
Peter Bajcsy · Joe Chalfoun
Mylene Simon

Web 
Microanalysis 
of Big Image 
Data



Web Microanalysis of Big Image Data



Peter Bajcsy  •  Joe Chalfoun  •  Mylene Simon

Web Microanalysis of Big 
Image Data



ISBN 978-3-319-63359-6        ISBN 978-3-319-63360-2  (eBook)
https://doi.org/10.1007/978-3-319-63360-2

Library of Congress Control Number: 2017948649

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Peter Bajcsy
National Institute of Standards  
and Technology
Gaithersburg, MD, USA

Mylene Simon
National Institute of Standards  
and Technology
Gaithersburg, MD, USA

Joe Chalfoun
National Institute of Standards  
and Technology
Gaithersburg, MD, USA

https://doi.org/10.1007/978-3-319-63360-2


v

Preface

We motivate big data microscopy experiments and then introduce the theoretical 
and architectural underpinnings of our Web Image Processing Pipeline (WIPP) sys-
tem for analyzing images collected during big microscopy experiments. This book 
comes with both the WIPP tool and test image collections, in order to increase the 
reader’s understanding and gain experience with practical tools for analyzing big 
image experiments. We will describe (a) WIPP functionalities, (b) use cases, and (c) 
components of the web software system (web server and client architecture, algo-
rithms, and hardware-software dependencies). Our descriptions of technical details 
will follow a top-down presentation and will explain the interactions of the web 
system components and their impact on computational scalability, provenance 
information gathering, interactive display, and computing.

Our purpose is to encourage graduate students, postdoctoral students, and scien-
tists to perform big data microscopy experiments. We will attempt to achieve this by 
providing educational materials, software tools, and test data at the intersection of 
research areas known as microscopy image analyses and computational science. 
Furthermore, by providing the WIPP software and test data, students and scientists 
are empowered with tools to make discoveries with much higher statistical signifi-
cance than before. Once they become familiar with the web image processing com-
ponents, they can extend and re-purpose the existing software for new types of 
analyses.

While there have been a multitude of books about microscopy image processing, 
there is increasing interest in running these processing algorithms on big micros-
copy image data. However, when analyzing big data microscopy experiments, sci-
entists are restricted by the image processing methods designed for desktop 
computers, the time it takes to complete desktop intensive processing, and the com-
plexity of the required big data computational infrastructure. We hope that our read-
ers will find this book to be a useful resource when learning about solutions that can 
overcome these restrictions.

We ordered the chapters so that readers are first introduced to the problem of big 
data microscopy experiments (Chap. 1), can install open-source software and 
become familiar with the capabilities of the web image processing pipeline 



vi

(Chap. 2), and then learn about several use cases for the image processing pipeline 
(Chap. 3). Scientists interested in understanding big image analytics can then pro-
ceed to a description of the web system architecture (Chap. 4), the image processing 
algorithms currently provided in WIPP (Chap. 5), and approaches to accelerate the 
algorithmic execution (Chap. 6).

The first three chapters are meant for users who would just use the WIPP system. 
Chapters 4, 5, and 6 are intended for readers who are interested in the computer 
science and information technology (IT) aspects of big image analytics. The informa-
tion presented in Chaps. 4, 5, and 6 is also useful for developing, extending, and 
maintaining the WIPP system because the underlying software and hardware tech-
nologies are rapidly changing.

Each chapter follows a top-down presentation. We start with a short introduction 
and a classification of related methods. We then present a description of the specific 
methods used in the accompanying software. For several topics, we present an 
example on how the specific method is applied to a dataset (parameters, computer 
memory requirements, processing efficiency). Some tips and notes are provided as 
practical suggestions to improve accuracy or computational performance.

Our intended audience is graduate students, postdoctoral students, and scientists 
whose research can benefit from big data microscopy experiments. This audience 
can be drawn from the disciplines that use microscopes such as biomedical sciences, 
materials sciences, and crop sciences. We envision this as a textbook for a short 
course in the X-informatics majors where X stands for bio, medical, plant, material, 
or any other domain that uses microscope imaging as an observational method.

This book may also be of interest to scientists in research laboratories and bio- 
and material-manufacturing companies. Microscopes in research labs and manufac-
turing environments generate a large quantity of images regardless of the 
laboratories’ discipline-specific focus. For many laboratories, the ability to deploy 
and operate an internal web image processing pipeline and associated tools, and 
perhaps customize them for local processing, will be useful. In these situations, the 
book can serve as a reference to laboratory scientists.

The primary features of this book and its corresponding benefits for readers are 
summarized in Table  1. The benefits range from theoretical insights to practical 

Table 1  Book features and associated reader benefits

Features of the book Corresponding benefits

Design choices and trade-offs in web 
image processing pipeline

Insights relevant to conducting research with very 
large images

Open-source software for web image 
processing

A tool available to a reader for processing big data 
microscopy experiments

Test data Educational material for hands-on experience
Open-source software for algorithms 
running in the image processing 
pipeline

Published, documented, and evaluated algorithms 
readily available to a reader for big data applications

Preface



vii

experiences. We will primarily focus on examples from cell biology, but the tools 
and theoretical foundations are applicable to many other fields in which large-scale 
image processing and analysis are needed as well.

Gaithersburg, MD, USA� Peter Bajcsy 
 � Joe Chalfoun 
 � Mylene Simon 

Preface



ix

Term Description

Calibration Provides a pixel-to-real-distance conversion factor
Dynamic cell Refers to cellular growth, differentiation, and adaptation to changing 

circumstances
Image geometry 
correction

An image manipulation such that the image’s projection precisely matches 
a specific projection surface or shape (i.e., equal areas of projection 
surface are equal areas in the source image).

Pipeline A series of processes, usually linear, which filter or transform data. 
Examples of pipelines in the real world include chaining two or more 
processes together on the command line using the “|” (pipe) symbol.

Reproducibility The ability to duplicate an experiment or study, either by the same 
researcher or by someone else working independently.

Statistical 
sampling

The selection of a subset of individuals from within a population to 
estimate characteristics of the whole population.

Workflow A set of processes, usually nonlinear, often human rather than machine, 
which filter or transform data, often triggering external events. The 
processes are not assumed to be running concurrently.

Terminology



xi

Acknowledgments

WIPP has been developed over the course of 6 years with many contributors from 
the Information Technology Laboratory (ITL) and Material Measurement 
Laboratory (MML) at National Institute of Standards and Technology (NIST). The 
contribution ranged from experimental design, imaging, software design, and image 
analyses to interpretation, web dissemination, and management. The authors are 
very grateful to everyone who has participated in the computational science in 
metrology meetings at NIST because the meetings have served as the forum for 
discussing ideas and for interdisciplinary education. We would also like to acknowl-
edge the outside NIST contributors who have been willing to share their data and 
bring many interesting metrology problems to our attention.

Table 1 lists alphabetically sorted names of people we would like to acknowledge 
that participated in efforts leading up to this book and the accompanying software 
and datasets.

Our special acknowledgment goes to Alden Dima from the Software and Systems 
Division at NIST for his invaluable inputs on the book manuscript and his thorough 
reviews of all chapters.



xii

Table 1  Alphabetically sorted list of people who have contributed to some aspects of the presented 
material in this book

ITL NIST MML NIST Outside of NIST

Amelot, Julien Bhadriraju, Kiran Bharti, Kapil
Blattner, Tim Camp, Charlie Hoeppner, Daniel
Brady, Mary Cicerone, Marcus Hotaling, Nathan
Cardone, Antonio Elliott, John Kociolek, Marcin
Dessauw, Philippe Florczyk, Stephen Kosecka, Jana
Filliben, James Halter, Michael Loser, Wolfgang
Gao, Jing Lee, Young McKay, Ron
Gerardin, Antoine Plant, Anne Parent, Carol
Juba, Derek Ritchie, Nicholas Stuelten, Christina
Keyrouz, Walid Sarkar, Sumona Szczypinski, Piotr
Lund, Steve Schaub, Nicolas Varshney, Amitabh
Majurski, Michael Scott, John Henry Weiger, Michael
Manescu, Petre Scott, Keana
Ouladi, Mohamed Simon, Carl
Padi, Sarala
Peskin, Adele
Vandecreme, Antoine
Yoon, Soweon

Acknowledgments



xiii

Disclaimer

Commercial products are identified in this document in order to specify the 
experimental procedure adequately. Such identification is not intended to imply 
recommendation or endorsement by the National Institute of Standards and 
Technology (NIST), nor is it intended to imply that the products identified are 
necessarily the best available for the purpose.



xv

Abbreviations

ACID properties	 Atomicity, consistency, isolation, and durability
Adobe PDF	 Adobe Portable Document Format
AJAX 	 Asynchronous JavaScript And XML
ALU 	 Arithmetic logic unit
API 	 Application programming interface
ASP 	 Active Server Pages
CMOS 	 Complementary Metal–Oxide–Semiconductor
CPU 	 Central processing unit
CSS 	 Cascading Style Sheets
DAG 	 Directed acyclic graph
DAO 	 Data access object
DBMS 	 Database management system
DOM 	 Document Object Model
DZI 	 Deep Zoom images
FPGA 	 Field-programmable gate array
FTP 	 File Transfer Protocol
GPU 	 Graphics Processing Unit
HAL 	 Hypertext Application Language
HATEOAS 	 Hypermedia as the Engine of Application State
HDF 	 Hierarchical Definition Format
HTTP 	 Hypertext Transfer Protocol
HTTPS 	 Hypertext Transfer Protocol Secure
IT 	 Information technology
JSON 	 JavaScript Object Notation
JSP 	 Java Server Pages
LAN 	 Local area network
LCD 	 Liquid-crystal display
MAC 	 Message authentication code
MPI 	 Message Passing Interface
MVC 	 Model-view-controller
NAS 	 Network-attached storage



xvi

NFS 	 Network File System
NoSQL 	 Not only SQL
NVD SSD 	 Non-Volatile Dual memory solid-state device
ODM 	 Object Document Mapper
OME 	 Open Microscopy Environment
ONC RPC 	 Open Network Computing Remote Procedure Call
ORM 	 Object-Relational Mapping
PCI 	 Peripheral Component Interconnect
PCI-E 	 Peripheral Component Interconnect Express
PHP 	 Hypertext Preprocessor
PKI 	 Public key infrastructure
PNG 	 Portable Network Graphics
RAM 	 Random-access memory
REST 	 Representational state transfer
RPC 	 Remote procedure call
SPMD	 Single process, multiple data parallel applications
SSD 	 Solid-state drive
SSL 	 Secure Sockets Layer
TCP 	 Transmission Control Protocol
TCP/IP 	 Transmission Control Protocol/Internet Protocol
TIFF 	 Tagged Image File Format
TLS 	 Transport Layer Security
UDP 	 User Datagram Protocol
UI 	 User interface
URI 	 Uniform Resource Identifier
URL 	 Uniform Resource Locator
W3C 	 World Wide Web Consortium
WDZT 	 Web Deep Zoom Toolkit
WFE 	 Web feature extraction
WIPP 	 Web Image Processing Pipeline
WMS 	 Workflow management system
WSM 	 Web statistical modeling
WWW 	 World Wide Web
XDR 	 External Data Representation
XML 	 eXtensible Markup Language
SAN 	 Storage area network

Abbreviations



xvii

	 1	� Introduction to Big Data Microscopy Experiments���������������������������������     1
	1.1	�� Image Processing Pipeline�������������������������������������������������������������������     1
	1.2	 Web Image Processing Pipeline�����������������������������������������������������������     3
	1.3	 Big Data Microscopy Experiments�����������������������������������������������������     4
	1.4	 Motivation of Big Data Microscopy Experiments�������������������������������     6
	1.5	� Range of Applications Leveraging Image  

Processing Pipelines�����������������������������������������������������������������������������     9
	1.6	�� Challenges of Big Data Microscopy Experiments�������������������������������   10
	1.7	� Considerations Before and After Digital Images  

Are Acquired���������������������������������������������������������������������������������������   12
	1.8	�� Enabling Reproducible Science from Big Data Microscopy  

Experiments�����������������������������������������������������������������������������������������   14
References�����������������������������������������������������������������������������������������������������   15

	 2	� Functionality of Web Image Processing Pipeline�������������������������������������   17
	2.1	�� Deploying and Testing the web Image Processing Pipeline ���������������   18

	2.1.1	�� Types of Deployment���������������������������������������������������������������   20
	2.1.2	�� Deployment of Docker Containers �����������������������������������������   22
	2.1.3	�� Deployment Recommendations�����������������������������������������������   23
	2.1.4	�� Test Data and Computational Benchmarks�����������������������������   24

	2.2	 Web Image Processing Module�����������������������������������������������������������   25
	2.2.1	� Web Image Processing Module  

Processing Functionality���������������������������������������������������������   26
	2.2.2	 Description of WIP Module Usage�����������������������������������������   28

	2.3	 Web Feature Extraction Module ���������������������������������������������������������   30
	2.3.1	 WFE Module Processing Functionality�����������������������������������   31
	2.3.2	 WFE Module Usage�����������������������������������������������������������������   34

	2.4	 Web Statistical Modeling Module�������������������������������������������������������   35
	2.4.1	 WSM Module Processing Functionality���������������������������������   36
	2.4.2	 WSM Module Usage���������������������������������������������������������������   38

Contents



xviii

	2.5	�� Summary ���������������������������������������������������������������������������������������������   40
References�����������������������������������������������������������������������������������������������������   40

	 3	� Example Use Cases�������������������������������������������������������������������������������������   41
	3.1	�� Cell Count and Single Cell Detection�������������������������������������������������   41

	3.1.1	�� Image Processing Workflow ���������������������������������������������������   42
	3.1.2	�� Create a New Image Collection�����������������������������������������������   42
	3.1.3	�� Stitching of Image Tiles�����������������������������������������������������������   43
	3.1.4	�� Intensity Scaling and Pyramid Building ���������������������������������   44
	3.1.5	�� Image Assembling�������������������������������������������������������������������   45
	3.1.6	�� Segmentation���������������������������������������������������������������������������   46
	3.1.7	�� Binary Image Labeling �����������������������������������������������������������   46
	3.1.8	�� Feature Extraction and Single Cell Detection�������������������������   47
	3.1.9	�� Discussion�������������������������������������������������������������������������������   47

	3.2	�� Stem Cell Colony Growth Computation���������������������������������������������   48
	3.2.1	�� Image Processing Workflow ���������������������������������������������������   49
	3.2.2	�� Colony Tracking and Feature Extraction���������������������������������   49
	3.2.3	�� Discussion�������������������������������������������������������������������������������   51

	3.3	�� Image Feature Variability and Its Impact���������������������������������������������   55
	3.3.1	�� Image Processing Workflow ���������������������������������������������������   55
	3.3.2	�� Image Feature Variability Analysis �����������������������������������������   56
	3.3.3	�� Discussion�������������������������������������������������������������������������������   58

	3.4	�� Summary ���������������������������������������������������������������������������������������������   61

	 4	� Components of Web Image Processing Pipeline �������������������������������������   63
	4.1	�� Mapping Functionality to Information Technologies �������������������������   63
	4.2	�� The Basics of Client-Server Architecture �������������������������������������������   65

	4.2.1	�� The Role of Each Technology in the Client-Server  
Architecture�����������������������������������������������������������������������������   67

	4.3	�� The Basics of Web Servers and Browsers�������������������������������������������   68
	4.4	�� The Basics of Communication Protocols in Client-Server  

Architectures ���������������������������������������������������������������������������������������   70
	4.4.1	�� Client-Server Communication Using Hypertext  

Transfer Protocol���������������������������������������������������������������������   71
	4.4.2	�� Transmission Control Protocol (TCP)�������������������������������������   72
	4.4.3	�� Message Passing Interface�������������������������������������������������������   73
	4.4.4	�� Network File System���������������������������������������������������������������   74

	4.5	�� Designing Interactive User Interfaces in Web Browsers���������������������   75
	4.5.1	�� Model-View-Controller Design Pattern�����������������������������������   75
	4.5.2	�� AngularJS for Building Interactive User Interfaces�����������������   76

	4.6	�� Large Image Visualization and Processing in Web Browsers �������������   77
	4.7	�� Representation of Large Images ���������������������������������������������������������   78

	4.7.1	�� Large Image Visualization in Web Browsers���������������������������   81
	4.7.2	�� Image Processing in Web Browsers�����������������������������������������   82

	4.8	�� Managing Images, Pyramids, and Metadata ���������������������������������������   84
	4.8.1	�� Relational Databases���������������������������������������������������������������   85
	4.8.2	�� Non-relational Database����������������������������������������������������������   88

Contents



xix

	4.8.3	�� Java Spring Framework for Web Application  
Development ���������������������������������������������������������������������������   90

	4.9	�� Meeting Computational Requirements on a Web Server���������������������   93
	4.9.1	�� Pegasus Workflow Management System���������������������������������   94
	4.9.2	�� HTCondor Workload Management System�����������������������������   96
	4.9.3	�� XML File Representation for Encoding  

Computational Jobs�����������������������������������������������������������������   96
	4.10	�� Delivering Traceable Computations�����������������������������������������������������   97

	4.10.1	�� Components for Delivering Traceable Computations�������������   98
	4.10.2	�� Traceable Computations for Publications �������������������������������   99
	4.10.3	�� From Traceable to Reproducible Computations ��������������������� 101

	4.11	�� Summary ��������������������������������������������������������������������������������������������� 101
References����������������������������������������������������������������������������������������������������� 102

	 5	� Image Processing Algorithms��������������������������������������������������������������������� 105
	5.1	�� Inputs and Outputs of Algorithms������������������������������������������������������� 105
	5.2	�� Image Processing��������������������������������������������������������������������������������� 106

	5.2.1	�� Textbooks About Image Processing����������������������������������������� 106
	5.2.2	�� Usage-Based Classification of Image Processing 

Implementations����������������������������������������������������������������������� 107
	5.2.3	�� Classification of Open-Source Image Processing  

Software����������������������������������������������������������������������������������� 109
	5.2.4	�� Loading Images Using OME Bio-Formats Library����������������� 111
	5.2.5	�� Basic Image Processing Using ImageJ/Fiji����������������������������� 113

	5.3	�� Overview of Algorithms in WIPP������������������������������������������������������� 116
	5.4	�� Image Correction Algorithms ������������������������������������������������������������� 118

	5.4.1	�� Dark Current Correction ��������������������������������������������������������� 118
	5.4.2	�� Flat-Field Correction��������������������������������������������������������������� 118
	5.4.3	�� Background Correction����������������������������������������������������������� 119
	5.4.4	�� Noise Filtering������������������������������������������������������������������������� 124

	5.5	�� Algorithms for Stitching and Mosaicking Many Images��������������������� 126
	5.5.1	�� Image Stitching ����������������������������������������������������������������������� 128
	5.5.2	�� Image Mosaicking������������������������������������������������������������������� 133
	5.5.3	�� Practical Remarks ������������������������������������������������������������������� 134

	5.6	�� Object Segmentation, Tracking, and Feature Extraction  
Algorithms������������������������������������������������������������������������������������������� 135
	5.6.1	�� Object Segmentation��������������������������������������������������������������� 135
	5.6.2	�� Object Tracking Over Time����������������������������������������������������� 144
	5.6.3	�� Image and Object Feature Extractions������������������������������������� 148

	5.7	�� Image Intensity Scaling and Pyramid Building Algorithms ��������������� 149
	5.7.1	�� Image Intensity Scaling����������������������������������������������������������� 150
	5.7.2	�� Image Pyramid Building��������������������������������������������������������� 152
	5.7.3	�� Re-projection of a Pyramid Set����������������������������������������������� 154

	5.8	�� Supervised Algorithms������������������������������������������������������������������������� 156
	5.9	�� Summary ��������������������������������������������������������������������������������������������� 157
References���������������������������������������������������������������������������������������������������   158

Contents



xx

	 6	� Interoperability Between Software and Hardware��������������������������������� 161
	6.1	�� Hardware Options for Accelerating Computations����������������������������� 161
	6.2	�� Implications of Big Data Attributes����������������������������������������������������� 164
	6.3	�� Execution Times of Computation over Big Image Data ��������������������� 166

	6.3.1	�� Meeting Execution Time Requirements����������������������������������� 166
	6.3.2	�� Estimating and Measuring Execution Time����������������������������� 168

	6.4	�� From Commercial Big Data Analytics to Research Big  
Image Analyses ����������������������������������������������������������������������������������� 170

	6.5	�� Human Interfaces for Big Image Data Analytics��������������������������������� 172
	6.5.1	�� Focus on Client-Side Graphical User Interfaces��������������������� 173
	6.5.2	�� Example of GUI Design for web Statistical  

Modeling Tool������������������������������������������������������������������������� 174
	6.5.3	�� Summary��������������������������������������������������������������������������������� 176

	6.6	�� Storage and Data Structure for Big Images����������������������������������������� 176
	6.6.1	�� Storage for Big Images ����������������������������������������������������������� 176
	6.6.2	�� Data structures for big images������������������������������������������������� 181
	6.6.3	�� Summary��������������������������������������������������������������������������������� 183

	6.7	�� Parallel Computations Over Big Image Data��������������������������������������� 183
	6.7.1	�� Data Parallel Model����������������������������������������������������������������� 184
	6.7.2	�� Master-Agent Model ��������������������������������������������������������������� 186
	6.7.3	�� Task Graph Model������������������������������������������������������������������� 188
	6.7.4	�� Task Pool Model ��������������������������������������������������������������������� 189
	6.7.5	 Producer-Consumer Model ����������������������������������������������������� 190
	6.7.6	�� Hybrid Model��������������������������������������������������������������������������� 192
	6.7.7	�� Summary��������������������������������������������������������������������������������� 193

References����������������������������������������������������������������������������������������������������� 194

�Supplementary Information������������������������������������������������������������������������������ 195

Contents



1© Springer International Publishing AG 2018 
P. Bajcsy et al., Web Microanalysis of Big Image Data, 
https://doi.org/10.1007/978-3-319-63360-2_1

Chapter 1
Introduction to Big Data Microscopy 
Experiments

1.1  �Image Processing Pipeline

An image is an array of picture elements (called pixels) arranged in columns and 
rows. At every column and row, the pixel has one or more values. For example, 
images acquired by phase contrast microscopes have single-value pixels, while 
images collected using bright field or Raman spectroscopy microscopes have 
multiple-value pixels. Microscope images can be acquired over time to form a video 
or over multiple z-depths to form a 3D volume. These videos and 3D volumes are 
still images, each represented by an array of pixels arranged in columns, rows, and 
either time frames or z-stacks. The image acquisition process is referred to as imag-
ing (see Fig. 1.1) and yields images of a specimen of interest (also denoted as sam-
ple). The imaging instrument of interest in this book is a microscope, and the series 
of computational steps applied to acquired images is the web processing pipeline.

Image processing
Image processing refers to algorithms that take images as inputs and return images 
as outputs.1 Image processing typically performs mathematical operations on images 
to eliminate imaging artifacts, enhance image content, integrate multiple images into 
the same coordinate system, prepare images for information extraction, or any com-
bination of these operations. For instance, flat field correction eliminates imaging 
artifacts due to illumination inhomogeneities introduced during imaging. Gaussian 
filtering enhances image regions buried in Gaussian noise added during imaging by 
microscope digital circuitry. Segmentation extracts the locations of objects of inter-
est contained in a single image (frequently denoted as one field of view or FOV in 
microscopy). Image stitching integrates multiple images with a partial spatial overlap 
to create one large image containing objects of interest spanning a large spatial area.

1 http://www.coe.utah.edu/~cs4640/slides/Lecture0.pdf

http://www.coe.utah.edu/~cs4640/slides/Lecture0.pdf


2

Fig. 1.1  An illustration of web image processing pipeline as a mechanism for enabling discovery 
via interactive viewing and measurements of very large collections of images

Image processing pipeline
The many applications of image processing include visualization, information res-
toration, image retrieval, registration, pattern measurement, object detection, and 
object recognition.2 We focus on image processing applications that enable discov-
ery over very large image collections via viewing and quantitative measurements of 
objects of interest. Scientific discovery is characterized by a workflow (also denoted 
as a pipeline) of image processing steps. The pipeline is designed by a scientist and 
depends on the discovery method. Image processing pipelines require human input 
not only when chaining computational steps but also when selecting computational 
parameters, choosing information measurements to extract and visualize data, and 
exploring the semantic meaning derived from image measurements.

Web image processing pipeline
With advancements in microscopy imaging, one experiment can yield large quanti-
ties of images that are beyond the processing capabilities of typical personal com-
puters. These processing capabilities include off-line and interactive computations 
that are critical for making discoveries. We refer to these quantities of images as big 
image data. In addition, the path to a discovery requires frequent sharing of big 
image data, intermediate large-scale measurements, and explorations by multiple 
researchers with varying expertise. These realizations lead us to web image process-
ing pipelines where the processing capabilities (hardware and software) can be 
scaled to the size of the image data and computational time requirements, while the 
data sharing and collaborative discovery are supported by the distributed access via 
web browsers.

2 http://www.engineersgarage.com/articles/image-processing-tutorial-applications

1  Introduction to Big Data Microscopy Experiments

http://www.engineersgarage.com/articles/image-processing-tutorial-applications


3

1.2  �Web Image Processing Pipeline

In the context of this book, a web image processing pipeline consists of a client-
server system and the algorithms that are executed either on the client side or on the 
server side.

Client-server system
A client-server system can perform computation steps either off-line or interactively 
(on-demand). For simplicity, the term client can be understood as a web browser 
running on a researcher’s computer or another device. The web browser allows the 
researcher to view images via computer/device displays and make measurements in 
the browser environment using the underlying hardware. The term server can be 
viewed as a web-networked computer (or multiple computers) capable of storing 
large image collections, serving the images to multiple clients, and handling requests 
for uploading, computing, and downloading. Data sharing and collaborative discov-
ery is facilitated by the ability of multiple web clients to communicate with a server 
from any web-networked geographical location. The ability of a server to distribute 
storage and computational requests from many clients during peak usage to other 
available computational resources provides the web image processing pipeline with 
the ability to scale with data size and computational requests. A client-server-based 
web image processing pipeline requires software algorithms running across diverse 
web browsers using a server environment.

Client software
Software algorithms running in a web browser are written in JavaScript and are 
integrated with web technologies such as Hypertext Markup Language (HTML) and 
Cascading Style Sheets (CSS). While HTML is the language for creating web pages, 
CSS is the language for describing the style of an HTML document. Unfortunately, 
existing web browsers do not support the same features of JavaScript, HTML, and 
CSS languages. Thus, some web image processing steps and interactive features are 
supported only in a subset of browsers. To address the interoperability, open stan-
dards for the web features are critical for the long-term growth of the web and are 
being addressed by the World Wide Web Consortium (W3C). For example, the W3C 
HTML Working Group prepared the 5th revision of HTML (HTML5) in 2014 
which is used in the web image processing pipeline described in the next chapters.

Server software
The server-side software must communicate with clients and must run user-
requested computational algorithms. This communication can be mediated by soft-
ware such as Apache Tomcat that allows servers and browser-based clients to 
exchange information similar to a conversation between people. Computational 
algorithms that are written in multiple programming languages must be seamlessly 
integrated into the communication between clients and servers. For example, a com-
munication request to stitch a set of overlapping microscopy image tiles into a sin-
gle image can require the launching of a stitching algorithm with input images and 
input parameters and the retrieval of the stitching output (i.e., translation vector per 

1.2  Web Image Processing Pipeline



4

image tile). This  assumes that the stitching algorithm has been compiled for the 
server operating system (OS), can access the input data and output storage, and can 
be executed in user mode on the underlying hardware [1]. The execution of the same 
algorithm on distributed and heterogeneous environments requires the addition of 
software that will distribute the data, schedule the computations, and collect the 
results.

Client-server communication
The communication and data exchange channel is an important aspect of client-
server software design. In practice, this channel is almost always limited by the 
network bandwidth which has implications for the latency and interactivity of on-
demand computations. To overcome latency, especially for very large image collec-
tions, images are frequently compressed and use special representations for fast 
retrieval. For example, large gigapixel images can be represented by a tiled multi-
resolution pyramid that is created by iteratively down-sampling the original image 
size by one half. Each down-sampled image is then tiled into a predefined size (e.g., 
256 pixels × 256 pixels). This representation allows for the transmission of smaller 
more manageable subregions of a gigapixel image (i.e., set of pyramid tiles) for a 
view or computation.

1.3  �Big Data Microscopy Experiments

We will focus on big data microscopy experiments in cell biology and materials 
science. As mentioned above, these microscopy experiments can yield large image 
datasets that are beyond the processing capabilities of a typical personal computer. 
These images are acquired as collections of individual microscope fields of view 
(FOV). For a fixed acquisition rate, the big image collection originates from imag-
ing a large spatial area at high magnification over extended time and from using 
many spectral channels (imaging modalities). The image collection also grows with 
the number of specimens that are sampled from a large specimen bank (e.g., cells 
from a vial). These “replicate” measurements aim at establishing statistical repro-
ducibility, as well as at understanding response functions under many treatments.

Examples of big data microscopy experiments in cell biology
In cell biology, as well as in histopathology, microscopy imaging provides raw 
image data about cells and tissues. The research frequently involves studying either 
population statistics or characteristics of individual cells. The image of an entire 
specimen is preferable to spot checking randomly selected FOVs for population-
level statistics. The spot-checking approach fails to capture rare events or can bias 
the biological interpretation of cells. There is a need to collect enough data to cap-
ture these heterogeneities. Furthermore, in cell therapy applications, it is possible 
that each cell matters and must be imaged and inspected for quality. Big data 
microscopy experiments in cell biology are becoming more and more frequent, 
while the computational solutions for dealing with acquired big data are not yet 

1  Introduction to Big Data Microscopy Experiments



5

available. An example of such a big data experiment focusing on cell colony growth 
and heterogeneity of pluripotency marker is presented in Fig. 1.2.

Examples of big data microscopy experiments in materials sciences
In materials science, microscopy imaging provides raw images about materials and 
their properties. The research goals include studying properties of materials (ceram-
ics, metals, or polymers), investigating mixtures of materials (compounds, alloys, 
composites), looking for occurrence of rare particles, or discovering physical and 
chemical properties of metallic elements and their interactions. The key challenge 
of these studies lies with the material specimens being much larger than their ele-
ments and requiring the imaging of a large area at high spatial resolution. 
Furthermore, the materials consist of heterogeneous elements that are unevenly dis-
tributed and hence spatial sampling must provide sufficient information about the 
heterogeneity. Figure 1.3 presents an example of a big data experiment focusing on 
the shape and distribution of aerosolized nanoparticles.

Differences between two application domains
The key difference between the cell biology and materials science application 
domains lies in the experimental constraints. In order to study living cells, one must 
choose cell specimen preparation and imaging modalities that do not harm cells and 
do not change their behavior. Thus, the preferred imaging modality for cell biology is 
optical microscopy (e.g., bright field, phase contrast, or differential interference con-
trast). Other microscopy imaging modalities are used to understand cell structure at 
multiple scales but cannot be used for studying living cells since cells are either fixed 

Fig. 1.2  Phase microscopy images of cell colonies imaged over 396 (18 × 22) overlapping FOVs 
and over a period of 5 days (161 time points at 45 min acquisition rate). The data is available online 
(https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency)

1.3  Big Data Microscopy Experiments

https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency


6

or destroyed during imaging. Any steerable experiments with living cells also require 
near real-time processing of images to provide feedback to the experimental configu-
ration (e.g., selected field of view). In order to discover and design new materials in 
materials science, one is typically more concerned with high spatial and temporal 
image resolutions and less concerned with destroying the specimen during experi-
ments. In other words, studying material dynamics does not assume that a specimen 
is unchanged during an imaging experiment while studying living cells assumes that 
a specimen did not change due to the measurement interrogation during imaging.

1.4  �Motivation of Big Data Microscopy Experiments

Measurements at multiple spatial scales 
One of the fundamental motivations for conducting big data microscopy experi-
ments is the desire to perform ensemble “bulk” and individual object microscopic 
measurements. Figure 1.4 illustrates the characteristics of the two types of measure-
ments (top) and the benefits for scientists from big data microscopy experiments 
(bottom). The measurement problems lie in the large differences between the scales 
of a specimen and the scale of an observed phenomenon (i.e., cells and subcellular 
structures are much smaller than the entire Petri dish).

Complexity of studied phenomena 
Another motivation for collecting big data is the discovery of complex governing 
laws, for example, those of biological cells and tissues. Bio- and material 

Fig. 1.3  Images of aerosolized carbon nanotubes collected on a Si wafer imaged over 2360 over-
lapping FOVs. The data is available online (https://isg.nist.gov/deepzoomweb/data/
materialparticlesdistribution)

1  Introduction to Big Data Microscopy Experiments

https://isg.nist.gov/deepzoomweb/data/materialparticlesdistribution
https://isg.nist.gov/deepzoomweb/data/materialparticlesdistribution


7

complexity is characterized by many factors, and interactions, and by many tempo-
ral and spatial scales. This complexity is related to whole cell and particle responses 
to various treatments and environments while measuring morphology, function, and 
spatial and temporal distributions. To study such complex systems, one must collect 
cell data over the huge space of factors, using many imaging modalities and at many 
temporal and physical spatial scales leading to big data microscopy experiments.

In addition, the inherent complexity requires leveraging the multidisciplinary 
expertise of geographically distributed team members and hence the acquired data 
must be accessible by all team members.

Statistical properties of measurements
By observing stochastic processes changing as a function of many factors, scientists 
are frequently deriving conclusions from a limited number of observations (i.e., 
statistical samples of the underlying stochastic process). This raises questions about 
(a) how many observations to collect in order to derive conclusions with high statis-
tical confidence and (b) which observation to collect in order to acquire representa-
tive statistical samples. If statistical samples are chosen based on assumptions about 
a specimen that do not hold, then validity and reproducibility of data-driven infer-
ences and models (scientific results) are in jeopardy. There is thus a need to run big 
data experiments to collect as much data as possible to validate appropriate sam-
pling and verify confidence in the conclusions. The statistical benefits of so-called 
“census” measurements are high and include increased robustness and statistical 
significance of measurements at the cost of infrastructure investments [2].

Fig. 1.4  Comparison of today’s characteristics of ensemble “bulk” and microscopic measure-
ments (top). If solutions for processing big data experiments become available, then a new type of 
measurement science is enabled

1.4  Motivation of Big Data Microscopy Experiments



8

Provenance trail of measurements
In scientific discovery from big image data, scientists often struggle with the repro-
ducibility of their analyses. Lack of reproducibility can be attributed to the large 
number of processing steps associated with algorithmic versions, parameter set-
tings, operating system dependencies, and hardware-specific configurations. It is 
difficult to keep all intermediate results, software versions, and metadata about con-
figurations hence the analyses may be performed on multiple computers by several 
scientists. These metadata, describing the path from imaging to reported results 
(referred to as a provenance trail), are critical for the transparency of published 
work and traceability of measurements. One of the benefits of a web image process-
ing pipeline is that it can capture the provenance trail. By connecting intermediate 
results and metadata files using web hyperlinks, scientific results become transpar-
ent and traceable.

From scientific research to practice
In addition to meeting the needs of a scientist, big data experiments can have large 
benefits for the manufacturing sector with quality control and quality assurance. For 
example, with some luck, rare events during bio-manufacturing of cell therapies can 
be observed by random spot-checking. However, quantifying the frequency of the 
rare occurrence requires a well-designed big data experiment, automated process-
ing, and the determination of an overall probability distribution function (PDF). If a 
rare event has a critical impact, then industries using high-throughput imaging and 
performing quality assessment may be interested in web image processing 
pipelines.

Summary of goals of big data microscopy imaging experiments
In a summary, the combination of big data microscopy imaging experiments and 
web image processing pipelines enable the user:

•	 To understand multi-scale relationships of phenomena
•	 To study complex governing laws of phenomena
•	 To improve statistical properties of measurements
•	 To facilitate transparency and traceability of research results
•	 To enable reliable quality control and quality assurance

The ultimate goal for many scientists is also to transition scientific results to bio-
manufacturing environments. This transition is much easier if scientific results are 
accessible and traceable. The web image processing pipeline described in this book 
is viewed as a tool to make the transition easier. It is also viewed as an open-source 
component of a cloud-based laboratory information management system.3 In 
research labs, it is viewed as an infrastructure that enhances access to expertise and 
measurement tools.

3 https://appexchange.salesforce.com/listingDetail?listingId=a0N30000008YhTtEAK

1  Introduction to Big Data Microscopy Experiments

https://appexchange.salesforce.com/listingDetail?listingId=a0N30000008YhTtEAK


9

1.5  �Range of Applications Leveraging Image Processing 
Pipelines

Applications at the cell level
Live cell microscopy imaging has applications for developing stem cell therapies, 
for advancing regenerative medicine, and for designing drugs. Whether the cells are 
administered to the body to benefit the recipient (cell therapy) or the cells are regen-
erated into tissues and organs to restore normal functions (regenerative medicine),4 
they must be inspected for quality. Microscopy imaging with image processing pro-
vides one of the quality assurance tools. Image processing pipelines can be used to 
monitor cell responses to a large space of treatments during the design process for 
new therapies,  ultimately serving as a replacement for the highly manual and less 
statistically significant visual spot-checking.

Applications at the tissue level
A web image processing pipeline can help with analyzing histopathology images. 
These images are collected from biopsies and pose a challenge due to the volume of 
data, complexity of image content, and a desired short turnaround time on measure-
ments. In comparison to live cell microscopy images, histopathology images are typi-
cally stained with hematoxylin and eosin (H&E) and imaged as color images. There 
is an entire branch of digital pathology devoted to analyzing histopathology images 
[3]. It is conceivable that digital pathology combined with tailored medical treatment 
to the individual characteristics of each patient would play a role in an emerging 
approach to disease treatment and prevention referred to as precision medicine.

Applications at the organ level
Microscopy imaging and image processing have been used to study the brain. Due 
to the unprecedented size of brain imaging datasets, this application requires shar-
ing data, algorithms, and results, as well as joint collaborations across multiple 
funding agencies and research institutions. Web image rendering and annotation 
systems have been the key in the Human Connectome5 project funded by federal 
agencies, FlyEM6 project funded by the Howard Hughes Medical Institute (HHMI) 
Janelia Farm, and Allen Brain Atlas7 funded by the Allen Institute for Brain Science.

Materials science applications
A web image processing pipeline can be a tool for material scientists to study 
images and make measurements of nanoscale particles, for example, that can cause 
health hazards for exposed humans or failures in engines and building materials. In 
addition to safety- and quality-related static particle measurements, dynamic mea-
surements are needed to prevent chemical reactions during operations, such as 
detection of destabilizing chemicals in lithium ion batteries used frequently in cell 
phones and laptops [4].

4 http://stemcellassays.com/2011/12/distinction-cell-therapy-regenerative-medicine/
5 http://www.openconnectomeproject.org/ and https://www.humanconnectome.org/
6 https://www.janelia.org/project-team/flyem
7 http://brain-map.org/

1.5  Range of Applications Leveraging Image Processing Pipelines

http://stemcellassays.com/2011/12/distinction-cell-therapy-regenerative-medicine
http://www.openconnectomeproject.org/
https://www.humanconnectome.org/
https://www.janelia.org/project-team/flyem
http://brain-map.org/


10

Other applications generating large size image collections
While this book is focused on microscopy imaging, a web image processing pipe-
line can be applied to satellite and airborne imaging in geospatial information sys-
tems (GIS), as well as to telescopic imaging in astronomy. To adjust to specific 
measurement objectives of each application domain, image processing steps (algo-
rithms) must be specifically designed, and can be easily integrated into the web 
pipeline architecture.

1.6  �Challenges of Big Data Microscopy Experiments

Given the examples of big data experiments, web image processing pipelines can 
play a significant role in the transition from big data to knowledge, enabling tech-
nologies for real-time control of experiments (i.e., steerable experiments). Extracting 
knowledge from big image data is challenged by its size and complexity. Steerable 
experiments are additionally challenged by the limited time for processing, when 
the imaging microscope requires human input for changing FOVs based on the data 
it is acquiring. The challenges of big data experiments related to scale, complexity, 
and speed suggest that web image processing pipelines might offer a viable solu-
tion. They hold the promise of managing large image collections and utilizing all 
investments to acquire big data, sharing the data, providing access for geographi-
cally distributed teams, and distributing and accelerating computations that have 
time-critical aspects. Next, we describe the three main challenges: scale, complex-
ity, and speed.

Data scale
To illustrate changes in data acquisition rates that directly contribute to large image 
scales, Fig.  1.5 and Table  1.1 summarize the acquisition rates of several micro-
scopes at National Institute of Standards and Technology (NIST). While there are 
already cameras on the market that can acquire images at a rate of 1 terabyte (TB) 
per 3 min, our laptops and office/lab desktops are not ready to process at this rate. 
One can see that one microscope can generate 15 TB in 45 min which is equivalent 
to all the data in the American Library of Congress that have been gathered since 
1800 (i.e., more than 158 million items in 460 languages). The amount of data being 
generated is currently doubling roughly every 18  months,8 and the challenge of 
working at this scale is not going to go away.

Image content complexity
Another property of big data experiments is the complexity of studied phenomena 
that goes beyond a single discipline, a single expertise, and many times a single 
institution. The phenomena in cell biology and materials science require a variety of 
geographically distributed inputs to design image models of multimodal time-
dependent TB-sized images over multiple scales. The complexity of image content 
is illustrated in Fig. 1.6.

8 http://www.datanami.com/2015/08/18/beware-the-dangers-of-dark-data/

1  Introduction to Big Data Microscopy Experiments

http://www.datanami.com/2015/08/18/beware-the-dangers-of-dark-data


11

Given TB-sized videos with gigapixel frames, automation of measurements is 
inevitable. Automated analyses depend on designing models at macro (centimeter) 
to micro (nanometer) spatial scales over time and imaging modalities. The design of 
models for algorithms (i.e., segmentation and tracking) relies on limited human 
visual inspection or other reference measurements. The challenges of this type of 
complexity require solutions to become interactive so that a computer and a human 
can work in a tandem.

Fig. 1.5  Examples of acquisition data rates by a variety of microscopes

Table 1.1  Microscope abbreviations used in Fig. 1.5

mXRF Micro X-ray fluorescence spectrometry
XRD X-ray diffraction imaging
LSCM Laser scanning confocal microscopy
ToF-SIMS Time-of-flight secondary ion mass spectrometry
EFTET-Si Energy-filtered transmission electron tomography-spectral  

imaging
EFTEM-Si Energy-filtered transmission electron microscopy
TEM-tomo Transmission electron microscopy-tomography
1080p 30fps Wilco Imaging’s second generation WIL-HD1080p with 1/3″ 

Complementary Metal–Oxide–Semiconductor (CMOS) 
Panasonic sensor, 1080 horizontal lines (progressive scan) and 
1920 vertical lines per image (1080p), and 30 frames per second 
(fps), also denoted as High-Definition (HD) Serial Digital 
Interface (SDI) camera

Fluorescent HCA (GE) High content analysis, General Electric (GE) InCell 2200
LSCM spin (xyzλ) Spinning disk laser scanning confocal microscopy
Fluorescent-phase (Zeiss) Zeiss Axiovert 200 M fluorescence/live cell imaging microscope

1.6  Challenges of Big Data Microscopy Experiments



12

Fig. 1.6  Complexity of image content when imaging cell colonies using multimodal microscopes, 
over a variety of specimens, in space and time

Speed
Finally, the speed of image processing must also be considered. For instance, if a 
doctor is depending upon microscope images to monitor a cell therapy being deliv-
ered to a patient, and processing that data takes longer than a transition in the state 
of those cells, there is a risk in delivering the cell therapy. The current computational 
times on a personal computer are limited to its hardware specifications. For exam-
ple, after acquiring 2 TB of data in 2 min, it would take (33 to 66) min to move the 
data over a 1 Gbit/s network, more than 250 laptops with 8 gigabytes (GB) Random 
Access Memory (RAM) to load 2 TB of data, and about 33 min to perform integer 
multiplication on an Intel Pentium processor with 3 GHz clock speed.

1.7  �Considerations Before and After Digital Images Are 
Acquired

Specimen condition and image quality
Although this book is focused on the web image processing pipeline after images 
are acquired, the success of image processing depends very much on specimen 
preparation and microscope modality and its parameters and calibration. For exam-
ple, in live cell experiments, a team must make a trade-off between image quality 
measured by signal-to-noise ratio (SNR) and the amount of illumination that can 
harm living cells. Higher illumination intensity and acquisition rate is harmful to 
cells but produces higher SNR images, which makes it easier to detect cells by 
image processing. Thus, one must compromise to collect meaningful measure-
ments. Furthermore, live cells are fed on a regular basis by exchanging their media. 
If changing cell media perturbs the imaging configuration, then image registration 
and cell tracking become difficult.

1  Introduction to Big Data Microscopy Experiments



13

Microscope configuration
While configuring a microscope, there are also several trade-offs that affect success-
ful image processing. Due to the limited bandwidth for writing to a computer disk, 
one might have to compromise on the acquisition rate defined by intensity dynamic 
range (bits per pixel), spatial resolution, and number of channels per time interval. 
In addition, a traditional microscope is limited by the maximum speed of its motor-
ized stage. Many times, the stability of the specimen and imaging instrument over 
time is also important for understanding image quality. Finally, the sensitivity of 
image processing results to microscope calibration has been known and duly noted, 
for instance, in the case of image stitching [5].

Computational technology
After preparing a specimen, configuring a microscope, and acquiring thousands of 
FOVs, there are several technology decisions, with related financial costs, to ensure 
that the necessary computational infrastructure is in place to allow the scientist to 
explore and obtain measurements for the acquired large data sets. First, raw digital 
images cannot be visually inspected and analyzed without preprocessing small 
FOVs (image tiles) into a large FOV. Traditional software libraries used for bioim-
age processing are not designed for assembling, viewing, and analyzing very large 
images on desktops and pose a constraint for scientists on extracting useful informa-
tion from big images. If traditional software libraries for bioimage processing are 
run in a computer cloud (computer cluster), then they will likely not utilize all clus-
ter nodes and will be limited by the RAM of each cluster node. To overcome this 
computational constraint, there is a need to facilitate the transition from desktop 
computing to distributed computing and/or hide this computational aspect from 
users by designing client-server systems.

Image sharing
Another decision for principal investigators is the allocation of resources between 
experimental data acquisition, data analyses to learn from acquired data, and data 
sharing to increase the overall work impact and receive credit for the experimental 
and data science work. Given significant investments needed for conducting big 
data experiments, one needs infrastructure for big data analyses and sharing that can 
help principal investigators to lower costs of needed information technology work. 
This favorable allocation of resources toward experimental data acquisition can be 
achieved by reusing open-source solutions and organizing acquired image collec-
tions for data sharing. Ideally, big image collections and their analyses can be 
curated and stored in a data repository and cross-referenced in the corresponding 
scientific publications.

Collaborative visual exploration and modeling
A principal investigator must decide between the financial cost of a powerful shared 
server to be used by all collaborators for remote server-based measurements and the 
lost time and efficiency of having the collaborators download big image data to their 
local computer for exploration. If the financial resources are available for a power-
ful server or for provisioning a cloud deployment, then the client-server system can 

1.7  Considerations Before and After Digital Images Are Acquired



14

deliver remote “anytime and anywhere” access and customizable, scalable, and 
flexible computational tools for explorations and modeling.

As an added benefit, server-based image measurements allow for building mech-
anisms for gathering computational provenance into web systems. The benefit of 
having computational provenance for traceability of intermediate results and shared 
images is yet another aspect of web systems that is counterweighted by the cost of 
software development, hardware to host data, and labor to maintain the web system. 
Thus, one must weight all aspects of an open source web image processing pipeline 
including collaborative modeling, data sharing, scalability of computational 
resources, and computational provenance, against the costs of hardware, additional 
software, and labor to maintain the web system.

1.8  �Enabling Reproducible Science from Big Data 
Microscopy Experiments

Enabling reproducible science from big data microscopy experiments is a tall order 
and a lofty goal. We are attempting to make a useful contribution toward this goal 
by presenting software, data, theory, and practical usage of an open-source web 
system. This chapter outlined the value of web image processing pipelines in terms 
of multi-scale understanding of phenomena, studying complex phenomena, improv-
ing statistical significance, preparing for high-throughput and time-critical process-
ing, and facilitating data sharing, collaboration, and traceability of research results.

