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Chapter 6
Interoperability Between Software 
and Hardware

6.1  Hardware Options for Accelerating Computations

Introduction to Hardware and Software Interoperability
Big image data can require significant processing time. Software and hardware can be 
exploited to shorten this time. In addition to increasing microscope acquisition speed 
and exponential data growth, information technology is also rapidly advancing. To 
leverage this new information technology, one must deal with a diversity of hardware 
and software interfaces. Software must be written with hardware specifications in 
mind and must integrate with other existing software. These software engineering 
activities are driven by our goals not only to shorten computation time but also to mini-
mize the effort of building big data analytic solutions. While WIPP can be deployed on 
a variety of hardware, its execution performance will depend on the selection of that 
underlying hardware. We present next the hardware options with their pros and cons.

Advanced hardware options 
In general, advanced hardware can accelerate big data processing by minimizing the 
time for read/write operations, network data movement, and data processing. Based 
on hardware specifications, minimization of the overall execution time can be 
achieved by:

 (a) Keeping all data in RAM during computations instead of transferring them 
from hard drives

 (b) Utilizing processors with higher clock speeds to increase the number of compu-
tations per time unit

 (c) Using high bandwidth communication buses to decrease data transfer time
 (d) Parallelizing read/write, data movement, and computation operations
 (e) Utilizing special computational hardware that is more efficient than available 

central processing units (CPUs)
 (f) Using nonvolatile memory (NVM) express devices with solid-state drives 

(SSDs) for faster data access

https://doi.org/10.1007/978-3-319-63360-2_6
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To implement big data performance acceleration, there are currently four hardware 
options for principal investigators or small research teams:

 1. Access a supercomputer with a very large RAM, fast connectivity, and powerful 
computational nodes (CPUs and GPUs).

 2. Buy a high-end desktop computer with advanced hardware (large RAM, power-
ful processors, fast buses), and fully utilize this hardware for faster computation.

 3. Access multiple computers (either in a cluster or cloud) and exploit them in 
parallel.

 4. Utilize additional computer hardware (e.g., GPUs, FPGAs, or NVM SSDs) 
designed specifically for efficient computation and fast storage, and then imple-
ment custom software for this hardware.

All of the above options require integrating software and hardware by redesign-
ing existing software or designing new software to fully utilize the hardware. We 
will briefly describe each of the four options.

Access a supercomputer
The supercomputers are available to a small percentage of researchers because of 
their limited availability. The key difference between the big data and supercomput-
ing communities is the ratio of data size to the number of computations per data 
point. The primary focus of the supercomputing community is on computations 
whose results require little input data but a very large amount of computation. 
Numerical simulations are an example. The big data community, on the other hand, 
is interested in information extraction and data-driven modeling from very large 
datasets. Information extraction might not require a large number of computations 
per data point, but the number of data points is very large. Unlike information 
extraction, data-driven modeling can also demand a large number of computations 
per data point. The ratio of data size to the number of computations for big data 
computations leads us to emphasize data distribution in order to parallelize 
computations.

Buy a high-end desktop computer
One can invest in a personal computer with advanced hardware (faster processor, 
more RAM, faster disk access, etc.). This approach is expensive and is limited by 
the best available hardware. The currently available multicore processors require 
developing algorithmic implementations that can leverage them.

We illustrate this approach in Fig. 6.1 by drawing a parallel between the through-
put of big data processing and the throughput of cars on automobile highways. The 
colored cars are types of computations, and a highway lane is one processor with its 
bus connecting the processor to all needed data. Buying a multicore computer to run 
single-threaded code can be compared to paying for a multiple lane highway and 
then using only one lane. Our throughput metric is the number of computations per 
time (or number of cars per time interval). It is apparent that the software affects 
performance by defining how the big data input is handled by hardware during 
computation.
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Access multiple computers
Another option for accelerating big data computations is to use multiple computers 
in parallel as illustrated in Fig. 6.2 (left). This option requires designing algorithmic 
implementations together with the software that would move parts of the data and 
parts of the computations to multiple computers and then collect the results on a 
single computer. Critical components in this case are (a) the decomposition of a 
computation into steps that can be executed in parallel and (b) the partition of input 
data into chunks that are needed by each step. We will focus primarily on the 
Hadoop framework [1] for such algorithmic implementations.

Utilize additional computer hardware
The last option is to use additional specialize hardware for accelerating computa-
tions as illustrated in Fig. 6.2 (right). Special computer hardware can perform some 
computational steps more efficiently than a general-purpose CPU. Figure 6.2 (right) 

Fig. 6.1 Accelerating big data problem computations by purchasing a faster processor or by rede-
signing software and buying a computer with multiple processors

Fig. 6.2 Accelerating big data problem computations by redesigning software to run on multiple 
computers in parallel (left) or on accelerated hardware and attaching the hardware to a computer
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shows color-coded grouping of implementations per processor (cars per highway 
lane) since each hardware acceleration including software and hardware is specifi-
cally designed to minimize execution time per computational step. Examples of 
such computer hardware are graphics processing units (GPUs) or field- programmable 
gate arrays (FPGAs). This option requires writing the algorithmic implementation 
in a language that is hardware-specific or a language that can be compiled into 
hardware-specific code. Like the multiple computer option, a critical component is 
the parallel decomposition of a computation with the accelerated hardware specifi-
cations in mind (i.e., bus speed from a computer to a card, available RAM on a card, 
etc.). The use of nonvolatile memory solid-state devices (NVM SSDs) in the form 
of standard-sized Peripheral Component Interconnect (PCI) cards might bring as 
much overall time savings as the GPUs and FPGAs because of the significant time 
spent reading and writing big image data.

6.2  Implications of Big Data Attributes

In any big data experiment, it is beneficial to estimate the rate of image acquisition 
and the size of the image collections to be processed within a given time interval. 
These estimates allow a user to plan hardware purchases and select big data solu-
tions according to attributes of big data.

Attributes of big data
The distribution of big data across multicore processors, multiple computers, and 
multiple cards with accelerated hardware should be performed with respect to big 
data attributes. The attributes defining big data are described as four Vs and include:

• Volume
• Velocity
• Variety
• Veracity

Volume is the data size on disk measured in bytes. Velocity is the speed in which 
data can be accessed, for example, the data acquired by a microscope scanning a 
slide. Variety refers to structured or unstructured organizations of different types of 
data (e.g., structured XML key-value pairs or unstructured text from blogs). Veracity 
reflects whether the data are accurate or not (calibrated vs. uncalibrated microscope 
images, inaccurate metadata about images).

Some practitioners1 add additional attributes such as:

• Variability
• Visualization
• Value

1 https://www.impactradius.com/blog/7-vs-big-data/
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These extra attributes are less frequently cited. Variability refers to inconsistent 
meaning or labeling of data, for instance, two microscopes reporting dimensions of 
a pixel as “pixel size” or “pixel dimension” (important for data integration). 
Visualization refers to conveying the meaning in a pictorial or graphical format 
rather than in a spreadsheet numerical format. Value is the ultimate measure of the 
information gain after addressing volume, velocity, variety, variability, veracity, and 
visualization.

Big data solutions
The application-specific big data attributes have implications on storage, network, 
and computational hardware specifications which lead to solutions that operate 
from the scale of an imaging lab to the scale of a large IT company. For example, by 
considering the volume and velocity attributes, a user must plan for big data storage 
that (a) can handle the current size and the data growth (scale) and (b) can provide 
a fast access to the data (the input/output operations per second (IOPS)). We will 
describe the implications of big data attributes on hardware and software at com-
mercial and imaging laboratory scales and the role of interoperability and standards 
for big data solutions.

