
Manuel V. Hermenegildo
Pedro Lopez-Garcia (Eds.)

 123

LN
CS

 1
01

84

26th International Symposium, LOPSTR 2016
Edinburgh, UK, September 6–8, 2016
Revised Selected Papers

Logic-Based
Program Synthesis
and Transformation

Lecture Notes in Computer Science 10184

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Manuel V. Hermenegildo • Pedro Lopez-Garcia (Eds.)

Logic-Based
Program Synthesis
and Transformation
26th International Symposium, LOPSTR 2016
Edinburgh, UK, September 6–8, 2016
Revised Selected Papers

123

Editors
Manuel V. Hermenegildo
IMDEA Software Institute and Universidad
Politécnica de Madrid

Madrid
Spain

Pedro Lopez-Garcia
IMDEA Software Institute and CSIC
Madrid
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-63138-7 ISBN 978-3-319-63139-4 (eBook)
DOI 10.1007/978-3-319-63139-4

Library of Congress Control Number: 2017945732

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-7583-323X
http://orcid.org/0000-0002-1092-2071

Preface

This volume contains a selection of the papers presented at LOPSTR 2016, the 26th
International Symposium on Logic-Based Program Synthesis and Transformation, held
during September 6–8, 2016, at the University of Edinburgh, Scotland, UK. It was
co-located with two other conferences: PPDP 2016, the 18th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming, and
SAS 2016, the 23rd Static Analysis Symposium. The co-location of these three related
conferences has been shown to be very productive and cross-fertilizing. Previ-
ous LOPSTR symposia were held in Siena (2015), Canterbury (2014), Madrid (2013
and 2002), Leuven (2012 and 1997), Odense (2011), Hagenberg (2010), Coimbra
(2009), Valencia (2008), Lyngby (2007), Venice (2006 and 1999), London (2005 and
2000), Verona (2004), Uppsala (2003), Paphos (2001), Manchester (1998, 1992, and
1991), Stockholm (1996), Arnhem (1995), Pisa (1994), and Louvain-la-Neuve (1993).
More information about the symposium can be found at: http://www.cliplab.org/
Conferences/LOPSTR16/.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration in logic-based program development. LOPSTR is open to contri-
butions in all aspects of this area, including all stages of the software life cycle and
dealing with issues related to both programming-in-the-small and programming-
in-the-large. LOPSTR traditionally solicits contributions, in any language paradigm, in
the areas of synthesis, specification, transformation, analysis and verification, spe-
cialization, testing and certification, composition, program/model manipulation, opti-
mization, transformational techniques in SE, inversion, applications, and tools.
LOPSTR has a reputation for being a lively forum that allows presenting and dis-
cussing both finished work and work in progress. Formal proceedings are produced
only after the symposium so that authors can incorporate the feedback from the con-
ference presentation and discussions.

In response to the call for papers, 45 abstracts were submitted to LOPSTR 2016, of
which 38 resulted in full submissions, from 21 different countries. After the first round
of reviewing, the Program Committee accepted two full papers for direct inclusion in
the formal proceedings, and 18 full papers presented at the symposium were accepted
after a post-conference revision and another round of reviewing. Each submission was
reviewed by at least three Program Committee members or external reviewers. The
paper “A Hiking Trip Through the Orders of Magnitude: Deriving Efficient Generators
for Closed Simply-Typed Lambda Terms and Normal Forms” by Paul Tarau won the
best paper award, sponsored by Springer. In addition to the 20 contributed papers, this
volume includes the abstracts of the talks by our three outstanding invited speakers:
Francesco Logozzo (Facebook, USA) and Greg Morrisett (Cornell University, USA),
whose talks were shared with PPDP, and Martin Vechev (ETH Zurich, Switzerland),
whose talk was shared with SAS.

http://www.cliplab.org/Conferences/LOPSTR16/
http://www.cliplab.org/Conferences/LOPSTR16/

We would like to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the LOPSTR 2016
Organizing Committee composed by James Cheney (local organizer) and Moreno
Falaschi for the wonderful job they did in managing the symposium. Many thanks also
to Germán Vidal, the Program Committee chair of PPDP 2016, and Xavier Rival, the
Program Committee chair of SAS 2016, with whom we often interacted to coordinate
the three events. We would also like to thank Andrei Voronkov for his excellent
EasyChair system that automates many of the tasks involved in chairing a conference.
Special thanks go to the invited speakers and to all the authors who submitted and
presented their papers at LOPSTR 2016. Finally, we also thank our sponsors, the School
of Informatics of the University of Edinburgh, the IMDEA Software Institute, the
European Association for Programming Languages and Systems, the European Asso-
ciation for Theoretical Computer Science, the Association for Logic Programming, and
Springer for their cooperation and support in the organization of the symposium.

April 2017 Manuel V. Hermenegildo
Pedro Lopez-Garcia

VI Preface

Organization

Program Chairs

Manuel V. Hermenegildo IMDEA Software Institute and Universidad Politécnica
de Madrid, Spain

Pedro Lopez-Garcia IMDEA Software Institute and CSIC, Spain

Program Committee

Slim Abdennadher German University in Cairo, Egypt
Maria Alpuente Universitat Politècnica de València, Spain
Sergio Antoy Portland State University, USA
Michael Codish Ben-Gurion University of the Negev, Israel
Jérôme Feret Inria/École Normale Supérieure, France
Fabio Fioravanti University of Chieti-Pescara, Italy
Maurizio Gabbrielli University of Bologna, Italy
Maria Garcia de La Banda Monash University, Australia
Robert Glück University of Copenhagen, Denmark
Miguel Gomez-Zamalloa Complutense University of Madrid, Spain
Gopal Gupta University of Texas at Dallas, USA
Patricia Hill University of Leeds, UK and BUGSENG Srl, Italy
Jacob Howe City University of London, UK
Viktor Kuncak École Polytechnique Fédérale de Lausanne (EPFL),

Switzerland
Michael Leuschel University of Düsseldorf, Germany
Heiko Mantel TU Darmstadt, Germany
Jorge A. Navas SRI International, USA
Naoki Nishida Nagoya University, Japan
Catuscia Palamidessi Inria, France
C.R. Ramakrishnan Stony Brook University, New York, USA
Vítor Santos-Costa Universidade do Porto, Portugal
Peter Schneider-Kamp University of Southern Denmark, Denmark
Hirohisa Seki Nagoya Institute of Technology, Japan

Organizing Committee

James Cheney University of Edinburgh, Scotland, UK
(Local Organizer)

Moreno Falaschi University of Siena, Italy

Additional Reviewers

Ayala-Rincón, Mauricio
Ballis, Demis
Biernacki, Dariusz
Ceruelo, Víctor Pablos
Comini, Marco
Cristescu, Ioana
Cruz-Filipe, Luís
De Angelis, Emanuele
Denecker, Marc
Escobar, Santiago
Filinski, Andrzej
Fischer, Sebastian
Fortier, Jérôme
Fuhs, Carsten
Grygiel, Katarzyna
Guo, Hai-Feng
Hamann, Tobias
Isabel, Miguel
Kaarsgaard, Robin

Kafle, Bishoksan
Kawabe, Yoshinobu
Kjellerstrand, Håkan
Krings, Sebastian
Krustev, Dimitur
Kuraj, Ivan
Lanese, Ivan
Lescanne, Pierre
Libby, Steven
Lucanu, Dorel
Lämmel, Ralf
Marple, Kyle
Meo, Maria Chiara
Mera, Edison
Nieva, Susana
Ozono, Tadachika
Pettorossi, Alberto
Proietti, Maurizio
Riesco, Adrián

Salazar, Elmer
Sapiña, Julia
Schneider, David
Serrano, Alejandro
Sharaf, Nada
Stuckey, Peter J.
Stulova, Nataliia
Tarau, Paul
Tasch, Markus
Tiezzi, Francesco
Triska, Markus
Tsushima, Kanae
Urban, Caterina
Villanueva, Alicia
Weber, Alexandra
Zaffanella, Enea
Zaki, Amira

VIII Organization

Abstracts of Invited Talks

Challenges in Compiling Coq

Greg Morrisett

Cornell University, Ithaca, USA
jgm19@cornell.edu

Abstract. The Coq proof assistant is increasingly used for constructing verified
software, including everything from verified micro-kernels to verified databases.
Programmers typically write code in Gallina (the core functional language of
Coq) and construct proofs about those Gallina programs. Then, through a
process of “extraction”, the Gallina code is translated to either OCaml, Haskell,
or Scheme and compiled by a conventional compiler to produce machine code.
Unfortunately, this translation often results in inefficient code, and it fails to take
advantage of the dependent types and proofs. Furthermore, it is a bit embar-
rassing that the process is not formally verified.

Working with Andrew Appel’s group at Princeton, we are trying to formalize
as much of the process of extraction and compilation as we can, all within Coq.
I will talk about both the opportunities this presents, as well as some of the key
challenges, including the inability to preserve types through compilation, and
the difficulty that axioms present.

Static Analysis for Security
at the Facebook Scale

Francesco Logozzo

Facebook, Seattle, USA
logozzo@fb.com

Abstract. The scale and continuous growth of commercial code bases are the
greatest challenges for adoption of automated analysis tools in industry. Alas,
scale is largely ignored by academic research. We developed a new static
analysis tool for security to scale to Facebook scale. It relies on abstract inter-
pretation to focus on the properties that really matter to security engineers and
provides fine control on the cost/precision ratio. It was designed from day one
for “real world” security and privacy problems at scale. Facebook codebase is
huge, and we can analyze it, from scratch in 13 min. This talk will give attendees
a peek at some of the secret sauce we use to achieve such amazing performance
and precision.

Learning from Programs: Probabilistic
Models, Program Analysis and Synthesis

Martin Vechev

ETH Zurich, Zurich, Switzerland
martin.vechev@inf.ethz.ch

Abstract. The increased availability of massive codebases (e.g., GitHub) creates
an exciting opportunity for new kinds of programming tools based on proba-
bilistic models. Enabled by these models, tomorrow’s tools will provide sta-
tistically likely solutions to programming tasks difficult or impossible to solve
with traditional techniques. An example is our JSNice statistical program
de-minification system (http://jsnice.org), now used by more than 150,000 users
in every country worldwide. In this talk, I will discuss some of the latest
developments in this new inter-disciplinary research direction: the theoretical
foundations used to build probabilistic programming systems, the practical
challenges such systems must address, and the conceptual connections between
the areas of statistical learning, static analysis and program synthesis.

http://jsnice.org

Contents

Program Transformation

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 3
María Alpuente, Angel Cuenca-Ortega, Santiago Escobar,
and José Meseguer

A Formal, Resource Consumption-Preserving Translation of Actors
to Haskell . 21

Elvira Albert, Nikolaos Bezirgiannis, Frank de Boer,
and Enrique Martin-Martin

Verification of Time-Aware Business Processes Using Constrained
Horn Clauses . 38

Emanuele De Angelis, Fabio Fioravanti, Maria Chiara Meo,
Alberto Pettorossi, and Maurizio Proietti

Constraint Programming

MiniZinc with Strings . 59
Roberto Amadini, Pierre Flener, Justin Pearson, Joseph D. Scott,
Peter J. Stuckey, and Guido Tack

Slicing Concurrent Constraint Programs . 76
Moreno Falaschi, Maurizio Gabbrielli, Carlos Olarte,
and Catuscia Palamidessi

Compilation and Optimization

A New Functional-Logic Compiler for Curry: SPRITE 97
Sergio Antoy and Andy Jost

lpopt: A Rule Optimization Tool for Answer Set Programming. 114
Manuel Bichler, Michael Morak, and Stefan Woltran

Symbolic Execution and Thresholding for Efficiently Tuning Fuzzy
Logic Programs . 131

Ginés Moreno, Jaime Penabad, José A. Riaza, and Germán Vidal

http://dx.doi.org/10.1007/978-3-319-63139-4_1
http://dx.doi.org/10.1007/978-3-319-63139-4_2
http://dx.doi.org/10.1007/978-3-319-63139-4_2
http://dx.doi.org/10.1007/978-3-319-63139-4_3
http://dx.doi.org/10.1007/978-3-319-63139-4_3
http://dx.doi.org/10.1007/978-3-319-63139-4_4
http://dx.doi.org/10.1007/978-3-319-63139-4_5
http://dx.doi.org/10.1007/978-3-319-63139-4_6
http://dx.doi.org/10.1007/978-3-319-63139-4_7
http://dx.doi.org/10.1007/978-3-319-63139-4_8
http://dx.doi.org/10.1007/978-3-319-63139-4_8

Analysis and Verification

Hierarchical Shape Abstraction for Analysis of Free List
Memory Allocators . 151

Bin Fang and Mihaela Sighireanu

A Productivity Checker for Logic Programming . 168
Ekaterina Komendantskaya, Patricia Johann, and Martin Schmidt

Symbolic Abstract Contract Synthesis in a Rewriting Framework 187
María Alpuente, Daniel Pardo, and Alicia Villanueva

Testing

On the Completeness of Selective Unification in Concolic Testing
of Logic Programs . 205

Fred Mesnard, Étienne Payet, and Germán Vidal

CurryCheck: Checking Properties of Curry Programs. 222
Michael Hanus

A Hiking Trip Through the Orders of Magnitude: Deriving Efficient
Generators for Closed Simply-Typed Lambda Terms and Normal Forms 240

Paul Tarau

Semantics and Model Checking

A Reversible Semantics for Erlang . 259
Naoki Nishida, Adrián Palacios, and Germán Vidal

Scaling Bounded Model Checking by Transforming Programs with Arrays. . . . 275
Anushri Jana, Uday P. Khedker, Advaita Datar, R. Venkatesh,
and Niyas C.

Intuitionistic Logic Programming for SQL . 293
Fernando Sáenz-Pérez

Types, Unification, and Logic

Coinductive Soundness of Corecursive Type Class Resolution 311
František Farka, Ekaterina Komendantskaya, and Kevin Hammond

Nominal Unification of Higher Order Expressions with Recursive Let 328
Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, and Mateu Villaret

Automata Theory Approach to Predicate Intuitionistic Logic 345
Maciej Zielenkiewicz and Aleksy Schubert

Author Index . 361

XVI Contents

http://dx.doi.org/10.1007/978-3-319-63139-4_9
http://dx.doi.org/10.1007/978-3-319-63139-4_9
http://dx.doi.org/10.1007/978-3-319-63139-4_10
http://dx.doi.org/10.1007/978-3-319-63139-4_11
http://dx.doi.org/10.1007/978-3-319-63139-4_12
http://dx.doi.org/10.1007/978-3-319-63139-4_12
http://dx.doi.org/10.1007/978-3-319-63139-4_13
http://dx.doi.org/10.1007/978-3-319-63139-4_14
http://dx.doi.org/10.1007/978-3-319-63139-4_14
http://dx.doi.org/10.1007/978-3-319-63139-4_15
http://dx.doi.org/10.1007/978-3-319-63139-4_16
http://dx.doi.org/10.1007/978-3-319-63139-4_17
http://dx.doi.org/10.1007/978-3-319-63139-4_18
http://dx.doi.org/10.1007/978-3-319-63139-4_19
http://dx.doi.org/10.1007/978-3-319-63139-4_20

Program Transformation

Partial Evaluation of Order-Sorted Equational
Programs Modulo Axioms

Maŕıa Alpuente1, Angel Cuenca-Ortega1,3(B),
Santiago Escobar1, and José Meseguer2

1 DSIC-ELP, Universitat Politècnica de València, Valencia, Spain
{alpuente,acuenca,sescobar}@dsic.upv.es

2 University of Illinois at Urbana-Champaign, Champaign, IL, USA
meseguer@illinois.edu

3 Universidad de Guayaquil, Guayaquil, Ecuador
angel.cuencao@ug.edu.ec

Abstract. Partial evaluation (PE) is a powerful and general program
optimization technique with many successful applications. However, it
has never been investigated in the context of expressive rule-based lan-
guages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which sup-
port: rich type structures with sorts, subsorts and overloading; and equa-
tional rewriting modulo axioms such as commutativity, associativity–
commutativity, and associativity–commutativity–identity. In this paper,
we illustrate the key concepts by showing how they apply to partial eval-
uation of expressive rule-based programs written in Maude. Our partial
evaluation scheme is based on an automatic unfolding algorithm that
computes term variants and relies on equational least general general-
ization for ensuring global termination. We demonstrate the use of the
resulting partial evaluator for program optimization on several examples
where it shows significant speed-ups.

1 Introduction

Partial evaluation (PE) is a semantics-based program transformation technique
in which a program is specialized to a part of its input that is known statically
(at specialization time) [7]. PE has currently reached a point where theory and
refinements have matured, substantial systems have been developed, and real-
istic applications benefit from partial evaluation in a wide range of fields that
transcend by far program optimization.

Narrowing-driven PE (NPE) [3,4] is a generic algorithm for the specializa-
tion of functional programs that are executed by narrowing [10], an extension
of rewriting where matching is replaced by unification. Essentially, narrowing

This work has been partially supported by the EU (FEDER) and the Spanish
MINECO under grants TIN 2015-69175-C4-1-R and TIN 2013-45732-C4-1-P, and
by Generalitat Valenciana under grant PROMETEOII/2015/013, and by NSF
grant CNS-1319109. Angel Cuenca-Ortega has been supported by the SENESCYT,
Ecuador (scholarship program 2013).

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 3–20, 2017.
DOI: 10.1007/978-3-319-63139-4 1

4 M. Alpuente et al.

consists of computing an appropriate substitution for a symbolic program call in
such a way that the program call becomes reducible, and then reduce it: both the
rewrite rule and the term can be instantiated. As in logic programming, narrow-
ing computations can be represented by a (possibly infinite) finitely branching
tree. Since narrowing subsumes both rewriting and SLD-resolution, it is com-
plete in the sense of both functional programming (computation of normal forms)
and logic programming (computation of answers). By combining the functional
dimension of narrowing with the power of logic variables and unification, NPE
has better opportunities for optimization than the more standard partial eval-
uation of logic programs (also known as partial deduction, PD) and functional
programs [4].

Partial evaluation has never been investigated in the context of expressive
rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which
support: (1) rich type structures with sorts, subsorts and overloading; and
(2) equational rewriting modulo axioms such as commutativity, associativity–
commutativity, and associativity–commutativity–identity. The key NPE ingre-
dients of [3] have to be further generalized to corresponding (order–sorted) equa-
tional notions (modulo axioms): e.g., equational unfolding, equational closedness,
equational embedding, and equational abstraction; and the associated partial eval-
uation techniques become more sophisticated and powerful. In this paper, we
illustrate the key concepts by showing how they apply to partial evaluation of
expressive rule-based programs written in Maude.

Let us motivate the power of our technique by reproducing the classical
specialization of a program parser w.r.t. a given grammar into a very specialized
parser [7].

Example 1. Consider the following rewrite theory (written in Maude1 syntax)
that defines a generic parser for the language generated by simple, right regu-
lar grammars. We define a symbol | | to represent the parser configurations,
where the first underscore represents the (terminal or non-terminal) symbol
being processed, the second underscore represents the current string pending
to be recognized, and the third underscore stands for the considered grammar.
We provide two non-terminal symbols init and S and three terminal symbols 0,
1, and the finalizing mark eps (for ε, the empty string). These are useful choices
for this example, but they can be easily generalized to any terminal and non-
terminal symbols by defining a Maude parameterized theory. Parsing a string st
according to a given grammar Γ is defined by rewriting the configuration (init |
st | Γ) using the rules of the grammar (in the opposite direction) to incrementally
transform st until the final configuration (eps | eps | Γ) is reached.

1 In Maude 2.7, only equations with the variant attribute are used by the folding
variant narrowing strategy, which is the only narrowing strategy considered in this
paper. We sometimes remove the variant attribute for saving space.

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 5

fmod PARSER is

sorts Symbol NSymbol TSymbol String Production Grammar Parsing .

subsort Production < Grammar . subsort TSymbol < String .

subsorts TSymbol NSymbol < Symbol .

ops 0 1 eps : -> TSymbol . ops init S : -> NSymbol .

op mt : -> Grammar . op _|_|_ : Symbol String Grammar -> Parsing .

op __ : TSymbol String -> String [right id: eps].

op _->_ : NSymbol TSymbol -> Production .

op _->_._ : NSymbol TSymbol NSymbol -> Production .

op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt] .

var E : TSymbol . vars N M : NSymbol . var L : String . var G : Grammar.

eq (N | eps | (N -> eps) ; G)

= (eps | eps | (N -> eps) ; G) [variant] .

eq (N | E L | (N -> E . M) ; G)

= (M | L | (N -> E . M) ; G) [variant] .

endfm

Note that this Maude equational2, program theory contains several novel
features that are unknown territory for (narrowing-driven) partial evaluation:
(1) a subsorting relation TSymbol NSymbol < Symbol, and (2) an associative-
commutative with identity symbol ; for representing grammars (meaning that
they are handled as a multiset of productions), together with the symbol with
right identity for the input string. The general case of the parser is defined by
the second equation that, given the configuration (N | E L | Γ) where (E L)
is the string to be recognized, searches for the grammar production (N -> E .
M) in Γ to recognize symbol E, and proceeds to recognize L starting from the
non-terminal symbol M. Note that the combination of subtypes and equational
(algebraic) axioms allows for a very compact definition.

For example, given the following grammar Γ generating the language
(0)∗(1)∗:

init -> eps init -> 0 . init init -> 1 . S S -> eps S -> 1 . S

the initial configuration (init | 0 0 1 1 eps | Γ) is simplified into
(init | 0 0 1 1 | Γ) by using right identity and then deterministically rewrit-
ten as (init | 0 0 1 1 | Γ) → (init | 0 1 1 | Γ) → (init | 1 1 | Γ) → (S |
1 | Γ) → (S | eps | Γ) → (eps | eps | Γ).

We can specialize our parsing program to the productions of the given gram-
mar Γ by partially evaluating the input term (init | L | Γ), where L is a logical
variable of sort String. By applying our partial evaluator, we aim to obtain the
specialized code:

eq init || eps = eps || eps . eq init || 1 = eps || eps .

eq S || eps = eps || eps . eq init || 0 L = init || L .

eq init || 1 1 L = S || L . eq S || 1 L = S || L .

2 We assume there are no two grammar productions of the form N -> E.M1 and
N -> E.M2.

6 M. Alpuente et al.

which gets rid of the grammar Γ (and hence of costly ACU-matching operations)
while still recognizing string st by rewriting the simpler configuration (init || st)
to the final configuration (eps || eps). We have run some test on both the origi-
nal and the specialized programs with an impressive performance improvement,
discussed in Sect. 4.

Our contribution. In this paper, we delve into the essential ingredients of a
partial evaluation framework for order sorted equational theories that is able
to cope with subsorts, subsort polymorphism, convergent rules (equations), and
equational axioms. and state its correctness. We base our partial evaluator Vic-
toria on a suitably extended version of the general NPE procedure of [3], which
is parametric w.r.t. the unfolding rule used to construct finite computation trees
and also w.r.t. an abstraction operator that is used to guarantee that only finitely
many expressions are evaluated. For unfolding we use (folding) variant narrowing
[6], a novel narrowing strategy for convergent equational theories that computes
most general variants modulo algebraic axioms and is efficiently implemented in
Maude. For the abstraction we rely on the (order-sorted) equational least general
generalization recently investigated in [2].

2 Specializing Equational Theories Modulo Axioms

In this section, we introduce a partial evaluation algorithm for an equational
theory decomposed as a triple (Σ,B,

−→
E0), where Σ is the signature, E0 is a set

of convergent (equations that are implicitly oriented as) rewrite rules and B is
a set of commonly occurring axioms such as associativity, commutativity, and
identity. Let us start by recalling the key ideas of the NPE approach. We assume
the reader is acquainted with the basic notions of term rewriting, Rewriting
Logic, and Maude (see, e.g., [5]).

2.1 The NPE Approach

Given a set R of rewrite rules and a set Q of program calls (i.e., input terms),
the aim of NPE [3] is to derive a new set of rules R′ (called a partial evaluation
of R w.r.t. Q, or a partial evaluation of Q in R) which computes the same
answers and irreducible forms (w.r.t. narrowing) than R for any term that t is
inductively covered (closed) by the calls in Q. This means that every subterm
in the leaves of the execution tree for t in R that can be narrowed (modulo B)
in R can also be narrowed (modulo B) in R′. Roughly speaking, R′ is obtained
by first constructing a finite (possibly partial) narrowing tree for the input term
t, and then gathering together the set of resultants tθ1 → t1, . . . , tθk → tk that
can be constructed by considering the leaves of the tree, say t1, . . . , tk, and the
computed substitutions θ1, . . . , θk of the associated branches of the tree (i.e., a
resultant rule is associated to each root-to-leaf derivation of the narrowing tree).
Resultants perform what in fact is an n-step computation in R, with n > 0, by
means of a single step computation in R′. The unfolding process is iteratively

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 7

repeated for every narrowable subterm of t1, . . . , tk that is not covered by the
root nodes of the already deployed narrowing trees. This ensures that resultants
cover all calls that may occur at run-time in R′.

Let us illustrate the classical NPE method with the following example that
shows its ability to perform deforestation, a popular transformation that neither
standard PE nor PD can achieve [3]. Essentially, the aim of deforestation is
to eliminate useless intermediate data structures, thus reducing the number of
passes over data.

Example 2. Consider the following Maude program that computes the mirror
image of a (non-empty) binary tree, which is built with the free constructor
{ } that stores an element as root above two given (sub-)trees, its left and
right children. Note that the program does not contain any equational attributes
either for { } or for flip:

fmod FLIP-TREE is protecting NAT .

sort NatTree . subsort Nat < NatTree . vars R L : NatTree .

op _{_}_ : NatTree Nat NatTree -> NatTree .

op flip : NatTree -> NatTree . var N : Nat .

eq flip(N) = N [variant] .

eq flip(L {N} R) = flip(R) {N} flip(L) [variant] .

endfm

Fig. 1. Folding variant narrowing tree for the goal flip(flip(T)).

By executing flip(flip(T)) this program returns the original tree T back, but
first computes an intermediate, mirrored tree flip(T) of T, which is then flipped
again.

Let us partially evaluate the input term flip(flip(T)) following the NPE
approach. We compute the folding variant narrowing tree depicted3 in Fig. 1.
This tree does not contain, altogether, uncovered calls in its leaves. Thus, after
introducing the new symbol dflip we get the following residual program:

eq dflip(N) = N . eq dflip(L {N} R) = dflip(L) {N} dflip(R) .

which is completely deforested, since the intermediate tree is not constructed in
the residual, specialized program dflip. This is equivalent to the program gen-
erated by deforestation but with a much better performance (see Sect. 4). Note
3 We show narrowing steps in solid arrows and rewriting steps in dotted arrows.

8 M. Alpuente et al.

that the fact that folding variant narrowing [6] ensures normalization of terms at
each step is essential for computing the calls flip(flip(R)) and flip(flip(L))
that appear in the rightmost leaf of the tree in Fig. 1, which are closed w.r.t. the
tree root.

When we specialize programs that contain sorts, subsorts, rules, and equa-
tional axioms, things get considerably more involved, as discussed in the following
section.

2.2 Partial Evaluation of Convergent Rules Modulo Axioms

Let us motivate the problem by considering the following variant of the flip
function of Example 2 for (binary) graphs instead of trees.

Example 3. Consider the following Maude program for flipping binary graphs
that are represented as multisets of nodes that may contain explicit, left and
right, references (pointers) to their child nodes in the graph. We use symbol � to
denote an empty pointer. As expected, the BinGraph (set) constructor ; obeys
axioms of associativity, commutativity and identity (ACU). For simplicity we
consider a fixed set of identifiers.

fmod GRAPH is sorts BinGraph Node Id Ref .

subsort Node < BinGraph . subsort Id < Ref .

ops 0 1 2 3 4 : -> Id . op # : -> Ref .

op {___} : Ref Id Ref -> Node . op mt : -> BinGraph .

op _;_ : BinGraph BinGraph -> BinGraph [assoc comm id: mt] .

var I : Id . vars R1 R2 : Ref . var BG : BinGraph .

endfm

We are interested in flipping a graph and define4 a function flip that takes a
reference and a binary graph and returns the flipped graph.

op flip : BinGraph -> BinGraph .

eq [E1] : flip(mt) = mt [variant] .

eq [E2] : flip({R1 I R2} ; BG) = {R2 I R1} ; flip(BG) [variant] .

We can represent the graph shown on the left-hand side of Fig. 2 as the
following term BG of sort BinGraph: { 1 0 2 } ; { # 1 # } ; { 3 2 4 } ; { # 3 4 } ;

{ # 4 0 }. By invoking flip(BG), the graph shown on the right-hand side of Fig. 2
is computed.

In order to specialize the previous program for the call flip(flip(BG)),
we need several PE ingredients that have to be generalized to the correspond-
ing (order–sorted) equational notions: (i) equational closedness, (ii) equational
embedding, and (iii) equational generalization. In the following, we discuss some
subtleties about these new notions gradually, through our graph-flipping running
example.
4 From now on, we attach a label to each equation.

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 9

Fig. 2. A binary graph (left) and its flipped version (right).

2.3 Equational Closedness

Roughly speaking, in order to compute a specialization for t in (Σ,B,
−→
E0), we

construct a finite (possibly partial) (
−→
E0, B)-narrowing tree for t using the folding

variant narrowing strategy [6], and then extract the specialized rules tσ ⇒ r
(resultants) for each narrowing derivation t �

σ,
−→
E0,B

r in the tree. However, in
order to ensure that resultants form a complete description covering all calls that
may occur at run-time in the final specialized theory, partial evaluation must
rely on a parametric general notion of equational Q-closedness (modulo B) that
is not a mere syntactic subsumption check (i.e., to be a substitution instance of
some term in Q as in the partial deduction of logic programs), but recurses over
the algebraic B-structure of the terms.

Definition 1 (equational closedness). Let (Σ,B,
−→
E0) be an equational the-

ory decomposition and Q be a finite set of Σ-terms, i.e., terms that are built
from Σ and a countably infinite set of variables X . Assume the signature Σ
splits into a set DE0 of defined function symbols and a set CE0 of constructor
symbols (i.e.,

−→
E0, B-irreducible), so that Σ = DE0 �CE0 . We say that a Σ-term t

is closed modulo B (w.r.t. Q and Σ), or B–closed, if closedB(Q, t) holds, where
the predicate closedB is defined as follows:

closedB(Q, t) ⇔
⎧
⎨

⎩

true if t ∈ X
closedB(Q, t1) ∧ . . . ∧ closedB(Q, tn) if t = c(tn), c ∈ CE0 , n ≥ 0
∧

x �→t′∈θ closedB(Q, t′) if ∃q ∈ Q, ∃θ such that qθ =B t

A set T of terms is closed modulo B (w.r.t. Q and Σ) if closedB(Q, t) holds for
each t in T . A set R of rules is closed modulo B (w.r.t. Q and Σ) if so is the
set that can be formed by taking the right-hand sides of all the rules in R.

Example 4. In order to partially evaluate the program in Example 3 w.r.t. the
input term flip(flip(BG)), we set Q = {flip(flip(BG))} and start by con-
structing the folding variant narrowing tree that is shown5 in Fig. 3.

When we consider the leaves of the tree, we identify two requirements for
Q-closedness, with B being ACU: (i) closedB(Q, t1) with t1 = mt and (ii)
closedB(Q, t2) with t2 = {R1 I R2}; flip(flip(BG′)). The call closedB(Q, t1)

5 To ease reading, the arcs of the narrowing tree are decorated with the label of the
corresponding equation applied at the narrowing step.

10 M. Alpuente et al.

holds straightforwardly (i.e., it is reduced to true) since the mt leaf is a con-
stant and cannot be narrowed. The second one closedB(Q, t2) also returns true
because {R1 I R2} is a flat constructor term and flip(flip(BG’)) is a (syn-
tactic) renaming of the root of the tree.

We now show an example that requires to use B-matching in order to ensure
equational closedness modulo B.

Fig. 3. Folding variant narrowing tree for the goal flip(flip(BG)).

Example 5. Let us introduce a new sort BinGraph? to encode bogus graphs that
may contain spurious nodes in a sort Id? and homomorphically extend the rest
of symbols and sorts. For simplicity, we just consider one additional constant
symbol e in sort Id?.

sorts BinGraph? Id? Node? Ref? . subsorts BinGraph Node? < BinGraph? .

subsort Node < Node? . subsort Ref Id? < Ref? . op e : -> Id? .

op {___} : Ref? Id Ref? -> Node? . op {___} : Ref? Id? Ref? -> Node? .

var BG : BinGraph . var BG? : BinGraph? .

op _;_ : BinGraph? BinGraph? -> BinGraph? [assoc comm id: mt] .

vars I I1 : Id . var I? : Id? . vars R1 R2 : Ref . vars R1? R2? : Ref?.

Let us consider a function fix that receives an extended graph BG?, an unwanted
node I?, and a new content I, and traverses the graph replacing I? by I.

op fix : Id Id? BinGraph? -> BinGraph? .
eq [E3] : fix(I, I?, {R1? I? R2?} ; BG?) = fix(I, I?, {R1? I R2?} ; BG?) [variant] .
eq [E4] : fix(I, I?, {I? I1 R2?} ; BG?) = fix(I, I?, {I I1 R2?} ; BG?) [variant] .
eq [E5] : fix(I, I?, {R1? I1 I?} ; BG?) = fix(I, I?, {R1? I1 I} ; BG?) [variant] .
eq [E6] : fix(I, I?, BG) = BG [variant] .

For example, consider the following term t of sort BinGraph? : “{# 1 e} ; {e
0 #} ; {e e 3} ; {e 3 #}” that represents the graph shown on the left-hand side
of Fig. 4. We can fix the graph t by invoking fix(2,e,t), which computes the
corresponding fixed graph shown on the right-hand side of Fig. 4.

Now assume we want to specialize the above function fix w.r.t. the input
term fix(2,e,{R1 I R2} ; BG?), that is, a bogus graph with at least one non-
spurious node {R1 I R2} (non-spurious because of the sort of variable I). Fol-
lowing the proposed methodology, we set Q = {fix(2,e,{R1 I R2} ; BG?)}
and start by constructing the folding variant narrowing tree shown in Fig. 5.

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 11

Fig. 4. A binary graph with node e (left) and its fixed version (right).

Fig. 5. Folding variant narrowing tree for the goal fix(2, e, {R1 I R2}; BG?).

The right leaf {R1 I R2} ; BG is a constructor term and cannot be
unfolded. The three branches to the left of the tree are closed modulo
ACU with the root of the tree in Fig. 5. For instance, for the left leaf
t = fix(2, e, {R1?′ 2 R2?′}; BG?′; {R1 I R2}), the condition closedB(Q, t) is
reduced6 to true because t is an instance (modulo ACU) of the root node of the
tree, and the subterm t′ = ({R1?′ 2 R2?′}; BG?′) occurring in the correspond-
ing (ACU -)matcher is a constructor term. The other branches can be proved
ACU -closed with the tree root in a similar way.

Example 6 (Example 5 continued). Now let us assume that the function flip
of Example 2 is replaced by the following definition extended to (bogus graphs
of sort) BinGraph?, where the former equation E2 is an instance of the new
equation E2a:

op flip : BinGraph? -> BinGraph? .

eq [E1x] : flip(mt) = mt [variant] .

eq [E2a] : flip({R1? I R2?} ; BG?) = {R2? I R1?} ; flip(BG?) [variant].

eq [E2b] : flip({R1? I? R2?} ; BG?) = {R2? I? R1?} ; flip(BG?) [variant].

We specialize the whole program containing functions flip and fix w.r.t. input
term flip(fix(2,e,flip(BG))), that is, take a graph BG, flip it, then fix any
occurrence of nodes e, and finally flip it again. Unfortunately, the corresponding
folding variant narrowing tree, shown in Fig. 6, does not represent all possible
computations for (any ACU -instances of) the input term, since the narrowable
redexes occurring in the tree leaves are not a recursive instance of the only
partially evaluated call so far. That is, the term flip(fix(2, e, flip(BG’) ;

6 Note that this is only true because pattern matching modulo ACU is used for testing
closedness.

12 M. Alpuente et al.

Fig. 6. Folding variant narrowing tree for the goal flip(fix(2, e, flip(BG))).

Algorithm 1. Partial evaluation for equational theories
Require:

An equational theory E = (Σ, B,
−→
E0) and a set of terms Q to be specialized in E

Ensure:
A set Q′ of terms s.t. Unfold(Q′, E ,S) is closed modulo B w.r.t. Q′

1: function EqNPE(E ,Q,S)
2: Q := Q↓−→

E0,B

3: repeat
4: Q′ := Q
5: L ← Unfold(Q′, E ,S)
6: Q ← Abstract(Q′,L , B)
7: until Q′ =B Q
8: return Q′

{R2 I R1})) of the rightmost leaf is not ACU -closed w.r.t. the tree root. As in
NPE, we need to recurse (modulo B) over the structure of the terms to augment
the set of specialized calls in a controlled way, so as to ensure that all possible
calls are covered by the specialization.

3 The Partial Evaluation Scheme for Equational Theories

We are now ready to formulate the backbone of our partial evaluation method-
ology for equational theories that crystallizes the ideas of the example above.
Following the NPE approach, we define a generic algorithm (Algorithm 1) that
is parameterized by:

1. a narrowing relation (with narrowing strategy S) that constructs search
trees,

2. an unfolding rule, that determines when and how to terminate building a
tree, and

3. an abstraction operator , that is used to guarantee that the set of terms
obtained during partial evaluation (i.e., the set of deployed narrowing trees)
is kept finite.

Informally, the algorithm proceeds as follows. Given the input theory E
and the set of terms Q, the first step consists in applying the unfolding rule

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 13

Unfold(Q, E , S) to compute a finite (possibly partial) narrowing tree in E for
each term t in Q, and return the set L of the (normalized) leaves of the tree.
Then, instead of proceeding directly with the partial evaluation of the terms in
L , an abstraction operator Abstract(Q,L , B) is applied that properly com-
bines each uncovered term in L with the (already partially evaluated) terms of
Q, so that the infinite growing of Q is avoided. The abstraction phase yields a
new set of terms which may need further specialization and, thus, the process is
iteratively repeated while new terms are introduced.

Algorithm 1 does not explicitly compute a partially evaluated theory E ′ =
(Σ,B,E′). It does so implicitly, by computing the set of partially evaluated
terms Q′ (that unambiguously determine E′ as the set of resultants tσ ⇒ r
associated to the root-to-leaf derivations t �

σ,
−→
E0,B

r in the tree, with t in Q′),
such that the closedness condition for E′ modulo B w.r.t. Q′ is satisfied.

3.1 Equational Homeomorphic Embedding

Partial evaluation involves two classical termination problems: the so-called local
termination problem (the termination of unfolding, or how to control and keep
the expansion of the narrowing trees finite, which is managed by an unfold-
ing rule), and the global termination (which concerns termination of recursive
unfolding, or how to stop recursively constructing more and more narrowing
trees).

For local termination, we need to define the notion of equational homeomor-
phic embedding by extending the standard notion of homeomorphic embedding
with order-sorted information and reasoning modulo axioms. Embedding is a
structural preorder under which a term t is greater than, i.e., it embeds, another
term t′, written as t � t′, if t′ can be obtained from t by deleting some parts.

Embedding relations are very popular to ensure termination of symbolic
transformations because, provided the signature is finite, for every infinite
sequence of terms t1, t2, . . . , there exist i < j such that ti � tj . Therefore, when
iteratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence can be
guaranteed by using the embedding as a whistle [9]: whenever a new expression
tn+1 is to be added to the sequence, we first check whether tn+1 embeds any
of the expressions already in the sequence. If that is the case, we say that �
whistles, i.e., it has detected (potential) non-termination and the computation
has to be stopped. Otherwise, tn+1 can be safely added to the sequence and the
computation proceeds. For instance, if we work modulo commutativity (C), we
must stop a sequence where the term u = s(s(X + Y) ∗ (s(X) + 0)) occurs after
v = s(X) ∗ s(X + Y), since v embeds u modulo commutativity of ∗.

Definition 2 ((order-sorted) equational homeomorphic embedding).
Let (Σ,B,

−→
E0) be an equational theory decomposition. Let us introduce the fol-

lowing signature transformation Σ � (f : s1 . . . sn → s) �→ (f : U n... U →
U) ∈ Σu. Also, for any Σ-term t, tu leaves the terms unchanged but regards all
variables as unsorted. Consider the TRS Emb(Σ) that consists of all rewrite

14 M. Alpuente et al.

rules7 f(X1:U, . . . ,Xn:U) → Xi:U for f : A1, . . . , An → A in Σ and
i ∈ {1, . . . , n}. For terms u and v we write u �B v if u →+

Emb(Σ)/B v′ and
v′ is equal to v up to B-renaming (i.e., there is a renaming substitution σ such
that v =B v′σ). The relation �B is called B–embedding (or embedding modulo
B).

By using this notion, we stop a branch t � t′ of a folding variant narrowing
tree, if any narrowing redex t′|q of the leaf t′ is embedded (modulo B) by the
narrowing redex u|p of a preceding term u in the branch, i.e., u|p �B t′|q.
Example 7 (Example 6 continued). Consider again the (partial) folding variant
narrowing tree of Fig. 6. The narrowing redex
t=flip(fix(2, e, flip(BG′); {R2 I R1}) in the right branch of the tree embeds
modulo ACU the tree root u = flip(fix(2, e, flip(BG))), hence the unfolding
of this branch is stopped.

3.2 Equational Abstraction via Equational Least General
Generalization

For global termination, PE evaluation relies on an abstraction operation to
ensure that the iterative construction of a sequence of partial narrowing trees
terminates while still guaranteeing that the desired amount of specialization is
retained and that the equational closedness condition is reached. In order to
avoid constructing infinite sets, instead of just taking the union of the set L of
non-closed terms in the leaves of the tree and the set Q of specialized calls, the
sets Q and L are generalized. Hence, the abstraction operation returns a safe
approximation A of Q ∪ L so that each expression in the set Q ∪ L is closed
w.r.t. A. Let us show how we can define a suitable abstraction operator by using
the notion of equational least general generalization (lggB) [2]. Unlike the syn-
tactical, untyped case, there is in general no unique lggB in the framework of [2]
but a finite, minimal and complete set of lggB’s for any two terms, so that any
other generalizer has at least one of them as a B-instance.

More precisely, given the current set of already specialized calls Q, in order
to add a set T of new terms, the function Abstract�(Q,T,B) of Algorithm 1
is instantiated with the function of Definition 3 below, which relies on the notion
of best matching terms (BMT), which is aimed at avoiding loss of specialization
due to generalization. Roughly speaking, the function BMTB(U, t) determines
the best matching terms for t in a set U of terms w.r.t. B, i.e., for each ui in U ,
we compute the set Wi of lggB ’s of t and ui, and select the subset M of minimal
upper bounds of the union

⋃
i Wi. Then, uj ∈ BMTB(Q, t) if at least one lgg

element in the corresponding Wj belongs to M .

Example 8. Let t = g(1) ⊕ 1 ⊕ g(Y), U = {1 ⊕ g(X),X ⊕ g(1),X ⊕ Y }, and
consider B to consist of the associative-commutative (AC) axioms for ⊕. To

7 The expression X:S represents an explicit definition of a variable X of sort S. It is
worth noting that Maude automatically provides B-coherence completion of rules.

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 15

compute the best matching terms for t in U , we first compute the sets of lggB ’s
of t with each u in U :

W1 = lggAC({g(1) ⊕ 1 ⊕ g(Y), 1 ⊕ g(X)}) = {〈{Z ⊕ 1}, {Z/g(1) ⊕ g(Y)}, {Z/g(X)}〉,
〈{Z ⊕ g(W)}, {Z/1 ⊕ g(1), W/Y }, {Z/1, W/X}〉}

W2 = lggAC({g(1) ⊕ 1 ⊕ g(Y), X ⊕ g(1)}) = {〈{Z ⊕ g(1)}, {Z/g(1) ⊕ g(Y)}, {Z/X}〉}
W3 = lggAC({g(1) ⊕ 1 ⊕ g(Y), X ⊕ Y)}) = {〈{Z ⊕ W}, {Z/1, W/g(1) ⊕ g(Y)}, {Z/X, W/Y }〉}

Now, the set M of minimal upper bounds of the set W1 ∪ W2 ∪ W3 is M =
{Z ⊕ 1, Z ⊕ g(1)} and thus we have: BMTAC(S, t) = {1 ⊕ g(X),X ⊕ g(1)}.

Definition 3 (equational abstraction operator). Let (Σ,B,
−→
E0) be an

equational theory decomposition. Let Q,T be two sets of
−→
E0, B-normalized terms.

The abstraction function is:

abs
�
B(Q, T) =

⎧
⎪⎪⎨

⎪⎪⎩

abs�
B(. . . abs�

B(Q, {t1}), . . . , {tn}) if T = {t1, . . . , tn}, n > 1
Q if T = Ø or T = {X}, with X ∈ X

abs�
B(Q, {t1, . . . , tn}) if T = {t}, with t = c(t1, . . . , tn), c ∈ CE0

generalizeB(Q, Q′, t) if T = {t}, with t = f(t1, . . . , tn), f ∈ DE0

where Q′ = {t′ ∈ Q | root(t) = root(t′) and t′ �B t}, and the function generalize is:

generalizeB(Q, Ø, t) = Q ∪ {t}
generalizeB(Q, Q′, t) = Q if t is Q − closed
generalizeB(Q, Q′, t) = abs�

B(Q \ BMTB(Q′, t), Q′′ ↓−→
E0,B

)

where Q′′={l | q ∈ BMTB(Q′, t), 〈w, {θ1, θ2}〉 ∈ lggB({q, t}), x ∈ Dom(θ1 ∪ θ2), l ∈
{w, xθ1, xθ2}}.

Example 9 (Example 7 continued). Consider again the (partial) folding variant
narrowing tree of Fig. 6 with the leaf t = flip(fix(2, e, flip(BG′); {R2 I R1}))
at the right branch of the tree and the tree root u = flip(fix(2, e, flip(BG))).
We apply the abstraction operator with Q = {u} and T = {t}. Since t is
operation-rooted, we call generalizeACU (Q,Q′, t) with Q′ = Q, which calls
abs�

ACU (Q \ BMTACU (Q′, t), Q′′), where Q′′ = {w, v}, v = {R2′ I′ R1′}, and
w=flip(fix(2, e, flip(BG); BG′)) is the only ACU -lgg of u and t. We compute
the best matching terms, i.e., BMTACU (Q′, t) = Q. Then the call to abs�

ACU

returns the set {w}. However, this means that the previous folding narrowing
tree of Fig. 6 is now discarded, since the previous set of input terms Q = {u} is
now replaced by Q′ = {w}.

We start from scratch and the tree resulting for the new call w is showed
in Fig. 7. The right leaf embeds the tree root and is B-closed w.r.t. it. The left
leaf mt is a constructor term. For the middle leaf t′′ = {R2 I R1}; flip(BG’’’)
the whistle flip(BG’’) �ACU t′′ blows and we stop the derivation. However,
it is not B-closed w.r.t. w and we have to add it to the set Q′, obtaining the
new set of input terms Q′′ = {w, flip(BG’’’)}. The specialization of the call
flip(BG’’’) amounts to constructing the narrowing tree of Fig. 8, which is
trivially ACU -closed w.r.t. its root.

16 M. Alpuente et al.

Fig. 7. Folding variant narrowing tree for the goal flip(fix(2, e, flip(BG); BG′)).

Fig. 8. Folding variant narrowing tree for the goal flip(BG’’’).

Example 10 (Example 9 continued). Since the two trees in Figs. 7 and 8 do
represent all possible computations for (any ACU -instance of) u = flip
(fix(2, e, f lip(BG))), the partial evaluation process ends. Actually u is an
instance of the root of the tree in Fig. 7 with {BG’ �→ mt} because of the identity
axiom. Now we can extract the set of resultants tσ ⇒ r associated to the root-to-
leaf derivations t �

σ,
−→
E0,B

r in the two trees:

eq flip(fix(2, e, flip(mt))) = mt .

eq flip(fix(2, e, flip({R1 I R2} ; BG’)))

= flip(fix(2, e, flip(BG’) ; {R2 I R1})) .

eq flip(fix(2, e, flip(mt) ; mt)) = mt .

eq flip(fix(2, e, flip(mt) ; BG ; {R1 I R2})) = {R2 I R1} ; flip(BG) .

eq flip(fix(2, e, flip({R1 I R2} ; BG) ; BG’))

= flip(fix(2, e, flip(BG) ; {R2 I R1} ; BG’)) .

eq flip(mt) = mt .

eq flip(BG ; {R1 I R2}) = {R2 I R1} ; flip(BG) .

The reader may have realized that the specialization call flip(fix(2,
e,flip(BG))) should really return the same term BG, since the variable BG is of
sort BinGraph instead of BinGraph?, i.e., flip(fix(2,e,flip(BG))) = BG. The
resultants above traverse the given graph and return the same graph. Though
the code may seem inefficient, we have considered this example to illustrate the
different stages of partial evaluation. The following example shows how a better
specialization program can be obtained.

Example 11. Let us now overload the flip operator, having simultaneously
two declarations for flip that are related in the subsort ordering Bingraph <
Bingraph?: “op flip : BinGraph -> BinGraph .” and “op flip : BinGraph? ->

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 17

Fig. 9. Folding variant narrowing tree for the goal flip(fix(2, e, flip(BG))).

BinGraph? .”, and four equations: E1, E2, E2a, and E2b. By specializing the call
t = flip(fix(2,e,flip(BG))), the subtype definition of flip allows Maude
to simplify the term t using equation E6, which eliminates the occurrence of the
fix symbol. The narrowing tree for t is shown in Fig. 9. The narrowing tree is
B-closed w.r.t. the set of calls {flip(fix(2,e,flip(BG))),flip(flip(BG’))}.
This leads to the following, optimal specialized equations:

eq flip(fix(2,e,flip(mt))) = mt .

eq flip(fix(2,e,flip({R1 I R2} ; BG))) = {R1 I R2} ; flip(flip(BG)) .

eq flip(flip(mt)) = mt .

eq flip(flip({R1 I R2} ; BG)) = {R1 I R2} ; flip(flip(BG)) .

3.3 Equational Post-processing Renaming

The resulting partial evaluations might be further optimized by eliminating
redundant function symbols and unnecessary repetition of variables. Essentially,
we define a mapping ρ (independent renaming) that introduces a new function
symbol for each specialized term and then we replace, by means of a suitable
function renρ(u), each call u in the specialized program by a call to the corre-
sponding renamed function.

Example 12 (Example 11 continued). Consider the following indepen-
dent renaming for the specialized calls: {flip(flip(BG)) 	→ dflip(BG),

flip(fix(2,e,flip(BG))) 	→ flix(BG)}. The post-processing renaming derives
the renamed program

eq flix(mt) = mt . eq flix({R1 I R2} ; BG) = {R1 I R2} ; dflip(BG) .

eq dflip(mt) = mt . eq dflip({R1 I R2} ; BG’) = {R1 I R2} ; dflip(BG’) .

Example 13. Consider again the elementary parser defined in Example 1 and
the initial configuration init | L | Γ . The PE algorithm constructs the two
folding variant narrowing trees that are shown in Figs. 10 and 11. Now all leaves
in the trees are closed w.r.t. Q, and by applying the post-partial evaluation
transformation with the independent renaming ρ = {init | L | Γ �→ finit(L),

18 M. Alpuente et al.

Fig. 10. Folding variant narrowing tree for the goal init | L | Γ .

Fig. 11. Folding variant narrowing tree for the goal S | L’’ | Γ .

S | L | Γ �→ fS(L), eps | eps | Γ �→ feps}, we get the following specialized
program

eq finit(eps) = feps . eq finit(1) = feps .

eq fS(eps) = feps . eq finit(0 L) = finit(L).

eq finit(1 1 L) = fS(L) . eq fS(1 L) = fS(L) .

that is even more efficient and readable than the specialized program shown in
the Introduction. Note that we obtain “finit(1 eps) = feps” but it is simpli-
fied to “finit(1) = feps” modulo identity.

3.4 Strong Correctness

In this section we state the strong correctness of our partial evaluation method.
Here VN�

E (u) represents the set of all folding variant narrowing sequences for u
in E .

Theorem 1 (Strong correctness). Let E = (Σ,B,
−→
E0) be a decomposition of

an equational theory (Σ,E0 � B), u be a Σ-term, and Q be a finite set of Σ-
terms. Let ρ be an independent renaming of Q, u′ = renρ(u) and Q′ = renρ(Q).
Let E ′ = (Σ,B,

−→
E′

0) be an EqNPE of E w.r.t. Q (under ρ). If
−→
E′

0 and u′

are closed modulo B w.r.t. Q′, then (u �∗
σ,

−→
E0,B

v) ∈ VN�
E (u) if and only if

(u′ �∗
σ′,

−→
E′

0,B
v′) ∈ VN�

E ′(u), where v′ =B renρ(v).

