
James Cussens
Alessandra Russo (Eds.)

 123

LN
AI

 1
03

26

26th International Conference, ILP 2016
London, UK, September 4–6, 2016
Revised Selected Papers

Inductive
Logic Programming

Lecture Notes in Artificial Intelligence 10326

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

James Cussens • Alessandra Russo (Eds.)

Inductive
Logic Programming
26th International Conference, ILP 2016
London, UK, September 4–6, 2016
Revised Selected Papers

123

Editors
James Cussens
Department of Computer Science
University of York
York
UK

Alessandra Russo
Imperial College London
London
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-63341-1 ISBN 978-3-319-63342-8 (eBook)
DOI 10.1007/978-3-319-63342-8

Library of Congress Control Number: 2017946684

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume constitutes the proceedings of the 26th International Conference on
Inductive Logic Programming (ILP 2016) and includes a selection of the papers pre-
sented at the conference. ILP 2016 was held in London, during September 4–6, 2016,
at the Warren House Conference Centre. Since its first edition in 1991, the annual ILP
conference has served as the premier international forum for learning from structured
relational data. Originally focusing on the induction of logic programs, over the years it
has expanded its research horizon significantly and welcomed contributions on all
aspects of learning in logic, multi-relational data mining, statistical relational learning,
graph and tree mining, learning in other (non-propositional) logic-based knowledge
representation frameworks, exploring intersections with statistical learning, and other
probabilistic approaches. Theoretical advances in all these areas have also been
accompanied by challenging applications of these techniques to important problems in
fields like bioinformatics, medicine, and text mining.

Following the trend of past events, this edition of the conference solicited three
types of submissions: (a) long papers describing original mature work containing
appropriate experimental evaluation and/or representing a self-contained theoretical
contribution; (b) short papers describing original work in progress, brief accounts of
original ideas without conclusive evaluation, and other relevant work of potentially
high scientific interest but not yet qualifying for the long paper category; and finally
(c) papers relevant to the conference topics and recently published or accepted for
publication by a first-class conference such as ECML/PKDD, ICML, KDD, ICDM,
AAAI, IJCAI, or a journal such as MLJ, DMKD, JMLR etc.

The conference received 35 submissions: ten long papers, 19 short papers, and six
published papers. Each of the long and short paper submissions was reviewed by three
Program Committee (PC) members. Only four of the ten submitted long papers were
accepted for presentation and publication. Short papers were initially evaluated on the
basis of the submitted manuscript and the presentation, and authors of a subset of these
papers were invited to submit an extended version. After a second review process, only
six extended papers were finally accepted for publication. In summary, together with
the four long papers, ten papers were accepted to be included in the present volume.
The multiple-stage review process, although rather complex, has enabled the selection
of high-quality papers for the proceedings. We thank the members of the PC for
providing high-quality and timely reviews. Out of all the submitted papers, an addi-
tional 13 papers were accepted for publication in the CEUR workshop proceedings
series.

The ILP 2016 program included five large technical sessions: Logic and Learning;
Graphs and Databases; Probabilistic Logic and Learning; Algorithms, Optimisations
and Implementations; and Applications. The papers in this volume represent well the
current breadth of ILP research topics such as predicate invention, graph-based
learning, spatial learning, logical foundations, statistical relational learning,

probabilistic ILP, implementation and scalability, and applications in robotics,
cyber-security, and games, providing also an excellent balance across theoretical and
practical research. ILP 2016 received generous sponsorship by the Machine Learning
journal for best student paper awards. The two best student paper awards of ILP 2016
were given to Yi Huang for his paper entitled “Learning Disjunctive Logic Programs
from Interpretation Transition,” co-authored with Yisong Wang, Ying Zhang and
Mingyi Zhang, and to Marcin Malec for his paper “Inductive Logic Programming
Meets Relational Databases: An Application to Statistical Relational Learning,”
co-authored with Tushar Khot, James Nagy, Erik Blasch and Sriraam Natarajan. The
conference also received sponsorship from Springer for a best paper award. This award
was given to the paper “Generation of Near-Optimal Solutions Using ILP-Guided
Sampling” by Ashwin Srinivasan, Gautam Shroff, Lovekesh Vig and Sarmimala
Saikia.

With the intent of stimulating collaborations and discussion between academia and
industry, the program also featured three invited talks by academic and industrial
distinguished researchers. In the talk “Inferring Causal Models of Complex Relational
and Dynamic Systems,” David Jensen, from the University of Massachusetts, presented
key ideas, representations, and algorithms for causal inference, and highlighted new
technical frontiers. Frank Wood, from the University of Oxford, gave a talk entitled
“Revolutionising Decision Making, Democratising Data Science, and Automating
Machine Learning via Probabilistic Programming.” In his talk, he gave a broad
overview of the emerging field of probabilistic programming, from the point of view of
both programming (modelling) language and automated inference, and introduced the
most important challenges facing this field. Finally, Vijay Saraswat, senior research
scientist in the Cognitive Computing Research division at the IBM T.J. Watson
Research Center, discussed in his talk “Machine Learning and Logic: The Beginnings
of a New Computer Science?” the open challenges of building cognitive assistants in
compliance, and the need to bring together researchers in natural language under-
standing, machine learning, and knowledge representation/reasoning to address them.

The conference featured, for the first time, an international competition, designed
and managed by Mark Law, a member of our local Organizing Committee. The
competition was aimed at testing the accuracy, scalability, and versatility of the
learning systems that were entered. The competition had two main tracks for proba-
bilistic and non-probabilistic approaches. The winners of the competition were Peter
Schüller, from Marmara University, for his non-probabilistic approach and jointly
Riccardo Zese, Elena Bellodi, and Fabrizio Riguzzi for their probabilistic approach.
Results of the competition are publicly available on http://ilp16.doc.ic.ac.uk/
competition.

The ILP 2016 conference was kindly sponsored by IBM Watson Research, the
Association of Logic Programming, Springer’s Lecture Notes in Artificial Intelligence,
the Artificial Intelligence journal, and the Machine Learning journal. We would like to
thank EasyChair for supporting the submission handling. We would like to thank the
members of the local Organizing Committee of ILP 2016: Krysia Broda, Dalal Alrajeh,
and Mark Law. Our thanks also go to Mark Law for running the competition and for
setting up and maintaining the website. The conference would not have been possible
without their hard work.

VI Preface

http://ilp16.doc.ic.ac.uk/competition
http://ilp16.doc.ic.ac.uk/competition

Finally, we would like to thank all those involved in making ILP 2016 such a
success: our invited speakers, our sponsors, the PC and, of course, those who came to
ILP 2016 to present and discuss their work.

May 2017 James Cussens
Alessandra Russo

Preface VII

Organization

Organizing Committee

Program Co-chairs

James Cussens University of York, UK
Alessandra Russo Imperial College, UK

Competition Chair

Mark Law Imperial College, UK

Financial Chair

Dalal Alrajeh Imperial College, UK

Publicity Chair

Krysia Broda Imperial College, UK

Program Committee

Dalal Alrajeh Imperial College London, UK
Alexander Artikis Institute of Informatics and Telecommunications,

Greece
Krysia Broda Imperial College London, UK
Rui Camacho LIACC/FEUP University of Porto, Portugal
Luc De Raedt Katholieke Universiteit Leuven, Belgium
Sašo Džeroski University of Ljubljana, Slovenia
Floriana Esposito Università degli Studi di Bari, Italy
Nicola Fanizzi Università degli Studi di Bari, Italy
Stefano Ferilli Università degli Studi di Bari, Italy
Nuno Fonseca European Bioinformatics Institute, Portugal
Katsumi Inoue National Institute of Informatics, Japan
Kristian Kersting TU Dortmund University, Germany
Ross King University of Manchester, UK
Nicolas Lachiche University of Strasbourg, France
Nada Lavrač Jožef Stefan Institute, Slovenia
Francesca Lisi Università degli Studi di Bari, Italy
Donato Malerba Università degli Studi di Bari, Italy
Stephen Muggleton Imperial College London, UK
Aline Paes UFF, Federal Fluminense University, Brazil
Jan Ramon Inria, France
Oliver Ray University of Bristol, UK

Fabrizio Riguzzi University of Ferrara, Italy
Chiaki Sakama Wakayama University, Japan
Vítor Santos Costa Universidade do Porto, Portugal
Takayoshi Shoudai Kyushu International University, Japan
Alireza Tamaddoni-Nezhad Imperial College London, UK
Christel Vrain University of Orleans, France
Stefan Wrobel Fraunhofer IAIS and University of Bonn, Germany
Akihiro Yamamoto Kyoto University, Japan
Gerson Zaverucha PESC-COPPE, UFRJ, Brazil
Filip Železný Czech Technical University, Czech Republic

Sponsoring Institutions

Association for Logic Programming
IBM Research
Machine Learning Journal (for best student paper awards)
Lecture Notes in Artificial Intelligence, Springer (for best paper award)
Artificial Intelligence Journal

X Organization

Invited Speakers

Inferring Causal Models of Complex
Relational and Dynamic Systems

David Jensen

Knowledge Discovery Laboratory, Computational Social Science Institute,
College of Information and Computer Sciences,

University of Massachusetts Amherst, Amherst, USA

Over the past 25 years, surprisingly effective techniques have been developed for
inferring causal models from observational data. While traditional models reason about
a given system by assuming that its behavior is stationary, causal models reason about
how a system will behave under intervention. Unfortunately, nearly all existing
methods for causal inference assume that data instances are independent and identically
distributed, making them inappropriate for analyzing many social, economic, biolog-
ical, and computational systems. In this talk, I will explain the key ideas, representa-
tions, and algorithms for causal inference, and I will describe very recent developments
that extend those techniques to complicated systems with relational and dynamic
behavior. I will describe practical methods for evaluating methods for causal inference
and identify some of the most pressing research questions and new technical frontiers.

Machine Learning and Logic—The Beginnings
of a New Computer Science?

Vijay A. Saraswat

IBM T.J. Watson Research Lab, New York, USA

Our long-term research goal in Cognitive Computing Research at IBM is to develop
systems that know deeply, learn continuously, reason with purpose and interact nat-
urally. To further this agenda, we are focusing on a few deep domains. This talk will
address the challenges of building cognitive assistants in compliance assistants that
deal with understanding and reasoning about the myriad (corporate, financial, privacy,
ethical) laws and regulations within the context of which modern international busi-
nesses must operate. An interim goal for the compliance cognitive assistant is to clear
the Uniform CPA exam, a professional certification attempted by master's level stu-
dents. We will outline the tremendous technical challenges underlying this goal and our
current approaches. We believe the key to achieving this goal is bringing together
researchers in natural language understanding, machine learning, and knowledge
representation/reasoning for a concerted attack on this problem.

Revolutionizing Decision Making,
Democratizing Data Science, and Automating

Machine Learning via Probabilistic
Programming

Frank Wood

Department of Engineering Science, University of Oxford, Oxford, UK

Probabilistic programming aims to enable the next generation of data scientists to
easily and efficiently create the kinds of probabilistic models needed to inform deci-
sions and accelerate scientific discovery in the realm of big data and big models. Model
creation and the learning of probabilistic models from data are key problems in data
science. Probabilistic models are used for forecasting, filling in missing data, outlier
detection, cleanup, classification, and scientific understanding of data in every aca-
demic field and every industrial sector. While much work in probabilistic modeling has
been based on hand-built models and laboriously-derived inference methods, future
advances in model-based data science will require the development of much more
powerful automated tools than currently exist. In the absence of such automated tools,
probabilistic models have traditionally co-evolved with methods for performing
inference. In both academic and industrial practice, specific modeling assumptions are
made not because they are appropriate to the application domain, but because they are
required to leverage existing software packages or inference methods. This intertwined
nature of modeling and computation leaves much of the promise of probabilistic
modeling out of reach for even expert data scientists. The emerging field of proba-
bilistic programming will reduce the technical and cognitive overhead associated with
writing and designing novel probabilistic models by both introducing a programming
(modeling) language abstraction barrier and automating inference. The automation of
inference, in particular, will lead to massive productivity gains for data scientists, much
akin to how high-level programming languages and advances in compiler technology
have transformed software developer productivity. What is more, not only will tradi-
tional data science be accelerated, but the number and kind of people who can do data
science also will be dramatically increased. My talk will touch on all of this, explain
how to develop such probabilistic programming languages, highlight some exciting
ways such languages are starting to be used, and introduce what I think are some of the
most important challenges facing the field as we go forward.

Contents

Estimation-Based Search Space Traversal in PILP Environments. 1
Joana Côrte-Real, Inês Dutra, and Ricardo Rocha

Inductive Logic Programming Meets Relational Databases: Efficient
Learning of Markov Logic Networks . 14

Marcin Malec, Tushar Khot, James Nagy, Erik Blask,
and Sriraam Natarajan

Online Structure Learning for Traffic Management 27
Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras

Learning Through Advice-Seeking via Transfer . 40
Phillip Odom, Raksha Kumaraswamy, Kristian Kersting,
and Sriraam Natarajan

How Does Predicate Invention Affect Human Comprehensibility? 52
Ute Schmid, Christina Zeller, Tarek Besold, Alireza Tamaddoni-Nezhad,
and Stephen Muggleton

Distributional Learning of Regular Formal Graph System
of Bounded Degree . 68

Takayoshi Shoudai, Satoshi Matsumoto, and Yusuke Suzuki

Learning Relational Dependency Networks for Relation Extraction 81
Ameet Soni, Dileep Viswanathan, Jude Shavlik, and Sriraam Natarajan

Towards Nonmonotonic Relational Learning from Knowledge Graphs 94
Hai Dang Tran, Daria Stepanova, Mohamed H. Gad-Elrab,
Francesca A. Lisi, and Gerhard Weikum

Learning Predictive Categories Using Lifted Relational Neural Networks 108
Gustav Šourek, Suresh Manandhar, Filip Železný, Steven Schockaert,
and Ondřej Kuželka

Generation of Near-Optimal Solutions Using ILP-Guided Sampling. 120
Ashwin Srinivasan, Gautam Shroff, Lovekesh Vig, and Sarmimala Saikia

Author Index . 133

http://dx.doi.org/10.1007/978-3-319-63342-8_1
http://dx.doi.org/10.1007/978-3-319-63342-8_2
http://dx.doi.org/10.1007/978-3-319-63342-8_2
http://dx.doi.org/10.1007/978-3-319-63342-8_3
http://dx.doi.org/10.1007/978-3-319-63342-8_4
http://dx.doi.org/10.1007/978-3-319-63342-8_5
http://dx.doi.org/10.1007/978-3-319-63342-8_6
http://dx.doi.org/10.1007/978-3-319-63342-8_6
http://dx.doi.org/10.1007/978-3-319-63342-8_7
http://dx.doi.org/10.1007/978-3-319-63342-8_8
http://dx.doi.org/10.1007/978-3-319-63342-8_9
http://dx.doi.org/10.1007/978-3-319-63342-8_10

Estimation-Based Search Space Traversal
in PILP Environments

Joana Côrte-Real(B), Inês Dutra, and Ricardo Rocha

Faculty of Sciences, CRACS, INESC TEC, University of Porto,
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{jcr,ines,ricroc}@dcc.fc.up.pt

Abstract. Probabilistic Inductive Logic Programming (PILP) systems
extend ILP by allowing the world to be represented using probabilistic
facts and rules, and by learning probabilistic theories that can be used to
make predictions. However, such systems can be inefficient both due to
the large search space inherited from the ILP algorithm and to the proba-
bilistic evaluation needed whenever a new candidate theory is generated.
To address the latter issue, this work introduces probability estimators
aimed at improving the efficiency of PILP systems. An estimator can
avoid the computational cost of probabilistic theory evaluation by pro-
viding an estimate of the value of the combination of two subtheories.
Experiments are performed on three real-world datasets of different areas
(biology, medical and web-based) and show that, by reducing the num-
ber of theories to be evaluated, the estimators can significantly shorten
the execution time without losing probabilistic accuracy.

1 Introduction

Probabilistic Inductive Logic Programming (PILP) [4] is an extension of the ILP
paradigm that can represent knowledge using probabilistic facts and rules and
which learns, as a result, probabilistic theories that can be used for prediction.
Introducing probabilistic information in ILP to create PILP can be used to (i)
create better logical models that can take uncertainty into account; (ii) implicitly
reduce the theory search space by transforming numerical arguments in anno-
tated probabilistic data; (iii) compress data by representing it as aggregates; or
(iv) add knowledge from the literature in the form of probabilistic information.
PILP can be seen as a Statistical Relational Learning approach (SRL) [4] and,
in this setting, both parameter and structure learning are possible. However,
it is more common for SRL techniques to learn parameters, and only few SRL
methods can learn structure, or both. PILP differs from other SRL techniques
because it focuses primarily on structure learning over relational data that is
already annotated with probabilistic values.

PILP suffers from the same search space traversal efficiency issues as ILP
because similar algorithms are used to generate the logical part of the theories.
Additionally, PILP adds a level of complexity because every new theory gen-
erated needs to be probabilistically evaluated in order to be considered. This
c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 1–13, 2017.
DOI: 10.1007/978-3-319-63342-8 1

2 J. Côrte-Real et al.

work presents a strategy aimed at improving the performance of PILP systems
through the use of estimators that can prune the universe of candidate theo-
ries and, thus, reduce the search space. These estimators were integrated in the
SkILL system [2], but the concepts are general to any PILP engine.

SkILL is a stochastic inductive logic learner which can generate First-Order
Logic (FOL) theories based on a database of probabilistic data. These theo-
ries are expressed as Horn clauses (a subset of FOL) and so they can be used
to extract relational non-trivial knowledge about the dataset where they are
inferred from. SkILL differs from other PILP systems such as ProbFOIL+ [3]
or SLIPCOVER [1] because it introduces an algorithm of polynomially bound
complexity on user-defined parameters, as well as a number of efficient pruning
strategies that can reduce execution time while maintaining prediction quality.

To the best of the authors’ knowledge, the notion of an estimator is a novel
feature in PILP systems. In this work, five estimators that can be incorporated
in the estimation pruning strategy are proposed, namely minimum, maximum,
center, independence and exclusion. To validate this estimation-based search
space traversal approach, a thorough experimental analysis of the impact that
each estimator has on the execution time and theory quality is presented. Experi-
ments are performed in three probabilistic datasets, and the models are validated
using hold-out resampling or leave-one-out cross-validation techniques. Results
show that estimators can significantly prune the search space, and thus, reduce
execution time, while maintaining the same probabilistic accuracy when com-
pared with using no estimation pruning.

2 Related Work

According to Getoor et al. [8], relational data introduces the machine learning
problem of class-level frequency estimation: building a model that can answer
generic statistical queries about classes of individuals in a database. This is
opposed to instance-level frequency estimation, where one is interested in the
probability of a particular instance. In a first-order logic representation, the first
type of estimation would be described with first-order formulas with variables,
while the second type would be described with first-order formulas with con-
stants (ground terms). There has been a whole body of research on modeling
relational data using various kinds of representations, inference systems, and
learning techniques (parameters and structure) [7].

There are many probabilistic languages that can represent and perform infer-
ence with probabilities, such as SLP [12], BLP [9], CLP(BN) [15], ProbLog [10],
MLN [14], Prism [16], among others (for a recent survey of probabilistic logic
languages see [5]). Probabilistic logic languages have been around for over
20 years [5]. They differ in the way they extend logic to include probabilities
(class-level or instance-level), in their syntax, in the kind of uncertainty that is
represented (probabilities, weights or potential functions), and in their inference
algorithms. However, there are few works in the probabilistic logic field dedicated
to learning the structure of classifiers using a human-readable probabilistic rep-
resentation for knowledge.

Estimation-Based Search Space Traversal in PILP Environments 3

An example of a system that uses logic to learn from probabilistic represen-
tations is MLN, where the learning algorithm is ILP-based and uncertainty is
represented as potential functions [11]. Several methods of inference can be used
and the models learnt are first-order logic formulas with potential scores. Another
ILP-based example is Natarajan et al.’s boosting approach [13], which uses
regression trees to learn the model structure faster. Furthermore, some works
in the literature allow the representation of probabilistic logic using Bayesian
networks. This is the case of Schulte et al.’s PBN (Parametrized Bayesian Net-
works) [17]. PBN is a first-order logic extension of Bayesian networks, where
nodes are represented as a first-order term with a variable.

This work’s focus is on probabilistic inductive logic programming (PILP) sys-
tems. These systems use as basis a probabilistic logic language to learn (prob-
abilistic) theories. This work follows the syntax and inference mechanism of
ProbLog [10], and uses it to represent the datasets and to learn first-order (prob-
abilistic) theories. ProbLog is an extension of Prolog, whose syntax is modified
to take into account class-level and instance-level probabilities, and annotated
disjunctions. Uncertainty is, thus, represented as probabilities.

There are several PILP approaches mentioned in the literature, such as Prob-
FOIL/ProbFOIL+ [3], SLIPCOVER [1] and SkILL [2]. ProbFOIL+ is a PILP
system that can tune the prediction of a theory by finding a weight for each
rule in that theory. ProbFOIL+ algorithm computes the best weight whenever
a rule is being added to the theory and then integrates it in the theory. This
can be seen as a form of boosting, since the importance of each rule in the the-
ory is being adjusted, even though the possibility for adjustment is limited (the
weight must be between 0 and 1). SLIPCOVER introduces the new ability to
perform generative learning in the search space. SLIPCOVER still requires a
target predicate, but it also gathers a set of good theories which can explain
predicates from the BK other than the target predicate – this process can be
viewed as a form of deep learning, since these intermediate theories will be used
to explain the target predicate. SkILL is a PILP system which introduces an
algorithm of polynomially bound complexity on user-defined parameters, as well
as a number of efficient pruning strategies that can reduce execution time while
maintaining prediction quality. A comparison between SkILL, ProbFOIL+ and
an ILP system can be found in [2].

3 Background

PILP extends the ILP setting by introducing Probabilistic Background Knowl-
edge (PBK), where FOL data descriptions can be annotated with a probability
value ranging from 0 to 1, and Probabilistic Examples (PE), no longer positive
or negative, also with a value ranging between 0 and 1. Because PILP theories
are still generated based on the logical information of the data, the ILP language
bias translates directly to PILP. The process of generating theories also mimics
ILP, since they are based on the logical clauses in the PBK. Therefore the search
space algorithm of PILP has the same efficiency issues of ILP’s. Furthermore,

4 J. Côrte-Real et al.

PILP adds an extra level of complexity due to the probabilistic evaluation of the-
ories w.r.t. the examples. The background knowledge can be composed of (Horn)
clauses, which can be facts or definite clauses Definite clauses are composed of
a head and a body, and the body represents the explanation for the head. Facts
and definite clauses’ heads are examples of literals that ILP and PILP use to
build rules.

As mentioned before, in this work, probabilities are annotated according to
ProbLog’s syntax [10]. Each clause pj :: cj in the PBK represents an independent
binary random variable in ProbLog, meaning that it can either be true with
probability pj or false with probability 1 − pj . Each set of possible choices over
all clauses of the PBK represents a possible world ωi, where ω+

i is the set of
clauses that are true in that particular world, and ω−

i = ωi\ω+
i is the set of

clauses that are false. Since these clauses have a probabilistic value, a ProbLog
program defining a probabilistic distribution over the possible worlds can be
formalized as shown in Eq. 1. A ProbLog query q is said to be true in all worlds
wq where wq |= q, and false in all other worlds. As such, the success probability
of a query is given by the sum of the probabilities of all worlds where it is found
to be true, as denoted in Eq. 2.

P (ωi) =
∏

cj∈ω+
i

pj

∏

cj∈ω−
i

(1 − pj) (1)

P (q) =
∑

ωi|=q

P (ωi) (2)

One important difference between ILP and PILP lies in the assessment of
the fitness of theories – in PILP the loss function must be able to evaluate
probabilistic inputs. As such, the aim of PILP systems is to find theories which
most closely predict the value of the examples (also ranging between 0 and 1),
or rather that minimize the error between predictions and the examples’ values.

Theories can be formed either by a single rule (clause) or by a set of rules
(where the clauses are mutually disjunctive). The length of a theory is equal to
the number of rules it contains. In SkILL, theories can be combined using either
the AND or the OR operation, which correspond to the logical conjunction and
disjunction of the rules in the theories, respectively. In the case of the AND
operation, only single rules (theories of length one) can be combined, and the
result is another theory of length one (e.g. combining theories t(X):– p(X) and
t(X):– q(X,Y) using the AND operation would result in theory t(X):– p(X),
q(X,Y))1. Conversely, theories of any length can be combined using the OR
operation, and the resulting theory’s length is equal to the sum of the lengths
of the combined theories (e.g. combining theories of length one t(X):– r(X) and
t(X):– s(X,Y) using the OR operation would result in theory t(X):– r(X); s(X,Y)
of length 2).

1 The unification of variables between the literals is obtained from the specified lan-
guage bias.

Estimation-Based Search Space Traversal in PILP Environments 5

SkILL’s algorithm is composed of two main steps: (i) building theories of
length one (single rules) using the AND operation, and (ii) building theories
of length greater than one using the OR operation. In step (i), single rules of
increasing number of literals are built from the mode declarations using the AND
operation. Adding literals to a rule in conjunction makes the resulting rule more
specific. Once all possible rules are built and evaluated, the algorithm proceeds
to step (ii) using the OR operation to combine single rules (theories of length
one) into theories of greater length, up to a maximum length. By adding rules
to a theory in disjunction, the resulting theory becomes more general.

In order to assess a theory’s fitness, its exact probabilistic value for each
example must be computed, so that the theory is evaluated exactly. This process
can be very time consuming, since the evaluation process must consider all pos-
sible worlds where the theory may be true. For a small number of facts in the
PBK this is not a problem, but exact computation grows exponentially as the
size of the PBK is increased. Consider the process of evaluating exactly the the-
ory t(X):– p(X), q(X,Y). ProbLog would need to compute all possible worlds
for this theory in order to assess the overall error of the theory’s predictions
against the examples. Whether the theory is stored for further combinations or
discarded after the evaluation stage, the system has already spent a considerable
amount of time just to evaluate it.

To mitigate this problem, this work introduces the estimation pruning strat-
egy, which can discard theories based on their previously evaluated subparts.
For instance, suppose that theories t(X):– p(X) and t(X):– q(X,Y) had already
been evaluated – in that case, it is possible to make an estimation of the value of
t(X):– p(X), q(X,Y) based on this information. Thus, estimation pruning con-
sists of ruling out theories that have poor estimations and exactly evaluating
theories that have good estimations. In SkILL, the decision on whether a theory
is discarded is made based on one of two criteria: soft pruning or hard pruning.
After the initial step of estimating the values for each example, the estimated
value’s usefulness is assessed according to one of these criteria. Note that the
criteria are directly applicable to the estimated probabilistic values in lieu of the
exact predictions of a theory. The combination is then pruned away if it is found
to be useless. Conversely, if the combination is considered useful, then exact
probabilistic evaluation is performed and the theory and its exact evaluation are
saved for the next iteration.

4 Estimation Pruning

Estimation pruning consists of estimating the predictions of two theories com-
bined based on the individual predictions of each theory. Estimation pruning
excludes combinations of theories whose estimated predictions suggest that the
resulting theory will be too specific (for the AND operation) or too general (for
the OR operation). This process is somehow similar to the evaluation of theories
in ILP. For instance, the more specific theory ts will not cover more positive
examples than a more general theory tg and so it can be discarded.

6 J. Côrte-Real et al.

In the PILP setting, the exact probabilistic evaluation of a theory corresponds
to the weighted proportion of worlds where the theory is true. The probabilistic
value for an example e using a theory t is given by determining in how many
worlds (of all possible worlds in the PBK) t(e) is true. The challenge in estimating
the value of a probabilistic evaluation knowing the values of the theories being
combined lies in the fact that the amount of overlapping of the sets of worlds
corresponding to those two theories is unknown before evaluation. If two theories
are mutually exclusive (or disjoint) w.r.t. the PBK, then their overlap is null. On
the other hand, if a theory is more specific than another, the former will cover
a subset of the worlds covered by the latter. Theories can also be independent,
meaning that the probability that one theory is true in a world does not change
the probability that another theory is also true in that world.

Despite this uncertainty, it is possible to calculate the interval where the
predictions of a combination of two theories will be (this is depicted in Fig. 1 as
a shaded area). The lower and upper bounds of the interval are determined by
the predictions of the theories that are being combined (t1 and t2 in Fig. 12).
Depending on where the resulting theory t will lie in the interval, the (vertical)
distance between t’s values and the example values (squares in Fig. 1) will vary,
and as t converges to the examples, its prediction quality is improved.

This work presents five estimators that can be used to estimate the value
of theories, namely: minimum, maximum, center, independence and exclusion.
These estimators predict different sets of values inside the estimation interval,
based on different set theory cases. The minimum and maximum estimators
correspond to the lower and upper boundaries of the estimation interval (min
and max estimators in Fig. 1, respectively). The center estimator (ctr in Fig. 1) is
the center of the estimation interval (halfway between minimum and maximum).
The independence estimator (ind in Fig. 1) assumes that theories t1 and t2 are
independent and calculates the values of their combination accordingly. The
exclusion estimator (not depicted in Fig. 1) assumes that the theories t1 and t2
are as exclusive as possible. In the AND operation, the exclusion estimator is
equal to the minimum estimator, since when two theories are mutually exclusive,
their amount of overlap is minimum. The first row in Table 1 summarizes the
expressions used to calculate these estimations.

Table 1. Expressions used to calculate estimations

Operation Minimum Maximum Center Independence Exclusion

AND max(0, A + B − 1) min(A,B) 1
2 (min(A,B) +

max(0, A + B − 1))

A × B max(0, A + B − 1)

OR max(A,B) min(A + B, 1) 1
2 (max(A,B) +

min(A + B, 1)

A + B − A × B min(A + B, 1)

2 Theories are indexed only for clarity’s sake. They correspond to the same concept
to be learned.

Estimation-Based Search Space Traversal in PILP Environments 7

e1 e2 e3
0

0.2

0.4

0.6

0.8

1
t1 t2

(a) Theories

e1 e2 e3
0

0.2

0.4

0.6

0.8

1
max ctr
ind min

(b) Estimators

e1 e2 e3
0

0.2

0.4

0.6

0.8

1
max

(c) Hard Pruning

e1 e2 e3
0

0.2

0.4

0.6

0.8

1
max ctr

(d) Soft Pruning

Fig. 1. Estimators in AND operation. The x-axis contains three examples and the y-
axis represents probabilistic values. Examples are depicted as squares, theories t1 and
t2 as circles and estimators min, max, ctr, ind as diamonds.

After calculating an estimation for the combination of theories t1 and t2,
it is necessary to decide, based on the estimation, whether the combination
of theories should be evaluated. Thus, two pruning criteria can be used: hard
pruning (Fig. 1(c)) or soft pruning (Fig. 1(d)). For the AND operation, the hard
pruning criterion discards theories that are too specific in any of their predictions.
This means that the estimations must be higher than the examples’ values in
every point (in Fig. 1(c) this only happens if the maximum estimator is being
used to estimate the combination). The soft pruning criterion only prunes the
theory away if it is overall more specific than the example values. In Fig. 1(d), the
estimators that are not discarded are those that are above (maximum) or equally
above and below (center) the examples’ values. Estimator center is kept because
its estimations are just a small distance below two example values but are a large
distance above the first example value, which balances out. Pruning combinations
of theories can be extended to the OR operation. Like the AND operation,
this strategy estimates the value of a combination of two theories. In the OR
setting, theories are excluded when they are found to be too general to benefit
from further combination. Based on the expressions presented in Table 1 and
following a similar reasoning to the AND operation, the same five estimators can
be defined. Again, the minimum and maximum estimators define the estimation
interval based on t1 and t2. The center estimator is the value halfway between

8 J. Côrte-Real et al.

the lower and upper boundaries of the estimation interval and the independence
estimator assumes theories are independent. In the OR operation, the exclusion
estimator is equal to the maximum estimator, because when the overlap of two
theories is minimum (they are exclusive), the largest area is covered. When
the exclusion estimator is used in both AND and OR operations, the result it
produces will be different than it would be using only the maximum or minimum
estimators for both operations. For this reason, it is relevant to consider the
exclusion estimator. The hard and soft pruning criteria can also be extended
to the OR operation. The hard pruning criterion now excludes estimations that
are too general in any point to be of interest. This translates to keeping only
estimators whose values are always lower than or equal to the examples’ values.
Like the AND operation, the soft pruning criterion only discards estimators
whose values are overall more general than the examples’ values.

5 Experiments

The experiments presented in this section were run on a machine containing 4
AMD Opteron 6300 processors with 16 cores each and a total of 250 GB of RAM.
The metabolism dataset is an adaptation of the dataset originally from the
2001 KDD Cup Challenge3. The breast cancer dataset contains data from 130
biopsies dating from January 2006 to December 2011, which were prospectively
given a non-definitive diagnosis at radiologic-histologic correlation conferences.
The athletes dataset consists of a subset of facts regarding athletes and the
sports they play collected by the never-ending language learner NELL4. For the
metabolism and athletes datasets, a number of n-times hold-out sets were
made and all measurements were averaged out over the folds. In the breast
cancer dataset, leave-one-out cross-validation was used.

Different combinations of estimation pruning were tested: only pruning the
AND operation, only pruning the OR operation, and pruning both operations.
The pruning settings are reported as a set of two letters: the first letter is the
AND pruning option and the second is the OR pruning option. Pruning options
can be soft pruning (S), hard pruning (H) or no pruning (x). For example, using
this codification, xS stands for no AND pruning and soft OR pruning. For each
configuration, several measurements were recorded for each dataset: execution
time, probabilistic accuracy on the test set, and number of rules and theories
pruned. The probabilistic accuracy metric used in this work is equivalent to the
mean absolute error of predictions calculated against example values, and was
first introduced by De Raedt and Thon in [6].

Tables 2, 3 and 4 present the speedups and ratio of probabilistic accuracy
for the metabolism, breast cancer and athletes datasets, respectively. The
speedup Bt

Pt
is calculated w.r.t. the Bt base case time (no pruning) for different

Pt pruning options’ execution time. If there is a slowdown, the inverse speedup
Pt

Bt
is presented as a negative number. The ratio of the probabilistic accuracy Pa

Ba

3 http://www.cs.wisc.edu/∼dpage/kddcup2001.
4 http://rtw.ml.cmu.edu.

http://www.cs.wisc.edu/~dpage/kddcup2001
http://rtw.ml.cmu.edu

Estimation-Based Search Space Traversal in PILP Environments 9

Table 2. Speedup and probabilistic accuracy
ratio for metabolism dataset

Speedup

Est Sx Hx xS xH SS HH

min 1.45 1.47 –1.03 1.36 1.47 2.52

max 1.56 1.56 –1.09 1.94 1.61 5.66

ctr 1.57 1.58 1.03 1.95 1.61 5.65

ind 1.35 1.33 –1.23 1.64 1.46 5.37

exc 1.57 1.58 –1.04 1.95 1.58 5.69

Probabilistic accuracy ratio

Est Sx Hx xS xH SS HH

min 1.00 1.00 1.00 1.01 1.00 1.00

max 1.00 1.00 1.00 1.00 1.00 –1.01

ctr 1.00 1.00 1.00 1.00 –1.01 –1.01

ind 1.00 1.00 1.00 1.00 1.00 –1.01

exc 1.00 1.00 1.00 1.00 1.00 –1.01

nop min max ctr ind exc
20

25

30

35

40

Ti
m
e
(m

in
)

Time

nop min max ctr ind exc

0.6

0.8

1

PA
cc
ur
ac
y

Time PAccuracy

Fig. 2. Average time (in minutes)
and probabilistic accuracy in
metabolism dataset, for the base
case (nop) and the five estimators.
Values for each estimator are
the average of its result over the
pruning options.

is calculated for each probabilistic settings Pa w.r.t. the probabilistic accuracy
of the Ba base case. Similarly to the speedup, when the probabilistic accuracy
decreases, the inverse of the ratio is given Ba

Pa
as a negative number. Figures 2, 3

and 4 depict the variation in execution time in minutes (left y-axis) and the varia-
tion in probabilistic accuracy (right y-axis) for all estimators in the metabolism,
breast cancer and athletes datasets, respectively. The estimators analysed
were the base case (no estimation pruning performed, or nop), minimum (min),
maximum (max), center (ctr), independence (ind), and exclusion (exc). Each
dataset’s results will be discussed next.

For the metabolism dataset, results in Table 2 show that the greatest reduc-
tion in execution time is achieved by all estimators in the HH pruning setting.
The xS pruning setting shows the slowest execution times with all estimators,
except center, causing a slowdown. There is no significant reduction in proba-
bilistic accuracy in any setting. Figure 2 shows that, overall, the probabilistic
accuracy of the theories is unchanged and that the maximum, center and exclu-
sion estimators can all reduce execution time from 40 to less than 25 min.

Results in Table 3 show that, in the breast cancer dataset, the greatest
reduction in execution time can be achieved by using pruning in both the AND
and the OR operations (SS and HH settings). The pruning settings that use
only OR pruning (xS and xH) present more modest reductions of execution time
(about 1.5 times) when compared to the settings that use only AND pruning
(about 7 times). Although the OR operation has the potential to increase the
(probabilistic) accuracy of true positives, it may also increase the accuracy of
false positives. On the other hand, the AND operation, for this domain, works
better, since it maintains the accuracy of true positives while decreasing the

10 J. Côrte-Real et al.

accuracy of false positives, when combining literals in a theory. The predictive
accuracy of the best theory in this dataset never decreases, and in some settings
(Sx, Hx, SS and HH in Table 3) even increases slightly. This effect is due to a
reduction in overfitting caused by the exclusion of some theories that are better
on the training set but perform worse on the test set. Figure 3 shows that, on
average, the maximum, center and exclusion datasets can reduce execution time
from over 4 min to about 1 min.

Table 3. Speedup and probabilistic accuracy
ratio for breast cancer dataset

Speedup

Est Sx Hx xS xH SS HH

min 7.09 7.18 1.42 1.41 22.44 21.46

max 7.16 7.06 1.65 1.63 25.24 23.49

ctr 7.04 6.98 1.63 1.63 25.25 24.80

ind 7.20 7.02 1.42 1.29 22.62 22.84

exc 7.19 7.19 1.63 1.62 25.00 24.80

Probabilistic accuracy ratio

Est Sx Hx xS xH SS HH

min 1.09 1.09 1.00 1.00 1.09 1.09

max 1.09 1.09 1.00 1.00 1.09 1.09

ctr 1.09 1.09 1.00 1.00 1.09 1.09

ind 1.09 1.00 1.00 1.00 1.09 1.09

exc 1.09 1.09 1.00 1.00 1.09 1.09

nop min max ctr ind exc
0

2

4

Ti
m
e
(m

in
)

Time

nop min max ctr ind exc

0.6

0.8

1

PA
cc
ur
ac
y

Time PAccuracy

Fig. 3. Average time (in minutes)
and probabilistic accuracy in
breast cancer dataset, for the
base case (nop) and the five esti-
mators. Values for each estimator
are the average of its result over
the pruning options.

Table 4. Speedup and probabilistic accuracy
ratio for athletes dataset

Speedup

Est Sx Hx xS xH SS HH

min 3.34 3.33 1.01 1.66 3.63 9.48

max 3.35 3.35 2.12 2.19 12.40 49.72

ctr 3.20 3.28 1.00 1.80 3.62 19.82

ind 3.33 3.34 2.10 2.17 12.34 50.36

exc 3.31 3.23 2.02 2.11 11.86 48.01

Probabilistic accuracy ratio

Est Sx Hx xS xH SS HH

min –1.06 –1.06 1.00 1.00 –1.11 1.00

max –1.06 –1.06 1.00 1.00 –1.15 1.00

ctr –1.06 –1.06 1.00 1.00 –1.08 1.00

ind –1.06 –1.06 1.00 1.00 –1.15 1.00

exc –1.06 –1.06 1.00 1.00 –1.15 1.00

nop min max ctr ind exc
0

2

4

Ti
m
e
(m

in
)

Time

nop min max ctr ind exc

0.6

0.8

1

PA
cc
ur
ac
y

Time PAccuracy

Fig. 4. Average time (in minutes)
and probabilistic accuracy in ath-
letes dataset, for the base case
(nop) and the five estimators. Val-
ues for each estimator are the aver-
age of its result over the pruning
options.