Big data solutions at commercial scale
In a commercial space, large IT companies create hyperscale computing environ-
ments, where the term “hyper” refers to excessive and “scale” refers to data growth.2 
The hyperscale computing environment is achieved by assembling commodity serv-
ers for petabytes of data with direct-attached storage (DAS) and storage redundancy 
at the level of the entire computer/storage unit. In order to serve millions of users 
with thousands of applications, these environments are reducing storage latency by 
having Peripheral Component Interconnect Express (PCI-E) flash storage and run-
ning analytic engines like Hadoop, NoSQL, and Cassandra.

Big data solutions at imaging laboratory scale
For researchers running big microscopy image experiments, the volume attribute of 
big data is typically at the scale of terabytes, and the velocity is between 1 MB/s and 
100 MB/s (see Chap. 1, Fig. 1.6). This implies that network-attached storage (NAS) 
and clustered NAS with multiple terabyte-sized storage capacity might be sufficient 
and cost-efficient. As software for clustering NAS improves to deliver petabyte/
parallel file system capability, this solution may meet the requirements for scaling 
up (adding more disks to the same disk controllers). With the growing number of 
cloud providers, there is also an option of scaling out by creating a distributed stor-
age (requesting more nodes in the computer cloud to provide a larger aggregated 
storage). Finally, the need for collocating data with computational resources sug-
gests an option of bringing data storage and computers into one geographical loca-
tions with fast network connectivity, cooling, and sufficient power. This option is 
provided by commercial vendors and is referred to as colocation centers.

2 http://searchstorage.techtarget.com/podcast/Understanding-stripped-down-hyperscale- 
storage-for-big-data-use-cases
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Interoperability and Standards
The attributes of big data have been one of the main topics discussed in the NIST 
Big Data Public Working Group (NBD-PWG).3 This working group has focused on 
Big Data Definition, Big Data Taxonomies, Big Data Use Cases and Requirements, 
Big Data Security and Privacy, Big Data Reference Architecture, Big Data Standards 
Roadmap, Big Data Reference Architecture Interface, and Big Data Adoption and 
Modernization. The work of NBD-PWG has led to reports that address the interop-
erability of big data solutions ever since “the world was awash with over 800 exa-
bytes of data and growing” as estimated in 2010 by Thomson Reuters.4

6.3  Execution Times of Computation Over Big Image Data

Response time-based classification of computations
Based on the storage considerations for the image data volume and velocity attri-
butes, one must decide on the hardware and software. Processing is classified as 
either off-line or interactive. In other words, interactive computations are expected 
to take the time of a mouse click (i.e., seconds), while off-line computations can 
take minutes, hours, and days. This classification is focused on a response time to 
user inputs. For systems designed for interactive, discovery-type, analyses, and 
image explorations, it is important to:

 1. Classify computations based on their execution time requirements.
 2. Decide on strategies to meet the time requirements.
 3. Support the chosen strategy by evaluations of computational complexity.
 4. Collect measurements of actual execution times to validate the system 

performance.

In the next two subsections, we focus on (1) meeting execution time requirements 
and (2) estimating and measuring execution time over big image data.

6.3.1  Meeting Execution Time Requirements

Local vs. distributed computing
To meet performance requirements, analyses can be executed on a local computer 
or on a set of distributed computational nodes. For local analyses, data are trans-
ferred to a local computer, and computations are constrained to a local desktop. For 
distributed analyses, data chunks are sprayed across multiple computer cluster or 
cloud nodes. Computations are executed by processing data chunks followed by 
merging partial results into an overall result. If advanced hardware is available on 
local or distributed computational resources, then the data must be transferred to it 

3 https://bigdatawg.nist.gov/
4 http://archive.annual-report.thomsonreuters.com/2010/
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(e.g., to GPU or FPGA memory). The key aspect of these processing options is to 
co-localize big data with the most processing power. The execution time depends on 
the time to move data, the availability of processing resources, and the software 
design for fully utilizing each hardware device.

On-demand computing
Another aspect of the performance requirements is the number of concurrent users. 
Users launch computations in an unpredictable pattern on web systems like WIPP. If 
the computational resources are busy, then computations will wait in a queue and 
cause long execution times. During these “on-demand” computations, the hardware 
and software solutions must have access to additional computational resources to 
meet performance requirements. The resources could be plug-and-play hardware 
devices or new virtual machines (i.e., elasticity of cloud computing).

Client-server computing as a type of on-demand computing
In the context of client-server web systems, the web server accesses distributed 
computing resources to execute analyses (see Fig. 6.3). The resource allocation for 
distributed analyses depends on computational demands. It can be elastic as 
described above. In comparison to execution using distributed computing resources, 
local analyses can be executed on a client computer or on a main web server. The 
challenge lies in co-localizing data and processing power. For example, if images 
are already transferred to a client for visualization, then the images might immedi-
ately be processed on the client to save the time to process and move the data from 
the web server to the client. If a client does not have sufficient processing power to 
meet performance requirements, then the images may be processed on a web server 
and then transferred to a client. The choice must be made during development by 
making assumptions about the server-client transfer rates and relative comparison 
of server-client processing power. The current implementation of WIPP assumes the 
classification of computations as illustrated in Fig. 6.3.

Fig. 6.3 Interactive versus off-line and local versus distributed computations in the context of the 
WIPP client-server system

6.3 Execution Times of Computation Over Big Image Data
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Strategies for off-line vs interactive computations in WIPP
In WIPP, all computations accessible from the Image Processing or Feature 
Extraction menus (see Fig. 6.4 left) are scheduled by the server to be executed on 
distributed computational resources. In this case, image processing is applied to the 
entire image collection and is classified as an off-line computation. On the other 
hand, computations launched inside of the Deep Zoom viewer (see filtering options 
in Fig. 6.4 right) are executed on a client computer. Client-side image processing is 
only applied to images viewed in the browser. For the most client computers that are 
running web browsers, these image filtering computations are interactive. When 
images are viewed in the Deep Zoom viewer, the web server processes all requests 
for image tiles and sends them to a web browser as users are panning and zooming. 
These computations are handled by the web server and are typically interactive 
depending on the client-server connectivity.

6.3.2  Estimating and Measuring Execution Time

Definition of execution time
To meet execution time requirements, we need to compare multiple acceleration 
strategies based on a performance metric. We describe execution time and relative 
speedup as the two main performance metrics. The execution time is derived from 
the number of clock cycles per execution divided by the clock rate of a processor. 
For instance, if a program execution takes one million clock cycles on a processor 
with 1 MHz clock rate, then the execution time is 1 s. The speedup is derived as a 
ratio of the execution time and the reference execution time for a given computa-
tion. One could improve the speedup by using parallel programming models and 
more computational resources. We divide approaches to obtaining benchmarks for 
the two metrics into estimation and measurement categories.

Fig. 6.4 Left  – computational jobs executed by a web server on distributed computational 
resources. Right – image filtering operations executed by a web client on a local client machine
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Estimation of execution time
Estimation of the execution time for a given task and its algorithmic implementation 
is possible by evaluating the number of clock cycles per program execution. The dif-
ficulty lies in the mapping of complex program computations into clock cycles and 
then including other contributions to the overall execution time for the entire end-to-
end system. Such evaluations almost always involve many approximations. 
Nevertheless, according to computational complexity theory, computational prob-
lems can be classified into classes based on the estimated orders of the number of 
clock cycles per program execution. For example, if a program must process n image 
pixels and the number of clock cycles per pixel is 4, then the total number of clock 
cycles is 4n. This linear computational complexity as a function of n inputs is denoted 
as O(n) in big O notation. The big O notation hides constant factors and smaller terms. 
It is very useful for classifying problem independently of hardware specifications.

