
Distributional Learning of Regular Formal
Graph System of Bounded Degree

Takayoshi Shoudai1(B), Satoshi Matsumoto2, and Yusuke Suzuki3

1 Faculty of International Studies, Kyushu International University,
Kitakyushu, Japan

shoudai@isb.kiu.ac.jp
2 Faculty of Science, Tokai University, Hiratsuka, Japan

3 Graduate School of Information Sciences,
Hiroshima City University, Hiroshima, Japan

Abstract. In this paper, we describe how distributional learning tech-
niques can be applied to formal graph system (FGS) languages. An FGS
is a logic program that deals with term graphs instead of the terms of
first-order predicate logic. We show that the regular FGS languages of
bounded degree with the 1-finite context property (1-FCP) and bounded
treewidth property can be learned from positive data and membership
queries.

1 Introduction

In the field of algorithmic learning theory, many models and algorithmic tech-
niques for learning from examples have been developed. Distributional learn-
ing was first proposed by Clark and Eyraud [3] to learn a subclass of context-
free grammars efficiently. Recently, distributional learning techniques have been
developed for learning of various subclasses of context-free grammars [11]. These
techniques were extended to languages that have more complex structures [7].
Yoshinaka [12] introduced distributional properties on grammars and showed
that grammars with distributional properties are learnable with standard dis-
tributional learning techniques if the grammars satisfy certain conditions, e.g.
polynomial time decomposability of objects into contexts and substructures.

Graph grammar has been developed as an extension to graphs from strings
of grammatical forms. Graph grammar has been applied to a wide range of fields
including pattern recognition and image analysis. Uchida et al. [10] introduced
a framework called formal graph system (FGS) as a graph grammar. An FGS
is a logic program that deals with term graphs, which can be considered to be
types of hypergraphs, instead of the terms of first-order predicate logic.

For the learning of graph grammar, Okada et al. [9] showed that some classes
of graph pattern languages are learned from a minimally adequate teacher
(MAT) in polynomial time. Hara and Shoudai [6] proposed an algorithm for

T. Shoudai—This work was partially supported by JSPS KAKENHI (26280087,
15K00313) and MEXT KAKENHI (24106010).

c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 68–80, 2017.
DOI: 10.1007/978-3-319-63342-8 6

Distributional Learning of Regular Formal Graph System of Bounded Degree 69

learning the class of c-deterministic regular FGS languages in the framework
of MAT learning. There have been other studies on graph grammars from the
viewpoint of application, but discussions on computational learning of graph
grammars are not yet sufficient. In this paper, we show that the regular FGS
languages of bounded degree with the 1-finite context property (1-FCP) [2] and
bounded treewidth property can be learned from positive data and membership
queries with current distributional learning techniques [11].

2 Preliminaries

For a set or a list S, |S| denotes the number of all elements that are contained
in S. For a set S, S∗ denotes the set of all finite lists consisting of elements in S.
For a list S and an integer i (1 ≤ i ≤ |S|), S[i] denotes the i-th member of S. Let
Σ and Λ be finite alphabets. Let X be an infinite alphabet, whose elements are
called variables. We assume that each symbol x ∈ X has a nonnegative integer
rank(x), Σ ∩ X = ∅ and Λ ∩ X = ∅.

Definition 1 (Term graph). A term graph g = (V,E, ϕ, ψ,H, λ, ports) is
defined as follows:

1. (V,E) is a vertex- and edge-labeled (directed or undirected) graph,
2. ϕ : V → Σ and ψ : E → Λ are vertex- and edge-labeling functions,
3. H is a finite multiset of hyperedges that are elements of 2V ,
4. λ : H → X is a variable-labeling function, and
5. ports : H → V ∗ is a mapping s.t. for every h ∈ H, ports(h) is a list of

rank(λ(h)) distinct vertices in V . These vertices are called the ports of h.

We give an example of term graphs in Fig. 1. A hyperedge is drawn as a box
with lines to its ports. The order of the ports is indicated by digits at these lines.

Fig. 1. A term graph g = (V, E, ϕ, ψ, H, λ, ports) on Σ = {a,b, c,d} and Λ = {α, β, γ}:
H = {{u2, u3, u4}, {u4, u5}, {u8}}, λ({u2, u3, u4}) = x, λ({u4, u5}) = y, λ({u8}) =
z, ports({u2, u3, u4}) = (u2, u3, u4), ports({u4, u5}) = (u4, u5), ports({u8}) = (u8).

For a term graph g, its 7-tuple is denoted by (Vg, Eg, ϕg, ψg,Hg, λg, portsg).
A term graph g is called ground if Hg = ∅ and both λg and portsg are empty
functions ∅. We define the size of a term graph g, denoted by |g|, as |Vg|+ |Eg|+
|Hg|. A term graph g is a star term graph if Eg = ∅ and Hg = {Vg}. For a star
term graph g, hg denotes the unique hyperedge of g.

