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Abstract. With the widespread usage of wireless network and mobile devices,
the scale of spatial-temporal data is dramatically increasing and a good deal of
real world applications can be formulated as processing continuous queries over
moving objects. Most existing works investigating this problem mainly concern
about the centralized search algorithm for dealing with range queries over a
limited volume of objects, but these approaches hardly can scale well in a cluster
of servers. Additionally, the existing approaches seldom process the situation that
the locations of objects and queries are simultaneously changing. To address this
challenge, we propose a distributed grid index and a distributed incremental
search approach to handle concurrent continuous range queries over an ocean of
moving objects. As to the distributed grid index, it can be deployed on a distrib‐
uted computing framework to well support the real-time maintenance of moving
objects. Further, we take fully into account the condition that locations of objects
and queries are both changing at the same time, and put forward a parallel search
approach based on the publish/subscribe mechanism to achieve incrementally
searching results of each continuous range queries with a cluster of servers.
Finally, we conduct extensive experiments to sufficiently evaluate the perform‐
ance of our proposal.

Keywords: Continuous range queries · Distributed processing · Incremental
search · Moving objects

1 Introduction

With the popularity of mobile devices and wireless network, many things such as sharing
bicycles can be deemed as moving objects. The problem of processing continuous range
queries over moving objects has attracted extensive attentions because many location
based services can be formulated as this problem. The semantic of the continuous range
query in our work refers to the locations of queries and objects are both continuously
changing. Although this semantic enhances the difficulty of processing this type of
queries but it accords with the reality and there are some cases that can illustrate this
point. To capture suspects, polices will monitor the vehicles passing into or out of a
specified region and the polices will probably adjust the search region frequently, which
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is indeed a continuous query processing because the results need to be consecutively
updated with vehicles moving and the query scope is also changing constantly.

In another example, a comprehensive service in cap-hailing applications is that the
data center needs to continuously seek for nearby taxies for a user who is walking, and
this service is also a continuous range query with locations of queries and objects are
all dynamically varying. Since the continuous range query has broad applications, so
we concentrate on devising an distributed framework with efficiency to address this
problem.

In this work, a continuous range query (CRQ for short) over moving objects refers
to returning moving objects inside a user-defined region in real-time and continuously
monitoring the change of query results as the query region constantly changes over a
certain time period. In the big data background, processing CRQs over moving objects
is faced with unprecedented challenges. First, we have to face the tremendous volumes
of moving objects and queries, which are far beyond the computing and storage capaci‐
ties of one single server. Second, with the ubiquitous mobile internet, most range queries
are online and they desire to be responded in real-time. Last but not the least, it is neces‐
sary to constantly monitor the results of CRQs as objects and queries are all moving,
which probably involves a gigantic computing cost.

For the sake of challenges, most of existing works are not suitable for dealing with
the continuous range queries. This is because many works [7, 10] do not consider the
situation that locations of queries and objects are both changing simultaneously. Another
critical issue is that most existing proposals [2, 4] always investigate the central algo‐
rithms to improve the search efficiency, but they cannot scale well to handle extensive
concurrent range queries over a tremendous set of moving objects. Due to the limitations
of existing methods, this work explores a distributed framework to search and monitor
the results of given continuous range queries based on a cluster of servers in real-time.
Specifically, we construct a distributed grid index structure that can be seamlessly
deployed in a master-slaves model to support the maintenance of moving objects and
the parallel processing of range queries. We further design a distributed incremental
search method that can update the results of each CRQ with only computing the incre‐
mental result.

Our main contributions can be summarized as follows:

– This work process CRQs in the scenario where queries and objects are simultaneously
moving, which is seldom involved in other existing works.

– We propose DGI, a distributed grid index, for supporting CRQs over moving objects
in a distributed setting.

– We design DIS, a comprehensive distributed incremental search approach that can
take full advantages of a cluster of servers to continuously monitor the results of
CRQs in real-time.