Estimation of speedup
Relative speedup measurements might be an alternative estimate of interest. Given 
the cost of advanced hardware and the amount of time spent writing parallel pro-
grams, one may want to predict expected computational speedups as a function of 
the needed investments of time and money. In the case of WIPP, the speedup for a 
deployment on a computer cluster or cloud can be predicted using Amdahl’s law [2]. 
The speedup S is defined as a ratio of the execution time on a single machine T(1) 
over the execution time on P processors being utilized in the cluster T(P) as pre-
sented in equation below:
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where α is the nonparallelizable fraction of an algorithm. Amdahl’s law assumes 
that the input data size and the amount of computation are fixed. This is typically the 
case of uploading an image collection from one experiment and processing it on a 
deployed instance of WIPP.

It is possible to redesign algorithms in WIPP as computational hardware becomes 
faster. In this case, Gustafson’s law [3] can be used instead of Amdahl’s law to fully 
exploit the improving computing power over an increasing input data size in a fixed 
execution time. Gustafson’s law is shown below with the same notation as above:

 
S P P( ) = + −( )α α1

 
(6.2)

Measurements of execution time
Finally, one can collect actual execution time benchmarks on a specific hardware 
and software configuration. There are three types of time measurements:

 1. Wall clock time: the observed time elapsed between the start and the end of the 
program measured by an external clock

 2. User CPU time: the total time used by the computer’s processor executing just 
the code of the user’s program

6.3 Execution Times of Computation Over Big Image Data
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 3. System CPU time: the total time used by the processor executing kernel code 
(i.e., the core of an operating system) on behalf of the program

The kernel code is called from a program, for instance, when read or write opera-
tions are performed (also called the system calls). In a case of parallel computations, 
wall clock time is usually less than user CPU time because the program is run concur-
rently with other programs and must also be waiting for disk, network, or other devices.

Practical notes about execution time and speed-up metrics
Absolute execution time measurements are typically obtained as an average over a set 
of repeated runs, which are needed because of varying background processes running 
concurrently with the measured program. The disadvantage of absolute measurements 
is that they are hard to use for predicting execution times with different hardware and 
software configurations. If these configurations remain constant and are replicated 
across the multiple computational nodes of a cluster, then one can collect speedup 
benchmarks and use them for predictions. These benchmarks capture an execution 
time as a function of the number of nodes. They provide better understanding of com-
putational scalability and are useful for trade-off decisions between the shortest exe-
cution time and the minimum cost of computational nodes. If both software and 
hardware configurations across all computational nodes are not the same (e.g., hetero-
geneous computer cloud), then the speedup benchmarks correspond to the ratio of the 
worst-case execution time of the fastest sequential algorithm on one of the nodes to 
the worst-case execution time of the parallel algorithm on all the computational nodes.

Remark
While we have focused on execution time, we omitted the discussion about the 
amount of RAM required by a program (or space complexity). This type of analysis 
is important in the case of big image data and must be considered when choosing a 
parallel programming models and a hardware architecture. Although it is recom-
mended to collect memory benchmarks while writing a program, the space com-
plexity estimation and RAM consumption measurements were not included in the 
scope of this book.

6.4  From Commercial Big Data Analytics to Research Big 
Image Analyses

There is a wealth of knowledge gained from building commercial big data analytic 
solutions that could be leveraged when designing big microscopy image analytic 
solutions. To learn from them, one can take the following steps:

• Narrow down big data attributes (4 to 7Vs) in commercial applications to those 
in microscopy imaging laboratories.

• Extract basic and advanced design considerations.
• Apply the design considerations to the design of big microscopy image analyses.

We describe these steps in the rest of this section.

6 Interoperability Between Software and Hardware
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Microscopy image attributes
For microscopy imaging laboratories, image collections are typically of the order of 
terabytes with velocity about 100 MB/s, and variety is represented by file formats, 
imaging instruments, and imaged specimens. Veracity is present in microscopy 
images due to manually selected microscope settings and many calibration proto-
cols. The key characteristic of images is that they have always spatial grid structure 
as opposed to unstructured data (ignoring for now image annotations) occurring in 
many commercial big data sets.

Basic design considerations
As commercial solutions address big data analytics for all big data attributes, basic 
general design considerations can be observed in all big data solutions.

• Solutions must be modular in terms of hardware and software because data attri-
butes, algorithms, and hardware specifications change all the time and modules 
must be replaced/upgraded (i.e., survivability).

• Software must utilize hardware to its maximum but also must handle hardware 
failures (i.e., utilization and profit including redundancy and reliability).

• Solutions should support creating processing workflows (i.e., flexibility via func-
tional reconfiguration).

• Data must have identifiers, immutability, and introspection (i.e., data persistence. 
The data elements are found using unique identifiers, are stored in perpetuity, 
and can describe themselves in terms of content and relationships [4]).

• User interfaces to installation and operation aim at “zero installation time” and 
“zero user interface” (i.e., minimum barrier for users).

Additional design considerations
Beyond the basic consideration, big data analytic solutions must also have:

 (a) Data access management and tools for data de-identification for information 
privacy

 (b) Data format standards and tools for format transformations (legacy data)
 (c) Data quality and tools for data cleaning
 (d) Data reduction and tools for such transformations
 (e) Performance verification and the tools for integrity of data and correctness of 

functionalities
 (f) Software and hardware interoperability and the tools for verifying interopera-

bility of replaced components
 (g) Data preservation

Depending on application-specific requirements, these considerations should be 
included in a solution design.

Applying basic design considerations
WIPP has incorporated some of these design considerations. The software consists 
of modules, such as the Pegasus scientific workflow for integrating algorithms and 
HTCondor for utilizing multiple computers. Each image collection, intermediate 
data product, or computational job is associated with a unique identifier. Once an 
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input collection is locked before computation, it becomes immutable. A simple 
query to a database provides information about any collection or executed job. To 
meet the “zero installation time,” a Docker container is used for packaging and 
deploying the software (and Docker swarm on multiple machines). The “zero user 
interface” requires more inputs from a community of users and has been imple-
mented so far for the traditional mouse and keyboard devices. Future modifications 
to WIPP will also address specific additional design considerations.

Incorporating a spectrum of application-specific hardware and software consid-
erations is not trivial. We selected three parts of big image analytic solutions that are 
of concern to users, algorithmic contributors, and web system developers:

 1. Human interface: how to interface human inputs and interactions with the output 
of a big image data solution

 2. Storage and data structures for big images: how to organize and store large vol-
umes of complex image data

 3. Parallel computations: how to break image computations into task- and data- 
parallel components

We will focus in the rest of this chapter on these key parts of a client-server solu-
tion for processing big images.

6.5  Human Interfaces for Big Image Data Analytics

Spectrum of User Interfaces
We start with the human interface to big data solutions because humans are the most 
important part of any scientific discovery. Users come with different levels of IT 
knowledge and experience with software tools. They also pursue multiple goals by 
executing a sequence of computations. Depending on the user’s knowledge, experi-
ence background, and goals, user interface (UI) requirements for big data solutions 
might include:

 (a) Predefined menus and buttons for configuring and executing computations
 (b) Scripting and plugin templates for automating computations
 (c) Application programming interfaces for integrating new functionality
 (d) Application programming interfaces for replacing or adding modules to the 

entire system (i.e., image processing module, feature extraction module, or 
machine learning module)

The above UIs can also be classified as:

 1. Graphical user interfaces (GUIs)
 2. Command-line interfaces (CLI)
 3. Application programming interfaces (APIs)

The large variability in user interface requirements implies that a big data solu-
tion cannot just have one type of interface for all users.

6 Interoperability Between Software and Hardware
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User interfaces in client-server systems
In client-server systems, the user interfaces (UIs) are on both client and browser 
sides. We will focus only on a client-side GUI consisting of predefined menus and 
buttons for configuring and executing computations. The client-side GUIs can be 
customized by researchers who are knowledgeable about HTML5, CSS, and 
JavaScript. These UIs are of interest since the reader is assumed to be interested 
with the easy-to-use aspects of web systems like WIPP. We also provide an example 
of the GUI design process for the web statistical modeling tool.

