controlled by two input signals, namely the throttle (acceleration or brake)
and the steering speed. By choosing appropriate values for these input signals,
we have defined the following modes for each vehicle — cruise: move forward at
constant speed, speedup: constant acceleration, brake: constant (slow) decelera-
tion, em brake: constant (hard) deceleration. In addition, we have designed lane
switching modes ch left and ch right in which the acceleration and steering are
controlled in such a manner that the vehicle switches to its left (resp. right) lane
in a certain amount of time.

For each vehicle, we mainly analyze four variables: absolute position (sx) and
velocity (vx) orthogonal to the road direction (x-axis), and absolute position (sy)
and velocity (vy) along the road direction (y-axis). The throttle and steering are
captured using the four variables. We will use subscripts to distinguish between
different vehicles. The following scenarios are constructed by defining appropriate
sets of initial states and transitions graphs labeled by the modes of two or more
vehicles. In all of these scenarios a primary safety requirement is that the vehicles
maintain safe separation. See [21] for more details on initial states and transition
graphs of each scenario.

Merge: Vehicle A in the left lane is behind vehicle B in the right lane. A switches
through modes cruise, speedup, ch right, and cruise over specified intervals to



DryVR: Data-Driven Verification and Compositional Reasoning 449

merge behind B. Variants of this scenario involve B also switching to speedup
or brake.

AutoPassing: Vehicle A starts behind B in the same lane, and goes through a
sequence of modes to overtake B. If B switches to speedup before A enters
speedup then A aborts and changes back to right lane.

Merge3: Same as AutoPassing with a third car C always ahead of B.
AEB: Vehicle A cruises behind B and B stops. A transits from cruise to em brake

possibly over several different time intervals as governed by different sensors
and reaction times.

3 Invariant Verification

A subproblem for invariant verification is to compute ReachTubeH, or more
specifically, the reachtubes for the set of trajectories TL in a given mode, up to a
time bound. This is a difficult problem, even when TL is generated by white-box
models. The algorithms in [11,15,20] approximate reachtubes using simulations
and sensitivity analysis of ODE models generating TL. Here, we begin with a
probabilistic method for estimating sensitivity from black-box simulators.

3.1 Discrepancy Functions

Sensitivity of trajectories is formalized by the notion of discrepancy functions
[15]. For a set TL, a discrepancy function is a uniformly continuous function
β : Rn×R

n×R≥0 → R≥0, such that for any pair of identically labeled trajectories
〈τ1, �〉, 〈τ2, �〉 ∈ TL, and any t ∈ τ1.dom ∩ τ2.dom: (a) β upper-bounds the
distance between the trajectories, i.e.,

|τ1(t) − τ2(t)| ≤ β(τ1.fstate, τ2.fstate, t), (1)

and (b) β converges to 0 as the initial states converge, i.e., for any trajectory τ
and t ∈ τ.dom, if a sequence of trajectories τ1, . . . , τk, . . . has τk.fstate → τ.fstate,
then β(τk.fstate, τ.fstate, t) → 0. In [15] it is shown how given a β, condition (a)
can used to over-approximate reachtubes from simulations, and condition (b)
can be used to make these approximations arbitrarily precise. Techniques for
computing β from ODE models are developed in [19,20,29], but these are not
applicable here in absence of such models. Instead we present a simple method
for discovering discrepancy functions that only uses simulations. Our method is
based on classical results on PAC learning linear separators [32]. We recall these
before applying them to find discrepancy functions.

Learning Linear Separators. For Γ ⊆ R × R, a linear separator is a pair
(a, b) ∈ R

2 such that

∀(x, y) ∈ Γ. x ≤ ay + b. (2)
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Let us fix a subset Γ that has a (unknown) linear separator (a∗, b∗). Our
goal is to discover some (a, b) that is a linear seprator for Γ by sampling points
in Γ1. The assumption is that elements of Γ can be drawn according to some
(unknown) distribution D. With respect to D, the error of a pair (a, b) from
satisfying Eq. 2, is defined to be errD(a, b) = D({(x, y) ∈ Γ | x > ay + b}) where
D(X) is the measure of set X under distribution D. Thus, the error is the
measure of points (w.r.t. D) that (a, b) is not a linear separator for. There is
a very simple (probabilistic) algorithm that finds a pair (a, b) that is a linear
separator for a large fraction of points in Γ, as follows.

1. Draw k pairs (x1, y1), . . . (xk, yk) from Γ according to D; the value of k will
be fixed later.

2. Find (a, b) ∈ R
2 such that xi ≤ ayi + b for all i ∈ {1, . . . k}.

Step 2 involves checking feasibility of a linear program, and so can be done
efficiently. This algorithm, with high probability, finds a linear separator for a
large fraction of points.

Proposition 4. Let ε, δ ∈ R+. If k ≥ 1
ε ln 1

δ then, with probability ≥ 1 − δ, the
above algorithm finds (a, b) such that errD(a, b) < ε.

Proof. The result follows from the PAC-learnability of concepts with low VC-
dimension [32]. However, since the proof is very simple in this case, we reproduce
it here for completeness. Let k be as in the statement of the proposition, and
suppose the pair (a, b) identified by the algorithm has error > ε. We will bound
the probability of this happening.

Let B = {(x, y) | x > ay + b}. We know that D(B) > ε. The algorithm chose
(a, b) only because no element from B was sampled in Step 1. The probability
that this happens is ≤ (1 − ε)k. Observing that (1 − s) ≤ e−s for any s, we get
(1 − ε)k ≤ e−εk ≤ e− ln 1

δ = δ. This gives us the desired result.

Learning Discrepancy Functions. Discrepancy functions will be computed
from simulation data independently for each mode. Let us fix a mode � ∈ L,
and a domain [0, T ] for each trajectory. The discrepancy functions that we will
learn from simulation data, will be one of two different forms, and we discuss
how these are obtained.

Global exponential discrepancy (GED) is a function of the form

β(x1, x2, t) = |x1 − x2|Keγt.

Here K and γ are constants. Thus, for any pair of trajectories τ1 and τ2 (for
mode �), we have

∀t ∈ [0, T ]. |τ1(t) − τ2(t)| ≤ |τ1.fstate − τ2.fstate|Keγt.

1 We prefer to present the learning question in this form as opposed to one where we
learn a Boolean concept because it is closer to the task at hand.
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Taking logs on both sides and rearranging terms, we have

∀t. ln
|τ1(t) − τ2(t)|

|τ1.fstate − τ2.fstate| ≤ γt + lnK.

It is easy to see that a global exponential discrepancy is nothing but a linear
separator for the set Γ consisting of pairs (ln |τ1(t)=τ2(t)|

|τ1.fstate−τ2.fstate| , t) for all pairs
of trajectories τ1, τ2 and time t. Using the sampling based algorithm described
before, we could construct a GED for a mode � ∈ L, where sampling from Γ
reduces to using the simulator to generate traces from different states in TLinit,�.
Proposition 4 guarantees the correctness, with high probability, for any separator
discovered by the algorithm. However, for our reachability algorithm to not be
too conservative, we need K and γ to be small. Thus, when solving the linear
program in Step 2 of the algorithm, we search for a solution minimizing γT+lnK.

Piece-Wise Exponential Discrepancy (PED). The second form of discrepancy
functions we consider, depends upon dividing up the time domain [0, T ] into
smaller intervals, and finding a global exponential discrepancy for each inter-
val. Let 0 = t0, t1, . . . tN = T be an increasing sequence of time points. Let
K, γ1, γ2, . . . γN be such that for every pair of trajectories τ1, τ2 (of mode �), for
every i ∈ {1, . . . , N}, and t ∈ [ti−1, ti], |τ1(t) = τ2(t)| ≤ |τ1(ti−1)−τ2(ti−1)|Keγit.
Under such circumstances, the discrepancy function itself can be seen to be
given as

β(x1, x2, t) = |x1 − x2|Ke
∑i−1

j=1 γj(tj−tj−1)+γi(t−ti−1) for t ∈ [ti−1, ti].

If the time points 0 = t0, t1, . . . tN = T are fixed, then the constants K, γ1, γ2, . . .
γN can be discovered using the learning approach described for GED; here, to
discover γi, we take Γi to be the pairs obtained by restricting the trajectories to
be between times ti−1 and ti. The sequence of time points ti are also dynamically
constructed by our algorithm based on the following approach. Our experience
suggests that a value for γ that is ≥ 2 results in very conservative reach tube
computation. Therefore, the time points ti are constructed inductively to be as
large as possible, while ensuring that γi < 2.

Experiments on Learning Discrepancy. We used the above algorithm to
learn discrepancy functions for dozens of modes with complex, nonlinear trajec-
tories. Our experiments suggest that around 10–20 simulation traces are ade-
quate for computing both global and piece-wise discrepancy functions. For each
mode we use a set Strain of simulation traces that start from independently drawn
random initial states in TLinit,� to learn a discrepancy function. Each trace may
have 100–10000 time points, depending on the relevant time horizon and sample
times. Then we draw another set Stest of 1000 simulations traces for validating
the computed discrepancy. For every pair of trace in Stest and for every time
point, we check whether the computed discrepancy satisfies Eq. 1. We observe
that for |Strain| > 10 the computed discrepancy function is correct for 96% of the
points Stest in and for |Strain| > 20 it is correct for more than 99.9%, across all
experiments.
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Algorithm 1. GraphReach(H) computes bounded time reachtubes for each
vertex of the transition G of hybrid system H.
1 RS ← ∅;VerInit ← {〈Θ, vinit〉};Order ← TopSort(G);
2 for ptr = 0 : len(Order) − 1 do
3 curv ← Order[ptr] ;
4 � ← vlab(curv);
5 dt ← max{t′ ∈ R≥0 | ∃vs ∈ V, (curv , vs) ∈ E , (t, t′) ← elab ((curv , vs))};
6 for Sinit ∈ {S | 〈S, curv〉 ∈ VerInit} do
7 β ← LearnDiscrepancy(Sinit, dt , �);
8 RT ← ReachComp(Sinit, dt , β);
9 RS ← RS ∪ 〈RT, curv〉;

10 for nextv ∈ curv .succ do
11 (t, t′) ← elab ((curv , nextv));
12 VerInit ← VerInit ∪ 〈Restr(RT, (t, t′)), nextv〉;
13 return RS ;

3.2 Verification Algorithm

In this section, we present algorithms to solve the bounded verification problem
for hybrid systems using learned exponential discrepancy functions. We first
introduce an algorithm GraphReach (Algorithm 1) which takes as input a hybrid
system H = 〈L, Θ,G, TL〉 and returns a set of reachtubes—one for each vertex
of G—such that their union over-approximates ReachTubeH.

GraphReach maintains two data-structures: (a) RS accumulates pairs of the
form 〈RT, v〉, where v ∈ V and RT is its corresponding reachtube; (b) VerInit
accumulates pairs of the form 〈S, v〉, where v ∈ V and S ⊂ R

n is the set of states
from which the reachtube in v is to be computed. Each v could be in multiple
such pairs in RS and VerInit . Initially, RS = ∅ and VerInit = {〈Θ, vinit〉}.

LearnDiscrepancy(Sinit, d , �) computes the discrepancy function for mode �,
from initial set Sinit and upto time d using the algorithm of Sect. 3.1.

ReachComp(Sinit, d, β) first generates finite simulation traces from Sinit and
then bloats the traces to compute a reachtube using the discrepancy function β.
This step is similar to the algorithm for dynamical systems given in [15].

The GraphReach algorithm proceeds as follows: first, a topologically sorted
array of the vertices of the DAG G is computed as Order (Line 1). The pointer
ptr iterates over the Order and for each vertex curv the following is computed.
The variable dt is set to the maximum transition time to other vertices from
curv (Line 5). For each possible initial set Sinit corresponding to curv in VerInit ,
the algorithm computes a discrepancy function (Line 7) and uses it to compute
a reachtube from Sinit up to time dt (Line 8). For each successor nextv of curv ,
the restriction of the computed reachtube RT to the corresponding transition
time interval elab((curv ,nextv)) is set as an initial set for nextv (Line 11–12).

The invariant verification algorithm VerifySafety decides safety of H with
respect to a given unsafe set U and uses GraphReach. This algorithm proceeds
in a way similar to the simulation-based verification algorithms for dynamical
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Algorithm 2. VerifySafety(H,U) verifies safety of hybrid system H with
respect to unsafe set U .
initially: I.push(Partition(Θ))

1 while I 	= ∅ do
2 S ← I.pop();
3 RS ← GraphReach(H) ;
4 if RS ∩ U = ∅ then
5 continue;
6 else if ∃(x, l, t) ∈ RT s.t. 〈RT, v〉 ∈ RS and (x, l, t) ⊆ U then
7 return UNSAFE, 〈RT, v〉
8 else
9 I.push(Partition(S)) ;

10 Or, G ← RefineGraph(G) ;

11 return SAFE

and hybrid systems [15,22]. Given initial set Θ and transition graph G of H, this
algorithm partitions Θ into several subsets, and then for each subset S it checks
whether the computed over-approximate reachtube RS from S intersects with
U : (a) If RS is disjoint, the system is safe starting from S; (b) if certain part
of a reachtube RT is contained in U , the system is declared as unsafe and RT
with the the corresponding path of the graph are returned as counter-example
witnesses; (c) if neither of the above conditions hold, then the algorithm performs
refinement to get a more precise over-approximation of RS. Several refinement
strategies are implemented in DryVR to accomplish the last step. Broadly, these
strategies rely on splitting the initial set S into smaller sets (this gives tighter
discrepancy in the subsequent vertices) and splitting the edge labels of G into
smaller intervals (this gives smaller initial sets in the vertices).

The above description focuses on invariant properties, but the algorithm and
our implementation in DryVR can verify a useful class of temporal properties.
These are properties in which the time constraints only refer to the time since the
last mode transition. For example, for the Powertrn benchmark the tool verifies
requirements like “after 4s in normal mode, the air-fuel ratio should be contained
in [14.6, 14.8] and after 4s in powerup it should be in [12.4, 12.6]”.

Correctness. Given a correct discrepancy function for each mode, we can prove
the soundness and relative completeness of Algorithm 2. This analysis closely
follows the proof of Theorem 19 and Theorem 21 in [13].

Theorem 1. If the β’s returned by LearnDiscrepancy are always discrepancy
functions for corresponding modes, then VerifySafety(H,U) (Algorithm 2) is
sound. That is, if it outputs “SAFE”, then H is safe with respect to U and
if it outputs “UNSAFE” then there exists an execution of H that enters U .
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3.3 Experiments on Safety Verification

The algorithms have been implemented in DryVR2 and have been used to
automatically verify the benchmarks from Sect. 2 and an Automatic Transmis-
sion System (detailed description of the models can be found in the appendix
of [21]). The transition graph, the initial set, and unsafe set are given in a text
file. DryVR uses simulators for modes, and outputs either “Safe” of “Unsafe”.
Reachtubes or counter-examples computed during the analysis are also stored
in text files.

(a) Safe reachtube. (b) Unsafe execution.

Fig. 2. AutoPassing verification.Vehicle A’s (red) modes are shown above each subplot.
Vehicle B (green) is in cruise. Top: sxA, sxB . Bottom: syA, syB . (Color figure online)

The implementation is in Python using the MatLab’s Python API for access-
ing the Simulink R© simulators. Py-GLPK [23] is used to find the parameters of
discrepancy functions; either global (GED) or piece-wise (PED) discrepancy can
be selected by the user. Z3 [9] is used for reachtube operations.

Figure 2 shows example plots of computed safe reachtubes and counter-
examples for a simplified AutoPassing in which vehicle B stays in the cruise
always. As before, vehicle A goes through a sequence of modes to overtake B.
Initially, for both i ∈ {A,B}, sxi = vxi = 0 and vyi = 1, i.e., both are cruising
at constant speed at the center of the right lane; initial positions along the lane
are syA ∈ [0, 2], syB ∈ [15, 17]. Figure 2a shows the lateral positions (sxA in red
and sxB in green, in the top subplot), and the positions along the lane (syA

in red and syB in green, in the bottom plot). Vehicle A moves to left lane (sx
decreases) and then back to the right, while B remains in the right lane, as A
overtakes B (bottom plot). The unsafe set (|sxA − sxB| < 2 & |syA − syB | < 2)
is proved to be disjoint from computed reachtube. With a different initial set,
syB ∈ [30, 40], DryVR finds counter-example (Fig. 2b).
2 The implementation of DryVR with the case studies can be found at https://github.

com/qibolun/DryVR. We have also moved the Autonomous vehicle benchmark mod-
els and all the scenarios to Python for faster simulation..

https://github.com/qibolun/DryVR
https://github.com/qibolun/DryVR
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Table 1. Safety verification results. Numbers below benchmark names: # vertices and
edges of G, TH: duration of shortest path in G, Ref: # refinements performed; Runtime:
overall running time.

Model TH Initial set U Ref Safe Runtime

Powertrn (5 vers, 6 edges) 80 λ ∈ [14.6, 14.8] Up 2 ✓ 217.4s

AutoPassing (12 vers, 13 edges) 50 syA ∈ [−1, 1] syB ∈ [14, 16] Uc 4 ✓ 208.4s

50 syA ∈ [−1, 1] syB ∈ [4, 6.5] Uc 5 ✗ 152.5s

Merge (7 vers, 7 edges) 50 sxA ∈ [−5, 5] syB ∈ [−2, 2] Uc 0 ✓ 55.0s

50 sxA ∈ [−5, 5] syB ∈ [2, 10] Uc - ✗ 38.7s

Merge3 (6 vers, 5 edges) 50 syA ∈ [−3, 3] syB ∈ [14, 23] syC ∈ [36, 45] Uc 4 ✓ 197.6s

50 syA ∈ [−3, 3] syB ∈ [14, 15] syC ∈ [16, 20] Uc - ✗ 21.3s

ATS (4 vers, 3 edges) 50 Erpm ∈ [900, 1000] Ut 2 ✓ 109.2s

Table 1 summarizes some of the verification results obtained using DryVR.
ATS is an automatic transmission control system (see [21] for more details).
These experiments were performed on a laptop with Intel Core i7-6600U CPU
and 16 GB RAM. The initial range of only the salient continuous variables are
shown in the table. The unsafe sets are discussed with the model description.
For example Uc means two vehicles are too close. For all the benchmarks, the
algorithm terminated in a few minutes which includes the time to simulate,
learn discrepancy, generate reachtubes, check the safety of the reachtube, over
all refinements.

For the results presented in Table 1, we used GED. The reachtube gener-
ated by PED for Powertrn is more precise, but for the rest, the reachtubes and
the verification times using both GED and PED were comparable. In addi-
tion to the VerifySafety algorithm, DryVR also looks for counter-examples by
quickly generating random executions of the hybrid system. If any of these exe-
cutions is found to be unsafe, DryVR will return “Unsafe” without starting the
VerifySafety algorithm.

4 Reasoning Principles for Trace Containment

For a fixed unsafe set U and two hybrid systems H1 and H2, proving ReachH1 ⊆
ReachH2 and the safety of H2, allows us to conclude the safety of H1. Proposi-
tion 3 establishes that proving containment of traces, trajectories, and initial sets
of two hybrid systems, ensures the containment of their respective reach sets.
These two observations together give us a method of concluding the safety of one
system, from the safety of another, provided we can check trace containment of
two graphs, and trajectory containment of two trajectory sets. In our examples,
the set of modes L and the set of trajectories TL is often the same between the
hybrid systems we care about. So in this section we present different reasoning
principles to check trace containment between two graphs.

Semantically, a transition graph G can be viewed as one-clock timed automa-
ton, i.e., one can construct a timed automaton T with one-clock variable such
that the timed traces of T are exactly the traces of G. This observation, coupled
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with the fact that checking the timed language containment of one-clock timed
automata [37] is decidable, allows one to conclude that checking if G1 �lmap G2

is decidable. However the algorithm in [37] has non-elementary complexity. Our
next observation establishes that forward simulation between graphs can be
checked in polynomial time. Combined with Proposition 1, this gives a simple
sufficient condition for trace containment that can be efficiently checked.

Proposition 5. Given graphs G1 and G2, and mode map lmap, checking if
there is a forward simulation from G1 to G2 is in polynomial time.

Proof. The result can be seen to follow from the algorithm for checking timed
simulations between timed automata [6] and the correspondence between one-
clock timed automata; the fact that the automata have only one clock ensures
that the region construction is poly-sized as opposed to exponential-sized. How-
ever, in the special case of transition graphs there is a more direct algorithm
which does not involve region construction that we describe here.

Observe that if {Ri}i∈I is a family of forward simulations between G1 and G2

then ∪i∈IRi is also a forward simulation. Thus, like classical simulations, there
is a unique largest forward simulation between two graphs that is the greatest
fixpoint of a functional on relations over states of the transition graph. Therefore,
starting from the relation V1×V2, one can progressively remove pairs (v, u) such
that v is not simulated by u, until a fixpoint is reached. Moreover, in this case,
since G1 is a DAG, one can guarantee that the fixpoint will be reached in |V1|
iterations.

Executions of hybrid systems are for bounded time, and bounded number of
mode switches. This is because our transition graphs are acyclic and the labels
on edges are bounded intervals. Sequential composition of graphs allows one to
consider switching sequences that are longer and of a longer duration. We now
present observations that will allow us to conclude the safety of a hybrid system
with long switching sequences based on the safety of the system under short
switching sequences. To do this we begin by observing simple properties about
sequential composition of graphs. In what follows, all hybrid systems we consider
will be over a fixed set of modes L and trajectory set TL. id is the identity
function on L. Our first observation is that trace containment is consistent with
sequential composition.

Proposition 6. Let Gi, G
′
i, i ∈ {1, 2}, be four transition graphs over L such

that G1 ◦ G2 and G′
1 ◦ G′

2 are defined, and Gi �id G′
i for i ∈ {1, 2}. Then

G1 ◦ G2 �id G′
1 ◦ G′

2.

Next we observe that sequential composition of graphs satisfies the “semi-
group property”.

Proposition 7. Let G1, G2 be graphs over L for which G1 ◦ G2 is defined. Let
v1term be the unique terminal vertex of G1. Consider the following hybrid systems:
H = 〈L, Θ,G1 ◦G2, TL〉, H1 = 〈L, Θ,G1, TL〉, and H2 = 〈L,Reachv1term

H1
,G2, TL〉.

Then ReachH = ReachH1 ∪ ReachH2 .
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Consider a graph G such that G ◦ G is defined. Let H be the hybrid system
with transition graph G, and H′ be the hybrid system with transition graph
G ◦ G; the modes, trajectories, and initial set for H and H′ are the same. Now
by Propositions 2 and 3, we can conclude that ReachH ⊆ ReachH′ . Our main
result of this section is that under some conditions, the converse also holds. This
is useful because it allows us to conclude the safety of H′ from the safety of H.
In other words, we can conclude the safety of a hybrid system for long, possibly
unbounded, switching sequences (namely H′) from the safety of the system under
short switching sequences (namely H).

Theorem 2. Suppose G is such that G ◦ G is defined. Let vterm be the unique
terminal vertex of G. For natural number i ≥ 1, define Hi = 〈L, Θ,Gi, TL〉,
where Gi is the i-fold sequential composition of G with itself. In particular, H1 =
〈L, Θ,G, TL〉. If Reachvterm

H1
⊆ Θ then for all i, ReachHi

⊆ ReachH1 .

Proof. Let Θ1 = Reachvterm
H1

. From the condition in the theorem, we know that
Θ1 ⊆ Θ. Let us define H′

i = 〈L, Θ1, G
i, TL〉. Observe that from Proposition 3,

we have ReachH′
i
⊆ ReachHi

.
The theorem is proved by induction on i. The base case (for i = 1) triv-

ially holds. For the induction step, assume that ReachHi
⊆ ReachH1 . Since

◦ is associative, using Proposition 7 and the induction hypothesis, we have
ReachHi+1 = ReachH1 ∪ ReachH′

i
⊆ ReachH1 ∪ ReachHi

= ReachH1 .

Theorem 2 allows one to determine the set of reachable states of a set of modes
L with respect to graph Gi, provided G satisfies the conditions in the statement.
This observation can be generalized. If a graph G2 satisfies conditions similar to
those in Theorem 2, then using Proposition 7, we can conclude that the reachable
set with respect to graph G1 ◦ Gi

2 ◦ G3 is contained in the reachable set with
respect to graph G1 ◦ G2 ◦ G3. The formal statement of this observation and its
proof is skipped in the interest of space, but we will use it in our experiments.

4.1 Experiments on Trace Containment Reasoning

Graph Simulation. Consider the AEB system of Sect. 2.5 with the scenario where
Vehicle B is stopped ahead of vehicle A, and A transits from cruise to em brake
to avoid colliding with B. In the actual system (G2 of Fig. 3), two different sensor
systems trigger the obstacle detection and emergency braking at time intervals
[1, 2] and [2.5, 3.5] and take the system from vertex 0 (cruise) to two different
vertices labeled with em brake.

To illustrate trace containment reasoning, consider a simpler graph G1 that
allows a single transition of A from cruise to em brake over the interval bigger
[0.5, 4.5]. Using Proposition 3 and checking that graph G2 �id G1, it follows
that verifying the safety of AEB with G1 is adequate to infer the safety with
G2. Figure 3c shows that the safe reachtubes returned by the algorithm for G1

in red, indeed contain the reachtubes for G2 (in blue and gray).
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(a) Transition graph G1. (b) Transition graph G2. (c) AEB Reachtubes.

Fig. 3. Graphs and reachtubes for the automatic emergency braking AEB system.
(Color figure online)

Sequential Composition. We revisit the Powertrn example of Sect. 2.1. The initial
set Θ and unsafe set are the same as in Table 1. Let GA be the graph (v0,startup)
[5,10]−−−→ (v1,normal)

[10,15]−−−−→ (v2,powerup), and GB be the graph (v0,powerup)
[5,10]−−−→

(v1,normal)
[10,15]−−−−→ (v2,powerup). The graph G1 = (v0,startup)

[5,10]−−−→ (v1,normal)
[10,15]−−−−→ (v2,powerup)

[5,10]−−−→ (v3,normal)
[10,15]−−−−→ (v4,powerup), can be expressed

as the composition G1 = GA ◦ GB . Consider the two hybrid systems Hi =
〈L, Θi, Gi, TL〉, i ∈ {A,B} with ΘA = Θ and ΘB = Reachv2

HA
. DryVR’s estimate

of ΘB had λ in the range from 14.68 to 14.71. The reachset Reachv2
HB

computed by
DryVR had λ from 14.69 to 14.70. The remaining variables also were observed
to satisfy the containment condition. Therefore, Reachv2

HB
⊆ ΘB . Consider the

two hybrid systems Hi = 〈L, Θ,Gi, TL〉, i ∈ {1, 2}, where G1 is (defined above)
GA◦GB , and G2 = GA◦GB ◦GB ◦GB . Using Theorem 2 it suffices to analyze H1

to verify H2. H1 was been proved to be safe by DryVR without any refinement.
As a sanity check, we also verified the safety of H2. DryVR proved H2 safe
without any refinement as well.

5 Conclusions

The work presented in this paper takes an alternative view that complete math-
ematical models of hybrid systems are unavailable. Instead, the available system
description combines a black-box simulator and a white-box transition graph.
Starting from this point of view, we have developed the semantic framework,
a probabilistic verification algorithm, and results on simulation relations and
sequential composition for reasoning about complex hybrid systems over long
switching sequences. Through modeling and analysis of a number of automo-
tive control systems using implementations of the proposed approach, we hope
to have demonstrated their promise. One direction for further exploration in
this vein, is to consider more general timed and hybrid automata models of the
white-box, and develop the necessary algorithms and the reasoning techniques.
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Abstract. We present a sound and automated approach to synthesize
safe digital feedback controllers for physical plants represented as linear,
time-invariant models. Models are given as dynamical equations with
inputs, evolving over a continuous state space and accounting for errors
due to the digitization of signals by the controller. Our counterexample
guided inductive synthesis (CEGIS) approach has two phases: We syn-
thesize a static feedback controller that stabilizes the system but that
may not be safe for all initial conditions. Safety is then verified either
via BMC or abstract acceleration; if the verification step fails, a coun-
terexample is provided to the synthesis engine and the process iterates
until a safe controller is obtained. We demonstrate the practical value of
this approach by automatically synthesizing safe controllers for intricate
physical plant models from the digital control literature.

1 Introduction

Linear Time Invariant (LTI) models represent a broad class of dynamical sys-
tems with significant impact in numerous application areas such as life sciences,
robotics, and engineering [4,13]. The synthesis of controllers for LTI models is
well understood, however the use of digital control architectures adds new chal-
lenges due to the effects of finite-precision arithmetic, time discretization, and
quantization noise, which is typically introduced by Analogue-to-Digital (ADC)
and Digital-to-Analogue (DAC) conversion. While research on digital control is
well developed [4], automated and sound control synthesis is challenging, par-
ticularly when the synthesis objective goes beyond classical stability. There are
recent methods for verifying reachability properties of a given controller [14].
However, these methods have not been generalized to control synthesis. Note
that a synthesis algorithm that guarantees stability does not ensure safety: the
system might transitively visit an unsafe state resulting in unrecoverable failure.
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We propose a novel algorithm for the synthesis of control algorithms for LTI
models that are guaranteed to be safe, considering both the continuous dynamics
of the plant and the finite-precision discrete dynamics of the controller, as well
as the hybrid elements that connect them. We account for the presence of errors
originating from a number of sources: quantisation errors in ADC and DAC, rep-
resentation errors (from the discretization introduced by finite-precision arith-
metic), and roundoff and saturation errors in the verification process (from finite-
precision operations). Due to the complexity of such systems, we focus on linear
models with known implementation features (e.g., number of bits, fixed-point
arithmetic). We expect a safety requirement given as a reachability property.
Safety requirements are frequently overlooked in conventional feedback control
synthesis, but play an important role in systems engineering.

We give two alternative approaches for synthesizing digital controllers for
state-space physical plants, both based on CounterExample Guided Inductive
Synthesis (CEGIS) [30]. We prove their soundness by quantifying errors caused
by digitization and quantization effects that arise when the digital controller
interacts with the continuous plant.

The first approach uses a näıve technique that starts by devising a digital
controller that stabilizes the system while remaining safe for a pre-selected time
horizon and a single initial state; then, it verifies unbounded safety by unfolding
the dynamics of the system, considering the full hyper-cube of initial states, and
checking a completeness threshold [17], i.e., the number of iterations required to
sufficiently unwind the closed-loop state-space system such that the boundaries
are not violated for any larger number of iterations. As it requires unfolding
up to the completeness threshold, this approach is computationally expensive.

Instead of unfolding the dynamics, the second approach employs abstract
acceleration [7] to evaluate all possible progressions of the system simultane-
ously. Additionally, the second approach uses abstraction refinement, enabling
us to always start with a very simple description regardless of the dynamics
complexity, and only expand to more complex models when a solution cannot
be found.

We provide experimental results showing that both approaches are able to
efficiently synthesize safe controllers for a set of intricate physical plant models
taken from the digital control literature: the median run-time for our benchmark
set is 7.9 s, and most controllers can be synthesized in less than 17.2 s. We fur-
ther show that, in a direct comparison, the abstraction-based approach (i.e., the
second approach) lowers the median run-time of our benchmarks by a factor of
seven over the first approach based on the unfolding of the dynamics.

Contributions

1. We compute state-feedback controllers that guarantee a given safety property.
Existing methods for controller synthesis rely on transfer function represen-
tations, which are inadequate to prove safety requirements.

2. We provide two novel algorithms: the first, näıve one, relies on an unfold-
ing of the dynamics up to a completeness threshold, while the second one
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is abstraction-based and leverages abstraction refinement and acceleration to
improve scalability while retaining soundness. Both approaches provide sound
synthesis of state-feedback systems and consider the various sources of impre-
cision in the implementation of the control algorithm and in the modeling of
the plant.

3. We develop a model for different sources of quantization errors and their
effect on reachability properties. We give bounds that ensure the safety of
our controllers in a hybrid continuous-digital domain.

2 Related Work

CEGIS - Program synthesis is the problem of computing correct-by-design pro-
grams from high-level specifications. Algorithms for this problem have made
substantial progress in recent years, for instance [16] to inductively synthesize
invariants for the generation of desired programs.

Program synthesizers are an ideal fit for the synthesis of digital controllers,
since the semantics of programs capture the effects of finite-precision arithmetic
precisely. In [27], the authors use CEGIS for the synthesis of switching con-
trollers for stabilizing continuous-time plants with polynomial dynamics. The
work extends to affine systems, but is limited by the capacity of the state-of-the-
art SMT solvers for solving linear arithmetic. Since this approach uses switching
models instead of linear dynamics for the digital controller, it avoids problems
related to finite precision arithmetic, but potentially suffers from state-space
explosion. Moreover, in [28] the same authors use a CEGIS-based approach for
synthesizing continuous-time switching controllers that guarantee reach-while-
stay properties of closed-loop systems, i.e., properties that specify a set of goal
states and safe states (constrained reachability). This solution is based on syn-
thesizing control Lyapunov functions for switched systems that yield switching
controllers with a guaranteed minimum dwell time in each mode. However, both
approaches are unsuitable for the kind of control we seek to synthesize.

The work in [2] synthesizes stabilizing controllers for continuous plants
given as transfer functions by exploiting bit-accurate verification of software-
implemented digital controllers [5]. While this work also uses CEGIS, the app-
roach is restricted to digital controllers for stable closed-loop systems given as
transfer function models: this results in a static check on their coefficients. By
contrast, in the current paper we consider a state-space representation of the
physical system, which requires ensuring the specification over actual traces of
the model, alongside the numerical soundness required by the effects of discreti-
sation and finite-precision errors. A state-space model has known advantages
over the transfer function representation [13]: it naturally generalizes to multi-
variate systems (i.e., with multiple inputs and outputs); and it allows synthesis
of control systems with guarantees on the internal dynamics, e.g., to synthe-
size controllers that make the closed-loop system safe. Our work focuses on the
safety of internal states, which is usually overlooked in the literature. Moreover,
our work integrates an abstraction/refinement (CEGAR) step inside the main
CEGIS loop.
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The tool Pessoa [21] synthesizes correct-by-design embedded control software
in a Matlab toolbox. It is based on the abstraction of a physical system to an
equivalent finite-state machine and on the computation of reachability proper-
ties thereon. Based on this safety specification, Pessoa can synthesize embedded
controller software for a range of properties. The embedded controller software
can be more complicated than the state-feedback control we synthesize, and the
properties available cover more detail. However, relying on state-space discretiza-
tion Pessoa is likely to incur in scalability limitations. Along this research line,
[3,20] studies the synthesis of digital controllers for continuous dynamics, and
[34] extends the approach to the recent setup of Network Control Systems.

Discretization Effects - The classical approach to control synthesis has often
disregarded digitalization effects, whereas more recently modern techniques have
focused on different aspects of discretization, including delayed response [10] and
finite word length (FWL) semantics, with the goal either to verify (e.g., [9]) or
to optimize (e.g., [24]) given implementations.

There are two different problems that arise from FWL semantics. The first is
the error in the dynamics caused by the inability to represent the exact state of
the physical system, while the second relates to rounding and saturation errors
during computation. In [12], a stability measure based on the error of the digi-
tal dynamics ensures that the deviation introduced by FWL does not make the
digital system unstable. A more recent approach [33] uses μ-calculus to directly
model the digital controller so that the selected parameters are stable by design.
The analyses in [29,32] rely on an invariant computation on the discrete sys-
tem dynamics using Semi-Definite Programming (SDP). While the former uses
bounded-input and bounded-output (BIBO) properties to determine stability,
the latter uses Lyapunov-based quadratic invariants. In both cases, the SDP
solver uses floating-point arithmetic and soundness is checked by bounding the
error. An alternative is [25], where the verification of given control code is per-
formed against a known model by extracting an LTI model of the code by sym-
bolic execution: to account for rounding errors, an upper bound is introduced
in the verification phase. The work in [26] introduces invariant sets as a mecha-
nism to bound the quantization error effect on stabilization as an invariant set
that always converges toward the controllable set. Similarly, [19] evaluates the
quantization error dynamics and bounds its trajectory to a known region over a
finite time period. This technique works for both linear and non-linear systems.

3 Preliminaries

3.1 State-Space Representation of Physical Systems

We consider models of physical plants expressed as ordinary differential equa-
tions (ODEs), which we assume to be controllable and under full state informa-
tion (i.e., we have access to all the model variables):

ẋ(t) = Ax(t) + Bu(t), x ∈ R
n, u ∈ R

m, A ∈ R
n×n, B ∈ R

n×m, (1)
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where t ∈ R
+
0 , where A and B are matrices that fully specify the continuous

plant, and with initial states set as x(0). While ideally we intend to work on the
continuous-time plant, in this work Eq. (1) is soundly discretized in time [11]
into

xk+1 = Adxk + Bduk (2)

where k ∈ N and x0 = x(0) is the initial state. Ad and Bd denote the matrices
that describe the discretized plant dynamics, whereas A and B denote the con-
tinuous plant dynamics. We synthesize for requirements over this discrete-time
domain. Later, we will address the issue of variable quantization, as introduced
by the ADC/DAC conversion blocks (Fig. 1).
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Fig. 1. Closed-loop digital control system.