70 T. Shoudai et al.

Definition 2 (Treewidth [5]). A tree decomposition of a term graph g =
(V,E, ϕ, ψ,H, λ, ports) is a rooted tree T = (I,F) whose vertices i ∈ I are
associated with Vi ⊆ V , Ei ⊆ E and Hi ⊆ H that satisfy the following condi-
tions:

1. For each v ∈ V , there is a vertex i ∈ I such that v ∈ Vi.
2. For each e = (u, v) ∈ E, there is exactly one vertex i ∈ I such that u, v ∈ Vi

and e ∈ Ei.
3. For each h = {v1, . . . , vm} ∈ H, there is exactly one vertex i ∈ I such that

v1, . . . , vm ∈ Vi and h ∈ Hi.
4. For each v ∈ V , the subtree of T induced by {i ∈ I | v ∈ Vi} is connected.

The width of T is defined as maxi∈I |Vi|−1. The treewidth of g is the minimum
width of any tree decomposition T = (I,F) of g.

Two term graphs f and g are said to be isomorphic, if there is a bijection
π from Vf to Vg, such that (1) (u, v) ∈ Ef if and only if (π(u), π(v)) ∈ Eg, (2)
ϕf (u) = ϕg(π(u)) for each vertex u ∈ Vf and ψf (u, v) = ψg(π(u), π(v)) for each
edge (u, v) ∈ Ef , (3) {v1, . . . , v�} ∈ Hf if and only if {π(v1), . . . , π(v�)} ∈ Hg,
(4) λf ({v1, . . . , v�}) = λf ({u1, . . . , u�}) if and only if λg({π(v1), . . . , π(v�)}) =
λg({π(u1), . . . , π(u�)}) for each hyperedge {v1, . . . , v�}, {u1, . . . , u�} ∈ Hf , and
(5) portsf ({v1, . . . , v�}) = portsg({π(v1), . . . , π(v�)}) for each {v1, . . . , v�} ∈ Hf .
A bijection π satisfying (1)–(5) is called an isomorphism from f to g.

Let d and w be nonnegative integers. The degree of a vertex v is defined
as |{e ∈ Eg | v ∈ e}| + |{h ∈ Hg | v ∈ h}|. G(Σ,Λ,X) (resp. Gd,w(Σ,Λ,X))
denotes the set of all term graphs (resp. all term graphs of maximum degree d
and treewidth w) over 〈Σ,Λ,X〉. Moreover, G(Σ,Λ) (resp. Gd,w(Σ,Λ)) denotes
the set of all ground term graphs (resp. all ground term graphs of maximum
degree d and treewidth w).

Let f be a term graph in G(Σ,Λ,X) and σ an ordered list of 	 distinct
vertices in Vf (0 ≤ 	 ≤ |Vf |). A pair [f, σ] is called a term graph fragment . If f
is a ground term graph, we call it a ground term graph fragment . Let F(Σ,Λ)
be the set of all ground term graph fragments. For nonnegative integers d and
w, Fd,w(Σ,Λ) = {[f, σ] ∈ F(Σ,Λ) | f ∈ Gd,w(Σ,Λ) and |σ| ≤ d + 1}. For
a term graph fragment [f, σ] and a variable x ∈ X with rank(x) = |σ|. Let
σ = (v1, . . . , v�) (≥ 1). The binding x := [f, σ] for a term graph g is defined
to be an operation on g that works in the following way: For each h ∈ Hg with
λg(h) = x, let f ′ = (Vf ′ , Ef ′ , ϕf ′ , ψf ′ ,Hf ′ , λf ′ , portsf ′) be a copy of f . For a
vertex v ∈ Vf , we denote the corresponding copy vertex of f ′ by v′. We attach
f ′ to g by removing the hyperedge h from Hg and by identifying the ports
u1, . . . , u� of h in g with v′

1, . . . , v
′
� in f ′, respectively. We set the new vertex-

label of ui to be the original vertex-label of ui, i.e., ϕg(ui). A substitution θ is a
finite set of bindings {x1 := [f1, σ1], . . . , xn := [fn, σn]}, where xi’s are mutually
distinct variables in X and each fi has no hyperedge labeled with a variable in
{x1, . . . , xn}. We give an example of term graphs and substitutions in Fig. 2.

Distributional Learning of Regular Formal Graph System of Bounded Degree 71

Fig. 2. A graph G can be obtained from g by applying a substitution θ = {x1 :=
[f1, (u1, u4)], x2 := [f2, (w3, w1)]}, i.e., gθ is isomorphic to G.

