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Abstract. As a kind of high-precision correlation measurement method,
Part Mutual Information (PMI) was firstly introduced into Bayesian Networks
(BNs) structure learning algorithm in the paper. Compared to the general search
scoring algorithm which set the initial network as an empty network without
edge, our training algorithm initialized the network structure as an undirected
network. That meant that our initial network identified the genes related to each
other. And then the following algorithm only needed to determine the direction
of the edges in the network. In the paper, we quoted the classic K2 algorithm
based on Bayesian Dirichlet Equivalence (BDE) scoring function to search the
direction of the edges. To test the proposed method, We carried out our
experiment on two networks: the simulated gene regulatory network and the
SOS DNA Repair network of Ecoli bacterium. And via comparison of different
methods for SOS DNA Repair network, our proposed method was proved to be
effective.

Keywords: Gene regulatory networks � Bayesian Networks � Part Mutual
Information � K2 algorithm � BDE scoring function

1 Introduction

The advances on high-throughput technology enabled us to obtain a great deal of gene
expression data during the past ten years [1]. Meanwhile, a large number of models and
methods emerged for accurately reconstructing gene regulatory networks. For example,
the boolean network, the system of differential equations, artificial neural networks,
bayesian network, and so on. Among these, the Bayesian Networks become a main
model in the research of gene regulatory networks for it’s advantages, including
handling incomplete data sets, fully combing the prior knowledge of the domain, visual
image, and so on.

Generally there were two kinds of algorithms for Bayesian network structure
learning: Search scoring method and correlation analysis method. The search scoring
method usually introduced a scoring function SðG;DÞ and then used this function to
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evaluate each possible network structure for finding an optimal solution from all
possible network structures. The correlation analysis method captured the dependency
between nodes via independence test to study the network structure. In the study, we
quoted the classic K2 algorithm [2] based on Bayesian Dirichlet Equivalence
(BDE) scoring function to learn Bayesian Networks structure. The innovation of our
method lied in introducing Part Mutual Information (PMI) to initialize the Bayesian
Network structure.

The method based on the Mutual Information (MI) firstly obtained the mutual
information matrix by calculating the mutual information between all possible gene pairs
and then constructed the regulatory network through the mutual information matrix [3].
Although the method achieved good results, the limitation of this method was that it
could not distinguish the direct and indirect association between genes with a high false
positive. So Wang et al. [4] proposed a method based on conditional mutual information
(CMI), which could distinguish the direct and indirect relationships between genes, and
greatly reduced the false positive rate. However, the model based on conditional mutual
information also had some limitations. For example Chen et al. [5] pointed out that there
is a false negative problem based on conditional mutual information. When wemeasured
the dependency between variables X and Y given variable Z, CMI could not correctly
measure the direct association or dependency if X (or Y) was strongly associated with Z.
In order to solve this problem, a method based on partial mutual information [5] was
proposed, which solved the false positive problem of mutual information model and the
false negative problem of conditional mutual information.

In the paper, we took advantage of partial mutual information to determine the
relationship between variables for initialing Bayesian network structure. Then use K2
algorithm based on BDE scoring function to search the optimal network structure.
Through two groups of experiments, our proposed method was illustrated to be
effective.

2 Method

2.1 Part Mutual Information

Assuming that X and Y were two random variables, MI was defined on the basis of an
extended Kullback–Leibler (KL) divergence D [6]:

MIðX; YÞ ¼ Dðpðx; yÞ pðxÞpðyÞk Þ ¼
X

x;y

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ ð1Þ

where pðx; yÞ was the joint probability distribution of X and Y and pðxÞ and pðyÞ were
the marginal distributions of X and Y, respectively. Clearly, MI in Eq. 1 was evaluated
against the ‘mutual independence’ of X and Y, which was defined as

pðxÞpðyÞ ¼ pðx; yÞ ð2Þ
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CMI for variables X and Y given Z could further detect nonlinearly direct asso-
ciation and was defined as:

CMIðX; Y Zj Þ ¼ Dðpðx; y; zÞ pðx zj Þpðy zj Þk pðzÞÞ

¼
X

x;y;z

pðx; y; zÞ log pðx; y zj Þ
pðx zj Þpðy zj Þ

ð3Þ

So the conditional independence of X and Y given Z, which was defined as:

pðx zj Þpðy zj Þ ¼ pðx; y zj Þ ð4Þ

To analogy Eqs. (2), (4), partial independence of X and Y given Z was defined as:

p�ðx zj Þp�ðy zj Þ ¼ pðx; y zj Þ ð5Þ

where p�ðx zj Þ and p�ðy zj Þ were defined [7] as

p�ðx zj Þ ¼
X

y

pðx z; yj ÞpðyÞ; p�ðy zj Þ ¼
X

x

pðy z; xj ÞpðxÞ ð6Þ

So

PMIðX; Y Zj Þ ¼ Dðpðx; y; zÞ p�ðx zj Þp�ðy zj Þk pðzÞÞ ð7Þ

Or as

PMIðX; Y Zj Þ ¼
X

x;y;z

pðx; y; zÞ log pðx; y zj Þ
p�ðx zj Þp�ðy zj Þ ð8Þ

2.2 Bayesian Networks

The Bayesian Networks were a directed acyclic graph B ¼ ðG;HÞ which shown the
probabilistic dependency relationship between variables. G ¼ ðV ;EÞ was a directed
acyclic graph and H was the collection of conditional probability table (CPT). V ¼
ðV1; � � � ;VnÞ was a set of nodes and each node represented a field random variable Xi.

E ¼ \Xi;Xk[ Xi;Xk 2 V ; i 6¼ kjf g ð9Þ

Where \Xi;Xk[ indicated the directed edge. Xi ! Xk indicated the probabilistic
dependency relationship between variables Xi and Xk. Xi was the father node of Xk.
PaðXkÞ indicated the parent node set of variable Xk.

For every variable Xk, it’s value xk had the following parameter hxk paðXkÞj ¼
Pðxk paj ðXkÞÞ, which showed the probability of xk occurrence under the condition
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of PaðXkÞ. So the joint conditional probability distribution on a given set of variables of
Bayesian Networks was as:

PðX1;X2; � � � ;XnÞ ¼
Yn

i¼1

PðXi PaðXiÞj Þ ð10Þ

2.3 K2 Algorithm

Cooper [2] put forward K2 algorithm based on Bayesian Dirichlet Equivalence
(BDE) scoring function to learn Bayesian Networks structure. The K2 algorithm used
the way of hill-climbing search to learn the network structure.

According to prior knowledge, We first obtained the initial network. Then, Use the
search operator including reducing edges, increasing edges and reserving edges to
modify the current network to get candidate network. According BDE scoring function,
Select the fractional optimal network to replace the current network, and then continue
the search until obtaining the best network.

The BDE scoring function an approximation of the marginal likelihood function
under the condition of large sample. The BDE scoring function was defined as:

SðG;DÞ ¼ LgPðD Gj Þ þ LgPðGÞ � d
2
logm ð11Þ

Where PðD Gj Þ was an edge distribution of dataset D and was the probability
averaging of data from D. PðGÞ was the prior probability of the network structure G.
d
2 logm was a penalty function for sample size m. Because of the addition of a penalty
term, the BIC scoring function avoided overfitting.

2.4 Evaluation Index

In our study, five criterions (True Positive Rate (TPR), False Positive Rate (FPR),
Positive Predictive (PPV), Accuracy (ACC) and F-score) were used to test the per-
formance of the proposed method. Their definition was given as follows:

TPR ¼ TP
TPþFN

ð12Þ

FPR ¼ FP
FPþ TN

ð13Þ

PPV ¼ TP
TPþFP

ð14Þ

ACC ¼ TPþ TN
TPþFPþ TN þFN

ð15Þ
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F � score ¼ 2PPV � TPR
PPV þ TPR

ð16Þ

Where True Positive (TP) meant that edges in real networks were identified as
edges in the model. False Positive (FP) meant that edges not in real networks were
identified as edges in the model. True Negative (TN) meant that edges not in real
networks were not identified as edges in the model. False Negative (FN) meant that
edges in real networks were not identified as edges in the model.

