
lpopt: A Rule Optimization Tool for Answer
Set Programming

Manuel Bichler, Michael Morak(B), and Stefan Woltran

TU Wien, Vienna, Austria
{bichler,morak,woltran}@dbai.tuwien.ac.at

Abstract. State-of-the-art answer set programming (ASP) solvers rely
on a program called a grounder to convert non-ground programs con-
taining variables into variable-free, propositional programs. The size of
this grounding depends heavily on the size of the non-ground rules, and
thus, reducing the size of such rules is a promising approach to improve
solving performance. To this end, in this paper we announce lpopt, a tool
that decomposes large logic programming rules into smaller rules that
are easier to handle for current solvers. The tool is specifically tailored
to handle the standard syntax of the ASP language (ASP-Core) and
makes it easier for users to write efficient and intuitive ASP programs,
which would otherwise often require significant hand-tuning by expert
ASP engineers. It is based on an idea proposed by Morak and Woltran
(2012) that we extend significantly in order to handle the full ASP syn-
tax, including complex constructs like aggregates, weak constraints, and
arithmetic expressions. We present the algorithm, the theoretical foun-
dations on how to treat these constructs, as well as an experimental
evaluation showing the viability of our approach.

1 Introduction

Answer set programming (ASP) [9,14,16,18] is a well-established logic program-
ming paradigm based on the stable model semantics of logic programs. Its main
advantage is an intuitive, declarative language, and the fact that, generally, each
answer set of a given logic program describes a valid answer to the original ques-
tion. Moreover, ASP solvers—see e.g. [1,2,13,15]—have made huge strides in
efficiency.

A logic program usually consists of a set of logical implications by which new
facts can be inferred from existing ones, and a set of facts that represent the
concrete input instance. Logic programming in general, and ASP in particular,
have also gained popularity because of their intuitive, declarative syntax. The
following example illustrates this:

Example 1. The following rule naturally expresses the fact that two people are
relatives of the same generation up to second cousin if they share a great-
grandparent.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 114–130, 2017.
DOI: 10.1007/978-3-319-63139-4 7

lpopt: A Rule Optimization Tool for Answer Set Programming 115

uptosecondcousin(X, Y) :-
parent(X, PX), parent(PX, GPX),
parent(GPX, GGP), parent(GPY, GGP),
parent(PY, GPY), parent(Y, PY), X != Y. ��

Rules written in an intuitive fashion, like the one in the above example, are
usually larger than strictly necessary. Unfortunately, the use of large rules causes
problems for current ASP solvers since the input program is grounded first (i.e.
all the variables in each rule are replaced by all possible, valid combinations of
constants). This grounding step generally requires exponential time for rules of
arbitrary size. In practice, the grounding time can thus become prohibitively
large. Also, the ASP solver is usually quicker in evaluating the program if the
grounding size remains small.

In order to increase solving performance, we could therefore split the rule in
Example 1 up into several smaller ones by hand, keeping track of grandparents
and great-grandparents in separate predicates, and then writing a smaller version
of the second cousin rule. While this is comparatively easy to do for this example,
this can become very tedious if the rules become even more complex and larger,
maybe also involving negation or arithmetic expressions. However, since current
ASP grounders and solvers become increasingly slower with larger rules, and
noting the fact that ASP programs often need expert hand-tuning to perform
well in practice, this represents a significant entry barrier and contradicts the fact
that logic programs should be fully declarative: in a perfect world, the concrete
formulation should not have an impact on the runtime. In addition, to minimize
solver runtime in general, it is therefore one of our goals to enable logic programs
to be written in an intuitive, fully declarative way without having to think about
various technical encoding optimizations.

To this end, in this paper we propose the lpopt tool that automatically
optimizes and rewrites large logic programming rules into multiple smaller ones
in order to improve solving performance. This tool, based on an idea proposed
for very simple ASP programs in [19], uses the concept of tree decompositions
of rules to split them into smaller chunks. Intuitively, via a tree decomposition
joins in the body of a rule are arranged into a tree-like form. Joins that belong
together are then split off into a separate rule, only keeping the join result in a
temporary atom. We then extend the algorithm to handle the entire standardized
ASP language [11], and also introduce new optimizations for complex language
constructs such as weak constraints, arithmetic expressions, and aggregates.

The main contributions of this paper are therefore as follows:

– we extend, on a theoretical basis, the lpopt algorithm proposed in [19] to
the full syntax of the ASP language according to the ASP-Core-2 language
specification [11];

– we establish how to treat complex constructs like aggregates, and propose an
adaptation of the decomposition approach so that it can split up large aggre-
gate expressions into multiple smaller rules and expressions, further reducing
the grounding size;

116 M. Bichler et al.

– we implement the lpopt algorithm in C++, yielding the lpopt tool for auto-
mated logic program optimization, and give an overview of how this tool is
used in practice; and

– we perform an experimental evaluation of the tool on the encodings and
instances used in the fifth Answer Set Programming Competition [12] which
show the benefit of our approach, even for encodings already heavily hand-
optimized by ASP experts.

2 Preliminaries

General Definitions. We define two pairwise disjoint countably infinite sets of
symbols: a set C of constants and a set V of variables. Different constants
represent different values (unique name assumption). By X we denote sequences
(or, with slight notational abuse, sets) of variables X1, . . . , Xk with k � 0. For
brevity, let [n] = {1, . . . , n}, for any integer n � 1.