Fig. 3. A formal graph system S1 = (Σ1, Λ1, X1, Π1, Γ1), where Σ1 = {a}, Λ1 =
{ε}, X1 = {x1, x2, . . .}, Π1 = {p}, and its FGS language GL(S1, p).

Definition 3 (Formal graph system [10]). Let g1, . . . , gn ∈ G(Σ,Λ,X)
(n ≥ 1). Let Πn be a finite set of n-ary predicate symbols. Let Π =

⋃
i≥0 Πi.

For p ∈ Πn, we say that p(g1, . . . , gn) is an atom. Let A,B1, . . . , Bm be atoms
(m ≥ 0) consisting of term graphs in G(Σ,Λ,X) and predicate symbols in Π. A
graph rewriting rule over 〈Σ,Λ,X,Π〉 is a clause of the form A ← B1, . . . , Bm.
For a clause A ← B1, . . . , Bm, the atom A is called the head and the right hand
side of the arrow B1, . . . , Bm is called the body of the rule. Let Γ be a finite set
of graph rewriting rules over 〈Σ,Λ,X,Π〉. A formal graph system (abbreviated
to FGS) is the 5-tuple S = (Σ,Λ,X,Π, Γ).

For a substitution θ and an atom p(g1, . . . , gn), we define p(g1, . . . , gn)θ to
be p(g1θ, . . . , gnθ). For a graph rewriting rule A ← B1, . . . , Bm, we also define
(A ← B1, . . . , Bm)θ to be Aθ ← B1θ, . . . , Bmθ.

Definition 4. Let S = (Σ,Λ,X,Π, Γ) be an FGS. For a clause C, relation
Γ � C is defined recursively in the following way:

1. If C ∈ Γ , then Γ � C holds.
2. If Γ � C, then Γ � Cθ for an arbitrary substitution θ.
3. If Γ � A ← B1, . . . , Bn and for some i (1 ≤ i ≤ n), Γ � Bi ← C1, . . . , Cm,

then Γ � A ← B1, . . . , Bi−1, C1, . . . , Cm, Bi+1, . . . , Bn holds.

For an FGS S = (Σ,Λ,X,Π, Γ) and a unary predicate symbol p, we define
the graph language of (S, p) as GL(S, p) = {g ∈ G(Σ,Λ) | Γ � p(g) ←}. We say
that a graph language L ⊆ G(Σ,Λ) is definable by an FGS or an FGS language
if such a pair (Γ, p) exists. In Fig. 3, we give an example of the FGSs and its
FGS language.

72 T. Shoudai et al.

Let Σ be a set of vertex labels and Π a set of predicate symbols. Let δ be a
function from Π to Σ∗. We call the function δ a pointer of Π if for any predicate
symbol p, δ(p)[i] = δ(p)[j] for all i, j (1 ≤ i < j ≤ |δ(p)|). Let δ(Π) be the set
of all vertex labels appearing in δ(p) for all predicate symbols p ∈ Π. For a
term graph g and a list of vertices σ = (v1, . . . , v�) ∈ V �

g (≥ 1), ϕg(σ) denotes
(ϕg(v1), . . . , ϕg(v�)).

Definition 5 (Regular formal graph system [10]). We say that an FGS
S = (Σ,Λ,X,Π, Γ) is regular with a pointer δ of Π if all graph rewriting rules
in Γ are of the form q0(g0) ← q1(g1), . . . , qm(gm) that satisfies the following
conditions:

1. All qi ∈ Π (0 ≤ i ≤ m) are unary predicate symbols.
2. Each gi (1 ≤ i ≤ m) is a star term graph s.t. ϕgi

(portsgi
(hgi

)) = δ(qi).
3. There is a list (v1, . . . , v|δ(q0)|) ∈ V

|δ(q0)|
g0 s.t. ϕg0(v1, . . . , v|δ(q0)|) = δ(q0) and

for any u ∈ Vg0\{v1, . . . , v|δ(q0)|}, ϕg0(u) ∈ Σ\δ(Π).
4.

⋃
h∈Hg0

{λg0(h)} =
⋃m

i=1{λgi
(hgi

)} and λgi
(hgi

) = λgj
(hgj

) for 1 ≤ i < j ≤
m.

5. For every h1, h2 ∈ Hg0 , h1 = h2 if and only if λg0(h1) = λg0(h2).

A regular FGS S = (Σ,Λ,X,Π, Γ) with a pointer δ is denoted by (S, δ) or
((Σ,Λ,X,Π, Γ), δ). Below we call a regular FGS with a pointer a regular FGS.