Usefulness of web image processing pipeline
A web image processing pipeline can be viewed as a useful data science infrastruc-
ture tool to enable discoveries and facilitate publications from big data experiments. 
Its benefits to researchers and practitioners lie in increasing scientific productivity 
and in delivering reproducible results. From a discovery perspective, Table 1.2 sum-
marizes the role of web image processing pipelines in the transition from today’s 
microscopic measurements to tomorrow’s macro-to-microscopic measurements. 
From a publication perspective, advances in the understanding of cell responses 
under drug treatments can be made more rapidly if an investigator does not have to 
be concerned about “big data” issues such as configuring computers (the web sys-
tem is already deployed in the cloud), adjusting software to scale with data size (the 
software is not limited by the specifications of a local computer), keeping track of 
intermediate results, guessing algorithmic parameters instead of interactively select-
ing them, and preparing published materials by linking them with individual data 
points. A publication with such traceable results also allows reviewers to be more 
productive and objective because they can now verify results derived from big data 
collections. This is almost impossible when the data sets are too large and require 
excessive computation.

1  Introduction to Big Data Microscopy Experiments



15

References

	1.	 Zhou, J.: Getting the most out of your image-processing pipeline. Techonline, pp.  1–12, 
30-Oct-2007

	2.	 Robinson, C.G., et  al.: Automated infrastructure for high-throughput Acquisition of Serial 
Section TEM image volumes. Microsc. Microanal. 22(S3), 1150–1151 (2016)

	3.	 Deroulers, C., Ameisen, D., Badoual, M., Gerin, C., Granier, A., Lartaud, M.: Analyzing huge 
pathology images with open source software. Diagn. Pathol. 8, 92 (2013)

	4.	 Schalek, R., et al.: Imaging a 1 mm 3 volume of rat cortex using a MultiBeam SEM. Microsc. 
Microanal. 22(S3), 582–583 (2016)

	5.	 Chalfoun, J., Majurski, M., Blattner, T., Keyrouz, W., Bajcsy, P., Brady, M.: MIST accurate and 
scalable microscopy image stitching method with stage Modeling and error minimization. Nat. 
Sci. Rep. 7, 1 (2017). DOI: 10.1038/s41598-017-04567-y

Table 1.2  Summary of the role of web image processing pipeline in the transition from today’s 
microscopic measurements to tomorrow’s macro- to microscopic measurements from big data 
microscopy experiments

Role of web 
image pipeline

Today’s microscopic 
measurements

Tomorrow’s macro- to microscopic 
measurements

Acquire Small field of view
Single length scale

Large field of view
Multiple length scales

Measure Qualitative measurements
Image algorithms
Questionable traceability
Serial processing

Quantitative measurements
Well-characterized image algorithms
Traceable measurements
Parallel processing

Analyze Spot-checking: Micro-scale 
measurements
Unable to detect rare events
Estimated population statistics 
with large error

Relationship across micro−/
macroscales
Rare event detection
Accurate population statistics

Share and 
collaborate

Limited data sharing
Lack of reproducibility
Disconnect between publications 
and data

Sharing via web
Traceability of measurements and 
analyses
Publications linked to data

References

https://doi.org/10.1038/s41598-017-04567-y


17© Springer International Publishing AG 2018 
P. Bajcsy et al., Web Microanalysis of Big Image Data, 
https://doi.org/10.1007/978-3-319-63360-2_2

Chapter 2
Functionality of Web Image Processing 
Pipeline

Pipeline functional decomposition
The web image processing pipeline (WIPP) can be viewed as three functional mod-
ules that operate on common underlying data. The modules are referred to by their 
functionality as:

•	 Web image processing (WIP)
•	 Web image feature extraction (WFE)
•	 Web statistical summarization and modeling (WSM)

The modules are illustrated in Fig. 2.1. The WIP module performs field of view 
(FOV) calibration, image fusion into large FOV images, visualization computa-
tions, and object detection. As illustrated in Fig. 2.1, large FOV images along with 
foreground masks serve as inputs to the WFE module which then integrates widely 
used libraries for calculating image features and extracts tables of feature values. 
Finally, the image pyramid (a hierarchical partitioning representation) and the 
image features are passed to the WSM module which allows (a) spatial- and feature-
based filtering of segmented objects and (b) creation of statistical models of histo-
gram summaries linked to the persistent data representation.

Interactions with the three modules
The three functional modules shown in Fig. 2.1 enable imaging scientists to focus on 
the domain-specific problems (i.e., understanding image content) while using the 
web-based computational tools to manipulate videos of gigapixel size per frame and 
frequently reach terabyte-sized volumes. WIPP is web-accessible to facilitate geo-
graphically diverse collaborations and to utilize distributed computational resources 
for CPU-intensive processing. After uploading an image collection, all data are stored 
in the same database and are accessible by all modules. Users can select the computa-
tions and their order of execution while visually inspecting intermediate results, per-
forming parameter optimizations, and following the computational and data 
provenance traces to reproduce the result.



18

In this chapter, we will guide the reader through the deployment of WIPP. We 
will also describe how to test the deployed software system with the provided test 
data and how to use the different system capabilities.

2.1  �Deploying and Testing the Web Image  
Processing Pipeline

This section describes the deployment of the three previously described modules 
(WIP, WFE, and WSM) in WIPP, their associated data, and the workload manage-
ment system. Two WIPP deployment configurations are briefly discussed here:

•	 Native installation of the system’s modules and dependencies
•	 Installation using virtualization software on a variety of hardware and software 

infrastructures

We recommended deploying WIPP using Docker container-based virtualization, 
which is the focus of this section.

Deployment versus installation
We refer to “deployment” when we push a version of software to several computers 
(clients and servers) and update the software over time. It is frequently used inter-
changeably with the word “installation.” However, we use the word “installation” in 
the context of installing a software library onto a single computer and configuring it.

WIPP components
The WIPP modules and their functionalities shown in Fig. 2.1 are enabled by the 
software components illustrated in Fig. 2.2. The software components have differ-
ent functional responsibilities described below:

•	 Web browser/client applications using AngularJS [1] and Web Deep Zoom 
Toolkit frameworks [2] are responsible for browser−/client-based rendering and 

Fig. 2.1  Top-level overview of the three web applications in terms of their functionality

2  Functionality of Web Image Processing Pipeline



19

interactive measurements. Web statistical modeling is a web browser 
application.

•	 Web server application such as Java Spring application [3] is responsible for 
mediating requests between client and server components of web applications.

•	 Pegasus Workflow Management System (Pegasus WMS) [4] is responsible for 
executing computational workflows. The workflows consist of third-party soft-
ware and NIST libraries with algorithms for image processing and feature extrac-
tion. The image processing algorithms are used in the image processing 
application to perform operations such as stitching, segmentation and tracking of 
objects of interest. The feature extraction algorithms are used in the feature 
extraction application to perform feature computations on the regions of interests 
as detected by the image processing application. Web image processing and web 
feature extraction modules consist of sets of computational workflows.

•	 Database such as MongoDB [5] is responsible for storing information.
•	 File system is responsible for storing images and their image pyramid 

representations.

These components and technologies are described in Chaps. 4, 5, and 6.

Where to install each WIPP component?
The WIPP software components can be installed on more than one computer. An 
example of installation on four machines is illustrated in Fig. 2.2. In this example, 
all web browser communication is handled by computer #1 and is then passed by 
the Pegasus workflow management system to the WIPP components on machines 
#3 and #4. Each computer performs computations requested via the web browser 

Fig. 2.2  An example deployment of WIPP with color-coded functionality. Green – web browsers 
with user interfaces for the WIPP client application. Blue – server computers that perform WIP and 
WFE computations. Gold – data storage consisting of a database for storing all metadata and a 
shared file system for storing images

2.1  Deploying and Testing the Web Image Processing Pipeline



20

and stores its results in both a shared file system and a MongoDB database (installed 
on machine #2). It is assumed that every user’s computer (i.e., the client-side com-
puters) has a web browser.

Communication with WIPP components
As seen in Fig. 2.2, the web server application is responsible for communicating 
with the other system components, such as Pegasus WMS, the database, and the 
computation modules. These system components are low-level libraries that facili-
tate storage, distribute computing, and manage client-server interactions. Their 
functionality is different from the user-centric functionality. The communication 
between client and server applications is aided by the web server application and 
enabled via predefined application programming interfaces (API). The API is built 
using the Spring framework. The web server application consists of bundled Spring 
Java application, AngularJS JavaScript, and Web Deep Zoom Toolkit applications. 
It is served by an embedded Apache Tomcat web server software. More details can 
be found in Chap. 4.

2.1.1  �Types of Deployment

Computer clouds and computer clusters
Web applications are deployed on a set of networked computers. When the net-
worked computers are connected by a local area network (LAN), they are referred 
to as a computer cluster [6]. Computer clusters are supervised within a single 
administrative domain and are usually residing in one room. In comparison, cloud 
computing is a model for enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing resources (e.g., networks, serv-
ers, storage, applications, and services) that can be rapidly provisioned and released 
with minimal management effort or service provider interaction according to the 
NIST definition [7]. In practice, this definition implies that computers might be con-
nected by a wide area network (WAN) and might be highly geographically distrib-
uted. Each computer in a computer cluster and cloud is also called a node since the 
networked configuration can be represented by a graph. The specifications of nodes 
in a computer cluster are typically the same (homogeneous) while they can vary in 
a computer cloud (heterogeneous).

Deployment complexity and hardware virtualization
The complexity of deploying a web application on a set of networked computers is 
greater than that for installing a library on a single computer. There are several 
methods for packaging web applications and virtualizing hardware that simplify 
web application deployment. We introduce two of the virtualization methods below. 
Virtualization allows partitioning of physical resources at a low level so that there is 
an appearance of having multiple instances of the physical hardware. Computer 
hardware virtualization can also be viewed as a logical abstraction of hardware 
components that hides the physical characteristics of a computer from its users.

2  Functionality of Web Image Processing Pipeline



21

We consider:

	1.	 Emulation-based virtualization methods
	2.	 Container-based virtualization methods

Figure 2.3 illustrates the differences between these two virtualization methods.

Deployment using virtual machines or emulation-based virtualization method
Emulation-based virtualization emulates a guest operating system (OS) environment 
running on bare hardware in a host operating system. Microprocessor companies, 
such as Intel and Advanced Micro Devices (AMD), have added hardware support for 
virtualization in their commodity processors. This microprocessor support allows 
entire web applications to be treated as packages with the help of hypervisor software, 
for instance, VMware Player, VirtualBox, QEMU, Bochs, Parallels, Xen, or Kernel-
based Virtual Machine (KVM). In our case, this virtualization method allows us to 
deploy virtual machines (VM) running a guest OS and WIPP, while the physical 
machines are running a different OS.

Deployment using Docker container or container-based virtualization
Let us assume that an execution of image processing algorithms requires installa-
tions of several libraries with specific versions, manually setting parameters in con-
figuration files, and running several scripts to complete the software configuration 
before the algorithmic executable is successfully launched. This process must be 
repeated on each machine and imposes an extra burden on users. If all installations 
and configurations can be done once and downloaded as a container file, then users 
can be more productive and the algorithmic executions can be more reproducible 
[8]. This basic concept of containers is the motivation behind our use of container-
based virtualization systems such as Docker [9, 10].

Container-based virtualization systems share low-level resources with the host 
operating system and are therefore more memory efficient. Applications run in the 
same operating system as the host. In Linux, this method leverages operating 
system-level capabilities called Linux Containers (LXS) or runC (formerly known 
as libcontainer). Linux Containers offer an environment similar to a virtual machine 

Fig. 2.3  Two types of hardware virtualization. Left  – emulation-based virtualization. Right  – 
container-based virtualization

2.1  Deploying and Testing the Web Image Processing Pipeline



22

but without the overhead of running a separate kernel and hardware emulation. 
Docker containers use a layered filesystem (AuFS) by default, but other layered 
filesystems can be used instead1 (OverlayFS, Zettabyte filesystem registered by 
Oracle as ZFS, Virtual filesystem - VFS). AuFS allows common parts of the operat-
ing system to be read only and shared among all containers. AuFS also provides 
each container its own mount point for a writeable filesystem. Container-based vir-
tualization is at the OS level, while emulation-based virtualization is at the proces-
sor level. Given a host operating system, one can run a different guest operating 
system inside a VM but not inside a Docker container. Because they share the same 
kernel as their host, containers are much smaller than VMs.

One can run different Linux distributions within Docker containers if they use 
the same kernel as the host. Containers do not require pre-allocating RAM and can 
be loaded much faster than VMs. These comparative features of Docker container-
based virtualization have implications when deploying hundreds of web image pro-
cessing applications according to varying on-demand requests.

2.1.2  �Deployment of Docker Containers

WIPP is distributed for deployments using Docker containers. Links to software 
downloads, installation instructions, user manual, and test data are provided in the 
chapter entitled “Supplementary Information Software and Documentation.”

Deployment of the WIPP system using Docker containers
We recommend Docker containers for pre-configured and scalable WIPP deployments. 
The Docker Engine allows for the deployment of multiple container instances to a col-
lection of machines. Docker Swarm allows the containers to form a cluster. It consists 
of one or multiple manager nodes and worker nodes providing services, as well as an 
overlay network for multi-host networking. The manager node assigns tasks to the 
worker nodes in the form of Docker containers that can perform specific services.

To perform a Docker deployment of the WIPP system, use the following steps:

	1.	 Download the ZIP file under the “Docker deployment” section of the WIPP web-
site, containing README files and setup scripts.

	2.	 Install the Docker Engine for running Docker containers on the machine(s) that 
will host the WIPP system.2

	3.	 Create and configure the Docker Swarm for the machine(s) with the Docker 
Engine. Follow the instructions available both on the WIPP website and in the 
README files of the downloaded ZIP file.

	4.	 Run the provided setup script to automatically deploy the WIPP system on the 
created Docker Swarm. Access the system from the Internet Protocol (IP) address 
of the Docker Swarm manager node.

1 https://docs.docker.com/engine/userguide/storagedriver/selectadriver/#shared-storage-systems- 
and-the-storage-driver
2 Follow the instructions at https://www.docker.com/get-docker

2  Functionality of Web Image Processing Pipeline

https://docs.docker.com/engine/userguide/storagedriver/selectadriver/#shared-storage-systems-and-the-storage-driver
https://docs.docker.com/engine/userguide/storagedriver/selectadriver/#shared-storage-systems-and-the-storage-driver
https://www.docker.com/get-docker


23

The main components of WIPP are packaged into Docker containers as shown in 
Fig.  2.4. The “Master Docker Container” is introduced in Fig. 2.4 to coordinate 
executions using Docker Swarm.

2.1.3  �Deployment Recommendations

General recommendations  The anticipated image sizes and processing throughput 
rates should be consistent with the hardware (RAM, disk, and networking). We pro-
vide a few general recommendations as well as several computational time bench-
marks on a similar configuration (called “test hardware configuration”) in Sect. 2.1.4 
to guide users during the process of understanding the hardware requirements.

General recommendations:

•	 Hardware:

–– CPU and RAM: Minimum two CPUs and 8 GB of RAM per host for a multi-
host deployment or four CPUs and 16 GB of RAM for a single host deploy-
ment. Scale up the hardware specifications with the size of input data and the 
expected speed of processing. We provide a few time benchmarks in Table 2.1. 
In terms of RAM, segmentation of 1  GB sized image can consume up to 
16 GB of RAM. Some other computations are more memory efficient, for 
instance, flat-field correction, stitching, and pyramid building.

–– Disk space: Minimum 50GB of available disk space for small datasets, to be 
scaled to at least ten times the expected amount of data to be uploaded to the 
system.

•	 Software:

–– Operating system: Unix family (such as Ubuntu or MacOS)

Fig. 2.4  Docker containers that encapsulate components shown in Fig. 2.2

2.1  Deploying and Testing the Web Image Processing Pipeline



24

Browser recommendations
For the best experience, we recommend using a recent version of the Google 
Chrome web browser when using WIPP’s web interface. Other web browsers, such 
as Mozilla Firefox and Apple Safari, are also supported. Some visualization capa-
bilities may not work properly when using Microsoft Internet Explorer or Edge.

2.1.4  �Test Data and Computational Benchmarks

WIPP functionality tests and performance benchmarks
Once WIPP has been deployed, users should test the functionalities and collect 
benchmarks to understand the computational performance of the new system. We 
provide several test datasets for this purpose. Table 2.1 contains a list of computa-
tions and their corresponding time benchmarks. The hardware used for the bench-
marks was one virtual machine with four CPUs (Intel(R) Xeon(R) CPU X5670 @ 
2.93GHz), 16 GB of RAM, and a mounted network attached storage (NAS) on 1 
Gbit/s network. Users can compare the benchmarks obtained on the test hardware 
configuration against the computational benchmarks obtained with the same data on 
new hardware or with other datasets relevant to users’ scientific domains.

The benchmarks in Table 2.1 correspond to average times. They can vary depend-
ing on the network connection and the workload state of the infrastructure while 
running each computation. The time with “per type” refers to the average time to 
run a job across the several algorithmic choices (“type”).

Provided test data
The test datasets are shipped with the WIPP system and available for download in 
the “Test datasets” section of the WIPP website.3 Each dataset comes with input 

3 https://isg.nist.gov/deepzoomweb/software/wipp

Table 2.1  Summary of datasets that could be downloaded for testing new deployments

Dataset for testing Time to process

Background correction 00:00:05
Flat-field correction 00:00:15
Filtering (five types: Mean, median, min, max, Gaussian blur) 00:00:07 per type
Empirical Gradient Thresholding (EGT) segmentation 00:00:04
Fog Bank segmentation 00:00:15
Stitching (four types: Stitching, TIFF stage metadata, no overlap mosaic, 
time sequence of 1 FOV)

00:00:05 per type

Intensity scaling (two types: Truncation, gamma correction) 00:00:05 per type
Pyramid building 00:00:05
Image assembling 00:00:05
Mask labeling (two types: Four connected, eight connected) 00:00:07 per type
Lineage tracking 00:00:05
Tessellation (square, hexagon) 00:00:05 per type
Feature extraction (two types: Images + masks, images + masks + tiles) 00:00:50 per type

2  Functionality of Web Image Processing Pipeline

https://isg.nist.gov/deepzoomweb/software/wipp


25

data, expected output, and a README file containing a set of instructions for con-
figuring and running the computation on WIPP.

Other sources of test data
Another source of test data is the NIST interactive web system.4 For instance, one 
can download phase contrast images of cell colonies and use them for testing EGT 
segmentation, lineage tracking, intensity scaling, and pyramid building. The NIST 
interactive web system is based on one component of the web image processing 
pipeline called Web Deep Zoom Toolkit. It is designed for big image dissemination 
and browser-based measurements (uploading and image processing on the NIST 
server are not possible).

Additional tests
The use cases described in Chap. 3 provide another way to verify the WIPP func-
tionalities. These use cases are also useful for learning more about WIPP. We will 
present a few usage examples of WIPP modules in this chapter for testing a WIPP 
deployment. These examples start with a small stem cell image tile dataset (about 
55 MB of data) named “Cy5 dataset” that can be downloaded from the WIPP web-
site5 under the “Test datasets” section.

2.2  �Web Image Processing Module

Top-level functionality 
Figure 2.5 illustrates the top-level functionality of the web image processing (WIP) 
module. A user can upload and process thousands of small fields of view images by 
submitting computational jobs to the server. The computations are performed on 
the entire collection of FOV images. Rapid analyses are enabled in a web browser 
once the small FOV images are processed into a single large FOV image and pre-
pared for zoom-able viewing. The zoom-able viewing and rapid analyses consist of 

4 https://isg.nist.gov/deepzoomweb/data
5 https://isg.nist.gov/deepzoomweb/software/wipp

One Large Field of 
View

CALIBRATION & 
IMAGE FUSION

òò

Fusion Models

HIERARCHICAL 
PARTITIONING

Data Hierarchy & 
Partitioning

Representation 
ModelsForeground Models 

& Algorithms 

WEB IMAGE PROCESSING

Parameters of Data 
Acquisition

& Many Small Image 
Fields of View 

Fig. 2.5  Top-level functionality available in the web image processing module

2.2 � Web Image Processing Module

https://isg.nist.gov/deepzoomweb/data
https://isg.nist.gov/deepzoomweb/software/wipp


26

user-driven subset selection (like Google Maps) followed by computations over the 
visible subsets.

2.2.1  �Web Image Processing Module Processing Functionality

Processing on a server
Web image processing (WIP) module server-based processing creates calibrated, 
stitched, segmented, and viewable images. It is accessed from a tab called “Image 
Processing” (see Fig. 2.6) and has the following list of options:

•	 Image tile calibration (flat-field and background correction)
•	 Image tile stitching
•	 Image segmentation (empirical gradient thresholding, EGT, and watershed-

based segmentation, FogBank)
•	 Object tracking across multiple time frames
•	 Pixel depth conversion to 8 bits per pixel (intensity scaling)
•	 Image pyramid building for Deep Zoom viewing
•	 Configuration of multiple image pyramids into a multi-layer Deep Zoom 

visualization
•	 Image tessellation to create rectangular or hexagonal image partitions
•	 Image assembly

Online help
To become familiar with the parameters and user interfaces of each type of server-
based computation, we recommend reading the Help section embedded in the WIPP 
system (accessible from the Help menu tab) or the online user guide on the WIPP 
website. They provide a visual reference for the dialogs and parameter descriptions.

Fig. 2.6  The WIP module user interface for a list of processing operations (left pane)

2  Functionality of Web Image Processing Pipeline



27

Processing in a web browser
The browser-based processing enables:

•	 Access to calibrated information
•	 Collection of quantitative measurements
•	 Testing and optimization of algorithmic parameters
•	 Support for additional processing by other software tools

The functionality is accessible by selecting “Pyramid” option under the “Image 
Processing” tab and then viewing the pyramid data. The browser will contain a visu-
alization pane (see Fig. 2.7) with the following list of main options in the left pane:

•	 Layer selection: choice of pyramid layers
•	 Layer composition: transparent overlays of multiple layers
•	 Display information: displaying original and displayed image intensities
•	 Custom search: colony searching, search for spectral peaks
•	 Screen recording: capturing in-browser activities
•	 Data fetching and object fetching: downloading raw or displayed image subsets
•	 Filtering and connectivity analysis: interactive image filtering and connectivity 

analysis
•	 Distance measurements: spatial-scale measurements

The visualization pane functionality is described in detail online.6 General inter-
active browser viewing of the underlying gigapixel images uses the icons with 
tooltips in the left upper corner (see Fig. 2.7) or mouse controls:

•	 Left mouse click and drag: panning
•	 Roller spinning: zoom in and out
•	 Right mouse click: invoke properties of the region if they exist

6 https://isg.nist.gov/deepzoomweb/help

Fig. 2.7  User interface to rapid data subset analyses (left pane) applied to viewed data (main pane)

2.2  Web Image Processing Module

https://isg.nist.gov/deepzoomweb/help


28

2.2.2  �Description of WIP Module Usage

Simple counting exercise
We will now illustrate the utility of WIP module for counting several particles in a 
5 × 5 set of image tiles (denoted as a counting task). To compute the number of 
particles, process the 5 × 5 grid of image tiles (flat-field correct tiles, stitch tiles, and 
segment particles from the stitched image), visually verify the accuracy of segmen-
tation, and then count particles within a specified area.

Additional computations
To accomplish the overall counting task, we must add intensity rescaling and pyra-
mid building computations for four reasons:

	1.	 Web browsers do not support images with more than 8 bits per pixel (BPP).7

	2.	 Stitched images are much larger than typical megapixel liquid crystal display 
(LCD) screens.

	3.	 The process of visually verifying segmentation results is improved by displaying 
and overlaying both raw image content and detected segments.

	4.	 A region of interest is required to count particles for a given segmentation.

Explanation of workflow steps
Figure 2.8 shows a sequence of computational jobs. The server-side sequence con-
sists of uploading files, stitching and flat-field correction, segmentation and inten-
sity scaling, and pyramid building. Several computations in Fig. 2.8 can be executed 
in parallel. The sequence yields two overlaid image layers, flat-field corrected raw 

7 Note: microscopes acquire images with 12 or 16 BPP. In addition, computations such as flat-field 
correction involve multiplication and division yielding 32 BPP images.

Fig. 2.8  Bottom – example workflow to create a zoom-able visualization of flat-field corrected 
input tiles overlaid with object segmentation. Top  – three steps performed by a user in a web 
browser after the overlay visualization has been created. These steps can be accomplished using 
the web UI

2  Functionality of Web Image Processing Pipeline



29

images and their segmentation results. These initial computational workflow steps 
are executed on the server with the remaining steps being performed in the web 
browser. Segmentation accuracy is visually verified by changing each layer’s trans-
parency and verifying the segment alignment with the raw images. Image region of 
interest (ROI) selection is then performed by panning and zooming by using a 
mouse or the buttons as shown in Fig. 2.7, top left. Finally, the particle count is 
computed by selecting the segmentation layer and clicking on the “Run analysis” 
button in the left pane (Connectivity Analysis segment). This invokes a four-
neighborhood connectivity analysis that gives its results as a new dialog with color-
coded connected components associated with their area (number of connected 
pixels). This dialog provides the particle count and size information.

Parameters of the workflow
For this example, here are the required parameters for executing the workflow 
sequence using the dataset (5 × 5 image tile dataset) described in Sect. 2.1.4, under 
“module usage examples”:

	 1.	 Upload the images to a new Image collection: Menu “Image Collections”  
“Image Collections”  “Create new collection”  Parameters  = [name  = 
Cy5-test-images].

	 2.	 Configure and run a stitching job: “Image Processing”  “Stitching 
Jobs””Create new stitching job” Parameters are:
Job name = stitch-Cy5-test-images.
Tiles collection = Cy5-test-images,
Algorithm = MIST,
File name pattern type = Row-Column.
File name pattern = img_00{r}_00{c}.ome.tif.
Starting point = Top Left.
Number of columns = 5.
Number or rows = 5

	 3.	 Segment objects with the EGT segmentation job: “Image Processing””EGT 
segmentation jobs”create new: parameter = [Job name = EGT-Cy5-test-image, 
Tiles collection = Cy5-test-images, Min object size = 500, Min hole size = 100, 
Threshold adjustment delta = 0].

	 4.	 Build a pyramid for segmentation: “Image Processing””Pyramid jobs”create 
new: parameters = [Job name = pyramid-EGT-Cy5-test-images, Stitching vec-
tor: stitch-Cy5-test-images, Tiles collection = EGT-Cy5-test-images].

	 5.	 Flat-field correct raw images: “Image Processing””Flat Field correction 
jobs”create new: parameters = [Job name = FF-Cy5-test-image, Raw Tiles col-
lection = Cy5-test-images, Segmented tiles collection = EGT-Cy5-test-image].

	 6.	 Scale intensities from 32 BPP to 8 BPP: “Image Processing””Intensity scaling 
jobs”create new: parameters = [Job name = scaling-FF-Cy5-test-images, Tiles 
collection = FF-Cy5-test-image, without checking the “Set advanced options”].

	 7.	 Build a pyramid for flat-field corrected and scaled images: “Image 
Processing””Pyramid jobs” create new pyramid: parameters = [Job name = 
pyramid-scaled-FF-Cy5-test-image, Stitching vector = stitch-Cy5-test-images, 
Tiles collection = scaling-FF-Cy5-test-images].

2.2  Web Image Processing Module



30

	 8.	 Create an overlay visualization of raw and mask images: “Image Processing” 
” Visualizations”  create a new visualization: parameters =  [Job name = 
vis-Cy5-test-images].

	 9.	 Enter under “Layer group label” =” FF corrected layer”, press the plus sign.
	10.	 Enter under “Layer label” = scaled-FF-Cy5, “pyramid” = pyramid-scaled-FF-

Cy5-test-image, press the plus sign.
	11.	 Enter under “Layer label” = EGT-segment-Cy5, “pyramid” = pyramid-EGT-

Cy5-test-images, press the plus sign.
	12.	 View the overlay of the two channels by clicking on the check box under “layer 

composition” and moving the slider bar to the right of the EGT-segment-Cy5 
label. The web UI for this configuration is shown in Fig. 2.9.

2.3  �Web Feature Extraction Module

Top-level functionality
The web image feature extraction module enables extracting traceable image features 
from raw images and their corresponding segmented masks. The image features 
include the intensity, spatial, and texture characteristics of objects defined by a 2D 
segmentation mask. The results are represented as a table of image features and a set of 
downloadable hyperlinked digital artifacts that were used to compute the image fea-
tures. Figure 2.10 outlines the top-level functionality (upload  configure and compute 
 download traceable image features) that uses a range of feature extraction services 
(i.e., integrated feature extraction libraries). The results contain both the numerical val-
ues of image features and the provenance information for the data, algorithms and 
parameters, software, and computational environment. The traceability of each 
requested feature is enabled via hyperlinking information as illustrated in Fig. 2.11.

Fig. 2.9  Example of the user interface instance for creating an overlay visualization

2  Functionality of Web Image Processing Pipeline



31

2.3.1  �WFE Module Processing Functionality

The WFE module is accessed from the tabs at the top of browser viewing pane (tab 
“Feature Extraction”; see Fig. 2.12) and includes:

•	 Selection of image collections
•	 Selection of image mask collections
•	 Selection of image mask tessellation collections
•	 Selection and extraction of image features
•	 Download of image features as csv files

Fig. 2.10  Top-level functionality available in the web feature extraction module

Fig. 2.11  Each feature value (i.e., the value in the middle of the figure in a red box) is traceable to 
input values, feature definition, feature extraction software and its parameters, as well as to soft-
ware and execution descriptors

2.3  Web Feature Extraction Module



32

•	 Access to hyperlinked provenance artifacts of image feature computations (fea-
ture documentation and source code, feature extraction executable with input 
files, and configuration parameters that were used to compute feature values)

•	 Access to the WSM module for a statistical modeling view of the extracted fea-
tures (see Sect. 2.4)

The images, mask, and mask tessellation collections are selected from the image 
collections list. Image collections can either be uploaded into the system or gener-
ated by one of the Image Processing Jobs.

Processing location
All computations take place on the server side. The browser UI is used only for 
configuring feature extraction computations, hyperlinking provenance information, 
and downloading or viewing results. We will next describe WFE configuration, 
which is primarily concerned with feature types, image masks, and software 
implementations.

Configuration of feature types
Feature types describe image objects and can be classified into three types:

•	 Spectral (intensity)
•	 Spatial
•	 Textural

Intensity features are values that are derived from the pixel intensities, such as 
their central moments (mode, mean, standard deviation, skewness, kurtosis). Spatial 
features are derived from the locations of pixels, their count, and their locations 
weighted by intensity value (e.g., perimeter, area, inertia tensor). Textural features 
capture information about the spatial arrangement of intensities and are computed 
from second-order statistics (e.g., gray-level co-occurrence matrix) or by transform-
ing images into a space where spatial patterns can be easily quantified (e.g., Fourier 
transform to quantify spatial periodicity). One can also consider temporal feature 

Fig. 2.12  User interface for starting a feature extraction job. The left-side menu tabs provide 
access to the feature extraction home (introduction page), documentation of available feature 
extraction packages, and feature extraction jobs page for creation and consultation of jobs

2  Functionality of Web Image Processing Pipeline



33

types which describe the evolution of object intensities, textural properties, and spa-
tial coordinates. Temporal feature extractors have not yet been included in the web 
software system.

Configuration of feature masks
The choice of an image mask is another configurable input. Users can create masks, 
run segmentation algorithms to obtain a data-driven masks, or combine multiple 
mask-creation processes. Figure 2.13 shows examples of these three image mask 
categories. The user-driven masks in Fig. 2.13 are created by partitioning an image 
into small hexagons or rectangles and computing features over these partitions (also 
denoted as tessellations). The user-driven masks are useful for exploring spatially 
varying properties (see the variation of average intensities) or local texture proper-
ties that are based on global statistics of features.

A data-driven mask in Fig. 2.13 is a direct segmentation algorithm output. The 
combined mask examples illustrate how one could analyze the spatial distribution 
within a data-driven mask by introducing additional boundary width or ratio or area 
ratio partitioning schemas. These masks are useful for cell colonies containing 
boundary cells exhibiting different behaviors from those of interior cells because of 
interactions with the surrounding media. Currently, users can create “combined 
masks” by uploading data-driven masks (e.g., cell colonies) and a user-driven tes-
sellation mask (e.g., hexagonal partition) and extracting features from hexagons 
inside of cell colonies.

Configuration of software implementation
The software library and its feature extraction algorithm implementations represent 
another configurable input. The WFE module integrates many widely used feature 
extraction libraries originating across scientific fields. These libraries are written in 
multiple programming languages (Java, Python, MATLAB, C/C++), run on a vari-
ety of operating systems, use diverse digital implementations of analog mathemati-
cal features, might use different names for identical features, and embed a wide 

Fig. 2.13  Illustration of image mask categories that define pixel subsets for feature computations

2.3  Web Feature Extraction Module



34

range of default parameters. The implementations also vary in their use of input 
image masks (no mask, one mask per region, one mask for all regions, mask with 
limited number of BPP). This variety of image feature extraction implementation 
poses integration challenges for the WFE module and raises questions about image 
feature equivalence across software packages. Image feature traceability is an 
important advantage of using WFE. At present, we have integrated image features 
from the following libraries: ImageJ/Fiji, scikit-image, CellProfiler, MATLAB 
Image Processing Toolbox (regionprops and graycoprops), WndCharm, MaZda, 
and a NIST Java package.8

2.3.2  �WFE Module Usage

Ranking exercise
Here we illustrate the utility of the WFE module for ranking cell colonies in a 5 × 5 
set of image tiles (denoted as a ranking task). In this example, the ranking task is to 
extract the average cell colony intensity as an image feature from the 5 × 5 grid of 
image tiles downloaded in Sect. 2.1.4 (step 1) and sorting the intensities from small-
est to largest. The task will also include establishing the equivalence of feature 
names for average intensity across the integrated software libraries.

Input images
We must first prepare the input raw and mask images. The exercise in Sect. 2.2.2 
(step 1: segment raw images) gave us an input image collection (Cy5-test-images) 
and the segmented image collection (EGT-Cy5-test-image). The segmented images 
contain only two labels, background and foreground (also denoted as the labels of 
binary images). All cell colonies have the same foreground label in segmented 
binary images. If the goal of a ranking task is to analyze the cell colonies individu-
ally, then each must have a unique label. To assign a unique label to each cell col-
ony, run the mask labeling job in WIP as follows:

•	 “Image Processing”
•	 “Mask labeling job”
•	 create new: Parameters  =  [Job name  =  label-Cy5-test-images, Images collec-

tion = EGT-Cy5-test-image, Connectedness = four connected]

Configuration of WFE
With the labeled mask and raw image collections ready, we switch from the WIP mod-
ule to the WFE module by clicking the tab “Feature Extraction” menu tab. To config-
ure image feature extraction, we select the tab “Feature Extraction jobs,” then “Create 
new feature extraction job,” and type the job name = WFE-Cy5-test-images and an 
optional email. The specific configuration steps and parameters are shown below:

	1.	 Enter parameters = [Images collection = Cy5-test-images,
Image names pattern (regular expression)=. *.ome.tif (click on Pattern help).

8 https://isg.nist.gov/deepzoomweb/stemcellfeatures#feature-extraction-formulas

2  Functionality of Web Image Processing Pipeline

https://isg.nist.gov/deepzoomweb/stemcellfeatures#feature-extraction-formulas


35

Check the box “Use Input Partitions (masks)”.
Images collection = label-Cy5-test-images.
Image names pattern (regular expression)=. *.ome.tif (click on Pattern help).
Follow the tabs at the top or the buttons at the bottom.

	2.	 Choose intensity from “Choose category”:
Type “mean” in the search box.
Select the check box next to mean in Python, sample mean in Java, and mean 
intensity in MATLAB.
See Fig. 2.14.
Follow the tabs at the top or the buttons at the bottom.

	3.	 Review and submit.
	4.	 Once the job is done processing, download the CSV file with the numerical val-

ues by clicking on the button “Download results.”
	5.	 Load the CSV file into a spreadsheet program and sort all entries based on the 

column labeled “Feature2DJava Mean.”
	6.	 Report the smallest and largest average intensity values (231 and 6448.8) and 

compare intensity values across columns (i.e., software packages) [identical 
except from rounding].

2.4  �Web Statistical Modeling Module

Top-level objectives
The web statistical modeling (WSM) module enables interactive statistical summa-
rization and modeling of objects of interest found in gigapixel images that are 
described by image features. These statistical summaries are traceable to each 
object location in a persistent gigapixel image that is directly viewable using a Deep 

Fig. 2.14  Configuration setup after image features were selected

2.4 � Web Statistical Modeling Module



36

Zoom interface. Reviewers and other interested parties can trace published statisti-
cal results back to the image location of each data point. The statistical summariza-
tion code can be included with the publications since it is downloaded to each 
browser during interactive statistical summarization and modeling. The WSM mod-
ule is intended to facilitate statistical analyses over very large images easier (avoid 
data duplication, data transfer, and computational setup) and any derived and pub-
lished results traceable to each included data point.

Goals 
The main goals of web statistical modeling (WSM) are:

•	 Provides access to very large image data and derived features for combined spa-
tial and statistical analyses

•	 Enables interactive spatial region and feature range filtering to support sensitiv-
ity studies (subsampling) and removal of uncontrolled experimental artifacts

•	 Generates histograms with traceable contributing data points in each bin to per-
sistent image collections

•	 Facilitates visual understanding of feature histograms representing a single 
object by using image thumbnail of objects

•	 Provides client−/browser-based functionality to compute statistics, select a suit-
able model for a histogram to be represented by a probability distribution func-
tion (PDF), and estimate parameters of a selected PDF model from the family of 
Johnson’s PDFs

•	 Saves provenance information about filtering, histogram creation, and statistical 
modeling in addition to preserving the hyperlinks between histogram data points 
and their locations in persistent large image collections (i.e., gigapixel images in 
terabyte-sized video)

Top-level overview of WSM objectives and goals is illustrated in Fig. 2.15 in the 
context of publishing traceable statistical results.

2.4.1  �WSM Module Processing Functionality

Accessing the WSM module 
The WSM module serves as a visualization tool for the WFE module’s feature extrac-
tion job. The configuration of feature extraction job allows for the association of input 
image pyramids with the extracted features that includes bounding boxes of objects. A 
histogram of feature values can be presented with the pyramid views of individual 
objects in each histogram bin. When the feature extraction job is completed, the button 
“Stat modeling” provides the access to WSM tools as shown in Fig. 2.16.

Top-level functionality
Specific WSM module functions are accessible from the accordion-style user inter-
face on the left side of the browser viewing pane (see Fig. 2.17). These include:

	1.	 Interactive filtering of image objects and their features based on spatial location 
and feature values (accordion entries “Spatial filter” and Feature filter”)

2  Functionality of Web Image Processing Pipeline



37

	2.	 Computing statistics of filtered features (inside of the accordion entry “Statistical 
modeling””Show Stats”)

	3.	 Estimating statistical probability distribution function (PDF) models from image 
feature histograms and generating feature values according to the estimated PDF 
model (inside of the accordion entry “Statistical modeling””Recommend PDF 
model” and “Estimate PDF parameters”)

Fig. 2.15  Top-level overview of WSM module

Fig. 2.16  Results of image feature extraction job include a computational setup (general informa-
tion) and numerical values (bottom: download of feature values, access to statistical modeling 
view)

2.4  Web Statistical Modeling Module



38

	4.	 Saving feature histograms with thumbnail object images that are traceable to 
persistent large image collections (inside of the accordion entry “Publish”)

	5.	 Interactive rendering of a dynamically filtered histogram that contains zoom-
able images of objects described by a selected object feature (right side of the 
browser viewing pane)

Histogram features and the number of histogram bins between the maximum and 
minimum feature values can be selected in the “Feature selection” accordion entry 
(Fig. 2.17).

2.4.2  �WSM Module Usage

Traceable histogram exercise
We will illustrate the utility of WSM module for estimating a histogram distribution 
of average cell colony intensity in a 5 × 5 set of image tiles (denoted as a histogram 
task). The histogram task assumes that an average cell colony intensity was extracted 
using WFE (Feature2DJava_Mean feature) from raw and mask images created in 
WIP module as previously described. The histogram task includes filtering values 
smaller than 500 and larger than 6000, estimating statistics of filtered histogram 
data points, and saving the traceable histogram.

Fig. 2.17  User interface to web statistical modeling. Left  – accordion entries for selection of 
parameters such as a histogram feature and the number of histogram bins that divide the maximum 
and minimum feature values, spatial and feature filtering, statistical modeling, and publishing. 
Right – dynamically filtered histogram that contains zoom-able images of objects described by a 
selected object feature

2  Functionality of Web Image Processing Pipeline



39

Inputs
The inputs for the WSM module are image object features and the corresponding 
image pyramid. By default, the statistical modeling view will be automatically gen-
erated based on the selected pyramid and extracted features while creating a feature 
extraction job during the input image collection configuration. The histogram view 
on the right panel of the WSM module is dynamically drawn when changing the 
features or number of bins or when applying spatial and feature filters.

Interactive steps in WSM
With the inputs set, we can interactively generate results for the histogram task 
using the following steps:

	1.	 Click on “Feature selection” in the accordion UI on the left side and select the 
Feature2DJava_Mean feature to generate the corresponding histogram on the 
right side.

	2.	 Click on “Feature filter” in the accordion UI on the left side and scroll down to 
the Feature2DJava_Mean feature histogram.

	3.	 Move the slider bar under the histogram on the left side to the right to eliminate 
data points less than 500.

	4.	 Move the slider bar under the histogram on the right side to the left to eliminate 
data points larger than 6000.

	5.	 Click on “Statistical modeling” in the accordion UI on the left side and then on 
the “Show stats” button. Copy the values in the pop dialog.

	6.	 Click on “Publish” in the accordion UI on the left side and then on the “Histogram 
snapshot” button.

	7.	 Download the zip file, extract the histogram files, and verify the HTML hyper-
links associated with each thumbnail image connects to the objects in the image 
pyramid.

Public access to the demonstration of WSM
The WSM module is also deployed for data exploration on the publicly accessible 
website9 via the “Statistical modeling” link under each of the replicate dataset. In 
this open access WSM module instance, co-registered images were selected from 
the stem cell experiment conducted at the Material Measurements Laboratory at 
NIST using phase contrast (PC) and green fluorescent protein (GFP) microscopy 
imaging (half a gigapixel per image, 16 BPP). Each image captures hundreds of 
automatically segmented stem cell colonies. Each colony is described by 78 fea-
tures that are potential indicators of stem cell health. The goal is to discover 
population-level statistical models and rare events and to assess sensitivity of statis-
tical models to spatial location. The demonstration allows scientists to perform 
browser-based statistical analyses of all features from two imaging channels and to 
publish the results of statistical analyses that are traceable to the persistent Deep 
Zoom pyramid visualization.

9 https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency

2.4  Web Statistical Modeling Module

https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency


40

2.5  �Summary

This chapter introduced three functional modules of WIPP.  The modules allow 
users:

	1.	 To explore thousands of FOV images acquired during a big data microscopy 
experiment

	2.	 To characterize objects of interests with a variety of measurements
	3.	 To model the characteristics with probability distribution functions over large 

object populations in time

Once images are converted into object measurements, the data size is typically 
significantly reduced. Users can then download the files and proceed with other tools 
that provide more functionalities but have not been designed for large dataset.

References

	 1.	“AngularJS,” [Online]. Available: https://angularjs.org/. [Accessed: 25 Sep 2017] (2017)
	 2.	Bajcsy, P., et al.: Enabling interactive measurements from large coverage microscopy. IEEE 

Comput. 49(7), 70–79 (2016)
	 3.	Walls, C.: Spring in Action: Covers Spring 4, 4th edn. Manning Publications, Saintmpford 

(2014)
	 4.	Talia, D.: Workflow systems for science: Concepts and tools. ISRN Softw. Eng. 2013, 15 

(2013)
	 5.	Chodorow, K.: MongoDB: The Definitive Guide, 2nd edn. O’Reilly Media, Sebastopol (2013)
	 6.	Baker, M.: Cluster computing white paper, University of Portsmouth, UK (2000)
	 7.	Mell, P., Grance, T.: The NIST definition of cloud computing recommendations of the National 

Institute of Standards and Technology. NIST Spec. Publ. 145, 7 (2011)
	 8.	Silver, A.: Software simplified. Nature. 546(7656), 173–174 (2017)
	 9.	Turnbull, J.: The Docker Book: Containerization is the New Virtualization, Kindle. 

Amazon Digital Services LLC (2014). https://www.amazon.com/Docker-Book- 
Containerization-new-virtualization-ebook/dp/B00LRROTI4#reader_B00LRROTI4

	10.	“Docker,” [Online]. Available: https://www.docker.com/what-docker. [Accessed: 25 Sep 
2017] (2017)

2  Functionality of Web Image Processing Pipeline

https://angularjs.org
https://www.amazon.com/Docker-Book-Containerization-new-virtualization-ebook/dp/B00LRROTI4#reader_B00LRROTI4
https://www.amazon.com/Docker-Book-Containerization-new-virtualization-ebook/dp/B00LRROTI4#reader_B00LRROTI4
https://www.docker.com/what-docker


41© Springer International Publishing AG 2018 
P. Bajcsy et al., Web Microanalysis of Big Image Data,  
https://doi.org/10.1007/978-3-319-63360-2_3

Chapter 3
Example Use Cases

3.1  �Cell Count and Single Cell Detection

The task in this use case is to quantify the cell count in a well. To obtain the cell 
count measurement, we will discuss segmentation of single cells from green fluo-
rescent protein (GFP) images and then utilize the histogram of cell sizes to under-
stand the cell count inaccuracy due to the objects containing more than one cell in 
them.

Challenges
Cell seeding on a plate is a common practice in many laboratories. The operator has 
limited control of the cell placement leading to a frequently random spatial distribu-
tion of cells. Within (24 to 48)  h after cell seeding, cells are often in contact. 
Segmentation techniques can detect single cells in images with higher accuracy and 
confidence if cells are well separated. The confidence in the cell count measurement 
decreases when the cells in a FOV are touching.

Inputs
We will analyze one well on a plate that is randomly seeded with A10 cells. The 
well is imaged using a phase contrast microscope as a grid of (23 × 29) tiles with 
10 % overlap. Each tile has a dimension of (1392 × 1040) pixels with intensities 
represented by 16 bits per pixels (BPP). Each pixel dimension is equivalent to 
0.644 μm (i.e., 10× magnification).

Analyses
After uploading images to WIPP, we begin by stitching the single image tiles into a 
large FOV image and then use segmentation to detect all cells in the well. Next, we 
identify the single cells from a group of cells. Once we identify cell locations in the 
well, experts can perform additional manual validation of the results.



42

3.1.1  �Image Processing Workflow

The image processing workflow to extract cell count consists of the following steps:

	1.	 Create a new collection and uploading images.
	2.	 Stitch image tiles.
	3.	 Scale intensities and build an image pyramid.
	4.	 Assemble tiles into a large FOV image.
	5.	 Segment.
	6.	 Extract image features.

Figure 3.1 displays a detailed image processing workflow to solve that the prob-
lem of cell counting. The items marked in long dotted orange lines are for visualiza-
tion purposes only. Please note that the intensity scaling is applied only for 
visualization, while the image assembly is applied to the raw input tiles. Next, we 
describe how to input correct parameters for each workflow section.

3.1.2  �Create a New Image Collection

After acquiring microscopy images, all files are stored on a disk. The user can 
upload the files to WIPP by following the next steps:

	1.	 From the “Main Page,” click on “Image Collection” tab.
	2.	 Access the “Manage Image Collection” page.
	3.	 Press the “Create new collection” button and enter the name of the dataset. This 

name will be saved and tagged to that dataset.
	4.	 Press the “add files to collection” button and browse for the saved files or you can 

drag and drop the files into the browser area.

