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Abstract The successful development from a single-cell zygote into a complex

multicellular organism requires precise coordination of multiple cell-fate decisions.

The very first of these is lineage specification into the inner cell mass (ICM) and

trophectoderm (TE) during mammalian preimplantation development. In mouse

embryos, transcription factors (TFs) such as Oct4, Sox2, and Nanog are enriched in

cells of ICM, which gives rise to the fetus and yolk sac. Conversely, TFs such as

Cdx2 and Eomes become highly upregulated in TE, which contribute to the

placenta. Here, we review the current understanding of key transcriptional control

mechanisms and genes responsible for these distinct differences during the first cell

lineage specification. In particular, we highlight recent insights gained through

advances in genome manipulation, live imaging, single-cell transcriptomics, and

loss-of-function studies.

Mammalian Preimplantation Development

Preimplantation development refers to the period from fertilization to implantation,

during which the fertilized oocyte progresses through a number of cleavage divi-

sions and three major transcriptional and morphogenetic events that lead to the first

cell-fate decision and development into a blastocyst capable of implantation

(Fig. 1).

Maternal-to-Zygotic Transition

The first well-characterized event is the maternal-to-zygotic transition (MZT),

which includes degradation of maternal mRNAs and replacement with zygotic
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Fig. 1 Schematic representation of morphological changes and cell lineage specification during

mouse preimplantation development. Cell fates and cell types are color coded. Heterogeneities

detected in early blastomeres, biased lineage segregation, and proposed transcriptional control

mechanisms underlying the intrinsic heterogeneities are highlighted in the upper box. At late eight-
cell stage, blastomere compaction and polarization occur. During 8-cell to 16-cell, two kinds of

daughter cells are generated: polar cells with apical domain and low actomyosin contractility and

apolar cell without apical domain but high actomyosin contractility. Initiation of Hippo signaling

is regulated by polarity: Hippo is off in the polar cells and active in apolar cells. Internalization of

outer apolar cells is mainly driven by higher actomyosin contractility. In the outer cells, Amot,

Nf2, and Lats do not form an active complex, such that Yap will not be phosphorylated.

Unphosphorylated Yap translocates into the nucleus to bind Tead4 and activate target genes

such as Cdx2. Expression of Cdx2 is also promoted by the transcription factor Tfap2c through

an intronic enhancer, as well as by Notch signaling through Notch intracellular domain (NICD)

and Rbpj. Yap and Tead4 also activate an unknown component, which represses Sox2 expression.
In inner apolar cells, Amot, Nf2, and Lats form an active complex; Yap will be phosphorylated and

kept out of the nucleus preventing expression of Cdx2 and allowing expression of Sox2. Mean-

while, Notch signaling is not active in inner cells, resulting in no activation of Cdx2. Cell polarity,
internalization, and key transcriptional regulation signals are highlighted in the lower box.
E embryonic day, TE trophectoderm, ICM inner cell mass, PE primitive endoderm, EPI epiblast
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transcripts. This dramatic reprogramming of gene expression is necessary for the

establishment of totipotency and embryo development (Latham et al. 1991; Li et al.

2013). In the mouse, this process is first detectable at the one-cell stage but occurs

mostly during the two-cell stage (Schultz 2002; Zhou and Dean 2015). Recent

studies taking advantage of high-resolution live imaging and single-cell

transcriptomic assays have discovered heterogeneities in transcription factor

(TF) binding and gene expression between blastomeres as early as the two-cell

stage, which may bias the first cell-fate determination (Fig. 1, upper box, reviewed

below).

Embryo Compaction and Polarization

The second major event is embryo compaction and polarization, which initiate

during the eight-cell stage in mouse embryos. Blastomere morphology becomes

flattened, and biochemical changes to cellular metabolism, ion transport, and cell–

cell contacts result in early embryonic cells first resembling somatic cells (Fleming

et al. 2001). In addition to E-cadherin and β-catenin (De Vries et al. 2004),

E-cadherin-dependent filopodia (Fierro-Gonzalez et al. 2013) and actomyosin

cortex-derived force (Maitre et al. 2015) have been recently found essential for

compaction. Proper compaction is required for the accompanying cell polarization

and following cell division-dependent repositioning (Cockburn and Rossant 2010;

White et al. 2016b).

