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Abstract. Concurrent Constraint Programming (CCP) is a declara-
tive model for concurrency where agents interact by telling and ask-
ing constraints (pieces of information) in a shared store. Some previous
works have developed (approximated) declarative debuggers for CCP
languages. However, the task of debugging concurrent programs remains
difficult. In this paper we define a dynamic slicer for CCP and we show
it to be a useful companion tool for the existing debugging techniques.
We start with a partial computation (a trace) that shows the presence of
bugs. Often, the quantity of information in such a trace is overwhelming,
and the user gets easily lost, since she cannot focus on the sources of the
bugs. Our slicer allows for marking part of the state of the computation
and assists the user to eliminate most of the redundant information in
order to highlight the errors. We show that this technique can be tailored
to timed variants of CCP. We also develop a prototypical implementation
freely available for making experiments.

Keywords: Concurrent Constraint Programming · Program slicing ·
Debugging

1 Introduction

Concurrent constraint programming (CCP) [24,26] (see a survey in [22]) com-
bines concurrency primitives with the ability to deal with constraints, and hence,
with partial information. The notion of concurrency is based upon the shared-
variables communication model. CCP is intended for reasoning, modeling and
programming concurrent agents (or processes) that interact with each other and
their environment by posting and asking information in a medium, a so-called
store. Agents in CCP can be seen as both computing processes (behavioral style)
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and as logic formulae (declarative style). Hence CCP can exploit reasoning tech-
niques from both process calculi and logic.

CCP is a very flexible model and then, it has been applied to an increasing
number of different fields such as probabilistic and stochastic [4], timed [8,18,25]
and mobile [23] systems. More recently, CCP languages have been proposed for the
specification of spatial and epistemic behaviors as in, e.g., social networks [14,20].

One crucial problem when working with a concurrent language is being able
to provide tools to debug programs. This is particularly useful for a language
in which a program can generate a large number of parallel running agents.
In order to tame this complexity, abstract interpretation techniques have been
considered (e.g. in [6,7,11]) as well as (abstract) declarative debuggers following
the seminal work of Shapiro [27]. However, these techniques are approximated
(case of abstract interpretation) or it can be difficult to apply them when dealing
with complex programs (case of declarative debugging). It would be useful to
have a semi automatic tool able to interact with the user and filter, in a given
computation, the information which is relevant to a particular observation or
result. In other words, the programmer could mark the outcome that she is
interested to check in a particular computation that she suspects to be wrong.
Then, a corresponding depurated partial computation is obtained automatically,
where only the information relevant to the marked parts is present.

Slicing was introduced in some pioneer works by Mark Weiser [28]. It was
originally defined as a static technique, independent of any particular input of
the program. Then, the technique was extended by introducing the so called
dynamic program slicing [15]. This technique is useful for simplifying the debug-
ging process, by selecting a portion of the program containing the faulty code.
Dynamic program slicing has been applied to several programming paradigms,
for instance to imperative programming [15], functional programming [19], Term
Rewriting [1], and functional logic programming [2]. The reader may refer to [13]
for a survey.

In this paper we present the first formal framework for CCP dynamic slicing
and show, by some working examples and a prototypical tool, the main features
of this approach. Our aim is to help the programmer to debug her program, in
cases where she could not find the bugs by using other debuggers. We proceed
with three main steps. First we extend the standard operational semantics of
CCP to a “collecting semantics” that adds the needed information for the slicer.
Second, we propose several analyses of the faulty situation based on error symp-
toms, including causality, variable dependencies, unexpected behaviors and store
inconsistencies. Thirdly, we define a marking algorithm of the redundant items
and define a trace slice. Our algorithm is flexible and it can deal with different
variants of CCP. In particular, we show how to apply it to timed extensions of
CCP [25].

Organization. Section 2 describes CCP and its operational semantics. In Sect. 3
we introduce a slicing technique for CCP. In Sect. 4 we extend our method to
consider timed CCP programs. We present a working prototypical implemen-
tation of the slicer available at http://subsell.logic.at/slicer/. We describe an

http://subsell.logic.at/slicer/
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example using the slicer to debug a multimedia interacting system programmed
in timed CCP. Due to lack of space, other examples are given only in the web
page of the tool as, for instance, a biochemical system specified in timed CCP.
Finally, Sect. 5 concludes.

2 Concurrent Constraint Programming

Processes in CCP interact with each other by telling and asking constraints
(pieces of information) in a common store of partial information. The type of
constraints is not fixed but parametric in a constraint system (CS). Intuitively,
a CS provides a signature from which constraints can be built from basic tokens
(e.g., predicate symbols), and two basic operations: conjunction (�) and variable
hiding (∃). The CS defines also an entailment relation (|=) specifying inter-
dependencies between constraints: c |= d means that the information d can
be deduced from the information c. Such systems can be formalized as a Scott
information system as in [26], as cylindric algebras [9], or they can be built upon
a suitable fragment of logic e.g., as in [18]. Here we follow [9], since the other
approaches can be seen as an instance of this definition.

Definition 1 (Constraint System –CS–). A cylindric constraint system is
a structure C = 〈C,≤,�, t, f,Var ,∃,D〉 s.t.

– 〈C,≤,�, t, f〉 is a complete algebraic lattice with � the lub operation (repre-
senting conjunction). Elements in C are called constraints with typical ele-
ments c, c′, d, d′..., and t, f the least and the greatest elements. If c ≤ d, we
say that d entails c and we write d |= c. If c ≤ d and d ≤ c we write c ∼= d.