Upload image 
collection

Create 
stitching vector

Segment 
objects

Intensity 
rescaling

Pyramid 
building

Visual 
inspectionGrid of 

images
OME Grid 
of images

Scaled 
grid

Stitching 
vector

Image 
assembling

Assembled 
image

Binary 
image

Mask 
labeling

Labeled 
image

Feature 
extraction

Create one FOV 
stitching vector

One FOV 
Stitching vector

Raw image 
pyramid

Pyramid 
building

Binary 
pyramid

Feature 
matrix

Web 
Statistical 

tool

Create 
overlay 

visualization

Computational jobs

Visualization jobs

Fig. 3.1  Image processing workflow for computing a cell count measurement and for identifying 
areas in the image with high and low cell count confidence

3  Example Use Cases



43

This is a large dataset and therefore the upload will take some time to finish. 
Once the upload is completed, the system will convert the files to the open-source 
“.ome” format (Open Microscopy Environment). We recommend checking the files 
in the browser under “Collection details” after the conversion. After a successful 
upload, the lock button must be pressed before any processing can be applied to the 
image collection. Locking the collection prevents deletion from the system to pre-
serve computational provenance.

Note
Add as much metadata as possible in the dataset name. The name of the 
experiment and the acquisition date are the most common metadata naming 
scheme.

Descriptive dataset names will make searching for them easier at later 
times.

Note
Once the dataset is locked, it is available to the algorithms (or jobs) as input. 
Jobs are accessed from the “Image Processing” tab.

3.1.3  �Stitching of Image Tiles

Since we are interested in the entire imaged well, we must find the exact position of 
a set of individual FOVs in the coordinate system of the large FOV by performing 
stitching. The stitching algorithm relies on the microscope acquisition parameters 
that are either embedded in the image files or provided by the user. For this example, 
the acquisition contains 16 × 22 FOVs (image tiles) acquired at 10 % spatial overlap 
along both horizontal and vertical directions. The acquisition starts with the upper 
left tile and continues by moving horizontally in a combing pattern. In this experi-
ment, the microscope software named the image tiles sequentially with regard to 
their position, time, and channel.

Note
For acquisition, some users choose a sequential file naming style, while others 
may choose a row- and column-based naming style. The stitching job in WIPP 
can handle both naming conventions.

3.1  Cell Count and Single Cell Detection



44

The steps needed to run the stitching job:

	1.	 Click on “Image Processing” and select “Stitching job.”
	2.	 Click on “Create new job.”
	3.	 Enter the parameters into the web form invoked by “Create new stitching job” 

(from Fig. 3.2).
	4.	 Run the stitching job.
	5.	 Wait until the algorithm displays “Done” when finished.

The output of the stitching job is in the “Stitching Vectors” page accessed from 
the “Image Processing” panel.

3.1.4  �Intensity Scaling and Pyramid Building

Most microcopy images are in the 16 BPP (uint16) format. Web browsers are able 
to only render eight BPP images and require scaling the original images before 
launching the pyramid building to enable visualization of the large FOV image. This 
is accomplished in the following steps:

	1.	 From the “Image Processing” panel, select “Intensity Scaling Jobs” and create a 
new job.

	2.	 Select the Raw collection, the default parameters, and then launch the job.

Fig. 3.2  Stitching output

3  Example Use Cases



45

	3.	 When the job is done, go to “Pyramid building job” and click on “Create new 
pyramid job.”

	4.	 Input the job name, select the stitching vector and the A10 cells grid collection, 
and then launch the Pyramid building job.

	5.	 After the pyramid is built, the user can view the large image by clicking on 
“Pyramids” in the “Image Processing” panel and select the newly created job 
(Fig. 3.3). This makes it easier to inspect the image and visually check the stitch-
ing performance.

Fig. 3.3  Pyramid image of the A10 cell plate experiment

Tip
Use the left mouse button to pan around the image and the scroll wheel to 
zoom in and out.

3.1.5  �Image Assembling

Quantitative analyses are performed on the original raw intensity images. We need 
to assemble the large FOV image before segmenting the cells. The FOV assembly is 
performed using the following steps:

	1.	 Select “Image assembling job” in the “Image Processing” panel and select 
“Create new job.”

3.1  Cell Count and Single Cell Detection



46

	2.	 Enter the previously computed stitching vector and the regular acquired raw 
intensity grid.

	3.	 Launch the job. The output will be the stitched image that will be used to perform 
for computation, segmentation, and feature extraction.

3.1.6  �Segmentation

Now we can proceed to segmenting the newly assembled image to identify the cells 
or groups of cells in it as follows:

	1.	 Select “EGT Segmentation Jobs” in the “Image Processing” panel. The param-
eters of EGT are described in detail in Chap. 5. We will input 250 pixels for the 
“minimum object size” parameter, and we will leave the rest as default.

	2.	 Visualize and verify the segmentation output by navigating to “stitching job” 
from the “image processing” panel and select “Time sequence of 1 FOV” option 
from the algorithms drop-down menu. This operation creates a stitching vector 
for the binary output of EGT segmentation and becomes an input into the pyra-
mid job.

	3.	 Build the pyramid of the binary image.
	4.	 Visually inspect the segmentation under “Visualization” in the “Image process-

ing” panel.
	5.	 Select “Create new visualization” and enter a name. Under “layer group labels,” 

input “Layer 1” and select the “+” sign to add layer 1 to the visualization job. 
Input “Layer label,” i.e., “raw intensity pyramid,” select the pyramid of the raw 
intensity by typing the corresponding name, and click on “+.” This will create the 
first layer to visualize. Repeat the process by adding a second layer for the binary 
image.

Once the visualization is created, use the slider bar to change the transparency of 
the two layers and visually check the segmentation result (Fig. 3.4). Visual verifica-
tion of segmentation results is always a useful step in analyzing large images.

3.1.7  �Binary Image Labeling

The output from EGT is a binary image with the label set to 1 for all foreground 
pixels and another label set to 0 for all background pixels. To find the location of 
each segmented object (cell), we need to run the “Mask labeling job” under the 
“Image processing” panel. This operation assigns a unique label to image regions 
that contain pixels connected either by four or eight neighbors (four or eight 
connectivity).

3  Example Use Cases



47

3.1.8  �Feature Extraction and Single Cell Detection

Because we are interested in characteristics of each cell segment, we run the feature 
extraction job by clicking the “Feature extraction” tab and perform the following steps:

	1.	 In the “Feature extraction” panel, click on “Feature extraction job.”
	2.	 Create a new job and assign a name to it. This will take us to the image feature 

extraction job creation.
	3.	 Under “select images,” select the dataset we are working on, and then check the 

box that states “pyramid-optional.” This option will allow the feature extraction 
job to generate inputs for using the web statistics tool.

	4.	 In the feature extraction job, click on “add feature” under “select features to 
extract.” From the list of features tool, select the “Java” option under “extractor” 
and the “Area” as the feature to compute.

	5.	 Click on “Stat modeling” button and select “Area” as the feature to analyze.

3.1.9  �Discussion

Figure 3.5 presents sorted cell areas in the large FOV image. One can visually 
choose the area threshold beyond which a cell is considered a group of cells rather 
than a single cell. The confidence in detecting isolated cells is higher than those in 
contact with others. By finding spatial regions with groups of cells, the user can 
simply ignore them from analysis or analyze them visually.

Fig. 3.4  Visual inspection of the segmentation results

3.1  Cell Count and Single Cell Detection



48

Filtering the results of high-confidence regions of interest is very useful for big 
data microscopy experiments with multiple variables and complex experimental 
setups. It increases the confidence in the results being analyzed to produce better 
measurements. The measurements can include cell counts, average cell intensity, or 
spatial-textural information about protein expressions in cells.

3.2  �Stem Cell Colony Growth Computation

The task in this use case is to quantify the growth of stem cell colonies through time.

Challenges
Pluripotent stem cells exist in a privileged developmental state with the potential to 
become any cell type in the adult body. Pluripotent cells grow as isolated colonies 
with each colony comprised of tens to thousands of cells as the culture progresses 
in time. The colony growth is an indicator of the cell population health. Since the 
spatial extent of individual colonies is much larger than the spatial coverage of a 
single camera field of view (FOV), colony tracking can only be done from movies 
of large FOV images.

Inputs
In this case, we made a movie from a 16 × 22 grid of individual FOVs (total size of 
one large FOV image ≈ 1 GB) with a 10 % spatial overlap between adjacent FOVs 
in both X in Y directions. Images were collected over time using phase contrast 
imaging. The actual experiment generated data from 5 days at a rate of one 16 × 22 
grid of FOVs every 45 min for a total of 161 mosaicked grids. In this example, we 
apply WIPP to the first ten mosaicked grids (large FOV frames).

Fig. 3.5  Web statistical modeling of A10 cells

3  Example Use Cases



49

3.2.1  �Image Processing Workflow

The image processing workflow to extract colony growth consists of the following 
steps (Fig. 3.6):

	1.	 Create a new collection.
	2.	 Stitch image tiles.
	3.	 Scale intensities and build an image pyramid.
	4.	 Assemble the image.
	5.	 Segment.
	6.	 Track segments.
	7.	 Extract image feature.

The first five steps of the image processing workflow are identical to the ones in 
the first use case documented in Sect. 3.1. We will assume that the reader has already 
uploaded the images, stitched them, and then segmented them. We focus on steps 6 
and 7 to complete the dynamic measurement (tracking).

Figure 3.7 shows the stitching parameters for the stem cell data experiment. The 
dataset is acquired as a sequential time sequence with a grid containing 16 columns 
and 22 rows and the acquisition starting in the upper left corner of the grid and along 
the horizontal combing direction.

3.2.2  �Colony Tracking and Feature Extraction

The tracking job associates colony identifications (IDs) with the segments as they 
move in time. We will start by performing tracking on the segmented collection:

	1.	 Launch the tracking job by clicking on “Tracking job” in the “Image processing” 
panel.

	2.	 Enter the parameters as shown in Fig. 3.8 and launch the job. The tracking takes 
labeled images in input and outputs a set of globally labeled images where each 
unique region of interest will have a unique label assigned to it across the time 
sequence.

Upload image 
collection

Create 
stitching vector

Segment 
objects

Intensity 
rescaling

Pyramid 
building

Visual 
inspectionGrid of 

images
OME Grid 
of images

Scaled 
grid

Stitching 
vector

Image 
assembling

Assembled 
image

Binary 
image

Mask 
labeling

Labeled 
image

Feature 
extraction

Create one FOV 
stitching vector

One FOV 
Stitching vector

Raw image 
pyramid

Pyramid 
building

Binary 
pyramid

Feature 
matrix

Web 
Statistical 

tool

Create 
overlay 

visualization

Computational jobs

Visualization jobs

Colony 
Tracking

Tracked 
images

Fig. 3.6  Pipeline for stem cell colony growth computation

3.2  Stem Cell Colony Growth Computation



50

Fig. 3.7  Stitching parameters for stem cell dataset

Fig. 3.8  Tracking parameters

	3.	 Download the output of tracking and explore the images and the associated 
output matrices.

It is important to note that colonies grow by proliferation (mitosis) and by merg-
ing with other colonies over time. The colony mergers lead to having multiple 

3  Example Use Cases



51

colonies at time t and a single colony at time t + 1 because of a merger. When a 
merger occurs, the WIPP tracker (Lineage Mapper) identifies the event as a colony 
fusion and reports it in the fusion matrix (one of the tracking outputs). The WIPP 
tracking algorithm can create a fusion lineage tree as well as the regular mitosis tree. 
After colony fusion, the fused colonies lose their identities, and the newly formed 
colony is assigned a new label. Once the tracking is completed, the colony area is 
computed as in the first use case. The only difference is that the unique identities 
associated with segments (cell colonies) are tied via tracking.

3.2.3  �Discussion

The output of feature extraction is ten files in the CSV file format with tabulated 
information for each colony per time frame. The reader can post-process these files 
to extract the colony growth over ten time frames. We grouped these ten individual 
files into one file to obtain one row per colony with area values sorted by time along 
columns and used that file to plot the results. The post-processing code in MATLAB 
is provided below:

Post-processing code:  Transformation of 10 tables with area values 

% Define CSV file location on disk
xls_file_loc = '\\Your\csv-files\';

% Read all CSV files
files = dir([xls_file_loc '*.csv']);
% Compute the number of files (=10 in this example)
nb_files = length(files);
% Initialize the output area matrix
A = zeros(300,nb_files);
% loop through the files, read the content and save the
area of each colony in the corresponding matrix
for i = 1:nb_files
    % Read CSV file content
    F = xlsread([xls_file_loc files(i).name]);
    % Save information in matrix A
    A(F(:,1),i) = F(:,3);
end

% Set all zero values to nan (it won't show in the plot)
B = A;
B(A==0) = nan;
% Plot the log10 of area
figure, plot(log10(B)')

 

3.2  Stem Cell Colony Growth Computation



52

After post-processing, one can visualize the area as a function of time for each 
colony (the last command in the post-processing code). Figure 3.9 displays the area 
of all colonies through ten time points separated by 45  min. Cell colonies are 
expected to double in size every 24 h.

The exponential growth can be determined as:

	
Area n Area n+( ) = ( )∗1 2

	
(3.1)

	
Area t Area

t( ) = ( ) ( ) ( )
1 2

45 24 60∗ ∗∗ /

	
(3.2)

Time [Frame x 45 min]

Ar
ea

 (L
og

10
 s

ca
le

)

10 csv files

Co
lo

ny
 ID

Features at time 1 Features at time 10

Feature extraction output

Post-Processing

Fig. 3.9  Cell colony growth across ten time frames

3  Example Use Cases



53

where n is the number of days and t is the time frame index. The exponent considers 
acquisitions 45  min apart converted to days. Given the vertical log10 scale in 
Fig. 3.9, there is a lot of noisy data for small colonies. There is a total of 198 colonies 
in time frame 1. Following the formula above, we computed the theoretical area at 
time t = 10 for all 198 colonies. Next, we computed the relative difference between 
that theoretical area and the actual area measured at t = 10 for all colonies larger than 
50 000 pixels in size. There is a total of 90 colonies with the area size above that 
threshold. The mean value of the relative difference across all 90 colonies is −0.0875 
(8.75 %), and the standard deviation is 0.1589. These results suggest that colonies 
are growing at the expected growth rate.

Figure 3.10 shows the relative area difference between measured and theoretical 
area values for the ten frames and for all colonies. The colonies whose size is less 
than 50,000 are not being displayed. We can see in Fig. 3.10 that the relative differ-
ence for most colonies is between ±0.2. Some portion of that difference is due to 
segmentation errors around colony borders (pixels might not have been included). 
However, six colonies display smaller growth rate than the rest. We identified these 
colonies’ IDs to be 27, 99, 119, 158, 165, and 192, and one of them is being dis-
played in Fig. 3.11. We can keep a closer look at these colonies and analyze their 
growth beyond the current small sample of ten frames. Will their growth rate keep 
decreasing through time (maybe a sign of dying stem cells) or will it bounce back 
and go back to normal throughout the 24 h? The reader is welcome to explore the 
entire collection of 168 frames that can be found at isg.nist.gov and find the answers 
to these questions.

The following is the MATLAB code to compute these statistics:

% Compute the area growth for large colonies
% Get the size of all colonies at t=1 and t=10
A1 = A(:,1);
A10 = A(:,10);
% Set the no colonies index to nan
A1(A1 == 0) = nan;
A10(A10 == 0) = nan;
% Compute theoretical area given a double size rate every
24hrs
A10t = A1*2^(45*10/(60*24));
% Compute relative difference between measured and
theoretical area
d = (A10-A10t)./A10;
% Filter results based on 100k area size
ind = A1>50000;
d(~ind) = nan;
% Plot relative difference and compute mean and standard
deviation
figure, plot(d,'.')
mean(d,'omitnan')
std(d,'omitnan')

 

3.2  Stem Cell Colony Growth Computation

http://isg.nist.gov/


54

Fig. 3.11  Colony 27 at times 1 and 10

Fig. 3.10  Relative area difference between measured and theoretical area values after 450 min

3  Example Use Cases



55

3.3  �Image Feature Variability and Its Impact

The task in this use case is to quantify the image feature variability. In this section, 
we will analyze numerical variability of image features extracted using multiple 
feature extraction software packages. The use case presented here was selected to 
shed some light on the importance of measurement science.

Challenges
Can we obtain the same numerical values of image features in multiple labs? There are 
many ways to approach this question since the number of potential error sources is 
very large across laboratories. One of the approaches is to investigate the use of differ-
ent software packages for computing the same image features. We will assume that all 
other variables in multiple labs would not contribute to the image feature variability.

Inputs
We will be working with the live phase contrast 3 T3 images comprised of 238 
images and a total of 8162 cells with different shapes and sizes (Fig. 3.12). We will 
assume that the reader already knows at that stage how to upload, segment, track, 
and compute features on these images.

3.3.1  �Image Processing Workflow

The image processing workflow to extract image features consists of the following 
steps:

	1.	 Create a new collection.
	2.	 Stitch image tiles.
	3.	 Scale intensities and build an image pyramid.
	4.	 Assemble the image.
	5.	 Segment.
	6.	 Track segments.
	7.	 Extract image feature.

Fig. 3.12  Example test image (left) and its corresponding segmented mask (right). Each ROI in 
the segmented mask has a unique randomly chosen color for display purposes

3.3  Image Feature Variability and Its Impact



56

In step 7, select all four software packages with the total of 218 unique features. 
The subsets of unique features are implemented in Python (40 features), ImageJ/Fiji 
(33 features), Java (74 features), and CellProfiler (101 features). Python features 
were implemented on top of an existing image processing library (scikit-image [1]), 
ImageJ/Fiji [2] features were implemented as a plugin using the ImageJ application 
programming interface (API), and Java features were implemented from scratch at 
NIST [3].

3.3.2  �Image Feature Variability Analysis

We will focus primarily on variability of intensity and shape features. Figure 3.13 
shows the histogram of test image measurements for area and circularity features.

Evaluation Metric
Given two vectors of feature values V1 and V2 computed over a set of ROIs (image 
segments) by two software implementations of the same feature, we compute their 
dissimilarity metric S as the sum of relative errors Ei

m  normalized with respect to 
the average of the two values from the vectors V1 and V2 that exceed a given 
threshold:

	
S E

i
i
m= >( )∑ T

	
(3.3)

	
Ei

m = ( )V V mean V Vi i i i1 2 1 2– / , #
	

where i = 1,…,n and n is the number of ROIs. T is the user defined error threshold 
defined as 1 % of Ei

m  in this work. The purpose of T is to detect substantial feature 
differences. The error is normalized by the average value.

Image Feature Variability Analysis
Table 3.1 shows the results of feature variability evaluations using the aforemen-
tioned metric. The “Agree” column indicates when software have less than 1 % error 
across all 64 test cells. The “Disagree” column indicates whether there is an error 

Fig. 3.13  Histograms of area (left) and circularity (right) features from the objects defined by test 
images and their masks

3  Example Use Cases



57

larger than 1 % across 64 test cells between the tools that agree and the ones that 
disagree. The “Absent” column is used to denote which tools do not have an imple-
mentation of a given feature.

Figure 3.14 illustrates the perimeter differences Dji between its feature value Vji 
and the average mi of all three computed perimeter values per region of interest (i.e., 
cell segment). The feature difference follows the formula below:

	
D V mji ji i= −( )

	
(3.4)

	

m Vi
j

ji=
=
∑13 1

3

	

where i = 1,…,n; j = 1, 2, 3, j is the software index, and n is the number of ROIs. The 
perimeter values range between 44.4 and 542.5 pixels in the set of 64 ROIs (cells).

Table 3.1  Summary of common feature variability between tools based on 
metric S (I = ImageJ, J = Java, P = Python)

Feature name Agree Disagree Absent

1. Perimeter P, I, J
2. Solidity P, I J
3. Circularity I, J P
4. Skewness I, J P
5. Kurtosis I, J P
6. Centroid_X P, J I
7. Centroid_Y P, J I

Fig. 3.14  Perimeter feature differences over multiple regions of interests (ROIs). The unit is 
image pixel

3.3  Image Feature Variability and Its Impact



58

3.3.3  �Discussion

Sources of Feature Variations
Next, we summarize our analysis of the sources of feature variations for the features 
listed in Table 3.1.

Perimeter and Circularity:  The perimeter variability comes from the fact that 
algorithmic implementations differ in counting interior or exterior pixels, use four 
or eight connectivity of pixels, and might interpolate between the boundary points. 
Circularity is inversely proportional to perimeter squared.

Solidity:  The same definition of solidity is used by Python and ImageJ (Area/
Convex Area). The difference between these values comes from the convex area 
differences since the implementations vary.

Kurtosis and Skewness:  The kurtosis disagreement in values between software 
packages depends on whether the excess kurtosis or kurtosis is implemented (fixed 
offset by three). Similarly, one must be aware of multiple definitions of skewness, 
for instance, sample versus population skewness.

Centroid (and Bounding Box):  The centroid and the bounding box are both sub-
ject to the choice of the reference coordinate system (+col ~ x; +row ~ y or +row~ 
−y). In addition, the bounding box of a ROI is defined by its upper left corner coor-
dinate and its width and height. However, the bounding coordinates might vary 
depending on the choice of values as integers or floats in a pixelated image.

Euler number:  The Euler number definition is the number of objects (ROI) minus 
the number of holes. The value might differ depending on the assumptions about the 
number of ROIs (Python assumes to be one).

Histogram bins for intensities represented by more than 8 bits per pixel:  ImageJ 
uses the max value plus one as the upper value of the last bin. It assumes that the 
lower value of the first bin is always zero.

Python and its NumPy library provide two definitions. B = histogram(X, N) uses 
N equally spaced bins within the appropriate range for the given image data type. 
The returned image B has no more than N discrete levels. B = histogram(X, edges) 
sorts X into bins with the bin edges specified by the vector, edges. Each bin includes 
the left edge but does not include the right edge. The last bin is an exception since it 
includes both edges. Python adjusts the automatic bin size selection to the input 
image class.

Orientation:  The orientation is the angle between the major axis of a given ROI 
and the x-axis. It can be computed using two mathematical formulas: (1) 

θ =








atan

V

V
y

x

 where atan is the arctangent function and Vx and Vy are the x and y

decompositions of the major axis of the ROI; (2) θ =
−











1

2
2

2
atan

I

I I
xy

xx yy

 where Ixx

and Iyy are the second moment of area along the x and y axes and Ixy is the product 
moment of area. These two formulas are equivalent if the first one is computed in 

3  Example Use Cases



59

the range of [−π/2, π/2] using atan and the second one in the range of [−π, π] using 
atan2. The variations are observed if different value ranges or angular units would 
be reported by selected software packages. Range can be either [−π/2, π/2] or 
[−π, π], and the unit can be either radian or degree. In addition, the sign of the output 
angle depends on the coordinate system (image coordinate or graph coordinate sys-
tem with clockwise or counterclockwise axes).

Accuracy of Image Feature Implementations
After identifying feature variability among software packages and analyzing the 
sources of such variability, one could ask about the accuracy of image features. In 
other words, the task is to find a computed value that is the most accurate with 
respect to a ground truth value.

Accuracy analysis is based on two key components:

	1.	 Generation of synthetic images and their corresponding reference feature values
	2.	 A metric to compute the error between reference and computed values

For the ground truth, we use mathematical definitions of analog shapes and 
assume that synthetic digital images are very close representations of analog shapes. 
For the accuracy evaluations, we leverage the same software libraries as before but 
sub-select two image features for which we could generate reference feature values. 
Given the fact that we know the reference value, we could compute normalized rela-
tive errors Ei

r  per ROI with respect to the reference feature value Ri (in comparison 
to the minimum value used in Eq. (3.5)).

	
E V R Ri

r
i i i= − /

	 (3.5)

where Vi is the measured feature value and i is the index of a ROI (image 
segment).

We report accuracy analyses for two image features including (a) major and 
minor axes of an ellipse and (b) a circumference.

Major and minor axis length:  During the feature variability evaluation, we 
detected minor differences that were below the 1 % threshold on feature error. To 
test major and minor axis lengths, we created a set of 55 ellipse images with multi-
ple values for major and minor axis length that ranges between 10 and 370. 
Figure 3.15 shows the normalized relative error Ei of major axis length computed 
according to Eq. (3.3) for ROIs in the 55 simulated images. It was observed that all 
three implementations had an error larger than 0.1 % when the ellipse shape was flat 
or the ellipse area was small. All implementations demonstrated the same depen-
dency of feature error on ellipse shape/area.

Circumference:  We created 23 synthetic binary images of a circle with radius 
ranging between r ∈ [2, 222] pixels. The circle generation is done on images with 
size (500, 500) pixels using the following formula:

3.3  Image Feature Variability and Its Impact



60

	
if x x y y r then p x yc c−( ) + −( ) ≤ ( ) =2 2 2 1,

	
(3.6)

where xc = 249 and yc = 249 are the coordinate of the circle centroid and r is the circle 
radius. The circumference reference value was set to 2πr. Figure 3.16 displays the 
normalized error Ei computed as a function of circle radius according to Eq. (3.3).

The design of a synthetic image generator plays a significant role in representing 
the theoretical value and is always limited by the integer image lattice. For example, 
the results in Figs. 3.15 and 3.16 would be different if we placed the center of each 
ellipse at the lattice intersection as opposed in the middle of a square pixel (offset is 

Fig. 3.15  Major axis length normalized relative error as a function of minor/major axis length for 
55 synthetic ellipses

Fig. 3.16  Normalized circumference error vs circle radius

3  Example Use Cases



61

0.5). While the tools would still agree among each other, there will be bias between 
the computed major axis length or perimeter values and the reference value. This 
analysis shows that it is not accurate to analyze datasets that contain small ROIs.

3.4  �Summary

This chapter presented the use of WIPP in three simple use cases. The use cases 
differed primarily by their input data, [x, y] versus [x, y, time], their types of static 
versus dynamic measurements extracted from very large FOV images, and their 
focus on obtaining numerical measurement versus measurement variability. 
Discussions provided additional insights that can be gained from the numerical 
results, such as the distributions of cell areas (use case 1), the identification of colo-
nies that do not grow exponentially through time (use case 2), and accuracy of 
image features (use case 3).

Once cell or cell colony features are extracted from big image collections, the file 
sizes are reduced. The smaller file size implies that users can download tabulated 
results and continue analyses in other available tools. Interested readers can find 
detailed descriptions of more complex use cases online.1

References

	1.	 van der Walt, S., et al.: scikit-image: image processing in Python. Peer. J. 2, e453 (2014)
	2.	 Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods. 

9(7), 676–682 (2012)
	3.	 I. NIST.: “Image Features,” web page, 2016. [Online]. Available: https://isg.nist.gov/deep-

zoomweb/stemcellfeatures. [Accessed: 31-Mar-2016]

1 https://isg.nist.gov/deepzoomweb/software/wipp

3.4  Summary

https://isg.nist.gov/deepzoomweb/stemcellfeatures
https://isg.nist.gov/deepzoomweb/stemcellfeatures
https://isg.nist.gov/deepzoomweb/software/wipp


63© Springer International Publishing AG 2018 
P. Bajcsy et al., Web Microanalysis of Big Image Data,  
https://doi.org/10.1007/978-3-319-63360-2_4

Chapter 4
Components of Web Image Processing 
Pipeline

4.1  �Mapping Functionality to Information Technologies

In this section, we map the functionality of WIPP to information technology com-
ponents based on a simple WIPP usage scenario. Next, we classify the components 
into categories and present a summary of components used in WIPP.

Functionality and usage scenario of a web image processing pipeline
Let us consider a simple scientific discovery scenario to introduce the functional-
ities needed for WIPP. In this scenario, a user wants to use WIPP to visualize and 
analyze microscopy images of cells. The images are acquired as a grid of small 
fields of view that need to be assembled into one large field of view. The assembled 
large field of view is then displayed in the web browser with the ability to zoom in 
and out of the large field of view to visually explore the data. After visual inspec-
tion, the user performs image processing and analysis to extract measurements from 
the acquired images, for example, by segmenting cells and extracting their 
average intensity and area measurements.

Figure 4.1 illustrates functionalities of a web system that can support such a 
scientific discovery scenario. The left and right blue clouds refer to a user interact-
ing with the data via a client (web browser). The middle part shows a server that 
hosts the data and metadata. The left green cloud refers to a computational cloud 
environment where the off-line processing computations are executed.

The scientific discovery scenario shown in Fig. 4.1 requires the web system to 
deliver the following general functionalities:

	1.	 Browser upload: A user uploads a collection of image tiles in TIFF file format from 
a web browser (the blue cloud in Fig. 4.1, left). The server stores the uploaded data, 
extracts metadata from the TIFF files, and converts them into a standard format. 
The standard file format is the Open Microscopy Environment (OME) TIFF for-
mat which contains an OME-XML metadata block in the file header and the OME 
data model. The store-extract-convert functions require an underlying database for 



64

storing data and metadata (e.g., MongoDB is used in WIPP), web user interface 
(UI) for uploading images, algorithms for executing the OME-TIFF conversion, 
and software for communicating between the database, user-driven upload, and 
computations (e.g., Spring Framework used in WIPP).

	2.	 Workflow construction: A user specifies a set of tasks to execute, for example, flat 
field correction, noise filtering, stitching computations, and image pyramid 
building. These computations run custom-developed algorithms or existing algo-
rithms in the widely used libraries (e.g., ImageJ/Fiji). The example sequence of 
four computations can be represented as a very simple workflow. Construction of 
such a workflow can be done via a web UI as shown in the blue cloud in Fig. 4.1 
(left) and denoted as workflow construction and execution.

	3.	 Workflow execution: The workflow is executed by sending the computational 
workflow description to the server to be parsed and executed by a workflow 
management system (e.g., Pegasus used in WIPP). The workflow execution faces 
several real-life challenges. For instance, a typical web system (a) serves multi-
ple users, (b) consists of many computational hardware resources, and (c) uti-
lizes many network drives with computers connected via local or wide area 
networks. This computational environment is denoted as cloud computing in 
Fig. 4.1 (green cloud). WIPP has a workload management system for compute-
intensive jobs that addresses the challenges of execution time versus workload, 
reliability and failure recovery, and utilization versus cost. The main responsi-
bilities of workflow and workload management systems are to distribute compu-
tations and data across available resources, schedule their job execution, 
maximize the utilization of each computational resource, monitor the progress of 
executions, and reassign executions and data distributions when failures occur.

	4.	 Browser visualization: A user views the processed image stored on a server in a 
web browser (the blue cloud in Fig. 4.1, right). The image rendering is achieved 

Fig. 4.1  Functionalities of a web image processing pipeline from a user perspective

4  Components of Web Image Processing Pipeline



65

by using the HTML communication protocol between the browser and the server, 
and by fetching the pyramid tiles of interest. The rendering takes place in the 
web browser and is based on an open-source project called OpenSeadragon writ-
ten in JavaScript. It is the HTML protocol and JavaScript that facilitate the pan 
and zoom-in/zoom-out functionalities when viewing large images. In addition, if 
a user needs to extract additional information from the images and render web 
pages with dynamic content (e.g., display pixel intensities while hovering a 
mouse of a pixel location or selecting image overlays), then more complex 
JavaScript libraries and frameworks can be used to build web application (e.g., 
AngularJS in WIPP).

	5.	 Browser computing: A user enhances images and computes interactively mea-
surements in a web browser (the blue cloud in Fig. 4.1, right). These computa-
tions are executed in the web browser by using JavaScript libraries for image 
enhancement (e.g., CamanJS used in WIPP), thresholding, segmentation, and 
counting. In addition, all measurements are supported by sub-setting and down-
loading options over terabyte-sized gigapixel frame images using the Web Deep 
Zoom toolkit.

Information technologies for a web image processing pipeline
In order to support the previous scenario, one can use client-server architectures and 
leverage multiple existing technologies to make users more powerful and produc-
tive when they conduct image-based research. We list several categories of informa-
tion technologies found in client-server systems:

•	 Storage of data and metadata
•	 Algorithmic automation
•	 Algorithmic execution management in a computer cloud
•	 Visualization and computations in a web browser

Specific information technologies used in client-server system like WIPP are 
summarized in Table 4.1.

We will briefly describe each information technology in the remainder of this 
chapter while devoting Chap. 5 to automation of the image processing via algorith-
mic designs and Chap. 6 to algorithmic implementations that combine software and 
hardware. A reader will gain high-level understanding of which technologies can be 
used for delivering the functionality of systems like WIPP. For more in-depth under-
standing of each technology, readers are referred to additional published literature.

4.2  �The Basics of Client-Server Architecture

In this section, we introduce readers to the roles of clients and servers in WIPP 
which is based on client-server architecture. A reader can find more information in 
textbooks about client-server architectures, for instance, [13–15].

4.2  The Basics of Client-Server Architecture



66

Table 4.1  A list of open-source technologies used in building the web-based system and their 
functionalities

User-driven 
functionality 
in Fig. 4.1 Purpose Technology name Reference Category

Browser 
upload

Database for storing 
information about 
image collections (such 
as list of images and 
metadata files, size, and 
provenance 
information)

MongoDB [1] Storage of data 
and metadata

Browser 
upload

Image metadata 
representation

Bioformats library 
from Open 
Microscopy 
Environment 
(OME)

[2] Storage of data 
and metadata

Browser 
upload

Database access and 
web service 
implementations

Spring Framework [3] Storage of data 
and metadata

Algorithmic 
configuration

Image processing on a 
server

ImageJ and Java 
Advanced Imaging 
(JAI) libraries

[4], 5] Algorithmic 
automation

Algorithmic 
configuration

Custom image 
processing on a server

Microscopy Image 
Stitching Tool 
(MIST)

[6] Algorithmic 
automation

Workflow 
execution

Workflow management 
system
Database for storing 
provenance information 
about computational 
jobs configurations

Pegasus [7] Algorithmic 
execution 
management in a 
computer cloud/
storage of data 
and metadata

Workflow 
execution

Workload management 
system for compute-
intensive jobs

HTCondor [8] Algorithmic 
execution 
management in a 
computer cloud

Browser 
visualization

Building single page 
web applications (SPA)

AngularJS 
framework

[9] Visualization and 
computations in a 
web browser

Browser 
visualization

Viewing with the 
pan-zoom functionality

OpenSeadragon 
JavaScript library

[10] Visualization and 
computations in a 
web browser

Browser 
computation

Image filtering in a 
browser

CamanJS 
JavaScript library

[11] Visualization and 
computations in a 
web browser

Browser 
computation

Extended functionality 
of OpenSeadragon for 
collaborations and 
measurements

Web Deep Zoom 
Toolkit (JavaScript 
library)

[12] Visualization and 
computations in a 
web browser

4  Components of Web Image Processing Pipeline



67

4.2.1  �The Role of Each Technology in the Client-Server 
Architecture

Typical roles of clients and servers
In the first chapter (see Sect. 1.2, “What does web image processing pipeline consist 
of?”), we introduced the concept of a client and a server. In a general client-server 
architecture, each computer or a process on the network serves a role of either a cli-
ent or a server or both.

The following is an example of a client-server architecture: A company stores its 
products information in a database, which is used by a web server application to 
serve the data. Customers use the company’s website or mobile application to access 
the product information. In this case, the database acts as a server for the web appli-
cation, which acts as both a client (to the database server) and a server (for the 
website and mobile application clients).

The role of a client is to communicate with servers to request resources from the 
server (e.g., images or processing time). A client can be a local application used to 
render the received images or post-process requested data.

A server is typically a machine that is more powerful than a client in terms of com-
putational and storage capabilities. It could also be the master of multiple machines 
(denoted as workers or agents or slaves). The role of a server is to respond to all 
requests from its clients, serve data, perform requested computations, or make sure 
that the computations are executed by its workers. Computers on the network that are 
serving as masters or workers are also frequently denoted as computing nodes.

Client-server architecture versus peer-to-peer architecture
Client-server and peer-to-peer architectures are two popular network architectures 
in distributed computing ([15], see Chap. 17). In the context of a “big image pro-
cessing pipeline,” a client-server architecture is preferred over a peer-to-peer archi-
tecture where each computer node has equivalent responsibilities. The reasons for 
the client-server preference lie in centralized security databases to control access, 
higher stability of the entire system than in a peer-to-peer architecture, and easier 
scalability to support many users because of its extensible, component-based plat-
form and deployment. The peer-to-peer networking environment is cheaper but suit-
able only for low-cost small-size offices. The client-server architectures can consist 
of multiple tiers. Each tier corresponds to handling the user interface, database, and/
or application logic (two- or three-tier architectures).

The roles of clients and servers in a web image processing pipeline
Based on the categorization in Table 4.1, we associate the technologies with a gen-
eral client-server architecture used in the design of WIPP shown in Fig. 4.2. The 
general architecture includes two types of clients, such as web browser clients and 
computational worker clients (see Fig. 4.2). One could also view multiple network 
area data storage devices as clients. The server has the role of a master and contains 
blocks of code for communicating with all types of clients. Browser upload in 
Table 4.1 (brown) maps to “data storage,” “data access back end,” and “web front 

4.2  The Basics of Client-Server Architecture



68

end” in Fig. 4.2. Workflow construction and execution in Table 4.1 are deployed as 
“concurrent computation clients” and “computation back end” in Fig. 4.2. Finally, 
browser visualization and browser computing in Table 4.1 maps to “web browser” 
in Fig. 4.2.

4.3  �The Basics of Web Servers and Browsers

Web servers
To run client-server web applications, there must be a program running on a server 
that accesses web page files and that processes and delivers them to clients (i.e., web 
browsers). This program uses the Hypertext Transfer Protocol (HTTP) for communi-
cation between the server and the client and is denoted as the web server or the HTTP 
server. Web servers (1) receive a request from a client, (2) map the path of a Uniform 
Resource Locator (URL) into a file residing on a server for static requests or into a 
program name for dynamic requests, and (3) send the web page content to the client. 
The programs supporting dynamic requests reside on the server and are written in 
server-side scripting languages. The scripting languages allowing dynamical genera-
tion of web content include (a) PHP (for the recursive acronym PHP: Hypertext 
Preprocessor1), (b) Active Server Pages (ASP), and Java Server Pages (JSP).

Examples of web servers
There are many implementations of web servers and many middleware packages 
that include web servers. Among the implementations, we should mention 
open-source solutions, such as Apache HTTP server, Apache Tomcat server (Java), 
Gunicorn (Python Web Server Gateway Interface (WSGI)1), Waitress WSGI Server 

1 http://php.net/manual/en/faq.general.php

Fig. 4.2  A web image processing pipeline decomposed into server components (blue), data stor-
age (brown), computational clients communicating with a server (red), and web browser clients 
communicating with a server

4  Components of Web Image Processing Pipeline

http://php.net/manual/en/faq.general.php


69

(Python), and uWSGI (C). The web servers are packaged in software products, such 
as Red Hat JBoss Web Server (Java), Spring Boot (Java), Django’s Development 
Server (Python), or Tornado (Python). Some commercial products also embed 
open-source web servers and advance their features, for instance, the IBM® HTTP 
Server that is based on the Apache HTTP Server and additional IBM enhancements. 
When designing web systems like WIPP, one can choose a web server implementa-
tion that makes it compatible with the majority of all other components in terms of 
the programming language. Specifically, WIPP is using a Java-based Apache 
Tomcat web server since many other web components have been written in Java.

Standards for web servers
Features of web servers range from the basic HTTP request handling to advanced 
“on-the-fly” content generation. The features of Apache Tomcat server have to 
remain in sync with the current HTTP standards defined by the Internet Engineering 
Task Force (IETF®). The IETF is concerned with the evolution of the Internet 
architecture and with the compatibility of the server-side content and client-side 
rendering of the retrieved content. The IETF mission is to make sure that a large, 
heterogeneous collection of interconnected systems can be used for communication 
of many different content types.

Web Browsers
Web browsers are client-side software application for retrieving, presenting, and 
traversing information resources on the World Wide Web [16]. The retrieval loca-
tion is defined by the URL. The URL starts with a scheme such as http:, https:, ftp:, 
or file: which indicates how to address the resource and can refer to the type of com-
munication protocol used for communicating with local or remote resources. The 
rendering of the content is executed by the browser’s software that transforms 
HTML markup language to a display according to the received content (text, images, 
audio, video, XML files, formatting instructions in CSS files, and dynamic content 
definition in JavaScript language).

The browser’s software is running on the client’s computer and devices. The 
HTML markup language can be written as either fat clients or thin clients (or hybrid 
clients). The key difference between fat and thin clients is that the fat clients rely on 
storing information on the client’s local storage and utilizing client’s CPU resources 
for computations other than just web page rendering. A thin client primarily renders 
web pages received from a web server which performs all computations. A hybrid 
client can be built that would store information on the server’s computer but utilize 
client’s CPU resources. In WIPP, we are using this type of hybrid client for any on-
demand image filtering in the browser.

Examples of web browsers
New and updated web browser implementations2 have been released every year 
since the introduction of the World Wide Web in 1991. The updates are important to 
incorporate changes that allow rendering of continuously evolving representations 

2 https://en.wikipedia.org/wiki/List_of_web_browsers

4.3  The Basics of Web Servers and Browsers

https://en.wikipedia.org/wiki/List_of_web_browsers


70

of web content. For example, the following new major versions of notable browsers 
were released in 2017: Google Chrome, Microsoft Edge, Mozilla Firefox, Opera, 
and Opera Neon. These browsers differ in terms of their web content support. In 
order to render the content using any web browsers, web developers insert code for 
detecting the browser type and adjusting the content rendering according to the web 
browser type.

In addition to the variety of web browser implementations, there is a variety of 
hardware limitations for rendering web pages (i.e., a variety of displays on mobile 
devices). To guarantee correct rendering of HTML web pages, a web developer has 
to take into consideration browser type and its release version and hardware device 
and its display limitations. To address the heterogeneity of software and hardware 
environments, the World Wide Web Consortium has been developing a hybrid of 
XML and HTML markup language for web pages called XHTML (Extensible 
Hypertext Markup Language).3 The use of XHTML would make web pages more 
likely to interoperate within and among various environments.

The web browser code in the WIPP is designed in HTML and is assumed to exe-
cute in browsers on regular computers. WIPP does not have a special support for 
mobile devices and has been primarily tested using Google Chrome, Mozilla Firefox, 
and Apple Safari. Developers can redesign portions of WIPP using XHTML and 
insert code for adjusting the content rendering according to the web browser type.

4.4  �The Basics of Communication Protocols in Client-Server 
Architectures

The general client-server architecture presented in Fig. 4.2 is expanded in Fig. 4.3 
to include not only the technology names but also the communication protocols. 
We already mentioned HTTP as the communication protocol between web brows-
ers and web servers. In the case of WIPP, we are using the Java Spring Framework 
and the Apache Tomcat web server (Spring Boot) to handle all HTTP or secure 
HTTPS communications. On the server side, the communication between Java 
Spring Framework and applications uses HTTP to retrieve status of computations. 
The computational job management is facilitated by the Pegasus scientific work-
flow management system. Pegasus has modules for communicating using 
Transmission Control Protocol (TCP) and Message Passing Interface (MPI) proto-
cols between the master and worker computational nodes. Finally, the communica-
tion between a file system (disk) and the applications is enabled via Network File 
System (NFS). We briefly introduce these communication protocols next and refer 
a reader to existing books about HTTP [17], TCP [18], MPI [19], and NFS [20] for 
more details.

3 https://www.w3schools.com/html/html_xhtml.asp, https://www.w3.org/TR/xhtml1/

4  Components of Web Image Processing Pipeline

https://www.w3schools.com/html/html_xhtml.asp
https://www.w3.org/TR/xhtml1/


71

4.4.1  �Client-Server Communication Using Hypertext Transfer 
Protocol

Hypertext Transfer Protocol (HTTP)
The communication between the web browser and the web server uses the Hypertext 
Transfer Protocol (HTTP), a request-response protocol. This communication takes 
place after typing a web address in the browser to access a web server or a web 
service. The web address is expressed as a Uniform Resource Locator (URL).

HTTP methods
The HTTP protocol (version 1.1) contains implementations of eight methods: GET, 
HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, and TRACE. The request for 
comments (RFC 5789) adds the ninth method: PATCH. Table 4.2 summarizes these 
methods. The methods are also classified as safe and idempotent operations. Safe 
methods only retrieve information, for example, GET or HEAD. Idempotent opera-
tions are those that when executed many times they have the same side effect as when 
executed only once, for instance, GET, HEAD, PUT, OPTIONS, and DELETE. One 
should note that while the Representational State Transfer (REST) Application 
Programming Interface (API) remains just as software architectural style, its imple-
mentation with the HTTP communication protocol has become a standard.

Secure Hypertext Transfer Protocol (HTTPS)
Figure 4.3 denotes the web browser and server communication as HTTPS which 
refers to a secure HTTP. The secure communication is achieved by encrypting mes-
sages using Public Key Infrastructure (PKI) and by adding Secure Sockets Layer 
(SSL) and Transport Layer Security (TLS) encryption layer on top of the HTTP 
protocol. The secure HTTP communication consists of three steps:

	1.	 Step 1: Hello messages  – A web browser sends a Hello message to the web 
server with the information about cipher suites and SSL version that the web 

Fig. 4.3  Specific client-server architecture of the deployed web image processing pipeline (focus 
on server side)

4.4  The Basics of Communication Protocols in Client-Server Architectures



72

browser supports. The cipher suites define the details of encryption and decryption 
algorithms (an encryption key exchange algorithm used during authentication, a 
bulk encryption algorithm to encrypt the message, a message authentication 
code (MAC) algorithm to create a cryptographic hash, and a pseudorandom 
function (PRF) used by the MAC algorithm’s hash function). The server responds 
with a Hello message containing similar information and a decision which cipher 
suite and version of SSL will be used.

	2.	 Step 2: Certificate exchange – The web server sends its SSL certificate to the 
web browser. The SSL certification includes information about its owner’s iden-
tity, and the digital signature of an entity that has verified the certificate’s con-
tents are correct. The web browser checks whether to trust the web server or not 
based on a presented SSL certificate and its verification. The web server is also 
allowed to require a SSL certificate from a web browser for exchanging sensitive 
information.

	3.	 Step 3: Key exchange – Following the agreed SSL version and a shared public 
key of the web server in the SSL certificate, a web browser generates a random 
key, encrypts it with the web server’s public key, and sends it to the web server. 
The web server decrypts the message by using the corresponding private key 
stored on the web server. This decrypted key can be then used by the web server 
for secure communication with the web browser. This is called a symmetric 
algorithm for HTTPS communication.

4.4.2  �Transmission Control Protocol (TCP)

A web server is typically a computer connected to other computational and storage 
resources via local area network (LAN). WIPP is using the Transmission Control Protocol 
(TCP) to communicate between the Java Spring Framework (web server application) and 

Table 4.2  Summary of HTTP methods

HTTP (version 1.1) method Method description from a web browser viewpoint

GET Retrieve data from web server
HEAD Retrieve the status code and header fields without any message 

body. Status code indicates whether the server successfully 
received, understood, and accepted the request. Header fields 
contain content type and URI

POST Send data to the server (e.g., web form inputs)
PUT Replace current content with the uploaded content on the server
DELETE Remove current content at a URI
CONNECT Establish a connection to a web server using tunneling (i.e., via 

HTTP proxy server that forwards the web browser request to the 
desired server)

OPTIONS Provide the request-response communication options
TRACE Invoke a message loop-back after sending a request in order to see 

what is being received at the server side
PATCH Applies partial modifications to the resource

4  Components of Web Image Processing Pipeline



73

the computing nodes (i.e., computers performing computation denoted as “Jobs” in 
Fig.  4.3). This protocol is frequently referred to as TCP/IP since it originated from the 
Internet Protocol (IP). TCP/IP guarantees reliable, error-checked delivery of data packets in 
the same order in which they were sent. If data packets are lost or duplicated or delivered 
out of order due to a network congestion or a lack of network reliability, TCP requests 
retransmission of lost data packets, removes duplicates, and sorts out-of-order data. If the 
data packets are undelivered, then the sender is notified of this failure.

Use of TCP

TCP has been used by many Internet applications, such as File Transfer Protocol (FTP), 
peer-to-peer file sharing, on-demand streaming media applications of pre-recorded video, 
email, and the World Wide Web (WWW). Following Fig. 4.3 as our simple illustration, a 
Java Spring Framework (web server) sends a file to a client machine managing computa-
tional jobs via the TCP software layer. The TCP software divides the sequence of file bytes 
into segments and forwards them individually to the Internet Protocol (IP) software layer. 
The IP software adds a header with the destination IP address of the client machine to the 
TCP segment and creates an IP packet. The TCP software at the client machine receives the 
IP packets, recreates the individual TCP segments, checks that they are error-free and cor-
rectly ordered, and then sends them to an application that manages computational jobs.