During compaction, blastomeres also initiate polarization, to establish apical

domains (Fig. 1, lower box), where apical and basal associated proteins first become

localized [examples are, Pard3, Pard6, F-actin, and atypical protein kinase C

(aPKC) (Yamanaka et al. 2006; Rossant and Tam 2009)]. In addition, other factors

like microtubule (Houliston et al. 1989) and Rho-GTPase (Clayton et al. 1999;

Kono et al. 2014) are also actively involved in this process. Daughter cell inheri-

tance of polarity in subsequent divisions has been recently confirmed as critical for

solidification of first cell-fate acquisition (Leung et al. 2016).

Blastomere Allocation and ICM/TE Separation

Following compaction and polarization, the third critical event is blastomere

allocation into ICM and TE cell fates. Two distinct types of divisions occur during

8- to 16-cell transition: symmetric divisions that give rise to two polar cells both

inheriting an apical domain versus asymmetric division that gives rise to one polar

cell with an apical domain and one apolar cell (Chazaud and Yamanaka 2016).

Additionally, Korotkevich et al. have recently used both in vivo and in vitro

manipulated blastomeres to suggest that acquisition of an apical domain is both

required and sufficient for initiation of first lineage specification (Korotkevich et al.
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2017). Importantly, studies have found that some daughter cells on the outside of

the embryo after 8- to 16-cell division can internalize and adopt an inner position

and ICM fate (Morris et al. 2010; Yamanaka et al. 2010; Watanabe et al. 2014),

suggesting that division orientation of blastomeres alone cannot predict or regulate

the fate of daughter cells. Notably, recent studies revealed that this important

internalization process is driven by higher actomyosin contractility within these

cells induced by asymmetric segregation of the apical domain (Fig. 1, lower box)

(Anani et al. 2014; Samarage et al. 2015; Maitre et al. 2016). These findings have

shed new light on the link between cell polarity, cell position, and the Hippo

signaling—a key pathway involved in the establishment of the first cell lineage

separation (discussed below).

Apolar cell internalization and outer/inner configuration is the first sign of

two-cell lineage specification: inner cell mass (ICM) and trophectoderm (TE).

The apolar blastomeres located inside of the morula give rise to the ICM from

which the embryo proper and yolk sac tissue are derived, whereas the outer polar

blastomeres differentiate exclusively into the TE from which placenta is derived

(Arnold and Robertson 2009; Zernicka-Goetz et al. 2009). Well-defined gene

expression patterns occur within these two distinct lineages. For example, in the

mouse embryo, transcription factors Oct4 (also known as Pou5f1), Nanog, and

Sox2 are enriched in ICM and function to promote pluripotency and inhibit

differentiation, while Cdx2 and Eomes become highly expressed in TE to potentiate

epithelial differentiation (Marikawa and Alarcon 2009; Burton and Torres-Padilla

2014; Marcho et al. 2015). Appropriate regulation and mutually exclusive locali-

zation of these TFs is critical for successful ICM/TE lineage separation and

formation of a competent blastocyst (Rossant and Tam 2009; Paul and Knott 2014).

Key Transcriptional Regulation During ICM/TE Separation

Whereas distinct localizations of transcription factors within ICM/TE lineages have

been well illustrated, their functions, interactions, and upstream regulatory net-

works are still not fully delineated. Previous studies and recent advances have

shown that Hippo signaling, Notch signaling, transcription factor AP-2γ
(Tfap2c)-dependent regulation, heterogeneities in early blastomeres, epigenetic

regulation, as well as many newly discovered genes are involved in the expression

of these master TFs and cell lineage specification.

Hippo Signaling and TE Specific Genes

The Hippo signaling pathway is conserved in both Drosophila and mammals,

regulating cell proliferation, differentiation, and death. Hippo signaling activity

can be influenced by multiple stimuli, including cell position and cell–cell adhesion
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(Yu and Guan 2013). Interestingly, recent studies indicated that in mouse preim-

plantation embryos, initiation of Hippo signaling is linked to blastomere polarity

rather than cell position (Anani et al. 2014). Core components of Hippo pathway

include the protein kinase Lats, transcriptional coactivator Yap, transcription factor

Tead, and other key members such as Nf2 and angiomotin (Amot). When this

pathway is activated, Yap is phosphorylated by Lats and is excluded from nucleus.