A (relational) schema S is a (finite) set of relational symbols (or predicates).
We write p/n for the fact that p is an n-ary predicate. A term is a constant
or variable. An atomic formula a over S (called S-atom) has the form p(t),
where p ∈ S and t is a sequence of terms. An S-literal is either an S-atom (i.e.
a positive literal), or an S-atom preceded by the negation symbol “¬” (i.e. a
negative literal). For a literal �, we write dom(�) for the set of its terms, and
var(�) for its variables. This notation naturally extends to sets of literals. For
brevity, we will treat conjunctions of literals as sets. For a domain C ⊆ C, a (total
or two-valued) S-interpretation I is a set of S-atoms containing only constants
from C such that, for every S-atom p(a) ∈ I, p(a) is true, and otherwise false.
When obvious from the context, we will omit the schema-prefix.

A substitution from a set of literals L to a set of literals L′ is a mapping
s : C ∪ V → C ∪ V that is defined on dom(L), is the identity on C, and
p(t1, . . . , tn) ∈ L (resp. ¬p(t1, . . . , tn) ∈ L) implies p(s(t1), . . . , s(tn)) ∈ L′

(resp., ¬p(s(t1), . . . , s(tn)) ∈ L′).

Answer Set Programming (ASP). A logic programming rule is a universally
quantified reverse first-order implication of the form

H(X,Y) ← B+(X,Y,Z,W) ∧ B−(X,Z),

where H (the head), resp. B+ (the positive body), is a disjunction, resp. conjunc-
tion, of atoms, and B− (the negative body) is a conjunction of negative literals,
each over terms from C∪V. For a rule π, let H (π), B+(π), and B−(π) denote the
set of atoms occurring in the head, the positive, and the negative body, respec-
tively. Let B(π) = B+(π)∪B−(π). A rule π where H (π) = ∅ is called a constraint.
Substitutions naturally extend to rules. We focus on safe rules where every vari-
able in the rule occurs in the positive body. A rule is called ground if all its terms
are constants. The grounding of a rule π w.r.t. a domain C ⊆ C is the set of rules
groundC(π) = {s(π) | s is a substitution, mapping var(π) to elements from C}.

lpopt: A Rule Optimization Tool for Answer Set Programming 117

A logic program Π is a finite set of logic programming rules. The schema of a
program Π, denoted sch(Π), is the set of predicates appearing in Π. The active
domain of Π, denoted adom(Π), with adom(Π) ⊂ C, is the set of constants
appearing in Π. A program Π is ground if all its rules are ground. The grounding
of a program Π is the ground program ground(Π) =

⋃
π∈Π groundadom(Π)(π).

The (Gelfond-Lifschitz) reduct of a ground program Π w.r.t. an interpretation
I is the ground program ΠI = {H (π) ← B+(π) | π ∈ Π,B−(π) ∩ I = ∅}.

A sch(Π)-interpretation I is a (classical) model of a ground program Π,
denoted I � Π if, for every ground rule π ∈ Π, it holds that I ∩ B+(π) = ∅ or
I ∩ (H (π)∪B−(π)) = ∅, that is, I satisfies π. I is a stable model (or answer set)
of Π, denoted I �s Π if, in addition, there is no J ⊂ I such that J � ΠI , that is,
I is subset-minimal w.r.t. the reduct ΠI . The set of answer sets of Π, denoted
AS (Π), are defined as AS (Π) = {I | I is a sch(Π)-interpretation, and I �s Π}.
For a non-ground program Π, we define AS (Π) = AS (ground(Π)). When refer-
ring to the fact that a logic program is intended to be interpreted under the
answer set semantics, we often refer to it as an ASP program.

Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair
T = (T, χ), where T is a rooted tree and χ is a labelling function over nodes t
of T , with χ(t) ⊆ V called the bag of t, such that the following holds: (i) for each
v ∈ V , there exists a node t in T , such that v ∈ χ(t); (ii) for each {v, w} ∈ E,
there exists a node t in T , such that {v, w} ⊆ χ(t); and (iii) for all nodes r, s,
and t in T , such that s lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s).
The width of a tree decomposition is defined as the cardinality of its largest bag
minus one. The treewidth of a graph G, denoted by tw(G), is the minimum width
over all tree decompositions of G. To decide whether a graph has treewidth at
most k is NP-complete [3]. For an arbitrary but fixed k however, this problem
can be solved (and a tree decomposition constructed) in linear time [6].

Given a non-ground logic programming rule π, we let its Gaifman graph Gπ =
(var(π), E) such that there is an edge (X,Y) in E iff variables X and Y occur
together in the head or in a body atom of π. We refer to a tree decomposition
of Gπ as a tree decomposition of rule π. The treewidth of rule π is the treewidth
of Gπ.

3 Rule Decomposition

This section lays out the theoretical foundations for our rule decomposition app-
roach. First, we recall the algorithm from [19], and then describe how it can be
extended to handle three of the main extensions of the ASP language, namely
arithmetic expressions, aggregates, and weak constraints (i.e. optimization state-
ments), as defined in the ASP-Core language standard [11].

