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Abstract. In this paper, we propose a new bearing fault diagnosis method
without the feature extraction, based on Convolutional Neural Network (CNN).
The 1-D vibration signal is converted to 2-D data called vibration image. Then,
the vibration images are fed into the CNN for bearing fault classification. Experi‐
ments are carried out with bearing data from the Case Western Reserve University
Bearing Fault Database and its result are compared with the results of other
methods to show the effectiveness of the proposed algorithm.
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1 Introduction

Vibration analysis is widely employed in industrial applications. The fault vibration
signal generated by the interaction between a damaged area and a rolling surface
occurred regardless of the defect type. Therefore, vibration analysis can be employed
to detect all types of faults, either localized or distributed. General signal based intelli‐
gent diagnosis methodology includes three steps as follows: signal acquisition; feature
extraction; and fault recognition [1]. To extract representative features from the complex
and non-stationary noisy signal, numerous vibration signal processing approaches have
been developed such as statistical analysis, Fourier transform, wavelet transform, empir‐
ical mode decomposition (EMD). The feature set obtained from the extraction step often
have a high dimension. To enhance the performance of the diagnosis system, dimension
reduction methods are used such as principle component analysis (PCA), sequential
feature selection (SFS). In the last step, machine learning algorithms such as artificial
neural network (ANN), support vector machine (SVM), k-nearest neighbor (k-NN) are
exploited to classify the faults.

Performance of machine learning based classification mainly depends on the feature
extraction step. But there is no standard for extracting features because of the require‐
ment of expert knowledge. Thus, for every specific fault diagnosis task, feature extractor
must be redesigned manually.
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Deep learning is a branch of machine learning based on algorithms that attempt to
model high level abstractions of data. CNN is a deep learning algorithm with hierarchical
neural networks whose convolutional layers alternate with sub-sampling layers,
following with a full connection layer. A CNN primarily mimics the human visual
system, which can efficiently recognize the parterns and structures in a visual scenery
[2]. As a result, nowadays CNNs are successfully applied in many areas relating to image
processing such as face recognition, object recognition, hand written recognition, video
analysis, etc.

Recently, 2-D representations of signals have been exploited in various studies of
fault diagnosis [3], where time-domain signals are converted to 2-D gray level images.
In order to extract the texture information from the converted images, 2-D feature
extraction methods are used such as gray-level co-ocurrence matrix (GLCM) [4], global
neighborhood structure (GNS) map [5], etc. By exploiting the texture information, the
2-D image based fault diagnosis can achieve high accuracy, but the performance still
depends mainly on handcrafted feature extraction.

Motivated by the efficient performance of CNN in image classification and the ability
of representing signals in 2-D data, this paper proposes a bearing fault diagnosis algo‐
rithm using CNN which do not require any feature extractor. Gray-level images
converted from the 1-D vibration signal are fed into CNN for classification. Experiments
are carried out with the bearing data from the Case Western Reserve University Bearing
Fault Database [6]. Comparison with other machine learning based fault diagnosis
approaches (ANN, SVM, k-NN) is carried out to show the effectiveness of the proposed
method.

This paper is organized as follows. The proposed fault diagnosis method is explained
in detail in Sect. 2. Section 3 describes the implementations and performances. Finally,
conclusions are drawn in Sect. 4.

2 The Proposed Bearing Fault Diagnosis Method

To exploit the efficient of CNN in image classification, the vibration signals are
converted to gray images. Then vibration images are feed into CNN for classification.
The block diagram of the proposed method is shown in Fig. 1.

Fig. 1. Block diagram of CNN based bearing fault diagnosis

2.1 Vibration 2-D Gray Image Construction

In the data conversion process, the amplitude of each sample in the vibration signal is
normalized to range from 0 to 1. And the normalized amplitude of each sample becomes
intensity of the corresponding pixel of the M × N corresponding image. The conversion
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between normalized amplitude of sample and corresponding pixel can be described as
the following equation [3].