Without binding to Yap, Tead cannot be activated, therefore preventing transcrip-

tion of its target genes. Conversely, inactivation of the pathway induces dephos-

phorylation of Yap, which can then enter the nucleus and activate Tead to promote

transcription of its target genes (Manzanares and Rodriguez 2013; Sasaki 2015).

In sum, Hippo activation suppresses Tead gene targets, while Hippo inhibition

induces gene expression downstream of Tead.

The connection between the Hippo signaling cascade and cell lineage specifica-

tion was first discovered through the analysis of mutant mouse embryos lacking

transcription factor TEA domain family member 4 (Tead4) (Yagi et al. 2007;

Nishioka et al. 2008). Yagi et al. found that Tead4-null embryos failed to make

blastocoel cavity and significantly reduced Cdx2, and all blastomeres were shifted

into ICM with Oct4 and Nanog expression. These results suggested Tead4 is

upstream of Cdx2 and required for TE formation. Further experiments showed

that Tead4-null embryos exhibit a more severe phenotype than Cdx2-null embryos

(Strumpf et al. 2005) and confirmed that Tead4 is upstream of both Cdx2 and Gata3
(Ralston et al. 2010), another TE-specific transcription factor.

Subsequent studies focusing on other core components of the Hippo pathway

have revealed the important role in regulation of TE-specific genes. Nishioka and

colleagues (Nishioka et al. 2009) found that in inner cells, Yap is phosphorylated

(Hippo signaling on) and excluded from nucleus, leading to Tead4 inactivation,

while in outer cells, Yap is unphosphorylated (Hippo signaling off) and localized in

the nucleus to activate Tead4. Studies on angiomotin (Amot) (Hirate et al. 2013)

and Nf2 (Cockburn et al. 2013) demonstrated that in inner cells, Amot localizes to

adherens junctions, is phosphorylated by Lats, and combines Nf2 to form an active

complex to phosphorylate Yap. In outer cells, Amot is sequestered away from

adherens junctions to apical domains, resulting in dephosphorylated Yap that can

translocate into the nucleus to bind Tead4 and activate target genes (Fig. 1, lower

box).

Hippo Signaling Promotes ICM Fate Acquisition

Cell lineage separation is controlled by expression of specific TFs in each lineage.

Sox2 is the first known factor selectively located in inner cells, prior to other TFs

such as Oct4 and Nanog (Guo et al. 2010). During the exploration of how Sox2 is

regulated and restricted to ICM progenitors, Wicklow and colleagues (Wicklow

et al. 2014) discovered an essential role of Hippo pathway in restriction of Sox2 to

the inner cells that promotes ICM fate acquisition. As Cdx2 restricts expression of

Oct4 and Nanog to ICM by inhibiting their expressions in outer TE cell (Strumpf
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et al. 2005), Cdx2 may also restrict Sox2 to ICM. However, Sox2 is still restricted to

ICM in Cdx2-null embryos, indicating that restriction of Sox2 to ICM is Cdx2

independent (Wicklow et al. 2014) and necessitating additional unknown regula-

tory mechanisms.

It has been shown that Tead4 is activated in outer TE cells, and to promote

transcription of its target genes (Yagi et al. 2007; Nishioka et al. 2008, 2009),

these results together support a hypothesis that in outer cells, activated Ted4

upregulates an unknown factor that represses Sox2 expression and that conversely,

in inner cells, inhibition of Sox2 is not established (Fig. 1, lower box). Indeed,

overexpression of Lats2 prevents Yap nuclear localization and results in ectopic

Sox2 expression in outer cells (Wicklow et al. 2014). Thus, Hippo signaling cascade

regulates not only TE-specific TFs but also ICM-restricted expression of Sox2, to
establish complementary expression patterns and ICM/TE segregation.

Notch Signaling and TE Specific Genes

Interestingly, Tead4-null embryos can express Cdx2 and form blastocoels with

normal lineage commitment when cultured at 5% oxygen condition, which reduces

oxidative stress (Kaneko and DePamphilis 2013). Experiments also confirmed that

Tead4 regulates energy homeostasis and prevents accumulation of excess reactive

oxygen species (ROS) (Kaneko and DePamphilis 2013).