As demonstrated in Example 1, rules that are intuitive to write and read
are not necessarily the most efficient ones to evaluate in practice. ASP solvers
generally struggle with rules that contain many variables since they rely on a
grounder-solver approach: first, the grounding of a logic program is computed

118 M. Bichler et al.

by a grounder. As per the definition in Sect. 2, the size of the grounding can, in
the worst case, be exponential in the number of variables. For large rules, the
grounding step can already take a prohibitively large amount of time. However,
the solver is also adversely affected by this blowup. In practice, this leads to
long runtimes and sometimes the inability of the ASP system to solve a given
instance. This also contributes to the fact that, while the syntax of ASP is fully
declarative, writing efficient encodings still takes expert knowledge.

It is therefore desirable to have a way to automatically rewrite such large rules
into a more efficient representation. One way to do this is the rule decomposition
approach, first proposed in [19], which we will briefly recall next.

3.1 Decomposition of Simple Rules

Generally speaking, the approach in [19] computes the tree decomposition of a
rule, and then splits the rule up into multiple, smaller rules according to this
decomposition. While in the worst case this decomposition may not change the
rule at all, in practice it is often the case that large rules can be split up very
well. For instance, the large rule in Example 1 will be amenable for such a
decomposition.

Let us briefly recall the algorithm from [19] which we will refer to as the lpopt
algorithm. For a given rule π, the algorithm works as follows:

Algorithm 1. The lpopt Algorithm [19]
1. Compute a tree decomposition T = (T, χ) of π with minimal width where

all variables occurring in the head of π are contained in its root node bag.

2. For each node n, let tempn be a fresh predicate, and the same for each
variable X in π and predicate domX . Let Yn = χ(n) ∩ χ(pn), where pn is
the parent node of n. For the root node root , let temproot be the entire head
of π, and, accordingly, Yroot = var(H (π)). Now, for a node n, generate the
following rule:

tempn(Yn) ← {a ∈ B(π) | var(a) ⊆ χ(n)}
∪ {domX(X) | a ∈ B−(π),X ∈ var(a), var(a) ⊆ χ(n),

 ∃b ∈ B+(π) : var(b) ⊆ χ(n),X ∈ var(b)}
∪ {tempm(Ym) | m is a child of n}.

3. For each X ∈ var(B−(π)), for which a domain predicate dom is needed to
guarantee safety of a rule generated above, pick an atom a ∈ B+(π), such
that X ∈ var(a) and generate a rule

domX (X) ← a.

lpopt: A Rule Optimization Tool for Answer Set Programming 119

Step 3 is needed because splitting up a rule may make it unsafe. In order
to remedy this, a domain predicate is generated for each unsafe variable that
arises due to the rule splitting in step 2. The following example illustrates how
the algorithm works.

Example 2. Given the rule

π = h(X,W) ← e(X,Y), e(Y,Z),¬e(Z,W), e(W,X),

a tree decomposition of π could look as follows (note that we write in each bag
of the tree decomposition not just the variables as per definition but also all
literals of rule π over these variables which is a more intuitive notation):

h(X,W), e(X,Y), e(W,X)

e(Y,Z),¬e(Z,W)

Applying the lpopt algorithm to π with the tree decomposition above yields the
following set of rules lpopt(π):

domW (W) ← e(W,X),

temp(Y,W) ← e(Y,Z),¬e(Z,W), domW (W), and

h(X,W) ← e(X,Y), e(W,X), temp(Y,W),

where temp is a fresh predicate not appearing anywhere else. ��
Let Π be a logic program. When the above algorithm is applied to all rules in

Π, resulting in a logic program lpopt(Π) as stated in [19], the answer sets of Π
are preserved in the following way: when all temporary atoms are removed, each
answer set of lpopt(Π) coincides with exactly one answer set from the original
program Π. Furthermore, the size of the grounding now no longer depends on
the rule size. In fact, it now only depends on the rule treewidth as the following
result states.

Theorem 1 ([19]). The size of ground(lpopt(Π)) is bounded by O(2k ·n), where
n is the size of Π, and k is the maximal treewidth of the rules in Π.

The above theorem implies that the size of the grounding of a program Π,
after optimization via the lpopt algorithm, is no longer exponential in the size of
Π, but only in the treewidth of its rules. As [19] demonstrates, this decomposition
approach already has a significant impact on the size of the grounding in practical
instances.

However, the ASP language standard [11] extends the ASP language with
other useful constructs that the lpopt algorithm proposed in [19] cannot handle.
These include arithmetic expressions, aggregates, and weak constraints. Look-
ing at concrete, practical instances of ASP programs, e.g. the encodings used
in recent ASP competitions [12], a large majority use such constructs. In the
following, we will therefore extend the lpopt algorithm to be able to treat them
in a similar way.

120 M. Bichler et al.

3.2 Treating Arithmetic Expressions

Arithmetic expressions are atoms of the form X = ϕ(Y), that is, an equality
with one variable (or constant number) X on the left-hand side, and an expres-
sion ϕ on the right-hand side, where ϕ is any mathematical expression built
using the variables from Y, constant numbers, and the arithmetic connectives
“+,” “-,” “*,” and “/.” In addition to the positive and negative body, a rule
π may also contain a set of such arithmetic expressions describing a relation-
ship between variables with the obvious meaning (that is, after grounding, an
arithmetic expression evaluates to true if and only if the mathematical equality
between the involved constants is valid). The arithmetic connectives are inter-
preted according to the usual mathematical preference rules.

