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Abstract When Solomon Feferman began his research with Alfred Tarski in the
early 1950s, model theory was still in process of becoming a distinct part of math-
ematical logic. Although Feferman’s doctoral thesis was not in model theory, his
interests included model theory from the start, and he published a paper in the field
roughly once every six years throughout his career. His earliest work in model theory
is recognised in the name ‘Feferman-Vaught theorem’, which stems from some very
detailed bare-hands work on sums and products of structures. During the 1960s and
1970s he worked on applications of many-sorted interpolation theorems, in particu-
lar to derive results relating implicit and explicit definability in various contexts. In
the 1980s he edited with Jon Barwise a monumental collection of essays on ‘Model-
theoretic logics’. In more recent papers he reflected on the conceptual basis of model
theory from a historical point of view.
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Solomon Feferman engaged with model theory in three different ways. In the 1950s
he did fundamental work on the first-order theories of generalised sums and prod-
ucts, for which the name ‘Feferman-Vaught theorem’ will ensure that he never goes
forgotten. Between the 1960s and the 1980s he followed a trajectory that began
with applications of interpolation theorems in model theory, and led to work on set-
theoretic generalisations of model theory. In more recent years he reshaped himself
as a historian of ideas, recalling and explaining aspects of the development of math-
ematical logic through the twentieth century; model theory takes a significant place
in this work, largely thanks to Feferman’s connections with Tarski and the editing of
Gödel’s collected works.
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These three themes seem rather distinct, though they probably had various inter-
esting links in Feferman’s own mind. So we will treat them separately.

My thanks to Jamshid Derakhshan, Janos Makowsky and Jeffery Zucker for vari-
ous kinds of information and advice, and (posthumously, alas) to Solomon Feferman
himself for a number of preprints of his work that he sent me over the years.

1 Logic When Feferman Entered the Field

In his valuable book with Anita Burdman Feferman, on the life and works of Alfred
Tarski, Solomon Feferman recalls ([11] p. 171) that he went to work at Berkeley
in 1948 as ‘an eager new graduate student in mathematics’. He attended Tarski’s
lectures in metamathematics at Berkeley in 1949/50 ([26] footnote p. 80). By 1953
he was working on his doctoral thesis under Tarski’s supervision, and simultaneously
acting as Tarski’s course assistant ([28] p. 388).

In the early 1950s the boundaries of logic were in a state of flux. Was the kind of
thing that Tarski was doing at that date a branch of philosophy or of mathematics,
or in the intersection of the two? Tarski himself had distinguished metamathematics
frommathematics back in the 1930s. In 1950 he spoke of working ‘on the borderline
of algebra and metamathematics’ [55], and he continued to put some of his work on
the metamathematical side of the mathematics/metamathematics divide right up to
1978, as witness the title of [7]. By the time I began work in model theory in 1965,
I think most model theorists regarded themselves as straight mathematicians—as I
did—and the notion of metamathematics never entered their heads.

One memory I have is that in 1966 my supervisor John Crossley arranged for me
tomeet Georg Kreisel with a view to getting some advice on possible research topics.
Kreisel’s suggestions struckme as aimedmore at foundations thanmodel theory, and
I didn’t pursue his advice. This story is relevant to Feferman, because it appears that
Kreisel had greater success drawing Feferman towards similar problems a year or so
earlier; a background paper of Kreisel had the title ‘Set theoretic problems suggested
by the notion of potential totality’ ([42], written in 1959 and cited in [32]).

Not only was the boundary between mathematics and philosophy unclear; the
divisions within purely mathematical logic were unclear too. The now-standard divi-
sion into Set Theory, Recursion Theory, Proof Theory andModel Theory seems to go
back to the early 1960s. It reached the AMS Subject Classification in 1973. Around
1971 I remember Robin Gandy complaining that Jack Silver had been invited to give
some talks in model theory and had spoken on set theory (or maybe it was the other
way round); Silver’s topic had been the use of forcing to prove the consistency of
some propositions about model-theoretic two-cardinal theorems. Soon afterwards
Saharon Shelah was inventing proper forcing to prove results in his model-theoretic
classification theory. The problem that Tarski first proposed to Feferman was about
decidability, but Feferman responded to it by proving results in model theory. A few
years later Feferman was proving results in model theory by means of proof theory.

There will always be crossovers, but the boundaries between model theory and
the other main divisions of mathematical logic have been reasonably robust for the
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last thirty years or so. The fact that they were not robust when Feferman came into
the subject shows up in Feferman’s work in two ways. The first is that nearly all of
his so-called model-theoretic work contains at least a taste of some other logical
discipline. Today this work of his seems to us strikingly interdisciplinary, though it
may not have seemed so at the time. The second is that Feferman, being a reflective
kind of person, drew on his experience to write a number of very interesting papers
about the interactions between different parts of logic in the formative years of model
theory.

In his paper for the Proceedings of the Tarski Symposium 1974 ([17] footnote
p. 205), Feferman tells us that the paper which he presented to the Symposium itself
‘was entitled Model theory and foundations. It dealt with three areas of mutually
fruitful interaction which I had found between model theory and work in proof
theory and constructivity’. One of these involved the application of many-sorted
interpolation theorems, and we review it in Sect. 3 below. The second was about
model-theoretic functors; we discuss it briefly at the end of Sect. 2 below. The third
was on’ordinals and functionals in proof theory’, as reported in [15]. Looking at that
paper [15], I don’t see anything in it that would be regarded as model theory today.
But this fact in itself points to questions about the boundaries of model theory, which
we come back to in Sect. 4.

