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Foreword

Sol Feferman and I have quite similar backgrounds. We were both born in the
Bronx in 1928 to East European Jewish parents. As teenagers we had similar
interests: we both thought of theoretical physics as a likely professional goal, and
we both read the same science fiction authors as well as the same popularizers
James Jeans and Arthur Eddington. And we both moved from physics to mathe-
matics and indeed to logic and foundations.

I was at the 5-week Institute for Logic at Cornell during the summer of 1957 that
Sol wrote about in his autobiography. I do not remember whether I heard Sol’s talk
there about his dissertation on the arithmetization of metamathematics, but I cer-
tainly read the manuscript and was delighted at the clarity of the exposition, which,
in particular, eliminated the penumbra of vagueness about the concept of a formula
expressing the consistency of a formal system. Sol was part of what some of us
thought of as Tarski’s cohort. Tarski had been allocated an afternoon speaker slot
every day for the remarkable Berkeley logic group he had developed. His habit of
commenting aggressively on talks by non-Berkeley speakers did not always go over
well, and there was some tension in the air. But all in all, it was an exciting,
stimulating event and an important influential experience for all of us.

As Sol mentioned in his autobiography, during the academic year 1959–1960, he
and I were regular attendees at the logic seminar at Princeton that Church led.
I particularly enjoyed Sol’s talks on progressions of theories. Sol’s work was based
on and extended Turing’s Ordinal Logic paper which I had found quite difficult.
I admired the clarity and rigor of Sol’s exposition with his previous work on the
arithmetization of metamathematics in the background.

Although I frequently met Sol at conferences over the years, my next profes-
sional interaction occurred in connection with the publication of Gödel’s “Collected
Works”. Sol was the chief editor of this daunting project which resulted in five
meticulously produced volumes with introductions by experts for each article. Sol
asked me to write the introduction for a manuscript found in Gödel’s Nachlass. The
third volume consists of such previously unpublished work, following the first two
that cover his published contributions. The fourth and fifth volumes are devoted to
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Gödel’s correspondence. The superb result of this undertaking is a tribute to the
care and precision to be found in all of Sol’s endeavors.

This same insistence on precision and rigor may not be unrelated to Sol’s
well-known agnosticism regarding the concepts of set theory. This skeptical attitude
is perhaps most directly evident in his characterization of the continuum hypothesis
(which after all only asks whether there is an uncountable set of real numbers which
cannot be mapped one–one to the set of all real numbers) as “inherently vague”.

I was on a panel with Sol on the future of logic in Padua in 1988. As I recall, I
spoke of possible connections of Gödel incompleteness with mathematical practice.
Sol took a much more practical point of view, speaking of problems one might
suggest to a student with some reasonable hope for success. In fact, Sol has been
quite openly skeptical about the need for axioms going beyond Zermelo–Fraenkel
to decide important mathematical questions. Citing the success with Fermat’s Last
Theorem, he stressed the need to “try harder”.

Sol was instrumental in making Stanford University a world center for
proof theory. His autobiography mentions that Georg Kreisel, who had already
done important work in this area, was a “second mentor” for him. Sol admired
Hermann Weyl’s predicative development of classical analysis and worked on
extending it. His determining the proof-theoretic ordinal of the resulting system was
a major achievement. Not completely satisfied because of the ramified character
of the extended system, Sol found an equivalent unramified system. Despite his
admiration for Weyl’s system, Sol insisted that he was not a predicativist, and
indeed he (necessarily) used non-predicative methods for obtaining the
proof-theoretic ordinal of such systems.

Grigori Mints was an expert in Hilbert’s e-calculus and the e-substitution method
in proof theory. Educated in Leningrad, he applied to leave the Soviet Union
because of the pervasive antisemitism that had become endemic in Russian
mathematics. Subsequently denied employment, he moved to Estonia when the
Soviet Union dissolved. Sol was determined to have him for Stanford. I was a very
small part of this effort, writing a letter in support when Sol asked me to do so. Sol’s
effort was successful, and “Grisha” became a vibrant part of the Stanford logic
community.

Sol’s skepticism regarding set theory did not lead him to question the use of
Grothendieck universes in Wiles’s proof of Fermat’s Last Theorem. Indeed, he
considered even larger structures to provide a set-theoretic foundation for category
theory and has expressed confidence in the consistency of the Zermelo–Fraenkel
axioms based on the iterative concept of set. In Koellner’s essay in this volume, he
presents Sol with a challenge: can he really coherently hold, together with his
set-theoretic skepticism, his acceptance of the natural number concept as suffi-
ciently clear that every sentence of arithmetic can be said to have a definite truth
value?

Alas Koellner’s challenge will remain unanswered, and this volume is published
with a huge lacuna because of Sol’s death. As set out, the plan for this series would
have had Sol provide his own comments on the various essays making up the book.
But this is not to be. Instead of a full autobiography, we have but an initial
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fragment. And we will never know what Sol would have written to explain his
set-theoretic views. I myself would love to know what he thought about projective
determinacy and the picture of the projective set hierarchy that emerges from
assuming it.

The depth and breadth of Sol’s work are reflected in the variety of topics found
in this volume. His influence over the course of his long career on directions taken
in foundational investigations has been immense. He has had a number of out-
standing students who have been making their own valuable contributions to the
field. Sol’s clear precise voice is deeply missed.

Berkeley, USA Martin Davis

Martin Davis was born in 1928. He studied with Emil Post at City College in New
York and with Alonzo Church in Princeton. He is known for work on automated
deduction and on Hilbert’s Tenth Problem. His book “Computability &
Unsolvability” has been called “one of the few real classics in computer science.”
Davis is a Professor Emeritus at New York University. He and his wife of 66 years
now live near the campus of the University of California at Berkeley where he is a
Visiting Scholar. Davis’s book “The Universal Computer: The Road from Leibniz
to Turing,” intended for a general audience, is about to appear in a third updated
edition.
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Preface

On January 27, 2014, we received this e-mail from our teacher, mentor, colleague
and friend Solomon Feferman:

Dear Gerhard and Wilfried,

I am forwarding a message below from Sven Ove Hansson proposing a volume devoted to
my contributions to logic for a series that he is editing for Springer, along with my
(tentatively) positive response. The attraction is obvious but, I must say, I have a couple of
reservations about proceeding with this, first because the overall character of my work is
somewhat different from that of the others that are already out or lined up for the series.
(Though perhaps my addition would signal a shift in that direction to include some other
obvious senior choices not mentioned by him.) The second reservation I have is that the
series is being published by Springer, and I am afraid of it getting lost in their impersonal
sea of volumes. I would be very interested to hear your thoughts about this.

Hansson was fully in agreement with my suggestion to have two editors if we proceed with
this, and of course both your names were the first that came to my mind. It would mean a
great deal to me if you saw your way to accepting. I realize that that would mean for each of
you taking on an extra burden that should not be considered at all lightly. But if you agreed,
I would help in any way I could, for example by organizing my work into a number of
useful categories and suggesting authors. I myself would be responsible for providing a full
bibliography (no problem about that), an autobiography, and–later–responses to individual
chapters, as Hansson suggested in a further message. (The whole organization of these
volumes is reminiscent of the Philosopher of the Century series, the closest being the one
for Hintikka.) Also, given my age, the sooner we could work together on this if you are
willing to go ahead, the better.

I hope to hear from you soon, but at the same time want you to take your time that it all
deserves.

Warmest best wishes,
Sol

By the very beginning of February both of us “were in”—with great enthusiasm.
We turned our attention to “substantive questions”; WS formulated three in a note
to Sol on February 3.
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The first question seems to be: Is the volume to be systematically organized (according to
major categories of your work)? The second crucial question: Who is going to (be invited
to) contribute? A third very practical issue: What is the timeline for our work?

WS had forgotten one prior question, namely, what should the title be for the
volume?—That was very important to Sol.

The three of us had quite a bit of e-mail exchange concerning the forgotten
question and, in particular, also concerning the systematic structure of the volume
that was indeed to be shaped by the major categories of Sol’s work. In any event, on
March 23 we sent a tentative table of contents to Sven Ove Hansson and suggested
with Sol’s full approval “Feferman on Foundations” as the title for our volume with
the extension “Logic, Mathematics, Philosophy”. The table of contents underwent
changes in the subsequent weeks until Sol was really happy with it. The title, in
contrast, had obviously been fixed forever. By the beginning of July, all the con-
tractual matters were settled with Springer, and we wrote to potential contributors.
It was wonderful for us and extremely gratifying for Sol that almost all potential
contributors turned themselves very quickly into real ones. The self-imposed
deadline for getting all the contributions was the end of March 2015; we hoped that
we would complete the volume by the end of 2015. As usual, circumstances were in
many different ways extremely challenging. On September 5, 2015, we wrote to
Sven Ove answering his inquiry concerning the status of FoF:

Dear Sven Ove,

Thanks for your note. As to the title of the book, it is simply to be: “Feferman on
Foundations”. We have made progress (or rather, the contributors to the volume have made
progress). We have some papers in hand, have requests by some to extend the deadline to
the end of this calendar year, and don’t know the status of some. We intend to write a brief
note to our colleagues asking them about progress and likely completion date. When we
have heard from everyone, we'll write to you again.

Here we are in December of 2016 more than a year later, expecting the final version
of all the contributions to arrive within the next couple of days. We hope to submit
the volume to Springer by the beginning of next year, i.e., January 2017 almost
exactly 3 years after we received Sol’s note asking us to serve as editors of a
volume on his contributions to logic.1

In the PS to his note from January 2014, Sol mentioned that we would find as an
attachment “a short autobiographical fragment” he had just finished for a volume in
honor of Leon Henkin; that fragment was to be the starting point for the autobi-
ography he had agreed to write for this volume. He had been working on it again at
the beginning of 2016 and reached the mid-1980s, with quite a bit of his life’s work
still to be covered. The much-expanded autobiographical fragment was to remain,
however, a fragment. After a difficult trip to New York in April, where he partic-
ipated in a Workshop at Columbia to honor Charles Parsons, he was diagnosed as

1 This note was obviously written in December of 2016. One year later, the volume is nearing
completion and should be published at the very beginning of 2018.
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having had a “mild stroke”: Sol was hospitalized, underwent some rehabilitation,
and finally returned home. His health deteriorated and he died on July 25. We are
still mourning his death: the loss of a great logician, a thoughtful scholar, a man of
integrity, and a dear friend. This volume is a testimony to him.

Bern, Switzerland Gerhard Jäger
Pittsburgh, USA Wilfried Sieg
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Introduction: Solomon Feferman’s
Autobiography from 1928 to 1981
and Extensions

In 2014, Solomon Feferman began drafting an autobiography to be included in this
volume. The draft built on two earlier biographical essays, namely, A fortuitous
year with Leon Henkin and Philosophy of mathematics, 5 questions. Sol used as a
title for the draft, An Intellectual (mostly) Autobiography. Indeed, it gives a detailed
account of his intellectual development and his professional work, but it covers also
key events in his personal life. The draft is quite polished, but Sol never completed
it: at the time of his death, he had traced developments through the very early
1980s. This partial autobiography is presented first as Part A. The next part, Part B,
contains his CV with important milestones, accomplishments, and honors; it also
has a full list of his Ph.D. students.

The expanding range of topics for his research can be gleaned from his bibli-
ography that he had prepared for this volume early on.2 The latter indicates also the
great number of his collaborators. Sol, of course, interacted with many colleagues in
the departments of mathematics, philosophy, and computer science. During the time
of Sol’s work at Stanford, the university evolved into a world center for mathe-
matical logic and the foundations of mathematics. The list of associated Stanford
colleagues and of short and long-term visitors we are aware of is extremely
impressive; but we decided not to construct it, as it would most likely be incomplete
and, in addition, it would require judgments about the significance of interactions
we are not confident in making.

2Indeed, he sent the bibliography to Jäger and Sieg on August 12, 2015 with this note: “Dear
Gerhard and Wilfried, Attached is the latest version of my list of publications for FoF. Some items
have been added and I have uniformized the format of the citations and expanded the publication
information in various ways. I do not plan to do any more work on this until we are closer to the
volume publication. So I think it could be useful to the authors of the individual chapters and
would be happy to have you circulate it to them now.” He added the remark: “The work on my
autobiography is progressing slowly. I have only 60 years to go.”
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However, we did try to indicate the projects Sol was actively engaged in at the
beginning of 2016; there was, first of all, his work on this very volume: the
autobiography was to be completed during the summer of 2016; after that, Sol
intended to respond to the individual contributions to Feferman on Foundations in
the fall of the same year. In Part C we list the other projects Sol was pursuing
during that period. (The photo below was taken by Sommer around 2004 on the
balcony of the Library of the Mathematics Department.)3

Pittsbursh, USA Wilfried Sieg
Stanford, USA Rick Sommer

xviii Introduction: Solomon Feferman’s Autobiography …

3We thank Julie Feferman Perez and Ivano Caponigro for their support and detailed, helpful
information. We have not edited the text, except for correcting obvious mis-spellings and
completing some references. Thus, it is the document as Sol left it.



Part A: An Intellectual (Mostly) Autobiography

Early years. I was born on December 13, 1928 in the Bronx to working class
parents who had emigrated to the United States after WW I and had met and
married in New York: my father, Leon Feferman, was from Omsk, Russia, and
worked as a housepainter, while my mother, Helen Grand Feferman, came from
Warsaw, Poland, and was a dressmaker. Neither had had any advanced education.
They identified themselves as Jewish culturally but were not religious. Besides the
English that they acquired in the U.S., their languages were Yiddish and Russian.
We lived in a brick walkup of four or five storeys not far from the Bronx Zoo.
I played in the streets but preferred reading, and in school was good at Arithmetic
and Spelling.

When I was 9 years old, in 1938, my family moved to Los Angeles in the hopes
of a better life and a (then) more salubrious climate. At the outset, we lived in Boyle
Heights in East Los Angeles, at that time a Jewish enclave (that turned into a Latino
enclave in later years). I finished sixth grade there at the age of ten (I had been
“skipped” a couple of times), and started middle school in Boyle Heights. I was
perhaps first attracted to science through serials such as “Buck Rogers in the 21st
Century” at the Saturday afternoon movie matinees. I wondered if I would ever live
to see the 21st century, since I calculated that I would have to still be alive at age 72
in order to achieve that. The 1939 World’s Fair in New York fascinated me from a
distance since I never got to go. But at that remove I thrilled to the iconic Trylon
and Perisphere structures and the marvels of the Futurama exhibit, the first tele-
vision set, and the Time Capsule that was to be opened 5000 years hence. On top of
all that, Albert Einstein gave a lecture on cosmic rays, and Superman (so they said)
made an appearance in person.

In 1940, we moved to Hollywood, not at all in the glamorous part, but modestly
comfortable: that was to be our home for many years. On December 7, 1941, our
middle school principal called a general assembly to tell us that the Japanese had
bombed Pearl Harbor; that meant we would enter WW II. Six days later my parents
had a party to celebrate my 13th birthday. I met my wife to be, Anita Burdman, for
the first time at that party, but she hardly spoke to me there since she was a year
older and I was just a “kid” in her eyes. So she hung around with my sister (4 years
my senior) and her friends, while I hid in the back with mine.

In those years, I started reading science fiction, going back to Jules Verne and H.
G. Wells but then moving on to the stories in the then current pulps such as
Amazing Science Fiction and Astounding Science Fiction and authors such as
Robert Heinlein and Isaac Asimov. I would also take a streetcar downtown to the
Main Library where I could venture into the “adult” section for detective fiction and
such topical authors as Sinclair Lewis and John Dos Passos. My most ambitious
reading was Thomas Mann’s The Magic Mountain. In general, I was puzzled by the
adult relationships in these novels.

At Hollywood High School, which I entered in 1942 at age 13, I excelled in
Mathematics, English, History, and Art, and did well in Physics, Chemistry, and

Introduction: Solomon Feferman’s Autobiography … xix



German. My Algebra teacher was primarily a gymnastics coach and did not know
what the Calculus was; the most advanced mathematics one could take at
Hollywood following Algebra and Plane Geometry and Trigonometry was “Solid
Geometry”. Somewhere along the line I somehow decided that I was going to be a
theoretical physicist and a professor, and I read popular books about relativity
theory and quantum mechanics by such authors as James Jeans and A.S. Eddington.
I also read philosophy by Bertrand Russell and John Dewey, and for a few years
took seriously the so-called General Semantics movement of Alfred Korzybski,
whose book consisted of a mish-mash of type theory, non-Aristotelian logic, and
colloidal chemistry. Then I somehow discovered Rudolf Carnap’s Der logische
Aufbau der Welt and carried that around with me to show off but could not really
penetrate it, though it had some sort of magical hold on me.

College years; CalTech. The high school schedule was accelerated due to the
war and the necessity of some of the male students to finish before being drafted or
joining up with the military. By taking summer classes, I graduated in the middle
of the school year 1944–1945 soon after I had turned 16, and was ready to go to
college. The only choice I considered was between UCLA and CalTech (California
Institute of Technology); the former was free and co-educational and was where
most of my friends were going or had already gone, while the latter was relatively
expensive and (then) for men only but was the place to study physics and science
more generally. I did well on an entry exam at CalTech, was accepted to begin in
early 1945, and was offered a partial fellowship that I could supplement with waiter
work in the Athenaeum, the faculty club. But it was still a financial burden for my
family, gladly undertaken out of pride for my being a student there.

In my first semester that spring at CalTech, I took Calculus and loved it, and
Physics—which was mostly about systems of pulleys that was as far from the
romance of relativity and quantum theory as one could get—and did not love it. The
students were a mix of naïve youngsters like me and returning veterans who knew
the ways of the world and women. The war was still going on though winding
down in Europe; in April 1945 we were shocked when Franklin Delano Roosevelt
died; he had been our rock through all of the depression years and the war. The
Vice President and Missourian, Harry Truman, became President, and we did not
know how he could possibly fill Roosevelt’s shoes. Within a month, Germany
surrendered, and in early August, Truman ordered atomic bombs to be dropped on
Hiroshima and Nagasaki, thus horrifically ending the war with Japan. Within a year,
as the Communists took over Eastern Europe, the Cold War was underway.

Coming out of a bookstore near Hollywood and Vine late in the summer of 1945 I
ran into Anita Burdman. I had just finished the summer session at CalTech, thus
completing my first year there. Anita and I had not had any contact in high school,
except to say “Hi” in passing on the way to classes. I thought she was beautiful and
smart and so appealing, and would have liked to date her, but she was just leaving for
studies at U.C. Berkeley, having already finished a year at UCLA. But we were able
to see each other when she returned home for Christmas vacation; we started dating
then and in the later summer vacations, the relationship began to become serious.

xx Introduction: Solomon Feferman’s Autobiography …



Meanwhile, at CalTech I continued to enjoy doing mathematics in such appli-
cable courses as differential equations and vector analysis, but physics itself was
turning out to be a disappointment. I found that I did not have the requisite physical
intuitions, and the mathematics involved in the physics courses was make do, not
treated as a subject for its own interest. A high point was a course on general
relativity by Linus Pauling that attracted a large audience of both undergraduates
and graduate students, and was pitched way over my head. Meanwhile, I had
decided by default to switch my major to mathematics. But the upper division
courses in that turned out to be somewhat of a culture shock; it was no longer
techniques to master and problems to solve, but now abstract concepts (“group”,
“linear space”, “topology”) to understand and proofs to follow. My place in that
subject did not begin to open up until I took a course on logic by Eric Temple Bell,
the number theorist and popular historian of mathematics (and author of science
fiction novels under the pseudonym, John Taine). The course was a hodgepodge
because Bell did not really understand the modern logic (I learned later that he was
a fan of Lukasiewicz’ three-valued logic). While the material was of great appeal, I
did not then see where it would take me. I thought my greatest personal achieve-
ment while in college was reading James Joyce’s Ulysses. My greatest impact may
have been through a job I had one summer collecting air samples on top of the roof
of a seven-storey downtown Los Angeles building for a study of smog. That had
already begun to be a serious air pollution problem and the chemical analysis of the
samples (carried out by others) showed that it was primarily due to the unfiltered
contents of automobile exhausts.

Having decided on an academic career, at the end of my undergraduate studies at
CalTech in 1948, I applied for graduate work in mathematics at the University of
Chicago and U.C. Berkeley. Accepted at both, it did not take much for me to decide
which to choose, since I was offered a teaching assistantship at Berkeley and since
Anita Burdman was still there. Within 4 months of my arrival, we were married, 4
days shy of my 20th birthday. Having already finished at UC, she had a job at a
psychiatric institute in San Francisco as an assistant teacher on the pediatric ward.
After a year of that demanding work she decided to return to school and get a
credential as an elementary school teacher.

Graduate studies, pursuit, and interruption. I spent my first year at Berkeley,
1948–1949, taking the required mathematics courses for the Ph.D. program in real
and complex variables, and in modern algebra. Teaching assistant duties consisted
in holding office hours and helping grade papers and exams for undergraduate
courses offered by faculty in the department. But in the summers I received extra
income teaching basic algebra and calculus; I found that I was good at it and
enjoyed teaching a lot. The Math graduate students, irrespective of level, were
housed in the wooden “T” buildings in the North end of campus; those structures
had been put up during the war and were supposedly temporary, but lasted for
decades after. One of the students I became friendly with there was Frederick B.
Thompson, who was working on a Ph.D. thesis with Alfred Tarski. He raved about
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Tarski and encouraged me to take his year-long course on metamathematics, which
I proceeded to do in my second year, 1949–1950.

As I have related elsewhere, when I did do so I knew immediately that this was
to be my subject and Tarski would be my professor. He explained everything with
such passion and, at the same time, with such amazing precision and clarity,
spelling out the details with obvious pleasure and excitement as if they were as new
to him as they were to us. He wrote on the blackboard with so much force that the
chalk literally exploded in his hand, but step by step a coherent picture emerged.
Methodically yet magically, he conveyed a feeling of suspense, a drama that
managed somehow to leave us with a question hanging in the air at the end of the
hours.4

That same year I started taking part in Tarski’s logic seminar that was attended
by novices like me along with doctoral students in various stages of progress;
besides Fred Thompson, these included Julia Robinson, who was close to finishing,
Wanda Szmielew, also well advanced, and Anne Davis Morel. Within a year we
were joined by Robert Vaught and Chen-Chung Chang. And not long after that,
coming up rapidly from behind, were the bright as can be youngsters, Richard
Montague and Dana Scott. In that first seminar, I impressed by making a good
presentation of some simple results about Boolean algebras. Such presentations
were a trial by fire, especially for those who could never state things with the
clarity, exactitude, and adherence to his notation that Tarski demanded; they would
be endlessly interrupted by him and forced to go through things until they got them
right, if they could manage that at all. For some reason, I never had difficulties of
that sort and could see that Tarski looked favorably on me as a result. But it took me
most of the year to work up the courage to ask him to be my dissertation advisor; to
my relief, he readily agreed.

However, in order to be advanced to candidacy for a Ph.D. in mathematics, I had
first to pass an unusual and demanding qualifying exam. The setup was that the
chair of the department, Griffith C. Evans, would assign a topic in the research
literature far distant from one’s own expertise and direction of interests; the material
in question was to be studied on one’s own and then presented to a committee in an
oral examination, for which no time limit was set. The topic Evans chose for me
was “Asymptotic eigenvalues of vibrating membranes”. It took me much of a year
to master to my satisfaction the substantial underlying material in partial differential
and integral equations and Tauberian theorems and their specific applications to the
given problem; all the while, Tarski kept urging me to get done with that work and
move on to logic. In the event, in the spring of 1951 I impressed the examining
committee of mathematical analysts with my command of the material and clarity
of presentation and was duly advanced to candidacy.

4 Anita B. Feferman and Solomon Feferman, Alfred Tarski. Life and Logic, Cambridge University
Press 2004, p. 171. In recent years I found by looking at the detailed notes that I took for the course
in question that it was quite slow going. A painful amount of time—close to a full term—was spent
on developing an elementary theory of concatenation as a basis for syntax. Nowadays, if one gave
a nod to that material at all, it would be done in a week.
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In the meantime, I was attending Tarski’s graduate course in Set Theory, another
essential branch of mathematical logic, and continued to take part in his seminars.
Much time that year and next was spent on his then primary interests in algebraic
logic via so-called cylindric algebras and in model theory. From these, he proposed
two possible thesis problems for me: the first was to obtain a representation theorem
for locally finite cylindric algebras, and the second was to obtain a decision pro-
cedure for the first-order theory of ordinals under addition. The former would
provide the completeness of the axioms for cylindric algebras as an algebraic
analogue of the completeness of first-order logic, while the latter would be an
extension of a decision procedure that Tarski and his former student Andrzej
Mostowski had established some years earlier for the first-order theory of the
ordering of the ordinals.

In the years 1951–1953, I acted both as Tarski’s Course Assistant for his
graduate courses in Metamathematics and in Set Theory, and as his Research
Assistant. The former relieved me of routine teaching assistant responsibilities and
at the same time allowed me to gain a greater command of the material, which were
their subjects. The latter often involved working with him—as was his wont—into
the wee hours in his smoke-filled study at his home, with no concern for one’s
stamina or one’s personal life outside of his demands. One frequent task was to help
put his articles in final form in preparation for the typist and thence for publication,
going over all the details and advising as to the choice of words in English, since
Polish was his native tongue. But his own English was excellent (spoken accent
aside) though rather “correct”, and most often, after considerable discussion, he
would choose his own word in preference to my suggestions.

A more substantial long-term task assigned to me was to reformulate in terms of
Tarski’s theory of arithmetical classes the work of Wanda Szmielew’s thesis pro-
viding a decision procedure for the first-order theory of Abelian groups that had
been obtained via the syntactic method of elimination of quantifiers. As I engaged
in that I began to come to the conclusion that the aim in question was a greatly
misguided attempt to put Szmielew’s procedure in so-called ordinary mathematical
terms. The background to that goal was Tarski’s constant efforts to try to interest
mainline mathematicians in the work of logic, and especially in that of his school.
He thought (perhaps rightly so) that an obstacle to their appreciation of such was in
the constant use by logicians of the notions of formal symbolic languages and in
particular in the notions of formulas and sentences for such languages. But what the
theory of arithmetical classes did was to provide model-theoretic surrogates for
those notions while kicking away the traces of the formal languages that dictated
their choice. In principle, translating Szmielew’s work into the language of arith-
metical classes should have been routine, painful as that might be. What it would
not do, and what puzzled me in the whole enterprise, was that it would provide no
illumination for why her procedure worked in the first place. I thought there should
be some underlying explanation for that from the algebraic facts about finite and
infinite Abelian groups as looked at in model-theoretic terms, and spent a lot of time
trying to see what that would look like without really doing what I was assigned to
do. In the end, Tarski was extremely annoyed with me (justifiably so) and had
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Szmielew herself carry that through. But as later work showed, my instincts (the
first where I was thinking for myself) were sound: Abraham Robinson found simple
model-theoretic necessary and sufficient conditions for the eliminability of quan-
tifiers in general, and then Paul Eklof and Edward Fischer established those con-
ditions for the theory of Abelian groups by making substantial use of the known
mathematical facts about the structure of countable Abelian groups.

Meanwhile, I was supposed to be doing my own research toward a dissertation
and the first thing I tackled was a representation theorem for locally finite cylindric
algebras. (The pursuit of cylindric algebras was another attempt to recast logical
notions in “ordinary” mathematical terms.) I turned first to reexamination of proofs
of the completeness theorem for first-order logic of which the representation the-
orem would be an analogue. The simplest such proof was that provided by Leon
Henkin in a modified form due to Gisbert Hasenjaeger; I found that the ideas for
that proof could be converted into prima facie algebraic terms and lead to the
desired result. However, Tarski thought that my proof was not algebraic enough
and pushed me to improve on it. I did not see how that could be done, and left it at
that. Years later, I learned that what I had found (but never published) was the
eventual “standard” proof of the representation theorem in question provided by
Henkin himself.

The second thesis problem on which I worked and that Tarski had proposed was
to provide a decision procedure for the theory of ordinals under addition. In that
case, building on Mostowski’s work on powers of theories as a means to reduce the
decidability of the theory of natural numbers under multiplication to that of the
numbers under addition (“Presburger arithmetic”), I introduced a notion of gener-
alized powers of theories that could be applied to my problem. What I ended up
showing by those means was that the decision problem in question could be
reduced to the decision problem for the weak second-order theory of ordinals under
the less-than relation, but I did not succeed in establishing the latter itself. Still I
thought that the combination of that with the representation theorem would be
satisfactory for a thesis, but Tarski refused to accept it.

Meanwhile, the Los Angeles draft board was breathing down my neck and
wanting to know why I was taking so long with my graduate studies. The draft had
continued from WW II through the Korean War and I had received regular
deferments all along as a graduate student. The board thought that 5 years should be
enough for a Ph.D. and could not be persuaded that I should be deferred any longer.
Thus it was that I was drafted into the US Army beginning in September 1953 and
my graduate work was suspended.

The army years and completion of graduate studies. While up to then I had
always been the youngest in my group, in basic training at Fort Ord, California, I
found myself surrounded by 18- and 19-year olds who regarded me at age 24 as an
old man. Physically, too, years of sitting at a desk had exacted their toll, and it took
a while to toughen up and manage the long marches and runs with rifles. On the
firing range, I was lucky to hit the target. Fortunately, the fighting in Korea had
ended with an armistice in July 1953, and the prospects of being sent into battle
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while in the army were considerably lessened. At the end of the 3 months in basic
training, I was assigned to the Signal Corps in Fort Monmouth, New Jersey and my
wife and I drove there in December 1953. On top of everything else, we had learned
that she was pregnant on the eve of my being drafted. At Fort Monmouth, married
soldiers could live off base, and we found a small house that was just right for us
and our child to be; our first daughter was born there in May 1954.

Thanks to my mathematical background, I was assigned to a research group
where we mainly spent the time calculating “kill” probabilities of Nike missile
batteries around New York and Washington against possible incoming missile
attacks. The fact that these were never even close to 100% had to give one pause.
My fellow workers in the research office were mostly draftees like me who were
closer to me in age, having been student deferees too, but we had a civilian boss.
There was not much real work to do and there was a lot of time for casual con-
versation or to read William Feller’s book on probability theory. But any sort of
political discussion was highly discouraged, since Senator Joe McCarthy and his
group had come through Ft. Monmouth earlier in the fall as part of his witch hunt to
unearth communists under every possible rock, and that had left a residue of fear.

My research responsibilities did not exclude me from being assigned KP
(“Kitchen Police”) or night guard duty from time to time. And at home, finances
were more than tight and there was much to do to help out with our new baby. Still I
managed to keep my logical studies alive (when sleep deprivation and breathing
space allowed) by reading Kleene’s Introduction to Metamathematics (1952) in
order to get a better understanding of recursion theory and Gödel’s theorems than I
had obtained in my Berkeley courses. As it happened, out of the blue one day when
I was well advanced in those studies, I received a postcard from Alonzo Church
asking if I would review for The Journal of Symbolic Logic an article by Hao Wang
(1951) on the arithmetization of the completeness theorem for the classical
first-order predicate calculus. I do not know what led Church to me, since we had
had no previous contact, and I was not known for expertise in that area; perhaps my
name had been recommended to him by Dana Scott who had left Berkeley in order
to study with Church in Princeton, after a breakdown of his relations with Tarski
due to the dereliction of his duties as Research Assistant. Quite fortuitously, my
work on that review led me directly down the path to my dissertation.

The completeness theorem for the first-order predicate calculus is a simple
consequence of the statement that if a sentence of that language is logically con-
sistent then it has a model, and in fact a countable one. Actually, Gödel had shown
that this holds for any set of sentences T. A theorem due to Paul Bernays in Hilbert
and Bernays (1939) tells us that any first-order sentence can be formally modeled in
the natural numbers if one adjoins the statement of its consistency to PA, the Peano
Axioms; Wang generalized this to the statement that if T is any recursive set of
sentences, then T is interpretable in PA augmented by a sentence ConT that
expresses in arithmetic the consistency of T. Wang’s somewhat sketchy proof more
or less followed the lines of Gödel’s original proof of the completeness theorem. In
my review, I noted that his argument could be simplified considerably by following
the Henkin–Hasenjaeger proof instead, by then much preferred in expositions. But
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in addition I criticized Wang’s statement on the grounds that it contained an
essential ambiguity. Namely, there is no canonical number-theoretical statement
ConT expressing the consistency of an infinite recursive set of sentences T, since
there are infinitely many ways in which membership in T (or more precisely, the set
of Gödel numbers of sentences in T) can be defined in arithmetic, and the associated
statements of consistency of T need not be equivalent. So that led me to ask what
conditions should be placed on the way that a formula of PA defines membership in
T in order to obtain a precise version of Wang’s theorem. Moreover, the same
question could be raised about formulations of Gödel’s second incompleteness
theorem for arbitrary recursive theories T.

By the time I was released from the army in September 1955 and returned to
Berkeley to complete my doctoral studies, I had decided to devote myself to the
precise study of formal consistency statements and the arithmetization of meta-
mathematics in some generality, including both the completeness theorem and the
incompleteness theorems. It happened that Tarski was on sabbatical in Europe that
year, and he asked Leon Henkin to take over as acting advisor in his absence.
Though Henkin’s own major interests were in model theory and algebraic logic, he
offered me a willing ear and a great deal of encouragement, and with the prod of
weekly meetings, I soon made significant progress. It was thus that when Tarski
returned from his sabbatical in May 1956, I had a body of work that I was sure was
thesis worthy, and presented it to him as such. This included generalizations of both
Gödel’s incompleteness theorems and the Bernays–Wang completeness theorems
for which I showed that there was an essential distinction between the two in terms
of the conditions to be imposed on the formula used to express membership and
thence provability in a system. In addition, it opened up in novel ways the study
of the interpretability relation between theories, a relation that had been of particular
interest to Tarski. But to my dismay, instead of pronouncing it “excellent!” he
hemmed and hawed. Perhaps, he was irked that the subject was not the original one
he had suggested and not in any of his own main directions of research; instead, it
sharpened and extended considerably the method of arithmetization that Gödel had
introduced in 1931 to prove his incompleteness theorems. Perhaps, the old rivalry
Tarski felt with Gödel over those theorems was awakened. In any event, he decided
not to decide on his own whether the work was sufficiently important and instead
asked me to send a summary of the results to Andrzej Mostowski in Poland. This
took more time and created more tension. To my relief, Mostowski found the results
new and interesting and strongly encouraged Tarski’s approval. Mostowski’s
intervention was decisive, and so Tarski agreed at last to accept the results of my
research for the dissertation. But dotting all the i’s and crossing all the t’s took
another year before conferral of the Ph.D., by which time I was installed as an
instructor at Stanford University.

Stanford; the early years. To cap off my fortuitous year at Berkeley with Leon
Henkin, I learned from him of an opening for an instructorship at Stanford to teach
logic and mathematics; the information came from Patrick Suppes of the
Philosophy Department at Stanford. The subject of logic was based there in that
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department, since mathematics was a bastion of classical analysis in those days.5

After a personal visit to meet Suppes, an appointment with a joint position in
mathematics and philosophy was made, and I came to Stanford in 1956. Except for
leaves of absence of one sort or another since then, that was to become my per-
manent academic home. Our first personal home there was a tract house of modern
open design that we purchased in South Palo Alto. Along with all our possessions,
we arrived with our two daughters in tow; the second one had been born in July
1956.

Activity at Stanford in the area of logic was initially greatly spurred by the
efforts of Suppes, who had come to the Philosophy Department in 1951; he was
joined at that time by J.C.C. McKinsey with whom he collaborated on the axiomatic
foundations of physics until the latter’s tragic death (a probable suicide) in 1953.
McKinsey had earlier done important joint work with Alfred Tarski, and it was
Tarski who suggested to Suppes that he be invited to teach logic at Stanford. After
his death, McKinsey was succeeded in the Philosophy Department by Robert
McNaughton, who later became famous for his contributions to automata theory
and computer science. But then Suppes, no doubt inspired by the example and
influence of Tarski, aimed to establish logic as an active interdepartmental subject
at Stanford. Through his great powers of persuasion and with the help of Halsey
Royden in mathematics, Suppes worked to bring about faculty appointments in
logic at the junior and senior levels many of them jointly in the philosophy and
mathematics departments. Thus a couple of years after I came to Stanford, Georg
Kreisel began spending part of each year as Visiting Professor; his appointment was
made permanent in 1964. Other additions to the faculty were those of John Myhill
in the early 60s, then Dana Scott, and later Harvey Friedman, while Bill Tait and
Jaako Hintikka were brought into the Philosophy Departments. The period of the
60s saw, too, the beginning of a steady stream of visitors and the production of
first-class Ph.D. students.

Of particular significance to me in this stimulating group of colleagues was
Georg Kreisel, who was to become my second and more lasting mentor in logic.
I had first met him during the period in early 1956 when I was well into the research
for my hoped-for dissertation; Kreisel happened to be visiting Berkeley for a month
or so at that time and Dana Scott had told him to look me up. Our initial personal
contact clicked wonderfully for me: I had hardly to begin explaining what I had
done and what I was in the process of working on to see that Kreisel understood
immediately and that it related to things he had thought about and to a whole body
of literature in which he was completely at home. His positive reception of my ideas
confirmed my views of the significance of what I was up to, and added to, my
determination to make this work my thesis, despite Tarski’s reservations. In addi-
tion to the active encouragement and regular monitoring of the work given to me by
Henkin, the boost provided by Kreisel’s quick appreciation was psychologically
crucial at that agonizing time. Furthermore, Kreisel opened up a new world to me

5 Its most distinguished faculty members were George Pólya and Gabor Szegö.
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through his interests in constructivity, predicativity, and proof theory, interests to
which I was naturally attracted and that would come to dominate my own subse-
quent work.

It was not only in subject matter that Kreisel differed from Tarski. In personality,
he was courtly and charming with a quick wit, sometimes sly and sometimes
devastating. In his technical work and expositions, he was much more concerned to
explain, at length, the significance of the work than to set it out in an organized
step-by-step fashion. His attitude seemed to be that if one has the right ideas the
details would look after themselves. And they did amazingly often; details bored
him, and if necessary, he could rely on more disciplined collaborators to supply
them or, if necessary, patch things up. He was also very quick to take in others’
ideas and proofs, as well as to anticipate trouble spots. Under Kreisel’s influence
and thorough critiques, I learned to write papers with the main aims up front instead
of plunging into the details of formalism, but I never gave up the Tarskian concern
for clarity and precision in the statement of results and the spelling out of proofs.

My teaching at Stanford was at first largely in mathematics—mostly in the lower
division calculus sequences—while my logic teaching in Philosophy was of some
elementary introductions to logic. I greatly enjoyed lecturing and being entirely
responsible for my own courses. In later years, I expanded the material I taught in
mathematics to various upper division undergraduate courses, including differential
equations, linear algebra, algebra, number theory, history of mathematics, and
foundations of analysis. My notes for this last led me to my first book, The Number
Systems (1964). And in Philosophy, I progressed to teaching upper division and
graduate courses in logic and set theory. In 1961–1962, I gave a graduate course in
metamathematics that covered model theory, recursion theory, and proof theory
over three-quarters;6 my notes for that were bound in the Mathematics Library as
Lecture Notes in Metamathematics (1962), but never published. All of this teaching
was invaluable in deepening my understanding of various areas of mathematics and
logic. In subsequent years, we replaced the year-long metamathematics course by
courses of two- or three-quarters devoted separately to model theory, recursion
theory, proof theory, and set theory, in alternating years. In still later years, I
divided my time equally between mathematics and philosophy, and added both
Philosophy of Mathematics and Theories of Truth to my regular offerings.

In my first year 1956–1957 at Stanford, besides finishing up my thesis for the
Ph.D. at Berkeley, I began thinking about the question of what one could obtain by
transfinitely iterating the process of adjunction of consistency statements to a theory
in order to overcome Gödelian incompleteness. I learned that this had been con-
sidered by Alan Turing in his dissertation with Alonzo Church at Princeton
University in 1939 under the rubric of “ordinal logics,” and I set out to study what
he had accomplished. This was slow going for me as the presentation was couched

6 Stanford was then and is to this date on the quarter system rather than the semester system.
Quarters consisted of 10 weeks (compared to 15-week semesters), and one could teach courses
lasting one, two- or three- quarters.

xxviii Introduction: Solomon Feferman’s Autobiography …



in the language of Church’s lambda calculus, with which I had had no experience
and initially found very obscure.

Another thing that was begun that year was work on a monograph in collabo-
ration with Richard Montague on the method of arithmetization and some of its
applications. The idea was, essentially, to provide a combined presentation of the
results of both our doctoral theses. Montague’s thesis work concerned
non-finitizability results in axiomatic set theory via relative consistency proofs,
making use to some extent of my precise treatment of proof predicates and con-
sistency statements. Montague left Berkeley in early 1955 for a position at UCLA,
where, like me, he continued working on the exposition of his results to meet what
he took to be Tarski’s exacting standards (in the end, I think they out-Tarskied
Tarski). Also like me, his Ph.D. was not awarded until 1957. Over the following
years, we invested considerable effort in the preparation of the joint monograph, but
there were many partial drafts, and because of the technology of those days
(handwritten MSS turned into typescript by secretaries) and because of the distance
between us, progress was slow. At a certain point we both realized that we should
publish the results of our respective theses as separate articles; mine appeared in
1960 (cf. [4]7) and Montague’s in 1961. (We had already each presented our main
results to a broad audience of logicians at the 1957 Cornell Summer Institute to be
described below.) But in subsequent years our paths steadily diverged and our
thoughts and energies became largely directed elsewhere. Even so, since an
agreement had been made early on with the North-Holland Publishing Co. for
publication of the monograph, we continued to work on it sporadically, frequently
prodding each other to take the next step. But even before Montague’s awful
murder in 1971, I had ceased to have any heart for the project. Moreover, research
by others in the meantime had overtaken us and would have had to be incorporated
in some way in order to remain up to date. In particular, Montague’s dissertation
work was pretty much superseded by a paper of Kreisel and Lévy in 1968 on
applications of partial truth definitions to non-axiomatizability of various systems of
arithmetic and set theory by statements of bounded complexity.

Starting in this same period I also worked with Bob Vaught on a paper on
generalized products of structures. We had first begun talking of a collaboration in
1955, when I explained to him my work on generalized powers of structures that I
had introduced in my (only partially successful) attack on the decision problem for
ordinal addition, reducing that to the decision problem for the Boolean algebra of
sets of ordinals with the less-than relation. Vaught’s thesis had provided a proof of
Los’ conjecture that if a theory is closed under arbitrary finite ordinary (Cartesian)
products of its models, then it is closed under arbitrary products of its models.
Vaught recognized that my work and his could be combined to reduce properties of
generalized products of structures to properties of the factors on the one hand and a
certain Boolean algebra of subsets of the index set for the product on the other hand.

7 This and all the other references in square brackets refer to Feferman’s bibliography in this
volume, starting on p. lxix. (WS and RS).
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But preparation of a joint paper was slow going because he was then at the
University of Washington, and producing and exchanging typewritten drafts took
considerable time as with Montague; also both Vaught and I accepted the demands
of Tarski-style precision, though he was even more meticulous than I. We did not
complete the paper until 1958 and it was published in 1959 (cf. [2]).

Topping off that intense first year at Stanford, a 5-week-long AMS Summer
Institute in Symbolic Logic was held at Cornell University beginning on July 1,
1957. The 1950s had witnessed a great increase in activity in mathematical logic
and there had been some meetings on special topics but this was the first devoted to
the broad spectrum of the field. As we described it in our biography, Alfred Tarski.
Life and Logic:

The conference was unusual for its length and breadth; the speakers represented all bran-
ches of mathematical logic and, for the first time, a large number of computer scientists took
part. Most of the participants lived in the college dormitories and ate in the communal
Cornell Hotel School dining room. It was like being at a summer camp… For weeks the
green, hilly campus buzzed with talk about model theory, recursion theory, set theory,
proof theory, many-valued logics, and significantly, the logical aspects of computation;
there was also the usual discussion about whose work was the most important. There was
novelty, rivalry, conviviality, and [even] scandal. (Feferman and Feferman 2004, p.220)

The inspiration for the conference came from Paul Halmos, a younger
self-described “brash” mathematician at the University of Chicago, who worked in
a number of mainline fields and had taken an interest in algebraic logic, thus
connecting him with Tarski and his students and collaborators’ ongoing work in the
subject. With the assistance of Tarski and the other American leaders in the field—
Alonzo Church, Stephen Kleene, Willard van Orman Quine, and Barkley Rosser—
Halmos succeeded in getting the sponsorship of the American Mathematical
Society (AMS) and financial support from the National Science Foundation (NSF).
Tarski of course pushed to have the institute take place in Berkeley, while Rosser
was adamant that it should be in Cornell; one argument was that the majority of
participants would be coming from the East Coast; reluctantly, Tarski acceded.

The issue of who would be invited to speak also created heat. There was quick agreement
about the most prominent senior scholars, but discussion—mostly by correspondence—
about who to choose among the up-and-coming younger crowd went on for many months,
with each of the main organizers giving preference to his own disciples. On this score,
Tarski did very well; about one fourth of the speakers were under his influence in one way
or another, and many of them gave two or three talks. In this way, he succeeded in
positioning himself as the leading man of the occasion. Because the reclusive Gödel, whose
name was first on the invitation list, had declined to attend, there was no direct challenge to
Tarski’s assumption of that role. (ibid., p. 221)

There were also two “wild cards”, Abraham Robinson (unrelated to Berkeley’s
Raphael M. Robinson) and Georg Kreisel:

[They] came to the Cornell Institute unfettered by a link to a mentor. Both would soon have
enormous influence on their younger colleagues… Both men were European, like Tarski,
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but much younger than he and more recently arrived in the United States. Robinson, born in
Germany, had lived in Israel, France, England, and Canada, and he would return to Israel
once more for a few years before settling in the United States. Kreisel—Austrian born,
educated in England, and a frequent visitor to France—had a position in Reading, England.
At the invitation of Kurt Gödel, he had spent the preceding two years at the Institute for
Advanced Study [IAS] in Princeton. Largely self-taught in logic and less bound by tradi-
tion, neither Robinson nor Kreisel owed allegiance to a single methodology. Both had
worked in applied mathematics in England during World War II, and as a result their style
was much more experimental and free-wheeling than Tarski’s. Also, each of these men in
his own way exuded intellectual self-confidence; neither was afraid to lock horns with
Tarski. (ibid., p. 223)

Robinson worked on problems concerning the applications of model theory to
algebra, which of course interested Tarski very much. He introduced novel general
approaches to the subject, among which (later on) were model-theoretic methods to
establish decidability of various theories without having to make use of the method
of elimination of quantifiers for which Tarski had been the standard bearer. In 1960,
Robinson became famous for the creation of “non-standard analysis,” a
model-theoretic foundation for the systematic use of infinitesimal (and infinitely
large) quantities in mathematical analysis.

Participation in the Cornell Institute was extremely important for my career, first
for widening my understanding of the field, and then for the intellectual and per-
sonally valuable contacts I made with both senior and junior logicians, and finally
for the opportunity to present myself and my work to that group. In consultation
with Tarski, I gave two talks there. The first was on the results of my dissertation on
the arithmetization of metamathematics [6]. For the second, I had proposed to him
to speak about my joint work with Vaught on generalized products of models. But
Tarski insisted that I speak instead about some work of Andrzej Ehrenfeucht and
Roland Fraïssé [7]. The background was that subsequent to my efforts, Ehrenfeucht
(a student of Mostowski’s in Poland) had succeeded in establishing the decidability
of the theory of ordinals under addition by means of the so-called “back-and-forth”
methods that had been introduced by Fraïssé (then working independently in
French Algeria and later in France). I have never gotten over Tarski’s insistence that
should be my second talk, but there seemed to be no way that I could get around
him for that. And Tarski never seemed to realize the significance of my work with
Vaught, though after its publication in 1959 it became a much-cited landmark in the
field of model theory. That, too, made me much more aware of his blind spots.

Back at Stanford, at the end of my first 2 years there, I was promoted from the
rank of instructor to the tenure-track position of Assistant Professor of Mathematics
and Philosophy. The challenge in the following years would be to make tenure and,
for that, more substantial work would have to be produced and recognized. In
particular, in 1958–1959, after mastering Turing’s work on ordinal logics, I
reframed it as the study of transfinite recursive progressions of first-order axiomatic
theories with standard formalization. The theories in such progressions are indexed
along paths in the Church–Kleene system O of recursion-theoretic notations for all
“constructive” ordinals. I re-proved Turing’s completeness result for Pi-0-1
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number-theoretical sentences in a progression based on the iteration of consistency
statements along certain paths, and showed that even iterating the local reflection
principle did not give completeness for Pi-0-2 sentences along any path in or
through O. My main result—only obtained after a considerable struggle—was that
transfinite iteration of the global (or uniform) reflection principle is complete for all
sentences of arithmetic along suitable paths in the set O of all constructive ordinal
notations [8].

A year at the Princeton IAS. Due to Kurt Gödel’s presence at the Princeton
Institute for Advanced Study, that increasingly became a mecca for logicians at all
levels, and so I applied for and succeeded in obtaining a National Science
Foundation (NSF) Post-doctoral Fellowship to visit the IAS in the academic year
1959–1960, for which I was granted a leave of absence from Stanford. Gödel
himself had visited the Institute from Vienna in 1933–1934 and again in 1939. To
escape being drafted into the Nazi army, he fled Austria in 1939 and joined the
Institute as an “Ordinary” Member in 1940; he became a Permanent Member in
1946. What Gödel accomplished in the decade of the 1930s before joining the
Institute changed the face of mathematical logic and continues to influence its
development to this day. Since the subject of my 1957 dissertation was directly
concerned with the method of arithmetization that Gödel had used to prove his
famous incompleteness theorems of 1931, and since my main concern after that was
to study systematic ways of overcoming incompleteness, the prospect of meeting
with Gödel and drawing on him for guidance and further inspiration was particu-
larly exciting. (I did not know at the time what it took to get invited. Hassler
Whitney commented for an obituary notice in 1978 that “it was hard to appoint a
new member in logic at the Institute because Gödel could not prove to himself that
a number of candidates shouldn’t be members, with the evidence at hand.” That
makes it sound like the problem for Gödel was deciding who not to invite. Anyhow,
I ended up being one of the lucky few.)

Housing for Institute Fellows and their families was provided on Einstein Drive
in two-storey apartment units that had been designed in the efficient and modernist
esthetic Bauhaus style by Marcel Breuer. Our daughters were then aged five and
three, respectively, and our family was given a two-bedroom ground floor apart-
ment. In addition to housing, a day care center was provided on campus for pre-
school children, so our 3 years old went there while our 5 years old started
kindergarten. The atmosphere for adults was very social and we soon made a
number of new friends.

Once I got settled, my meetings with Gödel were strictly regulated affairs. There
were few colleagues with whom he had extensive contact—in earlier years, Albert
Einstein, as everyone knows, and Oskar Morgenstern among them—as well as a
few of the more senior visiting logicians. There were some younger logicians who
managed to see him more often than I did, but I was too intimidated to take full
advantage of him, something I regret to this day. Gödel’s office was directly above
the one that I shared with another visitor, the Japanese logician, Gaisi Takeuti. We
used to think we heard him pacing the floor above us. When I wanted to meet Gödel

xxxii Introduction: Solomon Feferman’s Autobiography …



and figured he was in his office, I would phone him for an appointment and would
hear the phone ring and hear him answer. When it worked out, I would walk
upstairs to his office. There he would be seated at his desk, and I would sit down
across from him; there was no work at the blackboard as is common among
mathematicians. It was clear to me that Gödel had read my papers and knew about
the work in progress, and the latter would be the focus of our conversations. He
would raise some questions and make a few suggestions, and what he had to say
would be very much to the point and fruit for further thought. After precisely half
an hour the alarm on his watch would go off, and he would say, “I have to take my
pills.” I took that as my cue to leave. It was only in later years that I learned of his
general hypochondria and neurasthenia and of his earlier bouts of mental illness in
the 1930s in Vienna, where his position at the University had simply been that of a
Dozent following the Ph.D. and Habilitation degrees.

1959–1960 was an exciting year for logicians at the Institute. Among the dis-
tinguished senior visitors were Paul Bernays, from the ETH in Zürich, and Kurt
Schütte, from the University of Kiel. Bernays had been Hilbert’s leading assistant in
Göttingen in the 1920–1930s in the development of Hilbert’s consistency program
and its principal tool of proof theory (Beweistheorie) for the foundation of math-
ematics; it was Bernays who was principally responsible for the preparation of their
joint work, Grundlagen der Mathematik (in two volumes, 1934–1939). In 1934,
Bernays had had to return to Switzerland when the Nazis took over Germany, since
he was Jewish. Schütte was Hilbert’s last student, in 1933; he subsequently had to
spend the years up to 1945 as a meteorologist, and it took him another 5 years after
that to reestablish himself in the academic world. He was awarded the Habilitation
degree in 1950 at the age of 43.

Schütte was at the Institute without his family, and Bernays was unmarried. Both
gentle and friendly, they would often visit us in our Institute flat on Einstein Drive,
and Bernays would play the piano for our young daughters. Other visitors in logic
that year were Gaisi Takeuti (with whom, as I have already mentioned, I shared an
office), Roger Lyndon from Michigan, and Anne Davis Morel, who had studied
with Alfred Tarski a few years before me. Lurking in the wings was the brilliant
mathematician, Paul Cohen, from the University of Chicago, who was going around
asking everybody—and the logicians in particular—what the most important
problem would be to solve in their field (the outcome of which to be described
anon). Gödel did not conduct a seminar or offer any courses, so, instead, we visitors
in logic at the Institute had a regular seminar with the logicians at Princeton
University, led by Alonzo Church; Hilary Putnam was there as a young faculty
member, and Martin Davis would come down regularly from New York to join us.
(Putnam and Davis were then working on Hilbert’s 10th problem on the question of
decidability of Diophantine equations, eventually solved in the negative by Yuri
Matiyasevich after essential steps made by Julia Robinson.) Finally, Raymond
Smullyan—who was finishing his Ph.D. under Church—was also an active par-
ticipant; in addition, at parties he entertained with amazing (to us) card tricks.

At the time I was immersed in my paper on transfinite progressions of axiomatic
systems, which reworked and extended Turing’s work on ordinal logics that I
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described above. As it happened, Turing’s work had been carried out under
Church’s direction at Princeton as a doctoral thesis in 1939; curiously, Church had
no comment to make about the historical connections when I presented my results
in our joint seminar. Though the idea of autonomous progressions was already in
the air, I did not start working on them until 1961. I did not know in 1959-1960
how important Schütte’s work in his papers of the 1950s and in his book
Beweistheorie then in progress would turn out to be to me for the treatment of
predicative analysis via autonomous ramified progressions. Moreover, I did not yet
consider myself to be one of the proof theorists in any usual sense of the word, and
paid only modest attention at that time to what they were concentrating on. That
year, at the Institute, it was Takeuti’s Fundamental Conjecture as to the elim-
inability of cuts in the simple theory of types that held the center of their attention.
Takeuti himself had obtained various special cases by syntactic arguments. One of
Schütte’s main results in that period was a reformulation of the Fundamental
Conjecture in the semantic terms of the extendibility of suitable partial valuations to
total ones. The Fundamental Conjecture was solved in the latter part of the 1960s in
terms of Schütte’s semantical reformulation, first by Bill Tait for second-order type
theory and later in full and independently by Dag Prawitz and M. Takahashi.

Predicativity, proof theory, and tenure. After returning to Stanford in the
summer of 1960, I concentrated on completing for publication my paper on
transfinite progressions of theories. As a foil to my completeness results, during a
visit to Stanford early that summer, Kleene’s brilliant student, Clifford Spector,
suggested that one could have incompleteness even for Pi-0-1 statements along
inductively defined (Pi-1-1) paths, and in fact that proved to be the case. Spector’s
idea got incorporated in the definition of a set O* of O-like possibly nonstandard
notations that are well-founded with respect to hyperarithmetic descending
sequences (or “pseudo-well-ordered”). Progressions of theories Ta can be extended
to a in O*; in particular those based on the iteration of the global reflection principle
are shown consistent by induction on an arithmetic property. Finally the Pi-1-1
paths P through O turn out to be exactly those that are the restrictions to O of the
predecessors of some a in O*–O; hence the consistency of Ta for such a is true but
not provable along P. Both my full work on completeness of transfinite progres-
sions and a short paper with Spector on incompleteness along Pi-1-1 paths were
eventually published in the JSL in 1962 [8, 9]. In another publication of that year
[10], I was able to apply on the one hand the methods of my paper to obtain
complete hierarchies of recursive functions along relatively short paths in O, and on
the other hand the methods of our joint paper to obtain incomplete hierarchies along
nonstandard paths in O*. Sadly, Spector did not live to see our joint work and its
consequences, since he died unexpectedly of leukemia in 1961.

My next major project was to investigate predicative analysis, its potentialities,
and its limits. In one respect, this followed directly on from my work on pro-
gressions. Namely, the leading open question remaining from that was what are
natural conditions to impose on the choice of ordinal notations used to index
theories in a progression. One answer was provided for theories whose language
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contains a formula I(x) for which provability of I(a) implies a in O; informally, I(x)
would express well-foundedness of the initial segment determined by x in O or a
part of O. Given an initial system T0 that is correct for such statements and a
progression {Ta} based on iteration of a successor principle that preserves cor-
rectness, define the set Aut({Ta}) of autonomous notations for the progression to be
the smallest set A containing 0 that is closed under successors and predecessors and
is such that whenever b is in A and Tb proves I(a) then a is in A. This notion of
autonomy (aka the “boot-strap” condition) had been introduced by Kreisel in 1958
in a proposal to characterize finitism and predicativity by suitable autonomous
progressions of theories, {Fa} and {Ra}, resp. The latter are systems of ramified
analysis, i.e., systems of second-order number theory in which the set variables are
ranked by ordinal notations or the corresponding ordinals, and the comprehension
axiom takes the form that one only asserts the existence of sets of rank a by
definitions of the form {x: A(x)} (with ‘x’ ranging over the natural numbers) when
each bound set variable in the formula A has rank less than a.

The idea of ramification—but only for finite ranks—goes back to the work of
Bertrand Russell in the early twentieth century in his monumental effort (with
Whitehead in the Principia Mathematica) to rescue Frege’s fatally flawed program
to reduce all of mathematics to logic. Russell called properties P(x) predicative if
they lead only to consistent definitions of sets {x: P(x)}. Henri Poincaré had
identified vicious circles as being the underlying source for the paradoxes (Russell’s
being the one that had undermined Frege’s system). The ramification condition was
Russell’s means to avoid prima facie vicious circles and thus meet the predicativity
requirement. But Russell could not obtain a satisfactory definition of the natural
numbers in his system of ramified type theory without adding two ad hoc princi-
ples, the Axiom of Infinity and the Axiom of Reducibility; the latter in effect
vitiated the distinctions by ramification. Meanwhile, Poincaré had argued that the
concept of the natural number system is an irreducible minimum of abstract
mathematical thought and any effort to reduce it to logical notions was a misbe-
gotten enterprise.

Kreisel’s proposal combined aspects of Poincaré’s and Russell’s ideas with the
natural numbers taken as given at the lowest rank in the language of the progression
of ramified theories; moreover, he argued that there is no reason to restrict the ranks
to finite levels, as long as the transfinite levels used are only those accessed by the
autonomy condition. On that proposal, predicative analysis is identified with the
provable sentences of the union of the systems in the autonomous progression {Ra},
and the predicatively provable ordinals are just the levels a arrived at in this
autonomous manner. Given that the first question would be to determine what the
limit is of the predicatively provable ordinals—or, in other terms, what is the least
ordinal that is not predicatively provable—the second question would be to see how
much of actual classical analysis can be accounted for in terms of the predicative
systems Ra. An answer to the first question for an upper bound was already
practically at hand in the work of Schütte on ramified systems without restriction on
the ranks. That made use of the Veblen hierarchy ua of critical functions on the
ordinals to obtain the ordinal strength of the ramified systems at arbitrary levels.
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The ordinal C0 is defined to be the least ordinal closed under the Veblen hierarchy
considered as a function u(a, n) of two variables. Using Schütte’s work on ramified
systems, he and I independently established C0 as an upper bound to the predica-
tively provable ordinals (cf. [11]). The more difficult part for each of us was
showing that it is the least upper bound; we accomplished that by different methods.
Since then, C0 has come to be referred to as the ordinal of predicative analysis as
well as the Feferman–Schütte ordinal.

The second question to be dealt with in regard to predicative analysis was how
much of actual classical analysis could be accounted for in predicatively justified
terms. This was a difficult project that I undertook to deal with in the following
years (a question that Schütte did not pursue). Since real numbers may be repre-
sented by sets of natural numbers via Dedekind sections in the rational numbers,
real numbers would be transfinitely ranked in the ramified progression, and that is
unsuitable for the actual development of analysis. Thus my first aim was to find
unramified second-order theories proof-theoretically equivalent to the autonomous
progression of the Ra’s. The first such system that I obtained for this purpose was an
autonomous progression {Ha} of unramified systems based on iteration of the
Delta-1-1 Comprehension Rule (also known as the Hyperarithmetic
Comprehension Rule (HCR)). Then I obtained a single system with the same
theorems as the union of the Ha’s for |a| < C0, based on the rule HCR together with
a version of the so-called Bar Rule (also in [11]). As for the actual development of
analysis on predicative grounds, that had been initiated by Hilbert’s great student
and colleague, Hermann Weyl, in a little book called Das Kontinuum published in
1918. That accounted for essentially all of nineteenth-century classical analysis; my
extension of that to considerable parts of twentieth-century analysis would have to
wait a number of years, but the theoretical foundation was now secured and the
basic techniques were already in place.

It was through this work that I came to be known as a proof theorist. Meanwhile,
proof theory itself was very much the topic du jour at Stanford especially due to the
deep interest of Kreisel, Tait, and others in Spector’s consistency proof of analysis
(unramified second-order number theory), obtained by a double-negation inter-
pretation in a formally intuitionistic system followed by an extension of Gödel’s
functional interpretation, using the so-called bar recursive functionals in place of the
primitive recursive functionals. Spector had worked out the main arguments for his
result in the year 1960–1961 that he spent at the IAS up to the time of his death,
though it was left to Kreisel to organize the details in a form suitable for posthu-
mous publication.8

Meanwhile, my body of work to date had made a sufficiently strong impression
to lead the Departments of Mathematics and Philosophy at Stanford to promote me
to the tenured rank of Associate Professor, commencing with the academic year

8 In the summer of 1963, Kreisel led a seminar whose main purpose was to examine the extent to
which Spector’s interpretation could be considered constructive; his conclusion was “not by a long
shot”; I attended the seminar along with Bill Tait, Bill Howard, Verena Dyson, and my student
Joseph Harrison.
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1962–1963. Psychologically that meant, on the one hand, great relief from the
uncertainties and pressures that I had experienced as an Instructor and Assistant
Professor during the preceding 6 years and, on the other hand, assurance that I
could think of my research projects continuing in longer terms in the years ahead,
wherever they might lead me. It also meant some major changes for my family. In
particular, we could now think of building a home in a new subdivision for faculty
and staff residences that Stanford had just opened up behind the campus. After a
long period that involved choosing a lot, an architect, a plan and a contractor, our
house was completed and ready to move in April 1963.

An excursion into set theory. Coincidentally, in the months leading up to April
1963, Paul Cohen worked out before my eyes his novel method of forcing and
generic sets to obtain his solutions to the long outstanding problems concerning the
independence of the Axiom of Choice (AC) and the Continuum Hypothesis (CH) in
axiomatic set theory. As mentioned above, I had first met Cohen when we spent the
year 1959–1960 together at the IAS, but he went on to spend an additional year
there. He had received his Ph.D. at the University of Chicago in 1958 with a
dissertation in analysis, but was already noted for his ambition to solve the most
important problems in mathematics no matter what the field.9 Cohen seems to have
had an interest in logic from early years but never took a course in it, though he had
a number of logician friends while a graduate student at Chicago from whom he
could absorb a certain amount about the subject including what were the most
important problems in that field. At the IAS, though, he kept asking me the same
question, and of course the independence of the Axiom of Choice from the axioms
of Zermelo–Fraenkel set theory (ZF) kept coming up. In fact, though I was not a
set-theorist, I had toyed with that problem myself for a while at the IAS.

After leaving the IAS, Cohen came to Stanford in 1961 and soon after he was a
frequent visitor to my office, pumping me about problems in logic. Before long he
settled on establishing the consistency of the system of second-order number theory
(also called “analysis”). It was not his style to consult the literature, and he did not
hesitate to reinvent the wheel as he came to understand things for himself. To begin
with, he found a form of Gentzen’s consistency proof for number theory. After that,
he floated to me various ideas for a consistency proof of the system of analysis,
despite obstacles to those approaches that I kept pointing out. Nevertheless, in the
spring of 1962, he decided to give a special series of lectures (well attended both by
logicians and non-logicians) in which his aim was to present such a consistency
proof. Somewhere along the way, he realized that there was a fundamental difficulty
and the seminar fell apart with no evidence of embarrassment on his part.

In late 1962, Cohen shifted his attention and began to work in earnest on
establishing the independence of AC from ZF; again, he used me as a sounding

9 Cohen’s big result in analysis was the solution of a conjecture of Littlewood’s, for which he was
to receive a prestigious prize in 1964. It is known that at various times throughout his life, Cohen
also tried—without success—to settle the famous Riemann Hypothesis, one of the seven problems
on the $1,000,000 Millennium Prize list.
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board to try out various approaches, despite the fact that I was not an expert in set
theory. But when he came up with the method of forcing and generic sets in the early
spring of 1963, it seemed to me that his new methods really did the trick. In the
event, not only did he obtain the independence of AC but also he showed that the
Continuum Hypothesis CH is independent of ZFC; more precisely, it is consistent
with ZFC that the cardinality of the continuum is Aleph-2. So far as I could see, the
proofs were correct but the truly novel arguments involved required checking some
delicate points, and only the experts could be depended on for final confirmation.
Indeed, after he circulated a draft of his work, verifications of most of the arguments
came in, but still some questions were raised about delicate points. In desperation,
Cohen wrote Gödel seeking his imprimatur, and that was not long in coming, along
with a letter lauding Cohen as having made the most important advance in set theory
since its axiomatization. Thus assured, Cohen gave a large dramatic public lecture on
his work at Stanford in April 1963; after that, he was to lecture on it in Princeton in
June 1963 and—most notably—on Independence day July 4, 1963 for the
Symposium on the Theory of Models being held in Berkeley that month.

Having acted as some sort of midwife to the birth of Cohen’s method, I was the
first to really understand and apply it, using some simplifications in the definition of
forcing that Dana Scott had suggested to me. The main application I obtained is that
it is consistent with ZFC together with the Generalized Continuum Hypothesis that
no formula of set theory can serve to define a well-ordering of the continuum; this
settled in the negative a conjecture that Hilbert had made in 1900 in the first of his
famous list of open mathematical problems. And I also showed that the method of
forcing and generic sets could be applied as well in both first-order and
second-order number theories. I spoke about this work at the July 1963 Berkeley
Symposium and among the listeners was the set-theorist, Azriel Lévy, who was
eager to learn more. He spent part of the summer of 1963 with me at Stanford in
order to absorb Cohen’s method and then to make new applications. In particular, in
joint work, we obtained existence of a model of ZF in which there is a countable
union of countable sets that is not countable, thus contradicting the Countable
Axiom of Choice, a weak form of AC.

Incidentally, toward the end of my 1965 paper on the method of forcing and
generic sets [13], I pointed out that a sentence A is true in all generic extensions M
[G] of the ground model M iff ¬¬A is forced by the empty set.10 The proof
immediately generalizes to the statement that A is true in all generic extensions M
[G] for which G extends q iff q ⊩ ¬¬A, or as is also written, q ⊩*A; the latter
relation is called weak forcing. Joseph Shoenfield showed in 1967 how you could
simplify the methodology of independence proofs by turning Cohen’s approach on
its head. Namely, given a partial ordering P whose members are the forcing con-
ditions q, instead of starting with the forcing relation and defining what it means to
be a generic set in terms of that, one defines a generic set G to be one that meets
every dense set of forcing conditions, and then defines weak forcing in terms of

10 This was realized independently by Lévy.
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truth of A in all M[G] for which G extends a given condition q. The work then goes
into showing how that relation ⊩* can be defined in M, so that the properties of M
[G] may be reduced to those of M. This methodological inversion became standard
and has several advantages among which it is simpler to begin with and much more
versatile.11

Though I was first out of the gate after Cohen, a stampede soon followed.
Among others, Robert Solovay had moved into the subject after attending Cohen’s
lecture in Princeton in June 1963. His first result was announced in an abstract for
the Berkeley Model Theory Symposium with the title, the cardinal number of the
continuum “can be anything it ought to be”, i.e., that it is consistent with ZFC that
its cardinal number is Aleph-a for any a not excluded by König’s theorem. Solovay
was then still a graduate student at the University of Chicago, working with
Saunders MacLane on category theory and higher geometry; he obtained his Ph.D.
the following year and then joined the Berkeley Mathematics Department. As it
turned out, Solovay was to become a leader in the onslaught of work on set theory
that had been unleashed by Cohen. The subject of set theory took off in a dazzling
way in the post-Cohen years, I think much to Cohen’s surprise; I believe he had
wished that his work could be seen as a stand-alone achievement, like Gödel’s 25
years before, rather than one that quickly opened the flood gates to one result after
another. Nevertheless, he could be well satisfied with receiving the Fields Medal,
the preeminent award in mathematics, at the International Congress of
Mathematicians that took place in Moscow in 1966 and with the award of the
National Medal of Science by President Lyndon B. Johnson a year later.

A summary of my work in set theory was published in the proceedings of the
1963 Berkeley Model Theory Symposium [12] and it later appeared in full in the
journal Fundamenta Mathematicae for 1965 [13]. After that, I made only one more
serious effort to apply the method of forcing in set theory, namely to the measure
problem. Since the axiom of choice had been used in an essential way in the proof
of the existence of Lebesgue nonmeasurable sets of reals, the question was whether
it is consistent to assume all sets are measurable if one drops AC. Solovay’s main
result (announced in 1964) was that it is consistent with ZF plus the Countable
Axiom of Choice that there is a translation invariant extension of Lebesgue measure
to arbitrary sets of reals. Following that he showed that, assuming the existence of
an inaccessible cardinal, it is in fact consistent that all sets are Lebesgue measur-
able. Cohen was long disturbed by that assumption until it was shown by Saharon
Shelah that Solovay’s result cannot be obtained without it.

Paris and Amsterdam. The year 1963–1964 would be the seventh that I spent
at Stanford (except for the year at the Institute), and so I was due for a sabbatical
leave at half salary in 1964–1965. I thus applied for and was awarded a Senior
Post-doctoral NSF Fellowship to make up the balance of my salary; the proposed
plan was to spend the first half of the year at the University of Paris and the second

11 See Shoenfield [1967] p. 364.
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half at the University of Amsterdam. The choice of Paris was made on the grounds
that Kreisel would be there; indeed, he had been alternating his time on a regular
basis between Stanford and Paris, and had helped foster an incipient group in logic
in Paris (though as I recall he ended up not being in residence in the autumn of
1964). The choice of Amsterdam was reasonable in view of the fact that since some
time it had a strong group in logic that had been built up by Arend Heyting in
mathematics and Evert Beth in philosophy. Heyting had been a student of L.
E. J. Brouwer, the great topologist and originator and ideological promoter of the
brand of constructive mathematics called intuitionism, and Heyting had been the
first to develop intuitionism on formal grounds. The philosopher and logician Beth
had a broad range of interests in other areas of logic, especially model theory after
he came under the influence of Alfred Tarski, with whom he became very close.
Sadly, Beth died in the spring of 1964, about a year before the planned stay in
Amsterdam but after I had made our overall arrangements.

A few weeks after arrival in Paris we found an apartment in the relatively
bourgeois 17th Arrondissement, a metro stop away from the Arc de Triomphe. We
had originally planned to enroll our daughters in the École Bilingue in Auteuil
somewhat to the west of the 17th. But practically facing our new apartment was a
public elementary school, sectioned between a school for girls and a school for
boys. We asked our daughters if they would be willing to enter the École des Filles,
and they said yes, they were game for that, but the total immersion proved to be a
great challenge in the first few months that they were finally able to meet.
Meanwhile, Anita and I studied French at the Alliance Française on the Left Bank.

In Paris I attended weekly seminars at the Institut Henri Poincaré (IHP) on rue
Pierre et Marie Curie near the Sorbonne; the IHP had been established in the 1920s
for the use by mathematicians and physicists at an advanced level. (There was no
office space for me there and in any case it was my habit to work at home.) Besides
Kreisel when he was in residence, there were few logicians at the IHP in those days
since the subject had not been at all encouraged in France despite its explosive
development in the US and elsewhere in Europe.12 One of the logicians at the IHP
when I visited was Daniel Lacombe, who was by then well established in the field;
there were a few others like Jean-Louis Krivine who were beginning to make their
mark. That picture was to change radically when I visited 8 years later.

In Amsterdam we were fortunate to get an apartment belonging to the linguist
and philosopher Frits Staal and his wife; Staal was later to become a Professor of
Philosophy at UC in Berkeley. Though my principal host in the Mathematics
Department was Heyting, the person with whom I had most contact was Anne S.
Troelstra, an advanced doctoral student of Heyting’s. Troelstra was to become one
of the most important contributors to the metamathematics of intuitionism and

12 The last French logician of world note had been Jacques Herbrand, who died in 1931 at the age
of 23 in a mountain-climbing accident. The French mathematicians had valued Herbrand for his
contributions to algebraic number theory but were ignorant of his fundamental contribution to
proof theory; that was recognized instead by the Germans and Austrians such as Hilbert, von
Neumann and Gödel, and later Gentzen.
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constructivity, to begin with by developing variants of the method of realizability
that had been introduced by Kleene. He later collaborated with Kreisel to give a
consistency proof for a formal system of Brouwer’s theory of choice sequences,
done for a different formalism in a different way by Kleene and his student R.E.
Vesley.

Proof Theory I: Many-sorted interpolation theorems. I made a number of
direct and indirect contributions to proof theory in the period 1966–1971. The first
of these was a form of the interpolation theorem for many-sorted languages that
gives information about the location of quantifiers over variables of common sort in
a way that could not be obtained as a consequence of Craig’s form of the theorem.
One of the applications of this theorem is a generalization of the Loš-Tarski the-
orem characterizing the form of sentences preserved under substructures, and its
dual for extensions. Namely, suppose given an indexing I of sorts and a proper
subset J of I. Then a formula is preserved under passage to substructures (exten-
sions) in which the domains of J sort are fixed just in case it is provably equivalent
to a formula that is essentially universal (existential) outside of J. Another appli-
cation of the general theorem for formulas invariant under extensions mod J is an
eliminability of quantifiers theorem, which when combined with some simple
model-theoretic criteria implies various known eliminabilities of quantifiers results
in algebra, for example, for real and algebraically closed fields. Later, using
many-sorted interpolation arguments I obtained a similar general theorem for for-
mulas invariant under end-extensions in the language of set theory [18].

At the time I was doing this work, my student Jon Barwise was working on the
model theory and proof theory of the infinitary languages LA for A an admissible
subset of the Hereditarily Countable sets HC.13 The admissible sets in general are
the transitive models of the system KP of Kripke–Platek set theory, a weak sub-
system of ZF that had been developed as a setting for the generalization of recursion
theory to set theory. The analogues of the recursively enumerable sets are just those
that are Sigma-1 relative to A, also called the A-r.e. sets; the analogues of the finite
sets called the A-finite sets are just the members of A. The formulas of LA are those
elements of A built up from atomic formulas using negation, countable conjunction,
countable disjunction and ordinary universal and existential quantification. Barwise
showed that the straightforward generalized forms of the completeness theorem,
Gentzen’s cut-elimination theorem and Craig’s interpolation theorem hold for LA.
His main new result was that the compactness theorem holds for LA with A
countable admissible in the following form: if S is an A-r.e. set of LA formulas and
each A-finite subset of A has a model, then A has a model. These results generalize
the classical ones by taking A = HF.

13 Barwise was my second Ph.D. student; he received his Ph.D. in 1967. My first student was
Joseph Harrison, who extended my work on recursion-theoretic pseudo-hierarchies in interesting
and unexpected ways; he finished in 1966. Unlike Barwise, Harrison decided not to pursue a
research career but chose instead to devote himself to the cause of social justice. He went on to a
teaching position at Emory University, a noted “black” college.
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Using the completeness of the cut-free calculus for LA where A is an admissible
subset of HC, I could show that the many-sorted interpolation theorem described
above and its applications to preservation and invariance theorems with stationary
sorts—as well as the quantifier eliminability theorems—carry over directly to these
logics. I explained all of my work described above in a series of lectures on
proof theory at the Summer School in Logic held in Leeds, England in August 1967
[19]. I also included useful results on ordinal bounds that had been obtained byTait for
infinitely long derivations: suppose d is a derivationwhose is bounded bya andwhose
cut rank is bounded by m, then we can convert d to a cut-free derivation d* of the same
end formula whose length is bounded by u(m, a). Handled constructively, this is
related to the proof theory of predicativity, since if m, a < C0 then u(m, a) < C0.

14

Following Leeds, I attended the Third International Congress of Logic,
Methodology and Philosophy of Science at the University of Amsterdam as an
invited speaker.15 My topic was various versions of autonomous systems in con-
nection with predicative mathematics, including some formulated in terms of
infinitary languages. The ordinal C0 was shown to be the least upper bound of the
provable ordinals in each of them, thus adding some robustness to my characteri-
zation of predicativity (cf. [17]).

The cast of characters in logic at Stanford: entrances and exits in the 60s
and early 70s. In order to understand my relations with other logicians at Stanford
in the 1960s and early 1970s, here is a brief summary of their various entrances and
exits. John Myhill had come to Stanford from Berkeley in 1960 but for personal
reasons left Stanford for SUNY at Buffalo in 1964. Kreisel was then appointed in
his place; he had been coming to Stanford on a visiting basis off and on since 1958,
though after 1964 he still divided his time between Stanford and Paris.

When Dana Scott finished his Ph.D. with Church in Princeton in 1958, he moved
to the University of Chicago as an Instructor for a couple of years, and then Tarski
brought him back to a position in Berkeley, where he was tenured 2 years later.
Though there was a non-raiding agreement of some sort between Berkeley and
Stanford, in 1963 we managed to attract him away to a joint position in mathe-
matics and philosophy. After a year visiting Amsterdam in 1968–1969, Dana was
slated to return to Stanford, but he was attracted back to Princeton for a couple of

14 Tait’s bounds were actually somewhat sharper: with each derivation d of length bounded by a
and cut rank bounded by c + xm is associated a derivation d* of the same end formula whose
length is bounded by u(m, a) and cut rank is bounded by c. In particular, for m = 0, lowering the cut
rank by 1 may be achieved by passing to a derivation of length xa. This may be applied to the
infinitary translations of derivations in PA to obtain e0 as a bound for the resulting cut-free
derivations.
15 As described in Chapter 10 of Feferman and Feferman (2004), Tarski had been the principal
creator—with the help especially of Evert Beth—of the Division of Logic, Methodology and
Philosophy of Science within the International Union of History and Philosophy of Science. Its
first congress was held at Stanford in 1960, where Suppes was the highly harassed point man.
I gave a contributed talk there on my work on ordinal logics, i.e., non-autonomous transfinite
progressions of theories.
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years before moving on to Oxford where he finally settled in for a good 10-year run
in 1972.

Bill Tait had come to Stanford in the Philosophy Department in 1959 following
his doctoral work at Yale with Frederick Fitch and Alan Ross Anderson. He soon
actively tackled a number of questions in proof theory and constructive foundations
raised by Kreisel. Tait left Stanford in 1965, first for the University of Illinois at
Chicago Circle and later at the University of Chicago.16

Finally, the prodigy Harvey Friedman came to Stanford in 1967 at age 18 as an
Assistant Professor of Philosophy. Having skipped much of high school and
undergraduate work, he had just received his Ph.D. at MIT as a student of Gerald
Sacks, but his work was completely independent of Sacks. In his thesis, Friedman
established a surprising theorem that was to feed into my work in a significant way
that will be described later. At Stanford, he immediately allied himself with Kreisel
and, taking the latter’s ideas as a cue, set out to produce quite a varied series of
results. Friedman was tenured 2 years later and stayed at Stanford until 1973 when
his relations with Kreisel broke down; he went on to Wisconsin, then Buffalo, and
finally Ohio State for his permanent position.

A year at MIT 1967–1968. In the spring of 1967, I had expected to be promoted
to Full Professor at Stanford for the following academic year and when I was not,
was very annoyed, so much so that I sought out (through Gerald Sacks)—and
received—an invitation to visit the MIT Mathematics Department for the year
1967–1968. I guess the idea was that that would show that I should not be taken for
granted and that I could be attractive to other institutions and might even receive
outside offers. The strategy worked to the extent that I was promoted the following
year, but meanwhile it required another disruption for our family, especially as to
schools and friendships for our daughters.

In addition to Gerald Sacks and Hartley Rogers at MIT, during that year I had
rewarding contacts with the logicians in the Philosophy Department at Harvard—
Willard van Orman Quine, Burton Dreben, and Hilary Putnam—all of whom I had
first met at the Cornell conference. Anita and I also had contact with Jean van
Heijenoort, whom we had first met at Cornell too, and who was now teaching at
Brandeis University not far from Cambridge. Van, as he was called, had had a
fascinating life in the 1930s in close association with Leon Trotsky and was much
later to be the subject of Anita’s first biography. He left the Trotskyite movement in
the 1940s and, after obtaining a Ph.D. at NYU in mathematical analysis, became an
autodidact in logic while teaching mathematics. One of his major contributions to
our field was the production, as editor, of From Frege to Gödel. A Source Book in
Mathematical Logic; that appeared the very year we came to Cambridge. The
Source Book provided English translations done by Van and others of a series of

16 Following Tait’s departure, Mostowski’s former student Andrzej Ehrenfeucht was brought as a
visitor in Philosophy for 2 years. Meanwhile, over in mathematics, Rohit Parikh served as an
instructor in mathematics from 1962 to 1964, and then we had a succession of visitors: Joe
Shoenfield (1964–65), Azriel Lévy (1965–66), and Robin Gandy (1966–67).
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fundamental papers spanning the crucial period 1879–1931 that was formative for
modern logic. Each paper was also accompanied by an informative introductory
note, many of them written by van Heijenoort as well as by Quine, Dreben, and
Charles Parsons. In the 1980s Van was to become one of my coeditors of the
Collected Works of Kurt Gödel, for which the Source Book was a model in a
number of respects.

Proof Theory II: Proof-theoretic ordinals and theories of iterated inductive
definitions. After returning to Stanford in the summer of 1968, I headed back east
in August (this time alone) for a banner meeting at SUNY Buffalo on intuitionism
and proof theory. “Everybody” was there. I gave two talks, one on systems of
ordinal functions and functionals arising from proof-theoretical work, and the
second on systems of iterated inductive definitions and subsystems of analysis.

The first of these was on what I called hereditarily replete functionals over the
ordinals, began with a description of work I had completed the year before on
systems f = (f1,…,fn) of functions of one or more arguments on the set X of
countable ordinals and their allied systems of representation. The initial purpose of
that was to explain what was needed for the system of representation of ordinals up
to C0 to carry out the details of the arguments in my work on predicativity, but the
leading properties turned out to be applicable to much larger systems of ordinals.
With each system f and set X of ordinals is associated the closure Cl(X) of X [ {0}
under f. The system f is called complete if Cl(0) is an ordinal, and is called replete if
for every a, Cl(a) is an ordinal. The inaccessibles underf are those a for which Cl
(a) � a; the critical functionf′ associated with f enumerates its inaccessibles. Let Cr
(f) be the system obtained by adjoining f′ to f. This system needs not be complete if
f is, but a basic result in my 1968 paper [16] on systems of ordinal representation
was that the property of repleteness is preserved under the critical process Cr, and
so also is its transfinite iteration as in the Veblen process.

Moving on from that, in my first Buffalo talk I generalized the notion of
repleteness to that of hereditarily replete functional of finite type over X (cf. [21]).
Since the basic Veblen process for constructing larger and larger systems of ordinal
functions was obtained by iteration of the critical process Cr at type 2, I considered
that as given by a functional It(3) at type 3. There is a natural generalization of this
to It(n) for each n � 3, and I showed that each of these is hereditarily replete. If one
starts with the simplest nontrivial replete function f0(a) = 1 + a, its successive
iterations under the critical process give the functions f1(a) = x + a, f2(a) = xa and
f3(a) = ea. I was thus led to consider the ordinal j generated from 0 and f0 together
with Cr and all the iteration functionals It(n) and conjectured that j is the Howard
ordinal u(eX+1, 0), i.e., the ordinal of the intuitionistic version of the system ID1 of
one arithmetical inductive definition. This was proved 4 years later by my student
Richard Weyrauch (1975). The Howard ordinal makes use of the extension of the
Veblen process to uncountable ordinals due to Bachmann; I will return to my
substantial simplification of that later. My suggestion to consider iteration func-
tionals of transfinite type was taken up by Aczel (1972) who obtained another
Bachmann ordinal for what ordinals can be generated thereby.
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My second talk at the 1968 Buffalo conference concerned the reduction of the-
ories of iterated Pi-1-1 comprehension schemes to theories of iterated arithmetical
inductive definitions. The classical theory ID1 has for each arithmetical formula A
(P, x) in which P has only positive occurrences (and thus is monotonic in P) a
symbol PA with axioms expressing that it is closed under A and that any formula B
(x) closed under A (substituting B for P in A) contains PA. The classical theories
IDa are formulated similarly, except that the formulas used at level a may contain
earlier introduced predicate symbols both positively and negatively. Of special
interest are accessibility inductive definitions, of which the paradigms are those
of the constructive ordinal number classes or constructive tree classes. One of the
main theorems I obtained in [22] is that for k = xc where c is a limit ordinal, (Pi-1-1
CA)<k (i.e., the Pi-1-1 Comprehension Axiom iterated up to k) is proof-
theoretically equivalent to ID<k, with conservation for statements arithmetical in
O. In particular, for k = e0, this work connected directly with the contributions of
Friedman and Tait to the Buffalo conference, that are briefly as follows.

In his 1967 dissertation at MIT, Friedman showed by means of a novel
model-theoretic argument that, again for k = e0, the system (Sigma-1-1 AC) is a
conservative extension of (Pi-1-0 CA)<k for Pi-1-2 statements. In his Buffalo talk,
Friedman generalized this to the result that (Sigma-1-(n+1) AC) is a conservative
extension of (Pi-1-n CA)<k for suitable classes of statements. In particular, by my
result above, the system (Sigma-1-2 AC) is a conservative extension of ID<k for
statements arithmetical in O.

In Tait’s presentation at Buffalo, he gave a consistency proof of (Sigma-1-2 AC)
via a constructive cut-elimination theorem in uncountable propositional logic
allowing conjunctions and disjunctions over higher tree classes up to e0. In prin-
ciple, it seemed that this could be expressed as a reduction of (Sigma-1-2 AC) to an
intuitionistic theory of iterated inductive definitions up to e0.

My view of all this was as potential material for a more perspicuous relativized
Hilbert program. The greatest advance that had been made in that program prior to
1968 was Takeuti’s constructive proof of the consistency of (Pi-1-1 CA) + BI by
means of induction on certain accessibility systems that he called ordinal diagrams.
However, these did not have a clear interpretation in terms of natural systems of
representation for ordinals. Ideally, besides the constructive reduction, one would
like to attach an ordinal such as Gentzen’s for PA, the Feferman–Schütte ordinal for
predicativity and the Howard ordinal for ID1. My proposal for (Sigma-1-2 AC) was,
first, to replace Friedman’s model-theoretic proof of its conservation over (Pi-1-1
CA)<k for k = e0 by a constructive reduction to that system; thus, by my result
(ii) above, one would have the proof-theoretic equivalence of (Sigma-1-2 AC) and
classical ID<k. The next step would be to reduce the latter proof-theoretically to
intuitionistic ID<k; one would hope more generally to reduce classical systems of
iterated inductive definitions IDa and ID<k for limit k in general to the corre-
sponding intuitionistic systems, preferably of accessibility inductive definitions.
Finally, one would want to determine the proof-theoretic ordinals of the latter in
terms of systems of ordinal representation such as provided by the Bachmann
hierarchy. I tackled the first part of this three-pronged attack in my proof-theoretical
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work of the year after Buffalo that I shall describe next. The second and third parts
would turn out to be an achievement by Schütte’s students Wolfram Pohlers and
Wilfried Buchholz and my student Wilfried Sieg in the latter part of the 1970s. That
will be described later.

Proof Theory III: functional interpretation relative to non-constructive
functionals and representations of ordinals using higher number classes; Nice
and London 1970. The first International Congress of Mathematicians (ICM) that I
attended was held in Moscow in August 1966. I gave a contributed talk there on the
independence of (Sigma-1-1 AC) from a weakened form of (Delta-1-1 CA).17 The
Moscow Congress was otherwise memorable for a number of non-mathematical
reasons.

The second ICM that I attended was held in the city of Nice, September 1–10,
1970, and I was invited to give a half hour talk there. The ICM meetings are usually
held in August, but that was excluded at Nice because the Riviera is usually full up
during that month of the year. My wife and I rented a villa in St. Paul de Vence in
the hills above the coast for the month before the Nice Congress. We were
accompanied by our daughters and a friend of theirs; they wasted no time in leaving
us to explore other parts of Europe on their own.

For my talk [23] at the ICM, I presented a way to obtain a proof-theoretical
reduction for n = 0, 1 of (Sigma-1-n AC) to (Pi-1-n CA) iterated up to e0, that
implied and thus strengthened Friedman’s conservation results, via an adaptation of
Gödel’s functional interpretation. These results are achieved by the formal
adjunction of non-constructive type 2 functionals F in order to transform instances
of the Axiom of Choice scheme expressed in the analytic hierarchy into instances
that are quantifier-free relative to those functionals. In the case n = 0, that is
accomplished by adjunction of the non-constructive minimum operator l, and in
the case n = 1 by adjunction of the Suslin–Kleene operator E1 that tests for
well-foundedness of a relation. A decade later, in joint work with Wilfried Sieg, we
found more straightforward reductions using Gentzen and Herbrand style
proof theory, to be described below. But the use of the functionals l and E1 would
make its reappearance in other parts of my work for quite different purposes.

It happened that I was also invited to talk at a logic meeting in London in the last
week of August a few days prior to the beginning of the ICM Congress in Nice. The
point of departure for my lecture [24] at the 1970 London conference was the
notion of relative categoricity of systems f of ordinal functions that I had introduced
in the article on systems of ordinal representation where I had introduced the notion
of repleteness described above. One considers terms t built up from variables by the
functions in f. The system f is said to be relatively categorical (r.c.) if the ordering
of terms obtained by substituting for the variables members of the set In(f) of
f-inaccessibles depends only on the ordering of those inaccessibles. It was shown

17 That result was never published; the independence from full (Delta-1-1 CA) was obtained later
by John Steel.
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that if f is r.c. then so also is the system f′ obtained by adjoining the critical function
Cr(f) to f, and the same holds for the adjunction of the transfinite iteration of the
critical process as in the Veblen hierarchy.18 In my talk for the London meeting, I
was led to consider the naturally associated functors F on the category of subsets A
of In(f) whose values are F(A) = (Cl(A), � , f), where Cl(A) is the closure of A
under f. These preserve inclusions and direct limits, and I introduced a more general
class of functors that I called j-local for every infinite cardinal j and a rather
general class of concrete categories. The x-local functors are just those that pre-
serve inclusions and direct limits. The main result was that j-local functors preserve
elementary equivalence and elementary substructure in the languages L∞,j; this had
a number of algebraic applications. Later, Paul Eklof () used a 1964 modification
of the notion of j-local functor to obtain a precise formulation of Lefschetz’
Principle in algebraic geometry.

What is more important is a conversation that I had with Peter Aczel at the
London conference in which I suggested a substantial simplification of the means to
represent large countable ordinal numbers for proof theory. Up to then, that had
been done by Helmut Pfeiffer and David Isles following the method of Heinz
Bachmann by using hierarchies of functions of ordinals in higher ordinal number
classes. Writing Xa for the ath initial ordinal (X0 = x, X1 = X = the least
uncountable ordinal, etc.), Bachmann had extended the Veblen hierarchy by first
using a hierarchy of normal functions on X2, from which he could define a system
of representation up to a segment of the ordinals < X2, such as eX+1. At successor
ordinals or limit ordinals of cofinality less than X, one proceeds as in the Veblen
hierarchy, but for a represented as limn<Xan, one diagonalizes, i.e., takes u(a, n) =
u(an, 0). (That is how one is led to the Howard ordinal u(eX+1, 0).) Pfeiffer (1964)
then lifted Bachmann’s procedure to higher finite number classes by more and more
complicated systems of partial ordinal representation and assignment of funda-
mental sequences; at each stage one step down successively from segments of
higher number classes Xn+1 to Xn. At the Buffalo Conference, Isles (1970) showed
how to extend this to all number classes up to the least inaccessible ordinal.

My suggestion to Aczel was that one could avoid the complications of the
Bachmann–Pfeiffer–Isles procedures without the successive assignment of funda-
mental sequences in partial systems of representation in the higher number classes
by defining a single “long” sequence of functions ha defined for each a on arbitrary
ordinals which is such that when restricted to any given Xm maps Xm into itself.
Namely, suppose we have defined hn for each n < a; let w(n, η) = hn(η) for n < a
and η arbitrary. The crucial point in defining ha as the critical function w.r.t the
preceding functions is to apply an autonomy condition, i.e., when defining the
closure of an ordinal c under w, one only uses those n < a which arise in the closure
process; one also throws in Xm whenever the closure contains m. A simple argument
shows that if c < Xl+1 then the cardinality of Clw(c) is � ℵl. Then the collection of

18 Moreover, one has effective versions of these results, using a natural notion of effective relative
categoricity.
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w-inaccessibles is defined to be the class of all c such that Clw(c) \ Xl+1 = c when
l is least with c less than Xl+1.

The hard work on this idea then went into showing that one had matchups of the
h functions with the functions defined by the Bachmann–Pfeiffer–Isles procedures.
That was carried out in part by Aczel in unpublished notes and to a full extent by
Jane Bridge in her doctoral dissertation at Oxford (1972). Bridge also showed that
the countable ordinals generated by the h functions are recursive. Subsequent
extensions and simplifications were made by Schütte and members of his school
beginning in the early 1980s, most efficiently by Wilfried Buchholz (1986), and that
has become the current standard method for naming large ordinals in proof theory.

Branching out: Foundations of category theory I. Besides using these cate-
gorical notions, in the late 1960s, I had become interested in the question of the
foundations of category theory. From the very beginnings of the subject as intro-
duced by Eilenberg and Mac Lane in 1945, it was recognized that the notion of
category lends itself naturally to possibly problematic instances of self-application.
Not only does it appear reasonable to speak of the category Grp of all groups, the
category Top of all topological spaces, etc., we are also led to consider the category
Cat of all categories, whose morphisms are just all the functors F: A ! B, where A
and B are arbitrary categories. Even more, given any two categories A and B, no
matter how large, it seems one can form the category BA of all functors from A to
B, whose morphisms from given F to G are all the natural transformations η: F !
G. Thus one may contemplate as apparently reasonable mathematical objects such
categories as GrpTop and CatCat, with each counting as an object of Cat.

From the beginnings, too, of the subject it was suggested that some sort of
set-theoretical foundation is needed for category theory since such naïve or unre-
stricted readings having to do with “large” and “super-large” categories appeared to
border on the familiar paradoxes. Eventually, Mac Lane (1961, 1969, and else-
where) pushed for finding a suitable set-theoretical framework to deal with these
problems. The “one universe” solution that he settled on as presented in the text
Mac Lane (1971) is one of the approaches that is widely accepted. A universe U in
a set-theoretical framework is a nonempty transitive set that contains x, is closed
under the operations of pairing, union and power set, and is closed under strong
replacement, i.e., (f: a ! U) implies f[a] 2 U for a 2 U and f an arbitrary function.
The existence of such a universe U is equivalent to the existence of a strongly
inaccessible cardinal. A related approach is that ascribed to Grothendieck; that
invokes the assumption of arbitrarily large universes, thus whose existence is
equivalent to the existence of infinitely many strongly inaccessible cardinals.
Relative to any such universe U, a set is called small if it belongs to U and large if it
is a subset of U but not a member of U; similarly for categories. Special attention is
given to locally small categories, i.e., those whose Hom sets are all small. Thus, for
example, in place of Grp, Top, and Cat one deals in such a set-theoretical
reduction with the categories of all small groups, small topological spaces, and
small categories, respectively; each is a large, locally small category. In these terms
what takes the place of GrpTop is now a “super-large” or “meta” category, i.e., one
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lying beyond U though one existing in a perfectly reasonable way in the class of all
sets. It seems to be universally accepted in practice that such distinctions as those of
being small, locally small, and large are essential to many of the fundamental
theorems of category theory, the prime example being Freyd’s Adjoint Functor
Theorem (AFT). As Freyd (1964) pp. 85–86 said of his theorem, the crucial “so-
lution set” condition for it “is not baroque” since one has counterexamples to AFT
when that condition is dropped. Moreover, such set-theoretical conditions can be
verified for the various categories that arise in the applications to such areas as
combinatorial topology, homological algebra, and algebraic geometry.

In my first venture into the foundations of category theory [20], I introduced
refinements of the Mac Lane and Grothendieck approaches in which the condition
on a transitive set U to be a universe is weakened to the requirement that U with the
membership relation restricted to it forms an elementary substructure of the class of
all sets; in other words, it is a kind of surrogate for the universe of all sets. The
resulting theories are conservative over ZFC, so do not require the existence of
inaccessible cardinals, but it was not clear if this would take care of all the cases
handled by the stronger notion of universe. Later, in a talk for a logic meeting at
Orléans in 1972, I began to think instead of ways in which one might obtain a direct
foundation of “naïve” or “unlimited” category theory. My first effort in that
direction was never published, though it did eventually get posted on my home
page when I revisited the subject years later.

Abstract model theory and the Tarski Symposium. Another subject that I
turned to in the early 1970s was abstract model theory. The idea of a “logic”
considered in model-theoretic terms had developed along three lines, first that
initiated by Mostowski on cardinality quantifiers in the late 1950s, then the work of
Tarski and his school on infinitary languages in the mid-1960s, and finally the work
of Per Lindström on generalized quantifiers and abstract characterizations of
first-order logic (1966, 1969). In the latter, Lindström showed among other things
that first-order logic is the largest logic satisfying the compactness theorem and the
Löwenheim–Skolem theorem. Abstract model theory blossomed as a means to
provide a uniform framework in which to organize, compare, and seek out the
properties of the many stronger logics that had then come to be recognized. My
interest in the subject was drawn to it through the discussion in our logic seminar at
Stanford of Lindström’s work, as well as a characterization by Barwise of the
language L∞,x that allows arbitrarily long conjunctions and disjunctions but only
ordinary quantification, as the largest language that is absolute relative to the
Kripke–Platek axioms KP.

At the 1971 symposium in Berkeley in honor of Tarski’s 70th birthday, I gave a
rather ambitious lecture in which I sketched my work in three directions: local
functors, functional interpretation with non-constructive functionals, and
many-sorted interpolation theorems, all of which I have described above. But in my
write up for the symposium volume of these, I restricted myself to the last, but I
added relevant new work from abstract model theory. Namely, I introduced notions
for model-theoretic languages L and L* of L being adequate to truth in L*, and of L
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being truth maximal. The latter means that L is adequate to truth in itself and
whenever it is adequate to truth in L*, then L* is contained in L. By the D-
interpolation (or Suslin-Kleene) property for L is meant the statement that if K1 and
K2 are complementary projective classes for L, then K1 (and hence K2) is an
elementary class for L; when it holds, this implies the Beth-definability property for
L, but is stronger. The main new results of my Tarski symposium paper are that L is
truth maximal if and only if it has the D-interpolation property, and that the logic LA

for A admissible is truth maximal if and only if A is contained in the hereditarily
countable sets. Examples of logics that fail to have the D-interpolation property are
the extensions of first-order logic by the cardinality quantifiers Qj for j an infinite
cardinal, and second-order and higher order logics.

I published this work in full in [31] along with another note on abstract model
theory in which I dealt with properties u that are invariant on the range of definable
relations R between structures for a model-theoretic language L [32]. The main
result for L that satisfies the many-sorted interpolation theorem is that if R is an
L-elementary class (or even L-projective class) of pairs of L-structures and if u is
invariant on the range of R, then there is an L-sentence w such that u holds in N if
and only if w holds in M whenever R(M, N). This has as an immediate consequence
theorems of Beth, Robinson, Gaifman, Barwise, and Rosenthal.

I did no further direct work in abstract model theory, but contributed to the
subject with Jon Barwise by organizing in the early 1980s workshops for and
editing the volume Model-Theoretic Logics that appeared in 1985. My work
influenced various contributions to that volume, including those of Makowsky
(1985) and Väänänen (1985) in particular.

On my own; 1972 and anon. The Berkeley symposium in 1971 had been an
important opportunity for me to pay my homage to Tarski; as I wrote in my article
for the occasion, I was always aware of my great debt to him for his teaching as
much in work far distant from his own as in that paper. We had friendly relations
and met on a number of academic and social occasions from then until his death in
1983, but he never asked and we never did speak of my interests or work in the field
that he had crucially opened up for me.

As to my second mentor, a rupture took place in my relations with Kreisel in
1972 for reasons that I never fully understood. As I related above, I had first met
Kreisel in my last year as a graduate student 17 years before, and once he came to
Stanford we were constantly and intensely engaged with each other in seminars and
with innumerable personal discussions in his office or mine, and often for hours on
the telephone. He read and critiqued all my papers and I did the same for him. Not
only were we the closest of colleagues but he was friends with Anita and me and we
often socialized. So the rupture was a very painful one but in retrospect not a
surprising one. I had seen Kreisel became enthusiastic and closely engaged with a
number of other logicians and then suddenly break off relations after a few years
with no explanation. In contrast, I could console myself that our relationship had
worked so well for so long. But nevertheless it was strange to be in the same
department and see each other in one way or another in the dozen or so years that

l Introduction: Solomon Feferman’s Autobiography …



followed and never—except for one occasion— say one word to each other.19 And
what was more important—not that I had not already carved out a distinct and
distinctive career for myself—I was now fully on my own. It was time.

Theories of finite type and mathematical practice. Up to now, it has been
possible to explain the development of my work in fairly chronological sequence.
However, beginning in the early 1970s, that turns into various strands that run side
by side and weave in and out, and it will not always be so easy to relate that to the
progress of my academic career, but here it goes. Moreover, I shall generally take
the topics in bigger blocks.

The year 1972–1973 was the second in which I took a sabbatical leave of
absence. In the fall of that year, the arrangement was to visit the Mathematical
Institute in Oxford; my host at the Institute in those days was Robin Gandy, a fine
logician with an inimitable personality. Robin had been a student and friend of Alan
Turing and mainly worked in recursion theory, and it was partly through him that I
began to take an interest in recursion on functionals of finite type that had been
inaugurated by Kleene’s groundbreaking work of 1957. Dana Scott came to Oxford
that year from Princeton as Professor of Mathematical Logic (a position he held
until 1981) and it provided a fortuitous opportunity to renew our old friendship.

From January 1973 on, my visit was to the University of Paris VII, where I gave
lectures in French on proof theory, since the English of those to whom I lectured
was not then as good as it would become—not that my French was much better.
There were many more logicians then in Paris than had been in my previous visit
1964–1965, and they were pursuing all the main branches of mathematical logic.
Among those attending my lectures was the young proof theorist Jean-Yves Girard,
who had come out of the blue in 1970 with his proof of normalization of terms for a
system of analysis using the novel impredicative notion of “candidat de
réductibilité”. (That method was then applied independently by Per Martin-Löf and
Dag Prawitz to proofs of cut-elimination for analysis and type theory, thus rounding
out the work on Takeuti’s conjecture.) Another logician attending my lectures was
the model-theorist Gabriel Sabbagh, with whom I was to become a life-long friend.

My work during that year was primarily devoted to writing up the work
described in the preceding section, in particular, the results that I had reported to the
Nice conference in 1970. Within a couple of years that was to mesh with an
invitation to contribute a chapter to the Handbook of Mathematical Logic being
organized under the editorship of Jon Barwise. What I proposed for that became
“Theories of finite type related to mathematical practice” [34], though by the time I
finished it in 1975–1976, I had begun to explore various type-free theories as will
be described below. The aim of the Handbook chapter (which is rather long) was to
give recursion-theoretic and proof-theoretic information about various classical
theories of finite type over the natural numbers that account for (i) Bishop-style
constructive analysis without restriction on logic, (ii) predicative analysis, and

19 Kreisel retired from Stanford in 1985.
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(iii) some descriptive set theory. The theories themselves include Gödel’s primitive
recursive functionals both in full and as a restriction of the recursion functional due
to Kleene. For (ii), they are augmented by an operator for quantification over N,
more specifically via the unbounded least number operator, and for (iii) by the
operator that tests for well-foundedness of an ordering relation in N, more specif-
ically the operator that selects the left-most branch through the Brouwer–Kleene
ordering. Furthermore, one can consider induction on the natural numbers as given
in full or as restricted to quantifier-free formulas. The recursion-theoretic models are
both of hereditary effective operations and of recursion in higher types à la Kleene,
while the proof theory makes use of my adaptations of Gödel’s functional inter-
pretation in [23] to the case of non-constructive operators combined with the
double-negation interpretation and relativized forms of Tait’s normalization pro-
cedures for infinitely long terms. The metatheorems then give various conservation
theorems over second-order theories and bounds for the provably recursive ordinals
of the systems involved. It was stated in the article that a development in full of this
material would be given in a book with the title Explicit Content of Actual
Mathematical Analysis that was supposed to be in progress, but was never carried
out in that form.20

In fact, in order to formalize mathematical practice of the indicated kinds in the
most direct way in the work on my intended book, I decided that one would have to
make use instead of a system of variable finite types (VFT) that I introduced in [56].
I devoted much work in the years 1977–1981 writing up a draft of my book based
on the VFT systems. In particular, I outlined there a succession of steps to reduce
the VFT (aka VT) systems to the theories of constant finite types that had been
described in my Handbook chapter; that could then be used to determine the
strength of the various theories of variable finite type under consideration. But there
were obstacles to the plan, and I never published the book draft based on these
systems. Instead, as was shown much later in work with Gerhard Jäger [85, 96] it
turned out to be simpler to translate the VFT systems into systems of Explicit
Mathematics (cf. next) for which the proof theory could be developed directly
without going through the systems of finite type as before.

Systems of Explicit Mathematics I. In early 1974, a meeting was held at
Monash University in Melbourne, Australia in which I introduced the first systems
of what I call Explicit Mathematics; these were to influence much of my further
research and that of my collaborators. I have recently described the motivation for
this work and related systems in Sec. 2 of an article called “The operational per-
spective: three routes” [164], and the following is drawn from that.

While I was thinking about the smoothest way in which to develop mathematics
on a predicative basis, Errett Bishop’s novel informal approach to constructive
analysis (Bishop 1967) had made a big impression on me and I was interested in
seeing what kind of more or less direct axiomatic foundation could be given for it

20 And what an awkward title!
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that would explain how it managed to look so much like classical analysis in
practice while admitting a constructive interpretation. Closer inspection showed that
this depended on dealing with all kinds of objects (numbers, functions, sets, etc.)
needed for analysis as if they are given by explicit presentations, each kind with an
appropriate “equality” relation, and that operations on them are conceived to lead
from and to such presentations preserving the given equality relations. In other
words, the objects are conceived of as given intensionally, while a classical reading
is obtained by working extensionally instead with the equivalence classes with
respect to the given equality relations. Another aspect of Bishop’s work that was
more specific to its success was his systematic use of witnessing data as part of what
constitutes a given object, such as modulus of convergence for a real number and
modulus of (uniform) continuity for a function of real numbers. Finally, his
development did not require restriction to intuitionistic logic (though Bishop
himself abjured the Law of Excluded Middle).

Stripped to its core, the ontology of Bishop’swork is given by a universe of objects,
each conceived to be given explicitly, among which are operations and classes (qua
classifications). This led to my initial formulation of a system T0 of Explicit
Mathematics in [30] in which that approach to constructive mathematics could be
directly formalized. In addition, I introduced a second system T1, obtained by the
adjunction of the unbounded minimum operator so as to include a similar foundation
of predicative mathematics. The theory T0 was formulated in a single-sorted language
with basic relations =, App, Cl, and η. App(x, y, z) expresses that x is an operation
which when applied to y has the value z, while Cl(x) expresses that x is a class
(ification) and yηx expresses that y has the property given by x when Cl(x) holds.
VariablesA,B,C,…X, Y, Z, are introduced to range over the objects satisfying Cl, and
y2X is alsowritten for yηxwhere x=X. The basic logic of T0 is the classical first-order
predicate calculus.21 The axioms of T0 include basic operational axioms as a partial
combinatory structure with pairing, projections, and definition by cases, while the
remaining axioms are operationally given class existence axioms. For example, we
have an operation prodwhich takes any pair X, Y of classes to produce their cartesian
product, X� Y and another operation expwhich takes X, Y to the cartesian power YX,
also written X !Y. The formation of such classes is governed by an Elementary
Comprehension Axiom scheme (ECA) that tells which properties determine classes in
a uniform way from given classes. These are given by formulas u in which classes
may be used as parameters to the right of the membership relation and in which we do
not quantify over classes, and the uniformity is provided by operations cu applied to
the parameters of u.22 But to form general products, we need further notions and an
additional axiom. Given a class I, by an I-termed sequence of classes is meant an
operation f with domain I such that for each i 2 I the value of f(i) is a class Xi; one

21 In (F 1979) I also examined T0 within intuitionistic logic.
22 The scheme ECA can be finitely axiomatized by adding constants for the identity relation, the
first-order logical operations for negation, conjunction, existential quantification, and inverse
image of a class under an operation.
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wishes to use this to definePXi[i2 I]. It turns out that in combinationwith ECAamore
basic operation is that of forming the join (or disjoint sum)

P
Xi[i2 I] whosemembers

are all pairs (i, y) such that y 2 Xi; an additional Join axiom (J) is introduced in T0 to
assure existence of the join as given by an operation j(I, f). Finally, T0 contains an
operation i(A, R) and associated axiom (IG) for Inductive Generationwhich produces
the class of objects accessible under the relation R (a class of ordered pairs) heredi-
tarily within the classA. In particular, IGmay be used to produce the classN of natural
numbers, then the classO of countable tree ordinals, and so on. The system in which
i(A, R) is simply required to be the least class satisfying the closure condition for
A and R is called restricted T0, resp. T1.

It was shown in [30] how to construct a model of T0 in which the universe is the
set of natural numbers and App(x, y, z) is interpreted as {x}(y) ’ z, so that the
extensions of the operations range over the partial recursive functions. More gen-
erally, one can build a model for T0 on any domain M containing a copy of N on
which is given a class F of partial functions from N to N whose cardinality is not
greater than that of M. In particular, one can obtain a model of T0 in which the
extensions of the operations from N to N are arbitrary partial numerical functions.
Similarly, one can construct a model of T1 on the natural numbers in which the
extensions of the operations range over the partial Pi-1-1 functions, hence those
of the total operations range over the hyperarithmetic functions. And one can
construct models of T1 in which, like T0, the extensions of the operations from N to
N range over arbitrary partial numerical operations.

For the summer European Logic Colloquium that was held in 1978 at the
University of Mons in Belgium,23 I was invited to give a series of lectures and
chose to give four on various aspects of T0, considered in both intuitionistic and
classical logics; these were published in [42]. Among other things, I discussed there
various informal and formal approaches to constructive mathematics, and sketched
the direct formalization of Bishop-style constructive mathematics in T0. Using
forms of realizability interpretation, I established the expected disjunction and
existential quantification properties for certain variants of T0 in intuitionistic logic.
By the model constructions just described, the theorems of T0 serve to generalize
results from recursive, constructive, and classical mathematics. In the final section
of [42], a number of results were stated about the proof-theoretical strength of
various natural subsystems of T0 in classical logic as measured by familiar systems
of second-order arithmetic. The main results were that restricted-T0 is
proof-theoretically equivalent to (Delta-1-1 CA) and in T0 in full is bounded in
strength by (Delta-1-1 CA) + BI. Proofs of these were sketched in the Mons article,
with full proofs later given in my chapter with Sieg [53] in the 1981 volume on
iterated inductive definitions to be discussed below.

Actually, at a couple of meetings before that of Mons, I had shown how one
could make use of extensions of T0 and T1 to generalize other parts of mathematics.

23 The 1978 Mons meeting as a whole was dedicated to the memory of Paul Bernays, who had
died the year before, and Kurt Gödel, who had died that year.
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The paper [40] was for a meeting on generalized recursion theory held in Oslo in
June 1977. There I considered systems T0(S) and T1(S) in which S acts like the
class of all sets. The system T0(S) could be used to develop a form of measure
theory that generalizes Bishop’s first form of constructive redevelopment of that
subject (subsequently superseded by his work with Cheng). And both systems
could be used to develop theories of accessible ordinal numbers and higher number
classes generalizing the classical set theory of these notions.

Still before that, in the article [44] for a 1976 meeting in Jyväskylä, Finland, I
had dealt with a theory TX that is interpretable in T1 in which X acts like the class of
countable ordinals. In that, one can express a form of the Continuum Hypothesis,
CH, by saying that one has an X-enumeration of the total functions from N to N. TX

has a model in which the order type of X is the least admissible ordinal greater than
x, i.e., Church-Kleene x1. The point of introducing this theory was to provide a
way of accounting for the success of the novel work of Cutland (1972, 1973) that
provided an analogue over suitable admissible sets A to various parts of classical
model theory in which ℵ1 and CH play a special role. Cutland dealt with models M
� A whose satisfaction relation is R1 over A; he took the elements of A to be the
analogues of the countable sets (not the finite sets!), and the R1 subsets of A to be
the analogues of sets of cardinality � ℵ1. Among Cutland’s results were analogues
of existence and uniqueness of ℵ1 saturated structures, the Ehrenfeucht–Mostowski
theorem, the Vaught two-cardinal theorem, and results connected with categoricity
in uncountable powers. What I showed in [44] is that TX serves to generalize
Cutland’s work and the relevant parts of classical model theory.

Systems of Explicit Mathematics were to be the subject of considerable inves-
tigation since then, especially through the work of Gerhard Jäger and his colleagues
and students at the University of Bern. In addition, I showed that the operational
perspective was adaptable to a wider variety of contexts, including, as we will see
later on, systems of operational set theory and the unfolding of schematic systems.

1979–1980. The urge to live. Oxford. After my year in Oxford and Paris in
1972–1973, my next sabbatical was slated for 1979–1980. Michael Dummett—who
was then a Fellow at All Souls College in Oxford—urged me to apply for a Visiting
Fellowship there, which I did, and succeeded in being invited for the autumn and
winter terms. Through Robin Gandy I then arranged to visit Wolfson College for
the spring term. In the past, when we left Stanford for any period of time, we always
rented out our house to visiting academics, and this year was no different. But this
time it was to someone we knew personally and were very happy to have in the
house, Paul Benacerraf. All plans were thus in place when on April 13, 1979, I was
mugged and shot on a street in San Francisco, and came near to dying.

The circumstances were these. From the mid-1970s on, Anita and I shared a
pied-à-terre with a small group of friends in San Francisco. It was a top floor flat in
a three-storey apartment building on Jones Street in Russian Hill, one of the nicer
but not very affluent areas of the city (since then much more so), rather hilly with
great views over the Golden Gate while convenient to many of the city’s main
attractions. We rotated stays with the other couples, with whom we would meet at
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the apartment on a Friday once a quarter to map out our schedule over the coming
period over drinks and goodies, followed by a dinner out together. It happened that
on this occasion, the apartment was ours and instead of returning to it directly from
dinner, asked one of the couples to drop us a few blocks from there, since it was
better for their return route to Stanford. We then decided to walk up a different way
than usual, not one we had tried before, and it turned out to be darker and steeper
than expected.

At one point, Anita stopped to look at something on the side, when a man darted
out from between two cars and pointed a small silver pistol at me. I stared at the
man, thinking, strangely, he could be my brother in looks and size, and said, “I
don’t have any money on me”—it was true, I had accidentally left my wallet in the
apartment before dinner, and our friends had covered us for our part of the bill—
and turned slightly to open my jacket to show that the billfold pocket was empty. At
that moment his pistol went off, I was wounded in the right side of my chest, and
fell to the ground screaming in excruciating pain and agony, “I don’t want to die.
I don’t want to die.” I was 51 years old, not young anymore, but felt I had so much
more to live for.

As soon as the gun went off the man raced back down the street; all this was in a
matter of minutes. Anita was unharmed and aghast and did not know what to do
(there were no cell phones in those days), but neighbors heard me screaming, and
called an ambulance and came out and covered me with a blanket. The ambulance
came in 15 minutes and the nurses assured me I would not die and anesthetized me.
I was taken to S.F. General, which happens to have one of the best trauma centers in
the world. Exploratory surgery was done; it turns out the bullet had grazed my lung,
which was partially collapsed, and it had lodged in the right side of my chest, and
was not removed at the time. In a few days, I was transferred to the Stanford
Hospital where I could be under the care of my physician and close to family and
friends. The bullet was not removed until much later when I was well on the way to
recovery, since it was doing no harm where it was lodged.

When I was well enough, I was asked to come to the S.F. Police Department to
see if I could identify my shooter from their collections of photos of criminals. I was
sure I would be able to spot him if he was there: I kept looking for my “brother”,
but never found him. We discussed the shooting with the police. Their guess was
that it was not intentional, but that the gun had a hair trigger and that is why my
mugger ran off.

April 13 happened to be my mother’s birthday, a day on which I always called
her in Los Angeles to wish her well, but had somehow forgotten to do so that day.
Never mind that it was Friday the 13th, it was part of the series of happenstances
that made—for me—that day different from all other days.

Iterated inductive definitions and subsystems of analysis. In 1981, the volume
of Lecture Notes in Mathematics 897 entitled Iterated Inductive Definitions and
Subsystems of Analysis: Recent Proof-Theoretical Studies was published under the
joint authorship of Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and
Wilfried Sieg; I shall refer to it as LNM 897 below. As reported in my preface to that
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volume, it represented the remarkable progress that had been made since 1968 on the
problem that I had raised at the Buffalo Conference on proof theory and constructive
mathematics. In my view then and in the following years, the central problem to
which this work responded was the need for an ordinally informative, conceptually
clear, proof-theoretic reduction of classical theories of iterated arithmetical inductive
definitions to corresponding constructive systems. The first breakthrough in this area
was made by Pohlers (1975) that was to become the core of his Habilitationsschrift
with Schütte (Pohlers 1977).24 That breakthrough was the start of a 5-year sustained
effort in developing a variety of approaches to the above problem by my coauthors.

The proof-theoretical work on systems of single and (finitely or transfinitely) iter-
ated arithmetical inductive definitions were the first challenges to obtaining perspicu-
ous ordinal analyses and constructive reductions of impredicative theories. The general
problem was both to obtain exact bounds on the provably recursive ordinals and to
reduce inductive definitions described “from above” as the least sets satisfying certain
arithmetical closure conditions to those constructively generated “from below”. In the
event, the work on these systems took us only a certain way into the impredicative
realm, but the method of local predicativity for semi-formal systems with uncountably
infinitary rules of inference that Pohlers developed to deal with them turned out to be of
wider application. What I want to emphasize in the following is, first of all, that ordinal
analysis and constructive reduction are separable goals and that in various cases, each
can be done without the other, and, second, that the aim to carry these out in ever more
perspicuous ways has led to recurrent methodological innovations.

The consideration of formal systems of “generalized” inductive definitions
originated with Georg Kreisel (1963) in a seminar that he led on the foundations of
analysis held at Stanford in the summer of 1963.25 Kreisel’s aim there was to assess
the constructivity of Spector’s consistency proof of full second-order analysis
(Spector 1962) by means of a functional interpretation in the class of so-called bar
recursive functionals. The only candidate for a constructive foundation of those
functionals would be the hereditarily continuous functionals given by computable
representing functions in the sense of (Kleene 1959) or (Kreisel 1959). So Kreisel
asked whether the intuitionistic theory of inductive definitions given by monotonic
arithmetical closure conditions, denoted ID1(mon)i below, serves to generate the
class of (indices of) representing functions of the bar recursive functionals. Roughly
speaking, ID1(mon), whether classical or intuitionistic, has a predicate PA for each
arithmetic A(P, x) (with a place-holder predicate symbol P) which has been proved
to be monotonic in P, together with axioms expressing that PA is the least predicate

24 I first met Pohlers at a workshop on proof theory that was held in Tübingen in April 1973.
I lectured there about my work in [22] and possible proof-theoretic attacks on the reduction of
classical systems of iterated inductive definitions to corresponding constructive systems. That
stimulated Pohlers to make his first attack on that problem.
25 The notes for that seminar are assembled in the unpublished volume Seminar on the
Foundations of Analysis, Stanford University 1963. Reports, of which only a few mimeographed
copies were made; one copy is available in the Mathematical Sciences Library of Stanford
University.
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definable in the system that satisfies the closure condition 8x(A(P, x)! P(x)). In the
event, Kreisel showed that the representing functions for bar recursive functionals of
types � 2 can be generated in an ID1(mon)i but not in general those of type � 3.

Because of this negative result, Kreisel did not personally pursue the study
of theories of arithmetical inductive definitions any further, but he did suggest
consideration of theories of finitely and transfinitely iterated such definitions as well
as special cases involving restrictions on the form of the closure conditions A(P, x).
For example, those A in which the predicate symbol P has only positive occur-
rences are readily established to be monotonic in P. And of special interest among
such A are those that correspond to the accessible (i.e., well-founded part) of an
arithmetical relation. And, finally, paradigmatic for those are the classes of recur-
sive ordinal number classes Oa introduced in Church and Kleene (1936) and
continued in Kleene (1938). The corresponding formal systems for a times iterated
inductive definitions (a an ordinal) are denoted as (in order of decreasing gener-
ality) IDa(mon), IDa(pos), IDa(acc), and IDa(O) in both classical and intuitionistic
logics, where the restriction to the latter is signaled with a superscript ‘i’.26 For limit
ordinals k, we shall also be dealing with ID<k(−), the union of the IDa(−) for a < k,
of each of these kinds, whether classical or intuitionistic. Finally, when no quali-
fication of IDa or ID<k is given, it is meant that we are dealing with the corre-
sponding IDa(pos) or ID<k(pos), since there is a relatively easy reduction of the
monotonic case to the positive case. The IDa(O) theories, or similar ones for
constructive tree classes, are of particular interest, because the elements of those
classes wear their build-up on their sleeves, i.e., can be retraced constructively;
some of the IDa(acc) classes considered below share that significant feature.

Kreisel’s initiative led one to study the relationship between such theories to
subsystems of classical analysis considered independently of Spector’s approach
and as the subject of proof-theoretical investigation in their own right. The first such
result was obtained by William Howard sometime around 1965, though it was not
published until 1972. He showed in Howard (1972) that the proof-theoretic ordinal
of ID1(acc)

i is ue(X+1)0, as measured in the hierarchy of normal functions intro-
duced in Bachmann (1950). Howard’s method of proof proceeded via an extension
of Gödel’s functional interpretation. This was the first ordinally informative char-
acterization of an impredicative system using a system of ordinal notation based on
a natural system of ordinal functions. What was left open by Howard’s work was
whether one could obtain a reduction of the general classical ID1 to ID1(acc)

i (and
even better to ID1(O)

i) and thus show that the proof-theoretic ordinal is the same,
and similarly for the systems of iterated inductive definitions more generally.27

These results and the prior work of Takeuti (1967) containing constructive proofs
of consistency of (Pi-1-1 CA) and (Pi-1-1 CA) + BI, together with the results of my
Buffalo conference article [22] reducing these to IDx, gave hope that one could obtain

26 The positivity requirement has to be modified in the case of intuitionistic systems.
27 As will be explained below, Zucker (1971, 1973) showed the ordinals to be the same without a
reduction argument and by a method that did not evidently extend to the iterated case.
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a constructive reduction of some of the above second-order systems via a reduction of
classical theories of iterated inductive definitions to their intuitionistic counterparts.28

What Takeuti had done was to carry out his consistency proofs by an extension of
Gentzen’s methods with cut-reduction steps measured in certain partially ordered
systems that Takeuti called ordinal diagrams; these are not based on natural systems of
ordinal functions such as those in the Bachmann hierarchy. Takeuti proved the
well-foundedness of the ordering of ordinal diagrams by constructive arguments that
could be formulated in suitable intuitionistic iterated accessible IDs. These methods
were later extended to (Delta-1-2 CA) + BI in Takeuti and Yasugi (1973).

The first successful results on ordinal analysis for theories of iterated inductive
definitions were obtained only on the intuitionistic side by Per Martin-Löf (1971)
via normalization theorems for the IDn(acc)

i systems as formulated in calculi of
natural deduction. He conjectured the bounds ue(Xn + 1)0 in the Bachmann–
Pfeiffer hierarchies for these and proved that their supremum is the ordinal of
ID<x(acc)

i by the use of Takeuti (1967).
The first breakthrough on the problems of ordinal analysis for the classical

systems was made by Pohlers (1975) to give ordinal upper bounds for the finite IDn

also by an adaptation of the methods of Takeuti (1967); this was extended later in
his Habilitationsschrift, Pohlers (1977), to arbitrary a, with the result that

|IDa| � he(Xa + 1)0
asmeasured in themodified (Feferman–Aczel) hierarchies described above. In addition,
Buchholz and Pohlers (1978) showed this to be best possible by verification of

he(Xa+1)0 � |IDa(acc)
i|

using a constructive well-ordering proof of each proper initial segment of a natural
recursive ordering of order type ue(Xa + 1)0. These results lent further hope to the
solution of the reductive problem posed above. Independently of their work, in his
Stanford dissertation, Sieg (1977) adapted and extended the method of Tait (1970)
followed by a formalization of the cut-elimination argument to reduce IDa to
IDa+1(O)

i, and thence ID<k to ID<k(O)
i, for limit k, without requiring any

involvement of ordinal bounds.

The volume LNM 897. In particular, my preface (Feferman 1981) to the volume
fills out the historical picture to that point. Then the first chapter, Feferman and Sieg
(1981a), goes over reductive relationships between various subsystems of (Sigma-1-2
AC), systems of iterated inductive definitions, and subsystems of the system T0 of
explicit mathematics from Feferman (1975). The second chapter, Feferman and
Sieg (1981b), showed how to obtain the reductions of (Sigma-1-(n+1) AC) to
(Pi -1-n CA)<e0 by proof-theoretic arguments (based on a method called Herbrand
analysis by Sieg), in place of the model-theoretic arguments that had been used by
Friedman. Following that, Sieg (1981) presented the work of his thesis in providing
the reductions of IDa to IDa+1(O)

i and of ID<k to ID<k(O)
i for limit k, without the

intervention of ordinal analysis. In the next two chapters, Buchholz (1981a, 1981b)

28 BI is the scheme of Bar Induction, i.e., the implication from well-foundedness to transfinite
induction.
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introduced uncountably infinitary semi-formal systems making use of a special new
Xa+1-rule in order, in the first of these to obtain the proof-theoretical reduction of the
IDa to suitable IDa(acc)

i and in the second to reestablish the ordinal bounds previously
obtained by Pohlers. Finally, in the last chapter, Pohlers (1981) presented a new
approach called themethod of local predicativity, to accomplish the very same results
in a different way. This dispensed with the earlier dependence on the methods of
Takeuti’s (1967); the more perspicuous method of local predicativity, in its place,
utilizes a kind of extension to uncountably branching proof trees of the methods of
predicative proof theory.But bothBuchholz’ andPohlers’works in theBuchholz et al.
(1981) volume required the use of certain syntactically defined collapsing functions,
in order to reduce prima facie uncountable derivations to countable ones in a way that
allows one to obtain the recursive ordinal bounds. Aswill be described below, this was
superseded a decade later by the work of Buchholz (1992) showing how to obtain the
same bounds without the use of such collapsing functions.

– 1979–1980, shooting and the year at Oxford, visits to Munich
– Presidency of the ASL; the Prague ASL “meet”
– Iterated Inductive Definitions next
– Essays, surveys
– The Gödel project
– Why a little bit goes a long way.

Foundations of category theory II. In the discussion of the foundations of cat-
egory theory above, I said that it seemed natural to have self-membership for cate-
gories, such asCat2Cat, and that for any two categories A and B, even “large” ones
likeGrp,Top, andCat, we should be able to construct the category BA of all functors
from A to B and show that it is a member of Cat. In contrast to the various
set-theoretical foundations described above, I have called such a potentially consistent
framework an unlimited theory offunctors and categories.Moreover, I introduced just
such a theory at a meeting of the Congrès de Logique d’Orléans, held in Orléans,
France in September 1972. The typewritten write up of that work was informally
circulated but never published, for reasons to be explained below. Eventually, though,
I had that scanned as a pdf file and posted on my home page as [25].
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The photos on the previous page are from 1971, 1983, and 2006. The topmost
photo was taken at the Tarski Symposium at Berkeley, celebrating Tarski’s 70th
Birthday. Sol’s perspective on that event and the talk he gave is discussed in the
section entitled “Abstract model theory and the Tarski Symposium”. This photo
was taken by Steven Giranti, he gave us permission to publish it here. The larger
middle photo captures some of the participants of the Gödel Symposium of 1983 in
Salzburg; they play also a significant part in the autobiography: from left to right,
Stephen Kleene, John Dawson, Solomon Feferman, Michael Beeson, Georg
Kreisel, Azriel Lévy, Dana Scott, and Charles Parsons. The remaining photo shows
Feferman lecturing on truth at the Center for Philosophy of Science, University of
Pittsburgh. John Norton took that photo and we have his permission to publish it
here.

Pittsbursh, USA Wilfried Sieg
Stanford, USA Rick Sommer

Part B: Solomon Feferman’s CV

Born: December 13, 1928, New York, New York
Died: July 26, 2016, Stanford, California

Educational Record:
B.S. California Institute of Technology, 1948 (Mathematics)
Ph.D. University of California, Berkeley, 1957 (Mathematics), Advisor: Alfred
Tarski
Military Service: U.S. Army, 1953–55

Professional Record:
1956–58 Instructor of Mathematics and Philosophy, Stanford University
1958–62 Assistant Professor of Mathematics and Philosophy, Stanford
University
1959–60 NSF Post-doctoral Fellow at the Institute for Advanced Study,
Princeton
1958–63 Consultant, Stanford Research Institute
1962–68 Associate Professor of Mathematics and Philosophy, Stanford
University
1964–65 NSF Senior Post-doctoral Fellow, University of Paris and University of
Amsterdam
1967–68 Visiting Associate Professor, Massachusetts Institute of Technology
1968–03 Professor of Mathematics and Philosophy, Stanford University
(Emeritus, 2004)
1972–73 Guggenheim Fellow, University of Oxford and University of Paris
1979–80 Visiting Fellow at All Souls and Wolfson Colleges, University of
Oxford
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1985–92 Chairman, Department of Mathematics, Stanford (on leave 1986–87
and 1989–90)
1986–87 Guggenheim Fellow, Stanford, ETH Zürich, University of Rome
1989–90 Fellow, Stanford Humanities Center
1993–2003 Patrick Suppes Family Professor, Stanford University (Emeritus,
2004)
1995–96 Fellow, Center for Advanced Study in the Behavioral Sciences,
Stanford
2001 Fellow (April and May 2001), Mittag-Leffler Institute, Djursholm, Sweden
2003 Visiting Professor of Philosophy, UC Berkeley, Spring Semester

Honors:
1990 Elected Fellow, American Academy of Arts and Sciences
1999 University of California at Irvine Chancellor's Distinguished Fellow
2003 Rolf Schock Prize in Logic and Philosophy

Professional Activities:
1964–67 Member, Executive Committee and Council, Association for Symbolic
Logic
1976–79 Editor, Transactions and Memoirs, American Mathematical Society
1986–2003 Editor, Ergebnisse der Mathematik (Springer-Verlag)
1986–2003 Editor, Perspectives in Mathematical Logic (ASL/Springer-Verlag)
1980–82 Member, AMS Committee on Translations
1980–82 President, Association for Symbolic Logic
1983–90 Advisory Editor, Studies in Proof Theory (Bibliopolis),
1983–86 Member, Steering Committee, 1986 International Congress of
Mathematicians
1982–2003 Editor-in-Chief, Kurt Gödel Collected Works

Named Lectures:
1983 Association for Symbolic Logic Retiring Presidential Address,
“Reflecting on incompleteness”, 30 December, Boston University.
1989 Thoralf Skolem Lectures, “New life for Skolem’s finitist program”, 4
September, “Foundational ways”, 5 Sept 1989, University of Oslo.
1990 E.W. Beth Lectures, “Logics for termination and correctness of functional
programs”, 20 March, Delft University of Technology, and “Infinity in mathe-
matics: Where is it necessary?”, 21 March, University of Amsterdam.
1997 Association for Symbolic Logic Annual Gödel Lecture, “Occupations and
preoccupations with Gödel: His Works and the work”, 22 March, MIT.
1997 Spinoza Lecture at ESSLLI, “What is a logical operation? (According to
Tarski, McGee, and me.)”, 13 August, Université de Provence.
2006 Alfred Tarski Lectures, “Truth unbound”, 3 April, “The ‘logic’ question”,
5 April, “Real computation”, 7 April, University of California at Berkeley.
2007 Ernest Nagel Lecture, “Gödel, Nagel, minds and machines”, 27 Sept,
Columbia University.
2008 Martin Löb Lectures (inaugural), “Operational set theory and ‘small’ large
cardinals”, 12 May, “Gödel, Nagel, minds and machines”, 13 May, University of
Leeds.
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2012 Paul Bernays Lectures (inaugural), “Bernays, Gödel and Hilbert’s con-
sistency program”, 11 September, “Is the continuum hypothesis a definite
mathematical problem?”, 12 September, “Foundations of unlimited category
theory”, 12 September, ETH Zürich.

Ph.D. Students:
1966 Harrison, Joseph
1967 Barwise, K. Jon
1969 Larson, Alan
1970 Nebres, Bienvenido
1971 Zucker, Jeffrey
1976 Weyhrauch, Richard
1977 Sieg, Wilfried
1979 Lindström, Ingrid
1985 Talcott, Carolyn
1986 Mason, Ian
1986 Takahashi, Shuzo
1986 Ungar, Anthony
1989 Mancosu, Paolo
1990 Bellin, Gianluigi
1991 Fernando, Timothy
1998 Pezzoli, Elena
1999 Hofweber, Thomas
2013 Buchholtz, Ulrik

Part C: Active Projects of 2016

Apart from the work on this very volume (as we outlined in the Introduction to this
chapter), Feferman was engaged in at least four significant projects that are
described in sections C1 though C4 below; they remain incomplete. Let us first
mention a fifth project he did complete: At the beginning of the year, he wrote a talk
for a Symposium in honor of Charles Parsons at Columbia University; he delivered
the talk on April 19. The text, quite polished, was posthumously published as
Parsons and I: Sympathies and Differences in the Journal of Philosophy, volume
CXIII, no. 5/6, pp. 234–246.

In C1, we present the Proposal Feferman submitted in March 2014 to Oxford
University Press for the second volume of essays under the title Logic, Mathematics
and Conceptual Structuralism. That proposal was approved quickly, but work on it
was set aside; the engagement with this volume and other projects took precedence. In
C2, the reader finds a brief abstract of the book project Feferman was pursuing with
Gerhard Jäger and Thomas Strahm. C3 contains the abstract of Feferman’s keynote
address to the special AMS/ASL session on applications of Logic,Model Theory, and
Theoretical Computer Science to Systems Biology at Seattle,WA; it was delivered on
January 9, 2016. On Feferman’s website one finds a quite polished paper that was the
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source of the PowerPoint presentation he gave in Seattle; the PowerPoint slides are
also found on his website. Finally, another abstract is presented inC4; Feferman sent
it to Michael Rathjen on April 16, 2016 under the “subject” Draft title and abstract
for Brouwer volume. He wrote in the body of the message:

Dear Michael,
Let me know what you think of the draft title and abstract below. I welcome any

modifications.
Best,
Sol
The envisioned joint paper was to be published in Indagationes Mathematicae

on the occasion of the 50th anniversary of Brouwer’s death.

Pittsbursh, USA Wilfried Sieg
Stanford, USA Rick Sommer

C1. Logic, Mathematics and Conceptual Structuralism

Logic, Mathematics and Conceptual Structuralism
Proposal to OUP
Solomon Feferman
March 17, 2014
This is a proposal for OUP to publish a follow-up volume to my collection of

essays In the Light of Logic that appeared in 1998 in the series Logic and
Computation in Philosophy. Since then I have published over thirty more essays
of the same character that partially expand on the earlier collection but more
importantly take up several new topics. What is proposed now is publication of a
selection of twelve of those essays that form a thematically coherent progression of
ideas concerning the philosophy of logic and mathematics and that concentrate on
these new avenues of thought. A number of these essays appeared in out of the way
places so this publication would serve to make them available to a wider audience,
while bringing them together will allow the presentation of extended lines of
thought. The proposed title for the new volume is Logic, Mathematics and
Conceptual Structuralism.

Below is a draft of Table of Contents laid out in five parts; the #s refers to the
articles as they have been posted on my home page at http://math.stanford.
edu/*feferman/papers.html.

Of course, print copies can also be made available if desired. For the moment,
the final item, #95, is in draft form only (and is the only such); a final version is in
preparation.29

29This is Feferman’s original formulation; the #s in this version refers to the items in the
bibliography included in the volume. In the Proposed Table of Contents we left out the
bibliographical details, as they are contained in the references.
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Part I consists of a single essay that appeared in a volume entitled Philosophy of
Mathematics: 5 questions, in which each contributor was invited to respond to

five stimulating questions, first about how one was drawn to the foundations and/or
philosophy of mathematics, followed by examples from one’s work to illustrate the
use of mathematics for philosophy; then one was asked about the proper role of
philosophy of mathematics for various areas and what one considers the most
neglected problems and important open problems in that field. My response to the
first question includes a fair amount of intellectual autobiography, and the responses
to the remaining questions will serve to orient the reader to a number of my
concerns that are addressed in the remaining parts of this volume.

Several ways of dealing with mathematical intuition and the mathematical mind
are dealt with in the three essays of Part II. The third of these is one of several in
which I have critically analyzed the arguments of Gödel, Penrose, Lucas, and others
that mind is not mechanical on the basis of the incompleteness theorems; it was
written for the volume Free Will and Modern Science.

Part III, in contrast, is devoted to questions concerning the nature and limits of
classical logic that underlies almost all of mathematical practice. The very
influential semantical tradition inaugurated by Tarski is traced historically in the
first of these essays. That is followed by two essays in which I critique the claims of
Tarski, Sher, and others to explain which classical operations are logical entirely in
terms of certain set-theoretical semantical criteria that lead one far beyond what is
usually accepted. In the final essay in that part I show, following work of Zucker,
that combined semantical and inferential criteria yield exactly the operations that
are usually taken for systems of classical logic.

That leads directly to Part IV whose general heading is Conceptual
Structuralism, an approach to the philosophy of mathematics that I have been
elaborating in recent years. In the first essay, I explain how both classical and
constructive logics are to be considered in that framework as well as in their
relationship to mathematical practice. The second essay in that part examines five
essentially different conceptions of the continuum (from the Euclidean to the
set-theoretical) in the light of conceptual structuralism.

In the final part, I deal in two essays with the controversial question whether the
continuum hypothesis (CH) is a definite mathematical problem. The current
approaches to settling CH assume new axioms for set theory that assert the existence
of extremely large cardinal numbers. My argument against the definiteness of CH
viewed either as an ordinary mathematical problem or as a logical problem proceeds
on the one hand by directly questioning the case for such axioms and on the other hand
by appeal to conceptual structuralism.

Most of these essays were written for a general audience from advanced
undergraduates to professionals interested in questions of the philosophy of
mathematics. For the most part, it assumes some background in logic and mathe-
matics at the advanced undergraduate level but each essay has parts that can be
rewarding without presuming much of that. The printed volume is estimated to
come out under 250 pages in length.
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Logic, Mathematics, and Conceptual Structuralism
(Proposed Table of Contents)
I. My Route
Philosophy of mathematics: 5 questions. (#137)
II. The Mathematical Mind
Mathematical intuition vs. mathematical monsters. (#114)
And so on… Reasoning with infinite diagrams. (#150)
Gödel's incompleteness theorems, free will, and mathematical thought. (#147)
III. What is Classical Logicality?
Tarski's conceptual analysis of semantical notions. (#121)
Logic, logics, and logicism. (#109)
Set-theoretical invariance criteria for logicality. (#144)
Which quantifiers are logical? A combined semantical and inferential criterion.
(#161)
IV. Conceptual Structuralism
Logic, mathematics, and conceptual structuralism. (#158)
Conceptions of the continuum. (#142)
V. New Axioms for Mathematics?
Does mathematics need new axioms? (#106)
Is the Continuum Hypothesis a definite mathematical problem? (#148)

C2. Foundations of Explicit Mathematics

The aim is to produce a research-level book systematically expositing some central
results on Explicit Mathematics. The plan of the book is to begin with an intro-
duction explaining the genesis of Explicit Mathematics. The treatment of Explicit
Mathematics itself is divided into the treatment of the

• First-order part of Explicit Mathematics, so-called Applicative Theories and
• Theories of Classes and Names.

The central theories of Explicit Mathematics will be analyzed from a
proof-theoretic perspective, comparing them to well-known subsystems of
second-order arithmetic and set theory. Typical ontological properties of Explicit
Mathematics and the development of “ordinary mathematics” within this frame-
work will be discussed.

The final part of this book is about alternative operational approaches like
Feasible Operational Systems, the Unfolding Program, Universes, and Operational
Set Theory.
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C3. Many-sorted First-order Model Theory as a Conceptual Framework
for Biological and Other Complex Dynamical Systems

Abstract
When complex biological systems (among others) are conceived reductively,

they are modeled in set-theoretical hierarchical terms from the bottom up. But the
point of view of Systems Biology (SB) is to deal with such systems from the top
down. So in this talk I will suggest the use of many-sorted first-order structures with
downward nested sorts as an alternative conceptual framework for modeling them.
In particular, the notion of a nested substructure allows one to study parts of a
structure in isolation from the rest, while the notion of restriction allows one to
study a structure relative to some of its parts treated as black boxes. The temporal
dimension can be incorporated both as an additional sort and in the indexing of
sorts, allowing for both static and dynamic views of a system. Furthermore, one
may make use of a quite general theory of recursion on many-sorted first-order
structures which includes both discrete and continuous computations. Some pos-
sible applications of this model-theoretic approach to SB include excision or sub-
stitution of a part as operations on structures, similarity of biological systems via
similarity notions for structures, and homeostasis via least fixed point recursion.

C4. Semi-intuitionistic Theories of Sets

Abstract
Brouwer argued that limitation to constructive reasoning is necessary when

dealing with “unfinished” totalities such as the natural numbers. As a complement
to that, the predicativists such as Poincaré and Weyl (of Das Kontiuum) accepted
the natural numbers as a “finished” or definite totality, but nothing beyond that. On
the other hand, the “semi-intuitionistic” school of descriptive set theory (DST) of
Borel et al. in the 1920s took both the natural numbers and the real numbers as
definite totalities and explored what could be obtained on that basis alone. From a
metamathematical point of view, these and other different levels of definiteness can
be treated in the single setting of semi-intuitonistic theories of sets, whose basic
logic is intuitionistic, but for which the law of excluded middle (LEM) is accepted
for bounded formulas. One may then add the assumption that the set of natural
numbers exists, corresponding to the predicative point of view, or that both it and
its power set exists, corresponding to the point of view of DST, and so on. One then
investigates which propositions are definite, i.e., satisfy LEM, relative to such
additional set existence assumptions. This will be a report on the work that has been
done so far on that question, for which novel techniques have had to be employed.
Finally, some further open problems will be raised in that setting.
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Solomon Feferman Publications

Books

Formal Consistency Proofs and Interpretability of Theories, PhD dissertation, University of
California, Berkeley, 1957.

The Number Systems. Foundations of Algebra and Analysis. Addison-Wesley, Reading, 1957;
2nd edn. Chelsea Publishing Co., New York; distributed by the American Mathematical
Society, Providence, Rhode Island, 1989.

Notes for Lectures on Metamathematics, Stanford University Library, 1962.
In the Light of Logic, Oxford University Press, New York, 1998.
Alfred Tarski. Life and Logic (with A. B. Feferman), Cambridge University Press, New York,

2004.

Edited Books

Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies (with
W. Buchholz, W. Pohlers, and W. Sieg), Lecture Notes in Mathematics 897, Springer Verlag,
Berlin, 1981.

Model-theoretic Logics (with J. Barwise), Springer Verlag, Berlin, 1985.
Kurt Gödel. Collected Works, Vol. I. Publications 1929–1936 (as editor-in-chief, with J.W.

Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van Heijenoort), Oxford
University Press, New York, 1986.

Kurt Gödel. Collected Works, Vol. II, Publications 1938–1974 (as editor-in-chief, with J.W.
Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van Heijenoort), Oxford
University Press, New York, 1990.

Kurt Gödel. Collected Works, Vol. III, Unpublished essays and lectures (as editor-in-chief, with
J.W. Dawson, Jr., W. Goldfarb, C. Parsons, and R.M. Solovay), Oxford Univ. Press, New
York, 1995.

The Collected Works of Julia Robinson, American Mathematical Society, Providence, Rhode
Island, 1996.

Kurt Gödel. Collected Works. Vol. IV. Correspondence A-G Oxford University Press, (as
editor-in-chief, with J.W. Dawson, Jr. as co-editor-in-chief, and with W. Goldfarb, C. Parsons,
W. Sieg and R.M. Solovay), Oxford University Press, Oxford, 2003.

Kurt Gödel. Collected Works. Vol. V. Correspondence H-Z (as editor-in-chief, with J. W. Dawson,
Jr. as co-editor-in-chief, and with Warren Goldfarb, Charles Parsons and Wilfried Sieg,
co-editors), Oxford University Press, Oxford, 2003.
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Proofs, Categories and Computations. Essays in Honor of Grigory Mints (with W. Sieg), College
Publications, London, 2010.

Kurt Gödel. Essays for his Centennial (with C. Parsons and S. G. Simpson), Lecture Notes in
Logic 33, Association for Symbolic Logic, Cambridge University Press, New York, 2010.

For Feferman

Reflections on the Foundations of Mathematics. Essays in Honor of Solomon Feferman (W. Sieg,
R. Sommer, and C. Talcott, eds.), Lecture Notes in Logic 15, Association for Symbolic Logic,
A. K. Peters, Ltd., Natick, 2002

Articles

1957

1. Degrees of unsolvability associated with classes of formalized theories, J. Symbolic Logic
22, 161–175.

1959

2. The first order properties of products of algebraic systems (with R. L. Vaught), Fundamenta
Mathematicae 47, 57–103.

3. Representability of recursively enumerable sets in formal theories (with A. Ehrenfeucht),
Archiv für Mathematische Logik und Grundlagenforschung 5, 37–41.

1960

4. Arithmetization of metamathematics in a general setting, Fundamenta Mathematicae 49,
35–92.

5. 1-consistency and faithful interpretations (with G. Kreisel and S. Orey), Archiv für
Mathematische Logik und Grundlagenforschung 5, pp. 52–63.

6. Formal consistency proofs and interpretability of theories, Summaries of talks presented at
the Summer Institute for Symbolic Logic, Cornell University 1957, 2nd edn., Institute for
Defense Analyses, 71–77.

7. Some recent work of Ehrenfeucht and Fraïssé, ibid., 201–209.

1962

8. Transfinite recursive progressions of axiomatic theories, J. Symbolic Logic 27, 259–316.
9. Incompleteness along paths in progressions of theories (with C. Spector), J. Symbolic Logic

27, 383–390.
10. Classifications of recursive functions by means of hierarchies, Transactions American

Mathematical Society 104, 101–122.
1964

11. Systems of predicative analysis, J. Symbolic Logic 29, 1–30.
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1965

12. Some applications of the notions of forcing and generic sets (Summary), in The Theory of
Models, Proceedings of the 1963 International Symposium, Berkeley (J. Addison, L. Henkin,
and A. Tarski, eds.), North-Holland, Amsterdam, 89–95.

13. Some applications of the notions of forcing and generic sets, Fundamenta Mathematicae 56,
325–345.

1966

14. Persistent and invariant formulas relative to theories of higher order (with G. Kreisel),
(Research Announcement) Bulletin American Mathematical Society 72, 480–485.

15. Predicative provability in set theory, (Research Announcement) Bulletin American
Mathematical Society 72, 486–489.

1968

16. Systems of predicative analysis, II. Representations of ordinals, J. Symbolic Logic 33,
193–220.

17. Autonomous transfinite progressions and the extent of predicative mathematics, in Logic,
Methodology, and Philosophy of Science III, Proceedings 3rd International Congress,
Amsterdam, 1967, (B. van Rootselaar and F. Staal, eds.), North-Holland, Amsterdam,
121–135.

18. Persistent and invariant formulas for outer extensions, Compositio Mathematica 20, 29–52.
19. Lectures on proof theory, in Proceedings of the Summer School in Logic, Leeds, 1967,

Lecture Notes in Mathematics vol. 70, 1–107.

1969

20. Set-theoretical foundations of category theory (with an Appendix by G. Kreisel), in Reports
of the Midwest Category Seminar, III (S. MacLane, ed.), Lecture Notes in Mathematics vol.
106, 201–247.

1970

21. Hereditarily replete functionals over the ordinals, in Intuitionism and Proof Theory,
Proceedings of the Summer Conference at Buffalo, 1968 (A. Kino, J. Myhill and
R. E. Vesley, eds.), North-Holland, Amsterdam, 289–301.

22. Formal theories for transfinite iterations of generalized inductive definitions and some
subsystems of analysis, in Intuitionism and Proof Theory, Proceedings of the Summer
Conference at Buffalo, 1968 (A. Kino, J. Myhill and R. E. Vesley, eds.), North-Holland,
Amsterdam, 303–326.

1971

23. Ordinals and functionals in proof theory, in Actes du Congrès International des
Mathématiciens (Nice) 1970, vol. 1, Gauthier-Villars, Paris, 229–233.
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1972

24. Infinitary properties, local functors, and systems of ordinal functions, in Conference in
Mathematical Logic - London '70 (W. Hodges, ed.) Lecture Notes in Mathematics vol. 255,
63–97.

1973

25. Some formal systems for the unlimited theory of functors and categories, http://math.
stanford.edu/*feferman/papers/Unlimited.pdf, unpublished MS.

1974

26. Applications of many-sorted interpolation theorems, in Proceedings of the Tarski
Symposium, Proceedings of Symposia in Pure Mathematics vol. XXV (L. Henkin, et al.,
eds.), American Mathematical Society, Providence, RI, 205–223.

27. Predicatively reducible systems of set theory, in Axiomatic Set Theory, Proceedings of
Symposia in Pure Mathematics vol. XIII Part 2 (T. J. Jech, ed.), American Mathematical
Society, Providence, RI, 11–32.

28. Intuitionism (part of an article on “Mathematics, foundations of”), in Encyclopedia
Britannica, 15th ed. pp. 633–635 and p. 639.

29. Two notes on abstract model theory. I. Properties invariant on the range of definable relations
between structures, Fundamenta Mathematicae 82, 153–165.

1975

30. A language and axioms for explicit mathematics, in Algebra and Logic (J. N. Crossley, ed.),
Lecture Notes in Mathematics, vol. 450 87–139.

31. Two notes on abstract model theory. II. Languages for which the set of valid sentences is
semi-invariantly implicitly definable, Fundamenta Mathematicae 89, 111–130.

32. Impredicativity of the existence of the largest divisible subgroup of an Abelian p-group, in
Model Theory and Algebra. A Memorial Tribute to A. Robinson (D. H. Saracino and
V. B. Weispfenning, eds.), Lecture Notes in Mathematics vol. 498, 117–130.

33. Non-extensional type-free theories of partial operations and classifications, I, in Logic
Conference, Kiel, 1974 (G. H. Müller, et al., eds.) Lecture Notes in Mathematics vol. 500,
73–118.

1977

34. Theories of finite type related to mathematical practice, in Handbook of Mathematical Logic
(J. Barwise, ed.), North-Holland, Amsterdam, 913–971.

35. Categorical foundations and foundations of category theory, in Logic, Foundations of
Mathematics and Computability Theory, vol. 1, Proceedings 5th International Congress of
Logic, Methodology, and Philosophy of Science, London, Ontario, 1975 (R. E. Butts and
J. Hintikka, eds.), Reidel, Dordrecht, 149–169.

36. Review of Proof Theory by G. Takeuti, Bulletin American Mathematical Society 83,
351–361.

37. Recursion in total functionals of finite type, Compositio Mathematica 35, 3–22.
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38. Generating schemes for partial recursively continuous functionals (summary), in Colloque
International de Logique, (Clermont-Ferrand, 1975), pp. 191–198, Èditions du C.N.R.S.,
Paris.

39. Inductive schemata and recursively continuous functionals, in Logic Colloquium '76,
Proceedings of the Oxford Conference (R. O. Gandy and M. Hyland, eds.) North-Holland,
Amsterdam, 373–392.

1978

40. Recursion theory and set theory: a marriage of convenience, in Generalized Recursion
Theory II (J. E. Fenstad, et al., eds.), North-Holland, Amsterdam, 55–98.

41. The logic of mathematical discovery vs. the logical structure of mathematics, in PSA 1978,
Philosophy of Science Association, East Lansing, MI, 309–327; reprinted as Ch. 3 in In the
Light of Logic.

1979

42. Constructive theories of functions and classes, in Logic Colloquium ’78, Proceedings of the
Mons Colloquium (M. Boffa, et al., eds.), North-Holland, Amsterdam, 159–224.

43. A more perspicuous formal system for predicativity, in Konstruktionen versus Positionen I
(K. Lorenz, ed.), Walter de Gruyter, Berlin, 68–93.

44. Generalizing set-theoretical model theory and an analogue theory on admissible sets, in
Essays on Mathematical and Philosophical Logic (J. Hintikka, et al., eds.) Synthese Library,
vol. 22, Reidel, Dordrecht, 171–195.

45. Review of Proof Theory by K. Schütte, Bulletin American Mathematical Society (New
Series) 1, 224–228.
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is recognised in the name ‘Feferman-Vaught theorem’, which stems from some very
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1970s he worked on applications of many-sorted interpolation theorems, in particu-
lar to derive results relating implicit and explicit definability in various contexts. In
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These three themes seem rather distinct, though they probably had various inter-
esting links in Feferman’s own mind. So we will treat them separately.

My thanks to Jamshid Derakhshan, Janos Makowsky and Jeffery Zucker for vari-
ous kinds of information and advice, and (posthumously, alas) to Solomon Feferman
himself for a number of preprints of his work that he sent me over the years.

1 Logic When Feferman Entered the Field

In his valuable book with Anita Burdman Feferman, on the life and works of Alfred
Tarski, Solomon Feferman recalls ([11] p. 171) that he went to work at Berkeley
in 1948 as ‘an eager new graduate student in mathematics’. He attended Tarski’s
lectures in metamathematics at Berkeley in 1949/50 ([26] footnote p. 80). By 1953
he was working on his doctoral thesis under Tarski’s supervision, and simultaneously
acting as Tarski’s course assistant ([28] p. 388).

In the early 1950s the boundaries of logic were in a state of flux. Was the kind of
thing that Tarski was doing at that date a branch of philosophy or of mathematics,
or in the intersection of the two? Tarski himself had distinguished metamathematics
frommathematics back in the 1930s. In 1950 he spoke of working ‘on the borderline
of algebra and metamathematics’ [55], and he continued to put some of his work on
the metamathematical side of the mathematics/metamathematics divide right up to
1978, as witness the title of [7]. By the time I began work in model theory in 1965,
I think most model theorists regarded themselves as straight mathematicians—as I
did—and the notion of metamathematics never entered their heads.

One memory I have is that in 1966 my supervisor John Crossley arranged for me
tomeet Georg Kreisel with a view to getting some advice on possible research topics.
Kreisel’s suggestions struckme as aimedmore at foundations thanmodel theory, and
I didn’t pursue his advice. This story is relevant to Feferman, because it appears that
Kreisel had greater success drawing Feferman towards similar problems a year or so
earlier; a background paper of Kreisel had the title ‘Set theoretic problems suggested
by the notion of potential totality’ ([42], written in 1959 and cited in [32]).

Not only was the boundary between mathematics and philosophy unclear; the
divisions within purely mathematical logic were unclear too. The now-standard divi-
sion into Set Theory, Recursion Theory, Proof Theory andModel Theory seems to go
back to the early 1960s. It reached the AMS Subject Classification in 1973. Around
1971 I remember Robin Gandy complaining that Jack Silver had been invited to give
some talks in model theory and had spoken on set theory (or maybe it was the other
way round); Silver’s topic had been the use of forcing to prove the consistency of
some propositions about model-theoretic two-cardinal theorems. Soon afterwards
Saharon Shelah was inventing proper forcing to prove results in his model-theoretic
classification theory. The problem that Tarski first proposed to Feferman was about
decidability, but Feferman responded to it by proving results in model theory. A few
years later Feferman was proving results in model theory by means of proof theory.

There will always be crossovers, but the boundaries between model theory and
the other main divisions of mathematical logic have been reasonably robust for the



From Choosing Elements to Choosing Concepts: The Evolution … 5

last thirty years or so. The fact that they were not robust when Feferman came into
the subject shows up in Feferman’s work in two ways. The first is that nearly all of
his so-called model-theoretic work contains at least a taste of some other logical
discipline. Today this work of his seems to us strikingly interdisciplinary, though it
may not have seemed so at the time. The second is that Feferman, being a reflective
kind of person, drew on his experience to write a number of very interesting papers
about the interactions between different parts of logic in the formative years of model
theory.

In his paper for the Proceedings of the Tarski Symposium 1974 ([17] footnote
p. 205), Feferman tells us that the paper which he presented to the Symposium itself
‘was entitled Model theory and foundations. It dealt with three areas of mutually
fruitful interaction which I had found between model theory and work in proof
theory and constructivity’. One of these involved the application of many-sorted
interpolation theorems, and we review it in Sect. 3 below. The second was about
model-theoretic functors; we discuss it briefly at the end of Sect. 2 below. The third
was on’ordinals and functionals in proof theory’, as reported in [15]. Looking at that
paper [15], I don’t see anything in it that would be regarded as model theory today.
But this fact in itself points to questions about the boundaries of model theory, which
we come back to in Sect. 4.

2 The Feferman-Vaught Theorem

The Feferman-Vaught theorem is as much a technique as a theorem. A typical case
of the theorem is that when the structure A is a cartesian product, say A = ∏

i∈I Bi

with I �= ∅, we can reduce the question whether a first-order sentence φ is true in
A to a question whether a certain set-theoretic formula �φ is satisfied in the power
set P(I ) of the index set I by a certain finite sequence of sets (‖θ0‖, . . . , ‖θn−1‖),
where ‖θ‖ is the set {i ∈ I : Bi |= θ}. The reduction is effective in the sense that
there is an algorithm which computes �φ and the sentences θ0, . . . , θn−1 uniformly
from φ. The technique that gives this special case applies to a wide range of other
constructions.

Some results provoke the question ‘How on earth did anybody think of doing
that?’. The Feferman-Vaught theorem surely provokes that question; but in this case
the history is well recorded, so we can answer the question. The answer runs as
follows.

Starting in 1927, Tarski ran a seminar at Warsaw University, in which he and
his students developed the method of ‘elimination of quantifiers’, which had been
created a few years earlier by Leopold Löwenheim and Thoralf Skolem and pursued
also by Cooper H. Langford. As practised by Skolem and Langford, the method was
to take a structure A and show that for each first-order sentence φ in the language
of A, we can effectively find a first-order sentence φ′ which is true in A if and only
if φ is true in A, and which is a boolean combination of sentences of some simple
form; we can call these simple sentences the ‘elimination set’. In some cases the
elimination set would contain only quantifier-free sentences, so that passing from φ
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to φ′ eliminates quantifiers completely. But in general these sentences might contain
quantifiers, though they would typically be all universal or all existential. (Cf. [11]
pp. 72–75.)

Early successes of this programme were Presburger’s quantifier elimination for
the structure of integers with addition, and Tarski’s own quantifier elimination for the
structure of the real numbers with addition and multiplication. Tarski also devoted
some of his early efforts to extending Langford’s work on dense and discrete linear
orderings. In 1938 Tarski and Andrzej Mostowski (a loyal student of Tarski, though
officially his doctoral thesis supervisor was Kuratowski) began working on quantifier
elimination for ordinals, in languages involving one or more of <, ordinal addition
and ordinal multiplication. Mostowski’s notes were lost during the war (they were
in the notebook that he famously had to abandon in favour of a loaf of bread, [41]
pp. 6f), and he never reconstructed them, though some of the main results were
published in an abstract in 1949 [51]. Tarski later published a reconstruction of this
work in a joint paper with his student John Doner [7]. One of the results was that
the simply ordered structure of the ordinals has a decidable first-order theory. The
obvious next result to try to prove was that the ordered structure of the ordinals with
ordinal addition has decidable first-order theory, and this was one of the two tasks
that Tarski set Feferman for his doctoral thesis ([31] p. 37).

Feferman approached the problem from the point of view of elimination of quan-
tifiers, as Tarski no doubt expected him to do. Tarski may have given him some
information from the joint work with Mostowski. But also a very pertinent paper
of Mostowski had just appeared [50]. In this paper Mostowski proved quantifier
elimination results for structures A that allow a decomposition as a cartesian power
of another structure, say A = BI for some index set I . His elimination set was not
in the first-order language of A; instead it also allowed one to refer to P(I ) and
sets ‖θi‖ as above. He showed that his results adapt also to ‘weak powers’ which
are substructures of cardinal powers whose domains consist of all the elements that
differ from e in at most finitely many factors, where e is a designated element of
B (for example the identity element if B is a group, or 0 if B is an ordinal). From
Mostowski’s own account it seems that he thought he was not so much striking out in
a new direction as finding a common generalisation of several results already proved
by quantifier elimination. One application that he mentions is of particular interest to
us here. He considers the ordinal α and the weak product of α copies of ω, with sums
taken pointwise. The resulting structure is isomorphic to ωα with natural addition;
by Mostowski’s results this structure has a decidable first-order theory. This is less
interesting thanωα with ordinal addition, but it suggests ways of approaching ordinal
addition. In fact by late 1953 Fefermanwas able to follow this route and show that for
every positive integer n, ωn with ordinal addition has a decidable first-order theory.
His main adjustment to Mostowski’s scheme was that he allowed the elimination
formulas to refer to other features of the construction of A from B, for example a
linear ordering of the index set I .

In 1956 Robert Vaught (also a student of Tarski) noticed that Feferman’s methods
generalised to the case where A is a product of a family (Bi : i ∈ I ) of distinct
structures; there was no need to assume that the factors were all isomorphic. Almost
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at once this gave a common generalisation both of Feferman’s earlier work, and of
Vaught’s own work on sentences true in cartesian products. They wrote up the results
as their joint paper ‘The first order properties of products of algebraic systems’ [33].

To explain how the technique works, we begin with the case of cartesian products,
so that A has the form

∏
i∈I Bi with I �= ∅. We write L for the first-order language

of A and the Bi . If ā is a tuple of elements of A and i ∈ I , then we write πi ā for
the tuple of projections to Bi of the terms of ā. If θ(x̄) is a formula of L , we write
‖θ(ā)‖ for the set

{i ∈ I : Bi |= θ(πi ā)}. (1)

Feferman and Vaught prove a theorem stating that for each formula φ(x̄) of L there
are a boolean formula �φ and formulas θ0(x̄), . . . , θk−1(x̄) of L such that for any
cartesian product A = ∏

i∈I Bi of structures for the language L , and every tuple ā
of elements of A,

A |= φ(ā) if and only if the sequence (‖θ0(ā)‖, . . . , ‖θk−1(ā)‖)
satisfies �φ in the power set algebra P(I ) (2)

Moreover �φ and the formulas θi can be found effectively from φ, and the formulas
θi can be chosen so that independently of A and I , the sets ‖θ0(ā)‖, . . . , ‖θk−1(ā)‖
form a partition of I (though some partition sets may sometimes be empty).

We state one corollary about decidability. Suppose the factor structures Bi are
required to be models of a decidable theory T (i.e. the set of consequences of T is
recursive). Given any sentence φ of L , we can determine as follows whether A can
be chosen to be a model of φ. Find the formula �φ and the sentences θ j ( j < k) as
in (2). Skolem’s quantifier elimination reduces the condition on the righthand side
of (2) to a boolean combination of conditions of the form

P(I ) |= For at least p i ′s, i ∈
⋂

j∈Y
‖θ j‖ \

⋃

j /∈Y
‖θ j‖, (3)

where p is a positive integer and Y ⊆ k. Since the sets ‖θ j‖ form a partition of I and
I is not empty, (3) is false unless Y is a singleton { j0}, and in this case (3) will be
true if and only if there are at least p factors Bi that are models of θ j0 . Such factors
can be found if and only if T ∪ {θ j0} is consistent, which can be checked since T is
decidable. The rest is book-keeping.

The Feferman-Vaught theorem, in the form stated above, is proved by induction
on the complexity ofφ. Themost interesting case is whereφ(x̄) is ∃yφ′(x̄, y), and for
this reason Feferman and Vaught say that the proof is by the ‘method of eliminating
quantifiers’ ([33] p. 66). I am not entirely convinced that this is the best description.
It seems to me more illuminating to compare with Jaakko Hintikka’s ‘distributive
normal forms’ [39]. Let me digress briefly on these.
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For simplicity suppose the language L has finitely many relation symbols and
no function symbols. We will find, for all n, r < ω, a finite set �n,r of formulas
θ(x0, . . . , xn−1) of L , such that

For each fixed n and r, if �n,r consists of the distinct formulas

θ0, . . . , θk−1 then 
 ∀x̄ (Exactly one of θ0(x̄), . . . , θk−1(x̄) holds). (4)

We will assume that the set �n,r is given a fixed ordering, so that we can regard it as
a sequence. (Feferman and Vaught [33] p. 64 call a sequence satisfying the condition
in (4) a ‘partitioning sequence’.)

When r = 0we choose�n,0 so that the formulas describe the complete quantifier-
free types of n-tuples.

For r > 0 we proceed by induction on r . Suppose �n+1,r has been defined and
consists of the formulas θ0(x0, . . . , xn), . . . , θk−1(x0, . . . , xn). List as (s( j ′) : j ′ <

k ′ = 2k) all the subsets of k. Then we define �n,r+1 to consist of all the formulas
ψ j ′(x0, . . . , xn−1) ( j ′ < k ′) where ψ j ′ is

∧

j∈s( j ′)
∃xnθ j (x0, . . . , xn) ∧ ∀xn

∨

j∈s( j ′)
θ j (x0, . . . , xn). (5)

We will need the following two consequences of this definition. First,


 ∃xnθ j (x0, . . . , xn) ↔
∨

{ψ j ′(x̄) : j ∈ s( j ′)} (6)

for each j < k. And second,

We can effectively find, for each formula φ(x0, . . . , xn−1) of L , an

r0 < ω, and for each r � r0 a subset � of �n,r , such that φ is

logically equivalent to
∨

�. (7)

See [39] for further information. The families of formulas �n,r , or close relatives of
them, appear also in the theory of Ehrenfeucht-Fraïssé games, and in Scott sentences.

We return to the Feferman-Vaught theorem, as stated above for cartesian products.
It will be helpful to add a clause to the theorem, namely that the formulas θ0, . . . , θk−1

are the formulas of �n,r , where n is the length of the tuple ā and r is found from φ.
(If φ is written so as to remove any nesting of function symbols, then r can be taken
to be the quantifier rank of φ.) This guarantees that the θi can be found effectively
from φ, and that the sets ‖θi (ā)‖ always form a partition of I . So the proof of the
theorem reduces to finding an appropriate formula �φ for (1). We concentrate on the
most significant case, which is where φ(x̄) is ∃xnφ′(x̄, xn).

By induction hypothesis there is a formula �φ′ such that for any A = ∏
i∈I Bi

and any ā, b in A we have
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A |= φ′(ā, b) if and only if P(I ) |= �φ′(‖θ0(ā, b)‖, . . . , ‖θk−1(ā, b)‖) (8)

where θ0, . . . , θk−1 lists the formulas of �n+1,r−1. If ψ0(x̄), . . . ,ψk ′−1(x̄) are the
formulas of �n,k , we want to find �φ so that for all A and ā as above,

A |= ∃yφ′(ā, y) if and only if P(I ) |= �φ(‖ψ0(ā)‖, . . . , ‖ψk ′−1(ā)‖). (9)

Now we know that if the lefthand side of (9) holds then

There is a partition I = I0 ∪ . . . ∪ Ik−1 such thatP(I ) |=
�φ′(I0, . . . , Ik−1) and for each j < k, I j ⊆‖∃yθ j (ā, y)‖ . (10)

Namely, choose b so that A |= φ′(ā, b) and put I j =‖θ j (ā, b)‖, recalling that the θ j

are a partitioning sequence. Conversely if (10) holds, then we can use the definition
of cartesian product to choose elements from the Bi to form an element b of A with
I j =‖θ j (ā, b)‖ for each j < k, and then it follows by (8) that A |= ∃yφ′(ā, y). So
what we need is to find a formula �φ so that the righthand side of (9) says the same
as (10). This reduces to translating ‘I j ⊆‖∃yθ j (ā, y)‖’ into a condition on I j and
the sets ‖ψ j ′(ā)‖, for each j < k. But by (6),

‖∃yθ j (ā, y)‖=
⋃

{‖ψ j ′(ā)‖: j ∈ s( j ′)}, (11)

and from this the definition of �φ is straightforward.
Cartesian products are only a particular case for the Feferman-Vaught theorem;

but they already contain the worst headaches. Feferman and Vaught show how to
extend the technique to other kinds of product or sum by adding extra relations to
the power set P(I ); for example a linear ordering on I can be coded up as a relation
between singleton subsets of I . Then the required structure can be taken to be a
definable substructure of the cartesian product. The extra relations are incorporated
into the formulas by taking the formulas in�n,0 to be formed not from quantifier-free
formulas, but from formulas—added to the language L if necessary—that define sets
of the form

{ā in A : P(I ) |= �(‖η0(ā)‖, . . . , ‖ηk−1(ā)‖)} (12)

for any η j in L and any suitable �. In this way the added complexity is fed in at the
bottom level of the induction; the induction steps proceed exactly as before, since
they are still done in the cartesian product. This approach has great generality, but
for particular applications of the theorem there are often easier routes.

The Feferman-Vaught theorem, distributive normal forms, the Fraïssé back-and-
forth method and Ehrenfeucht games have close relationships, and it is not at all
surprising that they can be used to prove the same or similar results. In fact Feferman
soon became aware that Roland Fraïssé [35] had a back-and-forth proof of results
overlapping his own on elementary equivalence of ordinals as ordered sets, and that
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Andrzej Ehrenfeucht [8] found a back-and-forth proof of the decidability conjecture
that Tarski had given Feferman for his thesis. Feferman reported on these results to the
Summer Institute at Cornell in 1957 [12]. His report is clear, but it doesn’t go into the
details of howback-and-forth equivalences imply degrees of elementary equivalence.
This is the part of the back-and-forth theory where the Hintikka distributive normal
forms appear. He may not have appreciated at once the common underlying themes
of Feferman-Vaught and back-and-forth methods.

Nor did he know Hintikka’s ideas. In fact Hintikka had no contacts with the
Berkeley group until later. He had visited Williams College in Massachusetts in
1948–9, and he later recalled unsuccessfully trying to explain distributive normal
forms to Quine during that visit ([38] p. 11). But in any case Hintikka had only
the theory, and nothing like the concrete applications that the Berkeley group could
claim. (Fraïssé should count as a member of the Berkeley group. In 1995 I asked
Fraïssé about his contacts with Tarski. My recollection is that he told me he attended
Tarski’s Berkeley seminar for most of a year sometime in the early 1950s. The brief
reference in Feferman and Feferman [11] p. 315 is consistent with this.)