Estimation-Based Search Space Traversal in PILP Environments 11

In the athletes dataset, again the HH pruning setting can reduce most exe-
cution time. However, the reduction using estimators minimum and center is
much less than that of estimators maximum, independence and exclusion, where
the execution is about 50 times faster (Table 4). Estimators minimum and center
are consistently slower in other pruning settings (xS, xH and SS), and the xS
and xH settings present the lowest reduction in execution time in this dataset, of
2 times on average. Similarly to the other datasets, Table 4 shows that the prob-
abilistic accuracy in the athletes dataset presents no significant reduction and,
in particular, in the xS, xH and HH settings it is not reduced at all. Estimators
maximum, independence and exclusion present the greatest overall reduction in
execution time (Fig. 4), from 20 to about 5 min, on average.

Finally, for the athletes dataset, Table 5 presents the number of probabilistic
evaluations performed for each pruning setting and estimator. The first number
corresponds to single rules (theories of length one) evaluated, and thus the reduc-
tion is caused by AND pruning. Similarly, the second number in each cell is the
number of theories of length greater than one, and its reduction is caused by
OR pruning. The greatest reductions correspond to the HH setting (column 8 in
Table 5), and are consistent with the settings in Table 4 that presents the great-
est speedups. Additionally, from Fig. 4, the three fastest estimators (in average)
are also the estimators that in Table 5 prune away most theories. In particular,
the number of theories pruned away during OR pruning is significantly lower
for estimators max, ind and exc when compared to estimators min and ctr. The
same trend can be observed in the other datasets but results were omitted due
to lack of space.

Table 5. Number of single rules/theories evaluated for the athletes dataset

Est xx Sx Hx xS xH SS HH

min 2414/1989 164/968 164/968 2414/1981 2414/604 164/913 164/361

max 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0

ctr 2414/1989 164/968 164/968 2414/1974 2414/381 164/907 164/128

ind 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0

exc 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0

6 Conclusion

This work proposed five PILP estimators whose aim is to alleviate the over-
head imposed by the exact evaluation of combinations of candidate probabilistic
theories. Because PILP theories can be built using both conjunction (AND oper-
ation) and disjunction (OR operation), the estimators must be adapted accord-
ingly. The estimators were implemented in the estimation pruning stage of the
SkILL system, but can be generalized to any PILP engine. Results showed that
all estimators resulted in faster execution times when coupled with an H (hard)

12 J. Côrte-Real et al.

pruning setting and, in particular, the HH pruning setting showed the greatest
speedups and also the greatest reduction in the number of probabilistic evalu-
ations performed. Even though all estimators maintain predictive quality and
reduce execution time, estimators maximum and exclusion are overall faster,
and opting for one of these estimators in lieu of estimators minimum, center or
independence can result in an up to 5 times faster runtime for the same pruning
setting. Future work includes adding an estimator that divides the estimation
interval according to a user-defined distance and dynamically adapting the esti-
mator setting during runtime. It also seems relevant to compare against different
learning systems with a number of probabilistically annotated datasets in order
to assess the quality of the models and execution time.

Acknowledgments. Joana Côrte-Real is funded by the FCT grant SFRH/
BD/52235/2013. This work is partially funded by the ERDF through the COM-
PETE 2020 Programme within project POCI-01-0145-FEDER-006961, by National
Funds through the FCT as part of project UID/EEA/50014/2013, and by the North
Portugal Regional Operational Programme, under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Development Fund as part of project
NanoSTIMA (NORTE-01-0145-FEDER-000016).

References

1. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by
searching the clause space. Theor. Pract. Log. Program. 15(02), 169–212 (2015)

2. Côrte-Real, J., Mantadelis, T., Dutra, I., Rocha, R., Burnside, E.: SkILL - a sto-
chastic inductive logic learner. In: Proceedings of the 14th International Conference
on Machine Learning and Applications, pp. 555–558. IEEE (2015)

3. De Raedt, L., Dries, A., Thon, I., Van den Broeck, G., Verbeke, M.: Inducing
probabilistic relational rules from probabilistic examples. In: International Joint
Conference on Artificial Intelligence, pp. 1835–1843. AAAI Press (2015)

4. Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: Raedt, L.,
Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Pro-
gramming. LNCS, vol. 4911, pp. 1–27. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78652-8 1

5. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015)

6. Raedt, L., Thon, I.: Probabilistic rule learning. In: Frasconi, P., Lisi, F.A. (eds.)
ILP 2010. LNCS, vol. 6489, pp. 47–58. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21295-6 9

7. Getoor, L.: Introduction to Statistical Relational Learning. MIT press, Cambridge
(2007)

8. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models.
In: ACM SIGMOD Record, vol. 30, pp. 461–472. ACM (2001)

9. Kersting, K., De Raedt, L., Kramer, S.: Interpreting Bayesian logic programs. In:
AAAI Workshop on Learning Statistical Models from Relational Data, pp. 29–35
(2000)

10. Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implemen-
tation of the probabilistic logic programming language ProbLog. Theor. Pract.
Log. Program. 11(2 & 3), 235–262 (2011)

http://dx.doi.org/10.1007/978-3-540-78652-8_1
http://dx.doi.org/10.1007/978-3-540-78652-8_1
http://dx.doi.org/10.1007/978-3-642-21295-6_9
http://dx.doi.org/10.1007/978-3-642-21295-6_9

Estimation-Based Search Space Traversal in PILP Environments 13

11. Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Inter-
national Conference on Machine Learning, pp. 441–448. ACM (2005)

12. Muggleton, S.: Stochastic logic programs. Adv. Inductive Log. Program. 32, 254–
264 (1996)

13. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: the relational dependency network case.
Mach. Learn. 86(1), 25–56 (2012)

14. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

15. Costa, V.S., Page, D., Qazi, M., Cussens, J.: CLP(BN): constraint logic program-
ming for probabilistic knowledge. In: Conference on Uncertainty in Artificial Intel-
ligence, pp. 517–524 (2002)

16. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
International Joint Conference on Artificial Intelligence, vol. 97, pp. 1330–1339.
Morgan Kaufmann (1997)

17. Schulte, O., Khosravi, H., Kirkpatrick, A., Gao, T., Zhu, Y.: Modelling relational
statistics with Bayes nets. Mach. Learn. 94(1), 105–125 (2014)

Inductive Logic Programming Meets Relational
Databases: Efficient Learning of Markov

Logic Networks

Marcin Malec1, Tushar Khot2, James Nagy3, Erik Blask3,
and Sriraam Natarajan1(B)

1 Indiana University Bloomington, Bloomington, IN, USA
{mmalec,natarasr}@indiana.edu

2 Allen Institute of AI, Seattle, USA
3 Air Force Research Laboratory, Riverside, USA

Abstract. Statistical Relational Learning (SRL) approaches have been
developed to learn in presence of noisy relational data by combining
probability theory with first order logic. While powerful, most learning
approaches for these models do not scale well to large datasets. While
advances have been made on using relational databases with SRL mod-
els [14], they have not been extended to handle the complex model learn-
ing (structure learning task). We present a scalable structure learning
approach that combines the benefits of relational databases with search
strategies that employ rich inductive bias from Inductive Logic Program-
ming. We empirically show the benefits of our approach on boosted struc-
ture learning for Markov Logic Networks.

1 Introduction

Recently, a great deal of progress has been made in developing (probabilistic)
methods that can directly learn from relational data, in what is now known as Sta-
tistical Relational Learning (SRL) or Probabilistic Logic Models (PLMs) [6,18].
The advantage of PLMs is that they can succinctly represent probabilistic depen-
dencies among the attributes of different related objects, leading to a compact
representation of learned models while effectively modeling uncertainty.

While the combination is potent from a representation perspective, learning
is expensive. In particular, we consider the formalism of Markov Logic Net-
works where model learning has been pursued actively in recent times [1,8,9].
The key issue is the fact that as with standard Inductive Logic Programming
search different levels of abstractions (populations, sub-populations, individual
objects) must be explored. In addition, the weights need to be fixed for every
clause induced. Hence, many of the resulting approaches make limited assump-
tions to facilitate effective model learning. Some of these restrictions include the
finite domain assumption (Herbrand interpretations)1, not allowing for functor
1 Some models such as Blog [12] allow for relaxing these assumptions but as far as we
are aware, they do not have a full model learning algorithm.

c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 14–26, 2017.
DOI: 10.1007/978-3-319-63342-8 2

Inductive Logic Programming Meets Relational Databases 15

symbols (i.e., learning only using predicates), not allowing for recursion etc. In
essence, most of these methods mainly exploit “parameter tying” i.e., allowing
for instances of objects to share the same parameters under the same conditions.

Consequently, PLM systems have been built using relational databases [19].
For example, more recently, a probabilistic database system called Tuffy [14],
has been developed for a particular SRL model called Markov Logic network [4].
It is an efficient database implementation that employs PostgreSQL under-
neath. This system has shown to have efficient parameter learning (learning of
weights) and has been extended to general factor graph learning [15]. However,
these systems are restricted to learning only the parameters of the underly-
ing models (weights/probabilities/potential functions) and not the full model
(rules/structure of graphical models).

Our hypothesis is that these data base systems can benefit from advances
inside ILP [10]. Recall that most systems employ additional directives, typically
called modes, to restrict the search space such that the learning of these clauses
is efficient. We propose to employ the success of ILP methods inside relational
databases to accelerate the full model learning of SRL models. Inspired by the
recent work on QuickFOIL [21], we employ the use of background knowledge
inside the database system used by Tuffy. The key difference to QuickFOIL is
that we are not just learning a set of rules but a set of weighted rules. To this
effect, we adapt the state-of-the-art MLN learning algorithm based on functional-
gradient boosting [7]. This boosting method has been shown to be effectively
learning MLNs across several domains and employs the use of modes to guide
the search space. We show that combining the scalability of a relational database
system with the effectiveness of mode-directed ILP learning will result in huge
performance gains compared to the best learning system.

We make the following key contributions: we consider the task of learning
SRL models effectively and propose a database solution for this task. We demon-
strate how the efficiency and effectiveness of the search space can be improved
by using background knowledge inside databases. We consider a powerful learn-
ing algorithm and show how it can be further improved by the use of data-
bases. Finally, we demonstrate empirically that the proposed ideas outperform
the baseline methods on several benchmark data sets.

2 Background

We first define some notations that will be used in this work. We use capital
letters such as X, Y, and Z to represent random variables (atoms in our formal-
ism). We use small letters such as x, y, and z to represent values taken by the
variables and bold-faced letters to represent sets.

Markov Logic Networks. A Markov Logic Network consists of a set of formulas
in first-order logic and their real-valued weights, {(wi, fi)}. Each grounding of
a clause corresponds to a factor with the potential function exp(wi), leading to
the joint probability distribution, P (x) = 1

Z exp (
∑

i wini(x)), where ni(x) is the

16 M. Malec et al.

number of times the ith formula is satisfied by x and Z is the normalization con-
stant. The weights of the rule can be interpreted as weights in Markov networks,
i.e., higher the weights, more likely is the rule to be true. Due to the exponen-
tial size of the normalization constant, most learning approaches maximize the
pseudo-loglikelihood given as PLL(X = x) =

∑
i log P (Xi = xi | MB(xi))

where MB(xi) is the Markov blanket of xi.

Boosting MLNs. We employ relational functional gradient boosting (RFGB)
approach developed for MLNs [7]. RFGB approach like Friedman’s boosting [5],
performs gradient ascent on the functional space. To do so, the probability dis-
tribution of each relational example, P (xi | MB(xi)) is represented as a sigmoid
over a regression function ψ(xi;MB(xi)). The gradients can be computed on the
pseudo-loglikelihood function w.r.t. the function ψ as ∂PLL(X=x)

∂ψ(xi;MB(xi))
= I(xi =

1) − P (xi = 1;MB(xi)) which is the difference between the true distribution
(I is the indicator function) and the current predicted distribution. Hence these
gradients are positive for positive examples and negative for negative examples.
RFGB starts with an initial function ψ0 defined over all the relational examples
(ground atoms) and computes the gradients for all the examples, Δ1. A regres-
sion function, h1 : X → R is then learned to fit to these gradients and added
to the initial function i.e. ψ1 = ψ0 + h1. This process is repeated n times and
the final ψ function for an example is given as the sum of values from all the
gradient functions, ψn(x) = ψ0(x) + h1(x) + · · · + hn(x).

For MLNs, the regression function is ψ(xi;MB(xi)) =
∑

j wjntj
(xi;MB(xi)) where ntj(xi;MB(xi)) corresponds to the non-trivial ground-
ings [20] of an example xi given its Markov blanket , ntj(xi;MB(xi)) = nj(xi =
1,MB(xi)) − nj(xi = 0,MB(xi)). Relational regression trees or clauses can
now be learned to fit to these gradients. We focus on the learning regression
clauses. Thus, each gradient step (hn) is a regression clause and the final model
ψn(x) = ψ0(x) + h1(x) + · · · + hn(x) is a sum over the values returned by the
regression clauses. Note that learning these clauses would require computing the
number of groundings for every candidate clause.

Modes in ILP. A mode definition for a predicate determines whether a particular
literal, say p(X) will be considered for addition to a clause. The three types of
modes considered here are:

– p(+) : the variable used as p’s argument must already appear in the clause.
E.g. p(X) and p(Y) would be considered for addition to q(Y) :- r(X, Y).

– p(-) : the variable used as p’s argument need not appear in the clause. E.g.
p(X), p(Y) and p(Z) would be considered for addition to q(Y) :- r(X, Y).

– p(#) : p’s argument needs to be a constant. E.g. p(c1),...p(cn) would be con-
sidered for addition to q(Y) :- r(X, Y).

Inductive Logic Programming Meets Relational Databases 17

3 Learning Statistical Relational Models Using Databases

We now present our proposed framework where we employ the use of in-memory
databases for learning relational rules with their parameters. First, we describe
the problem and then show how each component, that of specifying the back-
ground knowledge, the search over the space of hypothesis and the boosting
process itself is performed in the databases. We provide a standard SRL exam-
ple of smokes and cancer as a running illustration.

3.1 Problem Description

Given: Background knowledge (B), a set of propositional facts – evidence (F),
a set of positive (P) and negative examples (N) for a set of target predicates.

To Do: Use in-memory database to learn a discriminative MLN via RFGB.
Output: The set of learned weighed logic rules (horn clauses).
We used the database engine HyperSQL (HSQLDB) in embedded mode. We

will consider the following running example throughout the paper.
Illustrative Example: We consider the classic smokers-friends-cancer exam-

ple [4] which has facts about who smokes, and the list of friends. The goal is to
predict who will have cancer based on smoking status and social relationships.

3.2 Encoding Background Knowledge

Recall that background knowledge of ILP consists of two components:

– Predicate definitions - the names of the predicates and the specification of the
domains for the predicate’s arguments

– Mode definitions - the rules for the predicate arguments in a candidate literal.

The modes serve to restrict the language and acts as an inductive bias to the
search process. Recall that our current system is inspired from the MLN boosting
method [7], a discriminative learning approach. The goal is to learn a set of
horn clauses and the modes essentially serve to describe the predicates in the
hypothesis Horn clauses. An important use of modes is that they serve to restrict
the use of existentially quantified variables in the learned horn clauses.

Illustrative Example: Returning to smokes-cancer example, the background file
declaration in logic format could look as follows:

predDef: friends(person, person).
predDef: smokes(person).
predDef: cancer(person).
mode: friends(+, -).
mode: friends(-, +).
mode: smokes(+).
mode: cancer(+).

18 M. Malec et al.

Fig. 1. Mode search space reduction. (Color figure online)

As with standard ILP systems, the use of modes in our learning algorithm
can be clearly seen in Fig. 1. The current learning task is to predict Cancer(X)
(green node in the center). The modes restrict our next expansion search space
to the nodes shown in green. As can be seen due to the use of + in Smokes
predicate, we only consider Smokes(X) for expansion and not a new existential
variable say Smokes(Y). Similarly, some of the friends of X must be introduced
into the search space before considering their friends and their smoking habits.
These constraints are key for ILP systems to work efficiently and we adapt them
in the context of learning with databases.

3.3 Facts

We now show how the facts and the positive and negative examples are encoded
in our work. Following prior work in SRL, we make the closed-world assumption,
i.e., all the groundings that are not specified in the fact base (unobserved ground-
ings) are false. All the true facts are stored in the database with each predicate
corresponding to one table and each argument of the predicate corresponding to
a column in the table.

In the case of target predicates we use an additional column that contains the
truth value of the grounding. Since we are learning a MLN, the MLN semantics
requires us compute PSUM (ΣiSATcounti(x)× clauseWeighti) for each exam-
ple which is stored as an additional column. This is essentially a sum over the
weighted count of the number of satisfied groundings of each clause. Recall that
we are performing functional gradient descent, and hence we also need to com-
pute the gradients (Truth-value − sigmoid(PSUM)) for each example. Finally,
given the need to compute the difference between the number of satisfied and
unsatisfied groundings in the gradient, we also store the negative facts. In our
experiments, PSUM is initialized to −1.8 (as an initial prior as it was suggested
in the work of Khot et al. [7]). In the next section, we show how the facts and
background knowledge of the smokers example is fully encoded in our database.

Illustrative Example: Let us consider the task of predicting cancer. Let the true
facts for this domain be as follows:

Inductive Logic Programming Meets Relational Databases 19

smokes(chuck) friends(bob, chuck) cancer(bob)
smokes(bob) friends(bob, dan) cancer(chuck)

friends(chuck, bob) cancer(fred))
friends(chuck, fred)
friends(dan, bob)
friends(fred, chuck)

These facts would be stored inside the database as shown in Fig. 2 (left).
As can be seen, the groundings of the Cancer predicate (which is the query
predicate) are stored as a table with the log priors given as PSUM. The gradients
are essentially the initial values based on the priors and these are stored in the
table as well. They will be modified through the learning process with the aim
of driving them to 0.

atom Cancer

Truth PSUM G ARG0

1 -1.800 0.858 bob
1 -1.800 0.858 chuck
1 -1.800 0.858 fred
0 -1.800 -0.142 dan

atom Friends

ARG0 ARG1

bob chuck
bob dan

chuck bob
chuck fred
dan bob
fred chuck

atom Smokes

ARG0

chuck
bob

Fig. 2. Representation of facts and positive examples in data bases.

Given that the positive and negative examples are stored as tables, now the
rest of the facts are captured using the friends and smokes tables as shown in
Fig. 2 (center & right). Finally, the gradient G is computed using the query:

Update atom_Cancer SET G = truth - (1.0 / (1.0 + exp(-PSUM)))

This is the initial value of the gradient which is computed using the truth value
(1 for true and 0 for false grounding) and the prior weight (PSUM). We now
turn our attention to implementing the ILP search.

3.4 ILP Search Using Databases

The search begins with a horn clause with head being the target. The database
representation of the initial clause would consist of a view K that corresponds
to the groundings of the initial clause with column names changed to variables.

The next step is to calculate the score of the clause. This is one of the steps
where querying a database can be extremely useful. First, we filter out clauses
that cover too many or too few examples as they would be not discriminative.
In our experiments, we filtered clauses that covered or ignored 97.5% of the
examples. For the accepted clauses, a table I is created which contains positive

20 M. Malec et al.

satisfiability counts for the groundings of the head atom. The entries in the table
are populated using the following query:

Select count(*), head’s vars group by head’s vars

To compute the weight we would join the I table with the target table to link
the gradient values, and then do the computation using aggregate functions:
weight = Select sum(G * SAT) / sum(SAT * SAT) FROM I inner join
atom_target on var1 = arg0 ...

The next step would be to compute the score using an outer join:

score =- Select sum(Power((SAT * weight - G), 2)) FROM I right
outer join atom_target on var1 = arg0...

Illustrative Example: Returning to the task of modeling cancer, to expand the
initial clause to include Smokes(X), we use the following queries:
Entries in I table: Select count(*), var1 group by var1

weight = Select sum(G * SAT) / sum(SAT * SAT) FROM I inner join
atom_cancer on var1 = arg0

score =- Select sum(Power((SAT * weight - G), 2)) FROM I right
outer join atom_cancer on var1 = arg0

The entries in the I table are then: I table
SAT var1
1 bob
1 chuck

This process would be repeated for every candidate literal, and then for each
of the resulting clauses limited using beam search. The best clause found using
such search would then be added to the model. Once a clause is added to the
model its I table’s SAT counts and clausal weight are used to update the PSUM
values of the head’s atom table. Then the gradient values are recomputed.

Fig. 3. Use of partitions.

Use of Modes: To generate the reduced set of candidate literals all com-
bination of atoms are generated with restriction that domain of each pred-
icate argument is limited to existing variable if + is specified, and existing
variable and possible new variables if − specified, or constants if # is spec-
ified. These are stored in a set to eliminate duplicates. For the cancer task,
the candidate literals considered in the first gradient step would only include

Inductive Logic Programming Meets Relational Databases 21

〈Smokers(X), F riends(X,Y), F riends(Y,X)〉. To speed-up the search each gra-
dient step is limited to expanding only 10 best clauses in each gradient step.
Finally, the SAT counts remain the same across gradient iterations, so the I
tables are not reused if the same clause is to be reevaluated.

The conversion to the database format allows for efficient query and retrieval
of the data. This in turn allows for counting the satisfied groundings of any
clause efficiently. As has been shown before [17], counting the satisfied grounding
is the bottleneck in many PLM tasks including learning and inference. Efficient
grounding could possible allow for improving the speed of these tasks.

It must be mentioned that our efficiency does have some limitations - (1)
we assume a finite set of groundings (possibly a large set but a finite set).
(2) Only horn clauses can be learned using our method and (3) We make the

Function MLN Boost(Data)
for 1 ≤ m ≤ M do

Fm := Fm−1

for P in T do
S := GenExamples(Data;Fm−1, P)
Δm := FitRelRegressClauseDB(S, P, N, B)
Fm := Fm + Δm

end

end

Function FitRelRegressionClauseDB((S, P, N, B))
Beam := {P (X)}
BC := P (X)
while ¬ empty(Beam) do

Clause := popFront(Beam)
if length(Clause) ≥ N then

continue
end
C := getCandidateLiterals(Clause)
Q := getPartitions(C)
QCounts = getCountsUsingJoins(Q, Clause)
CCounts := evaluateClauses(P,C,Counts)
for c ∈ C do

c.score = SE(c,CCounts(c), S)
if c.score ≥ Clause.score then

insert(Beam, c, c.score)
end
if c.score ≥ BC.score then

BC := c
end

end
while length(Beam) ≥ B do

popBack(Beam)
end

end
return BC

Algorithm 1. MLN-Boost Algorithm

22 M. Malec et al.

closed-world assumption to perform counting efficiently. However, we argue and
show empirically that these assumptions are practically useful in many PLMs.
Particularly, the state-of-the-art learning method for MLNs make these assump-
tions but is built on a java-based system. We replace the java system with our data-
base system and show significant efficiency gains without losing the performance.

Partitioning Candidate Literals: We partition the candidate literals into
groups in which members of the same group share a common join. The idea is
to do the shared join only once to speed up the learning time. An example of
partitioning is shown in Fig. 3.

Algorithm for Learning MLNs: Algorithm 1 describes our approach applied
to boosting MLNs [7]. MLN Boost function presents the boosting approach as
described by Khot et al. [7]. We first generate the regression examples based on
the gradients described earlier and learn regression clauses to fit these gradients.
We change the regression clause learner to use our database representation in
FitRelRegressionClauseDB.

We use the standard beam search to search over the space of candidate
clauses. The parameter N specifies the maximum length of the learned clauses
(set to 3 in our experiments) and B specifies the beam size (set to 10). To
compute the score of the candidate literals, we first compute the partitions of the
literals being considered in getPartitions. We use database queries to get the
counts of the partitions joined with the current clause in getCountsUsingJoins.
Finally given these counts over the partitions, we can compute the counts of each
example for every candidate literal (evaluateClauses). These counts can then
be used to compute the squared error (SE) while scoring literals during search.

4 Empirical Evaluation

We now present the results of using our approach on standard benchmark SRL
data sets. We aim to evaluate the following questions:

– (Q1) Does the proposed database based SRL system outperform the baseline
in terms of learning time?

– (Q2) Does the proposed system sacrifice learning performance for efficiency?

Since we are in relational domains, it is well-known that most of the relations
are false - i.e., negative examples far outnumber the number of positives. In
such cases, it has been frequently observed that other measures such as Area
under the Precision-Recall curve (AUC-PR), Area under Receiver Operating
Characteristic curve (AUC-ROC) are considered more reasonable alternatives.
Hence, we primarily focus on three performance measures - AUC-ROC and AUC-
PR for measuring the performance efficacy and the time in seconds for measuring
efficiency. Further, for Cora, IMDB and WebKB datasets we have subsampled
the negative examples at each gradient step during learning to be twice in number
as the number of the positive examples. Our hypothesis is that our system can
match the state-of-the-art learning algorithm in learning an accurate model in
significantly faster time. We consider the following approaches:

Inductive Logic Programming Meets Relational Databases 23

1. BoostR - WILL based MLN boost algorithm, that serves as our reliable base-
line.

2. DB Boost NM - Database powered MLN boost without modes, that serves
as our DB baseline. This system searches exhaustively for the horn clauses.

3. DB Boost - Database powered MLN boost that caches join results.

Smokers

AUC-ROC AUC-PR Time(s)
BoostR 1.0 1.0 2.002
DB Boost NM 0.5 0.6 2.196
DB Boost 1.0 1.0 0.376

Smokers is a popular synthetic testbed that is used by several SRL methods
for evaluation [4,7,13]. It consists of 3 predicates: Smokes, Friends, and Cancer.
We chose cancer to be our target, our train domain had 6 people, and our
test domain had 8 people. Being a small domain, we do not expect significant
improvement in run times. However, as can be observed, the database boosting
method that uses modes is still thrice as fast as the baseline method with the
same AUC.

Cora Entity Resolution

AUC-ROC AUC-PR Time(s)
BoostR 0.521 0.141 804.877
DB Boost NM - - > 7200
DB Boost 0.511 0.157 13.030

The Cora dataset, now a standard dataset for citation matching, was first
created by Andrew McCallum, later segmented by Bilenko and Mooney [2],
and fixed by Poon and Domingos [16]. In citation matching, a group is a set of
citations that refer to the same paper, and a nontrivial group contains more than
one citation [16]. The Cora dataset has 1, 295 citations and 134 groups where
almost every citation in Cora belongs to a nontrivial group; the largest group
contains 54 citations. It contains the predicates: HasWordAuthor, HasWordTitle,
HasWordVenue, Title, Venue, Author.

We performed 5-fold cross-validation, and we record average time over the 5
folds. Without the use of modes the database boost algorithm search was not
making much progress and we have terminated it at 2 h. As with the previ-
ous experiments, it can be observed that the learned models of our approach
exhibit the same prediction performance with databases as that of the original
BoostR system. This answers Q2 by showing that we do not sacrifice learning
performance while still being significantly faster than the original system.

IMDB

AUC-ROC AUC-PR Time(s)
BoostR 0.986 0.527 27.741
DB Boost NM 0.508 0.147 4525.743
DB Boost 0.985 0.513 3.432

The IMDB dataset was first used by Mihalkova and Mooney [11] and contains
five predicates: actor, director, genre, gender and workedUnder. Since gender

24 M. Malec et al.

can take only two values, we convert the gender(person, gender) predicate to
a single argument predicate female_gender(person). Following prior work [7],
we omitted the four equality predicates. We performed five-fold cross-validation
using the folds generated by Mihalkova and Mooney to build model for the target
workedUnder and we record average time over the 5 folds.

In this data set, both systems achieve comparable AUC-ROC. However, the
database based system seem to have a significantly higher AUC-PR. This is due
to improved recall. Investigating the cause of this improvement is an important
research direction. In terms of learning time, both systems are fast. However,
the proposed system is still marginally faster than the original boostR system.

WebKB

AUC-ROC AUC-PR Time(s)
BoostR 0.932 0.038 4.161
DB Boost NM - - > 7200
DB Boost 0.936 0.039 1.221

The WebKB dataset was first created by Craven et al. [3] and contains infor-
mation about department webpages and the links between them. It also contains
the categories for each webpage and the words within each page. This dataset
was converted by Mihalkova and Mooney [11] to contain only the category of each
webpage and links between these pages. They created the following predicates:
Student(A), Faculty(A), CourseTA(C, A), CourseProf(C, A), Project(P, A) and
SamePerson(A, B) from these webpages. The textual information was ignored.
We removed the SamePerson(A, B) predicate as it only had groundings with
both the arguments being exactly same (i.e., SamePerson(A,A)). We evaluated
our method over the CourseProf predicate. We performed 4-fold cross-validation
where each fold corresponds to one university, and we record average time over
the 4 folds. Without the use of modes the database boost algorithm search was
not making much progress and we have terminated it at 2 h. It can be observed
that the AUC-ROC and AUC-PR are comparable with the BoostR system for
the different database systems. However, the proposed system is significantly
faster than the original while learning a comparable model.

Discussion: In summary, it can be clearly observed that the proposed data-
base based systems that uses modes are significantly faster than the original
BoostR system. However, this performance is achieved without significantly los-
ing learning accuracy. Hence, Q1 can be answered affirmatively in that the
proposed methods are significantly faster than the state-of-the-art baseline. Q2
can be answered negatively in that we do not sacrifice learning performance for
improved learning time.

5 Conclusion and Future Work

We considered the problem of scaling up a successful boosting algorithm for
SRL models. To this effect, we designed a in-memory database solution that
exploited the search bias used in many logical models. Our initial evaluations

Inductive Logic Programming Meets Relational Databases 25

clearly demonstrate that this learning system is capable of learning accurate
models in significantly shorter amount of time. Extensive evaluations of this
approach is our next immediate direction for future research. Employing approx-
imate counts for the groundings will potentially allow for even greater savings in
time. However, these approximations need to be theoretically analyzed for the
learning performance, another interesting research direction. Finally, embedding
the powerful learning approach such as boosting inside a large-scale system such
as DeepDive will allow us to fully realize the gains attained in related fields.

Acknowledgements. MM and SN acknowledge the support of the DARPA DEFT
Program under the Air Force Research Laboratory (AFRL) prime contract no. FA8750-
13-2-0039. Any opinions, findings, and conclusion or recommendations expressed in this
material are those of the authors and do not necessarily reflect the view of the DARPA,
ARO, AFRL, or the US government.

References

1. Biba, M., Ferilli, S., Esposito, F.: Structure learning of Markov logic networks
through iterated local search. In: ECAI (2008)

2. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string sim-
ilarity measures. In: KDD (2003)

3. Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K.,
Slattery, S.: Learning to extract symbolic knowledge from the World Wide Web.
In: AAAI, pp. 509–516 (1998)

4. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan &
Claypool, San Rafael (2009)

5. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29 (2001)

6. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press,
Cambridge (2007)

7. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks
via functional gradient boosting. In: ICDM (2011)

8. Kok, S., Domingos, P.: Learning Markov logic network structure via hypergraph
lifting. In: ICML (2009)

9. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs.
In: ICML (2010)

10. Lavrac, N., Dzeroski, S.: Inductive Logic Programming - Techniques and Appli-
cations. Ellis Horwood Series in Artificial Intelligence. Ellis Horwood, New York
(1994)

11. Mihalkova, L., Huynh, T., Mooney, R.: Mapping and revising Markov logic net-
works for transfer learning. In: Proceedings of the 22nd National Conference on
Artificial Intelligence, vol. 1 (2007)

12. Milch, B., Marthi, B., Russell, S.: Blog: Relational modeling with unknown objects.
In: Proceedings of the SRL Workshop in ICML (2004)

13. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: the relational dependency network case.
MLJ 86, 25–56 (2012)

14. Niu, F., Zhang, C., Re, C., Shavlik, J.: Scaling inference for Markov logic via dual
decomposition. In: ICDM, pp. 1032–1037 (2012)

26 M. Malec et al.

15. Niu, F., Zhang, C., Ré, C., Shavlik, J.: Deepdive: web-scale knowledge-base con-
struction using statistical learning and inference. In: Second International Work-
shop on Searching and Integrating New Web Data Sources (2012)

16. Poon, H., Domingos, P.: Joint inference in information extraction. In: AAAI, pp.
913–918 (2007)

17. Poyrekar, S., Natarajan, S., Kersting, K.: A deeper empirical analysis of CBP algo-
rithm: grounding is the bottleneck. In: Statistical Relational Artificial Intelligence,
Papers from the 2014 AAAI Workshop, Québec City, 27 July 2014. http://www.
aaai.org/ocs/index.php/WS/AAAIW14/paper/view/8776

18. Raedt, L.D., Kersting, K.: Probabilistic logic learning. SIGKDD Explor. Newsl.
5(1), 31–48 (2003)

19. Schulte, O., Qian, Z.: SQL for SRL: structure learning inside a database system.
CoRR abs/1507.00646 (2015)

20. Shavlik, J., Natarajan, S.: Speeding up inference in Markov logic networks by
preprocessing to reduce the size of the resulting grounded network. In: IJCAI
(2009)

21. Zeng, Q., Patel, J.M., Page, D.: Quickfoil: scalable inductive logic programming.
Proc. VLDB Endow. 8(3) (2014)

http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/view/8776
http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/view/8776

Online Structure Learning for Traffic
Management

Evangelos Michelioudakis1(B), Alexander Artikis2,1, and Georgios Paliouras1

1 Institute of Informatics and Telecommunications,
NCSR “Demokritos”, Agia Paraskevi, Greece

{vagmcs,a.artikis,paliourg}@iit.demokritos.gr
2 Department of Maritime Studies, University of Piraeus, Piraeus, Greece

Abstract. Most event recognition approaches in sensor environments
are based on manually constructed patterns for detecting events, and
lack the ability to learn relational structures in the presence of uncer-
tainty. We describe the application of OSLα, an online structure learner
for Markov Logic Networks that exploits Event Calculus axiomatizations,
to event recognition for traffic management. Our empirical evaluation is
based on large volumes of real sensor data, as well as synthetic data gen-
erated by a professional traffic micro-simulator. The experimental results
demonstrate that OSLα can effectively learn traffic congestion definitions
and, in some cases, outperform rules constructed by human experts.

Keywords: Markov Logic Networks · Event Calculus · Uncertainty

1 Introduction

Many real-world applications are characterized by both uncertainty and rela-
tional structure. Regularities in these domains are hard to identify manually,
and thus automatically learning them from data is desirable. One framework
that concerns the induction of probabilistic knowledge by combining the powers
of logic and probability is Markov Logic Networks (MLNs) [12]. Structure learn-
ing approaches that focus on MLNs have been successfully applied to a variety
of applications where uncertainty holds. However, most of these approaches are
batch and cannot handle large training sets, due to their requirement to load all
data in memory for inference in each learning iteration.

Recently, we proposed the OSLα [9] online structure learner for MLNs, which
extends OSL [7] by exploiting a given background knowledge to effectively
constrain the space of possible structures during learning. The space is con-
strained subject to the characteristics imposed by the rules governing a specific
task, herein stated as axioms. As a background knowledge we are employing
MLN−EC [14], a probabilistic variant of the Event Calculus [8,10] for event recog-
nition.

In event recognition [1,3] the goal is to recognize composite events (CE)
of interest given an input stream of simple derived events (SDEs). CEs can be
c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 27–39, 2017.
DOI: 10.1007/978-3-319-63342-8 3

28 E. Michelioudakis et al.

defined as relational structures over sub-events, either CEs or SDEs, and capture
the knowledge of a target application. Due to the dynamic nature of real-world
applications, the CE definitions may need to be refined over time or the current
knowledge may need to be enhanced with new definitions. Manual curation of
event definitions is a tedious and cumbersome process, and thus machine learning
techniques to automatically derive the definitions are essential.

We applied OSLα to learning definitions for traffic incidents using over 3 GiB
of real data from sensors mounted on a 12 Km stretch of the Grenoble ring road,
provided in the context of the SPEEDD project1. The goal of SPEEDD is to
develop a system for proactive, event-based decision-making, where decisions
are triggered by forecast events. To allow for event recognition and forecasting,
OSLα is employed to construct and refine the necessary CE definitions. Due to the
high volume of the dataset, the learning process must employ an online strategy.
To evaluate further the predictive accuracy of OSLα, we employed a synthetic
dataset generated by a professional traffic micro-simulator [13], developed by
domain experts to allow for the systematic testing of the SPEEDD components.

The remainder of the paper is organized as follows. Section 2 presents OSLα,
while Sect. 3 describes the application of OSLα to the traffic domain. Section 4
summarizes the presented work and outlines further research directions.

2 OSLα: An Online Structure Learner Using
Background Knowledge Axiomatization

OSLα extends OSL by exploiting a given background knowledge. Figure 1
presents the components of OSLα. The background knowledge consists of the
MLN−EC axioms (i.e., domain-independent rules) and an already known (possibly
empty) hypothesis (i.e., set of clauses). Each axiom contains query predicates
HoldsAt ∈ Q that consist the supervision, and template predicates InitiatedAt,
TerminatedAt ∈ P that specify the conditions under which a CE starts and
stops being recognized. The latter form the target CE definitions that we want
to learn. OSLα exploits these axioms in order to create mappings of supervision
predicates into template predicates and search only for explanations of these
template predicates. Upon doing so, OSLα does not need to search over time
sequences; instead it only needs to find appropriate bodies over the current
time-point for the following definite clauses:

InitiatedAt(f , t) ⇐ body

TerminatedAt(f , t) ⇐ body

Given the MLN−EC axioms, OSLα constructs a set T that provides mappings
of its axioms to the template predicates in P that appear in their bodies. For
instance, axiom (1) of T

HoldsAt(f , t+1) ⇐ InitiatedAt(f , t) ∧ Next(t , t+1) (1)
1 https://speedd-project.eu.

https://speedd-project.eu

Online Structure Learning for Traffic Management 29

Learnt Hypothesis Ht:

0.4 HoldsAt(congestion(lid), t+1) ⇐
HappensAt(fast Slt20(lid), t)∧
HappensAt(fast Ogt45(lid), t)

+

MLN−EC Axioms:
HoldsAt(f, t+1) ⇐

InitiatedAt(f, t)

HoldsAt(f, t+1) ⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1) ⇐
TerminatedAt(f, t)

¬HoldsAt(f, t+1) ⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

OSLα

Micro-Batch Dt

HappensAt(fast Slt25(53708), 99)
HappensAt(fast Ogt55(53708), 99)
HappensAt(slow Slt15(53708), 99)
HappensAt(slow Ogt65(53708), 99)
Next(99, 100)
HoldsAt(congestion(53708), 100)
. . .

Micro-Batch Dt+1

HappensAt(fast Sgt70(53708), 200)
HappensAt(fast Olt25(53708), 200)
HappensAt(slow Sgt40(53708), 200)
HappensAt(slow Olt18(53708), 200)
Next(200, 201)
¬HoldsAt(congestion(53708), 201)
. . .

. . .

. . .

. . .

Data Stream/Training Examples

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning

Fig. 1. The procedure of OSLα.

will be mapped to the template predicate InitiatedAt(f, t) since the aim is to
construct a rule for this predicate. The set T is used during the search for struc-
tures (relational pathfinding) to find an initial search set I of ground template
predicates, and search the space of possible structures for specific bodies of the
definite clauses.

At any step t of the online procedure, a training example (micro-batch) Dt

arrives containing simple derived events (SDEs), e.g. a fast lane in a highway
has average speed less than 25 km/h and sensor occupancy greater than 55%. Dt

is used together with the already learnt hypothesis to predict the truth values
yP
t of the composite events (CEs) of interest. This is achieved by (maximum

a posteriori) MAP inference based on LP-relaxed Integer Linear Programming
[6]. Then OSLα receives the true label yt and finds all ground atoms that are
in yt but not in yP

t , denoted as Δyt = yt\yP
t . Hence, Δyt contains the false

positives/negatives of the inference step. Given Dt, OSLα constructs a hyper-
graph that represents the space of possible structures as graph paths. Constants
appear in the graph as nodes and true ground atoms as hyperedges that connect
the nodes appearing as its arguments.