– Var is a denumerable set of variables and for each x ∈ Var the function
∃x : C → C is a cylindrification operator satisfying: (1) ∃x(c) ≤ c. (2) If c ≤ d
then ∃x(c) ≤ ∃x(d). (3) ∃x(c�∃x(d)) ∼= ∃x(c)�∃x(d). (4) ∃x∃y(c) ∼= ∃y∃x(c).
(5) For an increasing chain c1 ≤ c2 ≤ c3..., ∃x

⊔
i ci

∼= ⊔
i ∃x(ci).

– For each x, y ∈ Var, the constraint dxy ∈ D is a diagonal element and it
satisfies: (1) dxx

∼= t. (2) If z is different from x, y then dxy
∼= ∃z(dxz � dzy).

(3) If x is different from y then c ≤ dxy � ∃x(c � dxy).

The cylindrification operator models a sort of existential quantification for hiding
information. As usual, ∃x.c binds x in c. We use fv(c) (resp. bv(c)) to denote the
set of free (resp. bound) variables in c. The diagonal element dxy can be thought
of as the equality x = y, useful to define substitutions of the form [t/x] (see the
details, e.g., in [11]).

As an example, consider the finite domain constraint system (FD) [12]. This
system assumes variables to range over finite domains and, in addition to equal-
ity, one may have predicates that restrict the possible values of a variable as in
x < 42.
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2.1 The Language of CCP Processes

In the spirit of process calculi, the language of processes in CCP is given by a
small number of primitive operators or combinators as described below.

Definition 2 (Syntax of Indeterminate CCP [26]). Processes in CCP are
built from constraints in the underlying constraint system and the syntax:

P,Q ::= skip | tell(c) |
∑

i∈I

ask (ci) then Pi | P ‖ Q | (localx)P | p(x)

The process skip represents inaction. The process tell(c) adds c to the cur-
rent store d producing the new store c � d. Given a non-empty finite set of
indexes I, the process

∑

i∈I

ask (ci) then Pi non-deterministically chooses Pk

for execution if the store entails ck. The chosen alternative, if any, precludes the
others. This provides a powerful synchronization mechanism based on constraint
entailment. When I is a singleton, we shall omit the “

∑
” and we simply write

ask (c) then P .
The process P ‖ Q represents the parallel (interleaved) execution of P and Q.

The process (localx)P behaves as P and binds the variable x to be local to it. We
use fv(P ) (resp. bv(P )) to denote the set of free (resp. bound) variables in P .

Given a process definition p(y) Δ= P , where all free variables of P are in the
set of pairwise distinct variables y, the process p(x) evolves into P [x/y]. A CCP
program takes the form D.P where D is a set of process definitions and P is a
process.

The Structural Operational Semantics (SOS) of CCP is given by the transi-
tion relation γ −→ γ′ satisfying the rules in Fig. 1. Here we follow the formulation
in [10] where the local variables created by the program appear explicitly in the
transition system and parallel composition of agents is identified to a multiset of
agents. More precisely, a configuration γ is a triple of the form (X;Γ ; c), where
c is a constraint representing the store, Γ is a multiset of processes, and X is
a set of hidden (local) variables of c and Γ . The multiset Γ = P1, P2, . . . , Pn

represents the process P1 ‖ P2 ‖ · · · ‖ Pn. We shall indistinguishably use both
notations to denote parallel composition. Moreover, processes are quotiented by
a structural congruence relation ∼= satisfying: (STR1) P ∼= Q if they differ only
by a renaming of bound variables (alpha conversion); (STR2) P ‖ Q ∼= Q ‖ P ;
(STR3) P ‖ (Q ‖ R) ∼= (P ‖ Q) ‖ R; (STR4) P ‖ skip ∼= P .

Let us briefly explain the rules in Fig. 1. A tell agent tell(c) adds c to the
current store d (Rule RTELL); the process

∑

i∈I

ask (ci) then Pi executes Pk if

its corresponding guard ck can be entailed from the store (Rule RSUM); a local
process (localx)P adds x to the set of hidden variable X when no clashes of
variables occur (Rule RLOC). Observe that Rule REQUIV can be used to do alpha
conversion if the premise of RLOC cannot be satisfied; the call p(x) executes the
body of the process definition (Rule RCALL).
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Fig. 1. Operational semantics for CCP calculi

Definition 3 (Observables). Let −→∗ denote the reflexive and transitive clo-
sure of −→. If (X;Γ ; d) −→∗ (X ′;Γ ′; d′) and ∃X ′.d′ |= c we write (X;Γ ; d) ⇓c.
If X = ∅ and d = t we simply write Γ ⇓c.

Intuitively, if P is a process then P ⇓c says that P can reach a store d strong
enough to entail c, i.e., c is an output of P . Note that the variables in X ′ above
are hidden from d′ since the information about them is not observable.

3 Slicing a CCP Program

Dynamic slicing is a technique that helps the user to debug her program by
simplifying a partial execution trace, thus depurating it from parts which are
irrelevant to find the bug. It can also help to highlight parts of the programs
which have been wrongly ignored by the execution of a wrong piece of code.

Our slicing technique consists of three main steps:

S1. Generating a (finite) trace of the program. For that, we propose a collecting
semantics that generates the (meta) information needed for the slicer.