4.4.3  �Message Passing Interface

Once a job execution message came via HTTPS from the web browser to the web 
server (Java Spring Framework) and via TCP to the machine managing computa-
tional jobs, there is a need to communicate with multiple computing nodes (red 
boxes with the label “Jobs” in Fig. 4.3). The purpose of this communication is to 
execute multiple jobs in parallel to speed up the computation and leverage all com-
puting nodes.

Message Passing Interface (MPI) has been designed to write software for Single 
Process, Multiple Data (SPMD) parallel applications. SPMD applications are typi-
cally run on distributed memory computer architectures which consist of a collec-
tion of independent computers, called nodes. Each computer node starts its own 
program/process and communicates with other nodes by sending and receiving 
messages. MPI can be viewed as a communication specification for point-to-point 
and collective (group) communication. The MPI de facto standard specification 
defines the syntax and semantics of library routines for writing portable message 
passing programs.

MPI implementations 
Using the message passing parallel programming model, data can be moved from 
the address space of one computational process to that of another process through 
cooperative operations on each process. There are 430 routines defined in MPI, ver-
sion 3. A software developer has to identify parallelism and implement parallel algo-
rithms using MPI routines. The MPI library routines have been designed to utilize a 
variety of computer node architectures (see examples in Fig. 4.4). Most MPI imple-
mentations have application programming interface (API) to routines that are 

4.4  The Basics of Communication Protocols in Client-Server Architectures



74

directly callable from C, C++, Fortran, and any language able to interface with such 
libraries (e.g., C#, Java, or Python). MPI has been implemented for almost every 
distributed memory architecture and is optimized for the hardware on which it runs.

Use of MPI for cluster computing 
In WIPP, we use the implementation of a scientific workflow management system 
called Pegasus. Pegasus contains a component denoted as pegasus-mpi-cluster4 that 
leverages MPI (although not currently used directly by WIPP). The applications 
following the MPI interface are represented by Directed Acyclic Graphs (DAGs) 
where each node in the graph is a computational task/job and each edge defines the 
execution order dependency between the tasks. Each computational task needs to be 
run from a command line with some optional arguments. The dependencies describe 
the data flow in which the output files produced by one task are needed as inputs for 
another. A Pegasus-mpi-cluster job consists of a single master process and several 
worker processes that receive workflow tasks for execution and return the results to 
the master via the MPI messages.

4.4.4  �Network File System

We are using the Network File System (NFS) to access files over LAN the same way 
as one would access the files on a local disk. NFS follows an open standard and uses 
remote procedure call (RPC) system (i.e., the Open Network Computing Remote 
Procedure Call (ONC RPC) system). The ONC RPC system:

	(a)	 Serializes data using the External Data Representation (XDR)
	(b)	 Transfers the data in XDR using either TCP or UDP (User Datagram Protocol)
	(c)	 Allows access to RPC services on a remote machine via a port mapper that lis-

tens for queries on a well- known port 111 using TCP or UDP protocol

4 https://pegasus.isi.edu/documentation/cli-pegasus-mpi-cluster.php

Fig. 4.4  Illustration of computational node architectures creating hybrid distributed memory/
shared memory systems

4  Components of Web Image Processing Pipeline

https://pegasus.isi.edu/documentation/cli-pegasus-mpi-cluster.php


75

Use of NFS  In the Unix platform WIPP configuration, the TB-sized image collections 
and their pyramid representations can be stored on a remote machine (i.e., network-
attached storage (NAS)). Thus, the NAS machine becomes the NFS server, and the 
web server becomes a client requesting access to data. Once the NFS server is 
installed and configured for data access to clients, the client machine requests access 
to the NFS server by issuing a mount command. Because of mount, the client can 
interact (read, write, view) with the mounted file system of the NFS server accord-
ing to the NFS system permissions.

4.5  �Designing Interactive User Interfaces in Web Browsers

General best practices and guidelines for building web applications can be found in 
many books on the market, for instance, [21–23]. A reader can gain in-depth knowl-
edge about the key components of web application design, such as HTML, 
Cascading Style Sheet (CSS), JavaScript, and Document Object Model (DOM).

WIPP leverages many web components that provide interactive user interfaces to 
very large images and their associated computations. The interactive user interfaces 
in WIPP follow a Model-View-Controller design pattern and leverage several exist-
ing JavaScript libraries and frameworks. To achieve interactive user interfaces, 
WIPP depends on existing JavaScript frameworks and libraries, such as AngularJS, 
Data-Driven Documents (D3.js), JQuery, OpenSeadragon, and CamanJ.  Each of 
these JavaScript libraries has web pages with documentation for the interested 
reader. In this section, we introduce the basics of a Model-View-Controller design 
pattern for writing the code running in web browsers and then focus on the use of 
AngularJS for creating interactive user interfaces in WIPP.

4.5.1  �Model-View-Controller Design Pattern

The Model-View-Controller (MVC) pattern is one of the most used design patterns 
for user interface design and web programming. It is described in detail in [24]. 
Figure 4.5 shows the overview of the Model-View-Controller (MVC) design pat-
tern. The View part of the code is the user interface portion that is made typically 
with HTML, CSS, and JavaScript code. For example, when a user selects an option 
from a drop-down menu, the action is propagated to the Controller. The Controller 
communicates with the Model to display a submenu of the main menu or to mark 
the selected menu as chosen. The Model part of the code stores the application spe-
cific data, for example, the options of a main menu and its submenus or the menu 
choices selected by a user. As soon as the Controller receives the notification about 
the submenu entries from the Model, it passes the information to update the View. 
The View can render the content of submenus or show a check mark next to a 
selected main menu.

4.5  Designing Interactive User Interfaces in Web Browsers



76

4.5.2  �AngularJS for Building Interactive User Interfaces

When writing the code that follows the MVC design pattern, the developer’s goal is 
to make the HTML web pages interactive (dynamic HTML web pages). Dynamic 
web pages perform rendering of content in response to user’s interactions. The 
interactive user experience is achieved by a combination of HTML and JavaScript. 
To accommodate multiple interfaces in interactive views, a Cascading Style Sheet 
(CSS) file is added to describe how the HTML elements are to be displayed and the 
layout of the rendered elements in each view. Dynamic HTML is a combination of 
HTML, a client-side JavaScript scripting language, a presentation description in 
CSS files, and the Document Object Model (DOM).

To design interactive user interfaces for large image visualization and processing 
in WIPP, we used AngularJS framework as it simplifies the developer’s effort to 
manipulate the HTML content. We will briefly highlight the key advantages of 
AngularJS JavaScript framework, such as data binding between DOM and HTML 
page, directives, and deep linking.

Introduction to Document Object Model (DOM)
The Document Object Model (DOM) is an application programming interface (API) 
for HTML documents. DOM API defines methods for accessing and manipulating a 
tree structure representation of the HTML content.4 Each tree node is an object rep-
resenting a part of the HTML document. By using JavaScript, the objects can be 
manipulated programmatically and object changes in the HTML document can be 
rendered. For example, HTMLDocument interface allows to access the root of the 
HTML hierarchy and to hold the entire content. The entire content consists of:

•	 Strings (title, referrer, domain, URL, cookies)
•	 HTMLElement (body)
•	 HTMLCollections (images, applets, links, forms, anchors)
•	 Several basic methods (open, close, write, getElementsByName)

HTMLCollection interface provides access to a list of nodes by either ordinal 
index or the node’s name or id attributes. HTMLElement interface is for accessing 
basic HTML components. In general, the DOM API can be used in a wide variety of 

Fig. 4.5  Model-View-Controller (MVC) design pattern for building JavaScript code

4  Components of Web Image Processing Pipeline



77

applications (not just web applications) and with any programming language. The 
DOM API standard5 has been developed by the World Wide Web Consortium (W3C).

Data binding between DOM and HTML page
AngularJS5 is a JavaScript framework for building dynamic web applications using 
HTML, JavaScript, and CSS files. It eliminates DOM manipulation by binding data 
in the DOM representation with the view in HTML web pages. The term “binding” 
refers to the connection between a user interface (HTML web page) and the data 
model (values of web page variables in DOM). AngularJS enables a “two-way” data 
binding. If the user edits a value in an editable text HTML element, then the value 
is automatically updated in the DOM representation to reflect that change. If a value 
is modified in the model, then the view is automatically updated as well.

Directives to extend HTML syntax
In addition to data binding, AngularJS allows a developer to create functions associ-
ated with DOM elements (called directives) that can extend the HTML syntax. 
Directives are translated to HTML, CSS, and JavaScript when they are rendered in a 
browser. The advantage of directives lies in the improved expressiveness of HTML for 
domain-specific behavior. Using AngularJS directives, HTML tags can be associated 
with user-defined functions which lead to more customized web applications.

Deep linking
Another useful feature of AngularJS is deep linking. This term refers to the case 
when a web page does not contain a single web application but consists of multiple 
web applications. Since multiple web applications can have different states, book-
marking and back browser navigation become a problem. In the simplest case, deep 
linking can be understood as the ability to hyperlink to any piece of web content on 
a website (i.e., a paragraph on a web page). In the most complex case, it is the ability 
to restore a web page and of the all states of its web applications. AngularJS can 
manage the mapping between the current state of the page and the corresponding 
web application sub-templates. Depending on the progress status of a set of web 
applications (or the state of the web page), AngularJS would reload the sub-
templates by setting up different URLs (hence the name “deep linking”).

4.6  �Large Image Visualization and Processing in Web 
Browsers

The introduction of web servers, web browsers, communication protocols, and 
interactive web user interfaces is the prerequisite to addressing challenges with big 
image data in WIPP.  The initial functionalities of interest are viewing gigapixel 
images, interacting with the images in real time, and storing information derived 

5 https://angularjs.org/

4.6  Large Image Visualization and Processing in Web Browsers

https://angularjs.org/


78

from visual explorations. Given gigapixel images, this section will build on top of 
the previously introduced technologies and lay the grounds for:

	1.	 Representation of large images
	2.	 Large image visualization in web browsers
	3.	 Image processing in web browsers

4.7  �Representation of Large Images

It is envisioned that WIPP users will use regular monitors as display devices. The 
interplay between the gigapixel images stored on a hard disk and the monitor screens 
requires considerations about scalable representation, organization, and file formats 
for storage and retrieval.

Scalable representation
Large image visualizations must use a scalable data representation. The word “scal-
able” refers to the fact that a laptop screen size is much smaller than gigapixel 
images. Current sizes of liquid-crystal displays (LCD) vary between 12″ and 17″. 
They provide a user with an average of 1.37 viewable Megapixels (between 0.48 
and 2.3 Megapixels – see Table 4.3). Thus, a scalable image representation for lap-
top screens must allow viewing an entire gigapixel image at coarse and fine spatial 
resolutions over viewable Megapixel screen sizes.

Image pyramid representation
To address the scalability, one can create versions of gigapixel images at multiple 
resolutions and then tile them spatially into image subregions that fit on a laptop 
screen. This representation is called an image pyramid since the image size is 
decreasing with the coarser resolution. The tiles at each resolution level are of a 

Table 4.3  Laptop screen resolutions

Screen resolutions (in pixels)

Possible LCD sizes (diagonal 
length in cm and in inches 
inside of parenthesis) Viewable Megapixels

800 × 600 (SVGA – standard) 30.48 (12) 0.48
1024 × 768 (XGA – standard) 30.48 (12), 33.78 (13.3),  

35.56 (14), 38.1 (15)
0.79

1280 × 800 (WXGA – wide) 30.73 (12.1), 33.78 (13.3),  
35.81 (14.1), 39.12 (15.4)

1.02

1440 × 900 (WXGA+ − wide) 35.56 (14) 1.30
1280 × 1024 (SXGA – standard) 35.56 (14), 38.1 (15),  

39.88 (15.7)
1.31

1400 × 1050 (SXGA+ – standard) 30.73 (12.1), 35.56 (14),  
38.1 (15)

1.47

1680 × 1050 (WSXGA+ − wide) 39.12 (15.4) 1.76
1600 × 1200 (UXGA – standard) 35.56 (14), 38.1 (15), 40.64 (16) 1.92
1920 × 1200 (WUXGA – wide) 39.12 (15.4), 43.18 (17) 2.30

According to http://www.geek.com/laptop-screen-size-resolution/

4  Components of Web Image Processing Pipeline

http://www.geek.com/laptop-screen-size-resolution/


79

fixed size, and they correspond to logical image partitions (i.e., neighboring pixels 
create visually meaningful image content). Figure 4.7 illustrates the image pyramid 
representation for a large field of view image acquired by a microscope. The process 
of creating an image pyramid is called hierarchical partitioning. The process can be 
described as iterative filtering followed by subsampling each filtered image by a 
factor of two along each image dimension. One of the simplest methods is to itera-
tively replace every 2 × 2 pixels with their average.

Heterogeneity of image pyramid formats
Small images are acquired by cameras embedded in telescopes, satellite and aerial 
imaging instruments, cell phones, photographic devices, and microscopes. Large 
images are typically formed by stitching small images of adjacent fields of views. 
Image pyramid representations of large images have been built in several application 
domains including astronomy, Geospatial Information Systems (GIS), digital human-
ities, materials science, cell biology, medicine, and many more. Given the heterogene-
ity of imaging instruments and application domains, one can find a variety of image 
pyramid formats including Deep Zoom Images (DZI), Open Street Maps (OSM), 
Tiled Map Service (TMS), International Image Interoperability Framework (IIIF), 
and Legacy Image Pyramids (LIP).

DZI image pyramid format
For illustration purposes, we will describe the DZI format which is an XML speci-
fication maintained by Microsoft [25]. An image pyramid is stored as a set of folders 
containing image tiles and a metadata file describing the pyramid. Table 4.4 shows 
an example of the image pyramid storage for an image of size (22 934 × 21 056) 
pixels. The tile size is set to (258 × 258) pixels with one pixel overlap on each side. 
The overlap value indicates how many columns and rows on each side of a tile are 

Fig. 4.7  Image pyramid 
representation

4.7  Representation of Large Images



80

added to guarantee seamless rendering. The image tile file format is specified to be 
PNG (portable network graphics). The number of pyramid levels is 15 and is com-
puted as the ceiling of log2(max{Width = 22 934, Height = 21 056}). One should be 
aware that image pyramid representation of any large image will require about 4/3 
times more storage space than the storage of the original image. The number 4/3 can 
be derived adding up the sizes of all pyramid levels (1+1/4+1/16+….1/(2^(2*num-
ber of levels))) ~(4/3).

Container file storage of image pyramids
Image pyramids are collections of files and folders that can reside on a file system or 
can be stored in one container file. For example, a BigDataViewer plugin6 to Fiji uses 
the Hierarchical Definition Format version 5 (HDF5) for storing all files. HDF5 pro-
vides a container for chunked multidimensional arrays (image tiles). It keeps files 
together but has some overhead in reading and writing.7 Another option is to use the 
multi-page Adobe Tagged Image File Format (TIFF), but the format is limited to 4 
gigabytes. The ongoing effort to design a BigTIFF file format would allow to save 
files larger than 4 gigabytes but might still suffer from read/write overheads.

File formats of image tiles
Note that there is a variety of web browsers, and their image rendering support var-
ies in terms of image file formats. The main image file formats that have been sup-
ported by most web browsers are jpg, png, and gif file formats. A detailed summary 
of image formats supported by the existing web browsers can be found online.8

Image pyramids with additional information
Every application domain has a need for displaying large images with additional 
information. For example, in cultural heritage applications, one can show 

6 http://imagej.net/BigDataViewer
7 HDF chunking issues: https://support.hdfgroup.org/HDF5/doc/H5.user/Chunking.html
8 https://en.wikipedia.org/wiki/Comparison_of_web_browsers#Image_format_support

Table 4.4  An example image pyramid stored in a DZI file format

File name test.dzi

File Content <?xml version=“1.0” encoding=“utf-8”?>
<Image TileSize=“256” Overlap=“1” Format=“png” xmlns=“http://schemas.
microsoft.com/deepzoom/2009“>
<Size Width=“22,934” Height=“21,056”/>
</Image>

Folder test_files
Folder Content Sub-folders labeled from 0 to 15 (the number of pyramid levels)
Sub-Folder 15
Sub-Folder 
Content

Tile images at the original resolution with the file names <grid-row>_<grid-
column>.png

4  Components of Web Image Processing Pipeline

http://imagej.net/BigDataViewer
https://support.hdfgroup.org/HDF5/doc/H5.user/Chunking.html
https://en.wikipedia.org/wiki/Comparison_of_web_browsers#Image_format_support
http://schemas.microsoft.com/deepzoom/2009
http://schemas.microsoft.com/deepzoom/2009


81

high-resolution illustrations in books9 or maps10 with textural, graphical, and picto-
rial notes about history of depicted objects. In geospatial mapping applications, one 
would like to add geo-referenced overlays of information about vegetation, roads, 
hotels, restaurants, and so on, which has been implemented in web systems such as 
Google Maps and MapQuest. In biomedical applications, image pyramids can rep-
resent 2D+time or 3D large images by creating a series of pyramids. In materials 
science, image pyramids can be used for viewing large 2D images inside of another 
2D large image (local high magnification view inside of global low magnification 
view) by creating an image pyramid inside another image pyramid (called sparse 
pyramids). All aforementioned cases leverage the image pyramid representation but 
require custom solutions to integrate additional information with the basic function-
ality of retrieving image tiles for visualization and further processing.

4.7.1  �Large Image Visualization in Web Browsers

The scalable representation of gigapixel images as image pyramids requires software 
for rendering image pyramids in a browser and for retrieving image pixel informa-
tion based on user inputs. WIPP leverages the OpenSeadragon library [10] and inte-
grates it into Web Deep Zoom Toolkit (WDZT) described below.

Rendering image pyramids in a browser
An image pyramid representation is critical to accommodate the bandwidth limita-
tion between a web server and a browser and the RAM limitations of computers 
running web browsers. If these two limitations can be overcome, then users can 
have interactive sessions while viewing gigapixel images in their browsers. During 
the interactive viewing, the browser has to use the HTML request-response protocol 
to fetch image tiles based on user’s choice of zoom level (hierarchical partition 
level) and pan location (logical partition level) and then render the tiles in the web 
browser. These steps are accomplished by JavaScript running in the browser.

The original code for large 2D image visualization (also called Deep Zoom) was 
developed by Seadragon Software and later expanded by Microsoft Live Labs to a 
Silverlight product. Google has used similar zoom and pan concepts to support the 
delivery of Google Maps. The initial 2D support was extended to 3D for medical 
image volumes [26] and to other informative visualizations [27] with an open-
source project behind many added functionalities. We will focus on OpenSeadragon 
JavaScript library11 [10] that has originated from the Silverlight product and has 
been extended as an open-source project by many contributors. Our focus is on the 
extensions to OpenSeadragon called Web Deep Zoom Toolkit (WDZT). It is 
described in [28, 29] combined with the efficiency studies about building image 
pyramids from large 2D images [30–32].

9 Google books: https://www.google.com/intl/en/googlebooks/about/index.html
10 David Rumsey’s map collection: http://www.davidrumsey.com/
11 https://openseadragon.github.io/

4.7  Representation of Large Images

https://www.google.com/intl/en/googlebooks/about/index.html
http://www.davidrumsey.com
https://openseadragon.github.io


82

JavaScript implementation for additional image analyses
Web Deep Zoom Toolkit (WDZT) is a JavaScript framework for analysis of deep 
zoom images on the web. It is accessible from the GitHub repository12 and leverages 
OpenSeadragon library and several plugins for reporting pixel values 
(OpenSeadragonPixelColor), displaying an image scale bar (OpenSeadragonScalebar) 
and providing image filtering options (OpenSeadragonFiltering). The source code is 
divided into the:

	(a)	 Core components
	(b)	 Logic code that might be potentially reused by multiple modules
	(c)	 Functional modules
	(d)	 User interface widgets

For example, functional modules that extend OpenSeadragon are accessible 
from the left pane of WDZT (see Fig. 2.4 in Chap. 2) and are encapsulated in 
JavaScript files in the src/modules sub-directory. A new module can be developed 
by extending the module class and adding it to the src/modules directory. Debugging 
the new module can be accomplished by creating an HTML file and adding the new 
module to the HTML file.

4.7.2  �Image Processing in Web Browsers

When designing systems for image processing, a developer faces a decision about 
where to execute computations (server versus browser) and how to orchestrate com-
putations (synchronous versus asynchronous image processing). WIPP design 
incorporates these decisions to achieve interactivity of simple image processing 
operations, such as image filtering.

Server versus browser computation tradeoffs  Interactive measurements in a 
web browser require executing computational operations beyond those for moving 
data between the web server and the web browser or the web browser cache and the 
screen buffer. For example, calculating a Euclidean distance between two mouse-
clicked locations must be performed in the Arithmetic Logic Unit (ALU) inside of 
a computer’s central processing unit (CPU). There is always a software design 
dilemma about how much computing should be done by the web browser as opposed 
to the web server. If all computations are done by the server, then users may experi-
ence large communication response delays. If all computations are done by the web 
browser, then users might experience a slow response due to an insufficient comput-
ing power to calculate the results. This situation is exacerbated when dealing with 
very large images and with computations requiring significant computer memory 
(RAM) and processing power (CPU).

12 https://github.com/usnistgov/WebDeepZoomToolkit

4  Components of Web Image Processing Pipeline

https://github.com/usnistgov/WebDeepZoomToolkit


83

Interactivity of simple image processing
Given the image pyramid representation, we assume that a computer running the 
web browser has enough RAM and sufficient CPU power for simple image process-
ing of image tiles rendered on a laptop screen. Simple image processing is useful for 
image enhancements, thresholding, connectivity analysis, and counting of con-
nected components. One such solution is the CamanJS13 image enhancement library 
written in JavaScript language. It enables to change contrast, hue, brightness, expo-
sure, gamma, saturation, as well as colorize and clip images in a web browser. The 
value of image enhancements is that a user can interactively choose parameters of 
image processing operations by testing them on viewed image tiles of a pyramid. 
The values obtained from browser-based image processing can serve as initial 
parameter estimates for image processing operations that can be then applied to the 
entire image by using a more powerful server computer.

Synchronous versus asynchronous image processing
To enable image processing over large images, one must integrate functionality of 
CamanJS library with OpenSeadragon so that image processing can be applied to 
image pyramids as opposed to single images. This is accomplished via the 
OpenSeadragonFiltering plugin.14 The processing can be performed asynchronously 
or synchronously with the retrieved image tiles.

Asynchronous processing does not wait for the function call to return from the 
server. A sequence of processing functions continues to be executed, and a “call-
back” function is executed when the asynchronous processing returns from the 
server. Unlike asynchronous processing, synchronous processing waits for the func-
tion call to return before continuing with the execution. The advantage of synchro-
nous processing is that the order of execution is known, but the trade-off is that the 
current processing thread is blocked while waiting, which will cause the web 
browser to “freeze” (i.e., be unresponsive) during that time. In practice, asynchro-
nous processing is used for retrieving all pyramid tiles from the server and then for 
applying a processor function to filter images. Thus, a confirmation callback is 
returned from the server after all pyramid tiles are retrieved and filtered. The pyra-
mid tile retrieval and filtering is asynchronous processing because the filtering can 
be applied to pyramid tiles as the tiles arrive from the web browser. Asynchronous 
execution is also faster because it can utilize multiple CPUs on the client side by 
sending a filtering job with an image tile to a CPU as soon as the tile arrives. On the 
other hand, image processing that operates over neighboring pixels needs multiple 
image tiles, and therefore it must utilize synchronous processing or a custom image 
tile retrieval before a computation is executed.

Asynchronous implementation of OpenSeadragonFiltering plugin
In the current implementation of the OpenSeadragonFiltering plugin, all image pro-
cessing operations are executed asynchronously regardless of pixel-level manipula-
tions or spatial kernel operations. Thus, spatial kernel operations are executed over 

13 http://camanjs.com/
14 https://github.com/usnistgov/OpenSeadragonFiltering/blob/master/openseadragon-filtering.js

4.7  Representation of Large Images

http://camanjs.com
https://github.com/usnistgov/OpenSeadragonFiltering/blob/master/openseadragon-filtering.js


84

each tile independently (without any pre-defined order) and cannot handle image 
tile boundaries where multiple tiles would have to be synchronously retrieved. For 
instance, when Sobel edge detection or morphological dilation/erosion operations 
are applied, a user can see a border artifact especially when the image tile overlap is 
larger than the spatial kernel size. Figure 4.8 illustrated the artifacts for morphologi-
cal dilation with the kernel size equal to 11. Irrespective of the artifacts, the value of 
image processing in a web browser lies in the interactivity of parameter estimation 
and visual inspection.

4.8  �Managing Images, Pyramids, and Metadata

One of the key components of WIPP is the underlying database for storing informa-
tion about images and computations applied to images. A reader interested in study-
ing databases in the context of web systems is referred to textbooks, such as [33, 
34]. In this section, we provide just a top-level overview of key concepts about 
database management systems, the two main types of databases, and a short descrip-
tion of MongoDB database [35] used in WIPP. The rest of the section is devoted to 
Java Spring Framework as one of web application frameworks for connecting the 
MongoDB with the other components in WIPP.

Purpose of databases
Storage and management of large amounts of data present challenges related to 
organization of data and retrieval of useful information. Databases provide a mecha-
nism for storing collections of data in such a way that information of interest can be 
easily accessed, updated, and searched. Databases are used in many commercial 
web applications, such as online catalogs of products, users, and purchase orders. 

Fig. 4.8  Artifacts introduced by asynchronous retrieval and spatial filtering using the 
OpenSeadragonFiltering plugin

4  Components of Web Image Processing Pipeline



85

In scientific applications, databases serve as catalogs of reference measurements, 
experimental data, metadata, and derived results for scientific discoveries.

Database management systems
To perform operations on data in a database, databases come with a collection of 
programs called a database management system (DBMS). DBMS becomes an inter-
face between a database and all users or other software applications. The adminis-
tration of databases with DBMS is achieved by executing four basic operations of 
persistent storage also called CRUD functions:

•	 C (Create): insertion of new data in the database
•	 R (Read): selection and retrieval of data using queries
•	 U (Update): modification of existing data
•	 D (Delete): suppression of existing data

Widely used DBMSs include (a) open-source solutions, such as MySQL,15 
PostgreSQL, and MongoDB, and (b) commercial solutions, for example, Oracle, 
Microsoft SQL Server, or IBM DB2.

Data object conversions
In object-oriented software applications, data objects must be converted from the 
database representation to the target programming language representation, and 
back. This conversion between database objects (records represented by rows in a 
table or documents in a collection) and objects in programming language (such as 
Java or Python objects) can be done in an automatic way using an Object-Relational 
Mapping (ORM) library. It can also be implemented using the native procedural 
language provided with the database in a Data Access Object (DAO) layer. The 
DAO layer provides an abstract interface to the rest of the application for interacting 
with the database.

Database classification
Databases can be divided in two categories:

	1.	 Relational databases
	2.	 Non-relational databases

The key differences lie in their representation of information. We outline the 
database representations in both categories and provide examples to illustrate the 
key differences.

4.8.1  �Relational Databases

Representation
Relational databases are based on a tabular representation of the data where each 
table contains objects of the same type. Multiple tables are related according to 
common keys or concepts which is the basis for the term “relational database.” 

15 https://www.mysql.com/

4.8  Managing Images, Pyramids, and Metadata

https://www.mysql.com


86

The tables can store primary and optional or non-primary information in separate 
tables and preserve the information relations.

Representation example
For example, a person is often represented by primary information such as his first 
and last name. Each person has also an address viewed as non-primary information. 
In this case, a table Person is storing people’s first and last names, and another table 
Address will be storing address information such as street address, city, zip code, 
and state. The “relation” link between a person and his address is represented with 
a virtual key. The virtual key in a table can be primary or foreign. The keys must 
satisfy a set of requirements in terms of uniqueness as shown in Table 4.5. For the 
Person-Address example, the primary key is PersonID associated with each person 
in the Person table (Fig. 4.9). The foreign key in the Address table uses the values 
of the PersonID key to associate each address with a person. Note that one person 
can have multiple addresses, and therefore the foreign key column can contain 
duplicates of PersonID key values.

Relations between entities can be of three types:

	1.	 One-to-one
	2.	 One-to-many
	3.	 Many-to-many

One-to-one relation:  A one-to-one relation between two types of entity A and B 
implies that an entity A can only have a relation with one entity B, and vice versa. 
For instance, a country can only have one capital city, and a city can only be the 
capital of one country as shown in Fig. 4.10.

Table 4.5  Comparisons of 
requirements on primary and 
foreign keys

Requirements Primary key Foreign key

Duplicate values are 
allowed

No Yes

Null values are allowed No Yes
Number of columns One One or more

Fig. 4.9  Entity relation model

4  Components of Web Image Processing Pipeline



87

One-to-many relation:  A one-to-many relation between two types of entity A and 
B means that an entity A can be linked to several entities B, but an entity B can only 
be linked to one entity A. For instance, a customer can place several orders on a 
commercial website, but each order will only be linked to exactly one customer as 
shown in Fig. 4.11.

A many-to-many relation between two types of entity A and B means that an 
entity A can be linked to several entities B, and vice versa. For instance, an author 
can write several books, and a book can be written by several authors as shown in 
Fig. 4.12.

Properties:  Relational databases follow the ACID (Atomicity, Consistency, 
Isolation, and Durability) properties for their operations to assure consistency of the 
data in the case of simultaneous transactions:

•	 Atomicity ensures that a transaction with data in database is either completed or 
rolled back to the original state. In other words, there is no partial state of a 
transaction.

•	 Consistency requires that when a transaction is completed that it meets consistency 
checks. For example, moving money from an account A to another account B 
implies that the sum of A + B is the same before and after transaction completion.

•	 Isolation refers to the fact that during concurrent transactions, each transaction is 
isolated from other transactions.

•	 Durability means that all data after a transaction is completed will be saved by 
the database and available even if in the event of a database failure and restart.

Fig. 4.10  One-to-one 
entity relation diagram

Fig. 4.11  One-to-many 
entity relation diagram

Fig. 4.12  Many-to-many 
entity relation diagram

4.8  Managing Images, Pyramids, and Metadata



88

The ACID properties are described in a standard ISO/IEC 10026-1:1998 (revised 
in 2003) focused on Distributed Transaction Processing.

4.8.2  �Non-relational Database

Representation
Non-relational databases are databases where the data storage and retrieval are not 
organized in tabular relations. They are often referred as NoSQL databases in con-
trast to the relational databases. These databases were mostly developed in the early 
2000s by large IT companies processing online content, such as Google, Amazon, 
Yahoo, LinkedIn, and Facebook. The motivation arose from a limited scalability of 
relational databases managing very large volumes of online content. The scalability 
limitations came from satisfying the ACID properties that assured consistency of 
the data in the case of simultaneous transactions but limited the database installation 
to a single server and did not allow the use of distributed computing. NoSQL data-
bases do not strictly follow the ACID properties which allow them to scale well with 
big data and utilize distributed computational environments, such as computer clus-
ters and clouds. Among the well-known NoSQL databases, management systems 
are MongoDB, Redis, Apache CouchDB, and Cassandra.

NoSQL databases followed many highly heterogeneous models for organizing 
data. We describe next four of the main models found in NoSQL databases:

	1.	 Key-value stores
	2.	 Graph stores
	3.	 Column stores
	4.	 Document stores

Key-value stores:  Consist of an associative array where each key is paired to a 
value as shown in Fig.  4.13. As an analogy, one could think about the data 
organization model as a folder with each file name being the key and the content of 
the file being the value. These databases scale well but are limited when complex 
queries need to be performed on the database content.

Graph stores:  Organize data as nodes and edges (or connections) as shown in 
Fig. 4.14. It is assumed that data can be modeled and represented as graphs. This 
data organization model performs well on interconnected data. However, the scal-
ability may be limited because navigating through a long path in a graph composed 

Fig. 4.13  Key-value store database

4  Components of Web Image Processing Pipeline



89

of distributed nodes could slow down the query responses. In the example below, 
vertices are entities (people A and B, organization C), and edges are relationships 
between these entities (A and B know each other and are members of C).

Column stores:  Organize data in columns where each column represents a specific 
property of an entity (see Fig. 4.15). Generally, columns can be serialized on the 
same disk, making searches of any property fast.

Document stores:  Store data in a semi-structured form, called documents (see a 
collection of documents in Fig. 4.16). Documents are usually encoded in a standard-
ized format, such as eXtensible Markup Language (XML), JavaScript Object 
Notation (JSON), Binary JSON (BSON) or even Adobe Portable Document Format 
(PDF). Documents are not required to follow a specific schema, and therefore even 
entities of the same type might be represented differently.

Fig. 4.14  Graph store database

Fig. 4.15  Column store database

4.8  Managing Images, Pyramids, and Metadata



90

MongoDB database management system
One of the most widely used NoSQL DBMSs is MongoDB [35]. It is free, open-
source, cross-platform, and document-oriented DBMS developed by MongoDB 
Inc. Documents are stored in a JSON-like format. They contain fields of a variety of 
types, such as string, numbers, arrays, binary data, or embedded documents. 
Documents are organized in collections, and the document model can vary from one 
document to another. Database drivers, software acting as a layer between the 
DBMS and software applications, are available for most programming languages, 
avoiding the need to create an ODM (Object Document Mapper) layer to map 
MongoDB documents into objects. The MongoDB management system also pro-
vides the ability to use indices for improving queries performances and security 
features with database authentication. MongoDB as a NoSQL database offers a 
flexible data organization model that allows developers to modify their data struc-
ture easily and scales with data volume better than relational databases.

4.8.3  �Java Spring Framework for Web Application 
Development

Once information is stored in a database on a web server, a developer needs to write 
the code that exchanges information between the database, computational nodes, 
file system, and web clients. In Sect. 4.4, we introduce the communication protocols 
for these purposes and mentioned Java Spring Framework as the server application 
for handling the information exchange. Here, we provide more background on the 
role of Java Spring Framework as one of the web application frameworks.

Fig. 4.16  Document store 
database

4  Components of Web Image Processing Pipeline



91

Software engineering with web application frameworks
When building software and web applications, a good practice for development and 
maintainability is to assure that the code is properly structured and follows software 
engineering standards. To achieve that, web software developers can use application 
frameworks that provide generic functionality and facilitate development of well-
structured software applications.

Specifically, web application frameworks provide interfaces for common opera-
tions during the development. The common operations include exchanging infor-
mation with:

	(a)	 Databases (data access layer)
	(b)	 Applications (API)
	(c)	 User interfaces (GUI creation)
	(d)	 Software functionality tests
	(e)	 A variety of integrated utilities

At the component level, the web applications follow object-oriented program-
ming principles (class inheritance, interface implementation, abstraction of data and 
behavior, encapsulation of data and class implementation, polymorphism, and vir-
tual methods16), and their description is outside of the scope of this book. At the web 
system level, web applications follow a client-server architecture (also called a soft-
ware design pattern). Some examples of client-server architectures include the 
Model-View-Controller (MVC), Model-View-View-Model (MVVM), or three-tier 
architecture. The MVC architecture was described in Sect. 4.5.1. Some well-known 
open-source application and web frameworks are Django (Python framework), 
Spring (Java framework), Ruby on Rails (Ruby framework), Symphony (PHP 
framework), Qt (cross-platform framework), and AngularJS and BackboneJS 
(JavaScript frameworks). We will describe Spring Framework as one of the most 
used frameworks for building Java enterprise applications.

Overview of Java Spring Framework
The Spring Framework [36] provides a programming and configuration model for 
building Java applications. It also provides core functionality needed in enterprise 
web applications so that a developer can focus on the logic of the application code 
more than on the interfaces to other web application components. Figure 4.17 shows 
several groups of about 20 modules in Spring Framework.17 The key characteristics 
of Spring Framework and its modules are the interfaces following the categories 
listed above. As shown Fig. 4.17, Spring Framework provides interfaces to data-
bases (data access/integration modules), generation of web REST APIs and devel-
opment of servlets for web applications (web modules), configuration of application 
components using dependency injection (core modules), and support for testing 
applications (test modules).

16 http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-20-object- 
oriented-programming-principles/
17 http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/over-
view.html#overview-modules

4.8  Managing Images, Pyramids, and Metadata

http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-20-object-oriented-programming-principles
http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-20-object-oriented-programming-principles
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/overview.html#overview-modules
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/overview.html#overview-modules


92

The collection of modules labeled “AOP and instrumentation” consists of meth-
ods following aspect-oriented programming (AOP) and those for interacting with 
application web servers, such as Apache Tomcat. AOP is a programming paradigm 
that increases modularity of software by cleanly decoupling code. The modules 
labeled “Messaging” make methods available for converting plain old Java 
objects (POJO) into messages and sending them to applications (message-driven 
architecture). The content can be Java messages sent to applications to trigger 
actions, for example, HTTP requests, or even transferring files.

The WIPP’s design leverages two main Spring Framework modules from the 
data access/integration group and one Spring Framework project that are detailed 
below:

	1.	 Spring Data MongoDB module
	2.	 Spring Data REST module
	3.	 Spring Boot project

Spring Data MongoDB
Spring Data MongoDB is used for object-document support and for integration of 
MongoDB with Spring object repositories. This Spring Framework module provides 
functions for interacting with MongoDB collections and for mapping the documents 
from a database into plain old Java objects (POJOs) used in computational and data 
management applications. All Spring Data modules use the concept of Spring 
Repositories for interacting with data stored in a database. Spring repositories offer 
interfaces to the database CRUD operations, search queries, and can map data stored 
in databases into Java objects or vice versa. It is the Spring repository in WIPP that 
manages all MongoDB collections and allows manipulation of the database entities.

Spring Data REST
Spring Data Representational State Transfer (REST) is used to export Spring Data 
Repositories as hypermedia-driven RESTful resources. This module provides an easy 
way for developers to create REST web services. REST web services expose the data 
in Spring Repositories as hypermedia-driven HTTP resources which are accessible by 

Fig. 4.17  Overview of the 
Spring Framework

4  Components of Web Image Processing Pipeline



93

URLs. The navigation is achieved via hyperlinks exposed with the resources pointing 
to multiple HTTP resources. Spring Data REST also embeds useful tools for REST 
API. For instance, the Spring Framework module supports (a) pagination of tabular 
results with navigational links to previous and next pages and (b) query-based search 
for HTTP resources in the Spring repositories. All HTTP resources are exposed as 
JSON documents following the HAL standard (Hypertext Application Language, for 
representing resources and their relations with hyperlinks).

Spring Boot
Spring Boot [37] is a Spring Framework project to facilitate an easy creation of 
Spring-based Java applications. It dynamically adds and pre-configures Spring 
Framework modules by scanning the developed application. For example, Spring 
Boot embeds the Apache Tomcat web server for deploying a web application. By 
using Spring Boot, a developer can enable external configurations through property 
files. These automated configurations of Spring modules can make the developer 
more productive by allowing him to focus on the code that is specific to his applica-
tion domain.

4.9  �Meeting Computational Requirements on a Web Server

Another key components of WIPP is the computational scalability of image pro-
cessing operations in distributing computing environments. To meet the computa-
tional requirements, WIPP is leveraging one of the scientific workflow management 
systems called Pegasus. The topic of designing scientific workflow management 
system is its own research area and readers are referred to research papers, such as 
[38–40]. In this section, we focus on Pegasus, its HTCondor workload management 
system, and the XML file representation for encoding computational workflows.

Scientific workflow management systems
Workflow management systems (WMS) are software applications that allow the 
execution and monitoring of a variety of computational tasks. Workflows of tasks 
are generally represented as graphs or pipelines. In a scientific application, work-
flows perform tasks that manipulate data or compute new data. Scientific WMS 
have been developed to lower the barriers for scientists to utilize rapidly changing 
hardware. Scientists can construct a workflow of computational tasks from data and 
tools, execute a workflow, monitor its execution, and retrieve the results along with 
provenance information. Widely used WMS in multiple scientific communities 
include Apache Taverna, Kepler, Galaxy, KNIME, and Pegasus.

Pegasus workflow management system
Pegasus WMS is a workflow management system used in WIPP. It integrates several 
middleware libraries including HTCondor so that Pegasus can offer many desirable 
features of WMS. The interface between Pegasus WMS on a server side and user’s 
inputs on a client side is facilitated via an XML file representation. We provide 
additional descriptions of Pegasus, HTCondor, and XML file representation next.

4.9 � Meeting Computational Requirements on a Web Server



94

4.9.1  �Pegasus Workflow Management System

Pegasus is specifically designed for creation, execution, reuse, and repurposing of 
scientific workflows in a variety of execution environments. Workflows are repre-
sented as Directed Acyclic Graphs (DAGs) of tasks where each node in the graph is 
a task and each edge is a dependency between tasks. Example of a workflow repre-
sented by a DAG is shown in Fig. 4.18. Abstract workflows represented as DAGs 
are stored in XML format in the files with .DAX suffix (DAX stands for Description 
of Abstract workflow in XML).

Abstract workflows stored as DAX files
DAX workflows describe a set of tasks (also called jobs) and their dependencies. 
Each job is mapped to an executable and an execution site. It can be associated with 
a set of input arguments, as well as input and output files. Three catalogs are used in 
the Pegasus WMS and are referenced in a DAX file:

	(a)	 Sites catalog: It describes the execution sites that are available for the execution 
of the jobs.

	(b)	 Transformations catalog: It describes the available executables (software appli-
cations or programs).

	(c)	 Replica catalog: It describes the mapping between logical file names used in the 
DAX to physical file locations.

User interface
For a user, Pegasus can be viewed as an interface between a domain scientist and the 
computational environments. High-level workflow descriptions are mapped to a 

Fig. 4.18  Example of a 
workflow DAG. Input data 
is separated into two sets 
and processed in parallel, 
and results are merged to 
deliver the output data

4  Components of Web Image Processing Pipeline



95

sequence of computational and data management tasks. The tasks are then adapted 
to the specific computational software and hardware environment to maximize effi-
ciency of the workflow execution. Computation execution environments can vary 
from a simple desktop computer to a computer grid, cluster, or cloud (e.g., National 
Science Foundation and Department of Energy funded Open Science Grid18 and the 
Extreme Science and Engineering Discovery Environment19 (XSEDE)).

Developer interface
For a developer, Pegasus provides several APIs for creating workflows in different 
programming languages (Python, Java, and Perl) and a REST API for monitoring 
workflow executions. While utilizing Pegasus, one must understand the underlying 
three parts of the Pegasus WMS as illustrated in Fig. 4.19.

	1.	 Workflow Mapper converts an abstract workflow to an executable form while 
performing an optimization of the workflow, adding data staging and registration 
tasks, and selecting resources.

	2.	 Workflow Engine executes the concrete workflow and submits jobs to the job 
scheduler.

	3.	 Job Scheduler schedules the submitted jobs on the selected resources.

As a workflow management system used in WIPP, Pegasus adds value to image 
processing by including:

	(a)	 Portability and reuse of workflows with abstract DAXs
	(b)	 Workflow performance optimization
	(c)	 Computational scalability on distributed hardware
	(d)	 Gathering provenance information
	(e)	 Data management
	(f)	 Reliability and error recovery of computations.

Many of these additional Pegasus execution characteristics come from integrated 
middleware libraries, such as HTCondor, Globus, or cloud API to the Amazon EC2. 

18 https://www.opensciencegrid.org/
19 https://www.xsede.org/

Fig. 4.19  Overview of Pegasus WMS

4.9  Meeting Computational Requirements on a Web Server

https://www.opensciencegrid.org
https://www.xsede.org


96

The term “middleware” refers to the software services layer between the operating 
system and software applications. Next, we will describe HTCondor as one of the 
key integrated libraries in Pegasus.

4.9.2  �HTCondor Workload Management System

Pegasus integrates HTCondor to execute workflows on local or distributed compu-
tational hardware. The goal is to manage efficiently the quantity of work done by a 
set of computers in a given period of time. This efficiency is of concern in high-
throughput computing applications.

High-throughput (HT) computing
HTCondor is an open-source distributed computing software for high-throughput 
computing applied to large collections of data over distributed computational 
resources.20 It is designed for workload management of compute-intensive jobs, job 
scheduling and queueing, as well as monitoring and management of computational 
resources. HTCondor can utilize a single computer or a pool of hardware resources. 
In this case, the Condor pool is the place where each machine advertises its avail-
able resources, such as CPU type and speed, size of RAM memory, size of virtual 
memory, and currently executing workload. This information is used by the 
HTCondor scheduler to send jobs to computational resources that have the needed 
specifications and are available to execute the jobs.

HTCondor currently supports several execution environments, called “universes”:

•	 Standard universe: As the default environment, it provides reliability and ease of 
migration. However, it is constrained by the inability to use multiprocess jobs.

•	 Vanilla universe: It has fewer restrictions but also fewer features than the stan-
dard universe.

•	 Grid universe: It allows users to submit their jobs on computational grids.
•	 VM universe: It supports launching virtual machine disk images instead of programs.
•	 Docker universe: It can launch Docker containers instead of programs.

When Pegasus WMS is running on top of HTCondor, the Vanilla universe is used 
due to the few restrictions on this universe.

4.9.3  �XML File Representation for Encoding 
Computational Jobs

We use the XML (eXtensible Markup Language) format as the common representa-
tion for the input parameters of jobs in WIPP. For each job, input parameters are 
configured by the user using the web interface. Some job inputs are generated by the 
WIPP system on the server, for example, a unique output folder path. All parameters 

20 http://research.cs.wisc.edu/htcondor/

4  Components of Web Image Processing Pipeline

http://research.cs.wisc.edu/htcondor


97

are stored in the database and serialized to an XML file. The XML file is then sent 
by Pegasus WMS to a specific software implementation on the server that can parse 
the inputs needed for the execution.

An example of XML input parameters for a stitching job is shown in Fig. 4.20. 
In this example, a user chose to compute a stitching vector using the MIST algo-
rithm [41] and provided specific parameter values to achieve optimal algorithmic 
performance. The algorithm is applied to image tiles in a specified collection. To 
identify spatially adjacent pairs of image tiles, a user provided a file name pattern 
for extracting the time frame and row and column position from each image file 
name. The file name pattern is defined with a regular expression understood by the 
MIST algorithm. From the collection of images, the WIPP system generates the 
parameter “tilesFolder” that encodes a path of this input collection following its 
unique identifier in the data storage system. The web interface assists a user with job 
configurations. It has embedded default values for the parameters and runs JavaScript 
code in the browser to pre-populate some of the fields automatically after scanning 
the image file names in the input collection.

4.10  �Delivering Traceable Computations

As WIPP is configured to manage all metadata about computational jobs, it can also 
serve as a repository of provenance information. To benefit from the provenance 
information and deliver traceable computations, additional components must be 
designed. In this section, we describe how traceability of statistical summaries is 
achieved in WIPP.

Imaging traceability
We are interested in traceability of quantitative and qualitative image object mea-
surements that lead to discoveries or decision-making. From a measurement per-
spective, metrological traceability requires the establishment of an unbroken chain 

Fig. 4.20  Example of an XML input file for a stitching vector estimation job

4.10 � Delivering Traceable Computations



98

of calibrations to specified references.21 This traceability definition is important 
for preparing and imaging specimens so that the measured images can be related to 
a traceable standard or any other reference with known uncertainty.

Computational traceability
In computer science, traceability is defined as the “ability to relate artifacts created 
during the development of a software system to describe the system from different 
perspectives” [42]. In the context of WIPP and digital image analyses, the trace-
ability is understood as a chain of image transformations and computations that 
have been applied to acquired images through the entire software processing work-
flow. Traceable image files can be audited for correctness and completeness at any 
time point using provenance information. The provenance information contains 
metadata about data, software, and hardware. The access to provenance information 
is conveniently offered to end users via the WIPP web interface and step-by-step 
browsing of an entire sequence of processing tasks.

Next, we will describe the WIPP components for delivering traceable computa-
tions and web statistical modeling module in WIPP that assists in publishing trace-
able statistical summaries. Finally, we will discuss the challenges of transitioning 
from traceable to reproducible computations.

4.10.1  �Components for Delivering Traceable Computations

Traceable computations are delivered in WIPP by hyperlinking each image collec-
tion and each computational job with its inputs and outputs. To achieve traceability, 
four basic components of WIPP play a role in gathering, storing, querying, retriev-
ing, and browsing provenance information:

•	 Database stores provenance information about data artifacts and jobs 
configurations.