3.2 Controller Synthesis via State Feedback

Models (1) and (2) depend on external non-determinism in the form of input
signals u(t) and uk, respectively. Feedback architectures can be employed to
manipulate the properties and behaviors of the continuous process (the plant).
We are interested in the synthesis of digital feedback control algorithms, as
implemented on Field-Programmable Gate Arrays or Digital Signal Processors.
The most basic feedback architecture is the state feedback one, where the control
action uk (notice we work with the discretized signal) is computed by:

uk = rk − Kxk. (3)

Here, K ∈ R
m×n is a state-feedback gain matrix, and rk is a reference signal

(again digital). The closed-loop model then takes the form

xk+1 = (Ad − BdK)xk + Bdrk. (4)

The gain matrix K can be set so that the closed-loop discrete dynamics are
shaped as desired, for instance according to a specific stability goal or around
a specific dynamical behavior [4]. As argued later in this work, we will target
more complex objectives, such as quantitative safety requirements, which are
not typical in the digital control literature. Further, we will embrace the dig-
ital nature of the controller, which manipulates quantized signals as discrete
quantities represented with finite precision.
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3.3 Stability of Closed-Loop Systems

In this work we employ asymptotic stability in the CEGIS loop, as an objective
for guessing controllers that are later proven sound over safety requirements.
Asymptotic stability is a property that amounts to convergence of the model
executions to an equilibrium point, starting from any states in a neighborhood
of the point (see Fig. 3 for the portrait of a stable execution, converging to the
origin). In the case of linear systems as in (4), considered with a zero reference
signal, the equilibrium point of interest is the origin.

A discrete-time LTI system as (4) is asymptotically stable if all the roots of
its characteristic polynomial (i.e., the eigenvalues of the closed-loop matrix Ad −
BdK) are inside the unity circle of the complex plane, i.e., their absolute values
are strictly less than one [4] (this simple sufficient condition can be generalised,
however this is not necessary in our work). In this paper, we express this stability
specification φstability in terms of a check known as Jury’s criterion [11]: this is
an easy algebraic formula to select the entries of matrix K so that the closed-loop
dynamics are shaped as desired.

3.4 Safety Specifications for Dynamical Systems

We are not limited to the synthesis of digital stabilizing controllers – a well known
task in the literature on digital control systems – but target safety requirements
with an overall approach that is sound and automated. More specifically, we
require that the closed-loop system (4) meets given safety specifications. A safety
specification gives raise to a requirement on the states of the model, such that
the feedback controller (namely the choice of the gains matrix K) must ensure
that the state never violates the requirement. Note that a stable, closed-loop
system is not necessarily a safe system: indeed, the state values may leave the
safe part of the state space while they converge to the equilibrium, which is
typical in the case of oscillatory dynamics. In this work, the safety property is
expressed as:

φsafety ⇐⇒ ∀k ≥ 0.

n∧

i=1

xi ≤ xi,k ≤ xi, (5)

where xi and xi are lower and upper bounds for the i-th coordinate xi of state
x ∈ R

n at the k-th instant, respectively. This means that the states will always
be within an n-dimensional hyper-box.

Furthermore, it is practically relevant to consider the constraints φinput on
the input signal uk and φinit on the initial states x0, which we assume have given
bounds: φinput = ∀k.u ≤ uk ≤ u, φinit =

∧n
i=1 xi,0 ≤ xi,0 ≤ xi,0. For the former,

this means that the control input might saturates in view of physical constraints.

3.5 Numerical Representation and Soundness

The models we consider have two sources of error that are due to numerical
representation. The first is the numerical error introduced by the fixed-point
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numbers employed to model the plant, i.e., to represent the plant dynamics
Ad, Bd and xk. The second is the quantization error introduced by the digital
controller, which performs operations on fixed-point numbers. In this section we
outline the notation for the fixed-point representation of numbers, and briefly
describe the errors introduced. A formal discussion is in AppendixB.1.

Let F〈I,F 〉(x) denote a real number x represented in a fixed point domain,
with I bits representing the integer part and F bits representing the decimal
part. The smallest number that can be represented in this domain is cm = 2−F .
Any mathematical operations performed at the precision F〈I,F 〉(x) will introduce
errors, for which an upper bound can be given [6].

We will use F〈Ic,Fc〉(x) to denote a real number x represented at the fixed-
point precision of the controller, and F〈Ip,Fp〉(x) to denote a real number x
represented at the fixed-point precision of the plant model (Ic and Fc are deter-
mined by the controller. We pick Ip and Fp for our synthesis such that Ip ≥ Ic

and Fp ≥ Fc). Thus any mathematical operations in our modelled digital con-
troller will be in the range of F〈Ic,Fc〉, and all other calculations in our model
will be carried out in the range of F〈Ip,Fp〉. The physical plant operates in the
reals, which means our verification phase must also account for the numerical
error and quantization errors caused by representing the physical plant at the
finite precision F〈Ip,Fp〉.

Effect on Safety Specification and Stability. Let us first consider the effect
of the quantization errors on safety. Within the controller, state values are manip-
ulated at low precision, alongside the vector multiplication Kx. The inputs are
computed using the following equation:

uk = −(F〈Ic,Fc〉(K) · F〈Ic,Fc〉(xk)).

This induces two types of the errors detailed above: first, the truncation
error due to representing xk as F〈Ic, Fc〉(xk); and second, the rounding error
introduced by the multiplication operation. We represent these errors as non-
deterministic additive noise.

An additional error is due to the representation of the plant dynamics, namely

xk+1 = F〈Ip,Fp〉(Ad)F〈Ip,Fp〉(xk) + F〈Ip,Fp〉(Bd)F〈Ip,Fp〉(uk).

We address this error by use of interval arithmetic [22] in the verification phase.
Previous studies [18] show that the FWL affects the poles and zeros positions,

degrading the closed-loop dynamics, causing steady-state errors (see AppendixB
for details) and eventually de-stabilizing the system [5]. However, since in this
paper we require stability only as a precursor to safety, it is sufficient to check
that the (perturbed, noisy) model converges to a neighborhood of the equilibrium
within the safe set (see Appendix A.1).

In the following, we shall disregard these steady-state errors (caused by FWL
effects) when stability is ensured by synthesis, and then verify its safety account-
ing for the finite-precision errors.
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4 CEGIS of Safe Controllers for LTI Systems

In this section, we describe our technique for synthesizing safe digital feedback
controllers using CEGIS. For this purpose, we first provide the synthesizer’s gen-
eral architecture, followed by describing our two approaches to synthesizing safe
controllers: the first one is a baseline approach that relies on a näıve unfolding
of the transition relation, whereas the second uses abstraction to evaluate all
possible executions of the system.

4.1 General Architecture of the Program Synthesizer

The input specification provided to the program synthesizer is of the form
∃P.∀a. σ(a, P ), where P ranges over functions (where a function is represented
by the program computing it), a ranges over ground terms, and σ is a quantifier-
free formula. We interpret the ground terms over some finite domain D. The
design of our synthesizer consists of two phases, an inductive synthesis phase
and a validation phase, which interact via a finite set of test vectors inputs
that is updated incrementally. Given the aforementioned specification σ, the
inductive synthesis procedure tries to find an existential witness P satisfying the
specification σ(a, P ) for all a in inputs (as opposed to all a ∈ D). If the syn-
thesis phase succeeds in finding a witness P , this witness is a candidate solution
to the full synthesis formula. We pass this candidate solution to the validation
phase, which checks whether it is a full solution (i.e., P satisfies the specification
σ(a, P ) for all a ∈ D). If this is the case, then the algorithm terminates. Oth-
erwise, additional information is provided to the inductive synthesis phase in
the form of a new counterexample that is added to the inputs set and the loop
iterates again. More details about the general architecture of the synthesizer can
be found in [8].

4.2 Synthesis Problem: Statement (Recap) and Connection to
Program Synthesis

At this point, we recall the synthesis problem that we solve in this work: we
seek a digital feedback controller K (see Eq. 3) that makes the closed-loop plant
model safe for initial state x0, reference signal rk and input uk as defined in
Sect. 3.4. We consider non-deterministic initial states within a specified range,
the reference signal to be set to zero, saturation on the inputs, and account for
digitization and quantization errors introduced by the controller.

When mapping back to the notation used for describing the general architec-
ture of the program synthesizer, the controller K denotes P , (x0, uk) represents
a and φstability ∧ φinput ∧ φinit ∧ φsafety denotes the specification σ.

4.3 Näıve Approach: CEGIS with Multi-staged Verification

An overview of the algorithm for controller synthesis is given in Fig. 2. One
important observation is that we verify and synthesize a controller over k time
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Fig. 2. CEGIS with multi-staged verification.

steps. We then compute a completeness threshold k [17] for this controller, and
verify correctness for k time steps. Essentially, k is the number of iterations
required to sufficiently unwind the closed-loop state-space system, which ensures
that the boundaries are not violated for any other k>k.

Theorem 1. There exists a finite k such that it is sufficient to unwind the
closed-loop state-space system up to k in order to ensure that φsafety holds.

Proof. A stable control system is known to have converging dynamics. Assume
the closed-loop matrix eigenvalues are not repeated (which is sensible to do,
since we select them). The distance of the trajectory from the reference point
(origin) decreases over time within subspaces related to real-valued eigenvalues;
however, this is not the case in general when dealing with complex eigenvalues.
Consider the closed-loop matrix that updates the states in every discrete time
step, and select the eigenvalue ϑ with the smallest (non-trivial) imaginary value.
Between every pair of consecutive time steps k Ts and (k + 1)Ts, the dynamics
projected on the corresponding eigenspace rotate ϑTs radians. Thus, taking k
as the ceiling of 2π

ϑTs
, after k≥k steps we have completed a full rotation, which

results in a point closer to the origin. The synthesized k is the completeness
threshold. �

Next, we describe the different phases in Fig. 2 (blocks 1 to 4) in detail.

1. The inductive synthesis phase (synthesize) uses BMC to compute a can-
didate solution K that satisfies both the stability criteria (Sect. 3.3) and
the safety specification (Sect. 3.4). To synthesize a controller that satisfies
the stability criteria, we require that a computed polynomial satisfies Jury’s
criterion [11]. The details of this calculation can be found in the Appendix.
Regarding the second requirement, we synthesize a safe controller by unfold-
ing the transition system k steps and by picking a controller K and a single
initial state, such that the states at each step do not violate the safety cri-
teria. That is, we ask the bounded model checker if there exists a K that is
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Algorithm 1. Safety check
1: function safetyCheck()
2: assert(u ≤ u ≤ u)
3: set x0 to be a vertex state, e.g., [x0, x0]
4: for (c = 0; c < 2Num States ; c++) do
5: for (i = 0; i < k; i++) do
6: u = (plant typet)((controller typet)K ∗ (controller typet)x)
7: x = A ∗ x + B ∗ u
8: assert(x ≤ x ≤ x )
9: end for

10: set x0 to be a new vertex state
11: end for
12: end function

safe for at least one x0 in our set of all possible initial states. This is sound
if the current k is greater than the completeness threshold. We also assume
some precision 〈Ip, Fp〉 for the plant and a sampling rate. The checks that
these assumptions hold are performed by subsequent verify stages.

2. The first verify stage, safety, checks that the candidate solution K, which
we synthesized to be safe for at least one initial state, is safe for all possible
initial states, i.e., does not reach an unsafe state within k steps where we
assume k to be under the completeness threshold. After unfolding the tran-
sition system corresponding to the previously synthesized controller k steps,
we check that the safety specification holds for any initial state. This is shown
in Algorithm 1.

3. The second verify stage, precision, restores soundness with respect to the
plant’s precision by using interval arithmetic [22] to validate the operations
performed by the previous stage.

4. The third verify stage, complete, checks that the current k is large enough
to ensure safety for any k′ > k. Here, we compute the completeness threshold
k for the current candidate controller K and check that k ≥ k. This is done
according to the argument given above and illustrated in Fig. 3.

Checking that the safety specification holds for any initial state can be com-
putationally expensive if the bounds on the allowed initial states are large.

Theorem 2. If a controller is safe for each of the corner cases of our hypercube
of allowed initial states, it is safe for any initial state in the hypercube.

Thus we only need to check 2n initial states, where n is the dimension of the
state space (number of continuous variables).

Proof. Consider the set of initial states, X0, which we assume to be convex since
it is a hypercube. Name vi its vertexes, where i = 1, . . . , 2n. Thus any point
x ∈ X0 can be expressed by convexity as x =

∑2n

i=1 αivi, where
∑2n

i=1 αi = 1.
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Fig. 3. Completeness threshold for multi-staged verification. Ts is the time step for the
time discretization of the control matrices.

Then if x0 = x, we obtain

xk = (Ad − BdK)kx = (Ad − BdK)k
2n∑

i=1

αivi =
2n∑

i=1

αi(Ad −BdK)kvi =
2n∑

i=1

αix
i
k,

where xi
k denotes the trajectories obtained from the single vertex vi. We con-

clude that any k-step trajectory is encompassed, within a convex set, by those
generated from the vertices. �

Illustrative Example. We illustrate our approach with an example, extracted
from [13]. Since we have not learned any information about the system yet, we
pick an arbitrary candidate solution (we always choose K = [0 0 0]T in our exper-
iments to simplify reproduction), and a precision of Ip = 13, Fp = 3. In the first
verify stage, the safety check finds the counterexample x0 = [−0.5 0.5 0.5].
After adding the new counterexample to its sets of inputs, synthesize finds
the candidate solution K = [0 0 0.00048828125]T , which prompts the safety
verifier to return x0 = [−0.5 − 0.5 − 0.5] as the new counterexample.

In the subsequent iteration, the synthesizer is unable to find further suit-
able candidates and it returns UNSAT, meaning that the current precision is
insufficient. Consequently, we increase the precision the plant is modelled with
to Ip = 17, Fp = 7. We increase the precision by 8 bits each step in order
to be compliant with the CBMC type API. Since the previous counterexam-
ples were obtained at lower precision, we remove them from the set of coun-
terexamples. Back in the synthesize phase, we re-start the process with a
candidate solution with all coefficients 0. Next, the safety verification stage
provides the first counterexample at higher precision, x0 = [−0.5 0.5 0.5] and
synthesize finds K = [0 0.01171875 0.015625]T as a candidate that elimi-
nates this counterexample. However, this candidate triggers the counterexam-
ple x0 = [0.5 − 0.5 − 0.5] found again by the safety verification stage. In
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the next iteration, we get the candidate K = [0 0 − 0.015625], followed by
the counterexample x0 = [0.5 0.5 0.5]. Finally, synthesize finds the candidate
K = [0.01171875 − 0.013671875 − 0.013671875]T , which is validated as a final
solution by all verification stages.

4.4 Abstraction-Based CEGIS

The näıve approach described in Sect. 4.3 synthesizes a controller for an indi-
vidual initial state and input with a bounded time horizon and, subsequently, it
generalizes it to all reachable states, inputs, and time horizons during the verifi-
cation phase. Essentially, this approach relies on the symbolic simulation over a
bounded time horizon of individual initial states and inputs that form part of an
uncountable space and tries to generalize it for an infinite space over an infinite
time horizon.

Conversely, in this section, we find a controller for a continuous initial set
of states and set of inputs, over an abstraction of the continuous dynamics [7]
that conforms to witness proofs at specific times. Moreover, this approach uses
abstraction refinement enabling us to always start with a very simple description
regardless of the complexity of the overall dynamics, and only expand to more
complex models when a solution cannot be found.

The CEGIS loop for this approach is illustrated in Fig. 4.

1. We start by doing some preprocessing:
(a) Compute the characteristic polynomial of the matrix (Ad − BdK) as

Pa(z) = zn +
∑n

i=1 (ai − ki)zn−i.
(b) Calculate the noise set N from the quantizer resolutions and estimated

round-off errors:

N =
{

ν1 + ν2 + ν3 : ν1 ∈
[
−q1

2
q1

2

]
∧ ν2 ∈

[
−q2

2
q2

2

]
∧ ν3 ∈ [−q3 q3]

}

where q1 is the error introduced by the truncation in the ADC, q2 is
the error introduced by the DAC and q3 is the maximum truncation and
rounding error in uk = −K · F〈Ic,Fc〉(xk) as discussed in Sect. 3.5. More
details on how to model quantization as noise are given in AppendixB.2.

(c) Calculate a set of initial bounds on K, φK
init , based on the input con-

straints
(φinit ∧ φinput ∧ uk = −Kxk) ⇒ φK

init

Note that these bounds will be used by the synthesize phase to reduce
the size of the solution space.

2. In the synthesize phase, we synthesize a candidate controller K ∈ R〈Ic, Fc〉n

that satisfies φstability ∧ φsafety ∧ φK
init by invoking a SAT solver. If there is no

candidate solution we return UNSAT and exit the loop.
3. Once we have a candidate solution, we perform a safety verification of the

progression of the system from φinit over time, xk |= φsafety . In order to
compute the progression of point x0 at iteration k, we accelerate the dynamics
of the closed-loop system and obtain:
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x =(Ad − BdK)kx0 +
k−1∑

i=0

(Ad − BdK)iBn(ν1 + ν2 + ν3) : Bn = [1 · · · 1]T (6)

As this still requires us to verify the system for every k up to infinity, we
use abstract acceleration again to obtain the reach-tube, i.e., the set of all
reachable states at all times given an initial set φinit :

X̂# = AX0 + BnN, X0 = {x : x |= φinit} , (7)

where A =
⋃∞

k=1(Ad − BdK)k,Bn =
⋃∞

k=1

∑k
i=0(Ad − BdK)iBn are

abstract matrices for the closed-loop system [7], whereas the set N is non-
deterministically chosen.
We next evaluate X̂# |= φsafety . If the verification holds we have a solution,
and exit the loop. Otherwise, we find a counterexample iteration k and cor-
responding initial point x0 for which the property does not hold, which we
use to locally refine the abstraction. When the abstraction cannot be further
refined, we provide them to the abstract phase.

4. If we reach the abstract phase, it means that the candidate solution is not
valid, in which case we must refine the abstraction used by the synthesizer.
(a) Find the constraints that invalidate the property as a set of counterex-

amples for the eigenvalues, which we define as φΛ. This is a constraint in
the spectrum i.e., transfer function) of the closed loop dynamics.

(b) We use φΛ to further constrain the characteristic polynomial zn +∑n
i=1(ai − ki)zn−i =

∏n
i=1(z − λi) : |λi| < 1 ∧ λi |= φΛ. These con-

straints correspond to specific iterations for which the system may be
unsafe.

(c) Pass the refined abstraction φ(K) with the new constraints and the list
of iterations k to the synthesize phase.

Illustrative Example. Let us consider the following example with discretized
dynamics

Ad =

⎡

⎣
2.6207 −1.1793 0.65705

2 0 0
0 0.5 0

⎤

⎦ , Bd =

⎡

⎣
8
0
0

⎤

⎦

Using the initial state bounds x0 = −0.9 and x0 = 0.9, the input bounds
u = −10 and u = 10, and safety specifications xi = −0.92 and xi =
0.92, the synthesize phase in Fig. 4 generates an initial candidate controller
K = [0.24609375 −0.125 0.1484375 ]. This candidate is chosen for its closed-
loop stable dynamics, but the verify phase finds it to be unsafe and returns
a list of iterations with an initial state that fails the safety specification
(k, x0)∈{(2, [ 0.9 −0.9 0.9 ]), (3, [ 0.9 −0.9 −0.9 ])}. This allows the abstract phase
to create a new safety specification that considers these iterations for these ini-
tial states to constrain the solution space. This refinement allows synthesize
to find a new controller K = [0.23828125 −0.17578125 0.109375 ], which this time
passes the verification phase, resulting in a safe system.
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Fig. 4. Abstraction-based CEGIS

5 Experimental Evaluation

5.1 Description of the Benchmarks

A set of state-space models for different classes of systems has been taken from
the literature [1,13,23,31] and employed for validating our methodology.

DC Motor Rate plants describes the angular velocity of a DC Motor, respec-
tively. The Automotive Cruise System plant represents the speed of a motor vehi-
cle. The Helicopter Longitudinal Motion plant provides the longitudinal motion
model of a helicopter. The Inverted Pendulum plant describes a pendulum model
with its center of mass above its pivot point. The Magnetic Suspension plant
provides a physical model for which a given object is suspended via a magnetic
field. The Magnetized Pointer plant describes a physical model employed in ana-
logue gauges and indicators that is rotated through interaction with magnetic
fields. The 1/4 Car Suspension plant presents a physical model that connects a
car to its wheels and allows relative motion between the two parts. The Com-
puter Tape Driver plant describes a system to read and write data on a storage
device.

Our benchmarks are SISO models (Sect. 3). The Inverted Pendulum appears
to be a two-output system, but it is treated as two SISO models during the
experiments. All the state measurements are assumed to be available (current
work targets the extension of our framework to observer-based synthesis).

All benchmarks are discretized with different sample times [11]. All experi-
ments are performed considering xi = −1 and xi = 1 and the reference inputs
rk = 0,∀k > 0. We conduct the experimental evaluation on a 12-core 2.40 GHz
Intel Xeon E5-2440 with 96 GB of RAM and Linux OS. We use the Linux times
command to measure CPU time used for each benchmark. The runtime is limited
to one hour per benchmark.

5.2 Objectives

Using the state-space models given in Sect. 5.1, our evaluation has the following
two experimental goals:
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EG1 (CEGIS) Show that both the multi-staged and the abstraction-based
CEGIS approaches are able to generate FWL digital controllers in a rea-
sonable amount of time.

EG2 (sanity check) Confirm the stability and safety of the synthesized con-
trollers outside of our model.

5.3 Results

We provide the results in Table 1. Here Benchmark is the name of the respective
benchmark, Order is the number of continuous variables, F〈Ip,Fp〉 is the fixed-
point precision used to model the plant, while Time is the total time required
to synthesize a controller for the given plant with one of the two methods.
Timeouts are indicated by ✗. The precision for the controller, F〈Ic,Fc〉, is chosen
to be Ic = 8, Fc = 8.

For the majority of our benchmarks, we observe that the abstraction-based
back-end is faster than the basic multi-staged verification approach, and finds one
solution more (9) than the multi-staged back-end (8). In direct comparison, the
abstraction-based approach is on average able to find a solution in approximately
70% of the time required using the multi-staged back-end, and has a median run-
time 1.4 s, which is seven times smaller than the multi-staged approach. The two
back-ends complement each other in benchmark coverage and together solve all
benchmarks in the set. On average our engine spent 52% in the synthesis and
48% in the verification phase.

Table 1. Experimental results.

# Benchmark Order Multi-staged Abstraction

F〈Ip,Fp〉 Time F〈Ip,Fp〉 Time

1 Cruise Control 1 8,16 8.40 s 16,16 2.17 s

2 DC Motor 2 8,16 9.45 s 20,20 2.06 s

3 Helicopter 3 ✗ ✗ 16,16 1.37 s

4 Inverted Pendulum 4 8,16 9.65 s 16,16 0.56 s

5 Magnetic Pointer 2 ✗ ✗ 28,28 44.14 s

6 Magnetic Suspension 2 12,20 10.41 s 16,16 0.61 s

7 Pendulum 2 8,16 14.02 s 16,16 0.60 s

8 Suspension 2 12,20 73.66 s ✗ ✗

9 Tape Driver 3 8,16 10.10 s 16,16 68.24 s

10 Satellite 2 8,16 9.43 s 16,16 0.67 s

The median run-time for our benchmark set is 9.4 s. Overall, the average
synthesis time amounts to approximately 15.6 s. We consider these times short
enough to be of practical use to control engineers, and thus affirm EG1.
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There are a few instances for which the system fails to find a controller. For
the näıve approach, the completeness threshold may be too large, thus causing a
timeout. On the other hand, the abstraction-based approach may require a very
precise abstraction, resulting in too many refinements and, consequently, in a
timeout. Yet another source of incompleteness is the inability of the synthesize
phase to use a large enough precision for the plant model.

The synthesized controllers are confirmed to be safe outside of our model
representation using MATLAB, achieving EG2. A link to the full experimen-
tal environment, including scripts to reproduce the results, all benchmarks and
the tool, is provided in the footnote as an Open Virtual Appliance (OVA).1

The provided experimental environment runs multiple discretisations for each
benchmark, and lists the fastest as the result synthesis time.

5.4 Threats to Validity

Benchmark Selection: We report an assessment of both our approaches over a
diverse set of real-world benchmarks. Nevertheless, this set of benchmarks is
limited within the scope of this paper and the performance may not generalize
to other benchmarks.

Plant Precision and Discretization Heuristics: Our algorithm to select suitable
FWL word widths to model the plant behavior increases the precision by 8 bits
at each step in order to be compliant with the CBMC type API. Similarly,
for discretization, we run multiple discretizations for each benchmark and retain
the fastest run. This works sufficiently well for our benchmarks, but performance
may suffer in some cases, for example if the completeness threshold is high.

Abstraction on Other Properties: The performance gain from abstract accelera-
tion may not hold for more complex properties than safety, for instance “even-
tually reach and always remain in a given safe set”.

6 Conclusion

We have presented two automated approaches to synthesize digital state-
feedback controllers that ensure both stability and safety over the state-space
representation. The first approach relies on unfolding of the closed-loop model
dynamics up to a completeness threshold, while the second one applies abstrac-
tion refinement and acceleration to increase speed whilst retaining soundness.
Both approaches are novel within the control literature: they give a fully auto-
mated synthesis method that is algorithmically and numerically sound, consid-
ering various error sources in the implementation of the digital control algo-
rithm and in the computational modeling of plant dynamics. Our experimental
results show that both approaches are able to synthesize safe controllers for most

1 www.cprover.org/DSSynth/controller-synthesis-cav-2017.tar.gz.

www.cprover.org/DSSynth/controller-synthesis-cav-2017.tar.gz
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benchmarks within a reasonable amount of time fully automatically. In particu-
lar, both approaches complement each other and together solve all benchmarks,
which have been derived from the control literature.

Future work will focus the extension of these approaches to the continuous-
time case, to models with output-based control architectures (with the use of
observers), and to the consideration of more complex specifications.

A Stability of Closed-Loop Models

A.1 Stability of Closed-Loop Models with Fixed-Point Controller
Error

The proof of Jury’s criterion [11] relies on the fact that the relationship between
states and next states is defined by xk+1 = (Ad − BdK)xk, all computed at infi-
nite precision. When we employ a FWL digital controller, the operation becomes:

xk+1 = Ad · xk − (F〈Ic,Fc〉(K) · F〈Ic,Fc〉(xk)).
xk+1 = (Ad − BdK) · xk + BdKδ,

where δ is the maximum error that can be introduced by the FWL controller in
one step, i.e., by reading the states values once and multiplying by K once. We
derive the closed form expression for xn as follows:

x1 = (Ad − BdK)x0 + BdKδ

x2 = (Ad − BdK)2x0 + (Ad − BdK)BdKδ + BdKδ

xn = (Ad −BdK)nx0 +(Ad −BdK)n−1BdKδ + ... + (Ad −BdK)1BdKδ +BdKδ

= (Ad − BdK)nx0 +
i=n−1∑

i=0

(Ad − BdK)iBdkδ.

The definition of asymptotic stability is that the system converges to a ref-
erence signal, in this case we use no reference signal so an asymptotically stable
system will converge to the origin. We know that the original system with an
infinite-precision controller is stable, because we have synthesized it to meet
Jury’s criterion. Hence, (Ad − BdK)nx0 must converge to zero.

The power series of matrices converges [15] iff the eigenvalues of the matrix
are less than 1 as follows:

∑∞
i=0 T i = (I − T )−1, where I is the identity matrix

and T is a square matrix. Thus, our system will converge to the value

0 + (I − Ad + BdK)−1Bdkδ.

As a result, if the value (I − Ad + BdK)−1Bdkδ is within the safe space, then
the synthesized fixed-point controller results in a safe closed-loop model. The
convergence to a finite value, however, will not make it asymptomatically stable.



Automated Formal Synthesis of Digital Controllers 479

B Errors in LTI Models

B.1 Errors Due to Numerical Representation

We have used F〈I,F 〉(x) denote a real number x represented in a fixed point
domain, with I bits representing the integer part and F bits representing the
decimal part. The smallest number that can be represented in this domain is
cm = 2−F . The following approximation errors will arise in mathematical oper-
ations and representation:

1. Truncation: Let x be a real number, and F〈I,F 〉(x) be the same number
represented in a fixed-point domain as above. Then F〈I,F 〉(x) = x− δT where
the error δT = x %cm x̃, and %cm is the modulus operation performed on
the last bit. Thus, δT is the truncation error and it will propagate across
operations.

2. Rounding: The following errors appear in basic operations. Let c1, c2 and
c3 be real numbers, and δT1 and δT2 be the truncation errors caused by
representing c1 and c2 in the fixed-point domain as above.
(a) Addition/Subtraction: these operations only propagate errors coming

from truncation of the operands, namely F〈I,F 〉(c1)±F〈I,F 〉(c2) = c3 +δ3

with |δ3| ≤ |δT1| + |δT2|.
(b) Multiplication: F〈I,F 〉(c1)·F〈I,F 〉(c2) = c3+δ3 with |δ3| ≤ |δT1 ·F〈I,F 〉(c2)|

+ |δT2 · F〈I,F 〉(c1)| + cm, where cm = 2−F as above.
(c) Division: the operations performed by our controllers in the FWL domain

do not include division. However, we do use division in computations at
the precision of the plant. Here the error depends on whether the divisor
is greater or smaller than the dividend: F〈I,F 〉(c1)/F〈I,F 〉(c2) = c3 + δT3

where δT3 is (δT2 · c1 − δT1 · c2)/(δ2
T2 − δT2c2),

3. Overflow: The maximum size of a real number x that can be represented in
a fixed point domain as F〈I,F 〉(x) is ±(2I−1 +1−2−F ). Numbers outside this
range cannot be represented by the domain. We check that overflow does not
occur.

B.2 Modeling Quantization as Noise

During any given ADC conversion, the continuous signal will be sampled in the
real domain and transformed by F〈Ic, Fc〉(x) (assuming the ADC discretization
is the same as the digital implementation). This sampling uses a threshold which
is defined by the less significant bit (qc = cmc

= 2−Fc) of the ADC and some
non-linearities of the circuitry. The overall conversion is

F〈Ic, Fc〉(y(t)) = yk : yk ∈
[
y(t) − qc

2
y(t) +

qc

2

]
.

If we denote the error in the conversion by νk = yk −y(t) where t = nk, and n is
the sampling time and k the number of steps, then we may define some bounds
for it νk ∈ [− qc

2
qc
2 ].
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We will assume, for the purposes of this analysis, that the domain of the
ADC is that of the digital controller (i.e., the quantizer includes any digital gain
added in the code). The process of quantization in the DAC is similar except
that it is calculating F〈Idac, Fdac〉(F〈Ic, Fc〉(x)). If these domains are the same
(Ic = Idac, Fc = Fdac), or if the DAC resolution in higher than the ADCs,
then the DAC quantization error is equal to zero. From the above equations
we can now define the ADC and DAC quantization noises ν1k ∈ [− q1

2
q1
2 ] and

ν2k ∈ [− q2
2

q2
2 ], where q1 = qc and q2 = qdac . This is illustrated in Fig. 1 where

Q1 is the quantizer of the ADC and Q2 the quantizer for the DAC. These bounds
hold irrespective of whether the noise is correlated, hence we may use them to
over-approximate the noise effect on the state space progression over time. The
resulting dynamics are

xk+1 = Adxk + Bd(uk + ν2k), uk = −Kxk + ν1k,

which result in the following closed-loop dynamics:

xk+1 = (Ad − BdKd)xk + Bdν2k + ν1k.

References

1. Control tutorials for MATLAB and SIMULINK. http://ctms.engin.umich.edu/
2. Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli, P.,

Kroening, D.: Sound and automated synthesis of digital stabilizing controllers for
continuous plants. In: Hybrid Systems: Computation and Control (HSCC), pp.
197–206. ACM (2017)

3. Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of control
system implementations. In: EMSOFT, pp. 9–18 (2010)
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Abstract. Many industrial cyber-physical system (CPS) designs are too
complex to formally verify system-level properties. A practical approach
for testing and debugging these system designs is falsification, wherein
the user provides a temporal logic specification of correct system behav-
iors, and some technique for selecting test cases is used to identify behav-
iors that demonstrate that the specification does not hold for the system.
While coverage metrics are often used to measure the exhaustiveness of
this kind of testing approach for software systems, existing falsification
approaches for CPS designs do not consider coverage for the signal vari-
ables. We present a new coverage measure for continuous signals and a
new falsification technique that leverages the measure to efficiently iden-
tify falsifying traces. This falsification algorithm combines global and
local search methods and uses a classification technique based on sup-
port vector machines to identify regions of the search space on which to
focus effort. We use an industrial example from an automotive fuel cell
application and other benchmark models to compare the new approach
against existing falsification tools.

1 Introduction

Cyber-physical systems integrate heterogeneous components whose descriptions
in high level modeling languages involve a wide array of specification paradigms,
such as differential equations, difference equations, automata, and data flow
graphs. Although the behavior of individual cyber-physical components may be
amenable to rigorous mathematical reasoning and analysis, the complex inter-
actions between the components are still not well-understood and pose major
theoretical hurdles in formal reasoning. Also, the scalability of the existing for-
mal verification methods and tools (see [1,3,4,12,15,16,18,26] and references
therein) is still limited and therefore not suited for verifying industrial scale
cyber-physical systems. Testing is an alternate approach for detecting errors,
whose advantage over formal verification methods is that it can treat a system
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as a black box, meaning that no internal description of the system is required. In
black box testing, only an interface of the system with the external environment
is described. Although testing can be applied to large scale cyber-physical sys-
tems, as attested by its use in industry, it does not provide proofs of correctness.
In other words, black box testing can only detect bugs, and when it does so
successfully, it means that the system design has to be corrected. Nevertheless,
when the testing process does not find any bugs, we cannot draw any conclusion
about its correctness. If the falsification is unsuccessful, then information about
the potential validity of the correct behavior of the system would be of great
interest to the designer. This information can be provided in terms of a testing
coverage measure.

In the existing research on cyber-physical systems testing, the focus was
generally on state-coverage measures, that is measures to characterize the portion
of the state space covered by a test suite. An example is star discrepancy [6,11],
a notion borrowed from statistics that indicates how equi-distributed are a set
of tested points in the state space. Some other measures are dispersion [13],
which indicates the size of the largest unexplored areas, and grid-cell count [25].
Although these state-coverage measures can serve as a possible means to compare
coverage of testing data generated by different algorithms, these measures exhibit
the following drawbacks. Typically, a test generation algorithm guided by a state
coverage measure tries to sample test cases in the areas that are not well explored;
however, in industrial scale system models describing interactions among a large
number of heterogeneous components, information about the state can be hard
to obtain. Additionally, such systems can have low controllability, meaning that
it is difficult or impossible to reach some regions of the state space. In such a
case, the algorithms can expend a large amount of time attempting to explore
unreachable regions. So, state coverage measures are not appropriate for analysis
or guidance of the testing effort on many cyber-physical systems.

The present work addresses the shortcomings of the state-coverage-based
techniques by instead focusing on coverage of input signal spaces. We develop a
new test generation technique that is based on covering the input signal space
rather than the state space. Previous test generation methods have considered
coverage of a parameter space (such as in [9]); the way that we handle input
signals is directly related, as we consider the class of finitely parameterized input
signals.

While coverage is important during testing for providing confidence in cor-
rectness of the system behavior, bug detection is still an important goal of
testing. Usually, there is a mutual tradeoff between satisfying the two criteria.
Achieving good coverage entails exploring a large portion of the search space,
most of which would correspond to correct behaviors. Whereas, the objective
of a falsification procedure is to find incorrect behaviors, which would require
focusing on behaviors close to incorrectness. Most falsification methods are based
on minimizing the behavioral robustness with respect to a property under test;
the robustness measure here indicates how far the behavior is from violating
the property. A common drawback of such falsification methods is that the
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optimization procedures can spend a significant amount of computing time near
local optima that may not correspond to a false behavior. Therefore, a crite-
rion like coverage can help overcome this drawback, since seeking to improve
the global coverage would drive the search process out of the areas of local
optima. One way to achieve a good compromise between coverage-driven and
local search-driven testing is to initiate the search procedures from points that
are separated by some threshold distance. This insight was used previously in the
tabu search method, which ensures that all the starting points are well separated
[7]; however, apart from ensuring that the starting points are well separated, it
is also desirable that they are chosen in regions in which one can reasonably
expect to find an incorrect behavior. That is, heuristically speaking, a starting
point should have a low robustness value.

Based on the above observations, in this work we present a falsification algo-
rithm that combines the following three essential ideas:

– Defining a coverage measure for quantifying the exploration of input signal
space during testing.

– Guiding a randomized global search procedure by performing robustness clas-
sification: the classification divides the search space into regions with differ-
ent potentials of falsification characterized by the robustness of evaluated test
cases. Our classification is inspired from linear support vector machines [8,17].

– Using local search in regions classified as less robust. The above-mentioned
global search together with an iterative classification procedure does converge
towards an incorrect behavior, if it exists. However, to speed up the conver-
gence, instead of continually classifying, we can use the information obtained
from classification to efficiently initialize a local search within each classified
region. Note that in general, local search with arbitrary initialization can
perform poorly. Therefore, by alternating classification and local search we
can achieve a better convergence while assuring a good coverage of the input
signal space (because in general local search does not take into account this
coverage criterion).

Before proceeding further, we note that our idea of combining global and local
search for black box falsification is independent of the work [22] that is concerned
with falsification based on state trajectories. In the latter work [22], although the
motivation is to combine local and global search, the state trajectories have to be
computed, in which case the system is not a black-box. On the other hand, our
work is concerned with black-box kind of systems, i.e., complex systems where
the information about the state of the system is very hard, if not impossible, to
know.