Let (S, δ) be a regular FGS and p a unary predicate symbol in Π. We define
the graph language of (S, δ, p) as GL(S, δ, p) = {g ∈ G(Σ,Λ) | Γ � p(g) ←}. We
say that a graph language L ⊆ G(Σ,Λ) is definable by a regular FGS or a regular
FGS language if a triplet (S, δ, p) exists such that L = GL(S, δ, p). In Fig. 4, we
give an example of the regular FGSs and its regular FGS language.

Fig. 4. A regular formal graph system (S2, δ2) = ((Σ2, Λ2, X2, Π2, Γ2), δ2), where Σ2 =
{a, s, t}, Λ2 = {ε}, X2 = {x1, x2, . . .}, Π2 = {p, q}, δ2(p) = (), δ2(q) = (s, t), and its FGS
language GL(S2, δ2, p), which is equivalent to the set of all two terminal series parallel
graphs (TTSP graphs). Every TTSP graph has treewidth at most 2.

Distributional Learning of Regular Formal Graph System of Bounded Degree 73

Definition 6 (Chomsky normal form). Let f0 be a ground term graph of one
vertex or two vertices with one edge, f1 a term graph with two hyperedges and no
edge, and f2, f3 star term graphs. Let p0, p1, p2, p3 be unary predicate symbols.
A regular FGS (S, δ) is in Chomsky normal form if every graph rewriting rule
of S is of the form.

– Terminal rule: p0(f0) ←,
– Unary rule: p1(f1) ← p2(f2).
– Binary rule: p1(f1) ← p2(f2), p3(f3).

The regular FGS in Figs. 3 and 4 is written in Chomsky normal form.
We say that a term graph g is connected if for any two vertices u and v of

g, there is a sequence of vertices v0(= u), v1, . . . , vm(= v) for an integer m such
that for all i (0 ≤ i ≤ m − 1), vi and vi+1 are contained in the same edge or
hyperedge. In this paper, we assume that all term graphs are connected.

Graph grammar has been defined in various ways. One of the famous
context-free graph grammars is a hyperedge replacement grammar (HRG) [4].
Uchida et al. [10] showed that a class of graphs is generated by an HRG if and
only if it is defined by a regular FGS. This result shows that regular FGSs can
generate interesting graph classes including trees, two-terminal series parallel
graphs (in Fig. 4), and so on.

In the research of HRGs, Lautemann [8] gave some conditions on either gram-
mar or input graphs whose parsing can be done in polynomial time. A parsing
algorithm due to Lautemann is known to be polynomial time for graphs that
are connected and of bounded degree. As a more precise characterization of the
algorithm’s complexity, Chiang et al. [1] showed that the parsing algorithm runs
in polynomial time if the maximum degree and treewidth of graphs in an HRG
are bounded by some constants. Hence, we conclude the following lemma:

Lemma 1 ([1,10]). Let (S, δ) be a regular FGS and p a unary predicate sym-
bol. Given a ground term graph g, the problem of deciding whether or not
g ∈ GL(S, δ, p) is computed in O((3dn)w+1) time, where n is the number of
vertices of g, d is the maximum degree of g, and w is the maximum treewidth of
the term graphs in the heads of graph rewriting rules in S.

3 Learning Regular FGS with 1-Finite Context Property

We consider Gd,w(Σ,Λ) as a universal set (d,w ≥ 0). A positive presentation of
a nonempty graph language L ⊆ Gd,w(Σ,Λ) is an infinite sequence g1, g2, . . . of
elements in L such that {g1, g2, . . .} = L.

An inductive inference machine (IIM, for short) is an effective procedure, or
a certain type of Turing machine, which outputs a regular FGS and a predicate
symbol each time a ground term graph is given. Let L∗ ⊆ Gd,w(Σ,Λ) be a target
graph language. We assume that an IIM has an access to an oracle MemL∗ who
answers membership queries. The query asks whether or not an arbitrary ground
term graph g is included in L∗. Let τ = g1, g2, . . . be a positive presentation of

74 T. Shoudai et al.

L∗. An IIM outputs a regular FGS (Si, δi) and a predicate symbol pi by using
membership queries each time a ground term graph gi in τ is given. An IIM
is said to converge to a regular FGS (S, δ) and a predicate symbol p for τ with
polynomial time update by using membership queries, if M outputs a regular
FGS (Si, δi) and a predicate symbol pi in polynomial time w.r.t. the sum of the
size of the given ground term graphs so far, i.e., |g1| + |g2| + · · · + |gi|, and there
exists a positive integer n ≥ 1 with (Sm, δm) = (S, δ) and pm = p for any m ≥ n.
Let C ⊆ 2Gd,w(Σ,Λ) be a class and L∗ ∈ C. A class C is said to be identifiable in
the limit with polynomial time update by using membership queries from positive
data, if there exists an IIM M such that for any L∗ ∈ C and any presentation τ
of L∗, M converges to a regular FGS (S, δ) and a predicate symbol p for τ with
GL(S, δ, p) = L∗ with polynomial time update by using membership queries.