2 The Feferman-Vaught Theorem

The Feferman-Vaught theorem is as much a technique as a theorem. A typical case
of the theorem is that when the structure A is a cartesian product, say A = ∏

i∈I Bi

with I �= ∅, we can reduce the question whether a first-order sentence φ is true in
A to a question whether a certain set-theoretic formula �φ is satisfied in the power
set P(I ) of the index set I by a certain finite sequence of sets (‖θ0‖, . . . , ‖θn−1‖),
where ‖θ‖ is the set {i ∈ I : Bi |= θ}. The reduction is effective in the sense that
there is an algorithm which computes �φ and the sentences θ0, . . . , θn−1 uniformly
from φ. The technique that gives this special case applies to a wide range of other
constructions.

Some results provoke the question ‘How on earth did anybody think of doing
that?’. The Feferman-Vaught theorem surely provokes that question; but in this case
the history is well recorded, so we can answer the question. The answer runs as
follows.

Starting in 1927, Tarski ran a seminar at Warsaw University, in which he and
his students developed the method of ‘elimination of quantifiers’, which had been
created a few years earlier by Leopold Löwenheim and Thoralf Skolem and pursued
also by Cooper H. Langford. As practised by Skolem and Langford, the method was
to take a structure A and show that for each first-order sentence φ in the language
of A, we can effectively find a first-order sentence φ′ which is true in A if and only
if φ is true in A, and which is a boolean combination of sentences of some simple
form; we can call these simple sentences the ‘elimination set’. In some cases the
elimination set would contain only quantifier-free sentences, so that passing from φ



6 W. Hodges

to φ′ eliminates quantifiers completely. But in general these sentences might contain
quantifiers, though they would typically be all universal or all existential. (Cf. [11]
pp. 72–75.)

Early successes of this programme were Presburger’s quantifier elimination for
the structure of integers with addition, and Tarski’s own quantifier elimination for the
structure of the real numbers with addition and multiplication. Tarski also devoted
some of his early efforts to extending Langford’s work on dense and discrete linear
orderings. In 1938 Tarski and Andrzej Mostowski (a loyal student of Tarski, though
officially his doctoral thesis supervisor was Kuratowski) began working on quantifier
elimination for ordinals, in languages involving one or more of <, ordinal addition
and ordinal multiplication. Mostowski’s notes were lost during the war (they were
in the notebook that he famously had to abandon in favour of a loaf of bread, [41]
pp. 6f), and he never reconstructed them, though some of the main results were
published in an abstract in 1949 [51]. Tarski later published a reconstruction of this
work in a joint paper with his student John Doner [7]. One of the results was that
the simply ordered structure of the ordinals has a decidable first-order theory. The
obvious next result to try to prove was that the ordered structure of the ordinals with
ordinal addition has decidable first-order theory, and this was one of the two tasks
that Tarski set Feferman for his doctoral thesis ([31] p. 37).

Feferman approached the problem from the point of view of elimination of quan-
tifiers, as Tarski no doubt expected him to do. Tarski may have given him some
information from the joint work with Mostowski. But also a very pertinent paper
of Mostowski had just appeared [50]. In this paper Mostowski proved quantifier
elimination results for structures A that allow a decomposition as a cartesian power
of another structure, say A = BI for some index set I . His elimination set was not
in the first-order language of A; instead it also allowed one to refer to P(I ) and
sets ‖θi‖ as above. He showed that his results adapt also to ‘weak powers’ which
are substructures of cardinal powers whose domains consist of all the elements that
differ from e in at most finitely many factors, where e is a designated element of
B (for example the identity element if B is a group, or 0 if B is an ordinal). From
Mostowski’s own account it seems that he thought he was not so much striking out in
a new direction as finding a common generalisation of several results already proved
by quantifier elimination. One application that he mentions is of particular interest to
us here. He considers the ordinal α and the weak product of α copies of ω, with sums
taken pointwise. The resulting structure is isomorphic to ωα with natural addition;
by Mostowski’s results this structure has a decidable first-order theory. This is less
interesting thanωα with ordinal addition, but it suggests ways of approaching ordinal
addition. In fact by late 1953 Fefermanwas able to follow this route and show that for
every positive integer n, ωn with ordinal addition has a decidable first-order theory.
His main adjustment to Mostowski’s scheme was that he allowed the elimination
formulas to refer to other features of the construction of A from B, for example a
linear ordering of the index set I .

In 1956 Robert Vaught (also a student of Tarski) noticed that Feferman’s methods
generalised to the case where A is a product of a family (Bi : i ∈ I ) of distinct
structures; there was no need to assume that the factors were all isomorphic. Almost
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at once this gave a common generalisation both of Feferman’s earlier work, and of
Vaught’s own work on sentences true in cartesian products. They wrote up the results
as their joint paper ‘The first order properties of products of algebraic systems’ [33].

To explain how the technique works, we begin with the case of cartesian products,
so that A has the form

∏
i∈I Bi with I �= ∅. We write L for the first-order language

of A and the Bi . If ā is a tuple of elements of A and i ∈ I , then we write πi ā for
the tuple of projections to Bi of the terms of ā. If θ(x̄) is a formula of L , we write
‖θ(ā)‖ for the set

{i ∈ I : Bi |= θ(πi ā)}. (1)

Feferman and Vaught prove a theorem stating that for each formula φ(x̄) of L there
are a boolean formula �φ and formulas θ0(x̄), . . . , θk−1(x̄) of L such that for any
cartesian product A = ∏

i∈I Bi of structures for the language L , and every tuple ā
of elements of A,

A |= φ(ā) if and only if the sequence (‖θ0(ā)‖, . . . , ‖θk−1(ā)‖)
satisfies �φ in the power set algebra P(I ) (2)

Moreover �φ and the formulas θi can be found effectively from φ, and the formulas
θi can be chosen so that independently of A and I , the sets ‖θ0(ā)‖, . . . , ‖θk−1(ā)‖
form a partition of I (though some partition sets may sometimes be empty).