P
[
i, j
]
= A

[
(i − 1) ∗ M + j

]
(1)

where i = 1:N;j = 1:M; P
[
i, j
]
 is intension of corresponding pixel (i, j) in the M × N

vibration gray image. A[.] is the normalized amplitude of the sample in the vibration
signal. Number of pixel in the vibration image equals to number of sample in the vibra‐
tion signal.

2.2 Image Classification with CNN

Typical CNN consists of four types of layers: convolution layer, sub-sampling layer,
full connection layer and output layer. The network layers are arranged in a feed-forward
structure: each convolution layer is followed by a sub-sampling layer. The last sub-
sampling layer is followed by a full connection layer, which finally followed by the
output layer.

At convolutional layer, the previous layer feature maps are convolved with learnable
kernels and put through the activation function to form the output feature map. Each
kernel is used at every position of the input. CNN exploits sparse connectivity by making
the kernel smaller than the input and enforcing a local connectivity pattern among
neurons of adjacent layers. Each output map may combine convolution with multiple
inputs maps. However, for each output map, the input maps are convolved with distinct
kernels. Each kernel is used at every position of the input. The parameter sharing used
by the convolution operation means that rather than learning a separate set of parameters
for every location, we learn only one set.

Each convolution layer is followed by a sub-sampling layer. A sub-sampling layer
produces down-sampled versions of the input maps, progressively reduces the spatial
size of the representation. That helps to decrease the number of parameters and compu‐
tation in the network. Moreover, sub-sampling layer makes the representation become
invariant with a small translation of the input. If there are N input maps, there will be
exactly N output maps, although the output maps will be smaller.

The full connection layer is a traditional feed-forward neural network, neurons in
this layer have full connections to all activations in the previous layer. The purpose of
the full connection layer is to use the features from previous layer for classifying the
input image into various classes. The final layer in a CNN is output layer, using the
softmax as the activate function.

With three architectural ideals: local receptive fields, weight sharing and sub-
sampling, CNN has many strength [7, 8]. First, feature extraction and classification are
integrated into one structure and fully adaptive. Second, the network extracts 2-D image
features at increasing dyadic scales. Third, it is relatively invariant to geometric, local
distortions in the image.
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3 Experimental Implementation

3.1 Test-Bed Specification

The bearing data were obtained from the Case Western Reserve University Bearing Fault
Database [6]. Motivation of this choice is the fact that a public database which accessible
to the research community allows a fair comparison of the performance of the proposed
algorithms.

Vibration signals of six operating conditions as following: normal condition, inner
race fault, ball fault, outer race fault at position 6, 3 and 12 o’clock position.

3.2 Experiment 1: Fault Diagnosis with CNN

At first, the vibration signals are split into non-overlapping segments. The length of the
segments is chosen based on two criterions: (i) long enough to capture localized features
of the signal and (ii) as short as possible to reduce the computation time. In this experi‐
ment, the length of each segment is selected as 441 samples. Signals from fan end are
considered. 270 samples/condition are generated, thus for six conditions we have
270 × 6 = 1620 segments.

In the next step, vibration images are constructed by the method described in Sect. 2.1.
Since the length of each vibration signal segment is 441, we select the size of vibration
image M = 21, N = 21 pixel, (M × N = 21 × 21 = 441). By that way, we obtained an
image set includes 1620 gray images with size 21 × 21 pixel. Then the image set is split
into two sets: training set (1080 images) and test set (540 images). The vibration images
for six bearing conditions are shown in Fig. 2.

Fig. 2. Vibration gray image of bearing under six conditions: (a)-Normal, (b)-Inner race,
(c)-Ball, (d)-Outer Race 6 o’clock, (e)-Outer Race 3 o’clock, (f)-Outer Race 12 o’clock
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The configuration of CNN classification is as follow:

• first layer: convolution layer, 30 kernels, each kernel has size 6 × 6, stride step 1,
ReLU activate function;

• second layer: sub-sampling layer with filter size 2 × 2, stride step 1;
• third layer: convolution layer, 60 kernels, each kernel has size 3 × 3, stride step 1,

ReLU activate function;
• fourth layer: sub-sampling layer with filter size 2 × 2, stride step 1;
• full connection layer;
• output layer: six output (corresponding to 6 conditions need to be classified).