Finally, since we require that all rules processed with the lpopt algorithm are
safe, we need to extend the definition of safety to include arithmetic expressions.
Clearly, the conditions for safety of rules with arithmetic expressions are more
involved. In fact, instead of just requiring that each variable appears in the posi-
tive body we now have a recursive safety condition: a rule containing arithmetic
expressions is safe if and only if every variable X appears (a) in the positive
body of the rule, or (b) in an arithmetic expression of the form X = ϕ(Y) where
all the variables in Y are safe.

In order to adapt the lpopt rule decomposition algorithm to rules with arith-
metic expressions, we need to extend the definition of the graph representation
of π to handle arithmetic expressions. To this end, we simply require it to con-
tain a clique between all variables occurring together in each such expression.
The lpopt algorithm then works as described in Algorithm1 above up to step 2.
However, a problem may arise when, in step 3 of the lpopt algorithm, a domain
predicate domX (X) is to be generated. Consider the following example:

Example 3. Let π be the rule a(X) ← ¬b(X,Y), c(Y), d(Z),X = Z + Z. A
simple decomposition according to the lpopt algorithm may lead to the following
rules:

temp(X) ← ¬b(X,Y), c(Y), domX (X), and

a(X) ← d(Z),X = Z + Z, temp(X).

It remains to define the domain predicate domX . According to the original def-
inition of lpopt, we would get

domX (X) ← X = Z + Z

which is unsafe. ��

As Example 3 shows, in order for such expressions to work with the lpopt
algorithm a more general approach to defining the domain predicates is needed in
step 3. In fact, instead of choosing a single atom from the rule body to generate
the domain predicate, in general a set of atoms and arithmetic expressions must
be chosen. It is easy to see that if a rule π is safe then, for each variable X ∈
var(B(π)), there is a set AX of (positive) atoms and arithmetic expressions in

lpopt: A Rule Optimization Tool for Answer Set Programming 121

Algorithm 2. Domain Predicate Generation Algorithm
Input: A set X of variables to be made safe, a set Y of variables already made safe,

a rule π, and an upper bound maxvars
Output: A set of body elements R from π that has the minimum number of variables

not in X and that, together, defines the domain of the variables in X.
1: procedure DomPred(X,Y, π,maxvars)
2: Let R = ∅
3: Let A = GetBodyElementsWithOneOf(X, π)
4: while A �= ∅ do
5: Let a = GetBestElement(A,X,Y)
6: if a is arithmetic expression X = ϕ(Z) then
7: Let X′ = (X\{X}) ∪ (Z\Y)
8: Let R′ = {a} ∪ DomPred(X′,Y, π\{a},maxvars)
9: else

10: Let X′ = X\var(a)
11: Let Y′ = Y ∪ var(a)
12: Let R′ = {a} ∪ DomPred(X′,Y′, π\{a},maxvars − |var(a)\Y|)
13: end if
14: if |var(R′)\Y| � maxvars then
15: Let R = R′

16: Let maxvars = |var(R)\Y|
17: end if
18: Let A = A\{a}
19: end while
20: Return R
21: end procedure

the body of π that makes that variable safe (trivially, if AX contains all positive
body atoms and arithmetic expressions of π the condition is fulfilled). In step 3
of the lpopt algorithm, for a variable X we now choose such a set AX of body
elements to use in the body of the domain predicate rule.

However, since the grounding size of a domain predicate rule is exponential
in the number of variables occurring in atoms, we aim to choose a set AX that
contains as few variables in atoms as possible (variables occurring only in arith-
metic expressions can be ignored since they don’t increase the number of ground
instances of a rule). To this end, we devise a depth-first search algorithm that,
given a variable X and a rule π, computes a set AX of positive body atoms
and arithmetic expressions that make variable X safe with a minimal num-
ber of variables occurring in atoms. Algorithm2 presents our implementation in
pseudocode. It is initially called with the parameters X = {X}, Y = ∅, π, and
|var(π)|. The function GetBodyElementsWithOneOf returns, for a given
set of variables X and rule π, the set of all the positive body atoms containing
at least one variable from X and, in addition, all arithmetic expressions of the
form X = ϕ(Y), where X ∈ X; that is, it returns all those body elements from
π that can help to make the variables X safe. The function GetBestElement
returns, for a given set A of atoms and arithmetic expressions, set X of variables

122 M. Bichler et al.

to be made safe, and set Y of variables already made safe, the element having
the minimal number of variables not in Y. If there are multiple such elements,
return the atom that contains the maximum number of variables from X. If
there are multiple such atoms, pick one at random. If there are no such atoms,
return one of the arithmetic expressions. π\{a} denotes rule π with element a
removed. Note that Algorithm 2 explores the entire search space (that is, each
subset of elements from rule π) which may need, at worst, exponential time in
the size of π. We optimize this by immediately disregarding all subsets that are
worse than the best subset found so far (via variable maxvars). Additionally, by
using the heuristics implemented in GetBestElement and since long “chains”
of arithmetic expressions are rare (e.g. none of our benchmarks contained any)
this does not lead to long runtimes in practice.