Then for all incorrectly predicted CEs in Δyt, OSLα uses the set T to find
the corresponding ground template predicates for which the axioms belong-
ing in T are satisfied by the current training example. Consider, for instance,
that one of these is axiom (1), and that we have predicted that the ground
atom HoldsAt(CE, 5) is false (false negative). OSLα substitutes the constants of
HoldsAt(CE, 5) into axiom (1). The result of the substitution will be the follow-
ing partially ground axiom:

HoldsAt(CE, 5) ⇐ Next(t , 5) ∧ InitiatedAt(CE, t) (2)

Since t represents time-points and Next describes successive time-points, there
will be only one true grounding of Next(t , 5) in the training data, having as

30 E. Michelioudakis et al.

argument the constant 4. OSLα substitutes the constant 4 into axiom (2) and
adds InitiatedAt(CE, 4) to the initial search set I. This procedure essentially
reduces the hypergraph to contain only ground atoms explaining the template
predicates. The pruning resulting from the template guided search is essential
for learning in temporal domains.

For all ground template predicate in I, the hypergraph is searched, guided by
path mode declarations [7] using relational pathfinding [11] up to a predefined
length, for definite clauses explaining the CEs. The search procedure recursively
adds to the path hyperedges (i.e., ground atoms) that satisfy the mode declara-
tions. The search ends when the path reaches the specified length or when no
new hyperedges can be added.

The paths discovered during the search correspond to conjunctions of true
ground atoms connected by their arguments and can be generalized into definite
clauses by replacing constants in the conjunction with variables. Then, these
conjunctions are used as a body to form definite clauses using as head the tem-
plate predicate present in each path. The resulting set of formulas is converted
into clausal normal form and evaluated.

Evaluation takes place for each clause c individually. The difference between
the number of true groundings of c in the ground-truth world (xt,yt) and those in
predicted world (xt,yP

t) is then computed (note that yP
t was predicted without c).

Only clauses whose difference in the number of groundings is greater than or equal
to a predefined threshold μ will be added to the MLN:

Δnc = nc(xt,yt) − nc(xt,yP
t) ≥ μ (3)

The intuition behind this measure is to add to the hypothesis clauses whose
coverage of the ground-truth world is significantly (according to μ) greater than
that of the clauses already learned. Finally, the weights of the retained clauses
are then optimized by the AdaGrad online learner [5], the weighted clauses are
appended to the current hypothesis Ht, and the procedure is repeated for the
next training example Dt+1.

Our implementations of OSLα, AdaGrad, and MAP inference based on LP-
relaxed Integer Linear Programming, are contributed to LoMRF2, an open-
source implementation of MLNs written in Scala. LoMRF enables knowledge
base compilation, parallel and optimized grounding, inference and learning.

3 Empirical Evaluation

We applied OSLα to traffic management using real data from magnetic sensors
mounted on the southern part of the Grenoble ring road (Rocade Sud), that
links the city of Grenoble from the south-west to the north-east. In addition to
sustaining local traffic, this road has a major role, since it connects two highways:
the A480, which goes from Paris and Lyon to Marseilles, and the A41, which goes

2 https://github.com/anskarl/LoMRF.

https://github.com/anskarl/LoMRF

Online Structure Learning for Traffic Management 31

from Grenoble to Switzerland. Furthermore, the mountains surrounding Greno-
ble prevent the development of new roads, and also have a negative impact on
pollution dispersion, making the problem of traffic regulation on this road even
more crucial [4]. The dataset was made available by CNRS-Grenoble, our partner
in the SPEEDD project, and consists of approximately 3.3 GiB of sensor read-
ings (one month data). Sensors are placed in 19 collection points along a 12 km
stretch of the highway. Each collection point has a sensor per lane. Sensor data
are collected every 15 s, recording the total number of vehicles passing through a
lane, average speed and sensor occupancy. Annotations of traffic congestion are
provided by human traffic controllers, but only very sparsely.

To deal with this issue, and test further OSLα, we used a synthetic dataset
generated by a professional traffic micro-simulator [13], developed in the context
of SPEEDD. The simulator is based on AIMSUN3 — a widely used transport
modeling software that uses a microscopic model simulating individual vehicle
movement, based on statistical laws from car-following and lane-changing the-
ories. Typically, vehicles enter a transportation network using a statistical dis-
tribution of arrivals. The microscopic model incorporates sub-models for accel-
eration, speed adaptation, lane-changing, etc., to describe how vehicles move,
interact with each other and the infrastructure. The synthetic dataset concerns
the same location — the Rocade Sud — and consists of 6 simulations of one
hour each (≈18.6 MiB). The simulator has been calibrated using real traffic
data. Unlike the real dataset, artificial sensors exist in 98 collection points of
the highway, there is no distinction between (fast, queue, etc.) lanes, and sensor
measurements additionally include vehicle density. Furthermore, the synthetic
dataset is much better annotated than the real dataset.

3.1 Learning Challenges

Both datasets used for learning traffic congestions exhibit several challenges.
Concerning the real dataset, the first challenge is its size, making the use of
batch learners, as well as online learners such as OSL that cannot make use
of background knowledge, prohibitive. For instance, in the empirical evaluation
presented in [9], OSL was tested on a much smaller training set (≈2.6 MiB) and
required ≈25 h to process just 40% of the data. Second, as mentioned above, traf-
fic congestion annotation is largely incomplete, leading to the incorrect penal-
ization of good rules. This issue is illustrated in Fig. 2.

Third, the quality of information of each sensor differs considerably. This
issue is illustrated in Fig. 3, that displays the average speed of the fast lane
and the queue lane at the same location, as well as the congestion annotation.
Figure 3 shows that the information provided by the sensors of the queue lane
is largely uninformative.

3 http://www.aimsun.com/.

http://www.aimsun.com/

32 E. Michelioudakis et al.

1400 1500 1600 1700 1800
timepoints (x15 sec)

10

20

30

40

50

60

70

80

90

100

av
er

ag
e

sp
ee

d
(k

m
/h

ou
r)

1400 1500 1600 1700 1800
timepoints (x15 sec)

5

10

15

20

25

30

35

40

45

50

55

60

oc
cu

pa
nc

y
(%

 o
f t

im
e)

Fig. 2. Location 353708, fast lane: average speed (left) and occupancy (right). The
blue points indicate the average speed (occupancy), the green windows indicate the
congestion annotated by human experts, and red (dashed) windows the potentially
missing annotations. (Color figure online)

7100 7150 7200 7250 7300 7350 7400 7450 7500
timepoints (x15 sec)

10

20

30

40

50

60

70

80

90

100

110

120

av
er

ag
e

sp
ee

d
(k

m
/h

ou
r)

7100 7150 7200 7250 7300 7350 7400 7450 7500
timepoints (x15 sec)

10

20

30

40

50

60

70

80

90

100

110

120

av
er

ag
e

sp
ee

d
(k

m
/h

ou
r)

Fig. 3. Location 347549: fast lane (left) vs queue lane (right). The blue points indicate
the average speed while green windows indicate the congestion annotated by human
experts. (Color figure online)

Fourth, generic, location- and lane-agnostic rules are not sufficient. Consider,
for example, a simple rule defining traffic congestion for any possible location
regardless of the lane type:

InitiatedAt(congestion(lid), t) ⇐
HappensAt(aggr(lid , occupancy , avgspd), t)∧
avgspd < 50 ∧ occupancy > 25

According to the above rule, a congestion in some location is said to be initi-
ated if the average speed is below 50 km/h and the occupancy is greater than
25%. Similar rules, not shown here to save space, terminate the recognition of
congestion. The optimization of the weights of these rules had large fluctuations
along the learning steps, leading to zero crossings, indicating that the rules cor-
rectly capture the concept of traffic congestion in a few locations, and completely
fail in others. To deal with this issue, location- and lane-specific rules must be
constructed.

Online Structure Learning for Traffic Management 33

0 50 100 150 200
timepoints (x15 sec)

0

20

40

60

80

100

120
av

er
ag

e
sp

ee
d

(k
m

/h
ou

r)

0 50 100 150 200
timepoints (x15 sec)

0

20

40

60

80

100

120

oc
cu

pa
nc

y
(%

 o
f t

im
e)

0 50 100 150 200
timepoints (x15 sec)

0

20

40

60

80

100

120

de
ns

ity
(#

ve
hi

cl
es

/k
m

)

Fig. 4. Simulation 2 at location 1320: average speed (left), occupancy (middle) and
density (right). The green windows indicate the congestion supervision. (Color figure
online)

On the other hand, the synthetic dataset introduces different types of chal-
lenge. Density and occupancy measurements are mostly noisy, while there are a
lot of zero values in all sensor measurements, leading to detection errors. These
issues are illustrated in Fig. 4. Furthermore, although supervision is more com-
plete compared to the real dataset, there are cases of missing annotation.

3.2 Experimental Setup and Results

Sensor readings constitute the simple derived events (SDEs), while traffic con-
gestion is the target CE. The data are stored in a PostgreSQL database and
the training sequence for each micro-batch, as shown in Fig. 1, is constructed
dynamically by querying the database. A set of first-order logic functions is
used to discretize the numerical data (speed, occupancy) and produce input
events such as, for instance, HappensAt(fast Slt55(53708), 100), representing
that the speed in the fast lane of location 53708 is less than 55 km/h at time
100. The CE supervision indicates when a traffic congestion holds in a specific
location. Each training sequence is composed of input SDEs (HappensAt) over
the first-order logic functions and the corresponding CE annotations (HoldsAt).
The total length of the training sequence in the real data case consists of 172, 799
time-points, and we consider only SDEs from fast lanes. In the synthetic data
the total training sequence length consists of 238 time-points and there is no
distinction between lanes.

In the experiments presented below, we compare:

– OSLα starting with an empty hypothesis.
– OSLα starting with manually constructed traffic congestion definitions devel-

oped in collaboration with domain experts.
– The AdaGrad [5] online weight learner operating on the aforementioned hand-

crafted definitions.

The evaluation results were obtained using MAP inference [6] and are pre-
sented in terms of F1 score. In the real dataset, all reported statistics are micro-
averaged over the instances of recognized CEs using 10-fold cross validation over

34 E. Michelioudakis et al.

0.4
50

0.45

0.5281

0.5

40

F 1 s
co

re 0.55

3000

batch size (minutes)

0.6

30

#batches

0.5565

0.65

200020

0.56

1000

0.6424

10

0
10

2

5000
0.6714

4

20av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

6

2.43

4000

8

batch size (minutes) batch size (SDEs)

30

5

3000

10

40

8.84

2000
50 1000

0.5
50

0.55
0.517

40

F 1 s
co

re

3000

0.6

batch size (minutes)

30

#batches

0.65

2000

0.5979

20

0.5929
0.6114

100010

0
10

2

5000

0.55

4

20 4000av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

2.32

6

batch size (minutes)

30

batch size (SDEs)

8

3000

4.64

10

40 2000

9.4

50 1000

0.5
50

0.55

0.5714

40

F 1 s
co

re

3000

0.6

batch size (minutes)

30

#batches

0.5844
0.5788

0.65

200020

0.5986

100010

0
10

2

5000

0.23 0.241

4

0.421

20

0.532

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

6

4000

8

batch size (minutes)

30

batch size (SDEs)

3000

10

40 2000
50 1000

Fig. 5. Real dataset: F1 score (left) and average batch processing time (right) for OSLα
starting with an empty hypothesis (top), OSLα starting with manually constructed
rules (middle) and AdaGrad operating on the manually constructed rules (bottom). In
the left figures, the number of batches (see the Y axes) refers to number of learning
iterations.

the entire dataset, using varying batch sizes. At each fold, an interval of 17, 280
time-points was left out and used for testing. In the synthetic data, the reported
statistics are micro-averaged using 6-fold cross validation over 6 simulations by
leaving one out for testing, using varying batch sizes. The experiments were per-
formed on a computer with an Intel i7 4790@3.6 GHz processor (4 cores and 8
threads) and 16 GiB of RAM, running Ubuntu 16.04.

Real Dataset. Figure 5 presents the experimental results on the real dataset.
AdaGrad and OSLα (when a starting with a non-empty hypothesis) were given

Online Structure Learning for Traffic Management 35

location-specific rules defining traffic congestion in terms of speed and occu-
pancy. The predictive accuracy of the learned models, both for OSLα and
AdaGrad, is low. This arises mainly from the largely incomplete supervision.
In OSLα, the predictive accuracy increases (almost) monotonically as the learn-
ing iterations increase. On the contrary, the accuracy of AdaGrad is more or less
constant. OSLα, starting with or without the manually constructed rules, out-
performs AdaGrad in terms of accuracy. (OSLα starting without (respectively
with) the hand-crafted rules achieves a 0.64 (resp. 0.61) F1 score, while the best
score of AdaGrad is 0.59.) This is a notable result. The aid of human knowledge
can help OSLα — see the two middle points (batch size/learning iterations) in
the two top left diagrams of Fig. 5. However, OSLα achieves the best score when
starting with an empty hypothesis. The absence of proper supervision penalizes
the hand-crafted rules, compromising the accuracy of the learning techniques
that use them. OSLα starting with an empty hypothesis is not penalized in this
way, and is able to construct rules with a better fit in the data, given enough
learning iterations. For some locations of the motorway, OSLα has constructed
rules with different thresholds for speed and occupancy than those of the hand-
crafted rules.

With respect to efficiency (see the right diagrams of Fig. 5), unsurprisingly
AdaGrad is faster and scales better to the increase in the batch size. At the
same time, OSLα processes data batches efficiently — for example, OSLα takes
less than 10 s to process a 50-minute batch including 4, 220 SDEs.

Synthetic Dataset. To test the behavior of OSLα under better supervision,
we made use of a synthetic dataset produced by a professional traffic micro-
simulator. The dataset concerns the same location: the southern part of the
Grenoble ring road. Figure 6 presents the experimental results using only SDEs
for average speed. As mentioned in Sect. 3.1, density and occupancy measure-
ments are mostly noisy in the synthetic data. Consequently, AdaGrad and OSLα
(when a starting with a non-empty hypothesis) were given rules defining traffic
congestion only in terms of speed. These rules were location-agnostic since the
artificial sensors do not distinguish between lanes. Not surprisingly, the predic-
tive accuracy of the learned models in these experiments is much higher as com-
pared to real dataset. Moreover, the accuracy of OSLα and AdaGrad is affected
mostly by the batch size: accuracy increases as the batch size increases. The
synthetic dataset is smaller than the real dataset and thus, as the batch size
decreases, the number of learning iterations is not large enough to improve accu-
racy. The best performance of OSLα and AdaGrad is almost the same (approx-
imately 0.89). In other words, OSLα starting with an empty hypothesis can
match the performance of techniques taking advantage of rules crafted by human
experts. This is another notable result.

The right diagrams of Fig. 6 report the average batch processing times.
These diagrams verify that AdaGrad is more efficient than OSLα, and that OSLα
achieves a good performance, processing batches much faster than their duration.
For example, OSLα takes less than 3 s to process a 25-minute batch.

36 E. Michelioudakis et al.

0.8
30

0.82

0.84

25

F 1 s
co

re

20

0.8269

0.86

20

batch size (minutes)

0.88

15

#batches

0.9

10 10

0.8957

0.8531

5

0.8938

0

0.886

0

0.8785

0
0

500 310
480

150

8471000

13171252

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(m

s)

1500

2000

10 100

1830

2500

batch size (minutes) batch size (SDEs)
20 50

30 0

0.8
30

0.82

0.84

25

0.8133

F 1 s
co

re

20

0.86

20

batch size (minutes)

0.88

15

#batches

0.9

10 10

0.8994

0.8521

5

0.8917
0.8842

0 0

0.8774

0
1500

500 324
537

995
1000

1498

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(m

s)
1500

100

2110

10

2000

batch size (SDEs)batch size (minutes)

2500 2319

5020
030

0.8
30 25

0.82

0.84

20

F 1 s
co

re

20

0.86

15

0.8577

batch size (minutes) #batches

0.88

10

0.9

10
5

0.8995

0.8747

0.8979

0 0

0.8941
0.8903

672

0

515
362

205130

0

500

150

6891000

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(m

s)

1500

10

2000

100

2500

batch size (minutes) batch size (SDEs)
20 50

30 0

Fig. 6. Synthetic dataset with speed measurements: F1 score (left) and average batch
processing time (right) for OSLα starting with an empty hypothesis (top), OSLα starting
with manually constructed rules (middle) and AdaGrad operating on the manually
constructed rules (bottom).

To evaluate further the behavior of OSLα, we performed additional experiments
using the synthetic dataset, this time keeping the noisy occupancy measurements.
The aim of the experiments was to test OSLα in a well-annotated setting with noisy
SDEs. The evaluation results are shown in Fig. 7. The hand-crafted rules defining
traffic congestion combined speed with occupancy. Figure 7 shows that the noisy
occupancy readings have affected the accuracy of OSLα and AdaGrad. However,
OSLα starting with the manually constructed rules is affected much less, outper-
forming significantly both OSLα starting with an empty hypothesis and AdaGrad.
OSLα has augmented the hand-crafted rules with additional clauses that focus on
speed, and reduced the weight values of rules combining speed with occupancy.
This way, OSLα was able to minimize the effect of noisy SDEs.

Online Structure Learning for Traffic Management 37

0.7
30

0.75

25

0.8

0.7292

F 1 s
co

re

20 20

0.7814

0.85

batch size (minutes)

0.757

15

#batches

0.766

0.9

0.7524

10 10

0.7729

5
0 0

0
0

1 0.310

250

0.480

2 0.847

3

200

1.252

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

4

10

1.3175

150

batch size (minutes) batch size (SDEs)

6

4.795

10020 50
30 0

0.7
30

0.75

25

0.8

F 1 s
co

re

20 20

0.85

batch size (minutes)

15

#batches

0.9

10 10

0.844

0.8678
0.865

5

0.8658

0 0

0.8587 0.8617

0
0

1 0.686

250

1.258
2

200

3 2.609

10av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

4

150

batch size (minutes)

3.947

batch size (SDEs)

5

10020

5.5396

50

5.758

30 0

0.7
30

0.75

25

0.8

F 1 s
co

re

20 20

0.85

batch size (minutes)

15

0.825

#batches

0.8166
0.807

0.9

10

0.799

10

0.804

5

0.812

0 0

0.762

0

0.5630.4080.2410.148
250

1

0

0.781

2

3

200av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

4

10

5

150

batch size (SDEs)batch size (minutes)

6

10020 50
030

Fig. 7. Synthetic dataset with speed and occupancy measurements: F1 score (left) and
average batch processing time (right) for OSLα starting with an empty hypothesis (top),
OSLα starting with manually constructed rules (middle) and AdaGrad operating on the
manually constructed rules (bottom).

For completeness, the right diagrams of Fig. 7 report the average batch
processing times of OSLα and AdaGrad.

4 Summary and Further Work

We presented the application of OSLα, a recently proposed structure learner
for Markov Logic Networks that exploits background knowledge in the form of
Event Calculus theories, to complex event recognition for traffic management.
We performed an extensive empirical evaluation using over 3 GiB of real data,

38 E. Michelioudakis et al.

allowing us to test the scalability of our approach, and a synthetic dataset that
enabled us to test systematically the predictive accuracy of the structure learner.
The experimental evaluation showed that OSLα, without the aid of hand-crafted
knowledge, performs at least as good as the AdaGrad weight learner operating on
rules constructed by human experts. The aid of hand-crafted rules allows OSLα
to outperform significantly AdaGrad in the presence of noisy SDEs. With respect
to efficiency, OSLα processes data batches much faster than their duration.

There are several directions for further work. We aim to extend OSLα in order
to handle effectively the absence of annotation. We are also performing a human
factors evaluation involving traffic controllers — see [2] for the initial results.

Acknowledgments. Funded by EU FP7 project SPEEDD (619435).

References

1. Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition.
Knowl. Eng. Rev. 27(4), 469–506 (2012)

2. Baber, C., Starke, S., Morar, N., Howes, A., Kibangou, A., Schmitt, M., Ramesh, C.,
Lygeros, J., Fournier, F., Artikis, A.: Deliverable 8.5 - intermediate evalua-
tion report of SPEEDD prototype for traffic management. SPEEDD Project.
http://speedd-project.eu/sites/default/files/D8.5 - Intermediate Evaluation
Report-revised.pdf

3. Cugola, G., Margara, A.: Processing flows of information: from data stream to
complex event processing. ACM Comput. Surv. 44(3), 15 (2012)

4. de Wit, C.C., Bellicot, I., Garin, F., Grandinetti, P., Ladino, A., Singhal, R.,
Kibangou, A., Morbidi, F., Schmitt, M., Hempel, A., Baber, C., Cooke, N.: Deliv-
erable 8.1 - user requirements and scenario definition. SPEEDD project. http://
speedd-project.eu/sites/default/files/D8.1 User Requirements Traffic updated
final.pdf

5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

6. Huynh, T.N., Mooney, R.J.: Max-margin weight learning for Markov logic net-
works. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009. LNCS, vol. 5781, pp. 564–579. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04180-8 54

7. Huynh, T.N., Mooney, R.J.: Online structure learning for Markov logic networks.
Proc. ECML PKDD 2, 81–96 (2011)

8. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput.
4(1), 67–95 (1986)

9. Michelioudakis, E., Skarlatidis, A., Paliouras, G., Artikis, A.: Online structure
learning using background knowledge axiomatization. Proc. ECML-PKDD 1, 237–
242 (2016)

10. Mueller, E.T.: Event calculus. in handbook of knowledge representation. In: Foun-
dations of Artificial Intelligence, vol. 3, pp. 671–708. Elsevier (2008)

11. Richards, B.L., Mooney, R.J.: Learning relations by pathfinding. In: Proceedings
of AAAI, pp. 50–55. AAAI Press (1992)

12. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

http://speedd-project.eu/sites/default/files/D8.5_-_Intermediate_Evaluation_Report-revised.pdf
http://speedd-project.eu/sites/default/files/D8.5_-_Intermediate_Evaluation_Report-revised.pdf
http://speedd-project.eu/sites/default/files/D8.1_User_Requirements_Traffic_updated_final.pdf
http://speedd-project.eu/sites/default/files/D8.1_User_Requirements_Traffic_updated_final.pdf
http://speedd-project.eu/sites/default/files/D8.1_User_Requirements_Traffic_updated_final.pdf
http://dx.doi.org/10.1007/978-3-642-04180-8_54

Online Structure Learning for Traffic Management 39

13. Singhal, R., Andreev, A., Kibangou, A.: Deliverable 8.4 - final version of
micro-simulator. SPEEDD project. http://speedd-project.eu/sites/default/files/
SPEEDD-D8-4 Final Version.pdf

14. Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.A.: Probabilistic event calculus
for event recognition. ACM Trans. Comput. Log. 16(2), 11:1–11:37 (2015)

http://speedd-project.eu/sites/default/files/SPEEDD-D8-4_Final_Version.pdf
http://speedd-project.eu/sites/default/files/SPEEDD-D8-4_Final_Version.pdf

Learning Through Advice-Seeking via Transfer

Phillip Odom1(B), Raksha Kumaraswamy1, Kristian Kersting2,
and Sriraam Natarajan1

1 Indiana University, Bloomington, IN, USA
{phodom,rakkumar,natarasr}@indiana.edu

2 Technical University of Dortmund, Dortmund, Germany
kristian.kersting@cs.tu-dortmund.de

Abstract. Experts possess vast knowledge that is typically ignored by
standard machine learning methods. This rich, relational knowledge can
be utilized to learn more robust models especially in the presence of
noisy and incomplete training data. Such experts are often domain but
not machine learning experts. Thus, deciding what knowledge to provide
is a difficult problem. Our goal is to improve the human-machine inter-
action by providing the expert with a machine-generated bias that can
be refined by the expert as necessary. To this effect, we propose using
transfer learning, leveraging knowledge in alternative domains, to guide
the expert to give useful advice. This knowledge is captured in the form
of first-order logic horn clauses. We demonstrate empirically the value
of the transferred knowledge, as well as the contribution of the expert
in providing initial knowledge, plus revising and directing the use of the
transferred knowledge.

1 Introduction

There has been an increased interest in building intelligent agents with a human-
in-the-loop. This interest has been partially fueled by the rapid development
of advice-taking systems [7,13,22] that do not rely merely on data but utilize
domain advice provided by the expert. While specific adaptations differ, these
systems are motivated by the fact that there has been decades of knowledge
acquired by experts in various fields and restricting them to be “mere labelers”
places undue importance on possibly noisy data while ignoring their expertise.

In this work, we consider the formalism of probabilistic logic (PL) [8] for
learning from rich, structured, and possibly noisy data. Previously, a knowledge-
based PL learning approach was proposed [19] that adapted a powerful boosting
algorithm [16] to accept human advice about specific regions of the feature/state
space to learn in structured domains. It uses a pre-defined set of human expert
rules as advice in every iteration of the boosting algorithm to ensure the learned
model is robust even in the presence of significantly noisy data.

While successful, this method assumes that the expert provides all relevant
advice in advance. This increases the burden on the expert significantly. While
in classical systems the burden on the expert was to generate examples/labels, in

c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 40–51, 2017.
DOI: 10.1007/978-3-319-63342-8 4

Learning Through Advice-Seeking via Transfer 41

knowledge-based systems the burden shifts to providing relevant advice. We aim
to lessen this burden by providing the expert with an initial set of bias (advice
rules) that the expert can modify/adapt based on their knowledge.

Inspired by a recently successful transfer learning technique that identified
similarities across seemingly unrelated domains [12], we propose to employ trans-
fer learning for providing the initial bias to the human expert. The key idea in our
approach, which we call learning through advice-seeking via transfer (LAST), is
to transfer knowledge from a source domain to generate a set of potential advice
rules in the target domain. Then, these advice rules are provided to a domain
expert who could potentially refine the current set of rules. In turn, these rules
can then serve as advice for the subsequent learning algorithm.

Consider providing advice to a system that predicts the advisor of a student.
The current knowledge-based PL system [19] requires the domain expert to pro-
vide rules such as “students co-author papers with their advisors”, “students
TA for their advisor’s courses”, etc. However, assume that we have knowledge
in a different domain like movies where we have rules such as “actors work in
movies with directors”, “actors and directors typically work in similar genres”,
etc., to predict if an actor works with a director. Now, using the transfer learn-
ing approach, we can potentially map actors to students, directors to advisors,
movies to papers, genres to departments and create a set of potentially interest-
ing rules that can be refined by the expert in the target domain. These refined
rules can then be combined with (noisy) data to learn a robust model. This can
significantly reduce the burden on the expert.

This paper makes the following key contributions – (1) It proposes the first
transfer-based approach for advice-giving to learning algorithms. (2) It combines
a successful advice-taking PL approach and a transfer learning approach in a
seamless manner. (3) It reduces the burden on the domain expert by automati-
cally identifying relevant rules and restricts the expert input to simple refinement
operations. (4) Finally, it demonstrates excellent empirical performance in sev-
eral benchmark data sets and on a large real-world Never Ending Language
Learning (NELL) task [3].

2 Background

Learning through advice-seeking via transfer is related to both transfer learning
and knowledge-based probabilistic logic learning.

2.1 Transfer Learning

Recently, there has been an increasing interest in the development of techniques
that leverage information from a possibly related task to accelerate learning in
the current task. Collectively called transfer learning [20], they learn a model for
a source task and transfer/adapt this learned model to a potentially related and
similar target task. Transfer learning has been explored previously in the con-
text of cognitive science [9,11]. Transfer learning methods that transfer across

42 P. Odom et al.

seemingly unrelated domains can be divided into two groups - the first group
consists of methods that assume that the two domains share an underlying rela-
tional structure, even though they may appear dissimilar. Consequently, these
methods employed higher order logic to model this structural similarity [10].
Alternatively, the second set of methods search for explicit mappings between
the two domains and transfer rules from the source accordingly [14].

We consider a relational type-matching [12] transfer method called
“language-bias transfer learning” (LTL) that uses type matching typically done
in Inductive Logic Programming [5]. LTL utilizes types of arguments to map
source predicates to target predicates, identifying similar objects in the two
domains, which are then used to construct clauses in the target domain. This
approach was shown to obtain state-of-the-art results in PL domains.

Inspired by this, we propose the use of this transfer method for generating
good domain knowledge in the target domain that can potentially be refined by
an expert. Such a generation has two major advantages. First, it reduces the
burden on the expert to generate several advice clauses in the target domain
that can be used for learning. Second, it improves the results of the LTL method
because it allows for the model transferred by the algorithm to be used to correct
(possibly noisy) data in the target domain. We now explain the background of
the learning method that can effectively exploit domain advice when learning
with noisy data.

2.2 Knowledge-Based Probabilistic Logic Learning

Previous work [17] extended standard functional gradient boosting [6] to learn-
ing relational models. The key intuition to functional gradient boosting is to
transform the problem of discriminatively learning a large, complex model into
a series of smaller, simpler problems. This is accomplished by learning a series
of models—each one capturing some of the error w.r.t. the current model. In
relational function gradient boosting, each step of the learning problem is to
learn a single relational regression tree (RRT) [2]—binary decision trees with
first-order logic atoms in the nodes and regression values in the leaves.

While shown to be effective across a wide variety of different problems, Rela-
tional Functional-Gradient Boosting (RFGB) requires high-quality data in order
to learn a good model. Recently, there has been work on using knowledge-based
learning to learn in the presence of noisy data in relational domains [18,19].
They introduced a knowledge-based framework that used label preferences to
target and correct noisy data. It assumes that experts will have the appro-
priate knowledge of the domain to identify areas where noise is likely in the
training data. The learning bias is specified in the form of first-order logic
clauses (∧fi(x)− > advice(x)). The body (∧fi) specifies a set of logical con-
ditions that define the set of examples to which the advice will apply while the
head (advice(x)) of the clause defines the label preferences. This can be writ-
ten as a tuple <∧fi,Pref label,Avoidlabel>. The aim is to learn a model that
increases the probability of preferred predictions while decreasing the probability
of avoided predictions.

Learning Through Advice-Seeking via Transfer 43

Label preferences are a natural way for the expert to communicate. For
instance, when considering heart attacks, an expert might say “people who have
a family history of heart attacks are more likely to have a heart attack than a
stroke”. Here the body of the clause specifies that a patient’s family member has
had a heart attack and the head of the clause has heart attack as a preferred
label to stroke.

While this framework performs well in the presence of systematic noise, it
places an unnecessary burden on the expert. This is because, a key assumption is
that the human expert will be able to identify the most informative advice (i.e.,
that the expert will know where the systematic noise is present in the data).
This assumption can fail in several scenarios—for example, with domain experts
who may not inspect historical data on a regular basis.

The solution that we present next is to employ transfer learning for gener-
ating the body of the advice, i.e., defining for which examples the algorithm is
interested in having label preferences. The expert could then simply refine this
advice based on his/her expert knowledge.

3 Advice-Seeking for Transfer

Our goal in this work is to facilitate a natural human interaction with the learn-
ing algorithm by allowing for the human to be involved in several stages—as an
expert providing (minimal) knowledge in the source domain and as an expert
who can potentially look at several clauses in the target domain and evaluate or
refine the clauses in the target domain.

Consequently, our Learning through Advice-Seeking for Transfer (LAST)
algorithm generates relevant advice clauses for the target domain from expert-
provided clauses in a source domain. This advice serves as a recommendation
for useful advice to the expert. While the expert is still responsible for providing
the label preferences for the advice, his/her task is simplified through trans-
fer learning. Thus, the significant effort required by the expert is reduced. In
turn, this makes the system more cognitively aware, i.e., it thinks like a human
in developing prior knowledge. It is key that the transfer algorithm is able to
generate appropriate (in this case relevant, or near-relevant) knowledge in the
target domain. As a motivating example, consider providing advice in the case
of a movie domain.

Illustrative Example: In order to learn in a movie domain, let us assume the
presence of knowledge in a university domain. This domain comprises of faculty,
students, the publications that they author, and the courses in which they are
involved. Networks like these are common across universities. Assume that the
knowledge provided in this domain aims to predict the advisor of a student. One
such piece of knowledge could be that the students are more likely to co-author
with their advisor (as against with a random professor in their department).

paper(p1, per1), paper(p1, per2), student(per2) ⇒ advisor(per1, per2)

44 P. Odom et al.

The goal is to use this knowledge to transfer to a movie domain (say imdb) with
movies, actors and directors where the target is to predict which actors have
worked under which directors. When transferring the clause from the academic
domain to the movie domain, the language bias approach [12] will produce many
different predictive rules. Let us consider one such clause

mov(m1, per1),mov(m1, per2), act(per1) ⇒ workedunder(per1, per2)

Notice how this clause captures a relationship, as actors do work under another
person working on the same movie. However, this clause also covers actors work-
ing under actors in the same movie. If this rule is provided to the expert who
understands the domain, he/she might suggest different refinements to this rule:
(1) He/she could suggest that actors work under directors by adding a predicate
to the clause. (2) Alternatively, he/she might suggest that actors do not work
under each other. These lead to the following prior knowledge that can be used
by the algorithm of Odom et al. [19].

(1)<[mov(m1, per1),mov(m1, per2), act(per1), dir(per2)],
workedunder(per1, per2),¬workedunder(per1, per2)>
(2)<[mov(m1, per1),mov(m1, per2), act(per1), act(per2)],
¬workedunder(per1, per2), workedunder(per1, per2)>

3.1 The Problem Formulation

We now formally define our problem:

Given : Source knowledge, noisy training data, and access to an expert
Todo : (1) Transfer knowledge from the source to target,

(2) Solicit advice about this knowledge from expert

The goal of the advice-seeking problem is to select the transferred knowledge
about which to query the expert (denoted q ⊆ K). Useful knowledge in our con-
text is measured (δ) as a function of the performance (accuracy) on the train-
ing data (D). While the goal is to maximize the performance of the queries
on the training data, there is a cost (C) for making a query to the expert
(as the expert has a limited budget to provide advice). Hence, the goal is
arg maxq⊆K δq(D) − C(q). We make the simplifying assumption that the algo-
rithm can select n queries to ask the expert. We also assume that there is a
constant cost for every query. It is an interesting direction to personalize these
costs based on the difficulty of each query.

As mentioned earlier, we employ a relational transfer learning approach to
generate knowledge (K) in the target domain [12]. The set of queries can then
be selected from the potential list of clauses by considering the performance of

Learning Through Advice-Seeking via Transfer 45

each clause on the training set. While the training set does suffer from noise, the
hypothesis is that reasonable knowledge will still be generated and the expert
can refine the knowledge into the appropriate advice.

4 The LAST Algorithm

We will now describe the components of our LAST algorithm (shown as
Algorithm 1). The algorithm takes as input the noisy training data, the descrip-
tions of the source and target domains, a set of knowledge about the source
domain and a domain expert to query. The overall goal of LAST is to generate a
set of knowledge about the target domain (which we refer to as advice) and use
it to learn a more robust model in the target domain. The algorithm proceeds
as follows:

4.1 Step 1: LTL

First, we transfer the set of knowledge in the source domain to the target using
the LTL [12] algorithm. This transfer learning technique leverages the struc-
ture of the knowledge in the source domain to generate knowledge with similar
structure in the target domain (making use of the domain descriptions). While
effective, LTL generates all possible similar rules resulting in an impractical
number of potential expert queries. The next step mitigates this issue.

4.2 Step 2: SelectBestN

We select from among the large potential set of queries by comparing their
accuracy on the training set. Selecting the top N clauses allows the algorithm
to control the number of queries that can be directed to the expert. While more
advice benefits the learning algorithm, this parameter can be tuned based on
the availability of the expert.

4.3 Step 3: Improve

While LTL can generate appropriate knowledge in the target domain, it does not
account for noisy training data. Therefore, the expert can modify the knowledge
as needed to correct for any differences between the source and target domains.
As this can be a time consuming process, the expert is not required to correct all
(or any) of the knowledge. As we show empirically, sometimes minimal refine-
ment is all that is needed to improve the learning algorithm. In several cases,
the use of a powerful learning algorithm that can exploit the provided advice as
bias can be expected to perform reasonably well in the target domain with noisy
data.

46 P. Odom et al.

4.4 Step 4: Query

Now that appropriate knowledge has been provided in the target, the expert
is queried about the label preferences. As mentioned in the background, advice
consists of three components: the features describing to which examples the
advice will apply, the preferred (more likely) labels for those examples, and the
avoided (less likely) labels for those examples. The previous step defined the
features while this step solicits the label preferences. Now the advice is fully
defined.

4.5 Step 5: Learn

The final step learns a robust model from the noisy training data and the expert
advice. We use an advice-based learning algorithm called KBPLL [19] which
is able to effectively utilize the expert advice to learn in the presence of noisy
training data. It learns by trading-off between the training data and any advice.
A key advantage of this approach is that it can not only learn with any amount
of advice, but it is also capable of handling conflicting advice.

Algorithm 1. The LAST algorithm: Learning through Advice-Seeking via
Transfer

Data, domain description in the source domain (DS), domain description in the
target domain (DT), expert (E), knowledge in the source domain (KS)
function LAST(Data,DS ,DT ,KS , E)

KT = LTL(Data,DS ,KS ,DT)
q ∈ KT = SelectBestN(N,KT ,Data)
qr = Improve(E,q)
A =Query(E,qr)
return Learn(A,Data)

end function

Algorithm 1 presents these different steps. Please recall that the expert is
involved in both designing the source clauses and potentially refining the target
clauses.

5 Experimental Evaluation

We aim to address the following questions:

Q1: How effectively does LAST utilize the transferred advice?
Q2: How important is the contribution of the expert?
Q3: Does LAST properly assist the expert in generating advice?
Q4: What is the quality of the advice generated?

Learning Through Advice-Seeking via Transfer 47

Fig. 1. Experimental results in each of our domains. We compare both weighted-AUC
ROC (LEFT) and weighted-F score (RIGHT) in each domain. Higher bars represent
improved performance.

Fig. 2. Experimental results comparing the difference in performance when the expert
improves the transferred advice. We compare both weighted-AUC ROC (LEFT) and
weighted-F score (RIGHT). The more positive the result, the more impact the expert
has in the Improve step of LAST.

5.1 Domains Used

We use four standard PL domains – imdb, cora, uw and webkb – and the
large-scale NELL domain. In each domain, we incorporate random noise (20%)
to demonstrate that our algorithm is capable of building robust models. The
domains are introduced pairwise - the source/target domain for transfer.

The imdb domain [15] consists of information about actors, directors and
movies. The overall goal of this domain is to predict which actors work under
which directors. This domain is paired with the cora domain [1] which consists
of information about the details of author, their publications and venues. The
purpose of the domain is to predict which conferences take place in the same
venue.

The uw domain [21] consists of information about universities with details
like professors, courses, students, which professor teaches which course, etc. The
goal is to use this information and predict which professor advises a particular

48 P. Odom et al.

Table 1. The negative to positive ratio of examples in the experimental domains.

Domains imdb cora uw webkb NELL

#Neg/#Pos 14.9 1.7 548.9 400.5 7.2

Table 2. Samples of source knowledge (S) and target knowledge (T) for two experi-
mental domains. Each domain then has two pieces of advice generated along with their
English interpretation.

uw

S: LinkTo(c, a, b), Student(a), Dept(b) T: taughtby(c1, b, q1), year(a, y1)

<[taughtby(c1, b, q1), year(a, y1)], advisedby,¬advisedby>,
Professors who teach courses advise students who are in some year of the program

<[¬taughtby(c1, b, q1) ∨ ¬year(a, y1)],¬advisedby, advisedby>
People who do not teach courses do not advise students in any year of the program

NELL

S: acq(comp1, comp2), sect(sect1, comp2) T: tmplystm(tm1, tm2), plys(sport1, tm1)

<[tmplystm(tm1, tm2), plys(sport1, tm1)], teamplyssport,¬teamplyssport>,
Teams who play each other play the same sport

<[¬tmplystm(tm1, tm2) ∨ ¬plys(sport1, tm1)],¬teamplyssport, teamplyssport>
Teams who never play each other play different sports

student. This is paired with the webkb domain [4] which has details of the web-
page structure of universities including department webpages, course webpages,
and a link’s source and destination page. The goal is to predict the department
of a person.

NELL data is probabilistic data garnered through web crawling by an online
machine learning system designed and deployed at Carnegie Mellon Univer-
sity [3]. We experiment with the sports domain here, where we predict what
sport a particular team plays. The domain has details regarding members of a
team, the sports an individual plays, and the league in which a team plays. The
source used for transfer is the finance domain, where the goal is to predict to
which financial sector a company belongs1.