We state one corollary about decidability. Suppose the factor structures Bi are
required to be models of a decidable theory T (i.e. the set of consequences of T is
recursive). Given any sentence φ of L , we can determine as follows whether A can
be chosen to be a model of φ. Find the formula �φ and the sentences θ j ( j < k) as
in (2). Skolem’s quantifier elimination reduces the condition on the righthand side
of (2) to a boolean combination of conditions of the form

P(I ) |= For at least p i ′s, i ∈
⋂

j∈Y
‖θ j‖ \

⋃

j /∈Y
‖θ j‖, (3)

where p is a positive integer and Y ⊆ k. Since the sets ‖θ j‖ form a partition of I and
I is not empty, (3) is false unless Y is a singleton { j0}, and in this case (3) will be
true if and only if there are at least p factors Bi that are models of θ j0 . Such factors
can be found if and only if T ∪ {θ j0} is consistent, which can be checked since T is
decidable. The rest is book-keeping.

The Feferman-Vaught theorem, in the form stated above, is proved by induction
on the complexity ofφ. Themost interesting case is whereφ(x̄) is ∃yφ′(x̄, y), and for
this reason Feferman and Vaught say that the proof is by the ‘method of eliminating
quantifiers’ ([33] p. 66). I am not entirely convinced that this is the best description.
It seems to me more illuminating to compare with Jaakko Hintikka’s ‘distributive
normal forms’ [39]. Let me digress briefly on these.
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For simplicity suppose the language L has finitely many relation symbols and
no function symbols. We will find, for all n, r < ω, a finite set �n,r of formulas
θ(x0, . . . , xn−1) of L , such that

For each fixed n and r, if �n,r consists of the distinct formulas

θ0, . . . , θk−1 then 
 ∀x̄ (Exactly one of θ0(x̄), . . . , θk−1(x̄) holds). (4)

We will assume that the set �n,r is given a fixed ordering, so that we can regard it as
a sequence. (Feferman and Vaught [33] p. 64 call a sequence satisfying the condition
in (4) a ‘partitioning sequence’.)

When r = 0we choose�n,0 so that the formulas describe the complete quantifier-
free types of n-tuples.

For r > 0 we proceed by induction on r . Suppose �n+1,r has been defined and
consists of the formulas θ0(x0, . . . , xn), . . . , θk−1(x0, . . . , xn). List as (s( j ′) : j ′ <

k ′ = 2k) all the subsets of k. Then we define �n,r+1 to consist of all the formulas
ψ j ′(x0, . . . , xn−1) ( j ′ < k ′) where ψ j ′ is

∧

j∈s( j ′)
∃xnθ j (x0, . . . , xn) ∧ ∀xn

∨

j∈s( j ′)
θ j (x0, . . . , xn). (5)

We will need the following two consequences of this definition. First,


 ∃xnθ j (x0, . . . , xn) ↔
∨

{ψ j ′(x̄) : j ∈ s( j ′)} (6)

for each j < k. And second,

We can effectively find, for each formula φ(x0, . . . , xn−1) of L , an

r0 < ω, and for each r � r0 a subset � of �n,r , such that φ is

logically equivalent to
∨

�. (7)

See [39] for further information. The families of formulas �n,r , or close relatives of
them, appear also in the theory of Ehrenfeucht-Fraïssé games, and in Scott sentences.

We return to the Feferman-Vaught theorem, as stated above for cartesian products.
It will be helpful to add a clause to the theorem, namely that the formulas θ0, . . . , θk−1

are the formulas of �n,r , where n is the length of the tuple ā and r is found from φ.
(If φ is written so as to remove any nesting of function symbols, then r can be taken
to be the quantifier rank of φ.) This guarantees that the θi can be found effectively
from φ, and that the sets ‖θi (ā)‖ always form a partition of I . So the proof of the
theorem reduces to finding an appropriate formula �φ for (1). We concentrate on the
most significant case, which is where φ(x̄) is ∃xnφ′(x̄, xn).

By induction hypothesis there is a formula �φ′ such that for any A = ∏
i∈I Bi

and any ā, b in A we have
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A |= φ′(ā, b) if and only if P(I ) |= �φ′(‖θ0(ā, b)‖, . . . , ‖θk−1(ā, b)‖) (8)

where θ0, . . . , θk−1 lists the formulas of �n+1,r−1. If ψ0(x̄), . . . ,ψk ′−1(x̄) are the
formulas of �n,k , we want to find �φ so that for all A and ā as above,

A |= ∃yφ′(ā, y) if and only if P(I ) |= �φ(‖ψ0(ā)‖, . . . , ‖ψk ′−1(ā)‖). (9)

Now we know that if the lefthand side of (9) holds then

There is a partition I = I0 ∪ . . . ∪ Ik−1 such thatP(I ) |=
�φ′(I0, . . . , Ik−1) and for each j < k, I j ⊆‖∃yθ j (ā, y)‖ . (10)