It seems that after publishing his joint paper with Vaught, Feferman did no fur-
ther work in the area. But the Feferman-Vaught theorem took on a life of its own.
Model theorists used it to prove results about elementary equivalence and elementary
embeddings, and computer scientists used it to prove a wide range of algorithmic
results. Both groups extended the scope of the theorem. The generalisation from
first-order logic to monadic second-order logic (which has quantifiers ranging over
the class of sets of individuals) proved particularly useful. Yuri Gurevich [37] p.
479 comments ‘… monadic [second-order] logic definitely appears to be the proper
framework for examining generalized products’.

One strikingly fruitful area of application in computer science was to the com-
plexity ofmodel-checking of properties of various structures, for example graphs and
transition systems. The survey by Janos Makowsky [47] both illustrates and extends
the applications to graph properties definable in monadic second-order logic. Ingo
Felscher [34] reviews the use of the Feferman-Vaught technique in connection with
composition theorems for transition systems. These two papers make clear both the
wide range of applications, and the curious status of the Feferman-Vaught theo-
rem on the borderline between theory of models and theory of algorithms. On the
model-theoretic side one should note an incisive application of the Feferman-Vaught
theorem to the model theory of adeles in number theory, by Jamshid Derakhshan and
Angus Macintyre [6].

The work that Feferman did on back-and-forth methods led him to one further
development. In [16] he defined a class of functors F between classes of structures,
and showed for example that if F is such a functor defined on a class K of structures,
and A, B in K are equivalent in the infinitary language L∞,κ for a suitable cardinal
κ, then F(A) and F(B) are also equivalent in L∞,κ. The functor F also preserves
elementary embedding in the sense of L∞,κ. Feferman notes ([16] footnote p. 83)
that he first found these results for the special case of ordinal functions. So proof
theory hovers in the background. In fact this paper is one of several where Feferman
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raises the question whether there is a good notion of ‘natural’ well-ordering for use
in proof theory.

Paul Eklof [9] describes some developments from Feferman’s [16]. Not least
is Eklof’s own theorem that for any two universal domains K1, K2 (in the sense
of Weil) and any functor F preserving direct limits, if K1 and K2 have the same
characteristic then F(K1) is L∞,ω-equivalent to F(K2). This is a strong form of
Lefschetz’s Principle ([9] p. 430).

3 Applications of Interpolation Theorems

In 1953EvertW.Beth [2] published a remarkable theoremabout definability. Suppose
T is a first-order theory and R a relation symbol that occurs in sentences of T . We
say that R is implicitly defined by T if whenever A and B are models of T that have
the same domain and agree in the interpretations of all nonlogical symbols except
perhaps R, the structures A and B do in fact give R the same interpretation. This
is a model-theoretic condition. We say that R is explicitly defined by T if there is a
formula φ(x̄) in the first-order language of T , not containing any occurrences of R,
such that

T 
 ∀x̄ (φ(x̄) ↔ Rx̄). (13)

This is a logical condition on R and T . But it is not specifically a syntactic or amodel-
theoretic one, because the consequence relation 
 can be defined equally well by
a proof calculus or model-theoretically; the completeness theorem says we get the
same consequence relation either way.

Beth proved that these two conditions on R and T , namely implicit definability
and explicit definability, are equivalent. It’s trivial that if R is explicitly defined by
T then R is implicitly defined by T too. The interest lies in the other direction. By
proving that in this first-order context every implicitly definable relation is explicitly
definable, Beth turned an old heuristic idea of Padoa [53] into a theorem.

To prove his theorem, Beth had to extract a formula φ somehow from the infor-
mation that R is implicitly defined by T . Seeing no other way, he converted implicit
definability into a statement that a certain proof exists, and then used Gentzen’s anal-
ysis of cut-free proofs to carve φ out of the proof. More precisely, he reasoned: let
the theoryU be the same as T except that inU every occurrence of R is replaced by
an occurrence of the new relation symbol S. The completeness theorem tells us that
if R is implicitly defined by T , then there is a proof of

∀x̄ (Rx̄ ↔ Sx̄) (14)

from T ∪U .
Beth’s argument for extracting φ from this proof was not very clean. William

Craig, who reviewed Beth’s paper for the Journal of Symbolic Logic in 1956 [3],
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thought about it and saw a much neater way to express the relevant proof-theoretic
information. This became Craig’s Interpolation Theorem, which he published in
1957 [4]. Feferman [27] recalls that he first heard Craig’s theorem at the July 1957
Cornell Summer Institute, where Craig gave a talk on it. Craig showed, by using his
own variant of Gentzen’s proof theory, that if ψ and χ are first-order sentences such
that

ψ 
 χ (15)

and some relation symbol occurs in both ψ and χ, then there is a first-order sentence
θ (the ‘interpolant’), which contains no relation symbols except those occurring both
in ψ and in χ, such that

ψ 
 θ and θ 
 χ. (16)

(This is Theorem 5 of [4].)
Beth’s result is an easy consequence, as follows (Craig [5]). Use compactness to

shrink T down to a single sentence τ , andU to a corresponding sentence σ, and add
new constants c̄ to the language. Then implicit definability gives that

τ ∧ σ 
 Rc̄ → Sc̄. (17)

or after rearrangement

τ ∧ Rc̄ 
 σ → Sc̄ (18)

where R occurs only on the left of 
 and S only on the right. By Craig’s theorem
there is an interpolant θ(c̄) such that

τ ∧ Rc̄ 
 θ(c̄) and θ(c̄) 
 σ → Sc̄. (19)

From this, elementary manipulations give

τ 
 ∀x̄(Rx̄ → θ(x̄)) and σ 
 ∀x̄(θ(x̄) → Sx̄). (20)

Changing S back to R, and noting that R and S occur nowhere in θ, we reach the
explicit definition

τ 
 ∀x̄(Rx̄ ↔ θ(x̄)), (21)

which proves Beth’s theorem.
Note that this derivation ignores Craig’s condition that some relation symbol

occurs in both ψ and χ. One can justify this by arguing that the condition can always
bemet by ensuring that the language includes at least one of= and⊥, and thenmaking
trivial adjustments toψ and/orχ. Craig’s theorem and its various descendents all tend
to have this feature, that a correct statement involves some nuisance conditions that



From Choosing Elements to Choosing Concepts: The Evolution … 13

make only a marginal difference to applications. The discussion below will ignore
these conditions.

Soon after Craig published his theorem, Roger Lyndon [44] showed, using cut
elimination, that we can put more conditions on the interpolant. In particular we
can require that every relation symbol occurring positively in θ occurs positively in
both ψ and χ, and likewise with ‘negatively’ for ‘positively’. He deduced from this
[45] that every formula preserved in surjective homomorphisms between models of
a first-order theory T is equivalent modulo T to a positive formula. Lyndon’s result
suggested a programme: find other conditions that can be put on the interpolant
formula, and use them to give similar characterisations of other model-theoretic
notions. It was above all Feferman who carried this programme through, though as
he remarks in [27], he began work on this only some ten years after he heard Craig’s
talk in 1957.

In his course on proof theory at the 1967 European JSL meeting in Leeds [13],
Feferman showed in detail how to adapt cut elimination so as to impose further
conditions on the interpolant. His most striking innovation was that the language
is many-sorted. Thus for example besides obeying Craig’s or Lyndon’s condition
on relation symbols, the interpolant contains no variables of a given sort unless
such variables occur in both ψ and χ; and for every sort s the interpolant contains
no universal (resp. existential) quantifiers of sort s unless ψ (resp. χ) contains a
universal (resp. existential) quantifier of sort s. Caution: for this result to be correct,
we need to assume that the only truth functions in the language are ∧, ∨ and ¬, and
that ¬ never occurs in the formulas involved except immediately in front of atomic
formulas. (Or equivalently, an occurrence of a quantifier is ‘universal’ if either the
occurrence is positive and the quantifier is ∀, or the occurrence is negative and the
quantifier is ∃; and analogously with ‘existential’.) In the title of his [17] Feferman
speaks of ‘many-sorted interpolation theorems’ in the plural. The reason is that his
interpolation theoremof [13], like theFeferman-Vaught theorem, is asmuch amethod
as a theorem. The method can be adapted to prove various interpolation theorems
for various applications.

Speaking loosely, the kinds of application of interpolation theorems that Feferman
harvested generally involve two features: a property that is in some generalised sense
implicitly definable is shown to be explicitly definable by a certain type of formula,
and some relationship between structures is involved. The two features are connected
by the fact that the implicit definition is given in terms of the relationship between
structures.

Take for example the Łoś-Tarski theorem [43], which is easily derived by
Feferman’s method, though it was originally found in another way. We have a first-
order theory T and a property P of structures. For this theorem the relevant ‘implicit
definability’ of P says that if A and B are both models of T and B is an extension
of A, and B has property P , then A also has property P; and that the property P
is expressible by a first-order sentence φ. The ‘explicit definability’ says that there
is a prenex first-order sentence θ with only universal quantifiers, such that P is
expressible by θ in all models of T .
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The significance of the many sorts in Feferman’s interpolation is that it allows
him to talk about two or more structures by assigning different sorts to the structures.
Anatoliı̆ Mal’tsev [48] had explored a similar use of many-sorted logic.

Applying this idea to the Łoś-Tarski theorem, suppose we take two sorts, 1 and 2,
and assign expressions to the sorts by using 1 and 2 as superscripts. Then T can be
written in sort 1, say as T 1, and it has an exact copy T 2 in sort 2. Wherever T 1 has
a relation symbol R1, T 2 has a corresponding relation symbol R2. Feferman allows
equality = to run across all sorts. So a pair of structures A, B that are models of T ,
with B an extension of A, can be written as a model of

T 1, T 2,Ext (22)

where Ext says

∀x1∃x2(x1 = x2) ∧ ∀x̄1(R1 x̄1 ↔ R2 x̄1) ∧ . . . (23)

and the missing part at ‘. . .’ repeats for all relation symbols S etc. the statement made
for R. The statement that φ is implicitly defined in the relevant sense can be written

T 1, T 2,Ext,φ2 
 φ1. (24)

Similar adjustments to those we made for Beth’s theorem transform this entailment
into

τ 1 ∧ Ext ∧ ¬φ1 
 τ 2 → ¬φ2. (25)

We find an interpolant θ, and without loss of generality we can take it to be prenex.
Since no variables or relation symbols of sort 1 occur on the righthand side of (25),
θ lies in sort 2. But then no universal quantifiers can occur in θ, since in that case a
universal quantifier of sort 2 would have to occur on the lefthand side of (25), and
inspection of Ext shows that none do.

So θ is a prenex existential sentence in sort 2, and we have

T 2 
 θ → ¬φ2. (26)

We also have

T 1,Ext 
 ¬φ1 → θ (27)

which holds in particular when the two sorts are identified. Under this identification
Ext becomes logically true, and there remains that

T 
 φ ↔ ¬θ (28)
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where¬θ is logically equivalent to a prenex sentence with only universal quantifiers.
Using constants as in the proof of Beth’s theorem allows us to generalise the result
from sentences φ to formulas φ(x̄).

By varying the sentence Ext, together with other suitable adjustments, we can cap-
ture various other relations between structures.One of Feferman’s first applications of
this approach was a result parallel to the Łoś-Tarski theorem, but for end-extensions
between transitive models of set theory. The natural conjecture is that in this case
the formula φ should be equivalent, modulo set theory, to a �1 formula, and in [14]
Feferman showed that this conjecture is true. The question arose at least partly from
Feferman’s discussions with Kreisel about related results in higher order logic ([32],
as mentioned in Sect. 1 above).

Another result of a similar ilk appears in [23].
Let me mention two more applications. They have very different characters: the

first of them feeds directly into nontrivial questions of algebra, while the second is
about logical properties of quantifiers.

The first application [18] can be thought of as a generalisation of Beth’s theorem
to situations where we add not just a relation symbol but also new elements. We
consider structures B that are models of a theory T in a language L , such that B
has a relativised reduct A (a substructure in a language L− where some relation or
function symbols of L may be dropped), and A is picked out by a relation symbol
R in the language L . The ‘implicit definability’ condition on T says that if B and
B ′ are two models of T , with corresponding relativised reducts A and A′, then every
isomorphism from A to A′ extends to an isomorphism from B to B ′. The ‘explicit
definability’ condition on T (which Feferman calls the ‘uniform reduction’ property)
says that if φ(x̄) is a formula of L , then there is a formula θ(x̄) of L− such that if B is
any model of L with corresponding relativised reduct A, and ā is a tuple of elements
of A, then

B |= φ(ā) ⇔ A |= θ(ā). (29)

The theorem says that when the languages L , L− are first-order and T satisfies
the implicit definability condition, then T has the uniform reduction property. (In
fact the theorem in this form is due to Haim Gaifman [36] p. 31, who indicates that
Feferman’s interpolation results for many-sorted logic can be used to prove it. In [18]
Feferman cites Gaifman [36] but gives the theorem in a broader and more abstract
form.)

A simple example is where L− is the language of rings, L is L− with an added
1-ary relation symbol R, and T says of any model B that B is a field which is the
field of fractions of the subring A picked out by R. The theorem tells us that in any
model B of T , every first-order property of a tuple ā of elements of A in B can be
translated uniformly into a first-order property of ā in A. This is not hard to check
directly, using the fact that every element of B can be written as a ratio of elements
of A. But the theorem applies also in cases where the elements of B are not explicitly
definable in terms of elements of A.
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In fact it’s a natural question whether the Gaifman-Feferman result can be
extended to say that if T satisfies the implicit definability condition, then in every
model B of T with relativised reduct A, the elements of B can be uniformly defined
in terms of elements of A. But group cohomology prevents any such theorem. If it
was true, then the automorphism group of A would lift homomorphically to a group
of automorphisms of B. The paper [10] presents many counterexamples in finite
abelian groups.

In the second application [30], Feferman encodes second-order logic by letting
the second sort range over relations on the domain of the first sort. Then a generalised
quantifier is encoded as a relation which has one or more arguments of the second
sort. For example existential quantification is the relation ∃(p)which is satisfied by a
1-ary relation p of the first sort if and only if p is nonempty. In this setting a Beth-type
theorem says that if a quantifier is implicitly definable by a theory (which can be a
first-order theory but with its relations expressed as constants of the second sort),
then the quantifier is explicitly definable by the theory. If one spells out the details,
this ingeniously tightens up a proof sketched by Jeffery Zucker in [58], stating that if
a generalised quantifier is completely determined by its quantifier rules (which have
to be first-order expressible in the appropriate sense), then it is first-order definable.

By the early 1960s it was known that there are several ways of proving Craig’s
interpolation theoremwithout going through proof theory. AbrahamRobinson found
a proof by building an isomorphism of structures through unions of chains. Simi-
lar insights led to proofs using saturated structures, or structures with some variant
of saturation. Another cluster of proofs use techniques for building models from
atomic sentences upwards; these techniques are closely related to cut-free proofs.
They include the consistency properties of Smullyan [46] and the similar construc-
tion of models by Hintikka sets. Starting in the 1960s, a number of people adapted
these various techniques to give model-theoretic proofs of any and all interpola-
tion theorems (e.g. Stern [54], Otto [52]). Also some results that were first proved by
many-sorted interpolation were given proofs not using any kind of interpolation (e.g.
Marker [49]). But Feferman’s interpolation theorem itself is still impressive for its
uniform treatment of a wide range of cases. His use of sorts for encoding is a valuable
tool; and he was the first person to make many of the applications, in particular those
that combine model theory with ideas from other areas of logic—such as definability
of truth, or end-extensions of models of set theory.

As we saw earlier, in the 1950 and 1960s there was no general understanding
that model theory had any intrinsic connection with first-order languages. When a
result was proved for first-order logic, people would soon ask whether it holds for
other languages too. Feferman’s interpolation theorem was an important contributor
to this work, because it lifts smoothly to any countable admissible language, and
hence to Lω1ω which is the union of the countable admissible languages. Feferman’s
student Jon Barwise wrote his doctoral thesis on the proof theory and model theory
of admissible languages.

In 1985 Barwise and Feferman together edited the massive volume Model-
Theoretic Logics [1], which brought together a vast amount of work on model-
theoretic properties of various logics. In his Preface Feferman notes that he and
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Barwise had ‘turned to other interests in the latter part of the 1970s’ (p. vii), and
the initiative for the book came not from them but from the editors of ‘Perspectives
in Mathematical Logic’. In fact Feferman wrote none of the chapters. Notoriously
the book has no index, but if it had one there would certainly be many entries under
‘Feferman, S.’. Thus Jouko Väänänen in his chapter on ‘Set-theoretic definability of
logics’ [57] remarks (p. 599) that an important tool throughout his chapter is Fefer-
man’s notion of adequacy to truth. This notion is a formalisation of the notion of
implicit definability of truth within a logic, and it comes from a paper [19] where
Feferman applies the interpolation theorem machinery to relate implicit and explicit
definability of truth in a logic.

We should add too that Feferman contributed to this area of research not only
through specific results that he proved, but also through helping to establish it as
a substantive part of logic. For example Janos Makowsky kindly tells me that a
preprint of Feferman’s paper [17] was in circulation in 1971 and led him to the topic
of his PhD thesis. He names Daniele Mundici, Jouko Väänänen, Jonathan Stavi and
Saharon Shelah as other logicians whose work around that time took inspiration from
this preprint.

A paper that touches on model-theoretic logics, but is rather orthogonal to
Feferman’s other work in model theory, is his study [20] of some results of Nigel
Cutland on effective model theory. Unlike most writers in this vein, Feferman looks
not for an effective analogue of model theory, but for a common abstract framework
that includes both the classical set-theoretic version and effective analogues. This
leads us neatly into our final section.

4 The Concept of Model Theory

In his paper for the Proceedings of the 1974 Tarski Conference [17] p. 206, Feferman
refers to

. . . the growing subject of “abstract logic” or, more precisely, the

theory of model-theoretic languages , initiated by Lindström . . . and

carried on by Barwise . . . . The ground for such work was especially

prepared by Tarski’s efforts over the years to isolate appropriate

basic notions for a systematic development of model

theory, beginning with the fundamental ones of truth and satis f action

. . . (30)

It’s clear that one reason why Feferman mentions Tarski’s aims in this direction is
that they resonate with Feferman’s own thinking. Feferman writes about Tarski’s
conceptual analyses in several places (e.g. [24, 26]). In one unpublished paper he
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notes several conceptual problems that drove much of his own work [21]—though
none of his listed problems are directly model-theoretic.

That said, I am not entirely clear how Feferman in 1974 saw Tarski’s conceptual
work as related to the ‘model-theoretic languages’ that he refers to. Did he think
that identifying the class of ‘model-theoretic languages’ was itself a task parallel
to defining truth and satisfaction? Or did he merely mean that Tarski by giving a
precise definition of satisfaction, rather than leaving it to intuition, had made it easier
to develop model theory in an abstract setting?

A third possibility is that Feferman regarded it as a conceptual advance, similar in
some sense to Tarski’s conceptual advances, to think of assessing logics by formal
properties that they have. This is after all what Lindström contributed, with his proof
that first-order logic can be picked out from other logics by some very general and
abstract properties that it has (for example compactness and downward Löwenheim-
Skolem). This possibility is worth mentioning because Feferman himself quite often
used this kind of assessment of logics.

One central example of this is Feferman’s interest in the question of what terms
(i.e. meaningful expressions) in a language are ‘logical’. Two of his published papers
[22, 29] discuss criteria for terms to be counted as ‘logical’, for example Tarski’s
criterion in terms of permutations of the universe. He also has a paper [25] in which
he says his ‘main purpose’ is to examine in what sense Hintikka’s Independence-
Friendly Logic ‘deserves to be called a logic’ (p. 454). In all these papers, Feferman
discusses and assesses criteria for a term to be regarded as ‘logical’. In fact his work
onZucker’s paper, discussed in the previous section,was intended as an application of
just such a criterion. The criterionwas that a ‘logical’ quantifier should be determined
uniquely, up to logical equivalence in an obvious sense, by its proof rules. Feferman’s
result, following Zucker, shows that any such quantifier is explicitly definable in first-
order logic, and this supports Feferman’s own intuition that ‘logical’ terms should
be limited to first-order ones.

Here I am reporting what Feferman says, though I think I am not the only logician
who finds it hard to see what question is being answered. Expressions like ‘logic’
and ‘logical’ get their meaning from their usage among people called logicians.
This usage is likely to vary from year to year as the subject develops. When the
community of logicians fragments, as it inevitably does, the notion of ‘logic’ comes
to vary between the fragments. So Feferman’s appeal to ‘the traditional conception
of logic’ ([29] p. 17) could be an appeal to a set of concepts that nobody still uses.
(Compare ‘the traditional conception of probability’, bearing inmind that probability
used to be treated as a branch of logic.) But let me hold my sceptical tongue.

In [27] Feferman recalls the correspondence between Beth, Tarski and himself in
1953, about Beth’s definability theorem and its proof. He says:
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A draft of Beth’s proof was sent to Tarski in May 1953, and Tarski

discussed it with me at that time (I was in Berkeley then, working

with him as a student). From Tarski’s point of view, since the

statement of Beth’s definability theorem is model-theoretic, there

ought to be a model-theoretic proof, and there was correspondence

(via me) with Beth about how that might be, accomplished

(cf. Van Ulsen 2000, pp. 136ff). (31)

This interests me very much. To my eye the correspondence reported by Van Ulsen
[56] p. 138 can more easily be read in the opposite sense. On 22 June 1953 Feferman
wrote to Beth

Your solution of the problem is really a solution of a problem

in proof theory and only incidentally an application of

[the completeness theorem]. Indeed, it seems to me that

your main result has its proper phrasing as follows: If A, B

are formulas symmetric in a, b (which are consistent), and if

∀x1 . . . ∀xk(a(x1, . . . , xk) ↔ b(x1, . . . , xk)) is derivable from A ∧ B

by elementary logic, then [and here follow statements about

derivability in first-order logic]. From this theorem it is, of

course, a quick step to the solution of your problem via the [completeness

theorem]. I believe it is worthwhile putting the problem

in this form, since then the difference between your problem

and the problem of exhibiting models for independence of axioms

is quite sharply pointed up. (32)

In short, Feferman in 1953 argued that Beth’s theorem was really a proof-theoretic
theorem and ought to be stated and proved in a form which makes this clear.

Feferman’s statement in 1953 seems to me very much in line with what we know
Tarski was saying about Padoa’s method in the 1920 and 1930s. Namely, the method
should be made rigorous by removing the model-theoretic content and rewriting it
as a statement about deducibility in the appropriate logic. (See for example [40].) In
the 1930s the appropriate logic was higher-order; for Beth’s theorem it is first-order.
InterestinglyVanUlsen ([56] p. 137) does include an item that closely fits Feferman’s
later account in [27]:

. . . in particular, Tarski has emphasized the desirability of establishing

the Interpolation Theorem by methods independent of

the theory of proof. (33)

But this is a quotation from Lyndon [44] in 1959!
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The point to note is that VanUlsen’s quotation shows Feferman in 1953 describing
Beth’s theorem as a solution of a problem in proof theory, in line with Tarski’s earlier
perceptions. Today I think everybody regards Beth’s theorem as relating an overtly
model-theoretic notion (implicit definability) to a more basic logical notion (explicit
definability). How far is this a different perception of the theorem itself? How far is
it a reflection of how the boundaries between the branches of logic were moving in
the mid 1950s?

So here we have a question not about what should count as logic, but about what
did actually count as proof theory, or as semantics, or as model theory, in the early
to mid 1950s. It was a time of paradigm change, and Solomon Feferman was right
at the heart of the action, with a mental ear well tuned to uses and adjustments of
concepts. Everything that he has told us about the understanding of those notions in
Berkeley at that time is gold dust for present and future historians of logic.
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Introduction

Classical computability theory (or recursion theory) investigates the computability of
functions on the domain of natural numbers N, or (equivalently) strings over a finite
alphabet. This study can be generalized in two directions: investigating (i) functionals
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of higher types over N, and/or (ii) function(al)s over more general domains, such
as the reals, with their distinctive topological and other properties. Over a period
of about four decades, Sol Feferman (hereinafter SF) carried out highly significant
investigations in both directions. The aimof this paper is not to give a complete survey
of his work in this area, which would be very difficult because of the profusion of his
writings, but to examine a few of his more noteworthy papers spanning this period,
so as to get a taste of his research here.

We will investigate four of SF’s papers, spanning this period:

1. “Inductive Schemata and Recursively Continuous Functionals” (1977) [15],
2. “A New Approach to Abstract Data Types”, Parts I and II (1992) [17, 18],
3. “Computation onAbstractData Types: TheExtensionalApproach,with anAppli-

cation to Streams” (1996) [19], and
4. “About and Around Computing over the Reals” (2013) [20].

A section is devoted to each of these papers below.
It is hoped that the summaries given here will encourage researchers, students

and historians to read the original papers. In such cases, one will be impressed not
only by the contents, but by the clarity and elegance of SF’s scientific literary style.
For the same reason, as will be seen, I have frequently taken to quoting directly from
these papers, since I often found that to be the best way to convey SF’s ideas.1

1 Inductive Schemata and Recursively Continuous
Functionals

The first paper to be reviewed here is [15]. Its topic is a particular approach to
generalized recursion theory (g.r.t.), based on monotone inductive schemata over
arbitrary structures. It has 9 sections, and is moreover divided into two main parts.

Part I is an informal introduction to this theory. To quote SF: “the ideas … are
due independently to Moschovakis and the author, but the detailed development is
due almost entirely to Moschovakis. A principal source for these ideas is in Platek’s
workonfixed-point schemata”. This refers toRichardPlatek’s PhD thesis [48]written
under SF’s supervision at Stanford.2

Section2 (still in Part I) gives a review of Platek’s work, and how it was modified
and expanded for the present purpose. As SF puts it, Platek’s main idea was that
the central feature of recursion theory which makes sense for arbitrary structures
A = 〈A, . . . 〉 is the process of recursion itself, i.e., the definition of a function ϕ as
the least fixed point of an equation ϕ = �(ϕ); or, equivalently, FP(�) is the least
ϕ “closed under” �: �(ϕ) ⊆ ϕ. For this to make sense, we must assume that the

1To avoid confusion, sections in SF’s papers are referred to as Sect. 1, etc., and sections in the
present article as §1 and §2, etc.
2And regrettably never published, but with a far-ranging influence, as we will see in some of the
other papers investigated here.
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functional � is a monotonic operator on partial functions on A. Platek introduced
a structure of hereditarily monotonic functionals3 of finite type over A, denoted
Ã = 〈 Ãτ 〉τ , where τ ranges over all finite types.

Next, for any class F of functionals in Ã , let Ind(F) be the class of functionals
inductively defined from F , obtained by closing under explicit definition and FP at
all types.

Two of the main results of [48] are:

• If every member of F has type level ≤ n + 1 and ϕ ∈ Ind(F) has type level ≤ n
then we can get ϕ from F by explicit definition and the FP scheme at type levels
≤ n only. In particular, with the structureA = (A,F), ifF has only total functions
of level 1, we need only use � of type level 2.

• The system of functionals given by Kleene’s schemata S1–S9 [33]4 on the maxi-
mal type structure over N, i.e. N = (Nn)n∈N (where N0 = N and Nn+1 = N

N

n ), is
equivalent to Ind(0, Sc),5 in the sense that there is an embedding of N into Ñ
such that � on N is Kleene partial recursive (i.e., derivable from S1–S9) iff its
image in Ñ is in Ind(0, Sc).

We should note that Platek makes some special assumptions on the structure
〈A,F〉, namely that F (or Ind(F)) contains pairing and projection functions, and
distinct elements 0,1 of A. With these special assumptions on a level 1 structure
〈A,F〉, the functions in Ind(F) turn out to be the same as the prime computable
functions of Moschovakis [37] on 〈F ,=A〉.

SF then notes certain limitations on Platek’s theory:

(1) These special assumptions effectively introduce N as a substructure of A, and
hence ordinary recursion theory as part of Ind(F). SF argues against this (in
Sect. 4, as we will see).

(2) It does not generalize recursion theories based on relations, such as Post–
Smullyan systems [50] or search computability [37].

(3) Recursion on N is derived indirectly, from embedding into Ñ , which is
“messy”. It would be preferable, conceptually, to identify the S1–S9 functionals
over N with Ind(F) over the ground domain system 〈Nn〉n for suitable F , i.e.,
more generally, associate a suitable recursion theory with any ground structure
〈〈Ai 〉i∈I , F〉, for which recursion on 〈Nn〉n would be one example.

Section3 of this paper presents SF’s general theory of monotone inductive defini-
tionswhich overcomes these three limitations. SF found that therewas a large overlap
of his theory with that of Moschovakis, which had been developed independently
(and also included a theory of non-monotone inductive definitions) [34, 40].

Briefly:Suppose given a domain system 〈Ai 〉i∈I and a collection X of relations
on these, closed under unions of chains. Assume each X ∈ X has an arity ν =

3This terminology is SF’s.
4Kleene’s notion of partial recursive functional, given by his schemata S1–S9 [33] or (equivalently
for type levels ≤ 2) as in [31, p. 326], will feature in every one of the four articles discussed here.
5Where ‘Sc’ is the successor function on N.
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(ν(1), . . . , ν(m)), with X ⊆ Aν(1) × · · · × Aν(m). Amonotone schema is a functional
� : Xν(1) × · · · × Xν(m) → Xμ which is monotonic, in the sense that

Xi ⊆ X ′
i (1 ≤ i ≤ m) =⇒ �(X1, . . . , Xm) ⊆ �(X ′

1, . . . , X
′
m).

With each such�we can associate a least fixed pointFP(�). Then, given a collection
F of schemata, we take Ind(F) to be the smallest collection of schemata containing
F and closed under explicit definition and FP.

Given a domain system 〈Ai 〉i∈I , there are two principal choices forX : (i) all rela-
tions on 〈Ai 〉i∈I , and (ii) all partial functions on 〈Ai 〉i∈I . These give rise to (respec-
tively) relational and functional inductive theories. From theseMoschovakis’s prime
computability and search computability [37] can easily be constructed on an arbitrary
A (or rather the closure of A ∪ {0} under pairing).

Another example is recursion on the maximal type structure N = 〈Nn〉n over N.
Here we take the class Ind(F) where F contains 0, successor, some basic functions
and two schemata for application and abstraction at all types. Now we can derive,
in Ind(F), Kleene’s [33] schema S8 (higher order function abstraction, combined
with application) and an “enumeration” schema S9:

ϕ(�α, z) � {z}(�α).

where z is a number variable, and ‘�’ means that the l.h.s. is defined iff the r.h.s. is.
In fact Ind(F) is equivalent to Kleene’s S1–S9, since the FP schema can be obtained
from the functional form of Kleene’s recursion theorem.

SF ends this section by posing the question: Is there an interesting relational
inductive theory over N – or rather over S = 〈Sn〉n , where S0 = N and Sn+1 is the
power set of Sn?

In Sect. 4, SF briefly considers what he calls axiomatic enumerative g.r.t., char-
acterized by an axiomatic approach to Kleene’s S9, and developed by Wagner and
Strong [51], Moschovakis [38], Fenstad [22], Hyland [30] and others. It is shown in
[34] that under quite general hypotheses a theory Ind(F) is an enumerative g.r.t. SF
remarks on what he considers two defects of such enumerative approaches: (1) the
ad hoc character of such codings, and (2) the necessity to incorporate N as part of
the structure.

Section5 gives some ideas (“which remain to be developed”) for more restricted
kinds of inductive schemata given by syntactic closure conditions or inference rules,
where the course of the induction can be represented by a derivation or computation
tree.

To take an example, consider syntactic closure conditions, and the relational case.
We take a formula � in a languageL over a structureA = 〈〈Ai 〉i∈I , . . . 〉 augmented
by relation parameters which occur only positively in �. This gives a monotone
schema �� with a (least) fixed point, defining a function from tuples of relations (of
the correct arity) to relations. We can then identifyF with the class of such formulas
�, and so Ind(F) is the set of functions so defined. SF gives two examples.
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(1) Let A = (N, 0, Sc), and let F be the class of existential formulas (positive in
their relational parameters). Then Ind(F) is the class of all r.e. relations; cf. the
Post–Smullyan approach [50].

(2) Let A be any structure, L the corresponding full first order language, and F all
formulas positive in their relation parameters. Then Ind(F) is the set of relations
inductively definable over A in the sense of Moschovakis [39].

As another example, we can associate, with certain inductive definitions, rules of
inference and derivation trees. The inductive definition has the form: X is the least
solution of �(X) ⊆ X , i.e. the least set such that ∀�x[�(�x, X) → �x ∈ X

]
, where

elements that are put into X at any stage are related by elementary conditions (given
by�) to elements already in X . We can write such a closure condition as an inference
rule �(�x, X)/X (�x). Such inference rules give rise to a (possibly infinite) derivation
tree for generating membership of X .

We turn to Part II (and Sect. 6), which deals with recursion on structures of contin-
uous functionals over N . SF sketches two similar constructions by Kleene [32] and
Kreisel [35] of a finite type structure C = 〈Cn〉n of hereditarily (total) continuous
functionals overC0 = N. (Another approach: the structure C� of hereditarily partial
continuous functionals, developed by Ershov, will be discussed below shortly.)

The principal question now is: are the resulting theories equivalent to those given
by inductive schemata?

Considering first, total continuous (or “countable”, to use Kleene’s terminology)
functionals: we consider functionalsαn of type n, where the value ofαn+1 at anyβn is
given by a finite amount of informationUn aboutβ, given by “formal neighborhoods”
which can be coded as natural numbers. The details are available in SF’s paper, and,
of course, in [32, 35]. Hence for all n, any such αn can be represented by a type-one
“associate” denoted by α(n+1) or (here) by �α�.

The main difference between Kleene’s and Kreisel’s approach is that αn+1(βn)

makes sense for all βn ∈ Nn in Kleene’s approach, but only for βn ∈ Cn in Kreisel’s.
A functional ϕ ∈ C is said to be recursively continuous (or recursively countable)

if it has a (total) recursive associate �ϕ�. With Kleene’s identification ofCn with part
of Nn , a central problem was to find the relationship between recursively continuous
functionals and those generated by Kleene’s schemata S1–S9.

In one direction: Kleene showed [32] that if ϕ is generated by his schemata, and
if ϕ is total on C, then ϕ (restricted to arguments in C) is recursively continuous.

The question was raised by Kreisel [35] if the converse holds, in the sense that
every recursively continuous function on C is the restriction of a function generated
by S1–S9. A counterexample was found by Tait (unpublished), namely a modulus
of uniform continuity functional at type level 3.

The situation with K-K (Kleene–Kreisel) recursiveness is thus not satisfactory
as in stands. In Sect. 7, SF points to a possible way forward, by turning to a more
general theory of higher-order partial recursion, which would reduce to the theory
of K-K recursiveness in the special case of total functions.

The problem here is that even a definition for such a concept is problematic. He
presents one proposed by Robert Winternitz, a former student of his at Stanford.
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(We omit details, but urge the reader to consult this paper.) This definition satisfies
(among other good properties) an enumeration or universality property at all types.

Also important in the further development of the theory is the concept of potential
partial recursiveness, which is satisfied by a function ϕ if there is some partial
recursive continuous ψ ⊇ ϕ. With this definition, Kleene’s partial positive result
above can be can be re-cast in the form: Each ϕ which is (S1–S9) partial recursive
on N has its restriction to C potentially partial recursive. (But see below.)

SF writes here: “I consider the main defect of this work on schemata to be taking
N as the point of departure, rather than working entirely in the context of C”. This
makes a difference in interpreting Kleene’s schema S8:

ϕ(αn+2, �γ) � α(λβn · ψ(α,β, �γ))

in which even though αn+2 and �γ range over C, the “abstracted” variable βn is taken
to range over all ofN (of the appropriate type). It would be more appropriate to have
βn ranging over C. This would make the r.h.s. (and hence the l.h.s.) of this equation
definable in more cases. (The other schemata, S1–S7 and S9, are not affected by
such re-interpretation.) Then, as before, every functional generated by S1–S9 in this
new interpretation on C is potentially partially recursive, and we can again inquire
about the converse. However the uniform continuity functional at type level 3 still
provides a counterexample.6

Section8 deals with the other approach to computation on higher types noted
above, based on the structure C� = (C �

n )n of hereditarily partial continuous func-
tionals developed by Ershov [11]. Here C �

0 = N, and C �
n+1 is the set of continuous

partial functions from C �
n to N (suitably defined). Then Cn can be successively

mapped into C �
n [12]. To quote SF again: “Now there is also a natural definition

of partial recursive functional on C �. I studied the schematic generation of these
functionals in [14], centering attention on so-called “search” operators introduced in
Moschovakis [37], namely νx[ψ(x, �α) � 0] which is interpreted as ‘an x such that
ψ(x, �α) � 0’. By S10 we mean the scheme

ϕ(�α) � νx[ψ(x, �α) � 0]

which, without further restriction, must lead to multivalued functions …” Single-
valuedness can be recovered by a suitable restriction in the use of this scheme,
resulting in a scheme (S10 !).

The main results of [14] were that the multi-valued partial recursively continuous
functionals over C� are exactly those generated by (S1–S8) + (S10), and the single-
valued ones are those generated by (S1–S8)+ (S10 !). However this is not completely
satisfactory, since (S10 !) is not a monotone scheme.

6Gandy to SF, personal communication.
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This result was improved byWinternitz, by incorporating the “strong or” operator
introduced in [48]7:

OR+
(ϕ1,ϕ2) � 0 ⇐⇒ ϕ1(0) = 0 ∨ ϕ2(0) = 0. (1.1)

Winternitz showed that
at type level 2, the functionals generated by (S1–S9)+OR+ are exactly the

partial recursive functionals over C�.
However the result does not hold at higher type levels. The solution turns out to

come from work of Sazonov [49] who introduced the functional ∃3, defined by

∃3(α2) �
{
0 if α(�1) � 0

1 if α(δn) � 1 for some n

where �1 is the completely undefined function at level 1, and δn(x) � z ⇐⇒
x = 0 ∧ z = n. Sazonov’s result can then be formulated (in this framework) as:

A (partial) functional is partial recursively continuous over C� iff
it is generated by the schemata (S1–S9) + OR+ + ∃3.

This shows that partial recursion over C� is equivalent to a monotonic inductive
schematic theory.

Ershov’s work is discussed again below in Sect. 3, in connection with SF’s pro-
viding recursion-theoretic interpretations for abstract computational procedures over
his stream algebras.

In Sect. 9 SF makes some concluding remarks:

By [12] the recursively continuous functions over C are restrictions to C of those over C�,
and hence just those functionals total on C generated by the above schemata. However there
remains the question of whether we can generate these functionals directly over C. What we
are really after are monotone schemata …

Now it might at first be thought that a non-monotone theory could be found, for
example (S1–S8) + (S10 !). However, as Winternitz showed, although the partial
recursively continuous functionals onC are closed under (S1–S7) and (S10 !), they are
not closed under (S8), even when abstracting over types 0 and 1 only. SF continues:

With this we can complete our remark in Section 7 about Kleene’s partial positive result
… [for] the statement of closure under (S1–S9) given in Sect. 7 above involves potential
partial recursiveness in an essential way. … The main question with which we are left is the
following.

Question. Is there a natural monotone collection F over C such that the partial
recursively continuous functionals over C are exactly those generated by Ind(F)?

7The notation and presentation have been changed here to match that in [19], discussed in §3 below.
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SF concludes this fascinating paper with the remark:

As long as this question remains unsettled, the inductive schematic approach to g.r.t. is not
completely vindicated. But I hope that the considerations in this paper combined with the
detailed work of [34, 40], which demonstrate its scope otherwise, will lead one to give
serious attention to this program.

2 A New Approach to Abstract Data Types, Parts I and II

In this pair of papers [17, 18], SF switches gears, and focuses on computation not on
the classical structures (such as naturals or ordered reals, and higher types on these)
but on abstract data types, which can be taken (for now) as classes of algebras of a
given signature Σ , closed under Σ-isomorphism. SF motivates the topic by saying:
“The concept of abstract data types (ADTs) has emerged in the last fifteen years or
so as one of the major programming design tools, with the emphasis on modular
construction of large-scale programs.”

The first paper (Part I) is an informal introduction to ADTs, while the second gives
a more formal development, with the emphasis again on computation over these. We
thus give a very brief overview of Part I, as an introduction to Part II, which is our
main concern.

SF begins Part I by stating:

[J]ust as in mathematics generally, one is concerned in computational practice with gen-
eral algebraic notions such as orderings, rings, fields, polynomials, etc. There is additional
concern in computer science with other kinds of ADTs such as lists, stacks, trees, records,
arrays, streams, etc. A coherent account of how these are all to be treated for computational
purposes requires answers to such questions as:

Q1. What are ADTs and how may they be specified?

Q2. What does it mean to implement an ADT?

Q3. How can we construct new ADTs from old ones?

Q4. What does it mean to compute with ADTs?

SF’s aim is to answer the above four questions, especially Q4, in the course of
this and the following paper. Since this paper gives only a semi-formal development,
we discuss it very briefly, before turning to Part II for a more detailed account.

SF refers to previous foundational approaches: algebraic [27], computational or
recursion-theoretic [8, 52] and type-theoretic [43]. He argues that all previous foun-
dational approaches fail in certain cases.

A new, constructively based, approach is proposed here to provide a sufficiently general
account … within the conceptual framework of the school of constructive mathematics
associated with Bishop … [5]. The formal foundations will be provided by theories of
operations and classes in which that style of constructive mathematics can be formalized …
[T]hese will be taken up in Part II.
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SF gives some examples of ADTs, noting that “there is a basic division into those
structureswhose objects are described or generated in a finitaryway, and thosewhose
description is infinitary.” Examples of finitary ADTs dicussed are: lists over arbitrary
types; lists over preordered types; binary and finitely branching trees; and finite sets.
Examples of infinitary ADTs are infinite streams and infinite precision reals – the
latter following Bishop’s implementation [1, pp. 18–19].

We turn to Part II. As SF says in the opening sentence, the main purpose of this
paper is to give a precise definition of abstract computational procedures8 F on
ADTs, with interpretations FA over structures

A = (A0, . . . , An, =A0 , . . . , =An , F0, . . . , Fm) (2.1)

of signature Σ , say, where =Ai is an “equality” relation9 on Ai (i = 0, . . . , n), A0

is the boolean type B = {tt, ff},= A0 is the identity on B, and Fj is either a constant
(0-ary function), partial (level 1) function or partial (level 2) functional over A of a
specified arity. The constants of A include tt and ff, and the functions and functionals
among Fj preserve equality and are monotonic.

The aim here is to clarify the concept of abstract computational procedure F
satisfying, for any A as above, the following criteria:

C1. F associates with A an object FA of specified arity over A.
C2. FA is determined by the (individual, function and functional) constants of A.
C3. The map A �→ FA preserves Σ-isomorphism.
C4. FA preserves the equality relations on A.
C5. For domains Ai of A contained in N, FA reduces to an ordinary computational

procedure (see Remark 2 below).

SF explains:

These requirements are met here by a generalized recursion theory10 (g.r.t.) which provides
a notion of computability over arbitrary structures of the kind described above. In order to
satisfy C3 wemust insure that whenever an object is defined by recursion it is uniquely spec-
ified. For (partial) functions this will be as a least fixed point (LFP) of a suitable monotonic
functional. There are two forms of g.r.t. available in the literature which feature LFP as a
central scheme … namely those of Moschovakis [41, 42] and the earlier Platek [48].11

In both of these definition by recursion is implemented as the least fixed point of a
suitable monotonic functional. SF adapts Moschovakis’s version, but with schemata
like Kleene’s S1–S9 [33], with S9 replaced by a simple LFP recursion.

SF continues:

The g.r.t. developed here … applies to a wide variety of data universes V, with weak closure
conditions on the classes of partial functions and functionals over V . There are two extremes
of interpretation: (i) V is the full cumulative hierarchy and “all” functions and functionals are

8Written ‘π’ in [17]. Notation changed here to match [19]; cf. §3 below.
9Actually a congruence relation w.r.t. the Fk ’s.
10Emphasis added. The meaning of this phrase is discussed below.
11As noted in §1 above.
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admitted; (ii) V = ω 12 and we only admit partial recursive functions and functionals. The
setting (i) is the usual one for g.r.t., while the setting (ii) serves for the precise formulation
of the criterion C5; the statement of that is the main new contribution of this paper.

Remarks.

(1) We need only consider structures as in (2.1) with function(al)s up to type level
2, because of Platek’s result given in §1 above.

(2) By “ordinary computation procedure”, SF means the structure constructed by
Kleene overN in [33]. Also recall Footnote 4 for the concept of partial recursive
functional.

A structure A has a “data universe”: an underlying universe V containing the
data objects a, b, . . . , x, y, . . . , a collection DT of subsets A, B, . . . , X,Y, . . . of
V , called data types, containing B, N and V , and closed under Cartesian product.

There is a collection PFn of partial functions ϕ,ψ, . . . on V , and more specifi-
cally, collections of partial functions13 ϕ : A

∼→ B between the various data types.
A has (as in (2.1) above) basic domains A0, . . . , An , with A0 = B. We let i, j, k

range over {0, . . . , n} and ı̄, . . . , over finite (possibly empty) sequences of these.
For ı̄ = (i1, . . . , iν), put Aı̄ = Ai1 × · · · × Aiν . Then a partial function ϕ on A has
arity ı̄ → j if ϕ : Aı̄

∼→ A j . We let σ, τ , . . . range over arities of partial functions
on A. For σ̄ = σ1, . . . ,σμ, put Aσ̄ = Aσ1 × · · · × Aσμ

. Then a partial functional

F on A has arity (σ̄, ı̄) → j if F : Aσ̄ × Aı̄
∼→ A j . When ϕ = (ϕ1, . . . ,ϕμ) and

x = (x1, . . . , xν), we write F(ϕ, x) for F(ϕ1, . . . ,ϕμ, x1, . . . , xν). Generally F has
type level 2, but when μ = 0, ν > 0 then F is a partial function onA of level 1, and
when μ = ν = 0 then F is a constant of sort j of level 0.

Suppose A (as in (2.1) above) has the basic functionals

Fk : Aσ̄k × Aı̄k → A jk (k = 1, . . . , n).

Then A has the signature Σ(A) = (
n, 〈σ̄k, ı̄k, jk〉1≤k≤m

)
.

In Sect. 4, four interpretations of the structure are presented, which we describe
here, (mainly in SF’s own words). For convenience I refer to these as four “models”.

Model 1: The full set-theoretic interpretation.
“Here V is the class of all sets in the cumulative hierarchy. The types range over all
sets in V … Functionals are just those partial functions in V of the form F(ϕ, x)
where the ϕk’s are partial functions in V .”

Model 2: The set-theoretic interpretation on computational data.
“For computational purposes, all data should be represented in in finite symbolic
form; without loss of generality, we can take the universe to be V = N. … The
partial functions here are arbitrary ϕ : N ∼→ N …Partial functionals F(ϕ, x) in this

12Below I use ‘N’ for ‘ω’.
13This notation ‘

∼→ ’ for partial functions is not the same as SF’s here, but is used for consistency
with his notation in the paper [19] discussed in §3 below.
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interpretation take arbitrary partial function arguments14 ϕ on N. Special interest
attaches below to those F which are partial recursive (p.r.) or have a p.r. exten-
sion. Note that p.r. functionals are not closed under abstraction when the remaining
function arguments are not p.r.”

Model 3: The recursion-theoretic interpretation, extensional form.
“Here again we take V = N …. The types … range over arbitrary subsets of N (or,
more generally, over any collection of subsets closed under arithmetical definability).
The collectionPFn is taken to be the p.r. functions onN, andPFnl the p.r. functionals
of p.r. function arguments15 Thus we have closure under abstraction in this case.”

Model 4: The recursion-theoretic interpretation, intensional form.
This is like model 3, except that PFn consists of Gödel numbers or indices e of
p.r. functions, with application given by e x = {e}x . Now PFnl coincides with
PFn, but with the emphasis on indices which are “extensional” or “effective” in
the recursion-theoretic sense.

Returning to a general structureA (as in (2.1)), SF defines a partial order on PFn:
for ϕ,ψ of arity ı̄ → j on A16:

ϕ ⊆A ψ ⇐⇒ ∀x ∈ Aı̄
[
ϕ(x) ↓ =⇒ ψ(x) ↓ =Ai ϕ(x)

]
. (2.2)

A partial functional F of arity (σ̄, ı̄) → j is A-monotonic if

∀ϕ,ψ ∈ Aσ̄,∀x ∈ Aı̄
[
F(ϕ, x) ↓ ∧ ϕ ⊆A ψ =⇒ F(ψ, x) ↓ =Ai F(ϕ, x)

]
.

(2.3)

Next, for partial functionals F1, F2 of arity (σ̄, ı̄) → j on A, we define

F1 ⊆A F2 ⇐⇒ ∀ϕ ∈ Aσ̄∀x ∈ Aı̄
[
F1(ϕ, x) ↓ =⇒ F2(ϕ, x) ↓ =Ai F1(ϕ, x)

]
.

(2.4)

Next, in order to determine the least fixed point of a functional G : Aσ × Aı̄ →
A j , where σ = (ı̄ → j), we define Ĝ : Aσ → Aσ by (Ĝϕ)x = G(ϕ, x) (i.e. a “cur-
ried” version of G). Then, supposing G is A-monotonic, so is Ĝ, and further, a
(unique) least fixed point LG of G can be found from Ĝ, as follows.

First, L is called an LFP operator on A if for any σ = ı̄ → j and A-monotonic
G : Aσ × Aı̄

∼→ A j , we have:

(i) LG ∈ Aσ and Ĝ(LG) ⊆A LG;
(ii) whenever ψ ∈ Aσ and Ĝ(ψ) ⊆A ψ then LG ⊆A ψ;
(iii) For A-monotonic G1,G2 of the same arity, G1 ⊆A G2 =⇒ L(G1) ⊆A

L(G2).

14Emphasis added. This gives the essential difference between models 2 and 3.
15Emphasis added. This gives the essential difference between models 2 and 3.
16Recall (2.1) the equality relations ‘=Ai ’ on A.
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The question of the existence of LFP operators in the various interpretations must
still be discussed (see below).

Recall (2.1) we are assuming each domain Ai has an “equality” relation. Next SF
defines the relation of A-equality between partial functions:

ϕ =A ψ ⇐⇒ ϕ ⊆A ψ ∧ ψ ⊆A ϕ

and hence the concept of a functional F preserving A-equalities. Then F is said to
be strongly A-monotonic if it is A-monotonic and also preserves A-equalities.

We come to schemata for abstract computational procedures (ACPs) over Σ .
Suppose given a Σ-structure A, with basic functionals F1, . . . , Fm , where each Fk

has a specified arity σ̄k × ı̄k → jk . We make some general assumptions:

(i) A0 = B = {tt, ff}, where =A0 is the identity relation, and
(ii) ttand ffare themselves in Σ .
A formal language of computational procedures over Σ is defined, with variables
a, . . . , x, . . . of all Σ-sorts, partial function varables ϕ,ψ, . . . of each arity, and
functional symbols F,G,H, . . . of each appropriate arity. It is further assumed:

(iii) For each A,LA is an operator from A-functionals of arity σ × ı̄ → j , where
σ = ı̄ → j , to Aσ-partial functions (for each ı̄, j).

Note that at this stage LA is not yet assumed to be an LFP operator on A.
There follows a list of schemata (for Σ):

I (Initial fns) F(ϕ, x) � Fk(ϕ, x) (k = 0. . . . ,m)

II (Identity) F(x) = x
III (Application) F(θ, x) � θ(x)
IV (Conditional) F(ϕ, x, v) � [if v = ttthen G(ϕ, x) else H(ϕ, x)]
V (Structural) F(ϕ, x) � G(ϕ f , xg)

VI (Indiv. subst.) F(ϕ, x) � G
(
ϕ, x,H(ϕ, x)

)

VII (Func. subst.) F(ϕ, x) � G
(
ϕ,λu.H(ϕ, x, u), x

)

VIII (LFP) F(ϕ, x, u) � [
L(λθ, w.G(ϕ, θ, x, w))

]
(u)

In the above schemata, ϕ and x are (respectively) tuples of function and individual
variables; in schema IV v is boolean variable; in schemaV, f and g are (respectively)
mappings of the indices of the variable tuples ϕ and x , and ϕ f and xg are the
corresponding mappings of these tuples.

An ACP for Σ is then a partial functional F generated by the above schemata.
Note the resemblance of the above schemata (other than VIII) to Kleene’s

schemata [33] apart from S5 (primitive recursion on the integers) and S9 (enumera-
tion).

So for each Σ-structure A and each ACP F generated by the schemata, there is
an associated partial functional FA, where the intended semantics is clear. Here we
must make one more general assumption:

(iv) LA is an LFP operator on A.
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SF then states and proves his two main theorems:

Theorem 1 (Preservation of strong monotonicity) If each Fk (k = 1, . . . ,m) is
strongly monotonic, then so isFA for every ACPF generated by the schemata I–VIII.

Theproof amounts to showing that the property of strongmonotonicity is preserved
by an application of any of the schemata, including notably the LFP schema VIII.

Theorem 2 (Invariance under isomorphism) For any Σ-ACP F, an isomorphism
between two Σ-structures A and A′ induces an isomorphism between FA and FA′

.
Note that Theorems 1 and 2 imply (respectively) criteria C4 and C3 of the five
criteria listed above.

Next (in Sect.10) we suppose given an A-monotonic functional G : Aσ × Aı̄
∼→

A j , with σ = (ı̄ → j). The construction of the LFP operator LA
(G) is shown for

each of the four types of interpretation A considered in Sect.4 (see above).

Briefly: in the case of all four models, LA
(G) is constructed as the union of a trans-

finite sequence of approximations from below. In the case of model 4, the Myhill–
Shepherdson Theorem [44] is needed.

We come now to the final important result of the paper (in Sect. 11), which shows
how computation on ADTs can reduce (under certain conditions) to ordinary com-
putation.

SF restricts consideration to models with V = N, and the extensional version of
the recursion-theoretic interpretation (model 3). So we assume that all the domains
of A are contained in N, and all the Fk are strongly A-monotonic. SF then shows
(Theorem 3) that for each ACP F, FA can be taken as the p.r. functional FV on A.
Hence FA satisfies criterion C5, and thus all the desired criteria C1–C5 for ACPs.

Another version of this theorem will be encountered as Theorem 6 in [19], dis-
cussed in §3 below.

In the concluding Sect. 12, SF presents some applications of this theory, revisiting
some of his examples in Part 1. As he says:

[A]ll the standard finitary examples of ADTs, such as lists, trees, sets, etc., as described in
Part I of this paper… have implementations whose Fk are simply partial recursive functions.

“Infinitary” data types, such as infinite streams and infinite precision reals, are
discussed briefly. In the case of infinite streams over a structure (A,=A), SF uses
the following structure, first defined in Part 1 above17:

Stream(A) = (S, A, N, =S, =A, =N, . . . , Cons, Hd, T�, Sim) (2.5)

This has three domains, A, S and N for data, streams of data and naturals respec-
tively; the standard operations on N, shown here as ‘…’, and the stream operations
Cons : A × S → S, Hd : S → A and T� : S → S, where (informally)

17The notation here has been modified to conform to that in [19], cf. §3 below.
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Cons (b, 〈a0, a1, a2. . . . 〉) = 〈b, a0, a1, a2, . . . 〉
Hd 〈a0, a1, a2, . . . 〉 = a0,

T� 〈a0, a1, a2, . . . 〉 = 〈a1, a2, . . . 〉.

In order to characterize infinite stream structures up to isomorphism, we also need a
second order “simulating” functional Sim : (N → A) → S which is a bijection from
the set of “all” functions f : N → A onto S. (Without this, we can only ensure the
existence of eventually constant streams.)

SF comments: “Here, it seems, only the intensional recursion-theoretic interpreta-
tion18 is appropriate.” This is accomplished by interpreting S as the set of all indices
of total recursive functions from N to N, and Sim as the identity on N.19

The ADT of infinite precision reals is likewise given an intensional recursion-
theoretic interpretation, in which the reals are interpreted as indices of effective
Cauchy sequences.

This perspective will shift quite dramatically in the following paper [19], with the
investigation of higher order (“extensional”) models of streams, and a second order
‘Sim’ operator.

3 Computation on ADTs: The Extensional Approach

This paper20 carries the dedication “With profound gratitude to Stephen C. Kleene”
(then recently deceased) with the footnote “Kleene was not my mentor, official or
otherwise, but through his exceptional development of our subject I learned as much
from him as if he had been.”

I quote from the introduction:

This paper is a continuation of the work of Feferman [17, 18] which initiated an approach
through a form of generalized recursion theory (g.r.t.) to computation on abstract data types
(ADT s), including intensionally presented types …

[W]e separate out the extensional part of the theory and show how it may be applied to
computation on streams as anADT. One of themain new contributions here is an explanation
of how this is to be done for finite “nonterminating” streams as well as infinite streams, and
even more general partial (“gappy”) streams.

Logically (as stated in the previous section) an ADT is just a class of structures
closed under isomorphism. “[O]ne is mainly interested in structures determined by
categorical or relatively categorical conditions.” Paradigmatic examples considered
are, for any data set A: A-lists and A-streams.

18That is, model 4 described above.
19There is an error here, corrected by SF, with an improved presentation, in Sect. 11 of [19] (§3
below). This and a few other corrigenda for the present paper are listed in App. C of that paper.
20Previously reviewed by me in [60], which lists some (minor) slips in this paper.
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Continuing with the framework of the previous paper (§2 above). the general
theory in this paper applies, for a given signature Σ , to many-sorted Σ-structures

A = (A0, . . . , An, F1, . . . , Fm) (3.1)

where A0 = B = {tt, ff}, and each Fj is a partial functional (or function, or con-
stant, including ttand ff) of type level ≤ 2. It will also be assumed that each Fj is
A-monotonic.

As SF says, “computation on streams is subsumed under a general theory of
computation for arbitrary structures.21”

Remark (Treatment of equality) Note the difference between the structures displayed
here (3.1) and in (2.1): here an (“intensional”) equality predicate is not automatically
assumed at each sort. In fact, infinite stream equality is generally non-computable.
SF turns to this issue later in the paper.

In Sect. 3 a system of formal schemata for a given signature Σ is presented. This
is the same as the system of schemata (I–VIII) given in [18] and shown above (§2);
and, as before, with each Σ-structureA and each ACP F generated by the schemata,
is associated a partial functional (or function, or constant) FA of type level ≤ 2.

As shown in [18] (cf. §2 above), anA-monotonic functional has an associated least
fixed point (LFP), which is also monotonic, by the LFP Monotonicity Lemma22.
Hence for schema VIII to make sense on A, it must be verified that FA is A-
monotonic. More generally, it is shown (Monotonicity Lemma23) that the ACPs
generated by all the schemata areA-monotonic, assuming that the initial functionals
F1, . . . , Fm are.

Remarks (Extensionality) The assumption of extensionality in this paper leads to
two interesting divergences from the theory developed in the previous paper [18]
(§2), with intensional equality:

(1) In [18] the significant property of ACPs was strong monotonicity, i.e., mono-
tonicity plus equality-preservation. Here it is simply monotonicity.

(2) In [18] the existence of the LFP operator had to be explicitly assumed (“General
assumption (iv)” at the beginning of Sect. 8) and proved for the four types of
interpretations (“Models 1–4”). Here the construction of the LFP operator (the
LFP Monotonicity Lemma) can be shown quite generally as a consequence of
the more general Monotonicity Lemma.24 Again, it is constructed as the union
of a transfinite sequence of approximations from below.

Back to Sect. 3: It is next shown that the schemata are invariant under isomor-
phism, i.e., ifA andA′ areΣ-isomorphic, then so are FA and FA′

for all F generated
by the schemata. This justifies the terminology “abstract computation procedures”,

21As in (3.1).
22My terminology.
23My terminology.
24Or more accurately, simultaneously with this lemma.
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and the notationACP(Σ) for the collection of ACPs generated by the schemata over
Σ , and ACP(A) for the collection of all FA for any Σ-structure A.

Next (Sect. 4) this paper deals with an important substructure property of
Σ-structures.

First, some definitions. Suppose given a Σ-structure A as in (3.1) above, and
subsets Bi ⊆ Ai for i = 1, . . . , n. Write A = (A0, . . . , An) and B = (B0, . . . , Bn).

For a level-1 partial function ϕ over A, the restriction ϕ� B and the concept “B
is closed under ϕ” are defined in the standard way.

For a level-2 partial functional F : Aσ̄ × Aı̄ → A j , the restriction F � B means
the function λϕ ∈ Bσ̄ · λx ∈ Bı̄ · F(ϕ, x), and B is said to be closed under F if 25

∀ϕ ∈ Aσ̄,∀x ∈ Bı̄
[
B closed under ϕ ∧ F(ϕ, x) ↓ =⇒

F(ϕ, x) ∈ Bj ∧ F(ϕ� B, x) = F(ϕ, x)
]
.

We then say that B determines a substructure of A if B0 = A0 = B and B is
closed under Fk for k = 1, . . . ,m.

SF then states and proves his

Substructure Theorem (Theorem 1 + Corollary).
Suppose B determines a substructure of A. Then putting

B = (B0, . . . , Bn, F1 � B, . . . , Fm � B),

B is closed under FA for each Σ-ACP F, and

FB = FA � B.

This result turns out to be very useful for the rest of the paper, as we will see.
Next (Sect. 5) the paper deals with continuity of functionals. A functional F on

A = (A0, . . . , An) of type level 2 is said to be continuous if for any ϕ, x, y,

F(ϕ, x) � y =⇒ ∃ finite ϕ̃ ⊆ φ : F(ϕ̃) � y.

SF next states and proves the

Continuity Theorem (Theorem2). If each basic functional Fk of A is continuous,
then for each ACP F, FA is continuous.

The proofs of the Substructure andContinuity Theorems are (as onewould expect)
by induction on the generation of F by the schemata. However they are far from
routine.

Next there is a small section (Sect. 6) on computation on first-order structures.

25As SF points out, this implies that F � B : Bσ̄ × Bı̄
∼→ Bj , but not conversely.
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A signatureΣ = (
n, 〈σ̄k, ı̄k, jk〉1≤k≤m

)
is said to be first-order if σ̄k is empty for

k = 1, . . . ,m. In that case Σ-structures A = (A0, . . . , An, F1, . . . , Fm) are first-
order in the sense that each Fk has type level 1 or 0.

In that case also, all the Fk are vacuously monotonic and continuous, and so (by
the Monotonicity Lemma and Continuity Theorem) all ACPs overA are monotonic
and continuous.

Further, for computation on first-order structures, schema VII (for function sub-
stitution) can be omitted, since (as SF shows) if Σ is a first-order signature, then the
system ACP0(Σ) of ACPs over Σ obtained by omitting schema VII is closed under
that schema.

As an example, consider the “ur-structure for recursion theory”

N = (N, Sc, Pd, 0, Eq0). (3.2)

where the booleans are coded as {0, 1}, Pd is the predecessor function with Pd(0) =
0, and Eq0 tests for equality with 0.

SF then states and proves the following interesting Z. (For the concept of “partial
recursive (p.r.) functional”, see Footnote 4.)

Theorem 5 (Characterizing ACP(N )).

(i) The ACPs of type level 1 over N are exactly the p.r. functions.
(ii) The ACPs of type level 2 overN are exactly the p.r. functionals when restricted

to total function arguments.
(iii) Every ACP of type level 2 overN is p.r. on partial function arguments, but not

conversely.

A counterexample for the failure of the converse for (iii) is given by the “strong or”
functional OR+ (cf. (1.1)) as shown by Platek [48]. In fact, the equivalence

ACP(N ) + OR+ ⇐⇒ p.r. on PFn(N )

for level 2 functionals was proved by Winternitz.26

Next, SF defines the concept of partial recursive structure inN. This is a structure
of the form

(i) A = (A0, . . . , An, F1, . . . , Fm), where
(ii) each Ai ⊆ N, A0 = B = {0, 1}.
(iii) each Fk is the restriction to A = (A0, . . . , An) of a p.r. functional F∗

k on N,
under which A is closed.

Using the Substructure Theorem, SF then derives:

Theorem 6 (ACPs of p.r. structures in N). Suppose A is a p.r. structure in N of
signatureΣ . Then for eachF inACP(Σ),FA is the restriction toA of a p.r. functional
F∗, and is (therefore) continuous.

26This has already been discussed in [15] (cf. §1 above).
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This provides another version of Theorem 3 in [18, Sect. 11] (cf. §2 above). To
convey the significance of this result (and of the Substructure Theorem), let me quote
SF here:

Most examples of abstract data types … which contain partial recursive structures are those
whose domains are generated by finitely many finitary operations, or are obtained from such
by restriction, such as lists, finites sets, finite trees, records, etc. …
[I]f A = {a0, a1, . . . , an, . . . } is any countable set, we can realize lists-of-A’s as a partial
recursive structure, nomatter how A is identified as a subset ofN…For example,… Amight
be a nonrecursive subset of N, such as the set of Gödel numbers of total recursive functions
… That is why no restriction was made on the Ai ’s in the definition [of p.r. structures in N]
other than that they be subsets of N.

The next section (8) illustrates the theory of Sect. 7 with the ADT of lists over a
structure A. To quote SF: “The case of abstract computational procedures on (rela-
tivized) list structures is paradigmatic for finitary data types in many respects, and
is useful for comparison with computation on infintary data types, of which streams
form the main example in this paper.”

SF shows how all the standard list operations can be defined as ACPs. He presents
a number of formulations of definition by list recursion, and demonstrates the use of
the Substructure Theorem in the case of p.r. list structures.

We will not describe this development in detail, moving rather on to the next
section (9) dealing with the infinitary data type of streams.

This (together with the following sections) is the most interesting part of the
paper. It deals with A-streams, or (potentially) infinite sequences of members of A.
Keeping to the framework of computation on ADTs, SF develops and investigates
the structure S of A-streams with basic sets A and S.

To quote SF: “[T]hough a standard interpretation of S consists of second-order
objects, in the present approach they are to be treated as first-order objects in S.”

However, treating streams as first-order objects, like lists, leads to trouble. For
consider an axiomatization of a first-order structure of streams27:

S(1) = (A, S, Cons, Hd, T�) (3.3)

(the superscript “1” indicating a first-order structure) where

(i) A �= ∅
(ii) Cons : A × S → S, Hd : S → A, T� : S → S,
(iii) ∀a ∈ A ∀s ∈ S

[
Hd(Cons(a, s)) = a ∧ T�(Cons(a.s)) = s

]
.

As SF writes: “The main point against this is that these (and similar) conditions
do not uniquely determine S(1) up to isomorphism, given A. Two nonisomorphic
structures are obtained by interpreting S in the first instance to be the set (N → A)

of all functions from N to A, and in the second instance to be the subset (N
fin→ A)

… of eventually constant functions.”

27Note that this is the stream structure (2.5) without the equalities.
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These two structures will be denoted here, respectively, by S(1)[N → A] and

S(1)[N
fin→ A], the latter clearly a substructure of the former.

The second problem with this approach is that these conditions do not guarantee
closure under some standard computation procedures, such as recursion on streams.
One can easily find examples of recursively defined functions from N to A which

are not in S(1)[N
fin→ A], and hence (by the Substructure Theorem) also not ACPs in

S(1)[N → A].
The answer is toworkwith second-order stream structures. It will be shownhow to

obtain functionals for (e.g.) recursion schemes for streams as ACPs on second order
stream structures S(2). It turns out that the simplest effective way to construct such a
structure is to adjoin to the stream signature a level 2 functionalSim : (N → A) → S
which simulates every function ϕ : N → A as a level 0 objectSim(ϕ) ∈ S.

The next step is to extend the domain of Sim to include potentially infinite streams.
As SF says: “These arise naturally both from mathematical computations and phys-
ical phenomena.” An example of the first kind is obtained by filtering an infinite
stream according a suitable condition on the items, where we may not know in
advance whether the condition applies to finitely or infinitely many items in the
stream. An example of the second kind is provided by irregularly received signals
from an extraterrestial source, where we do not know at any point whether there will
be any further signals.

Actually, the simplest and most elegant theory is obtained by allowing the domain
of Sim to include all partial functions on N, giving rise to “gappy” streams, from
which the ACPs for potentially infinite streams can be obtained as a special case.
This leads to second-order structures of the form

S = (A, S, Cons, Hd, T�, Sim, N ) (3.4)

where N is as in (3.2) and

(i) A �= ∅,
(ii) Cons : A × S → S, Hd : S ∼→ A, T� : S → S, Sim : (N

∼→ A) → S,
(iii) ∀a ∈ A∀s ∈ S

[
Hd(Cons(a, s)) = a ∧ T�(Cons(a.s)) = s

]
,

(iv) ∀ϕ ∈ (N
∼→ A)∀n ∈ N

[
Hd(T�n(Sim(ϕ))) � ϕ(n)

]
, and

(v) s, s ′ ∈ S ∧ ∀n[
Hd(T�n(s)) � Hd(T�n(s ′))

] =⇒ s = s ′.

Let P-STREAM (“P” for “partial”) be the ADT of all such structures.
This is the starting point for the analysis of computation on streams in Sect. 10.

Since we are working with partial streams, a more refined concept of monotonicity
is required than that given earlier in this paper (Sect. 2), namely hereditary mono-
tonicity,28 requiring chain-completeness 29 of the partial orderings ⊆i on all basic
domains Ai .

28As in Platek’s finite type structures [15] (cf. §1 above and Footnote 3).
29I.e., any linearly ordered subset of Ai has a l.u.b in Ai .
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Notation. For S as in (3.4), and s ∈ S, n ∈ N, a ∈ A, we write

• (s)n for Hd(T�n(s)),
• 〈a; s〉 for Cons(a, s), and
• s→ for T�(s).

Then the partial ordering on the basic domains of S is defined by:

(i) s ⊆S s ′ for ∀n[(s)n ↓ =⇒ (s ′)n ↓ = (s)n].
(ii) ⊆A and ⊆N are equality on A and N.

This makes all three basic orderings in S chain-complete.
Now consider the general situation of a structureA as in (3.1) where all the basic

domains Ai (i = 1, . . . , n) have chain-complete partial orderings ⊆ i . We define, for
certain function types σ, the domains, orderings, and concepts of monotonicity for
that type.

First, taking σ = (ı̄
∼→ j), Aσ is the set of all ϕ : Aı̄

∼→ A j which are monotonic,
in the sense that

∀x, y ∈ Aı̄ ,
[
ϕ(x) ↓ ∧ x ⊆ı̄ y =⇒ ϕ(y) ↓ ∧ ϕ(x) ⊆ j ϕ(y)

]

(where the orderings ⊆ik on Aik are extended termwise to orderings ⊆ı̄ on Aı̄ in the
obvious way). Then the ordering ⊆σ on Aσ is defined by: for all ϕ,ψ ∈ Aσ:

ϕ ⊆σ ψ ⇐⇒ ∀x ∈ Aı̄
[
ϕ(x) ↓ =⇒ ψ(x) ↓ ∧ ϕ(x) ⊆ j ψ(x)

]
. (3.5)

Next,monotonicity of level 2 functionals is defined by: F : Aσ̄ × Aı̄
∼→ A j is mono-

tonic if

∀ϕ,ψ ∈ Aσ̄ ∀x, y ∈ Aı̄
[
F(ϕ, x) ↓ ∧ ϕ ⊆σ̄ ψ ∧ x ⊆ı̄ y =⇒

F(ψ, y) ↓ ∧ F(ϕ, x) ⊆ j F(ψ, y)
]
.

(3.6)

Note that the basic function(al)s of S are all monotonic.
Then for a level 2 type τ = σ × ı̄

∼→ j , we can define the domain Aτ ofmonotonic
(partial) functionals of type τ , with the ordering30

F1 ⊆τ F2 ⇐⇒
∀ϕ ∈ Aσ̄ ∀x ∈ Aı̄

[
F1(ϕ, x) ↓ =⇒ F2(ϕ, x) ↓ ∧ F1(ϕ, x) ⊆τ F2(ϕ, x)

]
.

(3.7)

Note the similarity – and difference! – between the definitions given here ((3.5)–
(3.7)) and those in [18] (§2 above): ((2.2)–(2.4)), where (essentially) it was assumed
that the partial order on each basic domain is the identity.

30Not given explicitly in [18].
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Note also that the orderings defined in this way on these higher level domains are
chain-complete (assuming the basic orderings are). So the technique used in §2 to
construct LFPs and (hence) ACPs can be adapted to structures of the form (3.1) with
chain-complete basic orderings and monotonic basic functionals Fi . This forms the
basis of a least fixed point semantics for partial stream structures, using a version of
the LFP Monotonicity Lemma of Sect. 3.

In particular, this theory can be applied to P-STREAM, providing a justification
for the recursive schemes for defining ACPs on partial stream structures given in
Sect. 10, to which we turn below.

Discussion: Why a partial structure on streams?
There are two points here.

(1) We noted above that the theory of LFPs is simpler when each basic domain has
the identity as (trivial) partial order, as was done in §2. But that would make the
basic functional Sim not monotonic.

(2) We could recover monotonicity for Sim by having total streams only in the
stream domain S. However, this would complicate the theory of recursion
schemes on streams. As SF says: “[T]he recursion schemata for partial streams
(such as needed for the Filter operation) come out much more simply than they
do for total streams.”31

First, we note that the ‘Sim’ functional characterizes stream structures up to
isomorphism:

Categoricity Theorem for P-STREAM (Theorem 8). Suppose structures S =
(A, . . . ) and S ′ = (A′, . . . ) both satisfy conditions (i)–(v). Then an isomorphism
A ∼= A′ can be extended to an isomorphism S ∼= S ′.

Now SF turns to the problem of a general formulation of stream recursion. He
begins by stating: “By stream recursion we mean any general computational scheme
for producing streams as values.”

He does not attempt a single “most general” form (assuming that is even possible),
but presents a number of schemes which have good practical applications, of which
I’ll give one example.

Note first that partialness (or “gappiness”) of streams is sometimes a looser con-
dition than we want. A more useful concept may be potential infiniteness, where a
stream s ∈ S is said to be potentially infinite (or “non-gappy”) if

∀n,m
[
(s)n ↓ ∧ m < n =⇒ (s)m ↓ ]

.

We denote by Spotinf the subset of S consisting of these.
Let S+ = (S, . . . ) be an expanded structure with S ∈ P-STREAM.

31As we will see with the recursion scheme shown below.
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Recursion Scheme (Theorem 10). Let C be a subset of one of the basic domains in
S+. Given ACPs G : C → A, H0, H1 : C → C and D : C → B over S+, we can
find an ACP F over S+ satisfying

(i) F : C → Spotinf,
(ii) F(c) = [

ifD(c) = ttthen〈G(c); F(H0c)〉 else F(H1c)
]
for all c ∈ C, and

(iii) if F ′ : C → Spotinf is any function satisfying (ii) then F(c) ⊆ F ′(c) for all c ∈ C .

As SF points out32: “While F solves a fixed-point equation (ii), it cannot be
described as its LFP, since that is the completely undefined function.Here, in contrast,
F is total and is characterized by (iii) among all total solutions of (ii) as the one which
is least pointwise in C .”

An interesting application of this scheme is the filtering operation with respect to
a predicate ϕ : A → B, where

Filter : (A → B) × Sinf → Spotinf

is defined by

Filter(ϕ, s) =
{

〈(s)0;Filter(ϕ, s→)〉 if ϕ((s)0) = tt
Filter(ϕ, s→) otherwise.

This produces, from an infinite stream, a potentially infinite stream, which may
or may not actually be finite (“extensionally” speaking).

We turn to Sect. 11, dealing with the recursion-theoretic interpretation of compu-
tation on stream structures over N – more precisely, structures for A-streams, where
A ⊆ N.33

The standard realization for these takes S(A) = (N
∼→ A). In particular, the stan-

dard realization for A = N is

S(N) = (N, S(N), . . . )

as in (3.4) with A replaced by N, and Sim being the identity on (N
∼→ N).

The substructure of S(N) induced by A ⊆ N is then

S(A) = (A, S(A), . . . )

with Sim the identity on (N
∼→ A).

By the Categoricity Theorem for P-STREAM, every member S of P-STREAM
on A has S ∼= S(A). Further, applying the Substructure Theorem in Sect. 4 to S(A),
we have:

32In connection with another recursion scheme, but it is still appropriate here.
33This supersedes the presentation of this topic in Sect. 12 of [18] (§2 above). See Footnote 19.
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Substructure Theorem for S(A).
For each ACP F in Σ(P-STREAM), S(A) is closed under FS(N), and

FS(N) �S(A) = FS(A)
.

Thus, for any A ⊆ N, a recursion-theoretic description of any ACP over S(A) is
obtainable simply as the restriction of that ACP over S(N). To clarify this: replace
S(N) by the structure

E(N) = (N, S(N), Eval, Sim, Sc, Pd, 0, Eq0).

where Eval : S(N) × N
∼→ N is given by Eval(s, n) � s(n). This structure is

easily seen to be equivalent to S(N), in the sense that every ACP over S(N) is
obtainable as one over E(N), and conversely.

Note that E(N) has two basic domains: A0 = N and A1 = S(N), of type levels
0 and 1 respectively. This suggests a straightforward interpretation of E(N) into
the finite type structure over N (cf. (3.2)), which contains only one basic domain,
A0 = N of level 0. By this interpretation, monotonic partial functionals over S(N)

(or E(N)) of type level 2 (or less) are identified with monotonic partial functionals
of type level 3 (or less) over N .

Hence, for a recursion-theoretic interpretation of ACPs over S(N), we need an
extension of the notion of partial recursiveness to functionals of type level 3 over
N . This was provided by Ershov [11] (as outlined in §1 above) in a structure C � =
(C �

n )n with a notion of partial recursiveness for functionals of arbitrary finite type,
with hereditarily partial continuous arguments over C �

0 = N, based on an abstract
theory of f -spaces (a special kind of topological space).

This theory was then simplified by SF [14, 15] to a “concrete” theory PR/C � of
partial recursively continuous functionals of finite type, analogous to functionals of
hereditarily total continuous arguments [32, 35], using (again) a system of formal
neighbourhoods. The precise definitions are given in the paper. The following result
can then be obtained via Ershov’s theory of f -spaces [11]. A simpler, direct proof 34

is possible via SF’s version of the theory indicated above.

Theorem (Closure of PR/C � under ACP).
PR/C � is closed under the extension of ACP schemata to arbitrary finite types.

It follows that ACPs over S(N) of level ≤ 2 can be re-interpreted as partial
recursively continuous functionals over N of level ≤ 3.

The paper has three appendices. I shall only remark here on Appendix B: Compar-
ison with the work of Tucker and Zucker. This concerns research that John Tucker and
I have done in a series of publications35 on many-sorted models of computation A.
One model overA that we have investigated is µPR∗(A), consisting of schemes for

34Unfortunately never published (personal communication by SF).
35See e.g. [56] and the references therein.
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primitive recursion overA∗ plus μ (the “constructive least number operator”), where
A∗ is formed by adding, to each carrier set A of A, a set A∗ of all finite sequences
from A (with associated basic operations). Note that to formulate this model, we
must assume thatA includes, as a subalgebra, the algebraN of naturals — or add it
on. This model also forms a basis for a generalized Church-Turing Thesis.36

SF noted that for first-order functions on A, µPR∗(A) ⊆ ACP(A∗). He conjec-
tured the reverse inclusion, leading to the equality

µPR∗(A) = ACP(A∗).

This was proved in [58], assuming a modification of SF’s LFP schemes (cf. §2
above) formed by replacing the simple LFP scheme (VIII) by a simultaneous LFP.
This is discussed further in the last of our four papers by SF (§4 below), to which
we now turn.

4 About and Around Computing over the Reals

An overview of this paper is provided by the first section, in which SF sets the stage
by referring to a “very interesting and readable” article by Lenore Blum [6], which
explains the so-called BSS model of computation over the reals due to Blum, Shub
and Smale [7], expounded also in the well-known book by Blum, Cucker, Shub and
Smale [3].

Blum claimed that the BSS model of computation on reals is the appropriate
foundation for scientific computing.

Braverman and Cook [2] argued rather for a bit computation model, prima facie
incompatible with the BSS model. This goes back to ideas of Banach and Mazur in
the 1930s, improved by Grzegorczyk and Lacombe (independently, in the 1950s).
SF proposes rather to name these “effective approximation” models of computation.
Later in this paper he discusses such models further (see below).

We should note that there are functions computable in each of these two models
which are not computable in the other.

We note also that the bit-computable model only computes continuous functions.
I consider this a positive rather than a negative property of the model, in keeping
with the continuity principle:

computability =⇒ continuity. (4.1)

This is related to Hadamard’s principle [28] which, as (re-)formulated by Courant
and Hilbert ([9, p. 227ff.], [29]) states that for a scientific problem to be well posed,

36Discussed further in §4 below.
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the solution must (apart from existing and being unique) depend continuously on the
data.37

On the topic of comparing models, I now quote SF extensively. He asks:

Despite their incompatibility, is there any way that these can both be considered to be
reasonable candidates for computation on the real numbers?

– and gives an “obvious answer”:

[T]he BSS model may be considered to be given in terms of computation over the reals as
an algebraic structure, while … the effective approximation model can be given … as a
topological structure of a particular kind, or alternatively as a second order structure over
the rationals. But all such explanations presume a general theory of computation over an
arbitrary structure.

He continues:

After explaining the BSS and effective [approximation] models respectively in Sects. 2 and
3 below, my main purpose here is to describe three theories of computation over (more
or less) arbitrary strutures in Sects. 4 and 5, the first due to Harvey Friedman, the second
due to John Tucker and Jeffery Zucker, and the third due to the author, adapting to earlier
work of Richard Platek and Yiannis Moschovakis. Finally, and in part as an aside, I shall
relate the effective approximation approach to the foundations of constructive analysis in its
groundbreaking form due to Errett Bishop.

SF concludes the Introduction by touching on the relevance of these structures to
scientific computation (or “numerical analysis”):

The justification for particular techniques varies with the areas of application but there
are common themes that have to do with identifying the source and control of errors and
with efficiency of computation. However, there is no concern in the literature on scientific
computation with the underlying nature of computing with the reals as exact objects. For,
in practice, those computations are made in “floating point arithmetic” using finite decimals
with relatiely few significant digits, for which computation per se reduces to computation
with rational numbers.

He also notes:

Besides offering a theory of computation on the real numbers, the main emphasis in the
articles [2, 6] and the book [3] is on the relevance to the subject of scientific computation
in terms of measures of complexity … While complexity issues must certainly be taken
into account in choosing between the various theories of computation over the reals on
offer as a foundation for scientific computation, I take no position as to which of these is
most appropriate for that purpose. Rather, my main aim here is to compare them on purely
conceptual grounds.38

Section 2 provides a quick survey of BSS-type models. SF refers to [6], “a brief
but informative description”, and to the more detailed description in [3].

The BSS definition makes sense for any ring or field, including R, C, Rn , etc.,
making it an “algebraic conception of computability”:

37These issues are discussed in [56, §7],[55, §4.2.14].
38Emphasis added. Following SF, I shall focus on the real-computability aspect of the various
models, rather than their complexity-theoretical or scientific-computational aspects.
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This is reflected in the fact that inputs to a machine for computing a given algorithm are
unanalyzed entities in the algebra A, and that a basic admitted step in a computation procedure
is to testwhether twomachine contents x and y are equal or not…[and] in case A is ordered,
…whether x < y or not.39

There are finite and infinite dimensional versions. An example of an algorithm in
this formalism in the finite-dimenional case is the Newton algorithmn forR orC. An
example for the infinite-dimensional case is testingwhether a finite set of polynomials
over C have a common zero; this is related to the Hilbert Nullstellensatz.

It is pointed out in [3] that in the finite-dimensional case, a BSS algorithm can be
implemented as a form of register machine, and in the infinite-dimensional case, as
a form of Turing machine with 2-way infinite tapes. In the case of rings and fields,
only piecewise polynomial and rational functions (respectively) are computable.

In the opposite direction, one may ask what BSS algorithms can actually be carried out on
a computer. Here Tarski’s decision procedure for the algebra of real numbers is relevant,
as it reduces a question of the Hilbert Nullstellensatz type, concerning common roots of a
set of polynomials, to a quantifier-free condition on the their coefficients. On the face of it,
Tarski’s procedure runs in time complexity as a tower of exponentials.

This can be improved to doubly exponential upper bounds by the method of
cylindrical algebra decomposition [10].

In Section 3, SF turns to effective approximation (EA) models. We consider
functions f : I → R, where I is a (finite or infinite) real interval.

There are two main approaches here:

(1) S-effective approximation: working with sequencess of approximating argu-
ments and values;

(2) P-effective approximation: approximating functions by polynomials.

To illustrate (1): Suppose f (x) = y. We work with a sequential representation
of x , i.e., a Cauchy sequence of rationals 〈qn〉 with limit x , to effectively determine
a Cauchy sequence 〈rn〉 of rationals with limit y. We may also assume the Cauchy
sequences are “fast”, i.e., |qn − x | ≤ 2−n . With the sequences 〈qn〉 and 〈rn〉 coded
as functions ϕ,ψ : N → N in a standard way, the S-effective approximation com-
putability of f reduces to finding an effectively computable functional F : NN → N

N

of type level 2 over N.
Writing P and T for the classes of partial and total functions (respectively) from

N toN: for “effective computability” of functionals F : P → P we can use Kleene’s
notion of partial recursiveness of functionals – as has already been done above in all
three previous papers.40 This definition ensures that F is monotonic and continuous
on P , and hence, as SF writes, “computable functionals F : T → T may be defined
as those partial recursive functionals whose value for each total function ϕ is a total
function F(ϕ).”

39Emphasis added.
40See footnote 4.
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SF continues: “[T]here are several other ways of defining which are the com-
putable functionals F : T → T without appealing to the notion of partial recur-
sive functionals.” For example, Grzegorczyk [25] used a generalization of Kleene’s
schemata [31] for general recursive functions with both primitive recursion and the
least number operator.

In fact this notion of computable real function was shown by Grzegorczyk [26]
to be equivalent to one formulated by him and Lacombe [36] independently. In the
simple version stated in [47], this says (roughly) that a function from the reals to
the reals is computable if (i) it maps computable sequences of points to computable
sequences of points; and (ii) it satisfies an effective locally uniform continuity condi-
tion.We call thisGrzegorczyk/Lacombe computability. This turns out to be equivalent
to Weihrauch’s Type-2 Theory of Effectivity (TTE) [57]. To quote SF:

In my view, Kleene’s notion of partial recursive functional is the fundamental one, in that
it specializes to Grzegorczyk’s (or Weihrauch’s) in the following sense: if F is a partial
recursive functional F : P → P , and F |T , the restriction of F to T , maps T to T , then F |T
is definable by the Grzegorczyk schemata, as may easily be shown.

SF continues:

It is a consequence of the continuity of partial recursive functionals that if F effectively
represents a real-valued function f on its domain I, then f is continuous at each point of I.
…Thus, unlike the BSS model, the order relation on R is not computable.

To formulate essentially the same phenomenon differently: In all versions of the
S-effective and P-effective computation theories on the reals considered here (Grze-
gorczyk/Lacombe, Weihrauch, etc., and see the next section), and in contrast to the
BSS model, order and equality on the reals is not computable – specifically, equality
on R is co-semicomputable.

In Section 4: The view from generalized recursion theory (g.r.t.) SF considers
two generalizations of recursion theory to arbitrary structures.

First, there is Harvey Friedman’s adaptation of the register machine approach
[24]. He dealt with structures of the form

A = (A, c1, . . . , c j , f1, . . . , fk, R1, . . . , Rm)

Comparing this to the stucture in (3.1) above, we note that (unlike the latter) there
is here only one domain A (to be changed later); and further (as in (3.1)) equality is
not necessarily assumed as a basic operation on A.

A finite algorithmic procedure ( fap) π onA is given by a finite list of instructions
I1, . . . , It . There are also register names r0, r1, r2, . . . (functioning as variables), with
r0 reserved for output. The instructions include assignments to the ri and branching
on a conditional given by one of the Ri . The class of fap computable functions is
denoted by FAP(A).

For the structureN of naturals (as in (3.2))FAP(N ) is equal to the partial recursive
functions.

This notion can be generalized to many-sorted structures A as in (3.1).
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Friedman also introduced the class FAPC(A) (faps with counting overA), corre-
sponding to FAP(A,N ), where (A,N ) denotes A augmented by N .

A further extension was made byMoldestad, Stoltenberg-Hansen and Tucker [45,
46] to incorporate stack registers in the model, producing the structure FAPS(A) of
faps with stacks over A, and FAPCS(A) of faps with counting and stacks over A.

To bring this into the realm of the main concern of this article, consider the
structure of the reals

R = (R, 0, 1, +, −, ×, −1, =, < )

(with decidable equality and order). Friedman andMansfield [23] showed the equiv-
alence of FAPS(R) to the BSS model.

SF also discusses my collaborative work with John Tucker (see, e.g., the lengthy
survey paper [53] or the more recent [56]) dealing with a high level ‘while’ pro-
gramming language over abstract many-sorted algebras.41 It is assumed that such an
algebraA, of sortΣ , is standard in the sense of containing the sort of booleans, with
the standard boolean operations.

We also consider expansions ofA:AN , which includes the algebraN of naturals,
andA∗, which includes (further) for each basic domain Ai ofA, also a domain A∗

i of
finite sequences of elements of A, with associated basic operations, having signatures
ΣN and Σ∗ respectively. For a signature Σ of such an algebra, we consider the class
of While(Σ) program statements generated by:

S ::= skip | x := t | S1 ; S2 | if b then S1 else S2 fi | while b do S0 od

where the variable x and term t have the same Σ-sort. Then While(A), WhileN (A)
and While∗ (A) are the classes of (partial) functions on A definable (respectively)
by While(Σ), While(ΣN ) and While(Σ∗) procedures. It follows from [45, 53] that
for any standard algebra A,

While(A) = FAP(A)

WhileN (A) = FAPC(A)

While∗ (A) = FAPCS(A).

On the basis of this and other results, John Tucker and I have presented a generalized
Church-Turing thesis for algebraic computability on standard many-sorted algebras
A involving While∗ computability on A [56].

Remark (Compatibility between algebraic and EA models). Recall the two
approaches to computability on the reals signalled by SF at the beginning of this

41We use “algebra” rather than “structure” to indicate that their signatures contain function (and
constant) but not relation symbols.
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article: algebraic (as exemplified by the BSS model) and effective approximation
(E A) (e.g., Grzegorczyk-Lacombe or Weierstrass). Our While∗ model would fall
into the “algebraic” class. Let us call this approach to computability on the reals
“abstract”, and the EA approach “concrete”. There would seem to be an incompati-
bility between the abstract and concrete approaches, since in e.g. the BSS model, but
not in the topological models, equality and order on the reals are total and (hence)
not continuous, but nonetheless computable. In the EA (but not the BSS) models,
equality and order are given as partial (boolean-valued) operations, which are con-
tinuous, and also computable. This is in accordance with the continuity principle
discussed above (cf. (4.1)).

The point here is that by considering topological partial algebras on the reals,
in which the basic operations may be partial and are all continuous, we can recover
compatibility between abstract and concrete models.

In fact, in [54] we proved the equivalence of abstract (computable) approximabil-
ity by While∗ programs augmented by a “countable choice” operator, and concrete
computability, on metric partial algebras, under restrictions of effective locally uni-
form continuity. This result applies, for example, to algebras such as a partial version
Rp of R.

In Sect. 5: The higher type approach, SF applies his theory ACP(A) developed
in [18, 19] (§§2 and 3 above) of abstract computational procedures over many-
sorted higher order algebras A to the special case A = N . Recall that these ACPs
are monotonic, continuous, partial functionals generated by schemata, including
(notably) a schema for the least fixed point functional. Further, the sets ACP1(N )

and ACP2(N ) of ACPs of levels 1 and 2 over N correspond to Kleene’s partial
recursive functions and functionals at these levels.42

The interesting point here is that the reals are taken, not as elements of one of the
basic domains Ai , but as functions of type level 1, f : N → N, representing effective
Cauchy sequences of rationals (under suitable coding).

Let uswriteRep for the class of such functions f, g, . . . . Under this representation,
the computable functions over the reals can be identified with those functionals in
ACP2(N ) which map Rep to Rep, preserving the ‘≡’ relation on Rep, where f ≡ g
means that their corresponding Cauchy sequences have the same limit. To quote SF
again:

So now the S-approximation theory of effective computability of functions of real numbers
is explained essentially as in Section 3 above in terms of total recursive functionals in
ACP2(N ).…Thus abstract computational procedures provide anotherwayof subsuming the
two approaches to computation over the real numbers at a basic conceptual level. Of course,
this in no way adjudicates the dispute over the proper way to found scientific computation
on the real numbers or to deal with the relevent questions of complexity.

SF makes one more important point in this section: how the above illustrates the
difference between extensional and intensional aspects of computation.

42See footnote 4.
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On the face of it, the BSS approach is extensional, while that of S-effective approximation
theory is intensional in its essential use of Rep and ≡ on Rep. But there is an even more
basic difference … Namely, functions f, g, h, . . . there are tacitly understood in the usual
set-theoretic sense for which the extensionality principle… holds, i.e., if f (n) = g(n) for all
n inN, then f = g. By the intensional recursion-theoretic interpretation ofACP(N ) I mean
what one gets by taking the function variables f, g, h, . . . to range instead over indices of
partial recursive functions…. Now one proves inductively for this interpretation that each F
in ACP2(N ) preserves extensional equality and hence is an effective operator in the sense
of Myhill and Shepherdson (1955), i.e., if f ≡ g then F( f ) ≡ F(g). …. In the end, when
speaking about actual computation, we have intensionality throughout, since computers only
work with finite symbolic representations of the objects being manipulated.

Finally, Sect. 6: the Bishop approach to constructive analysis is interesting, in
that it is the only approach to computing on the reals discussed in this paper which is
based on an informal notion of computation. This comes from an investigation into
the concept of constructive analysis carried out by Errett Bishop in his book [5] and
his book with Douglas Bridges [1]. SF gives a good summary of the philosophical
and technical aspects of this program, the details of which I omit here.

Briefly, the point of Bishop’s constructive mathematics (hereinafter BCM) is that
existential assertionsmust producewitnesses of an existential claim. Thesewitnesses
then provide a constructive function of the other parameters of the problem. The
problem, however, is (to quote SF again in extenso):

What is not clear fromBishop’s [5] or that ofBishop andBridges [1] is how the computational
content of the results obtained is to be accounted for in recursion-theoretic terms, in the sense
of ordinary or generalized recursion theory as discussed in Sects. 3–5 above. From the logical
point of view, this may be accomplished by formalizing the work of [1] (and BCM more
generally) in a formal system T that has recursive interpretations. A variety of such systems
were proposed in the 1970s, first by Bishop himself and then by Nicolas Goodman, Per
Martin-Löf, John Myhill, Harvey Friedman and me, and surveyed in [16] … (cf. also [4]).

About these formal systems, SF continues:

Roughly speaking, those account for the computational content of [5] in two different ways:
the first treats witnessing information implicitly and depends for its extraction on the fact
that the systems are formalized in intuitionistic logic, while the second kind treats witnessing
information explicitly as part of the package explaining each notion and does not require the
logic to be intuitionistc. For the first kind of system, the method of extraction is by …the
method of recursive realizability introduced by Kleene or by the use of (recursive) functional
interpretations originated by Gödel. Only the system T0 of Explicit Mathematics introduced
in [13], and applied to BCM in [16] is of the second kind …

I omit a description of T0 except to say that it has variables of two kinds, for
individuals and classes, and the basic relation between individuals, besides identity,
is the 3-place relationApp(x, y, z), with the meaning {x}y � z in ordinary recursion
theory.

Then case studies of typical arguments in BCM show that it can be formalized in
a subsystem of T0 of the same strength as Peano Arithmetic [16]; in fact, work of
Feng Ye [59] suggests that this can already be done in a subsystem of the strength
of Primitive Recursive Arithmetic.



Feferman on Computability 53

Turning finally to the issue of feasibility, let SF have the last word on BCM:

[T]he practice of Bishop style constructive analysis needs to be examined directly for turning
its results that predict computability in principle to ones that demonstrate computability in
practice. Presumably all of the specificmethods of scientific computation are subsumedunder
Bishop style constructive mathematics. Assuming that is the case, here is where a genuine
connection might be made between constructive mathematics, the theory of computation,
and scientific computation, which puts questions of complexity up front.

5 Conclusion

This brings to a close my view of SF’s groundbreaking work in generalized com-
putability theory, by means of a close look at four of his papers through the years.

Lack of time and space have prevented discussion of more papers. Let me at least
recommend one of his last papers [21], in which he examined various proposals for
generalizing the Church-Turing Thesis to concrete and abstract structures.
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1 Introduction

This paper may be read partly as an historical note. In 1959, the second author, Tait,
introduced the fan functional and proved that it is not Kleene computable, though
recursively countable. An announcement of the result appears in the abstract [16].
The proof was never published and exists only in a copy of a letter to S.C. Kleene,
dated May 25, 1959, and in Lecture 71 of [11], a series of lectures by Kreisel on
Constructive Mathematics in 1958–59. The argument is that a Kleene computable
function � of the relevant type satisfies a certain continuity property, which the fan
functional does not possess.

As the second author, Normann, noted, this continuity property can be expressed
as possession of a winning strategy in a certain two-person game. In these terms, the
original argument (both in the abstract, the letter to Kleene and in Kreisel’s lecture
notes) mistakenly contained the unnecessary assertion that there is a uniform bound
on the length of the games associated with �, depending only on �. A letter to Tait
from Robin Gandy shortly thereafter (the exact date is unknown) contains a copy
of part of a letter to Kreisel in which Gandy exposes the fallacy in the argument
that the bound is uniform—and offers an alternative measure-theoretic proof that the
fan functional is not Kleene computable. A third proof was ultimately published by
Gandy andHyland in [3]. Section5.3 of the present paper contains a counterexample,
due to Normann, to the uniformity of the bound.

Themainpurposeof this paper is to give theoriginal proof of thenon-computability
of the fan functional in game-theoretic terms. This will be given in Sect. 4. In Sect. 2,
we will put the problem into a historical context and in Sect. 3 we will introduce
the concepts of recursively countable functions and Kleene computable functions,
at least for functions of the relevant types. In Sect. 5 we will discuss the error of the
uniform bound in the abstract [11, 16].

Normann has published some general expositions [13–15], the latter jointly with
John Longley, and several research papers, where it has been assumed that the proof
in Gandy and Hyland [3] more or less was as the original one. His motivation for
co-authoring this paper is partly to have the original ideas of Tait presented in todays
terminology in the formof a complete proof, and partly to introduce a counterexample
to the claim of uniformity. It may be of interest that the source of this counterexample
is work by Martín Escardó [1] published as late as in 2013, so the counterexample
could not have been easily seen in 1959.

2 Background

The finite types are given by the inductive definition

0 is a type
If t0, . . . tk are types, then 〈t0, . . . , tk〉 is a type.
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If t is a type, we define the type level |t | by

|0| = 0 and|〈t0, . . . , tk〉| = maxi {|ti | + 1}.

A hierarchy T of functions of finite type, called a type structure, attaches to each
finite type t a set Tt of objects such that

T0 = N

and
T〈t0,...,tk 〉 ⊆ (Tt0 × · · · × Ttk ) → N.

Wewill mainly be concerned with the pure types denoted by integers 0 and n + 1 for
〈n〉, and with types of level ≤ 3. Moreover, we are interested in two type structures,
themaximal type structure, where each type is interpreted as the full set of functions
in question, and the one in which each type is interpreted as the countable objects of
that type (to be defined below for the relevant cases).

The countable or continuous functionals were independently introduced by
Kleene [10] and Kreisel [12], both published in 1959. Actually, the definitions were
not identical, the Kreisel functionals are formed as the extensional collapse of the
Kleene functionals which are elements of the maximal type structure. We will follow
Kreisel, and let the domain of a countable functional consist of countable objects
only. In parallel, Kleene [9] introduced the partially computable functionals of higher
types, via the schemes S1–S9 (see below).

In the late 1950’s and early ’60’s, inspired by the example of Gödel’s Dialectica
interpretation [5], the idea of employing functions of higher types in the extended
Hilbert program of finding constructive interpretations of theorems of classical math-
ematics seemed promising. (It turns out that Gödel already had this idea by 1933,
see Gödel [4].) There seemed to be three prima facie candidates for a type struc-
ture T , three different ways to constructively conceive of higher type functions: the
hereditarily (extensional) effective operations, the (recursively) countable function-
als (Kleene [10] and Kreisel [12]) and the Kleene computable functionals (Kleene
[9]. An obvious question about them concerns the relationships among them. Kleene
raised this question in [9], p. 11, footnote 9, with respect to the computable functions
of finite type and the countable functions, as did Kreisel in [12], page 118. Working
with a typescript of Kleene [9] in the winter of 1958–59, Tait introduced the fan func-
tional (to be defined below) and showed that it is a recursively countable function
of type 〈1, 2〉, but not the restriction of a Kleene-computable function to arguments
(g,φ), where φ is a continuous function of type 2.

A function g of type 1, i.e. g : N → N, determines a fan

Fang = { f : N → N | ∀x[ f (x) ≤ g(x)]}.
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The value of the fan functional for the argument (g,φ) is the leastmodulus of uniform
continuity with respect to φ of all f ∈ Fang . The term “fan functional” is inspired
of course by the fan theorem of Brouwer.

Relatively soon after, Joseph Harrison [8] proved that the (extensional) effective
operations of finite type are equivalent in a natural sense to the hereditarily recursive
continuous functionals, completing the answer to the question of relationships. That
work was never published, either, but also in this case a proof appears in Gandy and
Hyland [3].

Actually, there were two separate questions: one, just mentioned, concerns the
appropriate constructive notion of function of higher type, the other concerns the
appropriate extension of the concept of a recursive (as was the standard terminology
of the time) function to higher types. It would seem that the effective operations
would provide the answer to the first question from the point of view of the Russian
school of constructive mathematics, according to which all higher type objects are
computable. The ‘point free’ approach to functions of finite type provided by the
countable functionswould seemmore appropriate toBrouwer’s intuitionistic concept
of mathematics, but perhaps less so from the point of view of Bishop’s constructive
mathematics. But whatever the case may be for the recursive functions of finite type
being the right answer to the first question, they seem a more convincing answer to
the second. We mention this especially here because of the evidence for this answer
afforded by Feferman’s “Recursion in total functionals of finite type” [2], in which
he recaptures the Kleene hierarchy as the special case of the single ground N of a
different analysis of the idea of computing with total objects of finite type involving
some finite number of other arbitrary ground types.

For an updated exposition of the relations between various type structures of
interest, see [13].

3 Preliminaries

In this section we will introduce the countable (or continuous) functionals, the fan
functional and Kleene computability to the extent needed for the proof. We will
consider a special case of the fan functional, where we fix the type 1 argument to the
constant 1 and consider it as a functional of pure type 3. It is a matter of taste if we
consider � defined below as a partial function from the set of all functions of type
2, or as a total function on the set of continuous ones:

Definition 3.1 Let � be the type 3 object defined by

�(φ) = μn.∀ f, g ∈ {0, 1}N[ f̄ (n) = ḡ(n) → φ( f ) = φ(g)],

where μ denotes “the least” and f̄ (n) = ( f (0), . . . , f (n − 1)) considered as a func-
tion defined on {0, . . . , n − 1}.
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From now on, we will refer to � as the fan functional. The advantage of considering
� and not the general fan functional is mainly notational: the extension to the impure
case is routine. As for conventions,� will denote a partial function of type 3, φ andψ
will denote (continuous) functions of type 2, f, g will denote total functions of type
1, a, b, d, ewill denote integers when used as arguments for, or values of, algorithms
or functions (including as Kleene indices), n, k, i, j, p, r will be used for integers
used for other purposes as indices in enumerations etc.

Definition 3.2 (The countable objects Ct (k) of pure type k)

(a) Ct (0) = N. If a ∈ N, {a} is at the same time a formal neighborhood such that
{a} ≺0 a and the one and only associate for a. For technical reasons, we also let
∅ be a formal neighborhood with ∅ ≺0 a for all a. Two formal neighborhoods
of type 0 are consistent if one is included in the other.

(b) Assume that we have defined the formal neighborhoods of type k, the count-
able objects of type k with their associates, the consistency relation on the set
of formal neighborhoods and the approximation relation ≺k between formal
neighborhoods and countable objects of type k. We then let

(i) A basic neighborhood of type k + 1 is a pair (σ, a) where σ is a formal
neighborhood of type k and a ∈ N

(ii) A formal neighborhood of type k + 1 is a finite set

{(σ1, a1), . . . , (σn, an)}

of basic neighborhoods of type k such that ai = a j whenever σi and σ j are
consistent.
Two formal neighborhoods of type k + 1 are consistent if the union is a
formal neighborhood.

(iii) If ξ : Ct (k) → N and τ = {(σ1, a1), . . . , (σn, an)} is a formal neighborhood
of type k + 1, we let τ ≺k+1 ξ if for all x ∈ Ct (k) and i we have that

σi ≺k x → ξ(x) = ai .

(iv) If ξ : Ct (k) → N and α is a set of basic neighborhoods of type k, we say
that α is an associate for ξ if τ ≺k+1 ξ for all finite τ ⊂ α, and moreover,
for all x ∈ Ct (k) and all associates β for x there is a finite subset σ ⊂ β
such that (σ, ξ(x)) ∈ α.

(v) Ct (k + 1) will be the set of functions ξ : Ct (k) → N with associates.

When σ ≺k ξ we say that σ approximates ξ.

It is easy to see that the countable objects of type 1will be all functions f : N → N,
and that if we consider the standard product topology on this set, the countable objects
of type 2 will be exactly the continuous functions φ : NN → N.
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By standardmethods, the formal neighborhoods of a fixed type can be represented
by numbers. Using classical terminology, we say that an associate is recursive if the
set of number codes for the elements is so, and a function is recursively countable if
it has a recursive associate.

Definition 3.3 Let σ be a formal neighborhood of type 1
We let

Uσ = { f : N → N | σ ≺1 f }.

Uσ will be an open set (and a closed one) in the topology of NN.

Lemma 3.4 The fan functional � is a recursively countable object.

Proof Let φ be a continuous function of type 2, let β be an associate for φ and
let f : N → {0, 1}. Then there is a finite formal neighborhood σ f ≺1 f such that
(σ f ,φ( f )) ∈ β.

{Uσ f | f : N → {0, 1}}

is an open covering of the compact set {0, 1}N , so there will be a finite subcovering.
This means that there is a formal neighborhood

{(σ1, b1), . . . , (σn, bn)} ⊂ β

such that
{Uσ1, . . . ,Uσn }

is an open covering of {0, 1}N.
Disregarding β, whenever τ = {(σ1, b1), . . . , (σn, bn)} is a formal neighborhood

such that {Uσ1 , . . . ,Uσn } is an open covering of {0, 1}N, we can effectively extract
the constant value of � on any type 2 φ being approximated by τ . This is used to
construct a recursive associate for �. We omit further details.

We will now give a brief introduction to Kleene computability. Kleene defined a
relation

{e}(x1, . . . , xn) = a

where e is an integer acting as a Kleene index or a Gödel number for an algorithm,
x1, . . . , xn are total functionals of pure type and a ∈ N. Since we are only interested
in the computability of the fan functional �, we will give an alternative definition
that is equivalent to the original one from Kleene [9] when x1 is an object of pure
type 2 and the rest of the inputs are of type 0. We may leave out scheme S5 for
primitive recursion, as this can be reduced to the other schemes. We may also leave
out S7, since we do not consider arguments of type 1.

Definition 3.5 The relation

{e}(φ, a1, . . . , an) = a
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is defined by positive induction as follows:

S1 If e = 〈1〉 then {e}(φ, a1, . . . , an) = a1 + 1.
S2 If e = 〈2, b〉 then {e}(φ, a1, . . . , an) = b.
S3 If = 〈3〉 then {e}(φ, a1, . . . , an) = a1.
S4 If e = 〈4, e1, e2〉, then {e}(φ, a1, . . . , an) = a if there is some b ∈ N such that

{e1}(φ, a1, . . . , an) = b and {e2}(φ, b, a1, . . . , an) = a.
S6 If e = 〈5, e1,π〉 where π is a permutation of the set {1, . . . , n}, then {e}(φ, a1,

. . . , an) = a if {e1}(φ, aπ(1), . . . , aπ(n)) = a.
S8 If e = 〈8, d〉 and there is some f : N → N such that

{d}(φ, a, a1, . . . , an) = f (a)

for all a ∈ N, then {e}(φ, a1, . . . , an) = φ( f ).
S9 If e = 〈9,m〉 where m ≤ n, then

{e}(φ, d, a1, . . . , an) = a

if {d}(φ, a1, . . . , am) = a.

Since this relation is defined by induction, there will be an ordinal rank assigned
to each identity

{e}(φ, a1, . . . , an) = a,

obtained in this way and it is easy to prove by induction on this rank that a will be
unique when existing. So, what we have done is to define, for each n ≥ 0, a partial
function {e} on the set of tuples (φ, a1, . . . , an). Kleene [10] proved that if {e} is
total over Ct (2) × N

n when defined this way, it will be recursively countable. We
will not give that argument. We may consider this as defining a generalization of
classical recursion theory, now also accepting an input of type 2, and we do, for
instance, have a version of the recursion theorem and versions of the sn,m-theorems
for Kleene computations. In Sect. 4 we will establish a continuity property of total
Kleene-computable objects of type 3 and prove that the fan functional � does not
satisfy this property. In Sect. 5 wewill show that there are Kleene computable objects
not satisfying a stronger continuity property claimed in [11, 16] to hold for all Kleene
computable objects.

4 The Modified Proof

4.1 The Games

Let � be a partial functional of type 3. We will consider � only for continuous
arguments φ. For each � and φ we will consider a game ��,φ played as follows:
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1. I selects a finite set of functions f1,1, . . . , f1,n1
2. II chooses numbers r1,1, . . . , r1,n1 such that φ is constant on the setU1, j of exten-

sions of f̄1, j (r1, j ) for each j ≤ n1. Each set U1, j will be both closed and open
(clopen).

3. I selects a finite set of functions f2,1, . . . , f2,n2
4. II selects numbers r2,1, . . . , r2,n2 in analogy with II’s previous move, defining the

clopen sets U2, j .
5. and so on
6. and so on · · · · · · · · ·
After p pairs of moves the players will have produced a finite set of clopen neigh-
borhoods U1,1, . . . ,Up.np , and for each i, j in question, φ will take a constant value
ai, j on Ui, j . So the game will produce, for each p, a formal neighborhood

{( f̄1,1(r1,1), a1,1), . . . , ( f̄ p,np (rp,np ), ap,np )}

that approximates φ.
I wins the game after each player has made p moves if for all ψ for which �(ψ)

has a value, and for which

{( f̄1,1(r1,1), a1,1), . . . , ( f̄ p,np (rp,np ), ap,np )}

approximates ψ, we have that �(φ) = �(ψ).
II wins if the game goes on forever without I winning.
In the original proof, the existence of a winning strategy in p moves for player I

was expressed by a single formula. Writing U f,r for the set of extensions of f̄ (r),
the formula was

∃p∃n1∃ f1,1 · · · ∃ f1,n1∀r1,1 · · · ∀r1,n1 · · · ∃np∃ f p,1 · · · ∃ f p,np∀rp,1 · · · ∀rp,np

∀ψ

⎡
⎣ ∧

j≤p,i≤n j

∀ f ∈ U fi, j ,ri, j (φ( f ) = ψ( f )) → �(ψ) = �(φ)

⎤
⎦

where ψ ranges over continuous functions of type 2. The only change needed is to
view the main body of the prefix as a game quantifier and move ∃p to the end of the,
now infinite, quantifier prefix:

∃n1∃ f1,1 · · · ∃ f1,n1∀r1,1 · · · ∀r1,n1∃n2∃ f2,1 · · · ∃ f2,n2∀r2,1 · · · ∀r2,n2 · · ·

∃p∀ψ

⎡
⎣ ∧

j≤p,i≤n j

∀ f ∈ U fi, j ,ri, j (φ( f ) = ψ( f )) → �(ψ) = �(φ)

⎤
⎦ .
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For this kind of game, where at least one of the players only needs finitely many
moves to win, one of the players will have a winning strategy. The relevant continuity
property for � will be that I has a winning strategy for all arguments φ for which
�(φ) has a value.

In this game, player I may merge finitely many strategies into one, simply by
playing the union of the finite sets of functions required in each move. The merge of
finitely many winning strategies for games �1, . . . , �k will be a strategy for winning
all the games simultaneously.

4.2 Player I Wins for Kleene Computable Functions

Theorem 4.1 If � is the partial function

�(φ) = {e}(φ, a1, . . . , an)

for some fixed e and a1, . . . , an, and �(φ) is defined, then I has a winning strategy
for the game ��,φ

Proof The proof is by induction on the ordinal rank of the computation of

{e}(φ, a1, . . . , an) = a.

We describe the strategy of I for each of the Kleene-schemes.

1. In the case of S1, S2 or S3, I has won the game before they start playing, since
the output of the algorithm is independent of φ.

2. In the case S4, I merges the strategies for

{e1}(φ, a1, . . . , an) = b

and
{e2}(φ, b, a1, . . . , an) = a.

3. The cases S5 and S9 are even simpler, I will employ the strategy for the immediate
subcomputation.

4. S8 is the only interesting case:

{e}(φ, a1, . . . , an) = φ( f ) = a

where
f (b) = {d}(φ, b, a1, . . . , an).
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Then I plays { f } as the first move. II must respondwith an r such thatφ is constant
a on U f̄ (r).
By the induction hypothesis, for each b < r , I has a winning strategy for the game
securing that

{d}(ψ, b, a1, . . . , an) = {d}(φ, b, a1, . . . , an)

whenever the former has a value and φ and ψ agree on the closed open neigh-
borhoods produced. In the case of S8, I will continue with the merge of those
strategies, and is bound to win.

This ends the proof.

4.3 Player II Wins the Fan Functional Games

Theorem 4.2 Let � be the fan functional and let φ be any continuous object of type
2. Then II has a winning strategy in the game ��,φ.

Proof The nature of the game is as follows: In turns, I selects finite sets of functions
while II selects clopen coverings of thesefinite sets. II is free to choose these coverings
arbitrarily small. In particular, II may, at each move, choose a clopen covering of the
new finite set of functions sufficiently small for the play never to produce a covering
of {0, 1}N.
Let II follow a strategy to this effect (at move no. p for II, the uniform rp will
only depend on p and the number np of finite functions just played by I). Then,
for any p there will be a non-empty clopen subset of {0, 1}N disjoint from all the
neighborhoods U1,1, . . . ,Up,np . We may then find a continuous ψp agreeing with φ
on U1,1, . . . ,Up,np but with a modulus of uniform continuity larger than �(φ), so I
is not in a winning position. Thus, the described strategy is a winning strategy for II.
This ends the proof.

Corollary 4.3 The fan functional is not Kleene computable.

Remark 4.4 This way of proving Corollary 4.3 was, until early 2016, unknown to
the first author. The argument given here captures in essence the original proof given
by the second author in 1958. To our knowledge, the proof has not previously been
published in this form, and we find it of historical interest to present it here.

5 The False Claim

In this section, we will discuss the claim in [16], repeated in [11], that the length
p of the game ��,φ in Theorem4.1 depends only on �, and produce a counterex-
ample. The counterexample is based on ideas of Escardó [1]. We make the example
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simpler by working within S1–S9, while the results in [1] actually show that there
are counterexamples expressible in Gödel’s T.

5.1 The Claim

Tait [16] essentially characterizes the Kleene computable functions in terms of the
game we described above in Sect. 4. But he further claimed that if {e}(φ, a1, . . . , an)
is defined for all (φ, a1, . . . , an), then there will be a p and a strategy for I winning the
game in pmoves. The argument is that p is the depth of the nesting of occurrences of
S8 in computing �(φ, a1, . . . , an); but as Gandy pointed out in the letter mentioned
above, the depth depends upon the arguments φ, a1, . . . , an as well. As we will see
below, there is a counter example to the stronger property.

5.2 Sets Allowing Kleene-Computable Search

Letω ≤ α < ωCK
1 be a computable ordinal, and let≺ be a computable (non reflexive)

well ordering of N of length α, with � as its reflexive companion. For each n ∈ N,
let fn be the characteristic function of {m | m ≺ n}, and let f be the constant 1. Let
Xα = { f, fn | n ∈ N}. Then Xα is a closed subset of {0, 1}N, and order isomorphic
to α + 1 when ordered by the lexicographical ordering.

Theorem 5.1 Let α and X = Xα be as above. Then the following functional of pure
type 3 is Kleene-computable:

�X (φ) =
{
0 if ∀ f ∈ X (φ( f ) = 0)
1 if ∃ f ∈ X (φ( f ) > 0)

Proof Let φ be any total functional of type 2, not necessarily continuous. Using the
recursion theorem for Kleene’s S1-S9 we define gn and g uniformly computable in φ:

• gn(m) = 0 if n � m.
• gn(m) = 1 if m ≺ n and φ(gm) = 0.
• gn(m) = 0 if m ≺ n and φ(gm) > 0.
• g(m) = 1 if φ(gm) = 0.
• g(m) = 0 if φ(gm) > 0.

By the recursion theorem, gn and g are well defined as partial functions. By induction
on the rank of n in ≺ we see that each gn is total, and then that g is total.

If there is some n such that φ( fn) > 0, let n0 be the ≺-least such n. Then

• gn = fn for n � n0.
• gn = fn0 for n0 ≺ n.
• g = fn0 .
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If there is no such n, then gn = fn for all n, and g = f . All these claims are easily
proved by ≺-induction. Then

∃h ∈ X (φ(h) > 0) ⇔ φ(g) > 0,

and it follows that the functional �X is Kleene computable.

Remark

This proof is a direct adjustment of an argument due to Escardó [1] to S1-S9-
recursion.

5.3 The Conterexample

We will now let X be as in the previous section with order type ωω + 1. We will
prove that there is no p such that I has a strategy for winning the game ��X ,φ in p
moves when φ is the constant zero function of type 2.

Each f ∈ X will have an ordinal rank α f ≤ ωω . We say that the level of f ∈ X is
infinite if α f = ωω and the level is n if the Cantor Normal Form of α f ends with ωn .

We may now follow the proof of the non Kleene-computability of the fan func-
tional. When p is fixed, we can describe a strategy for II that keeps the game going
for more than p moves. After II has made k moves, they have essentially produced a
clopen set Yk . As long as this does not contain the set X as a subset, I is not in winning
position, as we may find a ψ agreeing with φ on Yk while not being constant zero on
X . The p-strategy for II is to ensure that after move k for II, there is an f ∈ X \ Yk
with level > p − k. Since the functions with levels > (p − k) + 1 are cluster points
of functions with levels > p − k, and I only selects finitely many functions at the
time, this can be achieved.

If II follows this strategy, X is not a subset of Yp, so I cannot be certain of
winning this game in p moves for any prefixed p. �X is not what Kreisel [11] called
continuous in the Tait topology, but nonetheless Kleene computable.
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Abstract Various ordinal functions which in the past have been used to describe
ordinals not much larger than the Bachmann–Howard ordinal are set into relation.
Special efforts are made to reveal the intrinsic connections between Feferman’s θ-
functions and the Bachmann hierarchy.
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1 Introduction

In the early seventies one of the central problems in ordinally informative proof the-
ory was to obtain a Gentzen-style ordinal analysis for theories of iterated arithmetical
inductive definitions. For the intuitionistic theory ID1 of noniterated inductive def-
initions this problem was already solved by Howard [15] who had shown that the
proof-theoretic ordinal of ID1 is bounded by the ordinal φε�+1(0) which since then is
called the Bachmann–Howard ordinal. Bachmann [3] had introduced a new method
for generating ‘long’ sequences of normal functions φα : � → �where� is the first
uncountable ordinal and α ranges over an uncountable segment of ordinals including
ε�+1 (the first ε-number greater than�). The essential feature of Bachmann’smethod
was the assignment of a fundamental sequence (α[ξ])ξ<τα

to each limit index α. The
function φα was then defined by referring to the sequence of previously defined nor-
mal functions φα[ξ] (ξ < τα). Later Pfeiffer (in [18]) extended Bachmann’s method
by considering also normal functions f nα : �n+1 → �n+1 on the finite higher number
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classes and a simultaneous assignment of fundamental sequences to their indices α.
Isles (in [16]) went even further and made use also of transfinite number classes. The
Bachmann–Pfeiffer–Isles approach in the end became so complex that it was prac-
tically unfeasable for proof-theoretic applications. On the other side it seemed most
likely that functions of this kind would be needed for the ordinal analysis of (trans-
finitely) iterated inductive definitions. Therefore Feferman, in unpublished work
around 1970, proposed an entirely different and much simpler method for generat-
ing hierarchies of normal functions θα (α ∈ On), which was intended to replace the
extremely complicated Bachmann–Pfeiffer–Isles definition procedure (see e.g. [12,
p.67ff], [13, 462]). This proposal brought a new impetus into ordinally informative
proof theory and turned out as the starting point of a rather successful development.

Definition (Feferman 1970) By transfinite recursion on α one defines functions θα :
On → On as follows:

θα := ordering function of Inα := {β ∈ On : C(α,β) ∩ β⊕ ⊆ β}, where
C(α,β) :=closure of β ∪ {0} under the functions +, λξ.�1+ξ and

θ|α : α× On → On, (ξ, η) �→ θξ(η),

β⊕ := min{�σ : 0 < σ & β ≤ �σ} and �σ :=
{
0 if σ = 0

ℵσ if σ > 0.

A simple cardinal argument shows that C(α,β) has cardinality ℵ0 ∪ card(β), no
matter how largeα is. This yields ∀β < �σ+1( θα(β) < �σ+1 ), for anyα. Hence the
function λα.θα(�σ) maps On into �σ+1, i.e., it is a so-called collapsing function.
First important contributions to the investigation of the θ-functions were made by
Weyhrauch, Aczel and J. Bridge. Aczel (in [1]) showed how θα (α < ��+1) cor-
responds to Bachmann’s φα. Independently, Weyhrauch [28] established the same
results for α < ε�+1. In addition, Aczel generalized Feferman’s definition and con-
jectured that the generalized hierarchy (θα)matches up with the Isles functions. This
conjecture was proved by J. Bridge in her dissertation (Oxford 1972) the results of
which were published in [4]. She also obtained partial results on the recursiveness
of the notation system associated with (θα) [4]. Starting from Bridge’s thesis, recur-
siveness of the full θ-notation systemwas established by the author in his dissertation
(München 1974), parts of which were published in [6]. There also a variant θα of θα

was introduced which has the advantage that the <-relation between θ-terms can be
characterized in a particularly simple way. Later it turned out that in proof-theoretic
applications actually only the values of θα (or θα) at initial ordinals �σ are used,
which led to the idea to define directly functions ψσ corresponding to λα.θα(�σ).

Definition (Buchholz 1981) ψσ(α) := min{β ≥ �σ : C(α,β) ∩�σ+1 ⊆ β}, where
C(α,β) := closure of β ∪ {0} under+ and ψ|α : On × α → On, (ρ, ξ) �→ ψρ(ξ).
Note thatψσ(0) = �σ (for σ > 0) and thereforeC(α,β) is also closed under λσ.�σ.

Of course this definition can be generalized in the same way as Aczel [1] general-
ized Feferman’s definition, namely by incorporating closure under countably many
cardinal valued functions into the definition of C(α,β). More substantial extensions
of the θ/ψ-approach were developed by Schütte (unpublished), Pohlers [19] and,
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most important, Jäger [17]. There in addition to the ψσ’s which are collapsing func-
tions for successor regulars, also collapsing functions for limit regulars, i.e. weakly
inaccessible cardinals, are introduced. In order to be able to treat both kinds of col-
lapsing functions uniformly Jäger denoted the ψ-function for a regular cardinal κ,
i.e. one with values below κ, by ψκ. In this notation the former ψσ becomes ψ�σ+1 .

Definition (Jäger 1984): ψκ(α) := min{β ≥ κ− : C(α,β) ∩ κ ⊆ β}, where
C(α,β) := closure of β under +, λxy.Ix (y) and

ψ|α :  × α → On, (π, ξ) �→ ψπ(ξ)
 := class of all uncountable regular cardinals.
Iρ := ordering function of the topological closure of {κ ∈  : ∀ξ < ρ(Iξ(κ) = κ)},
κ− := Iρ(σ), if κ = Iρ(σ+1) with ρ,σ < κ.
Later Rathjen developed further extensions up to the use of large cardinals [20–22].
In the first of these extensions Rathjen assumed the existence of a weakly Mahlo
cardinal M and utilized the fact that the regular cardinals are stationary in M .

Definition (Rathjen 1990): Actually this is a variant of Rathjen’s definition.

ψκ(α) :=
{

min{β ∈ :α ∈ C(α,β) & C(α,β) ∩ κ ⊆ β} if κ = M
min{β ∈ On : κ ∈ C(α,β) & C(α,β)∩κ ⊆ β} if κ < M

C(α,β) := closure of β under +, λx .ωM+x , ψ|α
The Mahlo property is used to prove that ψM(α) < M for all α ∈ On.
While the above sketched development aims at generating larger and larger seg-

ments of recursive ordinals, in recent years a renewed interest in ordinal notations
around the (comparatively small) Bachmann–Howard ordinal φε�+1(0) has evolved,
mainly caused by Solomon Feferman’s unwinding program and Gerhard Jäger’s
metapredicativity program. Therefore it seems worthwile to review some important
results of this area and to present detailed and streamlined proofs for them. The results
in question are mainly comparisons of various functions which in the past have been
used for describing ordinals notmuch larger than theBachmann–Howard ordinal.We
start with a treatment of the Bachmann hierarchy

(
φα

)
α≤��+1

from [3], and a presen-
tation of Schütte’s Klammersymbols [24] within that hierarchy. Then, in Sect. 3, we
give an alternative characterization of the Bachmann hierarchy which instead of fun-
damental sequences

(
α[ξ])

ξ<τα
uses finite sets Kα ⊆ � of coefficients (“Koeffizien-

ten”). Forα < ε�+1, Kα is almost identical with the setC(α) of constituents in [14].
In Sect. 4 we show how Feferman’s functions θα (α < ��+1) can be defined using
the Kα’s (instead of the closure sets C(α,β)). This leads to an easy comparison of
the hierarchies

(
φα

)
α<��+1

and
(
θα

)
α<��+1

which becomes particularly simple if one

switches to thefixed-point-free versions:φα(β) = θα(β) for allα < ��+1,β < �. In
Sects. 5, 6 we deal with the unary functions ϑ : ε�+1 → � andψ : ε�+1 → �which
play an important rôle in [23]. We show that θ1+α(β) = ϑ(�α+ β) (for α < ε�+1,
β < �) and refine a result from [23] on the relationship between ϑ and ψ. In Sect. 7,
largely following [28], we show how the Bachmann hierarchy below ε�+1 can be
defined by means of functionals of finite higher types.
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A nice survey on the history of the subject can be found in [12].
Preliminaries. The letters α,β, γ, δ, ξ, η, ζ always denote ordinals. On denotes
the class of all ordinals and Lim the class of all limit ordinals. We are working
in ZFC. So, every ordinal α is identical to the set {ξ ∈ On : ξ < α}, and we have
β < α ⇔ β ∈ α and β ≤ α ⇔ β ⊆ α. ByHwe denote the class {γ > 0 : ∀α,β <

γ(α+ β < γ)} = {ωα : α ∈ On} of all additive principal numbers (Hauptzahlen),
and by E the class {α ∈ On : ωα = α} = {εα : α ∈ On} of all epsilon-numbers. A
normal function is a strictly increasing continuous function F : On → On. The nor-
mal functions ϕα : On → On (α ∈ On) are defined by: ϕ0(β) := ωβ , and ϕα :=
ordering (or enumerating) function of {β : ∀ξ < α(ϕξ(β) = β)}, if α > 0. The fam-
ily (ϕα)α∈On is called the Veblen hierarchy overλξ.ωξ . An ordinalα is called strongly
critical iffϕα(0) = α. The class of all strongly critical ordinals is denoted by SC, and
its enumerating function by λα.�α. It is well-known that λα.�α is again a normal
function, and that ��σ

= �σ for each σ > 0.

2 Fundamental Sequences and the Bachmann Hierarchy

The following stems from Bachmann’s seminal paper [3], but in some minor details
we deviate from that paper. We start by assigning to each limit number α ≤ ��+1
a fundamental sequence (α[ξ])ξ<τα

with τα ≤ �. The definition of α[ξ] is based on
the normal form representation of α in terms of 0,+, ·, F , where (Fα)α∈On is the
Veblen hierarchy over λx .�x , i.e., F0(β) := �β , and Fα := ordering function of
{β : ∀ξ < α(Fξ(β) = β)}, if α > 0. The relationship between Fα and ϕα for α > 0
is given by

Fα(β) = ϕα(α̃+ β) with α̃ :=
⎧⎨
⎩

�+1 if 0 < α < �

1 if α = �

0 if � < α
.

From this it follows that ��+1 is the least fixed point of λα.Fα(0).
For completeness note, that F0(β) = ϕ0(�β).

Abbreviations.

1. � := ��+1 = min{α : Fα(0) = α}.
2. α|γ :⇔ ∃ξ(γ = α·ξ)
3. α =NF γ +�βη :⇔ α = γ +�βη & 0 < η < � & �β+1|γ.
4. γ =NF Fα(β) :⇔ α,β < γ = Fα(β).

Propositions.

(a) For each 0 < δ < � there are unique γ,β, η such that δ =NF γ +�βη.

(b) For each δ ∈ ran(F0) ∩� there are unique α,β such that δ =NF Fα(β).

(c) δ < � ⇒ (δ =NF Fα(β) ⇔ β < δ = Fα(β)).
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Definition of a fundamental sequence (λ[ξ])ξ<τλ
for each limit number λ ≤ �

1. λ =NF γ +�βη /∈ ran(F0):

1.1. η ∈ Lim: τλ := η and λ[ξ] := γ +�β ·(1+ξ).

1.2. η = η0+1: τλ := τ�β and λ[ξ] := γ +�βη0 +�β[ξ].
2. λ =NF Fα(β):

2.1. β ∈ Lim: τλ := τβ and λ[ξ] := Fα(β[ξ])
2.2. β /∈ Lim: Let λ− :=

{
0 if β = 0

Fα(β0)+1 if β = β0+1
2.2.0. α = 0: Then β = β0+1. τλ := � and λ[ξ] := �β0 ·(1+ξ).
2.2.1. α = α0+1: τλ := ω and λ[n] := F (n+1)

α0
(λ−).

2.2.2. α ∈ Lim: τλ := τα and λ[ξ] := Fα[ξ](λ−).
3. τ� := ω and �[0] := 1, �[n+1] := F�[n](0).

Definition. For each limit λ ≤ � we set λ[τλ] := λ. Further τ0 := 0, 0[ξ] := 0 and
τα+1 := 1, (α+1)[ξ] := α for all ξ.

Remark (i) λ ∈ Lim ∩� ⇒ τλ = λ and λ[ξ] = 1+ξ.

(ii) λ =NF γ +�β+1(η+1) ⇒ τα = � and λ[ξ] = γ +�β+1η +�β ·(1+ξ).

Lemma 2.1 λ =NF Fα(β) < � & β ∈ Lim & 1 ≤ ξ < τβ ⇒
λ[ξ] =NF Fα(β[ξ]).
Proof Cf. Appendix.

Lemma 2.2 Let λ ∈ Lim ∩ (�+1).
(a) ξ < η ≤ τλ ⇒ λ[ξ] < λ[η].
(b) λ = supξ<τλ

λ[ξ].
(c) η ∈ Lim ∩ (τλ + 1) ⇒ λ[η] ∈ Lim & τλ[η] = η & ∀ξ < η(λ[η][ξ] = λ[ξ]).
(d) ξ < τλ & λ[ξ] < δ ≤ λ[ξ+1] =⇒ λ[ξ] ≤ δ[1].
The proof of (a),(b),(c) is left to the reader. The proof of (d) will be given in the
Appendix.

Definition. An �-normal function is a strictly increasing continuous function
f : � → �. A set M ⊆ � is �-club (closed and unbounded in �) iff ∀X ⊆
M(X �= ∅ & sup(X) < � ⇒ sup(X) ∈ M) and ∀α < �∃β ∈ M(α < β).
It is well-known that M ⊆ � is �-club if, and only if, M is the range of some
�-normal function. Hence the ordering function of any �-club set is �-normal.

The collection of �-club sets has the following closure properties:

1. If f is �-normal then {β ∈ � : f (β) = β} is �-club.

2. If (Mξ)ξ<α is a sequence of�-club sets with 0 < α < � then
⋂

ξ<α Mξ is�-club.

3. If (Mξ)ξ<� is a sequence of �-club sets then also {α ∈ � : α ∈ ⋂
ξ<α Mξ} is

�-club.
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Drawing upon 1.–3. and upon the above assignment of fundamental sequences we
now define Bachmann’s hierarchy of �-normal functions φα (α ≤ �).

Definition. φα : � → � is the ordering function of the �-club set Rα, where Rα is
defined by recursion on α as follows:

R0 := H ∩�,

Rα+1 := {β ∈ � : φα(β) = β},
Rα :=

{⋂
ξ<τα

Rα[ξ] if τα ∈ � ∩ Lim
{β ∈ � ∩ Lim : β ∈ ⋂

ξ<β Rα[ξ]} if τα = �

Notes. 1. In Lemma 2.3g we will show that Rα = {β ∈ � : φα[β](0) = β} if τα = �.

2.Asmentioned above, our definition of theBachmannhierarchy (and of Fα) diverges
in some minor points from [Ba50]. As a consequence of this, Bachmann’s ordinals
H(1) = ϕF�(1)+1(1) and ϕFω2+1(1)(1) are φF�(0)(0) and φ�(0), respectively, in the
present paper. For more details cf. [2, Note on p.35].

Remark (i) Rα+1 ⊆ Rα; (ii) 0 < α ⇒ Rα ⊆ R1 ⊆ Lim.

Lemma 2.3 For α ≤ � the following holds:

(a) Rα ⊆ ⋂
n<ω Rα[n].

(b) φα(0) < φα+1(0)
(c) ξ+1 < τα ⇒ Rα[ξ+1] ⊆ Rα[ξ]+1.
(d) η < ξ < (τα+1) ∩� ⇒ φα[η](0) < φα[ξ](0)
(e) 0 < α & n < ω ⇒ φα[n](0) < φα(0).
(f) ξ ≤ τα < � ⇒ ξ ≤ φα[ξ](0).
(g) τα = � ⇒ Rα = {β ∈ � : φα[β](0) = β}.
Proof (a) For τα < � the claim is trivial. For τα = � we have Rα = {β ∈ � : β ∈

Lim ∩⋂
ξ<β Rα[ξ]} ⊆ ⋂

n<ω Rα[n].
(b) 0 < φα+1(0) ⇒ φα(0) < φα(φα+1(0)) = φα+1(0).
(c) By induction on δ we prove: α[ξ] < δ ≤ α[ξ+1] ⇒ Rδ ⊆ Rα[ξ]+1.

1. δ = δ0+1 with α[ξ] ≤ δ0: Then either α[ξ]+1 = δ or Rδ ⊆ Rδ0

IH⊆ Rα[ξ]+1.
2. δ ∈ Lim: By Lemma 2.2a, d, α[ξ] < δ[2] < α[ξ+1].

Hence Rδ

(a)⊆ Rδ[2]
IH⊆ Rα[ξ]+1.

(d) Induction on ξ:

1. ξ ∈ Lim: Rα[ξ]
L.2.2c⊆ Rα[η+1]

(c)⊆ Rα[η]+1 ⇒φα[η](0)
(b)
< φα[η]+1(0) ≤ φα[ξ](0).

2. ξ = ξ0+1: φα[η](0)
IH≤ φα[ξ0](0)

(b)
< φα[ξ0]+1(0)

(c)≤ φα[ξ](0).

(e) Rα

(a)⊆ Rα[n+1]
(c)⊆ Rα[n]+1 and thus φα[n](0)

(b)
< φα[n]+1(0) ≤ φα(0).

(f) follows from (d) by induction on ξ.

(g) Rα = {β ∈ � ∩ Lim : β ∈ ⋂
ξ<β Rα[ξ]} L.2.2c= {β ∈ � : β ∈ Rα[β]} (f)= {β∈

� : φα[β](0) = β}.
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The following theorem provides a more compact characterization of φα.

Definition.

τβ
α :=

{
β if τα = �

τα otherwise
.

δ <1
β α :⇔ ∃ξ < τβ

α (δ = α[ξ]).
<β := transitive closure of <1

β .

Theorem 2.4 (a) β ∈ Rα ⇔ β ∈ R0 & ∀ξ < τβ
α (φα[ξ](β) = β).

(b) β ∈ Rα ⇔ β ∈ R0 & ∀δ <β α(φδ(β) = β).

Proof (a) 1. τα ∈ {0, 1}: trivial.
2. τα ∈ Lim ∩�:β ∈ Rα ⇔ ∀ξ < τα(β ∈ Rα[ξ])

L.2.3c⇔ ∀ξ < τα(β ∈ Rα[ξ]+1).
3. τα = �: β ∈ Rα ⇔ β ∈ Lim & ∀ξ < β(β ∈ Rα[ξ])

L.2.3c⇔ β ∈ R0 & ∀ξ < β
(β ∈ Rα[ξ]+1)
(b) “⇐”: trivial consequence of (a).

“⇒” Induction on α. Assume β ∈ Rα and δ <β α. Then, for some ξ < τβ
α ,

δ ≤β α[ξ]. By (a) we get φα[ξ](β) = β. If δ = α[ξ], we are done. Otherwise
δ <β α[ξ] & β ∈ Rα[ξ] from which φδ(β) = β follows by IH.

Corollary. 0 < α < � ⇒ Rα = {β ∈ � : ∀ξ < α(φξ(β) = β)}.
Schütte’s Klammersymbols

In [24], building on [27], Schütte introduced a system of ordinal notations based
on so-called ‘Klammersymbols’. A Klammersymbol is a matrix

(
ξ0
α0

...

...

ξn
αn

)
with

α0 < α1 < · · · < αn < � and ξ0, . . . , ξn < �. Two Klammersymbols A and B are
defined to be equal (in symbols A ≡ B) if they are identical after deleting all columns
of the form

( 0
αi

)
. Therefore one can identify the Klammersymbol

(
ξ0
α0

...

...

ξn
αn

)
with the

ordinal �αnξn + · · · +�α0ξ0. Under this identification the <-relation between ordi-
nals induces a well-ordering ≺ on the Klammersymbols, which coincides exactly
with the “lexikographische Anordnung der Klammersymbole” as defined in [24,
p.17]. By recursion on this well-ordering, to each �-normal function f and each
Klammersymbol A an ordinal f A < � is assigned in such a way that the follow-
ing holds:

(K1) f
(

ξ
0

) = f (ξ);
(K2) if A ≡ B then f A = f B;
(K3) if 0 < ξ1 and 0 < α1 < · · · < αn < � then λx . f

( x
0

ξ1
α1

...

...

ξn
αn

)
enumerates the set

{β ∈ � : ∀ξ < ξ1∀α0 < α1[ f
( β

α0

ξ
α1

...

...

ξn
αn

) = β]}.
By ≺-induction one easily sees the following:
(U) For fixed f , the values f A are uniquely determined by (K1)–(K3).
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In this subsection we will locate the values φ0A within the Bachmann hierarchy, i.e.,
we will prove (♦) φ0

( β
0

ξ1
1+α1

...

...

ξn
1+αn

) = φ�αn ξn+···+�α1 ξ1(β).

Tomake the reader a little bit familiar with the subject we first consider two special
cases of (♦).
Proposition. (a) φ0

( β
0

α
1

) = φα(β), if α,β < �.
(b) φ0

(
β
0
1
2

) = φ�(β), if β < �.

Proof (a) Induction on α: 1. α = 0: φ0
( β
0
0
1

) (K2)= φ0
( β
0

) (K1)= φ0(β).

2. 0 < α < �: By (K3),λx .φ0
( x
0

α
1

)
enumerates {β ∈ � : ∀ξ < α(φ0

(
β
0

ξ
1

) = β)}.
Since Rα = {β ∈ � : ∀ξ < α(φξ(β) = β)}, the claim follows by IH.
(b) By (K3), λx .φ0

( x
0
1
2

)
enumerates S := {β ∈ � : φ0

( β
0
0
2

) = β & φ0
( β
1
0
2

) = β}.
Further we have S

(K2)= {β ∈ � : φ0
(

β
0
0
1

) = β & φ0
( 0
0

β
1

) = β} (a)= {β ∈ � : φ0(β) =
β & φβ(0) = β} = {β ∈ � : φβ(0) = β} L.2.3g= R�

We now turn to the proof of (♦). For this purpose the following definition is partic-
ularly useful.

Definition. Due to the fact that every ordinal can be uniquely represented in the
form �α+ β with β < � it is possible to code the binary function (α,β) �→ φα(β)

(α ≤ �, β < �) into a unary one by
φ〈�α+ β〉 := φα(β) (α ≤ �, β < �).

Below, in Lemma 2.8b, we will prove:
(K3∗) If 0 < ξ1 and 0 < α1 < . . . < αn < � then λx .φ〈�αnξn + . . .+�α1ξ1 + x〉

enumerates the set
{β ∈ � : ∀ξ < ξ1∀α0 < α1[φ〈�αnξn + . . .+�α1ξ +�α0β〉 = β]}.

Together with (U) this yields the announced result (♦).
Theorem 2.5 For α0 < · · · < αn < � and β, ξ0, . . . , ξn < �:

(a) φ0
( ξ0

α0

...

...

ξn
αn

) = φ〈�αnξn + · · · +�α0ξ0〉.
(b) φ0

( β
0

ξ0
1+α0

...

...

ξn
1+αn

) = φ�αn ξn+···+�α0 ξ0(β).

Proof (a) For each Klammersymbol A = ( ξ0
α0

...

...

ξn
αn

)
let φ0·A := φ〈�αnξn + · · · +

�α0ξ0〉. Then (K1), (K2) are satisfied by φ0·A in place of f A with f = φ0. Further,
(K3∗) says that also (K3) is satisfied by φ0·A. Therefore (U) yields φ0A = φ0·A.

(b) φ0
(

β
0

ξ0
1+α0

...

...

ξn
1+αn

) (a)= φ〈�1+αnξn + · · · +�1+α0ξ0 +�0β〉 = φ〈�·(�αnξn + · · ·
+�α0ξ0)+ β〉.
For the proof of (K3∗) we need the following two technical lemmata on the relation
<ω defined above.
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Lemma 2.6 (a) α ∈ Lim & ξ+1 < τα ⇒ α[ξ]+1 ≤ω α[ξ + 1].
(b) α ∈ Lim & η < ξ < (τα + 1) ∩� ⇒ α[η] <ω α[ξ].
(c) α̃ ≤ω α ⇒ Rα ⊆ Rα̃.

Proof (a) By induction on δ one proves: α[ξ] < δ ≤ α[ξ+1] ⇒ α[ξ] + 1 ≤ω δ. Let
us assume that δ ∈ Lim. Then by Lemma 2.2a, d, α[ξ] < δ[2] < α[ξ+1], and there-
fore, by IH, α[ξ] + 1 ≤ω δ[2] <1

ω δ.
(b) Proof by induction on ξ, using (a) and Lemma 2.2c. Cf. proof of Lemma 2.3d.
(c) One easily shows that α̃ <1

ω α implies Rα ⊆ Rα̃ (using Lemma 2.3a in case
τα = �).

Lemma 2.7 Assume α =NF γ +�α1ξ1 with α1 < �.

(a) ξ < ξ1 ⇒ γ +�α1(ξ+1) ≤ω α.

(b) ξ < ξ1 & α0 < α1 ⇒ γ +�α1ξ +�α0+1 ≤ω α.

Proof (a)Let α̂ := γ +�α1+1,η := −1+ (ξ + 1), andη1 := −1+ ξ1. Then α̂[η] =
γ +�α1(ξ+1), α̂[η1] = γ +�α1ξ1 = α, and η ≤ η1 < τα̂. Hence γ +�α1(ξ+1) =
α̂[η] ≤ω α̂[η1] = α by Lemma 2.6b.

(b) Let γ1 := γ +�α1ξ. Since α0 < α1, we have α1 = δ + n with (α0 < δ ∈
Lim or δ = α0 + 1). Then,γ1 +�α0+1 ≤ω γ1 +�δ <ω γ1 +�δ+1 <ω · · · <ω γ1 +
�δ+n = γ +�α1(ξ+1) (a)≤ω α.

Now we are ready to prove (K3∗), i.e. Lemma 2.8b.

Lemma 2.8 Assume α =NF γ +�α1ξ1 with α1 < �.

(a) β ∈ Rα ⇔ ∀ξ < ξ1[β ∈ Rγ+�α1 ξ+1 & ∀α0 < α1(β ∈ Rγ+�α1 ξ+�α0+1) ].
(b) If 0 < α1 then λx .φ〈γ +�α1ξ1 + x〉 enumerates the set

{β ∈ � : ∀ξ < ξ1∀α0 < α1(φ〈γ +�α1ξ +�α0β〉 = β)}.
(c) If α1 = α0+1 then λx .φ〈γ +�α1ξ1 + x〉 enumerates the set

{β ∈ � : ∀ξ < ξ1(φ〈γ +�α1ξ +�α0β〉 = β)}.
Proof (a) “⇐”: We distinguish the following cases:
1. ξ1 ∈ Lim: Then β ∈ ⋂

ξ<ξ1
Rγ+�α1 (1+ξ) = Rα.

2. ξ1 = ξ0+1:
2.1. α1 = 0: Then β ∈ Rγ+�α1 ξ0+1 = Rα.

2.2. α1 = α0+1: Then β ∈ Rγ+�α1 ξ0+�α0+1 = Rα.

2.3. α1 ∈ Lim: Since α1 < �, we have τα = α1 and α[ξ] = γ +�α1ξ0 +�1+ξ .

From ∀α0 < α1(β ∈ Rγ+�α1 ξ0+�α0+1) we get

β ∈ ⋂
η<τα

Rα[η+1]
L.2.3c⊆ ⋂

η<τα
Rα[η] = Rα.

“⇒”: By Lemma 2.7 we have

∀ξ < ξ1[ γ +�α1ξ + 1 ≤ω α & ∀α0 < α1(γ +�α1ξ +�α0+1 ≤ω α) ].
Together with Lemma 2.6c this yields the claim.
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(b)Takeγ andα1 such thatγ = �·γ andα1 = 1+ α1. Thenα = �·α,withα := γ +
�α1ξ1. By definition,φα(x) = φ〈γ +�α1ξ1 + x〉, and therefore,λx .φ〈γ +�α1ξ1 +
x〉 enumerates Rα.

On the other side: β ∈ Rα
(a),L.2.3g⇔

∀ξ < ξ1[φγ+�α1 ξ(β) = β & ∀α0 < α1(φγ+�α1 ξ+�α0β(0) = β)] ⇔
∀ξ < ξ1[φ〈γ +�α1ξ + β〉 = β & ∀1 ≤ α0 < α1(φ〈γ +�α1ξ +�α0β〉 = β)] ⇔
∀ξ < ξ1∀α0 < α1(φ〈γ +�α1ξ +�α0β〉 = β)

(c) This can be seen by a simple modification of the proofs of (a) and (b).

Lemma 2.9 (n+1-aryVeblen function). For ξ0, . . . , ξn < � letϕn+1(ξn, . . . , ξ0) :=
φ〈�nξn + · · · +�0ξ0〉. Then the following holds:

(i) ϕn+1(0, . . . , 0,β) = φ0(β).
(ii) If 0 < k ≤ n and ξk > 0, then λx .ϕn+1(ξn, . . . , ξk, 0, . . . , 0, x) enumerates

{β ∈ � : ∀ξ < ξk(ϕ
n+1(ξn, . . . , ξk+1, ξ,β, 0, . . . , 0) = β)}.

Proof of (ii): Let γ := �nξn + · · · +�k+1ξk+1. Then ϕn+1(ξn, . . . , ξk,
→
0 , x) = φ〈γ

+�kξk +�0x〉, and, by Lemma 2.8c, λx .φ〈γ +�kξk +�0x〉 enumerates {β ∈ � :
∀ξ < ξk(φ〈γ +�kξ +�k−1β〉 = β)}.
Note. ϕn+1 (n ≥ 1) is known as the n+1-ary Veblen function.

Usually it is defined by (i), (ii).

3 Characterization of φα via Kα

In [14] the Bachmann hierarchy (φα) restricted to α < ε�+1 is studied, and thereby,
as a technical tool, the sets C(α) and ND(α) (of constituents and nondistinguished
constituents of α) are defined. From [14, Lemmata 3.1, 3.2] and [14, Theorems 3.1,
3.3] one can derive the following interesting result which provides an alternative
definition of the Bachmann hierarchy not referring to fundamental sequences:

(G) Rα = {β ∈ R0 : C(α) ⊆ β+1 & ND(α) ⊆ β &

∀δ < α(C(δ) ⊆ γ → φδ(β) = β)} (α < ε�+1).

In the following we will directly prove an analogue of (G), namely Theorem 3.6, and
then exemplarily derive Gerber’s Theorems 4.1, 4.3 (our 3.9, 3.10) from that.

We start by defining for each α ≤ � a finite set Kα (corresponding to C(α) in
[14]) of ordinals < �.

Definition of Kα for α ≤ �

1. α ≤ �: Kα :=
⎧⎨
⎩
∅ if α ∈ {0,�}
{α} if α ∈ Lim ∩�

Kα0 if α = α0+1 < �
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2. � < α =NF γ +�βη /∈ ran(F0): Kα := Kγ ∪ Kβ ∪ Kη.

3. � < α =NF Fξ(η) < �: Kα := K ′ξ ∪ Kη with K ′ξ :=
{∅ if ξ = 0
{ω} ∪ K ξ if ξ > 0

4. K� := {ω}.
Remark K (α0+1) = Kα0.

Lemma 3.1 (a) Kα = Kα[1] ∪ K τα.
(b) K ξ ⊆ Kα[ξ] ⊆ Kα[1] ∪ K ξ, for all ξ < τα.

Proof For α /∈ Lim the statements are trivial. The limit case is covered by the fol-
lowing proposition.

Proposition. λ ∈ Lim & 1 ≤ ξ ≤ τλ ⇒ Kλ[ξ] = Kλ[1] ∪ K ξ.
Proof by induction on λ:

1. λ =NF γ +�βη /∈ ran(F0):

1.1. η ∈ Lim: τλ = η and λ[ξ] = γ +�β(1+ξ).

ξ ≤ η ⇒ Kλ[ξ] = Kγ ∪ Kβ ∪ K ξ.
1.2. η = η0+1: τλ = τ�β and λ[ξ] = γ +�βη0 +�β[ξ].
Kλ[ξ] = Kγ ∪ K (�βη0) ∪ K (�β[ξ]) IH= Kγ ∪ K (�βη0) ∪ K (�β[1]) ∪ K ξ.

2. λ =NF Fα(β):
2.1. β ∈ Lim: Then by Lemma 2.1, λ[ξ] =NF Fα(β[ξ]) and thusKλ[ξ] = K ′α ∪

K (β[ξ]) IH= K ′α ∪ Kβ[1] ∪ K ξ = Kλ[1] ∪ K ξ.

2.2. β /∈ Lim: In Sect. 2 we defined λ− :=
{
0 if β = 0
Fα(β0)+1 if β = β0+1 . Hence

Kλ− =
{
K ′α ∪ Kβ if β = β0+1 & β0 < Fα(β0)

Kβ otherwise
and Kλ = K ′α ∪ Kβ = K ′α ∪ Kλ−.
2.2.0. α = 0: Then λ = �β0+1, τλ = � and λ[ξ] = �β0(1+ξ).Hence Kλ[ξ] =

Kβ0 ∪ K ξ.
2.2.1. α = α0+1: Then τλ = ω and, for ξ < ω, Kλ[ξ] = K (F (ξ+1)

α0
(λ−)) =

K ′α ∪ Kλ− and K ξ = ∅.
Further Kλ[ω] = Kλ = K ′α ∪ Kλ− = K ′α ∪ Kλ− ∪ Kω.
2.2.2. α ∈ Lim: For 1 ≤ ξ < τλ = τα we have Kλ[ξ] = K Fα[ξ](λ−) = Kα[ξ] ∪

{ω} ∪ Kλ− IH= Kα[1] ∪ {ω} ∪ Kλ− ∪ K ξ.

Further Kλ = Kα ∪ {ω} ∪ Kλ− IH= Kα[1] ∪ {ω} ∪ Kλ− ∪ K τα.
3. λ = �: For 1 ≤ ξ ≤ ω we have K�[ξ] = {ω}, whence K�[ξ] = K�[1] ∪ K ξ.

Lemma 3.2 (a) α ∈ Lim & α[ξ] ≤ δ ≤ α[ξ+1] ⇒ Kα[ξ] ⊆ K δ.

(b) τα = � & δ < α & K δ ⊆ β ∈ Lim ⇒ ∃ξ < β(δ < α[ξ]).
Proof (a) Induction on δ:

1. α[ξ] = δ: trivial.

2. α[ξ] < δ:

Then, by Lemma 2.2d, α[ξ] ≤ δ[1] < α[ξ+1]. Hence Kα[ξ] IH⊆ K δ[1] L.3.1a⊆ K δ.
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(b) Assumeα[0] ≤ δ. Then by Lemma 2.2a, b, c there exists ζ < τα such thatα[ζ] ≤
δ < α[ζ+1]. By (a) and Lemma 3.1b we get K ζ ⊆ Kα[ζ] ⊆ K δ ⊆ β. Hence δ <

α[ζ+1] with ζ+1 < β, since β ∈ Lim.

Definition. k(α) := max({0} ∪ Kα). k+(α) := max{k(α[1])+1, k(α)}.
Remark. Asmentioned above, Kα corresponds toC(α) of [Ge67].Moreover, Kα[1]
corresponds to ND(α). Therefore, the condition k+(α) ≤ β corresponds to C(α) ⊆
β+1 & ND(α) ⊆ β in (G).

Lemma 3.3 (a) k(α) = max{k(α[1]), k(τα)} and
k+(α) = max{k(α[1])+ 1, k(τα)}.

(b) k+(α) ≤ k(α)+ 1 = k+(α+1).
(c) τβ

α ≤ max{k(α),β}.
(d) k+(α) ≤ φα(0).

Proof (a) The first equation follows from Lemma 3.1a. The second follows from the
first.

(b) By (a), k(α[1]) ≤ k(α), whence k+(α) ≤ k(α)+ 1 = max{k(α)+ 1, k(α)} =
k+(α+1).
(c) If τα < � then τβ

α = τα

(a)≤ k(α). Otherwise τβ
α = β.

(d) Induction on α:
1. k+(0) = 1 ≤ φ0(0).

2. α > 0: k(α[1]) ≤ k+(α[1]) IH≤ φα[1](0)
L.2.3e
< φα(0) and k(τα)

L.2.3f≤ φα(0).

Lemma 3.4 k+(α) ≤ β & ξ < τβ
α ⇒ k+(α[ξ]) ≤ β.

Proof k+(α[ξ]) = max{k(α[ξ][1])+ 1, k(α[ξ])} L.3.3a≤ k(α[ξ])+ 1
L.3.1b≤

≤ max{k(α[1]), k(ξ)} + 1 ≤ max{k+(α), τβ
α }

L.3.3c≤ β.

Lemma 3.5 k+(α) ≤ β ∈ Lim ⇒ (δ <β α ⇔ δ < α & K δ ⊆ β).

Proof by induction on α: Assume k+(α) ≤ β ∈ Lim. Then by Lemma 3.4,
∀ξ < τβ

α (k+(α[ξ]) ≤ β) (∗).
“⇒”: From δ <β α we get δ ≤β α[ξ] for some ξ < τβ

α .
Case δ = α[ξ]:k(α[1]) < k+(α) ≤ β & ξ < τβ

α ⇒
k(δ)

L.3.1b≤ max{k(α[1]), k(ξ)} L.3.3c
< β.

Case δ <β α[ξ]: Then the claim follows by IH and (∗).
“⇐”: Assume δ < α & K δ ⊆ β.

(1) There exists ξ < τβ
α such that δ ≤ α[ξ].

Proof of (1): If τα < �, then τβ
α = τα and∃ξ < τα(δ ≤ α[ξ]). If τα = �, then τβ

α = β
and from δ < α & K δ ⊆ β ∈ Lim we obtain ∃ξ < β(δ < α[ξ]) by Lemma 3.2b.

From δ ≤ α[ξ]we obtain δ = α[ξ] or, by IH, δ <β α[ξ]. Togetherwithα[ξ] <1
β α

this yields δ <β α.
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Theorem 3.6 β ∈ Rα ⇔ k+(α) ≤ β ∈ R0 & ∀δ < α(K δ ⊆ β → φδ(β) = β)

Proof By Theorem 2.4b and Lemma 3.3d we have

β ∈ Rα ⇔ k+(α) ≤ β ∈ R0 & ∀δ <β α(φδ(β) = β).

From this the claim follows by Lemma 3.5.

The Fixed-Point-Free Functions φα

Definition.

φαβ := φα(β + ι̃αβ)where ι̃αβ :=
{
1 if β = β0 + n with φαβ0 ∈ Kα ∪ {β0}
0 otherwise

Rα := ran(φα)

Notation. From now on we mostly write φαβ, φαβ for φα(β), φα(β).

Theorem 3.7 (a) φα is order preserving.

(b) Rα = {φαβ : Kα ∪ {β} ⊆ φαβ} = {γ ∈ Rα : Kα ⊆ γ < φαγ}.
(c) φαβ = min{γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} ⊆ γ}
Proof (a) If β1 < β2 then β1 + ι̃αβ1 < β2 or β1 + ι̃αβ1 = β2.

In the latter case ι̃αβ2 = ι̃αβ1 = 1.
(b) Due to Lemma 3.3d, k(α) ≤ φα0. Hence (1) Kα ∪ {β} ⊆ φαβ and (2) φαβ ∈
Kα → β = 0. Further (3) φαβ = β → β ∈ Lim. By (2), (3) and the definition of
φα we get Rα = Rα \ {φαβ : φαβ ∈ Kα ∪ {β}}. Together with (1) this yields the
first equation. The second equation is an immediate consequence of the first, since
γ = φαβ implies (γ < φαγ ⇔ β < φαβ).
(c) Let X := {γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} ⊆ γ}.
From (a), (b) and the definition of φα we get φαβ ∈ X .

It remains to prove ∀γ ∈ X (φαβ ≤ γ). Let γ ∈ X .
Case γ < φαγ: Then γ ∈ Rα and thus φαβ ≤ γ, since ∀η < β(φαη < γ).
Case γ = φαγ: Then γ ∈ Lim and β < γ, since γ ∈ X .

Hence φαβ ≤ φα(β+1) < φαγ = γ.

Lemma 3.8 (a) ξ < α & K ξ ∪ {η} ⊆ φαβ ⇒ φξη < φαβ.

(b) Kα ∪ {β} ⊆ φαβ.

Proof (a) ξ < α & K ξ ∪ {η} ⊆ φαβ ∈ Rα ⇒ φξη ≤ φξ(η+1) < φξφαβ
Th.3.6=

φαβ.
(b) follows immediately from Theorem 3.7c.

Lemma 3.9 Let γi = φαiβi (i = 1, 2).

(a) γ1 < γ2 if, and only if, one of the following holds:

(i) α1 < α2 & Kα1 ∪ {β1} ⊆ γ2;

(ii) α1 = α2 & β1 < β2;
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(iii) α2 < α1 & Kα2 ∪ {β2} �⊆ γ1.

(b) γ1 = γ2 ⇒ α1 = α2 & β1 = β2.

Proof (a) Let Q(α1,β1,α2,β2) :≡ (i) ∨ (i i) ∨ (i i i).

To prove: γ1 < γ2 ⇔ Q(α1,β1,α2,β2).
From Theorem 3.7a and Lemma 3.8 we get the implications

(1) Q(α1,β1,α2,β2) ⇒ γ1 < γ2 and (2) Q(α2,β2,α1,β1) ⇒ γ2 < γ1.
Obviously, (3) ¬Q(α1,β1,α2,β2) ⇒ Q(α2,β2,α1,β1) ∨ (α1 = α2 &
β1 = β2).
From (2) and (3) we get: ¬Q(α1,β1,α2,β2) ⇒ ¬(γ1 < γ2).
(b) It suffices to prove: γ1 = γ2 ⇒ α1 = α2. So we assume γ1 = γ2 and α1 �= α2.
W.l.o.g. we may assume α1 < α2. Then by Lemma 3.8b we have α1 < α2 & Kα1 ∪
{β1} ⊆ γ2. Hence γ1 < γ2 by Lemma 3.8a. Contradiction.

Lemma 3.10 For each γ ∈ R0 ∩ φ�(0) there exists α < � such that γ ∈ Rα.

Proof Assume ω < γ. Then K� ⊆ γ /∈ R�. Let α1 be the least ordinal such that
Kα1 ⊆ γ /∈ Rα1 . Then by Theorem 3.6 and Lemma 3.3b there exists α < α1 such
that Kα ⊆ γ < φαγ. Byminimality ofα1 we getγ ∈ Rα. Henceγ ∈ Rα byTheorem
3.7b.

The following will prove useful in Sect. 5.

Theorem 3.11 Let φ〈�α+ β〉 := φαβ (α ≤ �, β < �). Then for all α < �+�,

φ〈α〉 = min{γ ∈ R0 : ∀ξ < α(K ξ ⊆ γ → φ〈ξ〉 < γ) & Kα ⊆ γ}
Proof φ〈�α+ β〉 = φαβ

Th.3.7c= min{γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β}
⊆ γ} Th.3.6= min{γ ∈ R0 : ∀ξ < α(K ξ ⊆ γ → ∀η < γ(φξη < γ)) &

∀η < β(φαη < γ) & Kα ∪ {β} ⊆ γ} (∗)=
min{γ ∈ R0 : ∀ξ < α∀η(K ξ ∪ Kη ⊆ γ → φ〈�ξ + η〉 < γ) &

∀η < β(Kα ∪ Kη ⊆ γ → φ〈�α+ η〉 < γ) & Kα ∪ Kβ ⊆ γ} =
min{γ ∈ R0 : ∀ζ < �α+β(K ζ ⊆ γ → φ〈ζ〉 < γ) & K (�α+ β) ⊆ γ}.
(∗) For α = β = 0 the equation is trivial. Otherwise it follows from the fact that for

1 < γ ∈ R0 we have ∀η < �(Kη ⊆ γ ⇔ η < γ).

4 Comparison of φα,φα with θα,θα

In this section we will compare the Bachmann functions φα with Feferman’s θα.
We will prove that φαβ = θα(α̂+ β) for all α ≤ �, β < �, where α̂ := min{η :
k+(α) ≤ θαη}. This result is already stated in [1, Theorem 3]1 and, for α < ε�+1,
proved in [28].

1Actually Aczel’s Theorem 3 looks somewhat different, but it implies the above formulated result.
A proof of Theorem 3 can be extracted from the proof of Theorem 3.5 in [4].
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Notation: θαβ := θα(β).

Basic Properties of the Functions θα

(θ1) θα : On → On is a normal function with ran(θα) = Inα.
(θ2) (i) In0 = H;

(ii) Inα+1 = {β ∈ Inα : α ∈ C(α,β) → θαβ = β};
(iii) Inα = ⋂

ξ<α Inξ if α ∈ Lim.
(θ3) Inα ∩� = {β ∈ � : C(α,β) ∩� ⊆ β}
(θ4) θα(�) = � ∈ C(α,β).

(For proofs cf. [4, p. 174], [6, Sect. 1], [25, Sect. 24]).
Recall from the introduction that C(α,β) is the closure of β ∪ {0} under +,

λξ.�1+ξ and θ|α.
Our first goal is to prove that ‘α ∈ C(α,β)’ in (θ2)(ii) can be replaced by ‘Kα ⊆

β’ (cf. Lemma 4.3c). Once this is established we can easily show that Inα = {β ∈
In0 : ∀δ < α(K δ ⊆ β → θδβ = β)} (Theorem 4.4). Together with Theorem 3.6 this
yields an exact comparison of φα and θα (Theorem 4.6).

Lemma 4.1 (a) α < θα(�+1) & � ≤ β ⇒ (β ∈ Inα+1 ⇔ θαβ = β).

(b) 0 < α ≤ � ⇒ Fα(β) = θα(�+ 1+ β).

Proof (a) “⇐”: immediate consequence of (θ2i i).

“⇒”:Assumeβ ∈ Inα and (α ∈ C(α,β) → θαβ = β). Forβ = � the claim follows

directly from (θ4).Otherwise: θα�
(θ4)=� < β ∈ Inα ⇒ θα(�+1) ≤ β ⇒ α < β ⇒

α ∈ C(α,β) ⇒ θαβ = β.
(b) Let J := {β : � < β}. We prove ran(Fα) = Inα ∩ J which is equivalent to the
claim ∀β(Fα(β) = θα(�+ 1+ β)).
The proof proceeds by induction on α.

1. α = 1: ran(F1) = {β : �β = β} = {β : � < ωβ = β}(θ2)= In1 ∩ J .

2. α = α0+1 > 1: ran(Fα) = {β : Fα0(β) = β} IH=
= {β : θα0(�+1+β) = β} = {β : � < θα0β = β} (∗)= Inα ∩ J .

(∗) α0 < � ⇒ α0 < Fα0(0)
IH= θα0(�+1) (a)⇒ ∀β > �(θα0β = β ⇔ β ∈ Inα).

3. α ∈ Lim: ran(Fα) = ⋂
ξ<α ran(Fξ)

IH= ⋂
ξ<α Inξ ∩ J

(θ2iii)= Inα ∩ J .

Definition E�(α) =
⎧⎨
⎩
∅ if α ∈ {0,�}
{α} if α ∈ E \ {�}⋃

i≤n E�(αi ) if α = ωα0# . . . #ωαn /∈ E

Recall that E = {α : ωα = α}.
Lemma 4.2 (a) E�(�+ α) = E�(�·α) = E�(�

α) = E�(α).

(b) α =NF γ +�βη ⇒ E�(α) = E�(γ) ∪ E�(β) ∪ E�(η).

(c) If 0 < α, then ∀γ(γ ∈ C(α,β) ⇔ E�(γ) ⊆ C(α,β)).

(d) α < ε�+1 & δ ∈ E ⇒ (E�(α) ⊆ δ ⇔ Kα ⊆ δ).
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Proof (a) Let α = ωα0 + · · · + ωαn with α0 ≥ · · · ≥ αn .

1. E�(�+ α) =
{
E�(α) if � < α0

E�(�) ∪ E�(α) if � ≥ α0

2. E�(�·α) = E�(ω
�+α0 + · · · + ω�+αn ) = ⋃

i≤n E�(�+ αi )
1.= ⋃

i≤n E�(αi )

= E�(α).

3. E�(�
α) = E�(ω

�·α) = E�(�·α)
2.= E�(α).

(b) Let η = ωη0 + · · · + ωηm with η0 ≥ · · · ≥ ηm . Then

�βη = ω�·β · (ωη0 + · · · + ωηm ) = ω�β+η0 + · · · + ω�β+ηm . Hence E�(�
βη) =⋃

i≤m E�(�β + ηi ) = ⋃
i≤m(E�(β) ∪ E�(ηi )) = E�(β) ∪⋃

i≤m E�(ηi ) = E�(β)

∪ E�(η) and thus E�(α) = E�(γ) ∪ E�(β) ∪ E�(η).
(c) “⇒” is shown by induction on the inductive generation of C(α,β).

“⇐” is shown by transfinite induction on γ.
For the proof observe that θ0η = ωη and θξη ∈ E if ξ > 0.

(d) Induction on α:

1. α ∈ {0,�}: E�(α) = ∅ = Kα.

2. α < �: E�(α) ⊆ δ ⇔ α < δ ⇔ Kα ⊆ δ.

3. � < α =NF γ +�βη: E�(α) ⊆ δ
(b)⇔ E�(γ) ∪ E�(β) ∪ E�(η) ⊆ δ

IH⇔ Kγ ∪
Kβ ∪ Kη ⊆ δ ⇔ Kα ⊆ δ.

Lemma 4.3 For α < � we have:

(a) ξ < α & η < Fξ(η) < � ⇒ (ξ, η ∈ C(α,β) ⇔ Fξ(η) ∈ C(α,β)).

(b) ∀δ ≤ α(δ ∈ C(α,β) ⇔ K δ ⊆ C(α,β)).

(c) Inα+1 = {β ∈ Inα : Kα ⊆ β → θαβ = β}
Proof (a) For ξ = 0 the claim follows fromLemma4.2a, c.Assumenow ξ > 0 and let
γ := Fξ(η). Then, by Lemma 4.1b, we have ξ, η1 < γ = θξη1 with η1 := �+1+η.
By Lemma 4.2a,c we also have (†) (η ∈ C(α,β) ⇔ η1 ∈ C(α,β)).

“⇒”: From ξ < α & ξ, η ∈ C(α,β) and (†) it follows that γ = θξη1 ∈ C(α,β).
“⇐” Assume γ ∈ C(α,β). If γ < β then also ξ, η < β. Assume now β ≤ γ.

Then there exist ξ0, η0 ∈ C(α,β) with η0 < γ = θξ0η0 and ξ0 < α. Since γ > �,
there exists ζ such that η0 = �+ 1+ ζ. By Lemma 4.1b, θξ0η0 = Fξ0(ζ). Hence
γ = Fξ(η) = Fξ0(ζ) with η, ζ < γ. From this we conclude ξ = ξ0 ∈ C(α,β) and
η = ζ, whence �+1+η = η0 ∈ C(α,β). The latter yields η ∈ C(α,β).
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(b) Induction on δ: Assume δ ≤ α, and let C := C(α,β).

1. δ ∈ {0,�}: δ ∈ C & K δ = ∅.
2. δ = δ0+1: δ ∈ C ⇔ δ0 ∈ C , and K δ = K δ0.

3. δ ∈ Lim ∩�: K δ = {δ}.
4. δ =NF γ +�βη /∈ ran(F0):

δ ∈ C
L.4.2c⇔ E�(δ) ⊆ C

L.4.2b⇔ E�(γ) ∪ E�(β) ∪ E�(η) ⊆ C
L.4.2c⇔ γ,β, η ∈ C

IH⇔
Kγ ∪ Kβ ∪ Kη ⊆ C ⇔ K δ ⊆ C .

5. δ =NF Fξη: δ ∈ C
(a)⇔ ξ, η ∈ C

IH⇔ K ξ ∪ Kη ⊆ C
(∗)⇔ K δ ⊆ C .

(∗) ω = θ01 ∈ C .
(c) follows from (θ2i i), (θ3), (b) and the fact that Kα ⊆ �.

Theorem 4.4 α ≤ � ⇒ Inα = {β ∈ H : ∀ξ < α(K ξ ⊆ β → θξβ = β)}.
Proof by induction on α: 1. α = 0: By (θ2i) we have In0 = H.

2.α = α0+1: Inα
L.4.3c= {β ∈ Inα0 : Kα0 ⊆ β → θα0β = β} IH=

{β ∈ H : ∀ξ < α0(K ξ ⊆ β → θξβ = β) & (Kα0 ⊆ β → θα0β = β)}.
3. α ∈ Lim: Then, by (θ2i i i), Inα = ⋂

ξ<α Inξ and the assertion follows imme-
diately from the IH.

Definition. α̂ := min{η : k+(α) ≤ θαη}.
Lemma 4.5 α ≤ � & Kα ⊆ θαβ ⇒ (θα(α̂+ β) = β ⇔ θαβ = β).

Proof “⇒”: This follows from β ≤ θαβ ≤ θα(α̂+ β).

“⇐”: If Kα ⊆ β = θαβ then α̂ ≤ k+(α) ≤ k(α)+1 < β ∈ H and thus
α̂+ β = β.

Theorem 4.6 If α ≤ �, then Rα = {γ ∈ � : k+(α) ≤ γ ∈ Inα}, and thus
∀β < �(φαβ = θα(α̂+ β)).
Proof by induction on α: For β < � we have:

β ∈ Rα
Th.3.6⇔ k+(α) ≤ β ∈ H & ∀ξ < α(K ξ ⊆ β → φξβ = β)

IH+L.4.5⇔
k+(α) ≤ β ∈ H & ∀ξ < α(K ξ ⊆ β → θξβ = β)

Th.4.4⇔ k+(α) ≤ β ∈ Inα.