Let g = (Vg, Eg, ϕg, ψg, ∅, ∅, ∅) be a ground term graph and σ = (v1, . . . , v�)
a list of distinct vertices in Vg (1 ≤ 	 ≤ |Vg|). Let x be a new variable label in X
that does not appear so far. For the ground term graph fragment [g, σ], we denote
by g(σ) the term graph (Vg, Eg, ϕg, ψg, {h}, λg, portsg) where h = {v1, . . . , v�},
λg(h) = x, and portsg(h) = σ. In order to make the argument easier, we assume
that g has no isolated vertex. Let {Eα, Eβ} be a partition of Eg. Let Vα be the
set of all endpoints of edges in Eα and Vβ the set of all endpoints of edges in Eβ .
Let σ be one of the ordered lists of all vertices in Vα ∩Vβ . We obtain two ground
term graph fragments [α, σ] and [β, σ]. We easily see that α(σ){x := [β, σ]} and
β(σ){x := [α, σ]} are isomorphic to g.

For [α, σα], [β, σβ] ∈ F(Σ,Λ), we define an operation � as follows:

[α, σα] � [β, σβ] =
{

α(σα){x := [β, σβ]} if |σα| = |σβ |,
undefined otherwise.

In Fig. 5, we give an example of α and β by a partition of Eg of a ground
term graph g. Note that in general, [α, σα] � [β, σβ] is not always equivalent to
[β, σβ] � [α, σα], because the vertex labels in the first operand always survive by
any binding. If ϕα(σα) = ϕβ(σβ), [α, σα] � [β, σβ] = [β, σβ] � [α, σα] holds.

Let d and w be constant nonnegative integers. For a nonempty finite set of
ground term graphs D ⊆ Gd,w(Σ,Λ), let

Sub(D) = {[β, σβ] ∈ Fd,w(Σ,Λ) | ∃[α, σα] ∈ Fd,w(Σ,Λ)[[α, σα] � [β, σβ] ∈ D]},

Con(D) = {[α, σα] ∈ Fd,w(Σ,Λ) | ∃[β, σβ] ∈ Fd,w(Σ,Λ)[[α, σα] � [β, σβ] ∈ D]}.

Fig. 5. Two ground term graphs α and β obtained from g by a partition of Eg: It is
easy to see that α((v2, v3)){x := [β, (v2, v3)]} is isomorphic to g.

Distributional Learning of Regular Formal Graph System of Bounded Degree 75

We give an example of Con(D) in Fig. 6. It is easy to see that Con(D) ⊆
Sub(D) holds. For any [β, σβ] ∈ Sub(D)\Con(D), there is a ground term graph
fragment [α, σα] ∈ Con(D) such that α is isomorphic to β via an isomorphism ξ
with ξ(σα) = σβ , ignoring the vertex labels in σα. Thus, unlike string grammars,
we only use Con(D) to learn a target regular FGS language from positive data.
We have the following proposition:

Fig. 6. An example of Con(D).

Proposition 1. Let D be a nonempty finite subset of Gd,w(Σ,Λ). Both |Sub(D)|
and |Con(D)| are of polynomial size w.r.t.

∑
g∈D |g|.

Let (S, δ) = ((Σ,Λ,X,Π, Γ), δ) be a regular FGS. For a term graph f
and q ∈ Π, if there are distinct |δ(q)| vertices v1, . . . , v|δ(q)| in Vf such that
(ϕf (v1), . . . , ϕf (v|δ(q)|)) = δ(q) and for any v ∈ Vf\{v1, . . . , v|δ(q)|}, ϕf (v) is not
a member of δ(q), we define ϕ−1

f (δ(q)) = (v1, . . . , v|δ(q)|), otherwise we define
ϕ−1

f (δ(q)) = (). Let p, q in Π and [g, σg] in Fd,w(Σ,Λ). We define

C(S, δ, p, q, [g, σg]) = {f ∈ Gd,w(Σ,Λ) | [g, σg] � [f, ϕ−1
f (δ(q))] ∈ GL(S, δ, p)}.

Definition 7 (1-FCP). Let (S, δ) be a regular FGS and p, q unary predicate
symbols of S. A term graph fragment [g, σg] is said to be a context of q w.r.t.
(S, δ, p) if C(S, δ, p, q, [g, σg]) = GL(S, δ, q) holds. We say that (S, δ, p) has the
1-finite context property (1-FCP) if every predicate q ∈ Π has a context of it.