4 Experiments

We have implemented the transformation framework presented in this paper.
We do not yet have an automated tool where one can give both a Maude pro-
gram and an initial call, and the tool returns the specialized program. However,
all the independent components are already available and we have performed

Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 19

Table 1. Experimental results

Original PE before renaming PE after renaming

Benchmark Data Time (ms) Time (ms) Improvement Time (ms) Improvement

Parser 100 k 164 39 76,22 33 79,88

1 M 10.561 411 96,11 348 96,70

5 M 275.334 2.058 99,25 1.685 99,39

Double-flip 100 k 188 143 23,94 76 59,57

1 M 1.636 1.427 12,78 759 53,61

5 M 8.425 7.503 10,94 4.100 51,34

Flip-fix 100 k 203 177 12,81 143 29,56

1 M 1.955 1.778 9,05 1.427 27,01

5 M 10.185 9.219 9,48 7.458 26,77

KMP 100 k 401 57 87,79 36 91,02

1 M 3.872 531 86,29 331 91,45

5 M 19.932 2.530 87,31 1.661 91,67

various experiments in a semi-automated way, i.e., we make calls to the differ-
ent components already available without having a real interface yet: equational
unfolding (by using folding variant narrowing already available in Maude; see
[5]), equational closedness (we have implemented Definition 1 as a Maude pro-
gram), equational embedding (we have implemented Definition 2 as a Maude
program), and equational generalization and abstraction (we have implemented
Definition 3 as a Maude program that invokes the lggB implementation of [2]).

Table 1 contains the experiments that we have performed using an Intel Core2
Quad CPU Q9300 (2.5 GHz) with 6 Gigabytes of RAM running Maude v2.7
and considering the average of ten executions for each test. These experiments
are available at http://safe-tools.dsic.upv.es/victoria. We have considered the
three Maude programs discussed in the paper: Parser (Example 1), Double-flip
(Example 2), and Flip-fix (Example 3). We have also considered the classical
KMP string pattern matcher [3]. For all four Maude programs, we consider
input data of three different sizes: one hundred thousand elements, one mil-
lion elements, and five million elements; elements here refer to graph nodes for
Double-flip and Flip-fix, and list elements for Parser and KMP. We have bench-
marked three versions of each program on these data: original program, partially
evaluated program (before post-processing renaming), and final specialization
(with post-processing renaming). The relative speedups that we achieved thanks
to specialization are given in the Improvement column(s) and computed as the
percentage 100 × (OriginalTime − PETime)/OriginalTime. For all the examples,
the partially evaluated programs achieve a significant improvement in execution
time when compared to the original program, both with and without renaming,
but more noticeable after renaming. The average improvement for these bench-
marks is 66.5%. Regarding the KMP test, the average improvement is 91, 67%.

http://safe-tools.dsic.upv.es/victoria

20 M. Alpuente et al.

That is, the achieved speedup is 12 (OriginalT ime/PETime), which is compa-
rable to the average speedup 14 of both the CPD-based partial evaluator ECCE
[8] and the PE tool of [1] (actually, the generated residual programs are iden-
tical to [1] on this benchmark). This indicates thar our new partial evaluation
scheme is a conservative extension of previous approaches on comparable exam-
ples. Moreover, matching modulo axioms such as associativity, commutativity,
and identity are fairly expensive operations that are massively used in Maude,
and can sometimes be drastically reduced after specialization (i.e., the Parser
example moves from a program with ACU and Ur operators to a program with-
out axioms). This transformation power can not be achieved by traditional NPE
nor by competing on-line partial evaluation techniques, such as CPD or positive
supercompilation [4].

5 Conclusion and Future Work

A complete partial evaluator for the entire Maude language requires dealing
with some features not considered in this work, and to experiment with more
refined heuristics that maximize the specialization power. Future implementation
work will focus on automating the entire PE process for a large subset of the
language, including conditional rules, memberships, and conditional equations.
This, in turn, will necessitate some new developments in the Maude narrowing
infrastructure. In this sense, advancing the present PE research ideas will be a
significant driver of new symbolic reasoning features in Maude.

References

1. Albert, E., Hanus, M., Vidal, G.: A practical partial evaluation scheme for multi-
paradigm declarative languages. J. Funct. Logic Programm. 2002 (2002)

2. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equa-
tional generalization algorithm. Inf. Comput. 235, 98–136 (2014)

3. Alpuente, M., Falaschi, M., Vidal, G.: Partial evaluation of functional logic pro-
grams. ACM Trans. Program. Lang. Syst. 20(4), 768–844 (1998)

4. Alpuente, M., Falaschi, M., Vidal, G.: A unifying view of functional and logic
program specialization. ACM Comput. Surv. 30(3es), 9es (1998)

5. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C.: Maude Manual (version 2.7), March 2015

6. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)

7. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

8. Jørgensen, J., Leuschel, M., Martens, B.: Conjunctive partial deduction in prac-
tice. In: Gallagher, J. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 59–82. Springer,
Heidelberg (1997). doi:10.1007/3-540-62718-9 5

9. Leuschel, M.: Improving homeomorphic embedding for online termination. In:
Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 199–218. Springer, Heidelberg
(1999). doi:10.1007/3-540-48958-4 11

10. Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commuta-
tivity and associativity. J. ACM 21(4), 622–642 (1974)

http://dx.doi.org/10.1007/3-540-62718-9_5
http://dx.doi.org/10.1007/3-540-48958-4_11

A Formal, Resource Consumption-Preserving
Translation of Actors to Haskell

Elvira Albert1, Nikolaos Bezirgiannis2, Frank de Boer2,
and Enrique Martin-Martin1(B)

1 Universidad Complutense de Madrid, Madrid, Spain
elvira@sip.ucm.es, emartinm@ucm.es

2 Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
n.bezirgiannis@cwi.nl, f.s.de.boer@cwi.nl

Abstract. We present a formal translation of an actor-based language
with cooperative scheduling to the functional language Haskell. The
translation is proven correct with respect to a formal semantics of the
source language and a high-level operational semantics of the target, i.e. a
subset of Haskell. The main correctness theorem is expressed in terms of a
simulation relation between the operational semantics of actor programs
and their translation. This allows us to then prove that the resource
consumption is preserved over this translation, as we establish an equiv-
alence of the cost of the original and Haskell-translated execution traces.

1 Introduction

Abstract Behavioural Specification (ABS) [9] is a formally-defined language for
modeling actor-based programs. An actor program consists of computing enti-
ties called actors, each with a private state, and thread of control. Actors can
communicate by exchanging messages asynchronously, i.e. without waiting for
message delivery/reply. In ABS, the notion of actor corresponds to the active
object, where objects are the concurrency units, i.e. each object conceptually
has a dedicated thread of execution. Communication is based on asynchronous
method calls where the caller object does not wait for the callee to reply with the
method’s return value. Instead, the object can later use a future variable [5,8] to
extract the result of the asynchronous method. Each asynchronous method call
adds a new process to the callee object’s process queue. ABS supports coopera-
tive scheduling, which means that inside an object, the active process can decide
to explicitly suspend its execution so as to allow another process from the queue
to execute. This way, the interleaving of processes inside an active object is tex-
tually controlled by the programmer, similar to coroutines [10]. However, flexible
and state-dependent interleaving is still supported: in particular, a process may
suspend its execution waiting for a reply to a method call.

This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu), by the Span-
ish MINECO projects TIN2012-38137 and TIN2015-69175-C4-2-R, and by the CM
project S2013/ICE-3006.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 21–37, 2017.
DOI: 10.1007/978-3-319-63139-4 2

http://www.envisage-project.eu

22 E. Albert et al.

Whereas ABS has successfully been used to model [19], analyze [2], and ver-
ify [9] actor programs, the “real” execution of such programs has been a struggle,
attributed to the fact that implementing cooperative scheduling efficiently can
be hard (common languages as Java and C++ have to resort to instrumentation
techniques, e.g. fibers [16]). This led to the creation of numerous ABS backends
with different cooperative scheduling implementations:1 ABS→Maude using an
interpreter and term rewriting, ABS→Java using heavyweight threads and man-
ual stack management, ABS→Erlang using lightweight threads and thread park-
ing, ABS→Haskell using lightweight threads and continuations.

The overall contribution of this paper is a formal, resource-consumption pre-
serving translation of the concurrency subset of the ABS language into Haskell,
given as an adaptation of the canonical ABS→Haskell backend [4]. We opted for
the Haskell backend relying on the hypothesis that Haskell serves as a better
middleground between execution speed and most importantly semantic correct-
ness. The translation is based on compiling ABS methods into Haskell functions
with continuations—similar transformations have been performed in the actor-
based Erlang language wrt. rewriting systems [14,18] and rewriting logic [13], in
the translation of ABS to Prolog [3] and a subset of ABS to Scala [11]. However,
what is unique in our translation and constitutes our main contribution, is that
the translation is resource preserving as we prove in two steps:

– Soundness. We provide a formal statement of the soundness of this translation
of ABS into Haskell which is expressed in terms of a simulation relation
between the operational ABS semantics and the semantics of the generated
Haskell code. The soundness claim ensures that every Haskell derivation has
an equivalent one in ABS. However, since for efficiency reasons, the translation
fixes a selection order between the objects and the processes within each
object, we do not have a completeness result.

– Resource-preservation. As a corollary we have that the transformation pre-
serves the resource consumption, i.e., the cost of the Haskell-translated pro-
gram is the same as the original ABS program wrt. any cost model that assigns
a cost to each ABS instruction, since both programs execute the same trace
of ABS instructions. This result allows us to ensure that upper bounds on
the resource consumption obtained by the analysis of the original ABS pro-
gram are preserved during compilation and are thus valid bounds for the
Haskell-translated program as well.

In Sect. 2 we specify the syntax of the source language and detail its operational
semantics. Section 3 describes our target language and defines the compilation
process. We present the correctness and resource preservation results in Sect. 4,
as well as the intermediate semantics used in this process. In Sect. 5 we show
that the runtime environment does not introduce any significant overhead when
executing ABS instructions, and show that the upper bounds obtained by the
cost analysis are sound. Finally, Sect. 6 contains the conclusions and future work.

1 See http://abs-models.org/documentation/manual/#-abs-backends for more infor-
mation about ABS backends.

http://abs-models.org/documentation/manual/#-abs-backends

A Formal, Resource Consumption-Preserving Translation 23

S ::= x:=E | f:=x!m(ȳ)
| await f | skip | return z
| S1;S2 | if B {S} else {S}
| while B {S}

E ::= V | new | f.get | m(ȳ)
V ::= x | r | I
B ::= B ∧ B | B ∨ B | ¬B | V ≡ V
D ::= m(r̄){ S }
P ::= D : main(){ S }

1 main() {

2 node1 = new;

3 node2 = new;

4 f1 = node1!map(v1);
5 f2 = node2!map(v2);
6 await f1;

7 await f2;

8 r1 = f1.get;

9 r2 = f2.get;

10 r = reduce(r1,r2);

11 return r; }

12

13 map(v) {

14 ... }

15 reduce(v1,v2) {

16 ... }

Fig. 1. (a) syntax of source language (b) a simplified MapReduce task in ABS

Complete proofs of the theoretical results can be found at http://gpd.sip.ucm.
es/enrique/publications/lopstr16 ext.pdf.

2 Source Language

Our language is based on ABS [9], a statically-typed, actor-based language with
a purely-functional core (ADTs, functions, parametric polymorphism) and an
object-based imperative layer: objects with private-only attributes, and inter-
faces that serve as types to the objects. ABS extends the OO paradigm with
support for asynchronous method calls; each call results in a new future (place-
holder for the method’s result) returned to the caller-object, and a new process
(stored in the callee-object’s process queue) which runs the method’s activation.
The active process inside an object (only one at any given time) may decide to
explicitly suspend its execution so as to allow another process from the same
queue to execute.

In this paper, we simplify ABS to its subset that concerns the concurrent
interaction of processes (inside and between objects), so as to focus solely on the
more challenging part of proving correctness of the cooperative concurrency. In
other words, the ABS language is stripped of its functional core, local variables,
object groups [15] and types (we assume the input programs are well-typed w.r.t
ABS type-system). The formal syntax of the statements S of the subset is shown
in Fig. 1(a). Values in our subset are references (object or futures) and integer
numbers; values can be stored in method’s formal parameters or attributes.
We syntactically distinguish between method parameters r and attributes. The
attributes are further distinguished for the values they hold: attributes holding
object references or integer values (denoted by x, y, z . . .), and future attributes
holding future references (denoted by f). An assignment f:=x!m(ȳ) stores to
the future attribute f a new future reference returned by asynchronously calling
the method m on the object attribute x passing as arguments the values of
object attributes ȳ. An assignment x:=E stores to an object attribute the result
of executing the right-hand side E. A right-hand side can be the value of a
method parameter r, an attribute x, an integer expression I (an integer value,
addition, subtraction, etc.), a reference to a new object new, the result of a

http://gpd.sip.ucm.es/enrique/publications/lopstr16_ext.pdf
http://gpd.sip.ucm.es/enrique/publications/lopstr16_ext.pdf

24 E. Albert et al.

synchronous same-object method call m(ȳ), or the result of an asynchronous
method call f .get stored in the future attribute f . A call to f .get will block the
object and all its processes until the result of the asynchronous call is ready. The
statement await f may be used (usually before calling f .get) to instead release
the current process until the result of f has been computed, allowing another
same-object process to execute. Sequential composition of two statements S1 and
S2 is denoted by S1;S2. The Boolean condition B in the if and while statement is
a Boolean combination of reference equality between values of attributes. Again,
note that, we assume expressions to be well-typed: integer expressions cannot
contain futures or object references and boolean equality is between same-type
values. The statement return z returns the value of the attribute z both in
synchronous and asynchronous method calls. A method declaration D maps
a method’s name and formal parameters to a statement S (method body). We
consider that every method has one return and it is the final statement. Finally,
a program P is a set of method declarations D̄ and a special method main that
has no formal parameters and acts as the program’s entry point.

The program of Fig. 1(b) shows a basic version of a MapReduce task [7]
implemented using actors in ABS. For clarity the example uses only two map
nodes and a single reduce computation performed in the controller node (the
actor running main). First the controller creates two objects node1 and node2
(L2–L3), and invokes asynchronously map with different values v1 and v2 (L4–
L5). In MapReduce, all map invocations must finish before executing the reduce
phase: therefore, the await instructions in L6–L7 wait for the termination of
the two calls to map, releasing the processor so that any other process in the
same object of main can execute. Once they have finished, the get statements in
L8-L9 obtain the results from the futures f1 and f2. Although get statements
block the object (in this case main) and all of its processes until the result is
ready, this does not occur in our example because the preceding awaits assure
the result is available. Finally, L10 contains a synchronous-method self call to
reduce that combines the partial results from the map phase.

2.1 Operational Semantics

In order to describe the operational semantics of the language defined above
we first introduce the following concepts and assumptions. We consider a set A
of attributes and P of method parameters. The values considered in this paper
are in the Int set: integer constants and dynamically generated references to
objects and futures. We denote by Σ = A → Int the set of assignments of values
to the attributes (of an object), with empty element ε. A closure consists of a
statement S obtained by replacing its free variables by actual values (note that
variables are introduced as method parameters and can only appear in E) and a
future reference, represented by an integer, for storing the return value. By Sτ ,
where τ ∈ P → Int , we denote the instantiation obtained from S by replacing
each variable x in S by τ(x). Finally, we represent the global heap h by a triple
(n, h1, h2) consisting of an integer number n and partial functions (with finite
disjoint domains) h1 : Int → Σ and h2 : Int → Int⊥, where Int⊥ = Int ∪{⊥} (⊥

A Formal, Resource Consumption-Preserving Translation 25

(Assign)
getVal(h(n), V) = v h′ = h[(n)(x) �→ v)]

〈n : (x:=V ; S, l) · Q, h〉 → 〈n : (S, l) · Q, h′〉

(New)
h(count) = m h′ = h[(n)(x) �→ m, (m) �→ ε, count �→ m + 1]

〈n : (x:=new; S, l) · Q, h〉 → 〈n : (S, l) · Q, h′〉

(Get)
h(h(n)(f)) 	= ⊥ h′ = h[(n)(x) �→ h(h(n)(f))]

〈n : (x:=f.get; S, l) · Q, h〉 → 〈n : (S, l) · Q, h′〉

(Await I)
h(h(n)(f)) 	= ⊥

〈n : (await f; S, l) · Q, h〉 → 〈n : (S, l) · Q, h〉

(Await II)
h(h(n)(f)) = ⊥

〈n : (await f; S, l) · Q, h〉 → 〈n : Q · (await f; S, l), h〉

(Async)

h(n)(x) = d h(count) = l′ v̄ = h(n)(z̄)
h′ = h[(n)(f) �→ l′, (l′) ⊥→� , count �→ l′ + 1]

〈n : (f:=x!m(z̄); S, l) · Q, h〉 d.m(l′,v̄)−→ 〈n : (S, l) · Q, h′〉

(Sync)
(m(w̄) �→ Sm) ∈ D τ = [w̄ �→ h(n)(z̄)] S′ = (̂Smτ)

x

〈n : (x:=m(z̄); S, l) · Q, h〉 → 〈n : (S′; S, l) · Q, h〉

(ReturnA)
h′ = h[(l) �→ h(n)(x)]

〈n : (return∗x; S, l) · Q, h〉 → 〈n : Q, h′〉

(ReturnS)
h′ = h[(n)(z) �→ h(n)(x)]

〈n : (returnz x; S, l) · Q, h〉 → 〈n : (S, l) · Q, h′〉

Fig. 2. Operational semantics: Local rules

is used to denote “undefined”). The number n is used to generate references to
new objects and futures. The function h1 specifies for each existing object, i.e.,
a number n such h1(n) is defined, its local state. The function h2 specifies for
each existing future reference, i.e., a number n such h2(n) is defined, its return
value (absence of which is indicated by ⊥). In the sequel we will simply denote
the first component of h by h(count), and write h(n)(x), instead of h1(n)(x),
and h(n), instead of h2(n). We will use the notation h[count �→ n] to generate a
heap equal to h but with the counter set to n. A similar notation h[n �→ ⊥] will
be used for future variables, h[(n)(x) �→ v] for storing the value v in the variable
x in object n and h[n �→ ε] for initializing the mapping of an object.

An object’s local configuration denoted by the (object) reference n consists
of a pair 〈n : Q,h〉 where Q is a list of closures and h is the global heap.
We use · to concatenate lists, i.e., (S, l) · Q represents a list where (S, l) is the
head and Q is the tail. A global configuration—denoted with the letters A and
B—is a pair 〈C, h〉 containing a set of lists of closures C = {Q} and a global
heap h. Figure 2 contains the relation that describes the local behavior of an
object (omitting the standard rules for sequential composition, if and while
statements). Note that the first closure of the list Q is the active process of the

26 E. Albert et al.

(Internal)
〈n : Q, h〉 → 〈n : Q′, h′〉

〈(n : Q) ∪ C, h〉 → 〈(n : Q′) ∪ C, h′〉

(Message)

〈n : Qn, h〉 d.m(l′,v̄)−→ 〈n : Q′, h′〉
m(w̄) �→ Sm ∈ D τ = [w̄ �→ v̄] S′ = (̂Smτ)

∗

〈(n : Qn) ∪ (d : Qd) ∪ C, h〉 → 〈(n : Q′) ∪ (d : Qd · (S′, l′)) ∪ C, h′〉

Fig. 3. Operational semantics: Global rules

object, so the different rules process the first statement of this closure. When
the active process finishes or releases the object in an await statement, the
next process in the list will become active, following a FIFO policy. The rule
(Assign) modifies the heap storing the new value of variable x of object n. It
uses the function getVal(Σ,V) to evaluate an expression V involving integer
constants and variables in the object’s current state Σ. The (New) rule stores a
new object reference in variable x, increments the counter of objects references
and inserts an empty mapping ε for the variables of the new object m. Rule
(Get) can only be applied if the future is available, i.e., if its value is not ⊥. In
that case, the value of the future is stored in the variable x. Both rules (Await
I) and (Await II) deal with await statements. If the future f is available, it
continues with the same process. Otherwise it moves the current process to the
end of the queue, thus avoiding starvation. Note that the await statement is not
consumed, as it must be checked when the process becomes active again. When
invoking the method m asynchronously in rule (Async) the destination object
d and the values of the parameters r̄ are computed. Then a new future reference
l initialized to ⊥ is stored in the variable f , and the counter is incremented.
The information about the new process that must be created is included as the
decoration d.m(l′, v̄) of the step. Synchronous calls—rule (Sync)—extend the
active task with the statements of the method body, where the parameters have
been replaced by their value using the substitution τ . In order to return the
value of the method and store it in the variable x, the return statement of the
body is marked with the destination variable x, called write-back variable. This
marking is formalized in the ·̂s function, defined as follows (recall that return
is the last statement of any method):

̂Ss =

⎧

⎨

⎩

S1;̂S2

s
if S = S1;S2,

returns z if S = return z,
S i.o.c.

Rule (ReturnA) finishes an asynchronous method invocation (in this case the
return keyword is marked with *, see rule (Message) in Fig. 3), so it removes
the current process and stores the final value in the future l. On the other hand,
rule (ReturnS) finishes a synchronous method invocation (marked with the
write-back variable), so it behaves like a z:=x statement.

A Formal, Resource Consumption-Preserving Translation 27

Based on the previous rules, Fig. 3 shows the relation describing the global
behavior of configurations. The (Internal) rule applies any of the rules in
Fig. 2, except (Async), in any of the objects. The (Message) rule applies the
rule (Async) in any of the objects. It creates a new closure (̂Smτ

∗
, l′) for the

new process invoking the method m, and inserts it at the back of the list of
the destination object d. Note the use of ·̂∗ to mark that the return statement
corresponds to an asynchronous invocation. Note that in both (Internal) and
(Message) rules the selection of the object to execute is non-deterministic.
When needed, we decorate both local and global steps with object reference n
and statement S executed, i.e., 〈n : Q,h〉 →n

S 〈n : Q′, h′〉 and 〈C, h〉 →n
S 〈C ′, h′〉.

We remark that the operational semantics shown in Figs. 2 and 3 is very sim-
ilar to the foundational ABS semantics presented in [9], considering that every
object is a concurrent object group. The main difference is the representation of
configurations: in [9] configurations are sets of futures and objects that contain
their local stores, whereas in our semantics all the local stores and futures are
merged in a global heap. Finally, our operational semantics considers a FIFO
policy in the processes of an object, whereas [9] left the scheduling policy unspec-
ified.

3 Target Language

Our ABS subset is translated to Haskell with coroutines. A coroutine is a gen-
eralization of a subroutine: besides the usual entry-point/return-point of a pro-
cedure a coroutine can have other entry/exit points, at intermediate locations
of the procedure’s body. Simply put, a coroutine does not have to run to com-
pletion; the programmer can specify places where a coroutine can suspend and
later resume exactly where it left off.

Coroutines can be implemented natively on top of programming languages
that support first-class continuations (which subsequently require support for
closures and tail-call optimization). A continuation with reference to a program’s
point of execution, is a datastructure that captures what the remaining of the
program does (after the point). As an example, consider the Haskell program at
Fig. 4(a). The continuation of the call to (even 3) at L2 is λa → print a, assuming
a is the result of call to even and the continuation is represented as a function.
The continuation of (mod x 2) at L1 is the function λa → print (eq a 0) where x

is bound by the even function and a is the result of (mod x 2). Abstracting over
any program, an expression with type expr :: a has a continuation k with type
k ::(a → r) with a being the expression’s result type and r the program’s overall
result type. To benefit from continuations (and thus coroutines), a program has
to be transformed in the so-called continuation-passing style (CPS): a function
definition of the program f :: args → a is rewritten to take its current continuation
as an extra last argument, as in f ’:: args → (a → r) → r. A function call is also
rewritten to apply this extra argument with the actual continuation at point.

A CPS transformation can be applied to all functions of a program, as in
the example of Fig. 4(b), or (for efficiency reasons) to only the subset that relies

28 E. Albert et al.

1 even x = eq (mod x 2) 0

2 main = print (even 3)

1 mod’ x y k = k (mod x y)

2 eq’ x y k = k (eq x y)

3 even’ x k = mod’ x 2 (λ a → eq’ a 0 k)

4 main = even’ 3 (λ a → print a)

Fig. 4. (a) Example program in direct style and (b) translated to CPS

on continuation support, e.g. only those functions that need to suspend/resume.
For our case, ABS is translated to Haskell with CPS applied only to statements
and methods, but not (sub)expressions. Continuations have the type k :: a → Stm

where Stm is a recursive datatype with each one of its constructors being a
statement, and the recursive position being the statement’s current continuation.
Stm being the program’s overall result type (Stm ≡ r), reveals the fact that the
translation of ABS constructs a Haskell AST-like datatype “knitted” with CPS
(Fig. 5), which will only later be interpreted at runtime (Sect. 3.1): capturing
the continuation of an ABS process allows us to save the process’ state (e.g. call
stack) and rest of statements as data. For technical convenience, our statements
and methods do not directly pass results among each other but only indirectly
through the state (heap); thus, we can reduce our continuation type to k ::() →
Stm and further to the “nullary” function k :: Stm. Accordingly the CPS type
of our methods (functions) and statements (constructors) becomes f ’:: args →
Stm → Stm. Worth to mention in Fig. 5 is that the body of While statement and
the two branch bodies of If can be thought of as functions with no args written
also in CPS (thus type Stm → Stm) to “tie” each body’s last statement to the
continuation after executing the control structure.

A Method definition is a CPS function that takes as input a list [Ref] of
the method’s parameters (passed by reference), the callee object named this,
a writeback reference (Maybe Ref), and last its current continuation Stm. In
case of synchronous call the callee method indirectly writes the Return value
to the writeback reference of the heap and the execution jumps back to the
caller by invoking the method’s continuation; in case of asynchronous call the
writeback is empty, the return value is stored to the caller’s future (destiny) and
the method’s continuation is invoked resulting to the exit of the ABS process. An
object or future reference Ref is represented by an integer index to the program’s
global heap array; similarly, an object attribute Attr is an integer index to
an internal-to-the-object attribute array, hence shallow-embedded (compared to
embedding the actual name of the attribute). Values (V) in our language can be
this-object attributes (A), parameters to the method (P), integer literals (I), and
integer arithmetic on those values (Add, Sub...). The right-hand side (Rhs) of an
assignment directly reflects that of the source language. Boolean expressions are
only appearing as predicates to If and While and are inductively constructed
by the datatype B, that represents reference and integer comparison.

The compilation of statements is shown in Fig. 6. The translation s�S�k,wb

takes two arguments: the continuation k and the writeback reference wb.

A Formal, Resource Consumption-Preserving Translation 29

type Method = [Ref] → Ref → Maybe Ref →
���
Stm → Stm

data Stm where −− (formatted in GADT syntax)
Skip ::

���
Stm → Stm

Await :: Attr →
��
Stm → Stm

Assign :: Attr → Rhs →
���
Stm → Stm

If :: B → (
���
Stm→Stm) → (

���
Stm→Stm) →

���
Stm → Stm

While :: B → (
���
Stm→Stm) →

���
Stm → Stm

Return :: Attr → Maybe Ref →
���
Stm → Stm

data Rhs = Val V

| New

| Get Attr

| Async Attr Method [Attr]

| Sync Method [Attr]

type Ref = Int

type Attr = Int

data B = B :∧ B | B :∨ B | :¬ B | V :≡ V

data V = A Ref | P Ref | I Int

| Add V V | Sub V V ...

Fig. 5. The syntax and types of the target language. Continuations are

��������������
wave-underlined. The program/process final result type is double-underlined

s
skip k,wb = Skip k s

x:=V k,wb = Assign x V V k
s
await f k,wb = Await f k s

x:=new k,wb = Assign x New k
s
return x k,wb = Return x wb k s

x:=f.get k,wb = Assign x (Get f) k
s
return

∗
x k,wb = Return x Nothing k s

x:=y!m(z̄) k,wb = Assign x (Async y m z̄) k
s
return

z
x k,wb = Return x (Just z) k s

x:=m(z̄) k,wb = Assign x (Sync m z̄) k
s S1; S2 k,wb = s S1 k′,wb with k′ = s S2 k,wb

s
if B {S1} else {S2} k,wb = If

B B (\k′ → s
1 k′,wb) (\k′ → s S2 k′,wb) k

s
while B {S} k,wb = While

B B (\k′ → s S k′,wb) k

m m = (m l this wb k = s Sm k,wb)
where m(w̄) �→ Sm ∈ D and l is the Haskell list that contains
the same elements as the sequence w̄

Fig. 6. Translation of ABS-subset programs to Haskell AST

Each statement is translated into its Haskell counterpart, followed by the
continuation k. The multiple rules for the return statement are due to the dif-
ferent uses of the translation: when compiling methods the return statement will
appear unmarked, so we include the writeback passed as an argument; otherwise
it is used to translate runtime configurations, so return statements will appear
marked and we generate the writeback related to the mark. When omitted, we
assume the default values k = undefined and wb = Nothing for the s�S�k,wb

translation. B�B� represents the translation of a boolean expression B, and V �V �
the translation of integer expressions, references or variables. A method definition
translates to a Haskell function that includes the compiled body.

3.1 Runtime Execution

The program heap is implemented as the triple: array of objects, array of futures
and a Int counter. Every cell in the objects-array designates 1 object holding a

30 E. Albert et al.

1 main, map, reduce :: Method

2 main [] this wb k =

3 Assign node1 New

4 Assign node2 New

5 Assign f1 (Async node1 map [v1])
6 Assign f2 (Async node2 map [v2])
7 Await f1

8 Await f2

9 Assign r1 (Get f1)

10 Assign r2 (Get f2)

11 Assign r (Sync reduce [r1,r2])

12 Return r wb k

13

14 map [v] this wb k = ...

15 reduce [a,b] this wb k = ...

16

17 −− Position in the attribute array
18 [node1,node2,f1,f2,r1,r2,r] = [0..]

Fig. 7. The Haskell-translated running example of MapReduce

pair of its attribute array and process queue (double-ended) in Haskell IOVector
(IOVector Ref, Seq Proc). A cell in futures-array denotes a future which is
either unresolved with a number of listener-objects awaiting for it to be com-
pleted, or resolved with a final value, i.e. IOVector (Either [Ref] Ref). An
ever-increasing counter is used to pick new references; when it reaches the arrays’
current size both of the arrays double in size (i.e. dynamic arrays). The size of
all attribute arrays, however, is fixed and predetermined at compile-time, by
inspecting the source code (as shown in L18 of Fig. 7).

An eval function accepts a this object reference and the current heap and
executes a single statement of the head process in the process queue, return-
ing a new heap and those objects that have become active after the execution
(eval this heap :: IO(Heap, [Ref]). An await executed statement will put
its continuation (current process) in the tail of the process queue, effectively
enabling cooperative multitasking, whereas all others will keep it as the head. A
Return executed statement originating from an asynchronous call is responsible
for re-activating the objects that are blocked on its resolved future. A global
scheduler “trampolines” over a queue of active objects: it calls eval on the head
object, puts the newly-activated objects in the tail of the queue, and loops until
no objects are left in the queue—meaning the ABS program is either finished or
deadlocked. At any point in time, the pair of the scheduler’s object queue with
the heap comprise the program’s state.

Comparison. The described target language is an untyped extract of the canoni-
cal ABS-Haskell backend [4], with the main difference being that ABS statements
are translated to an AST interpreted by eval function, while the canonical ver-
sion compiles statements down to native code, which naturally yields faster exe-
cution. However, this deep embedding of an AST allows multiple interpretations
of the syntax: debug the syntax tree and have an equivalence result. At runtime,
the eval function operates in “lockstep” (i.e. executing one CPS statement at a
time) whereas the canonical backend applies CPS between release points (await,
get and return from asynchronous calls) which benefits in performance but
would otherwise make reasoning about correctness and resource preservation for
this setup more involved. Another argument for lockstep execution is that we
can “simulate” a global Haskell-runtime scheduler (with a N:1 threading model)

A Formal, Resource Consumption-Preserving Translation 31

and include it in our proofs, instead of reasoning for the lower-level C internals
of the GHC runtime thread scheduler (with M:N parallelism).

Our target language is also related to Coroutining Logic Engines presented
in [17] for concurrent Prolog. These engines encapsulate multi-threading by pro-
viding entities that evaluate goals and yield answers when requested. They fol-
low a similar coroutining approach, however, logic engines can produce several
results, whereas asynchronous methods can be suspended by the scheduler many
times but they only generate one result when they finish.

4 Correctness and Resource Preservation

To prove that the translation is correct and resource preserving, we use an inter-
mediate semantics � closer to the Haskell programs. This semantics, depicted in
Fig. 8, considers configurations (h, [om]) where all the information of the objects
is stored in a unified heap—concretely h(on)(Q) returns the process queue of
object on. The semantics in Fig. 8 presents two main differences w.r.t. that in
Figs. 2 and 3 of Sect. 2. First, the list [om] is used to apply a round-robin policy:
the first unblocked object2 on in [om] is selected using next(h, [om]), the first
statement of the active process of on is executed and then the list is updated to
continue with the object on+1. The other difference is that process queues do not
contain sequences of statements but continuations, as explained in the previous
section. To generate these continuation rules (Async) and (Sync) invoke the
translation of the methods m with the adequate parameters. Nevertheless, the
rules of the � semantics correspond with the semantic rules in Sect. 2.

Given a list [om] we use the notation [oi→k] for the sublist [oi, oi+i, . . . , ok],
and the operator (:) for list concatenation. In the rules (Async) and
(ReturnA), where the object list can increase or decrease one object, we use the
following auxiliary functions. newQadd([om], on, oy) inserts the object oy into [om]
if it is new (i.e., it does not appear in [om]), and newQdel([om], on, qn) removes
the object on from [om] if its process queue qn is empty. In both cases they
advance the list of objects to on+1.

newQadd([om], on, oy) =
{

[on+1→m] : [o1→n] if oy ∈ [om]
[on+1→m] : [o1→n] : [oy] if oy /∈ [om]

newQdel([om], on, qn) =
{

[on+1→m] : [o1→n−1] if qn = ε
[on+1→m] : [o1→n] if qn
= ε

In order to reason about the different semantics, we define the translation
from runtime configurations 〈C, h〉 of Sect. 2 to concrete Haskell data structures
used in the intermediate � semantics and in the compiled Haskell programs (see
Fig. 9). The set of closure lists C is translated into a list of object references, and
the process queues inside C are included into the heap related to the special term
Q. Although we use the same notation h, we consider that the heap is trans-
lated into the corresponding Haskell tuple (object vector, future vector, counter)
2 Object whose active process is not waiting for a future variable in a get statement.

32 E. Albert et al.

(Assign)

next(h, [om]) = on h(on)(Q) = (Assign x V k′, l) · q
getVal(h(on), V) = v h′ = h[(on)(x) �→ v, (on)(Q) �→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(New)

next(h, [om]) = on h(on)(Q) = (Assign x New k′, l) · q
h(count) = onew h′ = h[(on)(x) �→ onew, count �→ onew + 1,

(onew)(Q) �→ ε, (on)(Q) �→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(Get)

next(h, [om]) = on h(on)(Q) = (Assign x (Get f) k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(x) �→ v, (on)(Q) �→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(Await I)

next(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(Q) �→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(Await II)

next(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Left e h′ = h[(on)(Q) �→ q · (Await f k′, l)]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(Async)

next(h, [om]) = on h(on)(Q) = (Assign f (Async x m z̄) k′, l) · q
h(count) = l′ h(on)(x) = ox h(ox)(Q) = qx (m(w̄) �→ S) ∈ D
k′′ = m h(on)(z̄) on Nothing undefined newQadd([om], on, ox) = s

h′ = h[(on)(f) �→ l′, count �→ l′ + 1, l′ �→ Left [],
(on)(Q) �→ (k′, l) · q, (ox)(Q) �→ qx · (k′′, l′)]

(h, [om]) � (h′, s)

(Sync)

next(h, [om]) = on h(on)(Q) = (Assign x (Sync m z̄) k′, l) · q (m(w̄) �→ S) ∈ D
k′′ = m h(on)(z̄) on (Just x) k′ h′ = h[(on)(Q) �→ (k′′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(ReturnA)

next(h, [om]) = on h(on)(Q) = (Return x Nothing , l) · q
newQdel([om], on, q) = s h′ = h[l �→ Right h(on)(x), (on)(Q) �→ q]

(h, [om]) � (h′, s)

(ReturnS)

next(h, [om]) = on h(on)(Q) = (Return x (Just z) k′, l) · q
h′ = h[(on)(z) �→ h(on)(x), (on)(Q) �→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

Fig. 8. Intermediate semantics.

explained in Sect. 3. As usual with heaps, we use the notation h[(on)(Q) �→ q]
to update the process queue of the object on to q. Finally, object attributes
and method parameters become Integers and Int⊥ values in the futures become
Either values. To denote the inverse translation from data structures to runtime
configurations we use c�(h′, act)�−1 = 〈C, h〉—the same for queues q�·�−1 and
statements s�·�−1. Note that the translation c�·�c is not deterministic because it
generates a list of object references from a set of closures C, so the order of the
objects in the list is not defined. On the other hand, the translation of the heap
in c�·� and the inverse translation c�·�−1 are deterministic.

A Formal, Resource Consumption-Preserving Translation 33

c 〈C, h〉 = (h′, act), where q ε = ε
act = [on | (on, Qn) ∈ C, Qn 	= ε] q (S, l) · Q = (s S ,l) · q Q
C = {(n1, Q1), . . . , (nm, Qm)} and

h′ = h[(ni)(Q) �→ q Qi]

Fig. 9. Translation from source to target configurations.

Based on the previous definitions we can state the soundness of the traces,
i.e., every trace of eval steps is a valid trace w.r.t. →. Note that for the sake of
conciseness we unify the statements S and their representation as Haskell terms
res, since there is a straightforward translation between them. We consider the
auxiliary function updL([om], on, l) = [on+1→m] : [o1→n−1] : l to update the list
of object references.

Theorem 1 (Trace soundness). Consider an initial state (h1, s1) and a
sequence of n − 1 consecutive eval steps defined as: (1) next(hi, si) = oi, (2)
eval oihi = (resi, li, hi+1), (3) si+1 = updL(si, oi, li). Then c�(h1, s1)�−1 →o1

res1
c�(h2, s2)�−1

c →o2
res2 . . . →on−1

resn−1
c�(hn, sn)�−1.

Note that it is not possible to obtain a similar result about trace completeness
since the →-semantics in Fig. 3 selects the next object to execute nondeterminis-
tic (random scheduler), whereas the intermediate �-semantics in Fig. 8 follows a
concrete round-robin scheduling policy. As a final remark notice that the interme-
diate semantics � can be seen as a specification of the eval function. Therefore
it can be used to guide the correctness proof of eval using proof assistance tools
like Isabelle [12] or to generate tests automatically using QuickCheck [6].

4.1 Preservation of Resource Consumption

A strong feature of our translation is that the Haskell-translated program pre-
serves the resource consumption of the original ABS program. As in [1] we use
the notion of cost model to parameterize the type of resource we want to bound.
Cost models are functions from ABS statements to real numbers, i.e., M : S → R

that define different resource consumption measures. For instance, if the resource
to measure is the number of executed steps, M : S → 1 such that each instruc-
tion has cost one. However, if one wants to measure memory consumption, we
have that M(new) = c, where c refers to the size of an object reference, and
M(instr) = 0 for all remaining instructions. The resource preservation is based
on the notion of trace cost, i.e., the sum of the cost of the statements executed.
Given a concrete cost model M, an object reference o and a program execution
T ≡ A1 →o1

S1
. . . →on−1

Sn−1
An, the cost of the trace C(T , o,M) is defined as:

C(T , o,M) =
∑

S∈T |{o}

M(S)

34 E. Albert et al.

Notice that, from all the steps in the trace T , it takes into account only those
performed in object o (denoted as T |{o}), so the cost notion is object-sensitive.
Since the trace soundness states that the eval function performs the same steps
as some trace T , the cost preservation is a straightforward corollary:

Corollary 1 (Consumption Preservation). Let (h1, s1) be an initial state
and consider a sequence TE of n − 1 consecutive eval steps defined as: a) oi =
next(hi, si), b) (resi, li, hi+1) = eval oi hi, c) si+1 = updL(si, oi, li). Then
T = c�(h1, s1)�−1 →o1

res1
c�(h2, s2)�−1

c →o2
res2 . . . →on−1

resn−1
c�(hn, sn)�−1 such that

C(TE , o,M) = C(T , o,M).

As a side effect of the previous result, we know that the upper bounds that
are inferred from the ABS programs (using resource analyzers like [1]) are valid
upper bounds for the Haskell translated code. We denote by UBmain()|o the
upper bound obtained for the analysis of a main method for the computation
performed on object o.

Theorem 2 (Bound preservation). Let P be a program, TE a sequence of
eval steps from an initial state (h1, s1) and UBmain()|o the upper bound obtained
for the program P starting from the main block, restricted to the object o. Then
C(TE , o,M) ≤ UBmain()|o.

5 Experimental Evaluation

In the previous section we proved that the execution of compiled Haskell pro-
grams has the same resource consumption as the original ABS traces wrt. any
concrete cost model M, i.e., both programs execute the same ABS statements
in the same order and in the same objects. However, cost models are defined in
terms of ABS statements so they are unaware of low-level details of the Haskell
runtime environment as β-reductions or garbage collection. Studying the rela-
tion between cost models and some significant low-level details of the Haskell
runtime in a formal way is an interesting line of future work. In this section we
address empirically one particular topic: the Haskell runtime does not introduce
additional overhead, i.e., the execution of one ABS statement requires only a
constant amount of work. In order to evaluate this hypothesis, we have elabo-
rated programs3 with different asymptotic costs and measured the number of
statements executed (steps) and their run-time. The Primality test computes
the primality of a number n: the program creates n objects and checks every
possible divisor of n on each object. The difference is that the low paralellism
version awaits for the result of one divisor before invoking the next check and
the high parallelism version does not. Both programs have a O(n) cost. The
Logarithm computation program computes the integer part n logarithms. It has
cost O(n.log n). Finally Primes in a range computes the prime numbers in the
interval [1..n], thus having a O(n2) cost.
3 The ABS-subset experimental programs and measurements together with the target

language & runtime reside at http://github.com/abstools/abs-haskell-formal.

http://github.com/abstools/abs-haskell-formal

A Formal, Resource Consumption-Preserving Translation 35

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

·105

n

st
ep

s
Primality test (low par.)

40

60

80

100

ti
m

e
(m

s)

steps
UB
time

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1
·105

n

st
ep

s

Primality test (high par.)

30

40

50

60

70

ti
m

e
(m

s)

steps
UB
time

1,000 2,000 3,000 4,000 5,000

0

2

4

6

8
·105

n

st
ep

s

Logarithm computation

100

200

300
ti

m
e

(m
s)

steps
UB
time

1,000 2,000 3,000 4,000 5,000

0

2

4

·108

n

st
ep

s

Primes in range

0

0.5

1

1.5

2

·105

ti
m

e
(m

s)

steps
UB
time

Fig. 10. Execution steps vs. time (IntelR© CoreTM i7-4790 at 3.60 GHz, 16 GB).

We have tested the programs with n ranging from 500 to 5000, running 20
experiments for every value of n, and measured the time. This is plotted in the
cross line (right margin) in Fig. 10. The plot represents the mode times and the
minimum and maximum times as whiskers. We have also measured the actual
number of steps, represented in the square line (left margin) in Fig. 10. These
two plots show that the execution time and the number of executed steps grows
with a similar rate in all the programs, independently of their asymptotical cost,
thus confirming that the compilation does not incur any overhead.

We have also plotted the resource bounds obtained by the SACO tool [2] for
the different values of n (triangle line, left margin in Fig. 10). SACO can ana-
lyze full ABS programs and thus also the subset considered in this paper, and
allows the selection of the cost model of interest. In this case we have analyzed
the original ABS programs using the cost model that obtains the number of
ABS statements executed. As can be appreciated, the upper bounds are sound
and overapproximate the actual number of executed statements. The difference
between the upper bounds and the actual number of statements executed is
explained for two reasons. First, the SACO tool considers constructor meth-
ods, i.e., methods that are invoked on every new object, so the SACO tool will
count a constant number of extra statements whenever a new object is created.

36 E. Albert et al.

However, the main source of imprecision are branching points where SACO com-
bines different fragments of information. A clear example are loops like the one
in the Primes in a range program. The main loop checks if a number i ∈ [1..n]
is a prime number on each iteration, and this check needs the execution of i
statements. In this situation SACO considers that every iteration has the maxi-
mum cost (n statements) and generate an upper bound of n2 instead of the more
precise (but asymptotically equivalent) expression 1 + 2 + . . . + n.

6 Conclusion and Future Work

We have presented a concurrent object-oriented language (a subset of ABS) and
its compilation to Haskell using continuations. The compilation is formalised in
order to establish that the program behaviour and the resource consumption are
preserved by the translation. Compared to the only other formalised ABS back-
end [9] (in Maude), our Haskell translation admits the preservation of resource
consumption, and as a side benefit, makes uses of an overall faster backend.4

In the future we plan to extend our formalisations to accommodate full
ABS, both in terms of the omitted parts of the language as well as the
non-deterministic behaviour of a multi-threaded scheduler, e.g. by broadening
our simulated scheduler to non-determinism, and perhaps (M:N) thread paral-
lelism. Another consideration is to relate our resource-preservation result to a
distributed-object extension of ABS [4]; specifically, how the resource analysis
translates to network transport costs after any network optimizations or proto-
col limitations. Finally, we plan to formally relate the ABS cost models used to
define the cost of a trace and some of the low-level runtime details of the Haskell
runtime like β-reductions, garbage collections or main memory usage. Thus, we
could express trace costs and upper bounds in terms closer to the actual running
environment.

References

1. Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-Zamalloa, M., Puebla, G.,
Román-Dı́ez, G.: Object-sensitive cost analysis for concurrent objects. Softw. Test.
Verif. Reliab. 25(3), 218–271 (2015)

2. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: static analyzer for con-
current objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 562–567. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 46

3. Albert, E., Arenas, P., Gómez-Zamalloa, M.: Symbolic execution of concurrent
objects in CLP. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149,
pp. 123–137. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27694-1 10

4 http://abstools.github.io/abs-bench keeps an up-to-date benchmark of all ABS
backends.

http://dx.doi.org/10.1007/978-3-642-54862-8_46
http://dx.doi.org/10.1007/978-3-642-27694-1_10
http://abstools.github.io/abs-bench

A Formal, Resource Consumption-Preserving Translation 37

4. Bezirgiannis, N., Boer, F.: ABS: a high-level modeling language for cloud-
aware programming. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 433–444. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 35

5. Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: Nicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-71316-6 22

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: Proceedings of the ICFP 2000, pp. 268–279. ACM (2000)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

8. Flanagan, C., Felleisen, M.: The semantics of future and its use in program opti-
mization. In: Proceedings of the POPL 1995, pp. 209–220. ACM (1995)

9. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S., Bon-
sangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-25271-6 8

10. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, 2nd
edn, vol. 1. Addison-Wesley Professional, Massachusetts (1973)

11. Nakata, K., Saar, A.: Compiling cooperative task management to continuations.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 95–110. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40213-5 7

12. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

13. Noll, T.: A rewriting logic implementation of erlang. ENTCS 44(2), 206–224
(2001). Proc. LDTA ’01

14. Palacios, A., Vidal, G.: Towards modelling actor-based concurrency in term rewrit-
ing. In: Proceedings of the WPTE 2015. OASICS, vol. 46, pp. 19–29. Dagstuhl Pub.
(2015)

15. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 13

16. Srinivasan, S., Mycroft, A.: Kilim: isolation-typed actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-70592-5 6

17. Tarau, P.: Coordination and concurrency in multi-engine prolog. In: Meuter, W.,
Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 157–171.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21464-6 11

18. Vidal, G.: Towards Erlang Verification by Term Rewriting. In: Proc. LOPSTR ’13.
pp. 109–126. LNCS 8901, Springer (2013)

19. Wong, P.Y., Albert, E., Muschevici, R., Proena, J., Schfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. STTT 14(5), 567–588 (2012)

http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-540-71316-6_22
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-642-40213-5_7
http://dx.doi.org/10.1007/978-3-642-14107-2_13
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dx.doi.org/10.1007/978-3-642-21464-6_11

Verification of Time-Aware Business Processes
Using Constrained Horn Clauses

Emanuele De Angelis1(B), Fabio Fioravanti1(B), Maria Chiara Meo1,
Alberto Pettorossi2,3(B), and Maurizio Proietti3

1 DEC, University ‘G. D’ Annunzio’, Pescara, Italy
{emanuele.deangelis,fabio.fioravanti,cmeo}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy
{maurizio.proietti,adp}@iasi.cnr.it

Abstract. We present a method for verifying properties of time-aware
business processes, that is, business processes where time constraints on
the activities are explicitly taken into account. Business processes are
specified using an extension of the Business Process Modeling Notation
(BPMN) and durations are defined by constraints over integer numbers.
The definition of the operational semantics is given by a set OpSem
of constrained Horn clauses (CHCs). Our verification method consists
of two steps. (Step 1) The specialization of OpSem with respect to a
given business process and a given temporal property to be verified. This
specialization produces a set of CHCs whose satisfiability is equivalent to
the validity of the given property. (Step 2) The use of any state-of-the-art
solver for CHCs to check the satisfiability of such sets of clauses. We have
implemented our verification method using the VeriMAP transformation
system and the Z3 solver for CHCs.

1 Introduction

A business process, or BP for short, consists of a set of activities, performed in
coordination within a single organization, which realize a business goal [31,34].
The Business Process Model and Notation, or BPMN for short, is one of the most
popular graphical languages proposed for visualizing business processes [27]. The
primary goal of BPMN is to provide a standard notation that can be understood
by all business stakeholders, which include the business analysts who define and
modify the processes, the technical developers in charge of their implementation,
and the business managers who monitor and manage the processes.

A BPMN model is a procedural, semi-formal description of the order of exe-
cution of the activities of a given process and how these activities must coor-
dinate, abstracting away from many other aspects of the process itself, such as

This work has been partially funded by INdAM-GNCS (Italy).
E. De Angelis, F. Fioravanti, and A. Pettorossi are research associates at IASI-CNR,
Rome, Italy.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 38–55, 2017.
DOI: 10.1007/978-3-319-63139-4 3

Verification of Time-Aware Business Processes Using CHCs 39

the manipulation of data and the duration of the activities. However, for many
analysis tasks these aspects are very significant in practice and should be taken
into consideration. In particular, the duration of the activities is crucial when we
want to reason about time constraints (such as deadlines or earliest completion
times) that should be satisfied by the executions of the process.

Various approaches for BP modeling with duration and time constraints
have been proposed in the literature (see [6] for a recent survey). Some of these
approaches define the semantics of time-aware BPMN models by means of for-
malisms such as time Petri nets [24], timed automata [32], and process alge-
bras [35]. Properties of these models can then be verified by using very effective
reasoning tools available for those formalisms [4,14,22].

However, the above mentioned formalisms and tools may not be adequate
if we want to complement time-based reasoning with general purpose logical
reasoning, which is often needed if we take into account more complex aspects
of knowledge manipulation activities relative to business processes. For instance,
some verification approaches make use of ontology-based reasoning about the
business domain where processes are executed [30,33], while others combine
reasoning on the finite-state process behavior with reasoning on the manipulation
of data objects of infinite types such as databases or integers [2,9,29].

Thus, in view of an integration of various reasoning tasks needed to analyze
business processes from different perspectives, we propose a logic-based approach
to modeling and verifying time-aware business processes.

The main contributions of the paper are the following. We present a logic-
based language to specify time-aware BPMN models, where time and duration
of activities are explicitly represented. Then we define an operational semantics
of time-aware BPMN models by means of deduction rules that allow us to infer
the time intervals when a particular activity is in execution or ‘is enacting’, using
the BPMN terminology. Next, in order to prove properties of time-aware BPMN
models, we follow a transformational approach similar to the one proposed
in [11] for the verification of imperative programs. First, we consider an encoding
OpSem of the operational semantics of business processes into Constrained Horn
Clauses (CHCs) [5] (or, equivalently, Constraint Logic Programs [20]). Then, we
specialize OpSem with respect to the time-aware BPMN model under consider-
ation and the temporal property of interest, thereby deriving a new set of CHCs
whose satisfiability is equivalent to (and thus implies) the validity of the prop-
erty to be verified. Finally, we use the state-of-the-art solver Z3 [12] for CHCs
to check the satisfiability of such set of clauses.

Since the CHCs are generated in an automatic way by the CHC specializer
from the formal definition of the semantics of the BPMN models, and the CHC
solvers are general purpose reasoning systems, our approach is, to a large extent,
parametric with respect to other extensions of BP models one may want to
consider in the future. Moreover, recent advances in the field of CHC solving
can be exploited to get very effective reasoning tools for verifying other classes
of properties of business processes besides the temporal ones.

40 E. De Angelis et al.

The paper is structured as follows. In Sect. 2 we recall some basic notions
about Constrained Horn Clauses (CHCs) over integer numbers and Business
Process Model and Notation (BPMN). In Sect. 3 we present our logic-based
language for specifying time-aware BPMN models and the operational semantics
of the language. In Sect. 4 we present the CHC encoding of the semantics and
the transformation techniques for specializing OpSem with respect to a given
time-aware BPMN model and a given property. In Sect. 5 we report on the
implementation of the verification technique we have made using the VeriMAP
transformation and verification system [10], and the CHC solver Z3. Finally, in
Sect. 6 we discuss related work in the field of Business Process verification.

2 Preliminaries

In the next two subsections we recall some basic notions concerning constrained
Horn clauses and the Business Process Model and Notation.

We consider time to be a discrete quantity and we consider the ‘time line’
to be the set of integers. However, our approach applies directly to dense or
continuous time as well.

2.1 Constrained Horn Clauses over Integers

First we need the following notions about constraints, constrained Horn clauses,
and constraint logic programming. For related notions not familiar to the reader,
we refer to [20,23].