•	 REST API is used for querying provenance information about all objects stored 
in the WIPP database. The objects are exposed through REST endpoints as web 
resources (i.e., URLs).

•	 Pegasus WMS gathers computational provenance information about job execu-
tions, and updates the WIPP system database via the REST API using its notifi-
cation system during each job execution.

•	 Web interface is used for retrieving and interacting with provenance information 
via dynamic web pages. A user can browse provenance information retrieved 
from the WIPP database via the REST API.

Example
If an image collection was generated as a job output, then the job description is 
hyperlinked from the detailed view of the generated image collection. Similarly, if 
an image collection is an input to a job, then this collection will be hyperlinked from 

21 https://www.nist.gov/traceability/nist-policy-metrological-traceability

4  Components of Web Image Processing Pipeline

https://www.nist.gov/traceability/nist-policy-metrological-traceability


99

the detailed view of the computational job. A user can follow hyperlinks from the 
viewed image collection to recover all computational jobs that have been applied to 
an uploaded image collection to generate the viewed collection. Figure 4.21 illus-
trates a sequence of filtering and segmentation jobs that generates two new image 
collections (A_filtered and A_seg) from the uploaded collection A. By starting at 
any place of this sequence, a user can trace a chain of computations to the uploaded 
collection A.

4.10.2  �Traceable Computations for Publications

Traceable histograms
Traceability is important for scientists when publishing and sharing their findings. To 
facilitate traceability of published data, the WIPP system contains the web statistical 
modeling (WSM) module. This WSM module is accessible after building an image 
pyramid, segmenting the image, and extracting features for each image segment 
from the feature extraction module. Given the pyramid and feature values derived 
from the same input image collection, a user can interactively explore histograms of 
objects based on each feature. The histograms are interactively filtered by object 
spatial locations and by feature values. When filtering is completed and a user would 
like to publish the final histogram, then the histogram can be saved as an HTML 
document. Figure 4.22 shows the user interface for publishing a histogram (red box).

Histogram composition
The saved zip file contains a histogram HTML file that is rendered in Fig. 4.23. It 
contains a thumbnail of each object contributing to a histogram bin. Each thumbnail 
is hyperlinked to a Deep Zoom pyramid location as illustrated on the right side of 
Fig. 4.23. In addition, the saved zip file contains two additional files with the content 
shown in Fig. 4.24. One file provides all information about Deep Zoom coordinates 
and hyperlinks of thumbnails. Another file describes the histogram settings. By 
sharing the image pyramid on the Internet and publishing a scientific paper with the 

Fig. 4.21  Example of an image processing pipeline with filtering and segmentation jobs. Each 
computational step is linked with its input and output

4.10  Delivering Traceable Computations



100

Fig. 4.22  The publish user interface in web statistical modeling tool

Fig. 4.23  Left – rendering of the saved HTML file from the web statistical modeling tool. Right – 
rendering of the web page accessed by clicking on one of the thumbnails in the histogram shown 
on the left side

histogram in an electronic journal, the saved zip file enables every reviewer and 
every reader to verify every point of the histogram result. Furthermore, if the histo-
gram inputs (image pyramid and object features) are shared with their provenance 
information, then anyone viewing a scientific publication with the inserted histo-
gram can trace all computations back to the uploaded image collection.

4  Components of Web Image Processing Pipeline



101

4.10.3  �From Traceable to Reproducible Computations

The traceability of computations is necessary but not sufficient condition for repro-
ducibility of computations. Traceability is necessary because one must know input 
datasets, tasks configurations, software versions, and computational platforms to 
properly reproduce any computational result. Even if all the inputs and configura-
tions are known, reproducibility can be difficult to achieve when going from one 
execution environment to another, particularly when dealing with different hard-
ware platforms and operating systems. For example, 32-bit and 64-bit systems can 
yield very different results due to their different ways of handling floating point 
numbers. Furthermore, installing the same version of a software package on two 
systems may return slightly different results. The reason lies in many software pack-
ages relying on other external libraries with multiple versions. Thus, installations of 
the same software package on two systems might have different versions.

Using a centrally deployed software application such as WIPP might help with 
reproducibility of computations if WIPP is properly managed. First, WIPP provides 
traceable computations. Algorithm versions are known and fixed between new 
releases. Users can always check which software and its versions are used for their 
computations. Software updates might be a drawback for a user because new ver-
sions of an algorithm would not be available immediately. Users would have to wait 
for the next release of the web system before being able to use it.

4.11  �Summary

As introduced in Chap. 1, big image data experiments require image measurements 
that address:

	1.	 A wide range of physical and digital scales (nm to cm physical scale, TB- to 
petabyte (PB)-sized digital datasets)

Fig. 4.24  Two additional files saved from the web statistical modeling tool that contain all pyra-
mid coordinates and hyperlinks of thumbnails (top) and all information about the histogram 
parameters

4.11  Summary



102

	2.	 Spatial, spectral, and temporal complexity of detecting objects of interests (cell 
mitosis, migration, apoptosis, differentiation)

	3.	 Speed of time-critical computations (image analyses faster than cell changes)

After addressing scale, complexity, and speed, one obtains a numerical value of 
the measurement. Nonetheless, in the era of reproducible data science, the measure-
ment must be described by additional attributes including trusted, traceable, repeat-
able, searchable, immutable, persistent, verifiable by humans, and accessible by 
multiple parties. These measurement attributes can be provided by functionalities of 
a web image processing pipeline.

In this chapter, we mapped functionality of a web image processing pipeline to 
information technologies in a client-server system. The technologies were classified 
into those running on a server side or a client side, and those responsible for client-
server communication. Given a client-server system, we addressed visualization of 
large images, as well as storage and management of large image, to enable images 
to be verifiable by humans and accessible by multiple geographically distributed 
parties. Finally, we described technologies that deliver three more measurement 
attributes, such as (1) scalability, (2) traceability, and (3) searchability via workflow 
management systems, databases, and web technologies.

The chapter provides basic concepts of multiple information technologies with-
out providing examples to develop programming skills. The reason lies in a plethora 
of online materials and online “playgrounds” for gaining hands-on experience. 
After completing this chapter, readers should be able to make informed decisions 
about a source of problems in WIPP if it occurs. The chapter also offers information 
for those who would like to modify underlying WIPP technologies to meet addi-
tional big image data requirements.

References

	 1.	MongoDB: [Online]. Available: https://docs.mongodb.com/. (2016) Accessed 22 July 2016
	 2.	Allan, C., et al.: OMERO: flexible, model-driven data management for experimental biology. 

Nat. Methods. 9(3), 245–253 (2012)
	 3.	Spring Framework: [Online]. Available: http://projects.spring.io/spring-framework/ (2015)
	 4.	Rasband W.: ImageJ & Fiji & ImageJA & ImageJ2, Computer Program. [Online]. Available: 

http://rsbweb.nih.gov/ij/ (2013)
	 5.	Oracle: Java Advanced Imaging. On-line Documentation. [Online]. Available: http://www.

oracle.com/technetwork/java/javase/tech/jai-142803.html (2017). Accessed 14 Sep 2017
	 6.	Blattner, T., Keyrouz, W., Chalfoun, J., Stivalet, B., Brady, M., Zhou, S.: A Hybrid CPU-

GPU System for Stitching Large Scale Optical Microscopy Images. in 2014 43rd International 
Conference on Parallel Processing, pp. 1–9. (2014)

	 7.	Pegasus workflow management system: [Online]. Available: https://pegasus.isi.edu/ (2017). 
Accessed 08 Jan 2017

	 8.	HT Condor: workload management system for compute-intensive jobs. Unversity of Wisconsin-
Madison. [Online]. Available: https://research.cs.wisc.edu/htcondor/ (2017). Accessed 14 Sep 
2017

	 9.	Google: AngularJS. [Online]. Available: https://angularjs.org/ (2017). Accessed 14 Sep 2017

4  Components of Web Image Processing Pipeline

https://docs.mongodb.com
http://projects.spring.io/spring-framework
http://rsbweb.nih.gov/ij/
http://www.oracle.com/technetwork/java/javase/tech/jai-142803.html
http://www.oracle.com/technetwork/java/javase/tech/jai-142803.html
https://pegasus.isi.edu/
https://research.cs.wisc.edu/htcondor
https://angularjs.org/


103

	10.	Open Seadragon: Open Seadragon project. [Online]. Available: http://openseadragon.github.
io/ (2017). Accessed 24 Feb 2017

	11.	CamanJS: (ca)nvas (man)ipulation in Javascript. [Online]. Available: http://camanjs.com/ 
(2017). Accessed 14 Sep 2017

	12.	WebDeepZoomToolkit: [Online]. Available: https://github.com/usnistgov/WebDeepZoom 
Toolkit (2017). Accessed 14 Sep 2017

	13.	Berson, A.: Client-Server Architecture, 2nd edn. McGraw-Hill, New York (1996)
	14.	Smith, P.N., Guengerich, S.L.: Client/Server Computing, 2nd sub-Ed. Sams Publishing (1994)
	15.	Sommerville, I.: Software Engineering, 10th edn. ©2006: Addison-Wesley Longman 

Publishing Co., Inc., Boston, MA (2015)
	16.	Jacobs, I., Walsh, N.: URI/Resource Relationships. Architecture of the World Wide Web, 

Volume One (2004)
	17.	Totty, B., Gourley, D., Sayer, M., Aggarwal, A., Reddy, S.: HTTP: The Definitive Guide. 

O’Reilly Media, California (2009)
	18.	Kozierok, C.M.: The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols 

Reference, 1st ed. No Starch Press (2005)
	19.	Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: the complete refer-

ence. In: Kowalick, J. (ed.) Scientific and Engineering Computation Computation, p. 350. MIT 
Press, Cambridge, MA (1996)

	20.	Callaghan, B.: NFS Illustrated, 1st ed. Addison-Wesley Professional (2000)
	21.	Felke-Morris, T.: Basics of Web Design: HTML5 & CSS3, 3rd edn. Pearson (2015)
	22.	Zakas, N.C.: Professional JavaScript for Web Developers, 3rd edn. Wrox (2012)
	23.	Keith, J.: DOM Scripting: Web Design with JavaScript and the Document Object Model, 2nd 

ed. Apress (2010)
	24.	Borini, S.: Understanding Model-View-Controller. GitBook.com (2017)
	25.	Deep Zoom Silverlight. Microsoft Developer Network (MSDN). [Online]. Available: http://

msdn.microsoft.com/en-us/library/cc645050(v=vs.95).aspx (2017). Accessed 14 Sep 2017
	26.	Saalfeld, S., Cardona, A., Hartenstein, V., Tomančák, P.: The Collaborative Annotation Toolkit 

for Massive Amounts of Image Data (CATMAID). Max Planck Institute of Molecular Cell 
Biology and Genetics. [Online]. Available: http://catmaid.org/ (2017). Accessed 14 Sep 2017

	27.	Outercurve Foundation: Cosmic chronology ChronoZoom. web page. [Online]. Available: 
http://www.chronozoomproject.org/BehindTheScenes.htm (2017). Accessed 14 Sep 2017

	28.	Vandecreme, A., et al.: From image tiles to web-based interactive measurements in one stop. 
Micros. Today. 25(1), 18–25 (2017)

	29.	Bajcsy, P., et al.: Enabling interactive measurements from large coverage microscopy. IEEE 
Comput. 49(7), 70–79 (2016)

	30.	Kooper, R., Bajcsy, P., Hernández, N.M.: Stitching giga pixel images using parallel computing. 
In: IS&T/SPIE Electronic Imaging, pp. 7872–17 (2011)

	31.	Kooper, R., Bajcsy, P.: Computational scalability of large size image dissemination. In: IS&T/
SPIE Electronic Imaging, San Francisco, CA, pp. 7872–23 (2011)

	32.	Bajcsy, P., Vandecreme, A., Amelot, J., Nguyen, P., Chalfoun, J., Brady, M.: Terabyte-sized 
image computations on hadoop cluster platforms. In: IEEE International Conference on Big 
Data, Santa Clara, CA (2013)

	33.	Prigmore, M.: Introduction to Databases with Web Applications. Prentice Hall, Harlow (2007)
	34.	Williams, H.E., Lane, D.: Web Database Applications with PHP & MySQL. O’Reilly Media 

(2004)
	35.	Chodorow, K.: MongoDB: The Definitive Guide, 2nd edn. O’Reilly Media (2013)
	36.	Walls, C.: Spring in Action: Covers Spring 4, 4th edn. Manning Publications (2014)
	37.	Walls, C.: Spring Boot in Action, 1st edition. Manning Publications (2016)
	38.	Ludäscher, B., et al.: Scientific workflow management and the kepler system ∗. Electr. Eng. 

78296(10), 1–19 (2005)

References

http://openseadragon.github.io/
http://openseadragon.github.io/
http://camanjs.com/
https://github.com/usnistgov/WebDeepZoomToolkit
https://github.com/usnistgov/WebDeepZoomToolkit
http://gitbook.com
http://msdn.microsoft.com/en-us/library/cc645050(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/cc645050(v=vs.95).aspx
http://catmaid.org/
http://www.chronozoomproject.org/BehindTheScenes.htm


104

	39.	Li, X., Song, J., Huang, B.: A scientific workflow management system architecture and its 
scheduling based on cloud service platform for manufacturing big data analytics. Int. J. Adv. 
Manuf. Technol. 84(1–4), 119–131 (2016)

	40.	Rodriguez, M.A., Buyya, R.: Scientific workflow management system for clouds. In: Mistrik, 
I., Bahsoon, R., Ali, N., Heise, M., Maxim, B. (eds.) Software Architecture for Big Data and 
the Cloud, 1st edn, pp. 367–387. Elsevier/Morgan Kaufmann publisher, Cambridge, MA 
(2017)

	41.	Chalfoun, J., Majurski, M., Blattner, T., Keyrouz, W., Bajcsy, P., Brady, M.: MIST accurate and 
scalable microscopy image stitching method with stage modeling and error minimization. Nat. 
Sci. Reports. 7, 1–10 (2017)

	42.	Spanoudakis, G., Zisman, A.: Software traceability: a roadmap. In: Handbook of Software 
Engineering and Knowledge Engineering, pp. 395–428. World Scientific Publishing, Singapore  
(2004)

4  Components of Web Image Processing Pipeline



105© Springer International Publishing AG 2018 
P. Bajcsy et al., Web Microanalysis of Big Image Data,  
https://doi.org/10.1007/978-3-319-63360-2_5

Chapter 5
Image Processing Algorithms

5.1  �Inputs and Outputs of Algorithms

Let us focus on image processing algorithms that convert a collection of raw micros-
copy images (inputs) into object measurements (outputs). A collection of raw 
microscopy images is assumed to represent multiple spatially overlapping fields of 
view (FOVs), acquired over several spectral wavelengths and/or time points. The 
raw FOVs can be assembled into a large 2D or 3D image with one or multiple spec-
tral values over time (2D/3D space +1D time + nD spectrum).

For example, co-registered phase contrast and fluorescent FOVs of cell colonies 
through time can form 2D gigapixel-frame terabyte-sized videos with two spectral 
values per [x, y, time] coordinate. There are three such video examples found online1 
with phase contrast and fluorescent spectral values at each [x, y, time]. The physical 
dimensions of the input collection are 2D in space, 1D in time, and 2D in spectra. In 
this example, algorithms convert 359 568 raw input FOVs (image files) into cell 
colony measurements where cell colonies grow and merge over time. The algo-
rithms are designed to ingest images and output processed images (e.g., flat-field 
corrected and segmented images), metadata about input images (e.g., stitching vec-
tor), or tabular data containing measurements derived from images (e.g., cell colony 
size).

In this chapter, inputs to image processing algorithms are image collections, and 
the outputs are either processed image collections or image measurements. The 
image collections contain images with gigapixels (109 pixels), and their storage 
reaches a terabyte size (1012 bytes). Our next step is to introduce the design of image 
processing algorithms.

1 https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency

https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency


106

5.2  �Image Processing

Before we focus on several algorithms included in WIPP, we briefly introduce image 
processing via available textbooks and image processing software. Image process-
ing theory has been documented in many textbooks, and they are the best starting 
point for a novice. To gain practical understanding of the theory, one can install 
several image processing tools and apply them to acquired microscopy images. We 
support this educational process by providing pointers to image processing text-
books, classifying image processing software based on its usage, and illustrating the 
use of image processing operations throughout the rest of this section.

5.2.1  �Textbooks About Image Processing

For a reader who is new to image processing, we briefly refer to four example text-
books that introduce basic concepts about:

	1.	 Image processing [1]
	2.	 Image processing [2]
	3.	 Microscope image processing [3]
	4.	 Medical image processing [4]

Basic concepts about image processing
From the image processing textbook [1], the reader can learn about digital image 
fundamentals; intensity transformations and spatial filtering; filtering in frequency 
domain; restoration and reconstruction; color image processing; wavelets and multi-
resolution processing; image compression; morphological processing; image seg-
mentation, representation, and description; and object recognition. The handbook 
[2] includes additional aspects of printing, defect correction, feature measurement, 
and 3D acquisition and processing. To derive quantitative measurements from 
images, these fundamentals must be enhanced by our knowledge about (a) the 
microscope instruments generating digital images, (b) the sample under the micro-
scope, and (c) the image analysis task in the context of a specific biomedical 
application.

Microscope image processing
The book on microscope image processing [3] expands on the subject of image 
processing and includes the fundamentals of microscopy, image digitization, image 
display, geometric transformations, image enhancement, wavelet image processing, 
morphological image processing, image segmentation, object measurements, object 
classification, fluorescence imaging, multispectral imaging, 3D imaging, time-lapse 
imaging, autofocusing, structured illumination imaging, and image data manage-
ment. Most of the topics revolve around understanding microscope-specific image 
generation which informs the process of deriving quantitative measurements. These 
topics include quantitative definition of image, pixel, and color in physical units, 

5  Image Processing Algorithms



107

introducing point spread function, Abbe’s diffraction limit, and Nyquist-Shannon 
sampling theory. Finally, quantitative data derived from image measurement is 
often validated and verified using human inspection. To understand human inspec-
tion challenges, image display, human perception, and reproducibility of measure-
ments are also addressed.

Medical image processing
A reader interested in microscope image processing can learn much from textbooks 
in medical image processing. In the medical image processing handbook [4], the top-
ics cover image enhancement, segmentation, quantification, registration, visualiza-
tion, compression, storage, and communication. While these topics seem similar to 
digital image fundamentals, they are presented in the medical context of diagnosing 
disease in human organs imaged by magnetic resonance, positron emission tomogra-
phy, computed tomography, X-ray, and ultrasound imaging modalities. The general 
image processing principles are linked to the medical applications in this handbook.

5.2.2  �Usage-Based Classification of Image Processing 
Implementations

Classification based on software usage
After learning about image processing from textbooks, one can apply existing 
image processing implementations to solve specific problems. The spectrum of 
existing software packages, libraries, and scripting and scientific workflow environ-
ments for building image processing solutions is surveyed in [5, 6]. Table 5.1 sum-
marizes how each type of image processing implementation would be used. One 
should be aware that the types of implementations in Table  5.1 have a specific 
meaning in the context of their use.2 We describe the types in more details next.

2 http://www.farsight-toolkit.org/wiki/Main_Page

Table 5.1  The usage of software implementations for image processing operations

Type of image processing 
implementations Usage

Software package Apply existing operations to a set of predefined tasks without 
changes (no programming)

Software library Create a solution for a set of new tasks by calling existing 
operations programmatically and adding/modifying the software 
implementations

Scripting environment Script existing operations using a scripting language to create a 
solution for a set of new tasks

Workflow environment Integrate and script existing operations with minimum 
programming, and leverage predefined support for efficient 
executions on a set of computational hardware

5.2  Image Processing

http://www.farsight-toolkit.org/wiki/Main_Page


108

Software package and libraries
A software package is a stand-alone, tightly integrated system that is used for a 
predefined set of tasks. A software library is a collection of implementations with a 
well-defined application programming interface (API). A software library has a 
higher potential for being reused than a software package. By exposing a well-
defined API in a software package, the package can become a library or a toolkit for 
building customized solutions. Due to the possible unintended uses of software 
functionality and their legal ramifications, software licenses for toolkits typically 
contain special clauses about their reuse. Examples of software packages are 
Visiopharm3 (cancer diagnostics), Indica Lab4 (pathology tissue classification 
tasks), or lmaris5 (tasks related to data management, visualization, analysis, seg-
mentation, and interpretation). Examples of open-source libraries are the 
Visualization ToolKit (VTK)6 (processing and visualization), the National Library 
of Medicine Insight Segmentation and Registration Toolkit (ITK)7 (segmentation 
and registration), and Open Source Computer Vision Library (OpenCV)8 (computer 
vision-related operations).

Scripting environments
A scripting environment is a collection of standardized APIs for accessing software 
library implementations within a scripting language. Scripting environments facili-
tate the automation of processing. The scripting language may be different from the 
library’s core programming language to make the library accessible to a broader 
user community. Examples of specialized scripting environments are R (statistical 
analyses), LabVIEW (analyses linked to instrumentation acquisition), or MATLAB 
(mathematical analysis). Examples of general-purpose scripting languages are 
JavaScript, Python, and Perl.

Scientific workflows
Scientific workflow environments [7] have been developed to assist with:

	(a)	 Software organization
	(b)	 Interactions of software written in multiple programming languages
	(c)	 Reusability of software
	(d)	 Community software sharing
	(e)	 Gathering provenance
	(f)	 Security
	(g)	 Scalability of execution
	(h)	 Built-in fault tolerance

We are specifically referring to scientific workflow systems as a subclass of general 
workflow management systems used for the automation of business processes (e.g., 

3 https://www.visiopharm.com/
4 http://www.indicalab.com/
5 http://www.bitplane.com/imaris/imaris
6 http://www.vtk.org/
7 http://www.itk.org/
8 http://opencv.org/downloads.html

5  Image Processing Algorithms

https://www.visiopharm.com
http://www.indicalab.com
http://www.bitplane.com/imaris/imaris
http://www.vtk.org
http://www.itk.org
http://opencv.org/downloads.html


109

an online business process of purchasing a flight ticket followed by a car rental 
reservation). Workflow environments for image processing can lower the bar for 
scripting via a visual programming interface which allows for dragging and drop-
ping an image processing operation into a workflow pane and connecting it with 
other operations using a toolbar and mouse clicks. Examples of open-source scien-
tific workflows used for microscopy and computational biology analyses are 
KNIME,9 ilastik,10 and Galaxy11.

Notes about software implementation types
Many implementations fall into more than one software implementation category. 
For example, ImageJ can be used as a software package, a library, or a scripting 
environment that supports scripting languages, such as ImageJ macro, JavaScript, 
BeanShell, Jython (Java implemented Python), JRuby (Ruby implemented in Java), 
Clojure, and Groovy. A software package can also be turned into a library, the same 
way as a scripting environment can be enhanced to become a scientific workflow. 
However, the “best” implementation should be determined in terms of (a) the pro-
ductivity of end users when solving tasks and (b) the combination of the largest set 
of trusted image processing implementations within a working environment that 
offers the most user-friendly software. Finally, the term “community platform” has 
been used by many software projects when image processing libraries are bundled 
together with scientific workflow functionalities and with image databases. We have 
not included image databases in our usage-based classification because from a user 
perspective, the storage and representation of data are of concern only for develop-
ers of new image processing algorithms.

5.2.3  �Classification of Open-Source Image Processing 
Software

Searching for implementations
After gaining enough knowledge about image processing and choosing the preferred 
mode of use, one begins searching for existing implementations. To assist in this 
search process, we consolidated the surveys in [5, 6] and presented their software clas-
sifications together with our usage-based categories. According to [6], bioimage anal-
ysis tools used for computer-based image analysis can be classified into those with 
command-line interface (CLI), graphical user interface (GUI), scripting language 
interface, and database interface. According to [5], the primary functions of such soft-
ware are workflow, image analysis, machine learning, and image acquisition.

Classification of implementations
Table 5.2 presents a summary of all three types of implementations. We did not 
include commercial software because most of the implementations in the surveys 

9 https://tech.knime.org/community/image-processing
10 ilastik.org/
11 https://galaxyproject.org/

5.2  Image Processing

https://tech.knime.org/community/image-processing
http://ilastik.org
https://galaxyproject.org


110

Table 5.2  Summary of existing open-source implementations of image processing

Software name
Usage-based 
classification Primary function

Interface-based 
categories

Bio7 Scientific workflow Workflow system GUI tools: Generic 
platform

Bio-formats Library Image format 
conversion library

CLI

BioImageXD Software package, 
library, scripting 
environment

Image analysis GUI tools: Generic 
platform

BisQue (bio-image 
semantic query user 
environment)

Scientific workflow Image database Image databases

CellCognition and 
VIGRA

Scientific workflow, 
library

Image analysis Specialized 
software

CellProfiler and analyst Scientific workflow, 
library

Machine learning 
and data analysis

GUI tools: 
Workflow-based

CellOrganizer Software package, 
library

Machine learning, 
modeling, and 
visualization

Specialized 
software

FarSight Library, scripting 
environment

Visualization GUI tools: 
Workflow-based

Icy and ImageJ, VTK, 
micro-manager

Scientific workflow, 
library

Image analysis GUI tools: Generic 
platform

Ilastik Scientific workflow Machine learning GUI tools: 
Workflow-based

Image processing in R Scripting 
environment

Scripting 
environment

CLI

ImageJ/Fiji Software package, 
library, scripting 
environment

Image analysis GUI tools: Generic 
platform

ITK Library Bioimaging library CLI
KNIME Scientific workflow Workflow system CLI
Lever Software package, 

library
Image analysis Specialized 

software
NeuroStudio Software package, 

library
Image analysis Specialized 

software
OMERO Software package, 

library, scripting 
environment

Image database Image databases

OpenBIS Scientific workflow Workflow system Image databases
OpenCV (open source 
computer vision library)

Library Bioimaging library CLI

PSLID (protein 
subcellular localization 
image database)

Software package, 
library

Machine learning Image databases

(continued)

5  Image Processing Algorithms



111

Table 5.2  (continued)

Software name
Usage-based 
classification Primary function

Interface-based 
categories

Python and ski image Scripting 
environment and 
library

Scripting 
environment

CLI

ScanImage Software package, 
library

Image acquisition Specialized 
software

TMARKER Software package, 
library

Image analysis Specialized 
software

Vaa3D Software package, 
library

Visualization and 
image analysis

GUI tools: 4D + t 
data exploration and 
analysis

VTK Library Bioimaging library CLI
WND-charm Library Machine learning CLI
μManager Scripting 

environment and 
library

Image acquisition CLI

GUI stands for graphical user interface. CLI stands for command-line interface.

were open source. In addition, open-source software has available web information 
for determining their classification, while the commercial web pages do not. It can 
also be seen from Table 5.2 that there is no simple classification method for software 
given its many uses, various primary functions, and many access interfaces. The 
primary software functionality can provide guidance as to where it might be most 
usefully incorporated into WIPP or any other image processing system.

Challenges of integrating multiple implementations
Unfortunately, many desktop-based visualization and workflow construction sys-
tems must be rewritten to run in a client-server system. The interface-based catego-
ries can be helpful in assessing the complexity of software rewrite and integration. 
For example, software with command-line interfaces are easier to integrate than the 
software with GUI. The usage-based classification helps select the right software. 
The web image processing pipeline aims at offering access to a broad spectrum of 
software implementations (libraries), scripting mechanisms using web RESTful 
services, and scientific workflow systems via web interfaces. For instance, several 
image database solutions listed in Table 5.2 already take advantage of web systems 
(e.g., OMERO, BisQue) because they must address the storage and computational 
challenges of big data.

5.2.4  �Loading Images Using OME Bio-Formats Library

After choosing the image processing implementations with the desired functional-
ities, the initial challenge lies in loading images. This challenge arises due to the 
many file formats used by microscope and camera vendors and the need for having 

5.2  Image Processing



112

the ability to read not only image data but also the acquisition parameters stored in 
the files. To address this challenge, the Open Microscopy Environment (OME12) 
was established in 2011 as a collaborative effort among academic and commercial 
entities with funding provided by the Wellcome Trust Strategic Award. OME pro-
duces open-source software for data management in biological light microscopy. As 
one of the software efforts, the Bio-Formats13 library was developed to read and 
convert over 140 file formats to the OME-TIFF data standard.14 We briefly present 
the OME-TIFF standard and the integration of the library for loading OME-TIFF 
image files.

Open Microscopy Environment TIFF image standard
The OME-TIFF image standard combines the pixel-level information stored in 
Adobe TIFF file format with the image-related information stored in OME-XML 
file format. A dataset in an OME-TIFF format has the following storage character-
istics important for very large images:

•	 Images are stored within one multipage TIFF file or across multiple TIFF files. 
The ability to split large images across multiple files is advantageous during 
acquisition and data processing.

•	 The OME-TIFF file format supports the newer Big TIFF file extensions allowing 
the use of 64-bit byte offsets. It overcomes the file size limit in the original TIFF 
format with 32-bit byte offsets (limited to 4 GB file size).

•	 A complete OME-XML metadata block is embedded in each TIFF file’s header. 
The OME-XML metadata block may contain any information represented as 
a < key, value > pair in a standard OME-XML file. Keeping the OME-XML 
metadata embedded in every file header introduces information redundancy and 
improves fault tolerance. An option was added to store partial OME-XML meta-
data blocks in each TIFF file’s header with a reference to a master file containing 
the full OME-XML metadata. This allows a trade-off between the levels of 
redundancy and fault tolerance.

•	 OME-TIFF does not use OME-XML for encoding pixels as base64 chunks 
within the XML, and therefore OME-TIFF is preferred if there is at least one 
image in a dataset. The base64 encoding of images is used sometimes in URI for 
client-server communication. However, it is efficient only for very small images 
and not suitable for applications using OME-TIFF, such as high-content screen-
ing, time-lapse imaging, digital pathology, and other complex multidimensional 
image formats.

Note about base64 encoding  The base64 encoding takes a stream of 8-bit pixel 
values, chunks them into 6-bit-long segments, and encodes them into 62 ASCII 
characters containing A–Z, a–z, and 0–9. The 63rd and 64th ASCII characters are 
defined depending on the specific variant of radix-64 encoding.

12 https://www.openmicroscopy.org/site
13 http://www.openmicroscopy.org/site/products/bio-formats
14 https://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html

5  Image Processing Algorithms

https://www.openmicroscopy.org/site
http://www.openmicroscopy.org/site/products/bio-formats
https://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html


113

Bio-Formats library integration
The Bio-Formats library has a standardized API which is integrated into open-
source analysis programs like ImageJ, CellProfiler, and Icy, commercial scripting 
environment like MATLAB, and the web image processing pipeline (WIPP). The 
Bio-Formats library is also a key component in the image database solutions like 
OMERO and the JCB DataViewer (used by the Journal of Cell Biology for hosting 
data associated with submissions). WIPP leverages the Bio-Formats and OME-
XML Java libraries for server side image reading and writing. The Java program 
called ConvertToOmeTiff.java is provided by OME and is invoked when files are 
uploaded. This converts each file into OME-TIFF format. Conversions can be repli-
cated by following the instructions online.15

5.2.5  �Basic Image Processing Using ImageJ/Fiji

Among all image processing implementations in Table 5.2, we chose ImageJ/Fiji to 
illustrate its use for basic image processing. Our selection is based on the popularity 
of ImageJ/Fiji for bioimage analysis [8]. The software is completely open source and 
has a free license, it has multiple modes of usage (see Table 5.2), and its JVM-based 
implementation makes it operating system (OS) independent. ImageJ also allows us 
to demonstrate successful modes of research involving some effort using GUI inter-
faces, macro languages, scripting languages, library APIs, and workflow systems.

Using ImageJ/Fiji
To learn more about ImageJ, we will refer the reader to the publication entitled 
“Analyzing fluorescence microscopy images with ImageJ” by Peter Bankhead [8]. The 
technical report introduces basic image processing and the implementations in ImageJ 
and Fiji. It then covers general methods such as Gaussian filters, thresholding, spot 
detection, and object analysis, with some macro-writing exercises to extract informa-
tion from many types of microscopy images. The technical report ends with a focus on 
the specifics of extracting and interpreting measurements from fluorescence images.

Let us illustrate the use of ImageJ for three different tasks:

	1.	 Subtracting a mean-filtered image from itself
	2.	 Performing the same operation on a collection of images
	3.	 Processing an image that is larger than the memory of your computer

Task 1 (Subtracting a mean-filtered image from itself)  The first task can be com-
pleted using the GUI interface by following the steps below:

Step 1: Install ImageJ
Step 2: FileOpen (load an image img_r005_c002.tif from the small test dataset):

Width: 851.9045 μm (1392 pix)
Height: 636.4804 μm (1040 pix)
Size: 2.8 MB

15 https://www.openmicroscopy.org/site/support/ome-model/ome-tiff/code.html

5.2  Image Processing

https://www.openmicroscopy.org/site/support/ome-model/ome-tiff/code.html


114

Step 3: ImageDuplicate (create a copy of img_r005_c002.tif).
Step 4: FiltersMeanradius = 500 (create filtered image).
Step 5: FileSave as TIFF (save result as img_r005_c002_mean500.tif).
Step 6: ProcessImageCalculator  set:

image1: img_r005_c002.tif
Operator: Subtract
Image 2: img_r005_c002_mean500.tif
Check box: 32-bit (float) result

In Fig. 5.1, we can see from the image histograms that the mean value has shifted 
from 257.34 before processing to 1.177 after processing.

Task 2 (Subtracting a mean-filtered image from itself over an image collection)  The 
second task can be performed using scripting since the GUI interface would require 
33 interactions to apply the same sequence on the image collection in “Small_
Fluorescent_Test_Dataset.” The easiest method for creating a script is to open the 
recorder from PluginsMacrosRecord, record the sequence of operations, and 
then create the script file by clicking on “Create” button in the recorder. In this case, 
the script in ImageJ macro language would be:

open("C:\\chapter5\\img_r005_c002.tif");
run("Duplicate...", " ");
run("Mean...", "radius=500");

Fig. 5.1  Comparison of histograms before and after subtracting mean-filtered image from itself. 
Left – original image. Right – mean-subtracted image

5  Image Processing Algorithms



115

imageCalculator("Subtract create 32-bit", "img_r005_c002.tif","img_
r005_c002-1.tif");
selectWindow("Result of img_r005_c002.tif");

To extend the script to work over all files in a folder, the script must become more 
generic. One way to expand the script is to invoke a directory chooser dialog and 
then loop over a file list. This approach is illustrated in the script below. The com-
mand setBatchMode(false) is used to view the windows with results; otherwise they 
would be suppressed. The test of TIF suffix is an added filter to choose only the files 
of interest.

dir1 = getDirectory("Choose  Directory ");
list = getFileList(dir1);
setBatchMode(false);
for (i=0;i<list.length;i++) {
    if (endsWith(list[i],"tif") || endsWith(list[i],"TIF")){
        open(dir1+list[i]);
        run("Duplicate...", " ");
        nameDup = getTitle();
        run("Mean...", "radius=500");
	 imageCalculator("Subtract create 32-bit", list[i],nameDup);
        selectWindow(getTitle());
    }
}

Task 3 (Processing an image that is larger than the memory of your computer)  The 
third task is to process an image that is larger than the available computer memory. 
In this case, we need to work with two image instances during mean filtering (origi-
nal and filtered) and three image instances during subtraction. The resulting image 
has 32 bits per pixel (BPP) as opposed to the inputs with 8 BPP which has implica-
tions for memory (RAM) usage. We have also noticed that computing the mean-
filtered image with a very large kernel size (i.e., radius = 500) for a 1.3 Megapixel 
image can be slow on a laptop. ImageJ could be reinstalled on a machine with more 
RAM or the software could be rewritten. Similarly, the speed of execution could be 
improved by running ImageJ on a machine with a faster processor or by redesigning 
the software to utilize existing hardware more efficiently. This dynamic interplay 
between advanced hardware capabilities, increasing size of image data, and the cost 
of redesigning legacy software leads to community efforts such as ImageJ216 (soft-
ware auto updater, enhanced file format support, additional support of several 
scripting languages, etc.). The WIPP system is another approach on how to address 
the dynamics between hardware, data, and software. Chapter 6 is devoted to the 
interplay between hardware capabilities and software design.

16 imagej.net/ImageJ2

5.2  Image Processing

http://imagej.net/ImageJ2


116

5.3  �Overview of Algorithms in WIPP

The algorithms in a web image processing pipeline are listed as computational jobs. 
Every algorithm takes input data and generates output data. The types of data and 
computational jobs are provided in Table  5.3. The characteristics of algorithms 
behind each computational job are described next.

Characteristics of algorithmic computations
The algorithms run either on a server or in the web browser. Each algorithm also has 
input parameters, an explanation of the parameters, and its own web page with a 
user interface for configuring inputs before the computational job is launched. 
Table 5.4 summarizes computational types of algorithms, their execution location, 
input and output type, and a list of parameters. To discriminate types of image col-
lections, we introduce the following hierarchical terms describing the image 
content:

•	 Raw collection is a set of intensity images as acquired by a microscope:

–– Grid collection is a subcategory of raw collection where the microscope 
acquisition forms a grid of images.

–– Dark collection contains an image acquired by closing a camera aperture.
–– Fluorescein collection contains an image acquired with fluorescent media but 

without cells.

•	 Binary collection contains images with two unique intensity values denoting 
foreground and background (e.g., foreground is set to 255 and background to 0).

•	 Labeled collection is a set of segmented images with a unique label/intensity 
assigned to each contiguous region of interest.

These terms are used in Table 5.4 as well as in the WIPP user interface.
We will describe a subset of the algorithms in the next sections. The algorithmic 

descriptions are presented in the order that they are used in a typical image processing 

Data Computational jobs

Tile collections
Stitching vectors
Tracking vectors
Image pyramids
Visualizations

Flat-field correction
Background correction
Filtering
Stitching
EGT segmentation
FogBank segmentation
Mask labeling
Pyramid building
Image assembling
Intensity scaling
Tessellation

Table 5.3  A list of data and 
computational jobs accessible 
via web user interfaces

5  Image Processing Algorithms



Table 5.4  Description of algorithmic computations and input/output types

Computation type
Computation 
location Input type Parameter list Output type

Spatial filter: Mean, 
median, Gaussian, 
morphological erosion 
or dilation

Server Raw collection Kernel size Collection

Segmentation: 
Empirical gradient 
threshold method

Server Raw collection Min object size, 
max hole size, 
threshold 
adjustment delta

Collection

Segmentation: 
FogBank method

Server Collection 
(raw + labeled)

Border mask 
percentile threshold, 
minimum seed size, 
minimum object 
size, direction

Collection

Mask labeling Server Binary 
collection

Pixel connectedness Collection

Calibration: Flat-field 
correction

Server Collections 
(raw + dark + 
fluorescein)

Collection

Calibration: 
Background correction

Server Collections 
(raw + binary)

Gap size, ring size Collection

Stitching Server Grid collection Stitching options Stitching 
vector

Tracking Server Labeled 
collection (one 
image per time 
frame)

Minimum object 
size, maximum 
centroid 
displacement, 
enable cell division 
and/or fusion

Collection + 
tracking 
vector

Image assembly Server Grid collection
Stitching 
vector

Collection 
(one image)

Intensity scaling to 8 
bits per pixel

Server Raw collection Range min and max Collection

Multi-resolution 
pyramid building

Server Grid collection
Stitching 
vector

Pyramid

Mask generator by 
tessellation

Server Tile size and shape, 
image mask size

Collection 
(one image)

Deep zoom 
configuration

Client Set of 
pyramids

Definition of layers 
and measurement 
widgets

Deep zoom 
visualization

Spatial filters: Sobel 
edge, morphological 
erosion or dilation

Client Pyramid tiles Kernel size Deep zoom

Intensity filters: 
Threshold, contrast, 
gamma, brightness, 
saturation, hue, etc.

Client Pyramid tiles Parameter Deep zoom

Connectivity analysis 
and region area

Client Canvas Image + 
table



118

workflow designed to extract object measurements. They are divided into the 
following categories:

	1.	 Image correction
	2.	 Stitching and mosaicking
	3.	 Object segmentation, tracking, and feature extraction
	4.	 Intensity scaling and image pyramid building

5.4  �Image Correction Algorithms

Microscopy images are acquired as a 2D matrix of intensity measurements. 
However, the magnitude of each intensity is affected not only by the imaged speci-
men but also by the imaging optics, detector, illumination source, and the geometry 
of these three components. Thus, image intensities must be corrected for these spa-
tially varying effects. We will describe dark current, flat-field, background, and 
noise corrections.

5.4.1  �Dark Current Correction

To perform the dark current correction, an image is acquired with a closed camera 
shutter. This image is an estimate of the dark current due to thermal fluctuation of 
the charge-coupled device (CCD) used as a detector. Dark current correction is per-
formed by subtracting the “dark current” image from each acquired image.

Note  To obtain a representative dark image, we recommend acquiring multiple 
dark images (more than five) and then computing the median image from the mul-
tiple acquired images.

5.4.2  �Flat-Field Correction

The flat-field correction is needed to correct for the vignetting effect (the darkening 
of image corners relative to the center). Unlike the additive dark current effect, 
vignetting is a multiplicative effect. Thus, a flat-field correction model includes a 
division and is given by the equations below:

	
I

a

b
t
F =

	
(5.1)

	 a I Dt= − 	 (5.2)

5  Image Processing Algorithms



119

	

b
F D

F D
=

−( )
−( )max

	

(5.3)

where I tF  is the flat-field corrected image at time frame t, It is the acquired image at 
frame time t, D is the dark current image, and F is the fluorescein image (an image 
acquired with fluorescent media but without cells). F and D are independent from 
time during an acquisition. Figure 5.2 illustrates the visual effect of flat-field correc-
tion over a large image frame consisting of many fields of view. Notice the vignett-
ing effect in the image on the top left of Fig. 5.2 with brightness discontinuities 
between adjacent fields of view. After flat-field correction, the brightness disconti-
nuities are minimized as illustrated in the top right image of Fig. 5.2.

Note  Other methods have been used in practice. For example, one could estimate 
the flat-field image by applying a Gaussian filter with a very large kernel size and 
then dividing the measured image by the filtered image to obtain the corrected 
image.

5.4.3  �Background Correction

The background is an additive signal present in most microscopy images. The back-
ground intensity comes from the media surrounding the cells. The pixel intensity 
value of the background is unknown underneath the regions of interest (e.g., cells or 

Fig. 5.2  Examples of stitched frame without flat-field correction (left) and after correction (right). 
The bottom rows show the zoomed version of the top row

5.4  Image Correction Algorithms



120

cell colonies). This signal should be subtracted from the acquired image intensities 
in order to estimate the pure signal St for a given time point. This operation should 
take place before making biological measurements. The pure signal computation is 
shown in Equation ((5.4)):

	 S I Btt
F= − 	 (5.4)

where Stis the pure signal and B is the background image estimated after flat-field 
and dark current corrections. Our goal is to estimate the background intensity from 
the neighboring background pixels of the regions of interest.

Application to fluorescent images
Background correction is needed in fluorescent imaging due to the complex interac-
tion of foreground objects and their surroundings. For example, foreground objects 
such as living cells are fluorescently labeled with a marker and surrounded by 
media. The intensity at a cell location contains contributions from non-specific 
autofluorescence of the cell culture media, culture dish, and any extracellular matrix 
protein coatings. The fluorescent components may vary spatially and temporally 
because of the distribution of fluorescent molecules, different amounts of light 
interacting with these molecules, and photo-bleaching of molecules over time. It is 
impossible to capture these spatiotemporal variations of fluorescent signal in the 
background from a single FOV since stem cell colonies grow to cover very large 
spatial areas. Figure 5.3 illustrates the impact of dark current, flat-field, and back-
ground correction on the resulting image. One of the main challenges is the tempo-
ral background correction as illustrated in Fig. 5.4. In this experiment, the culture 
media for living cells needed to be changed every 24 h which caused significant 
background intensity variations over time. The curves illustrate global intensity 
variations across an entire image mosaic and over time.

Background estimation algorithm
We will overview two approaches to background correction that can take advantage 
of large image experiments [9]. Both approaches assume that the background pixels 
form a continuous surface within a FOV and across multiple spatially overlapping 

Fig. 5.3  Example of uncorrected (left), dark and flat-field corrected (middle), and background 
corrected (right) images. The images correspond to a mosaic of 22 × 18 FOVs acquired from the 
green fluorescent protein (GFP) image channel of stem cells on their fourth day from seeding. The 
five red “x” marks in the middle image correspond to FOVs with nothing but background pixels in 
them

5  Image Processing Algorithms



121

FOVs. Thus, the background intensities can be estimated from one of the following 
pixels:

	1.	 A subset of pixels in a stitched FOV (denoted as “surface fit of entire image”)
	2.	 Pixels at the same locations in multiple FOVs (denoted as “creation of 

sub-mosaics”)

Surface fit of entire image (scheme 1)
One option is to detect background pixels at each time frame and then use surface 
fitting to estimate background intensities at every pixel location. This approach is 
illustrated in Fig. 5.5.

Fig. 5.4  Spatiotemporal graphs of average intensity per FOV: These results are displayed for the 
five numbered locations shown in Fig. 5.3 through 5 days of acquisition

Fig. 5.5  Background intensity estimation by surface model fitting to an image mosaic based on 
available background pixels (nonblack pixels in the image on the left)

5.4  Image Correction Algorithms



122

Creation of sub mosaics (scheme 2)
Another option is to create sub-mosaic images as shown in Fig. 5.6. The subimages 
are created by extracting the average value of a subtile (an example of a subtile is 
the red square in the upper left corner of a FOV) from each FOV at a fixed location 
and placing it into a constructed sub-mosaic image according to the FOV index in 
the grid of FOVs per time frame. For example, if each FOV has a dimension of 1040 
× 1392, then each FOV will be tiled into 65 × 87 = 5655 subtiles with (16 × 16) 
pixels per subtile. Each subtile at a particular location will be replaced by the aver-
age value over (16 × 16) pixels. These values from the same location across all 
FOVs (e.g., the red) will be assembled together to form one sub-mosaic. Each sub-
mosaic will have a size of (16 × 22) pixels. The total number of sub-mosaics formed 
is 5655. The surface fit will be applied on each mosaic independently. Figure 5.7 
shows the sub-mosaic images formed from the (16 × 22) grid of FOVs. The black 
pixels indicate that they belong to the foreground and hence are not available for 
background modeling. The idea behind the sub-mosaic creation is that background 
intensities are continuous throughout the entire plate and across FOV boundaries. 
The sub-mosaic image is a good approximate map of the background throughout 
the entire mosaic given a FOV location.

Fig. 5.6  Image partitioning Scheme 2: Average values of the red pixels from the same location of 
all FOV are assembled into the red sub-mosaic. The red and green colors denote the original loca-
tion of the pixels in each FOV and their new locations in sub-mosaic images

5  Image Processing Algorithms



123

Metrics for image correction evaluation
Microscope image corrections can be evaluated in terms of:

•	 Root mean square (RMS) of the difference between the modeled background 
intensities and the observed intensities over the background reference pixels 
(BRP)

•	 Signal-to-noise ratio (SNR)

RMS and SNR errors of a given image are computed according to the equations 
below:

	
SNR

N
I B I B

n
n n n n

n

= −





 −


















∈ ∈
∑1

FRG FRG BKG

std
/

	
(5.5)

	

RMS
BRP BRP

= −







∈
∑1

2

N
I B

n
n n



	

(5.6)

where NFRG and NBRP denote the number of foreground pixels (FRG) and BRP, 
respectively, n is an index for pixel location in the image, In is the observed intensity 
of pixel n, Bn



 is the modeled background intensity of pixel n, FRG is the set of 
pixel locations that are identified as foreground, BKG is the complement of FRG 
and contains the set of pixels identified as background, and BRP is a subset of BKG 
used for background model assessment. The optimal correction will minimize RMS 
and maximize SNR. The dark current noise can be used as a benchmark for the low-
est noise level that an imaging system can achieve after all corrections.