Namely, choose b so that A |= φ′(ā, b) and put I j =‖θ j (ā, b)‖, recalling that the θ j

are a partitioning sequence. Conversely if (10) holds, then we can use the definition
of cartesian product to choose elements from the Bi to form an element b of A with
I j =‖θ j (ā, b)‖ for each j < k, and then it follows by (8) that A |= ∃yφ′(ā, y). So
what we need is to find a formula �φ so that the righthand side of (9) says the same
as (10). This reduces to translating ‘I j ⊆‖∃yθ j (ā, y)‖’ into a condition on I j and
the sets ‖ψ j ′(ā)‖, for each j < k. But by (6),

‖∃yθ j (ā, y)‖=
⋃

{‖ψ j ′(ā)‖: j ∈ s( j ′)}, (11)

and from this the definition of �φ is straightforward.
Cartesian products are only a particular case for the Feferman-Vaught theorem;

but they already contain the worst headaches. Feferman and Vaught show how to
extend the technique to other kinds of product or sum by adding extra relations to
the power set P(I ); for example a linear ordering on I can be coded up as a relation
between singleton subsets of I . Then the required structure can be taken to be a
definable substructure of the cartesian product. The extra relations are incorporated
into the formulas by taking the formulas in�n,0 to be formed not from quantifier-free
formulas, but from formulas—added to the language L if necessary—that define sets
of the form

{ā in A : P(I ) |= �(‖η0(ā)‖, . . . , ‖ηk−1(ā)‖)} (12)

for any η j in L and any suitable �. In this way the added complexity is fed in at the
bottom level of the induction; the induction steps proceed exactly as before, since
they are still done in the cartesian product. This approach has great generality, but
for particular applications of the theorem there are often easier routes.

The Feferman-Vaught theorem, distributive normal forms, the Fraïssé back-and-
forth method and Ehrenfeucht games have close relationships, and it is not at all
surprising that they can be used to prove the same or similar results. In fact Feferman
soon became aware that Roland Fraïssé [35] had a back-and-forth proof of results
overlapping his own on elementary equivalence of ordinals as ordered sets, and that
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Andrzej Ehrenfeucht [8] found a back-and-forth proof of the decidability conjecture
that Tarski had given Feferman for his thesis. Feferman reported on these results to the
Summer Institute at Cornell in 1957 [12]. His report is clear, but it doesn’t go into the
details of howback-and-forth equivalences imply degrees of elementary equivalence.
This is the part of the back-and-forth theory where the Hintikka distributive normal
forms appear. He may not have appreciated at once the common underlying themes
of Feferman-Vaught and back-and-forth methods.

Nor did he know Hintikka’s ideas. In fact Hintikka had no contacts with the
Berkeley group until later. He had visited Williams College in Massachusetts in
1948–9, and he later recalled unsuccessfully trying to explain distributive normal
forms to Quine during that visit ([38] p. 11). But in any case Hintikka had only
the theory, and nothing like the concrete applications that the Berkeley group could
claim. (Fraïssé should count as a member of the Berkeley group. In 1995 I asked
Fraïssé about his contacts with Tarski. My recollection is that he told me he attended
Tarski’s Berkeley seminar for most of a year sometime in the early 1950s. The brief
reference in Feferman and Feferman [11] p. 315 is consistent with this.)

It seems that after publishing his joint paper with Vaught, Feferman did no fur-
ther work in the area. But the Feferman-Vaught theorem took on a life of its own.
Model theorists used it to prove results about elementary equivalence and elementary
embeddings, and computer scientists used it to prove a wide range of algorithmic
results. Both groups extended the scope of the theorem. The generalisation from
first-order logic to monadic second-order logic (which has quantifiers ranging over
the class of sets of individuals) proved particularly useful. Yuri Gurevich [37] p.
479 comments ‘… monadic [second-order] logic definitely appears to be the proper
framework for examining generalized products’.

One strikingly fruitful area of application in computer science was to the com-
plexity ofmodel-checking of properties of various structures, for example graphs and
transition systems. The survey by Janos Makowsky [47] both illustrates and extends
the applications to graph properties definable in monadic second-order logic. Ingo
Felscher [34] reviews the use of the Feferman-Vaught technique in connection with
composition theorems for transition systems. These two papers make clear both the
wide range of applications, and the curious status of the Feferman-Vaught theo-
rem on the borderline between theory of models and theory of algorithms. On the
model-theoretic side one should note an incisive application of the Feferman-Vaught
theorem to the model theory of adeles in number theory, by Jamshid Derakhshan and
Angus Macintyre [6].

The work that Feferman did on back-and-forth methods led him to one further
development. In [16] he defined a class of functors F between classes of structures,
and showed for example that if F is such a functor defined on a class K of structures,
and A, B in K are equivalent in the infinitary language L∞,κ for a suitable cardinal
κ, then F(A) and F(B) are also equivalent in L∞,κ. The functor F also preserves
elementary embedding in the sense of L∞,κ. Feferman notes ([16] footnote p. 83)
that he first found these results for the special case of ordinal functions. So proof
theory hovers in the background. In fact this paper is one of several where Feferman
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raises the question whether there is a good notion of ‘natural’ well-ordering for use
in proof theory.

Paul Eklof [9] describes some developments from Feferman’s [16]. Not least
is Eklof’s own theorem that for any two universal domains K1, K2 (in the sense
of Weil) and any functor F preserving direct limits, if K1 and K2 have the same
characteristic then F(K1) is L∞,ω-equivalent to F(K2). This is a strong form of
Lefschetz’s Principle ([9] p. 430).