6.5.1  Focus on Client-Side Graphical User Interfaces

GUI elements
The objective of GUI design is to present interface elements that are easy to use, 
access, and understand to facilitate the above activities. The interface elements can 
be classified as follows5:

 1. Input controls (e.g., execution launch via buttons; selection via radio buttons, 
checkboxes, drop-down lists).

 2. Navigational components (e.g., page navigation via breadcrumb or pagination, 
search via search field, sequence navigation via slider or icons).

 3. Informational components (e.g., short description via tooltips or modal win-
dows, status of computation via progress bar and icons, warning and error reports 
via notifications or message boxes).

 4. Containers (e.g., toggle between hiding and showing multiple functionalities or 
large amount of content: via accordion in JavaScript, encapsulating image and 
processing functionality via JFrame using Java Swing library).

To meet the objectives of GUI design, these elements must be integrated following 
concepts from interaction design focused on interactive digital products and ser-
vices, visual design concentrated on print or electronic forms of visual information, 
and information architecture concerned with organizing and labeling online sites 
and software to support usability and findability.

GUI design
GUI design anticipates user intentions. For WIPP, the client-side GUI assumes that 
users intend to:

 (a) Uploading and downloading data
 (b) Searching for image collections and other data types
 (c) Selecting and configuring computations to launch on a server
 (d) Browsing results of computations
 (e) Viewing big images
 (f) Selecting and configuring computations to launch on a client while viewing big 

images

5 https://www.usability.gov/what-and-why/user-interface-design.html
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With a list of anticipated use cases, best practices for designing GUI can be put 
in place to address simplicity, consistency, use of color and texture, layout, and 
typography to assure legibility and readability.

6.5.2  Example of GUI Design for web Statistical 
Modeling Tool

GUI design for web statistical modeling tool
Let us consider a GUI design for the web statistical modeling tool described in 
Chap. 2, Sect. 2.4. A user wants to derive a statistical probability distribution func-
tion (PDF) model from cell colonies that have been segmented from a sequence of 
gigapixel images and described by a set of cell colony measurements (features). The 
user interface should allow the following actions:

 1. Selecting an imaging channel
 2. Selecting a colony feature
 3. Defining number of histogram bins
 4. Filtering data considered for modeling by their spatial location
 5. Filtering data considered for modeling by their feature value
 6. Computing and showing statistics of selected and filtered data
 7. Suggesting PDF model type
 8. Computing and showing PDF model parameters
 9. Saving the final histogram with traceable hyperlinks for each cell colony to its 

persistent source

In this example, the functionality is divided into parameter selection (1–3), spatial 
filtering (4), feature filtering (5), statistical modeling (6–8), and publication (9). The 
GUI design for parameter selection is implemented using input controls, such as 
drop-down menus, an edit box, and a spinner. The rest of the functionality is encap-
sulated in an accordion type of a container (see Fig. 6.5). Within the accordion, all 
statistical modeling and publication functions are launched using input controls, 
such as buttons with icons, which are followed by informational components, such 
as message boxes, images, and tooltips. In contrast, all filtering functions are using 
either slider bars for feature values or an image viewer for cell colony locations 
shown with color-coded markers based on a feature value.

General challenges in GUI design
Perhaps, one of the most general challenges in GUI design is the limited size of 
device displays. Depending on the stage of user’s activities (selecting parameters 
filteringstatistical modeling), different information is more (or less) important to 
users for making their decisions. Thus, the GUI could reallocate the use of display 
size depending on the activity which was achieved by an accordion element (hiding 
and showing input controls) in the example above. This concept has also been 
implemented in the design of integrated development environments (IDEs) where 
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switching, for example, between programming, debugging, and searching activities, 
triggers new layouts.

Specific challenges in GUI design for big image data
Specific challenges in big image data arise when showing information for spatial 
and feature filtering since there is no display size that could accommodate gigapixel 
images and thousands of feature histograms with sliders (see Fig. 6.6). For spatial 
filtering, one must adopt multi-resolution representations of gigapixel images to 
enable pan and zoom. For feature filtering, one can use a scroll bar to view feature 
histograms beyond those that fit on a finite display.

Fig. 6.5 GUI of web statistical modeling tool with the accordion type of a container (left) and a 
canvas for display (right)

Fig. 6.6 Filtering challenges in the web statistical modeling tool in terms of display size

6.5 Human Interfaces for Big Image Data Analytics
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6.5.3  Summary

In summary, GUI design for big image data must address both general and specific 
design challenges and incorporate all basic design principles. The interactivity 
aspects of GUI design must be understood in the context of the requested computa-
tions to be completed. For example, image thresholding computations requested 
over a TB-sized image might take more than a mouse click, while the same compu-
tation over a MB-sized image could be completed within the interactive time defini-
tion. This implies that a GUI design for visual optimization of a threshold parameter 
over a MB-sized image would have an interactive interface (click and render result). 
In comparison, a GUI design for the same computation over a TB-sized image 
would have an interface that consists of unique identifiers to check the status of the 
computation completion (i.e., status message or hour glass per unique identifier) 
and an interface to retrieve its results. Finally, a GUI design can become very com-
plex software (see the source code for Web Deep Zoom Toolkit6), and therefore 
modularity of the code should also be considered.

6.6  Storage and Data Structure for Big Images

We described the pyramid representation as a data structure for big images in Chap. 
4 (Representation of Large Images). We mentioned heterogeneity of image pyra-
mids in terms of their file formats. Here we provide a broader perspective on storage 
layouts for big images and their data structures in RAM.

6.6.1  Storage for Big Images

Types of storage layout 
We are concerned with storing a very large image on a disk, reading and writing its 
image content efficiently, and preserving all information accompanying all images 
acquired by a microscope and all information generated during image processing. 
To achieve maximum performance with big images, one must understand multiple 
types of storage layouts and their impact on the end-to-end execution time. 
Figure 6.7 illustrates (1) disk, (2) file storage, (3) image pixel, and (4) pixel byte 
layout options. We elaborate next on each storage layout option.

Disk storage layout
Big images can be stored on disk(s) in:

 1. A single file
 2. Multiple files stored as a set of folders on a file system (i.e., the multi-resolution 

pyramid representation)
 3. A database

6 https://github.com/usnistgov/WebDeepZoomToolkit
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In any big image experiment, it is very likely that at least two of these storage types 
will be used. The reason lies with the fact that to the best of our knowledge, all 
microscopes store acquired FOVs in a single file. If the acquired files are prepro-
cessed for visualization on the web, then they are likely stored on a file system or in 
a container file format. If the acquired files are analyzed, then they are likely stored 
in a database with the image measurements. It is also very likely that an acquired 
image will change not only its storage type but also its file format at some time 
point. This is due to (1) a large spectrum of single file formats for storing images 
acquired by a variety of microscopes and (2) the multiplicity of visualization and 
analytical goals that an image might support during discovery. Preserving all infor-
mation during these storage and format conversions is very important for traceabil-
ity and reproducibility of imaging experiments.