For implementation and evaluation purposes, for local search we use a
method, called the CMA-ES (Covariance Matrix Adaptation Evolution Strat-
egy) [21], also used by the tool Breach [9]. The CMA-ES algorithm is considered
as the state-of-the-art in evolutionary computation and has been used for indus-
trial optimization applications. The experimental results obtained using a MAT-
LAB implementation of our falsification algorithm on some benchmark systems
demonstrate its good performance and, in addition, its efficiency improvements
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over search algorithms like the CMA-ES. Indeed, our algorithm was tested on a
difficult property of the PTC benchmark [11] and could falsify in all the tested
random seeds while the methods based on pseudo-random sampling or only on
the CMA-ES could not. Also, we demonstrate that the technique can be suc-
cessfully applied to industrial problems by presenting results for a prototype
automotive hydrogen fuel cell application.

Our approach draws inspiration from the approaches implemented in the
tools S-Taliro [2] and Breach [9]. These approaches seek the worst case behaviors
using the notion of robustness metrics, which are defined with respect to prop-
erties specified using the languages MTL (Metric Temporal Logic) [14] and STL
(Signal Temporal Logic) [10], respectively. The tools identify property violations
by employing global optimization methods to search for behaviors that minimize
robustness, where negative robustness values correspond to property violations.
Robustness-based approaches can be seen as complementary to coverage-based
approach, since the former try to find a worst case behavior while the latter tries
to cover a large number of possible behaviors. When a robustness-based approach
cannot find an erroneous behavior due to the limitations of global optimization
algorithms, the observed error absence cannot be used as a formal correctness
proof; in this case good coverage would be desirable to enhance the confidence
that the system is free from errors. By combining robustness-based and coverage-
guided explorations, our approach enhances the overall testing effectiveness by
providing confidence that important or representative behaviors are tested.

2 Preliminaries

We consider system models defined by a mapping from parameters and input
signals to output signals,

y = Φ(v, u), (1)

where v ∈ V is a valuation of a finite collection of parameters, and u ∈ U is
an input signal used to simulate the system. In this setting, v could contain a
set of system initial conditions as well as some finite set of system parameters.
Each input signal u ∈ U is a function Iu �→ U , where Iu is an interval (either
discrete or continuous) from 0 to some finite value, and U is some metric space
of finite dimension. Similarly, we assume that each output signal y ∈ Y is a
function Iy �→ Y , where Iy is an interval (either discrete or continuous) from 0
to some finite value, and Y is some metric space of finite dimension. We assume
that V, U , and Y are metric spaces. Note that the system defined by (1) does
not explicitly model the behaviors of the internal system states. State behaviors
could be modeled using this framework by ensuring that v includes the system
state and all of the states map to system outputs, but we do not require this.

We assume that signals are finitely parameterized, i.e., an input signal u
can be uniquely determined by a finite set of m parameters, whose valuation
û is a in a subset ̂U of an m-dimensional metric space. For example, a right-
continuous piecewise constant input signal u : Iu → R, where Iu = [0, T ], with
discontinuities occurring at monotonically increasing instants τ1, . . . , τm, where



Classification and Coverage-Based Falsification 487

0 = τ1 < τm < T , can be uniquely defined by the m values u(τi). Subsequently,
our system can be defined as a mapping from a finite set of parameters to the
output signals, as follows:

y = ̂Φ(v, û), v ∈ V and û ∈ ̂U (2)

We call V the space of nominal parameters and ̂U the space of input signal
parameters.

Signal Temporal Logic. To specify correct behavior of a system defined by (1),
we use signal temporal logic (STL) [23]. STL can capture behaviors of real valued
signals over discrete or dense time. We present here an informal description of
STL (see [23] for more details). A formula in STL consists of atomic predicates,
Boolean, and temporal operators. Atomic predicates are inequalities over signal
values, as in μ = f (y(t)) ∼ 0, where f is a scalar-valued function over the signal
y evaluated at time t, and ∼∈ {<,≤, >,≥,=, �=}. Temporal operators “always”
(�), “eventually” (♦), and “until” (U) have the usual meaning and are scoped
using intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞), or (a,∞), where
a, b ∈ R≥0 and a < b. If I is such an interval, then the language of STL is given
by the following grammar:

ϕ := 
 | f(y(t)) ∼ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 : ∼∈ {<,≤, >,≥,=, �=} (3)

The ♦ and � operators are defined as follows: ♦Iϕ � 
UIϕ, �Iϕ � ¬♦I¬ϕ.
When omitted, the interval I is assumed to be [0,∞). The semantics are
described informally as follows. The signal u satisfies f(u) > 0 at time t if
f(u(t)) > 0. It satisfies ϕ = �[0,1)(f(u) = 0) if for all time 0 ≤ t < 1,
f(y(t)) = 0. The signal satisfies ϕ = ♦[1,2)f(u) < 0 iff there exists a time t
such that 1 ≤ t < 2 and u(t) < 0. The two-dimensional signal y = (y1, y2)
satisfies the formula ϕ = (y1 > 0)U[2.3,4.5](y2 < 0) iff there is some time t where
2.3 ≤ t ≤ 4.5 and y2(t) < 0, and ∀t′ in [2.3, t), y1(t′) is greater than 0.

Quantitative Semantics for STL. The quantitative semantics of STL tells
how far a signal is from satisfying a formula. In this respect, we use the quan-
titative interpretation presented in [10], which we describe informally as fol-
lows. The semantics relies on a function ρ such that a positive sign of ρ(ϕ, y, t)
indicates that (y, t) satisfies ϕ, and its absolute value estimates the robustness
of this satisfaction. If φ is a simple inequality of the form f(y) > b, then
its robustness is ρ(ϕ, y, t) = f(y(t)) − b. For the conjunction of two formulas
ϕ := ϕ1 ∧ ϕ2, we have ρ(ϕ, y, t) = min (ρ(ϕ1, y, t), ρ(ϕ2, y, t)), while for the dis-
junction ϕ := ϕ1 ∧ ϕ2, we have ρ(ϕ, y, t) = max (ρ(ϕ1, y, t), ρ(ϕ2, y, t)). For a
formula with until operator as ϕ := ϕ1UIϕ2, the robustness is computed as
ρ(ϕ, y, t) = maxt′∈t+I

(

min
(

ρ(ϕ2, y, t),mint′∈[t,t′] (ρ(ϕ1, y, t′′))
))

.
Since the output signal is determined by the set of nominal parameters and

input signal parameters according to the mapping ̂Φ, we can define a robust-
ness function over the space of parameters, called parametric robustness, as
ρ̂(ϕ, v, û, t) = ρ

(

ϕ, ̂Φ (v, û) , t
)

.
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Falsification. Finding a counterexample of ϕ means finding a parameter value
v ∈ V and an input parameter value û ∈ ̂U such that y �|= ϕ, where y = ̂Φ(v, û).
Equivalently, the counterexample is identified when its parametric robustness is
less than zero, i.e., ρ̂(ϕ, v, û, t) < 0 for some time point t in the time horizon of
the signal. We call any v ∈ V and û ∈ ̂U for which y �|= ϕ a counterexample and we
call this task of finding a counterexample as a falsification problem. We say that a
counterexample y (that is y �|= ϕ) is robust if there exists a neighborhood around
y, Ny, such that for all y′ ∈ Ny, y′ �|= ϕ. We call a corresponding neighborhood
Ny a robustness neighborhood of counterexample y. If a counterexample has a
robustness neighborhood that contains a closed ball of radius ε, then we say that
the counterexample is ε-robust .

Continuity of Robustness. Recall that our input signals are assumed to be
finitely parametrized and correspondingly we defined the parametric robustness
function. If we assume that the predicates of an STL formula are defined by
functions f in (3) which are continuous w.r.t. the value of y at any time t, and
the mapping Φ defining the system dynamics is continuous w.r.t. the parameter
and input signal, then we can prove that the parametric robustness is continuous
w.r.t. v and û. Indeed, for any atomic predicate ϕ = f (y(t)) ∼ 0, the parametric
robustness ρ̂ (ϕ, v, û, t) is continuous because f and ̂Φ are continuous. Next, for
any general formula as defined in (3), the robustness is computed by a composi-
tion of min and max operators of subformulas. By using induction we thus can
deduce that the parametric robustness, given the aforementioned assumptions,
is continuous in the input parameter û and the nominal parameter v.

3 Input Space Coverage - Cell Occupancy

This section presents a metric that we use to measure the coverage of signal
spaces. The notion is intended to be used to define the coverage of input signals
used to stimulate a dynamical system. We define a measure called cell occupancy,
which has the following desirable properties:

– The measure is monotonic, in the sense that it is guaranteed not to decrease
in value when new signals are added to an existing set;

– The measure permits computation with efficient algorithms;
– The measure provides numbers in reasonable ranges, in the sense that, for

both low dimension and high dimension problems, the measure results in val-
ues that are neither too large nor too small so as to be accurately represented
with standard floating point numbers.

Henceforth, we define a measure called cell occupancy as follows. Let M be
a set of signals, which corresponds to a set of parameter vectors XM . We call
elements of XM points. We use p to denote the size of sets M and XM .

Choose a partition of X, ω = {ωi|i = 1, . . . , l}. For now, we assume that each
partition element, which we call a cell, is rectangular, with each side of equal
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length, Δ, called grid cell size1. A vector that indicates how many points are in
each cell is called a distribution, D = (n1, . . . , nl), where each ni indicates how
many points are located in cell i. Cell occupancy is based on the relative number
cells occupied by points, compared to the total number of cells. Consider the
total number of occupied cells, that is, the number of cells that contain at least
one point, i.e., Nc =

∑l
i=1 gi where gi = 1 if ni ≥ 1, and gi = 0 otherwise. Then,

the proposed cell occupancy measure is given as

Hc(D) =
log Nc

log l
.

Logarithm functions are used due to the fact that the total number of cells
could be very large as compared to the number of occupied cells. The logarithms
provide two key features for the cell occupancy measure: (1) they maintain the
monotonicity of the measure, and (2) they result in reasonable measure values
even for cases where the dimension m is large.

Guarantee for Finding Counterexample. We consider here falsification algo-
rithms based on an iterative search on the nominal parameter and input signal
parameter spaces. We assume that the functions in the atomic predicates of STL
formulas are continuous in the value of the output signal at any fixed time point.
Also, the system mapping ̂Φ is assumed to be continuous w.r.t. the input signal
parameters and nominal parameters. In this case, if a falsification algorithm is
such that the cell occupancy is guaranteed to increase after a finite number of
robustness evaluations for any partition, then because of the continuity of para-
metric robustness (explained in Sect. 2), there exists a sufficiently small upper
bound on the grid cell size below which, the algorithm is guaranteed to find a
counterexample. This is summarized by the following lemma. However, note that
in general such falsification algorithms may be used for non-continuous systems
as well. The following lemma gives a theoretical insight about why coverage may
be taken into account for designing efficient falsification algorithms.

Lemma 1. Given a falsification algorithm and a partition ω with l grid cells
of size Δ > 0, let D(κ,Δ) denote the cell distribution after κ robustness eval-
uations by the algorithm. Let us consider that there exists α ∈ Z>0 for which
the algorithm guarantees that ∀κ ∈ Z≥0 Hc (D(κ + α,Δ)) > Hc (D(κ,Δ)). Let
us also consider that the system mapping ̂Φ is continuous and an STL formula
ϕ is formed by continuous predicates with respect to the signal value at a fixed
time. In this case, if an ε-robust counterexample of ϕ exists, then there exists an
upper bound Δ > 0 on the grid cell size of ω such that ∀Δ < Δ, the algorithm
finds a counterexample after a finite number of robustness evaluations.

1 We note that in the setting in which we intend to apply the following coverage
metrics, we will expect to select points in X that are no closer than some ε distance
from each other, based on some metric between signals, but this rectangularity will
not be exploited in the following. Further, we assume that ε � Δ.
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4 Falsification Techniques

We use the term sampling a point to mean selecting a parameter vector x in
the parameter set XM , to uniquely define an input signal in M . Such signals
are then used as stimuli to simulate the system and determine the robustness
values of the corresponding output traces. For simplicity of notation, for a given
sampled parameter vector x, we write ρ(x) to denote the robustness value of
the corresponding output trace. And for a set S of sampled parameter vectors,
ρ(S) = min{ρ(x) | x ∈ S}. A parameter vector x is called a falsifier if ρ(x) < 0.

A rudimentary approach to search for a falsifier is repeatedly select randomly
an unoccupied cell with uniform probability distribution and evaluate one point
inside it. This way, we ensure that the cell occupancy always keeps increasing
until we eventually find a robust bug, if it exists (see Lemma 1); however, this
approach may not be efficient because the uniform search does not differentiate
regions that are more likely to contain an input that falsifies from those that are
less likely. Therefore, we propose to enhance it using two concepts:

1. Using classification to bias random search. We use robustness based classifi-
cation to classify less falsifiable regions from more falsifiable regions. Then,
the probability distribution of random samples is biased according to the
coverage and robustness information in different regions.

2. Combining global search and local search. Local search approaches (such as
Hill climbing, Gradient methods, Simulated annealing, Genetic algorithms)
(see for example [19,24]) can be very efficient if the search procedures are
appropriately initialized. Finding good initializations constitutes a major dif-
ficulty that limits the efficiency of these approaches. In our framework, the
classification based global search provides useful hints at appropriate ini-
tializations for the local search. Indeed, the least robust points in regions
with high potential of falsification can be used to initialize a number of local
searches.

Thus, our falsification algorithm involves two phases. The first phase is a global
search guided by hyperplane classifiers, coverage and the robustness information.
Next is a local search phase which runs a number of local searches initiated at
the least robust points of different regions formed by the classification process
during the global search. We now explain the aforementioned ingredients of the
algorithm.

4.1 Classification Using Hyperplane Subdivision

In the following, we say that two regions are separate if their intersection can only
lie on their boundaries. Our classification problem can be intuitively described
as follows: given a rectangle R representing a search space and a set S of sampled
points in R, iteratively subdivide it, according to the robustness values of the
sampled points, to obtain a rectangular partition, the elements of which have
different average robustness levels. We define the average robustness of the set of
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samples S in R as μ =
∑

x∈S ρ(x)
|S| . Our objective is thus to separate a region of

R having higher potential of containing low robustness samples. To this end, we
define a hyperplane, in view of separating samples below the average robustness
μ from those above μ. Obviously, such a hyperplane does not always exist, and
we therefore choose a hyperplane that does this separation as best as possible.
To address this problem, we draw inspiration from soft margin support vector
machines [5], where hyperplanes are determined so that the misclassification
error is minimized. In general, a misclassification error is defined according to
the locations of the misclassified samples; however, in our approach we define
a misclassification error that gives weightage to the robustness values of the
misclassified samples in addition to their locations. Furthermore, since it is easy
to sample uniformly in rectangles, we only use axis-aligned hyperplanes, which
generate only rectangular subregions. Otherwise, when allowing non-axis aligned
classifiers, we generate polyhedral regions in which uniform random sampling as
well as partition manipulation could be more expensive.

To explain the essence of our classification method, let us consider one rec-
tangle R in the partition as the product of intervals R = [a1, b1] × . . . × [an, bn].
Let S be the set of samples in R. We denote an axis-aligned hyperplane inside
R by a tuple (d, r) where d ∈ {1, . . . , n} is the axis normal to the separat-
ing hyperplane, while r ∈ [ad, bd] is a coordinate at which the hyperplane is
drawn. The hyperplane (d, r) subdivides R into two subrectangles A−(R, d, r)
and A+(R, d, r) such that A−(R, d, r) = [a′

1, b1] × . . . × [a′
n, bn] where a′

j = r if
j = d, and a′

j = aj otherwise; and A+(R, d, r) = [a1, b
′
1] × . . . × [an, b′

n] where
b′
j = r if j = d, and b′

j = bj otherwise (Fig. 1).

Fig. 1. Classification by subdivision. The samples in a 2-dimensional rectangle R are
represented by black points labeled with their robustness values; R is divided by the
hyperplane (d, r) where the axis is d = 1, to minimise the misclassification error. This
division produces two subrectangles A−(R, d, r) (on the left) and A+(R, d, r) (on the
right).

An ideal separation of samples below the average robustness from those above
the average robustness by the hyperplane can be described in one of the follow-
ing scenarios, identified by the following notion of polarity. Hyperplane (d, r)
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has polarity p = 1 w.r.t. S, if the left subrectangle A−(R, d, r) contains all sam-
ples below the average μ, while the right subrectangle A+(R, d, r) contains all
samples above the average μ. Similarly, (d, r) has polarity p = −1 w.r.t. S, if
A+(R, d, r) contains all samples below μ, while A−(R, d, r) contains all samples
above μ. When an ideal separation as above is not feasible, we identify misclas-
sified samples as follows.

Definition 1. A point x ∈ R is misclassified w.r.t. a hyperplane (d, r), polarity
p ∈ {−1, 1} and the sampled set S, if sgn (p (ρ(x) − μ) (xd − r)) = 1 where xd is
the dth coordinate of x, and sgn denotes the sign function.

For a misclassified sample, the misclassification error is measured according
to its location and robustness value. If a misclassified sample is farther from the
hyperplane, it is considered to entail a higher misclassification error. Also, since
the classification is based on the average robustness, samples with robustness
values farther from the average get higher weightage in measuring the misclas-
sification error. Accordingly, we define the misclassification error for a point
x ∈ R w.r.t. a hyperplane (d, r), polarity p ∈ {−1, 1}, and a set of samples S as
ed,r(x,R, S, p) = max {p(ρ(x) − μ)(xd − r), 0}. Then the total misclassification
error is the sum of the misclassification errors of all the samples:

Γd,r(R,S, p) =
∑

x∈S

ed,r(x,R, S, p). (4)

An appropriate hyperplane (d∗, r∗) traversing the rectangle R, chosen for the
desired separation of S, is one that minimises the total misclassification error
for either a positive or negative polarity, i.e.,

(

dR,S
∗ , rR,S

∗
)

= argmin
r∈[ad,bd],d∈[n]

(min {Γd,r(R,S,−1), Γd,r(R,S, 1)}) . (5)

We denote A−
∗ (R,S) = A−(R, dR,S

∗ , rR,S
∗ ) and A+

∗ (R,S) = A+(R, dR,S
∗ , rR,S

∗ ) as
the subrectangles formed by dividing R by the above optimal hyperplane.

It is important to remark that in order for the classification to reflect the
robustness distribution over the whole dense space, the number of samples should
be sufficiently large. Henceforth, only rectangles in which the number of samples
is not smaller than a (user-defined) threshold number, are subdivided as above.
The classification procedure takes as input a partition encoded as a list of k
rectangles and the set of points in each respective rectangle. For each rectangle
if the number of points is not smaller than the threshold Kc, the rectangle is
subdivided by a hyperplane that minimizes the classification error. The rectangle
is replaced by the left subrectangle and the right subrectangle is added to the
list of rectangles. After all rectangles are considered for subdivision, the samples
inside them are updated.

4.2 Global Search

Each iteration of the global search performs 3 successive procedures:
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1. Classification using hyperplanes, the goal of which is to partition the state
space into regions with different robustness levels.

2. Coverage and robustness guided sampling of input signal parameters.
3. Singularity based sampling of input signal parameters inside rectangles con-

taining very low robust samples. Here, we use singularity to refer to a partition
element that contains a point in a low robustness range with low frequency
of occurance.

Note that the term sampling in the description of our method refers to the con-
secutive execution of three steps (1) defining the input signals from the sampled
parameters, (2) simulating the system under the defined input signals, and (3)
evaluating the robustness of the corresponding simulated output traces.

Coverage and Robustness Based Sampling. We randomly select a number
of unoccupied cells, such that the probability of picking a cell in each rectangle
is based on two components: coverage based probability and robustness based
probability. Then the probability of cell sampling is determined as a weighted
sum of the former components. Once a cell is sampled, a point is selected by a
uniform sampling inside the cell.

Coverage Based Probability Distribution. Let {R1, . . . , Rk} be the set of rectan-
gles of a partition of the parameter space. We now consider the collection of
grid cells intersecting with Ri, that is {ωj : ωj ∩ Ri �= ∅}, and we index them as
βi =

{

βi
1, . . . , β

i
qi

}

where qi is the number of such cells. Let D(Ri, Si) be the vec-
tor denoting the distribution of samples Si in cells of βi, that is ∀j ∈ {1, . . . , l} (l
is the total number of grid cells), the jth component Dj(Ri, Si) =

∣

∣Si ∩ βi
j

∣

∣. Then
the coverage based sampling probability in Ri is proportional to the number of
unoccupied cells in this rectangle:

P i
c =

1 − Hc (D(Ri, Si))
∑m

j=1(1 − Hc (D(Rj , Sj))
, (6)

where Hc (D(Ri, Si)) is the local cell occupancy of Ri, i.e., Hc (D(Ri, Si)) =
log(Nci)
log(li)

. where li is the number of grid cells intersecting with Ri and Nci is the
number of unoccupied cells intersecting with Ri.

Robustness Based Probability Distribution. A probability distribution takes into
consideraton the average robustness as well as the potential reduction in robust-
ness below the average. The potential reduction in robustness below the average
is defined as λi = 1

|Si|
∑

x∈Si
max(μi − ρ(x), 0). Then a potentially reduced

robustness value below the average is θi = μi − λi. Then we define a robustness
based probability in a rectangle Ri as inversely proportional to θi, as follows.

P i
r =

1
θi

∑m
j=1

1
θj

. (7)
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Sampling Probability Distribution. The probability distribution for sampling is
a weighted sum of the probability based on robustness and the probability based
on coverage. The weightage given to either probability is a user defined constant.
Let the weight assigned to the robustness based probability be denoted by wr

such that wr ∈ [0, 1]. Then, the overall probability of sampling in rectangle Ri is

P i
t = wrP

i
r + (1 − wr)P i

c . (8)

Singularity Based Sampling. Certain rectangles may contain samples whose
robustness is very low compared to the lowest robustness values in other rec-
tangles. We refer to them as singular samples, which we heuristically define as
follows.

Let γ = {γ1, . . . , γk} be the vector of lowest robustness values in
each rectangle, defined as γi = minx∈Si

ρ(x). The mean of γ and the

average deviation below the mean are respectively defined as μγ =
∑k

i=1 γi

k
and

λγ =
∑k

i=1 max (0, (μγ − γi))
k

. If the robustness of a sample is less than λ then it
is an indication that the sample may be close to a counterexample. Also, samples
with very low frequency and sufficiently low robustness are also considered singu-
lar. To select such rare samples, we use the following heuristic. If γ were a large set
of random samples selected from a normal distribution, then less than 15% of the
samples tend to lie below the value μγ − 3λγ . Although the actual set of samples
in γ may not follow the pattern of a normal distribution, this also can be used as
a heuristic to define a singular sample.

Definition 2. A point x ∈ ⋃k
i=1 Si for which ρ(x) ≤ max (μγ − 3λγ , λ) is called

a singular sample.

We call the rectangles containing singular samples as singular rectangles.
Since the frequency of singular samples can be very small, the robustness based
probability in (7) may not give adequate weightage to singular rectangles. So,
we have to perform additional sampling in the singular rectangles.

Overall Global Search. Suppose that we have a partition of rectan-
gles R1, . . . , Rk containing sets of samples S1, . . . , Sk, respectively. Let Ci

be the set of unoccupied cells intersecting with a rectangle Ri, i.e., Ci =
{ωj ∈ ω : ωj ∩ Ri �= ∅ ∧ ωj ∩ Si = ∅} . Let N be the number of samples to be
added during probabilistically biased random sampling. We compute the prob-
ability distribution of sampling among different rectangles P t, where the user
defines a weightage wr given to the robustness based probability distribution
P r. Then we select (min{max{1, �P t

i N�}, |Ci}) number of cells among Ci and
sample one point in each cell. Note that if there is an unoccupied cell in a rec-
tangle, then at least one sample is added to each rectangle irrespective of the
probability P t

i . Then update the sets of samples S1, . . . , Sk by adding the new
samples and also the sets of unoccupied cells Ci ∀i ∈ {1 . . . k}.
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Next, we perform sampling in each of the singular rectangles as follows. Let
Rj be a singular rectangle, currently containing the set Sj of samples and a
set Cj of unoccupied cells. Then we select min {max {Kc − |Sj |, 0} , |Cj |} cells
among the unoccupied cells Ci. Therefore, in the next iteration Rj contains at
least Kc samples (if it has unoccupied cells) and is consequently subdivided. The
procedure is repeated in each iteration until the time limit T g on global search
is reached. Alternatively, we can also set a limit on the total number of samples
for which robustness is evaluated. If we have not falsified yet, then we perform
a number of local searches initialized at the lowest robustness samples of all the
separate subrectangles, as described below.

4.3 Local Search

Suppose that we have K subrectangles R1, . . . , RK after running global search
for T g time. Let L be the set of the lowest robustnes points of different rec-
tangles. If the property is not yet falsified, then we use the lowest robustness
points of different rectangles to initialize a local search based falsification algo-
rithm. In our implementation, we used the state-of-the-art Covariance matrix
adaptive evolutionary search (CMA-ES) algorithm [21] in the local search phase.
The essence of the CMA-ES algorithm can be briefly described as follows. It is
a randomized black box method which selects samples based on a multivari-
ate normal distribution having a mean and a covariance matrix as parameters.
Based on the robustness of a population of points evaluated in an iteration,
the mean and covaraiance matrix of the search distribution are updated for the
next sampling iteration. The procedure generally coverges to a locally optimum
point or finds a counterexample. It may happen that the set of sampled points
do not contain enough information to derive a reliable estimation of a covari-
ance matrix for an efficient update. Therefore, good initializations of the mean
and covariance matrix are crucial. In our algorithm, the global search provides
initialization guidance as follows. We have a number of subrectangles formed
by classification, that contain sets of samples. So, we can initialize in one the
following ways: (1) Each of the lowest robustness points of different rectangles,
i.e., the points in L can be selected for initialization with covariance as identity
(the order of selection is according to their robustness values, with the lowest
robustness tested first); (2) The mean and covariance are initialized as that of
those points in L whose robustness is less than the average robustness of samples
in L. (3) The mean and covariance are initialized as that of all the points in L.
With such initialization guidance from our global search procedure described
earlier, this local search procedure can become more effective in falsification.

4.4 Overall Falsification Algorithm

The overall falsification algorithm consists of iteratively doing global search for a
threshold time and then doing local search. We give an outline of the algorithm
below.
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– Step 1: Initialization. In the first step, we evaluate the robustness of N uni-
formly selected points in the search space R and store them as a set of samples
S.

– Step 2: Global search phase: We perform a number of global search iterations
until a time limit is attained. Each global search iteration consists of the
following three steps executed one after the other. (i) The first step is classifi-
cation, where new rectangles are constructed by classifying and consequently
subdividing the existing rectangles that contain more than a threshold Kc

of samples. (ii) The second step involves probabilistically biased sampling
based on the coverage and robustness values of samples in different rectan-
gles. The specific procedure is explained earlier in the Section on overall global
search. (iii) The third step is singularity based sampling. This procedure is
also explained earlier in the Section on overall global search.

– Step 3: Local search phase. If no counterexample is found in the global search
phase, then we perform the local search based on the set of low robustness
points in different rectangles. The specific procedure is explained earlier in
the Section on local search.

– Step 5: If not falsified during local search, then continue global search itera-
tions i.e. go to Step 3.

– Step 6: If not falsified, then alternate with local search, i.e. go to Step 4.

We can now state an important completeness property of our overall falsifi-
cation algorithm for the class of the systems (2) satisfying the assumption that
the mapping ̂Φ is continuous in the nominal parameters and the input signal
parameters.

Theorem 1. If an ε-robust counterexample exists, then there exists a grid cell
size Δ and a global search time T g so that our algorithm finds a counterexample.

Sketch of proof. The theorem can be directly established from Lemma 1. Indeed,
the condition in this lemma is always satisfied by our algorithm since, by
construction, after each iteration the cell occupancy of the samples always
strictly increases. So, for sufficient T g, the falsification is guaranteed if an
ε-robust counterexample exists.

5 Experimental Results

In our experiments, we compare the performance of a MATLAB implementa-
tion2 with the following standard approaches: CMA-ES, Simulated Annealing,
Global Nelder-Mead algorithm implementations (integrated in Breach [9]), and
the S-TaLiRo tool [2] by setting Simulated Annealing as optimization algorithm3.

2 We use the robustness evaluation function from the Breach toolbox available in Octo-
ber 2016, on the site https://people.eecs.berkeley.edu/∼donze/breach page.html.

3 We used the latest version available in October 2016, on the site https://sites.google.
com/a/asu.edu/s-taliro/home.

https://people.eecs.berkeley.edu/~donze/breach_page.html
https://sites.google.com/a/asu.edu/s-taliro/home
https://sites.google.com/a/asu.edu/s-taliro/home
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Experiments were performed on a computer with 1.4 GHz processor with 4 GB
RAM, running MATLAB R2015 64-bit version. Also, we compare with a random
sampling method, where in each iteration a pseudo-randomly selected point is
tested only if it falls in a grid cell wherein no other point has been previously
tested. The grid used in this method is the same as the grid chosen in our falsi-
fication approach. We will call this method as grid based random sampling, for
the sake of reference during comparison.

5.1 Automative Powertrain Control

We consider a Simulink model of a closed loop of an Automative Powertrain
Control subsystem (PTC). The model contains a representation of an internal
combustion engine and an embedded software controller for the air-to-fuel ratio
within the engine (see [11] for more details). Here, we focus on the input-output
behavior, considering the internal model as a blackbox. The model has three
input signals, Pedal Angle Engine Speed and Sensor Offset. The air-to-fuel (A/F)
ratio, denoted by η, is an output signal for which the following safety requirement
was stated in [11]: φ = �[5,10] (η < 0.5).

Input Signal Settings. Compared to [11], we consider a smaller input range
for the Pedal Angle as [0, 40] and fix the Engine Speed and Sensor Offset as 1000
and 1, respectively. Reducing the ranges makes the properties more robust and
consequently difficult to falsify. The time horizon is 50s. We use piecewise con-
stant signal for testing, where the Pedal Angle is parameterized by 10 uniformly
spaced control points in the time horizon. Thus, we have a 10 dimensional search
space X.

Algorithm Setting. For our algorithm, the threshold number of samples for
hyperplane classification Kc is 100. The global search time is T g = 2000s. The
local search is initialized with the lowest robustness point found during global
search and allowed to run until falsification. Cell partitioning ω consists of hyper-
cubes of side length ε = 4. We consider equal weightage for robustness based
probability and coverage based probability for sampling during global search,
i.e., wr = 0.5.

Results. Our algorithm (classification guided global search + local search) suc-
cessfully found a counterexample in less than 3000s for all seeds. As an esti-
mate of the classification frequency, the final number of separate rectangles con-
structed for while testing the first seed were 30. In comparison, the tool S-TaLiRo
could falsify but took 4481s. The grid based random sampling found a falsifier
for only the seeds 15000 and 20000, but failed to do so on the other seeds before
maximum time limit was reached. The other methods were not successful in
finding a falsifier within the default stopping time of 5000s. Both the CMA-ES
and Nelder-Mead became stuck without reduction in robustness value until the
default stopping time was reached. The results are presented in Table 1. We note
that for any fixed seed for random sampling, these results are reproducible.
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5.2 Automatic Transmission

We consider the benchmark model of an Automatic Transmission control sys-
tem, which appeared in [20]4. The system has two input signals, called throt-
tle and break, respectively, and two output signals, called the engine speed,
denoted w (RPM), and the vehicle speed, denoted v (mph). The property
states that if the engine speed stays below a value w, then the vehicle speed
v does not exceed a threshold v within 10s. We specify the values of w and
v to be 2520 and 50, respectively, which gives the following STL property:
φ = ¬ ((

♦[0,10]v > 50
) ∧ (�w ≤ 2520)

)

[20].

Input Signal and Parameter Settings. Initially, the vehicle is at rest, when
v = 0 and w = 0. For the input signals, we consider smaller ranges than specified
in [20], which makes the property φ more robust. Henceforth, the throttle signal
is allowed to vary between [35, 100] and the break is allowed to vary between
[0, 40]. The time horizon is set to 30s. We use piecewise constant input signals
for testing, where the throttle signal is parametrized by 7 control points and
the break has 3 control points. Thus, we have a 7 + 3 = 10 dimensional search
space. φ.

Algorithm Setting . For our algorithm, the threshold number of samples of
hyperplane classification Kc is 70. The global search time is T g = 500s, while
maximum time for local search is τ l = 2000s. Cell partitioning ω consists of
hypercubes of side length ε = 4. We consider equal weightage for robustness
based probability and coverage based probability for sampling during global
search, i.e., wr = 0.5.

Results. Our algorithm (classification guided global search + local search) suc-
cessfully found a counterexample in less than 2000s for all tested seeds. As an
indication of the number of classification operations that occurred, the final
number of separate rectangles constructed for while testing the first seed were
31. In comparison, the CMA-ES found a falsifier for two seeds 5000 and 15000
within 2000s but failed to do so on the other seeds. The other methods were
not successful in finding a falsifier within the default stopping time of 3000s. For
this example, S-TaLiRo became stuck around a local optimum without any sig-
nificant reduction in robustness value. The results are presented in Table 1. We
note that for any fixed seed for random sampling, these results are reproducible.

5.3 Industrial Example

We present results for an air path controller for an automotive fuel cell (FC)
application. The system contains an FC stack that generates electrical power
to provide torque to the vehicle drivetrain. The system is composed of an air
compressor and the air path through the FC stack. The system takes as input

4 The model and property description of this benchmark is available at the site of the
workshop Applied Verification for Continuous and Hybrid Systems, ARCH 2014–
2015, http://cps-vo.org/node/12116.

http://cps-vo.org/node/12116
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Table 1. Experimental results

Solver Seed Computation time (secs) Falsification

PTC Aut. Trans PTC Aut. Trans

Hyperplane
classification +
CMA-ES-Breach

0 2891 996 � �
5000 2364 1382 � �
10000 2101 1720 � �
15000 2271 1355 � �

CMA-ES-Breach 0 T.O. (5000) T.O. (2000)

5000 T.O. (5000) 1302 �
10000 T.O. (5000) T.O. (2000)

15000 T.O. (5000) 1325 �
Grid based
random sampling

0 T.O. (5000) T.O. (2000)

5000 T.O. (5000) T.O. (2000)

10000 3766 T.O. (2000) �
15000 268 T.O. (2000) �

S-TaLiRo (Simulated Annealing) 4481 T.O. (3000) �
S-TaLiRo (Simulated Annealing) 4481 Default stopping

(3300)
�

T.O.: Exceeded indicated time out limit.
Seed : Index for a sequence of random numbers in MATLAB. Solver : Algorithm used
for falsification. Computation time: Amount of time (in seconds) until falsification or
default stopping after the time limit in parentheses. Computation time is reported for
a computer with 1.4 GHz processor and 4 GB RAM, running MATLAB R2015 64-bit
version. Falsification: Boolean variable indicating whether the algorithm could falsify
the property.

requested current from the stack and ambient temperature. The outputs are
desired air flow rate and the measured air flow rate through the FC stack. The
goal is for the stack air flow rate to maintain accurate regulation when current
request “disturbances” are presented to the system. System performance (called
responsiveness) crucially depends on accurate and timely regulation of the air
flow to the commanded reference. The corresponding specification for the system
can be described informally as follows: when there is a step input of current
request, there is a rise-time requirement on the output air flow that should be
satisfied. Details about the system and the specifications are proprietary and so
are suppressed here.

We analyze a Simulink model of the FC system, which contains represen-
tations of the FC system along with its controller. The model is complex, con-
taining several thousands of Simulink blocks; simulations over the selected time
horizon are expensive to perform, each taking approximately 1 to 2 min. The
MATLAB implementation of the hyperplane classification algorithm with local
search is applied to the model, and the results are compared to the same algo-
rithms used in Sects. 5.1 and 5.2.
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For our method, we performed the tests using two different cell partitions.
Cell partition A is large and corresponds to a small number of grid elements; cell
partition B is smaller (each dimension of the search space is 1/5 the size of the
grid elements in partition A). Thus, partition B corresponds to a significantly
larger number of grid elements.

Table 2 provides the results. As can be seen in the table, using cell partition
A with our method performs much better than with partition B. This can be
attributed to the fact that, for partition A, the classification phase of the search
spends less time in regions close to regions that have already been explored, as
compared to partition B. This demonstrates that the selected cell partition size
has a significant impact on the performance of our technique.

Table 2. Results for fuel cell example.

Solver Seed Computation time (sec.) Falsification

Hyperplane classification +
CMA-ES-Breach (cell
partition: A)†

1 406 �
2 1383 �
3 T.O.

4 794 �
Hyperplane classification +
CMA-ES-Breach (cell
partition: B)†

1 409 �
2 T.O.

3 T.O.

4 T.O.

CMA-ES Breach† 1 314 �
2 1418

3 T.O.

4 1316 �
Uniform random† sampling 1 396 �

2 786 �
3 2241 �
4 T.O.

S-TaLiRo (Simulated Annealing)‡

sampling
1 310 �
2 T.O.

3 671 �
4 T.O.

Global Nelder-Mead-Breach† 1501 �
T.O.: Exceeded time out limit of 2700 s.
†: Times reported are from machines running Dell Precision, with a Xeon processor
(2.13 GHz), with 24GB of RAM, running a 64 bit version of Windows 7 Ultimate,
SP1.
‡: Times reported are from machines running Dell Precision, with a Xeon processor
(2.3 GHz), with 64 GB of RAM, running a 64 bit version of Windows 7 Ultimate, SP1.
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Also, the table shows that the CMA-ES fails to find falsifying behaviors in 2
of the 4 cases, which demonstrates better performance than our technique using
partition B but poorer performance than our technique using partition A. The
uniform random sampling approach is able to find falsifying traces in all but
one case, and the computation times for the successful cases are comparable to
our technique using partition A, though we note that the computation times for
our technique are lower than the uniform random method, for the cases where
falsifying traces are found. The S-TaLiRo approach fails to find falsifying traces
in 2 of the 4 cases, which is less than the number of times our technique is
successful, using partition A. The Nelder-Mead algorithm is able to identify a
falsifying trace in about 25 min, which is longer than the 3 successful cases of
our technique, using partition A.