– DGI and DIS are implemented on top of S4, and we conduct extensive experiments
to evaluate the performance of DGI and DIS, which confirm its superiority over
existing approaches.
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2 Related Work

Continuous range query processing is very important due to its broad application base,
and it has been extensively studied by existing proposals. Some works [7, 9] investigate
processing range queries on road network. Stojanovic et al. [7] propose a framework for
continuous range query processing for objects moving on network paths, and introduces
an additional pre-refinement step which generates main-memory data structures to
support reevaluation of continuous range queries. The work [9] studies the problem of
processing range queries on road networks and proposes Voronoi Range Search based
on the Voronoi diagram. Due to determining the Voronoi diagram for each object is very
expensive, so this approach hardly can support range queries on frequent moving objects.
Additionally, some works introduce the concept of safe region to reduce the reevaluation
cost. The proposal [4] points out that the cost of monitoring and keeping the location of
a moving query updated is very high, and it investigates an efficient technique by
adopting the concept of a safe region. That is, as long as the query remains inside its
specified safe region, expensive re-computation is not required.

Cheema et al. [2] also adopt the methodology that utilizes he concept of a safe zone
to monitor moving circular range queries and propose powerful pruning rules improve
the query efficiency. The above works all focus on searching the exact results of queries,
but the work [5] pay more attention to approximate range search and proposes approx‐
imate static range search (ARS). The work [8] coins a term “Region Queries” to indicate
a broad category of spatial range queries, and focuses on showing a complete picture of
region queries. These proposals present some excellent search algorithms for monitoring
(continuous) range queries, but methods are centralized and their scalability is restricted.
Moreover, most of them does not consider the situation that every object is constantly
moving as processing continuous range queries.

It is imperative that utilizing the distributed computing model to deal with concurrent
range queries over moving objects, and some works [1, 3, 6, 10, 11] have explored this
problem. In fact, the distributed framework in these approaches consist of a central server
and extensive moving objects and they all require the moving devices to have consid‐
erable computational capabilities, which restricts their applicability. In contrast, our
approach does not assume any computation capabilities at the mobile objects other than
reporting their positions (e.g., the sharing bicycles can be a simple GPS tracking device),
and thus has wider applicability.

3 Distributed Grid Index

Given an interest of region covering a large number of moving objects, a grid index
partitions this region into four-square cells with the same size. For any cell ci, it is
regarded as an index unit that records the locations of moving objects residing in the
cell as well as the queries involving it. Grid index structure has been extensively utilized
for processing spatial-temporary queries, and we also utilize it to support the processing
of CRQs over moving objects. But unlike the existing approaches utilizing the grid index
on a single server, we construct a Distributed Grid Index (DGI), namely, deploying the
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grid index on a master-slaves model, which consists of one master and multiple servers.
Next, we will expound the structure of DGI as well as the deployment of DGI on the
master-salves model. The symbols will be used in later text is summarized in Table 1.

Table 1. Summary of symbols

Symbols Meanings
o ≺ B An object o is covered by the region B
o ↛ B An object o is not covered by the region B
C ╥ D The region C is partially covered by the region D
C ╦ D The region C is fully covered by the region D
H ∖ Z The elements belong to t H but do not belong to Z

DGI consists of a Global Schema Index (GSI) and extensive cell indexes. In partic‐
ular, DGI refers to deploying the grid index on a master-salves cluster with a general
streaming data processing model. In this model, we use the conception of PE to represent
a logical processing element, and the data will be encapsulated as an event that can be
transferred from one PE to another. Every event is formulated as a triple (type, key,
value). When a PE consumes a received event, it will encapsulate the intermediate results
as a new event that can be routed to another PE. Here, each PE can receive their desired
events by specifying their types and keys, which indeed forms the events routing rule.
When this model assigns an event to a corresponding PE based on the routing rule, if
the PE does not exist, a new PE will be automatically created to process this event.