3 Applications of Interpolation Theorems

In 1953EvertW.Beth [2] published a remarkable theoremabout definability. Suppose
T is a first-order theory and R a relation symbol that occurs in sentences of T . We
say that R is implicitly defined by T if whenever A and B are models of T that have
the same domain and agree in the interpretations of all nonlogical symbols except
perhaps R, the structures A and B do in fact give R the same interpretation. This
is a model-theoretic condition. We say that R is explicitly defined by T if there is a
formula φ(x̄) in the first-order language of T , not containing any occurrences of R,
such that

T 
 ∀x̄ (φ(x̄) ↔ Rx̄). (13)

This is a logical condition on R and T . But it is not specifically a syntactic or amodel-
theoretic one, because the consequence relation 
 can be defined equally well by
a proof calculus or model-theoretically; the completeness theorem says we get the
same consequence relation either way.

Beth proved that these two conditions on R and T , namely implicit definability
and explicit definability, are equivalent. It’s trivial that if R is explicitly defined by
T then R is implicitly defined by T too. The interest lies in the other direction. By
proving that in this first-order context every implicitly definable relation is explicitly
definable, Beth turned an old heuristic idea of Padoa [53] into a theorem.

To prove his theorem, Beth had to extract a formula φ somehow from the infor-
mation that R is implicitly defined by T . Seeing no other way, he converted implicit
definability into a statement that a certain proof exists, and then used Gentzen’s anal-
ysis of cut-free proofs to carve φ out of the proof. More precisely, he reasoned: let
the theoryU be the same as T except that inU every occurrence of R is replaced by
an occurrence of the new relation symbol S. The completeness theorem tells us that
if R is implicitly defined by T , then there is a proof of

∀x̄ (Rx̄ ↔ Sx̄) (14)

from T ∪U .
Beth’s argument for extracting φ from this proof was not very clean. William

Craig, who reviewed Beth’s paper for the Journal of Symbolic Logic in 1956 [3],
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thought about it and saw a much neater way to express the relevant proof-theoretic
information. This became Craig’s Interpolation Theorem, which he published in
1957 [4]. Feferman [27] recalls that he first heard Craig’s theorem at the July 1957
Cornell Summer Institute, where Craig gave a talk on it. Craig showed, by using his
own variant of Gentzen’s proof theory, that if ψ and χ are first-order sentences such
that

ψ 
 χ (15)

and some relation symbol occurs in both ψ and χ, then there is a first-order sentence
θ (the ‘interpolant’), which contains no relation symbols except those occurring both
in ψ and in χ, such that

ψ 
 θ and θ 
 χ. (16)

(This is Theorem 5 of [4].)
Beth’s result is an easy consequence, as follows (Craig [5]). Use compactness to

shrink T down to a single sentence τ , andU to a corresponding sentence σ, and add
new constants c̄ to the language. Then implicit definability gives that

τ ∧ σ 
 Rc̄ → Sc̄. (17)

or after rearrangement

τ ∧ Rc̄ 
 σ → Sc̄ (18)

where R occurs only on the left of 
 and S only on the right. By Craig’s theorem
there is an interpolant θ(c̄) such that

τ ∧ Rc̄ 
 θ(c̄) and θ(c̄) 
 σ → Sc̄. (19)

From this, elementary manipulations give

τ 
 ∀x̄(Rx̄ → θ(x̄)) and σ 
 ∀x̄(θ(x̄) → Sx̄). (20)

Changing S back to R, and noting that R and S occur nowhere in θ, we reach the
explicit definition

τ 
 ∀x̄(Rx̄ ↔ θ(x̄)), (21)

which proves Beth’s theorem.
Note that this derivation ignores Craig’s condition that some relation symbol

occurs in both ψ and χ. One can justify this by arguing that the condition can always
bemet by ensuring that the language includes at least one of= and⊥, and thenmaking
trivial adjustments toψ and/orχ. Craig’s theorem and its various descendents all tend
to have this feature, that a correct statement involves some nuisance conditions that
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make only a marginal difference to applications. The discussion below will ignore
these conditions.

Soon after Craig published his theorem, Roger Lyndon [44] showed, using cut
elimination, that we can put more conditions on the interpolant. In particular we
can require that every relation symbol occurring positively in θ occurs positively in
both ψ and χ, and likewise with ‘negatively’ for ‘positively’. He deduced from this
[45] that every formula preserved in surjective homomorphisms between models of
a first-order theory T is equivalent modulo T to a positive formula. Lyndon’s result
suggested a programme: find other conditions that can be put on the interpolant
formula, and use them to give similar characterisations of other model-theoretic
notions. It was above all Feferman who carried this programme through, though as
he remarks in [27], he began work on this only some ten years after he heard Craig’s
talk in 1957.

In his course on proof theory at the 1967 European JSL meeting in Leeds [13],
Feferman showed in detail how to adapt cut elimination so as to impose further
conditions on the interpolant. His most striking innovation was that the language
is many-sorted. Thus for example besides obeying Craig’s or Lyndon’s condition
on relation symbols, the interpolant contains no variables of a given sort unless
such variables occur in both ψ and χ; and for every sort s the interpolant contains
no universal (resp. existential) quantifiers of sort s unless ψ (resp. χ) contains a
universal (resp. existential) quantifier of sort s. Caution: for this result to be correct,
we need to assume that the only truth functions in the language are ∧, ∨ and ¬, and
that ¬ never occurs in the formulas involved except immediately in front of atomic
formulas. (Or equivalently, an occurrence of a quantifier is ‘universal’ if either the
occurrence is positive and the quantifier is ∀, or the occurrence is negative and the
quantifier is ∃; and analogously with ‘existential’.) In the title of his [17] Feferman
speaks of ‘many-sorted interpolation theorems’ in the plural. The reason is that his
interpolation theoremof [13], like theFeferman-Vaught theorem, is asmuch amethod
as a theorem. The method can be adapted to prove various interpolation theorems
for various applications.