Finally, after executing Algorithm2 and obtaining the set AX , generate the
rule domX (X) ← AX . It is easy to see that, by construction of set AX , this rule
is safe and describes the possible domain of variable X as required. Note that the
resulting domain predicate rule may still be amenable to further decomposition.
Where this is the case, we recursively call the lpopt algorithm on it. Below,
Example 4 shows the output of lpopt when extended with Algorithm 2 above.

Example 4. A correct domain predicate for Example 3 would be defined as
follows:

domX (X) ← X = Z + Z, d(Z).

This ensures the proper safety of all rules generated by the lpopt algorithm. ��

Note that the rule generated in Example 4 repeats most of the atoms that
the second rule generated in Example 3 already contains. It is not immediately
obvious how such situations can be remedied in general. Investigating this issue
is part of ongoing work.

3.3 Treating Weak Constraints

As defined in [11], a weak constraint π[k : t] is a constraint π annotated with
a term k representing a weight and a sequence of terms t occurring in π. The
intended meaning is that each answer set I is annotated by a total weight w(I),
which is the sum over all k for each tuple of constants c that realize t in I
and satisfy the body of π. Such a weak constraint can easily be decomposed
by replacing π[k : t] with the rule π′ = temp(k, t) ← B(π), where temp is a
fresh predicate, and the weak constraint ⊥ ← temp(k, t)[k : t]. Finally, the lpopt
algorithm is then applied to rule π′. This allows our rule decomposition approach
also to be applied in an optimization context (i.e. where the task for the solver
is to find optimal answer sets w.r.t. their weight).

3.4 Treating Aggregate Expressions

An aggregate expression, as defined in [11], is an expression of the form

t � #agg{t : ϕ(X)},

lpopt: A Rule Optimization Tool for Answer Set Programming 123

where t is a term; �∈ {<,�,=, =,�, >} is a built-in relation; agg is one of sum,
count , max , and min; t = 〈t1, . . . , tn〉 is a sequence of terms; and ϕ(X) is a set of
literals, arithmetic expressions, and aggregate expressions, called the aggregate
body. Aggregates may appear in rule bodies, or recursively inside other aggre-
gates, with the following semantic meaning: Given an interpretation I, for each
valid substitution s such that s(ϕ(X)) ⊆ I, take the tuple of constants s(t). Let
us denote this set with T . Now, execute the aggregate function on T as follows:
for #count , calculate |T |; for #sum, calculate Σt∈T t1, where t1 is the first term
in t; for #max and #min, take the maximum and minimum term appearing in
the first position of each tuple in T , respectively. Finally, an aggregate expression
is true if the relation � between term t and the result of the aggregate function
is fulfilled.

Extending the lpopt algorithm to aggregate expressions is again straightfor-
ward: The rule graph Gπ = (V,E) of a rule π containing aggregate expressions
is defined as follows: Let V be the set of variables occurring in π outside of
aggregate expressions. Let E be as before and, in addition, add, for each aggre-
gate expression e, a clique between all variables var(e) ∩ V to E. Intuitively,
the rule graph should contain, for each aggregate expression, a clique between
all variables that appear in the aggregate and somewhere else in the rule. Vari-
ables appearing only in aggregates are in a sense “local” and are therefore not
of interest when decomposing the rule.

While the above transformation is straightforward, we can, however, go one
step further and also decompose the inside elements of an aggregate expression.
To this end, let t � #agg{t : ϕ(X,Y)} be an aggregate expression occurring in
some rule π, where X are variables that occur either in t or somewhere else in π,
and Y are variables occurring inside the aggregate only. Replace the aggregate
expression with t � #agg{t : ψ(X,Z), temp(t,Z)}, and furthermore, generate
a rule temp(t,Z) ← ψ(Y), ψdom(Y), for some fresh predicate temp. Here, ψ
contains all those atoms from ϕ that contain a variable from X, and ψ contains
the rest. ψdom contains domain predicates generated like in step3 of the lpopt
algorithm, as needed to make the temporary rule safe. The temporary rule can
then be decomposed via lpopt. This is best illustrated by an example:

Example 5. Let π be the following logic programming rule, saying that a vertex
is “good” if it has at least two neighbours that, themselves, have a red neighbour:

good(X) ← vertex (X), 2 � #count{Y : edge(X,Y), edge(Y,Z), red(Z)}.

According to the above approach, the rule can now be split up as follows. Firstly,
the aggregate is replaced:

good(X) ← vertex (X), 2 � #count{Y : edge(X,Y), temp(Y)},

and furthermore, a temporary rule is created as follows:

temp(Y) ← edge(Y,Z), red(Z).

The latter rule is now amenable for decomposition via the lpopt algorithm. ��

124 M. Bichler et al.

Note that the above approach allows us to decompose, to a degree, even the
insides of an aggregate, which, for large aggregate bodies, can lead to a further
significant reduction in the grounding size.