For the ground term graphs α, β in Fig. 5, [α, (v2, v3)] is a context of q(2,2) and
[β, (v2, v3)] is a context of q(1,1) w.r.t. (S(3)

3 , δ
(3)
3 , p) in Fig. 7. We give an example

C(S(3)
3 , δ

(3)
3 , p, q(2,1), [g, σg]) in Fig. 8 for some [g, σg]. We easily see that for any

d ≥ 2, the regular FGS in Fig. 7 has the 1-finite context property (1-FCP).

Definition 8 (1-FCP regular FGS language class). 1-FCP-RFGSL(d,w)
denotes the set of all regular FGS languages L ⊆ Gd,w(Σ,Λ) that satisfies the
following conditions:

76 T. Shoudai et al.

Σ3 = {a, s, t}, Λ3 = { }, X3 = {x, x1, . . .}, Π
(d)
3 = {p} ∪ {q(i,j) | 1 ≤ i, j ≤ d},

δ
(d)
3 (p) = (), δ

(d)
3 (q(i,j)) = (s, t) (1 ≤ i, j ≤ d).

Fig. 7. A regular FGS (S
(d)
3 , δ

(d)
3) = ((Σ3, Λ3, X3, Π

(d)
3 , Γ

(d)
3), δ

(d)
3) that generates the

TTSP graphs of maximum degree d (d ≥ 2): Predicates q(i,j) generates all TTSP graphs
whose vertices labeled with s and t are of degree at most i and j, respectively.

Fig. 8. C(S
(3)
3 , δ

(3)
3 , p, q(2,1), [γ, (v1, v3)]) = GL(S

(3)
3 , δ

(3)
3 , q(2,1)) holds, where (S

(3)
3 , δ

(3)
3)

is a regular FGS in Fig. 7. Thus, [γ, (v1, v3)] is a context of q(2,1) w.r.t. (S
(3)
3 , δ

(3)
3 , p).

1. L is definable by (S, δ, p) = ((Σ,Λ,X,Π, Γ), δ, p) that has the 1-FCP,
2. Γ is written in Chomsky normal form, and
3. The treewidth of each term graph in Γ is at most w. Therefore, the maximum

length of ports of the hyperedges in Γ is also at most w + 1.

Let L∗ ⊆ Gd,w(Σ,Λ) be a target regular FGS language. We give a learn-
ing algorithm for 1-FCP-RFGSL(d,w) in Algorithm 1, which is a process of
searching in Con(D) for contexts of the predicate symbols in L∗. We construct
a regular FGS S(F,K) = (Σ,Λ,X,Π, Γ), pointer δ, and initial predicate p as
follows:

– Σ = Σ′ ∪ {s1, . . . , sw+1}, where Σ′ = {a | ∃gi ∈ D,∃v ∈ Vgi
[ϕgi

(v) = a]}
and Σ′ ∩ {s1, . . . , sw+1} = ∅.

– Λ = {a | ∃gi ∈ D,∃e ∈ Egi
[ψgi

(e) = a]}.
– X: We use a new variable label only when needed.
– Π = {�α, σα� | [α, σα] ∈ F ⊆ Con(D)}. Let �∅, ()� be the initial predicate p.
– δ, Γ : In Table 1, we describe the pointer δ(q) for each predicate q in Π and

the graph rewriting rules in Γ . In the table, we use the following notations.

Distributional Learning of Regular Formal Graph System of Bounded Degree 77

Algorithm 1. Learn 1-FCP-RFGSL
1: Let K := ∅, F := ∅;
2: for n = 1, 2, 3, . . . do
3: Let D = {g1, g2, . . . , gn};
4: if D �⊆ GL(S(F, K), δ, p) then {By the parsing algorithm in [1].}
5: Let F := Con(D);
6: end if
7: Let K := Con(D);
8: output (S(F, K), δ, p);
9: end for

Let k, 	 be two positive integers (k ≤) and Pk,� the set of all list of k distinct
positive integers that are less than or equal to 	. Let σ = (1, . . . , 	k) ∈ Pk,�.
For a list of elements ν = (v1, . . . , v�) (k ≤), χσ(ν) denotes (v�1 , . . . , v�k)
and χ̄σ(ν) denotes the list obtained from ν by deleting v�1 , . . . , v�k .

The graph rewriting rule R1 in Fig. 9 is an example of the graph
rewriting rules constructed by Table 1 for the target regular FGS language
GL(S(3)

3 , δ
(3)
3 , p).

Fig. 9. A graph rewriting rule R1 constructed by the second table in Table 1: This
graph rewriting rule corresponds to the rule R2 of (S

(3)
3 , δ

(3)
3) in Fig. 7.