S2. Marking the final store, to choose some of the constraints that, according
to the symptoms detected, should or should not be in the final store.

S3. Computing the trace slice, to select the processes and constraints that were
relevant to produce the (marked) final store.

3.1 Collecting Semantics (Step S1)

The slicer we propose requires some extra information from the execution of
the processes. More precisely, (1) in each operational step γ → γ′, we need to
highlight the process that was reduced; and (2) the constraints accumulated in
the store must reflect, exactly, the contribution of each process to the store.

In order to solve (1) and (2), we propose a collecting semantics that extracts
the needed meta information for the slicer. The rules are in Fig. 2 and explained
below.

The semantics considers configurations of the shape (X;Γ ;S) where X is a
set of hidden variables, Γ is a sequence of processes with identifiers and S is a set
of atomic constraints. Let us explain the last two components. We identify the
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Fig. 2. Collecting semantics for CCP calculi. Γ and Γ ′ are (possibly empty) sequences
of processes. fvars = X ∪ fv(S) ∪ fv(Γ ) ∪ fv(Γ ′). In “:j”, j is a fresh identifier.

parallel composition Q = P1 ‖ · · · ‖ Pn with the sequence ΓQ = P1 : i1, · · · , Pn : in
where ij ∈ N is a unique identifier for Pj . Abusing of the notation, we usually
write Q : i instead of ΓQ when the indexes in the parallel composition are unim-
portant. Moreover, we shall use ε to denote an empty sequence of processes.
The context Γ, P : i, Γ ′ represents that P is preceded and followed, respec-
tively, by the (possibly empty) sequences of processes Γ and Γ ′. The use of
indexes will allow us to distinguish, e.g., the three different occurrences of P in
“Γ1, P : i, Γ2, P :j, (ask (c) then P ) :k”.

Transitions are labeled with
[i]k−−→ where i is the identifier of the reduced

process and k can be either ⊥ (undefined) or a natural number indicating the
branch chosen in a non-deterministic choice (Rule R′

SUM). In each rule, the
resulting process has a new/fresh identifier (see e.g., j in Rule R′

LOC). This
new identifier can be obtained, e.g., as the successor of the maximal identifier
in the previous configuration. For the sake of readability, we write [i] instead of
[i]⊥. Moreover, we shall avoid the identifier “ : i” when it can be inferred from
the context.

Stores and Configurations. The solution for (2) amounts to consider the store, in
a configuration, as a set of (atomic) constraints and not as a constraint. Then,
the store {c1, · · · , cn} represents the constraint c1 � · · · � cn.

Consider the process tell(c) and let V ⊆ V ars. The Rule R′
TELL first decom-

poses the constraint c in its atoms. For that, assume that the bound variables in
c are all distinct and not in V (otherwise, by alpha conversion, we can find c′ ∼= c
satisfying such condition). We define atoms(c, V ) = 〈bv(c), basic(c)〉 where

basic(c) =

⎧
⎨

⎩

c if c is an atom, t, f or dxy

basic(c′) if c = ∃x.c′

basic(c1) ∪ basic(c2) if c = c1 � c2

Observe that in Rule R′
TELL, the parameter V of the function atoms is the

set of free variables occurring in the context, i.e., fvars in Fig. 2. This is needed to
perform alpha conversion of c (which is left implicit in the definition of basic(·))
to satisfy the above condition on bound names.
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Rule R′
SUM signals the number of the branch k chosen for execution. Rule

R′
LOC chooses a fresh variable x′, i.e., a variable not in the set of free variables

of the configuration (fvars). Hence, we execute the process P [x′/x] and add x′

to the set X of local variables. Rule R′
CALL is self-explanatory.

It is worth noticing that we do not consider a rule for structural congruence in
the collecting semantics. Such rule, in the system of Fig. 1, played different roles.
Axioms STR2 and STR3 provide agents with a structure of multiset (commuta-
tive and associative). As mentioned above, we consider in the collecting semantics
sequences of processes to highlight the process that was reduced in a transition.
The sequence Γ in Fig. 2 can be of arbitrary length and then, any of the enabled
processes in the sequence can be picked for execution. Axiom STR1 allowed us to
perform alpha-conversion on processes. This is needed in RLOC to avoid clash of
variables. Note that the new Rule R′

LOC internalizes such procedure by picking
a fresh variable x′. Finally, Axiom STR4 can be used to simplify skip processes
that can be introduced, e.g., by a RTELL transition. Observe that the collecting
semantics does not add any skip into the configuration (see Rule R′

TELL).

Example 1. Consider the following toy example. Let D contain the process def-
inition A

Δ= tell(z > x + 4) and D.P be a program where
P = tell(y < 7) ‖ ask (x < 0) then A ‖ tell(x = −3). The following is a

possible trace generated by the collecting semantics.

(∅; tell(y < 7) :1,ask (x < 0) then A :2, tell(x = −3) :3; t)
[1]−→ (∅;ask (x < 0) then A :2, tell(x = −3) :3; y < 7)
[3]−→ (∅;ask (x < 0) then A :2; y < 7, x = −3)

[2]1−−→ (∅;A :4; y < 7, x = −3)
[4]−→ (∅; tell(z > x + 4):5; y < 7, x = −3)

[5]−→ (∅; ε; y < 7, x = −3, z > x + 4)

Now we introduce the notion of observables for the collecting semantics and
we show that it coincides with that of Definition 3 for the operational semantics.