Single file storage
The most commonly used single file formats in microscopy are Adobe TIFF (Tagged 
Image File Format) and HDF5 (hierarchical definition file, version 5). Both formats 
have open-source implementations of libraries for reading and writing files. The 
TIFF specification is described in the 6.0 specification [5], and its implementation 
in C programming language is available online.7 The HDF5 specification and its 
implementation in C programming language are maintained by the HDF group.8

TIFF (single file storage)
For files in TIFF format, the topic of preserving information in a single file has been 
addressed by converting TIFF files into a standard Open Microscopy Environment 
(OME) representation (see Chap. 5, Loading Images Using OME Bio-Formats 
Library). The TIFF files acquired by a microscope are stored in OME-TIFF9 format 
using the Bio-formats library10 developed under the umbrella of the Open 
Microscopy Environment consortium. The topic of TIFF storage size has been 

7 http://libtiff.org/
8 https://support.hdfgroup.org/products/
9 http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html
10 http://www.openmicroscopy.org/site/support/bio-formats5.4/

Fig. 6.7 Options of storage layouts for image content. The image pixel layout abbreviations stand 
for Band interleaved by pixel (BIP), Band interleaved by line (BIL), and Band sequential (BSQ)
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 recognized as an issue in the past because the format has a limit on the stored file 
size of less than 4 Gibibyte or GiB (4.294967296 × 109 bytes). This limit is due to 
the 32-bit offset in the TIFF file formats.11 To overcome this limit of TIFF file for-
mats, the BigTIFF file format specification with 64-bit offsets was introduced in 
2007, and the TIFF library called LibTIFF was upgraded as of its version 4.0.12 
Similar issues arose in the past with the number of bits per pixel (BPP). While the 
original TIFF format supported only 2, 8, and 16 BPP, the format has been extended 
to support 32 BPP based on the need of many geographical mapping agencies using 
geospatial information systems (GIS). Although the LibTIFF library (version 4.0) 
has the support for 64-bit offsets and 32 BPP, many image processing packages still 
contain older versions of LibTIFF and hence have only support for the 4 GiB lim-
ited TIFF format and the pixel depth up to 16 BPP.

HDF5 (single file storage)
For files in HDF5 format, information associated with images is preserved by adding 
the OME metadata to the HDF5 container (e.g., by using the Bio-Formats library). 
Due to the popularity of HDF5 for storing very large files, research and commercial 
communities have built several programming and scripting interfaces to HDF, for 
instance, API from Java, Python, R, Fortran, lmaris,13 or MATLAB.14 The HDF5 
format comes with a data model and a library as described in [6]. In terms of HDF 
file storage size, there is no limit.15 However, there is a limit of 32 dimension datas-
paces (number of bands or channels). In terms of reading and writing speed, HDF5 
format contains serial and parallel HDF5 code, and the choice is selected when 
building HDF5. The key feature of parallel HDF5 is that certain groups of functions 
must be called collectively if the data value on a target storage node will be modified. 
Parallel HDF5 can be optimized to maximize the access to image content. The opti-
mization of parallel HDF5 includes setting HDF5 parameters (e.g., chunk size and 
dimensions), MPI I/O parameters (e.g., the block size and the number of target nodes 
to be used for collective buffering file access), and parallel file system parameters 
(e.g., the size of the striping unit and the number of I/O devices to stripe across).

Storage in a set of folders on a file system
In the case of a single file storage, some file formats can store multiple images and/
or image chunks. In contrast, storage of multiple images in a set of well-organized 
folders might be sometimes more efficient. For example, image pyramid representa-
tion can be stored in a set of folders labeled by the pyramid level as illustrated in 
Fig. 6.8. When accessing image content, the file path can be automatically gener-
ated according to the zoom level that corresponds to the folder name. For instance, 
the folder name 0 refers to low magnification images, and the name 13 refers to high 
magnification images in Fig. 6.8. The files are consistently named per their grid 

11 https://en.wikipedia.org/wiki/TIFF
12 http://www.simplesystems.org/libtiff/
13 http://www.bitplane.com/imaris
14 https://www.mathworks.com/
15 https://support.hdfgroup.org/HDF5/faq/limits.html
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position (e.g., 0_3.png corresponds to 0th row index and 3rd column index) and 
hence can be retrieved from the file system efficiently. In this case, we’ve used the 
file png format because it is supported by the majority of web browsers.16

Database storage
The most common solution for storing big images is to use a file system for storing 
image chunks and a database for storing indices pointing to the image chunks. Other 
solutions depend on the size of image chunks, the read/write ratio, and the disk/
memory ratio relative to the read/write ratio. If both, large image chunks and their 
indices, are stored within a database, then the database introduces an overhead by 
compacting the index look-up table (requires movement of data), accessing data 
from a fragmented index table (requires inline storage of image chunks in a base 
table row), and creating many replicates (e.g., log files and database entries, redun-
dancy of immutable data in Hadoop Distributed File System).

File storage layout
The storage layout defines how the pixel values are physically stored on disk. We 
use the TIFF and HDF5 file formats to explain multiple file storage layouts. For 
example, HDF5 supports three storage layouts:

 1. Contiguous
 2. Chunked
 3. Compact17

16 https://en.wikipedia.org/wiki/Comparison_of_web_browsers
17 https://support.hdfgroup.org/HDF5/Tutor/layout.html

Fig. 6.8 Example of pyramid representation storage in a set of folders on a file system
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Contiguous refers to the pixel values stored in one contiguous block of the HDF5 
file. In comparison, chunked denotes pixels being stored in equal-sized contiguous 
blocks (chunks of a predefined size) together with a chunk index to keep track of 
their association with a dataset. Compact storage layout was designed only for small 
datasets that can be stored in the HDF5 header of the dataset.

In comparison, TIFF supports contiguous and chunked storage layouts. The key 
difference is with the chunked layout type where the TIFF tags (RowsPerStrip, 
StripOffsets, and StripByteCounts) encode separate image strips rather than rectan-
gular image blocks. Otherwise, compressed or uncompressed image data can be 
stored almost anywhere within a TIFF file. The chunked storage layout is the most 
important layout type for efficient big image input/output (I/O) operations.

Image pixel layout
Image pixel layout can affect the speed of I/O operations. There are three main 
image pixel layouts:

 1. Band interleaved by pixel (BIP)
 2. Band interleaved by line (BIL)
 3. Band sequential (BSQ)

These image pixel layouts are schemes for storing multispectral 2D images and 
their pixel values in a file or in a memory. The three layouts are illustrated in 
Figs. 6.9, 6.10, and 6.11.

The choice of an image pixel layout depends on the expected image manipula-
tions. For example, the BIP layout is optimal for computing a weighted sum of spec-
tral values at each pixel (spectral analysis). The BSQ scheme is optimal for performing 
spatial filtering on a single spectral band (spatial analysis). The BIL layout can be 
viewed as a compromise format for easy access to both spatial and spectral informa-
tion. All image pixel layouts can accommodate any number of spectral bands.

Fig. 6.9 Band interleaved by pixel (BIP) layout of image pixels

Fig. 6.10 Band interleaved by line (BIL) layout of image pixels
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Pixel byte layout
Each pixel is associated with a value represented by 2, 8, 16, 32, or 64 bits per pix-
els. During network transmission, byte order is important for values represented by 
more than 8 bits (1 byte = 8 bits). There are two sequential byte orders: little-endian 
(least significant bits first) and big-endian (most significant bits first). For example, 
the number 5 would be binary-encoded using 16  BPP as 0000 0101 0000 0000 
using big-endian and 0000 0000 0000 0101 as little-endian. The two sequential 
orders have implications on storage and are encoded in the file’s metadata section.

6.6.2  Data Structures for Big Images

Data structures are the representations of images in RAM. Due to the finite size of 
RAM, we categorize big image data structures based on the ratio of RAM size to 
image size. We will briefly mention images with more than two dimensions (denoted 
as 2D+) and their pyramid representations. WIPP supports 2D+ image collections of 
videos and spectral sequences with gigapixel 2D images (i.e., XY + time or XY + λ).