The above results show mixed results for our technique for this example,
as compared to the other falsification approaches. This could be due to any of
several factors. We observe that for this example, comparing against the falsifi-
cation techniques that we selected, only a relatively small number of simulations
are required to find falsifying traces, when they are found at all. This may sug-
gest that either the model is not robust, in the sense that there may be many
disconnected regions in the search space that correspond to falsifying behaviors,
or that the robustness function is rather monotone or simple. It may be that
for systems with these qualities, the benefits provided by the hyperplane clas-
sification approach are outweighed (or at least offset) by the overhead that it
requires.

6 Conclusions

We have presented a novel falsification algorithm that maintains a balance
between convergence towards low robustness points and enhancing global cover-
age. We accomplish this by intelligently subdividing the search space and sub-
sequently biasing the density of random sampling in different sub-regions. For
the subdivision, we use hyperplane classifiers akin to support vector machines,
which tries to focus effort on low robustness regions of the search space. We
demonstrated the efficiency of our algorithm by falsifying properties on bench-
mark examples, which other approaches failed to falsify. Also, we demonstrated
that the approach could be applied to industrial systems by describing a suc-
cessful application on an automotive hydrogen fuel cell example. Future work
includes investigating new coverage measures, such as the combinatorial entropy
notion from the domain of physics to measure the degree of randomness in the
distribution of points. In addition, global search and local search can be done
in a multi-resolution manner, that is if local search leads to a promising region,
global search can then be done within the region using a more refined grid.
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problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)
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Abstract. Graphics Processing Units (GPUs) have become widespread
and popular over the past decade. Fully utilizing the parallel compute
and memory resources that GPUs present remains a significant chal-
lenge, however. In this paper, we describe GPUDrano: a scalable static
analysis that detects uncoalesced global memory accesses in CUDA pro-
grams. Uncoalesced global memory accesses arise when a GPU program
accesses DRAM in an ill-structured way, increasing latency and energy
consumption. We formalize the GPUDrano static analysis and compare
it empirically against a dynamic analysis to demonstrate that false pos-
itives are rare for most programs. We implement GPUDrano in LLVM
and show that it can run on GPU programs of over a thousand lines of
code. GPUDrano finds 133 of the 143 uncoalesced static memory accesses
in the popular Rodinia GPU benchmark suite, demonstrating the preci-
sion of our implementation. Fixing these bugs leads to real performance
improvements of up to 25%.

1 Introduction

Graphics Processing Units (GPUs) are well-established as an energy-efficient,
data parallel accelerator for an increasingly important set of workloads including
image processing, machine learning, and scientific simulations. However, extract-
ing optimal performance and energy efficiency from a GPU is a painstaking
process due to the many sharp corners of current GPU programming models.
One particularly sharp corner arises when interacting with the memory hier-
archy. We propose the GPUDrano system, the first scalable static analysis to
identify an important class of memory hierarchy performance bugs for GPU
programs. To show what GPUDrano does, we first explain a bit about the GPU
memory hierarchy and the specific class of performance bugs, known as global
memory coalescing bugs, that GPUDrano targets.

Load and store instructions that reference the GPU’s DRAM (known as global
memory) must obey a certain structure to ensure that memory bandwidth is fully
utilized. Accesses that do not exhibit this structure result in underutilization and
can lead to significant performance problems. When a GPU program executes
a load or store instruction, the memory address(es) referenced are mapped to
aligned 128-byte cache blocks [18, Sect. 5.3.2], which is the physical granularity
c© Springer International Publishing AG 2017
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at which DRAM is accessed. GPUs bundle multiple threads together for single-
instruction multiple-data (SIMD) execution, and we say that a SIMD load/store
is coalesced if its accesses are contained within a single cache block, otherwise the
access is uncoalesced. Uncoalesced accesses are difficult to spot, even for seasoned
GPU developers, and in some cases rewriting can avoid such uncoalescing, as is
the case for many of our benchmarks from an established benchmark suite.

Fig. 1. Examples of coalesced and uncoalesced memory accesses.

Figure 1 shows simple examples of coalesced and uncoalesced memory
accesses. Each thread in the program executes the code shown (we explain the
GPU’s threading model in more detail in Sect. 2), and tid is a numeric thread id.
Memory accesses that involve each thread accessing the same address (Example
1) or consecutive threads accessing consecutive addresses (Example 2) fall within
a single cache line, and so are considered coalesced. Memory accesses that have
consecutive threads accessing non-consecutive addresses, as in Example 3, result
in significant slowdowns: Example 3 will run about 8x slower than the other
examples.

Discovering uncoalesced accesses statically introduces many challenges.
Expressions used for array indexing are often complex, and their coalesced or
uncoalesced nature must be propagated through arithmetic operations, to each
use. The size of the data types involved in a memory access affects coalescing.
The number of threads that actually execute a particular access affects coalesc-
ing as well; e.g., Example 3 in Fig. 1 is coalesced if only a single active thread
reaches this statement. In this paper, we define GPUDrano, a simple but effec-
tive abstraction for detecting uncoalesced accesses that uses intra-procedural
dataflow analysis to identify uncoalesced memory accesses in GPU programs
statically. We target GPU code written for Nvidia’s CUDA programming model.
GPUDrano makes the following contributions:

– To the best of our knowledge, GPUDrano is the first scalable static analysis
for uncoalesced global memory accesses in GPU programs.

– We provide a formal definition of both our analysis and the memory coalescing
bugs we wish to detect.

– GPUDrano leverages well-established program analysis techniques to improve
scalability and is able to analyze thousand-line CUDA programs in seconds,
while incorporating relevant information such as accounting for the set of
active threads to reduce the number of false positives.
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Fig. 2. Kernel snippets from Gaussian Elimination program.

– We demonstrate that GPUDrano works in practice by implementing it in
LLVM and detecting over a hundred real uncoalesced accesses in the well-
established Rodinia benchmark suite. We also validate GPUDrano against a
dynamic analysis to show that GPUDrano has few or no false positives on
most programs.

The remainder of this paper is organized as follows. Section 2 describes the
CUDA programming model and a real memory coalescing bug from our bench-
marks. Section 3 presents our formalization of CUDA programs, their execu-
tions, and uncoalesced accesses. Section 4 describes the GPUDrano static analy-
sis. Section 5 describes the dynamic analysis we use to validate our GPUDrano
implementation. Section 6 discusses our experimental results, and Sect. 7 related
work. Finally, Sect. 8 concludes.

2 Illustrative Example

We use an example GPU program to briefly illustrate the GPU programming
model and the problem of uncoalesced accesses. GPUs follow an SIMT (Single
Instruction Multiple Thread) execution model, where multiple threads execute
the same sequence of instructions, often called a kernel. Figure 2a shows one
such kernel, Fan2, from Gaussian Elimination program in Rodinia benchmark
suite [5]. The comments in the kernel can be ignored for now. The kernel performs
row operations on matrix A (size N × N) and vector B (size N × 1) using the
tth column of a multiplier matrix M (size N × N) and the tth row of A and B.
The kernel is a sequential procedure that takes in a thread id, tid, to distinguish
executions of different threads. The kernel is executed for threads with ids in
range [0, N − t − 2]. Each thread is assigned a distinct row and updates row
(tid + t + 1) of matrix A and vector B. Note that A, B and M reside in global
memory and are shared across threads, while the remaining variables are private
to each thread.
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Fig. 3. The grammar for kernel K.

The GPU executes threads in bundles, or warps, where threads in each warp
consist of consecutive ids and execute instructions in lock-step. The above kernel,
for example, might be executed for warps w0 with ids [0, 31], w1 with ids [32, 63],
and so on . . . When a warp, say w0, accesses A using index xy in A[xy] for some
iteration of y, the elements A[N(t+1)+y], A[N(t+2)+y], . . . , A[N(t+32)+y]
are fetched simultaneously. The elements are at least N locations apart from
each other, and thus, separate transactions are required to access each element,
which takes significant time and energy. This is an uncoalesced access. Access to
M[xt] is similarly uncoalesced. Now, Fig. 2b shows a fixed version of the kernel,
where each thread is mapped to a column of the matrices A and M , instead of a
row. The access to A[xy] by warp w0 results in elements A[Nx + t], A[Nx + t +
1], . . . , A[Nx + t + 31] to be accessed. These are consecutive elements, and thus,
can be accessed in a single transaction. Access to M[xt] is similarly coalesced,
and our experiments show a 25% reduction in run-time for the fixed kernel, when
run for inputs with N = 1024.

3 Formalization of Uncoalesced Accesses

This section describes the GPU programming model and uncoalesced accesses
formally. A GPU program is a tuple 〈T, VL, VG,K〉, where T represents the set
of all threads; VL and VG represent the sets of variables residing in local and
global memories respectively; and K represents the kernel or the sequence of
instructions executed by the threads. The kernel K is defined by the grammar
in Fig. 3, and consists of assignments, conditionals and loops. The set VL further
contains a special read-only variable, tid, initialized with the thread id of the
thread. The variable can appear in the right-hand-side of assignments and helps
distinguish executions of different threads.

We next present a simple operational semantics for GPU programs. We use a
simplified execution model, where all threads in the program execute instructions
in lock-step. While the standard GPU execution model is more flexible, this
assumption simplifies the semantics without affecting the detection of memory
coalescing bugs, and has been used in a previous formalization [4].

Excluded GPU Features. The GPU programming model represents threads
in a two-level hierarchy, where a bunch of threads form a thread-block and the
thread-blocks together form the set of all threads. Further, threads have access
to a block-level memory space, shared memory, used to share data between
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threads within a block. Lastly, threads within a block can synchronize on
a syncthreads() barrier. These features do not directly affect uncoalesced
accesses and have been excluded here for the ease of presentation.

3.1 Semantics

To describe the semantics, we define two entities: the state σ and the active set
of threads π. The state σ maps variables to a type-consistent value ν. It consists
of a copy of local variables per thread and a copy of global variables, and thus,
is a function (VL × T ) ∪ VG → V. We further use ⊥ to represent an undefined
or error state. The active set of threads π is a subset of T and defines a set of
threads for which the execution is active. Now, the semantics for a statement S
are given by the function �S�, where �S�(σ, π) = σ′ represents the execution of
statement S in state σ for threads in set π to generate a new state σ′.

Assignments. We first define the semantics for assignment statements when
executed by a single thread t i.e. �AS�(σ, t) = σ′. Let l ∈ VL and g ∈ VG

represent a local and global variable, respectively. Let v represent a generic
variable. Further, let the variables be either scalars or arrays. An assignment is
of the form [E := e], where E is the expression being updated, and consists of
either a scalar variable v or an array variable indexed by a local v(l); and e is an
expression whose value is assigned to E, and is built using scalar variables, array
variables indexed by locals, constants, and arithmetic and boolean operations on
them. Note that in an assignment at least one of E and e must be a local scalar
variable l. We distinguish two types of assignments: global array read [l′ := g(l)],
where the global array g indexed by l is read into l′, i.e. σ′(l′, t) = σ(g)(σ(l, t))
and σ′(v, t) = σ(v, t) for all v �= l ; and global array write [g(l) := l′], where g
indexed by l is written with value of l′, i.e. σ′(g)(σ(l, t)) = σ(l′, t), σ′(g)(ν) =
σ(g)(ν) for all ν �= σ(l, t), and σ′(v, t) = σ(v, t) for all v �= g.

We now define the semantics when an assignment is executed by a set of
threads π, i.e. �AS�(σ, π) = σ′. When the set π is empty, the state remains
unchanged i.e. �AS�(σ, φ) = σ. When π is non-empty i.e. π = {t} ∪ π′, the
desired update is obtained by first executing AS for thread t , and then the other
threads in π′. Thus, �AS�(σ, π) = �AS�(�AS�(σ, t), π′). Note that, if different
threads write to the same memory location, the execution is not deterministic
and the updated state is set to the undefined state, i.e. �AS�(σ, t) = ⊥.

Sequences. The execution of sequence of statements (S1;S2) is described by
first executing S1, followed by S2 i.e. �S1;S2�(σ, π) = �S2�(�S1�(σ, π), π).

Conditionals. Next consider �if l thenS1 elseS2�(σ, π) = σ′, where 〈test〉 con-
sists of a local boolean variable l. The semantics serializes the execution of state-
ments S1 and S2. Let the set of threads for which the predicate σ(l , t) is true be
π1. The threads in π1 first execute S1 to get the state σ1 i.e. �S1�(σ, π1) = σ1.
Next, the remaining threads execute S2 in state σ1 to get the final updated state
i.e. �S2�(σ1, π \ π1) = σ′. Note that, similar to assignments, if the same location
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is read or written by a thread executing the if branch and another thread exe-
cuting the else branch with one of the accesses being writes, there is a potential
conflict between the two accesses, and the final state σ′ is set to ⊥.

Loops. We next describe the semantics for loops �while ldoS�(σ, π) = σ′. We
first consider semantics for terminating loops. The loop execution terminates
when there are no threads active in the loop, and it is repeated until then.
Formally, if there exist σ1, π1, σ2, π2, . . . , σk, πk, such that σi and πi represent
the state and the active set of threads at the beginning of the ith iteration of
the loop, i.e. σ1 = σ, π1 = {t ∈ π : σ(l, t) = true}, σi+1 = �S�(σi, πi), and
πi+1 = {t ∈ πi : σi+1(l, t) = true}, and the last active set is empty, πk = φ, then
σ′ = σk. If the loop is non-terminating, σ′ is assigned the undefined state ⊥.

Reachable Configurations. We now define the set R of configurations reach-
able during a kernel’s execution. A configuration is a tuple (σ, π, S), where σ
is the current state, π is the current active set of threads, and S is the next
statement to be executed. We give a inductive definition for R. The initial con-
figuration (σ0, T,K) belongs to R, where σ0 is the initial state, T is the set of all
threads and K is the kernel. In the recursive case, suppose (σ, π, S) belongs to R.
When S = S1;S2, the configuration (σ, π, S1) belongs to R, since S1 is the next
statement to be executed. Further, if the state after executing S1, σ′ = �S1�(σ, π),
is not undefined i.e. σ′ �= ⊥, then (σ′, π, S2) also belongs to R. Similarly, when S
is a conditional [if l thenS1 elseS2], both if and else branches are reachable, and
thus, (σ, π1, S1) and (σ, π2, S2) belong to R, where π1 = {t ∈ π : σ(l, t) = true}
and π2 = π \ π1. Lastly, when S is a loop [while ldoS′], the configuration
(σ, π′, S′), where π′ = {t ∈ π : σ(l, t) = true}, is reachable. Further, if the state
after executing S′ is not undefined, the configuration (�S′�(σ, π′), π′, S) is also
reachable.

3.2 Uncoalesced Global Memory Accesses

To define uncoalesced global memory accesses, we first describe how the global
memory is accessed by a GPU. Let the memory bandwidth for global memory
be η bytes i.e. the GPU can access η contiguous bytes from the memory in one
transaction. When a warp of threads with consecutive thread indices W issues a
read or write to the global memory, the addresses accessed by the active threads
are coalesced together into as few transactions as possible. If the number of
transactions is above a threshold τ , there is an uncoalesced access.

We now define uncoalesced accesses formally. Consider the configuration
(σ, π,AS), where AS is a global array read [l′ := g(l)] or a global array write
[g(l) := l′] and g is a global array with each element of size k bytes. Let W be a
warp of threads with consecutive thread indices. Let the addresses accessed by
the warp, Γ(σ, π,AS,W ), be defined as,

Γ(σ, π,AS,W ) =
⋃

t∈W∩π

[
σ(l, t).k, σ(l, t).k + k − 1

]
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Now, each contiguous set of η bytes is accessed in one transaction. Thus, the
number of transactions N(σ, π,AS,W ) required for the access equals the number
of unique elements in the set

{	a/η
 : a ∈ Γ(σ, π,AS,W )
}
. If N(σ, π,AS,W )

is greater than threshold τ for some warp W , the configuration (σ, π,AS) is
an “uncoalesced”configuration. A global array access AS is uncoalesced, if an
uncoalesced configuration involving the access is reachable.

For most current GPUs, the bandwidth η = 128 bytes, and warp size |W | =
32. We use the threshold τ = 1, so that accesses that require more than one
transaction are flagged as uncoalesced. Suppose the index variable l in a global
array access is a linear function of tid, i.e. l ≡ c.tid + c0. The range of addresses
accessed by a completely active warp W is (31|kc| + k − 1) bytes and thus, the
number of transactions N required is at least |kc|/4. If k ≥ 4 bytes and |c| ≥ 1
(with one of the inequalities being strict), N is greater than 1, and hence, the
access is uncoalesced. We refer to such uncoalescing, where the range of addresses
accessed by a warp is large, as range-based uncoalescing.

Alternately, an uncoalesced access can occur due to alignment issues, where
the range of accessed locations is small but mis-aligned with the cache block
boundaries. Suppose k = 4 and c = 1, but c0 = 8. The addresses accessed by a
warp W with tids [0, 31] are [32, 159] and require two transactions, even though
the range of locations is 127 bytes which is less than the bandwidth. We refer to
such accesses as alignment-based uncoalesced accesses.

4 Static Analysis

This section presents a static compile-time analysis to identify uncoalesced
accesses. We use abstract interpretation [8,17] for the analysis, where-in we first
define an abstraction of the state and the active set of threads. The abstrac-
tion captures features of the kernel execution essential to identify uncoalesced
accesses. It tracks values, particularly access indices, as a function of tid, and
for the indices with potentially large linear or non-linear dependence on tid, the
analysis flags the corresponding global array access as uncoalesced. Further, if a
segment of code is executed only by a single thread (which is often the case when
some sequential work needs to be done), a single transaction is required for an
access and it cannot be uncoalesced. Hence, our abstraction also tracks whether
single or multiple threads are active during the execution of a statement.

After defining the abstraction, we associate abstract semantics with the state-
ments in kernels, computable at compile-time, that preserve the abstraction. We
then present our algorithm to execute kernels abstractly and identify global
array accesses which can potentially be uncoalesced. Finally, we describe our
implementation for the analysis.

Example. Before diving into the details of the analysis, let’s consider the exam-
ple in Fig. 2a. Our abstraction tracks local variables as a function of tid. All
variables that are independent of tid are assigned value 0 in the abstraction.
Thus, variables t and N are assigned the value 0 initially (shown in comments).
Further, variables y and ty are constructed from tid-independent variables, and
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hence, assigned 0. Next, all variables that are linear function of tid with coeffi-
cient 1 (i.e. of the form tid+ c), are assigned value 1. The variable x is therefore
assigned 1. Lastly, all variables that are either non-linear function of tid or linear
function with possibly greater than one coefficient are assigned . Variable xt,
for example, is assigned the expression N(tid+t+1)+t, where the coefficient for
tid is N . Since N can be greater than one, xt is assigned . Similarly, variable
xy is assigned . Now, global array accesses where the index variable has value
, are flagged as uncoalesced. Hence, accesses A[xy] and M[xt] are flagged as
uncoalesced. Note that in the fixed kernel in Fig. 2b, none of the index variables
are , and hence, none of the accesses are flagged as uncoalesced.

4.1 Abstraction

We now formally define our abstraction. Let α() be the abstraction function.
The abstraction of state σ̂ only tracks values of local scalar variables. We observe
that indirect indexing through arrays is rare for coalesced accesses, and hence
we consevatively flag all such accesses as uncoalesced. Further, we use a different
abstraction for integer and boolean variables. We assign a single abstract value
to each local variable, that tracks its dependency on tid. For integer variables,
we use the set V̂int = {⊥, 0, 1,−1,} to abstract values. The value ⊥ represents
undefined values, while  represents all values. The remaining values are defined
here. Let l be a local variable.

α(σ)(l) =

⎧
⎨

⎩

0, exists c0 s.t. for all t ∈ T, σ(l, t) = c0

1, exists c0 s.t. for all t ∈ T, σ(l, t) = tid(t) + c0

−1, exists c0 s.t. for all t ∈ T, σ(l, t) = −tid(t) + c0

i.e. the abstract value 0 represents values constant across threads; 1 represents
values that are a linear function of tid with coefficient 1; and, −1 represents values
that are a linear function with coefficent −1. This abstraction is necessary to
track dependency of access indices on tid.

We use the set V̂bool = {⊥,T,T−,F,F−,TF,TT−,FF−,} to abstract boolean
variables. Again ⊥ and  represent the undefined value and all values, respec-
tively. The remaining values are defined here.

α(σ)(l) ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T, for all t ∈ T, σ(l, t) = true
T−, exists t ∈ T s.t. σ(l, t) = false

and for all t′ ∈ T \ t, σ(l, t′) = true
F, for all t ∈ T, σ(l, t) = false
F−, exists t ∈ T s.t. σ(l, t) = true

and for all t′ ∈ T \ t, σ(l, t′) = false

i.e. the abstract value T represents values true for all threads; T− represents
values true for all but one thread; F represents values false for all threads;
F− represents values false for all but one thread. Further, we construct three
additional boolean values: TF = {T,F} representing values true or false for all
threads, TT− = {T,T−} representing values false for at most one thread, and
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FF− = {F,F−} representing values true for at most one thread. We only use
these compound values in our analysis, along with ⊥ and . We use them to
abstract branch predicates in kernels. This completes the abstraction for state.
Note that σ̂ is function VL → V̂int ∪ V̂bool.

Now, the active set of threads π can be seen as a predicate on the set of
threads T . We observe that if at most one thread is active for a global array
access, a single transaction is required to complete the access and hence, it is
always coalesced. Thus, in our abstraction for π, we only track if it consists of
at most one thread or an arbitrary number of threads. These can be abstracted
by boolean values FF− and  respectively, and thus, π̂ ∈ {FF−,}.

Lastly, our abstraction for boolean and integer variables induces a natural
complete lattice on sets V̂int and V̂bool. These lattices can be easily extended to
complete lattices for the abstract states and active sets of threads.

Justification. We designed our abstraction by studying the benchmark pro-
grams in Rodinia. We have already motivated the abstract values 0, 1 and 
for integer variables in the example above. We found coefficient −1 for tid in a
few array indices, which led to the abstract value −1. There were also instances
where values 1 and −1 were added together to generate 0 or tid-independent
values. Next, the values FF− and TT− were motivated by the need to capture
predicates in conditionals where one of the branches consisted of at most one
active thread. Lastly, the value TF was necessary to distinguish conditionals with
tid-dependent and tid-independent predicates.

4.2 Abstract Semantics

We briefly describe the abstract semantics �̂S�(σ̂, π̂) = σ̂′ for a statement S,
which is the execution of S in an abstract state σ̂ for abstract active set π̂ to
generate the abstract state σ̂′. We first consider abstract computation of values
of local expressions e (involving only local scalar variables) in state σ̂, �̂e�(σ̂).
Local scalar variable l evaluates to its value in σ̂, σ̂(l). Constants evaluate to the
abstract value 0 (TF if boolean). Index tid evaluates to 1. Arithmetic operations
on abstract values are defined just as regular arithmetic, except all values that
do not have linear dependency on tid with coefficient 0, 1 or −1, are assigned
. For example, [1 + 1] =  since the resultant value has a dependency of 2 on
tid. Boolean values are constructed from comparison between arithmetic values.
Equalites [ν̂1 = ν̂2] are assigned a boolean value FF−, and inequalities [ν̂1 �= ν̂2]
a boolean value TT−, where one of ν1 and ν2 equals 1 or −1, and the other
0. Note that this is consistent with our abstraction. The equalities are of the
form [tid = c], for some constant c, and are true for at most one thread. The
inequalities are of the form [tid �= c] and are true for all except one thread.
For boolean operations, we observe that ¬TT− = FF−, [FF− ∧ b] = FF−, and
[TT− ∨ b] = TT−, for all b ∈ {TF,FF−,TT−,}. Other comparison and boolean
operations are defined similarly.

We next define the abstract semantics for different types of assignments AS

in a state σ̂, ̂�AS�(σ̂) = σ̂′. For local assignments [l := e] where e is a local
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Fig. 4. Abstract semantics for compound statements.

expression, l is updated with value of expression e, �̂e�(σ̂). For reads [l := g],
where g is a global scalar variable, all threads receive the same value, and the
new value is tid-independent. Hence, l is updated to 0 (TF if boolean). For array
reads [l := v(l′)], where σ̂(l′) = 0, all threads access the same element in the
array v, and recieve the same value. Thus, the updated value is again 0 (TF if
boolean). Lastly for array reads where σ̂(l′) �= 0, the read could return values
that are arbitrary function of tid (since we do not track the values for arrays),
and hence, the updated value is .

We now define abstract semantics for the compound statements. We use
rules in Fig. 4 to describe them formally. Note that, our abstract semantics for
assignments are oblivious to the set of threads π̂, and thus, the [Assign] rule
extends these semantics to an arbitrary set of threads. The [Seq] rule similarly
extends the semantics to sequence of statements. The [ITE] rule describes the
semantics for conditionals. The sets π̂1 and π̂2 represent the new active set of
threads for the execution of S1 and S2. Note that π̂1 = [π̂ ∧ σ̂(l)], and gets a
value FF−, only if either π̂ or σ̂(l) is FF−. The new set of threads π1 has at most
one thread, only if either the incoming set π or the predicate σ(l, t) is true for
at most one thread. Hence, π̂1 correctly abstracts the new set of the threads for
which S1 is executed. A similar argument follows for π̂2. Now, the concrete value
for predicate σ(l, t) is not known at compile time, and a thread could execute
either of S1 or S2. Hence, our abstract semantics executes both, and merges the
two resulting states to get the final state, i.e. Φ

σ̂(l)
{S1,S2}(σ̂1, σ̂2).

The merge operation is a non-trivial operation and depends on the branch
predicate σ̂(l). If σ̂(l) is TF or tid-independent, all threads execute either the if
branch or the else branch, and final value of a variable l is one of the values
σ̂1(l) and σ̂2(l). In the merged state, our semantics assigns it a merged value
σ̂1(l) � σ̂2(l) or the join of the two values, a value that subsumes both these
values. When σ̂(l) is tid-dependent, however, this merged value does not suffice.
Consider, for example, y := (tid < N)? 10 : 20. While on both the branches, y
is assigned a constant (abstract value 0), the final value is a non-linear function
of tid (abstract value ), even though the join of the two values is 0. Hence, in
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such cases, when the predicate is tid-dependent and the variable l is assigned a
value in S1 or S2, the merged value is set to .

The [While] rule describes the abstract semantics for loops. Note that similar
to conditionals, it is not known whether a thread executes S or not. Thus, the
rule first transforms the original state σ̂ into the merge of σ̂ and the execution of
S on σ̂ and repeats this operation, until the fixed point is reached and the state
does not change on repeating the operation. Note that our abstract semantics for
different statements are monotonic. The merge operation Φ is also monotonic.
The abstract state can have only finite configurations, since each variable gets a
finite abstract value. Thus, the fixpoint computation always terminates.

4.3 Detecting Uncoalesced Accesses

We first define the set of abstract configurations that are reachable during the
abstract execution of the kernel. An abstract configuration is the tuple (σ̂, π̂, S).
The initial abstract configuration is (α(σ0),,K), and is reachable. The other
abstract reachable configurations can be defined by a similar recursive definition
as that for reachable configurations.

Now, an abstract configuration (σ̂, π̂, AS) is “uncoalesced”, where AS is a
global array read [l′ := g(l)] or global array write [g(l) := l′] and g is a global
array with elements of size k, if both these conditions hold:

– π̂ =  i.e. the access is potentially executed by more than one thread.
– (σ̂(l) = ) ∨ (σ̂(l) ∈ {1,−1} ∧ k > 4) i.e. l is a large linear or non-linear

function of tid, or it is a linear function of tid with unit coefficient and the
size of elements of array g is greater than 4 bytes.

The analysis computes the set of abstract reachable configurations by exe-
cuting the kernel using the abstract semantics, starting from the abstract initial
configuration. It reports a global array access AS as uncoalesced, if an abstract
uncoalesced configuration involving AS is reached during the abstract execution
of the kernel.

Correctness. We show that for all global array accesses AS, if a range-based
uncoalesced configuration involving a global array access AS is reachable, the
analysis identifies it as uncoalesced. We first note that our abstract semantics
preserve the abstraction. Hence, for any reachable configuration (σ, π,AS), there
exists an abstract reachable configuration (σ̂, π̂, AS) that is an overapproxima-
tion of its abstraction i.e. α(σ) � σ̂ and α(π) � π̂. Now, for a range-based
uncoalesced configuration to occur, the access needs to be executed by more
than one thread, and thus α(π) = . Further, the access index l either has non-
linear dependence on tid, in which case α(σ)(l) = , or as noted in Sect. 3.2,
the index has linear dependence with one of k > 4 or |c| > 1, which again
leads to an abstract uncoalesced configuration. Hence, GPUDrano identifies all
range-based uncoalesced configurations as uncoalesced. There are no guarantees
for alignment-based uncoalescing, however. This gives some evidence for the
correctness of the analysis.
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4.4 Implementation

We have implemented the analysis in the gpucc CUDA compiler [23], an open-
source compiler based on LLVM. We implement the abstract semantics defined
above. We work with an unstructured control flow graph representation of the
kernel, where conditionals and loops are not exposed as separate units. So, we
simplify the semantics at the cost of being more imprecise. We implement the
abstract computation of local expressions and the abstract semantics for assign-
ments exactly. We however differ in our implementation for the merge operation.
Consider a conditional statement [if l thenS1 elseS2]. Let the states after exe-
cuting S1 and S2 be σ̂1 and σ̂2. The merge of states Φ

σ̂(l)
{S1,S2}(σ̂1, σ̂2) after the

conditional is contigent on tid-dependence of the value of l at the beginning of
the conditional. This information requires path-sensitivity and is not available in
the control flow graph at the merge point. Therefore, we conservatively assume l
to be tid-dependent. We use the SSA representation of control flow graph, where
variables assigned different values along paths S1 and S2 are merged in special
phi instructions after the conditional. We conservatively set the merged value to
 for such variables. The values of remaining variables remain unchanged. This
completes the implementation of merge operation. We define the set of active
threads π̂′ after the conditional as π̂1 � π̂2, or the join of incoming active sets
from S1 and S2. The new active set π̂′ equals the active set π̂ before the con-
ditional. If π̂ = , it must be split into π̂1 and π̂2 such that at least one of the
values is  and hence, π̂′ = . Similarly, when π̂ = FF−, both π̂1 and π̂2 equal
FF−, and hence, π̂′ = FF−.

Limitations. Our implementation does not do a precise analysis of function
calls and pointers, which are both supported by CUDA. In the implementation,
we assume that call-context of a kernel is always empty, and function calls inside
a kernel can have arbitrary side-effects and return values. We support pointer
dereferencing by tracking two abstract values for each pointer variable, one for
the address stored in the pointer and the other for the value at the address.
We do not implement any alias analyses, since we observe that array indices
rarely have aliases. Our evaluation demonstrates that, despite these limitations,
our static analysis is able to identify a large number of uncoalesced accesses in
practice.

5 Dynamic Analysis

To gauge the accuracy of our GPUDrano static analysis, we have implemented a
dynamic analysis for uncoalesced accesses. Being a dynamic analysis, it has full
visibility into the memory addresses being accessed by each thread, as well as
the set of active threads. Thus, the dynamic analysis can perfectly distinguish
coalesced from uncoalesced accesses (for a given input). We use this to determine
(1) whether the static analysis has missed any uncoalesced accesses and (2) how
many of the statically-identified uncoalesced accesses are false positives.
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The dynamic analysis is implemented as a pass in the gpucc CUDA com-
piler [23], which is based on LLVM. By operating on the LLVM intermediate
representation (a type of high-level typed assembly), we can readily identify the
instructions that access memory. So for every load and store in the program we
insert instrumentation to perform the algorithm described below. A single IR
instruction may be called multiple times in a program due to loops or recursion,
so every store and load instruction is assigned a unique identifier (analogous to
a program counter).

For every global memory access at runtime, we collect the address being
accessed by each thread. Within each warp, the active thread with the lowest id
is selected as the “computing thread” and it performs the bulk of the analysis.
All active threads pass their addresses to the computing thread. The computing
thread places all addresses into an array. This array will be at most of length n,
where n is the warp size (if there are inactive threads, the size may be smaller).
Next the computing thread determines all bytes that will be accessed by the
warp, taking the size of the memory access into account. Note that, due to the
SIMT programming model, the access size is the same for all threads in the warp
since all threads execute the same instruction. Each byte accessed is divided by
the size of the cache line using machine integer division. (for current generation
Nvidia GPUs this number is 128 [18, Sect. 5.3.2]). Conceptually this assigns each
address to a “bin” representing its corresponding cache line. For example, for
a cache line of 128 bytes, [0, 127] �→ 0, [128, 255] �→ 1, etc. Finally, we count
the number of unique bins, which is the total number of cache lines required.
The computing thread prints the number of required cache lines, along with the
assigned program counter, for post-processing.

A second, off-line step aggregates the information from each dynamic instance
of an instruction by averaging. For example, if a load l executes twice, first
touching 1 cache line and then touching 2 cache lines, the average for l will be
1.5 cache lines. If the average is 1.0 then l is coalesced, otherwise if the average
is > 1.0 l is uncoalesced. The specific value of the average is sometimes useful,
to distinguish accesses that are mildly uncoalesced (with averages just over 1.0),
as we explore more in Sect. 6.

6 Evaluation

This section describes the evaluation of GPUDrano on the Rodinia benchmarks
(version 3.1) [5]. Rodinia consists of GPU programs from various scientific
domains. We run our static and dynamic analyses to identify existing uncoa-
lesced accesses in these programs. We have implemented our analyses in LLVM
version 3.9.0, and compile with --cuda-gpu-arch=sm 30. We use CUDA SDK
version 7.5. We run our experiments on an Amazon EC2 instance with Amazon
Linux 2016.03 (OS), an 8-core Intel Xeon E5-2670 CPU running at 2.60 GHz,
and an Nvidia GRID K520 GPU (Kepler architecture).

Table 1 shows results of our experiments. It shows the benchmark name,
the lines of GPU source code analyzed, the manually-validated real uncoalesced
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Table 1. Results of GPUDrano’s static analysis (SA) and dynamic analysis (DA) on
Rodinia benchmark programs. “-” indicates the DA hit the 2-h timeout.

Benchmark LOC Real-bugs SA-bugs (real) SA-runtime (s) DA-bugs DA-runtime (s)

backprop 110 7 0 (0) 0.14 7 5.23

bfs 35 7 7 (7) 0.07 0–7 3.89

b+tree 115 19 19 (19) 0.35 7 16.71

CFD 550 0 22 (0) 12.41 - -

dwt2D 1380 0 16 (0) 5.99 n/a 3.72

gaussian 30 6 6 (6) 0.07 5–6 6.82

heartwall 1310 8 25 (8) 39.87 - -

hotspot 115 3 2 (0) 0.75 3 0.89

hotspot3D 50 2 12 (2) 0.21 2 327.00

huffmann 395 21 26 (21) 0.68 3 2.42

lavaMD 180 9 9 (9) 0.73 5 511.60

lud 160 3 0 (0) 0.34 3 0.83

myocyte 3240 19 19 (19) 1,813.72 0 134.13

nn 10 4 4 (4) 0.06 2 0.13

nw 170 7 2 (2) 0.41 6 4.17

particle filter 70 4 3 (2) 0.58 4 11.62

pathfinder 80 3 0 (0) 0.22 3 4.25

srad v1 275 2 14 (2) 0.33 2 185.00

srad v2 250 9 0 (0) 1.38 9 53.94

streamcluster 45 10 10 (10) 0.11 - -

143 180 (111) 69

accesses, and the number of uncoalesced accesses found and running time for each
analysis. The Rodinia suite consists of 22 programs. We exclude 4 (hybridsort,
kmeans, leukocyte, mummergpu) as they could not be compiled due to lack of sup-
port for texture functions in LLVM. We synonymously use “bugs” for uncoalesced
accesses, though sometimes they are fundamental to the program and cannot be
avoided. We next address different questions related to the evaluation.

Do Uncoalesced Accesses Occur in Real Programs? We found 143 actual
bugs in Rodinia benchmarks, with bugs in almost every program (Column “Real
bugs” in Table 1). A few of the bugs involved random or irregular access to global
arrays (bfs, particle filter). Such accesses are dynamic and data-dependent, and
difficult to fix. Next, we found bugs where consecutive threads access rows of
global matrices, instead of columns (gaussian). Such bugs could be fixed by
assigning consecutive threads to consecutive columns or changing the layout of
matrices, but this is possible only when consecutive columns can be accessed in
parallel. Another common bug occurred when data was allocated as an array of
structures instead of a structure of arrays (nn, streamcluster). A closely related
bug was one where the array was divided into contiguous chunks and each chunk
was assigned to a thread, instead of allocating elements in a round-robin fash-
ion (myocyte, streamcluster). There were some bugs which involved reduction
operations (for example, sum) on arrays (heartwall, huffmann). These bugs do
not have a standard fix, and some of the above techniques could be applicable.
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A few bugs were caused by alignment issues where accesses by a warp did not
align with cache-block boundaries, and hence, got spilled over to multiple blocks.
These were caused, first, when the input matrix dimensions were not a multi-
ple of the warp size which led consecutive rows to be mis-aligned (backprop,
hotspot3D), or when the whole array was misaligned due to incorrect padding
(b+tree). These could be fixed by proper padding.