Notes about the two schemes
Based on the RMS and SNR metrics, Schema 2 (creation of sub-mosaics) outper-
forms Schema 1 (surface fit of entire image) [9]. The background correction follow-
ing Schema 1 is available in WIPP. The other, Schema 2 with sub-mosaics, has not 
been added to WIPP yet, but it is suitable for parallel execution on computational 

Fig. 5.7  Resulting sub-mosaic images over time: The decreasing number of background pixels is 
due to the growth of stem cell colonies

5.4  Image Correction Algorithms



124

resources with limited RAM. It should be noted that the aforementioned image cor-
rections still do not account for photo-bleaching effects, movement of the media, 
and illumination variation.

5.4.4  �Noise Filtering

Image correction by noise filtering
In the previous considerations of image corrections, we ignored additive noise εijt. 
In many microscopes, there may be a priori knowledge about the model of additive 
noise. A noise filtering operation can help to remove the noise (called image denois-
ing). However, denoising is a difficult problem because we do not know the bound-
ary between the noise and the signal (noise is a random process). We also do not 
know which method for noise removal would be theoretically the best. In other 
words, we need to decide on the type of the spatially varying filter and its spatial 
extent. Most denoising approaches are based on suppressing very high-frequency 
and incoherent components of an input image.

Noise types
The two most frequently assumed noise models in microscopy are additive white 
Gaussian noise (AWGN) and Poisson noise. The models for their probability distri-
bution functions P(I) are given by

	
P I eGaussian

I I

( ) =
−

−( )
1

2

2

22

πσ
σ

	
(5.7)

	
P I I

I
e

I
Poisson RAW =( ) = −λ λ

! 	
(5.8)

where I is the image intensity at (i, j) and takes discrete values, I  is the average 
intensity, σ is the standard deviation of all intensity values, and λ is the average 
number of shot noise events per interval. Shot noise events occur due to random 
fluctuations of the electric current (a flow of electrons) in microscope electronic 
circuits.

Filter type for a noise model
Empirical studies have been performed to determine which type of spatial filter is 
optimal given a noise model. According to [10] a median filter is best for Gaussian 
and Poisson PDF models when evaluated using the following peak signal-to-noise 
ratio (PSNR) definition:

	

PSNR
, ,After Before

=
( ) − ( )( )∑ ∑

10 10

2

2
log

V

I i j I i j
i

M

j

N

	

(5.9)

5  Image Processing Algorithms



125

For PSNR, V is the maximum value for the discrete intensity range, and IAfter and 
IBefore are the intensities before and after applying the filtering operations.

For the purposes of noise removal, we classify filters based on frequency range 
and linearity.

Frequency-based classification
A spatial filter is characterized by its 2D matrix of coefficients called a kernel (see 
Table 5.5). Filters are classified as low-pass, high-pass, band-pass, or band-reject. 
For instance, a mean filter with all wk = 1 preserves low frequencies and hence is a 
low-pass filter.

Linearity-based classification
Another filter classification is into linear and nonlinear categories. A linear filtering 
method would be described by a linear weighted combination of intensity values 
(i.e., the filtered value is a weighted sum of the input pixels). For instance, a convo-
lution of a spatial filter with an image is linear filtering as documented in the equa-
tion below:

	

I i j w i j I i j
w r c I i

r n

m

c n

n

Filtered , , ,
,

( ) = ( ) ( ) =
( ) −

∗ =− =−∑ ∑/
/

/

/

2

2

2

2
rr j c

w r c
r

m

c

n

,

,

−( )( )
( )∑ ∑ 	

(5.10)

where * denotes the convolution operation, w(r, c) is the coefficient of the kernel of 
size m × n at location (r, c) inside of the kernel, and I(i − r, j − c) is the image inten-
sity in the coordinate system of the kernel. The denominator is often set to one by 
design. Nonlinear filtering methods cannot be written as a linear combination of 
intensity values. For example, min, max, or median filters are nonlinear filters, 
which can be referred to as order statistics or rank filters. The equation below illus-
trates the computation of minimum filtered image:

	

I i j I i rFiltered

r c
m m

x
n n

min_ min, ,
, , ,

( ) = −
( )∈ −





−



2 2 2 2

jj c−( ){ }
	

(5.11)

Filters in WIPP
WIPP offers mean, median, min, max, and Gaussian blur filters. The filters are 
defined over a region using a radius parameter. The radius refers to the kernel size 
to (2 × radius + 1) × (2 × radius + 1) instead of m × n for mean, min, and max filters 
as illustrated in Fig. 5.8 for the case of min filtering. The radius parameter of the 
Gaussian blur filter refers to the standard deviation σ, and the kernel size is based on 
the non-zero discrete values of the Gaussian PDF.

Table 5.5  Filter kernel of 
size 3 × 3 with nine 
coefficients

w1 w2 w3

w4 w5 w6

w7 w8 w9

5.4  Image Correction Algorithms



126

For example, in both the ImageJ and WIPP implementations, the kernel for the 
Gaussian blur filter with σ = 1 is approximated by a 5 × 5 kernel with the coefficients 
shown in Table 5.6. For computational efficiency, the kernel is truncated to 5 × 5 
instead of 7 × 7. Another note about these implementations is that the normalizing

multiplier is set to 
1

255
 instead of 

1

249
 which would be the sum of all 

coefficients.
There are many more image correction models beyond those available in 

WIPP. For example, if out-of-focus images are of concern, then one could devise a 
deconvolution method to remove the blur due to a point spread function and the 
inaccuracy of manual focusing. As with all image corrections, the estimation of 
parameters is critical to improving the quality of image-based measurements. 
Another important factor is the order in which image correction operations are 
applied to raw images. Modeling, model parameter estimation, and processing order 
are still open research topics in microscopy image analyses.

5.5  �Algorithms for Stitching and Mosaicking Many Images

In this section, we motivate acquisition of many fields of view (FOVs) with or with-
out spatial overlap. FOVs acquired with spatial overlap can be put together by using 
a stitching algorithm, while FOVs acquired without spatial overlap can be assem-
bled by a mosaicking algorithm. We focus on stitching and mosaicking algorithms 
as implemented in WIPP.

Fig. 5.8  Filtering a single bright pixel (left) by a maximum filter (middle) and by a Gaussian blur 
filter with the radius parameter set to 1

1 3 5 3 1
3 15 25 15 3
5 25 41 25 5
3 15 25 15 3
1 3 5 3 1

The radius value is equal to 2

Table 5.6  Example of a 
Gaussian blur kernel of size 
5 × 5 derived for σ = 1

5  Image Processing Algorithms



127

Motivation behind many FOVs
Cell culture microscopy must address the spatial scale mismatch between the micro-
scope’s FOV needed for observing an object of interest and the much larger size of 
the studied specimen containing many objects of interest. This can be illustrated by 
considering the area of a standard 6-well plate well that is approximately 1000 times 
larger than the FOV acquired with a 10× objective. Automated microscopy over-
comes this issue by acquiring a grid of partially overlapping images (tiles) that 
cover most of the experimental area (Fig. 5.9). Better statistical sampling and the 
capture of rare dynamic events motivate large coverage imaging.

The difference between stitching and mosaicking
In many applications, one large FOV is imaged as a collection of small FOV. The 
goal of stitching is to estimate spatial position coordinates for each small FOV in a 
Cartesian coordinate system of the large FOV. The goal of mosaicking is to assem-
ble small FOVs into a large FOV image. Mosaicking consists of compositing small 
FOVs and blending spatially overlapping regions. The motivations for separating 
these two operations are that:

•	 Coordinates originate not only from estimation methods but also from devices 
and users.

•	 Mosaicking may be too memory intensive for a regular desktop and therefore 
should not be integrated with stitching.

•	 Stitching and mosaicking have their own independent sets of parameters.

We describe stitching and mosaicking algorithms next.

Microscope 
Field of View

Plate

5431 2

10876 9

1514131211

Vertical Overlap Horizontal 
Overlap

Grid of overlapping images or Tiles

Fig. 5.9  Grid of overlapping image tiles

5.5  Algorithms for Stitching and Mosaicking Many Images



128

5.5.1  �Image Stitching

Stitching is the name used in literature that refers to the action of combining single 
images into one large mosaic. A detailed survey and classification of stitching meth-
ods can be found in [11, 12]. Most tools in the literature follow three steps for stitch-
ing a grid of image tiles:

	1.	 Compute candidate translations between adjacent tiles.
	2.	 Optimize translations to reduce errors in the stitched image.
	3.	 Order assembly of tiles to produce the final mosaic image.

	1.	 Compute candidate translations: There are two commonly used general 
approaches to compute the translations between adjacent tiles: (1) image feature-
based and (2) Fourier transform-based. These two approaches can be described 
as follows:

	1.	 Feature-based approaches identify matching features in adjacent images and 
then use these features to compute image translations. However, these tech-
niques require a feature extraction step to detect common features of interest 
present in two adjacent images. The feature-based approaches have been 
documented in [13–18].

	2.	 Approaches based on Fourier transforms use image frequency components as 
the main features. This approach assumes that images have enough pixels 
with unique frequency components in the overlapping image areas. The 
Fourier transform-based approaches have been published in [19–25].

	2.	 Optimize translations to reduce errors: Many techniques can be used to optimize 
computed translations and reduce the errors in the stitched image:

•	 Weighted least squares can be applied to all translations maximizing the 
weights of features found in the overlap areas.

•	 Minimize an error function between hypothesized and actual point correspon-
dences using a joint registration algorithm.

•	 Maximize the normalized cross-correlation.
•	 Maximize/minimize a predefined energy function.
•	 Use global geometric and radiometric parameter estimation.

	3.	 Order assembly of tiles into a mosaic image: Multiple approaches exist to assem-
ble the mosaic based on the computed and optimized translations. Some treat the 
translations and their corresponding normalized translation weights/confidence 
as an undirected graph where an algorithm like the minimum spanning tree is 
used to assemble the mosaic image. Others treat the problem as an over-
constrained system of linear equations and solve it using least-squares methods, 
iterative square displacement minimization, or singular value decomposition. 
The choice of which approach to use for any step depends on the overall image 
content and the characteristics of matching features.

5  Image Processing Algorithms



129

Introduction to Microscopy Image Stitching Tool (MIST)
WIPP uses the MIST algorithm [26] to execute the three steps of stitching and gen-
erate a stitching vector. The stitching vector consists of a list of file names and their 
positions in a Cartesian coordinate system of the mosaic image (i.e., large FOV). 
The final composition into a mosaic image is implemented as a separate job in 
WIPP called “image assembly.”

Figure 5.10 shows a top-level stitching overview with the translation estimation 
followed by translation optimization per FOV and ordering of tile assembly in the 
left three blocks. The stitching accuracy is achieved by estimating mechanical stage 
model parameters from computed pairwise translations. The stage parameter esti-
mates minimize stitching errors by constraining and optimizing the translations 
within a square area four times the size of the microscope stage repeatability. The 
stage repeatability is the ability of the microscope stage to come back to the same 
location after visiting other locations. Meaning that if the user asks the stage to go 
to location (x1, y1), after visiting other locations, the stage will come back to a neigh-
boring location of (x1 ± r, y1 ± r). Based on our experience, y a good light microscopy 
automated stage has a repeatability of r = 1 μm. The MIST implementation has been 
optimized for speed and memory efficiency allowing it to be used on large image 
collections [27]. The stage modeling and error minimization methodology is appli-
cable to microscopy images or any mechanical instrument that acquires a 2D grid of 
image tiles.

Next, we will describe the details of the three steps (translation computation, 
optimization, and order of tile assembly) as implemented in the MIST algorithm.

Step 1: Compute candidate translations
MIST uses a Fourier-based approach because of its simplicity and predictable per-
formance. One of the advantages is that this approach does not need an additional 
feature detection tool. MIST implements the phase correlation method (PCM) to 
compute translations between adjacent tiles. PCM is based on the Fourier shift theo-
rem which computes the spatial shift between two images as a phase shift in the 
frequency domain.

For each image, compute its 
translations between its vertical 
and horizontal neighbors.

Assemble stitched image using 
minimum spanning tree.

Assembly
Optimize translations based on 
the microscope mechanical stage 
model. 
1. Estimate image overlap
2. Estimate mechanical stage 

repeatability
3. Compute camera angle
4. Replace high uncertainty 

computed translations with 
estimated median value

5. Optimize all translations 
using constrained Hill 
Climbing

Translation Computation Translation Optimization Stitched Image

Accelerated Computation via multicore and GPU computing

Fig. 5.10  Overview of MIST stitching algorithm

5.5  Algorithms for Stitching and Mosaicking Many Images



130

In real images, phase correlation (PC) contains several peaks that correspond to 
different translation values. To determine the correct translation, the top two peaks 
in the PC matrix are evaluated. The number of peaks is adjustable and the default is 
two. Due to the periodicity of the Fourier domain, each peak corresponds to four 
different possible translations (in 2D). MIST evaluates these four possible transla-
tions, for each peak, using the normalized cross-correlation (ncc) of the overlap area 
between adjacent images. The candidate translation with the highest ncc value is 
selected as the translation between two adjacent images.

Step 2: Optimize translations to reduce errors
There is a degree of uncertainty in the translation computation that causes errors in 
the stitching results. The sources of errors that affect translation computation 
between pairs of images are the:

	1.	 Signal-to-noise ratio in the acquired image
	2.	 Amount of signal in the overlap area
	3.	 Signal distribution with respect to the stage movement in the overlap area 

(i.e., flat-field effect in some imaging modalities, uniform or periodic signal 
distribution)

	4.	 Mechanical imperfections of the automated microscope stage (i.e., stage repeat-
ability and actuator backlash)

Moreover, the mechanical stage model parameters vary over time, and the mag-
nitude of variation depends on the microscope usage. If the user of a microscope has 
calibrated the equipment and has measured the stage repeatability, then there is an 
option to specify such parameters in the tool. If the user has provided those param-
eters, then MIST does not estimate them. However, it is difficult and time-consuming 
to calibrate and estimate the mechanical stage properties of the microscope.

Additionally, there are research environments where a microscope might have 
multiple users. Each user might adjust/change/perturb the camera settings or 
mechanical stage. These physical changes can alter the microscope configuration to 
be out of calibration. Finally, there are time-lapse experiments in which touching 
the mechanical stage cannot be avoided. For example, cells in live experiments need 
to be fed intermittently. To do this, the sample is removed from the microscope and 
then put back on the stage after media exchange. This unavoidable feeding opera-
tion can alter the mechanical stage properties among many other experimental 
settings.

To address the aforementioned challenges, MIST offers an automated way to 
estimate the stage parameters from the computed translations to prevent the user 
from having to calibrate and measure these parameters before every acquisition. We 
outline the method for estimating mechanical stage model parameters and then use 
the estimates for constrained translation optimization.

Estimation of mechanical stage model from pairwise translations
An automated microscope has two coplanar coordinate frames, the observation 
frame (i.e., camera) and the control frame (i.e., stage actuators). They are related by 
the camera angle α, as shown in Fig. 5.11 (a). This angle is difficult to calibrate. 

5  Image Processing Algorithms



131

Therefore, a misalignment between the camera and stage axes will remain in most 
experiments. The camera observes the horizontal and vertical stage movements, H 
and V, as (Hx, Hy) and (Vx, Vy) which are computed as follows:

	

H

H
H

H

V

V
V

V
x

y

x

y









 = −



















 =











cos

sin
&

sin

cos

α
α

α
α

	

(5.12)

A motorized mechanical XY stage moves a biological sample relative to the 
microscope’s optical column. This movement is carried out by two independent 
stepper motor linear actuators, one for each direction. The mechanical uncertainty 
of such a system is known as the stage repeatability. Moreover, the imperfection of 

Fig. 5.11  Stage mechanical model. (a) Stage displacements as observed by the camera. (b) 
Uncertainty and errors of horizontal and vertical tile translations due to stage mechanical 
properties

5.5  Algorithms for Stitching and Mosaicking Many Images



132

the stage as a mechanical device introduces a variable overlap between adjacent 
tiles. Modeling the mechanical properties of a stage provides an upper bound to the 
variable overlap between images and can be used to limit the search for optimal 
translations, thereby minimizing the margin of stitching error.

Figure 5.11 (b) shows a grid tiling with the positions (x, y) that the stage will visit. 
Each position has an uncertainty equal to the stage repeatability (x ± rx, y ± ry). 
However, translations (dx, dy) computed in the vertical or horizontal directions 
between adjacent tiles are differences between respective positions. Therefore, the 
maximum possible error in the computed translation values is (dx ± 2rx, dy ± 2ry). The 
horizontal and vertical translations in the image coordinate system must account for 
the camera angle as well as the mechanical uncertainties. The equations for horizontal 
and vertical translations that include the microscope models are the following:

	

H dx r

H dx r

V dy r

V
x i x

y i y

x i x

y

= ( ) ±
= ( ) ±







= ( ) ±cos

sin

sinα
α

α2

2

2
and

== ( ) ±




 dy ri ycos α 2
	

(5.13)

MIST estimates the following four quantities from the translation matrices H and 
V:

	1.	 Overlap amount
	2.	 Camera angle
	3.	 Microscope stage repeatability
	4.	 The microscope backlash

Translation optimization constrained by stage repeatability
Figure 5.11 (b) shows each column in H as having the same dxi and the same dyi for 
each row in V within a ±2r limit. On the other hand, dxi values differ between the 
columns of H, while dyi values are different between the rows of V due to backlash 
and mechanical imperfections. Thus, we filter H column-wise and V row-wise 
where we replace all computed translations, whose dxi or dyi values deviate from the 
median value by more than 4×r (the stage repeatability), by the median value in that 
direction. We then apply constrained hill climbing to the ncc values centered at the 
median translation and constrained within 4r × 4r region. Hill climbing will find the 
translation with the maximum ncc value by following the steepest gradient. The 
4r × 4r constrain comes from the model and bounds the algorithm to a small search 
space while converging to an optimal value.

Step 3: Order assembly of tiles to form a stitching vector
This assembly problem can be represented as an undirected graph where vertices 
are tiles and normalized correlation coefficients are edges. Each tile is connected to 
its surrounding four neighbors, three neighbors for tiles on edges, and two neigh-
bors for tiles on corners. This over-constrained problem needs to be resolved to 
construct a well-formed image. We use the weighted maximum spanning tree algo-
rithm to find the optimal subset of edges. The edges connect all tiles together with-
out any circular subsets of edges per tile (each tile is connected only once to the 
reconstructed image). The weighted maximum spanning tree algorithm maximizes 
the sum of all weights along the path defined by all edges. The weights of all 

5  Image Processing Algorithms



133

computed translations that satisfy the physically plausible offset stage model crite-
ria (offsets <4r) are increased to ensure preferential selection of these translations 
during assembly.

5.5.2  �Image Mosaicking

A large mosaic image can be assembled from an image collection based on position 
information about each FOV image by using the image assembly job. The position 
information can come from one of the following inputs:

	(a)	 A stitching vector
	(b)	 A metadata file with coordinates of a motorized stage
	(c)	 The user specifications via file naming pattern

To generate the vector with position information, run the stitching job and spec-
ify one of the four options:

	1.	 Stitching (MIST algorithm generates a stitching vector)
	2.	 TIFF stage metadata (WIPP extracts a stitching vector based on metadata in 

acquired image tiles)
	3.	 No overlap mosaic (WIPP generates a stitching vector that defines positions 

based on a spatial file name pattern without any spatial overlap)
	4.	 Time sequence of one FOV (WIPP derives positions based on a temporal file 

name pattern only)

The image assembly job takes the image collection and a stitching vector to pro-
duce a composed mosaic image. For mosaic images that fit to computer memory, 
there are two cases for image assembly:

	1.	 With spatial overlap
	2.	 Without spatial overlap

Mosaic assembly with spatial overlap
In this case, compositing is performed by using the stitching vectors generated by 
the MIST stitching algorithm or derived from TIFF stage metadata. For the pixels in 
the overlapping regions, intensities are computed using a linearly weighted blend-
ing. Blending compensates for illumination differences in overlapping areas of spa-
tially adjacent tiles. However, blending will not correct for spatial misalignment that 
can be significant if a microscope has not been properly calibrated. Ideally, scien-
tists would like to have access to all values at a given spatial location that were 
processed during blending.

Mosaic assembly without image overlap
In this case, compositing is executed using the stitching vectors derived only from 
spatial or temporal file name patterns (“no overlap” and “time sequence of one 
FOV” options in the stitching job). No image blending is performed since image 
tiles are just placed side by side. The resulting mosaic file can be downloaded for 
viewing or used for object feature extraction.

5.5  Algorithms for Stitching and Mosaicking Many Images



134

For mosaic images that do not fit in computer memory (i.e., image assembly job 
fails due to an out-of-memory error), we recommend running the pyramid building 
job with the stitching vector as input and then view the image content in WIPP. The 
pyramid building job will convert small FOVs into a Deep Zoom viewable represen-
tation without compositing the large FOV image.

5.5.3  �Practical Remarks

We overviewed the MIST stitching algorithm and a few mosaicking options. The 
stitching algorithm has been tested on a variety of image collections acquired using 
five microscopes (Leica, Olympus, Nikon, Zeiss, and FIB SEM (focused ion beam 
scanning electron microscope)) and in four imaging modalities (fluorescent, phase 
contrast, bright-field, and FIB SEM). The tests included diverse image content, 
overlap values ranging between 10 % and 70 %, and grid sizes ranging from 5 × 5 to 
70 × 93. Figure 5.12 shows examples of some of the image content like A10 cells, 
brain cells, carbon nanotubes, human bone marrow stromal cells (HBMSC), IPS 
cells, paper sample, stem cells, and worms.

However, there are image sets for which stitching can fail due to low SNR and/
or a lack of image features. For some of these cases, the stitching algorithm can 
be assisted by stitching the filtered and segmented images rather than the raw 
images.

Mosaicking images is executed by running the stitching job followed by the 
image assembly job. The stitching job generates the vector with position informa-
tion for each small FOV in the coordinate system of the large FOV. If the mosaic 
image is larger than computer memory, then pyramid building should be executed 
instead of image assembly to view the mosaic image in WIPP.

Fig. 5.12  Stitching application examples: (1) A10 cells, (2) carbon nanotubes, (3) HBMSC, (4) 
IPS cell colonies, (5) paper nanoparticle, (6) rat brain cells, (7) stem cell colonies, and (8) worms

5  Image Processing Algorithms



135

5.6  �Object Segmentation, Tracking, and Feature Extraction 
Algorithms

To quantify objects of interests from time-lapse large FOV images, algorithms for 
the following three applications must be designed:

	1.	 Spatial segmentation of objects
	2.	 Temporal association of spatial segments
	3.	 Extraction of spatiotemporal characteristics of objects

The objects of interest can be cells, cell colonies, or other objects. Next, we intro-
duce readers to algorithms that have been designed for performing each of these 
tasks.

5.6.1  �Object Segmentation

Segmentation introduction
Segmentation is one of the fundamental digital image processing operations [28]. It 
is used across all scientific fields where imaging is a quantitative measurement 
method. In computer vision, image segmentation is the process of partitioning an 
image into multiple segments (sets of pixels) where each segment defines an object 
and a boundary of interest. Segmentation assigns a label to every pixel in an image 
such that pixels with the same label belong to the same object and share certain 
common properties. Thus, pixels from the same object (region) are similar to each 
other with respect to some properties, for instance, similar in color, intensity, or 
texture. Figure 5.13 shows an example of raw image (left) and its segmentation into 
objects corresponding to cells (right). In this case, the similarity of white pixels is 
their low intensity and spatial connectivity forming a large (background) object. 
The dark pixels in Fig. 5.13 (right) belong to the remaining pixels in the image.

Fig. 5.13  Example of an National Institutes of Health (NIH) 3 T3 fibroblast intensity image and 
its corresponding segmentation

5.6  Object Segmentation, Tracking, and Feature Extraction Algorithms



136

Segmentation depends on the application and the problem being solved. The 
same acquired image can be segmented in many ways to solve different problems. 
Figure  5.14 displays three different segmentation methods applied to the same 
acquired image to extract three pieces of information: colony boundary (left), 
boundaries of mitotic cells (middle), or boundaries of each cell (right).

Segmentation classification
The field of image segmentation contains thousands of techniques for multidimen-
sional multivariate images (two- or three-dimensional, gray-scale, color, or hyper-
spectral variate images). A survey of segmentation methods in [29] classifies them 
into six major categories:

	1.	 Threshold-based
	2.	 Edge-based
	3.	 Fuzzy theory-based
	4.	 Partial differential equation (PDE)-based
	5.	 Artificial neural network (ANN)-based
	6.	 Region-based

Another survey focused on segmentation methods applied to optical imaging of 
mammalian cells [30] adds additional categories:

	1.	 Graph-based
	2.	 Morphological
	3.	 Watershed

Image segmentation is still an open research problem, and the number of meth-
ods, as well as the number of categories, is a testament to its complexity. An online 
recommendation system17 can help researchers choose the appropriate segmenta-
tion method for a cell biology experiment using information from past publica-
tions. Users start by specifying the imaging modality, objects of interest, image 
dimensionality, and object measurements and then can choose a segmentation 
method according to its frequency of use in published papers [30].

17 https://isg.nist.gov/deepzoomweb/resources/survey/index.html

Fig. 5.14  Example of different segmentation of the same image

5  Image Processing Algorithms

https://isg.nist.gov/deepzoomweb/resources/survey/index.html


137

WIPP includes two segmentation techniques:

	1.	 Empirical Gradient Threshold (EGT), a threshold-based segmentation method
	2.	 FogBank, a watershed-based segmentation method

Empirical Gradient Threshold segmentation [31] is a method for separating fore-
ground and background pixels in an image based on empirically established image 
gradient threshold criteria.

FogBank segmentation [32] is an object separation segmentation method applied 
to raw images together with their associated binary or labeled mask images. The 
method has been applied across multiple microscopy imaging modalities and cell 
lines, and a use case is described in Chap. 3 (migration of breast epithelial cells in 
sheets).

We introduce threshold-based segmentation category and then describe the EGT 
methods in detail.

Threshold-based segmentation
Thresholding is a logical operation applied on image intensities to separate fore-
ground from background. There might be some preprocessing and post-processing 
image surrounding the threshold segmentation. Thresholding can be applied to the 
image intensities, to the histogram, or to the gradient of the image (edge detection). 
Thresholding techniques loop over the entire image and set to foreground (value 1) 
each pixel with intensity meeting the threshold value. For example, if a pixel in a 
fluorescent image has an intensity value of 500, it will be labeled as foreground if 
the user is looking at foreground pixels that are higher than 230 in value. A pixel 
with value of 200 will be set to background (value 0). A binary image is the output 
after image thresholding where all pixels have a value of 0 or 1 (background or 
foreground). The key parameter of this method is the determination of the 
threshold.

Empirical Gradient Threshold segmentation
The method for selecting a threshold value in EGT is presented in three steps:

	1.	 Empirical observations of image gradient values
	2.	 Mathematical model for threshold selection
	3.	 The actual algorithmic steps of EGT

Step 1: Empirical observations of image gradient values
EGT operates on the histogram of the gradient image, and thus it is a histogram 
shape-based thresholding method as classified by [33]. It derives a model for select-
ing a threshold value for the gradient of an input image. The model is derived from 
empirical observations of a reference dataset. The reference dataset consists of 501 
validation images with manually determined segmentations and image sizes rang-
ing from 0.36 Megapixels to 850 Megapixels. It includes seven different cell lines 
and two image modalities (phase contrast and fluorescent).

The gradient of every image in the reference dataset is computed using the Sobel 
operator [1]. The gradient image is thresholded at every gradient percentile value. 
The Dice index is computed between every segmented image and the corresponding 

5.6  Object Segmentation, Tracking, and Feature Extraction Algorithms



138

reference (manual) segmentation. The Dice index is a segmentation accuracy metric 
that measures spatial overlap between two segmentations using the following 
formula:

	
Dice = × ∩ +( )2 A B A B/

	
(5.14)

where A and B are the respective areas of the foreground masks as illustrated in 
Fig. 5.15. It ranges from 0 (no match) to 1 (perfect match) and is frequently scaled 
between 0 and 100.

The best segmentation is chosen as the one with the maximum Dice index per 
image dataset. In all reference datasets, the best segmentation was achieved when 
the threshold was between the 25th and the 95th percentiles of image gradient val-
ues. Figure 5.16 shows a summary of the percentile threshold values across all refer-
ence images.

Figure 5.17 shows four examples of normalized gradient intensity histograms 
where the 95th, 75th, 55th, and 35th percentiles led to the maximum Dice index, 
respectively. In an image where most pixels are background with low-gradient val-
ues, higher percentages (e.g., >75 %) are needed to reach the correct percentile 
threshold for edge detection (Fig.  5.17, 1). In contrast, in an image where most 
pixels are foreground, lower percentages (e.g., > 35 %) are needed to reach the 

Fig. 5.15  Segmentation 
comparison of regions A 
and B using Dice index

Fig. 5.16  Maximum Dice value (scaled between 0 and 100) and the corresponding gradient per-
centile threshold for every image in the reference dataset

5  Image Processing Algorithms



139

correct percentile threshold for edge detection (Fig. 5.17, 3). The difference between 
the four plots in Fig. 5.17 can be described by how much of the area X under the 
histogram curve lies to the right of the highest point of the histogram, the mode 
location.

The background of a biological image usually has low-intensity variations in a 
small neighborhood surrounding a pixel, which translates to low-gradient magni-
tudes. Sharp changes in surrounding neighbor intensities around a pixel often cor-
respond to noise in the acquired image. Gradient values for cell or colony edge 
pixels are usually not the extreme values. Extreme gradient values are more likely 
from noise. To measure the difference between the four curves in Fig. 5.17, the area 
X under the histogram curve is computed between a lower bound (lb) and an upper 
bound (ub) for each image based on the location of the mode of the histogram, as 
outlined below.

Step 2: Mathematical Model
The previous section shows that there is a relationship between the histogram distri-
bution and the gradient percentile values from which the threshold is computed. We 
will model this relationship with three equations relating:

	1.	 Histogram H to area X under the histogram curve between a lower and upper 
bound

	
X g H= ( ) 	

(5.15)

Fig. 5.17  Normalized histogram plots for images where (1) the 95th percentile (2) the 75th per-
centile, (3) the 55th percentile, and (4) the 35th percentile gave, respectively, the maximum Dice 
index. The plots are truncated at 500 instead of 1000 on the x-axis to better highlight the 
difference

5.6  Object Segmentation, Tracking, and Feature Extraction Algorithms



140

	2.	 Area X to gradient percentile Y

	
Y f X= ( ) 	

(5.16)

	3.	 Percentile Y to the optimal threshold value T

	
T p Y= ( ) 	

(5.17)

where

–– H is the normalized histogram of the gradient image with respect to its cumula-
tive sum (sum(H) = 1), represented by 1000 bins evenly spaced between the 
minimum and the maximum values found in the gradient image that are greater 
than 0.

–– X is the area under the histogram between a lower and upper bound computed as 
a function of H.

–– Y is the optimal gradient percentile value computed as a function of X.
–– T is the gradient image intensity threshold value.
–– p computes the threshold value T from the percentile value Y. p(i) is the thresh-

old such that i % of image pixels have intensity gradients less than p(i).

The percentiles are computed from the gradient image without the saturation 
values (where the gradient is equal to zero). Gradient magnitudes of zero corre-
spond to neighboring pixels in the image where the intensity is the same and thus do 
not correspond to edge pixels. Lower bounds are always greater than zero. Derivation 
of the lower and upper bounds is defined in the equations below.

We derived the functions f, g, and p and their respective arguments next.

	(a)	 Derivation of function X = g(H)

The function g that computes the area X under the histogram curve is modeled as 
follows:

	
X g H H x

x lb

ub

= ( ) = ( )
=
∑

	
(5.18)

where lb is a lower bound and ub is an upper bound that will be determined empiri-
cally from the mode location. The gradient magnitude mode value generally corre-
sponds to pixels with low-gradient variations (pixels that belong to the background 
or homogeneous pixels that do not belong to an edge). Since the mode is a statistical 
value of a histogram, we decided to empirically compute these bounds from an 
approximated mode location xmode: lb = n∗xmode and ub = m∗xmode with m > n. We 
approximated the mode location xmode using the average of the three highest esti-
mated frequencies. The average mode location value was more accurate than the 
single maximum peak location and minimized the uncertainty of computing the 
mode location in the presence of noise and artifacts in the background. The empiri-
cal derivation of the lower and upper bounds was made in such a way that it enabled 

5  Image Processing Algorithms



141

a known fit (linear if possible) for function f. Therefore, we made an exhaustive 
search of these bounds looking for linearity of the function f.

Figure 5.18 displays the residual error of a linear fit to the function f color coded 
between dark blue (lowest error value) and dark red (highest error value). The top 
portion is the residual error computed with regard to the exhaustive selection of 
lower and upper bounds as multiples of the mode location. The optimal solution 
corresponds to the global minimum of the lower and upper bound exhaustive search. 
The lower portion displays the plots of six marked examples of area X vs. optimal 
percentile Y, where you can see the linearity. By analyzing the plots in Fig. 5.18, we 

Fig. 5.18  Empirical derivation of the upper and lower bounds of function g. The top portion is the 
residual error of a linear fit between X and Y. The lower portion displays the plots of the six marked 
examples, to which the function Y = f(X) will be fit

5.6  Object Segmentation, Tracking, and Feature Extraction Algorithms



142

found that the optimal solution is to compute the area X between a lower bound 
equal to 3× mode location on the x axis and an upper bound equal to 18×mode loca-
tion on the x axis:

	
lb x ub x xmode mode cs= × = ×( )3 18and ,max

	
(5.19)

where xmode is the mode location and xcs is the location that corresponds to a 95 % 
drop in frequency value from the mode. The location xcs is introduced as an addi-
tional constraint on the upper bound satisfying the inequalities below:

	
H x H x ANDH x H xcs mode cs mode+( ) > × ( ) ( ) ≤ × ( )1 0 05 0 05. .

	
(5.20)

	(b)	Derivation of function Y = f(X)

Figure 5.19 plots the percentile Y corresponding to the maximum Dice index 
values for all images when computed as a function of the area under the histogram 
X. This plot reveals a linear relationship between X and Y with a saturation of Y = 25 
for X ≥ 50. The function f derived empirically from the plot can be written as 
follows:

	

Y f X aX b

X s

s s

s X

= ( ) = +








≤
< <
≤

95

25

1

1 2

2

X

	

(5.21)

where s1 and s2 are derived from the plot with values equal to s1 = 3, s2 = 50.

Fig. 5.19  Percentile Y as a function of the area under the histogram X. For each image of the refer-
ence datasets, the percentile corresponding to the max Dice index is plotted. This plot shows a 
visibly linear relationship between X and Y

5  Image Processing Algorithms



143

To compute the linear relationship, we randomly arranged the reference dataset 
into ten groups of similar size. Nine of the groups are used for training and the 
remaining one as a validation set. A linear least-squares fit is applied to the training 
set, and the resulting linear equation is validated on the validation dataset. This 
process is repeated ten times. The linear function is computed as the average of all 
ten values and is equal to a =  − 1.3517 and b = 98.8726.

	(c)	 Derivation of Function T = p(Y)

The image gradient threshold T is derived from the percentile Y by choosing the 
threshold such that Y % of image pixels have intensity gradients less than p(Y). Our 
assumptions for this analysis are that (1) we can segment cells or colonies if edge 
pixel intensities are different from background intensities and (2) the background is 
locally uniform. However, there are datasets with images out of focus or with low 
signal-to noise ratio (SNR). While the relation between X and Y remains linear for 
these special datasets, the slope of the line drops by a constant factor. A user-defined 
parameter called “greedy” was introduced because it refers to the “greed” of the 
background as it claims pixels; this parameter controls the percentile threshold for 
the entire time sequence of any dataset that falls within these special cases. The 
greedy parameter is adjusted for only one test image of the entire sequence and is 
defined as follows:

	
T p Y= +( )greedy

	
(5.22)

with −50 ≤ greedy ≤ 50, greedy ∈ ℕ, and 0 ≤ Y + greedy ≤ 100.
The greedy parameter lowers or raises the percentile threshold to capture the 

missed edge pixels that are in a low- or high-gradient region. Percentiles follow the 
intensity variations in the image better than just multiplying the current threshold by 
a factor.

Step 3: Actual algorithmic steps of EGT
The EGT algorithmic steps for segmenting an image are given below:

	 1.	 Compute the gradient image G of the raw input image I using Sobel operator.
	 2.	 Compute the histogram H of G with 1000 bins.
	 3.	 Normalize the histogram with respect to its cumulative sum: sum(H) = 1.
	 4.	 Average the top three histogram value locations to find an approximate mode 

location.
	 5.	 Compute the area under the histogram X between the lower and upper bounds.
	 6.	 Compute Y = aX + b.
	 7.	 Compute the gradient threshold T = p(Y) and segment the image.
	 8.	 Fill holes in the resulting mask that are less than a user-input minimum hole 

size.
	 9.	 Apply morphological erosion with a disk radius of one pixel to clean the noise 

around the edges.
	10.	 Filter small artifacts that are smaller than a user-specified minimum cell size.

5.6  Object Segmentation, Tracking, and Feature Extraction Algorithms



144

Figure 5.20 shows examples of segmentation results for the seven reference 
datasets.

The output of EGT is a binary image. Connectivity analysis needs to be per-
formed on the image to label all connected objects. This is achieved in WIPP by 
launching “Mask labeling” under “Jobs” menu. After labeling is done, one can com-
pute features and extract interesting data for analysis from a fixed single time point 
or apply a tracking technique to extract time-series data for analysis. The next sec-
tion describes tracking the object of interest through time.

5.6.2  �Object Tracking Over Time

Object tracking assigns a unique label through time to an object detected by seg-
mentation. Segmentation assigns labels to pixels to form segments at one time point, 
while tracking associates spatial segments over time. Tracking algorithms make the 
associations by evaluating similarities between detected objects at adjacent time 
frames. For example, an object labeled 22 at time t1 and labeled 34 at time t1 + 1 by 
a segmentation algorithm is the same object, and therefore tracking gives both 
objects with the same unique global label.

Tracking is useful for extracting dynamic measurements from time-lapse experi-
ments with live cells, such as cell migration, morphology, and lineage development. 
In general, tracking is performed by assigning a cost between cells from the previ-
ous frame and cells from the current frame. The cost value gives a measure of the 
probability that a cell from the current frame should be tracked to a cell from the 
previous one. A tracking challenge performed by [34] has a comprehensive list of 
trackers in the field of biology and particle tracking.

Fig. 5.20  Segmentation results with the contour overlaid on top of the original raw image. Large 
images (the first four) are zoomed in for better visualization. The cyan color is only for edge 
highlighting

5  Image Processing Algorithms



145

The WIPP tracking algorithm
WIPP uses a tracking algorithm called lineage mapper (LM) to perform tracking 
across time. LM detects the following 2D dynamic single cell behaviors:

•	 Migration
•	 Mitosis
•	 Cell death
•	 Cells within sheets
•	 Cells moving around with high cell-cell contact

While LM was developed for cell biology, it has also been applied successfully 
for particle tracking. Lineage mapper has five equally important properties:

	1.	 Because it operates on segmented masks, LM does not depend on a specific seg-
mentation method. A user has the choice of any automated or manual segmenta-
tion technique; LM takes labeled segmented masks as input. It outputs a cell 
lineage tree and a set of new labeled masks where each cell is assigned a unique 
global label.

	2.	 For mitosis tracking, LM utilizes mother cell roundness, mother cell size, daugh-
ter size similarity, and daughter aspect ratio measured from segmented images to 
detect the entire cell cycle across cell divisions.

	3.	 LM uses the overlap information from current and past frames to identify and 
separate cells mistakenly segmented as a single cell when cell-cell contact 
occurs.

	4.	 It has fast execution for real-time tracking and manages memory efficiently for 
large-scale datasets.

	5.	 LM creates fusion lineages by tracking cell or colony merges. It relies on a small 
number of biologically derived adjustable parameters to achieve high-accuracy 
tracking.

The core of the LM tracking algorithm performs five main processing steps as 
shown in Fig. 5.21:

	1.	 Computes a cost function between cells from consecutive frames.
	2.	 Detects cell collisions and separates cells by modifying input images.
	3.	 Performs mitosis event detection.
	4.	 Assigns tracks between cells.
	5.	 Extracts output.

Step 1: Cost function computation
Tracking is performed by assigning a cost (dissimilarity metric) between the i-th 
cell ci

t  in time frame t and the j-th cell cj
t+1 in time frame (t + 1). The cost function 

d c ci
t

j
t, +( )1  is the sum of three weighted terms computed between cells at consecu-

tive time points t and t + 1:

	
d c c w O c c w c c w c ci

t
j
t

i
t

j
t

i
t

j
t

i
t

j
t, , , ,+ + +( ) = × ( ) + × ( ) + ×1 1 1

o c c s sδ δ ++( )1 	
(5.23)

5.6  Object Segmentation, Tracking, and Feature Extraction Algorithms



146

O is the overlap between area of a cell at time t and another at time t + 1.
δc is the distance metric between cell centroid at time t and another at time t + 1.
δs is the distance metric between cell size at time t and another at time t + 1.
ci
t  is cell i at time t and cj

t+1  is cell j at time t + 1.
The three terms have multiplicative weights wo, wc, and ws associated with the 

amount of overlap, the centroid distance, and the size change, respectively. The 
weights allow the cost function to be tailored for use with different cell lines and 
image acquisition conditions. It is possible to extend this cost function by adding 
new terms (like shape metrics, texture-derived metrics, etc.).

Step 2: Collision Detection
Cell collision refers to a group of cells that are correctly detected as individual 
cells at time t, but are mistakenly segmented as a single cell cluster at time t + 1. 

Fig. 5.21  Schematic description of lineage mapper algorithm and output summary data and 
visualizations

5  Image Processing Algorithms



147

Even for very accurate segmentation techniques, spatially adjacent groups of cells 
can still be mistakenly considered as a single object.

To correct the segmentation mistakes, temporal information about motion of 
cells can be used to report correct cell tracks. A feedback loop is implemented to 
separate incorrectly grouped cells into multiple single cell segments by sending the 
tracking information back to the labeled segments. This option can be disabled by 
the user to allow object merging or fusion, for example, when tracking cell colonies. 
When the user enables cell fusion, LM builds a fusion tree where multiple tree 
branches merge together to form one single branch.

Step 3: Mitosis Detection
The tracking algorithm incorporates four biological indicators that describe mitotic 
events across most cell lines:

•	 Mother cells divide normally into two daughter cells during mitosis.
•	 Before the cell division takes place, the mother cell shape becomes more 

circular.
•	 During mitosis, the mother cell does not migrate too much which results in a 

significant area overlap with its both daughter cells.
•	 Daughter cells have similar size and shape to each other.

The algorithm models and implements these biological indicators and includes a 
few user-adjustable parameters to customize each model parameter importance for 
a given cell line.

Step 4: Track Assignment
After handling mitosis and cell collision, tracks are assigned such that a cell A at 
time t can share a track with only one cell B at time t + 1 and vice versa. The unas-
signed cells at time t are considered as either leaving the field of view (FOV) or 
mitotic mothers. The unassigned cells at time t + 1 are considered as either entering 
the FOV or originating from mitosis. The optimal solution to this assignment prob-
lem is achieved using the Hungarian algorithm [35, 36]. The Hungarian optimiza-
tion algorithm minimizes the tracking cost function over all possible tracking 
assignments after handling mitosis and collision.

After finding the cell tracks for all consecutive pairs of time frames, the frame-
to-frame results are combined to produce a complete set of cell life cycle tracks in 
the time-lapse sequence. Spatially unique cell labels assigned by a segmentation 
algorithm at each time frame are replaced by spatially and temporally unique track 
labels that identify each cell at any time in the entire image sequence. The resulting 
labeled mask is saved in TIFF format. Furthermore, each tracked cell is associated 
with a confidence index that reflects the magnitude of the cost function during the 
tracked cell cycle.

Step 5: Tracking Output
The algorithm generates several tracking outputs including the:

•	 Globally labeled masks where each cell or colony is assigned a unique label for 
the entire time sequence

5.6  Object Segmentation, Tracking, and Feature Extraction Algorithms



148

•	 Cell lineage that shows the cell birth, the cell death, the mother-daughter 
relations, and the number of generations in an image set

•	 Division and/or fusion lineage that shows the relation between cells that divided 
and/or collided

•	 Confidence index

All other outputs can be derived from these primitive ones. For instance, from the 
globally labeled masks, one can compute the location of each cell centroid and plot 
the respective migration rate of each cell. All geometric features, for instance, cir-
cularity or aspect ratio, can be derived directly from these masks. Similarly, all 
intensity features can be derived from the masks and the raw images as discussed in 
the next section.

5.6.3  �Image and Object Feature Extractions

After running the segmentation job or the tracking job, one can extract meaningful 
measurements from each image. These measurements depend on the dimensionality 
of input images and the semantic meaning of each dimension. We provide classifi-
cation of image-derived measurements (or feature extractions) based on the type of 
(1) measurement and (2) spatial region of interest.

Measurement types of feature extractions
In general, measurements (or image-derived features) can be classified into four 
types:

	1.	 Intensity (or spectral) features are extracted from raw intensity images and typi-
cally include central moments (average, standard deviation, skewness, kurtosis).

	2.	 Shape features are computed from labeled images and focus on capturing spatial 
measurements, such as size, perimeter, minor and major axis, centroid, circular-
ity, eccentricity, and so on.

	3.	 Textural features are calculated by transforming intensities inside of regions of 
interest into a space where one can make direct measurements of spatially repeat-
ing patterns. Among those transformations, the most common ones are Gabor, 
Fourier, law’s, and gray-level co-occurrence matrix (GLCM) transforms. 
Examples of GLCM-derived textural features are contrast, homogeneity, energy 
and entropy.

	4.	 Motion features are temporal measurements of object tracks extracted from 
time-lapse image sequences and include cell migration rate, cell growth rate, or 
temporal change of protein expression.

Spatial types of feature extractions
Feature extraction is accomplished by algorithms that ingest raw intensity images 
and/or labeled images and/or multiple labeled images. Example inputs to a feature 
extraction algorithm are shown in Fig. 5.22. In general, there are three types of 
spatial measurements:

5  Image Processing Algorithms



149

	1.	 Image measurements where it is assumed that one FOV is a sample of an object 
of interest.

	2.	 Spatially global object measurements where an object of interest is defined by a 
foreground mask (Fig. 5.22, edge detection). Multiple objects are described by a 
labeled mask (Fig.  5.22, segmented image). For example, objects can be cell 
colonies, cells, or cell layers.

	3.	 Spatially local object measurements where an object has spatially varying prop-
erties and therefore an object mask and its tessellation mask are needed to com-
pute local homogeneity measurements (Fig. 5.22 hexagonal tiles within a cell).

In WIPP, the feature extractor types are supported by integrating several widely 
used software packages. The current implementation includes primarily intensity, 
shape, and textural features. The spatial feature extractors leverage segmentation 
results (EGT and FogBank) and tessellation results. The tessellation job is designed 
to partition a user-defined image area into hexagonal or rectangular segments with 
unique labels. The combination of a labeled mask from segmentation (e.g., cell 
colony segments) and a labeled mask from tessellation (e.g., hexagonal segments) 
can be used as input to the web feature extraction module in order to compute fea-
tures with respect to hexagonal segments inside of a cell colony. This can be used to 
evaluate cell colony homogeneity.

5.7  �Image Intensity Scaling and Pyramid Building 
Algorithms

Current web browser technologies do not support image rendering when a single 
channel has more than 8 bits per pixels (BPP). This limitation must be overcome by 
scaling the pixel intensities, because most images acquired by optical microscopes 
are in 12 or 16  BPP format. Scaling the raw images before launching pyramid 
building is recommended since the pyramids are used directly for visualization in a 

Fig. 5.22  Left to right: raw intensity image; binary image separating cell foreground and back-
ground using edge detection; labeled image containing labels for cell subdivided into nucleus, 
cytoskeleton, and focal adhesion subregions; and hexagonal tiling image obtained by spatially til-
ing the cell foreground region using hexagonal tessellation

5.7  Image Intensity Scaling and Pyramid Building Algorithms



150

web browser. Without the intensity rescaling, the visualization might not render 
correctly in the browser (i.e., images might be too dark). All other computations 
should be performed on the full dynamic range images. We will next cover the 
options for the intensity scaling and pyramid building algorithms.