Definition 4
(Observables Collecting Semantics). We write γ

[i1,...,in]k1,...,kn−−−−−−−−−−−→ γ′ when-

ever γ = (X0;Γ0;S0)
[i1]k1−−−→ · · · [in]kn−−−−→ (Xn;Γn;Sn) = γ′. Moreover, if

∃Xn.
⊔

d∈Sn

d |= c, then we write γ �c. If X0 = S0 = ∅, we simply write Γ0 �c.

Theorem 1 (Adequacy). For any process P , constraint c and i ∈ N, P ⇓c iff
P : i �c

Proof (sketch) (⇒). The proof proceeds by induction on the length of the deriva-
tion needed to perform the output c in P ⇓c and using the following results.

Given a set of variables V , a constraint d and a set of constraints S, let us
use �d�V to denote (the resulting tuple) atoms(d, V ) and �S�V to denote the
constraint ∃V.

⊔

ci∈S

ci. If 〈Y, S〉 = �d�V , from the definition of atoms, we have

d ∼= �S�Y .
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Let Γ (resp. Ψ) be a multiset (resp. sequence) of processes. Let us use �Γ � to
denote any sequence of processes with distinct identifiers built from the processes
in Γ and �Ψ� to denote the multiset built from the processes in Ψ . Consider
now the transition γ = (X;Γ ; d) −→ (X ′;Γ ′; d′). Let 〈Y, S〉 = �d�V where
V = X ∪ fv(Γ )∪ fv(d). By choosing the same process reduced in γ, we can show
that there exist i, k s.t. the collecting semantics mimics the same transition as

(X ∪ Y, �Γ �, S)
[i]k−−→ (X ′ ∪ Y ′; �Γ ′′�;S′) where d′ ∼= �S′�Y ′ and Γ ′′ ∼= Γ ′.

The (⇐) side follows from similar arguments.

3.2 Marking the Store (Step S2)

From the final store the user must indicate the symptoms that are relevant to the
slice that she wants to recompute. For that, she must select a set of constraints
that considers relevant to identify a bug. Normally, these are constraints at the
end of a partial computation, and there are several strategies that one can follow
to identify them.

Let us suppose that the final configuration in a partial computation is
(X;Γ ;S). The symptoms that something is wrong in the program (in the sense
that the user identifies some unexpected configuration) may be (and not limited
to) the following:

1. Causality: the user identifies, according to her knowledge, a subset S′ ⊆
S that needs to be explained (i.e., we need to identify the processes that
produced S′).

2. Variable Dependencies: The user may identify a set of variables V ⊆ fv(S)
whose constraints need to be explored. Then, one would be interested in
marking the following set of constraints

Ssliced = {c ∈ S | vars(c) ∩ V �= ∅}
3. Unexpected behaviors: there is a constraint c entailed from the final store that

is not expected from the intended behavior of the program. Then, one would
be interested in marking the following set of constraints:

Ssliced =
⋃

{S′ ⊆ S |
⊔

S′ |= c and S′ is set minimal}
where “S′ is set minimal” means that for any S′′ ⊂ S′, S′′ �|= c.

4. Inconsistent output: The final store should be consistent with respect to a
given specification (constraint) c, i.e., S in conjunction with c must not be
inconsistent. In this case, the set of constraints to be marked is:

Ssliced =
⋃

{S′ ⊆ S |
⊔

S′ � c |= f and S′ is set minimal}
where “S′ is set minimal” means that for any S′′ ⊂ S′, S′′ � c �|= f.

We note that “set minimality”, in general, can be expensive to compute.
However, we believe that in some practical cases, as shown in the examples in
Sect. 4.1, this is not so heavy. In any case, we can always use supersets of the
minimal ones which are easier to compute but less precise for eliminating useless
information.
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3.3 Trace Slice (Step S3)

Starting from the set Ssliced above we can define a backward slicing step. We
shall identify, by means of a backward evaluation, the set of transitions (in the
original computation) which are necessary for introducing the elements in Ssliced.
By doing that, we will eliminate information not related to Ssliced.

Notation 1 (Sliced Terms). We shall use the fresh constant symbol • to
denote an “irrelevant” constraint or process. Then, for instance, “c � •” results
from a constraint c � d where d is irrelevant. Similarly, ask (c) then (P ‖ •) + •
results from a process of the form ask (c) then (P ‖ Q) +

∑
ask (cl) then Pl

where Q and the summands in
∑

ask (cl) then Pl are irrelevant. We also assume
that a sequence •, . . . , • with any number (≥1) of occurrences of • is equivalent
to a single occurrence.

A replacement is either a pair of the shape [T/i] or [T/c]. In the first (resp.
second) case, the process with identifier i (resp. constraint c) is replaced with T .
We shall use θ to denote a set of replacements and we call these sets as “replacing
substitutions”. The composition of replacing substitutions θ1 and θ2 is given by
the set union of θ1 and θ2, and is denoted as θ1 ◦ θ2. If Γ = P1 : i1, ..., Pn : in, for
simplicity, we shall write [Γ/j] instead of [P1 ‖ · · · ‖ Pn/j]. Moreover, we shall
write, e.g., ask (c) then Γ instead of ask (c) then (P1 ‖ · · · ‖ Pn).