Constraints are defined as follows. Let RelOp be the set of predicate symbols
{=, �=,≤,≥, <,>}. If p1 and p2 are linear polynomials with integer variables and
coefficients, then p1R p2, with R ∈ RelOp, is an atomic constraint. A constraint c
is a (possibly empty) conjunction of atomic constraints. An atom is a formula of
the form p(t1, . . . , tm), where p is a predicate symbol not in RelOp and t1, . . . , tm
are terms constructed as usual from variables, constants, and function symbols. In
particular, we assume that there are two predicate symbols true and false of arity 0,
and a predicate symbol eq denoting identity. A constrained Horn clause (or simply,
a clause) is an implication of the form A ← c,G, where the conclusion (or head) A
is an atom, and the premise (or body) ‘c,G’ is the conjunction of a constraint c and
a (possibly empty) conjunction G of atoms. The empty conjunction is identified
with true. A constrained fact is a clause of the form A ← c, and if c is true we will
call it simply a fact. A constrained goal (or simply, a goal) is a clause of the form
false ← c,G. Given a formula ϕ, vars(ϕ) denotes the set of variables occurring in
ϕ. A clause C is said to be ground if vars(C) = ∅.

Given a set P of clauses, a Z-interpretation is defined to be an interpretation I
of P such that: (i) true holds in I, (ii) false does not hold in I, (iii) I is the
usual interpretation over the set of the integer numbers Z for the constraints,
and (iv) I is the Herbrand interpretation for predicate and function symbols
not in RelOp ∪ {true, false,+,×} (in particular, eq(x, y) holds if and only if x
and y are identical terms in the Herbrand universe). For any formula ϕ we write

Verification of Time-Aware Business Processes Using CHCs 41

Z|=ϕ if ϕ holds in all Z-interpretations. A Z-model of P is a Z-interpretations M
such that every clause of P holds in M . A set of CHCs is satisfiable if it has
a Z-model. (Note that a set of CHCs may be unsatisfiable if it contains goals.)
Every satisfiable set P of CHCs has a unique least Z-model, denoted M(P) [20].

2.2 Business Processes Model and Notation

A BPMN model is defined through a diagram drawn by using graphical con-
structs representing flow objects and sequence flows (sequence flows will also be
called flows for short). That diagram can be extended, if so desired, to include
information about data flow, resource allocation (for instance, how the work to
be done is assigned to the participants in the process), and exception handling
(for instance, how erroneous behaviors should be handled).

For reasons of simplicity, in this paper we will only consider a subset of
the flow objects and sequence flows that can occur in a BPMN model, but
our approach can easily be extended to full BPMN. The flow objects we will
consider are of three kinds: either (i) tasks, denoted by rounded rectangles, or
(ii) events, denoted by circles, or (iii) gateways, denoted by diamonds. Tasks rep-
resent atomic units of work performed within the process. Events denote some-
thing that happens during the execution, or the enactment, using the BPMN
terminology, of a business process. We will only consider the start event and
the end event, which starts and ends the process enactment, respectively. Gate-
ways model the branching and merging of activities. There are several types of
gateways in BPMN, each of which can be a branch gateway if it has a single
incoming flow and multiple outgoing flows, or a merge gateway if it has mul-
tiple incoming flows and a single outgoing flow. We will consider the following
gateways: (i) the parallel branch gateway that activates all the outgoing flows at
the same time instant, (ii) the parallel merge gateway that activates the outgo-
ing flow when all the incoming flows have been activated (that is, the parallel
merge synchronizes the incoming flows) (iii) the exclusive branch gateway that
(non-deterministically) activates exactly one out of the (possibly many) outgoing
flows, and (iv) the exclusive merge gateway that activates the single outgoing
flow upon activation of one of the (possibly many) incoming flows. The dia-
monds representing parallel and exclusive gateways are labeled by ‘+’ and ‘×’,
respectively.

A sequence flow, denoted by an arrow, links two flow objects and denotes a
control flow relation, that is, it states that the control flow can pass from the
source to the target flow object. If there is a sequence flow from x to y, then x
is a predecessor of y and y is a successor of x. A path in a BPMN model is a
sequence of flow objects such that every pair of consecutive objects is connected
by a sequence flow.

We assume that BPMN models are well-formed, that is, they satisfy the
following properties: (1) every process contains a unique start event and a unique
end event, (2) every flow object occurs on a path from the start event to the end
event, (3) the start event has exactly one successor and no predecessor, (4) the
end event has exactly one predecessor and no successor, (5) branch gateways

42 E. De Angelis et al.

have exactly one predecessor and at least one successor, while merge gateways
have at least one predecessor and exactly one successor, (6) tasks have exactly
one predecessor and one successor, and (7) on every cyclic path there is at least
one occurrence of a task (that is, no cycles through gateways only are allowed).

In Fig. 1 we show the BPMN model of a purchase order process, called PO,
describing a interaction pattern between an e-commerce vendor and a customer.

Fig. 1. The BPMN model of the purchase order process PO.

At the beginning of the purchase order process the customer adds one or
more items to the shopping cart. Then, he pays for all the items, and the vendor
(i) issues the invoice and sends it to the customer, and also (ii) prepares the
order and ships it by a standard or an express delivery method. The process
terminates when the invoice has been sent and the order has been delivered.

3 Specification and Semantics of Business Processes

In this section we introduce the notion of a Business Process Specification, which
formally represents a business process by means of set of Constrained Horn
Clauses, and we define the operational semantics of a BPS.

3.1 Business Process Specification via CHCs

A Business Process Specification, or BPS for short, contains: (i) a set of ground
facts that specify the flow objects and the sequence flows between them, and
(ii) a set of constrained facts that specify the duration of each flow object.

We will use the following predicates: (i) flow object(x): x is either a task, or an
event, or a gateway; (ii) task(x): x is a task; (iii) start(x) and end(x): x is a start
event and an end event, respectively; (iv) exc branch(x) and exc merge(x): x is
an exclusive branch and exclusive merge gateway, respectively; (v) par branch(x)
and par merge(x): x is a parallel branch and a parallel merge gateway, respec-
tively; (vi) seq(x, y): there is a sequence flow from x to y; (vii) duration(x, d): the
enactment of the flow object x takes d units of time to be completed.

In the Business Process Specification we assume that: (i) for every task x
there exists a single clause of the form duration(x, d) ← dmin ≤ d ≤ dmax,

Verification of Time-Aware Business Processes Using CHCs 43

where dmin and dmax are positive integer constants representing the minimal
and the maximal time duration of x, respectively, and (ii) for every event and
gateway x there exists a single clause of the form duration(x, 0) (that is, the
enactment of any event or gateway takes no time).

The CHC specification of the BPMN process PO of Fig. 1 is shown in Table 1.
Note that a BPS is always satisfiable because it contains no goals, and hence it
has a least Z-model.

Table 1. BPS for the purchase order process PO of Fig. 1.

Our formalization of a BPS also includes a set of clauses that represent the
meta-model of any BPS. In particular, these meta-model clauses express: (i) the
disjointness properties of the sets of its flow objects (for instance, we have the
clause: false ← task(X), par branch(X)), and (ii) the well-formedness properties
corresponding to Conditions (1)–(7) of Sect. 2.2. This second set of clauses is as
follows:
(c1) eq(X,Y)←start(X), start(Y) and eq(X,Y)←end(X), end(Y);
(c2) seqq(S,X)← start(S),flow-object(X)and seqq(X,E)←flow-object(X), end(E)

where seqq is the reflexive, transitive closure of seq ;
(c3) eq(Y,Z)←start(S), seq(S, Y), seq(S,Z) and false←start(S), seq(Y, S);
(c4) eq(Y,Z)←end(E), seq(Y,E), seq(Z,E) and false←end(E), seq(E, Y);
(c5) eq(Y,Z)←par branch(X), seq(Y,X), seq(Z,X) and

eq(Y,Z)←par merge(X), seq(X,Y), seq(X,Z)
and, similarly, for the exc-branch and exc-merge gateways;

(c6) eq(Y,Z)← task(X), seq(X,Y), seq(X,Z) and
eq(Y,Z)← task(X), seq(Y,X), seq(Z,X);

(c7) false←gateway-path(X,X)

where gateway-path(X,Y) is a predicate that holds iff there is a path from X
to Y made out of gateways only.

44 E. De Angelis et al.

Note that the existence of at least one predecessor and at least one successor
for any task or gateway (required by Conditions (5) and (6) of Sect. 2.2) is
enforced by the clauses at Point (c2).

A BPS B is well-formed if clauses (c1)–(c7) hold in the least Z-model of B.

3.2 Operational Semantics

We start off by introducing the notion of a state at a time instant t. A state s is
a pair 〈F, t〉, where F is a set of terms, called fluents, representing the properties
that hold at the time instant t in Z. Let States be the set of states.

A fluent is a term of one of the following forms, for any flow object x:
(i) begins(x), which represents the beginning of the execution, or enactment,
of x, (ii) completes(x), which represents that x has completed its execution,
and (iii) enables(x, y), which represents that x upon completion of its execution
enables the execution of its successor y, and (iv) enacting(x, r), which repre-
sents that the enactment of x requires r units of time to completion (for this
reason r is also called the residual time of x). From these definitions it follows
that begins(x) is equivalent to enacting(x, r), where r is the duration of x, and
completes(x) is equivalent to enacting(x, 0). (This redundant representation of
fluents allows us to write simpler rules for the operational semantics below.)

The operational semantics is defined by a binary transition relation −→ which
is a subset of States×States and is derived according to the rules below. In the
rules for −→, besides the predicates introduced in Sect. 3.1, we use the follow-
ing ones: (i) not par branch(x), which holds if x is not a parallel branch, and
(ii) not par merge(x), which holds if x is not a parallel merge.

(S1)
begins(x)∈F duration(x, d)

〈F, t〉 −→ 〈(F \ {begins(x)}) ∪ {enacting(x, d)}, t〉

(S2)
completes(x)∈F par-branch(x)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s) | seq(x, s)}, t〉

(S3)
completes(x)∈F not-par-branch(x) seq(x, s)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s)}, t〉

(S4)
∀p seq(p, x) → enables(p, x) ∈ F par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x) | enables(p, x) ∈ F}) ∪ {begins(x)}, t〉

(S5)
enables(p, x)∈F not-par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x)}) ∪ {begins(x)}, t〉

(S6)
enacting(x, 0)∈F

〈F, t〉 −→ 〈(F \ {enacting(x, 0)}) ∪ {completes(x)}, t〉

Verification of Time-Aware Business Processes Using CHCs 45

(S7)
no-other-premises(F) ∃x∃r enacting(x, r)∈F m>0

〈F, t〉 −→ 〈F � m, t+m〉
where: (i) no other premises(F) holds iff none of the rules S1–S6 has its premise
true, (ii) m = min{r | enacting(x, r)∈F}, and (iii) F � m is the set F of fluents
where every enacting(x, r) is replaced by enacting(x, r−m).

Note that rule (S7) is the only rule that formalizes the flow of time, as it
infers transitions of the form 〈F, t〉 −→ 〈F ′, t+m〉, with m>0. In contrast, rules
(S1)–(S6) infer instantaneous state transitions of the form 〈F, t〉 −→ 〈F ′, t〉.

Now let us explain the meaning of rules (S1)–(S7).

(S1) If the execution of a flow object x begins at time t, then, at the same time t,
x is enacting and its residual time is the duration d of x;

(S2) If the execution of the parallel branch x completes at time t, then x enables
all its successors at time t;

(S3) If the execution of x completes at time t and x is not a parallel branch,
then x enables precisely one of its successors at time t (in particular, this
case occurs when x is a task);

(S4) If all the predecessors of x have enabled the parallel merge x at time t,
then the execution of x begins at time t;

(S5) If at least one predecessor p of x enables x at time t and x is not a parallel
merge, then the execution of x begins at time t (in particular, this case
occurs when x is a task);

(S6) If a flow object x is enacting at time t with residual time 0, then the
execution of x completes at time t;

(S7) Let us assume that at time t: (i) none of rules (S1)–(S6) can be applied,
(ii) there at least one task whose execution requires r (>0) units of time to
get to completion (recall that among the flow objects, tasks only may have
positive residual time), and (iii) m is the least among the residual times of
all the tasks which are in execution (that is, enacting). Then every task x
that is in execution at time t with residual time r, is in execution at time
t + m with residual time r − m.

We say that state 〈F ′, t′〉 is reachable from state 〈F, t〉, if 〈F, t〉 −→∗ 〈F ′, t′〉,
where −→∗ denotes the reflexive, transitive closure of the transition relation −→.
The initial state is the pair 〈{begins (s)}, 0〉, where s denotes the start event.

Note that in our formalization we cannot represent multiple, concurrent exe-
cutions of the same flow object, because a state is a set of fluents. However, this
limitation can easily be overcome by considering multisets of fluents.

4 Encoding Time-Dependent Properties into CHCs

In this section we show the CHC interpreter that encodes the operational seman-
tics of business processes and we show how to encode the time-dependent prop-
erties to be verified. We also briefly present two transformation techniques:

46 E. De Angelis et al.

(RI): a technique for performing the removal of the interpreter (see [11,28] for
more details), whereby deriving a set of clauses that can be submitted
to automatic tools for satisfiability checking such as the Z3 [12] or the
Eldarica [18] solvers for CHCs, and

(PE): a technique for reducing the size of the set of CHCs generated by the RI
technique. This PE technique is based on a suitable notion of predicate
equivalence (see Sect. 4.3) that may be used, if so desired, for improving
the time and space efficiency of the satisfiability checking.

4.1 Encoding the Operational Semantics in CHCs

A state 〈F, t〉 of the operational semantics is encoded by a term of the form
s(F,T), where F is a list encoding the set F of fluents and T encodes the time
instant t at which the fluents of F hold. The transition relation −→ between
states and its reflexive, transitive closure −→∗ are encoded by the binary predi-
cates tr and reach, respectively, whose defining clauses are shown in Table 2. In
the body of the clauses, we have underlined the atoms that encode the premises
of the rules of the operational semantics.

The predicate member(X,L) selects an element X from the list L. The pred-
icate update(F,R,A,FU) holds iff FU is the list obtained from the list F by
removing all the elements of R and adding all the elements of A. The predicate
no other premises(F) holds iff the premise of every rule in {S1, . . . , S6} is false.
The predicate mintime(Enacts,M) holds iff Enacts is a list of terms of the form

Table 2. The CHC interpreter for the operational semantics of time-aware BPs.

Verification of Time-Aware Business Processes Using CHCs 47

enacting(X,R) and M is the minimum value of R for the elements of Enacts. The
predicate decrease residual times(Enacts,M,EnactsU) holds iff EnactsU is
the list of terms obtained by replacing every element of Enacts, of the form
enacting(X,R), by the term enacting(X,RU) where RU = R-M. The predicates
sublist(S,L) and findall(X,G,L) have the usual meaning.

4.2 Encoding Time-Dependent Properties

By using the reach predicate and integer constraints, we can specify many useful
time-dependent properties. In particular, we can specify safety properties (sta-
ting that ‘no unsafe state can be reached’), schedulability properties (stating
that a process will be completed within a given deadline), response properties
(stating that, whenever a task is executed, another task will be executed within
a given time).

In order to see how we encode time-dependent properties of business
processes, we consider a property of the process PO stating that, whenever the
customer pays and the process PO completes, then completion occurs within 9
time units after payment. By using the reachability relation −→∗, this property
can be written as follows:

Q : if 〈{begins (s)}, 0〉 −→∗ 〈{completes(pt)}, tpt〉 −→∗ 〈{completes(e)}, te〉,
then te≤ tpt+9

The reader can check that Q holds for the process PO because, in the worst
case, the time needed for preparing and delivering the order is actually 9 time
units and this time is greater than the time needed for issuing and sending the
invoice, which is 5 time units. The property Q is encoded by the following goal
(where s(,) is the constructor for states, while the constant s of arity 0 denotes
the start event):

Q. false :- Ts = 0, Tpt > Ts, Te > Tpt + 9,
reach(s([begins(s)],Ts), s([completes(pt)],Tpt)),
reach(s([completes(pt)],Tpt), s([completes(e)],Te)).

The clauses S1–S7,R1,R2,Q, together with the clauses encoding the
process PO, will be collectively referred to as the interpreter I. We have that
the property Q is valid for the process PO iff the set I of CHCs is satisfiable.

Despite several tools have been developed for checking the satisfiability of
constrained Horn clauses, none of them can effectively be leveraged in our exam-
ple. Constraint logic programming systems [20] are focused on proving the unsat-
isfiability of sets of clauses, rather then their satisfiability, and they may fail to
terminate for the given set I because a clause for reach is recursive (note, in
particular that the add item task can be executed an unbounded number of
times). State-of-the-art CHC solvers [12,18] also fail because the predicates in I
are defined over lists and structured terms (not just integers) and they depend
on the findall predicate, which is not available in those solvers.

In order to be able to effectively use off-the-shelf CHC solvers for checking
the validity of time-dependent properties, we apply the so-called removal of the

48 E. De Angelis et al.

interpreter transformation, denoted RI [11,28]. This transformation is a program
specialization strategy based on unfold/fold transformation rules, which takes
the program I as input and produces as output a program Isp that is equivalent
to I with respect to satisfiability. Indeed, by the correctness of the unfold/fold
transformation rules [13], we have that I is satisfiable iff Isp is satisfiable.

A notable effect of applying the transformation RI, which removes the inter-
preter, is that the program Isp contains no occurrences of the predicates and
terms used for encoding the operational semantics and the process PO. In par-
ticular, the clauses of Isp will be of the form A ← c,G, where the arguments of
the atoms are variables and c is a constraint. For instance, the goal Q expressing
the property Q above is transformed into the following goal:

Q1. false :- A = 0, B =< 2, C =< 6, D =< 5, E > 0, F-E > 9, B >= 1, C >= 1, D >= 3,
new1(C,A,E), new2(B,D,E,F).

The new predicates new1 and new2 have been introduced by the definition
rule, and the extra constraints have been derived by the unfolding rule. We refer
to [11] for the details of the transformation. The whole set of clauses derived by
the transformation RI is listed in the online Appendix A.11. The satisfiability of
this derived set of clauses can be proved in a fully automatic way by using the
Z3 CHC solver, as it will be shown in Sect. 5.

4.3 Predicate Equivalence

Now we present a transformation, called predicate equivalence, denoted PE, that
allows us to reduce the size of a set of constrained Horn clauses when suitable
equivalences between predicates hold. Since predicate equivalence is undecidable
in general, we introduce a restricted, decidable notion of equivalence based on
constraint equivalence and predicate renaming.

First we need some preliminary notions. Let ∃Y (c1, G1) and ∃Z (c2, G2)
be two existentially quantified conjunctions of constraints and atoms, where
Y ∩vars(c2, G2) = ∅ and Z∩vars(c1, G1) = ∅ (we extend, in the obvious way, to
tuples of variables notions defined for variables and sets of variables). We say
that ∃Y (c1, G1) and ∃Z (c2, G2) are equivalent modulo constraints, if there exists
a renaming substitution {Y ′/Z ′} for (c1, G1), with Y ′ ⊆Y and Z ′ ⊆Z, such that:

(i) G1{Y ′/Z ′} = G2, modulo reordering of atoms, and
(ii) Z|=∀(∃U c1{Y ′/Z ′} ↔ ∃V c2), where U =Y −Y ′ and V =Z−Z ′.

For instance, ∃Y (X ≥ Y, p(X,Y)) and ∃V,W (X ≥ V, V ≥ W, p(X,W))
are equivalent modulo constraints. Clearly, if ∃Y (c1, G1) and ∃Z (c2, G2) are
equivalent modulo constraints, then Z|=∀(∃Y (c1, G1) ↔ ∃Z (c2, G2)).

Let P be a set of CHCs. By Pred(P) we denote the set of predicate symbols
occurring in P . A predicate renaming for P is a, possibly not injective, mapping
π : Pred(P) → Q, where Q is a set of predicate symbols. Given a set S of formulas

1 Available at http://map.uniroma2.it/lopstr16/appendix.pdf.

http://map.uniroma2.it/lopstr16/appendix.pdf

Verification of Time-Aware Business Processes Using CHCs 49

with predicates in Pred(P), π(S) is a new set of formulas obtained by replacing,
for all predicates p∈Pred(P), every occurrence of p in S by π(p).

For every k ≥ 1, let X be a fixed k-tuple of distinct variables. Without
loss of generality, we assume that for every k-ary predicate p ∈ Pred(P), all
clauses are of the form p(X) ← B, where B is a conjunction of constraints and
atoms. By Bodies(p(X), P) we denote the set {B | p(X) ← B is a clause in P}.
We write Bodies(p(X), P) ≡ Bodies(q(X), P) if there exists a bijection
η : Bodies(p(X), P) → Bodies(q(X), P) such that, for every
B ∈ Bodies(p(X), P), ∃Y B and ∃Z η(B) are equivalent modulo constraints,
where Y is the tuple of variables occurring in B and not in X, and Z is the
tuple of variables occurring in η(B) and not in X.

Definition 1 (Predicate Equivalence). Let P be a set of clauses and E =
{P1, . . . , Pn} be a partition of Pred(P). For i = 1, . . . , n, let ei be a predicate
symbol in Pi, and π : Pred(P) → {e1, . . . , en} be a predicate renaming for P
such that, for i = 1, . . . , n, π(p)=ei iff p∈Pi.

The partition E is a cp-equivalence on P if, for i = 1, ..., n, given any two
predicates p, q in Pi, p and q have the same arity k and, for any fixed k-tuple X
of distinct variables, π(Bodies(p(X), P)) ≡ π(Bodies(q(X), P)).

Note that one can compute the coarsest cp-equivalence on P by a greatest
fixpoint construction starting from the partition where all predicate symbols
belong to the same equivalence class.

Given a cp-equivalence E on P together with the predicate renaming π con-
sidered in Definition 1, we can transform P into a set π̃(P,E) of clauses in two
steps: (i) we remove from P all clauses whose head predicate does not appear in
the range of π, and (ii) we apply π to the remaining clauses.

Theorem 1. For any cp-equivalence E on a set P of clauses, P is satisfiable
iff π̃(P,E) is satisfiable.

Checking the satisfiability of π̃(P,E) is often more efficient than checking the
satisfiability of P , specially when we use solvers, like Z3, that construct a model
of each predicate. Indeed, when checking the satisfiability of π̃(P,E), the solver
has to construct, for each equivalence class E, a model of one predicate only.

To see an example of cp-equivalence, let us consider the following subset of
the 51 clauses derived by the removal of the interpreter in our PO example (the
complete listing of those clauses is given in the online Appendix A.22):

new5(A,B,C,D) :- A=0, new21(B,C,D).
new5(A,B,C,D) :- A=0, B=0, E=<3, E>=1, new10(E,C,D).
new5(A,B,C,D) :- B=0, E=<3, E>=1, new7(A,E,C,D).
new5(A,B,C,D) :- E=0, F=-A+B, G=A+C, A-B=<0, A>0, new5(E,F,G,D).
new5(A,B,C,D) :- E=0, F=A-B, G=B+C, B>0, A-B>=0, new5(F,E,G,D).
new4(A,B,C,D) :- A=0, new21(B,C,D).
new4(A,B,C,D) :- A=0, B=0, E=<3, E>=1, new10(E,C,D).

2 Available at http://map.uniroma2.it/lopstr16/appendix.pdf.

http://map.uniroma2.it/lopstr16/appendix.pdf

50 E. De Angelis et al.

new4(A,B,C,D) :- B=0, E=<3, E>=1, new6(A,E,C,D).
new4(A,B,C,D) :- E=0, F=-A+B, G=A+C, A-B=<0, A>0, new4(E,F,G,D).
new4(A,B,C,D) :- E=0, F=A-B, G=B+C, B>0, A-B>=0, new4(F,E,G,D).

The partition E = {{new5, new4}, {new7, new6}, {new21}, {new10}} of the set
of predicates occurring in the above clauses is a cp-equivalence. The predicate
renaming associated with E is:

π(new5)=π(new4)=new4 π(new7)=π(new6)=new6
π(new21)=new21 π(new10)=new10.

By applying the predicate equivalence transformation to the whole set of 51
clauses, we get an equisatisfiable set of 35 clauses. In particular, in the resulting
set the clauses for new5 are no longer present and all occurrences of new5 are
replaced by new4.

5 Automated Verification

We have implemented the Removal of the Interpreter (RI) and the Predicate
Equivalence (PE) transformations presented in Sects. 4.2 and 4.3, respectively,
by using the VeriMAP transformation system [10].

We use these transformations for verifying properties of business processes
in the following two different ways:

(i) ‘RI; Z3’, that is, we execute RI, and then we check the satisfiability of the
clauses generated by RI by applying the solver Z33 [12], and

(ii) ‘RI; PE; Z3’, that is, we execute RI, then PE, and finally we check the
satisfiability of the clauses generated by PE by applying the solver Z3.

In Table 3 we report the results obtained by using our prototype implemen-
tation for the following business processes:

(1) the Purchase Order (PO) shown in Fig. 1, consisting of 7 tasks, 6 gateways,
and 17 flows,

(2) the Request Day Off Approval (RDOA), adapted from [19], consisting of
7 tasks, 4 gateway, 14 flows and representing the activities involving a com-
pany’s leadership to approve an employee’s request for a day off,

(3) the ST-segment Elevation Myocardial Infarction (STEMI), adapted
from [7], consisting of 11 tasks, 6 gateways, 22 flows and representing an
excerpt of the triage process for hospital admission, and

(4) the STEMI with Coronary Care Unit admission (STEMI+CCU), adapted
from [8], consisting of 26 tasks, 18 gateways, and 52 flows and representing
an extension of STEMI which also includes the activities for admitting a
patient to the Coronary Care Unit.

3 v4.4.2, master branch as of 2016-02-18, with the Duality fixed-point engine [25].

Verification of Time-Aware Business Processes Using CHCs 51

For these processes we have considered ten temporal properties (denoted P1–P10
in Table 3),4 each one being of the form: if some reachability properties between
states hold, then some constraints between their associated time instants hold.

The experiments have been performed on an Intel Core i5-2467M 1.60 GHz
processor with 4 GB of memory under GNU/Linux OS.

Table 3. Columns ‘RI.time’ and ‘RI.cls’ denote the time taken by RI and the number
of clauses generated by RI, respectively. Column ‘Z3.time1’ denotes the time taken
by Z3 when executed after RI. Column ‘answer’ tells us whether or not the property
holds. Columns ‘PE.time’ and ‘PE.cls’ denote the time taken by PE and the number
of clauses generated by PE, respectively. Column ‘Z3.time2’ denotes the time taken by
Z3 when executed after PE. The reduction of the number of clauses (cls reduction) is
RI.cls − PE.cls

RI.cls
and the time speedup is Z3.time1

Z3.time2
. Times are in seconds.

Business Property RI Z3.time1 Answer PE Z3.time2 cls Time

process time cls Time cls reduction speedup

PO P1 0.49 51 0.82 True 0.05 35 0.57 0.31 1.44

P2 0.27 51 0.68 True 0.05 37 0.53 0.27 1.28

P3 0.35 12 0.10 False 0.04 12 0.10 0.00 1.00

RDOA P4 0.14 20 0.31 False 0.03 16 0.22 0.20 1.41

STEMI P5 0.34 52 1.04 True 0.05 43 0.88 0.17 1.18

P6 0.31 7 0.09 False 0.02 7 0.09 0.00 1.00

P7 0.36 67 1.62 True 0.06 56 1.60 0.16 1.01

STEMI+ P8 1.58 226 10.70 True 0.17 181 9.75 0.20 1.10

CCU P9 0.14 29 30.17 False 0.03 23 11.62 0.21 2.60

P10 0.10 15 2.08 False 0.03 15 2.08 0.00 1.00

In Table 3 we have not reported the results of applying the solver Z3 directly
to the clauses encoding the given business processes and properties. Indeed, as
already mentioned in Sect. 4.2, Z3 is not able to prove the satisfiability of those
clauses, if one does not first apply the transformation RI.

The transformation RI is quite efficient and takes less than half a second for
all properties with the exception of property P8, which generates 226 clauses.
The time taken by Z3 for the verification of the properties (with or without the
preliminary application of PE) is generally small (indeed, it is not greater than
1.62 s), with the exception of properties P8–P10 referring to the most complex
business process we have considered, which is the STEMI+CCU process.

Note also that the transformation PE often reduces the number of clauses
generated by RI and speeds up the satisfiability check performed by Z3. More-
over, in our examples PE never deteriorates the total verification time in any
significant way, in the sense that the time taken by ‘RI; PE; Z3’ is never signifi-
cantly greater than the time taken by ‘RI; Z3’.
4 The VeriMAP tool and the encodings of the examples of Table 3 are available at

http://map.uniroma2.it/lopstr16/VeriMAP lopstr16-linux x86 64.tar.gz.

http://map.uniroma2.it/lopstr16/VeriMAP_lopstr16-linux_x86_64.tar.gz

52 E. De Angelis et al.

6 Related Work

Several papers have proposed approaches to model business processes with
time constraints and, in particular, duration [1,7,15,16,35] (see [6] for a recent
survey).

The approach of Arbab et al. [1] provides a translation of BPMN into the
coordination language Reo. Due to Constraint Automata semantics of Reo,
in principle this translation allows formal reasoning about BPMN processes
depending on time and resources. However, the paper does not provide any
formalized verification technique.

The workflow conceptual model proposed by Combi and Posenato [7] enables
the specification and analysis of time constraints in business processes. They
propose temporal constructs for expressing various kinds of time constraints, and
also introduce the notion of controllability for workflow schemata. Controllability
ensures the executability of a workflow for any duration of the tasks performed
by the ‘external world’. Unfortunately, the algorithms for testing controllability
presented in [7] may require a costly, exhaustive exploration of the search space.

del Foyo and Silva consider workflow diagrams extended with task durations
and the latest execution deadline of each task [15]. They provide a translation
into Time Petri Nets [3] (where clocks are associated with transitions in the net)
and use the tool TINA [4] to answer schedulability questions.

The approach proposed by Gagné and Trudel [16] enables the specification
of temporal constraints (such as ‘As Soon As Possible’) and temporal depen-
dencies. However, unlike the approach presented here, no automated verification
mechanism of time-dependent properties is provided.

The approach proposed by Wong and Gibbons [35] uses a timed semantic
function which takes a diagram describing a collaboration, and returns a CSP
process [17] that models the timed behavior of that diagram, by using the notion
of a relative time in the form of delays chosen non-deterministically within given
intervals. Properties are then verified by using the FDR system [14].

The proposal by Watahiki et al. [32] and other proposals surveyed in [6] use
Timed Automata to model business processes with time constraints. They also
use the UPPAAL tool [22] for the automatic proof of the properties of interest.

As already mentioned in the Introduction, the translations into formalisms
such as Timed Automata, Time Petri Nets, and CSP, may not be adequate when
taking into consideration properties of business processes that require general
purpose logical reasoning.

Finally, we would like to mention work on modeling and analyzing business
processes with explicit time representation based on the Event Calculus [21] (see,
for instance, [26]). However, the Event Calculus lacks a simple translation into
constrained Horn clauses (in particular, it makes use of negation), and hence it
cannot be directly handled by CHC solvers.

Verification of Time-Aware Business Processes Using CHCs 53

7 Conclusions

We have presented a logic-based language to specify BPMN models where time
and duration of activities are explicitly represented. The language enables the
specification of time constraints, given in the form of lower and upper bounds
associated with the duration of tasks. These are useful features with an intuitive
meaning that allow the specifier to annotate activities with some time restric-
tions. The language supports the specification of a wide range of time-dependent
properties such as the schedulability and the response time.

The main advantage of our approach is that it allows us to automatically
generate constrained Horn clauses from the formal definition of the semantics
of the BPMN models and the time-dependent properties of interest. Then, by
exploiting recent advances in the field of CHC solving, we get very effective
reasoning tools for verifying properties of business processes. Finally, since our
approach is parametric with respect to the language used for modeling processes,
it is possible to incorporate various extensions of that language with little effort.

References

1. Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware business
process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17,
pp. 108–123. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88479-8 9

2. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.:
Verification of relational data-centric dynamic systems with external services. In:
Proceedings of PODS 2013, pp. 163–174 (2013)

3. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

4. Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Proceedings
of QEST 2006, pp. 123–124. IEEE Computer Society (2006)

5. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). doi:10.1007/978-3-319-23534-9 2

6. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspec-
tive in business process modeling: a survey and research challenges. Serv. Oriented
Comput. Appl. 9(1), 75–85 (2015)

7. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow
schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM
2009. LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03848-8 6

8. Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible
temporal workflows. ACM Trans. Auton. Adapt. Syst. 7(2), 19:1–19:29 (2012)

9. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst. 37(3), 1–36 (2012)

10. de Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 568–574. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 47

http://dx.doi.org/10.1007/978-3-540-88479-8_9
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-642-54862-8_47

54 E. De Angelis et al.

11. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based gen-
eration of verification conditions by program specialization. Science of Computer
Programming. Elsevier (2017)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

13. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theor. Comput. Sci.
166, 101–146 (1996)

14. Formal Systems (Europe) Ltd., Failures-Divergences Refinement, FDR2 User Man-
ual (1998). www.fsel.com

15. del Foyo, P.M.G., Silva, J.R.: Using time Petri nets for modelling and verification
of timed constrained workflow systems. In: Proceedings of ABCM Symposium
Series in Mechatronics, ABCM, vol. 3(1), pp. 471–478. ABCM, Brazilian Society
of Mechanical Sciences and Engineering (2008)

16. Gagné, D., Trudel, A.: Time-BPMN. In: Proceedings of CEC 2009, pp. 361–367.
IEEE Computer Society (2009)

17. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

18. Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32759-9 21

19. Huai, W., Liu, X., Sun, H.: Towards trustworthy composite service through busi-
ness process model verification. In: Proceedings of UIC-ATC 2010, pp. 422–427.
IEEE Computer Society (2010)

20. Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Logic Program.
19(20), 503–581 (1994)

21. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput.
4(1), 67–95 (1986)

22. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1(1–2), 134–152 (1997)

23. Lloyd, J.W.: Foundations of Logic Programming. Second, Extended Edition.
Springer, Heidelberg (1987)

24. Makni, M., Tata, S., Yeddes, M., Ben Hadj-Alouane, N.: Satisfaction and coher-
ence of deadline constraints in inter-organizational workflows. In: Meersman, R.,
Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 523–539. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16934-2 39

25. McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpo-
lation. Technical Report MSR-TR-2013-6, Microsoft Research, January 2013

26. Montali, M., Maggi, F., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring
business constraints with the event calculus. ACM Trans. Intell. Syst. Technol.
5(1), 17:1–17:30 (2014)

27. OMG. Business Process Model and Notation (2013). www.omg.org/spec/BPMN/
28. Peralta, J.C., Gallagher, J.P., Sağlam, H.: Analysis of imperative programs through

analysis of constraint logic programs. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503,
pp. 246–261. Springer, Heidelberg (1998). doi:10.1007/3-540-49727-7 15

29. Proietti, M., Smith, F.: Reasoning on data-aware business processes with constraint
logic. In: Proceedings of SIMPDA 2014, vol. 1293 of CEUR, pp. 60–75 (2014)

30. Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business
processes. In: Proceedings of ICAART 2013, vol. II, pp. 130–143. SciTePress (2013)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
www.fsel.com
http://dx.doi.org/10.1007/978-3-642-32759-9_21
http://dx.doi.org/10.1007/978-3-642-32759-9_21
http://dx.doi.org/10.1007/978-3-642-16934-2_39
www.omg.org/spec/BPMN/
http://dx.doi.org/10.1007/3-540-49727-7_15

Verification of Time-Aware Business Processes Using CHCs 55

31. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Mod-
ern Business Process Automation: YAWL and its Support Environment. Springer,
Heidelberg (2010)

32. Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes
with temporal and resource constraints. In: Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, pp. 1173–1180. IEEE (2011)

33. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of
semantic business process models. Distrib. Parallel Databases 27, 271–343 (2010)

34. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

35. Wong, P.Y.H., Gibbons, J.: A relative timed semantics for BPMN. Electr. Notes
Theor. Comput. Sci. 229(2), 59–75 (2009)

Constraint Programming

MiniZinc with Strings

Roberto Amadini1(B), Pierre Flener2, Justin Pearson2, Joseph D. Scott2,
Peter J. Stuckey1, and Guido Tack3

1 University of Melbourne, Melbourne, VIC, Australia
roberto.amadini@unimelb.edu.au

2 Uppsala University, Uppsala, Sweden
3 Monash University, Melbourne, Australia

Abstract. Strings are extensively used in modern programming lan-
guages and constraints over strings of unknown length occur in a wide
range of real-world applications such as software analysis and verifica-
tion, testing, model checking, and web security. Nevertheless, practically
no constraint programming solver natively supports string constraints.
We introduce string variables and a suitable set of string constraints as
builtin features of the MiniZinc modelling language. Furthermore, we
define an interpreter for converting a MiniZinc model with strings into
a FlatZinc instance relying only on integer variables. This conversion
is obtained via rewrite rules, and does not require any extension of the
existing FlatZinc specification. This provides a user-friendly interface for
modelling combinatorial problems with strings, and enables both string
and non-string solvers to actually solve such problems.

1 Introduction

Strings are widely adopted in modern programming languages for representing
input/output data as well as actual commands to be executed dynamically. The
latter is particularly critical for security reasons: consider, e.g., the dynamic
execution of a malicious SQL query that might dump a database or delete entire
tables. Apart from security issues, tracking (an approximation of) the possible
values of a string variable can also help in bug detection and code optimisation.

String analysis — needed in real-life applications such as test-case genera-
tion [13], program analysis [8], model checking [17], web security [5] — is an active
and growing field, [11,25,28], and requires the processing of string constraints
such as string (in-)equality, concatenation, and so on. Nevertheless, in constraint
programming (CP), practically no solver natively supports string constraints.
To our knowledge, the only exception is a new extension [33,36] with bounded-
length string variables of the Gecode solver [18], here called Gecode+S for
convenience, which will become part of the official Gecode release. Empirical
results show that Gecode+S is usually better than dedicated string solvers such
as Hampi [23], Kaluza [32], and Sushi [14].

In this paper we take a further step towards the definition and solving of
string constraints. The three contributions of this paper are as follows.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 59–75, 2017.
DOI: 10.1007/978-3-319-63139-4 4

60 R. Amadini et al.

First, an extension of the MiniZinc [30] modelling language by string vari-
ables of possibly unknown length. MiniZinc enables the specification of con-
straint problems over (sets of) integers and real numbers, but currently does not
allow models containing string variables. Thanks to the extension we describe, a
MiniZinc user can now naturally define and solve a MiniZinc model containing
string variables and constraints, as well as other constraints on other variable
types.

Second, we provide a solver independent conversion of MiniZinc models
with strings into equivalent FlatZinc instances containing only integer variables.
Thus, every solver supporting FlatZinc can now solve a MiniZinc model with
strings. This conversion follows the padding representation advocated in [21] and
implemented in [35]. However, we underline that our contribution is orthogonal
to [35] and generalises its work (see Sect. 4.2): our MiniZinc formulation does
not impose restrictions on the string length (enabling us to express unbounded-
length strings), and further allows any solver to use its preferred string represen-
tation (e.g., bit vectors or automata), and handles a superset of the constraints
of [35].

Third, we provide an experimental evaluation on the Norn string bench-
mark [1] used in Gecode+S [33,36] and the state-of-the-art constraint solvers
Chuffed [10], Gecode [18], iZplus [15], Picat-SAT [43], MZN/Gurobi [4],
MZN/Yices2 [9] and MZN/OscaR.cbls [7]. Results indicate that native sup-
port for string variables usually pays off, but not always, in which case the
technology of the best solver varies. Indeed, we show that — despite longer
flattening times — sometimes our conversion is more beneficial than using a
dedicated string solver.

Paper Structure. Section 2 gives some background notions about string vari-
ables, MiniZinc and FlatZinc. Sections 3 and 4 describe the string extensions
we implemented for MiniZinc and FlatZinc. Section 5 presents the experimental
results before we discuss related work in Sect. 6 and conclude in Sect. 7.

2 Background

MiniZinc [30] is a flexible and user-friendly modelling language for representing
constraint problems. The motto is model once, solve anywhere: each MiniZinc
model is solver-independent, although it may contain annotations to communi-
cate with the underlying solver.

MiniZinc supports the most common global constraints (constraints defined
over an arbitrary number of variables [3]) and allows the separation between
model and data: a MiniZinc model can be defined as a generic template to be
instantiated by different data.

As an example, consider the n-queens problem, where n ≥ 4 queens have to
be placed on an n×n chessboard in such a way that they do not attack each other.
This problem can be modelled in MiniZinc in terms of an unspecified number n
of queens, and then instantiated by providing the value of parameter n.

MiniZinc with Strings 61

FlatZinc is a solver-specific target language for MiniZinc. Each MiniZinc
model (together with corresponding data, if any) is converted into FlatZinc in the
form required by a solver. In other terms, from the same MiniZinc model different
FlatZinc instances can be derived according to solver-specific redefinitions.

For example, the n-queens problem can be modelled with the well-known
alldifferent([x1, . . . , xn]) global constraint, which holds if and only if all vari-
ables xi take different values. In this case a solver can decide to keep the con-
straint as is or to unfold it into the logical conjunction

∧
1≤i<j≤n xi �= xj .

Following the approach of [23,32,33,35,36] we focus in this work on con-
straint solving over bounded string variables, i.e., string variables x having a
bounded length �, with |x| ≤ � ∈ N. We point out that our MiniZinc language
extension allows us to express problems with unbounded string variables. Note
that, while problems over bounded-length string variables are trivially decidable,
satisfiability with unbounded-length strings is not decidable in general [16].

Notation. Given a fixed alphabet Σ, a string x ∈ Σ∗ is a finite sequence of
|x| ≥ 0 characters of Σ, where |x| is the length of x. Let ASC denote the set of
the ASCII symbols: we define the function I : ASC → [1, 128] such that I(a) = k
if and only if a is the k-th ASCII symbol.

The symbols =, �=, and � respectively denote string equality, inequality, and
lexicographical order on Σ∗. The concatenation of x and y is denoted by x · y,
while xn denotes the iterated concatenation of x for n times; x0 denotes the
empty string ε, while x−1 denotes the reverse of x.

If x is a string (resp., an array), then we denote by x[i] its i-th character
(resp., element) and by x[i..j] the subsequence x[i]x[i + 1] · · · x[j]; indices start
from 1 in both cases. The symbol ∈ is used for both set membership and character
occurrence within a string.

3 MiniZinc with Strings

MiniZinc supports plenty of builtins (e.g., comparisons, basic and advanced
numeric operations, set operations, logical operators, . . .) and global constraints.
It currently permits four types of variables (i.e., Booleans, integers, floats, and
sets of integers) while strings can only be fixed literals, used for formatting out-
put or defining model annotations.

Our first contribution is introducing string variables, i.e., variables x ∈ Σ∗,
where Σ is a given alphabet. As a first step, we assume that the alphabet Σ is
always the set ASC of ASCII characters. Although we focus on bounded-length
strings, we do not impose any limitation on the maximum string length �.

Figure 1 shows three string variable declarations in a MiniZinc model. Vari-
able x belongs to ASC∗ but its maximum length is not specified: a solver can
choose the preferred upper bound � for its length or consider it unbounded. For
example, a solver using automata for representing strings does not need to set a
maximum length since it can represent strings of arbitrary length. Conversely, a
bounded-length string solver such as Gecode+S has to fix a maximum string

62 R. Amadini et al.

Fig. 1. Examples of string variable declarations.

Table 1. MiniZinc string constraints, for each x, y, z ∈ ASC∗, a, b ∈ ASC,
n,m, q, q0 ∈ N, S ⊆ ASC, F ⊆ N, D ∈ N

q×|S|, and N ∈ P(N)q×|S|.

Constraint MiniZinc Syntax Description

x = y, x �= y x = y, x != y (in-)equality

x ≺ y, x � y, x � y, x � y x < y, x < = y, x >= y, x > y lexicographic order

x ∈ S∗ x in S character set

x∈S∗ str alphabet(x, S) alphabet

x ∈ [a, b]∗ str range(x, a, b) character range

z = x · y z = x ++ y concatenation

a = x[n] a = x[n] character access

y = x[n..m] y = str sub(x, n, m) sub-string

y = xn y = str pow(x, n) iterated concatenation

y = x−1 y = str rev(x) reverse

n = |x| n = str len(x) length

x ∈ LD(q, S,D, q0, F) str dfa(x, q, S, D, q0,F) DFA membership

x ∈ LN(q, S,N, q0, F) str nfa(x, q, S, N, q0,F) NFA membership

GCC(x,A,N) str gcc(x, A, N) global cardinality

length �. This tricky part is analogous to a MiniZinc declaration of the form “var
int: i” for an integer variable i: a finite-domain solver assumes the domain of
i to be finite and chooses its preferred bounds, while for a MIP solver i is
unbounded. The length of y in Fig. 1 can be at most N, where N is an integer
parameter to be initialised within the model or in a separate data file. Variable
z even has a constrained alphabet: z ∈ {w ∈ {"a", "b", "c"}∗ | |w| ≤ 500}.

Given that we now have string variables, inspired by [33,35,36], we introduce
the string constraints specified in Table 1. A constraint for membership in a
context-free language could be added; it was considered in [33,35,36] for inclusion
in Gecode+S, but not implemented for time-reasons as the state-of-the-art
propagator of [21] for fixed-length string variables needs work to be generalised
to bounded-length string variables.

The constraints =, �=,≺,�,	,
 have the semantics of their standard defini-
tions. Given S ⊆ ASC, the semantics of x ∈ S∗ is ∀a : a ∈ x =⇒ a ∈ S, while
x∈ S also enforces the reverse implication, i.e., ∀a : a ∈ x ⇐⇒ a ∈ S.

The constraint str range offers a shortcut for defining a set of strings over
a range of characters: [a, b]∗ = {c ∈ ASC | a ≤ c ≤ b}∗, so for instance

MiniZinc with Strings 63

Fig. 2. A model for finding minimum-odd-length palindromes with the same, positive
number of a’s, b’s, and c’s. An optimal solution must have n = 2 ∧ |x| = 7.

["a", "d"]∗ = {"a", "b", "c", "d"}∗. The function x[i..j] returns the substring
x[n]x[n + 1] · · · x[m], where n = max(1, i) and m = min(j, |x|). In particular,
i > j implies x[i..j] = ε.

The constraint x ∈ LD(q, S,D, q0, F) constrains x to be accepted by the
deterministic finite automaton (DFA) 〈Q,S, δ, q0, F 〉 where: Q = {1, . . . , q} is
the state set, S = {a1, . . . , a|S|} is the alphabet, δ : Q × S → Q is the tran-
sition function such that D[i, j] = k ⇐⇒ δ(i, aj) = k, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of accepting states. The same applies to the non-
deterministic finite automaton (NFA) constraint x ∈ LN(q, S,N, q0, F), with the
only difference that, while D[i, j] ∈ Q, in this case N [i, j] ⊆ Q.

Finally, we add a global cardinality constraint GCC(x,A,N) for strings, stating
that each character A[i] ∈ ASC must occur exactly N [i] times in string x.

The constraints in Table 1 express all those used in existing string solvers [1,
14,23,24,32,41] and reflect the most used string operations in modern program-
ming languages. We are not aware of string solvers supporting constraints like
lexicographic ordering and global cardinality, but these are natural for a CP
solver.

Some constraints are redundant. For example we have that x[i] = x[i..i] and
y = x[i..j] ⇐⇒ (∃y1, y2 ∈ ASC∗) x = y1 · y · y2 ∧ |y1| = i − 1 ∧ |y1 · y| = j.
The rationale behind such redundancy is to ease the model writing and to allow
solvers to define a specialised treatment for each constraint in order to optimise
the solving process.

The constraint set we added to MiniZinc is intended to be an extensible
interface for the definition of string problems to be solved by fixed, bounded,
and unbounded-length string solvers.

Consider the MiniZinc model in Fig. 2, encoding the problem of find-
ing a minimum-length palindrome string belonging to {"a", . . . , "z"}∗, hav-
ing an odd length, and containing the same, positive number of occurrences of
"a", "b", and "c". We can see in this example the potential of MiniZinc with
strings: the model is succinct and readable, it allows the specification of optimi-
sation problems and not just of satisfaction problems, it accepts constraints over
different types than just strings, it does not impose any bounds on the lengths
of the strings, and it enables expressing the membership of a string variable to
a context-sensitive language.

64 R. Amadini et al.

Fig. 3. A model for detecting a possible SQL injection.

A more interesting example is provided in Fig. 3, where we show a simplified
way to detect a potential SQL injection attack in a script. An SQL injection
is a technique where a malicious SQL statement is injected into a regular SQL
command. A well-known example is the injection of the condition "OR 1=1" into
the WHERE clause of an SQL query. Since every Boolean expression containing
such a condition evaluates to true, an SQL injection of this type may cause
the deletion or communication of tables of a database. The model in Fig. 3 is
actually more general, by detecting an injection into the parametric string sql
of a substring of the form expr ·bm = bn ·expr, where expr can be any non-empty
string while bm and bn are arbitrary sequences of m and n blanks respectively,
where m and n are non-negative integer variables. The prefix pref and the suffix
suff of sql can be any string. Clearly, this simplified example is not general
enough to cover all the possible SQL injections. Nonetheless, this MiniZinc model
is strictly more powerful than when using only regular expressions: the constraint
in line 4 cannot be replaced by an equivalent str dfa or str nfa constraint, but
could alternatively be modelled using the mentioned constraint for membership
in a context-free language, which is not considered in this paper.

4 FlatZinc With(out) Strings

MiniZinc is a solver-independent modelling language. In practice, this is achieved
by the MiniZinc compiler, which can translate any MiniZinc model into a spe-
cialised FlatZinc instance for a particular solver, using a solver-specific library
of suitable redefinitions for basic and global constraints.

In order to extend MiniZinc with support for string variables, our second
contribution consists of two redefinition libraries to perform different conversions:

– a string-to-string conversion F str that flattens a model M with string con-
straints into a FlatZinc instance F str(M) with all such constraints preserved;

– a string-to-integers conversion F int that flattens a model M with string con-
straints into a FlatZinc instance F int(M) with string constraints transformed
into integer constraints.

We now discuss these two conversions in turn.

MiniZinc with Strings 65

4.1 The Fstr Conversion

The conversion F str is straightforward and we omit its technical details. Each
string predicate is preserved in the resulting FlatZinc instance, with a few excep-
tions in order to be consistent with the FlatZinc syntax. For example, the con-
straints x = y and x != y are rewritten into str eq(x, y) and str neq(x, y)
respectively. Similarly, a string function is rewritten into a corresponding Flat-
Zinc predicate; e.g., n = str len(x) is translated into str len(x, n), while z
= x ++ y translates into str concat(x, y, z).

Fig. 4. FlatZinc instance resulting from F str applied to the MiniZinc model in Fig. 2.

Figure 4 gives the FlatZinc instance obtained by the F str conversion of the
MiniZinc model in Fig. 2, assuming that the length-bound parameter m is instan-
tiated with value 100 (see line 3).

F str is a straightforward and fast conversion aimed at solvers supporting
(some of) the constraints of Table 1. At present, to the best of our knowledge,
the only CP solver with such a capability is the new Gecode+S [33,36].

4.2 The F int Conversion

When extending MiniZinc with new features, the goal is to be always conser-
vative: the compiler should produce FlatZinc code executable by any current
FlatZinc solver, albeit less efficiently than by a solver with native support for
the new features. Hence we also develop the F int conversion.

The underlying idea of F int is to map each string variable x to an integer
variable �x ∈ [0, n] representing the string length |x| and an array X ∈ [0, 128]n

of n integer variables representing the string itself; we choose n = min
(
|x|, �

)
,

where |x| denotes the upper bound on |x| if it is specified in the model and |x| = �
otherwise, as we cannot exceed the maximum string length �. For i = 1, . . . , n
the invariant i > �x ⇐⇒ X[i] = 0 enforces that the end X[|x| + 1] · · · X[n]
of the array X is padded with trailing zeros. The notation (∀i=1,...,|x|) P (i) is
actually a shortcut for the constraint (∀i∈[1,�x]

) i ≤ |x| → P (i), and similarly

66 R. Amadini et al.

Fig. 5. Rewrite rules of F int.

MiniZinc with Strings 67

for existential quantification, where �x denotes the current upper bound of the
domain of �x.

The main issue of F int is the maximum size �, since FlatZinc does not allow
dynamic-length arrays. We set � = 1000 by default and issue a warning to the
user if an unbounded string variable is artificially restricted by this transforma-
tion. The user (and in fact each solver) can override this parameter.

The F int conversion follows the padding representation advocated in [21]
and implemented in [35]: it works through the rewrite rules listed in Fig. 5.
This conversion is specified as a library containing the rewrite rules expressed in
the MiniZinc language itself and does not require any extension of the existing
FlatZinc specification.1 Each rewrite rule has one of the following forms:

– P �→ {C1, . . . , Cn}, meaning that predicate P is rewritten into the constraint
conjunction C1 ∧ · · · ∧ Cn; or

– F (x1, . . . , xk) �→ 〈E〉{C1, . . . , Cn}, meaning that function F is rewritten into
expression E subject to constraint C1 ∧ · · · ∧ Cn.