5.2 Evaluation Metrics Used

Relational domains naturally suffer from extreme class-imbalance as most rela-
tionships in the world are false - most students are not advised by most professors
and most actors do not work with most directors. Thus, algorithms that predict
all relations as false can achieve high performance on many traditional evalu-
ation metrics. Following previous work [23], we measure performance based on
weighted-AUC ROC and weighted-F scores that weigh the high recall regions of

1 We do not consider transferring from finance to sports due to the lack of data from
the finance domain.

Learning Through Advice-Seeking via Transfer 49

ROC curve more than the low recall regions. Weighted-F score is defined as

Fβ = (1 + β2)
Precision × Recall

β2 × Precision + Recall

Note that the parameter β controls the trade-off between the Precision (percent-
age of correct positive predictions) and Recall (percentage of positive examples
correctly identified). Following [23], we use β = 5. Due to the large number of
negative examples in many of the domains (as shown in Table 1), the various
baselines sample from the set of negative examples. Based on previous expe-
rience, LAST samples 2 to 1 (negatives to positives) while LTL and LTL Ref
sample 5 to 1.

5.3 Methods Compared

We compare LAST against several baselines. To show how LAST deals with
noisy data, we compare against a language-bias transfer learning method (LTL).
To show how effective the human expert is in refining and improving the advice,
we compare against a variant of the previous transfer learning technique that
automatically refines the transferred rules (LTL Ref). In a separate experiment,
we empirically validate the expert contribution by measuring the performance
gained by the improve step of LAST.

5.4 Results

We show our results for weighted-AUC ROC (LEFT) and weighted-F score
(RIGHT) in Fig. 1. In both performance measures, across all domains, our
LAST algorithm performs as well as or significantly better than the baselines.
More precisely, the results are significantly better than LTL and LTL Ref except
for the imdb domain (and uw for weighted-AUC ROC). As all of the methods
are comparable on imdb, this is likely caused by this domain being easily solved
(the model can be captured by a single clause). These results clearly answer (Q1)
affirmatively, i.e., LAST is able to effectively learn with transferred advice.

As expected, the transfer learning techniques suffer from the noisy training
data in several domains. In the webkb domain, refining the transferred knowl-
edge (LTL Ref) actually reduces the performance and in several other domains
(imdb, NELL) there is little difference between simple transfer learning and
automatically refining the rules.

The LAST algorithm has two advantages over the transfer learning baselines
that allows it to effectively deal with the noisy training data. Both of these
advantages directly relate to having a human-in-the-loop. Firstly, the automatic
refinement (function Improve from Algorithm 1) allows for improvement of rules
that resemble the correct knowledge, but that have been altered by the noise.
Secondly, the preference labeling (function Query from Algorithm 1) allows
the expert to control the direction of the knowledge. If noise has reversed the
meaning of the knowledge, the expert can effectively correct it. Figure 2 shows

50 P. Odom et al.

the difference in performance with and without the improve step of LAST.
Blue bars represent the increase in performance with expert improvement. An
increase in performance is seen in 3 of the 5 domains. These results show the
impact of the expert, i.e., the expert is important (Q2).

In our experiments, we restrict the expert to manipulating a single piece of
advice for each learned model. This effectively shows if we can get reasonable
performance with minimal expert time while creating the system that can gen-
erate bias that mimics the expert. Therefore, the effort required by the expert
to generate the advice is inherently low. It clearly follows that generating the
advice from scratch would require more effort from the expert. Consequently,
(Q3) can be answered affirmatively. In the future, we plan to quantify the value
of transferred knowledge to the expert.

Quality of the Advice: We present sample advice for two of the domains
in Table 2. Each advice includes its provenance- the rule that generated it (S),
the transferred rule (T), and the two pieces of advice generated. The English
interpretation of each advice rule is also provided. Note that each rule becomes
two pieces of advice (and the advice is given over all possible examples in the
domain). Investigating the advice in each domain, all the rules generated appear
to make sense - i.e., these are rules that would possibly be naturally specified by
the expert if he/she had to do without a transfer system. For example, take the
advice generated for NELL which states “if a team A plays team B and team B
plays a sport, then team A must also play that sport”. It is clear that we are
able to generate reasonable rules in all domains (Q4).

6 Conclusion

We presented a novel transfer-based human-in-the-loop framework for advice-
giving in probabilistic logic models. Our goal was to develop a system that could
provide human-like advice to a learning system based on transferring knowledge
from a seemingly unrelated domain. The expert can then refine the knowledge
generated by our LAST algorithm as needed. We demonstrated empirically the
effectiveness of LAST in the presence of noisy training data. It showed the value
of using transferred knowledge as “advice” instead of merely treating them as
predictive rules in the target domain.

Our next step is to develop better heuristics to select the top rules that can
be refined by the expert. Also, we aim to employ human guidance not only in the
process of refinement of rules but also in the transfer process itself. More pre-
cisely, we aim to use humans to provide a bias during the search of the mapping
between the two domains. Also, recall that this paper aims to discriminatively
learn rules for predicting individual relations. Learning a generative model that
can transfer across domains and provide a useful inductive bias in the target
domain remains an interesting direction. Finally, extending this work to sequen-
tial decision making tasks can lead to the development of human-like thinking
machines.

Learning Through Advice-Seeking via Transfer 51

References

1. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string sim-
ilarity measures. In: ACM SIGKDD (2003)

2. Blockeel, H.: Top-down induction of first order logical decision trees. AI Commun.
12(1–2), 119–120 (1999)

3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E., Mitchell, T.:
Toward an architecture for never-ending language learning. In: AAAI (2010)

4. Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K.,
Slattery, S.: Learning to extract symbolic knowledge from the world wide web. In:
AAAI (1998)

5. Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive
Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)

6. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

7. Fung, G.M., Mangasarian, O.L., Shavlik, J.W.: Knowledge-based support vector
machine classifiers. In: NIPS (2002)

8. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press,
Cambridge (2007)

9. Gros, H., Thibaut, J.P., Sander, E.: Robustness of semantic encoding effects in a
transfer task for multiple-strategy arithmetic problems. In: CogSci (2015)

10. Haaren, J., Kolobov, A., Davis, J.: Todtler: Two-order-deep transfer learning. In:
AAAI (2015)

11. Jones, W., Moss, J.: Interruption-recovery training transfers to novel tasks. In:
CogSci (2015)

12. Kumaraswamy, R., Odom, P., Kersting, K., Leake, D., Natarajan, S.: Transfer
learning via relational type matching. In: ICDM (2015)

13. Kunapuli, G., Odom, P., Shavlik, J.W., Natarajan, S.: Guiding autonomous agents
to better behaviors through human advice. In: ICDM (2013)

14. Mihalkova, L., Huynh, T., Mooney, R.: Mapping and revising markov logic net-
works for transfer learning. In: AAAI (2007)

15. Mihalkova, L., Mooney, R.: Bottom-up learning of Markov logic network structure.
In: ICML (2007)

16. Natarajan, S., Kersting, K., Khot, T., Shavlik, J.: Boosted Statistical Relational
Learners. SCS. Springer, Cham (2014)

17. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: the relational dependency network case.
Mach. Learn. 86, 25–56 (2012)

18. Odom, P., Bangera, V., Khot, T., Page, D., Natarajan, S.: Extracting adverse
drug events from text using human advice. In: Holmes, J.H., Bellazzi, R., Sacchi,
L., Peek, N. (eds.) AIME 2015. LNCS (LNAI), vol. 9105, pp. 195–204. Springer,
Cham (2015). doi:10.1007/978-3-319-19551-3 26

19. Odom, P., Khot, T., Porter, R., Natarajan, S.: Knowledge-based probabilistic logic
learning. In: AAAI (2015)

20. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

21. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

22. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif.
Intell. 70(1–2), 119–165 (1994)

23. Yang, S., Khot, T., Kersting, K., Kunapuli, G., Hauser, K., Natarajan, S.: Learning
from imbalanceddata in relational domains: a softmargin approach. In: ICDM(2014)

http://dx.doi.org/10.1007/978-3-319-19551-3_26

How Does Predicate Invention Affect Human
Comprehensibility?

Ute Schmid1, Christina Zeller1, Tarek Besold2, Alireza Tamaddoni-Nezhad3,
and Stephen Muggleton3(B)

1 University of Bamberg, Bamberg, Germany
2 University of Bremen, Bremen, Germany
3 Imperial College London, London, UK

s.muggleton@imperial.ac.uk

Abstract. During the 1980s Michie defined Machine Learning in terms
of two orthogonal axes of performance: predictive accuracy and compre-
hensibility of generated hypotheses. Since predictive accuracy was readily
measurable and comprehensibility not so, later definitions in the 1990s,
such as that of Mitchell, tended to use a one-dimensional approach to
Machine Learning based solely on predictive accuracy, ultimately favour-
ing statistical over symbolic Machine Learning approaches. In this paper
we provide a definition of comprehensibility of hypotheses which can
be estimated using human participant trials. We present the results of
experiments testing human comprehensibility of logic programs learned
with and without predicate invention. Results indicate that comprehen-
sibility is affected not only by the complexity of the presented program
but also by the existence of anonymous predicate symbols.

1 Introduction

Within Artificial Intelligence (AI) comprehensibility of symbolic knowledge is
viewed as one of the defining factors which distinguishes logic-based represen-
tations from statistical or neural ones. However, to the authors’ knowledge, no
operational criterion of comprehensibility exists in the literature. This paper
addresses the issue by introducing such a definition which is inspired by “Com-
prehension Tests”, administered to children at primary school. Such a test com-
prises the presentation of a piece of text, followed by questions which probe the
child’s understanding. Answers to questions in some cases may not be directly
stated, but instead inferred from the text. Once the test is scored, the degree of
the pupil’s answers can be assessed numerically.

In the same fashion, our operational definition of comprehensibility is based
on presentation of a logic program to an experimental participant, who is given
time to study it, after which the score is used to assess their degree of compre-
hension. The detailed results of such a test can be used to identify factors in the
program which affect its comprehensibility both for individuals and for groups
of participants. The existence of an experimental methodology for testing com-
prehensibility has the potential to provide empirical input for improvement of
c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 52–67, 2017.
DOI: 10.1007/978-3-319-63342-8 5

How Does Predicate Invention Affect Human Comprehensibility? 53

Machine Learning systems for which the generated hypotheses are intended to
provide insights.

Fig. 1. Example of student giving meaningful names to predicate symbols.

Figure 1 provides an example of such a test in which students were asked
about a given program in which some predicate names were meaningful (i.e.,
had publicly recognisable names like father and mother) and others were anony-
mous (i.e., had privately defined names like p and p1). In this case, high-scoring
students often unexpectedly annotated the answer scripts to indicate the name
they believed to be correct.

Given renewed interest within Inductive Logic Programming (ILP) in the use
of predicate invention [1,2,7,11,12] this paper explores the effects on compre-
hensibility of using anonymous definitions within logic programs. Within exper-
iments we assess students’ understanding of such programs within the kinship
domain. Empirical results indicate that comprehensibility is positively corre-
lated to the degree with which new predicates produce compact descriptions.
Additionally comprehensibility correlates with the degree to which participants
can successfully match the presented predicate with one they are already famil-
iar with. However, somewhat surprisingly, it is negatively correlated with the
amount of time taken to inspect the definitions.

The paper is arranged as follows. In Sect. 2 we discuss existing work relevant
to the paper. The framework, including relevant definitions and their relationship
to experimental hypotheses is described in Sect. 3. Section 4 describes the exper-
iments, including details of the questionnaires, experimental procedure, results
and discussion. Finally in Sect. 5 we conclude the paper and discuss further work.

2 Related Work

2.1 Comprehensibility

In the late 1980s Michie [8] suggested the idea of using both comprehensibil-
ity of hypotheses and predictive accuracy as performance indicators for Machine
Learning. He proposed three criteria. The weak criterion defines Machine Learn-
ing as occurring whenever a system generates an updated basis building on
sample data for improving its performance on subsequent data. The focus is
put exclusively on the prediction and problem-solving aspects. The strong cri-
terion expands the weak version in a second direction, requiring the system to
be able additionally to “communicate its internal updates in explicit symbolic
form”. Lastly his ultra-strong criterion additionally requires the communication

54 U. Schmid et al.

of updates to be “operationally effective”, in which case the user is required to
understand the update and any consequences to be drawn from it. While ILP
systems clearly meet the weak and strong criterion (since learning outcomes are
represented as symbolic logic programs), only very limited attention has been
given to checking whether the ultra-strong criterion holds, which requires testing
whether the user comprehends generated hypotheses.

One Machine Learning approach which engages with issues related to com-
prehensibility is Argument-Based Machine Learning (ABML) [9]. ABML applies
methods from argumentation in combination with a rule-learning approach.
Explanations provided by domain experts concerning positive or negative argu-
ments serve to enrich selected learning examples by being included in the learn-
ing data. Although ABML enhances the degree of explanation within a Machine
Learning context, like ILP, ABML fails to pass Michie’s ultra-strong test since
no demonstration of user comprehensibility of learned hypotheses is guaranteed.

Issues related to comprehensibility have been gaining more wide-spread
attention recently in the study of classification models [4,6]. However, while these
studies emphasise the need for comprehensibility, they do not offer a definitive
test of the kind provided by our definition in Sect. 3. For classification mod-
els augmented comprehensibility of the classification model promises to impact
positively on the trust users have in the model’s prediction. For example, in
medical decision-making and in the case of unexpected system outputs, com-
prehensibility generally increases the acceptance of the models by users. Finally,
comprehensible models can unveil new insights about the internal structure of
the data or its domain of origin.

In the context of AI testing and evaluation the importance of human compre-
hensibility of intelligent systems has very recently been emphasised in [3]. Forbus
makes a case for AI as a research endeavour being equivalent to learning how
to create smart software social organisms which should exhibit increasing abili-
ties to participate in human culture and daily life. The comprehensibility of the
systems behaviour and outputs is paramount in this context, since only efficient
communication enables participation in human society. In [3] this is then tied
into the general context of assessing the capacities of AI systems by measuring
the progress which has been made, for instance, in domain generality, acquired
knowledge levels, or the flexibility across different interaction modalities. When
looking back at the original Turing Test [19] and present-day discussions sur-
rounding new and updated versions or substitutes for it, comprehensibility of sys-
tems plays a crucial role. While there is frequent discussion about abandonment
of the Turing Test and focusing on more clearly specified tasks in well-defined
domains, putting emphasis on making systems and their output comprehensi-
ble for humans offers an alternative approach to overcoming limitations of the
original test, while still maintaining domain and task generality.

2.2 Predicate Invention

Predicate Invention, the automated introduction of auxiliary predicates, has
been viewed as an important problem since the early days of ILP (e.g. [10,15,17]),

How Does Predicate Invention Affect Human Comprehensibility? 55

though limited progress has been made in this topic recently [13]. Early
approaches were based on the use of W -operators within the inverting reso-
lution framework (e.g., [10,15]). However, the completeness of these approaches
was never demonstrated, partly because of the lack of a declarative bias to
delimit the hypothesis space. Failure to address these issues has, until recently,
led to limited progress being made in this important topic and many well-known
ILP systems such as ALEPH [16] and FOIL [14] have no predicate invention.
In the recently introduced Meta-Interpretive Learning (MIL) framework [11,12],
predicate invention is conducted via construction of substitutions for meta-rules
applied by a meta-interpreter. The use of the meta-rules clarifies the declarative
bias being employed. New predicate names are introduced as higher-order skolem
constants, a finite number of which are added during every iterative deepening
of the search.

3 Framework

3.1 General Setting

We assume sets of constants, predicate symbols and first-order variables are
denoted C,P,V. We assume definite clause programs to be defined in the usual
way. Furthermore we assume a human as possessing background knowledge B
expressed as a definite program. We now define the distinction between private
and public predicate symbols.

Definition 1 [Public and private predicate symbols]. We say that a pred-
icate symbol p ∈ P found in definite program P is public with respect to a human
population S in the case that p forms part of the background knowledge of each
human s ∈ S. Otherwise p is private.

Now we define Predicate Invention as follows.

Definition 2 [Predicate Invention]. In the case background knowledge B of
an ILP is extended to B ∪ H, where H is a definite program we call predicate
symbol p ∈ P an Invention iff p is defined in H but not in B.

3.2 Comprehensibility

Next we provide our operational definition of comprehensibility.

Definition 3 [Comprehensibility, C(S, P)]. The comprehensibility of a defi-
nition (or program) P with respect to a human population S is the mean accuracy
with which a human s from population S after brief study and without further
sight can use P to classify new material sampled randomly from the definition’s
domain.

Note that this definition allows us to define comprehensibility in a way which
allows its experimental determination given a set of human participants. How-
ever, in order to clarify the term “after brief study” we next define the notion
of inspection time.

56 U. Schmid et al.

Definition 4 [Inspection time T (S, P)]. The inspection time T of a definition
(or program) P with respect to a human population S is the mean time that a
human s from S spends studying P before applying P to new material.

Since, in the previous subsection, we assume humans as having background
knowledge which is equivalent to a definite program, we next define the idea of
humans mapping privately defined predicate symbols to ones found in their own
background knowledge.

Definition 5 [Predicate recognition R(S, p)]. Predicate recognition R is the
mean proportion of times that a human s from population S gives the correct
public name to a predicate symbol p presented as a privately named definition q.

For each of these mappings from privately defined predicate symbols to ele-
ments from the background knowledge we can now experimentally determine
the required naming time.

Definition 6 [Naming time N(S, p)]. For a predicate symbol p presented as
a privately named definition q in definite program P the naming time N with
respect to a human population S is the mean time that a human s from S spends
studying P before giving a public name to p.

Lastly we provide a simple definition of the textual complexity of a definite
program.

Definition 7 [Textual complexity, Sz(P)]. The textual complexity Sz of a
definition of definite program P is the sum of the occurrences of predicate sym-
bols, functions symbols and variables found in P .

3.3 Experimental Hypotheses

We are now in a position to define and explain the motivations for the experimen-
tal hypotheses to be tested in Sect. 4. Below C(S, P), T (S, P), R(S, p), N(S, p),
Sz(P) are denoted by C, T,R, N and Sz respectively.

Hypothesis H1, C ∝ 1
T . This hypothesis relates to the idea of using inspection

time as a proxy for incomprehension. That is, we might expect that humans take
a long time to commit to an answer in the case they find the program hard to
understand. As a proxy, inspection time is easier to measure than comprehension.

Hypothesis H2, C ∝ R. This hypothesis is related to the idea that humans
understand private predicate symbols, such as p1/2, generated during predicate
invention, by mapping them to public ones in their own background knowledge.

Hypothesis H3, C ∝ 1
Sz . This hypothesis is motivated by the idea that a

key property of predicate invention is its ability to compress a description by
introducing new predicates which are used multiply within the definition. We
are interested in whether the resultant compression of the description leads to
increased comprehensibility.

How Does Predicate Invention Affect Human Comprehensibility? 57

Hypothesis H4, R ∝ 1
N . This hypothesis relates to the idea that if humans

take a long time to recognise and publicly name a privately named predicate
they are unlikely to correctly identify it. Analogous to H1, this allows naming
time to be used as a proxy for recognition of an invented predicate.

In the next section we describe experiments which test these four hypotheses.
Table 1 shows the mapping between the measurable properties defined in this
section and the independent variables used in the experiment.

Table 1. Mapping defined properties from this section and independent variables in
the experiment.

Defined property Experimental variable

Comprehensibility C Score

Inspection time T Time

Recognition R CorrectNaming

Naming Time N NamingTime

4 Experiment

To investigate the hypotheses concerning comprehensibility and predicate inven-
tion, we conducted an experiment with human participants. In the following, we
first present the material. Afterwards we present the independent and dependent
variables and re-formulate the hypotheses with respect to these variables. Then
we present the design and the results of the experiment. Finally, we relate the
findings to the hypotheses of the framework.

4.1 Material

Material construction is based on the well-known family tree examples used
to teach Prolog [18] and also used in the context of ILP [12]. Based on the
grandparent/2 predicate, three additional problems were defined: grandfather/2
which is more specific than grandparent/2, greatgrandparent/2 which needs the
double amount of rules if defined without an additional (invented) predicate,
that is, which has a high textual complexity, and the recursive predicate ances-
tor/2 which has small textual but high cognitive complexity [5]. Instead of these
meaningful names, target predicates are called p/2. Given facts are identical
to the family tree presented in [12].1 In the rule bodies, either public names
(mother, father)—that is, names which relate to the well-known semantics of

1 Please note that the relation mother(matilda,bill) needs to be changed to
mother(matilda,alice) and the relation father(jake,bill) needs to be changed to
father(jake,alice) to cover all cases necessary to invent the predicate parent/2 in
the context of different target predicates.

58 U. Schmid et al.

family relations—or private names (q1/2, q2/2) were used. Furthermore, pro-
grams were either presented with or without the inclusion of an additional
(invented) predicate for parent/2 which was named p1/2. The trees for the pub-
lic and the private name space and the predicate definitions for the public name
space are given in Fig. 2.

; grandfather without invented predicate
p(X,Y) :- father(X,Z), father(Z,Y).
p(X,Y) :- father(X,Z), mother(Z,Y).

; grandfather with invented predicate
p(X,Y) :- p1(X,Z), father(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

; grandparent without invented predicate
p(X,Y) :- father(X,Z), father(Z,Y).
p(X,Y) :- father(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), father(Z,Y).

; grandparent with invented predicate
p(X,Y) :- p1(X,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

; ancestor without invented predicate
p(X,Y) :- father(X,Y).
p(X,Y) :- mother(X,Y).
p(X,Y) :- father(X,Z), p(Z,Y).
p(X,Y) :- mother(X,Z), p(Z,Y).

; greatgrandparent without invented predicate
p(X,Y) :- father(X,U), father(U,Z), father(Z,Y).
p(X,Y) :- father(X,U), father(U,Z), mother(Z,Y).
p(X,Y) :- father(X,U), mother(U,Z), father(Z,Y).
p(X,Y) :- father(X,U), mother(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), father(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), father(U,Z), father(Z,Y).
p(X,Y) :- mother(X,U), mother(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), mother(U,Z), father(Z,Y).

; greatgrandparent with invented predicate
p(X,Y) :- p1(X,U), p1(U,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

; ancestor with invented predicate
p(X,Y) :- p1(X,Y).
p(X,Y) :- p1(X,Z), p(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

Fig. 2. Public tree (left), private tree (right) and the Prolog programs for grandfa-
ther/2, grandparent/2, greatgrandparent/2, and ancestor/2 with and without use of an
additional (invented) predicate parent. In the corresponding programs for the private
name space, father/2 is replaced by q1/2 and mother/2 is replaced by q2/2.

In Sect. 3 we defined comprehensibility of a program as the accuracy with
which a human can classify new material sampled from the domain. To assess
comprehensibility, we defined seven questions for each of the four predicates (see
Fig. 3). For five questions, it has to be determined whether a relation for two
given objects is true. For two further questions, it has to be determined for which
variable bindings the relation can be fulfilled. In addition, an open question was
included, where a meaningful name had to be given to predicate p/2 for each of
the four problems and—if applicable—also to the additional predicate p1/2.

To evaluate the material, we ran a pilot study (March 2016) at Imperial
College London with 16 students of computer science with a strong background
in programming, Prolog, and logic. The pilot study was conducted as a paper-
and-pencil experiment where for each problem first the seven questions had to

How Does Predicate Invention Affect Human Comprehensibility? 59

– What is the result of p(bill,bob)?
true false don’t know

– What is the result of p(jake,harry)?
true false don’t know

– What is the result of p(bob,bill)?
true false don’t know

– What is the result of p(mary,jo)?
true false don’t know

– What is the result of p(john,sam)?
true false don’t know

– What is the result of p(X,bob)?
false X = bill X = alice
X = bill; alice don’t know

– What is the result of p(john,X)?
false X = sam X = jo
X = sam; jo don’t know

Fig. 3. Questions for the grandparent/2 problem with public names.Questions for the
grandparent/2 problem with public names.

be answered and afterwards a meaningful name had to be given to the program.
13 out of the 16 students solved all questions correctly and most students were
able to give the correct public names to all of the programs, regardless whether
they had to work with the public or with the private names. Participants needed
about 20 min for the four problems. Thus, the instructions and the material are
understandable and coherent. A very interesting outcome of the study was that
about a third of the students made notes on the questionnaires. Some of the
notes showed that students first named the target predicates and the invented
predicate (see Fig. 1) and then answered the questions. That is, students gave
a meaningful name without being instructed to do so and one can assume that
they used this strategy because it made answering the questions easier.

4.2 Variables and Empirical Hypotheses

To assess the influence of meaningful names and of predicate invention on com-
prehensibility, we introduced the following three independent variables:

NameSpace: The name space in which context the problems is presented is
either public or private as shown in Fig. 2.

PredicateInvention: The problems are given either with or without an addi-
tional (invented) predicate p1/2 which represents the parent/2 relation.

NamingInstruction: The open question to give a meaningful name to predi-
cate p/2 is either given before or after the seven questions given in Fig. 3
had to be answered.

The variation of the independent variables results in a 2×2×2 factor design
which was realised between-participants for factors NameSpace and NamingIn-
struction and within-participants for factor PredicateInvention. Problem presen-
tation with PredicateInvention was either given for the first and the third or the
second and the fourth problem.

60 U. Schmid et al.

The textual complexity varies over problems and in dependence of the
introduction of the additional predicate p1/2. The textually most complex pro-
gram is greatgrandparent/2 without the use of p1/2. The least complex program
is grandfather/2 without the use of p1/2 as can be seen in Fig. 2.

The following dependent variables were assessed:

Score: For each problem, the score is calculated as the sum of correctly
answered questions (see Fig. 3). That is, score has minimal value 0 and max-
imal value 7 for each problem.

Time: The time to inspect a problem is measured from presenting the problem
until answering the seven questions.

CorrectNaming: The correctness of the given public name for a predicate
definition p/2 was judged by two raters. In addition, it was discriminated
between clearly incorrect answers and responses where participants wrote
nothing or stated that they do not know the correct meaning.

NamingTime: The time for naming is measured from presenting the question
until indication that the question is answered by going to the next page. For
condition PredicateInvention/with both p/2 and p1/2 had to be named.

Given the independent and dependent variables, hypotheses can now be for-
mulated with respect to these variables:

H1: Score is inverse proportional to Time, that is, participants who comprehend
a program, give more correct answers in less time than such participants who
do not comprehend the program.

H2: CorrectNaming is proportional to Score, that is, participants who can give
the intended public—that is, meaningful—name to a program have higher
scores than participants who do not get the meaning of the program.

H3: Score is inverse proportional to textual complexity, that is, for problem
greatgrandparent/2 the differences of score should be greatest between the
PredicateInvention/with and PredicateInvention/without condition because
here the difference in textual complexity is highest.

H4: CorrectNaming is inverse proportional to NamingTime, that is, if partici-
pants need a long time to come up with a meaningful name for a program,
they probably will get it wrong.

4.3 Participants and Procedure

The experiment was conducted in April 2016 with cognitive science students
of the University of Osnabrueck. All students had passed at least one previous
one-semester course on Prolog programming and all have a background in logic.
That is, their background in Prolog is less strong than for the Imperial College
sample but they are no novices. From the originally 87 participants, three did
not finish the experiment and six students were excluded because they answered

How Does Predicate Invention Affect Human Comprehensibility? 61

“don’t know” for more than 50% of the questions. All analyses were done with
the remaining 78 participants (43 male, 35 female; mean age 23.55 years, sd =
2.47).2

The experiment was realised with the soscisurvey.de system and was con-
ducted online during class. After a general introduction, students worked through
an example problem (“sibling”) to get acquainted with the domain—that is
either the family tree or the abstract tree shown in Fig. 2—and with the types
of questions they needed to answer. Afterwards, the four test problems were
presented in one of the eight experimental conditions. For each problem, on the
first page the facts and the tree and the predicate definition was presented. On
the next page, this information was given again together with the first question
or the naming instruction. If the “next”-button was pressed, it was not possible
to go back to a previous page.

Working through the problems was self-paced. The four problems were pre-
sented in the sequence grandfather/2, grandparent/2, greatgrandparent/2, ances-
tor/2 for all participants. That is, we cannot control for sequence effects, such as
performance gain due to getting acquainted with the style of the problems and
questions or performance loss due to decrease in motivation or fatigue. However,
since problem type is not used as an experimental condition, possible sequence
effects do not affect statistical analyses of the effects of the independent variables
introduced above.

4.4 Results

Scores and Times. When considering time for question answering and naming
together, participants needed about 5 minutes for the first problem and got
faster over the problems. One reason for this speed-up effect might be, that
participants needed less time to inspect the tree or the facts for later problems.
There is no speed-accuracy trade-off, that is, there is no systematic relation
between (low) number of correct answers and (low) solution time for question
answering. In the following, time is given in seconds and for statistical analyses
time was logarithmically transformed.

Giving Meaningful Names. In the public name condition, the names the
participants gave to the programs were typically the standard names, sometimes
their inverse, such as “grandchildren”, “child of child”, or “parent of parent” for
the grandparent/2 problem. In the condition with private names, the standard
names describing family relations were also used by most participants, how-
ever, some participants gave more abstract descriptions, such as “X and Y are
connected via an internode” for grandparent/2. Among the incorrect answers
for the grandparent/2 problem often were over-specific interpretations such as
“grandson” or “grandfather”. The same was the case for greatgrandparent/2
with incorrect answers such as “greatgrandson”. Some participants restricted
the description to the given tree, for example, “parent of parent with 2 children”
2 A comprehensive description of all analyses and results can be found at http://www.

cogsys.wiai.uni-bamberg.de/publications/comprAnalysesDoc.pdf.

http://www.cogsys.wiai.uni-bamberg.de/publications/comprAnalysesDoc.pdf
http://www.cogsys.wiai.uni-bamberg.de/publications/comprAnalysesDoc.pdf

62 U. Schmid et al.

for grandparent/2. Incorrect answers for the ancestor/2 problem typically were
overly general, such as “related”.

Impact of NameSpace, PredicateInvention, and NamingInstruction on
Score and Time. An overview of the impact of all factors on score is given in
Fig. 4. There it can be seen that NameSpace/public results in higher scores for all
four problems. The effects of PredicateInvention and NamingInstruction are less
obvious. It is not the case that having to think about the meaning of a predicate
before question answering has a general positive effect on Score. PredicateInven-
tion is helpful for some problems, for others not. We will give a closer look on the
effect of PredicateInvention for the textually most complex problem greatgrand-
parent/2 below (H3). Statistical analyses were done with general linear models
with NameSpace, PredicateInvention, and NamingInstruction as predictor vari-
ables and Score as criterion variable. Predictor variables were dummy coded
as contrasts. The effect of NameSpace/public is significant for grandfather/2
(b = 1.55, p = 0.03) and marginally significant for greatgrandparent/2 (b = 1.12,
p = 0.069). In addition, for grandfather/2 the interaction of NameSpace and
PredicateInvention is significant (b = −2.52, p = 0.017).

Fig. 4. Scores distributed over NameSpace, PredicateInvention, and NamingInstruc-
tion (arithmetic means and standard deviations are given; for significant differences,
see text).

Inverse proportional relation between Score and Time (H1). There is
a significant negative Pearsons product-moment correlation between Time and
Score over all problems (r = −.38, p ≤ 0.001).

Effect of CorrectNaming on Score (H2). To assess the impact of being able
to give a meaningful name to a problem (CorrectNaming) on comprehensibility
(Score), answers were classified as “correct”, “incorrect” and “no answer” which

How Does Predicate Invention Affect Human Comprehensibility? 63

covers answers where participants either did not answer or explicitly stated that
they do not know the answer. Participants who were able to give meaningful
names to the programs answered significantly more questions correctly. Statisti-
cal analyses were again performed with general linear models with dummy cod-
ing (contrast) for the predictor variable CorrectNaming. The results are given
in Table 2.

Table 2. Means and standard deviations of Score in dependence of CorrectNaming,
where “no answer” covers answers where participants either did not answer or explicitly
stated that they do not know the answer. Results for linear models are given as b-
estimates and p-values for the contrast between correct and incorrect naming.

Correct Incorrect No answer Test

Grandfather n = 28 n = 46 n = 4

Score Mean 6.68 (sd = 0.61) 5.15 (1.81) 4.75 (1.71) −1.53, p < 0.001

Grandparent 50 23 5

Score 6.56 (1.23) 5.04 (2.12) 3.4 (1.82) −1.52, p < 0.001

Greatgrandparent 54 18 6

Score 6.76 (0.66) 5.78 (1.66) 3 (1.67) −1, p < 0.001

Ancestor 32 39 7

Score 5.75 (1.44) 3.08 (1.8) 2.86 (1.57) −2.67, p < 0.001

Impact of textual complexity on the effect of PredicateInvention
on Score (H3). For the greatgrandparent/2 problem, there is a marginally
significant effect of PredicateInvention for NameSpace/private and NamingIn-
struction/after with a higher score for the PredicateInvention/with condition
(b = −1.59, p = 0.09).

Relation of CorrectNaming and NamingTime (H4). Participants who
give a correct meaningful name to a problem do need less time to do so than
participants who end up giving an incorrect name for all problems except ances-
tor/2. This relation is given in Fig. 5 accumulated over all factors per problem.
Statistical analyses were done separately for conditions PredicateInvention/with
and PredicateInvention/without because in the first case two names—for tar-
get predicate p/2 and for the additional predicate p1/2—had to be given. Dif-
ferences between correct and incorrect are significant for grandfather/2 in the
condition PredicateInvention/without (b = 0.31, p = 0.007) and marginally sig-
nificant for grandparent/2 in the condition PredicateInvention/with (b = 0.2,
p = 0.084). For ancestor/2 in the condition PredicateInvention/with there is
a significant difference between correct naming and “no answer” (b = −0.49,
p = 0.039).

64 U. Schmid et al.

4.5 Interpretation and Discussion

Results show that presenting programs in relation to a public name space facil-
itates comprehension. Contrary to our expectations, being instructed to first
think about a meaningful name for a program before answering questions in
general does not facilitate generation of answers. We would have expected that
having a (denotational) semantic interpretation for a predicate supports work-
ing on classification and variable bindings of new material from a given domain
because mental evaluation of a program can be—at least partially—avoided.
Furthermore, as expected, the use of additional (invented) predicates does not
facilitate program comprehension in general but only under specific conditions
which are discussed below (H3).

Fig. 5. Relation between time needed for giving a
meaningful name and correctness of naming, where
“no answer” covers answers where participants either
did not answer or explicitly stated that they do not
know the answer (averaged over PredicateInvention
with/without).

Results concerning our
hypotheses are summarised
in Table 3. Hypothesis H1
is confirmed by our empir-
ical data: if a person com-
prehends a program, she or
he can come up with cor-
rect answers in short time.
Hypothesis H2 is also con-
firmed: participants who can
give a meaningful name to
a program give more correct
answers than participants
who give incorrect answers
or state that they do not
know the answer. In addi-
tion, participants who give
a correct name give answers
faster. As hypothesis H3
we assumed that predicate
invention supports compre-
hensibility if it reduces the
textual complexity of a program. For the four problems we investigated, the
reduction in complexity is greatest for greatgrandparent/2. Here we get a partial
confirmation: predicate invention results in more correct answers for the private
name space and if the instruction for naming was given after question answering.
This experimental condition is the most challenging, because comprehensibility
is not supported by public names and because participants were not encouraged
to think about the meaning of the presented predicate before they had to answer
questions about it.

Finally, we assumed that persons who have problems to come up with a
meaningful name for a predicate spend a longer amount of time to come up
with an (incorrect or no) answer (H4). Results show that this is the case—
with the exception of the ancestor/2 problem. However, the differences are only

How Does Predicate Invention Affect Human Comprehensibility? 65

significant under specific conditions. The observation that long answering time
can indicate a problem with comprehensibility could be exploited for the design
of the interaction of a person with an ILP system: if a person does not come
up quickly with a name for a predicate, the system could offer examples of the
predicates behaviour. For example, for the ancestor/2 problem, pairs for which
this predicate is true could be highlighted in the given tree.

It can be assumed that the empirical results depend on the level of exper-
tise of the participants. As we saw, the highly experienced sample of students
of Imperial College did not profit from public name space or from the use of
invented predicates. They answered most questions correctly under all condi-
tions. In contrast, for the moderately experienced sample of students from Uni-
versity of Osnabrueck, presenting predicates in relation to a public name space
and under some conditions with invented predicates resulted in better compre-
hensibility. For a sample of Prolog novices, the experimental variations might
result in stronger or different effects.

Table 3. Hypotheses concerning comprehensibility, meaningful names, and predicate
invention.

Hypothesis Confirmation

H1 Comprehensibility manifests itself in high scores and
fast solution times

Confirmed

H2 Comprehensibility means to be able to give a
meaningful name to a program

Confirmed

H3 Predicate invention helps comprehensibility if it
reduces textual complexity of the program

Partially

H4 If coming up with a meaningful name needs a long
time, it will probably be the false concept

Partially

5 Conclusions and Further Work

This paper is, to our knowledge, the first paper in the literature which provides
an operational definition of the comprehensibility of a logic program. The defi-
nition is used within the experiments in Sect. 4 to identify factors which affect
comprehension. These factors include the time required to inspect the program,
the accuracy with which a participant can recognise a predicate to be equivalent
to one already known and the textual complexity of the program.

As expected, the four problems presented in the experiment differ with
respect to comprehensibility. The problem most participants had difficulty with
is the recursive ancestor/2. For this problem less than half of the participants
(32) gave the correct meaningful name and for this problem participants have the
lowest scores. However, since this problem was positioned last in the sequence,
the results might also be due to loss of motivation or exhaustion. Astonishingly,
ancestor/2 is also the only of the four problems where participants reached

66 U. Schmid et al.

the highest score in the private naming condition without predicate invention
(cf. Fig. 4). We plan a follow-up experiment where problem sequences are varied
to determine whether this is a systematic effect.

The kinship predicates presented to human participants in our experiments
are all ones which could be expected to be equivalent to ones already known to
the participant. In further work we hope also to study the effects of human users
being presented with definitions of predicates which are novel for the user.

In closing we believe the operational definition of comprehensibility has enor-
mous potential to both clarify one of the central concepts of AI research, as well
as to provide a bridge to the study of factors affecting the design of AI systems
which improve human understanding.

References

1. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involving
composable objects. In: Proceedings of the 24th International Joint Conference
Artificial Intelligence (IJCAI 2015), pp. 3423–3429 (2015)

2. Cropper, A., Muggleton, S.H.: Learning higher-order logic programs through
abstraction and invention. In: Proceedings of the 25th International Joint Con-
ference Artificial Intelligence (IJCAI 2016), pp. 1418–1424 (2016)

3. Forbus, K.D.: Software social organisms: implications for measuring AI progress.
AI Mag. 37(1), 85–90 (2016)

4. Freitas, A.A.: Comprehensible classification models: a position paper. SIGKDD
Explor. Newsl. 15(1), 1–10 (2014)

5. Kahney, H.: What do novice programmers know about recursion? In: Soloway,
E., Spohrer, J.C. (eds.) Studying the Novice Programmer, pp. 209–228. Lawrence
Erlbaum (1989)

6. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers
using rules and Bayesian analysis: building a better stroke prediction model. Ann.
Appl. Stat. 9(3), 1350–1371 (2015)

7. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B., Muggleton, S.H.: Bias reformu-
lation for one-shot function induction. In: Proceedings of the 23rd European Con-
ference on Artificial Intelligence (ECAI 2014), pp. 525–530. IOS Press (2014)

8. Michie, D.: Machine learning in the next five years. In: Proceedings of the Third
European Working Session on Learning, pp. 107–122. Pitman (1988)

9. Mozina, M., Zabkar, J., Bratko, I.: Argument based machine learning. Artif. Intell.
171(10–15), 922–937 (2007)

10. Muggleton, S.H., Buntine, W.: Machine invention of first-order predicates by
inverting resolution. In: Proceedings of the 5th International Conference on
Machine Learning, pp. 339–352. Kaufmann (1988)

11. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive
learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)

12. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015)

13. Muggleton, S.H., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K.: ILP
turns 20: biography and future challenges. Mach. Learn. 86(1), 3–23 (2011)

14. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266
(1990)

How Does Predicate Invention Affect Human Comprehensibility? 67

15. Rouveirol, C., Puget, J.-F.: A simple and general solution for inverting resolution.
In: Proceedings of the fourth European Working Session on Learning (EWSL-
1989), pp. 201–210. Pitman (1989)

16. Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Labo-
ratory, Oxford University (2001)

17. Stahl, I.: Constructive induction in inductive logic programming: an overview.
Technical report, Fakultät Informatik, Universität Stuttgart (1992)

18. Sterling, L., Shapiro, E.Y.: The Art of Prolog: Advanced Programming Techniques.
MIT Press, Cambridge (1994)

19. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460
(1950)

Distributional Learning of Regular Formal
Graph System of Bounded Degree

Takayoshi Shoudai1(B), Satoshi Matsumoto2, and Yusuke Suzuki3

1 Faculty of International Studies, Kyushu International University,
Kitakyushu, Japan

shoudai@isb.kiu.ac.jp
2 Faculty of Science, Tokai University, Hiratsuka, Japan

3 Graduate School of Information Sciences,
Hiroshima City University, Hiroshima, Japan

Abstract. In this paper, we describe how distributional learning tech-
niques can be applied to formal graph system (FGS) languages. An FGS
is a logic program that deals with term graphs instead of the terms of
first-order predicate logic. We show that the regular FGS languages of
bounded degree with the 1-finite context property (1-FCP) and bounded
treewidth property can be learned from positive data and membership
queries.