In DGI framework, a unique EntrancePE on the master maintains the GSI and every
CellPE takes charge of one or more cell indexes in different slaves. GSI is maintained
by the master and cell indexes are distributed in different slaves. For GSI, it needs to
contain identifiers and boundaries of every cell index. In addition to this, it also has to
master the relationships between cells and slaves. To achieve above purposes, the GSI
seems to be necessary to store much information that is apt to make it be a bottleneck.
But in fact, the GSI designed by us only needs to record the bottom left cell as the
reference cell and a naming rule that can be used to identify the identifier of each cell
rapidly. Since every cell is a four-square, then the identifier and boundaries of every cell
can be deduced instantly. As to the relationships between cells and slaves, we introduce
an hash function f(x) that can map the cells to different slaves on the basis of the iden‐
tifiers of cells, that is, si = f(ci), where si and ci are the identifiers of slaves and cells.

Each cell index is charged of recording the objects covered by itself and the queries
with search scopes intersecting with this cell. For any cell ci, it has three major compo‐
nents, i.e., OLi, FLi, and PLi. The list OLi is used to record the locations of moving objects
covered by itself. FLi stores the identifiers of queries whose search regions fully cover
ci, while the queries with the search scope partially overlapping with ci are maintained
by PLi.
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4 Distributed Incremental Search Approach

In this section, we propose DIS, a comprehensive approach to address the challenges of
incrementally searching the results of extensive CRQs in real-time.

4.1 Search Initial Results of CRQs

The DRQS framework (as shown in Fig. 1) can be deemed as the fundamental computing
architecture, based on which we design search algorithms to process CRQs. Now we
discuss SIR, an algorithm to search initial results of CRQs.

Fig. 1. The framework of DRQS

When EntracePE receives a CRQ (qi) with the search scope sqi, it first determines
the cells intersecting with sqi based on GSI and these cells are called candidate cells.
We use ℱ to label the set of candidate cells. Since the boundaries of cells are static, the
cells in ℱ can be determined with a brute-force comparison of boundaries of each cell
with sqi, but which will greatly waste computing costs. To settle this issue, we will firstly
find the cell ch that covers the center point of the search scope sqi, and then detect whether
each adjacent cell ci of ch has an intersection with sqi. This process will iteratively enlarge
the search region until a group of cells surrounding ch do not overlap with sqi. This
strategy can quickly find the candidate cells of qi even if the shape of sqi is irregular.

After determining the set ℱ for q, EntrancePE will send a queryEvent carrying q to
the CellPEs corresponding to cells in ℱ. To facility presentation, we suppose that each
CellPE is charged of one cell index. Hence, when a CellPE receives the queryEvent, it
will instantly find the objects covered by sqi and these objects form a partial result of
qi. Every CellPE encapsulates the partial result as a resultPEvent and sends it to the
QueryPE. In DRQS framework, the final result of every query is calculated and main‐
tained by a unique QueryPE, and the resultPEvent carrying partial results of qi will be
routed to the same QueryPE with identifier of qi as the key of resultPEvent. Therefore,
QueryPE can obtain the final result of qi by merging all partial results.
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4.2 Incrementally Computing Results of CRQs

After obtaining the initial results of CRQs, we still need to monitor the results of every
query. We first design IOS, an algorithm for incrementally searching results of CRQs
as object are moving based on a publish/subscribe mechanism to constantly update the
results for each query in real-time. In IOS algorithm, every CellPE and QueryPE are
regarded as a data publisher and query subscriber respectively. We use cpi to label the
CellPE matching the cell ci. As to the CellPE cpi, it maintains two registered query lists
FLi and PLi. For a given query qi, its candidate cells forms the set ℱ. If ci ∈ ℱ, qi will
be registered in ci. Specifically, qi will be inserted into FLi if sqi ≃ ci or inserted into PLi

if sq ∼ ci. The query qi has to be registered in every candidate cell in this way. Once an
object in the cell ci moves, the corresponding CellPE only needs to detect whether the
registered queries can be influenced rather than recompute the results of all existed
queries.