Algorithm 1 computes the slicing. The last configuration in the sliced trace
is (Xn ∩ vars(S); •;S). This means that we only observe the local variables of
interest, i.e., those in vars(S). Moreover, note that the processes in the last
configuration were not executed and then, they are irrelevant (and abstracted
with •). Finally, the only relevant constraints are those in S.

Input: - a trace γ0

[i1]k1−−−−→ · · · [in]kn−−−−→ γn where γi = (Xi; Γi; Si)
- a set S ⊆ Sn

Output: a sliced trace γ′
0 −→ · · · −→ γ′

n

1 begin
2 let θ = ∅ in
3 γ′

n ← (Xn ∩ vars(S); •; S);
4 for l= n − 1 to 0 do
5 θ ← sliceProcess(γl, γl+1, il+1, kl+1, θ, S) ◦ θ;
6 γ′

l ← (Xl ∩ vars(S) ; Γlθ ; Sl ∩ S)

7 end

8 end
Algorithm 1: Trace Slicer

The algorithm backwardly computes the slicing by accumulating replac-
ing pairs in θ. The new replacing substitutions are computed by the func-

tion sliceProcess in Algorithm 2. Suppose that γ
[i]k−−→. We consider each kind

of process. For instance, assume a R′
TELL transition γ = (Xγ ;Γ1, tell(c) :
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1 Function sliceProcess(γ, ψ, i, k, θ, S)
2 let γ = (Xγ ; Γ, P : i, Γ ′; Sγ) and ψ = (Xψ; Γ, ΓQ, Γ ′; Sψ) in
3 match P with
4 case tell(c)
5 let c′ = sliceConstraints(Xγ , Xψ, Sγ , Sψ, S) in
6 if c′ = • or c′ = ∃x.• then return [•/i] else return [tell(c′)/i];

7 case
∑

ask (cl) then Ql

8 if ΓQθ = • then return [•/i] else return
[ask (ck) then (ΓQθ) + • / i];

9 case (localx) Q
10 let {x′} = Xψ \ Xγ in
11 if ΓQ[x′/x]θ = • then return [•/i] else return

[(localx′) ΓQ[x′/x]θ/i];

12 case p(y)
13 if ΓQθ = • then return [•/i] else return ∅;

14 end

15 end
16 Function sliceConstraints(Xγ , Xψ, Sγ , Sψ, S)
17 let Sc = Sψ \ Sγ and θ = ∅ in
18 foreach ca ∈ Sc \ S do θ ← θ ◦ [•/ca] ;
19 return ∃Xψ\Xγ .

⊔
Scθ

20 end
Algorithm 2: Slicing Processes and Constraints

i, Γ2;Sγ)
[i]−→ (Xψ;Γ1, Γ2;Sψ) = ψ. We note that Xγ ⊆ Xψ and Sγ ⊆ Sψ.

We replace the constraint c with its sliced version c′ computed by the function
sliceConstraints. In that function, we compute the contribution of tell(c) to
the store, i.e., Sc = Sψ\Sγ . Then, any atom ca ∈ Sc not in the relevant set
of constraints S is replaced by •. By joining together the resulting atoms, and
existentially quantifying the variables in Xψ\Xγ (if any), we obtain the sliced
constraint c′. In order to further simplify the trace, if c′ is • or ∃x.• then we
substitute tell(c) with • (thus avoiding the “irrelevant” process tell(•)).

In a non-deterministic choice, all the precluded choices are discarded (“+ •”).
Moreover, if the chosen alternative Qk does not contribute to the final store (i.e.,
ΓQθ = •), then the whole process

∑
ask (cl) then Pl becomes •.

Consider the process (localx)Q. Note that x may be replaced to avoid a
clash of names (see R′

LOC). The (new) created variable must be {x′} = Xψ\Xγ .
Then, we check whether ΓQ[x′/x] is relevant or not to return the appropriate
replacement. The case of procedure calls can be explained similarly.

Example 2 Let a, b, c, d, e be constraints without any entailment and consider the
process R = ask (a) then tell(c) ‖ ask (c) then (tell(d) ‖ tell(b)) ‖ tell(a) ‖ ask (e) then skip.

In any execution of R, the final store is {a, b, c, d}. If the user selects only
{d} as slicing criterion, our implementation (see Sect. 4.1) returns the following
output (omitting the processes’ identifiers):
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[0; * || ask(c, tell(d) || *) || * || * || * ; *] -->
[0; * || tell(d) || * || * || * || * ; *] -->
[0; * || * || * || * || * || * ; d,*] -->
[0; * || * || * || * || * || * ; d,*] --> stop

Note that only the relevant part of the process ask (c) then (tell(d) ‖ tell(b))
is highlighted as well as the process tell(d) that introduced d in the final store.

Also note that the process P = ask (a) then tell(c) is not selected in the
trace since c is not part of the marked store. However, one may be interested
in marking this process to discover the causality relation between P and Q =
ask (c) then (tell(d) ‖ tell(b)). Namely, P adds c to the store, needed in Q to
produce d.