Which Real Bugs Does Static Analysis Miss? While the static analysis
catches a significant number of bugs (111 out of 143), it does miss some in
practice. We found two primary reasons for this. 22 of the missed bugs depend
on the second dimension of the tid vector, while we only considered the small-
est dimension in our analysis. Uncoalesced accesses typically do not depend on
higher dimensions unless the block dimensions are small or not a multiple of the
warp size. We modified our analysis to track the second dimension and observed
that all these bugs were caught by the static analysis, at the cost of 20 new false
positives. Eight of the remaining missed bugs were alignment bugs which were
caused by an unaligned offset added to tid. The actual offsets are challenging
to track via static analysis. Two missed bugs (particle filter) were due to an
implementation issue with conditionals which we will address in the future.

What False Positives Does Static Analysis Report? For most programs,
GPUDrano reports few or no false positives. The primary exceptions are CFD,
dwt2D and heartwall, which account for the bulk of our false positives. A com-
mon case occurred when tid was divided by a constant, and multiplied back by
the same constant to generate the access index (heartwall, huffman, srad v1).
Such an index should not lead to uncoalesced accesses. The static analysis, how-
ever, cannot assert that the two constants are equal, since we do not track exact
values, and hence, sets the access index to , and reports any accesses involving
the index as uncoalesced. Another type of false positive occurred when access
indices were non-linear function of tid, but consecutive indices differed by at
most one, and led to coalesced accesses. Such indices were often either gener-
ated by indirect indexing (CFD, srad v1) or by assigning values in conditionals
(heartwall, hotspot, hotspot3D). In both cases, our static analysis conservatively
assumed them to be uncoalesced. Lastly, a few false positives happened because
the access index was computed via a function call ( mul24) which returned a
coalesced index (huffmann), though we conservatively set the index to .

How Scalable is Static Analysis? As can be noted, the static analysis is quite
fast, and finishes within seconds for most benchmarks. The largest benchmark,
myocyte, is 3240 lines of GPU code, with the largest kernel containing 930 lines.
The kernels in myocyte consist of many nested loops, and it appears the static
analysis takes significant time computing fixed points for these loops.

How Does Static Analysis Compare with Dynamic Analysis? The
dynamic analysis misses nearly half the bugs in our benchmarks. We found
several benchmarks where different inputs varied the number of bugs reported
(bfs, gaussian, lud). Similarly, the analysis finds bugs along a single execution
path, so all bugs in unexecuted branches or uncalled kernels were not found.
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Due to compiler optimizations it can be difficult to map the results of dynamic
analysis back to source code. In dwt2D, we were unable to do so due to multiple
uses of C++ templates. Moreover, the dynamic analysis does not scale to long-
running programs, as it incurs orders of magnitude of slowdown. While none of
our benchmarks execute for more than 5 s natively, several did not finish with
the dynamic analysis within our 2-h limit (CFD, heartwall, streamcluster).

7 Related Work

While the performance problems that uncoalesced accesses cause are well under-
stood [18, Sect. 5.3.2], there are few static analysis tools for identifying them.

Several compilers for improving GPU performance [3,7,11,20,21,24] incor-
porate some static analysis for uncoalesced global memory accesses, but these
analyses are described informally and not evaluated for precision. Some of these
systems also exhibit additional restrictions, such as CuMAPz’s [11] reliance on
runtime traces, CUDA-lite’s [21] use of programmer annotations, or [3,20] which
are applicable only to programs with affine access patterns. Some systems for
optimizing GPU memory performance, like Dymaxion [6], eschew static analysis
for programmer input instead. GPUDrano’s precision could likely help improve
the performance of the code generated by these prior systems and reduce pro-
grammer effort. [1] describes in a short paper the preliminary implementation of
CUPL, a static analysis for uncoalesced global memory accesses. While CUPL
shares similar goals as GPUDrano, no formalization or detailed experimental
results are described.

GKLEE [15] is a symbolic execution engine for CUDA programs. It can
detect uncoalesced accesses to global memory (along with data races), but due
to the limitations of its underlying SMT solver it cannot scale to larger kernels
or large numbers of threads. The PUG verifier for GPU kernels [14] has also been
extended to detect uncoalesced memory accesses [10], but PUG is less scalable
than GKLEE. In contrast, GPUDrano’s static analysis can abstract away the
number of threads actually used by a kernel.

[9] uses dynamic analysis to identify uncoalesced global memory accesses, and
then uses this information to drive code transformations that produce coalesced
accesses. GPUDrano’s static analysis is complementary, and would eliminate
[9]’s need to be able to run the program on representative inputs.

There are many programming models that can generate code for GPUs,
including proposals to translate legacy OpenMP code [12,13] or C code [2,3,22],
and new programming models such as OpenACC [19] and C++ AMP [16]. An
analysis such as GPUDrano’s could help improve performance in such systems,
by identifying memory coalescing bottlenecks in the generated GPU code.

8 Conclusion

This paper presents GPUDrano, a scalable static analysis for uncoalesced global
memory accesses in GPU programs. We formalize our analysis, and implement
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GPUDrano in LLVM. We apply GPUDrano to a range of GPU kernels from the
Rodinia benchmark suite. We have evaluated GPUDrano’s accuracy by compar-
ing it to a dynamic analysis that is fully precise for a given input, and found
that the GPUDrano implementation is accurate in practice and reports few
false positives for most programs. Fixing these issues can lead to performance
improvements of up to 25% for the gaussian benchmark.
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Abstract. Dynamic Partial Order Reduction (DPOR) is a powerful
technique used in verification and testing to reduce the number of equiv-
alent executions explored. Two executions are equivalent if they can be
obtained from each other by swapping adjacent, non-conflicting (inde-
pendent) execution steps. Existing DPOR algorithms rely on a notion
of independence that is context-insensitive, i.e., the execution steps
must be independent in all contexts. In practice, independence is often
proved by just checking no execution step writes on a shared variable.
We present context-sensitive DPOR, an extension of DPOR that uses
context-sensitive independence, where two steps might be independent
only in the particular context explored. We show theoretically and exper-
imentally how context-sensitive DPOR can achieve exponential gains.

1 Introduction

A fundamental challenge in the verification and testing of concurrent programs
arises from the combinatorial explosion that occurs when exploring the different
ways in which processes/threads can interleave. Partial-order reduction (POR)
[4,6,7] is a general theory that provides full coverage of all possible executions of
concurrent programs by identifying equivalence classes of redundant executions,
and only exploring one representative of each class. Two executions are said to
be equivalent if one can be obtained from the other by swapping adjacent, non-
conflicting (i.e., independent) execution steps. POR-based approaches avoid the
exploration of such equivalent executions thanks to the use of two complementary
sets: persistent sets and sleep sets. Intuitively, the former contains the execution
steps that must be explored (as they might lead to non-equivalent executions),
while the latter contain the steps that should no longer be explored (as they lead
to executions equivalent to others already explored).

In the state-of-the-art POR algorithm [5], called DPOR (Dynamic POR),
persistent sets are computed dynamically by only adding a step to the persis-
tent set (called backtracking set in DPOR terminology) if the step is proved to
be dependent on another previously explored step. Refining dependencies thus
c© Springer International Publishing AG 2017
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improves POR verification methods [8,15]. While very effective, DPOR is not
optimal, as it sometimes explores equivalent executions. Optimality was later
achieved by optimal -DPOR [1] thanks to the analysis of past explorations to
build source sets and wakeup trees. Intuitively, the former is a relaxation of per-
sistent sets that avoids exploring steps that will later be blocked by the sleep set.
The latter stores fragments of executions that are known not to end up being
blocked by the sleep set. Source sets and wakeup trees, respectively, replace per-
sistent sets and enhance the performance of sleep sets. Together, they ensure the
exploration of all equivalence classes with the minimum number of executions,
regardless of scheduling decisions.

Our work stems from the observation that source sets, and their predeces-
sors persistent sets, are computed dynamically based on a notion of context-
insensitive independence, which requires two steps be independent in all possi-
ble contexts. While optimal-DPOR has indeed been proved to be optimal, it is
so only under the assumption of context-insensitive independence. In existing
implementations of both DPOR and optimal-DPOR [1,5], context-insensitive
independence is over-approximated by requiring global variables accessed by
one execution step not to be modified by the other. The contribution of this
paper is to extend the DPOR framework to take advantage of context-sensitive
independence, that is, of two steps being independent for a given state encoun-
tered during the execution, rather than for all possible states. For example, steps
{if (cond) f = 0} and {f+ = 3} are independent for states where cond fails, but
not for states where it holds.

Context-sensitiveness is a general, well-known concept that has been inten-
sively studied and applied in both static analyses [13] and dynamic analyses [11].
The challenge is in incorporating this known concept into a sophisticated frame-
work like DPOR. We do so by adding to the computation of the standard sleep
sets any sequence of steps that are independent in the considered context, so
that the exploration of such sequence is later avoided. Our extension is orthogo-
nal to the previous improvements of source sets and wakeup trees, and can thus
be used in conjunction with them.

Importantly, our method also provides an effective technique to improve the
traditional over-approximation of context-insensitive independence. Consider,
for example, the simple case where two steps add a certain amount to the value
of a variable, or the more complex case of an agent-based implementation of
merge sort, where each agent splits their input into two parts, gives them to
child agents to sort, and then merges the result. Both cases will give the same
result regardless of the execution order, and at least the merge case will be
difficult to prove. Our context-sensitive approach can easily determine in both
cases that the orders lead to the same result (for each particular input being
tested) and, hence, only consider one execution order of the processes. Without
this, the algorithm will need to consider an exponential number of executions for
the merge case, even though they are all equivalent. Our experimental results
confirm our method achieves exponential speedups.



528 E. Albert et al.

2 Preliminaries

Following [1], we assume our concurrent system is composed of a finite set of
processes (or threads) and has a unique initial state s0. Each process is a sequence
of atomic execution steps that are globally relevant, that is, might depend on
and affect the global state of the system. Each such step represents the combined
effect of a global statement and a finite sequence of local statements, ending just
before the next global statement in the process. The set of processes enabled
by state s (that is, that can perform an execution step from s) is denoted by
enabled(s).

An execution sequence E is a finite sequence of execution steps performed
from the initial state s0. For example, q.r.r is an execution sequence that executes
the first step of process q, followed by two steps of process r. The state reached
by execution sequence E is unique and denoted by s[E]. Executions sequences
E and E′ are equivalent if they reach the same state: s[E] = s[E′]. An execution
sequence is complete if it exhausts all processes (that is, there is no possible
further step).

An event (p, i) denotes the i-th occurrence of process p in an execution
sequence, and proc(e) denotes the process of event e. The set of events in exe-
cution sequence E is denoted by dom(E), and contains event (p, i) iff p appears
at least i times in E. We use e <E e′ to denote that event e occurs before
event e′ in E, and E ≤ E′ to denote that sequence E is a prefix of sequence
E′. Note that <E establishes a total order between events in E. Let dom[E](w)
denote the set of events in execution sequence E.w that are in sequence w, that
is, dom(E.w)\dom(E). If w is a single process p, we use next[E](p) to denote
dom[E](p).

The core concept in POR is that of the happens-before partial order among
the events in execution sequence E, denoted by →E . This relation defines a sub-
set of the <E total order, such that any two sequences with the same happens-
before order are equivalent. POR algorithms use this relation to reduce the
number of equivalent execution sequences explored, with Optimal-DPOR ensur-
ing that only one execution sequence in each equivalence class is explored. The
happens-before partial order has traditionally been defined in terms of a depen-
dency relation between the execution steps associated to those events [7]. Intu-
itively, two steps p and q are dependent if there is at least one execution sequence
E for which they do not commute, either because one enables the other or
because s[E.p.q] �= s[E.q.p]. Instead, the Optimal-DPOR algorithm is based on a
very general happens-before relation that is not defined in terms of a dependency
relation [1]. It simply requires it to satisfy the following seven properties for all
execution sequences E:

1. →E is a partial order on dom(E), which is included in <E .
2. The execution steps of each process are totally ordered, i.e. (p, i) →E (p, i+1)

whenever (p, i + 1) ∈ dom(E), as one enables the other.
3. If E′ is a prefix of E, then →E and →E′ are the same on dom(E′). That is,

adding more events cannot change the order among previous events.
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4. Any linearization E′ of →E on dom(E) is an execution sequence with exactly
the same happens-before relation →E′ as →E . Thus, →E induces a set of
equivalent execution sequences, all with the same happens-before relation.
We use E � E′ to denote that E and E′ are linearizations of the same
happens-before relation, and [E]� to denote the equivalence class of E.

5. If E � E′, then s[E] = s[E′], thus ensuring equivalent sequences commute.
6. For any sequences E, E′ and w, such that E.w is an execution sequence, we

have E � E′ iff E.w � E′.w.
7. If p, q, and r are different processes, then if next[E](p) →E.p.r next[E.p](r)

and next[E](p) �E.p.q next[E.p](q), then next[E](p) →E.p.q.r next[E.p.q](r).
This ensures that if the next step of p happens-before the next step of r, this
will still be the case if we add in the middle a step independent of p.

The above relation is used for defining the concept of a race between two
events. Event e is said to be in race with event e′ in execution E, if the events
have different processes, e happens-before e′ in E (e →E e′), and the two events
are “concurrent”, i.e. there exists an equivalent execution sequence E′ � E where
the two events are adjacent. We write e �E e′ to denote that e is in race with e′

and that the race can be reversed (i.e., the events can be executed in reversed
order).

3 The Happens-Before Relation is Not Context-Sensitive

One could think the generality of the above happens-before definition allows it
to capture context-sensitive independence and, thus, there is no need to modify
DPOR to achieve context-sensitivity. The following example shows this is not
the case and explains why Optimal-DPOR might explore sequences avoided by
our method. Consider three simple processes defined by:

p: write(x=5) q: write(x=5) r: read(x)

All three pairs of associated execution steps will usually be considered as depen-
dent, which means traditional DPOR methods will process the 6 sequences
resulting for all permutations of {p, q, r}. However, there are only 2 different
resulting states, one where r is executed after q and/or p thus reading 5, and
one where it is executed before the others, thus reading 0. Let us construct
a minimal (i.e., least restrictive) happens-before partial order for all execution
sequences of {p, q, r}. For sequences of length 2, the only properties that need
to be considered are 1, 4 and 5 (all others deal with at least three events in the
execution). A minimal partial order that satisfies these three properties is:

(a) (b) (c) (d) (e) (f)

p

��

p

����

q

��

q

�� ��

r

�� ��

r

�� ��
q r p r p q
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where the dotted arrows indicate a happens-before order between the two process
steps, and the continuous arrows indicate the <E total order within the execution
sequence. That is, the following relations hold: (a) p �→p.q q, (b) p →p.r r,
(c) q �→q.p p, (d) q →q.r r, (e) r →r.p p, (f) r →r.q q. Note that (b), (d), (e)
and (f) are needed as, otherwise, properties (4) and (5) of the happens-before
definition above would require (b) and (e) to be equivalent, as well as (d) and
(f). As given, only (a) and (c) are equivalent.

For sequences of length 3, all properties need to be considered, although
our example makes property 2 directly satisfied, as each process has only one
execution step. Property (6) requires p →p.q.r r to hold, due to (a) and (b).
Similarly, q →q.p.r r must hold due to (c) and (d). However, these cannot be
the only happens-before relations for sequences p.q.r and q.p.r, as this would
contradict property (4): q.p.r is a linearization of the happens-before for p.q.r
and, hence, must have identical happens-before relations. Hence, q →p.q.r r
and p →q.p.r r must also hold. Consider now sequence p.r.q. By property (3),
p →p.r.q r must hold. Again, this cannot be the only relation for the sequence
as, by (4), it would also be the only relation for sequence p.q.r. Hence, r →p.r.q q
must also hold. Similarly, q →q.r.p r and r →q.r.p p must also hold. A similar
reasoning can be done for sequences r.p.q and r.q.p, obtaining the following
minimal happens-before relation for sequences of length 3:

(g) (h) (i) (j) (k) (l)
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Since g � i and k � l, Optimal-DPOR must explore at least 4 different
sequences with this minimal happens-before relation. Furthermore, it would
need to explore all 6 sequences using the traditional happens before over-
approximation. In contrast, using context-sensitivity we can determine that
s[d] = s[h] = s[i] = s[j] and s[k] = s[l]. Hence, only two sequences must be
explored. As we will see later, our algorithm explores 3 sequences when using
the traditional happens-before relation.

4 Context-Sensitivity Can Give Exponential Gains

Let us motivate the relevance of our work by means of a typical producer-
consumer interaction where we can see that the gain of using context-sensitive
independence can be exponential. Consider two processes, a producer (p) that
stores results in a bounded buffer (a FIFO queue), and a consumer (c) that takes
them from the buffer, defined as follows:
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produce(Q,v)
if Q not full

Q := Q ++[v]

consume(Q)
if Q not empty

let Q = [v] + +Q′

Q := Q′

return v
else return ⊥

Let us, for simplicity, assume that calls to produce and consume are atomic,
that is, locks are used to prevent their concurrent execution. In any sequence E
containing events (p, i) and (c, j), either (p, i) →E (c, j) or (c, j) →E (p, i) must
hold, even in a minimal happens-before relation. However, as long as the buffer
is neither empty, nor full, both orders lead to the same state.

Given n occurrences of the producer and n of the consumer, a context-
insensitive algorithm will need to explore all their interleavings, since each occur-
rence happens-before the other. This means exploring

(
2n
n

)
executions. However,

most of these lead to the same state: if the size k of the buffer is k ≥ n, the state
is determined by the subset of consumers that read an empty buffer and, hence,
there are exactly 2n different states.

Consider an example where n = 3, k = 5, and p stores 1, 2, 3 in sequence.
A DAG representing all execution sequences is given in Fig. 1. For clarity, edges
for the consumer appear as dotted and labeled by the value consumed. Nodes
represent states and are labeled by the number of elements in the buffer. For
brevity, we denote events (p, i) and (c, j) as pi and cj , respectively.

Fig. 1. All interleavings of consumers (dotted) and producers for n = 3 and k = 5.
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Note that there are only 23 = 8 non-equivalent execution sequences, rather
than

(
6
3

)
= 20. The reduction given by context-sensitive independence is expo-

nential, since each state labeled from 1 to k − 1 has two paths leading to the
same state, hence reducing the number of leaves of the resulting subtree by a
factor of 2 (modulo some edge effects). Section 6.1 gives experimental results on
the application of our context-sensitive method to this example.

5 Context-Sensitive DPOR

We will use the Source-DPOR algorithm [1] both to explain and to implement
our method. This is because Source-DPOR is usually faster than Optimal-DPOR
in practice, and its algorithm (and thus our extension) is much easier to under-
stand. Both the original algorithm and our extension are formulated in a general
setting, which only assumes the existence of a happens-before relation between
the events of an execution. It can thus be used both for computational models
where dependency of concurrent threads is based on modifying shared variables,
and for those where dependency of asynchronous message-passing processes is
based on modifying shared messages. Most examples in the paper use shared
variables, as traditional in the DPOR literature, while our implementation is
developed for an asynchronous message-passing language (see Sect. 6).

5.1 The Extended Algorithm

Source-DPOR can be obtained from Algorithm1 by removing lines 11–14 and
line 16, which provide our extension. Note also that we have made the sleep

Algorithm 1. Context-sensitive DPOR
1: procedure explore(E,Sleep)
2: sleep(E) := Sleep;
3: if (∃p ∈ (enabled(s[E])\Sleep)) then
4: backtrack(E) := {p};
5: while (∃p ∈ (backtrack(E)\sleep(E))) do
6: for all (e ∈ dom(E) such that e �E.p next[E](p)) do
7: let E′ = pre(E, e);
8: let v = notdep(e, E).p;
9: if (I[E′](v) ∩ backtrack(E′) = ∅) then

10: add some q′ in I[E′](v) to backtrack(E′)
11: let u = dep(e, E)
12: if (� ∃w ∈ sleep(E′) where w ≤ v.u) then
13: if (s[E.p] = s[E′.v.u]) then
14: add v.u to sleep(E′);
15: Sleep′ := {v | v ∈ sleep(E), E |= p � v}
16: ∪ {v | p.v ∈ sleep(E)};
17: explore(E.p, Sleep′);
18: sleep(E) := sleep(E) ∪ {p};



Context-Sensitive Dynamic Partial Order Reduction 533

set for each sequence E, sleep(E), global in line 2, as our modifications require
the addition of new elements to previous sleep sets. Let us first describe the
behaviour of the original Source-DPOR algorithm. As shown in Algorithm1,
Source-DPOR extends an execution sequence E with current sleep set Sleep,
which contains the set of processes that previous executions have determined do
not need to be explored yet from E. Initially, the algorithm starts with an empty
sequence and an empty sleep set. In general, the algorithm starts by selecting
any process p that is enabled by the state reached after executing E and is not
already in Sleep. If it does not find any such process p, it stops. Otherwise, it
initiates the backtrack set of E (i.e., the set of processes that must be explored
from E) to be the singleton {p}, and starts exploring every element p in this set
that is not in sleep(E) (which is the same as Sleep in the original algorithm).
Note that the backtrack set of E might grow as the loop progresses (due to later
executions of line 10).

For each such p, Source-DPOR performs two phases: race detection (lines 6
to 10) and state exploration (lines 15, 17 and 18). The race detection starts by
finding all events e in dom(E) such that e �E.p next[E](p). For each such e, it
sets E′ to pre(E, e), i.e., to be the prefix of E up to, but not including e. It also
sets v to notdep(e,E).p, where notdep(e,E) is the subsequence of events of E
that occur after e but do not “happen after” e (i.e., every e′ such that e <E e′

and e �→E e′). It then checks whether there is any process in the backtrack set
of E that appears also in I[E′](v), where I[E′](v) denotes the set of processes
that perform events in dom[E′](v) that have no happens-before predecessors in
dom[E′](v). If there is no such process, it adds any process in I[E′](v) to the
backtrack set of E′. Note that this has the effect of adding new processes to
the backtrack sets of earlier parts of the exploration tree (right before e was
explored in E). After this, Source-DPOR continues with the state exploration
phase for E.p, by retaining in its sleep set Sleep′ any element v in sleep(E) that
is independent of p in E (denoted as E |= p 	 v), i.e., any v such that the next
event next[E](p) would not happen-before any event in dom[E.p](v). After this,
the algorithm explores E.p with sleep set Sleep′, and finally it adds p to Sleep
to ensure p is not selected again.

Let us now explain the new lines added by our method. We start during the
race detection phase, where event e has been detected in the original Source-
DPOR to be in a reversible race with the next event next[E](p). We first set u
to be dep(e,E), i.e., to be the sub-sequence of E that starts with e and contains
all events that “happen after” e in E. We then simply need to check (line 13)
whether inverting the sequences of events v and u after E′ will lead to the same
state and, if so, add v.u to sleep(E′). However, none of this is needed if there
is already something in sleep(E′) that will by itself prevent us from exploring
the reversed sequence v.u. This is why we first check, in line 12, whether v.u
has a prefix w (w ≤ v.u) in sleep(E′) and, if so, do nothing. The only other
change occurs during the exploration phase. In the sleep set propagation step
that computes Sleep′, any sequence p.v in sleep(E) that starts with the process
p we are about to explore, is replaced by v in the initial sleep set of the new
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state. This is not needed in the original Source-DPOR, because its Sleep set
only has processes, not sequences.

Fig. 2. Context-sensitive DPOR with initial sleep sets for each state. The dotted com-
ponents would be visited by optimal-DPOR with the traditional happens-before.

Example 1. Let us follow the algorithm’s execution on the example of Sect. 3
(Fig. 2) but using the traditional happens-before approximation where all p, q
and r are dependent to each other. Since all processes have only one execution
step, by an abuse of notation, we will refer to events by their process name.
The algorithm starts with sequence ε and an empty sleep set, denoted as state
0 in Fig. 2. The execution first chooses p, detects no races and explores sequence
p with an empty sleep set to state 1. The execution then chooses q, detects a
reversible race with p, and adds q to backtrack(ε), i.e., state 0 in the figure. At
this point our method confirms that s[p.q] = s[q.p], and thus adds q.p to sleep(ε),
i.e., state 0, indicating there is no need to explore q from it. The execution
proceeds by exploring sequence p.q with an empty sleep set to state 2. Now
only r can be chosen. The execution detects a reversible race with q, and adds
r to backtrack(p), i.e., state 1. Our method confirms that s[p.q.r] = s[p.r.q], thus
adding r.q to sleep(p), i.e., state 1. The execution then explores sequence p.q.r
to state 3 and finds the first solution, where r reads x as 5. It then backtracks to
state 1, adding r to sleep(p.q) and q to sleep(p) on the way. Next, it chooses r,
and finds a reversible race with p which adds r to backtrack(ε). Our method also
realises s[p.r] �= s[r.p], which means nothing needs to be added to sleep(ε). The
execution then explores p.r to state 4 with the sleep set sleep(p.r) initialized to q.
Thanks to this, q cannot be selected at this point and the execution backtracks
to state 0, adding r to sleep(p) and p to sleep(ε) on the way. In the original
source-DPOR algorithm q would not have been in sleep(p.r), since r.q would
not have been in sleep(p). Hence, it would have explored the full sequence p.r.q.

The execution then backtracks to state 0 and explores sequence q to state
5, with sleep(q) initially set to {p} (since sleep(ε) was {p, q.p} at this point).
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The execution can then only choose r. It finds a reversible race but does not
add anything to backtrack(ε) since r is already there. Our method also realises
s[q.r] �= s[r.q]. It then explores q.r to state 6. The execution chooses p detects a
reversible race with r at state 5, and adds p to backtrack(q). Since p is already
in sleep(q), it does not check for equivalence. The method finds an equivalent
solution at state 7. In the original Source-DPOR algorithm p would not have
been in sleep(q), since q.p would not have been in sleep(ε). Hence, it would have
explored the full sequence q.p.r.

The execution now backtracks to state 0 and explores sequence r to state 8
with sleep(r) initially empty. The execution then chooses p, finds a reversible
race with r, but does not update anything, as the tests in lines 9 and 12 fail. The
execution explores r.p to state 9 with sleep(r.p) initially empty. It then chooses
q, finds a reversible race with p, and adds q to backtrack(r). Our method then
confirms s[r.p.q] = s[r.q.p], and adds q.p to sleep(r). The execution then explores
sequence r.p.q to state 10, and finds the second solution where r reads x as
0. The execution then backtracks to state 8, adding q to sleep(r.p) and p to
sleep(r) on the way. The execution then chooses q and finds a reversible race
with r which produce no effects. It then explores r.q to state 11 with sleep(r.q)
initially set to {p}. Since nothing can be selected, the execution terminates. In
the original Source-DPOR p would not have been in sleep(r.q), since q.p would
not have been in sleep(r). Hence, it would have explored the full sequence r.q.p.

The execution has explored 3 complete sequences rather than the minimal
2, whereas the original Source-DPOR would have explored 6 (rather than its
minimal 4). Note that while some redundant executions are not detected until
their last steps, others are detected earlier, as is the case for sequence q.p.r. 
�

The above example shows in detail how the context-sensitive DPOR algo-
rithm works step by step, and how it can detect equivalent execution sequences.
However, the example is too simple to show how the algorithm can make real
reductions in the exploration. Note that the dotted derivations that the original
Source-DPOR algorithm would have explored, have also been executed by our
algorithm in order to do the context-sensitive checks in line 13. Hence, though
the context-sensitive DPOR algorithm has obtained less solutions, it has not
been able to reduce the exploration, and it has performed some recomputations.
The following example illustrates how context-sensitive DPOR is able to achieve
reductions while exploring execution sequences.

Example 2. Let us consider the execution of our algorithm on the producer-
consumer example of Sect. 3, and let us assume it first explores the execu-
tion sequence p1.p2.p3, shown as the leftmost sequence in Fig. 1. Up to this
point no race has been detected. Now the algorithm can only select c1 and
detects a reversible race with p3 adding c1 to backtrack(p1.p2). It then confirms
s[p1.p2.p3.c1] = s[p1.p2.c1.p3] and, hence, adds c1.p3 to sleep(p1.p2). After explor-
ing the complete leftmost branch, it backtracks to state p1.p2 and selects c1.
It then detects the race with p2, adding c1 to backtrack(p1). It then confirms
s[p1.p2.c1] = s[p1.c1.p2] and, hence, adds c1.p2 to sleep(p1). It then executes c1,
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reaching state p1.p2.c1 with p3 in its sleep set. At this point the algorithm can
only select c2. The important point to note is that the algorithm has been able
to avoid exploring the equivalent sub-sequence p3.c2.c3 that the original DPOR
algorithm would have had to explore. The reduction is made more apparent if
we continue some more steps. Let us assume the algorithm has already found the
second solution and backtracks to state p1 to select c1. After managing the race
with p1, and executing c1, it will reach state p1.c1 with p2 in its sleep set. Impor-
tantly, this will prevent our algorithm from exploring the whole execution tree
below p1.c1.p2. As we will see later in Sect. 6.1, our algorithm is able to obtain
the minimal number of 2n solutions for this example and, more importantly, it
is able to reduce exponentially the number of states explored. 
�

5.2 Soundness

Soundness relies on showing that any omitted Mazurkiewicz trace, i.e., the
happens-before order of a complete execution sequence, is equivalent to an
explored one in terms of the final state.

Lemma 1. If the context-sensitive DPOR algorithm discovers that s[E.p] =
s[E′.v.u], for any complete sequence C of the form C = E′.v.u.w there is a com-
plete sequence C ′ = E.p.w that defines a different Mazurkiewicz trace T ′ =→C′

and leads to the same final state.

Proof. Let C = E′.v.u.w be a complete execution sequence. Since s[E.p] =
s[E′.v.u], we have that s[C] = s[C′] where C ′ = E.p.w. Note that for C, next[E](p)
→C e, while in C ′, e →C′ next[E](p). 
�
Theorem 1. For each Mazurkiewicz trace T defined by the happens-before rela-
tion, Explore(ε, ∅) explores a complete execution sequence that either implements
T , or reaches the same state as one that implements T .

Proof. Consider an execution of Explore(ε, ∅) without the additions for context-
sensitivity, and assuming we always choose an enabled process that would not be
sleep set blocked in the extended algorithm, wherever possible. This is exactly the
source-DPOR algorithm of [1] and, hence, is guaranteed to explore a complete
execution sequence that implements each T [12].

Suppose that some Mazurkiewicz trace T is omitted by our context-sensitive
DPOR, C is the complete execution sequence that implements T (T =→C) and is
explored by the original source-DPOR algorithm. This sequence must be cut by
our algorithm. Thus, it must be of the form C = E′.v′.u′.y, where our algorithm
added v.u to sleep(E′) after finding s[E.p] = s[E′.v.u], and v′.u′ is v.u possibly
with some events added that do not depend on any event in dom[E′](v.u), as
otherwise the sleep set entry would have been removed. Hence, there exists a
complete execution sequence E′.v.u.w.y with the same happens-before relation
as C, obtained by moving events independent of v.u (those with processes in w)
after v.u. By Lemma 1 there is a different trace T ′ which leads to the same state
as C. Since the source-DPOR tree explores a complete execution sequence for
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each Mazurkiewicz trace, it must include a complete execution sequence C ′ that
implements T ′. Note that C ′ has the same happens before relation as E.p.w.y.

We now show that C ′ appears to the left of C in the source-DPOR tree.
Sequence E.p clearly appears to the left of C in the source-DPOR tree, or it
could not be used to add the sleep set entry that blocked C. Suppose to the
contrary that C ′ appears to the right of C. Let E′′ be the largest common prefix
of C and C ′. Now C = E′′.q.w′ for some q. Since C ′ appears to the right of C,
then q will be in the sleep sets for (the remainder of) sequence C ′ unless it is
removed by some dependent event. Let e′ = next[E′′](q).

Suppose that E′′.q ≤ E′ then the first change is above E′. The happens-
before relation for C ′ must then have some event e′′ (after E′′.q) such that
e′′ →C′ e′, but this cannot be the case since →C′=→E.p.w.y where this does not
occur.

Suppose that E′ ≤ E′′ and, thus, the first change is at or after the place
where E.p and E′.v.u differ. Clearly C ′ must appear to the right of E′.proc(e)
(otherwise it would be left of C). Hence, proc(e) is in the sleep set (for the
remainder) of C ′ after E′ until removed by dependent events. Suppose event e′′

removes proc(e). Then, we have that e′′ →C′ e. This is a contradiction since this
does not occur in E.p.w.y.

Hence, C ′ must appear to the left of C in the source-DPOR tree. If C ′ exists
in the tree visited by context-sensitive DPOR we are done, since we have found
an equivalent complete sequence. Otherwise, we can apply the same construction
to discover an equivalent complete sequence that occurs to the left in the original
source-DPOR tree. The procedure must terminate since, eventually, we reach the
left most branch, which cannot be removed by the context-sensitive additions to
the algorithm. 
�

5.3 Optimizations

Let us now discuss two possible optimizations that are crucial to fully exploit
the algorithm’s potential, as our experiments in Sect. 6.3 show.

1. Anticipating Cuts: Consider a very frequent situation, where E is an execu-
tion sequence with state s and enabled steps p1, p2, q1, . . . , qn. Steps p1 and p2
are independent in the context of s, but considered as dependent, either because
there is a context in which they are, or because of a loss of precision in the
dependency over-approximation (e.g., they both increment the same variable).
Steps q1, . . . , qn might have some dependencies among them but none is depen-
dent with p1 nor p2. Let us assume our algorithm selects first p1 and then p2.
At this point, p2 is added to the backtrack set of E (line 10), and the sequence
p2.p1 added to the sleep set of E (line 14). When the algorithm backtracks to E,
the sleep set contains p1 (due to line 18) and p2.p1. Let us assume it selects p2.
The sleep set is updated to include p1, since line 15 removes p1 but line 16 puts
it there again. Thus, our algorithm reaches a sequence E′ with enabled steps
p1, q1, . . . , qn and p1 in the sleep set. If none of the steps q1, . . . , qn transitively
generates a step that is dependent on p1, then all execution sequences coming
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from this point will be sleep set blocked (since p1 will always remain in the sleep
set) and many useless computations will be performed. If we can compute a set
O that over-approximates the set of steps that can arise in any future execu-
tion from the current state, and none of these depend on p, we can then block
sequence E′. In general, whenever a sequence in the sleep set (added by line 14
due to a context-sensitive check) is consumed except for its last step l (by the
successive executions of line 16), if no step in O is dependent on l, we block
the execution at this point. Section 6 describes the analysis we implemented to
compute such O for actors.

2. Guiding with Sleep Sequences: The algorithm makes three arbitrary selections:
the first step to explore (line 3); the next step to backtrack with (line 5); and a
step for the backtrack set (line 10). Implementations should make these selections
such that the shortest sequences in the sleep set are explored first. This allows
context-sensitive equivalent explorations to be discarded as soon as possible.
Otherwise, potentially good sleep sequences (i.e. those that will be responsible
for important exploration reductions) could be discarded.

6 Implementation and Experimental Evaluation

We have implemented and experimentally evaluated our method for actor pro-
grams within the tool SYCO [3], a systematic testing tool for ABS programs [10].
SYCO can be used online through its web interface available at http://costa.ls.fi.

upm.es/syco.

6.1 Producer-Consumer with Actors

Actor programs consist of computing entities called actors, each with its own
local state and thread of control, that communicate by exchanging messages
asynchronously. The actor concurrency model [2,9] has been regaining popularity
lately and is used in many systems such as Go, ActorFoundry, Asynchronous
Agents, Charm++, E, ABS, Erlang, and Scala. It is also influencing commercial
practice, with Twitter using actors for scalability and Microsoft using them in
the development of its asynchronous agents library.

An actor configuration consists of the local state of the actors and a set
of pending tasks. In response to receiving a message (or task), an actor can
update its local state, send messages (tasks) to another actor or itself (using
the ! function), or create new actors (using the instruction new). Actor lan-
guages often have instructions to await for an asynchronous call to terminate.
The actor model is characterized by inherent concurrency of computation within
and among actors (note that tasks within each actor work on a locally shared
memory), dynamic creation of actors, and interaction only through direct asyn-
chronous message passing with no restriction on message arrival order. In the
computation of an actor system, there are two non-deterministic choices: select-
ing an actor and scheduling one of its pending tasks.

http://costa.ls.fi.upm.es/syco
http://costa.ls.fi.upm.es/syco
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Fig. 3. Actor-based producer-consumer program

Figure 3 shows an actor-based version of the producer-consumer program
provided in Sect. 4. The execution starts from an (initially empty) actor that
executes the main block, shown at the top, to create three concurrent actors
representing the buffer of size MAX, the consumer and the producer. The last
two receive a reference to the buffer b used for the communication. The main
block then performs two asynchronous calls to add tasks on the producer and
consumer to execute the corresponding methods. These tasks will in turn make
asynchronous calls on the buffer to create the tasks that consume and produce
data on it. The search tree that results from the execution of the main block
has the same shape as the one in Fig. 1. Basically, the actor program for one
producer and one consumer creates 4 tasks: consumeN, produceN, store and take.
As consumeN and produceN do not modify the shared data (i.e., the buffer),
they are trivially independent from all others. In contrast, store and take are
detected as conflicting due to their write accesses to the buffer. As in the thread-
based version, most steps lead to the same state, i.e., they are context-sensitive
independent.