1 Introduction

In the field of algorithmic learning theory, many models and algorithmic tech-
niques for learning from examples have been developed. Distributional learn-
ing was first proposed by Clark and Eyraud [3] to learn a subclass of context-
free grammars efficiently. Recently, distributional learning techniques have been
developed for learning of various subclasses of context-free grammars [11]. These
techniques were extended to languages that have more complex structures [7].
Yoshinaka [12] introduced distributional properties on grammars and showed
that grammars with distributional properties are learnable with standard dis-
tributional learning techniques if the grammars satisfy certain conditions, e.g.
polynomial time decomposability of objects into contexts and substructures.

Graph grammar has been developed as an extension to graphs from strings
of grammatical forms. Graph grammar has been applied to a wide range of fields
including pattern recognition and image analysis. Uchida et al. [10] introduced
a framework called formal graph system (FGS) as a graph grammar. An FGS
is a logic program that deals with term graphs, which can be considered to be
types of hypergraphs, instead of the terms of first-order predicate logic.

For the learning of graph grammar, Okada et al. [9] showed that some classes
of graph pattern languages are learned from a minimally adequate teacher
(MAT) in polynomial time. Hara and Shoudai [6] proposed an algorithm for

T. Shoudai—This work was partially supported by JSPS KAKENHI (26280087,
15K00313) and MEXT KAKENHI (24106010).

c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 68–80, 2017.
DOI: 10.1007/978-3-319-63342-8 6

Distributional Learning of Regular Formal Graph System of Bounded Degree 69

learning the class of c-deterministic regular FGS languages in the framework
of MAT learning. There have been other studies on graph grammars from the
viewpoint of application, but discussions on computational learning of graph
grammars are not yet sufficient. In this paper, we show that the regular FGS
languages of bounded degree with the 1-finite context property (1-FCP) [2] and
bounded treewidth property can be learned from positive data and membership
queries with current distributional learning techniques [11].

2 Preliminaries

For a set or a list S, |S| denotes the number of all elements that are contained
in S. For a set S, S∗ denotes the set of all finite lists consisting of elements in S.
For a list S and an integer i (1 ≤ i ≤ |S|), S[i] denotes the i-th member of S. Let
Σ and Λ be finite alphabets. Let X be an infinite alphabet, whose elements are
called variables. We assume that each symbol x ∈ X has a nonnegative integer
rank(x), Σ ∩ X = ∅ and Λ ∩ X = ∅.

Definition 1 (Term graph). A term graph g = (V,E, ϕ, ψ,H, λ, ports) is
defined as follows:

1. (V,E) is a vertex- and edge-labeled (directed or undirected) graph,
2. ϕ : V → Σ and ψ : E → Λ are vertex- and edge-labeling functions,
3. H is a finite multiset of hyperedges that are elements of 2V ,
4. λ : H → X is a variable-labeling function, and
5. ports : H → V ∗ is a mapping s.t. for every h ∈ H, ports(h) is a list of

rank(λ(h)) distinct vertices in V . These vertices are called the ports of h.

We give an example of term graphs in Fig. 1. A hyperedge is drawn as a box
with lines to its ports. The order of the ports is indicated by digits at these lines.

Fig. 1. A term graph g = (V, E, ϕ, ψ, H, λ, ports) on Σ = {a,b, c,d} and Λ = {α, β, γ}:
H = {{u2, u3, u4}, {u4, u5}, {u8}}, λ({u2, u3, u4}) = x, λ({u4, u5}) = y, λ({u8}) =
z, ports({u2, u3, u4}) = (u2, u3, u4), ports({u4, u5}) = (u4, u5), ports({u8}) = (u8).

For a term graph g, its 7-tuple is denoted by (Vg, Eg, ϕg, ψg,Hg, λg, portsg).
A term graph g is called ground if Hg = ∅ and both λg and portsg are empty
functions ∅. We define the size of a term graph g, denoted by |g|, as |Vg|+ |Eg|+
|Hg|. A term graph g is a star term graph if Eg = ∅ and Hg = {Vg}. For a star
term graph g, hg denotes the unique hyperedge of g.

70 T. Shoudai et al.

Definition 2 (Treewidth [5]). A tree decomposition of a term graph g =
(V,E, ϕ, ψ,H, λ, ports) is a rooted tree T = (I,F) whose vertices i ∈ I are
associated with Vi ⊆ V , Ei ⊆ E and Hi ⊆ H that satisfy the following condi-
tions:

1. For each v ∈ V , there is a vertex i ∈ I such that v ∈ Vi.
2. For each e = (u, v) ∈ E, there is exactly one vertex i ∈ I such that u, v ∈ Vi

and e ∈ Ei.
3. For each h = {v1, . . . , vm} ∈ H, there is exactly one vertex i ∈ I such that

v1, . . . , vm ∈ Vi and h ∈ Hi.
4. For each v ∈ V , the subtree of T induced by {i ∈ I | v ∈ Vi} is connected.

The width of T is defined as maxi∈I |Vi|−1. The treewidth of g is the minimum
width of any tree decomposition T = (I,F) of g.

Two term graphs f and g are said to be isomorphic, if there is a bijection
π from Vf to Vg, such that (1) (u, v) ∈ Ef if and only if (π(u), π(v)) ∈ Eg, (2)
ϕf (u) = ϕg(π(u)) for each vertex u ∈ Vf and ψf (u, v) = ψg(π(u), π(v)) for each
edge (u, v) ∈ Ef , (3) {v1, . . . , v�} ∈ Hf if and only if {π(v1), . . . , π(v�)} ∈ Hg,
(4) λf ({v1, . . . , v�}) = λf ({u1, . . . , u�}) if and only if λg({π(v1), . . . , π(v�)}) =
λg({π(u1), . . . , π(u�)}) for each hyperedge {v1, . . . , v�}, {u1, . . . , u�} ∈ Hf , and
(5) portsf ({v1, . . . , v�}) = portsg({π(v1), . . . , π(v�)}) for each {v1, . . . , v�} ∈ Hf .
A bijection π satisfying (1)–(5) is called an isomorphism from f to g.

Let d and w be nonnegative integers. The degree of a vertex v is defined
as |{e ∈ Eg | v ∈ e}| + |{h ∈ Hg | v ∈ h}|. G(Σ,Λ,X) (resp. Gd,w(Σ,Λ,X))
denotes the set of all term graphs (resp. all term graphs of maximum degree d
and treewidth w) over 〈Σ,Λ,X〉. Moreover, G(Σ,Λ) (resp. Gd,w(Σ,Λ)) denotes
the set of all ground term graphs (resp. all ground term graphs of maximum
degree d and treewidth w).

Let f be a term graph in G(Σ,Λ,X) and σ an ordered list of 	 distinct
vertices in Vf (0 ≤ 	 ≤ |Vf |). A pair [f, σ] is called a term graph fragment . If f
is a ground term graph, we call it a ground term graph fragment . Let F(Σ,Λ)
be the set of all ground term graph fragments. For nonnegative integers d and
w, Fd,w(Σ,Λ) = {[f, σ] ∈ F(Σ,Λ) | f ∈ Gd,w(Σ,Λ) and |σ| ≤ d + 1}. For
a term graph fragment [f, σ] and a variable x ∈ X with rank(x) = |σ|. Let
σ = (v1, . . . , v�) (≥ 1). The binding x := [f, σ] for a term graph g is defined
to be an operation on g that works in the following way: For each h ∈ Hg with
λg(h) = x, let f ′ = (Vf ′ , Ef ′ , ϕf ′ , ψf ′ ,Hf ′ , λf ′ , portsf ′) be a copy of f . For a
vertex v ∈ Vf , we denote the corresponding copy vertex of f ′ by v′. We attach
f ′ to g by removing the hyperedge h from Hg and by identifying the ports
u1, . . . , u� of h in g with v′

1, . . . , v
′
� in f ′, respectively. We set the new vertex-

label of ui to be the original vertex-label of ui, i.e., ϕg(ui). A substitution θ is a
finite set of bindings {x1 := [f1, σ1], . . . , xn := [fn, σn]}, where xi’s are mutually
distinct variables in X and each fi has no hyperedge labeled with a variable in
{x1, . . . , xn}. We give an example of term graphs and substitutions in Fig. 2.

Distributional Learning of Regular Formal Graph System of Bounded Degree 71

Fig. 2. A graph G can be obtained from g by applying a substitution θ = {x1 :=
[f1, (u1, u4)], x2 := [f2, (w3, w1)]}, i.e., gθ is isomorphic to G.

Fig. 3. A formal graph system S1 = (Σ1, Λ1, X1, Π1, Γ1), where Σ1 = {a}, Λ1 =
{ε}, X1 = {x1, x2, . . .}, Π1 = {p}, and its FGS language GL(S1, p).

Definition 3 (Formal graph system [10]). Let g1, . . . , gn ∈ G(Σ,Λ,X)
(n ≥ 1). Let Πn be a finite set of n-ary predicate symbols. Let Π =

⋃
i≥0 Πi.

For p ∈ Πn, we say that p(g1, . . . , gn) is an atom. Let A,B1, . . . , Bm be atoms
(m ≥ 0) consisting of term graphs in G(Σ,Λ,X) and predicate symbols in Π. A
graph rewriting rule over 〈Σ,Λ,X,Π〉 is a clause of the form A ← B1, . . . , Bm.
For a clause A ← B1, . . . , Bm, the atom A is called the head and the right hand
side of the arrow B1, . . . , Bm is called the body of the rule. Let Γ be a finite set
of graph rewriting rules over 〈Σ,Λ,X,Π〉. A formal graph system (abbreviated
to FGS) is the 5-tuple S = (Σ,Λ,X,Π, Γ).

For a substitution θ and an atom p(g1, . . . , gn), we define p(g1, . . . , gn)θ to
be p(g1θ, . . . , gnθ). For a graph rewriting rule A ← B1, . . . , Bm, we also define
(A ← B1, . . . , Bm)θ to be Aθ ← B1θ, . . . , Bmθ.

Definition 4. Let S = (Σ,Λ,X,Π, Γ) be an FGS. For a clause C, relation
Γ � C is defined recursively in the following way:

1. If C ∈ Γ , then Γ � C holds.
2. If Γ � C, then Γ � Cθ for an arbitrary substitution θ.
3. If Γ � A ← B1, . . . , Bn and for some i (1 ≤ i ≤ n), Γ � Bi ← C1, . . . , Cm,

then Γ � A ← B1, . . . , Bi−1, C1, . . . , Cm, Bi+1, . . . , Bn holds.

For an FGS S = (Σ,Λ,X,Π, Γ) and a unary predicate symbol p, we define
the graph language of (S, p) as GL(S, p) = {g ∈ G(Σ,Λ) | Γ � p(g) ←}. We say
that a graph language L ⊆ G(Σ,Λ) is definable by an FGS or an FGS language
if such a pair (Γ, p) exists. In Fig. 3, we give an example of the FGSs and its
FGS language.

72 T. Shoudai et al.

Let Σ be a set of vertex labels and Π a set of predicate symbols. Let δ be a
function from Π to Σ∗. We call the function δ a pointer of Π if for any predicate
symbol p, δ(p)[i]
= δ(p)[j] for all i, j (1 ≤ i < j ≤ |δ(p)|). Let δ(Π) be the set
of all vertex labels appearing in δ(p) for all predicate symbols p ∈ Π. For a
term graph g and a list of vertices σ = (v1, . . . , v�) ∈ V �

g (≥ 1), ϕg(σ) denotes
(ϕg(v1), . . . , ϕg(v�)).

Definition 5 (Regular formal graph system [10]). We say that an FGS
S = (Σ,Λ,X,Π, Γ) is regular with a pointer δ of Π if all graph rewriting rules
in Γ are of the form q0(g0) ← q1(g1), . . . , qm(gm) that satisfies the following
conditions:

1. All qi ∈ Π (0 ≤ i ≤ m) are unary predicate symbols.
2. Each gi (1 ≤ i ≤ m) is a star term graph s.t. ϕgi

(portsgi
(hgi

)) = δ(qi).
3. There is a list (v1, . . . , v|δ(q0)|) ∈ V

|δ(q0)|
g0 s.t. ϕg0(v1, . . . , v|δ(q0)|) = δ(q0) and

for any u ∈ Vg0\{v1, . . . , v|δ(q0)|}, ϕg0(u) ∈ Σ\δ(Π).
4.

⋃
h∈Hg0

{λg0(h)} =
⋃m

i=1{λgi
(hgi

)} and λgi
(hgi

)
= λgj
(hgj

) for 1 ≤ i < j ≤
m.

5. For every h1, h2 ∈ Hg0 , h1
= h2 if and only if λg0(h1)
= λg0(h2).

A regular FGS S = (Σ,Λ,X,Π, Γ) with a pointer δ is denoted by (S, δ) or
((Σ,Λ,X,Π, Γ), δ). Below we call a regular FGS with a pointer a regular FGS.

Let (S, δ) be a regular FGS and p a unary predicate symbol in Π. We define
the graph language of (S, δ, p) as GL(S, δ, p) = {g ∈ G(Σ,Λ) | Γ � p(g) ←}. We
say that a graph language L ⊆ G(Σ,Λ) is definable by a regular FGS or a regular
FGS language if a triplet (S, δ, p) exists such that L = GL(S, δ, p). In Fig. 4, we
give an example of the regular FGSs and its regular FGS language.

Fig. 4. A regular formal graph system (S2, δ2) = ((Σ2, Λ2, X2, Π2, Γ2), δ2), where Σ2 =
{a, s, t}, Λ2 = {ε}, X2 = {x1, x2, . . .}, Π2 = {p, q}, δ2(p) = (), δ2(q) = (s, t), and its FGS
language GL(S2, δ2, p), which is equivalent to the set of all two terminal series parallel
graphs (TTSP graphs). Every TTSP graph has treewidth at most 2.

Distributional Learning of Regular Formal Graph System of Bounded Degree 73

Definition 6 (Chomsky normal form). Let f0 be a ground term graph of one
vertex or two vertices with one edge, f1 a term graph with two hyperedges and no
edge, and f2, f3 star term graphs. Let p0, p1, p2, p3 be unary predicate symbols.
A regular FGS (S, δ) is in Chomsky normal form if every graph rewriting rule
of S is of the form.

– Terminal rule: p0(f0) ←,
– Unary rule: p1(f1) ← p2(f2).
– Binary rule: p1(f1) ← p2(f2), p3(f3).

The regular FGS in Figs. 3 and 4 is written in Chomsky normal form.
We say that a term graph g is connected if for any two vertices u and v of

g, there is a sequence of vertices v0(= u), v1, . . . , vm(= v) for an integer m such
that for all i (0 ≤ i ≤ m − 1), vi and vi+1 are contained in the same edge or
hyperedge. In this paper, we assume that all term graphs are connected.

Graph grammar has been defined in various ways. One of the famous
context-free graph grammars is a hyperedge replacement grammar (HRG) [4].
Uchida et al. [10] showed that a class of graphs is generated by an HRG if and
only if it is defined by a regular FGS. This result shows that regular FGSs can
generate interesting graph classes including trees, two-terminal series parallel
graphs (in Fig. 4), and so on.

In the research of HRGs, Lautemann [8] gave some conditions on either gram-
mar or input graphs whose parsing can be done in polynomial time. A parsing
algorithm due to Lautemann is known to be polynomial time for graphs that
are connected and of bounded degree. As a more precise characterization of the
algorithm’s complexity, Chiang et al. [1] showed that the parsing algorithm runs
in polynomial time if the maximum degree and treewidth of graphs in an HRG
are bounded by some constants. Hence, we conclude the following lemma:

Lemma 1 ([1,10]). Let (S, δ) be a regular FGS and p a unary predicate sym-
bol. Given a ground term graph g, the problem of deciding whether or not
g ∈ GL(S, δ, p) is computed in O((3dn)w+1) time, where n is the number of
vertices of g, d is the maximum degree of g, and w is the maximum treewidth of
the term graphs in the heads of graph rewriting rules in S.

3 Learning Regular FGS with 1-Finite Context Property

We consider Gd,w(Σ,Λ) as a universal set (d,w ≥ 0). A positive presentation of
a nonempty graph language L ⊆ Gd,w(Σ,Λ) is an infinite sequence g1, g2, . . . of
elements in L such that {g1, g2, . . .} = L.

An inductive inference machine (IIM, for short) is an effective procedure, or
a certain type of Turing machine, which outputs a regular FGS and a predicate
symbol each time a ground term graph is given. Let L∗ ⊆ Gd,w(Σ,Λ) be a target
graph language. We assume that an IIM has an access to an oracle MemL∗ who
answers membership queries. The query asks whether or not an arbitrary ground
term graph g is included in L∗. Let τ = g1, g2, . . . be a positive presentation of

74 T. Shoudai et al.

L∗. An IIM outputs a regular FGS (Si, δi) and a predicate symbol pi by using
membership queries each time a ground term graph gi in τ is given. An IIM
is said to converge to a regular FGS (S, δ) and a predicate symbol p for τ with
polynomial time update by using membership queries, if M outputs a regular
FGS (Si, δi) and a predicate symbol pi in polynomial time w.r.t. the sum of the
size of the given ground term graphs so far, i.e., |g1| + |g2| + · · · + |gi|, and there
exists a positive integer n ≥ 1 with (Sm, δm) = (S, δ) and pm = p for any m ≥ n.
Let C ⊆ 2Gd,w(Σ,Λ) be a class and L∗ ∈ C. A class C is said to be identifiable in
the limit with polynomial time update by using membership queries from positive
data, if there exists an IIM M such that for any L∗ ∈ C and any presentation τ
of L∗, M converges to a regular FGS (S, δ) and a predicate symbol p for τ with
GL(S, δ, p) = L∗ with polynomial time update by using membership queries.

Let g = (Vg, Eg, ϕg, ψg, ∅, ∅, ∅) be a ground term graph and σ = (v1, . . . , v�)
a list of distinct vertices in Vg (1 ≤ 	 ≤ |Vg|). Let x be a new variable label in X
that does not appear so far. For the ground term graph fragment [g, σ], we denote
by g(σ) the term graph (Vg, Eg, ϕg, ψg, {h}, λg, portsg) where h = {v1, . . . , v�},
λg(h) = x, and portsg(h) = σ. In order to make the argument easier, we assume
that g has no isolated vertex. Let {Eα, Eβ} be a partition of Eg. Let Vα be the
set of all endpoints of edges in Eα and Vβ the set of all endpoints of edges in Eβ .
Let σ be one of the ordered lists of all vertices in Vα ∩Vβ . We obtain two ground
term graph fragments [α, σ] and [β, σ]. We easily see that α(σ){x := [β, σ]} and
β(σ){x := [α, σ]} are isomorphic to g.

For [α, σα], [β, σβ] ∈ F(Σ,Λ), we define an operation � as follows:

[α, σα] � [β, σβ] =
{

α(σα){x := [β, σβ]} if |σα| = |σβ |,
undefined otherwise.

In Fig. 5, we give an example of α and β by a partition of Eg of a ground
term graph g. Note that in general, [α, σα] � [β, σβ] is not always equivalent to
[β, σβ] � [α, σα], because the vertex labels in the first operand always survive by
any binding. If ϕα(σα) = ϕβ(σβ), [α, σα] � [β, σβ] = [β, σβ] � [α, σα] holds.

Let d and w be constant nonnegative integers. For a nonempty finite set of
ground term graphs D ⊆ Gd,w(Σ,Λ), let

Sub(D) = {[β, σβ] ∈ Fd,w(Σ,Λ) | ∃[α, σα] ∈ Fd,w(Σ,Λ)[[α, σα] � [β, σβ] ∈ D]},

Con(D) = {[α, σα] ∈ Fd,w(Σ,Λ) | ∃[β, σβ] ∈ Fd,w(Σ,Λ)[[α, σα] � [β, σβ] ∈ D]}.

Fig. 5. Two ground term graphs α and β obtained from g by a partition of Eg: It is
easy to see that α((v2, v3)){x := [β, (v2, v3)]} is isomorphic to g.

Distributional Learning of Regular Formal Graph System of Bounded Degree 75

We give an example of Con(D) in Fig. 6. It is easy to see that Con(D) ⊆
Sub(D) holds. For any [β, σβ] ∈ Sub(D)\Con(D), there is a ground term graph
fragment [α, σα] ∈ Con(D) such that α is isomorphic to β via an isomorphism ξ
with ξ(σα) = σβ , ignoring the vertex labels in σα. Thus, unlike string grammars,
we only use Con(D) to learn a target regular FGS language from positive data.
We have the following proposition:

Fig. 6. An example of Con(D).

Proposition 1. Let D be a nonempty finite subset of Gd,w(Σ,Λ). Both |Sub(D)|
and |Con(D)| are of polynomial size w.r.t.

∑
g∈D |g|.

Let (S, δ) = ((Σ,Λ,X,Π, Γ), δ) be a regular FGS. For a term graph f
and q ∈ Π, if there are distinct |δ(q)| vertices v1, . . . , v|δ(q)| in Vf such that
(ϕf (v1), . . . , ϕf (v|δ(q)|)) = δ(q) and for any v ∈ Vf\{v1, . . . , v|δ(q)|}, ϕf (v) is not
a member of δ(q), we define ϕ−1

f (δ(q)) = (v1, . . . , v|δ(q)|), otherwise we define
ϕ−1

f (δ(q)) = (). Let p, q in Π and [g, σg] in Fd,w(Σ,Λ). We define

C(S, δ, p, q, [g, σg]) = {f ∈ Gd,w(Σ,Λ) | [g, σg] � [f, ϕ−1
f (δ(q))] ∈ GL(S, δ, p)}.

Definition 7 (1-FCP). Let (S, δ) be a regular FGS and p, q unary predicate
symbols of S. A term graph fragment [g, σg] is said to be a context of q w.r.t.
(S, δ, p) if C(S, δ, p, q, [g, σg]) = GL(S, δ, q) holds. We say that (S, δ, p) has the
1-finite context property (1-FCP) if every predicate q ∈ Π has a context of it.

For the ground term graphs α, β in Fig. 5, [α, (v2, v3)] is a context of q(2,2) and
[β, (v2, v3)] is a context of q(1,1) w.r.t. (S(3)

3 , δ
(3)
3 , p) in Fig. 7. We give an example

C(S(3)
3 , δ

(3)
3 , p, q(2,1), [g, σg]) in Fig. 8 for some [g, σg]. We easily see that for any

d ≥ 2, the regular FGS in Fig. 7 has the 1-finite context property (1-FCP).

Definition 8 (1-FCP regular FGS language class). 1-FCP-RFGSL(d,w)
denotes the set of all regular FGS languages L ⊆ Gd,w(Σ,Λ) that satisfies the
following conditions:

76 T. Shoudai et al.

Σ3 = {a, s, t}, Λ3 = { }, X3 = {x, x1, . . .}, Π
(d)
3 = {p} ∪ {q(i,j) | 1 ≤ i, j ≤ d},

δ
(d)
3 (p) = (), δ

(d)
3 (q(i,j)) = (s, t) (1 ≤ i, j ≤ d).

Fig. 7. A regular FGS (S
(d)
3 , δ

(d)
3) = ((Σ3, Λ3, X3, Π

(d)
3 , Γ

(d)
3), δ

(d)
3) that generates the

TTSP graphs of maximum degree d (d ≥ 2): Predicates q(i,j) generates all TTSP graphs
whose vertices labeled with s and t are of degree at most i and j, respectively.

Fig. 8. C(S
(3)
3 , δ

(3)
3 , p, q(2,1), [γ, (v1, v3)]) = GL(S

(3)
3 , δ

(3)
3 , q(2,1)) holds, where (S

(3)
3 , δ

(3)
3)

is a regular FGS in Fig. 7. Thus, [γ, (v1, v3)] is a context of q(2,1) w.r.t. (S
(3)
3 , δ

(3)
3 , p).

1. L is definable by (S, δ, p) = ((Σ,Λ,X,Π, Γ), δ, p) that has the 1-FCP,
2. Γ is written in Chomsky normal form, and
3. The treewidth of each term graph in Γ is at most w. Therefore, the maximum

length of ports of the hyperedges in Γ is also at most w + 1.

Let L∗ ⊆ Gd,w(Σ,Λ) be a target regular FGS language. We give a learn-
ing algorithm for 1-FCP-RFGSL(d,w) in Algorithm 1, which is a process of
searching in Con(D) for contexts of the predicate symbols in L∗. We construct
a regular FGS S(F,K) = (Σ,Λ,X,Π, Γ), pointer δ, and initial predicate p as
follows:

– Σ = Σ′ ∪ {s1, . . . , sw+1}, where Σ′ = {a | ∃gi ∈ D,∃v ∈ Vgi
[ϕgi

(v) = a]}
and Σ′ ∩ {s1, . . . , sw+1} = ∅.

– Λ = {a | ∃gi ∈ D,∃e ∈ Egi
[ψgi

(e) = a]}.
– X: We use a new variable label only when needed.
– Π = {�α, σα� | [α, σα] ∈ F ⊆ Con(D)}. Let �∅, ()� be the initial predicate p.
– δ, Γ : In Table 1, we describe the pointer δ(q) for each predicate q in Π and

the graph rewriting rules in Γ . In the table, we use the following notations.

Distributional Learning of Regular Formal Graph System of Bounded Degree 77

Algorithm 1. Learn 1-FCP-RFGSL
1: Let K := ∅, F := ∅;
2: for n = 1, 2, 3, . . . do
3: Let D = {g1, g2, . . . , gn};
4: if D �⊆ GL(S(F, K), δ, p) then {By the parsing algorithm in [1].}
5: Let F := Con(D);
6: end if
7: Let K := Con(D);
8: output (S(F, K), δ, p);
9: end for

Let k, 	 be two positive integers (k ≤) and Pk,� the set of all list of k distinct
positive integers that are less than or equal to 	. Let σ = (1, . . . , 	k) ∈ Pk,�.
For a list of elements ν = (v1, . . . , v�) (k ≤), χσ(ν) denotes (v�1 , . . . , v�k)
and χ̄σ(ν) denotes the list obtained from ν by deleting v�1 , . . . , v�k .

The graph rewriting rule R1 in Fig. 9 is an example of the graph
rewriting rules constructed by Table 1 for the target regular FGS language
GL(S(3)

3 , δ
(3)
3 , p).

Fig. 9. A graph rewriting rule R1 constructed by the second table in Table 1: This
graph rewriting rule corresponds to the rule R2 of (S

(3)
3 , δ

(3)
3) in Fig. 7.

Theorem 1. Let d and w be constant integers greater than zero. The class 1-
FCP-RFGSL(d,w) is identifiable in the limit with polynomial time update by
using membership queries from positive data.

Proof. Let (S1, δ1, p1), (S2, δ2, p2), . . . , (Si, δi, pi), . . . be hypotheses output by
Algorithm 1, and (Si, δi, pi) = ((Σ,Λ,X,Πi, Γi), δi, pi). We prove that there
exists a positive integer k such that GL(Sn, δn, pn) = L∗ for any integer n ≥ k.
Let (S∗, δ∗) = ((Σ,Λ,X,Π∗, Γ∗), δ∗) be a regular FGS and p∗ a predicate sym-
bol in Π∗ with L∗ = GL(S∗, δ∗, p∗). Let Gi be a ground term graph given to
Algorithm 1 at the i-th time, and Di = {G1, G2, . . . , Gi}. From the property of
positive presentations, there exists a positive integer n ≥ 1 such that Con(Dn)
has a ground term graph fragment [g, σg] with C(S∗, δ∗, p∗, q, g) = GL(S∗, δ∗, q)
for any q ∈ Π∗. From the n-th input and after, for any predicate symbol q ∈ Π∗,
Algorithm 1 has a ground term graph fragment corresponding to q. Thus, any
graph rewriting rule in Γ∗ is included in Γm for any m ≥ n. It follows that
L∗ ⊆ GL(Sm, δm, pm) for any m ≥ n.

78 T. Shoudai et al.

Table 1. (S(F, K), δ, p): There are three types of terminal rules and one type of binary
rule. Each graph rewriting rule is created if the corresponding condition is satisfied. All
conditions can be determined by asking to the membership oracle MemL∗ . The unary
rules can be constructed in a similar way to the binary rules. We omit its detail.

Terminal rules p0(f0) ← in (S(F, K), δ, p):

p0 δ(p0) f0 Condition

g0, σg0 (s1) ({v1}, ∅, ϕ, ∅, ∅, ∅, ()) [g0, σg0] [f0, (v1)] ∈ L∗
|σg| = 1 ϕ(v1) = s1
g0, σg0 (s1) ({v1, v2}, {(v1, v2)}, ϕ, ψ, ∅, ∅, ()) [g0, σg0] [f0, (v1)] ∈ L∗
|σg| = 1 ϕ(v1) = s1, ϕ(v2) ∈ Σ

g0, σg0 (s1, s2) ({v1, v2}, {(v1, v2)}, ϕ, ψ, ∅, ∅, ()) [g0, σg0] [f0, (v1, v2)] ∈ L∗
|σg| = 2 ϕ(v1) = s1, ϕ(v2) = s2

Binary rules p1(f1) ← p2(f2), p3(f3) in (S(F, K), δ, p)

pi (i = 2, 3) δ(pi) (i = 2, 3) fi (i = 2, 3, j = 1 i)

gi, σgi

|σgi | = i

(s1, . . . , s i) fi = ({vi,1, . . . , v i}, ∅, ϕi, ∅, {hi}, λi, porti), where
ϕi(vi,j) = sj , λ2(h2) = λ3(h3), portsi(hi)[j] = vi,j .

p1 δ(p1) f1
g1, σg1

|σg1 | = 1

(s1, . . . , s 1) f1 = [f2, χσ2(ports2(h2))] [f3, χσ3(ports3(h3))], where
σi ∈ Pk,|portsi(hi)| (i = 2, 3) for some k. Let ν =
portsf2(h2) ·χ̄σ3(portsf3(h3)) and σ1 ∈ P 1,|ν|. The ver-
tices in ν are relabeled so that χσ1(ν) = (s1, . . . , s 1)
and χ̄σ(ν) ∈ Σ ν|− 1 .

Condition

For ∀[τ2, στ2], [τ3, στ3] ∈ K, if [g2, σg2] [τ2, στ2] ∈ L∗ and [g3, σg3] [τ3, στ3] ∈ L∗,
then [g1, σg1] [[τ2, χσ2(στ2)] [τ3, χσ3(στ3)], ξ] ∈ L∗, where ξ = χσ1(χσ2(στ2) ·
χ̄σ3(στ3)).

We assume that for any n ≥ 1, there exists a positive integer m ≥ n
such that GL(Sm, δm, pm)
⊆ L∗. Then there exists a ground term graph G′ ∈
GL(Sm, δm, pm)\L∗. Since G′ ∈ GL(Sm, δm, pm), there exist a graph rewriting
rule p1(f1) ← p2(f2), p3(f3) in Γm and ground term graph fragments [ρ2, σρ2]
and [ρ3, σρ3] such that [g2, σg2]� [ρ2, σρ2] ∈ L∗, [g3, σg3]� [ρ3, σρ3] ∈ L∗ and G′ is
isomorphic to [g1, σg1]�[[ρ2, χσ2(σρ2)]�[ρ3, χσ3(σρ3)], ξ], where p1, p2 and p3 cor-
respond to [g1, σg1], [g2, σg2] and [g3, σg3], respectively. There exist ground term
graph fragments [τ2, στ2], [τ3, στ3] ∈ K = Con(D�) with [g2, σg2] � [τ2, στ2] ∈ L∗,
[g3, σg3] � [τ3, στ3] ∈ L∗ and [g1, σg1] � [[τ2, χσ2(στ2)] � [τ3, χσ3(στ3)], ξ]
∈ L∗ for
some positive integer 	. Thus, p1(f1) ← p2(f2), p3(f3) is removed from Γ�. This
contradicts that p1(f1) ← p2(f2), p3(f3) in Γm. Therefore, we can show that
there exists a positive integer k such that GL(Sn, δn, pn) = L∗ for any integer
n ≥ k. From Proposition 1, |Con(Dn)| is of polynomial size w.r.t.

∑n
i=1 |Gi| at

the n-th step. Thus, from Lemma 1, the n-th hypothesis (Sn, δn, pn) is output
by Algorithm 1 with polynomial update time w.r.t

∑n
i=1 |Gi|. �

Distributional Learning of Regular Formal Graph System of Bounded Degree 79

4 Conclusions

We have considered the problem of learning FGS languages from the viewpoint
of the computational learning theory. First, we introduced the class 1-FCP-
RFGSL of regular FGS languages of bounded degree and treewidth with 1-
finite context property (1-FCP). We also presented an algorithm for learning
class 1-FCP-RFGSL by using current distributional learning techniques [11].
Finally, we showed that class 1-FCP-RFGSL can be identifiable in the limit
with polynomial time update by using membership queries from positive data.
This result will lead us to develop new techniques for learning other classes of
FGS languages with distributional properties.

Clark et al. [2,3] and Yoshinaka [11,12] discussed the learnabilities of the class
of languages of context-free grammars with the finite kernel property (FKP) and
finite context property (FCP). As future work, we will consider the polynomial
time learnabilities of the class of regular FGS languages with the FKP and FCP.

References

1. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceeding of ACL 2013, pp.
924–932. Association for Computational Linguistic (2013)

2. Clark, A.: A learnable representation for syntax using residuated lattices. In:
Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS, vol. 5591, pp. 183–
198. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20169-1 12

3. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. J. Mach. Learn. Res. 8, 1725–1745 (2007)

4. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
In: Handbook of Graph Grammars and Computing by Graph Transformation, vol.
1, pp. 95–162. World Scientific (1997)

5. Gildea, D.: Grammar factorization by tree decomposition. Comput. Linguist.
37(10), 231–248 (2011)

6. Hara, S., Shoudai, T.: Polynomial time MAT learning of c-deterministic regular
formal graph systems. In: Proceeding IIAI-AAI 2014, pp. 204–211. IEEE (2014)

7. Kasprzik, A., Yoshinaka, R.: Distributional learning of simple context-free tree
grammars. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT
2011. LNCS (LNAI), vol. 6925, pp. 398–412. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24412-4 31

8. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27(5), 399–421 (1990)

9. Okada, R., Matsumoto, S., Uchida, T., Suzuki, Y., Shoudai, T.: Exact learning
of finite unions of graph patterns from queries. In: Hutter, M., Servedio, R.A.,
Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 298–312. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75225-7 25

10. Uchida, T., Shoudai, T., Miyano, S.: Parallel algorithms for refutation tree problem
on formal graph systems. IEICE Trans. Inf. Syst. E78–D(2), 99–112 (1995)

http://dx.doi.org/10.1007/978-3-642-20169-1_12
http://dx.doi.org/10.1007/978-3-642-24412-4_31
http://dx.doi.org/10.1007/978-3-642-24412-4_31
http://dx.doi.org/10.1007/978-3-540-75225-7_25

80 T. Shoudai et al.

11. Yoshinaka, R.: Integration of the dual approaches in the distributional learn-
ing of context-free grammars. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 538–550. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28332-1 46

12. Yoshinaka, R.: General perspective on distributionally learnable classes. In: Pro-
ceeding of MoL 2015, pp. 87–98. Association for Computational Linguistic (2015)

http://dx.doi.org/10.1007/978-3-642-28332-1_46
http://dx.doi.org/10.1007/978-3-642-28332-1_46

Learning Relational Dependency Networks
for Relation Extraction

Ameet Soni1(B), Dileep Viswanathan2, Jude Shavlik3,
and Sriraam Natarajan2

1 Swarthmore College, Swarthmore, PA, USA
soni@cs.swarthmore.edu

2 Indiana University, Bloomington, IN, USA
{diviswan,natarasr}@indiana.edu

3 University of Wisconsin, Madison, WI, USA
shavlik@cs.wisc.edu

Abstract. We consider the task of KBP slot filling – extracting rela-
tion information from newswire documents for knowledge base construc-
tion. We present our pipeline, which employs Relational Dependency
Networks (RDNs) to learn linguistic patterns for relation extraction.
Additionally, we demonstrate how several components such as weak
supervision, word2vec features, joint learning and the use of human
advice, can be incorporated in this relational framework. We evaluate
the different components in the benchmark KBP 2015 task and show
that RDNs effectively model a diverse set of features and perform com-
petitively with current state-of-the-art relation extraction methods.

1 Introduction

The problem of knowledge base population (KBP) – constructing a knowledge
base (KB) of facts gleaned from a large corpus of unstructured data – poses
several challenges for the NLP community. Commonly, this relation extraction
task is decomposed into two subtasks – entity linking, in which entities are linked
to already identified identities within the document or to entities in the existing
KB, and slot filling, which identifies certain attributes about a target entity.

We present our system for KBP slot filling based on probabilistic logic for-
malisms and present the different components of the system. Specifically, we
employ Relational Dependency Networks [14], a formalism that has been success-
fully used for joint learning and inference from stochastic, noisy, relational data.
We consider our RDN system against the current state-of-the-art for KBP to
demonstrate the effectiveness of our probabilistic relational framework. Addition-
ally, we show how RDNs can effectively incorporate many popular approaches in
relation extraction such as joint learning, weak supervision, word2vec features,
and human advice, among others.

We provide a comprehensive comparison of various settings such as joint
learning vs learning of individual relations, use of weak supervision vs gold stan-
dard labels, using expert advice vs only learning from data, etc. These questions
c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 81–93, 2017.
DOI: 10.1007/978-3-319-63342-8 7

82 A. Soni et al.

are extremely interesting from a general machine learning perspective, but also
critical to the NLP community. As we show empirically, the key contributions
of this paper are as follows:

– Our RDN framework is competitive, and often superior, to state-of-the-art
systems for KBP slot filling.

– RDNs successfully incorporate various types of features, including advice,
joint learning, and word2vec features.

– Ours is the first KBP system to leverage knowledge-based weak supervision –
a logic-based framework that we have previously shown to be complementary
and often superior to distant supervision.

Some of the results such as human advice being useful in many relations and
joint learning being beneficial in the cases where the relations are correlated
among themselves are on the expected lines. However, some surprising observa-
tions include the fact that weak supervision and word2vec features are not as
useful as expected, although further investigation is warranted.

We first present the proposed pipeline with all the different components of
the learning system. Next we present the set of 14 relations that we learn on
before presenting the experimental results. We finally discuss the results of these
comparisons before concluding by presenting directions for future research.

Fig. 1. Pipeline Full RDN relation extraction pipeline

2 Background

As a part of the Text Analysis Conference (TAC), NIST has supported several
tasks related to Knowledge Base Population (KBP) including English Slot Fill-
ing [23]. The goal of this task is to mine a corpus of text data (e.g., newswire
articles) for information on two specific categories of entities – persons and orga-
nizations. The type of information is predefined as relations (e.g., parent(a, b)
specifies that person b is a parent of person a).

Over the last several years, many approaches have been proposed across a
spectrum of machine learning approaches. A common thread to these approaches

Learning RDNs for Relation Extraction 83

Table 1. Standard NLP Features: Features derived from the training corpus used
by our learning system. POS - part of speech. NE - Named Entity. DPR - root of
dependency path tree.