We use a more readable meta-syntax instead of using MiniZinc/FlatZinc directly.
We denote by D(x) ⊆ ASC the auxiliary function that returns the set of charac-
ters that may occur in x, and by I(S) the set {I(a) | a ∈ S} of the ASCII codes
for each character of S. Given D ⊆ N and S ⊆ ASC, the constructs Vint(n,D),
Vstr(x,m, S), and Varr(X,m,D) denote respectively: an integer variable decla-
ration var D: n, a string variable declaration var string(m) of S: x, and an
array of integer variables declaration array[1..m] of var D: X. If a parameter
is omitted, then we assume D = [0, 128], m = �, and S = ASC.

Rule (1) of Fig. 5 transforms a declaration of a string variable x into the
corresponding declaration of an array X of integer variables via the A(x) function
of Rule (2), which enforces the properties of X described above. It is important to
note that this transformation relies on the same array of integer variables being
returned by A(x) for a variable x, even if the function is called multiple times.
This is achieved through the common subexpression elimination mechanism built
into MiniZinc functions [37].

Rules (3) to (9) are examples of predicate rewriting. In particular, the latter
two rules take advantage of MiniZinc expressiveness by rewriting x � y and
GCC(x,A,N) in terms of the lex lesseq and the global cardinality global
constraints over integers. The rewrite rules for predicates ∈, ∈, =, and �= are
intuitive.

Rules (10) to (15) are examples of function rewriting: a string variable is cre-
ated, constrained, and then returned. We can see that dealing with special cases
enables us to reduce the number of generated constraints; e.g., see Rules (14)
and (15).

Rule (16) for str dfa predicate is tricky. Indeed, the regular global con-
straint cannot straightforwardly encode x ∈ LD(q, S,D, q0, F) since the “empty
character” 0 might occur in A(x). In order to agree with the semantics of

1 This library, called nostrings.mzn, is publicly available at https://bitbucket.org/
jossco/gecode-string.

https://bitbucket.org/jossco/gecode-string
https://bitbucket.org/jossco/gecode-string

68 R. Amadini et al.

regular, it is necessary to increment the number s of its symbols (so, the i-th
character of S becomes the (i + 1)-st symbol of the DFA encoded by regular),
and to add a column at the head of D for dealing with the 0 character (matrix
D′ is the result of this addition — note that the state 0 is always a failing
state).2 If regular is satisfiable, then the accepted sequence X is re-mapped to
a corresponding string thanks to the auxiliary array T . The rule for str nfa is
analogous.

We remark that the F int converter enables the solving of string problems by
any solver. Clearly, this is achieved at the expense of efficiency. Indeed, several
new constraints and reifications are introduced.

Consider for example the model M of Fig. 2: the F str(M) conversion is instan-
taneous and produces a FlatZinc instance of only 13 lines, regardless of the
maximum length m of string variable x (see Fig. 4). Conversely, the F int(M)
conversion can be considerably less efficient depending on the m parameter. For
example, if m = 100, then F int(M) consists of 4,511 lines; if m = 1000, then a
FlatZinc instance of 45,011 lines is produced.

5 Evaluation

Our third contribution is an evaluation of our framework with different solvers.
We compared the string CP solver Gecode+S [33,36] against various state-of-
the-art constraint solvers, namely:

– Chuffed [10] is a CP solver with lazy clause generation [31];
– Gecode [18] is a CP solver;
– iZplus [15] is a CP solver that also exploits local search;
– Picat-SAT [43] translates a CP problem into a Boolean satisfiability (SAT)

problem, solved by Lingeling;
– MZN/Gurobi [4] translates a MiniZinc (MZN) model into a mixed-integer

linear program, solved by Gurobi Optimizer [20];
– MZN/Yices2 [9] translates a MiniZinc model into a SAT modulo theories

(SMT) model without string variables, solved by Yices2;
– MZN/OscaR.cbls [7] translates a MiniZinc model in a constraint-

based local search model and a black-box search procedure, run by
OscaR.cbls [12].

There is a lack of standardised and challenging string benchmarks [21,33,35,36].
However, we stress that the goal of this paper is not an evaluation of solver
performance, but the introduction of a framework for modelling string prob-
lems easily, with solving by both string and non-string solvers. Moreover, one
of the benefits of introducing string variables and constraints in MiniZinc is the
possibility of designing and comparing challenging and standard benchmarks.

We picked five problems from the Norn benchmark [1]: anbn, ChunkSplit,
HammingDistance, Levenshtein, and StringReplace (we use the same names as

2 Details at http://www.minizinc.org/doc-lib/doc-globals-extensional.html.

http://www.minizinc.org/doc-lib/doc-globals-extensional.html

MiniZinc with Strings 69

in [1]). We also used our Palindrome problem of Fig. 2 and our SQL injection
problem of Fig. 3. All these problems have no parameters, except for the maxi-
mum string length �. For each problem, we:

1. wrote a MiniZinc model M with parametric bound � on string length;
2. obtained FlatZinc instances FM (f, �) by flattening M with f ∈ {F str,F int}

and � ∈ {250, 500, 1000};
3. solved each FM (F str, �) with Gecode+S (we extended the FlatZinc inter-

preter of Gecode for handling F str builtins) and each FM (F int, �) with the
other solvers.

We ran the experiments on Ubuntu 15.10 machines with 16 GB of RAM and
2.60 GHz Intel R© i7 CPU. The source code for Gecode+S and the used MiniZinc
models are available at https://bitbucket.org/jossco/gecode-string. The versions
of the solvers with results in Table 2 are those used by the sunny-cp portfolio
solver [2], version 2.2, in the MiniZinc Challenge 2016.3 We do not compare with
the Norn solver, as our results are incomparable with those of an unbounded-
length solver such as Norn, which generates the language of all satisfying assign-
ments for each string variable.

Table 2. Runtimes of the solvers. Bold font indicates the best performance for each
problem instance.

Chuffed Gecode iZplus MZN/Gurobi Picat-SAT Gecode+S

� 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000

anbn 0.9 2 4.5 2.6 16.8 145.2 2.2 6.8 22.7 9.7 20.7 54.7 2.1 3.9 7.2 0.4 2.7 28.2

Chunk 4.7 14.9 n/a 3.5 8 26 7.2 22.2 24.8 t/o t/o t/o 46.8 152 291.1 1.4 14.2 187.9

Hamm. 25.7 283.6 n/a 84.6 t/o t/o t/o t/o t/o 363.6 t/o t/o 46.8 454 t/o 0.6 3.8 37.4

Leven. 1.3 2.6 6 1.2 2.3 5.4 3.7 19.5 8.1 91 345.7 t/o 1.7 3.8 26.8 0.1 0.1 0.1

Str. Rep. 2.4 6.8 23.2 t/o t/o t/o 3.1 9.7 44.2 264.2 t/o t/o 28.3 148.1 t/o 0.2 0.8 4.7

Palind. 1.6 23.4 90 t/o t/o t/o 0.8 2.3 7.1 119.5 t/o t/o 16.6 93.7 504.5 n/a n/a n/a

SQLInj. 17.9 399.8 n/a 4.6 10.2 396.3 108.9 431.1 617.9 t/o t/o t/o 83.3 148.7 502.6 0.5 0.1 0.1

Table 2 shows the runtimes, in seconds, to conclude the search, i.e., the time
needed by a solver to prove the (un-)satisfiability of a problem (for satisfaction
problems) or to find and prove an optimal solution (for Palindrome, the only
optimisation problem). The ‘t/o’ abbreviation means that the time-out of 600
seconds was reached, while ‘n/a’ means that a solver failed prematurely (e.g.,
due to a segmentation fault) or is not applicable. For instance, Gecode+S is
not applicable to the Palindrome problem since it does not implement the GCC
constraint, which, to the best of our knowledge, has not been proposed before
in the literature. Our MiniZinc extension (see Table 1) covers all the constraints
implemented by Gecode+S.

3 sunny-cp is available at https://github.com/CP-Unibo/sunny-cp. We actually took
advantage of its architecture for running and evaluating the solvers in Table 2.

https://bitbucket.org/jossco/gecode-string
https://github.com/CP-Unibo/sunny-cp

70 R. Amadini et al.

Fig. 6. Average time (in seconds) taken by F int or F str.

The chosen solvers whose results are not listed in Table 2 were not competitive
on the chosen problems. Local search, performed by MZN/OscaR.cbls, is by
design unable to prove unsatisfiability and thus always times out on the unsat-
isfiable anbn, Hamming, and StringReplace problems. Further, the black-box
local search performed by MZN/OscaR.cbls unfortunately meanders on some
of the chosen satisfiable problems and optimisation problems upon flattening by
the F int conversion: our future work includes integrating the extension [6] for
string variables and constraints of OscaR.cbls [12] into MZN/OscaR.cbls,
so that the F str conversion can be used instead. Similarly, MZN/Yices2 makes
the state-of-the-art SMT solver Yices2 suffer from the result of the composi-
tion of the F int conversion with the FlatZinc-to-SMT-LIB-format conversion [9],
which has not been modernised for a while. We hope that somebody will enable
the use of the F str conversion so that SMT solvers with a string theory — such
as CVC4 [27], S3 [39], and Z3str2 [41] — can be used instead, though not for
optimisation problems.

All the runtimes in Table 2 include the FlatZinc flattening time. As explained
at the end of Sect. 4, this time is far greater when the F int conversion is used.
This is clearly noticeable in Fig. 6, where the average flattening time (in seconds)
taken by F int (for all the solvers except Gecode+S) or F str (for Gecode+S)
is shown.4 As mentioned at the end of Sect. 4, this time is proportional to the
maximum string length �.

While Gecode, Chuffed, Picat-SAT, and iZplus have comparable per-
formance, the flattening time for MZN/Gurobi is remarkably higher. This is
due to the fact that the complex reified expressions created by F str must be lin-
earized for use with MZN/Gurobi and hence this further expands the resulting
FlatZinc. The average percentage of the total solving time (when a problem is

4 We assume a flattening time of T = 600 seconds when the conversion time exceeded
the time limit T . This happened only for MZN/Gurobi.

MiniZinc with Strings 71

solved) taken by F int is 42.41% for iZplus, 47.10% for Chuffed, 55.97% for
Gecode, and 62.36% for MZN/Gurobi. Conversely, the average percentage of
the total solving time taken by F str for Gecode+S is only 6.95%.

The message of this evaluation is twofold. On the one hand, the Gecode+S

CP solver is by far the best solver overall, due to its native string support
and the short flattening times via F str to FlatZinc. On the other hand, solvers
without native string support sometimes benefit from F int for being faster than
Gecode+S despite longer flattening times. This is interesting and should stim-
ulate further development of native string support in CP solvers.

6 Related Work

Gecode+S [33,36] is currently the only CP solver that handles bounded-length
string variables; its representation of string variables improves over the prefix-
suffix pairs representation [34] and the open-sequence representation [35]. Fixed-
length Boolean string variables, that is bit vectors, are handled in a CP fashion
in [29]. Older CP approaches are surveyed in [33].

Apart from these systems, there are a number of string solvers, some custom-
made and some others relying on existing solving technologies such as satisfia-
bility modulo theories (SMT). We now discuss three approaches.

Bit-vector solvers map string constraints into bit-vector constraints. Exam-
ples of solvers using this approach are Hampi [23,24] and Kaluza [32]. The
effectiveness of this approach appears to be limited when compared with other,
more recent string solving techniques [22,41].

Automaton-based solvers rely on regular expressions or (simplified) context-
free grammars in order to represent strings and handle string constraints. Exam-
ples of these approaches are StrSolve [22], Stranger [40], PASS [26], and
PISA [26]. While they can naturally deal with unbounded-length strings, the
main drawback of these solvers is their inability to capture other variable types,
such as integers. For example, as observed in [41], the PISA solver can pro-
vide good performance but cannot model string lengths and symbolic arithmetic
operations.

Word-based string solvers, according to [41], are SMT solvers that treat
strings without abstractions or representation conversions. They take advan-
tage of already defined theories, and enable a precise modelling of unbounded
strings and length constraints. For instance, Z3str [42], Z3str2 [41], and
Z3strBV [38] extend the well-known SMT solver Z3. Other SMT-based string
solvers are Sushi [14], CVC4 [27], and Norn [1]. Although it is out of the
scope of this paper to provide a comparison with all of them, we remark that
Gecode+S provides a better performance than Sushi in the evaluation reported
in [33].

7 Conclusion

We presented an extension of the MiniZinc language that allows users to model
and solve combinatorial problems with strings. The framework we propose is

72 R. Amadini et al.

expressive enough to encode the most used string operations in modern pro-
gramming languages, and — via proper FlatZinc translations — it also enables
both string and non-string solvers to solve such problems. All the solvers having
a FlatZinc interface can now solve string problems without manual intervention.

We took advantage of our framework for evaluating the state-of-the-art con-
straint solvers — Chuffed, Gecode, iZplus Picat-SAT, MZN/Gurobi,
MZN/Yices2, and MZN/OscaR.cbls — on problems with bounded-length
strings. The results indicate that, despite longer flattening times, sometimes our
FlatZinc decomposition can be more beneficial than using a dedicated string
solver.

We are not aware of similar works in CP, and we see our work as a solid start-
ing point for the handling of string variables and constraints with the MiniZinc
toolchain. We hope our extension encourages the development of further CP
solvers that can natively deal with strings. This will hopefully lead to the cre-
ation of new, challenging string benchmarks, and to the development of dedicated
search heuristics (e.g., heuristics based on character frequencies in a string).

We are planning to enhance our framework by adding new search annotations,
constraints, and features, as well extending the string domain from ASCII to
other alphabets, such as Unicode. In particular, the useful missing constraint for
membership in a context-free language should at least have a default handling
under the F int conversion, if not a propagator in Gecode+S used via the F str

conversion.
Finally, non-character alphabets could be useful, such as for the generation

of protocol logs [19], where the natural model would use strings of timestamps.

Acknowledgements. The authors from the University of Melbourne are sup-
ported by the Australian Research Council (ARC) through Linkage Project Grant
LP140100437. The authors in Sweden are supported by the Swedish Research Council
(VR) through Project Grant 2015-04910. Many thanks to Gustav Björdal for having
run the experiments on his local-search backend [7] for MiniZinc. Many thanks also to
all the referees and to the audience of LOPSTR 2016 for their thoughtful feedback.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P.,
Stenman, J.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). doi:10.1007/978-3-319-21690-4 29

2. Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving. In:
IJCAI, pp. 232–238. AAAI Press (2015)

3. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
past, present and future. Constraints 12(1), 21–62 (2007). http://sofdem.github.
io/gccat/

4. Belov, G., Stuckey, P.J., Tack, G., Wallace, M.: Improved linearization of constraint
programming models. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 49–65.
Springer, Cham (2016). doi:10.1007/978-3-319-44953-1 4

http://dx.doi.org/10.1007/978-3-319-21690-4_29
http://sofdem.github.io/gccat/
http://sofdem.github.io/gccat/
http://dx.doi.org/10.1007/978-3-319-44953-1_4

MiniZinc with Strings 73

5. Bisht, P., Hinrichs, T.L., Skrupsky, N., Venkatakrishnan, V.N.: WAPTEC: white-
box analysis of web applications for parameter tampering exploit construction. In:
CCS, pp. 575–586. ACM (2011)

6. Björdal, G.: String variables for constraint-based local search. Master’s thesis,
Department of Information Technology, Uppsala University, Sweden, August 2016.
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301501

7. Björdal, G., Monette, J.-N., Flener, P., Pearson, J.: A constraint-based local search
backend for MiniZinc. Constraints 20(3), 325–345 (2015)

8. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00768-2 27

9. Bofill, M., Suy, J., Villaret, M.: A system for solving constraint satisfaction prob-
lems with SMT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 300–305. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7 25

10. Chu, G.: Improving Combinatorial Optimization. Ph.D. thesis, Department of
Computing and Information Systems, University of Melbourne, Australia (2011)

11. Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static
analysis of string values. Softw. Pract. Exp. 45(2), 245–287 (2015)

12. De Landtsheer, R., Ponsard, C.: OscaR.cbls: an open source framework for
constraint-based local search. In: ORBEL-27, the 27th Annual Conference of
the Belgian Operational Research Society (2013). http://www.orbel.be/orbel27/
pdf/abstract293.pdf; The OscaR.cbls solver https://bitbucket.org/oscarlib/oscar/
wiki/CBLS

13. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database
applications. In: ISSTA, pp. 151–162. ACM (2007)

14. Fu, X., Powell, M.C., Bantegui, M., Li, C.: Simple linear string constraints. Formal
Aspects Comput. 25(6), 847–891 (2013)

15. Fujiwara, T.: iZplus description (2016). http://www.minizinc.org/challenge2016/
description izplus.txt

16. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with
length constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC
2012. LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39611-3 21

17. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded
model-checking with interpolation for regular language constraints. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 277–291. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36742-7 20

18. Gecode Team. Gecode: generic constraint development environment (2016). http://
www.gecode.org

19. Grinchtein, O., Carlsson, M., Pearson, J.: A constraint optimisation model for
analysis of telecommunication protocol logs. In: Blanchette, J.C., Kosmatov, N.
(eds.) TAP 2015. LNCS, vol. 9154, pp. 137–154. Springer, Cham (2015). doi:10.
1007/978-3-319-21215-9 9

20. Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual (2016). http://
www.gurobi.com

21. He, J., Flener, P., Pearson, J., Zhang, W.M.: Solving string constraints: the case
for constraint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
381–397. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0 31

22. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Autom.
Softw. Eng. 19(4), 531–559 (2012)

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301501
http://dx.doi.org/10.1007/978-3-642-00768-2_27
http://dx.doi.org/10.1007/978-3-642-00768-2_27
http://dx.doi.org/10.1007/978-3-642-14186-7_25
http://www.orbel.be/orbel27/pdf/abstract293.pdf
http://www.orbel.be/orbel27/pdf/abstract293.pdf
https://bitbucket.org/oscarlib/oscar/wiki/CBLS
https://bitbucket.org/oscarlib/oscar/wiki/CBLS
http://www.minizinc.org/challenge2016/description_izplus.txt
http://www.minizinc.org/challenge2016/description_izplus.txt
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-642-36742-7_20
http://www.gecode.org
http://www.gecode.org
http://dx.doi.org/10.1007/978-3-319-21215-9_9
http://dx.doi.org/10.1007/978-3-319-21215-9_9
http://www.gurobi.com
http://www.gurobi.com
http://dx.doi.org/10.1007/978-3-642-40627-0_31

74 R. Amadini et al.

23. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Softw. Eng. Methodol. 21(4), 25 (2012)

24. Kieżun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: ISSTA 2009, pp. 105–116. ACM (2009)

25. Kim, S.-W., Chin, W., Park, J., Kim, J., Ryu, S.: Inferring grammatical summaries
of string values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 372–391.
Springer, Cham (2014). doi:10.1007/978-3-319-12736-1 20

26. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15–31. Springer, Cham (2013). doi:10.1007/978-3-319-03077-7 2

27. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). doi:10.
1007/978-3-319-08867-9 43

28. Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Cohen, A.
(ed.) CC 2014. LNCS, vol. 8409, pp. 197–217. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54807-9 12

29. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 527–543. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33558-7 39

30. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

31. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

32. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: S&P, pp. 513–528. IEEE Computer Society
(2010)

33. Scott, J.D.: Other Things Besides Number: Abstraction, Constraint Propagation,
and String Variable Types. Ph.D. thesis, Department of Information Technology,
Uppsala University, Sweden (2016). http://urn.kb.se/resolve?urn=urn:nbn:se:uu:
diva-273311

34. Scott, J.D., Flener, P., Pearson, J.: Bounded strings for constraint programming.
In: ICTAI, pp. 1036–1043. IEEE Computer Society (2013)

35. Scott, J.D., Flener, P., Pearson, J.: Constraint solving on bounded string variables.
In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 375–392. Springer, Cham
(2015). doi:10.1007/978-3-319-18008-3 26

36. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51–67. Springer, Cham (2017). doi:10.1007/
978-3-319-59776-8 5

37. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268–283. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38171-3 18

38. Subramanian, S., Berzish, M., Zheng, Y., Tripp, O., Ganesh, V.: A solver for a
theory of strings and bit-vectors. CoRR, abs/1605.09446 (2016)

39. Trinh, M., Chu, D., Jaffar, J.: S3: a symbolic string solver for vulnerability detection
in web applications. In: SIGSAC, pp. 1232–1243. ACM (2014)

http://dx.doi.org/10.1007/978-3-319-12736-1_20
http://dx.doi.org/10.1007/978-3-319-03077-7_2
http://dx.doi.org/10.1007/978-3-319-08867-9_43
http://dx.doi.org/10.1007/978-3-319-08867-9_43
http://dx.doi.org/10.1007/978-3-642-54807-9_12
http://dx.doi.org/10.1007/978-3-642-54807-9_12
http://dx.doi.org/10.1007/978-3-642-33558-7_39
http://dx.doi.org/10.1007/978-3-642-33558-7_39
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311
http://dx.doi.org/10.1007/978-3-319-18008-3_26
http://dx.doi.org/10.1007/978-3-319-59776-8_5
http://dx.doi.org/10.1007/978-3-319-59776-8_5
http://dx.doi.org/10.1007/978-3-642-38171-3_18

MiniZinc with Strings 75

40. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis tool
for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
154–157. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 13

41. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effective
search-space pruning for solvers of string equations, regular expressions and length
constraints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 235–254. Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 14

42. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web appli-
cation analysis. In: SIGSOFT, pp. 114–124. ACM (2013)

43. Zhou, N.-F., Kjellerstrand, H.: The Picat-SAT compiler. In: Gavanelli, M., Reppy,
J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 48–62. Springer, Cham (2016). doi:10.
1007/978-3-319-28228-2 4

http://dx.doi.org/10.1007/978-3-642-12002-2_13
http://dx.doi.org/10.1007/978-3-319-21690-4_14
http://dx.doi.org/10.1007/978-3-319-28228-2_4
http://dx.doi.org/10.1007/978-3-319-28228-2_4

Slicing Concurrent Constraint Programs

Moreno Falaschi1(B), Maurizio Gabbrielli2, Carlos Olarte3,
and Catuscia Palamidessi4

1 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Università di Siena, Siena, Italy
moreno.falaschi@unisi.it

2 Dipartimento di Informatica - Scienza e Ingegneria,
Università di Bologna, Bologna, Italy

gabbri@cs.unibo.it
3 ECT, Universidade Federal do Rio Grande do Norte, Natal, Brazil

carlos.olarte@gmail.com
4 INRIA and LIX, École Polytechnique, Palaiseau, France

catuscia@lix.polytechnique.fr

Abstract. Concurrent Constraint Programming (CCP) is a declara-
tive model for concurrency where agents interact by telling and ask-
ing constraints (pieces of information) in a shared store. Some previous
works have developed (approximated) declarative debuggers for CCP
languages. However, the task of debugging concurrent programs remains
difficult. In this paper we define a dynamic slicer for CCP and we show
it to be a useful companion tool for the existing debugging techniques.
We start with a partial computation (a trace) that shows the presence of
bugs. Often, the quantity of information in such a trace is overwhelming,
and the user gets easily lost, since she cannot focus on the sources of the
bugs. Our slicer allows for marking part of the state of the computation
and assists the user to eliminate most of the redundant information in
order to highlight the errors. We show that this technique can be tailored
to timed variants of CCP. We also develop a prototypical implementation
freely available for making experiments.

Keywords: Concurrent Constraint Programming · Program slicing ·
Debugging

1 Introduction

Concurrent constraint programming (CCP) [24,26] (see a survey in [22]) com-
bines concurrency primitives with the ability to deal with constraints, and hence,
with partial information. The notion of concurrency is based upon the shared-
variables communication model. CCP is intended for reasoning, modeling and
programming concurrent agents (or processes) that interact with each other and
their environment by posting and asking information in a medium, a so-called
store. Agents in CCP can be seen as both computing processes (behavioral style)

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 76–93, 2017.
DOI: 10.1007/978-3-319-63139-4 5

Slicing Concurrent Constraint Programs 77

and as logic formulae (declarative style). Hence CCP can exploit reasoning tech-
niques from both process calculi and logic.

CCP is a very flexible model and then, it has been applied to an increasing
number of different fields such as probabilistic and stochastic [4], timed [8,18,25]
and mobile [23] systems. More recently, CCP languages have been proposed for the
specification of spatial and epistemic behaviors as in, e.g., social networks [14,20].

One crucial problem when working with a concurrent language is being able
to provide tools to debug programs. This is particularly useful for a language
in which a program can generate a large number of parallel running agents.
In order to tame this complexity, abstract interpretation techniques have been
considered (e.g. in [6,7,11]) as well as (abstract) declarative debuggers following
the seminal work of Shapiro [27]. However, these techniques are approximated
(case of abstract interpretation) or it can be difficult to apply them when dealing
with complex programs (case of declarative debugging). It would be useful to
have a semi automatic tool able to interact with the user and filter, in a given
computation, the information which is relevant to a particular observation or
result. In other words, the programmer could mark the outcome that she is
interested to check in a particular computation that she suspects to be wrong.
Then, a corresponding depurated partial computation is obtained automatically,
where only the information relevant to the marked parts is present.

Slicing was introduced in some pioneer works by Mark Weiser [28]. It was
originally defined as a static technique, independent of any particular input of
the program. Then, the technique was extended by introducing the so called
dynamic program slicing [15]. This technique is useful for simplifying the debug-
ging process, by selecting a portion of the program containing the faulty code.
Dynamic program slicing has been applied to several programming paradigms,
for instance to imperative programming [15], functional programming [19], Term
Rewriting [1], and functional logic programming [2]. The reader may refer to [13]
for a survey.

In this paper we present the first formal framework for CCP dynamic slicing
and show, by some working examples and a prototypical tool, the main features
of this approach. Our aim is to help the programmer to debug her program, in
cases where she could not find the bugs by using other debuggers. We proceed
with three main steps. First we extend the standard operational semantics of
CCP to a “collecting semantics” that adds the needed information for the slicer.
Second, we propose several analyses of the faulty situation based on error symp-
toms, including causality, variable dependencies, unexpected behaviors and store
inconsistencies. Thirdly, we define a marking algorithm of the redundant items
and define a trace slice. Our algorithm is flexible and it can deal with different
variants of CCP. In particular, we show how to apply it to timed extensions of
CCP [25].

Organization. Section 2 describes CCP and its operational semantics. In Sect. 3
we introduce a slicing technique for CCP. In Sect. 4 we extend our method to
consider timed CCP programs. We present a working prototypical implemen-
tation of the slicer available at http://subsell.logic.at/slicer/. We describe an

http://subsell.logic.at/slicer/

78 M. Falaschi et al.

example using the slicer to debug a multimedia interacting system programmed
in timed CCP. Due to lack of space, other examples are given only in the web
page of the tool as, for instance, a biochemical system specified in timed CCP.
Finally, Sect. 5 concludes.

2 Concurrent Constraint Programming

Processes in CCP interact with each other by telling and asking constraints
(pieces of information) in a common store of partial information. The type of
constraints is not fixed but parametric in a constraint system (CS). Intuitively,
a CS provides a signature from which constraints can be built from basic tokens
(e.g., predicate symbols), and two basic operations: conjunction (�) and variable
hiding (∃). The CS defines also an entailment relation (|=) specifying inter-
dependencies between constraints: c |= d means that the information d can
be deduced from the information c. Such systems can be formalized as a Scott
information system as in [26], as cylindric algebras [9], or they can be built upon
a suitable fragment of logic e.g., as in [18]. Here we follow [9], since the other
approaches can be seen as an instance of this definition.

Definition 1 (Constraint System –CS–). A cylindric constraint system is
a structure C = 〈C,≤,�, t, f,Var ,∃,D〉 s.t.

– 〈C,≤,�, t, f〉 is a complete algebraic lattice with � the lub operation (repre-
senting conjunction). Elements in C are called constraints with typical ele-
ments c, c′, d, d′..., and t, f the least and the greatest elements. If c ≤ d, we
say that d entails c and we write d |= c. If c ≤ d and d ≤ c we write c ∼= d.

– Var is a denumerable set of variables and for each x ∈ Var the function
∃x : C → C is a cylindrification operator satisfying: (1) ∃x(c) ≤ c. (2) If c ≤ d
then ∃x(c) ≤ ∃x(d). (3) ∃x(c�∃x(d)) ∼= ∃x(c)�∃x(d). (4) ∃x∃y(c) ∼= ∃y∃x(c).
(5) For an increasing chain c1 ≤ c2 ≤ c3..., ∃x

⊔
i ci

∼= ⊔
i ∃x(ci).

– For each x, y ∈ Var, the constraint dxy ∈ D is a diagonal element and it
satisfies: (1) dxx

∼= t. (2) If z is different from x, y then dxy
∼= ∃z(dxz � dzy).

(3) If x is different from y then c ≤ dxy � ∃x(c � dxy).

The cylindrification operator models a sort of existential quantification for hiding
information. As usual, ∃x.c binds x in c. We use fv(c) (resp. bv(c)) to denote the
set of free (resp. bound) variables in c. The diagonal element dxy can be thought
of as the equality x = y, useful to define substitutions of the form [t/x] (see the
details, e.g., in [11]).

As an example, consider the finite domain constraint system (FD) [12]. This
system assumes variables to range over finite domains and, in addition to equal-
ity, one may have predicates that restrict the possible values of a variable as in
x < 42.

Slicing Concurrent Constraint Programs 79

2.1 The Language of CCP Processes

In the spirit of process calculi, the language of processes in CCP is given by a
small number of primitive operators or combinators as described below.

Definition 2 (Syntax of Indeterminate CCP [26]). Processes in CCP are
built from constraints in the underlying constraint system and the syntax:

P,Q ::= skip | tell(c) |
∑

i∈I

ask (ci) then Pi | P ‖ Q | (localx)P | p(x)

The process skip represents inaction. The process tell(c) adds c to the cur-
rent store d producing the new store c � d. Given a non-empty finite set of
indexes I, the process

∑

i∈I

ask (ci) then Pi non-deterministically chooses Pk

for execution if the store entails ck. The chosen alternative, if any, precludes the
others. This provides a powerful synchronization mechanism based on constraint
entailment. When I is a singleton, we shall omit the “

∑
” and we simply write

ask (c) then P .
The process P ‖ Q represents the parallel (interleaved) execution of P and Q.

The process (localx)P behaves as P and binds the variable x to be local to it. We
use fv(P) (resp. bv(P)) to denote the set of free (resp. bound) variables in P .

Given a process definition p(y) Δ= P , where all free variables of P are in the
set of pairwise distinct variables y, the process p(x) evolves into P [x/y]. A CCP
program takes the form D.P where D is a set of process definitions and P is a
process.

The Structural Operational Semantics (SOS) of CCP is given by the transi-
tion relation γ −→ γ′ satisfying the rules in Fig. 1. Here we follow the formulation
in [10] where the local variables created by the program appear explicitly in the
transition system and parallel composition of agents is identified to a multiset of
agents. More precisely, a configuration γ is a triple of the form (X;Γ ; c), where
c is a constraint representing the store, Γ is a multiset of processes, and X is
a set of hidden (local) variables of c and Γ . The multiset Γ = P1, P2, . . . , Pn

represents the process P1 ‖ P2 ‖ · · · ‖ Pn. We shall indistinguishably use both
notations to denote parallel composition. Moreover, processes are quotiented by
a structural congruence relation ∼= satisfying: (STR1) P ∼= Q if they differ only
by a renaming of bound variables (alpha conversion); (STR2) P ‖ Q ∼= Q ‖ P ;
(STR3) P ‖ (Q ‖ R) ∼= (P ‖ Q) ‖ R; (STR4) P ‖ skip ∼= P .

Let us briefly explain the rules in Fig. 1. A tell agent tell(c) adds c to the
current store d (Rule RTELL); the process

∑

i∈I

ask (ci) then Pi executes Pk if

its corresponding guard ck can be entailed from the store (Rule RSUM); a local
process (localx)P adds x to the set of hidden variable X when no clashes of
variables occur (Rule RLOC). Observe that Rule REQUIV can be used to do alpha
conversion if the premise of RLOC cannot be satisfied; the call p(x) executes the
body of the process definition (Rule RCALL).

80 M. Falaschi et al.

Fig. 1. Operational semantics for CCP calculi

Definition 3 (Observables). Let −→∗ denote the reflexive and transitive clo-
sure of −→. If (X;Γ ; d) −→∗ (X ′;Γ ′; d′) and ∃X ′.d′ |= c we write (X;Γ ; d) ⇓c.
If X = ∅ and d = t we simply write Γ ⇓c.

Intuitively, if P is a process then P ⇓c says that P can reach a store d strong
enough to entail c, i.e., c is an output of P . Note that the variables in X ′ above
are hidden from d′ since the information about them is not observable.

3 Slicing a CCP Program

Dynamic slicing is a technique that helps the user to debug her program by
simplifying a partial execution trace, thus depurating it from parts which are
irrelevant to find the bug. It can also help to highlight parts of the programs
which have been wrongly ignored by the execution of a wrong piece of code.

Our slicing technique consists of three main steps:

S1. Generating a (finite) trace of the program. For that, we propose a collecting
semantics that generates the (meta) information needed for the slicer.

S2. Marking the final store, to choose some of the constraints that, according
to the symptoms detected, should or should not be in the final store.

S3. Computing the trace slice, to select the processes and constraints that were
relevant to produce the (marked) final store.

3.1 Collecting Semantics (Step S1)

The slicer we propose requires some extra information from the execution of
the processes. More precisely, (1) in each operational step γ → γ′, we need to
highlight the process that was reduced; and (2) the constraints accumulated in
the store must reflect, exactly, the contribution of each process to the store.

In order to solve (1) and (2), we propose a collecting semantics that extracts
the needed meta information for the slicer. The rules are in Fig. 2 and explained
below.

The semantics considers configurations of the shape (X;Γ ;S) where X is a
set of hidden variables, Γ is a sequence of processes with identifiers and S is a set
of atomic constraints. Let us explain the last two components. We identify the

Slicing Concurrent Constraint Programs 81

Fig. 2. Collecting semantics for CCP calculi. Γ and Γ ′ are (possibly empty) sequences
of processes. fvars = X ∪ fv(S) ∪ fv(Γ) ∪ fv(Γ ′). In “:j”, j is a fresh identifier.

parallel composition Q = P1 ‖ · · · ‖ Pn with the sequence ΓQ = P1 : i1, · · · , Pn : in
where ij ∈ N is a unique identifier for Pj . Abusing of the notation, we usually
write Q : i instead of ΓQ when the indexes in the parallel composition are unim-
portant. Moreover, we shall use ε to denote an empty sequence of processes.
The context Γ, P : i, Γ ′ represents that P is preceded and followed, respec-
tively, by the (possibly empty) sequences of processes Γ and Γ ′. The use of
indexes will allow us to distinguish, e.g., the three different occurrences of P in
“Γ1, P : i, Γ2, P :j, (ask (c) then P) :k”.

Transitions are labeled with
[i]k−−→ where i is the identifier of the reduced

process and k can be either ⊥ (undefined) or a natural number indicating the
branch chosen in a non-deterministic choice (Rule R′

SUM). In each rule, the
resulting process has a new/fresh identifier (see e.g., j in Rule R′

LOC). This
new identifier can be obtained, e.g., as the successor of the maximal identifier
in the previous configuration. For the sake of readability, we write [i] instead of
[i]⊥. Moreover, we shall avoid the identifier “ : i” when it can be inferred from
the context.

Stores and Configurations. The solution for (2) amounts to consider the store, in
a configuration, as a set of (atomic) constraints and not as a constraint. Then,
the store {c1, · · · , cn} represents the constraint c1 � · · · � cn.

Consider the process tell(c) and let V ⊆ V ars. The Rule R′
TELL first decom-

poses the constraint c in its atoms. For that, assume that the bound variables in
c are all distinct and not in V (otherwise, by alpha conversion, we can find c′ ∼= c
satisfying such condition). We define atoms(c, V) = 〈bv(c), basic(c)〉 where

basic(c) =

⎧
⎨

⎩

c if c is an atom, t, f or dxy

basic(c′) if c = ∃x.c′

basic(c1) ∪ basic(c2) if c = c1 � c2

Observe that in Rule R′
TELL, the parameter V of the function atoms is the

set of free variables occurring in the context, i.e., fvars in Fig. 2. This is needed to
perform alpha conversion of c (which is left implicit in the definition of basic(·))
to satisfy the above condition on bound names.

82 M. Falaschi et al.

Rule R′
SUM signals the number of the branch k chosen for execution. Rule

R′
LOC chooses a fresh variable x′, i.e., a variable not in the set of free variables

of the configuration (fvars). Hence, we execute the process P [x′/x] and add x′

to the set X of local variables. Rule R′
CALL is self-explanatory.

It is worth noticing that we do not consider a rule for structural congruence in
the collecting semantics. Such rule, in the system of Fig. 1, played different roles.
Axioms STR2 and STR3 provide agents with a structure of multiset (commuta-
tive and associative). As mentioned above, we consider in the collecting semantics
sequences of processes to highlight the process that was reduced in a transition.
The sequence Γ in Fig. 2 can be of arbitrary length and then, any of the enabled
processes in the sequence can be picked for execution. Axiom STR1 allowed us to
perform alpha-conversion on processes. This is needed in RLOC to avoid clash of
variables. Note that the new Rule R′

LOC internalizes such procedure by picking
a fresh variable x′. Finally, Axiom STR4 can be used to simplify skip processes
that can be introduced, e.g., by a RTELL transition. Observe that the collecting
semantics does not add any skip into the configuration (see Rule R′

TELL).

Example 1. Consider the following toy example. Let D contain the process def-
inition A

Δ= tell(z > x + 4) and D.P be a program where
P = tell(y < 7) ‖ ask (x < 0) then A ‖ tell(x = −3). The following is a

possible trace generated by the collecting semantics.

(∅; tell(y < 7) :1,ask (x < 0) then A :2, tell(x = −3) :3; t)
[1]−→ (∅;ask (x < 0) then A :2, tell(x = −3) :3; y < 7)
[3]−→ (∅;ask (x < 0) then A :2; y < 7, x = −3)

[2]1−−→ (∅;A :4; y < 7, x = −3)
[4]−→ (∅; tell(z > x + 4):5; y < 7, x = −3)

[5]−→ (∅; ε; y < 7, x = −3, z > x + 4)

Now we introduce the notion of observables for the collecting semantics and
we show that it coincides with that of Definition 3 for the operational semantics.

Definition 4
(Observables Collecting Semantics). We write γ

[i1,...,in]k1,...,kn−−−−−−−−−−−→ γ′ when-

ever γ = (X0;Γ0;S0)
[i1]k1−−−→ · · · [in]kn−−−−→ (Xn;Γn;Sn) = γ′. Moreover, if

∃Xn.
⊔

d∈Sn

d |= c, then we write γ �c. If X0 = S0 = ∅, we simply write Γ0 �c.

Theorem 1 (Adequacy). For any process P , constraint c and i ∈ N, P ⇓c iff
P : i �c

Proof (sketch) (⇒). The proof proceeds by induction on the length of the deriva-
tion needed to perform the output c in P ⇓c and using the following results.

Given a set of variables V , a constraint d and a set of constraints S, let us
use �d�V to denote (the resulting tuple) atoms(d, V) and �S�V to denote the
constraint ∃V.

⊔

ci∈S

ci. If 〈Y, S〉 = �d�V , from the definition of atoms, we have

d ∼= �S�Y .

Slicing Concurrent Constraint Programs 83

Let Γ (resp. Ψ) be a multiset (resp. sequence) of processes. Let us use �Γ � to
denote any sequence of processes with distinct identifiers built from the processes
in Γ and �Ψ� to denote the multiset built from the processes in Ψ . Consider
now the transition γ = (X;Γ ; d) −→ (X ′;Γ ′; d′). Let 〈Y, S〉 = �d�V where
V = X ∪ fv(Γ)∪ fv(d). By choosing the same process reduced in γ, we can show
that there exist i, k s.t. the collecting semantics mimics the same transition as

(X ∪ Y, �Γ �, S)
[i]k−−→ (X ′ ∪ Y ′; �Γ ′′�;S′) where d′ ∼= �S′�Y ′ and Γ ′′ ∼= Γ ′.

The (⇐) side follows from similar arguments.

3.2 Marking the Store (Step S2)

From the final store the user must indicate the symptoms that are relevant to the
slice that she wants to recompute. For that, she must select a set of constraints
that considers relevant to identify a bug. Normally, these are constraints at the
end of a partial computation, and there are several strategies that one can follow
to identify them.

Let us suppose that the final configuration in a partial computation is
(X;Γ ;S). The symptoms that something is wrong in the program (in the sense
that the user identifies some unexpected configuration) may be (and not limited
to) the following:

1. Causality: the user identifies, according to her knowledge, a subset S′ ⊆
S that needs to be explained (i.e., we need to identify the processes that
produced S′).

2. Variable Dependencies: The user may identify a set of variables V ⊆ fv(S)
whose constraints need to be explored. Then, one would be interested in
marking the following set of constraints

Ssliced = {c ∈ S | vars(c) ∩ V �= ∅}
3. Unexpected behaviors: there is a constraint c entailed from the final store that

is not expected from the intended behavior of the program. Then, one would
be interested in marking the following set of constraints:

Ssliced =
⋃

{S′ ⊆ S |
⊔

S′ |= c and S′ is set minimal}
where “S′ is set minimal” means that for any S′′ ⊂ S′, S′′ �|= c.

4. Inconsistent output: The final store should be consistent with respect to a
given specification (constraint) c, i.e., S in conjunction with c must not be
inconsistent. In this case, the set of constraints to be marked is:

Ssliced =
⋃

{S′ ⊆ S |
⊔

S′ � c |= f and S′ is set minimal}
where “S′ is set minimal” means that for any S′′ ⊂ S′, S′′ � c �|= f.

We note that “set minimality”, in general, can be expensive to compute.
However, we believe that in some practical cases, as shown in the examples in
Sect. 4.1, this is not so heavy. In any case, we can always use supersets of the
minimal ones which are easier to compute but less precise for eliminating useless
information.

84 M. Falaschi et al.

3.3 Trace Slice (Step S3)

Starting from the set Ssliced above we can define a backward slicing step. We
shall identify, by means of a backward evaluation, the set of transitions (in the
original computation) which are necessary for introducing the elements in Ssliced.
By doing that, we will eliminate information not related to Ssliced.

Notation 1 (Sliced Terms). We shall use the fresh constant symbol • to
denote an “irrelevant” constraint or process. Then, for instance, “c � •” results
from a constraint c � d where d is irrelevant. Similarly, ask (c) then (P ‖ •) + •
results from a process of the form ask (c) then (P ‖ Q) +

∑
ask (cl) then Pl

where Q and the summands in
∑

ask (cl) then Pl are irrelevant. We also assume
that a sequence •, . . . , • with any number (≥1) of occurrences of • is equivalent
to a single occurrence.

A replacement is either a pair of the shape [T/i] or [T/c]. In the first (resp.
second) case, the process with identifier i (resp. constraint c) is replaced with T .
We shall use θ to denote a set of replacements and we call these sets as “replacing
substitutions”. The composition of replacing substitutions θ1 and θ2 is given by
the set union of θ1 and θ2, and is denoted as θ1 ◦ θ2. If Γ = P1 : i1, ..., Pn : in, for
simplicity, we shall write [Γ/j] instead of [P1 ‖ · · · ‖ Pn/j]. Moreover, we shall
write, e.g., ask (c) then Γ instead of ask (c) then (P1 ‖ · · · ‖ Pn).

Algorithm 1 computes the slicing. The last configuration in the sliced trace
is (Xn ∩ vars(S); •;S). This means that we only observe the local variables of
interest, i.e., those in vars(S). Moreover, note that the processes in the last
configuration were not executed and then, they are irrelevant (and abstracted
with •). Finally, the only relevant constraints are those in S.

Input: - a trace γ0

[i1]k1−−−−→ · · · [in]kn−−−−→ γn where γi = (Xi; Γi; Si)
- a set S ⊆ Sn

Output: a sliced trace γ′
0 −→ · · · −→ γ′

n

1 begin
2 let θ = ∅ in
3 γ′

n ← (Xn ∩ vars(S); •; S);
4 for l= n − 1 to 0 do
5 θ ← sliceProcess(γl, γl+1, il+1, kl+1, θ, S) ◦ θ;
6 γ′

l ← (Xl ∩ vars(S) ; Γlθ ; Sl ∩ S)

7 end

8 end
Algorithm 1: Trace Slicer

The algorithm backwardly computes the slicing by accumulating replac-
ing pairs in θ. The new replacing substitutions are computed by the func-

tion sliceProcess in Algorithm 2. Suppose that γ
[i]k−−→. We consider each kind

of process. For instance, assume a R′
TELL transition γ = (Xγ ;Γ1, tell(c) :

Slicing Concurrent Constraint Programs 85

1 Function sliceProcess(γ, ψ, i, k, θ, S)
2 let γ = (Xγ ; Γ, P : i, Γ ′; Sγ) and ψ = (Xψ; Γ, ΓQ, Γ ′; Sψ) in
3 match P with
4 case tell(c)
5 let c′ = sliceConstraints(Xγ , Xψ, Sγ , Sψ, S) in
6 if c′ = • or c′ = ∃x.• then return [•/i] else return [tell(c′)/i];

7 case
∑

ask (cl) then Ql

8 if ΓQθ = • then return [•/i] else return
[ask (ck) then (ΓQθ) + • / i];

9 case (localx) Q
10 let {x′} = Xψ \ Xγ in
11 if ΓQ[x′/x]θ = • then return [•/i] else return

[(localx′) ΓQ[x′/x]θ/i];

12 case p(y)
13 if ΓQθ = • then return [•/i] else return ∅;

14 end

15 end
16 Function sliceConstraints(Xγ , Xψ, Sγ , Sψ, S)
17 let Sc = Sψ \ Sγ and θ = ∅ in
18 foreach ca ∈ Sc \ S do θ ← θ ◦ [•/ca] ;
19 return ∃Xψ\Xγ .

⊔
Scθ

20 end
Algorithm 2: Slicing Processes and Constraints

i, Γ2;Sγ)
[i]−→ (Xψ;Γ1, Γ2;Sψ) = ψ. We note that Xγ ⊆ Xψ and Sγ ⊆ Sψ.

We replace the constraint c with its sliced version c′ computed by the function
sliceConstraints. In that function, we compute the contribution of tell(c) to
the store, i.e., Sc = Sψ\Sγ . Then, any atom ca ∈ Sc not in the relevant set
of constraints S is replaced by •. By joining together the resulting atoms, and
existentially quantifying the variables in Xψ\Xγ (if any), we obtain the sliced
constraint c′. In order to further simplify the trace, if c′ is • or ∃x.• then we
substitute tell(c) with • (thus avoiding the “irrelevant” process tell(•)).

In a non-deterministic choice, all the precluded choices are discarded (“+ •”).
Moreover, if the chosen alternative Qk does not contribute to the final store (i.e.,
ΓQθ = •), then the whole process

∑
ask (cl) then Pl becomes •.

Consider the process (localx)Q. Note that x may be replaced to avoid a
clash of names (see R′

LOC). The (new) created variable must be {x′} = Xψ\Xγ .
Then, we check whether ΓQ[x′/x] is relevant or not to return the appropriate
replacement. The case of procedure calls can be explained similarly.

Example 2 Let a, b, c, d, e be constraints without any entailment and consider the
process R = ask (a) then tell(c) ‖ ask (c) then (tell(d) ‖ tell(b)) ‖ tell(a) ‖ ask (e) then skip.

In any execution of R, the final store is {a, b, c, d}. If the user selects only
{d} as slicing criterion, our implementation (see Sect. 4.1) returns the following
output (omitting the processes’ identifiers):

86 M. Falaschi et al.

[0; * || ask(c, tell(d) || *) || * || * || * ; *] -->
[0; * || tell(d) || * || * || * || * ; *] -->
[0; * || * || * || * || * || * ; d,*] -->
[0; * || * || * || * || * || * ; d,*] --> stop

Note that only the relevant part of the process ask (c) then (tell(d) ‖ tell(b))
is highlighted as well as the process tell(d) that introduced d in the final store.

Also note that the process P = ask (a) then tell(c) is not selected in the
trace since c is not part of the marked store. However, one may be interested
in marking this process to discover the causality relation between P and Q =
ask (c) then (tell(d) ‖ tell(b)). Namely, P adds c to the store, needed in Q to
produce d.

It turns out that we can easily adapt Algorithm2 to capture such causality
relations as follows. Assume that sliceProcess returns both, a replacement θ and
a constraint c, i.e., a tuple of the shape 〈θ, c〉. In the case of

∑
ask (cl) then Pl, if

ΓQθ �= •, we return the pair 〈[ask (ck) then Γkθ+•/i], ck〉. In all the other cases,
we return 〈θ, t〉 where θ is as in Algorithm 2. Intuitively, the second component
of the tuple represents the guard that was entailed in a “relevant” application
of the rule R′

SUM. Therefore, in Algorithm 1, besides accumulating θ, we add the
returned guard to the set of relevant constraints S. This is done by replacing the
line 5 in Algorithm 1 with

let〈θ′, c〉 = sliceProcess(γl, γl+1, il+1, kl+1, θ, S) ◦ θ in
θ ← θ′ ◦ θ
S ← S ∪ Sminimal(Sl, c)

where Sminimal(S, c) = ∅ if c = t; otherwise, Sminimal(S, c) =
⋃{S′ ⊆ S |⊔

S′ |= c and S′ is set minimal}. Therefore, we add to S the minimal set of
constraints in Sk that “explains” the entailed guard c of an ask agent.

With this modified version of the algorithm (supporting causality relations),
the output for the program in Example 2 is:

[0 ; ask(a, tell(c)) || ask(c, tell(d) || *) || * || tell(a) || * ; *][3]

where the process tell(a) is also selected since the execution of ask (a) then tell(c)
depends on this process.

Soundness. We conclude here by showing that the slicing procedure computes
a suitable approximation of the concrete trace. Given two processes P, P ′, we
say that P ′ approximates P , notation P �� P ′, if there exists a (possibly empty)
replacement θ s.t. P ′ = Pθ (i.e., P ′ is as P but replacing some subterms with •).
Let γ = (X;Γ ;S) and γ′ = (X ′;Γ ′;S′) be two configurations s.t. |Γ | = |Γ ′|. We
say that γ′ approximates γ, notation γ �� γ′, if X ′ ⊆ X, S′ ⊆ S and Pi �� P ′

i

for all i ∈ 1..|Γ |.

Theorem 2. Let γ0

[i1]k1−−−→ · · · [in]kn−−−−→ γn be a partial computation and γ′
0

[i1]k1−−−→
· · · [in]kn−−−−→ γ′

n be the resulting sliced trace according to an arbitrary slicing crite-
rion. Then, for all t ∈ 1..n, γt �� γ′

t. Moreover, let Q =
∑

ask (ck) then Pk

Slicing Concurrent Constraint Programs 87

and assume that (Xt−1;Γ,Q : it, Γ ′;St−1)
[it]kt−−−→ (Xt;Γ, Pkt

: j, Γ ′;St) for some
t ∈ 1..n. If the sliced trace is computed with the Algorithm that supports causality
relations, then ∃X ′

t−1(
⊔

S′
t−1) |= ckt

.

4 Applications to Timed CCP

Reactive systems [3] are those that react continuously with their environment
at a rate controlled by the environment. For example, a controller or a signal-
processing system, receives a stimulus (input) from the environment, computes
an output and then waits for the next interaction with the environment.

Timed CCP (tcc) [18,25] is an extension of CCP tailoring ideas from Syn-
chronous Languages [3]. More precisely, time in tcc is conceptually divided into
time intervals (or time-units). In a particular time interval, a CCP process P
gets an input c from the environment, it executes with this input as the initial
store, and when it reaches its resting point, it outputs the resulting store d to
the environment. The resting point determines also a residual process Q that is
then executed in the next time-unit. The resulting store d is not automatically
transferred to the next time-unit. This way, outputs of two different time-units
are not supposed to be related.

Definition 5 (Syntax of tcc [18,25]). The syntax of tcc is obtained by adding
to Definition 2 the processes next P | unless (c) next P | !P .

The process next P delays the execution of P to the next time interval.
We shall use next nP to denote P preceded with n copies of “next ” and
next 0P = P .

The time-out unless (c) next P is also a unit-delay, but P is executed in
the next time-unit only if c is not entailed by the final store at the current time
interval.

The replication !P means P ‖ nextP ‖ next2P ‖ . . ., i.e., unboundedly
many copies of P but one at a time. We note that in tcc, recursive calls must be
guarded by a next operator to avoid infinite computations during a time-unit.
Then, recursive definitions can be encoded via the ! operator [17].

The operational semantics of tcc considers internal and observable tran-
sitions. The internal transitions correspond to the operational steps that take
place during a time-unit. The rules are the same as in Fig. 2 plus:⊔

S |= c

(X;Γ,unless (c) next P : i, Γ ′;S)
[i]−→ (X;Γ, Γ ′;S)

RUn

(X;Γ, !P, Γ ′;S)
[i]−→ (X;Γ, P :j,next !P :j′, Γ ′;S)

R!

where j and j′ are fresh identifiers. The unless process is precluded from
execution if its guard can be entailed from the current store. The process !P
creates a copy of P in the current time-unit and it is executed in the next time-
unit. The seemingly missing rule for the next operator is clarified below.