Considering previous studies that demonstrated the central role of Tead4 in TE

development and lineage specification (Yagi et al. 2007; Nishioka et al. 2008, 2009;

Ralston et al. 2010), as well as recent findings that Tead4 can directly regulate Cdx2
(Home et al. 2012; Rayon et al. 2014), a possible explanation is that under low

oxygen conditions, other Tead proteins or other parallel signaling pathways func-

tionally compensate for loss of Tead4. Indeed, an earlier study had reported that

overexpression of activator-modified Tead1 also increased Cdx2 expression

(Nishioka et al. 2009). Recently, involvement of Notch signaling in TE lineage

specification was also uncovered (Rayon et al. 2014). During a search for cis-
regulatory elements responsible for TE-restricted expression of Cdx2, a TE-specific
enhancer was identified that contains functional binding sites for both Tead and

Rbpj, the transcriptional effector of the Notch signaling pathway (Tun et al. 1994;

Koch et al. 2013). Experiments confirmed that Notch signaling is active at eight-

cell stage and then gradually restricted to outer cells of the morula. Forced expres-

sion of Notch can drive cells to the outer position and TE cell fate (Rayon et al.

2014). Taking advantage of double mutants for Tead4 and the Notch effector Rbpj,
Rayon et al. demonstrated that Hippo and Notch signals converge on Cdx2 to

cooperatively promote TE lineage specification. Notably, they also reported that

inhibition of Notch signaling only reduced Cdx2 expression but had no effect on

other TE-specific TF genes such as Gata3 and Eomes (Rayon et al. 2014), which

may explain why Notch signaling itself is not strictly required for TE development

and blastocyst formation (Souilhol et al. 2006).
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Transcription Factor AP-2γ (Tfap2c) Promotes TE

AP-2 family members have been demonstrated to be involved in multiple cellular

events such as cell proliferation, morphogenesis, and tumor progression. In mam-

mals, AP-2 family includes four transcription factors, Tfap2a, -b, -c, and -d (Bosher

et al. 1995; Hilger-Eversheim et al. 2000). Previous studies have confirmed the

essential role of Tfap2c in proliferation and differentiation of trophoblast cells, and

Tfap2c mutant embryos exhibited malformed development in extraembryonic

tissue (Auman et al. 2002; Werling and Schorle 2002). In addition, forced expres-

sion of Tfap2c in embryonic stem cells induced expression of trophoblast stem cell

markers and trophectoderm cell fate (Kuckenberg et al. 2010). However, role of

Tfap2c in preimplantation embryos was not defined.

Recently, Choi et al uncovered an essential role of Tfap2c in the regulation of

tight junction biogenesis and cavity formation during mouse blastocyst develop-

ment (Choi et al. 2012). Follow-up studies identified significant functions of Tfap2c
in TE lineage specification during first cell-fate determination (Cao et al. 2015) and

showed that Tfap2c directly regulates Cdx2 expression through an enhancer in

intron 1 during early cleavage stages (Fig. 1, lower box). Tfap2c also potentiates

apical polarity via regulation of Pard6b expression, which is a key regulator for the
establishment of cell polarity (Alarcon 2010). Importantly, these results suggest

that Tfap2c also acts upstream of Rho-associated protein kinase (ROCK); thus,

Tfap2c can repress position-dependent Hippo signaling in outer blastomeres

through Pard6b and ROCK signaling, to promote TE formation during preimplan-

tation development.

Heterogeneities in Early Blastomere Bias Cell Fate

Although it has been generally accepted that initiation of first cell-fate determina-

tion occurs during 8-cell to 16-cell transition in mouse embryos, many studies

suggest that blastomeres are predetermined or biased at earlier stages. The link

between oocyte polarities and blastocyst patterning is controversial (Hiiragi and

Solter 2004; Plusa et al. 2005; Hiiragi et al. 2006), but studies have demonstrated

heterogeneities in two-cell and four-cell blastomeres that may predict cell fate.

Taking advantage of single-cell RNA sequencing, different groups have con-

firmed the transcriptional heterogeneities between two-cell blastomeres that con-

tribute to cell lineage separation (Biase et al. 2014; Piras et al. 2014; Shi et al.