Feature Description

wordString Word with word id

wordPosition Location of the word

caselessWordString Word string in lower case

wordLemma Canonical form of word

isNEWord Whether word is NE

nextWords Two succeeding words

prevWords Two preceding words

nextPOS POS for the succeeding words

prevPOS POS for the preceding words

nextLemmas Canonical form of successors

prevLemmas Canonical form of predecessors

nextNE Succeeding NE phrases

prevNE Preceding NE phrases

lemmaBetween Canonical form of word occurring between two NEs

neBetween Word b/w two NEs is an NE

posBetween POS of word b/w two NEs

Dependency Path

rootChildLemma Canonical form of child of DPR

rootChildNER Child of DPR is NE

rootChildPOS POS of child of DPR

rootLemma Lemma of DPR

rootNER DPR is NER

rootPOS POS of DPR

is the use of distant supervision [11]. The 2014 winner, DeepDive [17], lever-
aged Markov Logic Networks [2] with distant supervision to perform slot filling.
RelationFactory [20] also utilizes distant supervision to train a highly modular
pipeline that focuses on scaling and efficiency, employing several shallow clas-
sifiers (e.g., manually created patterns, learned rules, SVMs) for various tasks.
Other approaches include multiple instance learning [10] and stacked ensembles
which combine multiple submissions into a single framework [25].

3 Proposed Pipeline

We present the different aspects of our pipeline, depicted in Fig. 1.

3.1 Feature Generation

Given a training corpus of raw text documents, our learning algorithm first
converts these documents into a set of facts (i.e., features) that are encoded
in first order logic (FOL). Raw text is processed using the Stanford CoreNLP

84 A. Soni et al.

Table 2. Rules for KB Weak Supervision: A sample of knowledge-based rules for
weak supervision. The first value defines a weight, or confidence in the accuracy of the
rule. The target relation appears at the end of each clause. “PER”, “ORG”, “NUM”
represent entities that are persons, organizations, and numbers, respectively.

Weight MLN Clause

1.0 entityType(a, “PER”), entityType(b, “NUM”), nextWord(a, c),
word(c, “,”), nextWord(c, b) → age(a, b)

0.6 entityType(a, “PER”), entityType(b, “NUM”),
prevLemma(b, “age”) → age(a, b)

0.8 entityType(a, “PER”), entityType(b, “PER”),
nextLemma(a, “mother”) → parents(a, b)

0.8 entityType(a, “PER”), entityType(b, “PER”),
nextLemma(a, “father”) → parents(a, b)

Toolkit1 [6] to extract parts-of-speech, word lemmas, etc. as well as generate
parse trees, dependency graphs and named-entity recognition information. The
full set of extracted features is listed in Table 1. These are then converted into
features in prolog format and are given as input to the system.

In addition to the structured features from the output of Stanford toolkit, we
also use deeper features based on word2vec [8] as input to our learning system.
Standard NLP features tend to treat words as individual objects, ignoring links
between words that occur with similar meanings or, importantly, similar contexts
(e.g., city-country pairs such as Paris – France and Rome – Italy occur in similar
contexts). word2vec provide a continuous-space vector embedding of words that,
in practice, capture many of these relationships [8,9]. We use word vectors from
Stanford2 and Google3.

We generated features from word vectors by finding words with high sim-
ilarity in the embedded space. That is, we used word vectors by considering
relations of the following form: isCosSimilar(wordA, relationB, threshold), if
a word has a high cosine similarity to any keyword (e.g., “father”) for a par-
ticular relation (e.g., parent). Details can be found in Sect. 4.3. At a high level,
these types of features would allow our learner to generate rules that connect
unique words that occur in similar contexts (e.g., “husband” and “wife”). Stan-
dard features,instead, would require the same rule to be learned multiple times
(e.g., once each for “husband”, “wife”, “partner”, etc. as in Fig. 2).

3.2 Weak Supervision

One difficulty with the KBP task is that very few documents come labeled with
gold standard labels, and human annotation is prohibitively expensive beyond

1 http://stanfordnlp.github.io/CoreNLP/.
2 http://nlp.stanford.edu/projects/glove/.
3 https://code.google.com/p/word2vec/.

http://stanfordnlp.github.io/CoreNLP/
http://nlp.stanford.edu/projects/glove/
https://code.google.com/p/word2vec/

Learning RDNs for Relation Extraction 85

a few hundred documents. This is problematic for discriminative learning algo-
rithms which excel when given a large supervised training corpus. To overcome
this obstacle, we employ weak supervision – the use of external knowledge (e.g., a
database) to heuristically label examples. Following our work in Soni et al. [21],
we employ our novel knowledge-based weak supervision approach, as opposed to
the more traditional distant supervision which references an external database
of known relations.

Knowledge-based weak supervision is based on previous work [13,21] with the
following insight: labels are typically created by “domain experts” who annotate
the labels carefully, and who typically employ some inherent rules in their mind
to create examples. For example, when identifying family relationship, we may
have an inductive bias towards believing two persons in a sentence with the
same last name are related, or that the words “son” or “daughter” are strong
indicators of a parent relation. We call this world knowledge as it describes the
domain (or the world) of the target relation.

For the KBP task, some rules that we used are shown in Table 2. For example,
the first rule identifies any number following a person’s name and separated by a
comma is likely to be the person’s age (e.g., “Sharon, 42”). The third and fourth
rule provide examples of rules that utilize more textual features; these rules
state the appearance of the lemma “mother” or “father” between two persons is
indicative of a parent relationship. Previous results show this approach produces
more examples with less overhead than distant supervision and can be employed
where relevant database are not available.

To this effect, we encode the domain expert’s knowledge in the form of first-
order logic rules with accompanying weights to indicate the expert’s confidence.
We use the probabilistic logic formalism Markov Logic Networks [2] to perform
inference on unlabeled text (e.g., the TAC KBP corpus). Potential entity pairs
from the corpus are queried to the MLN, yielding (weakly-supervised) positive
examples. We choose MLNs as they permit domain experts to easily write rules
while providing a probabilistic framework that can handle noise, uncertainty, and
preferences. We use the Tuffy system [16] to perform inference as it is robust
and scales well to millions of documents4.

3.3 Learning Relational Dependency Networks

Previous research [7] has demonstrated that joint inferences of the relations are
more effective than considering each relation individually. Consequently, we have
considered a formalism that has been successfully used for joint learning and
inference from stochastic, noisy, relational data called Relational Dependency
Networks (RDNs) [12,14]. RDNs extend dependency networks (DN) [4] to the
relational setting. The key idea in a DN is to approximate the joint distribution
over a set of random variables as a product of their marginal distributions,
i.e., P (y1, ..., yn|X) ≈ ∏

i P (yi|X). It has been shown that employing Gibbs

4 As the structure and weights are predefined by the expert, learning is not needed
for our MLN.

86 A. Soni et al.

Table 3. Advice Rules: Sample advice rules used for relation extraction. We
employed a total of 72 such rules for our 14 relations.

Advice Rules

Entity preceded by a number and a phrase “year-old” probably refers to age.

Entity present with a phrase in sentence “who turned” probably refers to age.

Entity1 is “also known as” Entity2 probably refers to alternate name.

Entity1, “nicknamed” Entity2 probably refers to alternate name.

Entity1 followed by phrase “is a citizen of” Entity2 probably refers to origin.

Entity followed by phrase “is a devout” Entity2 probably refers to religion.

Entity, followed by “a” Entity2“-based company” probably refers to city/state/country of
headquarters.

If Entity1 and Entity2 are siblings then they are not parents of each other.

If Entity1 and Entity2 are spouses of each other then they are not parents of each other

sampling in the presence of a large amount of data allows this approximation
to be particularly effective. Note that, one does not have to explicitly check for
acyclicity making these DNs particularly easy to be learned. We refer the reader
to previous work [12,14] for more details and examples of the RDN model.

Fig. 2. Example regression tree for the
siblings relation. This tree states that
the weight for the relation being true
is higher if either “husband” or “wife”
appear between the entities.

In an RDN, typically, each distribu-
tion is represented by a relational proba-
bility tree (RPT) [15]. However, following
previous work [12], we replace the RPT of
each distribution with a set of relational
regression trees [1] built in a sequential
manner i.e., replace a single tree with a
set of gradient boosted trees. This app-
roach, RDN Boost, has been shown to
have state-of-the-art results in learning
RDNs. An simplified regression tree for
the siblings relation is provided in Fig. 2.
Several boosted trees are learned for each
relation and combined in ensemble fash-
ion during inference.

3.4 Incorporating Human Advice

While most relational learning methods restrict the human to merely annotating
the data, we go beyond and request the human for advice. The intuition is that
we as humans read certain patterns and use them to deduce the nature of the
relation between two entities present in the text. The goal of our work is to
capture such mental patterns of the humans as advice to the learning algorithm.
We modified the work of Odom et al. [18,19] to learn RDNs in the presence of
advice. The key idea is to explicitly represent advice in calculating gradients.
This allows the system to trade-off between data and advice throughout the

Learning RDNs for Relation Extraction 87

learning phase, rather than only consider advice in initial iterations. Advice, in
particular, become influential in the presence of noisy or less amount of data.

A few sample advice rules in English (converted to FOL in RDN Boost) are
presented in Table 3. Note that some of the rules are “soft” rules in that they
are not true in many situations. Odom et al. [19] weigh the effect of the rules
against the data and hence allow for partially correct rules.

4 Experiments and Results

Table 4. Relations: The relations considered from
TAC KBP. Columns indicate the number of training
examples utilized – both human annotated (Gold)
and weakly supervised (WS), when available – from
TAC KBP 2014 and number of test examples from
TAC KBP 2015. 10 relations describe person entities
(per) while the last 4 describe organizations (org).

Relation Gold WS Test

per : age 89 750 44
per : alternateName 28 x 18
per : children 89 x 23
per : origin 96 750 48
per : otherFamily 72 750 10
per : parents 71 750 30
per : religion 70 750 11
per : siblings 77 750 31
per : spouse 66 750 28
per : title 158 x 39
org : cityHQ 69 x 10
org : countryHQ 69 21 29
org : dateFounded 70 750 17
org : foundedBy 62 750 32

We now present our experi-
mental evaluation. We consid-
ered 14 specific relations from
two categories, person and
organization from the TAC
KBP competition. The rela-
tions considered are listed in
the left column of Table 4. We
utilize documents from KBP
2014 for training while utiliz-
ing a non-overlapping set of
documents from the 2015 cor-
pus for testing.

All RDN results presented
are obtained from 5 different
runs of the train and test sets
to provide more robust esti-
mates of accuracy5. We con-
sider three standard metrics –
area under the ROC curve, F-
1 score and the recall at a cer-
tain precision. The train/test
gold-standard sizes are pro-
vided in the table, includ-
ing weakly supervised exam-
ples. Negative examples are
created by randomly selecting

paired entities in the same sentence (per relation and per run). We chose the
precision as 0.66 since the fraction of positive examples to negatives is 1:2.

To analyze our system, we aimed to answer the following questions:

Q1: Do weakly supervised examples help construct better models?
Q2: Does joint learning help in some relations?
Q3: Are word2vec features more predictive than standard features?

5 Please see [12] for standard settings. 25 trees were learned per relation per run, with
maximum depth of 3 and advice learning rate of 0.25.

88 A. Soni et al.

Q4: Does advice improve performance compared to just learning from data?
Q5: Does our system perform competitively against a robust baseline?

4.1 Weak Supervision

Table 5. Weak Supervision: Results
comparing models trained with gold stan-
dard examples only (G) and models trained
with gold standard and weakly supervised
examples combined (G+WS).

Relation AUC ROC
G W G+W

age 0.94 0.83 0.91
origin 0.88 0.69 0.77
otherFamily 0.88 0.88 0.93
parents 0.74 0.69 0.70
religion 0.77 0.70 0.80
siblings 0.82 0.72 0.74
spouse 0.86 0.86 0.76
countryHQ 0.79 0.60 0.79
dateFounded 0.87 0.81 0.84
foundedBy 0.85 0.61 0.70

To address Q1, we sought to ana-
lyze whether weakly supervised exam-
ples could substitute for a large gold-
standard training set. Specifically,
we evaluated 10 relations as show
in Table 5. Based on experiments
from [21], we utilized our knowledge-
based weak supervision approach to
provide positive examples, with a
range of 4 to 8 rules for each relation.
We compared three conditions: using
(1) a large gold-standard training set
(G), (2) a large weakly supervised
data set (750 positive examples per
relation) (W), and (3) using a small
sample of 30 gold standard combined
with 150 weakly supervised examples
(G+W).

The results are presented in
Table 5. With a few exceptions, a
small set of seed gold standard exam-

ples combined with weakly supervised data mimic the results of a much larger
(and time-consuming) gold-standard set of training data. The exceptions are
cases where our knowledge-base approach struggles to find quality examples. In
previous work, we showed that distant supervision may be better in cases like
this where general world knowledge is difficult to encapsulate in rules [21]. Sur-
prisingly, a large weak supervision set by itself does not seem to help learn better
models for inferring relations in most cases. We hypothesize that the number of
gold standard examples provided may be sufficient to learn RDN models. Thus
Q1 is answered equivocally, with weak supervision being able to supplement a
small amount of gold examples.

4.2 Joint Learning

To address our next question, we assessed our pipeline when learning rela-
tions independently (i.e., individually) versus learning relations jointly within
the RDN, displayed in Table 6. Recall and F1 are omitted for conciseness – the
conclusions are the same across all metrics. Joint learning appears to help in
about half of the relations (8/14). Particularly, in person category, joint learn-
ing with gold standard outperforms their individual learning counterparts. This
is due to the fact that some relations such as parents, spouse, siblings etc. are

Learning RDNs for Relation Extraction 89

inter-related and learning them jointly indeed improves performance. Hence Q2
can be answered affirmatively for connected relations.

4.3 Word2vec

Table 7 shows the results of experiments comparing the RDN framework with and
without word2vec features. We set the modes [22] such that the first argument
to isCosSimilar is a ‘-’ (i.e., existing) variable. We provide lists of candidate
constants (on average a few dozen for each target relation) for the second argu-
ment using our knowledge of each target concept. For example, we include the
words “father” and “mother” (for the parent relation) or “devout”,“convert”,
and “follow” (religion relation). For the third argument, we utilize a threshold
for cosine similarity of 0.70 (i.e., a word is considered to be similar to a keyword
if their cosine similarity is above 0.70).

word2vec appears to largely have no impact on results. One possibility may
be that this is due to a limitation in the depth of trees learned. Learning more
and/or deeper trees may improve use of word2vec features. Moreover, our exper-
iments were limited to a single threshold for similarity. Instead, we could provide
a list of thresholds so that the learner could utilize different similarity thresholds
for different contexts. Q3 is answered cautiously in the negative, although future
work could lead to improvements.

Table 6. Joint Learning: Results com-
paring relation models learned individu-
ally (IL) and jointly (JL).

Relation AUC ROC

IL JL

age 0.93 0.93

alternateName 0.91 0.75

children 0.75 0.76

origin 0.86 0.89

otherFamily 0.88 0.89

parents 0.74 0.74

religion 0.72 0.79

siblings 0.79 0.80

spouse 0.86 0.87

title 0.90 0.89

cityHQ 0.74 0.73

countryHQ 0.75 0.79

dateFounded 0.87 0.86

foundedBy 0.83 0.86

Table 7. word2vec: Results comparing
models trained without (−w2v) and with
word2vec features (+w2v).

Relation AUC ROC

−w2v +w2v

age 0.94 0.94

alternateName 0.75 0.73

children 0.76 0.79

origin 0.88 0.86

otherFamily 0.88 0.88

parents 0.74 0.76

religion 0.77 0.79

siblings 0.82 0.79

spouse 0.86 0.82

title 0.89 0.90

cityHQ 0.73 0.73

countryHQ 0.79 0.78

dateFounded 0.87 0.88

foundedBy 0.85 0.84

90 A. Soni et al.

4.4 Advice

Table 8 shows the results of experiments that test the use of advice within the
joint learning setting. The use of advice improves or matches the performance
of using only joint learning. The key impact of advice can be mostly seen in
the improvement of recall in several relations. It appears that in cases where
there are not good quality examples, advice improves recall but in cases where
there are already reasonable examples, advice does not improve the performance
significantly. This is line with previous findings in other domains [3,5,19,24]. As
this claim warrants further investigation, Q4 can be answered optimistically.

4.5 RDN Boost vs RelationFactory

Table 8. Advice: Results comparing models
trained without (-Adv) and with advice (+Adv).

Relation AUC ROC Recall
−Adv +Adv −Adv +Adv

age 0.93 0.93 0.56 0.74
alternateName 0.75 0.77 0.20 0.16
children 0.76 0.76 0.04 0.14
origin 0.89 0.88 0.86 0.82
otherFamily 0.89 0.90 0 0.06
parents 0.74 0.72 0.15 0.05
religion 0.79 0.81 0.51 0.56
siblings 0.80 0.81 0.04 0.00
spouse 0.87 0.85 0.06 0.04
title 0.89 0.90 0.16 0.07
cityHQ 0.73 0.74 0.26 0.28
countryHQ 0.79 0.77 0.61 0.62
dateFounded 0.86 0.86 0.20 0.05
foundedBy 0.86 0.84 0.24 0.25

RelationFactory (RF) [20] is
an open-source system for
performing relation extrac-
tion based on distantly super-
vised classifiers. It was the
top system in the TAC KBP
2013 competition [23] and
thus serves as a suitable
baseline for our method. RF
is very conservative in its
responses, making it difficult
to adjust the precision lev-
els. To be most generous to
RF, we present recall for all
returned results. The AUC
ROC, recall, and F1 scores
of our system against RF are
presented in Table 9. Infer-
ence in RF took approxi-
mately 15 min on a single
CPU for the entire test set
and 3 min for RDNs. Training
and RDN took approximately
30 min per relation per run
(RF is available pre-trained).

Based on the results, we can conclude for Q5 that RDNs performs compara-
bly, and often better than the state-of-the-art RelationFactory system. In partic-
ular, our method outperforms RelationFactory in AUC ROC across all relations.
Recall is a mixed picture with both approaches showing some improvements –
RDN outperforms in 6 relations while RelationFactory does so in 8. Note that
in the instances where RDN provides superior recall, it does so with dramatic
improvements (RF often returns 0 positives in these relations). F1 also shows
RDN’s superior performance, outperforming RF in most relations.

Learning RDNs for Relation Extraction 91

Table 9. RelationFactory (RF) vs RDN: Values in bold indicate superiour per-
formance against the alternative approach.

Relation AUC ROC Recall F1

RF RDN RF RDN RF RDN

age 0.64 0.93 0.28 0.74 0.44 0.67

alternateName 0.50 0.77 0.00 0.16 0 0.10

children 0.54 0.76 0.09 0.14 0.17 0.28

origin 0.50 0.89 0.00 0.86 0 0.64

otherFamily 0.56 0.90 0.11 0.06 0.24 0.22

parents 0.29 0.74 0.33 0.15 0.50 0.31

religion 0.50 0.81 0 0.56 0 0.60

siblings 0.13 0.81 0.17 0.00 0.29 0.29

spouse 0.57 0.85 0.13 0.04 0.23 0.37

title 0.67 0.90 0.67 0.07 0.80 0.54

cityHQ 0.38 0.74 0.38 0.28 0.55 0.41

countryHQ 0.57 0.77 0.14 0.62 0.25 0.58

dateFounded 0.67 0.86 0.33 0.05 0.50 0.46

foundedBy 0.20 0.84 0.37 0.25 0.54 0.55

5 Conclusion

We presented our fully relational system utilizing Relational Dependency Net-
works for the Knowledge Base Population task. We demonstrated RDN’s ability
to effectively learn the relation extraction task, performing comparably (and
often better) than the state-of-art RelationFactory system. Furthermore, we
demonstrated the ability of RDNs to incorporate various concepts in a rela-
tional framework, including word2vec, human advice, joint learning, and weak
supervision. While weak supervision did not significantly improve performance
on its own, we demonstrate that our knowledge-base weak supervision approach
is a viable alternative to the more popular distant supervision approach and can
effectively substitute for a much larger (and expensive) gold-standard data set.
Furthermore, while initial results show word2vec features do not improve accu-
racy on this task, our work does demonstrate a viable formulation for utilizing
these features in a relation setting. Future directions include considering a larger
number of relations, deeper features and finally, comparisons with more systems
which have experienced recent success, such as DeepDive [17].

92 A. Soni et al.

Acknowledgements. Dileep Viswanathan, Jude Shavlik and Sriraam Natarajan
gratefully acknowledge the support of the DARPA DEFT Program under the Air
Force Research Laboratory (AFRL) prime contract no. FA8750-13-2-0039. Any opin-
ions, findings, and conclusion or recommendations expressed in this material are those
of the authors and do not necessarily reflect the view of the DARPA, ARO, AFRL, or
the US government.

References

1. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1), 285–297 (1998)

2. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan &
Claypool, San Rafael (2009)

3. Fung, G.M., Mangasarian, O.L., Shavlik, J.W.: Knowledge-based support vector
machine classifiers. In: NIPS, pp. 01–09. MIT Press (2002)

4. Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., Kadie, C.: Dependency
networks for inference, collaborative filtering, and data visualization. J. Mach.
Learn. Res. 1, 49–75 (2001)

5. Kunapuli, G., Odom, P., Shavlik, J., Natarajan, S.: Guiding an autonomous agent
to better behaviors through human advice. In: ICDM, pp. 409–418 (2013)

6. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: ACL, pp. 55–60 (2014)

7. Meza-Ruiz, I., Riedel, S.: Jointly identifying predicates, arguments and senses using
Markov Logic. In: NAACL-HLT, pp. 155–163 (2009)

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: Workshop at ICLR (2013)

9. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word
representations. In: NAACL-HLT, pp. 746–751 (2013)

10. Min, B., Grishman, R., Wan, L., Wang, C., Gondek, D.: Distant supervision for
relation extraction with an incomplete knowledge base. In: NAACL, pp. 777–782
(2013)

11. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: ACL, pp. 1003–1011 (2009)

12. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Boosting relational
dependency networks. In: ILP (2010)

13. Natarajan, S., Picado, J., Khot, T., Kersting, K., Re, C., Shavlik, J.: Effectively
creating weakly labeled training examples via approximate domain knowledge.
In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI), vol. 9046, pp. 92–107.
Springer, Cham (2015). doi:10.1007/978-3-319-23708-4 7

14. Neville, J., Jensen, D.: Relational dependency networks. In: Introduction to Sta-
tistical Relational Learning. The MIT Press (2007)

15. Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees.
In: SIGKDD, pp. 625–630 (2003)

16. Niu, F., Ré, C., Doan, A., Shavlik, J.W.: Tuffy: scaling up statistical inference in
Markov logic networks using an RDBMS. VLDB 4(6), 373–384 (2011)

17. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: DeepDive: web-scale knowledge-base
construction using statistical learning and inference. VLDS 12, 25–28 (2012)

http://dx.doi.org/10.1007/978-3-319-23708-4_7

Learning RDNs for Relation Extraction 93

18. Odom, P., Bangera, V., Khot, T., Page, D., Natarajan, S.: Extracting adverse
drug events from text using human advice. In: Holmes, J.H., Bellazzi, R., Sacchi,
L., Peek, N. (eds.) AIME 2015. LNCS, vol. 9105, pp. 195–204. Springer, Cham
(2015). doi:10.1007/978-3-319-19551-3 26

19. Odom, P., Khot, T., Porter, R., Natarajan, S.: Knowledge-based probabilistic logic
learning. In: AAAI, pp. 3564–3570 (2015)

20. Roth, B., Barth, T., Chrupala, G., Gropp, M., Klakow, D.: RelationFactory: a fast,
modular and effective system for knowledge base population. In: EACL, pp. 89–92
(2014)

21. Soni, A., Viswanathan, D., Pachaiyappan, N., Natarajan, S.: A comparison of weak
supervision methods for knowledge base construction. In: Automated Knowledge
Base Construction (AKBC) Workshop at NAACL (2016)

22. Srinivasan, A.: The aleph manual (2001). http://www.comlab.ox.ac.uk/oucl/
∼research/areas/machlearn/Aleph/

23. Surdeanu, M.: Overview of the TAC 2013 knowledge base population evaluation:
English slot filling and temporal slot filling. In: Text Analysis Conference (2013)

24. Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artif. Intell.
70(1–2), 119–165 (1994)

25. Viswanathan, V., Rajani, N.F., Bentor, Y., Mooney, R.J.: Stacked ensembles of
information extractors for knowledge-base population. In: ACL, pp. 177–187 (2015)

http://dx.doi.org/10.1007/978-3-319-19551-3_26
http://www.comlab.ox.ac.uk/oucl/~research/areas/machlearn/Aleph/
http://www.comlab.ox.ac.uk/oucl/~research/areas/machlearn/Aleph/

Towards Nonmonotonic Relational Learning
from Knowledge Graphs

Hai Dang Tran1, Daria Stepanova1(B), Mohamed H. Gad-Elrab1,
Francesca A. Lisi2, and Gerhard Weikum1

1 Max-Planck Institute for Informatics,
Saarland Informatics Campus, Saarbrücken, Germany
{htran,dstepano,gadelrab,weikum}@mpi-inf.mpg.de
2 Università degli Studi di Bari Aldo Moro, Bari, Italy

francesca.lisi@uniba.it

Abstract. Recent advances in information extraction have led to the so-
called knowledge graphs (KGs), i.e., huge collections of relational factual
knowledge. Since KGs are automatically constructed, they are inherently
incomplete, thus naturally treated under the Open World Assumption
(OWA). Rule mining techniques have been exploited to support the cru-
cial task of KG completion. However, these techniques can mine Horn
rules, which are insufficiently expressive to capture exceptions, and might
thus make incorrect predictions on missing links. Recently, a rule-based
method for filling in this gap was proposed which, however, applies to
a flattened representation of a KG with only unary facts. In this work
we make the first steps towards extending this approach to KGs in their
original relational form, and provide preliminary evaluation results on
real-world KGs, which demonstrate the effectiveness of our method.

1 Introduction

Motivation. Recent advances in information extraction have led to the so-called
knowledge graphs (KGs), i.e. huge collections of triples 〈subject predicate object〉
according to the RDF data model [17]. These triples encode facts about the
world and can be straightforwardly represented by means of unary and binary
first-order logic (FOL) predicates. The unary predicates are the objects of the
RDF type predicate, while the binary ones correspond to all other RDF pred-
icates, e.g., 〈alice type researcher〉 and 〈bob isMarriedTo alice〉 from the KG in
Fig. 1 refer to researcher(alice) and isMarriedTo(bob, alice) respectively. Notable
examples of KGs are NELL [4], DBpedia [1], YAGO [23] and Wikidata [9].

Since KGs are automatically constructed, they are inherently incomplete.
Therefore, they are naturally treated under the Open World Assumption (OWA).
The task of completion (also known as link prediction) is of crucial importance for
the curation of KGs. To this aim, rule mining techniques (e.g., [5,12]) have been
exploited to automatically build rules able to make predictions on missing links.

c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 94–107, 2017.
DOI: 10.1007/978-3-319-63342-8 8

Towards Nonmonotonic Relational Learning from Knowledge Graphs 95

Fig. 1. Example of a knowledge graph

However, they mine Horn rules, which are insufficiently expressive to capture
exceptions, and might thus deduce incorrect facts. For example, the following rule

r1 : livesIn(Y ,Z) ← isMarriedTo(X ,Y), livesIn(X ,Z)

can be mined from the KG in Fig. 1 and used to produce the facts
livesIn(alice,berlin), livesIn(dave,chicago) and livesIn(lucy , amsterdam).
Observe that the first two predicted facts might actually be wrong. Indeed,
both alice and dave are researchers, and the rule r1 could be suspected to have
researcher as a potential exception.

Challenges. Exception handling has been traditionally faced in ILP by learn-
ing nonmonotonic logic programs, i.e., programs with negations [6,15,18,25,26].
However, there are several important obstacles that prevent us from using the
off-the-shelf nonmonotonic ILP algorithms. First, the target predicates can not
be easily identified, since we do not know which parts of the considered KG
need to be completed. A standard way of addressing this issue would be just
to learn rules for all the different predicate names occurring in the KG. Unfor-
tunately, this is unfeasible in our case given the huge size of KGs. Second, the
negative examples are not available, and they can not be easily obtained from,
e.g., domain experts due to - once again - the huge size of KGs. A natural solu-
tion to cope with this issue is to learn rules from positive examples only. Third,
the definition of a language bias turns out to be cumbersome since the schema
of the KG is usually not available.

To overcome the obstacles mentioned above, it turns out to be appropriate
to treat the KG completion problem as an unsupervised relational learning task,
and exploit algorithms for relational association rule mining such as [12]. In [11]
these techniques are applied to first learn a set of Horn rules, which subsequently
can be revised by adding negated atoms to their bodies in order to account for
exceptions. However, the proposed approach applies only to a flattened repre-
sentation of a KG containing just unary facts.

96 H.D. Tran et al.

Contributions. In this work we extend the results from [11] to KGs in their
original relational form. More specifically, we reformulate the KG completion
problem as a theory revision problem, where, given a KG and a set of (previously
learned) Horn rules, the task is to compute a set of nonmonotonic rules, such
that the revised ruleset is more accurate for link prediction than the original one.
Essentially, we are interested in tackling a theory revision problem, in which, as
possible revision operations, we are only allowed to add negated atoms to the
antecedents of the rules.

Our approach combines standard relational association rule mining tech-
niques with a FOIL-like supervised learning algorithm, which is used to detect
exceptions. More specifically, we propose a method that proceeds in four steps as
follows: First, for every Horn rule we determine the normal and abnormal substi-
tutions, i.e., substitutions that satisfy (resp. do not satisfy) the considered rule.
Second, we compute the so-called exception witness sets, i.e., sets of predicates
that are potentially involved in explaining why abnormal substitutions fail to
follow the rule (e.g., researcher in our example). Third, we construct candidate
rule revisions by adding a single exception at a time. We devise quality measures
for nonmonotonic rules to quantify their strength w.r.t the KG. We consider the
crosstalk between the rules through the novel partial materialization technique
instead of revising rules in isolation. Fourth, we rank rule revisions according to
these measures to determine a ruleset that not only describes the data well but
also shows a good predictive power by taking exceptions into account.

The contributions of our paper are:
– A theory revision framework, based on nonmonotonic relational rule learning,

for capturing exceptions in rule-based approaches to KG completion.
– A methodology for computing exception candidates, measuring their quality,

and ranking them taking into account the interaction among the rules.
– Experiments with the YAGO3 and IMDB KGs, which demonstrate the gains

of our method for rule quality as well as fact quality when performing KG
completion.

Structure. Section 2 introduces preliminaries on nonmonotonic logic program-
ming and relational association rule mining. Section 3 describes our theory
revision framework and the methodology. Section 4 reports on experimental
results, while Sections 5 and 6 discuss the related work and conclude the paper
respectively.

2 Preliminaries

Nonmonotonic logic programming. We consider logic programs in their
usual definition [22] under the answer set semantics. In short, a (nonmonotonic)
logic program P is a set of rules of the form

H ← B,not E (1)

where H is a standard first-order atom of the form a(X) known as the rule
head and denoted as head(r), B is a conjunction of positive atoms of the form

Towards Nonmonotonic Relational Learning from Knowledge Graphs 97

b1(Y1), . . . , bk(Yk) to which we refer as body+(r), and not E, with slight abuse
of notation, denotes a conjunction of atoms not bk+1(Yk+1), . . . ,not bn(Yn).
Here, not is the so-called negation as failure (NAF) or default negation. The
negated part of the body is denoted as body−(r). The rule r is positive or Horn
if body−(r) = ∅. X,Y1, . . . ,Yn are tuples of either constants or variables whose
length corresponds to the arity of the predicates a, b1, . . . , bn respectively. The
signature of P is given as ΣP = 〈P, C〉, where P and C are resp. sets of predicates
and constants occurring in P .

A logic program P is ground if it consists of only ground rules, i.e. rules with-
out variables. Ground instantiation Gr(P) of a nonground program P is obtained
by substituting variables with constants in all possible ways. The Herbrand uni-
verse HU (P) (resp. Herbrand base HB(P)) of P , is the set of all constants
occurring in P , i.e. HU (P) = C (resp. the set of all possible ground atoms that
can be formed with predicates in P and constants in C). We refer to any subset
of HB(P) as a Herbrand interpretation. By MM (P) we denote the set-inclusion
minimal Herbrand interpretation of a ground positive program P .

An interpretation I of P is an answer set (or stable model) of P iff I ∈
MM (P I), where P I is the Gelfond-Lifschitz (GL) reduct [13] of P , obtained
from Gr(P) by removing (i) each rule r such that body−(r) ∩ I �= ∅, and (ii) all
the negative atoms from the remaining rules. The set of answer sets of a program
P is denoted by AS(P).

Example 1. Consider the program

P =

{
(1) livesIn(brad , berlin); (2) isMarriedTo(brad , ann);

(3) livesIn(Y ,Z) ← isMarriedTo(X ,Y), livesIn(X ,Z),not researcher(Y)

}

The ground instantiation Gr(P) of P is obtained by substituting X,Y,Z
with brad , ann and berlin respectively. For I = {isMarriedTo(brad , ann),

livesIn(ann, berlin), livesIn(brad , berlin)}, the GL-reduct P I of P contains the
rule livesIn(ann, berlin) ← livesIn(brad , berlin), isMarriedTo(brad , ann) and the
facts (1), (2). As I is a minimal model of P I , it holds that I is an answer set
of P . 	

Following the common practice in ILP, we consider only safe rules (i.e., vari-
ables in the negated part must appear in some positive atoms) with linked vari-
ables [14].

Relational association rule mining. Association rule mining concerns the
discovery of frequent patterns in a data set and the subsequent transformation
of these patterns into rules. Association rules in the relational format have been
subject of intensive research in ILP (see, e.g., [8] as the seminal work in this
direction) and more recently in the KG community (see [12] as the most promi-
nent work). In the following we adapt basic notions in relational association rule
mining to our case of interest.

A conjunctive query Q over G is of the form Q(X) : −p1(X1), . . . , pm(Xm).
Its right-hand side (i.e., body) is a finite set of possibly negated atomic

98 H.D. Tran et al.

formulas over G, while the left-hand side (i.e., head) is a tuple of vari-
ables occurring in the body. The answer of Q on G is the set Q(G) :=
{f(Y) |Y is the head of Q and f is a matching of Q on G}. Following [8], the
(absolute) support of a conjunctive query Q in a KG G is the number of distinct
tuples in the answer of Q on G. The support of the query

Q(X ,Y ,Z) : −isMarriedTo(X ,Y), livesIn(X ,Z) (2)

over G in Fig. 1 asking for people, their spouses and living places is equal to 6.
An association rule is of the form Q1 => Q2, such that Q1 and Q2 are both

conjunctive queries and the body of Q1 considered as a set of atoms is included
in the body of Q2, i.e., Q1(G′) ⊆ Q2(G′) for any possible KG G′.

For example, from the above Q(X,Y,Z) and

Q′(X,Y,Z) : −isMarriedTo(X ,Y), livesIn(X ,Z), livesIn(Y ,Z) (3)

we can construct the rule Q => Q′.
In this work we exploit association rules for reasoning purposes, and thus

(with some abuse of notation) treat them as logical rules, i.e., for Q1 => Q2 we
write Q2\Q1 ← Q1, where Q2\Q1 refers to the set difference between Q2 and
Q1 considered as sets. E.g., Q => Q′ from above corresponds to r1 from Sect. 1.

We exploit the rule evaluation measure called conviction [3], as it is accepted
to be appropriate for estimating the actual implication of the rule at hand, and is
thus particularly attractive for our KG completion task. For r : H ← B ,not E ,
with H = h(X ,Y) and B,E involving variables from Z ⊇ X,Y , the conviction
is given by:

conv(r ,G) =
1 − supp(h(X ,Y),G)

1 − conf (r ,G)
(4)

where supp(h(X ,Y),G) is the relative support of h(X ,Y) defined as follows:

supp(h(X,Y),G) =
#(X,Y) : h(X,Y) ∈ G

(#X : ∃Y h(X,Y) ∈ G) ∗ (#Y : ∃X h(X,Y) ∈ G)
(5)

and conf is the confidence of r given as

conf (r ,G) =
#(X ,Y) : H ∈ G,∃Z B ∈ G,E �∈ G

#(X ,Y) : ∃Z B ∈ G,E �∈ G (6)

Example 2. The conviction of the rule r1 is conv(r1 ,G) =
1 − 0.3
1 − 0.5

= 1.4. 	

3 A Theory Revision Framework for Rule-Based KG
Completion

3.1 Problem Statement

We start with defining the goal of this work formally. To this aim, let us introduce
the factual representation of a KG G as the collection of facts over the signature

Towards Nonmonotonic Relational Learning from Knowledge Graphs 99

ΣG = 〈C,R, C〉, where C, R and C are sets of unary predicates, binary predi-
cates and constants, resp. Following [7], we define the gap between the available
graph Ga and the ideal graph Gi, i.e., the graph containing all correct facts with
constants and relations from ΣGa that hold in the current state of the world.

Definition 1 (Incomplete data source). An incomplete data source is a pair
G = (Ga,Gi) of two KGs, where Ga ⊆ Gi and ΣGa = ΣGi .

Our goal is to learn a set R of nonmonotonic rules from the available graph,
such that their application results in a good approximation of Gi. Here, the
application of R to a graph G refers to the computation of answer sets of R∪G.

Definition 2 (Rule-based KG completion). Let a factual representation of
a KG G be given over the signature ΣG = 〈C,R, C〉 and R be a set of rules mined
from G, i.e. rules over the signature ΣR = 〈C ∪ R, C〉. Then, the completion of
G w.r.t. R is a graph GR constructed from any answer set GR ∈ AS(R ∪ G).

Note that Gi is the perfect completion of Ga, containing all correct facts over
ΣGa . Given a potentially incomplete graph Ga and a set RH of Horn rules mined
from Ga, our goal is to add default negated atoms (exceptions) to the rules in
RH and obtain a revised ruleset RNM such that the set difference between Ga

RNM

and Gi is as small as possible. Intuitively, a good revision RNM of RH is the
one that (i) neglects as many incorrect predictions made by RH as possible,
while still (ii) preserving as many correct predictions made by RH as possible.
Note that Gi is usually not available, thus we do not know which predictions are
actually correct and which are not. For this reason using standard ILP measures
in our setting to evaluate the quality of a ruleset is impractical. To still make
an estimate of the revision quality we exploit measures from association rule
mining literature. According to our hypothesis, a good ruleset revision is the
one for which the overall rule measure is the highest, while the added negated
atoms are not over-fitting the data, i.e., the negated atoms are actual exceptions
rather than noise.

To this end, we devise two quality functions, qrm and qconflict , that take a
ruleset R and a KG G as input and output a real value, reflecting the suitability
of R for data prediction. In particular, qrm generalizes any rule measure rm to
rulesets as follows

qrm(R,G) =
∑

r∈R rm(r,G)
|R| . (7)

Conversely, qconflict estimates the number of conflicting predictions that the rules
in R generate. To measure qconflict for a given R, we create an extended set of
rules Raux, which contains each nonmonotonic rule r ∈ R together with its
auxiliary version raux , constructed as follows: (1) transform r into a Horn rule
by removing not from negated body atoms, and (2) replace the head predicate h
of r with a newly introduced predicate not h which intuitively contains instances
which are not in h. Formally,

qconflict (R,G) =
∑

p∈pred(R)

|{c | p(c),not p(c) ∈ GRaux }|
|{c |not p(c) ∈ GRaux }| , (8)

100 H.D. Tran et al.

where pred(R) is the set of predicates appearing in R, and c ⊆ C with 1 ≤
|c| ≤ 2. Note that qconflict is designed to distinguish real exceptions from noise,
by considering the crosstalk between the rules in a set, as illustrated in the
following example.

Example 3. The predicate researcher is a good exception for r1 w.r.t. G
(Fig. 1) with bornIn(dave, chicago) added, i.e. it explains why for 2 out of 3
substitutions marked with red triangles the rule r1 is not satisfied. However,
this exception becomes less prominent, whenever r2 : livesIn(X ,Y) ←
bornIn(X ,Y),not emigrant(X) is applied to G. Indeed, after livesIn
(dave, chicago) is predicted, the substitution X /clara, Y /dave,
Z/chicago starts satisfying r1 , but researcher still holds for dave, which weakens
the predicate researcher as an exception for r1 . 	

We now define our theory revision problem based on the above quality func-
tions.