88 M. Falaschi et al.

The observable transition P
(c,d)

====⇒ Q (“P on input c, reduces in one time-
unit to Q and outputs d”) is obtained from a finite sequence of internal reduc-
tions:

(∅;Γ ; c)
[i1,...,in]k1,...,kn−−−−−−−−−−−→ (X;Γ ′; c′) �−→

Γ
(c,∃X.c′)
====⇒ (localX)F (Γ ′)

RObs

The process F (Γ ′) (the continuation of Γ ′) is obtained as follow:

F (R) =

⎧
⎨

⎩

skip if R = skip or R = ask (c) then R′

F (R1) ‖ F (R2) if R = R1 ‖ R2

Q if R = next Q or R = unless (c) next Q

The function F (R) (the future of R) returns the processes that must be exe-
cuted in the next time-unit. More precisely, it unfolds next and unless expres-
sions. Notice that an ask process reduces to skip if its guard was not entailed
by the final store. Notice also that F is not defined for tell(c), !Q, (localx)P or
p(x) processes since all of them give rise to an internal transition. Hence these
processes can only appear in the continuation if they occur within a next or
unless expression.

4.1 A Trace Slicer for tcc

From the execution point of view, only the observable transition is relevant
since it describes the input-output behavior of processes. However, when a tcc
program is debugged, we have to consider also the internal transitions. This
makes the task of debugging even harder when compared to CCP.

We implemented in Maude (http://maude.cs.illinois.edu) a prototypical ver-
sion of a slicer for tcc (and then for CCP) that can be found at http://subsell.
logic.at/slicer/.

The slicing technique for the internal transition is based on the Algorithm1
by adding the following cases to Algorithm2:
1 case unless (c) next Q return [•/i] ;
2 case !Q
3 if ΓQθ = • then return [•/i] else return [!(Qθ)/i];

Note that if an unless process evolves during a time-unit, then it is irrelevant.
In the case of !P , we note that ΓQ = Q : j,next !Q : j′. We check whether P is
relevant in the current time-unit (Q) or in the following one (next !Q). If this
is not the case, then !Q is irrelevant.

Recall that next processes do not exhibit any transition during a time-unit
and then, we do not consider this case in the extended version of Algorithm2.

For the observable transition we proceed as follows. Consider a trace of n
observable steps γ0 ====⇒ · · · ====⇒ γn and a set Sslice of relevant constraints
to be observed in the last configuration γn. Let θn be the replacement computed
during the slicing process of the (internal) trace generated from γn. We propagate
the replacements in θn to the configuration γn−1 as follows:

http://maude.cs.illinois.edu
http://subsell.logic.at/slicer/
http://subsell.logic.at/slicer/

Slicing Concurrent Constraint Programs 89

1. In γn−1 we set Ssliced = ∅. Note that the unique store of interest for the user
is the one in γn. Recall also that the final store in tcc is not transferred to the
next time-unit. Then, only the processes (and not the constraints) in γn−1

are responsible for the final store in γn.

2. Let ψ be the last internal configuration in γn−1, i.e., γn−1

[i1,...,im]k1,...,km−−−−−−−−−−−→
ψ �−→ and γn = F (ψ). We propagate the replacements in θn to ψ before
running the slicer on the trace starting from γn−1. For that, we compute a
replacement θ′ that must be applied to ψ as follows:

– If there is a process R = next P : i in ψ, then θ′ includes the replacement
[next (ΓP θn)/i]. For instance, if R = next (tell(c) ‖ tell(d)) and tell(c)
was irrelevant in γn, the resulting process in ψ is next (• ‖ tell(d)). The
case for unless (c) next P is similar.

– If there is a process R =
∑

l ask (cl) then Pl : i in ψ (which is irrelevant
since it was not executed), we add to θ′ the replacement [•/i].

3. Starting from ψθ, we compute the slicing on γn−1 (Algorithm 1).
4. This procedure continues until the first configuration γ0 is reached.

Example 3 Consider the following process definitions:

System
Δ= Beat2 ‖ Beat4 Beat2 Δ= tell(b2) ‖ next 2 Beat2

Beat4 Δ= tell(b4) ‖ next 4 Beat4

This is a simple model of a multimedia system that, every 2 (resp. 4) time-
units, produces the constraint b2 (resp. b4). Then, every 4 time-units, the system
produces both b2 and b4. If we compute 5 time-units and choose Sslice = {b4}
we obtain (omitting the process identifiers):

{1 / 5 > [System ; *] --> [Beat4 ; *] --> [next^4(Beat4) ; *]} ==>
{2 / 5 > [next^3(Beat4) ; *]} ==>
{3 / 5 > [next^2(Beat4) ; *] } ==>
{4 / 5 > [next(Beat4) ; *]} ==>
{5 / 5 > [Beat4 ; *] --> [tell(b4) || * ; *] --> [* ; b4]}

Note that all the executions of Beat2 in time-units 1, 3 and 5 are hidden
since they do not contribute to the observed output b4. More interestingly,
the execution of tell(b4) in time-unit 1, as well as the recursive call of Beat4
(next 4 Beat4) in time-unit 5, are also hidden.

Now assume that we compute an even number of time-units. Then, no con-
straint is produced in that time-unit and the whole execution of System is
hidden:
{1/4 > [* ; *]} ==> {2/4 > [* ; *]} ==>
{3/4 > [* ; *]} ==> {4/4 > [* ; *]}

As a more compelling example, consider the following process definitions:
Beat

Δ=
∏

i∈I1

next itell(beat) Start
Δ=

∑

i∈I2

next i(tell(start))

Check
Δ=!ask (start) then next 12(tell(stop)) System

Δ= Beat ‖ Start ‖ Check

where I1 = {0, 3, 5, 7, 9, 11, 14, 16, 18, 20, 22}, I2 = {0, 3, 5, 7, 9, 11} and Πi

stands for parallel composition. This process represents a rhythmic pattern

90 M. Falaschi et al.

where groups of “2”-unit elements separate groups of “3”-unit elements, e.g.,
3 2 2 2 2︸ ︷︷ ︸ 3 2 2 2 2 2︸ ︷︷ ︸. Such pattern appears in repertoires of Central African

Republic music [5] and were programmed in tcc in [21].
This pattern can be represented in a circle with 24 divisions, where “2” and

“3”-unit elements are placed. The “3”-unit intervals are displayed in red in Fig. 3.
The important property is asymmetry : if one attempts to break the circle into
two parts, it is not possible to have two equal parts. To be more precise, the
start and stop constraints divide the circle in two halves (see process Start)
and it is always the case that the constraint beat does not coincide in a time-
unit with the constraint stop. For instance, in Fig. 3(a) (resp. (b)), the circle is
divided in time-units 1 –start– to 13 –stop– (resp. 4 –start– to 16 –stop–). The
signal beat does not coincide with a stop: in Fig. 3(a) (resp. (b)), the beat is
added in time-unit 12 (resp. 15).

If we generate one of the possible traces and perform the slicing processes
for the time-unit 13 with Ssliced = {beat, stop}, we only observe as relevant
process Check (since no beat is produced in that time-unit):
{1 / 13 > [System ; *] --> [Check ; *] --> [! ask(start, next^12(tell(stop)) ; *]

--> [ask(start, next^12(tell(stop)) ; *] --> [next^12(tell(stop) ; *]} ==>
.... ==> ...
{11 / 13 > [next(next(tell(stop))) ; *]} ==>
{12 / 13 > [next(tell(stop)) || * ; *]} ==>
{13 / 13 > [tell(stop) ; *] --> [* ; stop][0]}

More interestingly, assume that we wrongly write a process Check that is not
“well synchronized” with the process Beat. For instance, let I ′

2 = {2}. In this
case, the start signal does not coincide with a beat. Then, in time-unit 15, we
(wrongly) observe both beat and stop (i.e., asymmetry is broken!). The trace
of that program (that can be found in tool’s web page) is quite long and difficult
to understand. On the contrary, the sliced one is rather simple:
{1 / 15 > [System ; *] --> [Beat || Check ; *] -->

[next^14(tell(beat) || next(! ask(start, next^12(tell(stop)); *]} ==>
{2 / 15 > [next^13(tell(beat))|| ! ask(start, next^12(tell(stop))) ; *]} ==>
{3 / 15 > [next^12(tell(beat)))|| ! ask(start, next^12(tell(stop)) ; *]} ==>
{4 / 15 > [next^11(tell(beat))|| next^11(tell(stop)|| * ; *] --> stop} ==>
...
{14 / 15 > [next(tell(beat)) || next(tell(stop)) || * ; *] --> stop} ==>
{15 / 15 > [tell(beat) || tell(stop) || * ; *] --> [tell(stop) || * ; beat] -->

[* ; beat,stop]}

Something interesting in this trace is that the ask in the Check process is hidden
from the time-unit 4 on (since it is not “needed” any more). Moreover, the only
tell(beat) process (from Beat definition) displayed is the one that is executed in
time-unit 15 (i.e., the one resulting from next 14tell(beat)). From this trace, it
is not difficult to note that the Start process starts on time-unit 3 (the process
next 11tell(stop) first appears on time-unit 4). This can tell the user that the
process Start begins its execution in a wrong time-unit. In order to confirm
this hypothesis, the user may compute the sliced trace up to time-unit 3 with
Ssliced = {beat, start} and notice that, in that time-unit, start is produced
but beat is not part of the store.

The reader may find in the web page of the tool a further example related to
biochemical systems. We modeled in tcc the P53/Mdm2 DNA-damage Repair

Slicing Concurrent Constraint Programs 91

Mechanism [16]. The slicer allowed us to detect two bugs in the written code.
We invite the reader to check in this example the length (and complexity) of the
buggy trace and the resulting sliced trace.

Fig. 3. Pattern of “2” and “3”-unit elements (taken from [5]).

5 Conclusions and Future Work

In this paper we introduced the first framework for slicing concurrent constraint
based programs, and showed its applicability for CCP and timed CCP. We imple-
mented a prototype of the slicer in Maude and showed its use in debugging a
program specifying a biochemical system and a multimedia interacting system.

Our framework is a good basis for dealing with other variants of CCP such as
linear CCP [10], spatial and epistemic CCP [14] as well as with other temporal
extensions of it [8]. We are currently working on extending our tool to cope with
these languages. We also plan to incorporate into our framework an assertion
language based on a suitable fragment of temporal logic. Such assertions will
specify invariants the program must satisfy during its execution. If the assertion
is not satisfied in a given state, then the execution is interrupted and a concrete
trace is generated to be later sliced. For instance, in the multimedia system, the
user may specify the invariant stop → (¬beat) (if stop is entailed then beat
cannot be part of the store) or stop → �beat (a stop state must be preceded
by a beat state).

Acknowledgments. We thank the anonymous reviewers for their detailed comments
and suggestions which helped us to improve our paper. The work of Olarte was funded
by CNPq and CAPES (Brazil). The work of Palamidessi and Olarte was supported by
the Regional Program STIC AMSUD “EPIC: EPistemic Interactive Concurrency”.

92 M. Falaschi et al.

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward trace slicing for rewrit-
ing logic theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 34–48. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 5

2. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using conditional trace slicing
for improving Maude programs. Sci. Comput. Program. 80, 385–415 (2014)

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

4. Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concurrent
constraint programming. Constraints 13(1–2), 66–90 (2008)

5. Chemillier, M.: Les Mathématiques Naturelles. Odile Jacob, Paris (2007)
6. Codish, M., Falaschi, M., Marriott, K.: Suspension analyses for concurrent logic

programs. ACM Trans. Program. Lang. Syst. 16(3), 649–686 (1994)
7. Comini, M., Titolo, L., Villanueva, A.: Abstract diagnosis for timed concurrent

constraint programs. Theor. Pract. Log. Program. 11(4–5), 487–502 (2011)
8. de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language.

Inf. Comput. 161(1), 45–83 (2000)
9. de Boer, F.S., Di Pierro, A., Palamidessi, C.: Nondeterminism and infinite compu-

tations in constraint programming. Theor. Comput. Sci. 151(1), 37–78 (1995)
10. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: oper-

ational and phase semantics. Inf. Comput. 165(1), 14–41 (2001)
11. Falaschi, M., Olarte, C., Palamidessi, C.: Abstract interpretation of temporal con-

current constraint programs. TPLP 15(3), 312–357 (2015)
12. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation, and

evaluation of the constraint language cc(FD). J. Log. Program. 37(1–3), 139–164
(1998)

13. Josep, S.: A vocabulary of program slicing-based techniques. ACM Comput. Surv.
44(3), 12:1–12:41 (2012)

14. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic
modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.)
CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32940-1 23

15. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988)

16. de Maria, E., Despeyroux, J., Felty, A.P.: A logical framework for systems biol-
ogy. In: Fages, F., Piazza, C. (eds.) FMMB 2014. LNCS, vol. 8738, pp. 136–155.
Springer, Cham (2014). doi:10.1007/978-3-319-10398-3 10

17. Nielsen, M., Palamidessi, C., Valencia, F.D.: On the expressive power of temporal
concurrent constraint programming languages. In: Proceedings of PPDP 2002, pp.
156–167. ACM (2002)

18. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint pro-
gramming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188
(2002)

19. Ochoa, C., Silva, J., Vidal, G.: Dynamic slicing of lazy functional programs based
on redex trails. High. Order Symbol. Comput. 21(1–2), 147–192 (2008)

20. Olarte, C., Pimentel, E., Nigam, V.: Subexponential concurrent constraint pro-
gramming. Theor. Comput. Sci. 606, 98–120 (2015)

http://dx.doi.org/10.1007/978-3-642-22438-6_5
http://dx.doi.org/10.1007/978-3-642-22438-6_5
http://dx.doi.org/10.1007/978-3-642-32940-1_23
http://dx.doi.org/10.1007/978-3-642-32940-1_23
http://dx.doi.org/10.1007/978-3-319-10398-3_10

Slicing Concurrent Constraint Programs 93

21. Olarte, C., Rueda, C., Sarria, G., Toro, M., Valencia, F.D.: Concurrent constraints
models of music interaction. In: Assayag, G., Truchet, C. (eds.) Constraint Pro-
gramming in Music, pp. 133–153. Wiley, Hoboken (2011)

22. Olarte, C., Rueda, C., Valencia, F.D.: Models and emerging trends of concurrent
constraint programming. Constraints 18(4), 535–578 (2013)

23. Olarte, C., Valencia, F.D.: Universal concurrent constraint programing: symbolic
semantics and applications to security. In: Wainwright, R.L., Haddad, H. (eds.)
SAC, pp. 145–150. ACM (2008)

24. Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge
(1993)

25. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint
programming. J. Symb. Comput. 22(5/6), 475–520 (1996)

26. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Wise, D.S. (ed.) POPL, pp. 333–352. ACM Press
(1991)

27. Shapiro, E.Y.: Algorithmic Program DeBugging. MIT Press, Cambridge (1983)
28. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)

Compilation and Optimization

A New Functional-Logic Compiler for Curry:
SPRITE

Sergio Antoy(B) and Andy Jost

Department of Computer Science, Portland State University, Portland, OR, USA
antoy@cs.pdx.edu, ajost@pdx.edu

Abstract. We introduce a new native code compiler for Curry code-
named Sprite. Sprite is based on the Fair Scheme, a compilation
strategy that provides instructions for transforming declarative, non-
deterministic programs of a certain class into imperative, deterministic
code. We outline salient features of Sprite, discuss its implementation
of Curry programs, and present benchmarking results. Sprite is the
first-to-date operationally complete implementation of Curry. Prelimi-
nary results show that ensuring this property does not incur a significant
penalty.

Keywords: Functional logic programming · Compiler implementation ·
Operational completeness

1 Introduction

The functional-logic language Curry [16,18] is a syntactically small extension of
the popular functional language Haskell. Its seamless combination of functional
and logic programming concepts gives rise to hybrid features that encourage
expressive, abstract, and declarative programs [5,18].

One example of such a feature is a functional pattern [3], in which functions
are invoked in the left-hand sides of rules. This is an intuitive way to construct
patterns with syntactically-sugared high-level features that puts patterns on a
more even footing with expressions. In Curry, patterns can be composed and
refactored like other code, and encapsulation can be used to hide details. We
illustrate this with function get, defined below, which finds the values associated
with a key in a list of key-value pairs.

with x = ++ [x] ++
get key (with (key, value)) = value

(1)

Operation with generates all lists containing x. The anonymous variables, indi-
cated by “ ”, are place holders for expressions that are not used. Function “++”
is the list-appending operator. When used in a left-hand side, as in the rule

This material is based upon work partially supported by the National Science Foun-
dation under Grant No. CCF-1317249.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 97–113, 2017.
DOI: 10.1007/978-3-319-63139-4 6

98 S. Antoy and A. Jost

for get, operation with produces a pattern that matches any list containing x.
Thus, the second argument to get is a list — any list — containing the pair
(key, value). The repeated variable, key, implies a constraint that, in this
case, ensures that only values associated with the given key are selected.

By similar means, we may identify keys:

key of (with (key,)) = key (2)

This non-deterministically returns a key of the given list; for example:

> key of [(’a’,0), (’b’,1), (’c’,2)]
’a’
’b’
’c’

(3)

This is just one of many features [5,18] that make Curry an appealing choice,
particularly when the desired properties of a program result are easy to describe,
but a set of step-by-step instructions to obtain the result is more difficult to
come by.

This paper describes work towards a new Curry compiler we call Sprite.
Sprite aims to be the first operationally complete Curry compiler, meaning it
should produce every value of a source program (given sufficient time and space
resources). This paper does not present new theoretical results. The foundations
of our work were previously presented in [7], that sets out rules for compil-
ing a functional-logic program (in the form of a graph rewriting system) into
abstract deterministic procedures that easily map to the instructions of a low-
level programming language. The main contribution of this work is a compiler
whose existence and performance prove that the completeness of the strategy
presented in [7] can be operationally achieved without incurring noticeable over-
head. The compiler generates object code that include several novel ideas. The
code, based on an open-source effort [22], is machine-independent and suitable
for optimization on various architectures. The graphs rewritten by the code have
nodes all of the same size. This allows destructive updates for redex replacement
which entirely by-pass the pointer redirection phase of a step and consequently
improves the efficiency eases memory management. The code also introduces a
very lean pattern matching scheme, specifically designed for functional logic
languages, which accommodate non-determinism and consequently is failure
tolerant.

Section 2 introduces Sprite at a high level, and describes the transforma-
tions it performs. Section 3 describes the implementation of Curry programs as
imperative code. Section 4 contains benchmark results. Section 5 describes other
Curry compilers. Section 6 addresses future work, and Sect. 7 contains our con-
cluding remarks.

A New Functional-Logic Compiler for Curry: SPRITE 99

2 The SPRITE Curry Compiler

Sprite is a native code compiler for Curry. Like all compilers, Sprite subjects
source programs to a series of transformations. To begin, an external program
is used to convert Curry source code into a desugared representation called
FlatCurry [17], which Sprite further transforms into a custom intermediate
representation we call ICurry. Then, following the steps laid out in the Fair
Scheme, Sprite converts ICurry into a graph rewriting system that implements
the program. This system is realized in a low-level, machine-independent lan-
guage provided by the open-source compiler infrastructure library LLVM [22].
That code is then optimized and lowered to native assembly, ultimately pro-
ducing an executable program. Sprite provides a convenience program, scc, to
coordinate the whole procedure.

2.1 ICurry vs FlatCurry

ICurry, where the “I” stands for “imperative,” is a form of Curry programs
suitable for translation into imperative code. ICurry is inspired by FlatCurry
[17], a popular representation of Curry programs that has been very successful
for a variety of tasks including implementations in Prolog [19]. FlatCurry pro-
vides expressions that resemble those of a functional program — e.g., pattern-
matching strategy is made explicit through case expressions that use symbolic
variables that have no corresponding element in an imperative language. These
case expressions may include local mutually recursive declarations in the form
of let blocks and conditionals in the form of nested case constructs which again
have no corresponding elements in an imperative language. ICurry’s purpose is to
represent the program in a more convenient imperative form — more convenient
since Sprite will ultimately implement it in an imperative language. In imper-
ative languages, local declarations and conditionals take the form of statements
while expressions are limited to constants and/or calls to subroutines, possibly
nested. ICurry provides statements for local declarations and conditionals. It
provides expressions that avoid constructs that cannot be directly translated
into the expressions of a imperative language.

In ICurry all non-determinism — including the implicit non-determinism in
high-level features, such as functional patterns — is expressed through choices.
A choice is the archetypal non-deterministic function, indicated by the symbol
“?” and defined by the following rules:

x ? = x
? y = y

(4)

The use of only choices is made possible, in part, by a duality between choices
and free variables [4,23]: any language feature expressed with choices can be
implemented with free variables and vice versa. Algorithms exists to convert one
to the other, meaning we are free to choose the most convenient representation
in Sprite.

100 S. Antoy and A. Jost

Finally, as in FlatCurry, the pattern-matching strategy in ICurry is made
explicit and guided by a definitional tree [1], a structure made up of stepwise
case distinctions that combines all rules of a function. We illustrate this for the
zip function, defined as:

zip [] = []
zip (:) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

(5)

The corresponding definitional tree is shown below as it might appear in ICurry.

zip = \a b -> case a of
[] -> []
(x:xs) -> case b of

[] -> []
(y:ys) -> (x,y) : zip xs ys

(6)

2.2 Evaluating ICurry

It is understood how to evaluate the right-hand side of (6) efficiently; the Spine-
less Tagless G-machine (STG) [28], for instance, is up to the task. But the
non-deterministic properties of functional-logic programs complicate matters.
To evaluate zip, its first argument must be reduced to head-normal form. In
a purely functional language, the root node of a head-normal form is always a
data constructor symbol (assuming partial application is implemented by a data-
like object), or else the computation fails. But for functional-logic programs,
two additional possibilities must be considered, leading to an extended case
distinction:

zip = \a b -> case a of
x ? y -> (pull-tab) - - implied
⊥ -> ⊥ - - implied
[] -> []
(x:xs) -> case b of ...

(7)

The infrastructure for executing this kind of pattern matching very efficiently
by means of dispatch tables will be described shortly, but for now we note two
things. First, there is no need for ICurry to spell out these extra cases, as they
can be generated by the compiler. Second, their presence calls for an expanded
notion of the computation that allows for additional node states. Because of this,
Sprite hosts computations in a graph whose nodes are taken from four classes:
constructors, functions, choices, and failures. Constructors and functions are pro-
vided by the source program; choices are built-in; and failures, denoted “⊥”, arise
from incompletely defined operations such as head, the function that returns the
head of a list. For example, head [] rewrites to “⊥”. A simple replacement there-
fore propagates failure from needed arguments to roots.

A New Functional-Logic Compiler for Curry: SPRITE 101

Choices execute a special step called a pull-tab [2,9]. Pull-tab steps lift non-
determinism out of needed positions, where they prevent completion of pattern
matches. The result is a choice between two more-definite expressions. A pull-tab
step is shown below:

zip (a ? b) c → zip a x ? zip b x where x = c (8)

A pattern match cannot proceed while (a ? b) is the first argument to zip
because there is no matching rule in the function definition (one cannot exist
because the choice symbol is disallowed on left-hand sides). We do not want
to choose between a and b because such a choice would have to be reconsid-
ered to avoid losing potential results. The pull-tab transformation “pulls” the
choice to an outermore position, producing two new subexpressions, zip a c and
zip b c, that can be evaluated further. The fact that c is shared in the result
illustrates a desirable property: that node duplication is minimal and localized.
Pull-tabbing involves some technicalities that we address later. The complete
details are in [2].

Due to the extra cases, additional node types, and, especially, the unusual
mechanics of pull-tabbing steps, we chose to develop in Sprite a new evalua-
tion machine from scratch rather than augment an existing one such as STG.
The property of pull-tabbing that it “breaks-out” of recursively-descending eval-
uation into nested expressions fundamentally changes the computation so that
existing functional strategies are difficult to apply. In Sprite, we have imple-
mented de novo an evaluation mechanism and runtime system based on the Fair
Scheme. These are the topic of the next section.

3 Implementation

In this section, we describe the implementation of Curry programs in imperative
code. Sprite generates LLVM code, but we assume most readers are not familiar
with that. So, rather than presenting the generated code, we describe the imple-
mented programs in terms of familiar concepts that appear directly in LLVM.
In this way, the reader can think in terms of an unspecified target language —
one similar to assembly — that implements those concepts. To facilitate the fol-
lowing description, we indicate in parentheses where a similar feature exists in
the C programming language.

In the target language, values are strongly typed, and the types include inte-
gers, pointers, arrays, structures and functions. Programs are arranged into com-
pilation units called modules that contain symbols. Symbols are visible to other
modules, and to control access to them each one is marked internal (static)
or external (extern). Control flow within functions is carried out by branch
instructions. These include unconditional branches (goto), conditional branches
(if, for, while) and indirect branches (goto*). The target of every branch
instruction is a function-local address (label). A call stack is provided, and it
is manipulated by call and return instructions that enter and exit functions,

102 S. Antoy and A. Jost

respectively. Calls are normally executed in a fresh stack frame, but the target
language also supports explicit tail recursion, and Sprite puts it to good use.

3.1 Expression Representation

The expressions evaluated by a program are graphs consisting of labeled nodes
having zero or more successors. Each node belongs to one of four classes, as
discussed in the previous section. For constructors and functions, node labels
are equivalent to symbols defined in the source program. Failures and choices
are labeled with reserved symbols. Successors are references to other nodes. The
number of successors, which equals the arity of the corresponding symbol, is fixed
at compile time. Partial applications are “firstfied”, i.e., encoded in first-order
rule as per [26].

Info Pointer Payload

Info Table
Step Function

.

.

.

Heap Object

Fig. 1. The heap object layout.

Sprite implements graph nodes as heap objects. The layout of a heap object
is shown in Fig. 1. The label is implemented as a pointer to a static info table
that will be described later. Sprite emits exactly one table for each symbol
in the Curry program. Successors are implemented as pointers to other heap
objects.

3.2 Evaluation

Evaluation in Sprite is the repeated execution of rewriting and pull-tabbing
steps. Both are implemented by two interleaved activities: replacement and
pattern-matching. A replacement produces a new graph from a previous one
by replacing a subexpression matching the left-hand side of a rule with the cor-
responding right-hand side. For instance, 1 + 1 might be replaced with 2. A
replacement is implemented by overwriting the heap object at the root of the

A New Functional-Logic Compiler for Curry: SPRITE 103

subexpression being replaced. The key advantage of this destructive update is
that no pointer redirection [12, Definition 8] [15] is required during a rewrite
step. Reusing a heap object also has the advantage of saving one memory allo-
cation and deallocation per replacement, but requires that every heap object be
capable of storing any node, whatever its arity. Sprite meets this requirement
by providing in heap objects a fixed amount of space capable of holding a small
number of successors. For nodes with more successors than would fit in this
space, the payload instead contains a pointer to a larger array. This approach
simplifies memory management for heap objects: since they are all the same
size, a single memory pool suffices. Because arities are known at compile time,
no runtime checks are needed to determine whether successor pointers reside in
the heap object. Sprite uses a simple mark-and-sweep garbage collector. It can
be changed or replaced easily and is not a focus of this work.

Pattern-matching consists of cascading case distinctions over the root symbol
of the expression being matched that culminate either in a replacement or in the
patter match of a subexpression. The Fair Scheme implements this according to
a strategy guided by the definitional trees encoded in ICurry. Case distinction
as exemplified in (7) assumes that an expression being matched is not rooted by
a function symbol. Thus, when a node needed to complete a match is labeled
by a function symbol, the expression rooted by that node is evaluated until it
is labeled by a non-function symbol. A function-labeled node, n, is evaluated
by a target function called the step function that performs a pattern match and
replacement at n. Each Curry function gives rise to one target function, a pointer
to which is stored in the associated info table (see Fig. 1).

selector range 0 .. 4

0 function
1 choice
2 failure
3 nil
4 cons

Fig. 2. Schematic representation of the Sprite tagged dispatching mechanism for a
distinction of a List type.

Operationally, pattern-matching amounts to evaluating nested case expres-
sions similar to the one shown in (7). Sprite implements this through a mech-
anism we call tagged dispatch. With this approach, the compiler assigns each
symbol a tag at compile time. Tags are sequential integers indicating which of

104 S. Antoy and A. Jost

the four classes discussed earlier the node belongs to. The three lowest tags are
reserved for functions, choices, and failures (all functions have the same tag).
For constructors, the tag additionally indicates which constructor of its type the
symbol represents. To see how this works, consider the following type definition:

data ABC = A | B | C (9)

ABC comprises three constructors in a well-defined order (any fixed order would
do). To distinguish between them, Sprite tags these with sequential numbers
starting at the integer that follows the reserved tags. So, the tag of A is one less
than the tag of B, which is one less than the tag of C. These values are unique
within the type, but not throughout the program: the first constructor of each
type, for instance, always has the same tag. Following these rules, it is easy to see
that every case selector is a node tagged with one of 3 +N consecutive integers,
where N is the number of constructors in its type. To compile a case expression,
Sprite emits a jump table that transfers control to a code block appropriate for
handling the selector tag. For example, the block that handles failure rewrites
to failure, and the block that handles choices executes a pull-tab. This is shown
schematically in Fig. 2. It is in general impossible to know at compile time which
constructors may be encountered when the program runs, so the jump table
must be complete. If a functional logic program does not define a branch for
some constructor — i.e., a function is not completely defined — the branch for
that constructor is a rewrite to failure.

To implement tagged dispatch, Sprite creates function-local code blocks as
labels, constructs a static jump table containing their addresses, and executes
indirect branch instructions — based on the selector tag — through the table.
Figure 3 shows a fragment of C code that approximates this. Case distinction
occurs over a variable of List type with two constructors, nil and cons. Five

Fig. 3. An illustrative implementation in C of the case expression shown in (7).
This code fragment would appear in the body of the step function for zip. Variable
selector refers to the case selector. Label entry indicates the entry point into this case
expression.

A New Functional-Logic Compiler for Curry: SPRITE 105

labeled code blocks handle the five tags that may appear at the case selector. A
static array of label address implements the jump table. This example assumes
the function, choice, failure, nil, and cons tags take the values zero through four,
respectively. The jump table contains one extra case not depicted in (7). When
the selector is a function, the step function of the selector root label is applied
as many times as necessary until the selector class is no longer function.

3.3 Completeness and Consistency

Sprite aims to be the first complete Curry compiler. Informally, complete means
the program produces every intended result of the source program. More pre-
cisely, and especially for infinite computations, any value will eventually be
produced, given enough resources. This is a difficult problem because a non-
terminating computation for obtaining one result could block progress of some
other computation that would obtain another result. For example, the following
program has a result, 1, that can be obtained in only a couple of steps, but
existing Curry compilers fail to produce it:

loop = loop
main = loop ? (1 ? loop)

(10)

The Fair Scheme defines a complete evaluation strategy. It creates a work queue
containing in turn any expression that might produce a result. At all times, the
expression at the head of the queue is active, meaning it is being evaluated. Ini-
tially, the work queue contains only the goal expression. Whenever pull-tabbing
places a choice at the root of an expression, that expression forks. It is removed
from the queue, and its two alternatives are added. Whenever an expression pro-
duces a value, it is removed from the queue. To avoid endlessly working on an
expression whose evaluation does not terminate, the program rotates the active
expression to the end of the work queue every so often. In so doing, Sprite guar-
antees that no expression is ignored forever, hence no potential result is lost.

A proof of correctness of compiled programs is provided in [7] for the abstract
formulation of the compiler, the Fair Scheme. In this domain, correctness is the
property that an executable program produces all and only the values intended
by the corresponding source program. A delicate point is raised by pull-tabbing.
A pull-tab step may duplicate or clone a choice, as the following example shows.
Cloned choices should be seen as a single choice. Thus when a computation
reduces a choice to its right alternative, it should also reduce any other clone
of the same choice to the right alternative, and likewise for the left alternative.
Computations obeying this condition are called consistent.

xor x x where x = T ? F
→pull−tab (xor T x) ? (xor F x) where x = T ? F (11)

In the example above, a pull-tab step applied to the choice in x leads to its
duplication. Now, when evaluating either alternative of the topmost choice, a

106 S. Antoy and A. Jost

consistent strategy must recognize that the remaining choice (in x) is already
made. For instance, when evaluating xor T x, the value of x can only be T, the
left alternative, because the left alternative of x has already been selected to
obtain xor T x. To keep track of clones, the Fair Scheme annotates choices with
identifiers. Two choice nodes with identical identifiers represent the same choice.
Fresh identifiers are assigned when new choices arise from a replacement; pull-tab
steps copy existing identifiers. Every expression in the work queue owns a finger-
print, which is a mapping from choice identifiers to values in the set {left,right}.
The fingerprint is used to detect and remove inconsistent computations from the
work queue.

It is possible to syntactically pre-compute pull-tab steps: that is, a case state-
ment such as the one in (7) could implement pull-tabbing by defining an appro-
priate right-hand side rule for the choice branch. In fact, a major competing
implementation of Curry does exactly that [8]. A disadvantage of that approach
is that choice identifiers must appear as first-class citizens of the program and
be propagated through pull-tab steps using additional rules not encoded in the
source program. We believe it is more efficient to embed choice identifiers in
choice nodes as an implementation detail and process pull-tab steps dynami-
cally. Section 4.2 compares these two approaches in greater detail.

4 Performance

In this section we present a set of benchmark results. These programs were
previous used to compare three implementations of Curry [8]: Mcc, Pakcs,
and KiCS2. We shall use KiCS2 to perform direct comparisons with Sprite1,
since it compares favorably to the others, and mention the relative performance
of the others. KiCS2 compiles Curry to Haskell and then uses the Glasgow
Haskell Compiler (GHC) [13] to produce executables. GHC has been shown to
produce very efficient code [20,21,27]. Like Sprite, KiCS2 uses a pull-tabbing
evaluation strategy, but unlike Sprite, it does not form a work queue; hence,
is incomplete when faced with programs such as (10). Instead, it builds a tree
containing all values of the program and executes (lazily and with interleaved
steps) a user-selected search algorithm.

A major highlight of KiCS2 is that purely functional programs compile to
“straight” Haskell, thus incurring no overhead due to the presence of unused logic
capabilities. Sprite, too, enjoys this zero-overhead property, but there is little
room to improve upon GHC for functional programs, as it is the beneficiary of
exponentially more effort. Our goal for functional programs, therefore, is simply
to measure and minimize the penalty of running Sprite. For programs that
utilize logic features KiCS2 emits Haskell code that simulates non-determinism.
In these cases, there is more room for improvement since, for example, Sprite
can avoid simulation overhead by more directly implementing logic features.

1 Available at https://github.com/andyjost/Sprite-3.

https://github.com/andyjost/Sprite-3

A New Functional-Logic Compiler for Curry: SPRITE 107

Fig. 4. Execution times for a set of functional (F) and functional-logic (FL) programs
taken from the KiCS2 benchmark suite. Times are in seconds. The final column (Δ)
reports the speed-up (negative) or slow-down (positive) factor of Sprite relative to
KiCS2. System configuration: Intel i5-3470 CPU at 3.20 GHz, Ubuntu Linux 14.04.

4.1 Functional Programs

The execution times for a set of programs taken from the KiCS2 benchmark
suite2 are shown in Fig. 4. The results are arranged in order from greatest
improvement to greatest degradation in execution time. The most striking fea-
ture is the clear division between the functional (deterministic) and functional-
logic (non-deterministic) subsets, which is consistent with our above-stated
expectations. On average, Sprite produces relatively slower code for functional
programs and relatively faster code for functional-logic ones. We calculate aver-
ages as the geometric mean, since that method is not strongly influenced by
extreme results in either direction. The functional subset runs, on average, 1.4x
slower in Sprite as compared to KiCS2. Figures published by Braßel et al. [8,
Figs. 2 and 3] indicate that Pakcs and Mcc run 148x and 9x slower than KiCS2,
respectively, for these programs. We take these results as an indication that the
functional parts of Sprite — i.e., those parts responsible for pattern-matching,
rewriting, memory management, and optimization — although not as finely-
tuned as their GHC counterparts, still compare favorably to most mainstream
Curry compilers.

We note that Sprite currently does not perform optimizations such as defor-
estation [14] or unboxing [21]. These, and other optimizations of ICurry, e.g., [6],
2 Downloaded from https://www-ps.informatik.uni-kiel.de/kics2/benchmarks.

https://www-ps.informatik.uni-kiel.de/kics2/benchmarks

108 S. Antoy and A. Jost

could potentially impact the benchmark results. Inspecting the output of GHC
reveals that the tak program (incidentally, the worse-case for Sprite) is opti-
mized by GHC to a fully-unboxed computation. To see how LLVM stacks up,
we rewrote the program in C and converted it to LLVM using Clang [11], a C
language front-end for LLVM. When we compiled this to native code and mea-
sured the execution time, we found that it was identical3 to the KiCS2 (and
GHC) time. We therefore see no fundamental barrier to reducing the Sprite
“penalty” to zero for this program, and perhaps others, too. We have reason to
be optimistic that implementing more optimizations at the source and ICurry
levels, without fundamentally changing the core of Sprite, will yield substantive
improvements to Sprite.

4.2 Functional-Logic Programs

For the functional-logic subset, Fig. 4 shows that Sprite produces relatively
faster code: 4.4x faster, on average. Published comparisons [8, Fig. 4] indicate
that, compared to KiCS2, Pakcs is 5.5x slower and Mcc is 3.5x faster for
these programs. Our first thought after seeing this result was that Sprite might
enjoy a better algorithmic complexity. We had just completed work to reduce
Sprite’s complexity when processing choices, so perhaps, we thought, in doing
that work we had surpassed KiCS2. We set out to test this by selecting a
program dominated by choice generation and running it for different input sizes,
with and without the recent modifications to Sprite. The results are shown
in Fig. 5. Contrary to our expectation, Sprite and KiCS2 exhibit strikingly
similar complexity: both fit an exponential curve with r2 in excess of 0.999, and
their slope coefficients differ by less than 2%. A better explanation, then, for the
difference is that some constant factor c exists, such that choice-involved steps
in Sprite are c-times faster than in KiCS2. What could account for this factor?
We believe the best explanation is the overhead of simulating non-determinism
in Haskell, which we alluded to at the end of Sect. 3.3. To see why, we need to
look at KiCS2 in more detail.

KiCS2 uses a few helper functions [8, Sect. 3.1] to generate choice identifiers:

thisID :: IDSupply -> ID
leftSupply :: IDSupply -> IDSupply
rightSupply :: IDSupply -> IDSupply

(12)

The purpose of these functions is to ensure that choice identifiers are never
reused. Here, ID is the type of a choice identifier and IDSupply is opaque (for
our purposes). Any function that might produce a choice is implicitly extended
by KiCS2 to accept a supply function. As an example, this program

f :: Bool
main = xor f (False ? True)

(13)

3 Using the Linux time command, whose resolution is 0.01 s.

A New Functional-Logic Compiler for Curry: SPRITE 109

Fig. 5. Complexity analysis of PermSort. Execution times are shown for a range of
problem sizes. The horizontal axis indicates the number of integers to sort by the
permute-and-test method.

is compiled to

main s = let s1 = leftSupply s
s2 = rightSupply s
s3 = leftSupply s2
s4 = rightSupply s2

in xor (f s3) (Choice (thisID s4) False True) s1

(14)

Clearly, the conversion to Haskell introduces overhead. The point here is simply
to see that the compiled code involves five calls (to helper functions) that were
not present in the source program. These reflect the cost of simulating non-
determinism in a purely-functional language.

In Sprite, fresh choice identifiers are created by reading and incrementing
a static integer. Compared to the above approach, fewer parameters are passed
and fewer functions are called. A similar approach could be used in a Haskell
implementation of Curry, but it would rely on impure features, adding another
layer of complexity and perhaps interfering with optimizations. By contrast, the
Sprite approach is extreme in its simplicity, as it executes only a few machine
instructions. There is a remote possibility that a computation could exhaust the
supply of identifiers since the type integer is finite. KiCS2 uses a list structure
for choice identifiers and so does not suffer from this potential shortcoming.
Certainly, the choice identifiers could be made arbitrarily large, but doing so
increases memory usage and overhead. A better approach, we believe, would

110 S. Antoy and A. Jost

be to compact the set of identifiers during garbage collection. The idea is that
whenever a full collection occurs, Sprite would renumber the n choice identifiers
in service at that time so that they fall into the contiguous range 0, . . . , n − 1.
This potential optimization illustrates the benefits of having total control over
the implementation, since in this case it makes modifying the garbage collector
a viable option.

5 Related Work

Several Curry compilers are easily accessible, most notably Pakcs [19], KiCS2
[8] and Mcc [25]. All these compilers implement a lazy evaluation strategy, based
on definitional trees, that executes only needed steps, but differ in the control
strategy that selects the order in which the alternatives of a choice are executed.

Both Pakcs and Mcc use backtracking. They attempt to evaluate all the
values of the left alternative of a choice before turning to the right alterna-
tive. Backtracking is simple and relatively efficient, but incomplete. Hence, a
benchmark against these compilers may be interesting to understand the differ-
ences between backtracking and pull-tabbing, but not to assess the efficiency of
Sprite.

By contrast, KiCS2’s control strategy uses pull-tabbing, hence the computa-
tions executed by KiCS2 are much closer to those of Sprite. KiCS2’s compiler
translates Curry source code into Haskell source code which is then processed
by GHC [13], a mainstream Haskell compiler. The compiled code benefits from
a variety of optimizations available in GHC. Section 4 contains a more detailed
comparison between Sprite and KiCS2.

There exist other functional logic languages, e.g., T OY [10,24], whose oper-
ational semantics can be abstracted by needed narrowing steps of a constructor-
based graph rewriting system. Some of our ideas could be applied with almost
no changes to the implementation of these languages.

A comparison with graph machines for functional languages is problematic
at best. Despite the remarkable syntactic similarities, Curry’s syntax extends
Haskell’s with a single construct, a free variable declaration, the semantic dif-
ferences are profound. There are purely functional programs whose execution
produces a result as Curry, but does not terminate as Haskell [5, Sect. 3]. Fur-
thermore, functional logic computations must be prepared to encounter non-
determinism and free variables. Hence, situations and goals significantly differ.

6 Future Work

Compilers are among the most complex software artifacts. They are often bun-
dled with extensions and additions such as optimizers, profilers, tracers, debug-
gers, external libraries for application domains such as databases or graphical
user interfaces. Given this reality, there are countless opportunities for future
work. We have no plans at this time to choose any one of the extensions and
additions listed above before any other. Some optimizations mentioned earlier,

A New Functional-Logic Compiler for Curry: SPRITE 111

e.g., unboxing integers, are appealing only because they would improve some
benchmark, and thus the overall perceived performance of the compiler, but
they may contribute very marginally to the efficiency of more realistic programs.
Usability-related extensions and additions, such as aids for tracing and debug-
ging an execution, and external libraries may better contribute to the acceptance
of our work.

7 Conclusion

We have presented Sprite, a new native code compiler for Curry. Sprite com-
bines the best features of existing Curry compilers. Similar to KiCS2, Sprite’s
strategy is based on pull-tabbing, hence there is no an inherent loss of complete-
ness of compilers based on backtracking such as Pakcs and Mcc. Sprite com-
piles to an imperative target language, hence is amenable to low-level machine
optimization. It is the only compiler to date designed to ensure operational
completeness—all the values of an expression are eventually produced given
enough computational resources.

Sprite’s main intermediate language, ICurry, represents programs as graph
rewriting systems. We described the implementation of Curry programs in imper-
ative code using concepts of a low-level target language. Graph nodes are rep-
resented in memory as heap objects, and an efficient mechanism called tagged
dispatch is used to perform pattern matches. Finally, we discussed the mecha-
nisms used by Sprite to ensure completeness and consistency, and presented
empirical data for a set of benchmarking programs. The benchmarks reveal that
Sprite is competitive with a leading implementation of Curry.

References

1. Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS,
vol. 632, pp. 143–157. Springer, Heidelberg (1992). doi:10.1007/BFb0013825

2. Antoy, S.: On the correctness of pull-tabbing. TPLP 11(4–5), 713–730 (2011)
3. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Hill,

P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006).
doi:10.1007/11680093 2

4. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006). doi:10.1007/11799573 9

5. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

6. Antoy, S., Johannsen, J., Libby, S.: Needed computations shortcutting needed
steps. In: Middeldorp, A., van Raamsdonk, F. (eds.) Proceedings 8th International
Workshop on Computing with Terms and Graphs, Vienna, 13 July 2014. Elec-
tronic Proceedings in Theoretical Computer Science, vol. 183, pp. 18–32. Open
Publishing Association (2015)

http://dx.doi.org/10.1007/BFb0013825
http://dx.doi.org/10.1007/11680093_2
http://dx.doi.org/10.1007/11799573_9

112 S. Antoy and A. Jost

7. Antoy, S., Jost, A.: Compiling a functional logic language: the fair scheme. In:
23rd International Symposium on Logic-Based Program Synthesis and Transfor-
mation (LOPSTR 2013), Madrid, pp. 129–143. Dpto. de Systems Informaticos y
Computation, Universidad Complutense de Madrid, TR-11-13, September 2013

8. Braßel, B., Hanus, M., Peemöller, B., Reck, F.: KiCS2: a new compiler from Curry
to Haskell. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 1–18. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22531-4 1

9. Braßel, B., Huch, F.: On a tighter integration of functional and logic programming.
In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 122–138. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-76637-7 9

10. Caballero, R., Sánchez, J. (eds.): TOY: a multiparadigm declarative language (ver-
sion 2.3.1) (2007). http://toy.sourceforge.net

11. Clang: a C language family frontend for LLVM (2016). http://www.clang.llvm.
org/

12. Echahed, R., Janodet, J.C.: On constructor-based graph rewriting systems.
Technical report 985-I, IMAG (1997). ftp://ftp.imag.fr/pub/labo-LEIBNIZ/
OLD-archives/PMP/c-graph-rewriting.ps.gz

13. The Glasgow Haskell Compiler (2013). http://www.haskell.org/ghc/
14. Gill, A., Launchbury, J., Jones, S.L.P.:A short cut to deforestation. In: Proceedings of

the Conference on Functional Programming Languages and Computer Architecture,
pp. 223–232. ACM (1993)

15. Glauert, J.R.W., Kennaway, R., Papadopoulos, G.A., Sleep, M.R.: Dactl: an exper-
imental graph rewriting language. J. Prog. Lang. 5(1), 85–108 (1997)

16. Hanus, M. (ed.): Curry: an integrated functional logic language (Vers. 0.8.2) (2006).
http://www-ps.informatik.uni-kiel.de/currywiki/

17. Hanus, M.: Flatcurry: an intermediate representation for Curry programs (2008).
http://www.informatik.uni-kiel.de/curry/flat/

18. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics - Essays in Memory of Harald
Ganzinger. LNCS, vol. 7797, pp. 123–168. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37651-1 6

19. Hanus, M. (ed.): PAKCS 1.11.4: The Portland Aachen Kiel Curry system (2014).
http://www.informatik.uni-kiel.de/pakcs

20. Jones, S.L.P.: Compiling Haskell by program transformation: a report from the
trenches. In: Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 18–44. Springer,
Heidelberg (1996). doi:10.1007/3-540-61055-3 27

21. Jones, S.P., Santos, A.: Compilation by transformation in the Glasgow Haskell
compiler. In: Hammond, K., Turner, D.N., Sansom, P.M. (eds.) Glasgow 1994, pp.
184–204. Springer, London (1995). doi:10.1007/978-1-4471-3573-9 13

22. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program
analysis and transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimization
(CGO 2004), San Jose, pp. 75–88, March 2004

23. López-Fraguas, F.J., de Dios-Castro, J.: Extra variables can be eliminated from
functional logic programs. Electron. Notes Theor. Comput. Sci. 188, 3–19 (2007)

24. López Fraguas, F.J., Sánchez Hernández, J.: TOY : a multiparadigm declarative
system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999). doi:10.1007/3-540-48685-2 19

25. Lux, W. (ed.): The Muenster Curry compiler (2012). http://danae.uni-muenster.
de/lux/curry/

http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/10.1007/978-3-540-76637-7_9
http://toy.sourceforge.net
http://www.clang.llvm.org/
http://www.clang.llvm.org/
ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-archives/PMP/c-graph-rewriting.ps.gz
ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-archives/PMP/c-graph-rewriting.ps.gz
http://www.haskell.org/ghc/
http://www-ps.informatik.uni-kiel.de/currywiki/
http://www.informatik.uni-kiel.de/curry/flat/
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://www.informatik.uni-kiel.de/pakcs
http://dx.doi.org/10.1007/3-540-61055-3_27
http://dx.doi.org/10.1007/978-1-4471-3573-9_13
http://dx.doi.org/10.1007/3-540-48685-2_19
http://danae.uni-muenster.de/lux/curry/
http://danae.uni-muenster.de/lux/curry/

A New Functional-Logic Compiler for Curry: SPRITE 113

26. Marlow, S., Jones, S.P.: Making a fast Curry: push/enter vs. eval/apply for higher-
order languages. In: Proceedings of the Ninth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2004), New York, pp. 4–15. ACM (2004)

27. Partain, W.: The nofib benchmark suite of Haskell programs. In: Launchbury, J.,
Sansom, P. (eds.) Glasgow 1992, pp. 195–202. Springer, London (1993)

28. Jones, S.L.P., Salkild, J.: The spineless tagless G-machine. In: Proceedings of the
Fourth International Conference on Functional Programming Languages and Com-
puter Architecture, pp. 184–201. ACM (1989)

lpopt: A Rule Optimization Tool for Answer
Set Programming

Manuel Bichler, Michael Morak(B), and Stefan Woltran

TU Wien, Vienna, Austria
{bichler,morak,woltran}@dbai.tuwien.ac.at

Abstract. State-of-the-art answer set programming (ASP) solvers rely
on a program called a grounder to convert non-ground programs con-
taining variables into variable-free, propositional programs. The size of
this grounding depends heavily on the size of the non-ground rules, and
thus, reducing the size of such rules is a promising approach to improve
solving performance. To this end, in this paper we announce lpopt, a tool
that decomposes large logic programming rules into smaller rules that
are easier to handle for current solvers. The tool is specifically tailored
to handle the standard syntax of the ASP language (ASP-Core) and
makes it easier for users to write efficient and intuitive ASP programs,
which would otherwise often require significant hand-tuning by expert
ASP engineers. It is based on an idea proposed by Morak and Woltran
(2012) that we extend significantly in order to handle the full ASP syn-
tax, including complex constructs like aggregates, weak constraints, and
arithmetic expressions. We present the algorithm, the theoretical foun-
dations on how to treat these constructs, as well as an experimental
evaluation showing the viability of our approach.

1 Introduction

Answer set programming (ASP) [9,14,16,18] is a well-established logic program-
ming paradigm based on the stable model semantics of logic programs. Its main
advantage is an intuitive, declarative language, and the fact that, generally, each
answer set of a given logic program describes a valid answer to the original ques-
tion. Moreover, ASP solvers—see e.g. [1,2,13,15]—have made huge strides in
efficiency.

A logic program usually consists of a set of logical implications by which new
facts can be inferred from existing ones, and a set of facts that represent the
concrete input instance. Logic programming in general, and ASP in particular,
have also gained popularity because of their intuitive, declarative syntax. The
following example illustrates this:

Example 1. The following rule naturally expresses the fact that two people are
relatives of the same generation up to second cousin if they share a great-
grandparent.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 114–130, 2017.
DOI: 10.1007/978-3-319-63139-4 7

lpopt: A Rule Optimization Tool for Answer Set Programming 115

uptosecondcousin(X, Y) :-
parent(X, PX), parent(PX, GPX),
parent(GPX, GGP), parent(GPY, GGP),
parent(PY, GPY), parent(Y, PY), X != Y. ��

Rules written in an intuitive fashion, like the one in the above example, are
usually larger than strictly necessary. Unfortunately, the use of large rules causes
problems for current ASP solvers since the input program is grounded first (i.e.
all the variables in each rule are replaced by all possible, valid combinations of
constants). This grounding step generally requires exponential time for rules of
arbitrary size. In practice, the grounding time can thus become prohibitively
large. Also, the ASP solver is usually quicker in evaluating the program if the
grounding size remains small.

In order to increase solving performance, we could therefore split the rule in
Example 1 up into several smaller ones by hand, keeping track of grandparents
and great-grandparents in separate predicates, and then writing a smaller version
of the second cousin rule. While this is comparatively easy to do for this example,
this can become very tedious if the rules become even more complex and larger,
maybe also involving negation or arithmetic expressions. However, since current
ASP grounders and solvers become increasingly slower with larger rules, and
noting the fact that ASP programs often need expert hand-tuning to perform
well in practice, this represents a significant entry barrier and contradicts the fact
that logic programs should be fully declarative: in a perfect world, the concrete
formulation should not have an impact on the runtime. In addition, to minimize
solver runtime in general, it is therefore one of our goals to enable logic programs
to be written in an intuitive, fully declarative way without having to think about
various technical encoding optimizations.

To this end, in this paper we propose the lpopt tool that automatically
optimizes and rewrites large logic programming rules into multiple smaller ones
in order to improve solving performance. This tool, based on an idea proposed
for very simple ASP programs in [19], uses the concept of tree decompositions
of rules to split them into smaller chunks. Intuitively, via a tree decomposition
joins in the body of a rule are arranged into a tree-like form. Joins that belong
together are then split off into a separate rule, only keeping the join result in a
temporary atom. We then extend the algorithm to handle the entire standardized
ASP language [11], and also introduce new optimizations for complex language
constructs such as weak constraints, arithmetic expressions, and aggregates.