3 Experimental Results and Analysis

3.1 Experiment 1: Simulated Gene Regulatory Network

Figure 1 showed a simulated gene regulatory network which was modeled by a
S-system model [8]. The model consisted of n non-linear ordinary differential equations
and the generic form of equation i is given as follows:

X
0
iðtÞ ¼ ai P

N

j¼1
Xgij
j ðtÞ � bi P

N

j¼1
Xhij
j ðtÞþ e

Where Xi was a vector element of dependent variable, N was the number of
variables, ai and bi was vector elements of non-negative rate constants, gij and hij were
matrix elements of kinetic orders and random Gaussian noises (e) were added to each
equation independently.

Table 1 listed the parameters of S-system containing 15 genes. The initial value is
random and we respectively got the simulated data by 20 time points, .30 time points
and 50 time points.

Fig. 1. A simulated gene regulatory network containing 15 genes
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From Table 2, we can see the TPR and FPR obtained by our proposed algorithm.

3.2 Experiment 2: SOS DNA Repair Network of E.Coli Bacterium

The datasets from SOS DNA Repair network of E.coli bacterium [9] contained four
experiments under various light intensities (5Jm�2, 5Jm�2, 20Jm�2, 20Jm�2). Each
experiment (http://www.weizmann.ac.il/mcb/UriAlon/ Papers/SOSData) consisted of
50 time points evenly spaced by 6 min and referred to eight genes: uvrD, lexA, umuD,
recA, uvrA, uvrY, ruvA and polB. Figure 2 displayed the known real regulation among
8 genes.

Table 1. Parameters of the S-system

ai 1.0
bi 1.0
gi;j g1;14 ¼ �0:1, g3;12 ¼ �0:2, g5;1 ¼ 1:0, g6;1 ¼ 1:0, g7;2 ¼ 0:5, g7;3 ¼ 0:4, g8;4 ¼ 0:2,

g9;5 ¼ 1:0, g9;6 ¼ �0:1, g10;7 ¼ 0:3, g11;4 ¼ 0:4, g11;7 ¼ �0:2, g12;13 ¼ 0:5,
g13;8 ¼ 0:6, g14;9 ¼ 1:0, g14;15 ¼ �0:2, g15;10 ¼ 0:2, other gi;j ¼ 0:0

hi;j 1.0 if i ¼ j, 0.0 otherwise

Table 2. Performances of the proposed model to the simulated data

Number of time points TPR FPR

20 0.63 0.57
30 0.77 0.41
50 1.0 0.12

Fig. 2. The true SOS network with eight genes and 9 interactions
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In the experiment, we firstly normalized the gene expression data for each gene to
the interval [0, 1] using

x
0
iðtÞ ¼

xiðtÞ �mini
maxi �mini

Where xiðtÞ is the actual measured gene expression level of gene i at time point t.
mini and maxi respectively were the minimum and maximum of gene i expression
level. Table 3 showed the detail comparison between proposed method and other
methods including S-system [10], ODEs [11], RNN [12] and DBN [13]. The results
showed that our proposed method performed better than other methods.

4 Conclusions

In the paper, the Part Mutual Information was introduced into the training algorithm of
the Bayesian Networks structure, which meant that the initial network has identified the
genes related to each other and the later searching process with K2 algorithm only
needed to determine the direction of the edges in the Bayesian Networks. We carried
out our experiments on two networks: the simulated gene regulatory network and the
SOS DNA Repair network of Ecoli bacterium. And via comparison of different
methods for SOS DNA Repair network, our proposed method was proved to be
effective.
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Table 3. Comparison of different methods for SOS dataset

Item S-system ODEs RNN DBN Proposed Method

TP 5 6 5 4 8
FP 10 15 2 5 7
TPR 0.5556 0.6667 0.55556 0.4444 0.8889
FPR 0.20833 0.3125 0.041667 0.10417 0.2692
PPV 0.3333 0.28571 0.71429 0.44444 0.5333
ACC 0.6667 0.57895 0.80702 0.75439 0.7714
F-score 0.41667 0.4 0.625 0.44444 0.6667
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