Speaking loosely, the kinds of application of interpolation theorems that Feferman
harvested generally involve two features: a property that is in some generalised sense
implicitly definable is shown to be explicitly definable by a certain type of formula,
and some relationship between structures is involved. The two features are connected
by the fact that the implicit definition is given in terms of the relationship between
structures.

Take for example the Łoś-Tarski theorem [43], which is easily derived by
Feferman’s method, though it was originally found in another way. We have a first-
order theory T and a property P of structures. For this theorem the relevant ‘implicit
definability’ of P says that if A and B are both models of T and B is an extension
of A, and B has property P , then A also has property P; and that the property P
is expressible by a first-order sentence φ. The ‘explicit definability’ says that there
is a prenex first-order sentence θ with only universal quantifiers, such that P is
expressible by θ in all models of T .
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The significance of the many sorts in Feferman’s interpolation is that it allows
him to talk about two or more structures by assigning different sorts to the structures.
Anatoliı̆ Mal’tsev [48] had explored a similar use of many-sorted logic.

Applying this idea to the Łoś-Tarski theorem, suppose we take two sorts, 1 and 2,
and assign expressions to the sorts by using 1 and 2 as superscripts. Then T can be
written in sort 1, say as T 1, and it has an exact copy T 2 in sort 2. Wherever T 1 has
a relation symbol R1, T 2 has a corresponding relation symbol R2. Feferman allows
equality = to run across all sorts. So a pair of structures A, B that are models of T ,
with B an extension of A, can be written as a model of

T 1, T 2,Ext (22)

where Ext says

∀x1∃x2(x1 = x2) ∧ ∀x̄1(R1 x̄1 ↔ R2 x̄1) ∧ . . . (23)

and the missing part at ‘. . .’ repeats for all relation symbols S etc. the statement made
for R. The statement that φ is implicitly defined in the relevant sense can be written

T 1, T 2,Ext,φ2 
 φ1. (24)

Similar adjustments to those we made for Beth’s theorem transform this entailment
into

τ 1 ∧ Ext ∧ ¬φ1 
 τ 2 → ¬φ2. (25)

We find an interpolant θ, and without loss of generality we can take it to be prenex.
Since no variables or relation symbols of sort 1 occur on the righthand side of (25),
θ lies in sort 2. But then no universal quantifiers can occur in θ, since in that case a
universal quantifier of sort 2 would have to occur on the lefthand side of (25), and
inspection of Ext shows that none do.

So θ is a prenex existential sentence in sort 2, and we have

T 2 
 θ → ¬φ2. (26)

We also have

T 1,Ext 
 ¬φ1 → θ (27)

which holds in particular when the two sorts are identified. Under this identification
Ext becomes logically true, and there remains that

T 
 φ ↔ ¬θ (28)
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where¬θ is logically equivalent to a prenex sentence with only universal quantifiers.
Using constants as in the proof of Beth’s theorem allows us to generalise the result
from sentences φ to formulas φ(x̄).

By varying the sentence Ext, together with other suitable adjustments, we can cap-
ture various other relations between structures.One of Feferman’s first applications of
this approach was a result parallel to the Łoś-Tarski theorem, but for end-extensions
between transitive models of set theory. The natural conjecture is that in this case
the formula φ should be equivalent, modulo set theory, to a �1 formula, and in [14]
Feferman showed that this conjecture is true. The question arose at least partly from
Feferman’s discussions with Kreisel about related results in higher order logic ([32],
as mentioned in Sect. 1 above).

Another result of a similar ilk appears in [23].
Let me mention two more applications. They have very different characters: the

first of them feeds directly into nontrivial questions of algebra, while the second is
about logical properties of quantifiers.

The first application [18] can be thought of as a generalisation of Beth’s theorem
to situations where we add not just a relation symbol but also new elements. We
consider structures B that are models of a theory T in a language L , such that B
has a relativised reduct A (a substructure in a language L− where some relation or
function symbols of L may be dropped), and A is picked out by a relation symbol
R in the language L . The ‘implicit definability’ condition on T says that if B and
B ′ are two models of T , with corresponding relativised reducts A and A′, then every
isomorphism from A to A′ extends to an isomorphism from B to B ′. The ‘explicit
definability’ condition on T (which Feferman calls the ‘uniform reduction’ property)
says that if φ(x̄) is a formula of L , then there is a formula θ(x̄) of L− such that if B is
any model of L with corresponding relativised reduct A, and ā is a tuple of elements
of A, then

B |= φ(ā) ⇔ A |= θ(ā). (29)

The theorem says that when the languages L , L− are first-order and T satisfies
the implicit definability condition, then T has the uniform reduction property. (In
fact the theorem in this form is due to Haim Gaifman [36] p. 31, who indicates that
Feferman’s interpolation results for many-sorted logic can be used to prove it. In [18]
Feferman cites Gaifman [36] but gives the theorem in a broader and more abstract
form.)

A simple example is where L− is the language of rings, L is L− with an added
1-ary relation symbol R, and T says of any model B that B is a field which is the
field of fractions of the subring A picked out by R. The theorem tells us that in any
model B of T , every first-order property of a tuple ā of elements of A in B can be
translated uniformly into a first-order property of ā in A. This is not hard to check
directly, using the fact that every element of B can be written as a ratio of elements
of A. But the theorem applies also in cases where the elements of B are not explicitly
definable in terms of elements of A.
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In fact it’s a natural question whether the Gaifman-Feferman result can be
extended to say that if T satisfies the implicit definability condition, then in every
model B of T with relativised reduct A, the elements of B can be uniformly defined
in terms of elements of A. But group cohomology prevents any such theorem. If it
was true, then the automorphism group of A would lift homomorphically to a group
of automorphisms of B. The paper [10] presents many counterexamples in finite
abelian groups.