5.7.1  �Image Intensity Scaling

The goal of image intensity scaling is to compress larger image bit depths to 8 BPP 
while preserving salient image features for visual inspection. From a mathematical 
viewpoint, the challenge lies in defining a model for mapping the original intensity 
values into a smaller number of bins while preserving the magnitude order of inten-
sities. From an application viewpoint, the challenge lies in choosing a model that 
allows a user to interactively define transformation parameters so that the user can 
see salient features of interest. This perspective also includes some human factors 
since some scientists prefer linear scaling to preserve linear relationships between 
intensities.

In photography, intensity scaling is also called tone mapping. It can be global or 
local to address illumination changes (e.g., objects in shadows and in sunlight). The 
global mapping applies a scaling model (i.e., tonal curve) to all pixel intensities. The 
local mapping is different depending on the pixel location. In microscopy, the illu-
mination changes are not significant, and the main concerns are human perception 
and display limitations. To address these concerns, intensity scaling algorithms 
implement either linear or nonlinear global mapping. The choice of a model for 
intensity mapping is typically supported by human subject studies.

WIPP contains two implementations of intensity scaling to 8 BPP: (1) truncation 
and (2) gamma correction. Figure 5.23 displays an example for each of the two 
intensity scaling methods.

Truncation 
This method computes an intensity histogram and assigns (a) zeros to all pixel 
intensities that are below the threshold defining 1 % of histogram and (b) 255 to all 
pixels above the threshold defining 99 % of histogram. This method maps the rest of 
the intensities linearly between these two thresholds.

Figure 5.24 (left) shows the intensity histogram of the raw image where the value 
ranges from 216 to 3318, and after truncation the intensity values now ranges from 
0 to 65 535 with a saturation of 1 % of pixels around the 1 % and the 99 % of the 
intensity values. Note that the new pixel intensities occupy the full 16 BPP range, 
not the 8 BPP range. This is because the pyramid building job rescales all input 
images to 8 BPP using a linear rescaling of the full input image dynamic range. 
Therefore, for correct visualization the intensity scaling job needs to stretch images 
to use their full dynamic range.

5  Image Processing Algorithms



151

Fig. 5.23  Scaling method example highlighting scaling effect on the original image

Fig. 5.24  Histogram of raw image intensity (left) and the truncated one (right)

Gamma correction
This nonlinear method applies the following transformation to each pixel 
intensity:

	 I AIc =
γ

	 (5.24)

where Ic is the scaled images, I is the original image, γ is the gamma correction 
factor (γ = 0.1  in WIPP), and A is a constant (usually equal to 1). The resulting 
image is brighter or darker than the original image depending on whether the gamma 
value is smaller or larger than 1.

If image scaling job was not executed before launching a pyramid job, images 
with more than 8 BPP will likely appear dark in the web browser. To overcome the 
problem, one can view the dark pyramids in a Deep Zoom viewer by clicking on the 
button “Modify Filters” and then choose “Exposure” or “Brightness” or “Contrast” 
filters. These filters allow a user to interactively find the right settings for visual 
inspection. The disadvantage of the browser-based filter adjustment is that the com-
putation may slow down older computers.

5.7  Image Intensity Scaling and Pyramid Building Algorithms



152

5.7.2  �Image Pyramid Building

Memory constraints on pyramid building
Chapter 4 (“Representation of Large Images”) introduced the concept of image 
pyramid representations for big images. Section “Image Mosaicking” in this chap-
ter mentioned the RAM limitations when big images are reconstructed in memory. 
There is a need for the pyramid building algorithm to start with raw FOVs instead 
of an assembled mosaic image. The pyramid building job in WIPP takes as inputs 
both a collection of FOV images and the associated vector file containing FOV posi-
tion information in the coordinate system of the mosaic image. The stitching job 
must be executed before pyramid building to obtain the position vector file.

The pyramid building algorithm has been designed to meet two objectives:

	(a)	 Scaling with very large images that will not fit into memory
	(b)	 Acceleration of the computation by minimizing the number of read operations 

from disk to computer memory

Scalability
This aspect of the algorithm is achieved by loading only a limited number of FOV 
images into memory. In addition, the algorithm allows the user to specify the maxi-
mum portion of the FOV image that should be cached in RAM ranging from 0 (no 
cache) to 1 (entire image cached). By default, the output pyramid tile size is (254 × 
254) pixels with one pixel overlap.

Number of read operations
Figure 5.25 shows color-coded tiles in each layer of a pyramid representation where 
the same color indicates related tiles between layers p and (p-1). Figure 5.26 illus-
trates the numerical order of building pyramid tiles to minimize the number of read 
operations. Each image region forming a tile at the maximum zoom level p is read 
only once. A tile at level p-1, which is composed of four tiles at level p, is computed 
as soon as enough tiles at level p have been computed.

Fig. 5.25  Pyramid representation

5  Image Processing Algorithms



153

Pyramid building – pseudo-code
An implementation of algorithm is available from the Git repository18; its pseudo-
code is provided below:

Tile buildTile(int level, int row, int column)
    if (level == p)
	� read tile area from raw FOVs using stitching vector and 

perform blending
	 save it to disk
	 return tile
    else
	 Tile topLeft = buildTile(level + 1, row * 2, column * 2);
	 Tile topRight = buildTile(level + 1, row * 2, column * 2 + 1);
	 Tile bottomLeft = buildTile(level + 1, row * 2 + 1, column * 2);
	 Tile bottomRight = buildTile(level + 1, row * 2 + 1, column * 2 + 1);
	� Assemble the 4 tiles in one image and scale it down to create 

the tile
       save it to disk
       return tile

void buildPyramid()
    buildTile(0, 0, 0);

This recursive algorithm also supports parallel execution of pyramid tile build-
ing. A pyramid can be generated using a network file system, but the file transfers 
significantly slow down the computation. There are also several options related to 
blending spatially overlapping areas of adjacent FOVs, for instance, averaging or 

18 https://github.com/usnistgov/pyramidio

Fig. 5.26  The order of building pyramid tiles to minimize the number of read operations

5.7  Image Intensity Scaling and Pyramid Building Algorithms

https://github.com/usnistgov/pyramidio


154

using extreme intensities at overlapping locations. The optimal solution is to use a 
look-up table for the FOVs covering the overlapping area, read the files, and blend 
them using one of the options before pyramid tiles are computed.

5.7.3  �Re-projection of a Pyramid Set

Typically, large image collections form a 3D volume with spatial [x, y, z], temporal 
[t], and/or spectral [λ] dimensions. Scientists need to inspect the acquired TB-sized 
images in the context of their spatial and spectral surroundings. For example, cell 
touching each other might behave differently than cells that are spatially far apart. 
Similarly, a spectral composition of materials varies spatially and must be inspected 
across spatial cross sections to understand material heterogeneity as illustrated in 
Fig. 5.27. The neighboring contextual image information must be viewed in three 
orthogonal planes: [x, y], [x, z/t/λ], and [y, z/t/λ]. To enable scientists to inspect and 
measure TB-sized 3D volumes, there is a need for fast orthogonal re-projections to 
facilitate interactive view changes.

The 3D image volume can be represented as a set of image frames or a set of 
image pyramids. For both representations, re-projection algorithms are needed as 
illustrated in Fig. 5.27. The re-projection algorithms reshuffle pixels as illustrated in 
Fig. 5.28 for a set of 2D image frames and in Fig. 5.29 for a set of image pyramids.

We provide the top-level algorithmic workflow steps below. Without any loss of 
generality, we analyze x-y-z volumes (row-column-depth) represented as a set of x-y 
frames that are re-projected to a set of x-z frames.

Pseudo-code: Image frame set to image frame set re-projection
•	 Load 2D images into RAM.
•	 FOR all columns in the input 2D frames

–– Copy the same index columns from each 2D frame and put them into a new 
2D image according to the input order of 2D frames.

–– Write the new 2D image to disk.

•	 END

Fig. 5.27  A spatial view of a historical artifact (https://isg.nist.gov/deepzoomweb/data/materiale-
nergylevels) imaged using an electron microscope (left) and its re-projected spectral view [y, λ] for 
one of the x-cross sections (right)

5  Image Processing Algorithms

https://isg.nist.gov/deepzoomweb/data/materialenergylevels
https://isg.nist.gov/deepzoomweb/data/materialenergylevels


155

Fig. 5.28  Re-projection of large 3D images to achieve two orthogonal viewpoints

Fig. 5.29  Re-projection from a set of 2D image frames

5.7  Image Intensity Scaling and Pyramid Building Algorithms



156

Pseudo-code: Pyramid set to pyramid set re-projection
•	 Load 2D image tiles at the zoom level one into RAM.
•	 FOR all columns and image tiles in the input pyramid sets

–– Copy the same index columns from the same index image tile from each pyra-
mid set and put them into a new 2D image tile according to the input order of 
pyramid sets.

–– Write the new 2D image tile to disk inside of the output pyramid set numbered 
according to the column index.

•	 END
•	 Complete building the full pyramid sets from the zoom level one tiles by 

down-sampling.

Based on the experimental results [37], the re-projection algorithm for pyramid 
sets is more efficient than the algorithm for sets of image frames when executed on 
distributed computational resources. The main advantage of the pyramid-based re-
projection is that it does not require as much computer memory and immediately 
generates the pyramid representation for viewing.

5.8  �Supervised Algorithms

All algorithms presented in this chapter are based on some underlying model 
designed by a developer. There is an option of integrating data-driven supervised 
algorithms where the models are automatically learned from the presented anno-
tated data. These algorithms have been shown to be accurate, especially those based 
on deep learning models [38, 39]. They have been successfully applied to many 
image segmentation problems. We provide a brief comparison of advantages and 
challenges of deep learning models for segmentation tasks next.

Advantages and challenges of deep learning models
Complex deep learning models can be designed and trained by providing many 
training examples. Table 5.7 summarizes advantages and challenges of deep learn-
ing models. On one hand, the models represent a transition from the past linear 
model to highly nonlinear models, introduce automatic feature engineering, and 
parallelize the training and inference processes well on Graphics Processing Unit 
(GPU) hardware. On the other hand, the models do not provide visual nor 

Table 5.7  Advantages and challenges of deep learning models

Deep learning advantages Deep learning challenges

Linear  nonlinear models
Automatic feature engineering
Computations parallelize well on GPU hardware

Difficult to inspect models visually
Lack of theoretical understanding
Hand-designed architectures
Training needs lots of data

5  Image Processing Algorithms



157

mathematical insights about the input-to-output relationship, and the model archi-
tectures must be hand-designed. One should be aware that the models work for 
stationary phenomena (time-invariant models) and for a particular spatial resolution 
of the training dataset. It is also imperative to choose balanced training data (i.e., 
equal representation of all classes) since the models reinforce majority.

5.9  �Summary

The image processing algorithms documented in this chapter have been primarily 
designed for analyzing microscopy images in cell biology and tissue/cell pathology 
(histo- and cytopathology). One can learn more about bioimage processing by:

	1.	 Reading widely used textbooks
	2.	 Installing software implementations used for bioimage analyses
	3.	 Loading or converting image files to an OME standard file format
	4.	 Applying image processing operations to acquired images

Image processing algorithms can be adapted to a variety of microscopy image 
contents. We introduced algorithms used in common analyses of microscopy images 
including image correction, stitching, segmentation, tracking, feature extraction, 

Fig. 5.30  Re-projection from a set of pyramids

5.8  Supervised Algorithms



158

and pyramid-based visualization. Before adapting an algorithm, one must understand 
the purpose of each algorithm and its underlying assumptions. For instance, image 
correction algorithms assume that a user is knowledgeable about the artifacts 
introduced by a specific imaging system and can choose the appropriate correction 
models. Similarly, segmentation algorithms incorporate models of objects of inter-
est that depend on each experiment.

References

	 1.	Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall. Upper 
Saddle River, NJ (2007)

	 2.	Russ, J.C.: The Image Processing Handbook, 3rd edn. CRC Press LLC, Boca Raton (2002)
	 3.	Wu, Q., Merchant, F.A., Castleman, K.R.: Microscope image processing. Boston/Burlington, 

Elsevier (2008)
	 4.	Bankman, I.: Handbook of Medical Image Processing and Analysis, 2nd edn. Eslsevier, 

Academic Press Series in Biomedical Engineering, Burlington (2008)
	 5.	Eliceiri, K.W., et al.: Biological imaging software tools. Nat. Methods. 9(7), 697–710 (2012)
	 6.	Miura K. Bioimage Data Analyses. Miura K, editor. Viley-VCH, Verlag-GmbH. 69469 

Weinheim, Germany: Olympus; 2016
	 7.	Bajcsy, P., Kooper, R., Marini, L., Minsker, B., Myers, J.: A Meta-Workflow Cyber-

infrastructure System Designed for Environmental Observatories [Internet]. Urbana, IL; 2005. 
Available from: http://isda.ncsa.uiuc.edu/peter/publications/techreports/2005/meta-workflow-
approaches.pdf

	 8.	Bankhead P. Analyzing fluorescence microscopy images with ImageJ [Internet]. Heidelberg 
University, Germany; 2014. Available from: http://go.qub.ac.uk/imagej-intro

	 9.	Chalfoun, J., Majurski, M., Bhadriraju, K., Lund, S., Bajcsy, P., Brady, M.: Background inten-
sity correction for terabyte-sized time-lapse images. J. Microsc. 257(3), 226–238 (2015)

	10.	Sharma, A., Singh, J.: Image denoising using spatial domain filters: a quantitative study. 2013 
6th Int. Congr. Image Signal Process. 1(Cisp), 293–298 (2013)

	11.	Wyawahare, M.V., Patil, P.M., Abhyankar, H.K.: Image registration Techniques : an overview. 
Pattern Recogn. 2(3), 11–28 (2009)

	12.	Zitova, B.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 
(2003)

	13.	Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. 
J. Comput. Vis. 74(1), 59–73 (2006)

	14.	Bajcsy, P., Lee, S.-C., Lin, A., Folberg, R.: Three-dimensional volume reconstruction of extra-
cellular matrix proteins in uveal melanoma from fluorescent confocal laser scanning micro-
scope images. J. Microsc. 221(Pt 1), 30–45 (2006)

	15.	Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based technique for joint, lin-
ear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human 
retina. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002)

	16.	Chow, S., et  al.: Automated microscopy system for mosaic acquisition and processing. 
J. Microsc. 222, 76–84 (2006)

	17.	Saalfeld, S., Cardona, A., Hartenstein, V., Tomancák, P.: As-rigid-as-possible mosaicking and 
serial section registration of large ssTEM datasets. Bioinformatics. 26(12), 57–63 (2010)

	18.	Tsai, C.-L., et al.: Robust, globally consistent and fully automatic multi-image registration and 
montage synthesis for 3-D multi-channel images. J. Microsc. 243(2), 154–171 (2011)

	19.	Preibisch, S., Saalfeld, S., Tomancak, P.: Globally optimal stitching of tiled 3D microscopic 
image acquisitions. Bioinformatics. 25(11), 1463–1465 (2009)

5  Image Processing Algorithms

http://isda.ncsa.uiuc.edu/peter/publications/techreports/2005/meta-workflow-approaches.pdf
http://isda.ncsa.uiuc.edu/peter/publications/techreports/2005/meta-workflow-approaches.pdf
http://go.qub.ac.uk/imagej-intro


159

	20.	Argyriou, V.: A study of sub-pixel motion estimation using phase correlation. Br. Mach. Vis. 
Assoc. 17th BMVC. 1–10 (2006)

	21.	Bican, J., Flusser, J.: 3D rigid registration by cylindrical phase correlation method. Pattern 
Recogn. Lett. 30(10), 914–921 (2009)

	22.	Davis, J.: Mosaics of scenes with moving objects. In Proceedings of 1998 IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition, pp. 354–360 (1998)

	23.	Emmenlauer, M., et  al.: XuvTools: free, fast and reliable stitching of large 3D datasets. 
J. Microsc. 233(1), 42–60 (2009)

	24.	Koshevoy, P., et al.: Automatic mosaicking and volume assembly for high-throughput serial-
section transmission electron microscopy. J. Neurosci. Methods. 193(1), 132–144 (2011)

	25.	Steckhan, D., Bergen, T., Wittenberg, T., Rupp, S.: Efficient large scale image stitching for 
virtual microscopy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 4019–4023 (2008)

	26.	Chalfoun, J., Majurski, M., Blattner, T., Keyrouz, W., Bajcsy, P., Brady, M.: MIST accurate 
and scalable microscopy image stitching method with stage Modeling and error minimization. 
Nat. Sci. Reports. 7, 1–10 (2017) Available from: https://www.nature.com/articles/s41598-
017-04567-y.pdf

	27.	Blattner, T., Keyrouz, W., Chalfoun, J., Stivalet, B., Brady, M., Shujia, Z.: A hybrid CPU-GPU 
system for stitching large scale optical microscopy images. In Parallel Processing (ICPP), 
2014 43rd International Conference on, 2014, pp. 1–9

	28.	Gonzales, R., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson (2007)
	29.	Khan, W.: Image segmentation techniques: a survey. J. Image Graph. 1(4), 166–170 (2014)
	30.	Bajcsy, P., et al.: Survey statistics of automated segmentations applied to optical imaging of 

mammalian cells. BMC Bioinformatics. 16(330), 1–28 (2015)
	31.	Chalfoun, J., Majurski, M., Peskin, A., Breen, C., Bajcsy, P., Brady, M.: Empirical gradi-

ent threshold technique for automated segmentation across image modalities and cell lines. 
J. Microsc. 260(1), 86–99 (2015)

	32.	Chalfoun, J., Majurski, M., Dima, A., Stuelten, C., Peskin, A.: FogBank : a single cell seg-
mentation across multiple cell lines and image modalities. BMC Bioinformatics. 15(431), 12 
(2014)

	33.	Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative perfor-
mance evaluation. J. Electron. Imaging. 13(1), 146–165 (2004)

	34.	Chenouard, N., et al.: Objective comparison of particle tracking methods. Nat. Methods. 11(3), 
281–289 (Mar. 2014)

	35.	Bise, R., Yin, Z.Kanade, T.: Reliable cell tracking by global data association. In Biomedical 
Imaging: From Nano to Macro, 2011 IEEE International Symposium on, 2011, pp. 1004–1010e

	36.	Dasgupta, D., Hernandez, G., Garrett, D., Vejandla, P.K., Kaushal, A., Yerneni, R., et 
al.: A comparison of multiobjective evolutionary algorithms with informed initializa-
tion and kuhn-munkres algorithm for the sailor assignment problem. In: Proceedings of 
2008 GECCO Conference companion Genetics Evolution Computation – GECCO ’08, 
pp. 2129–2134. ACM Press, Atlanta (2008) Available from: http://portal.acm.org/citation.
cfm?doid=1388969.1389035

	37.	Vandecreme, A., Bajcsy, P., Ritchie, N.W.M., Scott, J.H.J.: Interactive analysis of terabyte-
sized SEM-EDS Hyperspectral images. Microsc. Microanal. 20(Suppl 3), 654–655 (2014)

	38.	Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: 
A review on deep learning techniques applied to semantic segmentation. Arxiv. arXiv(1704), 
1–23 (2017) Available from: http://arxiv.org/abs/1704.06857

	39.	Zhao, B., Feng, J., Wu, X., Yan, S.: A survey on deep learning-based fine-grained object clas-
sification and semantic segmentation. Int. J. Autom. Comput. 14(2), 119–135 (2017)

References

https://www.nature.com/articles/s41598-017-04567-y.pdf
https://www.nature.com/articles/s41598-017-04567-y.pdf
http://portal.acm.org/citation.cfm?doid=1388969.1389035
http://portal.acm.org/citation.cfm?doid=1388969.1389035
http://arxiv.org/abs/1704.06857


161© Springer International Publishing AG 2018 
P. Bajcsy et al., Web Microanalysis of Big Image Data, 
https://doi.org/10.1007/978-3-319-63360-2_6

Chapter 6
Interoperability Between Software 
and Hardware

6.1  �Hardware Options for Accelerating Computations

Introduction to Hardware and Software Interoperability
Big image data can require significant processing time. Software and hardware can be 
exploited to shorten this time. In addition to increasing microscope acquisition speed 
and exponential data growth, information technology is also rapidly advancing. To 
leverage this new information technology, one must deal with a diversity of hardware 
and software interfaces. Software must be written with hardware specifications in 
mind and must integrate with other existing software. These software engineering 
activities are driven by our goals not only to shorten computation time but also to mini-
mize the effort of building big data analytic solutions. While WIPP can be deployed on 
a variety of hardware, its execution performance will depend on the selection of that 
underlying hardware. We present next the hardware options with their pros and cons.

Advanced hardware options 
In general, advanced hardware can accelerate big data processing by minimizing the 
time for read/write operations, network data movement, and data processing. Based 
on hardware specifications, minimization of the overall execution time can be 
achieved by:

	(a)	 Keeping all data in RAM during computations instead of transferring them 
from hard drives

	(b)	 Utilizing processors with higher clock speeds to increase the number of compu-
tations per time unit

	(c)	 Using high bandwidth communication buses to decrease data transfer time
	(d)	 Parallelizing read/write, data movement, and computation operations
	(e)	 Utilizing special computational hardware that is more efficient than available 

central processing units (CPUs)
	(f)	 Using nonvolatile memory (NVM) express devices with solid-state drives 

(SSDs) for faster data access



162

To implement big data performance acceleration, there are currently four hardware 
options for principal investigators or small research teams:

	1.	 Access a supercomputer with a very large RAM, fast connectivity, and powerful 
computational nodes (CPUs and GPUs).

	2.	 Buy a high-end desktop computer with advanced hardware (large RAM, power-
ful processors, fast buses), and fully utilize this hardware for faster computation.

	3.	 Access multiple computers (either in a cluster or cloud) and exploit them in 
parallel.

	4.	 Utilize additional computer hardware (e.g., GPUs, FPGAs, or NVM SSDs) 
designed specifically for efficient computation and fast storage, and then imple-
ment custom software for this hardware.

All of the above options require integrating software and hardware by redesign-
ing existing software or designing new software to fully utilize the hardware. We 
will briefly describe each of the four options.

Access a supercomputer
The supercomputers are available to a small percentage of researchers because of 
their limited availability. The key difference between the big data and supercomput-
ing communities is the ratio of data size to the number of computations per data 
point. The primary focus of the supercomputing community is on computations 
whose results require little input data but a very large amount of computation. 
Numerical simulations are an example. The big data community, on the other hand, 
is interested in information extraction and data-driven modeling from very large 
datasets. Information extraction might not require a large number of computations 
per data point, but the number of data points is very large. Unlike information 
extraction, data-driven modeling can also demand a large number of computations 
per data point. The ratio of data size to the number of computations for big data 
computations leads us to emphasize data distribution in order to parallelize 
computations.

Buy a high-end desktop computer
One can invest in a personal computer with advanced hardware (faster processor, 
more RAM, faster disk access, etc.). This approach is expensive and is limited by 
the best available hardware. The currently available multicore processors require 
developing algorithmic implementations that can leverage them.

We illustrate this approach in Fig. 6.1 by drawing a parallel between the through-
put of big data processing and the throughput of cars on automobile highways. The 
colored cars are types of computations, and a highway lane is one processor with its 
bus connecting the processor to all needed data. Buying a multicore computer to run 
single-threaded code can be compared to paying for a multiple lane highway and 
then using only one lane. Our throughput metric is the number of computations per 
time (or number of cars per time interval). It is apparent that the software affects 
performance by defining how the big data input is handled by hardware during 
computation.

6  Interoperability Between Software and Hardware



163

Access multiple computers
Another option for accelerating big data computations is to use multiple computers 
in parallel as illustrated in Fig. 6.2 (left). This option requires designing algorithmic 
implementations together with the software that would move parts of the data and 
parts of the computations to multiple computers and then collect the results on a 
single computer. Critical components in this case are (a) the decomposition of a 
computation into steps that can be executed in parallel and (b) the partition of input 
data into chunks that are needed by each step. We will focus primarily on the 
Hadoop framework [1] for such algorithmic implementations.

Utilize additional computer hardware
The last option is to use additional specialize hardware for accelerating computa-
tions as illustrated in Fig. 6.2 (right). Special computer hardware can perform some 
computational steps more efficiently than a general-purpose CPU. Figure 6.2 (right) 

Fig. 6.1  Accelerating big data problem computations by purchasing a faster processor or by rede-
signing software and buying a computer with multiple processors

Fig. 6.2  Accelerating big data problem computations by redesigning software to run on multiple 
computers in parallel (left) or on accelerated hardware and attaching the hardware to a computer

6.1  Hardware Options for Accelerating Computations



164

shows color-coded grouping of implementations per processor (cars per highway 
lane) since each hardware acceleration including software and hardware is specifi-
cally designed to minimize execution time per computational step. Examples of 
such computer hardware are graphics processing units (GPUs) or field-programmable 
gate arrays (FPGAs). This option requires writing the algorithmic implementation 
in a language that is hardware-specific or a language that can be compiled into 
hardware-specific code. Like the multiple computer option, a critical component is 
the parallel decomposition of a computation with the accelerated hardware specifi-
cations in mind (i.e., bus speed from a computer to a card, available RAM on a card, 
etc.). The use of nonvolatile memory solid-state devices (NVM SSDs) in the form 
of standard-sized Peripheral Component Interconnect (PCI) cards might bring as 
much overall time savings as the GPUs and FPGAs because of the significant time 
spent reading and writing big image data.

6.2  �Implications of Big Data Attributes

In any big data experiment, it is beneficial to estimate the rate of image acquisition 
and the size of the image collections to be processed within a given time interval. 
These estimates allow a user to plan hardware purchases and select big data solu-
tions according to attributes of big data.

Attributes of big data
The distribution of big data across multicore processors, multiple computers, and 
multiple cards with accelerated hardware should be performed with respect to big 
data attributes. The attributes defining big data are described as four Vs and include:

•	 Volume
•	 Velocity
•	 Variety
•	 Veracity

Volume is the data size on disk measured in bytes. Velocity is the speed in which 
data can be accessed, for example, the data acquired by a microscope scanning a 
slide. Variety refers to structured or unstructured organizations of different types of 
data (e.g., structured XML key-value pairs or unstructured text from blogs). Veracity 
reflects whether the data are accurate or not (calibrated vs. uncalibrated microscope 
images, inaccurate metadata about images).

Some practitioners1 add additional attributes such as:

•	 Variability
•	 Visualization
•	 Value

1 https://www.impactradius.com/blog/7-vs-big-data/

6  Interoperability Between Software and Hardware

https://www.impactradius.com/blog/7-vs-big-data


165

These extra attributes are less frequently cited. Variability refers to inconsistent 
meaning or labeling of data, for instance, two microscopes reporting dimensions of 
a pixel as “pixel size” or “pixel dimension” (important for data integration). 
Visualization refers to conveying the meaning in a pictorial or graphical format 
rather than in a spreadsheet numerical format. Value is the ultimate measure of the 
information gain after addressing volume, velocity, variety, variability, veracity, and 
visualization.

Big data solutions
The application-specific big data attributes have implications on storage, network, 
and computational hardware specifications which lead to solutions that operate 
from the scale of an imaging lab to the scale of a large IT company. For example, by 
considering the volume and velocity attributes, a user must plan for big data storage 
that (a) can handle the current size and the data growth (scale) and (b) can provide 
a fast access to the data (the input/output operations per second (IOPS)). We will 
describe the implications of big data attributes on hardware and software at com-
mercial and imaging laboratory scales and the role of interoperability and standards 
for big data solutions.

Big data solutions at commercial scale
In a commercial space, large IT companies create hyperscale computing environ-
ments, where the term “hyper” refers to excessive and “scale” refers to data growth.2 
The hyperscale computing environment is achieved by assembling commodity serv-
ers for petabytes of data with direct-attached storage (DAS) and storage redundancy 
at the level of the entire computer/storage unit. In order to serve millions of users 
with thousands of applications, these environments are reducing storage latency by 
having Peripheral Component Interconnect Express (PCI-E) flash storage and run-
ning analytic engines like Hadoop, NoSQL, and Cassandra.

Big data solutions at imaging laboratory scale
For researchers running big microscopy image experiments, the volume attribute of 
big data is typically at the scale of terabytes, and the velocity is between 1 MB/s and 
100 MB/s (see Chap. 1, Fig. 1.6). This implies that network-attached storage (NAS) 
and clustered NAS with multiple terabyte-sized storage capacity might be sufficient 
and cost-efficient. As software for clustering NAS improves to deliver petabyte/
parallel file system capability, this solution may meet the requirements for scaling 
up (adding more disks to the same disk controllers). With the growing number of 
cloud providers, there is also an option of scaling out by creating a distributed stor-
age (requesting more nodes in the computer cloud to provide a larger aggregated 
storage). Finally, the need for collocating data with computational resources sug-
gests an option of bringing data storage and computers into one geographical loca-
tions with fast network connectivity, cooling, and sufficient power. This option is 
provided by commercial vendors and is referred to as colocation centers.

2 http://searchstorage.techtarget.com/podcast/Understanding-stripped-down-hyperscale- 
storage-for-big-data-use-cases

6.2  Implications of Big Data Attributes

http://searchstorage.techtarget.com/podcast/Understanding-stripped-down-hyperscale-storage-for-big-data-use-cases
http://searchstorage.techtarget.com/podcast/Understanding-stripped-down-hyperscale-storage-for-big-data-use-cases


166

Interoperability and Standards
The attributes of big data have been one of the main topics discussed in the NIST 
Big Data Public Working Group (NBD-PWG).3 This working group has focused on 
Big Data Definition, Big Data Taxonomies, Big Data Use Cases and Requirements, 
Big Data Security and Privacy, Big Data Reference Architecture, Big Data Standards 
Roadmap, Big Data Reference Architecture Interface, and Big Data Adoption and 
Modernization. The work of NBD-PWG has led to reports that address the interop-
erability of big data solutions ever since “the world was awash with over 800 exa-
bytes of data and growing” as estimated in 2010 by Thomson Reuters.4

6.3  �Execution Times of Computation Over Big Image Data

Response time-based classification of computations
Based on the storage considerations for the image data volume and velocity attri-
butes, one must decide on the hardware and software. Processing is classified as 
either off-line or interactive. In other words, interactive computations are expected 
to take the time of a mouse click (i.e., seconds), while off-line computations can 
take minutes, hours, and days. This classification is focused on a response time to 
user inputs. For systems designed for interactive, discovery-type, analyses, and 
image explorations, it is important to:

	1.	 Classify computations based on their execution time requirements.
	2.	 Decide on strategies to meet the time requirements.
	3.	 Support the chosen strategy by evaluations of computational complexity.
	4.	 Collect measurements of actual execution times to validate the system 

performance.

In the next two subsections, we focus on (1) meeting execution time requirements 
and (2) estimating and measuring execution time over big image data.

6.3.1  �Meeting Execution Time Requirements

Local vs. distributed computing
To meet performance requirements, analyses can be executed on a local computer 
or on a set of distributed computational nodes. For local analyses, data are trans-
ferred to a local computer, and computations are constrained to a local desktop. For 
distributed analyses, data chunks are sprayed across multiple computer cluster or 
cloud nodes. Computations are executed by processing data chunks followed by 
merging partial results into an overall result. If advanced hardware is available on 
local or distributed computational resources, then the data must be transferred to it 

3 https://bigdatawg.nist.gov/
4 http://archive.annual-report.thomsonreuters.com/2010/

6  Interoperability Between Software and Hardware

https://bigdatawg.nist.gov
http://archive.annual-report.thomsonreuters.com/2010


167

(e.g., to GPU or FPGA memory). The key aspect of these processing options is to 
co-localize big data with the most processing power. The execution time depends on 
the time to move data, the availability of processing resources, and the software 
design for fully utilizing each hardware device.

On-demand computing
Another aspect of the performance requirements is the number of concurrent users. 
Users launch computations in an unpredictable pattern on web systems like WIPP. If 
the computational resources are busy, then computations will wait in a queue and 
cause long execution times. During these “on-demand” computations, the hardware 
and software solutions must have access to additional computational resources to 
meet performance requirements. The resources could be plug-and-play hardware 
devices or new virtual machines (i.e., elasticity of cloud computing).

Client-server computing as a type of on-demand computing
In the context of client-server web systems, the web server accesses distributed 
computing resources to execute analyses (see Fig. 6.3). The resource allocation for 
distributed analyses depends on computational demands. It can be elastic as 
described above. In comparison to execution using distributed computing resources, 
local analyses can be executed on a client computer or on a main web server. The 
challenge lies in co-localizing data and processing power. For example, if images 
are already transferred to a client for visualization, then the images might immedi-
ately be processed on the client to save the time to process and move the data from 
the web server to the client. If a client does not have sufficient processing power to 
meet performance requirements, then the images may be processed on a web server 
and then transferred to a client. The choice must be made during development by 
making assumptions about the server-client transfer rates and relative comparison 
of server-client processing power. The current implementation of WIPP assumes the 
classification of computations as illustrated in Fig. 6.3.

Fig. 6.3  Interactive versus off-line and local versus distributed computations in the context of the 
WIPP client-server system

6.3  Execution Times of Computation Over Big Image Data



168

Strategies for off-line vs interactive computations in WIPP
In WIPP, all computations accessible from the Image Processing or Feature 
Extraction menus (see Fig. 6.4 left) are scheduled by the server to be executed on 
distributed computational resources. In this case, image processing is applied to the 
entire image collection and is classified as an off-line computation. On the other 
hand, computations launched inside of the Deep Zoom viewer (see filtering options 
in Fig. 6.4 right) are executed on a client computer. Client-side image processing is 
only applied to images viewed in the browser. For the most client computers that are 
running web browsers, these image filtering computations are interactive. When 
images are viewed in the Deep Zoom viewer, the web server processes all requests 
for image tiles and sends them to a web browser as users are panning and zooming. 
These computations are handled by the web server and are typically interactive 
depending on the client-server connectivity.

6.3.2  �Estimating and Measuring Execution Time

Definition of execution time
To meet execution time requirements, we need to compare multiple acceleration 
strategies based on a performance metric. We describe execution time and relative 
speedup as the two main performance metrics. The execution time is derived from 
the number of clock cycles per execution divided by the clock rate of a processor. 
For instance, if a program execution takes one million clock cycles on a processor 
with 1 MHz clock rate, then the execution time is 1 s. The speedup is derived as a 
ratio of the execution time and the reference execution time for a given computa-
tion. One could improve the speedup by using parallel programming models and 
more computational resources. We divide approaches to obtaining benchmarks for 
the two metrics into estimation and measurement categories.

Fig. 6.4  Left  – computational jobs executed by a web server on distributed computational 
resources. Right – image filtering operations executed by a web client on a local client machine

6  Interoperability Between Software and Hardware



169

Estimation of execution time
Estimation of the execution time for a given task and its algorithmic implementation 
is possible by evaluating the number of clock cycles per program execution. The dif-
ficulty lies in the mapping of complex program computations into clock cycles and 
then including other contributions to the overall execution time for the entire end-to-
end system. Such evaluations almost always involve many approximations. 
Nevertheless, according to computational complexity theory, computational prob-
lems can be classified into classes based on the estimated orders of the number of 
clock cycles per program execution. For example, if a program must process n image 
pixels and the number of clock cycles per pixel is 4, then the total number of clock 
cycles is 4n. This linear computational complexity as a function of n inputs is denoted 
as O(n) in big O notation. The big O notation hides constant factors and smaller terms. 
It is very useful for classifying problem independently of hardware specifications.

Estimation of speedup
Relative speedup measurements might be an alternative estimate of interest. Given 
the cost of advanced hardware and the amount of time spent writing parallel pro-
grams, one may want to predict expected computational speedups as a function of 
the needed investments of time and money. In the case of WIPP, the speedup for a 
deployment on a computer cluster or cloud can be predicted using Amdahl’s law [2]. 
The speedup S is defined as a ratio of the execution time on a single machine T(1) 
over the execution time on P processors being utilized in the cluster T(P) as pre-
sented in equation below:

	

S P
T

T P
P

( ) = ( )
( )

=
+ −( )

1 1
1

1α α
	

(6.1)

where α is the nonparallelizable fraction of an algorithm. Amdahl’s law assumes 
that the input data size and the amount of computation are fixed. This is typically the 
case of uploading an image collection from one experiment and processing it on a 
deployed instance of WIPP.

It is possible to redesign algorithms in WIPP as computational hardware becomes 
faster. In this case, Gustafson’s law [3] can be used instead of Amdahl’s law to fully 
exploit the improving computing power over an increasing input data size in a fixed 
execution time. Gustafson’s law is shown below with the same notation as above:

	
S P P( ) = + −( )α α1

	
(6.2)

Measurements of execution time
Finally, one can collect actual execution time benchmarks on a specific hardware 
and software configuration. There are three types of time measurements:

	1.	 Wall clock time: the observed time elapsed between the start and the end of the 
program measured by an external clock

	2.	 User CPU time: the total time used by the computer’s processor executing just 
the code of the user’s program

6.3  Execution Times of Computation Over Big Image Data



170

	3.	 System CPU time: the total time used by the processor executing kernel code 
(i.e., the core of an operating system) on behalf of the program

The kernel code is called from a program, for instance, when read or write opera-
tions are performed (also called the system calls). In a case of parallel computations, 
wall clock time is usually less than user CPU time because the program is run concur-
rently with other programs and must also be waiting for disk, network, or other devices.

Practical notes about execution time and speed-up metrics
Absolute execution time measurements are typically obtained as an average over a set 
of repeated runs, which are needed because of varying background processes running 
concurrently with the measured program. The disadvantage of absolute measurements 
is that they are hard to use for predicting execution times with different hardware and 
software configurations. If these configurations remain constant and are replicated 
across the multiple computational nodes of a cluster, then one can collect speedup 
benchmarks and use them for predictions. These benchmarks capture an execution 
time as a function of the number of nodes. They provide better understanding of com-
putational scalability and are useful for trade-off decisions between the shortest exe-
cution time and the minimum cost of computational nodes. If both software and 
hardware configurations across all computational nodes are not the same (e.g., hetero-
geneous computer cloud), then the speedup benchmarks correspond to the ratio of the 
worst-case execution time of the fastest sequential algorithm on one of the nodes to 
the worst-case execution time of the parallel algorithm on all the computational nodes.

Remark
While we have focused on execution time, we omitted the discussion about the 
amount of RAM required by a program (or space complexity). This type of analysis 
is important in the case of big image data and must be considered when choosing a 
parallel programming models and a hardware architecture. Although it is recom-
mended to collect memory benchmarks while writing a program, the space com-
plexity estimation and RAM consumption measurements were not included in the 
scope of this book.

6.4  �From Commercial Big Data Analytics to Research Big 
Image Analyses

There is a wealth of knowledge gained from building commercial big data analytic 
solutions that could be leveraged when designing big microscopy image analytic 
solutions. To learn from them, one can take the following steps:

•	 Narrow down big data attributes (4 to 7Vs) in commercial applications to those 
in microscopy imaging laboratories.

•	 Extract basic and advanced design considerations.
•	 Apply the design considerations to the design of big microscopy image analyses.

We describe these steps in the rest of this section.

6  Interoperability Between Software and Hardware



171

Microscopy image attributes
For microscopy imaging laboratories, image collections are typically of the order of 
terabytes with velocity about 100 MB/s, and variety is represented by file formats, 
imaging instruments, and imaged specimens. Veracity is present in microscopy 
images due to manually selected microscope settings and many calibration proto-
cols. The key characteristic of images is that they have always spatial grid structure 
as opposed to unstructured data (ignoring for now image annotations) occurring in 
many commercial big data sets.

Basic design considerations
As commercial solutions address big data analytics for all big data attributes, basic 
general design considerations can be observed in all big data solutions.

•	 Solutions must be modular in terms of hardware and software because data attri-
butes, algorithms, and hardware specifications change all the time and modules 
must be replaced/upgraded (i.e., survivability).

•	 Software must utilize hardware to its maximum but also must handle hardware 
failures (i.e., utilization and profit including redundancy and reliability).

•	 Solutions should support creating processing workflows (i.e., flexibility via func-
tional reconfiguration).

•	 Data must have identifiers, immutability, and introspection (i.e., data persistence. 
The data elements are found using unique identifiers, are stored in perpetuity, 
and can describe themselves in terms of content and relationships [4]).

•	 User interfaces to installation and operation aim at “zero installation time” and 
“zero user interface” (i.e., minimum barrier for users).

Additional design considerations
Beyond the basic consideration, big data analytic solutions must also have:

	(a)	 Data access management and tools for data de-identification for information 
privacy

	(b)	 Data format standards and tools for format transformations (legacy data)
	(c)	 Data quality and tools for data cleaning
	(d)	 Data reduction and tools for such transformations
	(e)	 Performance verification and the tools for integrity of data and correctness of 

functionalities
	(f)	 Software and hardware interoperability and the tools for verifying interopera-

bility of replaced components
	(g)	 Data preservation

Depending on application-specific requirements, these considerations should be 
included in a solution design.

Applying basic design considerations
WIPP has incorporated some of these design considerations. The software consists 
of modules, such as the Pegasus scientific workflow for integrating algorithms and 
HTCondor for utilizing multiple computers. Each image collection, intermediate 
data product, or computational job is associated with a unique identifier. Once an 

6.4  From Commercial Big Data Analytics to Research Big Image Analyses



172

input collection is locked before computation, it becomes immutable. A simple 
query to a database provides information about any collection or executed job. To 
meet the “zero installation time,” a Docker container is used for packaging and 
deploying the software (and Docker swarm on multiple machines). The “zero user 
interface” requires more inputs from a community of users and has been imple-
mented so far for the traditional mouse and keyboard devices. Future modifications 
to WIPP will also address specific additional design considerations.

Incorporating a spectrum of application-specific hardware and software consid-
erations is not trivial. We selected three parts of big image analytic solutions that are 
of concern to users, algorithmic contributors, and web system developers:

	1.	 Human interface: how to interface human inputs and interactions with the output 
of a big image data solution

	2.	 Storage and data structures for big images: how to organize and store large vol-
umes of complex image data

	3.	 Parallel computations: how to break image computations into task- and data-
parallel components

We will focus in the rest of this chapter on these key parts of a client-server solu-
tion for processing big images.

6.5  �Human Interfaces for Big Image Data Analytics

Spectrum of User Interfaces
We start with the human interface to big data solutions because humans are the most 
important part of any scientific discovery. Users come with different levels of IT 
knowledge and experience with software tools. They also pursue multiple goals by 
executing a sequence of computations. Depending on the user’s knowledge, experi-
ence background, and goals, user interface (UI) requirements for big data solutions 
might include:

	(a)	 Predefined menus and buttons for configuring and executing computations
	(b)	 Scripting and plugin templates for automating computations
	(c)	 Application programming interfaces for integrating new functionality
	(d)	 Application programming interfaces for replacing or adding modules to the 

entire system (i.e., image processing module, feature extraction module, or 
machine learning module)

The above UIs can also be classified as:

	1.	 Graphical user interfaces (GUIs)
	2.	 Command-line interfaces (CLI)
	3.	 Application programming interfaces (APIs)

The large variability in user interface requirements implies that a big data solu-
tion cannot just have one type of interface for all users.

6  Interoperability Between Software and Hardware



173

User interfaces in client-server systems
In client-server systems, the user interfaces (UIs) are on both client and browser 
sides. We will focus only on a client-side GUI consisting of predefined menus and 
buttons for configuring and executing computations. The client-side GUIs can be 
customized by researchers who are knowledgeable about HTML5, CSS, and 
JavaScript. These UIs are of interest since the reader is assumed to be interested 
with the easy-to-use aspects of web systems like WIPP. We also provide an example 
of the GUI design process for the web statistical modeling tool.

6.5.1  �Focus on Client-Side Graphical User Interfaces

GUI elements
The objective of GUI design is to present interface elements that are easy to use, 
access, and understand to facilitate the above activities. The interface elements can 
be classified as follows5:

	1.	 Input controls (e.g., execution launch via buttons; selection via radio buttons, 
checkboxes, drop-down lists).

	2.	 Navigational components (e.g., page navigation via breadcrumb or pagination, 
search via search field, sequence navigation via slider or icons).

	3.	 Informational components (e.g., short description via tooltips or modal win-
dows, status of computation via progress bar and icons, warning and error reports 
via notifications or message boxes).

	4.	 Containers (e.g., toggle between hiding and showing multiple functionalities or 
large amount of content: via accordion in JavaScript, encapsulating image and 
processing functionality via JFrame using Java Swing library).

To meet the objectives of GUI design, these elements must be integrated following 
concepts from interaction design focused on interactive digital products and ser-
vices, visual design concentrated on print or electronic forms of visual information, 
and information architecture concerned with organizing and labeling online sites 
and software to support usability and findability.

GUI design
GUI design anticipates user intentions. For WIPP, the client-side GUI assumes that 
users intend to:

	(a)	 Uploading and downloading data
	(b)	 Searching for image collections and other data types
	(c)	 Selecting and configuring computations to launch on a server
	(d)	 Browsing results of computations
	(e)	 Viewing big images
	(f)	 Selecting and configuring computations to launch on a client while viewing big 

images

5 https://www.usability.gov/what-and-why/user-interface-design.html

6.5  Human Interfaces for Big Image Data Analytics

https://www.usability.gov/what-and-why/user-interface-design.html


174

With a list of anticipated use cases, best practices for designing GUI can be put 
in place to address simplicity, consistency, use of color and texture, layout, and 
typography to assure legibility and readability.

6.5.2  �Example of GUI Design for web Statistical 
Modeling Tool

GUI design for web statistical modeling tool
Let us consider a GUI design for the web statistical modeling tool described in 
Chap. 2, Sect. 2.4. A user wants to derive a statistical probability distribution func-
tion (PDF) model from cell colonies that have been segmented from a sequence of 
gigapixel images and described by a set of cell colony measurements (features). The 
user interface should allow the following actions:

	1.	 Selecting an imaging channel
	2.	 Selecting a colony feature
	3.	 Defining number of histogram bins
	4.	 Filtering data considered for modeling by their spatial location
	5.	 Filtering data considered for modeling by their feature value
	6.	 Computing and showing statistics of selected and filtered data
	7.	 Suggesting PDF model type
	8.	 Computing and showing PDF model parameters
	9.	 Saving the final histogram with traceable hyperlinks for each cell colony to its 

persistent source

In this example, the functionality is divided into parameter selection (1–3), spatial 
filtering (4), feature filtering (5), statistical modeling (6–8), and publication (9). The 
GUI design for parameter selection is implemented using input controls, such as 
drop-down menus, an edit box, and a spinner. The rest of the functionality is encap-
sulated in an accordion type of a container (see Fig. 6.5). Within the accordion, all 
statistical modeling and publication functions are launched using input controls, 
such as buttons with icons, which are followed by informational components, such 
as message boxes, images, and tooltips. In contrast, all filtering functions are using 
either slider bars for feature values or an image viewer for cell colony locations 
shown with color-coded markers based on a feature value.

General challenges in GUI design
Perhaps, one of the most general challenges in GUI design is the limited size of 
device displays. Depending on the stage of user’s activities (selecting parameters 
filteringstatistical modeling), different information is more (or less) important to 
users for making their decisions. Thus, the GUI could reallocate the use of display 
size depending on the activity which was achieved by an accordion element (hiding 
and showing input controls) in the example above. This concept has also been 
implemented in the design of integrated development environments (IDEs) where 

6  Interoperability Between Software and Hardware



175

switching, for example, between programming, debugging, and searching activities, 
triggers new layouts.

Specific challenges in GUI design for big image data
Specific challenges in big image data arise when showing information for spatial 
and feature filtering since there is no display size that could accommodate gigapixel 
images and thousands of feature histograms with sliders (see Fig. 6.6). For spatial 
filtering, one must adopt multi-resolution representations of gigapixel images to 
enable pan and zoom. For feature filtering, one can use a scroll bar to view feature 
histograms beyond those that fit on a finite display.

Fig. 6.5  GUI of web statistical modeling tool with the accordion type of a container (left) and a 
canvas for display (right)

Fig. 6.6  Filtering challenges in the web statistical modeling tool in terms of display size

6.5  Human Interfaces for Big Image Data Analytics



176

6.5.3  �Summary

In summary, GUI design for big image data must address both general and specific 
design challenges and incorporate all basic design principles. The interactivity 
aspects of GUI design must be understood in the context of the requested computa-
tions to be completed. For example, image thresholding computations requested 
over a TB-sized image might take more than a mouse click, while the same compu-
tation over a MB-sized image could be completed within the interactive time defini-
tion. This implies that a GUI design for visual optimization of a threshold parameter 
over a MB-sized image would have an interactive interface (click and render result). 
In comparison, a GUI design for the same computation over a TB-sized image 
would have an interface that consists of unique identifiers to check the status of the 
computation completion (i.e., status message or hour glass per unique identifier) 
and an interface to retrieve its results. Finally, a GUI design can become very com-
plex software (see the source code for Web Deep Zoom Toolkit6), and therefore 
modularity of the code should also be considered.