Table 1 experimentally compares Source-DPOR and context-sensitive DPOR
(CDPOR) on the producer-consumer problem. Column Execs gives the num-
ber of complete executions sequences explored, Time the total time taken in
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Table 1. Reduction gains on consumer-producer

N Source-DPOR CDPOR Red. gains

Execs Time States Execs Time States Execs Time

3 20 5 69 8 6 52 2.5x 0.9x

5 252 100 923 32 58 324 7.9x 1.8x

7 3432 1663 12869 128 357 1712 26.9x 4.7x

9 48620 30856 184755 512 2284 8428 95.0x 13.6x

milliseconds, and States the number of explored states obtained when executing
the above example with our context-sensitive DPOR algorithm and with the
original Source-DPOR algorithm, for an increasing number N of elements pro-
duced and consumed, and a buffer of size MAX ≥ N . The last two columns show
the reduction gains in Execs and Time obtained by our algorithm. Times are
obtained on an Intel Core I7 at 3.4 GHz with 16 GB of RAM (Linux Kernel 4.4).
Our algorithm is able to obtain the exact number (2N ) of non-equivalent exe-
cutions. Furthermore, it is able to detect the equivalent sequences of executions
as soon as they happen. For instance, in the example of Fig. 1, it detects that
sequence p1.c1.p2 leads to the same state as the previously explored p1.p2.c1,
and thus blocks it at this point. We therefore observe the claimed exponential
reductions, not only in number of explored sequences, but also in the number of
explored states and execution time.

6.2 Implementation Details

Computing the Over-Approximation for Optimization 1: Our analysis computes
the over-approximation O of possibly reachable tasks from the current state s as
follows: Using the flow graph of the program, we compute the set of task names
reachable from the enabled tasks in s. We also compute the set of references
of alive actors in s, which includes the references of actors with pending tasks,
actors in parameters of pending tasks, and actors stored in fields. The set O
of reachable tasks from s is obtained by combining each task name with each
compatible alive actor.

Avoiding Recomputations: Our algorithm recomputes sub-sequences due to the
context-sensitive equivalence check between the current sequence E.p and the
one E′.v.u that reverses the race (line 13). When the algorithm later backtracks
to E′, it may eventually recompute the same sequence E′.v.u, except for the last
step if the check succeeded. Our implementation avoids these recomputations as
follows: In line 13, instead of checking the context sensitive equivalence of v.u,
it adds v.u together with the state S[E.p] to the sleep set of E′. For efficiency, in
our implementation this is done right after executing event p, so that the state
stored is the current one. Hence, a sequence t in the sleep set with attached state
s is interpreted as “if we execute t and reach state s, then we block the sequence
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and add an enabled event to the backtrack set of the previous state if possible”.
This guarantees we do not recompute any single step due to context-sensitive
checks. Note that in actor based systems the shared state between actors is
typically small, therefore we never store full states, only local ones. Also, our
experiments show that the peak numbers of stored local states remains quite
low (see column M in Table 2). Alternatively, the check can be implemented by
recording the state changes from E′ to E.p and comparing them against those
from E′ to E′.v.u. This would require a bounded amount of memory which can
be reused for every equivalence check.

6.3 Experimental Evaluation

Table 2 shows our experimental results, which compare the performance of the
original source-DPOR algorithm with three versions of our context-sensitive
approach: CDPOR1 is the basic algorithm without any of the optimizations in
Sect. 5.3, CDPOR2 applies the first optimization, while CDPOR3 applies both
optimizations. The comparison is performed on 6 classical concurrent actor pro-
grams, borrowed from [14], each executed with 3 (size increasing) input parame-
ters. All benchmarks can be found at the SYCO web interface. The data shown
in each set of columns (Execs, Time) is computed as before. For CDPOR3 we
include an additional column (M ) to show the peak amount of additional mem-
ory used (measured in number of stored local states) due to the avoiding recom-
putations approach mentioned above.

The last three columns show the gains in time obtained by each version of
our algorithm over the original source-DPOR algorithm. A timeout of 120 s is
used and, when reached, we write >X to indicate that for the corresponding
measure we encountered X units up to that point. Thus, >X indicates that the
measure is at least X.

Table 2 shows that the less optimized implementation CDPOR1 is at least
1.3 times faster (Reg(5)) than Source-DPOR, and can be almost 3 orders of
magnitude (PSort(5)) faster. The gain is much larger using the optimizations, in
which case we achieve up to 4 orders of magnitude speedups. In some cases, the
main reduction is achieved by the first optimization (e.g., compare G2 and G3 in
PSort), while in most cases it is achieved by the second one (e.g., see Reg). The
most important observation, however, is that the gain increases exponentially in
all examples with the size of the input, in all three versions of our implementa-
tion. This experimentally justifies our claims about the exponential gains made
in Sect. 4.

7 Conclusions

We have presented a novel technique that can be incorporated to state-of-the-art
DPOR algorithms [1,7,14] to further reduce the number of redundant sequences
explored. The crux of our method is the dynamic detection and use of context-
sensitive independence, which allows proving independence of execution steps
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Table 2. Experimental evaluation

Bench. Source-DPOR CDPOR1 CDPOR2 CDPOR3 Reduction gains

Execs Time Execs Time Execs Time Execs Time M G1 G2 G3

Fib(5) 94 93 26 64 26 50 1 39 7 1.5x 1.9x 2.4x

Fib(6) 2148 2935 256 1407 256 683 1 39 12 2.1x 4.3x 75.3x

Fib(7) 56735 >120 s 7929 >120 s 11924 43637 1 124 20 − >2.7x >967.7x

QSort(9) 84 99 13 57 7 20 1 23 7 1.7x 5.0x 4.3x

QSort(12) 280 356 26 176 26 68 1 24 9 2.0x 5.2x 14.8x

QSort(15) 3166 3940 177 1132 87 249 1 40 12 3.5x 15.8x 98.5x

MSort(9) 256 259 14 84 14 32 1 18 8 3.1x 8.1x 14.4x

MSort(12) 912 1187 33 470 23 98 1 37 11 2.5x 12.1x 32.1x

MSort(15) 15872 36653 135 2051 135 374 1 51 14 17.9x 98.0x 718.7x

Pi(5) 120 83 9 26 9 17 9 15 21 3.2x 4.9x 5.5x

Pi(6) 720 556 24 51 24 60 24 43 35 10.9x 9.3x 12.9x

Pi(7) 5040 4673 74 146 74 150 74 149 53 32.0x 31.2x 31.4x

PSort(4) 288 109 8 14 2 12 2 4 13 7.8x 9.1x 27.2x

PSort(5) 34560 11921 64 128 8 15 8 15 28 93.1x 794.7x 794.7x

PSort(6) 275358 >120 s 1224 2598 72 128 72 129 53 >46.2x >937.5x >930.2x

Reg(4) 384 214 148 178 71 68 1 4 11 1.2x 3.1x 53.5x

Reg(5) 3840 2357 1047 1465 449 498 1 6 16 1.6x 4.7x 392.8x

Reg(6) 46080 39769 7920 13916 3145 4337 1 7 22 2.9x 9.2x 5681.3x

for the particular context encountered. As our experiments show, our method
achieves exponential gains in a message-passing concurrency model. Although
we have not yet evaluated it, we believe the benefits of our method for shared-
memory programs with synchronized blocks of code should be similar as for
message passing.

While our extension was performed on the Source-DPOR algorithm, in prac-
tice Optimal-DPOR is usually slower than Source-DPOR. Hence, we expect our
context-sensitive algorithm to also be significantly faster than Optimal-DPOR.

Note that our context-sensitive extension could be applied directly to
Optimal-DPOR. However, Optimal-DPOR only checks races at leaf nodes, which
is unsuitable for our context sensitive check, since its too late to gain benefit.
Efficiently combining them is not straightforward and it is left as future work.
Further, we have shown our context-sensitive DPOR algorithm can achieve expo-
nential gains over Source-DPOR (e.g., for the producer-consumer example).
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Abstract. Modern program logics have made it feasible to verify the
most complex concurrent algorithms. However, many such logics are com-
plex, and most lack automated tool support. We propose Starling, a new
lightweight logic and automated tool for concurrency verification. Star-
ling takes a proof outline written in an abstracted Hoare-logic style, and
converts it into proof terms that can be discharged by a sequential solver.
Starling’s approach is generic in its structure, making it easy to target
different solvers. In this paper we verify shared-variable algorithms using
the Z3 SMT solver, and heap-based algorithms using the GRASShopper
solver. We have applied our approach to a range of concurrent algorithms,
including Rust’s atomic reference counter, the Linux ticketed lock, the
CLH queue-lock, and a fine-grained list algorithm.

1 Introduction

Shared-memory concurrent algorithms are critical components of many systems,
for example as locks, reference counters, work-queues, and garbage collectors [12].
These algorithms must achieve high performance, while also enforcing proper-
ties such as mutual exclusion and safe memory reclamation. In pursuit of per-
formance, modern algorithms have become increasingly complex. As a result,
by-hand correctness arguments are unreliable, and formal verification remains
very challenging.

Concurrent algorithms often depend on intangible concepts such as thread-
local ownership of resources, and protocols between threads. For example, a
thread that acquires a lock takes ownership of the guarded resource, and the
mutual exclusion protocol forbids other threads from accessing the lock at the
same time. Beginning with Concurrent Separation Logic (CSL) [18], program
logics have integrated these concepts directly in reasoning, which has enabled
the verification of many challenging algorithms (see Sect. 7, Related Work).

However, these logics derived from CSL are very complex, with auxiliary
proof constructs such as fractional permissions, shared regions, and labelled tran-
sition systems. Complexity makes these logics difficult to learn and difficult to
reason with, and non-standard proof constructs make tooling hard to develop,
and therefore rare. As a result, there are substantial barriers to applying these
logics in practice.
c© Springer International Publishing AG 2017
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We present Starling, a new program logic and verification tool for concurrent
algorithms. Our approach is inspired by CSL and its relatives, but we dispense
with heavyweight auxiliary proof concepts. Starling’s proofs are lightweight, easy
to read, and easy to automate – but powerful enough to verify challenging con-
current algorithms.

Starling’s approach is based on views – units of linear, invariant information
that can be held by a single thread. Proofs in Starling are written in a light-
weight proof-outline style, with views annotating program points and constraints
defining their meaning in the underlying domain. Notions such as ownership and
protocol can be expressed through interactions between views. For example, we
can have a view expressing that the thread holds a lock, then express mutual
exclusion by forbidding two threads from holding this view at the same time.

Starling’s reasoning is built on the pre-existing Views framework [6]: this
was designed as an off-the-shelf metatheory for encoding other logics, but we
instead instantiate it directly as a simple view-based logic. The Views framework
works by reducing a concurrent proof to multiple applications of a single core
proof rule. We use this to reduce a Starling proof to a collection of verification
conditions that can be discharged using a sequential solver. Building on the
Views framework means that Starling requires minimal extra metatheory and
can easily be automated.

Our approach is agnostic to the underlying data domain: we require only an
appropriate sequential solver. In this paper, we instantiate our approach with two
domains. First, for algorithms that use shared variables and linear arithmetic, we
generate SMT queries, which are discharged using Z3 [5]. For algorithms that use
dynamic linked data-structures, we generate queries written in separation logic,
which we discharge using GRASShopper [20]. In both cases, our approach lets us
map uniformly from concurrent reasoning into sequential verification conditions.

We have tested Starling on a collection of real-world concurrent algorithms.
Many of these are synchronisation algorithms, one of the most important class of
concurrent algorithm. Our running example is Rust’s Atomic Reference-Count
algorithm, which prevents reuse of an object after it has been freed. We also
verify several different lock algorithms including the CLH queue-lock algorithm,
Peterson’s algorithm, and a fine-grained list algorithm. As is often the case in
concurrency, these algorithms are small in size but exhibit killer subtleties that
make verification very challenging. Other approaches would require considerably
more proof annotations, or customised auxiliary proof constructs. We show that
these algorithms can be verified using a lightweight, automated approach.

Our tool is open source (MIT license) and available on GitHub:

https://github.com/septract/starling-tool

2 Motivating Example: ARC

The Atomic Reference-Count (ARC) algorithm is used to ensure that a shared
object is not disposed before all threads are finished with it. In Rust, the ARC

https://github.com/septract/starling-tool


546 M. Windsor et al.

forms an important part of the concurrency model [23]. Our version of the ARC
has three operations:

clone: Clone the ARC reference and increment the counter.
access: Fetch or modify the object stored in the ARC.
drop: Destroy an ARC reference by decrementing the counter. If the count is

0, dispose the shared object.

2.1 Specification

To specify the ARC using our approach, we first declare the view atom arc(). A
view atom is a unit of linear, invariant information that can be held by a thread.
The atom arc() states the thread holds a single reference to the ARC object. We
do not specify the meaning of arc() in the program state yet (in this way view
atoms resemble the abstract predicates of Dinsdale-Young et al [8]).

View atoms can be conjoined into unboundedly large views using the compo-
sition operator, ∗. This operator is linear, not standard conjunction: for example
the view arc() ∗ arc() ∗ arc() asserts that the thread holds three separate refer-
ences to the ARC object. A thread could also hold zero references to the ARC,
represented by the special unit view emp. The ∗ operator is generalised from sep-
arating conjunction in separation logic, but views need not have disjoint heap
representations.

Using arc() and emp, we give the ARC operations Hoare-style specifications:

{arc()} clone() {arc() ∗ arc()}
{arc()} access() {arc()}
{arc()} drop() {emp}

The clone method creates a new reference, represented by a duplicate arc()
atom in its postcondition. The access method requires an ARC reference to
ensure the object has not been disposed: the arc() atom in its precondition
represents this. The drop method takes an ARC reference, represented by an
arc() atom, and destroys it leaving emp.

In our tool, specifications are implicitly framed with arbitrary views. The
frame represents other views held locally or by other threads. For example, the
thread might hold three ARC references, and then call drop():

{arc() ∗ arc() ∗ arc()} drop() {arc() ∗ arc()}
As can be seen, the frame arc() ∗ arc() is unaffected by calling drop(). Like-

wise, if some other thread held arc() ∗ arc() it would be unaffected by the call.
Framing means that every view must continue to hold irrespective of the

behaviour of other threads. However, arc() atoms are not independent in their
underlying representation, nor between each other. In their representation, all
the arc() views refer to the same shared variables. Also, the reference count
must not be smaller than the total number of arc() atoms across all threads –
otherwise a thread could access the object after it has been disposed. Reasoning
about this combination of thread-local views and inter-thread interaction is the
core problem that our approach solves.
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1 // View atom declarations

2 view iter arc();

3 view countCopy(int c);

4

5 // Create a new reference to the ARC

6 method clone() {

7 {| arc() |}

8 <| count++; |>

9 {| arc() * arc() |}

10 }

11

12 // Remove an ARC reference and dispose if possible

13 method drop() {

14 {| arc() |}

15 <| c = count--; |>

16 {| countCopy(c) |}

17 if (c == 1) {

18 {| countCopy(1) |}

19 <| free = true; |>

20 {| emp |}

21 }

22 {| emp |}

23 }

24

25 // Access the ARC contents - Model with a test of free

26 method access() {

27 {| arc() |}

28 <| f = free; |>

29 {| if (f) { false } else { arc() } |}

30 if (f) {

31 {| false |}

32 <| error; |> // Models a bad dereference.

33 {| false |}

34 }

35 {| arc() |}

36 }

37

38 // Constraints on countCopy()

39 constraint countCopy(c) -> c == 1 => (!free && count == 0);

40 constraint countCopy(m) * countCopy(n) -> (m != 1) || (n != 1);

41

42 // Iterated constraint on arc()

43 constraint iter[n] arc() -> n > 0 => (!free && n <= count);

Fig. 1. Shared-variable version of ARC, and proof.

2.2 Proof

Figure 1 shows an ARC implementation, and a proof that it satisfies our specifi-
cation. (Here, and elsewhere, we elide some details such as variable declarations.)
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In this implementation we model a single ARC instance by shared variables.
The integer variable count holds the reference count, while disposal is modelled
by the boolean variable free. This simplification to variables means we can
discharge the proof using an SMT solver. Below, we verify a heap-allocated
ARC using the GRASShopper separation-logic solver.

Our programming language is a standard while-language, with atomic com-
mands written with angle-brackets, <| |>. The proof itself consists of Hoare-
style assertions, written in views, that are interleaved into the program. These
assertions are written using assertion brackets {| |} As well as plain views,
views can hold conditional on local variables: for example, in Fig. 1 we write
{| if (f) { false } else { arc() } |}. The complete syntax for Starling’s
input language is given in AppendixA.

In addition to the arc() atom discussed above, the proof uses the additional
atom countCopy(c), which represents the fact that c was previously observed as
the value of count. (It does not mean that count is currently c, as count can
change through the action of other threads).

The meaning of the views in the underlying program state is given by con-
straints. There are unboundedly many possible composite views, but we need
only give meanings for a minimal set of defining views – meanings for others are
derived from these. Section 3 explains how this derivation works.

In Fig. 1, the meaning of a single countCopy(c) atom is given by the following
constraint:

constraint countCopy(c) -> c == 1 => (!free && count == 0);

Once a thread observes count as 1 in a fetch-and-decrement, the ARC cannot
be disposed by any other thread, and the value of count will always be zero. This
depends on count accurately recording the number of references to the ARC:
once count is 1, the only thread with access is the current one.

Constraints can also specify interactions between views. Interactions can be
between views on the same or multiple different threads – we make no distinction
between the two. In Fig. 1, two countCopy(c) atoms have the following meaning:

constraint countCopy(m) * countCopy(n) -> (m != 1) || (n != 1);

If two threads take copies of count, only one of them can equal 1: again, this
depends on the counter accurately recording the number of references.

The final important properties represented in the proof are, first, that the
ARC is not disposed until all references are removed; and, second, that count
accurately records the number of references. Each arc() atom represents a refer-
ence, so we need the following:

n > 0 atoms
︷ ︸︸ ︷

arc() ∗ arc() ∗ · · · ∗ arc() =⇒ ¬disposed ∧ n ≤ ref-count.
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In the proof, this is expressed directly by the following constraint on views:

constraint iter[n] arc() -> n > 0 => (!free && n <= count);

The iter[n] keyword indicates that we have n instances of the arc() atom
on the same thread or across different threads.

2.3 Heap-Allocated ARC

The implementation in Fig. 1 modelled a single ARC by shared variables – as
a result, we can discharge this proof using an SMT back-end. In Fig. 2, we
give a more realistic implementation where ARCs are heap-allocated structs.
To discharge this proof, we use GRASShopper, a solver for separation logic [20].

The most important implementation change is a new method init which
allocates a new ARC. This method has the following specification:

{emp} init() {arc(ret)}
A further difference is that heap commands are written in GRASShopper’s

input language. We embed these using the special brackets %� �, and allow
variables to be referenced using the inner brackets [| |]. For example, in clone,
we write the following for an atomic increment:

<| %{[|x|].count := [|x|].count + 1}; |>

By combining heap commands we can build complex atomic operations – for
example an atomic fetch-and-decrement operation, as used in drop:

<| c = %{ [|x|].count }; %{ [|x|].count := [|x|].count - 1 }; |>

Despite the fact that this implementation targets a much richer domain than
shared variables, we can apply the same proof strategy as Fig. 1. The same
views are needed, though they are now parameterised by the address of the
ARC. Likewise, the same constraints are needed, modified to use GRASShopper’s
constraint language. As with commands, we embed GRASShopper assertions
using the special brackets %� �. For example, this is the constraint on a single
countCopy(x, c) atom:

constraint countCopy(x, c) ->

c == 1 => %{ [|x|] in ArcFoot && [|x|].count == 0};

Here, [|x|] in ArcFoot requires that x is in the set of allocated ARCs
– this corresponds to the requirement that free is false in Fig. 1. Likewise,
[|x|].count == 0 corresponds to the constraint on the value of count.

With both the variable-based and heap-based versions of the ARC, our app-
roach gives a simple proof that captures the algorithm’s linear nature. Our app-
roach lets us convert these lightweight proofs into verification conditions that
can be discharged by either SMT or GRASShopper as appropriate. We next
explain how this translation works.
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1 struct ArcNode {

2 var count: Int;

3 var val: Int;

4 }

5

6 view iter arc(ArcNode x);

7 view countCopy(ArcNode x, Int c);

8

9 method init() {

10 {| emp |}

11 <| ret = %{new ArcNode};

12 %{ [|ret|].count := 1 }; |>

13 {| arc(ret) |}

14 }

15

16 method clone(ArcNode x) {

17 {| arc(x) |}

18 <| %{ [|x|].count := [|x|].count + 1 }; |> // Atomic increment

19 {| arc(x) * arc(x) |}

20 }

21

22 method drop(ArcNode x) {

23 {| arc(x) |}

24 <| c = %{ [|x|].count }; // Atomic fetch-and-decrement

25 %{ [|x|].count := [|x|].count - 1 }; |>

26 {| countCopy(x, c) |}

27 if (c == 1) {

28 {| countCopy(x, 1) |}

29 <| %{ free([|x|]) }; |>

30 {| emp |}

31 }

32 {| emp |}

33 }

34

35 method access(ArcNode x) {

36 {| arc(x) |}

37 <| pval = %{ [|x|].val }; |>

38 {| arc(x) |}

39 }

40

41 constraint countCopy(x, c) ->

42 c == 1 => %{ [|x|] in ArcFoot && [|x|].count == 0 };

43 constraint countCopy(x, m) * countCopy(y, n) ->

44 x == y => ((m != 1) || (n != 1));

45

46 constraint iter[n] arc(x) ->

47 n > 0 => %{ [|x|] in ArcFoot && [|n|] <= [|x|].count };

Fig. 2. Heap-allocated version of ARC, and proof.
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3 Theory

Starling’s theory works by recasting the pre-existing Views framework [6] into a
form suitable for automation. As the Views framework has been proved sound
in Coq, this gives us a simple way of justifying the soundness of our translation
into a set of verification conditions.

3.1 Owicki-Gries

For comparison, we first consider the Owicki-Gries method [19], one of
the simplest approaches to Hoare-style verification of a concurrent program.
Owicki-Gries presents us with a single core rule for validating a proof outline.1

Let Axioms be the set of atomic Hoare triples of the proof; Formula the set of
all formulas used in the outline; and |=Hoare the entailment rule for Hoare logic.
Then, the Owicki-Gries proof rule is written as:

∀ {P} c {Q} ∈ Axioms. ∀F ∈ Formula. |=Hoare {P ∧ F} c {Q ∧ F}

This rule expresses two key correctness properties for a concurrent system.
First, each command behaves correctly in a sequential setting – the post-state
Q is established from the pre-state P . Second, no command interferes with any
properties needed by other threads – the frame F is preserved by c.

To achieve completeness, Owicki-Gries needs auxiliary variables: additional
variables that capture key aspects of the local state of each thread. To encode
Starling into Owicki-Gries, we would need to use auxiliary variables to encode the
more rich interactions our constraint system permits. However, these variables
can hide the details of the verification and make proof discovery harder. We need
a different approach.

3.2 Views

We eliminate the need for auxiliary variables, while keeping much of the shape
and simplicity of Owicki-Gries, by building on the Views framework [6]. Views
was originally an off-the-shelf metatheory for proving the soundness of concurrent
reasoning systems; we recast it as an Owicki-Gries-style proof rule. In this paper,
we introduce just enough of the Views framework to support Starling’s theory –
this fits with the framework’s purpose as reusable metatheory.

The Views framework is designed to allow a broad range of reasoning systems
to be encoded into a small set of parameters. If these parameters satisfy a few
key properties, the encoded reasoning system is sound.

The parameters that must be instantiated include the sets Views, from which
all assertions in the logic are derived; Cmds, containing atomic commands; and
Axioms, containing the atomic Hoare triples over views and commands. The
reasoning system must also define a view composition operator ∗ and unit view

1 We simplify Owicki-Gries to a setting where all threads execute the same code.
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emp, which together must form a monoid with Views; a reification function � 	
mapping Views to their representation in the underlying state; and a semantic
function � � mapping atomic commands to state transformers.

Taken together, these parameters must satisfy the key property of axiom
soundness:

∀ {P} c {Q} ∈ Axioms. ∀V ∈ Views. �c��P ∗ V 	 ⊆ �Q ∗ V 	 (1)

This rule requires that every atomic Hoare triple generated by the reasoning
system upholds sequential correctness, and inter-thread non-interference, just as
we saw in Owicki-Gries. As the Views approach makes no distinction between
contexts that on the same thread or other threads, it captures both Concurrent
Separation Logic’s Frame and Parallel rules:

{P} C {Q}
{P ∗ F} C {Q ∗ F} Frame

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖C2 {Q1 ∗ Q2}

Parallel

In Starling, we recast Rule (1) to generate verification conditions from proofs.
In comparison to Owicki-Gries, the Views proof rule allows us to avoid auxiliary
variables in most cases. In Owicki-Gries, assertions and contexts are joined by
conjunction, but in the Views rule they are joined by view composition, ∗, and
their reification is defined separately. This means that we can define interac-
tions between views that go beyond their individual reifications – for example to
enforce mutual exclusion between views. This gives our proof system its power.

3.3 Instantiating the Views Rule

We first instantiate the Views framework parameters in a way that is suitable for
Starling’s reasoning. For Starling, view atoms consist of a name and a sequence
of value arguments, and views are multisets of view atoms. More formally, we
define Views as:

ViewAtoms � String × seq Value

Views � multiset ViewAtoms

(Below we sometimes call these plain views to distinguish them from constructs
such as view patterns.)

Starling Views form a monoid with the multiset union ∪m as the view com-
position ∗, and the empty multiset ∅ as the unit view emp.

We first change Rule (1) by making the state accessed by a command explicit.
We model the state as a pair (l, s) of thread-local and shared components. The
command semantics �c� is then a relation over these states. We write �P 	(s) to
say that state s is in the representation of P , and (for now) ignore the local
state. The resulting rule is:

∀ {P} c {Q} ∈ Axioms.
∀((l, s), (l′, s′)) ∈ �c�.∀V ∈ Views. �P ∗ V 	(s) ⇒ �Q ∗ V 	(s′) (2)
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For example, in Fig. 1, of the atomic triples in Axioms is:

{arc()} <|count++;|> {arc() ∗ arc()}

Rule (2) yields a proof term with the following shape for each combination of
this triple and frame V :

∀((l, s), (l′, s′)) ∈ �count++�.∀V ∈ Views. �arc() ∗ V 	(s) ⇒ �arc() ∗ arc() ∗ V 	(s′)

3.4 Integrating Local State

Rule (2) is not sufficient for the ARC proof in Fig. 1. First, the view atom
countCopy(c) refers to a local variable c, not a value. Second, the view arc()
is defined using the iterator variable n. Finally, we need the ability to choose
whether atoms appear in a view based on local conditions to encode assertions
such as {| if (f) { false } else { arc() } |}.

To incorporate these local-state properties into the rule, we introduce syn-
tactic view expressions, with the following syntax:

P :: = emp | (B → a[n](e)) ∗ P

View expressions are used to encode Starling’s assertion syntax. Each view
expression P is a ∗-composition of atom expressions. These have a name a, a list e
of integer or boolean argument expressions, an integer iterator expression n, and
a boolean guard expression B. The argument, iterator, and guard expressions
are all interpreted in the local state.

To map a view expression to a view, we must interpret its local-state expres-
sions. Given a local state l and expression X, we write l(X) for the value of X in
l. Using this, we define a function �−�l which maps from view expressions into
views:2

�emp�l � ∅
�B → a[n](e) ∗ P �l � �P �l ∪m

{

{a(l(e)) �→ l(n)} if l(B)
∅ otherwise

Here, the empty view expression maps to an empty multiset, i.e. the unit
plain view. Other view expressions map to the appropriate view atoms, dictated
by the values of the local-state expressions. The argument expressions dictate
the values of the view atom’s arguments. The guard expression controls whether
any view atoms are created, and the iterator expression dictates the number of
instances of the view atom.

2 Note that we have a composition operator ∗ and unit emp in both view expressions
and plain views. This definition links the two levels: to avoid confusion here, for
plain views we use their semantic definitions ∪m and ∅.
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To integrate this into our core proof rule, we amend Axioms so that pre- and
post-conditions are view expressions, not plain views. This means that they must
be interpreted by the semantic function �−�l. Our modified rule is as follows:

∀ {P} c {Q} ∈ Axioms.
∀((l, s), (l′, s′)) ∈ �c�.∀V ∈ Views. ��P �l ∗ V 	(s) ⇒ ��Q�l′ ∗ V 	(s′) (3)

3.5 Context Reduction

The quantification ∀V over context views means that Rule (3) cannot be used
directly for automated verification. As two smaller views can be composed into
a larger one, there are arbitrarily many possible values of V , and by default we
must consider them all.

Other logics allow a degree of context reduction here. For example, in
Owicki-Gries, if two threads separately assert F1 and F2, and each is preserved,
we need not consider the context F1 ∧F2. This means we can validate our proof
outline for an unbounded number of threads by considering a finite set of entail-
ments.

We cannot use this simple context reduction, because in Views any context
may contribute information not represented in its sub-views. This generality is
desirable – it is what gives our proof system its power. We can preserve it while
gaining context reduction by defining reification in a particular way.

Defining Function. The first restriction on reification is we only consider func-
tions where the reification of a composite view implies the conjunction of its
sub-view reifications. In other words, view composition cannot lose information,
which lets us avoid considering sub-views of composite views. More formally, we
require that for all views, �P ∗ Q	 ⇒ �P 	 ∧ �Q	.

The second restriction is that we bound the set of views that can contribute
information to the reification. Intuitively, this means that we only need to con-
sider these defining sub-views in our proof rule. To enforce this, we require that
the reification function is derived from a syntactic defining function.

In a Starling proof, the defining function is given precisely by the constraints.
For example, in Fig. 1 we have:

constraint countCopy(m) * countCopy(n) -> (m != 1) || (n != 1);

On the left we have a view pattern countCopy(m) * countCopy(n), while
on the right we have a formula giving the meaning for this pattern.

View patterns allow a definition to match many different views with similar
shapes. A view pattern r has the syntax:

r :: = emp | a[n](x) ∗ r

A pattern is either emp, or a ∗-composition of pattern atoms. Each atom has
a name a, variable arguments x which bind to the arguments of a view atom,
and an iterator variable n which records the number of view atoms matched.
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A definition is then a tuple (y, r, p) where, r is a view pattern, p is a formula
of the underlying theory, and y is a set of free variables used in the definition.
In the example constraint above, y is the set of variables {m,n}, the pattern r
is countCopy[1](m) ∗ countCopy[1](n), and the formula p is (m �= 1) ∨ (n �= 1).

A defining function D is then a finite set of definitions (derived from the
constraints in the proof). Using such a D, we can then induce a reification
function where only definitions contribute information. The reification of a view-
expression V , for a shared state s, is the conjunction of all the definitions that
match some sub-view of V .

�V 	(s) �
∧

(y,r,p)∈D

∀̂y. r ⊆m V =⇒ p(s)

We write r ⊆m V (using multiset subset) to indicate that r is a sub-view of
V , meaning there is a pattern match.

A pattern may be matched under any instantiations of its free variables y. We
express this using the special quantification ∀̂y. Given a formula X that includes
r and p, ∀̂y.X is shorthand for quantifying over all possible assignments to y,
and substituting in r and p. This has the effect of converting r into a plain view.
Many theories, such as SMT, can natively handle the ∀̂y construction without
further expansion.

Fig. 3. Derivation of Rule (4), with outer quantifiers elided.

Rule Context Reduction. Using this definition, we can modify Rule (3) to reduce
the contexts we consider to just those in the defining function.
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First we introduce two lemmas. The first lemma (reification monotone) states
that the reifications of larger views are more restrictive than those of smaller
views. This justifies us considering only defining views in the premise of the
proof rule, because any larger context will be more restrictive.

Lemma 1. (Reification monotone). V1 ⊆m V2 =⇒ (∀s.�V2	(s) ⇒ �V1	(s))
The second lemma (view adjoint) defines the relationship between multiset

union ∪m, multiset subset ⊆m, and multiset minus \m. We use \m in our new
rule to construct a ‘weakest context’, analogous to a weakest precondition.

Lemma 2. (View adjoint). (V1 \m V2) ⊆m V3 =⇒ V1 ⊆m (V2 ∪m V3)

Now we take Rule (3) and (eliding the two outer quantifiers) rewrite it as
shown in Fig. 3. This at last gives us Starling’s core proof rule:

∀ {P} c {Q} ∈ Axioms.∀((l, s), (l′, s′)) ∈ �c�.

∀(y, r, p) ∈ D. ∀̂y. ��P �l ∪m (r \m �Q�l′)	(s) ⇒ p(s′)
(4)

This is the rule that we use to generate verification conditions from Starling
input proofs such as Fig. 1. The atomic steps of the program form the set Axioms;
the built-in semantics of commands specify �c�; and the constraints specify the
defining function D and the reification �−	. The significant advantage of this rule
is that, rather than quantify over an infinite set of context views, it quantifies
only over finite sets, and therefore generates a finite set of proof terms.

Consider the arc() proof term we examined in Sect. 3.3. If rather than using
Rule (2), we apply our new rule, we get the following outcome:

∀((l, s), (l′, s′)) ∈ �count++�.

∀(y, r, p) ∈ D. ∀̂y.��arc()�l ∪m (r \m �arc() ∗ arc()�l′)	(s) ⇒ p(s′)

3.6 Finite Pattern Matching

Rule (4) gives us a finite set of proof terms. However, we must also translate
each term into finitely many verification conditions. The key issue is ensuring
that the number of pattern matches in each reification is finite.

Most cases of pattern matching are trivially finite, but iterated views require
careful treatment. An iterated view expression B → a[n](y) can produce n many
subviews. As a result, if a view pattern r and view V are both iterated, there
may be unboundedly many valid distinct matches (for i = 1, 2, . . .).

To solve this, a definition (y, r, p) where p is dependent on an iterator n must
satisfy the following downclosure properties:

�emp	(s) =⇒ p[0/n](s) (base downclosure)

∀x ∈ Z
+.p[x/n](s) =⇒ p[x − 1/n](s) (inductive downclosure)
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These properties let us just consider the largest iterator value when construct-
ing pattern matches. Our tool checks downclosure as an extra proof obligation.

A further subtlety is that iterated definitions can match against combinations
of atoms when they can be made equal through parameter equality. For example,
A[n](x) matches (B1 → A[i](y)) ∗ (B2 → A[j](z)) to form ((B1 ∧ B2 ∧ y = z) →
A[i + j](y)). We can solve this by expanding out the equalities as if they are
separate view atoms before matching – this does not change the view’s meaning.

4 SMT Back-End

We now have a proof outline for the ARC (Sect. 2) and a proof rule to convert it
into verification conditions (Sect. 3). We now show how to verify these conditions
using an SMT solver – in our case, Z3 [5]. To do this, we must convert the defining
function, multiset minus, and command semantics into forms supported by Z3.

Definition Quantification. We begin by eliminating the defining function. Con-
sider the following term we generated from our running example at the end of
Sect. 3.5:

∀((l, s), (l′, s′)) ∈ �count++�.

∀(y, r, p) ∈ D. ∀̂y.��arc()�l ∪m (r \m �arc() ∗ arc()�l′)	(s) ⇒ p(s′)

As the defining function D is bounded, we can expand the quantification into
a finite set of terms. For example, for the pattern arc[n](), we get the following
term:

∀((l, s), (l′, s′)) ∈ �count++�.∀n.
��arc()�l ∪m (�arc[n]()�l′ \m �arc() ∗ arc()�l′)	(s)

⇒ (n > 0 ⇒ ¬free ∧ n ≤ count)(s′)

We get this by substituting the view pattern into the left of the implication
in place of r, and the corresponding formula into the right in place of p. We also
eliminate the ∀̂y by quantifying over the single variable n that is bound in y.
For simplicity later, we treat r as a view expression over l′.

Multiset Minus. We next eliminate multiset minus. We can easily reduce our
proof term so that all instances of \m have the following shape:

�B1 → a[n1](y1)) ∗ P �l′ \m �B2 → a[n2](y2)�l′

We eliminate this shape by case-splitting on the relationship between B1

and B2, n1 and n2, and y1 and y2. The main subtlety is that some, but not all
instances in the iterator a[n1] may be subtracted, i.e. we may be left with the
iterator a[n1 − n2]. If we are left with anything on the right of the \m, we then
apply the simplification step to the remainder formula P .
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In our example, subtracting �arc()∗arc()�l′ from �arc[n]()�l′ leaves n−2 copies
of arc(). If n ≤ 2, nothing is left: we express this as a guarded view. The multiset
minus rewrite yields the following term:

∀((l, s), (l′, s′)) ∈ �count++�.∀n.
��arc()�l ∪m �(n > 2 → arc[n − 2]())�l′	 ⇒ (n > 0 ⇒ ¬free ∧ n ≤ count)(s′)

Commands as Predicates. To eliminate the command, we recast it as a boolean
predicate over pre- and post-states. To do so, we instantiate two copies of each
variable: one set for (l, s), and another (primed) set for (l′, s′). We conjoin this
command predicate into the proof term, replacing the outer quantification with
implicit ones over the variable sets. Expanding out the reification and the local-
state interpretations, and ensuring we handle the subtleties in Sect. 3.6, we get:

⎛

⎜

⎜

⎝

count′ = count + 1 ∧ free′ = free ∧ c′ = c
∧ (1 > 0 ⇒ ¬free ∧ 1 ≤ count)
∧ (n > 2 ⇒ (n − 1 > 0 ⇒ ¬free ∧ n − 1 ≤ count))
∧ (n > 2 ⇒ (n − 2 > 0 ⇒ ¬free ∧ n − 2 ≤ count))

⎞

⎟

⎟

⎠

=⇒ (n > 0 ⇒ ¬free′ ∧ n ≤ count′)

SMT Term. Finally, we negate the outer implication for each condition, so Z3
tries to find counter-example instantiations for the condition’s variables. We can
also simplify the term. For example, we remove the n − 2 case, as it is implied
by the n−1 case. The resulting term, in the SMT-LIB language accepted by Z3,
is:

(and (= count’ (+ count 1)) (= free’ free) (= c’ c) (not free) (<= 1 count)

(=> (> n 2) (<= (- n 1) count))

(not (=> (> n 0) (and (not free’) (<= n count’)))))

5 GRASShopper Back-End

For heap-based programs like the ARC in Fig. 2, we target the GRASShopper
solver [20] rather than Z3. GRASShopper is a separation-logic solver, but its
underlying model is based on sets of heap locations and reachability properties
over sets. For example, the following GRASShopper predicate asserts that the
set of locations Footprint contains a list with head x and tail y:

predicate list_segment(Footprint: Set<Node>, x: Node, y: Node) {

acc(Footprint) &*&

Footprint = {z: Node :: Btwn(next,x,z,y)}

}

Here, acc(Footprint) is a spatial assertion claiming ownership of the
locations in Footprint. The Btwn(next,x,z,y) predicate asserts that z is
reachable between x and y by following the next field – in other words,



Starling: Lightweight Concurrency Verification with Views 559

z is in the list starting at x and ending at y. The set comprehension
{z: Node:: Btwn(next,x,z,y)} therefore contains the set of locations in the
list.