The functions θα. In [6] the fixed-point-free functions θα are introduced, which are
more suitable for proof-theoretic applications than the θα’s. By definition, θα is the
<-isomorphism from {η ∈ On : Sμ(α) ≤ η} onto Inα where Inα := Inα \ Inα+1,
μ(α) := min{η : θαη ∈ Inα}, Sμ(α) := min{�ξ : μ(α) < �ξ+1}. As we will show
in a moment, Sμ(α) = 0 for all α < �, and therefore, θα is the ordering function of
Inα for all α < �.

Theorem 4.7 φαβ = θαβ for all α < �, β < �.
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Proof I. From ∀β(β+1 < θα(β+1)), Lemma 4.3c and (θ4) we obtain ∀β ∈ �

(k(α) ≤ β → θα(β+1) ∈ Inα ∩�). Since k(α) < �, it follows that
Sμ(α) = �0 = 0 and Inα ∩� is unbounded in �. This implies that θα�� is the
ordering function of Inα ∩�.
II. By Theorem 3.7a, φα is the ordering function of Rα. So it remains to prove that

Rα = Inα ∩�: Rα
Th.3.7b= {γ ∈ Rα : Kα ⊆ γ < φαγ} Th.4.6= {γ ∈ Inα ∩� : Kα ⊆

γ < θα(α̂+ γ)} L.4.5= {γ ∈ Inα ∩� : Kα ⊆ γ < θαγ)} L.4.3c= Inα ∩�.

5 The Unary Functions ϑX and ψX

As we have seen above, θα is the ordering function of Inα = Inα \ Inα+1 (if α < �).
From this together with (θ2i i) and (θ3) one easily derives the following equation
(1) θα0 = min{β : C(α,β) ∩� ⊆ β & α ∈ C(α,β)}

which motivates the definition of ϑα in [23]:
(2) ϑα := min{β : C̃(α,β) ∩� ⊆ β & α ∈ C̃(α,β)} (α < ε�+1)

where C̃(α,β) is the closure of {0,�} ∪ β under +, λξ.ωξ and ϑ�α.
On the other side, by Theorems 4.7, 3.11 we have:

(3) θα0 = φ〈�α〉 = min{β ∈ H : ∀ξ < �α(K ξ ⊆ β → φ〈ξ〉 < β) & Kα ⊆ β}.
In the light of (1)–(3) the following theorem suggests itself.

Theorem 5.1 α < ε�+1 ⇒
ϑα = min{β ∈ E : ∀ξ < α(K ξ ⊆ β → ϑξ < β)& Kα ⊆ β}.
Proof I. From [23, 1.1 and 1.2(1)–(4)] we obtain

ϑα ∈ E& ∀ξ < α(E�(ξ) ⊆ ϑα → ϑξ < ϑα)& E�(α) ⊆ ϑα.
II. Assume β ∈ E & ∀ξ < α(E�(ξ) ⊆ β → ϑξ < β) & E�(α) ⊆ β.

We will prove that ϑα ≤ β.
For this letQ := {γ : E�(γ) ⊆ β}. Sinceβ ∈ E,wehaveQ ⊆ β.Moreover, as one

easily sees, {0,�} ⊆ Q and Q is closed under+, λξ.ωξ and ϑ�α. Hence C̃(α,β) ⊆
Q and thus C̃(α,β) ∩� ⊆ Q ∩� ⊆ β. It remains to show that α ∈ C̃(α,β). But
this follows immediately from E�(α) ⊆ β ⊆ C̃(α,β) and [23, 1.2(4)].

From I. and II. we get

ϑα = min{β ∈ E : ∀ξ < α(E�(ξ) ⊆ β → ϑξ < β)& E�(α) ⊆ β},
which together with Lemma 4.2d yields the claim.

Relativization

Comparing the recursion equations for ϑα and φ〈α〉 in Theorems 5.1, 3.11 one
notices that these equations are almost identical. The only difference is that in the
equation for ϑα there appears E where in the equation for φ〈α〉 we have R0 (i.e.
H). In order to establish the exact relationship between ϑ and φ we go back to
the definition of the Bachmann hierarchy in Sect. 2 and replace the initial clause
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“R0 := H ∩�” of this definition by “R0 := X ∩�” where here and in the sequel X
always denotes a subclass of {1} ∪ Lim such that X ∩� is �-club. Then the whole
of Sects. 2, 3 remains valid as it stands. To make the dependency on X visible we

write RX

α , R
X

α ,φX

α ,φ
X

α ,φX〈α〉,φX〈α〉 instead of Rα, Rα, . . ..

Remark Theorems5.1, 3.11yieldϑα = φ
E〈α〉 andϑ(�α+ β) = φ

E

α(β) (α < ε�+1,
β < �).

The previous explanations motivate the following definition.

Definition.
ϑXα := min{β ∈ X : ∀ξ < α(K ξ ⊆ β → ϑXξ < β)& Kα ⊆ β} (α ≤ �).

Theorem 5.1 now reads: ϑα = ϑEα for α < ε�+1. Further, by Theorem 3.11 we
have

(ϑ0) ϑX(�α+ β) = φ
X

α(β), if β < �.

Therefore, properties of ϑX can be proved by deriving them from corresponding
properties of φ. But for various reasons it is also advisable to work directly from the
above definition.

Let us first mention that for β < � the set {ξ < α : K ξ ⊆ β} is countable too,
and therefore ϑXα < �. Moreover, directly from the definition of ϑX we obtain:
(ϑ1) Kα ⊆ ϑXα ∈ X,

(ϑ2) α0 < α & Kα0 ⊆ ϑXα ⇒ ϑXα0 < ϑXα,

(ϑ3) β ∈ X & Kα ⊆ β < ϑXα ⇒ ∃ξ < α(K ξ ⊆ β ⊆ ϑXξ),
and then

(ϑ4) ϑXα0 = ϑXα1 ⇒ α0 = α1 [from (ϑ1), (ϑ2)],

(ϑ5) β ∈ X & β < ϑX� ⇒ ∃ξ < �(β = ϑXξ).
Proof of (ϑ5): If β ≤ ω then β ∈ {ϑ0,ϑ1}. Otherwise we have K� ⊆ β < ϑX�, and
the assertion follows by transfinite induction from (ϑ3).

Note on Klammersymbols. As we mentioned above, Sects. 2, 3 remain valid if φ is
replaced byφX. So byTheorem2.5, for A = (

ξ0
α0

...

...

ξn
αn

)
andα = �αnξn + · · · +�α0ξ0

we have φX

0 A = φX〈α〉 from which one easily derives φX

0 A = φ
X〈α〉 ,2 whence

(by Theorem 3.11) φX

0 A = ϑXα. Via Theorem 5.1 this fits with Schütte’s result

φE

0 A = ϑα in [26].

The Function ψX

In [8] (actually already in [7]) the author introduced the functions ψσ : On → �σ+1
and proved, via an ordinal analysis of IDν , that ψ0ε�ν+1 = θε�ν+1(0). In [11] ordinal
analyses of several impredicative subsystems of 2nd order arithmetic are carried out
by means of the ψσ’s. The definition of ψσ in [11] differs in some minor respects
from that in [8]; for example, λξ.ωξ is a basic function in [11] but not in [8]. In
[23] Rathjen and Weiermann compare their ϑ with ψ0�ε�+1 from [11] which they
abbreviate by ψ. In Sect. 6 we will present a refinement of this comparison which

2ϕA is the ‘fixed-point-free version’ of ϕA defined in [24, Sect. 3].
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is based on Schütte’s definition of the Veblen function ϕ (below �0) in terms of ψ,
given in Sect. 7 of [11].

Similarly as Theorem 5.1 one can prove
ψα = min{β ∈ E : ∀ξ < α(K ξ ⊆ β → ψξ < β)}, for α < ε�+1.
This motivates the following

Definition of ψXα for α ≤ �+1
ψXα := min{β ∈ X : ∀ξ < α(K ξ ⊆ β → ψXξ < β)}.
For the rest of this section we assume X to be fixed, and write ϑ,ψ for ϑX,ψX.

Remark Immediately from the definitions it follows that ψα ≤ ϑα.

Before turning to the announced exact comparison of ϑ and ψ, we prove a somewhat
weaker (but still very useful) result which can be obtained with much less effort.
This corresponds to [23, p. 64] which in turn stems from [9, 10].

Lemma 5.2 For α ≤ �.

(a) α0 ≤ α ⇒ ψα0 ≤ ψα.

(b) α0 < α & Kα0 ⊆ ψα ⇒ ψα0 < ψα.

(c) ψα < ψ(α+1) ⇔ Kα ⊆ ψα.

(d) α ∈ Lim ⇒ ψα = supξ<α ψξ.

(e) ψα = min{γ ∈ X : ∀ξ < α(K ξ ⊆ ψξ → ψξ < γ)}.
Proof (a), (b) follow directly from the definition.

(c) “⇒”: Assume ¬(Kα ⊆ ψα). Then from ψα ∈ X & ∀ξ < α(K ξ ⊆ ψα →
ψξ < ψα) we conclude ψα ∈ X & ∀ξ < α+1(K ξ ⊆ ψα → ψξ < ψα), and thus
ψ(α+1) ≤ ψα.

“⇐”: From α < α+1 & Kα ⊆ ψα ⊆ ψ(α+1) we conclude ψα < ψ(α+1) by
(b).

(d) By (a) we have γ := supξ<α ψξ ≤ ψα. Assume γ < ψα. Then γ ∈ X ∩ ψα,
and therefore by definition of ψα there exists ξ < α with K ξ ⊆ γ ⊆ ψξ. Hence by
(c), ∃ξ < α(γ < ψ(ξ+1)). Contradiction

(e) 1. We have ψα ∈ X and, by (a), (b), ∀ξ < α(K ξ ⊆ ψξ → ψξ < ψα).

2. Notice that (K ξ ⊆ ψξ → ψξ < γ) implies (K ξ ⊆ γ → ψξ < γ). Therefore, if
γ ∈ X & ∀ξ < α(K ξ ⊆ ψξ → ψξ < γ) then γ ∈ X & ∀ξ < α(K ξ ⊆ γ →
ψξ < γ) which yields ψα ≤ γ.

Definition. Let α ≤ � with Kα ⊆ ψ�. Then by Lemma 5.2d there exists ξ < �

such that Kα ⊆ ψξ, and we can define
g̃(α) := min{ξ < � : Kα ⊆ ψξ},
g(α) := g̃(α)−̇1, where β−̇1 :=

{
β0 if β = β0+1
β otherwise

,

h(α) := g(α)+�α. (Note that h(α) ≤ �.)

Lemma 5.3 Assume α ≤ � & Kα ⊆ ψ�.
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(a) ψ0 ≤ k(α) ⇒ ψg(α) ≤ k(α) < ψ(g(α)+1).
(b) Kg(α) ⊆ ψg(α).

(c) Kh(α) ⊆ ψh(α).

(d) α0 < α & Kα0 ⊆ ψh(α) ⇒ ψh(α0) < ψh(α).

Proof (a) Fromψ0 ≤ k(α) and Lemma 5.2d it follows that 0 < g̃(α) /∈ Lim. There-
fore g̃(α) = g(α)+1, which yields the assertion.
(b) Follows from (a) and Lemma 5.2c.

(c) K (g(α)+�α) ⊆ Kg(α) ∪ Kα
(b),(a)⊆ ψ(g(α)+ 1) ⊆ ψ(g(α)+�α).

(d) From α0 < α & Kα0 ⊆ ψh(α) by (a) we obtain α0 < α & g(α0) < h(α) =
g(α)+�α and then h(α0) = g(α0)+�α0 < h(α). This together with Kh(α0) ⊆
ψh(α0) (cf. (c)) yields ψh(α0) < ψh(α) by Lemma 5.2a, b.

Theorem 5.4 α ≤ � & Kα ⊆ ψ� ⇒ ϑα ≤ ψh(α).

Proof by induction on α: By Lemma 5.3a, d, Kα ⊆ ψh(α) ∈ X & ∀ξ < α(K ξ ⊆
ψh(α) → ψh(ξ) < ψh(α)). Hence by IH, Kα ⊆ ψh(α) ∈ X & ∀ξ < α(K ξ ⊆ ψ
h(α) → ϑξ < ψh(α)) which yields ϑα ≤ ψh(α).

Corollary 5.5 (a) α = �α ≤ � & Kα ⊆ ψα ⇒ ϑα = ψα.

(b) ϑε�+1 = ψε�+1 & ϑ� = ψ�.

Proof (a) Kα ⊆ ψα & α = �α ⇒ g(α) < α = �α ⇒ h(α) = g(α)+�α = α
Th.5.4⇒ ϑα ≤ ψα ≤ ϑα.

(b) are instances of (a).

Note. In the appendix of [5] it is shown thatψSC� equals Bachmann’sϕFω2+1(1)(1).
In the present context this equation can be derived as follows

ψSC�
Cor.5.5= ϑSC�

(ϑ0)= φ
SC
� (0) = φSC

� (0)
L.5.6= φH

�(0) = ‘ϕFω2+1(1)(1)’.

Lemma 5.6 (a) Kγ = ∅ & Y ∩� = RX

γ ⇒ φY

α = φX

γ+α.

(b) SC ∩� = RH

� .

Proof (a) Induction on α using Theorem 3.6 and the fact that Kγ = ∅ implies

K (γ + α) = Kα and k+(γ + α) = k+(α) for all α.

(b) By definition we have ∀α < �(φH

α = ϕα), which together with Lemma 2.3g
yields SC ∩� = {α ∈ � : φH

α (0) = α} = RH

� .

Corollary 5.7 (i) Kγ = ∅ & Y ∩� = RX

γ ⇒
φ
Y

α = φ
X

γ+α and ϑYα = ϑX(�γ + α).

(ii) φE

α = φH

1+α, φSC
α = φH

�+α, ϑEα = ϑH(�+ α), and

ϑSCα = ϑH(�2 + α) = ϑE(�2 + α).

Proof (i) follows from Lemma 5.6a and (ϑ0).

(ii) follows from Lemma 5.6, (i), and E ∩� = RH

1 .
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6 Exact Comparison of ϑ and ψ

Let X ⊆ H be fixed such that X ∩� is �-club. As before we write ϑ,ψ for ϑX,ψX.
In this section we always assume α < � and Kα ∪ {β} ⊆ ψ�.

Lemma 6.1 (a) α0 < α & ∀ξ(α0 ≤ ξ < α → ψξ = ψ(ξ+1)) ⇒ ψα0 = ψα.

(b) ψα0 < ψα ⇒ ∃α1(α0 ≤ α1 < α & Kα1 ⊆ ψα1 = ψα0).

Proof (a) follows from Lemma 5.2a, d by induction on α.
(b) From ψα0 < ψα by Lemmata 5.2a, 6.1a we obtain ∃ξ(α0 ≤ ξ < α & ψξ <

ψ(ξ+1)). Let α1 := min{ξ ≥ α0 : ψξ < ψ(ξ+1)}. Then α0 ≤ α1 < α and, by (a)
and Lemma 5.2c, Kα1 ⊆ ψα1 = ψα0.

Lemma 6.2 (a) ψα < γ ∈ X ⇒ ψ(α+1) ≤ γ.

(b) γ ∈ X ∩ ψ� ⇒ ∃α(Kα ⊆ ψα = γ).

(c) �α|γ & δ < �α & K (γ + δ) ⊆ ψ(γ + δ) ⇒ Kγ ⊆ ψγ.

(d) �α|γ & ψγ < ψ(γ +�α) ⇒ Kγ ⊆ ψγ.

Proof (a) X � γ < ψ(α+ 1) ⇒ ∃ξ < α+1(γ ≤ ψξ) ⇒ γ ≤ ψα.
(b) By Lemma 5.2a, d it follows that ψα ≤ γ < ψ(α+1) for some α < �.

By (a) it follows that ψα = γ.
(c) Induction on δ: Since�α|γ & δ < �α we have Kγ ⊆ K (γ + δ). Therefore, if

ψγ = ψ(γ + δ) then Kγ ⊆ ψγ. If ψγ < ψ(γ + δ), then by Lemma 6.1b there exists
δ0 < δ such that K (γ + δ0) ⊆ ψ(γ + δ0); thence, by IH, Kγ ⊆ ψγ.

(d) By Lemma 6.1b there exists δ < �α such that K (γ + δ) ⊆ ψ(γ + δ).

Hence Kγ ⊆ ψγ by (c).

Lemma 6.3 δ =NF γ +�αξ & K (�αξ) ⊆ ψ(γ +�α+1) ⇒ K (�αξ) ⊆ ψδ.

Proof For ψδ = ψ(γ +�α+1) the claim is trivial. Otherwise, by Lemma 6.1b
there exists δ1 with δ ≤ δ1 < γ +�α+1 and K δ1 ⊆ ψδ1 = ψδ. Then δ1 = γ +
�αβ + δ2 with ξ ≤ β < � and δ2 < �α.Hence K (�αβ) ⊆ K δ1 ⊆ ψδ.Nowassume
β > 0. Then Kα ∪ Kβ = K (�αβ) ⊆ ψδ which together with ξ ≤ β < � yields
K (�αξ) ⊆ Kα ∪ K ξ ⊆ ψδ.

Definitions. 1. ψ̇α :=
{
0 if α = 0
ψα if α > 0

2. If α ≤ β then −α+ β denotes the unique γ such that α+ γ = β.
The following definition is an extension and modification of the corresponding

definition on p. 26 of [11].

Definition of [α,β] < �

Abbreviation. k(α,β) := max(Kα ∪ {β}).
By Lemma 5.2a, d there exists η < � such that

ψ̇(�α+1η) ≤ k(α,β) < ψ(�α+1(η+1)).
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Let γ := �α+1η. Then ψ̇γ ≤ k(α,β) < ψ(γ +�α+1).
If �α+ β < ω then [α,β] := β, else

[α,β] := γ +�α(1+ξ) with ξ :=
{−ψ̇γ + β if Kα ⊆ ψ̇γ

β otherwise

Remark ω ≤ �α+ β ⇒ ω ≤ [α,β].
Lemma 6.4 (a) K [α,β] ⊆ ψ[α,β]; (b) K (�α+ β) ⊆ ψ[α,β].
Proof Assume ω ≤ �α+ β (otherwise K [α,β] = ∅ and K (�α+ β) = ∅). Then
[α,β] =NF γ +�α(1+ξ)withψγ ≤ k(α,β) < ψ(γ+�α+1) and ξ ≤ β ≤ ψ̇γ+ ξ.

(a) By Lemmata 6.2d and 5.2a, b we obtain Kγ ⊆ ψγ < ψ[α,β].
K (�α(1+ξ)) = Kα ∪ K ξ & ξ ≤ β < � & Kα ∪ {β} ⊆ ψ(γ +�α+1) ⇒

K (�α(1+ξ)) ⊆ ψ(γ +�α+1).

[α,β] =NF γ +�α(1+ξ) & K (�α(1+ξ)) ⊆ ψ(γ +�α+1) L.6.3⇒
K (�α(1+ξ)) ⊆ ψ[α,β].

(b) By (proof of) (a) we have Kα ∪ {ξ} ⊆ K [α,β] ⊆ ψ[α,β] andψγ < ψ[α,β].
From this togetherwithβ ≤ ψ̇γ + ξ andψ[α,β] ∈ X ⊆ H,weobtain K (�α+ β) =
Kα ∪ {β} ⊆ ψ[α,β].
Lemma 6.5 �α0 + β0 < �α1 + β1 & K (�α0 + β0) ⊆ ψ[α1,β1] ⇒
[α0,β0] < [α1,β1].
Proof 1. �α1 + β1 < ω: Then [α0,β0] = β0 < β1 = [α1,β1].
2. �α0 + β0 < ω ≤ �α1 + β1: Then [α0,β0] = β0 < ω ≤ [α1,β1].
3. ω ≤ �α0 + β0: Then [αi ,βi ] =NF γi +�αi (1+ ξi ) (i = 0, 1), and

ψ̇γ0 ≤ k(α0,β0) < ψ[α1,β1].
3.1. α := α0 = α1 & β0 < β1:

3.1.1. γ0 < γ1: Then [α0,β0] = γ0 +�α(1+ξ0) < γ0 +�α+1 ≤ γ1 ≤ [α1,β1].
3.1.2. γ := γ0 = γ1: To prove ξ0 < ξ1. We have ξi =

{−ψ̇γ + βi if Kα ⊆ ψ̇γ
βi otherwise

.

Hence ξ0 < ξ1 follows from β0 < β1.
3.2. α0 < α1: From ψ̇γ0 < ψ[α1,β1] and 0 < α1 we get γ0 < [α1,β1] = γ1 +

�α1(1+ξ1), and thenγ0 +�α1 ≤ [α1,β1].
Further we have [α0,β0] = γ0 +�α0(1+ξ0) < γ0 +�α0+1 ≤ γ0 +�α1 .

Lemma 6.6 ϑ(�α+ β) ≤ ψ([α,β]) < ψ�.

Proof by induction on �α+ β: Let γ0 := ψ[α,β].
To prove: γ0 ∈ X & K (�α+ β) ⊆ γ0 & ∀ζ < �α+ β(K ζ ⊆ γ0 → ϑζ < γ0).

1. By definition of ψ and Lemma 6.4b we have γ0 ∈ X & K (�α+ β) ⊆ γ0.
2. Assume �ξ + η < �α+ β & K (�ξ + η) ⊆ γ0. Then, by Lemma 6.5, [ξ, η] <

[α,β]. From this by Lemmata 6.4a, 5.2a, b and the IH we obtain ϑ(�ξ + η) ≤
ψ[ξ, η] < ψ[α,β] = γ0.
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Definition of δ < � for δ < �.3

1. If δ < ω then δ := δ.

2. If ω ≤ δ =NF γ +�α(1+ ξ) then δ := �α+ β with β :=
{

ψ̇γ + ξ if Kα ⊆ ψ̇γ
ξ otherwise

Remark ω ≤ δ ⇒ ω ≤ δ.

Lemma 6.7 [α,β] = �α+ β.

Proof [α,β] =NF γ +�α(1+ξ) with ξ =
{−ψ̇γ + β if Kα ⊆ ψ̇γ

β otherwise

Hence [α,β] = �α+ β̃ with β̃ :=
{

ψ̇γ + ξ if Kα ⊆ ψ̇γ
ξ otherwise

. Obviously β̃ = β.

Lemma 6.8 Let δ, δ′ < �.

(a) K δ ⊆ ψδ & δ = �α+ β ⇒ δ = [α,β].
(b) K δ ⊆ ψδ ⇒ ϑδ ≤ ψδ.

(c) K δ ⊆ ψδ & K δ′ ⊆ ψδ′ & δ = δ′ ⇒ δ = δ′.

Proof (a) 1. δ < ω: Then �α+ β = δ = δ < ω and thus [α,β] = β = δ.

2. Otherwise: Then ω ≤ δ =NF γ +�α(1+ξ) with β =
{

ψ̇γ + ξ if Kα ⊆ ψ̇γ
ξ otherwise

.

The latter yields ψ̇γ ≤ k(α,β). From K δ ⊆ ψδ by Lemma 6.2c we get Kγ ⊆ ψγ
and then ψγ < ψδ. Now we have Kα ∪ K ξ ⊆ K δ ⊆ ψδ ∈ H & ψγ < ψδ which
implies Kα ∪ {β} ⊆ ψδ ⊆ ψ(γ +�α+1).

It follows that [α,β] = γ +�α(1+ξ̃) where ξ̃ :=
{−ψ̇γ + β if Kα ⊆ ψ̇γ

β otherwise
.

Obviously ξ̃ = ξ and therefore [α,β] = δ.
(b) Take α,β such that δ = �α+ β. Then by Lemma 6.6 and (a) we obtain

ϑδ = ϑ(�α+ β) ≤ ψ[α,β] = ψδ.
(c) By (a) there are α,β,α′,β′ such that

δ = �α+ β & δ = [α,β] and δ
′ = �α′ + β′ & δ′ = [α′,β′].

Therefore from δ = δ′ one concludes α = α′ & β = β′ and then δ = δ′.

Theorem 6.9 δ < � & K δ ⊆ ψδ ⇒ ϑδ = ψδ.

Proof by induction on δ: By Lemma 6.8b we have ϑδ ≤ ψδ. Assumption: ϑδ < ψδ.
Then by Lemma 6.2b there exists γ s.t. Kγ ⊆ ψγ = ϑδ < ψδ. Hence γ < δ and
therefore, by IH, ψγ = ϑγ. From ϑδ = ψγ = ϑγ & K δ ⊆ ψδ & Kγ ⊆ ψγ by (ϑ4)
and Lemma 6.8c we obtain δ = γ. Contradiction.

Corollary 6.10 (a) ϑ(�α+ β) = ψ[α,β].

3This definition is closely related to clause 5 in Definition 3.6 of [23] But be aware that there δ has
a different meaning.
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(b) Kα ⊆ ψ�α+1 ⇒ ϑ(�α) = ψ�α.

Proof (a)Let δ := [α,β]. ThenbyLemma6.4a K δ ⊆ ψδ, and therefore

ϑ(�α+ β)
L.6.7= ϑδ = ψδ = ψ[α,β].

(b) α < � & Kα ⊆ ψ�α+1 ⇒ ϑ(�α) = ψ[α, 0] = ψ(�α(1+ 0)) = ψ�α.

7 Defining the Bachmann Hierarchy by Functionals
of Higher Type

This section is based on [28, (3.2.9)–(3.2.11), (3.2.15)].

Convention. n ranges over natural numbers ≥ 1.

Definition. Let M be an arbitrary nonempty set.

1. M1 := M. 2. Mn+1 := set of all functions F : Mn → Mn .

Notation. If 1 ≤ m < n and Fi ∈ Mi for m ≤ i ≤ n,

then FnFn−1 . . . Fm := Fn(Fn−1) . . . (Fm).

Abbreviation: Idn+1 := IdMn ∈ Mn+1.

Assumption. ∇ is an operation such that for every family (Xξ)ξ<α with 0 < α ≤ �

the following holds:

∀ξ < α(Xξ ∈ M1) ⇒ ∇ξ<αXξ ∈ M1.

Definition. If n > 1 and ∀ξ < α(Fξ ∈ Mn+1) then
∇ξ<αFξ ∈ Mn+1 is defined by (∇ξ<αFξ)G := ∇ξ<α(FξG).

Lemma 7.1 If 0 < α ≤ � & ∀ξ < α(Fξ ∈ Mn+1) & H ∈ Mn+1, then
(∇ξ<αFξ) ◦ H = ∇ξ<α(Fξ ◦ H).

Proof For each G ∈ Mn we have

((∇ξ<αFξ) ◦ H)G = (∇ξ<αFξ)(HG) = ∇ξ<α(Fξ(HG)) = ∇ξ<α((Fξ◦H)G) =
(∇ξ<α(Fξ◦H))G.

Definition. For F ∈ Mn+1 and α ≤ � we define F (α) ∈ Mn+1 by
(i) F (0) := Idn+1; (ii) F (α+1) := F ◦ F (α); (iii) F (α) := ∇ξ<αF (1+ξ) if α ∈ Lim.

Definition.

(i) Let I2 ∈ M2 be given;

(ii) For m ≥ 2 we define Im+1 ∈ Mm+1 by Im+1F := F (�).

Definition of �α�m

For m ≥ 2 and α < ε�+1 we define �α�m ∈ Mm by recursion on α:
(i) �0�m := Idm ; (ii) If α =NF γ +�βη, then �α�m := (�β�m+1Im)(η) ◦ �γ�m .
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Lemma 7.2 For m ≥ 2 and α < ε�+1:
(a) �α+1�m = Im ◦ �α�m;

(b) α ∈ Lim ⇒ �α�m = ∇ξ<τ (α)�α[ξ]�m.
Proof (a) �γ +�0(η+1)�m = (�0�m+1Im)(η+1) ◦ �γ�m = I(η+1)m ◦ �γ�m =
Im ◦ (I(η)

m ◦ �γ�m) = Im ◦ �γ +�0·η�m .
(b) Induction on α:

1. α =NF γ +�βη with η ∈ Lim: Then τ (α) = η and α[ξ] = γ +�β(1+ξ).
�α�m = (�β�m+1Im)(η) ◦ �γ�m = (∇ξ<η(�β�m+1Im)(1+ξ)) ◦ �γ�m =

∇ξ<η((�β�m+1Im)(1+ξ) ◦ �γ�m) = ∇ξ<η�α[ξ]�m .
2. α =NF γ +�β(η+1) with β = β0+1:
Then τ (α) = � and α[ξ] = γ +�βη +�β0(1+ξ).

�α�m = (�β�m+1Im)(η+1) ◦ �γ�m = (�β0+1�m+1Im) ◦ (�β�m+1Im)(η) ◦ �γ�m
(a)=

(Im+1(�β0�m+1Im)) ◦ �γ +�βη�m = (∇ξ<�(�β0�m+1Im)(1+ξ)) ◦ �γ +�βη�m =
∇ξ<�((�β0�m+1Im)(1+ξ) ◦ �γ +�βη�m) = ∇ξ<��α[ξ]�m .

3. α =NF γ +�β(η+1) with β ∈ Lim:

Then τ (α) = τ (β) and α[ξ] = γ +�βη +�β[ξ].
�α�m = (�β�m+1Im)(η+1) ◦ �γ�m = (�β�m+1Im) ◦ (�β�m+1Im)(η) ◦ �γ�m=

(�β�m+1Im) ◦ �γ +�βη�m
IH= (∇ξ<τ (β)(�β[ξ]�m+1Im)) ◦ �γ +�βη�m =

∇ξ<τ (β)((�β[ξ]�m+1Im) ◦ �γ +�βη�m) = ∇ξ<τ (α)�α[ξ]�m .
Corollary 7.3 For X ∈ M1 and α < ε�+1 the following holds:

(i) �0�2X = X;

(ii) �α+1�2X = I2(�α�2X);

(iii) �α�2X = ∇ξ<τ (α)(�α[ξ]�2X) if α ∈ Lim.

Now we fix M, I2 and ∇ as follows:

1. M := set of all �-club subsets of �.
2. I2 : M→ M, I2(X) := {β ∈ � : enX (β) = β}, where enX is the enumerating

function of X .
3. If ∀ξ < α(Xξ ∈ M) then

∇ξ<αXξ :=
{⋂

ξ<α Xξ if α < �

{β ∈ � ∩ Lim : β ∈ ⋂
ξ<β Xξ} if α = �

Then by transfinite induction on α from the above Corollary and the definition of
RX

α we conclude

Theorem 7.4 RX
α = [[α]]2X, for all α < ε�+1 and X ∈ M.
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Appendix

This appendix is devoted to the proof of Lemmata 2.1, 2.2d.

Lemma A.1 (a) λ ∈ Lim ⇒ 0 < λ[0].
(b) γ +�β < �α & η < � ⇒ γ +�βη < �α.

(c) λ =NF γ +�βη /∈ ran(F0) & �α < λ ⇒ �α ≤ λ[0].
Proof of (c): From�α < λ = γ +�βη by (b) we get�α ≤ γ +�β . If η ∈ Lim then
λ[0] = γ +�β . If 1 < η = η0+1 then γ +�β ≤ γ +�βη0 ≤ λ[0]. If η = 1 then
0 < γ (since λ /∈ ran(F0)) and therefore �β+1 ≤ γ which together with �α < λ =
γ +�β yields �α ≤ γ ≤ λ[0].
Lemma A.2 λ =NF Fα(β) & 0 < β ⇒ Fα(β[n]) ≤ λ[n].
Proof 1. β ∈ Lim: Fα(β[n]) = λ[n].
2. β = β0+1:

2.1. α = 0: Fα(β[n]) = �β0 ≤ �β0 ·(1+n) = λ[n].
2.2. α > 0: Fα(β[n]) = Fα(β0) < λ− ≤ λ[n].

Lemma A.3 Fζ(μ) < λ ≤ Fζ(μ+1) ⇒ Fζ(μ) ≤ λ[0].
Proof 0. λ = Fζ(μ+ 1):

0.1. ζ = 0: λ = �μ+1, λ[ξ] = �μ(1+ξ), λ[0] = F0(μ).

0.2. ζ > 0: Fζ(μ) < λ− < Fζ[0](λ−) = λ[0].
1. λ < Fζ(μ+ 1):

1.1. λ =NF γ +�βη /∈ ran(F0):

Fζ(μ) ∈ ran(F0) & Fζ(μ) < λ
L.A1c⇒ Fζ(μ) ≤ λ[0].

1.2. λ =NF Fα(β): Then α < ζ and thus Fα(Fζ(μ)) = Fζ(μ) < Fα(β). Hence

Fζ(μ) < β and therefore Fζ(μ)
IH≤ β[0] ≤ Fα(β[0]) A2≤ λ[0].

Definition. r(γ) :=
⎧⎨
⎩
−1 if γ /∈ ran(F0)

α if γ =NF Fα(β)

γ if γ = �

Lemma A.4 (a) r(Fα(β)) = max{α, r(β)}.
(b) λ[0] < δ < λ ⇒ r(δ) ≤ r(λ).

(c) λ =NF Fα(β) & β /∈ Lim & λ− < η < λ ⇒ λ− ≤ η[1].
Proof (a) 1. β < Fα(β):

Then r(Fα(β)) = α and (r(β) = −1 or β =NF Fβ0(β1) with β0 ≤ α).
2. β = Fα(β): Then β =NF Fβ0(β1) with α < β0 = r(β) = r(Fα(β)).

(b) 1. λ =NF γ +�βη /∈ ran(F0):



98 W. Buchholz

1.1. η ∈ Lim: γ +�β = λ[0] < δ < γ +�βη
A1b⇒ δ /∈ ran(F0).

1.2. η = η0+1:
γ +�βη0 < λ[0] < δ < γ +�β(η0+1) /∈ ran(F0) & �β+1|γ ⇒ δ /∈ ran(F0).
2. λ =NF Fα(β): If λ < Fα+1(0) then also δ < Fα+1(0) and thus r(δ) ≤ α =

r(λ). Otherwise there exists μ such that Fα+1(μ) < λ < Fα+1(μ+1). Then by
Lemma A3 we get Fα+1(μ) ≤ λ[0] < δ < Fα+1(μ+1) and thus δ /∈ ran(Fα+1), i.e.
r(δ) ≤ α = r(λ).

3. λ = �: r(δ) < � = r(�).
(c) For β = 0 ∨ η = η0+1 the claim is trivial. Assume now β = β0+1 & η ∈ Lim.

Fα(β0) < η < Fα(β0+1) L.A3⇒ λ− = Fα(β0)+1 ≤ η[0] + 1 ≤ η[1].
Lemma 2.1 λ =NF Fα(β) & β ∈ Lim & 1 ≤ ξ < τβ ⇒ λ[ξ] =NF Fα(β[ξ]).
Proof We have λ[ξ] = Fα(β[ξ]) & β[0] < β[ξ] < β. By Lemma A4b this yields
λ[ξ] = Fα(β[ξ]) & r(β[ξ]) ≤ r(β) ≤ α, whence λ[ξ] =NF Fα(β[ξ]).
Lemma 2.2d ξ+1 < τλ & λ[ξ] < δ ≤ λ[ξ+1] ⇒ λ[ξ] ≤ δ[1].
Proof by induction on δ#λ: If r(δ) < r(λ[ξ]) then, by Lemma A4b, λ[ξ] ≤ δ[0].

Assume now that r(λ[ξ]) ≤ r(δ) (†).
1. λ =NF γ +�βη /∈ ran(F0).

1.1. η ∈ Lim:

γ +�β(1+ξ) = λ[ξ] < δ < λ[ξ+1] = γ +�β(1+ξ)+�β ⇒ λ[ξ] ≤ δ[0].
1.2. η = η0+1: γ +�βη0 +�β[ξ] = λ[ξ] < δ ≤ λ[ξ+1] = γ +�βη0 +�β

[ξ+1] ⇒ δ = (γ +�βη0)+ δ0 with �β[ξ] < δ0 ≤ �β[ξ+1] ⇒ δ[0] = γ +�β

η0 + δ0[0] with �β[ξ] IH≤ δ0[0] ⇒ λ[ξ] ≤ δ[0].
2. λ =NF Fα(β) & β ∈ Lim: Then (1) λ[ξ] = Fα(β[ξ]), and (2) λ[ξ] < δ < λ.

From α
(1)≤ r(λ[ξ]) (†)≤ r(δ)

(2),L.A4b≤ r(λ) = α we get r(δ) = α, i.e. δ =NF Fα(η)

for some η. Now from λ[ξ] < δ ≤ λ[ξ+1] we conclude β[ξ] < η ≤ β[ξ+1] and
then, by IH, β[ξ] ≤ η[0]. Hence λ[ξ] ≤ Fα(η[0]) L.A2≤ δ[0].
3. λ =NF Fα(β) & β /∈ Lim:

3.1. α = 0: Then β = β0+1, and λ[ξ] = �β0(1+ξ) < δ ≤ �β0(1+ξ)+�β0

implies λ[ξ] ≤ δ[0].
3.2. α = α0+1: Then λ[ξ] = Fξ+1

α0
(λ−).

Hence, by (†), δ =NF Fζ(η) with α0 ≤ ζ.
3.2.1. α0 < ζ: λ− < Fζ(η) ⇒ λ[ξ+1] = Fξ+2

α0
(λ−) < Fζ(η). Contradiction.

3.2.2. ζ = α0: Then from Fξ+1
α0

(λ−) = λ[ξ] < δ = Fα0(η) ≤ λ[ξ+1] we con-
clude Fξ

α0
(λ−) < η ≤ λ[ξ]. As we will show, this implies Fξ

α0
(λ−) ≤ η[1], thence

Fξ+1
α0

(λ−) ≤ Fζ(η[1]) L.A2≤ δ[1].
Proof of Fξ

α0
(λ−) ≤ η[1]:

(i) ξ = n+1: Then the claim follows by IH from λ[n] = Fξ
α0

(λ−) < η ≤ λ[n+1].
(ii) ξ = 0: λ− < η < λ

L.A4c⇒ λ− ≤ η[1].
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3.3. α ∈ Lim: λ[ξ] = Fα[ξ](λ−), and by (†)we have δ =NF Fζ(η)with α[ξ] ≤ ζ.
3.3.1. α[ξ+1] < ζ: λ− < Fζ(η) ⇒ Fα[ξ+1](λ−) < Fζ(η) = δ. Contradiction.
3.3.2. α[ξ] < ζ ≤ α[ξ+1]:
(i) η ∈ Lim: Then λ− < δ[1] = Fζ(η[1]) (for β = 0, λ− = 0. If β = β0+1, then

Fα(β0) < δ < Fα(β0+1) and thus, by Lemma A3, Fα(β0) ≤ δ[0]).
α[ξ] < ζ & λ− < δ[1] ⇒ λ[ξ] = Fα[ξ](λ−) < δ[1].
(ii) η /∈ Lim: By IH α[ξ] ≤ ζ[1]. Further λ− ≤ δ−.
Proof of λ− ≤ δ−: Assume β = β0+1.
Fα(β0) < δ = Fζ(η) & ζ < α ⇒ 0 < η ⇒ η = η0+1.
Fα(β0) < Fζ(η0+1) & ζ < α ⇒ Fα(β0) ≤ Fζ(η0).
From α[ξ] ≤ ζ[1] and λ− ≤ δ− we conclude λ[ξ] = Fα[ξ](λ−) ≤ Fζ[1](δ−) ≤

δ[1].
3.3.3. ζ = α[ξ]: This case is similar to 3.2.2(ii):

λ[ξ] = Fζ(λ
−) < Fζ(η) < Fα(β) ⇒ λ− < η < Fα(β) ⇒ λ[ξ] = Fζ(λ

−)
L.A4c≤ Fζ(η[1]) L.A2≤ δ[1].
4. λ = �: This case is very similar to 3.3, but considerably simpler.
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The Interpretation Existence Lemma

Albert Visser

Abstract The present paper contains a fairly detailed verification of a reasonably
general form of the Interpretation Existence Lemma. In first approximation, this
lemma tells us that if a theory U proves the consistency of V then U interprets
V . What are theories here? What is proving the consistency of V in this context?
The paper will explain how the lemma works, providing rather general answers to
these questions. We apply the Interpretation Existence Lemma to verify well-known
characterization theorems for interpretability: the Friedman Characterization and the
Orey–Hájek Characterization. Finally, we provide three randomly chosen examples
of application of the Interpretation Existence Lemma.
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1 Introduction

The Interpretation Existence Lemma tells us, in first approximation, that, if we have
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theory V , then we can build an interpretation of V inU . This interpretation gives us a
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uniform construction of internal models of V inmodels ofU . The construction yields
all kinds of further insights concerning interpretability and non-standard models.

The aimof the present paper is to give a detailed presentation of the proof of a fairly
general version of the Interpretation Existence Lemma.1 After this presentation, I
will connect the result with various characterization theorems for interpretability.
Finally, I will supply three more or less randomly selected examples of applications
of the result.

1.1 Historical Remarks

In this subsection, I give an, admittedly sketchy, overview of the development of the
Interpretation Existence Lemma. The reader is referred to [4] for a more detailed
discussion of a part of the development.

The story of the Interpretation Existence Lemma starts with Löwenheim’s
Theorem [23].

Theorem 1.1 ([23]) If a sentence of predicate logic is satisfiable, then it is satisfiable
in the natural numbers.

The next step is the Model Existence Lemma, which is just the contrapositive of
Gödel’sCompletenessTheorem.This theoremwasfirst published inGödel’s doctoral
dissertationÜber die Vollständigkeit des Logikkalküls. The journal publication of the
result is [10].

Theorem 1.2 ([13]) If a sentence of predicate logic is (syntactically) consistent,
then it is satisfiable.

The Model Existence Lemma was given a sharper form by David Hilbert and Paul
Bernays in [13], pp. 234–253. The progress here is the insight that the model that
fulfills the consistent sentence can be built entirely inside arithmetic. Said differently,
we can find arithmetical predicates such that substitution of these predicates for the
predicate letters of the sentence yields an arithmetical truth.

Theorem 1.3 ([13]) If a sentence of predicate logic is consistent, then it has a true
arithmetical interpretation.

Stephen Cole Kleene in [19] determines more precisely the complexity of the arith-
metical substitution one needs. Moreover, we move from a single sentence to a
recursively enumerable set of sentences.

Theorem 1.4 ([19]) If a recursively enumerable set of predicate logical sentences
is consistent then it has a true arithmetical interpretation in the �0

2-formulas.

1My most extensive earlier attempt to give a presentation of the proof was in [37]. However, the
present one gives more detail and isolates the special features of the construction in a better way.
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Hilary Putnam in [29] improves Kleene’s estimate by showing:

Theorem 1.5 ([29]) If a predicate logical sentence is consistent then it has a true
arithmetical interpretation in the Boolean combinations of �0

1 -formulas.

I do not know whether Putnam’s result can be improved to the case where the inter-
pretation is identity preserving. Putnam’s proof is designed to yield the result for a
single sentence, but, with some minor modifications, one can extend his proof to the
case where we have a recursively enumerable set of sentences in finite signature.

Putnam’s improvement is off our main track, so we take a step back in time and
consider HaoWang’s papers [50, 51]. In these papers,Wang shifts the focus from the
construction of models in the real word to the construction of interpretations inside
theories.

Theorem 1.6 ([50, 51]) Consider any recursively enumerable theory U. We have:
Peano Arithmetic plus the arithmetization con(U ) of the consistency statement for
U interprets U. In our notation: (PA + con(U )) �U.

In Wang’s result interpretability is taken to be one-dimensional and without domain
relativization.2 This is not terribly important since we are working over PA, where
any interpretation has a definably isomorphic counterpart that is one-dimensional
and unrelativized. In case the domain of the interpretation is infinite, we can also
make the interpretation identity-preserving. In [51], Wang follows Gödel’s original
proof and, in [50], he adapts Henkin’s proof of the Model Existence Lemma [14]
rather than Gödel’s.

Sol Feferman set out to extend and clarify Wang’s ideas. He describes how his
ideas developed around that time in [7]. An important ingredient of his work was
the realization of the intentionality of consistency statements. As a consequence he
could prove Wang’s result in a more precise setting and with much larger scope.
Also, completely new consequences follow. For example, we can have a notion of
consistency such that (i) Peano Arithmetic proves its own consistency and (ii) the
Interpretation Existence Lemma still works for this notion of consistency. These
insights immediately give us the existence of a non-trivial internal model for every
model of Peano Arithmetic. Also, we obtain the existence of an Orey-sentence for
Peano Arithmetic, to wit a sentence O such that Peano ArithmeticPA interprets both
PA + O and PA + ¬ O .

Feferman’s insights concerning the Interpretation Existence Lemma were part of
his Ph.D. thesis and were, for a large part, published in [6]. Steven Orey employed
Feferman’s ideas to give the well-known Orey–Hájek characterization. Moreover, he
pointed out the existence ofOrey-sentences. See [26]. The characterizationwas redis-
covered by Petr Hájek. See [11, 12, 15]. The name ‘Orey–Hájek Characterization’
seems to go back to [22].

2One-dimensional means that the formula representing the object domain of the interpretation just
has one free variable, apart from variables serving as parameters. See Sect. 2.2.
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1.2 Interpretation Existence Without Induction

In this paper, we will prove the Interpretation Existence Lemma in a more general
setting than Feferman and Orey did. The main difference is (the lack of) the use of
induction. Where Feferman and Orey worked with extensions of Peano Arithmetic,
we will work in a setting that is essentially induction-free. Our basic tool will be
Buss’s theory S1

2. This theory still contains a modicum of induction, but in principle
that can be eliminated too, since S1

2 is interpretable on a definable cut in Robinson’s
Arithmetic Q which does not contain any induction.3

Since induction seems to be at the heart of Henkin’s proof of the Model Existence
Lemma, it is somewhat puzzling that we can get rid of it. The solution to the puzzle
requires a new way of looking at numbers in a theory. The solution is, in a nutshell:
don’t be faithful to your numbers. As soon as your numbers are progressive with
respect to a certain property P , but fail to to deliver the desired conclusion that every
number satisfies P , then we simply switch to a definable cut of the given numbers
on which we do have the desired conclusion that every number satisfies P .

Themethodology of induction avoidance employs Solovay’smethod of shortening
cuts. It was invented by Robert Solovay (see: [34]) and further developed by Pavel
Pudlák and the Prague group (see e.g. [28]), by Harvey Friedman (see e.g. [33]) and
by Alex Wilkie and Jeff Paris (see e.g. [53]). An impressive foundational program
was based on Solovay’s idea by Eduard Nelson in [25]. These developments take
place roughly between 1975 and 1990.

It is fair to say that something like the version of the Interpretation Existence
Lemma that we develop in the present paper was known to researchers like Pudlák
and Friedman in the period between 1975 and 1990, certainly in the sense that the
statement of the present resultwould not be any surprise for themand in the sense that,
if needed, the relevant researchers could easily have produced it. All the ingredients
were present. However, I know of no full statement of the result in that period.

Why would we want a proof of the Interpretation Existence Lemma in an
induction-free context? This is not just to satisfy an indefinite craving for gener-
ality or based on an idiosyncratic preference for weak theories. The important point
is that many applications use the more general form. For example, the Friedman
Characterization of interpretability between finitely axiomatized sequential theories
works between, say, a finite extension of ACA0 and a finite extension of GB. This
characterization involves weak theories, even if the theories to which the character-
ization is applied are reasonably strong.

1.3 What Is in the Paper?

In Sect. 2, we introduce the basic notions and notations needed in the paper. Section3
is the heart of the paper. It contains a detailed verfication of the Interpretation Exis-

3Alternatively, we could start from the theory PA−.
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tence Lemma in a fairly general form. In Sect. 4 we consider the world of �: a
group of special theories associated with given theories that form a basic tool for
proving Interpretation Existence. Specifically, various characterization-theorems of
interpretability are based on theories of the �-kind. The section contains proofs
of the Friedman Characterization and the Orey–Hájek Characterization. Finally, in
Sect. 5, we provide three more or less randomly chosen examples of application of
Interpretation Existence.

1.4 What Is Not in the Paper?

In the present paper, we do not consider the refinement of the Interpretation Existence
Lemma without the methodology of cuts, where one connects the Henkin construc-
tion to the Low Basis Theorem and the Low Low Basis Theorem. The reader is
referred to the text books [16, 21] for more information about this line of research.

1.5 Prerequisites

Some knowledge of the materials from [16, 18] would certainly help to read the
paper.

2 Basic Notions and Facts

In the present section, we provide the basics needed for the rest of the paper. The
reader who wants to get on quickly to more exciting stuff could quickly look over
the relevant subsections and, if needed, return to them later.

2.1 Theories

Signatures are officially finite relational signatures in this paper. Unofficially, we
will often use terms. Terms can be efficiently eliminated by the term elimination
algorithm. We will diverge from the finiteness of the signature and the exclusive use
of relations only in the case of the use of Henkin constants.

In this paper we will study theories with finite relational signature. Theories are
given by a signature plus a set of axioms. There is, in this paper, no a priori complexity
constraint on the set of axioms.
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If a theory is finitely axiomatizable, par abus de langage, we use the variables
like A and B for it, making the letters do double work: they stand both for the theory
and for a single axiom.

Whenwediverge fromour general format thiswill always be explicitlymentioned.
Ifwe speak of a theory qua set of theoremswewill stress this bywritingT,U, etcetera.
The mapping that sends a theory to the set of theorems is T �→ T . We write =ext for
‘having the same theorems’. So, T =ext U iff T = U .

An important special theory that we will employ is Buss’ theory S1
2. This theory

is finitely axiomatizable. We will employ it in its finitely axiomatized form. The
reader is referred to [2, 16] for details about S1

2. In fact the precise features of S
1
2 are

not really relevant for our purposes. We could as well work with a sufficiently large
finitely axiomatized fragment of I�0 + �1. Here �1 is the axiom that states that the
function ω1 with ω1(x) = 2|x |2 is total. What is most relevant is that (i) the theory
we employ is (i) finitely axiomatized, (ii) that it is mutually interpretable with other
weak theories like Q, PA− and adjunctive set theory AS, (iii) that it is sequential,
i.e. it has a good theory of sequences and (iv) that arithmetization of syntax is easy
in the theory and can be done without special tricks (in contrast to e.g. I�0).

2.2 Translations and Interpretations

We present the notion of m-dimensional interpretation without parameters. There
are two extensions of this notion: we can consider piecewise interpretations and we
can add parameters. We refer to our paper [47] for some explanation of these extra
features.

2.2.1 Translations

Consider two signatures � and �. An m-dimensional translation τ : � → � is a
quadruple 〈�, δ,F ,�〉, where δ(v0, . . . , vm−1) is a�-formula and where, for any n-
ary predicate P of�,F(P) is a formula A(�v0, . . . , �vn−1) in the language of signature
�, where �vi = vi,0, . . . , vi,(m−1). Both in the case of δ and A, all free variables are
among the variables shown. Moreover, if i �= j or k �= �, then vi,k is syntactically
different from v j,�.

We demand that we have � F(P)(�v0, . . . , �vn−1) → ∧
i<n δ(�vi ). Here � is prov-

ability in predicate logic. This demand is inessential, but it is convenient to have.
We define Bτ as follows:

• (P(x0, . . . , xn−1))
τ := F(P)(�x0, . . . , �xn−1).

• (·)τ commutes with the propositional connectives.
• (∀x A)τ := ∀�x (δ(�x ) → Aτ ).
• (∃x A)τ := ∃�x (δ(�x ) ∧ Aτ ).
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There are two worries about this definition. First, what variables �xi on the side
of the translation Aτ correspond with xi in the original formula A? The second
worry is that substitution of variables in δ and F(P) may cause variable-clashes.
These worries are never important in practice. For example, we choose ‘suitable’
sequences �x to correspond to variables x , and we avoid clashes by α-conversion.
However, if we want to give precise definitions of translations and, for example,
of composition of translations, these problems come into play. There are a number
of solution strategies for the first worry. The first is to design an ad hoc regime of
translating variables. E.g., if our dimension is m, we could always send the variable
xi to the sequence xm·i , xm·i+1, . . . , xm·i+m−1. The second is to make the choice of
the translating variables part of the data of the translation. The third is to work with a
variable-free formalism. Let us say, for definiteness that we opt for the first strategy.
Similarly, for the α-conversions we will stipulate some fixed regimen.

We allow the identity predicate to be translated to a formula that is not identity.
Anm-dimensional translation τ is unrelativized, if δτ (�x ) := �. A relation is identity
preserving if �x =τ �y iff xi = yi , for all i < m. A translation is direct if it is both
unrelativized and identity-preserving.

There are several important operations on translations.

• id� : � → � is the identity translation. We take δid�
(v) := v = v and F(P) :=

P(�v ).
• We can compose translations. Suppose τ : � → � and ν : � → �. Then ν ◦ τ
or τν is a translation from � to �. We define:

– δτν(�v0, . . . , �vmτ −1) := ∧
i<mτ

δν(�vi ) ∧ (δτ (v0, . . . , vmτ −1))
ν .

– Pτν(�v0,0, . . . , �v0,mτ −1, . . . �vn−1,0, . . . , �vn−1,mτ −1) :=∧
i<n, j<mτ

δν(�vi, j ) ∧ (P(v0, . . . , vn−1)
τ )ν .

• Let τ , ν : � → � and let A be a sentence of signature�.We define the disjunctive
translation σ := τ 〈A〉ν : � → � as follows. We take mσ := max(mτ ,mν). We
write �v � n, for the restriction of �v to the first n variables, where n ≤ length(�v).

– δσ(�v) := (A ∧ δτ (�v � mτ )) ∨ (¬ A ∧ δν(�v � mν)).
– Pσ(�v0, . . . , �vn−1) := (A ∧ Pτ (�v0 � mτ , . . . , �vn−1 � mτ ))∨

(¬ A ∧ Pν(�v0 � mν, . . . , �vn−1 � mν))

Note that in the definition of τ 〈A〉ν we used a padding mechanism. In case, for
example,mτ < mν , the variables vmτ

, . . . , vmν−1 are used ‘vacuously’ when we have
A. If we had piecewise interpretations, where domains are built up from pieces
with possibly different dimensions, we could avoid padding by building the domain
directly of disjoint pieces with different dimensions.

A translation τ : � → � maps a model M of signature � to an internal model
τ̃ (M) of signature �, provided that M satisfies ∃x δτ (�x ) and the τ -translations of
the identity axioms for =τ .
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2.2.2 Interpretations

A translation relates signatures; an interpretation relates theories. An interpretation
K : U → V is a triple 〈U, τ , V 〉, whereU and V are theories and τ : �U → �V . We
demand: for all theorems A of U , we have V � Aτ . Equivalently, we could demand
that, for all axioms U -axioms B, we have V � Bτ . In this case we should include
the identity axioms among the axioms of U , since we allow identity to be translated
to a formula different from identity.4 Here are some further definitions.

• IDU : U → U is the interpretation 〈U, id�U ,U 〉.
• Suppose K : U → V and M : V → W . Then, KM := M ◦ K : U → W is

〈U, τM ◦ τK ,W 〉.
• Suppose K : U → (V + A) and M : U → (V + ¬ A). Then K 〈A〉M : U → V
is the interpretation 〈U, τK 〈A〉τM , V 〉. In an appropriate category K 〈A〉M is a
special case of a product.

An interpretation is unrelativized if its underlying translation is unrelativized. It is
direct if its underlying translation is direct. Etcetera.

An interpretation K : U → V gives us a mapping K̃ := τ̃K from MOD(V ), the
class of models of V , to MOD(U ), the class of models of U . If we build a cate-
gory of theories and interpretations, usually MOD with MOD(K ) := K̃ will be a
contravariant functor.

2.2.3 Reduction Relations

We use K : U � V or K : V �U as alternative notations for K : U → V . The alter-
native notations� and� are used in a contextwherewe are interested in interpretabil-
ity as a preorder or as a provability analogue. This way of looking is the primary
interest in this paper.

We write: U � V and V �U , for: there is an interpretation K : U � V . We use
U ≡ V , for: U � V and U � V .

We write K : U �faith V or K : V �faith U for: K is a faithful interpretation ofU
in V . This means that: for all U -sentences A, we have: U � A iff V � AτK . We use
U �faith V or V �faith U , for: there is a faithful interpretation K : U �faith V . We use
≡faith for the induced equivalence relation of �faith.

We writeU �mod V or V �mod U for: every modelM of V has an internal model
N of U , in other words, for every model M of V there is a translation τ such that
τ̃ (M) |= U .5

4The verification of the equivalence between axioms-interpretability and theorems-interpretability
demands �1-collection. See [37] for more details.
5Here we restrict ourselves to the case without parameters. We can add parameters to the definition
in different ways, either by employing a parameter domain or by stipulating parameters locally for
each model. These ways are more closely connected than one would think thanks to the Omitting
Types Theorem. One can find examples of theories U and V , where V model-interprets U with
parameters but does not do so without parameters.
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We write U �loc V or V �loc U for: for all finite subtheories U0 of U , U0 � V .
We pronounce this as: U is locally interpretable in V or V locally interprets U . We
use ≡loc for the induced equivalence relation of �loc.

We have: U � V implies U �mod V and U �mod V implies U �loc V . The sec-
ond implication is by a simple compactness argument. None of the two arrows is
reversible, even when we restrict ourselves to recursively enumerable sequential
theories.

2.3 Provability, Arithmetization, Complexity

In this paper we follow Feferman’s example in [6] by fixing a proof system and an
arithmetization in the background.

2.3.1 Proof System

In this paper we will employ a minor variant of the standard Genzen system G1c
given in [35], Sect. 3.1. It is presented in Fig. 1. In the formulation of the system, we
suppose that some axiom set α of a theory is given. The quantifier rules are subject to
the usual clauses. Specifically, we demand that in L∃ andR∀, we have y /∈ FV(�,�),
and y is either syntactically identical to x or y /∈ FV(A).

A ⇒ A
Share ⊥ ⇒ L⊥ ⇒ R

⇒ A
A ∈ α

Γ ⇒ Δ
Γ ,Γ ⇒ Δ,Δ

W
Γ ⇒ Δ, A A,Γ ⇒ Δ

Γ,Γ ⇒ Δ,Δ
Cut

A,Γ ⇒ Δ
A ∧ B,Γ ⇒ Δ L∧ B,Γ ⇒ Δ

A ∧ B,Γ ⇒ Δ L∧ Γ ⇒ Δ, A Γ ⇒ Δ, B

Γ ⇒ Δ, A ∧ B
R∧

A,Γ ⇒ Δ B,Γ ⇒ Δ
A ∨ B,Γ ⇒ Δ L∨ Γ ⇒ Δ, A

Γ ⇒ Δ, A ∨ B
R∨ Γ ⇒ Δ, B

Γ ⇒ Δ, A ∨ B
R∨

Γ ⇒ Δ, A B,Γ ⇒ Δ
A → B,Γ ⇒ Δ L→

A,Γ ⇒ Δ, B

Γ ⇒ Δ, A → B
R→

A[x/t],Γ ⇒ Δ, A

∀xA,Γ ⇒ Δ L∀

Γ ⇒ Δ, A[x/y]
Γ ⇒ Δ, ∀xA

R∀
A[x/y],Γ ⇒ Δ
∃xA,Γ ⇒ Δ L∃

Γ ⇒ Δ, A[x/t]
Γ ⇒ Δ, ∃xA

R∃

Fig. 1 A variant of the Genzen system G1c
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t0 = u0, · · · , tn−1 = un−1, P (t0, · · · , tn−1) ⇒ P (u0, · · · , un−1)
leib ⇒ t = t

id

Fig. 2 Identity rules

We will in our system use a finite set of identity rules. See Fig. 2. It is clear that
these rules can be replaced by the obvious axioms. When in translating a theory
we demand that the translations of the identity axioms are provable, we mean these
axioms.

2.3.2 Arithmetization

We work with a finite alphabet. Thus, for example, we treat names of variables as
consisting of more than one symbol.

We employ a system of arithmetization that is based on the length-first ordering of
strings.Wefirst count all strings of our given alphabet of length 0 in alphabetical order,
then of length 1, etcetera. The number associated to a string of length nwill be of order
2cn , for a fixed standard c. As a consequence, concatenation (and, thus syntactical
operations like conjunction) will have the growth behavior of multiplication and
substitution will be roughly Buss’ smash function.

An important property of our coding is monotonicity: a strict substring is always
coded by a strictly smaller number than the original string.

Remark 2.1 The fact that we do our coding in arithmetic and not directly in, say, a
weak set theory or a weak theory of syntax is for a large part a matter of legacy. There
is one further argument for the arithmetic route: the presence of a linear ordering on
the codes makes Rosser-style arguments possible.

We will use modal notations like �U A for provU (�A�). (Here �A� is the Gödel
number of A and n is the (efficient) numeral of n.) Similarly, ♦U A will stand for
con(U + A). In case we want to stress the formula α representing the axioms, we
write �αA. We will write �α,� for provability where the formulas allowed in the
proof fromα have to be from the formula class�.Wewrite�α,m,n for provability only
using α-axioms≤ m and formulas of complexity≤ n, for a complexity measure. We
also write e.g. �α,m,∞, when we have no bound on the complexity of the formulas
in the proof. Etcetera.

2.3.3 Depth of Quantifier Alternations

We will employ depth of quantifier alternations as our main complexity measure.
This measure has the following desirable properties:
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Σ∗
0 := ∅

Π∗
0 := ∅

Σ∗
n+1 ::= AT | ¬ Π∗

n+1 | (Σ∗
n+1 ∧ Σ∗

n+1) | (Σ∗
n+1 ∨ Σ∗

n+1) | (Π∗
n+1 → Σ∗

n+1) |
∃vΣ∗

n+1 | ∀vΠ∗
n

Π∗
n+1 ::= AT | ¬ Σ∗

n+1 | (Π∗
n+1 ∧ Π∗

n+1) | (Π∗
n+1 ∨ Π∗

n+1) | (Σ∗
n+1 → Π∗

n+1) |
∀vΠ∗

n+1 | ∃vΣ∗
n

Fig. 3 Complexity classes for depth of quantifier alternations

i. Eliminating terms in favour of a relational formulation raises the complexity
only by a fixed standard number.

ii. Translation of a formula via the translation τ raises the complexity of the formula
by a fixed standard number depending only on τ .

iii. The tower of exponents involved in cut-elimination should be of height linear in
the complexity of the formulas involved in the proof.

Both Philipp Gerhardy (see [8, 9]) and Sam Buss (see [3]) study such complexity
measures. We will follow Buss’ approach. Buss shows that the bound on the height
of the tower of exponents in cut-elimination is d + O(1) for d alternations.

We work over a signature �. The formula-classes we define are officially called
�∗

n (�) and	∗
n(�). However,wewill suppress the�when it is clear from the context.

Let AT be the class of atomic formulas for �, extended with � and ⊥. The definition
of the complexity classes is given in Fig. 3.

Buss uses �n+1 and 	n+1 where we use �∗
n+1 and 	∗

n+1. We employ the asterix
to avoid confusion with the usual complexity classes in the arithmetical hierarchy
where bounded quantifiers also play a role. Secondly, we modified Buss’ inductive
definition a bit in order to get unique generation histories. For example, Buss adds
	∗

n to �∗
n+1 in stead of ∀v 	∗

n . In addition our �∗
0 and 	∗

0 are empty, where Buss’
corresponding classes consist of the quantifier-free formulas.

Here is the parse tree of ∀x (∀y ∃z Pxyz → ∃u ∃v Qxuv) as an element of �∗
4 .

Σ∗
4 : ∀x

Π∗
3 : →

���
���

Σ∗
3 : ∀y

Π∗
2 : ∃z

Σ∗
1 : Pxyz

Π∗
3 : ∃u

Σ∗
2 : ∃v

Σ∗
2 : Qxuv

We give the complexity measure ρ(A) such that ρ(A) is the smallest n such that A
is in �∗

n . This measure is very close to the measure that was employed in [38]. We
recursively define this measure by taking ρ := ρ∃, where ρ∃ is defined as follows:

• ρ∃(A) := ρ∀(A) = 1, if A is atomic.
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• ρ∃(¬ B) := ρ∀(B), ρ∀(¬ B) := ρ∃(B).
• ρ∃(B ∧ C) := max(ρ∃(B), ρ∃(C)), ρ∀(B ∧ C) := max(ρ∀(B), ρ∀(C)).
• ρ∃(B ∨ C) := max(ρ∃(B), ρ∃(C)), ρ∀(B ∨ C) := max(ρ∀(B), ρ∀(C)).
• ρ∃(B → C) := max(ρ∀(B), ρ∃(C)), ρ∀(B → C) := max(ρ∃(B), ρ∀(C)).
• ρ∃(∃v B) := ρ∃(B), ρ∀(∃v B) := ρ∃(B) + 1.
• ρ∃(∀v B) := ρ∀(B) + 1, ρ∀(∀v B) := ρ∀(B).

Let τ : � → � be a translation.We define ρ(τ ) to be themaximum of ρ∃(δτ ), ρ∀(δτ ),
the ρ∃(Pτ ) and the ρ∀(Pτ ), for P in�. If K is an interpretation, then ρ(K ) := ρ(τK ).
We have:

Theorem 2.2 ρ(Aτ ) ≤ ρ(A) + ρ(τ ).

The proof is by a simple induction on A.6

2.4 Sequential Theories

The notion of sequentiality is due to Pavel Pudlák. See, e.g., [16, 24, 27, 28]. For a
detailed treatment of sequential theories, see [44].

A theory is m-sequential if it directly interprets Adjunctive Set Theory AS via an
m-dimensional interpretation.

AS1 � ∃y ∀x x /∈ y,
AS2 � ∀x ∀y ∃z ∀u (u ∈ z ↔ (u ∈ y ∨ u = x)).

We say that a theory polysequential if it is m-sequential for some m. A theory is
sequential if it is 1-sequential. See [44] for discussion. We follow the tradition by
stating most results for the sequential case. However, the results usually also hold
more generally for the polysequential case. (We only have a rather artificial example
of a theory that is polysequential but not sequential.)

Examples of sequential theories arePA−,S1
2,EA, I�1,PA,ACA0,ZF.7 The theory

Q is not sequential (not even polysequential), but it still is mutually interpretable with
a sequential theory like PA− or S1

2. For a proof of the sequentiality of PA
−, see [17].

For proofs of the non-sequentiality of Q, see [17, 41] or [48].
Via bootstrapping, we interpret S1

2 in AS and develop a good theory of sequences
of all objects in the domain. For details concerning the bootstrap see e.g. the textbook
[16] and also [24, 42–44]. Using the sequences, we can build satisfaction predicates
for the formula classes �∗

n . The precise claim is as follows.

Theorem 2.3 Suppose U is a sequential theory of finite signature. Let the inter-
pretation that witnesses the sequentiality of U be τ . Then we can find an N :

6In my forthcoming paper Restricted Theories, I will treat the various properties of the complexity
measure in more detail.
7We note that in the case of many sorted theories, we need to use a standard translation into a
one-sorted theory to apply the definition.
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S1
2 �U and a satisfaction predicate satn for �∗

n -formulas with complexity of order
ρ(τ ) + k0n + k1, for fixed constants k0 and k1. Here the variables that range over
codes of formulas are relativized to N.

(ρ(N ) has a similar bound that is linear in n.)

I will provide the construction of the satisfaction predicates in a lot of detail in
my forthcoming paper Restricted Theories. The main idea is that satn+1(x, y) is
constructed as 
(x, y, satn), for a fixed second order formula 
(x, y, S). Thus, the
transition from satn to satn+1 only adds a fixed standard n = ρ(
) to the complexity.
The interpretation N is a cut of an given interpretation N0 : S1

2 �U : we shorten our
interpretation of S1

2 to compensate for the lack of the inductions that we need to
verify the elementary properties of our satisfaction predicate, like commutation and
good behaviour for substitution.8

A consequence of the presence of satisfaction predicates is the local reflexivity
of sequential theories. A theory U is locally reflexive iff, for every n, we have U �
(S1

2 + ♦U,n,n�). This insight follows directly from the following theorem.

Theorem 2.4 Suppose A is finitely axiomatized and sequential. We have, for any n,
that A � (S1

2 + ♦A,A,n�). Here the ρ-complexity of the witnessing interpretation is
linear in n.

The proof just follows the usual track of proving consistency using satisfaction. We
have to choose a ‘short’ interpretation N to compensate for the lack of induction.

A fundamental result is Pudlák’s Theorem [28] that any two interpretations of S1
2

in a sequential theory have a common cut.
For any interpretation N : S1

2 �U , an ω1-cut (w.r.t. N ) is a definable cut of N
that is downwards closed w.r.t. <N , and is closed under addition, multiplication and
ω1 in N . Here ω1(x) = 2|x |2 .

Theorem 2.5 ([29]) Suppose U is sequential. Let N , N ′ : S1
2 �U. Then, there is a

definable N-ω1-cut I and a definable N ′-ω1-cut I ′ in U such that there is a formula
F(�x, �y) that is U-verifiably an isomorphism between I and I ′. (Here �x has the
dimension of N and �y has the dimension of N ′.)

An alternative formulation is as follows. Suppose U is sequential. Let N , N ′ :
S1
2 �U. Then there is an N ∗ : S1

2 �U and formulas F(�x, �y) and F ′(�x, �y) such that
U-verifiably F is an initial embedding of N ∗ in N and F ′ is an initial embedding of
N ∗ in N ′. (Here the dimension of N ∗ can be taken to be m if U is m-sequential.)

2.5 Shortening Cuts

Consider any theoryU and suppose N : S1
2 �U . Suppose X is aU -definable subclass

of δN that is U -verifiably progressive. This means that:

8Our Sect. 4.2 contains a bit more detail on the construction of satisfaction predicates.
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• U � ∃�x ∈ δN (ZN (�x ) ∧ X (�x )),
• U � ∀�x ∈ δN (X (�x ) → ∃�y ∈ δN (SN (�x, �y ) ∧ X (�y ))).

In that case we can shorten X to an ω1-cut. The basic methodology for shortening
cuts is due to Robert Solovay [34].

We treat as an example closure under addition. We define the definable class Y :=
{y ∈ X | ∀x ∈ X (x + y) ∈ X}. (We write + for +N .) Clearly, 0 ∈ Y and 1 ∈ Y .
We show that Y is closed under addition (and hence also under successor). Suppose
y0 and y1 are in Y and x ∈ X . Then, (x + y0) ∈ X and, hence, (x + (y0 + y1)) =
((x + y0) + y1) ∈ X .

The reader is referred to [16] for more details.

3 The Interpretation Existence Lemma

Usually the Interpretation Existence Lemma is stated in the form: if a theory U
satisfies such-and-such conditions with respect to V , then U interprets V (where
the interpretation has such-and-such further desirable properties). I will employ a
slightly different style. The idea is that we find a minimal theory sf(V ) that satisfies
the desired properties with respect to V . The theory U will then satisfy the desired
properties ifU � sf(V ). Thisway of stating the result has the immediate advantage of
making fully clear that only the resources of sf(V )were used in proving the theorem.
Moreover, we can now ask interesting questions about the new theory sf(V ).

3.1 Auxiliary Theories

Consider any finite signature�. We define the theorySF� as follows.We expand the
signature of arithmetic by two unary predicates α and �. Say the resulting signature
is �. The theory SF� is a �-theory with the following axioms:

Sf�1 � S1
2.
9

Sf�2 � � ⊆ form� .
Sf�3 � α ⊆ � ∩ sent� .
Sf�4 � ∀v0 ∈ var . . . ∀vn−1 ∈ var P(v0, · · · , vn−1) ∈ �,

for any �-predicate P , where n = ar(P). Note that P(v0, · · · , vn−1) is a
sloppy notation for �P� ∗ �(� ∗ v0 ∗ �, � ∗ · · · ∗ �, � ∗ vn−1 ∗ �)�.

Sf�5 � �⊥� ∈ �, � ��� ∈ �.
Sf�6 � ∀A ∈ � ∀B ∈ sub(A) B ∈ �.

Here sub(A) is the set of subformulas of A.

9The induction axioms are only for the original language of arithmetic.
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Sf�7 � ∀A ∈ � ∀σ ∈ admis(A) σ(A) ∈ �.
Here admis codifies that σ is an admissible substitution of variables for the
variables in A.

Sf�8 � ♦α,��.
Hereα, �-provability is provability fromαusing only�-formulas in the proof.

We could have opted to demand only closure of � under direct subformulas working
with a weaker theory, say, SF−

� . However, it is easy to see that we can interpret SF�

in SF−
� on a definable cut. We note that we only defined a unique theory when we

have a coding of syntax fixed in the background. However, various versions of SF�

are synonymous as long as we choose reasonable codings.10

Suppose X is a set of sentences of signature �. We define:

Sf�,X � �A� ∈ α, for each A in X .

We define sf�(X) := SF� + Sf�,X . Since we consider a theory V as being equipped
with both an axiom set axV and a signature �V , we will simply write sf(V ) for
sf�V (axV ).

Let Pred� be predicate logic in signature �. We can view this as the �-theory
with the empty axiom set. Thus, SF� = sf�(∅) = sf(Pred�).

3.2 The Theorem and Its Proof

This subsection is the heart of the paper. We present the proof of the Interpretation
Existence Lemma.

Theorem 3.1 We have: sf(V ) � V .

Proof Let � := �V . We work in SF� . We construct a translation η that supports an
interpretation of predicate logic for � in SF� , such that SF� � �A� ∈ α → Aη.

We are going to implement a version of the standard Henkin construction. How-
ever, we have to be careful since some relevant steps have to be feasible inS1

2. Where
the resources we have do not suffice for a desired induction, we have to compensate
for this by going to a definable cut.

We extend the language of V inductively as follows:

• t :: = v | c[B],
• A:: = ⊥ | � | P(t, · · · , t) | t = t | ¬ A | (A ∧ A) | (A ∨ A) | (A → A) |

(A ↔ A) | ∀v A | ∃v A.
• B:: = ∃v A | ∀v A.

Here the atomic predicates P are from the signature of V and the length of the
sequence of terms reflects correctly the arity of the relevant predicate. We remind the
reader that all our languages are officially of finite relational signature. The Henkin

10For the notion of synonymity of theories, see e.g. [40].



116 A. Visser

constants are the only exception we allow. Note that we never interpret a Henkin
theory. The Henkin theory is just a tool for building an interpretation.

Let the extended class of formulas be formh
� . The definition of formh

� can be
executed in S1

2. An extended subformula is a subformula in the sense of this induc-
tive definition. So P(c[∃x Qx]) has e.g. Qx as extended subformula. An element
of formh

� is in �h if all its extended subformulas are substitution instances of �-
formulas.

Since our coding is monotonic, we cannot have ‘loops’ of Henkin constants. It is
not possible to have a constant c[A] in an extended subformula of A, otherwise A
would occur as a strict substring of itself.

We define 
(A) := {A, B(c[A])} if A is of the form ∃x B(x) and 
(A) = {A},
otherwise. Similarly, we define 
⊥(A) := {A, B(c[A])} if A is of the form ∀x B(x)
and 
⊥(A) = {A}, otherwise.

We describe first the stage construction of the Henkin theory for α in the usual
terms and then discuss how this definition can be implemented in the context ofS1

2. It
is pleasant to think of the formh

�-sentences as enumerated by Ai . Since, we confuse
sentences and their Gödel numbers anyway, we can take Ai := � if i is not the Gödel
number of a formh

�-sentence and Ai := i otherwise.
In our stage construction, �a will stand for the set of formulas that we have put

in our Henkin theory at stage a, �⊥
a will stand for the set of formulas that we have

decided at stage a to definitely keep out go our Henkin theory, φ will be a sequence
of 0’s, 1’s and 2’s that records the actions we take at each stage. We define:

stage 0 �0 := ∅, �⊥
0 := ∅.

stage a + 1 If Aa is a �h-sentence:

• If �a ∪ {Aa} �α,�h �⊥
a , we take φ(a) := 1 and �a+1 := �a ∪ 
(Aa) and

�⊥
a+1 := �⊥

a .
• If�a ∪ {Aa} �α,�h �⊥

a , we takeφ(a) := 0 and�a+1 := �a and�⊥
a+1 := �⊥

a ∪

⊥(Aa).

If Aa is not a �h-sentence, we take φ(a) := 2 and �a+1 := �a and �⊥
a+1 := �⊥

a .

We note that our enumeration is chosen in such a way that c[Aa] will be fresh w.r.t.
�a . Clearly, all information about the construction is contained in the function φ.
The Henkin Theory�� will be the union of the�a , where we let the variable a range
over a suitable definable cut.

We address the details of the above construction. In S1
2 we have codes for

sequences and finite sets.
Consider a stringσ over the alphabet {0, 1, 2}. Let us say thatσ isacceptablewhen,

for any i < length(σ), we have: if σi �= 2, then i is a formh
�-sentence. We note that

initial substrings of acceptable strings are acceptable. We define, for acceptable σ:
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• �σ := ⋃{
(Aa) | a < length(σ) and σa = 1}.
• �⊥

σ := ⋃{
⊥(Aa) | a < length(σ) and σa = 0}.
Let � := length(σ). We note that each member of �σ is estimated by ω1(�). More-
over, the number of members of �σ is at most 2�. So �σ itself is estimated by
(ω1(�))

2� = 22|�|2� ≤ 22�
2
(for � ≥ 4). Since � is estimated by |σ|, it follows that �σ

is estimated by ω1(σ)2. Thus, �σ does indeed exist and, similarly, for �⊥
σ .

We note that our formulations are somewhat sloppy: there are different numerical
codes for �σ . A unique one can be singled out e.g. by choosing a fixed order of
enumerating the elements of �σ .

A 0,1,2-string σ is adequate iff σ is acceptable and, for all i < length(σ), we
have:

• σi = 1 iff Ai is a �h-sentence and �σ�i ∪ {Ai } �α,�h �⊥
σ�i ,

• σi = 0 iff Ai is a �h-sentence and �σ�i ∪ {Ai } �α,�h �⊥
σ�i ,

• σi = 2 iff Ai is not a �h-sentence.

We use the length-first coding for strings so two 0,1,2-strings are equal iff they have
the same numbers at the same places.

We claim that, for any a, there is at most one adequate string of length a. Consider
two adequate strings σ and τ of length a. We prove by induction, that for all i ≤ a,
we have σ � i = τ � i . The result is immediate noting that we have induction in S1

2
for the property σ � i = τ � i seeing that a is a logarithmic in σ.

Consider the class I of the a such that, there is an adequate string σ of length
a with �σ �α,�h �⊥

σ . We claim that I is closed under 0 and successor. We have
0 ∈ I , since ∅ �α,�h ∅. This is precisely our assumption ♦α,��, noting that we may
replace the Henkin constants in any proof witnessing ∅ �α,�h ∅ by variables. A small
argument is needed to guarantee that we can choose fresh variables in such a way
that the result of substitution exists. Let π be our proof. We note that the number of
fresh variables we need is bounded by |π|, the length of π. Moreover, to guarantee
freshness it is sufficient to choose indices with length |π|. So our new proof will have
length estimated by |π|2, and, hence, the new proof itself is estimated by ω1(π).

Suppose a is in I . Let σ be an adequate sequence of length a with �σ �α,�h �⊥
σ .

Let A := Aa .
In case A is a �h-sentence and �σ, A �α,�h �⊥

σ , the string τ := σ1 is ade-
quate and �τ = �σ ∪ 
(A) and �⊥

τ = �⊥
σ . In case A is not of the form ∃x Bx

we are done. Suppose A is of the form ∃x Bx . Assume, to get a contradiction that
�σ, A, B(c[A]) � �⊥

σ . By construction c[A] does not occur in �σ, A,�⊥
σ . So, by

L∃, we find �σ, A � �⊥
σ . Quod non.

In case A is a �h-sentence and (a)�σ, A �α,�h �⊥
σ , the string τ = σ0 is adequate

and �τ = �σ and �⊥
τ = �⊥

σ ∪ 
⊥(A). Suppose A is not of the form ∀x Bx . To
obtain a contradiction, suppose we have (b) �σ �α,� �⊥

σ , A. Applying the cut rule
to (a) and (b), we obtain: �σ �α,�h �⊥

σ . Quod non. Now suppose A is of the form
∀x Bx . To obtain a contradiction, we assume �σ �α,�h �⊥

σ , A, B(c[A]). We note
that c[A] does not occur in �σ, A,�⊥

σ . By R∀, we get �σ �α,�h �⊥
σ , A. We again

use the cut-rule to obtain a contradiction.
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In case A is not a �h-sentence, the string τ = σ2 is adequate. We have �τ = �σ

and �⊥
τ = �⊥

σ . So, we are immediately done.
Since I is inductive, we can shorten it to a ω1-cut J . On this cut we have S1

2. Note
that J is closed under the syntactic operations including substitution. For i ∈ J , we
define �i as �σ for the unique adequate σ of length i and, similarly, for �⊥

i . We
define �� as the virtual class that is the union of the �i such that i ∈ J . Similarly,
�⊥� is the union of the �⊥

i where i in J .
We first show that each �h-sentence A in J is in �� ∪ �⊥�. Suppose A is a �h-

sentence in J . Say A = Ai , where i ∈ J . Consider the unique adequate sequence σ
of length i + 1. In case σi = 1, we have A ∈ �σ = �i+1, in case σi = 0, we have
A ∈ �⊥

σ = �⊥
i+1. Since we assumed A to be in �h, by the definition of adequate

sequence, we cannot have σi = 2. So either A ∈ �i+1 ⊆ �� or A ∈ �⊥
i+1 ⊆ �⊥�.

The �i will be monotonically increasing. Consider stages i < j ∈ J . Let σ be
an adequate string of length i and let τ be an adequate string of length j . From the
definition of adequacy, it is immediate that τ � i is an adequate string of length i and,
hence, we find σ = τ � i . Trivially, �τ�i ⊆ �τ . By a similar argument the �⊥

i are
monotonically increasing.

We show that �� ∩ �⊥� = ∅. Suppose A ∈ �� ∩ �⊥�. Then, for some stages i
and j , wewill have A ∈ �i and A ∈ �⊥

j . Let a be themaximumof i and j . It follows,
by monotonicity, that A ∈ �a ∩ �⊥

a . But this contradicts the fact that A is in J and
hence in I , in combination with the deduction rules Share and W.

Consider a sentence A in �h ∩ J and any i ∈ J . We show that (†) if �i �α,�h

�⊥
i , A, then A ∈ �� and (‡) if A,�i �α,�h �⊥

i , then A ∈ �⊥�.
Suppose �i �α,�h �⊥

i , A. Let A := A j and let a := max(i, j + 1). In case A j ∈
�⊥

j+1, then A j ∈ �⊥
a . Hence, by Share and W, we find �a �α,�h �⊥

a . But this
contradicts the fact that a ∈ J ⊆ I . So A ∈ � j+1 ⊆ ��. Similarly, for the other
case.

We note that it follows that ∀A ∈ (sent� ∩ � ∩ J ) (�α,�A → A ∈ ��).
Our next order of business is to verify the commutation conditions for �∗. Let G

be the class of sentences of �h ∩ J .
Consider (B ∨ C) ∈ G. Suppose B = A j and C = Ak and (B ∨ C) = Ai . Here

j < i and k < i .
Suppose B ∨ C is in ��. It follows that B ∨ C is in �i+1. In case neither B

nor C is in ��, it follows that both B and C are in �⊥
i+1. Hence B,�i+1 �α,�h �⊥

i+1
andC,�i+1 �α,�h �⊥

i+1. Ergo, by L∨, we have B ∨ C,�i+1 �α,�h �⊥
i+1 and, hence,

�i+1 �α,�h �⊥
i+1. Quod non. So, B is in �� or C is in ��.

Conversely, if B is in ��, we have B ∈ � j+1. Hence, by Share and W, we find
� j+1 �α,�h �⊥

j+1, B. Ergo, by R∨, we obtain � j+1 �α,�h �⊥
j+1, B ∨ C . So, B ∨ C

is in ��. Similarly, in case C is in ��.
The case of conjunction is similar.
We treat the case of implication. Consider (B → C) ∈ G. Suppose B = A j and

C = Ak and (B → C) = Ai . Here j < i and k < i .
Suppose B → C is in�� and B is in��. It follows that B → C and B are in�i+1.

In caseC is not in��, it follows thatC is in�⊥� and, thus in�⊥
i+1. Ergo,�i+1 �α,�h
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�⊥
i+1, B and C,�i+1 �α,�h �⊥

i+1. Thus, by L→, we have B → C,�i+1 �α,�h �⊥
i+1

and, so, �i+1 �α,�h �⊥
i+1. Quod non. Hence, C is in ��.

Next suppose that if B is in��, thenC is in��. This means that either B is in�⊥�

orC is in��.Hence, B is in�⊥
i+1 orC is in�i+1. In both cases,wehave, byShare and

W, that B,�i+1 �α,�h �⊥
i+1,C . Hence, by R→, we find �i+1 �α,�h �⊥

i+1, B → C .
It follows that (B → C) is in ��.

We treat the case of the existential quantifier. Suppose ∃x Bx is in G. Suppose
∃x Bx is in ��. Suppose ∃x Bx is Ai . Since it is impossible that ∃x Bx is in �⊥

i+1,
we will have σi = 1, for an adequate σ of length i + 1. Hence, B(c[∃x B]) is in �σ,
i.e. in �i+1, and, hence in ��.

Conversely, suppose that B(c) is in �∗, for some Henkin constant c in J . Say,
B(c) = A j . Then, B(c) is in � j+1. It follows by Share and W that � j+1 �α,�h

�⊥
j+1, Bc, and hence, by R∃ that � j+1 �α,�h �⊥

j+1, ∃x Bx . Ergo, by (†), ∃x Bx is
in ��.

The proof for universal quantification is similar.
Nowweare ready and set to define theHenkin-translationη.We take as our domain

δη the Henkin constants in J . Note that these Henkin constants are not restricted to
c[A] where A is in �h. We define:

• Pη(x0, · · · , xn−1) := �P� ∗ �(� ∗ x0 ∗ �, � ∗ · · · ∗ �, � ∗ xn−1 ∗ �)� ∈ ��.11

Here ∗ stands for the arithmetization of concatenation. We include the relation of
identity in the above definition.

We define satη(σ, A), where σ is an assignment from the free variables in A to
elements of δη by: the result of substituting σ(v) for v in A, for each free variable
v of A, is in ��.12 It follows that we have the usual commutation conditions for
the connectives for satη for formulas in � ∩ J . E.g., for ∀w B in � ∩ J , we have:
satη(σ,∀w B) iff ∀x ∈ δη satη(σ[w : x], B).

Using satη, we can reformulate the atomic definition of Pη as follows:

Pη(x0, · · · , xn−1) is satη({〈v0, x0〉, · · · , 〈vn−1, xn−1〉}, P(v0, · · · , vn−1)).

Finally consider a standard �-formula A in �. Since A is standard. A will also be in
J . It follows from the commutation conditions that

∀�x ∈ δη (Aη(�x) ↔ satη(σ�x , �A�))

Here σ�x is a code of a function that assigns xi to �xi�.
Suppose �A� ∈ α. It follows that �α,�A, and, hence, �A� ∈ �� or, equivalently,

satη(∅, �A�). By the commutation conditions, we find: Aη.

11I choose for this representation of Pη since it contains no ambiguities. One would like to say that
Pτ (x0, · · · , xn−1) is P(c0, · · · , cn−1) ∈ ��, were the ci are the xi .
12We are a bit sloppy, since the finite set need not have a unique code. The insight works for every
code of the displayed set.
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At this point we leave SF� . We have shown SF� � �A� ∈ α → Aη. Hence:

A is an axiom of V ⇒ sf(V ) � �A� ∈ α

⇒ sf(V ) � Aη

We may conclude that H : sf(V ) � V , where H is the interpretation that is based
on η. �

We note that η is not dependent of V . It is only in transmuting η into an interpretation
of V rather than of predicate logic for � that the full theory sf(V ) comes into play.

Remark 3.2 Where can the proof of Theorem3.1 can be verified? We note that the
reasoning up to and including the verification of the commutation conditions for satη
just is one specific proof in SF� . Thus, this part of the reasoning can be trivially
executed in S1

2 as metatheory.
The verification of the Tarski Biconditionals for satη involves a SF�-external

induction on syntax that is present in S1
2 as metatheory.

The last step concerning sf(V ) involves an arbitrary theory V , where the axioms
of V may be any set X of �-sentences. Here the formulation of the result transcends
the resources of S1

2. Now let us assume that the axiom-set of V is given as a �b
1-

formula. Clearly, under this assumption, the verification that H is an interpretation
just collects the previous resuls, and our whole verification is present in S1

2.
What we have verified, under the extra assumption, is axioms-interpretability:

for every axiom A of V we can prove Aη in sf(V ). Can we also verify theorems-
interpretability: for every theorem B of V we can prove Bη in sf(V)? Consider a
V -proof π of B. What will the sf(V )-verification, say π�, of Bη look like? Well, first
we transform π into the translated proof πη, where we η-translate every formula in π
and add a bit of extra stuff to handle the domain relativization. This transformation
is polynomial. The resulting proof is a sf(V )-proof from ‘axioms’ Aη, where A is a
V -axiom. The next step is to plug in proofs of Aη from A ∈ α ∩ J .

We remind the reader that this proof runs as follows: we start with the assumption
A ∈ α ∩ J . From this we move to �α,�A and from there to satη(∅, A). Now we
employ the commutation conditions to obtain Aη. The proof involving commutation
is sf(V )-external. Inspection shows that it is p-time in A.

The proofs that A ∈ J are also p-time since the A are relatively standard. Note
that, for each axiom A used in π. we have |A| < |π|. So, the various bits we added are
each bounded by |π|n + k, for standard n and k. The number of extra bits we added
is bounded by 2|π|. So the new proof will be bounded by |πn′ + k ′|, for standard n′
and k ′. In other words the transformed proof is p-time in π. Thus, we have theorems
interpretability.

Suppose we want to conclude U � V from U � sf(V ) inside S1
2. In this case we

have to be careful: even if U � V is given for theorems-interpretability, transitivity
for theorems-interpretability may fail in some models of S1

2. What we need for
the transitivity of theorems-interpretability is �1-collection. So, the most natural
meta-theory for the formalization of Theorem3.1 and its desired consequences, on
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the assumption of �b
1-axiom sets, is S1

2 plus �1-collection. See [37], for further
discussion of these subtle points.

Remark 3.3 We note that ρ(η) is a fixed number, say h. Suppose K : U � sf(V ).
Then M := (HV ◦ K ) : U � V , where ρ(M) = ρ(K ) + h.

In our proof, we showed more than contained in the statement of Theorem3.1. The
next somewhat meandering theorem articulates some of that extra information. Let
SF�,cut be the following theory. We expand the signature of SF� by a new predicate
J and add axioms to the effect that J is an ω1-cut. The theory sfcut(V ) is defined as
SF�V ,cut + SfaxV .

Theorem 3.4 Consider a signature �. There is a one-dimensional interpretation
H� : SF� � Pred� with underlying translation η� . The domain of H� is contained
in a definable SF�-cut J� .

From this point on we suppress the subscript � in the statement of the theorem.

In SF, we have a satisfaction predicate satη for H for formulas A in � ∩ J .
This predicate satisfies the commutation conditions for all formulas in its intended
domain. The commutation conditions for the quantifiers involve relativization to δη

and the commutation condition of an atomic predicate P is:

SF � ∀�x ∈ δH (satη(�x, �P �v �) ↔ Pη(�x)).

We have:

SF � ∀A ∈ (sent� ∩ � ∩ J ) (�α,�A → satη(∅, A)).

Hence, a fortiori,

SF � ∀A ∈ (α ∩ J ) satη(∅, A).

It follows that, for any�-theory V , we have an interpretation HV : sf(V ) � V ,where
H is based on η.

Expanding SF to SFcut, we have the following. The restriction of δH to the ω1-cut
J ∗ := J ∩ J gives us a (� ∩ J ∗)-elementary sub-interpretation H∗ of H. This means
that the restriction of satη to J ∗ × J ∗ is a satisfaction predicate satη∗ that satisfies
the commutation conditions for relativization to δη∗ and for formulas from � ∩ J ∗.
Here the atomic commutation condition is the one for H ∗. We have again:

SFcut � ∀A ∈ (sent� ∩ � ∩ J ∗) (�α,�A → satη∗(∅, A)).

Proof The last bit of the theorem about the sub-cut is by observing that in our
construction of �� any cut J ∗ that is shorter than the given J would do as well. �

We formulate a model theoretic consequence of Theorem3.4.
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Corollary 3.5 Consider a modelN of sf(V ). Then there is an internal V -modelH
ofN with underlying translation η. The domain ofH is contained in anN -definable
ω1-cut J of N . Moreover, we have a satisfaction predicate satη forH for formulas
A in �N ∩ J . This predicate satisfies the commutation conditions for all formulas
in its intended domain.

Consider any sub-ω1-cut J ∗ of J . The cut J ∗ need not be definable in N . The
restriction of δH to J ∗ gives us a (�N ∩ J ∗)-elementary sub-model H∗ of H.

3.3 Extending the Target Theory to a Sequential Theory

Since sf(V ) is a sequential theory, we can strengthen Theorem3.1 a bit in another
direction. We define seq(V ) as follows. We expand the language of V with a unary
predicate D and a binary predicate ∈. The theory seq(V ) is axiomatized by the
axioms of V relativized toD plus AS for ∈. The theory seq(V ) is clearly sequential.

Theorem 3.6 Suppose U is (poly)sequential and U � V . Then U � seq(V ).

Proof We give the proof for the poly-sequential case. So we suppose that the direct
interpretation of AS in U is m-dimensional.

In order not to get totally confused between the syntactically realized external
sequences that are connected with the dimension of interpretations and the internal
sequences of the theory U , we call an external sequence (x0, · · · , xm−1) an m-
sequence and an internal sequence simply a sequence.

Suppose K : U � V . Since we can code any sequence inU using anm-sequence,
wemay without loss of generality assume that K ism-dimensional. We define them-
dimensional interpretationM := seq(K ) : U � seq(V )with underlying translation
μ as follows. Let α,β, γ, . . . range over m-sequences.

• The domain δμ consists of m-sequences of the form 〈0,α〉 for arbitrary α and
〈1,α〉 for α ∈ δK . (Remember that in our context there may be manym-sequences
implementing 0, implementing 〈0,α〉, etcetera.)

• Dμ(α) iff α is of the form 〈1,β〉 and β ∈ δK .
• α =μ α′ iff (α and α′ are of the form 〈0,β〉 respectively 〈0,β′〉 and β = β′) or (α
and α′ are of the form 〈1,β〉 respectively 〈1,β′〉 and β =K β′).

• α ∈μ α′ iff α′ is of the form 〈0,β′〉 and ((α is of the form 〈0,β〉 and β ∈ β′) or (α
is of the form 〈1,β〉 and for some γ with γ =μ β we have γ ∈ β′)).

• Pμ(α0, · · · ,αn−1) iff each αi is of the form 〈1,βi 〉 and PK (β1, · · · ,βn−1).

As is easily seen μ supports the promised interpretation M . �

We note the following corollary.

Corollary 3.7 If U is polysequential, then U ≡ seq(U ). So every m-sequential
theory is mutually interpretable with a 1-sequential theory.
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From the previous theorem, we immediately have:

Corollary 3.8 sf(V ) � seq(V ).

We note that sf(V ) does not necessarily provide a satisfaction predicate for some
reasonable formula-class for seq(V ).

3.4 An Equivalent of sf(V )

Consider any finite signature�. We define the theoryComm� as follows.We extend
the signature of S1

2 with three new predicate symbols �, sat and D. Our theory is
axiomatized by axioms Sf�1–7 plus the non-atomic clauses of the commutation
conditions of sat for �-formulas, where the quantifiers are relativized to D. We
define:

comm(V ) := Comm�V + {α(A) | A ∈ axV }.

Let us write �cut for cut interpretability. This means interpretability by a parameter-
free interpretation K such that (i) the domain formula is a definable cut and (ii)
identity and the predicates corresponding to the arithmetical operations are translated
identically but for the fact that we constrain their variables to be in the cut. Using this
terminology,Theorem3.4 tells us thatSF� �cut Comm� andsf(V ) �cut comm(V ).
Conversely, using several shortenings, we can prove that

Comm� �cut SF� and comm(V ) �cut sf(V ).

Hence, Comm� ≡cut SF� and comm(V ) ≡cut sf(V ).

Open Question 3.9 We note that both comm and sf involve coding. Can wemake a
coding-free equivalent? (in Sect. 4,wewill see some examples of coding-free variants
for special cases.)

3.5 Treatment of Numerals

Consider HV and suppose that N : S1
2 � V . We can name HV ◦ N -numbers both

using Henkin constants and using numerals. In this subsection we study how these
two representations are related.

Sincewe are talking about interpretations,weneed the relational version of numer-
als. We work for the moment in the relational version of the language of arithmetic.
We select fixed, disjoint standard variables x, y, u, v, w. We define a sequence of
formulas that will represent dyadic numerals.
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• C0x := Zx ,
• C2n+1y := ∃x ∃u (Cnx ∧ Axxu ∧ Suy), if n is even,
C2n+1x := ∃y ∃u (Cn y ∧ Ayyu ∧ Sux), if n is odd,

• C2n+2y := ∃x ∃u ∃v (Cnx ∧ Axxu ∧ Suv ∧ Svy), if n is even,
C2n+2x := ∃y ∃u ∃v (Cn y ∧ Ayyu ∧ Suv ∧ Svx), if n is odd.

• For w disjoint from x, y, u, v, we write Cn(w) for Cn[y : w], if n is 1 or 2 modulo
4, and for Cn[x : w], if n is 3 or 0 modulo 4.

• Dn := ∃wCn(w).

We clearly can implement this definition in S1
2. We define the numerical constants

by:

• cn := c[DN
n ]. We call the cn: h-numerals (w.r.t. V and N ).

Clearly, the code of cn is polynomial in n. To obtain our first insight in the behavior
of h-numerals, we need a lemma.

Lemma 3.10 Suppose N : S1
2 � V . We work with a finite axiomatization of S1

2, so
there is one witnessing proof. Let this witnessing proof be π. (We assume that π
includes the verification of the axioms of identity.) Let n := ρ(π). Let W := sf(V ) +
(��

n ⊆ �).
Then:

1. W � ∀x �α,�∃w ∈ δN CN
x (w).

2. W � ∀x �α,�∀w,w′ ∈ δN ((CN
x (w) ∧ CN

x (w′)) → w =N w′).
3. W � ∀x �α,�∀w ∈ δN (CN

x (w) → CN
2x (2w)).

4. W � ∀x �α,�∀w ∈ δN (CN
x (w) → CN

2x+1(2w + 1)).

Proof We assume the conditions of the theorem to be fulfilled. We reason in W . Let
k be the code of S1

2 and let k ′ be ρ(S1
2). For any x , we have:

1’. �S1
2,k,k

′ ∃wCx (w).
2’. �S1

2,k,k
′∀w ∀w′ ((Cx(w) ∧ Cx (w

′)) → w = w′).
3’. �S1

2,k,k
′∀w (Cx (w) → C2x (2w)).

4’. �S1
2,k,k

′∀w (Cx (w) → C2x+1(2w + 1)).

Let νi be the witnessing proof for (i ′). We transform νi to νN
i from axioms (S1

2)
N .

We have ρ(νN
i ) = k ′ + ρ(N ). Next we add, above the uses of the (S1

2)
N -axiom in

νN
i , the proof π that verifies (S1

2)
N . Let the resulting proof be ν∗

i . We note that the
conclusion of π has complexity k ′ + ρ(N ), so ρ(ν∗

i ) = ρ(π) = n. Thus the formulas
of this proof are all in �. It follows that the ν∗

i witness:

1. �α,�∃w ∈ δN CN
x (w).

2. �α,�∀w,w′ ∈ δN ((CN
x (w) ∧ CN

x (w′)) → w =N w′).
3. �α,�∀w ∈ δN (CN

x (w) → CN
2x (2w)).

4. �α,�∀w ∈ δN (CN
x (w) → CN

2x+1(2w + 1)).

�
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Theorem 3.11 Suppose N : S1
2 � V . Let the witnessing proof be π. (We assume

that π includes the verification of the axioms of identity.) Let n := ρ(π). Let W :=
sf(V ) + (��

n ⊆ �). Consider the interpretation H : W � V based on η. Let J be the
cut on which H was constructed; let J0 be the common cut of J , and H ◦ N and let
F be the definable isomorphism between J0 and a cut of H ◦ N. (See Theorem2.5.)

In W, we can shorten J0 to an ω1-cut J1 such that, for all x in J1, F(x) =H◦N cx .

Proof Wework inW . Let J0 and F be as described in the formulation of the theorem.
Clearly, F0 =H◦N c0.
Suppose x ∈ J0 and Fx =H◦N cx . Let k be the Gödel number of the axiom of S1

2
and let k ′ := ρ(S1

2).
By (1) of Lemma3.10, we have in W that �� �α,�h Cx (cx ) and �� � C2x (c2x ).

By (3) of Lemma3.10, we obtain �� � C2x (2cx ). Hence, by (2) of Lemma3.10,
we may conclude: �� � c2x =N 2cx . Thus, we have (c2x = 2cx )NH . Since F is an
isomorphism, it follows that F(2x) =H◦N c2x . Similarly for F(2x + 1). We may
conclude that the class X of x such that F(x) =H◦N cx is closed under 0, and the
functions λx · 2x and λx · 2x + 1. Hence, we can shorten X to the desired ω1-cut
J1. �

Next we turn to the usual dyadic numerals. What does A(�n ) mean?We interpret this
using small scope elimination of terms. The transformation of the formula commutes
with all connectives, so we only have to consider its meaning for atoms. Let us
consider the case P(x, n, k). We translate this to:

∃w ∈ δN ∃w′ ∈ δN (CN
n (w) ∧ CN

k (w) ∧ P(x, w,w′)).

Here we choose the w,w′ fresh according to some predetermined rule. We have the
following.

Theorem 3.12 Suppose N : S1
2 � V . Let the witnessing proof be π. (We assume

that π includes the verification of the axioms of identity.) Let n := ρ(π). Let W :=
sf(V ) + (��

n ⊆ �) + ∀A ∈ � (�∗
ρ(A) ⊆ �). Consider the interpretation H : W � V

based on η. Let J be the cut on which H was constructed.
In the present theorem, we write A(�v ) for the formula A with a selection of its

free variables displayed. So the real object we are talking about is something like
〈A, �v 〉, where the elements of �v are among the free variables of A.

In W, we can shorten J to an ω1-cut J0 such that, for all formulas A(�v ) in J0 and
for all �a in J0, if A(�a ) is in � ∩ J0, then satη(σ, A(�a )) iff satη(σ′, A(�v )), where σ′
is σ extended with the function that sends vi to cai .

Proof We assume the conditions of the theorem. Note that under our assumptions,
if A(�a ) is in � ∩ J0, then so is A(�v ). We employ as measure of complexity ν that
computes depth of connectives. This means that ν(C) is 0 if C is an atom and
ν(D ∧ E) = max(ν(D), ν(E)) + 1, etcetera.

We consider the class X of all x in J such that, for all formulas B( �w ) in J of
ν-complexity ≤ x , and, for all B(�b ), where the bi are in J , if B(�b ) ∈ �, then, for
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all σ, satη(σ, B(�b )) iff satη(σ′, B), where σ′ is σ extended with the function that
sends vi to cai .

Using Lemma3.10(1)(2), for the atomic case and the commutation conditions for
sat for the connectives, we may now show that X is closed under 0 and successor.
We shorten X to an ω1-cut J0.

We find that, for all formulas B( �w ) in J of ν-complexity in J0, and, for all B(�b ),
where the bi are in J , if B(�b ) ∈ �, then, for all σ, satη(σ, B(�b )) iff satη(σ′, B),
where σ′ is σ extended with the function that sends vi to cai .

Note that if B( �w ) is in J0, then ν(B) is in J0 and B(�b ) is in J0. It follows that J0
has the property promised in the theorem. �

3.6 The Collapse

We can sharpen Theorem3.4 further by providing ‘normal forms’ for the domain
of the interpretation. I add these sharpenings for completeness of the presentation.
They will not be used further in the paper. In the next theorem, we show that we can
modify interpretation H to make it identity preserving and such that its domain is an
initial segment.

Let Eqr be the following theory. We expand the signature of S1
2 by a unary

predicate symbol D and a binary predicate symbol E. The axioms of our theory are
S1
2 plus axioms stating that that E is an equivalence relation on D.13

Lemma 3.13 In Eqr, we have an ω1-cut I and a collapsing function coll that is
a bijection between (D ∩ I )/(E � (D ∩ I )) and an initial segment of I (with ordi-
nary identity). The bijection has the further property that for x ∈ D ∩ I , we have
coll(x) ≤ x.

Proof We work in Eqr. As a first step, we consider the class I0 of x such that for
all y ≤ x , if y ∈ D, then there is a smallest z ∈ D such that yEz. We show that
I0 is inductive. If x = 0 and y ≤ x and y ∈ D, then certainly z = 0 is the smallest
z ∈ D such that y = 0E 0 = z. Suppose we have x ∈ I0 and y ≤ Sx . Then, y ≤ x
or y = Sx . In the first case, we can find the desired z by applying the fact that x ∈ I0
to y′. In the second case, suppose y ∈ D. If there is a y′ < y with yEy′, we have
y′ ≤ x and we can find z applying x ∈ I0. In case, for no y′ < y, we have yEy′, we
take z := y.

We shorten I0 to an ω1-cut I1. We find that each equivalence class of E � (D ∩ I1)
has a smallest element.

We proceed to work in I1. By the usual tricks, we can assume that we have an
extra element ∗. A sequence σ in I1 is a good sequence, if for all i < length(σ) we
have one of the following:

13We allow the domain D to be empty. We consider the the empty relation to be an equivalence
relation on the empty set.
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• i /∈ D and σi = ∗.
• i ∈ D and the smallest i0 that is E-equivalent to i is i itself. In this case, σi is the
supremum of the σ j + 1, for j < i and σ j �= ∗.14

• i ∈ D and the smallest i0 that is E-equivalent to i is strictly below i . In this case,
σi = σi0 .

Consider any two good sequences σ and τ of length a. We may prove by induction
on i ≤ a that σ � i = τ � i noting that a is logarithmic in σ.

Consider a good sequence σ of length a in I1. Suppose, for i0, i1 < a with i0, i1 ∈
D, we have i0Ei1. Then, by the definition of good it is immediate that σi = σ j .
Suppose, for i0, i1 < a with i0, i1 ∈ D, we have not i0Ei1. Let i∗0 be the smallest
element in the equivalence class of i0 and let i∗1 be the smallest element in the
equivalence class of i1. Suppose e.g. that i∗0 < i∗1 . By the definition of good sequence,
we find that σi0 = σi∗0 < σi∗1 = σi1 . So the sequence σ codes a partial injection from
(D ∩ I1)/(E � (D ∩ I1)) to I1-numbers.

Consider a good sequence σ of length a in I1. By induction we find that, for all
i < a such that σi �= ∗, we have σi ≤ i , noting that a is logarithmic in σ.

Consider a good sequence σ of length a in I1. By induction we find that, for all
i < a if σi = j and k < j , then there is a m < i such that σm = k, noting that all
quantifiers are sharply bounded, since a is logarithmic in σ.

Consider the class I2 of all a in I1 such that a is the length of a good sequence.
Clearly, I2 is progressive. Let I be an ω1-cut that is a shortening of I2. We define,
for x in D ∩ I : coll(x) = y iff there is a good sequence σ of length x + 1 such that
σx = y. It is easy to see that coll is a bijection between (D ∩ I )/(E � (D ∩ I )) and
an initial segment of I . Moreover, coll(x) ≤ x , whenever x ∈ D ∩ I . �

Let EQ be the theory of identity.

Lemma 3.14 Suppose K : V �U and M0 : EQ �U. Let K0 : EQ �U be the
reduct of K to the language of pure identity. This means that K0 is the unique
direct interpretation of EQ in U. Suppose there is a U-definable isomorphism F
between K0 and M0. Then we can find an interpretation M : V �U, such that M0 is
the reduct of M to the language of identity and F extends to an isomorphism between
K and M.

The simple proof is left to the reader.

Theorem 3.15 There is a one-dimensional identity-preserving interpretation H ◦
� :

SFcut � Pred� with underlying translation η◦
� . The domain of H ◦ is an initial seg-

ment of a definable SF�,cut-cut J ◦ with J ◦ ⊆ J. Moreover, we have a satisfaction
predicate satη◦

�
for H ◦

� for formulas A in� ∩ J ◦. This predicate satisfies the commu-
tation conditions for all formulas in its intended domainwith the usual understanding
that commutation for the quantifiers is relativized to δη◦

�
and that atoms are sent to

their η◦
�-translations. Our satisfaction predicate satisfies:

14In S1
2, the supremum of the elements of a sequence always exists. However, we do not need that

insight for the present definition to be meaningful.
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SF�,cut � ∀A ∈ (sent� ∩ � ∩ J ◦) (�α,�A → satη◦
�
(∅, A)).

It follows that we have an interpretation H ◦
V : sfcut(V ) � V based on η◦

�V
. Clearly,

H ◦
V inherits the various properties of H ◦

� .

Proof We work in sfcut(V ). We consider the interpretation H ′ := H � (J ∩ J). If
we interpret S1

2 on J ∩ J and D as δH ′ and E as =H ′ , then we obtain an interpre-
tation of Eqr. We take J ◦ := I , where I is as promised in Lemma3.13. We use
the function coll to construct the interpretation H ◦ and the predicate satη◦ using
Lemma3.14. �

3.7 The Second Incompleteness Theorem

This subsection is mainly intended to bring a question on the board. One of Fefer-
man’s discoveries is that a theory U can have a consistency statement for U that
can be proved in U . This is reflected in our framework. In Sect. 4, we will see that
restricted theories U interpret sf(U ). The same holds for reflexive theories.

It would be interesting to see whether we can use the framework of this paper to
get a more precise understanding of under what conditions a consistency statement
can be proven.

We will briefly illustrate that at least not all theoriesU interpret sf(U ). Let us say
that a theory U is introspective iff U � sf(U ).

Theorem 3.16 Suppose e.g. T is a complete and consistent extension of PA in the
language of PA. Then, T is not introspective for any axiomatization.15

Proof Let X be an axiomatization of T and let T be the theory axiomatized by X .
Suppose K : T � sf(T ). Consider anymodelM of T . Since T satisfies full induction
N := K̃ (M) is an internal model with a definable initial embedding fromM inN .
It is easy to see that as a consequence we will have M-definable predicates α∗ and
�∗ such that M(α∗, �∗) satisfies sf(T ).

Reason in M. Suppose �α∗⊥. By cut-elimination it follows that we can find a
cutfree-proof (in the sense of cutfree for predicate logic) of ⊥. The formulas used in
this cutfree proof are subformulas of formulas in α∗ and hence these formulas will
be in �∗. It follows that �α∗,�∗⊥. Quod non. However, since α� provides axioms for
the complete theory T, we may now conclude that �α∗ is a truth-predicate for M.
But this is impossible. �

Consider a consistent finitely axiomatized sequential theory A. It has been shown
by Jan Krajíček in [20] that we can find a function sending N to nN such that
kraj(A) := A + {�N

A,nN ,nN
⊥ | N : S1

2 � A} is consistent. See also [38, 39]. (In fact,
we can arrange it so that A �loc kraj(A).) We assume that kraj(A) be axiomatized

15We remind the reader that we allow axiomatizations of any complexity.
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in the obvious way. As a consequence every standard formula of the language of A
will be in sf(kraj(A))-verifiably in �.

Theorem 3.17 Suppose A is a consistent sequential theory. Then, kraj(A) is not
introspective.

Proof Let A be consistent and finitely axiomatized. SupposeK : kraj(A) � sf(kraj

(A)). We have sf(kraj(A))
K−→ kraj(A)

H−→ sf(kraj(A)). We note that all standard
cuts of K in kraj(A) will be in �. We consider J with:

x ∈ J :↔ x ∈ δK H ∧
∀I (v) (ω1-cutK H ({y ∈ δK H | satη({〈v, y〉}, I (v))}) →

satη({〈v, x〉}, I (v))).

Clearly J is an ω1-cut in sf(kraj(A)). Also J is below every standard K -internal
K H -ω1-cut. So, we have �(A) := S1

2 + {♦A,n,n� | n ∈ ω} on J . Now we consider

sf(kraj(A))
K−→ kraj(A)

H−→ sf(kraj(A))
K−→ kraj(A).

In the outer kraj(A) we find that J K satisfies S1
2. The verification of this asks only

a finite number of kraj(A) axioms over A; let their conjunction be B. We consider
the disjunctive interpretation N ∗ := J K 〈B〉N0, where N0 : S1

2 � A. Clearly, N ∗ :
S1
2 � A. It follows that kraj(A) � �N ∗

A,nN∗ ,nN∗ ⊥. Since kraj(A) � B it follows that

kraj(A) � �J K
A,nN∗ ,nN∗ ⊥. But this contradicts the fact that we have �(A) on J K . �

Open Question 3.18 Is there an axiomatization of kraj(A), for A consistent and
sequential, that is introspective? My guess would be: no.

4 Characterization Theorems and The World of �

This section is an introduction to the �-family. This is a group of transformations
of theories into theories that is closely connected to the main object of our paper
sf(·). The Friedman Characterization and the Orey–Hájek Characterization emerge
naturally from the results on �.

4.1 �∗,n

In this subsection, we study restricted sequential theories. A theory is n-restricted if
its axiom set is contained in �∗

n . A theory is restricted if it is n-restricted for some n.
We define �∗,n(V ) as the theory in the language of arithmetic extended with a

unary predicate α given by:
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• �∗,n(V ) := S1
2 + ∀x ∈ α sent�V (x) + {α(�A�) | A ∈ axV } +

{♦α,k,n� | k ∈ ω}.
We have the following theorem.

Theorem 4.1 Suppose V is n-restricted then V � sf(V ) ≡ �∗,n(V ). If V is also
sequential, we have V � sf(V ), and hence, V ≡ sf(V ) ≡ �∗,n(V ).

Proof Suppose V is n-restricted.

sf(V ) � V . This is Theorem3.1.
sf(V ) � �∗,n(V ). We work in sf(V ). We have ♦α,��. It clearly follows that

♦α,�∩�∗
n
�. By Buss’ result, we have cut-elimination for n-proofs π such that a tower

of exponents of height n + c exists, where c is a fixed standard constant. So, we
can find a definable ω1-cut I such that ♦I

α,�∗
n
�. So, a fortiori, ♦I

α,k,n�. We interpret
�∗,n(V ) taking I as our domain of interpretation andα ∩ I as the interpretation ofα.
�∗,n(V ) � sf(V ).We take the identical interpretation for the arithmetical domain and
predicates. We interpret � as �∗

n . Finally, we interpret α by, say α∗ with α∗(A) :↔
α(A) ∧ ♦α,A,n�.16 Suppose �α∗,�∗

n
⊥. Let B be the largest axiom in the proof. It

follows that �α,B,n⊥. Quod non, since B ∈ α∗.
V � sf(V ), if V is sequential. In V we have an interpretation N of S1

2 and a
satisfaction predicate satn such that V proves that all ��

n-formulas in N satisfy the
commutation conditions. We write truen(B) for satn(∅, B). We can find an ω1-cut
I such that:

(†) V � ∀A ∈ (��
n ∩ I ) (�I

truen ,n A → truen(A)).

It is now easily seen that interpreting S1
2 by relativization to I and α as truen ∩ I

and � as ��
n ∩ I , we have an interpretation of sf(V ). �

Wenote that�∗,n(V ) is dependent on the chosen axioms forV . However, by the above
theorem, modulo mutual interpretability, we can find an extensionally equal variant
V n of V that is uniquely fixed by the theorems of V , to wit the theory axiomatised
by the �∗

n -theorems of V .
For example, the theory of pure identity EQ is finitely axiomatized, and a fortiori

restricted, but since EQ is decidable, we have EQ �� sf(EQ).
We note that, for any V , the theory sf(V ) is restricted and sequential. Hence, we

have:

Corollary 4.2 Let V be any theory. Then, sf(sf(V )) ≡ sf(V ).

In case we consider a finitely axiomatized sequential theory A, we find that the
theory �∗,ρ(A)(A) is ipso facto finitely axiomatised. The theory �∗,ρ(A)(A) is clearly
mutually interpretable with S1

2 + ♦A,A,ρ(A)� (where the first subscript A is elliptic
for the axiom set x = �A�). Thus, we have: A ≡ (S1

2 + ♦A,A,ρ(A)�). This insight

16We treat the A in the subscript of ♦α,A,n as the number bounding the axiom of the theory A,
which is par abus de langage, again A.
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immediately leads to the FriedmanCharacterization of interpretability among finitely
axiomatized sequential theories.

The Friedman Characterization was first published in [33]. For a careful analysis
of its formalization, see [36]. An exploration of its consequences can be found in [45].

Theorem 4.3 (This result is due to Harvey Friedman around 1973) Let A and B be
finitely axiomatized theories. Then: A � B iff EA � ♦A,A,ρ(A)� → ♦B,B,ρ(B)�.

Proof Let A and B be finitely axiomatized sequential theories. We find, by
Theorem4.1:

(†) A � B iff (S1
2 + ♦A,A,ρ(A)�) � (S1

2 + ♦B,B,ρ(B)�).

By a meta-theorem of Wilkie and Paris (see: [53]), we have

(‡) (S1
2 + ♦A,A,ρ(A)�) � (S1

2 + ♦B,B,ρ(B)�) iff EA � ♦A,A,ρ(A)� → ♦B,B,ρ(B)�.

Combining (†) and (‡), we immediately have the Friedman Characterization. �

Reflection on the proof shows that the demand that B be sequential is superfluous.
The characterization works for finitely axiomatized A and B with A sequential.

Open Question 4.4 Can we have something as nice as the Friedman Characteriza-
tion for the restricted case?

4.2 �∗,∗

We define three operations on theories:

• �∗,∗(V ) := S1
2 + ∀x ∈ α sent�V (x) + {α(�A�) | A ∈ axV } +

{♦α,k,k� | k ∈ ω}.
• FCn(V ) is a theory in the signature of V extended by second-order variables for
all arities m with 1 ≤ m ≤ n. We add to the axioms of V the axioms of first-order
comprehension for m-ary relations, with 1 ≤ m ≤ n, where the defining formulas
are constrained to the original V -language, i.e., they contain no second-order
variables. We write FC for FC1.17

• sf+(V ) := (sf(V ) + {(�∗
k ⊆ �) | k ∈ ω}).

In terms of �∗,∗ we can define the central notion of reflexivity.

• A theory V is reflexive iff V � �∗,∗(V ).

We have the following theorem.

17It would bemore natural to work with the theoryFC∞ with class-variables for any arity. However,
this would not fit with our policy to only consider finite signatures.
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Theorem 4.5 Consider any theory V . We have:

FCn(V ) � sf+(V ) ≡ �∗,∗(V ).

In case V is n-sequential we also have FCn(V ) � sf+(V ), and thus:

FCn(V ) ≡ sf+(V ) ≡ �∗,∗(V ).

Proof sf+(V ) � FCn(V ). We consider the Henkin interpretation H : sf+(V ) � V .
For this interpretation we have a satisfaction predicate sat on � ∩ J for a certain
ω1-cut J .We extend H by interpreting ourm-ary classes, for 1 ≤ m ≤ n, as formulas
y in � ∩ J with a sequence of length m of designated variables �v free. We translate
�x ∈ y as sat({〈v0, x0〉, · · · , 〈vm−1, xm−1〉}, y). It is easily seen that this gives us the
desired interpretation of the first-order comprehension axioms for all 1 ≤ m ≤ n,
since all standard formulas are in �.

sf+(V ) � �∗,∗(V ). This is immediate.
�∗,∗(V ) � sf+(V ). We interpret sf+(V ) in �∗,∗(V ) via τ by defining:

• δτ (x) :↔ �.
• τ is the identical translation on the arithmetical vocabulary.
• �τ (x) :↔ form�V (x) ∧ ♦α,ρ(x),ρ(x)�.
• ατ (x) :↔ α(x) ∧ ♦α,x,x�.

We work in �∗,∗(V ). We verify ♦ατ ,�τ
�. Suppose we have an ατ , �τ -proof π of ⊥.

Let x be the largest axiom used in π and let y be themaximal complexity of a formula
occurring in the proof. Let z be the maximum of x and y. So we have ♦α,z,z�. On
the other hand, π would be be certainly an α, z, z-proof of ⊥. Quod non. The other
axioms of sf+(V ) are easily verified.

If V is n-sequential, then FCn(V ) � sf+(V ). We treat the 1-sequential case. The
general case requires only minor changes. Let V be a sequential theory. We fix a
one-dimensional N : S1

2 � V .
We work in FC(V ). We suppress the mention of N in the proof, wherever it is

clear that things are supposed to be coded in N .
Our first order of business is to construct an appropriate satisfaction predicate.

Regrettably, the construction is a substantial amount of work, so, here, we can only
sketch it.We can write down a formula
(X,Y,W, Z)with the following properties.
Suppose Y is an ω1-cut and X is a satisfaction predicate for �∗

x ∩ Y , in the sense that
X satisfies the commutation conditions on �∗

x ∩ Y .

• Suppose that 
(X,Y,W, Z). Then, Z is a sub-ω1-cut of Y andW is a satisfaction
predicate for �∗

x+1 ∩ Z . Moreover, X and W coincide on �∗
x ∩ Z -formulas.

• Suppose that 
(X,Y,W, Z) and 
(X,Y,W ′, Z ′). ThenW is extensionally equal
to W ′ and Z is extensionally equal to Z ′.

Using the fact that V has a good theory of sequences, we can represent a sequence
of classes as a class of sequences. There is a small technical detail since the naive
construction does not work when the empty class is an element of our sequence, but
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a small trick will solve that problem. A sequence S of pairs of classes is good if its
first component is 〈∅, δN 〉 and whenever x + 1 < length(S) and Sx is 〈X,Y 〉 and
Sx+1 is 〈W, Z〉, then 
(X,Y,W, Z).

We consider the virtual class X of all x such that:

i. There exists a good sequence of length x .
ii. For all u ≤ x , all good sequences of length u are (extensionally) equal.
iii. Let u < x and let S be a good sequence of length x . Let Sx = 〈X,Y 〉. Then, Y

is an ω1-cut and X is a satisfaction predicate for �∗
x ∩ Y .

iv. Let u < v < x and let S be a good sequence of length x . Suppose Su is 〈X,Y 〉
and Sv is 〈W, Z〉. Then Z is a sub-ω1-cut of Y and X andW coincide on�∗

u ∩ Z .
v. If S is a good sequence of length x and u < x , then the restriction S � u of

S to u exists. (We have to add this clause because of the limited amount of
comprehension available.)

Clearly, we can prove, for each standard n, that n ∈ X . We define:

• Xx is the first component of Sx , where x + 1 is in X and S is a good sequence of
length x + 1.

• Yx is the second component of Sx , where x + 1 is in X and S is a good sequence
of length x + 1.

• I is the intersection of all Yx for x + 1 ∈ X .
• �∗

X := ∪x∈X�∗
x .

• sat∗(α, A) iff A ∈ �∗
X ∩ I and Xρ(A)(α, A).

By our construction sat∗(α, A) satisfies the commutation conditions on�∗
X ∩ I. We

define true∗(A) as sat∗(∅, A). We can now find an ω1-cut J such that:

(†) ∀A ∈ (��
X ∩ J ) (�J

true∗,X A → true∗(A)).

We define our translation ν.

• δν := J .
• The translation of the arithmetical vocabulary is the restriction of the vocabulary
of N to J ,

• �ν := �∗
X ∩ J .

• αν := true∗ ∩ J .

We can now verify the axioms of sf+(V ) under the translation ν. �

It is easy to see that FC preserves extensional identity =ext of theories. So FC can
as well be seen as a functor on theories qua sets of theorems. Similarly, it is easy to
see that, if U � V via a 1-dimensional interpretation, then FC(U ) � FC(V ). Since
every interpretation in a sequential theory can be transformed into a 1-dimensional
interpretation, it follows that FC can be viewed as a functor on the degrees of inter-
pretability of sequential theories. By Theorem4.5, it follows that FC, sf+ and �∗,∗
define the same functor on the degrees of sequential theories.



134 A. Visser

Theorem 4.6 The operations FC, sf+ and �∗,∗ define a closure operation on the
interpretability degrees of sequential theories.

Proof We have already seen that FC yields a functor on the degrees of sequential
theories. Moreover, V � FC(V ). Finally, we check that �∗,∗(V ) � �∗,∗(FC(V )).
We construct a translation τ . This translation will be the identity on the arithmetical
vocabulary. We take ατ := α ∪ fc, where fc is a �b

1-representation of the compre-
hension axioms. We work in �∗,∗(V ). Suppose π witnesses �ατ ,n,n⊥. Suppose the
comprehension axioms ≤ n involve the comprehension formulas A0, · · · , Ak−1. We
interpret x ∈ Y by (y = 0 ∧ A0(x)) ∨ · · · ∨ (y = k − 1 ∧ Ak−1(x)), where the vari-
able Y is translated to y and where the domain of classes is all numbers. Using this
translation, say ν, we can transform π into a witness π′ of �α,n,2n⊥, and a fortiori,
of �α,2n,2n⊥. A contradiction. Hence, ♦ατ ,n,n�. �

Theorem 4.7 Suppose V is sequential. The theory FC(V ) is not mutually inter-
pretable with a finitely axiomatized theory A.

Proof Suppose V is sequential and FC(V ) is mutually interpretable with the finitely
axiomatized theory A. It follows that A ≡ FC(V ) ≡ FC(FC(V )) ≡ FC(A) ≡ �∗,∗
(A). So, for some N : S1

2 � A, for all n, we have A � ♦N
A,n,n�. If we take, n suf-

ficiently large, it follows, by cut-elimination, that A �n ♦N
A,n,n�, where �n stands

for provability only involving �∗
n -formulas. This contradicts a version of the Second

Incompleteness Theorem due to Pudlák. See [28]. �

The functor FC plays a role in the comparison of local and global interpretability.
The next theorem will state the connection. We will use three notions.

• V � n is the theory axiomatized by the V -axioms with code ≤ n.
• Let X be a set of numbers. Suppose N : S1

2 � V . The theory V N-binumerates X
iff, there is a V -formula B(v) such that, for all n ∈ X , V � B(n) and, for all n /∈ X ,
V � ¬ B(n). Here n stands for the N -numeral of n. In case, V is sequential, and
N ′ : S1

2 � V , by Pudlák’s Theorem2.5, we find that V N -binumerates X iff V N ′-
binumerates X . So, for sequential theories we simply speak about binumeration.

• �∗,∗(U, V ) is the result of extending �∗,∗(U ) with a new predicate β and axioms
{β(B) | B ∈ axV } and {¬β(B) | B /∈ axV }.

Theorem 4.8 Suppose U is a sequential theory and U binumerates the axioms of
V . Then, the following are equivalent:
(i) U �loc V , (ii) �∗,∗(U, V ) � �∗,∗(V )[α := β], (iii) FC(U ) � V .

Proof (i) ⇒ (ii). Suppose U �loc V . Consider any n. We have, for some m and
some K , that K : (U�m) � (V �n). Let U � m := {A0, · · · Ak−1} and let V � n :=
{B0, · · · , B�−1}. So, K : {A0, · · · Ak−1} � {B0, · · · , B�−1}. Let thewitnessing proofs
of the BK

i from {A0, · · · Ak−1} be νi . By �1-completeness, we have, for each i < �:

�∗,∗(U, V ) � (νi : {A0, · · · Ak−1} � BK
i )N .
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We reason in �∗,∗(U, V ). Suppose π is an n-proof witnessing the inconsistency of
�β,n,n⊥. By bi-numerability, π witnesses the inconsistency of {B0, · · · , B�−1}. We
can transform π into πK a n + ρ(K )-proof of ⊥ from the BK

i . Adding the νi above
the BK

i , we get a p-proof of⊥, from axioms {A0, · · · Ak−1}, where p is a sufficiently
large standard number. We may assume that p ≥ m. It follows that �α,p,p⊥. Quod
non. Hence ♦β,n,n�.

(ii) ⇒ (iii). By Theorem4.5, FC(U ) interprets �∗,∗(U ) say via N . Since U
binumerates the axioms of V , it binumerates them in N . Hence, FC(U ) interprets
�∗,∗(U, V ). It follows by (ii), that FC(U ) interprets �∗,∗(U, V ). Hence, by Theo-
rems4.5 and 3.1, FC(U ) � V .

(iii) ⇒ (i). It is easily seen that U �loc FC(U ). Hence U �loc V . �

We note that some clause like our demand that U binumerates the axioms of V is
necessary, since FC(U ) interprets at most countably many incomparable theories in
the language ofV . On the other hand, the theoryU locally interprets 2ℵ0 incomparable
theories. If we restrict ourselves to the recursively enumerable theories we can get
rid of the extra clause.

The insight that, for sequential U in which the axioms of V are binumerable,
we have U �loc V iff �∗,∗(U, V ) � �∗(V )[α := β] is our version of the famous
Orey–Hájek characterization.

Consider a recursively enumerable theory as set of theorems U. By Craig’s trick
we know that U can be �b

1-axiomatized. Consider two such axiomatizations α0 and
α1. Then, it is easy to see that S1

2 + {♦α0,n,n� | n ∈ ω} and S1
2 + {♦α1,n,n� | n ∈ ω}

prove the same theorems. Thus, from the perspective of theories as sets of theorems
we are justified in writing �(U) for S1

2 + {♦α∗,n,n� | n ∈ ω}, where α∗ is some �b
1-

axiomatization of U. Using these ideas, we get a simpler form of the Orey–Hájek
characterization for the case of recursively enumerable theories qua sets of theorems.

Corollary 4.9 Suppose T and U are recursively enumerable theories qua sets of
theorems and T is sequential. Then, T �loc U iff �(T) � �(U) iff FC(T) � U.

Corollary 4.10 FC is the right adjoint of the projection functor of the degrees of
global interpretability of recursively enumerable sequential theories on the degrees
of local interpretability of recursively enumerable sequential theories.

Open Question 4.11 The relation V � FC(U ) on the sequential theories induces a
Kleisli pre-order category on the sequential global degrees. We have seen that the
sub-category of this Kleisli category obtained by restricting ourselves to degrees of
recursively enumerable theories is isomorphic to the category of local degrees of
recursively enumerable sequential theories.

Clearly V � FC(U ) implies V �loc U , but not vice versa.
Is there a characterization of the relation V � FC(U ) on the sequential theories

that makes clear that it an alternative notion of interpretability?
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4.3 �∗,∞

We define:

• �∗,∞(V ) := S1
2 + ∀x ∈ α sent�V (x) + {α(�A�) | A ∈ axV } +

{♦α,k,∞� | k ∈ ω}.
• PCn(V ) is a theory in the signature of V extended by second-order variables for
arities m with 1 ≤ m ≤ n. We add to the axioms of V the axiom of predicative
comprehension for m-ary relations, with 1 ≤ m ≤ n, where the defining formulas
contain no bound second-order variables. We write PC for PC1.
As is well known, if V is sequential (or even a pair theory) then PC(V ) is finitely
axiomatizable over V .18

• sf++
(V ) := (sf(V ) + (� = form�V )).

We can define the important notion of strong reflexivity in terms of �∗,∞.

• A theory V is strongly reflexive iff V � �∗,∞(V ).

In much of the literature the notion we call strong reflexivity is named reflexivity.
This is due to the fact that this literature works over the basic theory EA rather than
S1
2.
We have the following theorem.

Theorem 4.12 Consider any theory V . We have:

PCn(V ) � sf++
(V ) ≡ �∗,∞(V ) ≡ (�∗,∗(V ) + exp).

In case V is n-sequential, we also have PCn(V ) � sf++
(V ), and thus:

PCn(V ) ≡ sf++
(V ) ≡ �∗,∞(V ).

Proof sf++
(V ) � PCn(V ). We consider the Henkin interpretation H : sf+(V ) � V .

For this interpretation we have a satisfaction predicate sat on form�V ∩ J for a
certain ω1-cut J . We extend H by interpreting our m-ary as formulas y in J with a
designated sequence of variables �v free. We translate �x ∈ y as sat({〈v0, x0〉, · · · , }
〈vm−1, xm−1〉, y). It is easily seen that this gives us the desired interpretation of the
predicative comprehension axiombecause of the good closure properties of form�V ∩
J .

sf++
(V ) � �∗,∞(V ). This is immediate.

�∗,∞(V ) � sf++
(V ). This is analogous to the proof that �∗,∗(V ) � sf+(V ).

If V is n-sequential, then PCn(V ) � sf++
(V ). We restrict ourselves to the 1-

sequential case. We fix a one-dimensional N : S1
2 � V . We work in PC(V ). We

suppress the mention of N in the proof, wherever it is clear that things are supposed
to be coded in N .

18Regrettably, I do not have a reference for the argument in full generality. It is proven for the case
of ACA0 in [32, pp. 311–312]. However, the argument there does not easily lift to the general case.
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We develop a satisfaction predicate. This has the same definition as the satisfaction
predicate constructed in the proof that FC(V ) � sf+(V ) (Theorem4.5). The first
point of divergence is that the virtual class X will be closed under successor. So,
we have a definable ω1-cut J ⊆ X . Thus, sat∗(α, A) will satisfy the commutation
conditions for all formulas on a suitable ω1-cut I. The rest of the proof follows the
lines of the earlier proof that FC(V ) � sf+(V ). �

It is easy to see that PC preserves extensional identity of theories. So PC can as well
be seen as a functor on theories qua sets of theorems. Similarly, it is easy to see that, if
U � V via a 1-dimensional interpretation, thenPC(U ) � PC(V ). It follows thatPC
can be viewed as a functor on the degrees of interpretability of sequential theories.
By Theorem4.12, it follows that PC, sf++ and �∗,∞ define the same functor on the
degrees of sequential theories.

Theorem 4.13 The operations PC, sf++ and �∗,inf define a closure operation on
the interpretability degrees of sequential theories.

The proof is analogous to the proof for the case of FC, sf+ and �∗,∗
In contrast toFC, the functorPC does preserve finite axiomatizability for sequen-

tial theories. We do have:

Theorem 4.14 SupposeU � �∗,∞(U ). Then,U is notmutually locally interpretable
with a finitely axiomatized theory.

Proof SupposeU � �∗,∞(U ) andU ≡loc A, where A is finitely axiomatized. Let B
be afinitely axiomatized subtheory ofU such that B � A.WehaveU � (S1

2 + ♦B�).
So, for some finitely axiomatized subtheory C of U , we have C � (S1

2 + ♦B�).
Hence:

A � C � (S1
2 + ♦B�) � (S1

2 + ♦A�).

But this contradicts the Second Incompleteness Theorem. �

We end this subsection with a somewhat surprising theorem. Let exp be the axiom
that expresses the totality of exponentiation.

Theorem 4.15 Let U be sequential. Then �∗,∞(U ) ≡ (�∗,∗(U ) + exp).

Proof The theory (�∗,∗(U ) + exp) interprets �∗,∞(U ) on a superlogarithmic cut
J . The main ingredient is that EA = I�0 + exp � ♦A,A,n� → ♦A,A,∞� for any
(standardly) finitely axiomatized A by cut-elimination for predicate logic.

In the other direction, we note that �∗,∞(U ) interprets U via, say H∗, with a
satisfaction predicate sat∗ that works for all formulas on some cut J ∗. We fix some
interpretation N : S1

2 �U . We consider, in �∗,∞(U ), the intersection J of all H∗-
ω1-cuts that are definable by a formula in J ∗ (using sat∗). Since, for every standard
n, there is an N -ω1-cut I , such that U � ♦I

U,n,n�, we find that �∗,∞(U ) � ♦J
U,n,n�.
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We show that J is closed under exponentiation. Reason in �∗,∞(U ). Consider
any x in J . We show that 2x is in every H-ω1-cut I that is definable by a formula
in J ∗. Consider such a cut I . We consider a logarithmic sub-ω1-cut I ′ of I . The
construction of such a subcut can be executed in J ∗. By definition x is in I ′, and,
hence, 2x exists in I .

We now can use J to interpret (�∗,∗(U ) + exp). �

Open Question 4.16 It is a bit strange that we needed sequentiality in the proof of
Theorem4.15. What happens when we drop the demand that U be sequential?

Remark 4.17 As we will see, when reflecting on the example of Sect. 5.1, one could
imagine a somewhat more general kind of �. In our present treatment, we have
one α and our consistency statements are concerned with the first n-axioms in α,
say α � n, for increasing n. A more general idea would be to take α a two-place
predicate α(x, y) or αx (y), where the αx are approximations to the final axiom set.
In a nutshell, we replace α � x by the more abstract αx . As a result, we could also
treat oracle provability as in Sect. 5.1 using a �-format.

5 Examples

In this section, we treat three examples of applications of the Interpretation Existence
Lemma. These examples are more or less randomly chosen, but we hope they give a
first impression of the wide range of applicability of the Lemma.

5.1 End-Extensions

Consider a model M of PA. Let α∗ be the usual axiomatization of PA. We have
M |= �∗,∞(PA)[α := α∗]. Hence, M has an internal model N that satisfies (the
standard axioms of)PA. This model has a satisfaction predicate that works for allM-
formulas. Say the corresponding truth-predicate is true. If we consider the sentence
L withM |= L ↔ ¬ true(L), we see thatM andN are not elementary equivalent.
By Pudlák’s Lemma,M andN have a commonM-definable cut. SinceM satisfies
full induction, this cut must be M itself. We may conclude that N is a strict end-
extension of M.

Remark 5.1 What about elementary end-extensions? The McDowell-Specker The-
orem tells us that every model of PA has an elementary strict end-extension.

Feferman, in [5], announces the following result: there is no arithmetically defin-
able non-standard model of the theory of the standard model of arithmetic. In other
words, no model can be an internal model of the standard model, non-standard, and
elementarily equivalent to the standard model. A proof of this result was provided by
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Scott in [31]. See also [1, Theorems25.4a, c]. Inspecting the proof of the Feferman-
Scott result, one can easily adapt it to show that no model M of PA has an internal
model (possibly with parameters)N that is an elementary strict end-extension w.r.t.
the unique definable initial embedding ofM intoN . Thus, we cannot use the Inter-
pretation Existence Lemma directly to create an elementary strict end-extension
(w.r.t. the unique definable embedding).19

However,we can still use the InterpretationExistenceLemmaas a proof ingredient
to show the McDowell-Specker Theorem as was observed by Matt Kaufmann in a
talk “Model theory for arithmetic and for set theory: a brief comparative survey”
presented at the meeting of the Association for Symbolic Logic, University of Notre
Dame, on April 1984. We refer the reader to Schmerl’s paper [30] for a sketch of the
proof.

As our example we reproduce a proof of a theorem due to Wilkie. See [30, 52]. This
is Theorem2.4.2 in Kossak and Schmerl’s textbook [21]. We reproduce treatment in
[21] for the case where we restrict ourselves to the language of PA. We follow the
Kossak and Schmerl’s presentation of the proof almost step by step except that we
do not use their Lemma2.4.1.

For a complete theory T, we define Rep(T) as the set of representable sets of
natural numbers of T. We write SSy(M) for the standard system of a model M of
PA. The standard system consists of the intersections of the parametrically definable
sets of the model with the standard numbers. See [18, 21] for information about
representable sets and standard system.

Theorem 5.2 Suppose thatM is amodel ofPA and thatT is a complete theory as set
of theorems that extendsPA, the set of theorems ofPA. ThenM has an end-extension
N |= T iff the following conditions hold:

i. Rep(T) ⊆ SSy(M).
ii. M |= T ∩ 	1.

Proof Suppose M has an end-extension N |= T. Then, Rep(T) ⊆ SSy(N ) =
SSy(M). So, we have (i). Condition (ii) follows from the upwards preservation of
�1-sentences from models of PA to extensions and end-extensions again satisfying
PA.

We assumeM and T satisfy Condition (i) and (ii) of the theorem.
We write P �i Q for:Q is an end-extension of P and for every A(�x ) in �i , and

every �p in P , if P |= A( �p ), then Q |= A( �p ).

19We dohave, by a direct application of the InterpretationExistenceLemma, that there is a large class
ofmodelsM that have a parametric internal strict end-extensionN that is elementarily equivalent to
M. In fact, the recursively saturated models are in this class. So, the difference between elementary
extension and extension that is elementarily equivalent is essential in the extended Feferman-Scott
result. An open end in our story is that it is unclear whether there is amodelMwith a parameter-free
internal model N that is a strict end-extension and elementarily equivalent to M.

http://dx.doi.org/10.1007/978-3-319-63334-3_2
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We construct a sequence of models Ni such that: N0 = M and

(†)i Ni |= T ∩ 	i+1,
(‡)i Ni �i+1 Ni+1.

The limit of the Ni will be the desired model N . It is easy to see that N has the
desired properties.

Clearly,N0 := M satisfies condition (†)0. Suppose we have constructed an end-
extensionNi ofM satisfying (†)i . We show how to find anNi+1 �i Ni that satisfies
(†)i+1.

Let C is any theorem of T. Since T contains PA, we have, in T, that ♦�i+1C . Here
♦�i+1C means that C ∪ {D | true�i+1(D)} is consistent, where true�i+1 is the usual
�i+1-truth-predicate. The set {D | true�i+1(D)} is to be understoodT-internally. The
statement ♦�i+1C is 	i+1 (in the context of T), so, by (†)i , we have Ni |= ♦�i+1C .

The set β := T ∩ 	i+2 is inRep(T) by the presence of a 	i+2-truth-predicate. It
follows thatβ is inSSy(M). OurmodelNi is an end-extension ofM, soSSy(Ni ) =
SSy(M). So, β is coded in Ni . Let α0 be the set of axioms of PA. Clearly, γ :=
β ∪ α0 is coded inNi , say by c. Let’s write Xx for the set of ‘elements’ of c that are
less than or equal to x .

We define α∗(x) := true�i+1(x) ∨ (x ∈ Xx ∧ ♦�i+1
Xx

�). It follows, by our above
observation, that, for each C in γ, we have Ni |= α∗(�C�). Thus, we have an inter-
pretation of sf(U ), where U is the theory axiomatized by the axioms of PA plus
T ∩ 	2, in Ni , by setting α := α∗ and � := formPA. We interpret the arithmetical
part identically.

Since we are in an environment with full induction, all cuts involved in the devel-
opment of Theorems3.1, 3.11 and 3.12 are the identical cut. It follows that η∗, the
interpretation of η, gives us an end-extension Ni+1 of Ni such that the standard
embedding of Ni in Ni+1 sends a number to the value of its numeral and such that
the satisfaction predicate behaves in a good way with respect to numerals.

By construction Ni+1 is a model of PA that satisfies T ∩ 	i+2. We show that
Ni �i+1 Ni+1. Suppose B(�x ) is in �i+1 and Ni |= B(�b ). We find that Ni |=
true�i+1(B(�b )). It follows thatNi |= (B(�b )) ∈ α∗, and henceNi |= satη∗(∅, B(�b )).
By, Theorem3.12, we find:

Ni |= satη∗({〈v0, cb0〉, · · · , 〈vn−1, cbn−1〉}, B(�v )).

By Theorem3.11, this means that Ni+1 |= B(�b), via the identification of elements
implemented by the standard embedding of Ni in Ni+1. �

5.2 Properties of Degree Structures

We can use the Interpretation Existence Lemma to prove all kinds of properties of
degrees structures of interpretability. I choose one specific, more or less random,
example that I have not seen before. Recently, Ali Enayat asked me the following
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question. If A is a finitely axiomatizable sequential theory that interprets PA, does A
interpret ACA0? The negative answer follows directly from the following theorem.

Theorem 5.3 Let A and U be theories, where A is finitely axiomatized and U
is recursively enumerable and sequential. Suppose A ��= U. Then, there is a finitely
axiomatized theory B such that A ��= B ��= U.Moreover, if A is sequential, B is sequen-
tial too.

Proof We assume the conditions of the theorem.
We remind the reader of witness comparison notation. Let A be ∃x A0(x) and let

B be of the form ∃x B0(x).

• A ≤ B :↔ ∃x (A0(x) ∧ ∀y < x ¬ B0(y)). (A is witnessed before or at the same
time as B.)

• A < B :↔ ∃x (A0(x) ∧ ∀y ≤ x ¬ B0(y)). (A is witnessed strictly before B.)
• (A ≤ B)⊥ :↔ B < A, (A < B)⊥ :↔ B ≤ A. (C⊥ is the opposite of C .)

We write ��
UC for ∃x �U,x,xC .

By the Gödel Fixed Point Lemma, we find a �1-sentence R such that:

• S1
2 � R ↔ (B � A) ≤ (U � B),

• B = (A 	 (S1
2 + (R < ��

U⊥))).

We note that, in the definition of R, we have on the right-hand-side of the two
occurrences � in each case a finitely axiomatized theory. We assume that such
interpretability statements are written in the form ∃x S0(x), where S0 is, say,�0(ω1).
Thus, R can indeed be taken to be a �1-sentence.

Suppose R. In that case we have B � A. Let r be a witness of R. Since U is
sequential, we have U � (S1

2 + ♦U,r ,r�) and, hence, by �1-completeness,

U � (S1
2 + r : R + ♦U,r ,r�) � (S1

2 + (R < ��
U⊥)) � B � A.

So, U � A. Quod non.
Suppose R⊥. In that case we have U � B. By �1-completeness, it follows that:

U � B � (A 	 (S1
2 + R⊥ + (R < ��

U⊥))) � (A 	 (S1
2 + R⊥ + R)) � A.

Hence, U � A. Quod non iterum.
Since R is false, it follows that S1

2 + (R < ��
U⊥) � �∗,∗(U ), since, internally, R

cannot have a standard witness. Hence: (†) (S1
2 + (R < ��

U⊥)) �U . We also have
(‡) A �U . So, by (†) and (‡), we find that:

B = (A 	 (S1
2 + (R < ��

U⊥))) � U.

Thus, A � B �U . We show that none of the two steps can be reversed. Suppose
B � A. It then follows that R or R⊥. Quod non. SupposeU � B. In that case it again
follows that R or R⊥. Quod non. We may conclude that A ��= B ��= U , as promised.
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Finally, note that B, as constructed, is the infimum of A and a sequential theory
using the disjunction implementation of the infimum. So, if A is sequential, then B
is also sequential. �

Open Question 5.4 What happens when we drop the demand thatU is sequential?

5.3 The Interpretability of Inconsistency

In my two papers [46, 49], I study Feferman’s Theorem on the interpretability of
inconsistency. Here I just present the basic result.

Theorem 5.5 Suppose U is a recursively enumerable theory and suppose N : S1
2 �

U. Then U � (U + �N
U⊥).

Proof Clearly, (U + �N
U⊥) � (U + �N

U⊥). Moreover, using the formalized version
of Gödel’s Second Incompleteness Theorem, we have:

(U + ♦N
U�) � (U + ♦N

U�N
U⊥) � (U + �N

U⊥).

So, using a disjunctive interpretation, we find U � (U + �N
U⊥). �
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Tiered Arithmetics
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To the memory of Sol Feferman, whose creative force at the
centre of logic has been a constant inspiration

Abstract In his paper “Logics for Termination and Correctness of Functional
Programs, II. Logics of Strength PRA” [5] Feferman was concerned with the prob-
lem of how to guarantee the feasibility (or at least the subrecursive complexity) of
functions definable in certain logical systems. His ideas have influenced much sub-
sequent work, for instance the final chapter of [13]. There, linear two-sorted systems
LT(;) (a version of Gödel’s T ) and LA(;) (a corresponding arithmetical theory) of
polynomial-time strength were introduced. Here we extend LT(;) and LA(;) in such
a way that some forms of non-linearity are covered as well. This is important when
one wants to deal on the proof level with particular algorithms, not only with the
functions they compute. Examples are divide-and-conquer approaches as in treesort,
and the first of two main sections here gives a detailed analysis of this. The second
topic treated heads in a quite different direction, though again its roots lie in the final
chapter of [13]. Instead of just two sorts we consider transfinite ramified sequences
of them, or “tiers”; ordinally labelled copies of the natural numbers, respecting cer-
tain pointwise orderings. A hierarchy of infinitary arithmetical theories EA(Iα) is
devised, Iα designating the top tier. These are weak numerical analogues of the iter-
ated inductive definitions underpinning much of Feferman’s fundamental work over
decades; see for example his survey [6] and the technical classic [3]. The computa-
tional strength of EA(Iα) is summarized thus: it proves the totality of all functions
elementary in the Fast-Growing Fα. A “pointwise” concept of transfinite induction
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then provides an ordinal measure of strength, but this is a weak, finitistic analogue
of the usual notions, related to the Slow-Growing hierarchy.

Keywords Polynomial time · Linear two-sorted arithmetic · Program extraction
Tiered arithmetic · Fast and slow-growing hierarchies · Pointwise transfinite
induction.

2010 Mathematics Subject Classification 03D20 · 03D15 · 03F05

1 Introduction

The principle of numerical induction:

A(0) ∧ ∀a(A(a) → A(a + 1)) → A(n)

may be viewed as being “impredicative”, since establishing that n has property
A might entail quantifying over all numbers, in particular n itself, even before it
is completely understood (see Nelson [11]). “Tiering” is a way to unravel such
impredicativities: one thinks of the input n as existing at a higher level (tier) than
A’s quantified variables – the output domain. Such tiered or predicative inductions
severely restrict the computational strength of an arithmetical theory, and bring them
more closely into the realms of “feasibility” (see Leivant [8, 9]).

For example, suppose we want to build a theory of elementary recursive strength.
Then we will have the exponential function E(n) representing 2n:

E(0) := 1, E(S(n)) := D(E(n)).

However, its iteration

F(0) := 1, F(S(n)) := E(F(n))

should be avoided. Let us see how a proof of “computational strength” of F could
arise. Let F(n) � a denote the graph of F , viewed as an inductively defined relation.
We write F(n)↓ for ∃a(F(n) � a). Then a proof of

∀n F(n)↓

should be disallowed. Such a proof would be by induction on n. In the step we would
need to prove ∀n(F(n)↓ → F(S(n))↓). So assume n is given and we have an a
such that F(n) � a. We need to find b such that E(F(n)) � b. Clearly E(a) would
be such a b, but here we have substituted the “output” variable a in the recursion
(or “input”) argument of E . We therefore distinguish input and output variables and
argument positions in order to avoid superexponential strength. The underlying idea
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is that the inputs form a new “tier” lying over the domain of output values. While
an input may be fed down to the output level and used as a bound on induction or
recursion steps, this is a one-way process - for outputs may not be fed back as inputs.

If we want to even further restrict the computational strength to the subelementary
level, we need a linearity restriction. Consider for example the function B(a, n)

representing a + 2n:

B(a, 0) := S(a), B(a, S(n)) := B(B(a, n), n).

Let B(a, n) � b be the (inductively defined) graph of B, and consider the following
proof of

∀n,a B(a, n)↓,

by induction on n. In the step we have n and can assume ∀a B(a, n)↓; we need
to show ∀a B(a, S(n))↓, i.e., ∃c(B(B(a, n), n) � c). Given n and a, by induction
hypothesis we have b such that B(a, n) � b, and applying the induction hypothesis
again, we have c such that B(b, n) � c. This double use of the induction hypothesis
is responsible for exponential growth, and hence we use a linearity restriction to stay
within the subelementary realm.

2 Representing Algorithms in Linear Two-Sorted
Arithmetic

In this section we define the constructive systems A(;) and LA(;), their intended use
being to develop program specification proofs and then term extraction for practical
algorithms. The computational strength of A(;) will be elementary recursive (going
back to early developments of such theories by Leivant [9], based on the safe / normal
discipline of Bellantoni and Cook [1] and earlier Simmons [14]). The subtheory
LA(;) will be corresponding theory of polynomial strength, and therefore relevant
for the development of feasible programs.

The main contents of this section will be a description of these theories and their
basic properties, followed by examples illustrating their use. Our leading intuition
is the Curry–Howard correspondence between terms in lambda-calculus (or more
precisely in Gödel’s T ) and derivations in arithmetic. The restrictions needed to stay
within elementary or polynomial strengthwill be incorporated in certain term systems
T(;) and LT(;) corresponding to A(;) and LA(;). A two-sortedness restriction will
allow to unfold the higher type recursion operatorR in a controlled way to guarantee
elementary complexity, and a further linearity restriction will ensure polynomial
strength.
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2.1 The Term Systems T(;) and LT(;)

We consider types built from base types ι by two forms ρ ↪→ σ and ρ → σ of arrow
types, called input arrow and output arrow. A type is safe if it does not involve the
input arrow ↪→.

As base types we have the type B of booleans tt, ff, the (unary) natural numbers
N with constructors 0 and S : N → N, products ρ × σ with constructor ×+ : ρ →
σ → ρ × σ and lists L(ρ) with constructors [] and ::ρ of type ρ → L(ρ) → L(ρ).
Note that all constructors have safe types.

Variables are typed, and come in two forms, input variables x̄ρ and output variables
xρ. Constants are (i) the constructors and (ii) the recursion operators for base types,
for instance

Rτ
N : N ↪→ τ → (N ↪→ τ → τ ) ↪→ τ ,

Rτ
L(ρ) : L(ρ) ↪→ τ → (ρ ↪→ L(ρ) ↪→ τ → τ ) ↪→ τ ,

where the value type τ is required to be safe. This requirement is necessary because
without it we could define the iterated exponential function F from the exponential
function E via iterationwith value typeN ↪→ N.We also have (iii) the cases operators
for base types, for instance

Cτ
N : N → τ → (N ↪→ τ ) → τ ,

Cτ
L(ρ) : L(ρ) → τ → (ρ ↪→ L(ρ) ↪→ τ ) → τ ,

Cτ
ρ×σ : ρ × σ → (ρ ↪→ σ ↪→ τ ) → τ ,

where again the value type τ is required to be safe.

Remark Recursion and cases operators are provided for all base types.However,with
arbitrary base types, we may have more than one recursive call. If – as in Sect. 2.1 –
we are to develop a theory based on linear ideas, wemust disallow recursion operators
with multiple recursive calls, since this would spoil the whole approach.

T(;)-terms are built from variables and the constants above by introduction and
elimination rules for the two type forms ρ ↪→ σ and ρ → σ:

x̄ρ | xρ | Cρ (constant) |
(λx̄ρrσ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρrσ)ρ→σ | (rρ→σsρ)σ.

A term s is an input term if all its free variables are input variables, or else s is of
higher type and all its higher type free variables are input variables.

Remark The restriction for (rρ↪→σsρ)σ is more liberal here than in [13]: we now
allow output variables of base type in case s is of higher type. This change does not
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affect the estimates ensuring elementary complexity.We also changed the type of step
terms in recursion and cases operators, for instance ρ ↪→ L(ρ) ↪→ τ → τ instead
of ρ → L(ρ) → τ → τ in Rτ

L(ρ). This makes is easier to construct step terms as
lambda-abstractions, since now the abstracted variables corresponding to parts of
the recursion argument are input variables and hence usable to build input terms.
These changes do not affect the complexity estimates.

LT(;)-terms are built from variables and the constants above by introduction
and elimination rules for the two type forms ρ ↪→ σ and ρ → σ, but now with an
additional linearity restriction:

x̄ρ | xρ | Cρ (constant) |
(λx̄ρrσ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρrσ)ρ→σ | (rρ→σsρ)σ (higher type output variables in r, s distinct,

r does not start with a cases operator Cτ
ι ) |

Cτ
ι t�r (higher type output variables in FV(t) not in �r )

with as many ri as there are constructors of ι. The notion of an input term is the
same as above. The restriction on output variables in the formation of rρ→σs or Cτ

ι t�r
ensures that every higher type output variable can occur at most once in a given
LT(;)-term, except in the alternatives of a cases operator.

2.2 The Theories A(;) and LA(;)

We consider formulas built from atomic formulas by (i) the two forms A ↪→ B and
A → B of implication, called input and output implication, and (ii) universal quan-
tification either ∀x̄ A over an input variable x̄ or ∀x A over an output variable x .
Atomic formulas are either terms of the type B of booleans viewed as propositions
or else inductively defined predicates – possibly with parameters – applied to argu-
ment terms. We view ∃x̄ A and ∃x A as atomic formulas, more precisely as (nullary)
inductive predicates with predicates { x̄ | A } or { x | A } as parameter.

In this section proofs are in minimal logic, in natural deduction style. It is con-
venient to represent them as proof terms, as in Table1. For quantification on input
variables x̄ we have similar rules, and also for the input implication ↪→. Assumption
variables come in two forms, input ones ū A and output ones uA. Axioms are the
introduction and elimination axioms for ∃

∃+
{ x | A } : ∀x (A → ∃x A), ∃−

{ x | A(x) },P : ∃x A(x) → ∀x̄ (A(x̄) ↪→ P) → P

and similarly for input variables x̄ . For every base type we have its induction and
cases axioms, for instance
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Table 1 Derivation terms for → and ∀

Derivation Term

u : A uA

[u : A]
| M
B →+uA → B

(λuA MB)A→B

| M
A → B

| N
A →−

B
(MA→B N A)B

| M
A ∀+x (with var.cond.)∀x A

(λx M A)∀x A (with var.cond.)

| M
∀x A(x) r ∀−

A(r)

(M∀x A(x)r)A(r)

Indn̄,P : ∀n̄(P(0) → ∀n̄(P(n̄) → P(S(n̄))) ↪→ P(n̄N)),

Indl̄,P : ∀l̄(P([]) → ∀x̄,l̄((P(l̄) → P(x̄ ::l̄)) ↪→ P(l̄L(ρ)))

and

Casesn,P : ∀n(P(0) → ∀n̄ P(S(n̄)) → P(nN)),

Casesl,P : ∀l(P([]) → ∀x̄,l̄ P(x̄ ::l̄) → P(lL(ρ))).

We call these raw proof terms. Note that when ignoring the annotations of impli-
cations and variables we obtain proofs terms in ordinary arithmetic. The raw proof
terms need to be restricted to make up the theories A(;) and LA(;). To formulate
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these restrictions it is easiest to refer to the extracted term et(M) of a proof term M ,
which we introduce first. This requires some preparations.

Computational content in proofs arises fromcomputationally relevant (c.r.) atomic
formulas; in our setting the only ones are ∃x̄ A and ∃x A. There are also non-
computational (n.c.) atomic formulas, like equalities. Following Kolmogorov [7]
we assign to every formula A an object τ (A), which is a type or the “nulltype” sym-
bol ◦. The definition can be conveniently written if we extend the use of ρ ↪→ σ,
ρ → σ and ρ × σ to the nulltype symbol ◦:

(ρ ↪→ ◦) := ◦, (◦ ↪→ σ) := σ, (◦ ↪→ ◦) := ◦ and similarly for →,

(ρ × ◦) := ρ, (◦ × σ) := σ, (◦ × ◦) := ◦.

With this understanding of ρ ↪→ σ, ρ → σ and ρ × σ we can simply define

τ (A) := ◦ if A is an n.c. atomic formula,

τ (∃x̄ρ A) := τ (∃xρ A) := ρ × τ (A),

τ (A ↪→ B) := (τ (A) ↪→ τ (B)),

τ (A → B) := (τ (A) → τ (B)),

τ (∀x̄ρ A) := (ρ ↪→ τ (A)),

τ (∀xρ A) := (ρ → τ (A)).

Weintroduce a special “nullterm” symbol ε to be used as a “realizer” for n.c. formulas,
and extend term application to the nullterm symbol by

εt := ε, tε := t, εε := ε.

Now we can define the extracted term et(M) of a proof term M deriving A. It is
relative to a fixed assignment of input variables x̄ū of type τ (A) to input assumption
variables ū A, and similarly output variables xu of type τ (A) to output assumption
variables uA. If A is n.c., then et(M) := ε, else

et(ū A) := x̄τ (A)
ū ,

et(uA) := xτ (A)
u ,

et((λū A M)A↪→B) := λx̄τ (A)
ū

et(M),

et((λuA M)A→B) := λxτ (A)
u

et(M),

et(MA↪→BN ) := et(MA→BN ) := et(M)et(N ),

et((λx̃ρ M)∀x̃ A) := λx̃ρet(M),

et(M∀x̃ Ar) := et(M)r,

with x̃ input or output variable.We also need to define extracted terms for the axioms,
i.e., ∃+, ∃− and for every base type its induction and cases axioms. The extracted
terms are
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et(∃+
{ xρ | A }) := ×+ of type ρ → τ (A) → ρ × τ (A)

et(∃−
{ xρ | A },P) := Cρ×τ (A) of type ρ × τ (A) → (ρ ↪→ τ (A) ↪→ τ (P)) → τ (P)

and for the induction and cases axioms the corresponding recursion and cases oper-
ators.

Now finally we are ready to define the theories A(;) and LA(;): a raw proof term
M is in A(;) (or LA(;)) if et(M) is a term in T(;) (or LT(;)).

2.3 Treesort

In this section we extend LT(;) and LA(;) in such a way that some forms of non-
linearity are covered as well. This is important when one wants to deal on the proof
level with particular algorithms, not only with the functions they compute. Exam-
ples are divide-and-conquer approaches like in treesort. The method requires two
recursive calls and hence is not covered by the linear setup in LT(;) and LA(;). How-
ever, one can show that the number of conversion steps in the parse-dag computation
model still is a polynomial in the length of the list. Generally, one needs to extend
LT(;) and LA(;) by constants defined by computation rules meeting certain criteria.

For the formulation of the treesort algorithm we use the base type T (branch
labelled binary trees) with a nullary constructor 
 and a ternary constructor C of type
N → T → T → T. The treesort algorithm is given by the defined constants

TreeSort(l) = Flatten(MakeTree(l)),
MakeTree([]) = 
,

MakeTree(a::l) = Insert(a,MakeTree(l)),
Insert(a,
) = Ca(
,
),

Insert(a,Cb(u, v)) =
{
Cb(Insert(a, u), v) if a ≤ b

Cb(u, Insert(a, v)) otherwise,
Flatten(
) = [],
Flatten(Cb(u, v)) = Flatten(u) ∗ (b::Flatten(v))

where ∗ denotes the Append-function. Notice that the second defining equation of
Flatten has two recursive calls. Therefore this “divide-and-conquer” algorithm is not
covered by the treatment in [13]: the linearity restriction is violated. The point of the
present section is to show how this problem can be overcome, by giving the non-
linear Flatten-function a special treatment w.r.t. our parse dag computation model,
which we describe next.

Let LT(;) + Flatten be the extension of LT(;) by the defined constant Flatten of
typeT ↪→ L(N). To obtain a polynomial upper bound on the time complexity of func-
tions definable in LT(;) + Flatten, we need a careful analysis of the normalization
process. Our time measurement is with respect to a computation model that fits well
to the lambda-terms we have to work with, and is also close to actual computation.
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We compute with terms represented as dags (directed acyclic graphs) where only
nodes for terms of base type can have in-degree greater than one. Each graph is
required to be connected and have a unique root (i.e., node with in-degree zero).
Nodes can be (i) terminal nodes labelled by a variable or constant, (ii) abstraction
nodes with one successor, labelled with a (typed input or output) variable and a
pointer to the successor node, or (iii) application nodes with two successors, labelled
with pointers to them. A parse dag is required to represent a parse tree for a term,
i.e., the types must fit and all other conditions above on the formation of terms must
be satisfied.

The size ‖d‖ of a parse dag d is the number of nodes in it. A parse dag is conformal
if (i) every node with in-degree greater than 1 is of base type, and (ii) every maximal
path to a bound variable x passes through the same binding λx -node. A parse dag is
h-affine if every higher type variable occurs at most once in the dag, except in the
alternatives of a cases operator. We identify a parse dag with the term it represents.

In our computation model the following steps require one time unit.

(a) Creation of a node given its label and pointers to its successor nodes.
(b) Deletion of a node.
(c) Given a pointer to an interior node, to obtain a pointer to one of its successor

nodes.
(d) Test on the type and the label of a node, and on the variable or constant in case

the node is terminal.

We will estimate the number of steps it takes to reduce a term t to its normal form
nf(t). For simplicity we fix an order of reduction, by requiring that the leftmost
innermost redex is converted first. Let #t denote the total number of such reduction
steps.

Lemma 2.1 Let l be a numeral of type L(N). Then

#(l ∗ l ′) = O(|l|).

Proof One easily proves #(l ∗ l ′) ≤ N · (|l| + 1) by induction on |l|, for an appro-
priate N . �

To estimate #Flatten(u) we use a size function for numerals u of type T:

‖
‖ := 0,

‖Cn(u, v)‖ := 2‖u‖ + ‖v‖ + 3.

Lemma 2.2 Let u be a numeral of type T. Then

#Flatten(u) = O(‖u‖).

Proof We prove #Flatten(u) ≤ N (‖u‖ + 1) by induction on ‖u‖, for an appropriate
N , and only deal with the second defining equation of Flatten, which involves two
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recursive calls. Consider the parse dag for Flatten(Cn(u, v)). We can assume that it
takes ≤ N steps to transform it into a the parse dag for Flatten(u) ∗ (a::Flatten(v)).
Then

#Flatten(Cn(u, v)) ≤ N + #Flatten(u) + #Flatten(v) + N (‖u‖ + 1)

using #(l ∗ l ′) ≤ N (|l| + 1) (by Lemma 2.1) and |Flatten(u)| ≤ ‖u‖. Hence by
induction hypothesis

#Flatten(Ca(u, v)) ≤ N + N (‖u‖ + 1) + N (‖v‖ + 1) + N (‖u‖ + 1)

= N (2‖u‖ + ‖v‖ + 4)

= N (‖Ca(u, v)‖ + 1). �

We show that all functions definable in LT(;) + Flatten are polynomial-time com-
putable, by adapting the argument in [13] to the presence of defined constants, here
the constant Flatten. Call a term RD-free if it contains neither recursion constants
R nor Flatten. A term is called simple if it contains no higher type input variables.
Obviously simple terms are closed under reductions, taking of subterms, and appli-
cations. Every simple term is h-affine, due to the (almost) linearity of higher type
output variables.

As in [13, pp. 416–418] we have

Lemma 2.3 (Simplicity) Let t be a base type term whose free variables are of base
type. Then nf(t) contains no higher type input variables.

Lemma 2.4 (Sharing normalization) Let t be anRD-free simple term. Then a parse
dag for nf(t), of size at most ‖t‖, can be computed from t in time O(‖t‖2).
Corollary 2.5 (Base normalization) Let t be a closed RD-free simple term of type
N or L(N). Then nf(t) can be computed from t in time O(‖t‖2), and ‖nf(t)‖ ≤ ‖t‖.
Lemma 2.6 (RD-elimination) Let t (�x) be a simple term of safe type. There is a
polynomial Pt such that: if �r are safe typeRD-free closed simple terms and the free
variables of t (�r ) are output variables, then in time Pt (‖�r‖) one can compute an
RD-free simple term rdf(t; �x; �r) such that t (�r ) →∗ rdf(t; �x; �r).
Proof By induction on ‖t‖, as in [13, pp. 418–20]. We only have to add a case for
the defined constant Flatten.

Case Flatten. Then t is of the form Flatten(l), because the term has safe type.
Since l is an input term, all free variables of l are input variables – they must be in �x
since free variables of t (�r ) are output variables. Therefore l(�r ) is closed, implying
nf(l(�r )) is a list. One obtains rdf(l; �x; �r) in time Pl(‖�r‖) by the induction hypothesis.
Then by base normalization one obtains the lists l̂ := nf(rdf(l; �x; �r )) in a further
polynomial time. Now Lemma 2.2 implies the claim. �
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Theorem 2.7 (Normalization) Let t be a closed term in LT(;) + Flatten of type
N � . . .N � N (�∈ {↪→,→}). Then t denotes a poly-time function.

Proof One must find a polynomial Qt such that for allRD-free simple closed terms
�n of type N one can compute nf(t �n) in time Qt (‖�n‖). Let �x be new variables of type
N. The normal form of t �x is computed in an amount of time that may be large, but
it is still only a constant with respect to �n. By the simplicity lemma nf(t �x) is sim-
ple. By RD-elimination one reduces to an RD-free simple term rdf(nf(t �x ); �x ; �n)

in time Pt (‖�n‖). Since the running time bounds the size of the produced term,
‖rdf(nf(t �x ); �x ; �n )‖ ≤ Pt (‖�n‖). By sharing normalization one can compute

nf(t �n ) = nf(rdf(nf(t �x ); �x ; �n ))

in time O(Pt (‖�n‖)2), so for Qt one can take some constant multiple of Pt (‖�n‖)2. �

2.4 Treesort in LA(;)+ Flatten

Wehave seen that polynomial-time algorithms can be implemented as extracted terms
of appropriate proofs in LA(;). This is developed in detail in [13, Sect. 8.4]. Here
we describe that and how the same mechanism works when both LT(;) and LA(;)
contain constants (like Flatten) defined by equations involving multiple recursive
calls. As an example we treat the treesort algorithm in LA(;).

A tree u is called sorted if the list Flatten(u) is sorted. We recursively define a
function I inserting an element a into a tree u in such a way that, if u is sorted, then
so is the result of the insertion:

I (a,
) := Ca(
,
),

I (a,Cb(u, v)) :=
{
Cb(I (a, u), v) if a ≤ b,

Cb(u, I (a, v)) if b < a

and, using I , a function S sorting a list l into a tree:

S([]) := 
, S(a::l) := I (a, S(l)).

We represent these functions by inductive definitions of their graphs. Thus, writing
I (a, u, u′) to denote I (a, u) = u′ and similarly, S(l, u) for S(l) = u, we have the
following clauses:

I (a,
,Ca(
,
)),

a ≤ b → I (a, u, u′) → I (a,Cb(u, v),Cb(u
′, v)),

b < a → I (a, v, v′) → I (a,Cb(u, v),Cb(u, v′)),
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and
S([],
),

S(l, u) → I (a, u, u′) → S(a::l, u′).

As an auxiliary function we use tli (l), which is the tail of the list l of length i , if
i < |l|, and l otherwise. Its recursion equations are

tli ([]) := [], tli (a::l) :=
{
tli (l) if i ≤ |l|
a::l else.

We will need some easy properties of S and tl:

S([a],Ca(
,
)),

S(l,Cb(u, v)) → a ≤ b → I (a, u, u′) → S(a::l,Cb(u
′, v)),

S(l,Cb(u, v)) → b < a → I (a, v, v′) → S(a::l,Cb(u, v′)),
i ≤ |l| → tli (a::l) = tli (l),

tl|l|(l) = l, tl0(l) = [].

We would like to derive ∃u S(l, u) in LA(;). However, we shall not be able to do
this. All we can achieve is |l| ≤ n → ∃u S(l, u), with n an input parameter.

Lemma 2.8 (Tree insertion) LA(;) proves ∀a,n,u(|u| ≤ n → ∃u′ I (a, u, u′)).

Proof We fix a and use induction on n. In the base case we can take u′ := Ca(
,
).
In the step assume the induction hypothesis and |w| ≤ n + 1. If |w| ≤ n use the
induction hypothesis. Now assume n < |w|. Thenw is of the formCb(u, v). If a ≤ b
pick u′ by induction hypothesis and take Cb(u′, v). If b < a pick v′ by induction
hypothesis and take Cb(u, v′). �

Lemma 2.9 LA(;) proves ∀l,n,m(m ≤ n → ∃u S(tlmin(m,|l|)(l), u)).

Proof We fix l, n and use induction onm. In the base case we can take u := 
, using
tl0(l) = []. In the step case assume the inductionhypothesis andm + 1 ≤ n. If |l| ≤ m
we are done by the induction hypothesis. If m < |l| we must show ∃u S(tlm+1(l), u).
Now tlm+1(l) = a::tlm(l) with a := hd(tlm+1(l)), since m < |l|. If m = 0 take u :=
Ca(
,
). If 0 < m, by induction hypothesis we have w with S(tlm(l), w), and w

is of the form Cb(u, v). If a ≤ b, pick u′ by Lemma 2.8 such that I (a, u, u′). Take
S(a::tlm(l),Cb(u′, v)). If b < a, pick v′ by Lemma 2.8 such that I (a, v, v′). Take
S(a::tlm(l),Cb(u, v′)). �

Theorem 2.10 (Treesort) LA(;) proves ∀l,n(|l| ≤ n → ∃u S(l, u)).