In the second application [30], Feferman encodes second-order logic by letting
the second sort range over relations on the domain of the first sort. Then a generalised
quantifier is encoded as a relation which has one or more arguments of the second
sort. For example existential quantification is the relation ∃(p)which is satisfied by a
1-ary relation p of the first sort if and only if p is nonempty. In this setting a Beth-type
theorem says that if a quantifier is implicitly definable by a theory (which can be a
first-order theory but with its relations expressed as constants of the second sort),
then the quantifier is explicitly definable by the theory. If one spells out the details,
this ingeniously tightens up a proof sketched by Jeffery Zucker in [58], stating that if
a generalised quantifier is completely determined by its quantifier rules (which have
to be first-order expressible in the appropriate sense), then it is first-order definable.

By the early 1960s it was known that there are several ways of proving Craig’s
interpolation theoremwithout going through proof theory. AbrahamRobinson found
a proof by building an isomorphism of structures through unions of chains. Simi-
lar insights led to proofs using saturated structures, or structures with some variant
of saturation. Another cluster of proofs use techniques for building models from
atomic sentences upwards; these techniques are closely related to cut-free proofs.
They include the consistency properties of Smullyan [46] and the similar construc-
tion of models by Hintikka sets. Starting in the 1960s, a number of people adapted
these various techniques to give model-theoretic proofs of any and all interpola-
tion theorems (e.g. Stern [54], Otto [52]). Also some results that were first proved by
many-sorted interpolation were given proofs not using any kind of interpolation (e.g.
Marker [49]). But Feferman’s interpolation theorem itself is still impressive for its
uniform treatment of a wide range of cases. His use of sorts for encoding is a valuable
tool; and he was the first person to make many of the applications, in particular those
that combine model theory with ideas from other areas of logic—such as definability
of truth, or end-extensions of models of set theory.

As we saw earlier, in the 1950 and 1960s there was no general understanding
that model theory had any intrinsic connection with first-order languages. When a
result was proved for first-order logic, people would soon ask whether it holds for
other languages too. Feferman’s interpolation theorem was an important contributor
to this work, because it lifts smoothly to any countable admissible language, and
hence to Lω1ω which is the union of the countable admissible languages. Feferman’s
student Jon Barwise wrote his doctoral thesis on the proof theory and model theory
of admissible languages.

In 1985 Barwise and Feferman together edited the massive volume Model-
Theoretic Logics [1], which brought together a vast amount of work on model-
theoretic properties of various logics. In his Preface Feferman notes that he and
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Barwise had ‘turned to other interests in the latter part of the 1970s’ (p. vii), and
the initiative for the book came not from them but from the editors of ‘Perspectives
in Mathematical Logic’. In fact Feferman wrote none of the chapters. Notoriously
the book has no index, but if it had one there would certainly be many entries under
‘Feferman, S.’. Thus Jouko Väänänen in his chapter on ‘Set-theoretic definability of
logics’ [57] remarks (p. 599) that an important tool throughout his chapter is Fefer-
man’s notion of adequacy to truth. This notion is a formalisation of the notion of
implicit definability of truth within a logic, and it comes from a paper [19] where
Feferman applies the interpolation theorem machinery to relate implicit and explicit
definability of truth in a logic.

We should add too that Feferman contributed to this area of research not only
through specific results that he proved, but also through helping to establish it as
a substantive part of logic. For example Janos Makowsky kindly tells me that a
preprint of Feferman’s paper [17] was in circulation in 1971 and led him to the topic
of his PhD thesis. He names Daniele Mundici, Jouko Väänänen, Jonathan Stavi and
Saharon Shelah as other logicians whose work around that time took inspiration from
this preprint.

A paper that touches on model-theoretic logics, but is rather orthogonal to
Feferman’s other work in model theory, is his study [20] of some results of Nigel
Cutland on effective model theory. Unlike most writers in this vein, Feferman looks
not for an effective analogue of model theory, but for a common abstract framework
that includes both the classical set-theoretic version and effective analogues. This
leads us neatly into our final section.

4 The Concept of Model Theory

In his paper for the Proceedings of the 1974 Tarski Conference [17] p. 206, Feferman
refers to

. . . the growing subject of “abstract logic” or, more precisely, the

theory of model-theoretic languages , initiated by Lindström . . . and

carried on by Barwise . . . . The ground for such work was especially

prepared by Tarski’s efforts over the years to isolate appropriate

basic notions for a systematic development of model

theory, beginning with the fundamental ones of truth and satis f action

. . . (30)

It’s clear that one reason why Feferman mentions Tarski’s aims in this direction is
that they resonate with Feferman’s own thinking. Feferman writes about Tarski’s
conceptual analyses in several places (e.g. [24, 26]). In one unpublished paper he
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notes several conceptual problems that drove much of his own work [21]—though
none of his listed problems are directly model-theoretic.

That said, I am not entirely clear how Feferman in 1974 saw Tarski’s conceptual
work as related to the ‘model-theoretic languages’ that he refers to. Did he think
that identifying the class of ‘model-theoretic languages’ was itself a task parallel
to defining truth and satisfaction? Or did he merely mean that Tarski by giving a
precise definition of satisfaction, rather than leaving it to intuition, had made it easier
to develop model theory in an abstract setting?