It turns out that we can easily adapt Algorithm2 to capture such causality
relations as follows. Assume that sliceProcess returns both, a replacement θ and
a constraint c, i.e., a tuple of the shape 〈θ, c〉. In the case of

∑
ask (cl) then Pl, if

ΓQθ �= •, we return the pair 〈[ask (ck) then Γkθ+•/i], ck〉. In all the other cases,
we return 〈θ, t〉 where θ is as in Algorithm 2. Intuitively, the second component
of the tuple represents the guard that was entailed in a “relevant” application
of the rule R′

SUM. Therefore, in Algorithm 1, besides accumulating θ, we add the
returned guard to the set of relevant constraints S. This is done by replacing the
line 5 in Algorithm 1 with

let〈θ′, c〉 = sliceProcess(γl, γl+1, il+1, kl+1, θ, S) ◦ θ in
θ ← θ′ ◦ θ
S ← S ∪ Sminimal(Sl, c)

where Sminimal(S, c) = ∅ if c = t; otherwise, Sminimal(S, c) =
⋃{S′ ⊆ S |⊔

S′ |= c and S′ is set minimal}. Therefore, we add to S the minimal set of
constraints in Sk that “explains” the entailed guard c of an ask agent.

With this modified version of the algorithm (supporting causality relations),
the output for the program in Example 2 is:

[0 ; ask(a, tell(c)) || ask(c, tell(d) || *) || * || tell(a) || * ; *][3]

where the process tell(a) is also selected since the execution of ask (a) then tell(c)
depends on this process.

Soundness. We conclude here by showing that the slicing procedure computes
a suitable approximation of the concrete trace. Given two processes P, P ′, we
say that P ′ approximates P , notation P �� P ′, if there exists a (possibly empty)
replacement θ s.t. P ′ = Pθ (i.e., P ′ is as P but replacing some subterms with •).
Let γ = (X;Γ ;S) and γ′ = (X ′;Γ ′;S′) be two configurations s.t. |Γ | = |Γ ′|. We
say that γ′ approximates γ, notation γ �� γ′, if X ′ ⊆ X, S′ ⊆ S and Pi �� P ′

i

for all i ∈ 1..|Γ |.

Theorem 2. Let γ0

[i1]k1−−−→ · · · [in]kn−−−−→ γn be a partial computation and γ′
0

[i1]k1−−−→
· · · [in]kn−−−−→ γ′

n be the resulting sliced trace according to an arbitrary slicing crite-
rion. Then, for all t ∈ 1..n, γt �� γ′

t. Moreover, let Q =
∑

ask (ck) then Pk
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and assume that (Xt−1;Γ,Q : it, Γ ′;St−1)
[it]kt−−−→ (Xt;Γ, Pkt

: j, Γ ′;St) for some
t ∈ 1..n. If the sliced trace is computed with the Algorithm that supports causality
relations, then ∃X ′

t−1(
⊔

S′
t−1) |= ckt

.

4 Applications to Timed CCP

Reactive systems [3] are those that react continuously with their environment
at a rate controlled by the environment. For example, a controller or a signal-
processing system, receives a stimulus (input) from the environment, computes
an output and then waits for the next interaction with the environment.

Timed CCP (tcc) [18,25] is an extension of CCP tailoring ideas from Syn-
chronous Languages [3]. More precisely, time in tcc is conceptually divided into
time intervals (or time-units). In a particular time interval, a CCP process P
gets an input c from the environment, it executes with this input as the initial
store, and when it reaches its resting point, it outputs the resulting store d to
the environment. The resting point determines also a residual process Q that is
then executed in the next time-unit. The resulting store d is not automatically
transferred to the next time-unit. This way, outputs of two different time-units
are not supposed to be related.

Definition 5 (Syntax of tcc [18,25]). The syntax of tcc is obtained by adding
to Definition 2 the processes next P | unless (c) next P | !P .

The process next P delays the execution of P to the next time interval.
We shall use next nP to denote P preceded with n copies of “next ” and
next 0P = P .

The time-out unless (c) next P is also a unit-delay, but P is executed in
the next time-unit only if c is not entailed by the final store at the current time
interval.

The replication !P means P ‖ nextP ‖ next2P ‖ . . ., i.e., unboundedly
many copies of P but one at a time. We note that in tcc, recursive calls must be
guarded by a next operator to avoid infinite computations during a time-unit.
Then, recursive definitions can be encoded via the ! operator [17].

The operational semantics of tcc considers internal and observable tran-
sitions. The internal transitions correspond to the operational steps that take
place during a time-unit. The rules are the same as in Fig. 2 plus:⊔

S |= c

(X;Γ,unless (c) next P : i, Γ ′;S)
[i]−→ (X;Γ, Γ ′;S)

RUn

(X;Γ, !P, Γ ′;S)
[i]−→ (X;Γ, P :j,next !P :j′, Γ ′;S)

R!

where j and j′ are fresh identifiers. The unless process is precluded from
execution if its guard can be entailed from the current store. The process !P
creates a copy of P in the current time-unit and it is executed in the next time-
unit. The seemingly missing rule for the next operator is clarified below.
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The observable transition P
(c,d)

====⇒ Q (“P on input c, reduces in one time-
unit to Q and outputs d”) is obtained from a finite sequence of internal reduc-
tions:

(∅;Γ ; c)
[i1,...,in]k1,...,kn−−−−−−−−−−−→ (X;Γ ′; c′) �−→

Γ
(c,∃X.c′)
====⇒ (localX)F (Γ ′)

RObs

The process F (Γ ′) (the continuation of Γ ′) is obtained as follow:

F (R) =

⎧
⎨

⎩

skip if R = skip or R = ask (c) then R′

F (R1) ‖ F (R2) if R = R1 ‖ R2

Q if R = next Q or R = unless (c) next Q

The function F (R) (the future of R) returns the processes that must be exe-
cuted in the next time-unit. More precisely, it unfolds next and unless expres-
sions. Notice that an ask process reduces to skip if its guard was not entailed
by the final store. Notice also that F is not defined for tell(c), !Q, (localx)P or
p(x) processes since all of them give rise to an internal transition. Hence these
processes can only appear in the continuation if they occur within a next or
unless expression.