Most of the pipeline for producing GRASShopper proofs is similar to the
SMT case. However, the presence of a heap model causes some differences. Sup-
pose we try to model the allocated ARC equivalent of our previous working
example,

{arc(x)} <| count++; |> {arc(x) ∗ arc(x)}

Given a context of arc(x) ∗ arc(x) (that is, the same x as in the local state of
the thread), our translation would give the following in pseudo-SMT format:

(and %{ [|x|].count := [|x|].count + 1; }

%{ [|x|] in ArcFoot && 1 <= [|x|].count }

(=> (> n 2) (and %{ [|x|] in ArcFoot } (<= (- n 1) %{ [|x|].count })))

(not (=> (> n 0) (and %{ [|x|] in ArcFoot } (<= n %{ [|x|].count })))))

As we cannot discharge this term using SMT, we convert it into a
GRASShopper procedure. Input and output variables are represented by argu-
ments to the procedure. The command becomes the procedure body, and the
left- and right-hand sides of the proof rule body become requires and ensures
clauses.

Both the requires and ensures clause existentially quantify over a footprint
set representing the whole heap – in the ARC, this is the ArcFoot set. This allows
predicates to require access to the footprint, represented by acc(ArcFoot), and
to conjoin constraints on this shared footprint arising from the views.

In general, it would not be sound to introduce an arbitrary existential to
the consequent side of the term. The problem is that existential might be wit-
nessed differently across different terms (see the derivation in Sect. 3). However,
our encoding into GRASShopper is sound, because GRASShopper will always
witness the footprint the same way, as the set of all available heap locations.

With this translation, the above pseudo-SMT query becomes:

procedure Example (n: Int, x: ArcNode)

requires exists ArcFoot:Set<ArcNode> :: (

acc(ArcFoot) &*&

((x in ArcFoot && 1 <= x.count) &&

(n <= 2 || (x in ArcFoot && n <= x.count)))

)

ensures exists ArcFoot:Set<ArcNode> :: (

acc(ArcFoot) &*&

(n <= 0 || (x in ArcFoot && n <= x.count))

)

{ x.count := x.count + 1; }
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In some cases we need to model the mutation of variables. To do this, we
declare fresh GRASShopper variables in the procedure body, and connect them
to the input and output variables by assertion.

5.1 Example: CLH Queue Lock

GRASShopper’s support for dynamic data-structures allows us to target much
more complex algorithms than the ARC. In this section we verify the queue-
based CLH lock [16], which also demonstrates a subtle ownership-transfer pat-
tern between threads. For space reasons, we give the main proof in AppendixB,
and here only explain the key details.

The code and inline views are given in Fig. 4. In the CLH lock, each partic-
ipating thread owns a single node. To contend for the lock, a thread adds its
own node to the queue, and waits on its predecessor. Releasing the lock means
setting the node’s lock flag to false. Once the predecessor is released, the thread
can take hold of the lock.

This protocol is reflected in the views in Fig. 4. A node starts life dormant,
i.e. not on the queue. It is then made active when its lock flag is set, and then
is queued. Once the algorithm establishes that the node is at the end of the
queue, it becomes locked. Finally, once the lock is released the node leaves the
queue, and it becomes dormant again.

1 method lock() {

2 {| dormant(mynode) |}

3 <| %{ [|mynode|].lock := true }; |>

4 {| active(mynode) |}

5 <| mypred = tail; tail = mynode;

6 %{[|tail|].pred := [|mypred|]}; |>

7 {| queued(mynode, mypred) |}

8 do {

9 {| queued(mynode, mypred) |}

10 <| test = %{ [|mypred|].lock }; |>

11 {| if (test) {queued(mynode, mypred)}

12 else {locked(mynode, mypred)} |}

13 } while (test);

14 {| locked(mynode, mypred) |}

15 }

1 method unlock() {

2 {| locked(mynode, mypred) |}

3 <| %{ [|mynode|].lock := false };

4 %{ [|mynode|].pred := null };

5 head = mynode; |>

6 {| dormant(mypred) |}

7 mynode = mypred;

8 {| dormant(mynode) |}

9 }

Fig. 4. CLH queue-based lock algorithm. Note that the head pointer and pred field
are ghost code necessary to verify the algorithm.

The key property of the CLH lock (and any lock) is mutual exclusion: each
node is held exclusively, and the lock as a whole can only be held by one thread.
In our approach, we can specify this using constraints, for example:

constraint queued(a, ap) * queued(b, bp) -> a != b;

constraint locked(a, ap) * locked(b, bp) -> false;
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The queue data-structure is similarly defined by constraints. For exam-
ple the locked() atom is defined using GRASShopper assertions similar to the
list segment predicate above.

constraint locked(node, pred) -> %{

[|node|] in Foot && [|pred|] in Foot

&& Btwn(pred, [|tail|], [|node|], [|head|])

&& [|node|].pred == [|pred|] && [|pred|] == [|head|] };

The most subtle reasoning step happens in lines 2–6 of unlock in Fig. 4, when
the thread releases the lock. As some other thread may be waiting on its current
node, it cannot be reused immediately. Instead the thread takes ownership of its
dormant predecessor. Thus threads always have a single exclusively-held node,
but the exact node held varies over time.

This ownership transfer is reflected in the proof in Fig. 4 and the mutual
exclusion constraints above. The terms passed to GRASShopper precisely encode
the required properties, even though GRASShopper itself cannot reason about
ownership transfer. Other reasoning approaches would capture this through
regions or shared protocols: we encode it through views.

6 Examples and Performance Results

We have tested Starling on a range of examples: the ARC algorithm discussed
in Sect. 2; a standard compare-and-swap spinlock; a ticket-based FIFO lock, as
used in Linux [2]; a reader-writer lock which combines the classic Courtois et al.
algorithm [3] with tickets; Peterson’s algorithm; the CLH queue-lock discussed in
Sect. 5 [16]; and a lock-coupling list algorithm previously verified by Vafeiadis [26]
(note we verify memory safety, not linearizability). For several of these we have
verified both a static version encoded in shared variables (using SMT) and a
version allocated on the heap (using GRASShopper).

These algorithm are small in size, but all are challenging to verify, and
each demonstrates an aspect of Starling’s reasoning. Verifying the ARC example
would typically require a primitive notion of “permissions” in separation logic –
Starling can directly handle it without resorting to new metatheory. The CLH
lock has an implied protocol between threads that performs ownership transfer
of the node from one thread to the next, again handled directly by the theory.
The other synchronisation algorithms similarly involve subtle protocols between
threads that, in other reasoning systems, would need auxiliary proof constructs.
The lock-coupling example shows that we can reason about complex fine-grained
data-structures where the protocol is entwined with the list nodes.

Figure 5 gives performance statistics for our examples. From left to right
we give statistics for: the total lines of input code and proof (including auxil-
iary GRASShopper code); the approximate number of which are proof annota-
tions; the lines of generated GRASShopper output; the total number of proof
terms generated; the number of those successfully discharged using SMT/Z3
(the remainder are sent to GRASShopper); the total proof time (excluding
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SMT/Z3:

ARC (static) 52 - 19 - 40 40 1.62 1.55 0.08 - 118 -
Ticket lock (static) 47 - 16 - 18 18 1.49 1.44 0.05 - 94 -
Spinlock (static) 35 - 10 - 12 12 1.51 1.47 0.04 - 87 -
Reader/writer lock 109 - 45 - 160 160 1.85 1.67 0.19 - 192 -
Peterson’s algo. 94 - 27 - 72 72 2.35 2.05 0.30 - 136 -

GRASShopper:

ARC (alloc) 59 13 32 482 20 5 1.55 1.54 0.02 1.56 92 10.2
Ticket lock (alloc) 59 80 104 1054 66 30 1.48 1.46 0.02 3.64 87 10.8
Spin lock (alloc) 54 18 38 689 56 31 1.57 1.56 0.02 2.45 88 10.6
CLH queue-lock 124 10 58 1407 50 21 1.47 1.45 0.02 3.87 84 11.3
Lock-coupling list 79 118 154 5019 240 116 1.96 1.94 0.02 35.31 96 30.2

Fig. 5. Benchmarks for example algorithms.

GRASShopper); of that time, the total spent on the tool itself, and on SMT/Z3;
the total memory in the .NET runtime working set at the end of the proof,
in mebibytes; and the average maximum resident set size over 3 runs of
GRASShopper on the output from Starling, in mebibytes (these loosely approx-
imate the total memory used).

Times reported are the average of 3 runs. Benchmarks were run on a 2016
series MacBook Pro, with 8 GB RAM and a 2.9 GHz dual-core Intel Core i5.

7 Related Work

Our approach builds on Views [6], and thus is part of the family of logics
descended from Concurrent Separation Logic [18]. These logics all use separat-
ing conjunction to reason about distinct threads, and many of these logics have
introduced auxiliary constructs to assist with reasoning. For example, Svendsen
and Birkedal’s iCAP [24] combines reasoning about interference (derived from
Rely-Guarantee [14]), abstraction through abstract predicates, a rich system of
protocols based on capabilities, and higher-order propositions. Other significant
logics include CaReSL [25], TaDA [22], FCSL [17], and others – each comes with
a different collection of auxiliary constructs.

As discussed in Sect. 3, our approach also has similarities to Owicki-Gries
reasoning [19]. In Owicki-Gries, many kinds of interaction between threads need
to be encoded through auxiliary variables. Views allow us to capture these inter-
actions directly in a more intuitive style.
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Starling inherits much of the generality of the Views framework – see [6]
for encodings of multiple previous logics. We can encode many of the auxiliary
proof constructs used in other logics. For example, Boyland-style fractional per-
missions [1] can be encoded by a view with a permission-value argument, which
can then be split and joined by entailment. iCAP-style protocols can be encoded
by making each protocol state into a view, and using constraints to enforce
mutual exclusion between these state-views.

A few CSL-style logics have automated tool support. FCSL [17] and Ver-
ifast [13] both support automated proof-checking, albeit with a considerable
annotation burden as all steps must be given explicitly. SmallfootRG [26] sup-
ports proof-checking for the RGsep logic, but requires annotations of invariants
and rely-conditions – in our system these are defined implicitly by the con-
straints.

Caper [7] is the tool most similar to ours. It supports reasoning about func-
tional specifications that our tool cannot presently handle – for example that an
element is correctly inserted into a bag. However, Caper’s logic is built on auxil-
iary guard algebras, shared regions, and actions. It is therefore significantly more
complex than our approach both in reasoning and in metatheory. Caper uses Z3,
as do we, but its heap reasoning is custom-built, and we are uncertain whether
it could verify an example of the complexity of the CLH lock or lock-coupling
list. We handle these examples using the GRASShopper heap solver [20], and
our approach is designed to be generic in the choice of back-end solver.

We have not undertaken a precise comparison, but we believe for our heap-
based examples, all competing tools would require significantly more annota-
tions. For example, the CLH lock is our most challenging algorithm: in Verifast,
its code and proof require 343 lines, while Starling requires 134 lines.3

Several other tools share similarities with our approach. VCC [4] is a verifier
based on Z3 which has been used to verify large-scale concurrent C programs. In
VCC, concepts such as permission and ownership are encoded through auxiliary
state. Our approach encodes these properties through view interactions.

QED [9] is a refinement-based approach to verification: concurrent programs
are related to their atomic specifications by a series of sound refinement steps.
We are hopeful that our approach could be combined with this style of reasoning
as well as CSL-style program logic.

Our SMT/Z3 back-end has similarities to Threader [11], and unlike our tool,
Threader can infer invariants using a Horn-clause solver. However, it only targets
shared-variable algorithms – we can handle heap-based algorithms. Invariant
inference in our approach is a topic of future work.

There is a lot of work on model-checking concurrent systems – e.g. [21,27]. In
model-checking terms we require significant annotation, but our context reduc-
tion means that our proofs apply to an unbounded number of threads, context
switches and unrolling of loops.

3 https://github.com/verifast/verifast/blob/master/examples/clhlock/clhlock.c,
accessed May 2017.

https://github.com/verifast/verifast/blob/master/examples/clhlock/clhlock.c
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8 Conclusions

We have presented a new logic-based approach to verifying concurrent programs.
Our approach is lightweight, automated, and based on a sound bedrock of exist-
ing theory. Because we build on the generic Views framework, we believe our
approach could be reused by other concurrent logics as a way to target sequen-
tial solvers.

One next step will be invariant inference for Starling. Our proof terms are
already in quasi-Horn clause form, and preliminary experiments suggest we can
infer view definitions using an off-the-shelf solver such as HSF [10]. We also plan
to extend Starling with modular reasoning, meaning that proofs of libraries and
clients can be performed separately, as in iCAP [24]. Finally, we plan to extend
Starling to prove algorithm linearizability rather than pre-post specifications, as
in Vafeiadis [26] and Liang and Feng [15].

A Starling Assertion and Command Languages

We define the syntax of the Starling assertion and command languages using the
grammars below. We assume the existence of grammars for <lvalue> (assignable
locations), <expr> (expressions), and <identifier> (valid identifiers).

A.1 Assertions

<assertion> ::= <assertion-item>

| <assertion-item> "*" <assertion>

<assertion-item> ::= "emp"

| "false"

| <identifier> "(" <arglist> ")"

| "local" "{" <expr> "}"

| "if" "(" <expr> ")" "{" <assertion> "}" <assertion-else>

| "(" <assertion> ")"

<assertion-else> ::= "" | "else" "{" <assertion> "}"

<arglist> ::= "" | <arglist-1>

<arglist-1> ::= <expr> | <expr> "," <arglist-1>

A.2 Commands

Atomic commands, i.e. those within <| angle braces |>, are described by
<atomic-cmds>, and may refer to thread-local and shared state variables in
their expressions. Local commands are described by <local-cmds>, and may
only refer to thread-local variables.
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<atomic-cmds> ::= "" | <atomic-cmd> <atomic-cmds>

<atomic-cmd> ::= <primitive-cmd> ";"

| "assert" "(" <expr> ")" ";"

| "if" "(" <expr> ")" "{" <atomic-cmds> "}" <atomic-else>

| "CAS" "(" <lvalue> "," <lvalue> ","<expr> ")" ";"

<atomic-else> ::= "" | "else" "{" <atomic-cmds> "}"

<local-cmds> ::= "" | <primitive-cmd> <local-cmds>

<primitive-cmd> ::= <lvalue> "=" <expr>

| <lvalue> "=" <lvalue> <postfix>

| "havoc" <lvalue>

| <lvalue> <postfix>

| "assume" "(" <expr> ")"

| ""

<postfix> ::= "++" | "--"

B The CLH Lock Proof

1 typedef int Node;

2

3 // Shared pointers to nodes

4 shared Node tail;

5 shared Node head; // (Ghost code)

6

7 // Thread-local pointers to nodes

8 thread Node mynode, mypred;

9 thread bool test; // Used when trying to take the lock.

10

11 // Views

12 view dormant(Node node);

13 view active(Node node);

14 view queued(Node node, Node pred);

15 view locked(Node node, Node pred);

16

17 // Goal constraint

18 constraint locked(a, ap) * locked(b, bp) -> false;

19

20 // Other constraints

21 constraint emp -> %{

22 [|head|] in Foot

23 && [|tail|] in Foot

24 && Reach(pred, [|tail|], [|head|])

25 && ![|head|].lock

26 && (forall x : Node ::
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27 (x in Foot && x.pred != null) ==> x.lock)

28 && (forall x : Node ::

29 (x in Foot && Reach(pred, [|tail|], x) && !x.lock)

30 ==> x == [|head|])

31 };

32

33 constraint dormant(node) -> %{

34 [|node|] in Foot && [|node|] != [|head|] && [|node|].pred == null

35 && [|node|].lock == false

36 };

37 constraint active(node) -> %{

38 [|node|] in Foot && [|node|] != [|head|] && [|node|].pred == null

39 && [|node|].lock == true

40 };

41

42 constraint queued(node, pred) -> %{

43 [|node|] in Foot

44 && [|pred|] in Foot

45 && [|node|].pred == [|pred|]

46 && [|node|].lock

47 && Btwn(pred, [|tail|], [|node|], [|head|])

48 };

49 constraint locked(node, pred) -> %{

50 [|node|] in Foot

51 && [|pred|] in Foot

52 && [|node|].pred == [|pred|]

53 && Btwn(pred, [|tail|], [|node|], [|head|])

54 && [|pred|] == [|head|]

55 };

56

57 constraint dormant(a) * dormant(b) -> a != b;

58 constraint active(a) * active(b) -> a != b;

59 constraint queued(a, ap) * queued(b, bp) -> a != b;

60 constraint queued(a, ap) * locked(b, bp) -> a != b;

61

62 // Proof outline

63 method lock() {

64 {| dormant(mynode) |}

65 <| %{ [|mynode|].lock := true }; |>

66 {| active(mynode) |}

67 <| mypred = tail; tail = mynode;

68 %{[|tail|].pred := [|mypred|]}; /* Ghost code */ |>

69 {| queued(mynode, mypred) |}

70 do {

71 {| queued(mynode, mypred) |}

72 <| test = %{ [|mypred|].lock }; |>

73 {| if (test) { queued(mynode, mypred) }

74 else { locked(mynode, mypred) } |}

75 } while (test);

76 {| locked(mynode, mypred) |}
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77 }

78

79 method unlock() {

80 {| locked(mynode, mypred) |}

81 <| %{ [|mynode|].lock := false };

82 %{ [|mynode|].pred := null }; head = mynode; /* Ghost code */ |>

83 {| dormant(mypred) |}

84 mynode = mypred;

85 {| dormant(mynode) |}

86 }

The CLH lock proof depends on the following auxiliary definition written in
GRASShopper’s assertion language:

1 struct Node {

2 var lock: Bool;

3 var pred: Node; // Ghost field

4 }
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Abstract. In compositional model checking, the approach is to reason
about the correctness of a system by lifting results obtained in analy-
ses of subsystems to the system-level. The main challenge, however, is
that requirements, in the form of temporal logic formulae, are usually
specified at the system-level, and it is not obvious how to relate these to
subsystem-local behaviour. In this paper, we propose a new approach to
checking regular safety properties, which we call Incremental Counter-
Example Construction (ICC). Its main strong point is that it performs
a series of model checking procedures, and that each one only explores
a small part of the entire state space. This makes ICC an excellent app-
roach in those cases where state space explosion is an issue. Moreover, it
is frequently much faster than traditional explicit-state model checking,
particularly when the model satisfies the verified property, and in most
cases not significantly slower. We explain the technique, and report on
experiments we have conducted using an implementation of ICC, com-
paring the results to those obtained with other approaches.

1 Introduction

Model checking [3] is an automatic technique to verify that a given specification
of a concurrent system meets a particular functional property. The specification
of a concurrent system describes a finite number of components, or processes,
and how these can interact. Model checking involves very time and memory
demanding computations. Most computations rely on state space exploration.
This involves interpreting the specification, resulting in building a graph, or state
space, describing all its potential behaviour.

However, model checking suffers from the state space explosion problem,
meaning that a linear growth of the model tends to lead to an exponential
growth of the corresponding state space. Over the years, a whole range of tech-
niques have been proposed to mitigate this problem. One prominent technique is
compositional model checking [10]. The aim is to break down the model checking
problem into several subproblems, and solve these individually, thereby achieving
a compositional approach.

c© Springer International Publishing AG 2017
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The main challenge in compositional model checking is that on the one hand,
one wishes to reason about the correctness of subsystems or components and lift
those results to the system level, but on the other hand, the functional property
to be checked is usually expressed directly at the system level. Furthermore,
the possible interactions between the components need to be taken into account
when verifying, therefore only checking components in isolation does not suffice.

In this paper, we present a new approach to compositional model checking,
which we call Incremental Counter-Example Construction (ICC). The main idea
is that the system components are placed in a fixed order, and a sequence of
verification checks is performed, each involving a single component M in the
system in the specified order. Furthermore, each check involves a version of the
negation of the functional property ϕ at the relevant level of abstraction, and
a partially built counter-example c. The goal of each check is to extend c with
behaviour of M in such a way that (the abstract version of) ϕ is still violated.
If one is able to extend a counter-example with behaviour of all components in
the system, then a complete counter-example has been successfully constructed.
If extending c fails in some check, ICC backtracks to an earlier check to produce
a new counter-example candidate. Rejected candidates are added to checks as
constraints to prevent them from being proposed again.

The main benefit of ICC is that it is often very memory-efficient; frequently
the individual checks explore state spaces that are orders of magnitude smaller
than the full system state space. For models with sufficiently large state spaces,
we observe that ICC allows us to check those models, while traditional model
checking runs out of memory.

Another benefit is that, while reducing the memory-use, ICC is actually not
significantly slower than traditional, explicit-state model checking. In fact, it is
frequently even much faster, particularly in those cases where individual checks
can quickly discard large parts of the state space.

The structure of the paper is as follows: Sect. 2 presents the preliminaries.
In Sect. 3, the ICC procedure is presented. Optimisations of this algorithm are
discussed in Sect. 4. Then, experimental results are presented in Sect. 5. Related
work is discussed in Sect. 6, and finally, Sect. 7 contains conclusions and pointers
to future work.

2 Preliminaries

Concurrent System Semantics. We capture the formal semantics of single com-
ponents in concurrent systems in Labelled Transition Systems.

Definition 1 (Labelled Transition System). An LTS G is a tuple 〈S, A, T ,
sin〉, with

– S a finite set of states;
– A a set of action labels, not containing the special internal, or hidden, system

action τ ;
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– T ⊆ S × A ∪ {τ} × S a transition relation;
– sin ∈ S the initial state.

An LTS G with accepting states has an additional tuple element FG ⊆ S, which
is called the set of accepting states.

The set A ∪ {τ} is denoted by Aτ . Action labels in A are denoted by a, b, c,
etc., while actions in Aτ are denoted by �. A transition (s, �, s′) ∈ T , or s

�−→ s′

for short, denotes that LTS G can move from state s to state s′ by performing
the �-action. Whenever we want to make explicit that s

�−→ s′ is a transition
of G, we write s

�−→G s′. We call G deterministic iff for all � ∈ A ∪ {τ} and
s, s′ ∈ S, if s

�−→ s′, then there exists no s′′ ∈ S with s′ �= s′′ and also s
�−→ s′′.

The reflexive, transitive closure of τ−→ is indicated by =⇒ .
A path σ = 〈sin �1−→ �2−→· · · �n−→ sn〉 through G of length n is a sequence

of n transitions, starting from the initial state, that all exist in T . We call a
state s ∈ S reachable iff there exists at least one path from sin to s. The trace
described by σ is the sequence of actions w(σ) = 〈�1, . . . , �m〉 ∈ A∗

τ as they
appear in σ. The trace w(σ1) of path σ1 is a prefix of w(σ2) of path σ2 iff w(σ2)
can be obtained by extending w(σ1). A trace v is said to be accepted by LTS G
iff there is at least one path σ through G leading to a state in FG and w(σ) = v.
When relevant, we denote this by v�. We refer to the empty trace with ε.

We write 1..n for the set of integers ranging from 1 to n. A vector v̄ of size
n contains n elements indexed from 1 to n. For all i ∈ 1..n, v̄i represents the ith

element of vector v̄.
LTSs can be combined using parallel composition, for which we use the con-

vention that LTSs must synchronise on common actions, while actions unique
to one LTS represent independent actions. An exception to this is the τ -action:
internal steps of an LTS are not synchronised with those of another.

Definition 2 (Parallel composition). Given two LTSs G1 = 〈S1,A1, T1, s
in
1 〉

and G2 = 〈S2,A2, T2, s
in
2 〉, we say that M = G1 || G2 is the parallel composition

of G1 and G2. Its LTS M = 〈SM,AM, TM, s̄inM〉 is defined as follows:

– s̄inM = 〈sin1 , sin2 〉;
– TM and SM are the smallest relation and set, respectively, satisfying s̄inM ∈

SM and for all s̄ ∈ SM, � ∈ A1 ∪ A2 ∪ {τ}:
• s̄1

�−→1 t ∧ � �∈ A2 =⇒ s̄
�−→M 〈t, s̄2〉 ∧ 〈t, s̄2〉 ∈ SM;

• s̄2
�−→2 t ∧ � �∈ A1 =⇒ s̄

�−→M 〈s̄1, t〉 ∧ 〈s̄1, t〉 ∈ SM;
• s̄1

�−→1 t ∧ s̄2
�−→2 t′ ∧ � �= τ =⇒ s̄

�−→M 〈t, t′〉 ∧ 〈t, t′〉 ∈ SM.
– AM = {a | ∃s̄, s̄′ ∈ SM.s̄

a−→M s̄′} \ {τ}.

Besides the parallel composition as defined in Definition 2, we also use a
special parallel composition operator |||, which is identical to || except for the
(non-)synchronisation of τ -actions: contrary to ||, ||| also forces synchronisation
between LTSs on τ -actions. For that reason, we refer to the latter form of parallel
composition as fully synchronised parallel composition.
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Encoding and Verifying Regular Safety Properties. A safety property ϕ is a
linear time property that describes which infinite traces in A∗ are considered
correct. Therefore, its negation ¬ϕ describes which traces violate ϕ by listing all
finite bad prefixes of those traces. If this set of bad prefixes constitutes a regular
language, then ϕ is said to be regular [3]. The negation ¬ϕ can be encoded in
an LTS with accepting states P¬ϕ = 〈SP ,AP , TP , sinP ,FP〉.

Verifying whether a system M, consisting of n components of the form Mi =
〈Si,Ai, Ti, s

in
i 〉 (i ∈ 1..n) satisfies a regular safety property ϕ boils down to

checking whether in the parallel composition M1 || · · · || Mn || P¬ϕ a system
state 〈s1, . . . , sn, s′〉 is reachable from 〈sin1 , . . . , sinn , sinP 〉 in which s′ ∈ FP . For
convenience, we also call such a system state an accepting state. In fact, in
this paper, we use a generalised version of this definition of accepting state:
in a parallel composition of LTSs G1 || · · · || Gn, we say that a system state
〈s1, . . . , sn〉 is accepting iff for all Gi containing accepting states, i.e., FGi

�= ∅,
we have that si ∈ FGi

.

Trace Equivalences. As equivalence relations between LTSs, we use both trace
equivalence and weak trace equivalence [7]. In contrast to trace equivalence, weak
trace equivalence is sensitive to internal actions. These equivalences can be used
to minimise an LTS, i.e., obtain a reduced LTS in which all the (visible) traces
are preserved that are present in the original one. To define these equivalences,
we first define for an LTS with accepting states G = 〈S,A, T , sin,F〉 the set of
traces and weak traces of a state s ∈ S. Sets A∪{�} and Aτ ∪{�} are denoted
by A� and Aτ,�, respectively.

Definition 3 (Traces of a state). For a state s ∈ S, Traces(s) is the minimal
set satisfying:

– ε ∈ Traces(s);
– � ∈ Traces(s) iff s ∈ F ;
– For all � ∈ Aτ , σ ∈ A∗

τ,�, we have �σ ∈ Traces(s) iff there exists an s′ ∈ S
such that s

�−→ s′ and σ ∈ Traces(s′).

Definition 4 (Weak traces of a state). For a state s ∈ S, WTraces(s) is the
minimal set satisfying:

– ε ∈ WTraces(s);
– � ∈ WTraces(s) iff s ∈ F ;
– For all a ∈ A, σ ∈ A∗

�, we have aσ ∈ WTraces(s) iff there exists an s′ ∈ S
such that s

a−→ s′ and σ ∈ WTraces(s′);
– For all σ ∈ A∗

�, we have σ ∈ WTraces(s) iff there exists an s′ ∈ S such that
s

τ−→ s′ and σ ∈ WTraces(s′).

Definition 5 (Trace equivalence). States s, s′ are trace equivalent iff

Traces(s) = Traces(s′)
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Definition 6 (Weak trace equivalence). States s, s′ are weak trace equiv-
alent iff

WTraces(s) = WTraces(s′)

We say that two LTSs G1 = 〈S1,A1, T1, s
in
1 ,F1〉 and G2 = 〈S2,A2, T2, s

in
2 ,F2〉

are trace equivalent and weak trace equivalent iff their initial states sin1 and
sin2 are trace equivalent and weak trace equivalent, respectively. Finally, given
an LTS G = 〈S,A, T , sin,F〉, we refer with Traces(G) and WTraces(G) to
Traces(sin) and WTraces(sin), respectively.

It is known that linear-time properties are preserved by trace equivalence [3],
i.e., if an LTS G1 satisfies a linear-time property ϕ and G1 is trace equivalent to
G2, then also G2 satisfies ϕ. The same holds for weak trace equivalence, as long
as ϕ does not refer to the internal action τ . The standard powerset construc-
tion algorithm to determinise finite automata [40] can be used to reduce LTSs
w.r.t. trace and weak trace equivalence. Although this algorithm has worst-case
complexity O(2|S|), reducing small LTSs of system components can still be done
relatively fast. As an intermediate step, one could consider first reducing the LTS
w.r.t. branching bisimulation, which can be done in O(|T |·(log |A|+log |S|)) [26].

Abstraction. To raise the abstraction level of an LTS, we define action hiding of
an LTS w.r.t. a set of actions A.

Definition 7 (Action hiding). Given an LTS G = 〈S,A, T , sin〉, we define
the LTS G′ = 〈S,A′, T ′, sin〉 resulting from action hiding G w.r.t. A as follows:

– A′ = A ∩ A;
– T ′ = {(s, �, s′) | (s, �, s′) ∈ T ∧ � ∈ A} ∪ {(s, τ, s′) | (s, �, s′) ∈ T ∧ � �∈ A}.

With G↓A, we denote the LTS resulting from first action hiding G w.r.t.
A, and subsequently applying weak trace equivalence reduction on the action
hidden LTS. Similarly, with G↓ we refer to the LTS obtained by applying trace
equivalence reduction on G. Note that G↓ is in general not equivalent to G↓A, in
particular when τ -transitions are present in G.

3 Incremental Counter-Example Construction

In this section, we introduce the basic approach to compositionally verify
whether a system M satisfies a regular safety property ϕ via ICC.

3.1 The ICC Algorithm

We first illustrate how the algorithm works by using an example.

Example. Consider the two LTSs and the property LTS depicted in Fig. 1, where
the doubly lined state denotes an accepting state, and states with a detached
incoming arrow are initial. For this system, the ICC procedure works as follows:
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Fig. 1. Example with two LTSs and the property “after an odd amount of a’s no b can
be performed”. The doubly-lined state is an accepting state.

first, we place LTSs M1 and M2 in some order, say the order in which they are
depicted in Fig. 1. Then, we analyse the parallel composition of the first LTS and
an abstract version of the property LTS w.r.t. the action set A1: M1 || P¬ϕ

↓A1 . A
Breadth-First Search exploration of the state space will reach an accepting state
via a path describing the traces ac∗b (it should be noted that the correctness
of ICC does not depend on the exploration strategy). Next, we replace M1

by an LTS L1 with Traces(L1) = {ab�, acb�, accb�, . . .}, include M2 in the
analysis, and consider another abstract version of the property LTS. This means
that we search for a counter-example in L1 || M2 || P¬ϕ

↓A1∪A2 . In this case,
note that since L1 has an accepting state, a system state is accepting iff both
L1 and P¬ϕ

↓A1∪A2 are in accepting states. Also note that the property LTS is
now abstracted w.r.t. actions in both LTSs. In this system, no accepting state is
reachable, therefore we have to go back to M1 || P¬ϕ

↓A1 to find another accepted
trace. Now, we find a path describing the traces cdac∗b, which we use to construct
a new L′

1. Since an accepting state can be reached in L′
1 || M2 || P¬ϕ

↓A1∪A2 ,
we conclude that the property does not hold.

The Li and L′
i referred to in the example above can actually be directly

extracted from the state space that was explored up to the point when the first
accepting state was reached. Consider having to check the parallel composition
of L1 || · · · || Li−1 || Mi || P¬ϕ

↓A1∪...∪Ai
, with i ∈ 1..n. When the state space is

explored, an accepting state is searched on-the-fly, and, once detected, the state
space exploration is terminated. Subsequently, all the traces of component Mi

that are accepted in the state space explored so far, are taken into account to
construct an LTS for the next check. Such an LTS can be constructed as follows
from an LTS G = 〈S,A, T , sin,F〉 representing the state space explored so far,
where F is the singleton set {s}.

1. Remove all states from G from which s cannot be reached. This can be effi-
ciently done by exploring G in the opposite direction, starting from s, and
after doing so, removing all the unreached states. Let us call the resulting
LTS G′.

2. Action hide G′ w.r.t. Ai, thereby only keeping the behaviour of Mi visible. In
order for this to work correctly, it is required that during construction of G,
the explored τ -transitions that originated from Mi have been labelled in such
a way that they can be distinguished from other τ -transitions (for instance
with the label τ ′).

3. Finally, relabel the τ ′-transitions in G′
↓Ai

back to τ -transitions.
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Algorithm 1. Incremental Counter-Example Construction
Require: 〈M1, . . . , Mn〉, P¬ϕ

Ensure: true is returned if M satisfies ϕ, otherwise a counter-example is returned
1: i ← 1
2: while i ≤ n do
3: result ← Checki (= explore L1 || · · · || Li−1 || (Mi ||| Ri↓) || P¬ϕ

↓⋃k∈1..i Ak
)

4: if ¬result then
5: construct LTS Li containing all the accepted traces of Mi in the state space

// New counter-example found, update
6: i ← i + 1 // Go to next Checki

7: else if i = 1 then
8: return true // Property is satisfied
9: else
10: identify the smallest j < i for which Lj caused Checki to not reach an accepting state
11: updatePreviousRestrictions(j) // Update restrictions
12: resetRestrictions(j + 1, i) // Reset restriction LTSs in range [j + 1,i]
13: i ← j // Backtrack to Checkj

14: return counter-example from the final state space

Algorithm 1 presents the basic ICC technique. We iterate over the compo-
nents of the system (lines 1-2), and in each iteration i, we construct a verification
task Check i (line 3). Note that the order here in which the components are con-
sidered coincides with the order in which they appear in the system. Prior to
performing ICC, one can determine a suitable ICC order. For more on this, see
Sect. 4.

Initially, Check1 entails placing LTS M1 in parallel composition with
P¬ϕ

↓A1 , that is, a version of the property LTS in which we have abstracted
away all actions that are not present in M1, and on which we have applied weak
trace equivalence reduction. In addition, we involve a trace equivalence reduced
version of restriction LTS R1. In general, the purpose of restriction LTS Ri is
to enable iterating over the possible traces through Mi. We place Mi in a fully
synchronised parallel composition with Ri↓ (line 3). Every time we have learned
that at least one selected trace through some Mj cannot be part of a counter-
example, we update Rj in such a way, that this trace is no longer accepted
by Rj , and thereby cannot be produced anymore by Mj ||| Rj↓. More on the
restriction LTSs and how updating is done in the next subsection. Initially, Ri

accepts all possible traces that can be produced by Mi.
Verifying whether we can reach an accepting state in (M1 ||| R1↓) || P¬ϕ

↓A1

will produce one of two possible results: the first possibility is that an accepting
state was detected (result = false). In that case, we extract all explored and
accepted behaviour of M1 from the state space explored so far, using the pre-
viously described procedure, which results in an LTS L1 (line 5). After that, we
increment i (line 6).

The second option is that no accepting state was reachable. Then, we may
conclude that M satisfies ϕ, since we are considering an over-approximation
of the behaviour of M1 within the context given by M (parallel composition
with other components can only restrict M1 (Definition 2)). Since after the first
check, we have i = 1, the algorithm returns true and terminates (lines 7-8).
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In iterations i > 1, we construct a verification task Check i by combining
the selected traces L1, . . . ,Li−1 from previous iterations with Mi, Ri and the
property LTS at the right level of abstraction, i.e. P¬ϕ

↓
⋃

k∈1..i Ak
. When perform-

ing Check i, we determine whether the partial counter-example obtained so far
involving M1, . . . ,Mi−1, represented by LTSs L1, . . . ,Li−1, is allowed by Mi.
If so, then again, we extract from the state space explored so far the accepted
traces of Mi, create an LTS Li exactly containing these traces, and increment i
(lines 5-6).