A third possibility is that Feferman regarded it as a conceptual advance, similar in
some sense to Tarski’s conceptual advances, to think of assessing logics by formal
properties that they have. This is after all what Lindström contributed, with his proof
that first-order logic can be picked out from other logics by some very general and
abstract properties that it has (for example compactness and downward Löwenheim-
Skolem). This possibility is worth mentioning because Feferman himself quite often
used this kind of assessment of logics.

One central example of this is Feferman’s interest in the question of what terms
(i.e. meaningful expressions) in a language are ‘logical’. Two of his published papers
[22, 29] discuss criteria for terms to be counted as ‘logical’, for example Tarski’s
criterion in terms of permutations of the universe. He also has a paper [25] in which
he says his ‘main purpose’ is to examine in what sense Hintikka’s Independence-
Friendly Logic ‘deserves to be called a logic’ (p. 454). In all these papers, Feferman
discusses and assesses criteria for a term to be regarded as ‘logical’. In fact his work
onZucker’s paper, discussed in the previous section,was intended as an application of
just such a criterion. The criterionwas that a ‘logical’ quantifier should be determined
uniquely, up to logical equivalence in an obvious sense, by its proof rules. Feferman’s
result, following Zucker, shows that any such quantifier is explicitly definable in first-
order logic, and this supports Feferman’s own intuition that ‘logical’ terms should
be limited to first-order ones.

Here I am reporting what Feferman says, though I think I am not the only logician
who finds it hard to see what question is being answered. Expressions like ‘logic’
and ‘logical’ get their meaning from their usage among people called logicians.
This usage is likely to vary from year to year as the subject develops. When the
community of logicians fragments, as it inevitably does, the notion of ‘logic’ comes
to vary between the fragments. So Feferman’s appeal to ‘the traditional conception
of logic’ ([29] p. 17) could be an appeal to a set of concepts that nobody still uses.
(Compare ‘the traditional conception of probability’, bearing inmind that probability
used to be treated as a branch of logic.) But let me hold my sceptical tongue.

In [27] Feferman recalls the correspondence between Beth, Tarski and himself in
1953, about Beth’s definability theorem and its proof. He says:
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A draft of Beth’s proof was sent to Tarski in May 1953, and Tarski

discussed it with me at that time (I was in Berkeley then, working

with him as a student). From Tarski’s point of view, since the

statement of Beth’s definability theorem is model-theoretic, there

ought to be a model-theoretic proof, and there was correspondence

(via me) with Beth about how that might be, accomplished

(cf. Van Ulsen 2000, pp. 136ff). (31)

This interests me very much. To my eye the correspondence reported by Van Ulsen
[56] p. 138 can more easily be read in the opposite sense. On 22 June 1953 Feferman
wrote to Beth

Your solution of the problem is really a solution of a problem

in proof theory and only incidentally an application of

[the completeness theorem]. Indeed, it seems to me that

your main result has its proper phrasing as follows: If A, B

are formulas symmetric in a, b (which are consistent), and if

∀x1 . . . ∀xk(a(x1, . . . , xk) ↔ b(x1, . . . , xk)) is derivable from A ∧ B

by elementary logic, then [and here follow statements about

derivability in first-order logic]. From this theorem it is, of

course, a quick step to the solution of your problem via the [completeness

theorem]. I believe it is worthwhile putting the problem

in this form, since then the difference between your problem

and the problem of exhibiting models for independence of axioms

is quite sharply pointed up. (32)

In short, Feferman in 1953 argued that Beth’s theorem was really a proof-theoretic
theorem and ought to be stated and proved in a form which makes this clear.

Feferman’s statement in 1953 seems to me very much in line with what we know
Tarski was saying about Padoa’s method in the 1920 and 1930s. Namely, the method
should be made rigorous by removing the model-theoretic content and rewriting it
as a statement about deducibility in the appropriate logic. (See for example [40].) In
the 1930s the appropriate logic was higher-order; for Beth’s theorem it is first-order.
InterestinglyVanUlsen ([56] p. 137) does include an item that closely fits Feferman’s
later account in [27]:

. . . in particular, Tarski has emphasized the desirability of establishing

the Interpolation Theorem by methods independent of

the theory of proof. (33)

But this is a quotation from Lyndon [44] in 1959!
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The point to note is that VanUlsen’s quotation shows Feferman in 1953 describing
Beth’s theorem as a solution of a problem in proof theory, in line with Tarski’s earlier
perceptions. Today I think everybody regards Beth’s theorem as relating an overtly
model-theoretic notion (implicit definability) to a more basic logical notion (explicit
definability). How far is this a different perception of the theorem itself? How far is
it a reflection of how the boundaries between the branches of logic were moving in
the mid 1950s?

So here we have a question not about what should count as logic, but about what
did actually count as proof theory, or as semantics, or as model theory, in the early
to mid 1950s. It was a time of paradigm change, and Solomon Feferman was right
at the heart of the action, with a mental ear well tuned to uses and adjustments of
concepts. Everything that he has told us about the understanding of those notions in
Berkeley at that time is gold dust for present and future historians of logic.
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to Bimal Krishna Matilal, pp. 155–169. College Publications, London (2008)

41. Krajewski, S., Srebrny, M.: On the life and work of Andrzej Mostowski (1913–1975). In:
Ehrenfeucht,A.,Marek,V.W., Srebrny,M. (eds.)AndrzejMostowski andFoundational Studies,
pp. 3–14. IOS Press, Amsterdam (2008)

42. Kreisel, G.: Set theoretic problems suggested by the notion of potential totality, in Infinitistic
Methods. Pergamon Press, Warsaw (1959)
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