Proof Specializing Lemma 2.9 to l, n, n gives

∀l,n∃u S(tlmin(n,|l|)(l), u))
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and hence also
∀l,n(|l| ≤ n → ∃u S(l, u))

since tl|l|(l) = l. �

We have formalized these proofs in Minlog1 and extracted their computational
content, i.e., LT(;)-terms. For Lemma 2.8 we obtain a term involving the recursion
operator Rτ

N : N ↪→ τ → (N ↪→ τ → τ ) → τ with τ := T → T. This term repre-
sents the function f of type N → N ↪→ T → T defined by

f (a, 0, u) := Ca(
,
),

f (a, n + 1, u) :=

⎧⎪⎨
⎪⎩

f (a, n, u) if |u| ≤ n,

CLb(u)( f (a, n, L(u)), R(u)) if n < |u| and a ≤ Lb(u),

CLb(u)(L(u), f (a, n, R(u))) if n < |u| and Lb(u) < a

with Lb(u), L(u), R(u) label and left and right subtree of u �= 
. For Lemma 2.9 we
obtain the function g of type L(N) → N ↪→ N ↪→ T with

g(l, n, 0) := 
, g(l, n,m + 1) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u if |l| ≤ m,

Chd(tl1(l))(
,
), if 0 = m < |l|,
CLb(u)( f (a,m, L(u)), R(u)) if 0 < m < |l| and a ≤ Lb(u)

CLb(u)(L(u), f (a,m, R(u))) if 0 < m < |l| and Lb(u) < a

where u := g(l, n,m) and a := hd(tlm+1(l)).
Let S̄(l, l ′) express that l ′ is multiset-equal to l and sorted. One easily proves

S(l, u) → S̄(l,Flatten(u)) and thus gets an LA(;) + Flatten-derivation of

|l| ≤ n → ∃l ′ S̄(l, l ′). (1)

From Theorem 2.10 we get the function h of type L(N) → N ↪→ T with h(l, n) :=
g(l, n, n). For (1) we finally obtain an LT(;) + Flatten-term representing the function
h̄ of type L(N) → N ↪→ L(N) with h̄(l, n) := Flatten(h(l, n)).

3 Transfinitely Iterated Tiering

This section investigates the effect of adding to an arithmetical base theory a trans-
finite hierarchy of number-theoretic tiers {Iα}, indexed by countable “tree ordinals”
α (that is, ordinals with fixed, chosen fundamental sequences {λi }i∈N assigned at

1www.minlog-system.de.

www.minlog-system.de
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limits λ). I0 will be the “output” domain, and unrestricted quantifiers are to be read
as ranging over I0. The first level of “inputs”, I1, controls the lengths of inductions on
formulas of level/tier 0. Thus from the previous section and Chap.8 of [13] one notes
already that a (non-linear) tiered arithmetical theory incorporating just I1 will already
have elementary recursive computational strength. This section investigates what is
gained by adding successively higher levels of input, and what conditions should
be placed on those levels. The result is easily stated: Each new tier gives access to
the next level of the fast-growing, transfinitely extended Grzegorczyk hierarchy. An
informal explanation is also easy –

A version of the fast-growing hierarchy is:

F0(n) = n + 1 ; Fβ+1(n) = F2n
β (n) ; Fλ(n) = Fλn (n) .

The main principle here is that of tiered induction:

A(0) ∧ ∀z(A(z) → A(z + 1)) → ∀z(Iα(z) → A(z))

where the “level” of A is ≺ α, i.e. every Iβ occurring in A has β ≺ α.
Now let us assume inductively that we can prove Fβ : Iβ → Iβ , that is

∀x (Iβ(x) → ∃y(Iβ(y) ∧ Fβ(x) � y)) .

Then the formula A(z) ≡ F2z
β :Iβ → Iβ is inductive, and so by tiered induction:

∀z(Iβ+1(z) → A(z)). The tiering also entails Iβ+1(z) → Iβ(z) and therefore by def-
inition of Fβ+1(z),

∀z(Iβ+1(z) → ∃y(Iβ(y) ∧ Fβ+1(z) � y)) .

Now a further principle of tiering is that the level of a “computed” variable y, depend-
ing only on higher level inputs, may be lifted to the lowest level of non-zero input
on which it depends. This rule was used in Cantini [4] and is a kind of �0

1 -reflection:
in particular

Iβ+1(z) → ∃y(Iβ(y) ∧ Fβ+1(z) � y)

Iβ+1(z) → ∃y(Iβ+1(y) ∧ Fβ+1(z) � y)

and therefore Fβ+1 : Iβ+1 → Iβ+1.
At limits λ we would like to show Fλ : Iλ → Iλ, but unfortunately the tiering

principles mean that the best we can do is Fλ : Iλ+1 → Iλ. Assume inductively that
this holds already at each stage λi of the fundamental sequence to λ, thus

∀z(Iλi+1(z) → ∃y(Iλi (y) ∧ Fλi (z) � y)) .

The conditions placed on limit tiers must then entail, for each i , Iλ(i) → Iλi+1(i) for
then, by the definition of Fλ(i):
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Iλ(i) → ∃y(Iλi (y) ∧ Fλ(i) � y) .

Again, since the ∃y only depends upon i at level λ, the Iλi (y) may be lifted to Iλ(y).
However, for technical reasons to do with the lifting rule below, the premise Iλ(i)
must then also be lifted up one level, to Iλ+1(i). The final step Fλ : Iλ+1 → Iλ then
requires an ω-rule to universally quantify over i .

To summarize, the underlying mechanisms are (i) tiered induction, (ii) lifting or
�0

1 reflection, and (iii) diagonal: Iλ(i) → Iλi (i). These are formalized below, in a
hierarchy of infinitary arithmetics EA(Iα)whose computational strengths correspond
exactly to the levels Eα of the fast-growing, extended Grzegorczyk hierarchy.

3.1 The Infinitary Systems EA(Iα)

Given an ordinal α, the infinitary system EA(Iα) derives Tait-style sequents with
numerical input declarations:

n1:Iβ1 , . . . n j :Iβ j �γ � abbreviated �n: �I �γ �

where α � β1 � . . . � β j . � will be a finite set of closed formulas in the language
of arithmetic augmented by elementary term constructors for coding sequences and
suitable ordinal notations, and a new binary “input predicate” Ib(m) representing
m:Iβ when β is the tree ordinal denoted by the notation b. We will generally abuse
notation and write Iβ(m) for Ib(m), but no confusion should arise. The set � is said
to be of “level” less than ξ (written lev(�) ≺ ξ) if every Iβ occurring has β ≺ ξ,
An important convention will be that a declaration n j :Iβ j where n j = 0 will be
suppressed (i.e. assumed and not explicitly stated). Of the declared inputs, only
finitely-many will be non-zero. An obvious principle is that n:Iβ �γ A means �γ

Iβ(n) → A, and this is achieved by writing �γ ¬Iβ(n1),¬Iβ(n2), . . . ,¬Iβ(nr ), �
instead as n:Iβ �γ � where n = max(n1, n2, . . . , nr ). Thus declarations n j :Iβ j to the
left of �γ are kept distinct from the formulas Iβ(m) in �.

Both the ordinal bounds γ on the heights of derivations, and also the tier levels α,
will come from a specified initial segment of tree-ordinals (e.g. ε0 or �0 etc.). There
will be an associated elementary recursive notation-system allowing computation of
e.g. successors, predecessors, and limit-projection (λ, n) �→ λn . It will be assumed
that the ordering ≺ on tree ordinals will be the union of “pointwise” orderings ≺n

where, for each n,≺n is the transitive closure of δ ≺n δ + 1 and λn ≺n λ for limits λ.
Most “standard” notation systems satisfy δ ≺n γ ⇒ δ + 1 �n+1 γ and this too will
be a standing assumption here. The “n-descending chain” from γ is

0 ≺ 1 ≺ . . . ≺ δ ≺ δ + 1 ≺ . . . ≺ λn ≺ λ ≺ . . . ≺ γ

and this will therefore be contained in the n + 1-descending chain. Alternative nota-
tion for γ′ + 1 �n γ is γ′ ∈ γ[n] – see part 2 of [13].
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Logic Rules

To ensure appropriate levels of stratification, the ordinals γ′ bounding the premises
of all rules below, bear the following relationship to the ordinal bounds γ assigned
to their conclusions: γ′ + 1 �n γ where n:Iβ is a declared input at a level higher
than the levels of all formulas in the premises or conclusion. Thus if there is no
explicit declaration, meaning just 0 is declared, or if there is no higher level, that is
Iα already appears in �, then rules may still be applied, but only under the constraint
γ′ + 1 �0 γ.

The Axioms are �n: �I �γ � where the set � contains a true atom (e.g. an equation
or inequation between closed terms, or s �= s ′, t �= t ′, Īs(t), Is ′(t ′)).

The Cut rule, with cut formula C , is

�n: �I �γ′
�,¬C �n: �I �γ′′

�,C

�n: �I �γ �
.

The ∃-rules are:

�n: �I �γ′
c Iβ(m) �n: �I �γ′′

A(m), �

�n: �I �γ ∃x(Iβ(x) ∧ A(x)), �
.

Here the left-hand premise “computes” witnessm according to the computation rules
given below.

The ∀-rules are versions of the ω-rule:

. . .max(n,m):Iβ, . . . �γ′
A(m), � for every m in N

. . . n:Iβ, . . . �γ ∀x(Iβ(x) → A(x)), �

but note the fixed ordinal bound γ′ on the premises, which does not vary with m.
This helps to keep the theory “weak”.

The ∨,∧ rules are unsurprising and we don’t list them.
The final logic rule allows interaction with computation in the form:

. . . n:Iβ �γ′
c Iβ(m) . . .m:Iβ, . . . �γ′′

�

. . . n:Iβ, . . . �γ �
.

Computation Rules

The same conditions on tree-ordinal bounds γ apply.
The Computational Axioms are �n: �I , n:Iβ �γ

c Iβ′(�), � provided � ≤ n + 1 and
there is a k declared in �n: �I such that β′ �k β. Thus by the (∀)-rule, with any γ,
k:Iβ+1 �γ+1 ∀x (Iβ(x) → Iβ′(x + 1)) provided β′ �k β. Hence Iβ is inductive and
is contained in Iβ′ whenever β′ ≺0 β.

The Lifting Rule, from Iβ′ to Iβ when β′ ≺k β, is:
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�n: �I , n:Iβ �γ
c Iβ′(m)

�n: �I , n:Iβ �γ
c Iβ(m)

provided k is declared in �n: �I at a level higher than β. Recall that, in the declaration,
the blank after n:Iβ means zeros.

The Computation Rules (call-by-value) are:

. . . n:Iβ �γ′
c Iβ(m) . . .m:Iβ �γ′′

c Iβ(�)

. . . n:Iβ �γ
c Iβ(�)

.

Alternative Ordinal Assignment

Alternatively, in each rule above one could simply take γ = max(γ0, γ1) + 1 or
= γ′ + 1. But then, in order to make use of the ∀-rule, which requires a fixed bound
on all premises, one needs to add an Accumulation Rule, as in Buchholz [2]: from
�n: �I �γ′

� derive �n: �I �γ � providedγ′ + 1 �n γ,wheren is declared at a level greater
than the level of �. (This is also a suitably modified version of Mints’ Repetition
Rule [10].)

Basic Lemmas

Lemma 3.1 (Tiered Induction) If the level of A is ≺ β and β′ ≺ β and a appropri-
ately measures the “size” of the formula A, so that �a A,¬A, then

�a+2ω+1 A(0) ∧ ∀z(Iβ′(z) → A(z) → A(z + 1)) → ∀x (Iβ(x) → A(x)) .

Proof By repeatedly applying the (∧) and (∃) rules, and the computational axioms,
using �a A,¬A, one obtains for each m,

m:Iβ �a+2m+1 ¬(A(0) ∧ ∀z(Iβ′(z) → A(z) → A(z + 1))), A(m) .

Then m : Iβ �a+2ω ¬(A(0) ∧ ∀z(Iβ′(z) → A(z) → A(z + 1))), A(m) because for
the tree ordinal ω we take the successor function as its “standard” fundamental
sequence and so m + 1 ≺m ω and hence a + 2m + 2 ≺m a + 2ω. This holds for
every m, so the result follows by applying the (∀)-rule. �

Lemma 3.2 (Bounding) Let { fβ(g)} be the following functional version of the fast-
growing hierarchy:

f0(g)(n;m) = m + 1
fβ+1(g)(n;m) = fβ(g)(max(n,m);−)2

g(max(n,m))

(m)

fλ(g)(n;m) = fλn (g)(n;m) .

Let Gγ(n) be the slow-growing function, giving the size of {γ′ : γ′ + 1 �n γ}.
Then if �n: �I �γ

c Iβ(m) by the computation rules alone, we have:
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m ≤ fβ(g)(n;−)2
g(n)

(m̄)

where g = Gγ , m̄ = 1 + max �n and n is 1+ the maximum of all declared inputs at
levels � β.

Proof Proceed by induction on β with a nested induction on γ. Let g′ = Gγ′ and
g = Gγ and note that if γ′ + 1 �n γ then g′(n) < g(n).

If �n: �I �γ
c Iβ(m) comes about by a computational axiom then m < m̄ + 1 =

f0(g)(n; m̄) and the result is immediate.
If it arises by Lifting from �n: �I �γ

c Iβ′(m) where β′ ≺n−1 β, then inductively one
may assume that

m ≤ fβ′(g)(m̄;−)2
g(m̄)

(m̄) = fβ′+1(g)(n; m̄) .

Now since β′ + 1 �n β, it follows that

m ≤ fβ′+1(g)(n; m̄) ≤ fβ(g)(n; m̄) ≤ fβ(g)(n;−)2
g(n)

(m̄) .

Suppose the given derivation comes about by the Computation Rule from
premises �n: �I �γ′

c Iβ(�) and �n: �I , �:Iβ �γ′′
c Iβ(m). Note that in this case both γ′ + 1

and γ′′ + 1 are �n γ so g′(n), g′′(n) < g(n). Then the induction hypothesis gives
m ≤ fβ(g′′)(n;−)2

g′′(n)

(max(m̄, �)) and also � ≤ fβ(g′)(n;−)2
g′(n)

(m̄). Composing,
and at the same time increasing fβ(g′) and fβ(g′′) to fβ(g),

m ≤ fβ(g)(n;−)2
g′(n)+2g′′(n)

(m̄) ≤ fβ(g)(n;−)2
g(n)

(m̄)

as required. �

Lemma 3.3 (Cut elimination) (i) Suppose �n: �I �γ �,¬C and �n: �I �δ �,C, both
with cut-rank (maximum size of cut formulas) ≤ r . Suppose also that C is either an
atom, or a disjunction D0 ∨ D1 or of existential form ∃x(I j (x) ∧ D(x)) with D of
size r (the “size” of input predicates is defined to be zero). Then �n: �I �γ+δ � again
with cut-rank r .
(ii) Hence if �n: �I �γ � with cut-rank r + 1 then �n: �I �ωγ

� with cut-rank ≤ r and
(repeating this) �n: �I �γ∗

� with cut-rank 0, where γ∗ = expr+1
ω (γ).

Proof The proofs are fairly standard. �

Note on �0
1 Reflection

The (∃) and “lifting” rules combine to derive the following version of �0
1 -reflection:

Suppose one has a cut-free derivation of n:Iβ �γ � where� is a set of�0
1 formulas

of level β′ ≺n β. Then n:Iβ+1 �2·γ �′ where �′ results from � by lifting (some or all)
existential quantifiers to level β.
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The proof is by induction on γ. Briefly, suppose the premises of the last ∃-rule
are n:Iβ �γ′

c Iβ′(m) and n:Iβ �γ′′
�, B(m) where � contains the formula ∃x (Iβ′(x) ∧

B(x)). Then by the induction hypothesis, n:Iβ+1 �2·γ′′
�′, B ′(m), and by lifting, since

n:Iβ+1 �0
c Iβ(n), we have also n:Iβ+1 �2·γ′+1

c Iβ(m). Then by reapplying the ∃-rule,
n:Iβ+1 �2·γ �′, ∃x (Iβ(x) ∧ B ′(x)), that is n:Iβ+1 �2·γ �′.

3.2 The Computational Strength of EA(Iα)

To illustrate, we now fix attention on the segment α ≺ ε0 and choose the “standard”
notation system for it, based, say, on Cantor normal forms with baseω. The EA(Iα)’s
thus provide a “tiering” of Peano Arithmetic.

The heights γ of derivations allowed in EA(Iα)was previously left open, but now
we need to be specific. Thus, henceforth, the heights γ of derivations in EA(Iα)

will also be restricted to γ ≺ ε0, allowing EA(Iα)-derivations to be closed under cut
elimination.

Theorem 3.4 The provably recursive functions of EA(Iα) are exactly those func-
tions elementary recursive in Fα where F is the version of the fast-growing hierarchy
defined earlier:

F0(n) = n + 1 ; Fδ+1(n) = F2n
δ (n) ; Fλ(n) = Fλn (n) .

(But note that any other standard version would do since they are elementarily inter-
reducible.)

Proof EA(Iα) was devised in the first place, precisely in order to allow derivation of
∀n(Iβ(n) → ∃y(I≺β(n, y) ∧ Fβ(n) � y)) for each β � α, where I≺β(n, y) is either
Iβ−1(y) or Iβn (y) according as β is a successor or a limit. This is what we take as
our notion of “provable recursiveness”. Furthermore, examination of that argument
(in the introduction to this section) would show that the height of this derivation is
(of the order) ω · β + 2. The Computation rule will then allow finite compositions
of these functions to be formed and derived in EA(Iα). Thus if f is elementary
in Fβ (i.e. computable in time bounded by some finite iterate of Fβ) then there is
an elementary relation R(n,m) such that f (n) may be computed by finding the
least m satisfying R(n,m), and furthermore this m is ≤ Fk

β (n) for a fixed k. To
show that f is provably recursive in EA(Iα) it is therefore only necessary to prove
n:Iβ �γ ∃y(I≺β(n, y) ∧ R(n, y))with γ independent of n. But becausem is bounded
by Fk

β (n) and this provably exists in EA(Iα), we have n:Iβ �c I≺β(n,m) with height
independent of n, and also n:Iβ � R(n,m) since this entails just the checking of
bounded quantifiers. Application of the (∃)-rule then gives, for some fixed γ and
every n, n:Iβ �γ ∃y(I≺β(n, y) ∧ R(n, y)).

Conversely, suppose f is provably recursive in EA(Iα). This means there is an
inductively-given or elementary relation R such that R(n,m) ⇒ f (n) � (m)0 holds,
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and at some level Iβ , �γ ∀x (Iα(x) → ∃y(Iβ(y) ∧ R(x, y))). We may assume this to
be cut-free, and by inversion, n:Iα �γ ∃y(Iβ(y) ∧ R(n, y)) for every n. Therefore
(inverting the ∃y several times if necessary) for each n the correct value m satisfying
R(n,m) is such that n:Iα �γ

c Iβ(m). There are now two cases: first supposeβ ≺ α. By
the Bounding Lemma,m ≤ fβ(g)(n;−)2

g(n)

(n)where g = Gγ . This g is elementary,
because Gγ(n) has the effect of replacing each ω in the Cantor normal form of γ by
n or n + 1. Therefore g(n) is bounded by a fixed finite iterate of F1(n) = n + 2n . It
is not difficult to see, by induction on β, that fβ(g)(n;−) ≤ Fβ(g(max n,−) + �),
and hence m ≤ Fβ+1(g(n) + �) for some fixed �. This bound is, as a function of n,
elementary in Fα, and so the function f , being given by bounded search (as the least
m less than the bound such that R(n,m)) is also elementary in Fα.

Finally, suppose β = α, so n:Iα �γ
c Iα(m). The Bounding Lemma now gives

m ≤ fα(g)(0;−)2
g(0)

(n) which is a fixed finite iterate of fα(g)(0;−) on n. But,
as noted above, fα(g)(0;−) ≤ Fα(g(−) + �). Therefore f (n) = m is bounded by a
fixed finite iterate of Fα ◦ g and this holds for every n. So again, the given provably
recursive function is elementary in Fα. �

3.3 Weak, Pointwise Transfinite Induction

A basic version of transfinite induction up to γ is

A(0) ∧ ∀δ(A(δ) → A(δ + 1)) ∧ ∀λ(∀i A(λi ) → A(λ)) → A(γ) .

Weak, pointwise-at-x transfinite induction up to γ is the following principle:

A(0) ∧ ∀δ(A(δ) → A(δ + 1)) ∧ ∀λ(A(λx ) → A(λ)) → A(γ)

where x is a numerical input variable. We denote this principle PT I (x, γ, A) and
write PT I (x, γ) for the schema.

Using this, we can immediately prove, with only a small amount of basic coding
apparatus, that the x-descending chain from γ exists. That is

∃s D(s, x, γ)

where D(s, x, γ) is the bounded formula saying that s is the sequence number of
ordinal notations such that (s)0 = 0 and (s)lh(s)−1 = γ and for each i < lh(s) − 1
either (s)i+1 is a limit λ, in which case (s)i = λx , or (s)i+1 is a successor δ + 1, in
which case (s)i = δ.

Thus ∃s D(s, x, γ) expresses the pointwise-at-x well-foundedness of γ, and we
often abbreviate it as PWF(x, γ). The contrast between this �0

1 notion and full �
1
1
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well-foundedness is stark, but even here there are interesting analogies to be drawn.
Whereas the natural subrecursive hierarchies of proof-theoretic bounding functions
are “fast” growing in the classical case, they are “slow” growing in the pointwise case.
For detailed comparisons between the two, see [13], and Weiermann [16]. Schmerl
[12] was the first to formulate such weak, pointwise induction schemes in the context
of Peano Arithmetic.

Definition 3.5 The functions Lx and Gx are defined as follows:
Lx (γ) = a iff ∃s(D(s, x, γ) ∧ a = lh(s) − 1)
Gx (γ) = a iff ∃s(D(s, x, γ) ∧ a = #(s))
where #(s) is the number of successors in the descending sequence s.

Lemma 3.6 Lx and Gx satisfy the following recursive definitions:
Lx (0) = 0, Lx (δ + 1) = Lx (δ) + 1, Lx (λ) = Lx (λx ) + 1 .

Gx (0) = 0, Gx (δ + 1) = Gx (δ) + 1, Gx (λ) = Gx (λx ) .

These functions, being given “pointwise-at-x”, are alternative versions of the slow
growing hierarchy, and they are both provably defined as immediate consequences
of pointwise well-foundedness. They each have their uses, though we favour Gx

since, for each x , it more readily collapses the arithmetic of tree ordinals down onto
ordinary arithmetic. Thus writing x as the subscript and γ as the argument (instead of
the other way around) is often a more appropriate notation. We use both, depending
on context. Under the assumption δ ≺n γ ⇒ δ + 1 �n+1 γ it immediately follows
that

Gn(γ) ≤ Ln(γ) ≤ Gn+1(γ) .

Of course, even to call PT I (x, γ) a transfinite induction principle requires a
stretch of the imagination, because it is really just a collection of finitary inductions
indexed by x and uniformized by γ. The following lemma brings this out more
clearly. The levels at which inputs and quantifiers are declared will, for the time
being, be suppressed.

Lemma 3.7 In any arithmetical theory containing the basic coding apparatus,
PT I (x, γ) implies Numerical Induction up to Gx (γ), and conversely, Numerical
Induction up to Lx (γ) implies PT I (x, γ).

More precisely, given any formula F(a), let A(δ) ≡ ∀a ≤ Gx (δ).F(a) where
∀a ≤ Gx (δ).F(a) stands for ∃b(Gx (δ) = b ∧ ∀a≤bF(a)). Then one may prove (with
x, γ declared at a level higher than that of F(a) and A(δ))

PT I (x, γ, A) → ( F(0) ∧ ∀b(F(b) → F(b + 1)) → ∀a ≤ Gx (γ).F(a) ) .

Conversely, given any formula A(δ) let F(b) ≡ ∀δ �x γ(Lx (δ) = b → A(δ))where
δ �x γ means ∃s(D(s, x, γ) ∧ ∃i<lh(s)((s)i = δ)). Then

( F(0) ∧ ∀b(F(b) → F(b + 1)) → ∀a ≤ Lx (γ).F(a) ) → PT I (x, γ, A) .
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Proof We argue informally. For the first part, it is only necessary to show that
the progressiveness of F implies A(0) and ∀δ(A(δ) → A(δ + 1)) and A(λx ) →
A(λ) for limits λ. But F(0) immediately implies A(0). If ∀b(F(b) → F(b + 1))
then ∀a ≤ Gx (δ).F(a) → ∀a ≤ Gx (δ + 1).F(a) which gives ∀δ(A(δ) → A(δ +
1)). The limit case A(λx ) → A(λ) is immediate since Gx (λx ) = Gx (λ). Therefore
PT I (x, γ, A) gives A(γ) ≡ ∀a ≤ Gx (γ).F(a).

For the converse, assume A is progressive, i.e. A(0) and ∀δ(A(δ) → A(δ + 1))
and A(λx ) → A(λ) at limits λ. Then one easily proves F(0) and for any b, F(b) →
F(b + 1). For assume F(b). Then if δ �x γ and Lx (δ) = b + 1, δ is either a successor
or a limit and its immediate predecessor in the �x -sequence, call it δ′, satisfies
Lx (δ

′) = b. Therefore A(δ′) holds and, by the progressiveness of A one immediately
gets A(δ). Hence F(b + 1), and so by numerical induction up to Lx (γ)we then have
F(Lx(γ)) and hence A(γ). This implies PT I (x, γ, A). �

The motto is: “In a theory of predicative, or tiered, numerical induction, Gγ ↓
witnesses the provability of pointwise transfinite induction up to γ.”

Definition 3.8 Extend Gx to the third number-class by taking large sups to small
sups. Thus: Gx (0) = 0; Gx (δ + 1) = Gx (δ) + 1; Gx (λ) = Gx (λx) at small limits
λ, and at large limits, Gx (SU Pξ λξ) = supi Gx (λi ).

Note in particular, Gx (�) = ω.

Definition 3.9 For each α in the third number-class, define the function ϕα from
countable tree ordinals to countable tree ordinals:

ϕα(β) =

⎧⎪⎪⎨
⎪⎪⎩

β + 1 if α = 0
ϕ2β

α−1(β) if α is a successor
supi ϕαi (β) if α is a small limit
ϕαβ

(β) if α is a large limit.

Lemma 3.10 (Collapsing) Provided each large limit λ � α satisfies the condition
Gx (λξ) = Gx (λ)Gx (ξ), we have:

Gx (ϕα(β)) = FGx (α)(Gx (β)) .

Proof As in Chap.5 of [13]. �

Theorem 3.11 For each α ≺ ε0, let ᾱ be the ordinal in the third number-class
obtained by replacing ω by � throughout its Cantor normal form. Then ϕᾱ+1(ω)

is the supremum of the ordinals γ for which EA(Iα) proves pointwise transfinite
induction up to γ.

Proof Pointwise transfinite induction up toγ = ϕᾱ+1(ω) cannot be proven inEA(Iα)

because, by Collapsing, Gγ(n) = FGn(ᾱ+1)(n) = Fα+1(n) and this is not elementary
in Fα. (Note: the proviso in the Collapsing lemma is satisfied for Cantor normal
forms.) Hence Numerical Induction up to Gγ cannot be proven in EA(Iα). On the
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other hand, γ = supi γi where every γi = ϕ2i
ᾱ (ω). But pointwise transfinite induction

up to each γi is provable in EA(Iα) because Gγi is a finite iterate of Fα, therefore
elementary in Fα. �

Corollary 3.12 (i) The supremum of the ordinals γ for which EA(I≺ω) proves point-
wise transfinite induction up to γ is ϕω(ω), the first prim-closed ordinal. (ii) The
supremum of the ordinals γ for which EA(Iω) proves pointwise transfinite induction
up to γ is �0. (Since ϕ�+1(ω) = supi ϕ

2i
�(ω) and ϕ�(β) = ϕβ(β).)

The ϕ functions used here are not the Bachmann-Veblen functions φ, but are
closely related. Thus

⋃
α≺ε0

EA(Iα) is a tiered version of PA∞ and its provable
pointwise transfinite inductions hold up to all ordinals below the Bachmann-Howard
ϕε�+1(ω). Similarly one may further extend the methods to larger “cut-closed” initial
segments beyond ε0. For more on EA(Iω) and its predicative analogies, see [15].
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Predicativity and Regions-Based Continua

Geoffrey Hellman and Stewart Shapiro

Abstract After recapitulating in summary form our basic regions-based theory of
the classical one-dimensional continuum (which we call a semi-Aristotelian theory),
and after presenting relevant background on predicativity in foundations of mathe-
matics, we consider what adjustments would be needed for a predicative version of
our regions-based theory, and then we develop them. As we’ll see, such a predicative
version sits between our semi-Aristotelian system and an Aristotelian one, as well
as falling generally between fully constructive and fully classical theories. Finally,
we compare the resulting predicative theory and our original semi-Aristotelian one
with respect to their power and unity.
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1 Introduction

In earlier work [10, 11], we develop a so-called “classical theory” of a regions-based
one-dimensional continuum and establish that it is mathematically equivalent to a
standard Dedekind–Cantor, point-based theory. We have also shown that similar
methods and results obtain for higher (finite-) dimensional continua in the contexts
of Euclidean [12] and non-Euclidean geometries. These theories recapitulate the
Aristotelian conception of the continuous as non-punctiform, reflecting the intuitive
(and long-lived) idea that a true continuum is not constituted by points.

At several places, however, we make essential use of impredicative constructions
as well as non-constructive appeals to “actual” as opposed to “potential” infini-
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ties. The “actually infinite”, famously, was not part of the Aristotelian conception
of mathematical or geometric spaces. For this reason, we call our theories “semi-
Aristotelian”. We have elsewhere shown how our one-dimensional theory can be
modified to accord with the restriction to potential infinity [13]. We dub that theory
“Aristotelian” or “more Aristotelian”.

It is interesting to consider how our semi-Aristotelian theories can be modified
to accord with contemporary predicative foundations, as developed especially by
Solomon Feferman and his co-workers.1 Here there is no objection to actual infinities
so long as they are countable and predicatively justifiable; and, moreover, classical
logic is fully applicable.2 So the modifications appropriate to our more Aristotelian
setting are too harsh for a predicativist treatment. Our purpose here is to provide suit-
able modifications for a predicative theory and to assess the result. Predicative theo-
ries are sometimes called “semi-constructive”. So the goal here is a semi-constructive,
semi-Aristotelian theory of the continuous.

We will begin by reviewing our original semi-Aristotelian theory of a one-
dimensional (non-punctiform) continuum. See [10] or [11] for more details and
proofs. To motivate the present project, and to make the article self-contained, we
provide relevant background on predicativity in general and then with respect in par-
ticular to continua. Thenwewill turn to themain task ofmodifying our regions-based
continua theories to accord with demands of predicativity.

2 Recapitulation of the “Semi-Aristotelian” Continuum
(with Emphasis On “Semi”)

The formal background is classical, first-order logic with identity supplemented with
a standard axiom system for second-order logic (or logic of plural quantification,with
an unrestricted comprehension axiom for plurals). ThemoreAristotelian systemdoes
not invoke these higher-order resources and the predicative system, developed here,
restricts them.

1a. Axioms on x ≤ y (“x is part of y”): reflexive, anti-symmetric, transitive.
As is standard, we define a binary relation called “ overlaps”: x ◦ y ⇔df ∃z(z ≤ x

& z ≤ y). And we write x|y for ¬x ◦ y, pronounced “x is discrete from y”.3

1b. Axiom on ≤ and ◦: x ≤ y ↔ ∀z[z ◦ x → z ◦ y].

1For an excellent account of predicativity in historical perspective, from Russell’s ramified type
theory ((over-)reacting to the set-theoretic paradoxes), through semi-constructive ideas of Poincaré
and Weyl, up to modern developments, including work of Feferman and Strahm on unfolding, see
[3, 4].
2Our semi-Aristotelian and more Aristotelian theories also invoke classical logic. It might be noted
that Aristotle himself accepted the law of excludedmiddle. The differences between ourAristotelian
and semi-Aristotelian theories concern the treatment of infinity.
3Following Nelson Goodman’s usage, [8] we prefer the term ‘discrete’ to ‘disjoint’ here in order to
emphasize the fact that our regions are not sets of points (indeed aren’t sets at all).
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This implies an extensionality principle, yielding so-called classical mereology:

Theorem 1 x = y ↔ ∀z[z ◦ x ↔ z ◦ y].
2. Axiom of Fusion or Whole Comprehension:

∃u�(u) → [∃x∀y{y ◦ x ↔ ∃z(�(z)&z ◦ y)}],

where � is a predicate of the second-order language (or language of plurals) lacking
free x.

This is the only second-order axiom. In the plural locution, it says that if we are
given any regions—no matter how many—there is a single region that is a fusion
of them. To repeat, in the semi-Aristotelian theory, there are no restrictions on the
number of regions that can be “fused”.

This is the axiom that allows the play with infinity. In some cases, we take fusions
of regions without bothering to check howmany regions are so fused. In other cases,
we explicitly fuse infinitely many regions. We take it that the “infinities” invoked by
this axiom are “actual”, since we conclude that there is a single region that is the
fusion of all of the given regions.

Some initial examples illustrate the power of this principle. If x and y are regions,
we write x + y for the mereological sum or fusion of x and y. So a region ovelaps
x + y if and only if either it overlaps x or it overlaps y. If x and y are separated by
some space, then x + y is a region with discontiguous parts. Here, of course, we only
fuse two regions, and we take this to be unproblematic for the Aristotelian and the
predicativist.

If x ◦ y, then we write x ∧ y for the meet of x and y. It is the fusion of all regions
that are part of both x and y. So ∀z[z ≤ x ∧ y ↔ z ≤ x & z ≤ y] (and if x and y have
no common part, then x ∧ y is undefined). Here, then, is the first place where we take
the fusion of some regions without bothering to make sure that there are only finitely
many such.

Similarly, if ∃z(z ◦ x&¬(z ◦ y)), then we let x − y be the sum of all regions z that
are part of x but discrete from y (and if there is no such z, then x − y is undefined).
So ∀z(z ≤ x − y ↔ (z ≤ x&¬(z ◦ y))). Again, we do not check to see how many
regions are so-fused.

We let G be the fusion of all regions. It is the entire line, as a single region. Since,
as it happens, there are infinitely many pairwise discrete regions, this, too is not
acceptable to an Aristotelian.

We next introduce a geometric primitive, L(x, y) , to mean “x is (entirely) to the
left of y”. The axioms for L specify that it is irreflexive, asymmetric, and transitive.
And we define ‘R(x, y)’, “x is (entirely) to the right of y”, as L(y, x).

This allows us to define betweenness: Betw(x, y, z) for “y is (entirely) between x
and z”:

Betw(x, y, z) ⇔df [L(x, y) & R(z, y)] ∨ [R(x, y) & L(z, y)]

It follows that Betw(x, y, z) ↔ Betw(z, y, x).
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L(x, y) obeys the following axioms:
3a. L(x, y) ∨ R(x, y) → x|y.
3b. L(x, y) ↔ ∀z, u[z ≤ x& u ≤ y → L(z, u)].

The following can now be inferred:
Betw(x, y, z) → x|y & y|z & x|z, and
Betw(x, y, z) & Betw(u, x, z) → Betw(u, y, z).
We next define the notion of a connected region, one that has no gaps:

Conn(x) ⇔df ∀y, z, u[z, u ≤ x & Betw(z, y, u) → y ≤ x]. (Df Conn)

So the entire line G is connected.
We also define what it means for a region to be bounded (on both sides):

Bounded(p) ⇔df ∃x, y Betw(x, p, y). (Df Bounded)

We call bounded, connected regions “intervals ” and write ‘Int(j)’, etc., when
needed. This is the direct analogue of an interval in a standard, Dedekind–Peano
punctiform space. Since the present space lacks points, and thus endpoints, there is
no sense in which intervals are open, closed, or half-open.

Using L, we can impose a condition of dichotomy for discrete intervals:

4. Dichotomy axiom: ∀i, j[i, j are two discrete intervals → (L(i, j) ∨ L(j, i))].
It is straightforward to prove a linearity condition among intervals:

Theorem 2 (Linearity): Let x, y, z be any three pairwise discrete intervals; then
exactly one of x, y, z is between the other two.

To guarantee that arbitrarily small intervals exist everywhere, we adopt the fol-
lowing “gunkyness” axiom:

5. ∀x∃j[Int(j) & j < x].
An important relation of two intervals is “ adjacency”, which is defined as follows:

Adj(j, k) ⇔df j|k & �m[Betw(j,m, k)]. (Df Adjacent)

Intuitively, adjacent intervals touch, but do not overlap. This is Aristotle’s definition
of contiguity. Since we do not recognize points, at least not as parts of regions,
adjacent intervals are also continuous with each other, in Aristotle’s sense.

The following equivalence relation is useful: “intervals j and k are left-end equiv-
alent” just in case

∃p[p ≤ j& p ≤ k & �q({q ≤ j ∨ q ≤ k}& L(q, p)].

“Right-end equivalent” is defined analogously. Left- (Right-) end equivalencemeans,
intuitively, that the intervals “share their left (right) ends, or end-points, in common”.
Since our system does not recognize “ends” or “ end-points”, we need a definition
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like the above. Roughly, two intervals are Left- (Right-) end equivalent just in case
any region that is Left (Right) of one of them is Left (Right) of the other.

Our final geometric primitive is congruence, a binary relation among intervals.
We adopt the usual first-order axioms specifying thatCong is an equivalence relation.
We will sometimes write Cong(i, j) as |i| = |j|. Similarly, for intervals i, j, we can
define, contextually, |i| < |j| as meaning: ∃j′[j′ an interval & j′ < j & Cong(i, j′)];
and we may write |i| > |j| as equivalent to |j| < |i|. Say that |i| ≤ |j| just in case
either |i| < |j| or |i| = |j|.

The next axiom is crucial to our characterization:
6. Translation axiom: Given any two intervals, i and j, each is congruent both to

a unique left-end-equivalent and to a unique right-end-equivalent of the other.

Intuitively, this means that any interval can be “transposed” or, perhaps better, instan-
tiated, anywhere in the space G.

Lemma 1 Given any two intervals i and j such that ¬Cong(i, j), either there exists
an interval i′ < j with Cong(i, i′); or there exists i′ with j < i′ with Cong(i, i′).

Theorem 3 (Trichotomy) For any two intervals, i, j, either |i| = |j| or |i| < |j| or
|i| > |j|.

Our final axiom is that congruence respects nominalistic summation of adjacent
intervals:

7. Additivity: Given intervals i, j, i′, j′ such that Adj(i, j), Adj(i′, j′),
Cong(i, i′), Cong(j, j′), then Cong(k, k ′), where k = i + j and k ′ = i′ + j′.

We now turn to the matter of the bi-infinitude of G. In fact, our axioms already
guarantee this, as we can prove.

Theorem 4 (Bi-Infinity of G) Let any interval i be given; then there exist exactly
two intervals, j, k, such that Cong(i, j) & Cong(i, k) & Adj(i, j) & Adj(i, k)& one
of j, k is left of i and the other is right of i.

In words, this says that given any interval i, there is an interval congruent to i and
adjacent to i on its left, and there is another interval congruent to i and adjacent to i
on its right. This obviously iterates. The proof of Theorem 4 also involves taking the
fusion of some intervals and, here too, there is no reason to think, in advance, that
the number of intervals so fused is finite.

Call an interval l an (immediate) bi-extension of interval i—BiExt(l, i), or
biext(i) = l—just in case l = j + i + k, where j, i, k behave as in the Bi-Infinity
theorem.

Lemma 2 Let i and j be intervals such that i < j; then ¬Cong(i, j).

One central result is the Archimedean property that, in effect, our entire space G
is exhausted by iterating the process of flanking a given interval by two congruent
ones as in Bi-Infinity.

LetX be any class (or plurality) of intervals such that an arbitrary but fixed interval
i ≤ G is one of the X and such that if k = biext(j) for j any of the intervals of X ,
then k is also in X . Call such X a “closure of i under biext”.
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Lemma 3 There is an individual which is the common part of the fusions of each
class X which is a closure of i under biext, which we call their meet or the minimal
closure i∗of i under biext. (Since i is stipulated to belong to any such X , the meet is
non-null, as required in mereology.)

Here we apply Axiom 2, of unrestricted fusions, this time to an explicitly defined
infinite set (or plurality) of intervals. Moreover, the definition of this “minimal
closure” is impredicative.

This is sufficient to establish an Archimedean property:

Theorem 5 (Characterization of G): Let G be the fusion of the objects in the range
of the quantifiers of our axioms; then G = i∗, the fusion of the minimal closure of i
under biext.

Our next theorem is that any interval has a unique bisection:

Theorem 6 (Existence and uniqueness of bisections): Given any interval i, there
exist intervals j, k such that j < i & k < i & j|k & j + k = i & Cong(j, k); and j, k
are unique with these properties.

Here, again, we take the fusion of some intervals, without checking to see how many
intervals are fused.

It is perhaps interesting that Axiom 2, of unrestricted fusions, yields the existence
ofmeets, differences, biextensions, and bisections; and it plays a crucial role in estab-
lishing the Archimedean property. These consequences are themselves acceptable to
an Aristotelian, even though the background axiom of fusions is not. So in the more
Aristotelian theory [13], the principles in question have to be added in by hand, as
new axioms. As we shall soon see, the same goes for the predicativist.

We next sketch away to embed the real numbers intoG, given an arbitrary interval
i to serve as a unit. Define a sequence < ji > of intervals increasing to the right (or
left, for negative reals) to be Cauchy just in case, for any interval, ε, there exists
a natural number N such that for any natural numbers m > k > N , jm − jk is an
interval, R(jm − jk , jk), and |jm − jk | < |ε|. The fusion of the members of such a
sequence gives us an interval that can play the role of a given real number.

Let us illustrate this with a particular real number, say π. The sequence < ji > is
defined as follows. j0 is i, our unit interval; j1 is congruent with i and adjacent to it
on the right, and j2 is congruent with i and adjacent to j1 on its right. So the fusion
of j0, j1, and j2 is the interval that corresponds to the number 3.

Next consider the fractional part of π as a bicimal expansion. It starts 0010010000
111111 . . . (see http://www.befria.nu/elias/pi/binpi.html). Consider the following
procedure for adding intervals to the sequence< ji >. For each natural numbern > 2,

If the n − 2nd member of the bicimal expansion of π is 0, then do nothing; go on to the next
number; but

if the n − 2nd member of the bicimal expansion of π is 1, then add an interval congruent to
an n − 2-fold bisection of i that is adjacent to, and on the right of, the rightmost member of
< ji > defined so far.

http://www.befria.nu/elias/pi/binpi.html
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So j5 is congruent to an eighth of i (i.e., the result of bisecting i three times), j6 is
congruent to a 64th of i, etc. The real number π corresponds to the fusion of the
members of the sequence < ji >.

But, of course, these “Cauchy sequences” of intervals are themselves infinite and
so here, too, we take the fusion of an infinite set of regions. Fusions like this are not
acceptable to an Aristotelian. And only some such fusions—those with appropriate
definitions—are acceptable to the predicativist.

3 Background on Predicativity

In the first instance, the terms ‘predicative’, ‘impredicative’, refer to methods of
introducing, defining, or specifying collections or pluralities4 of given objects. For
example, given the natural numbers, any arithmetical formula with a free variable,
x, that is a formula containing bound variables (governed say by quantifiers) over
natural numbers but not over sets or pluralities of them, counts as predicative, e.g.
“even number”, “prime number”, etc.5 However, if we try to introduce the whole
collection of natural numbers as the intersection of all collections containing 0 and
closedunder the successor operation,wehave a quantifier over collections of numbers
(and possibly other objects), one of which turns out to be the very collection—
viz. of exactly all the naturals—that we’re trying to introduce. Such a definition
or specification is paradigmatically impredicative (relative to the natural numbers,
however they may be construed).

Now from a constructivist point of view,6 it is clear that such impredicative def-
initions are problematic, since we have already to presuppose the existence of the
totality we’re trying to “construct” as a value of the universally quantified variable
in order for the definition to be comprehended. But even if one is not requiring that
all mathematical entities be “constructed” or “constructible”—whatever that means,
precisely—it seems that one still has to regard as understood the notion “arbitrary
collection of natural numbers”, and, as we know from Cantor, this transcends the
countably infinite and raises the prospect of transfinite iteration of operations on
collections, e.g. that of taking power sets, as we’ve just done.7

Let us grant, then that there is natural motivation for accepting the countable
infinity of natural numbers, or the integers, or even the rationals as unproblematic

4We use ‘pluralities’ as shorthand indicating the use of plural quantification and plural variables to
avoid reference to higher-type objects.
5Below, we will refine this to be a relative distinction, i.e. the definition of “prime number” is
predicative relative to the natural numbers, taken as already introduced or given. But for now, let
us suppress mention of this relativity.
6This refers to programs based on intuitionistic logic, including Bishop constructivism as well as
intuitionism itself.
7Nowonder, then, that some great mathematicians such as Poincaré might look askance at the above
logicist definition of the natural numbers system, preferring simply to presuppose the numbers
(individually and plurally) as a starting point for analysis and higher mathematics.
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totalities from which to launch the study of real and complex analysis and other
advanced subjects. Clearly, however, this motivation does not call into question the
free use of classical logic, including the law of excluded middle, double-negation
elimination, etc. For a familiar example, the least number principle—from existence
of a number with (even undecideable) property � to infer the existence of a least
such—is a classical, non-constructive but predicatively acceptable consequence of
mathematical induction.

The next step is to accept subsets or subpluralities of those countable domains
which are extensions of formulas of mathematical language whose bound variables
range over just the first-order objects of those domains, i.e. the first-order definable
subsets or pluralities. Call those the level-1 subtotalities (sets or pluralitities). But
then one should allow further subsets as extensions of formulas with bound variables
ranging over either the first-order objects or the already accepted level-1 subtotalities.
And this process clearly can be iterated, certainly finitely often, and perhaps into the
transfinite.8

Turning to the crucial case of analysis, suppose we seek to introduce real num-
bers as (equivalence classes of) Cauchy sequences of rationals. At the first stage,
we only consider such rational sequences specified by formulas with bound vari-
ables restricted to the rational numbers. However, the reasoning of Cantor’s diagonal
argument for uncountability of the reals implies that there must be further stages
introducing more reals.9 Indeed, at the next stage, the predicativist considers formu-
las with bound variables ranging over real numbers defined at the first stage. And on
it goes. Thus one may develop a hierarchy of richer and richer systems as in ramified
type theory, allowing at any stage quantifiers over reals specified at earlier stages in
the defining formulae. Crucially, however, one lacks the machinery to specify the
union of all such stages, for over what totality of ordinals would “all such stages”
range? Proof-theoretic analysis (independently by Feferman and by Schütte) has
shown that a certain countable limit ordinal, known as �0, of the Veblen hierarchy
qualifies as a limit to the available stages, but even to recognize this limit, one steps
outside the predicativist framework proper (see [1, 7, 9]).10

8Transfinite iteration, of course, would have to be formulated carefully, and would involve a back-
ground theory of infinite ordinals. That in itself appears problematic from a predicativist point of
view, since the very notion of “ well-ordering” is impredicative (building in the requirement that
every subset of the field of the well-ordering relation have a least element).
9Note that the immediate negative step in theCantor diagonal argument, viz. that the altered diagonal
sequence defined is a Cauchy sequence not on the given countable list, which therefore cannot be
of all the reals, is constructively and predicatively acceptable. Thus the predicativist can see, at any
stage, that more reals can be introduced. In this sense, “all the reals” makes predicative sense only
as a potential, open-ended infinity, not an actual one.
10It should be noted that proponents of predicativemathematics need not espouse “predicativism” as
a philosophical position, i.e. views that take only predicatively justifiedmathematics to be intelligible
or legitimate. In particular, Feferman forswears such an “ism”, explicitly in [5] and in practice, as
illustrated by his work on specifying the outer limits of predicativity. Moreover, he has emphasized
that “a little bit [of higher-order logical strength] goes a long way” [2]. Indeed, the exploration of
various systems of predicative mathematics is, in our view, best understood as an integral part of
the epistemology of mathematics.
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Thus we seem to be saddled with a ramified hierarchy of levels or orders of
reals, with all its awkwardness and complexities. For example, we still confront
the problem of impredicativity of the least upper bound (or greatest lower bound) of
predicatively acceptable sets of reals, in that those boundswill be of a level beyond the
reals of the given set or plurality. Thus the predicativist program confronts a trade-
off between the greater epistemic security offered by restrictions to predicatively
definable subtotalitites, on the one hand, and recovering essential properties, such as
continuity itself, on the other.11

Fortunately, however, work of Feferman et al. has provided systems that avoid
the complexities of ramified type theory while still qualifying as “predicatively
reducible”, that is systems, such as Feferman’s W [6], a “theory of flexible finite
types” demonstrably conservative over first-order Peano Arithmetic, in which anal-
ysis can be quite naturally developed.

To sum up, thus far: predicative mathematics sits in between thoroughgoing con-
structive mathematics and full classical analysis and set theory. Regarding continua,
it also sits between the semi-Aristotelian perspective of the previous section and that
of the “more Aristotelian” systems developed in [13]. Like Aristotelian mathemat-
ics, predicative mathematics balks at the unrestricted use of actual infinity, as in the
semi-Aristotelian framework, but does not reject the actually infinite outright. As
already made clear, there is no objection to actual infinity as such, provided that any
actual infinity recognized is countable and specifiable in a predicatively acceptable
way. Also, it should be noted, demands of predicativity are no bar to punctiform
systems of geometry or topology either. Although positive commitments to uncount-
able totalities are avoided, the mathematics of such spaces can be pursued in an
“open-ended” fashion, as articulated in the program of unfolding [4].

Finally, to come full-circle, as noted above, predicativity is best understood as
a relative notion; and the most common relativity is to the natural numbers as a
countably infinite, though constructively generated, structure. One who is familiar,
however, with the development of classical number systems from a logicist basis,
à la Frege or Dedekind or Russell, may wonder about the decision to start with
sui generis axioms for the natural numbers: for on those accounts, the class of the
naturals is explicitly defined as the minimal closure of (the singleton of) the initial
number designated ‘0’ or ‘1’, under the (defined) operation of successor—and this
is a paradigmatically impredicative construction. So isn’t the predicativist program,
as usually presented, on shaky ground from the start? In response, one may begin
with an elementary theory of finite sets12 over an axiomatically provided, minimally

11Similar complexities led Weyl, eventually, to turn away from Brouwer’s intuitionist program.
But here we are raising the prospect of a slippery slope that calls into question the viability of a
semi-constructivist or “definitionist” program (allowing free use of classical logic) of the sort that
Weyl then pursued.
12Although classical theories of finite sets and of natural numbers may be formally interderivable,
there is a fundamental difference to be noted regarding the objects of such theories. Arguably,
numbers are identified by their “positions” in a structure; other aspects of their identity (if recog-
nized at all) are mathematically irrelevant. In contrast, finite sets are self-standing, identified by
theirmembers, independently of any structure ofwhich they are a part or towhich they belong. In this
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structured, countable domain (e.g. a pairing function and an urelement under pairing),
thereby recovering a natural-numbers system (with induction for classes specified
predicatively relative to finite sets), along with proofs of categoricity of the axioms
and of recursion theorems, and a proof that the system is conservative relative to first-
order Peano Arithmetic (again, see [1, 7]). This will prove useful in what follows
here.

The goal now is to present a predicative, regions-based continuum. The situation
is complicated by the fact that a theory of a regions-based continuum is, from the
outset, aiming to describe an uncountable structure, one that is not predicated on, or
constructed from, a prior countable one (such as the rational numbers). The semi-
Aristotelian development sketched above beginswith first-order logic enrichedwith a
logic of plurals (or something equivalent), along with axioms of classical mereology,
including an unrestricted comprehension scheme for plurals (or equivalent), and an
axiom asserting the existence of the mereological sums or “fusions” of any (all)
such pluralities. Such axioms are naturally regarded as impredicative and so must
be restricted somehow. Sticking again, with the one-dimensional case, the task at
hand is to determine what sort of predicative theory can be developed on the more
restrictive basis and how that compares with the original classical theory.

4 Predicative Adjustments

The places where impredicativity threatens the semi-Aristotelian development are
essentially the same as those where the Aristotelian demurs. In that case, there are
several places where we took the fusion of some regions, without bothering to check
whether the regions, so fused, are finite in number. The predicativist also balks
at those places, since we did not check to make sure that we have a predicative
definition of the relevant set or plurality. In other places, we explicitly took the fusion
of infinitely many regions. Typically, these are also impredicative, often defined as
minimal closures. As it happens, the predicativist can recapture some of those results.

Thus, from the predicativist standpoint, the troubling results from the semi-
Aristotelian development are these:

(1) specification of arbitrary meets and differences among regions (via Axiom 2);

(2) specification of the universal region, G as the (unrestricted) fusion of all regions;

(3) in Theorem 4, the derivation of the existence of bi-extensions of any given interval
(implying the bi-infinity of the space);

(4) the construction of minimal closure of {i} under iterated bi-extension (Lemma 3), a
paradigmatically impredicative construction; this yielded

(5) the Archimedean property;

(Footnote 12 continued)
way, recognizing numbers already raises questions about infinite totalitites (potential or actual),
whereas such questions can be postponed in theorizing about finite sets, as reflected in Feferman
and Hellman’s theory which they call “ Elementary Theory of Finite Sets and Classes” [1].
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(6) the proof of Theorem 6, existence of bisections of intervals;

(7) the proof of Dedekind completeness of the interval structure (not mentioned above).

The task here is to formulate a regions-based theory that addresses the relevant
issues as successfully as possible. The matter is complicated by the fact that, clas-
sically speaking, the individuals are regions of a geometric space, and even well-
behaved regions such as intervals are uncountably many and so cannot enter into a
predicatively acceptable totality or operation such as fusion. Thus arises the prob-
lem over the universal region G (2), and the break-down of proofs of existence of
bi-extensions and bisections (problems (3) and (5)).

Sincewe are startingwithout any arithmetic axioms at all, it is useful to try to adapt
themachinery of [1, 7] in their “ predicative foundations of arithmetic”,where axioms
on ordered pairing provided for a countable set of individuals. Then “finite set” of
such individuals is taken as primitive, subject to uncontroversial further axioms, and
supplemented with a comprehension principle for “classes” of individuals (in which
only individual and finite-set bound variables occur in the defining formulae). Hence
the designation ‘EFSC’ of [1, 7], for “elementary theory of finite sets and classes”.

In the present, more geometric setting, we will combine these ideas with axioms
of atomless mereology (with ≤, part of, as primitive) and further axioms governing
the special regions called “intervals”, which enable us to dispense with primitive
pairing. Instead of finite sets and classes of individuals, we will use plural variables
ff , gg, hh etc., for finitely many regions or intervals, and xx, yy, zz for general plural
reference; and we write x ≺ ff , y ≺ xx, etc., to express “x is one of, or is among, the
ff ”, “y is one of, or is among, the xx”, etc.

Our axioms start off the same as for the semi-Aristotelian theory described above,
but we replace the unrestricted fusions Axiom 2 initially to allow only fusions of
finitely many regions—as in the Aristotelian development. Later we broaden this to
include certain countable fusions—those with proper definitions.

The other axioms of the semi-Aristotelian theory, through 7, carry over intact.
Recall Axiom 5, the one that renders the system “gunky”:

∀x∃j[Int(j) & j < x].

Since the background logic is unfree, we assume the existence of at least one region.
Axiom 5 thus gives us at least one interval. We designate one such interval to serve as
a unit, for the purpose of a representation of the integers and, eventually, the rationals
and predicatively specifiable reals.13

Also, we adopt another Axiom 8, for differences:

If ∃z(z ◦ x&¬(z ◦ y)) then ∃w∀z(z ≤ w ↔ (z ≤ x&¬(x ◦ y)).

Then we can establish the existence of meets and biextensions (see Theorem A1
of [13]).

13If one prefers a free logic, then we’d need an axiom asserting the existence of an interval (or,
given Axiom 5, a region).
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Iterated biextensions, left and right, starting with our arbitrarily assumed unit
interval, generate a bi-infinite linear structure isomorphic to the integers. In what
follows,we thus assume such a bi-infinite sequence of sequentially adjacent intervals,
all congruent to our unit, and we will designate these canonical intervals.

As noted, we cannot derive the existence of bisections (Theorem 6), as that
involves arbitrary fusions, so instead we postulate it:

Axiom 9 Bisections: ∀j∃!k,m[Cong(k,m) & Adj(k,m) & j = k + m& L(k,m)],
i.e. j is the fusion of k and m.
Finally, we have axioms governing the plural variables, both finitary and general:

Axiom 10 Singleton finite plurality: ∃ff ∃!j[j ≺ ff ].
Axiom 11 Adjunction: ∀ff ∀a∃gg∀x[x ≺ gg ↔ x ≺ ff ∨ x = a].
Axiom 12 Finite Separation: ∀ff ∃gg∀x[x ≺ gg ↔ x ≺ ff ∧ �(x)],
where � lacks free ‘gg’ and lacks bound general plural variables. (Thus, the indi-
viduals among the (finitely many) ff satisfying such � are finitely many.)

Note thatwedonot need an axiomof induction governing thefinite plural variables
(the plurals analogue of finite-set induction), because the machinery so far already
suffices to defineminimal closures of finitelymany given objects under the operations
we need, providing theorems of induction for the formulae we need (cf. [1, 7]).

What about a comprehension principle for general plurals? Here, as already noted,
we have to be careful lest we commit the predicativist to uncountable totalities. Our
strategy will be to introduce certain interval sequences, already furnished by the
axioms presented thus far, and then to allow into our general plurals comprehension
axioms formulaswith bound variables ranging over these intervals. They come in two
sorts, depending on the operations of bi-extension and bisection, respectively, leading
to them. The first sort was already described following the above introduction of bi-
extensions: we’re given a starting unit interval, call it j0; then repeated applications of
bi-extension right and left yield a bi-infinite sequence ofmutually congruent intervals
of the form

. . . j−3, j−2, j−1, j0, j+1, j+2, j+3, . . .

with each interval adjacent to the ones immediately flanking it. (We designate this
doubly infinite sequence with the plural constant jj = 〈ji〉.) More formally, our biex-
tensions theorem furnishes us with two 1-1 functions biextL and biextR yielding for
any argument ji its unique left-biextension and its unique right biextension, respec-
tively. Then we can define the members of the above displayed canonical interval
sequence by requiring that any finite plurality ff such that (1) j+k ≺ ff and (2) if
ji ≺ ff , then biext−1

R (ji) ≺ ff also satisfies that j0 ≺ ff , and likewise for any of the
j−k ,mutatis mutandis. These are our canonical intervals.

Nextwe specify intervals that can be called binary fractions of canonical intervals.
These result from iterated bisection of subintervals, left or right at each stage, begin-
ning with any of the canonical intervals. As in the case of biextensions, Axiom 9 on
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bisections furnishes two 1-1 functions, bisecL and bisecR, yielding for each interval j,
its unique left half, j−2

L , and its unique right half, j−2
R , respectively. Thus, any sequence

σ = 〈σi〉 obtained by iterating these functions is determined by requiring that any
finite plurality ff such that (1) σi ≺ ff and (2) if k ≺ ff , then either bisec−1

L (k) or
bisec−1

R (k) ≺ ff also satisfies that one of the canonical intervals jj ≺ ff .
We are now in a position to state our comprehension principle governing general

plural variables and fusions pertaining to them:

Axiom 13 Plurals Fusion Comp: ∃u�(u) → [∃x∀y{y ◦ x ↔ ∃z(�(z) & z ◦ y)}],
where � lacks free x and the bound individual or finite or general plurals variables
of � are restricted to canonical intervals or binary fractions thereof.

Applying this in the case that �(u) is “u is a canonical interval of the sequence jj
(displayed above)”, we have existence of the fusion of the jj. To recover the classical
characterization ofG, we need to show that this is the same as the minimal closure of
{j0} under iterated bi-extension, despite the impredicativity of the classical definition
of that minimal closure as the intersection of all closures.

Here is where the method of [1, 7] can be adapted so that we can bypass the
classical definition. In its stead, we simply require that the intervals starting with j0
up to any ji—proceeding in the sense+ or− of i—form afinite plurality. This suffices
to establish the existence of an isomorphism between the sequence jj and the integers,
which collectively satisfy the minimal closure condition. Thus, just as [1, 7] recover
the existence and uniqueness (up to isomorphism) of the natural-numbers-structure
from the requirement that all initial segments of their defined privileged sequence
(obtained by iterating the pairing operation, beginning with the posited urelement) be
finite, so that requirement applied in the positive and negative directions of j suffices
for uniqueness up to isomorphism of our bi-infinite linear interval structure.

We are not quite done, however, for we have yet to derive the Archimedean
property. The above shows that the fusion of the sequence jj is part of the fusion of
all intervals that are either to the right or to the left of our initial unit interval, j0, but
we need that the latter fusion be identical to the fusion of the jj. But that follows
by the same proof given in the classical case, applying the Translation axiom, as no
impredicative definitions arise there. Thus we have the identity, G is the fusion of
the canonical interval sequence jj.

Furthermore, we observe that, with the machinery of binary fractions of (lengths
of) canonical intervals together with mereology and plurals, the notion of Cauchy
interval sequence is predicatively acceptable, which opens the way to introducing—
as superstructure over the interval structure of G—a hierarchy of ever richer real-
numbers structures, as in standard predicative analysis.

What about the completeness of the predicative continua, either at the geomet-
ric level of intervals or at the superstructural level? This depends on the notion
of “completeness” involved. As already noted, Dedekind completeness—the least
upper bound principle applied to arbitrary bounded pluralities or sets of real-length
intervals—is paradigmatically impredicative, just as it is in the case of numbers.
Indeed, predicative systems of analysis lack the means even to express the classical
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lub principle, as they are designed to avoid commitment to a totality of all (bounded)
sets or pluralities of reals or of real-length intervals over which the principle quan-
tifies. (Also, they are designed to avoid commitment to uncountable sets of reals
or real-length intervals in the first place.) It is true that at any stage of introducing
countably many (bounded, countable) pluralities of real-length intervals, the pred-
icativist can derive a lub, by considering the fusion of the given bounded sequence.
But, applying the reasoning of the Cantor diagonal argument, the predicativist can
also pass to a proper extension. Thus one gets a hierarchy of lub principles. What
cannot be done predicatively is to prove a formal result that expresses existence of a
least bound of “any predicatively definable bounded totalities or pluralities of real-
length intervals”, since expressing “ predicatively definable” would require stepping
outside the framework, much as does proving the existence of the limit ordinal �0

as a bound on predicatively specifiable countable ordinals. Thus, classical theorems
of analysis that use full Dedekind completeness, such as the intermediate-value or
extreme-value theorems, must be derived by other means, or else the statements of
those theorems, must be suitably altered.

The situation with Cauchy completeness, that any given Cauchy sequence of
reals (or real-length intervals) converges to a real (real-length interval) of the space, is
favorable both to the constructivist and the predicativist, the main difference residing
in their different criteria for what counts as a “Cauchy sequence of reals (or real-
length intervals)”. Classically, one allows arbitrary Cauchy sequences, while the
constructivist demands that a function from ε to N (ε), the term of the sequence
beyond which differences must be within ε, be a constructive function. Similarly, the
predicativist requires that such a function be predicatively definable.14 Apart from
such differences in the meanings of their terms, however, the argument for Cauchy
completeness goes through. Here is a simple argument applicable to any stage of a
hierarchy of predicative reals (or real-length intervals, which should be understood
whenever we refer simply to reals, in the following).

Theorem P1 (Cauchy Completeness): Any Cauchy sequence, ρ = 〈ri〉, of (predica-
tive) reals converges.15

Proof Each real ri is determined (up to equivalence based on co-convergence) by a
Cauchy sequence, qi = 〈qij〉, j = 1, 2, 3, . . . of rationals (rational-length intervals).
Without loss, we consider the unit interval and assume that each ri of the sequence ρ
is presented as a row, rij, j = 1, 2, 3, . . ., in decimal notation, all such rows forming
a countably infinite matrix M with entries rij. It suffices to transform M into a
correspondingmatrixMq with rows representing rationals, qi, such that the sequence
of those rows, 〈qi〉 co-converges with 〈ri〉. This is accomplished simply by setting
the entries of each row equal to those of the rational sequence 〈qij〉 determining ri,
for those values of j ≤ i , setting qij = 0 for all j > i. It is easily checked that this

14To be sure, the predicativst cannot state this requirement, since, as already observed, the notion
of predicative definability is not itself predicatively definable. See [1, 7].
15Inside a system of predicative analysis or geometry, the term ‘predicative’ would not occur. With
it, the statement is classical. In all other respects, the proof is predicatively acceptable.
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transforms M to Mq identical to M on the half left of the diagonal, including the
diagonal entries, with 0’s everywhere right of the diagonal, such that the sequence of
rows q = 〈qi〉 is co-convergent with ρ = 〈ri〉. But by construction, 〈qi〉 defines a real,
as limit of both the rational sequence q and the real one ρ from which it is derived.16

�
As it turned out, in the Aristotelian system, we had to add an axiom for n-sections

of intervals (where n is a natural number greater than 1). Here, we just add an
axiom for bisections. The existence of n-sections follows from Theorem P1, as it is
straightforward to define, for any given interval i, a predicative “Cauchy-sequence”
of intervals that “converges” to the left-most n-section of i.

5 Conclusion

The above predicative theory of a regions-based continuum goes quite far, as indi-
cated, including the derivation of the Archimedean property from Translation, using
techniques of [1, 7]. But, lacking unrestricted fusions, it has to postulate differences
and bisections outright, rather than deriving them; and it fails to derive Dedekind
completeness in full generality. As to the extent of the intervals recognized, the
predicativist could go on to introduce a hierarchy of increasingly rich theories of
countably many real-length intervals, mimicking what it already does to approxi-
mate the classical point-based continuum. But here the loss seems greater: in the
point-based classical theory, full Dedekind completeness is usually an extra axiom,
one that the predicativist must forgo; but the regions-based classical theory (our
“semi-Aristotelian” one) derives that principle as a theorem, whereas it remains out
of reach for the predicativist. In sum, unrestricted, impredicative fusions, like its
close cousin, unrestricted second-order comprehension, has great unifying power
that predicative mathematics cannot access. This is a price the predicativist must pay
for any epistemic gains it is ultimately in a position to claim.
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Abstract The notion of unfolding a schematic formal system was introduced by
Feferman in 1996 in order to answer the following question: Given a schematic
system S, which operations and predicates, and which principles concerning them,
ought to be accepted if one has accepted S? After a short summary of precursors
of the unfolding program, we survey the unfolding procedure and discuss the main
results obtained for various schematic systems S, including non-finitist arithmetic,
finitist arithmetic, feasible arithmetic, and theories of inductive definitions.
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1 Introduction

The search for new axioms which are exactly as evident and justified as those with
which you have started was already advocated by Gödel in his program for new
axioms, see Gödel [24], p. 151:

Let us consider, e.g., the concept of demonstrability. It is well known that, in whichever way
you make it precise by means of a formalism, the contemplation of this very formalism gives
rise to new axioms which are exactly as evident and justified as those with which you started,
and this process of extension can be iterated into the transfinite. So there cannot exist any
formalism which would embrace all these steps, but this does not exclude that all these steps
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(or at least all of them which give something new for the domain of propositions in which
you are interested) could be described and collected together in some non-constructive way.

The first very natural candidates for new axioms to be added to an arithmetical system
S are proof-theoretic reflection principles, roughly stating that everything which is
provable in S is correct. More precisely, the local reflection schema is the collection
of sentences

(RfnS) ProvS(�A�) → A

for A being a sentence in the language of S. The generalization of this schema to
arbitrary formulas uniformly in their free parameters is called the uniform reflection
schema of S, in symbols, RFNS. As was shown by Turing [36], one may iterate the
addition of reflection principles (and consistency statements) along Kleene’s con-
structive ordinal notations O in order to define for each a ∈ O a formal system Sa

by adding the reflection principle of the previous system at successor stages and tak-
ing the union of the previous systems at limit stages. Turing called the so-obtained
progressions of a given system S ordinal logics. These were taken up in Feferman
[10] and there renamed to transfinite recursive progressions of axiomatic theories.
While Turing obtained completeness results for �0

1 sentences by iteration of the
consistency or local reflection principle RfnS, Feferman showed that one gets com-
pleteness for all arithmetic statements by iteration of the uniform reflection principle
RFNS. Both completeness results were considered to be problematic because they
depend on clever choices of ordinal notations which were not justified on previ-
ously accepted grounds. Indeed, ordinal logics are far from being invariant under
the choice of ordinal notation: Feferman and Spector [19] have shown that there are
paths throughO whose progression is not even complete for�0

1 sentences. For more
information on ordinal logics, see Feferman [17] and Franzen [23].

The crucial condition which was missing in the previous proposals is the one of
autonomy which guarantees that one is only allowed to advance to a system Sa for
an a ∈ O in case the wellfoundedness of a has been established in a system Sb with
b smaller than a; see Kreisel [26] and Feferman [11]. Thus we are led to the study of
all principles of proof and ordinals which are implicit in given concepts, see Kreisel
[28]. The most influential series of results in the “autonomy program” concerns the
study of the limits of predicative provability by Feferman [11] and Schütte [31] who
independently determined the so-called Feferman–Schütte ordinal �0 as the limiting
number of predicativity. The first system proposed for an analysis of predicativity
was autonomous ramified analysis. After its ordinal �0 had been found, Feferman
developed (autonomous) progressions of hyperarithmetical analysis based on the
hyperarithmetic comprehension rule and the uniform reflection principle as well as
the system IR for inductive-recursive analysis.

One objection with the above-described approaches in the implicitness program
one may have is the inclusion of the notion of ordinal or wellordering, which is
not prima-facie implicit in our conception of the natural numbers or arithmetic. In
his search for “a more perspicuous system for predicativity”, Feferman [13] came
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up with a natural system capturing ramified analysis in levels less than �0 without
presupposing any notion of ordinal at the outset. Crucial in this system is the fact
that arithmetic is treated as a schematic system with free predicate P and induction
in schematic form,

P(0) ∧ (∀x)[P(x) → P(x ′)] → (∀x)P(x),

together with a rule of predicate substitution (Subst),

(Subst) A[P] ⇒ A[B/P],

expressing that whenever we derive a statement A[P] possibly containing the free
predicate P , we also accept all its substitution instances by any formula B. We note
that a crucial feature of schemata as understood here is their openendedness, i.e. “they
are not conceived of as applying to a specific language whose stock of basic symbols
is fixed in advance, but rather as applicable to any language which one comes to
recognize as embodying meaningful basic notions” (Feferman [15], p. 9).

A general notion of reflective closure of an arbitrary schematic formal system S
was proposed by Feferman in a lecture for a meeting in 1979 on the work of Kurt
Gödel, which was only published in 1991, see Feferman [14]. The basic observation
underlying the reflective closure procedure in [14] is that the informal reasoning
about what is implicit in S makes use of a notion of truth for S, which then leads us
to also reason about statements involving truth and so on. The technical apparatus
of the reflective closure is governed by what has become to be known as the Kripke-
Feferman axioms of partial truth, rooted in Kripke’s semantic theory of truth, see
Kripke [29] and the article ofCantini, Fujimoto, andHalbach in this volume.Themain
result obtained in Feferman [14] is that the full reflective closure of Peano arithmetic,
Ref∗(PA), is proof-theoretically equivalent to predicative analysis RA<�0 , where
Ref∗(PA) includes a suitable version of the substitution rule (Subst).

As Feferman writes in [18], the axiomatic theory of truth “as an engine for the
explanation of reflective closure still has an air of artificiality”: It is at least question-
able whether the axioms of truth are exactly as evident as those of the given systemS.
Also, the fact that some amount of arithmetic is presupposed in order to describe the
coding machinery is not very pleasing. Given that a schematic system is formulated
using function and predicate symbols in a given logical language, it is more attractive
to expand and study the operations on individuals and predicates, which are implicit
in the acceptance of S. This led Feferman [15] to his last proposal in the implicit-
ness program, namely the notion of unfolding of an open-ended schematic system
whose main aim is to answer the following question: Given a schematic system S,
which operations and predicates – and which principles concerning them – ought
to be accepted if one has accepted S?. The notion of unfolding has been applied
to non-finitist-arithmetic (Feferman and Strahm [20]), finitist arithmetic (Feferman
and Strahm [21]), feasible arithmetic (Eberhard and Strahm [9]), and theories of
inductive definitions (Buchholtz [2]). The aim of this paper is to describe the unfold-
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ing procedure in detail and discuss the main results obtained for various schematic
formal systems S.

2 The Unfolding of Non-finitist Arithmetic

The aim of this section is to spell out the unfolding procedure in detail for the case
of non-finitist arithmetic NFA, and state the main results obtained in Feferman and
Strahm [20]. We follow the presentation in Feferman and Strahm [21].

The schematic system for classical non-finitist arithmetic, NFA, is defined as
follows. Its basic operations on individuals with the constant 0 are successor, Sc,
and predecessor, Pd; the basic logical operations are ¬, ∧, and ∀. It is given by the
following axioms, where we write as usual, x ′ for Sc(x):

(1) x ′ 	= 0
(2) Pd(x ′) = x
(3) P(0) ∧ (∀x)[P(x) → P(x ′)] → (∀x)P(x).

Here P is a free predicate variable, and the intention is to use the induction scheme
(3) in a wider sense than is limited by the basic language of NFA or any language
fixed in advance. Namely, one applies the general rule of substitution

(Subst) A[P] ⇒ A[B/P]

to any formulas A and B that arise in the process of unfolding NFA.
In a first step, we shall describe the unfolding of a schematic system S informally

by stating some general methodological “pre-axioms”. Then we shall spell out these
axioms in all detail for S being the schematic system NFA.

Underlying the idea of unfolding for arbitrary S are general notions of (partial)
operation and predicate, belonging to a universe V extending the universe of dis-
course of S. These have to be thought of as intensional entities, given by rules of
computation and defining properties, respectively. Operations have to be considered
as pre-mathematical in nature and not bound to any specific mathematical domain.
They can apply to other operations as well as to predicates. Some operations are
universal and are naturally self-applicable as a result, like the identity operation or
the pairing operation, while some are partial and presented to us on specific mathe-
matical domains only. Operations satisfy the laws of a partial combinatory algebra
with pairing, projections, and definition by cases. Predicates are equipped with a
membership relation ∈ to express that given elements satisfy the predicate’s defining
property.

For the formulation of the full unfolding U(S) of any given schematic axiom
system S, we have the following axioms.

1. The universe of discourse of S has associated with it an additional unary relation
symbol, US, and the axioms of S are relativized to US.
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2. Each n-ary function symbol f of S determines an element f � of our partial
combinatory algebra, with f (x1, . . . , xn) = f �x1 . . . xn on Un

S (or the domain of
f in case f itself is given as a partial function).

3. Each relation symbol R of S together with US determines a predicate R� with
R(x1, . . . , xn) if and only if (x1, . . . , xn) ∈ R�.

4. Operations on predicates, such as e.g. conjunction, are just special kinds of oper-
ations. Each logical operation l of S determines a corresponding operation l� on
predicates.

5. Sequences of predicates given by an operation f form a new predicate Join( f ),
the disjoint union of the predicates from f .

Moreover, the free predicate variables P, Q, . . . used in the schematic formulation
of S give rise to the crucial rule of substitution (Subst), according to which we are
allowed to substitute any formula B for P in a previously recognized (i.e. derived)
statement A[P] depending on P .

The restriction U0(S) of U(S) is obtained by dropping the axioms concerning
predicates;U0(S) is called the operational unfolding ofS.Moreover, there is a natural
intermediate predicate unfolding system U1(S), which is simply U(S) without the
predicate forming operation of Join.

The following spells out in detail the three unfolding systems U0(S), U1(S), and
U(S) forS = NFA, the schematic system of non-finitist arithmetic introduced above.
We begin with the operational unfolding U0(NFA). Its language is first order, using
variables a, b, c, f, g, h, u, v, w, x, y, z . . . (possibly with subscripts). It includes (i)
the constant 0 and the unary function symbols Sc and Pd of NFA, (ii) constants for
operations as individuals, namely sc,pd (successor, predecessor), k, s (combina-
tors), p,p0,p1 (pairing and unpairing), d, tt, ff (definition by cases, true, false), and
e (equality), and (iii) a binary function symbol · for (partial) term application. Fur-
ther, we have (iv) a unary relation symbol ↓ (defined) and a binary relation symbol=
(equality), as well as (v) a unary relation symbolN (natural numbers). In addition, we
have a symbol ⊥ for the false proposition. Finally, a stock of free predicate symbols
P, Q, R, . . . of finite arities is assumed.1

The terms (r, s, t, . . .) of U0(NFA) are inductively generated from the variables
and constants by means of the function symbols Sc, Pd, as well as · for application.
In the following we often abbreviate (s · t) simply as (st), st or sometimes also
s(t); the context will always ensure that no confusion arises. We further adopt the
convention of association to the left so that s1s2 . . . sn stands for (. . . (s1s2) . . . sn).
Further, we put t ′ := Sc(t) and 1 := 0′. We define general n-tupling by induction
on n ≥ 2 as follows:

(s1, s2) := ps1s2, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

Moreover, we set (s) := s and () := 0.

1The constants sc and pd as well as the relation symbol N are used instead of the symbols Sc�,
Pd�, and UNFA mentioned in the informal description above.
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The formulas (A, B,C, . . .) of U0(NFA) are inductively generated from the
atomic formulas ⊥, s↓, (s = t), N(s), and P(s1, . . . , sn) by means of negation ¬,
conjunction∧, and universal quantification ∀. The remaining logical connectives and
quantifiers are defined as usual by making use of classical logic.

The sequence notation ū and t̄ is used in order to denote finite sequences of
variables and terms, respectively. Moreover, we write t[ū] to indicate a sequence
ū of free variables possibly appearing in the term t ; however, t may contain other
variables than those shown by using this bracket notation. Further, t[s̄] is used to
denote the result of simultaneous substitution of the terms s̄ for the variables ū in the
term t[ū]. The meaning of A[ū] and A[s̄] is understood accordingly. Finally, we shall
also use the sequence notation Ā in order to denote a finite sequence Ā = A1, . . . , An

of formulas.
U0(NFA) is based on partial term application. Hence, it is not guaranteed that

terms have a value, and t↓ is read as “t is defined” or “t has a value”. Accordingly,
the partial equality relation  is introduced by

s  t := (s↓ ∨ t↓) → (s = t).

Further, we shall use the following abbreviations concerning the predicate N for the
natural numbers (s̄ = s1, . . . , sn):

s̄ ∈ N := N(s1) ∧ · · · ∧ N(sn),

(∃x ∈ N)A := (∃x)(x ∈ N ∧ A),

(∀x ∈ N)A := (∀x)(x ∈ N → A).

The logic of U0(NFA) is the classical logic of partial terms LPT of Beeson [1],
cf. also Feferman [12]. We recall that LPT embodies strictness axioms saying that
all subterms of a defined compound term are defined as well. Moreover, if (s = t)
holds then both s and t are defined, and s is defined providedN(s) holds, and similarly
for P(s̄).

The axioms of U0(NFA) are divided into three groups as follows.

I. Embedding of NFA

(1) The relativization of the axioms of NFA to the predicate N,2

(2) (∀x ∈ N)[Sc(x) = sc(x) ∧ Pd(x) = pd(x)].
II. Partial combinatory algebra, pairing, definition by cases

(3) kab = a,
(4) sab↓ ∧ sabc  ac(bc),
(5) p0(a, b) = a ∧ p1(a, b) = b,
(6) dab tt = a ∧ dab ff = b.

III. Equality on the natural numbers N

2Note that this relativization also includes axioms such as 0 ∈ N and (∀x ∈ N)(x ′ ∈ N).
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(7) (∀x, y ∈ N)[exy = tt ∨ exy = ff],
(8) (∀x, y ∈ N)[exy = tt ↔ x = y].
Finally, crucial for the formulation of U0(S) is the predicate substitution rule:

(Subst) A[P̄] ⇒ A[B̄/P̄].

Here P̄ = P1, . . . , Pm is a sequence of free predicate symbols possibly appearing in
the formula A[P̄] and B̄ = B1, . . . , Bm is a sequence of formulas. In the conclusion
of this rule of inference, A[B̄/P̄] denotes the formula A[P̄] with each subformula
Pi (t̄) replaced by (∃x̄)(t̄ = x̄ ∧ Bi [x̄]), where the length of x̄ equals the arity of Pi .

We now turn to the full predicate unfolding U(NFA) and its restriction U1(NFA).
The language of U(NFA) extends the language of U0(NFA) by additional con-

stants nat (natural numbers), eq (equality), prP (free predicate P), inv (inverse
image), neg (negation), conj (conjunction), un (universal quantification), and join
(disjoint unions). In addition, we have a new unary relation symbol � for (codes of)
predicates and a binary relation symbol ∈ for expressing elementhood between indi-
viduals and predicates, i.e. satisfaction of those predicates by the given individuals.
The terms of U(NFA) are generated as before but now taking into account the new
constants. The formulas of U(NFA) extend the formulas of U0(NFA) by allowing
new atomic formulas of the form �(t) and s ∈ t .

The axioms of U(NFA) extend those of U0(NFA), as follows.

IV. Basic axioms about predicates

(9) �(nat) ∧ (∀x)(x ∈ nat ↔ N(x)),3

(10) �(eq) ∧ (∀x)(x ∈ eq ↔ (∃y)(x = (y, y))),
(11) �(prP) ∧ (∀x̄)((x̄) ∈ prP ↔ P(x̄)),
(12) �(a) → �(inv(a, f )) ∧ (∀x)(x ∈ inv(a, f ) ↔ f x ∈ a),
(13) �(a) → �(neg(a)) ∧ (∀x)(x ∈ neg(a) ↔ x /∈ a),
(14) �(a) ∧ �(b) → �(conj(a, b)) ∧ (∀x)(x ∈ conj(a, b) ↔ x ∈ a ∧ x ∈ b),
(15) �(a) → �(un(a)) ∧ (∀x)(x ∈ un(a) ↔ (∀y ∈ N)((x, y) ∈ a)).

V. Join axiom

(16) (∀x ∈ N)�( f x) → �(join( f )) ∧ (∀x)(x ∈ join( f ) ↔ J [ f, x]),
where J [ f, u] expresses that u is an element of the disjoint union of f over N, i.e.

J [ f, u] := (∃y ∈ N)(∃z)(u = (y, z) ∧ z ∈ f y).

In addition, U(NFA) contains the substitution rule (Subst), i.e. the rule A[P̄] ⇒
A[B̄/P̄], where now B̄ denote arbitrary formulas in the language of U(NFA), but
A[P̄] is required to be a formula in the language of U0(NFA). This last restriction
is due to the fact that predicates in general depend on the predicate parameters P̄ .

3Observe that nat is alternatively definable from the remaining predicate axioms by x ∈ nat ↔
(∃y ∈ N)(x = y).
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Finally, we obtain an intermediate predicate unfolding system U1(NFA) by omitting
axiom (16), i.e., U1(NFA) is just U(NFA) without the Join predicate.

To state the proof-theoretic strength of the three unfolding systems U0(NFA),
U1(NFA), and U(NFA), as usual we letRA<α denote the system of ramified analysis
in levels less thanα. In addition,�0 is the so-called Feferman–Schütte ordinal, which
was identified in the early sixties as the limiting number of predicative provability. As
in Feferman and Strahm [20] we obtain the following proof-theoretic equivalences.
In particular, the full unfolding of non-finitist arithmetic is equivalent to predicative
analysis.

Theorem 1 We have the following proof-theoretic equivalences:

1. U0(NFA) ≡ PA.
2. U1(NFA) ≡ RA<ω .
3. U(NFA) ≡ RA<�0 .

In each case we have conservation with respect to arithmetic statements of the system
on the left over the system on the right.

Let us give a few indications with respect to the proofs of these equivalences. In order
to show that U0(NFA) containsPA, one first shows by using the canonical fixed point
operator of the underlying partial combinatory algebra that each primitive recursive
function F can be represented by a term tF in the language of U0(NFA). Then one
needs to show that these terms are well-typed on the natural numbers N, namely
that tF (x̄) ∈ N for each (x̄) ∈ N: here one uses induction which follows by one
application of the substitution rule to axiom (3) of NFA. A further application of
(Subst) thus shows that the usual formulation of PA is directly contained in the
operational unfolding U0(NFA) of NFA. Indeed, U0(NFA) does not go beyond PA,
as is seen be formalizing its standard recursion-theoretic model in PA, see e.g. [20].

The full unfolding of NFA, U(NFA), derives the schema of transfinite induction
along each initial segment of the Feferman–Schuütte ordinal �0: Whenever we can
derive in U(NFA) transfinite induction TI(≺, P) along a primitive recursive ordering
≺, then we may substitute for P any formula and thus derive the existence of the
predicate corresponding to the hyperarithmetic hierarchy along ≺, relative to any
initial predicate p. Thus, using standard arguments from predicative wellordering
proofs, whenever U(NFA) derives transfinite induction up to α, it also does so up to
ϕα0, hence the lower bound �0. This bound is sharp according to Feferman and
Strahm [20], see also Strahm [33].

Recall that in the intermediate unfolding U1(NFA), the join principle is not avail-
able.We can still justify finite levels of the ramified analytical hierarchy, correspond-
ing to the proof-theoretic ordinal ϕ20, which is also the ordinal of the subsystem
of second order arithmetic based on arithmetic comprehension and the bar rule, see
Rathjen [30]. Indeed, in U1(NFA), each application of the substitution rule lets us
step from α to εα.

Let us close this section by mentioning that the original formulation of unfolding
in Feferman [15] made use of a background theory of typed operations with gen-
eral Least Fixed Point operator. The present formulation is a simplification of this
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approach. The upper bound computation in Feferman and Strahm [20] was done
for this original formulation; it is worth mentioning that the proof-theoretic anal-
ysis of the unfolding of NFA in the present formulation is somewhat simpler and
more elegant, since leastness for the fixed point operator is not present. A further
difference is that predicates in the original formulation of unfolding were modeled
as propositional functions using a truth predicate.

3 The Unfolding of Finitist Arithmetic

In this section we describe the unfolding of two schematic systems for finitist arith-
metic, namely FA and FA plus a form of the Bar rule BR. The main results are that
all three unfolding systems for FA are equivalent to Primitive Recursive Arithmetic
PRA, while the three unfoldings of FA + BR reach precisely the strength of Peano
arithmetic PA. These two characterizations of finitism are in accord with two promi-
nent views about the limits of finitist reasoning due to Tait [35] and Kreisel [27]. In
the sequel we follow Feferman and Strahm [21].

The logical operations of the basic schematic system FA of finitist arithmetic
are restricted to ∧, ∨, and ∃. In order to reason from such statements to new such
statements given the above restriction of the logical operations of FA, we make use
of a sequent formulation of our calculus, i.e. the statements proved are sequents �

of the form � → A, where � is a finite sequence (possibly empty) of formulas, and
A may also be the false proposition ⊥. Moreover, induction must now be given as a
rule of inference involving such sequents. Accordingly, the basic axioms and rules
of FA are as follows:

(1) x ′ = 0 → ⊥
(2) Pd(x ′) = x

(3)
� → P(0) �, P(x) → P(x ′)

� → P(x)
.

The substitution rule (Subst)may now generalized to incorporate sequent inference
rules; the corresponding (meta) rule is called (Subst′) and will be spelled out in
detail below.

Let us begin by describing the operational unfolding U0(FA) of finitist arithmetic
FA. That system tells us which operations from and to natural numbers, and which
principles concerning them, ought to be accepted if we have accepted FA. It is seen
that Skolem’s system PRA of primitive recursive arithmetic is contained in U0(FA).
Indeed, the operational and even the full unfolding of finitist arithmetic do not go
beyond PRA.

Large parts of the unfolding systems for FA andNFA are identical. Therefore, we
shall confine ourselves in the sequel to mentioning the main differences in the spec-
ification of the unfolding systems for FA, beginning with its operational unfolding.

The terms of U0(FA) are the same as the terms of U0(NFA). Recall that FA is
based on the logical operations ∧, ∨, and ∃. Accordingly, the formulas of U0(FA)
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are generated from the atomic formulas ⊥, s↓, (s = t), N(s), and P(s̄) by means of
∧, ∨, and ∃; here P denotes an arbitrary free predicate variable of appropriate arity.

The underlying calculus of U0(FA) is a Gentzen-type sequent system based on
sequents of the form� → A for� being afinite sequence of formulas in the language
of U0(FA). In case � is empty, we shall write A for → A. The logical axioms and
rules of inference are the standard ones: apart from identity axioms, rules for ⊥, cut
and structural rules, these include the usual Gentzen-type rules for ∧ and ∨ as well
as introduction of ∃ on the left and on the right in the form

� → A[t] ∧ t↓
� → (∃x)A[x] ,

�, A[u] → B

�, (∃x)A[x] → B
(u fresh)

Note that quantifiers range over defined objects only. Moreover, defined terms can
be substituted for free variables according to the following rule of inference; here
�[t] stands for the sequence (B[t] : B[u] ∈ �).

�[u] → A[u]
�[t], t↓ → A[t]

Finally, the equality and strictness axioms of our underlying logic of partial terms
are given a Gentzen-style formulation in the obvious way.

The non-logical axioms and rules of U0(FA) include the relativization of the
axioms and rules of FA to the predicate N in the expected manner, as well as suit-
able formulations of the axioms (2)–(8) of U0(NFA). We shall not spell out these
axioms again, but instead give an example how to reformulate axiom (4) about the s
combinator in our new setting. This now breaks into the following two axioms,

sab↓ and sabc↓ ∨ ac(bc)↓ → sabc = ac(bc).

What is still missing in U0(FA) is a suitable version of the substitution rule (Subst),
which is central to all unfolding systems. In order to fit this into our Gentzen-style
setting, (Subst) has to be formulated in a somewhat more general form. For that
purpose, we let �,�1, �2, . . . range over sequents in the language of U0(FA). A
rule of inference for such sequents has the general form

�1, �2, . . . , �n

�
,

which we simply abbreviate by �1, �2, . . . , �n ⇒ � in the sequel; we also allow n
to be 0, i.e. rules with an empty list of premises are possible. As usual we call a rule
of inference �1, �2, . . . , �n ⇒ � derivable from a collection of axioms and rules
T (all in Gentzen-style), if the sequent � is derivable from T ∪ {�1, �2, . . . , �n}.

In the following P̄ = P1, . . . , Pm denotes a finite sequence of free predicate sym-
bols of finite arity and B̄ = B1, . . . , Bm a corresponding sequence of formulas in the
language of U0(FA). If �[P̄] is a sequent possibly containing the free predicates P̄ ,
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then as above �[B̄/P̄] denotes the sequent �[P̄] with each subformula of the form
Pi (t̄) replaced by (∃x̄)(t̄ = x̄ ∧ B[x̄]), where the length of x̄ is equal to the arity
of Pi .

We are now ready to state our (meta) substitution rule (Subst′). Its meaning is as
follows: whenever the axioms and rules of inference at hand allow us to show that the
rule �1, �2, . . . , �n ⇒ � is derivable, then we can adjoin each of its substitution
instances �1[B̄/P̄], �2[B̄/P̄], . . . , �n[B̄/P̄] ⇒ �[B̄/P̄] as a new rule of infer-
ence to U0(FA), for Bi [x̄] being formulas in the language of U0(FA).4 Symbolically,

(Subst′)
�1, �2, . . . , �n ⇒ �

�1[B̄/P̄], �2[B̄/P̄], . . . , �n[B̄/P̄] ⇒ �[B̄/P̄]
It is not difficult to see that the primitive recursive functions can be introduced and
proved total in U0(FA). Indeed, the argument described in the previous section is
readily seen to be formalizable in U0(FA), since induction on N is available for
equations and formulas of the form t (x̄) ∈ N. Thus, Primitive Recursive Arithmetic
is interpretable in U0(FA), see [21] for details.

The full unfoldingU(FA) of finitist arithmeticFA is an extension of the operational
unfoldingU0(FA) and is used, in addition, to answer the question of which operations
on and to predicates, and which principles concerning them, are to be accepted if one
has accepted FA. We shall see that U(FA) does not go beyond primitive recursive
arithmetic PRA in proof-theoretic strength.

The language of U(FA) is an extension of the language of U0(FA). It includes, in
addition, the constants nat (natural numbers), eq (equality), prP (free predicate P),
inv (inverse image), conj (conjunction), disj (disjunction), ex (existential quantifi-
cation), and join (disjoint unions). Moreover, as above, we have a new unary relation
symbol � for (codes of) predicates and a binary relation symbol ∈ for the element-
hood relation. The terms of U(FA) are built as before. The formulas of U(FA) extend
the formulas of U0(FA) by allowing the new atomic formulas �(t) and s ∈ t .

4Observe that derivability of rules is a dynamic process as we unfold FA. In particular, new rules of
inference obtained by (Subst′) allow us to establish new derivable rules, to which in turn we can
apply (Subst′). In particular, the usual rule of induction

� → A[0] �, u ∈ N, A[u] → A[u′]
�, v ∈ N → A[v]

is an immediate consequence of (Subst′) applied to rule (3) of FA. Moreover, the substitution rule
in its usual form as stated in Sect. 2,

(Subst)
�[P̄]

�[B̄/P̄]
is readily seen to be an admissible rule of inference of U0(FA).
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The axioms of U(FA) extend those of U0(FA). In addition, we have the obvious
defining axioms for the basic predicates of U(FA). These include straightforward
reformulations using sequents of the axioms (9)–(12) and (14) of U(NFA) as well
as the expected axiom about existentially quantified predicates; see Feferman and
Strahm [21]. Further, axiom (16) of U(NFA) concerning join is now stated in terms
of suitable inference rules; this is due to the absence of universal quantification in
the framework of finitist arithmetic, see [21] for details.

Finally, U(FA) of course also includes the substitution rule (Subst′) which we
have spelled out for U0(FA). The formulas B̄ to be substituted for P̄ are now in
the language of U(FA); the rule in the premise of (Subst′), however, is required
to be in the language of U0(FA). This last restriction is imposed as before since
predicates may depend on the free relation symbols P̄ . The intermediate unfolding
system U1(FA) for FA is obtained by dropping the rules about join.

It is shown in Feferman and Strahm [21] that all three unfolding systems for FA
do not go beyondPRA in strength. This is obtained via a suitable recursion-theoretic
interpretation into the subsystem�1-IA of PA with induction on the natural numbers
restricted to�1 formulas; the latter system is known to be a�2 conservative extension
ofPRA by thewell-knownMints-Parsons-Takeuti theorem, see Sieg [32] for a simple
proof. The embedding essentially models the applicative axioms by means of partial
recursive function application and the predicates by �1 definable properties, where
some special attention is required in order to validate the generalized substitution
rule (Subst′). Thus we can summarize:

Theorem 2 U0(FA), U1(FA) and U(FA) are all proof-theoretically equivalent to
primitive recursive arithmetic PRA.

In the remainder of this section we shall discuss an extension of FA by a Bar Rule
BR and, correspondingly, three unfolding systems of FA + BR, all of strength Peano
arithmetic.

Informally speaking, the Bar Rule BR says that if ≺ is a partial ordering prov-
ably satisfying NDS(≺) (no infinite descending sequence property for ≺) then the
principle TI(≺, P) of transfinite induction on ≺ holds for arbitrary predicates P . It
is sufficient to restrict this to provably decidable linear orderings ≺ in the natural
numbers, with 0 as least element. But further restrictions have to be made in order
to fit a version of BR to the language of FA. First of all, the statement that a given
function f on N is descending in the ≺ relation, as long as it is not 0, is universal, so
cannot be expressed as a formula of our language. Instead, we add a new function
constant symbol f interpreted as an arbitrary (or “anonymous”) function, and require
that we establish a rule, NDS(≺, f), that allows us to infer from the hypotheses that
f : N → N and that f(u′) ≺ f(u) as long as f(u) 	= 0 (‘u’ a free variable) the conclu-
sion (∃x ∈ N)(f(x) = 0). In addition, we must modify TI(≺, P), since its standard
formulation for a unary predicate P is of the form:

(∀x)[(∀u ≺ x)P(u) → P(x)] → (∀x)P(x).
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Again, the idea is to treat this as a rule of the form:

from (∀u)[u ≺ x → P(u)] → P(x) infer P(x).

But we still need an additional step to reformulate the hypothesis of this rule in the
language of FA. For atomic A, B write A ⊃ B for (¬A ∨ B). Then the hypothesis
is implied by

[t1 ≺ x ⊃ P(t1)] ∧ · · · ∧ [tm ≺ x ⊃ P(tm)] → P(x),

where the ti are terms that have been proved to be defined. Now it may be that we
cannot prove that ti↓ until we know that certain of its subterms s1, . . . , sn are defined
and satisfy

[s1 ≺ x ⊃ P(s1)] ∧ · · · ∧ [(sn ≺ x ⊃ P(sn)],

and so on. Indeed, as we shall see, that is necessary to establish closure under nested
recursion on the≺ ordering. This leads to the precise statement ofBR in the language
of FA augmented by a new function symbol f as follows.5

The ruleNDS(f,≺) says that for each possibly infinite descending chain fw.r.t.≺
there is an x such that fx = 0. Formally, it is given as follows:

u ∈ N → fu ∈ N,

u ∈ N, fu 	= 0 → f(u′) ≺ fu,

u ∈ N, fu = 0 → f(u′) = 0

(∃x ∈ N)(fx = 0)

Next, the bar rule BR is spelled out in detail for the case of nesting level two and
a predicate with one parameter. The general case for nesting of arbitrary level and
number of parameters is analogous.

Let s̄r = sr1, . . . , s
r
n and s̄ p = s p1 , . . . , s pn be sequences of terms of length n, and

let t̄ r = tr1 , . . . , t
r
m and ¯t p = t p1 , . . . , t pm be sequences of terms of lengthm. The super-

scripts’r’ and’p’ stand for recursion and parameter, respectively.
The bar rule BR now reads as follows. Whenever we have derived the four

premises

(1) NDS(f,≺)

(2) x, y ∈ N → s̄r ∈ N ∧ s̄ p ∈ N

5In the formulation of the rules below we use a binary relation ≺ whose characteristic function is
given by a closed term t≺ for which U0(FA) proves t≺ : N2 → {0, 1}. We write x ≺ y instead of
t≺xy = 0 and further assume that ≺ is a linear ordering with least element 0, provably in U0(FA).
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(3) x, y ∈ N,
∧

i
[sri ≺ x ⊃ P(sri , s

p
i )] → t̄ r ∈ N ∧ ¯t p ∈ N

(4) x, y ∈ N,
∧

i
[sri ≺ x ⊃ P(sri , s

p
i )], ∧

j
[trj ≺ x ⊃ P(trj , t

p
j )] → P(x, y)

we can infer x, y ∈ N → P(x, y).6

The new unfolding system U0(FA + BR) is the extension of U0(FA) by this rule.
One of the crucial observations is that whenever we have derived NDS(f,≺) in

U0(FA + BR), for a specific ordering ≺, then we can use the bar rule BR in order to
justify function definitions by nested recursion along ≺, see Feferman and Strahm
[21] for details.

Theorem 3 Assume that NDS(f,≺) is derivable in U0(FA + BR). Then
U0(FA + BR) justifies nested recursion along ≺.

In the following let us assume that for each ordinal α < ε0 we have a standard
primitive recursive wellordering ≺α of ordertype α. Further, let us write NDS(f,α)

for NDS(f,≺α). The crucial ingredient of the argument to show that U0(FA + BR)

derives NDS(f,α) for each α < ε0 is the famous result by Tait [34] that nested
recursion on ωα entails ordinary recursion on ωα or, more useful in our setting,
nested recursion on ωα entails NDS(f,ωα).

Theorem 4 Provably in U0(FA + BR), nested recursion along ωα entails
NDS(f,ωα).

Clearly, U0(FA + BR) proves NDS(f,ω2) and hence we have nested recursion
along ω2, which in turn entails NDS(f,ω2); further, nested recursion on ω2 gives
us NDS(f,ωω) and thus nested recursion along ωω = ω(ωω). Then we can derive
NDS(f,ωωω

) and so on.
The upshot is that U0(FA + BR) derives NDS(f,ωn) for each natural number n,

where as usual we set ω0 = ω and ωn+1 = ωωn .

Corollary 5 We have for each α < ε0 that U0(FA + BR) derives NDS(f,α).

It is not difficult to see that this lower bound is sharp, see Feferman and Strahm [21].

Corollary 6 U0(FA + BR) is proof-theoretically equivalent toPeanoarithmeticPA.

Even the full unfolding system with bar rule, U(FA + BR), does not go beyond
Peano arithmetic in strength.

Theorem 7 U0(FA + BR), U1(FA + BR), and U(FA + BR) are all proof-
theoretically equivalent to Peano arithmetic PA.

6In the formulation of this rule, we have used the shorthand r ≺ x ⊃ A for the formula t≺r x =
1 ∨ A.



Unfolding Schematic Systems 201

4 The Unfolding of Feasible Arithmetic

The aim of this section is to discuss the concept of unfolding in the context of a natural
schematic system FEA for feasible arithmetic. We shall sketch various unfoldings
of FEA and indicate their relationship to weak systems of explicit mathematics and
partial truth. We follow Eberhard and Strahm [9].

Let us first introduce the basic schematic system FEA of feasible arithmetic. Its
intended universe of discourse is the set W = {0, 1}∗ of finite binary words and its
basic operations and relations include the binary successors S0 and S1, the prede-
cessor Pd, the initial subword relation ⊆, word concatenation � as well as word
multiplication �.7 The logical operations of FEA are conjunction (∧), disjunction
(∨), and bounded existential quantification (∃≤). As in the case of finitist arithmetic
FA, the statements proved in FEA are sequents of formulas in the given language,
i.e. implication is allowed at the outermost level.

The language ofFEA contains a countably infinite supplyα,β, γ, . . . of variables
(possibly with subscripts). These variables are interpreted as ranging over the set of
binary words W. We have a constant ε for the empty word, three unary function
symbols S0,S1,Pd and three binary function symbols �, �, ⊆.8 Terms are defined
as usual and are denoted by σ, τ , . . . . Further, there is the binary predicate symbol
= for equality, and an infinite supply P, Q, . . . of free predicate letters.

The atomic formulas of FEA are of the form (σ = τ ) and P(σ1, . . . ,σn). The
formulas are closedunder∧ and∨ aswell as under bounded existential quantification.
In particular, if A is formula, then (∃α ≤ τ )A is formula as well, where τ is not
allowed to contain α. Further, as usual for theories of words, we use σ ≤ τ as an
abbreviation for 1 � σ ⊆ 1 � τ , thus expressing that the length of σ is less than or
equal to the length of τ . As before, we use ᾱ, σ̄, and Ā to denote finite sequences of
variables, terms, and formulas, respectively.

FEA is formulated as a system of sequents � of the form � → A, where � is a
finite sequence of formulas and A is a formula. Hence, we have the usual Gentzen-
type logical axioms and rules of inference for our underlying restricted language, see
Eberhard and Strahm [9]. The non-logical axioms of FEA state the usual defining
equations for the function symbols of its language, see, e.g., Ferreria [22] for similar
axioms. Finally, we have the schematic induction rule formulated for a free predicate
P as follows:

� → P(ε) �, P(α) → P(Si (α)) (i = 0, 1)

� → P(α)

In the various unfolding systems of FEA introduced below, we shall be able to sub-
stitute an arbitrary formula for an arbitrary free predicate letter P . Let us now quickly

7Given two words w1 and w2, the word w1 � w2 denotes the length of w2 fold concatenation of
w1 with itself.
8We assume that ⊆ defines the characteristic function of the initial subword relation. Further, we
employ infix notation for these binary function symbols.
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review the operational unfolding U0(FEA) of FEA. It tells us which operations from
and to individuals, and which principles concerning them, ought to be accepted if
one has accepted FEA.

In the operational unfolding, we make these commitments explicit by extending
FEA by a partial combinatory algebra. Since it represents any recursion principle
and thus any recursive function by suitable terms, it is expressive enough to reflect
any ontological commitment we want to reason about. Using the notion of prov-
able totality, we single out those functions and recursion principles we are actually
committed to by accepting FEA.

The language of U0(FEA) is an expansion of the language of FEA including
new constants k, s, p, p0, p1, d, tt, ff, e, ε, s0, s1, pd, c⊆, ∗, ×, and an additional
countably infinite set of variables x0, x1, . . ..9 The new variables are supposed to
range over the universe of operations and are usually denoted by a, b, c, x, y, z, . . ..
The terms (r, s, t, . . .) are inductively generated from variables and constants by
means of the function symbols of FEA and the application operator ·. We use the
usual abbreviations for applicative terms as before. We have (s = t), s↓ and P(s̄) as
atoms. The formulas (A, B,C, . . . ) are built from the atoms as before using∨,∧ and
the bounded existential quantifier, where as above the bounding term is a term ofFEA
not containing the bound variable. Finally, we write s ≤ τ for (∃β ≤ τ )(s = β).10

The axioms and rules of U0(FEA) are now spelled out in the expected manner, see
Eberhard and Strahm [9] for details. In particular, U0(FEA) includes the (meta) sub-
stitution rule (Subst′). Next we want to show that the polynomial time computable
functions can be proved to be total in U0(FEA). We call a function F : Wn → W

provably total in a given axiomatic system, if there exists a closed term tF such that
(i) tF defines F pointwise, i.e. on each standard word, and, moreover, (ii) there is a
FEA term τ [α1, . . . ,αn] such that the assertion

tF (α1, . . . ,αn) ≤ τ [α1, . . . ,αn]

is provable in the underlying system. Thus, in a nutshell, F is provably total iff it is
provably and uniformly bounded.

We use Cobham’s characterization of the polynomial time computable functions
(cf. [4, 5]): starting off from the initial functions of FEA and arbitrary projections,
the polynomial time computable functions can be generated by closing under com-
position and bounded recursion. In order to show closure under bounded recursion,
assume that F is defined by bounded recursion with initial function G and step
function Hi (i = 0, 1), where τ is the corresponding bounding polynomial.11 By the

9These variables are syntactically different from the FEA variables α0,α1, . . ..
10It is important to note that we do not have a predicateW for binary words in our language, since
this would allow us to introduce (hidden) unbounded existential quantifiers via formulas of the
form W(t). Thus it is necessary to have two separate sets of variables for words and operations,
respectively.
11We can assume that only functions built from concatenation and multiplication are permissible
bounds for the recursion.
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induction hypothesis,G and Hi are provably total via suitable terms tG and tHi . Using
the recursion or fixed point theorem of the partial combinatory algebra, we find a
term tF which provably in U0(FEA) satisfies the following recursion equations for
i = 0, 1:

tF (ᾱ, ε)  tG(ᾱ) | τ [ᾱ, ε],
tF (ᾱ, si (β))  tHi (tF (ᾱ,β), ᾱ,β) | τ [ᾱ, si (β)]

Here | is the usual truncation operation such that α|β is α if α ≤ β and β otherwise.
Now fix ᾱ and let A[β] be the formula tF (ᾱ,β) ≤ τ [ᾱ,β] 12 and simply show A[β]
by induction on β. Thus F is provably total in U0(FEA).

Next we shall describe the full predicate unfolding U(FEA) of FEA. It tells us, in
addition, which predicates and operations on predicates ought to be accepted if one
has acceptedFEA. By acceptingFEA one implicitly accepts an equality predicate and
operations on predicates corresponding to the logical operations of FEA. Finally, we
may accept the principle of forming the predicate for the disjoint union of a (bounded)
sequence of predicates given by an operation.

The language ofU(FEA) is an extension of the language ofU0(FEA) by new indi-
vidual constants id (identity), inv (inverse image), con (conjunction), dis (disjunc-
tion), leq (bounded existential quantifier), and j (bounded disjoint unions); further
new constants are of the form prP as combinatorial representations of free predicates.
Finally, we have a new unary relation symbol � in order to single out the predicates
we are committed to as well as a binary relation symbol ∈ for elementhood of indi-
viduals in predicates. The terms are generated as before but now taking into account
the new constants. The formulas of U(FEA) extend the formulas of U0(FEA) by
allowing new atomic formulas of the form �(t) and s ∈ t .

The axioms of U(FEA) extend those of U0(FEA) by the expected axioms about
predicates, see Eberhard and Strahm [9] for details. Further, the full unfolding
U(FEA) includes axioms stating that a bounded sequence of predicates determines
the predicate of the disjoint union of this sequence. We use a set of three infer-
ence rules to express the join principle, see [9] for details. The rules of inference
of U0(FEA) are also available in U(FEA). In particular, U(FEA) contains the gen-
eralized substitution rule (Subst′): the formulas B̄ to be substituted for P̄ are now
in the language of U(FEA); as above the rule in the premise of (Subst′), however,
is required to be in the language U0(FEA). This concludes the description of the
predicate unfolding U(FEA) of FEA. We shall turn to its proof-theoretic strength at
the end of this section.

Let us next discuss an alternative way to define the full unfolding of FEA. The
truth unfolding UT(FEA) of FEA makes use of a truth predicate T which reflects

12Recall that by expanding the definition of the≤ relation, the formula A[β] stands for the assertion
(∃γ ≤ τ [ᾱ,β])(tF (ᾱ,β) = γ).
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the logical operations of FEA in a natural and direct way. We shall see that the full
predicate unfolding U(FEA) is directly contained in UT(FEA).13

As before, we want to make the commitment to the logical operations of FEA
explicit. This is done by introducing a truth predicate for which truth biconditionals
defining the truth conditions of the logical operations hold. The axiomatization of
the truth predicate relies on a coding mechanism for formulas. In the applicative
framework, this is achieved in a very natural way by using new constants designat-
ing the logical operations of FEA. The language of UT(FEA) extends the one of
U0(FEA) by new individual constants =̇, ∧̇, ∨̇, ∃̇, as well as constants of the form
prP . In addition, It includes a new unary relation symbol T. The terms and formulas
are defined in the expected manner. Moreover, we shall use infix notation for =̇, ∧̇
and ∨̇.

The axioms of UT(FEA) extend those of U0(FEA) by the following axioms about
the truth predicate T:

(=̇) T(x =̇ y) ↔ x = y

(∧̇) T(x ∧̇ y) ↔ T(x) ∧ T(y)

(∨̇) T(x ∨̇ y) ↔ T(x) ∨ T(y)

(∃̇) T(∃̇αx) ↔ (∃β ≤ α)T(xβ)

(prP) T(prP(x̄)) ↔ P(x̄)

The generalized substitution rule (Subst′) can be stated in a somewhat more general
form for UT(FEA), see Eberhard and Strahm [9] for a detailed discussion. It is easy
to see that the full predicate unfolding U(FEA) is contained in the truth unfolding
UT(FEA). The argument proceeds along the same line as the embedding of weak
explicit mathematics into theories of truth in Eberhard and Strahm [8].

In Eberhard and Strahm [9] it is shown how to determine a suitable upper bound
forU(FEA) andUT(FEA) thus showing that their provably total functions are indeed
computable in polynomial time. There one proceeds via the weak truth theory TPT

introduced in Eberhard and Strahm [8] and Eberhard [6, 7], whose detailed and very
involved proof-theoretic analysis is carried out in [7]. Thus we have:

Theorem 8 The provably total functions of U0(FEA), U(FEA), and UT(FEA) are
exactly the polynomial time computable functions.

13Recall that in Feferman’s original definition of unfolding in [15], a truth predicate is used in order
to describe the full unfolding of a schematic system.
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5 The Unfolding of One Inductive Definition

Our last example for illustrating the unfolding program stems from a natural
schematic system for arithmetical inductive definitions. We shall see that its unfold-
ing corresponds to a generalization �(��+1) of �0, which we shall describe below.
The main result of this section is due to Buchholtz [2].

Let ID1 be the usual system for one inductive definitions. In order to formulate
it in schematic form as an extension of NFA, we have a new predicate constant PA
for each arithmetical operator formA[P, x] in which P occurs only positively. Then
we obtain a schematic version of ID1 as follows, with P denoting a free predicate
variable:

(1) (∀x)(A[PA, x] → PA(x))
(2) (∀x)(A[P, x] → P(x)) → (∀x)(PA(x) → P(x)).

The full unfoldingU(ID1) of ID1 is now defined according to the procedure described
in detail for the case ofNFA, with the only exception that the join axiom is formulated
in a somewhatmore general form: the family of predicates towhich the join operation
is applied, is not restricted to be indexed by the natural numbersN but by an arbitrary
predicate p.

In order to describe the result about the strength of U(ID1) obtained inBuchholtz’s
thesis [2], let us review some basic ordinal theory needed to calibrate the proof-
theoretic ordinal of U(ID1). Let � stand for ℵ1. Then the sets B�(α) and ordinals
��(α) are defined recursively as follows: B�(α) is the closure of {0,�} under +,
the binary Veblen function ϕ, and (ξ �→ ��(ξ))ξ<α; moreover,

��(α)  min{ξ < � : ξ /∈ B(α)}.

It is seen that��(α) is always defined and, hence, denotes an ordinal smaller than�.
Finally, let ��+1 be the least � number beyond�. In the following, we are interested
in the ordinal ��(��+1), which we simply denote by �(��+1). The main result of
Buchholtz’ thesis is the following

Theorem 9 The proof-theoretic ordinal of U(ID1) is �(��+1).

More recently, a number of natural systems have been identified whose proof-
theoretic ordinal is �(��+1), see Buchholtz, Jäger, and Strahm [3]. Basically, those
systems arise fromnatural systems of secondorder arithmetic of strength�0 by allow-
ing one generalized inductive definition at the bottom level, resulting in analogues of
�1

1 comprehension, �1
1 choice and dependent choice, always with substitution rule,

as well as Friedman’s arithmetical transfinite recursion.
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6 Concluding Remarks

One of the motivations in Feferman [15] for studying the unfolding of a schematic
system S was to explicate some ideas that were initiated by Gödel regarding axioms
for hierarchies of inaccessible and Mahlo cardinals. Gödel [24], p. 182 writes that
“these axioms show clearly, not only that the axiomatic system of set theory as known
today is incomplete, but also that it can be supplemented without arbitrariness by
new axioms which are only the natural continuation of those set up so far”.

Feferman [15] proposes a number of schematic systems for impredicative and
admissible set theory.He further introduces a schematic reflection principle, so-called
Downward Reflection, expressing that whatever holds in the universe of sets already
holds in arbitrary large transitive sets. This principle entails a form of Bernays’
downward second order reflection principle, from which the existence of hierarchies
of Mahlo cardinals follows.

The unfolding systems for set theory mentioned above may also be directly
expressed in the language of Feferman’s operational set theory OST (cf. [16, 25]).
We refer the reader to Feferman [18] for a number of interesting conjectures regarding
various unfoldings of OST.
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Iterated Inductive Definitions Revisited

Wolfram Pohlers

Abstract In this paper we revisit our contribution to Lecture Note 897 and present
a computation of the prooftheoretic ordinals of formal theories for iterated inductive
definitions together with a characterization of their provably recursive functions.
The techniques used here differ essentially from the original ones. Sections 1–5
contain a general survey of the connections between recursion theoretic and proof
theoretic ordinals and roughly recap somebasic facts on iterated inductive definitions.
Beginning with Sect. 6 the paper becomes more technical. After introducing the
semi–formal system for iterated inductive definition and the necessary ordinals we
compute the ordinal spectrum of the formal theory for iterated inductive definitions
and characterize their provably total functions in terms of a subrecursive hierarchy.
The last section briefly discusses the foundational aspects of the paper.
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Provably recursive functions.
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1 Introduction

My first meeting with Solomon Feferman was at a workshop in Tübingen 1973. This
workshop was part of a series of logic workshops sponsored by the Volkswagens-
tiftung to foster mathematical logic in Germany. Sol’s lectures on proof theory at
this workshop impressed me lastingly. I had just passed my doctoral examination
with a thesis based on Takeuti’s treatment of second order arithmetic with �1

1–
comprehension and I was eager to study impredicative theories further. Of course I
did by far not understand everything Sol was talking about but I took notes. These
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notes became my guidelines for a long time. To my remembrance it was the first
time I learned about the proof theoretical aspects of iterated inductive definitions.
I soon realized that my knowledge of Takeuti’s methods could help to determine
their prooftheoretic ordinals which lead to an upper bound first for finite iterations
[27] and later also for transfinite iterations [32]. Jointly with Wilfried Buchholz we
could show that these bounds are the precise ones [9]. It was again Sol Feferman—I
think at a conference in Oxford—who gave me the essential hint that these results
should also incorporate a reduction of the theories for inductive definitions based on
classical logic to iterated accessibility inductive definitions based on intuitionistic
logic.1 All these results were then collected in my Habilitationsschrift.

There was, however, an essential drawback. Takeuti’s reduction procedure, on
which these results rested, was extremely opaque. Due to Sol Feferman’s permanent
naggingwe inMunich looked therefore formore perspicuousmethods to obtain these
results. These efforts culminated in Lecture Note 897 by the four authors Buchholz,
Feferman, Pohlers and Sieg.

Since the appearance of Lecture Note 897 in 1981 the techniques for ordinal
analyses have been essentially improved. When being invited to contribute to the
present volume with a paper around inductive definitions I revisited the old volume.
This brought back to me all the technical difficulties with which I had to struggle in
my then contribution and I realized that the paper is actually outdated and because of
all its technicalities difficult to read. Therefore I decided to contribute a modernized
version of—at least parts of—the old results with emphasis on its recursion theoretic
aspects.

Following the suggestion of the anonymous referee I splitmy contribution into two
parts. First a brief overview of the connection between abstractly defined recursion
theoretic ordinals (GRT–ordinals) for an abstract structure M and their proofthe-
oretic counterparts for axiomatizations for M. This includes a brief sketch of the
abstract theory of generalized inductive definitions. We hope that this part will also
be accessible for readers with a general background in abstract recursion theory who
are non–experts in proof theory.

In the second part—beginning with Sect. 6—I will become more technical and
recompute the prooftheoretic ordinals of the theory IDν of ν–fold iterated positive
inductive definitions. Themain tool there are operator controlled semi–formal deriva-
tions, an improvement2 of the technique of local predicativity which was the basis of
the contribution in LN 897. Completely new is the technique to obtain a characteriza-
tion of the provably recursive functions of IDν which in contrast to the contribution
in LN 897 does not need a formalization of the ordinal analysis but is obtained by
an elimination of all abstract rules in semi–formal derivations of �0

1–sentences with
parameters as discussed in [38]. This technique roots in papers by Weiermann and
Blankertz (cf. [3, 4]).

1A problem that was and apparently still is in the focus of interest. Cf. e.g. [1, 6, 14].
2This technique has been introduced by Wilfried Buchholz in [8].
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The main emphasis of this revision is on some recursion–theoretic aspects of the
proof theory of iterated inductive definitions. Their foundational aspect is widely
neglected. In a last section I will therefore comment on some of the foundational
aspects of this paper.

2 GRT–Ordinals and Their Prooftheoretic Equivalents

Given an abstract structure M there is a series of abstractly defined ordinals which
are—in a sense to be discussed later—characteristic for the structureM. Best known
are the ordinals σi

n(M), πi
n(M) and δi

n(M) which are the suprema of the ordertypes
of wellorderings which are definable by a �i

n , �
i
n or �i

n–formulas in the language
for M. Moreover these ordinals also return in completely different contexts, e.g. as
ordinals which characterize the abstract recursion theory of “universes” above M.

The most prominent example for such an ordinal is ωCK
1 , the first ordinal that

cannot be represented by a recursive wellordering on the natural numbers. It is well–
known thatωCK

1 = δ00(N) = δ10(N) = σ1
1(N) and thatωCK

1 characterizes the recursion
theory of hyperarithmetical functions.

Thewellfoundedness of a binary relation≺ on an abstract structureM is expressed
by the �1

1–sentence

(∀X)Wf(X,≺) :⇔ (∀X)
[
(∀z)[(∀y ≺ z)y ∈ X → z ∈ X ] → (∀x)[x ∈ X ]]

where for simplicity we assume that the field of≺ isM. By the elementary language
of M we understand its first order language where we generally allow free second
order variables. In abstraction of the paradigmatic example N we call an abstract
structure acceptable if it contains an elementarily definable copy of the natural
numbers and an elementarily definable coding machinery.3 Because of the coding
machinery of an acceptable structure we will not take care of the arity of second
order variables and just talk about set variables. It is a standard result in generalized
recursion theory that defining

δM := sup {otyp(≺) ≺ is elementarily definable inM ∧ M |= (∀X)Wf(X,≺)}

we obtain δM = δ10(M) = σ1
1(M) for countable acceptable structures M. In case

that M allows for a primitive recursive coding machinery we may even replace
“elementarily definable” by “primitive–recursively (i.e., by a�0

0–formula) definable”
in the definition of δM and still obtain δM = δ00(M).

Given an axiomatization T for the structureM the obvious proof theoretic equiv-
alent of δM is the ordinal

δM(T) := sup {otyp(≺) ≺ is elementarily definable inM ∧ T � Wf(X,≺)}. (1)

3Cf. [25] Exercise 1.6. and Chap. 8.
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To stay within the realm of first order logic we have to replace the �1
1–sentence

expressing the wellfoundedness of ≺ by the by the pseudo–�1
1–sentence Wf(X,≺).

Pseudo �1
1–sentences are formulas in the first order language of M in which at

most set variables are allowed to appear freely. Semantically we treat pseudo–�1
1–

sentences as �1
1–sentences, i.e.,

M |= F(X) :⇔ M |= F(X)[S] for all S ⊆ M.

In the paradigmatic case of the axiom systemPA of Peano arithmetic for the standard
structureNof arithmetic—whichpossesses a primitive recursive codingmachinery—
the ordinal δN(PA) defined in (1) is apparently the familiar prooftheoretic ordinal of
PA commonly denoted by |PA|.

There is another abstractly defined ordinal πM that can be regarded as character-
istic for a countable structure M.4 Its definition needs the notion of a semi–formal
system for M–logic. To give a first rough impression of a semi–formal system for
M–logic—the details are in Sect. 6—it is a derivation in a, say one–sided, sequent
calculus for the first order logic of M augmented by the

(M–rule)
αm

ρ �, F(m) and αm < α for all m ∈ M implies
α

ρ �, (∀x)F(x) .

To take also syntactically care of set variables in the semi–formal calculus we need
the

(X–rule) If s and t are closed terms in the language ofM such that sM = tM then
α

ρ �, s ∈ X, t /∈ X holds true for all ordinals α and ρ.

The semi–formal system forM–logic derives finite sets � of pseudo–�1
1–sentences

which should be interpreted as finite disjunctions. Its derivations are represented
by countably branching wellfounded trees. The notion

α

ρ � denotes that there is
a semi–formal derivation whose length is bounded by α and whose cuts are all of
complexity strictly less than ρ.

The central theorem of M–logic is theM–completeness theorem.

Theorem 2.1 Let (∀X)F(X) be a �1
1–sentence in the language of a countable struc-

ture M. Then M |= (∀X)F(X) iff there is an ordinal α < ω1 such that
α

0
F(X) .5

Using Theorem 2.1 we can define a truth complexity for the pseudo–�1
1–sentences

in the language of M by

tc(F) :=
{
min {ξ ξ

0
F } if this exists

ω1 otherwise.

Putting
tc((∀X)F(X)) := tc(F(X))

4For more details cf. [31].
5For a proof cf. e.g. [31] Theorem 3.5 or [35] Theorem 5.4.9 which treats the case M= N.
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the above definition extends to a definition of the truth complexities for the �1
1–

sentences in the language ofM. Using truth complexities we define the �1
1–ordinal

of the structureM by
πM := sup {tc(F) M |= F}. (2)

Given an axiomatization T for a countable acceptable structureM there is an obvious
proof theoretic equivalent

πM(T) := sup {tc(F) T � F} ≤ πM (3)

for the ordinal πM. The distance between πM(T) and πM then serves as a measure
of the performance of the axiom system T with respect to its target structureM. We
say that an axiom system T′ has an improved performance if this distance becomes
smaller, i.e., if πM(T) < πM(T′

).
The connection between the ordinals δM and πM is given by another central

property of M–logic, the Abstract Boundedness Theorem.

Theorem 2.2 (Abstract Boundedness Theorem) Let M be a countable structure
and ≺ a transitive wellfounded binary relation on M. Then

otyp(≺) ≤ tc((∀X)Wf(X,≺)).

If otyp(≺) is a limit ordinal we have equality.

Asan immediate consequence of theBoundednessTheoremweget δM ≤ πM aswell
as δM(T) ≤ πM(T) for axiomatizationsT of countable structuresM. IfM allows for
a coding machinery we also get the converse inequalities. Call an axiomatization T
for an acceptable structureM acceptable if its proves all the properties of the coding
machinery of M.

Lemma 2.3 For an acceptable countable structure M we have δM = πM. If T is
an acceptable axiomatization of M we also get δM(T) = πM(T).

The Boundedness Theorem goes back to a theorem of Gentzen in [15]. Though we
do not want to reprove it here,6 we mention (a coarsened form of) the lemma which
is essential for its proof.

Lemma 2.4 If
α

0
¬(∀x)[(∀y)[y ≺ x → y ∈ X ] → x ∈ X ],�(X) for a finite set

of X–positive pseudo �1
1–sentences �(X) then M |= ∨

�(X)[≺� α] where ≺� α =
{x ∈ field(≺) |x |≺ < α}.
The Boundedness Theorem is clearly an immediate consequence of Lemma 2.4. It
has, however, another important consequence.

Theorem 2.5 Let T be an acceptable axiomatization for a countable acceptable
structure M and T ′ an extension of T by a finite set of sentences that are true in M.
Then δM(T) = δM(T ′).

6Proofs can be found in [2, 35], Sect. 6.6 and [31] Sect. 5.2.
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Proof Let T′ = T ∪ {A} for a true sentence A and assume T′ Wf(X,≺). Then
T ¬A ∨ Wf(X,≺). Unraveling this proof into a semi–formal derivation yields

α

0
¬(∀x)[(∀y)[y ≺ x → y ∈ X ] → x ∈ X ], (∀x ∈ field(≺))[x ∈ X ],¬A

for some ordinal α < πM(T) = δM(T). According to Lemma 2.4 this yields

M |= (∀x ∈ field(≺))[|x |≺ < α] ∨ ¬A.

Since ¬A is false we have otyp(≺) ≤ α ≤ δM(T). Hence δM(T′
) ≤ δM(T) and the

converse inequality holds trivially. �

It follows from Theorem 2.5 that augmenting an axiom system by true elementary
sentences (even true �1

1–sentences) in the language ofMwill no improve its perfor-
mance. To improve the performance of an axiom system forMwe thus need axioms
talking about a universe aboveM. The most natural way—as we see it today—is to
axiomatize a set universe aboveM. However, probably for historical reasons—going
back to Hilbert’s second problem in his famous 1900 list of mathematical problems
and the fact that real numbers can be viewed as subsets of the natural numbers—
first attempts aimed at axiomatizations of Pow(M). Since there is no completeness
theorem for full second order logic there is no hope to obtain an axiomatization
for the full powerset of M. But even the restriction to weak second order logic in
which the second order quantifiers are supposed to range over all definable subsets
of the powerset ofM is—at least for our present knowledge—much too ambitious.7

A viable attack is to axiomatize smaller universes above M with sufficiently good
closure properties.

Examples for such universes are Spector classes above M.8 A Spector class �

above an acceptable structureM is a class of relations on M satisfying:

• � is closed under positive Boolean operations, first order quantifications over M
and trivial combinatorial substitutions,

• � is parameterized, i.e., it contains a universal relation,
• � is normed, i.e., for every relation R ∈ � there is an ordinal λ and a mapping

σR : R −→ λ onto λ such that the relations

x �∗ y :⇔ x ∈ R ∧ [y /∈ R ∨ σR(x) ≤ σR(y)]
x ≺∗ y :⇔ x ∈ R ∧ [y /∈ R ∨ σR(x) < σR(y)]

are in �. We call the relations �∗ and ≺∗ the prewellorderings of �.
• By�we denote the relations in� ∩ ¬�, i.e. R ∈ � iff R ∈ � and there is a relation

R̆ ∈ � such that x /∈ R ⇔ x ∈ R̆.

7The axiom system for weak second order logic above the axiomatization PA for the structure N of
arithmetic, i.e. PA plus the full comprehension scheme, is also known as classical analysis.
8Cf. [25] Chap. 9.
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For a Spector class � let

o� := sup {σR(x) + 1 x ∈ R ∈ �}. (4)

Then o� is the first ordinal which cannot be represented by a relation in �.
Spector classes are structures which allow for an abstract computation theory.9

Let� be a Spector class above a countable acceptable structureM. A partial function
f : M −→ M is �–partial recursive if its graph belongs to �. Without going into
details we mention that the �–partial recursive functions are strongly connected to
o�–partial recursive functions. We will therefore call them occasionally also o�–
partial recursive functions.

Given an axiomatization T for a Spector class � we obtain the prooftheoretic
equivalent of o� as the ordinal

o�(T) := sup {σR(x) + 1 R ∈ � ∧ T � x ∈ R}.

If T axiomatizes a hierarchy � of Spector classes above a countable acceptable
structure M we can extend this to a spectrum of ordinals

SpecM(T) := {o�(T) � ⊆ � is a Spector class above M} ∪ {δM(T)}. (5)

We will see that the points o�(T) in SpecM(T) involve closure conditions for the
�–recursive functions whose totality is provable in T.

Remark 2.6 The free set variables in the definition of the ordinals πM and πM(T)

are mandatory. Any elementary sentence in the language of M possesses a finite
truth complexity. We thus would always get πM = ω if we ban free set variables.

Also in the definition of the ordinal δM and δM(T) free set variables aremandatory
in principle. However, one sometimes sees the definition

|T| := sup

{
otyp(≺)

∣∣∣
∣
≺ is elementarily definable and
T Wf(F,≺) for all formulas F in the language ofM

}

of the prooftheoretic ordinal of a formal theory T in which the pseudo �1
1–sentence

Wf(X,≺) is replaced by the scheme Wf(F,≺). From a strict standpoint this is prob-
lematic. The GRT equivalent of the above definition would be

sup

{
otyp(≺)

∣∣∣
∣
≺ is elementarily definable and
M |= Wf(F,≺) for all F in the language of M

}
,

i.e.

sup {otyp(≺) ≺ is elementarily definable ∧ (M,E) |= (∀X)Wf(X,≺)}

9Cf. [24].
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where E is the collection of all subsets of M which are elementarily definable. The
structure (M,E), however, is in general not aβ–model, i.e., (M,E) |= (∀X)Wf(X,≺)

will in general not guarantee the wellfoundedness of≺. To make the above definition
of |T| sensible we have to anticipate that≺ is a wellordering—which does in general
not follow from the scheme T Wf(F,≺). With this anticipation we get δM(T) ≤
|T|, since T(X) Wf(X,≺) entails T Wf(F,≺) for all elementary formulas of
M.10 On the other hand there is an elementary formula G and and a wellordering
≺ of ordertype ≥ πM(T) = δM(T) such that T + Wf(G,≺) proves the consistency
of T. By Gödel’s second incompleteness theorem we thus have otyp(≺) < δM(T)

whenever T Wf(F,≺). Hence |T| ≤ δM(T) and both ordinals coincide.
Nevertheless, even if the language of a formal theoryT is supposed not to comprise

free set variables we shall always assume that δM(T) is defined in the conservative
extension T(X) of T in which set variables are axiomatized by (∀x)(∀y)[x = y →
x ∈ X → y ∈ X ].

Finally we want to remark that the definition of the ordinals o� , o�(T) and
SpecM(T) do not need second order variables.

3 A Brief Summary of Abstract Inductive Definitions

The notion of a Spector class is too general as to be directly accessible to an ordinal
analysis. There are too many examples for abstract Spector classes above an accept-
able structureM.11 In order to obtain ordinal analyses for axiomatizations of Spector
classes we have to specify them further.

The least Spector class above a countable acceptable structureM is the structure
ID(M) = (M,�(M)) where �(M) is the class of all relations which are positive
inductively definable above M.12 To clarify notations we give a brief summary of
some basic facts of abstract inductive definitions. For a full account see [25].

Let M be an acceptable abstract structure.13 By an abstract inductive definition
onM we understand a monotone operator � : Pow(M) −→ Pow(M).14

Such operators possess a least fixed–point I� which is the intersection of all
subsets of the domain of M that are closed under �, i.e.,

I� =
⋂

{X ⊆ M �(X) ⊆ X}. (6)

10Observe that the opposite direction is false in general. It is possible that T � F(G) for every
formula G with a proof depending on G whilst T(X) � F(X) since this would require a uniform
proof. An effect which reminds of (and is connected to) the ω–defect of the first order language of
T. Whilst T � F(t) for any closed first order term t we cannot get T � F(x) for a free variable x .
11Cf. [23].
12Cf. [25] Corollary 9A.3.
13In slight abuse of notation we will denote by M both: the structure and its domain.
14Due to the fact that we have an elementary pairing in Mwe sloppily talk about sets whenever
[25] talks about relations.
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Any fixed–point can be resolved into stages I α
� which are recursively defined by

I α
� := �(I <α

� )

where I <α
� denotes the union of all stages less than α. Let M denote the cardinality

of the domain of M. By a simple cardinality argument there is an ordinal σ < M
+

such that I <σ
� = I σ

�. The least such ordinal is the norm ||�|| of the operator �. It is
easy to see that

I� = I <||�||
� = I ||�||

� . (7)

For an element n ∈ M and an inductive definition � on M we define its inductive
norm by

|n|� :=
{
min {ξ n ∈ I ξ

�} if n ∈ I�

M
+

otherwise.

We then obtain
||�|| = sup {|n|� + 1 n ∈ I�}. (8)

A formula F(X, x) in the elementary language of M defines an operator

�F (S) = {n ∈M M |= F(S, n)}.

The operator �F is monotone if X occurs only positively in F(X, x). We then say
that �F is positively definable over M. Let

κM := sup {||�F || F(X, x) is an X–positive elementary formula in LM} (9)

be the closure ordinal of the structure M (cf. [25]) .
A set S ⊆ M is positive–inductively definable over M if it is a slice of a fixed–

point of a positively definable operator over M, i.e., if

S = {n ∈M 〈s, n〉 ∈ I�F }

for an X–positive formula F(X, x) in LM and some s ∈ M. To be short we will
briefly talk about inductive sets when we mean positive–inductively definable sets.
A set S ⊆ M is hyperelementary over M iff S and its complement are inductive
over M.

The elements of an inductive set S ⊆ M that is an s–slice of an inductive definition
�F are well ordered by the relation

n ≺S m iff |〈s, n〉|�F < |〈s, m〉|�F .
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The norm ||S|| of the inductive set is the ordertype of the well ordering ≺S . The
inductive norm |z|S of an element z in the field of an inductively defined relation S
is its ordertype in the relation ≺S .

The closure ordinal of an abstract structure M can also be expressed in terms of
the norms of the elements that belong to the field of an inductively definable relation
on the domain ofM. We have

κM := sup {|z|S + 1 S is inductive above M ∧ M |= z ∈ field(S).} (10)

One of the central results of the abstract theory of inductive definitions is the
prewellordering theorem stating that for positive–inductively definable sets S and
T the relations

s �∗ t :⇔ s ∈ S ∧ (t /∈ T ∨ |s|S ≤ |t |T )

s ≺∗ t :⇔ s ∈ S ∧ (t /∈ T ∨ |s|S < |t |T )

are inductive. The prewellordering theorem entails:

An inductive set S is hyperelementary over M iff ||S|| < κM.

That inductive sets are closed under “inductive in” is guaranteed by the Transitivity
Theorem (cf. Theorem 1C.3 in [25]).

If F(X, Y1, . . . , Yn, x) is a formula in the language LM in which X and all the
variables Yi occur positively and P1, . . . , Pn are inductive over M then the fixed
point of the operator �F defined by F(X, P1, . . . , Pn, x) is again inductive over M.

As a consequence of the Transitivity Theorem we obtain:

If P1, . . . , Pn is a tuple of sets that are hyperelementary over a structure M and N
is the structure (M, P1, . . . , Pn) then κN = κM.

However, if some of the sets P1, . . . , Pn are inductive though not hyperelementary
overMwe in general have κM < κN. Iteration of inductive definitions is among the
main concerns of this paper.

Note 3.1 Without proof wemention that the class�(M) = {R R is inductive over
M} is a Spector class above M. It is easy to check that �(M) satisfies the clo-
sure conditions. A bit more difficult to see is that �(M) is normed. This needs the
prewellordering theorem proved in [25] Theorem 3A.3. It shows that the inductive
norms |z|S induce the prewellorderings of �(M). To prove that �(M) is parameter-
ized we have to use that M is acceptable (cf. [25] Theorem 5D.1).

For an acceptable structureM let ID(M) := (M,�(M)) denote the least Spector
structure above M. Clearly ID(M) is countable if M is countable.

In view of Note 3.1 we have κM = oID(M). To establish also the connection between
κM and πM we refer to the �1

1 characterization of fixed–points. For an X–positive
formula F(X, x) in the language of M we have
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m ∈ IF ⇔ (∀X)[(∀x)[F(X, x) → x ∈ X ] → m ∈ X ].

Therefore m ∈ IF possesses a non–trivial truth complexity for which we obtain15

|m|F ≤ 2tc(m∈IF ). (11)

Given an elementarily definable ordering≺we obtain its accessible part as the fixed–
point of the formula A(X, x) :⇔ (∀y)[y ≺ x → y ∈ X ]. If≺ is a wellordering we
obtain

|m|≺ ≤ |m|A ≤ 2tc(m∈IA) hence δM ≤ κM ≤ 2πM

.

For acceptable countable structures M the ordinal πM is an epsilon number, i.e.,
closed under exponentiations, and we obtain together with Lemma 2.3 the sharper
result

δM ≤ κM ≤ 2πM = πM = δM. (12)

Given an axiomatization T of ID(M) we obtain a prooftheoretic equivalent of κM

κM(T) := sup {|z|F + 1 F(X, x) is an X–positive formula inM and T � z ∈ IF }

for which we have κM(T) = oID(M)(T).

Remark 3.2 According toRemark 2.6we understand the ordinals δM(T) andπM(T)

as defined for the conservative extension T(X) of the axiom system T by free set
variables. If T contains the scheme of Mathematical Induction δM(T) is an epsilon
number and Eq. (12) relativizes to

δM(T(X)) ≤ κM(T(X)) ≤ 2πM(T(X)) = 2δM(T(X)) = δM(T(X)). (13)

We will, however, give axiomatizations for inductive definitions which introduce
constants for fixed–points. In these axiomatizations we can define κM(T) without
use of set variables. To save Eq. (13) also for such axiomatizations we have to check

T � z ∈ IF ⇔ T(X) � (∀x)[F(X, x) → x ∈ X ] → z ∈ X. (14)

Under this proviso we get

δM(T) = πM(T) = κM(T) = oMμ+1(IDμ(T )). (15)

15The proof is similar to that of the Boundedness Theorem. Cf. [31] Theorem 5.27. The 2–power
is in general unavoidable.
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4 Iterating Inductive Definitions

For a countable acceptable structureM the Spector structure ID(M) is again a count-
able acceptable structure. By countable iterations of the operationM �→ ID(M) we
thus obtain larger Spector classes above M. We define

M0 := M =: ID0(M)

Mν+1 := ID(Mν) =: (M,�ν+1(M)) =: IDν+1(M) and

Mλ =
⋃

ξ<λ

Mξ =:
⋃

ξ<λ

IDξ(M) for limit ordinals λ.

Definition 4.1 Let

κM
0 = 0,

κM
ν+1 := κMν = oMν+1 and

κM
λ := sup {κM

ξ ξ < λ} =: oMλ for limit ordinals λ.

Observe that in the paradigmatic caseM = N the ordinals κN

μ are the initial ordinals
of the constructive number classes, i.e. κN

1 = ωCK
1 , κN

2 = ωC K
2 , ….

Note 4.2 For reasons, which would be too far reaching to explain at that point, we
restrict the iterations to countable ordinals ν below the first recursively inaccessible
ordinal (Cf. Footnote 39 at the end of the paper.)

5 Axiomatization of Iterated Inductive Definitions

Note 5.1 In the axiomatizations of iterated inductive definitions we will here restrict
ourselves to the case that the number of iteration steps is “given from outside”.
Though this is a restriction it suffices to demonstrate the main principles. Stronger
versions as, e.g., autonomous iterations of inductive definitions are farer reaching.
Their ordinal analyses, however, follow the same pattern.

To obtain an axiomatization of the structure IDν(M) for iterated positive inductive
definitions we build on an axiomatization T of the initial structure M which we
assume to be Peano–like, i.e., T is an acceptable axiomatization such that all the
axioms inT are sentences in the elementary language ofM and it includes the scheme
ofMathematical Induction. In view of Remark 3.2we aim at an axiomatizationwhich
does not use set variables. However, to develop the axiomatization for IDν(M) we
have to work in the elementary language ofM extended by free set variables. Instead
of P(x) for P a predicate constant or set–variable we commonly write x ∈ P . Since
there is an elementary pairing function we may be sloppy in distinguishing unary
and n–ary predicates and set–variables.



Iterated Inductive Definitions Revisited 221

For the rest of the paper let ≺0 be an elementarily definable wellordering of
ordertype ν. By lower case Greek letters ρ,μ, νi ,μ j , . . . we denote the members of
the field of ≺0 and write more intuitively ρ < μ instead of ρ ≺0 μ. We also mostly
write μ < ν instead of μ ∈ field(≺0).

For P a predicate or set–variable we abbreviate by x ∈ Py the formula 〈x, y〉 ∈ P
where 〈x, y〉 is the elementary pairing function of M.

We use the “abbreviations” x ∈ {y G(y)} for G(x) and F(G) for the formula
obtained from F(X) by replacing all occurrences of s ∈ X in F(X) by G(s).

For μ in the field of ≺0 we denote by P<μ the set {x (∃ρ)[ρ < μ ∧ x ∈ Pρ]}.
Definition 5.2 For every elementary X–positive formula F(X, Y, x, y) in the lan-
guage of M which contains no further free variables we introduce a binary relation
constant IF .

The defining axioms for the constant IF are the closure axiom

(ID1
ν) (∀μ)(∀x)[F(IFμ

, IF <μ
, x,μ) → x ∈ IFμ

]

and the generalized induction scheme

(ID2
ν) (∀μ)

[
(∀x)[F(G, IF <μ

, x,μ) → G(x)] → (∀x)[x ∈ IFμ
→ G(x)]]

where G is a any formula not containing free set variables.
Due to our understanding that the ordinal ν is given from outside we add the

scheme of transfinite induction along ≺0 to the axioms of IDν . i.e.,

(TIν) (∀μ)
[[(∀ρ < μ)G(ρ) → G(μ)] → (∀μ)G(μ)

]
.

The axioms of IDν(T) are the axioms in T augmented by the defining axioms for
IF with the scheme of Mathematical Induction extended to all formulas without set
variables.

By ID<ν(T) we denote the union of the theories IDμ(T) for μ < ν.

Since we started with an axiom system T for M the axiom system IDν(T) is again
an axiom system for M. According to its construction it does not use free set vari-
ables. Our aim is to compute its prooftheoretic ordinal |IDν(T)| = δM(IDν(T)).
The axioms in IDν(T), however, also axiomatize all the structures Mμ with μ < ν.
Therefore it makes sense to ask also for the ordinals δMμ(IDν(T)) for μ < ν.

To compute these ordinals we want to draw on Eq. (15) and thus have to check
the conditions in Eq. (14). By axiom (ID2

ν) we have

IDν(T)(X)) (∀x)[F(X, IF <μ
, x,μ) → x ∈ X ] → z ∈ IFμ

→ z ∈ X.

So IDν(T) z ∈ IFμ
implies IDν(T)(X)) (∀x)[F(X, IF <μ

, x,μ) → x ∈ X ] →
z ∈ X and the converse direction follows directly since
IDν(T) (∀x)[F(IFμ

, IF <μ
, x,μ) → x ∈ IFμ

] by axiom (ID1
ν).
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According to Eq. (15) we thus have

|IDν(T)| := δM(IDν(T)) = κM(IDν(T)) (16)

and more general

δMμ(IDν(T)) = κMμ(IDν(T)) = κM
μ+1(IDν(T)) = oMμ+1(IDν(T)), (17)

hence
SpecM(IDν(T)) = {oMμ+1(T) μ < ν}.

To compute SpecM(IDνT) it therefore suffices to compute the inductive norms |z|Fμ

for μ < ν for those z for which we have IDν(T) z ∈ IFμ
.

6 Semi–formal Systems for Iterated Inductive Definitions

A meanwhile well established way to compute prooftheoretic ordinals of axiom
systems is the use of semi–formal systems. By a semi–formal system we understand
a deduction calculus which includes inferences with infinitely many premises.16

As described in [31] semi–formal systems for axiom systems T are built around a
verification calculus for their intended standard models.

To repeat briefly the notion of a verification calculus letS be a countable structure.
We divide the sentences of the elementary language of S—which is assumed to
include names for all elements of S—into

∧ −type and
∨ −type and decorate

every sentence F with a characteristic sequence CS(F) of sentences such that

S |= F if S |= G for all G ∈ CS(F) for F ∈ ∧ −type,

S |= F if S |= G for some G ∈ CS(F) for F ∈ ∨ −type.
(18)

The verification calculus
α

� for a finite set � of LS–sentences—which is to be
read as a finite disjunction—is obtained by two rules

(
∧

) If F ∈ � ∩
∧

−type and
αG

�, G plusαG < α hold true for allG ∈ CS(F)

then infer
α

�

16Originally–and closer to formal systems–only infinite inferences whose premises could be enu-
merated primitive recursively were allowed in semi–formal systems. However, for the purpose of
ordinal analysis the more liberalized version suffices.



Iterated Inductive Definitions Revisited 223

and

(
∨

) If F ∈ � ∩
∨

−type and
α0

�, G holds true for someG ∈ CS(F) then infer
α

� for allα > α0.

The verification calculus talks only about sentences. The language LS is therefore
supposed not to contain free variables.

To obtain a semi–formal systems which serves in the computation of
SpecM(IDν(T)) we first have to fix the intended standard model for the axiom sys-
tems IDν(T).

By recursion on μ < ν we obtain the standard interpretation IFμ
of IFμ

as the least
fixed–point of the operator �Fμ

defined by

�Fμ(S) := {x ∈ M Mν |= F(X, Y, x,μ)[S, IF<μ
]}.

Since we aim at the computation of the stages of elements in IFμ
we need a finer

graining of the fixed–points IFμ
. The stages of a μ–fold iterated inductive definition

reach up to the closure ordinal κM
μ+1.We thus extend the language ofMν by constants

for all the stages I <ξ
Fμ

for ξ ≤ κM
μ+1 of the fixed points IFμ

for μ < ν and call the
extended model M∗

ν .
The ordinals κM

μ+1 are abstractly defined by their closure properties. Technically it
is difficult to workwith these closure properties.Wewill therefore introduce symbols
�μ for 0 ≤ μ ≤ ν whose intended interpretation are the ordinals κM

μ but allow also
other interpretations and try to axiomatize them later by closure conditions which
are easier to handle.17

More formally we obtain the language L∗
IDν

by the following constants:

• for every ordinal 0 ≤ μ ≤ ν a constant �μ,
• for every μ in the field of ≺0, every X–positive elementary formula F(X, Y, x,μ)

with not further free variables and every ξ ≤ �μ+1 a set–constant I <ξ
Fμ

.18

We will use the language in Tait style. i.e. there is no negation symbol among our
logical symbols but negation is defined via deMorgan’s laws. This requires that for
every set–constant there is also a constant for its complement. However, according to
our convention towrite n ∈ P instead of P(n)wecan express by n /∈ P that n belongs
to the complement. This makes extra symbols for the complements unnecessary.

The next step is to separate the L∗
ID–sentences into

∧ −type and
∨ −type .

17The abstractly defined ordinals κM
μ —-symbolized by the constants” �μ—are ideal objects as

introduced in [38]. Their elimination in course of the ordinal analysis corresponds to Hilbert’s
“elimination of ideal objects” as discussed there.
18The notion ξ ≤ �μ+1 is to be read relative to an interpretation of the constants �μ+1 which is
not yet fixed. So the language L∗

IDν
varies with different interpretations of �μ+1.
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The
∧ −type comprises:

• All true atomic L(M)–sentences.
• All sentences of the form (A ∧ B).
• All sentences of the form (∀x)F(x).
• All sentences of the form n /∈ I <ξ

Fμ
.

• All sentences of the form n /∈ IF<μ
.

The
∨ −type comprises:

• All false atomic L(M)–sentences.
• All sentences of the form (A ∨ B).
• All sentences of the form (∃x)F(x).
• All sentences of the form n ∈ I <ξ

Fμ
.

• All sentences of the form n ∈ IF<μ
.

To obtain the decoration for the language L∗
IDν

we define:

• CS(A) = ∅ if A is an atomic L(M)–sentence.
• CS(A ◦ B) := 〈A, B〉 for ◦ ∈ {∧,∨}.
• CS((Qx)F(x)) := 〈

F(n) n ∈ M
〉
for Q ∈ {∀, ∃}.

• CS((Qμ)F(μ)) := 〈
F(ρ) ρ < ν

〉
for Q ∈ {∀, ∃}.19

• CS(n ∈ I <ξ
Fμ

) = 〈
n ∈ I η

Fμ
η < ξ

〉
, CS(n /∈ I <ξ

Fμ
) = 〈

n /∈ I η
Fμ

η < ξ
〉

where n ∈ I η
Fμ

is a shorthand for F(I <η
Fμ

, IF<μ
, n,μ), n /∈ I η

Fμ
a shorthand for

¬F(I <η
Fμ

, IF<μ
, n,μ) and IF<ρ

a shorthand for {x (∃μ)[μ < ρ ∧ x ∈ I
<�μ+1

Fμ
]}.

For every L∗
IDν

–sentence F we define its complexity by

rnk(F) := sup {rnk(G) + 1|G ∈ CS(F)}.

Having a decoration of the language L∗
IDν

we obtain a verification calculus
α

� for
finite sets of L∗

IDν
–sentences.

Interpreting the constants �μ as κM
μ and I <ξ

Fμ
standardly as the union of the stages

I η
Fμ

below ξ shows that M∗
ν satisfies (18) for the given decoration. Therefore the

verification calculus is sound for the model M∗
ν . It is even complete for a fragment

of M∗
ν to be defined below.

Definition 6.1 AnL∗
IDν

–sentence G belongs to
∨�μ+1

1 –type if for any constant I <ξ
Fρ

occurring in G we have ρ ≤ μ, ξ ≤ �ρ+1 and there are only positive occurrences

of I
<�μ+1

Fμ
. The class

∧�μ+1

1 –type is the dual class, i.e., it contains at most negative

occurrences of I <�μ+1

Fμ
.

Let
∨�μ+1

0 –type = ∧�μ+1

0 –type := ∨�μ+1

1 –type ∩ ∧�μ+1

1 –type .

Theorem 6.2 The verification calculus is sound and complete for the sentences in∧�1
1 –type .

Proof Only completeness is to be checked. For F in
∧�1

1 –type such thatM∗
ν |= F

we get
rnk(F)

F by an easy induction on rnk(F). Just to indicate three cases: If F

is a true atomic formula then F ∈ ∧ −type and CS(F) = ∅ and we obtain
0

F

19Observe that there are two types of ordinals. First ordinals ≤ ν which are represented by the
elements in the field of ≺0 and thus are just numbers, hence “quantifiable”, and secondly the
ordinal constants ξ occurring in the form of I <ξ

Fμ
.
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by a rule (
∧

). If F is a sentence n ∈ I <ξ
F0

then ξ < �1 and there is an η < ξ such

that n ∈ I η
F0
is true. Hence

α
n ∈ I η

F0
by induction hypothesis for α = rnk(n ∈ I η

F0
)

which entails
rnk(n∈I <ξ

F0
)

n ∈ I <ξ
F0

by an inference (
∨

). If F is a sentence n /∈ I <ξ
F0

then

we haveM∗
ν |= n /∈ I ζ

F0
for all ζ < ξ, hence

αζ

n /∈ I ζ
F0
by induction hypothesis and

the claim follows by an inference (
∧

). �
We have now to check in how far the verification calculus is already a model for
IDν(T). It follows from Theorem 6.2 that all true elementary L(M)–sentences are
verifiable. So it remains to check the axiom schemes of Mathematical Induction,
ID1

ν , ID
2
ν and TIν . We postpone ID1

ν and try first to verify ID2
ν , TIν and Math-

ematical Induction. The sentence ClFμ
(G) :⇔ (∀x)[¬F(G, IF<μ

, x,μ) ∨ G(x)]
expresses that the set {x G(x)} is closed under the operator generated by Fμ(X) :⇔
F(X, IF<μ

, x,μ). Then
α ¬ClFμ

(G), n /∈ I <ξ
Fμ

, G(n) (19)

holds true for all n and all set terms {x G(x)} with α = 2 · rnk(G) + �μ · ξ + 1.
This is the standard proof by induction on ξ exploiting the monotonicity of the
operator generated by Fμ.20

From (19) we easily obtain anα ∈ (2 · rnk(G) + �μ+1, 2 · rnk(G) + �μ+1 + ω)

such that
α ¬ClFμ

(G) ∨ (∀x)[x /∈ I
<�μ+1

Fμ
∨ G(x)].

Since this is true for all μ ∈ field(≺0) we finally obtain

α
(∀μ)[¬ClFμ

(G) ∨ (∀x)[x /∈ I
<�μ+1

Fμ
∨ G(x)]] (20)

for someα ∈ (�μ,�ν · ω)which is a translation of ID2
ν if we interpret IFμ

by I
<�μ+1

Fμ
.

Similar to (19) we obtain

α ¬(∀σ)[¬(∀ρ < σ)G(ρ) ∨ G(σ)], G(μ) (21)

for allμ < ν for some ordinalα < 2 · rnk(G) + ω · μ + 1. This shows that the trans-
lation of TIν is verifiable with an ordinal less than �ν · ω. Mathematical Induction
follows in the same vein.

There is, however, no chance to obtain a verification of the translations of the
axiom ID1

ν . There is no information about the meaning of the constants �μ+1 in the
verification calculus. We need axioms or defining rules—for which we are going
to opt here—that fix the meaning of the constants �μ+1. Therefore we extend the

verification calculus
α

� to a semi–formal system
α

ρ � by adding defining rules
for the constants �μ+1. However, adding new rules may spoil the admissibility of
the cut rules why we also add a cut rule.

20The proof is similar to that of [35] Lemma 9.5.3.
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Definition 6.3 Wedefine the proof relation
α

ρ � for a finite set� ofL∗
IDν

–sentences
by the rules:

(
∧

) If F ∈ � ∩ ∧ −type and
αG

ρ �, G plus αG < α hold true for all G ∈
CS(F) then infer

α

ρ � .

(
∨

) If F ∈ � ∩ ∨ −type and
α0

ρ �, G holds true for some G ∈ CS(F) then

infer
α

ρ � for all α > α0.

(Cut) From
α

ρ �, G ,
α

ρ �,¬G and rnk(G) < ρ infer
β

ρ � for any β > α.

(�μ+1) If (n ∈ I
<�μ+1

Fμ
) ∈ � for μ < ν and

α

ρ �, F(I
<�μ+1

Fμ
, IF<μ

, n,μ) then infer
β

ρ � for all β > α.

We call the sentences F and n ∈ I
<�μ+1

Fμ
, respectively, the principal sentences of the

corresponding inference. A cut possesses no principal sentence but a cut sentence.

We clearly have
α

� ⇒ α

0
� . However,

α

0
� ⇒ α

� holds only true if

� is a subset of the class
∧�1

1 –type .

The�μ+1–rules enable us to obtain a semi–formal derivation also of the translation
of ID1

ν . To see that first observe that we have

2rnk(H)

0
�,¬H, H

for any finite set � and any sentence H , hence especially

α

0
¬ F(I

<�μ+1

Fμ
, IF<μ

, n,μ), F(I
<�μ+1

Fμ
, IF<μ

, n,μ)

for some ordinal less than �μ+1 · ω. Using an �μ+1–inference this entails

α′

0
¬ F(I

<�μ+1

Fμ
, IF<μ

, n,μ), n ∈ I
<�μ+1

Fμ

for α′ still less than �μ+1 · ω. Since this holds true for all μ < ν a (
∨

)–inference
followed by a (

∧
)–inference yield

α

0
(ID1

ν)
∗ (22)

with an ordinal α less than �ν + ω.
Since all the translations of axioms of IDν(T) are semi–formally provable with

ordinals less than�ν · ω we finally obtain by an induction on the lengths of IDν(T)–
derivations a translation theorem.
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Theorem 6.4 If IDν(T) � G(x1, . . . , xn) then there is an α < �ν · ω and a finite
ordinal k such that

α

�ν+k
G(z1, . . . , zn)

∗ holds true for any choice of elements
z1, . . . , zn in M. Here G∗ is the M∗

ν–sentence obtained from G replacing all occur-

rences of IFμ
by I

<�μ+1

Fμ
.

Observe that Theorems 6.2 and 6.4 hold true independently of the interpretation of
the constants �μ. The �μ+1–rules mimic the closure properties of the ordinals κM

μ+1.
If we interpret all �μ standardly by κM

μ the �μ+1–rules are apparently sound in the
structure M∗

ν . We thus have the following theorem.

Theorem 6.5 When interpreting all �μ standardly by κM
μ the proof–relation

α

ρ F
is sound for the structure M∗

ν .

Corollary 6.6 If � is finite set of sentences in
∨�μ+1

0 –type such that
α

�μ+1
� and

all constants �ρ for ρ ≤ μ are interpreted standardly by κM
ρ then M∗

ν |= ∨
�.

Proof Since � ⊆ ∨�μ+1

0 –type the derivation
α

�μ+1
� does not contain constants

�σ for σ > μ. Therefore we have ρ < μ for all (�ρ+1)–rules occurring in
α

�μ+1
�

and these rules are sound inM∗
ν . �

Since the semi–formal system for M∗
ν derives only finite sets of sentences cut–

elimination for this system comes nearly for free.

Theorem 6.7 (Semantical Cut Elimination)

α

ρ � , implies
α

0
� .

Proof A simple induction on α shows that for a finite set � of sentences that are—
standardly interpreted—all false in M∗

ν we get

α

ρ � ,� implies
α

0
� .

To emphasize that this proof is based on the fact that the semi–formal system only
derives sentences let us look at the case that the last inference is a cut

α0

ρ �,�, G ,
α0

ρ �,�,¬G ⇒ α

ρ �,� . (i)

Then either G or ¬G is false in the standard interpretation. So we can pick the
premise in which G or ¬G is false and apply the induction hypothesis. All other
cases follow from the induction hypothesis and the fact that all rules are sound in the
standard interpretation. The claim follows from (i) for � = ∅. �

Remark 6.8 SinceM |= ¬F(X) ⇔ M �|= F(X) is false for pseudo�1
1–sentences

it is obvious that the above proof cannot work for semi–formal systems that derive
finite sets of pseudo �1

1–sentences.
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The theorem that enables us to use the semi–formal system forM∗
ν in the computation

of SpecM(IDν(T)) is the following Boundedness Theorem.

Theorem 6.9 (Boundedness) Let 0 ≤ μ < ν and assume
α

ρ �(I <ξ
Fμ

) for α ≤ �μ+1.

Then we obtain
α

ρ �(I <ζ
Fμ

) for any ζ ∈ [α, ξ] and any positive occurrence of I <ξ
Fμ

in
one of the sentences in �.

Proof The proof is straightforward by induction on α. Nevertheless we give a rough
sketch since it incorporates one of the crucial features of impredicative proof theory,
the elimination of ideal methods.21

If the last inference is not an inference with principal sentence n ∈ I <ξ
Fμ

the claim
follows immediately by the same inference from the induction hypothesis. So assume
that the principal sentence of the last inference is n ∈ I

<�μ+1

Fμ
. Then we are either

in the case of an inference according to (
∨

) or an (�μ+1)–inference. In the prior
case we have the premise

α0

ρ �0, n ∈ I <ξ
Fμ

, n ∈ I ζ0
Fμ

for some ζ0 < ξ. By induction

hypothesis we obtain
α0

ρ �0, n ∈ I <ζ
Fμ

, n ∈ I α0
Fμ

which entails
α

ρ �0, n ∈ I <ζ
Fμ

by a
(
∨

)–inference since α0 < α ≤ ζ. In the latter case we have the premise

α0

ρ �0, F(I
<�μ+1

Fμ
, IF<μ

, n,μ), n ∈ I
<�μ+1

Fμ
.

Since I
<�μ+1

Fμ
occurs positively we may apply the induction hypothesis to obtain

α0

ρ �0, n ∈ I α0
Fμ

, n ∈ I <ζ
Fμ

and then an inference (
∨

) to get the claim. �
Observe that the additional “ideal” (�μ+1)–rule—which is not part of the verification
calculus—is thus replaced by the (

∨
)–rule of the verification calculus.

The Boundedness Theorem opens a strategy to compute the points oMμ+1(IDν(T))

in SpecM(IDν(T)). Given a formal proof IDν(T) n ∈ IFμ
for μ < ν we unravel it

into a semi–formal proof
α

ρ n ∈ I
<�μ+1

Fμ
. If α, ρ < �μ+1 we interpret all �ρ for

ρ ≤ μ standardly and obtain by boundedness and Corollary 6.6 M∗
μ |= n ∈ I <α

Fμ
,

hence |n|Fμ
+ 1 ≤ α. Finding a uniform bound below �μ+1 for the lengths of the

unravelled derivations thus gives also an upper bound for oMμ+1(IDν(T)).
For the first point in the spectrum we have oM1(IDν(T)) = κM0(IDν(T)) =

δM(IDν(T)) = |IDν(T)|. It thus coincides with the familiar proof theoretic ordinal
of the axiom system IDν(T). In a derivation

α

�1
n ∈ I <ξ

F1
with α < �0+1 there are

no occurrences of constants �μ. We thus obtain the prooftheoretic ordinal of IDν(T)

by an elimination of all additional “ideal” constants �μ. It is therefore independent
of the interpretation of the constants �μ.

The stumbling block in this strategy is that the ordinals α and ρ which arise in
the unravelling procedure are in general too big. By (20) we know that ordinals
α > �ν are unavoidably needed for the embedding of the ID2

ν schemes; ordinals
which are far too big as to yield reasonable upper bounds. On the other hand we
know from (the proof of) Theorem 6.2 that for an element z ∈ IF0 with |z|F0 = α,

21Cf. the discussion in [38].
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there is a verification, hence also a semi–formal proof
ξ

0
n ∈ I <�1

F0
with an ordinal

α ≤ ξ < κM. This indicates that there could exist a collapsing procedure for the
semi–formal system. We are thus confronted with the problem:

• “Is there a procedure that collapses a derivation
α

ρ � for � ⊆ ∨1
�1

–type into a
derivation of a length less than κM?”22

Note 6.10 It is the generalized induction axiom ID2
ν that forces us to use ordinals

above κM. Therefore one could ask what happens if this axiom is lacking and ID1
ν is

replaced by a fixed–point axiom. Such and similar theories in the language of set the-
ory have been studied byGerhard Jäger (c.f. [19]) and his school (see e. g. [20]). They
turn out to be either predicative with prooftheoretic ordinals below �0 or metapred-
icative with prooftheoretic ordinals between �0 and the prooftheoretic ordinal of
ID1. Since Eq. (11) is not applicable in this situation—it hinges on the fact that the
fixed point is expressible by a �1

1–sentence—one cannot draw on (16) to obtain
upper bounds for their prooftheoretic ordinals. It still needs pseudo �1

1–sentences in
their computation and thus an (X)–rule for free set–variables which spoils semanti-
cal cut–elimination (cf. [38]). The prooftheoretic analysis of such systems therefore
requires sophistications of methods of predicative proof theory, e.g., asymmetric
interpretations.

7 Iterated Skolem Hulls

Collapsing derivations and keeping control over the lengths of the collapsed deriva-
tions needs also a collapsing function on the ordinals. Since ordinals as transitive
sets are not collapsible this means that we must only use ordinals from a subclass
of the ordinals which contains gaps that are large enough to allow for the necessary
collapsing. A proven technique to generate such sets are iterations of Skolem hull
operators.23

Let F be a set of functions on the ordinals of arities n ≥ 0. The Skolem hull
operator HF generated by F assigns to a set X of ordinals the least set HF (X)

which contains X and is closed under all the functions in F . Skolem hull operators
are obviously inflationary, monotone and idempotent and thus not iterable. To obtain
iterations of Skolem hull operators we have therefore to augment the generating
functions in every iteration step.

Call an ordinal ξ inaccessible byH or a critical point ofH if ξ /∈ H(ξ) where ξ is
viewed as the set of its predecessors. The idea is now to define by recursion on α the
iterations Hα together with a function ψ defined by ψα := min {ξ ξ /∈ Hα(ξ)} and
to augment the generators of Hα by the function ψ � α. Doing so, it is not too hard

22Already Feferman in [12] Sect. 4.1 conjectured “some collapsing argument my perhaps be pos-
sible” in finding the “provably recursive ordinals” of IDν .
23A technique that goes back to work of many people among them Sol Feferman, Peter Aczel, Jane
Bridge (Kister), Wilfried Buchholz and others.
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to see that starting with F = {0,+} the least ordinal for which we have ψσ = σ is
ε0, the prooftheoretic ordinal of Peano arithmetic.

Moreoverwe observe that forα /∈ Hα(ξ)wegetHα(ξ) = Hα+1(ξ) and thusψα =
ψα+1. To obtain 1–1 functions it is therefore reasonable to require the normal form
condition α ∈ Hα(ξ) for critical points. In Sect. 8 we will recollect that predicative
proof theory is governed by the Veblen functions ϕξ . To refresh the definition of
the Veblen functions ϕξ recall that ϕ0 enumerates the additively indecomposable
ordinals, i.e., ϕ0(η) := ωη, and for ξ > 0 the function ϕξ enumerates the common
fixed–points of the functionsϕζ for ζ < ξ. Though not absolutely necessary—λξ. ωξ

would do—it is convenient to include theVeblen function in the generators of Skolem
hull operators. We thus fix F0 = {0,+, λξη. ϕξ(η)}.

The operator generated by F0 and its iterations are transitive in the sense that
they return a transitive set of ordinals when applied to a transitive set of ordinals.
However, aiming at iterated inductive definition we have to incorporate the closure
ordinals κM

μ as “initial points”.
In Definition 4.1 the ordinals κM

μ+1 are abstractly defined by their closure proper-
ties. These closure properties are technically difficult to handle. Instead of using these
closure properties and to refer to the ordinals κM

μ directly we opt for an axiomatic
approach and replace the ordinals κM

μ by ordinal constants �μ together with defin-
ing axioms. We will have to check later in how far this axiomatization captures the
intended interpretation.

We therefore extend the generator F0 to F := F0 ∪ {�μ 1 ≤ μ ≤ ν} and denote
the resulting Skolem hull operator by H. We define

H0 := H,

	α
�μ+1

:= min {ξ �μ ≤ ξ /∈ Hα(ξ) ∧ α ∈ Hα(ξ)}

and augment for α > 0 the generators of Hα by all the functions 	�μ+1 � α for
μ < ν. Note that the functions 	�μ+1 are partial and we have α ∈ dom(	�μ+1) iff
α ∈ Hα(	α

�μ+1
). When writing 	α

�μ+1
we tacitly assume that α ∈ dom(	�μ+1).

Let for convenience �0 := 0. For μ > 0 we axiomatize the ordinal constants
�μ by

(Ax�)

⎧
⎪⎪⎨

⎪⎪⎩

�μ is strongly critical, i.e., closed under + andϕ,

ρ < μ implies�ρ < �μ,

forα ∈ dom(	�μ+1) it is	α
�μ+1

< �μ+1,

�λ = sup {�ξ ξ < λ} for limit ordinalsλ.

Remark 7.1 The axiomatization of the ordinals �μ is consistent. Interpreting the
function λξ. �ξ as the enumerating function of (an initial segment of) the class of
uncountable cardinals augmented by 0, a simple cardinality argument shows that
(Ax�) is satisfied.
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According to this interpretation as the initial ordinals of uncountable number
classes and the intended interpretation as the initial ordinals of the (relativized)
constructible number classes we refer to the constants �μ as initial ordinals.

Key properties of the iterated Skolem hull operators are

Hα(	α
�μ+1

) = Hα(�μ),

	α
�μ+1

= Hα(�μ) ∩ �μ+1 = min {ξ α ∈ Hα(�μ) ∧ Hα(ξ) ∩ �μ+1 = ξ}. (23)

The main point in showing the second claim in (23) is to prove the transitivity of the
setHα(�μ) ∩ �μ+1 by induction on α.

According to Eq. (23) the normal–form condition α ∈ Hα(	α
�μ+1

) is satisfied iff
α ∈ Hα(�μ).

From Eq. (23) we get moreover

	α
�μ+1

< 	
β
�ρ+1

⇔ 	α
�μ+1

∈ Hβ(	
β
�ρ+1

) ∩ �ρ+1 = Hβ(�ρ) ∩ �ρ+1

⇔ μ < ρ ∨
(μ = ρ ∧ α ∈ Hβ(�ρ) ∩ β)

(24)

which in turn implies

	α
�μ+1

= 	
β
�ρ+1

⇔ μ = ρ ∧ α = β. (25)

The function 	�μ+1 is—by requirement—collapsing below �μ+1. We are going to
indicate that—independent of the interpretation of the constants �μ—	�1 is even
collapsing below κM.

The largest transitive segment of the ordinals we can reach by the iteration proce-
dure is apparentlyH��ν+1(0) ∩ �1 = 	

��ν+1

�1
where ��ν+1 denotes the first strongly

critical ordinal above �ν , i.e., the first ordinal above �ν that is closed under the
Veblen function viewed as a binary function.

We are going to indicate that the set H��ν+1(0) and also the less than relation
restricted to it are elementarily definable. We define a set T of ordinal terms induc-
tively by the following clauses.

(T0) For 0 ≤ μ ≤ ν it is �μ ∈ T .
(T1) If α =NF α1 + · · · + αn and {α1, . . . ,αn} ⊆ T then α ∈ T .24

(T1) If α =NF ϕα1(α2) and {α1,α2} ⊆ T then α ∈ T .25

(T3) If α ∈ Hα(�μ) and α ∈ T then 	α
�μ+1

∈ T for all μ < ν.

By induction on the definition of α ∈ T we get α ∈ H��ν+1(0) and conversely
α ∈ H��ν+1(0) ⇒ α ∈ T by induction on the definition of α ∈ H��ν+1(0). Hence

24By α =NF α1 + · · · + αn we denote the Cantor normal form for α.
25α =NF ϕα1 (α2) means α = ϕα1 (α2) and αi < α for i = 1, 2.
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T = H��ν+1(0). (26)

The only “non–syntactical” feature in the definition of T is the normal–form condi-
tion α ∈ Hβ(�μ). To “syntactize” also this condition we define the sets

Kμα :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if α < �μ orα = �ρ for some ρ ≤ ν,
⋃n

i=1 Kμαi if α =NF α1 + · · · + αn,

Kμα1 ∪ Kμα2 if α =NF ϕα1(α2),

{β} if �μ < α = 	
β
�ρ+1

.

We then have
α ∈ Hβ(�μ) ⇔ Kμα < β. (27)

Now we can see by (Ax�), (24), (25), the definitions of T and Kμα and (27) that
the set T and <�T can be defined simultaneously by course of values recursion.26

Together with the assumption that ≺0 is elementarily decidable we thus obtain that
Hα(∅) ∩ �1 has an ordertype less than δM = κM

1 . Hence	α
�1

= Hα(0) ∩ �1 < κM
1

for any α ∈ T which shows that 	�1 collapses below κM
1 .

This argument can be relativized by replacingM byMμ. Then the setH��ν+1(κM
μ )

and the less than relation restricted to it are elementarily definable inMμ. This implies
that Hα(κM

μ ) ∩ �μ+1 < δMμ = κMμ = κM
μ+1. Summing up we have the following

theorem.

Theorem 7.2 It is Hα(κM
μ ) ∩ �μ+1 < κM

μ+1 for any consistent interpretation of the
constants �σ for σ > μ. Let 	α

κM
μ+1

:= Hα(κM
μ ) ∩ κM

μ+1.

Note 7.3 For a fixedμ < ν a possible consistent interpretation of the constants�μ+σ

for σ > 0 are the ordinals ωσ where λξ. ωξ enumerates the infinite cardinals. The set
Hα(κM

μ ) contains all the initial ordinals κM
ρ for ρ < μ. Aiming at 	α

κM
μ+1

as a bound

for a semi–formal derivation we can therefore assume that in all �ρ+1–rules with
ρ + 1 < μ the constants �ρ+1 are interpreted standardly

8 Collapsing and Elimination of the Constants �µ

For a set X of ordinals the set H��ν+1(X) is a set with gaps. To utilize these gaps in
the collapsing procedures we introduce the notion of an operator controlled semi–
formal calculus. A technique that has been developed by Wilfried Buchholz in [8]
as a simplification of the technique of local predicativity which was the basis in

26To avoid a lengthy passage which is inessential for our result we suppressed to indicate that the
less than relation between terms that are not both strongly critical, i.e., at least one of them is
different from �μ or 	α

�μ+1
, can also be obtained primitive recursively, i.e., elementarily in our

setting. This has been widely handled in the literature. E.g [39] Sect. 14, [35] Definition 9.6.7.
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[30]. The key idea is to allow in
α

ρ � only ordinals α ∈ H(par(�)) as measures of
derivation lengths where H is a Skolem hull operator.