The main contributions of this paper are therefore as follows:

– we extend, on a theoretical basis, the lpopt algorithm proposed in [19] to
the full syntax of the ASP language according to the ASP-Core-2 language
specification [11];

– we establish how to treat complex constructs like aggregates, and propose an
adaptation of the decomposition approach so that it can split up large aggre-
gate expressions into multiple smaller rules and expressions, further reducing
the grounding size;

116 M. Bichler et al.

– we implement the lpopt algorithm in C++, yielding the lpopt tool for auto-
mated logic program optimization, and give an overview of how this tool is
used in practice; and

– we perform an experimental evaluation of the tool on the encodings and
instances used in the fifth Answer Set Programming Competition [12] which
show the benefit of our approach, even for encodings already heavily hand-
optimized by ASP experts.

2 Preliminaries

General Definitions. We define two pairwise disjoint countably infinite sets of
symbols: a set C of constants and a set V of variables. Different constants
represent different values (unique name assumption). By X we denote sequences
(or, with slight notational abuse, sets) of variables X1, . . . , Xk with k � 0. For
brevity, let [n] = {1, . . . , n}, for any integer n � 1.

A (relational) schema S is a (finite) set of relational symbols (or predicates).
We write p/n for the fact that p is an n-ary predicate. A term is a constant
or variable. An atomic formula a over S (called S-atom) has the form p(t),
where p ∈ S and t is a sequence of terms. An S-literal is either an S-atom (i.e.
a positive literal), or an S-atom preceded by the negation symbol “¬” (i.e. a
negative literal). For a literal �, we write dom(�) for the set of its terms, and
var(�) for its variables. This notation naturally extends to sets of literals. For
brevity, we will treat conjunctions of literals as sets. For a domain C ⊆ C, a (total
or two-valued) S-interpretation I is a set of S-atoms containing only constants
from C such that, for every S-atom p(a) ∈ I, p(a) is true, and otherwise false.
When obvious from the context, we will omit the schema-prefix.

A substitution from a set of literals L to a set of literals L′ is a mapping
s : C ∪ V → C ∪ V that is defined on dom(L), is the identity on C, and
p(t1, . . . , tn) ∈ L (resp. ¬p(t1, . . . , tn) ∈ L) implies p(s(t1), . . . , s(tn)) ∈ L′

(resp., ¬p(s(t1), . . . , s(tn)) ∈ L′).

Answer Set Programming (ASP). A logic programming rule is a universally
quantified reverse first-order implication of the form

H(X,Y) ← B+(X,Y,Z,W) ∧ B−(X,Z),

where H (the head), resp. B+ (the positive body), is a disjunction, resp. conjunc-
tion, of atoms, and B− (the negative body) is a conjunction of negative literals,
each over terms from C∪V. For a rule π, let H (π), B+(π), and B−(π) denote the
set of atoms occurring in the head, the positive, and the negative body, respec-
tively. Let B(π) = B+(π)∪B−(π). A rule π where H (π) = ∅ is called a constraint.
Substitutions naturally extend to rules. We focus on safe rules where every vari-
able in the rule occurs in the positive body. A rule is called ground if all its terms
are constants. The grounding of a rule π w.r.t. a domain C ⊆ C is the set of rules
groundC(π) = {s(π) | s is a substitution, mapping var(π) to elements from C}.

lpopt: A Rule Optimization Tool for Answer Set Programming 117

A logic program Π is a finite set of logic programming rules. The schema of a
program Π, denoted sch(Π), is the set of predicates appearing in Π. The active
domain of Π, denoted adom(Π), with adom(Π) ⊂ C, is the set of constants
appearing in Π. A program Π is ground if all its rules are ground. The grounding
of a program Π is the ground program ground(Π) =

⋃
π∈Π groundadom(Π)(π).

The (Gelfond-Lifschitz) reduct of a ground program Π w.r.t. an interpretation
I is the ground program ΠI = {H (π) ← B+(π) | π ∈ Π,B−(π) ∩ I = ∅}.

A sch(Π)-interpretation I is a (classical) model of a ground program Π,
denoted I � Π if, for every ground rule π ∈ Π, it holds that I ∩ B+(π) = ∅ or
I ∩ (H (π)∪B−(π)) = ∅, that is, I satisfies π. I is a stable model (or answer set)
of Π, denoted I �s Π if, in addition, there is no J ⊂ I such that J � ΠI , that is,
I is subset-minimal w.r.t. the reduct ΠI . The set of answer sets of Π, denoted
AS (Π), are defined as AS (Π) = {I | I is a sch(Π)-interpretation, and I �s Π}.
For a non-ground program Π, we define AS (Π) = AS (ground(Π)). When refer-
ring to the fact that a logic program is intended to be interpreted under the
answer set semantics, we often refer to it as an ASP program.

Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair
T = (T, χ), where T is a rooted tree and χ is a labelling function over nodes t
of T , with χ(t) ⊆ V called the bag of t, such that the following holds: (i) for each
v ∈ V , there exists a node t in T , such that v ∈ χ(t); (ii) for each {v, w} ∈ E,
there exists a node t in T , such that {v, w} ⊆ χ(t); and (iii) for all nodes r, s,
and t in T , such that s lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s).
The width of a tree decomposition is defined as the cardinality of its largest bag
minus one. The treewidth of a graph G, denoted by tw(G), is the minimum width
over all tree decompositions of G. To decide whether a graph has treewidth at
most k is NP-complete [3]. For an arbitrary but fixed k however, this problem
can be solved (and a tree decomposition constructed) in linear time [6].

Given a non-ground logic programming rule π, we let its Gaifman graph Gπ =
(var(π), E) such that there is an edge (X,Y) in E iff variables X and Y occur
together in the head or in a body atom of π. We refer to a tree decomposition
of Gπ as a tree decomposition of rule π. The treewidth of rule π is the treewidth
of Gπ.

3 Rule Decomposition

This section lays out the theoretical foundations for our rule decomposition app-
roach. First, we recall the algorithm from [19], and then describe how it can be
extended to handle three of the main extensions of the ASP language, namely
arithmetic expressions, aggregates, and weak constraints (i.e. optimization state-
ments), as defined in the ASP-Core language standard [11].

As demonstrated in Example 1, rules that are intuitive to write and read
are not necessarily the most efficient ones to evaluate in practice. ASP solvers
generally struggle with rules that contain many variables since they rely on a
grounder-solver approach: first, the grounding of a logic program is computed

118 M. Bichler et al.

by a grounder. As per the definition in Sect. 2, the size of the grounding can, in
the worst case, be exponential in the number of variables. For large rules, the
grounding step can already take a prohibitively large amount of time. However,
the solver is also adversely affected by this blowup. In practice, this leads to
long runtimes and sometimes the inability of the ASP system to solve a given
instance. This also contributes to the fact that, while the syntax of ASP is fully
declarative, writing efficient encodings still takes expert knowledge.

It is therefore desirable to have a way to automatically rewrite such large rules
into a more efficient representation. One way to do this is the rule decomposition
approach, first proposed in [19], which we will briefly recall next.

3.1 Decomposition of Simple Rules

Generally speaking, the approach in [19] computes the tree decomposition of a
rule, and then splits the rule up into multiple, smaller rules according to this
decomposition. While in the worst case this decomposition may not change the
rule at all, in practice it is often the case that large rules can be split up very
well. For instance, the large rule in Example 1 will be amenable for such a
decomposition.

Let us briefly recall the algorithm from [19] which we will refer to as the lpopt
algorithm. For a given rule π, the algorithm works as follows:

Algorithm 1. The lpopt Algorithm [19]
1. Compute a tree decomposition T = (T, χ) of π with minimal width where

all variables occurring in the head of π are contained in its root node bag.

2. For each node n, let tempn be a fresh predicate, and the same for each
variable X in π and predicate domX . Let Yn = χ(n) ∩ χ(pn), where pn is
the parent node of n. For the root node root , let temproot be the entire head
of π, and, accordingly, Yroot = var(H (π)). Now, for a node n, generate the
following rule:

tempn(Yn) ← {a ∈ B(π) | var(a) ⊆ χ(n)}
∪ {domX(X) | a ∈ B−(π),X ∈ var(a), var(a) ⊆ χ(n),

 ∃b ∈ B+(π) : var(b) ⊆ χ(n),X ∈ var(b)}
∪ {tempm(Ym) | m is a child of n}.

3. For each X ∈ var(B−(π)), for which a domain predicate dom is needed to
guarantee safety of a rule generated above, pick an atom a ∈ B+(π), such
that X ∈ var(a) and generate a rule

domX (X) ← a.

lpopt: A Rule Optimization Tool for Answer Set Programming 119

Step 3 is needed because splitting up a rule may make it unsafe. In order
to remedy this, a domain predicate is generated for each unsafe variable that
arises due to the rule splitting in step 2. The following example illustrates how
the algorithm works.

Example 2. Given the rule

π = h(X,W) ← e(X,Y), e(Y,Z),¬e(Z,W), e(W,X),

a tree decomposition of π could look as follows (note that we write in each bag
of the tree decomposition not just the variables as per definition but also all
literals of rule π over these variables which is a more intuitive notation):

h(X,W), e(X,Y), e(W,X)

e(Y,Z),¬e(Z,W)

Applying the lpopt algorithm to π with the tree decomposition above yields the
following set of rules lpopt(π):

domW (W) ← e(W,X),

temp(Y,W) ← e(Y,Z),¬e(Z,W), domW (W), and

h(X,W) ← e(X,Y), e(W,X), temp(Y,W),

where temp is a fresh predicate not appearing anywhere else. ��
Let Π be a logic program. When the above algorithm is applied to all rules in

Π, resulting in a logic program lpopt(Π) as stated in [19], the answer sets of Π
are preserved in the following way: when all temporary atoms are removed, each
answer set of lpopt(Π) coincides with exactly one answer set from the original
program Π. Furthermore, the size of the grounding now no longer depends on
the rule size. In fact, it now only depends on the rule treewidth as the following
result states.

Theorem 1 ([19]). The size of ground(lpopt(Π)) is bounded by O(2k ·n), where
n is the size of Π, and k is the maximal treewidth of the rules in Π.

The above theorem implies that the size of the grounding of a program Π,
after optimization via the lpopt algorithm, is no longer exponential in the size of
Π, but only in the treewidth of its rules. As [19] demonstrates, this decomposition
approach already has a significant impact on the size of the grounding in practical
instances.

However, the ASP language standard [11] extends the ASP language with
other useful constructs that the lpopt algorithm proposed in [19] cannot handle.
These include arithmetic expressions, aggregates, and weak constraints. Look-
ing at concrete, practical instances of ASP programs, e.g. the encodings used
in recent ASP competitions [12], a large majority use such constructs. In the
following, we will therefore extend the lpopt algorithm to be able to treat them
in a similar way.

120 M. Bichler et al.

3.2 Treating Arithmetic Expressions

Arithmetic expressions are atoms of the form X = ϕ(Y), that is, an equality
with one variable (or constant number) X on the left-hand side, and an expres-
sion ϕ on the right-hand side, where ϕ is any mathematical expression built
using the variables from Y, constant numbers, and the arithmetic connectives
“+,” “-,” “*,” and “/.” In addition to the positive and negative body, a rule
π may also contain a set of such arithmetic expressions describing a relation-
ship between variables with the obvious meaning (that is, after grounding, an
arithmetic expression evaluates to true if and only if the mathematical equality
between the involved constants is valid). The arithmetic connectives are inter-
preted according to the usual mathematical preference rules.

Finally, since we require that all rules processed with the lpopt algorithm are
safe, we need to extend the definition of safety to include arithmetic expressions.
Clearly, the conditions for safety of rules with arithmetic expressions are more
involved. In fact, instead of just requiring that each variable appears in the posi-
tive body we now have a recursive safety condition: a rule containing arithmetic
expressions is safe if and only if every variable X appears (a) in the positive
body of the rule, or (b) in an arithmetic expression of the form X = ϕ(Y) where
all the variables in Y are safe.

In order to adapt the lpopt rule decomposition algorithm to rules with arith-
metic expressions, we need to extend the definition of the graph representation
of π to handle arithmetic expressions. To this end, we simply require it to con-
tain a clique between all variables occurring together in each such expression.
The lpopt algorithm then works as described in Algorithm1 above up to step 2.
However, a problem may arise when, in step 3 of the lpopt algorithm, a domain
predicate domX (X) is to be generated. Consider the following example:

Example 3. Let π be the rule a(X) ← ¬b(X,Y), c(Y), d(Z),X = Z + Z. A
simple decomposition according to the lpopt algorithm may lead to the following
rules:

temp(X) ← ¬b(X,Y), c(Y), domX (X), and

a(X) ← d(Z),X = Z + Z, temp(X).

It remains to define the domain predicate domX . According to the original def-
inition of lpopt, we would get

domX (X) ← X = Z + Z

which is unsafe. ��

As Example 3 shows, in order for such expressions to work with the lpopt
algorithm a more general approach to defining the domain predicates is needed in
step 3. In fact, instead of choosing a single atom from the rule body to generate
the domain predicate, in general a set of atoms and arithmetic expressions must
be chosen. It is easy to see that if a rule π is safe then, for each variable X ∈
var(B(π)), there is a set AX of (positive) atoms and arithmetic expressions in

lpopt: A Rule Optimization Tool for Answer Set Programming 121

Algorithm 2. Domain Predicate Generation Algorithm
Input: A set X of variables to be made safe, a set Y of variables already made safe,

a rule π, and an upper bound maxvars
Output: A set of body elements R from π that has the minimum number of variables

not in X and that, together, defines the domain of the variables in X.
1: procedure DomPred(X,Y, π,maxvars)
2: Let R = ∅
3: Let A = GetBodyElementsWithOneOf(X, π)
4: while A �= ∅ do
5: Let a = GetBestElement(A,X,Y)
6: if a is arithmetic expression X = ϕ(Z) then
7: Let X′ = (X\{X}) ∪ (Z\Y)
8: Let R′ = {a} ∪ DomPred(X′,Y, π\{a},maxvars)
9: else

10: Let X′ = X\var(a)
11: Let Y′ = Y ∪ var(a)
12: Let R′ = {a} ∪ DomPred(X′,Y′, π\{a},maxvars − |var(a)\Y|)
13: end if
14: if |var(R′)\Y| � maxvars then
15: Let R = R′

16: Let maxvars = |var(R)\Y|
17: end if
18: Let A = A\{a}
19: end while
20: Return R
21: end procedure

the body of π that makes that variable safe (trivially, if AX contains all positive
body atoms and arithmetic expressions of π the condition is fulfilled). In step 3
of the lpopt algorithm, for a variable X we now choose such a set AX of body
elements to use in the body of the domain predicate rule.

However, since the grounding size of a domain predicate rule is exponential
in the number of variables occurring in atoms, we aim to choose a set AX that
contains as few variables in atoms as possible (variables occurring only in arith-
metic expressions can be ignored since they don’t increase the number of ground
instances of a rule). To this end, we devise a depth-first search algorithm that,
given a variable X and a rule π, computes a set AX of positive body atoms
and arithmetic expressions that make variable X safe with a minimal num-
ber of variables occurring in atoms. Algorithm2 presents our implementation in
pseudocode. It is initially called with the parameters X = {X}, Y = ∅, π, and
|var(π)|. The function GetBodyElementsWithOneOf returns, for a given
set of variables X and rule π, the set of all the positive body atoms containing
at least one variable from X and, in addition, all arithmetic expressions of the
form X = ϕ(Y), where X ∈ X; that is, it returns all those body elements from
π that can help to make the variables X safe. The function GetBestElement
returns, for a given set A of atoms and arithmetic expressions, set X of variables

122 M. Bichler et al.

to be made safe, and set Y of variables already made safe, the element having
the minimal number of variables not in Y. If there are multiple such elements,
return the atom that contains the maximum number of variables from X. If
there are multiple such atoms, pick one at random. If there are no such atoms,
return one of the arithmetic expressions. π\{a} denotes rule π with element a
removed. Note that Algorithm 2 explores the entire search space (that is, each
subset of elements from rule π) which may need, at worst, exponential time in
the size of π. We optimize this by immediately disregarding all subsets that are
worse than the best subset found so far (via variable maxvars). Additionally, by
using the heuristics implemented in GetBestElement and since long “chains”
of arithmetic expressions are rare (e.g. none of our benchmarks contained any)
this does not lead to long runtimes in practice.

Finally, after executing Algorithm2 and obtaining the set AX , generate the
rule domX (X) ← AX . It is easy to see that, by construction of set AX , this rule
is safe and describes the possible domain of variable X as required. Note that the
resulting domain predicate rule may still be amenable to further decomposition.
Where this is the case, we recursively call the lpopt algorithm on it. Below,
Example 4 shows the output of lpopt when extended with Algorithm 2 above.

Example 4. A correct domain predicate for Example 3 would be defined as
follows:

domX (X) ← X = Z + Z, d(Z).

This ensures the proper safety of all rules generated by the lpopt algorithm. ��

Note that the rule generated in Example 4 repeats most of the atoms that
the second rule generated in Example 3 already contains. It is not immediately
obvious how such situations can be remedied in general. Investigating this issue
is part of ongoing work.

3.3 Treating Weak Constraints

As defined in [11], a weak constraint π[k : t] is a constraint π annotated with
a term k representing a weight and a sequence of terms t occurring in π. The
intended meaning is that each answer set I is annotated by a total weight w(I),
which is the sum over all k for each tuple of constants c that realize t in I
and satisfy the body of π. Such a weak constraint can easily be decomposed
by replacing π[k : t] with the rule π′ = temp(k, t) ← B(π), where temp is a
fresh predicate, and the weak constraint ⊥ ← temp(k, t)[k : t]. Finally, the lpopt
algorithm is then applied to rule π′. This allows our rule decomposition approach
also to be applied in an optimization context (i.e. where the task for the solver
is to find optimal answer sets w.r.t. their weight).

3.4 Treating Aggregate Expressions

An aggregate expression, as defined in [11], is an expression of the form

t � #agg{t : ϕ(X)},

lpopt: A Rule Optimization Tool for Answer Set Programming 123

where t is a term; �∈ {<,�,=, =,�, >} is a built-in relation; agg is one of sum,
count , max , and min; t = 〈t1, . . . , tn〉 is a sequence of terms; and ϕ(X) is a set of
literals, arithmetic expressions, and aggregate expressions, called the aggregate
body. Aggregates may appear in rule bodies, or recursively inside other aggre-
gates, with the following semantic meaning: Given an interpretation I, for each
valid substitution s such that s(ϕ(X)) ⊆ I, take the tuple of constants s(t). Let
us denote this set with T . Now, execute the aggregate function on T as follows:
for #count , calculate |T |; for #sum, calculate Σt∈T t1, where t1 is the first term
in t; for #max and #min, take the maximum and minimum term appearing in
the first position of each tuple in T , respectively. Finally, an aggregate expression
is true if the relation � between term t and the result of the aggregate function
is fulfilled.

Extending the lpopt algorithm to aggregate expressions is again straightfor-
ward: The rule graph Gπ = (V,E) of a rule π containing aggregate expressions
is defined as follows: Let V be the set of variables occurring in π outside of
aggregate expressions. Let E be as before and, in addition, add, for each aggre-
gate expression e, a clique between all variables var(e) ∩ V to E. Intuitively,
the rule graph should contain, for each aggregate expression, a clique between
all variables that appear in the aggregate and somewhere else in the rule. Vari-
ables appearing only in aggregates are in a sense “local” and are therefore not
of interest when decomposing the rule.

While the above transformation is straightforward, we can, however, go one
step further and also decompose the inside elements of an aggregate expression.
To this end, let t � #agg{t : ϕ(X,Y)} be an aggregate expression occurring in
some rule π, where X are variables that occur either in t or somewhere else in π,
and Y are variables occurring inside the aggregate only. Replace the aggregate
expression with t � #agg{t : ψ(X,Z), temp(t,Z)}, and furthermore, generate
a rule temp(t,Z) ← ψ(Y), ψdom(Y), for some fresh predicate temp. Here, ψ
contains all those atoms from ϕ that contain a variable from X, and ψ contains
the rest. ψdom contains domain predicates generated like in step3 of the lpopt
algorithm, as needed to make the temporary rule safe. The temporary rule can
then be decomposed via lpopt. This is best illustrated by an example:

Example 5. Let π be the following logic programming rule, saying that a vertex
is “good” if it has at least two neighbours that, themselves, have a red neighbour:

good(X) ← vertex (X), 2 � #count{Y : edge(X,Y), edge(Y,Z), red(Z)}.

According to the above approach, the rule can now be split up as follows. Firstly,
the aggregate is replaced:

good(X) ← vertex (X), 2 � #count{Y : edge(X,Y), temp(Y)},

and furthermore, a temporary rule is created as follows:

temp(Y) ← edge(Y,Z), red(Z).

The latter rule is now amenable for decomposition via the lpopt algorithm. ��

124 M. Bichler et al.

Note that the above approach allows us to decompose, to a degree, even the
insides of an aggregate, which, for large aggregate bodies, can lead to a further
significant reduction in the grounding size.

3.5 Correctness

The correctness of the above extensions to the original algorithm follows by the
same arguments that prove the correctness of the original algorithm proposed
in [19], and trivially from the construction for arithmetic expressions and safety.
For the latter, note that for domain predicates of a variable X we explicitly select
a set of atoms that make the variable safe, and that such a set always exists,
since the original rule is safe. For the former two (namely weak constraints and
aggregate expressions), the only thing that needs to be examined is the first
step: replacing (part of) the body with a temporary predicate. But correctness
of this is easy to see. Instead of performing all joins within the weak constraint or
aggregate, we perform the join in a new, separate rule and project only relevant
variables into a temporary predicate. The weak constraint or aggregate then
only needs to consider this temporary predicate since, by construction, all other
variables not projected into the temporary predicate do not play a role w.r.t.
optimization or aggregation. Finally, the original algorithm from [19] extended
to handle arithmetic expressions, for which correctness has already been estab-
lished, is then applied to this new, separate rule.

3.6 Further Language Extensions

The ASP-Core language specification [11], as well as the gringo grounder1, allow
further constructs like variable pooling, aggregates with multiple bodies, or with
upper and lower bounds in the same expression, in addition to various extensions
that amount to syntactic sugar. These constructs make the above explanations
unnecessarily more tedious. However, from a theoretical point of view, all of these
additional constructs can be normalized to one of the forms discussed in the
previous subsections. Furthermore, as we shall see in the next section, we have
implemented the lpopt algorithm to directly treat all standard ASP language
constructs and certain other additions, like variable pooling. More details about
this general approach, and the exact, but more tedious, algorithm details, can
be found in [4].

4 Implementation

A full implementation of the algorithm and its extensions described in Sect. 3 is
now available in the form of the lpopt tool, available with relevant documenta-
tion and examples at

http://dbai.tuwien.ac.at/proj/lpopt.
1 http://potassco.sourceforge.net.

http://dbai.tuwien.ac.at/proj/lpopt
http://potassco.sourceforge.net

lpopt: A Rule Optimization Tool for Answer Set Programming 125

The following gives a quick outline of how to use the tool.
lpopt accepts as its input any form of ASP program that follows the ASP

input language specification laid out in [11]. The output of the program in its
default configuration is a decomposed program that also follows this specifica-
tion. In addition, the tool guarantees that no language construct is introduced in
the output that was not previously present in the input (cf. Sect. 3). Therefore,
for example, a program without aggregates will not contain any aggregates as a
result of rule decomposition. The following is a description of the parameters of
the tool:

Usage: lpopt [-idbt] [-s seed] [-f file] [-h alg] [-l file]

-d dumb: do not perform optimization

-b print verbose and benchmark information

-t perform only tree decomposition step

-i ignore head variables when decomposing

-h alg decomposition algorithm, one of {mcs, mf, miw (def)}

-s seed initialize random number generator with seed

-f file the file to read from (default is stdin)

-l file output infos (treewidth) to file

In what follows, we will briefly describe the most important features of the tool.

Tree Decomposition Heuristics. As stated in Sect. 2, computing an optimal tree
decomposition w.r.t. width is an NP-hard problem. We thus make use of several
heuristic algorithms, namely the maximum cardinality search (mcs), minimum
fill (mf), and minimum induced width (miw) approaches described in [7], that
yield tree decompositions that provide good upper bounds on the treewidth (i.e.
on an optimal decomposition). It turns out that in practice, since rules in ASP
programs are usually not overly large, these heuristics come close to, and often
even yield, an optimal tree decomposition for rules. The heuristic algorithm
to use for decomposition can be selected using the -h command line parameter.
Since these heuristic approaches rely to some degree on randomization, a seed for
the pseudo-random number generator can be passed along with the -s command
line parameter.

Measuring the Treewidth of Rules. Theorem 1 allows us to calculate an upper
bound on the size of the grounding of the input program. In order to do this,
the maximal treewidth of any rule in an ASP program must be known. The -l
switch of the lpopt tool allows this to be calculated. It forces the tool to perform
tree decompositions on all rules inside an input ASP program, simply outputting
the maximal treewidth (or, more accurately, an upper bound; see above) over
all of them into the given file, and then exiting. Clearly, when a single ASP rule
is given as input, this switch will output a treewidth upper bound of that single
rule.

126 M. Bichler et al.

4.1 Recommended Usage

Assuming that a file enc.lp contains the encoding of a problem as an ASP
program and that a file instance.db contains a set of ground facts representing
a problem instance, the recommended usage of the tool is as follows:

cat enc.lp instance.db | lpopt | grounder | solver

In the above command, grounder and solver are programs for grounding
and for solving, respectively. One established solver that we will use in the
next section for our experimental evaluation is clasp [15]. If clasp is used as
a solver together with the lpopt tool, we generally recommend the use of the
--sat-prepro flag, which often speeds up the solving process substantially for
decomposed rules generated by lpopt (by considering the fact that the truth
values of all temporary atoms generated by lpopt are determined exactly by the
rule body, and need never be guessed).

5 Experimental Evaluation

We have tested our lpopt tool and benchmarked the performance of ground-
ing and solving of programs preprocessed with lpopt against non-preprocessed
ones. All benchmarks were made on the instance sets of the fifth answer set
programming competition 20142, which, for most problem classes, provides two
encodings, one from 2013, and one from 2014. The benchmarks have been run on
a 3.5 GHz AMD Opteron Processor 6308 with 192 GB of RAM to its disposal. We
used the potassco software suite3, namely gringo verison 4.5.3 as the grounder
and clasp version 3.1.3 as the solver. A timeout of 300 s was set for solving, and
1000 s for grounding. Furthermore, as suggested in the previous section, clasp
was called with the --sat-prepro flag enabled. In this paper, we will survey the
most important results.

Remark. One central aim of our tool is to improve solving performance for
hand-written encodings by non-experts of ASP. In the spirit of a truly declar-
ative language, it shouldn’t matter how an encoding is written as long as it is
correct (i.e. w.r.t. runtime, there should not be a difference between “good” and
“bad” encodings). In this respect, the ASP competition does not offer an optimal
benchmark set since all encodings are extensively hand-tuned by ASP experts.
However, as to the best of our knowledge there is no better-suited comprehensive
benchmark set available, we will show that even for these extensively hand-tuned
ASP competition encodings our tool can still find decompositions that decrease
grounding size and improve solving performance. However, there are also encod-
ings that are so perfectly hand-tuned that only trivial optimizations are possible
with the current version of lpopt.

2 https://www.mat.unical.it/aspcomp2014/.
3 http://potassco.sourceforge.net.

https://www.mat.unical.it/aspcomp2014/
http://potassco.sourceforge.net

lpopt: A Rule Optimization Tool for Answer Set Programming 127

Results. Let us first note that the runtime of lpopt itself, for all encodings in
the benchmark set, was always less than what can be accurately measured on a
computer system today. Applying our rule decomposition algorithm thus comes
virtually for free for hand-written encodings. Out of the 49 encodings provided
by the ASP competition, lpopt was able to syntactically rewrite 41 which indi-
cates that, as mentioned above, even extensively hand-tuned programs can be
further decomposed in an automated manner. The remaining eight encodings
contained rules that were so small that no further decomposition was possible
(i.e. their Gaifman graph was a clique of usually 3–4 nodes) and thus the output
of lpopt was the original, unmodified encoding in these cases. In 27 of the 41
encodings rewritten by lpopt, the decompositions were trivial and had no signif-
icant impact on the solving performance. This is due to the fact that only rules
that were already very small (and thus did not contribute much to the grounding
size in the first place) could be decomposed. In five cases out of the 41 rewritten
encodings, we noticed a decrease in solving performance (see the paragraph on
limitations of lpopt below for an explanation) and in the remaining seven cases,
the lpopt rewriting was able to speed up the solving process with substantial
improvements in three of these seven. Two of those were the stable marriage
problem encoding of 2013, and the permutation pattern matching encoding of
2014 which we will take a closer look at below. Full benchmark results for the
entire dataset can be found in [4].

Fig. 1. Benchmark results for the stable marriage 2013 instances. The horizontal axis
represents the individual test instances, sorted by runtime without rule decomposition.

Let us look at the stable marriage problem first. As can be seen in Fig. 1, both
grounding and solving time decrease dramatically. Notice that the grounding
time is, in general, directly correlated with the size of the respective grounding.
With lpopt preprocessing, the grounding size decreases dramatically by a factor
of up to 65. The grounder is thirty times faster when using preprocessing, and
the solver about three times. This is because of the following constraint in the
encoding that can be decomposed very well:

128 M. Bichler et al.

:- match(M,W1), manAssignsScore(M,W,Smw), W1!=W,

manAssignsScore(M,W1,Smw1), Smw>Smw1, match(M1,W),

womanAssignsScore(W,M,Swm), womanAssignsScore(W,M1,Swm1),

Swm>=Swm1.

The constraint rule above is quite intuitive to read: There cannot be a man
M and a woman W , such that they would both be better off if they were matched
together, instead of being matched as they are (that is, to W1 and M1, respec-
tively). It encodes, precisely and straightforwardly, the condition of a stable
marriage. The 2014 encoding splits this rule up, making the encoding much
harder to understand. However, with lpopt preprocessing, the grounding and
solving performance matches that of the hand-tuned 2014 encoding. This again
illustrates that the lpopt algorithm allows for efficient processing of rules written
by non-experts that are not explicitly hand-tuned.

A second example of lpopt’s capabilities is the permutation pattern matching
problem illustrated in Fig. 2. The grounding time of the largest instance is 980 s
without preprocessing and 17 s with preprocessing. This instance was also impos-
sible to solve within the timeout window of 300 s without lpopt preprocessing,
but finishing within 88 s when lpopt was run first.

Other Use Cases. lpopt has also been employed in other works that illustrate
its performance benefits. In particular, several solvers for other formalisms rely
on a rewriting to ASP in order to solve the original problem. Such rewritings
can easily lead to the generation of large rules that current ASP solving systems
are generally unable to handle. For example, in [17] ASP rewritings for several
problems from the abstract argumentation domain, proposed in [10], are imple-
mented. In [4, Sect. 4.6], the performance benefits of lpopt are clearly demon-
stated for these rewritings. Interestingly, these rewritings also make heavy use
of aggregates which goes to show that lpopt also handles these constructs well.
Recently, a comprehensive overview of these techniques, making use of lpopt,
was accepted for publication at the AAAI conference of 2017 [8]. Another exam-
ple use case of lpopt is [5], where multiple rewritings for Σ2

P and Σ3
P-hard

Fig. 2. Benchmark results for permutation pattern matching 2014. The horizontal axis
represents the individual test instances, sorted by runtime without rule decomposition.

lpopt: A Rule Optimization Tool for Answer Set Programming 129

problems are proposed and then benchmarked, again showcasing that without
lpopt these rewritings could not be solved by current ASP solvers in all but the
most simple cases.

Limitations. However, we also want to point out some limitations of the lpopt
algorithm. When a domain predicate is generated by the algorithm, the selection
of atoms that generate this domain predicate may not be optimal. In fact, our
algorithm picks an optimal set with respect to the number of variables which
minimizes the number of ground instances that the rule can give rise to in the
mathematical worst case. However, in practice, the number of ground instances
depends on other factors. One major factor is the number of tuples (of constants)
that can potentially appear in a relation. State-of-the-art grounders exploit this
information, but it is not available at the time that the lpopt tool is run (that
is, before grounding). For the same reason, it may be the case that the increased
grounding size caused by the domain predicate rules may destroy any practi-
cal benefit caused by splitting up the main rule, while at the same time the
mathematical worst case bound on the grounding size was actually improved
by running lpopt. In fact, this is precisely what caused the increase in solving
time for the five encodings out of 49 that lpopt was able to rewrite but where
solving performance deteriorated. The question of what the best strategy is to
select atoms to generate domain predicates (or whether, by integrating the lpopt
algorithm into a grounder, these domain predicates can be eliminated entirely)
is part of ongoing research.

6 Conclusions

In this paper, we present an algorithm, based on a prototype from [19], that
allows the decomposition of large logic programming rules into smaller ones
that current state-of-the-art answer set programming solvers are better equipped
to handle. Our implementation handles the entire ASP-Core-2 language [11].
Benchmark results show that in practice, even for extensively hand-tuned ASP
programs, our rule decomposition algorithm can improve solving performance
significantly. Future work will include implementing this approach directly into
state-of-the-art grounders like the gringo grounder used in our benchmarks, as
well as further refining the algorithm w.r.t. selection of domain predicate atoms,
as discussed at the end of Sect. 5.

Acknowledgments. Funded by the Austrian Science Fund (FWF): Y698, P25607.

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR
2013. LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40564-8 6

http://dx.doi.org/10.1007/978-3-642-40564-8_6
http://dx.doi.org/10.1007/978-3-642-40564-8_6

130 M. Bichler et al.

2. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The dis-
junctive datalog system DLV. In: Datalog Reloaded. Revised Selected Papers, pp.
282–301 (2010)

3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algeb. Discr. Meth. 8(2), 277–284 (1987)

4. Bichler, M.: Optimizing non-ground answer set programs via rule decomposition.
BSc Thesis, TU Wien (2015). http://dbai.tuwien.ac.at/proj/lpopt

5. Bichler, M., Morak, M., Woltran, S.: The power of non-ground rules in answer set
programming. TPLP 16(5–6), 552–569 (2016)

6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

7. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Inf. Comput. 208(3), 259–275 (2010)

8. Brewka, G., Diller, M., Heissenberger, G., Linsbichler, T., Woltran, S.: Solving
advanced argumentation problems with answer-set programming. In: Proceeding
of AAAI, pp. 1077–1083 (2017)

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

10. Brewka, G., Woltran, S.: GRAPPA: A semantical framework for graph-based argu-
ment processing. In: Proceeding of ECAI, pp. 153–158 (2014)

11. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format v2.03c
(2015). https://www.mat.unical.it/aspcomp.2013/ASPStandardization. Accessed
27 Jun 2016

12. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

13. Elkabani, I., Pontelli, E., Son, T.C.: SmodelsA — a system for computing answer
sets of logic programs with aggregates. In: Baral, C., Greco, G., Leone, N.,
Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 427–431. Springer,
Heidelberg (2005). doi:10.1007/11546207 40

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. ynthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, San Rafael (2012)

15. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceeding of ICLP/SLP, pp. 1070–1080 (1988)

17. Heißenberger, G.: A system for advanced graphical argumentation formalisms.
Master’s thesis, TU Wien (2016). www.dbai.tuwien.ac.at/proj/adf/grappavis/

18. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm. AI, pp. 375–398. Springer, Heidelberg (1999)

19. Morak, M., Woltran, S.: Preprocessing of complex non-ground rules in answer set
programming. In: Proceeding ICLP, pp. 247–258 (2012)

http://dbai.tuwien.ac.at/proj/lpopt
https://www.mat.unical.it/aspcomp.2013/ASPStandardization
http://dx.doi.org/10.1007/11546207_40
www.dbai.tuwien.ac.at/proj/adf/grappavis/

Symbolic Execution and Thresholding
for Efficiently Tuning Fuzzy Logic Programs

Ginés Moreno1(B), Jaime Penabad2, José A. Riaza1, and Germán Vidal3

1 Department of Computing Systems, UCLM, 02071 Albacete, Spain
{Gines.Moreno,JoseAntonio.Riaza}@uclm.es

2 Department of Mathematics, UCLM, 02071 Albacete, Spain
Jaime.Penabad@uclm.es

3 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain
gvidal@dsic.upv.es

Abstract. Fuzzy logic programming is a growing declarative paradigm
aiming to integrate fuzzy logic into logic programming. One of the most
difficult tasks when specifying a fuzzy logic program is determining the
right weights for each rule, as well as the most appropriate fuzzy con-
nectives and operators. In this paper, we introduce a symbolic extension
of fuzzy logic programs in which some of these parameters can be left
unknown, so that the user can easily see the impact of their possible
values. Furthermore, given a number of test cases, the most appropriate
values for these parameters can be automatically computed. Finally, we
show some benchmarks that illustrate the usefulness of our approach.

Keywords: Fuzzy logic programming · Symbolic execution · Tuning

1 Introduction

Logic Programming [17] has been widely used as a formal method for problem
solving and knowledge representation. Nevertheless, traditional logic program-
ming languages do not incorporate techniques or constructs to explicitly deal
with uncertainty and approximated reasoning. In order to fill this gap, fuzzy
logic programming has emerged as an interesting—and still growing—research
area which aims to consolidate the efforts for introducing fuzzy logic into logic
programming.

During the last decades, several fuzzy logic programming systems have been
developed. Here, essentially, the classical SLD resolution principle of logic pro-
gramming has been replaced by a fuzzy variant with the aim of dealing with
partial truth and reasoning with uncertainty in a natural way. Most of these

This work has been partially supported by the EU (FEDER), the State Research
Agency (AEI) and the Spanish Ministerio de Economı́a y Competitividad under grants
TIN2013-45732-C4-2-P, TIN2013-44742-C4-1-R, TIN2016-76843-C4-1-R, TIN2016-
76843-C4-2-R (AEI/FEDER, UE) and by the Generalitat Valenciana under grant
PROMETEO-II/2015/013 (SmartLogic).

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 131–147, 2017.
DOI: 10.1007/978-3-319-63139-4 8

132 G. Moreno et al.

systems implement (extended versions of) the resolution principle introduced by
Lee [15], such as Elf-Prolog [7], F-Prolog [16], generalized annotated logic pro-
gramming [13], Fril [4], MALP [18], FASILL [11,12], the QLP scheme of [22] and
the many-valued logic programming language of [23].

In this paper we focus on the so-called multi-adjoint logic programming app-
roach MALP [18], a powerful and promising approach in the area of fuzzy logic
programming. Intuitively speaking, logic programming is extended with a multi-
adjoint lattice L of truth values (typically, a real number between 0 and 1),
equipped with a collection of adjoint pairs 〈&i,←i〉 and connectives: implica-
tions, conjunctions, disjunctions, and other operators called aggregators, which
are interpreted on this lattice. Consider, for instance, the following MALP rule:

good(X) ←P @aver(nice(X), cheap(X)) with 0.8

where the adjoint pair 〈&P,←P〉 is defined as

&P(x, y) � x ∗ y ←P (x, y) �
{

1 if y ≤ x
x/y if 0 < x < y

and the aggregator @aver is typically defined as @aver(x1, x2) � (x1 + x2)/2.
Therefore, the rule specifies that X is good—with a truth degree of 0.8—if X is
nice and cheap. Assuming that X is nice and cheap with, e.g., truth degrees n
and c, respectively, then X is good with a truth degree of 0.8 ∗ ((n + c)/2).

When specifying a MALP program, it might sometimes be difficult to assign
weights—truth degrees—to program rules, as well as to determine the right
connectives.1 This is a common problem with fuzzy control system design, where
some trial-and-error is often necessary. In our context, a programmer can develop
a prototype and repeatedly execute it until the set of answers is the intended
one. Unfortunately, this is a tedious and time consuming operation. Actually, it
might be impractical when the program should correctly model a large number
of test cases provided by the user.

In order to overcome this drawback, in this paper we introduce a symbolic
extension of MALP programs called symbolic multi-adjoint logic programming
(sMALP). Here, we can write rules containing symbolic truth degrees and sym-
bolic connectives, i.e., connectives which are not defined on its associated multi-
adjoint lattice. In order to evaluate these programs, we introduce a symbolic
operational semantics that delays the evaluation of symbolic expressions. There-
fore, a symbolic answer could now include symbolic (unknown) truth values and
connectives. We prove the correctness of the approach, i.e., the fact that using
the symbolic semantics and then replacing the unknown values and connectives
by concrete ones gives the same result as replacing these values and connectives
in the original sMALP program and, then, applying the concrete semantics on
the resulting MALP program. Furthermore, we show how sMALP programs can

1 For instance, we have typically several adjoint pairs: �Lukasiewicz logic 〈&L, ←L〉,
Gödel logic 〈&G, ←G〉 and product logic 〈&P, ←P〉, which might be used for modeling
pessimist, optimist and realistic scenarios, respectively.

Symbolic Execution and Thresholding 133

be used to tune a program w.r.t. a given set of test cases, thus easing what is
considered the most difficult part of the process: the specification of the right
weights and connectives for each rule. We plan to integrate this tuning process
into the FLOPER system (Fuzzy LOgic Programming Environment for Research);
see, e.g., [19,20]. In this paper, we show the results of an experimental evaluation
using a prototype implementation of the system, which is available online from
http://dectau.uclm.es/tuning/.

The structure of this paper is as follows. After some preliminaries in Sect. 2,
we introduce the framework of symbolic multi-adjoint logic programming in
Sect. 3 and prove its correctness. Then, in Sect. 4, we show the usefulness of
symbolic programs for tuning several parameters so that a concrete program
is obtained. Moreover, we show some interesting experiments together with
an online implementation which also considers a very efficient tuning method
improved with thresholding techniques. Finally, Sect. 5 concludes and points out
some directions for further research.

2 Preliminaries

We assume the existence of a multi-adjoint lattice 〈L,�,&1,←1, . . . ,&n,←n〉,
equipped with a collection of adjoint pairs 〈&i,←i〉—where each &i is a con-
junctor which is intended to be used for the evaluation of modus ponens [18]—.
In addition, on each program rule, we can have a different adjoint implication
(←i), conjunctions (denoted by ∧1,∧2, . . .), adjoint conjunctions (&1,&2, . . .),
disjunctions (|1, |2, . . .), and other operators called aggregators (usually denoted
by @1,@2, . . .); see [21] for more details. More exactly, a multi-adjoint lattice
fulfills the following properties:

– 〈L,�〉 is a (bounded) complete lattice.2

– For each truth function of &i, an increase in any of the arguments results in
an increase of the result (they are increasing).

– For each truth function of ←i, the result increases as the first argument
increases, but it decreases as the second argument increases (they are increas-
ing in the consequent and decreasing in the antecedent).

– 〈&i,←i〉 is an adjoint pair in 〈L,�〉, namely, for any x, y, z ∈ L, we have
that: x � (y ←i z) if and only if (x &i z) � y.

The last condition, called the adjoint property, could be considered the most
important feature of the framework (in contrast with other approaches) which
justifies most of its properties regarding crucial results for soundness, complete-
ness, applicability, etc. [18].

2 A complete lattice is a (partially) ordered set 〈L, �〉 such that every subset S of
L has infimum and supremum elements. It is bounded if it has bottom and top
elements, denoted by ⊥ and �, respectively. L is said to be the carrier set of the
lattice, and � its ordering relation.

http://dectau.uclm.es/tuning/

134 G. Moreno et al.

Aggregation operators are useful to describe or specify user preferences. An
aggregation operator, when interpreted as a truth function, may be an arith-
metic mean, a weighted sum or in general any monotone function whose argu-
ments are values of a multi-adjoint lattice L. Although, formally, these con-
nectives are binary operators, we often use them as n-ary functions so that
@(x1, . . . ,@(xn−1, xn), . . .) is denoted by @(x1, . . . , xn). By abuse of notation,
in these cases, we consider @ an n-ary operator. The truth function of an n-ary
connective ς is denoted by [[ς]] : Ln
→ L and is required to be monotonic and
fulfill the following conditions: [[ς]](�, . . . ,�) = � and [[ς]](⊥, . . . ,⊥) = ⊥.

In this work, given a multi-adjoint lattice L, we consider a first order lan-
guage LL built upon a signature ΣL, that contains the elements of a countably
infinite set of variables V, function and predicate symbols (denoted by F and Π,
respectively) with an associated arity—usually expressed as pairs f/n or p/n,
respectively, where n represents its arity—, and the truth degree literals ΣT

L and
connectives ΣC

L from L. Therefore, a well-formed formula in LL can be either:

– A value v ∈ ΣT
L , which will be interpreted as itself, i.e., as the truth degree

v ∈ L.
– p(t1, . . . , tn), if t1, . . . , tn are terms over V ∪ F and p/n is an n-ary predicate.

This formula is called atomic (or just an atom).
– ς(e1, . . . , en), if e1, . . . , en are well-formed formulas and ς is an n-ary connec-

tive with truth function [[ς]] : Ln
→ L.

As usual, a substitution σ is a mapping from variables from V to terms over V∪F
such that Dom(σ) = {x ∈ V | x �= σ(x)} is its domain. Substitutions are usually
denoted by sets of pairs like, e.g., {x1/t1, . . . , xn/tn}. Substitutions are extended
to morphisms from terms to terms in the natural way. The identity substitution
is denoted by id. Composition of substitutions is denoted by juxtaposition, i.e.,
σθ denotes a substitution δ such that δ(x) = θ(σ(x)) for all x ∈ V.

In the following, an L − expression is a well-formed formula of LL which is
composed only by values and connectives from L, i.e., expressions over ΣT

L ∪ΣC
L .

In what follows, we assume that the truth function of any connective ς in
L is given by a corresponding definition of the form [[ς]](x1, . . . , xn) � E.3 For
instance, in this work, we will be mainly concerned with the classical set of
adjoint pairs (conjunctors and implications) over 〈[0, 1],≤〉 shown in Fig. 1, where
labels L, G and P mean respectively �Lukasiewicz logic, Gödel logic and Product
logic (which might be used for modeling pessimist, optimist and realistic scenar-
ios, respectively).

A MALP rule over a multi-adjoint lattice L is a formula H ←i B, where H
is an atomic formula (usually called the head of the rule), ←i is an implication
symbol belonging to some adjoint pair of L, and B (which is called the body of
the rule) is a well-formed formula over L without implications. A goal is a body
submitted as a query to the system. A MALP program is a set of expressions
R with v, where R is a rule and v is a truth degree (a value of L) expressing the

3 For convenience, in the following sections, we do not distinguish between the
connective ς and its truth function [[ς]].

Symbolic Execution and Thresholding 135

Fig. 1. Adjoint pairs of three different fuzzy logics over 〈[0, 1], ≤〉.

confidence of a programmer in the truth of rule R. By abuse of the language,
we often refer to R with v as a rule. See, e.g., [18] for a complete formulation of
the MALP framework.

3 Symbolic Multi-adjoint Logic Programming

In this section, we introduce a symbolic extension of multi-adjoint logic pro-
gramming. Essentially, we will allow some undefined values (truth degrees) and
connectives in the program rules, so that these elements can be systematically
computed afterwards. In the following, we will use the abbreviation sMALP to
refer to programs belonging to this setting.

Here, given a multi-adjoint lattice L, we consider an augmented language
Ls

L ⊇ LL which may also include a number of symbolic values, symbolic adjoint
pairs and symbolic connectives which do not belong to L. Symbolic objects are
usually denoted as os with a superscript s.

Definition 1 (sMALP program). Let L be a multi-adjoint lattice. An sMALP
program over L is a set of symbolic rules, where each symbolic rule is a formula
(H ←i B with v) that meets the following conditions:

– H is an atomic formula of LL (the head of the rule);
– ←i is a (possibly symbolic) implication from either a symbolic adjoint pair

〈&s,←s〉 or from an adjoint pair of L;
– B (the body of the rule) is a symbolic goal, i.e., a well-formed formula of Ls

L;
– v is either a truth degree (a value of L) or a symbolic value.

Example 1. We consider the multi-adjoint lattice 〈[0, 1],≤,&P,←P,&G,←G,&L,
←L〉, where the adjoint pairs are defined in Sect. 2, also including @aver which is
defined as follows: @aver(x1, x2) � (x1 +x2)/2. Then, the following is an sMALP
program P:

p(X) ←s1 &s2(q(X),@aver(r(X), s(X))) with 0.9
q(a) with vs

r(X) with 0.7
s(X) with 0.5

where 〈&s1 ,←s1〉 is a symbolic adjoint pair (i.e., a pair not defined in L), &s2

is a symbolic conjunction, and vs is a symbolic value.

136 G. Moreno et al.

The procedural semantics of sMALP is defined in a stepwise manner as fol-
lows. First, an operational stage is introduced which proceeds similarly to SLD
resolution in pure logic programming. In contrast to standard logic programming,
though, our operational stage returns an expression still containing a number of
(possibly symbolic) values and connectives. Then, an interpretive stage evalu-
ates these connectives and produces a final answer (possibly containing symbolic
values and connectives). The procedural semantics of both MALP and sMALP
programs is based on a similar scheme. The main difference is that, for MALP
programs, the interpretive stage always returns a value, while for sMALP pro-
grams we might get an expression containing symbolic values and connectives
that should be first instantiated in order to compute a value.

In the following, C[A] denotes a formula where A is a sub-expression
which occurs in the—possibly empty—context C[]. Moreover, C[A/A′] means
the replacement of A by A′ in context C[], whereas Var(s) refers to the set of
distinct variables occurring in the syntactic object s, and θ[Var(s)] denotes the
substitution obtained from θ by restricting its domain to Var(s). An sMALP
state has the form 〈Q;σ〉 where Q is a symbolic goal and σ is a substitution. We
let Es denote the set of all possible sMALP states.

Definition 2 (admissible step). Let L be a multi-adjoint lattice and P an
sMALP program over L. An admissible step is formalized as a state transition
system, whose transition relation →AS ⊆ (Es × Es) is the smallest relation
satisfying the following transition rules:4

1. 〈Q[A];σ〉 →AS 〈(Q[A/v&iB])θ;σθ〉,
if θ = mgu({H = A}) �= fail, (H ←i B with v)<<P and B is not empty.5

2. 〈Q[A];σ〉 →AS 〈(Q[A/⊥]);σ〉,
if there is no rule (H ←i B with v)<<P such that mgu({H = A}) �= fail.

Here, (H ←i B with v)<<P denotes that (H ←i B with v) is a renamed apart
variant of a rule in P (i.e., all its variables are fresh). Note that symbolic values
and connectives are not renamed.

Observe that the second rule is needed to cope with expressions like
@aver(p(a), 0.8), which can be evaluated successfully even when there is no rule
matching p(a) since @aver(0, 0.8) = 0.4.

In the following, given a relation →, we let →∗ denote its reflexive and
transitive closure. Also, an Ls − expression is now a well-formed formula of Ls

L

which is composed by values and connectives from L as well as by symbolic
values and connectives.

Definition 3 (admissible derivation). Let L be a multi-adjoint lattice and
P be an sMALP program over L. Given a goal Q, an admissible derivation is
4 Here, we assume that A in Q[A] is the selected atom. Furthermore, as it is common

practice, mgu(E) denotes the most general unifier of the set of equations E [14].
5 For simplicity, we consider that facts (H with v) are seen as rules of the form

(H←i� with v) for some implication ←i. Furthermore, in this case, we directly
derive the state 〈(Q[A/v])θ; σθ〉 since v &i� = v for all &i.

Symbolic Execution and Thresholding 137

a sequence 〈Q; id〉 →∗
AS 〈Q′; θ〉. When Q′ is an Ls-expression, the derivation

is called final and the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called a symbolic
admissible computed answer (saca, for short) for goal Q in P.

Example 2. Consider again the multi-adjoint lattice L and the sMALP program
P of Example 1. Here, we have the following final admissible derivation for p(X)
in P (the selected atom is underlined):

〈p(X); id〉 →AS 〈&s1(0.9,&s2(q(X1),@aver(r(X1), s(X1)))); {X/X1}〉
→AS 〈&s1(0.9,&s2(vs,@aver(r(a), s(a)))); {X/a,X1/a}〉
→AS 〈&s1(0.9,&s2(vs,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}〉
→AS 〈&s1(0.9,&s2(vs,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}〉

Therefore, the associated saca is 〈&s1(0.9,&s2(vs,@aver(0.7, 0.5))); {X/a}〉.
Given a goal Q and a final admissible derivation 〈Q; id〉 →∗

AS 〈Q′;σ〉, we have
that Q′ does not contain atomic formulas. Now, Q′ can be solved by using the
following interpretive stage:

Definition 4 (interpretive step). Let L be a multi-adjoint lattice and P be an
sMALP program over L. Given a saca 〈Q;σ〉, the interpretive stage is formalized
by means of the following transition relation →IS⊆ (Es × Es), which is defined
as the least transition relation satisfying:

〈Q[ς(r1, . . . , rn)];σ〉 →IS 〈Q[ς(r1, . . . , rn)/rn+1];σ〉

where ς denotes a connective defined on L and [[ς]](r1, . . . , rn) = rn+1.
An interpretive derivation of the form 〈Q;σ〉 →∗

IS 〈Q′; θ〉 such that 〈Q′; θ〉
cannot be further reduced, is called a final interpretive derivation. In this case,
〈Q′; θ〉 is called a symbolic fuzzy computed answer (sfca, for short). Also, if Q′

is a value of L, we say that 〈Q′; θ〉 is a fuzzy computed answer (fca, for short).