6.6  �Storage and Data Structure for Big Images

We described the pyramid representation as a data structure for big images in Chap. 
4 (Representation of Large Images). We mentioned heterogeneity of image pyra-
mids in terms of their file formats. Here we provide a broader perspective on storage 
layouts for big images and their data structures in RAM.

6.6.1  �Storage for Big Images

Types of storage layout 
We are concerned with storing a very large image on a disk, reading and writing its 
image content efficiently, and preserving all information accompanying all images 
acquired by a microscope and all information generated during image processing. 
To achieve maximum performance with big images, one must understand multiple 
types of storage layouts and their impact on the end-to-end execution time. 
Figure 6.7 illustrates (1) disk, (2) file storage, (3) image pixel, and (4) pixel byte 
layout options. We elaborate next on each storage layout option.

Disk storage layout
Big images can be stored on disk(s) in:

	1.	 A single file
	2.	 Multiple files stored as a set of folders on a file system (i.e., the multi-resolution 

pyramid representation)
	3.	 A database

6 https://github.com/usnistgov/WebDeepZoomToolkit

6  Interoperability Between Software and Hardware

https://github.com/usnistgov/WebDeepZoomToolkit


177

In any big image experiment, it is very likely that at least two of these storage types 
will be used. The reason lies with the fact that to the best of our knowledge, all 
microscopes store acquired FOVs in a single file. If the acquired files are prepro-
cessed for visualization on the web, then they are likely stored on a file system or in 
a container file format. If the acquired files are analyzed, then they are likely stored 
in a database with the image measurements. It is also very likely that an acquired 
image will change not only its storage type but also its file format at some time 
point. This is due to (1) a large spectrum of single file formats for storing images 
acquired by a variety of microscopes and (2) the multiplicity of visualization and 
analytical goals that an image might support during discovery. Preserving all infor-
mation during these storage and format conversions is very important for traceabil-
ity and reproducibility of imaging experiments.

Single file storage
The most commonly used single file formats in microscopy are Adobe TIFF (Tagged 
Image File Format) and HDF5 (hierarchical definition file, version 5). Both formats 
have open-source implementations of libraries for reading and writing files. The 
TIFF specification is described in the 6.0 specification [5], and its implementation 
in C programming language is available online.7 The HDF5 specification and its 
implementation in C programming language are maintained by the HDF group.8

TIFF (single file storage)
For files in TIFF format, the topic of preserving information in a single file has been 
addressed by converting TIFF files into a standard Open Microscopy Environment 
(OME) representation (see Chap. 5, Loading Images Using OME Bio-Formats 
Library). The TIFF files acquired by a microscope are stored in OME-TIFF9 format 
using the Bio-formats library10 developed under the umbrella of the Open 
Microscopy Environment consortium. The topic of TIFF storage size has been 

7 http://libtiff.org/
8 https://support.hdfgroup.org/products/
9 http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html
10 http://www.openmicroscopy.org/site/support/bio-formats5.4/

Fig. 6.7  Options of storage layouts for image content. The image pixel layout abbreviations stand 
for Band interleaved by pixel (BIP), Band interleaved by line (BIL), and Band sequential (BSQ)

6.6  Storage and Data Structure for Big Images

http://libtiff.org
https://support.hdfgroup.org/products
http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html
http://www.openmicroscopy.org/site/support/bio-formats5.4


178

recognized as an issue in the past because the format has a limit on the stored file 
size of less than 4 Gibibyte or GiB (4.294967296 × 109 bytes). This limit is due to 
the 32-bit offset in the TIFF file formats.11 To overcome this limit of TIFF file for-
mats, the BigTIFF file format specification with 64-bit offsets was introduced in 
2007, and the TIFF library called LibTIFF was upgraded as of its version 4.0.12 
Similar issues arose in the past with the number of bits per pixel (BPP). While the 
original TIFF format supported only 2, 8, and 16 BPP, the format has been extended 
to support 32 BPP based on the need of many geographical mapping agencies using 
geospatial information systems (GIS). Although the LibTIFF library (version 4.0) 
has the support for 64-bit offsets and 32 BPP, many image processing packages still 
contain older versions of LibTIFF and hence have only support for the 4 GiB lim-
ited TIFF format and the pixel depth up to 16 BPP.

HDF5 (single file storage)
For files in HDF5 format, information associated with images is preserved by adding 
the OME metadata to the HDF5 container (e.g., by using the Bio-Formats library). 
Due to the popularity of HDF5 for storing very large files, research and commercial 
communities have built several programming and scripting interfaces to HDF, for 
instance, API from Java, Python, R, Fortran, lmaris,13 or MATLAB.14 The HDF5 
format comes with a data model and a library as described in [6]. In terms of HDF 
file storage size, there is no limit.15 However, there is a limit of 32 dimension datas-
paces (number of bands or channels). In terms of reading and writing speed, HDF5 
format contains serial and parallel HDF5 code, and the choice is selected when 
building HDF5. The key feature of parallel HDF5 is that certain groups of functions 
must be called collectively if the data value on a target storage node will be modified. 
Parallel HDF5 can be optimized to maximize the access to image content. The opti-
mization of parallel HDF5 includes setting HDF5 parameters (e.g., chunk size and 
dimensions), MPI I/O parameters (e.g., the block size and the number of target nodes 
to be used for collective buffering file access), and parallel file system parameters 
(e.g., the size of the striping unit and the number of I/O devices to stripe across).

Storage in a set of folders on a file system
In the case of a single file storage, some file formats can store multiple images and/
or image chunks. In contrast, storage of multiple images in a set of well-organized 
folders might be sometimes more efficient. For example, image pyramid representa-
tion can be stored in a set of folders labeled by the pyramid level as illustrated in 
Fig. 6.8. When accessing image content, the file path can be automatically gener-
ated according to the zoom level that corresponds to the folder name. For instance, 
the folder name 0 refers to low magnification images, and the name 13 refers to high 
magnification images in Fig. 6.8. The files are consistently named per their grid 

11 https://en.wikipedia.org/wiki/TIFF
12 http://www.simplesystems.org/libtiff/
13 http://www.bitplane.com/imaris
14 https://www.mathworks.com/
15 https://support.hdfgroup.org/HDF5/faq/limits.html

6  Interoperability Between Software and Hardware

https://en.wikipedia.org/wiki/TIFF
http://www.simplesystems.org/libtiff
http://www.bitplane.com/imaris
https://www.mathworks.com
https://support.hdfgroup.org/HDF5/faq/limits.html


179

position (e.g., 0_3.png corresponds to 0th row index and 3rd column index) and 
hence can be retrieved from the file system efficiently. In this case, we’ve used the 
file png format because it is supported by the majority of web browsers.16

Database storage
The most common solution for storing big images is to use a file system for storing 
image chunks and a database for storing indices pointing to the image chunks. Other 
solutions depend on the size of image chunks, the read/write ratio, and the disk/
memory ratio relative to the read/write ratio. If both, large image chunks and their 
indices, are stored within a database, then the database introduces an overhead by 
compacting the index look-up table (requires movement of data), accessing data 
from a fragmented index table (requires inline storage of image chunks in a base 
table row), and creating many replicates (e.g., log files and database entries, redun-
dancy of immutable data in Hadoop Distributed File System).

File storage layout
The storage layout defines how the pixel values are physically stored on disk. We 
use the TIFF and HDF5 file formats to explain multiple file storage layouts. For 
example, HDF5 supports three storage layouts:

	1.	 Contiguous
	2.	 Chunked
	3.	 Compact17

16 https://en.wikipedia.org/wiki/Comparison_of_web_browsers
17 https://support.hdfgroup.org/HDF5/Tutor/layout.html

Fig. 6.8  Example of pyramid representation storage in a set of folders on a file system

6.6  Storage and Data Structure for Big Images

https://en.wikipedia.org/wiki/Comparison_of_web_browsers
https://support.hdfgroup.org/HDF5/Tutor/layout.html


180

Contiguous refers to the pixel values stored in one contiguous block of the HDF5 
file. In comparison, chunked denotes pixels being stored in equal-sized contiguous 
blocks (chunks of a predefined size) together with a chunk index to keep track of 
their association with a dataset. Compact storage layout was designed only for small 
datasets that can be stored in the HDF5 header of the dataset.

In comparison, TIFF supports contiguous and chunked storage layouts. The key 
difference is with the chunked layout type where the TIFF tags (RowsPerStrip, 
StripOffsets, and StripByteCounts) encode separate image strips rather than rectan-
gular image blocks. Otherwise, compressed or uncompressed image data can be 
stored almost anywhere within a TIFF file. The chunked storage layout is the most 
important layout type for efficient big image input/output (I/O) operations.

Image pixel layout
Image pixel layout can affect the speed of I/O operations. There are three main 
image pixel layouts:

	1.	 Band interleaved by pixel (BIP)
	2.	 Band interleaved by line (BIL)
	3.	 Band sequential (BSQ)

These image pixel layouts are schemes for storing multispectral 2D images and 
their pixel values in a file or in a memory. The three layouts are illustrated in 
Figs. 6.9, 6.10, and 6.11.

The choice of an image pixel layout depends on the expected image manipula-
tions. For example, the BIP layout is optimal for computing a weighted sum of spec-
tral values at each pixel (spectral analysis). The BSQ scheme is optimal for performing 
spatial filtering on a single spectral band (spatial analysis). The BIL layout can be 
viewed as a compromise format for easy access to both spatial and spectral informa-
tion. All image pixel layouts can accommodate any number of spectral bands.

Fig. 6.9  Band interleaved by pixel (BIP) layout of image pixels

Fig. 6.10  Band interleaved by line (BIL) layout of image pixels

6  Interoperability Between Software and Hardware



181

Pixel byte layout
Each pixel is associated with a value represented by 2, 8, 16, 32, or 64 bits per pix-
els. During network transmission, byte order is important for values represented by 
more than 8 bits (1 byte = 8 bits). There are two sequential byte orders: little-endian 
(least significant bits first) and big-endian (most significant bits first). For example, 
the number 5 would be binary-encoded using 16  BPP as 0000 0101 0000 0000 
using big-endian and 0000 0000 0000 0101 as little-endian. The two sequential 
orders have implications on storage and are encoded in the file’s metadata section.

6.6.2  �Data Structures for Big Images

Data structures are the representations of images in RAM. Due to the finite size of 
RAM, we categorize big image data structures based on the ratio of RAM size to 
image size. We will briefly mention images with more than two dimensions (denoted 
as 2D+) and their pyramid representations. WIPP supports 2D+ image collections of 
videos and spectral sequences with gigapixel 2D images (i.e., XY + time or XY + λ).

Images smaller than available RAM
If an image can fit into RAM, then it can be represented as a multidimensional array 
of values. Because many image operations require accessing all the pixels using 
programming language looping constructs, a one-dimensional array is an efficient 
representation for high-dimensional images. In the body of the loop, subsequent 
pixels are accessed by incrementing an index, which is more efficient than calculat-
ing the position of the next pixel from the row, column, and band values. For 

Fig. 6.11  Band sequential 
(BSQ) layout of image 
pixels

6.6  Storage and Data Structure for Big Images



182

example, if the image is in the BIP layout, then a pixel value at the location [row, 
column] is computed as

	

pixel indexat row,column number of columns row column
n

[ ] = × +( )
× uumber of bands band+ 	

(6.3)

Images larger than available RAM
If an image cannot fit in the available RAM, then it must be represented as a combi-
nation of multidimensional arrays with the indices defining location in relative to 
the current big image sub-array. This representation can be viewed as a coordinate 
transformation from a 2D Cartesian system (i.e., big image rows and columns) to a 
4D or 5D Cartesian coordinate system that enables access to image subareas that fit 
in RAM.  The 4D Cartesian coordinate system consists of a set of small images 
(chunks) with a corresponding position vector for their coordinates in the big image. 
In other words, the 4D system contains one set of 2D coordinates giving the position 
of a small image tile in a regular or irregular grid and the other set of 2D coordinates 
referring to a pixel position inside of a small image tile. The 5D Cartesian coordi-
nate system consists of a multi-resolution pyramid of small images (tiles). It can be 
viewed as a location in a stack of 4D Cartesian coordinate systems (or a 5D pyra-
mid) where the fifth dimension is the resolution. This representation has been 
proven to be very efficient for big 2D images.

2D+ images
In practice, microscopy images are not more than two-dimensional. However, 
microscopy experiments over a large FOV can generate time-lapse images (e.g., 
XY  +  time videos from phase contrast microscopes), high-dimensional spectral 
images (e.g., XY + λ data from coherent anti-Stokes Raman microscope or scanning 
electron microscope with energy-dispersive X-ray spectrometry), confocal z-stack 
images (e.g., XYZ data from confocal laser scanning microscope), or a combination 
of time-lapse, spectral, and z-stack images (e.g., XYZ + λ data from confocal z-stack 
images with more than three fluorescent channels or XYZ + time video from confo-
cal laser scanning microscope).

Pyramids for 2D+ images
We can view these high-dimensional terapixel images as a set of 2D cross-sectional 
images. If we decompose 3D+ images into 2D cross sections, then we can use a 
pyramid representation suitable for big 2D images. These 2D cross sections can be 
represented as an ordered set of multi-resolution pyramids using one pyramid per 
2D cross section with the order defined by the third dimension. To enable fast ren-
dering and processing, one may have to generate three sets of pyramids that corre-
spond to the three orthogonal 2D cross sections per one large 3D volume (image). 
For example, for a 3D image with XY + time dimensions, one would generate sets 
of pyramids for {XY}, {X + time}, and {Y + time}. This representation works well 
for XY + time or XY + λ images where oblique views are not meaningful for visual 
inspection. However, this representation might be limiting for 3D images with XYZ 
dimension images because the oblique views are important for data explorations.

6  Interoperability Between Software and Hardware



183

6.6.3  �Summary

In the design of a big data analytic solution, there are many decisions about big 
image storage and representation that determine image content access efficiency. It 
is possible to optimize the design for a given set of big image analyses with a well-
defined pattern of accessing image content. Given hardware specifications (RAM, 
disk, and bus), optimal parameters can be determined in terms of pixel byte, image, 
file, and disk storage layouts as well as data structures. In practice, it can be difficult 
to predict image content access patterns and anticipate the hardware used. While 
this unpredictability can explain suboptimal image analytic software performance, 
it also highlights the importance of considering application requirements and usage 
patterns when making software design decisions.

6.7  �Parallel Computations Over Big Image Data

Software development for big data must address three problems:

	1.	 Algorithmic design to automate processing
	2.	 Integration of heterogeneous algorithms into software systems to leverage exist-

ing software investments
	3.	 Algorithmic implementations that integrate software and hardware

The last problem of integrating software with distributed hardware resources is 
the topic of parallel computing research. We provide a high-level classification of 
parallel programming models and briefly describe each model.

Parallel computing
The basic premise for accelerating big data image computations is that (a) the 
images can be divided into smaller tiles and (b) the computations can be divided 
into smaller functional tasks that are then applied in parallel to the smaller image 
tiles (image data and functional decompositions). Parallel execution accelerates cal-
culations by utilizing multiple computational resources but comes with the cost of 
additional hardware resources and of writing the software specific to a hardware 
architecture.

Classification of parallel programming models
The several commonly used parallel programming models abstract hardware and 
memory architectures and provide different programming approaches. Parallel pro-
gramming models18 that are derived from computer architectures include:

	1.	 Shared memory model (without or with threads)
	2.	 Distributed memory model with Message Passing Interface (MPI)
	3.	 Partitioned Global Address Space (PGAS) model with data parallel decomposition
	4.	 Hybrids of the above

18 https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

6.7 � Parallel Computations Over Big Image Data

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis


184

Parallel programming models can be divided into two broad categories based on 
their structural granularity of their parallel programs:

	1.	 High-level granularity
	2.	 Algorithmic-level granularity

These categories can be further subdivided. Those with high-level granularity 
have been divided into:

	1.	 Single program multiple data (SPMD) model
	2.	 Multiple program multiple data (MPMD) model

while those with algorithmic-level granularity19 can be further classified as:

	1.	 Data parallel model
	2.	 Master-agent model
	3.	 Task graph model
	4.	 Task pool model
	5.	 Producer-consumer model
	6.	 Hybrid model

These categories might be overwhelmingly complex for a WIPP user and some-
what complex even for a developer of WIPP algorithms since they require basic 
understanding of hardware and software.

In this chapter, our approach is to introduce the WIPP developers of algorithms 
to parallel programming models at the algorithmic-level granularity and incorporate 
their knowledge about the hardware used for running WIPP in their algorithmic 
design. We assume that a reader is familiar with a hardware architecture running 
WIPP which typically includes RAM, CPUs, communication buses for exchanging 
data, and pluggable graphics processing units (GPUs). Next, we will briefly describe 
each of the algorithmic-level models applicable to such hardware architectures in 
the context of image processing.

6.7.1  �Data Parallel Model

This model is based on dividing images into smaller regions and applying the same 
processing to each region on a separate hardware resource (i.e., a computational 
node). The most difficult aspect is determining the image partition strategy that will 
colocate each computation with its needed data [7]. To illustrate the difficulty, we 
list a few spatial image computations in Table 6.1 as examples motivating different 
partition strategies. For instance, if computations operate on a single pixel (e.g., 
thresholding that has no spatial overlap with the computation of a neighboring 
pixel), then image partition can be based on either physical location of a pixel in a 
file or logical location of a pixel in an image. However, if computations operate on 

19 https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_models.htm

6  Interoperability Between Software and Hardware

https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_models.htm


185

a pixel neighborhood (e.g., kernel-based), then the image partition strategy should 
be based on logical location of pixels.

Example
As a specific example, Fig. 6.12 numerically evaluates the advantages of logical 
partitioning for the case of spatial averaging over 3 × 3 pixels with overlapping four 
image regions. The computation is illustrated for a number of computational nodes 
N equal to one (middle), two (left), and four (right). The comparison across an 
increasing number of nodes shows how the decreasing numbers of CPU cycles and 
the pixel load operations to RAM are counterweighted by an increasing number of 
communications (send and retrieve operations).

Fig. 6.12  Examples of image partitioning for spatial averaging over 3 × 3 pixels for one (middle), 
two (left), and four (right) distributed computational nodes

Table 6.1  Subdivision of spatial image computations and its relevance to image partition

Types of spatial 
computations: examples

Input image 
region Overlap type

Desired image 
partition

Input to logical 
partition

Pixel-based: 
Thresholding

Fixed size No overlap Physical or logical 
without overlap

None

Kernel-based: 
Convolution

Fixed size With overlap Logical with 
overlap

Kernel area  
size

Segment-based: Feature 
extraction

Variable 
size

No overlap Logical without 
overlap

Mask

Bounding box based: 
Background correction

Variable 
size

With overlap Logical with 
overlap

Bounding  
boxes

6.7  Parallel Computations Over Big Image Data



186

Practical notes
The partitioning can be performed by horizontal and vertical image cuts. To avoid 
any exchange of pixels between nodes during runtime, the cuts are made in such a 
way that there is redundancy while spraying pixels across computational nodes. The 
goal is (a) to avoid the communication overhead between nodes and the storage area 
network (SAN) or network-attached storage (NAS) where the data is stored and (b) 
to mitigate the impact of node failure rates of large computer clusters.

6.7.2  �Master-Agent Model

The master-agent model is based on introducing a hierarchy of computational nodes 
to divide the work into (a) “generating” computational jobs and (b) executing the jobs. 
Figure 6.13 illustrates the master-agent model. The word “generate” refers to decom-
posing a workflow to individual tasks, collecting data needed for each task in a case of 
distributed memory, and assigning and transmitting data to agents. One or more mas-
ter processes manage the computational jobs by delegating them to agent processes so 
that they are executed in the shortest time, a difficult process known as “load balanc-
ing.” The load-balancing strategy can consider more than the agent utilization. For 
instance, other potential factors to consider are data throughput times, agent reliabil-
ity, past agent execution times, and the patterns of incoming computational tasks.

Job scheduler to execute load balancing
The software that implements load balancing is called a job scheduler or a distrib-
uted resource manager. Job scheduling is concerned with assigning computational 
jobs to computational nodes which is distinct from operating system process sched-
uling concerned with assigning running processes to CPUs. The input to a job 
scheduler is a job queue which contains job information. Job schedulers are fre-
quently embedded in scientific workflow systems, such as the Pegasus workflow 
system used by WIPP. The workflow for a sequence of computations also defines 
task dependencies that are utilized in master-agent models and in job schedulers.

Hadoop example of a master-agent model
An example of the master-agent model is the Apache Hadoop framework,20 which 
is designed for storing data and running big data computations on computer clusters 
and clouds consisting of commodity hardware. Data storage is supported by the 
Hadoop Distributed Filesystem (HDFS) which uses the master-agent model. In this 
model, one cluster node (labeled as NameNode) manages file system operations, 
and a set of agents (labeled as DataNodes) manages data storage on their individual 
cluster nodes. When NameNode sprays data blocks across DataNodes, the blocks 
are replicated multiple times. The defaults are 64 MB blocks with two replicates. If 
a DataNodes fails, then the NameNode finds the replicates elsewhere in the cluster, 

20 https://hadoop.apache.org/docs/r2.7.1/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html#Mapper

6  Interoperability Between Software and Hardware

https://hadoop.apache.org/docs/r2.7.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Mapper
https://hadoop.apache.org/docs/r2.7.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Mapper


187

allowing the computation to be restarted on a different computational node while 
the operator replaces the failed hardware.

Map-reduce implementation
Several WIPP image processing algorithms have been evaluated using Hadoop 
implementations [8]. The computation with Hadoop is based on the MapReduce 
programming paradigm [1]. We will explain the MapReduce programming para-
digm using a simple two-node cluster to perform an image intensity histogram cal-
culation. We start by assuming that image pixels have already been sprayed across 
HDFS and each node has a subset of the image pixels, as illustrated in Fig. 6.14.

Map function
The image intensity histogram calculation starts with a Map function that computes 
frequency count for each intensity value over an allocated set of pixels. This Map 
function can be viewed as a transformation of pairs from one space to another space; 
the Map transforms a list of pairs (K1 = pixel location, V1 = intensity) to another list 
of pairs (K2 = intensity value, V2 = frequency count). Once executed, Hadoop will 

Fig. 6.13  Master-agent model and its hierarchy of computational nodes

Fig. 6.14  Simple illustration of MapReduce programming paradigm utilizing two computational 
nodes

6.7  Parallel Computations Over Big Image Data



188

exchange groups of entries between the available nodes as illustrated in Fig. 6.14 by 
“partition” and “sort” operations along with the Hadoop shuffling operation. In our 
example, Hadoop will create Group 1 that has K2 in [0, 128] and Group 2 that has 
K2 in [129, 255]). Then, Node #1 sends Group 2 to Node #2 and Node #2 sends 
Group 1 to Node #1.

Reduce function
A previously written Reduce function merges the entries with the same K2 value 
and saves the resulting counts in HDFS. After the Reduce function, the image his-
togram counts can be retrieved from HDFS.

Additional functions
Hadoop allows for more direct control with several classes. A Hadoop Comparator 
object can be used to specify the grouping during the shuffling operation, a 
Partitioner object can determine the Reducer node for a set of K2 keys, and a 
Combiner object can decrease the number of shuffled bytes by determining the local 
aggregation of the intermediate Map.

Notes
As with any other distributed computing software, users must optimize a number of 
parameters, such as HDFS block size, replication ratio, Hadoop process RAM allo-
cation, number of Map and Reduce instances, and the encryption method for data 
transfers. Parameter optimization and the computational decomposition into Map 
and Reduce tasks are the most significant challenges for using systems like Hadoop. 
Nevertheless, the MapReduce paradigm has been successful for storing and pro-
cessing commercial big data.

6.7.3  �Task Graph Model

The task graph model describes a computation as a directed task graph formed by a 
collection of vertices denoting atomic tasks and directed edges describing data 
movement. An atomic task is a logically discrete section of computation in a pro-
gram that is executed by a processor. A task graph-based parallel algorithm consists 
of atomic tasks running on multiple processors or computational nodes. All compu-
tations are executed by traversing the task graph by following the directed edges. A 
graph is a directed acyclic graph (DAG) if there are no paths that start at a vertex, 
follow a sequence of directed edges, and return to the starting vertex. Figure 6.15 
shows an example of DAG with eight atomic tasks T1–T8. Programs that can be 
represented by a DAG are characterized by useful properties, for instance, a reach-
ability relationship. In Fig. 6.15, we illustrate the reachability relationship with ver-
tex T8 reachable from the vertex T1 (T1 ≤ T8) if there is a path from T1 to T8.

Practical use task graph models
Practical applications of task graphs include task scheduling, dataflow program-
ming, and management of software revision history and its versions. This 

6  Interoperability Between Software and Hardware



189

programming model is recommended for computations where the transfer time of 
moving data is larger than the total time needed for the number of computations 
associated with the data tasks. In this case, the task graph structure can be optimized 
to lower the data movement cost between the tasks. The most difficult aspect of 
implemented task graphs is the decomposition of computations into atomic tasks, 
identifying task synchronization and communication dependencies, and the cre-
ation of the directed task graph. For example, the color coding of vertices shown in 
Fig. 6.15 can be used for assigning tasks to three computational resources assuming 
that all tasks require the same amount of time to complete. The assignment becomes 
complicated when the computational resources and tasks are heterogeneous in 
terms of CPU power, RAM, data needs, and computational complexity (i.e., the 
assignment becomes a load-balancing problem).

6.7.4  �Task Pool Model

The task pool model can also be thought of as a type of task graph model. It is based 
on dynamic assignment of tasks to the computational nodes to balance the load. 
There is an advantage to creating a pool of tasks when the task completion time is 
unpredictable or varies significantly. The model consists of the implementations of 
a master and agent processes. The master generates and holds a pool of tasks, sends 
tasks to agents upon request, and collects the results. The agents request and receive 
tasks from the master, execute the tasks, and return the results to master. If the pool 
of tasks is generated dynamically, then a method of detecting termination is required 

Fig. 6.15  Example of a directed acyclic graph with eight tasks

6.7  Parallel Computations Over Big Image Data



190

so that all agents stop requesting tasks when the supply is exhausted. The number of 
tasks executed by each computational resource will depend on its speed of execu-
tion because there is no preassignment of tasks.

Practical notes
The task pool model is used when the amount of data associated with each task is 
small and therefore the communication time overhead in sending tasks and receiv-
ing results is smaller than the total time needed for computations. One of the diffi-
cult design decisions is choosing the task granularity to optimize relationship 
between the communication overhead, the computational effort, and the data quan-
tities. For example, if the goal is to index acquired images by their average intensity, 
then a task pool model is appropriate for processing each incoming image from a set 
of microscopes. As illustrated in Fig.  6.16, the number of images per time unit 
depends on microscope acquisition rate and its usage pattern which dynamically 
determines the tasks generated to compute an average image intensity. Computational 
nodes request the tasks with the time needed to complete a computation depending 
on the image size. The task pool model inherently balances the computational load 
despite varying image sizes.

6.7.5  �Producer-Consumer Model

The producer-consumer model (also called the pipeline model) represents a compu-
tation as a chain of multiple data producers and consumers in a manner similar to an 
assembly line. Each computational task in the queue consumes data from the pre-
ceding task and produces data for the subsequent task. The queue can be linear or 

Fig. 6.16  Task pool model with an unpredictable number of tasks generated by image streams 
from multiple microscopes

6  Interoperability Between Software and Hardware



191

represented by a directed graph. The producer-consumer model is different from a 
task graph model by overlapping task interactions with computations. Both, pro-
ducer and consumer, share a common, fixed-size buffer used as a queue. The pro-
ducer generates data, puts them into the buffer, and starts its task-specific computation 
again. At the same time, the consumer removes data from their common buffer, one 
chunk at a time, and starts its task-specific computation. The producer will wait if 
the buffer is full, and the consumer will wait if the buffer is empty. In other words, 
every time a producer task generates new data, it triggers the execution of a next 
consumer task in a queue.

Stitching algorithm
Among several image processing algorithms in WIPP, the tile stitching algorithm 
has been implemented for multiple architectures using multiple producers and mul-
tiple consumers [9]. The tile stitching computation is based on normalized correla-
tion coefficients (NCCs) derived from fast Fourier transforms (FFTs). The image 
tile displacements (i.e., translation vectors (x, y) for each pair of adjacent tiles) can 
be computed using multiple data and functional decompositions, as well as CPU 
and GPU hardware architectures. Figure 6.17 shows the sequence of steps for multi-
threaded CPU-only implementation. After each image tile is read into memory and 
processed by FFT, NCCs are computed. Afterward, 2D inverse FFT of the NCCs is 
performed (NCC−1 ij), and maximum is found (max ij). The final steps are to com-
pute the cross-correlation factors (CCF) for the north, west, south, and east over-
laps, find the maximum CCF, and save the corresponding translation vector (x, y). 
The key aspect is the assignment and management of threads (one for reading an 
image tile, one for computing FFT, one for completing NCC, FFT−1 and max, and 
multiple threads for CCF). The difference between simple sequential and pipelined 
CPU implementations can yield a speedup by almost an order of magnitude and 
with GPUs even higher [9].

Practical notes
The consumer-producer model has been used for developing general dataflow envi-
ronments (i.e., computational scenarios where data flow along a processing pipeline). 
These environments became popular in scientific workflow management systems 
(e.g., Kepler [10], Taverna [11]) and in commercial frameworks such as the .NET 
framework (TPL Dataflow Library). A difficulty with the consumer-producer model 

Fig. 6.17  Computation of relative displacements (x, y) of two image tiles (images i and j) using a 
consumer-producer model

6.7  Parallel Computations Over Big Image Data



192

is the implementation of multiprocess synchronization. Nevertheless, given the large 
number of open-source scientific workflows [12] that utilize dataflows, we recom-
mend using one from the existing workflow management system implementations 
when suitable. For example, a sequence of filtering operations applied to big images 
can be implemented by using a consumer-producer model to pass the partially fil-
tered image regions in RAM rather than passing them between RAM and disk.

6.7.6  �Hybrid Model

The hybrid model combines multiple programming models either hierarchically or 
sequentially to any part of a computational algorithm. Hybrid models are motivated 
by integrating functional and data decompositions with specific strengths of a hard-
ware architecture.

Example with CPU-GPU hardware
The integration of functional and data decompositions can be achieved by combin-
ing CPUs and GPUs at two different levels. At the low level, the integration takes 
place by putting CPU and GPU on the same die and sharing the on-chip cache and 
off-chip memory [13]. At the high level, the integration is accomplished by attach-
ing GPUs to a computer with CPUs and orchestrating the split of computations 
between CPU and GPU units [14]. In the latter case denoted as a single CPU-GPU 
configuration, the GPUs are typically assigned data parallel work to take advantage 
of their large number of computational cores, while the CPUs execute sequential 
code or data transfer management.

Given a CPU-GPU configuration illustrated in Fig. 6.18, the hardware resources 
consist of several computational nodes with master CPU and multiple GPUs. 
Following the classification introduced in Sect. 6.7, the utilization of this hardware 
configuration can benefit from distributed memory model with Message Passing 

Fig. 6.18  Hybrid parallelization model combining master-agent model using CUDA interface and 
data parallel model using MPI on a CPU-GPU cluster hardware configuration. CUDA stands for 
Compute Unified Device Architecture (rarely used in a non-abbreviated form)

6  Interoperability Between Software and Hardware



193

Interface (MPI) to run single process, multiple data (SPMD) parallel applications. 
At the algorithmic-level granularity, one can create a hybrid parallel model consist-
ing of (1) a data parallel model with the MPI protocol (see Chap. 4) for launching 
tasks on each computational node and (2) a master-agent model for leveraging all 
GPUs attached to each computational node. In this hybrid programming model, 
each node receives data from the head node using MPI, exchanges the received data 
between its local memory and the attached GPUs using GPU-specific interface, and 
collects computed results. To interface GPUs, one option is to use CUDA®, a paral-
lel computing platform and programming model introduced by NVIDIA.

Practical Notes
In practice, the number of possible hardware configurations is very large, and there-
fore there is no recipe for creating an optimal hybrid parallel model. Based on the 
current economics of building computer hardware and providing computer cloud 
services, developers of algorithms are frequently writing code to run on computer 
clusters and distributed virtual machines with multi−/many-core machines. In this 
case, it is beneficial for the developers to be familiar with the parallel programming 
models described in this section and with the interfaces for direct multi-threaded, 
shared memory parallelism, such as the Open Multi-Processing (OpenMP21) API.

6.7.7  �Summary

This entire section focused on parallel computations over big image data and par-
ticularly on algorithmic implementations that integrate software and hardware. The 
algorithmic implementations and approaches followed parallel computing models 
that were derived from computer architectures and divided based on the structural 
granularity of their parallel programs. The structural granularity provided a mecha-
nism for classifying parallel programming models into single/multiple program 
multiple data (SPMD/MPMD) models and a variety of algorithmic-level models 
(data parallel, master-agent, task graph, task pool, producer-consumer, and hybrid 
models). The parallel computing premises (data and computation subdivision) and 
algorithmic-level models were presented at a high level in order to introduce a 
reader to writing algorithms that leverage hardware.

Forward-looking challenges in algorithmic programming
With the increasing variety of hardware architectures, the parallel programming mod-
els are still an open research area. The hardware architectures are changing not only 
in terms of scale and density (e.g., 5 billion transistors per die, feature sizes close to 
10 nm) but also in terms of brand new structures, such as neuromorphic computing 
and quantum computing. For example, in the early 1990s, scientists began consider-
ing a design of brain-like (neuromorphic) computing devices that would dramatically 
outperform conventional Complementary Metal–Oxide–Semiconductor (CMOS) 

21 https://computing.llnl.gov/tutorials/openMP/#Introduction

6.7  Parallel Computations Over Big Image Data

https://computing.llnl.gov/tutorials/openMP/#Introduction


194

based technology. The motivation lies in the fact that the current computational 
devices have failed to perform many basic tasks that biological systems have mas-
tered, for instance, speech and image recognition. Thus, the next-generation com-
puter design might borrow concepts from biological systems. On the hardware side, 
computer design might replace CMOS transistors using definite states (0 and 1) with 
quantum bits using superpositions of states for storing binary digits. These next-gen-
eration hardware architectures will require new programming models to utilize them.

References

	 1.	Miner, D., Shook, A.: MapReduce Design Patterns: Building Effective Algorithms and 
Analytics for Hadoop and Other Systems, 1st edn. O’Reilly Media, Beijing (2012)

	 2.	Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. University of Wisconsinn, UW 
CS-TR-2007-1593, Madison (2007)

	 3.	Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM. 31(5), 532–533 (1988)
	 4.	Berman, J.J.: Principles of Big Data. Elsevier/Morgan Kaufmann, Amsterdam (2013)
	 5.	Consortium, “TIFF Specification, Revision 6.0,” (1992)
	 6.	Kumar, P., Alameda, J., Bajcsy, P., Folk, M., Markus, M.: Hydroinformatics: Data Integrative 

Approaches in Computation, Analysis, and Modeling. CRC Press LLC, Boca Raton (2006)
	 7.	Bajcsy, P., Nguyen, P., Vandecreme, A., Brady, M.: Spatial computations over terabyte-sized 

images on hadoop platforms, In: 2014 IEEE International Conference on Big Data, (2014), 
pp. 816–824

	 8.	Bajcsy, P., Vandecreme, A., Amelot, J., Nguyen, P., Chalfoun, J., Brady, M.: Terabyte-sized 
image computations on Hadoop cluster platforms. In: IEEE International Conference on Big 
Data (2013)

	 9.	Blattner, T., Keyrouz, W., Chalfoun, J., Stivalet, B., Brady, M., Shujia, Z.: A hybrid CPU-GPU 
system for stitching large scale optical microscopy images. In: Parallel Processing (ICPP), 
2014 43rd International Conference on, 2014, pp. 1–9

	10.	Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible 
system for design and execution of scientific workflows. Sci. Stat. Database Manag. 2004 
Proc. 16th Int. Conf. 1, 423–424 (2004)

	11.	Oinn, T., et al.: Taverna: a tool for the composition and enactment of bioinformatics work-
flows. Bioinformatics. 20(17), 3045–3054 (2004)

	12.	Talia, D.: Workflow Systems for Science: concepts and tools. ISRN Softw. Eng. 2013, 15 
(2013)

	13.	Yang, Y., Xiang, P., Mantor, M., Zhou, H.: CPU-assisted GPGPU on fused CPU-GPU 
architectures. In: Proceedings  – International Symposium on High-Performance Computer 
Architecture, (2012), pp. 103–114

	14.	Lee, J., Samadi, M., Park, Y., Mahlke, S.: Transparent CPU-GPU collaboration for data paral-
lel kernels on heterogeneous systems. In: PACT ‘13 Proceedings of the 22nd International 
Conference on Parallel Architectures and Compilation Techniques, (2013), pp. 245–256

6  Interoperability Between Software and Hardware



195© Springer International Publishing AG 2018 
P. Bajcsy et al., Web Microanalysis of Big Image Data,  
https://doi.org/10.1007/978-3-319-63360-2

�Supplementary Information

This chapter contains a summary of all web links related to software, test data, and 
deployed web systems.

�Software and Documentation

	(a)	 WIPP system download and instructions:

•	 Main WIPP website: https://isg.nist.gov/deepzoomweb/software/wipp.
•	 Docker container download and installation instructions are available from 

the section “WIPP deployment.”
•	 User manual is available from the section “User guide.”
•	 Step-by-step guidelines for several use cases from the section “Use cases.”

	(b)	 Source code on USNISTGOV Github:

•	 Location: USNISTGOV Github organization at URL – https://github.com/
usnistgov

•	 Repository names:

–– Pyramid building algorithm (pyramidio): https://github.com/usnistgov/
pyramidio

–– Stitching algorithm (MIST): https://github.com/usnistgov/MIST
–– Tracking algorithm (Lineage Mapper): https://github.com/usnistgov/

Lineage-Mapper
–– Deep Zoom viewing and browser-based measurements (WebDeep 

ZoomToolkit): https://github.com/usnistgov/WebDeepZoomToolkit

https://doi.org/10.1007/978-3-319-63360-2
https://isg.nist.gov/deepzoomweb/software/wipp
https://github.com/usnistgov
https://github.com/usnistgov
https://github.com/usnistgov/pyramidio
https://github.com/usnistgov/pyramidio
https://github.com/usnistgov/MIST
https://github.com/usnistgov/Lineage-Mapper
https://github.com/usnistgov/Lineage-Mapper
https://github.com/usnistgov/WebDeepZoomToolkit


196

•	 OpenSeadragon plugins to the framework available at http://openseadragon.
github.io/#plugins

–– OpenSeadragonScalebar: https://github.com/usnistgov/OpenSeadragon 
Scalebar

–– OpenSeadragonFiltering: https://github.com/usnistgov/OpenSeadragon 
Filtering

	(c)	 Source code on isg.nist.gov web page:

•	 EGT algorithm: https://isg.nist.gov/deepzoomweb/resources/csmet/pages/
EGT_segmentation/EGT_segmentation.html

•	 Accelerated stitching algorithm: plugin to ImageJ/Fiji – https://isg.nist.gov/
deepzoomweb/resources/csmet/pages/image_stitching/image_stitching.
html

	(d)	 Project web page for WIPP

•	 Project description of the WIPP system: https://isg.nist.gov/deepzoomweb/
resources/csmet/pages/web_image_pipeline/web_image_pipeline.html

�Data for Testing Software Installation

	(a)	 Small datasets for testing the WIPP installation

•	 Available from the main WIPP website at https://isg.nist.gov/deepzoomweb/
software/wipp, section “Test datasets.” The datasets will come classified in 
folders by job types. Each folder contains input data, expected results, and 
job configuration instructions.

	(b)	 Datasets used in Chap. 2 (usage examples of the WIPP modules)

•	 These datasets are used for demonstrating the functionalities of the WIPP 
modules. They are available from the following URL (project web page for 
WIPP): https://isg.nist.gov/deepzoomweb/resources/csmet/pages/web_
image_pipeline/web_image_pipeline.html.

•	 Small dataset: 5 × 5 Image Tile Dataset

Cy5 Test Images (≈54 MB)    Phase Test Images (≈83 MB)

•	 Large dataset: 10 × 10 Image Tile Dataset

Cy5 Test Images (≈119 MB)    Phase Test Images (≈195 MB)

Supplementary Information

http://openseadragon.github.io/#plugins
http://openseadragon.github.io/#plugins
https://github.com/usnistgov/OpenSeadragonScalebar
https://github.com/usnistgov/OpenSeadragonScalebar
https://github.com/usnistgov/OpenSeadragonFiltering
https://github.com/usnistgov/OpenSeadragonFiltering
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/EGT_segmentation/EGT_segmentation.html
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/EGT_segmentation/EGT_segmentation.html
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/image_stitching/image_stitching.html
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/image_stitching/image_stitching.html
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/image_stitching/image_stitching.html
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/web_image_pipeline/web_image_pipeline.html
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/web_image_pipeline/web_image_pipeline.html
https://isg.nist.gov/deepzoomweb/software/wipp
https://isg.nist.gov/deepzoomweb/software/wipp
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/web_image_pipeline/web_image_pipeline.html
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/web_image_pipeline/web_image_pipeline.html


197

�Deployed Demonstrations on the Web

	(a)	 Web Deep Zoom Toolkit deployment

•	 This is the web user interface to Deep Zoom-based visualization of pyramids 
in WIPP with sample datasets.

URL: https://isg.nist.gov/deepzoomweb/data

	(b)	 Web statistical modeling deployment

•	 This module is demonstrated with stem cell images.

URL: https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency

Supplementary Information

https://isg.nist.gov/deepzoomweb/data
https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency

	Preface
	Terminology
	Acknowledgments
	Disclaimer
	Abbreviations
	Contents
	Chapter 1: Introduction to Big Data Microscopy Experiments
	1.1 Image Processing Pipeline
	1.2 Web Image Processing Pipeline
	1.3 Big Data Microscopy Experiments
	1.4 Motivation of Big Data Microscopy Experiments
	1.5 Range of Applications Leveraging Image Processing Pipelines
	1.6 Challenges of Big Data Microscopy Experiments
	1.7 Considerations Before and After Digital Images Are Acquired
	1.8 Enabling Reproducible Science from Big Data Microscopy Experiments
	References

	Chapter 2: Functionality of Web Image Processing Pipeline
	2.1 Deploying and Testing the Web Image Processing Pipeline
	2.1.1 Types of Deployment
	2.1.2 Deployment of Docker Containers
	2.1.3 Deployment Recommendations
	2.1.4 Test Data and Computational Benchmarks

	2.2 Web Image Processing Module
	2.2.1 Web Image Processing Module Processing Functionality
	2.2.2 Description of WIP Module Usage

	2.3 Web Feature Extraction Module
	2.3.1 WFE Module Processing Functionality
	2.3.2 WFE Module Usage

	2.4 Web Statistical Modeling Module
	2.4.1 WSM Module Processing Functionality
	2.4.2 WSM Module Usage

	2.5 Summary
	References

	Chapter 3: Example Use Cases
	3.1 Cell Count and Single Cell Detection
	3.1.1 Image Processing Workflow
	3.1.2 Create a New Image Collection
	3.1.3 Stitching of Image Tiles
	3.1.4 Intensity Scaling and Pyramid Building
	3.1.5 Image Assembling
	3.1.6 Segmentation
	3.1.7 Binary Image Labeling
	3.1.8 Feature Extraction and Single Cell Detection
	3.1.9 Discussion

	3.2 Stem Cell Colony Growth Computation
	3.2.1 Image Processing Workflow
	3.2.2 Colony Tracking and Feature Extraction
	3.2.3 Discussion

	3.3 Image Feature Variability and Its Impact
	3.3.1 Image Processing Workflow
	3.3.2 Image Feature Variability Analysis
	3.3.3 Discussion

	3.4 Summary
	References

	Chapter 4: Components of Web Image Processing Pipeline
	4.1 Mapping Functionality to Information Technologies
	4.2 The Basics of Client-Server Architecture
	4.2.1 The Role of Each Technology in the Client-Server Architecture

	4.3 The Basics of Web Servers and Browsers
	4.4 The Basics of Communication Protocols in Client-Server Architectures
	4.4.1 Client-Server Communication Using Hypertext Transfer Protocol
	4.4.2 Transmission Control Protocol (TCP)
	4.4.3 Message Passing Interface
	4.4.4 Network File System

	4.5 Designing Interactive User Interfaces in Web Browsers
	4.5.1 Model-View-Controller Design Pattern
	4.5.2 AngularJS for Building Interactive User Interfaces

	4.6 Large Image Visualization and Processing in Web Browsers
	4.7 Representation of Large Images
	4.7.1 Large Image Visualization in Web Browsers
	4.7.2 Image Processing in Web Browsers

	4.8 Managing Images, Pyramids, and Metadata
	4.8.1 Relational Databases
	4.8.2 Non-relational Database
	4.8.3 Java Spring Framework for Web Application Development

	4.9 Meeting Computational Requirements on a Web Server
	4.9.1 Pegasus Workflow Management System
	4.9.2 HTCondor Workload Management System
	4.9.3 XML File Representation for Encoding Computational Jobs

	4.10 Delivering Traceable Computations
	4.10.1 Components for Delivering Traceable Computations
	4.10.2 Traceable Computations for Publications
	4.10.3 From Traceable to Reproducible Computations

	4.11 Summary
	References

	Chapter 5: Image Processing Algorithms
	5.1 Inputs and Outputs of Algorithms
	5.2 Image Processing
	5.2.1 Textbooks About Image Processing
	5.2.2 Usage-Based Classification of Image Processing Implementations
	5.2.3 Classification of Open-Source Image Processing Software
	5.2.4 Loading Images Using OME Bio-Formats Library
	5.2.5 Basic Image Processing Using ImageJ/Fiji

	5.3 Overview of Algorithms in WIPP
	5.4 Image Correction Algorithms
	5.4.1 Dark Current Correction
	5.4.2 Flat-Field Correction
	5.4.3 Background Correction
	5.4.4 Noise Filtering

	5.5 Algorithms for Stitching and Mosaicking Many Images
	5.5.1 Image Stitching
	5.5.2 Image Mosaicking
	5.5.3 Practical Remarks

	5.6 Object Segmentation, Tracking, and Feature Extraction Algorithms
	5.6.1 Object Segmentation
	5.6.2 Object Tracking Over Time
	5.6.3 Image and Object Feature Extractions

	5.7 Image Intensity Scaling and Pyramid Building Algorithms
	5.7.1 Image Intensity Scaling
	5.7.2 Image Pyramid Building
	5.7.3 Re-projection of a Pyramid Set

	5.8 Supervised Algorithms
	5.9 Summary
	References

	Chapter 6: Interoperability Between Software and Hardware
	6.1 Hardware Options for Accelerating Computations
	6.2 Implications of Big Data Attributes
	6.3 Execution Times of Computation Over Big Image Data
	6.3.1 Meeting Execution Time Requirements
	6.3.2 Estimating and Measuring Execution Time

	6.4 From Commercial Big Data Analytics to Research Big Image Analyses
	6.5 Human Interfaces for Big Image Data Analytics
	6.5.1 Focus on Client-Side Graphical User Interfaces
	6.5.2 Example of GUI Design for web Statistical Modeling Tool
	6.5.3 Summary

	6.6 Storage and Data Structure for Big Images
	6.6.1 Storage for Big Images
	6.6.2 Data Structures for Big Images
	6.6.3 Summary

	6.7 Parallel Computations Over Big Image Data
	6.7.1 Data Parallel Model
	6.7.2 Master-Agent Model
	6.7.3 Task Graph Model
	6.7.4 Task Pool Model
	6.7.5 Producer-Consumer Model
	6.7.6 Hybrid Model
	6.7.7 Summary

	References

	Supplementary Information
	Software and Documentation
	 Data for Testing Software Installation
	 Deployed Demonstrations on the Web