3.3 Experiment 2: Fault Diagnosis with Conventional Machine Learning

To make the comparison, we consider a machine learning based fault diagnosis
approach. In first step, the vibration signals are split into non-overlapping segments as
the same way used by Experiment 1 in Sect. 3.2.

In feature extraction step, we consider statistical features and Wavelet Packet anal‐
ysis. Statistical features are obtained from both time domain and frequency domain. Ten
statistical features in the time domain: root mean square (RMS), square root the ampli‐
tude (SRA), kurtosis value (KV), skewness value (SV), peak-to-peak value (PPV), crest
factor (CF), impulse factor (IF), margin factor (MF), shape factor (SF), and kurtosis
factor (KF). Three statistical features in frequency domain: frequency center (FC), RMS
frequency (RMSF) and root variance frequency (RVF). Signal from both end (drive end
and fan end) are considered. The total number of statistical features is (10 + 3) × 2 = 26
features, i.e., ten statistical features from time domain, three statistical features from
frequency domain, taken at both the drive end fan end of the motor of the test-bed.

In this experiment, wavelet packet analysis is used to extract features from the time-
frequency domain. The analysis procedure in [9] is used. The mother wavelet is Daube‐
chies 4, and refining is done down to the fourth decomposition level. With a tree depth
of 4, 16 final leaves were obtained and consequently, 16 × 2 = 32 features were taken
for both drive end and fan end.

After the feature extraction step, we obtained a feature set with size 1620 × 58, i.e.,
1620 samples, each sample has 26 + 32 = 58 features.

In next step, to reduce the dimension of the feature set, we use the sequential forward
selection (SFS) [10]. SFS starts with an empty set and then test each candidate together
with the already-selected features. After applying SFS algorithm, we obtain a reduced
feature set with size 1620 × 4. In the classification step, artificial neural network (ANN),
support vector machine (SVM) and k-nearest neighbor (k-NN) are used.

3.4 Comparison and Analysis

In this part, we make a comparison between the classification results of two above
experiments. The first experiment was our proposed fault diagnosis method using CNN.
The second experiment used conventional machine learning based fault diagnosis
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includes following step: feature extraction, dimensional reduction, machine learning
classification.

The first classifier, CNN used vibration images to dignose the bearing faults. For the
next three classifiers, the reduced feature set with only 4 features was used to train ANN,
SVM and k-NN. The last three classifiers are ANN, SVM, and k-NN which trained by
the original feature set with 58 features. In all case, after being trained with the same
training set (1080 samples, 180 samples for each class), all classifiers were fed the same
test set (540 samples, 90 samples for each class) to evaluate the performance.

In this comparison, four standard criteria are used to evaluation the experiment
results [11]: accuracy (acc), specificity (tnr), fallout (fpr) and miss rate (fnr).

From the Table 1, we can see some important points are:

• the classifiers ANN, SVM, k-NN wihout using SFS, which used full feature set (58
features) don’t have good performance;

• using SFS, the performace of those classifiers are all enhanced by using the reduced
feature set (4 features);

• the CNN classifier using 2-D gray level image has very good performance (100%
accuracy), does not use feature extractor and feature selection.

Table 1. Classification results

Classifier acc fnr fpr fnr
CNN 100 1 0 0

Use SFS to reduce feature set dimension ANN 100 1 0 0
SVM 100 1 0 0
k-NN 99.44 0.9934 0 0.0066

Use all features to classify ANN 98.90 0.9868 0 0.0132
SVM 96.11 0.9740 0 0.0260
k-NN 95.56 0.9551 0.0417 0.0449

4 Conclusion

In this study, we proposed a novel approach based on CNN to classify the faults of rolling
element. By converting 1-D vibration signal to 2-D images and exploiting CNN image
classification technique, the proposed method has two main strong points:

• firstly, do not require feature extraction and feature selection process which have big
effect on the classification accuracy and usually require the expert knowledge about
the system.

• secondly, gives high accurate classification of bearing faults, validated through the
experiments with real data.
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