In fact, we further observe that not all registered queries in ci will be influenced by
the movement of every object. Since the result of qi just concerns about the objects
covered by sqi rather than their exact positions, so we can deduce that if a CRQ covers
the cell ci, it will not be influenced by the movements of objects in

Theorem 1. For a given cell ci, ∀ oi ∈ OLi, its location is 
(
x′

i
, y′

i

)
 at the time point ti and

the location becomes (xi, yi) at the time point ti+1. If 
(
x′

i
, y′

i

)
 and (xi, yi) are both covered

by ci, then ∀ qj ∈ FLi, its result will not be influenced by the changed location of oi with
the condition that ts

qj

 is smaller than ti.
With the help of Theorem 1, if the location of oi in a cell ci changes, we should update

the results of the registered queries in ci by handling the following two cases.

– The first case is that 
(
x′

i , y′
i

)
 ≺ ci and (xi, yi) ≺ cj (i ≠ j). In this case, the results of all

registered queries of ci and cj will be probably influenced. For each registered query

qi of ci, if 
(
x′

i , y′
i

)
 ≺ sqi, then the CellPE corresponding to ci will notify the QueryPE

maintaining qi to remove 
(
x′

i , y′
i

)
 from the result of qi by sending a resultREvent;

meanwhile, for every registered query qj of cj, if (xi, yi) ≺ sqj, then the CellPE matching
cj will send a resultAEvent to the QueryPE maintaining qi, which aims to notify this
QueryPE to insert oi (xi, yi) into results of qj.

– Another case is that 
(
x′

i , y′
i

)
 ≺ ci and (xi, yi) ≺ ci. According to Theorem 1, ∀ qi ∈

FLi, it cannot be affected by the object oi. Hence, only the results of queries in PLi

need to be updated. In this case, the CellPE matching ci can directly identify the
registered queries affected by oi, and then notify the corresponding QueryPEs to
update the query results.

As above, every CellPE corresponds to a publisher and each QueryPE serves as a
subscriber. Only if a CRQ q is registered in the CellPEs corresponding to its candidate
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cells, these CellPEs will continuously monitor the results of q in a parallel way only if
their matching cells belong to the set ℱ of q. In this process, different CellPEs will send
the moving objects involved with q to a unique QueryPE, which can be deemed a
subscriber. This QueryPE will process the received locations of objects as soon as
possible to guarantee the exact result of q all the time. Moreover, the QueryPE as a
subscriber will take charge of maintaining the result of the query q all through the life‐
cycle of q. In this scenario, we organize extensive CellPEs and QueryPEs in different
servers as a publish/subscribe mechanism that can well support incrementally searching
the results of CRQs in a distributed environment.

As to a query qi, if its search scope is sqi at time point tj and sqi becomes sq′
i
 at time

point tj+1, then qi is required to be resubmitted to EntrancePE. When receiving qi,
EntrancePE will compute ℱ, the set of candidate cells for qi, based on sq′

i
, and then send

qi to each cell ck (ck ∈ ℱ). After receiving qi, the cell ck has to update its two lists of
registered queries. Meanwhile, the matching CellPE will instantly find the objects
covered by sq’i from the cell ck. In this case, CellPE indeed employs an incremental
search strategy to only compute the incremental result of qi at time point tj+1 based on
its existing result, and this incremental search strategy includes the following steps.

(1) If qi is a new registered query for ck, the following cases need to be considered.

– If sq′
i
 ≃ ck, then qi will be inserted into FLk and all objects of ck form a part of the

result of qi.
– If sq′

i
 ∼ ck, then qi will be inserted into PLk and ck has to find the objects covered by sq’i.

(2) If qi is an existed registered query of ck, it will be handled with next steps.

– If (sqi ≃ ck) && (sq′
i
 ≃ ck), which means qi has been in FLk and we have no need to

insert qi into FLk again. In this case, qi still covers all objects in ck though it moves.
As to the cell ck, it does not need to update the result of qi;

– If (sqi ≃ ck) && (sq′
i
 ≃ ck), we need to remove qi from PLk and insert it into QLk. In

this case, the incremental result of qi is the set of objects covered by the region
(
sq′

i
− sqi

)
, which can be rapidly determined.