Definition 3 (Quality-based Horn theory revision (QHTR)). Given a
set RH of Horn rules over the signature Σ, a KG G, and the quality functions
qrm and qconflict , the quality-based Horn theory revision problem is to find a set
RNM of rules over Σ obtained by adding default negated atoms to body(r) for
some r ∈ RH , such that (i) qrm(RNM ,G) is maximal, and (ii) qconflict(RNM ,G)
is minimal.

Prior to tackling the QHTR problem we introduce the notions of r-
(ab)normal substitutions and exception witness set (EWSs) that are used in
our revision framework.

Definition 4 (r-(ab)normal substitutions). Let G be a KG, r a Horn rule
mined from G, and let V be a set of variables occurring in r. Then

– NS (r ,G) = {θ | head(r)θ, body(r)θ ⊆ G} is an r-normal set of substitutions;
– ABS (r ,G)={θ′ | body(r)θ′ ⊆ G , head(r)θ′ �∈ G} is an r-abnormal one,

where θ, θ′ : V → C.
Example 4. For G from Fig. 1 and r1 we have NS (r1 ,G) = {θ1 , θ2 , θ3}, where
θ1 = {X /Brad ,Y /Ann,Z/Berlin}; similarly, the most right and bottom blue
triangles in Fig. 1 refer to θ2 and θ3 resp., while the red ones represent
ABS (r1 ,G).

Intuitively, if the given data was complete, then the r-normal and r-abnormal
substitutions would exactly correspond to substitutions for which the rule r holds
(resp. does not hold) in Gi. However, some r-abnormal substitutions might be
classified as such due to the OWA. In order to distinguish the “wrongly” and
“correctly” classified substitutions in the r-abnormal set, we construct exception
witness sets (EWS).

Definition 5 Exception witness set (EWS). Let G be a KG, let r be a rule
mined from it, let V be a set of variables occurring in r and X ⊆ V. Exception
witness set for r w.r.t. G and X is a maximal set of predicates EWS (r ,G,X) =
{e1, . . . , ek}, s.t.

Towards Nonmonotonic Relational Learning from Knowledge Graphs 101

– ei(Xθj) ∈ G for some θj ∈ ABS (r ,G), 1 ≤ i ≤ k and
– e1 (Xθ′), . . . , ek (Xθ′) �∈ G for all θ′ ∈ NS (r ,G).

Example 5. For G in Fig. 1 and r1 we have that EWS (r ,G,Y) = {researcher}.
Furthermore, EWS (r ,G,X) = {artist}. If brad with ann and john with kate
lived in cities different from berlin and chicago resp., then EWS (r ,G,Z) =
{metropolitan}.

In general when binary atoms are allowed in the rules, there might be potentially
too many possible EWS s to construct. For a rule with n distinct variables, n2

candidate EWS s might exist. Furthermore, combinations of exception candidates
could be an explanation for some missing links, so the search space of solutions
to QHTR problem is large. In this work, however, we restrict ourselves only
to a single predicate as a final exception, and leave the extensions to arbitrary
combinations for future research.

3.2 Methodology

Due to the large number of exception candidates to consider, determining the
globally best solution to the QHTR problem is not feasible in practice especially
given the huge size of KGs. Therefore, we aim at finding an approximately good
solution. Intuitively, our approach is to revise rules one by one finding the locally
best revision, while considering the predictive impact of other rules in a set. Our
methodology for solving the QHTR problem comprises four steps, which we now
discuss in details.

Step 1. We start with a KG G and compute frequent conjunctive queries, which
are then cast into Horn rules RH based on some association rule measure rm.
For that any state-of-the-art relational association rule learning algorithm can
be used. We then compute for each rule r ∈ RH the r-normal and r-abnormal
substitutions.

Steps 2 and 3. Then, for every r ∈ RH with h(X ,Y) in the head, we deter-
mine EWS (r ,G,X), EWS (r ,G,Y) and EWS (r ,G, 〈X ,Y 〉). The algorithm for
computing EWSs is an extended version of the one reported in [11]. Here, we
first construct E+ = {not h(c, d), s.t. θ = {X /c,Y /d , . . . } is in ABS (r ,G)} and
E− = {not h(e, f), s.t. θ′ = {X /e,Y /f , . . . } is in NS (r ,G)}. A classical ILP
procedure learn(E+,E−,G) (e.g., based on [28]) is then invoked, which searches
for hypothesis with not h(X ,Y) in the head and a single body atom of the form
p(X), p′(Y) or p′′(X,Y), where p, p′, p′′ are predicates from ΣG . The target
hypothesis should not cover any examples in E−, while covering at least some
examples in E+. From the bodies of the obtained hypothesis the predicates for
EWS sets are extracted.

Then, for every r ∈ RH we create potential revisions by adding to r a single
negated atom from EWS sets at a time. Overall for each rule this way we obtain
|EWS (r ,G,X)| + |EWS (r ,G,Y)| + |EWS (r ,G, 〈X ,Y 〉)| candidate revisions.

102 H.D. Tran et al.

Steps 4. After all potential revisions are constructed, we rank them and deter-
mine the resulting set RNM by selecting for every rule the revision that is ranked
the highest. To find such globally best revised ruleset RNM , too many candidate
combinations have to be checked, which is impractical due to the large size of
both G and EWS s. Thus, instead we incrementally build RNM by considering
every ri ∈ RH and choosing the locally best revision rji for it. For that, we
exploit three ranking functions: a naive one and two more sophisticated ones,
which invoke the novel concept of partial materialization (PM). Intuitively, the
idea behind it is to rank candidate revisions not based on G, but rather on its
extension with predictions produced by other, selectively chosen, rules (grouped
into a set R′), thus ensuring a crosstalk between the rules. We now describe the
ranking functions in more details.

The Naive (N) ranker is the simplest function, which prefers the revision
r ji with the highest value of rm(r ji ,G) among all revisions of ri. This selection
function produces a globally best revision with respect to (i) in Definition 3.
However, it completely ignores (ii), and thus might return rules with overly
noisy exceptions.

The PM ranker prefers r ji with the highest value of

score(rji ,G) =
rm(r ji ,GR′) + rm(r ji

aux
,GR′)

2
(9)

where R′ is the set of rules r′
l ∈ RH\ri with candidate exceptions from all EWS s

for rl incorporated at once. Informally, GR′ contains only facts that can be safely
predicted by the rules from RH \ri , i.e., there is no evident reason (candidate
exceptions) for not making these predictions, and thus we can rely on them when
revising ri .

The OPM ranker is similar to PM, but the selected ruleset R′ contains
only those rules whose Horn version appears above the considered rule ri in the
ruleset RH , ordered (O) based on some rule measure, which is not necessarily
the same as rm.

4 Evaluation

Our revision approach aims at (1) enhancing the quality of a given ruleset w.r.t.
conviction, and consequently (2) improving the accuracy of its predictions. Ide-
ally, the set difference between GRNM

and Gi should be minimized (see Fig. 2 for
illustration).

Dataset. An automatic evaluation of the prediction quality requires an ideal
graph Gi which is known to be complete as a ground truth. However, obtaining
a real life complete KG is not possible. Therefore, we used the existing KG as an
approximation of Gi (Gi

appr), and constructed the available graph Ga by removing
from Gi

appr 20% of the facts for each binary predicate. As a side constraint,
we ensure that every node in Ga is connected to at least one other node. We
constructed two datasets for evaluating our approach: (i) YAGO3 [23], as a

Towards Nonmonotonic Relational Learning from Knowledge Graphs 103

Appr. ideal KG G i
appr

Ideal KG G i

KG G
RNM predictions

(GRNM) RH predictions
(GRH)a

Fig. 2. Relations between the ideal, approximated and available slices of a KG.

Table 1. The average conviction for the top-k Horn rules and their revisions.

topk YAGO IMDB

RH RN RPM ROPM RH RN RPM ROPM

5 1.3784 1.3821 1.3821 1.3821 2.2670 2.3014 2.3008 2.3014

30 1.1207 1.1253 1.1236 1.1237 1.5453 1.5644 1.5543 1.5640

50 1.0884 1.0923 1.0909 1.0913 1.3571 1.3749 1.3666 1.3746

60 1.0797 1.0837 1.0823 1.0829 1.3063 1.3221 1.3143 1.3219

70 1.0714 1.0755 1.0736 1.0744 1.2675 1.2817 1.2746 1.2814

80 1.0685 1.0731 1.0710 1.0720 1.2368 1.2499 1.2431 1.2497

100 1.0618 1.0668 1.0648 1.0659 1.3074 1.4100 1.3987 1.4098

general purpose KG, with more than 1.8M entities, 38 relations, and 20.7M
facts, and (ii) a domain-specific KG extracted from the IMDB1 dataset with
112 K entities, 38 relations, and 583 K facts2.

Setup. We have implemented our approach in a system prototype3, and con-
ducted experiments on a multi-core Linux server with 40 cores and 400GB RAM.
We start with mining Horn rules of the form h(X ,Z) ← p(X ,Y), q(Y ,Z) from
Ga and ranking them w.r.t. their absolute support. Then, we revise the rules
as described in Sect. 3.2, taking conviction as the rm measure. For every rule
we rank the constructed revisions and pick the one with the highest score as
the final result. This process is repeated for the proposed ranking methods, i.e.,
Naive, Partial Materialization, and Ordered Partial Materialization resulting in
the rulesets RN , RPM , and ROPM respectively.

Ruleset quality. In Table 1, we report the average conviction for the top-k
(k=5,...100) Horn rules RH and their revisions for YAGO and IMDB. The results
show that the revision process consistently enhances the avg. ruleset conviction.
Moreover, while the conviction per ruleset naturally decreases with addition of

1 http://imdb.com.
2 http://people.mpi-inf.mpg.de/∼gadelrab/downloads/ILP2016.
3 https://github.com/htran010589/nonmonotonic-rule-mining.

http://imdb.com
http://people.mpi-inf.mpg.de/~gadelrab/downloads/ILP2016
https://github.com/htran010589/nonmonotonic-rule-mining

104 H.D. Tran et al.

Table 2. Predictions of sampled rules and their revisions for IMDB (I) and YAGO
(Y).

Predicate Predictions Outside Gi
appr Corr. removed, %

RH RN RPM ROPM RH RN RPM ROPM RN RPM ROPM

I :actedIn 1231 1214 1230 1214 1148 1131 1147 1131 90 100 90

I :genre 629 609 618 609 493 477 482 477 50 20 50

I :hasLang 173 102 125 102 163 92 115 92 60 100 60

I :prodIn 2489 2256 2327 2327 2488 2255 2326 2326 10 10 30

52.50 45.16 57.75

Y :direct 41079 39174 39174 39174 41021 39116 39116 39116 100 100 100

Y :grFrom 3519 3456 3456 3456 3363 3300 3300 3300 100 100 70

Y :citizOf 3407 2883 2883 2883 3360 2836 2836 2836 50 50 70

Y :bornIn 110283 108317 109846 108317 109572 107607 109137 107607 90 90 100

85 85 85

lower quality rules, improvement ratios are increasing with the best enhancement
(7.6%) for IMDB top-100 rules.

Prediction quality. To evaluate the quality of ruleset predictions, we sampled
a set of 5 Horn rules RH from the top-50 Horn rules both for IMDB and YAGO
and compared them against their revisions w.r.t. the predictive power. For that,
we run DLV [20] with these rulesets and the facts in Ga and obtained resp. GRH

,
GRN

, GRPM
and GROPM

. Table 2 reports for each head predicate appearing in the
sampled rules the number of newly predicted facts, i.e. those not in Ga (second
column) and the portion of predictions among them that are outside Gi

appr (third
column).

First, observe that naturally relatively few predictions can be found in Gi
appr

(≈9% for IMDB and ≈2% for YAGO). This is expected as the latter graph
is highly incomplete. Second, it is important to note that RH and the revised
rulesets produced roughly the same number of correct predictions within Gi

appr .
E.g., for YAGO we have GRH

\GRPM
∩ Gi

appr = ∅, meaning that the green area
within the approximation of the ideal graph in Fig. 2 is empty, which shows that
incorporated exceptions did not spoil the positive rules with respect to correct
predictions in Gi

appr .
To make the comparison between RH and the revised rulesets fair, we need to

ensure that RH on its own is not completely inaccurate. Indeed, if RH makes only
false predictions, then adding even irrelevant exceptions will reduce the number
of incorrect instances, thus, improving the ruleset predictive quality. The number
of RH predictions outside Gi

appr is large, and we do not know the ground truth
for these predictions. Therefore, we had to verify these facts manually using web
resources. Obviously such verification for all of the predictions is not feasible.
Hence, we restricted ourselves to a uniform random sample of 20 predicted facts
per head predicate in RH . Among the IMDB samples, the precision of 70% has
been achieved, while for YAGO we have obtained precision of 30%. This shows
that the rules in RH are not completely erroneous.

Towards Nonmonotonic Relational Learning from Knowledge Graphs 105

To assess the impact of the revision methods, we also had to select a uni-
form sample due to the large size of the differences between GRH

and the
graphs obtained by applying revised rulesets. More specifically, we have ran-
domly sampled 10 predictions per head predicate from GRH

\GRN
, GRH

\GRPM

and GRH
\GROPM

resp. The 4th column in Table 2 reports the percentage of erro-
neous predictions among the sampled facts in the difference for each revision
method (referred to as correctly removed), i.e., gray area in Fig. 2. For IMDB
ROPM achieved the best improvement. For YAGO, all of the revision methods
performed equally well. Moreover, the effect of YAGO revisions is more visible,
since RH for YAGO is of a lower quality than for IMDB as reported earlier.

Running times. Our main goal was to evaluate the predictive quality of com-
puted rules rather then the running times of the implemented algorithms. There-
fore, the latter are only briefly reported. For the top-100 Horn YAGO and IMDB
rules mined from Ga, EWS s with an average of 1.6 K and 10.9 K exception can-
didates per rule were computed within 7 and 68 s resp. As regards IMDB, the
revisions RN ,RPM , and ROPM were determined in 9, 62, and 24 s resp., while
for YAGO, they required 45, 177, and 112 s. Besides, the predictions of each of
the rulesets on Ga were found via DLV, on average, within 8 s for IMDB and
310 s for YAGO.

Example rules. Figure 3 shows examples of our revised rules, e.g., r1 extracted
from IMDB states that movie plot writers stay the same throughout the sequel
unless a movie is American, and r3 learned from YAGO says that ancestors of
politicians are also politicians in the same country with the exception of Mexican
vice-presidents.

Fig. 3. Examples of the revised rules

5 Related Work

Approaches for link prediction are divided into statistics-based (see [24] for
overview), and logic-based (e.g., [12]), which are the closest to our work. The
latter basically extend and adapt previous work in ILP on relational association
rule mining. However, algorithms such as [12] mine only Horn rules, rather than
nonmonotonic as we do.

In the association rule mining community, some works studied (interesting)
exception rules (e.g. [27]), i.e., rules with low support and high confidence. Our
work differs as we do not necessarily look for rare rules, but care about their
predictive power.

In the context of inductive and abductive logic [10], learning nonmonotonic
rules from complete datasets was considered in several works [6,18,25,26]

106 H.D. Tran et al.

These methods rely on CWA and focus on describing a dataset at hand exploit-
ing negative examples, which are explicitly given unlike in our setting. Learning
nonmonotonic rules in presence of incompleteness was studied in hybrid settings
in [16,21] respectively. There a background theory or a hypothesis can be rep-
resented as a combination of a DL ontology and Horn or nonmonotonic rules.
While the focus of these works is on the complex interaction between reasoning
components, we are more concerned with techniques for deriving rules with high
predictive quality from huge KGs.

6 Conclusions and Future Work

We have presented an approach for mining relational nonmonotonic rules from
KGs under OWA by casting this problem into a theory revision task and exploit-
ing association rule mining methods to cope with the huge size of KGs. The
approach extends our previous work [11], where this problem was studied for
KGs with only unary predicates.

Further extensions to more complex combinations of exceptions as well as
more general types of rules (e.g., with existentials in the head) are a nat-
ural future direction. Moreover enhancing our framework by partial complete-
ness assumptions for certain (combinations of) predicates/constants is another
orthogonal but interesting research stream. On the practical side, we plan to
develop advanced evaluation strategies, which is very challenging due to the
absence of the ideal graph and the large KG size.

Acknowledgements. We thank anonymous reviewers for their insightful suggestions
and Jacopo Urbani for his helpful comments on an earlier version of this paper.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76298-0 52

2. Azevedo, P.J., Jorge, A.M.: Comparing rule measures for predictive association
rules. In: ECML, pp. 510–517 (2007)

3. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and impli-
cation rules for market basket data. In: SIGMOD, pp. 255–264 (1997)

4. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.:
Toward an architecture for never-ending language learning. In: AAAI (2010)

5. Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological pathfinding: mining
first-order knowledge from large knowledge bases. In: SIGMOD (2016)

6. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search.
In: ICLP, pp. 54–63 (2010)

7. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about
RDF data sources and their use for query answering. In: Alani, H., et al. (eds.)
ISWC 2013. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41335-3 5

http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-642-41335-3_5
http://dx.doi.org/10.1007/978-3-642-41335-3_5

Towards Nonmonotonic Relational Learning from Knowledge Graphs 107

8. Dehaspe, L., Raedt, L.: Mining association rules in multiple relations. In: Lavrač,
N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer,
Heidelberg (1997). doi:10.1007/3540635149 40

9. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol.
8796, pp. 50–65. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 4

10. Flach, P.A., Kakas, A.: Abduction and Induction: Essays on Their Relation and
Integration, vol. 18. Applied Logic Series (2000)

11. Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule
learning from knowledge graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS,
vol. 9981, pp. 234–251. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 15

12. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. In: VLDB J. (2015)

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP, pp. 1070–1080 (1988)

14. Helft, N.: Induction as nonmonotonic inference. In: KR, pp. 149–156 (1989)
15. Inoue, K., Kudoh, Y.: Learning extended logic programs. In: IJCAI, pp. 176–181

(1997)
16. Józefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining

frequent patterns from knowledge bases in description logics with rules. TPLP
10(3), 251–289 (2010)

17. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax
specification (1999)

18. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In:
Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 311–325. Springer,
Cham (2014). doi:10.1007/978-3-319-11558-0 22

19. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for
ontology engineering. J. Web Sem. 9(1), 71–81 (2011)

20. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM TOCL 7(3),
499–562 (2006)

21. Lisi, F.A.: Inductive logic programming in databases: from datalog to DL+log.
TPLP 10(3), 331–359 (2010)

22. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin
Heidelberg (1987)

23. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: A knowledge base from mul-
tilingual wikipedias. In: Proceedings of CIDR (2015)

24. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

25. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 3(7), 329–340
(2008)

26. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM
Trans. Comput. Log. 6(2), 203–231 (2005)

27. Taniar, D., Rahayu, W., Lee, V., Daly, O.: Exception rules in association rule
mining. Appl. Math. Comput. 205(2), 735–750 (2008)

28. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266
(1990)

29. Wrobel, S.: First order theory refinement. In: ILP, pp. 14–33 (1996)

http://dx.doi.org/10.1007/3540635149_40
http://dx.doi.org/10.1007/978-3-319-11964-9_4
http://dx.doi.org/10.1007/978-3-319-46523-4_15
http://dx.doi.org/10.1007/978-3-319-11558-0_22

Learning Predictive Categories Using Lifted
Relational Neural Networks

Gustav Šourek1(B), Suresh Manandhar2, Filip Železný1, Steven Schockaert3,
and Ondřej Kuželka3

1 Czech Technical University, Prague, Czech Republic
{souregus,zelezny}@fel.cvut.cz

2 Department of Computer Science, University of York, York, UK
suresh.manandhar@york.ac.uk

3 School of CS and Informatics, Cardiff University, Cardiff, UK
{SchockaertS1,KuzelkaO}@cardiff.ac.uk

Abstract. Lifted relational neural networks (LRNNs) are a flexible
neural-symbolic framework based on the idea of lifted modelling. In this
paper we show how LRNNs can be easily used to specify declaratively
and solve learning problems in which latent categories of entities, prop-
erties and relations need to be jointly induced.

1 Introduction

Lifted models, such as Markov logic networks (MLNs [13]), are first-order rep-
resentations that define patterns from which specific (ground) models can be
unfolded. For example, in a MLN we may express the pattern that friends of
smokers tend to be smokers, which then constrains the probabilistic relationships
between specific individuals in the derived ground Markov network. Inspired by
this idea, in [16] we introduced a method that uses weighted relational rules for
learning feed-forward neural networks, called Lifted Relational Neural Networks
(LRNNs). This approach differs from standard neural networks in two impor-
tant ways: (i) the network structure is derived from symbolic rules and thus has
an intuitive interpretation, and (ii) the weights of the network are tied to the
first-order rules and are thus shared among different neurons.

In this paper, we first show how LRNNs can be used to learn a latent category
structure that is predictive in the sense that the properties of a given entity can
be largely determined by the category to which that entity belongs, and dually,
the entities satisfying a given property can be largely determined by the category
to which that property belongs. This enables a form of transductive reasoning
which is based on the idea that similar entities have similar properties. We
then extend this model into a relational setting, in which entities not only have
properties but can also be linked by arbitrary relations.

The proposed approach is similar in spirit to [7], which instead uses crisp
clustering based on second-order MLNs. However, the use of LRNNs has several
important advantages for learning latent concepts. Firstly, LRNNs do not need

c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 108–119, 2017.
DOI: 10.1007/978-3-319-63342-8 9

Learning Predictive Categories with LRNNs 109

to invoke costly EM algorithms and hence can be more efficient than latent
variable probabilistic models. Secondly, the learnt soft clusters can naturally
be interpreted as vector space embeddings of entities, properties and relations.
Finally, the flexibility of LRNNs means that the considered form of transductive
reasoning can be extended in a natural way to take into account various forms of
prior domain knowledge, as well as alternative types of heuristic reasoning (e.g.
reasoning by analogy, modelling persistence or periodic behaviour).

The remainder of this paper is structured as follows. In Sect. 2 we briefly
describe the LRNN framework from [16], after which we introduce a technique
to deal with recursive rules in LRNNs. We describe the predictive model for
the non-relational setting in Sect. 3.1 and for the relational setting in Sect. 3.2.
Next, in Sect. 4, we describe a simple model encoded as a LRNN which is based
on similarity-based reasoning. In Sect. 5 we evaluate the method experimentally.
Finally, we discuss related work in Sect. 6 and conclude the paper in Sect. 7

2 Lifted Relational Neural Networks

2.1 The Basic Framework

A lifted relational neural network (LRNN) N is a set of weighted definite first-
order clauses1. Let HN be the least Herbrand model of the classical theory
{α : (α,w) ∈ N}, with N a LRNN. We define the grounding of N as N = {(hθ ←
b1θ ∧ · · · ∧ bkθ, w) : (h ← b1 ∧ · · · ∧ bk, w) ∈ N and {hθ, b1θ, . . . , bkθ} ⊆ HN }.

Definition 1. Let N be a LRNN, and let N be its grounding. Let g∨, g∧ and
g∗ be functions2 from

⋃∞
i=1 R

i to R. The ground neural network of N is a feed-
forward neural network constructed as follows.

– For every ground atom h occurring in N , there is a neuron Ah with activation
function g∨, called atom neuron.

– For every ground fact (h,w) ∈ N , there is a neuron F(h,w), called fact neuron,
which has no input and always outputs the constant value w.

– For every ground rule (hθ ← b1θ ∧ · · · ∧ bkθ, w) ∈ N , there is a neuron
Rhθ←b1θ∧···∧bkθ with activation function g∧, called rule neuron. It has the
atom neurons Ab1θ, . . . , Abkθ as inputs, all with weight 1.

– For every rule (h ← b1∧· · ·∧bk, w) ∈ N and every hθ ∈ HN , there is a neuron
Agghθ

(h←b1∧···∧bk,w) with activation function g∗, called aggregation neuron. Its
inputs are all rule neurons Rhθ′←b1θ′∧···∧bkθ′ where hθ = hθ′ with all weights
equal to 1.

– Inputs of an atom neuron Ahθ are the aggregation neurons Agghθ
(h←b1∧···∧bk,w)

and fact neurons F(hθ,w), with the input weights determined by the outputs of
the aggregation and fact neurons.

1 Established notions such as “rule” are further used also for their weighted analogies.
2 These represent aggregation operators that can take a variable number of arguments.

110 G. Šourek et al.

Depending on the used families of activation functions g∧, g∨ and g∗, we can
obtain neural networks with different behavior. In this paper we will use:

g∧(b1, . . . , bk) = sigm
(k∑

i=1

bi − k + b0

)
g∨(b1, . . . , bk) = sigm

(k∑

i=1

bi + b0

)

g∗(b1, . . . , bm) =
1
m

m∑

i=1

bi

Where sigm denotes the logistic sigmoid function sigm(x) = 1
1+(e−x) , which also

implies that ∀i : 0 < bi < 1. Note that g∧ and g∨ are closely related to the
conjunction and disjunction from �Lukasiewicz logic [6], which is in accordance
with the intuition that g∧ should only have a high output if all its inputs are
high, while g∨ should be high as soon as one of the inputs is high.

2.2 Handling Recursion in LRNNs

As originally introduced in [16], LRNNs did not support recursive rules, in order
to avoid the potential need to work with recurrent neural networks, since these
are more difficult to train than feed-forward neural networks. However in general,
recursive rules do not necessarily pose a problem to the LRNN framework as long
as they do not induce directed cycles in the resulting ground neural networks.
For instance, rules defining directed paths in acyclic graphs would not lead to
directed cycles in the resulting ground neural networks, despite being recursive.
One minor complication caused by allowing LRNNs to have recursion, even in
the absence of directed cycles, is that weights may be shared among neurons
that lie on a directed path from the input to the output of the network. This
makes the computation of gradients more complicated than in the normal case.
Although weights in such LRNNs, whose groundings are still feed-forward neural
networks, can still be learned using Stochastic Gradient Descent (SGD).

In this paper we will use recursive rule sets that may potentially lead to
recurrent neural networks. In order to maintain the feed-forward nature of the
resulting ground neural networks, we modify the strategy for constructing ground
networks as follows. First we construct the ground network exactly as described
in Sect. 2. If this network contains directed cycles, we then proceed as follows.
Let Q be a given ground query atom3. We find the respective atom neuron
corresponding to Q in the ground network. If no such atom neuron exists, the
output value for Q is 0. If there is such an atom neuron, we perform a breadth-
first search from this atom neuron (traversing the connections between neurons in
reverse, i.e. from output to input) and whenever we find an edge pointing from an
already visited atom neuron, we delete it. The resulting ground neural network
is then feed-forward. While this process enables us to stick with feed-forward
neural networks, it comes at the price of a slightly less intuitive semantics, in

3 In general LRNNs support non-ground query atoms but in this paper we will not
need them. Therefore we assume only ground query atoms for simplicity.

Learning Predictive Categories with LRNNs 111

which the inference and output for non-query atom neurons may also depend on
the used queries. This is not problematic for any of the applications considered
in this paper, as non-query atoms are not used within these application.

3 Learning Predictive Categories

In this section, we introduce a class of LRNN models that are aimed at learning
predictive categories of entities, properties and relations. We first introduce a
model for attribute-valued data in Sect. 3.1, which is extended to cope with
relational data in Sect. 3.2.

3.1 Predictive Categories for Attribute-Valued Data

Let a set of entities be given, and for each entity, a list of properties that it
satisfies. The basic assumption underlying our model is that there exist some
(possibly overlapping) categories, such that every entity can be described accu-
rately enough by its soft membership to each of these categories. We furthermore
assume that these categories can themselves be organised in a set of higher-
level categories. The idea is that the category hierarchy should allow us to pre-
dict which properties a given entity has, where the properties associated with
higher-level categories are typically (but not necessarily) inherited by their sub-
categories. To improve the generalization ability of our method, we assume that
a dual category structure exists for properties. The main task we consider is to
learn these (latent) category structures from the given input data.

To encode the above described model in a LRNN, we proceed as follows. We
use HasProperty(e, p) to denote that the entity e has the property p. For every
entity e and for each category c at the lowest level of the category hierarchy, we
construct the following ground rule:

wec : IsA(e, c)

Note that weight wec intuitively reflects the soft membership of e to the category
c; it will be determined when training the ground network. Similarly, for each
category c1 at a given level and each category c2 one level above, we add the
following ground rule:

wc1c2 : IsA(c1, c2)

In the same way, ground rules are added that link each property to a property
category at the lowest level, as well as ground rules that link property categories
to higher-level categories. To encode the idea that entity categories should be
predictive of properties, we add the following rule for each entity category ce

and each property category cp:

wcecp : HasProperty(A,B) ← IsA(A, ce), IsA(B, cp).

112 G. Šourek et al.

The weights wcecp encode which entity categories are related to which property
categories, and will again be determined when training weights of the LRNN.
To encode transitivity of the is-a relationship, we simply add the following rule:

wisa : IsA(A,C) ← IsA(A,B), IsA(B,C).

Training examples are encoded as a set of facts of the form (HasProperty(e, p),
l) where l ∈ {0, 1}, 0 denoting a negative example and 1 a positive example. We
train the model using SGD as described in [16]. In particular, in a LRNN, there
is a neuron for any ground literal which is logically entailed by the rules and facts
in the LRNN and the output of this neuron represents the truth value of this
literal. Therefore if we want to train the weights of the LRNN, we just optimize
the weights of the network w.r.t. a loss function such as the mean squared error,
where the loss function is computed from the desired truth values of the query
literals and the outputs obtained from the respective atom neurons.

3.2 Predictive Categories for Relational Data

The model from Sect. 3.1 can be extended to cope with relational facts. Similar
to our encoding of properties, we will use a reified representation of relational
facts, writing e.g. Relation(ParentOf, e1, e2) to denote that e1 is the parent of
e2. In this way, we can induce predictive relation categories, similar to the entity
and property categories considered in Section 3.1.

To this end, analogously as for entity and property categories, for every
relation r and every (latent) relation category c we add the following ground
rule:

wrc : IsA(r, c)

For each relation category c1 at a given level and each category c2 one level
above, we add the following ground rule:

wc1c2 : IsA(c1, c2).

Note that a rule encoding transitivity of the IsA relation was already added
in the first part of the model. Finally we encode that, like properties, relations
among entities are typically determined by their categories. Specifically, for each
triple consisting of a pair of (not necessarily distinct) entity clusters ce, c′

e and
a relation cluster cr, we add the following ground rule:

wcrcec′
e

: Relation(R,A,B) ← IsA(R, cr), IsA(A, ce), IsA(B, c′
e) (1)

The LRNNs defined in this way will be referred to as fully-connected, as they
contain rules for every relation-entity-entity triple. Obviously, when a high num-
ber of clusters is used, the number of rules of the form (1) may be prohibitively
high. To address this, we can limit the triples for which such rules are added.
In particular, we will consider LRNNs which restrict such rules to those of the
following form:

wcrc2ic2i+1 : Relation(R,A,B) ← IsA(R, cr), IsA(A, c2i), IsA(B, c2i+1) (2)

Learning Predictive Categories with LRNNs 113

where c1, c2, . . . , cn are entity concepts. In fact the LRNNs with rules of this
form can learn anything that can be learned by LRNNs with rules of the form
(1) as long as they have enough rules.

In addition, to help the model learn symmetric and transitive relations (e.g.
the “same-political-bloc” relation), we also add rules of the following form:

wcrc′
ic

′
i
: Relation(R,A,B) ← IsA(R, cr), IsA(A, c′

i), IsA(B, c′
i) (3)

Note that we do not need to explicitly consider these in the fully-connected
model, as they are a special case of (1).

4 Prediction Using Learned Similarities

In this section we describe a LRNN model based on similarity degrees, for the
same predictive task that was considered in the previous section. While the sim-
ilarity degrees could be obtained from any source, we will use similarity degrees
that have been obtained from the model described in the previous section, by
taking advantage of the fact that the cluster membership degrees can be inter-
preted as defining a vector-space embedding. Rather than using the membership
degrees directly, we will use the weights of the respective ground IsA(e, c) rules,
which, unlike the membership degrees, may also be negative4. In particular, the
similarity degree between two entities is defined as the cosine similarity between
the vector representation of these entities, with the coordinates of these vectors
the soft memberships of the entity in each of the categories.

For each pair of entities (e1, e2) with similarity degree s, we add the following
ground fact:

1.0 : Similar(e1, e2, s)

We furthermore add rules which encode a learnable transformation of the simi-
larities into a score which is useful for the given predictive task:

w−1 : Similar(X,Y) ← Similar(X,Y, S), S ≥ −1.0
w−0.9 : Similar(X,Y) ← Similar(X,Y, S), S ≥ −0.9
...

w0.9 : Similar(X,Y) ← Similar(X,Y, S), S ≥ 0.9

Finally we add one rule of the following type for every relation r:

wr : Relation(r,X, Y) ← Relation(r, V,W),Similar(X,V),Similar(Y,W).

Taking into account the aggregative nature of the used family of activation func-
tions (cf. Sect. 2), these rules encode the intuition that in order to predict if X

4 The membership degrees are simply obtained as applying sigmoids on the respective
weights in this particular case, so the two representations essentially bear the same
information.

114 G. Šourek et al.

and Y are in relation r, we could check how similar on average the entities known
to be in this relation are to X and Y .

Naturally, not all relations can be accurately predicted by a model like the
one described in this section. However, this similarity based approach is quite
natural, and serves as an important illustrative example of how other strategies
could be encoded (e.g. interpolation/extrapolation or reasoning by analogy).

5 Evaluation

5.1 Evaluation of the Model from Sect. 3.1

To evaluate the potential of the model proposed in Sect. 3.1, we have used the
Animals dataset5, which describes 50 animals in terms of 85 Boolean features,
such as fish, large, smelly, strong, and timid. This dataset was originally created
in [11], and was used among others for evaluating a related learning task in [7].
For both entities and properties, we have used two levels of categories, with in
both cases three categories at the lowest level and two categories at the highest
level.

Recall that we can view the category membership degrees as defining a vector-
space embedding. Figures 1 and 2 show the first two principal components of this
embedding for a number of entities and properties. We can see, for instance, that
sea mammals are clustered together, and that predators tend to be separated
from herbivores. In Fig. 2, we have highlighted two types of properties: colours
and teeth types. Note that these do not form clusters (e.g. a cluster of colours)
but they represent, as prototypes, different clusters of properties which tend to
occur together. For instance, blue is surrounded by properties which typically
hold for water mammals; white and red occur together with stripes, nocturnal,
pads; gray occurs together with small and weak; etc. We also evaluated the
predictive ability of this model. We randomly divided the facts from the dataset
in two halves, trained the model on one half and tested it on the other one,
obtaining AUC ROC of 0.77. We also performed an experiment with a 90–10
split, in order to be able to directly compare our results with those from [7]; we
obtained the same AUC PR 0.8 as reported in [7] (and AUC ROC 0.86).

5.2 Evaluation of the Model from Sect. 3.2

In order to evaluate the relational method proposed in Sect. 3.2 we performed
experiments with two relational datasets:6 Nations and UMLS. These datasets
have previously been used to evaluate statistical predicate invention methods
in [7]. The Nations dataset contains a set of relations between pairs of nations
and their features [15]. It consists of relations such as ExportsTo and GivesEc-
onomicAidTo, as well as properties such as Monarchy. The dataset contains 14

5 Downloaded from https://alchemy.cs.washington.edu/data/animals/.
6 Downloaded from https://alchemy.cs.washington.edu/data/nations/ and from

https://alchemy.cs.washington.edu/data/umls/.

https://alchemy.cs.washington.edu/data/animals/
https://alchemy.cs.washington.edu/data/nations/
https://alchemy.cs.washington.edu/data/umls/

Learning Predictive Categories with LRNNs 115

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

lion

zebra

seal sheep

grizzlybear

humpbackwhale
persiancat

gorilla

hippopotamus

rabbit

giraffe

hamster

fox

buffalo

chihuahua

ox

walrus

skunk

polarbear

chimpanzee

killerwhale

leopard

giantpanda

moose

pig

seal

humpbackwhalebluewhale

walrus

killerwhale
dolphin

deer

zebra

elephant

sheep

hippopotamus

girafferhinoceros

buffalo

antelope

horse

ox

cow

leopard

pig

moose

giantpanda

mouse

mole
beaver

rabbit

rat

hamster

squirrel

wolf

liondalmatian
grizzlybeargermanshepherdbobcat

fox

collie

chihuahua

skunk

weasel
polarbear

tiger

raccoon

leopard

otter

siamesecat

Fig. 1. Embedding of entities (animals, only a subset of entities is displayed). Several
homogeneous groups of animals are highlighted: sea mammals (blue), large herbivores
(green), rodents (violet), and other predators (red). (Color figure online)

nations, 56 relations and 111 properties. There are 2565 true ground atoms. The
UMLS dataset contains data from the Unified Medical Language System, which
is a biomedical ontology [8]. It contains 49 relations and 135 biomedical entities.
There are 6529 true ground atoms in this dataset.

Initial experiments have revealed two trends. First, accuracy consistently
improved when we increased the size of the LRNNs (contrarily to our expectation
that overfitting might be a problem when increasing the size). Second, for a fixed
number of entity, property and relation categories, adding the layer of more
general concepts helps, but it also increased memory consumption and runtime.
Therefore, in the experiments, we created LRNNs as large as possible which still
fitted in memory. A consequence of this strategy is that the LRNNs with more
than one layer of categories had fewer categories in total than their single-layer
counterparts. Similar effects also took place for fully-connected LRNNs when
compared to LRNNs with isolated rules of the form (2) and (3); therefore we
did not consider fully connected LRNNs in our experiments.

For the Nations dataset, the largest single-layer LRNN which fitted in 40 GB
of memory had 100 property categories, 100 entity categories and 50 relation
categories. The cross-validated AUC ROC was 0.89 and AUC PR 0.74, which
is within the standard error margin of the results obtained in [7]. The largest
two-layer LRNN learned on this dataset had 20 property categories, 20 entity
categories and 10 relation categories. Its cross-validated AUC ROC was 0.88
and AUC PR 0.7. For comparison, we also trained a single-layer LRNN with the

116 G. Šourek et al.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

meat

hairless

bush

scavenger

skimmer

buckteethpatches

agility
tree

nestspot nocturnaldomestic
insects

furry

water

muscle
brown

plains

coastal

active

forager

strong

fish

horns

oceanswims
gray

flippers

bipedal

chewteeth

tunnels

hunter

fierce

lean

mountains

bulbous

orange

white

weak

stripes

planktonblue

red

brown

black

gray

orange

white
buckteeth

meatteethchewteeth

strainteeth

Fig. 2. Embedding of properties (only a subset of properties is displayed). Two repre-
sentative groups of properties are shown in colour: colours (blue) and teeth-type (red).
(Color figure online)

exact same number of each type of categories, which achieved AUC ROC 0.86
and AUC PR 0.67, which agrees with the above described general trends.

The first two principal components of the embeddings of the states are dis-
played in Fig. 3. When interpreting this embedding, note that this dataset relates
to the political situation of 1950s.

For the UMLS dataset we used a LRNN with 100 entity categories and 50
relation categories. Due to the size of the dataset, consisting of a total of 893k
ground facts and memory limitations, we only performed experiments with a
largely subsampled training set, obtaining test AUC ROC 0.97 and AUC PR
0.76. This is a lower AUC PR than obtained by the method from [7], but it is
close to the second-best method tested there and is better than the reported
results for MLN structure learning.

5.3 Evaluation of the Model from Sect. 4

The evaluation of the model introduced in Sect. 4 primarily serves to estimate the
usefulness of the embeddings learned by LRNNs. We have particulary focused on
the embedding of countries, whose first two principal components are shown in
Fig. 3. First, we have split the nations dataset [15] into equally large training and
testing parts. We trained the relational model described in Sect. 3.2, extracted
the learned cluster membership degrees as vector embeddings, and calculated

Learning Predictive Categories with LRNNs 117

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

israel

netherlands

uk

usa

brazil

burma
egypt

india
indonesia

jordan

china

cuba

poland

ussr

Fig. 3. Embeddings of countries as induced by learning from their geopolitical relations
captured in the historical dataset [15]. A possible interpretation of the projection is
displayed in colors, dividing them into communist (red), western (blue), and developing
nations (green). (Color figure online)

their pairwise cosine similarities. We included these similarities as ground facts,
together with all the true statements from the training part of the dataset. On
top of these facts, we added the transformation and inference rules to form the
model described in Sect. 4. We then trained this composite model on the same
training part of the nations dataset that we used to obtain the embeddings, and
evaluated its generalization ability on the remaining testing part. We obtained
AUC ROC of 0.85 and 0.49 AUC PR, which is lower than the crossvalidated per-
formance reported for the best models, but indirectly proves that the previously
learned embeddings indeed carry useful information that may be subsequently
reused for different predictive scenarios.