Alternatively, we should identify the smallest j < i for which Lj caused
Check i to not result in finding an accepting state (line 10, we skip lines 7-8 since
i > 1). This can be achieved as follows, performing at most i − 2 subsequent
checks Check ′

1, . . . ,Check ′
i−2, where each check Check ′

l (l ∈ 1..i − 2) is defined
as follows:

Check ′
l = explore L1 || · · · || Ll || (Mi ||| Ri↓) || P¬ϕ

↓
⋃

k∈1..l∪{i} Ak

When performing the checks in the order specified by their indices, then as
soon as one of these checks results in not reaching an accepting state, we have
found the smallest j and can stop this procedure. If all checks result in reaching
an accepting state, then we select j = i − 1. It is important that we find the
smallest j, as opposed to directly selecting i−1, since failure to backtrack as far
as possible up the ICC order of components will result in performing redundant
checks.

Next, we have to reject the current combination of traces L1, . . . ,Li−1, and
we do this using the value of j. Namely, we update the restriction LTS Rj of
Mj in procedure updatePreviousRestrictions (line 11). In this case, instead of
extracting the accepted traces of Mi from the state space explored so far, we
extract a constraint concerning Lj from the state space that resulted either from
the final Check ′

j (if j < i − 1) or from Check i (if j = i − 1). This can be done
using almost the same procedure that is used to extract accepted traces of Mi

(except that we skip step 1, since no accepting state was reached) provided that
the state space was adequately annotated with additional information during
construction. After constructing the constraint, procedure updatePreviousRe-
strictions adds this constraint to Rj . How to extract constraints and update
restriction LTSs is explained in detail in the next section.

Having updated Rj , we reset all restriction LTSs in the range [j +1, i], since
those restrictions were only relevant for the combination of traces L1, . . . ,Li−1

(line 12), and jump back to verification task Check j (line 13).
Finally, if at any moment, i > n, then we have successfully constructed a

complete counter-example. This result is returned at line 14.

3.2 Constraints and Restriction LTSs

Extracting a Constraint LTS. Whenever a check at line 3 of Algorithm1 has
failed to reach an accepting state, and subsequently, the smallest index j has been
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Fig. 2. Example with two LTSs and the property “after an odd amount of a’s no b
can be performed”. The state space is constructed with annotations expressing which
behaviour of L1 is not possible. From the result, a constraint C1 can be constructed.

identified corresponding with an Lj that causes accepting states to be unreach-
able (line 10), we must extract relevant information from the corresponding state
space to update the restriction LTS Rj .

In order to make this possible in the first place, we annotate, while con-
structing, the state space resulting from each check with information regarding
the impossibility to perform behaviour of the component directly preceding com-
ponent Mi, i.e., component Li−1 in the checks Check i at line 3, and Ll in the
checks Check ′

l performed at line 10.
Again consider the example system in Fig. 1. As illustrated in Sect. 3.1, after

the first check, a path is found representing the traces ac∗b. Based on this,
we construct an LTS L1 that accepts exactly these traces. Now, the setup is
as illustrated in Fig. 2, and ICC moves on to the next check, which involves
exploring L1 || (M2 ||| R2↓) || P¬ϕ

↓A1∪A2 . This is a rather straightforward task
in this case, since the outgoing transition from the initial state of L1 cannot
synchronise with behaviour of M2, and hence the exploration is finished. But
instead of only producing a single state with no transitions, we add a special
sink state and a transition from the initial state to that sink state labelled ¬a,
to make explicit that at that point in the exploration, an a-transition of L1 was
not enabled. In general, we annotate each state in a state space in this manner,
and furthermore, we also mark states in which the ‘preceding’ component state
is accepting, but the overall system state is not, with a selfloop labelled ¬accept.

The purpose of doing this is that with the additional information, it is possible
to construct a constraint LTS based on the result of the check. Again consider
the example. Similar to the procedure of extracting accepting traces from a state
space, we first action hide the state space w.r.t. A1 and reduce the outcome w.r.t.
weak trace equivalence. Next, we add a new accepting sink state, and make the
LTS complete w.r.t. A1∪{τ}, by adding transitions from each state s to the sink
state for all labels in A1 ∪ {τ} not occurring already on an outgoing transition
of s (either normally or in negated form) and adding selfloops for all actions
in A1 ∪ {τ} to the sink state. Next, we make all states without a ¬accept-
selfloop accepting, and finally, remove all transitions with a negated label from
the LTS. Note that in the example, the resulting constraint LTS C1 accepts all
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traces except for the traces starting with an a. For convenience, we have labelled
transitions with sets of actions here, to indicate that for every action in the set,
a transition exists from the indicated source state to the indicated target state.

Fig. 3. Initial Ri

Updating a Restriction LTS. For each Mi, we maintain
a restriction LTS Ri to allow iterating over the traces
through Mi. Initially, for each Mi, the structure of Ri

is as illustrated in Fig. 3: there is a single state which is
initial and accepting and it has selfloops for all labels in
A and for τ .

First of all, note that this LTS is deterministic; this is required to prevent
the state space of Mi ||| Ri from becoming very large. When updating Ri with
new constraints, we make sure that Ri remains deterministic. Secondly, note
that the initial Ri does not actually restrict the behaviour of Mi in Mi ||| Ri,
since all traces in (Ai ∪ {τ})∗ are accepted by it.

With this in mind, updating a restriction LTS Ri with a constraint C can be
performed by computing the language intersection [40] of Ri and C, i.e., an R′

i

is constructed such that the language of R′
i (the set of accepted traces) is equal

to the language of Ri intersected with the language of C. In this way, we remove
the bad behaviour that is encoded in C. The intersection of LTSs is defined by
Definition 8.

Definition 8 (Intersection of LTSs with accepting states). Given two
LTSs with accepting states that have a total transition relation G1 = 〈S1, A, T1,
sin1 , F1〉 and G2 = 〈S2,A, T2, s

in
2 ,F2〉 (note that they have the same alphabet),

we call K = G1 ∩ G2 the intersection of G1 and G2. Its LTS is defined as K =
〈S1 × S2,A, TK, 〈sin1 , sin2 〉,FK〉, where:

– TK = {〈s1, s2〉 �−→ 〈s′
1, s

′
2〉 | � ∈ A, s1

�−→T1 s′
1, s2

�−→T2 s′
2};

– FK = {〈s1, s2〉 | s1 ∈ F1, s2 ∈ F2}.

Note that the intersection of G1 and G2 can actually be computed by con-
structing the state space of G1 || G2. By applying trace equivalence reduction on
the resulting LTS, and involving the reduced version in subsequent ICC checks
(see line 3 of Algorithm 1), we restrict state space explosions caused by parallel
composition as much as possible. Furthermore, by our interpretation of accept-
ing system state, note that a system state is only accepting if the involved state
in the corresponding restriction LTS is also accepting, i.e., if the restriction LTS
accepts the trace.

Finally, resetting a restriction LTS, as referred to at line 12 of Algorithm1,
amounts to reverting it to its initial structure. One possible optimisation involves
updating the initial restriction LTSs whenever applicable, such that resetting
a restriction LTS does not always mean that all the learned restrictions are
discarded. For more on this, see Sect. 4.
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3.3 Soundness and Completeness

We provide an informal proof that ICC is both sound and complete. Complete-
ness relies on the fact that the state space is finite-state, and hence from a finite
number of states it is possible to reach an accepting state.

Lemma 1. Algorithm1 is sound and complete: it returns true if and only if
M � φ.

Proof. We split the proof into two parts, one for each direction.

⇒ The result true implies that at some point, Check1 returned true. This value
indicates that no new accepted trace could be generated from (M1 ||| R1↓) ||
P¬ϕ

↓A1 . Since we have tried all traces of M1 that are accepted by P¬ϕ, and
each has been rejected by other checks involving other components, there is
no path in M with a trace accepted by P¬ϕ. Therefore, the property holds
(M � φ).

⇐ M � φ implies that there is no trace accepted by M || P¬ϕ. Therefore,
there is also no trace accepted by M1 || P¬ϕ

↓A1 that is accepted by the
other components. The traces accepted by M1 || P¬ϕ

↓A1 can be captured
in finitely many LTSs L1, L′

1, . . . , since there are only finitely many states
in M1. The traces in each of these LTSs will be rejected by a subsequent
check in ICC. Therefore, after having considered all these LTSs, execution of
Check1 returns true, causing the procedure to return true. ��

4 Optimisations

The basic ICC procedure, as explained in the previous section, is correct, but
its performance in practice highly depends on applying several optimisations.
In this section, we discuss the ones we identified and implemented. Identifying
more opportunities to further optimise ICC remains future work.

Heuristics to Select an Initial Component Order. In Algorithm1, the ICC order
of the components M1, . . . ,Mn is fixed to the order in which they appear in the
system. However, this is not required. In fact, it seems more reasonable to base
such an order on the dependency w.r.t. ϕ. In general, the dependency relation
D can be defined as follows:

D = {(i, j) | i, j ∈ 1..n ∧ Ai ∩ Aj �= ∅}

Relation D can be used to partition the components based on their dependency
distance from P¬ϕ. If we say that P¬ϕ has index n+1 in the combination of M
and P¬ϕ, then we place all components directly related via D to n + 1 in one
equivalence class E1, all components with an index directly related to at least
one of the components in E1 in an equivalence class E2, etc. Then, when choosing
an order, we first select all components from E1, then those from E2, and so on.
Within an equivalence class, a further ordering can be applied, for instance based
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on the number of states in the LTSs, or the number of transitions that require
synchronisation with preceding LTSs in the ICC order. In our implementation,
we currently use relation D and do not try to further order the LTSs in each
class, but we are planning to investigate this further in the future.

Dynamically Changing the ICC Order During Analysis. In Algorithm 1, the ICC
order, once selected, remains fixed during execution of ICC. This is not necessary
for the procedure to be correct. In fact, it may be fruitful to frequently change
the position of components in the order. So far, we have identified two situations
in which changing the order frequently affects the performance of ICC positively.

First of all, consider the situation that after a Check i has returned true, with
i > 1, at line 3 of Algorithm 1, an LTS Lj is identified at line 10 to be rejected.
Just before line 13, in which we move to component Mj to perform the next
check, it may be smart to move Mi in the ICC order to the position just after
Mj , i.e., to position j + 1. Apparently, the behaviour relevant for P¬ϕ of Mj

depends to some extent on the behaviour of Mi, making it likely that the next
traces selected for Mj in Check j , if they have to be rejected, will also be rejected
by Mi.

Second of all, another place where the order can be reconsidered is just before
the next check is performed (line 3 of Algorithm 1). Based on the selected traces
accepted by Li−1 the next component can be selected. For instance, the shortest
trace accepted by Li−1 can be identified, and from the set of components still
to be involved in a check, we select one of the components with the strongest
dependency (in terms of number of actions and/or transitions) on that trace.

In our implementation, we have incorporated both strategies to dynamically
change the order. In the second case, we use the number of actions in the shortest
trace that need to synchronise with a component to select the next component
for a check. Changing the order can also be done in a number of ways; we have
chosen to shift each component at position i + 1 or higher to the right, where
the component ending up at position n + 1 is moved to position i + 1, until the
selected component has ended up at position i + 1. An alternative possibility is
to swap the positions of two components, but in that way, the initially selected
ICC order tends to be erased more quickly.

One final remark about changing the ICC order of components: in order not
to make the procedure incorrect, the restriction LTSs of components that are
moved to the left should be reset. The reason for this is that before moving such a
component, say Mi, the constraints learned about Mi depend on the traces that
have been selected for M1, . . . ,Mi−1, represented by L1, . . . ,Li−1. Once any of
these are changed, the constraints learned so far for Mi have to be reset, similar
to how the constraints also need to be reset when new constraints are added to
the restriction LTS of a previous component (lines 11-12 in Algorithm1). This
observation directly leads us to the next possible optimisation.

Updating Initial Restriction LTSs. The restriction LTS of a component that is
moved to the left in the ICC order needs to be reset. However, the constraints
learned about M1 actually never require this, since that component cannot be
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moved to the left. This can be further explained by noting that the validity of
the constraints for M1 does not depend on previously selected traces of other
components being sufficient to construct a counter-example. In that respect, the
contraints learned about M1 are more valuable for the progress of ICC then
the constraints learned about any of the other components, since the former
constraints are always relevant. For this reason, these constraints can safely be
added to the initial restriction LTS of M1.

In order to also learn constraints about other components that are persistent
to updates applied to restriction LTSs, an additional check Check ′′ can be added
right after line 10 in Algorithm1, at the moment when the smallest j has been
identified. This check can be defined as follows:

Check ′′ = explore Lj || (Mi ||| Ri↓) || P¬ϕ
↓Aj∪Ai

The purpose of performing Check ′′ is to determine whether the traces of Lj

should also be rejected when placed in parallel composition only with Mi. If this
is the case, then those traces should never be selected anymore. If we add this
insight as a new constraint to the initial restriction LTS of Mj , then every time
Mj ’s current restriction LTS is reset, we revert to an initial restriction LTS that
has these constraints still in them. In our implementation, we have added this
optimisation.

First Adding an Abstract Version of a Component to a Check. As a final opti-
misation, we propose to implement the check at line 3 of Algorithm 1 in two
steps instead of one. When introducing Mi into check Check i, note that for
the possible rejection of traces in L1, . . . ,Li−1, it is only relevant to consider the
behaviour in Mi that requires synchronisation with components M1, . . . ,Mi−1;
all other behaviour can be abstracted away. Also, the restriction LTS of Mi is
not relevant for the rejection of traces, only for the case when traces through Mi

can be selected to extend the current partial counter-example. In that case, the
restriction LTS ensures that no traces will be selected that have been selected
previously.

The possibility to only consider an abstract version of Mi provides the poten-
tial to reduce the size of state spaces in those cases where Mi rejects previously
selected traces. In cases where no traces can be rejected, a subsequent check as
defined at line 3 still has to be performed, since the abstract version of Mi does
not suffice to extend the counter-example. Therefore, this proposed optimisation
may primarily have a positive effect on the memory use of ICC, and to a lesser
extent on the running time.

Formally, we redefine Check i at line 3 now as the following two checks Check1
i

and Check2
i :

Check1
i = explore L1 || · · · || Li−1 || Mi↓

⋃
k∈1..i−1 Ak

|| P¬ϕ
↓
⋃

k∈1..i Ak

Check2
i = explore L1 || · · · || Li−1 || (Mi ||| Ri↓) || P¬ϕ

↓
⋃

k∈1..i Ak

This optimisation has also been incorporated in our implementation of ICC.
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5 Experiments

To validate the effectiveness of ICC, we conducted a number of representative
experiments, using the DAS-5 cluster [4], with nodes equipped with an Intel
Haswell E5-2630-v3 2.4 GHz CPU, 64 GB memory, and running CentOS
Linux 7.2. The selected models have been taken from various sources, namely
the BEEM benchmark set [37], the CADP toolbox distribution [24], and the
mCRL2 toolset distribution [15]. Table 1 lists the models, together with their
state space characteristics, the type of safety property checked, and whether
or not the property holds. The models suffixed ‘.1’ are altered versions of the
standard models. The alterations resulted in larger state spaces.

Table 1. Characteristics of the performed experiments

Model #states #transitions Property Satisfied

1394 69,518 123,614 Limited action occurrence Y

1394.1 563,040 1,154,447 Limited action occurrence Y

transit 3,480,248 37,394,212 Bounded response N

wafer stepper.1 6,099,751 29,028,530 Mandatory precedence N

Lamport8 62,669,317 269,192,485 Mutual exclusion N

Lann5 993,914 3,604,487 Mutual exclusion Y

Gas station c2 165 276 Bounded response Y

Gas station c3 1,197 2,478 Bounded response Y

HAVi3.2 19,554,248 80,704,326 Bounded response Y

Peterson7 142,471,098 626,952,200 Mandatory precedence Y

Szymanski5 79,518,740 922,428,824 Mutual exclusion Y

Regarding the property types, limited action occurrence states that at most
two occurrences of a given action a are allowed between two consecutive occur-
rences of another action b. The mandatory precedence property says that an
action a is always preceded by an action b. Bounded response states that after
an occurrence of a, a b of a given set of actions must occur. Limited action
exclusion is a property in which an action a cannot occur between two consec-
utive occurrences of actions b and c. In exact occurrence number, it is required
that an action a occurs an exact number of times, if action b has previously
occurred. Mutual exclusion refers to the standard property regarding access to
critical sections.

We compared the following approaches:

– ICC refers to an implementation of ICC (single-threaded) in the Refiner
exploration tool [45]. We have implemented the optimisations proposed in
Sect. 4.
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– OTF refers to on-the-fly property checking. We also used Refiner for this,
running on a single thread. It explores the state space, checks on-the-fly
whether the property holds and terminates if a counter-example is found.
Even though there exist much faster state space exploration tools, having
both ICC and OTF use the same implementation results in a fair compar-
ison. A better implementation of state space exploration could be used to
speed up both ICC and OTF, since this procedure is the main performance
bottleneck for both.

– PMC refers to partial model checking [23,32]. In PMC, the state space is
incrementally constructed by adding processes and minimising the interme-
diate results. The property can be checked once the state space is constructed.
We used the (single-threaded) Pmc tool of the Cadp toolbox for this.

We have not compared ICC with other compositional model checking tech-
niques, such as Assume-Guarantee [9,9,17,27,30,34], since no implementations
were available to us that are directly applicable on the type of models we con-
sider, namely networks of LTSs. In future work, we plan to perform an exten-
sive comparison between ICC and Assume-Guarantee. In this paper, we focus
on determining whether ICC is effective in breaking down the classical OTF
analyses into smaller checks. We have also not compared to the Spin model
checker [31]. For the BEEM models we consider here, Promela models exist,
however, the number of states in the resulting state spaces differ significantly
from the numbers produced here.

Table 2 presents the results, providing for each approach the runtime in sec-
onds. “T/O” indicates a timeout, which was set to 3 h. The maximum number of
states involved in a check at some point during the analysis is also reported; for
OTF, this is the number of explored states, for PMC this refers to the largest
LTS constructed during the construction, and for ICC, this is the maximum
number of states involved in a single ICC check, i.e., the total number of states
in the restriction LTSs, plus the number of explored states in the check. Finally,
for ICC, also the total number of performed checks is reported (#iters.).

In terms of the maximum number of involved states, which provides an indica-
tion for the maximum amount of memory used, ICC is very effective in breaking
down the monolithic analysis performed by OTF into smaller analyses, par-
ticularly when the model satisfies the property. For the Peterson7 case, only
0.00002% of the state space was ever explored in one check. In this respect, ICC
was much more effective than both OTF and PMC, which timed out. Notable
exceptions to this are the 1394 and the gas station models. We will further inves-
tigate the exact cause of ICC not performing very well in those cases in the near
future.

It is to be expected that for models that do not satisfy the property, OTF
is much more effective than the compositional model checking approaches. An
important concern for the latter techniques is that the size of the state space is
kept small, and therefore the state space is iteratively built. A straightforward
approach that directly explores the state space may therefore run into a counter-
example much more quickly. However, in the cases we considered, the runtimes
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of ICC and OTF were still comparable. Moreover, in two of the three cases
where the property is violated, ICC outperformed PMC both in runtime and
the number of explored states.

As already mentioned, ICC seems to be particularly effective when the model
satisfies the property. In a number of cases, ICC was even much faster than OTF.
In those cases, the rejection of tested path prefixes in ICC quickly led to rejecting
all potential candidates, and more importantly, it could avoid the exploration
of many states. This effect is absent when checking incorrect models. In those
cases, a counter-example can be constructed, but there are also many traces that
are initially promising, but need to be rejected later on.

Concluding, individual ICC checks are often very small, and the runtime of
ICC is often comparable to OTF. Furthermore, it should be noted that we have
not yet attempted to optimise the implementation of ICC, so it is very likely that
the reported runtimes can be further improved. Finally, the frequently drastic
reduction in memory use of model checking when using ICC is very encouraging
regarding the scalability of ICC. We expect that we can go far beyond what can
currently be analysed using OTF.

Table 2. Experimental results for OTF, PMC, and ICC; Times in seconds

Model Property satisfied OTF PMC ICC

Time #states Time #states Time #states #iters

1394 Y 9.35 69,518 26.13 1,061 10.48 5,659 3

1394.1 Y 51.04 563,040 36.15 1,061 155.66 219,981 5

transit N 7.76 50,970 1,044.03 1,437,433 5.69 10,443 5

wafer stepper.1 N 20.27 60,809 68.09 3,821 18.67 28,227 8

Lamport8 N 2.66 30,041 56.52 301,711 11.78 22,552 6

Lann5 Y 289.65 993,914 T/O 1.39 33 35

Gas station c2 Y 0.08 165 0.54 342 0.91 595 11

Gas station c3 Y 0.21 1,197 12.53 4,532 9.15 4,930 21

HAVi3.2 Y T/O 21.24 12 8.89 167 57

Peterson7 Y T/O T/O 7.11 34 73

Szymanski5 Y T/O T/O 2.67 48 21

6 Related Work

Regarding compositional model checking, a number of prominent approaches
need to be mentioned. First of all, partial model checking [23,32] is an approach
in which it is attempted to incrementally construct a state space bisimilar to
the original one, without actually constructing the latter. It is attempted to
keep the constructed state space small by carefully combining component LTSs
and applying bisimulation reduction on the intermediate results. However, the
order in which component LTSs are introduced in the analysis usually heavily
influences the effectiveness of the technique, and the best order is a-priori not
clear [16]. Saturation is similar to partial model checking, in that they both
attempt to incrementally construct a version of the system state space [35].
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Instead, ICC never involves more than one complete component LTS in a single
check. Moreover, if a component order is initially chosen which is not efficiently
leading to a solution, ICC with optimisations can change this order dynamically.

In [13,36], it has been investigated what the best system decompositions
are for a set of benchmarks, and what the best order is in which to combine
components again. Even though ICC is adaptive in this respect to some extent,
we experience that its performance is greatly affected by the initially selected
ICC order. In the future, we will study the results in the literature on this topic.

Another approach is to impose interaction constraints and to find relevant
invariants for combinations of components [5,6]. The use of interface automata
[1] allows reasoning about the possible interactions between components. In ICC
checks, we always assume that a component being checked can interact with
components not involved in the check. Subsequent checks will detect cases where
this assumption was not valid. It would be interesting to investigate how the
above techniques could positively influence the running time of ICC.

Assume-Guarantee (AG) [9,17,27,30,34] is another prominent technique. It
construct assumptions with the goal to prove that the system satisfies the prop-
erty. Given a system M1 || M2 and property ϕ, it tries to establish that both M1

satisfies a set of assumptions A, and that M2 satisfies ϕ under assumptions A.
If this holds, then M1 || M2 satisfies ϕ. Circular AG extends this approach to N
instead of 2 components, and constructs assumption LTSs using SAT solving [18].

Like restriction LTSs in ICC, assumptions are expressed in LTSs in AG.
How to keep these LTSs minimal is hard, as they tend to grow rapidly. L∗ [2] is
frequently applied [12,38], but sometimes, this seems to be unnecessary [39], and
other approaches have been investigated as well [20,21,28]. For ICC, we have
not experienced that the sizes of the restriction LTSs became problematic. This
is probably because ICC and AG attack the problem from opposite directions:
AG tries to establish that the property holds, whereas ICC tries to construct a
counter-example. In AG, the goal is that an assumption LTS overapproximates a
component while still reasoning about the property, whereas in ICC, the function
of a restriction LTS is merely to block certain traces in the component, and can
therefore often remain a much coarser approximation of the component LTS.
Finally, a fundamental difference between ICC and AG is that the latter tries to
avoid involving the actual component LTSs in the verification checks and instead
tries to establish that the assumptions are sufficient to prove that the property
is satisfied. In this way of working, it frequently happens that spurious counter-
examples are constructed, so any identified counter-examples in the complete,
abstract system must first be checked against the original system to establish
whether the counter-example is real. ICC, on the other hand, involves component
LTSs from the very start, and selects part of their behaviour for subsequent
checks instead of the complete component LTSs, with the goal to keep the parallel
composition of component behaviour small. As a result, ICC never produces
spurious counter-examples. Only partially constructed counter-examples can be
rejected in one of the checks, but once a complete counter-example has been
successfully constructed, it is by definition a real one.
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Counterexample-Guided Abstraction Refinement (CEGAR) [11] is a very well
established technique that computes abstractions of programs and refines them
based on spurious counter-examples. In spirit, ICC and CEGAR are very similar,
but the latter does not operate in a compositional manner and in contrast to ICC,
reasons with behavioural over-approximations of the program being verified.
Finally, the same observation regarding spurious counter-examples can be made
as above for Assume-Guarantee.

Although more tailored towards programs than models, thread-modular rea-
soning [22,29] is another related technique, designed to compositionally reason
about threads in multi-threaded programs. Besides the obvious similarities, the
fact that the inputs of the two approaches are very different makes it hard to
provide a clear comparison, or learn from these techniques to further improve
ICC.

One of the motivations behind the development of ICC is to reduce the
memory requirements. This makes ICC related to other memory-saving tech-
niques [19,25,33], but different from most other techniques of this type, we
observe that besides memory savings, also the runtimes can be positively affected
by ICC.

Finally, ICC is pleasantly parallel, since different ICC orders can be inspected
fully independently. Other parallel techniques, such as [8,41], still require fre-
quent communication between workers. In the future, we plan to investigate the
potential to perform ICC in parallel.

7 Conclusions

We presented a new compositional model checking technique, called Incremental
Counter-example Construction. Experiments point out that it can very effec-
tively reduce the number of states involved in a single check, thereby demon-
strating great potential for scaling up the technique to larger models. Moreover,
the runtime is frequently comparable to a traditional on-the-fly analysis, and in
cases where the model is correct, ICC can actually by significantly faster.

Future Work. ICC also seems applicable to check linear-time liveness or branch-
ing time properties. For those, checks could be performed using Nested Depth-
First Search [14] or by solving Boolean Equation Systems [32], respectively. We
plan to investigate this.

We also plan to investigate performing ICC in parallel, by having different
threads inspect different ICC orders, perhaps in line of our earlier work [42–
44,46]. We will further investigate the potential to optimise ICC, in addition to
the optimisations discussed in Sect. 4.

Finally, we will investigate to what extent the ICC approach is suitable for
symbolic model checking techniques.
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compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X 24

13. Cobleigh, J., Avrunin, G., Clarke, L.: Breaking up is hard to do: an evaluation of
automated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol. 17(2),
7 (2008)

14. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. In: Clarke, E.M., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991). doi:10.
1007/BFb0023737

15. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 199–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

16. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19811-3 9
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Abstract. We present a novel tool for parameter synthesis of piecewise
multi-affine dynamical systems from specifications expressed in a hybrid
branching-time temporal logic. The tool is based on the algorithm of
parallel semi-symbolic coloured model checking that extends standard
model checking methods to cope with parametrised Kripke structures.
The tool implements state-of-the-art techniques developed in our pre-
vious research and is primarily intended to be used for the analysis of
dynamical systems with uncertain parameters that frequently arise in
computational systems biology. However, it can be employed for any
dynamical system where the non-linear equations can be sufficiently well
approximated by piecewise multi-affine equations.

1 Introduction

Complex dynamical systems arise in many areas such as biology, biophysics,
economy, or social sciences. To study them, various kinds of models are used.
Such models usually employ some parameters that either represent unknown
mechanics of the real-world system or serve as a way of tuning the behaviour
of the system. A popular way of modelling dynamical systems is to employ the
framework of differential equations with parameters. To find an analytical solu-
tion to these equations is often intractable due to the complexity of the system,
the number of parameters and their interdependencies. A different approach,
the one we focus on here, is to discretise the system, thereby obtaining a para-
metrised transition system, a kind of a computational model in the sense of [21].
Such systems are amenable to processing by formal methods. We formalise the
desired properties of the system’s dynamics in a suitable (temporal) logic and
then, using an algorithm similar to model checking, we find parameter valua-
tions under which the model satisfies given properties (i.e., exhibits the desired
behaviour).
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In this paper, we present Pithya, a new parallel semi-symbolic tool for para-
meter synthesis. The input to our tool is a parametrised model of a continuous-
time dynamical system. Currently, models represented by means of autonomous
ordinary differential equations (ODEs) with sigmoidal functions are supported.
This format covers most of the models commonly used in computational sys-
tems biology [22]. The model is first approximated into a piecewise multi-affine
model and subsequently discretised into a parametrised direction transition sys-
tem (PDTS) [7]. States of a PDTS are labelled with basic atomic propositions
explicitly characterising the variable values. The transitions are indexed by para-
meter valuations and labelled with directions of change in the affected variable
values. The use of directions as transition labels allows to reason about the
flows in the system. To formalise the desired properties of the model we employ
a hybrid extension of the UCTL logic [5] with past, called HUCTLP [7]. Action-
based parts of UCTL allow to express properties about directions; the hybrid
extension together with the past/future duality of operators allows to capture
interesting dynamical properties of states such as sinks, sources, cycles etc.

The parameter synthesis engine of the tool thus obtains a PDTS model and
an HUCTLP formula and its job is to compute the set of all parameter valua-
tions under which the PDTS satisfies the formula. In order to do so, the engine
employs the parallel algorithm for coloured model checking [11], more specifi-
cally, the semi-symbolic version presented in [6] (the extension to HUCTLP was
presented in [7]). The sets of parameter valuations in the PDTS are represented
symbolically as first-order arithmetic formulae (while the states are represented
explicitly). To deal with these formulae, the tool makes use of an SMT solver.

The algorithm starts by partitioning the PDTS into fragments [14] and dis-
tributing them among the working nodes (workstations in a cluster setting,
processors in a multi-core setting). Each node then considers each state of its
own fragment and each subformula of the given formula and computes the set of
parameter valuations under which the subformula holds in the given state. This
computation is done in a bottom-up dynamic programming fashion akin to orig-
inal CTL model checking [16]. The sets of parameter valuations are represented
as first-order arithmetic formulae. At specific times during the computation, the
computed (symbolic) sets are exchanged among the nodes. The algorithm stops
once no new information has been computed by any node since the last exchange.

2 Architecture

The Pithya tool consists of three parts: The main part consisting of several stand-
alone executables, the graphical user interface (GUI) used for model design and
result visualisation, and the command-line interface (CLI). Figure 1 depicts the
architecture of Pithya and all its components. The white boxes denote input,
output, and the auxiliary files while the coloured boxes denote the executables.

The model input file defines the input model and is written using our .bio
format. The file declares the parameters of the model and defines the variables
using ODEs with predefined sigmoidal functions. For more information about
the .bio format see the tool manual.
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Fig. 1. The architecture of Pithya. (Colour figure online)

The approximation engine is a stand-alone executable that verifies the syntax
of the model and performs the piecewise multi-affine approximation of the ODEs
(using the approach defined in [22]). The GUI can use this executable separately
to visualise the approximated model without performing the full parameter syn-
thesis.

The approximated model file is an auxiliary .bio file produced by the approx-
imation engine containing the piecewise multi-affine approximated version of the
original model.

The properties input file defines properties of the model as HUCTLP formulae
in our .ctl format. For more information about this format see the tool manual.

The parser is a stand-alone executable that verifies the syntax of the pro-
vided formulae with respect to the approximated model and prepares the final
configuration file used by the core executable.

The configuration file is an auxiliary file in the JSON format that describes
both the input model together with the properties of interest in a machine-
readable way that is used by the core executable.

The core performs the parameter synthesis based on the parallel coloured
model checking approach. The core consists of a model-agnostic parameter syn-
thesis engine together with a model-specific state space generator. The space
generator employs the rectangular abstraction as defined in [4,22].

The SMT-solver is either an internal solver (Pithya implements a very effi-
cient solver for models with independent parameters) or an external instance of
the Z3 prover [25]. Using Z3 allows Pithya to handle models with interdependent
parameters.

The progress file is a simple text output from the core engine through the
standard error channel. It contains various useful information mostly used by
the GUI to inform the user about the progress of the synthesis.
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The result file is the main output from core engine through the standard
output channel containing the results of the parameter synthesis. This includes
the set of satisfying states along with the corresponding parameter valuations
for each investigated property. This file is written in the JSON format that is
further processed by the visualisation part of the GUI. The user may request
a different, more human-readable output format. For more details about the
supported output formats see the tool manual.

The command-line interface (CLI) encapsulates all the stand-alone executa-
bles so that the user only needs to provide the model input file and the properties
file. The executables are run automatically and provide the result of the para-
meter synthesis in any of the supported output formats.

The graphical user interface (GUI) consists of three parts. The editor allows
the user to load, edit, and save the description of the model and the proper-
ties of interest. The explorer is used to investigate the model behaviour and its
approximated transition state space. The results visualiser provides an inter-
active visual analysis of the parameter synthesis results. For more information
about the possibilities of the GUI see the tool manual.

3 Implementation

Pithya is available at http://biodivine.fi.muni.cz/pithya under the GPL license.
It relies on SMT solving for the core parameter synthesis procedure, however,
it does so in a way that is not entirely conventional. Instead of issuing a small
number of difficult queries, Pithya iteratively builds up the knowledge about the
system by issuing a high amount of simple queries while maintaining a compact
symbolic representation of the intermediate results.

The effectiveness of this approach relies on several key observations:

– SMT solving is the main performance bottleneck.
– Small independent queries can be easily solved concurrently, even if the solver

itself does not support parallel evaluation.
– The intermediate results can immediately influence ongoing computation,

therefore merging several execution paths or cutting others entirely.
– The queries can be often simplified during the solving procedure and the

size of the resulting queries does not increase substantially during the whole
computation.

– The complexity of SMT solving is worse than linear. Therefore, it can be
faster to iteratively issue small queries and simplify their results, even if the
simplification procedure costs more than just plain solving.

Assignment Caching. Except for optimisations, another relatively cheap by-
product of formula solving is often a satisfying parameter assignment. Such
assignment is saved and later used to speed up solving of formulae derived from
the original satisfiable formula.

http://biodivine.fi.muni.cz/pithya
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Adaptive Optimiser. To achieve optimal balance between solving and simplify-
ing, Pithya tracks the average size of the simplified formulae and adjusts the
threshold for future optimisations accordingly. This ensures that the size of the
formulae does not grow too much while reducing the need for costly optimisa-
tions of formulae that are already almost minimal.

4 Evaluation and Applications

The methods implemented in Pithya have been successfully employed for com-
plex analysis in several case studies.

In [11], a well-known model of cancer-critical phase transition in mammalian
cell cycle has been analysed using the prototype tool. Fully automated parameter
synthesis has been used to analyse systems stability in the case of independent
parameters. The achieved results are in good agreement with traditional numer-
ical continuation analysis. In [6], the results have been extended to parameter
synthesis of interdependent parameters, a very difficult task to achieve with
numerical methods. When supplied with several properties the method can also
be used to find the boundaries in the parametric space where the satisfiability
of the properties changes. Such boundaries are called bifurcation points and the
prototype has been applied [7] to complex bifurcation analysis.

In [23], the prototype has been used to explore the behaviour of various
models of signalling pathways. In particular, it has been discovered under which
parameter valuations the models reproduce abnormal behaviour observed in cells
of organisms suffering serious illnesses such as dysplasia or cancer.

The prototype has been also applied in synthetic biology [18]. In particu-
lar, a synthetic pathway for efficient biodegradation of a toxic substance has
been designed and fine-tuned with the help of parameter synthesis for the given
temporal specification of desired behaviour.

Regarding the performance, the prototype has been evaluated on several
different models showing that scalability of the parallel algorithm copes well
with increasing number of synthesised parameters. In particular, it was possible
to compute the results on multi-dimensional models (5–8 variables) for up to six
parameters in tens of minutes on a common homogeneous cluster equipped with
quad-core Intel Xeon 2 GHz processors [11,12].

5 Related Tools

RoVerGeNe [4] uses the same piecewise multi-affine approximation and discrete
abstraction that is employed in Pithya. However, the algorithm employs differ-
ent approach and heuristics to explore the parameter space. Recently, there has
been developed an extension Hydentify [9] for multi-affine hybrid automata that
incorporates time but is limited to reachability properties only. GNA [3] employs
different approximation/abstraction techniques (piecewise affine systems) while
using NuSMV as the model checker. BioPsy [24] implements parameter synthe-
sis with respect to time-series data. It is entirely based on SMT for formulae
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over reals and employs δ-decidability. The limitation is that the technique is
limited only to reachability analysis. Sapo [20] implements parameter synthesis
for discrete-time polynomial dynamical systems specified by difference equa-
tions and supports (linear-time) Signal Temporal Logic (STL). BioCham [26],
Breach [19] and Parasim [13] employ parameter synthesis for linear-time log-
ics. Sampling is used along with numerical methods to simulate trajectories and
explore the parameters w.r.t. a given formula by computing quantitative satis-
faction/robustness measures.

There are several tools for discrete models based on Boolean networks (BNs).
To the best of our knowledge, the only tools that offer parameter synthesis for
BNs and temporal formulae are Esther [29] and TREMPPI [28]. BMA [1] is
a model checker for BNs that is based on LTL. Antelope [2] is a model checker
that employs branching-time hybrid logic. ANIMO [27] uses timed automata
and UPPAAL [8] as the computation engine and thus is limited to reachability.

Tools for parameter synthesis have been recently developed also in the domain
of stochastic models. PROPhESY [17] supports discrete-time models and reach-
ability properties. PRISM-PSY [15] implements parametric uniformisation for
Continuous Stochastic Logic and employs GPU hardware. U-check [10] employs
Bayesian statistical algorithm and smoothed model checking.
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7. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: A model checking app-
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12. Brim, L., Demko, M., Pastva, S., Šafránek, D.: High-performance discrete bifur-
cation analysis for piecewise-affine dynamical systems. In: Abate, A., Šafránek, D.
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15. Češka, M., Pilař, P., Paoletti, N., Brim, L., Kwiatkowska, M.: PRISM-PSY: pre-
cise GPU-accelerated parameter synthesis for stochastic systems. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 367–384. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49674-9 21

16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

17. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H.,
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