Example 3. Given the saca of Example 2: 〈&s1(0.9,&s2(vs,@aver(0.7, 0.5)));
{X/a}〉, we have the following final interpretive derivation (the connective
reduced is underlined):

〈&s1(0.9,&s2(vs,@aver(0.7, 0.5))); {X/a}〉 →IS 〈&s1(0.9,&s2(vs, 0.6)); {X/a}〉

with [[@aver]](0.7, 0.5) = 0.6. Therefore, 〈&s1(0.9,&s2(vs, 0.6)); {X/a}〉 is a sfca
of p(X) in P since it cannot be further reduced.

Given a multi-adjoint lattice L and a symbolic language Ls
L, in the following

we consider symbolic substitutions that are mappings from symbolic values and
connectives to expressions over ΣT

L ∪ΣC
L . Symbolic substitutions are denoted by

Θ,Γ, . . . Furthermore, for all symbolic substitution Θ, we require the following
condition: ←s/←i ∈ Θ iff &s/&i ∈ Θ, where 〈&s,←s〉 is a symbolic adjoint pair
and 〈&i,←i〉 is an adjoint pair in L. Intuitively, this is required for the substi-
tution to have the same effect both on the program and on an Ls-expression.

138 G. Moreno et al.

Given an sMALP program P over L, we let sym(P) denote the symbolic values
and connectives in P. Given a symbolic substitution Θ for sym(P), we denote
by PΘ the program that results from P by replacing every symbolic symbol es

by esΘ. Trivially, PΘ is now a MALP program.
The following theorem is our key result in order to use sMALP programs for

tuning the components of a MALP program:

Theorem 1. Let L be a multi-adjoint lattice and P be an sMALP program over
L. Let Q be a goal. Then, for any symbolic substitution Θ for sym(P), we have
that 〈v; θ〉 is a fca for Q in PΘ iff there exists a sfca 〈Q′; θ′〉 for Q in P and
〈Q′Θ; θ′〉 →∗

IS 〈v; θ′〉, where θ′ is a renaming of θ.

Proof (Sketch) For simplicity, we consider that the same fresh variables are used
for renamed apart rules in both derivations.

Consider the following derivations for goal Q w.r.t. programs P and PΘ,
respectively:

DP : 〈Q; id〉 →∗
AS 〈Q′′; θ〉 →∗

IS 〈Q′; θ〉
DPΘ : 〈Q; id〉 →∗

AS 〈Q′′Θ; θ〉 →∗
IS 〈Q′Θ; θ〉

Our proof proceeds now in three stages:

1. Firstly, observe that the sequences of symbolic admissible steps in DP and
DPΘ exploit the whole set of atoms in both cases, such that a program rule
R is used in DP iff the corresponding rule RΘ is applied in DPΘ and hence,
the saca’s of the derivations are 〈Q′′; θ〉 and 〈Q′′Θ; θ〉, respectively.

2. Then, we proceed by applying interpretive steps until reaching the sfca 〈Q′; θ〉
in the first derivation DP and it is easy to see that the same sequence of
interpretive steps are applied in DPΘ thus leading to state 〈Q′Θ; θ〉, which is
not necessarily a sfca.

3. Finally, it suffices to instantiate the sfca 〈Q′; θ〉 in the first derivation DP
with the symbolic substitution Θ, for completing both derivations with the
same sequence of interpretive steps until reaching the desired fca 〈v; θ〉. ��

Example 4. Consider again the multi-adjoint lattice L and the sMALP program
P of Example 1. Let Θ = {←s1/←P,&s1/&P,&s2/&G, v

s/0.8} be a symbolic
substitution. Given the sfca from Example 3, we have:

〈&s1(0.9,&s2(vs, 0.6))Θ; {X/a}〉 = 〈&P(0.9,&G(0.8, 0.6)); {X/a}〉

So, we have the following interpretive final derivation for the instantiated sfca:

〈&P(0.9,&G(0.8, 0.6)); {X/a}〉 →IS 〈&P(0.9, 0.6); {X/a}〉 →IS 〈0.54; {X/a}〉

By Theorem 1, we have that 〈0.54; {X/a}〉 is also a fca for p(X) in PΘ.

Symbolic Execution and Thresholding 139

4 Tuning Multi-adjoint Logic Programs

In this section, we introduce an automated technique for tuning multi-adjoint
logic programs using sMALP programs.

Consider a typical Prolog clause “H : −B1, . . . , Bn”. It can be fuzzified in
order to become a MALP rule “H ←label B with v” by performing the following
actions:

1. weighting it with a truth degree v,
2. connecting its head and body with a fuzzy implication symbol ←label (belong-

ing to a concrete adjoint pair 〈←label,&label〉) and,
3. linking the set of atoms B1, . . . , Bn on its body B by means of a set of fuzzy

connectives (i.e., conjunctions &i, disjunctions |j or aggregators @k).

Introducing changes on each one of the three fuzzy components just described
above may affect—sometimes in an unexpected way—the set of fuzzy computed
answers for a given goal.

Typically, a programmer has a model in mind where some parameters have
a clear value. For instance, the truth value of a rule might be statistically deter-
mined and, thus, its value is easy to obtain. In other cases, though, the most
appropriate values and/or connectives depend on subjective notions and, thus,
programmers do not know how to obtain these values. In a typical scenario, we
have an extensive set of expected computed answers (i.e., test cases), so the pro-
grammer can follow a “try and test” strategy. Unfortunately, this is a tedious
and time consuming operation. Actually, it might even be impractical when the
program should correctly model a large number of test cases.

Therefore, we propose an automated technique that proceeds as follows. Here,
for simplicity, we only consider the first answer to a goal. Note that this is not
a significant restriction since one can encode multiple solutions in a list so that
the main goal is always deterministic and all non-deterministic calls are hidden
in the computation. Extending the following algorithm for multiple solutions is
not difficult, but makes the formalization more cumbersome. Hence, we say that
a test case is a pair (Q, f) where Q is a goal and f is an fca.

Definition 5 (naive algorithm for symbolic tuning of MALP programs).

Input: an sMALP program Ps and a number of (expected) test cases
(Qi, 〈vi; θi〉), where Qi is a goal and 〈vi; θi〉 is its expected fca for i = 1, . . . , k.

Output: a symbolic substitution Θ.

1. For each test case (Qi, 〈vi; θi〉), compute the sfca 〈Q′
i, θi〉 of 〈Qi, id〉 in Ps.

2. Then, consider a finite number of possible symbolic substitutions for sym(Ps),
say Θ1, . . . , Θn, n > 0.

3. For each j ∈ {1, . . . , n}, compute 〈Q′
iΘj , θi〉 →∗

IS 〈vi,j ; θi〉, for i = 1, . . . , k.
Let di,j = |vi,j − vi|, where | | denotes the absolute value.

4. Finally, return the symbolic substitution Θj that minimizes
∑k

i=1 di,j.

140 G. Moreno et al.

Observe that the precision of the algorithm can be parameterized depending
on the set of symbolic substitutions considered in step (2). For instance, one
can consider only truth values {0.3, 0.5, 0.8} or a larger set {0.1, 0.2, . . . , 1.0};
one can consider only three possible connectives, or a set including ten of them.
Obviously, the larger the domain of values and connectives is, the more precise
the results are (but the algorithm is more expensive, of course).

This algorithm represents a much more efficient method for tuning the fuzzy
parameters of a MALP program than repeatedly executing the program from
scratch (see Table 2, column “Basic”).

Let us explain the technique by means of a small, but realistic example. Here,
we consider a travel agency that offers booking services on a large number of
hotels. The travel agency has a web site where the user can rate every hotel with
a value between 1% and 100%. The purpose in this case is to specify a fuzzy
model that correctly represents the rating of each hotel.

In order to simplify the presentation, we consider that there are only three
hotels, named sun, sweet and lux. In the web site, these hotels have been rated
0.60, 0.77 and 0.85 (expressed as real numbers between 0 and 1), respectively. Our
simple model just depends on three factors: the hotel facilities, the convenience
of its location, and the rates, denoted by predicates facilities, location and rates,
respectively. An sMALP program modelling this scenario is the following:

popularity(X) ←s |s(facilities(X),@aver(location(X), rates(X))) with 0.9

facilities(sun) with vs

location(sun) with 0.4
rates(sun) with 0.7

facilities(sweet) with 0.5
location(sweet) with 0.3
rates(sweet) with 0.1

facilities(lux) with 0.9
location(lux) with 0.8
rates(lux) with 0.2

Here, we assume that all weights can be easily obtained except for the weight of
the fact facilities(sun), which is unknown, so we introduce a symbolic weight vs.
Also, the programmer has some doubts on the connectives used in the first
rule, so she introduced a number of symbolic connectives: the implication and
disjunction symbols, i.e. ←s and |s.

We consider, for each symbolic connective, the three possibilities shown in
Fig. 2 over the lattice 〈[0, 1],≤〉, which are based on the so-called Product, Gödel
and �Lukasiewicz logics. Adjectives like pessimist, realistic and optimist are some-
times applied to the �Lukasiewicz, Product and Gödel logics, respectively, since
conjunctive operators satisfy that, for any pair of real numbers x and y in [0, 1],
we have:

0 ≤ &L(x, y) ≤ &P(x, y) ≤ &G(x, y) ≤ 1

Symbolic Execution and Thresholding 141

&P(x, y) = x ∗ y |P(x, y) = x + y − x ∗ y
&G(x, y) = min(x, y) |G(x, y) = max(x, y)
&L(x, y) = max(x y 1, 0) L(x, y) = min(x y, 1)

Fig. 2. Conjunctions and disjunctions of three different fuzzy logics over 〈[0, 1], ≤〉.

In contrast, the contrary holds for the disjunction operations, that is:

0 ≤ |G(x, y) ≤ |P(x, y) ≤ |L(x, y) ≤ 1

Note that it is more difficult to satisfy a condition based on a pessimist con-
junction/disjunction (i.e., inspired by the �Lukasiewicz and Gödel fuzzy logics,
respectively) than with Product logic based operators. The optimistic versions
of these connectives are less restrictive, obtaining greater truth degrees on fca’s.
This is a consequence of the following chain of inequalities:

0 ≤ &L(x, y) ≤ &P(x, y) ≤ &G(x, y) ≤ |G(x, y) ≤ |P(x, y) ≤ |L(x, y) ≤ 1

Therefore, it is desirable to tune the symbolic constants ←s and |s in the first
rule of our symbolic sMALP program by selecting operators in the previous
sequence until finding solutions satisfying in a stronger (or weaker) way the
user’s requirements.

Focusing on our particular sMALP program, we consider the following three
test cases:

(popularity(sun), 〈0.60; id〉),
(popularity(sweet), 〈0.77; id〉),
(popularity(lux), 〈0.85; id〉)

for which the respective three sfca’s achieved after applying the first step of our
tuning algorithm are:

〈&s(0.9, |s(vs, 0.55)); id〉
〈&s(0.9, |s(0.5, 0.65)); id〉
〈&s(0.9, |s(0.9, 0.5)); id〉

In the second step of the algorithm, we must provide symbolic substitutions for
being applied to this set of sfca’s in order to transform them into fca’s which are
as close as possible to those in the test cases. Table 1 shows the results of the
tuning process, where each column has the following meaning:

– The first pair of columns serve for choosing the implication6 and disjunction
connectives of the first program rule (i.e., ←s and |s) from each one of the
three fuzzy logics considered so far.

– In the third column, we consider three possible truth degrees (0.3, 0.5 and
0.7) as the potential assignment to the symbolic weight vs. In this example,
this set suffices to obtain an accurate solution.

6 It is important to note that, at execution time, each implication symbol belonging to
a concrete adjoint pair is replaced by its adjoint conjunction (see again our repertoire
of adjoint pairs in Fig. 1 in the preliminaries section).

142 G. Moreno et al.

– Each row represents a different symbolic substitution, which are shown in
column four.

– Next, headed by the name of each hotel in the test cases, we have pairs of
columns which represent, respectively, the potential truth degree associated
to the fca obtained with the corresponding symbolic substitution, and the
deviation of such value w.r.t. the expected truth degree, thus summarizing
the computations performed on the third step of our algorithm.

– The sum of the three deviations is expressed in the last column of the table,
which constitutes the value to be minimized as indicated in the final, fourth
step of the algorithm.

According to these criteria, we observe that the cell with the lower value (0.04)
in the last column of Table 1 refers to the symbolic substitution

Θ13 = {←s/←P, |s/ |P, vs/0.3}

which solve our tuning problem by suggesting that the first pair of rules in our
final, tuned MALP program should be the following ones:

popularity(X) ←P |P(services(X),@aver(location(X), rates(X))) with 0.9
facilities(sun) with 0.3

Unfortunately, the naive algorithm introduced so far might be very inefficient
when dealing with many symbolic values and connectives, or when the considered
set of their possible substitutions is large. Here, in order to improve its efficiency,
we consider thresholding techniques—well-known in the fuzzy logic arena—
for prematurely disregarding useless computations leading to non-significant
answers (see our previous experiences in [2,8,10]).

The improved algorithm is perfectly analogous to the algorithm in
Definition 5, but makes use of a threshold τ for determining when a partial
solution is acceptable. The value of τ is initialized to ∞ (in practice, a very large
number). Then, this threshold dinamically decreases whenever we find a sym-
bolic substitution with an associated deviation which is lower that the actual
value of τ . Moreover, a partial solution is discarded as soon as the cumulative
deviation computed so far is greater than τ . In our running example, τ takes the
following values: 0.42, 0.27, 0.05, and 0.04, associated to Θ1, Θ3, Θ4, and Θ13,
respectively. In general, the number of discarded solutions grows as the value of τ
decreases, improving the pruning power of thesholding. In Table 1, the discarded
solutions are shown in bold. They represent a significant percentage of the total
computations.

The symbolic execution and tuning methods explained so far can be tested
online via the following URL:

Symbolic Execution and Thresholding 143

Table 1. Table summarizing the results achieved when tuning connectives and weights.

←s |s vs Θ sun sweet lux z

←L |G 0.3 Θ1 0.45 0.15 0.55 0.22 0.80 0.05 0.42

0.5 Θ2 0.45 0.15 0.55 0.22 0.80 0.05 0.42

0.7 Θ3 0.60 0.00 0.55 0.22 0.80 0.05 0.27

|P 0.3 Θ4 0.59 0.01 0.73 0.04 0.85 0.00 0.05

0.5 Θ5 0.68 0.08 0.73 0.04 0.85 0.00 0.12

0.7 Θ6 0.77 0.17 0.73 0.04 0.85 0.00 0.21

|L 0.3 Θ7 0.75 0.15 0.90 0.13 0.90 0.05 0.33

0.5 Θ8 0.90 0.30 0.90 0.13 0.90 0.05 0.48

0.7 Θ9 0.90 0.30 0.90 0.13 0.90 0.05 0.48

←P |G 0.3 Θ10 0.50 0.10 0.59 0.18 0.81 0.04 0.32

0.5 Θ11 0.50 0.10 0.59 0.18 0.81 0.04 0.32

0.7 Θ12 0.63 0.03 0.59 0.18 0.81 0.04 0.25

|P 0.3 Θ13 0.61 0.01 0.74 0.03 0.85 0.00 0.04

0.5 Θ14 0.70 0.10 0.74 0.03 0.86 0.01 0.14

0.7 Θ15 0.78 0.18 0.74 0.03 0.86 0.01 0.22

|L 0.3 Θ16 0.77 0.17 0.90 0.13 0.90 0.05 0.35

0.5 Θ17 0.90 0.30 0.90 0.13 0.90 0.05 0.48

0.7 Θ18 0.90 0.30 0.90 0.13 0.90 0.05 0.48

←G |G 0.3 Θ19 0.55 0.05 0.65 0.12 0.90 0.05 0.22

0.5 Θ20 0.55 0.05 0.65 0.12 0.90 0.05 0.22

0.7 Θ21 0.70 0.10 0.65 0.12 0.90 0.05 0.27

|P 0.3 Θ22 0.69 0.09 0.83 0.06 0.90 0.05 0.20

0.5 Θ23 0.78 0.18 0.83 0.06 0.90 0.05 0.29

0.7 Θ24 0.87 0.27 0.83 0.06 0.90 0.05 0.38

|L 0.3 Θ25 0.86 0.26 0.90 0.13 0.90 0.05 0.44

0.5 Θ26 0.90 0.30 0.90 0.13 0.90 0.05 0.48

0.7 Θ27 0.90 0.30 0.90 0.13 0.90 0.05 0.48

http://dectau.uclm.es/tuning/

When introducing an sMALP program into the system, symbolic constants
must be preceded by the symbol “#”. For instance, the first couple of rules in
our running example have the following form:

popularity(X) #<s1 facilities(X) #|s2 @aver(locatin(X),rates(X)) with 0.9

facilities(sun) with #s3

The lattice of truth degrees is encoded as a set of Prolog clauses (see [19,20])
where predicate members/1 contains the list of truth degrees used during the
tuning process. Each test case appears in a different line as follows: r −> Q,

http://dectau.uclm.es/tuning/

144 G. Moreno et al.

where r is the desired truth degree for the first fca associated to query Q. For
tuning an sMALP program, we have implemented the three methods mentioned
so far:

Basic: The basic method is based on applying each symbolic substitution to the
original sMALP program and then fully executing the resulting instantiated
MALP programs (both the operational and the interpretive stages).

Symbolic: This row refers to the naive algorithm introduced in Definition 5,
where the considered substitutions are directly applied to sfca’s (thus only
the interpretive stage is repeatedly executed).

Thresholded: In this row, we consider the symbolic method improved with thresh-
olding techniques, as explained above.

The system also reports the processing time required by each method and
offers an option for applying the best symbolic substitution to the original sMALP
program in order to show the final, tuned MALP program.

Table 2. Tuning runtime (in milliseconds).

Truth degrees Symbolic constants

10 100 1000 5 6 7 8 9 10 11

Basic 120 1130 11360 320 990 3030 9180 28170 86760 264850

Symbolic 30 290 2860 100 290 980 2970 9930 30570 93360

Thresholded 15 130 1300 50 140 420 1580 4390 13460 38310

Table 2 summarizes the results of an experimental evaluation7 of the three
tuning methods described above, varying the number of truth degrees (10, 100
and 1000) used when manipulating our running example. Note that, in the most
complex case, 9000 different symbolic substitutions are considered at tuning
time, and the thresholded method is about 2 to 3 times more efficient than the
symbolic method, and even 6 to 8 times more efficient than the basic method,
which witnesses the advantages of our improved tuning mechanism. In the last
column, we consider variations of the number of symbolic constants (among
connectives and truth degrees) from 5 to 11, thus showing that the thresholded
method scales up well and solves the problem in just a few seconds.

5 Discussion

In this paper, we have been concerned with fuzzy programs belonging to the so-
called multi-adjoint logic programming approach. Our improvements are twofold:

7 Each cell refers to the average of 100 executions using a desktop computer equipped
with an i3-2310 M CPU @ 2.10 GHz and 4,00 GB RAM.

Symbolic Execution and Thresholding 145

– On one side, we have extended their syntax for allowing the presence of sym-
bolic weights and connectives on program rules, which very often prevents the
full evaluation of goals. As a consequence, we have also relaxed the opera-
tional principle for producing what we call symbolic fuzzy computed answers,
where all atoms have been exploited and the maximum number of expres-
sions involving connectives of the underlaying lattice of truth degrees have
been solved too.

– On the other hand, we have introduced a tuning process for MALP programs
that takes as inputs a set of expected test cases and an sMALP program
where some connectives and/or truth degrees are unknown. The efficiency
of the method has been largely improved by combining it with thresholding
techniques, as can be checked online in our prototype implementation.

As future work, we consider the embedding of these techniques in the FLOPER
platform, which is freely available from http://dectau.uclm.es/floper/. Currently,
the system can be used for compiling MALP programs to standard Prolog code,
drawing derivation trees, generating declarative traces and executing MALP pro-
grams [9,10]. Our last update, described in [11,12], allows the system to cope
with similarity relations cohabiting with lattices of truth degrees. Extending
our tuning method in order to cope with such similarity relations is also an
interesting topic for future work.

Another interesting direction for further research consists in combining our
approach with recent fuzzy variants of SAT/SMT techniques. Research on SAT
(Boolean Satisfiability) and SMT (Satisfiability Modulo Theories) [5] has pro-
vided highly efficient solvers based on classical logic. Some recent approaches
deal with propositional fuzzy formulae which might contain connectives defined
on lattices of truth degrees quite similar to the ones used on MALP programs
[3,24].8 In this context, we think that our tuning method could be significantly
improved if the set of sfca’s instantiated with symbolic substitutions could be
expressed as fuzzy formulae, which are solvable by this kind of fuzzy SAT/SMT
solvers.

References

1. Almendros-Jiménez, J.M., Bofill, M., Luna-Tedesqui, A., Moreno, G., Vázquez, C.,
Villaret, M.: Fuzzy XPath for the automatic search of fuzzy formulae models. In:
Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS (LNAI), vol. 9310, pp. 385–398.
Springer, Cham (2015). doi:10.1007/978-3-319-23540-0 26

2. Almendros-Jiménez, J.M., Luna, A., Moreno, G.: Fuzzy XPath through fuzzy logic
programming. New Gener. Comput. 33(2), 173–209 (2015)

8 Instead of focusing on satisfiability, (i.e., proving the existence of at least one model)
as usually done in a SAT/SMT setting, in [1,6] we have faced the problem of finding
the whole set of models for a given fuzzy formula by re-using a previous method
based on fuzzy logic programming where the formula is conceived as a goal whose
derivation tree, provided by the FLOPER tool, contains in its leaves all the models
of the original formula, together with other interpretations.

http://dectau.uclm.es/floper/
http://dx.doi.org/10.1007/978-3-319-23540-0_26

146 G. Moreno et al.

3. Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Building automated theorem
provers for infinitely-valued logics with satisfiability modulo theory solvers. In:
Proceeding of ISMVL 2012, pp. 25–30 (2012)

4. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning
in Artificial Intelligence. Wiley, New York (1995)

5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, 185, pp. 825–885. IOS Press (2009)

6. Bofill, M., Moreno, G., Vázquez, C., Villaret, M.: Automatic proving of fuzzy
formulae with fuzzy logic programming and SMT. In: Fredlund, L.A. (ed.) Pro-
gramming and Computer Languages 2013, vol. 64, p. 19. ECEASST (2013)

7. Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: Proceeding of
the IJCAI 1985, pp. 701–703. Morgan Kaufmann (1985)

8. Julián, P., Medina, J., Moreno, G., Ojeda-Aciego, M.: Efficient thresholded
tabulation for fuzzy query answering. In: Bouchon-Meunier, B., Magdalena, L.,
Ojeda-Aciego, M., Verdegay, J.L., Yager, R.R. (eds.) Foundations of Reasoning
under Uncertainty. STUDFUZZ, vol. 249, pp. 125–149. Springer, Heidelberg (2010)

9. Julián, P., Moreno, G., Penabad, J.: Operational/interpretive unfolding of multi-
adjoint logic programs. J. Univ. Comput. Sci. 12(11), 1679–1699 (2006)

10. Julián, P., Moreno, G., Penabad, J.: An improved reductant calculus using
fuzzy partial evaluation techniques. Fuzzy Sets Syst. 160, 162–181 (2009).
http://dx.doi.org/10.1016/j.fss.2008.05.006

11. Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic program-
ming environment for managing similarity and truth degrees. In: EPTCS, vol. 173,
pp. 71–86 (2015). http://dx.doi.org/10.4204/EPTCS.173.6

12. Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A declarative seman-
tics for a fuzzy logic language managing similarities and truth degrees. In:
Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.)
RuleML 2016. LNCS, vol. 9718, pp. 68–82. Springer, Cham (2016). doi:10.1007/
978-3-319-42019-6 5

13. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. J. Logic Program. 12, 335–367 (1992)

14. Lassez, J.L., Maher, M.J., Marriott, K.: Unification revisited. In: Foundations of
Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann,
Los Altos, CA (1988)

15. Lee, R.: Fuzzy logic and the resolution principle. J. ACM 19(1), 119–129 (1972)
16. Li, D., Liu, D.: A Fuzzy Prolog Database System. Wiley, New York (1990)
17. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Berlin (1987)
18. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-

adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)
19. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A practical management

of fuzzy truth-degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet,
S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16289-3 4

20. Moreno, G., Vázquez, C.: Fuzzy logic programming in action with FLOPER. J.
Softw. Eng. Appl. 7, 237–298 (2014)

21. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall,
Boca Ratón (2006)

http://dx.doi.org/10.1016/j.fss.2008.05.006
http://dx.doi.org/10.4204/EPTCS.173.6
http://dx.doi.org/10.1007/978-3-319-42019-6_5
http://dx.doi.org/10.1007/978-3-319-42019-6_5
http://dx.doi.org/10.1007/978-3-642-16289-3_4

Symbolic Execution and Thresholding 147

22. Rodŕıguez-Artalejo, M., Romero-Dı́az, C.A.: Quantitative logic programming revis-
ited. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989,
pp. 272–288. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78969-7 20

23. Straccia, U.: Managing uncertainty and vagueness in description logics, logic pro-
grams and description logic programs. In: Baroglio, C., Bonatti, P.A., Ma�luszyński,
J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224,
pp. 54–103. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85658-0 2

24. Vidal, A., Bou, F., Godo, L.: An SMT-based solver for continuous t-norm based
logics. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012.
LNCS (LNAI), vol. 7520, pp. 633–640. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33362-0 53

http://dx.doi.org/10.1007/978-3-540-78969-7_20
http://dx.doi.org/10.1007/978-3-540-85658-0_2
http://dx.doi.org/10.1007/978-3-642-33362-0_53
http://dx.doi.org/10.1007/978-3-642-33362-0_53

Analysis and Verification

Hierarchical Shape Abstraction for Analysis
of Free List Memory Allocators

Bin Fang1,2 and Mihaela Sighireanu1(B)

1 IRIF, University Paris Diderot and CNRS, Paris, France
{bfang,sighirea}@irif.fr

2 Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China

Abstract. We propose a hierarchical abstract domain for the analysis
of free list memory allocators that tracks shape and numerical properties
about both the heap and the free lists. Our domain is based on Sepa-
ration Logic extended with predicates that capture the pointer arith-
metics constraints for the heap list and the shape of the free list. These
predicates are combined using a hierarchical composition operator to
specify the overlapping of the heap list by the free list. In addition to
expressiveness, this operator leads to a compositional and compact rep-
resentation of abstract values and simplifies the implementation of the
abstract domain. The shape constraints are combined with numerical
constraints over integer arrays to track properties about the allocation
policies (best-fit, first-fit, etc.). Such properties are out of the scope of
the existing analyzers. We implemented this domain and we show its
effectiveness on several implementations of free list allocators.

1 Introduction

A dynamic memory allocator (DMA) is a piece of software managing a reserved
region of the heap. It appears in general purpose libraries (e.g., C standard
library) or as part of applications where the dynamic allocation shall be con-
trolled to avoid failure due to memory exhaustion (e.g., embedded critical soft-
ware). A client program interacts with the DMA by requesting blocks of memory
of variable size that it may free at any time. To offer this service, the DMA man-
ages the reserved memory region by partitioning it into arbitrary sized blocks of
memory, also called chunks. When a chunk is allocated to a client program, the
DMA can not relocate it to compact the memory region (like in garbage collec-
tors) and it is unaware about the kind (type or value) of data stored. The set of
chunks not in use, also called free chunks, is managed using different techniques.
In this paper, we focus on free list allocators [19,27], that records free chunk
in a list. This class of DMA includes textbook examples [17,19] and real-world
allocators [20].

The automated analysis of DMA faces several challenges. Although the code
of DMA is not long (between one hundred to a thousand LOC), it is highly
optimised to provide good performance. Low-level code (e.g., pointer arithmetics,
bit fields, calls to system routines like sbrk) is used to manage efficiently (i.e.,
c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 151–167, 2017.
DOI: 10.1007/978-3-319-63139-4 9

152 B. Fang and M. Sighireanu

with low additional cost in memory and time) the operations on the chunks
in the reserved memory region. At the same time, the free list is manipulated
using high level operations over typed memory blocks (values of C structures)
by mutating pointer fields without pointer arithmetic. The analyser has to deal
efficiently with this polar usage of the heap made by the DMA. The invariants
maintained by the DMA are complex. The memory region is organised into a heap
list based on the size information stored in the chunk header such that chunk
overlapping and memory leaks are avoided. The start addresses of chunks shall
be aligned to some given constant. The free list may have complex shapes (cyclic,
acyclic, doubly-linked) and may be sorted by the start address of chunks to ease
free chunks coalescing. A precise analysis shall keep track of both numerical and
shape properties to infer specifications implying such invariants for the allocation
and deallocation methods of the DMA.

These challenges have been addressed partially by several works in the last
ten years [5,23,25]. In [23], efficient numerical analyses have been designed to
track address alignment and bit-fields. The most important progress has been
done by the analysis proposed by Calcagno et al. [5]. It is able to track the
free list shape and the numerical properties of chunk start addresses due to
an abstract domain built on an extension of Separation Logic (SL) [24] with
numerical constraints and predicates specifying memory blocks. However, some
properties of the heap and free list can not be tracked, e.g., the absence of
memory leaks or the ordering of start addresses of free-chunks. Although the
analysis in [25] does not concern DMA, it is the first to propose a hierarchical
abstraction of the memory to track properties of linked data structures stored
in static memory regions. However, this analysis can not track properties like
address sorting of the high level data structures (here the free list) stored in the
memory region. Furthermore, its link with a logic theory is not clear. Thus, a
precise, logic based analysis for the inference of properties of free list DMA is
still a challenge.

In this paper, we propose a static analysis that is able to infer the above com-
plex invariants of DMA on both heap list and free list. We define an abstract
domain which uses logic formulas to abstract DMA configurations. The logic
proposed extends the fragment of symbolic heaps of SL with a hierarchical com-
position operator, �, to specify that the free list covers partially the heap list.
This operator provides a hierarchical abstraction of the memory region under
the DMA control: the low-level memory manipulations are specified at the level
of the heap list and propagated in a way controlled by the abstraction at the
level of the free list. The shape specification is combined with a fragment of
first order logic on arrays to capture properties of chunks in lists, similar to [3].
This combination is done in an accurate way as regards the logic by including
sequences of chunk addresses in the inductive definitions of list segments. The
main advantages and contributions of this work are (1) the high precision of the
abstraction which is able to capture complex properties of free list DMA imple-
mentations, (2) the strong logical basis allowing to infer invariants that may
be used by other verification methods, and (3) the modularity of the abstract

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 153

domain permitting to reuse existing abstract domains for the analysis of linked
lists with integer data.

2 Overview

Figure 1 includes excerpts from our running example, a free list DMA implemen-
tation proposed in [1]. The type HDR (Fig. 1(a)) defines the information stored
by the DMA at the start of chunks. The field size stores the full size of the
chunk (in blocks of sizeof(HDR) bytes) and it is used by the heap list to deter-
mine the start of the next chunk. The field fnx is valid only for free chunks (i.e.,
chunks in the free list) and it stores the start address of the next free chunk. To
simplify the presentation, we added the ghost field isfree, to mark explicitly
free chunks. The memory region managed by the DMA is enclosed within the
addresses stored by the global variables hsta and hend; they are initialised by
minit using sbrk calls. The start of the free list is stored in frhd. An intuitive
view of the concrete state of the DMA is shown in Fig. 1(d). The busy chunks
are represented in grey. The “next chunk” relation in the heap list (defined using
the field size) is represented by the lower arrows; the upper arrows represent
the “next free chunk” relation defined by the fnx field. Furthermore, other struc-
tural invariants should be maintained after each call of DMA methods: the heap
list shall be well formed inside the memory region [hsta, hend), consecutive
chunks of the heap list are not both free (early coalescing policy), the free list
shall include only chunks of the heap list, be acyclic and sorted by the start
address of chunks. The allocation method searches a chunk with size bigger than
the requested nbytes; if the chunk is larger, it is split in two parts such that the
last part (the end of the initial chunk) is allocated.

The goal of our analysis is to establish that, if the client uses correctly the
DMA methods, these methods (i) preserve the above structural invariants and
(ii) are memory safe. In particular, we analyse the DMA methods starting from
a client program which initialises the DMA and then calls allocation and deal-
location methods (see Sect. 5) in a correct way.

Heap list abstraction. The concrete memory configurations managed by the
DMA are abstracted first using an extension of the symbolic heap graphs frag-
ment [9] of SL. The logic fragment is parameterised by a set of predicates which
capture the properties of the heap list as follows:

– The predicate blk(X;Y), introduced in [5], specifies an untyped sequence
of bytes between the symbolic addresses X and Y . E.g., the configuration
obtained at line 20 of minit is abstracted by blk(hsta; hend).

– The predicate chd(X;Y) specifies a memory block blk(X;Y) storing a value
of type HDR; the fields of this value are represented by the symbolic variables
X.size, X.fnx, and X.isfree respectively.

– The predicate chk(X;Y) specifies a chunk built from a chunk header
chd(X;Z) followed by a block blk(Z;Y) such that the full memory occupied,
i.e., Y − X, has size given by X.size× sizeof(HDR).

154 B. Fang and M. Sighireanu

Fig. 1. Running example with code, concrete memory, and abstract specification

– A well formed heap list segment starting at address X and ending before Y
is specified using the predicate hls(X;Y)[W]. The inductive definition of this
predicate (see Table 2) requires that chunks do not overlap or leave memory
leaks. The variable W registers the sequence of start addresses of chunks in
the list segment and it is used to put additional constraints on the fields of
these chunks. For DMA with early coalescing of free-chunks (i.e., coalescing
at free), we abstract the heap list segments by a stronger predicate, hlsc.

These predicates are combined using the separation conjunction operator ∗
of SL, which requires disjointness of memory regions specified by its operands.
The bottom of Fig. 1(c) illustrates the heap list abstraction of the concrete mem-
ory provided in Fig. 1(d); for readability, the abstraction is represented by its
Gaifman graph. The ghost variable hli represents the end of the data segment of
the DMA, as returned by sbrk(0).

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 155

Hierarchical abstraction of the free list. The first abstraction layer captures the
total order of chunks in the heap list. The free list defines a total order over the
set of free chunks. The second abstraction layer captures this order using the
same SL fragment but over a different set of predicates (see Table 2):

– The predicate fck(X;Y) specifies a chunk chk(X; . . .) starting at X, with
X.fnx bound to Y and X.isfree set to true.

– The predicate fls(X;Y)[W] specifies a free list segment starting at X, whose
last element field fnx points to Y ; W registers the sequence of start addresses
of free chunks in the list segment. The predicate flso(X, . . .)[W] abstracts free
list segments sorted by the start address of chunks.

The top of Fig. 1(c) illustrates the free list abstraction by its Gaifman graph.
Finally, the memory shape abstraction is obtained by composing the two

abstraction levels using a new operator, denoted by �, which requires that the
set of chunks in the free list abstraction is exactly the sub-set of chunks in the
heap list whose field isfree has value true. Notice that the operator � can
not be replaced by the logical conjunction because we are using the intuitive
semantics of SL where spatial formulas fully specify the memory configurations.
Or the free list abstraction provides only a partial specification of the heap.

Constraints over sequences of chunk addresses. The predicates presented above
specify invariants of DMA independent of parameters of DMA methods. To cap-
ture allocation policies that depend on these parameters (e.g., the first-fit policy
implemented by the malloc in Fig. 1(b)), we introduce universal constraints over
sequences of chunk start addresses W attached to shape atoms, like in [3]. For
example, the first-fit policy obtained at line 37 of malloc, is specified by:

hlsc(X0; hli)[WH] �(fls(Y0;Y2)[W1] ∗ fck(Y2;Y3) ∗ fls(Y3; nil)[W2]) (1)
∧ Y2.size ≥ nunits ∧ ∀X ∈ W1 · X.size < nunits

where Y2 is the symbolic address stored in the program variable nxt. The general
form of universal constraints is ∀X ∈ W · AG ⇒ AU , where AG and AU are
arithmetic constraints over X and its fields. To obtain an efficient analysis, we
fix AG and infer AU . We require that both AG and AU belong to a class of
constraints supported by some numerical abstract domain (see Sect. 3).

Static analysis with hierarchical shape abstraction. Overall, the analysis algo-
rithm is a standard shape analysis algorithm. To expose fields constrained or
assigned by the program statements, it unfolds predicate definitions. To limit
the size of the abstraction, the algorithm normalises formulas to maintain only
symbolic addresses that are cut-points, i.e., they are stored in the program vari-
ables or are sharing points in lists. This transformation of formulas folds back
sub-formulas into more general predicates. The set of normalised shape formulas
is bounded, so we define the widening operator only for the sequence constraints.

156 B. Fang and M. Sighireanu

The hierarchical shape requires to solve a number of specific issues (see
Sect. 5). The unfolding of shape predicates shall be done at the appropriate level
of abstraction. For example, a traversal of the free list requires only unfolding
and folding at the free list level. The heap list level may abstract chunks which
are explicit in the free list level. Thus, we define protocols for the unfolding
and folding operations at each level that are sound as regards the hierarchical
composition defined by the operator � and with the sequence constraints.

3 Logic Fragment Underlying the Abstract Domain

We formalise in this section a fragment of Separation Logic [24] used to define
the values of our abstract domain in Sect. 4.

Syntax. Let AVar be a set of location variables representing heap addresses; to
simplify the presentation, we consider that AVar contains a special variable nil
representing the null address, also denoted by nil. Let SVar be a set of sequence
variables, interpreted as sequences of heap addresses and IVar be a set of integer
variables. The full set of logic variables is denoted by Var = AVar ∪ SVar ∪ IVar.
The domain of heap addresses is denoted by A while the domain of values stored
in the heap is generically denoted by V, thus A ⊆ V. To simplify the presentation,
we fix HDR, the type of chunk headers, and its fields {size, fnx, isfree} typed
as declared in Fig. 1. The syntax of formulas is given in Table 1.

Formulas are in disjunctive normal form. Each disjunct is built from a pure
formula Π and a spatial formula Σ. Pure formulas Π characterise the values of
logic variables using comparisons between location variables, e.g., X − Y = 0,

Table 1. Logic syntax

X, Y ∈ AVar location variables W ∈ SVar sequence variables

i, j ∈ IVar integer variables # ∈ {=, �=, ≤, ≥} comparison operators

x ∈ Var logic variable �x, �y ∈ Var∗ vectors of variables

X.f field access term t, Δ integer term resp. formula

ϕ ::= Π ∧ Σ | ϕ ∨ ϕ | ∃x · ϕ formulas

Π ::= A | ∀X ∈ W · A ⇒ A | W = w | Π ∧ Π pure formulas

A ::= X[.fnx] − Y [.fnx] # t | Δ | A ∧ A location and integer constraints

w ::= ε | [X] | W | w.w sequence terms

Σ ::= ΣH � ΣF spatial formulas

ΣH ::= emp | blk(X; Y) | chd(X; Y) | chk(X; Y) | X �→ x | heap formulas

hls(X; Y)[W] | hlsc(X, i; Y, j)[W] | ΣH ∗ ΣH

ΣF ::= emp | fck(X; Y) | fls(X; Y)[W] | flso(X, x; Y, y)[W] | ΣF ∗ ΣF free list formulas

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 157

Table 2. Derived predicates

chd(X; Y) � blk(X; Y) ∧ sizeof(HDR) = Y − X ∧ X ≡sizeof(HDR) 0

chk(X; Y) � ∃Z · chd(X; Z) ∗ blk(Z; Y) ∧ X.size × sizeof(HDR) = Y − X

fck(X; Y) � ∃Z · chk(X; Z) ∧ X.isfree = 1 ∧ X.fnx = Y

hls(X; Y)[W] � emp ∧ X = Y ∧ W = ε

∨ ∃Z, W ′ · chk(X; Z) ∗ hls(Z; Y)[W ′] ∧ W = [X].W ′

hlsc(X, fp; Y, f�)[W] � emp ∧ X = Y ∧ W = ε ∧ 0 ≤ fp + f� ≤ 1

∨ ∃Z, W ′, f · chk(X; Z) ∗ hlsc(Z, f ; Y, f�)[W
′] ∧ W = [X].W ′

∧ f = X.isfree ∧ 0 ≤ X.isfree + fp ≤ 1

fls(X; Y)[W] � emp ∧ X = Y ∧ W = ε

∨ ∃Z, W ′ · fck(X; Z) ∗ fls(Z; Y)[W ′] ∧ W = [X].W ′ ∧ X �= Y

flso(X, x; Y, y)[W] � emp ∧ X = Y ∧ W = ε ∧ x − y ≤ 0

∨ ∃Z, W ′ · fck(X; Z) ∗ flso(Z, X; Y, y)[W ′]

∧ W = [X].W ′ ∧ x − X ≤ 0

constraints Δ over integer terms, and sequence constraints. We let constraints
in Δ unspecified, though we assume that they belong to decidable theories, e.g.,
linear arithmetic. The integer terms t are built over integer variables and field
accesses using classic arithmetic operations and constants. We denote by Π∀
(resp. ΠW , Π∃) the set of sub-formulas of Π built from universal constraints
(resp. sequence constraints, quantifier free arithmetic constraints).

A spatial formula has two components: ΣH specifies the heap list and the
locations outside this region; ΣF specifies only the free list. The operator �
ensures that all locations specified by ΣF are start addresses of free chunks in
the heap list. The atom emp holds iff the domain of the heap is empty. The
points-to atom X
→ x specifies a heap built from one memory block at location
X storing the value given by x. The block atom blk(X;Y) holds iff the heap
contains a block of memory at location X ending before the location Y . The
other predicates are derived from blk and defined in Table 2. Notice that the
chunk header atom chd(X;Y) does not expose the fields of the block at location
X using the points-to operator of SL. This ease the manipulation of heap list
level formulas, e.g., the coalescing of block and chunk atoms into a single block.

Semantics. Formulas ϕ are interpreted over pairs (I, h) where I is an interpreta-
tion of logic variables and h is a heap mapping a location to a non empty sequence
of values stored at this location. Formally, I ∈ [(AVar∪ IVar) ⇀ V]∪ [SVar ⇀ V

∗]
and h ∈ [A ⇀ V

+] such that nil �∈ dom(h). Let h(�)[i] denote the ith element of
h(�). Without loss of generality, we consider that a value of type HDR is a sequence
of values indexed by fields. Table 3 provides the most important semantic rules.
We following definitions are standard:

158 B. Fang and M. Sighireanu

Table 3. Logic semantics: main rules

I, h |= ΣH � ΣF iff I, h |= ΣH and ∃h′ ⊆ h s.t. I, h′ |= ΣF

∀� ∈ dom(h′) · h′(�)[isfree] = 1
I, h |= emp iff dom(h) = ∅
I, h |= blk(X; Y) iff dom(h) = I(X) ∧ I(Y) − I(X) = |h(I(X))|
I, h |= X �→ x iff dom(h) = I(X) ∧ h(I(X))[0] = I(x)
I, h |= Σ1 ∗ Σ2 iff ∃h1, h2 s.t. h = h1 � h2 and I, hi |= Σi for i = 1, 2
I, h |= ∀X ∈ W · A1 ⇒ A2 iff I(W) = [a1, . . . , an] s.t.

∀i ∈ (1..n) I[X �→ ai], h |= A1 ⇒ A2

where
h1 ⊆ h2 iff dom(h1) ⊆ dom(h2) and ∀� ∈ dom(h1) · h1(�) = h2(�)
h1 � h2 iff ∀ l1 ∈ dom(h1), l2 ∈ dom(h2) · l1 �= l2∧

(l1..l1 + |h1(l1)| − 1) ∩ (l2..l2 + |h2(l2)| − 1) = ∅)
h = h1 � h2 iff h1 � h2, dom(h) = dom(h1) � dom(h2), and

(h1 � h2)(�) �
{

h1(�) if � ∈ dom(h1)
h2(�) if � ∈ dom(h2)

[[ϕ]] � {(I, h) | I, h |= ϕ} ϕ ⇒ ψ iff [[ϕ]] ⊆ [[ψ]]

Transformation rules. The definitions in Table 2 imply a set of lemmas used
to transform formulas in abstract values (in Sect. 5). The first set of lemmas is
obtained by directing predicate definitions in both directions. For example, each
definition P (. . .) � ∨iϕi introduces a set of folding lemmas ϕi ⇒ P (. . .) and an
unfolding lemma P (. . .) ⇒ ∨iϕi.

The second class of lemmas concerns list segment predicates in Table 2. The
inductive definitions of these predicates satisfy the syntactic constraints defined
in [12] for compositional predicates. Thus, every P ∈ {hls, hlsc, fls, flso} satisfies
the following segment composition lemma:

P (X,�x; Y, �y)[W1] ∗ P (Y, �y; Z, �z)[W2] ∧ W = W1.W2 ⇒ P (X,�x; Z, �z)[W] (2)

The reverse implication is applied to split non empty list segments. Finally,
the block sub-formulas are removed, split, or folded using the following lemmas:

blk(X;Y) ∧ X ≥ Y ⇒ emp (3)
blk(X;Y) ∧ X < Y ⇒ blk(X;Z) ∗ blk(Z;Y) ∧ X ≤ Z ≤ Y (4)

blk(X;Y) ∗ blk(Y ′;Z) ∧ X ≤ Y = Y ′ ≤ Z ⇒ blk(X;Z). (5)

4 Abstract Domain for Hierarchical Shape Abstraction

We define in this section the join-semilattice 〈A,�,�〉 used in our analysis. It is
parameterised by a numerical join-semilattice 〈N ,�N ,�N 〉.

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 159

Concrete states. Let X be the set of program variables, where hli is a ghost
variable of location type. Values in A represent sets of concrete states M ∈ M

of the program. A concrete state M encloses an environment ε ∈ E = X → A

mapping each program variable to its storing location, and a heap h : A ⇀
V

+ mapping locations to sequences of values. For simplicity, the symbol hli is
overloaded to denote the symbolic location stored by hli.

Abstract values. Values in A are a restricted form of logic formulas. Generally
speaking, A is a co-fibered product [6] of an extended symbolic heap domain for
the spatial part and a data word domain [3] for the pure part. More precisely,
A includes a special value for � and finite mappings of the form:

a� :: = {〈ε�
i , Σi(
x,
W)〉
→ Πi(
x,
W ∪ {WH ,WF })}i∈I (6)

where ε�
i : X → Var is an abstract environment mapping program variables to

symbolic location variables, Πi includes arithmetic constraints allowed by N ,
and the free variables of each formula are detailed. Furthermore, the usage of
sequence variables in Σi and Πi is restricted as follows:

R1: A sequence variable is bound to exactly one list segment atom in Σi; thus
Σi defines an injection between list segment atoms and sequence variables.

R2: Πi contains only the sequence constraints WH = w and WF = w′, where
WH and WF are special variables representing the full sequence of start
addresses of chunks in the heap resp. free list levels.

In addition, the universal constraints in the pure formulas Πi are restricted
such that, in any formula ∀X ∈ W · AG ⇒ AU :

R3: AG and AU use only terms where X appears inside a field access X.f.
R4: AG has one of the forms X.size#i or X.isfree = i.

These restrictions still permit to specify DMA policies like first-fit (see
Eq. (1)) and besides enable an efficient inference of universal constraints.

Internal representation. To ease the manipulation of extended spatial formu-
las 〈ε�, Σ〉, we use their Gaifman graph representation, like in Fig. 1(c): nodes
represent symbolic locations variables and labeled edges represent the spatial
atoms in Σ or mappings in ε�. The universal formulas are represented by a map
binding each pair (W,AG) built from a sequence variable and some guard AG

to a numerical abstract value.

Concretisation. An abstract value of the form (6) represents a formula ∨i∃
x,
W ·
Σi ∧ Πi ∧ ε�

i where each binding (v, x) ∈ ε�
i is encoded by v
→ x (v is the

location where is stored the program variable v). The false formula represents ⊥,
which corresponds to the empty mapping. Therefore, we define the concretisation
γ : A → M as the denotation of the formula represented by the abstract value,
i.e., γ(a�) = [[a�]].

160 B. Fang and M. Sighireanu

Ordering. The partial order � is defined using a sound procedure inspired by
[4,12]. For any two non trivial abstract values a�, b� ∈ A, a� � b� if for each binding
〈ε�

i , Σi〉
→ Πi ∈ a� there exists a binding 〈ε�
j , Σj〉
→ Πj ∈ b� such that:

– there is a graph isomorphism between the Gaifman graphs of spatial formula
at each level of abstraction from Σi to Σj ; this isomorphism is defined by a
bijection Ψ : img(ε�

i) → img(ε�
j) between symbolic location variables and a

bijection Ω between sequence variables. Thus, Σi[Ψ][Ω] = Σj ,
– for each sequence constraint W = w in ΠW,i, Ω(W) = Ω(w) is a sequence

constraint in ΠW,j ,
– Ψ(Π∃,i) �N Π∃,j ,
– for each W defined in Σi and for each universal constraint ∀X ∈ W ·AG ⇒ AU

in Π∀,i, then Π∀,j contains a universal constraint on W ′ = Ω(W) of the form
∀X ∈ W ′ · AG ⇒ A′

U such that Ψ(Π∃,i ∧ AU) �N A′
U .

The following theorem is a consequence of restrictions on the syntax of formulas
used in the abstract values.

Theorem 1 (� soundness). If a� � b� then [[a�]] ⊆ [[b�]].

Join. Given two non-trivial abstract values, a� and b�, their join is computed by
joining the pure parts of bindings with isomorphic shape graphs [3]. Formally,
for each two bindings 〈ε�

i , Σi〉
→ Πi ∈ a� and 〈ε�
j , Σj〉
→ Πj ∈ b� such that there

is a graph isomorphism defined by Ψ and Ω between 〈ε�
i , Σi〉 and 〈ε�

j , Σj〉, we
define their join to be the mapping {〈ε�

j , Σj〉
→ Π} where Π is defined by:

– Π includes the sequence constraints of b�, i.e., ΠW � ΠW,j ,
– Π∃ � Ψ(Π∃,i) �N Π∃,j ,
– for each W sequence variable in dom(Ω) and for each type of constraint AG,

then Π∀ contains the formula ∀X ∈ Ω(W) · AG ⇒ Ψ(AU,i) �N AU,j where
AU,i (resp. AU,j) is the constraint bound to W (resp. Ω(W)) in Π∀,i (resp.
Π∀,j) for guard AG or � if no such constraint exists.

The join of two bindings with non-isomorphic spatial parts is the union of the
two bindings. Then, (a��b�) computes the join of bindings in a� with each binding
in b�. Intuitively, the operator collects the disjuncts of a� and b� but replaces the
disjuncts with isomorphic spatial parts by one disjunct which maps the spatial
part to the join of the pure parts. Two universal constraints are joined when
they concern the same sequence variables and guard AG since

(
(∀c ∈ W · AG ⇒

A1) ∨ (∀c ∈ W · AG ⇒ A2)
) ⇒ (∀c ∈ W · AG ⇒ (A1 ∨ A2)

)
.

Theorem 2 (� soundness). For any a�, b� ∈ A, [[a�]] ∪ [[b�]] ⊆ [[a� � b�]].

Cardinality of the abstract domain. The number of mappings in (6) increases
during the symbolic execution by the introduction of new existential variables
keeping track of the created chunks. Although the analysis stores only values with
linear shape of lists (other shapes are signalled as an error state), the number

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 161

of linear shapes is exponential in the number of nodes, in general. We avoid this
memory explosion by eliminating existential variables using the transformation
rules that replace sub-formulas by predicates, an operation classically called
predicate folding. This operation uses lemmas (2)–(5), as discussed in Sect. 5.
Thus, the domain of abstract values is bounded by an exponential on the number
of pointer program variables local to DMA methods which is small in general,
e.g., ≤ 3 in our benchmark. However, the domain of pure formulas used in the
image of abstract values is not bounded because of integer constants. This fact
requires to define widening operators for the data word domain used for the pure
constraints.

5 Analysis Algorithm

We now describe the specific issues of the static analysis algorithm based on the
hierarchical abstract domain presented in Sect. 4.

5.1 Main Principles

The analysis algorithm consists of the following three steps.

1 int main(void) {
2 minit(1024);
3 void* p = malloc(20);
4 malloc(20);
5 mfree(p); p = NULL;
6 p = malloc(20);
7 malloc(20);
8 mfree(p); p = NULL;
9 return 0;

10 }

Fig. 2. A client program

The first step targets on discovering the prop-
erties of the free and heap lists in order to select
a suitable set of list segment predicates. It con-
sists of an inter-procedural and non relational
symbolic execution of a correct client program
like the one in Fig. 2. The sets of reachable con-
figurations are represented by abstract values of
our domain built over the chunk and block atoms
only, i.e., atoms using predicates fck, chk, chd,
and blk. Thus, the heap and the free lists are
completely unfolded. For example, the abstract
value computed for the start location of method

malloc (line 28 in Fig. 1) when executing the client program in Fig. 2 is built
from four disjuncts whose shape part is given in Fig. 3. The client programs are
chosen to reveal the heap list organisation (including chunk coalescing) and the
shape of the free list. We don’t employ the most general client or a client using
an incorrect sequence of calls to the DMA methods in order to speed-up this
step and avoiding configurations leading to error states.

The second step transforms the abstract values computed by the previous
step to obtain an abstract value representing a pre-condition of the DMA method
that constrains the global variables and the parameters of the method. For this,
the variables of the client program (e.g., p in Fig. 2) are projected out and folding
lemmas are applied to obtain list atoms. For example, the transformation of the
abstract value in Fig. 3 leads to an abstract value with one disjunct whose spatial
part is hlsc(X0, 0; hli, 0) � flso(X0,X0; nil, hli). The resulting pre-condition is not
the weakest one, but it is bigger than (as regards �) the abstract value computed
by the symbolic execution at this control location.