2015). A recent study also reported differential distribution of 16S mitochondrial

ribosomal RNA (mtrRNA) at two-cell stage in mouse embryos (Zheng et al. 2016).

In situ hybridization results showed that while early two-cell blastomeres contain

similar amount of 16S mtrRNA, late two-cell stage blastomeres exhibit apparent

difference in 16s quantity. Furthermore, from the four-cell stage and onward, 16S

mtrRNA is enriched in basal–lateral regions and is mainly detected in the ICM at
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the blastocyst stage. Interestingly, microinjection of sense 16S mtrRNA signifi-

cantly increased ICM progeny, while injection of antisense16S mtrRNA increased

TE cells. These findings suggest that 16S mtrRNA may have an important role in

promoting ICM lineage through an unknown mechanism (Zheng et al. 2016).

Compared with two-cell blastomeres, more heterogeneous properties have been

discovered among four-cell blastomeres. Torres-Padilla and colleagues revealed

arginine 26 residue of histone H3 (H3R26me), and its methyltransferase Carm1

levels vary among four-cell blastomeres. Overexpression of Carm1 leads to higher

H3R26me and a significant upregulation of Nanog and Sox2, biasing the progeny to

ICM lineage (Torres-Padilla et al. 2007). Explaining these observations it has been

shown that Prdm14 expression is also heterogeneous at four-cell stage and that

Prdm14 can interact with Carm1 to promote H3R26me inducing ICM fate (Burton

et al. 2013).

Using the fluorescence decay after photoactivation (FDAP) method, Plachta and

colleagues demonstrated that blastomeres with slower Oct4 kinetics divide asym-

metrically to produce more cells to ICM, while those with faster Oct4 kinetics

contribute mostly to the TE through symmetric divisions (Plachta et al. 2011).

Recently, two studies have shed new light on the transcriptional control mecha-

nisms underlying the intrinsic heterogeneities that predict cell fate (Goolam et al.

2016; White et al. 2016a). They demonstrate that H3R26me potentiates long-lived

Sox2-DNA binding, which ensures more access of Sox2 to its pluripotency-related

targets, such as Sox21. Sox21 then suppresses Cdx2 expression and biases blasto-

meres toward ICM (Goolam et al. 2016; White et al. 2016a). More importantly, this

model may explain the early heterogeneities (Fig. 1, upper box) and strongly

supports the possibility of nonrandom cell-fate determination during early mam-

malian development.

Epigenetic Control on Transcription During Lineage
Specification

Besides key signaling pathways and crucial TFs, epigenetic control of gene tran-

scription also plays an important role in cell differentiation and lineage specifica-

tion (Paul and Knott 2014; Marcho et al. 2015). As DNA methylation has been

shown to be dispensable for growth and differentiation of extraembryonic lineages

(Sakaue et al. 2010), studies have focused on histone modifications during lineage

specification. A link between histone modifications and gene expression patterns

has also been illustrated. For example, histone lysine acetylation is normally

considered as an active mark that correlates with chromatin accessibility and active

transcription, whereas lysine methylation can be either active or repressive

depending on the particular lysine residue which is modified (Tsukada et al.

2006; Bernstein et al. 2007).
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During TE and ICM commitment, they exhibit asymmetries in specific histone

modifications, and the last several years have seen a plethora of findings in this

regard. For example, H4- and H2AS1P are increased in TE (Sarmento et al. 2004),

while H3K27me3 is enriched in ICM (Erhardt et al. 2003). High level of H3R26me

promotes DNA accessibility and biases cells to ICM fate (Torres-Padilla et al.

2007; Goolam et al. 2016; White et al. 2016a). Studies also demonstrate that

H3K9me3 at Cdx2 promoter is important for maintaining pluripotency and that

loss of ESET in early embryos results in ICM failure (Yeap et al. 2009). Addition-

ally, Suv39h methyltransferase mediates repressive H3K9me3 at ICM-specific

gene promoters specifically in the TE lineage (Alder et al. 2010; Rugg-Gunn

et al. 2010). H3K4me3 and H3K27me3 are enriched at promoters of genes exclu-

sively expressed in ICM or TE in both murine and bovine embryos (Dahl et al.