To make this precise we first have to define what we understand by a parameter
in an L∗

IDν
–sentence G. These are all the ordinals ξ that occur in the form I <ξ

Fμ
in the

sentence G. Observe that the “ordinals” μ ∈ field(≺0) are not counted as parameters;
these are only natural numbers in the field of≺0. For a finite set� of sentences par(�)

are all the parameters that occur in sentences in �.

Definition 8.1 A semi–formal derivation
α

ρ � is controlled by an operator H
(denoted by H α

ρ �) if α ∈ H(par(�)) and for all inferences

H αι

ρ �ι for ι ∈ I ⇒ H α

ρ �

which are not according to (
∧

) we have par(�ι) ⊆ H(par(�)).

It is easy to see that operator controlled semi–formal derivations possess the following
weakening property

(WP)
α0 ≤ α1, ρ0 ≤ ρ1, �0 ⊆ �1,H0(par(�0)) ⊆ H1(par(�1)),
α1 ∈ H1(par(�1)) and H0

α0

ρ0
�0 imply H1

α1

ρ1
�1.

Remark 8.2 Operator controlled semi–formal derivations are “more formal” than
the more liberal notion of semi–formal derivations, let alone that of the verification
calculus. E.g. the proof of the completeness direction in Theorem 6.2 does not work
for operator controlled derivations. If we, for instance, have M∗

ν |= z ∈ I <ξ
F0

then

there is an η < ξ such thatM∗
ν |= z ∈ I η

F0
. Even if we haveH

αη

ρ z ∈ I η
F0

by induction
hypothesis we cannot apply an inference (

∨
) since in general we cannot secure that

η ∈ H(par(z ∈ I <ξ
F0

)).

Yet what we can do is to transfer formal derivations into operator controlled semi–
formal derivations. The key observation is that for any Skolem hull operator we
obtain

H 2·rnk(F)

0
�, F,¬F (28)

by induction on rnk(F). The induction hypothesis gives

H 2·rnk(G)

0
�, G,¬G

for allG ∈ CS(F).Assuming that F is in
∨ −type weobtainH 2·rnk(G)+1

0
�, F,¬G

by an inference (
∨

), since here we have par(G) ⊆ H(par(�, F,¬G)), and finally

H 2·rnk(F)

0
�, F,¬F by a clause (

∧
), since there is no parameter condition for

(
∧
)–clauses. �
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So we can collect the following facts:

• Clearly all true atomic sentences are operator controlled derivable.
• Building on (28)we obtain that (20) and (21) are both operator controlled derivable
provided that the operator is closed under ordinal addition, i.e., that + is among
its generators.

• Using the (�μ+1)–rule we obtain from (28) that also (22) is operator controlled
provable for any Skolem hull operator H. Here we need that for any generated
Skolem hull operator we always have

Y ⊆ H(X) ⇒ H(Y ) ⊆ H(X) (29)

by monotonicity and idempotency.
• Putting all together we obtain by induction on the length m of a formal IDν(T)

derivation m
G(x1, . . . , xn) that H

�ν ·ω+m

�ν+k
G(z1, . . . , zn)

∗ holds true for some
k < ω, any tuple z1, . . . , zn of elements in M and any Skolem hull operator that
is closed under ordinal addition.

Thus we obtain an operator controlled version of Theorem 6.4.

Theorem 8.3 If IDν(T) � G(x1, . . . , xn) then there is an α < �ν · ω + ω and a
finite ordinal k such that H α

�ν+k
G(z1, . . . , zn)

∗ holds true for any choice of ele-
ments z1, . . . , zn ∈ M and any Skolem hull operator H closed under +.

The central tool in predicative proof theory is cut elimination and the crucial theorem
states

α

β+ωρ � implies
ϕρ(α)

β
� .

In this sense predicative proof theory is ruled by the Veblen function. This theorem
survives controlling operators provided that there are no initial ordinals in the interval
[β,β + ωρ). Setting K = {�μ μ ≤ ν} we thus have

H α

β+ωρ �, ρ ∈ H(par(�)) and [β,β + ωρ) ∩ K = ∅ implies H
ϕρ(α)

β
�. (30)

Since impredicative proof theory bases on predicative proof theory—in spite of
semantical cut–elimination—these preliminary remarks show that we need operators
that are closed under addition, the Veblen functions and allow for gaps. Though
not absolutely necessary it is convenient for continuity reasons to have the Veblen
function among the generation functions of the operator. That is why we have opted
in Sect. 7 to generate H by {+, ϕ} ∪ {�μ 0 < μ ≤ ν}. From now on we fix this
operator.

We next observe that also the Boundedness Property survives operator controlling
with a slight modification the formulation of which needs the definition

H[Y](X ) := H(Y ∪ X ). (31)
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With the hypotheses of the Boundedness Theorem (Theorem 6.9) the claim modi-
fies to

H α

ρ �(I <ξ
Fμ

) ⇒ H[{ξ}] α

ρ �(I <ζ
Fμ

). (32)

The ordinal analysis of the theories IDν(T) rests on the elimination of the initial ordi-
nals which is obtained by a collapsing procedure on operator controlled derivations.
To formulate the main theorem let

�′
μ =

{
�μ if 0 < μ ∈ Lim

�μ + 1 ifμ is a successor.

Recall moreover the natural sumwhich forα =NF α1 + · · · + αn and β =NF αn+1 +
· · · + αn+k returns α =‖ β = απ(1) + · · · + απ(n+k) where π is a permutation of the
numbers 1, . . . , n + k such that απ(i) ≥ απ(i+1).

Theorem 8.4 Assume Hγ+1 α

�′
ρ

� for a finite set � of L∗
IDν

–sentences in
∨�μ+1

1 –type and γ ∈ Hγ(par(�)) such that par(�) ⊆ Hγ+1(�μ). Then we obtain

Hγ=‖ωα=‖�ρ +1
	

γ=‖ωα=‖�ρ

�μ+1

	
γ=‖ωα=‖�ρ

�μ+1

�.

Proof The proof is by main–induction on ρ and side–induction on α. Let

(I) Hγ+1 αι

�′
ρ

�ι for ι ∈ I ⇒ Hγ+1 α

�′
ρ

�

be the last inference. First we show

par(�ι) ⊆ Hγ+1(�μ). (i)

If (I) is different from a (
∧

)–rule (i) is obvious from par(�ι) ⊆ Hγ+1(par(�)) ⊆
Hγ+1(�μ) and (29). In case of an (

∧
)–rule we either have par(�ι) = par(�) or the

principal sentence in � is (n /∈ I <ξ
Fσ

) and �ι = �η := �, (n /∈ I η
Fσ

) for η < ξ. Since

(n /∈ I <ξ
Fσ

) is in
∨�μ+1

1 –type we have ξ < �μ+1. Hence ξ ∈ Hγ+1(�μ) ∩ �μ+1 =
	

γ+1
�μ+1

which implies η ∈ Hγ+1(�μ) and thus par(�η) = par(�) ∪ {η} ⊆ Hγ+1(�μ).

If (I) is not a cut of rank≥ �μ+1 we again have�ι ⊆ ∨�μ+1

1 –type and can apply
the induction hypothesis to the premises of (I). Putting δ̂ := γ =‖ ωδ=‖�ρ we thus have

Hα̂ι+1
	

α̂ι
�μ+1

	
α̂ι
�μ+1

�ι for all ι ∈ I. (ii)

Fromαι, γ ∈ Hγ+1(par(�ι)) ⊆ Hα̂(�μ)weget α̂ι ∈ Hα̂(�μ) ∩ (α̂), hence	
α̂ι

�μ+1
<

	 α̂
�μ+1

by (24). From α, γ ∈ Hγ+1(par(�)) ⊆ Hα̂+1(par(�)) we get
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α̂ ∈ Hα̂+1(par(�)) and thus 	 α̂
�μ+1

∈ Hα̂+1(par(�)). So if (I) was not a cut of rank
bigger than �μ we obtain the claim by the same inference taking (ii) as premises.

So suppose that (I) is a cut of rank ≥ �μ. Then we have the premises

Hγ+1 α0

�′
ρ

�, G and Hγ+1 α0

�′
ρ

�,¬G (iii)

with �μ ≤ rnk(G) < �′
ρ. If there is a τ such that �μ ≤ rnk(G) < �τ+1 < �′

ρ then

�, G,¬G are in
∨�τ+1

1 –type and par(�, G,¬G) ⊆ Hγ+1(�τ+1). Applying the
side induction hypothesis to (iii) thus yields

Hα̂0+1
	

α̂0
�τ+1

	
α̂0
�τ+1

�, G and Hα̂0+1
	

α̂0
�τ+1

	
α̂0
�τ+1

�,¬G. (iv)

By cut we obtain from (iv)

Hα̂0+1
	

α̂0
�τ+1

·2
�′

τ

�.

The main induction hypothesis then yields

Hβ+1
	

β
�μ+1

	
β
�μ+1

�

for β := α̂0 =‖ ω
	

α̂0
�τ+1

·2=‖�τ < γ =‖ ωα=‖�ρ = α̂. Hence β ∈ Hα̂(�μ) ∩ α̂ which entails
	

β
�μ+1

< 	 α̂
�μ+1

and thus the claim by weakening.

It remains the case rnk(G) = �μ+1 = �ρ. Then G has the form n ∈ I
<�μ+1

Fμ
and

(iii) becomes

Hγ+1 α0

�μ+1+1
�, n ∈ I

<�μ+1

Fμ
and Hγ+1 α0

�μ+1+1
�, n /∈ I

<�μ+1

Fμ
. (v)

Here we cannot apply the induction hypothesis to the right hand premise but with
Hγ+1 α0

�μ+1+1
�, n /∈ I

<�μ+1

Fμ
we clearly also have

Hγ+1 α0

�μ+1+1
�, n /∈ I <η

Fμ
(vi)

for all η < �μ+1 and n /∈ I <η
Fμ

belongs to
∨�μ+1

1 –type . The side induction hypothesis
applied to the left hand premise and (vi) thus gives

Hα̂0+1
	

α̂0
�μ+1

	
α̂0
�μ+1

�, n ∈ I
<�μ+1

Fμ
and Hα̂0+1

	
α̂0
�μ+1

	
α̂0
�μ+1

�, n /∈ I <η
Fμ

(vii)
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By the Boundedness Theorem (as modified in (32)) we can lower �μ+1 to 	
α̂0
�μ+1

in

the left derivation and pick η = 	
α̂0
�μ+1

< �μ+1 in the right derivation. Cutting these
derivations yields

Hα̂0+1
	

α̂0
�μ+1

	
α̂0
�μ+1

+1
�. (viii)

By predicative cut–elimination (30) we thus obtain

Hα̂0+1
ϕβ(β)

�′
μ

�

with β := 	
α̂0
�μ+1

. The main–induction hypothesis finally leads to

Hδ+1
	δ

�μ+1

	δ
�μ+1

�

for δ = α̂0 =‖ ωϕβ(β)=‖�μ ∈ Hδ+1(�μ) ∩ α̂. Hence	δ
�μ+1

< 	 α̂
�μ+1

which together with

	 α̂
�μ+1

∈ Hα̂+1(par(�)) entails the claim by weakening. �

Corollary 8.5 Let T be a Peano–like axiomatization for an acceptable countable
structure M. Then κM

μ+1(IDν(T)) ≤ 	
ε�ν+1

κM
μ+1

< κM
μ+1 for μ < ν.

Proof From IDν(T) � n ∈ IFμ
we obtain by Theorem 8.3 H α0

�ν+k
n ∈ I

<�μ+1

Fμ
and

thence by predicative cut–eliminationH α1

�′
ν

n ∈ I
<�μ+1

Fμ
for α0,α1 ∈ H(∅) ∩ ε�ν+1.

By Theorem 8.4 it follows Hα2+1
	

α2
�μ+1

	
α2
�μ+1

n ∈ I
<�μ+1

Fμ
By Boundedness this implies

Hα2+1
	

α2
�μ+1

	
α2
�μ+1

n ∈ I
<	

α2
�μ+1

Fμ
. Since n ∈ I

<	
α2
�μ+1

Fμ
belongs to

∨�μ+1

0 –type we obtain

M∗
ν |= n ∈ I

<	
α2
�μ+1

Fμ
by Corollary 6.6 if all�ρ for ρ ≤ μ are interpreted standardly by

κM
ρ . Hence |n|Fμ

≤ 	
α2
�μ+1

< 	
ε�ν+1

�μ+1
= Hε�ν+1(�μ) ∩ �μ+1 = Hε�ν+1(κM

μ ) ∩ �μ+1

= 	
ε�ν+1

κM
μ+1

< κM
μ+1 by Theorem 7.2. �

Setting μ = 0 in the above corollary we reobtain the upper bound for the proofthe-
oretic ordinal of IDν(T).

Corollary 8.6 Let T be a Peano–like axiomatization for an acceptable countable
structure M. Then |IDν(T)| = δM(IDν(T)) ≤ 	

ε�ν+1

�0+1
< κM.

As first shown in [9] and later reproved in [5] this ordinal bound is the exact one. To
make the paper not even longer we will not reprove this result. The main idea is to
use the fact that in every Mμ for μ ≤ ν there is an elementarily definable copy of
H��ν+1(κM

μ ). We thus obtain a hierarchy <μ of orderings that are elementary inMμ.
For every μ < ν we then have the condensing property



238 W. Pohlers

Fig. 1 SpecM (IDν(T))

IDν(T) TI(<ν,α) ⇒ IDν(T) 	α
�μ+1

∈ Acc<μ

where TI(<ν,α) expresses the wellfoundedness of <ν�α and Acc<μ
denotes the

accessible part of <μ, i.e., the fixed–point of the formula (∀y)[y <μ x → y ∈ X ].
Since TI(<ν,�ν) holds trivially and we have the full scheme of Mathematical

Induction in IDν(T) we can adapt the familiar Gentzen proof to obtain TI(<ν,α)

for all α < ε�ν+1. Putting 	α
κM

ν
:= α and κM

0 = ω we, together with the condensing
property and Theorem 7.2, finally get our main theorem.

Theorem 8.7 Let T be a Peano–like axiomatization for a countable acceptable
structure M. Then

SpecM(IDν(T)) = {	ε�ν+1

κM
μ+1

μ < ν} = {Hε�ν+1(κM
μ ) ∩ κM

μ+1 μ < ν}.

(Cf. Fig.1).

Remark 8.8 In [30] Section δ.3 we already tried to give a definition of the spectrum
of a formal theory. Asmentioned there in Remark 3.7 a still tentative definition which
was not completely felicitous. Instead of “the least set of ordinals which are needed
to carry through the ordinal analysis” it should rather have been the “least operator”
which is needed for the ordinal analysis. Then, however, the technique of operator
controlled semi–formal derivations was not yet developed.

Indeed, it follows from Theorem 8.7 that SpecM(IDν(T)), as defined in Eq. (5),
is generated by the operator Hε�ν+1 and this seems to be the “least” operator which
is needed for the ordinal analysis of IDν(T).

Actually, knowing Hε�ν+1 is more important and—as we will see in the next
section—also more informative than just knowing the points in SpecM(IDν(T)).

Spector classes have been invented to generalize computation theory to abstract struc-
tures.27 The Spector structures introduced in our context are the structuresMμ+1 =
(M,�μ+1(M)) with oMμ+1 = κM

μ+1. We say that a partial function f : M −→ M

27Cf. [24].
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is κM
μ+1–recursive iff its graph G f belongs to �μ+1(M). The next theorem shows

that the points in the spectrum of IDν(T) characterize the κM
μ+1–recursive functions

whose totality is provable in IDν(T). It is an immediate consequence of Theorem 8.4.

Theorem 8.9 Let T be a Peano–like axiomatization of a countable acceptable
structure M and f : M −→ M a κM

μ+1–recursive function whose totality is prov-
able in IDν(T). Then f is bounded by 	

ε�ν+1

�μ+1
. i.e., for all 〈x, f (x)〉 we have

|〈x, f (x)〉|G f < 	
ε�ν+1

�μ+1
.

Note 8.10 In this paper we have restricted ourselves to the simplest case of iterated
inductive definitions, namely iteration along a given primitive–recursive wellorder-
ing. We did this by purpose in order not to obscure the—in principle— simple ideas
behind the ordinal analysis. Generalizations to more complex theories, e.g., ID≺∗

which allows iterations along the accessible part≺∗ of a primitive–recursive relation
≺ or evenAUT(ID), which allows for autonomous iterations of inductive definitions,
are not too difficult to obtain. The additional work to handle these theories rests on
a strengthening of the needed Skolem hull operator, e.g., augmenting the generating
functions by a function ξ �→ �ξ . Once the iterations of this Skolem hull operator are
studied the collapsing procedure for the semi–formal derivations follows the same
pattern as described above.

9 Provably Recursive Functions

Note 9.1 In this section we will restrict ourselves to the case that the basis structure
is the standard structure N of arithmetic which is axiomatized by (an extension of)
the Peano axioms PA which includes the defining axioms for all primitive recursive
functions and –relations. We put Nν := IDν(N) and IDν := IDν(PA).

The paradigmatic example of a Spector class is the class �0
1 of arithmetical relations

that are �0
1–definable.

28 We obtain o�0
1 = ω and the �0

1–partial recursive functions
are the familiar partial recursive functions. Looking at Fig. 1 we notice that there
is no arrow pointing below ω for the Spector class �0

1. So apparently a point in
SpecN(IDν) is lacking.

Clearly there cannot be a finite ordinal that satisfies an analogue of Theorem 8.9.
Nevertheless we are going to show that the recursive functions the totality of which
is provable in IDν can be characterized by a subrecursive hierarchy which is canon-
ically generated by the operatorHε�ν+1 and thus can be characterized by the ordinal
Hε�ν+1(0) ∩ �1 = 	

ε�ν+1

�1
= δN(IDν).

To become more specific let � : N −→ N be a strictly increasing primitive–
recursive function and T a primitive–recursively definable set of ordinal–terms such

28“Closure under first order quantification” has to be replaced by “closure under bounded quantifi-
cation” in �0

1.
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that every α ∈ T is equipped with a norm N (α) ∈ N. We assume that N (α) is
primitive–recursively computable from α. Following an idea of Weiermann [10] we
obtain a subrecursive hierarchy by defining a function φ : T −→ N

φ(α) := sup {φ(β) + 1 β < α ∧ N (β) ≤ �(N (β))} ∪ {0} (33)

and then a family of functions �α : N −→ N

�α(n) := φ(ω · α + n). (34)

If we denote by �k the familiar iterated application of � this yields

�α(n) ≈ �α(n)

for α < ω and may thus be regarded as a generalization of the finite iterations of
the function �. The subrecursive hierarchy {�α α ≤ ε0} is closely connected to the
familiar fast growing hierarchy and matches the Hardy hierarchy (at least for an
initial segment of the ordinals).

In Sect. 7 we have seen that the ordinals in H��ν+1(0) can be represented by the
ordinal terms in T . This set is inductively defined and we define the norm N (α) of
an ordinal(term) α as the stage at which α appears in T . This yields, e.g., N (n) = n
for n < ω. In the sequel we tacitly assume n < ω whenever we write n.

Fixing a sufficiently increasing primitive–recursive start function �—requiring
�(x) + 3n + 9 ≤ �(x + n) would do—and given a Skolem hull operator H we
generalize (33) to

φH(X )(α) := sup {φH(X )(β) + 1 β ∈ H(X ) ∩ α ∧ N (β) ≤ �(N (α))} ∪ {0}
(35)

The crucial feature of the functionφH—which is needed to prove nearly all its further
properties—is

φH(X )(α + φH(X )(β) + n) ≤ φH(X )(α =‖ β + n) (36)

which follows by induction on β.
For a finite set X of ordinals let |X | := max {N (α) α ∈ X } + 1. Similarly we

define for a finite set � of L∗
IDν

–sentences |�| = max {N (α) α ∈ par∗(�)} + 1
where par∗(�) are the parameters in the sentences of�wherewe also count constants
for natural numbers as finite ordinals among the parameters.

For a finite set X of ordinals we generalize (34) to

�α
μ+1(X ) := φH(X )(	α

�μ+1
+ |X |) and put �α(n) := φH(∅)(ω · α + n). (37)

Observe that this yields �α
1 (n) = φH(n)(	α

�1
+ n) = �	α

�1
(n).
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With these notions we define the fragmentation of an iterated Skolem hull
operator.29

Definition 9.2 Let f Hα
μ+1(X ) := {ξ ∈Hα(X ) N (ξ) ≤ �α

μ+1(X )}.
We call f Hα

μ+1 the μ + 1–fragmentation of the iterated operator Hα.

A derivation
α

ρ � is fragmented controlled by f Hγ
μ+1—written as f Hγ

μ+1
α

ρ �—

if {γ,α} ⊆ f Hγ
μ+1(par

∗(�)) and par∗(�ι) ⊆ f Hδ
μ+1(par

∗(�)) holds true for the
premises �ι of all inferences with conclusion � different from inferences according
to (

∧
).

As a word of caution we want to mention that 	α
�μ+1

+ |X | < 	
β
�ρ+1

+ |Y| is not
sufficient to obtain �α

μ+1(X ) ≤ �
β
ρ+1(Y). What we need besides 	α

�μ+1
< 	

β
�ρ+1

is
N (α) + |X | ≤ �(N (β) + |Y|).

The fragmented Skolem hull operators loose of course their idempotency, espe-
cially the property Y ⊆ H(X ) ⇒ H(Y) ⊆ H(X ). A replacement is

Y ⊆ f Hγ
μ+1(X ) and β ∈ f Hγ

μ+1(X ∪ Y) imply β ∈ f Hγ+1
μ+1(X ) (38)

which is easily checked using (36). The main theorem for fragmented controlled
derivations is the following Witnessing Theorem.

Theorem 9.3 Assume f Hγ
μ+1

α

0
(∃x)F(x) for a �0

1–sentence with parameters.

Then there is a natural number m ≤ �
γ=‖ωα+1

μ+1 (par∗((∃x)F(x))) such thatN |= F(m).

Proof The proof is by induction on α. The only possible premise is

f Hγ
μ+1

α0

0
(∃x)F(x), F(k) (i)

for some natural number k. Let X := par∗((∃x)F(x)). We have k ∈ f Hγ
μ+1(X ),

hence k = N (k) ≤ �
γ
μ+1(X ) ≤ �

γ=‖ωα+1

μ+1 (X ). If N |= F(k) we are thus done. Other-
wise a nested induction on α0 proves

f Hγ
μ+1[{k}] α0

0
(∃x)F(x)

for f Hγ
μ+1[Y](X ) := f Hγ

μ+1(X ∪ Y), hence

f Hγ+1
μ+1

α0

0
(∃x)F(x) (ii)

by (38). By induction hypothesis we thus obtain an m such that

N |= F(m) and m ≤ �
γ+1=‖ωα0+1

μ+1 (X ). (iii)

29This is based on an idea due to Jan Carl Stegert in [42].
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Now we draw on α0 ∈ f Hγ
μ+1(X ∪ {k}), hence α0 ∈ f Hγ+1

μ+1(X ), and compute

�
γ+1=‖ωα0+1

μ+1 (X ) = φHγ+1=‖ωα0+1
(X )(	

γ+1=‖ωα0+1

�μ+1
+ |X |) ≤

φHγ+1=‖ωα
(X )(	

γ+1=‖ωα

�μ+1
+ N (α0) + |X |) ≤

φHγ+1=‖ωα
(X )(	

γ+1=‖ωα

�μ+1
+ φHγ+1(X )(	

γ+1
�μ+1

+ |X |) + |X |) ≤
φHγ+1=‖ωα

(X )(	
γ+1=‖ωα

�μ+1
=‖ 	

γ+1
�μ+1

+ 2|X |) ≤ �
γ=‖ωα+1

μ+1 (X ). �

Once we succeed in finding a fHγ
1–controlled cut–free semi–formal derivation for

the �0
1–sentences that are provable in IDν the Witnessing Theorem together with

�α
1 {n1, . . . , nk} = �	α

�1
(max{n1, . . . , nk} + 1)

provides a characterization of the provable recursive functions in terms of a subre-
cursive hierarchy indexed by recursively countable ordinals.

A first step is the observation that the translations of the axioms ID1
ν , ID

2
ν ,TIν and

Mathematical Induction are f H0
1–controlled derivable. Based on this observation we

can prove that for a formal IDν proof m

0
G (x1, . . . , xn) of length m we find finite

ordinals k and l such that

f H0
1[{k}] �ν ·ω+m

�ν+l
G(z1, . . . , zn).

Since f H0
1[{k}](∅) ⊆ f Hk

1(∅) we may subsume this into

Theorem 9.4 If IDν � G(x1, . . . , xn) then there is a finite ordinal m such that

f Hm
1

�ν ·ω+m

�ν+m
G(z1, . . . , zn) holds true for all tuples z1, . . . , zn of numerals.

The main lemma for predicative cut–elimination is the Reduction Lemma which
because of (38) has to be slightly modified for fragmented controlled derivations.

Lemma 9.5 (Reduction Lemma) Assume f Hγ
μ+1

α

ρ �, F and f Hγ
μ+1

β

ρ �,¬F
such that rnk(F) = ρ /∈ K, F ∈ ∧ −type and par∗(F) ⊆ f Hγ

μ+1(par∗(�)). Then

we obtain f Hγ+1
μ+1

α+β

ρ �,�.

This alteration affects the Predicative Elimination Theorem which becomes

Theorem 9.6 If ρ ∈ f Hγ
μ+1(par(�)), f Hγ

μ+1
α

β+ωρ � and [β,β + ωβ) ∩ K = ∅
then we get f Hγ=‖ϕρ(α)+1

μ+1

ϕρ(α)

β
�.

Also the main theorem of impredicative proof theory, the Collapsing Theorem (The-
orem 8.4), transfers to fragmented controlled derivations.
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Theorem 9.7 Assume f Hγ+1
μ+1

α

�′
ρ

� for a finite set � of L∗
IDν

–sentences in
∨�μ+1

1 –type such that par∗(�) ⊆ Hγ+1(�μ). Then we obtain

f Hγ=‖ωα+1=‖�ρ +1
μ+1

	
γ=‖ωα+1=‖�ρ

�μ+1

	
γ=‖ωα+1=‖�ρ

�μ+1

�.

Proof The proof is that of Theorem 8.4 with some extra care on the finite parame-
ters. We have all the hypotheses oft Theorem 8.4 and may thus draw the same
conclusions. Let �ι be the premises of the last inference. Then we again have
par∗(�ι) ⊆ Hγ+1(�μ) and in case that the last inference is not a cut of rank≥ �μ+1,
obtain by the induction hypothesis

f Hγ=‖ωαι+1=‖�ρ+1
μ+1

γ=‖ωαι+1=‖�ρ

γ=‖ωαι+1=‖�ρ
�ι.

In order to argue as in the proof of Theorem 8.4 we need

f Hγ=‖ωαι+1=‖�ρ +1
μ+1 (�ι) ⊆ f Hγ=‖ωα+1=‖�ρ+1

μ+1 (�ι). (i)

To secure (i) we draw on αι ∈ f Hγ+1
μ+1(par

∗(�ι)), hence N (αι) ≤ �
γ+1
μ+1(par

∗(�ι)).
Putting Xι := par∗(�ι) we compute—similarly as in the proof of Theorem 9.3—

�
γ=‖ωαι+1=‖�ρ+1
μ+1 (Xι) = φHγ=‖ωαι+1=‖�ρ +1(Xι)(	

γ=‖ωαι+1=‖�ρ+1
�μ+1

+ |Xι|) ≤
φHγ=‖ωα=‖�ρ +1(Xι)(	

γ=‖ωα=‖�ρ +1
�μ+1

+ N (αι) + |Xι|) ≤
φHγ=‖ωα=‖�ρ +1(Xι)(	

γ=‖ωα=‖�ρ +1
�μ+1

+ φHγ+1(X )(	
γ+1
�μ+1

+ |Xι|) + |Xι|) ≤
φHγ=‖ωα=‖�ρ +1(|Xι|)(	γ=‖ωα=‖�ρ +1

�μ+1
=‖ 	

γ+1
�μ+1

+ 2|Xι|) ≤ �
γ=‖ωα+1=‖�ρ +1
μ+1 (|Xι|).

Similar computations are needed in the cases of cuts with ranks ≥ �μ. Especially in
the case of a cut formulaG of rank�μ+1 we have to apply the Predicative Elimination
Theorem. In addition to the considerations in the proof of Theorem 8.4 we have to
ensure that

f Hδ+1
μ+1(par

∗(�)) ⊆ f Hα̃+1
μ+1(par

∗(�)) (ii)

for α̃ := γ =‖ ωα+1=‖�μ+1 , α̃0 := γ =‖ ωα0+1=‖�μ+1 , β := 	
α̃0
�μ+1

and

δ := α̃0 =‖ ωϕβ(β)+1=‖�μ .

Clearly δ < α̃. Let X := par∗(�). Drawing on γ,α0 ∈ f Hγ+1
μ+1(X ∪ Y) for Y :=

par∗(G) ⊆ f Hγ+1
μ+1(X ) we compute
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�δ+1
μ+1(X ) ≤ φHα̃(X )(	

γ=‖ωα=‖�μ+1

�μ+1
+ N (δ) + 1 + |X |) ≤

φHα̃(X )(	
γ=‖ωα=‖�μ+1

�μ+1
+ N (γ) + N (α0) + 9 + |X |) ≤

φHα̃(X )(	
γ=‖ωα=‖�μ+1

�μ+1
+ φHα̃(X )(	

γ+2
�μ+1

+ |X |) · 2 + 9 + |X |) ≤
φHα̃(X )(	

γ=‖ωα=‖�μ+1

�μ+1
=‖ (	

γ+2
�μ+1

+ |X |) · 2 + 9 + |X |) ≤
φHα̃(X )(	

γ=‖ωα+1=‖�μ+1

�μ+1
+ |X | · 3 + 9) ≤ �α̃

μ+1(X ).

Then (iii) together with δ < α̃ yield (ii). �

Definition 9.8 A computable function θ : N −→ N is a dominant for an arithmeti-
cal �0

2–sentence (∀x)(∃y)F(x, y,k) if for any n there is an m ≤ θ(n) such that
N |= F(n, m,k).30 We say that a function � : N −→ N dominates the provable
�0

2–sentences of an axiom system T if for every �0
2–sentence that is provable in T

there is a dominant which is eventually majorized by �, i.e., if for every provable
�0

2–sentence G there is an l such that λx .�(x + l) is a dominant for G.

By Theorems 9.4, 9.6, 9.7 and again Theorem 9.6 we obtain for a �0
2–sentence

(∀x)(∃y)F(x, y,k) that is provable in IDν ordinals α0 ∈ Hε�ν+1(0) ∩ ε�ν+1 and
α1 < 	

ε�ν+1

�1
such that fHα0

1
α1

0
(∃y)F(n, y, �k) for all numerals n. By the Wit-

nessing Theorem (Theorem 9.3) this implies that there is an m ≤ �
α0
1 {n, �k} =

�	
α0
�1

(max{n, �k} + 1) such thatN |= F(n, m, �k). The function n �→ �
α0
1 {n, �k} is thus

a dominant for (∀x)(∃y)F(x, y, �k). Since �	
α0
1

is eventually majorized by �
	

ε�ν+1
�1

we have the following result.

Theorem 9.9 The function �
	

ε�ν+1
1

dominates the provable �0
2–sentences of IDν .

Remark 9.10 FromTheorem9.9we obtain for every�0
2–sentenceG provable in IDν

a natural number l such that λx .�
	

ε�ν+1
1

(x + l) is a dominant for G. As a word of
warning we want to emphasize that the number l not only depends on the parameters
of G but also on the norm of α ∈ Hε�ν+1(0) ∩ ε�ν+1 in �α

1 which in turn—as a
consequence of Theorem 9.4—depends upon the IDν–proof of G.

Corollary 9.11 The provably recursive functions of IDν are eventually majorized
by the function �

	
ε�ν+1
�1

.

Proof If IDν � (∀x)(∃y)T (e, x, y),where isT is theKleenepredicate, then {e}(n) ≤
�	α

�1
(max{e, n} + 1) and the latter is eventually majorized by �

	
ε�ν+1
�1

. �

Corollary 9.12 The provably recursive function of the theory IDν are exactly the
functions that are primitive–recursive in some �α for α < 	

ε�ν+1

�1
.

30In [38] we call a dominant for (∀x)(∃y)F(x, y,k) a testfunction since it gives an upper bound for
testing instances for y in (∃y)F(n, y,k). More details on testfunctions and their impact on Hilbert’s
programme of elimination of ideal elements are discussed in [38].
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Proof According to [9] the theory IDν proves transfinite induction for every α <

	
ε�ν+1

�1
. Therefore we obtain IDν � (∀x)(∃y)[�α(x) = y] for every α < 	

ε�ν+1

�1
.

Since {e}(m) = n ⇔ (∃y ≤ �α(max{e, n} + 1))[T (e, m, y) ∧ U (y) = n] the
claim follows. �

Remark 9.13 1. Occasionally the �0
2–ordinal of an axiom system T is defined as

the least stage in a subrecursive hierarchy at which the provably recursive function
of T are eventually majorized. Then, according to Corollary 9.11, the �0

2–ordinal of
IDν coincides with its prooftheoretic ordinal |IDν | = δN(IDν).

This definition of the �0
2–ordinal is, however, not as stable as the definition of

the prooftheoretic ordinal. It depends on the definition of the subrecursive hierarchy.
The hierarchy, as defined in this paper, depends on the starting function � and the
norm of the ordinal(term)s. The dependency on � is harmless since for any different
primitive–recursive starting function—which is sufficiently strong increasing—the
hierarchies catch up very quickly. Therefore we may neglect this dependency.

More serious is the dependency on the definition of the norm. However, accord-
ing to Sect. 7 the stages of the inductive definition of α ∈ T define a canonical
primitive–recursive norm on the ordinals in Hε�ν+1(0). Given the operator Hε�ν+1

the construction in Sect. 9 of the subrecursive hierarchy {�α α ∈ Hε�ν+1(∅)} is thus
canonical.

If we—as discussed in Remark 8.8—consider the spectrum of IDν as generated
by the operator Hε�ν+1 it therefore also includes a canonical characterization of the
provable recursive functions of IDν , i.e., it includes also the Spector class�0

1 aboveN.
The arrows for the structuresMμ+1 in Fig. 1 represent static bounds for theMμ+1–

recursive functions whose totality is provable in IDν(T). Such a static bound cannot
exist for�0

1–recursive function. Instead of representing�0
1 by a fixed arrow in Fig. 1,

pointing at some ordinal below ω, we need a “floating arrow”. Given a provably
recursive function f there is a number l such that for every mark n < ω bounding
the inputs x for f the arrow has to flow to the point�

	
ε�ν+1
�1

(n + l) < ω which marks

a bound for f (x).

2. In Theorem 9.4 we tacitly use the fact that all primitive recursive functions are
eventually dominated by �ωω . If we have an axiomatization T of N which includes
more strongly increasing functions, e.g. functions more strongly increasing than
�

	
ε�ν+1
�0+1

we have to alter the bounds in Theorem 9.4 and thus obtain a different

�0
2–ordinal. Therefore Theorem 2.5 does not hold for the �0

2–ordinal of an axiom
system. In contrast to the �1

1–ordinal πN(T) the �0
2–ordinal of an axiom system T

is sensitive to elementary sentences in T. Thus there are axiomatizations for which
the �0

2–ordinal and the �1
1–ordinal differ.
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10 Concluding Remarks

In revisiting the proof theory of iterated inductive definitions—viewed as special
Spector classes—I have here put the emphasis on the recursion theoretic aspects. My
belief is that such results enable us to study the independence of certain abstractions of
combinatorial principles (e.g. generalizations of the hydra game, Kruskal sentences
etc.) of the axiom systems IDν .

The original motivation to study generalized inductive definition were, however,
problems in the foundations of mathematics. The interest in generalized inductive
definitions from a proof theoretical point of view was launched by Kreisel in [21].
To cite Sol Feferman from [14] “Kreisel’s aim there was to assess the construc-
tivity of Spector’s consistency proof of full second order analysis [41], by means
of a functional interpretation in the class of so–called bar recursive functionals.
[…]. So Kreisel asked whether the intuitionistic theory of inductive definitions given
by monotonic arithmetical closure conditions […] serves to generate the class of
(indices of) representing functions of the bar recursive functionals. Although it
rapidly turned out that this could not be fully obtained the interest in the proofthe-
oretic analysis of generalized inductive definitions and their iterations was raised.
This is not the place to narrate the development of this interest. The story is much
better told in [13] and its continuation [14] by Sol Feferman. I will therefore restrict
myself to a few personal remarks.

My personal interest in the proof theory of iterated inductive definitions was
raised by the conjectured prooftheoretic ordinals for systems of iterated generalized
inductive definitions byMartin Löf in [22]. As already mentioned in the introduction
this problem could be solved by “brut force” using Takeuti’s reduction procedure for
�1

1–comprehension.
. Since “[a]ccessibility inductive definitions enjoy a privileged position […]”

because “[w]e have a direct picture of how the inductively defined sets are generated
[…]”31 theories for accessibility inductive definition based on intuitionistic logic
became the most favored candidates for constructivity. The reduction of the theories
IDν based on classical logic to theories IDi

ν(Acc) which are based on intuitionistic
logic and only talk about the accessible part of elementarily definable orderings
thus became a prominent problem. By work of Howard, Kreisel and Troelstra it
was known that ID1 is reducible to IDi

1(O) the intuitionistic theory of constructive
ordinals which is an accessibility inductive definition. According to [11] this was
achieved “by a roundabout argument through a formal theory of choice sequences”
(which I admittedly never studied). Howard in [17]32 computed the prooftheoretic
ordinal of IDi

1(O)which via the justmentioned reduction also gave the prooftheoretic
ordinal of ID1.

It was, however, not clear how to obtain similar reductions also for the iterated
case. Zucker in [43] pointed out that for ν > 1 there are definite obstacles for a

31Cited from [11].
32This paper is also in another context of seminal importance. It led Wilfried Buchholz to develop
his �μ–rules also presented in [5]. This is another story which I briefly touched in [29].
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straightforward reduction of IDν to IDi
ν(Acc) for positively defined accessibility

inductive definitions.
It was Sol Feferman who called my attention to the fact that an ordinal analysis

of IDν should also entail a solution to the reduction problem. This led to a reduction
of IDν to IDi

ν for an accessibility inductive definition. The reduction was obtained
using a formalization of the ordinal analysis by which it could be shown that IDν is
conservative for stable arithmetical sentences above Heyting arithmetic augmented
by transfinite induction along all initial segments of the prooftheoretic ordinal of IDν .
Since the wellfoundedness of all these initial segments is provable in accessibility
IDi

ν this yields a reduction. In my Habiltationsschrift [28] this was obtained by
embedding IDν into iterated�1

1–comprehensions and then using Takeuti’s reduction
procedure.33 Themore perspicuousmethod by local predicativity was later presented
in [5]. This volume contains also Wilfried Sieg’s reduction of ID<ν to IDi

<ν(O) for
limit ordinals ν and Wilfried Buchholz’s (very elegant) reduction via his �μ+1–
rules.34

The remarkable fact is that Buchholz’ and my reduction are based on ordinal
analyses and that this is in an abstract sense also true for Sieg’s reduction.35 His
aim was to give a reduction of classical IDν to the mathematically meaningful intu-
itionistic theory IDi

ν(O) of constructive number classes—an especially distinguished
accessibility theory. The reduction does not talk explicitly about prooftheoretic ordi-
nals; rather, the reduction is obtained via a direct proof theoretic investigation of
infinitary calculi PLμ into which IDμ can be embedded. The obvious meta–theory is
IDi

μ+1(O) as the infinitary deductions in PLμ can be naturally viewed as elements of
Oμ+1, the (μ + 1)–st constructive number class. This leads to a reduction in the limit
case. Only recently Avigad and Townsner36 presented a reduction of ID1 to IDi

1(O)

by a combination of functional interpretation with Sieg’s result yielding a reduction
of IDi

1 to IDi
1(O) which seems to be generalizable to ν > 1. This would improve

Sieg’s result in so far that a reduction of IDν to IDi
ν(O) also holds true for successor

ordinals.
Nonetheless let memention that—though not explicitly stated—the present paper

also contributes to the foundational problem. First we still obtain the reduction of
IDν to IDi

ν . The wellfoundedness of all initial segments of Hε�ν+1(∅) ∩ �0+1 is
provable within a system IDi

ν only talking about accessible parts of the relation
<�T as defined in Sect. 7. This guarantees that IDν and IDi

ν have the same provably
recursive functions and thus the same consistency strength. Although this gives no
direct embedding of IDν into IDi

ν it shows that the consistency problem of both
theories is of the same complexity.

33This approach has the advantage that only the monotonicity of the inductive definition is used. All
the results obtained there are (as explicitly stated there) valid for monotone inductive definitions.
This is in contrast to the more perspicuous approach in [5] where the positivity of the inductive
definition is needed.
34Cf. [7].
35Cf. [40].
36Cf. [1].
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Moreover it should be observed that the collapsing theorems (Theorems 8.4 and
9.7) contribute to the aspect of “elimination of ideal objects” in Hilbert’s programme
as discussed in [38]. For sentences in

∨�0+1
1 –type all the “ideal” rules (�μ+1) are

eliminated in Theorem 8.4. As pointed out in [38] even sentences above a complexity
�0

2 can be regarded as “ideal” in the sense of [16]. Theorem 9.7 shows that in a semi–
formal proof of �0

2–sentences all ideal sentences are eliminable.
The surprising and striking point is that the solution of the elimination problem,

which is so simple to phrase, needs infinitary methods manifested by the ordinal
	

ε�ν+1

�1
. Since this bound is sharp no simpler methods are likely to work. It would

be interesting to know if this is also true for the reduction of the axiom systems IDν

based on classical logic to its intuitionistic version IDi
ν . Even if there is a form of

reduction by functional interpretation I conjecture that the elimination of all “ideal
methods” in the proof of the computability of the interpreting functionals will need
infinitary methods leading to the known prooftheoretic ordinals. Such a result could
indicate that, in spite of the equality of their prooftheoretic ordinals, there is in fact a
profound difference in the constructive meaning of the classical and the intuitionistic
version of iterated inductive definitions.

Finally a short comment on the aim to obtain axiom systems for second order
arithmetic with increasing performance. Though second order arithmetic is the nat-
ural system to formulate classical Analysis—which here stands for the theory of real
numbers and –functions—it is difficult to handle proof theoretically. Because of its
apparent impredicativity the scheme of full comprehension seems to be untreatable.
Also restrictions in the complexity of the comprehension scheme reaching essen-
tially beyond �1

1 turned out to be untreatable directly. Approximations by increas-
ingly growing Spector classes are likewise difficult to handle. Because of the lack of
ordinals in the powerset of N their axiomatizations are complicated. Axiomatizing
set universes aboveNwhich also contain ordinals have turned out to bemore promis-
ing.37 Here the roles of Spector classes above N are played by admissible universes
above N. The first point where this approach exceeds the approximation of Spector
classes by iterated inductive definitions is a structure A which is an admissible limit
of admissible universes.38 I mention this structure since it is the first point at which
the approach of Sect. 7 has to be altered. Since there we have�I = I for I = oA and
we need a function 	α

I which collapses below I the axiomatization of the ordinals
�μ becomes more complicated.39

Real gain in performance is obtained by axiomatizing reflection principles in set
structures above N. The strongest system for which there is a complete analysis
including the characterization of the provable recursive functions is the theory of full
reflection and a weak form of stability by Stegert (cf. [26, 42],). Ordinal analyses for
a stronger form of stability which is equivalent to parameter free�1

2–comprehension
have been developed by Rathjen in a series of papers (cf. [33, 36, 37].)

37Cf. [19].
38Cf. [18].
39This is the reason why we required in Note 4.2 to restrict the iterations to ordinals less than the
first recursively inaccessible ordinal.
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The Operational Penumbra: Some
Ontological Aspects

Gerhard Jäger

Abstract Feferman’s explicit mathematics and operational set theory are two
important examples of families of theories providing an operational approach to
mathematics. My aim here is to survey some central developments in these two
fields, to sketch some of Fefeman’s main achievements, and to relate them to the
work of others. The focus of my approach is on ontological questions.
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1 Introduction

I first met Solomon Feferman at the 1978 Logic Colloquium meeting in Mons,
Belgium.He gave a survey talk about various approaches to constructivemathematics
and presented his own constructive theory of functions and classes. The written form
[12] of his talk is published in the proceedings volume of that conference and is one of
the three landmark papers about explicit mathematics. This was the time when I was
working for my dissertation and, of course, Sol was already known to me very well
by his many influential papers on proof theory and the foundations of mathematics.
After that I had the privilege to learn from Sol in direct personal contact when we
both spent the academic year 1979–1980 at the University of Oxford. We have been
in close scientific and personal contact since then, including my visit as an assistant
professor at Stanford University in the academic year 1982–1983.

Sol’s influence on my scientific development has been manifold. One very impor-
tant aspect is that he widened the range of my proof-theoretic interests and led me
to work on new topics dealing with foundational questions, different from those I
had previously studied. Maybe the most typical example along these lines is explicit
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mathematics, a subject that has never left me since then. It was characteristic of Sol
that he was always asking for conceptual clarity and insisting on a clear methodolog-
ical approach, not obscured by a self-satisfying technical machinery.

A general operational approach has been extremely successful in connection with
the λ-calculus and combinatory logic leading, for example, to a variety of functional
programming languages. The formal operational approach in mathematics, on the
other hand, has not been so popular although many working mathematicians freely
make use of operations and the operational machinery whenever convenient, but
typically informally andwithout caring for its foundations. Church’s approach to base
the foundations of mathematics entirely on operations turned out to be inconsistent.

Feferman’s explicit mathematics changed the picture. Motivated by the desire to
set up a proper formal framework for Bishop’s Foundations of Constructive Analysis
[2] he proposed a new kind of formalism, baptized explicit mathematics. Bishop’s
book had enormous influence on the discussion of the foundations of mathematics.
Bishop showed in his book, putting aside all ideological considerations, that most
of the important theorems in real analysis can be established up to equivalence by
constructive methods. The success of this book stimulated many logicians to develop
formal frameworks for Bishop’s approach, and Feferman’s system (or family of
systems) turned out to pave a very influential way. At the same time, his framework
provided a way to account for predicative mathematics and descriptive set theory as
well, which could not be done in the other approaches.

Soon after the first presentation of explicit mathematics in Feferman [9], its rele-
vance for other parts of proof theory became evident. For example, systems of explicit
mathematics – based on classical or intuitionistic logic – have their natural place in
reductive proof theory and constitute a natural setting for studying various forms of
abstract computability and recursion in higher type functionals.

In this article I will try to sketch some of the main lines in the research about
explicit mathematics. A textbook by Solomon Feferman, Gerhard Jäger, and Thomas
Strahmon the foundations of explicitmathematics is in preparation, aiming at provid-
ing a systematic approach to the topics mentioned above. In addition to that, Ulrik
Buchholtz has set up an online bibliography of explicit mathematics and related
topics at http://home.inf.unibe.ch/~ltg/em_bibliography.

The second main topic of this article is operational set theory, a further central
stream in Feferman’s operational approach. It goes back to Feferman [18] and is
further elaborated in Feferman [19], where also much about the original ideology
of operational set theory is explained. Further advances and technical results will be
presented in Sect. 5 of this article.

Feferman’s unfolding program is a third field under the operational perspective.
However, wewill not treat it in this article since Strahm’s contribution for this volume
is dedicated to unfolding. In addition, the reader will find a useful introduction to all
three fields in Feferman [22].

My aim here is to survey some developments in explicit mathematics and oper-
ational set theory from a common operational perspective, to sketch some of Fefer-
man’s main achievements in these to fields, and to relate them to the work of others.
The focus of my approach is on ontological questions, a point of view that has been

http://home.inf.unibe.ch/~ltg/em_bibliography
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neglected so far. But I am convinced that such ontological questions will play a
crucial role in the further development of a general operational penumbra.

2 The General Operational Framework

Before turning to systems of explicit mathematics and operational set theory
we set up the general operational framework. However, in contrast to Church
(cf. [7, 8]), who wanted to base the foundations of mathematics solely on opera-
tions and whose approach turned out to be inconsistent, we confine ourselves to a
consistent and relatively weak core operational theory. The basic idea is simple: The
universe of discourse is a partial combinatory algebra; its elements are operations
and share the following properties:

• Operations may be partial, they may freely be applied to each other, and self-
application of operations is permitted.

• As a consequence, the general theory of operations is type-free. If needed sets or
classes of operations can be addedwith the purpose to partly structure the universe.

• Operations are intensional objects; extensionality of operations is only assumed
or claimed axiomatically in very special situations.

Since we will be dealing with possibly undefined objects, it is convenient to work
with Beeson’s logic of partial terms, see Beeson [1], rather than ordinary classical or
intuitionistic logic. Terms are formed in this logic from the variables and constants
of the language by simple term application, and we have atomic formulas of the form
(t↓) to express that the term t has a value or is defined.

In his first articles [9, 11, 12] about explicit mathematics, Feferman did not make
use of the logic of partial terms but worked with a three place relation App[x, y, z]
to express that operation x applied to y has value z.

Scott’s [58] presents one of several alternative possibilities of dealing with exis-
tence andpartiality in a logical context. In this E-logicwehave a specific relation sym-
bol E, where E(t) has the intuitive interpretation “t exists”. In the Beeson/Feferman
approach all constants have a value and the free variables range over existing objects,
in contrast to Scott’s approach where they can also stand for possibly non-existing
objects. In both approaches, quantifiers are supposed to range over existing objects
only. In spite of this different philosophically attitude, both approaches are techni-
cally more or less equivalent; see Troelstra and van Dalen [61].

Any operational languageL comprises the following primitive first order symbols:

(PS.1) Countably many individual variables a, b, c, f, g, h, u, v, w, x, y, z (possi-
bly with subscripts) and countably many individual constants, including k, s
(combinators), p,p0,p1 (pairing and unpairing).

(PS.2) The binary function symbol ◦ for (partial) term application.
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(PS.3) For every natural number n a countable (possibly empty) set of relation sym-
bols, including the unary relation symbol ↓ for definedness and the binary
relation symbol = for equality.

(PS.4) The logical symbols ¬ (negation), ∨ (disjunction), and ∃ (existential quan-
tification).

The individual terms (r, s, t, r0, s0, t0, . . .) of an operational language L are induc-
tively generated as follows:

(T.1) The individual variables and individual constants of L are individual terms of
L.

(T.2) If r and s are individual terms of L, then so also is ◦(r, s).

In the following ◦(r, s) is usually written as (r ◦ s), as (rs), or – if no confusion
arises – simply as rs. The convention of association to the left is also adopted so
that r1r2 . . . rn stands for (. . . (r1r2) . . .), and we often also write s(r1, . . . , rn) for
sr1 . . . rn . General n-tupling is defined by induction on n ≥ 1 as follows:

<r1> := r1 and <r1, . . . , rn+1> := p(<r1, . . . , rn>, rn+1).

Finally, the formulas (A, B,C, A0, B0,C0, . . .) of L are inductively generated by
the following three clauses:

(F.1) All expressions (r↓), (rs↓), and (r = s) are (atomic) formulas of L.
(F.2) If L contains additional n-ary relation symbols R, then all expressions of the

form R(r1, . . . , rn) are further (atomic) formulas of L.
(F.3) If A and B are formulas of L, then so also are (¬A), (A ∨ B), and ∃x A.

In this article we confine ourselves to classical logic. Hence the remaining logical
connectives and the universal quantifier can be defined as usual. Also, (r �= s) is
short for ¬(r = s).

We will often omit parentheses and brackets whenever there is no danger of
confusion. Moreover, we frequently make use of the vector notation �E as shorthand
for a finite string E1, . . . , En of expressionswhose length is not important or is evident
from the context. The set of free variables of a formula A is defined in the standard
way. An L formula without free variables is called a closed L formula; the closed L
terms are those without variables.

Suppose now that �a = a1, . . . , an and �r = r1, . . . , rn , where a1, . . . , an are pair-
wise (syntactically) different variables. Then A[�r/�a ] is the L formula that is obtained
from the L formula A by simultaneously replacing all free occurrences of the vari-
ables �a by the L terms �r ; in order to avoid collision of variables, a renaming of
bound variables may be necessary. In case the L formula A is written as A[�a ], we
often simply write A[�r ] instead of A[�r/�a ]. Further variants of this notation will be
obvious. The substitution of L terms for variables in L terms is treated accordingly.

As deduction system for the logic of partial terms we make use of a so-called
Hilbert calculus, consisting of the following axioms and rules of inference.
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Propositional Axioms and Propositional Rules. These comprise the usual axioms
and rules of inference of some sound and complete Hilbert calculus for classical
propositional logic

Quantifier Axioms and Quantifier Rules. The axioms for the existential quantifier
consist of all L formulas

A[r ] ∧ r↓ → ∃x A[x],

where r may be an arbitrary L term. The rules of inference for the existential quan-
tifier, on the other hand, are all configurations

A → B

∃x A → B

for which the variable x does not occur free in B. Because of axiom (DE.1) below it
is not necessary to claim in the premise that a is defined.

Definedness and Equality Axioms. For all constants r , all L terms s, all variables
a, b, and all atomic formulas A[u] of L:
(DE.1) r↓ ∧ a↓.
(DE.2) A[s] → s↓.
(DE.3) (a = a).
(DE.4) (a = b) ∧ A[a] → A[b].

The axioms (DE.2) are often referred to as strictness axioms. Important special
cases are, for example, all assertions

(s = t) → s↓ ∧ t↓ and (st)↓ → s↓ ∧ t↓,

stating that two terms can be equal only in case both have a value and that a com-
pound term has a value only in case all its subterms have values as well. Thus the
determination of the value of a term follows a call-by-value strategy. Observe that
the axioms (DE.3) and (DE.4) are formulated for variables only. We must not claim
(r = r) in general since r may not have a value. However, we can introduce the
notion of partial equality � à la Kleene,

(r � s) := (r↓ ∨ s↓) → (r = s),

and obtain for all formulas A[u] and terms r, s of L that (r � s) and A[r ] imply A[s].
As mentioned above, it is an important aspect of the logic of partial terms that

constants are defined and variables only range over defined objects. To point this
out explicitly, we include axiom (DE.1). But observe that assertion a↓ follows from
(DE.2) and (DE.3).

The semantics of the logic of partial terms is based on partial structures con-
sisting of a non-empty universe, interpretations of all constants within this universe,
interpretations of all n-ary relation symbols as n-ary relations over this universe, and
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a partial binary function on this universe to take care of application. It is not difficult
to shown that the above Hilbert system is sound and complete with respect to this
semantics.

The basic theory BO(L) of operations for the language L comprises these axioms
and rules of the logic of partial terms and axioms formalizing that the universe is a
partial combinatory algebra and that pairing and projections are as expected.

Combinatory Axioms, Pairing and Projections

(Co.1) k �= s.
(Co.2) kab = a.
(Co.3) sab↓ ∧ sabc � (ac)(bc).
(Co.4) p0<a, b> = a ∧ p1<a, b> = b.

In general, totality of application is not assumed; but if it is required in a special
situation we add the statement

(Tot) ∀x∀y(xy↓).

Two fundamental principles are an immediate consequence of the combinatory
axioms: λ-abstraction and the fixed point theorem. In more detail: With any L term
r , we associate an L term (λx .r) whose variables are those of r excluding x , such
that BO(L) proves

(λx .r)↓ ∧ (λx .r)x � r ∧ (s↓ → (λx .r)s � r [s/x]).

As usual we can generalize λ-abstraction to several arguments by simply iterating
abstraction for one argument. In addition, we have the following fixed point theorems
for the partial and the total case.

Theorem 1 (Fixed points) There exist closed L terms fix and fixt such that BO(L)

proves for any f and a:

1. fix f ↓ ∧ fix( f, a) � f (fix f, a).
2. (Tot) → fixt f = f (fixt f ).

This basic operational framework is an adaptation of λ-calculus and combinatory
algebra to the partial case. According to my knowledge it has been set up in this form
and in all details for the first time in Feferman [9].

We end this section with mentioning an interesting ontological relationship
between full definition by cases and operational extensionality. For this purpose we
assume that L contains an individual constant d and consider the additional axiom

(d) (u = v → d(a, b, u, v) = a) ∧ (u �= v → d(a, b, u, v) = b).

This is “full definition by cases” since it tests for arbitrary elements of the universe
whether they are equal. Laterwewill also introduce restricted versions of (d). Clearly,
BO(L) + (d) is consistent.
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Operational extensionality is the principle that claims that two operations are
identical in case they have the same “input-output” behavior,

(Op-Ext) ∀ f ∀g(∀x( f x = gx) → f = g).

Also BO(L) + (Op-Ext) is consistent. However, (d) and (Op-Ext) as well as (d)

and (Tot) are incompatible with each other.

Theorem 2 Let L be an operational language with the constant d. Then BO(L) +
(d) + (Op-Ext) and BO(L) + (d) + (Tot) are inconsistent.

Proof To show the first inconsistency, set r := fix(λyx .d(k, s, y,λz.s)). In view of
the fixed point theorem we then have r↓ and

(∗) ∀x(r x � d(k, s, r,λz.s)).

From r = λz.s we would be able to deduce by (d) and (*) that ∀x(r x = k), in
contradiction to the assumption r = λz.s. Hence r �= λz.s. Since r and λz.s are
defined, (d) and (*) now give us ∀x(r x = s). But then operational extensionality
(Op-Ext) yields r = λz.s; again a contradiction.

To establish the second inconsistency, we work with the term fixt and let r be
the term fixt (λx .d(k, s, x, s)). Now a simple calculation shows that r = s implies
r = k, and r �= s yields r = s; again a contradiction. �

3 Applicative Theories

Now I do not follow the historic timeline. Originally, Feferman’s interest in the
operational approach was triggered by his work on explicit mathematics to which
wewill turn in the following section.Most approaches to explicitmathematics choose
a sort of second order operational approach that permits the formation of classes of
operations and includes class formation principles of various strengths.

In this section we set a slower pace, stay first order and carefully extend the basic
theoryBO(L) by some elementary axioms for the natural numbers. Thenwe consider
various forms of induction on the natural numbers, and later the numerical choice
operator μ and the Suslin operator E1. These theories constitute the first order part
of explicit mathematics, and we call them applicative theories.

Let L1 be an operational language that in addition to the primitive first order
symbols mentioned in the previous section comprises constants 0 (zero), sN (numer-
ical successor), pN (numerical predecessor), dN (definition by numerical cases), rN
(primitive recursion),μ (unbounded search),E1 (Suslin operator), and the unary rela-
tion symbol N for the collection of all natural numbers. Then we often use (r ∈ N)

interchangeably with N(r) and set

(r : Nk → N) := (∀x1, . . . , xk ∈ N)(r(x1, . . . , xk) ∈ N),
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where k is supposed to be a positive natural number. Furthermore, in the following
we generally write (r : N → N) for (r : N1 → N) and r ′ for sNr .

The basic theory of operations and numbers BON is the extension of BO(L1) by
the following groups of axioms, dealing with the natural numbers.

Natural Numbers.

(Nat.1) 0 ∈ N ∧ (a ∈ N → a′ ∈ N).
(Nat.2) a ∈ N → (a′ �= 0 ∧ pN(a′) = a).
(Nat.3) (a ∈ N ∧ a �= 0) → (pNa ∈ N ∧ (pNa)′ = a).

Definition by Numerical Cases.

(Nat.4) (a, b ∈ N ∧ a = b) → dN(u, v, a, b) = u.
(Nat.5) (a, b ∈ N ∧ a �= b) → dN(u, v, a, b) = v.

Primitive Recursion.

(Nat.6) (a ∈ N ∧ f : N2 → N) → rN(a, f ) : N → N.
(Nat.7) (a, b ∈ N ∧ f : N2 → N ∧ g = rN(a, f )) →

(g0 = a ∧ g(b′) = f (b, gb)).

Axioms for the the constantsμ andE1 follow later. Thus far no induction principles
are available, and this is the reason that the axioms (Nat.6) and (Nat.7) are needed
for representing all primitive recursive functions withinBON. But with these axioms
at hand, it is straightforward to prove the following.

Theorem 3 (Primitive recursive functions)For every k-ary primitive recursive func-
tion F there exists a closed term prfF of L1 such that BON proves prfF : Nk → N
as well as the (canonical translations of the) defining equations of F .

Several forms of induction have been considered over BON. The weakest form,
called basic induction, applies induction only to operations that are known to be total
from N to N.

Basic Induction on N (B-IN).

( f : N → N ∧ f 0 = 0 ∧ (∀x ∈ N)( f x = 0 → f (x ′) = 0)) →
(∀x ∈ N)( f x = 0).

The assumption f : N → N is central in this formulation and responsible for its
relative weakness (see below): Basic induction allows us to prove properties of total
operations from N to N; however, in general it cannot be employed to show that
certain operations are total from N to N. Basic induction is, of course, a special case
of the schema of induction on the natural numbers for arbitrary L1 formulas.

L1 induction on N (L1-IN). For all L1 formulas A[u],

A[0] ∧ (∀x ∈ N)(A[x] → A[x ′]) → (∀x ∈ N)A[x].
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The canonical model of BON + (L1-IN) has the natural numbers N as universe
and interprets application ◦ as the partial function ◦N from N × N to N such that, for
all e, n ∈ N,

(e ◦N n) � {e}(n),

where {e} for e = 0, 1, . . . is the usual indexing of the partial recursive functions on
N. There are also partial and total term models of BON + (L1-IN), see, e.g., Beeson
[1], Feferman [12], and Troelstra and van Dalen [62]. Probably the simplest way to
set up a model satisfying operational extensionality is to start off from a term model
of the λη-calculus (extended by reduction rules for the additional constants of L1)
and to use the standard translation of combinatory logic into the λ-calculus.

In the following theorem we summarize several consistency and inconsistency
results concerning BON. The two stated inconsistencies are direct consequences of
Theorem 2 since in the presence of ∀x(x ∈ N) definition by numerical cases is full
definition by cases.

Theorem 4 We have the following consistency and inconsistency results:

1. BON + (Tot) + (Op-Ext) + (L1-IN) is consistent.
2. BON + ∀x(x ∈ N) + (d) + (L1-IN) is consistent.
3. BON + ∀x(x ∈ N) + (Op-Ext) is inconsistent.
4. BON + ∀x(x ∈ N) + (Tot) is inconsistent.

The axioms of BON take care of the induction-free part of primitive recursive
arithmeticPRA, equipped with the combinatorial machinery ofBO(L1), which does
not contribute to proof-theoretic strength. Depending on what form of induction we
add toBONwe thus obtain systems equivalent to primitive recursive arithmeticPRA
or Peano arithmetic PA; there are also intermediate forms of induction that we omit.

Theorem 5 BON + (B-IN) is proof-theoretically equivalent to PRA and BON +
(L1-IN) to PA.

Adding, for example, the assertion ∀x(x ∈ N) would not spoil these two equiv-
alences. However, the situation becomes much more interesting as soon as further
axioms for the type-2 functionals μ and E1 are taken into consideration. The numer-
ical choice operator μ is characterized by the following two axioms.

Axioms for μ.

(μ.1) f : N → N ↔ μ f ∈ N
(μ.2) ( f : N → N ∧ (∃x ∈ N)( f x = 0)) → f (μ f ) = 0.

μ is a non-constructive but predicatively acceptable operator, closely related to the
well-known operatorE0 for quantification over the natural numbers. The relationship
between μ and E0 on the basis of BON has been studied in Kahle [47] in full detail:
E0 can be defined within BON from μ; for deriving μ from E0 Kahle extends BON
by specific (proof-theoretically irrelevant) strictness assertions.
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The non-constructive operator μ and the functional E0 are a well-studied objects
in higher recursion theory, cf., for example, Feferman [10] and Hinman [27] for a
comprehensive survey. It is known that the 1-sections of μ and E0 are identical; they
coincide with the set of natural numbers in the constructible hierarchy up to the first
non-recursive ordinal ωck

1 , and, hence, with the collection of hyperarithmetic sets
of natural numbers. Consequently, the structure (N, 1-sec(E1), . . .) is the minimal
standard model of �1

1 comprehension.
If one wants to speak about well-foundedness in this context, the natural step is to

add the Suslin operator E1 that tests for well-foundedness of binary relations on the
natural numbers. For the formulation of the axioms ofE1 it is convenient to introduce
the descending chain condition DCC[ f ],

DCC[ f ] := (∃g ∈ (N → N))(∀x ∈ N)( f (g(x ′), gx) = 0),

stating that there exists a total operation g fromN toN describing a descending chain
g0, g1, . . . with respect to the binary relation coded by f .

Axioms for E1.

(E1.1) f : N2 → N ↔ E1 f ∈ N.
(E1.2) f : N2 → N → (DCC[ f ] ↔ E1 f = 0).

The recursion theory of E1 is well established; see, for example, Hinman [27].
An important result states that the 1-section of E1 coincides with the set of natural
numbers in the constructible hierarchy up to the first recursively inaccessible ordinal
ι0. This ordinal is also the least ordinal not recursive in E1. Also, Gandy showed that
the 1-section of E1 builds the least standard model of �1

2 comprehension.
From the ontological point of view, the operators μ and E1 behave as expected. μ

takes care of quantification over the natural numbers. Therefore, if μ and the axioms
for μ are available, every arithmetically definable set of natural numbers can be
represented by a total operation from N to N. If, in addition, E1 and the axioms for
E1 are at our disposal, we can operationally check for well-foundedness and thus the
�1

1 normal form theorem allows us to represent all �1
1 sets of natural numbers as

total operations from N to N.
In the following we write BON(μ) for the extension of BON by the axioms (μ.1)

and (μ.2). In spite of its “recursion-theoretic strength”, BON(μ) + (B-IN) is fairly
weak proof-theoretically as shown in Feferman and Jäger [23].

Theorem 6 We have the following proof-theoretic equivalences:

1. BON(μ) + (B-IN) ≡ PA ≡ ACA0 ≡ �1
1-CA0.

2. BON(μ) + (L1-IN) ≡ �0
1-CA<ε0 ≡ �1

1-CA.

In this theorem and whenever we mention subsystems of second order arith-
metic or set theory later we follow the standard nomenclature and refrain from fur-
ther explanations; see, for example, Buchholz, Feferman, Pohlers, and Sieg [3] or
Simpson [59].



The Operational Penumbra: Some Ontological Aspects 263

The theory BON(μ) + (B-IN) is particularly interesting in connection with
Feferman’s philosophical analysis of Weyl’s Das Kontinuum and his reconstruc-
tion of the axiom system ofDas Kontinuum in modern terms; see Feferman [16, 17].
One of his key results is thatWeyl’s approach can be developed within a conservative
extension of PA. This system W can be easily reduced to BON(μ) + (B-IN).

Now we briefly turn to the proof theory of E1. The applicative theory for E1 is
calledSUS and consists ofBON(μ) and the additional axioms (E1.1) and (E1.2). The
proof-theoretic analysis of SUS plus various forms of induction is carried through
in detail in Jäger and Strahm [42] and Jäger and Probst [40].

Theorem 7 We have the following proof-theoretic equivalences:

1. SUS + (B-IN) ≡ �1
1-CA0 ≡ �1

2-CA0.
2. SUS + (L1-IN) ≡ �1

1-CA<ε0 ≡ �1
2-CA.

For the lower bounds of SUS plus various forms of induction we exploit the fact
that the Suslin operator has the power to deal with �1

1 comprehension, provably in
SUS + (B-IN). Upper bounds are established in Jäger and Strahm [42] by making
use of a very specific positive�1

2 inductive definition in the framework of theories of
admissible sets and by interpreting the application operation by a � definable fixed
point of this inductive definition. A more direct approach to the computation of the
upper bounds in question is provided in Jäger and Probst [40]; several theories fea-
turing the Suslin operator are embedded into ordinal theories tailored to dealing with
non-monotone inductive definitions that enable a smooth definition of the application
relation.

4 Explicit Mathematics

As already mentioned above, Feferman [9] is the starting point of explicit mathemat-
ics. The two other “big elephants” are Feferman [11], in which explicit mathematics
is discussed in the context of recursion theory, and Feferman [12], which discusses
the relationship between explicit mathematics and several alternative approaches to
constructive mathematics.

Originally, explicit mathematics was formulated in a single sorted first order
language with a unary relation symbol Cl and a binary relation symbol η, where
Cl(u) expressed that u is a class and (v η u) that v has the property described by u
in case Cl(u) holds. Later it turned out to be more convenient to formulate explicit
mathematics in an extension of the logic of partial terms with class variables; see
Jäger [29].

The underlying ontological idea is that we have two sorts of objects: the indi-
viduals as in the case of applicative theories and collections of such objects, called
classes. The individuals form a partial combinatory algebra and are conceived as
being given intensionally and explicitly as before, whereas the classes are subsets
of the applicative universe and may even be considered to exist in a Platonic sense;
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this is purposely left open. Membership of individuals in classes is as usual, and we
have extensionality on the level of classes.

But also the classes can be addressed explicitly, though in an indirect way:We add
a new binary relation � to express that the individual x represents or names class X ,
written �(x, X). Classes are explicitly generated with reference to their names in an
operational way, and this process is made uniform in the parameters. For example,
we will have a constant nat that names the class of natural numbers and a constant
un such that un(u, v) is the name of the union of the classes U and V provided that
u is the name of U and v the name of V .

A suitable language for our purpose is the extension L2 of L1 by class variables
U, V,W, X,Y, Z , . . . (possibly with subscripts), two new binary relation symbols ∈
(membership) and � (naming, representation) and the new individual constants nat
(natural numbers), id (identity), co (complement), un (union), dom (domain), inv
(inverse image), j (join), and i (inductive generation). The atomic formulas of L2 are
all expressions r↓, (r = s), N(r), (r ∈ U ), (U = V ), and �(r,U ), where r and s
are individual terms of L2.

The formulas (A, B,C, A0, B0,C0, . . .) of L2 are generated from the atomic L2

formulas by closing under the propositional connectives and quantification in both
sorts. An L2 formula is called elementary if it contains neither the relation symbol
� nor bound class variables. The stratified formulas are those L2 formulas that do
not contain the relation symbol �.

Some individual terms represent (or name) classes, and we write (r ∈ �) to
express that r is a name,

(r ∈ �) := ∃X�(r, X).

If r names class X , then X can be regarded as the extension of r , and in this sense we
can transfer an element relation and extensional equality to the level of individuals:

(r ∈̇ s) := ∃X (�(s, X) ∧ r ∈ X),

(r =̇ s) := ∃X (�(r, X) ∧ �(s, X)).

Clearly, (r /∈ U ) and (r �∈̇ s) are short for¬(r ∈ U ) and¬(r ∈̇ s), respectively. Since
we have extensionality on the level of classes, the subclass relation on classes is as
usual with the corresponding notion on the level of individual terms

(U ⊆ V ) := ∀x(x ∈ U → x ∈ V ),

(r ⊆̇ s) := ∃X∃Y (�(r, X) ∧ �(s,Y ) ∧ X ⊆ Y ).

Finally, if �r is the string r1, . . . , rn of individual terms and �U the string U1, . . . ,Un

of class variables of the same length, we set

�(�r , �U ) :=
n∧

i=1

�(ri ,Ui ) and (�r ∈ �) :=
n∧

i=1

(ri ∈ �).
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Observe that all formulas �(�r , �U ), (�r ∈ �), (r ∈̇ s), (r =̇ s), and (r ⊆̇ s) are not
stratified.

4.1 Elementary Explicit Comprehension

The logic of the first order part of our systems of explicit mathematics is still Beeson’s
logic of partial terms as in the previous sections, of course formulated now for the
language L2. In particular, the definedness axioms extend to atomic L2 formulas and,
therefore, (r ∈ U ) and �(r,U ) imply that the term r has a value. The logic for the
second order part of the systems of explicit mathematics is classical predicate logic
with equality.

The non-logical axioms of the elementary theory EC of classes and names com-
prises the non-logical axioms of BON plus the following two groups of class axioms
for classes.

Explicit Representation and Extensionality.

(Cl.1) ∃x�(x,U ).
(Cl.2) �(r,U ) ∧ �(r, V ) → U = V .
(Cl.3) ∀x(x ∈ U ↔ x ∈ V ) → U = V .

These axioms state that each class has a name, that there are no homonyms and
that equality of classes is extensional. The second group of axioms for classes ensures
the build-up of some basic classes, in parallel with a uniform naming process.

Basic Class Existence Axioms.

(Cl.4) nat ∈ � ∧ ∀x(x ∈̇ nat ↔ N(x)).
(Cl.5) id ∈ � ∧ ∀x(x ∈̇ id ↔ ∃y(x = <y, y>)).
(Cl.6) r ∈ � → (co(r) ∈ � ∧ ∀x(x ∈̇ co(r) ↔ x �∈̇ r)).
(Cl.7) r, s ∈ � → (un(r, s) ∈ � ∧ ∀x(x ∈̇ un(r, s) ↔ (x ∈̇ r ∨ x ∈̇ s))).
(Cl.8) r ∈ � → (dom(r) ∈ � ∧ ∀x(x ∈̇ dom(r) ↔ ∃y(<x, y> ∈̇ r))).
(Cl.9) r ∈ � → (inv(r, f ) ∈ � ∧ ∀x(x ∈̇ inv(r, f ) ↔ f x ∈̇ r)).

These axioms formalize that the natural numbers form a class and that there
is the identity class; furthermore, classes are closed under complements, unions,
domains and inverse images. It is important that the axioms (C.4)–(C.9) provide a
finite axiomatization of uniform elementary comprehension.

Theorem 8 (Elementary comprehension)For every elementary formula A[u, �v, �W ]
with at most the indicated free variables there exists a closed term tA such that EC
proves:

1. �z ∈ � → tA(�y, �z) ∈ �,
2. �(�z, �Z) → ∀x(x ∈̇ tA(�y, �z) ↔ A[x, �y, �Z ]).
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Immediate obvious consequences of this theoremare, for example, the existence of
the empty class ∅ and the universal class V, the closure of the collection of all classes
under complements, finite unions, finite intersections, finite Cartesian products, and
the finitely iterated formation of function spaces.

By a model construction following Feferman [9, 12] it can be shown that EC is
consistent with stratified comprehension, whereas a simple Russell-style argument
shows that it is inconsistent with comprehension for arbitrary L2 formulas.

Interesting induction principles in the context of EC are (B-IN) and (L1-IN) as
before plus two new forms of induction: class induction and the schema of induction
for all L2 formulas.

Class Induction on N (C-IN).

∀X (0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x ′ ∈ X) → (∀x ∈ N)(x ∈ X)).

L2 induction on N (L2-IN). For all L2 formulas A[u],

A[0] ∧ (∀x ∈ N)(A[x] → A[x ′]) → (∀x ∈ N)A[x].

All combinations of EC and its extension EC(μ) by the type-2 functional μ
with these forms of first and second order induction have been analyzed proof-
theoretically; a detailed presentation will be given in Feferman, Jäger, and Strahm
[24]. As illustration we mention three results.

Theorem 9 We have the following proof-theoretic equivalences:

1. EC + (C-IN) ≡ BON + (L1-IN) ≡ ACA0 ≡ PA.
2. EC + (L2-IN) ≡ ACA.
3. EC(μ) + (B-IN) ≡ BON(μ) + (B-IN) ≡ PA,

In Feferman [10, 12, 16] it is convincingly argued that EC-like systems provide
a natural framework for dealing with large parts of predicative mathematics. In par-
ticular, the theory EC(μ) + (B-IN) is a natural extension of BON(μ) + (B-IN) and
as such perfectly suited for developing Weyl’s approach to the continuum. It is also
shown in Feferman [10] that the intensional and extensional variants of finite type
theories find their natural place within EC.

4.2 Join and Inductive Generation

Of course, the theorem about elementary comprehension tells us that in EC the
classes are closed under the formation of finite unions and intersections. But in order
to form the unions, intersections, and Cartesian products of general possibly infinite
families of classes, Feferman introduced a further axiom, and here the constant j
comes into play.
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Join Axiom.

(J) (a ∈ � ∧ (∀x ∈̇ a)( f (x) ∈ �)) → (j(a, f ) ∈ � ∧ DU[a, f, j(a, f )]),
where the formula DU[a, f, b] is short for

∀x(x ∈̇ b ↔ x = <(x)0, (x)1> ∧ (x)0 ∈̇ a ∧ (x)1 ∈̇ f ((x)0)).

This axiom states that given a class named by a and an operation f from this class
to names, j(a, f ) is the name of the disjoint union of the classes named by these f (x)
with x ∈̇ a. Clearly, the generation of j(a, f ) is uniform in a and f .

Finally, let us turn to inductive generation and introduce an auxiliary abbreviation.
Given an L2 formula A[u] we write Prog[a, b, A] for

(∀x ∈̇ a)(∀y(<y, x> ∈̇ b → A[y]) → A[x]).

Moreover, Prog[a, b, c] stands for Prog[a, b,C] with C[u] being (u ∈̇ c). If we
think of b coding a binary relation on the class named a, thenProg[a, b, A] states that
formula A[u] is progressive onawith respect tob. Feferman’s axioms about inductive
generation guarantee the existence of accessible parts of classeswith respect to binary
relations.

Axioms for Inductive Generation.

(IG.1) a, b ∈ � → (i(a, b) ∈ � ∧ Prog[a, b, i(a, b)]).
(IG.2) (a, b ∈ � ∧ Prog[a, b, A]) → (∀x ∈̇ i(a, b))A[x]
for all L2 formulas A[u]. Let a and b be names. According to (IG.1) then i(a, b)
names a class and is progressive onawith respect to b. (IG.2) is an induction principle
and states that the class named i(a, b) is minimal with respect to this property.

The most famous theory of explicit mathematics is called T0 and extends EC by
join, inductive generation and full induction on the natural numbers for arbitrary L2

formulas,
T0 := EC + (J) + (IG.1) + (IG.2) + (L2-IN).

Many subsystems of T0 - obtained, for example, by restricting the induction
principles or omitting inductive generation - have been introduced and studied in
Chapter II (written by Feferman and Sieg), of Buchholz, Feferman, Pohlers, and
Sieg [3].

As far as T0 itself is concerned, [3] also provides an argument that it can be
embedded into the system �1

2-CA + (BI) of second order arithmetic. Then Jäger
and Pohlers [39] determined the upper bound of the proof-theoretic strength the
latter system via the theory KPi of iterated admissible sets, and Jäger [28] showed
by a well-ordering proof within (even the intuitionistic version of) T0 that this bound
is sharp.
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Theorem 10 T0 ≡ �1
2-CA + (BI) ≡ KPi.

Recently Sato presented an interesting reduction of �1
2-CA + (BI) to T0 without

employing a well-ordering proof; see [56].
Feferman [9] also introduces the extension of T0 by the non-constructive μ and

baptizes it T1. He makes a point that T0 provides an elegant framework for Borelian
and hyperarithmetic mathematics. In particular, he advocates studying a generaliza-
tion of higher arithmetic model theory by means of formalization in T0. Feferman
[13] contains further conceptual work and technical results along similar lines.

Glaß and Strahm [25] mentiones that T0 and T1 are equiconsistent and determines
the proof-theoretic strengths of many subsystems of T1. Finally, ongoing work of
Probst is about extensions of T1 by the Suslin operator E1. One of his observations
is that the second order framework provides several ways of formulating E1-like
operators that may turn out not to be equivalent.

4.3 Monotone Inductive Definitions

A further interesting principle is introduced in Feferman [15]. It expresses that every
monotone operation from classes to classes has a least fixed point. Define

Mon[ f ] := (∀x, y ∈ �)(x ⊆̇ y → f x ⊆̇ f y),

Lfp[ f, a] := f a =̇ a ∧ (∀x ∈ �)( f x ⊆̇ x → a ⊆̇ x).

In view of our definition of (u ⊆̇ v), Mon[ f ] implies that f maps names to names;
similarly, Lfp[ f, a] implies that a is a name. Then (MID) is the axiom stating that
every monotone operation has a least fixed point,

(MID) ∀ f (Mon[ f ] → ∃aLfp[ f, a]).

The analysis of (MID) turned out to be very interesting. Adding (MID) to T0

or a (natural) subsystem of T0 leads to an enormous increase of its proof-theoretic
strength. A first result in Takahashi [60] says that T0 + (MID) is interpretable in
�1

2-CA + (BI). Later Rathjen in a series of articles [50–53] and Glass, Rathjen
Schlüter [26] managed to provide a complete proof-theoretic analysis of (MID)

and the uniform version (UMID) of this principle over T0 and some of its natu-
ral subsystems. They were able to determine the exact relationship between these
systems of explicit mathematics and systems of second order arithmetic with �1

2
comprehension.

4.4 Universes

Universes have been introduced into explicit mathematics in Feferman [14],Marzetta
[48], Jäger, Kahle, and Studer [46], and Jäger and Strahm [41] as a powerful method
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for increasing its expressive and proof-theoretic strength. Informally speaking, uni-
verses play a similar role in explicit mathematics as admissible sets inweak set theory
and the sets Vκ (for regular cardinals κ) in full classical set theory; explicit universes
are also closely related to universes in Martin-Löf type theory. More formally, uni-
verses in explicit mathematics are classes which consist of names only and reflect
the theory EC + (J).

Let C[U, a] be the closure condition that is formed by the disjunction of the
following L2 formulas:

(1) a = nat ∨ a = id,
(2) ∃x(a = co(x) ∧ x ∈ U ).
(3) ∃x∃y(a = un(x, y) ∧ x ∈ U ∧ y ∈ U ),
(4) ∃x(a = dom(x) ∧ x ∈ U ).
(5) ∃x∃ f (a = inv(x, f ) ∧ x ∈ U ),
(6) ∃x∃ f (a = j(x, f ) ∧ x ∈ U ∧ (∀y ∈̇ x)( f x ∈ U )).

Thus the formula ∀x(C[U, x] → x ∈ U ) states that U is a class that is closed
under (the finite axiomatization of) elementary comprehension and join. If, in addi-
tion, all elements ofU are names, we callU a universe and writeUniv[U ] to express
this fact,

Univ[U ] := ∀x(C[U, x] → x ∈ U ) ∧ (∀x ∈ U )(x ∈ �).

Also, U[a] states that the individual a is a name of a universe,

U[a] := ∃X (�(a, X) ∧ Univ[X ]).

It is an immediate consequence of the closure properties of universes that they
satisfy elementary comprehension and join. The first important axiom in connection
with universes is the limit axiom. We assume that L2 contains a fresh individual
constant � and express this by

(Lim) a ∈ � → U[�a] ∧ a ∈̇ �a.

Hence this axiom states that the individual � uniformly picks for each name x
of a class the name �x of a universe containing x . Since universes are the explicit
analogue of admissible sets, the axiom (Lim) is the explicit analog of the limit axiom
in admissible set theory which enforces that any set is contained in an admissible
set. The limit axiom (Lim) together with EC + (J) provides the explicit analogue of
(recursive) inaccessibility.

There is a very natural way in explicit mathematics to go a step further and couch
(recursive) Mahloness into this framework. To simplify the notation we set

( f ∈ � → �) := ∀x(x ∈ � → f x ∈ �),

( f ∈̇ a → a) := ∀x(x ∈̇ a → f x ∈̇ a)
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and let m be a further fresh individual constant of L2. Then the Mahlo axiom is the
assertion

a ∈ � ∧ f ∈ (� → �) →
(Mahlo)

U[m(a, f )] ∧ a ∈̇ m(a, f ) ∧ f ∈ (m(a, f ) → m(a, f )).

This means that given a name a and an operation f from names to names the indi-
vidualm uniformly picks a universem(a, f ) that contains a and is closed under f .

For the proof-theoretic analysis of (Lim) and (Mahlo) over the relevant metapred-
icative and impredicative systems of explicit mathematics we refer to Jäger, Kahle,
and Studer [46] and Jäger and Strahm [24]. In all cases there is a direct correspon-
dence to systems of iterated admissible sets, but space does not permit to go into
details here. Jäger and Strahm [43] even explains how stronger reflection principles
can be formulated within the explicit framework.

4.5 Names of Classes and Universes

Oneof the very central ontological observations is that the names of a class never form
a class, no matter how simple this class may be. This theorem follows immediately
from Jäger [31] and is proved in full detail in Jäger [30] and Feferman, Jäger, and
Strahm [24].

Theorem 11 EC � ∀X¬∃Y∀z(z ∈ Y ↔ �(z, X)).

In Sect. 2 we introduced the notion of operational extensionality. Clearly, there is
also a corresponding notion of class extensionality:

(Cl-Ext) (∀x, y ∈ �)(x =̇ y → x = y),

claiming that two names are identical provided that they name the same class.
Although at a first glance this principle may appear to be acceptable or even natural,
we have to dismiss it since it is inconsistent with EC. The following theorem is a
consequence of Theorem11 above. An alternative proof, due to Gordeev, of a similar
result is presented in Beeson [1].

Corollary 12 (Cl-Ext) is inconsistent with EC.

Proof Pick, for example, the class of natural numbers. From (Cl-Ext) we could
conclude that all names of this class are identical to nat and thus form a class (in
view of elementary comprehension), contradicting Theorem11. �

Hence T0 + (Cl-Ext) is inconsistent as well, thus answering a question raised in
Feferman [12]. Although the names of a class never form a class, it is consistent to
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claim that there exists the class of all names. This can be seen by extending the model
construction for EC that is presented in detail in Feferman [12] and Feferman, Jäger,
and Strahm [24].

Theorem 13 The assertion ∃X∀x(x ∈ X ↔ x ∈ �) is consistent with EC, but not
provable in EC.

With some additional effort even a strengthening of this result is possible: We can
consistently assume in EC that all objects are names.

Let us now take a look at power classes. In principle, one could think of two forms
of power classes. The strong power class axiom states that for every class X there
exists a class Y such that Y contains exactly the names of all subclasses of X ,

(SP) ∀X∃Y∀z(z ∈ Y ↔ ∃Z(�(z, Z) ∧ Z ⊆ X)).

On the other hand, theweak power class axiom asks for less. Then we only claim that
for each class X there exists a class Y such that each element of Y names a subclass
of X and for any subclass of X at least one of its names belongs to Y ,

(WP) ∀X∃Y ((∀z ∈ Y )(∃Z ⊆ X)(�(z, Z)) ∧ (∀Z ⊆ X)(∃z ∈ Y )�(z, Z)).

Clearly, each of these can be formulated uniformly by adjunction of suitable con-
stants. Neither the strong nor the weak power class axiom is provable in EC. Much
worse, by Theorem11 we know that inEC the names of the empty class cannot form
a class, and thus the strong power class of the empty class cannot exist.

Corollary 14 (SP) is inconsistent with EC.

As the following remark shows, the weak power class axiom is less problematic
in this respect. Its consistency with EC is a consequence of Theorem13.

Corollary 15 EC + ∃X∀x(x ∈ X ↔ x ∈ �) proves

∃ f (∀a ∈ �)((∀b ∈̇ f a)(b ⊆̇ a) ∧ (∀b ⊆̇ a)(∃c ∈̇ f a)(b =̇ c).

Hence the (uniform version of the) weak power class axiom is provable in EC +
∃X∀x(x ∈ X ↔ x ∈ �) and thus consistent with EC.

Proof Let Z be the class of all names and let z be a name of Z . Also, let r be
the closed term λxy.co(un(co(x), co(y))). This means that for all names a and b,
r(a, b) is a name of the intersection of the classes represented by a and b. Now we
consider the elementary formula

A[u, v,W ] := (∃x ∈ W )(u = r(v, x))

and choose tA according to Theorem8. Then tA(v,w) is a name in case w is a name,
and we have
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�(w,W ) → ∀u(u ∈̇ tA(v,w) ↔ (∃x ∈ W )(u = r(v, x))).

Since Z is supposed to be the class of all names and z one of its names, this implies

∀u(u ∈̇ tA(v, z) ↔ (∃x ∈ �)(u = r(v, x))).

Put s := λv.tA(v, z). Clearly, r(a, b) ⊆̇ a for all a, b ∈ � and s(a, b) =̇ b for any
b ⊆̇ a. Hence s is a witness for the existential assertion we have to prove. �

However, we have to be careful. The join axiom (J) is incompatible with the weak
power class axioms.

Theorem 16 EC + (J) proves the negation of (WP). Also, in EC + (J) the names
cannot form a class.

Proof Working in EC + (J), we let a be a name of the universal class V and assume
(WP). Then there exists an element b ∈ � – namely a name of a weak power class
of V – such that:

(∀x ∈̇ b)(x ⊆̇ a), (1)

(∀x ∈ �)(∃y ∈̇ b)(x =̇ y). (2)

Assertion (1) implies that all elements of (the class represented by) b are names.
Now we apply (J) to b and the operation λz.z and obtain that j(b,λz.z) ∈ � and

∀x(x ∈̇ j(b,λz.z) ↔ (∃y1 ∈̇ b)∃y2(x = <y1, y2> ∧ y2 ∈̇ y1).

By elementary comprehension we can thus form a class X satisfying

∀x(x ∈ X ↔ <x, x> �∈̇ j(b,λz.z)).

According to (2), X has a name u ∈̇ b. However, this implies

u ∈ X ↔ ¬(u ∈̇ b ∧ u ∈̇ u) ↔ u �∈̇ u ↔ u /∈ X.

This is a contradiction. Hence V cannot have a weak power class, and (WP) has been
refuted. Therefore, it is also clear in view of the previous corollary that the names
must not form a class. �

Now we turn to some remarkable ontological properties of universes. A first
observation, proved in Marzetta [48], reveals that no universe may contain one of
its names. We have mentioned already that the names of a class do not form a class.
In connection with universes, a stronger result is possible: Each class has so many
names that not all of them can be contained in a single universe; in other words, no
universe is large enough to contain all names of a given type. For a proof of this
result see Jäger, Kahle, and Studer [46] or Minari [49]. This result implies that in
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the presence of the limit axiom (Lim), a name a cannot have the same extensions as
the universe represented by �a. Also, the operation � does not preserve extensional
equality; see [46] for details.

Theorem 17 1. EC � Univ[U ] ∧ �(a,U ) → a /∈ U.
2. EC + (J) � Univ[U ] → ∃x(�(x, V ) ∧ x /∈ U ).
3. EC + (J) + (Lim) � (∀x ∈ �)(x �=̇ �x) ∧ (∃x, y ∈ �)(x =̇ y ∧ �x �=̇ �x).

In this section several important ontological properties of explicit mathematics
have been collected. For more along these lines consult Feferman [12], Jäger, Kahle,
and Studer [46], and Jäger and Zumbrunnen [45].

5 Operational Set Theory

Feferman’s original motivation for operational set theory was to provide a setting for
the operational formulation of large cardinal statements directly over set theory in a
way that seemed to him to bemore naturalmathematically than themetamathematical
formulations using reflection and indescribability principles, etc. He saw operational
set theory as a natural extension of the von Neumann approach to axiomatizing set
theory. Another principal motivation was to relate formulations of classical large
cardinal statements to their analogues in admissible set theory. However, in view of
Jäger and Zumbrunnen [44] this aim of operational set theory has to be analyzed
further; see below.

The central systems of present day operational set theory can be considered as
an applicative (based) reformulation of systems of classical set theory ranging in
strength from Kripke–Platek set theory to von Neumann–Bernays–Gödel set theory
and a bit beyond.

The basic systemOST has been introduced in Feferman [18] and further discussed
in Feferman [19] and Jäger [32–35]. For a gentle introduction into operational set
theory and some general motivation we refer to these articles, in particular to [19].

There is also an interesting relationship between some more constructive variants
of operational set theory and constructive or semi-constructive set theory, but we
will not discuss this line of research here. For a profound discussion of this topic and
some interesting technical results see Cantini and Crosilla [5, 6], Cantini [4], and
Feferman [20].

5.1 The Central Systems

LetL be a typical language of first order set theorywith the binary symbols∈ and= as
its only relation symbols and countablymany set variables a, b, c, f, g, u, v, w, x, y,
z, . . . (possibly with subscripts). We further assume that L has a constant ω for the
collection of all finite von Neumann ordinals. The formulas ofL are defined as usual.
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The languageL◦ of operational set theory extendsL by the binary function symbol
◦ for partial term application, the unary relation symbol↓ for definedness and a series
of constants: (i) the combinators k and s, (ii) �, ⊥, el, non, dis, e, and E for logical
operations, (iii) D, U, S, R, C, and P for set-theoretic operations. The meaning of
these constants will be specified by the axioms below.

L◦ is an operational language in the sense of Sect. 2, and we define the terms
and formulas of L◦ exactly as there. To increase readability, we freely use standard
set-theoretic terminology. For example, if A[x] is an L◦ formula, then {x : A[x]}
denotes the collection of all sets satisfying A; it may be (extensionally equal to) a
set, but this is not necessarily the case. Special instances are

V := {x : x↓}, ∅ := {x : x �= x}, and B := {x : x = � ∨ x = ⊥}

so that V denotes the collection of all sets (it is not a set itself), ∅ stands for the empty
collection, and B for the unordered pair consisting of the truth values � and ⊥ (it
will turn out that ∅ and B are sets in OST). The following shorthand notation, for n
an arbitrary natural number greater than 0,

( f : an → b) := (∀x1, . . . , xn ∈ a)( f (x1, . . . , xn) ∈ b)

expresses that f , in the operational sense, is an n-arymapping from a to b. It does not
say, however, that f is an n-ary function in the set-theoretic sense. In this definition
the set variables a and bmay be replaced by V and B. So, for example, ( f : a → V)

means that f is total on a, and ( f : V → b) means that f maps all sets into b.
As in the case of explicitmathematics, all systems of operational set theory start off

from the basic theory BO(L◦). The additional non-logical axioms ofOST comprise
some basic set-theoretic axioms, the representation of elementary logical connectives
as operations, and operational set existence axioms.

Basic Set-theoretic Axioms. They comprise: (i) the usual extensionality axiom; (ii)
assertions that give the appropriate meaning to the constant ω; (iii) ∈-induction for
arbitrary formulas A[u] of L◦,

∀x((∀y ∈ x)A[y] → A[x]) → ∀x A[x].

Logical Operations Axioms.

(L.1) � �= ⊥,
(L.2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = � ↔ x ∈ y),
(L.3) (non : B → B) ∧ (∀x ∈ B)(non(x) = � ↔ x = ⊥),
(L.4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = � ↔ (x = � ∨ y = �)),
(L.5) ( f : a → B) → (e( f, a) ∈ B ∧ (e( f, a) = � ↔ (∃x ∈ a)( f x = �))).

Set-theoretic Operations Axioms.

(S.1) Unordered pair: D(a, b)↓ ∧ ∀x(x ∈ D(a, b) ↔ x = a ∨ x = b).
(S.2) Union: U(a)↓ ∧ ∀x(x ∈ U(a) ↔ (∃y ∈ a)(x ∈ y)).
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(S.3) Separation for definite operations:

( f : a → B) → (S( f, a)↓ ∧ ∀x(x ∈ S( f, a) ↔ (x ∈ a ∧ f x = �))).

(S.4) Replacement:

( f : a → V) → (R( f, a)↓ ∧ ∀x(x ∈ R( f, a) ↔ (∃y ∈ a)(x = f y))).

(S.5) Choice: ∃x( f x = �) → (C f ↓ ∧ f (C f ) = �).

This finishes our description of the system OST. OST(P) is OST + (P) and
OST(E,P) is OST + (P) + (E), where (P) and (E) are axioms providing for the
operational form of power set and unbounded existential quantification, respectively:

(P) (P : V → V) ∧ ∀x∀y(x ∈ Py ↔ x ⊂ y),

(E) ( f : V → B) → (E( f ) ∈ B ∧ (E( f ) = � ↔ ∃x( f x = �))).

Finally, OSTr
(E,P) is obtained from OST(E,P) by restricting the schema of ∈-

induction for arbitrary L◦ formulas to ∈-induction for sets.

Theorem 18 We have the following proof-theoretic equivalences:

1. OST ≡ KP.
2. OST(P) ≡ KP(P).
3. OSTr

(E,P) ≡ ZFC.
4. OST(E,P) ≡ NBG+.

KP is Kripke–Platek set theory with infinity, KP(P) is Power Kripke–Platek set
theory as in Rathjen [55], ZFC is Zermelo-Fraenkel set theory with the axiom of
choice, andNBG+ is vonNeumann–Bernays–Gödel theoryNBG for sets and classes
extended by a suitable form of (�1

1-AC) for classes and ∈-induction for all formulas.
For proofs of the first equivalence see Feferman [18, 19] and Jäger [32], the second

equivalence is due to Rathjen (see his [54, 55] and private communication); it should
also be provable via an adaptation of the method in Sato and Zumbrunnen [57]. The
third equivalence is proved in Jäeger [32], and the fourth follows from Jäger [33]
together with Jäger and Krähenbühl [38].

5.2 Operational Closure

With respect to ontological properties, it is a natural question to ask what it means
for a set to be operationally closed. As it turns out, this has a very direct relationship
to the concept of stability. More precisely, operationally closed sets behave like �1

substructures of the universe. The detailed proof-theoretic analysis of the concept of
operational closure is carried through in Jäger [35].
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Definition 19 1. A set d is called operationally closed, in symbols Opc[d], iff d is
transitive, contains the constants of L◦ as elements, and satisfies

(∀x, f ∈ d)( f x↓ → f x ∈ d).

2. The operational limit axiom states that every set is an element of an operational
closed set,

(OLim) ∀x∃y(x ∈ y ∧ Opc[y]).

An immediate consequence of this definition is that all closed terms of L◦ that
have a value are contained in every operationally closed set. Also, if we have aλ-term
ofL◦ whose free variables belong to an operationally closed d, then this term belongs
to d as well. The strength of the concept of operational closure and its connection to
�1 substructures becomes evident by the following observation.

Theorem 20 For any �0 formula A[�u, v] of the language L with at most the vari-
ables �u, v free, the theory OST proves that

Opc[d] ∧ �a ∈ d ∧ ∃x A[�a, x] → (∃x ∈ d)A[�a, x].

Recall that a transitive set d with ω ∈ d is called a �1-elementary substructure
of the transitive class M iff d ∈ M and for all �1 formulas A[�u] with parameters �u
and all �a ∈ d,

d |= A[�a] ⇐⇒ M |= A[�a].

Hence the preceding theorem says that any operationally closed set is an �1-
elementary substructure of the universe V. Also it implies that all instances of

(�1-Sep) ∀x∃y∀z(z ∈ y → z ∈ x ∧ A[z]),

where A[u] is a �1 formula of L, are provable in OST + (OLim).

Theorem 21 KP + (�1-Sep) is contained in OST + (OLim).

On the other hand, an ordinal α is called stable (in symbols Stab[α]) iff Lα is a
�1-elementary substructure of the constructible universe L. Then KP + (V=L) +
(�1-Sep) proves that every ordinal α is majorized by a stable ordinal,

KP + (V=L) + (�1-Sep) � ∀α∃β(a < β ∧ Stab[β]).

Since by means of the inductive model construction presented in Jäger and
Zumbrunnen [44] the theory OST + (OLim) can be reduced to KP + (V=L) +
∀α∃β(a < β ∧ Stab[β]), and adding (V=L) to KP + (�1-Sep) does not increase
its proof-theoretic strength, we obtain the following characterization.
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Theorem 22 We have the following proof-theoretic equivalences:

OST + (OLim) ≡ KP + (V=L) + ∀α∃β(α < β ∧ Stab[β]) ≡ KP + (�1-Sep).

In Jäger [35] it is also shown that OST + ∃xOpc[x] is equiconsistent to KP plus
parameter-free �1 separation on ω.

So we notice that the concept of operational closure is proof-theoretically very
powerful, liftingOST to a new dimension. However, from a operational perspective,
this notion is somewhat problematic: The uniform version of (OLim), with a new
constant OC,

∀x(x ∈ OC(x) ∧ Opc[OC(x)]),

is easily seen to lead to inconsistency.

5.3 Relativizing Operational Set Theory

A further motivation for operational set theory, formulated in Feferman [18, 19], was
to use his general applicative framework for explaining the admissible analogues
of various large cardinal notions. Everything works out fine as along as only one
(classically or recursively) regular universe is concerned. However, in view of Jäger
and Zumbrunnen [44] this aim of OST had to be analyzed further. It is shown in
[44] that a direct relativization of operational reflection leads to theories that are
significantly stronger than theories formalizing the admissible analogues of classical
large cardinal axioms. This refutes the conjecture 14(1) on p. 977 of Feferman [19].

Themain reason is that simply restricting quantifiers to specific sets and operations
to operations from and to those sets does not affect the global application relation
and thus substantial strength may be imported – so to say – through the back door.
Hence relativizing operational set theory requires a more cautious approach.

In a nutshell: The applicative structure must also be relativized when explaining
the notion of relativized regularity in the context of OST. In contrast to the usual
way of relativizing formulas with respect to a given set d, we now relativize our
formulas A with respect to a set d and a set e ⊆ d3 to formulas A(d,e); then d is the
new universe and e takes care of application in the sense described below. This way
of relativizing operational set theory is worked out in all details in Jäger [37].

First we add to L◦ a fresh binary relation symbol Reg to express relativized
regularity and a fresh constant reg for the operational representation of Reg in the
sense of the following axiom that has to be added to the logical operations axioms,

(L.6) (reg : V2 → B) ∧ ∀x∀y((reg(x, y) = � ↔ Reg(x, y)).

Then we turn to relativizing application: For all L◦ terms r and variables e we
define the formula (r ∂ e) by induction on the complexity of r as follows:
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1. If r is a variable or a constant of L◦, then (r ∂ e) is the formula (r = r).
2. If r is the L◦ term r1r2, then choose some variable x not appearing in r1, r2 and

different from e and let (r ∂ e) be the formula

(r1 ∂ e) ∧ (r2 ∂ e) ∧ ∃x(〈r1, r2, x〉 ∈ e).

Think of e as a ternary relation; then (r ∂ e) formalizes that the term r is defined if
applicationwithin r is treated according to e. For us only such relations are interesting
that are compatible with the real term application. To single those out, we set

Comp[e] := ∀x∀y∀z(〈x, y, z〉 ∈ e → xy = z).

Clearly, if Comp[e] and (r ∂ e), then r↓. However, observe that in general we may
haveComp[e] and r↓, but not (r ∂ e); so it is possible that term r has a value without
being defined in the sense of e.

In a next step this formof relativizing application via e is combinedwith restricting
the universe of discourse to d. For allL◦ formulas Awe define the relativized formula
A(d,e) by induction on the complexity of A as follows:

(r = s)(d,e) := (r ∂ e) ∧ (s ∂ e) ∧ r = s,

(r ∈ s)(d,e) := (r ∂ e) ∧ (s ∂ e) ∧ r ∈ s,

(r↓)(d,e) := (r ∂ e) ∧ r ∈ d,

Reg(r, s)(d,e) := (r ∂ e) ∧ (s ∂ e) ∧ Reg(r, s),

(¬A)(d,e) := ¬A(d,e),

(A ∨ B)(d,e) := (A(d,e) ∨ C (d,e)),

((∃x ∈ r)A)(d,e) := (r ∂ e) ∧ (∃x ∈ r)A(d,e),

(∃x A)(d,e) := (∃x ∈ d)A(d,e),

Now the relation Reg comes into play. Reg(d, e) is supposed to state that set d
is regular with respect to e, and has the following intuitive interpretation: (i) d is a
transitive set containing all constants of L◦ as elements and e is a ternary relation on
d compatible with the general application relation; (ii) if application is interpreted
in the sense of e, then d satisfies the axioms ofOST; (iii) we claim a linear ordering
of those pairs 〈d, e〉 for which Reg(d, e) holds. To make this precise, we add to
OST additional so-called Reg-axioms. Here TranCon[d] is short for the L◦ formula
stating that d is transitive and contains all constants of L◦.

Axioms for Reg.

(Reg.1) Reg(d, e) → (TranCon[d] ∧ e ⊆ d3 ∧ Comp[e]).
(Reg.2) If A is an applicative axiom, logical operations axiom, or set-theoretic oper-

ations axiom with at most the variables �x free such that neither the variables
d, e do not appear in the list �x , then
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Reg(d, e) → (∀�x ∈ d)A(d,e).

(Reg.3) Reg(d1, e1) ∧ Reg(d2, e2) → d1 ∈ d2 ∨ d1 = d2 ∨ d2 ∈ d1.
(Reg.4) Reg(d1, e1) ∧ Reg(d2, e2) ∧ d1 ∈ d2 → e1 ∈ d2 ∧ e1 ⊆ e2.

In the following we write OST(LR) for the extension of OST by the axioms
(Reg.1)-(Reg.4) and the limit axiom for (relativized) regular sets,

(Lim-Reg) ∀x∃y∃z(x ∈ y ∧ Reg(y, z)).

One of the central results of Jäger [37] is that OST(LR) is proof-theoretical-
ly equivalent to the theory KPi of iterated admissible sets and thus describes an
recursively inaccessible universe from an operational perspective.

Theorem 23 OST(LR) ≡ KPi.

As can be seen from the proof of this equivalence, our notion of relativized regu-
larity is the operational analogue of admissibility and thus provides a first essential
step in capturing recursive analogues of large cardinal assertions. There is no intrin-
sic reason to stop at inaccessibility, and it seems that we can deal with, for example,
Mahloness in an analogous way. The hope is that also the recursive versions of very
strong forms of reflection can be handled in this way.

6 Future Work

Explicit mathematics and operational set theory are couched in an operational frame-
work and as such have a lot in common. However, there are also significant differ-
ences. The article Jäger and Zumbrunnen [45] tries to clarify this relationship more
systematically, especially from an ontological perspective.

A basic and significant difference is that in explicit mathematics we deal with
individuals and classes, whereas operational set theory is completely first order.
Hence it is an interesting question whether there exist natural operational theories of
sets and classes. Feferman’s draft notes [21] present some first ideas and Jäger [36]
discusses several technical and conceptual problems; it also presents a “technically
working” system that, however, does not satisfy the criterion of naturalness.

In explicit mathematics we can take a given applicative structure and build the
universe of classes above this structure without being forced to change the underly-
ing applicative structure; no new individuals are created. In an operational theory of
sets and classes the situation is different: Again we may start off from the applicative
universe, which now models set-theoretic axioms. However, building classes above
this universe may force us to generate new sets, in particular if we want the “Aus-
sonderungsprinzip” to be satisfied: given a set x and a class Y , the intersection x ∩ Y
is a set. Therefore, a sort of strong impredicativity makes the interplay between sets
and classes very delicate.
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In spite of such difficulties it is worthwhile to search for “good” operational
theories of sets and classes, even if they can only cope with systems of very high
consistency strength. If successful, this framework is likely to be very useful in
studying strong reflection principles from an operational perspective.

The analysis of strong forms of reflection is also a topic in explicit mathematics.
This together with the development of a convincing operational descriptive set theory
are major tasks for the future.
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1 Truth and the Foundations of Mathematics

Theories of comprehension and satisfaction are closely intertwined. To say that a is
an element of the class {x : ϕ(x)} for a formula ϕ(x) seems tantamount to saying
that the formula ϕ(x) is satisfied by a or that the formula ϕ(x) is true of a. Using
this observation, one can reduce class theories to theories of satisfaction or those
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of truth: Quantification over classes is translated to quantification over formulae or
propositional functions. The basic strategy can be traced back at least to Russell [51]
(see Schindler [53]).

In the good old days of logical positivism, however, the concept truth was consid-
ered with suspicion. It had been stained by too many dodgy philosophical theories.
So the reduction of mathematical theories to theories of satisfaction or truth didn’t
look too attractive. Why should one want to replace a respectable mathematical the-
ory with a ‘philosophical’ theory of truth or satisfaction? As foundational concepts
membership and classes seemed much more suitable than truth and satisfaction.

More desirable was a reduction in the other direction, that is, the reduction of
truth and satisfaction to a theory of classes. Consequently many philosophers were
muchmore interested in Tarski’s [58] definition of truth in a type theory over a theory
of syntax. This reduction vindicated truth as a respectable notion for philosophers
like Popper (see Leitgeb [43]).1 Tarski added further reasons not to treat truth or
satisfaction as a primitive notions to the neopositivist qualms: He thought that either
the theory of truth will lack ‘deductive power’, if truth is axiomatized by the typed
T-sentences, or the axioms for truth will have an ‘accidental character’ (see Halbach
[33, Sect. 7]). Hence mathematical theories with comprehension axioms retained
their conceptual priority over axiomatic theories of truth in foundational discussion.
Of course somework on truthwas done, but truthwasn’tmuch used in the foundations
of mathematics.

It took a long time for truth to recover from the neopositivist qualms and Tarski’s
verdict that any axiomatization of truth is either weak or arbitrary. Even philosophers
beyond any suspicion of neopositivist convictions have endorsed the conceptual
priority of some class theory over a theory of truth or satisfaction. For instance,
the type-free truth theories advanced by Kripke [42], Gupta [30] or Herzberger [35]
follow the pattern of Tarski’s theory in a crucial aspect. On their accounts set theory
is employed as the basic framework; then a semantics for a language with the truth
predicate is definedwithin set theory. The concept of truth these authors are interested
in is more worrisome than Tarski’s, because type-free truth is prone to paradox.
Consequently it is not a surprise that these authors rely on set theory as ultimate
framework and show that semantics for languages with a type-free truth predicate
can be developed within set theory. Again a theory of classes serves as the bedrock
foundational framework on which a theory of truth can rest.

Truth, however, conceived as a primitive, undefined notion, does have a potential
for use in the foundations of mathematics and the formal sciences. One use where the
need for a truth predicate is obvious are the proof-theoretic reflection principles. As
Gödel [29] had shown, a system S cannot prove even very weak consequences of the
soundness of the theory. In particular,S cannot prove the consistency ofS, if the latter
is expressed in a natural way. However, by endorsing or accepting a system S, one is
also committed to the soundness of S and thus to all consequences of its soundness
such as the consistency of S. One can try to add statements expressing the soundness

1For those who have doubts about the success of Tarski’s reduction, we add that worries had been
raised early on and more recently by Field [22] and Putnam [48].
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of S to the system S in order to obtain a system that features commitments implicit
in the acceptance of S as explicit theorems. As a very early reaction to Gödel’s
incompleteness theorems, Turing [59] had tried to add such principles to S and to
iterate this procedure even along transfinite ordinals.

Kreisel and Lévy [41, p. 98] describe a reflection principle for a system S as
‘the formal statement stating the soundness of S’. As a soundness principle the
consistency statement is very weak. More powerful are the local reflection principle
BewS(�ϕ�) → ϕ and the uniform reflection principle ∀x (BewS(�ϕ(ẋ)�) → ϕ(x)).
But even these schemata fall short of expressing full soundness.

Full soundness is the statement that all (closed) theorems of S are true. Kreisel
and Lévy [41, p. 98] call a version of this the global re f lection principle. They
write:

Literally speaking, the intended reflection principle cannot be formulated inS itself bymeans
of a single statement. This would require a truth definition TS […]

They go on to point out that such a truth definition doesn’t exist because of Tarski’s
theorem on the undefinability of truth. Hence, under the usual assumptions, the
‘intended reflection’ cannot be expressed in the language of S. It is also hardly an
option to pass from S to another stronger system containing S with the resources
for defining a predicate TS, because it is only soundness that is to be added to the
system and not, for instance, more comprehension axioms or other axioms sufficient
for defining TS.

In order to avoid the addition of new mathematical resources for the definition
of TS, one can add a primitive symbol for truth in S. This approach goes directly
against the neopositivist qualms against truth. Thus it doesn’t come as a surprise
that initially a primitive formal truth predicate wasn’t used in the discussion about
reflection principles, reflective closure, recursive progressions and related topics.
Turing’s early work was continued without the use of a truth predicate in the object
language. Of course, Feferman is the single most influential author in the wake
of Turing’s approach. In particular, Feferman [9] contained amazing results on the
iterated addition of proof-theoretical reflection principles in the sense of Kreisel and
Lévy [41] to Peano arithmetic. These progressions of theories were all formulated
in the language of arithmetic without any additions.

In the 1970s more logicians were less restrained by worries about truth and started
working on formal truth theorieswith truth as a predicate in the object language. They
also became bolder and turned to type-free notions of truth. They explored otherways
of solving or blocking the paradoxes than Tarski’s restrictive method involving the
distinction between an object and a metalanguage. Especially after the publication of
Kripke [42],more philosophers and logicians turned their attention to truth. Feferman
recognized their potential for adding strong soundness claims and making explicit
assumptions implicit in the acceptance of a theory.
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2 Ramified Truth and Reflection

In 1979 Feferman gave a talk entitled Gödel’s incompleteness theorems and the
reflective closure of theories at the meeting of the Association of Symbolic Logic
in San Diego in 1979 ([45] and [17, p. 3]). This paper, which was to become the
paper [17], had been circulated for quite some time and other logicians including
Reinhardt [50] and Cantini [5] had published on Feferman’s ideas. Feferman’s talk
and the subsequent papers by him and others mark the return of truth as an undefined,
primitive notion of foundational significance. Let LPA be the language of first-order
arithmetic.

The starting point is the ‘compositional’ axioms for truth. Given a system satis-
fying certain natural conditions, axioms for a truth predicate T can be added that
correspond to the clauses in Tarski’s definition of satisfaction. When one works in a
theory that can encode every object as a closed term within it one can dispense with
satisfaction and use a unary truth predicate – at least if the theory satisfies certain
further assumptions. Feferman [17] gave fairly general account that applies to a vari-
ety of theories such as set theory for instance (see Fujimoto [28]). This generality is
significant and not just a trivial extension of the special case of Peano arithmetic as
starting theory.

However, here we use Peano arithmetic as our base theory. This will allow us to
keep the presentation sufficiently simple. Let LT be LPA ∪ T . For PA the composi-
tional axioms can be chosen as follows:

T1 ∀s ∀t (T (s =. t) ↔ s◦ = t◦)
)
and similarly for other predicates other than =,

except for the special predicate T
T2 ∀x (

SentPA(x) → (T (¬· x) ↔ ¬T (x))
)

T3 ∀x ∀y (
SentPA(x ∧· y) → (T (x ∧· y) ↔ T (x) ∧ T (y))

)

T4 ∀v ∀x (
SentPA(∀· vx) → (T (∀· vx) ↔ ∀t T (x[t/v])))

Here and in what follows we use quantifiers ∀s and ∀t to range over the codes
(or Gödel numbers) of closed LPA-terms; namely, the expression ∀t is short for
∀x (ClTerm(x) → . . .), where ClTerm(x) represents the set of the codes of closed
LPA-terms. The symbol ◦ is a representation in PA of a recursive function that
takes a code of a closed LPA-term and returns its value in the standard model; e.g.,
�0 + 0�◦ = 0. Hence the axiom T1 expresses that a closed equation s= t is true iff
the values of the closed terms s and t coincide. There won’t be a function sym-
bol ◦ in the language, but the function can be expressed using suitable formulae.
The formula SentPA(x) represents that x is a code of a sentence of the language
of PA. The symbol ¬· is a representation in PA of a recursive function that takes a
code of a sentence and returns the code of its negation; e.g., ¬· �0 = 0� = �0 �= 0�.
Hence the axiom T2 expresses that the negation of a sentence of PA is true iff the
sentence is not true. The symbol ∧· is a representation in PA of a recursive func-
tion that takes two codes of sentences and returns the code of their conjunction;
e.g., �0 = 0� ∧· �0 �= 0� = �0 = 0 ∧ 0 �= 0�. Hence the axiom T3 expresses that
the conjunction of two sentences of PA is true iff both of the conjuncts are true.
The symbol ∀· is a representation in PA of a recursive function that takes a code of
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a variable and a code of a formula and returns the universal quantification of the
formula with respect to the variable; e.g., ∀· (�v�, �ϕ�) = �∀vϕ� for a variable v

and a formula ϕ. The operation x[y/z] yields the code of the result of substituting
a term encoded by y for a variable encoded by z in a formula encoded by x ; e.g.,
�ϕ(v)�[�t�/�v�] = �ϕ(t)� for a formula ϕ, a term t , and a variable v. Hence axiom
T4 expresses that a universally quantified sentence ofPA is true iff all its substitution
instances (with closed terms) are true. A more detailed explanation of the notation
can be found in Halbach [33]. But we hope that our notation should be largely self-
explanatory. There are also someminor deviations from Feferman’s definition of this
theory in [17, p. 14].

The axioms T1–T4 are adjoined to those of Peano arithmetic. Crucially, the induc-
tion schema is expanded to the new language with the truth predicate. The resulting
theory T(PA) or also called CT (for ‘compositional truth’) proves the soundness of
Peano arithmetic, that is, it proves the global reflection principle

∀x (
SentPA(x) ∧ BewPA(x) → T (x)

)
(2.1)

Thus the expressive resources needed for stating the soundness of PA already imply
the soundness of PA.2 The global reflection principle doesn’t have to be added as an
additional axiom. As we have discussed, the uniform reflection principle is derived
from (2.1) with the help of the axioms T1–T4; furthermore, CT is strong enough
to derive the iterated reflection principle along any constructive ordinal α provably
well-founded in CT in the sense that all the LT -instances of transfinite induction
along α are derivable in CT.

If the commitment to the soundness of PA is implicit in the acceptance of PA,
then also the resources needed for expressing the soundness claim are implicit in
the acceptance of PA. Thus the acceptance of PA commits one to CT. Thus CT
makes explicit some implicit commitments of the acceptance of PA. However, the
implicit commitment in the acceptance of PA is not exhausted by CT and (2.1), and
the iteration procedure further continues. For, once CT is explicitly accepted, one is
then committed to the soundness of CT and thus to a truth predicate for CT, which
is needed to express the soundness of CT. To this end one can add a further truth
predicate T1 that applies to all sentences formulated in the language of arithmetic
expanded by T . The new predicate T1 is then axiomatized in the same way as T
except that T is treated as one of the non-special predicate symbols in T1. Moreover
in T2–T4 quantification over sentences of the arithmetical language is replaced with
quantification over sentences of the arithmetical language with T . This procedure
can be iterated and an axiomatization of Tarski’s hierarchy of languages is obtained.
The exact specification of the procedure requires some more detail; but a general

2CT contains the expanded induction schema, and this expansion is indeed crucial in deriving (2.1),
since CT without the expanded induction schema is conservative over PA and thus does not yield
(2.1). The question whether the expanded induction schema is an essential part of ‘the expressive
resources needed for stating the soundness of PA’ is a subtle issue and gave rise to lively debates
in the context of deflationism; see a debate between Shapiro [56] and Field [23] for instance.
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recipe for the transition from one level to the next can be specified. The procedure
fits Feferman’s [9, p. 274] description of a reflection principle:

By a reflection principle we understand a description of a procedure for adding to any set of
axioms A certain new axioms whose validity follow from the validity of the axioms A and
which formally express, within the language of A, evident consequences of the assumption
that all the theorems of A are valid.

This characterization of reflection principles precedes Feferman’s work on truth by
more than one and a half decades.

The addition of truth predicates and accompanying axioms can be iterated into
the transfinite. A truth predicate Tλ at a limit level λ is axiomatized in the same way
as the truth predicates at successor level with the exception that an axiom is added
that says that a sentence is true iff it is true at one of the previous levels. For details
see Halbach [33, Sect. 9.1] and Fujimoto [28].

The need for an ordinal notation system is obvious: The truth predicates need to
be indexed and all levels of the hierarchy need to be axiomatized. Technically it is
no problem to define theories up to any recursive ordinal. To this end one can pick
a path through Kleene’s O. However, this would betray the original motivation for
considering these iterated theories of truth: their purpose is to make explicit assump-
tions implicit in the acceptance of PA. Using our general mathematical machinery
we can prove that there is a well-founded ordering of natural numbers whose order-
type is any ordinal below the first non recursive ordinal ωCK

1 . But this theorem is not
implicit in the acceptance ofPA in any way. In particular,PA doesn’t prove that these
orderings are well-founded. Kreisel [40] suggested to employ autonomous iterations
in situations of this kind. That is, one iterates a procedure of this kind in unfolding
the implicit commitments in accepting a theory only if the theory in question can
prove transfinite induction up to that ordinal level.

SincePA proves transfinite induction for any ordinal up to ε0, the truth theories are
iterated up to that point. This new theory, however, proves transfinite induction for
longer wellorderings. Hence the truth theories are iterated even further until a point
is reached where the hierarchy of truth theories is iterated to a point �0 that proves
transfinite induction for all ordinals smaller than �0. This ordinal �0 is the so-called
Feferman–Schütte ordinal that had figured prominently in Feferman’s earlier work
[10] on predicativity.

The iterated truth theories verymuch resemble the systems of predicative analysis,
which had been studied thoroughly by Feferman [10] and Schütte [54] in the 1960s.
Thus, in a sense, the results on iterated truth theories are formally not extremely
exciting. Perhaps this is the reason why they figure less prominently in the published
paper [17] than in the draft version [16].

Froma foundational point of view, however,we think that the iterated truth theories
are significant. They are a very convincing way of carrying out the programme of
determining the reflective closure of PA, that is, of characterizing the theory that
makes explicit what is implicit in the acceptance of PA.

The formulation of the systems of iterated truth is technically awkward. The
specification of the language already requires an ordinal notation system. Then the
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motivation of the terminal ordinal ε0 or �0 relies on some deeper results. Moreover,
it is highly specific to PA.

Feferman has made various attempts at characterizing the reflective closure of
theories in a more elegant way. The reasons for seeking a more succinct characteri-
zation are not only of an aesthetic nature. A method of defining the reflective closure
of a theory that is less reliant on ordinal notation systems and an explicit appeal to
proof-theoretic techniques and notions, should also be more generally applicable;
moreover, it would also be philosophically less prone to the objection that it depends
on arbitrary stipulation; a more elegant system would depend on a ‘natural’ ordinal
notation system and arithmetization.

Feferman has tried various methods for characterizing the reflective closure of a
theory. The various approaches should not be seen so much as competing but rather
as different characterization of the same concept. The situation is similar to that in
recursion theory: The different characterizations of computability do not exclude
each another, rather their equivalence assures us that we have found a stable concept.

3 Kripke–Feferman

The first method of characterizing the reflective closure of PA is fairly close to the
iterated truth theories. But it shuns already the need for an ordinal notation system.
Somewhat metaphorically speaking, the ordinals emerge from the theory itself and
are not imposed on it from the outside.

The theory has been dubbed the Kripke–Feferman theory or KF for short. Pre-
sumably Reinhardt was the first to publish on the theory in [49, 50] and by the
time Feferman published his paper [17], the label KF had already been established.
Unfortunately, since no authoritative version had been published by Feferman, dif-
ferent authors formulated KF in slightly different ways. Here we try to stick to the
formulation chosen by Feferman; but we use a slightly different notation.

Feferman [17] formulated KF in the language of arithmetic augmented with two
new unary predicates T and F for truth and falsity. LetLKF := LPA ∪ {T, F} denotes
the language of KF. As the axiom K4 below indicates, the falsity predicate F is
actually not necessary and could be understood as defined notion, because the falsity
of a sentence coincides with the truth of its negation. Hence for the sake of simplicity,
we will identify LKF with LT . The axioms of KF comprise those of PA and the
following truth-theoretic axioms:

K1 ∀s ∀t ((T (s =. t) ↔ s◦ = t◦)
) ∧ (

F(s =. t) ↔ s◦ �= t◦)
)
, and similarly for other

predicates other than =, except for the special predicate T ;
K2 ∀s (

(T (T· s) ↔ T (s◦)) ∧ (F(T· s) ↔ F(s◦))
)
;

K3 ∀s (
(T (F· s) ↔ F(s◦)) ∧ (F(F· s) ↔ T (s◦))

)
;

K4 ∀x (
SentKF(x) → (T (¬· x) ↔ F(x)) ∧ (F(¬· x) ↔ T (x))

)
;

K5 ∀x ∀y (
SentKF(x ∧· y) → (T (x ∧· y) ↔ T (x) ∧ T (y)) ∧ (F(x ∧· y) ↔ F(x) ∨

F(y))
)
;
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K6 ∀v ∀x (
SentKF(∀· vx) → (T (∀· vx) ↔ ∀t T (x[t/v])) ∧ (F(∀· vx) ↔ ∃t F(x

[t/v]))).
The axiom K1, exactly like T1, says that a closed equation s= t is true (false) iff the
value of the terms s and t agree (disagree, resp.). The formula SentKF(x) expresses
that x is a sentence of the language of (i.e. LT ); hence the axiom K5 and K6 express
essentially the same compositional axioms as T3 and T4 but extended to sentences of
the larger languageLT . The axiomsK2 andK3 describes the iterative self-applicative
characteristic of the truth and falsity predicates in KF; K2 says that it is true (false)
that a sentence is true iff the sentence is true (false, resp.) and K3 says its dual.
Finally, K4 defines the falsity of a sentence to be the truth of its negation. There
are different ways to motivate the axioms of KF and Halbach [33] develops a fuller
picture. KF can be seen as a generalization of CT, which is a subtheory of KF, or,
more naturally, as a generalization of a theory PT of a positive inductive definition
of truth and falsity [33, Sect. 8.7].

Although KF derives transfinitely iterated uniform reflection principles for its
base theory (i.e., PA in the current setting), KF cannot derive its own soundness due
to Gödel’s incompleteness theorem: namely, there is an LT -sentence ϕ (e.g., 0 = 1)
such that

KF �
(
BewKF(�ϕ�) → ϕ

)
.

Hence KF doesn’t derive the global reflection principle for itself:

KF � ∀x (
SentKF(x) ∧ BewKF(x) → T (x)

)
.

This factmay suggest one to iterateKF-truth as in the case ofRTα; c.f., [27].However,
Feferman [17] gave an argument against such iteration, and thereby explain why KF
(or Ref ∗(PA(P)) defined below in Sect. 3.2.3) is to be called reflective closure, that
is, why KF is to be seen as exhausting ‘what notions and principles one ought to
accept if one accepts the basic notions and principles of the theory’ [18, p.205].
Iterating KF would mean to adopt principles that go beyond what is implicit in the
acceptance of the base theory, that is, PA in the case considered here.

We sketch Feferman’s argument against using iterations of KF in order to define
the reflective closure ofPA. If one were to add axioms for a further truth predicate T ′,
that is, a truth predicate for the language of KF including the truth predicate T , one
would specify axioms for T ′ analogous to those for T . To this end, one would now
quantify over sentences in the full language with T ′ in axioms K4–K6; moreover,
one would treat T as just like another predicate of the base language and therefore
add the following axiom in analogy to K1 for the predicate T [17, p.40]:

∀s (
(T ′(T· s) ↔ T (s◦)) ∧ (F ′(T· s) ↔ ¬T (s◦))

)
(3.1)

From the logical truth ∀s (T (s◦) ∨ ¬T (s◦) and this axiom, we can derive the follow-
ing ‘totality’ claim:
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∀s (
T ′(T· s) ∨ F ′(T· s)

)
(3.2)

Therefore, by endorsing the new axiom (3.1), we would treat T as a ‘total’ or ‘deter-
mined’ predicate, just like the predicates of the base language. Feferman [17, p.40]
thereby concludes that ‘when iterating reflective closure we thus vitiate the informal
idea behind the use of partial predicates of truth and falsity.’ Hence, for Feferman,
KF is closed under the process of making explicit what are implicitly accepted in
accepting the basic notions and principles.

KF is a quite rich theory. Indeed, it is intimately related to an approach to pred-
icativity, to the theme of unfolding (see Feferman and Strahm [20], Feferman and
Strahm [21]), and it can be regarded as characteristic of a fruitful interaction between
the logical development of non-extensional concepts (classification, operation) and
semantical investigations. Further, it has a sort of mathematical appeal: it hinges
upon well-known lattice theoretical facts (Knaster–Tarski theorem), and it naturally
implies the existence of fixed points of arithmetically definable monotone opera-
tors. One can show that KF and the standard fixed point theory ÎD1 (see Feferman
[14]) are mutually interpretable, thus reducing the classification of proof theoretic
strength of KF to that of ÎD1. ÎD1 leads towards the foundations of intuitionistic type
theory and predicatively reducible subsystems of analysis. Below we summarize a
few important facts and results on KF.

3.1 Inner Logic and Outer Logic

The theory KF is sometimes criticized for yielding a discrepancy of its outer and
inner logic. Let us call {ϕ | ϕ is an LT –sentence and KF  ϕ} the outer theory of
KF and {ϕ | ϕ is an LT -sentence and KF  T (�ϕ�)} the inner theory of KF, and
also call the logic governing the former the outer logic ofKF and the logic governing
the latter the inner logic ofKF. 3 The inner logic ofKF is strongKleene logic whereas
its outer logic is classical logic; also the inner theory of KF fails to coincide with the
outer theory of KF. Hence, KF does not meet one of the desiderata that Leitgeb [44]
suggests for a theory of truth.

In order to develop a theory that is an axiomatization of Kripke’s theory with
strong Kleene logic that avoids this discrepancy, Halbach and Horsten [34] presented
a system based on strong Kleene logic. The resulting theory PKF has exactly the
same inner theories and outer theories. Halbach and Horsten [34] showed that PKF
proves significantly less arithmetical statements than the classical system KF. They
suggested that thusKF should not be seen as a formal device for generating theorems
in strongKleene logic: the use of the classical outer logic is indispensable for proving

3The notion of inner logic thus defined is ambiguous, because it is not clear enough how to extract
logic from a given set of sentences, and one sometimes simply identify outer/inner theories and
outer/inner logics. At any rate, the intended inner logic of KF is strong Kleene logic, and Halbach
and Horsten’s [34] result can be construed to have ‘shown’ that the inner logic of KF is indeed
strong Kleene logic.
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certain arithmetical theorems. Hence it is unlikely that a purely ‘instrumentalist’
interpretation of KF in the spirit of Reinhardt [50] is a viable option.

The difference between inner and outer logic is adumbrated in the Sect. 6.1.2 of
Feferman [17, p.40] on the informal interpretation of partial-self-applicable truth
predicate. There, considering the question as to whether Kripke’s [42] construction
corresponds to a (more or less) clear informal notion, Feferman finds it ‘reasonably
convincing’ that in the formulation of KF, T (�ϕ�) expresses that ϕ is a grounded
truth, that is, that the denotation of T is given by Kripke’s least fixed-point construc-
tion, understood in its full generality.4 As a consequence, the analogy with partial
computable predicates becomes helpful: Truth should be relative to given rules of
computation or inductive rules, and ought to be distinguished from our everyday
informal notion of truth with which classical logic is justified.

On the formal side, this leads to define for anLT -sentence ϕ to have a determined
truth-value, when KF  T (�ϕ�) ↔ ¬F(�ϕ�) holds, and to choose D to be the set
of all sentences with a determined truth-value, that is the set of all sentences that are
true or false, but not both (see the next subsection for a formal elaboration). This set
D is interpreted to apply to those sentences whose truth-value is determinable by
the rules of internal truth and falsity, while the complement of D is interpreted to
apply to those whose truth-value is not determinable by those rules, but still definite
in the sense that classical logic is justified with it. Hence, for instance, the statement
λ ∨ ¬λ is not an internal truth but true in our informal and, say, naïve platonistic
sense.

Those sentences with determined truth-value in this sense enjoy some nice prop-
erties. First, the laws of classical logic are provably true for all determined LT -
sentences5: namely, if ϕ1, . . . ,ϕk have determined truth-value, then each logical
axiom of classical logic involving these sentences is provably true in KF. Second,
more importantly, the T-schema holds when restricted to those sentences even with
the untyped truth predicate of KF: namely, it holds that, for all LT -sentence ϕ,
KF  D(�ϕ�) → (

T (�ϕ�) ↔ ϕ
)
.

3.2 Kripke–Feferman: The Proof Theoretic Side

The main result which is proven in Feferman’s paper on reflective closure is the
following:

Theorem 1
KF ≡ (�0

1-CA)<ε0 (3.3)

4He adds that the ‘facts’, on which T and F are grounded, may be representable as true (false)
sentences of any system (arithmetic, set theory, etc.) we come to accept as basic.
5As well as for total predicates, see Lemma 1.
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In general (�0
1-CA)<α is the theory of iterated jump up to any β < α.6

Let us outline the proof of the theorem, possibly following different routes.

3.2.1 Lower Bound

We exploit the foundational side of truth, as a way of interpreting non-extensional
predicate application, in order to show the main result of Feferman [17].

In order to enhance readability, we adopt the following shortenings:

(i) a(x) stands for the the term representing the operation of substituting the first
free variable of the expression encoded by a with the xth-numeral.

(ii) D(a) := SentKF(a) ∧ (T (a) ∨ T (¬· a)) ∧ ¬(T (a) ∧ T (¬· a)); D(a) means ‘a
is determined’;

(iii) non-extensional membership: x ∈ a := T (a(x)) ∧ ¬T (¬· a(x))); non-
extensional co-membership: x∈̄a := T (¬· a(x)) ∧ ¬T (a(x))

(iv) the class(ification) predicate Cl(a) := ∀xD(a(x)).

Then it is easily seen that the languageL2 of second order arithmetic can be regarded
as a sublanguage of LT .

In order to relate KF with standard subsystems of second order arithmetic, we
need a few additional definitions:

(i) A formula ϕ(x, �z) of LT is elementary in �z := z1, . . . zn iff it is inductively
generated from atoms of the form t = s, t ∈ zi , (1 ≤ i ≤ n) by means of ∧, ¬,
∀u, with u /∈ {z1, . . . zn}.

(ii) We say that Cl is closed under elementary comprehension iff for every ϕ(x, �z)
elementary in �z, then there exists a primitive recursive term sϕ(�z) such that,
provably in KF,

Cl(�z) → Cl(sϕ(�z)) ∧ ∀x(ϕ(x, �z) ↔ x ∈ sϕ(�z)). (3.4)

(iii) A family g of classes indexed by a class a is simply an index g of a partial
recursive function λn.{g}(n),7 such that ∀y(y ∈ a → Cl({g}(y)).

(iv) Finally, we say thatCl is closed under join iff, whenever f is a family of classes
indexed by a class a, there exists a term j (a, f ) whose elements are exactly
those ordered pairs (u, v) such that that u ∈ a and v ∈ { f }(u).

Lemma 1 The collection of classes is closed – provably in KF- under elementary
comprehension and join.8

6For a precise definition, see Feferman [17]. One can replace (�0
1-CA)<α in the statement of the

theorem and below with ramified analysis up to any level < α in a fixed formalization, provided α
has the form ωβ , β ≥ ω.
7We assume a standard formalization of standard recursion theory via the Kleene bracket relation.
8The statement can be used to interpret intoKF a basic system of Feferman’s Explicit Mathematics,
see Feferman [13].
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Proposition 1
(�0

1-CA)<ε0 ≤ KF (3.5)

Proof First of all, KF proves, for each α < ε0, the transfinite induction scheme
T I (ϕ,< α), for arbitrary formulas ϕ in the full language. This is well-known
(Gentzen–Schütte–Feferman) and it follows insofar as KF has the full number theo-
retic induction schema (see Lemma 4.3.2 in Feferman [17]). Then apply T I (ϕ,< α)

in conjunction with the previous lemma. �

The fact that the jump hierarchy is available inKF up to anyα < ε0 is crucial in order
to carry out a wellordering proof for each initial segment of the standardwellordering
of φε00 (see Feferman [17], appendix and Feferman [11]).

Lastly, it is not difficult to prove that KF can directly interpret the fixed point
theory ÎD1 (see Cantini [5, Sect. 3.11] and Halbach [33, Sect. 19.5]).

3.2.2 Upper Bound

We sketch two strategies for proving the upper bound direction of the theorem.

The first route: Kripke–Feferman as a fixed point theory. This route is essentially
Feferman’s route in Feferman [17] and consists of a reduction of KF to classical
subsystems of known strength.

The theory ÎD1 contains– besides the usual axioms for Peano arithmetic and induc-
tion schema for the whole language– fixed point axioms FP asserting the existence
of fixed points Iϕ for arbitrary elementary positive operators ϕ(x, P)9

∀x(ϕ(x, Iϕ) ↔ Iϕ(x)) (3.6)

but ÎD1 has no minimality schema.
By Aczel [2] it is known that ÎD1 has the same arithmetical theorems as PA with

the schema of transfinite induction for each initial segment of the canonical prim-
itive recursive wellordering of type φε00. The idea is to show that there are (not
necessarily minimal) �1

1-solutions to the fixed point Eq. (3.6) by standard diagonal-
ization, provably in the subsystem �1

1-AC0.10 The argument works in second order
arithmetic with arithmetical comprehension except that �1

1-AC0 is also required in
order to show that the result of replacing the parameter P bymeans of a�1

1-predicate
in a positive elementary operator can be still made equivalent to a �1

1-formula (see
Feferman [17], 4.2). The argument also holds when induction is restricted to arith-

9So ϕ(x, P) is a formula in the language of PA expanded with the new predicate symbol P and
positive in P .
10Concerning this subsystem and the corresponding one with full induction, see Simpson [57].
There are in the literature several strategies for classifying its proof-theoretic strength, which apply
either non-standard models (as in H. Friedman’s original proof) or some kind of proof theoretic
machinery (in papers by several authors, among them Feferman himself).
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metical formulae. For any system S, let S� be the system with the induction axioms
restricted to the language of arithmetic.

Theorem 2

(i) KF ≤ �1
1 -AC0

(ii) KF�≤ �1
1-AC0�

This is sufficient for calibrating KF and its subsystems.

The second route. The previous proof is simple but it has a disadvantage: it cannot
be adapted to deal with truth consistency (or minimality), i.e. if we want to consider
KF plus CONS:

∀x(SentKF(x) → ¬T (x) ∨ ¬F(x)) (CONS)

Of course, Axiom CONS rules out truth value gluts. That is, the axiom excludes
models where the extension and the antiextension of the truth predicate overlap and
sentences are simultaneously true and false. This restriction to consistent fixed points
is in line with Kripke’s [42] original account.

In order to analyzeKF plusCONS, we can easily apply methods from predicative
proof theory. Thus we devise a suitable sequent calculus version of KF, KF�, …,
choosing to rephrase KF� as a fixed point theory with consistency. This means that
we can easily find a formula T (x, P), formalizing the closure properties of the truth
predicate T (see Halbach [33], p. 281), i.e. such that ∀x(T (x, T ) ↔ T (x)).

Since we like to formalize KF and KF� as Tait calculi, the basic positive atoms
have the form: t = s, T (t), and the negative atoms are obtained by negating the
positive ones. An atom is simply a positive or a negative atom and we stipulate
that ¬¬ϕ := ϕ (ϕ atom). Formulas are inductively generated from atoms by clos-
ing under disjunction, conjunction, unbounded quantification. If ϕ is an arbitrary
formula, ¬ϕ is the formula which results from the negation normal form of ¬ϕ by
erasing each even sequence of occurrences of negation in front of atoms.

Let us expand LT with a new predicate symbol P . If Q := P, T , a formula ϕ of
LT is Q-positive (Q-negative) if every occurrence of Q in ϕ occurs within positive
(negative) atoms of the form Q(t) (¬Q(t)). A formula ϕ is Q-separated if ϕ is
Q-positive or Q-negative. A formula ϕ is Q-free if Q does not occur in ϕ. A Q-free
formula can be regarded as both Q-positive and Q-negative.

Definition 1 The system TKFc consists of:

• logical axioms of the form
�,¬ϕ,ϕ

�,¬t = s,ϕ[x := t],ϕ[x := s]

where ϕ is an atom (according to the previous definitions);
• axioms of the form �,� where � is an e-atom or a finite set of e-atoms; �

formalizes the standard axioms for zero, successor, or the defining equations for
the function symbols of LT ;
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• standard logical rules (see Schwichtenberg andWainer [55]) for introducing∧,∨,
∀, ∃ and the cut rule:

�,ϕ �,¬ϕ

�

• T -consistency:

�,¬SentKF(t),¬T (t),¬T (¬· t)

• induction rule for classifications: if t is an arbitrary term,

�,Cl(a) �, 0 ∈ a �,∀x(x ∈ a → (x + 1) ∈ a)

�, t ∈ a

• T -closure:

�, T (t, T )

�, T (t)

• T -soundness:

�,¬T (t, T )

�,¬T (t)

TKF is the calculus which is obtained from TKFc by replacing the induction rule
for classes by full number-theoretic induction rule, that is, if ϕ(x) is an arbitrary
formula of LT an arbitrary term,

�,ϕ(0) �,∀x(ϕ(x) → ϕ(x + 1))

�,ϕ(t)

If S := TKFc,TKF, we can inductively define a derivability relation with explicit
tree height and suitable cut complexity, so that the following holds:

Lemma 2 (Partial Cut-elimination) Every TKFc-derivation D can be effectively
transformed into a TKFc-derivation of the same end-sequent, where cut–formulas
are T -separated.

The argument is standard; it essentially depends on the fact that the active formulas
in the axioms and in the conclusions of the mathematical inferences (in particular,
number theoretic induction) are T -separated. It is also obvious that the system TKFc

(TKF) proves the sequents corresponding11 to the theorems ofKF�(KF) plusCONS.

Approximating truth by its finite levels. By Lemma2 it is then possible to approx-
imate truth by its finite levels and hence to eliminate truth from LT .

11Under the obvious translation of the language of KF, KF� into the Tait framework.
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Definition 2 Let ⊥ = 0 = 1; then

T 0(t) = 0 = 1 (3.7)

Tm+1(t) = T (t, Tm)) (3.8)

Clearly each formula in the sequence belongs to the language LPA.
If ϕ is any formula in negation normal form, let ϕ[m, n] be obtained from ϕ by

replacing each atom of the form T (t) (¬T (t)) by T n(t) (¬Tm(t)).
Finally, a derivation D of TKFc is quasi-normal provided all cut–formulas in D

are T -separated.

Theorem 3 Let D be a quasi-normal TKFc-derivation of � with height k. Then,
provably in PA, for every m > 0,12 if H(m) := m + 2k:

�[m, H(m)] (3.9)

The proof is by induction on the height k of the given derivation. The soundness of
the asymmetric interpretation – with respect to PA-provability, relies on the fact that
cut formulas are always T -separated and on standard persistence properties.13 On
the other hand, restriction to classes has the effect that number theoretic induction for
LPA-formulas is enough, as a consequence of the fact that for each given m, Tm(t)
is an arithmetical formula14 As to the verification of consistency, it reduces to verify
by outer induction on m

∀x(SentKF(x) → ¬Tm(x) ∨ ¬Tm(¬· x)) (3.10)

Since the transform ϕ �→ ϕ[m, n] is the identity function on formulas of LPA, we
eventually conclude that

Corollary 1 If TKFc  ϕ and ϕ ∈ LPA, then PA  ϕ.

Theorem 4

(i) PA ≡ KF� +CONS
(ii) (�0

1-CA)<ε0 ≡ KF + CONS

As to KF + CONS ≤ (�0
1-CA)<ε0 : by lifting the previous method to the case of

systems with full number theoretic induction. This can be carried out by standard
embedding into systems with ω-rule (see Schwichtenberg and Wainer [55]).

12In general, if � := {ϕ1, . . . ,ϕq }, �[m, n] := {ϕ1[m, n], . . . ,ϕq [m, n]}.
13Thismeans that, if 0 < m2 ≤ m1 ≤ k1 ≤ k2,� is a set of formulas such that�[m1, k1],� is deriv-
able in PA, then �[m2, k2],� is also PA-derivable, leaving height and cut complexity unchanged.
14Note, however, that its logical complexity increases with m.
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3.2.3 From Ordinary Reflective Closure to Schematic Reflective
Closure

Equation 3.4 means that the ordinary reflective closure of arithmetic is in fact equiv-
alent to predicative analysis of any level up to the first ε-number ε0 i.e. roughly to the
fragment of second order arithmetic, which is based upon transfinite iteration up to
ε0 of the standard arithmetical comprehension

(∃X)(∀u)(u ∈ X ↔ ϕ(u)),

ϕ being a formula containing only number theoretic quantifiers and possibly free
second order variables.

The notion of ordinary reflective closure can then be extended by a suitable sub-
stitution rule in order to answer the problem of which schemata can be regarded as
implicit in accepting a given list of schematic axioms and rules. The substitution rule
has the form

ϕ(P)

ϕ(x̂ψ(x))

where ϕ is a formula of LPA with an additional predicate symbol P , ψ is a formula
of the language LT expanded with P , and ϕ(x̂ψ(x)) is the formula obtained by
replacing the atoms of the form P(t) in ϕ(P) by ψ(t).15 Informally, the rule allows
us to make inferences from schemata accepted in the original arithmetical language
to schemata of the language with reflective means (i.e. self-referential truth). It turns
out that the resulting notion of schematic reflective closure Ref ∗(PA(P)) yields an
alternative unramified characterization of predicative analysis (see Feferman [17]):

Ref ∗(PA(P)) ≡ (�0
1-CA)<�0;

this proof-theoretic16 equivalence still holds even when we add consistency (CONS)
to Ref ∗(PA(P)). The theorem witnesses that investigations deriving from formal
semantics and paradoxes have reached a high level of integration with different
areas of foundational investigations; for instance, while the lower bound result is
actually a refinement of typical predicativewell-ordering techniques, the upper bound
theorem can be achieved by techniques and results from reductive proof theory (see
Feferman [12]).

Remarks

(i) The main result about reflective closure (either ordinary or schematic) still holds
once consistency (CONS) is replaced by the completeness axiom, i.e.

15With the obvious proviso ensuring that no clash of variables occurs.
16�0 is the first strongly critical ordinal, which is known to be the limit of predicative provability
in the sense of Feferman and Schütte.
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(∀x)(SentKF(x) → (T (x) ∨ F(x)).

This axiom, which is true in the greatest fixed point of the Kripkean operator for
self-referential truth, rules out truth value gaps in the sameway as the consistency
axiom(CONS) rules out truth valuegluts.Kripke [42] consideredonly consistent
fixed point (that is, fixed points without overlapping extension and antiextension
of truth). But later Visser [60] and others generalized the approach to fixed points
where extension and antiextension are allowed to overlap and thus a sentence
can be simultaneously true and false.

(ii) It turns out that suitable variants of ‘reflective closure’ can be profitably applied
as tools for proof-theoretic investigations: for instance, as an intermediate step
for computing the proof theoretic strength of transfinitely iterated fixed point
theories (see Jäger et al. [38]).

3.2.4 Digression: KF with Minimality

Many philosophers think that the minimal fixed point model of Kripke’s [42] theory
is the most natural. It gives a picture of grounded truth: The truth and falsity of any
sentence ultimately depends on the truth and falsity of non-semantic sentences, that
is, sentences that do not contain the truth or falsity predicates. In other fixed points
that are not minimal ungrounded sentences such as a truth teller sentence can be true
and false as well.

KF is the theory of all fixed point models of the monotone operator specifying the
clauses for reflective truth. Consequently,KF doesn’t decide the truth teller sentence.
If one aims at a theory of the minimal fixed point and thus of grounded truth, one can
try to add axioms that exclude fixed point models that are not minimal. Of course,
this is conceptually relevant for the whole enterprise of truth: think of the important
distinctions that arise from considering the plurality of truth predicates (grounded
sentence, paradoxical sentence, intrinsic, etc. see Kripke [42]).

Definition 3

(i) KF + GID: see Cantini [5]. GID is the schema

∀x(ϕ(x, x̂ψ(x)) → ψ(x)) → ∀x(x ∈ Iϕ → ψ(x)) (3.11)

where ψ is an arbitrary formula, Iϕ is obtained by diagonalization (Lemma 3.9,
[5]), ϕ(x, P) is an elementary positive (in P) operator in the language of LT

with an additional predicate variable, P positive.17

(ii) KFμ (Truth with minimality, see Burgess [4]): it is the fragment of KF� with
(i) only the composition principles, e.g. ∀x(T (x, T ) → T (x));

17Of course, represented in LT , so that P(t) is translated into t ∈ p, p fresh variable; ϕ(x,ψ) is
obtained by the substitution t ∈ y �→ ψ(t). The schema (3.11) claims that Iϕ represents the least
fixed point of the monotone operator defined by ϕ(x, P) in a given arithmetical model.
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(ii) the schema: if ψ is an arbitrary formula,

∀x(T (x, x̂ψ(x)) → ψ(x)) → ∀x(T (x) → ψ(x)) (3.12)

Then KFμ proves the decomposition axioms and the consistency axiom. Also, it
explicitly refutes statements that fail in the least fixed point model. Clearly KFμ� has
an inner model in KF� +GI D (see proposition 3.12, Cantini [5]).

As to the upper bound, we can apply the proof-theoretic methods of Cantini [7]
to KFμ�.

As to the lower bound, let IDacc
1 be the theory of accessibility inductive defini-

tions over PA, which is known to be proof-theoretically equivalent to the theory of
elementary inductive definitions. Then we can lift to the present context a suitable
version of the so-called bar-induction schema, which goes back to Kreisel:

Theorem 5 If ≺ is a binary relation which is determined,18 then the schema of
transfinite induction on the largest well-founded part W (≺) of ≺ holds for arbitrary
formulas ϕ, provably in KFμ.

The proof takes inspiration from an analogous result of Friedman and Sheard
[25]; it is also exploited by Burgess [4]. Hence we have by the previous theorem:

Corollary 2 IDacc
1 is interpretable in KFμ.

3.3 Related Works Inspired by KF

KF is nowadays considered to have brought the birth to the subject called axiomatic
theories of truth as an area of logical research in its own right. A variety of formal
theories of truth not in a semantic form but in an axiomatic form have been presented
since KF. Some try to axiomatize known semantic theory or construction of truth as
KF does for Kripke’s theory of truth; others take more purely axiomatic approach by
considering what combinations of truth-theoretic principles are possible (consistent)
and plausible. Friedman and Sheard [25] listed nine natural and naïvely correct
postulates of truth, which are inconsistent altogether, and determined the maximal
consistent combinations of them.The other two theories of Feferman’s ownpresented
below would be counted in the latter ‘purely axiomatic’ type of axiomatic theories of
truth as well. Cantini [6] presented a system that can be regarded as an axiomatization
of Kripke’s least fixed-point truth with supervaluation schema. Horsten et al. [36]
made an attempt to axiomatize Gupta–Belnap–Herzberger revision theoretic truth.
There are far more examples that we could list here, and the subject is still lively
developing.

18I.e. total in the sense of T , F , see Sect. 3.2.1.
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4 Type-Free T-Schema with Reinterpreted Biconditional

The second theory of truth by Feferman [15] was originally intended to provide
a uniform type-free treatment for set-comprehension and truth-predication, both of
which notoriously yield a contradiction with their naïve formulations. Feferman [18]
described the purpose of the theory as ‘pragmatic’; particularly, on the side of set-
comprehension, the theory was presented for the purpose of suitably and consistently
dealing with natural type-free statements that mathematicians would like to make,
for instance, in category theory. However, he later gave it a reformation into a theory
of deflationist truth in Feferman [19].

The core idea behind the theory is to formally interpret the informal biconditional
‘if and only if’ in the Comprehension Axiom and T-schema, not as the material
biconditional ↔, but as another new primitive logical connective ≡ so that ≡ pre-
serves certain essential connotations or characteristics of the informal biconditional
but still avoids a contradiction. Let us restrict ourselves to his theory of truth. The
T-schema is expressed in English as

�ϕ� is true if and only if ϕ (4.1)

for arbitrary ϕ ∈ LT . If we interpret ‘if and only if’ by the standard material bicon-
ditional ↔, then the resulting translation of (4.1) is inconsistent. Hence, Feferman
introduces a new binary connective ≡ into the syntax of a theory, and add the fol-
lowing as a new axiom schema that meant to interpret (4.1):

T (�ϕ�) ≡ ϕ,

for arbitrary ϕ ∈ LT .
Since ≡ is a newly introduced connective separate and independent of any other

standard connectives such as → and ¬, a suitable axiomatic characterization should
be provided for it, and also such a characterization should be so made that ≡ is seen
as representing the informal biconditional ‘if and only if’ at least in the context of
our discourse involving truth.

Feferman [15] initially gave a semantic characterization of≡, where he describes
how to define the extension of a truth predicate and the semantic evaluation rule
for the new connective ≡ over a given model of a base theory. The construction
goes as follows. We start with an arbitrary model M with a domain M of a base
theory B over a language L. For the simplicity of argument, we take LPA and PA to
be L and B respectively in what follows. Recall that we defined LT = LPA ∪ {T }.
Let LT (≡) be a language obtained by augmenting LT with the connective ≡. We
first give the Kripkean least fixed-point construction of truth overM with a suitable
partial logic such as strong Kleene or 3-valued Łukasiewicz logic, and let X ⊂ M be
the extension of the predicate T in thus constructed fixed-point semantics over LT

with the partial logic we have chosen. Now, for eachLT (≡)-formula ϕ, let us denote
by ϕ∗ the LT -formula obtained by replacing all the occurrences of ≡ in ϕ with the
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material biconditional↔. Then, we expand the base modelM to anLT (≡)-structure
M(≡) by putting

• M(≡) |= T (a), iff a = �σ� for some LT (≡)-sentence σ and σ∗ is contained in
thus constructed Kripkean truth, and

• M(≡) |= ϕ ≡ ψ, iff ϕ∗ and ψ∗ have the same semantic value in the fixed-point
semantics;

note that ≡ is now changed to ↔ in ϕ∗ and ψ∗ and it is evaluated according to the
partial logic we chose in the fixed-point semantics; the evaluation of LPA-atomics
in M(≡) are the same as M, and the other logical connectives and quantifiers are
classically evaluated inM(≡). Hence, an informal reading ofϕ ≡ ψ is ‘the semantic
values of ϕ and ψ coincides in the Kripke’s least fixed-point semantics’, and thus
since the Kripkean construction gives the same semantic value to T (�ϕ�) and ϕ for
all LT -sentences ϕ it holds that

M(≡) |= T (�ϕ�) ≡ ϕ, for all LT (≡)–sentences ϕ. (4.2)

Under this interpretation ≡ enjoys several desired properties. Let t := 0 = 0 and
f := 0 �= 0: namely, t and f respectively stand for definitely true and false sentences.
Then we define D(ϕ) to abbreviate (ϕ ≡ t) ∨ (ϕ ≡ f), which informally expresses
‘ϕ is determinate.’ Then, we can show that M(≡) is a model of the following.

S1 T �ϕ� ≡ ϕ for all LT (≡)-sentences ϕ
S2 ≡ is an equivalence relation
S3 t �≡ f
S4 ≡ preserves all the connectives and quantifiers including ≡ itself; e.g., ((ϕ ≡

ψ) ∧ (σ ≡ χ)) → ((ϕ ≡ σ) ≡ (ψ ≡ χ)) ∧ ((ϕ ∨ σ) ≡ (ψ ∨ χ)).
S5 D(ϕ) for all LPA-sentences.
S6 D is closed under ¬, ∨, and ∀.
S7 (ϕ ≡ t → ϕ) ∧ (ϕ ≡ f → ¬ϕ).

Proof S1 immediately follows from (4.2). S2 and S4 are obvious from the evaluation
for≡. S3 and S5 hold since the fixed-point semantics does not change the evaluations
of LPA-sentences. S6 is due to the evaluation schema of the logic we chose. Finally
we can show S7 by induction on ϕ. �

Later Feferman [19] adopted these seven properties of ≡ as the axioms of a
deflationist theory of truth which he calls S. There he interprets deflationism in the
form that the proposition T �ϕ� is evaluated in the sameway asϕ and they are thereby
equated even if they do lack a determined truth value19; hence the aforementioned
informal reading of≡well fits in this interpretation. Furthermore, since anymodel of
PA can be expanded to amodel ofS,S is conservative overB; it is even ‘semantically

19This intuition yields a model in a suitable infinitary combinatory logic, as detailed in Aczel and
Feferman [3].
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conservative’ over B in the sense of Craig and Vaught [8]. Thus it satisfies the
‘conservativeness requirement’ for deflationist theories of truth.20

Remark 1 Several extra axioms can be still conservatively added to S. For instance,
we may consider the following further axioms for S.

S8 (ϕ ∨ ψ) ≡ t ↔ ϕ ≡ t ∨ ψ ≡ t.
S9 ∃xϕ(x) ≡ t ↔ ∃x(ϕ(x) ≡ t).

S10 (ϕ ≡ ψ) ≡ t ↔ ϕ ≡ ψ.
S11 (ϕ ≡ ψ) ≡ t ↔ D(ϕ) ∧ D(ψ) ∧ (ϕ ≡ ψ).
S12 D is strongly compositional with respect to the connectives and quantifiers

except ≡; e.g., D(ϕ ∨ ψ) ↔ D(ϕ) ∧ D(ψ).

Which of them can be conservatively added to S depends on which partial logic
we choose in the construction of the Kripkean fixed-point semantics over M. For
instance, ifwe choose 3-valuedŁukasiewicz logic, thenwecan show that the resulting
semanticsM(≡) is a model of S8–S10 and thus they can be conservatively added to
S; if we choose strong Kleene logic instead, S8–S9 and S11 are satisfied in M(≡)

and thus can be conservatively added to S; by choosing weak Kleene logic, we can
also see that S11–S12 can be conservatively added to S.

5 Determinate Truth

In the system S of the previous section one has the unrestricted T-schema. However,
the biconditional in the T-schema is no longer the classical biconditional ↔ but
rather the nonclassical ≡. This is the price for the unrestricted T-schema. Instead of
having the unrestricted T-schema and a nonclassical biconditional, one can restrict
the T-schema to well-behaved sentences and then have the full classical T-schema
and all other truth-theoretic axioms one might want to have. Feferman [18] pursued
this strategy with his system DT.

Of course the restriction needs to be well motivated. According to Russell [52],
every predicate P has a domain of significance D and it makes sense to apply P only
to objects in D and the principles which are supposed to characterize (or axiomatize)
the concept expressed by P are meant to be only about the objects in D. Hence,
in the case of truth, if such a domain is appropriately given and if no contradictory
sentences, such as the liar sentence, are contained in D, the naïve truth-theoretic
principles, such as Tarski’s T-schema, can be safely postulated. For Feferman such

20Deflationism is a claim that truth is a ‘metaphysically thin and insubstantial’ notion and a merely
logico-linguistic device for generalization and implicit endorsement. It is often argued that defla-
tionist theory of truth should be conservative over a base theory, since otherwise the addition of
a truth predicate would yield something that was not obtained without the help of it in the base
theory. See also footnote 2 above. Shapiro [56] andMcGee [47] discuss model-theoretic or semantic
conservativeness.
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a domain D for the case of truth consists of the sentences that are meaningful and
determinate,21 that is, have a definite truth value, true of false.

Let us assume that our base theory is PA as before. A theory of truth based on
the above view have two predicate T and D representing truth and its domain of
significance; namely, the language LDT of DT is LPA ∪ {T, D}. It is plausible for
him to require that the condition on the domain D of significance for any predicate
P should be prior to the conditions on P; in the current context, an axiomatic char-
acterization of D should be given without appealing to T . Feferman takes strong
compositionality as the axiomatic characterization of the domain D of significance
for T . Namely, D is closed under the propositional operations and quantifiers, and,
conversely, a sentence is meaningful only if all of (the substitution instances of) its
parts are meaningful. Thus conceived strong compositionality can be axiomatized as
follows:

D1 ∀x (
AtSentPA(x) → D(x)

)

D2 ∀s (
D(T· s) ↔ D(s◦)

)

D3 ∀x (
SentDT(x) → (

D(¬· x) ↔ D(x)
)

D4 ∀x∀y (
SentDT(x ∨· y) → (

D(x ∨· y) ↔ (Dx ∧ Dy)
))

D5 ∀v∀x (
SentDT(∀· v.x) → (

D(∀· v.x) ↔ ∀t D(x[t/v])))

The formula AtSentPA stands for the set of all atomic LPA-sentences, and SentDT
for the set of sentences of LDT. The axiom D1 does not come from the strong
compositionality requirement in question but from the common and plausible view
that the sentences of the base language,which contains no semantic predicates, should
be non-paradoxical, determinate, and counted in the domain of the significance of T .

The T-schema and other truth-theoretic principles are accordingly restricted to
such sentences. For instance, the T-schema is formulated as follows:

D(�ϕ�) → (T (�ϕ�) ↔ ϕ), for all LDT-sentences ϕ. (5.1)

Feferman points out that thus formulated T-schema yields the following intimate
connection of D and T as a special phenomenon particular to the case of truth:

D(�ϕ�) ↔ (
T (�ϕ�) ∨ T (�¬ϕ�)

)
(5.2)

Its proof goes as follows. Suppose D(�ϕ�) for one direction. By D3 we have
D(�¬ϕ�). Hence, (5.1) yields T (�ϕ�) ↔ ϕ and T (�¬ϕ�) ↔ ¬ϕ. Finally, the
law of excluded middle ϕ ∨ ¬ϕ entails T (�ϕ�) ∨ T (�¬ϕ�). Suppose (T (�ϕ�) ∨
T (�¬ϕ�)) for the converse. Since T only applies to its domain of significance D,
we have D(�ϕ�) ∨ D(�¬ϕ�). Hence D(�ϕ�) follows from D3. Feferman then gen-
eralizes (5.2) to a universal statement and postulates

D0 ∀x(D(x) ↔ (T (x) ∨ T (¬· x))
)

21Feferman [17] adopts the term ‘determined’ for a similar notion; see p. 20.
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Thereby, specially in the case of truth, the domain predicate D becomes definable in
terms of T and redundant. Indeed, Feferman [18] does not take a predicate D as a
primitive predicate for this reason. Instead he formulates DT overLT and introduces
Dx as a mere abbreviation of T (x) ∨ T (¬· x). Therefore let us assume LDT = LT in
what follows.

Given these characterizations of D, Feferman formulates the axioms for T as the
the compositional Tarskian clauses restricted to D:

D6 ∀s ∀t (T (s =. t) ↔ s◦ = t◦)
)
, and similarly for other predicates of LPA

D7 ∀s (
D(s◦) → (

T (T· s) ↔ T (s◦))
)

D8 ∀x (
SentDT(x) ∧ D(x) → (

T (¬· x) ↔ ¬T (x)
)

D9 ∀x∀y (
SentDT(x ∨· y) ∧ D(x ∨· y) → (

T (x ∨· y) ↔ (T (x) ∨ T (y))
))

D10 ∀v∀x (
SentDT(∀· v.x) ∧ D(∀· v.x) → (

T (∀· v.x) ↔ ∀tT (x[t/v])))

Let us denote byDTw the axiomatic system comprisingPA plus D0–D10 augmented
by the expanded induction for SentDT. We can easily show by induction on formulae
that (5.1) is a theorem of DT. This DTw is a straightforward axiomatization of
Feferman’s view described so far and is already proof-theoretically pretty strong;
DTw is proof-theoretically equivalent to KF and indeed identical as theories with
WKF + CONS, the Kripke–Feferman system for weak Kleene logic plus the axiom
of consistency; see [26] for more details. However, he sees some defects in DTw as
a theory of truth and slightly amends it.

We can standardly show that DTw proves the global reflection principle as KF
does: i.e.,

DTw  ∀x(BewPA(x) → T (x)
)
.

However, in contrast to KF, DTw does not prove the truth of the global reflection
principle. Feferman requires for an adequate theory of truth to derive it and thereby
suggests to amend DTw.

Let us first see how its proof goes in KF. In addition to the global reflection
principle, both KF and DTw derive ∀s(T (T· s) ↔ T (s◦)

)
as well as

∀x
((
T (�BewPA(ẋ)�) ↔ BewPA(x)

) ∧ (
T (�¬BewPA(ẋ)�) ↔ ¬BewPA(x)

))
.

Hence, it follows from these that both KF and DTw derive

∀x (
T (�BewPA(ẋ)�) → T (T· ẋ)

)
.

By using the equivalence of ϕ → ψ and ¬ϕ ∨ ψ, we obtain

∀x (
T (�¬BewPA(ẋ)�) ∨ T (T· ẋ)

)
. (5.3)
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However, one has to verify in DTw that ∀xD(T x), in order to proceed from (5.3)
to ∀x(T �¬BewPA(ẋ) ∨ T x�), but ∀xD(T x) is incompatible with the view behind
DTw and indeed underivable in DTw; in contrast, KF can immediately derive it
via the axioms K4 and K5 and thereby the truth of the global reflection principle.
Given this observation, Feferman proposes to treat→ as separate basic propositional
connectives from∨ and¬, not identifying ϕ → ψ with¬ϕ ∨ ψ, and then postulates
an independent axiom for themeaningfulness and determinateness of the sentences of
the formϕ → ψ. Namely, he postulate the following two axioms for the conditional:

D11 ∀x∀y
(
SentDT(x →· y) → (

D(x →· y) ↔ (
D(x) ∧ (T (x) → D(y))

)))

D12 ∀x∀y
(
SentDT(x →· y) ∧ D(x →· y) → (

T (x →· y) ↔ (T (x) → T (y))
))

It is true, as Feferman himself points out, strong compositionality in the aforemen-
tioned sense is not met with respect to the conditional ‘→’, since D11 indicates that
if ϕ is false then D(�ϕ → ψ�) may hold even when D(�ψ�) fails, but he argues
that it is rather natural since we do not care whether D(�ϕ → ψ�) holds when ϕ is
definitely false. Thereby the systemDT of determinate truth is defined to be PA plus
D0–D12 augmented by the expanded induction schema for LDT.

A closer inspection reveals that DT is very intimately related to KF. KF is an
“axiomatization” of Kripke’s fixed-point semantics with strong Kleene logic. Natu-
rally wemay consider a similar “axiomatization” of the Kripkean fixed-point seman-
tics with other logics. We have already mentioned such a theory for weak Kleene
logic, which is related to DTw. As a matter of fact, DT is identical with such a KF-
style axiomatization of the Kripkean fixed-point semantics with what we call Aczel–
Feferman logic, plus the axiom of consistency CONS; namely, the inner logic of
the KF-style system is Aczel–Feferman logic; see Fujimoto [27] for details.22 Here
we mean by Aczel–Feferman logic a variant of weak Kleene logic with an indepen-
dent evaluation for the conditional ‘→’ than that for ∨ and ¬; in Aczel–Feferman
logic, ‘→’ is not defined away in terms of ‘¬’ and ‘∨’ and the evaluation of ‘→’ is
determined by the following separate truth table:

→ T U F
T T U F
U U U U
F T T T

Hence, from a purely technical point of view, Feferman’s theory of determinate truth
essentially boils down to his own axiomatization of Kripkean fixed-point semantics,
and therefore DT is proof-theoretically equivalent to KF. Also, if we extend DT in
the same way that we extend the reflective closure of PA, i.e., KF, to its schematic
reflective closure, the resulting theory has the strength of the predicative limit �0.

22What Aczel [1] does in his construction of Frege structure essentially amounts to the construction
of Kripkean fixed-point semantics with Aczel–Feferman logic.
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Remark 2 Feferman [18] raised two conjectures about the strength of the theories of
determinate truth over PA, and the conjectures have been first settled by constructing
a direct interpretation of them in KF and Ref ∗(PA(P)) in Fujimoto [26], but indeed
the construction of Sect. 3.2.2 can also be adapted to the system DT (over PA), in
order to produce an alternative proof of the first conjecture.

6 The Impact of Feferman’s Work on Truth

We have mentioned already some further research inspired by Feferman’s work.
However, we don’t aim at a survey of the impact of his work, because the impact is
far too wide-ranging to be summarized in a few pages. Moreover, an assessment of
the reception of Feferman’s work is made harder by the fact that his work has been
studied by different communities: In mathematical logic proof theorists have worked
most extensively on Feferman’s system and their variants; but set theorists have also
availed themselves to Feferman’s ideas (see Koellner [39]).

Also in philosophy Feferman’s work has been fruitful not only for one topic. For
once, Feferman advanced the use of truth as a primitive concept in the foundations
of mathematics. Of course, this was his main motivation in the seminal Reflecting
on Incompleteness. Generally Feferman didn’t put so much emphasis on his theories
as attempts to resolve the liar paradox; rather he was after theories of truth (and
comprehension) that prove useful for foundational purposes.Of course, the paradoxes
have to be addressed in some way, but the analysis of the paradoxes themselves
doesn’t figure very prominently in Feferman’s work. Philosophers – among them
Reinhardt [50], McGee [46] and Field [24] – have discussed Feferman’s systems
from the perspective of the theory of paradoxes. In this respect they also proved very
fruitful.

One aspect of Feferman’s work that hasn’t been fully exploited is its relevance
for the discussion about deflationism. Of course in some way, deflationists have
employed ideas from Feferman’s papers. In particular, Field’s [24] recent research
programme is verymuchmotivated by deflationist or disquotationalist considerations
and Field acknowledges Feferman’s influence.

In particular, much of the work of Field and the work inspired by it can be seen as
a continuation of Feferman’s [15]: The challenge is to obtain the full T-schema in an
extension of classical logic with a reasonably behaved conditional (or biconditional).

Deflationists have often seen truth as a device for expressing generalizations
and infinite conjunctions (see Horwich [37] and Halbach [31]). Feferman’s proof-
theoretic analysis – more specifically the proof of the lower bound in Feferman [17,
Sects. 4.3 and 5.3] – proceeds in terms of infinite conjunctions. While the discussion
about the purpose of truth as a device of expressing infinite conjunctions usually
remains somewhat metaphorical in the literature on deflationist, Feferman’s analysis
offers a precise conceptual analysis on the usability of truth for expressing infinite
conjunctions. This is just one aspect of Feferman’s work that offers scope for future
philosophical research.
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Abstract This paper is primarily concerned with assessing a set-theoretical system,
S∗, for the foundations of category theory suggested by Solomon Feferman. S∗ is
an extension of NFU, and may be seen as an attempt to accommodate unrestricted
categories such as the category of all groups (without any small/large restrictions),
while still obtaining the benefits of ZFC on part of the domain. A substantial part
of the paper is devoted to establishing an improved upper bound on the consistency
strength of S∗. The assessment of S∗ as a foundation of category theory is framed by
the following general desiderata (R) and (S). (R) asks for the unrestricted existence
of the category of all groups, the category of all categories, the category of all
functors between twocategories, etc., alongwith natural implementability of ordinary
mathematics and category theory. (S) asks for a certain relative distinction between
large and small sets, and the requirement that they both enjoy the full benefits of the
ZFC axioms. S∗ satisfies (R) simply because it is an extension of NFU. By means
of a recursive construction utilizing the notion of strongly cantorian sets, we argue
that it also satisfies (S). Moreover, this construction yields a lower bound on the
consistency strength of S∗. We also exhibit a basic positive result for category theory
internal to NFU that provides motivation for studying NFU-based foundations of
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1 Introduction

The foundations of category theory has been a source of many perplexities ever since
the groundbreaking 1945-introduction of the subject by Eilenberg and Mac Lane;
e.g., how is one to avoid Russell-like paradoxes and yet have access to objects that
motivate the study in the first place, such as the category of all groups, or the category
of all topological spaces? Solomon Feferman has grappled with such perplexities for
over 45 years, as witnessed by his six papers on the subject during the period 1969–
2013 [6, 7, 9–11, 13]. Our focus in this paper is on two important, yet quite different
set-theoretical systems proposed by Feferman for the implementation of category
theory: the ZF-style system ZFC/S [6] and the NFU-style system S∗ [7, 11]; where
NFU is Jensen’s urelemente-modification of Quine’s New Foundations system NF
of set theory.1

Our assessment of Feferman’s systems ZFC/S and S∗ will be framed by the
following general desiderata (R) and (S) of the whole enterprise of building a set-
theoretical foundation for category theory. (R) is derived from Feferman’s work,
especially [7, 11], while (S) is extracted from Shulman’s excellent survey [25]. Both
(R) and (S) will be elaborated in Sect. 2.1.

(R) asks for the unrestricted existence of the category of all groups, the category of
all categories, the category of all functors between two categories, etc., along
with natural implementability of ordinary mathematics and category theory.

(S) asks for a certain relative distinction between large and small sets, and the
requirement that they both enjoy the full benefits of the ZFC axioms.