– If (sqi ≃ ck) && (sq′
i
 ∼ ck), we has to remove qi from QLk and insert it into PLk. At

this moment, we only need to remove the objects residing in the scope 
(
sqi − sq′

i

)

from the result of qi.
– If (sqi ∼ ck) && (sq′

i
 ∼ ck), qi is not necessary to be added into PLk again but ckneeds

to update the information of qi. Now, we need to search all objects covered by the
region (sq′

i
 −(sq′

i
n 
⋂

 sqi)) and these objects belong to the new result of qi.
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5 Experiments

We conduct experiments to evaluate the proposed DGI index and DSI approach. To
better evaluate the performance of DSI, we introduce two other distributed algorithms
as baseline methods. The first method, NS, is a naive search algorithm which does not
use any index. For any object, NS uses a hash function to determine which server should
store it. Processing a CRQ thus involves scanning all objects maintained in all servers
at any time point. The second method, S-DIS, is a simplified DIS method that handles
a CRQ as a new query at any time point, that is, it does not utilize the incremental search
strategy when processing CRQs.

We use the German road network data to simulate two different datasets for our
experiments. In the datasets, all objects appear on the roads only. In the first dataset
(UD), the objects follow a uniform distribution. In the second dataset (GD), 70% of the
objects follow the Gaussian distribution, and the other objects are uniformly distributed.
In these two datasets, the whole area is normalized to a unit square and this square is
partitioned into small cells with edge length being 0.01. Moreover, all objects move
along the road network, with the velocity uniformly distributed in [0, 0.002] unless
otherwise specified. We use Vp and Vq to represent the velocities of an object and a query.
The experiments are conducted on a cluster of 8 Dell R210 servers with Gigabit Ethernet
interconnect.

We first evaluate the performance of DGI. Figure 2 demonstrates the time of building
DGI with the number of objects varying. Based on the results, we observe that the time
cost is in proportion to the number of objects and it is almost not influenced by the
distribution of objects. When objects are moving, the velocity of objects will exert an
impact on the build time of DGI. In Fig. 3, we evaluate the maintaining time of DGI by
processing a set of objects in a specified period of time and find that the maintaining
time is slightly affected by the velocity of objects. This is because DGI always needs to
remove the obsolete location and insert the new position for processing the movement
of an object regardless of the distance it moves one time.
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Fig. 2. Building time of DGI
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Next, we conduct an evaluation on the performance of DIS approach. In Fig. 4, we
first test the time of three approaches when processing the same set of queries. In this
group of experiments, we make 10000 queries continuously move and test the time of
processing these queries at five consecutive time points. As can be observed, DIS
performs better than other two approaches especially at the last four time points. The
reason why the time cost of DIS decreases is that only incremental result of queries need
to be calculated after the first time point, which can greatly reduce the computing time,
while other two methods always process each query as a new one.
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Fig. 4. Comparison of three approaches

Figure 5 demonstrates the influence of number of queries on the processing time of
each method. Here, we observe that the response time of each approach increases obvi‐
ously as more and more queries are processed, but the consuming time of NS approach
grows more sharply. Due to this set of experiments does not involve continuous queries,
so the performances of DIS and S-DIS are almost identical.

808 J. Zhou et al.



0

200

400

600

2000 4000 8000 10000 12000

Pr
oc

es
si

ng
 ti

m
e 

 (
m

s)

Number of queries

Np=1.00E+07, l=0.01 DIS S-DIS NS

Fig. 5. Processing time of three approaches

6 Conclusion

With the dramatic increase of mobile devices and the advances in wireless network, the
efficient processing of CRQs has been of increasing interest. This work propose a
distributed incremental search approach that sufficiently considers the situation that
queries and objects are both moving and only needs to reevaluate the incremental result
of every CRQ to cut down the computing costs as well as communication expenses
between CellPEs and QueryPEs. Finally extensive experiments are conducted to verify
the performance of our proposal.
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