Theorem 1. Let d and w be constant integers greater than zero. The class 1-
FCP-RFGSL(d,w) is identifiable in the limit with polynomial time update by
using membership queries from positive data.

Proof. Let (S1, δ1, p1), (S2, δ2, p2), . . . , (Si, δi, pi), . . . be hypotheses output by
Algorithm 1, and (Si, δi, pi) = ((Σ,Λ,X,Πi, Γi), δi, pi). We prove that there
exists a positive integer k such that GL(Sn, δn, pn) = L∗ for any integer n ≥ k.
Let (S∗, δ∗) = ((Σ,Λ,X,Π∗, Γ∗), δ∗) be a regular FGS and p∗ a predicate sym-
bol in Π∗ with L∗ = GL(S∗, δ∗, p∗). Let Gi be a ground term graph given to
Algorithm 1 at the i-th time, and Di = {G1, G2, . . . , Gi}. From the property of
positive presentations, there exists a positive integer n ≥ 1 such that Con(Dn)
has a ground term graph fragment [g, σg] with C(S∗, δ∗, p∗, q, g) = GL(S∗, δ∗, q)
for any q ∈ Π∗. From the n-th input and after, for any predicate symbol q ∈ Π∗,
Algorithm 1 has a ground term graph fragment corresponding to q. Thus, any
graph rewriting rule in Γ∗ is included in Γm for any m ≥ n. It follows that
L∗ ⊆ GL(Sm, δm, pm) for any m ≥ n.

78 T. Shoudai et al.

Table 1. (S(F, K), δ, p): There are three types of terminal rules and one type of binary
rule. Each graph rewriting rule is created if the corresponding condition is satisfied. All
conditions can be determined by asking to the membership oracle MemL∗ . The unary
rules can be constructed in a similar way to the binary rules. We omit its detail.

Terminal rules p0(f0) ← in (S(F, K), δ, p):

p0 δ(p0) f0 Condition

g0, σg0 (s1) ({v1}, ∅, ϕ, ∅, ∅, ∅, ()) [g0, σg0] [f0, (v1)] ∈ L∗
|σg| = 1 ϕ(v1) = s1
g0, σg0 (s1) ({v1, v2}, {(v1, v2)}, ϕ, ψ, ∅, ∅, ()) [g0, σg0] [f0, (v1)] ∈ L∗
|σg| = 1 ϕ(v1) = s1, ϕ(v2) ∈ Σ

g0, σg0 (s1, s2) ({v1, v2}, {(v1, v2)}, ϕ, ψ, ∅, ∅, ()) [g0, σg0] [f0, (v1, v2)] ∈ L∗
|σg| = 2 ϕ(v1) = s1, ϕ(v2) = s2

Binary rules p1(f1) ← p2(f2), p3(f3) in (S(F, K), δ, p)

pi (i = 2, 3) δ(pi) (i = 2, 3) fi (i = 2, 3, j = 1 i)

gi, σgi

|σgi | = i

(s1, . . . , s i) fi = ({vi,1, . . . , v i}, ∅, ϕi, ∅, {hi}, λi, porti), where
ϕi(vi,j) = sj , λ2(h2) = λ3(h3), portsi(hi)[j] = vi,j .

p1 δ(p1) f1
g1, σg1

|σg1 | = 1

(s1, . . . , s 1) f1 = [f2, χσ2(ports2(h2))] [f3, χσ3(ports3(h3))], where
σi ∈ Pk,|portsi(hi)| (i = 2, 3) for some k. Let ν =
portsf2(h2) ·χ̄σ3(portsf3(h3)) and σ1 ∈ P 1,|ν|. The ver-
tices in ν are relabeled so that χσ1(ν) = (s1, . . . , s 1)
and χ̄σ(ν) ∈ Σ ν|− 1 .

Condition

For ∀[τ2, στ2], [τ3, στ3] ∈ K, if [g2, σg2] [τ2, στ2] ∈ L∗ and [g3, σg3] [τ3, στ3] ∈ L∗,
then [g1, σg1] [[τ2, χσ2(στ2)] [τ3, χσ3(στ3)], ξ] ∈ L∗, where ξ = χσ1(χσ2(στ2) ·
χ̄σ3(στ3)).