2010; Herrmann et al. 2013). Loss of repressive H3K27me3 participation at

TE-specific genes is essential for TE lineage development and embryo implantation

(Saha et al. 2013; Paul and Knott 2014). In addition to methylation of histone H3

residues, acetylation of histone H4, such as H4K8ac and H4K12ac, also functions in

early lineage specification (VerMilyea et al. 2009; Zhang et al. 2013a). It is likely

that many more histone posttranslational modifications play similar roles but have

yet to be defined during preimplantation lineage commitment.

Identification of Genes Essential for Lineage Specification

With readily available transcriptome-wide data, understanding the role of each

expressed gene is an essential next step for elucidating developmental networks

at play. Although RNAi technologies allow for genome-wide screens in cultured

cells, these approaches cannot replace strategies for discovery in the embryo. Our

lab has adopted a pooling strategy to allow for efficient RNAi-mediated forward

genetic knockdown screen to identify genes required during preimplantation line-

age specification. We recently accomplished a large-scale RNAi screen in mouse

early embryos where 712 genes were screened and 53 genes were found to be

required for successful lineage development and/or specification (example in

Fig. 2), including Suds3 (Zhang et al. 2013a), Ctr9 (Zhang et al. 2013b), Nop2
(Cui et al. 2016b), and a battery of genes without known early functions (Cui et al.

2016a). Interestingly, our results highlight that during the morula to blastocyst

transition, TE lineage is more critical and/or more vulnerable as the majority of

phenotypes that fail to form a blastocyst have TE defects rather than ICM defects.

However, knockdown phenotypes that form a blastocyst but fail to hatch or outgrow

have predominant defects in the ICM lineage. This finding suggests that while both

lineages are essential during early embryo development, there are specific windows

when proper function/specification of each is essential (Cui et al. 2016a).

To interpret the relationship between the genes identified in our screen and

known pathways, we performed induced network module analysis (Kamburov

et al. 2013) which showed ten of our genes (seeds in Fig. 3) form a network with
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nine other known genes (intermediates in Fig. 3). Importantly, these nine known

genes already have knockout models that all confirm essential roles during early

embryonic development (Cui et al. 2016a). These data suggest not only that this

developmental network is essential for embryo development—but that this

Fig. 3 In our recent screen, 712 genes were knocked down and 53 phenotypes were identified.

Induced network module analysis showed 10 of our novel phenotypes (seed nodes in red) are
connected with nine other genes (intermediate nodes in green), indicating that this network is

essential for lineage specification and embryo development

Fig. 2 Specific lineage markers of ICM (Oct4, Sox2) and TE (Cdx2) were characterized in both

dsGFP control and dsAsf1b KD blastocysts by immunofluorescence. ICM cells (circled) in dsGFP
control blastocysts are tightly arranged with robust expression of Oct4 and Sox2, and TE cells are

uniformly arranged with specific expression of Cdx2. Most dsAsf1b KD blastocysts exhibit

ubiquitous Oct4 signal and with severely damaged Sox2 and Cdx2 expression, indicating impaired

lineage specification. Oct4 (green), Sox2 (red), Cdx2 (white), and DAPI (blue). Scale bar, 50 μm

40 W. Cui and J. Mager



screening strategy does not need to reach genome saturation to identify other/all

pathways required.

Our screen selected genes to target based solely on expression during preim-

plantation and resulted in 7.4% of genes (53/712) with phenotypes. If there are

~11,000 genes expressed during preimplantation (Stanton and Green 2001), our

results suggest that ~800 genes are required for lineage development and/or spec-

ification during preimplantation—the majority of which have yet to be discovered.

We predict that screening one-fifth of all expressed genes (threefold more than we

have finished) may be sufficient to identify the vast majority of networks/pathways

required for early lineage events during preimplantation.

Conclusions

Here, we have reviewed recent advances in understanding transcriptional control

mechanisms and crucial genes involved in first cell lineage specification, in partic-

ular, recent insights into Hippo signaling, Notch signaling, TF AP-2γ (Tfap2c)

function, early heterogeneities, and epigenetic regulation. The first cell lineage

decision is determined by many distinct mechanisms: some that act in parallel

and some that act in networks. Although many dozen genes and pathways have

been identified and—omics technologies have advanced in recent years, a compre-

hensive understanding of the genes required for the first lineage specification

remains elusive.
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