Feferman’s choice for a system to meet the demands of (R) was motivated by the
fact that in contrast with ZFC-style systems, NFU accommodates a universal set of all
sets, as well as the category of all groups, the category of all categories, etc. However,
in order to deal with the fact that NFU is not powerful enough to handle some parts
of ordinary mathematics and category theory, Feferman proposed an extension of
NFU, called S∗, which directly interprets ZFC by a constant, and he established the
consistency of S∗ assuming the consistency of ZFC+ ∃κ∃λ “κ < λ are inaccessible
cardinals” [7]. In our expository account of Feferman’s work on S∗, we refine Fefer-
man’s results in two ways: we show that S∗ interprets a significant strengthening of
the Kelley-Morse theory of classes; and we also demonstrate the consistency of a
natural strengthening S∗∗ of S∗ within ZFC+ ∃κ “κ is an inaccessible cardinal”.

A widely accepted partial (partial because it is absolute, not relative) solution to
(S) was chosen by Saunders Mac Lane in his standard reference “Categories for the
Working Mathematician” [20], namely the theory ZFC+ ∃κ “κ is an inaccessible
cardinal”. Here the sets of rank less than a fixed inaccessible cardinal are regarded as
small. A similar (but full, i.e. relative) solution to (S) due to Alexander Grothendieck,

1Feferman [9, 13] has put forward poignant criticisms of the general case of using category theory
as an autonomous foundation for mathematics. Moreover, he suggested that a theory of operations
and collections should also be pursued as a viable alternative platform for category theory; e.g.
systems of Explicit Mathematics [8] and Operational Set Theory [12].
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requires the existence of arbitrarily large inaccessible cardinals. However, as demon-
strated by Feferman [6], the needs of category theory in relation to (S) can already be
met in a conservative extension ZFC/S of ZFC, thus fully satisfying (S), albeit with
the consequence that, while workingwith categories and functors in this foundational
system, one often needs to verify that they satisfy a property called small-definability.

Besides the aforementioned fine-tuning of Feferman’s results on S∗, our paper also
has two other innovative features that were inspired by Feferman’s work. One has to
do with the observation that the category Rel in NFU has products and coproducts
indexed by {{i} | i ∈ V } (the same existence result also holds for coproducts in Set).
The importance lies in that it marks a divergence from the analogous category of
small sets with relations (respectively functions) as morphisms in a ZFC setting;
this situation in ZFC is clarified by a theorem of Peter Freyd, which we prove in
detail (Freyd’s theorem also serves to exemplify why the large/small distinction is
important for category theory). We consider this positive result on the existence of
some limits for Rel and Set in NFU, to strengthen the motivation for exploring
NFU-based foundations of category theory. Thus, another innovative feature is our
proposal to champion the system NFUA (a natural extension of NFU) in meeting
the demands imposed by both (R) and (S). It is known that NFUA is equiconsistent
with ZFC + the schema: “for each natural number n there is an n-Mahlo cardinal”.2

This puts NFUA in a remarkably close relationship to the system ZMC/S, which is
a strengthening of ZFC/S suggested by Shulman [25] as a complete solution to (S).

2 Requirements on Foundations for Category Theory

2.1 The Problem Formulations (R) and (S)

Wewill nowelaborate eachof the desiderata (R) and (S)mentioned in the introduction
by more specific demands. The following requirements have been obtained from
Feferman [7, 11].

(R1) For any given kind of mathematical structure, such as that of groups or topo-
logical spaces, the associated category of all such structures exists.

(R2) For any given categories A and B, the category BA of all functors from A to
B with natural transformations as morphisms, exists.

(R3) Ordinary mathematics and category theory, along with its distinction between
large and small, are naturally implementable.

From a purely formal point of view, a foundational system is only required to
facilitate implementation of the mathematical theories it is founding. But in practice,

2This equiconsistency result is due to Robert Solovay, whose 1995-proof is unpublished. The first-
named-author used a different proof in [3] to establish a refinement of Solovay’s equiconsistency
result.
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it is also desirable for this implementation to be user friendly. This is what the
informal notion “naturally implementable” above seeks to capture. For the purposes
of this paper, it suffices to distinguish three levels of decreasing user friendliness
within the admittedly vague class of natural implementations of category theory in
set-theory: (1) The usual set-theoretical description of category theoretic notions can
be accommodated directly with the membership relation symbol of the underlying
language, and with no restriction. (2) As above, but restricted to a set or class. (3)
The notions can be accommodated with another well motivated defined membership
relation, and restricted to a set or class. For example, the system NFUA facilitates a
level (3) implementation of category theory bymeans of the set of equivalence classes
of pointed extensional well-founded structures. But wewill see that an equiconsistent
extension of NFUA facilitates a level (2) implementation.

Feferman actually denotes his requirements as “(R1)–(R4)”. His (R1)–(R2) are as
above. His (R4) asks for a consistency proof of the system relative to some standard
system of set theory; which we take as an implicit requirement. His (R3) requires
that the system allows “us to establish the existence of the usual basic mathematical
structures and carry out the usual set-theoretical operations” [11]. Feferman proposed
a system S∗, which will be looked at in detail in the present paper, as a partial
solution to his problem (R). But at least on one natural reading of Feferman’s (R),
Michael Ernst has recently shown in [5] that Feferman’s (R3) is inconsistent with
(R1) and (R2). Ernst uses a theorem ofWilliam Lawvere, which formulates Cantor’s
diagonalization technique in ageneral category theoretic context [21].AlthoughErnst
argues generally for the inconsistency of Feferman’s (R), it is worth noting that there
is a more direct result that applies to NFU: Feferman’s (R3) may be understood
to require that the category Set of sets and functions is cartesian closed, but two
different proofs of the failure of cartesian closedness for Set in NF (also applicable
to NFU) are provided in [14, 23].

Our formulation of (R3) is weaker in the sense that we only require natural
implementability. We will show that Feferman’s system S∗ (as well as NFUA), solve
this version of (R).

Shulman [25] does not provide an explicit list of requirements, but we extract the
following from his exposition.

(S1) Ordinary category theory, along with its distinction between large and small,
is naturally implementable.

(S2) The large/small-distinction is relative, in the sense that for any x , there is a
notion of smallness such that x is small.

(S3) ZFC is interpreted by ∈, both when quantifiers are restricted to large sets, and
when quantifiers are restricted to small sets.

In order to avoid confusion, let us just clarify that Shulman does not directly advo-
cate that a foundation of category ought to satisfy all of these conditions. Rather, in his
concluding section he leaves that “to the reader’s aesthetic and mathematical judge-
ment” [25]. We have just extracted these conditions from the motivations Shulman
gives for adopting one or another of the many ZFC-based foundations for category
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theory he considers. On our reading, Shulman’s story-line for ZFC-based approaches
culminates with systems aimed at fully satisfying (S).

2.2 The Distinction Between Large and Small

In ZFC, the familiar categories Set, Top, Grp can only be treated as proper classes.
Still, it is perfectly possible to state and prove some theorems about a particular
category, e.g. “for any two groups, there is a group, which is their product”. However,
if we want to prove that something holds for every category that satisfies some
condition, say “for every category with binary products, we have that …”, and if we
want this result to be applicable to Set, Top, Grp, . . . , then ZFC is insufficient.

Several extensions of ZFC have been proposed for dealing with this situation,
that are concerned with a distinction between large and small sets. In the standard
reference on category theory by Saunders Mac Lane, “Categories for the Working
Mathematician” [20], ZFC +∃κ “κ is an inaccessible cardinal”, is chosen as the
foundational system. The sets of rank less than κ are considered small, and all sets are
considered large. The set of small sets, Vκ, is then a model of ZFC. It is also common
to say that Vκ is a Grothendieck universe, but we will not use that terminology in the
present paper. The point is that anymathematical theory that can be developed within
ZFC, can be developed exclusively by means of small sets. In ZFC +∃κ “κ is an
inaccessible cardinal”, we can easily construct Set, Top, Grp, . . . as the categories
of all small sets, small groups, small topological spaces, …(these categories will not
be small however). In fact, we can conveniently state and prove many things about
categories, as witnessed by Mac Lane’s comprehensive book.

One might suppose that the category theory unfolding from this approach would
only utilize the notion of smallness to obtain a formal foundation for stating and
proving results. But, as Shulman observes [25], many results of category theory are
actually concerned with this notion in a mathematically interesting way: For a simple
example,wewill prove in detail that (in such aZFC-based approach) any small (large)
categorywhich has small (large) limits, is just a preorder. As a consequence, it ismore
interesting to study the situation of a large category having small limits, a condition
satisfied by Set, Top, Grp. Important well-known examples making essential use of
smallness are the Yoneda lemma and the adjoint functor theorems.

3 A Quick Dip into Category Theory

3.1 Limits

We have definitions of groups and group homomorphisms, topological spaces and
continuous functions, and so on for many types of objects and morphisms in many
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areas of mathematics. One of the ways in which category theory is helpful, is that
it proceeds abstractly from these basic data of objects and morphisms, to define
standard notions like subobjects, quotients and products, for all categories at once.
But category theory does not only provide guidelines for defining familiar notions in
new categories. It also guides us when introducing new notions (beyond the familiar
product and so on) in familiar categories. As an example, we will consider the
category theoretic notion of limit, of which the notion of product is just one of
the simplest instances.

Throughout the paper, we will occasionally use “X ∈ C”, as shorthand for “X is
an object of the category C”. Suppose that F : J → C is a functor. A cone to F is
an object N of C together with a set of morphisms {nX : N → F(X) | X ∈ J}, such
that for any f : X →J Y , the following diagram commutes.

N

F(X) F(Y )

nX nY

F(f)

A limit to F is a universal cone, i.e. a cone U, {uX } to F, such that for any cone
N , {nX } to F, there is a unique v : N →C U , such that for any f : X →J Y , the
following diagram commutes.

N

U

F(X) F(Y )

v
nX nY

uX uY

F(f)

Since the morphism v (if it exists) is uniquely determined by the cone N . . . and
the limit U . . . , we call it the universal morphism from the cone N . . . to the limit
U . . . . Moreover, J is referred to as an index category, and F : J → C is called a
diagram. Of course, an index category can be any category, and a diagram can be
any functor. We say that C has limits indexed by J, if for each diagram F : J → C,
it has a limit to F.

Small index categories and diagrams are of particular importance. We say that C
has small limits, if for any small index category J and any small diagram F : J → C,
we have a limit in C to F.

If the category C is a preorder, i.e. a category with at most one morphism between
any two objects, and a ≥ b corresponding to an arrow a → b, then a limit to F is the
same as a least upper bound of the image of the object function ofF (so themorphisms
in Jwill be inconsequential).Hence, the notion of the existence of limits for categories
generalizes the notion of completeness for preorders.We will see further below that
with a ZFC-based foundation, every small category with small limits is a preorder.
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However, many large non-preordered categories, such as Set, Top, Grp, have small
limits.

We now show how a product is an example of a limit. Let 2 be the category
consisting of only two objects, say 0 and 1, along with their identity morphisms.
Suppose C is any category, and A, B ∈ C. Then the map sending 0 to A and 1 to B
determines a functor F : 2 → C. A product of A and B is (defined as) a limit to F.
We may familiarly write this limit as A × B, π0 : A × B → A, π1 : A × B → B,
where π0,π1 are called the projection morphisms. The universality property now
spells out, that for any object N ∈ C and anymorphisms f : N → A and g : N → B
(i.e. for any cone to F), there is a unique morphism 〈 f, g〉 : N → A × B, such that
the following diagram commutes.

N

A×B

F(0) = A B = F(1)

〈f,g〉f g

π0 π1

If C = Set, then the standard cartesian product of A, B together with the stan-
dard projection functions, is a limit to F. Moreover, we would have 〈 f, g〉(x) =
〈 f (x), g(x)〉, for each x ∈ N , explaining why the ordered pair notation 〈 f, g〉 is
commonly abused for the purpose of denoting that morphism.

Of course, such a limit may not exist. But if, for every functor F : 2 → C, a limit
to F exists, then we say that C has binary products. In this sense, given the notion
of limit, we may think of the index category 2 as providing all of the data for the
notion of binary products. Similarly, a limit to a diagram from the index category
with two objects and two morphisms A ⇒ B (in addition to the identity morphisms)
is an equalizer; and a limit to a diagram from the index category with three objects
and two morphisms A→ C , B → C (in addition to the identity morphisms) is a
pullback. Thus, we may informally think of the notion of limit as defining a map
from index categories to notions. The notions of product, equalizer and pullback
would be three particular values of this map.

3.2 The Limits of a Proper Category (in ZFC)

Recall that the category2 used to define binary products, only has identitymorphisms.
By considering index categories only having identity morphisms, more generally, we
obtain stronger notions of product.

Theorem 1 Assume that our set-theoretic foundation for category theory satisfies
ZFC. Suppose that C is a category, and let Arr(C) be the category with the arrows
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of C as objects and only identity morphisms. If C has limits (i.e. products) indexed
by Arr(C), then C is a preorder.

Proof Assume towards a contradiction, that we have two different morphisms
f, g : A→C B. Let P, {pX | X ∈ Arr(C)} be a limit (product) to the constant dia-
gram mapping every object of Arr(C) to B. In suggestive notation, we may write
P = �X∈Arr(C)B. By the universality property of limits, we now obtain a function
U : 2Arr(C) → C(A, P), defined by sending each function S : Arr(C) → 2 to the
universal morphism from the cone

A,
{
aSX | X ∈ Arr(C)}, where ∀X ∈ Arr(C).[(aSX = f ↔ S(X) = 0) ∧ (aSX = g ↔ S(X) = 1)],

to the limit P, {πX | X ∈ Arr(C)}.
Since C(A, P) is a subset of (the objects of) Arr(C), it suffices to prove that

U is injective, for then Cantor’s theorem yields a contradiction. So suppose that
S, S′ : Arr(C)→ 2 are different. Then there is X ∈ Arr(C), such that S(X) = S′(X).
Thus, we may assume that aS

X = f and aS′
X = g. Since P . . . is a limit, the following

diagram commutes.

A P A

B

U(S)

f

πX

U(S′)

g

Finally, using the assumption f = g, we conclude that U(S) = U(S′). ��
Corollary 2 Assume that our set-theoretic foundation satisfies ZFC. Then every
small category, which has small limits, is a preorder; and every large category,
which has large limits, is a preorder.

Proof A small category has a small set of morphisms, and a large category has a
large set of morphisms. ��

So in terms of large and small, the strongest notion of “having all limits”, that
may still be interesting for a category theory based on a foundation satisfying ZFC,
is that of a large category having small limits. Therefore, some authors plainly call
such a category complete. It turns out that many of the most familiar categories are
complete, including Set, Top, Grp. The category of small metric spaces and the
category of small fields are examples of large categories which are not complete.

4 Approaches to Satisfying (S)

This section is a brief summary of Sects. 8–11 in Shulman’s exposition [25], where
various ZFC-based approaches to the foundations of category theory are assessed
and compared in detail.
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4.1 Approaches Based on Inaccessible Cardinals

We have already mentioned the system ZFC +∃κ “κ is an inaccessible cardinal”,
which seems to work for most applications. We take Mac Lane’s book [20] as suffi-
cient evidence that it satisfies (S1). It fully satisfies (S3): Firstly, the set of small sets,
Vκ, is a model of ZFC. Secondly, since every set is large, and ZFC is a subset of the
theory, the large sets satisfy ZFC. This is an important difference from the system
KMC (Kelley-Morse set theory with choice) – which has also been suggested as a
foundation for category theory – where the classes (considered as large sets) do not
satisfy ZFC.3

But ZFC +∃κ “κ is an inaccessible cardinal” imposes a rigid notion of small-
ness, fixed once and for all. Hence, it does not satisfy requirement (S2). The results
of category theory involving the notion of smallness, do not depend on any fixed
collection of objects. Rather, it is the relative smallness that is important. This is
already evident in the proposal ZFC +∃κ “κ is an inaccessible cardinal”: It is not
important to choose, say the least inaccessible, as the demarcation of smallness, but
only to pick some inaccessible.

Grothendieck proposed a stronger system, ZFC + “there are arbitrarily large
inaccessible cardinals”, to the following effect. For any set A, there is a notion of
smallness such that A is small, and the set of small sets is a model of ZFC: Pick an
inaccessible κ larger than the rank of A, and stipulate that a set is small if and only if
it is an element of Vκ. Thus, this theory, which is known as Tarski-Grothendieck set
theory (or just TG), satisfies (S2). It also satisfies (S1) and (S3) for the same reasons
as given for ZFC +∃κ inaccessible above.

A worry with Mac Lane’s approach, which is even more worrisome in
Grothendiek’s approach, is that we increase the consistency strength of the theory.
The motivations for passing to these theories have had more to do with obtaining a
useful notion of smallness, than with a pressing need from category theory for more
consistency strength, so one might wonder if it is really necessary to introduce such
large cardinal axioms. There are at least two concerns with increasing the consistency
strength of the foundational system.

1. The risk that the theory is inconsistent increases.
2. The theory becomes inconsistent with other axioms that may turn out to be of

interest to category theory.

As for the first concern, the large cardinal axioms we have looked at so far, are
much weaker than other ones, which have also been quite thoroughly studied by set
theorists. Hence, the risk that e.g. TG is inconsistent, is thought to be small.

3KM+�1∞-AC is bi-interpretable with T := ZFC− Power Set+ ∃κ “κ is an inaccessible car-
dinal, and ∀x |x | ≤ κ”, where �1∞-AC is the schema of Choice whose instances are of the form
∀s ∃X φ(s, X)→ ∃Y ∀s φ(s, (Y )s), where φ(s, X) is a formula of class theory with set variable
s and class variable Y , and (Y )s is the “s-th slice of Y ”, i.e., (Y )s = {x | 〈s, x〉 ∈ Y }. This bi-
interpretability was first noted by Mostowski; a modern account is given in a recent paper of Antos
and Friedman [1, 2], where KM+�1∞-AC is referred to as MK∗, and T is referred to as SetMK∗.
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As for the second concern, the authors are not aware of any principles that are both
attractive to category theory and consistent with ZFC, but inconsistent with ZFC+ a
large cardinal axiom. However, we will of course consider the principle (R1) in this
paper, which is attractive to category theory but inconsistent with ZFC.

4.2 Feferman’s ZFC/S as a Solution to (S)

Now, even though we do not have strong reasons against including large cardinal
axioms in a foundational system for category theory, a solution to (S) which is
conservative over ZFC would yield insight on the large/small distinction, and is
therefore of interest to the foundations of category theory. So how might we satisfy
(S), while remaining at the consistency strength of ZFC? This is essentially the
question which Feferman answers with his system ZFC/S, “ZFC with smallness”.
The idea of ZFC/S is to utilize the Reflection principle (provable in ZFC).

Theorem 3 (Reflection principle in ZFC) If � is a finite set of formulas, and A
is a set, then there is a Vα ⊃ A, such that for any φ(x0, . . . , xn−1) ∈ �, and any
a0, . . . , an−1 ∈ Vα,

φVα(a0, . . . , an−1) ↔ φ(a0, . . . , an−1).

Vα may be understood as the model obtained in ZFC by restricting ∈ to the set
Vα. If φ̂ is a name for φ in ZFC, then the formula Vα |= φ̂, is defined recursively
in the familiar Tarskian way of the semantics of first order logic. It naturally turns
out that it is equivalent to the formula φVα , which is obtained from φ by restricting
each quantifier to Vα. We say that the model Vα reflects the formulas �. Hence, we
implicitly assume that � consists of formulas in the language of set theory.

The system ZFC/S is defined as follows. Add an extra constant symbol S to the
language of set theory. ZFC/S is the theory in this language consisting of the axioms
of ZFC, the axiom saying that S is transitive and supertransitive, i.e. the axioms

x ∈ y ∈ S → x ∈ S

x ⊂ y ∈ S → x ∈ S,

plus the axiom schema that, for each natural number n and each formula φ(x0, . . . ,
xn−1) in the language of set theory, adds the axiom

∀x0 ∈ S . . . ∀xn−1 ∈ S.
[
φS(x0, . . . , xn−1) ↔ φ(x0, . . . , xn−1)

]
.

Working in ZFC/S, we interpret “small” as “∈ S” (every set is considered large).
By the Reflection schema, we may interpret ZFC by restricting quantifiers to S, so
(S3) is satisfied.
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Theorem 4 If ZFC is consistent, then ZFC/S is consistent.

Proof Suppose that �ZFC/S is a proof of � � ⊥, for some finite � ⊂ ZFC/S.
Note that � = �ZFC ∪�Trans ∪�Refl, where �ZFC ⊂ ZFC, �Trans ⊂ {Transitivity,
Supertransitivity} and �Refl ⊂ Reflection schema. Each ψ ∈ �refl is of the form
∀x ∈ S.

(
φS(�x)↔ φ(�x)). By reflection,

ZFC � ∃Vα.
∧

ψ∈�Refl

ψ[S := Vα]. (†)

Pick a witness Vα of (†). Then ZFC � �Refl[S := Vα] is just (†). ZFC � �ZFC[S :=
Vα] is trivial, and ZFC � �Trans[S := Vα] is basic. So there is a proof p of ZFC �
�[S := Vα]. Concatenating pwith�ZFC/S[S := Vα] yields a proof�ZFC of ZFC � ⊥.

��
The technique used in the proof can be applied quite generally: Suppose we are

building a proof from ZFC, in which we want to apply a finite set of theorems T of
ZFC/S, and in which we would like to consider all the elements of some set A to be
small. As in the proof of Con(ZFC) → Con(ZFC/S), the Reflection principle gives
us

ZFC � ∃Vα ⊃ A.
∧

τ∈T
τ [S := Vα]. (‡)

Thus, given any finite set of theorems T of ZFC/S and any set A, all of whose
elements we want to consider small, we can choose Vα ⊃ A and translate each
theorem τ ∈ T of ZFC/S into the theorem τ [S := Vα] of ZFC. Then we can apply
the translated versions in a proof from ZFC.

On the other hand, suppose T is an infinite theorem schema in ZFC/S. By a
generalized version of the Reflection principle, the same technique works if T is �n

(in Levy’s hierarchy of set-theoretic formulae) for some finite n, but it does not work
for an arbitrary T .

We conclude that ZFC/S gives us a relative large/small-distinction, so that (S2)
is satisfied, albeit with the limitation on T stated above.

What about (S1)? Can standard results of category theory be obtained in ZFC/S?
The evidence ‘on the ground’ seems to indicate a positive answer; e.g., Andreas Blass
has informed the authors that he used ZFC/S as a foundational platform in a course he
taught on category theory at the University of Michigan, and that everything worked
smoothly, except possibly for Kan extensions. The main issue with using ZFC/S
in practice, seems to be that we often need to ensure that categories, functors, etc.
are “small-definable”, i.e. that they can be defined by a formula of ZFC/S all of
whose parameters are elements of S. For example, consider restricting a properly
large locally small category C to a small subset A of the objects of C. If C is not
small-definable, then the replacement axiom on S (obtained from the corresponding
instance of the Reflection schema) cannot be applied. Therefore, we cannot conclude
that the restriction of C to A is small. But categories, functors, etc. that are definable
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as classes over ZFC, obviously have direct counterparts that are small-definable in
ZFC/S. Therefore, in applications this condition is almost always satisfied.

We have now justified the claim that ZFC/S is a conservative extension of ZFC
satisfying (S), albeit with minor limitations.

5 Approaches to Satisfying (R)

5.1 A Very Short Introduction to Stratified Set Theory

(R1) asks for the category of all sets, the category of all groups, the category of all
categories, etc. A natural place to look for a solution to (R), is therefore set theories
proving the existence of a universal set. An approach to a set theory with this prop-
erty is the simple theory of types, developed by Bertrand Russell and Alfred North
Whitehead, and simplified by Leon Chwistek and Frank Ramsey, independently. In
the usual form, called TST, the theory has types indexed by N. There are count-
ably infinitely many variables of each type, and an element- and equality-symbol for
each type. A formula is well-formed only if each atomic subformula is of the form
xi =i yi or xi ∈i yi+1, where i ∈ N denotes a type. For each type the theory has
a corresponding axiom of extensionality and an axiom schema of comprehension.
Russell’s paradox is avoided because the formula ‘x ∈ y’ becomes well-formed only
if x is assigned one type lower than y, thus banishing any formula of the form ‘x ∈ x’
from the language. But ‘xi =i x i ’ is well-formed, so by comprehension there is a
universal set of type i + 1 for each type i ∈ N.

It is easily seen thatTST � φ↔ TST � φ+,whereφ+ is obtainedby raising all the
type indices in φ by 1: A proof of φ can be turned into a proof of φ+ simply by raising
all the type indices in the proof by 1, and vice versa. From reflection on this fact,
Quine was led to suggest the theory NF [24], which is obtained from TST simply by
forgetting about the types. The result is an untyped first-order theory with the axiom
of extensionality and the axiom schema of stratified comprehension. A formula is
stratified if its variables can be assigned types so as to become a well-formed formula
of TST. The stratified comprehension schema only justifies formation of sets which
are the extensions of stratified formulas. But the well-formed formulas of NF are as
usual in set theory. For example, in contrast to TST, the statement NF � ∃x .x ∈ x
makes sense, and is in fact witnessed true by the universal set V obtained from the
instance ∃y.∀x .(x ∈ y ↔ x = x) of the stratified comprehension axiom schema.

It has turned out to be very difficult to prove the consistency of NF relative to a
set theory in the Zermelo-Fraenkel tradition.4 However, if the extensionality axiom
is weakened to allow for atoms, then the system NFU is obtained. This system was

4Two claimed proofs have fairly recently been announced: first by Randall Holmes [18], and then
by Murdoch Gabbay [15].
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proved consistent relative to Mac Lane set theory5 in 1969 by Ronald Jensen [19].
Jensen’s proof combines two techniques due to Ernst Specker and Frank Ramsey
respectively. Specker had showed essentially that NF is equiconsistent with TST
plus an automorphism between the types, and Jensen used Ramsey’s theorem to
obtain the automorphism at the cost of weakened extensionality. Jensen’s proof also
gives the consistency of NFU plus the axiom of choice and the axiom of infinity. This
system is equiconsistent with NFU+ the axiom of choice+ the axiom of type-level
pair. It is standard in the literature to refer to this latter system simply as NFU, and
we do the same in this paper. A thorough introduction to NFU is found here [17].

The move to allow for atoms in NFU can be accomplished either by having
extensionality only for non-empty sets, or by introducing a predicate of sethood and
restricting extensionality to sets. We opt for the former alternative. It is then helpful
to have a designated empty set; i.e. we pick an atom once and for all, and denote
it by ∅. (The existence of atoms, now defined simply as sets without elements, is
provided by applying stratified comprehension to the formula x = x .)

5.2 Feferman’s S∗ as a Solution to (R)

Jensen’s proof of the consistency of NFU appeared in 1969; it did not take long for
Feferman to use NFU, in the early 1970’s, as the source of a viable solution to (R).
Indeed, it is easy to see that NFU satisfies (R1) and (R2). A detailed verification is
found in [7, 3.4]. But since NFU is equiconsistent with Mac Lane set theory, which
is proved consistent in ZFC, it follows from Gödel’s second incompleteness theorem
that NFU does not interpret ZFC. Let us now consider (R3). If ZFC is taken as the
standard for “ordinary mathematics”, then it is clear that NFU does not meet that
standard. However, the equiconsistency of NFU with Mac Lane set theory, which
arguably suffices for ordinary mathematics and category theory, suggests a path for
advocating NFU as a foundation for category theory.

Feferman suggests the system S∗, which extends NFU with a constant symbol V̄ ,
and axioms ensuring that 〈V̄ ,∈〉 is a model of ZFC (actually with stronger replace-
ment and foundation schemata than required for that) [7, 11].

The language of S∗, denotedL∗, is the two-sorted extension of the language of set
theory with set variables x, y, z, . . ., class variables X,Y, Z , . . ., a constant symbol
V̄ and a binary function symbol P . As we alluded to above, the function symbol
P , which will act as a type-level pairing function, is inherited from the language of
NFU, and the constant symbol V̄ will be used to obtain a notion of smallness. The
terms ofL∗ are generated from V̄ , and both set and class variables using the function
symbol P . The atomic formulae of L∗ are all of the formulae in the form s ∈ t and
s = t where s and t are L∗-terms. In order to state the axioms of S∗ we first need to
extend the notion of stratification to L∗-formulae.

5The axioms of Mac Lane set theory are specified in Sect. 6.
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Definition 5 An L∗-formula φ is said to be stratified if the following conditions can
be satisfied:

1. Each term s in φ can be assigned a natural number that we will call the type
assigned to s;

2. the type assigned to a term s is the same as the type assigned to every class variable
occurring in s;

3. each class variable of φ has the same type assigned to all of its occurrences;
4. for each subformula of φ of the form s = t , the type assigned to the term s is the

same as the type assigned to the term t ;
5. for each subformula of φ of the form s ∈ t , if s is assigned the type n then t is

assigned the type n + 1.

The theory S∗ is the L∗-theory that is axiomatised by the universal closures of the
following:

1. (Stratified Comprehension) for all stratified L∗-formulae φ(X, �Z),

∃Y∀X (X ∈ Y ⇐⇒ φ(X, �Z))

2. (Weak Extensionality)

S(X) ∧ S(Y ) ⇒ (X = Y ⇐⇒ ∀Z(Z ∈ X ⇐⇒ Z ∈ Y ))

3. (Pairing) P(X1, X2) = P(Y1,Y2)⇒ X1 = Y1 ∧ X2 = Y2
4. (Sets and Classes)

(a) ∀x∃X (x = X)

(b) X ∈ V̄ ⇐⇒ ∃x(x = X)

(c) X ∈ x ⇒ X ∈ V̄

5. (Empty Set) ∃!z∀y(y /∈ z) — we use ∅ to denote the unique z ∈ V̄ such that
∀y(y /∈ z)

6. (Operations on Sets)

(a) {x, y} ∈ V̄
(b)

⋃
x ∈ V̄

(c) P(x) ∈ V̄
(d) P(x, y) = {{x}, {x, y}}

7. (Infinity)

∃a(∃z(z ∈ a ∧ ∀y(y /∈ z)) ∧ ∀x(x ∈ a ⇒ x ∪ {x} ∈ a))

8. (Replacement) for all L∗-formulae φ(x, y, �Z),

∀x∀y1∀y2(φ(x, y1, �Z) ∧ φ(x, y2, �Z)

⇒ y1 = y2)⇒ ∀a∃b∀y(y ∈ b ⇐⇒ ∃x(x ∈ a ∧ φ(x, y, �Z)))
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9. (Foundation) for all L∗-formulae φ(x, �Z),

∃xφ(x, �Z)⇒ ∃x(φ(x, �Z) ∧ (∀y ∈ x)¬φ(y, �Z))

10. (Universal Choice)

∃C
(∀X∀Y1∀Y2(P(X,Y1) ∈ C ∧ P(X,Y2) ∈ C ⇒ Y1 = Y2)∧

∀X (∃Y (Y ∈ X) ⇒ ∃Y (Y ∈ X ∧ P(X, {Y }) ∈ C))

)

Since S∗ has a two-sorted language with set- and class-variables, we will call
arbitrary objects classes, and we will call elements of V̄ sets. This contrasts with the
practice in ZFC, where one talks of proper classes, but cannot prove their existence as
objects. In S∗, just as inNBGorKMC, classes exist as objects. It follows immediately
from the definition of S∗, as an extension of NFU, that it satisfies (R1) and (R2).
Feferman proves that S∗ is consistent from ZFC +∃κ∃λ “κ < λ are inaccessible
cardinals” [7] using a technique from [19] based on the Erdős–Rado theorem. In
this paper, the combinatorics of Feferman’s proof is adjusted so as to prove the
consistency of S∗ already from ZFC +∃κ “κ is an inaccessible cardinal”.

S∗ satisfies (R3) in a stronger sense than NFU does, and such considerations moti-
vate its strong replacement and foundation schemata. Let us work in S∗, interpreting
“small” as “∈ V̄ ” and (provisionally) “large” as “anything”. Let V denote the cate-
gory of all sets with functions as morphisms. In [7], Feferman proves a version of
the Yoneda lemma from S∗:

Lemma 6 (Yoneda in S∗) If all the objects and morphisms of C are small, and F
is a functor from C to V, then for each object A of C, there is a bijection yonA :
F(A) → Nat(C(A,−), F).

C(A,−) denotes the covariant hom functor from C to V given by A, and
Nat(C(A,−), F) denotes the set of natural transformations from C(A,−) to F.
This differs in two ways from the standard Yoneda lemma. Firstly, we only require
that the objects and morphisms are small, not the stronger condition that the category
is locally small. Secondly, the co-domain of F is the category V, not the category of
small sets. But of course, local smallness of C is exactly what is needed for the hom
functors to be small-valued, so this readily specializes to the standard statement.

This is a first step towards satisfying the category theory part of (R3), but it is
a daunting task to verify all the standard results of category theory involving the
large/small-distinction. We will instead indicate why we feel confident that almost
all such results would go through. In the family of systems including some form
of the stratified comprehension schema, the following notions turn out to be quite
important.

Definition 7 A is cantorian if there is a bijection from A to {{a} | a ∈ A}. A is
strongly cantorian if there is a bijection from A to {{a} | a ∈ A} that maps each
a ∈ A to {a}. We adopt stcan(A) as shorthand for “A is strongly cantorian”.
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The following basic results are easily verified. S∗ proves that V̄ is strongly can-
torian. Moreover, NFU (and therefore S∗) proves that the powerset of a strongly
cantorian set is strongly cantorian. NFU also proves that if B is a set of bijections,
each witnessing strong cantorianicity of its domain, then∪B is a bijection witnessing
strong cantorianicity of its domain.

Working with the von Neumann ordinals OrdV̄ in V̄ , and relying on the strong
foundation axiomschema,wenowwish to recursively define V̄0 = V̄ , V̄α+1 = P(V̄α)

and (if alpha is a limit ordinal) V̄α = ∪{V̄β | β < α}. Our intention is also to show
by induction that V̄α is strongly cantorian, for any α ∈ OrdV̄ . As we shall see, that
will lend support to the claim that S∗ satisfies (R3) sufficiently. We will need the
recursion theorem for NFU, which may be found here [17, 15.1]. The foundation
axiom schema of S∗ implies that OrdV̄ forms a well-founded class. So we obtain the
following special case of the recursion theorem for recursion over OrdV̄ .

Theorem 8 (Recursion in NFU and S∗) Suppose that

G : {H : α → V | α ∈ OrdV̄ } → {{x} | x ∈ V }.

Then there is a unique function F : OrdV̄ → V , such that {F(α)} = G(F � α), for
each α ∈ OrdV̄ .

We now wish to apply this to obtain a hierarchy, recursively defined by V̄0 = V̄ ,
V̄α+1 = P(V̄ ), and V̄α = ∪{V̄β | β < α} (for α a limit). Note that in NFU, we define
P so that only the designated empty class, and no other atoms, are elements of a
powerclass. The main obstacle to defining the required G of the recursion theorem,
is that P is not a function in NFU.

Theorem 9 In S∗, there are unique functions R,C : OrdV̄ → V , such that for all
α ∈ OrdV̄

R(α) =

⎧
⎪⎨

⎪⎩

V̄ if α = 0

P(R(β)) if α is a successor β + 1

∪{R(β) | β < α} if α is a limit
C(α) = A bijection R(α) → {{x} | x ∈ R(α)} witnessing stcan(R(α)).

(†)

Proof We need to restate (†) in a stratified form. First note that stratified compre-
hension allows us to form the function

P ′ : {X | ∀Y ∈ X.∃Z .Y = {Z}} → V,

defined by P ′(X) = P(∪X), which is stratified. Let B̄ be the bijection from V̄
to {{X} | X ∈ V̄ }, such that ∀X ∈ V̄ .B̄(X) = {X}. We can now reformulate (†) as
follows.
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R(α) =

⎧
⎪⎨

⎪⎩

V̄ if α = 0

P ′({C(β)(X) | X ∈ R(β)}) if α is a successor β + 1

∪{R(β) | β < α} if α is a limit

C(α) =

⎧
⎪⎨

⎪⎩

B̄ if α = 0
{〈S, {∪T }〉 | S ⊂ R(β) ∧ T = {C(β)(X) | X ∈ S}} if α is a successor β + 1

∪{C(β) | β < α} if α is a limit

For applying the recursion theorem, we wish to show the existence of the function F
defined on OrdV̄ by α �→ 〈R(α),C(α)〉. The definition of the needed G is implicit
from the expression above. G is obtained by comprehension if the expression is
stratified, which is easily verified with this type-assignment:

R,C,P ′ �→ 2
R(α), R(β),C(α),C(β), S, T, V̄ �→ 1
X,C(β)(X) �→ 0

Therefore, unique functions R and C exist, satisfying the reformulated version of
(†). But it remains to show that our reformulated version of (†) is equivalent to (†).
I.e. it remains to clarify that R(α+ 1) = P(R(α)), that C(α)(X) = {X} and that
dom(C(α)) = R(α), for all α ∈ OrdV̄ and all X ∈ dom(C(α)). We do this through
an induction argument, justified by the strong foundation axiom schema of S∗. So
let α ∈ OrdV̄ and let X ∈ dom(C(α)).

Successor case,α = β + 1:Assume thatC(β)(Y ) = {Y }, for allY ∈ dom(C(β)),
and assume that dom(C(β)) = R(β). So by definition ofC , we have that X ⊂ R(β),
and

C(α)(X) = { ∪ {C(β)(Y ) | Y ∈ X}} = { ∪ {{Y } | Y ∈ X}} = {X}.

Moreover, by definition of R,

R(α) = P ′({C(β)(Y ) | Y ∈ R(β)}) = P(∪{{Y } | Y ∈ R(β)}) = P(R(β)),

and it follows that dom(C(α)) = R(α).
Limit case: Assume that C(β)(Y ) = {Y }, and that dom(C(β)) = R(β), for all

β < α and Y ∈ dom(C(β)). By definition of C and R, we have

dom(C(α)) = ∪{dom(C(β)) | β < α} = ∪{R(β) | β < α} = R(α),

where the sets {dom(C(β)) | β < α} and {R(β) | β < α} are obtained from stratified
comprehension and the existence of R and C . Therefore,

〈X, Z〉 ∈ C(α) ⇔ ∃β < α.C(β)(X) = Z ⇔ Z = {X}.

So C and R turn out to be the desired functions. ��
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Thanks to this result, we have the class V̄α := R(α), for each α ∈ OrdV̄ . By
induction, these are all transitive (and supertransitive) classes, so it is easily seen
that they are hereditarily strongly cantorian. Since we obtained a function α �→
V̄α on OrdV̄ , we can take the union ¯̄V := ∪{V̄α | α ∈ OrdV̄ }. We can also take the
union ¯̄B := ∪{C(α) | α ∈ OrdV̄ }, to obtain a bijection witnessing that ¯̄V is strongly
cantorian.

Theorem 10 In S∗, ¯̄V is a model of

ZC + “OrdV̄ is an inaccessible cardinal”
+ “for every ordinal α, Vα exists”
+ V̄ = VOrdV̄

+ “replacement schema for domains of cardinality in OrdV̄ ”.

Proof 6 OrdV̄ is an inaccessible cardinal: It is clearly transitive and totally ordered
by ∈, and by foundation well-ordered by ∈. Hence, it is an ordinal. Suppose towards
a contradiction that it were not a cardinal. Then there would exist a bijection f ∈
V̄ from κ ∈ OrdV̄ to OrdV̄ . So by replacement, we would have OrdV̄ ∈ V̄ , which
contradicts foundation. So OrdV̄ is a cardinal. By the same argument (augmented
with the powerset axiom), 2κ does not stand in surjection to OrdV̄ , for any κ ∈ OrdV̄ .
Lastly, suppose that there is κ ∈ OrdV̄ and a function f from κ to OrdV̄ that is
unbounded. By replacement, its image I is then an element of V̄ , and ∩I = OrdV̄ ∈
V̄ , a contradiction. We conclude that OrdV̄ is an inaccessible cardinal.

Existence of Vα, for ordinals α, and V̄ = VOrdV̄ : Since S∗ interprets ZFC by

restricting quantifiers to V̄ , the analogous interpretation is satisfied in ¯̄V . So in
¯̄V , by transitivity of V̄ , Vα exists and is an element and a subset of V̄ , for each
α < OrdV̄ . Conversely, for each x ∈ V̄ , there is α < OrdV̄ such that x ∈ Vα. There-

fore, V =⋃
α<OrdV̄ Vα = VOrdV̄ . Hence, recalling the construction of

¯̄V , from S∗, ¯̄V
is a union of Vα:s, for OrdV̄ ≤ α < OrdV̄ + OrdV̄ . It is easily seen that these Vα

relativize appropriately to ¯̄V , in the sense that S∗ � “α ∈ ¯̄V is an ordinal”↔ (“α is

an ordinal”)
¯̄V , and S∗ � (“α ∈ ¯̄V is an ordinal and X = Vα”) → (X = Vα)

¯̄V . So by
Theorem9, we have in ¯̄V that Vα exists for each ordinal.

6The proof given, for the separation and the weakened replacement schemata, quantifies over for-

mulas in the meta-theory. So what is proved is actually a theorem schema about ¯̄V , where ¯̄V is
considered externally as a submodel of a model of S∗. However, Roland Hinnion’s development of
the semantics of first-order logic in [16] applies to NFU, and provides a means to internalize this
proof to S∗.
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Extensionality: None of the sets in ¯̄V contains any atom other than ∅.
Infinity: ω ∈ V̄ .

Let A, B ∈ ¯̄V . Then we may fix α+ 2 ∈ OrdV̄ , such that A, B ∈ V̄α+2.
Union: Since V̄α+2 = P(P(V̄α)), we have ∪A ⊂ V̄α, so ∪A ∈ V̄α+1.
Pair: {A, B} ∈ V̄α+3.
Powerset: Since A ⊂ V̄α+1, we have P(A) ⊂ P(V̄α+1), so P(A) ∈ V̄α+3.
Choice: Follows from global choice.
Foundation: Let β be the least ordinal in OrdV̄ , such that there is C ∈ V̄β ∩ A.

For eachU ∈ C , there is γ < β, such thatU ∈ V̄γ . Hence, for eachU ∈ C , we have
that U /∈ A.

Separation schema: Let φ(X,Y ) be a formula. We need to show that {X ∈ A |
φ
¯̄V (X, B)} exists in ¯̄V . Since ¯̄V and B are strongly cantorian, the formula X ∈ A ∧

φ
¯̄V (X, B) is equivalent to a stratified formula. (This is done by using the bijections

witnessing that the sets are strongly cantorian, to shift the types in the formula.
For more details, see the Subversion theorem in [17, 17.5].) Hence, by stratified

comprehension, we have that {X ∈ A | φ ¯̄V (X, B)} exists. Since it is a subset of A, it
is a subset of V̄α+1, and therefore an element of V̄α+2.

Replacement schema for sets of cardinality in OrdV̄ : Suppose |A| = κ ∈ OrdV̄ . It

suffices to show that if φ(ξ, Z , B) is a formula such that [∀ξ ∈ κ.∃!Zφ(ξ, Z , B)] ¯̄V ,
then there is C ∈ ¯̄V such that [∀Z(Z ∈ C ↔ ∃ξ ∈ κ.φ(ξ, Z , B))] ¯̄V . Consider the
formula ψ(ξ, ζ, B) defined as “ζ is the least ordinal in OrdV̄ such that there exists

Z ∈ V̄ζ for which φ
¯̄V (ξ, Z , B)”. By the strong replacement axiom schema of S∗, the

image of κ underψ exists in V̄ . Let λ be the least ordinal in OrdV̄ , which is not in that

image. Then we have [∀Z(Z ∈ V̄λ ← ∃ξ ∈ κ.φ(ξ, Z , B))] ¯̄V . Now, by separation in
¯̄V , we obtain C := {Z ∈ V̄λ | [∃ξ ∈ κ.φ(ξ, Z , B)] ¯̄V }, as desired. ��
We also extract the following general fact about ZC.

Proposition 11 ZC � Replacement schema for functional formulas with bounded
image.

Proof Suppose α ∈ Ord and φ(X, Z , B) is a formula such that ∀X ∈ A.∃!Zφ(X,

Z , B) and ∀Z(Z ∈ Vα ← ∃X ∈ A.φ(X, Z , B)). Then, by separation, we obtain
C := {Z ∈ Vα | ∃X ∈ A.φ(X, Z , B)}, as desired. ��

We now suggest to interpret “small” as “∈ V̄ ” and to re-interpret “large” as “∈
¯̄V ”. We then have quite a workable set theory for the large categories. The kind of

operations on large categories, that would require more than what we have in ¯̄V , are
unusual in ordinary mathematics and category theory. For example, we cannot form

the union ∪{V̄α | α ∈ OrdV̄ } in the model ¯̄V . On the other hand, if for some unusual
application we would need to form that union, then we can make use of the fact that
¯̄V is strongly cantorian, and apply the iterated powerclass argument above to obtain
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¯̄V0,
¯̄V1, . . . ,

¯̄Vα, . . . , as well as their limit, the model
¯̄̄
V , in which ∪{V̄α | α ∈ OrdV̄ }

is obtained. Of course, we can also iterate that argument. We conclude that S∗ is a
level (2) solution to (R3), and thereby to all of (R).

We end this section with two remarks. Firstly, so far we only used the strong

replacement axiom schema of S∗ in the proof of Theorem10, to show that ¯̄V is a
model of “the replacement schema for sets of cardinality in OrdV̄ ”. Another benefit
of the strong replacement schema for the foundations of category theory, is that the
small-definability concerns encountered in ZFC/S disappear: Working in S∗, strong
replacement immediately yields the following: If f is a function and A ∈ V̄ is a
subset of dom( f ), such that f (A) ⊂ V̄ , then f (A) ∈ V̄ . So for example, if C is
a category, A is a small subset of its set of objects, and for all X,Y ∈ A, the set
C(X,Y ) of all C-morphisms from X to Y is small, then the natural restriction of
C to A is small. Without strong replacement, this argument requires the additional
small-definability assumption that the natural restriction of C to V̄ is definable over
V̄ , which is not necessarily the case.

Secondly, on this interpretation of small and large, the categories enabling us to
satisfy (R1) and (R2), are neither large nor small. The notions of small and large have
come to be associated with various results of category theory, that do not necessarily
hold for those categories. We will look at one example of this phenomenon shortly,
but first let us consider the theory NFUA as a foundation of category theory.

5.3 NFUA as a Solution to both (R) and (S)

NFUA is defined as NFU + “every cantorian set is strongly cantorian”. NFUA
satisfies (R1) and (R2) simply because NFU does. In an unpublished proof, Robert
Solovay showed in 1995 that NFUA is equiconsistent with ZFC + the schema “for
each n ∈ N, there is an n-Mahlo cardinal”. A cardinal κ is (defined as) 0-Mahlo,
if the set of inaccessible cardinals below κ is stationary below κ. And κ is n + 1-
Mahlo, if the set of n-Mahlo cardinals below κ is stationary below κ, where n ∈ N.
A set S ⊂ κ is (defined as) stationary below κ, if S intersects every subset of κ
that is unbounded and closed under suprema below κ. The proof of a refinement of
Solovay’s equiconsistency result is presented in [3].

For eachn ∈ N, the theoryZFC+ “there is ann-Mahlo cardinal” is interpretable in
NFUAbymeans of the set of equivalence classes of pointed extensionalwell-founded
structures. This technique, invented by Roland Hinnion [16], is often used to obtain
lower bounds on the consistency strength of variants of NFU and NF. We may of
course solve (S) within this interpretation, for example through the Grothendieck
approach of Sect. 4.1. In the terminology of Sect. 2.1, that approach yields a level (3)
solution to (R3) and (S1). The proof of the converse direction of the equiconsistency
result shows that we can add a relatively consistent axiom to NFUA that provides us
with a level (2) implementation. We will briefly explain how this works for a certain
refined solution to (S), that is similarly motivated as ZFC/S.
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Just below ZFC + ∃κ “κ is a Mahlo cardinal”, in consistency strength, we have
the theory ZMC defined roughly as ZFC + “|V | is a Mahlo-cardinal”. Of course,
we cannot state the cardinality of V since it is not a set, but we can add the schema
“for each formula φ(ξ), such that the class of ordinals satisfying φ is unbounded and
closed under suprema, there is an inaccessible cardinal λ satisfying φ”. This schema
essentially says that |V | is a Mahlo cardinal.

As explained by Shulman [25], we can form ZMC/S, in analogy with Feferman’s
ZFC/S. The same proof as with ZFC/S, gives us that ZMC/S is a conservative exten-
sion of ZMC. It turns out that ZMC/S is equivalent to ZFC/S+ “|S| is inaccessible”.
This allows us to obtain a stronger replacement axiom schema in relation to S: If
A ∈ S and φ(x, y, u) is a formula with u an arbitrary parameter (i.e. not necessarily
an element of S), such that ∀x ∈ A.∃!y ∈ S.φ(x, y, u), then there is B ∈ S, such that
∀y.(y ∈ B ↔ ∃x ∈ A.φ(x, y, u)). This means that we do not need to worry about
small-definability. Hence, ZMC/S is quite a convenient solution to (S).

To interpret ZMC/S in NFUA, directly with the element relation of the language,
restricted to a set, we may proceed as follows. In [3] a model of NFUA is constructed
from a countable model of the theory T = ZFC+ the schema “for each n ∈ N, there
is an n-Mahlo cardinal”. Performing the “over S” transformation to T (just as from
ZFC to ZFC/S in Sect. 4.2), gives us the theory T /S. As in the proof of Theorem4,
Con(T )⇒Con(T /S). So we obtain a countable model of T /S. Then, since T ⊂ T /S,
the construction of the model M of NFUA goes through as before. In M, ZMC/S
is directly interpretable by restricting the element relation of the language to a set,
yielding a level (2) solution to (R3) and (S1).

NFUA solves (R) and (S) somewhat separately: (S) may be solved within the
interpretation of ZMC/S in NFUA (this also yields (R3)), while (R1) and (R2) are
solved by means of categories (typically built from the universal set V ) that do not
fit within the interpretation of ZMC/S. For someone who is only interested in foun-
dations solving (S), it would obviously be more economical to work in ZMC/S than
in NFUA. So it is natural to wonder: Is there a benefit for category theory in enabling
the existence of categories yielding (R1) and (R2), apart from the intuitive appeal
of obtaining e.g. the category of all groups without any small/large restrictions? It
seems that little research has been directly aimed at answering this question. In the
next subsection we will just scratch the surface, by expressing and proving a basic
fact of stratified set theory in category theoretic form. This result contrast with The-
orem1, showing that proper (R1)-categories can, in a sense, be more complete than
what is possible in a purely ZFC-based setting.

5.4 The Limits of a Proper Category (in NFU)

We already saw that in ZFC-based foundations, a category C which is not a preorder,
can only have products indexed by a set of lower cardinality than the cardinality of the
set of morphisms of C. The proof in the ZFC setting uses Cantor’s theorem, which
holds for cantorian sets in NFU. But since V ⊃ P(V ), the universe V is a coun-
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terexample to Cantor’s theorem, and the categories yielding (R1) will typically have
sets of objects and morphisms derived from V . Cantor’s theorem has the following
type-shifted version in NFU, essentially proved the same way.

Theorem 12 NFU � ∀x .∣∣{{y} | y ∈ x
}∣∣ < |P(x)|.

Again observing that P(V ) ⊂ V , we now see that
∣∣{{y} | y ∈ V

}∣∣ < |V |. As an
example of how categories in NFU satisfying (R1) can behave quite differently from
their counterparts in ZFC, we will now show that the category Rel, with all sets
as objects and binary relations as morphisms, has products and coproducts indexed
by the set of all singletons. Similarly, the category Set has coproducts indexed by
the set of all singletons. Compare this with the fact (a consequence of Theorem1)
that the corresponding locally small categories in a ZFC-based setting, do not have
such limits indexed by the set/class of all small singletons. Note that in order to
accommodate the weaker extensionality axiom of NFU, we stipulate that neither an
object nor a morphism of Rel or Set may be an atom other than ∅.

Before getting into this proof, we would like to take the opportunity to point out
that Thomas Forster, Adam Lewicki and Alice Vidrine have done unpublished work
on the category theory of sets in stratifiable set theories at Cambridge University.
This work establishes several category theoretic properties of NF: For example, the
category Set in NF is exhibited as an “almost topos” and as a category of classes.
Moreover, the status of theYoneda lemma internal toNF is clarified. Being a category
of classes entails, among other properties, having finite limitsco-limit and finite
coproducts. In the present paper we are simply being explicit about how large the
index category can be; there is no technical novelty in the proof. The point is to show
possibilities inNFU-based category theory that are not available in purely ZFC-based
approaches.

Proposition 13 NFU � Rel has products indexed by
{{i} | i ∈ V

}
.

Proof Let Sing be the category with
{{i} | i ∈ V

}
as its set of objects and only

identity morphisms, and let F : Sing → Rel be a diagram. Set

P := {〈x, i〉 | x ∈ F({i})},

and define π{i} : P →Rel F({i}) by

π{i} := {〈〈x, i〉, x〉 | x ∈ F({i})},

for each {i} ∈ Sing. Note that the definition of the map {i} �→ π{i} is stratified, and
therefore realized by a function.

Consider an arbitrary cone to F in Rel, i.e. a set A and a relation R{i} : A→Rel

F({i}), for each {i} ∈ Sing. Again, the map-definition {i} �→ R{i} is stratified and
therefore realized by a function. We may now define u : A→ P by

u := {〈a, 〈x, i〉〉 | aR{i}x}.
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We just need to check that for an arbitrary {i} ∈ Sing, we have R{i} = π{i} ◦ u, i.e.
that

A P

F({i})

u

R{i}
π{i}

commutes. So suppose a ∈ A and x ∈ F({i}). Then,

a(π{i} ◦ u)x ⇐⇒ ∃p ∈ P.(aup ∧ pπ{i}x) ⇐⇒ au〈x, i〉 ⇐⇒ aR{i}x .

Since a morphism of Rel cannot be any other atom than∅, we have by extensionality
that R{i} = π{i} ◦ u. ��

For any relation R : A→ B, we have a converse relation R† : B → A defined by
x Ry ⇔ yR†x . (Rel is a dagger symmetric monoidal category, hence the notation.)
Clearly, (Q ◦ R)† = R† ◦ Q†, for any morphisms Q, R in Rel. Thus, by replacing
u, the π{i} and the R{i} by their converses, in the proof above, we see:

Proposition 14 NFU � Rel has coproducts indexed by
{{i} | i ∈ V

}
.

Note that the π†
{i} are functions.Moreover, if we assume that the R†

{i} are functions,
then it follows that u† is a function. Therefore:

Proposition 15 NFU � Set has coproducts indexed by
{{i} | i ∈ V

}
.

Since we did not use choice, these results hold in NFU \ {AC} and its extension
NF (with full extensionality) as well.

As explained above, the proof given for Theorem1 in ZFC, is blocked inNFU. But
since

∣∣{{y} | y ∈ V
}∣∣ < |V |, these propositions are not counterexamples to Theo-

rem1 in NFU. So the question whether NFU proves Theorem1 or not, remains
open, at least modulo the present paper. The point of Propositions13–15 is that we
have positive category theoretic results in NFU (assuming that limits are generally
desirable), whose obvious translations into ZFC-based foundations are falsified by
Theorem1. We take this to be an indication that the (R1)-categories in NFU-based
foundations may be of value to category theory, thus strengthening the motivation
for exploring category theory internal to NF and NFU, as well as extensions like S∗
and NFUA.
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6 The Consistency of S∗

In this sectionwe present Feferman’s consistency proof of his system S∗. By carefully
keeping track of the cardinals used to build amodel of S∗weare able to improve on the
result reported in [7, 11] by showing that ZFC+ ∃κ“κ is an inaccessible cardinal”
proves the consistency of S∗.

We will make reference to two subsystems of ZFC studied in [22]. Mac Lane Set
Theory (Mac) is the subsystemofZFCaxiomatised by: extensionality, pair, emptyset,
union, powerset, infinity, �0-separation, transitive containment, regularity and the
axiom of choice. The set theory Kripke-Platek with Ranks (KPR) is obtained from
Mac by deleting the axiom of choice and adding �0-collection, �1-foundation and
an axiom asserting that for every ordinal α, the set Vα exists.7 If L′ is an extension
of the language of set theory and M is an L′-structure then for a ∈ M we write a∗
for the class {x ∈ M |M |= (x ∈ a)}.

Throughout this section we work in the theory ZFC+ ∃κ “κ is an inaccessible
cardinal”. Letκ be an inaccessible cardinal. Let A = Vκ ∪ {Vκ}. Jensen’s consistency
proof of NFU [19] reveals that a model of NFU can be built from modelM of Mac
that admits a non-trivial automorphism j and such that there exists a point c ∈ M
with

M |= (c ∪ P(c) ⊆ j (c)). (1)

In [7] Feferman obtains a model of S∗ (in the theory ZFC+ ∃κ∃λ “κ < λ are inac-
cessible cardinals”) by building a model M of ZFC that admits a non-trivial auto-
morphism (the existence of the rank function α �→ Vα in ZFC ensures that every
non-trivial automorphism satisfies (1)) and such that M is an end-extension of A.
This ensures that there is an isomorphic copy A in the well-founded part of the
resulting model N of NFU, and moreover every point in this isomorphic copy of A
is strongly Cantorian inN . This allows Feferman to interpret the constant symbol V̄
using the point corresponding to Vκ inN . The fact that V̄ is isomorphic to Vκ where
κ is an inaccessible cardinal and N exists as a set ensures that V̄ satisfies axioms
(5–9) of S∗.

Feferman builds a model of ZFC that end-extends A and admits a non-trivial
automorphism using tools from infinitary logic. The fine-tuned proof we present
here uses the same techniques as [7], however the modelM that we build, which is
an end-extension of A and admits a non-trivial automorphism, will satisfy a fragment
of ZFC that is sufficient to ensure thatM equipped with its non-trivial automorphism
still yields a model of NFU. Let LA be the extension of the language of set theory
obtained by adding new constant symbols â for every a ∈ A. We use LA∞ω to denote
the infinitary language obtained from LA that permits arbitrarily long conjunctions
and disjunctions, but only finite blocks of quantifiers. Let TA be theLA∞ω-theory with
axioms:

7Mathias omits powerset and transitive containment from his axiomatisation of KPR in [22], but
both of these axioms follow from the existence of Vα for every ordinal α.
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∀x
(

x ∈ â ⇐⇒
∨

b∈a
(x = b̂)

)

for each a ∈ A.

Note that TA asserts that an LA-structure is an end-extension of A. Let LA be
the least Skolem fragment of LA∞ω that contains TA. So, in addition to the sym-
bols of LA, LA contains an n-ary function symbol F∃xφ for each n-ary LA-formula
∃xφ(x, y1, . . . , yn). We write SkA for the LA-theory with axioms:

∀�y(∃xφ(x, �y)⇒ φ(F∃xφ(�y), �y)) for each LA-formula φ(x, �y).

Let FmA be the set of LA-formulae. Note that |FmA| = κ and so there 2κ many
LA-theories.

We obtain a model that admits a non-trivial automorphism from amodel equipped
with an infinite class of order indiscernibles.

Definition 16 Let M be an LA-structure. We say that a linear order 〈I,<〉 with
I ⊆ M is a set ofn-variable indiscernibles forM if for allLA-formulaeφ(x1, . . . , xn)
and for all a1 < · · · < an and b1 < · · · < bn in I ,

M |= φ(a1, . . . , an) if and only ifM |= φ(b1, . . . , bn).

If for all n ∈ ω, 〈I,<〉 with I ⊆ M is a set of n-variable indiscernibles for M then
we say that 〈I,<〉 is a set of indiscernibles forM.

The following result from [2] allows us to buildLA-structures with indiscernibles:

Lemma 17 (Barwise–Kunen) Suppose that for all n ∈ ω,Mn is model of SkA and
〈In,<n〉 with In ⊆ Mn is a set of n-variable indiscernibles forMn. If for all n ∈ ω,
for all a1 <n · · · <n an in In and for all b1 <n+1 · · · <n+1 bn in In+1,

〈Mn, a1, . . . , an〉 ≡LA 〈Mn+1, b1, . . . , bn〉

then for any linear order 〈I,<〉 there is an LA-structureM with I ⊆ M such that I
is a set of indiscernibles for M and for all n ∈ ω, for all a1 <n · · · <n an in In and
for all b1 < · · · < bn in I ,

〈Mn, a1, . . . , an〉 ≡LA 〈M, b1, . . . , bn〉.

We now turn to building a model of TA with indiscernibles. The following defi-
nition appears in [19].

Definition 18 Let I be a set and let 〈 fn | n ∈ ω〉 be a family of partitions such that for
all n ∈ ω, fn has domain [I ]n . We say that 〈cn | n ∈ ω〉 is realizable for 〈 fn | n ∈ ω〉
if for all n ∈ ω and for all β < |I |, there exists an In ⊆ I such that |In| ≥ β and
fk([In]k) = {ck} for all k ≤ n.
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The n-variable indiscernibles on the LA-structures required so that we can apply
Lemma17 are obtained by considering a sequence of partitions 〈 fn | n ∈ ω〉 that
admit a realizable sequence 〈cn | n ∈ ω〉. If λ is a cardinal then the generalized
beth operation is defined by recursion: �0(λ) = λ, �α+1(λ) = 2�α(λ) and (if α is
a limit ordinal) �α(λ) = sup{�β(λ) | β < α}. If λ is a cardinal then the function
α �→ �α(λ) is inflationary and continuous. It follows from this observation that the
function α �→ �α(λ) has arbitrarily large fixed points. We will use the Erdős–Rado
Theorem [4] to produce realizable sequences.

Lemma 19 (Erdős–Rado) Let λ be an infinite cardinal. If f : [X ]n+1 −→ λ is a
partition with |X | ≥ �n(λ)+ then there exists H ⊆ X with |H | ≥ λ+ and γ ∈ λ
such that f “[H ]n+1 = {γ}.

We now turn to building a model of KPR that end-extends A and admits a non-
trivial automorphism. Let η0 be the least ordinal such that �η0(2

κ) = η0. Now, recur-
sively define

ηα+1 to be the least ordinal > ηα such that �ηα+1(2
κ) = ηα+1,

ηα = sup
β<α

ηβ for limit α.

Since the function α �→ �α(2κ) is continuous it follows that for all ordinals α,

ηα = �ηα
(2κ).

Therefore, for all ordinals α, Vηα
= Hηα

and so 〈Vηα
,∈〉 is a model of KPR. Let

I = {Vηα
| α < η(2κ)+}.

The membership relation (∈) linearly orders I and we will often abuse notation and
use< to denote this linear order. Now, |I | = η(2κ)+ and cf(η(2κ)+) = (2κ)+ > 2κ. The
argument used to prove the following Lemma can be found in [19].

Lemma 20 If 〈 fn | n ∈ ω〉 is a family of partitions such that for all n ∈ ω,

fn : [I ]n+1 −→ 2κ

then there exists a sequence 〈cn | n ∈ ω〉 that is realizable for 〈 fn | n ∈ ω〉.
Proof We inductively construct 〈cn | n ∈ ω〉. Suppose that we have c0, . . . , cn−1 ∈
2κ such that for all β < |I |, there exists D ⊆ I with |D| ≥ β and

fk([D]k+1) = {ck} for all k < n.
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Let Un−1 be the set of all D ⊆ I such that

fk([D]k+1) = {ck} for all k < n.

Note that our inductive hypothesis ensures thatUn−1 contains arbitrarily large subsets
of I . Now, let U ′ be the set of all B ⊆ I such that there exists a D ∈ Un−1 and c ∈ 2κ

with B ⊆ D and
fn([B]n+1) = {c}.

Lemma19 ensures that U ′ contains arbitrarily large subsets of I . Using the fact that
cf(|I |) > 2κ we canfind cn ∈ 2κ andUn ⊆ U ′which contains arbitrarily large subsets
of I such that for all B ∈ Un ,

fn([B]n+1) = {cn}.

Therefore, for all β < |I |, there exists D ⊆ I with |D| ≥ β and

fk([D]k+1) = {ck} for all k ≤ n.

Therefore we can build 〈cn | n ∈ ω〉 that is realizable for 〈 fn | n ∈ ω〉 by induction.
��

Let � be a well-ordering of Vηη
(2κ)+

. Define an LA-structure

M = 〈M,∈, (âM)a∈A, (FM
∃xφ)∃xφ∈LA 〉

such that:

• M = Vηη
(2κ)+

,

• for all a ∈ A, âM = a,
• for all LA-formulae ∃xφ(x, �y),

FM
∃xφ(�y) =

{
∅ ifM |= ¬∃xφ(x, �y)
�-least a s.t.M |= φ(a, �y) otherwise

Therefore, we have

M |= (KPR + SkA + TA) and I ⊆ M.

Lemma 21 There exists a family 〈In | n ∈ ω〉 of infinite subsets of I such that for
all n ∈ ω, In is a set of n-variable indiscernibles for M, and for all a0 < · · · < an
in In and for all b0 < · · · < bn in In+1,

〈M, a0, . . . , an〉 ≡LA 〈M, b0, . . . , bn〉.
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Proof For each n ∈ ω, define fn : [I ]n+1 −→ P(FmA) by

fn({a0 < · · · < an}) = {φ | φ is an n + 1-ary LA-formula and M |= φ(a0, . . . , an)}.

Using Lemma20 we can find a sequence 〈cn | n ∈ ω〉 that is realizable for 〈 fn |
n ∈ ω〉. Therefore we can inductively build a sequence 〈In | n ∈ ω〉 such that for all
n ∈ ω, |In| ≥ ω and

fk([In]k+1) = {ck} for all k ≤ n.

Let n ∈ ω. It is clear that In is a set of n-variable indiscernibles for M. Let a0 <

· · · < an be in In and let b0 < · · · < bn be in In+1. We have

fn({a0 < · · · < an}) = cn = fn({b0 < · · · < bn}).

Therefore, for all LA formulae φ(x0, . . . , xn),

M |= φ(a0, . . . , an) if and only ifM |= φ(b0, . . . , bn).

Therefore

〈M, a0, . . . , an〉 ≡LA 〈M, b0, . . . , bn〉. ��

Let 〈In | n ∈ ω〉 be the sequence whose existence is guaranteed by Lemma21.We
can now apply Lemma17 to obtain an LA-structure M′ and a linear order 〈Q,<〉
with Q ⊆ M ′ satisfying

(I) the order-type of 〈Q,<〉 is Z— we write Q = {qi | i ∈ Z},
(II) Q is a set of indiscernibles forM′,
(III) M′ ≡LA M,
(IV) for all LA-formulae φ(x0, . . . , xn), if

M |= φ(a0, . . . , an) for all a0 < · · · < an in I then

M′ |= φ(qi0 , . . . , qin ) for all i0 < · · · < in in Z.

LetM′′ be the LA-substructure ofM′ generated by Q, and the constants and func-
tions of LA. Therefore M′′ ≺LA M′. Consider the order automorphism j ′ : Q −→
Q defined by j ′(qi ) = qi+1 for all i ∈ Z. Since every element ofM′′ is the result of
applying an LA-Skolem function to a finite tuple of elements of Q, the bijection j ′
can be raised to an automorphism j :M′′ −→M′′. Note that for all a < b in I ,

M |= (a ∪ P(a) ⊆ b).
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Therefore, it follows from (IV) above that

M′′ |= (q0 ∪ P(q0) ⊆ j (q0)). (2)

Define the L∗-structure N = 〈N , Nsets,∈N , PN , V̄N 〉 by
• N = q∗0 ,
• Nsets = (V̂M′′

κ )∗,
• for all x, y ∈ q∗0 ,

x ∈N y if and only ifM′′ |= ( j (y) ⊆ q0 ∧ x ∈ j (y)),

PN (x, y) = {{x}, {x, y}} ∈ q∗0 ,

• V̄N = V̂M′′
κ

where the set variables x, y, z, . . . range over the domain Nsets and the class variables
X,Y, Z , . . . range over the domain N .

Lemma 22 N |= S∗.

Proof Note that since every element of Nsets interprets a constant symbol inM′′, the
automorphism j fixes every element of Nsets. This means that the structure 〈V̄ ∗,∈N 〉
is isomorphic to 〈Vκ,∈〉. The arguments in [19] show that since q0 satisfies (2) and
j fixes every element of Nsets, N satisfies axiom 1 and axiom scheme 2 of S∗. The
fact that Universal Choice is an L∗-stratified sentence that holds in every element of
I implies axiom 10 of S∗ holds inN . The fact that axiom 3 of S∗ holds inN follows
immediately from the definition of PN . The fact that axioms 4–7 and axiom scheme
9 of S∗ hold in N follow immediately from the fact that 〈V̄ ∗,∈N 〉 is isomorphic to
〈Vκ,∈〉. Since the structureN is a set (in themetatheory) and 〈V̄ ∗,∈N 〉 is isomorphic
to 〈Vκ,∈〉 it follows that axiom scheme 8 of S∗ holds in N . ��

Since the structureN is a set in the theoryZFC+ ∃κ “κ is an inaccessible cardinal”
we have shown:

Theorem 23 ZFC+ ∃κ.“κ is an inaccessible cardinal” � Con(S∗).

Conversely, recall that by Theorem10:

Theorem 24 S∗ � Con(ZC+ ∃κ.“κ is an inaccessible cardinal”+ ∀α ∈ Ord.“Vα

exists”).

This strengthens Feferman’s result that S∗ proves the consistency ofMorse-Kelley
set theory. Within the above extension of ZC, if α is an ordinal, then Vκ+α yields a
model of α:th order Morse-Kelley set theory. Having provided improved upper and
lower bounds on the consistency strength of S∗, we ask:

Question 25 What is the exact consistency strength of S∗ relative to an extension
of ZFC?
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Motivated by Question25 Feferman and the first author of this paper proposed an
extension of S∗ which is called S∗∗ in [11]. The theory S∗∗ is obtained from S∗ by
adding the universal closure of the following axiom scheme:

11. for all L∗-formulae φ(x, �Z),

∃X (∀x ∈ V̄ )(x ∈ X ⇐⇒ φ(x, �Z)).

We will conclude this section by sketching how our proof that the theory ZFC+ ∃κ
“κ is an inaccessible cardinal” proves the consistency of S∗ can be modified to show
that the theory ZFC+ ∃κ “κ is an inaccessible cardinal” also proves the consistency
of S∗∗. Work in the theory ZFC+ ∃κ “κ is an inaccessible cardinal” and let κ be and
inaccessible cardinal. Let A′ = Vκ+1. We can then define a fragment of infinitary
logic LA′ that is equipped with Skolem functions, and capable of asserting that a
structure is an end-extension of A′, with the property that |FmA′ | = 2κ. Therefore
there are 22

κ = �2(κ) many LA′-theories. We now define

I = {Vηα
| α < η�2(κ)+}.

Therefore |I | = η�2(κ)+ and cf(|I |) = �2(κ)+ > �2(κ). We can then modify the
definition of the structure M above by setting M = Vηη

�2(κ)+
and expanding the

interpretations to all symbols in LA′ . The resulting LA′-structure is an end-extension
of A′, and satisfies KPR and the Skolem theory ofLA′ . Using the same argument that
we used above we can use M to build an LA′-elementary equivalent structure M′′
that admits a non-trivial automorphism j :M′′ −→M′′. We define an L∗-structure
N fromM′′ and j in the same way as we did above. The structureN satisfies all of
the axioms of S∗. Since M′′ is an end-extension of A′, the structure 〈P(V̄ )∗,∈N 〉
will be isomorphic to 〈Vκ+1,∈〉. This is enough to ensure that axiom scheme 11 holds
in N . Thus we have:

Theorem 26 ZFC+ ∃κ “κ is an inaccessible cardinal” � Con(S∗∗).

Question 27 What is the exact consistency strength of S∗∗ relative to an extension
of ZFC?
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Abstract We consider some very robust semi-constructive theories related to
Kripke–Platek set theory, with and without the powerset operation. These theories
include the law of excluded middle for bounded formulas, a form of Markov’s prin-
ciple, the unrestricted collection scheme and, also, the classical contrapositive of
the bounded collection scheme. We analyse these theories using forms of a func-
tional interpretation which work in tandem with the constructible hierarchy (or the
cumulative hierarchy, if the powerset operation is present). The main feature of these
functional interpretations is to treat bounded quantifications as “computationally
empty.” Our analysis is extended to a second-order setting enjoying some forms of
class comprehension, including strict-�1

1 reflection. The key idea of the extended
analysis is to treat second-order (class) quantifiers as bounded quantifiers and strict-
�1

1 reflection as a form of collection. We will be able to extract some effective
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1 Introduction

In recent writings, Solomon Fefermanwas urging the study of semi-construtive theo-
ries. His papers “On the strength of some semi-constructive theories” [8] and “Logic,
mathematics, and conceptual structuralism” [9] (especially Sect. 6) are examples of
these writings. These theories are a blend of intuitionistic and classical logic and their
philosophical rationale can be described succinctly: according to some philosophical
conceptions, there are good reasons to treat certain collections as constituting a def-
inite totality (and, therefore, membership in them as abiding by the law of excluded
middle) and others as open ended. For instance, one may want to see sets defined by
bounded formulas as definite, and unbounded set-theoretic quantifications as open
ended (and, as a consequence, treated intuitionistically). The consideration of intu-
itionistic subsystems of set theory with the law of excluded middle for bounded
formulas was apparently first given by Lawrence Pozsgay in [16] (see [8] for more
information on this regard). Even though the present paper studies semi-constructive
theories of this kind, its rationale is mainly technical. It is an exploitation of a form of
functional interpretation that was introduced in the classical setting in [10] andwhose
roots can be found in a seminal paper of Jeremy Avigad and Henry Towsner [2]. This
form of functional interpretation works in tandem with Gödel’s constructible hierar-
chy (or with the cumulative hierarchy, in case the powerset operation is present) and
treats bounded and second-order (class) quantifications as “computationally empty.”
As it turns out, the theory of these functional interpretations is very natural and
satisfying.

The layout of this paper is the following. In Sect. 2 we introduce and draw some
simple but fundamental consequences of the basic semi-constructive theory that we
will analyse. Section3 studies with some detail the term calculus of the primitive
recursive functionals, introduced by William Howard in [14]. The �-type tree terms
q of this calculus give the means to refer to the various (countable) stages Lq of
the constructible hierarchy (or of the cumulative hierarchy Vq ). The most important
section is the fifth, where the main functional interpretation is defined and where a
pertinent soundness theorem is proved. Departing from tradition, the verifications of
the functional interpretations of this paper do not take place within formal theories,
but are rather seen to hold semantically. A previous Sect. 4 introduces the two basic
semantical structures with which we will be working with. We will be able to extract
constructive information from proofs of sentences of the form ∀x∃y φ(x, y), where
φ can take various forms. The constructive information is given by a closed term t of
type� → � such that ∀c�∀x ∈ Lc∃y ∈ Ltc φ(x, y) holds. In particular, if the semi-
constructive theory proves a �1-sentence then it follows that this sentence already
holds in Lα , for α an ordinal less than the Bachmann–Howard ordinal. Our methods
are able to provide a �-ordinal analysis in this sense.

We extend the analysis to a second-order setting with a form of bounded com-
prehension and with strict-�1

1 reflection. In a first study, the extension keeps the
original separation scheme. This is done in Sect. 6 and the conclusion is that an ordi-
nary �-ordinal analysis still goes through. In the last section, we allow second-order
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parameters in the separation scheme. This simplemodification entails amajor change
because, as Vincenzo Salipante has observed in [19], with this form of separation
one can prove the totality of the powerset operation. Nevertheless, a functional inter-
pretation of the second-order theory with the extended separation scheme can still be
made. There is a crucial difference, though. We now need the (countable) stages of
the cumulative hierarchy. We are also able to extract some constructive information
and to perform a relativized �-ordinal analysis (in the sense of Michael Rathjen in
[17]). As a last item, we recuperate Rathjen’s relativized �-ordinal analysis of the
classical theory dubbed power Kripke–Platek set theory.

2 Intuitionistic Kripke–Platek Set Theory

Kripke–Platek set theory with infinity, with acronym KPω, is a well-known theory
framed in the language of set theory. It is a theory of classical logic whose axioms are
extensionality, (unordered) pair, union, infinity, and the schemata of �0-separation,
�0-collection and (unrestricted) foundation. The reader can consult [5] for a precise
formulation. Since we are interested in (semi) intuitionistic versions of KPω, the
primitive logical symbols are absurdity, conjunction, disjunction, implication, and
the universal and existential quantifiers. It is also convenient in our setting (as it
was in [10]) to include bounded quantifiers as a primitive syntactic device. Both
∀x ∈ z φ and ∃x ∈ z φ are part of the primitive syntactic apparatus and are not
considered as abbreviations of ∀x (x ∈ z → φ) and ∃x (x ∈ x ∧ φ), respectively.
Instead, our axioms include the corresponding equivalences between these formulas.
The class of bounded or �0-formulas is the smallest class of formulas that includes
the atomic formulas (including the absurdity) andwhich is closed under propositional
connectives and bounded quantifiers. For the record (and because of its importance),
we state the scheme �0-Coll of bounded collection:

∀y ∈ w ∃x φ(x, y) → ∃z ∀y ∈ w ∃x ∈ z φ(x, y),

where φ(x, y) is a bounded formula, possibly with parameters. The scheme of foun-
dation is formulated in its inductive form (which is the form appropriate for intu-
itionistic studies):

∀x (∀y ∈ x φ(y) → φ(x)) → ∀x φ(x),

for every formula φ(x), possibly with parameters. Since the scheme is unrestricted,
it is easy to see that the scheme is (intuitionistically) equivalent to the rule

∀x (∀y ∈ x φ(y) → φ(x))

∀x φ(x)
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where φ(x) is any formula (possibly with other free variables besides x). The proof
of the soundness theorem (Theorem 2) simplifies if we consider the rule instead of
the axiom scheme.

Following [8], let IKPω be the system KPω with the logic restricted to be intu-
itionistic. Let �0-LEM be the scheme φ ∨ ¬φ of excluded middle for bounded
formulas φ. Our basic intuitionistic theory is IKPω + �0-LEM. In the remaining of
this section we present a series of four definitions that introduce principles that the
functional interpretation of Sect. 5 is able to interpret.

Definition 1 Markov’s principle MP is the scheme ¬∀x φ(x) → ∃x ¬φ(x), for φ

a bounded formula (possibly with parameters).

Proposition 1 IKPω + �0-LEM + MP proves the following scheme for bounded
formulas φ and ψ (parameters are allowed): (∀x φ(x) → ψ) → ∃x (φ(x) → ψ).

Proof Assume ∀x φ(x) → ψ . By �0-LEM, there are two cases to consider. If ψ

holds then any x will do. Otherwise, we have ¬∀x φ(x). By MP take x0 such that
¬φ(x0). Of course, φ(x0) → ψ . We are done. �

A �1-formula φ is a formula of the form ∃z ψ(z), where ψ(z) is a bounded
formula (possibly with parameters). Up to provability in IKPω, this class of formulas
is closed under conjunction, disjunction, bounded quantifications and existential
quantifications. This is well-known in the classical setting, but the argument also
goes through in IKPω. We defer the discussion of the dual class �1 until the end of
this section. A �2-formula is a formula of the form ∀w φ(w), where φ(w) is a �1-
formula.We have only defined these formulas with a single universal quantifier ‘∀w’,
but it is clear (using the pair axiom and the closure properties of bounded formulas)
that a tuple of universal quantifications yields a formula equivalent (in IKPω) to a
�2-formula. The following theorem shows that the theory IKPω + �0-LEM + MP
has a certain robustness.

Theorem 1 The theory KPω is �2-conservative over IKPω + �0-LEM + MP.

Proof This is an easy consequence of the (Gödel and Gentzen) negative transla-
tion. The translation is extended to the bounded quantifiers in the natural way:
(∀x ∈ z φ(x))g is ∀x ∈ z φg(x), and (∃x ∈ z φ(x))g is ¬¬∃x ∈ z φg(x). Note that
the translation of a bounded formula is still a bounded formula. Therefore, a bounded
formula is equivalent to its negative translation in IKPω + �0-LEM. From this it is
clear that the translations of the axioms of extensionality, pair, union, infinity and�0-
separation are theorems of IKPω + �0-LEM. The negative translation of an instance
of the scheme of foundation is still an instance of foundation. In order to argue that the
negative translation of KPω is contained in IKPω + �0-LEM + MP, it remains to
study the scheme of�0-collection.Well, the negative translation of an instance of�0-
collection has the form∀x ∈ z¬¬∃y φg(x, y) → ¬¬∃w∀x ∈ z¬¬∃y ∈ w φg(x, y),
where φ is a bounded formula. In the presence of MP, the antecedent of the above
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implication is equivalent to ∀x ∈ z∃yφg(x, y). Now, by an application of bounded
collection, we get something stronger than the consequent of the implication.

We are ready to prove the theorem. Suppose that KPω proves ∀x∃y φ(x, y),
with φ a bounded formula. By the properties of the negative translation, the theory
IKPω + �0-LEM + MP proves ∀x¬¬∃y φ(x, y). Using MP, we get the desired
conclusion. �

Definition 2 The independence of premises principle bIP�1 is the scheme

(∀x φ(x) → ∃y ψ(y)) → ∃y (∀x φ(x) → ∃z ∈ y ψ(z)),

where φ is a bounded formula and ψ is any formula (parameters are allowed).

This principle is reminiscent of the independence of premises principle of Gödel’s
dialectica interpretation (cf. [1]). The analogy is not total because of the intrusion of
a bounded quantification in the consequent of the existential consequent above. This
is a crucial feature and it is in line with the bounded functional interpretation [11].
However, when the formula ψ is bounded then the bounded quantifier is not needed.

Lemma 1 IKPω + �0-LEM + MP + bIP�1 proves the following scheme for bou-
nded formulas φ and ψ (parameters are allowed): (∀x φ(x) → ∃y ψ(y)) → ∃y∃x
(φ(x) → ψ(y)).

Observation 1 Note that (∀x φ(x) → ∃y ψ(y)) → ∃y (∀x φ(x) → ψ(y)) follows
intuitionistically.

Proof of Lemma1Assume∀x φ(x) → ∃y ψ(y). BybIP�1 , take y0 so that∀x φ(x) →
∃z ∈ y0 ψ(z). Since the consequent of the latter formula is bounded, by Proposition
1 there is x0 such that φ(x0) → ∃z ∈ y0 ψ(z). By �0-LEM, there are two cases to
consider. If φ(x0) holds, let z0 be an element of y0 such that ψ(z0). Otherwise, let
z0 be ∅. Clearly, φ(x0) → ψ(z0). �

Proposition 2 The theory IKPω + �0-LEM +MP +bIP�1proves�1-separation, i.e.,
it proves∀x (∀u φ(u, x) ↔ ∃v ψ(v, x)) → ∀z∃y∀x (x ∈ y ↔ (x ∈ z ∧ ∃v ψ(v, x))),

for bounded formulas φ and ψ (possibly with parameters).

Proof Suppose that ∀x (∀u φ(u, x) ↔ ∃v ψ(v, x)) and fix z. From the left-to-right
direction and the above lemma, ∀x ∈ z∃u, v (φ(u, x) → ψ(v, x)). By bounded col-
lection, there is w such that

∀x ∈ z∃u, v ∈ w (φ(u, x) → ψ(v, x)).

It is easy to see that we can take y = {x ∈ z : ∃v ∈ w ψ(v, x)}. �

Corollary 1 The theory IKPω + �0-LEM + bIP�1 + MP proves the �1 law of
excluded middle, i.e., it proves (∀u φ(u) ↔ ∃v ψ(v)) → (∀u φ(u) ∨ ¬∀u φ(u)), for
bounded formulas φ and ψ (possibly with parameters).
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Proof Let y0 = {x ∈ {0, 1} : (x = 0 ∧ ∃u ¬φ(u)) ∨ (x = 1 ∧ ∃v ψ(v))}. This set
exists by the previous proposition. It is clear that 1 ∈ y0 ↔ ∀u φ(u).We are done. �

In a personal communication, Makoto Fujiwara observed that the �1 law of
excludedmiddle is a consequence of IKPω + �0-LEM + bIP�1 (MP is not needed).
We will see this in the similar situation of Proposition 6.

One of the characteristic principles of the bounded functional interpretation [11] is
a generalization of weakKőnig’s lemma. In the second-order setting of Sect. 6 ahead,
the classical contrapositive of (a restriction of) strict-�1

1 reflection (see Chap. VIII of
[5]) takes the place of weak Kőnig’s lemma. However, at a more fundamental level,
the abovementioned characteristic principle of the bounded functional interpretation
is better seen as the classical contrapositive of a collection scheme (it was dubbed
bounded contra-collection scheme in [11]). Functional interpretations which treat
bounded quantifications as computationally empty, as it is the case of the bounded
functional interpretation [11] and the functional interpretation of this paper (see
Sect. 5), enjoy the novelty of interpretating a bounded contra-collection scheme. As
a consequence, they are able to interpret a semi-intuitionism that is able to accomodate
principles like the lesser limited principle of omniscience LLPO of Errett Bishop (see
[6] and also [7]). It also gives us a good theory of �1-predicates. Let us first look at
these matters in our first-order Kripke–Platek framework.

Definition 3 The principle of bounded contra-collection �0-CColl is the scheme

∀z∃y ∈ w∀x ∈ z φ(x, y) → ∃y ∈ w∀x φ(x, y),

where φ is a bounded formula (possibly with parameters).

Note that, classically, this is just the bounded collection scheme. Bounded contra-
collection easily generalizes for a tuple of z’s. The proof of the following lemma
presents the argument for a pair of z’s:

Lemma 2 For each bounded formula φ, the theory IKPω + �0-CColl proves

∀x, z∃y ∈ w∀u ∈ x∀v ∈ z φ(u, v, y) → ∃y ∈ w ∀u, v φ(u, v, y).

Proof Suppose that ∀x, z∃y ∈ w ∀u ∈ x∀v ∈ z φ(u, v, y). We claim that

∀s∃y ∈ w∀r ∈ s∀u ∈ r∀v ∈ r φ(u, v, y).

Let s be given.Using the assumptionwith x and z taking the commonvalue∪s, we get
∃y ∈ w∀u ∈ ∪s ∀v ∈ ∪s φ(u, v, y) and, as a consequence, the claim. By �0-CColl,
∃y ∈ w∀r∀u ∈ r ∀v ∈ r φ(u, v, y). The result follows using the pair axiom. �

Proposition 3 For bounded formulas φ and ψ , the theory IKPω + �0-CColl proves

∀x, z (∀u ∈ x φ(u) ∨ ∀v ∈ z ψ(v)) → ∀u φ(u) ∨ ∀v ψ(v).
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Proof Suppose that ∀x, z (∀u ∈ x φ(u) ∨ ∀v ∈ z ψ(v)). It clearly follows that

∀x, z∃y ∈ {0, 1}∀u ∈ x ∀v ∈ z ((y = 0 ∧ φ(u)) ∨ (y = 1 ∧ ψ(v))).

The result follows from the previous lemma. �

We are now able to derive the analogue of the lesser limited principle of omni-
science in our setting (parameters are allowed):

Corollary 2 For bounded formulas φ and ψ , the theory IKPω + �0-LEM +
�0-CColl proves

∀u, v (φ(u) ∨ ψ(v)) → ∀u φ(u) ∨ ∀v ψ(v).

Proof In the presence of �0-LEM, it can easily be argued that ∀u, v (φ(u) ∨ ψ(v))
entails ∀x, z (∀u ∈ x φ(x) ∨ ∀v ∈ z ψ(z)). Now, apply the previous proposition. �

The theory IKPω + �0-LEM + MP + bIP�1 + �0-CColl is a rather robust the-
ory. For instance, this theory is able to prove the results described by Jon Barwise
between Sects. 3 and 6 of chapter I of [5]. These results include the existence of
ordered pairs, cartesian products and transitive closures as well as various forms of
reflection and replacement. More importantly, this theory is well behaved regard-
ing the introduction of �1-relation symbols and �1-function symbols. The argu-
ments of the referred sections of [5] rely crucially on the fact that �1-formulas
are closed under conjunctions, disjunctions, bounded quantifications and existen-
tial quantifications. As observed, this is also the case in our intuitionistic setting.
It also relies crucially on corresponding dual properties of �1-formulas. This is
immediate in the classical setting. However, in our semi-constructive setting, one
must proceed with some care. A �1-formula is a formula of the form ∀z ψ(z),
where ψ is a bounded formula. Note that a negation of a �1-formula is (equiva-
lent to) a �1-formula, thanks to MP. We claim that �1-formulas are closed (up to
equivalence in IKPω + �0-LEM + MP + bIP�1 + �0-CColl) under conjunctions,
disjunctions, bounded quantifications and universal quantifications. This is clear
for conjunctions and universal quantifications (bounded and unbounded). Corol-
lary 2 entails that �1-formulas are close under disjunctions. The closure under
existential bounded quantifications follows from �0-CColl. One last word, the
theory IKPω + �0-LEM + MP + bIP�1 + �0-CColl also allows definitions by �-
recursion.

The last principle of this section is the unrestricted collection scheme. The func-
tional interpretation of Sect. 5 is able to interpret it. This is possible because we are
in an intuitionistic setting (this is analogous to the functional interpretation of [8]).
In the classical setting of [10], only the bounded collection scheme is interpretable.
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Definition 4 The principle of (unrestricted) collection Coll is the scheme

∀y ∈ w∃x φ(x, y) → ∃z∀y ∈ w∃x ∈ z φ(x, y),

where φ is any formula (possibly with parameters).

3 On the Term Calculus of the Primitive Recursive Tree
Functionals

It was said in the introduction that the functional interpretations of this paper uses the
combinatory term calculus L� of the primitive recursive tree functionals. This term
calculus is due to Howard (cf. [14]), and in [10] we have presented a streamlined
version of it. Let us briefly go throughL�.We expandGödel’s language of “primitive
recursive functions offinite-type” (see [1])with a newground type� for the countable
constructive tree ordinals. The ground type of the natural numbers is denoted by N .
The complex types are obtained from the ground types by closing under arrow. We
use the Greek letters ρ, τ , σ , …to denote the types. The language has a denumerable
stock of variables a, b, c,…for each type.We follow [1] for notations and conventions
concerning omission of parentheses. The constants of L� are:

(a) Logical constants or combinators. For each pair of types ρ, τ there is a combi-
nator of type ρ → τ → ρ denoted by�ρ,τ . For each triple of types δ, ρ, τ there
is a combinator of type

(δ → ρ → τ) → (δ → ρ) → (δ → τ)

denoted by �δ,ρ,τ .
(b) Arithmetical constants. The constant 0N of type N . The successor constant S of

type N → N . For each type ρ, a (number) recursor constant of type

N → ρ → (N → ρ → ρ) → ρ

denoted by RN
ρ .

(c) Tree constants. The constant 0� of type �. The supremum constant Sup of type
(N → �) → �. For each type ρ, a tree recursor constant of type

� → ρ → ((N → �) → (N → ρ) → ρ) → ρ

denoted by R�
ρ .

The above treatment is not completely rigorous because the recursors must operate
simultaneously on tuples of variables (simultaneous recursion), and not only on a
single variable. A rigorous treatment for arithmetic with simultaneous recursions
is given in [15]. Another option would be to permit product types ρ × τ . We will
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not worry in this paper about these fine details. In any circumstance, a combinatory
calculus with a notion of weak equality =w can be associated with the above. The
conversions for the tree recursors can be found in [10], but can also be read from their
set-theoretical interpretation (definition) in the next section. In this paper we follow
the treatment of [13], including the way of defining lambda terms (abstration). Let
us introduce some important terms (see [10] for more information).

i. q� + 1 :≡ Sup(λx N .q).
ii. It is possible to define by number recursion a closed term d����N�� such that

d(q, s, 0) =w q andd(q, s, Sn) =w s. Letmax(a, b) + 1 :≡ Sup(λx N .d(a, b, x))

(the notation ‘max(a, b) + 1’ should be viewed syncategorematically).
iii. We can define by number recursion a closed term q N→� such that q0 =w 0�

and q(Sn) =w S(qn). We write n� instead of qn.
iv. ω� :≡ Sup(λx N .x�).
v. It is possible to define by tree recursion a term Sup−1 of type � → (N → �)

such that Sup−1(Sup(t)) =w t for each term t of type N → �. We abbreviate
Sup−1(q)(n) by q〈n〉, for terms q� and nN . Clearly, Sup(t)〈n〉 =w tn. We have
also (q + 1)〈n〉 =w q, (max(q, s) + 1)〈0〉 =w q and (max(q, s) + 1)〈Sn〉 =w

s.
vi. Fix p a pairing term of type N → (N → N ) with inverse functions l and

r , both of type N → N . Hence, p(l(n), r(n)) =w n, l(p(m, k)) =w m and
r(p(m, k)) =w k, for terms n, m, k of type N . Given t N��, we define

⊔
t :≡

Sup (λyN .(t (ly))〈r y〉). This is a term of type �. An important particular case of
this “square union” is q � s :≡ ⊔

(λx N .d(q, s, x)), where q and s are of type �

and d is the term introduced in (ii) above.

The next definition is a refinement of a similar definition in [2]:

Definition 5 Let t, q be terms of type � and r a term of type N → N . We say that
t �r q if t〈x〉 =w q〈r x〉, where x is a fresh variable of type N .

Sometimes we write only t � q when the witnessing term r is presupposed.

Lemma 3 Let t be a term of type N → � and k N . Then, for each term n of type N,
(
⊔

t)〈p(k, n)〉 =w (tk)〈n〉 and (therefore) tk �λx N .p(k,x)

⊔
t . (Here, p is the pairing

function of (vi) above.) In particular, for q and s of type �, q � q � s and s � q � s.

Proof (
⊔

t)〈p(k, n)〉 =w (λyN .(t (ly))〈r y〉)(p(k, n)) =w (tk)〈n〉. �

In order to deal with the functional interpretation of Sect. 5, we need to lift some of
the above notions from the type� to so-called pure �-types (i.e., types obtained only
from the ground type � by means of the arrow). The lifting is done pointwise. As
a consequence, we need to have a stronger notion of equality: one that incorporates
some extensionality. We use combinatory extensional equality, as explained in [13].
This notion allows for the so-called ζ -rule: from t x = qx infer t = q, where x is a
fresh variable (of appropriate type). This rule is equivalent to the ξ -rule: from t = q
infer λx .t = λx .q. This is proved in [13]. Note that the ξ -rule is automatic in a direct
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treatment (i.e., not via combinators) of the lambda calculus. In a direct treatment
of the lambda calculus, the extensionality needed is given by the η-axiom scheme:
λx .qx = q, where q is a term inwhich the variable x does not occur free. On the other
hand, in combinatory logic, with a proper definition of abstraction (as in [13], and
which we follow), the η-axiom scheme is automatic. These are somewhat technical
issues relating the combinatory calculus with the lambda calculus. To cut through the
fog, the proper way to state extensional equality in the combinatory calculus is the
above ζ -rule. For more information, consult [13]. Risking confusion (but essentially
following the notation of [13]), we use the notation=βη for combinatory extensional
equality. Of course, if t =w q then t =βη q.

vii. If q is a term of pure �-type τ of the form τ1 → · · · → τk → �, one defines
q + 1 :≡ λz.((qz) + 1), where z abbreviates a tuple of variables zτ1 , . . . , zτk .
If t is a term of type N → τ , we let Sup(t) :≡ λz.Sup(λn.tnz).

viii. If q is as above and n is of type N , let q〈n〉 :≡ λz.((qz)〈n〉). We claim that
(q + 1)〈n〉 =βη q. Therefore, (q + 1)〈n〉 =βη (λz.((qz) + 1))〈n〉 =βη λz.
(((qz)+ 1)〈n〉) =βη λz.qz =βη q. It is in the penultimate equality that exten-
sionality is used (a ξ -rule application). If t is a term of type N → τ , where τ

is the pure �-type above, we have Sup(t)〈n〉 =βη λz.tnz. To see this, notice
that Sup(t)〈n〉 =βη λz.((Sup(λn.tnz))〈n〉) =βη λz.tnz. We are using (v) and
the ξ -rule application in the last equality.

ix. Again, if t is a term of type N → τ , where τ is the pure�-type above, we define⊔
t :≡ λz.(

⊔
λx N .(t xz)). If q and s are of type τ , we define q � s pointwise

in analogy to (vi) above: q � s :≡ λz.
⊔

λx N .d(qz, sz, x).

Definition 6 Let t, q be terms of pure �-type τ and let r a term of type N → N .
We say that t �r q if t〈x〉 =βη q〈r x〉, where x is a fresh variable of type N .

One should see this definition as superseding Definition 5 and the next lemma as
superseding Lemma 3:

Lemma 4 Let t be a term of type N → τ , where τ is a pure �-type. Let k and n be
terms of type N. Then (

⊔
t)〈p(k, n)〉 =βη (tk)〈n〉 and (therefore) tk �λx N .p(k,x)

⊔
t .

In particular, for q and s of type τ , q � q � s and s � q � s.

Proof Suppose τ is τ1 → · · · → τr → �. Then, if z stands for a tuple of variables
zτ1
1 , . . . , zτr

r , we have

(
⊔

t)〈p(k, n)〉 =βη (λz.
⊔

λx N .(t xz))〈p(k, n)〉 =βη λz.((
⊔

x N .(t xz))〈p(k, n)〉) =βη

λz.((tkz)〈n〉) =βη (tk)〈n〉

Extensionality is used in the penultimate equality. �
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We were somewhat careful (perhaps even pedantic) in the discussion of exten-
sionality because there is a faux pas in Sect. 6 of [10]. In that paper, we discussed
a so-called internalization of an interpretation introduced in a previous section (in
the present paper we do not discuss internalizations). The referred internalization
is given by the intensional model of Sect. 9.3 of [1] (a version of the hereditarily
recursive operations for our setting). However, the conclusion of the soundness the-
orem is not verified in this structure because of a lack of extensionality: the above
discussed βη equalities do not hold in the intensional model. The problem is easily
fixed, though. The internalization should have been done with the analogue of the
hereditarily effective operations for our setting (also discussed in 9.3 of [1]).

4 Brief Semantical Considerations

In the next section we define a functional interpretation of the theory IKPω +
�0-LEM + MP + bIP�1 + �0-CColl + Coll and prove an appropriate soundness
theorem. The conclusion of the soundness theorem is not verified in a formal theory
(as it is the tradition in functional interpretations) but it is rather semantically verified,
i.e., seen to be true in a certain structure. This is a simplificatory option of this paper.
In principle, one can refine the soundness theorem in order to have a verification
in a suitable formal theory, as we did in Sect. 6 of [10] with an “internalization” of
the semantical interpretation presented there in Sects. 2 and 3. With verifications in
formal theories, one can obtain stronger results (viz., conservation results) but, as
noted at the end of the previous section, one has to proceed carefully and this is
would make the present paper too long and perhaps even distracting from its main
objective. So, in this paper, we will proceed semantically in the verification of the
soundness theorems.

The interpretation of the term calculus of this paper is common to all the inter-
pretations of this paper. It is the (full and extensional) set-theoretical structure 〈Sρ〉
of Sect. 9.4 of [1] (see also [10]). The variables of each type ρ of L� range over Sρ .
These sets are defined thus:

1. SN = ω

2. S� is the smallest set W which contains 0 and is such that, whenever f is a
function that maps ω into W , then the ordered pair (1, f ) is in W .

3. Sρ�τ = { f : f is a set-theoretic function that maps Sρ into Sτ }
It is clear how the terms of L� are interpreted in the set-theoretical model (see [10]
for some details). We only note that the constant Sup is interpreted by the function
which, on input f ∈ SN��, outputs the element (1, f ) of W . We also remark that,
to each element c of W , we can associate a countable set-theoretical ordinal |c| so
that |0| = 0 and, for a function f : ω → W , |Sup( f )| = sup{| f (n)| + 1 : n ∈ ω}.
Observe that | f (n)| < |Sup( f )|, for each natural number n. It is well-known that the
first uncountable ordinal ω1 is the supremum of all |c|, with c ∈ W . The previous
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discussion also permits to define, by classical ordinal recursion, the interpretations
of the tree recursors R�

ρ so that:

R�
ρ (0�, a, F) = a and R�

ρ (Sup( f ), a, F) = F( f, λx N .R�
ρ ( f (x), a, F)),

for all a ∈ Sρ and F a function that maps SN�ρ into (Sρ)
SN�ρ .

Clearly, the equalities (both =w and =βη) established in the previous section
between terms of L� give rise to set-theoretical equalities in 〈Sρ〉.
Lemma 5 (i) If c ∈ W and c �= 0, then |c| = Supn∈ω(|c〈n〉| + 1).
(ii) If c, d ∈ W and c � d then |c| ≤ |d|.
Proof (ii) is an immediate consequence of (i). Given c �= 0, let c = sup f , for a cer-
tain f : ω → W . Then |c| = sup{| f (n)| + 1 : n ∈ ω} = sup{|c〈n〉| + 1 : n ∈ ω}.�
Lemma 6 Let b, c : ρ → τ and a : ρ be term variables of pure �-types and f be
a term variable of type N → N. Then the implication b � f c → ba � f ca is true
in the set-theoretical structure 〈Sρ〉 for any values of the variables.

Proof Let τ be τ1 → · · · → τk → �. Take n a natural number. Since b � f c,
then b〈n〉 = c〈 f n〉 holds set-theoretically. Note that ρ → τ is ρ → τ1 → · · · →
τk → �. Hence, λwρ, z.((bwz)〈n〉) = λwρ, z.((cwz)〈 f n〉) holds set-theoretically
(where z is a tuple of variables zτ1

1 , . . . , zτk
k ). Therefore, (λwρ, z.((bwz)〈n〉))a =

(λwρ, z.((cwz)〈 f n〉))a holds set-theoretically and, hence, λz.((baz)〈n〉) =
λz.((caz)〈 f n〉) holds set-theoretically. In sum, ba � f ca. �

Finally, before discussing our so-called mixed structures, observe that the inter-
pretation of a closed term t of ground type � is an element of W and, therefore, has
an associated set-theoretical ordinal which, with abuse of notation, we denote by |t |.
The Bachmann–Howard ordinal is the supremum of all these ordinals.

The functional interpretation of the next section translates a formula φ of the
language of set theory into formulas φB and φB of a mixed language Lmix

� . A version
of this languagewas introduced in [10]. Let us briefly describe it. Themixed language
Lmix

� has three kinds of terms: the terms of L� (including, of course, the variables a,
b, c, etc. of L�), the set-theoretical variables x , y, z, etc. and (set) terms Mt , where
t is a term of L�. The atomic formulas of Lmix

� are the formulas of the form x = y,
x ∈ y or x ∈ Mt , for x and y set-theoretical variables and t a term of L� of type �.
The bounded mixed formulas are generated from the atomic formulas by means of
the propositional logical connectives¬ and∧ and quantifications of the form ∀x ∈ y,
∀x ∈ Mt and ∀nN (note that this last quantifier is classified as bounded). Since our
semantics is classical, there is no need to introduce other connectives and quantifiers,
as they can be defined. The formulas of Lmix

� are generated from the bounded mixed
formulas by means of propositional connectives and quantifications of the form ∀aρ ,
where a is a term variable (of a certain type ρ) of the term language L�. Observe
that we do not need unbounded set-theoretic quantifications.
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The two basic interpretations for Lmix
� are the structures Lmix

ω1
and V mix

ω1
. In both

of these structures, the terms of L� (and, therefore, the range of term variables) are
interpreted set-theoretically in 〈Sρ〉 (as described by points 1, 2 and 3 above). The
set-theoretic variables range over Lω1 , respectively Vω1 . The terms Mt are interpreted
as L |t | in Lmix

ω1
and as V|t | in V mix

ω1
. Abusing language, we often replace the term Mt

by the notations Lt or Vt according to the interpretation that we have in mind.

5 The Main Functional Interpretation

We are going to associate to each formula φ(x1, . . . , xn) of the language of set theory
(free variables as shown) a bounded mixed formula φB of the form

φB(a1, . . . , ak, b1, . . . , bm, x1, . . . , xn),

with the free variables as shown (the a’s and the b’s are variables of L� of pure
�-type) and also the following formula φB(x1, . . . , xn) of the language Lmix

� :

∃a1 · · · ∃ak∀b1 · · · ∀bm φB(a1, . . . , ak, b1, . . . , bm, x1, . . . , xn).

Note that k or m (or both) can be zero. For notational simplicity, we simply write
φ(x), φB(x) and φB(a, b, x), instead of carrying the tuple notation. Many times we
also omit the parameters x .

Definition 7 To each formula φ of the language of set theory (possibly with param-
eters), we assign formulas φB and φB so that φB is of the form ∃a∀b φB(a, b), with
φB(a, b) a bounded mixed formula, according to the following clauses:

1. φB and φB are simply φ, for bounded formulas φ of the language of set theory.

For the remaining cases, if we have already interpretations for φ and ψ given by
∃a∀b φB(a, b) and ∃d∀e ψB(d, e) (respectively), then we define:

2. (φ ∧ ψ)B is ∃a, d∀b, e [φB(a, b) ∧ ψB(d, e)],
3. (φ ∨ ψ)B is ∃a, d∀b, e [∀n φB(a, b〈n〉) ∨ ∀m ψB(d, e〈m〉)],
4. (φ → ψ)B is ∃B, D∀a, e [∀n φB(a, (Bae)〈n〉) → ψB(Da, e)],
5. (∀x ∈ z φ(x, z))B is ∃a∀b [∀x ∈ z φB(a, b, x, z)],
6. (∃x ∈ z φ(x, z))B is ∃a∀b [∃x ∈ z∀n φB(a, b〈n〉, x, z)],
7. (∀xφ(x))B is ∃A∀c�, b [∀x ∈ Lc φB(Ac, b, x)],
8. (∃xφ(x))B is ∃c�, a∀b [∃x ∈ Lc∀n φB(a, b〈n〉, x)].

The lower B-translations are displayed inside the square parentheses. Note that
they are boundedmixed formulas.The following lemma is an immediate consequence
of the definitions.
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Lemma 7 Let φ be a �0-formula. Then:

(i) (∃xφ(x))B is ∃c�[∃x ∈ Lc φ(x)].
(ii) (∀x∃yφ(x, y))B is ∃A�→�∀c�[∀x ∈ Lc∃y ∈ L Ac φ(x, y)].

As it is usual with this kind of functional interpretations, we have the following
crucial property:

Lemma 8 (Monotonicity property) Let φ(x) be a formula of the language of set
theory. In Lmix

ω1
one has the implication a � f c ∧ φB(a, b, x) → φB(c, b, x).

Proof It is clear that the clauses 2, 3, 5 and 6 preserve this property. By Lemma 6,
clause 7 preserves the property, and byLemma5 (ii), so does clause 8. Let us look now
at clause 4. Suppose that ∀n φB(a, (Bae)〈n〉) → ψB(Da, e) holds in Lmix

ω1
and that

B � f B ′ and D �g D′. Assume that ∀n φB(a, (B ′ae)〈n〉). Let k be an arbitrary natu-
ral number. Since B � f B ′, by two applications of Lemma 6, we get Bae � f B ′ae.
Hence, (Bae)〈k〉 = (B ′ae)〈 f k〉. By the assumption, we have φB(a, (B ′ae)〈 f k〉).
Now, by the arbitrariness of k, wemay conclude that ∀k φB(a, (Bae)〈k〉). By hypoth-
esiswemay inferψB(Da, e) and, therefore byLemma6and the induction hypothesis,
ψB(D′a, e). We are done. �

We are now ready to state and prove the soundness theorem of the functional
interpretation.

Theorem 2 (Soundness Theorem) Let φ be a sentence of the language of set the-
ory. Suppose that IKPω + �0-LEM + MP + bIP�1 + �0-CColl + Coll � φ. Then
there are closed terms t of L� such that, for appropriate types ρ,

Lmix
ω1

|= ∀bρ φB(t, b).

Proof The proof is by induction on the length of the derivation. We show that if a
formula φ(w) is provable in the theory of the theorem, then there are closed terms t
of L� such that, for appropriate types ρ, we have

Lmix
ω1

|= ∀c�∀bρ [∀w ∈ Lc φB(tc, b, w)],

where φ(w)B is ∃a∀b φB(a, b, w).
For ease of reading, in the following we ignore parameters that do not play an

important role in the proof of the theorem. For the logical part of the theory, we
rely on the formalization of intuitionistic logic given in [1]. The verification of these
axioms and rules has some rough similarities with the verifications of [11]. In the
following, we take φ andψ as in Definition 7, and γ with γ B given by ∃u∀v γB(u, v).
Let us now discuss each rule and axiom:

1. φ, φ → ψ ⇒ ψ . By induction hypothesis, there are terms t , r and s such that
∀b φB(t, b) and ∀a, e [∀n φB(a, (rae)〈n〉) → ψB(sa, e)] hold in Lmix

ω1
. Let q :≡ st .

It is clear that we can conclude ∀e ψB(q, e).
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2. φ → ψ,ψ → γ ⇒ φ → γ . By hypothesis we have terms t, s, r and q such
that the following holds in Lmix

ω1
: (i) ∀a, e [∀n φB(a, (sae)〈n〉) → ψB(ta, e)] and (ii)

∀d, v [∀m ψB(d, (rdv)〈m〉) → γB(qd, v)]. Take l :≡ λa, v.
⊔

m s(a, (r(ta, v))〈m〉)
and o :≡ λa.q(ta). We show that Lmix

ω1
|= ∀a, v [∀k φB(a, (lav)〈k〉) → γ (oa, v)].

Take a and v and suppose that ∀k φB(a, (lav)〈k〉). Then, for every n, m, we have
φB(a, (lav)〈p(m, n)〉) (here p is the pairing term). By Lemma 4, (lav)〈p(m, n)〉 =
(s(a, (r(ta, v))〈m〉))〈n〉.Hence, fixingm,wehave∀n φB(a, (s(a, (r(ta, v))〈m〉))〈n〉).
Particularizing (i) with e as (r(ta, v))〈m〉, we get ψB(ta, (r(ta, v))〈m〉). By the
arbitrariness of m and (ii), we conclude γ (q(ta), v). That is what we want.

3a. φ ∨ φ → φ. A simple computation of (φ ∨ φ → φ)B shows that we must find
terms q1, q2 and t such that, for all a, a′, b′′ the following holds in Lmix

ω1
:

∀k, k ′(∀n φB(a, (q1aa′b′′)〈k〉〈n〉) ∨ ∀m φB(a′, (q2aa′b′′′)〈k ′〉〈m〉) → φB(taa′, b′′).

We claim that the above is true with t :≡ λa, a′.(a � a′), and with both q1 and q2

as λa, a′, b′′.(b′′ + 2). In effect, the antecedent above entails φB(a, b′′) ∨ φB(a′, b′′).
By the monotonicity property, we get φ(a � a′, b′′), as wanted.

3b. φ → φ ∧ φ. We must find terms t1, t2 and q such that

∀a, b′, b′′ [∀n φB(a, (qab′b′′)〈n〉) → φB(t1a, b′) ∧ φB(t2a, b′′)]

holds in Lmix
ω1

. Let t1 and t2 be the termλa.a andq :≡ λa, b′, b′′.((b′ + 1) � (b′′ + 1)).
If ∀n φB(a, ((b′ + 1) � (b′′ + 1))〈n〉) we have, in particular φB(a, b′) and φB(a, b′′)
because ((b′ + 1) � (b′′ + 1))〈p(0, n)〉 = b′ and ((b′ + 1) � (b′′ + 1))〈p(1, n)〉 =
b′′, where p is the pairing function.

4a. φ → φ ∨ ψ . We must find terms q, t and r such that

∀a, b′, e [∀k φB(a, (rab′e)〈k〉) → ∀n φB(qa, b′〈n〉) ∨ ∀m ψB(ta, e〈m〉)]

holds in Lmix
ω1

. It is clear that q :≡ λa.a, t :≡ λa.0, and r :≡ λa, b′, e.b′ works (here,
0 is the usual zero constant of appropriate pure �-type).

4b. φ ∧ ψ → φ. We must find terms q, t and r such that

∀a, d, b′ [∀n∀m (φB(a, (tadb′)〈n〉) ∧ ψB(d, (radb′)〈m〉)) → φB(qad, b′)]

holds in Lmix
ω1

. Clearly, q :≡ λa, d.a, t :≡ λa, d, b′.(b′ + 1) and r :≡ λa, d, b′.0
works.

5a. φ ∨ ψ → ψ ∨ φ. We must find terms q, t , r and s such that

∀a, b, b′, e′ [∀k∀k ′ (∀n φB(a, (qabb′e′)〈k〉〈n〉) ∨ ∀m ψB(d, (tabb′e′)〈k ′〉〈m〉)) →

∀n φB(rad, b′〈n〉) ∨ ∀m ψB(sad, e′〈m〉)]

holds in Lmix
ω1

. It is clear that r :≡ λa, d.a, s :≡ λa, d.d, q :≡ λa, b, b′, e′.(b′ + 1)
and t :≡ λa, b, b′, e′.(e′ + 1) work.
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5b. φ ∧ ψ → ψ ∧ φ. Clear.
6. φ → ψ ⇒ (γ ∨ φ → γ ∨ ψ). By hypothesis we have terms t and q such that

∀a, e [∀k φB(a, (tae))〈k〉 → ψB(qa, e)]. We must show that there are terms o, l, r
and s such that

∀u, a, v, e [∀k∀k ′(∀n γB(u, (ruave)〈k〉〈n〉) ∨ ∀m φB(a, (suave)〈k ′〉〈m〉)) →

∀n γ (oua, v〈n〉) ∨ ∀m ψ(lua, e〈m〉)]

holds in Lmix
ω1

. Let us define o :≡ λu, a.u, l :≡ λu, a.qa, r :≡ λu, a, v, e.(v + 1) and
s :≡ λu, a, v, e.((

⊔
i t (a, e〈i〉)) + 1). Suppose the antecedent. Particularizing for

k = k ′ = 0, we get ∀n γB(u, v〈n〉) ∨ ∀m φB(a, (
⊔

i t (a, e〈i〉))〈m〉). If we breakhave
the first disjunct, we are done. Otherwise ∀k, m φB(a, (

⊔
i t (a, e〈i〉))〈p(m, k)〉),

where p is the pairing term. Therefore, by Lemma 4, ∀k, m φB(a, t (a, e〈m〉)〈k〉).
The hypothesis now entails ∀m ψB(qa, e〈m〉).

7a. φ ∧ ψ → γ ⇒ φ → (ψ → γ ). By hypothesis, there are terms t , q and r such
that ∀a, d, v [∀n∀m (φB(a, (tadv)〈n〉) ∧ ψB(d, (qadv)〈m〉)) → γB(rad, v)] holds
in Lmix

ω1
, and we must obtain terms t ′, q ′ and r ′ such that the following also holds:

∀a, d, v [∀n φB(a, (t ′adv)〈n〉) → (∀m ψB(d, (q ′adv)〈m〉) → γB(rad, v))].

Of course, t ′ :≡ t , q ′ :≡ q and r ′ :≡ r work.
7b. φ → (ψ → γ ) ⇒ φ ∧ ψ → γ . Similar to 7a.
8. ⊥ → φ. Clear.
9.φ → ψ(w) ⇒ φ → ∀w ψ(w), wherew does not occur free inφ. By hypothesis,

there are terms t and q such that

∀c�, a, e [∀w ∈ Lc (∀n φB(a, (tcae)〈n〉) → ψB(qca, e, w))]

holds in Lmix
ω1

. The interpretation asks for terms r and s such that

∀c�, a, e [∀n φB(a, (race)〈n〉) → ∀w ∈ Lc ψB(sac, e, w)].

This is clear.
10. ∀x φ(x) → φ(w). A computation of the upper-B translation of this formula

shows that we must find terms t , q and r such that for all c ∈ W and A and b′ of
appropriate types in the set-theoretical structure 〈Sρ〉,
∀w ∈ Lc (∀n, m∀x ∈ L(qcAb′)〈n〉 φB(A((qcAb′)〈n〉), (rcAb′)〈m〉, x) → φB(tcA, b′, w))

holds in Lmix
ω1

. It is clear that the terms t :≡ λc, A.Ac, q :≡ λc, A, b′.(c + 1) and
r :≡ λc, A, b′.(b′ + 1) do the job.
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11. φ(w) → ∃x φ(x). We must find terms t , q and r such that

∀c�, a, b [∀w ∈ Lc (∀n φB(a, (qcab)〈n〉, w) → ∃x ∈ Ltca∀n φB(rca, b〈n〉, x))]

holds in Lmix
ω1

. It is clear that t :≡ λc, a.c, q :≡ λc, a, b.b and r :≡ λc, a.a do the
job.

12. φ(w) → ψ ⇒ ∃w φ(w) → ψ , where w does not occur free in ψ . By hypoth-
esis there are terms t and q such that

∀c�, a, e [∀w ∈ Lc (∀n φB(a, (tcae)〈n〉, w) → ψB(qca, e))]

holds in Lmix
ω1

. The interpretation asks for terms r and s such that

∀c�, a, e [∀m∃w ∈ Lc ∀n φB(a, (rcae)〈m〉〈n〉, w) → ψB(sca, e)].

It is clear that s :≡ q and r :≡ λc, a, e.((tcae) + 1) work.
If we do not count the axioms of equality of IKPω, we are done with the logical

part. The axioms of equality pose no problem because they can be taken as universal
formulas and, hence, are interpreted by themselves. Before proceeding to the mathe-
matical axioms of IKPω, we must still pay attention to the four axioms that regulate
the primitive bounded quantifiers ∀x ∈ z (. . .) and ∃x ∈ z (...).

In order to study universal bounded quantification, we compute the upper-B
translations of ∀x ∈ z φ(x, z) and ∀x (x ∈ z → φ(x, z)). They are ∃a∀b [∀x ∈ z
φB(a, b, x, z)] and ∃A∀c�, b [∀x ∈ Lc (x ∈ z → φB(Ac, b, x, z))], respectively.

The axiom ∀x ∈ z φ(x, z) → ∀x (x ∈ z → φ(x, z)). It is easy to see that wemust
obtain terms t and q such that for all e, c ∈ W and a and b of appropriate types in
the set-theoretical structure 〈Sρ〉, and for all z ∈ L |e|, the statement

∀n∀x ∈ z φB(a, (tecab)〈n〉, x, z) → ∀x ∈ Lc (x ∈ z → φB(qeac, b, x, z))

holds in Lmix
ω1

. This is clearly the case with t :≡ λe, c, a, b.(b + 1) and q :≡
λe, a, c.a.

The axiom ∀x (x ∈ z → φ(x, z)) → ∀x ∈ z φ(x, z). We must obtain terms t , q
and s such that for all for all e ∈ W and A, b of appropriate types in the set-theoretical
structure 〈Sρ〉, and for all z ∈ L |e|, the statement

∀n, m∀x ∈ L(teAb)〈n〉(x ∈ z → φB(A((teAb)〈n〉), (qeAb)〈m〉, x, z)) → ∀x ∈ z φB(seA, b, x, z)

holds in Lmix
ω1

. It is clear that the terms s :≡ λe, A.Ae, t :≡ λe, A, b.(e + 1) and
q :≡ λe, A, b.(b + 1) work.

Now we discuss the existential bounded quantifier. The upper B-translations of
∃x ∈ z φ(x, z) and ∃x (x ∈ z ∧ φ(x, z)) are, ∃a∀b [∃x ∈ z∀n φB(a, b <n>, x, z)]
and ∃c�, a∀b [∃x ∈ Lc∀n (x ∈ z ∧ φB(a, b〈n〉, x, z))] respectively.
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The axiom ∃x ∈ z φ(x, z) → ∃x(x ∈ z ∧ φ(x, z)). We must find terms t , q and
s such that, for all e ∈ W and a and b of appropriate types in the set-theoretical
structure 〈Sρ〉, and for all z ∈ L |e|,

∀m∃x ∈ z∀n φB(a, (teab)〈m〉〈n〉, x, z) → ∃x ∈ Lqea∀n (x ∈ z ∧ φB(sea, b〈n〉, x, z))

holds in Lmix
ω1

. Clearly, t :≡ λe, a, b.(b + 1), q :≡ λe, a.e and s :≡ λe, a.a work.
The axiom ∃x (x ∈ z ∧ φ(x, z)) → ∃x ∈ z φ(x, z). We must obtain terms t and

q such that, for all e, c ∈ W and for all a, b of appropriate types in the set-theoretical
structure 〈Sρ〉, and for all z ∈ L |e|, the statement

∀m∃x ∈ Lc∀n (x ∈ z ∧ φB(a, (tecab)〈m〉〈n〉, x, z)) → ∃x ∈ z∀n φB(qeca, b〈n〉, x, z)

holds in Lmix
ω1

. This is clearly the case with t :≡ λe, a, c, b.(b + 1) and q :≡
λe, c, a.a.

Let us now turn to the mathematical axioms of IKPω. Extensionality poses no
problem because it is the universal closure of a bounded formula. The verifica-
tion of the pairing, union and infinity axioms is like the verification done in [10].
For completeness, for these three axioms we need (respectively) closed terms t , q
and r such that∀c, e∀x ∈ Lc∀y ∈ Le∃z ∈ Ltce (x ∈ z ∧ y ∈ z),∀c∀x ∈ Lc∃z ∈ Lqc

∀y ∈ x∀w ∈ y (w ∈ z) and ∃x ∈ Lr Lim(x), where Lim(x) is a bounded formula
which expresses that x is a limit ordinal. The terms t :≡ λc, e.(max(c, e) + 1),
q :≡ λc.c and r :≡ ω� + 1 do the job.

The separation scheme is ∀w∀y∃z∀x (x ∈ z ↔ x ∈ y ∧ φ(x, w)), where φ is a
bounded formula in which the variable z does not occur. Note that the inner universal
statement can be considered bounded. A straightforward computation of the upper B-
translation of this formula shows that we need a closed term t of type� → (� → �)

such that

∀c�, e� [∀y ∈ Lc∀w ∈ Le∃z ∈ Ltce∀x (x ∈ z ↔ x ∈ y ∧ φ(x, w))]

holds in Lmix
ω1

. It is clear that the term t :≡ λc, e.(max(c, e) + 1) does the job. To see
this, just take z to be {x ∈ Lα : x ∈ y ∧ φ(x, w)}, where α = max(|c|, |e|).

The bounded collection scheme is a sub-scheme of the scheme of unrestricted
collection Coll that will be discussed later. Let us now study the foundation rule. A
computation of the upper-B translation of the premise of the induction rule shows
that, by induction hypothesis, there are terms t and q such that

(∗) ∀c�, a, b [∀x ∈ Lc (∀n∀y ∈ x φB(a, (tcab)〈n〉, y) → φB(qca, b, x))]

holds in Lmix
ω1

. We want to find a term r such that

(�) Lmix
ω1

|= ∀c�, b [∀x ∈ Lc φB(rc, b, x)]
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Define by tree recursion the term r as follows: r0� = 0 and

r(Sup( f )) =
⊔

k

q( f k, r( f k)).

We now check (�) by transfinite induction on |c|. If |c| = 0 there is nothing to prove.
Suppose that c = Sup( f ). Take b appropriate of type in the set-theoretical structure
〈Sρ〉 and x ∈ L |c|. Take y ∈ x . Since L |c| = ⋃

k L | f (k)|+1, there is a natural number
k0 (which we identify with the corresponding type N term) such that x ∈ L | f (k0)|+1.
By transfinite induction hypothesis,

Lmix
ω1

|= ∀b∀y ∈ L f (k0) φB(r( f (k0)), b, y)

because | f (k0)| < |c|. In particular,

Lmix
ω1

|= ∀b∀y ∈ L f (k0)∀n φB(r( f (k0)), (t ( f (k0), r( f (k0)), b))〈n〉, y).

Using the hypothesis (∗), we may conclude that

Lmix
ω1

|= ∀b φB(q( f (k0), r( f (k0))), b, x).

But, by Lemma 4, q( f (k0), r( f (k0))) � ⊔
k q( f (k), r( f (k))) holds in Lmix

ω1
. By the

definition of r and c, we have Lmix
ω1

|= q( f (k0), r( f (k0))) � rc. Now, (�) follows
using the monotonicity property of the existencial entry of φB.

It remains to check the principles �0-LEM, MP, bIP�1 , �0-CColl and Coll. Of
course, �0-LEM is trivially interpreted by itself.We now check these four principles:

MP. Wemust find a term t so that ∀c� [¬∀n∀x ∈ Lc〈n〉 φ(x) → ∃x ∈ Ltc ¬φ(x)]
holds in Lmix

ω1
. The identity term in type � works.

bIP�1 . The upper B-translation of the antecedent of this principle is

∃c�, d, B∀e [∀k∀x ∈ L(Be)〈k〉 φ(x) → ∃y ∈ Lc∀n ψB(d, e〈n〉, y)],

whereas the upper B-translation of the consequent is

∃c�, d, B∀e [∃y ∈ Lc∀m (∀k∀x ∈ L(B(e〈m〉))〈k〉 φ(x) → ∃z ∈ y∀n ψB(d, e〈m〉〈n〉, z))].

Therefore, we must find terms t , q, r and s such that for all c ∈ W and d, B and e of
appropriate types in the set-theoretical structure 〈Sρ〉,

∀m (∀k∀x ∈ L(B((tcd Be)〈m〉))〈k〉 φ(x) → ∃z ∈ Lc∀n ψB(d, (tcd Be)〈m〉〈n〉, z)) →

∃y ∈ Lqcd B∀m (∀k∀x ∈ L((scd B)(e〈m〉))〈k〉 φ(x) → ∃z ∈ y∀n ψB(rcd B, e〈m〉〈n〉, z))

holds in Lmix
ω1

. It does hold with t :≡ λc, d, B, e.e, s :≡ λc, d, B.B, q :≡ λc, d, B.

(c + 1) and r :≡ λc, d, B.d. To see this we have to check that
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∀c�, d, B, e [∀m (∀k∀x ∈ L(B(e〈m〉))〈k〉 φ(x) → ∃z ∈ Lc∀n ψB(d, e〈m〉〈n〉, z)) →

∃y ∈ Lc+1∀m (∀k∀x ∈ L(B(e〈m〉))〈k〉 φ(x) → ∃z ∈ y∀n ψB(d, e〈m〉〈n〉, z))]

holds in Lmix
ω1

. In effect, if we assume the antecedent, then the consequent is seen to
immediately hold with y = Lc.

�0-CColl. According to the upper B-translation of this principle, we need a term
t such that

∀d�, c� [∀w ∈ Ld (∀n∀z ∈ L(tdc)〈n〉∃y ∈ w∀x ∈ z φ(x, y) → ∃y ∈ w∀n∀x ∈ Lc〈n〉 φ(x, y))]

holds in Lmix
ω1

. It is easy to argue that t :≡ λd, c.(c + 2) works. One just has to
instantiate the antecedent with z = Lc (and n = 0, say) to see that the consequent
holds.

Coll. The upper B-translation of the antecedent of this principle is

∃c�, a∀b [∀y ∈ w∃x ∈ Lc∀n φB(a, b〈n〉, x, y)],

and the upper B-translation of the consequent is

∃d�, a∀b [∃z ∈ Ld∀k∀y ∈ w∃x ∈ z∀n φB(a, b〈k〉〈n〉, x, y)].

Therefore, we must obtain terms t , q and r such that

∀e�, c�, a, b [∀w ∈ Le (∀k∀y ∈ w∃x ∈ Lc∀n φB(a, (tecab)〈k〉〈n〉, x, y) →

∃z ∈ Lqeca∀k∀y ∈ w∃x ∈ z∀n φB(reca, b〈k〉〈n〉, x, y))]

holds in Lmix
ω1

. Just take t :≡ λe, c, a, b.b, q :≡ λe, c, a.(c + 1) and r :≡ λe, c, a.a.
Obviously, the consequent becames true (given the antecedent) with z = Lc. �

The following proposition is an immediate consequence of the Soundness Theo-
rem and of (ii) of Lemma 7:

Proposition 4 If IKPω + �0-LEM + MP + bIP�1 + �0-CColl + Coll � ∀x∃y φ

(x, y), where φ is a bounded formula (x and y are the only free variables), then there
is a closed term t of type � → � such that

Lmix
ω1

|= ∀c�∀x ∈ Lc∃y ∈ Ltc φ(x, y).

Moreover, LBH |= ∀x∃y φ(x, y), where BH is the Bachmann–Howard ordinal.

In the last conclusion, one uses the absoluteness of bounded formulas. The same
for the following:
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Corollary 3 If IKPω + �0-LEM + MP + bIP�1 + Coll + �0-CColl � ∃x φ(x),
where φ is a bounded formula (x is the only free variable), then there is an ordinal
α smaller than the Bachmann–Howard ordinal such that Lα |= ∃x φ(x).

A part of Proposition 4 can be much improved because the translations that define
the functional interpretation are correct in Lmix

ω1
(however, the improvement does

not seem susceptible to an internalization like the one in Sect. 6 of [10]). In order
to discuss this improvement it is convenient to permit also unbounded set-theoretic
quantifications in the mixed language. With these quantifications, we refer to the
language as the extended mixed language.

Lemma 9 For every formula φ of the language of set theory, Lmix
ω1

|= φ ↔ φB.

Proof The proof is by induction on the complexity of φ. The result is clear for φ

bounded, for the conjunction and also for the disjunction. For the latter one, just use
the fact that for every b ∈ Sρ , the equality (b + 1)〈n〉 = b holds set-theoretically.
The remaining cases follow from the following fact:
Fact. Let z ∈ Lω1 , ρ a pure �-type and φ a formula of the extended mixed language.
Then

Lmix
ω1

|= ∀x ∈ z ∃aρ φ(a, x, z) → ∃a ∀x ∈ z ∃n φ(a〈n〉, x, z).

The proof of the fact is easy. Let z ∈ Lω1 . Suppose Lmix
ω1

|= ∀x ∈ z ∃aρ φ(a, x, z).
Since z is countable, we can take an enumeration (xn)n∈ω of the elements of z. For
each n ∈ ω, choose an ∈ Sρ be such that Lmix

ω1
|= φ(an, xn, z). Call f this function

n � an . By (viii) of Sect. 3, Lmix
ω1

|= ∀nN ((Sup f )〈n〉 = an). It is now clear that we
can take for a the element Sup f . �(end of proof of fact)

Let us study the universal bounded quantifier. We need to show that

Lmix
ω1

|= ∀x ∈ z ∃a∀b φB(a, b, x, z) ↔ ∃a∀b∀x ∈ z φB(a, b, x, z).

Only the left-to-right direction needs to be argued. Assume the antecedent. By the
Fact, ∃a∀x ∈ z ∃n∀b φB(a〈n〉, b, x, z). By Lemma 4 and the monotonicity lemma,
we easily get ∀b∀x ∈ z φB(ã, b, x, z), where ã is

⊔
λx N .(a〈x〉).

Regarding the existential bounded quantifier, we must show that

Lmix
ω1

|= ∃x ∈ z∃a∀b φB(a, b, x, z) ↔ ∃a∀b ∃x ∈ z∀n φB(a, b〈n〉, x, z).

This time, the left-to-right direction is trivial. So, assume the right-hand side and
take an element a such that ∀b ∃x ∈ z∀n φB(a, b〈n〉, x, z). We use the contrapositive
of the Fact in order to we get what we want.

Let us consider the universal quantifier. We must show that

Lmix
ω1

|= ∀x∃aρ∀b φB(a, b, x) ↔ ∃A∀c�, b∀x ∈ Lc φB(Ac, b, x).
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Suppose the left-hand side. Hence, for all c ∈ W , ∀x ∈ Lc∃a∀b φB(a, b, x). By
the discussion of the universal bounded quantifier case, we get that for all c ∈ W
there is a ∈ Sρ such that ∀x ∈ Lc∀b φB(a, b, x). Take a function A : W → Sρ (that
is, an element of S��ρ) such that, for all elements c in W , ∀b∀x ∈ Lc φB(Ac, b, x).
This A works. Now, assume the right-hand side. Let A ∈ S��ρ such that, for all
c ∈ W one has ∀b∀x ∈ Lc φB(A(c), b, x). Take x an arbitrary element of Lω1 . Then
there is c ∈ W such that x ∈ L |c| (we are using the fact that ω1 = supc∈W |c|). It is
clear that if we take a to be A(c), we get ∀b φB(a, b, x).

For the existential quantifier we must show that

Lmix
ω1

|= ∃x∃aρ∀b φB(a, b, x) ↔ ∃c�, a∀b∃x ∈ Lc∀n φB(a, b〈n〉, x).

The left-to-right direction follows from the fact Lω1 = ⋃
c∈W L |c|. To see the other

direction, take c ∈ W and a ∈ Sρ such that ∀b∃x ∈ Lc∀n φB(a, b〈n〉, x). By the
contrapositive of the Fact, we obtain ∃x ∈ Lc∀b φB(a, b, x) and, therefore, the left-
hand side.

It remains to check the implication. We must argue that the following holds in
Lmix

ω1
:

(∃a∀b φB(a, b) → ∃d∀e ψB(d, e)) ↔ ∃B, D∀a, e (∀n φB(a, (Bae)〈n〉) → ψB(Da, e)).

Note that ∀b φB(a, b) is equivalent to ∀b∀n φB(a, b〈n〉). With this in mind, an appro-
riate (partial) prenexification of the left-hand side of the equivalence yields

∀a∃d∀e∃b (∀n φB(a, b〈n〉) → ψB(d, e)).

The equivalence follows using two applications of the axiomof choice in the structure
(Sρ). �

Proposition 5 If IKPω + �0-LEM + MP + bIP�1 + �0-CColl + Coll � ∀x∃y φ

(x, y), where φ is an arbitrary formula of the language of set theory (x and y are
the only free variables), then there is a closed term t of type � → � such that

∀c ∈ W∀x ∈ L |c|∃y ∈ L |t (c)| Lω1|= φ(x, y).

Proof Let φ(x, y)B be ∃aτ∀bρφB(a, b, x, y). It is easy to see that (∀x∃y φ(x, y))B

is
∃A, D∀c�, b∀x ∈ Lc∃y ∈ L Dc∀n φB(Ac, b〈n〉, x, y).

By the Soundness theorem, there are closed terms t and q such that

∀c�∀x ∈ Lc∀b ∃y ∈ Ltc∀n φB(qc, b〈n〉, x, y)
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holds in Lmix
ω1

. By the contrapositive of the Fact of the previous lemma, we get:

∀c� ∀x ∈ Lc∃y ∈ Ltc∀b φB(qc, b, x, y).

In particular, ∀c∀x ∈ Lc∃y ∈ Ltc∃a∀b φB(a, b, x, y), i.e., ∀c∀x ∈ Lc∃y ∈ Ltc

φB(x, y). By the previous lemma, we are done. �

6 Adding Strict-�1
1 Reflection

Admissibility is the playground where finiteness, recursive enumerability and other
recursion-theoretic notions find a fertile ground for generalization (see, for instance,
the preface of [18]). Weak Kőnig’s lemma is an important (second-order) principle
in recursion theory (viz., in relation with low degrees and compactness) as well
as in subsystems of second-order arithmetic and reverse mathematics (cf. [20]).
The principle of strict-�1

1 reflection, introduced by Barwise in [3, 4], is a natural
generalization of weakKőnig’s lemma from the arithmetical setting to the admissible
setting. Strict-�1

1 reflection can be stated as follows:

∀X∃x φ(x, X) → ∃z∀X∃x ∈ z φ(x, X),

where φ is a bounded formula (for details see chapter VIII of [5]). In the second part
of [10], we extended the �-ordinal analysis of KPω to a second-order theory with
the principle of strict-�1

1 reflection. We proved the novel result that the �-ordinal of
this second-order theory is still the Bachmann–Howard ordinal. The main idea for
this analysis was an extension of the functional interpretation in which second-order
quantifications are treated as bounded quantifications. It may sound surprising at
first that this treatment works because the transformations of formulas underlying
the functional intepretation of the second-order quantifiers are not truth-preserving
in our semantics (more about this later). However, on second thought – for a person
familiar with the bounded functional interpretation of [11] – the idea is compelling.

In this paper we are interested in analysing theories based on intuitionistic logic.
Some phenomena absent in the classical setting emerge in the intuitionistic theories.
Aswe saw, the bounded collection scheme ofKPω is inflated into unrestricted collec-
tion Coll (while the non-intuitionistic classical contrapositive of bounded collection
�0-CColl is kept). A similar sort of thing happens with strict-�1

1 reflection (see
Definitions 12 and 13). The inflation also extends to the notion of bounded formula,
now that second-order quantifications are regarded as bounded. There is no apparent
reason to stick any longer to the usual notion of bounded formula.

Let us set up the basic second-order theories IKPω2� and IKPω2 (the latter is dis-
cussed in the next section). The language of second-order set theory is the enlarge-
ment of the language of set theory (as described in Sect. 2)withmonadic second-order
quantification (we have both universal and existential quantifiers).We use capital let-
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ters X , Y , Z , …for the monadic predicates and call them classes. As it is common
usage, we write ‘x ∈ X ’ instead of the (syntactically correct) ‘X (x)’. This is an
abuse of notation because the membership sign in the expression ‘x ∈ X ’ is not the
membership sign of the language of (first-order) set theory. It is just a harmless and
felicitous notational device, and we read ‘x ∈ X ’ as saying that x is a member of
(the class) X .

Definition 8 The class of�C
0 -formulas of the language of second-order set theory is

the smallest class of formulas that contains the atomic formulas x ∈ y, x = y, x ∈ X ,
the absurdity, and which is closed under propositional connectives, the bounded
quantifiers ∀x ∈ y and ∃x ∈ y, and the second-order quantifiers ∀X and ∃X .

In [19], Salipante uses the notation �C
0 , with a roman letter ‘C’, for a more

restricted version of bounded formula, namely for �0-formulas in which second-
order parameters are permitted (second-order quantifications are not allowed). In
order to distinguish our notion fromSalipante’s, we use a caligraphic ‘C’ instead. This
caligraphic notation has also the advantage of cohering with a notation of Rathjen in
[17] that we will be needing in the next section.

We denote the law of excluded middle restricted to �C
0 -formulas by �C

0 -LEM.

Definition 9 The second-order theory IKPω2� is the intuitionistic theory of the lan-
guage of second-order set theory that contains IKPω and extends the scheme of
foundation in order to permit all the formulas of the new language.

Some comments are in order. In the above,we did not change the original schemata
of separation and bounded collection. They remain exactly as in IKPω. We could
have opted for allowing in the collection scheme the wider class of �C

0 -formulas
and, also, second-order parameters. This would be more in line with the definition of
KPω2� in [10]. However, this enlarged collection scheme is a particular case of the
unrestricted collection schemeCollC given in (d) of Definition 11, and our functional
interpretation is able to realize it. The point of attention is really the separation
scheme of Definition 9. It is the original formulation of the separation scheme,
without second-order parameters and with the original bounded (i.e., �0) formulas.
That explains the restriction sign in the acronym of the theory. As we will see, the�-
ordinal of the restricted theory together with the �C

0 -LEM, some comprehension for
second-order class formation and strict-�1

1 reflection is still the Bachmann–Howard
ordinal. On the other hand, Salipante showed that if second-order parameters are
allowed in the separation scheme (never mind allowing for �C

0 -matrices) then, in
the presence of suitable comprehension and strict-�1

1 reflection, one is able to prove
the powerset axiom. This will be discussed in the next section (see Theorem 4).
Antecipating the results of that section, we may add that with the help of other
interpretable principles Salipante’s result gives rise to a very strong theory, namely to
(an intuitionistic version of) the so-called power Kripke–Platek set theory KPω (P),
as described in [17].
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Next, we introduce the principles of class comprehension that will be of our
interest (notice the analogy with similar principles in subsystems of second-order
arithmetic). A �C

1 -formula is a formula of the form ∃xϕ(x), where ϕ(x) is a �C
0 -

formula. The notion of �C
1 -formula is defined dually.

Definition 10 The following schemata are defined in the second-order language of
set theory (first and second-order parameters are allowed):

I. The scheme �C
0 -CA is ∃X∀x (x ∈ X ↔ φ(x)), where φ(x) is a �C

0 -formula (X
is a fresh variable).

II. The scheme �C
1 -CA is ∀x (φ(x) ↔ ψ(x)) → ∃X∀x (x ∈ X ↔ φ(x)), where

φ(x) is a �C
1 -formula and ψ(x) is a �C

1 -formula (X is a fresh variable).

We now list some principles which our functional interpretation is able to realize:

Definition 11 The following schemata are defined in the second-order language of
set theory (in all the schemata below, both first and second-order parameters are
allowed):

(a) Markov’s principle MPC is the scheme ¬∀x φ(x) → ∃x ¬φ(x), for φ a �C
0 -

formula.
(b) The independence of premises principle bIP�C

1
is the scheme

(∀x φ(x) → ∃y ψ(y)) → ∃y (∀x φ(x) → ∃z ∈ y ψ(z)),

where φ is a �C
0 -formula and ψ is any formula of the second-order language.

(c) The principle of bounded contra-collection �C
0 -CColl is the scheme

∀z∃y ∈ w∀x ∈ z φ(x, z) → ∃y ∈ w∀xφ(x, y),

where φ is a �C
0 -formula.

(d) The principle of (unrestricted) collection CollC is the scheme

∀y ∈ w∃x φ(x, y) → ∃z∀y ∈ w∃x ∈ z φ(x, y),

where φ is any formula of the second-order language.

Some of the results of Sect. 2 adapt to the new setting. The following result is anal-
ogous to the law of excluded middle of Corollary 1. The proof of that corollary used
a separation result that we do not have in our present setting, due to the restrictions
of the separation scheme discussed above. However a direct proof is forthcoming
(moreover, Markov’s principle is not needed, as observed by Fujiwara):

Proposition 6 The theory IKPω2� +�C
0 -LEM + bIP�C

1
proves the �C

1 law of exclu-

ded middle, i.e., it proves (∀u φ(u) ↔ ∃v ψ(v)) → (∀u φ(u) ∨ ¬∀u φ(u)), for �C
0 -

formulas φ and ψ (possibly with first and second-order parameters).
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Proof Suppose that ∀u φ(u) ↔ ∃v ψ(v). Applying bIP�C
1
to the left-to-right direc-

tion of the equivalence, there is v0 such that ∀u φ(u) → ∃v ∈ v0 ψ(v). If ∃v ∈
v0 ψ(v), our supposition entails ∀u φ(u). If ¬∃v ∈ v0 ψ(v), we directly conclude
that ¬∀u φ(u). �

A version of the lesser limited principle of omniscience also holds in the present
setting (first and second-order parameters are allowed in the following, of course).
The proof is analogous to the proof of Corollary 2.

Proposition 7 If φ and ψ are �C
0 -formulas, then

IKPω2�+ �C
0 -LEM + �C

0 -CColl � ∀u, v (φ(u) ∨ ψ(v)) → ∀u φ(u) ∨ ∀v ψ(v).

The appropriate version of the strict-�1
1 reflection scheme in our intuitionistic

setting comes in two installments. The reader will notice that they are like collection
schemes. The first one is a version of the contrapositive of strict-�1

1 reflection. The
second one is a vast generalization, only possible because we are in an intuition-
istic setting. Of course, each installment entails strict-�1

1 reflection (the first one
classically, the second intuitionistically).

Definition 12 The principle of bounded class contra-collection �C
0 -CColl2 is the

scheme
∀z∃X∀x ∈ z φ(x, X) → ∃X∀x φ(x, X),

where φ is a�C
0 -bounded formula (possibly with first and second-order parameters).

It was argued in [10] that with the aid of strict-�1
1 reflection, the bounded com-

prehension scheme upgrades to a �1-comprehension scheme. A similar result holds
in the present setting.

Proposition 8 IKPω2�+ �C
0 -LEM + �C

0 -CA + �C
0 -CColl2 � �C

1 -CA.

Proof The proof is mutatis mutandis the argument for lemma 5.3 of [10]. Suppose
that ∀u (∃y φ(u, y) ↔ ∀z ψ(u, z)), where φ and ψ are �C

0 -formulas. Then,

∀w∃X∀x ∈ w∀u, y, z ∈ x ((φ(u, y) → u ∈ X) ∧ (u ∈ X → ψ(u, v))).

It is easy to argue this. Given w, take w̃ its transitive closure. Clearly, we can take X
to be {u : ∃y ∈ w̃ φ(u, y)}. Note that this class exists by �C

0 -CA.
By �C

0 -CColl, we get

∃X∀x∀u, y, z ∈ x ((φ(u, y) → u ∈ X) ∧ (u ∈ X → ψ(u, z))).

Clearly, this X is formed by the elements u that satisfy ∃y φ(u, y). �

We have said that �C
0 -CColl2 is like a collection scheme. In fact, it generalizes

�C
0 -CColl:
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Proposition 9 IKPω2�+ �C
0 -LEM + �C

0 -CA + �C
0 -CColl2 � �C

0 -CColl.

Proof Let φ be a �C
0 -formula and suppose that ∀z∃y ∈ w∀x ∈ z φ(x, y). We claim

that ∀z∃X∀x ∈ z [∃y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) ∧ φ(x, y))]. Given
z, by the supposition there is y0 ∈ w such that ∀x ∈ z φ(x, y0). We just have to
take X to be the singleton class formed by y0 (it exists by �C

0 -CA). Since the for-
mula between square parenthesis is a �C

0 -formula, we can apply �0-CColl2 in order
to get

∃X∀x [∃y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) ∧ φ(x, y))].

Clearly, X ∩ w must be a singleton (i.e., this class has only one element). Let y0 be
the only element of this class. We get y0 ∈ w and ∀x φ(x, y0). �

The second installment of strict-�1
1 reflection is the following:

Definition 13 The principle of (unrestricted) class collection CollC2 is the scheme

∀X∃x φ(x, X) → ∃z∀X∃x ∈ z φ(x, X),

where φ is any formula (possibly with first and second-order parameters).

At this point, the following proposition should not be surprising:

Proposition 10 IKPω2�+ �C
0 -LEM + �C

0 -CA + CollC2 � CollC .

Proof Let φ be a �C
0 -formula and suppose that we have ∀y ∈ w∃x φ(x, y). We

claim that ∀X∃x [∀y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) → φ(x, y))]. Given
X , either there is y ∈ w such that y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) or not (the
previous formula is bounded and, hence, we can apply �C

0 -LEM). In the first case,
by supposition, there is x such that φ(x, y) and we are done. If not, the assertion is
trivially true.

By CollC2 , there is z0 such that

∀X∃x ∈ z0 [∀y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) → φ(x, y))].

Given y ∈ w, take X to be the singleton class formed by y. Clearly, ∃x ∈ z0
φ(x, y). �

The theory IKPω2� +�C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 +

CollC2 (which, as we saw, includes �C
0 -CColl andColl

C) is very robust. For instance,
modulo this theory, the�C

1 -formulas and the�C
1 -formulas enjoy strong closure prop-

erties and this permits the smooth introduction of �C
1 -relation symbols and of �C

1 -
function symbols. In effect, modulo the above theory, the �C

1 -formulas are closed
under conjunctions, disjunctions, bounded quantifications, second-order quantifica-
tions and existential (first-order) quantifications. The closure under conjunctions,
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disjunctions and bounded, second-order and unbounded existential quantifications
is clear. The closure under bounded and second-order universal quantifications fol-
lows from CollC and CollC2 , respectively. Dually, the �C

1 -formulas are closed under
conjunctions, disjunctions, bounded quantifications, second-order quantifications
and universal (first-order) quantifications. The closure under conjunctions, bounded,
second-order and unbounded universal quantifications is clear. The closure under dis-
junction is a consequence of Proposition 7. The closure under bounded and second-
order existential quantifications follows from �C

0 -CColl and �C
0 -CColl2, respec-

tively. The introduction of the powerset operation in the next section uses these facts
crucially. They are essential for the interpretation of the power Kripke–Platek set
theory in a theory based on IKPω2.

The functional interpretation given in Definition 7 is extended to the second-order
language by the following two clauses.

9. (∀X φ(X))B is ∃a∀b [∀X φB(a, b, X)],
10. (∃X φ(X))B is ∃a∀b [∃X∀n φB(a, b〈n〉, X)].
Notice that now the lower B-translations of formulas include second-order quantifi-
cations. The notion of bounded mixed formula of Sect. 4 has to be generalized to the
notion of second-order bounded mixed formula in which closure under second-order
quantifications is also allowed. The formulas of the second-order mixed language
LmixC

� are defined accordingly, as those that are generated from the second-order
bounded formulas by means of propositional connectives and quantifications of the
form ∀aρ , where a is a term variable (of a certain type ρ) of the term language
L�. Notice that, as before, we only need a set of classical connectives (our verify-
ing semantics – described in the next paragraph – is classical) and that unbounded
set-theoretic quantifiers are not present in the language LmixC

� .
As with the soundness theorem of Sect. 2, the soundness theorem of this section

is verified semantically. There are several ways of extending the structures Lmix
ω1

and V mix
ω1

to the second-order setting. The first semantics that we consider is

(LmixC
ω1

,P(Lω1)�). In this semantics, the second-order variables range over P(Lω1)�,
i.e., over the sets of the form x ∩ Lα , where x ⊆ Lω1 and α < ω1. There is a sub-
tlety here. The intuitive second-order semantics is P(Lω1), not the subsets of Lω1

truncated at a certain level α (α < ω1) of the construtible hierarchy. However, the
truncated semantics is enough. A second semantics that we will briefly consider
is (LmixC

ω1
, Lω1). In this semantics the values of second-order variables range over

elements of Lω1 , i.e., over the sets in Lω1 . This semantics is even subtler because
both first-order set variables and second-order class variables range over the same
domain, viz. Lω1 . It was, in fact, the semantics used in [10]. In the next section we
will consider the structure (V mixC

ω1
, Vω1). In this structure, the terms t of L� of type

� index the (countable) stages Vt of the cumulative hierarchy. Of course, by this is
meant that Vt is interpreted as V|t |, as discussed at the end of Sect. 4. On the other
hand, the second-order class variables range over elements of Vω1 (the same range
as the first-order set variables). Note that this range can also be described as being
constituted by the sets of the form x ∩ Vα , where x ⊆ Vω1 and α < ω1.



On Some Semi-constructive Theories Related to Kripke–Platek Set Theory 375

Theorem 3 (Second-order soundness theorem I)Let φ be a sentence of the language
of second-order set theory. Suppose that

IKPω2� +�C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 + CollC2 � φ.

Then there are closed terms t of L� such that, for appropriate types ρ,

(LmixC
ω1

,P(Lω1)�) |= ∀bρ φB(t, b).

Proof The proof is by induction on the length of the derivation. We show that if a
formula φ(w, W ) is provable in the theory of the theorem, then there are closed terms
t of L� such that, for appropiate types ρ, we have

Lmix
ω1

|= ∀c�∀bρ [∀W∀w ∈ Lc φB(tc, b, w, W )],

where φ(w, W )B is ∃a∀b φB(a, b, w, W ).
The various verifications are, mutatis mutandis, the ones given in the proof of

Theorem 2. We only need to complement the verifications with the study of the
logical rules for the second-order quantifiers and the principles �C

0 -CColl2, Coll
C
2

and �C
0 -CA. We use the same layout as in the proof of Theorem 2. Let us start with

the four new axioms and rules for second-order quantifiers.
13. φ → ψ(W ) ⇒ φ → ∀W ψ(W ), where W is not free in φ. By induction

hypothesis, there are terms q and r such that

∀a, e [∀W (∀n φB(a, (qae)〈n〉) → ψB(ra, e, W ))]

holds in (LmixC
ω1

,P(Lω1)�). We must obtain terms t and s such that

∀a, e [∀n φB(a, (sae)〈n〉) → ∀W ψB(ta, e, W )]

holds in (LmixC
ω1

,P(Lω1)�). Just take t :≡ r and s :≡ q.
14. ∀X φ(X) → φ(W ). A computation of the upper-B translation of this formula

shows that we must find terms q and r such that

∀a, b′ [∀W (∀n∀X φB(a, (qab′)〈n〉, X) → φB(ra, b′, W ))]

holds in (LmixC
ω1

,P(Lω1)�). Just put q :≡ λa, b′.(b′ + 1) and r :≡ λa.a.
15. φ(W ) → ∃X φ(X). A computation of the upper-B translation of this formula

shows that we must find terms q and r such that

∀a, b′ [∀W (∀n φB(a, (qab′)〈n〉, W ) → ∃X∀n φB(ra, b′〈n〉, X))]

holds in (LmixC
ω1

,P(Lω1)�). Just put q :≡ λa, b′.b′ and r :≡ λa.a.
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16. φ(W ) → ψ ⇒ ∃W φ(W ) → ψ , where W is not free in ψ . By induction
hypothesis, there are terms q and r such that

∀a, e[∀W (∀n φB(a, (qae)〈n〉, W ) → ψB(ra, e))]

holds in (LmixC
ω1

,P(Lω1)�). We must obtain terms t and s such that

∀a, e [∀n∃W∀k φB(a, (sae)〈n〉〈k〉, W ) → ψB(ta, e)]

holds in (LmixC
ω1

,P(Lω1)�). Just take t :≡ r and s :≡ λa, e.((qae) + 1).
Let us now discuss the principle�C

0 -CColl2. According to its upper-B translation,
we must find a term q such that

∀c� [∀n∀z ∈ L(qc)〈n〉∃X∀x ∈ z φ(x, X) → ∃X∀n∀x ∈ Lc〈n〉 φ(x, X)]

holds in (LmixC
ω1

,P(Lω1)�). Well, it does hold with q :≡ λc.(c + 2). To see this, note
that the hypotehsis above entails ∀z ∈ Lc+1∃X∀x ∈ z φB(x, X). In particular, this
holds with z particularized as Lc, and we get what we want.

In order to discuss the principleCollC2 , we compute the upper-B translations of its
antecedent and consequent. They are, ∃c�, a∀b [∀X∃x ∈ Lc∀n φB(a, b〈n〉, x, X)]
and ∃c�, a∀b [∃z ∈ Lc∀k∀X∃x ∈ z∀n φB(a, b〈k〉〈n〉, x, X)], respectively. There-
fore, we need term q, r and t such that

∀c�, a, b [∀k∀X∃x ∈ Lc∀n φB(a, (qcab)〈k〉〈n〉, x, X) →

∃z ∈ Lrca∀k∀X∃x ∈ z∀n φB(tca, b〈k〉〈n〉, x, X)]

holds in (LmixC
ω1

,P(Lω1)�). Take q :≡ λc, a, b.b, r :≡ λc, a.(c + 1) and t :≡ λc, a.a.
With these data, the above holds (just let z be Lc).

Finally, we study the comprehension principle �C
0 -CA. An instance of this prin-

ciple has the form ∀W, w∃X∀x (x ∈ X ↔ φ(x, w, W )), where φ is a �C
0 -formula

in which X does not occur. The upper B-translation of this instance is:

∀d�, b�[∀W∀w ∈ Ld∃X∀nN ∀x ∈ Lb〈n〉(x ∈ X ↔ φ(x, w, W ))].

This statement holds with the set X :≡ {x ∈ Lα : φ(x, w, W )}, where α = |b|. �

The proof of the previous theorem goes through in (LmixC
ω1

, Lω1) except for one
single step. It is in the verification of the scheme �C

0 -CA. If instead of �C
0 -CA one

had the scheme ∃X∀x (x ∈ X ↔ φ(x, w, W )), where φ(x) is restricted to be a �0-
formula, then the set {x ∈ Lα : φ(x, w, W )} is in Lω1 . In effect, the parameter W
(and, also, w) of the structure (LmixC

ω1
, Lω1) takes a value in a certain Lβ , for a certain

β < ω1. Therefore, the previous set is an element of Lγ , for α, β < γ . We think that
this is worth remarking (specially because this was the strategy adopted in [10]).
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Proposition 11 If IKPω2� +�C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 +

CollC2 proves ∀x∃y φ(x, y), where φ is a �0-formula (x and y are the only free vari-
ables), then there is a closed term t of type � → � such that

Lmix
ω1

|= ∀c�∀x ∈ Lc∃y ∈ Ltc φ(x, y).

Moreover, LBH |= ∀x∃y φ(x, y), where BH is the Bachmann–Howard ordinal.

The above proposition is an immediate consequence of Theorem 3. Note that the
formulas φ are restricted to �0-formulas.

Corollary 4 If IKPω2� +�C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 +

CollC2 proves ∃x φ(x), where φ is a �0-formula (x is the only free variable), then there
is an ordinal α smaller than the Bachmann–Howard ordinal so that Lα |= ∃x φ(x).

Lemma 9 does not generalize to the functional interpretation extended to the
second-order language, neither when the semantics is (LmixC

ω1
,P(Lω1)�), nor when

the semantics is (LmixC
ω1

, Lω1). For instance, consider the following instance ofColl
C :

∀X∃x∀z (X = {z} → Ord(x) ∧ z ∈ Lx ) → ∃w∀X∃x ∈ w∀z (X = {z} → Ord(x) ∧ z ∈ Lx ).

It is clear that this sentence is false in both structures above. The reasonwhy the proof
of Lemma 9 does not generalize is, of course, the fact that the transformations (9) and
(10) of the definition of the functional interpretation are not truth preserving (in the
said structures).However, as itwas shown inLemma9, the remaining transformations
are truth preserving. Hence, as long as we restrict ourselves to first-order formulas
φ, we have the following:

Proposition 12 If IKPω2� +�C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 +

CollC2 proves ∀x∃y φ(x, y), where φ is any formula (x and y are the only free vari-
ables) without second-order quantifications, then there is a closed term t of type
� → � such that

∀c ∈ W∀x ∈ L |c|∃y ∈ L |t (c)| Lω1|= φ(x, y).

The proof is like the one of Proposition 5.

7 Salipante’s Result and Power Kripke–Platek Set Theory

The theory IKPω2 is like the theory IKPω2� of Definition 9 except that we now permit
�C

0 -formulas in the separation scheme with (first and) second-order parameters. In
[19], Salipante observed the following (he worked in a classical theory, but the
argument is the same):
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Theorem 4 (Salipante) The theory IKPω2+ �0-LEM + �0-CA + s�1
1-ref proves

the powerset axiom, i.e., it proves the sentence ∀y∃z∀x (x ∈ z ↔ x ⊆ y).

Proof Let y be given. The theory IKPω2 proves ∀X∃w (w = X ∩ y), where X ∩ y
abbreviates the set {u ∈ y : u ∈ X}. This set exists by separation (using the second-
order parameter X ). By s�1

1-ref, ∃z∀X∃w ∈ z (w = X ∩ y). Let z0 be such a set.
We claim that ∀x (x ⊆ y → x ∈ z0). To see this, take x a subset of y. By�0-CA, let
X0 = {u : u ∈ x}. By the choice of z0, there is w ∈ z0 such that w = X0 ∩ y. Since
X0 ∩ y = x , we conclude that x ∈ z0, as wanted. The powerset of y can now be
obtained from z0 by ordinary separation. �

The above proof also holds if the separation scheme applies only to �0-formulas
(that is how Salipante stated his theorem). The crucial thing is to allow second-order
parameters in the separation scheme.

In [17]Rathjen introduced the theoryKPω (P) of powerKripke–Platek set theory.
In order to formulate this theory we need the following definition:

Definition 14 The class of �P
0 -formulas is the smallest class of formulas of the

language of set theory containing the atomic formulas (including ⊥) and closed
under ∧, ∨, → and the quantifications

∀x ∈ z, ∃x ∈ z, ∀x ⊆ z, ∃x ⊆ z,

where the last two quantifications abbreviate ∀x (x ⊆ z → . . .) and ∃x (x ⊆ z ∧
. . .), respectively. �P

1 -formulas are formulas of the form ∃z ψ(z), where ψ(z) is a
�P

0 -formula (possibly with parameters). �P
1 -formulas are defined dually. A �P

2 -
formula is a formula of the form ∀w φ(w), where φ(w) is a �P

1 -formula.

The theory KPω (P) is a classical theory in the language of set theory with the
following axioms: extensionality, pairing, union, infinity, powerset, �P

0 -separation,
�P

0 -collection and unrestricted foundation. The transitivemodels ofKPω (P) are the
power admissible sets introduced by Harvey Friedman in [12]. As Rathjen observes,
the theory KPω (P) can also be described as the theory KPω framed in the language
of set theory extendedwith a new primitive unary function symbolP for the powerset
operation, the axiom ∀x (x ∈ P(y) ↔ x ⊆ y), and the schemata of �0-separation
and �0-collection extended to the �0-formulas of this new language. It should be
noticed, as Rathjen warns us, that the theory KPω (P) is not the same theory as
KPω with the powerset axiom. This latter theory is much weaker than KPω (P), as
Rathjen discusses in [17].

In this paper we are interested in semi-constructive theories. The natural theories
to consider are the theories of Sect. 2 in which the �0-formulas are replaced by the
wider class of �P

0 -formulas. We are naturally led to consider the theory

IKPω (P) + �P
0 -LEM + MPP + bIP�P

1
+ �P

0 -CColl + CollP ,

where it should be clear what the acronyms above stand for. This is also a very robust
theory, and it is clear that we have the analogue of Proposition 1:
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Proposition 13 The theory KPω (P) is �P
2 -conservative over IKPω (P) + �P

0

-LEM + MPP .

We could adapt the analysis that we have made of the semi-constructive the-
ory IKPω + �0-LEM + MP + bIP�1 + �0-CColl + Coll to the powerset version
mentioned above (this adaptation requires the cumulative hierarchy instead of the
constructible hierarchy). The next theorem provides an illuminating alternative. We
need a lemma first:

Lemma 10 The theory IKPω2 + �C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 + CollC2 proves �C

1 -separation, i.e., it proves

∀x (∀u φ(u, x) ↔ ∃v ψ(v, x)) → ∀z∃y∀x (x ∈ y ↔ (x ∈ z ∧ ∃v ψ(v, x))),

for �C
0 -formulas φ and ψ (possibly with first and second-order parameters).

The above lemma is proven like Proposition 2. The proof is possible because we
now permit �C

0 -formulas and parameters (first and second-order) in the separation
scheme.

Theorem 5 The theory IKPω (P) + �P
0 -LEM + MPP + bIP�P

1
+ �P

0 -CColl +
CollP is a subtheory of the second-order theory

IKPω2 + �C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 + CollC2 .

Proof This result hinges on two facts. The first is that the relation z = P(y) is given
by the �C

0 -formula ∀x ∈ z (x ⊆ y) ∧ ∀X (X ∩ y ∈ z). Without the abbreviation, it
reads

∀x ∈ z (x ⊆ y) ∧ ∀X∃x ∈ z∀w (w ∈ x ↔ w ∈ X ∧ w ∈ y).

Let us denote this �C
0 -formula by P(y, z). By Theorem 4 (and its argument), the

second-order theory of the theorem proves ∀y, z (P(y, z) ↔ ∀x (x ∈ z ↔ x ⊆ y))

and ∀y∃1z P(y, z). Therefore, it proves the powerset axiom. The second important
fact is that the second-order theory of the theorem has a good theory for introducing
�C

1 -function symbols (see the comments after Definition 13). In particular, �C
0 -

formulas in the new language with the extra function symbols translate into �C
1 -

formulas of the original language (the equivalence between the corresponding pair of
�C

1 -formulas and �C
1 -formulas is proven in the second-order theory of the theorem,

of course). Therefore, we can introduce a �C
1 -function symbol that satisfies the

defining axiom of the powerset operation and, as a consequence, �P
0 -formulas are

rendered by �C
1 -formulas. The above lemma entails that �P

0 -separation is provable
in the second-order theory. The theorem should now be clear. �

The structure (V mixC
ω1

, Vω1) for the second-order mixed language LmixC
� was intro-

duced just before Theorem 3. Remember that in this structure both the first-order set
variables and second-order (class) variables of LmixC

� take values in Vω1 .
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Theorem 6 (Second-order soundness theorem II) Let φ be a sentence of the lan-
guage of second-order set theory. Suppose that

IKPω2 + �C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 + CollC2 � φ.

Then there are closed terms t of L� such that, for appropriate types ρ,

(V mixC
ω1

, Vω1) |= ∀bρ φB(t, b).

Proof The proof is mutatis mutandis the proof of Theorem 3 (see also the note
after that proof), but one must replace systematically the construtible hierarchy by
the cumulative hierarchy. We need the cumulative hierarchy because the separation
axiom of IKPω2 has second-order parameters. Let us see in detail why this is so. The
separation axiom with (first and) second-order parameters is

∀w, W∀y∃z∀x (x ∈ z ↔ x ∈ y ∧ φ(x, w, W )),

where φ is a�C
0 -formula in which the variable z does not occur. As before, notice that

the inner universal statement can be considered �C
0 . Hence, the upper B-translation

of this formula shows that we need a closed term t of type � → (� → �) such that

∀c�, e� [∀y ∈ Vc∀w ∈ Ve∀W∃z ∈ Vtce∀x (x ∈ z ↔ x ∈ y ∧ φ(x, w, W ))]

holds in (V mixC
ω1

, Vω1). It is clear that the term t :≡ λc, e.(c + 1) does the job. To see
this, just take z to be {x ∈ Vα : x ∈ y ∧ φ(x, w, W )}, where α = |c|.
[Note that the proof does not go through in the constructible hierarchy because the
term t is only allowed to depend on y andw, via c and e (respectively), but not on W .]
�

As usual, we can draw some consequences regarding�C
2 and�C

1 consequences of
the second-order theory of the theorem. We are going to present them in a particlular
fashion, with an eye to their application to power Kripke–Platek set theories.

We have the following absoluteness property:

Lemma 11 If α and β are ordinals and φ(x1, . . . , xn) is a �C
0 -formula with its free

variables as shown (they are all first-order), then

x1, . . . , xn ∈ Vα ∧ α < β → [(Vα, Vα+1) |= φ(x1, . . . , xn) ↔ (Vβ, Vβ) |= φ(x1, . . . , xn)].

Observation 2 In the above, in a structure of the form (V, W ), with W ⊆ P(V ),
the first-order variables take values in V and the second-order variables take values
in W .

Proof We show a bit more in order to get an induction on �C
0 -formulas going.

We prove by induction on �C
0 -formulas φ(x1, . . . , xn, X1, . . . , Xk) that for all

x1, . . . , xn ∈ Vα and X1, . . . , Xk ∈ Vβ we have
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(Vα, Vα+1) |= φ(x1, . . . , xn, X1 ∩ Vα, . . . , Xk ∩ Vα) ↔ (Vβ, Vβ) |= φ(x1, . . . , xn, X1, . . . , Xk)

Note that we are abusing notation by confusing variables with the sets that take
their values. For ease of reading, we will also omit tuples. The proof by induction
is straightforward except for the case of second-order quantifications. We study the
universal second-order quantifier (the case of the existential second-order quantifier
follows immediately because �C

0 -formulas are closed under negation).
Consider the formula ∀W φ(x, X, W ), with φ a�C

0 -formula. Let x ∈ Vα , X ∈ Vβ

and assume that (Vα, Vα+1) |= ∀W φ(x, X ∩ Vα, W ). Let Y be an arbitrary ele-
ment of Vβ . Since Y ∩ Vα ∈ Vα+1, we have (Vα, Vα+1) |= φ(x, X ∩ Vα, Y ∩ Vα).
By induction hypothesis, we get (Vβ, Vβ) |= φ(x, X, Y ). By the arbitrariness of
Y , we conclude (Vβ, Vβ) |= ∀W φ(x, X, W ). To prove the converse, let x ∈ Vα ,
X ∈ Vβ and assume that (Vβ, Vβ) |= ∀W φ(x, X, W ). Let Y ∈ Vα+1 be arbitrary.
In particular, Y ∈ Vβ . Hence, (Vβ, Vβ) |= φ(x, X, Y ). By induction hypothesis, we
get (Vα, Vα+1) |= φ(x, X ∩ Vα, Y ∩ Vα). Since Y ∩ Vα = Y , we have (Vα, Vα+1) |=
φ(x, X ∩ Vα, Y ). Therefore, by the arbitrariness ofY , we conclude that (Vα, Vα+1) |=
∀W φ(x, X ∩ Vα, W ). �

Proposition 14 If IKPω2 + �C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 +

CollC2 proves ∀x∃y φ(x, y), where φ is a �C
0 -formula (x and y are the only free vari-

ables), then there is a closed term t of type � → � such that

(V mixC
ω1

, Vω1) |= ∀c�∀x ∈ Vc∃y ∈ Vtc φ(x, y).

Moreover, (VBH, VBH) |= ∀x∃y φ(x, y), where BH is the Bachmann–Howard ordi-
nal.

The above proposition is an immediate consequence of Theorem 6. The final
conclusion follows from two applications of Lemma 11. With this lemma, we also
get:

Corollary 5 If IKPω2 + �C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 +

CollC2 � ∃x φ(x), where φ(x) is a �C
0 -formula (x is its only free variable), then there

is an ordinal α smaller than the Bachmann–Howard ordinal such that (Vα, Vα+1) |=
∃x φ(x).

An analysis of the theory IKPω (P) + �P
0 -LEM + MPP + bIP�P

1
+ �P

0 -CColl

+ CollP is now forthcoming. The strategy is clear: Use Theorem 5 to reduce the
analysis of this theory to the analysis of the second-order theory of that proposition.
In the following lemma, P(y, z) is the �C

0 -formula of the proof of Theorem 5:

Lemma 12 Let φ(x1, . . . , xn) be a �P
0 -formula, with its free variables as shown.

Then there is a �0-formula φ∗(x1, . . . , xn, z) such that the second-order theory

IKPω2 + �C
0 -LEM + �C

0 -CA + MPC + bIP�C
1

+ �C
0 -CColl2 + CollC2
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proves the equivalence

φ(x1, . . . , xn) ↔ ∃z (P(tc(x1 ∪ . . . ∪ xn), z) ∧ φ∗(x1, . . . , xn, z)).

Moreover, for all x1, . . . , xn ∈ Vω1 ,

Vω1 |= φ(x1, . . . , xn) if, and only if, Vω1 |= φ∗(x1, . . . , xn,P(tc(x1 ∪ . . . ∪ xn))).

Here, tc(w) stands for the transitive closure of w.

Proof The proof is by induction on the complexity of φ. We will only study negation
and the universal quantifications ∀w⊆ x (. . .) and ∀w∈ x (. . .). Negation is clear
because, using the induction hypothesis, the equivalence

¬φ(x1, . . . , xn) ↔ ∃z (P(tc(x1 ∪ . . . ∪ xn), z) ∧ ¬φ∗(x1, . . . , xn, z))

is provable in the second-order theory of the lemma. Of course, (¬φ)∗ is defined
as being ¬(φ∗). Let us now consider the formula ∀w ⊆ x φ(w, x, x1, . . . , xn), with
φ ∈ �P

0 . By induction hypothesis, the second-order theory of the lemma proves the
equivalence of the above formulawith∀w ⊆ x∃z (P(tc(w ∪ x ∪ x1 ∪ . . . ∪ xn), z) ∧
φ∗(w, x, x1, . . . , xn, z)). This is equivalent to

∃z (P(tc(x ∪ x1 ∪ . . . ∪ xn), z) ∧ ∀w ∈ z (w ⊆ x → φ∗(w, x, x1, . . . , xn, z))).

This is due to the fact that w ∪ x = x (and the uniqueness of the z). The argument
for the second part of the lemma is similar. The situation is clear now.

The treatment of the usual bounded quantification ∀w∈ x (. . .) is analogous.
Here one takes notice that tc(w ∪ x ∪ x1 ∪ . . . ∪ xn) = tc(x ∪ x1 ∪ . . . ∪ xn) when
w ∈ x . �

We are ready to prove the following proposition and corollary:

Proposition 15 If IKPω (P) + �P
0 -LEM + MPP + bIP�P

1
+ �P

0 -CColl + CollP

� ∀x∃y φ(x, y), where φ is a �P
0 -formula (x and y are the only free variables), then

there is a closed term t of type � → � such that

∀c ∈ W∀x ∈ V|c|∃y ∈ V|t (c)| Vω1 |= φ(x, y).

Moreover, VBH |= ∀x∃y φ(x, y), where BH is the Bachmann–Howard ordinal.

Proof Suppose that IKPω (P) + �P
0 -LEM + MPP + bIP�P

1
+ �P

0 -CColl + CollP

proves ∀x∃y φ(x, y). By Theorem 5, so does the theory of Proposition 14. By
the previous lemma, this second-order theory proves ∀x∃y∃z (P(tc(x ∪ y), z) ∧
φ∗(x, y, z)). Using Proposition 14, it can be argued that there is a closed term t
such that



On Some Semi-constructive Theories Related to Kripke–Platek Set Theory 383

∀c ∈ W∀x ∈ V|c|∃y ∈ V|t (c)| (Vω1 , Vω1) |= ∃z (P(tc(x ∪ y, z)) ∧ φ∗(x, y, z)).