Images smaller than available RAM
If an image can fit into RAM, then it can be represented as a multidimensional array 
of values. Because many image operations require accessing all the pixels using 
programming language looping constructs, a one-dimensional array is an efficient 
representation for high-dimensional images. In the body of the loop, subsequent 
pixels are accessed by incrementing an index, which is more efficient than calculat-
ing the position of the next pixel from the row, column, and band values. For 

Fig. 6.11 Band sequential 
(BSQ) layout of image 
pixels
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example, if the image is in the BIP layout, then a pixel value at the location [row, 
column] is computed as

 

pixel indexat row,column number of columns row column
n

[ ] = × +( )
× uumber of bands band+  

(6.3)

Images larger than available RAM
If an image cannot fit in the available RAM, then it must be represented as a combi-
nation of multidimensional arrays with the indices defining location in relative to 
the current big image sub-array. This representation can be viewed as a coordinate 
transformation from a 2D Cartesian system (i.e., big image rows and columns) to a 
4D or 5D Cartesian coordinate system that enables access to image subareas that fit 
in RAM.  The 4D Cartesian coordinate system consists of a set of small images 
(chunks) with a corresponding position vector for their coordinates in the big image. 
In other words, the 4D system contains one set of 2D coordinates giving the position 
of a small image tile in a regular or irregular grid and the other set of 2D coordinates 
referring to a pixel position inside of a small image tile. The 5D Cartesian coordi-
nate system consists of a multi-resolution pyramid of small images (tiles). It can be 
viewed as a location in a stack of 4D Cartesian coordinate systems (or a 5D pyra-
mid) where the fifth dimension is the resolution. This representation has been 
proven to be very efficient for big 2D images.

2D+ images
In practice, microscopy images are not more than two-dimensional. However, 
microscopy experiments over a large FOV can generate time-lapse images (e.g., 
XY  +  time videos from phase contrast microscopes), high-dimensional spectral 
images (e.g., XY + λ data from coherent anti-Stokes Raman microscope or scanning 
electron microscope with energy-dispersive X-ray spectrometry), confocal z-stack 
images (e.g., XYZ data from confocal laser scanning microscope), or a combination 
of time-lapse, spectral, and z-stack images (e.g., XYZ + λ data from confocal z-stack 
images with more than three fluorescent channels or XYZ + time video from confo-
cal laser scanning microscope).

Pyramids for 2D+ images
We can view these high-dimensional terapixel images as a set of 2D cross-sectional 
images. If we decompose 3D+ images into 2D cross sections, then we can use a 
pyramid representation suitable for big 2D images. These 2D cross sections can be 
represented as an ordered set of multi-resolution pyramids using one pyramid per 
2D cross section with the order defined by the third dimension. To enable fast ren-
dering and processing, one may have to generate three sets of pyramids that corre-
spond to the three orthogonal 2D cross sections per one large 3D volume (image). 
For example, for a 3D image with XY + time dimensions, one would generate sets 
of pyramids for {XY}, {X + time}, and {Y + time}. This representation works well 
for XY + time or XY + λ images where oblique views are not meaningful for visual 
inspection. However, this representation might be limiting for 3D images with XYZ 
dimension images because the oblique views are important for data explorations.
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6.6.3  Summary

In the design of a big data analytic solution, there are many decisions about big 
image storage and representation that determine image content access efficiency. It 
is possible to optimize the design for a given set of big image analyses with a well- 
defined pattern of accessing image content. Given hardware specifications (RAM, 
disk, and bus), optimal parameters can be determined in terms of pixel byte, image, 
file, and disk storage layouts as well as data structures. In practice, it can be difficult 
to predict image content access patterns and anticipate the hardware used. While 
this unpredictability can explain suboptimal image analytic software performance, 
it also highlights the importance of considering application requirements and usage 
patterns when making software design decisions.

6.7  Parallel Computations Over Big Image Data

Software development for big data must address three problems:

 1. Algorithmic design to automate processing
 2. Integration of heterogeneous algorithms into software systems to leverage exist-

ing software investments
 3. Algorithmic implementations that integrate software and hardware

The last problem of integrating software with distributed hardware resources is 
the topic of parallel computing research. We provide a high-level classification of 
parallel programming models and briefly describe each model.

Parallel computing
The basic premise for accelerating big data image computations is that (a) the 
images can be divided into smaller tiles and (b) the computations can be divided 
into smaller functional tasks that are then applied in parallel to the smaller image 
tiles (image data and functional decompositions). Parallel execution accelerates cal-
culations by utilizing multiple computational resources but comes with the cost of 
additional hardware resources and of writing the software specific to a hardware 
architecture.

Classification of parallel programming models
The several commonly used parallel programming models abstract hardware and 
memory architectures and provide different programming approaches. Parallel pro-
gramming models18 that are derived from computer architectures include:

 1. Shared memory model (without or with threads)
 2. Distributed memory model with Message Passing Interface (MPI)
 3. Partitioned Global Address Space (PGAS) model with data parallel decomposition
 4. Hybrids of the above

18 https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
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Parallel programming models can be divided into two broad categories based on 
their structural granularity of their parallel programs:

 1. High-level granularity
 2. Algorithmic-level granularity

These categories can be further subdivided. Those with high-level granularity 
have been divided into:

 1. Single program multiple data (SPMD) model
 2. Multiple program multiple data (MPMD) model

while those with algorithmic-level granularity19 can be further classified as:

 1. Data parallel model
 2. Master-agent model
 3. Task graph model
 4. Task pool model
 5. Producer-consumer model
 6. Hybrid model

These categories might be overwhelmingly complex for a WIPP user and some-
what complex even for a developer of WIPP algorithms since they require basic 
understanding of hardware and software.

In this chapter, our approach is to introduce the WIPP developers of algorithms 
to parallel programming models at the algorithmic-level granularity and incorporate 
their knowledge about the hardware used for running WIPP in their algorithmic 
design. We assume that a reader is familiar with a hardware architecture running 
WIPP which typically includes RAM, CPUs, communication buses for exchanging 
data, and pluggable graphics processing units (GPUs). Next, we will briefly describe 
each of the algorithmic-level models applicable to such hardware architectures in 
the context of image processing.

6.7.1  Data Parallel Model

This model is based on dividing images into smaller regions and applying the same 
processing to each region on a separate hardware resource (i.e., a computational 
node). The most difficult aspect is determining the image partition strategy that will 
colocate each computation with its needed data [7]. To illustrate the difficulty, we 
list a few spatial image computations in Table 6.1 as examples motivating different 
partition strategies. For instance, if computations operate on a single pixel (e.g., 
thresholding that has no spatial overlap with the computation of a neighboring 
pixel), then image partition can be based on either physical location of a pixel in a 
file or logical location of a pixel in an image. However, if computations operate on 

19 https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_models.htm
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a pixel neighborhood (e.g., kernel-based), then the image partition strategy should 
be based on logical location of pixels.

Example
As a specific example, Fig. 6.12 numerically evaluates the advantages of logical 
partitioning for the case of spatial averaging over 3 × 3 pixels with overlapping four 
image regions. The computation is illustrated for a number of computational nodes 
N equal to one (middle), two (left), and four (right). The comparison across an 
increasing number of nodes shows how the decreasing numbers of CPU cycles and 
the pixel load operations to RAM are counterweighted by an increasing number of 
communications (send and retrieve operations).

Fig. 6.12 Examples of image partitioning for spatial averaging over 3 × 3 pixels for one (middle), 
two (left), and four (right) distributed computational nodes

Table 6.1 Subdivision of spatial image computations and its relevance to image partition

Types of spatial 
computations: examples

Input image 
region Overlap type

Desired image 
partition

Input to logical 
partition

Pixel-based: 
Thresholding

Fixed size No overlap Physical or logical 
without overlap

None

Kernel-based: 
Convolution

Fixed size With overlap Logical with 
overlap

Kernel area  
size

Segment-based: Feature 
extraction

Variable 
size

No overlap Logical without 
overlap

Mask

Bounding box based: 
Background correction

Variable 
size

With overlap Logical with 
overlap

Bounding  
boxes
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Practical notes
The partitioning can be performed by horizontal and vertical image cuts. To avoid 
any exchange of pixels between nodes during runtime, the cuts are made in such a 
way that there is redundancy while spraying pixels across computational nodes. The 
goal is (a) to avoid the communication overhead between nodes and the storage area 
network (SAN) or network-attached storage (NAS) where the data is stored and (b) 
to mitigate the impact of node failure rates of large computer clusters.