3.5 Correctness

The correctness of the above extensions to the original algorithm follows by the
same arguments that prove the correctness of the original algorithm proposed
in [19], and trivially from the construction for arithmetic expressions and safety.
For the latter, note that for domain predicates of a variable X we explicitly select
a set of atoms that make the variable safe, and that such a set always exists,
since the original rule is safe. For the former two (namely weak constraints and
aggregate expressions), the only thing that needs to be examined is the first
step: replacing (part of) the body with a temporary predicate. But correctness
of this is easy to see. Instead of performing all joins within the weak constraint or
aggregate, we perform the join in a new, separate rule and project only relevant
variables into a temporary predicate. The weak constraint or aggregate then
only needs to consider this temporary predicate since, by construction, all other
variables not projected into the temporary predicate do not play a role w.r.t.
optimization or aggregation. Finally, the original algorithm from [19] extended
to handle arithmetic expressions, for which correctness has already been estab-
lished, is then applied to this new, separate rule.

3.6 Further Language Extensions

The ASP-Core language specification [11], as well as the gringo grounder1, allow
further constructs like variable pooling, aggregates with multiple bodies, or with
upper and lower bounds in the same expression, in addition to various extensions
that amount to syntactic sugar. These constructs make the above explanations
unnecessarily more tedious. However, from a theoretical point of view, all of these
additional constructs can be normalized to one of the forms discussed in the
previous subsections. Furthermore, as we shall see in the next section, we have
implemented the lpopt algorithm to directly treat all standard ASP language
constructs and certain other additions, like variable pooling. More details about
this general approach, and the exact, but more tedious, algorithm details, can
be found in [4].

4 Implementation

A full implementation of the algorithm and its extensions described in Sect. 3 is
now available in the form of the lpopt tool, available with relevant documenta-
tion and examples at

http://dbai.tuwien.ac.at/proj/lpopt.
1 http://potassco.sourceforge.net.

http://dbai.tuwien.ac.at/proj/lpopt
http://potassco.sourceforge.net

lpopt: A Rule Optimization Tool for Answer Set Programming 125

The following gives a quick outline of how to use the tool.
lpopt accepts as its input any form of ASP program that follows the ASP

input language specification laid out in [11]. The output of the program in its
default configuration is a decomposed program that also follows this specifica-
tion. In addition, the tool guarantees that no language construct is introduced in
the output that was not previously present in the input (cf. Sect. 3). Therefore,
for example, a program without aggregates will not contain any aggregates as a
result of rule decomposition. The following is a description of the parameters of
the tool:

Usage: lpopt [-idbt] [-s seed] [-f file] [-h alg] [-l file]

-d dumb: do not perform optimization

-b print verbose and benchmark information

-t perform only tree decomposition step

-i ignore head variables when decomposing

-h alg decomposition algorithm, one of {mcs, mf, miw (def)}

-s seed initialize random number generator with seed

-f file the file to read from (default is stdin)

-l file output infos (treewidth) to file

In what follows, we will briefly describe the most important features of the tool.

Tree Decomposition Heuristics. As stated in Sect. 2, computing an optimal tree
decomposition w.r.t. width is an NP-hard problem. We thus make use of several
heuristic algorithms, namely the maximum cardinality search (mcs), minimum
fill (mf), and minimum induced width (miw) approaches described in [7], that
yield tree decompositions that provide good upper bounds on the treewidth (i.e.
on an optimal decomposition). It turns out that in practice, since rules in ASP
programs are usually not overly large, these heuristics come close to, and often
even yield, an optimal tree decomposition for rules. The heuristic algorithm
to use for decomposition can be selected using the -h command line parameter.
Since these heuristic approaches rely to some degree on randomization, a seed for
the pseudo-random number generator can be passed along with the -s command
line parameter.

Measuring the Treewidth of Rules. Theorem 1 allows us to calculate an upper
bound on the size of the grounding of the input program. In order to do this,
the maximal treewidth of any rule in an ASP program must be known. The -l
switch of the lpopt tool allows this to be calculated. It forces the tool to perform
tree decompositions on all rules inside an input ASP program, simply outputting
the maximal treewidth (or, more accurately, an upper bound; see above) over
all of them into the given file, and then exiting. Clearly, when a single ASP rule
is given as input, this switch will output a treewidth upper bound of that single
rule.

126 M. Bichler et al.

4.1 Recommended Usage

Assuming that a file enc.lp contains the encoding of a problem as an ASP
program and that a file instance.db contains a set of ground facts representing
a problem instance, the recommended usage of the tool is as follows:

cat enc.lp instance.db | lpopt | grounder | solver

In the above command, grounder and solver are programs for grounding
and for solving, respectively. One established solver that we will use in the
next section for our experimental evaluation is clasp [15]. If clasp is used as
a solver together with the lpopt tool, we generally recommend the use of the
--sat-prepro flag, which often speeds up the solving process substantially for
decomposed rules generated by lpopt (by considering the fact that the truth
values of all temporary atoms generated by lpopt are determined exactly by the
rule body, and need never be guessed).

5 Experimental Evaluation

We have tested our lpopt tool and benchmarked the performance of ground-
ing and solving of programs preprocessed with lpopt against non-preprocessed
ones. All benchmarks were made on the instance sets of the fifth answer set
programming competition 20142, which, for most problem classes, provides two
encodings, one from 2013, and one from 2014. The benchmarks have been run on
a 3.5 GHz AMD Opteron Processor 6308 with 192 GB of RAM to its disposal. We
used the potassco software suite3, namely gringo verison 4.5.3 as the grounder
and clasp version 3.1.3 as the solver. A timeout of 300 s was set for solving, and
1000 s for grounding. Furthermore, as suggested in the previous section, clasp
was called with the --sat-prepro flag enabled. In this paper, we will survey the
most important results.