Since (Vω1 , Vω1) |= P(tc(x ∪ y), z) ↔ z = P(tc(x ∪ y)), we obtain the desired con-
clusion using the second part of previous lemma.

It also follows that VBH |= ∀x∃y φ(x, y) because �P
0 -formulas are absolute

between the various levels of the cumulative hierarchy. �

Corollary 6 If IKPω (P) + �P
0 -LEM + MPP + bIP�P

1
+ �P

0 -CColl + CollP �
∃x φ(x), where φ(x) is a �P

0 -formula (x is its only free variable), then there is
an ordinal α smaller than the Bachmann–Howard ordinal such that Vα |= ∃x φ(x).

Using Proposition 13, we can give a �-ordinal analysis (in the relativized sense
of [17]) of the classical theory KPω (P):

Proposition 16 If KPω (P) � ∀x∃y φ(x, y), where φ is a �P
0 -formula (x and y are

the only free variables), then there is a closed term t of type � → � such that

∀c ∈ W∀x ∈ V|c|∃y ∈ V|t (c)| Vω1 |= φ(x, y).

Moreover, VBH |= ∀x∃y φ(x, y), where BH is the Bachmann–Howard ordinal.

Corollary 7 If KPω (P) � ∃x φ(x), where φ(x) is a �P
0 -formula (x is its only free

variable), then there is an ordinal α smaller than the Bachmann–Howard ordinal
such that Vα |= ∃x φ(x).

These two results are due to Rathjen in [17]. We obtained them in a very round-
about way, via second-order semi-constructive theories. A direct way, using our kind
of functional interpretations, would be just to adapt – replacing in a straightforward
manner the constructible hierarchy by the cumulative hierarchy – the analysis of
KPω provided in [10].
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Proof Theory of Constructive Systems:
Inductive Types and Univalence

Michael Rathjen

Abstract In Feferman’s work, explicit mathematics and theories of generalized
inductive definitions play a central role. One objective of this article is to describe the
connectionswithMartin–Löf type theory and constructive Zermelo–Fraenkel set the-
ory. Proof theory has contributed to a deeper grasp of the relationship between differ-
ent frameworks for constructivemathematics. Some of the reductions are known only
through ordinal-theoretic characterizations. The paper also addresses the strength
of Voevodsky’s univalence axiom. A further goal is to investigate the strength of
intuitionistic theories of generalized inductive definitions in the framework of intu-
itionistic explicit mathematics that lie beyond the reach of Martin–Löf type theory.

Keywords Explicit mathematics · Constructive Zermelo–Fraenkel set theory ·
Martin–Löf type theory · Univalence axiom · Proof-theoretic strength
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1 Introduction

Intuitionistic systems of inductive definitions have figured prominently in Solomon
Feferman’s program of reducing classical subsystems of analysis and theories of
iterated inductive definitions to constructive theories of various kinds. In the special
case of classical theories of finitely as well as transfinitely iterated inductive defini-
tions, where the iteration occurs along a computable well-ordering, the program was
mainly completed by Buchholz, Pohlers, and Sieg more than 30years ago (see [13,
19]). For stronger theories of inductive definitions such as those based on Feferman’s
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intutitionic Explicit Mathematics1 (Ti
0) some answers have been provided in the last

10years while some questions are still open.
The aim of the first part of this paper is to survey the landscape of some promi-

nent constructive theories that emerged in the 1970s. In addition to Feferman’s Ti
0,

Myhill’s Constructive Set Theory (CST) and Martin–Löf type theory (MLTT) have
been proposed with the aim of isolating the principles on which constructive math-
ematics is founded, notably the notions of constructive function and set in Bishop’s
mathematics.

Martin–Löf type theory with infinitely many universes and inductive types (W-
types) has attracted a great deal of attention recently because of a newly found
connection between type theory and topology, called homotopy type theory (HoTT),
where types are interpreted as spaces, terms as maps and the inhabitants of the
iterated identity types on a given type A are viewed as paths, homotopies and higher
homotopies of increasing levels, respectively, endowing each type with a weak ω-
groupoid structure.

Homotopy type theory, so it appears, has now reached the mathematical main-
stream:

Voevodsky’s Univalent Foundations require not just one inaccessible cardinal but an infinite
string of cardinals, each inaccessible from its predecessor. (M. Harris, Mathematics without
apologies, 2015).

By Univalent Foundations Harris seems to refer to MLTT plus Voevodsky’s Uni-
valence Axiom (UA). To set the stage for the latter axiom, let us recall a bit of history
of extensionality and universes in type theory. Simple type theory, as formulated by
A. Church in 1940 [16], already provides a natural and elegant alternative to set the-
ory for representing mathematics in a formal way. The stratification of mathematical
objects into the types of propositions, individuals and functions between two types is
indeed quite natural. In this setup, the axiom of extensionality comes in two forms:
the stipulation that two logically equivalent propositions are equal and the stipula-
tion that two pointwise equal functions are equal. Some restrictions of expressiveness
encountered in simple type theory are overcome by dependent type theory, yet still
unnatural limitations remain in that one cannot express the notion of an arbitrary
structure in this framework. For instance one cannot assign a type to an arbitrary
field. Type theory (and other frameworks as well) solve this issue by introducing
the notion of a universe type. Whereas most types come associated with a germane
axiom of extensionality inherited from its constituent types following the example
of simple type theory, it is by no means clear what kind of extensionality principle
should govern universes. A convincing proposal was missing until the work of V.

1Feferman introduced the theory of explicit mathematics in [20]. There it was based on intuitionistic
logic and notated by T0. The same notation is used e.g. in [13, 34, 48] but increasingly T0 came to
be identified with its classical version. As a result, we adopt the notationTi

0 to stress its intuitionistic
basis and reserve T0 for the classical theory.
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Voevodsky with its formulation of the extensionality axiom for universes in terms of
equivalences. This is the univalence axiom, which generalizes propositional exten-
sionality.

Harris’s claim that an infinite sequence of inaccessible cardinals is required to
model MLTT plus Voevodsky’s Univalence Axiom is a pretty strong statement.
Recent research by Bezem, Huber, and Coquand (see [10]), though, indicates that
MLTT + UA has an interpretation in MLTT and therefore is proof-theoretically not
stronger than MLTT. But what is the strength of MLTT? As there doesn’t seem to
exist much common knowledge among type theorists about the strength of various
systems and how they relate to the other constructive frameworks as well as classical
theories used as a classification hierarchy in reverse mathematics and set theory, it
seems reasonable to devote a section to mapping out the relationships and gathering
current knowledge in one place. In this section attention will also be payed to the
methods employed in proofs such as interpretations but with a particular eye toward
the role of ordinal analysis therein.

Section8 of this paper will be concerned with extensions of explicit mathematics
by principles that allow the construction of inductive classifications that lie way
beyond MLTT’s reach but still have a constructive flavor. The basic theory here
is intuitionistic explicit mathematics Ti

0. In Ti
0 one can freely talk about monotone

operations on classifications and assert the existence of least fixed points of such
operators. There are two ways in which one can add a principle to Ti

0 postulating the
existence of least fixed points. MID merely existentially asserts that every monotone
operation has a least fixed point whereas UMID not only postulates the existence of
a least solution, but, by adjoining a new functional constant to the language, ensures
that a fixed point is uniformly presentable as a function of the monotone operation.

The question of the strength of systems of explicit mathematics with MID and
UMID was raised by Feferman in [22]; we quote:

What is the strength of T0 + MID? [...] I have tried, but did not succeed, to extend my
interpretation of T0 in �1

2 − AC + B I to include the statement MID. The theory T0 +
MID includes all constructive formulations of iteration of monotone inductive definitions of
which I am aware, while T0 (in its I G axiom) is based squarely on the general iteration of
accessibility inductive definitions. Thus it would be of great interest for the present subject
to settle the relationship between these theories. (p. 88)

As it turned out, the principles MID and even more UMID encapsulate con-
siderable strength, when considered on the basis of classical T0. For instance
T0 + UMID embodies the strength of �1

2-comprehension. The first (significant)
models ofT0 + MIDwere found by Takahashi [69]. Research on the precise strength
was conducted by Rathjen [56–58] and Glaß, Rathjen, Schlüter [26]. The article [59]
provides a survey of the classical case. Tupailo [71] obtained the first result in the
intuitionistic setting. This and further results will be the topic of Sect. 3.



388 M. Rathjen

2 Some Background on Feferman’s Ti
0

The theory of explicit mathematics, here denoted by Ti
0, is a formal framework that

has great expressive power. It is suitable for representing Bishop-style constructive
mathematics as well as generalized recursion, including direct expression of struc-
tural concepts which admit self-application. Feferman was led to the development of
his explicit mathematics when trying to understand what Errett Bishop had achieved
in his groundbreaking constructive redevelopment of analysis in [11]. For a detailed
account see [20, 21]. The ontology behind the axioms of Ti

0 is that the universe of
mathematical objects is populated by (a) natural numbers, (b) operations (in general
partial) and (c) classifications (akin to Bishop’s sets) where operations and classifi-
cations are to be understood as given intensionally. Operations can be applied to any
object including operations and classifications; they are governed by axioms giv-
ing them the structure of a partial combinatory algebra (also known as applicative
structures or Schönfinkel algebras). There are, for example, operations that act on
classifications X, Y to produce their Cartesian product X × Y and exponential XY .
The formation of classifications is governed by the Join, Inductive Generation and
Elementary Comprehension Axiom.

The languageofTi
0,L(Ti

0), has two sorts of variables. The free andboundvariables
(a, b, c, . . . and x, y, z . . .) are conceived to range over the whole constructive uni-
verse which comprises operations and classifications among other kinds of entities;
while upper-case versions of these A, B, C, ... and X, Y, Z , ... are used to represent
free and bound classification variables.

N is a classification constant taken to define the class of natural numbers. 0 , sN

and pN are operation constants whose intended interpretations are the natural number
0 and the successor and predecessor operations. Additional operation constants are
k, s, d, p, p1 and p1 for the two basic combinators, definition by cases on N, pairing
and the corresponding two projections. Additional classification constants are gen-
erated using the axioms and the constants j, i and cn(n < ω) for join, induction and
comprehension.

There is no arity associated with the various constants. The terms ofTi
0 are just the

variables and constants of the two sorts. The atomic formulae of Ti
0 are built up using

the terms and three primitive relation symbols =, App and ε as follows. If q, r, r1, r2
are terms, then q = r , App(q, r1, r2), and q ε r (where r has to be a classification
variable or constant) are atomic formulae.App(q, r1, r2) expresses that the operation
q applied to r1 yields the value r2; q ε r asserts2 that q is in r or that q is classified
under r .

We write t1t2 � t3 for App(t1, t2, t3).
The set of formulae is then obtained from these using the propositional connectives

and the two quantifiers of each sort.

2It should be pointed out that we use the symbol “ε” instead of “∈” deliberately, the latter being
reserved for the set–theoretic elementhood relation.
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In order to facilitate the formulation of the axioms, the language ofTi
0 is expanded

definitionally with the symbol � and the auxiliary notion of an application term is
introduced. The set of application terms is given by two clauses:

1. all terms of Ti
0 are application terms; and

2. if s and t are application terms, then (st) is an application term.

If s is an application term and u is a bound or free variable we define s � u by
induction on the buildup of s:

s � u is

{
s = u, if s is a variable or a constant ,

∃x, y[s1 � x ∧ s2 � y ∧ App(x, y, u] if s is an application term(s1s2)

For s and t application terms, we have auxiliary, defined formulae of the form:

s � t := ∀y(s � y ↔ t � y).

Some abbreviations are t1 . . . tn for ((...(t1t2)...)tn); t ↓ for ∃y(t � y) and φ(t) for
∃y(t � y ∧ φ(y)).

Gödel numbers for formulae play a key role in the axioms introducing the clas-
sification constants cn. A formula is said to be elementary if it contains only free
occurrences of classification variables A (i.e., only as parameters), and even those
free occurrences of A are restricted: A must occur only to the right of ε in atomic
formulas. The Gödel number cn above is the Gödel number of an elementary for-
mula. We assume that a standard Gödel numbering has been chosen for L(Ti

0);
if φ is an elementary formula and a, b1, . . . , bm, A1, . . . , An is a list of variables
which includes all parameters of φ, then {x : φ(x, b1, . . . , bn, A1, . . . , An)} stands
for cn(b1, . . . , bn, A1, . . . , An); n is the code of the pair of Gödel numbers 〈�φ�,
�(a, b1, . . . , bm, A1, . . . , An)�〉 and is called the ‘index’ of φ and the list of vari-
ables.

Some further conventions are useful. Systematic notation for n-tuples is intro-
duced as follows: (t) is t , (s, t) ispst , and (t1, . . . , tn) is defined by ((t1, . . . , tn-1), tn).
Finally, t ′ is written for the term sNt , and ⊥ is the elementary formula 0 � 0′.

Ti
0’s logic is intuitionistic two-sorted predicate logic with identity. Its non-logical

axioms are:

I. Basic Axioms

1. ∀X∃x(X = x)

2. App(a, b, c1) ∧ App(a, b, c2) → c1 = c2

II. App Axioms

1. (kab) ↓ ∧ kab � a,
2. (sab) ↓ ∧ sabc � ac(bc),
3. (pa1a2) ↓ ∧ (p1a) ∧ (p2a) ↓ ∧ pi(pa1a2) � ai for i = 0, 1,
4. (c1 = c2 ∨ c1 �= c2) ∧ (dabc1c2) ↓ ∧ (c1 = c2 → dabc1c2 � a) ∧ (c1 �= c2

→ dabc1c2 � b),
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5. a ε N ∧ b ε N → [a′ ↓ ∧ p0(a′) � a ∧ ¬(a′ � 0) ∧ (a′ � b′ → a � b)].
III. Classification Axioms

Elementary Comprehension Axiom (ECA)
∃X [X � {x : ψ(x)} ∧ ∀x(x ε X ↔ ψ(x))]
for each elementary formula ψa, which may contain additional parameters.

Natural Numbers

(i) 0 ε N ∧ ∀x(x ε N → x ′ ε N)

(ii) φ(0) ∧ ∀x(φ(x) → φ(x ′)) → (∀x ε N)φ(x) for each formula φ of L(Ti
0).

Join (J)
∀x ε A ∃Y f x � Y → ∃X [X � j(A, f ) ∧ ∀z(z ε X ↔ ∃xεA∃y(z � (x, y) ∧ y ε

f x))]
Inductive Generation (IG)
∃X [X � i(A, B) ∧ ∀x ε A[∀y[(y, x) ε B → y ε X ] → x ε X ],

∧[∀x ε A [∀y ((y, x) ε B → φ(y)) → φ(x)] → ∀x ε X φ(x)]]
where φ is an arbitrary formula of Ti

0.

3 Type Theories

The type theory of Martin–Löf from the 1984 book [42] will be notated by MLTText

where the superscript ismeant to convey that this is an extensional theory. It has all the
usual type constructors �,�,+, 0, 1, 2, Id,W for dependent products, dependent
sums, disjoint unions, empty type, unit type, Booleans, propositional identity types,
and W-types, respectively. Moreover, the system comprises a sequence of universe
types U0,U1,U2, . . . externally indexed by the natural numbers. The universe types
are closed under the type constructors from the first list and they form a cumulative
hierarchy in that Un is a type in Un+1 and if A is a type in Un then A is also a type in
Un+1.

In the version of [42] the identity type was taken to be extensional whereas in
the more recent versions, e.g. [45] and the one forming the basis for homotopy type
theory (see [33]), it is considered to be intensional. The intensional version will
simply be denoted by MLTT. For the proof-theoretic strength, though, it turns out
that the difference is immaterial. The reasons will be explained below, but perhaps a
first good approximation comes from the observation that (exact) lower bounds can
be established by interpreting certain set theories in type theory in such a way that
the extensional identity type can be dispensed with in these interpretations, although
for validating certain forms of the axiom of choice, e.g. the ��W-AC axiom to
be discussed below, chunks of extensionality are still required. Since we shall be
discussing (partial) conservativity results of extensional over intensional type theory
below, let’s recall the differences.
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Definition 3.1 A key feature of Martin–Löf’s type theory is the distinction of two
notions of identity (or equality). Judgemental identity appears in judgements in the
two forms � � s = t : A and � � A = B type between terms and between types,
respectively. The general equality rules (reflexivity, symmetry, transitivity) and sub-
stitution rules, simultaneously at the level of terms and types, apply to these judge-
ments as further inference rules.3 But there is also propositional identity which gives
rise to types Id(A, s, t) and allows for internal reasoning about identity.

The rules for the extensional identity type are the following4:

(Id − Formation)
� � A type � � a : A � � b : A

� � Id(A, a, b) type

(Id − Introduction)
� � a : A

� � refl(a) : Id(A, a, a)

(Id − Uniqueness)
� � p : Id(A, a, b)

� � p = refl(a) : Id(A, a, b)

(Id − Reflection)
� � p : Id(A, a, b)

� � a = b : A
.

Reflection has the effect of rendering judgemental identity undecidable, i.e., the
(type checking) questions whether � � a = b : A or � � a : A hold become unde-
cidable. On the other hand, the set-theoretic models and many recursion-theoretic
models of type theory (see [6, 8, 48]) validate extensionality, lending it an intuitive
appeal.

For the intensional identity type, the foregoing rules of formation and introduc-
tion are retained, however, uniqueness and reflection are jettisoned, getting replaced
by elimination and equality rules which are motivated by Leibniz’s principle of
indiscernibility, namely that identical elements are those that satisfy the same prop-
erties. Though instead of capturing identity by quantifying (impredicatively) over all
properties (as in Principia), the entire family of identity types (Id(A, x, y))x,y : A is
viewed as being inductively generated with sole constructor refl (see [33, 45]). The
elimination and equality rules are the following:

3See [45, Chap. 5] or [33, A.2.2], where they are called structural rules.
4The rules are essentially the ones used in [42], except that [42] has a constant r as the sole
canonical element of all inhabited types Id(A, a, b). Here we use refl(a) to make the comparison
with the intensional case more transparent. In [42], Id − Uniqueness and Id − Reflection are called
I-equality and I-elimination, respectively.
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(Id − Elimination)

� � a : A
� � b : A
� � c : Id(A, a, b)

�, x : A, y : A, z : Id(A, x, y) � C(x, y, z) type
�, x : A � d(x) : C(x, x, refl(x))

� � J(c, d) : C(a, b, c)

(Id − Equality)

� � a : A
�, x : A, y : A, z : Id(A, x, y) � C(x, y, z) type
�, x : A � d(x) : C(x, x, refl(x))

� � J(refl(a), d) = d(a) : C(a, a, refl(a)) .

An immediate consequence of these rules is the indiscernibility of identical ele-
ments expressed as follows. For every family (C(x))x : A of types there is a function

f : �x,y : A�p : Id(A,x,y)[C(x) → C(y)]

such that with 1C(x) being the function u �→ u on C(x) we have f (x, x, refl(x)) =
1C(x).

Foregoing extensional identity and using the induction principle encapsulated in
Id − elimination and Id − equality in its stead, is crucial to themore subtle homotopy
interpretations of type theory.

4 Constructive Set Theories

Constructive Set Theory was introduced by Myhill in a seminal paper [44], where
a specific axiom system CST was introduced. Through developing constructive set
theory he wanted to isolate the principles underlying Bishop’s conception of what
sets and functions are, and he wanted “these principles to be such as to make the pro-
cess of formalization completely trivial, as it is in the classical case” ([44], p. 347).
Myhill’s CST was subsequently modified by Aczel and the resulting theory was
called Constructive Zermelo–Fraenkel set theory, CZF. A hallmark of this theory is
that it possesses a type-theoretic interpretation (cf. [2, 5]). Specifically, CZF has a
scheme called Subset Collection Axiom (which is a generalization ofMyhill’s Expo-
nentiation Axiom) whose formalization was directly inspired by the type-theoretic
interpretation.

The language ofCZF is the same first order language as that of classical Zermelo–
Fraenkel Set Theory, ZF whose only non-logical symbol is ∈. The logic of CZF
is intuitionistic first order logic with equality. Among its non-logical axioms are
Extensionality, Pairing and Union in their usual forms. CZF has additionally axiom
schemata which wewill now proceed to summarize. Below ∅ stands for the empty set
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and v + 1 denotes v ∪ {v}. A set-theoretic formula is said to be restricted or bounded
or 	0 if it is constructed from prime formulae using ¬,∧,∨,→ and only restricted
quantifiers ∀x∈y, ∃x∈y.

Infinity:5

∃x [∀u
(
u∈x ↔ (∅ = u ∨ ∃v∈x u = v + 1

)) ∧ ∀z (∅ ∈ z ∧ ∀y ∈ z y + 1 ∈ z → x ⊆ z)].

Set Induction: For all formulae φ,

∀x[∀y ∈ xφ(y) → φ(x)] → ∀xφ(x).

Restricted or Bounded Separation: For all restricted formulae φ,

∀a∃b∀x[x ∈ b ↔ x ∈ a ∧ φ(x)].

Strong Collection: For all formulae φ,

∀a
[∀x ∈ a∃yφ(x, y) → ∃b [∀x ∈ a ∃y ∈ b φ(x, y) ∧ ∀y ∈ b ∃x ∈ a φ(x, y)]].

Subset Collection: For all formulae ψ ,

∀a∀b∃c∀u
[∀x ∈ a ∃y ∈ b ψ(x, y, u) →

∃d ∈ c [∀x ∈ a ∃y ∈ d ψ(x, y, u) ∧ ∀y ∈ d ∃x ∈ a ψ(x, y, u)]].
The Subset Collection schema easily qualifies as the most intricate axiom of CZF.

We shall also consider an additional axiom that holds true in the type-theoretic
interpretation of Aczel if the type theory is equipped with W -types. To introduce it,
we need the notion of a regular set. The formula in the language of CZF defining the
property of a set A that it is regular states that A is transitive, and for every a ∈ A
and set R ⊆ a × A if ∀x ∈ a ∃y (〈x, y〉 ∈ R), then there is a set b ∈ A such that

∀x ∈ a ∃y ∈ b (〈x, y〉 ∈ R) ∧ ∀y ∈ b ∃x ∈ a (〈x, y〉 ∈ R).

In particular, if R : a → A is a function, then the image of R is an an element of A.
Let Reg(A) denote this assertion. With this auxiliary definition we can state the

Regular Extension Axiom REA

∀x∃y[x ⊆ y ∧ Reg(y)] .

5This axiom asserts the existence of a unique set usually called ω. Note that the second conjunct
in [. . .] entails the usual induction principle for ω with regard to set properties (or equivalently 	0
formulae).
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4.1 The Axiom of Choice in Constructive Set Theories

Among the axioms of set theory, the axiom of choice is distinguished by the fact that
it is the only one that one finds mentioned in workaday mathematics. In the math-
ematical world of the beginning of the 20th century, discussions about the status
of the axiom of choice were important. In 1904 Zermelo proved that every set can
be well-ordered by employing the axiom of choice. While Zermelo argued that it
was self-evident, it was also criticized as an excessively non-constructive principle
by some of the most distinguished analysts of the day, notably Borel, Baire, and
Lebesgue. At first blush this reaction against the axiom of choice utilized in Cantor’s
new theory of sets is surprising as the French analysts had used and continued to
use choice principles routinely in their work. However, in the context of 19th cen-
tury classical analysis only the Axiom of Dependent Choices, DC, is invoked and
considered to be natural, while the full axiom of choice is unnecessary and even has
some counterintuitive consequences.

Unsurprisingly, the axiom of choice does not have a unambiguous status in
constructive mathematics either. On the one hand it is said to be an immedi-
ate consequence of the constructive interpretation of the quantifiers. Any proof
of ∀x ∈ A ∃y ∈ B φ(x, y) must yield a function f : A → B such that ∀x ∈ A φ(x,

f (x)). This is certainly the case in Martin–Löf’s intuitionistic theory of types. On
the other hand, it has been observed that the full axiom of choice cannot be added to
systems of extensional constructive set theory without yielding constructively unac-
ceptable cases of excludedmiddle (see [18]). In extensional intuitionistic set theories,
a proof of a statement ∀x ∈ A ∃y ∈ B φ(x, y), in general, provides only a function
F , which when fed a proof p witnessing x ∈ A, yields F(p)∈ B and φ(x, F(p)).
Therefore, in the main, such an F cannot be rendered a function of x alone. Choice
will then hold over sets which have a canonical proof function, where a constructive
function h is a canonical proof function for A if for each x ∈ A, h(x) is a constructive
proof that x ∈ A. Such sets having natural canonical proof functions “built-in” have
been called bases (cf. [70], p. 841).

Some constructive choice principles In many a text on constructive mathemat-
ics, axioms of countable choice and dependent choices are accepted as constructive
principles. This is, for instance, the case in Bishop’s constructive mathematics (cf.
[11]) as well as Brouwer’s intuitionistic analysis (cf. [70], Chap. 4, Sect. 2). Myhill
also incorporated these axioms in his constructive set theory [44].

The weakest constructive choice principle we shall consider is the Axiom of
Countable Choice, ACω, i.e. whenever F is a function with domain ω such that
∀i ∈ ω ∃y ∈ F(i), then there exists a function f with domain ω such that ∀i ∈ω

f (i)∈ F(i).
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Amathematically very useful axiom to have in set theory is theDependent Choices
Axiom, DC, i.e., for all formulae ψ , whenever

(∀x ∈ a) (∃y ∈ a) ψ(x, y)

and b0 ∈ a, then there exists a function f : ω → a such that f (0) = b0 and

(∀n ∈ ω)ψ( f (n), f (n + 1)).

Even more useful is the Relativized Dependent Choices Axiom, RDC. It asserts that
for arbitrary formulae φ and ψ , whenever

∀x
[
φ(x) → ∃y

(
φ(y) ∧ ψ(x, y)

)]
and φ(b0), then there exists a function f with domain ω such that f (0) = b0 and

(∀n ∈ ω)
[
φ( f (n)) ∧ ψ( f (n), f (n + 1))

]
.

In addition to the “traditional” axioms of choice stated above, the interpretation
of set theory in type theory validates several new choice principles which are not
well known. To state them we need to introduce various operations on classes.

Remark 4.1 Let CZFExp denote the modification of CZF with Eponentiation in
place of Subset Collection.

In almost all the results of this paper, CZF could be replaced by CZFExp, that is
to say, for the purposes of this paper it is enough to assume Exponentiation rather
than Subset Collection. However, in what follows we shall not point this out again.

Definition 4.2 (CZF) If A is a set and Bx are classes for all x ∈ A, we define a class∏
x∈A Bx by:

∏
x∈A

Bx := { f | f : A →
⋃
x∈A

Bx ∧ ∀x ∈ A( f (x) ∈ Bx )}. (1)

If A is a class and Bx are classes for all x ∈ A, we define a class
∑

x∈A Bx by:

∑
x∈A

Bx := {〈x, y〉 | x ∈ A ∧ y ∈ Bx }. (2)

If A is a class and a, b are sets, we define a class I(A, a, b) by:

I(A, a, b) := {z ∈ 1 | a = b ∧ a, b ∈ A}. (3)

If A is a class and for each a ∈ A, Ba is a set, then

Wa∈A Ba
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is the smallest class Y such that whenever a ∈ A and f : Ba → Y , then 〈a, f 〉 ∈ Y .

Lemma 4.3 (CZF) If A,B,a,b are sets and Bx is a set for all x ∈ A, then
∏

x∈A Bx ,∑
x∈A Bx and I(A, a, b) are sets.

Proof [55, Lemma 2.5]. �

In the following we shall introduce several inductively defined classes, and, more-
over, we have to ensure that such classes can be formalized in CZF.

We define an inductive definition to be a class of ordered pairs. If
 is an inductive
definition and 〈x, a〉 ∈ 
 then we write

x

a



and call x
a an (inference) step of 
, with set x of premisses and conclusion a. For

any class Y , let

�
(Y ) = {
a | ∃x

(
x ⊆ Y ∧ x

a



)}
.

The class Y is 
-closed if �
(Y ) ⊆ Y . Note that � is monotone; i.e. for classes
Y1, Y2, whenever Y1 ⊆ Y2, then �(Y1) ⊆ �(Y2).

We define the class inductively defined by 
 to be the smallest 
-closed class.
The main result about inductively defined classes states that this class, denoted I(
),
always exists.

Lemma 4.4 (CZF) (Class Inductive Definition Theorem) For any inductive defini-
tion 
 there is a smallest 
-closed class I(
).

Proof [2], Sect. 4.2 or [4], Theorem 5.1. �

Lemma 4.5 (CZF + REA) If A is a set and Bx is a set for all x ∈ A, then Wa∈A Ba

is a set.

Proof This follows from [3], Corollary 5.3. �

Lemma 4.6 (CZF) There exists a smallest ��-closed class, i.e., a smallest class
Y such that the following hold:
(i) n ∈ Y for all n ∈ ω;
(i i) ω ∈ Y;
(i i i)

∏
x∈A Bx ∈ Y and

∑
x∈A Bx ∈ Y whenever A ∈ Y and Bx ∈ Y for all x ∈ A.

Likewise, there exists a smallest ��I-closed class, i.e. a smallest class Y∗, which,
in addition to the closure conditions (i)–(i i i) above, satisfies:
(iv) I(A, a, b) ∈ Y∗ whenever A ∈ Y∗ and a, b ∈ A.

Proof [55, Lemma 2.8]. �
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Definition 4.7 The ��-generated sets are the sets in the smallest��-closed class.
Similarly one defines the ��I, ��W and ��WI-generated sets.

A set P is a base if for any P-indexed family (Xa)a∈P of inhabited sets Xa , there
exists a function f with domain P such that, for all a ∈ P , f (a) ∈ Xa .

�� –AC is the statement that every ��-generated set is a base. Similarly one
defines the axioms ��I–AC, ��WI−AC, and ��W−AC.

The presentation axiom, PAx, states that every set is the surjective image of a
base.

Lemma 4.8

(i) (CZF) �� –AC and ��I–AC are equivalent.
(ii) (CZF + REA) ��W−AC and ��WI−AC are equivalent.

Proof [55, 2.12]. �

4.2 Large Sets in Constructive Set Theory

Large cardinals play a central role in modern set theory. This section deals with large
cardinal properties in the context of intuitionistic set theories. Since in intuitionistic
set theory ∈ is not a linear ordering on ordinals the notion of a cardinal does not
play a central role. Consequently, one talks about “large set properties” instead
of “large cardinal properties”. When stating these properties one has to proceed
rather carefully. Classical equivalences of cardinal notion might no longer prevail
in the intuitionistic setting, and one therefore wants to choose a rendering which
intuitionistically retains the most strength. On the other hand certain notions have to
be avoided so as not to imply excluded third. To give an example, cardinal notions
like measurability, supercompactness and hugeness have to be expressed in terms of
elementary embeddings rather than ultrafilters.

We shall, however, not concern ourselves with very large cardinals here and rather
restrict attention to the very first notions of largeness introduced by Hausdorff and
Mahlo, that is, inaccessible and Mahlo sets and the pertaining hierarchies of inac-
cessible and Mahlo sets.

We have already seen one notion of largeness, namely that of a regular set. In
ZFC, a regular set which itself is a model of the axioms of CZF is of the form Vκ

with κ a strongly inaccessible cardinal.6 In the context of CZF this notion is much
weaker.

Definition 4.9 If A is a transitive set and φ is a formula with parameters in A we
denote by φA the formula which arises from φ by replacing all unbounded quantifiers
∀u and ∃v in φ by ∀u ∈ A and ∃v ∈ A, respectively.

6Note that CZF with classical logic is the same theory as ZF.
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We can view any transitive set A as a structure equipped with the binary relation
∈A = {〈x, y〉 | x ∈ y ∈ A}. A set-theoretic sentence whose parameters lie in A, then
has a canonical interpretation in (A,∈A) by interpreting ∈ as ∈A, and (A,∈A) |= φ

is logically equivalent to φA. We shall usually write A |= φ in place of φA.
A set I is said to be weakly inaccessible if I is a regular set such that I |= CZF−,

where CZF− denotes the theory CZF bereft of the set induction scheme.7

The strong regular extension axiom, sREA, states that every set is an element of
a weakly inaccessible set.

There is a more ‘algebraic’ way of expressing weak inaccessibility. Stating it
requires some definitions.

Definition 4.10 For sets A, B we denote by mv(A B) the collection of all full
relations from A to B, i.e., of those relations R ⊆ A × B such that ∀x ∈ A ∃y ∈
B 〈x, y〉 ∈ R. A set C is said to be full in mv(A B) if for all R ∈ mv(A B) there exists
R′ ∈ mv(A B) such that R′ ⊆ R and R′ ∈ C .

For a set A, define
∧

A to be the set {x ∈ 1 | ∀u ∈ A x ∈ u}, where 1 = {∅}.
Proposition 4.11 (CZF−) A set I is weakly inaccessible if and only if I is a regular
set such that the following are satisfied:

1. ω ∈ I ,
2. ∀a ∈ I

⋃
a ∈ I ,

3. ∀a ∈ I [a inhabited → ⋂
a ∈ I ],

4. ∀A, B ∈ I ∃C ∈ I C is full in mv(A B).

Proof [5, 10.26].

We will consider two stronger notions.

Definition 4.12 A set I is called inaccessible if I is weakly inaccessible and for all
x ∈ I there exists a regular set y ∈ I such that x ∈ y.

A set M is said to be Mahlo if M is inaccessible and for every R ∈ mv(M M)

there exists an inaccessible I ∈ M such that

∀x ∈ I ∃y ∈ I 〈x, y〉 ∈ R.

4.3 Fragments of Second Order Arithmetic

The proof-theoretic strength of theories is commonly calibrated using standard theo-
ries and their canonical fragments. In classical set theory this linear line of consistency
strengths is couched in terms of large cardinal axioms while for weaker theories the

7Note that if the background set theory validates set induction for 	0 formulae then a transitive set
will be automatically a model of the full set induction scheme, and thus a regular set I will satisfy
I |= CZF.
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line of reference systems traditionally consist of subsystems of second order arith-
metic. The observation that large chunks of mathematics can already be formalized
in fragments of second order arithmetic goes back to Hilbert and Bernays [31], and
has led to a systematic research program known as Reverse Mathematics. Below we
give an account of the syntax of L2 and frequently considered axiomatic principles.

Definition 4.13 The language L2 of second-order arithmetic contains number vari-
ables x, y, z, u, . . ., set variables X, Y, Z , U, V, A, B, C, . . . (ranging over subsets
of N), the constant 0, function symbols Suc,+, ·, and relation symbols =,<,∈.
Suc stands for the successor function. We write x + 1 for Suc(x). Terms are built
up as usual. For n ∈N, let n̄ be the canonical term denoting n. Formulae are built
from the prime formulae s = t , s < t , and s ∈ X using ∧,∨,¬,∀x, ∃x,∀X and
∃X where s, t are terms. Note that equality in L2 is only a relation on numbers.
However, equality of sets will be considered a defined notion, namely X = Y if and
only if ∀x[x ∈ X ↔ x ∈Y ]. As per usual, number quantifiers are called bounded if
they occur in the context ∀x(x < s → . . .) or ∃x(x < s ∧ . . .) for a term s which
does not contain x . The �0

0-formulae are those formulae in which all quantifiers
are bounded number quantifiers. For k > 0, �0

k-formulae are formulae of the form
∃x1∀x2 . . . Qxkφ,whereφ is�0

0;�
0
k-formulae are thoseof the form∀x1∃x2 . . . Qxkφ.

The union of all �0
k- and �0

k-formulae for all k ∈ N is the class of arithmetical or
�0

∞-formulae. The�1
k-formulae (�1

k-formulae) are the formulae ∃X1∀X2 . . . Q Xkφ

(resp. ∀X1∃X2 . . . Qxkφ) for arithmetical φ.
The basic axioms in all theories of second-order arithmetic are the defining axioms

of 0, 1,+, ·,< and the induction axiom

∀X (0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X) → ∀x(x ∈ X)),

respectively the scheme of induction

IND φ(0) ∧ ∀x(φ(x) → φ(x + 1)) → ∀xφ(x),

where φ is an arbitrary L2-formula. We consider the axiom scheme of C-compre-
hension for formula classes C which is given by

C-CA ∃X∀u(u ∈ X ↔ φ(u))

for all formulae φ ∈ C (of course, X must not be free in φ).
For each axiom scheme Ax we denote by (Ax) the theory consisting of the basic

arithmetical axioms, the scheme �0
∞-CA, the scheme of induction and the scheme

Ax. If we replace the scheme of induction by the induction axiom, we denote the
resulting theory by (Ax)0. An example for these notations is the theory (�1

1-CA)

which contains the induction scheme, whereas (�1
1-CA)0 only contains the induction

axiom in addition to the comprehension scheme for �1
1-formulae.

In the basic system one can introduce defined symbols for all primitive recursive
functions. Especially, let 〈,〉 : N × N −→ N be a primitive recursive and bijective
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pairing function. The xth section ofU is defined byUx := {y : 〈x, y〉 ∈ U }. Observe
that a setU is uniquely determined by its sections on account of 〈,〉’s bijectivity. Any
set R gives rise to a binary relation≺R defined by y ≺R x := 〈y, x〉 ∈ R. Using this
coding we can formulate the C-axiom of choice scheme for formula classes C which
is given by

C-AC ∀x∃Y ψ(x, Y ) → ∃Z ∀u ψ(x, Zx ),

for all formulae ψ ∈ C (Z must not be free in ψ).
Another important principle is Bar induction:

BI ∀X
[
WF(≺X ) ∧ ∀u

(∀v ≺X uφ(v) → φ(u)
) → ∀uφ(u)

]
for all formulae φ, where WF(≺X ) expresses that≺X is well-founded, i.e., WF(≺X )

stands for the formula

∀Y
[∀u

[
(∀v ≺X u v ∈ Y ) → u ∈ Y

] → ∀u u ∈ Y
]
.

Universes in type theory (with W -types) bear a strong relation to β-models which
are models of the language ofL2 or set theory for which the notion well-foundedness
is absolute.

Definition 4.14 Any set A of natural numbers gives rise to a setXA := {Ai | i ∈ N}
of sets of natural numbers. A is said to be a β-model if the L2-structure

A := (N,XA, 0, 1,+, ·,∈)

is a β-model, i.e., A |= �0
∞-CA, and whenever Y ∈ XA and A |= WF(≺Y ) then ≺Y

is well-founded.
Obviously, the notion, the notion of β-model can be expressed in L2.

An intuitionistic L2-theory.There is an interesting version of second order arith-
metic, which will be used in theory reductions, that classically has the same strength
as full second order arithmetic, (�1∞-CA), but when based on intuitionistic logic is
of the same strength as Ti

0.

Definition 4.15 IARI is a theory in the language of second order arithmetic. The
logical rules of IARI are those of intuitionistic second order arithmetic. In addition
to the usual axioms for intuitionistic second order logic, axioms are (the universal
closures of):

1. Induction:
φ(0) ∧ ∀n[φ(n) → φ(n + 1)] → ∀nφ(n)

for all formulae φ.
2. Arithmetic Comprehension Schema:

∃X∀n[n ∈ X ↔ ψ(x)]
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for ψ arithmetical (parameters allowed).
3. Replacement:

∀X [∀n ∈ X∃ !Yφ(n, Y ) → ∃Z∀n ∈ X φ(n, Zn)]

for all formulas φ. Here φ(n, Zn) arises from φ(n, Z) by replacing each occur-
rence t ∈ Z in the formula by 〈n, t〉 ∈ Z .

4. Inductive Generation:

∀U∀X∃Y
[
WPU (X, Y ) ∧ (∀n[∀k(k ≺X n → φ(k)) → φ(n)] → ∀m ∈ Y φ(m))

]
,

for all formulas φ, where k ≺X n abbreviates 〈k, n〉 ∈ X and WPU (X, Y ) stands
for

ProgU (X, Y ) ∧ ∀Z [ProgU (X, Z) → Y ⊆ Z ]

with ProgU (X, Y ) being ∀n ∈ U [∀k(k ≺X n → k ∈ Y ) → n ∈ Y ].
Remark 4.16 (IARI) Note that WPU (X, Y ) and WPU (X, Y ′) imply Y = Y ′, i.e.
∀n(n ∈ Y ↔ n ∈ Y ′). Therefore, if WPU (X, Y ), then

∀n ∈ U [∀k ≺X n φ(k) → φ(n)] → ∀m ∈ Y φ(m)

holds for all formulae φ.

The latter principle will be referred to as “induction over the well–founded part
of ≺X”. In the rest of this section we shall write WF(U, X) for the (extensionally)
uniquely determined Y which satisfies WPU (X, Y ).

The main tool for performing the well-ordering proof of [34] in IARI is the fol-
lowing principle of transfinite recursion.

Proposition 4.17 (IARI) If WPU (X, Y ) and ∀n ∈ Y∀W∃!V ψ(n, W, V ), then there
exists Z such that

∀n ∈ Y ψ(n,
⋃

{(Z)k : k ≺X n}, (Z)n).

Proof See [48, 6.4]. �

5 On Relating Theories I

The first result relates intuitionistic explicit mathematics to constructive set theory
and a fragment of MLTT. Let MLT1W V be the fragment of MLTT with only one
universe U0 where the W-constructor can solely be applied to families of types in
U0 but one can also form the type V := W(A:U0) A (something that could be called
the type of Brouwer ordinals of U0). We shall also consider the type theory MLT1W

which is the fragment of MLT1W V without the type V.
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A principle of omniscience. Certain basic principles of classical mathematics are
taboo for the constructive mathematician. Bishop called them principles of omni-
science. The limited principle of omniscience, LPO, is an instance of the law of
excluded middle which usually serves as a line of demarcation, separating “con-
structive” from “non-constructive” theories. In the case of CZF, adding the law of
excluded middle even just for atomic statements of the form a ∈ b results in an enor-
mous increase in proof strength, pushing it up beyond that of Zermelo set theory.
However, LPO can be added to CZF without affecting its proof-theoretic strength.
LPO has the pleasant side effect that one can carry out elementary analysis pretty
much in the same way as in any standard text book.

Definition 5.1 Let 2N be Cantor space, i.e. the set of all functions from the naturals
into {0, 1}. Limited Principle of Omniscience (LPO):

∀ f ∈ 2N [∃n f (n) = 1 ∨ ∀n f (n) = 0].

Theorem 5.2 The following theories have the same proof-theoretic strength and
therefore prove (as a minimum) the same �0

2 statements of arithmetic:

(i) Intuitionistic explicit mathematics, Ti
0.

(ii) Constructive Zermelo–Fraenkel set theory with the Regular Extension Axiom,
CZF + REA.

(iii) Constructive Zermelo–Fraenkel set theory augmented by RDC and the strong
Regular Extension Axiom, CZF + sREA + RDC.

(iv) CZF + REA + ��W-AC + RDC + PAx.
(v) The extensional type theory MLText

1WV.
(vi) MLT1WV.

(vii) The extensional type theory MLText
1W .

(viii) MLT1W .
(ix) The classical subsystem of second order arithmetic (�1

2-AC) + BI (same as
(	1

2-CA) + BI).
(x) The intuitionistic system IARI of second order arithmetic.

(xi) Classical Kripke-Platek set theory KP (cf. [7]) plus the axiom asserting that
every set is contained in an admissible set. (This theory is often denoted by
KPi.)

(xii) Intuitionistic Kripke-Platek set theory, IKP, plus the axiom asserting that every
set is contained in an admissible set. (This theory will be notated by IKPi.)

(xiii) CZF + REA + RDC + LPO.

Proof The equivalence of (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix), (x), and (xi)
follows from [48], Theorem 3.9, Proposition 5.3, Theorems 5.13 and 6.13 plus the
extra observation that the interpretation of IRA in MLText

1W defined in [48, Definition
6.5] and proved to be an interpretation in [48, Theorem 6.9] actually only requires
the intensional identity type. It was already observed by Palmgren [46] that the
interpretations of theories of iterated, strictly positive inductive definitions in type
theory works with the intensional identity, and the same argument applies here.
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The equivalence of (ii) and (iii) follows from [52, Theorem 4.7], where the prin-
ciple sREA is denoted by INAC.

The proof-theoretic equivalence of (xi) and (xii) follows since the intuitionistic
version is a subtheory of the classical one and the well-ordering proof for initial
segments of the ordinal of KPi can already be carried out in the intuitionistic theory.

For (xiii) we rely on [61]. That the theory CZF + REA + RDC + LPO has a
realizability interpretation in (�1

2-AC) + BI follows by an extension of the tech-
niques used in [61, Theorem 6.2]. The proof furnished a realizability model for
CZF + RDC + LPO that is based on recursion in the type-2 object E : (N →
N ) → N with E( f ) = n + 1 if f (n) = 0 and ∀i < n f (n) > 0 and E( f ) = 0 if
∀n f (n) > 0. Recursion in E is formalizable in the theory of bar induction, i.e.
(�0

∞-CA) + BI, which is known to have the same strength asCZF (see [61, Theorem
2.2]). The same recursion theory (or partial combinatory algebra) can be employed
in extending the modeling of a type structure given in [61, Sect. 5] to the larger type
structure needed forCZF + REA + RDC + LPO. This is achieved by basically tak-
ing the type structure in [48, 5.8] but changing the underlying partial combinatory
algebra to the one obtained from recursion in the type two object E rather than the
usual one provided by the partial recursive functions on N.

It is very likely that the interpretation also validates ��W-AC and PAx, but this
hasn’t yet been checked.

At any rate, we have shown the proof-theoretic equivalence of all theories. �

The foregoing proof establishes the claimed results, however, we’d like to look
at Theorem 5.2 in more detail, especially at its proof(s) and the information one can
extract from it.

For starters, what does the phrase “same proof-theoretic strength” mean? At a
minimum it means that the theories ought to be finitistically equiconsistent. Here it
means that they prove at least the same �0

2 statements of the language of first-order
arithmetic. But more can be shown. A result we will be working toward is that many
of the intuitionistic theories of Theorem 5.2 prove the same arithmetical statements.
In particular it will be shown that the extensional and the intensional type theories
prove the same arithmetical statements. An arithmetical statement gives rise to a type
via the propositions-as-types paradigm, so by conservativity of one type theory over
another with respect to arithmetic statements we mean that the same arithmetical
types are provably inhabited in both theories.

The question of the relation between intensional and extensional type theories has
been addressed before by Hofmann in [32]. The set-up there, though, is somewhat
different in that the intensional type theory T TI of [32] is not a pure intensional type
theory. It has two extensional rules called functional extensionality and uniqueness
of identity:
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(ID-UNI-I)
� � s : A � � p : Id(A, s, s)

� � I dUni(A, s, p) : Id(Id(A, s, s), p, refl(s))

(EXT-FORM)
� � f, g : �(x : A) B(x) �, x : A � p(x) : Id(B(x), f x, gx)

� � Ext ( f, g, p) : Id(�(x : A) B(x), f, g) .

These rules are not provable in the purely intensional context, so as a result, we are
pursuing a different question here.

Proposition 5.3 Ti
0 can be interpreted in CZF + REA. The interpretation preserves

(at least) all arithmetic statements.

Proof Theproof of [48]Theorem3.9provides an interpretationofTi
0 inCZF + REA

which is essentially a class model of Ti
0 inside CZF + REA. Having defined an

applicative structure, the classifications are defined inductively along the (intuition-
istic) ordinals. This is inspired by Feferman’s construction of a model of Ti

0 in [20,
Theorem 4.1.1]. Inspection of the translation confirms that arithmetic statements get
preserved. �

Proposition 5.4 (i) CZF + REA has an interpretation in MLT1WV.
(ii) CZF + REA + ��W-AC + RDC + PAx has an interpretation in MLText

1WV.

Proof (i) and (ii) follow from [3]. The interpretation uses the type V and two propo-
sitional functions

=̇ : V × V → U0

∈̇ : V × V → U0

to interpret = and ∈. For (i), the identity type does not play any role. For (ii) one
needs the extensionality of function types. �

Proposition 5.5 CZF + REA + ��W-AC + RDC + PAx is conservative over
CZF + REA + FT-AC for statements of finite type arithmetic (i.e., of the language
of HAω).

Proof From[55,Theorem5.23] it follows thatCZF + REA + ��W-AC + RDC +
PAx and CZF + REA + ��W-AC prove the same sentences of finite type arith-
metic (andmore) since the innermodelH(Y∗

W) satisfiesCZF + REA + ��W-AC +
RDC + PAx, assuming CZF + REA + ��W-AC in the background.

By [54, Theorem 4.33], there is an interpretation of CZF + REA + ��W-AC
in CZF + REA. Inspection shows that, in the presence of FT-AC, the meanings of
statements of finite type arithmetic are preserved under this interpretation. �

Proposition 5.6 For θ a sentence of arithmetic let ‖θ‖ be the corresponding type
term according to the propositions-as-types translation. If

MLText
1WV � t : ‖θ‖
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for some term t, then
CZF + REA + FT-AC � θset

with θset denoting the standard set-theoretic rendering of θ .

Proof Assume MLText
1WV � t : ‖θ‖. The interpretation ∧ of MLText

1WV into CZF +
REA given in [55, Sect. 6] yields CZF + REA � (t : ‖θ‖)∧. Inspection shows
that (t : ‖θ‖)∧ is a statement about the finite type structure over ω. One then sees,
with the help of FT-AC, that θset holds. This is similar to the proof of [55, Theorem
3.15]. �

Theorem 5.7 CZF + REA + ��W-AC + RDC + PAx is conservative over

IKP + ∀x ∃y [x ∈ y ∧ y is an admissible set]

for arithmetical statements.

Proof We shall use the shorthand IKPi for the latter theory. By Proposition 5.5 it
suffices to show that CZF + REA + FT-AC is conservative over IKPi for arith-
metic statements. [48, Theorem 5.11] shows that MLText

1WV has an interpretation in
the classical theory KPi where types are interpreted as subsets of ω and crucially
dependent products of types are interpreted as sets of indices of partial recursive
functions. This also furnishes an interpretation of CZF + REA + FT-AC in KPi
since the former is interpretable in MLText

1WV. The interpretation also works for IKPi
as definition by (transfinite) �-recursion works in intuitionistic KP as well (see [4,
Sec. 11] and [5, Sec. 19]). The inductive definition of 5.8 in [48] proceeds along
the ordinals and focusses on successor ordinals, seemingly requiring a classical case
distinction as to whether an ordinal is a successor or a limit or 0, but this is actually
completely irrelevant.

Now, the upshot of this hereditarily recursive interpretation is that every �0
2 theo-

remofCZF + REA + FT-AC is provable in IKPi. To be able to extend this approach
to all of arithmetic, one needs a more abstract type structure such that interpretability
entails deducibility. The conservativity ofHAω + FT-AC overHA, due to Goodman
[27, 28], provides the template. The two steps of Goodman’s second proof have been
neatly separated by Beeson [9] to construct a general methodology for showing an
intuitionistic theory T to be conservative over another theory S for arithmetic state-
ments. The idea is to combine two interpretations, where the first uses functions that
are recursive relative to a generic oracle and the second step is a forcing construction.
The same idea has been used by Gordeev [29], and in more recent times by Chen
and Rathjen in [14, 15, 62], establishing several conservativity results.

The oracle O will be a fixed but arbitrary partial function from N to {0, 1}. A
partial function φ is recursive relative to O if it is given by a Turing machine with
access to O. During a computation the oracle may be consulted about the value of
O(n) for several n. If O(n) is defined it will return that value and the computation
will continue, but ifO(n) is not defined no response will be coming forward and the
computation will never come to a halt. The idea of the second interpretation step is
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that on account of O’s arbitrariness it can be interpreted in many ways. Given an
arithmetic statement θ , an oracle Oθ can be engineered so that in a forcing model
realizability of θ with functions computable relative to Oθ entails the truth of θ .
The final step, then, is achieved by noticing that for arithmetic statements forcibility
(where the forcing conditions are finite partial functions onN) and validity coincide.
For details we’ll have to refer to [14, 15]. �

Definition 5.8 Below we shall speak about arithmetical statements in various theo-
ries with differing languages. There is a canonical translation of the language of first
and second order arithmetic into the language of set theory. However, it is perhaps
less obvious what arithmetical statements mean in the context of type theory.

The terms of the language of HA are to be translated in an obvious way, crucially
using the type-theoretic recursor for the type N. In this way each term t of HA gets
assigned a raw term t̂ of type theory. For details see [42, pp. 71–75], [8, XI.17] [70,
Chap.11, Sect. 2]. An equation s = t of the language HA is translated as a type-
expression Id(N, ŝ, t̂). For complex formulas the translation proceeds in the obvious
way.

We then say that two type theories T T1 and T T2 prove the same arithmetical
statements if for all sentences A of HA,

T T1 � p : Â for some p iff T T2 � p′ : Â for some p′,

where Â denotes the type-theoretic translation of A.

Recall that IKPi is the theory IKP + ∀x ∃y [x ∈ y ∧ y is an admissible
set].
Theorem 5.9 The following theories prove the same arithmetical statements, i.e.
statements of the language of first order arithmetic (also known as Peano arithmetic).

(i) Ti
0.

(ii) CZF + REA.
(iii) CZF + REA + ��W-AC + RDC + PAx.
(iv) MLText

1WV.
(v) MLT1WV.

(vi) MLText
1W.

(vii) MLT1W.
(viii) IARI.

(ix) IKPi.

Proof Let θ be an arithmetic sentence. Then we have

Ti
0 � θ ⇒ CZF + REA � θ

⇒ CZF + REA + ��W-AC + RDC + PAx � θ

⇒ IKPi � θ
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by Proposition 5.3 and Theorem 5.7. Now it follows from Jäger’s article [34] and
from [36] that every initial segment of the proof-theoretic ordinal of IKPi is provably
well-founded inTi

0, and thus, if IKPi � θ , thenTi
0 is sufficient to show that there is an

infinite intuitionistic cut-free proof of θ . By induction on the length of the proof it then
follows that all sequents in the proof are true, yielding that Ti

0 � θ . The upshot is that
the theories of (i), (ii) and (iii) prove the same arithmetic statements. Furthermore, if
MLText

1WV � t : ‖θ‖ for some term t , then CZF + REA � θ by Proposition 5.6 and
hence Ti

0 � θ .
So to finish the proof it would suffice to show that Ti

0 � θ yields MLT1WV �
s : ‖θ‖ for some term s. Now [48, Sec. 6] shows that the intuitionistic theory IARI
has the same proof-theoretic ordinal as IKPi and Ti

0. So from Ti
0 � θ it follows that

IARI � θ . By [48, Theorem 6.9] we then get MLT1WV � s : ‖θ‖ for some term s,
completing the circle. �
Remark 5.10 Ordinal analysis played a crucial role in the proofs of Theorems 5.2
and 5.9. Having the same proof-theoretic ordinal allowed us to infer that Ti

0, IKPi
and IARI prove the same arithmetic statements.

For a long time [34]was also the only proof that enabled one to reduce the classical
theories (	1

2-CA) + BI and KPi to classical T0. There is now also a proof by Sato
[65] for the reductions in the classical case that avoids proof-theoretic ordinals.
However, determining the strength of other important fragments of MLTT (such as
the ones analyzed by Setzer in [66]) still requires the techniques of ordinal analysis.

Remark 5.11 We conjecture that also the theory CZF + sREA + ��W-AC +
RDC + PAx (or at leastCZF + sREA + ��W-AC + RDC) proves the same arith-
metical statements as any of the theories featuring in Theorem 5.9. As the latter relies
on a substantial number of results from the literature, several of them would have to
be revisited and possibly amended to establish this.

6 On Relating Theories II: MLTT and Friends

So far we have only gathered results concerning theories that are of the strength of
Martin–Löf type theory with one universe. The earlier quote by Harris speculated
on the strength of type theory with infinitely many universes. As it turns out, similar
techniques can be applied in this context as well.

To begin with, we shall define versions of explicit mathematics, second order
arithmetic and constructive set theory featuring analogues of universes.

6.1 Ti
0 with Universes

Definition 6.1 Systems of explicit mathematics with universes have been defined
and studied in several papers (cf. [37–39]) and were probably first introduced by
Feferman [23].



408 M. Rathjen

ByTi
0 + ⋃

n Un we denote an extension ofTi
0 whose language has infinitelymany

classification constants U0,U1, . . . and the following axioms for each constant Un .

1. N ε Un and Ui ε Un for i < n.
2. ∀x ε Un ∃X x = X (i.e. every element of Un is a classification).
3. For every elementary formula ψ(x, �v, X1, . . . , Xr ) with all classification vari-

ables exhibited and which does not contain constants Ui with i ≥ n,

∀X1, . . . , Xr ε Un ∃Y [Y ε Un ∧ Y � {x : ψ(x, �v, X1, . . . , Xr )}] .

4. ∀X ε Un [∀x ε X ∃Y ε Un f x � Y → ∃Z [Z ∈ Un ∧ Z � j(X, f )]].
5. ∀X, Y ε Un ∃Z [Z ∈ Un ∧ Z � i(X, Y )].
In other words, a classification Un is a universe containing N,U0, . . . ,Un−1 closed
under elementary comprehension, join and inductive generation.

By Ti
0 + ⋃

i<n Ui we denote the theory with just the universes U0, . . . ,Un−1 and
their pertaining axioms.

6.2 Universes in Intuitionistic Second Order Arithmetic

It is also useful to have a many universes version of IARI to obtain an intuitionistic
theory of second order arithmetic which can be easily interpreted inMLTT. One idea
would be to adopt the notion of β-model from Definition 4.14 to serve as a notion
of universe. However, a β-model comes with an explicit countable enumeration of
its sets and therefore it would be difficult if not impossible to model such structures
in MLTT. Instead, an option is to add set predicates U0,U1, . . . to the language L2

that are intended to apply to sets of natural numbers with the aim of singling out
collections of sets that have universe-like properties.

Definition 6.2 The theory IARI+
⋃

n Un has additional predicates U0,U1, . . . for
creating new atomic formulas Un(X) (n ∈ N), where X is a second order vari-
able. We use abbreviations like ∀X ∈ Un ϕ and ∃X ∈ Un ϕ for ∀X (Un(X) → ϕ)

and ∃X (Un(X) ∧ ϕ), respectively. If ψ is any formula of this language, then ψUn

arises from ψ by relativizing all second order quantifiers to Un , i.e., replacing all
quantifiers Q X in ψ by Q X ∈ Un .

In addition to the axioms of IARI there are the following pertaining to the new
predicates.

1. The predicates Un are cumulative, i.e. ∀X [Ui (X) → U j (X)] whenever i ≤ j .
2. Induction:

φ(0) ∧ ∀u[φ(u) → φ(u + 1)] → ∀uφ(u)

for all formulae φ.
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3. Arithmetic Comprehension Schema for Un:

Y1, . . . , Yr ∈ Un → ∃X ∈ Un∀u[u ∈ X ↔ ψ(u, Y1, . . . , Yr )]

if ψ(u, Y1, . . . , Yr ) is a formula with all free second order variables exhibited, in
which all second order quantifiers are of the form Q X ∈ Ui for some i < n, and
moreover, no predicates U j for j ≥ n occur in it.

4. Replacement:

∀X ∈ Un[∀u ∈ X∃ !Y ∈ Unφ(u, Y ) → ∃Z ∈ Un∀u ∈ X φ(u, Zu)]

for all formulas φ. Here φ(u, Zu) arises from φ(u, Z) by replacing each occur-
rence t ∈ Z in the formula by 〈u, t〉 ∈ Z .

5. Inductive Generation:

∀U ∈ Un∀X ∈ Un∃Y ∈ Un
[
WPU (X, Y ) ∧ (∀u[∀v(v ≺X u → φ(v)) → φ(u)] → ∀x ∈ Y φ(x))

]
,

for all formulas φ, where v ≺X u abbreviates 〈v, u〉 ∈ X and WPU (X, Y ) stands
for

ProgU (X, Y ) ∧ ∀Z [ProgU (X, Z) → Y ⊆ Z ]

with ProgU (X, Y ) being ∀y ∈ U [∀z(z ≺X y → z ∈ Y ) → y ∈ Y ].
By IARI+⋃

i<m Ui we denote the theory with only the additional predicates
U0, . . . ,Um−1 and their pertaining axioms.

Definition 6.3 Recall the notion of inaccessible set defined in 4.7. For n > 0,
Inacc(n) stands for the set-theoretic statement that there are n-many inaccessible
sets I0 ∈ . . . ∈ In−1. Let Inacc(0) stand for 0 = 0.

β-models were introduced inDefinition4.14. ByBeta(n)we denote the statement
of second order arithmetic asserting that there are n many sets A0, . . . , An−1 which
are β-models of �1

2-AC such that A0 ∈ . . . ∈ An−1, where for sets X, Y of natural
numbers X ∈ Y is defined by ∃u X = Yu .

For n > 0, let MLTnWV be the fragment of MLTT with n-many universes
U0, . . . ,Un−1, where the W-constructor can solely be applied to families of types
in U0, . . . ,Un−1 but one can also form the type V := W(A:Un−1) A, i.e. aW-type over
the largest universe Un−1. We shall also consider the type theory MLTnW which is
the fragment of MLTnWV without the type V. Below we assume that n > 0.

Theorem 6.4 (i) Ti
0 + ⋃

i<n Ui has an interpretation in CZF + REA + Inacc(n).
The interpretation preserves (at least) all arithmetic statements.

(ii) CZF + REA + Inacc(n − 1) has an interpretation in MLTnWV.
(iii) CZF + REA + Inacc(n − 1) + ��W-AC + RDC + PAx has an interpre-

tation in MLText
nWV.

(iv) MLText
nWV has an interpretation in the classical set theory KPi plus an axiom

asserting that there exist n − 1-many recursively inaccessible ordinals.
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(v) (�1
2-AC) + BI + Beta(n) has an interpretation in KPi plus the existence of

n-many recursively inaccessible ordinals.
(vi) KPi plus the existence of n-many recursively inaccessible ordinals has a sets-

as-trees interpretation in (�1
2-AC) + BI + Beta(n).

(vii) The intuitionistic system IRA + ⋃
i<n−1 Ui of second order arithmetic can

be interpreted in MLTnW.
(viii) CZF + REA + RDC + Inacc(n) has a realizability interpretation in KPi

plus the existence of n-many recursively inaccessible ordinals.
(ix) All the above theories have the same proof-theoretic strength and prove (at

least) the same �0
2-statements of arithmetic.

Proof The interpretations are extensions of those discussed in the previous section,
taking more universes into account. We can only indicate the steps. The interpreta-
tion of Ti

0 in CZF + REA can be lifted to an interpretation of Ti
0 + ⋃

i<n Ui into
CZF + REA + Inacc(n). The latter theory possesses a sets-as-types interpretation
in intensional Martin–Löf type theory with n + 1 universes.

CZF + REA + ��W-AC + RDC + PAx + Inacc(n − 1) possesses a sets-as-
types interpretation in MLText

nWV. In turn, MLText
nWV can be interpreted in classical

Kripke-Platek set theory KPi plus an axiom asserting that there are at least n −
1-many recursively inaccessible ordinals, following the Ansatz of [48, Theorem
5.11]. (�1

2-AC) + BI + Beta(n) can be easily interpreted in KPi plus n-recursively
inaccessible ordinals.

The proof-theoretic equivalence ensues from an ordinal analysis of the ‘top the-
ory’, KPi plus the existence of n-many recursively inaccessible ordinals, together
with proofs that any ordinal below the proof-theoretic ordinal of that theory is prov-
ably well-founded in Ti

0 + ⋃
i<n Ui as well as IARI+⋃

i<n Ui . Neither the ordinal
analysis nor the well-ordering proofs are available from the published literature. The
ordinal analysis of KPi plus the existence of n-many recursively inaccessible ordi-
nals, though, can be obtained in a straightforward way by extending the one given
for KPi in [36] or rather its modern version in [12]. It also follows from the ordinal
analysis of the much stronger theory KPM given in [47] by restricting the treatment
therein to the pertaining small fragments. For the well-ordering proof substantially
more work is required; details will be published in [63]. �

Theorem 6.5 The following theories have the same proof-theoretic strength and
prove the same �0

2-statements of arithmetic:

(i) Ti
0 + ⋃

n Un.
(ii) CZF plus Inacc(n) for all n > 0.

(iii) CZF + ��W-AC + RDC + PAx plus Inacc(n) for all n > 0.
(iv) The extensional type theory MLTText.
(v) MLTT.

(vi) The classical subsystem of second order arithmetic (�1
2-AC) + BI plus

Beta(n) for all n > 0.
(vii) Classical Kripke-Platek set theory KP plus for every n > 0 an axiom asserting

that there are at least n-many recursively inaccessible ordinals.
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(viii) IARI+⋃
n Un.

(ix) CZF + RDC + LPO plus the axioms Inacc(n) for all n > 0.

Proof This follows directly from the previous theorem. �

The latter theorem also shows that the strength of MLTT is dwarfed by that of
(�1

2-CA). It corresponds to a tiny fragment of second order arithmetic which itself
is a tiny fragment of ZF, so there are aeons between MLTT and classical set theory
with inaccessible cardinals.

Theorem 6.6 The following theories prove the same arithmetical statements:

(i) Ti
0 + ⋃

n Un.
(ii) MLTT.

(iii) The extensional type theory MLTText.
(iv) CZF plus Inacc(n) for every n > 0.
(v) CZF + ⋃

n Inacc(n) + ⋃
n ��W-AC + RDC + PAx.

(vi) IARI+⋃
n Un.

Proof The methods for proving this were described in the proof of 5.9. Details will
appear in [63]. �

Finally, it should be mentioned that Martin–Löf type theory with stronger uni-
verses (e.g. Mahlo universes) has been studied by Setzer (cf. [67]).

6.3 Adding the Univalence Axiom

The quote (1) fromHarris’ book [30] claimed that modeling Voevodsky’s univalence
axiom (UA) requires infinitely many inaccessible cardinals (for a definition of UA
see [33, Sec. 2.10]). While the simplicial model of type theory with univalence
developed in the paper [41] by Kalpulkin, Lumsdaine and Voevodsky is indeed
carried out in a background set theory with inaccessible cardinals, it is by no means
clear that the existence or proof-theoretic strength of these objects is required for
finding a model of type theory with UA. In actuality, Bezem, Coquand and Huber
in their article [10] provided a cubical model of type theory that also validates UA.
Crucially, their modeling can be carried out in a constructive background theory
such as CZF + ⋃

n Inacc(n) + ⋃
n ��W-AC + RDC + PAx. Thus it follows that

adding UA does not increase the strength of type theory and that no inaccessible
cardinals are required. Hence in view of Theorem 6.5 we have the following result.

Corollary 6.7 MLTT has the same proof-theoretic strength as MLTT + UA. Thus
MLTT + UA shares the same proof-theoretic strength with all theories listed in
Theorem 6.5, in particular with classical Kripke-Platek set theory KP augmented
by axioms asserting that there are at least n-many recursively inaccessible ordinals
for every n > 0.
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7 On Relating Theories III: Omitting W

The proof-theoretic strength of type theories crucially depends on the availability of
inductive types and to amuch lesser extent on its universes. Relinquishing theW-type
brings about an enormous collapse of proof power (cf. [49–51]). Letting MLTT−
be MLTT bereft of the W-type constructor, we arrive at a theory no stronger than
the system ATR0 of reverse mathematics (see [68, I.11]), having the famous ordinal
�0 as its proof-theoretic ordinal. According to Feferman’s analysis (see [24, 25]),
�0 delineates the limit of a notion of predicativity that only accepts the natural num-
bers as a completed infinity (which was first adumbrated in Hermann Weyl’s book
“Das Kontinuum” from 1918 [72]). Peter Hancock conjectured in the 1970s the
ordinal of MLTT− to be �0. Feferman [23] and independently Aczel (see also [1])
proved Hancock’s Conjecture. There is also a version of CZF with inaccessible sets
of strength �0, due to Crosilla and Rathjen [17], which does not have set induction.
Thus the set-theoretic analogue to eschewing W-types consists in leaving out the
principle of set induction. In the next theorem we denote by ATRi

0 the intuition-
istic version of ATR0 (see [49, Definition 4.10] for details). By CZF− we denote
Constructive Zermelo–Fraenkel set theory without set induction but with the Infinity
axiom strengthened as follows:

0 ∈ ω ∧ ∀y[ y ∈ ω → y + 1 ∈ ω] (4)

∀x [ 0 ∈ x ∧ ∀y(y ∈ x → y + 1 ∈ x) → ω ⊆ x] (5)

(for details see [17, Definition 2.2]). Likewise we denote by KP− the theory without
the set induction scheme but with the infinity axioms (4) and (5).

The notion of weak inaccessibility used below is the one from Definition 4.9.
For n > 0 let wInacc(n) be the statement that there exist weakly inaccessible sets
x0, . . . , xn−1 such that x0 ∈ . . . ∈ xn−1.

A restricted form of RDC is 	0-RDC: For all 	0-formulae θ and ψ , whenever

(∀x ∈ a)
[
θ(x) → (∃y ∈ a)

(
θ(y) ∧ ψ(x, y)

)]
and b0 ∈ a ∧ φ(b0), then there exists a function f : ω → a such that f (0) = b0 and

(∀n ∈ ω)
[
θ( f (n)) ∧ ψ( f (n), f (n + 1))

]
.

Theorem 7.1 The following theories share the same proof-theoretic strength and
ordinal �0, and prove the same �0

2-sentences of arithmetic:

(i) MLTT−.
(ii) The extensional version of MLTT−.

(iii) ATR0.
(iv) ATRi

0.
(v) CZF− + ∀x ∃y [ x ∈ y ∧ y is weakly inaccessible ] + 	0-RDC.

(vi) CZF− + {wInacc(n) | n > 0} + RDC.
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(vii) KP− + ∀x ∃y [x ∈ y ∧ y is admissible ].
Proof We only have to establish that all theories have proof-theoretic ordinal �0.
For extensional MLTT− this follows from [23]. The lower bound part, namely that
MLTT− has at least the strength �0 is due to Jervell [40]. So we are done with
(i) and (ii). That ATR0 has ordinal �0 is well known. For ATRi

0 this follows from
the observation in [49, Lemma 4.11] that the well ordering proof for any ordinal
notation below �0 uses only intuitionistic logic. The determination of the ordinal for
the system in (v) and (vi) is due to Crosilla and Rathjen [17, Corollary 9.14] with the
validation of	0-RDC and RDC coming from [52, Theorem 4.17] and [52, Theorem
4.16], respectively. The proof-theoretic analysis of the system in (vii) is due to Jäger
[35]. �

We also conjecture that all of the intuitionistic theories from the above list,
i.e., MLTT−, the extensional version of MLTT−, ATRi

0, and CZF− + ∀x∃y [x ∈
y ∧ y is weakly inaccessible] prove the same arithmetic statements using the usual
techniques. But we have not yet checked that. What is known is that ATRi

0 embeds
in all of these theories (see [49]).

A final question concerns the status of the univalence axiom. Do we get more
strength when we add UA to MLTT−? It turns out that we just have to check whether
the cubical model construction from [10] can be carried out in one of the theories
from the list. Inspection of [10] reveals that

CZF− + ∀x∃y [x ∈ y ∧ y is weakly inaccessible] + 	0-RDC

suffices as a background theory for all the constructions, except W-types.

Corollary 7.2 The univalent type theory MLTT− + UA is of the same strength as
MLTT− and ATR0 and all the other systems from Theorem 7.1. Therefore its proof-
theoretic ordinal is �0.

8 Monotone Fixed Point Principles in Intuitionistic Explicit
Mathematics

Martin–Löf type theory appears to capture the abstract notion of an inductively
defined type very well via its W-type. There are, however, intuitionistic theories
of inductive definitions that at first glance appear to be just slight extensions of
Feferman’s explicit mathematics (see Feferman’s quote from Sect.1) but have turned
out to be much stronger than anything considered in Martin–Löf type theory. They
are obtained from Ti

0 by the augmentation of a monotone fixed point principle which
asserts that every monotone operation on classifications (Feferman’s notion of set)
possesses a least fixed point. To be more precise, there are two versions of this
principle. MID merely postulates the existence of a least solution, whereas UMID
provides a uniform version of this axiom by adjoining a new functional constant to
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the language, ensuring that a fixed point is uniformly presentable as a function of the
monotone operation.

Definition 8.1 For extensional equality of classifications we use the shorthand
“=ext”, i.e.

X =ext Y = ∀v(vεX ↔ vεY ).

Further, let X ⊆ Y be a shorthand for ∀v(vεX → vεY ). To state the monotone fixed
point principle for subclassifications of a given classification A we introduce the
following shorthands:

Clop( f, A) if ∀X ⊆ A ∃Y ⊆ A f X � Y
Ext( f, A) if ∀X ⊆ A ∀Y ⊆ A [X =ext Y → f X =ext f Y ]
Mon( f, A) if ∀X ⊆ A ∀Y ⊆ A [X ⊆ Y → f X ⊆ f Y ].
Lfp(Y, f, A) if f Y ⊆ Y ∧ Y ⊆ A ∧ ∀X ⊆ A

[
f X ⊆ X → Y ⊆ X

]
When f satisfies Clop( f, A), we call f a classification operation on A. When f
satisfiesClop( f, A) andExt( f, A), we call f extensional or an extensional operation
on A. When f satisfies Clop( f, A) and Mon( f, A), we say that f is a monotone
operation on A. Since monotonicity entails extensionality, a monotone operation is
always extensional.

Now we state UMIDA.

MIDA (Monotone Inductive Definition on A)

∀ f [Clop( f, A) ∧ Mon( f, A) → ∃Y Lfp(Y, f, A)].

UMIDA (Uniform Monotone Inductive Definition on A)

∀ f [Clop( f, A) ∧ Mon( f, A) → Lfp(lfp( f ), f, A)].

UMIDA states that if f is monotone on subclassifications of A, then lfp( f ) is a least
fixed point of f .

Let V be the universe, i.e. V := {x : x = x}. By MID and UMID we denote the
principles MIDV and UMIDV , respectively.8

The strength of the various classical versions was determined as a result of several
papers [26, 56–58]. The MID case is dealt with in [26, 59]. [59] provides a survey of
all known results in the classical case.UMIDN was shown to be related to subsystems
of second order arithmetic based on �1

2 comprehension.
To relate the state of the art in these matters we shall need some terminology.

Below we shall distinguish between the classical and the intuitionistic version of a
theory by appending the superscript c and i , respectively. For a system S of explicit
mathematics we denote by S � the version wherein the induction principles for the

8The acronym for the principle MID in Feferman’s paper [21], Sect. 7 was MIG �.



Proof Theory of Constructive Systems: Inductive Types and Univalence 415

natural numbers and for inductive generation are restricted to sets. INDN stands for
the schema of induction on natural numbers for arbitrary formulas of the language of
explicit mathematics. (�1

2 − CA)0 denotes the subsystem of second order arithmetic
(based on classical logic) with �1

2-comprehension but with induction restricted to
sets, whereas (�1

2 − CA) also contains the full schema of induction on N.
[57, 58] yielded the following results:

Theorem 8.2 (i) (�1
2 − CA)0 and Tc

0 � +UMIDN have the same proof-theoretic
strength.

(ii) (�1
2 − CA) and Tc

0 � +INDN + UMIDN have the same proof-theoretic strength.

The first result about UMIDN on the basis of intuitionistic explicit mathematics
was obtained by Tupailo in [71].

Theorem 8.3 (�1
2 − CA)0 and Ti

0 � +UMIDN have the same proof-theoretic strength.

[71] uses a characterization of (�1
2 − CA)0 via a classical μ-calculus (a theory

which extends the concept of an inductive definition), dubbed ACA0(Lμ), given by
Möllerfeld [43] and then proceeds to show that ACA0(Lμ) can be interpreted in its
intuitionistic version,ACAi

0(Lμ), by means of a double negation translation. Finally,
as the latter theory is readily interpretable in Ti

0 � +UMIDN, the proof-theoretic
equivalence stated in Theorem 8.3 follows in view of Theorem 8.2.

The proof of [71], however, does not generalize to Ti
0 � +INDN + UMIDN

and extensions by further induction principles. The main reason for this is that
adding induction principles such as induction on natural numbers for all formu-
las to ACA0(Lμ) only slightly increases the strength of the theory and by no means
reaches the strength of (�1

2 − CA). In order to arrive at a μ-calculus of the strength
of (�1

2 − CA) one would have to allow for transfinite nestings of the μ-operator
of length α for any ordinal α < ε0. As it seems to be already a considerable task
to get a clean syntactic formalization of transfinite μ-calculi (let alone furnishing
double negation translation thereof), this paper will proceed along a different path.
In actuality, much of the work was already accomplished in [57], where it was
shown that (�1

2 − CA)0 and (�1
2 − CA) can be reduced to operator theories TOP

<ω

and TOP
<ε0

, respectively. A careful axiomatization of the foregoing theories in con-
junction with results from [56] showed that they lend themselves to double negation
translations and thus can be translated into their intuitionistic counterparts. As the
intuitionistic theories can be easily viewed as subtheories of Ti

0 � +UMIDN and
Ti

0 � +INDN + UMIDN, respectively, one can conclude the following result.

Theorem 8.4 (i) (�1
2 − CA)0 and Ti

0 � +UMIDN have the same proof-theoretic
strength.

(ii) (�1
2 − CA) and Ti

0 � +INDN + UMIDN have the same proof-theoretic strength.

Proof See [64]. �

Through Theorem 8.4 one also gets a different proof of Theorem 8.3 which does
not hinge upon [43].
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Remark 8.5 Virtually nothing is currently known about the strength of Ti
0 + MID

and variants. In the classical case there is a close relationship with parameter-free
�1

2-comprehension. It would be very interesting to investigate whether the strength
of MID diminishes in the intuitionistic setting.

The strength of explicit mathematics with principle like UMIDN and even MID
considerably exceeds that of Martin–Löf type theory. This has a bearing on founda-
tional questions such as the limit of constructivity or the limits of different concepts
of constructivity. In [53, 60] an attempt is made to delineate the form of construc-
tivism underlyingMartin–Löf type theory, suggesting thatTi

0 + UMIDN lies beyond
its scope.
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Predicativity and Feferman
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Abstract Predicativity is a notable example of fruitful interaction between phi-
losophy and mathematical logic. It originated at the beginning of the 20th century
from methodological and philosophical reflections on a changing concept of set.
A clarification of this notion has prompted the development of fundamental new
technical instruments, from Russell’s type theory to an important chapter in proof
theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The
technical outcomes of predicativity have since taken a life of their own, but have also
produced a deeper understanding of the notion of predicativity, therefore witnessing
the “light logic throws on problems in the foundations of mathematics.” [30, p. vii]
Predicativity has been at the center of a considerable part of Feferman’s work: over
the years he has explored alternative ways of explicating and analyzing this notion
and has shown that predicative mathematics extends much further than expected
within ordinary mathematics. The aim of this note is to outline the principal features
of predicativity, from its original motivations at the start of the past century to its
logical analysis in the 1950–1960s. The hope is to convey why predicativity is a
fascinating subject, which has attracted Feferman’s attention over the years.
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1 Introduction

The distinction between predicative and impredicative definitions has its origins in
the writings of Poincaré and Russell and was instigated by the discovery of the
set-theoretic paradoxes.1 According to one characterization of (im)predicativity, a
definition is impredicative if it defines an entity by reference to a totality to which
the entity itself belongs, and it is predicative otherwise. Adherence to predicativity
was proposed as a way of avoiding vicious circularity in definitions and resulted
in the creation, by Russell, of ramified type theory; it also motivated a first devel-
opment of a predicative form of analysis by Weyl.2 A new phase for predicativity
began in the 1950s, with a logical analysis of predicativity which employed state-of-
the-art logical machinery for its analysis. That work culminated with an important
chapter in proof theory whose principal outcome was the determination of the limit
of predicativity by means of ordinal analysis.3 In addition, Feferman’s work and the
so-called “Reverse Mathematics programme” have since clarified that large portions
of everyday mathematics can be already carried out in predicative settings.4

Feferman’s engagement with predicativity extends well beyond his celebrated
contributions to the determination of the proof-theoretic limit of predicativity, as over
the years he has explored alternative ways of explicating and analyzing this notion,
as well as assessing the reach of predicative mathematics. This had two principal
purposes: to offer further support for the original logical analysis of predicativity and
to highlight the significance of predicative mathematics, both within mathematical
logic and ordinarymathematics, with a particular attention to scientifically applicable
mathematics. Feferman has also offered unrivalled expositions of predicativity.5

One of the difficulties in writing on predicativity is what might be called a lack
of consensus on this notion. The early writings on predicativity by Poincaré, Russell
andWeyl at the turn of the 20th century are rich of stimulating ideas, and deserve fur-
ther scrutiny, however, to a contemporary technically-trained eye they often appear
as insufficiently clear, opening up the way for a number of possible interpretations of

1See, for example, [69–73, 80–82].
2See [79, 82, 97, 99].
3See [16, 54, 85, 86].
4See e.g. [26, 33, 36, 88, 89].
5See, for example, [34], and [16, 24–31, 33].
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predicativity.6 The subsequent logical analysis of predicativity of the 1950-60’s shed
light on important aspects of predicativity, employing an array of precise logical
instruments that were unavailable at the beginning of the past century. Notwith-
standing that fundamental work, predicativity still raises complex questions from
historical, philosophical and technical perspectives.7 In addition, further difficulties
are induced by the emergence over the years of a plurality of forms of predicativity,
some within a classical and some within an intuitionistic context.8

The aim of this note is to offer an outlook of predicativity, sketching the most
important (and hopefully less controversial) features of this notion, the original moti-
vations, as well as the logical work that was inspired by the desire to clarify it. In
particular, I shall focus on the classical form of predicativity that goes under the
name of predicativity given the natural numbers; this has been extensively studied
mathematically and is at the heart of Feferman’s work.9 I hope to convey why pred-
icativity is a fascinating subject, which has attracted Feferman’s attention over the
years, and why it is an area of research offering the potential to substantially enrich
today’s philosophy of mathematics. Like Feferman, I also think that an account of
predicativity ought to begin from the early discussions on predicativity, which clarify
howwe arrived at the notion of predicativity given the natural numbers and its logical
analysis.

2 Predicativity: The Origins

The early debates on predicativity were prompted by the discovery of the set theoretic
paradoxes, which gained particular attention after Russell’s famous letter to Frege
in 1902. The general context of the early discussions on predicativity are renowned
reflections by prominent mathematicians of the time on new concepts and methods

6Feferman [34]writes: “Though early discussions are oftenmuddyon the concepts and their employ-
ment, in a number of important respects they set the stage for the further developments, and so I
shall give them special attention.”
7In his introduction to a chapter on the ordinal analysis of predicativity, Pohlers [68, p. 134] writes:
“The notion of predicativity is still controversial. Therefore we define and discuss here predicativ-
ity in a pure mathematical – and perhaps oversimplified – setting.” See [22, 50, 55, 56, 96] for
discussions pertaining to the logical analysis of predicativity. See also the discussion on “metapred-
icativity” in [52]. As to the philosophical and historical aspects of predicativity, see, e.g., [32, 37,
48, 59, 65–67].
8Predicativity-related themes have appeared in different forms over the years, both in classical and
constructive settings. In fact, predicativity is gaining renewed prominence today especially in the
constructive context. I shall postpone to another occasion a discussion of other forms of predicativity,
as the constructive predicativity which characterizes Martin-Löf type theory see, e.g., [60–62] and
forms of “strict predicativity” [64, 65, 67]. See also [11, 12].
9In the following, I shall alsowrite “predicativity” to denote predicativity given the natural numbers.
See Sect. 3.4 for some remarks on the notion of predicativity given the natural numbers.
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of proof, which had emerged in mathematics from the nineteenth century.10 These
debates are well-known as they gave rise to influential foundational programs as
logicism, formalism and intuitionism. In the case of Poincaré andWeyl’s writings on
predicativity, one finds severe criticism of the new methodology, and, especially, of
the concept of arbitrary set which emerged from Cantorian set theory.11 Adherence
to predicativity offered a way of securing a safe concept of set, one that is not prey
to the set-theoretic paradoxes and also avoids the arbitrariness implicit in the new
concept of set.

The term predicativity itself emerged in an animated discussion between Poincaré
and Russell which spanned from 1905 to 1912. Notwithstanding the remarkably
different views of Poincaré and Russell, for instance, on the role of formalization
within mathematics, they both converged on holding impredicative definitions the
cause of the onset of the paradoxes, and attempted to clarify a notion of predicativity,
adherence to which would avoid inconsistencies. Through Russell and Poincaré’s
confrontation a number of ways of capturing impredicativity and explaining its per-
ceived problematic character emerged.

A first observation was that paradoxes as, for example, that of Russell’s class of
all those classes that are not members of themselves, typically display a form of
vicious circularity.12 In modern terminology we may define

R = {x | x /∈ x}

by application of the Naive Comprehension schema: given any formula ϕ in the
language of set theory,we form the class of all the x’s that satisfyϕ, that is, {x | ϕ(x)}.
Then we have that R ∈ R if and only if R /∈ R. A circularity arises here as R’s
definition refers to the class of all classes, to which R itself is supposed to belong.

Observations along similar lines gave rise to a characterization of impredicativity
as follows: a definition is impredicative if it defines an entity by reference to a totality
to which the entity itself belongs.13 In particular, a definition is impredicative if
it defines an entity by quantifying over a totality which includes the entity to be
defined. A definition is then predicative if it is not impredicative. Given this notion
of impredicative definition, one may call an entity (e.g. a class) impredicative if it

10See e.g. [92, 95].
11See, in particular, [73, 97]. See also [2, 42, 58] for a discussion of arbitrary sets and [66] for an
analysis of Weyl’s conception of predicative set and its reception by Weyl’s contemporaries.
12See [69–71, 81, 82]. Note that the term “class” is used here as in Russell and Poincaré’s texts,
that is, to refer to a generic collection. Hence it should be carefully distinguished from the notion
of proper class that is found in contemporary set theory. In the original literature one frequently
finds also the word “totality”. In this section I shall try to avoid the use of the term “set”, since the
latter has in the meantime acquired additional connotations (as set in e.g. ZFC) that should not be
presupposed in this discussion.
13See [69–71, 80, 81]. See e.g. [47, p. 455] for discussion. Note also that today the distinction
between predicative and impredicative definitions is typically framed as relating to sets. However,
Russell and Poincaré’s discussions are concerned with definitions of different kinds of entities,
including propositions, properties, etc.
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can only be defined by an impredicative definition.14 Russell famously introduced
his “Vicious–Circle Principle” (VCP) to ban impredicative definitions. This had a
number of formulations, like, for example: “no totality can contain members defined
in terms of itself” [82, p. 237]. Another is to be found in [83, p. 198]:

[...] whatever in any way concerns all or any or some of a class must not be itself one of the
members of a class.

The latter formulation forbids definitions which quantify over a totality to which the
definiendum belongs, and is at the heart of Russell’s implementation of the VCP in
his type theory (see Sect. 2.1).

Two examples may better clarify the notion of impredicative definition and its
perceived difficulties; the first one is given by the logicist definition of natural number,
and the second by the Liar paradox. The first example is significant not only because
it is of central importance for the logicist project pursued by Russell, but as it clarifies
that the discussion on impredicativity,which originated froman analysis of paradoxes
of various kind, extended quickly beyond the case of the paradoxes. Let

N (n) := ∀F[F(0) ∧ ∀x(F(x) → F(Suc(x))) → F(n)].

According to this definition, the concept of natural number is defined by reference
to all properties F of the natural numbers. A circularity arises here as the property
N itself is within the range of the first quantifier. As a consequence, N is defined
by reference to itself. The difficulty with this definition is typically explained as
follows15: suppose we wish to determine whether the predicate N holds for a specific
natural number, say 3. It would seem that we need to check for every property of the
natural numbers, F , whether F holds of 3, that is, whether:

∀F[F(0) ∧ ∀x(F(x) → F(Suc(x))) → F(3)].
However, the property “to be a natural number”, which is expressed by the pred-

icate N , is one of the properties of the natural numbers. That is, to find out whether
N (3) holds, we need to be able to clarify whether the following holds:

N (0) ∧ ∀x(N (x) → N (Suc(x))) → N (3).

Therefore it would seem that we need to determine whether N (3) holds prior to
determining whether N (3) holds.16

14The issue of how we establish whether an entity is impredicative (and in which context) is more
complex than this coarse characterization of impredicativity may suggest. This complexity was
further addressed by the development of Russell’s type theory, Weyl’s [97] and the logical analysis
of predicativity to be discussed below.
15Here I shall follow [7, p 48].
16Carnap [7, p. 48] concludes that this definition of natural number is “circular and useless”. It
is worth recalling that Carnap in [7] also hints at a form of platonism, attributed to Ramsey (but
not endorsed by Carnap), which finds no fault with impredicative definitions. See also [47, 73] for
further discussion.
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Let us consider another example of impredicative definition that is discussed by
Russell [82, p. 224]: the Liar paradox. In this case it is instructive to see how Russell
himself analyzed the paradox. Russell first of all observes that the sentence “I’m
lying” is the same as: “There is a proposition which I am affirming and which is
false.” He also notices that this, in turn, can be rephrased as: “It is not true for all
propositions p that if I affirm p, p is true.” He then concludes that “[t]he paradox
results from regarding this statement as affirming a proposition, whichmust therefore
come within the scope of the statement.” Russell’s conclusion is that the notion of
all propositions is illegitimate, “for otherwise, there must be propositions (such as
the above) which are about all propositions, and yet can not, without contradiction,
be included among the propositions they are about.” In fact, Russell further claims
that “[w]hatever we suppose to be the totality of propositions, statements about this
totality generate new propositions which, on pain of contradiction, must lie outside
the totality.” The worry here is that an impredicative definition of an entity (e.g.
a proposition) would seem to generate a new element of the very class that was
employed to define it. As a consequence, “there must be no totality of propositions”,
and statements such as “all propositions” must be meaningless.

A second characterization of predicativity emerged fromPoincaré’s renewed anal-
ysis in [72, 73]. Central to this characterization is the thought that an impredicative
definition seems to generate new elements of a class which is used (e.g. as a domain
of quantification) within that definition. Here Poincaré’s criticism of impredicativity
is deeply interrelated with a reflection on infinity and the role of definitions in math-
ematics. For the French mathematician a definition is a classification: it separates the
objects which satisfy, from those which do not satisfy that definition, and it arranges
them in two distinct classes. Poincaré also highlights a sort of incompleteness of
infinite classes: they are open-ended and unfinished, so that definitions which refer
to their totality might become problematic. For example, in the case of the definition
of Russell’s class, R, above, it would seem that we need first of all to fix the class of
all classes, say C , prior to defining R by reference to C . But then the definition of R
would seem to extend C by a new class, R itself. And this process may be repeated
at will.17

Poincaré’s discussion hints towards a distinction between predicative and impred-
icative classes that appeals to a form of “invariance” of predicative definitions: a
predicative classification is one that can not be “disordered” by the introduction of
new elements. This gives rise to a new characterization of predicativity which does
not directly appeal to circularity, and can be so expressed in modern terminology: a
definition is predicative if the class it defines is invariant under extension.18

17Poincaré’s texts make use of other examples, more directly drawn from themathematical practice.
See also [13, 14] for a similar reading of Russell’s paradox. Cantini [4] proposes a detailed analysis
of Poincaré’s ideas.
18See [55] for discussion of this characterization from a modern logical perspective. See also [18,
39].
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Poincaré [72, p. 463] writes:

Hence a distinction between two species of classifications, which are applicable to the ele-
ments of infinite collections; the predicative classifications, which can not be disordered by
the introduction of new elements; the non predicative classifications which are forced to
remain without end by the introduction of new elements.19

For Poincaré impredicative definitions are problematic as they treat as completed
(French “arrêté”) infinite classes which are instead “in fieri”, open-ended or incom-
plete by their very nature. Predicative definitions, instead, guarantee that the classes
so defined are stable or invariant. Poincaré does not spell out this notion of invariance
in any detail, being very critical of formal endeavors; however, he indicates that the
relations between the elements of the class and the class itself should not admit of
change as we progress introducing new elements through our definitions. He also
points towards a kind of genetic construction of predicative classes, which are built
up from some initial elements step by step: we construct new elements of a predica-
tive class by defining them in terms of the initial elements, we then define further
new elements from the latter, and so on. In the case of infinite classes, this process
is without end. A related but more precise account of a predicative conception of set
is to be found in [97], as further discussed in Sect. 2.2.

2.1 Russell’s Way Out

The analysis of the paradoxes and their relation with impredicativity turned out to
be extremely fruitful for the development of mathematical logic, starting from Rus-
sell’s own implementation of the vicious circle principle through his type theory.20

Russell’s way out from the paradoxes is well-known, as it introduced a regimentation
of classes through a hierarchy of types and orders.21 For Russell the paradoxes were
due to the assumption that any propositional function gives rise to a class: the class of
all the objects that satisfy it.22 As discussed above, of particular concern were classes
defined impredicatively. To avoid impredicativity, in setting up ramified type theory
Russell [82] made two distinguishable moves as follows. The first move amounts to
associating a range of significance to each propositional function, that is, a collection
of all arguments to which the propositional function can be meaningfully applied. In
Russell’s terms: “within this range of arguments, the function is true or false; outside
this range, it is nonsense.” [82, p. 247] The ranges of significance then form types,

19My translation; italics by Poincaré. The word “disordered” translates the French “bouleverseé”.
20See [5] for a rich discussion of the impact of the paradoxes on mathematical logic.
21Russell’s ideas on type theory appeared first in an appendix to [79], and were further developed
(with ramification) in [82] and then in [99].
22In the present context we may follow [34], and identify the notion of propositional function
with that of open formula, i.e. a formula with a free variable, say ϕ(x). Note, however, that the
interpretation of the notions of proposition and propositional function in Russell is complex. See
e.g. [57].
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and these are arranged in levels: first we have a type of individuals, and then types
which are ranges of significance of propositional functions defined on the individ-
uals, and so on. The crucial point is that as a consequence of this regimentation of
classes, expressions such as x ∈ x and x /∈ x are simply ill–formed, since in z ∈ w,
w must be of the next-higher level than z. Accordingly, Russell’s paradox (and other
set-theoretic paradoxes) do not carry through.

It was subsequently realized by Chwistek and Ramsey that if one implements only
this restriction, then one obtains a formalism that is interesting in its own right.23

Today this goes under the name of simple type theory and its formulation was sub-
sequently simplified by Church [8]. Simple type theory seems sufficient to block
all set theoretic paradoxes; however, it does not eliminate all impredicativity. The
second move, ramification, has the effect of eliminating all impredicativity.24 As
discussed above, for Russell one of the lessons of the paradoxes was that impredica-
tive totalities, as, for example, the totality of all propositions, are illegitimate; hence
quantification over themmakes no sense. He therefore introduced, alongside a notion
of level for ranges of significance of propositional functions, a notion of order for
propositional functions, and required that a propositional function can only quantify
over propositional functions of lower order than its own. Thus in ramified type the-
ory, one has first order propositional functions, second order ones, etc.; in addition,
the second order propositional functions can quantify on the first order ones, but not
on propositional functions of order higher than one, and so on.

In thiswayone apparently blocks not only the set theoretic paradoxes, but semantic
paradoxes as the Liar, too. This is analyzed as follows by Russell [82, p. 238]:

if Epimenides asserts “all first-order propositions affirmed by me are false”, then he asserts
a second order proposition; he may assert this truly, without asserting truly any first order
proposition, and thus no contradiction arises.

While ramified type theory fully complies with predicativity, it also turns out to
make the development of mathematics awkward. This may be seen by considering
again the definition of natural number discussed above, which requires a universal
quantifier over properties of the natural numbers. When appropriately re-formulated
in a ramified context, this definition gives rise to only partial renderings of the notion
of natural number, one for each order of propositional functions, and therefore it does
not offer a general definition of the concept of natural number. As a consequence,
many proofs by induction do not carry through in their usual form, as they would
require the full generality of universally quantified statements; for example, in rami-
fied type theory we can not prove in full generality that if m and n are finite numbers,
so is m + n.25 These difficulties prompted Russell [82] to introduce the axiom of

23See [9, 74].
24See [49] for a discussion of the reasons that might support Russell’s (and Whitehead’s) choice of
a ramified type theory over a simple type theory.
25See [82]. See also [63]. See [10, 31] for introductory expositions of the ideas underlying ramified
type theory and the difficulties it encounters.
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reducibility, which, however, has the effect of reinstating impredicativity. Reducibil-
ity is so presented in [82, p. 242-3]: “every propositional function is equivalent, for
all its values, to some predicative function”, where a function ϕ of one argument
x is predicative if it is “of the order next above x”.26 This axiom was strenuously
criticized for being introduced for purely pragmatic reasons and for being ad hoc.27

For example, Russell [98, p. 50] wrote:

Russell, in order to extricate himself from the affair, causes reason to commit harikari, by
postulating the above assertion [the axiom of reducibility] in spite of its lack of support by
any evidence.

2.2 Das Kontinuum

WithWeyl’s “Das Kontinuum” [97] we have another approach to predicativity which
also played a significant role for the subsequent logical analysis of predicativity, and
especiallyFeferman’swork.Weyl’s aimwas to develop apredicative formof analysis,
founded on a concept of set which is immune from paradoxes and vicious circularity.
Weyl’s concern was that impredicativity affected not only set theory in general, but it
was to be found already at the heart of analysis, as the Least Upper Bound principle
(LUB) requires impredicative reasoning.28 One ofWeyl’s fundamental achievements
was to show how to circumvent this difficulty without resorting to ramification or
reducibility.29 The result is a predicative (in fact, arithmetical) treatment of large
portions of 19th century analysis.

Weyl [97] expounds in detail a concept of predicative set: a set is the extensional
counterpart of a property and may be seen as if it were constructed step by step
from some primitive domain of objects by application of elementary operations
over it. The “production” of sets from an initial domain is expressed first in full
generality, and then specialized to the particular case of the natural numbers as starting

26Russell [82, p. 243] also writes: “Thus a predicative function of an individual is a first-order
function; and for higher types of arguments, predicative functions take the place that first-order
functions take in respect of individuals. We assume, then, that every function is equivalent, for all
its values, to some predicative function of the same argument.”.
27Wilfried Sieg has informed me about perceptive discussions by Hilbert and Bernays on predica-
tivity and Russell’s logicism, including the axiom of reducibility. See e.g. Hilbert’s lecture notes
from 1917/18 entitled “Prinzipien der Mathematik” and those from 1920 entitled “Probleme der
mathematischen Logik” published in [15]. See also [87] for discussion. Sieg [87] also draws impor-
tant correlations between [97] and Hilbert and Bernays’ work around 1920. As suggested by Sieg,
the relations between Hilbert and Bernays’ writings and Weyl’s [97] deserve more thorough inves-
tigations.
28The (LUB) states that every bounded, non–empty subset M of the real numbers has a least upper
bound. See [16, 26] for discussion.
29Weyl, in particular, made use of sequential rather than Dedekind completeness, the first being
amenable to predicative treatment. See also [26].
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domain, which is of relevance for the development of analysis. One begins with an
initial domain (or basic category) of objects, and “certain individual, immediately
exhibited ‘primitive’ properties” which apply to the objects of this domain [97, p.
28].30 One then considers derived properties which arise from the primitive ones (as
clarified below) and takes sets to be the extensional counterparts of primitive and
derived properties. Weyl [97, p. 20] writes: “to every primitive or derived property
P there corresponds a set (P)”, the set of all the objects which have the property
P . Crucially sets are identified extensionally, that is, “the same set corresponds to
two such properties P ad P ′ if and only if every object (of our category) which
has the property P also has the property P ′.” [97, p. 20] The step from primitive
properties to derived ones is discussed in the first section of “Das Kontinuum”,
where Weyl describes the formation of judgments.31 The starting point is once more
a given basic domain of objects and some primitive properties which apply to the
objects of that domain. One then forms simple (i.e. atomic) judgments affirming that
the primitive properties hold of the objects of the basic domain. The next step is
given by taking combinations of these judgments by means of the ordinary logical
operations, but with the crucial constraint that quantifiers are only allowed to range
over the basic domain.32 In this way one essentially obtains first-order definable
properties of the objects of the initial domain; sets then arise as extensions of such
properties (modulo extensionality). Weyl calls “mathematical process” [97, p. 22]
the formation described above of a new “system” of sets from a basic initial domain
and certain primitive properties of its objects.

A particularly important application of the mathematical process arises when the
initial domain is the natural numbers. Here, from the contemporary logician’s per-
spective,Weyl’s concept of set gives rise to subsets of the natural numbers obtainable
by application of the comprehension schema restricted to arithmetical formulas, that
is, to those formulas that do not quantify over sets (but may quantify over natural
numbers). This restriction to number quantifiers in the comprehension principle aims
at preventing vicious–circular definitions of subsets of the natural numbers.33

An aspect of particular foundational interest is that Weyl, as Poincaré before
him, takes the natural numbers with full mathematical induction as starting point,

30In addition to properties, Weyl [97] also considers relations, here omitted for simplicity.
31The notion of “judgment” is so clarified byWeyl [97, p. 5]: a “judgment affirms a state of affairs”.
32Weyl also considers a principle of substitution [97, p. 10]. In addition, in the paradigmatic case of
the natural numbers as basic domain, one also applies a principle of iteration, as further discussed
below.
33As remarked by Feferman [26] see also [31], it is not completely clear how strong is the system
Weyl sketches in [97]. Feferman has, however, verified that system W of [26], which is inspired
by [97], suffices to carry out all of Weyl’s constructions in “Das Kontinuum”. System W is a
conservative extension of Peano Arithmetic, PA [38]. As clarified in Sect. 3.3, Feferman has also
shown that W allows for the development of a more extensive portion of contemporary analysis,
compared with [97].
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as intuitively given.34 The comparison with Russell is instructive, as Russell aimed
at a definition of the natural number concept, to witness its logical nature. Instead
both Poincaré and Weyl criticized any attempt at founding the concept of natural
number (and in particular the principle of mathematical induction) on logic or on
the concept of set, given the fundamental role the natural numbers play within all
of mathematics. Weyl [97, p. 48] wrote: “the idea of iteration, i.e., of the sequence
of the natural numbers, is an ultimate foundation of mathematical thought, which
can not be further reduced”. The natural numbers, for Weyl, are “individuals”,
in the sense that they can be characterized uniquely by means of their properties:
starting from an initial element, the iteration of the successor operation allows us to
characterize uniquely each natural number in elementary terms, and by exclusive
appeal to its predecessors. Weyl [97, p. 15] also writes that “it is impossible for
a number to be given otherwise than through its position in the number sequence,
i.e. by indicating its characteristic property.” This also justifies Weyl’s adoption of
bivalence for statements on the natural numbers and their assumption as paradigmatic
initial domain for the mathematical process. The latter now gives rise to a system of
sets as extensions of arithmetical properties of the natural numbers.

It is important to clarify whyWeyl takes sets as extensions of first-order definable
properties. Weyl [97, p. 20] writes:

Finite sets can be described in two ways: either in individual terms, by exhibiting each of
their elements, or in general terms, on the basis of a rule, i.e., by indicating properties which
apply to the elements of the set and to no other objects. In the case of infinite sets, the first
way is impossible (and this is the very essence of the infinite).

He also writes [97, p. 23]:

No one can describe an infinite set other than by indicating poperties which are characteristic
of the elements of the set. And no one can establish a correspondence among infinitely many
things without indicating a rule, i.e. a relation, which connects the corresponding objects
with one another.

Weyl’s “arithmetical” sets are the extensional counterparts of arithmetical rules
or laws, and may be seen as if they were obtained through application of a fixed set
of elementary operations starting from the natural numbers (with iteration). This is
contrasted by Weyl with the concept of arbitrary set which had recently emerged
within set theory, and which is characterized by the absence of any requirement of
law or rule of formation. In his criticism of the concept of arbitrary set Weyl is once
more in agreement with Poincaré, who drew a direct connection between the debate
on impredicativity and the lack of explicit definability of impredicatively defined
sets [73]. An arbitrary set for Weyl is “a ‘gathering’ brought together by infinitely
many individual arbitrary acts of selection, assembled and then surveyed as a whole

34Poincaré see, e.g., [71] states that mathematical induction is synthetic a priori. Note also that
Weyl expresses mathematical induction by appeal to a principle of iteration. See [30, p. 264-5]
for discussion. Poincaré and Weyl fully realized the significance of the assumption of unrestricted
mathematical induction. This is further clarified by a comparison with approaches to predicativity
which instead introduce restrictions on induction [64, 65].



434 L. Crosilla

by consciousness” and, as such, it is “nonsensical” [97, p. 23]. Weyl instead shows
how predicative sets may be “produced” step by step from the safety of the natural
numbers by application of a rule or a uniform condition.

Weyl’s remarkable achievement in the second part of [97] was to show that his
arithmetical concept of set suffices to develop a fundamental portion of 19th century
analysis. “Das Kontinuum” is also particularly interesting from a philosophical per-
spective, as it clearly puts forth a predicativist position: Weyl is adamant that what
can not be predicatively accounted for, needs to be relinquished.

3 The Logical Analysis of Predicativity Given the Natural
Numbers

Interest in predicativity declined after [97] for a number of reasons, like, for example,
the realization that simple type theory was apparently sufficient to block the set-
theoretic paradoxes.35 In addition, the rapid accreditation of impredicative set theory
as standard foundation, especially in the form of the Zermelo–Fraenkel system with
choice, ZFC, played a crucial role in the downfall of predicativity.36

The technical results obtained in [82, 97, 99], however, paved the way for sub-
sequent work in mathematical logic which eventually gave rise to a new phase for
predicativity starting in the 1950s: a logical analysis of predicativity. A crucial point
to note is that the motivation prompting the new discussions on predicativity differed
profoundly from the ones which had given rise to the first debates on predicativity
outlined above. In this respect, already Gödel proposed a shift of attitude in his influ-
ential appraisal of Russell’s contribution to mathematical logic in [47]. There Gödel
clearly expressed the view that predicativity is a fruitful concept which can give rise
to mathematical progress, but that it should be pursued “independently of the ques-
tion whether impredicative definitions are admissible.”37 Gödel’s observations mark
the beginning of a study of predicativity which, although of relevance for the philo-
sophical debates on the foundations of mathematics, is carried out independently
of predicativism; its principal aims are no more to secure the ultimate justification
of (a portion of) mathematics, but to draw a clearer demarcation of the boundary
between predicative and impredicative mathematics. We may distinguish two main
objectives: (1) the determination of a theoretical limit of predicativity; and (2) the
clarification of the extent of predicative mathematics.

It is important to recall the notion of predicativity that has been so investigated.
This takes inspiration from Poincaré and, especially, Weyl’s writings, and is charac-
terized by the assumption, at the start, of the natural numbers with full mathematical

35See [9, 74].
36See also [34] for additional thoughts on what “pushed predicativity to the sidelines.”.
37Gödel [47] alsomentions a prominent example of the fruitfulness of predicativity: the constructible
hierarchy [45, 46], inspired by Russell’s idea of ramification.
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induction.38 For this reason it has been termed “predicativity given the natural num-
bers”, and, as in Weyl, it uses classical logic.39 A difference with Weyl’s approach
is that the new logical analysis of predicativity also aims at exploring how far can
we extend beyond the natural numbers in a predicatively justified way; it therefore
focuses on a notion of predicativity given the natural numbers that stretches beyond
Weyl’s arithmetical predicativity. In fact, Russell’s original idea of ramification and
a distinctive use of ordinals (and ordinal notations) played a crucial role in setting
out this form of predicativity.

3.1 The Limit of Predicativity

The literature from the 1950s and 1960s witnesses the complexity of the task of clari-
fying the limit of predicativity, which saw the involvement of a number of prominent
logicians, as Feferman, Gandy, Kleene, Kreisel, Lorenzen, Myhill, Schütte, Spector
andWang. The first attempts at a logical analysis of predicativity focused on issues of
definability of sets of natural numbers and highlighted a connection between pred-
icativity and the recently developed concept of the hyperarithmetical hierarchy.40

This consists of a hierarchy of sets of natural numbers which can be equivalently
characterized in a number of ways. The simplest characterization is in terms of defin-
ability, and sees the hyperarithmetical sets as those sets of natural numbers that can
be defined equivalently by a �1

1 and by a �1
1 formulas, also called the �1

1 sets.41

Given this characterization of the hyperarithmetical sets, the relation between the
hyperarithmetical hierarchy and predicativity might at first seem problematic, as a
hyperarithmetical set is defined by formulas with unrestricted set quantifiers. How-
ever, amore constructive rendering of the hyperarithmetical sets was given byKleene
in terms of iteration of the so-called Turing jump through the recursive ordinals.42

38See also Sect. 3.4 for more on the notion of predicativity given the natural numbers.
39The use of classical logic marks a crucial difference with the form of predicativity that is to be
found in e.g. Martin-Löf type theory [60].
40The hyperarithmetical hierarchy has a central place in the development of mathematical logic
because of its prominence within a number of fundamental areas in mathematical logic: definability
theory, recursion theory and admissible set theory. This witnesses the centrality within logic of
themes that pertain to the predicativity debate, and further explains the interest of this notion form
a logical point of view.
41In the language of second order arithmetic, a �1

1 formula is one of the form: ∃X ϕ(X), with ϕ
an arithmetical formula, that is, a formula that does not quantify over sets (but may quantify over
natural numbers). Note that here the upper case letter X denotes a second order variable, standing
for a set of natural numbers. A �1

1 formula is one of the form ∀X ψ(X), with ψ an arithmetical
formula.
42See [53], see also [84]. See [16, 55] for further clarification of why this may be seen as offering a
predicative justification for this kind of second order quantification. Kreisel [55] offers additional
considerations that directly relate to Poincaré’s notion of invariance discussed above.
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Another way of bringing the relation with predicativity to light is by drawing a
correlation between the hyperarithmetical hierarchy and (a fragment of) the ramified
analytic hierarchy. The latter essentially represents an implementation of Russell’s
idea of ramification to the particular case of second order arithmetic, now, however,
with orders extending into the transfinite. The idea is to define a hierarchy analogous
to Gödel’s constructible hierarchy [45, 46], but at successor steps to collect definable
subsets of the natural numbers. More precisely, let Def 2(X) be the set of all those
A ⊆ N such that A is definable over X in second order arithmetic, that is, there is a
formula ϕ(x) of second order arithmetic such that for all n, n ∈ A ⇐⇒ (ϕ(n))X .
Here the notation (ϕ(n))X indicates that all second-order quantifiers in ϕ range
over X . Then we let R0 := ∅, and Rα+1 := Def 2(Rα); at limit ordinal λ, we take
Rλ := ⋃

ξ<λ Rξ . It is clear that the step from each level of the ramified analytic
hierarchy to its successor is predicatively justified, as all second order quantifiers
range over previous levels of the hierarchy. However, the ramified analytic hierarchy
as a whole is problematic from a predicative perspective, since it presupposes the
notion of “arbitrary” ordinal, i.e. “arbitrary” well-ordering relation, which, from
a predicative perspective, is “as meaningless as the notion of ‘arbitrary’ set” [16,
p. 9]. To overcome this difficulty a first thought was to introduce a “proviso of
autonomy” on the ordinals used as indexes of the hierarchy: each ordinal used is to
be determined by a well-ordering relation that, considered as a set of ordered pairs,
is already admitted as predicative [16, p. 9]. We may call the resulting (suitably
specified) ordinals “predicatively definable ordinals” [34]; then it turns out that by
crucial results by Spector [91] and Kleene [53] the predicatively definable ordinals
do not go beyond the recursive ordinals. In particular, Kleene [53] showed that
RωC K

1
= HY P , whereωC K

1 is the first non-recursive ordinal andHYP is the collection
of hyperarithmetical sets. These results brought Kreisel [55] to tentatively identify
the predicatively definable sets with those definable within RωC K

1
and thus also with

the hyperarithmetical sets.43

The proposed identification of the realm of predicativity with the hyperarithmeti-
cal hierarchy, however, turned out to rely on the assumption of the countable ordinals
up to the first non-recursive ordinal, ωC K

1 , along which to iterate the construction of
the ramified analytic hierarchy. Feferman [34] writes:

Though the considerations leading to the identification of the predicative ordinals, resp.
sets of natural numbers, with the recursive ordinals, resp. hyperarithmetical sets, have a
certain plausibility, they ignored one crucial point if predicativity is only to take the natural
numbers for granted as a completed totality, namely that they involve in an essential way
[...] the impredicative notion of being a well-ordering relation.

For these reasons a new phase in the logical analysis of predicativity began,
which was prompted by another suggestion by Kreisel [54]. Kreisel [54] put forth a
hierarchy of formal systems that would canonically represent predicative reasoning
and called for the determination of its limit. A remarkable consequence of this new
course of inquiry is that it shifted the focus of research from definability issues to

43See also [95].
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provability issues.44 The celebrated upshot of that research was the determination of
the limit of predicativity by Feferman and Schütte (independently) [16, 85, 86] by
means of proof-theoretic techniques. Russell’s original idea of ramification had once
more a crucial role, as a transfinite progression of systems of ramified second order
arithmetic indexed by ordinals was introduced as a tool for determining a precise
limit of predicativity by appeal to ordinal analysis.45 The subsystems of second
order arithmetic that make up the levels of the hierarchy, R Aα, are characterized by
principles of ramified comprehension which express closure under the appropriate
ramified definitions and essentially give rise to a formal version of the conditions
we saw for the ramified analytic hierarchy. Each level of the hierarchy, therefore,
can be seen as predicatively justified, since quantification is suitably restricted to
previous levels. Once more, a fundamental issue turned out to be how to specify the
iteration that justifies the ascent to higher levels of the hierarchy. Here one introduces
a suitable “boot-strapping” condition. A crucial differencewith the previous attempts
is in that the ordinals indexing the hierarchy are not only those that can be defined by
well-ordering relations within the hierarchy, but those which can also be proved to
be such relations at previous stages of the hierarchy. That is, one carefully introduces
a notion of predicatively provable ordinal, which has the purpose of guaranteeing
that one progresses up along the hierarchy to a stage α only if α has already been
recognized as predicative, i.e. if at a previous stage of the hierarchy we have a proof
that it is an ordinal. The fundamental contribution of Feferman and Schütte was to
determine that the least non-predicatively provable ordinal is an ordinal known as
�0.46 Therefore, in proof theory �0 is often referred to as the limit of predicativity.

It is important to note that the limit of predicativity so determined is an “external
limit”. As clearly acknowledged by Feferman (see, e.g., [16]), one takes an impred-
icative stance and attempts to clarify the limit of predicativity from “the outside”. The
convinced predicativist will not recognize the limit �0, as it lies beyond his reach,
its very definition being impredicative. Gandy [44] writes: “The role played by �0

for predicative systems is closely analogous to that played by ε0 for finitist systems.
�0 is not a predicatively definable ordinal, but he who understands �0 understands

44See also the review by Gandy [44].
45Here ordinals are not to be considered set-theoretically, rather as notations from a suitable ordinal
notation system. See [68] for details on ordinal notation systems.
46See e.g. [68, Ch. 1] for details. In the branch of proof theory known as ordinal analysis, suit-
able (countable) ordinals, termed “proof-theoretic ordinals”, are assigned to theories as a way of
measuring their consistency strength and computational power. The “proof-theoretic strength” of a
theory is then expressed in terms of such ordinals. The countable ordinal �0 is the proof-theoretic
ordinal assigned to the progression of ramified systems mentioned above. It is relatively small in
proof-theoretic terms. As a way of comparison, it is well above the ordinal ε0 which encapsulates
the proof-theoretic strength of Peano Arithmetic, but it is much smaller than the ordinal assigned
to a well–known theory, called ID1, of one inductive definition. The latter ordinal is known in the
literature as the Bachmann–Howard ordinal [3]. The strength of ID1 is well below that of second
order arithmetic, which is in turn much weaker than full set theory. For surveys on proof theory and
ordinal analysis see, for example, [76–78].
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the consistency, the potentialities and the limitations of predicative proof.” This once
more clarifies the deep change in attitude between the early discussions on predica-
tivity and its logical analysis, as the latter is an attempt at understanding predicativity
rather than arguing for it as a foundational stance.

3.2 Proof-Theoretic Reducibility

Feferman has explored a number of alternative perspectives over the years, as a way
of corroborating the analysis of predicativity. In particular, one of the aims was to
avoid direct appeal to the idea of ramification, which is particularly artificial and
distant from mathematical practice. For example, already in the fundamental article
[16], Feferman introduced a progression of formal systems which are based on a
Hyperarithmetic Comprehension principle, therefore exploiting the previous obser-
vation of an important connection between predicative subsets of the natural numbers
and hyperarithmetical sets. In that paper Feferman also introduced a single formal
system I R which does not make direct reference to provability or definability.47

Feferman [16] then established that also these two approaches give rise to �0 as
limit.48 The fact that a number of distinct approaches to predicativity converged to
the ordinal �0 was then seen as confirmation of the thesis that �0 marks the limit
of predicativity, in a similar way as the convergence of different characterizations of
computability are usually taken to support Church’s thesis. The study of alternative
routes to predicativity was also suggested by the desire to clarifywhich parts ofmath-
ematics can be given predicative form. As ramified systems are cumbersome to work
in, one needs a way of assessing the predicativity of other systems which are better
suited to the practical needs of a codification of ordinary mathematics. The notion of
proof–theoretic reducibility was therefore appealed to for this purpose.49 In order to
assess the predicativity of a formal system T it suffices to appropriately “translate”
it in (that is, proof-theoretically reduce it to) one of the ramified systems. The latter,
thus, act as canonical systems of reference in terms of which the predicativity of other
systems can be assessed. The outcome is a notion of predicative justification: a for-
mal system is considered predicatively justified if it is proof–theoretically reducible
to a system of ramified second order arithmetic indexed by an ordinal less than �0. In
addition, a notion of locally predicative justification was introduced, which applies
to the case in which a system T is proof-theoretically reducible to the union of all
the R Aα. In this case each theorem in T may be considered predicative, although
the system T in its whole is not predicatively justified. A well-known locally pred-

47See [50, p. 283] for discussion.
48Further approaches to predicativity were explored, for example, in [17, 19, 20, 22, 23]. See also
[21]. More recently, Feferman has developed the notion of “unfolding”; see [40, 41] and [93]. See
also [6] for relations between Feferman’s work on predicativity and theories of truth.
49See e.g. [28] for discussion of this notion, and [34] for an informal account of its application to
an analysis of predicativity.
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icatively justifiable system is Friedman’s system AT R0, which has been extensively
studied in the Reverse Mathematics programme [43, 89].

3.3 Predicativity and ordinary mathematics: the extent
of predicativity

Weyl’s aim in “Das Kontinuum” was to clarify how far can we proceed in developing
analysis from the bare assumption of the natural numbers with full induction and by
iterating elementary properties and relations over them. His work gives a first, partial
answer, to the important question of the relation between predicative mathematics
with ordinary, or everyday, mathematics.50

A number of mathematical logicians in the 1950s felt that the early debates on
impredicativity had left unresolved the question of which role impredicativity plays
within ordinary mathematics. Wang [95, p. 244] clearly expressed this concern,
when he observed that the use of uncountable (or indenumerable) and impredicative
sets “remains a mystery which has shed little light on any problems of ordinary
mathematics. There is no clear reason why mathematics could not dispense with
impredicative or absolutely indenumerable sets.”

In his fundamental article, Feferman [16, p. 3–4] writes:

It is well known that a number of algebraic and analytic arguments can be systematically
recast into a form which can be subsumed under elementary (first order) number theory. [...]
It is thus not at first sight inconceivable that predicative mathematics is already (formally)
sufficient to obtain the full range of arithmetical consequences realized by impredicative
mathematics.

As Feferman quickly clarifies, not every elementary statement can be so obtained.
The logical analysis of predicativity in [16] readily provides us with a counterex-
ample: the very arithmetical statement expressing the consistency of predicative
analysis. However, Feferman suggests that one could argue that “all mathematically
interesting statements about the natural numbers, as well as many analytic state-
ments, which have so far been obtained by impredicative methods can already be
obtained by predicative ones”.

The fundamental question of whether predicative mathematics is “already (for-
mally) sufficient to obtain the full range of arithmetical consequences realized by
impredicativemathematics” has been addressed by combining an appeal to the notion
of proof-theoretic reducibility (that enables us to work in syntactically convenient
systems) with a careful case by case logical analysis of ordinary mathematics. Here
Weyl’s pioneering work in “Das Kontinuum” has been a fundamental reference,

50The expression “ordinary mathematics” refers to mainstream mathematics, and has been so char-
acterized, for example, by Simpson [89, p. 1]: “that body of mathematics which is prior to or
independent of the introduction of abstract set-theoretic concepts”. That is: “geometry, number
theory, calculus, differential equations, real and complex analysis, countable algebra, the topology
of complete separable metric spaces, mathematical logic and computability theory”.
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especially for Feferman’s investigations [26, 34]. More precisely, Feferman [26] has
carefully analysed Weyl’s text and proposed a system, W, which codifies in modern
terms Weyl’s system in “Das Kontinuum”. System W is particularly weak proof-
theoretically, as it is as strong as Peano Arithmetic; as a consequence, it lies well
within predicative mathematics. Feferman has verified that large portions of contem-
porary analysis can be carried out on its basis, in fact “most of classical analysis and
substantial portions ofmodern analysis” [36]; therefore he has significantly improved
on Weyl’s [97].

Another source of insight is the research carried out within Friedman and Simp-
son’s program of Reverse Mathematics [89], which has analyzed large portions of
ordinary mathematics from a logical point of view. The principal outcome of these
studies is a further confirmation that large parts of ordinary mathematics can be
framed within predicative systems.51 More surprisingly, it typically turns out that
if a theorem can be established predicatively, it can already be carried out within
a system not stronger than Peano Arithmetic. In fact, a finitary system suffices for
most cases.52

The outcome of this research is that, once analyzed in detail, the prima facie
necessity of abstract features of ordinary mathematics turns out to be avoidable
in many cases. As a consequence, a substantial portion of ordinary impredicative
mathematics is eliminable in favor of predicative mathematics. This is a striking
result, highly unexpected from the perspective of Weyl’s contemporaries. In fact, as
suggested by Feferman, these insights have the potential of enriching the philosophy
of mathematics in a number of ways. For example, they may have an impact on
current discussions on indispensability of mathematics to science. Feferman [28]
has argued that the case can be made that all scientifically applicable mathematics
can be codified by predicative theories (in fact, by system W ). The above mentioned
work has brought Feferman to formulate the following “working hypothesis”:

All of scientifically applicable analysis can be developed predicatively.
If, indeed, weak predicative systems turned out to be formally sufficient to develop

all of scientifically applicable mathematics, this would imply the dispensability, at
least from a formal point of view, of impredicative mathematics - when we restrict
consideration to the mathematics that is required by our best scientific theories. This
could then imply that an appeal to indispensability arguments to support the belief in
the existence of mathematical entities would only grant, in the most favorable case,
a rather limited ontology. As a consequence the above research might contribute to
a more careful assessment of the possible outcomes of indispensability arguments,
and the kind of platonism they might support, if they were to succeed.53

51See [89] for details and [90] for independence results.
52See [26, 34, 88] for informal discussions and further references.
53Note that Feferman draws different conclusions on the impact of the logical research on indis-
pensability arguments in the philosophy of mathematics [28].
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3.4 Predicativity Given the Natural Numbers

I concludewith some remarks on the notion of predicativity given the natural numbers
that is the focus of the logical analysis of predicativity. At first the logical analysis of
predicativity aimed at clarifying the notion predicatively definable from the natural
numbers. In Sect. 3.1 I have emphasized that a shift of focus occurred at the end of the
1950s, so that predicativity given the natural numbers aimed at explicating a notion
of predicatively provable presupposing the natural numbers [44]. From a philosoph-
ical perspective, it is natural to wonder how we should read the presupposition of the
natural numbers. As it turns out, the relevant literature provides us with a number of
different answers to this question. As reviewed above, Weyl, for example, suggested
that the natural numbers, and in particular the idea of iteration, are “an ultimate foun-
dation of mathematical thought”, in fact, a “pure” intuition [97, p. 48]. In particular,
the natural numbers are “individuals”, classical logic applies to them and they can act
as domain of quantification; therefore they can be employed for building predicative
sets step-by-step by repeated application of elementary operations over them.

In Feferman’s writings on predicativity one sometimes reads that the natural num-
bers (with full mathematical induction) can be regarded as “given” in some sense.54

Sets are instead considered as no more than definitions, façons de parler, or con-
venient idealizations; as such they need to undergo appropriate constraints to avoid
vicious circularity in definitions [16, p. 1–2].55

Sometimes the distinction between predicative and impredicative definitions or
entities is presented in epistemological terms, and predicativity is seen as an instru-
ment for clarifying what is implicit in our understanding of the natural numbers.56

Feferman [24, p. 449] writes:

That there is a fundamental difference between our understanding of the concept of natural
numbers and our understanding of the set concept, even for sets of natural numbers, seems
to me undeniable. The study of predicativity, as what is implicit in accepting the structure
of natural numbers, is thus of special foundational significance. This is not to say that only
what is predicative is ‘justified’. What we are dealing with here are questions of relative
conceptual clarity and foundational status [...].

The latter point is significant, and demonstrates, once more, the crucial difference
between the attitude of the logicians that studied predicativity from the 1950s and
that of the mathematicians that forged this notion at the turn of the 20th century,

54In the following I shall often omit explicit reference to the unrestricted principle of mathematical
induction, and simply write “the natural numbers”; however, I shall presuppose that in the case of
predicativity given the natural numbers full induction is also assumed.
55Feferman [16, 34] also describes the predicativist position as one that takes the natural numbers
as a “completed totality”, and views the rest in potentialist terms. However, I could find no further
elucidation of the notion of complete totality, beyond the claim that we can use classical logic
to reason about it. In [32, 35], Feferman proposes to read the “giveness” of the natural numbers
in terms of realism in truth value (restricted to the natural numbers). A fundamental theme that
emerges within Feferman’s discussions on predicativity is an opposition, analogous to Weyl’s, to
arbitrary sets, and in particular to the powerset of an infinite set (see e.g., [33]).
56See e.g. [29, 54].
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in particular Weyl [97]. Perhaps it also explains why there is insufficient clarity in
the logical discussion on the philosophical aspects: the aim of the logician is not a
defence of predicativism but a clarification of predicativity. In fact, the logician is
primarily interested in clarifying the consequences of given assumptions. A crucial
question is: which mathematical constructions and which portions of mathematics
can we develop from the assumption of certain mathematical entities and operations
over them? A conceptual clarification of the mathematical facts is then seen as prior
to a clarification of the underlying philosophical stances that determine the choice
of certain assumptions; Feferman [34] writes: “[t]he potential value for philosophy
then is to be able to say in sharper terms what arguments may be mounted for or
against taking such a stance.”

In fact, a number of authors, including Feferman, have suggested that the notion
of predicativity is more profitably understood as a relative rather than an absolute
notion: we analyze what is predicative given some prior assumption, as, for example,
the natural numbers. One might take, however, different starting points. From this
perspective Gödel’s constructible hierarchy may also be framed as an example of
predicativity, one which may be seen as reducing all kinds of impredicativity to
one special kind: “the existence of certain large ordinal numbers (or well-ordered
sets) and the validity of recursive reasoning for them” [47, p. 464]. A weaker form
of predicativity, compared with predicativity given the natural numbers, is instead
obtained if one considers restrictions to the induction principle as in [64, 65, 67].

Predicativity may now become a tool for an analysis of mathematics, helping us
distinguish different portions of the mathematical landscape, distinct for the assump-
tions and the methodology they require. In other terms, the logical analysis of (forms
of) predicativity becomes an instrument for a finer understanding of contemporary
mathematics, which addresses the question of which concepts and methods are nec-
essary for the development of given portions of contemporary mathematics.57

4 Conclusion

The history of predicativity is witness to a remarkable example of cross-fertilization
between philosophy of mathematics and mathematical logic. A critical reflection on
the new abstract concepts and methods that were introduced in mathematics in the
19th century gave rise to proposals for the development of mathematics on predica-
tive grounds. Adherence to predicativity was proposed as a way of avoiding vicious
circularity in definitions and resulted in Russell’s ramified type theory and Weyl’s
predicative analysis. A clarification of the notion of predicativity and its mathemat-
ical implications stimulated further technical advances, and saw the involvement of

57Wilfried Sieg has drawnmy attention to a passage in Hilbert’s 1920s lectures [15, p. 363-4] which
suggests that this view of predicativity is in agreement with a Hilbertian perspective. It is also worth
observing that with the shift of the logical analysis of predicativity to proof-theoretic considerations
this enterprise gained a clear Hilbertian character.
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prominent logicians, especially in the 1950-1960s. In particular, Feferman has con-
tributed to the determination of the limit of a notion of predicativity given the natural
numbers, and has offered, over the years, new ways of explicating this notion of
predicativity.

Beyond the purely logical interest of predicativity, this notion may play a role in
the philosophy of mathematics. Compliance with predicativity requirements enables
us to carve a restricted concept of set; in particular, in the case of predicativity
given the natural numbers we have a concept of set that is deeply rooted in the
natural numbers. This, in turn, may be used to assess which mathematical concepts
and theories can be developed purely on the basis of this more constrained concept
of set, and which ones instead require an essential appeal to more abstract and
complex notions. The logical analysis of predicativity has particularly highlighted
the crucial role for predicativity of two components: some initial entity, e.g. the
natural number set with full mathematical induction, and the iteration of elementary
operations over it. This opens up the way for a number of notions of predicativity,
which may be employed to help us clarify the difference between distinguishable
conceptual spheres of mathematical activity.

References

1. Benacerraf, P., Putnam, H.: Philosophy of Mathematics: Selected Readings. Cambridge Uni-
versity Press, Cambridge (1983)

2. Bernays, P.: Sur the platonisme dans les mathématiques. L’Enseignement mathématique 34,
52–69 (1935). Translated in [1] with the title: On Platonism in Mathematics

3. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions and Subsys-
tems of Analysis. Springer, Berlin (1981)

4. Cantini, A.: Una teoria della predicatività secondo Poincaré. Rivista di Filosofia 72, 32–50
(1981)

5. Cantini, A.: Paradoxes, self-reference and truth in the 20th century. In: Gabbay, D. (ed.) The
Handbook of the History of Logic, pp. 5–875. Elsevier (2009)

6. Cantini, A., Fujimoto, K., Halbach, F.: Feferman and the Truth, this volume (2017)
7. Carnap, R.: Die Logizistische Grundlegung der Mathematik. Erkenntnis 2(1), 91–105 (1931).

Translated in [1]. (Page references are to the translation)
8. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5, 56–68 (1940)
9. Chwistek, L.: Über die Antinomien der Prinzipien der Mathematik. Mathematische Zeitschrift

14, 236–43 (1922)
10. Coquand, T.: Type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2015)
11. Crosilla, L.: Constructive and intuitionistic ZF. In: Zalta, E.N. (ed.) Stanford Encyclopedia of

Philosophy (2014). http://plato.stanford.edu/entries/set-theory-constructive/
12. Crosilla, L.: Error and predicativity. In: Beckmann,A.,Mitrana,V., Soskova,M. (eds.) Evolving

Computability. Lecture Notes in Computer Science, vol. 9136, pp. 13–22. Springer Interna-
tional Publishing (2015)

13. Dummett,M.: Frege: Philosophy ofMathematics. HarvardUniversity Press, Cambridge (1991)
14. Dummett,M.:What ismathematics about? In: George, A. (ed.) The Seas of Language, pp. 429–

445. Oxford University Press (1993). Reprinted in [51], pp. 19–30
15. Ewald, W., Sieg, W.: David Hilbert’s Lectures on the Foundations of Arithmetic and Logic,

1917–1933. Springer, Heidelberg (2013)
16. Feferman, S.: Systems of predicative analysis. J. Symb. Logic 29, 1–30 (1964)

http://plato.stanford.edu/entries/set-theory-constructive/


444 L. Crosilla

17. Feferman, S.: Predicative provability in set theory. Bull. Am. Math. Soc. 72, 486–489 (1966)
18. Feferman, S.: Persistent and invariant formulas for outer extensions. Compositio Math. 20,

29–52 (1968)
19. Feferman, S.: Systems of predicative analysis. II. Representations of ordinals. J. Symb. Logic

33, 193–220 (1968)
20. Feferman, S.: Predicatively reducible systems of set theory. In: Axiomatic Set Theory (Proceed-

ings of Symposium Pure Mathematics, Vol. XIII, Part II, University California, Los Angeles,
California, 1967), pp. 11–32. American Mathematical Society Providence, R.I (1974)

21. Feferman, S.: Impredicativity of the existence of the largest divisible subgroup of an abelian
p-group. In: Model Theory and Algebra (A Memorial Tribute to Abraham Robinson). Lecture
Notes in Mathematics, vol. 498, pp. 117–130. Springer, Berlin (1975)

22. Feferman, S.: A more perspicuous formal system for predicativity. In: Boffa, M., van Dalen,
D., McAloon, K. (eds.) Logic Colloquium ’78’. North Holland, Amsterdam (1979)

23. Feferman, S.: Iterated inductive fixed-point theories: application to Hancock’s conjecture. In:
Patras Logic Symposion (Patras, 1980). Studies in Logic Foundations Mathematics, vol. 109,
pp. 171–196. North-Holland, Amsterdam-New York (1982)

24. Feferman, S.: Proof theory: a personal report. In: Appendix to the Second edition of [94],
pp. 447–485 (1987)

25. Feferman, S.: Hilbert’s program relativized: proof-theoretical and foundational reductions. J.
Symb. Logic 53(2), 364–384 (1988)

26. Feferman, S.:Weyl vindicated: Das Kontinuum seventy years later. In: Cellucci, C., Sambin, G.
(eds.) Temi e prospettive della logica e della filosofia della scienza contemporanee, pp. 59–93.
CLUEB, Bologna (1988)

27. Feferman, S.: What rests on what? The proof-theoretic analysis of mathematics. In: Czer-
mak, J. (ed.) Proceedings of the 15th International Wittgenstein Symposium Philosophy of
Mathematics, Part I. Verlag Hölder–Pichler– Tempsky, Vienna (1993)

28. Feferman, S.: Why a little bit goes a long way. Logical foundations of scientifically applicable
mathematics. In: PSA 1992, Philosophy of Science Association (East Lansing), vol. 2, pp. 442–
455 (1993). Reprinted in [30]

29. Feferman, S.: Kreisel’s unwinding program. In: Odifreddi, P. (ed.) Kreiseliana, pp. 247–273.
About and Around Georg Kreisel, A K Peters (1996)

30. Feferman, S.: In the Light of Logic. Oxford University Press, New York (1998)
31. Feferman, S.: The significance ofHermannWeyl’sDasKontinuum. In:Hendricks,V., Pedersen,

S.A., Jørgense, K.F. (eds.) Proof Theory. Kluwer, Dordrecht (2000)
32. Feferman, S.: Comments on “Predicativity as a philosophical position” by G. Hellman, Rev.

Int. Philos. 229(3), 313–323 (2004)
33. Feferman, S.: The development of programs for the foundations of mathematics in the first

third of the 20th century. In: Petruccioli, S. (ed.) Storia della scienza. Istituto della Enciclopedia
Italiana, vol. 8, pp. 112–121. Translated as Le scuole di filosofia della matematica (2004)

34. Feferman, S.: Predicativity. In: Shapiro, S. (ed.) Handbook of the Philosophy of Mathematics
and Logic. Oxford University Press, Oxford (2005)

35. Feferman, S.: Conceptions of the continuum. Intellectica 51, 169–189 (2009)
36. Feferman, S. 2013 , Why a little bit goes a long way: predicative foundations of analysis.

Unpublished notes dating from1977-1981,with a new introduction.Retrieved from the address:
https://math.stanford.edu/∼feferman/papers.html

37. Feferman, S., Hellman, G.: Predicative foundations of arithmetic. J. Philos. Logic 22, 1–17
(1995)

38. Feferman, S., Jäger, G.: Systems of explicit mathematics with non-constructive μ-operator,
Part I. Ann. Pure Appl. Logic 65(3), 243–263 (1993)

39. Feferman, S., Kreisel, G.: Persistent and invariant formulas relative to theories of higher order.
Bull. Am. Math. Soc. 72, 480–485 (1966)

40. Feferman, S., Strahm, T.: The unfolding of non-finitist arithmetic. Ann. Pure Appl. Logic
104(1–3), 75–96 (2000)

41. Feferman, S., Strahm, T.: Unfolding finitist arithmetic. Rev. Symb. Logic 3(4), 665–689 (2010)



Predicativity and Feferman 445

42. Ferreirós, J.: On arbitrary sets and ZFC. Bull. Symb. Logic (3) 2011
43. Friedman, H.: Systems of second order arithmetic with restricted induction, I, II (abstracts). J.

Symb. Logic 41, 557–559 (1976)
44. Gandy, R.O.: Review of [16]. Math. Rev. (1967)
45. Gödel,K.: The consistency of the axiomof choice and of the generalized continuum-hypothesis.

Proc. Natl. Acad. Sci. U. S. A. 24, 556–557 (1938)
46. Gödel, K.: The Consistency of the Axiom of Choice and of the Generalized Continuum-

Hypothesis with the Axioms of Set Theory, vol. 17. Princeton University Press (1940)
47. Gödel, K.: Russell’s mathematical logic. In: Schlipp, P.A. (ed.) The philosophy of Bertrand

Russell, pp. 123–153. Northwestern University, Evanston and Chicago (1944). Reprinted in
[1]. Page references are to the reprinting

48. Hellman, G.: Predicativism as a philosophical position. Revue Internationale de Philosophie
3, 295–312 (2004)

49. Hodes, H.T.: Why ramify? Notre Dame J. Formal Logic 56(2), 379–415 (2015)
50. Howard, W.A.: Some Proof Theory in the 1960’s. In: Odifreddi, P. (ed.) ‘Kreiseliana. About

and Around Georg Kreisel’, pp. 274–288. A K Peters (1996)
51. Jacquette, D. (ed.): Philosophy of Mathematics: An Anthology. Wiley-Blackwell (2001)
52. Jäger, G.: Metapredicative and explicit Mahlo: a proof-theoretic perspective. In: R. Cori et al.

(ed.) Proceedings of Logic Colloquium 2000. Association of Symbolic Logic Lecture Notes
in Logic, vol. 19, pp. 272–293. AK Peters (2005)

53. Kleene, S.C.: Quantification of number-theoretic functions. Compositio Mathematica 14, 23–
40 (1959)

54. Kreisel, G.: Ordinal logics and the characterization of informal concepts of proof. In: Proceed-
ings of the International Congress of Mathematicians (August 1958), pp. 289–299. Gauthier–
Villars, Paris (1958)

55. Kreisel, G.: La prédicativité. Bulletin de la Societé Mathématique de France 88, 371–391
(1960)

56. Kreisel, G.: Principles of proof and ordinals implicit in given concepts. In: Kino, R.E.V.A.,
Myhill, J. (eds.) Intuitionism and Proof Theory, pp. 489–516. North-Holland, Amsterdam
(1970)

57. Linsky, B.: Propositional functions and universals in principia mathematica. Austr. J. Philos.
66(4), 447–460 (1988)

58. Maddy, P.: Naturalism in Mathematics. Oxford University Press, Oxford (1997)
59. Mancosu, P.: From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the

1920s. Oxford University Press, Oxford (1998)
60. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.E., Shepherdson,

J.C. (eds.), Logic Colloquium 1973. North–Holland, Amsterdam (1975)
61. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)
62. Martin-Löf, P.: The Hilbert–Brouwer controversy resolved? In: van Atten, E.A. (ed.) One

Hundred Years of Intuitionism (1907 – 2007), Publications des Archives Henri Poincaré,
pp. 243–256 (2008)

63. Myhill, J.: The undefinability of the set of natural numbers in the ramified principia. In:
Nakhnikian, G. (ed.) Bertrand Russell’s Philosophy, pp. 19–27. Duckworth, London (1974)

64. Nelson, E.: Predicative Arithmetic. Princeton University Press, Princeton (1986)
65. Parsons, C.: The impredicativity of induction. In: Detlefsen, M. (ed.) Proof, Logic, and For-

malization, pp. 139–161. Routledge, London (1992)
66. Parsons, C.: Realism and the debate on impredicativity, 1917–1944. Association for Symbolic

Logic (2002)
67. Parsons, C.: Mathematical Thought and Its Objects. Cambridge University Press, Cambridge

(2008)
68. Pohlers, W.: Proof Theory: The First Step into Impredicativity, Universitext. Springer, Berlin

(2009)
69. Poincaré, H.: Les mathématiques et la logique. Revue de Métaphysique et Morale 13, 815–835

(1905)



446 L. Crosilla

70. Poincaré, H.: Les mathématiques et la logique. Revue deMétaphysique et deMorale 14, 17–34
(1906)

71. Poincaré, H.: Les mathématiques et la logique. Revue de Métaphysique et de Morale 14, 294–
317 (1906)

72. Poincaré, H.: La logique de l’infini. Revue de Métaphysique et Morale 17, 461–482 (1909)
73. Poincaré, H.: La logique de l’infini. Scientia 12, 1–11 (1912)
74. Ramsey, F.P.: Foundations of mathematics. Proc. Lond. Math. Soc.25 (1926). Reprinted in [75]
75. Ramsey, F.P.: Foundations of Mathematics and Other Logical Essays. Routledge and Kegan

Paul (1931)
76. Rathjen, M.: The higher infinite in proof theory. In: Makowsky, J.A., Ravve, E.V. (eds.) Logic

Colloquium ’95’. Springer Lecture Notes in Logic, vol. 11. Springer, New York, Berlin (1998)
77. Rathjen, M.: The realm of ordinal analysis. In: Sets and proofs (Leeds, 1997). London Mathe-

matical Society LectureNote Series, vol. 258, pp. 219–279. CambridgeUniv. Press, Cambridge
(1999)

78. Rathjen, M.: Theories and ordinals in proof theory. Synthese 148(3), 719–743 (2006)
79. Russell, B.: The Principles of Mathematics. Routledge (1903)
80. Russell, B.: ‘Les paradoxes de la logique’. Revue de métaphysique et de morale 14, 627–650

(1906)
81. Russell, B.: On some difficulties in the theory of transfinite numbers and order types. Proc.

Lond. Math. Soc. 4, 29–53 (1906)
82. Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30, 222–262

(1908)
83. Russell, B.: Essays in Analysis. In: Lackey, D. (ed.). George Braziller, New York (1973)
84. Sacks, G.E.: Perspectives in Mathematical Logic. Higher recursion theory. Springer, Berlin

(1990)
85. Schütte, K.: Eine Grenze für die Beweisbarkeit der Transfiniten Induktion in der verzweigten

Typenlogik. Archiv für mathematische Logik und Grundlagenforschung 7, 45–60 (1965)
86. Schütte, K.: Predicative well–orderings. In: Crossley, J., Dummett, M. (eds.) Formal Systems

and Recursive Functions. North–Holland, Amsterdam (1965)
87. Sieg, W.: Hilbert’s programs: 1917–1922. Bull. Symb. Logic 5(1), 1–44 (1999)
88. Simpson, S.G.: Partial realizations of Hilbert’s program. J. Symb. Logic 53(2), 349–363 (1988)
89. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic.

Springer, Berlin (1999)
90. Simpson, S.G.: Predicativity: the outer limits. In: Reflections on the foundations ofmathematics

(Stanford, CA, 1998). Lecture Notes Logic 15, Assoc. Symbol. Logic, Urbana, IL, 130–136
(2002)

91. Spector, C.: Recursive well-orderings. J. Symb. Logic 20, 151–163 (1955)
92. Stein, H.: Logos, logic and logistiké. In: Asprey, W., Kitcher, P. (eds.) History and Philosophy

of Modern Mathematics, pp. 238–59. University of Minnesota, Minneapolis (1988)
93. Strahm, T.: Unfolding schematic systems, this volume (2017)
94. Takeuti, G.: Proof Theory, 2nd edn. North Holland, Amsterdam (1987)
95. Wang, H.: The formalization of mathematics. J.Symb. Logic 19(4), 241–266 (1954)
96. Weaver, N.: Predicativity beyond �0 (2005). Preprint submitted to the arXiv repository:

arXiv:math/0509244
97. Weyl, H.: Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis, Veit,

Leipzig. Translated in English, Dover Books on Mathematics, 2003. (Page references are to
the translation) (1918)

98. Weyl, H.: Philosophy of Mathematics and Natural Science. Princeton University Press (1949).
An expandedEnglish version of Philosophie derMathematik undNaturwissenschaft,München,
Leibniz Verlag (1927)

99. Whitehead, A.N., Russell, B.: Principia Mathematica, 3 Vols. Cambridge University Press,
Cambridge (1910, 1912, 1913); 2nd edn (1925) (Vol 1), 1927 (Vols 2, 3); abridged as Principia
Mathematica to *56. Cambridge University Press, Cambridge (1962)

http://arxiv.org/abs/math/0509244


Predicativity and Feferman 447

Author Biography

Laura Crosilla graduated in philosophy from the University of Florence and obtained her Ph.D.
in mathematical logic from the University of Leeds. She has held postdoctoral positions at the
Ludwig-Maximilian University Munich, the University of Florence and the University of Leeds.
Her research interests include constructive set theory, proof theory and constructive type theory.
Her main research interest at present is the philosophy of mathematics, with particular focus on
constructive mathematics and predicativity.



Sameness

Dag Westerståhl

Abstract I attempt an explication of what it means for an operation across domains
to be the same on all domains, an issue that (Feferman, S.: Logic, logics and logicism.
Notre Dame J. Form. Log. 40, 31–54 (1999)) took to be central for a successful
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1 Introduction

In three fairly recent papers, Sol Feferman discussed the question of logicality, of
what makes some symbols logical and others not.1 Driven by a “personal feeling that
the logical operations do not go beyond those represented in FOL” [5], he explored
different ways of characterizing logicality, starting with his analysis and critique
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of the Tarski–Sher thesis. Tarski’s invariance criterion, from [16], was that logical
notions are those which are permutation invariant; a property I will call Perm. [15]
strengthened the requirement to isomorphism invariance (Isom).2 While granting
that Isom is a necessary feature of logical constants, Feferman argued that it is far
from sufficient, and suggested several stronger criteria that essentially narrow down
the range of logical constants to those definable in FOL.

In this note I focus on just one part of his critique of the Tarski–Sher thesis. In
[4], he thought of this as “perhaps the strongest reason for rejecting the Tarski– Sher
thesis”, and formulated it as follows: “No natural explanation is given by it of what
constitutes the same logical operation over arbitrary basic domains”.

Let us call this criterion Same. For a basic domain M , let 〈M〉 be a typed universe
over M , relative to some suitable type system. We are considering operations across
domains, i.e. operations O that with each M associate an object OM ∈ 〈M〉 of a
given type.

(Same) O satisfies Same if OM is the same operation on each M .

The question, of course, is what “same operation” should mean, and indeed if it is
possible to give it a “natural explanation”. The notion might seem inherently vague.
There are, however, a number of fairly strong intuitions about Same, so let us start
with these.

2 Some Intuitions

Feferman used an example from McGee of an operation across domains that clearly
does not satisfy Same: “a logical connective which acts like disjunction when the
size of the domain is an even successor cardinal, like conjunction when the size of
the domain is an odd successor cardinal, and like a biconditional at limits” [9]:577.
There are plenty of other, and simpler, examples in the same vein, for example, a
quantifier which acts like ∀ on universes with at least 100 elements, and as ∃ on
smaller universes. Thus:

(I1) There are numerous examples of operations across universes that behave dif-
ferently on different universes, and therefore do not satisfy Same.

From the examples illustrating (I1) it seems uncontroversial that Isom does not
imply Same. Perhaps a slightly more debatable question is if the implication in the
other direction holds. But if h is an bijection from M to M ′, and hence lifts to a
bijection from each Mτ to M ′

τ (see Sect. 3), it seems to me like a very reasonable

2Thereby avoiding to treat as logical, for example, an operator which behaves as the universal
quantifier on universes containing the number 0, and as the existential quantifier on other universes.
Also, Sher restricted attention to operations of type level at most 2, and Feferman in general follows
this restriction.
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requirement of sameness that an operation OM should map along h to the corre-
sponding operation on M ′

τ , that is, that h(OM) = Oh(M), which is precisely what
Isom says. So I think the following intuition is quite strong too.

(I2) Operations satisfying Same also satisfy Isom.

Note that (I2) does not derive from the standard thought that Isom captures topic
neutrality, and therefore is a necessary feature of logicality. Rather, we are simply
using the idea that isomorphic models have, in the strictest sense, the same structure.

Our next intuition about sameness is something practically everyone would agree
to:

(I3) The (interpretations of the) usual first-order symbols ∀, ∃,¬,∧,∨,→ satisfy
Same.

There is a simple but important lesson to be drawn from (I1) and (I3):

(1) The class of Same operations is not closed under definability (even first-order
definability).

Now one might think this already disqualifies the Same notion from playing any
significant part in characterizing logicality. Indeed, the role of definability for the
notion of logicality is itself an interesting and intricate issue, discussed in [2, 4, 5,
9], and recently, from a general model-theoretic perspective, in [3].

But that issue is not the topic of the present note. My aim is just to see what sense
can be made of Same. I conclude from (1) that if there is a precise version of this
idea, then its role for the notion of logicality would at most be as a requirement on
primitive logical constants, not defined ones.

Before moving on, we should note that [4] proposed to implement Same (at least
partly) by strengthening Isom toHom: invariance under homomorphisms. He proved
that the operations definable in first-order logic without equality are precisely those
definable from monadic operations across domains satisfying Hom. Granted that
Hom is accepted, this of course contradicts (1).

Later, however, Feferman abandoned Hom as a criterion of logicality, not (at
least not explicitly) for reasons related to Same, but rather because (a) equality does
not satisfy Hom, and (b) the restriction to monadic types seems rather arbitrary, and
once you admit operations of non-monadic types, a host of non-first-order operations
become definable; indeed, as [2] showed, the Hom operations of arbitrary type are
exactly those definable in L∞∞ without equality (which, as Feferman points out, for
a language with finitely many predicate symbols, has essentially the same expressive
power as full L∞∞).

It also seems to me that Hom has a serious problem with Same. It requires invari-
ance even when you shrink the universe (homomorphically) to a single point. But,
just to take an example, couldn’t it be that the action of an operation across domains,
say, on some set arguments, essentially depends on whether these are disjoint or not?
Such dependencies will get lost if the domain is shrunk enough. It would at least
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require some independent argument, I think, to disqualify such operations from the
start, which is what Hom does. For these reasons, I will ignoreHom in what follows,
and maintain that (1) is a feature of the notion of sameness we are after.

3 Types and Quantifiers

I restrict attention, in much of what follows, to the operations on domains usually
called (generalized or Lindström) quantifiers. This is because intuitions, and facts, are
simpler for quantifiers, ormore generally for operations of type level≤ 2. Eventually,
of course, one would like to be able to deal with operations of all types.

The type system used in [4], let us call it TFT, is (with slight notational dif-
ferences) as follows: e, t are basic type symbols, complex types symbols have the
form 〈σ1 . . .σn, τ 〉. Given a domain M , Me = M , Mt = {0, 1}, and M〈σ1...σn ,τ 〉 =
M

Mσ1×···×Mσn
τ . Finally, 〈M〉 = ⋃

τ Mτ , where τ varies over the set of type symbols.
For many purposes, relational types are somewhat simpler to deal with. Every

type symbol τ in TFT can be uniquely written as

τ = 〈σ11 . . .σ1k1, . . . , 〈σn1 . . .σnkn , τ0〉 . . .〉

where τ0 is either e or t . Following [21], call τ individual if τ0 = e and Boolean if
τ0 = t . Boolean types are relational but their arguments need not be; cf. 〈〈e, e〉, t〉.
Define the strictly relational types of TFT inductively as follows:

τ is strictly relational iff τ is either basic or of the form 〈σ1 . . .σn, t〉, where each
σi is strictly relational. (e is included for convenience here.)

For these types, a simpler relational type system, call it RT, is the following: the
only basic type symbol is e, and complex type symbols have the form (σ1, . . . ,σn).
GivenM ,Me = M , andM(σ1,...,σn) = P(Mσ1 × · · · × Mσn ).

3 Then it is easy to verify
that RT is isomorphic to the strictly relational part of TFT, and that operations across
domains in this part of TFT transfer in an obvious way to operations across domains
in RT, and vice versa.

Finally, for (generalized) quantifiers, there is the widely used type notation from
[8]; we can extend it slightly to include 0-ary relations (i.e. truth values) as argu-
ments, so that propositional connectives are quantifiers too. Thus, a quantifier of
type 〈k1, . . . , kn〉 (where each ki ≥ 0) is an operation Q across domains such that,
for each M , QM is an n-ary relation between relations over M , of arities k1, . . . , kn ,
respectively.4 For example, if Q is of type 〈1, 0, 3〉, then QM relates a subset of M ,
a truth value, and a subset of M3. A binary propositional connective like ∧ has type

3Stipulating that the cartesian product of the empty sequence () of sets is {∅}, we have M() =
P({∅}) = {∅{∅}} = {0, 1}, so () corresponds to the type t in TFT.
4If πm is the TFT type symbol 〈em , t〉 of m-ary relations between individuals (and π0 = t), type
〈k1, . . . , kn〉 corresponds to 〈πk1 . . .πkn , t〉. Similarly in RT, it corresponds to ((ek1 ), . . . , (ekn )).
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〈0, 0〉; here we can think of ∧M as the usual truth function (which is independent of
M).5 A quantifier of type 〈k1, . . . , kn〉 is (pure) monadic, if each ki is ≤ 1 (is = 1).

In familiar notation, L(Q, Q′, . . .) is first-order logic (FOL)with addedquantifiers
Q, Q′, . . .: for each quantifier one adds a corresponding variable-binding operator
of the same type, and extends the syntax and the definition of satisfaction accord-
ingly; details can be found in any textbook or survey paper dealing with generalized
quantifiers. For logics L and L ′, L ≤ L ′ means that every L-sentence is equivalent to
(has the same models as) some L ′-sentence, L ≡ L ′ means that L ≤ L ′ and L ′ ≤ L ,
and L < L ′ means that L ≤ L ′ and L ′ � L .

In logic, one generally requires Q, Q′, . . . to satisfy Isom, which has the effect
that L(Q, Q′, . . .)-sentences preserve their truth value across isomorphic models.
This is of course consonant with intuition (I2).

4 Extension and a Clash of Intuitions

A serious candidate for a precise notion of sameness is the property of Extension
(Ext), introduced by van Benthem.6 For quantifiers it is the following condition:

A quantifier Q of type 〈k1, . . . , kn〉 satisfies Ext if, whenever M ⊆ M ′ and Ri ⊆
Mki for 1 ≤ i ≤ n, QM(R1, . . . , Rn) ⇔ QM ′(R1, . . . , Rn).

Indeed, this generalizes to all types in RT:

(Ext) An operator O across domains of type (σ1, . . . ,σn) isExt ifM ⊆ M ′ implies
that OM = OM ′ �M (where OM ′ �M = OM ′ ∩ (Mσ1 × · · · × Mσn )).

The reason this works is that types in RT are monotone in the following sense:

(2) If τ is an RT-type and M ⊆ M ′, then Mτ ⊆ M′
τ .

(2) is in stark contrast to TFT types7:

5I am using the same notation for the conjunction symbol and its interpretation (its corresponding
quantifier), and similarly later on for other quantifier symbols; this should not generate confusion.
6[19] made Ext part of the property of conservativity for type 〈1, 1〉 quantifiers. In [20] it was
isolated as a separate property, applicable to all types, and given the natural label ‘extension’. [21]
calls it ‘context insensitivity’.
7Call a TFT-type symbol τ truth-functional if it does not contain e, and extended truth-functional
if it is either truth-functional or of the form

〈σ11 . . .σ1k1 , . . . , 〈σn1 . . .σnkn , e〉 . . .〉
where each σi j is truth-functional. [24] shows that the monotone types in TFT are exactly the
extended truth-functional ones, and that all other TFT-types τ are disjoint in the sense that M �= M ′
implies Mτ ∩ M′

τ = ∅.
One way to make TFT-types monotone is to allow partial functions rather than just total ones.

But this raises other issues for a formulation of Ext; the situation is further discussed in [24].
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(3) For most TFT-types τ , if M is a proper subset of M ′, then Mτ ∩ M′
τ = ∅.

This is the main reason it is more problematic to define a natural version of Ext for
arbitrary TFT-types.

As far as I know, van Benthem did not explicitly connect Ext to the Same
idea; that connection is discussed extensively in [11], Ch. 3.4–5. But surely Ext
is in itself a very strong notion of sameness across domains. It says that only the
elements of M belonging to some tuple in some Ri matter for the truth value of
the statement QM(R1, . . . , Rn). Extending the universe beyond that has no effect:
the operation remains the ‘same’. More precisely, for R ⊆ Mk , let field(R) = {a ∈
M :∃(a1, . . . , ak) ∈ R ∃ j a = a j }, and let field(R1, . . . , Rn) = ⋃n

i=1 field(Ri ). Then
Ext for Q is equivalent to:

If field(R1, . . . , Rn) ⊆ M,M ′, then QM(R1, . . . , Rn) ⇔ QM ′(R1, . . . , Rn).

Here is a different formulation of essentially the same notion. The quantifiers Q
of type 〈k1, . . . , kn〉we are interested in are usually definable in standard set theories,
like ZF. That is, Q can be introduced by a ZF-formula ψ(M, R)with at most the free
variables M, R, a definition of Q, such that

∀M �= ∅ ∀R1 ⊆ Mk1 . . . ∀Rn ⊆ Mkn (QM(R1, . . . , Rn) ↔ ψ(M, R1, . . . , Rn))

Then:

(4) A definable quantifier Q is Ext iff it has a definition in which the variable M
does not occur.

Proof If Q has such a definition, it is immediate that Ext holds. Conversely, suppose
Q is Ext, and defined by ψ(M, R). We have

QM(R) ⇔ Qfield(R)(R)

Thus, QM(R) ⇔ ψ(field(R), R), and the right-hand side can be written as a ZF-
formula where at most the variables R occur. �

Thus, the following is a strong intuition about sameness:

(I4) Ext implies Same.

But now we have a clash of intuitions: (I2) and (I4) are incompatible! For if both
were true, it would follow that Ext implies Isom, which is manifestly not the case.
Many Ext quantifiers, such as the so-called Montagovian individuals (Ia)M(B) ⇔
a ∈ B, and quantified noun phrase denotations like (most student)M(B) ⇔ |student ∩
B| > |student − B|, where a is a fixed individual and student a fixed set, are Ext but
not Isom.

It is not surprising — in fact, I think it is inevitable — that some intuitions about
sameness clash. In the case of (I2) and (I4), we have already seen that they are based
on quite different ideas about sameness. I will come back to the question of what we
should conclude from this, but for now, in this and the next section, I take a closer
look at the status of Ext in the literature. To begin, here are some sample facts:
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(5) a. The propositional connectives are Ext.
b. The quantifiers ∃≥n are Ext (where (∃≥n)M(B) ⇔ |B| ≥ n), and more gen-

erally, the quantifiers ∃≥κ for any cardinal κ.
c. The universal quantifier ∀ is not Ext.
d. The trivial quantifiers 0 and 1 (in each type) are Ext.8

e. The class of Ext quantifiers (in any type) is closed under conjunction,
disjunction, and (outer) negation.

f. TheRescher quantifier QR and theChang quantifier QC are not Ext (where
we have (QR)M(B) ⇔ |B| > |M−B|, and (QC)M(B) ⇔ |B| = |M |).9

g. Under Ext, Perm is equivalent to Isom, for all operations across domains
of relational type.

As to (5-a), note that we are talking about propositional negation. Predicate nega-
tion is of type 〈〈e, t〉, 〈e, t〉〉, which is not relational. Together with (I3); (5-c) and
(5-f) indicate that the converse of (I4) fails, at least if these quantifiers are taken
to satisfy Same. Regarding (5-e), it seems a rather reasonable assumption that the
class of Same quantifiers (in any type) is also closed under boolean operations. But
note that certain types of quantifiers also have a natural notion of inner negation. For
example, in type 〈1, 1〉, we define (Q¬)M(A, B) ⇔ QM(A,M − B). Clearly, Ext
is not preserved under inner negation. In general, the class of Ext quantifiers is not
closed under (first-order) definability, since e.g. ∀ is definable from ∃ and ¬. (5-g),
finally, requires a small (but straightforward) argument, not given here.

I discuss Ext in connection with other quantifiers from mathematical logic in the
next section, but let me end this section with some remarks on the role of Ext in
formal semantics for natural language. Noun phrases, like Mary, the tallest man on
earth, most students, every professor, can be taken to denote type 〈1〉 quantifiers,
and determiners, like every, some, most, at most ten, infinitely many, to denote type
〈1, 1〉 quantifiers. For example,

mostM(A, B) ⇔ |A ∩ B| > |A−B|

and thus, for all M ,
[[most]] = most
[[most students]]M(B) ⇔ mostM([[student]], B)
Now it seems to be a linguistic fact that all determiner denotations, i.e. all type

〈1, 1〉 quantifiers that interpret natural language determiners, areExt. An explanation

8E.g. in type 〈1, 2〉, ¬0M (A, R) for all A ⊆ M and R ⊆ M2, and 1M (A, R) for all A ⊆ M and
R ⊆ M2.
9In the literature, the label ‘Rescher quantifier’ is often used for a stronger quantifier of type 〈1, 1〉,
let us call it more, where moreM (A, B) ⇔ |A| > |B| (which, incidentally, is Ext). (For example,
the survey article [10] uses ‘QR’ for more.) My usage here is historically more accurate, since
precisely the type 〈1〉 quantifier QR was introduced in the abstract [13]. Rescher also mentioned the
relativization of QR , which is the quantifiermost, defined bymostM (A, B) ⇔ |A ∩ B| > |A − B|;
most is strictly stronger than QR , but strictly weaker than more; see, for example, [11], Ch. 14.3.
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for this is that determiners serve to restrict the domain of quantification to the first
(noun) argument, and this enforces Ext.10

In fact, the Ext property is ubiquitous in natural language. The non-monadic
quantifiers that feature in the interpretation of linguistic constructions such as recip-
rocals, branching, cumulative quantification, possessives, etc., are all Ext; see [11]
for examples and discussion. Likewise, almost all type 〈1〉 noun phrase denotations
satisfy Ext; in particular, all denotations of restricted noun phrases of the form
[determiner + noun], when the noun has a fixed interpretation (most students, every
professor).

Indeed, the only exceptions seem to be certain noun phrases containing a word,
such as the English thing, which can be taken to denote the universe. Thus, the
denotations of everything, most things, all but five things, are not Ext.11 Since every,
most, all but five, are all Ext, it seems that the ‘blame’ for this state of affairs must
be placed on words like thing; more on this in Sect. 6 below.

5 Mathematical Quantifiers and EXT

A quick survey of quantifiers discussed in model theory— for example, as presented
in [10]— reveals that many of them are Ext, but some are not. We shall look at just a
few examples. The interest of these quantifiers lies in the model-theoretic properties
of the corresponding logics, such as varying degrees of compactness, Löwenheim-
Skolem properties, etc. But here the task is just to assess the status of Ext in a
model-theoretic context.

We have already encountered QR and QC as non-Ext quantifiers. Cardinality
quantifiers (∃≥ℵα

and variants), and cardinality comparison quantifiers like theHärtig
quantifier (IM(A, B) ⇔ |A| = |B|) andmoreM(A, B) ⇔ |A| > |B| (see note9, are
Ext.)

The Magidor-Malitz quantifiers Qn
κ, defined, for R ⊆ Mn , by

(Qn
κ)M(R) ⇔ ∃X ⊆ M(|X | = κ & Xn ⊆ R),

are Ext, and so are the related Ramsey quantifiers, a typical variant of which is
defined as follows: for Q of type 〈1, 1〉, A ⊆ M , and R ⊆ Mn , let

(Ramn(Q))M(A, R) ⇔ ∃X ⊆ A(QM(A, X) & Xn − I d n
X ⊆ R)

10More precisely, it means that determiner denotations are relativizations of type 〈1〉 quantifiers
(see Sect. 5), which, for type 〈1, 1〉 quantifiers, can easily be shown to be equivalent to saying that
they satisfy Ext and conservativity:

(Conserv) For all M and all A, B ⊆ M , QM (A, B) ⇔ QM (A, A ∩ B).
11These denotations are ∀, QR , and (∃=5)¬, respectively. On the other hand, something, or at least
three things, also contain thing, but have Ext denotations.
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where I d n
X = {(a, . . . , a) : (a, . . . , a) ∈ Xn}. That is, if Q is Ext, so is Ramn(Q).

Now consider partially ordered quantifiers, i.e. quantifiers that express non-
linearly ordered prefixes of ∀x and ∃y. For most purposes, it suffices to consider
the Henkin prefix {∀x ∃x ′

∀y ∃y′

}

ψ(x, x ′, y, y′)

This expresses the type 〈4〉 Henkin quantifier QH , defined by

(QH )M(R) ⇔ ∃ f, g : M → M ∀a, b ∈ M R(a, f (a), b, g(b))

QH does not satisfy Ext: indeed, (QH )M(R) and M � M ′ implies ¬(QH )M ′(R).
But this is ‘made up for’ by the fact that QH relativizes.

To explain this, recall that for any quantifier Q of type 〈k1, . . . , kn〉, the relativiza-
tion Qrel of Q is the type 〈1, k1, . . . , kn〉 quantifier defined by

(Qrel)M(A, R1, . . . , Rn) ⇔ QA(R1 � A, . . . , Rn � A)

A quantifier is relativized if it is equal to Qrel for some Q, and we say that Q
relativizes if Qrel is definable in L(Q). (Note that it is always the case that Q is
definable in L(Qrel .) Now, QH relativizes, since it is easy to check that (QH )rel is
expressible by the following L(QH )-sentence:

QHxx ′yy′(Px ∧ Py → Px ′ ∧ Py′ ∧ Rxx ′yy′)

We will get back to what this has to do with Ext, but first we consider another group
of familiar quantifiers.

Order quantifiers express properties of a (usually linear) order relation R, for
example, that R is a well-order, or is dense and contains a countable dense subset, or
has cofinality ω, or is isomorphic to some given ordered set. Other order quantifiers
compare two order relations, R and S, saying, for example, that they are isomorphic.

Two things are striking (from our perspective) about the discussion of these quan-
tifiers in the literature. First, R is sometimes taken to be an ordering of the universe,
and sometimes just an ordering of its field. In the former case, the quantifier is not
Ext; in the latter, it usually is. Second, not much attention is paid to this difference,
apparently since it usually doesn’t matter for the relevantmodel-theoretic facts which
version is chosen. Let us see what the general situation is.

Given any quantifier Q of type 〈k1, . . . , kn〉, we obtain a ‘universal version’ Quni

of the same type:

(Quni )M(R1, . . . , Rn) ⇔ QM(R1, . . . , Rn) & field(R1, . . . , Rn) = M

Quni is definable from Q, since field(R) is defined by the first-order formula ϕR(x):

(6) ϕR(x) := ∨n
i=1 ∃x1 . . . ∃xki (Pi x1 . . . xki ∧ ∨ki

j=1 x = x j )
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Now, Quni is practically never Ext:

(7) If Quni is not the trivial quantifier 0, then Quni is not Ext.

Proof If Quni �= 0, there is M = (M, R) such that QM(R) and field(R) = M .
Let M ′ = M ∪ {a}, where a /∈ M . Then we have that (Quni )M(R) holds but not
(Quni )M ′(R), so Quni does not satisfy Ext. �

In the cases mentioned above, the (non-Ext) order quantifiers saying of the uni-
verse that R is a well-order of it, or an order of a given order type, or dense with
a countable dense subset, or has cofinality ω, all have the form Quni , where Q is
Ext and says the same thing about the field of R. Similarly for the isomorphism
quantifier.

The following general facts hold about Ext and the expressive power of Q, Qrel ,
and Quni .

Proposition 1 Let L be a logic and Q a quantifier of type 〈k1, . . . , kn〉.12
(a) Relativized quantifiers satisfy Ext.
(b) Ext quantifiers relativize. Hence, if Q is Ext, then Q is definable in L iff Qrel

is definable in L.
(c) If Q is Ext, then L((Quni )rel) ≡ L(Q). Moreover, if L relativizes,13

then Q is definable in L iff Quni is definable in L.

Proof (a): This is immediate from the definition of relativization.
(b): If Q is Ext, then, with R = R1, . . . , Rn: (Qrel)M(A, R) ⇔ QA(R � A) ⇔
QM(R � A) (by Ext). This condition is expressed in L(Q) by the sentence (where
xi = xi1 . . . xiki , A interprets P , and Ri interprets Pi , 1 ≤ i ≤ n):

Qx1, . . . , xn((P1x1 ∧
∧k1

j=1
Px1 j ), . . . , (Pnxn ∧

∧kn

j=1
Pxnj ))

(c): We first observe that, for A⊆M ,

(Quni )relM (A, R) ⇔ (Quni )A(R � A)
⇔ QA(R � A)& field(R � A) = A

⇔ QM(R � A) & field(R � A) = A (by Ext)

This shows that L((Quni )rel) ≤ L(Q). Moreover, for the special case A = field(R),
we obtain

QM(R) ⇔ (Quni )relM (field(R), R)

which shows that L(Q) ≤ L((Quni )rel).

12We assume that L extends FOL and is closed under substitution of formulas for predicate letters.
13If L = L(Q1, Q2, . . .), then L relativizes if each Qrel

i is definable in L . Similarly for other logics;
for example, FOL, Lω1ω , and Lω1ω1 relativize, but not e.g. Lωω1 .
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The second claim in (c) follows from the first: The left-to-right direction holds
trivially because Quni is definable in L(Q), and the other direction follows using this
easy folklore fact:

(8) If L relativizes, then Q is definable in L iff Qrel is definable in L .

�
By (a) of the proposition, for quantifiers likeQH that are notExtbut still relativize,

we can, if required, ‘pretend’ they are Ext, by using their relativizations instead,
which do satisfy Ext and have the same expressive power.14

This doesn’t work for order quantifiers of the form Quni , since these quantifiers
usually do not relativize, even though Q is Ext and hence relativizes.15 But by (c)
of the proposition, Q and Quni still do not differ with respect to definability in many
common logics. For example, the quantifier ‘R is a well-order of the universe’ is
definable in Lω1ω1 , by conjoining the order axioms with the sentence

¬∃x0 . . . xn . . . (
∧

n<ω
Pxn+1xn)

Since Lω1ω1 relativizes, it follows that the stronger quantifier ‘R is a well-order of its
field’ is also definable in Lω1ω1 .

16

Finally, let us get back to the (pure) monadic quantifiers. If Q is of type 〈1, . . . , 1〉,
then

(Quni )M(A1, . . . , An) ⇔ QM(A1, . . . , An) & A1 ∪ . . . ∪ An = M

Although Proposition 1 still applies, part (c) has no interest, since in general, Quni has
no interesting connection to Q. For example, ∀uni = ∃uni = (QR)uni = ∀, (¬∃)uni =
(¬QR)uni = 0. Similarly, (all uni )M(A, B) ⇔ B = M . The latter quantifier is neither
Ext nor Conserv (note10), and in a natural language (or any other?) context there
seems to be no reason to consider it.

Summing up then, it seems fair to say that failure of Ext usually plays no signif-
icant role for generalized quantifiers studied in mathematical logic. Many of these
quantifiers already satisfy Ext. Among the ones that don’t, some, like the Henkin
quantifier, relativize, and thus it doesn’t matter if one uses them or their relativized
versions which do satisfy Ext, since they have the same expressive power. As to
the group of order quantifiers, the (non-Ext) version describing properties of orders

14QH essentially involves the whole universe, which is reflected in the fact that (QH )uni = QH .
15I have not attempted a general statement and proof of this fact here, but intuitively it should be
fairly clear. Consider, for example, WOuni , where WOM (R) says that R is a well-ordering of its
field. Let η be the order type of the rationals, and let M = (M, A, R) be a model where R is a
linear order of M with the order type η + ω + η and A is the subset corresponding to ω, and let
M′ = (M ′, A′, R′) be a similar model, but where R′ has the order type η + ω + ω∗ + ω + η, and
A′ corresponds to ω + ω∗ + ω. Then (WOuni )relM (A, R) holds and (WOuni )relM ′ (A′, R′) fails, but
M and M′ cannot be distinguished in L(WOuni ). Indeed, over M′, L(WOuni ) is equivalent to
FOL, since there are no definable well-orders of the universe in M′.
16Of course, in this case, this is immediate from a slight adjustment of the order axioms; the point
here was to bring out the general situation.
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of the whole universe is usually strictly weaker than the (Ext) version where only
the field of the relation is ordered. Here we have seen that, as regards definability
in logics that themselves allow relativization, the difference between the two ver-
sions disappears. Of course, this does not show that this difference is irrelevant to
other model-theoretic properties of these quantifiers that have been studied. Still,
my claim would be that usually, when the weaker version is used, this is because it
slightly simplifies certain arguments, but these arguments can easily be adapted to
the stronger version as well.