6.7.2  Master-Agent Model

The master-agent model is based on introducing a hierarchy of computational nodes 
to divide the work into (a) “generating” computational jobs and (b) executing the jobs. 
Figure 6.13 illustrates the master-agent model. The word “generate” refers to decom-
posing a workflow to individual tasks, collecting data needed for each task in a case of 
distributed memory, and assigning and transmitting data to agents. One or more mas-
ter processes manage the computational jobs by delegating them to agent processes so 
that they are executed in the shortest time, a difficult process known as “load balanc-
ing.” The load-balancing strategy can consider more than the agent utilization. For 
instance, other potential factors to consider are data throughput times, agent reliabil-
ity, past agent execution times, and the patterns of incoming computational tasks.

Job scheduler to execute load balancing
The software that implements load balancing is called a job scheduler or a distrib-
uted resource manager. Job scheduling is concerned with assigning computational 
jobs to computational nodes which is distinct from operating system process sched-
uling concerned with assigning running processes to CPUs. The input to a job 
scheduler is a job queue which contains job information. Job schedulers are fre-
quently embedded in scientific workflow systems, such as the Pegasus workflow 
system used by WIPP. The workflow for a sequence of computations also defines 
task dependencies that are utilized in master-agent models and in job schedulers.

Hadoop example of a master-agent model
An example of the master-agent model is the Apache Hadoop framework,20 which 
is designed for storing data and running big data computations on computer clusters 
and clouds consisting of commodity hardware. Data storage is supported by the 
Hadoop Distributed Filesystem (HDFS) which uses the master-agent model. In this 
model, one cluster node (labeled as NameNode) manages file system operations, 
and a set of agents (labeled as DataNodes) manages data storage on their individual 
cluster nodes. When NameNode sprays data blocks across DataNodes, the blocks 
are replicated multiple times. The defaults are 64 MB blocks with two replicates. If 
a DataNodes fails, then the NameNode finds the replicates elsewhere in the cluster, 

20 https://hadoop.apache.org/docs/r2.7.1/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html#Mapper
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allowing the computation to be restarted on a different computational node while 
the operator replaces the failed hardware.

Map-reduce implementation
Several WIPP image processing algorithms have been evaluated using Hadoop 
implementations [8]. The computation with Hadoop is based on the MapReduce 
programming paradigm [1]. We will explain the MapReduce programming para-
digm using a simple two-node cluster to perform an image intensity histogram cal-
culation. We start by assuming that image pixels have already been sprayed across 
HDFS and each node has a subset of the image pixels, as illustrated in Fig. 6.14.

Map function
The image intensity histogram calculation starts with a Map function that computes 
frequency count for each intensity value over an allocated set of pixels. This Map 
function can be viewed as a transformation of pairs from one space to another space; 
the Map transforms a list of pairs (K1 = pixel location, V1 = intensity) to another list 
of pairs (K2 = intensity value, V2 = frequency count). Once executed, Hadoop will 

Fig. 6.13 Master-agent model and its hierarchy of computational nodes

Fig. 6.14 Simple illustration of MapReduce programming paradigm utilizing two computational 
nodes
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exchange groups of entries between the available nodes as illustrated in Fig. 6.14 by 
“partition” and “sort” operations along with the Hadoop shuffling operation. In our 
example, Hadoop will create Group 1 that has K2 in [0, 128] and Group 2 that has 
K2 in [129, 255]). Then, Node #1 sends Group 2 to Node #2 and Node #2 sends 
Group 1 to Node #1.

Reduce function
A previously written Reduce function merges the entries with the same K2 value 
and saves the resulting counts in HDFS. After the Reduce function, the image his-
togram counts can be retrieved from HDFS.

Additional functions
Hadoop allows for more direct control with several classes. A Hadoop Comparator 
object can be used to specify the grouping during the shuffling operation, a 
Partitioner object can determine the Reducer node for a set of K2 keys, and a 
Combiner object can decrease the number of shuffled bytes by determining the local 
aggregation of the intermediate Map.

Notes
As with any other distributed computing software, users must optimize a number of 
parameters, such as HDFS block size, replication ratio, Hadoop process RAM allo-
cation, number of Map and Reduce instances, and the encryption method for data 
transfers. Parameter optimization and the computational decomposition into Map 
and Reduce tasks are the most significant challenges for using systems like Hadoop. 
Nevertheless, the MapReduce paradigm has been successful for storing and pro-
cessing commercial big data.

6.7.3  Task Graph Model

The task graph model describes a computation as a directed task graph formed by a 
collection of vertices denoting atomic tasks and directed edges describing data 
movement. An atomic task is a logically discrete section of computation in a pro-
gram that is executed by a processor. A task graph-based parallel algorithm consists 
of atomic tasks running on multiple processors or computational nodes. All compu-
tations are executed by traversing the task graph by following the directed edges. A 
graph is a directed acyclic graph (DAG) if there are no paths that start at a vertex, 
follow a sequence of directed edges, and return to the starting vertex. Figure 6.15 
shows an example of DAG with eight atomic tasks T1–T8. Programs that can be 
represented by a DAG are characterized by useful properties, for instance, a reach-
ability relationship. In Fig. 6.15, we illustrate the reachability relationship with ver-
tex T8 reachable from the vertex T1 (T1 ≤ T8) if there is a path from T1 to T8.

Practical use task graph models
Practical applications of task graphs include task scheduling, dataflow program-
ming, and management of software revision history and its versions. This 
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programming model is recommended for computations where the transfer time of 
moving data is larger than the total time needed for the number of computations 
associated with the data tasks. In this case, the task graph structure can be optimized 
to lower the data movement cost between the tasks. The most difficult aspect of 
implemented task graphs is the decomposition of computations into atomic tasks, 
identifying task synchronization and communication dependencies, and the cre-
ation of the directed task graph. For example, the color coding of vertices shown in 
Fig. 6.15 can be used for assigning tasks to three computational resources assuming 
that all tasks require the same amount of time to complete. The assignment becomes 
complicated when the computational resources and tasks are heterogeneous in 
terms of CPU power, RAM, data needs, and computational complexity (i.e., the 
assignment becomes a load-balancing problem).

6.7.4  Task Pool Model

The task pool model can also be thought of as a type of task graph model. It is based 
on dynamic assignment of tasks to the computational nodes to balance the load. 
There is an advantage to creating a pool of tasks when the task completion time is 
unpredictable or varies significantly. The model consists of the implementations of 
a master and agent processes. The master generates and holds a pool of tasks, sends 
tasks to agents upon request, and collects the results. The agents request and receive 
tasks from the master, execute the tasks, and return the results to master. If the pool 
of tasks is generated dynamically, then a method of detecting termination is required 

Fig. 6.15 Example of a directed acyclic graph with eight tasks
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so that all agents stop requesting tasks when the supply is exhausted. The number of 
tasks executed by each computational resource will depend on its speed of execu-
tion because there is no preassignment of tasks.