Remark. One central aim of our tool is to improve solving performance for
hand-written encodings by non-experts of ASP. In the spirit of a truly declar-
ative language, it shouldn’t matter how an encoding is written as long as it is
correct (i.e. w.r.t. runtime, there should not be a difference between “good” and
“bad” encodings). In this respect, the ASP competition does not offer an optimal
benchmark set since all encodings are extensively hand-tuned by ASP experts.
However, as to the best of our knowledge there is no better-suited comprehensive
benchmark set available, we will show that even for these extensively hand-tuned
ASP competition encodings our tool can still find decompositions that decrease
grounding size and improve solving performance. However, there are also encod-
ings that are so perfectly hand-tuned that only trivial optimizations are possible
with the current version of lpopt.

2 https://www.mat.unical.it/aspcomp2014/.
3 http://potassco.sourceforge.net.

https://www.mat.unical.it/aspcomp2014/
http://potassco.sourceforge.net

lpopt: A Rule Optimization Tool for Answer Set Programming 127

Results. Let us first note that the runtime of lpopt itself, for all encodings in
the benchmark set, was always less than what can be accurately measured on a
computer system today. Applying our rule decomposition algorithm thus comes
virtually for free for hand-written encodings. Out of the 49 encodings provided
by the ASP competition, lpopt was able to syntactically rewrite 41 which indi-
cates that, as mentioned above, even extensively hand-tuned programs can be
further decomposed in an automated manner. The remaining eight encodings
contained rules that were so small that no further decomposition was possible
(i.e. their Gaifman graph was a clique of usually 3–4 nodes) and thus the output
of lpopt was the original, unmodified encoding in these cases. In 27 of the 41
encodings rewritten by lpopt, the decompositions were trivial and had no signif-
icant impact on the solving performance. This is due to the fact that only rules
that were already very small (and thus did not contribute much to the grounding
size in the first place) could be decomposed. In five cases out of the 41 rewritten
encodings, we noticed a decrease in solving performance (see the paragraph on
limitations of lpopt below for an explanation) and in the remaining seven cases,
the lpopt rewriting was able to speed up the solving process with substantial
improvements in three of these seven. Two of those were the stable marriage
problem encoding of 2013, and the permutation pattern matching encoding of
2014 which we will take a closer look at below. Full benchmark results for the
entire dataset can be found in [4].

Fig. 1. Benchmark results for the stable marriage 2013 instances. The horizontal axis
represents the individual test instances, sorted by runtime without rule decomposition.

Let us look at the stable marriage problem first. As can be seen in Fig. 1, both
grounding and solving time decrease dramatically. Notice that the grounding
time is, in general, directly correlated with the size of the respective grounding.
With lpopt preprocessing, the grounding size decreases dramatically by a factor
of up to 65. The grounder is thirty times faster when using preprocessing, and
the solver about three times. This is because of the following constraint in the
encoding that can be decomposed very well:

128 M. Bichler et al.

:- match(M,W1), manAssignsScore(M,W,Smw), W1!=W,

manAssignsScore(M,W1,Smw1), Smw>Smw1, match(M1,W),

womanAssignsScore(W,M,Swm), womanAssignsScore(W,M1,Swm1),

Swm>=Swm1.

The constraint rule above is quite intuitive to read: There cannot be a man
M and a woman W , such that they would both be better off if they were matched
together, instead of being matched as they are (that is, to W1 and M1, respec-
tively). It encodes, precisely and straightforwardly, the condition of a stable
marriage. The 2014 encoding splits this rule up, making the encoding much
harder to understand. However, with lpopt preprocessing, the grounding and
solving performance matches that of the hand-tuned 2014 encoding. This again
illustrates that the lpopt algorithm allows for efficient processing of rules written
by non-experts that are not explicitly hand-tuned.

A second example of lpopt’s capabilities is the permutation pattern matching
problem illustrated in Fig. 2. The grounding time of the largest instance is 980 s
without preprocessing and 17 s with preprocessing. This instance was also impos-
sible to solve within the timeout window of 300 s without lpopt preprocessing,
but finishing within 88 s when lpopt was run first.

Other Use Cases. lpopt has also been employed in other works that illustrate
its performance benefits. In particular, several solvers for other formalisms rely
on a rewriting to ASP in order to solve the original problem. Such rewritings
can easily lead to the generation of large rules that current ASP solving systems
are generally unable to handle. For example, in [17] ASP rewritings for several
problems from the abstract argumentation domain, proposed in [10], are imple-
mented. In [4, Sect. 4.6], the performance benefits of lpopt are clearly demon-
stated for these rewritings. Interestingly, these rewritings also make heavy use
of aggregates which goes to show that lpopt also handles these constructs well.
Recently, a comprehensive overview of these techniques, making use of lpopt,
was accepted for publication at the AAAI conference of 2017 [8]. Another exam-
ple use case of lpopt is [5], where multiple rewritings for Σ2

P and Σ3
P-hard

Fig. 2. Benchmark results for permutation pattern matching 2014. The horizontal axis
represents the individual test instances, sorted by runtime without rule decomposition.

lpopt: A Rule Optimization Tool for Answer Set Programming 129

problems are proposed and then benchmarked, again showcasing that without
lpopt these rewritings could not be solved by current ASP solvers in all but the
most simple cases.