We assume that for any n ≥ 1, there exists a positive integer m ≥ n
such that GL(Sm, δm, pm) ⊆ L∗. Then there exists a ground term graph G′ ∈
GL(Sm, δm, pm)\L∗. Since G′ ∈ GL(Sm, δm, pm), there exist a graph rewriting
rule p1(f1) ← p2(f2), p3(f3) in Γm and ground term graph fragments [ρ2, σρ2]
and [ρ3, σρ3] such that [g2, σg2]� [ρ2, σρ2] ∈ L∗, [g3, σg3]� [ρ3, σρ3] ∈ L∗ and G′ is
isomorphic to [g1, σg1]�[[ρ2, χσ2(σρ2)]�[ρ3, χσ3(σρ3)], ξ], where p1, p2 and p3 cor-
respond to [g1, σg1], [g2, σg2] and [g3, σg3], respectively. There exist ground term
graph fragments [τ2, στ2], [τ3, στ3] ∈ K = Con(D�) with [g2, σg2] � [τ2, στ2] ∈ L∗,
[g3, σg3] � [τ3, στ3] ∈ L∗ and [g1, σg1] � [[τ2, χσ2(στ2)] � [τ3, χσ3(στ3)], ξ] ∈ L∗ for
some positive integer 	. Thus, p1(f1) ← p2(f2), p3(f3) is removed from Γ�. This
contradicts that p1(f1) ← p2(f2), p3(f3) in Γm. Therefore, we can show that
there exists a positive integer k such that GL(Sn, δn, pn) = L∗ for any integer
n ≥ k. From Proposition 1, |Con(Dn)| is of polynomial size w.r.t.

∑n
i=1 |Gi| at

the n-th step. Thus, from Lemma 1, the n-th hypothesis (Sn, δn, pn) is output
by Algorithm 1 with polynomial update time w.r.t

∑n
i=1 |Gi|. �

Distributional Learning of Regular Formal Graph System of Bounded Degree 79

4 Conclusions

We have considered the problem of learning FGS languages from the viewpoint
of the computational learning theory. First, we introduced the class 1-FCP-
RFGSL of regular FGS languages of bounded degree and treewidth with 1-
finite context property (1-FCP). We also presented an algorithm for learning
class 1-FCP-RFGSL by using current distributional learning techniques [11].
Finally, we showed that class 1-FCP-RFGSL can be identifiable in the limit
with polynomial time update by using membership queries from positive data.
This result will lead us to develop new techniques for learning other classes of
FGS languages with distributional properties.

Clark et al. [2,3] and Yoshinaka [11,12] discussed the learnabilities of the class
of languages of context-free grammars with the finite kernel property (FKP) and
finite context property (FCP). As future work, we will consider the polynomial
time learnabilities of the class of regular FGS languages with the FKP and FCP.

References

1. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceeding of ACL 2013, pp.
924–932. Association for Computational Linguistic (2013)

2. Clark, A.: A learnable representation for syntax using residuated lattices. In:
Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS, vol. 5591, pp. 183–
198. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20169-1 12

3. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. J. Mach. Learn. Res. 8, 1725–1745 (2007)

4. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
In: Handbook of Graph Grammars and Computing by Graph Transformation, vol.
1, pp. 95–162. World Scientific (1997)

5. Gildea, D.: Grammar factorization by tree decomposition. Comput. Linguist.
37(10), 231–248 (2011)

6. Hara, S., Shoudai, T.: Polynomial time MAT learning of c-deterministic regular
formal graph systems. In: Proceeding IIAI-AAI 2014, pp. 204–211. IEEE (2014)

7. Kasprzik, A., Yoshinaka, R.: Distributional learning of simple context-free tree
grammars. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT
2011. LNCS (LNAI), vol. 6925, pp. 398–412. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24412-4 31

8. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27(5), 399–421 (1990)

9. Okada, R., Matsumoto, S., Uchida, T., Suzuki, Y., Shoudai, T.: Exact learning
of finite unions of graph patterns from queries. In: Hutter, M., Servedio, R.A.,
Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 298–312. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75225-7 25

10. Uchida, T., Shoudai, T., Miyano, S.: Parallel algorithms for refutation tree problem
on formal graph systems. IEICE Trans. Inf. Syst. E78–D(2), 99–112 (1995)

http://dx.doi.org/10.1007/978-3-642-20169-1_12
http://dx.doi.org/10.1007/978-3-642-24412-4_31
http://dx.doi.org/10.1007/978-3-642-24412-4_31
http://dx.doi.org/10.1007/978-3-540-75225-7_25

80 T. Shoudai et al.

11. Yoshinaka, R.: Integration of the dual approaches in the distributional learn-
ing of context-free grammars. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 538–550. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28332-1 46

12. Yoshinaka, R.: General perspective on distributionally learnable classes. In: Pro-
ceeding of MoL 2015, pp. 87–98. Association for Computational Linguistic (2015)

http://dx.doi.org/10.1007/978-3-642-28332-1_46
http://dx.doi.org/10.1007/978-3-642-28332-1_46

	Distributional Learning of Regular Formal Graph System of Bounded Degree
	1 Introduction
	2 Preliminaries
	3 Learning Regular FGS with 1-Finite Context Property
	4 Conclusions
	References