Practical notes
The task pool model is used when the amount of data associated with each task is 
small and therefore the communication time overhead in sending tasks and receiv-
ing results is smaller than the total time needed for computations. One of the diffi-
cult design decisions is choosing the task granularity to optimize relationship 
between the communication overhead, the computational effort, and the data quan-
tities. For example, if the goal is to index acquired images by their average intensity, 
then a task pool model is appropriate for processing each incoming image from a set 
of microscopes. As illustrated in Fig.  6.16, the number of images per time unit 
depends on microscope acquisition rate and its usage pattern which dynamically 
determines the tasks generated to compute an average image intensity. Computational 
nodes request the tasks with the time needed to complete a computation depending 
on the image size. The task pool model inherently balances the computational load 
despite varying image sizes.

6.7.5  Producer-Consumer Model

The producer-consumer model (also called the pipeline model) represents a compu-
tation as a chain of multiple data producers and consumers in a manner similar to an 
assembly line. Each computational task in the queue consumes data from the pre-
ceding task and produces data for the subsequent task. The queue can be linear or 

Fig. 6.16 Task pool model with an unpredictable number of tasks generated by image streams 
from multiple microscopes
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represented by a directed graph. The producer-consumer model is different from a 
task graph model by overlapping task interactions with computations. Both, pro-
ducer and consumer, share a common, fixed-size buffer used as a queue. The pro-
ducer generates data, puts them into the buffer, and starts its task-specific computation 
again. At the same time, the consumer removes data from their common buffer, one 
chunk at a time, and starts its task-specific computation. The producer will wait if 
the buffer is full, and the consumer will wait if the buffer is empty. In other words, 
every time a producer task generates new data, it triggers the execution of a next 
consumer task in a queue.

Stitching algorithm
Among several image processing algorithms in WIPP, the tile stitching algorithm 
has been implemented for multiple architectures using multiple producers and mul-
tiple consumers [9]. The tile stitching computation is based on normalized correla-
tion coefficients (NCCs) derived from fast Fourier transforms (FFTs). The image 
tile displacements (i.e., translation vectors (x, y) for each pair of adjacent tiles) can 
be computed using multiple data and functional decompositions, as well as CPU 
and GPU hardware architectures. Figure 6.17 shows the sequence of steps for multi- 
threaded CPU-only implementation. After each image tile is read into memory and 
processed by FFT, NCCs are computed. Afterward, 2D inverse FFT of the NCCs is 
performed (NCC−1 ij), and maximum is found (max ij). The final steps are to com-
pute the cross-correlation factors (CCF) for the north, west, south, and east over-
laps, find the maximum CCF, and save the corresponding translation vector (x, y). 
The key aspect is the assignment and management of threads (one for reading an 
image tile, one for computing FFT, one for completing NCC, FFT−1 and max, and 
multiple threads for CCF). The difference between simple sequential and pipelined 
CPU implementations can yield a speedup by almost an order of magnitude and 
with GPUs even higher [9].

Practical notes
The consumer-producer model has been used for developing general dataflow envi-
ronments (i.e., computational scenarios where data flow along a processing pipeline). 
These environments became popular in scientific workflow management systems 
(e.g., Kepler [10], Taverna [11]) and in commercial frameworks such as the .NET 
framework (TPL Dataflow Library). A difficulty with the consumer- producer model 

Fig. 6.17 Computation of relative displacements (x, y) of two image tiles (images i and j) using a 
consumer-producer model
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is the implementation of multiprocess synchronization. Nevertheless, given the large 
number of open-source scientific workflows [12] that utilize dataflows, we recom-
mend using one from the existing workflow management system implementations 
when suitable. For example, a sequence of filtering operations applied to big images 
can be implemented by using a consumer-producer model to pass the partially fil-
tered image regions in RAM rather than passing them between RAM and disk.

6.7.6  Hybrid Model

The hybrid model combines multiple programming models either hierarchically or 
sequentially to any part of a computational algorithm. Hybrid models are motivated 
by integrating functional and data decompositions with specific strengths of a hard-
ware architecture.

Example with CPU-GPU hardware
The integration of functional and data decompositions can be achieved by combin-
ing CPUs and GPUs at two different levels. At the low level, the integration takes 
place by putting CPU and GPU on the same die and sharing the on-chip cache and 
off-chip memory [13]. At the high level, the integration is accomplished by attach-
ing GPUs to a computer with CPUs and orchestrating the split of computations 
between CPU and GPU units [14]. In the latter case denoted as a single CPU-GPU 
configuration, the GPUs are typically assigned data parallel work to take advantage 
of their large number of computational cores, while the CPUs execute sequential 
code or data transfer management.

Given a CPU-GPU configuration illustrated in Fig. 6.18, the hardware resources 
consist of several computational nodes with master CPU and multiple GPUs. 
Following the classification introduced in Sect. 6.7, the utilization of this hardware 
configuration can benefit from distributed memory model with Message Passing 

Fig. 6.18 Hybrid parallelization model combining master-agent model using CUDA interface and 
data parallel model using MPI on a CPU-GPU cluster hardware configuration. CUDA stands for 
Compute Unified Device Architecture (rarely used in a non-abbreviated form)
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Interface (MPI) to run single process, multiple data (SPMD) parallel applications. 
At the algorithmic-level granularity, one can create a hybrid parallel model consist-
ing of (1) a data parallel model with the MPI protocol (see Chap. 4) for launching 
tasks on each computational node and (2) a master-agent model for leveraging all 
GPUs attached to each computational node. In this hybrid programming model, 
each node receives data from the head node using MPI, exchanges the received data 
between its local memory and the attached GPUs using GPU-specific interface, and 
collects computed results. To interface GPUs, one option is to use CUDA®, a paral-
lel computing platform and programming model introduced by NVIDIA.

Practical Notes
In practice, the number of possible hardware configurations is very large, and there-
fore there is no recipe for creating an optimal hybrid parallel model. Based on the 
current economics of building computer hardware and providing computer cloud 
services, developers of algorithms are frequently writing code to run on computer 
clusters and distributed virtual machines with multi−/many-core machines. In this 
case, it is beneficial for the developers to be familiar with the parallel programming 
models described in this section and with the interfaces for direct multi-threaded, 
shared memory parallelism, such as the Open Multi-Processing (OpenMP21) API.

6.7.7  Summary

This entire section focused on parallel computations over big image data and par-
ticularly on algorithmic implementations that integrate software and hardware. The 
algorithmic implementations and approaches followed parallel computing models 
that were derived from computer architectures and divided based on the structural 
granularity of their parallel programs. The structural granularity provided a mecha-
nism for classifying parallel programming models into single/multiple program 
multiple data (SPMD/MPMD) models and a variety of algorithmic-level models 
(data parallel, master-agent, task graph, task pool, producer-consumer, and hybrid 
models). The parallel computing premises (data and computation subdivision) and 
algorithmic-level models were presented at a high level in order to introduce a 
reader to writing algorithms that leverage hardware.

Forward-looking challenges in algorithmic programming
With the increasing variety of hardware architectures, the parallel programming mod-
els are still an open research area. The hardware architectures are changing not only 
in terms of scale and density (e.g., 5 billion transistors per die, feature sizes close to 
10 nm) but also in terms of brand new structures, such as neuromorphic computing 
and quantum computing. For example, in the early 1990s, scientists began consider-
ing a design of brain-like (neuromorphic) computing devices that would dramatically 
outperform conventional Complementary Metal–Oxide–Semiconductor (CMOS) 

21 https://computing.llnl.gov/tutorials/openMP/#Introduction
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based technology. The motivation lies in the fact that the current computational 
devices have failed to perform many basic tasks that biological systems have mas-
tered, for instance, speech and image recognition. Thus, the next-generation com-
puter design might borrow concepts from biological systems. On the hardware side, 
computer design might replace CMOS transistors using definite states (0 and 1) with 
quantum bits using superpositions of states for storing binary digits. These next-gen-
eration hardware architectures will require new programming models to utilize them.
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