4.1 A Trace Slicer for tcc

From the execution point of view, only the observable transition is relevant
since it describes the input-output behavior of processes. However, when a tcc
program is debugged, we have to consider also the internal transitions. This
makes the task of debugging even harder when compared to CCP.

We implemented in Maude (http://maude.cs.illinois.edu) a prototypical ver-
sion of a slicer for tcc (and then for CCP) that can be found at http://subsell.
logic.at/slicer/.

The slicing technique for the internal transition is based on the Algorithm1
by adding the following cases to Algorithm2:
1 case unless (c) next Q return [•/i] ;
2 case !Q
3 if ΓQθ = • then return [•/i] else return [!(Qθ)/i];

Note that if an unless process evolves during a time-unit, then it is irrelevant.
In the case of !P , we note that ΓQ = Q : j,next !Q : j′. We check whether P is
relevant in the current time-unit (Q) or in the following one (next !Q). If this
is not the case, then !Q is irrelevant.

Recall that next processes do not exhibit any transition during a time-unit
and then, we do not consider this case in the extended version of Algorithm2.

For the observable transition we proceed as follows. Consider a trace of n
observable steps γ0 ====⇒ · · · ====⇒ γn and a set Sslice of relevant constraints
to be observed in the last configuration γn. Let θn be the replacement computed
during the slicing process of the (internal) trace generated from γn. We propagate
the replacements in θn to the configuration γn−1 as follows:

http://maude.cs.illinois.edu
http://subsell.logic.at/slicer/
http://subsell.logic.at/slicer/
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1. In γn−1 we set Ssliced = ∅. Note that the unique store of interest for the user
is the one in γn. Recall also that the final store in tcc is not transferred to the
next time-unit. Then, only the processes (and not the constraints) in γn−1

are responsible for the final store in γn.

2. Let ψ be the last internal configuration in γn−1, i.e., γn−1

[i1,...,im]k1,...,km−−−−−−−−−−−→
ψ �−→ and γn = F (ψ). We propagate the replacements in θn to ψ before
running the slicer on the trace starting from γn−1. For that, we compute a
replacement θ′ that must be applied to ψ as follows:

– If there is a process R = next P : i in ψ, then θ′ includes the replacement
[next (ΓP θn)/i]. For instance, if R = next (tell(c) ‖ tell(d)) and tell(c)
was irrelevant in γn, the resulting process in ψ is next (• ‖ tell(d)). The
case for unless (c) next P is similar.

– If there is a process R =
∑

l ask (cl) then Pl : i in ψ (which is irrelevant
since it was not executed), we add to θ′ the replacement [•/i].

3. Starting from ψθ, we compute the slicing on γn−1 (Algorithm 1).
4. This procedure continues until the first configuration γ0 is reached.

Example 3 Consider the following process definitions:

System
Δ= Beat2 ‖ Beat4 Beat2 Δ= tell(b2) ‖ next 2 Beat2

Beat4 Δ= tell(b4) ‖ next 4 Beat4

This is a simple model of a multimedia system that, every 2 (resp. 4) time-
units, produces the constraint b2 (resp. b4). Then, every 4 time-units, the system
produces both b2 and b4. If we compute 5 time-units and choose Sslice = {b4}
we obtain (omitting the process identifiers):

{1 / 5 > [System ; *] --> [Beat4 ; *] --> [next^4(Beat4) ; *]} ==>
{2 / 5 > [next^3(Beat4) ; *]} ==>
{3 / 5 > [next^2(Beat4) ; *] } ==>
{4 / 5 > [next(Beat4) ; *]} ==>
{5 / 5 > [Beat4 ; *] --> [tell(b4) || * ; *] --> [* ; b4]}

Note that all the executions of Beat2 in time-units 1, 3 and 5 are hidden
since they do not contribute to the observed output b4. More interestingly,
the execution of tell(b4) in time-unit 1, as well as the recursive call of Beat4
(next 4 Beat4) in time-unit 5, are also hidden.

Now assume that we compute an even number of time-units. Then, no con-
straint is produced in that time-unit and the whole execution of System is
hidden:
{1/4 > [* ; *]} ==> {2/4 > [* ; *]} ==>
{3/4 > [* ; *]} ==> {4/4 > [* ; *]}

As a more compelling example, consider the following process definitions:
Beat

Δ=
∏

i∈I1

next itell(beat) Start
Δ=

∑

i∈I2

next i(tell(start))

Check
Δ=!ask (start) then next 12(tell(stop)) System

Δ= Beat ‖ Start ‖ Check

where I1 = {0, 3, 5, 7, 9, 11, 14, 16, 18, 20, 22}, I2 = {0, 3, 5, 7, 9, 11} and Πi

stands for parallel composition. This process represents a rhythmic pattern
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where groups of “2”-unit elements separate groups of “3”-unit elements, e.g.,
3 2 2 2 2︸ ︷︷ ︸ 3 2 2 2 2 2︸ ︷︷ ︸. Such pattern appears in repertoires of Central African