Limitations. However, we also want to point out some limitations of the lpopt
algorithm. When a domain predicate is generated by the algorithm, the selection
of atoms that generate this domain predicate may not be optimal. In fact, our
algorithm picks an optimal set with respect to the number of variables which
minimizes the number of ground instances that the rule can give rise to in the
mathematical worst case. However, in practice, the number of ground instances
depends on other factors. One major factor is the number of tuples (of constants)
that can potentially appear in a relation. State-of-the-art grounders exploit this
information, but it is not available at the time that the lpopt tool is run (that
is, before grounding). For the same reason, it may be the case that the increased
grounding size caused by the domain predicate rules may destroy any practi-
cal benefit caused by splitting up the main rule, while at the same time the
mathematical worst case bound on the grounding size was actually improved
by running lpopt. In fact, this is precisely what caused the increase in solving
time for the five encodings out of 49 that lpopt was able to rewrite but where
solving performance deteriorated. The question of what the best strategy is to
select atoms to generate domain predicates (or whether, by integrating the lpopt
algorithm into a grounder, these domain predicates can be eliminated entirely)
is part of ongoing research.

6 Conclusions

In this paper, we present an algorithm, based on a prototype from [19], that
allows the decomposition of large logic programming rules into smaller ones
that current state-of-the-art answer set programming solvers are better equipped
to handle. Our implementation handles the entire ASP-Core-2 language [11].
Benchmark results show that in practice, even for extensively hand-tuned ASP
programs, our rule decomposition algorithm can improve solving performance
significantly. Future work will include implementing this approach directly into
state-of-the-art grounders like the gringo grounder used in our benchmarks, as
well as further refining the algorithm w.r.t. selection of domain predicate atoms,
as discussed at the end of Sect. 5.

Acknowledgments. Funded by the Austrian Science Fund (FWF): Y698, P25607.

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR
2013. LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40564-8 6

http://dx.doi.org/10.1007/978-3-642-40564-8_6
http://dx.doi.org/10.1007/978-3-642-40564-8_6

130 M. Bichler et al.

2. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The dis-
junctive datalog system DLV. In: Datalog Reloaded. Revised Selected Papers, pp.
282–301 (2010)

3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algeb. Discr. Meth. 8(2), 277–284 (1987)

4. Bichler, M.: Optimizing non-ground answer set programs via rule decomposition.
BSc Thesis, TU Wien (2015). http://dbai.tuwien.ac.at/proj/lpopt

5. Bichler, M., Morak, M., Woltran, S.: The power of non-ground rules in answer set
programming. TPLP 16(5–6), 552–569 (2016)

6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

7. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Inf. Comput. 208(3), 259–275 (2010)

8. Brewka, G., Diller, M., Heissenberger, G., Linsbichler, T., Woltran, S.: Solving
advanced argumentation problems with answer-set programming. In: Proceeding
of AAAI, pp. 1077–1083 (2017)

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

10. Brewka, G., Woltran, S.: GRAPPA: A semantical framework for graph-based argu-
ment processing. In: Proceeding of ECAI, pp. 153–158 (2014)

11. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format v2.03c
(2015). https://www.mat.unical.it/aspcomp.2013/ASPStandardization. Accessed
27 Jun 2016

12. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

13. Elkabani, I., Pontelli, E., Son, T.C.: SmodelsA — a system for computing answer
sets of logic programs with aggregates. In: Baral, C., Greco, G., Leone, N.,
Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 427–431. Springer,
Heidelberg (2005). doi:10.1007/11546207 40

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. ynthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, San Rafael (2012)

15. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceeding of ICLP/SLP, pp. 1070–1080 (1988)

17. Heißenberger, G.: A system for advanced graphical argumentation formalisms.
Master’s thesis, TU Wien (2016). www.dbai.tuwien.ac.at/proj/adf/grappavis/

18. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm. AI, pp. 375–398. Springer, Heidelberg (1999)

19. Morak, M., Woltran, S.: Preprocessing of complex non-ground rules in answer set
programming. In: Proceeding ICLP, pp. 247–258 (2012)

http://dbai.tuwien.ac.at/proj/lpopt
https://www.mat.unical.it/aspcomp.2013/ASPStandardization
http://dx.doi.org/10.1007/11546207_40
www.dbai.tuwien.ac.at/proj/adf/grappavis/

	lpopt: A Rule Optimization Tool for Answer Set Programming
	1 Introduction
	2 Preliminaries
	3 Rule Decomposition
	3.1 Decomposition of Simple Rules
	3.2 Treating Arithmetic Expressions
	3.3 Treating Weak Constraints
	3.4 Treating Aggregate Expressions
	3.5 Correctness
	3.6 Further Language Extensions

	4 Implementation
	4.1 Recommended Usage

	5 Experimental Evaluation
	6 Conclusions
	References