Remark: I am not aware of any study of this issue in the literature. Restricting
attention to the property of compactness, here are three examples: (1) The well-order
quantifierWO (note15) is such that neither L(WO) nor L(WOuni ) is compact. (2) The
cofinality quantifier Qcf

ω , says of a linear order that it has cofinality ω in its field. [14]
showed that L(Qcf

ω ) is fully compact, but, for example, the proof in [17] uses (Qcf
ω )uni

instead. But the result about L((Qcf
ω )uni ) is only apparently weaker, since the proof is

easily adjusted to deal with the stronger quantifier. (3) Let (QD)M(R) ⇔ R is a dense
linear ordering of its field with a countable dense subset. Then L(QD) is countably
compact, and hence, so is L((QD)uni ). Indeed, the same proof of compactness can
be given in both cases, by translation into stationary logic L(aa), which is countably
compact; see [10].17 End of remark.

The situation is similar for monadic quantifiers, even though the version which
requires the quantifier to ‘act’ on the whole universe is usually totally uninteresting.
Here, the only non-Ext monadic quantifiers in the model-theoretic literature that
I know of are of type 〈1〉, notably QR , QC , and of course ∀ (and variants such
as (∃≥n)¬, etc.). ∀ relativizes (as does its variants), so one can just as well use
∀ rel = all. But QR and QC do not. Further, neither L(QR) nor L(QC) is compact;
in each there is a sentence with arbitrarily large finite models but no infinite model.
Both logics satisfy an upward Löwenheim-Skolem theorem, hence none of them can
characterize (ω,<), but it is not hard to show that this structure can be characterized
in both L((QR)rel) = L(most) and L((QC)rel).18

17However, Jouko Väänänen pointed out an exception (p.c.): the quantifier (not mentioned in [10])
(Qcard )M (R) ⇔ R is a |field(R)|-like linear ordering of its field, that is, each proper initial segment
has cardinality < |field(R)|. Then the sentence saying that R is discrete with a least element, and
that for all a, (Qcard )M (R � {b : bRa})), characterizes (ω,<), so L(Qcard ) is not compact. On the
other hand, it can be shown with techniques that go back to Vaught and Fuhrken that L((Qcard )uni )

is (countably) compact. So my claim is indeed tentative and does not hold across the board; it may
be still of some interest to find sufficient conditions for when it does.
18In other respects, L(QR) and L(QC ) are quite different: L(QC ) reduces to FOL on finite models,
whereas [1] showed that FOL< L(QR) < L(most) even on finite models (illustrating the need for
type 〈1, 1〉 quantifiers in natural language semantics).
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6 ‘Thing’

I said that the only thing that seems to lead to violations of Ext in a natural language
context are words like the English ‘thing’. This word arguably denotes an operation
across domains, which we may call a unary predicate, of relational type (e), defined
by

thingM = M for all M

We note that thing itself is Perm and Ext (and hence Isom, by (5-g)). Indeed, let the
unary predicate empty be defined by emptyM = ∅ for all M . Then we have:

(9) The only unary predicates satisfying Perm and Ext are thing and empty.

This is a special case of a more general fact.

Proposition 2 ([22]) The operations O across domains of relational type (en) that
satisfy Perm and Ext are exactly the ones that are first-order definable without
parameters by Boolean combinations of formulas of the form xi = x j , 1 ≤ i, j ≤ n.

A typical example of type (e3) would be

OM(R) = {(a, b, c) ∈ M3 : a = b or b �= c}

which is defined in pure first-order logic with identity by the formula

x1 = x2 ∨ ¬ x2 = x3

Getting back to the unary case, if we count empty as trivial, we can say that thing is
the only non-trivial logical unary predicate.19 Even though it ‘refers to the universe’
in an obvious sense, it satisfies Ext and therefore, at least according to (I4), Same.

In natural language semantics, it appears that all instances of non-Ext operations
across domains arise from replacing a fixed predicate, such as students in most
students, with thing: most things = QR . Curiously, thing itself is Ext, as is of course
most. This kind of replacement doesn’t always destroy Ext: for example, from at
least ten students we get at least ten things = ∃≥10. It can be shown that preservation
of Ext holds precisely when the determiner denotation in question is symmetric, in
the sense that QM(A, B) implies QM(B, A) for all M and all A, B ⊆ M .20

More generally, if we in a relativized quantifier of type 〈1, k1, . . . , kn〉 (which is
always Ext) replace the first argument by thing, we obtain the original quantifier
(which may or may not be Ext).

19[1] uses thing as a logical constant in its formal language.
20Provided Q is Conserv and Ext (see [11], Ch. 6.1).
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7 Taking Stock

After these observations about Ext, we can get back to Same. As we saw in Sect. 2,
the strongest intuitive cases of non-Same quantifiers are those where Q ‘behaves
differently’ on different M . Here are some more examples. Define (for all M �= ∅)

∀evenM =
{∀M if |M | is even

∃M otherwise

In other words (for all A ⊆ M),

∀evenM(A) ⇔
{
A = M if |M | is even
A �= ∅ otherwise

This seems like a clear case: ∀even does not satisfy Same. But what about the
following two test cases (restricting attention to finite universes)?

test1M(A) ⇔
{ |A| ≥ (|M | + 2)/2 if |M | is even

|A| ≥ (|M | + 1)/2 if |M | is odd

test2M(A) ⇔
{ |A| ≥ (|M | + 2)/2 if |M | is even

|A| ≥ (|M | − 1)/2 if |M | is odd

There is a strong inclination to treat test1 and test2 on a par: either both satisfy Same
or both don’t; the difference between them seems minimal. And guided by the clear
case of ∀even, we may think the latter option is most reasonable.

But now we have another clash of intuitions. We have so far assumed that QR

satisfies Same, but, in fact,
test1 = QR

(on finite universes)! So what shall we do: say that test1 but not test2 satisfies Same,
or that both do (but ∀even does not), or that none of them does?

We will see below that, for quantifiers of this particular kind, there is in fact a
principled way to count test1 and ∀, but not test2 or ∀even, among the quantifiers
that behave ‘the same’ on all universes. However, for arbitrary quantifiers and more
generally for operations across universes of arbitrary types, I think the example
just reinforces the conclusion we have already drawn: there simply is no precise
demarcation of the quantifiers, let alone the general operations across domains, that
accords with all of our intuitions about sameness.

One might object that there could a be a vague criterion that fits most of our
intuitions: there would then be clear cases of operations that satisfy the criterion, and
clear cases that don’t, but there would also be borderline caseswhere we don’t know
exactlywhat to say. Thismaywell be the case. But, first, so far there is no specification
of such a criterion that goes beyond the basic intuitions we have discussed in this
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note. Second, and more importantly, our goal was precisely to replace this vague
notion by an exact criterion. My contention, then, is that it is not possible, in this
way, to be faithful to all of those intuitions.

Certainly, this is not something I have demonstrated; presumably, it is not some-
thing that could be demonstrated. But cases analogous to test1 and test2 can be con-
structed ad libitum.More generally, along the lines above one can generate sequences
Q1, . . . , Qn of quantifiers such that the difference between each Qi and Qi+1 seems
so small that they should not differ with respect to sameness, but where Q1 is a
familiar quantifier normally thought of as being the same across different domains,
whereas Qn is an ‘artifical’ quantifier without that property. Similarly, we saw that
the intuitions behind (I2) concerning Isom and the intuitions behind (I4) concerning
Ext, if taken to hold unrestrictedly, are at odds with each other.

8 A Proposal

The conclusion just reached may seem disappointing. But we can end on a more pos-
itive note. The situation is precisely of a kind, I think, where a Carnapian explication
is called for. In the present case, here is a proposal:

• Define: Same = Isom + Ext

In other words, stipulate that the conjunction of one necessary — on one intu-
ition— and one sufficient— on another intuition— condition for sameness together
constitute a necessary and sufficient condition.21 Isom says that the operation across
domains is preserved under structure-preserving maps. Ext says that the part of the
domain which is outside the arguments of the operation never matters. Let’s require
both.

This means, in effect, that we keep (I2) but reject (I4). It also means that, for
example, ∀ is does not satisfy Same. As I have argued, effects of this kind cannot be
avoided.

A proposal like this is not right or wrong, but more or less fruitful. To evaluate it,
one needs to look at its consequences, which is essentially what I have done in this
note. First, it entails that sameness is not closed under (first-order) definability, but
we already accepted that. It is closed, however, under the usual Boolean operations.

21As we noted, the proposal that Same = Perm + Ext is equivalent. We can also formulate the
proposal more succinctly: say that an n-ary operation O across domains of relational type is closed
under injections if for all M , all relations Ri over M of suitable type, and all injections π from M
to M ′,

(Inj) OM (R1, . . . , Rn) ⇔ OM ′ (π(R1), . . . ,π(Rn))

It is easy to check that Inj ≡ Isom + Ext. However, the ideas behind Isom and Ext are quite
different, so they might as well be kept separate.
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Second, many operations, in particular quantifiers, that seem to be defined in the
same way across different universes will not satisfy our precise version of Same. But
we found reasons to believe that this is inevitable.Whatmatters instead is whether the
proposal has unacceptable consequences for familiar operations. Since sameness is
not closed under definability anyway, we may be satisfied if these familar operations
are definable (in some suitable sense) from Same operations. This seems indeed to
hold in most cases. In particular, as regards the quantifiers in mathematical logic we
looked at, all of them are Isom and many are Ext, and most of the non-Ext ones are
either definable from Ext quantifiers, or can be replaced without loss by their Ext
versions (their relativizations).

This is even clearer for natural language quantifiers: the only non-Ext ones that
occur seem to be obtained from Ext quantifiers (such as determiner denotations)
and the unary (and Isom and Ext) predicate thing. On the other hand, many noun
phrase denotations and some determiner denotations are not Isom. Examples of latter
are possessives like Mary’s or most students’. But it seems correct to say in these
cases that, as determiner denotations, these are indeed not Same. The (standard)
truth conditions for Q students’ A are B are

Poss(Q, [[student]], R)M(A, B) ⇔

QM({a ∈ [[student]] : ∃b ∈ A R(a, b)}, {a : Ra ⊆ B})
where R is a possessive relation and Ra = {b : R(a, b)}.22 If we, as is reasonable,
take Q′ = Poss(Q, [[student]], R) to be the denotation ofQ students’, then Q′ is Ext
(provided Q isConserv and Ext), but not Isom (even if Q is). As long as [[student]]
and R are fixed, Poss(Q, [[student]], R) is not the same across different domains. But
if they are taken as variable arguments, we obtain an Isom and Ext type 〈1, 2, 1, 1〉
quantifier Q′′ defined by Q′′(C, R, A, B) ⇔ Poss(Q,C, R)(A, B).

It could perhaps be argued that the type 〈1〉 Rescher quantifier QR and the Chang
quantifier QC , which are Isom but not Ext and do not relativize, are particularly
problematic cases for our proposal, since the intuition that these are the same on each
domain may seem quite strong. These quantifiers have somewhat different logical
properties than their relativizations, not with respect to compactness but with respect
to being able to characterize the natural number ordering. So we cannot always use
the relativizations instead.

Note that QR and QC are monotone increasing type 〈1〉 quantifiers, in the sense
that (QR)M(A) and A ⊆ A′ ⊆ M implies (QR)M(A′), and similarly for QC . For
these quantifiers, we can, if we want, (under a few extra assumptions) replace Ext
by a weaker requirement of sameness.

22This is a special case of the more general truth conditions for possessives discussed at length in
[12].
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8.1 Smooth Quantifiers

Consider Isom and monotone increasing type 〈1〉 quantifiers over finite universes.
(This reduces QC to the universal quantifier.) For these, we know exactly which ones
relativize:

Proposition 3 ([7, 23]) A quantifier of the above kind relativizes if and only if it is
first-order definable.

Also, we know exactly which ones are Ext. The following is easy to show with
standard methods from e.g. [19] or [11].

Proposition 4 A quantifier of the above kind is Ext if and only if it is either the
trivial quantifier 0 or ∃≥k for some k ≥ 0.

There are uncountably many non-first-order definable, and hence non-Ext, quan-
tifiers of this kind. Is there a reasonable Carnapian explication of which of these
nonetheless ‘behave the same’ on all (finite) universes?

Such a property has in fact been discussed in the literature. The idea is that when
the universe is extended with just one new element, the behavior must not change
too much. More precisely, since Q is monotone increasing and Isom, for each M
there is a minimum size m, depending only on |M |, such that QM(A) ⇔ |A| ≥ m.
Thus Q is determined by a function f : N → N such that f (n) ≤ n + 1; we let
f (|M |) = n + 1 when QM = ∅. Now, the requirement on Q, i.e. on f , is that for all
n, f (n) ≤ f (n + 1) ≤ f (n) + 1. In other words, when one element is added to M ,
the minimum size either stays the same or increases with 1.

This property was called smoothness in [18], who showed that smooth quantifiers
are well-behaved in various logical ways, but it was already introduced (under differ-
ent names) in [19, 20], where one idea was that smooth quantifiers have a particularly
uniform behavior that might be a reason to classify them as logical. My point here is
that smoothness seems a quite reasonable requirement of sameness across different
universes. When a new element is added, the quantifier is not required to stay exactly
the same — that only holds, among the quantifiers discussed here, for 0 and ∃≥k —
but it is allowed to change ‘as little as possible’ (as much as the universes changes).

We can now check that QR = test1 from Sect. 7 is indeed smooth, as is ∀, whereas
test2 and ∀even are not: the minimum level of test2 jumps two steps when we go, for
example, from a universe with 2k−1 elements to one with 2k elements. Similarly,
the level for ∀even jumps two steps from a universe with 2k elements to one with
2k+1 elements.23

Thus, if desired, we may use a different stipulation of the Same property for this
particular class of quantifiers: Isom + Smooth, instead of the much more restrictive
Isom + Ext. However, there seems to be no way to extend this idea to quantifiers of
arbitrary type.

23We may note that, although test2 and ∀even appear to be very different quantifiers, and intuitively
the latter seems clearly non-Same, they have essentially the same ‘jumping behavior’.
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9 Conclusion

The main conclusion of our discussion is not really surprising: the idea of being the
same operation on different domains is indeed vague, even when we grant — as is
motivated by fairly clear examples— that this property is not closed under definabil-
ity. However, there are strong intuitions about sameness, which can be cashed out
in precise constraints. I have focused on two: isomorphism invariance (Isom) and
‘extension invariance’ (Ext). The seemingly natural idea that the former is necessary
and the latter sufficient for sameness cannot be upheld, but I suggested that the con-
junction of the two is a fairly successful explication of sameness. It is a stipulation
that allows almost all quantifiers used in practice, both in model theory and in natural
language semantics, to be definable from Same operations. The stipulation does not
conform to every intuition about sameness, but this goal cannot be achieved anyway.
I also suggested that, for the special case of monotone type 〈1〉 quantifiers over finite
domains, the weaker constraint Isom + Smooth does a better job of accounting for
sameness intuitions.

The observations in this note were motivated by the identification in [4] of same-
ness across domains as a crucial ingredience in the notion of logical operations. The
delineation of logicality is the more important, andmore difficult, task. But I do think
that the notion of sameness has some independent interest. Also, since (at least in my
view) logicality is closed under (suitably specified) definability, we cannot expect
sameness to be necessary for logicality. But it seems perfectly feasible to require
logical operations of relational type to be definable from Isom and Ext operations.
This is manifestly true for generalized quantifiers: Each Isom quantifier is definable
from an Isom and Ext quantifier, namely, its relativization.
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Some fifty years ago (1957 to be exact), Ernest Nagel and Kurt Gödel became
involved in a contentious exchange about the possible inclusion of Gödel’s origi-
nal work on incompleteness in the book, Gödel s Proof, then being written by Nagel
with James R. Newman.1 What led to the conflict were some unprecedented demands
that Gödel made over the use of his material and his involvement in the contents of
the book—demands that resulted in an explosive reaction on Nagel’s part. In the end
the proposal came to naught. But the story is of interest because of what was basi-
cally at issue, namely their provocative related but contrasting views on the possible
significance of Gödel’s theorems for minds versus machines in the development of
mathematics. That is our point of departure for the attempts by Gödel, and later
J.R. Lucas and Roger Penrose, to establish definitive consequences of those theo-
rems, attempts which—as we shall see—depend on highly idealized and problematic
assumptions aboutminds, machines, andmathematics. In particular, I shall argue that
there is a fundamental equivocation involved in those assumptions that needs to be
reexamined. In conclusion, that will lead us to a new way of looking at how the mind

1Nagel and Newman, Gödel’s Proof (NewYork: University Press, 1958); revised edition edited
by Douglas R. Hofstadter (New York: University Press, 2001).
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maywork in derivingmathematics which straddles themechanist and anti-mechanist
viewpoints.

The story of the conflict betweenGödel andNagel has been told in full in the intro-
ductory note by Charles Parsons and Wilfried Sieg to the correspondence between
them in Volume V of the Gödel Collected Works,2 so I shall confine myself to the
high points.

The first popular exposition of Gödel’s incompleteness theorems was published
by Nagel and Newman in 1956 in an article entitled “Goedel’s Proof” for the Sci-
entific American.3 The article was reprinted soon after in the four volume anthology
edited by Newman, The World of Mathematics: A Small Library of the Literature of
Mathematics from A’h-mosé the Scribe to Albert Einstein, Presented with Commen-
taries and Notes.4 That was an instant best-seller, and has since been reprinted many
times. Newman had been trained as a mathematician but then became a lawyer and
was in government service during World War II. Endlessly fascinated with mathe-
matics, he became a member of the editorial board of the Scientific American a few
years after the war.

Nagel had longbeen recognized as one of the leadingphilosophers of science in the
United States, along with Rudolf Carnap, Carl Hempel, and Hans Reichenbach. Like
them, hewas an immigrant to theU.S.A., but unlike themhehad comemuch earlier, in
1911 at the age of ten. Later, while teaching in the public schools, Nagel received his
bachelor’s degree at City College of NewYork in 1923 and his Ph.D. in philosophy at
ColumbiaUniversity in 1930. Except for one year at RockefellerUniversity, his entire
academic career was spent at Columbia, where he became the John Dewey Professor
of Philosophy and was eventually appointed to the prestigious rank of University
Professor in 1967. In his philosophical work, Nagel combined the viewpoints of
logical positivism and pragmatic naturalism. His teacher at City College had been
Morris R. Cohen, and with Cohen in 1934 he published An Introduction to Logic and
Scientific Method;5 one of the first and most successful textbooks in those subjects.

Soon after the appearance of Nagel and Newman’s article on Gödel’s theorems
in The World of Mathematics, they undertook to expand it to a short book to be
published by New York University Press. Moreover, they had the idea to add an
appendix which would include a translation of Gödel’s 1931 paper on undecidable
propositions together with the notes for lectures on that work that he had given
during his first visit to Princeton in 1934.6 Early in 1957 their editor at the Press,
Allan Angoff, approached Gödel for permission to use that material. Though Gödel

2Gödel, Collected Works, Volume V: Correspondence H-Z,, Solomon Feferman et al., eds.,
(NewYork: Oxford, 2003), p. 135ff.
3Scientific American, cxciv (June 1956): 71–86.
4In The World of Mathematics: A Small Library of the Literature of Mathematics from A’ h-mosé the
Scribe to Albert Einstein, Presented with Commentaries and Notes, Volume 3 (New York: Simon
and Schuster, 1956), pp. 1668–1695.
5Nagel and Cohen, An Introduction to Logic and Scientific Method (New York: Harcourt Brace,
1934).
6Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme
I,” Monatshefte fur Mathematik und Physik, xxxviii (1931): 173–198; reprinted with facing English
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said he liked the Nagel–Newman article very much as a nontechnical introduction to
his work, he said that he was concerned with some troublesome mistakes7 that had
been made in it and even more so with the interpretation of his results, so he was
reluctant about agreeing to the proposal. To encourage him to accept, Nagel paid a
lengthy personal visit to him at the Institute in March of 1957. A week later, Gödel
wrote Angoff with three conditions. First,

I would have to write an introduction to the appendix on the one hand in order to mention
advances that have been made after the publication of my papers, [and] on the other hand
in order to supplement the considerations given in the book, about the philosophical impli-
cations of my results. I am not very well pleased with the treatment of these questions that
came out in the Scientific American and in the “World of Mathematics”. This, for the most
part is not the fault of the authors, because almost nothing has been published on this subject,
while I have been thinking about it in the past few years.8

A second condition, somewhat of a surprise, was that he share in some way in the
royalties of the book. But the most contentious condition was the one he put at the
beginning of his letter to Angoff: “In view of the fact that giving my consent to this
plan implies, in some sense, an approval of the book on my part, I would have to
see the manuscript and the proof sheets of the book, including the appendix.” This
condition was made even more explicit in a follow-up letter:

Of course I shall have to see the manuscript of the book before I sign the contract, so that
I can be sure that I am in agreement with its content, or that passages with which I don’t
agree can be eliminated, or that I may express my view about the questions concerned in the
introduction (ibid., p. 4).

Gödel also wrote Nagel saying that he had made to Angoff “the same suggestions
I mentioned to you in our conversation in Princeton.” But when Nagel was shown the
correspondence with Angoff, he exploded. He thought the proposal to share royalties
was “grasping and unreasonable” yet was prepared to accept that. But what really
ticked him off, as he wrote Angoff, was Gödel’s number one condition:

I could scarcely believe my eyes when I read his ultimatum that he is not only to see the
manuscript of our essay before signing the contract with you, but that he is to have the right to
eliminate anything in the essay of which he disapproves. In short, he stipulates as a condition
of signing the contract the right of censorship.

This seems to me just insulting, and I decline to be a party to any such agreement with Gödel
.... If [his] conditions were granted, Jim and I would be compelled to make any alterations
Gödel might dictate, and we would be at the mercy of his tastes and procrastination for a

translation in Gödel, Collected Works, Volume I: Publications 1929–1936, Feferman et al., eds.
(New York: Oxford, 1986), pp. 144–195.
7See Hilary Putnam, “Review of Nagel and Newman (1958),” Philosophy of Science xxvii, 2
(1960): 205–207, for a review of Nagel and Newman’s Gödel’s Proof in which several errors are
identified, the most egregious being the misstatement of Gödel’s first incompleteness theorem and
Rosser’s improvement thereof on p. 91.
8Gödel, Collected Works, Volume IV: Correspondence A—G, Feferman et al., eds. (New York:
Oxford, 2003), p. 1.
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period without foreseeable end .... Gödel is of course a great man, but I decline to be his
slave.9

Nagel’s fears about how things might go if they agreed to this condition were indeed
well founded, but he left it in Angoff’s hands to communicate his displeasure with
it. In the event, Angoff tried to avoid direct conflict, and wrote Gödel in a seemingly
accomodating but ambiguous way. It was not until August 1957 that Nagel wrote
Gödel himself making clear his refusal to accept it:

... I must say, quite frankly, that your ... stipulation was a shocking surprise to me, since
you were ostensibly asking for the right to censor anything of which you disapproved in our
essay. Neither Mr. Newman nor I felt we could concur in such a demand without a complete
loss of selfrespect. I made all this plain to Mr. Angoff when I wrote him last spring, though
it seems he never stated our case to you. I regret now that I did not write you myself, for
I believe you would have immediately recognized the justice of our demurrer. (ibid., pp.
152–153).

This was passed over in silence in Gödel’s response to Nagel. In the end, the proposal
to include anything by him in the book by Nagel and Newman came to naught, and
even the specific technical errors which Gödel could have brought to their attention
remained uncorrected. Since this was to be the first popular exposition that would
reach a wide audience, Gödel had good reason to be concerned, but by putting the
conditions in the way that he did he passed up the chance to be a constructive critic.

As an aside, it is questionable whether Gödel indeed recognized the “justice of
[their] demurrer.” He made a similar request seven years later, when Paul Benacerraf
and Hilary Putnam approached him about including his papers on Russell’s math-
ematical logic and Cantor’s continuum problem in their forthcoming collection of
articles on the philosophy of mathematics. Gödel feared that Benacerraf and Putnam
would use their introduction to mount an attack on his platonistic views, and he
demanded what amounted to editorial control of it as a condition for inclusion. In
that case, the editors refused straight off, but gave Gödel sufficient reassurance about
the nature of its contents for him to grant permission to reprint as requested.10

1 Gödel’s Concerns, Part I: The Formulation
of the Incompleteness Theorems

Recall that from his first letter to Angoff, one of the conditions that Gödel put for the
proposed appendix to the Nagel and Newman book was that he write an introduction
to it “in order to mention advances that have been made after the publication of my
papers” as well as “to supplement the considerations, given in the book, about the
philosophical implications ofmy results,” withwhich hewas “not verywell pleased.”

9Gödel, Collected Works, Volume V: Correspondence H—Z, pp. 138–139.
10Cf. Gödel,Collected Works, Volume II: Publications 1938–1974, Feferman et al., eds. (NewYork:
Oxford, 1990), p. 166.
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As to the first of these, Gödel would have wanted to use the opportunity to put on
record what he considered the strongest formulation of his incompleteness theorems.
This was signaled in a letter that he composed to Nagel early in 1957 but that was
apparently never sent. (A number of letters found in Gödel’s Nachlass were marked
nicht abgeschickt.) He there writes that

[c]onsiderable advances have been made ... since 1934. ...it was only by Turing’s work that
it became completely clear, that my proof is applicable to every formal system containing
arithmetic. I think the reader has a right to be informed about the present state of affairs.11

What he is referring to, of course, is Alan Turing’s analysis in 1937 of the concept
of effective computation procedure by means of what we now call Turing machines;
Gödel had readily embraced Turing’s explication after having rejected earlier propos-
als by Alonzo Church and Jacques Herbrand. But it was not until eight years after the
debacle with Nagel and Newman that Gödel spelled out the connection with formal
systems and his own work. That was in a postscript he added to the 1965 reprinting
of his Princeton lectures in the volume, The Undecidable,12 edited by Martin Davis:

In consequence of later advances, in particular of the fact that, due to A.M. Turing’s work,
a precise and unquestionably adequate definition of the general concept of formal sys-
tem can now be given, the existence of undecidable arithmetical propositions and the non-
demonstrability of the consistency of a system in the same system can now be proved rig-
orously for every consistent formal system containing a certain amount of finitary number
theory.
Turing’s work gives an analysis of the concept of “mechanical procedure” (alias “algorithm”
or “computation procedure” or “finite combinatorial procedure”). This concept is shown to
be equivalent with that of a “Turing machine”. A formal system can simply be defined to
be any mechanical procedure for producing formulas, called provable formulas. For any
formal system in this sense there exists one in the [usual] sense ... that has the same provable
formulas (and likewise vice versa) ... [Italics mine]

As we will see, there is much more to this identification than meets the eye; in fact,
in my view it is the source of a crucial misdirection in the minds versus machines
disputes that we shall take up below. By comparison, Nagel and Newman distinguish
the consequences of the incompleteness theorems for axiomatic systems and for
“calculating machines” in their concluding reflections as follows:

[Gödel’s theorems] show that there is an endless number of true arithmetical statements
which cannot be formally deduced from any specified set of axioms .... It follows, therefore,
that an axiomatic approach to number theory ... cannot exhaust the domain of arithmetical
truth ....13

Gödel’s conclusions also have a bearing on the question whether calculating machines can
be constructed which would be substitutes for a living mathematical intelligence. Such
machines, as currently constructed and planned, operate in obedience to a fixed set of direc-
tives built in, and they involve mechanisms which proceed in a step-by-step manner. But in

11Gödel, Collected Works, Volume V: Correspondence H—Z, p. 147.
12In Martin Davis, ed., The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions (Hewlett, NY: Raven, 1965); reproduced in Gödel, Collected
Works, Volume I: Publications 1929–1936, p. 369.
13Nagel and Newman, “Goedel’s Proof,” The World of Mathematics, p. 1694.
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the light of Gödel’s incompleteness theorem, there is an endless set of problems in elemen-
tary number theory for which such machines are inherently incapable of supplying answers,
however complex their built-inmechanismsmay be and however rapid their operations (ibid.,
p. 1695).

Of course, Gödel could charitably read their informal idea of calculating machines
simply to be explicated by the notion of Turing machines, but as we saw above, he
would have gone beyond that to stress that there is no essential difference between
these results.

The first thing that Gödel was surely reacting to on the philosophical rather than
the technical side was the statement by Nagel and Newman that

[the incompleteness theorems] seem to show that the hope of finding an absolute proof of
consistency for any deductive system in which the whole of arithmetic is expressible cannot
be realized, if such a proof must satisfy the finitistic requirements of Hilbert’s original
program (ibid., p. 1694).

What must have annoyed Gödel was that this, together with their further reflections
on the significance of the incompleteness theorems concerned matters to which he
had given a good deal of thought over the years, in some respects with overlapping
conclusions, in others contrary ones, but in all cases in much greater depth and with
much greater care and precision. The trouble was that almost none of his thought on
these questions had been published. With respect to the significance of the incom-
pleteness theorems for Hilbert’s finitist consistency program this was something that
he had made only one brief cautious comment about at the end of his 1931 paper on
undecidable propositions. But it was a matter he kept coming back to all through his
life, as we found when we unearthed unpublished lectures and seminar presentations
in his Nachlass. The first time his further views on this would begin to come out in
print would be in 1958, a year after the imbroglio with Nagel and Newman.14 Since
my main concern in the remainder of this article is with the minds versus machines
debate as it relates to the incompleteness theorems, I shall leave that matter at that.

14That was in the article, “Über eine bisher noch nicht benützte Erweiterung des finiten Standpunk-
tes,” Dialectica, xii (1958): 280–287; reprinted with facing English translation in Gödel, Collected
Works, Volume II: Publications 1938–1974, pp. 240–251. As a sign of his concern with the issues
involved, Gödel worked on a revision of that until late in his life, 1972, “On an Extension of Fini-
tary Mathematics Which Has Not Yet Been Used,” also in Gödel, Collected Works, Volume II, pp.
271–280. For the full story, see my forthcoming piece, “Lieber Herr Bernays! Lieber Herr Gödel!
Gödel on Finitism, Constructivity and Hilbert’s Program,” in Horizons of Truth (Gödel centenary
conference, Vienna, April 27–29, 2006).
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2 Gödel’s Concerns, Part II: Significance
of the Incompleteness Theorems for the Minds Versus
Machines Debate

The above quotations from Nagel and Newman’s 1956 version of “Goedel’s Proof,”
all come from their final three paragraphs on the “far reaching import” of the incom-
pleteness theorems. (My guess is that Nagel was largely responsible for their for-
mulation, but I have no specific evidence for that.) These, with some rewording but
no essential change in content, were to form the entire last chapter, entitled “Con-
cluding Reflections,” of the 1958 version of the book Gödel’s Proof, it is only the
1956 version that Gödel would have seen, however, and to which he would have
reacted and so it is from there that I go on to draw the quotations. We now continue
with the remaining parts of these paragraphs that concern the potentialities of human
thought versus the potentialities of computing machines, already signaled above in
their discussion of “calculating machines”:

Itmay verywell be the case that the human brain is itself a “machine”with built-in limitations
of its own, and that there are mathematical problems which it is incapable of solving. Even
so, the human brain appears to embody a structure of rules of operation which is far more
powerful than the structure of currently conceived artificial machines.15

And (from the third paragraph)

The discovery that there are formally indemonstrable arithmetic truths does not mean that
there are truths which are forever incapable of becoming known, or that a mystic intuition
must replace cogent proof. It does mean that the resources of the human intellect have not
been, and cannot be, fully formalized, and that new principles of demonstration forever await
invention and discovery .... Nor do the inherent limitations of calculatingmachines constitute
a basis for valid inferences concerning the impossibility of physico-chemical explanations
of living matter and human reason. The possibility of such explanations is neither precluded
nor affirmed by Gödel’s incompleteness theorem. The theorem does indicate that in structure
and power the human brain is far more complex and subtle than any nonliving machine yet
envisaged (ibid.).

And finally,

Gödel’s work is a remarkable example of such complexity and subtlety. It is an occasion not
for dejection because of the limitations of formal deduction but for a renewed appreciation
of the powers of human reason (ibid.).

Here again Gödel would have reactedwith a “been there, done that” annoyance, since
he had already laid out his thoughts in this direction fifteen years earlier in what is
usually referred to as his Gibbs lecture, “Some Basic Theorems on the Foundations
of Mathematics and Their Implications.”16 But once more this is something he had

15Nagel and Newman, “Gödel’s Proof,” p. 1695.
16Gödel’s lecture was the twenty-fifth in a distinguished series set up by theAmericanMathematical
Society to honor the nineteenth century American mathematician, Josiah Willard Gibbs, famous
for his contributions to both pure and applied mathematics. It was delivered to a meeting of the
AMS held at Brown University on December 26, 1951. See Gödel, Collected Works, Volume III:
Unpublished Essays and Lectures, Feferman et al., eds. (New York: Oxford, 1995), pp. 304–323.
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never published, though he wrote of his intention to do so soon after delivering the
lecture; in fact it never appeared in his lifetime. After Gödel died, the text languished
with a number of other important essays and lectures in his Nachlass until it was
retrieved by our editorial group for publication in Volume III of the Gödel Collected
Works.

There are essentially two parts to the Gibbs lecture, both drawing conclusions
from the incompleteness theorems. The first part concerns the potentialities of mind
versus machines for the discovery of mathematical truths, and it is that part that
we should compare with Nagel and Newman’s reflections. The second part is an
argument aimed to “disprove the view that mathematics is only our own creation,”
and thus to support some version of platonic realism in mathematics. George Boolos
wrote a very useful introductory note to both parts of the Gibbs lecture in Volume III
of the Gödel Works (ibid., pp. 290–304); more recently I have published an extensive
critical analysis of the first part, under the title “Are There Absolutely Unsolvable
Problems? Gödel’s Dichotomy,”17 and I shall be drawing on that in the following.

What I call Gödel’s dichotomy is the following statement that he highlighted in
the first part of the Gibbs lecture:

Either...the human mind (even within the realm of pure mathematics) infinitely surpasses
the powers of any finite machine, or else there exist absolutely unsolvable diophantine
problems... (op. cit., p. 310, italics Gödel’s).

By a diophantine problem is meant a proposition of elementary number theory
(a.k.a. first order arithmetic) of a relatively simple arithmetical form whose truth or
falsity is to be determined; its exact description is not important to us. Gödel showed
that the consistency of a formal system is equivalent to a diophantine problem, to
begin with by expressing it in the form that no number codes a proof of a contra-
diction.18 According to Gödel, his dichotomy is a “mathematically established fact”
which is a consequence of the incompleteness theorem. All that he says by way of
an argument for it is the following, however:

[I]f the humanmind were equivalent to a finite machine, then objective mathematics not only
would be incompletable in the sense of not being contained in any well-defined axiomatic
system, but moreover there would exist absolutely unsolvable problems ..., where the epithet
“absolutely”means that theywould be undecidable, not justwithin some particular axiomatic
system, but by any mathematical proof the mind can conceive (ibid., italics Gödel’s).

By a finite machine here Gödel means a Turing machine, and by a well-defined
axiomatic system he means an effectively specified formal system; as explained
above, he takes these to be equivalent in the sense that the set of theorems provable
in such a system is the same as the set of theorems that can be effectively enumerated
by such a machine. Thus, to say that the humanmind is equivalent to a finite machine
“even within the realm of pure mathematics” is another way of saying that what the
human mind can in principle demonstrate in mathematics is the same as the set of

17Philosophia Mathematica, Series III, xiv (2006): 134–152.
18In modern terms, consistency statements belong to the class

∏
1, that is, are of the form ∀x R(x)

with R primitive recursive.
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theorems of some formal system. By objective mathematics Gödel means the totality
of true statements of mathematics, which includes the totality of true statements of
first-order arithmetic. The assertion that objective mathematics is incompletable is at
first sight simply a consequence of the second incompleteness theorem in the form
that for any consistent formal system S containing a certain basic system S0 of (true)
arithmetic, the number-theoretical statement Con(S) that expresses the consistency
of S is true but not provable in S.

Examined more closely, Gödel’s argument is that if the human mind were equiva-
lent to a finite machine, or—what comes to the same thing—an effectively presented
formal system S, then there would be a true statement that could never be humanly
proved, namely Con(S). So that statement would be absolutely undecidable by the
human mind, and moreover it would be equivalent to a diophantine statement. Note
however, the tacit assumption that the human mind is consistent, otherwise, it is
equivalent to a formal system in a trivial way, namely one that proves all statements.
Actually, Gödel apparently accepts a much stronger assumption, namely that we
prove only true statements, but for his argument, only the weaker assumption is nec-
essary (together of course with the assumption that the basic system of arithmetic S0
has been humanly accepted). Also, Gödel’s sketch to establish his dichotomy should
be modified slightly, as follows: either humanly demonstrable mathematics is con-
tained in some consistent formal system S, or not. If it is, then Con(S) is an absolutely
undecidable (diophantine) statement. If not, then for each consistent formal system
S, there is a humanly provable statement that is not provable in S, that is, the “human
mind ... infinitely surpasses the powers of any finite machine.”

Note well that Gödel’s dichotomy is not a strict one as it stands; Gödel himself
asserts that “the case that both terms of the disjunction are true is not excluded, so
that there are, strictly speaking, three alternatives.” This could happen, for exam-
ple, if the human mind infinitely surpasses finite machines with respect to certain
diophantine problems, but not with respect to all of them. And if we drop the word
‘diophantine’ from its statement, it might be that the human mind could settle all
arithmetical problems, but not all problems of higher mathematics. In fact, some
logicians conjecture that Cantor’s Continuum Problem is an absolutely undecidable
problem of that type.

Be that as it may, how does Gödel’s conclusion differ from that of Nagel and
Newman?They speak of calculatingmachines “as currently constructed and planned,
[that] operate in obedience to a fixed set of directives built in, and [that] involve
mechanisms which proceed in a step-by-step manner,” where Gödel speaks more
precisely of Turing machines. Still, to be charitable, I think that is a reasonable
interpretation of what Nagel and Newman had in mind. Second, they do not make
the connection between formal systems and calculating machines, where Gödel sees
these as amounting to the same thing.19 But the essential difference is that they seem to
come down in favor of the first, anti-mechanist, disjunct of the dichotomy when they
say that “[by] Gödel’s incompleteness theorem, there is an endless set of problems

19Calculating machines are assimilated more closely to axiomatic systems in the concluding reflec-
tions of Nagel and Newman, Gödel’s Proof, p. 100.
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in elementary number theory for which such machines are inherently incapable of
supplying answers, however complex their built-in mechanisms may be and however
rapid their operations” and “the human brain appears to embody a structure of rules
of operation which is far more powerful than the structure of currently conceived
artificial machines”; furthermore, in the third paragraph they say that “the resources
of the human intellect have not been, and cannot be, fully formalized, and ... new
principles of demonstration forever await invention and discovery.”

There is a lot of evidence outside of the Gibbs lecture that Gödel was also
convinced of the anti-mechanist position as expressed in the first disjunct of his
dichotomy. That is supplied, for example, in his informal communication of various
ideas about minds and machines to Hao Wang, initially in the book, From Mathe-
matics to Philosophy,20 and then at greater length in A Logical Journey: From Gödel
to Philosophy.21 So why didn’t Gödel state that outright in the Gibbs lecture instead
of the more cautious disjunction in the dichotomy? The reason was simply that he
did not have an unassailable proof of the falsity of the mechanist position. Indeed,
he there says:

[It is possible that] the human mind (in the realm of pure mathematics) is equivalent to a
finite machine that, however, is unable to understand completely its own functioning (op. cit,
p. 309).

And in a related footnote, despite his views concerning the “impossibility of physico-
chemical explanations of ... human reason” he says that

[I]t is conceivable ... that brain physiology would advance so far that it would be known with
empirical certainty

1. that the brain suffices for the explanation of all mental phenomena and is a machine in
the sense of Turing;

2. that such and such is the precise anatomical structure and physiological functioning of
the part of the brain which performs mathematical thinking (ibid.).

And in the next footnote, he says:

[T]he physical working of the thinking mechanism could very well be completely under-
standable; the insight, however, that this particular mechanism must always lead to correct
(or only consistent) results would surpass the powers of human reason (ibid., p. 310).

Some twenty years later, Georg Kreisel made a similar point in terms of formal
systems rather than Turing machines:

[I]t has been clear since Gödel’s discovery of the incompleteness of formal systems that we
could not have mathematical evidence for the adequacy of any formal system; but this does
not refute the possibility that some quite specific system ... encompasses all possibilities of
(correct) mathematical reasoning ...

20Wang, From Mathematics to Philiosophy (New York: Routledge and Kegan Paul, 1974), pp.
324–326.
21Wang,A Logical Journey: From Gödel to Philosophy (Cambridge:MIT, 1996), especiallyChap.6.
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In fact the possibility is to be considered that we have some kind of nonmathematical evidence
for the adequacy of such [a system].22

3 Critiquing the Minds Versus Machines Debate

I shall call the genuine possibility entertained by Gödel and Kreisel, the mechanist’s
empirical defense (or escape hatch) against claims to have proved that mind exceeds
mechanism on the basis of the incompleteness theorems. The first outright such claim
was made by J.R. Lucas in his 1961 article, “Minds, Machines and Gödel.”23 Both
Benacerraf and Putnam soon objected to his argument on the basis that Lucas was
assuming it is known that one’s mind is consistent. Lucas, in response, has tried to
shift the burden to the mechanist: “The consistency of the machine is established not
by the mathematical ability of the mind, but on the word of the mechanist,” a burden
that the mechanist can refuse to shoulder by simply citing his empirical defense.24

Roger Penrose is the other noted defender of the Gödelian basis for anti-
mechanism,most notably in his two books, The Emperor s New Mind,25 and Shadows
of the Mind.26 Sensitive to the objections toLucas, he claimed in the latter only to have
proved somethingmoremodest (and in accordwith experience) from the incomplete-
ness theorems: “Human mathematicians are not using a knowably sound algorithm
in order to ascertain mathematical truth” (ibid., p. 76). But later in that work after a
somewhat involved discussion, he came up with a new argument purported to show
that the human mathematician cannot even consistently believe that his mathemati-
cal thought is circumscribed by a mechanical algorithm (ibid., Sects. 3.16 and 3.23).
Extensive critiques have been made of Penrose’s original and new arguments in an
issue of the journal PSYCHE, to which he responded in the same issue.27 And more
recently, Stewart Shapiro28 and Per Lindström29 have carefully analyzed and then
undermined his “new argument.” But Penrose has continued to defend it, as he did in
his public lecture for the Gödel Centenary Conference held in Vienna in April 2006.

22Kreisel, “Which Number-theoretic Problems Can Be Solved in Recursive Progressions on
∏1

1
Paths through O?” Journal of Symbolic Logic, xxxvii (1972): 311–334, see p. 322; italics added.
23Lucas, “Minds, Machines, and Gödel,” Philosophy, xxxvi (1961): 112–137.
24Lucas, “Minds, Machines, and Gödel: A Retrospect,” in P.J.R. Millican and A. Clark, eds.,
Machines and Thought: The Legacy of Alan Turing, Volume 1 (New York: Oxford, 1996), pp.
103–124.
25Penrose, The Emperor’s New Mind (New York: Oxford, 1989).
26Penrose, Shadows of the Mind (New York: Oxford, 1994).
27Penrose, “Beyond the Doubting of a Shadow,” Psyche, II, 1 (1996): 89–129; also at http://psyche.
cs.monash.edu.au/v2/psyche-2-23-penrose.html.
28Shapiro, “Mechanism, Truth, and Penrose’s New Argument,” Journal of Philosophical Logic,
xxxii (2003): 19–42.
29Lindström, “Penrose’s New Argument,” Journal of Philosophical Logic, xxx (2001): 241–250,
and “Remarks on Penrose’s ‘New Argument’,” Journal of Philosophical Logic, xxxv (2006): 231–
237.
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Historically, there are many examples of mathematical proofs of what cannot be
done in mathematics by specific procedures, for example, the squaring of the circle,
or the solution by radicals of the quintic, or the solvability of the halting problem.
But it is hubris to think that by mathematics alone we can determine what the human
mind can or cannot do in general. The claims by Gödel, Lucas, and Penrose to
do just that from the incompleteness theorems depend on making highly idealized
assumptions both about the nature of mind and the nature of machines. A very useful
critical examination of these claims and the underlying assumptions has been made
by Shapiro in his article, “Incompleteness, Mechanism, and Optimism,”30 among
which are the following. First of all, how are we to understand the mathematizing
capacity of the human mind, since what is at issue is the producibility of an infinite
set of propositions?No onemathematician, whose life is finitely limited, can produce
such a list, so either what one is talking about is what the individual mathematician
could do in principle, or we are talking in some sense about the potentialities of the
pooled efforts of the community of mathematicians now or ever to exist. But even
that must be regarded as a matter of what can be done in principle, since it is most
likely that the human race will eventually be wiped out either by natural causes or
through its own self-destructive tendencies by the time the sun ceases to support life
on earth.

What about the assumption that the human mind is consistent? In practice, math-
ematicians certainly make errors and thence arrive at false conclusions that in some
cases go long undetected. Penrose, among others, has pointed out that when errors
are detected, mathematicians seek out their source and correct them,31 and so he
has argued that it is reasonable to ascribe self-correctability and hence consistency
to our idealized mathematician. But even if such a one can correct all his errors,
can he know with mathematical certitude, as required for Gödel’s claim, that he is
consistent?

As Shapiro points out, the relation of both of these idealizations to practice is
analogous to the competence/performance distinction in linguistics.

There are two further points of idealization to be added to those considered by
Shapiro. The first of these is the assumption that the notions and statements of
mathematics are fully and faithfully expressible in a formal language, so that what
can be humanly proved can be compared with what can be the output of a machine.
In this respect it is usually pointed out that the only part of the assumption that needs
be made is that the notions and statements of elementary number theory are fully
and faithfully represented in the language of first-order arithmetic, and that among
those only diophantine statements of the form Con (S) for S an arbitrary effectively
presented formal system need be considered. But even this idealization requires that
statements of unlimited size must be accessible to human comprehension.

Finally to be questioned is the identification of the notion of finite machine with
that of Turingmachine. Turing’s widely accepted explication of the informal concept

30Shapiro, “Incompleteness, Mechanism, and Optimism,” Bulletin of Symbolic Logic, iv (1998):
273–302.
31Cf. Penrose, “Beyond the Doubting of a Shadow,” p. 137ff.
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of effective computability puts no restriction on time or space that might be required
to carry out computations. But the point of that idealization was to give the strongest
negative results, to show that certain kinds of problems cannot be decided by a
computingmachine, nomatter howmuch time and spacewe allow.And so if we carry
the Turing analysis over to the potentiality of mind in its mathematizing capacity, to
say thatmind infinitely surpasses anyfinitemachine is to say something even stronger.
It would be truly impressive if that could be definitively established, but none of the
arguments that have been offered are resistant to the mechanist’s empirical defense.
Moreover, suppose that the mechanist is right, and that in some reasonable sense
mind is equivalent to a finite machine: Is it appropriate to formulate that in terms
of the identification of what is humanly provable with what can be enumerated by
a Turing machine? Isn’t the mechanist aiming at something stronger in the opposite
direction, namely an explanation of the mechanisms that govern the production of
human proofs?

Here is where I think something new has to be said, something that I already drew
attention to in my article on Gödel’s dichotomy,32 but that needs to be amplified.
Namely, there is an equivocation involved that lies in identifying how the mathe-
matical mind works with the totality of what it can prove. Again, the difference is
analogous to what is met in the study of natural language, where we are concerned
with the way in which linguistically correct utterances are generated and not with the
potential totality of all such utterances. That would seem to suggest that if one is to
consider any idealized formulation of the mechanist’s position at all, it ought to be of
the mind as one constrained by the axioms and rules of some effectively presented
formal system. Since in following those axioms and rules one has choices to be made
at each step, at best that identifies the mathematizing mind with the program for a
nondeterministic Turing machine, and not with the set of its enumerable statements
(even though that can equally well be supplied by a deterministic Turing machine).

One could no more disprove this modified version of the idealized mechanist’s
thesis than the version considered by Gödel and the others, simply by applying the
mechanist’s empiricist argument. Nevertheless, it is difficult to conceive of any for-
mal system of the sort with which we are familiar, from Peano Arithmetic (PA) up to
Zermelo–Fraenkel Set Theory (ZF) and beyond, actually underlying mathematical
thought as it is experienced. And the experience of the mathematical practitioner
certainly supports the conclusion drawn by Nagel and Newman that “mathemati-
cal proof does not coincide with the exploitation of a formalized axiomatic method,”
even if that cannot be demonstrated unassailably as a consequence of Gödel’s incom-
pleteness theorems.

32Feferman, “Are There Absolutely Unsolvable Problems? Gödel’s Dichotomy”.
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4 One Way to Straddle the Mechanist
and Anti-mechanist Positions

As I see it, the reason for the implausibility of thismodified version of themechanist’s
thesis lies in the concept of a formal system S that is currently taken for granted in
logical work. An essential part of that concept is that the language of S is fixed
once and for all. For example, the language of PA is determined (in one version)
by taking the basic symbols to be those for equality, zero, successor, addition, and
multiplication (=, 0,′ ,+,.), and that of ZF is fixed by taking its basic symbols to be
those for equality and membership (=,∈). This forces axiom schemata that may be
used in such systems, such as induction in arithmetic and separation in set theory,
to be infinite bundles of all possible substitution instances by formulas from that
language; this makes metamathematical but not mathematical sense. Besides that,
the restriction of mathematical discourse to a language fixed in advance, even if only
implicitly, is completely foreign to mathematical practice.

In recent years I have undertaken the development of a modified conception of
formal system that does justice to the openness of practice and yet gives it an under-
lying rule-governed logical-axiomatic structure; it thus suggests a way, admittedly
rather speculative, of straddling the Gödelian dichotomy. This is in terms of a notion
of open-ended schematic axiomatic system, that is, one whose schemata are finitely
specified by means of propositional and predicate variables (thus putting the ‘form’
back into ‘formal systems’) while the language of such a system is considered to
be open-ended, in the sense that its basic vocabulary may be expanded to any wider
conceptual context in which its notions and axioms may be appropriately applied.
In other words, on this approach, implicit in the acceptance of given schemata is the
acceptance of any meaningful substitution instances that one may come to meet, but
which those instances are is not determined by restriction to a specific language fixed
in advance.33

The idea is familiar from standard presentations of propositional and predicate
logic, where we have such axioms as

P ∧ Q → P and (∀x)P(x) → P(a),

and rules of inference such as

P, P → Q � Q and P → Q(x) � P → (∀x)Q(x)(for x not free in P).

We do not conceive of logic as applying to a single subject matter fixed once and for
all, but rather to any subject in which we take it that we are dealing with well-defined
propositions and predicates; logic is there applied by substitution for the proposition

33Cf. Feferman, “Gödel’s Program for NewAxioms:Why,Where, How andWhat?” inGödel ’96, P.
Hajek, ed., Lecture Notes in Logic, vi(1996): 3–22, and Feferman, “Open-ended Schematic Axiom
Systems (abstract),” Bulletin of Symbolic Logic, xii(2006): 145, and Feferman and Thomas Strahm,
“The Unfolding of Non-finitist Arithmetic,” Annals of Pure and Applied Logic, civ (2000): 75–96.
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and predicate letters in its axioms and rules of inference. Similarly to allow systems
like those for arithmetic and set theory to be applicable no matter what subject matter
we happen to deal with, we formulate their basic principles in schematic form such
as the Induction Axiom Scheme

P(0) ∧ (∀x)[P(x) → P(x ′)] → (∀x)P(x)

in the case of arithmetic, and the Separation Scheme

(V a)(∃b)(∀x)[x ∈ b ↔ x ∈ a ∧ P(x)]

in the case of set theory. (The idea for the latter really goes back to Zermelo’s
conception of the Aussonderungsaxiom as applicable to any “definite” predicate.)

But why, it may be (and is) asked, do I insist on the vague idea of an open-ended
language for mathematics? Aren’t all mathematical concepts defined in the language
of set theory? It is indeed the case that the current concepts of working (“pure”)
mathematicians are with few exceptions expressible in set theory. But there are
genuine outliers. For example a natural and to all appearances coherent mathematical
notion whose full use is not set-theoretically definable is that of a category; only so-
called “small” categories can be directly treated in that way.34 Other outliers are to
be found on the constructive fringe of mathematics in the schools of Brouwerian
intuitionism and Bishop’s constructivism35 whose basic notions and principles are
not directly accounted for in set theory with its essential use of classical logic.
And it may be argued that there are informal mathematical concepts like those of
knots, or infinitesimal displacements on a smooth surface, or of random variables,
to name just a few, which may be the subject of convincing mathematical reasoning
but that are accounted for in set theory only by some substitute notions that share
the main expected properties but are not explications in the ordinary sense of the
word. Moreover, the idea that set-theoretical concepts and questions like Cantor’s
continuum problem have determinate mathematical meaning has been challenged on
philosophical grounds.36 Finally, there is a theoretical argument for openness, even if
one accepts the language L of set theory as a determinately meaningful one. Namely,
by Tarski’s theorem, the notion of truth TL for L is not definable in L; and then the
notion of truth for the language obtained by adjoining TL to L is not definable in that
language, and so on (even into the transfinite).

34Cf. Saunders Mac Lane, Categories for the Working Mathematician (Berlin: Springer, 1971),
and Feferman, “Categorical Foundations and Foundations of Category Theory,” in R.E. Butts and J.
Hintikka, eds.,Logic, Foundations of Mathematics and Computability Theory,Volume I (Dordrecht:
Reidel, 1977), pp. 149–165, and Feferman, “Enriched Stratified Systems for the Foundations of
Category Theory,” in G. Sica, ed., What Is Category Theory? (Monza, Italy: Polimetrica, 2006), pp.
185–203.
35Cf. Michael Beeson, Foundations of Constructive Mathematics (Berlin: Springer, 1985).
36Feferman, “Does Mathematics Need New Axioms?” Bulletin of Symbolic Logic, vi (2000): 401–
413.
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Another argument that may be made against the restriction of mathematics to
a language fixed in advance is historical. Sustained mathematical reasoning had its
origins in ancientGreece some 2500 years ago, andmathematical concepts of number
and space have undergone considerable evolution since then. Yet even the earliest
results have permanent validity, thoughnot necessarily as originally conceived.While
Euclidean geometry is no longer considered to be the geometry of actual space, its
consequences as an axiomatic development (suitably refined through the work of
Pasch, Hilbert, and others), such as the angle sum theorem and Pythagoras’s theorem,
are as valid nowwithin that context as in Euclid’s time. On the other hand, the origins
of number theory as represented in Euclid’s Elements, including the existence of
infinitely prime numbers and the fundamental theorem of arithmetic, retain their
direct interpretation and validity. But the language of mathematical practice (often
mixed with physical concepts) then and through the many following centuries up to
the present obviously cannot be identified with the language of set theory. One thing
that would instead account for the continuity of mathematical thought throughout
its history is the employment of certain underlying formal patterns, such as those
indicated above, that could be instantiated by the evolving concepts that have come
to fill out mathematics in the process of its development. And there is no reason
to believe that this evolutionary process has come to an end; it would be foolish to
believe that only that which can be expressed, say, in the language of set theory, will
count as mathematics henceforth.

On this picture, in order to straddle themechanist/anti-mechanist divide at the level
considered here, one will have to identify finitely many basic forms of mathematical
reasoning which work in tandem to fully constrain and distinguish it. These would
constitute the mechanist side of the picture, while the openness as to what counts as
a mathematical concept would constitute the anti-mechanist side. The evidence for
such would have to be empirical, by showing how typical yet substantial portions
of the mathematical corpus are accounted for in those terms while giving special
attention to challenging cases. I have suggested steps in that direction,37 but the
program is ambitious and I have only made a start; spelling that out is planned for
a future publication. In the meantime, the program itself should be treated as highly
speculative, yet—I hope—worthy of serious consideration.

Considered more broadly and apart from the tendentious terms of the mechanism/
anti-mechanism debate, I think the goal should be to give an informative, systematic
account at a theoretical level of how the mathematical mind works that squares with
experience. Characterizing the logical structure of mathematics—what constitutes a
proof—is just one aspect of that, important as that may be. Other aspects—the ones
that are crucial inmaking thedifficult choices that are necessary for themathematician
to obtain proofs of difficult theorems—such as the role of heuristics, analogies,
metaphors, physical and geometric intuition, visualization, and so on, have also been
taken up and are being pursued in a more or less systematic way by mathematicians,

37As indicated in “Are There Absolutely Unsolvable Problems?”.
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philosophers, and cognitive scientists.38 Without abandoning abasic naturalist stance,
I see no usable reductive account of the mathematical experience anywhere on the
horizon at the neuro-physiological level let alonemore basic physico-chemical levels
of the sort contemplated by Nagel and Newman and currently sought by Penrose,
among others.

Solomen Fefermen
Stanford University

38Cf., for example, Efraim Fischbein, Intuition in Science and Mathematics (Dordrecht: Reidel,
1987); George Lakoff and Rafael E. Núñez, Where Mathematics Comes From (New York: Basic,
2000); PaoloMancosu, Klaus Frovin Jørgensen, Stig Andur Pedersen, eds., Visualization, Explana-
tion and Reasoning Styles in Mathematics (Dordrecht: Springer, 2005); and George Polya, Mathe-
matics and Plausible Reasoning, Volumes 1 and 2 (Princeton: University Press, 1968, 2nd edition)
among others. In addition, there is a massive amount of anecdotal evidence for the nonmechanical
essentially creative nature of mathematical research; for a small sample with further references, cf.,
for example, Philip J. Davis, and ReubenHersh, The Mathematical Experience (Boston: Birkhäuser,
1981), and David Ruelle, The Mathematician’s Brain (Princeton: University Press, 2007), and Ben-
jamin H. Yandell, The Honors Class: Hilbert’s Problems and Their Solvers (Natick, MA: A.K.
Peters, 2002).



A Brief Note on Gödel, Nagel, Minds,
and Machines

Wilfried Sieg

Abstract This note is a brief comment on Feferman’s Gödel, Nagel, Minds, and
Machines. It emphasizes the need to expand proof theory and use its formal tools for
the analysis of the informal proofs of mathematical practice. Natural formalization
is seen as one important step toward providing what Feferman called for, namely,
“an informative, systematic account at a theoretical level of how the mathematical
mind works that squares with experience”.

Keywords Mechanist thesis · Mechanism and mind · Computability · Natural
formalization · Theory of proofs

Feferman’s paper Gödel, Nagel, Minds, and Machines is a revision of the Nagel Lec-
ture he presented on 27 September 2007 at Columbia University in New York City.
The lecture and this paper were intended for a broad audience, steeped neither in
mathematical details of Gödel’s proofs, nor in methodological problems concerning
a precise mathematical definition of “computability”, nor in philosophical contro-
versies surrounding the mind and machine issue. Feferman presents these important
and intertwined matters in a lucid way. He discusses in a self-contained way also the
contentious interaction between Gödel and Nagel1 and the neglected, but insight-
ful remarks on minds and machines in (Nagel and Newman, [5, 6]). Thus, there is
no need to describe the context for this paper in order to support a reader who is
eager to engage in this discussion at the intersection of philosophy, mathematics and
theoretical computer science – with a significant link to cognitive science.

1Feferman’s remarks are based on the correspondence between Gödel and Nagel – beginning
with a letter from Gödel on 25 February 1957 and ending with a short note again from Gödel
on 29 August 1957 – and the Introductory Note to that correspondence by Parsons and Sieg;
all of this can be found in volume V of Gödel’s Collected Works, pp.135–154.
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The clear exposition is informed by Feferman’s special expertise as a mathe-
matical logician and as a historian of mathematical ideas. As a logician, he has
worked on the “arithmetization of metamathematics” underlying Gödel’s proofs and
on “progressions of theories” that partially overcome the limitations of formal theo-
ries revealed by the incompleteness theorems. As a historian, he has deep knowledge
of the evolution of Gödel’s thought through his work over more than two decades as
editor-in-chief of Gödel’s Collected Works. In the last part of this essay, Feferman
proposes a new way of “straddling” the mechanist and anti-mechanist divide on the
mind and machine issue. He views his proposal as “highly speculative”, but based
on a perspective obtained by investigating how the mind may work when deriving
mathematics.

The “mechanist thesis” is the claim that the mathematical mind is, in some sense,
equivalent to a Turing machine. Famously, Lucas [4] and Penrose [7] attempted to
refute this thesis by an appeal to Gödel’s incompleteness theorems. Gödel pursued
the same goal, with more subtle considerations, in his Gibbs Lecture (Gödel [2]).
Feferman asserts, however, that there is no “unassailable proof of the falsity of the
mechanist position” and attributes that fact in part to what he calls “the mechanist’s
empirical defense (or escape hatch)”. It may verywell be that, as Kreisel has claimed,
“some specific system … encompasses all possibilities of (correct) mathematical
thinking”. (p. 212.) The distinctive part of Feferman’s critical position, reacting to
the escape hatch, is this: the very formulation of the mechanist thesis involves an
equivocation “that lies in identifying how the mathematical mind works with the
totality of what it can prove”. (p. 215) He asks a central question: Isn’t the mechanist
really aiming at “an explanation of the mechanisms that govern the production of
human proofs”?

Feferman thinks that the familiar formal systems like Peano arithmetic PA or
Zermelo Fraenkel set theory ZF can’t serve that purpose, as they do not underlie
“mathematical thought as it is experienced”. (p. 215) He continues:

And the experience of the mathematical practitioner certainly supports the conclusion drawn
by Nagel and Newman that “mathematical proof does not coincide with the exploitation of
a formalized axiomatic method,” even if that cannot be demonstrated unassailably as a
consequence of Gödel’s incompleteness theorems. (pp. 215–216)

These observations make Feferman consider as implausible even the modified mech-
anist thesis concerning the production of human proofs. It should be noted, however,
that the implausibility rests on a very narrownotion of formalization: it is to be carried
out in the basic language of a theory – for ZF in just the language of = and ∈. Fefer-
man’s major logical suggestion addressing that problem is a different conception of
formal systems. That conception is not tied to a formal language fixed in advance,
but rather (1) it specifies the form of axiom schemata by means of propositional
and predicate variables, and (2) it allows an open-ended, expanding development
of its language. In particular, axiom schemata like induction in the case of PA and
separation in the case of ZF may then be appropriately instantiated with formulae of
the expanded language.
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In other words, on this approach, implicit in the acceptance of given schemata is the accep-
tance of any meaningful substitution instances that one may come to meet, but which those
instances are is not determined by restriction to a specific language fixed in advance. (p. 216)

It is in this way that Feferman sees a way of straddling the mechanist and anti-
mechanist divide, as (1) would reflect the mechanist position, whereas (2) would do
some justice to the anti-mechanist perspective.2

Feferman counsels that – ultimately and independently of the mind & machine
issue – we should aim for “an informative, systematic account at a theoretical level
of how the mathematical mind works that squares with experience”. To achieve such
a more adequate account, he suggests considering “the role of heuristics, analogies,
metaphors, physical and geometric intuition, visualization, and so on”. I agree that
those are important aspects of mathematical experience and that they should be
investigated. However, characterizing the “logical structure of mathematics–what
constitutes a proof” is a crucial task that has not been fully addressed. We have
investigated formal proofs for metamathematical purposes, but how are they related
to ordinary mathematical proofs? How can the structure of formal proofs reflect that
of ordinary proofs? How, finally, can formal proofs be used as a tool for the analysis
of informal proofs? Answering these questions should be a substantial task for proof
theory. When describing the formal system of elementary number theory in his [1],
Gentzen remarked: “The objects of proof theory shall be the proofs carried out in
mathematics proper.” (p. 499)

Feferman is completely right when asserting that the formal development in the
systems PA or ZF in their respective fixed language does not underlie mathematical
experience. A more realistic, yet nevertheless formal development certainly involves
(definitional) extensions and thus takes into account the conceptual organization of
parts of mathematics in a crucial way. There are exciting developments in interactive
theorem proving, but for the purpose at hand the natural formalization of parts of
mathematics and the step towards the automated search for humanly intelligible
proofs offers the greatest opportunities for exploring a new chapter of proof theory.3
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ought to be done!” That paper was one of the main reasons I decided to concentrate
my efforts on the intersection of philosophy and mathematics.

I read everything by Feferman that I could get my hands on. I found myself in
agreement with pretty much everything that he wrote. In the beginning this extended
to set theory. Like Feferman I too was skeptical of set theory. But as I learned more
set theory that skepticism began to wane. More and more I became convinced by the
arguments in favor of new axioms. This one point, concerning set theory, emerged
as the only substantial point where I found myself in disagreement with Feferman.

In this paper I want to focus on that one point of disagreement, not because of
a desire to be contrarian, but because it just doesn’t sit well with me—how can we
disagree on this point when we agree on so much? One of us must be wrong, and I
really hope it isn’t me.

B

The paper is really the continuation of a conversation that we have been having for
many years. The focus will be on Feferman’s reasons for maintaining that statements
like the continuum hypothesis (CH) are not definite. But to set the stage I will first
discuss the realm of mathematics where he thinks that the statements are definite.
This part of the paper is really a tribute to his celebrated work on predicativity, the
work that first sparked my interest.1 I will then turn, in the remaining part of the paper,
to his reasons for thinking that the distinctive statements of analysis and set theory
are not definite.2 I’ve combed through his work and have found five arguments:

(1) Feferman maintains that CH has effectively ceased to be regarded as definite by
the mathematical community and that this fact provides “considerable circum-
stantial evidence to support the view that CH is not definite.”3

(2) Feferman thinks that the concept of arbitrary subset (of an infinite domain) is
inherently vague in the sense that (a) it is vague and (b) it cannot be sharpened
without violating what it is supposed to be about.

(3) Feferman argues that given the alleged lack of clarity of the powerset operation
that the only recourse to establishing the definiteness of statements of set theory
(or even analysis) is an untenable form of platonism, one which faces certain
insurmountable philosophical problems.

(4) Feferman’s reasons for thinking that CH is indefinite are partly based on the
metamathematical results in set theory; in particular the results showing that
“CH is independent of all remotely plausible axioms extending ZFC, including
all large cardinal axioms that have been proposed so far.”4

1A more thorough account will appear in [28].
2Throughout this paper I will use ‘analysis’ and ‘second-order number theory’ interchangeably.
3[17], p. 1.
4[15], p. 127.



Feferman on Set Theory: Infinity up on Trial 493

(5) Feferman takes the formal results on indefiniteness—in particular the result of
Rathjen showing that CH is indefinite relative to the semi-constructive system
SCS+—as providing evidence that CH is indefinite.

I will argue that (1) has no force and that when the dust settles (3), (4), and
(5) all reduce to (2) and that in the end the entire case rests on the brute intuition
that the concept of subsets of natural numbers—along with the richer concepts of
set theory—is not “clear enough to secure definiteness.” My response to this final,
remaining point will be that the concept of “being clear enough to secure definiteness”
is about as clear a case of an inherently vague and indefinite concept as one might
find, and as such it can bear little weight in making a case against the definiteness of
analysis and set theory.5,6

B

Sol and I never got the opportunity to discuss this paper. Shortly after it was completed
I received the shocking news that he had died. Although it may seem rather personal
for an academic paper, I would like to include a letter that I wrote to my sister when
I learned that he had died:

Dear Kel,

I got some sad news today. Sol died yesterday.

I was going to visit him in a couple of weeks.

I’m really going to miss him. I had always been inspired by his work. We agreed on a great
many things but we strongly disagreed on set theory. Much of our conversation was about
set theory. We would argue and argue.

The last time I saw him was in New York. We were there for a conference in honor of our
friend Charles Parsons. Sol gave a talk on set theory. My talk was supposed to be a critical
response to his talk. When we arrived we were all sitting around a table together, sort of like
being in the back stage before a concert. The person doing the introductions asked us for our
titles. I was a bit nervous, since I didn’t have a title. Sol said his title was “Parsons and I:
Sympathies and Differences”. I was asked next. I immediately said (imitating his rhythm):
“Sol and I: Differences!” Everybody laughed, especially Sol. He reached over, shook my
hand, and said “Nicely played.”

We were like that. We strongly disagreed, but we are playful about it. And we really
liked each other. It was so nice when I visited him at his place in January. We just hung out.
We watched part of Ken Burns’ documentary “The Civil War” on a little TV screen in the

5The title involves a reference to Feferman’s “Infinity in Mathematics: Is Cantor Necessary?”, which
opens with what is perhaps the coolest epigraph ever used in a paper:

“Infinity is up on trial . . . ”

— Bob Dylan, Visions of Johanna.

6I would like to thank Douglas Blue, J.T. Chipman, Solomon Feferman, Gabriel Goldberg, Charles
Parsons, Michael Rathjen, Wilfried Sieg, Thomas Strahm, and Hugh Woodin for helpful comments
and discussion. I would also like to thank the The Journal of Philosophy for giving me permission
to repeat passages that occur [28], which was a high-level summary of the present paper, one that I
delivered as a reply to Sol in the conference described below.
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kitchen. I loved being with him. I slept like a baby in his house. To think, that I could be so
comfortable, that I could just hang out with this man who was two generations my senior.

The very last time I saw him was after the dinner after the conference. We were in a taxi.
Wilfried Sieg was sitting in between us. In my reply to his talk I was very harsh with him.
He hadn’t had a real opportunity to reply. In the car he let me have it. He said “You can’t
seriously believe ADL(R)!” I replied: “Yes, I certainly do!” And then we got into it. Wilfried
was calmly staring straight ahead while we argued back and forth. When we arrived at the
hotel I popped out of the car quickly, hurried around the back, and met him as he was getting
out. I grabbed his arms firmly and lifted him out, and then steadied him as we walked into the
hotel. While doing this I was conscious of how brittle he felt. We walked together, slowly.
He said: “Peter, you are my favorite person to argue with.” I told him I would like to come
and visit him again. His eyes were a bit watery. He said he would like that. I didn’t go with
them in the elevator, I told them I wanted to go for a walk. We said goodbye. I watched the
elevator doors close.

Love,
Peter

1 The Realm of the Definite

It will be useful to begin by saying something about Feferman’s general philosophical
framework.

Feferman is an avowed anti-platonist. In place of platonism he espouses what he
calls conceptual structuralism, an “ontologically non-realist philosophy of mathe-
matics”7 according to which “the basic objects of mathematical thought exist only
as socially shared mental conceptions.”8 I will say a bit more about this view below,
but for now I would just like to point out that it is part of this view that “there are
differences in clarity or definiteness between basic conceptions.”9 This is the compo-
nent of the view that allows Feferman to maintain that number theory is “completely
clear” and “completely definite”, while analysis and set theory are not.

Indeed he maintains that our conception of the natural numbers is so clear that
(on the epistemic dimension) the standard axioms of PA (with open-ended induc-
tion) are “evident on our conception”10 and that (on the semantical, or metaphysical
dimension) it is “completely definite”11 in the sense that each statement of number
theory has a definite truth value regardless of whether or not we can determine that
truth value on the basis of evident principles. It is for these reasons that Feferman
“grant[s] the natural numbers a position of primacy in our mathematical thought.”12

7[19], p. 74.
8[15], pp. 2–3.
9[15], pp. 2–3.
10[4], p. 70.
11[15], p. 7.
12[13], p. 314.
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It is thus of interest to ask: How much mathematics can one secure on the basis of
the concept of natural numbers? There are several aspects to this question. For our
purposes we will be interested in which additional notions and statements should be
deemed completely clear and definite on the basis of our conception of the natural
numbers.

Feferman maintains that our conception of the natural numbers as a completed
totality over which arbitrary arithmetical statements are definite enables us to get a
completely clear grasp on arithmetically definable sets of natural numbers. State-
ments involving quantification over the arithmetically definable sets of natural num-
bers are thus completely clear and definite. With the resources of an expanded
language—where we allow second-order quantification over the arithmetically defin-
able sets of natural numbers—we can define sets of natural numbers that were pre-
viously undefinable. This new domain is also completely clear and definite on the
basis of our concept of natural number. This process can be iterated into the transfi-
nite. This is the predicative conception of sets of natural numbers, in contrast to the
impredicative conception.

The trouble that Feferman (following Poincaré and Weyl) has with impredicative
definitions is that they involve treating the collection of arbitrary subsets of natural
numbers as a clear and definite, completed totality and yet, according to Feferman,
“[o]n the face of it, such definitions are justified only by a thorough-going platonistic
philosophy of mathematics.”13 It is “by way of rejection of the set-theoretic platon-
istic ontology, and more specifically of that part of it which warrants reference to the
supposed totality of arbitrary subsets of any infinite set, that one is led to an alterna-
tive definitionistic view of sets as the extensions of properties successively seen to be
defined in a non-circular way.”14 On the predicativist conception “only the natural
numbers can be regarded as ‘given’ to us” and sets are regarded as “created by man
to act as convenient abstractions (façons de parler) from particular conditions or
definitions.”15

The stages of the predicative hierarchy can be described as follows: For a collection
C of sets of natural numbers, let Def(C) be the definable powerset relative to C. Now
iterate the process as follows:

R0 = N

Rα+1 = Def(Rα), and

Rλ = ⋃
α<λ Rα for limit λ.

This hierarchy is known as the ramified analytic hierarchy.
The question then becomes: How far are we justified in iterating this process,

on the basis of our conception of natural number? It would take us too far afield to
discuss the details of Feferman’s elegant answer to this question. Suffice it to say that

13[13], p. 314.
14[13], p. 316.
15[3], p. 1.
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it involves passing from the domains Rα to the second-order ramified theories RAα

that axiomatize them, and imposing an autonomy constraint to the effect that (roughly
speaking) one only accepts those RAα for which there exists an earlier β < α such
that RAβ has already been accepted and RAβ proves that “α is acceptable.” The
least ordinal which cannot be reached in this bootstrapping fashion was determined
independently by Feferman and Schütte. It is known as �0. The proposal, then, is that
RA<�0 captures the informal notion of predicativity given the natural numbers.16

The next step was to provide alternative, independent characterizations of pred-
icativity given the natural numbers, so as to bolster the thesis that RA<�0 does indeed
capture the informal notion of predicativity given the natural numbers. In a series
of papers Feferman gave alternative characterizations, first in terms of the notion of
the definite powerset,17 second in terms that avoided the notion of a well-ordering,18

third in terms of reflective closure,19 and finally in terms of the notion of unfolding.20

In each case he showed that the system in question was proof-theoretically equiva-
lent to RA<�0 . The situation is thus parallel to the situation with other instances of
conceptual analysis, most notably, the analysis of the notion of computability, where
various independent characterizations were subsequently shown to be equivalent.

I think that this is a remarkable achievement. Indeed it is hard to think of a
more impressive and successful instance of philosophical analysis. For our purposes
the important point is that granting that our conception of the natural numbers is
completely clear and definite, the above analysis tells us that we can also accept
(locally at least) the conception of predicative analysis also as completely clear and
definite.21

This is not to say that RA<�0 encompasses all of the mathematics that Feferman
regards as clear and definite. In fact, he has made it clear that he is “not now nor
never has been a predicativist,” though he has been a “sympathizer.”22 For him the
above analysis only tells us how far we can go on the basis of the concept of natural
numbers alone. But there are other conceptions that he accepts as clear and definite,
although it is to be expected that as we climb further up the hierarchy of conceptions
their clarity and definiteness will gradually diminish.

Feferman has made it clear in personal correspondence that he accepts constructive
systems at the level of �1

1-CA and even (�1
2-CA) + BI.23 At the upper limit he has

expressed skepticism about the possibility of any “evidently constructive” system at
the level of (�1

2-CA) + BI.24 And I suspect that he would agree with the more recent

16See [3].
17[3].
18[4].
19[6].
20[8, 21].
21The qualification ‘locally at least’ is necessary since the totality RA<�0 is not itself predicatively
characterizable.
22[13], pp. 313–314.
23Letter of Jan. 4, 2016.
24[11], Sect. 6.



Feferman on Set Theory: Infinity up on Trial 497

arguments of Rathjen and Martin-Löf to the effect that there cannot be an evidently
constructive system at this level.25

But even though he accepts constructive systems at these levels it is important to
note that he does not accept the corresponding classical systems. For example, he
maintains that

�1
1-CA (or dually �1

1 -CA) is justified only on the assumption of the meaningfulness of
impredicative definitions, and that in turn implicitly assumes that there is a well-determined
totality of subsets of the natural numbers which exists independently of any means of (human)
definition or construction.26

I think that he would have to say the same of �1
1-CA0 since the issue is the compre-

hension principle. It follows that he cannot accept any statement which (by reverse
mathematics) is provably equivalent to �1

1-CA0. For example, the Cantor-Bendixson
theorem is such a statement. So I think he has to maintain that the Cantor-Bendixson
theorem is indefinite. In any case, whether or not this is the level of analysis where
indefiniteness kicks in for Feferman, he is certainly explicit in maintaining that there
are statements of analysis that are indefinite. For example, he denies that there is “a
fact of the matter whether all projective sets are Lebesgue measurable or have the
Baire property, and so on.”27

The point I wish to make is that although Feferman concentrates on CH (a state-
ment of third-order arithmetic), his position is much more radical—he holds that
there are statements of second-order arithmetic (quite likely as low down as the
Cantor-Bendixson theorem) that are inherently unclear and indefinite.

Let us now turn to Feferman’s arguments concerning inherent unclarity and indef-
initeness. There are five main arguments. I will discuss each in turn.

2 Circumstantial Evidence

Feferman maintains that CH has effectively ceased to be regarded as definite by the math-
ematical community and that this fact provides “considerable circumstantial evidence to
support the view that CH is not definite.” 28

2.1 Feferman’s Case

The argument turns on a thought experiment involving the Millenium Prize Problems.
Here is the background: On May 24, 2000 in Paris, the Clay Mathematics Institute
announced seven Millenium Prize Problems, each with a reward of one million

25See [32, 35].
26[7], pp. 200–201.
27[12], p. 405.
28[17], p. 1.
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dollars. One of the problems on the list—the Riemann Hypothesis—also appeared
on the famous list of problems that Hilbert presented in Paris on August 9, 1900.
But, as Feferman notes, CH, which was the first problem on Hilbert’s list, is not on
the Millenium Prize list.

Feferman then imagines a discussion between the scientific advisory board and
a group of set theorists to determine whether CH is suitable for inclusion on the
list. The set theorists explain some of the advances in the program for large cardinal
axioms—in particular, the work of Martin, Steel, and Woodin—which demonstrate
that large cardinal axioms settle the classic undecided statements of second-order
number theory and statements further up in the complexity hierarchy. They then
give an account of Woodin’s first approach to settling CH, the approach based on
maximality. The board ends up concluding that CH is not suitable for inclusion.

This is taken to show that (a) the scientific board (and the mathematical community
more generally) thinks that CH is not a definite mathematical problem, and this in
turn is taken to provide “considerable circumstantial evidence” that (b) CH is not
definite.29

2.2 Response

I will be rather brief with this argument since it is weaker than the other arguments
that Feferman provides.

(1) Even if (a) were true, the conclusion (b) would only follow by an appeal
to authority. But arguments that appeal to authority have little force. Moreover, in
this specific case, it is surprising to find Feferman appealing to the authority of the
mathematical community concerning matters of definiteness, since he also thinks that
this very community disagrees with him on matters of definiteness. For example, he
writes, “[t]here is no doubt that the mathematical community as a whole takes the
concept of the set of arbitrary real numbers as a definite, robust concept, and thus,
indirectly, the concept of the set of arbitrary subsets of the natural numbers.”30

(2) Moreover, I think that Feferman is mistaken in maintaining that the scientific
board’s behaviour is evidence of (a). The whole issue is tied up with an ambiguity
involved in the word ‘problem.’ One must draw a distinction between (i) a problem
in the sense of a statement (a statement that is an open problem) and (ii) a problem
in the sense of a task (the task of settling an open problem). Feferman wants to argue
that the statement CH is indefinite. But the scientific advisory board’s conjectured
behaviour show at most that they regard the task of settling CH as insufficiently
definite to warrant placing one million dollars on the implementation of the task.
This is entirely reasonable. I think that every set theorist would agree that the task
of settling CH is not sufficiently definite to warrant inclusion on the list since it is
known that any resolution of CH is going to involve subtle issues concerning the

29[17], p. 1.
30[20], p. 7.



Feferman on Set Theory: Infinity up on Trial 499

justification of new axioms. But this has no bearing on the question of whether the
scientific advisory board (or the set theorists who are in agreement) thinks that CH
is not a definite statement.31

To answer the question of whether the statement CH is not definite, one is going
to have to dig deeper. So let us turn to Feferman’s other, more direct, arguments.

3 Conceptual Clarity

Feferman thinks that the concept of arbitrary subset (of an infinite domain) is inherently
vague in the sense that (a) it is vague and (b) it cannot be sharpened without violating what
it is supposed to be about.

3.1 Feferman’s Case

The claim that our conception of the subsets of natural numbers lacks the clarity
and definiteness of our conception of the natural numbers, is one that occurs fairly
early in Feferman’s writings. In a paper of 1979 he says that what distinguishes
our conception of the natural numbers from our conception of the subsets of natural
numbers is that “we have a complete and clear mental survey of all of the objects being
considered, together with the basic interrelationships between them” and that “the
logical operation of quantification over the natural numbers has a definite character in
our understanding which quantification over functions, etc. lacks.”32 It is of interest
to note that already in this early passage he employs both the notions of clarity and
definiteness, saying that our conception of the natural numbers is completely clear
and definite, while our conception of the subsets of natural numbers is not.

In later passages, he adds a new element. For in addition to saying that the notions
of set theory are not clear, he says that they are inherently unclear (or inherently
vague):

I, for one, am a pessimist or, better, anti-platonist about the Continuum Hypothesis: I think
that the problem is an inherently vague or indefinite one, as are the propositions of higher
set theory more generally.33

Soon thereafter he tells us more about what he means by the ‘inherent’ in ‘inherent
vagueness’:

31To underscore this point consider a hypothetical scenario involving an arithmetical statement.
Suppose that the scientific board were presented with a number-theoretic statement that was equiv-
alent to the consistency of ZFC + “There is a supercompact cardinal.” They could quite reasonably
refrain from putting it on the list because they could quite reasonably think that any positive reso-
lution would require subtle issues surrounding the justification of new axioms. But this would not
provide “considerable circumstantial evidence” that the number-theoretic statement is indefinite.
32[4], p. 70.
33[9], p. 7, Introduction.
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Rather, it’s a conception we have of the totality of “arbitrary” subsets of the set of natural
numbers, a conception that is clear enough for us to ascribe many evident properties to that
supposed object (such as the impredicative comprehension axiom scheme) but which cannot
be sharpened in any way to determine or fix that object itself.34

But is it true that it cannot be sharpened? For could we not sharpen it, say, by
restricting to the constructible subsets of natural numbers, that is, those subsets of
natural numbers that appear in L? For, after all, it would seem that L is perfectly
clear. In later writings Feferman guards against this move by revising his claim, now
saying that the concept of subsets of natural numbers cannot be sharpened without
violating what that notion is supposed to be about:

Moreover, I would argue that it is inherently vague, in the sense that there is no reasonable
way the notion can be sharpened without violating what the notion is supposed to be about.
For example, the assumption that all subsets of the reals are in L or even L(R) would be such
a sharpening, since that violates the idea of “arbitrariness.” In the other direction, it is hard
to see how there could be any non-circular sharpening of the form that there [are] as many
such sets as possible. It is from such considerations that I have been led to the view that the
statement CH is inherently vague and that it is meaningless to speak of its truth value; the
fact that no remotely plausible axioms of higher set theory serve to settle CH only bolsters
my conviction.35

This point is repeated in his most recent writings on the topic36 and we are told there
that this is the “main reason that has led [him] to the view that CH is not definite.”37

To summarize: The concept of subsets of natural numbers is not merely unclear,
it is inherently unclear in the sense that it cannot be clarified without violating the
essential feature of “arbitrariness” and, moreover, this essential feature of “arbitrari-
ness” is not something that can be clarified in a non-circular way. Furthermore, this
is the main reason that Feferman thinks that CH is not definite.

3.2 Response

(1) I agree that “[w]hat we are dealing with here are questions of relative concep-
tual clarity and foundational status”38 and I am willing to grant that our conception of
the natural numbers is clearer than our conception of the subsets of natural numbers.

(2) I do not strictly speaking agree with the claim that there can be no way
to sharpen our concept of subsets of natural numbers without violating what it is
supposed to be about, since that makes it look as though there is something implicit
in that conception that implies that V cannot be any fine-structural inner model. But
I do accept the related claim that there is no way to sharpen our concept of subsets of

34[12], p. 405.
35[12], pp. 410–411.
36See, for example, [15], p. 130 and [17], p. 2 and p. 21.
37[17], p. 2, my emphasis.
38[14], p. 619.
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natural numbers that merely unfolds that concept. More precisely, I think that it isn’t
analytic of our concept of subsets of the natural numbers that all such subsets are in
L or any other fine-structural inner model. The reason is that there is nothing on the
face of it in our concept of subsets of natural numbers that involves mention of these
models (the definitions of which are quite technical) and it would be far-fetched to
maintain that a “deeper analysis” of the concept would imply, say, that all subsets of
natural numbers are in L or any of the other fine-structural inner models.

(3) I also agree that the key component of “arbitrariness” cannot be clarified in
more fundamental terms.

(4) But although I agree with (2) and (3), I don’t see either as raising a problem.
I see them rather as a sign that we are dealing here with a primitive concept. The
same point about there being “no non-circular sharpening” applies to all primitive
concepts. For example, it applies to our conception of the natural numbers. One
cannot clarify or explain the concept of natural numbers in more fundamental terms.
All attempts to give a more primitive explication lead back to the same concept in a
different guise. For example, one might try to explain the domain of natural numbers
as the domain obtained by starting with 0 and applying the successor operation a
finite number of times. But here the conception of natural numbers appears, hidden,
in a different guise, in the reference to finite number of times. The hallmark of a
primitive concept—indeed the defining characteristic of being a primitive concept—
is that such a concept cannot be defined or explained in more fundamental terms.
So in this respect our conception of subsets of natural numbers is on a par with our
conception of natural numbers.

The key difference, then, between our conception of the natural numbers and our
conception of subsets of natural numbers is that the former is clearer than the latter.
That is something with which I am happy to agree. But the key question at hand is
whether the former, but not the latter, is clear enough to secure definiteness. This is
where I think the case falters. Feferman is making essential use of the concept of
being sufficiently clear to secure definiteness. I would like to say that the concept
of being sufficiently clear to secure definiteness is not sufficiently clear to secure
definiteness. It is about as good an example of an inherently unclear and indefinite
concept as one might find. In this regard it bears more kinship to the concept of
a “feasible number” than to the concept (taken at face value) of subsets of natural
numbers, and as such I don’t think it can bear much weight in a case against the
definiteness of the latter concept. To find an argument to that effect we will have to
dig even deeper.

4 Metaphysical

Feferman argues that given the alleged lack of clarity of the powerset operation that the
only recourse to establishing the definiteness of statements of set theory (or even analysis)
is an untenable form of platonism, one which faces certain insurmountable philosophical
problems.
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4.1 Feferman’s Case

The argument involves the topic of realism in mathematics. This is a very difficult
topic with a long history. Nevertheless, I think it is possible to isolate the key steps
in Feferman’s argument and critique it in a general way without entering the more
delicate issues and without mounting a defense of a tenable brand of realism. In
short, my criticism will be internal.

In outline the argument is as follows: (1) There are two opposing views on the
nature of mathematics: platonism and conceptual structuralism. (2) The definite-
ness of set theory requires platonism. (3) Platonism is untenable because it faces
an insurmountable epistemological problem, namely, the access problem raised by
Benacerraf. (4) Conceptual structuralism, in contrast, does not face the access prob-
lem.

Let us now spell this out in detail.

4.1.1 Two Opposing Extremes

In the spectrum of views concerning the nature of mathematics there are two opposing
extremes that have animated much of the discussion in the literature. At one extreme
we have the view that the mathematical realm is completely “independent” of our
practices and that its objects lie “outside” of the space-time manifold in an “eternal,”
“immutable” realm, known as the “third realm.” This view is often called platonism
(or realism). At the other extreme we have the view that the mathematical realm is
really just a “projection of our practice.” This view, in its general form, might be
called projectionism. (As we shall see later the particular form of projectionism that
Feferman holds is the view mentioned earlier, namely, conceptual structuralism.)

These two extremes have complementary strengths and weaknesses. Platonism
has no problem in explaining the apparent objectivity of mathematics (by reference
to the third realm) but it has difficulty explaining what by its lights would appear to
be a miracle, namely, how our practice of proving things “down here” can manage
to track the nature of things “up there.” In other words, while this view solves the
objectivity problem, it runs into difficulty when it comes to the access problem. In
contrast, projectionism fares well when it comes to the access problem (since, on this
view, the objects are not independent items “up there” that we have to track “down
here,” but are rather constituted by what we do “down here”) but it has trouble in
overcoming the objectivity problem, since on this view mathematics would seem to
be like fiction, where we have complete sovereignty, and that is something that does
not appear to be the case in mathematics.

Something like these two extremes (in the special setting of set theory) is at play in
the opening section of Feferman’s classic 1964 paper on predicativity. He begins by
considering “two extremes of what sets are conceived to be”, namely, the Platonistic
conception and the predicative conception:
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From one point of view, often identified as the Platonistic or Cantorian conception, sets
have an existence which is independent of human definitions and constructions. The words
“arbitrary set” are often used to emphasize this independence. Various statements about
sets are readily recognized to be correct under this conception, for example the axioms of
comprehension and of choice. Other statements, such as the continuum hypothesis and its
generalizations remain undecided on this conception. (However, the inability of humans to
decide such questions can no more be charged as a defect of this conception than can their
inability to decide certain number-theoretical statements on the basis of the usual conceptions
of the natural numbers.)

In contrast, the other extreme is what we shall refer to as the predicative conception. Accord-
ing to this, only the natural numbers can be regarded as “given” to us (and, in the even more
severe nominalist point of view, not even these abstract objects are available to us). In con-
trast, sets are created by man to act as convenient abstractions (façons de parler) from
particular conditions or definitions.39

These are the two opposing extremes concerning the nature of mathematics. But are
they really the only options?

4.1.2 Set Theory Requires Platonism

Feferman argues that they are. He argues that if one rejects the predicativist view of
sets (the one extreme) then one must embrace a brand of platonism of the problem-
atic kind (the other extreme). For example, concerning impredicative definitions he
writes:

On the face of it, such definitions are justified only by a thorough-going platonistic philosophy
of mathematics.40

And concerning set theory more generally he maintains that to accept P(N) as a
definite totality “is to accept the problematic realist ontology of set theory.”41

In other words, for Feferman, when it comes to analysis and set theory, the two
opposing extremes concerning the nature of mathematics seem to be the only options.

4.1.3 Problems with Platonism

He then makes it clear that he is not a platonist. In fact, he finds the view “philosoph-
ically preposterous”:

It will soon be clear to the reader that I am a convinced antiplatonist in mathematics. Briefly,
according to the platonist philosophy, the objects of mathematics such as numbers, sets,
functions, and spaces are supposed to exist independently of human thoughts and construc-
tions, and statements concerning these abstract entities are supposed to have a truth value

39[3], pp. 1–2.
40[13], p. 314.
41[19], p. 81.
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independent of our ability to determine them. Though this accords with the mental practice
of the working mathematician, I find the viewpoint philosophically preposterous.42

The trouble with platonism, according to Feferman, is that it “it faces well-known
difficulties [that] have left it with few if any adherents.”43 These difficulties are the
access problem that we alluded to earlier. Feferman asks: “If [the continuum] has
only Platonic existence, how can we access its properties?”44 And, in a later paper
he is more explicit about the problem:

The set-theoretical view of P(A) is justified by a thorough-going platonism, as accepted
by Gödel. According to this view, sets in general have an existence independent of human
thoughts and constructions, and in particular, for any set A, P(A) is the definite totality of
arbitrary subsets of A. A major problem with this view is the classic one of epistemic access
raised most famously by Paul Benacerraf (1965).45

In contrast, his own view of conceptual structuralism does not face the access
problem:

The open-ended view, on the other hand, rests on conceptual structuralism, for which epis-
temic access is no problem, but the determinateness of various statements then comes into
question.46

To see how his conceptual structuralism evades the access problem let us say a
few more words about it.

4.1.4 Conceptual Structuralism

Feferman’s version of conceptual structuralism is “an ontologically non-realist phi-
losophy of mathematics.”47 He espouses non-realism about objects across the board.
However, it is important to note that Feferman does not espouse non-realism about
truth across the board. Indeed the question of realism about truth is equivalent to the
question of definiteness, and, as we have seen, he embraces definiteness (and hence
realism about truth) with regard to number theory.

According to conceptual structuralism “the basic objects of mathematical thought
exist only as socially shared mental conceptions” and “[t]he objectivity of mathe-
matics is a special case of intersubjective objectivity that is ubiquitous in social
reality.”48 It is through closely tethering mathematics to mathematical practice that
one overcomes the access problem.

42[9], Introduction, p. ix.
43[17], p. 9.
44[10], p. 107.
45[17], p. 18. In this quotation I have used ‘P(A)’ in place of Feferman’s ‘S(A)’. As Charles Parsons
pointed out to me, the reference should be to Benacerraf’s 1973 paper.
46[17], p. 18.
47[19], p. 74.
48[20], pp. 2–3.
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The view allows for “differences in clarity or definiteness between basic concep-
tions” and this turns out to be key when it comes to the question of definiteness. For,
even though the view tethers mathematics to human practice “[o]ne may speak of
what is true in a given conception”. But “that notion of truth may only be partial”.
“Truth in full is applicable only to completely clear conceptions.”49 In other words,

this view of mathematics does not require total realism about truth values. That is, it may
simply be undecided under a given conception whether a given statement in the language
of that conception has a determinate truth value, just as, for example, our conception of the
government of the United States is underdetermined as to the presidential line of succession
past a certain point.50

4.1.5 Summary

To repeat, in outline the argument is as follows: (1) There are two opposing views on
the nature of mathematics: platonism and conceptual structuralism. (2) The definite-
ness of set theory requires platonism. (3) Platonism is untenable because it faces an
insurmountable epistemological problem, namely, the access problem. (4) Concep-
tual structuralism, in contrast, does not face the access problem. All the more reason
to embrace conceptual structuralism.

4.2 Response

Before getting to the main point of my response I want to make a few preliminary
points about each of the steps in the above argument.

Re. (1). There is a tendency in much philosophical literature to frame issues in
dramatic terms by maintaining that one is faced with an iron dichotomy. But more
often than not the dichotomy turns out to be a false one. I believe that the present
case is such a case. The form of platonism that Feferman has in mind—and which
he thinks is “philosophically preposterous”—bears much in common with what Tait
calls “superrealism.” But there are other, more tenable forms, such as the “default
realism” that Tait defends.51 Between the two extremes there are many options. The
truth surely lies between.

Re. (2). I do not see why set theory requires a form of superrealism that is “philo-
sophically preposterous.” For example, Feferman’s conceptual structuralism is a
flexible framework. There is nothing in it per se that does not enable one to endorse
conceptual structuralism with regard to set theory. After all, Feferman is able to avoid
what he regards as a preposterous form of platonism with regard to number theory by
adopting conceptual structuralism in that setting, and, in doing so, he secures realism

49[17], p. 11.
50[17], p. 13.
51See [38, 39], Chap. 4.
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about truth values, which is the main point at issue. Why can’t we do the same in the
case of set theory? I will return to this matter below, since it will lead to my main
point.

Re. (3). Even though I am no sympathizer with the kind of superrealism that Fefer-
man seems to have in mind, I think we should be wary of the kind of epistemological
argument that he employs. More generally, for a domain X that on the face of it is a
secure and legitimate discipline, I think we should be hesitant to embrace arguments
of the form: “Domain X faces insurmountable epistemological difficulties; therefore
we have to give up our claims to knowledge regarding X .” The reason we should
be wary of such arguments is that epistemology doesn’t exactly have the greatest
track record. Epistemologists have still not solved the problem of induction! But
that shouldn’t lead us to reject common sense claims or basic claims of physics. It
should lead us to acknowledge that epistemology is a very difficult subject. In my
view epistemology doesn’t occupy an intellectual high ground from which we can
undermine common sense claims, let alone claims of the queen of the sciences. It’s
just one of many disciplines, one which itself is not on particularly sure footing.

Re. (4). It is true that conceptual structuralism doesn’t face the access problem.
But that doesn’t mean that it is without problems. For it faces the objectivity problem.
Recall that according to conceptual structuralism “[t]he objectivity of mathematics
is a special case of intersubjective objectivity that is ubiquitous in social reality.”52 I
think that the assimilation of mathematical objectivity with intersubjective objectivity
in social reality is a mistake. To see why let us examine counterfactuals in each
domain53: Compare (a) “if there were no countries, then PK would not be a Canadian
citizen” with (b) “if there were no humans (and hence no human concepts), then there
would not be infinitely many prime numbers.” In the case of (b) there are two readings.
On the first reading we imagine how things look in the counterfactual situation. In
that situation there are no humans, and hence no human concepts, and so, evaluating
the counterfactual in the counterfactual situation we find that it comes out true. On
the second reading we employ the conceptual apparatus that we have here, and then
we consider the counterfactual situation, and, evaluating the counterfactual from our
present conceptual standpoint we find that it comes out false—it is still true that there
are infinitely many primes in the counterfactual situation envisaged, a situation where
by design there are no humans around to recognize or articulate that mathematical
fact. In short, on the second reading the fact—the infinitude of the prime numbers—is
not “injured” by the absence of people. The situation with (a) is, however, entirely
different. In this case the second reading cannot get a foothold. There is no way of
thinking of me being a Canadian citizen (or there being any Canadian citizens at
all) in the counterfactual situation. Citizenship is too intimately tied to the political
structures. Take away the structures and you take away citizenship. In short, there is
an asymmetry between the case of mathematical objectivity and social objectivity,
one that is not tracked by Feferman’s assimilation.

52[17], p. 12.
53For a very clear discussion of this distinction see [2].
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B

Let me now come to the main point, which I alluded to above: The point is that
Feferman applies conceptual structuralism to number theory and, in conjunction with
doing this, he embraces definiteness and realism in truth values. Why then does he
not make the same move with set theory?

There is a hint of an answer to this question in his remarks on the role of mathe-
matical models in physics. For in addition to thinking that no mythical third realm
(the platonic realm) can secure the definiteness of set theory, he also thinks that the
physical world cannot secure the definiteness of set theory. His reason for thinking
this (when focusing, for example, on the case of the continuum) is that “one must
ask whether the mathematical structure of the real number system can be identified
with the physical structure, or whether it is instead simply an idealized mathematical
model of the latter, much as the laws of physics formulated in mathematical terms
are highly idealized models of aspects of physical reality.”54 Here I completely agree
that the so-called “physical world” is not able to step in and secure the definiteness
of analysis and set theory. Physicalists maintain that it must, and often maintain that
it can. But in claiming that it can, they make questionable idealizing assumptions,
for example, that space and time are either infinite in extent or infinitely divisible.
But for all we know “the physical world” is finite in extent and granular at the level
of the Planck length, thus making it truly finite. The mistaken move in most of these
arguments is to confuse a mathematical model of the physical world with the physical
world “in and of itself” (whatever that might be). So here I agree with Feferman.

In summary, I agree with both the claim that the definiteness of analysis and set
theory cannot be secured by appeal to a mythical third realm (of the sort characterized
by Feferman) and with the claim that it cannot be secured by appeal to the physical
world. But notice that Feferman thinks the same thing about number theory, that is,
he thinks that in the case of number theory the definiteness of the statements is not
secured by a mythical third realm or by the physical world. He thinks, rather, that
it is secured by the conception alone. But then why can’t the conception alone also
save the day in the case of analysis and set theory? The answer can only be: The
conception alone can save the day in the case of number theory since in that case the
conception is completely clear. But the conception alone cannot save the day in the
case of analysis or set theory since in these cases the conception is not completely
clear.

But then we are back to clarity! We are not getting a new argument to the effect that
the concept of subsets of natural numbers is not completely clear and definite. Rather,
the entire case rests on the claim that the concept of subsets of natural numbers is
not completely clear.

B

54[10], p. 107.
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It should be noted that to a certain extent Feferman does think that the concept of
subsets of natural numbers is clear. This come out in his discussion of the question
of consistency.

I, for one, have absolutely no doubt that PA and even PA2 are consistent, and no genuine
doubt that ZF is consistent, and there seems to be hardly anyone who seriously entertains
such doubts. Some may defend a belief in the consistency of these systems by simply pointing
to the fact that no obvious inconsistencies are forthcoming in them, or that these systems
have been used heavily for a long time without leading to an inconsistency. To an extent,
those kinds of arguments apply to NF, which has been studied and worked on by a number
of people. My own reason for believing in the consistency of these systems is quite different.
Namely, in the case of PA, we have an absolutely clear intuitive model in the natural numbers,
which in the case of PA2 is expanded through the notion of arbitrary subset of the natural
numbers. Finally, ZF has an intuitive model in the transfinite iteration of the power set
operation taken cumulatively. This has nothing to do with a belief in a platonic reality whose
members include the natural numbers and arbitrary sets of natural numbers, and so on. On
the contrary, I disbelieve in such entities. But I have as good a conception of what arbitrary
subsets of natural numbers are supposed to be like as I do of the basic notions of Euclidean
geometry, where I am invited to conceive of points, lines and planes as being utterly fine,
utterly straight, and utterly flat, resp.55

In other words, Feferman’s reasons for believing the consistency of PA2 and ZFC are
not inductive, but rather rest on having a clear conception of what the corresponding
structures are supposed to look like.56

I am not sure that I understand the wedge between (a) being clear enough to give
the structure and secure definiteness and (b) being clear enough to give a clear sense
of what the structure is supposed to be and to thereby secure consistency. What is
the extra element required to bridge the gap? It can’t be the third realm. It can’t be
the physical world. But then what is it? It must be couched in the conception alone.

I asked him about this in personal correspondence. Here’s his response:

A picture is just a picture, [and] so doesn’t qualify as a model. But it is a picture of something
that is supposed to be an ω-model of PA2. So in that picture, all arithmetical consequences
of PA2 are correct.

The question then is, whether that picture is clear enough for one to accept PA2 on its own
basis. That’s what I resist, because of my difficulty with the idea that there actually is a
totality of arbitrary subsets of N. But considered purely axiomatically, PA2 tells us (at least
part of) what we should accept about what holds in a picture of “arbitrary” sets of natural
numbers.

By way of comparison, I can picture the Euclidean plane (“perfectly flat”) of points (“per-
fectly fine”) and lines (“perfectly straight”). In that picture I recognize that Euclid’s axioms
hold, and more (such as the “missing” axioms about existence of points of intersection).
But I don’t accept Euclid’s axioms straight out on its own basis. Of course, I can consider
Euclidean geometry as a nice subject for axiomatic and metamathematical study.57

The comparison with Euclidean geometry, and the talk of whether there “actually is a
totality of arbitrary subsets of N,” makes it look as though in addition to the conception

55[11], p. 72.
56See also [17], p. 19, [12], p. 411, and [19], p. 79.
57Personal communication: Letter of March 14, 2016.
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there needs to be something “external” to which that conception corresponds. But in
the case of the concept of natural numbers Feferman embraces realism about truth
values and yet he does not think that in addition to the conception there needs to be
something “external” to which that conception corresponds, whether it be something
in a mythical third realm (say, the “true” natural number structure) or something in
physical reality (say, a physical instantiation of the natural number structure). So I
think that this interpretation is a mistake and that what he is really questioning is
simply whether there is an actual totality in the sense of completed totality of subsets
of natural numbers, as opposed to a potential totality, and this question ultimately
comes down to the question of whether the concept of subsets of natural numbers is
completely clear.

Earlier we were told that the concept of natural numbers is “clear enough to
secure definiteness” and that the concept of subsets of natural numbers is “inherently
unclear” and as such “not clear enough to secure definiteness.” Now we are told that
the concept of subsets of natural numbers is, in fact, clear—it is clear enough to give
a picture of what the subsets of the natural numbers are supposed be, and, in doing
so, it is clear enough to give us confidence in the consistency of PA2. It is just not
clear enough to secure definiteness. So, it’s clear, just not clear enough.

This further weakens my grasp of the concept of clarity at play here. I think that
the concept of being clear enough to secure consistency (and what the structure is
supposed to be like) but not clear enough to secure definiteness is itself inherently
unclear. In any case, if we are to find an additional argument—one beyond the brute
claim that our concept of subsets of natural numbers is not clear enough to secure
definiteness—then we are going to have to move on.

5 Metamathematical

Feferman’s reasons for thinking that CH is indefinite are partly based on the metamathe-
matical results in set theory, in particular the results showing that “CH is independent of
all remotely plausible axioms extending ZFC, including all large cardinal axioms that have
been proposed so far.” 58

5.1 Feferman’s Case

The background is this: Gödel proposed large cardinal axioms as a means of settling
CH. It was subsequently shown that (in a sense that can be made precise) large
cardinal axioms settle every question of complexity strictly below that of CH but
that they cannot settle CH. Since then there have been two main approaches to
making a case for axioms that settle CH: first, the approach based on forcing axioms
(of which Woodin’s case for the axiom (∗) is the most sophisticated) and second,

58[15], p. 127.
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the approach based on inner model theory, more precisely, Woodin’s work on the
possibility of an “Ultimate-L .”

Feferman has not discussed these two main approaches in detail. Instead he has
focused on the results of Levy-Solovay and others, which show that the standard large
cardinal axioms are invariant under small forcing and hence cannot settle CH.59

5.2 Response

A great deal of work has been done toward making a case for axioms that settle CH,
but since Feferman does not engage with the details of this material I will set it aside.

Feferman’s claim is that we should be led by the fact that large cardinal axioms
(and, more generally, all remotely plausible axioms) do not settle CH to the conclu-
sion that CH is an indefinite statement. I don’t see how the former can lead us to the
latter. For the question at hand is the question of determinateness and this concerns
the conception, not our epistemic situation. Indeed, Feferman makes exactly this
point, through a comparison with the situation in number theory.

However, the inability of humans to decide such questions can no more be charged as a defect
of this conception than can their inability to decide certain number-theoretical statements on
the basis of the usual conceptions of the natural numbers.60

Feferman is a realist about the truth-values of statements in number theory “indepen-
dently of whether we can establish them one way or the other”61 precisely because
this is a matter that concerns the conception and not our epistemic access. In summary,
the semantical or ontological matter of definiteness is independent of the epistemic
matter of whether we can establish the statements one way or the other, something
that Feferman is aware of, and in fact appeals to in underscoring the nature of his
realism about truth values when it comes to number theory.

Moreover, Feferman is in a similar situation when it comes to number theoretic
statements. For example, let ϕ be the statement asserting the consistency of ZFC +
“There is a supercompact cardinal.” Feferman would maintain that ϕ has “not

been settled by any remotely plausible assumption.” But this would not lead him to
conclude that this statement “is an inherently indefinite problem which will never
be ‘solved’,” for this statement is number theoretic and hence definite by his lights.
More generally, it seems clear that, given his limitative framework, there are true �0

1
statements of the form “S is consistent” that will never be solved by any new axiom
that he regards as remotely plausible. For example, if the statement ϕ is true, then it
is independent of any large cardinal axioms that Feferman deems remotely plausible.
Yet this alone would not lead him to conclude that these statements are indefinite. It

59[5], pp. 72–73, [12], pp. 404–405, and [15].
60[3], p. 1.
61[17], p. 15.
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follows that not-(currently)-being-settled-by-remotely-plausible-assumptions is not
(even by Feferman’s lights) sufficient for indefiniteness.62

5.3 Further

Feferman doesn’t discuss other meta-mathematical arguments but such arguments are
common in the literature and folklore. This seems as good a place as any to discuss
them. I want to stress, however, that in doing so I make no claim that Feferman
endorses these arguments—in fact, in some of the cases I know that he doesn’t
endorse the arguments. My goal in supplementing the above discussion is to make
the point that from a meta-mathematical point of view the situation in set theory is
much closer to the situation in number theory than is commonly thought.

5.3.1 Categoricity

In the case of number theory we have a categoricity theorem in the second-order
setting. More precisely, PA2 is categorical. In the case of set theory there is also
a categoricity theorem in the second-order setting, only in this case one only gets
quasi-categoricity, unless one adds a hypothesis specifying the height of the universe.
More precisely, ZFC2 is quasi-categorical in the sense that given two models one is
isomorphic to an initial segment of the other; and if one restricts to certain fragments
of this theory—like PA3—or one adds a negative hypothesis—such as that there are
no inaccessible cardinals—then one gets full categoricity. So, as far as statements
like CH are concerned, number theory and set theory are on a par with regard to
categoricity results.

These results are theorems (concerning second-order systems) and as such there
can be no dispute about them. What has been disputed is the interpretation of such
results and the question of their foundational significance. But here again I believe
that there is a parallel: I agree with Feferman in thinking that in neither case do the
theorems secure the definiteness of the concepts in question, since in each case one
begs the question in the meta-language by appealing to higher-order quantification.63

It is worth mentioning that there is another, weaker version of categoricity, one that
does not employ full second-order logic, namely, what has been called schematic or

62It is often pointed out that statements like ϕ are not “natural.” That may be true but it is not relevant
to our present discussion, which concerns the question of definiteness. Feferman is maintaining that
(Footnote 62 continued)
all of the statements of number theory have a determinate truth value, not just the “natural” ones. And
he is providing arguments which apply to statements regardless of whether they are “natural” or not.
(It would be far-fetched to say “not-(currently)-being-settled-by-remotely-plausible-assumptions
secures indefiniteness . . . ” and then add “but only for “natural” statements.”
63See the last section of [24] for further discussion.
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internal categoricity. The idea dates back a paper of Parsons.64 The basic idea is that
in being committed to the natural numbers we are committed to accepting induction
for any predicate that we come to accept as definite. Now, suppose two people have
their respective number systems, 〈N , 0, S, . . .〉 and 〈N ′, 0′, S′, . . .〉. If each admits as
definite the other’s number predicate—N , respectively, N ′—and allows it to figure
in the range of their induction scheme, then together, through communication, they
can show that the natural mapping f , sending 0 to 0′ and S(n) to S′( f (n)), is an
isomorphism.

But once again there is a parallel in the case of set theory, as has been pointed
out by Martin.65 And, once again, I think that Feferman and I are in agreement
in thinking that the schematic categoricity theorems do not secure the definiteness
of the concepts in question but rather merely enable one to articulate one’s views
concerning the definiteness of the concepts in question, views that must be secured
by independent arguments. So again, there is a parallel between the case of number
theory and the case of set theory.

5.3.2 Non-standard Models

There is an approach to finding an asymmetry between the two cases that rests on
non-standard models. In the case of number theory when you build a non-standard
model its non-standardness is immediately revealed since the standard part is a proper
substructure of the entire structure. Some have thought that the case is quite different
in set theory.

But the case in set theory is surprisingly similar, as far as recognizable-non-
standardness is concerned, a point that has been made by Martin.66 Take a case
like Cohen’s method of forcing. There are two standard model-theoretic ways of
formalizing forcing. In the first approach one starts with a countable transitive model
M of the theory in question, say, ZFC, and one adds a generic object. The point
is that all of this is done within set theory and it is revealed in the first step that
one is dealing with a non-standard model since it is revealed in the first step that
one is dealing with a countable object. In the second approach one builds class-size
models—and so here the countability criticism is no longer applicable—but here one
builds a Boolean-valued model V B and so, once again, it is immediately recognized
that it is non-standard. So, once again, number theory and set theory are parallel in
this regard.

64[33]. See also [34].
65[30, 31].
66[30].



Feferman on Set Theory: Infinity up on Trial 513

5.3.3 Facility in Constructing Models

Some have cited the facility with which we can manipulate models of set theory as
evidence that certain statements of set theory, like CH, are not definite. For example,
given a countable transitive model M of ZFC we can force to obtain an extension
M[G0] that satisfies CH and then force again to obtain an extension M[G0][G1]
that satisfies ¬CH and then force again to obtain an extension M[G0][G1][G2] that
satisfies CH, and so on. We can flip CH on and off like a switch. This complete
control has led some to think that it indicates that CH is not definite.67

But exactly the same thing holds in the setting of first-order number theory, the
reason being that there are number theoretic Orey sentences. Let ϕ be an Orey
sentence for PA.68 Such a sentence has the feature that if we take a model M0 of PA
we can end-extend it to obtain a model M1 in which ϕ holds and then end-extend
that model to obtain a model M2 in which ¬ϕ holds, and then end-extend that model
to obtain a model M3 in which ϕ holds, and so on. If the above argument concerning
CH is a good one then this “god-like” control should indicate that ϕ is not a definite
statement. But Feferman (and most people) think that all statements of first-order
number theory are definite.

5.3.4 Flexible Orey Sentences

One might try to argue that set theory is different in that there are flexible Orey
sentences like PU and CH.69 For example, PU has the feature that in addition to
being an Orey sentence for ZFC it is also an Orey sentence for ZFC supplemented
with certain large cardinals (measurable, strong, etc.) until at a certain point (in the
region of Woodin cardinals) it ceases to be an Orey sentence because it is outright
settled (in this case positively) by the large cardinal axioms in question. And CH
has the feature that in addition to being an Orey sentence for ZFC it is also an
Orey sentence for ZFC supplemented with any of the presently known large cardinal
axioms. So, perhaps this is a metamathematical difference between number theory
and set theory.

It turns out that one can construct number theoretic sentences that have the afore-
mentioned metamathematical features of PU and CH. This is something that Woodin
and I showed in unpublished work from some time back. Here I would like to briefly
describe the results.

67For example, this argument is put forward by [22].
68One can choose theories other than PA and one can arrange that ϕ is quite simple—it can be �0

2
(provably over PA (or over whichever background theory one is working with)), as is demonstrated
in the first appendix.
69‘PU’ is short hand for the statement that all projective sets have the uniformization property. This
is a statement of (schematic) second-order number theory, and so concerns the concept of subsets
of natural numbers. CH, in contrast, is a statement of third-order number theory, one that concerns
the concept of subsets of the set of subsets of natural numbers.
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To begin with, to place ourselves in a purely number theoretic setting we must
replace large cardinal axioms with number theoretic analogues. The most natural way
to do this is to speak of the �0

1 consequences of large cardinal axioms. More precisely,
suppose L is a large cardinal axiom. The theory ZFC + L and the theory PA +⋃

n<ω Con((ZFC + L)�n) are mutually interpretable, which is to say that they have
the same �0

1 consequences. Thus, the latter, which is purely arithmetical, captures
exactly the �0

1 consequences of ZFC + L .
Our question then is whether there are flexible number theoretic Orey sentences

which are analogues of PU and CH in the following sense: A number theoretic
analogue of PU is a number theoretic sentence ϕ that is an Orey sentence for PA,
remains an Orey sentence for PA + ⋃

n<ω Con((ZFC + L)�n) for a certain stretch of
the large cardinal axiom L , and then ceases to be an Orey sentence, by being outright
settled by theories of the above form when the large cardinal axiom L is strengthened.
An number theoretic analogue of CH is an arithmetical sentence ϕ that is an Orey
sentence for PA and remains an Orey sentence for PA + ⋃

n<ω Con((ZFC + L)�n)
for all presently known large cardinal axioms.

We can now state two theorems, which were proved jointly with Hugh Woodin:

Theorem 1 Suppose 〈ψi : i < ω〉 is a recursive sequence of �0
1-statements that are

of increasing strength; that is, such that for all i < j , PA � ψ j → Con(ψi ). There
is a �0

2-statement ϕ such that for all i < ω,

PA � “ϕ is an Orey sentence for PA + ψi .”

Theorem 2 For each i < ω, there is a �0
i+2-sentence ϕ such that for all �0

i -
sentences ψ

PA � Con(PA + ψ) → (
Con(PA + ψ + ϕ) ∧ Con(PA + ψ + ¬ϕ)

)
.

It follows from these theorems that there are flexible number theoretic Orey sentences
which are analogues of PU and CH in the sense described above. Thus, even in this
case we have a parallel between number theory and set theory.

B

In summary: As far as Feferman’s metamathematical arguments are concerned,
and as far as the additional metamathematical arguments that I have considered are
concerned, there is a parallel between the case of number theory and set theory and
we still do not have a case—independent of the brute claim that the concept of subsets
of natural numbers is not sufficiently clear to secure definiteness—that analysis and
set theory, in contrast to number theory, are indefinite.
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6 Formal Results on Indefiniteness

Feferman takes the formal results on indefiniteness—in particular the result of Rathjen
showing that CH is indefinite relative to the semi-constructive system SCS+—as providing
evidence that CH is indefinite.

6.1 Feferman’s Case

In the spirit of getting exact about informal claims, Feferman “proposed [a] logical
framework for distinguishing definite from indefinite concepts.”70 The basic idea is
that classical logic is the logic appropriate for definite concepts, while intuitionistic
logic is the logic appropriate for indefinite concepts. Thus, for example, if one wishes
to articulate and investigate the view of someone who, like Feferman, maintains that
the concept of natural numbers is definite, while the concept of subsets of natural
numbers is not definite, then an appropriate system would be a system of semi-
constructive set theory involving two logics, classical logic for the number theoretic
component and intuitionistic logic for the remainder. A statement ϕ is then defined
to be (formally) definite with regard to such a system S if S � ϕ ∨ ¬ϕ. So, in the
case under consideration, it will be immediate that statements of number theory are
definite (this having been built in from the start). The question then arises: Which
other statements can be shown to be definite relative to such a system S?

Feferman introduced two semi-constructive systems of set theory, which will
here be labeled ‘SCS’ and ‘SCS+’. The first system is the one briefly described
above. The second system aims to capture the view of a descriptive set theorist who
maintains that the concept of subsets of natural numbers is definite, but makes no
explicit claims about the definiteness of the concept of subsets of the set of subsets of
natural numbers, or concepts involving further iterations of the powerset operation.
It involves classical logic for second-order number theory and intuitionistic logic
beyond.71

Feferman conjectured and Rathjen proved that CH is indefinite relative to SCS+.72

Feferman takes this result “as further evidence in support” of the claim that CH is
indefinite.73

Our question is: Does this result provide evidence that CH is indefinite?

70[17], p. 2. See [16] for the technical work on these systems. See [17–19], for an informal, philo-
sophical discussion.
71It would take us too far afield, and it would not be especially illuminating, to pause to lay out
the axioms of these two systems. For a precise account of these systems the interested reader can
consult [36]. (I am using ‘SCS’ for the system Rathjen also calls ‘SCS’ and I am using ‘SCS+’ for
the system he calls T , that is, the system SCS + “R is a set”.).
72[36].
73[18], p. 23.
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6.2 Response

It seems antecedently unsurprising that if one only assumes classical logic for a
limited domain—say first-order number theory (or second-order number theory)—
then one will not be able to prove that classical logic holds for distinctive statements
of a richer domain—such as second-order number theory (or third-order number
theory). In particular, it is unsurprising that if one just assumes that classical logic
holds for second-order number theory then one won’t be able to show that the law
of excluded middle (LEM) holds for a distinctive �2

1 statement like CH.
Moreover, not only is it unsurprising, it is hard to see how this fact is relevant to

the question of whether CH is definite. The people who maintain that CH is definite
do not maintain that it can be shown to be definite by assuming only that the concept
of subsets of natural numbers is definite. Generally, they maintain that the concept
of subsets of the set of subsets of natural numbers is definite. But Feferman’s system
SCS+, on the face of it, starts with the assumption that this concept is indefinite and
asks whether one can prove that despite that prima facie assumption one can prove
that it is definite.

Perhaps a comparison is helpful: Feferman maintains that statements of num-
ber theory are definite. He maintains this because he maintains that the concept of
natural numbers is definite. Imagine now that we ask him to prove the definiteness
of statements of number theory by working in a system which does not have LEM
for statements of number theory but which assumes classical logic only for a much
weaker fragment. I believe he would be unmoved by this demand. And I think he
would be right to be unmoved. Similarly, I do not see the point of asking someone
to prove the definiteness of CH by working in a system which does not have LEM
for statements of third-order number theory but which assumes classical logic only
for a much weaker fragment.

There is one further main point that I would like to make, and for this it will be
necessary to investigate Feferman’s two systems—SCS and SCS+—in more detail.

6.2.1 Regarding SCS+

Let’s start with the second system, SCS+, since this is the system that figures promi-
nently in Feferman’s discussion of CH. This system is proposed as a system that
explicates the working perspective of the descriptive set theorist. Descriptive set the-
ory is the study of “definable” sets of reals. Here the notion of being a “definable”
set of reals is really a hierarchy of notions, ranging from being a Borel set of reals,
to being a projective set of reals, to being a set of reals existing in L(R), to being
a set of reals existing in HOD(R). It tends to be the case that statements which are
difficult—and in some cases, impossible—to settle in ZFC when one considers “arbi-
trary” sets of reals, become tractable when one considers “definable” sets of reals.
For example, as is well known, Cantor was unsuccessful in his attempts to settle CH,
and, as we now know, it was not through any lack of ingenuity, but rather because
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it is in principle impossible to settle CH within ZFC. Nevertheless, he was able to
prove that CH holds for certain “definable” sets of reals, in particular the closed sets
of reals—in the sense that every infinite closed set of reals is either countable or
contains a perfect set and so has size the continuum—and it was subsequently shown
that it also holds (in this sense) for much richer classes of definable sets.

In using SCS+ to explicate the views of the descriptive set theorists it would seem
that the underlying idea is that the descriptive set theorists think that statements about
“definable” sets of reals are definite, while they are agnostic or uncertain about the
definiteness of “arbitrary” sets of reals. It is then of interest to ask how far one can
get (in terms of establishing definiteness) within this framework.

Let’s examine definiteness in SCS+ and see how well it articulates the views of
the descriptive set theorists. At the start we have that all statements of second-order
number theory are definite. So far so good. This is in accord with the views of the
descriptive set theorists. Let us now march our way up the hierarchy of definability.
It turns out that statements about Borel sets come out as definite; for example, the
statements that all Borel sets are Lebesgue measurable, have the perfect set property,
and are determined, all come out as definite in SCS+. It also turns out that statements
about projective sets come out as definite; for example, the statements that all pro-
jective sets are Lebesgue measurable, have the perfect set property, are determined,
etc. come out as definite in SCS+. Thus far we are doing well. All of this is in accord
with the views of the descriptive set theorists.

But things change when we get to L(R). Let ACL(R) be the statement that “there is
a well-ordering of R in L(R)”. It turns out that ACL(R) is indefinite from the point of
view of SCS+, assuming the consistency of large cardinals at the level of ADL(R).74

Theorem 3 Assume Con(ZFC + “There are ω-many Woodin cardinals”). Then
SCS+

� ACL(R) ∨ ¬ACL(R).

Likewise ADL(R) comes out as indefinite in SCS+. So, in this regard, ADL(R) is just
like CH. But in contrast to CH it does not concern arbitrary subsets of reals, it only
concerns definable ones, and it is a statement that the descriptive set theorists, at least
modern descriptive set theorists, regard as definite.

So the system SCS+ gives a mixed verdict on statements of descriptive set theory,
when measured with regard to the community of modern descriptive set theorists.
In some cases it is in alignment with that community and in other cases it is out of
alignment with that community. For example, it classifies statements of second-order
number theory (and even “schematic” statements of second-order number theory,
like PD) as definite, and in this respect it is in alignment with the views of modern
descriptive set theorists. But it classifies other statements (like ACL(R) and ADL(R))
as indefinite, and in this respect it is out of alignment with the views of modern
descriptive set theorists.

74This result and the remaining results in this section were proved jointly with Hugh Woodin. It
seems likely that the hypothesis can be weakened to just ZFC but the technical hurdles are difficult
and it doesn’t affect the point I wish to make. I am confident that the hypothesis is true, and hence
that the conclusion follows. If one has an issue with the hypothesis we have a whole other debate
. . . In any case, the skeptical reader can take the theorem as it stands.
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The lack of alignment becomes even more dramatic when we look not just at what
the community of modern descriptive set theorists deem definite but at what they deem
true. The modern descriptive set theorists who have discussed the more philosophical
aspects of set theory—such as the search for new axioms and the question of the
definiteness of CH—have made a case for axioms of definable determinacy, including
both PD and ADL(R) (and hence that ACL(R) is false). In fact, it is hard to see how one
might maintain PD and not maintain ADL(R). Certainly everyone who maintains the
former maintains the latter, and for exactly the same reasons. One of the reasons is
that these principles follow from large cardinal axioms and the large cardinal axioms
required to prove the latter are only minimally stronger than those required to prove
the former. Indeed I doubt that there is even a coherent view in which one can make
a case for the former large cardinal axioms without simultaneously making a case
for the larger large cardinal axioms.75 Another reason is the phenomenon whereby
PD and ADL(R) follow from every known “natural” theory of sufficiently strong
consistency strength and, in the case of the latter statement, the consistency strength
required is only slightly greater than in the case of the former statement. Indeed it
is hard to see how one could draw a principled line between the two statements in
terms of the consistency hierarchy, maintaining that some of those below the line
were plausible while none of those above the line were plausible. In any case, I do
not know of a single descriptive set theorist who maintains that PD is definite (or
true) and maintains that ADL(R) is indefinite (or false). So in this regard SCS+ does
not capture the views of the modern descriptive set theorists.

It should be mentioned that there are other frameworks that have been proposed
which fare better in capturing the views of modern descriptive set theorists. In these
frameworks ADL(R) comes out as definite.76 I have spent some time investigating
such frameworks, with the aim of seeing how one might make a solid case for the
claim that CH is either absolutely undecidable or indefinite.77 But in each case there
has always been an interesting twist—there has always been an escape hatch in which
one might break the asymmetry and make a case for one side or the other.

But let us return to Feferman’s views. Feferman believes much more than that CH
is indefinite—he believes that ADL(R) is indefinite. And his system SCS+ implies
much more than that CH is (formally) indefinite—it implies that ADL(R) is (formally)
indefinite. So the focus of this discussion should really be ADL(R). This is precisely
the point where modern descriptive set theorists have argued that there is a convincing
case for new axioms.

75The former follows from the existence of infinitely many Woodin cardinals. The latter follows
from the existence of infinitely many Woodin cardinals with a measurable above them all. The
assumption of Woodin cardinals is much stronger than the assumption of measurable cardinals.
76See for example [29, 37, 40].
77See [23, 29].
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6.2.2 Regarding SCS

But when it comes to Feferman’s view even SCS+ itself is a bit of a red herring. For
recall that Feferman maintains something much stronger than that CH is indefinite.
He maintains that the concept of the subsets of natural numbers is indefinite. In
particular, he maintains not only that ADL(R) is indefinite, he also maintains that PD
and much more is indefinite. For recall that he denies

that it is a fact of the matter whether all projective sets are Lebesgue measurable or have the
Baire property, and so on.78

So, of the two systems that he has introduced, SCS is much closer than SCS+ to
articulating his own position with regard to matters of definiteness. Let us then
investigate this system and see what comes out as indefinite within it.

Let R be the statement that “there is a non-constructible real”, that is, the statement
that there is a real which is not in L .

Theorem 4 SCS � R ∨ ¬R.

In other words, the statement that there is a non-constructible real is not definite from
the point of view of SCS.

This creates a bit of tension for Feferman, for it would seem that he would have
to maintain that R is definite, since it would seem that he would have to maintain
that R is false. For, although he has made it clear that he is not a predicativist,
both his positive views about what is justified and his negative views about what is
not justified all lead him to constructions that do not break out of L . For example,
Feferman certainly accepts L�0 since this covers the realm of predicativity and he
accepts �0 as completely clear and definite. But he probably accepts much larger
fragments of L . He might even accept LωCK

1
, although I am not sure of this. In

any case, it seems clear that everything he would accept—in terms of iterating the
definable powerset—will fall far short of L(ω1)L , for after all, he does not accept the
uncountable infinite. In short, he will never break the V = L barrier. He will never
even come close. And this seems to be something that is clear upon reflection on his
considered views. So, it would seem that he must maintain that R is false and hence
definite.

There are also statements much closer to home which come out as indefinite. In
fact, any statement which is equivalent to ATR0 over RCA0 comes out as indefinite:

Theorem 5 SCS � ϕ ∨ ¬ϕ where ϕ is any of the following statements:
(a) �1-separation: Every pair of disjoint analytic sets can be separated by a Borel

set.
(b) Perfect Set Theorem: Every uncountable closed (or analytic) set has a perfect

subset.
(c) Comparability of Countable Well-orderings.

78[12], p. 405.
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(d) The Ulm theory for countable reduced Abelian p-groups.
(e) �0 Determinacy.

In fact, the result for the statement in (e) is much stronger. For using a result of [1] it
turns out that there is a recursively enumerable game G such that the statement “G
is determined” is indefinite with respect to SCS.

Nevertheless, Feferman has made it clear to me in conversation that he thinks that
open determinacy is in fact definite.79 Feferman has told me that to fully capture his
view concerning the extent of what is definite one would have to supplement SCS by
adding structure beyond that of the natural numbers, with the aim of ensuring that
open determinacy and its kin come out as definite. I think that this is the right course
for him to take. It is certainly the right course for us to take, since I don’t think there
can be reasonable doubt that open determinacy is definite.

6.2.3 Conclusion

In the previous two sections we considered two case studies—one concerning SCS+
and one concerning SCS—and we showed that in each case the systems proposed fail
to capture the views on indefiniteness of the target audience that they are designed
to articulate: The first fails to capture the views of the descriptive set theorists since
it has PD coming out as definite while it has ADL(R) coming out as indefinite; the
second fails to capture Feferman’s views and those who agree with him on matters
of indefiniteness since it has the Riemann hypothesis coming out as definite while it
has open determinacy coming out as indefinite.

The natural course to take is to supplement each system by adding additional
structure, so as to bring it into alignment with the views of the target audience. But
when we start doing this we see that the enterprise is rather ad hoc. The fact that
we are inclined to make these modifications underscores the point that what is really
guiding the enterprise is the pre-theoretic views on definiteness. The systems are
designed to track those views. If we are not willing to adjust our views in light of the
results of the proposed system, but instead are inclined to hold our views fixed and
modify the systems, then how can we maintain that the systems are giving us insight
into what is definite and what is not?

In summary: (a) The systems proposed thus far fail to articulate the views of their
target audience. (b) We are inclined to hold the pre-theoretic views fixed and adjust
the systems to bring them in step with those pre-theoretic views. (c) This is evidence
that the systems are not giving us insight into what’s definite and what’s not. (d) In
any case, we do not yet have positive evidence that this approach is going to give us
insight into what’s definite and what’s not, and, given the nature of the enterprise,
we have reason to believe that it will not.

79It is unclear to me that he should say this. For open determinacy is logically equivalent over RCA0
(a system Feferman accepts) to the statement that all countable well-orderings are comparable, and
it does not seem that Feferman can say that the latter is definite since it involves what he regards as
a bankrupt notion, namely, the notion of a well-ordering.
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Once again we have not been given an independent argument for the claim that
the concept of subsets of natural numbers is inherently unclear and indefinite, but
rather the entire enterprise is being guided by brute, pre-theoretic intuitions as to
what is completely clear and definite and what is inherently unclear and indefinite.
So, once again, we are back to clarity.

7 Conclusion

I have argued that in the end the entire case ultimately rests on the brute intuition
that the concept of subsets of natural numbers—along with the richer concepts of
set theory—is not “clear enough to secure definiteness.” And my response to this
is that the concept of “being clear enough to secure definiteness” is about as clear
a case of an inherently unclear and indefinite concept as one might find. It is a
concept that does not enjoy the sort of intersubjective objectivity that is a hallmark of
Feferman’s conceptual structuralism. For these reasons it cannot carry much weight
in a foundational enterprise, especially one aimed at arguing that the concept of
subsets of natural numbers—a conception that on the face of it does enjoy the sort
of intersubjective objectivity that Feferman celebrates—is not a definite concept.

In this paper my aim has been negative in that I have concentrated on rebutting
Feferman’s arguments to the effect that the concept of subsets of natural number—
along with the richer concepts of set theory—are indefinite. But I have not advanced
any positive arguments to the effect that this concept (or these richer concepts) are
definite.

I wish I could continue and say something positive on behalf of my defendant. In
short, I agree with Feferman when he writes:

[T]he objectivity of mathematics lies in its stability and coherence under repeated commu-
nication, critical scrutiny and expansion by many individuals often working independently
of each other.80

It is precisely this—the stability and coherence under repeated communication, criti-
cal scrutiny and expansion by many individuals often working independently of each
other—that has led me to believe that the case for new axioms in set theory is a solid
one.81 But that’s another story.
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Feferman’s Skepticism About Set Theory

Charles Parsons

Abstract Solomon Feferman has expressed skepticism or reserve about set theory,
especially higher set theory, in many writings, and in his mathematical work he has
largely stayed away from set theory. The paper undertakes to describe and diag-
nose Feferman’s attitude toward set theory, especially higher set theory. Section1
discusses his opposition to Platonism in relation to some understandings of what
Platonism is. Section2 discusses his interest in predicativity, his analysis of predica-
tive provability, and his sympathy for “predicativism,” although he denies being an
adherent and has used impredicative methods in his own metamathematical work. It
also notes his reconstruction of HermannWeyl’s attempt to construct the elements of
analysis on a predicative basis. Section3 concerns his attitude toward proof theory.
Section4 turns more to philosophy. His anti-platonism is compared with the well
known platonism of Gödel. Unlike Gödel, Feferman views concepts as human cre-
ations. He notes that basic mathematical concepts can differ in clarity and argues that
less clear concepts, in particular those of set theory, can give rise to questions that
do not have definite answers. It is questioned whether Feferman’s conceptual struc-
turalism gives mathematics the degree of objectivity that its application in science
requires. In Sect. 5 remarks are made about Hilary Putnam’s criticism of Feferman’s
claim that a predicative system conservative over PA is adequate for the mathematics
applied in science. The difference is seen to turn on Putnam’s scientific realism.
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Subject Classification Logic and foundations

Solomon Feferman was a mathematician and philosopher of very wide cultivation
and interests, who has produced over a long career a formidable body of research in
mathematical logic and foundations of mathematics, as well as a lot of expository
writing that articulates a philosophical point of view. That point of view would not
be easy to characterize, and to do so in a comprehensive way is a larger task than
I will undertake in this essay. One characteristic of his attitude is a certain distance
from developed set theory, particularly those parts of the subject that depend on
large cardinals or seek to give a definitive answer to questions undecidable in ZFC.1

Cantor’s continuum problem is known to be undecidable in ZFC even with the help
of the known large cardinal axioms, so that it is natural that it should be a particular
target of his doubts.

1 Feferman’s Anti-platonism: Preliminaries

When he gives brief expositions of his point of view, he emphasizes opposition to
“platonism.” His characterizations of his “antiplatonism” tend to be brief. The term
“platonism” is rather ambiguous in discussions of the philosophy of mathematics,
but Feferman does say enough to place him at least roughly on the map. In much
American philosophical discourse, platonism is contrasted with nominalism, so that
any point of view that admits abstract entities at all (or at least classes) counts as
platonist. By this standard, Feferman is certainly a platonist. The term is also treated
as more or less synonymous with “realism,” as that term is used with reference
to mathematics. With respect to much of mathematics (but probably not higher set
theory), Feferman is a realist by an undemanding standard proposed byWilliam Tait:

I want to save this term [“realism”] for the view that we can truthfully assert the existence
of numbers and the like without explaining the assertion away as something else. Realism
in this sense is the default position: when one believes mathematics is meaningful and has,
as one inevitably must, finally become convinced that mathematical propositions cannot be
reduced to propositions about something else or about nothing at all, then one is a realist.
([43], p. 91.)

The default realism that Tait states here and advocates in his writings can be held
about some parts of mathematics and not others.2 The same is true of “platonism”
as defined in the classic essay Bernays [20], which amounts to acceptance of biva-
lence for mathematical propositions. Platonism according to Bernays is a little more
demanding than default realism according to Tait, because the latter is a view that a
constructivist who rejects classical logic can take of the mathematics he accepts.

1Consideration of some large cardinal notions seems to have been forced on him by developments
in proof theory.
2For further discussion of Tait on realism, see Sect. 3 of Parsons [15].
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Both Tait’s default realism and Bernays’s “platonism” are at bottom methodolog-
ical stances. There is no doubt that Feferman would agree with Tait’s default realism
about the mathematics he is comfortable with. It is not clear where the limit of that
mathematics lies. I don’t think Feferman has undertaken to describe and explain a
sharp limit.3 It is clear that any such limit would be short of the higher reaches of set
theory.

A more delicate question concerns platonism as defined by Bernays. Feferman
has worked in proof theory for a major part of his career and has collaborated actively
with other proof theorists. But it is a general methodological principle of proof theory
that results should be proved constructively. It would follow that the proof-theoretic
work that Feferman has done (and that of others that he has relied on) is not platonist
in Bernays’s sense.

I think Feferman’s view would be that the failure of an argument in proof theory
to be constructive would not imply that we do not have reason to take the result to
be true but rather that it would not accomplish a certain desirable kind of reduction.
Many results are proved by model-theoretic methods and only subsequently proved
by constructive proof-theoretic methods. I don’t think Feferman has any quarrel with
that way of proceeding, but if what is desired is a kind of reduction to a constructive
theory, only the constructive proof-theoretic proof accomplishes this.

In rejecting what he calls platonism, I think Feferman understands it in a more
metaphysical way thanwould fit the understandings canvassed above. I will postpone
until later further articulation and examination of what his anti-platonism consists in
and what philosophical arguments he gives for it. More mathematical considerations
are central to his buttressing his point of view, and I think it likely that it derives to
an important degree from his mathematical experience.

Thatmathematical considerations should be at the root of Feferman’s views should
not surprise us, since he is of course first of all a mathematician. But I think that in
order to clarify the roots of his attitude toward set theory, it is helpful and perhaps
necessary to examine some of his mathematical work. He only began to write expos-
itory and philosophical essays in the mid-1970s. By then he already had a substantial
amount of mathematical work under his belt.4

Some of Feferman’s earliest work was in proof theory in a general sense, although
he had not yet worked in the modified Hilbert program that was being brought to
the United States at the time by Georg Kreisel. His graduate work was in Berkeley,
dominated by Tarski, at the time of the birth of modern model theory. Although he
developed a taste for that subject and made some contributions to it, it was never his
central focus.

3It is likely that he would see a difficulty of principle in establishing such a limit with mathematical
precision; cf. the remarks in Sect. 2 below on his analysis of predicativity.
4The earliest in date of publication of any of the essays in In the Light of Logic (Feferman [10]) is
1979.
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At Stanford he was a colleague of Paul Cohen, and during the latter’s work on
his epoch-making independence results, Feferman gave him comments and advice.5

He did not really join the group of logicians who produced a large number of inde-
pendence results in set theory in the wake of Cohen’s work. He did, however, apply
Cohen’s method in the paper [2], published when the method was new.6 The paper
did contain mainstream set-theoretic results, that the Boolean Prime Ideal Theorem
is independent of ZF, and that the existence of a definable well-ordering of the contin-
uum is independent of ZFC+GCH. But what is more interesting and revealing is his
application of forcing to first- and second-order arithmetic. At the outset Feferman
remarks, “The notion of forcing is syntactic and the notion of generic (sequence of)
sets is obtained directly from it. However, the motivations behind the introduction of
these notions is essentially model-theoretic” (p. 325). Feferman then uses forcing to
prove results about hyperarithmetic sets of natural numbers. He has so far as I know
not returned to the method of forcing in later work.

2 Predicativity and Predicativism

Feferman has been called a predicativist by some.7 However, he has firmly denied
this, although the qualification shows that he is less distant from that position than
most writers on the foundations of mathematics, even constructivists:

Though I am not and never have been a predicativist, I have to admit to being a sympathizer
since I am an avowed anti-platonist, at least insofar as set theory is concerned, and I grant
the natural numbers a position of primacy in our mathematical thought. ([14], pp. 313–14.)

Feferman might assent to the famous dictum of Leopold Konecker, “Die natürlichen
Zahlen hat der liebe Gott gemacht; alles andere ist Menschenwerk,”8 although he
would not have drawn the radical consequences Kronecker drew from it or even
accepted the predicativist interpretation proposed by Paul Bernays ([19], p. 41 n. of
reprint).

5See his introductory note to Gödel’s letters to Cohen in Gödel [25]. Cohen did not allow his letters
to Gödel to be published, although some information about their content can be gleaned from
Feferman’s introduction.
6Feferman’s own papers will be cited only by the number in the list of references.
7One such person is Hilary Putnam in Putnam [37], p. 137. In fairness to Putnam, it should be
noted that he has primarily in mind those essays in which Feferman argues that the mathematics
applied in natural science can be developed in theories that are conservative extensions of PA and
predicative by his own lights. (Cf. the remarks on Putnam at the end of Sect. 5 below.)
8Usually translated as, “God created the natural numbers; everything else is the work of man.” As
we shall see in Sect. 4, Feferman could accept the theological framework only as metaphor.
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Early in his career Feferman obtained one of his most widely known results,
an analysis of predicative provability in analysis.9 In the period around 1960 sev-
eral logicians, led by G. Kreisel, worked on the analysis of predicative definability
and advanced the hypothesis that any predicatively definable set of natural numbers
is hyperarithmetic. The converse posed conceptual problems, and Kreisel proposed
changing focus to predicative provability. In his classic paper “Systems of predicative
analysis” ([1]), Feferman considered the question what are the limits of predicative
provability in analysis (second-order arithmetic), and by considering both ramified
and unramified systems gave a convincing argument as towhat the limits are. Accord-
ing to this analysis, usual formulations of ramified analysis are predicative if and only
if the levels are indexed by recursive ordinals less than the first strongly critical ordi-
nal �0. He constructed an unramified system IR which encodes all of predicative
analysis according to his analysis and verified that its proof-theoretic ordinal is also
�0.10 Later work showed that the analysis is robust. For example, Feferman [3]
describes a system of set theory that is a conservative extension of IR for formulae
of second-order arithmetic and so has the same provable ordinals.

One criterion of predicativism is that the predicativist should regard all mathe-
matics that is not predicative as illegitimate, although he might accept as legitimate
mathematics that is predicatively reducible by some criterion.11 It is hard to see how
such a predicativist should think the analysis of predicativity in Feferman’s work to
be a sensible or even intelligible enterprise. Feferman’s analysis used means that are
impredicative by his own criterion. About his system of predicative set theory PS he
writes:

Necessarily (just aswith IR), the systemPS does not have predicative justification as awhole;
if it did we could extend it by reflection. What is claimed is that the ideal predicativist can
recognize as correct each particular axiom and application of a rule of inference.12

I have not found a place in Feferman’s writings on this subject where he apol-
ogizes for stepping beyond predicativity in his analysis of it. I would not expect
one, since research programs that he worked on for years involved methods that
are impredicative according to his own analysis. One such program is the modified
Hilbert program, pursued by many logicians from Gerhard Gentzen to members of a
younger generation than Feferman himself. In general, the analysis of what a given
foundational standpoint allows typically involves the use of methods going beyond
that standpoint (cf. note 10 above).

9Throughout it is predicativity relative to the natural numbers that is under consideration. That is
usually called predicativity simpliciter. Clearly that is what is at issue in the quotation just given.
10The results concerning ramified systems were obtained independently by Kurt Schütte, who also
brought out the significance of the ordinal �0. See Schütte [38, 39]. I myself was fascinated by
Feferman’s and Schütte’s work. In 1970 I obtained a Gödel functional interpretation (in Spector’s
extensional version) of IR and some related systems. See the abstract Parsons [31].
11I don’t believe that in the earlier history of foundations predicativism was a very well-defined
position. Cf. the comments on this issue in Parsons [34], pp. 63–65.
12Reference [3], p. 486. Some years later, William Tait said virtually the same thing about his own
analysis of fintism. See Tait [42], pp. 527, 533 of original.
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Although he disclaims being a predicativist, Feferman describes himself as a
“sympathizer.” That partly arises from a taste for using the minimal assumptions
needed to arrive at desired mathematical results, as is reflected in his remark, “A
little bit goes a long way,” embodied in the title of [8]. I believe there is a more
philosophical reason, which will be considered in Sect. 4.

Feferman [6] does the substantial work of reconstructingHermannWeyl’s attempt
to rebuild classical analysis on a predicative basis. With some modification of the
development in Weyl [44], he established that the basic analysis of continuous func-
tions can be done in a second-order systemwith only arithmetic comprehension, thus
in a rather weak subsystem of full predicative analysis (e.g. IR). Feferman does not
enter far into Weyl’s polemical arguments, either to criticize them or to defend them,
but concentrates on the development of predicative analysis, first through analysis of
Weyl’s text and then through reconstructing Weyl’s work in more modern terms but
avoiding stronger assumptions. I will leave until Sect. 4 the question how Feferman
might view the polemical arguments.

3 Constructivism and Proof Theory

As is well known, the enterprise of proof theory survived the blow to it resulting from
Gödel’s incompleteness theorems by abandoning the requirement that its method
should be “finitary” and allowing constructive methods more liberally understood.
That is theway themost significant early result of post-Gödel proof theory, Gentzen’s
proof of the consistency of PA, was viewed at least retrospectively. Although the
dominant constructive conception at the time was intuitionism, researchers hesitated
to use the full intuitionist arsenal developed by Brouwer and Heyting.13 Gödel in
[22] criticized this possibility briefly but sharply. When proof theory revived after
the war, more explicit methods were used.

A second change, which Feferman has emphasized, was in the goals of proof
theory. It becamemuch less focused on proving consistency and conceived the proof-
theoretical analysis of a formal theory more broadly. The pioneer of this change was
Georg Kreisel, whose early writings stressed the additional information that could be
obtained from proof-theoretic consistency proofs. Central to this enterprise was the
characterization of the strength of theories by ordinals. Very often proof-theoretic
results imply or contain conservative extension results. In addition to ordinal analysis,
this is emphasized in Feferman’s later surveys of proof-theoretic work.

Feferman’s interest in this subject would suggest a preference for constructive
methods over non-constructive. But although he has been interested in the formal-
ization of constructive mathematics, he doesn’t show a preference for constructive
methods in mathematics generally. So the preference for constructivity is specific to

13One could ask whether this is still true of work in the 1980s and later, where work on stronger
classical systems aimed at proof-theoretic reduction to Per Martin-Löf’s intuitionistic theory of
types, a much more powerful theory than had been envisaged in traditional intuitionism.
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proof theory. It is stretched rather far in the most ambitious proof-theoretic project
led by him, the volume [4], but it is stretched further in later work by others that he
has followed closely and on which he has commented.

In two survey articles [5, 7] Feferman has organized the subject so that a proof-
theoretical analysis reduces a theory of one type to one of another type, where the
latter theory may claim to be constructive (but possibly still stretching the concept
of constructivity), but the reduction itself is carried out by much weaker means,
generally reducible to PRA. In important cases the interest of the reduction may
depend on the constructive character of the theory to which reduction is carried out,
but it is not necessary for the mathematical soundness of the proof of reduction. He
is more doubtful of the value of proving consistency by constructive methods than
other leading proof theorists (see [12], Sect. 4). In this context he remarks that the
notions of finitist and constructive proof are vague, in particular because there are
many varieties of constructivism (ibid., p. 70).

A program that Feferman originated and has pursued for many years is that of
developing and analyzing formal systems of what he calls explicit mathematics.
The theories he and his collaborators developed and investigated have both classical
versions and constructive versions (with intuitionist logic), and the full theories are
substantially stronger than predicative theories (by Feferman’s own lights). However,
the initial inspiration seems to have come from Feferman’s study of Errett Bishop’s
Foundations of Constructive Analysis [21]. An initial aimwas to develop a theory that
would formalize analysis as developed by Bishop in a way faithful to his distinctive
approach. The systems T0 and T1that Feferman devised at the outset turned out to be
proof-theoretically quite strong, as noted above. But he asserts that Bishop’s actual
work can be formalized in a subsystem that is conservative over PA.

Feferman has had an enduring interest in constructivemethods and theories. How-
ever, although he was evidently impressed by the achievement of Bishop, he has not
been especially interested in a program of reconstructing mathematics (analysis in
particular) on a constructive basis. In fact he has been more interested in predicative
reconstruction, although the reason for that may be that it has been pursued less by
others.14 I do not know whether he advocates what I elsewhere call a critical view
of logic, according to which the application of ordinary logic, in particular the law
of the excluded middle, is open to question where quantifiers range over an infinite
domain.15 He has been all but silent on the subject. However, at the very least he
agrees that there are alternatives, embodied in constructive developments. As we
shall see shortly, however, he is confident of the consistency of the main theories that
apply classical logic over infinite domains, short of set theory involving very large
cardinals.

14Feferman indicates that this is a reason in the Preface to [10], p. ix.
15See Parsons [35]. I identify as advocates of the view Brouwer, Weyl, and Hilbert.
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4 Philosophical Considerations

Two theses of a philosophical character are repeated in a number of Feferman’s
writings. One is what he generally calls “anti-platonism.”We have already discussed
that in a preliminary way in Sect. 1. It was already clear at that point that we had not
got to the essential point, since the forms of platonism or realism that we canvassed
were ones that he either assents to or embodies in his actual practice. We will try
shortly to see what the more metaphysical way in which he understands “platonism”
is, and we will consider what rejection of such a view implies about one’s attitude
toward higher set theory.

The other is more a methodological matter and is widely scattered through his
mathematical work but is emphasized most strongly in the essays in the last part of
In the Light of Logic. That is a preference for developing branches of mathematics
with minimal assumptions, to show that “a little bit goes a long way.” Success in
developing mathematics in this way vindicates the parsimony of assumptions that he
seems to favor. Nonetheless, I will consider criticisms of that point of view.

For the present I will concentrate on anti-platonism as briefly described above.
A powerful example of the opposing view can be found in the writings of Gödel,
especially in the philosophical essays he wrote between the 1940s and early 1960s,
either reprinted or first published in volumes II and III of his Collected Works (Gödel
[23, 24]). It is tempting to conjecture that Feferman formed his anti-platonist views
in reaction to Gödel’s, in the wake of the study of Gödel’s writings occasioned by his
role as chief editor of Gödel’s works. If that were so, it would be likely that Fefer-
man’s mathematical experience would already have disposed him against Gödel’s
version of platonism. However, although Feferman had no publications expressing
his anti-platonist point of view during Gödel’s lifetime, he put forward an early ver-
sion of his “theses of conceptual structuralism” in a talk at Columbia University in
December 1977 and embodied them in a paper, “Mathematics as objective subjec-
tivity,” which was circulated afterward but never published.16 Some of these theses
will be commented on shortly.

Elsewhere I have singled out four “elements” ofGödel’s platonism: (1)Mathemat-
ics has a real content, as opposed to being tautologous or a reflection of conventions
or the use of language; (2)Mathematics is inexhaustible; no formal system or definite
conceptual framework can capture it completely; in particular, the concept of set is,
in Michael Dummett’s terms, indefinitely extensible; (3) Gödel defended set theory
robustly and was not deterred by independence results from maintaining that the
axioms of set theory refer to a “well-determined reality” in which statements such
as CH not decided by currently available axioms are true or false; (4) concepts are

16While working on this paper I was not able to find my copy of that manuscript, although I was
present at the talk. But see the comments below on the theses as published in [15].
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also objective, as objective as sets, although Gödel did not formulate a view of the
logic of concepts that he found convincing.17

Feferman’s writings don’t show that he has a problemwith (1), which was anyway
directed against views of the Vienna Circle that had largely lost their influence when
he began to write on the philosophy of mathematics. He would have to accept a weak
version of (2), forced by Gödel’s incompleteness theorems. He very likely agrees
that in principle set theory can be extended indefinitely by ever stronger axioms of
infinity, but even in the case of axioms less strong than those at the present frontier
of the subject, he has expressed skepticism about their truth, and I think he is not
without doubt about the consistency of stronger axioms. (3) is where he dissents
most strongly, but as we shall see his arguments are at least partly mathematical.
As to (4), Feferman has not directly taken on Gödel’s realism about concepts. But
the“conceptual structuralism” that he has advocated means that he would not accept
Gödel’s view that mathematics involves concepts that are in noway human creations.
I don’t think he could assent to Gödel’s statement in his 1951 Gibbs Lecture that
“The truth, I believe, is that these concepts form an objective reality of their own,
which we cannot create or change, but only perceive and describe.”18 Gödel went on
to describe the “platonistic view” as including the claim that “mathematics describes
a non-sensual reality, which exists independently both of the acts and the dispositions
of the human mind.”19 It is quite clear that according to Gödel this reality includes
concepts. And at least the part of Gödel’s statement that I have quoted expresses a
view that Feferman rejects in repeated statements.

On this point, Feferman emphasizes the thesis that mathematical concepts are
human creations, though influenced by experience. A rationalist like Gödel might
concede that there is a legitimate sense of the word ‘concept’ in which this is true;
after all, there is a long tradition, of which Kant is a well-known instance, according
to which concepts are representations, one of the tools of the mind in cognition.
Consider the following thesis:

1. The basic objects of mathematical thought exist only as mental conceptions, though the
source of these conceptions lies in everyday experience inmanifoldways (counting, ordering,
matching, combining, separating, and locating in space and time).20

The rationalist would hold that there is another sense of theword ‘concept’, according
to which concepts are quite independent of the mind for their existence and essential
properties and relations, although the human mind does have access to them; thus
Gödel talks of “perceiving” concepts, and earlier Frege wrote of “grasping” senses
that have the same objective character. Clearly Feferman holds that such a sense of
‘concept’ belongs to the platonist view that he rejects.

17See Parsons [33], pp. 97–99 of reprint. For some aspects of this view, particularly (1) (which is
close to but not quite the same as Tait’s default realism), ‘realism’ is a more appropriate term. In
his discussions with Hao Wang Gödel preferred the term ‘objectivism’, which has not been taken
up by others.
18Gödel [24], p. 320.
19Ibid., p. 325.
20Reference [15], p. 170. This is the first of the ten “theses of conceptual structuralism.”
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Crucial to his view of set theory is another thesis in his list:

5. Basic conceptions differ in their degree of clarity. One may speak of what is true in a given
conception, but that notion of truth may be only partial. Truth in full is applicable only to
completely clear conceptions.

With many others, Feferman finds the notion of natural number especially clear; in
particular it is sufficiently clear to determine every statement in the language of first-
order arithmetic as true or false, “independently of whether we can establish them
oneway or the other” (ibid., p. 5). But he declines to conclude that the numbers have a
mind-independent existence, either as a structure or as a set of definite individuals.21

Many have found a difference between the clarity of the conception of natural
number and that of real number and again between that and the conception of arbitrary
set of real numbers. It is clear that Feferman also discerns a difference of clarity at
both boundaries. Of course third-order arithmetic, which allows quantification over
sets of real numbers, can state the continuum hypothesis (CH), and Feferman has
argued at length that the continuum problem is not a definite problem. We shall
comment on his arguments shortly.

Admitting such differences of clarity is quite compatible with a greater degree of
realism than Feferman admits even at the level of the natural numbers; after all, one
might hold that arbitrary sets have a mind-independent existence even though we do
not have a clear enough conception of them to be certain that CH has a determinate
truth value, or that it does not.22

Some will question whether conceptual structuralism, as outlined in the theses
Feferman states, offers an adequate basis for mathematical objectivity, even at the
level of the theory of natural numbers. Feferman notes that mathematics is highly
intersubjective (see especially thesis 10), not only in a given culture at a particu-
lar time but over long history and between cultures, even if there is not complete
understanding and agreement across those distances. He writes, “The objectivity of
mathematics is a special case of intersubjective objectivity that is ubiquitous in social
reality.” Citing Searle [40], Feferman notes that there many objective facts involving
social institutions that are only there by human agreement, involving institutions like
property, marriage, money, and government. An example would be, “As of 2015,
Charles and Marjorie Parsons own a house in Springfield, New Hampshire.”

Anyone would agree that a statement like that is objective by everyday standards.
Even someone from a society that has no conception of property could probably
be got to understand it, at least if the teaching effort is started early enough in life.
A more subtle understanding would include grasping the fact that Springfield is a

21It follows, I believe, that he would reject Michael Dummett’s view that asserting bivalence of
statements independently of whether we have any means of deciding their truth is a criterion of
realism.
22Donald A. Martin is at least inclined to that view; see Martin [28]. However, Martin holds that
if CH does not have a determinate truth-value, then a structure that would be a standard model of
third-order arithmetic does not exist. In his language, the concept would not be instantiated. It is
still possible to investigate mathematically what is implied by the concept. See furtherMartin [29].
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town, and New Hampshire a state, of the United States. But perhaps less central than
understanding is that its validity would be even more widespread.

However, is it as objective as ‘7+ 5 = 12’ or the field equations of General
Relativity? These statements apply to parts of the universe so remote that inhabitants
of them (if they exist) could have had no idea of myself, my wife, the United States
and its subdivisions, or home ownership as understood in our species. They also
apply to possible evolutions of the cosmos that would not have given rise to our
species at all.

However, it is not the purpose of this essay to examine whether Feferman has an
adequate account of the objectivity of mathematics. However, it is relevant whether
his account supports the difference he himself claims between the arithmetic of
natural numbers and set theory, especially that part of set theory that depends on
large cardinals. There is clearly a difference in his mind between these two levels of
set theory.

It would be a matter of wide agreement that there is a difference in clarity between
the conceptions of the natural numbers and that of the universe of sets. There is
certainly not as much agreement as to how to understand this difference. We might
begin with the weakest assumption that would justify regarding these structures as
legitimate objects of mathematical investigation, the consistency of the basic theories
that have been around for some time: PA for the natural numbers and ZFC for sets.
Feferman does not doubt the consistency of either. He places lessweight than some on
the “empirical” argument that these theories have been worked with for many years
by a great variety of mathematicians, and no inconsistency has been discovered. He
writes:

I, for one, have absolutely no doubt that PA and even PA2 are consistent, and no genuine
doubt that ZF is consistent, and there seems to be hardly anyone who seriously entertains
such doubts. … Namely, in the case of PA, we have an absolutely clear intuitive model in
the natural numbers, which in the case of PA2 is expanded through the notion of arbitrary
subset of the natural numbers. Finally, ZF has an intuitive model in the transfinite iteration
of the power set operation taken cumulatively. ([12], p. 72)

Although in this case as in others he disclaims belief in a “platonic reality” encom-
passing numbers and sets, he says, “I have as good a conception of what arbitrary
subsets of natural numbers are supposed to be like as I do of the basic notions of
Euclidean geometry” (ibid.) I think his confidence in the consistency of ZF would
extend to extensions of it with small large cardinals, certainly inaccessibles and very
likely also Mahlo cardinals.

Nonetheless, although there are brief allusions to other views that set theorists
might hold, he pretty consistently associates accepting set theory with accepting a
metaphysical platonistic picture, of sets as existing and having the relations they
have quite independently of our own knowledge or even thought, as a reality that,
in Gödel’s words quoted above, “we cannot create or change but only perceive and
describe.”

It is hard to put one’s finger on what this “independence” amounts to. Truth in
general is independent of what we believe about the matter at hand or even what
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individuals can conceive.23 Furthermore, set theory can be used in the description
of a world in which there are no human beings to think anything. But Feferman
may well agree that is already true of the natural numbers or the reals of predicative
analysis. Given what he has written about the continuum problem, Feferman clearly
dissents from a proposition that may not be an integral part of platonist philosophy
but is certainly associated with it, namely what Gödel expressed by saying that “if the
meanings of the primitive terms of set theory… are accepted as sound, it follows that
the set-theoretical concepts and theorems describe some well-determined reality, in
which Cantor’s conjecture must be true or false.”24

Since researchers in set theory have different opinions about the continuum prob-
lem, in particular aboutwhether CH is determinately true or false, it would be difficult
to argue that the view of Gödel just cited is essential to the practice of set theory. One
can hardly doubt that set theory is a going concern. Of course Feferman admits this;
he makes it clear in his writings. He notes that it is permeated by mathematical logic,
but of course the same is true of his own mathematical enterprise. One might, some-
what uncharitably, regard it as just the study of different models of ZF. Feferman’s
statement that he is confident that ZF is consistent does not imply more than that the
arithmetic models yielded by the completeness theorem exist. But I would guess that
he would concede the existence of models with standardness properties, ω-models
or β-models, for example, or at least that we have a coherent enough conception of
such models to reason about them. One would still have an interesting mathematical
subject even if one regarded all large cardinal axioms as hypotheses.25 Actual set
theorists can probably be grouped on a scale between those who adopt an attitude
close to this one and those who hold, or are inclined to, the Gödelian view that the
axioms of set theory (including, at least up to a point, large cardinal axioms) describe
a “well determined reality.”

Even those who adopt the latter attitude may not hold it in the a priori form
suggested by Feferman’s characterization of the platonism he opposes. They may
simply judge, on the basis of the course of set theoretic research, that the development
of the subject tends toward unity. In particular, as regards CH, they see some promise
in programs that aim to decide it but regard even the question whether CH has a
determinate truth-value as open.

Feferman sometimes expresses the attitude of the “ordinary” mathematician, not
a logician, and asks whether certain propositions shown to be independent of usual
axiom systems have “mathematical interest” independent of the logical result that
they are invented to establish. The issues are discussed at length in Chap.12 of [10]

23In the case of institution-dependent facts such as my example of home ownership, it is not
independent of what anyone thinks. Would it still be true that we own the house in Springfield if
it came to be widely believed, in particular by those in authority, that the records in the Registry
of Deeds of Sullivan County, New Hampshire, are meaningless pieces of paper or records of a
hopelessly distant past? (We bought the house in 1973.)
24Gödel [23], p. 260, from the 1964 version of “What is Cantor’s continuum problem?”.
25An even more radical view in this direction is expressed in Hamkins [26].
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(pp. 237–43) and taken up again in [11, 13]. He expresses some skepticism about
what is shown by certain results showing independence ofmathematical propositions
of PA or stronger systems, well into set theory. Reference [11] and the symposium
[13] that it gave rise to bear the implicitly anti-Gödelian title “Doesmathematics need
new axioms?” He goes over a number of these examples and has different views in
different cases about whether they are “of mathematical interest.” A question he
raises is whether they can be proved by ordinary mathematical reasoning or only
through metamathematics.

He comments that no previously formulated open problem is known to be inde-
pendent of standard formal systems, not even PA ([11], p. 108). In a very famous
case, Fermat’s Last Theorem, I believe that the verdict is still out. McLarty [30]
argues that it would require substantial further work in number theory to show that
the theorem is provable in PA or a conservative extension of it. McLarty observes
that the actual proof uses Grothendieck universes, which would amount to assuming
inaccessible cardinals. It is apparently not an especially difficult problem to eliminate
that assumption, so that the proof is given in ZFC. According to McLarty, universes
were used in some other proofs of important results in number theory. He believes
that an “unwinding” that would not be especially deep mathematically would suffice
to yield a proof that could be formalized in something like 7th or 8th order arithmetic.
I think his view is that it is virtually inconceivable that a proof of the theorem could
have been discovered in our time by someone working with those means, still less
with PA, even if it should be shown in the end that the theorem is provable in PA.

If McLarty is right, the work in algebraic geometry and number theory deriving
fromGrothendieck’s ideas would be amuchmore sustained and powerful instance of
something Feferman acknowledges in a field in which he has been directly involved:
the proof-theoretical analysis of stronger systems of second-order arithmetic, where
uncountable ordinals and even inaccessibles are used as heuristic tools to formulate
well-orderings that are in the end recursive. The examples of Fermat’s Last Theorem
and (apparently) of others in algebraic geometry and number theory seem to show
that, in addition to the logician’s question of how powerful the means are that are
necessary for a proof of the theorem, it is natural to ask what means are most con-
ducive to the discovery of the theorem and to the development of the field. Those
means may include assumptions that can be eliminated after the fact, but sometimes
with non-trivial further work.

There is another issue of “independence” in Gödel’s writings that is relevant to
Feferman’s anti-platonism. Gödel talks of sets and concepts as “existing indepen-
dently of our definitions and constructions.”26 Gödel has inmindprincipallyRussell’s
ramified theory of types, which without the axiom of reducibility would avoid com-
mitment to propositional functions (and therefore classes) that are not definable. The
demand that sets be definable in a non-circular way is a natural one that was voiced
by prominent mathematicians in the early twentieth century. In Weyl’s predicative

26Gödel [23], p. 128 (from “Russell’s mathematical logic”).
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construction of analysis, for example, this condition is easily satisfied, since sets
are defined as extensions of arithmetical predicates. However, it is still satisfied as
one ascends into ramified analysis, since although sets may be defined in a way that
involves quantification over sets, that can always be understood as quantification
over sets defined at an earlier stage.27 Weyl’s arguments in [44, 45] that standard
arguments in analysis involve a vicious circle presuppose the conception of sets as
extensions of predicates or properties that are close shadows of predicates. InParsons
[32], Sect. 1, I maintain that if one presupposes this conception, these arguments are
defensible.28

Above I remarked that Feferman does not engageWeyl’s polemical arguments. He
expresses sympathy with the view of sets that underlies Weyl’s arguments (e.g. [10],
p. 54). However, he is evidently not convinced by them, although he may believe
that the platonism that he rejects is the only alternative. Perhaps he is also too much
of a structuralist to put very much weight on a conception of what sets are.29

I shall make only a few remarks about the other aspect of Feferman’s anti-
platonism, his undertaking to develop parts of mathematics with assumptions of
minimal strength and his emphasizing the maxim, “A little bit goes a long way.” He
has argued in Chaps. 12–14 of [10] that all of “scientifically applicable” mathematics
can be developed in a system W that is a conservative extension of PA. That all sci-
entifically applicable mathematics can be developed in this system is a conjecture,
but he does make a case for the claim that this is true for all mathematics actually
applied in science, with a small number of exceptions which he considers marginal.
This work converges with that in the “reverse mathematics” program originated by
Harvey Friedman and pursued energetically by Stephen Simpson and his students.30

However, we should qualify the meaning of the conjecture along the lines suggested
above in connection with McLarty’s discussion of Fermat’s Last Theorem. What
has been shown in the analysis of the actual mathematics used is that it can be for-
malized in W or some system of comparable strength. Much of it is presented in
the instruction given to scientists and in the relevant textbooks in a way that does
not emphasize axiomatic economy, and that is probably not what the discoverers of
the relevant theorems had primarily in view. So the economy is something that is
achieved after the mathematics and a lot of relevant, mostly later, mathematical logic
have been discovered.

27Of course if the ascent is into the transfinite, the issues arise that are addressed by the autonomy
condition on ordinal levels in Feferman’s own analysis.
28This is quite in accord with Gödel’s classic analysis of Russell’s vicious circle principle.
29I am not confident enough in my understanding of Feferman’s systems of explicit mathematics
to say whether they are naturally interpreted so that all sets are definable. Evidently this could be
so only with the help of inductively defined predicates.
30See Simpson [41].
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5 Concluding Remarks

Feferman has written in a number of places that he considers the continuum problem
“inherently vague”; he evidently does not expect the efforts being made, in particular
byW. HughWoodin, to lead to a generally accepted solution. Recently he has written
two versions of a paper on the subject, both of which he has made available on his
web site. The titles are revealing; the first version, the text for his actual lecture on
the subject at Harvard University in 2011, is called “Is the continuum problem a def-
inite mathematical problem?” The revised version, [18], is entitled “The continuum
problem is neither a definite mathematical problem nor a definite logical problem.”
That would suggest that the reaction to his lecture and subsequent critical comments
by Peter Koellner have worked more to reinforce his conviction than to undermine
it. However, what interests me most is another difference between the two papers.
The first goes into more general matters: Feferman’s own conceptual structuralism
and the reason why the continuum problem is not on the list of Millenium Problems,
a list of outstanding unsolved problems put forth by the Clay Mathematics Institute.
The revised version concentratesmuchmore onmathematical arguments, reasons for
doubting that the results achieved in the existing programs will prove to be definitive
rather than still leaving equally persuasive alternatives with different verdicts about
the power of the continuum.

I amnot qualified to assess these arguments. Thepoint of bringingup the difference
between the two versions of Feferman’s paper is to remind the reader of something
about their author: He is first of all a mathematician. I find persuasive the conjecture
that his philosophy has followed his mathematics: In the course of his work as a
mathematical logician, always having in view other parts of mathematics, what has
been paramount for him is what is mathematically of interest and what leads to
definite and fruitful results. Central to his mathematical interests have been proof
theory, constructivity, and predicativity and relatively economical extensions of the
latter. Although he is informed about set theory, he is not a set theorist or, as we have
seen, gripped by set theory as mathematics. This may be surprising in a student of
Alfred Tarski. In some autobiographical remarks, he has told us how certain accidents
enabled him early on to develop mathematical interests that were not especially
Tarskian.31

The aim of this essay has been to understand Feferman’s skepticism about set
theory and not to defend or criticize it. But I do want to mention one criticism of
his stance, which affects more his quest for minimal axiomatic assumptions than his
anti-platonism directly. Hilary Putnam writes,

Let us turn now to the claim that predicative set theory is adequate to the needs of physics. I
would not dare to challenge Solomon Feferman’s claim … to have shown that the theorems
that are needed in the “applications” of physical science can all be derived within predicative
mathematics.What I am skeptical about iswhether the predicativemathematician can answer
the difficulty that I have raised as an objection to Wittgenstein’s finitism. The statement

31Of great importance was Feferman’s work with Leon Henkin in 1955–56, when Tarski was away.
See his [9, 16], as well as his autobiography in this volume.
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“There is a point corresponding to every triple of real numbers” (alternatively, “There is a
sphere the coordinates of whose center are any given triple of real numbers”), is not, as far
as I can see, expressible without quantifying over all triples of real numbers, which is just
what predicative analysis forbids! (Putnam [36], pp. 200–01.)

In remarks Putnam goes on to make, he gives the impression that the predicative
systemclaimed tobe adequate for themathematics applied in physicswill be ramified,
so that the object language will talk only of real numbers of one or another order.
But of course the systemW that Feferman claims to be adequate for the mathematics
applied in science is unramified, so that so far as the system goes, one can talk of all
real numbers, or all triples of real numbers. However, that reply is rather superficial,
since even within predicative constraints one can introduce more real numbers than
W allows, and this process can be repeated transfinitely.

I don’t think Feferman has yet commented on this objection of Putnam. But we
do find the following remark:

Alternatively, one might reply that the continuum has physical existence in space and/or
time. But then one must ask whether the mathematical structure of the real number system
can be identified with the physical structure, or whether it is instead simply an idealized
mathematical model of the latter, much as the laws of physics formulated in mathematical
terms are highly idealized models of aspects of physical reality. ([11], p. 107)

I don’t have the knowledge of physics necessary to sort out the implicit controversy
between Feferman and Putnam. However, I will observe that Putnam has frequently
proclaimed that he is a scientific realist. Feferman seems not to stand on that ground,
although he is somewhat reticent about issues in the philosophy of science. I think it
likely that Feferman’s position is not compatible with scientific realism as Putnam
understands it. At any rate, I doubt that he and Putnam could easily come to an
understanding about these issues.

Solomon Feferman has built up a very impressive legacy of research in the founda-
tions of mathematics, first of all mathematical but also philosophical and historical.
His skepticism about higher set theory would not be widely shared in the logical
community, but it has probably been extremely fruitful for Feferman himself and his
many collaborators, and even for those who disagree with him.

Let me conclude by saying briefly why I do not share Feferman’s attitude, in
spite of my very great respect for him and my own early background in constructive
proof theory. John Steel describes the aim of exploring proposed new axioms for
set theory as to “maximize interpretative power.”32 That would be a more precise
and modern version of Georg Cantor’s claim that the essence of mathematics is its
freedom. Set theory explores possibilities that were unimaginable before Cantor,
and its higher reaches only came to the consciousness of mathematicians much more
recently. Much research in set theory since the 1960s has taken a direction opposite
to Feferman’s quest for the most axiomatically economical foundations. Rather, it
has sought to probe the limits of coherent mathematical thought and to see to what
extent unity is maintained when one attempts to scale such heights. Although I can

32See p. 423 of his contribution to Feferman et al. [13].
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only be a philosophical spectator of this enterprise, I continue to find that it offers
deep insights into the possibilities of mathematical thought, and I don’t expect my
attitude to be changed even if Feferman should be vindicated in his expectation that
no widely accepted solution to the continuum problem will emerge.

There are other reasons for embracing set theory. I have tried to say briefly why
it engages me as a philosopher.
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