Republic music [5] and were programmed in tcc in [21].
This pattern can be represented in a circle with 24 divisions, where “2” and

“3”-unit elements are placed. The “3”-unit intervals are displayed in red in Fig. 3.
The important property is asymmetry : if one attempts to break the circle into
two parts, it is not possible to have two equal parts. To be more precise, the
start and stop constraints divide the circle in two halves (see process Start)
and it is always the case that the constraint beat does not coincide in a time-
unit with the constraint stop. For instance, in Fig. 3(a) (resp. (b)), the circle is
divided in time-units 1 –start– to 13 –stop– (resp. 4 –start– to 16 –stop–). The
signal beat does not coincide with a stop: in Fig. 3(a) (resp. (b)), the beat is
added in time-unit 12 (resp. 15).

If we generate one of the possible traces and perform the slicing processes
for the time-unit 13 with Ssliced = {beat, stop}, we only observe as relevant
process Check (since no beat is produced in that time-unit):
{1 / 13 > [System ; *] --> [Check ; *] --> [! ask(start, next^12(tell(stop)) ; *]

--> [ask(start, next^12(tell(stop)) ; *] --> [next^12(tell(stop) ; *]} ==>
.... ==> ...
{11 / 13 > [next(next(tell(stop))) ; *]} ==>
{12 / 13 > [next(tell(stop)) || * ; *]} ==>
{13 / 13 > [tell(stop) ; *] --> [* ; stop][0]}

More interestingly, assume that we wrongly write a process Check that is not
“well synchronized” with the process Beat. For instance, let I ′

2 = {2}. In this
case, the start signal does not coincide with a beat. Then, in time-unit 15, we
(wrongly) observe both beat and stop (i.e., asymmetry is broken!). The trace
of that program (that can be found in tool’s web page) is quite long and difficult
to understand. On the contrary, the sliced one is rather simple:
{1 / 15 > [System ; *] --> [Beat || Check ; *] -->

[next^14(tell(beat) || next(! ask(start, next^12(tell(stop)); *]} ==>
{2 / 15 > [next^13(tell(beat))|| ! ask(start, next^12(tell(stop))) ; *]} ==>
{3 / 15 > [next^12(tell(beat)))|| ! ask(start, next^12(tell(stop)) ; *]} ==>
{4 / 15 > [next^11(tell(beat))|| next^11(tell(stop)|| * ; *] --> stop} ==>
...
{14 / 15 > [next(tell(beat)) || next(tell(stop)) || * ; *] --> stop} ==>
{15 / 15 > [tell(beat) || tell(stop) || * ; *] --> [tell(stop) || * ; beat] -->

[* ; beat,stop]}

Something interesting in this trace is that the ask in the Check process is hidden
from the time-unit 4 on (since it is not “needed” any more). Moreover, the only
tell(beat) process (from Beat definition) displayed is the one that is executed in
time-unit 15 (i.e., the one resulting from next 14tell(beat)). From this trace, it
is not difficult to note that the Start process starts on time-unit 3 (the process
next 11tell(stop) first appears on time-unit 4). This can tell the user that the
process Start begins its execution in a wrong time-unit. In order to confirm
this hypothesis, the user may compute the sliced trace up to time-unit 3 with
Ssliced = {beat, start} and notice that, in that time-unit, start is produced
but beat is not part of the store.

The reader may find in the web page of the tool a further example related to
biochemical systems. We modeled in tcc the P53/Mdm2 DNA-damage Repair
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Mechanism [16]. The slicer allowed us to detect two bugs in the written code.
We invite the reader to check in this example the length (and complexity) of the
buggy trace and the resulting sliced trace.

Fig. 3. Pattern of “2” and “3”-unit elements (taken from [5]).

5 Conclusions and Future Work

In this paper we introduced the first framework for slicing concurrent constraint
based programs, and showed its applicability for CCP and timed CCP. We imple-
mented a prototype of the slicer in Maude and showed its use in debugging a
program specifying a biochemical system and a multimedia interacting system.

Our framework is a good basis for dealing with other variants of CCP such as
linear CCP [10], spatial and epistemic CCP [14] as well as with other temporal
extensions of it [8]. We are currently working on extending our tool to cope with
these languages. We also plan to incorporate into our framework an assertion
language based on a suitable fragment of temporal logic. Such assertions will
specify invariants the program must satisfy during its execution. If the assertion
is not satisfied in a given state, then the execution is interrupted and a concrete
trace is generated to be later sliced. For instance, in the multimedia system, the
user may specify the invariant stop → (¬beat) (if stop is entailed then beat
cannot be part of the store) or stop → �beat (a stop state must be preceded
by a beat state).

Acknowledgments. We thank the anonymous reviewers for their detailed comments
and suggestions which helped us to improve our paper. The work of Olarte was funded
by CNPq and CAPES (Brazil). The work of Palamidessi and Olarte was supported by
the Regional Program STIC AMSUD “EPIC: EPistemic Interactive Concurrency”.



92 M. Falaschi et al.

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward trace slicing for rewrit-
ing logic theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 34–48. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 5

2. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using conditional trace slicing
for improving Maude programs. Sci. Comput. Program. 80, 385–415 (2014)

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

4. Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concurrent
constraint programming. Constraints 13(1–2), 66–90 (2008)
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