5.4 An Experiment with Real-Life Data from NELL

We have also evaluated the method on a real-life dataset. The main idea here was
to analyse whether the LRNN models described in this paper could be used in an
NLP pipeline to fill gaps in a knowledge base. To test this idea we downloaded a
collection consisting of about 29k actors from NELL [10] with all their parental
categories. For the experiments, we have subsampled the dataset to 2k actors.
In the end, the number of different parental categories assigned to actors in this
dataset turned out to be quite small. There were only 20 different categories such
as comedian or celebrity, resulting into a dataset of 4k true ground facts, which we

118 G. Šourek et al.

completed with their negative complement under the closed world assumption for
evaluation. In the experiments, we have tested the LRNN construct described
in Sect. 3.1 and obtained a test-set AUC ROC 0.84 and AUC PR 0.43. This
suggests that the LRNN method is indeed able to discover plausible properties of
entities in datasets obtained from text. This could be quite useful for suggesting
properties or relations in settings like NELL’s where feedback from users is also
used to validate the predictions.

6 Related Work

The proposed model essentially relies on the assumption that similar entities
tend to have similar properties, for some similarity function which is learned
implicitly in terms of category membership degrees. It is possible to augment
this form of inference with other models of plausible reasoning, such as reasoning
based on analogical (and other logical) proportions [9,12]. Moreover, as in [2],
we could take into account externally obtained similarity degrees, using rules
such as those in Sect. 4.

The model considered in this paper is related to statistical predicate invention
[7] which relies on jointly clustering entities and relations. The dual represen-
tation of entity and property categories is also reminiscent of formal concept
analysis [5]. LRNNs themselves are also related to the long stream of research
in neural-symbolic integration [1], previous work on using neural networks for
relational learning [3], and more recent approaches such as [4,14].

7 Conclusions and Future Work

We have illustrated how the declarative and flexible nature of LRNNs can be
used for easy encoding of non-trivial learning scenarios. The models that we
considered in this paper jointly learn predictive categories of entities, their prop-
erties and relations between them. The main strength of this approach lies in
the ease with which the model can be extended to more complicated settings,
which is mainly due to the declarative nature of LRNNs. It seems remarkable
that such a declarative approach is able to obtain results which are close to
the state-of-the-art method from [7], without tailoring any part of the learning
method to this particular problem setting.

Our main direction for future work will focus on making LRNNs more scal-
able, which, as indicated by the performed experiments, should also lead to
improved predictive performance.

Acknowledgments. GS and FZ acknowledge support by project no. 17-26999S
granted by the Czech Science Foundation. OK is supported by a grant from the
Leverhulme Trust (RPG-2014-164). SS is supported by ERC Starting Grant 637277.
Computational resources were provided by the CESNET LM2015042 and the CERIT
Scientific Cloud LM2015085, provided under the programme “Projects of Large
Research, Development, and Innovations Infrastructures”.

Learning Predictive Categories with LRNNs 119

References

1. Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration-a structured sur-
vey. arXiv preprint cs/0511042 (2005)

2. Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., Mooney, R.: Montague
meets markov: deep semantics with probabilistic logical form. In: Proceedings of
the *SEM, pp. 11–21 (2013)

3. Blockeel, H., Uwents, W.: Using neural networks for relational learning. In: ICML-
2004 Workshop on Statistical Relational Learning and its Connection to Other
Fields, pp. 23–28 (2004)

4. Cohen, W.W.: Tensorlog: a differentiable deductive database. arXiv preprint
arXiv:1605.06523 (2016)

5. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis: Foundations
and Applications. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)

6. Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Dordrecht (1998)
7. Kok, S., Domingos, P.: Statistical predicate invention. In: Proceedings of the 24th

International Conference on Machine Learning, pp. 433–440 (2007)
8. McCray, A.T.: An upper-level ontology for the biomedical domain. Comp. Funct.

Genomics 4(1), 80–84 (2003)
9. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms

and two experiments in machine learning. J. Artif. Intell. Res. 32, 793–824 (2008)
10. Mitchell, T.M., Cohen, W.W., Hruschka Jr., E.R., Talukdar, P.P., Betteridge, J.,

Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N.,
Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E.A., Ritter, A., Samadi,
M., Settles, B., Wang, R.C., Wijaya, D.T., Gupta, A., Chen, X., Saparov, A.,
Greaves, M., Welling, J.: Never-ending learning. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25–30, 2015, Austin,
Texas, USA, pp. 2302–2310 (2015)

11. Daniel, N.O., Stern, J., Wilkie, O., Stob, M., Smith, E.E.: Default probability.
Cogn. Sci. 15(2), 251–269 (1991)

12. Prade, H., Richard, G.: Reasoning with logical proportions. In: Twelfth Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning
(2010)

13. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

14. Rocktäschel, T., Riedel, S.: Learning knowledge base inference with neural theo-
rem provers. In: NAACL Workshop on Automated Knowledge Base Construction
(AKBC) (2016)

15. Rummel, R.J.: The dimensionality of nations project: attributes of nations and
behavior of nations dyads, pp. 1950–1965. Number 5409. Inter-University Consor-
tium for Political Research (1976)

16. Šourek, G., Aschenbrenner, V., Železný, F., Kuželka, O.: Lifted relational neural
networks. In: Proceedings of the NIPS Workshop on Cognitive Computation: Inte-
grating Neural and Symbolic Approaches (2015)

http://arxiv.org/abs/1605.06523

Generation of Near-Optimal Solutions
Using ILP-Guided Sampling

Ashwin Srinivasan1, Gautam Shroff2, Lovekesh Vig2,
and Sarmimala Saikia2(B)

1 Department of Computer Science and Information Systems BITS Pilani,
Goa Campus, Goa 403726, India
ashwin@goa.bits-pilani.ac.in

2 TCS Research, New Delhi, India
{gautam.shroff,lovekesh.vig,sarmimala.saikia}@tcs.com

Abstract. Our interest in this paper is in optimisation problems that
are intractable to solve by direct numerical optimisation, but neverthe-
less have significant amounts of relevant domain-specific knowledge. The
category of heuristic search techniques known as estimation of distrib-
ution algorithms (EDAs) seek to incrementally sample from probability
distributions in which optimal (or near-optimal) solutions have increas-
ingly higher probabilities. Can we use domain knowledge to assist the
estimation of these distributions? To answer this in the affirmative, we
need: (a) a general-purpose technique for the incorporation of domain
knowledge when constructing models for optimal values; and (b) a way
of using these models to generate new data samples. Here we investi-
gate a combination of the use of Inductive Logic Programming (ILP) for
(a), and standard logic-programming machinery to generate new sam-
ples for (b). Specifically, on each iteration of distribution estimation, an
ILP engine is used to construct a model for good solutions. The result-
ing theory is then used to guide the generation of new data instances,
which are now restricted to those derivable using the ILP model in con-
junction with the background knowledge). We demonstrate the approach
on two optimisation problems (predicting optimal depth-of-win for the
KRK endgame, and job-shop scheduling). Our results are promising: (a)
On each iteration of distribution estimation, samples obtained with an
ILP theory have a substantially greater proportion of good solutions
than samples without a theory; and (b) On termination of distribution
estimation, samples obtained with an ILP theory contain more near-
optimal samples than samples without a theory. Taken together, these
results suggest that the use of ILP-constructed theories could be a useful
technique for incorporating complex domain-knowledge into estimation
distribution procedures.

Keywords: Domain-knowledge guided optimisation · Estimation of
distribution · Inductive logic programming

c© Springer International Publishing AG 2017
J. Cussens and A. Russo (Eds.): ILP 2016, LNAI 10326, pp. 120–131, 2017.
DOI: 10.1007/978-3-319-63342-8 10

Generation of Near-Optimal Solutions Using ILP-Guided Sampling 121

1 Introduction

There are many real-world planning problems for which domain knowledge is
qualitative, and not easily encoded in a form suitable for numerical optimisa-
tion. Here, for instance, are some guiding principles that are followed by the
Australian Rail Track Corporation when scheduling trains: (1) If a “healthy”
train is running late, it should be given equal preference to other healthy trains;
(2) A higher priority train should be given preference to a lower priority train,
provided the delay to the lower priority train is kept to a minimum; and so
on. It is evident from this that train-scheduling may benefit from knowing if a
train is “healthy”, what a train’s priority is, and so on. But are priorities and
train-health fixed, irrespective of the context? What values constitute accept-
able delays to a low-priority train? Generating good train-schedules will require a
combination of quantitative knowledge of a train’s running times and qualitative
knowledge about the train in isolation, and in relation to other trains. In this
paper, we propose a heuristic search method, that comes under the broad cate-
gory of an estimation distribution algorithm (EDA). EDAs iteratively generates
better solutions to the optimisation problem using machine-constructed models.
Usually EDA’s have used generative probabilistic models, such as Bayesian Net-
works, where domain-knowledge needs to be translated into prior distributions
and/or network topology. In this paper, we are concerned with problems for
which such a translation is not evident. Our interest in ILP is that it presents
perhaps one of the most flexible ways to use domain-knowledge when construct-
ing models.

What can this form of optimisation do differently? First, there is the straight-
forward difference to standard optimisation, arising from the use of domain-
knowledge in first-order logic. Traditionally, optimisation methods have required
domain knowledge to be in the form of linear inequalities. This quickly becomes
complicated. For example, y = x1 ⊕ x2 requires the inequalities y ≤ x1 + x2 ∧
y ≤ 2−x1 −x2 ∧ y ≥ x1 −x2 ∧ y ≥ x2 −x1 ∧ y ≥ 0 ∧ y ≤ 1. As a statement in
logic, the relation is clearly trivial: so, we would expect to do better on problems
for which domain-knowledge is far easier to express in logical form than as linear
constraints (of course, one could consider non-linear constraints, but then the
optimisation problem becomes much harder). Secondly, there is the difference
arising from constructing models in first-order logic. Most probabilistic models
used in EDA only allow to use models that involve statements about proposi-
tions. This restricts the expressivity of the models, or requires large numbers
of propositions representing pre-defined relations. We would therefore expect to
do better on problems that require models that involve relationships amongst
background predicates that are not easy to know beforehand.

The rest of the paper is organised as follows. Section 2 provides a brief descrip-
tion of the EDA method we use for optimisation problems. Section 2.1 describes
how ILP can be used within the iterative loop of an EDA, including a procedure
for sampling data instances entailed by the ILP-theory. Section 3 describes an
empirical evaluation followed by conclusions in Sect. 4.

122 A. Srinivasan et al.

2 EDA for Optimisation

The basic EDA approach we use is the one proposed by the MIMIC algorithm
[5]. Assuming that we are looking to minimise an objective function F (x), where
x is an instance from some instance-space X , the approach first constructs an
appropriate machine-learning model to discriminate between samples of lower
and higher value, i.e., F (x) ≤ θ and F (x) > θ, and then sampling from this
model to generate a population for the next iteration, while also lowering θ.
This is described by the procedure in Fig. 1.

Procedure EOMS: Evolutionary Optimisation using Model-Assisted Sampling
1. Initialize population P := {xi}; θ := θ0
2. while not converged do

(a) for all xi in P label(xi) := 1 if F (xi) ≤ θ else label(xi) := 0
(b) train model M to discriminate between 1 and 0 labels i.e., P (x : label(x) =

1|M) > P (x : label(x) = 0|M)
(c) regenerate P by repeated sampling using model M
(d) reduce threshold θ

3. return P

Fig. 1. Evolutionary optimisation using machine-learning models to guide sampling.

2.1 ILP-assisted Evolutionary Optimisation

We propose to use ILP as the model construction technique in the EOMS pro-
cedure, since it provides an extremely flexible way to construct models using
domain-knowledge. On the face of it, this would seem to pose a difficulty for the
sampling step: how are we to generate new instances that are entailed by an ILP-
constructed model? There are two straightforward options. First, if we have an
enumerator of the instance space X , then we could resort to a form of rejection-
sampling. Second, we can restrict ILP-theories for any predicate to generative
clauses, which allows the theories to be used generatively.1, using standard logic-
programming inference machinery to generate instances of the success-set of each
predicate. Instances obtained in this manner are selected with some probability
to achieve a non-uniform sampling of the success-set. Both these methods are
viable for the purposes of this paper, but in general, we expect that more sophis-
ticated ways of sampling would be needed: see for example [4]. The procedure
EOIS in Fig. 2 is a refinement of the EOMS procedure above.

In EOIS, ilp(B,E+, E−) is an ILP algorithm that returns a theory M s.t.
B ∧ M |= E+; B ∧ M is inconsistent with the E− only to the extent allowed
by constraints in B; and sample(n,M,B) returns a set of at most n instances
entailed by B ∧ M , if M �= ∅. If M = ∅, it returns a random selection of
n instances from the instance-space. In general, we require sample to draw

1 A syntactic way to do this is by adding constraints to the body of the clause that
impose range (that is, type) restrictions on the variables in the head: see [6].

Generation of Near-Optimal Solutions Using ILP-Guided Sampling 123

Procedure EOIS: Evolutionary Optimisation using ILP-Assisted Sampling

Given: (a) Background knowledge B; (b) an upper-bound θ∗ on the cost of acceptable
solutions; (c) a decreasing sequence of cost-values θ1, θ2, . . . , θn s.t. θ1 ≥ θ∗ ≥ θn;
and (d) an upper-bound on the sample size n

1. Let M0:= ∅ and P0:= sample(n, M0, B)
2. Let k = 1
3. while (θk ≥ θ∗) do

(a) Ek
+ := {xi : xi ∈ P and F (xi) ≤ θk} and Ek

− := {xi : xi ∈
P and F (xi) > θk}

(b) Mk := ilp(B, Ek
+, Ek

−)
(c) Pk:= sample(n, Mk, B)
(d) increment k

4. return Pk−1

Fig. 2. Evolutionary optimisation using ILP models to guide sampling.

instances from the success-set of the ILP-constructed theory, since these are
the “good” solutions entailed by the model on each iteration (see [4] for tech-
niques for doing this). Here, we make it by providing an initial sample to EOIS
as input when M = ∅ (to prevent biasing future iterations: this sample is
obtained by uniform random selection from the instance space). For subsequent
steps, we assume the availability of a generator that returns a sample of the
success-set of target-predicate. That is, when M �= ∅, sample returns the set
S = {ei : 1 ≤ i ≤ n ei ∈ X and B ∧ M 	 e and Pr(ei) ≥ δ}, where δ
is some probability threshold (correctly therefore sample(n,M,B) should be
sample(n, δ,M,B)). Thus if δ = 1, the first n instances derived (or fewer if
there are less) using SLD-resolution with B ∧ M will be selected. Finally, we
note that on iterations k ≥ 1, we can use the data P0 ∪ · · · ∪ Pk−1 to obtain
training examples Ek

+ and Ek
− since the actual costs for the P ’s have already

been computed. For clarity, this detail has been omitted.

3 Empirical Evaluation

3.1 Aims

Our aims in the empirical evaluation are to investigate the following conjectures:

(1) On each iteration, the EOIS procedure will yield better samples than simple
random sampling of the instance-space; and

(2) On termination, the EOIS procedure will yield more near-optimal instances
than simple random sampling of the same number of instances as used for
constructing the model.

It is relevant here to clarify what the comparisons are intended in the state-
ments above. Conjecture (1) is essentially a statement about the gain in pre-
cision obtained by using the model. Let us denote Pr(F (x) ≤ θ) the prob-
ability of generating an instance x with cost at most θ without a model to

124 A. Srinivasan et al.

guide sampling (that is, using simple random sampling of the instance space),
and by Pr(F (x) ≤ θ|Mk,B) the probability of obtaining such an instance with
an ILP-constructed model Mk,B obtained on iteration k of the EOIS proce-
dure using some domain-knowledge B. (note if Mk,B = ∅, then we will mean
Pr(F (x) ≤ θ|Mk,B) = Pr(F (x) ≤ θ)). Then for (1) to hold, we would require
Pr(F (x) ≤ θk|Mk,B) > Pr(F (x) ≤ θk), given some relevant B. We will estimate
the probability on the lhs from the sample generated using the model, and the
probability on the rhs from the datasets provided.

Conjecture (2) is related to the gain in recall obtained by using the model,
although it is more practical to examine actual numbers of near-optimal
instances (true-positives in the usual terminology). We will compare the num-
bers of near-optimal in the sample generated by the model to those obtained
using random sampling.

3.2 Materials

Data. We use two synthetic datasets, one arising from the KRK chess endgame
(an endgame with just White King, White Rook and Black King on the board),
and the other a restricted, but nevertheless hard 5 × 5 job-shop scheduling
(scheduling 5 jobs taking varying lengths of time onto 5 machines, each capable
of processing just one task at a time).

The optimisation problem we examine for the KRK endgame is to predict
the depth-of-win with optimal play [1]. Although aspect of the endgame has
not been as popular in ILP as task of predicting “White-to-move position is
illegal” [2,8], it offers a number of advantages as a Drosophila for optimisation
problems of the kind we are interested. First, as with other chess endgames,
KRK-win is a complex, enumerable domain for which there is complete, noise-
free data. Second, optimal “costs” are known for all data instances. Third, the
problem has been studied by chess-experts at least since Torres y Quevado built
a machine, in 1910, capable of playing the KRK endgame. This has resulted in
a substantial amount of domain-specific knowledge. We direct the reader to [3]
for the history of automated methods for the KRK-endgame. For us, it suffices
to treat the problem as a form of optimisation, with the cost being the depth-of-
win with Black-to-move, assuming minimax-optimal play. In principle, there are
643 ≈ 260, 000 possible positions for the KRK endgame, not all legal. Removing
illegal positions, and redundancies arising from symmetries of the board reduces
the size of the instance space to about 28, 000 and the distribution shown in
Fig. 3(a). The sampling task here is to generate instances with depth-of-win equal
to 0. Simple random sampling has a probability of about 1/1000 of generating
such an instance once redundancies are removed.

The job-shop scheduling problem is less controlled than the chess endgame,
but is nevertheless representative of many real-life applications (like scheduling
trains), which are, in general, known to be computationally hard. We use a job-
shop problem with five jobs, each consisting of five tasks that need to be executed
in order. These 25 tasks are to be performed using 5 machines, each capable of

Generation of Near-Optimal Solutions Using ILP-Guided Sampling 125

Cost Instances Cost Instances

0 27 (0.001) 9 1712 (0.196)

1 78 (0.004) 10 1985 (0.267)

2 246 (0.012) 11 2854 (0.368)

3 81 (0.152) 12 3597 (0.497)

4 198 (0.022) 13 4194 (0.646)

5 471 (0.039) 14 4553 (0.808)

6 592 (0.060) 15 2166 (0.886)

7 683 (0.084) 16 390 (0.899)

8 1433 (0.136) draw 2796 (1.0)

Total Instances: 28056

(a) Chess

Cost Instances Cost Instances

400–500 10 (0.0001) 1000–1100 24067 (0.748)

500–600 294 (0.003) 1100–1200 15913 (0.907)

600–700 2186 (0.025) 1200–1300 7025 (0.978)

700–800 7744 (0.102) 1300–1400 1818 (0.996)

800–900 16398 (0.266) 1400–1500 345 (0.999)

900–1000 24135 (0.508) 1500–1700 66 (1.0)

Total Instances: 100000

(b) Job-Shop

Fig. 3. Distribution of cost values. Numbers in parentheses are cumulative frequencies.

performing a particular task, albeit for any of the jobs. A 5 × 5 matrix defines
how long task j of job i takes to execute on machine j.

Data instances for Chess are in the form of 6-tuples, representing the rank
and file (X and Y values) of the 3 pieces involved. At each iteration k of the EOIS
procedure, some instances with depth-of-win ≤ θk and the rest with depth-of-win
> θk are used to construct a model.2

Data instances for Job-Shop are in the form of schedules defining the sequence
in which tasks of different jobs are performed on each machine, along with the
total cost (i.e., time duration) implied by the schedule. On iteration i of the
EOIS procedure, models are to be constructed to predict if the cost of schedule
will be ≤ θi or otherwise.3

Background Knowledge. For Chess, background predicates encode the fol-
lowing (WK denotes the White King, WR the White Rook, and BK the Black
King): (a) Distance between pieces WK-BK, WK-BK, WK-WR; (b) File and
distance patterns: WR-BK, WK-WR, WK-BK; (c) “Alignment distance”: WR-
BK; (d) Adjacency patterns: WK-WR, WK-BK, WR-BK; (e) “Between” pat-
terns: WR between WK and BK, WK between WR and BK, BK between WK
and WR; (f) Distance to closest edge: BK; (g) Distance to closest corner: BK;
(h) Distance to centre: WK; and (i) Inter-piece patterns: Kings in opposition,
Kings almost-in-opposition, L-shaped pattern. We direct the reader to [3] for the
history of using these concepts, and their definitions.

For Job-Shop, background predicates encode: (a) schedule job J “early” on
machine M (early means first or second); (b) schedule job J “late” on machine

2 The θk values are pre-computed assuming optimum play. We note that when con-
structing a model on iteration k, it is permissible to use all instances used on itera-
tions 1, 2, . . . , (k − 1) to obtain data for model-construction.

3 The total cost of a schedule includes any idle-time, since for each job, a task before
the next one can be started for that job. Again, on iteration i, it is permissible to
use data from previous iterations.

126 A. Srinivasan et al.

M (late means last or second-last); (c) job J has the fastest task for machine
M ; (d) job J has the slowest task for machine M ; (e) job J has a fast task
for machine M (fast means the fastest or second-fastest); (f) Job J has a slow
task for machine M (slow means slowest or second-slowest); (g) Waiting time for
machine M ; (h) Total waiting time; (i) Time taken before executing a task on
a machine. Correctly, the predicates for (g)–(i) encode upper and lower bounds
on times, using the standard inequality predicates ≤ and ≥.

Algorithms and Machines. The ILP-engine we use is Aleph (Version 6, avail-
able from A.S. on request). All ILP theories were constructed on an Intel Core
i7 laptop computer, using VMware virtual machine running Fedora 13, with an
allocation of 2GB for the virtual machine. The Prolog compiler used was Yap,
version 6.1.34.

3.3 Method

Our method is straightforward:

For each optimisation problem, and domain-knowledge B:
Using a sequence of threshold values 〈θ1, θ2, . . . , θn〉 on iteration k (1 ≤
k ≤ n) for the EOIS procedure:
1. Obtain an estimate of Pr(F (x) ≤ θk) using a simple random sample

from the instance space;
2. Obtain an estimate of Pr(F (x) ≤ θk|Mk,B) by constructing an ILP

model for discriminating between F (x) ≤ θk and F (x) > θk
3. Compute the ratio of Pr(F (x) ≤ θk|Mk,B) to P (F (x) ≤ θk)

The following details are relevant:

– The sequence of thresholds for Chess are 〈8, 4, 0〉. For Job-Shop, this sequence
is 〈1000, 750, 600〉; Thus, θ∗ = 0 for Chess and 600 for Job-Shop, which means
we require exactly optimal solutions for Chess.

– Experience with the use of ILP engine used here (Aleph) suggests that the
most sensitive parameter is the one defining a lower-bound on the precision
of acceptable clauses (the minacc setting in Aleph). We report experimental
results obtained with minacc = 0.7, which has been used in previous experi-
ments with the KRK dataset. The background knowledge for Job-Shop does
not appear to be sufficiently powerful to allow the identification of good the-
ories with short clauses. That is, the usual Aleph setting of upto 4 literals per
clause leaves most of the training data ungeneralised. We therefore allow an
upper-bound of upto 10 literals for Job-Shop, with a corresponding increase
in the number of search nodes to 10000 (Chess uses the default setting of 4
and 5000 for these parameters).

4 http://www.dcc.fc.up.pt/∼vsc/Yap/.

http://www.dcc.fc.up.pt/~vsc/Yap/

Generation of Near-Optimal Solutions Using ILP-Guided Sampling 127

– In the EOIS procedure, the bound on sample size n is 1000. The initial sample
is obtained using a uniform distribution over all instances. Let us call this P0.
On the first iteration of EOIS (k = 1), the datasets E1

+ and E1
− are obtained

by computing the (actual) costs for instances in P0, and an ILP model M1,B ,
or simply M1, constructed. To obtain a sample of instances entailed by the
model Mk,B we use the sample function with a δ value of 1.0. That is, the first
n unique instances (or fewer, if less) obtained by employing SLD-resolution on
B∧Mk,B are taken as the sample Pk. For Chess, it has been possible to ensure
that the logic-programs involved are generative. Thus, we are able to use Mk,B

directly as a generator of instances entailed by the B ∧ Mk,B . For Job-Shop,
we employ rejection-sampling instead. That is, we randomly draw from the
instance-space, and then check to see if it is entailed by B ∧ Mk,B . Both
approaches have not proved to be especially inefficient, probably because the
instance-spaces are small. On each iteration k, an estimate of Pr(F (x) ≤ θk)
can be obtained from the empirical frequency distribution of instances with
values ≤ θk and > θk. For the synthetic problems here, these estimates are in
Fig. 3. For Pr(F (x) ≤ θk|Mk,B), we use obtain the frequency of F (x) ≤ θk
in Pk

– Readers will recognise that the ratio of Pr(F (x) ≤ θk|Mk,B) to P (F (x) ≤ θk)
is equivalent to computing the gain in precision obtained by using an ILP
model over random selection. Specifically, if this ratio is approximately 1,
then there is no value in using the ILP model. The probabilities computed
also provide one way of estimating sampling efficiency of the models (the
higher the probability, the fewer samples will be needed to obtain an instance
x with F (x) ≤ θk).

3.4 Results

Results relevant to conjectures (1) and (2) are tabulated in Fig. 4 and Fig. 5.
The principal conclusions that can drawn from the results are these:

(1) For both problems, and every threshold value θk, the probabilty of obtaining
instances with cost at most θk with model-guided sampling is substan-
tially higher than without a model. This provides evidence that model-
guided sampling results in better samples than simple random sampling
(Conjecture 1);

(2) For both problems and every threshold value θk, samples obtained with
model-guided sampling contain a substantially higher number of near-
optimal instances than samples obtained without a model (Conjecture 2).

We note also that all results have been obtained by sampling a small portion of
the instance space (about 10 % for Chess, and about 3 % for Job-Shop).

We now examine the result in more detail. It is evident that the performance
on the Job-Shop domain is not as good as on Chess. The natural question that
arises is: Why is this so? We conjecture that this is a consequence of the back-
ground knowledge for Job-Shop not being as relevant to low cost values, as was

128 A. Srinivasan et al.

Model Pr(F (x) ≤ θk|Mk)

k = 1 k = 2 k = 3

None 0.136 0.022 0.001

ILP 0.816 0.462 0.409

(6.0) (21.0) (409.0)

(a) Chess

Model Pr(F (x) ≤ θk|Mk)

k = 1 k = 2 k = 3

None 0.507 0.025 0.003

ILP 0.647 0.171 0.080

(1.3) (6.8) (26.7)

(b) Job-Shop

Fig. 4. Probabilities of obtaining good instances x for each iteration k of the EOIS
procedure. That is, the column k = 1 denotes P (F (x) ≤ θ1 after iteration 1; the
column k = 2 denotes P (F (x) ≤ θ2 after iteration 2 and so on. In effect, this is an
estimate of the precision when predicting F (x) ≤ θk. “None” in the model column
stands for probabilities of the instances, corresponding to simple random sampling
(Mk = ∅). The number in parentheses below each ILP entry denotes the ratio of that
entry against the corresponding entry for “None”. This represents the gain in precision
of using the ILP model over simple random sampling.

Model Near-Optimal Instances

k = 1 k = 2 k = 3

None 1/27 2/27 3/27

ILP 11/27 22/27 27/27

(1000) (1964) (2549)

(a) Chess

Model Near-Optimal Instances

k = 1 k = 2 k = 3

None 3/304 6/304 9/304

ILP 6/304 28/304 36/304

(1000) (1987) (2895)

(b) Job-Shop

Fig. 5. Fraction of near-optimal instances (F (x) ≤ θ∗) generated on each iteration of
EOIS. In effect, this is an estimate of the recall (true-positive rate, or sensitivity) when
predicting F (x) ≤ θ∗. The fraction a/b denotes that a instances of b are generated. The
numbers in parentheses denote the number of training instances used by the ILP engine.
The values with “None” are the numbers expected by sampling the same number of
training instances used for training the ILP engine.

the case for Chess. Some evidence for this was already apparent when we had to
increase the lengths of clauses allowed for the ILP engine (this is usually a sign
that the background knowledge is somewhat low-level). In contrast, with Chess,
some of the concepts refer specifically to “cornering” the Black King, with a view
of ending the game as soon as possible. We would expect these predicates to be
especially useful for positions at depths-of-win near 0. Evidence of the unreliable
performance of the EOIS procedure in Chess, with irrelevant background knowl-
edge is in Fig. 6. These results suggest a refinement to the conclusions we can
draw from the use of EOIS, namely: we expect the EOIS procedure to be less
effective if the background knowledge is not very relevant to low-cost solutions.

Finally, we note that the experiments with synthetic data have ignored an
important aspect of the optimisation problem, namely the time taken to obtain

Generation of Near-Optimal Solutions Using ILP-Guided Sampling 129

Background Pr(F (x) ≤ θk|Mk,B)

B k = 1 k = 2 k = 3

Blow 0.658 0.417 0.0

Bhigh 0.816 0.462 0.409

(a)

Background Near-Optimal Instances

B k = 1 k = 2 k = 3

Blow 17/27 4/27 0/27

(1000) (1959) (2581)

Bhigh 11/27 17/27 27/27

(1000) (1964) (2549)

(b)

Fig. 6. Precision (a), and recall of near-optimal instances (b) of the EOIS procedure
with background knowledge of low relevance to near-optimal solutions. The results are
for Chess, with Blow denoting background predicates that simply define the geometry
of the board, using the predicates less than and adjacent. These predicates form the
background knowledge for most ILP applications to the problem of detecting illegal
positions in the KRK endgame. Bhigh denotes background used previously, with high
relevance to low depths-of-win. The numbers in parentheses in (b) are the number of
training instances as before.

the value of the objective function for each data instance. Clearly, there is a
trade-off between the time taken to construct a model, and the time taken to
simply draw instances without a model. To address this trade-off we would have
to estimate the number of instances that need to be randomly sampled to obtain
the same numbers of near-optimal instances as with model-assisted EDA; and to
compare: (a) the time to obtain values of the objective function for randomly-
sampled instances; and (b) the time taken to obtain the corresponding values
for the training data used to construct models and the total time taken for
model construction. For model-construction to be beneficial, clearly the time in
(b) has to be less than (a). For the problems here, random sampling require
approximately 4 (JobShop) to 10 (Chess) times as many samples to obtain the
same numbers of near-optimal instances. The times for theory-construction are
small enough to expect that (b) is less than (a) for these ratios.

4 Concluding Remarks

It is uncommon to see ILP applied to optimisation problems. The use of ILP-
constructed theories within an evolutionary optimisation procedure is one answer
to the question of how to use ILP for optimisation (but not the only answer:
recent work in [7], for example, suggests using ILP-constructed clauses as soft-
constraints to a constraint solver). This requires the ILP model to be used gen-
eratively, which is not common practice in ILP. In this paper we have been able
to do this by a combination of careful definition of the background knowledge,
and adding range-restrictions to clauses constructed by ILP. Our results pro-
vide evidence that this combination of ILP and logic-programming provides one

130 A. Srinivasan et al.

way of incorporating complex, but relevant domain-knowledge into evolutionary
optimisation.

Concerning the specific problems examined here, it is possible that we could
have directly constructed a model discriminating near-optimal instances from the
rest using ILP alone. The focus of this paper however is on a different question,
namely, whether evolutionary optimisation methods can benefit from the use
of ILP. The results here should therefore be seen as evidence of improvements
possible in an EDA technique when it includes ILP-assisted models. In turn, this
evidence could be of relevance for problems where ILP models alone would be
insufficient, and we would have to resort to sampling-based methods.

There are several ways in which the work here could be extended. The most
immediate is to examine ways of sampling by using techniques developed in
probabilistic ILP. Indeed, the principal conjecture of the paper is that the use
of models constructed by any form of learning that allows the inclusion domain-
knowledge can greatly improve the sampling efficiency of EDA methods. We
have provided evidence for this conjecture using a classical ILP method. Given
these results, we can expect first-order learning that is capable of using domain-
knowledge and constructing rules that can allow a non-uniform sampling of
ground instances (for example, through the incorporation of probabilities with
the rules) will provide even better results. We would recommend this as the next
step in this line of work.

It is of interest also to consider whether there are any gains to be made by
re-use of theories (currently, we re-use data, but re-learn theories from scratch on
each new iteration of the EOIS procedure). There is the straightforward approach
to this, of simply providing theories constructed earlier as background knowledge
for subsequent iterations. A more ambitious variant would retain some portions
of the earlier theory (those clauses that entail the current set of positive instances
and none, or only few, of the negative instances, for example), thus reducing the
model-construction effort.

Acknowledgments. A.S. is a Visiting Professor at the Department of Computer
Science, University of Oxford; and Visiting Professorial Fellow at the School of CSE,
UNSW.

References

1. Bain, M., Muggleton, S.: Learning optimal chess strategies. In: Furukawa, K.,
Michie, D., Muggleton, S. (eds.) Machine Intelligence 13, pp. 291–309. Oxford Uni-
versity Press Inc, New York (1995)

2. Bain, M.: Learning logical exceptions in chess. Ph.D. Thesis, University of
Strathclyde (1994)

3. Breda, G.: KRK Chess Endgame Database Knowledge Extraction and Compression.
Diploma Thesis, Technische Universität, Darmstadt (2006)

4. Cussens, J.: Stochastic logic programs: sampling, inference and applications. In:
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,
UAI 2000, pp. 115–122, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc
(2000)

Generation of Near-Optimal Solutions Using ILP-Guided Sampling 131

5. De Bonet, J.S., Isbell, C.L., Viola, P. et al.: Mimic: finding optima by estimating
probability densities. In: Advances in Neural Information Processing Systems, pp.
424–430 (1997)

6. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Muggleton, S.
(ed.) Inductive Logic Programming, pp. 281–298. Academic Press, London (1992)

7. Shiina, Y., Ohwada, H.: Using machine-generated soft constraints for roster prob-
lems. In: Muggleton, S., Watanabe, H. (eds.) Latest Advances in Inductive Logic
Programming, pp. 227–234. World Scientific Press (2014)

8. Srinivasan, A., Muggleton, S.H., Bain, M.E.: Distinguishing noise from exceptions
in non-monotonic learning. In: Muggleton, S., Furukawa, K. (eds.) Second Interna-
tional Inductive Logic Programming Workshop (ILP92). Institute for New Genera-
tion Computer Technology (1992)

Author Index

Artikis, Alexander 27

Besold, Tarek 52
Blask, Erik 14

Côrte-Real, Joana 1

Dutra, Inês 1

Gad-Elrab, Mohamed H. 94

Kersting, Kristian 40
Khot, Tushar 14
Kumaraswamy, Raksha 40
Kuželka, Ondřej 108

Lisi, Francesca A. 94

Malec, Marcin 14
Manandhar, Suresh 108
Matsumoto, Satoshi 68
Michelioudakis, Evangelos 27
Muggleton, Stephen 52

Nagy, James 14
Natarajan, Sriraam 14, 40, 81

Odom, Phillip 40

Paliouras, Georgios 27

Rocha, Ricardo 1

Saikia, Sarmimala 120
Schmid, Ute 52
Schockaert, Steven 108
Shavlik, Jude 81
Shoudai, Takayoshi 68
Shroff, Gautam 120
Soni, Ameet 81
Šourek, Gustav 108
Srinivasan, Ashwin 120
Stepanova, Daria 94
Suzuki, Yusuke 68

Tamaddoni-Nezhad, Alireza 52
Tran, Hai Dang 94

Vig, Lovekesh 120
Viswanathan, Dileep 81

Weikum, Gerhard 94

Železný, Filip 108
Zeller, Christina 52

	Preface
	Organization
	Invited Speakers
	Inferring Causal Models of Complex Relational and Dynamic Systems
	Machine Learning and Logic—The Beginnings of a New Computer Science?
	Revolutionizing Decision Making, Democratizing Data Science, and Automating Machine Learning via Probabilistic Programming
	Contents
	Estimation-Based Search Space Traversal in PILP Environments
	1 Introduction
	2 Related Work
	3 Background
	4 Estimation Pruning
	5 Experiments
	6 Conclusion
	References

	Inductive Logic Programming Meets Relational Databases: Efficient Learning of Markov Logic Networks
	1 Introduction
	2 Background
	3 Learning Statistical Relational Models Using Databases
	3.1 Problem Description
	3.2 Encoding Background Knowledge
	3.3 Facts
	3.4 ILP Search Using Databases

	4 Empirical Evaluation
	5 Conclusion and Future Work
	References

	Online Structure Learning for Traffic Management
	1 Introduction
	2 OSL: An Online Structure Learner Using Background Knowledge Axiomatization
	3 Empirical Evaluation
	3.1 Learning Challenges
	3.2 Experimental Setup and Results

	4 Summary and Further Work
	References

	Learning Through Advice-Seeking via Transfer
	1 Introduction
	2 Background
	2.1 Transfer Learning
	2.2 Knowledge-Based Probabilistic Logic Learning

	3 Advice-Seeking for Transfer
	3.1 The Problem Formulation

	4 The LAST Algorithm
	4.1 Step 1: LTL
	4.2 Step 2: SelectBestN
	4.3 Step 3: Improve
	4.4 Step 4: Query
	4.5 Step 5: Learn

	5 Experimental Evaluation
	5.1 Domains Used
	5.2 Evaluation Metrics Used
	5.3 Methods Compared
	5.4 Results

	6 Conclusion
	References

	How Does Predicate Invention Affect Human Comprehensibility?
	1 Introduction
	2 Related Work
	2.1 Comprehensibility
	2.2 Predicate Invention

	3 Framework
	3.1 General Setting
	3.2 Comprehensibility
	3.3 Experimental Hypotheses

	4 Experiment
	4.1 Material
	4.2 Variables and Empirical Hypotheses
	4.3 Participants and Procedure
	4.4 Results
	4.5 Interpretation and Discussion

	5 Conclusions and Further Work
	References

	Distributional Learning of Regular Formal Graph System of Bounded Degree
	1 Introduction
	2 Preliminaries
	3 Learning Regular FGS with 1-Finite Context Property
	4 Conclusions
	References

	Learning Relational Dependency Networks for Relation Extraction
	1 Introduction
	2 Background
	3 Proposed Pipeline
	3.1 Feature Generation
	3.2 Weak Supervision
	3.3 Learning Relational Dependency Networks
	3.4 Incorporating Human Advice

	4 Experiments and Results
	4.1 Weak Supervision
	4.2 Joint Learning
	4.3 Word2vec
	4.4 Advice
	4.5 RDN Boost vs RelationFactory

	5 Conclusion
	References

	Towards Nonmonotonic Relational Learning from Knowledge Graphs
	1 Introduction
	2 Preliminaries
	3 A Theory Revision Framework for Rule-Based KG Completion
	3.1 Problem Statement
	3.2 Methodology

	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	Learning Predictive Categories Using Lifted Relational Neural Networks
	1 Introduction
	2 Lifted Relational Neural Networks
	2.1 The Basic Framework
	2.2 Handling Recursion in LRNNs

	3 Learning Predictive Categories
	3.1 Predictive Categories for Attribute-Valued Data
	3.2 Predictive Categories for Relational Data

	4 Prediction Using Learned Similarities
	5 Evaluation
	5.1 Evaluation of the Model from Sect.3.1
	5.2 Evaluation of the Model from Sect.3.2
	5.3 Evaluation of the Model from Sect.4
	5.4 An Experiment with Real-Life Data from NELL

	6 Related Work
	7 Conclusions and Future Work
	References

	Generation of Near-Optimal Solutions Using ILP-Guided Sampling
	1 Introduction
	2 EDA for Optimisation
	2.1 ILP-assisted Evolutionary Optimisation

	3 Empirical Evaluation
	3.1 Aims
	3.2 Materials
	3.3 Method
	3.4 Results

	4 Concluding Remarks
	References

	Author Index