162 B. Fang and M. Sighireanu

Fig. 3. Spatial formulas at line 28

The third step does forward, non-
relational abstract interpretation [8]
starting from the computed pre-
conditions of each DMA method. The
analysis follows the principles of [7,
9,10] and uses the widening opera-
tor to speed-up the convergence of
the fix-point computation for program
loops. The original points on abstract
transformers concern the transfer of
information between abstraction lay-
ers in the hierarchical unfolding, split-
ting, and folding of predicates, as
detailed in Sects. 5.2 and 5.3. Further-
more, these operations are defined in a
modular way, by extending [6] to data
word numerical domains. The widen-
ing operator uses the widening of data
word domain defined in [10].

5.2 Hierarchical Unfolding

Abstract transformers compute over-approximations of post-images of atomic
conditions and assignments in the program. For the spatial part, the abstract
value is transformed such that the program variables read or written by the
program operation are constrained using predicates that may capture the effect
of the program operation. This transformation is called predicate unfolding.

We define the following partial order between predicates blk < chd < chk <
fck < hls, hlsc, fls, flso which intuitively corresponds to an increasing degree of
specialisation. For each program operation s and each pointer variable x in s, an
atom P (X; . . .) with ε�(x) = X is transformed using lemmas in Sect. 3 to obtain
the atom Q(X; . . .) such that Q ≤ P is the maximal predicate satisfying:

– if s reads the fields of HDR, then Q ≤ fck,
– if s assigns x.isfree or x.fnx, then Q ≤ chk,
– if s mutates x using pointer arithmetics or assigns x.size, then Q ≤ chd.

We illustrate this procedure on the condition nxt->size > nunits at line 37
in Fig. 1(b), which reads the field size. Applied to the abstract value in Fig. 1(c),
it requires to unfold the flso predicate from Y2, to obtain the formula on top of
Fig. 4. To compute the post-image of the next operation, nxt->size -= nunits,
the symbolic location Y2 shall be the root a chd predicate (third case above).
Thus, Y2 is instantiated in the heap list by (i) splitting and then unfolding the
hlsc predicate using the segment composition lemma, and (ii) by unfolding chk
to obtain the formula at the bottom of Fig. 4. The unfolding of chk requires to
remove the fck atom from Y2 in the free list because its definition is not more
satisfied at the heap list abstraction level.

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 163

Fig. 4. Hierarchical unfolding at line 38

The next assignment,
nxt += nxt->size, does not require
to transform the predicate rooted
in Y2 because it is already ≤
chd. Instead, the transformer adds
a new symbolic location Z1 in the
heap list level and constrain it by
Z1 = Y2 +Y2.size× sizeof(HDR). If
Z1 goes beyond the limit of the block
of the chunk starting at Y2 (i.e., out-
side the interval [X1,X2) in Fig. 4),
the analysis signals a chunk breaking.
Otherwise, the blk atom from X1 is
split using lemma (4) to insert Z1; the
result is given in the top part of Fig. 5.

5.3 Hierarchical Folding

To reduce the size of abstract values, the abstract transformers finish their com-
putation on a binding 〈ε�

i , Σi〉
→ Πi by eliminating the symbolic locations which
are not cut-points in Σi. The elimination uses predicate folding lemmas like (2)
or (5) to replace sub-formulas using these variables by one predicate atom. The
graph representation eases the computation of sub-formulas matching the left
part of a folding lemma.

More precisely, the elimination process has the following steps. First, it
searches sequences of sub-formula of the form chd(X0;X1) ∗ blk(X1;X2) . . . ∗
blk(Xn−1;Xn) where none of Xi (1 ≤ i < n) is in img(ε�). Such sub-formulas are
folded into chk(X0;Xn) if the pure part of the abstract value implies X0.size×
sizeof(HDR) = Xn −X0 (see Table 2). We use the variable elimination provided
by the numerical domain N to project out {X1, . . . , Xn−1} from the pure part.

Fig. 5. Hierarchical folding after line 48

Furthermore, if the pure part
implies X0.isfree = 1, then
the chunk atom (and its start
address) is promoted as fck to the
free list level.

This step is illustrated on sub-
formulas chd(Y2;X1)∗blk(X1;Z1)
at the top of Fig. 5. The sec-
ond step folds hlsc list seg-
ments by applying their induc-
tive definition and the compo-
sition lemma (2). The atoms
chk(X0; . . .) for which the free
list level contains an atom
fck(X0; . . .) may be folded at the
heap list level into list segments

164 B. Fang and M. Sighireanu

due to the semantics of �. For example, the chunk starting from location Y2 is
folded inside a hlsc segment in the formula at the bottom of Fig. 5. Notice that
folding of list segments implies the update of sequence and universal constraints
like in [10].

6 Experiments

We implemented the abstract domain and the analysis algorithm in Ocaml as a
plug-in of the Frama-C platform [18]. We are using several modules of Frama-C,
e.g., C parsing, abstract syntax tree transformations, and the fix-point com-
putation. The data word domain uses as numerical join-lattice N the library
of polyhedra with congruence constraints included in Apron [16]. To obtain
precise numerical invariants, we transform program statements using bit-vector
operations (e.g., line 16 of Fig. 1(a)) into statements allowed by the polyhedra
domain which over-approximate the original effet.

Table 4. Benchmark of DMA

DMA LOC List Pred. Time (s) |a�| |WH |/|WF | Invariants

DKff[19] 176 hlsc, flso 0.05 25 8/5 first-fit, MIN SIZE-size

DKbf[19] 130 hlsc, flso 0.05 26 8/6 best-fit, MIN SIZE-size

LA[1] 181 hlsc, flso 0.07 25 8/5 first-fit, 0-size

DKnf[19] 137 hlsc, flso 0.05 30 8/6 first-fit, MIN SIZE-size

KR[17] 284 hlsc, flso 2.8 32 8/6 first-fit, 0-size

We applied our analysis on the benchmark of free list DMA in Table 4.
(Detailed experimental results are available in [26].) DKff and DKbf are imple-
mentations of Algorithms A and B from Sect. 2.5 of [19]. These DMA keep an
acyclic free list sorted by the start addresses of chunks. The deallocation does
coalescing of successive free chunks. The allocation implements a first-fit resp.
best-fit policy such that the fitting chunk is not split if the remaining free part
is less than MIN SIZE (variant proposed in [19]). This property is expressed by
the following sub-formula of the invariant “MIN SIZE-size” (for MIN SIZE=8):

∀X ∈ WH · X.size ≥ 8 (7)

which is inferred by our analysis. The first-fit policy is implied by an abstract
value similar to the one in Eq. (1). The best-fit policy is implied by a value using
the constraint:

∀X ∈ Wi · X.size ≥ rsz ⇒ X.size ≥ Y .size (8)

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 165

where rsz is the requested size, Y is the symbolic address of the fitting chunk,
and Wi represents a list segment around the fitting chunk. LA is our running
example in Fig. 1; it follows the same principles as DKff, but get rid of the
constraint for chunk splitting. For this case study, our analyser infers the “0-size”
invariant, i.e., ∀X ∈ WH · X.size ≥ 4 (=sizeof(HDR)). Notice that the code
analysed fixes an obvious problem of the malloc method published in [1]. DKnf
implements the next-fit policy using the “roving pointer” technique proposed
in [19]: a global variable points to the chunk in the free list involved in the
last allocation or deallocation; malloc searches for a fitting free chunk starting
from this pointer. Thus, the next-fit policy is a first-fit from the roving pointer.
DKnf is challenging because the roving pointer introduces a case splitting that
increases the size (number of disjuncts) in abstract values. The KR allocator [17]
keeps a circular singly linked list, circularly sorted by the chunk start addresses;
the start of the free list points to the last deallocated block. The circular shape
of the list requires to keep track of the free chunk with the biggest start address
and this increases the size of the abstract values.

The analysis times reported in Table 4 have been obtained on a 2.53 GHz
Intel Core 2 Duo laptop with 4 GB of RAM. They correspond to the total time
of the three steps of the analysis starting from the client given in Fig. 2. The
universally quantified invariants inferred for DMA policies are given in the last
column. Columns |a�| and |WH |/|WF | provide the maximum number of disjuncts
generated for an abstract value resp. the maximum number of predicate atoms
in each abstraction level.

7 Related Work and Conclusion

Our analysis infers complex invariants of free list DMA implementations due to
the combination of two ingredients: the hierarchical representation of the shape
of the memory region managed by the DMA and an abstract domain for the
numerical constraints based on universally quantified formulas. The abstract
domain has a clear logical definition, which facilitates the use of the inferred
invariants by other verification methods.

The proposed abstract domain extends previous works [3,5,10,11,21]. We
consider the SL fragment proposed in [5] to analyse programs using pointer
arithmetic. We enrich this fragment in both spatial and pure formulas to infer
a richer class of invariants. E.g., we add a heap list level to track properties like
chunk overlapping and universal constraints to infer first-fit policy invariants.

The split of shape abstraction on levels is inspired by work on overlaid data
structures [11,21]. We consider here a specific overlapping schema based on set
inclusion which is adequate for the class of DMA we consider. We propose new
abstract transformers which do not require user annotations like in [21]. Another
hierarchical analysis of shape and numeric properties has been proposed in [25].
They consider the analysis of linked data structures coded in arrays and track
the shape of these data structures and not the organisation of the set of free
chunks. Their approach is not based on logic and the invariants inferred on the
content of list segments are simpler.

166 B. Fang and M. Sighireanu

Our abstract domain includes a simpler version of the data word domain
proposed in [3,10], since the universal constraints quantify only one position
in the list. Several abstract domains have been defined to infer invariants over
arrays, e.g., [13] for array sizes, [14,15] for array content. These works infer
invariants of different kind on array partitions and they can not be applied
directly to sequences of addresses. Recently, [22] defined an abstract domain for
the analysis of array properties and applies it to the Minix 1.1 DMA, which uses
chunks of fixed size. A modular combination of shape and numerical domains
has been proposed in [6]. We extend their proposal to combine shape domains
with domains on sequences of integers. Precise analyses exist for low level code
in C [23] or for binary code [2]. They efficiently track properties about pointer
alignment and memory region separations, but can not infer shape properties.

References

1. Aldridge, L.: Memory allocation in C. In: Embedded Systems Programming, pp.
35–42, August 2008

2. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006).
doi:10.1007/11823230 15

3. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: On inter-procedural analysis
of programs with lists and data. In: PLDI, pp. 578–589. ACM (2011)

4. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, pp. 167–182. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33386-6 14

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Beyond reachability: shape
abstraction in the presence of pointer arithmetic. In: Yi, K. (ed.) SAS 2006. LNCS,
vol. 4134, pp. 182–203. Springer, Heidelberg (2006). doi:10.1007/11823230 13

6. Chang, B.E., Rival, X.: Modular construction of shape-numeric analyzers. In:
Semantics, Abstract Interpretation, and Reasoning about Programs, EPTCS, vol.
129, pp. 161–185 (2013)

7. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant
checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74061-2 24

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

9. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). doi:10.1007/11691372 19

10. Dragoi, C.: Automated verification of heap-manipulating programs with infinite
data. PhD thesis, University Paris Diderot (2011)

11. Drăgoi, C., Enea, C., Sighireanu, M.: Local shape analysis for overlaid data struc-
tures. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 150–
171. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 10

12. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separa-
tion logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)

http://dx.doi.org/10.1007/11823230_15
http://dx.doi.org/10.1007/978-3-642-33386-6_14
http://dx.doi.org/10.1007/11823230_13
http://dx.doi.org/10.1007/978-3-540-74061-2_24
http://dx.doi.org/10.1007/11691372_19
http://dx.doi.org/10.1007/978-3-642-38856-9_10

Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators 167

ATVA 2015. LNCS, vol. 9364, pp. 80–96. Springer, Cham (2015). doi:10.1007/
978-3-319-24953-7 7

13. Gulwani, S., Lev-Ami, T., Sagiv, S.: A combination framework for tracking parti-
tion sizes. In: POPL, pp. 239–251. ACM (2009)

14. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235–246. ACM (2008)

15. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339–348. ACM (2008)

16. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 52

17. Kernighan, B.W., Ritchie, D.: The C Programming Language, 2nd edn. Prentice-
Hall, Englewood Cliffs (1988)

18. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. FAC 27(3), 573–609 (2015)

19. Knuth, D.E.: The Art of Computer Programming, Volume I: Fundamental Algo-
rithms, 2nd edn. Addison-Wesley, Reading (1973)

20. Lea, D.: dlmalloc (2012). ftp://gee.cs.oswego.edu/pub/misc/malloc.c
21. Lee, O., Yang, H., Petersen, R.: Program analysis for overlaid data structures. In:

Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 592–608.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 48

22. Liu, J., Rival, X.: Abstraction of arrays based on non contiguous partitions. In:
D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 282–
299. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46081-8 16

23. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Field-sensitive value analy-
sis by field-insensitive analysis. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 370–386. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05089-3 24

24. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

25. Sotin, P., Rival, X.: Hierarchical shape abstraction of dynamic structures in static
blocks. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 131–
147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 10

26. Celia extensions. http://www.irif.fr/∼sighirea/celia/plus.html
27. Wilson, P.R., Johnstone, M.S., Neely, M., Boles, D.: Dynamic storage allocation:

a survey and critical review. In: Baler, H.G. (ed.) IWMM 1995. LNCS, vol. 986,
pp. 1–116. Springer, Heidelberg (1995). doi:10.1007/3-540-60368-9 19

http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-642-02658-4_52
ftp://gee.cs.oswego.edu/pub/misc/malloc.c
http://dx.doi.org/10.1007/978-3-642-22110-1_48
http://dx.doi.org/10.1007/978-3-662-46081-8_16
http://dx.doi.org/10.1007/978-3-642-05089-3_24
http://dx.doi.org/10.1007/978-3-642-05089-3_24
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-642-35182-2_10
http://www.irif.fr/~sighirea/celia/plus.html
http://dx.doi.org/10.1007/3-540-60368-9_19

A Productivity Checker for Logic Programming

Ekaterina Komendantskaya1, Patricia Johann2(B), and Martin Schmidt3

1 Heriot-Watt University, Edinburgh, Scotland, UK
ek19@hw.ac.uk

2 Appalachian State University, Boone, NC, USA
johannp@appstate.edu

3 University of Osnabrück, Osnabrück, Germany

Abstract. Automated analysis of recursive derivations in logic pro-
gramming is known to be a hard problem. Both termination and non-
termination are undecidable problems in Turing-complete languages.
However, some declarative languages offer a practical work-around for
this problem, by making a clear distinction between whether a program
is meant to be understood inductively or coinductively. For programs
meant to be understood inductively, termination must be guaranteed,
whereas for programs meant to be understood coinductively, produc-
tive non-termination (or “productivity”) must be ensured. In practice,
such classification helps to better understand and implement some non-
terminating computations.

Logic programming was one of the first declarative languages to make
this distinction: in the 1980’s, Lloyd and van Emden’s “computations at
infinity” captured the big-step operational semantics of derivations that
produce infinite terms as answers. In modern terms, computations at
infinity describe “global productivity” of computations in logic program-
ming. Most programming languages featuring coinduction also provide
an observational, or small-step, notion of productivity as a computa-
tional counterpart to global productivity. This kind of productivity is
ensured by checking that finite initial fragments of infinite computations
can always be observed to produce finite portions of their infinite answer
terms.

In this paper we introduce a notion of observational productivity for
logic programming as an algorithmic approximation of global productiv-
ity, give an effective procedure for semi-deciding observational produc-
tivity, and offer an implemented automated observational productivity
checker for logic programs.

Keywords: Logic programming · Corecursion · Coinduction ·
Termination · Productivity

1 Introduction

Induction is pervasive in programming and program verification. It arises in
definitions of finite data (e.g., lists, trees, and other algebraic data types), in
c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 168–186, 2017.
DOI: 10.1007/978-3-319-63139-4 10

A Productivity Checker for Logic Programming 169

program semantics (e.g., of finite iteration and recursion), and proofs (e.g., of
properties of finite data and processes). Coinduction, too, is important in these
arenas, arising in definitions of infinite data (e.g., lazily defined infinite streams),
in program semantics (e.g., of concurrency), and in proofs (e.g., of observational
equivalence, or bisimulation, of potentially infinite processes). It is thus desirable
to have good support for both induction and coinduction in systems for reasoning
about programs.

Given a logic program P and a term A, SLD-resolution provides a mechanism
for automatically (and inductively) inferring that P � A holds, i.e., that P
logically entails A. The “answer” for a program P and a query ? ← A is a
substitution σ computed from P and A by SLD-resolution. Soundness of SLD-
resolution ensures that P � σ(A) holds, so we also say that P computes σ(A).

Example 1 (Inductive logic program). The program P1 codes the Peano numbers:
0. nat(0) ←
1. nat(s(X)) ← nat(X)
To answer the question “Does P1 � nat(s(X)) hold?”, we represent it as the logic
programming (LP) query ? ← nat(s(X)) and resolve it with P1. It is standard
in implementations of traditional LP to use a topmost clause selection strategy,
which resolves goals against clauses in the order in which they appear in the
program. Topmost clause selection gives the derivation nat(s(X)) → nat(X) →
true for P1 and ? ← nat(s(X)), which computes the answer {X �→ 0} in its last
step. Since P1 computes nat(s(0)), one answer to our question is “Yes, provided
X is 0.”

While inductive properties of terminating computations are quite well under-
stood [14], non-terminating LP computations are notoriously difficult to reason
about, and can arise even for programs that are intended to be inductive:

Example 2 (Coinductive meaning of inductive logic program). If P ′
1 is obtained

by reversing the order of the clauses in the program P1 from Example 1, then
the SLD-derivation for program P ′

1 and query ? ← nat(s(X)) does not terminate
under standard topmost clause selection. Instead, it results in an attempt to
compute the “answer” {X �→ s(s(...))} by repeatedly resolving with Clause 1.
Nevertheless, P ′

1 is still computationally meaningful, since it computes the first
limit ordinal at infinity, in the terminology of [14].

Some programs do not admit terminating computations under any selection
strategy:

Example 3 (Coinductive logic program). No derivation for the query ? ←
stream(X) and the program P2 comprising the clause
0. stream(scons(0, Y)) ← stream(Y)
terminates with an answer, be it success or otherwise. Nevertheless, P2 has com-
putational meaning: it computes the infinite stream of 0s at infinity.

The importance of developing sufficient infrastructure to support coin-
duction in automated proving has been argued across several communities;

170 E. Komendantskaya et al.

see, e.g., [13,17,21]. In LP, the ability to work with non-terminating and coin-
ductive programs depends crucially on understanding the structural properties
of non-terminating SLD-derivations. To illustrate, consider the non-terminating
programs P3, P4, and P5:

Program Program definition For query ? ← p(X), computes the answer:
P3 p(X) ← p(X) id
P4 p(X) ← p(f(X)) id
P5 p(f(X)) ← p(X) {X �→ f(f...)}

Programs P3 and P4 each loop without producing any substitutions at all; only
P5 computes an infinite term at infinity. It is of course not a coincidence that
only P5 resembles a (co)inductive data definition by pattern matching on a
constructor, as is commonly used in functional programming.

When an infinite SLD-derivation computes an infinite object, and this object
can be successively approximated by applying to the initial query the substitu-
tions computed at each step of the derivation, the derivation is said to be globally
productive. The only derivation for program P5 and the query ? ← p(X) is glob-
ally productive since it approximates, in the sense just described, the infinite
term p(f(f...)). That is, it computes p(f(f...)) at infinity. Programs P2 and P ′

1

similarly give rise to globally productive derivations. But no derivations for P3

or P4 are globally productive.
Since global productivity determines which non-terminating logic programs

can be seen as defining coinductive data structures, we would like to identify
exactly when a program is globally productive. But porting functional program-
ming methods of ensuring productivity by static syntactic checks is hardly possi-
ble. Unlike pattern matching in functional programming, SLD-resolution is based
on unification, which has very different operational properties—including termi-
nation and productivity properties—from pattern matching. For example, pro-
grams P1, P ′

1, P2, and P5 are all terminating by term-matching SLD-resolution,
i.e., resolution in which unifiers are restricted to matchers, as in term rewriting.
We thus call this kind of derivations rewriting derivations.

Example 4 (Coinductive program defining an irrational infinite term). The pro-
gram P6 comprises the single clause
0. from(X, scons(X, Y)) ← from(s(X), Y)
For P6 and the query ? ← from(0, Y), SLD-resolution computes at infinity
the answer substitution {Y �→ [0, s(0), s(s(0)), . . .]}. Here [t1, t2, . . .] abbrevi-
ates scons(t1, scons(t2, . . .)), and similarly in the remainder of this paper. This
derivation depends crucially on unification since variables occurring in the two
arguments to from in the clause head overlap. If we restrict to rewriting, then
there are no successful derivations (terminating or non-terminating) for this
choice of program and query.

Example 4 shows that any analysis of global productivity must necessarily
rely on specific properties of the operational semantics of LP, rather than on
program syntax alone. It has been observed in [9,11] that one way to distinguish

A Productivity Checker for Logic Programming 171

globally productive programs operationally is to identify those that admit infinite
SLD-derivations, but whose rewriting derivations always terminate. We call this
program property observational productivity. The programs P1, P ′

1, P2, P5, P6

are all observationally productive.
The key observation underlying observational productivity is that terminat-

ing rewriting derivations can be viewed as points of finite observation in infinite
derivations. Consider again program P6 and query ? ← from(0, Y) from Exam-
ple 4. Drawing rewriting derivations vertically and unification-based resolution
steps horizontally, we see that each unification substitution applied to the orig-
inal query effectively observes a further fragment of the stream computed at
infinity:

If we compute unifiers only when rewriting derivations terminate, then the
resulting derivations exhibit consumer-producer behaviour: rewriting steps con-
sume structure (here, the constructor scons), and unification steps produce more
structure (here, new sconses) for subsequent rewriting steps to consume. This
style of interleaving matching and unification steps was called structural resolu-
tion (or S-resolution) in [9,12].

Model-theoretic properties of S-resolution relative to least and greatest Her-
brand models of programs were studied in [12]. In this paper, we provide a suit-
able algorithm for semi-deciding observational productivity of logic programs,
and present its implementation [19]; see also Appendix B online. By definition,
observational productivity of a program P is in fact a conjunction of two prop-
erties of P :

1. universal observability : termination of all rewriting derivations, and
2. existential liveness: existence of at least one non-terminating S-resolution or

SLD-resolution derivation.

While the former property is universal, the latter must be existential. For exam-
ple, the program P1 defining the Peano numbers can have both inductive and
coinductive meaning. When determining that a program is observationally pro-
ductive, we must certify that the program actually does admit derivations that
produce infinite data, i.e., that it actually can be seen as a coinductive definition.
Our algorithm for semi-deciding observational productivity therefore combines
two checks:

1. guardedness checks that semi-decide universal observability: if a program is
guarded, then it is universally observable. (The converse is not true in gen-
eral.)

2. liveness invariant checks ensuring that, if a program is guarded and exhibits
an invariant in its consumption-production of constructors, then it is existen-
tially live.

172 E. Komendantskaya et al.

This is the first work to develop productivity checks for LP. An alternative
approach to coinduction in LP, known as CoLP [7,21], detects loops in deriva-
tions and closes them coinductively. However, loop detection was not intended
as a tool for the study of productivity and, indeed, is insufficient for that pur-
pose: programs P3, P4 and P5, of which only the latter is productive, are all
treated similarly by CoLP, and all give coinductive proofs via its loop detection
mechanism.

Our approach also differs from the usual termination checking algorithms in
term-rewriting systems (TRS) [1,8,22] and LP [3,15,16,18,20]. Indeed, these
algorithms focus on guaranteeing termination, rather than productivity; see
Sect. 5. And although the notion of productivity has been studied in TRS [4,5],
the actual technical analysis of productivity is rather different there because it
considers infinitary properties of rewriting, whereas observational productivity
relies on termination of rewriting.

The rest of this paper is organised as follows. In Sect. 2 we introduce a con-
traction ordering on terms that extends the more common lexicographic order-
ing, and argue that this extension is needed for our productivity analysis. We
also recall that static guardedness checks do not work for LP. In Sect. 3 we
employ contraction orderings in dynamic guardedness checks and present a decid-
able property, called GC2, that characterises guardedness of a single rewriting
derivation, and thus certifies existential observability. In Sect. 4 we employ GC2
to develop an algorithm, called GC3, that analyses consumer-producer invari-
ants of S-resolution derivations to certify universal observability. For universally
observable programs, these invariants also serve as liveness invariant checks. We
also prove that GC3 indeed semi-decides observational productivity. In Sect. 5
we discuss related work and in Sect. 6 we discuss our implementation and appli-
cations of the productivity checker. In Sect. 7 we conclude the paper.

2 Contraction Orderings on Terms

In this section, we will introduce the contraction ordering on first-order terms,
on which our productivity checks will rely. We work with the standard defini-
tion of first-order logic programs. A signature Σ consists of a set F of function
symbols f, g, . . . each equipped with an arity. Nullary (0-ary) function symbols
are constants. We also assume a countable set Var of variables, and a set P of
predicate symbols each equipped with an arity. We have the following standard
definition for terms, formulas and Horn clauses:

Definition 1 (Syntax of Horn clauses and programs).
Terms Term ::= V ar | F(Term, ..., T erm)
Atoms At ::= P(Term, ..., T erm)
(Horn) clauses CH ::= At ← At, ..., At
Logic programs Prog ::=CH, ..., CH

In what follows, we will use letters A,B with subscripts to refer to elements of
At. Given a program P , we assume all clauses are indexed by natural numbers

A Productivity Checker for Logic Programming 173

starting from 0. When we need to refer to ith clause of program P , we will
use notation P (i). To refer to the head of clause P (i), we will use notation
head(P (i)).

A substitution is a total function σ : Var → Term. Substitutions are
extended from variables to terms as usual: if t ∈ Term and σ is a substitu-
tion, then the application σ(t) is a result of applying σ to all variables in t. A
substitution σ is a unifier for t, u if σ(t) = σ(u), and is a matcher for t against
u if σ(t) = u. A substitution σ is a most general unifier (mgu) for t and u if it
is a unifier for t and u and is more general than any other such unifier. A most
general matcher (mgm) σ for t against u is defined analogously.

We can view every term and atom as a tree. Following standard definitions [2,
14], such trees can be indexed by elements of a suitably defined tree language. Let
N

∗ be the set of all finite words (i.e., sequences) over the set N of natural numbers.
A set L ⊆ N

∗ is a (finitely branching) tree language if the following two conditions
hold: (i) for all w ∈ N

∗ and all i, j ∈ N, if wj ∈ L then w ∈ L and, for all i < j,
wi ∈ L, and (ii) for all w ∈ L, the set of all i ∈ N such that wi ∈ L is finite. A
tree language L is finite if it is a finite subset of N∗, and infinite otherwise. Term
trees (for terms and atoms over a given signature) are defined as mappings from a
tree language L to that signature, see [2,9,14]. Informally speaking, every symbol
occurring in a term or an atom receives an index from L.

In what follows, we will work with term tree representations of terms and
atoms, and for brevity we will refer to term trees simply as terms. We will use
notation t(w) when we need to talk about the element of the term t indexed by
a word w ∈ L. Note that leaf nodes are always given by variables or constants.

Example 5. Given L = {ε, 0, 00, 01}, the atom stream(scons(0, Y)) can be seen
as the term tree t given by the map t(ε) = stream, t(0) = scons, t(00) = 0,
t(01) = Y.

We can use such indexing to refer to subterms, and notation subterm(t, w) will
refer to the subterm of term t starting at node w. In Example 5, taking t =
stream(scons(0, Y)) gives that subterm(t, 0) is scons(0, Y).

Two of the most popular tools for termination analysis of declarative pro-
grams are lexicographic ordering and (recursive) path ordering of terms. Infor-
mally, these can be adopted to the LP setting as follows. Suppose we have a
clause A ← B1, . . . , Bi, . . . , Bn, and want to check whether each Bi sharing
the predicate with A is “smaller” than A, since this guarantees that no infinite
rewriting derivation is triggered by this clause. For lexicographic ordering we
will write Bi <l A and for path ordering we will write Bi <p A.

Using standard orderings to prove universal observability works well for
program P2, since stream(Y) <l stream(scons(0, Y)) and stream(Y) <p

stream(scons(0, Y)), and so any rewriting derivation for P2 terminates. But
universal observability of P6 cannot be shown by this method. Indeed, none
of the four orderings from(X, scons(X, Y)) <l from(s(X), Y), from(s(X), Y) <l

from(X, scons(X, Y)), from(X, scons(X, Y)) <p from(s(X), Y), and from(s(X), Y)
<p from(X, scons(X, Y)) holds because the subterms pairwise disagree on the

174 E. Komendantskaya et al.

ordering. This situation is common for LP, where some arguments hold input
data and some hold output data, so that some decrease while others increase
in recursive calls. Nevertheless, P6 is universally observable, and we want to be
able to infer this. Studying the S-resolution derivation for P6 in Sect. 1, we note
that universal observability of P6 is guaranteed by contraction of from’s second
argument. It is therefore sufficient to establish that terms get smaller in only
one argument. This inspires our definition of a contraction ordering, which takes
advantage of the tree representation of terms.

Definition 2 (Contraction, recursive contraction). If t1 and t2 are terms,
then t2 is a contraction of t1 (written t1 � t2) if there is a leaf node t2(w) on a
branch B in t2, and there exists a branch B′ in t1 that is identical to B up to
node w, but t1(w) is not a leaf. If, in addition, subterm(t1, w) contains the symbol
given by t2(w), then t2 is a recursive contraction of t1.

We distinguish variable contractions and constant contractions according as
t2(w) is a variable or constant, and call subterm(t1, w) a reducing subterm for
t1�t2 at node w. We call subterm(t1, w) a recursive, variable, or constant reduc-
ing subterm according as t1 � t2 is a recursive, variable or constant contraction.

Example 6 (Contraction orderings). We have from(X, scons(X, Y))�
from(s(X), Y), since the leaf Y in the latter is “replaced” by the term scons(X, Y)
in the former. Formally, scons(X, Y) is a recursive and variable reducing sub-
term. It can be used to certify termination of all rewriting derivations for P6.
Note that from(s(X), Y) � from(X, scons(X, Y)) also holds, with (recursive and
variable) reducing subterm s(X).

The fact that � is not well-founded makes reasoning about termination deli-
cate. Nevertheless, contractions emerge as precisely the additional ingredient
needed to formulate our productivity check for guarded (and therefore univer-
sally observable) programs.

In general, static termination checking for LP suffers serious limitations; see,
e.g., [3]. The following example illustrates this phenomenon.

Example 7 (Contraction ordering on clause terms is insufficient for termination
checks). The program P7, which is not universally observable, is given by mutual
recursion:
0. p(s(X1), X2, Y1, Y2) ← q(X2, X2, Y1, Y2)
1. q(X1, X2, s(Y1), Y2) ← p(X1, X2, Y2, Y2)
No two terms from the same clause of P7 can be related by any contrac-
tion ordering because their head symbols differ. But recursion arises for P7

when a derivation calls its two clauses alternately, so we would like to exam-
ine rewriting derivations for queries, such as ? ← p(s(X1), X2, s(Y1), Y2) and
? ← p(s(X1), s(X2), s(Y1), s(Y2)), that exhibit its recursive nature. Unfortu-
nately, such queries are not given directly by P7’s syntax, and so are not available
for static program analysis.

Since static checking for contraction ordering in clauses is not sufficient, we
will define dynamic checks in the next section. The idea is to build a rewriting

A Productivity Checker for Logic Programming 175

tree for each clause, and check whether the term trees featured in that derivation
tree satisfy any contraction ordering.

3 Rewriting Trees: Guardedness Checks for Rewriting
Derivations

To properly reason about rewriting derivations in LP, we need to take into
account that (i) in LP, unlike, e.g., in TRS, we have conjuncts of terms in
the bodies of clauses, and (ii) a logic program can have overlapping clauses, i.e.,
clauses whose heads unify. These two facts have been analysed in detail in the LP
literature, usually using the notion of and-or-trees and, where optimisation has
been concerned, and-or-parallel trees. We carry on this tradition and consider
a variant of and-or trees for derivations. However, the trees we consider are
not formed by general SLD-resolution, but rather by term matching resolution.
Rewriting trees are so named because each of their edges represents a term
matching resolution step, i.e., a matching step as in term rewriting.

Definition 3 (Rewriting tree). Let P be a logic program with n clauses, and
A be an atom. The rewriting tree for P and A is the possibly infinite tree T
satisfying the following properties:

– A is the root of T
– Each node in T is either an and-node or an or-node
– Each or-node is given by P (i), for some i ∈ {0, . . . , n}
– Each and-node is an atom seen as a term tree.
– For every and-node A′ occurring in T , if there exist exactly k > 0 dis-

tinct clauses P (j1), . . . , P (jk) in P (a clause P (ji) has the form Bji ←
Bji

1 , . . . , Bji
nji

for some nji), such that A′ = θj1(Bj1) = . . . = θjk(Bjk),
for mgms θj1 , . . . , θjk , then A′ has exactly k children given by or-nodes
P (j1), . . . , P (jk), such that every or-node P (ji) has nji children given by and-
nodes θji(B

ji
1), . . . , θji(B

ji
nji

).

When constructing rewriting trees, we assume a suitable algorithm [9] for renam-
ing free variables in clause bodies apart. Figure 1 gives four examples of rewrit-
ing trees. If P is a program and t1, . . . , tm are terms, then a rewriting reduction
is given by [t1, . . . , ti, . . . , tm] → [t1, . . . , ti−1, σ(B0), . . . σ(Bn), ti+1, . . . , tm] for
B ← B1, . . . , Bn ∈ P and σ(B) = ti. A sequence of rewriting reductions is a
rewriting derivation. It is easy to see that a rewriting derivation for a term t
corresponds to a subtree of a rewriting tree for t in which only one or-node is
taken at every tree level.

Because mgms are unique up to variable renaming, given a program P and an
atom A, the rewriting tree T for P and A is unique. Following the same principle
as with definition of term trees, we use suitably defined finitely-branching tree
languages for indexing rewriting trees; see [9] for precise definitions. When we
need to talk about a node of a rewriting tree T indexed by a word w ∈ L, we
will use notation T (w).

We can now formally define our notion of universal observability.

176 E. Komendantskaya et al.

Definition 4 (Universal observability). A program P is universally observ-
able if, for every atom A, the rewriting tree for A and P is finite.

Programs P1, P ′
1, P2, P5, P6 are universally observable, whereas programs P3,

P4 and P7 are not. An exact analysis of why P7 is not universally observable is
given in Example 9.

We can now apply the contraction ordering we defined in the previous section
to analyse termination properties of rewriting trees. A suitable notion of guard-
edness can be defined by checking for loops in rewriting trees whose terms fail
to decrease by any contraction ordering. Note that our notion of a loop is more
general than that used in CoLP [7,21] since it does not require the looping terms
to be unifiable.

Definition 5 (Loop in a rewriting tree). Given a program P and an atom
A, the rewriting tree T for P and A contains a loop at nodes w and v, denoted
loop(T,w, v), if w properly precedes v on some branch of T , T (w) and T (v) are
and-nodes whose atoms have the same predicate, and the parent or-nodes of T (w)
and T (v) are given by the same clause P (i).

Examples of loops in rewriting trees are given (underlined) in Fig. 1.
If T has a loop at nodes w and v, and if t is a recursive reducing subterm for

T (w) � T (v), then loop(T,w, v) is guarded by (P (i), t), where P (i) is the clause
that was resolved against to obtain T (w) and T (v), i.e., P (i) is the parent node
of T (w) and T (v). It is unguarded otherwise. A rewriting tree T is guarded if all
of its loops are guarded, and is unguarded otherwise. We write GC2(T) when T
is guarded, and say that holds for T , or simply that GC2(T) holds.

Example 8. In Fig. 1, we have (underlined) loops in the third rewriting tree
(for q(s(X′′), s(X′′), s(Y′), Y′′) and q(s(X′), s(X′′), Y′′, Y′′)) and the fourth rewriting
tree (for q(s(X′′), s(X′′), s(Y′), s(Y′′)) and q(s(X′′), s(X′′), s(Y′′), s(Y′′))). Neither is
guarded. In the former, there is a contraction on the third argument, but because
s(Y′) and Y′′ do not share a variable, it is not recursive contraction. In the latter,
there is no contraction at all.

By Definition 5, each repetition of a clause and predicate in a branch of a rewrit-
ing tree triggers a check to see if the loop is guarded by some recursive reducing
subterm.

Proposition 1 (GC2 is decidable). GC2 is a decidable property of rewriting
trees.1

The proof of Proposition 1 also establishes that every guarded rewriting tree is
finite.

The decidable guardedness property GC2 is a property of individual rewriting
trees. But our goal is to decide guardedness universally, i.e., for all of a program’s
rewriting trees. The next example shows that extrapolating from existential to
universal guardedness is a difficult task.
1 All proofs are in Appendix A, and corresponding pseudocode algorithms are in

Appendix B, of the version of the paper at https://arxiv.org/abs/1608.04415.

https://arxiv.org/abs/1608.04415

A Productivity Checker for Logic Programming 177

Example 9 (Existential guardedness does not imply universal guardedness).
For program P7, the rewriting trees constructed for the two clause heads
p(s(X′), X′′, Y′, Y′′) and q(s(X′), X′′, s(Y′), Y′′) are both guarded since neither con-
tains any loops at all. Nevertheless, there is a rewriting tree for P7 (the last tree
in Fig. 1) that is unguarded and infinite. The third tree is not guarded (due to
the unguarded loop), but it is finite.

p(s(X′), X′′, Y′, Y′′)

P7(0)

q(X′′, X′′, Y′, Y′′)

Y′ �→s(Y′)→
p(s(X′), X′′, s(Y′), Y′′)

P7(0)

q(X′′, X′′, s(Y′), Y′′)

P7(1)

p(X′′, X′′, Y′′, Y′′)

X′′ �→s(X′′)→
p(s(X′), s(X′′), s(Y′), Y′′)

P7(0)

q(s(X′′), s(X′′), s(Y′), Y′′)

P7(1)

p(s(X′′), s(X′′), Y′′, Y′′)

P7(0)

q(s(X′′), s(X′′), Y′′, Y′′)

Y′′ �→s(Y′′)→
p(s(X1), s(X′′), s(Y′), s(Y′′))

P7(0)

q(s(X′′), s(X′′), s(Y′), s(Y′′))

P7(1)

p(s(X′′), s(X′′), s(Y′′), s(Y′′))

P7(0)

q(s(X′′), s(X′′), s(Y′′), s(Y′′))

P7(1)

. . .

Fig. 1. An initial fragment of the derivation tree (comprising four rewriting trees) for
the program P7 of Example 7 and the atom p(s(X′), X′′, Y′, Y′′). Its third and fourth
rewriting trees each contain an unguarded loop (underlined), so both are unguarded.
The fourth tree is infinite.

The example above shows that checking rewriting trees generated by clause
heads is insufficient to detect all cases of nonterminating rewriting. Since a sim-
ilar situation can obtain for any finite set of rewriting trees, we see that uni-
versal observability, and hence observational productivity, of programs cannot
be determined by guardedness of rewriting trees for program clauses alone. The
next section addresses this problem.

4 Derivation Trees: Observational Productivity Checks

The key idea of this section is, given a program P , to identify a finite set S of
rewriting trees for P such that checking guardedness of all rewriting trees in S
is sufficient to guarantee guardedness of all rewriting trees for P . One way to
identify such sets is to use the strategy of Example 9 and Fig. 1: for every clause
P (i) of P , construct a rewriting tree for the head of P (i), and, if that tree is
guarded, explore what kind of mgus the leaves of that tree generate and see if
applications of those mgus might give an unguarded tree. As Fig. 1 shows, we
may need to apply this method iteratively until we find a nonguarded rewriting
tree. But we want the number of such iterations to be finite. This section shows
how to do precisely this.

178 E. Komendantskaya et al.

We start with a formal definition of rewriting tree transitions, which we have
seen already in Fig. 1, and see also in Fig. 2 below.

Definition 6 (Rewriting tree transition). Let P be a program and T be a
rewriting tree for P and an atom A. If T (w) is a leaf node of T given by an atom
B, and B unifies with a clause P (i) via mgu σ, we define a tree Tw as follows:
we apply σ to every and-node of T , and extend the branches where required,
according to Definition 3. Computation of Tw from T is denoted T → Tw. The
operation T → Tw is the tree transition for T and w.

If a rewriting tree T is constructed for a program P and an atom A, a (finite
or infinite) sequence T → T ′ → T ′′ → . . . of tree transitions is an S-resolution
derivation for P and A. For a given rewriting tree T , several different S-resolution
derivations are possible from T . This gives rise to the notion of a derivation tree.

Definition 7 (Derivation tree, guarded derivation tree). Given a logic
program P and an atom A, the derivation tree D for P and A is defined as
follows:

– The root of D is given by the rewriting tree for P and A.
– For a rewriting tree T occurring as a node of D, if there exists a transition

T → Tw, for some leaf node w in T , then the node T has a child given by Tw.

A derivation tree is guarded if each of its nodes is a guarded rewriting tree, i.e.,
if GC2(T) holds for each of its nodes T .

Figure 1 shows an initial fragment of the derivation tree for P7 and
p(s(X′), X′′, Y′, Y′′).

Note that we now have three kinds of trees: term trees have signature symbols
as nodes, rewriting trees have atoms (term trees) as nodes, and derivation trees
have rewriting trees as nodes. For a given P and A, the derivation tree for P
and A is unique up to renaming. We use our usual notation D(w) to refer to the
node of D at index w ∈ L.

Definition 8 (Existential liveness, observational productivity). Let P be
a universally observable program and let A be an atom. An S-resolution deriva-
tion for P and A is live if it constitutes an infinite branch of the derivation
tree for P and A. The program P is existentially live if there exists a live S-
resolution derivation for P and some atom A. P is observationally productive
if it is universally observable and existentially live.

To show that observational productivity is semi-decidable, we first show that
universal observability is semi-decidable by means of a finite (i.e., decidable)
guardedness check. We started this section by motivating the need to construct
a finite set S of rewriting trees whose guardedness will guarantee guardedness
for any rewriting tree for the given program. Our first logical step is to use
derivation trees built for clause heads as generators of such a set S. Due to the
properties of mgus used in forming branches of derivation trees, derivation trees
constructed for clause heads generate the set of most general rewriting trees.
The next lemma exposes this fact:

A Productivity Checker for Logic Programming 179

Lemma 1 (Guardedness of derivation trees implies universal observ-
ability). Given a program P , if derivation trees for P and each head(P (i)) are
guarded, then P is universally observable.

Since derivation trees are infinite, in general, checking guardedness of all
loops in all of their rewriting trees is not always feasible. It thus remains to
define a method that extracts representative finite subtrees from such derivation
trees; we call such subtrees observation subtrees. For this, we need only be able
to detect an invariant property guaranteeing guardedness through tree transi-
tions in the given derivation tree. To illustrate, let us check guardedness of the
program P6. Since it consists of just one clause, we take the head of that clause
as the goal atom, and start constructing the infinite derivation tree D for P6 and
from(X, scons(X, Y)) as shown in Fig. 2. The first rewriting tree in the derivation
tree has no loops, so we cannot identify any invariants. We make a transition to
the second rewriting tree which has one loop (underlined) involving the recursive
reducing subterm [s(X), Y′]. This reducing subterm is our first candidate invari-
ant, since it is the pattern that is consumed from the root of the second rewriting
tree to its leaf. We now need to check this pattern is added back, or produced, in
the next tree transition. The next mgu involves substitution Y′ �→ [s(s(X)), Y′′].
Because this derivation gradually computes an infinite irrational term (rational
terms are terms that can be represented as trees that have a finite number of
distinct subtrees), the two terms [s(X), Y′] and [s(s(X)), Y′′] we have identified
are not unifiable. We need to be able to abstract away from their current shape
and identify a common pattern, which in this case is [,]. Importantly, by the
properties of mgus used in transitions, such most general patterns can always
be extracted from clause heads themselves. Indeed, the subterm of the clause
head from(X, scons(X, Y)) has the subterm [X, Y] that is exactly the pattern we
are looking for. Thus, our current (coinductive) assumption is: given a rewriting
tree T in the derivation tree D, a term of the form [,] will be consumed by
rewriting steps from its root to its leaves, and exactly a term of the form [,]
will be produced (i.e., added back) in the next tree transition. Consumption is
always finite (by the loop guardedness), and production is potentially infinite.

We now need to check that this coinductive assumption will hold for the
next rewriting tree of D. The third rewriting tree indeed has guarded loops with
recursive reducing subterm [s(s(X)), Y′′], and the next mgu it gives rise to is
Y′′ �→ [s(s(s(X))), Y′′]. Again, to abstract away the common pattern, we look for
a subterm in the clause head of P6(0) that matches with both of these terms, it
is the same subterm [X, Y]. Thus, our coinductive assumption holds again, and we
conclude by coinduction that the same pattern will hold for any further rewriting
tree in D. When implementing this reasoning, we take the observation subtree
of D up to the third tree shown in Fig. 2 as a sufficient set of rewriting trees to
use to check guardedness of the (otherwise infinite) tree D.

The rest of this section generalises and formalises this approach. In the next
definition, we introduce the notion of a clause projection to talk about the process
of “abstracting away” a pattern from an mgu σ by matching it with a subterm

180 E. Komendantskaya et al.

fr(X, [X, Y])

P6(0)

fr(s(X), Y)

Y �→[s(X),Y′]}−→
fr(X, [X, s(X), Y′])

P6(0)

fr(s(X), [s(X), Y′])

P6(0)

fr(s(s(X)), Y′)

Y′ �→[s(s(X)),Y′′]−→
fr(X, [X, s(X), s(s(X)), Y′′])

P6(0)

fr(s(X), [s(X), s(s(X)), Y′′])

P6(0)

fr(s(s(X)), [s(s(X)), Y′′])

P6(0)

fr(s(s(s(X))), Y′′)

Y′′ �→[s(s(s(X))),Y′′]−→ . . .

Fig. 2. An initial fragment of the infinite derivation tree D for the program P6 from
Example 4 and its clause head. It is also the observation subtree for D. We abbreviate
scons by [,], and from by fr. The guarded loops in each of D’s rewriting trees are
underlined.

t of a clause head. When t also matches with a recursive reducing subterm of a
loop in a rewriting tree, we call t a coinductive invariant.

Definition 9 (Clause projection and coinductive invariant). Let P be a
program and A be an atom, and let D be a derivation tree for P and A in which
a tree transition from T to T ′ is induced by an mgu σ of P (k) and an atom B
given by a leaf node T (u).

The clause projection for T ′, denoted π(T ′), is the set of all triples
(P (k), t, v), where t is a subterm of head(P (k)) at position v, such that the
following conditions hold: σ(B) � B with variable reducing subterm t′, and t′

matches against t (i.e. t′ = σ′(t) for some σ′).
Additionally, the coinductive invariant at T ′, denoted ci(T ′), is a subset

of the clause projection for T ′ satisfying the following condition: an element
(P (k), t, v) ∈ π(T ′) is in ci(T ′) if T contains a loop in the branch leading from
T ’s root to T (u) that is guarded by (P (k), t′′) for some t′′ such that t′′ matches
against t (i.e., t′′ = θ(t) for some θ).

Given a program P , an atom A, and a derivation tree D for P and A, the
clause projection set for D is cproj(D) =

⋃
T π(T), and the coinductive invariant

set for D is cinv(D) =
⋃

T ci(T), where these unions are taken over all rewriting
trees T in D.

Example 10 (Clause projections and coinductive invariants). Coming back to
Fig. 2, the mgu for the first transition is σ1 = {X′ �→ s(X), Y �→ scons(s(X), Y′)}
(renaming of variables in P6(0) with primes), that for the second is σ2 = {X′′ �→
s(s(X)), Y′ �→ scons(s(s(X)), Y′′)} (renaming of variables in P6(0) with double
primes), etc. Clause projections are given by π(T) = {(P6(0), scons(X, Y), 1)}
for all trees T in this derivation, and thus cproj(D) is the finite set. Moreover,
for the first rewriting tree T , ci(T) = ∅, and ci(T ′) = {(P6(0), scons(X, Y), 1)}
for all trees T ′ except for the first one, so cinv(D) = {(P6(0), scons(X, Y), 1)} is
a finite set, too.

A Productivity Checker for Logic Programming 181

The clause projections for the derivation in Fig. 1 are π(T ′) = π(T ′′′) = (P (1),
s(Y1), 2), and π(T ′′) = (P (0), s(X1), 0), where T ′, T ′′, T ′′′ refer to the second,
third and fourth rewriting tree of that derivation. All coinductive invariants for
that derivation are empty, since none of these rewriting trees contain guarded
loops.

Generally, clause projection sets are finite, since the number of subterms in
the clause heads of P is finite. This property is crucial for termination of our
method.

Proposition 2 (Finiteness of clause projection sets). Given a program
P , an atom A, and a derivation tree D for P and A, the clause projection set
cproj(D) is finite.

In particular, this holds for derivation trees induced by clause heads.
We terminate the construction of each branch of a derivation tree when

we notice a repeating coinductive invariant. A subtree we get as a result is
an observation subtree. Formally, given a derivation tree D for a program P
and an atom A with a branch in which nodes D(w) and D(wv) are defined,
if ci(D(w)) = ci(D(wv)) 	= ∅, then D has a guarded transition from D(w) to
D(wv), denoted D(w) =⇒ D(wv). Every guarded transition thus identifies a
repeated “consumer-producer” invariant in the derivation from D(w) to D(wv).
This tells us that observation of this branch of D can be concluded. Imposing
this condition on all branches of D gives us a general method to construct finite
observation subtrees of potentially infinite derivation trees:

Definition 10 (Observation subtree of a derivation tree). If D is a
derivation tree for a program P and an atom A, the tree D′ is the observation
subtree of D if

(1) the roots of D and D′ are given by the rewriting tree for P and A, and
(2) if w is a node in both D and D′, then the rewriting trees in D and D′ at

node w are the same and, for every child w′ of w in D, the rewriting tree of
D′ at node w′ exists and is the same as the rewriting tree of D at w′, unless
either

(a) GC2 does not hold for D(w′), or
(b) there exists a v such that D(v) =⇒ D(w).

In either case, D′(w) is a leaf node. We say that D′ is unguarded if Condition
2a holds for at least one of D’s nodes, and that D′ is guarded otherwise.

A branch in an observation subtree is thus truncated when it reaches an
unguarded rewriting tree or its coinductive invariant repeats. The observation
subtree of any derivation tree is unique. The following proposition and lemma
prove the two most crucial properties of observation subtrees: that they are
always finite, and that checking their guardedness is sufficient for establishing
guardedness of whole derivation trees.

182 E. Komendantskaya et al.

Proposition 3 (Finiteness of observation subtrees). If D is a derivation
tree for a program P and an atom A, then the observation subtree of D is finite.

Lemma 2 (Guardedness of observation subtree implies guardedness of
derivation tree). If the observation subtree for a derivation tree D is guarded,
then D is guarded.

Example 11 (Finite observation subtree of an infinite derivation tree). The initial
fragment D′ of the infinite derivation tree D given by the three rewriting trees in
Fig. 2 is D’s observation subtree. The third rewriting tree T ′′ in D is the last node
in the observation tree D′ because ci(T ′) = ci(T ′′) = {(P6(0), scons(X, Y), 1)}
	= ∅. Since D′ is guarded, Lemma 2 above ensures that the whole infinite deriva-
tion tree D is guarded.

It now only remains to put the properties of the observation subtrees to
practical use and, given a program P , to construct finite observation subtrees
for each of its clauses. If none of these observation subtrees detects unguarded
rewriting trees, we have guarantees that this program will never give rise to
infinite rewriting trees. The next definition, lemmas, and theorem make this
intuition precise.

Definition 11 (Guarded clause, guarded program). Given a program P ,
its clause P (i) is guarded if the observation subtree for the derivation tree for P
and the atom head(P (i)) is guarded, and P (i) is unguarded otherwise. A program
P is guarded if each of its clauses P (i) is guarded, and unguarded otherwise.
We write GC3(P (i)) to indicate that P (i) is guarded, and similarly for P .

Lemma 3 uses Proposition 3 to show that GC3 is decidable.

Lemma 3 (GC3 is decidable). GC3 is a decidable property of logic programs.

Theorem 1 (Universal observability is semi-decidable). If GC3(P)
holds, then P is universally observable.

Proof: If GC3(P) holds, then the observation subtree for each P (i) is guarded.
Thus, by Lemma 2, the derivation tree for each P (i) is guarded. But then, by
Lemma 1, P is universally observable. Combining this with Lemma 3, we also
obtain that universal observability is semi-decidable.
The converse of Theorem 1 does not hold: the program comprising the clause
p(a) ← p(X) is universally observable but not guarded, hence the above semi -
decidability result.

From our check for universal observability we obtain the desired check for
existential liveness, and thus for observational productivity:

Corollary 1 (Observational productivity is semi-decidable). Let P be
a guarded logic program. If there exists a clause P (i) such that the derivation
tree D for P and P (i) has an observation subtree D′ one of whose branches
was truncated by Condition 2b of Definition 10, then P is existentially live.
In this case, since P is also guarded and hence universally observable, P is
observationally productive.

A Productivity Checker for Logic Programming 183

5 Related Work: Termination Checking in TRS and LP

Because observational productivity is a combination of universal observability
and existential liveness, and the former property amounts to termination of
all rewriting trees, there is an intersection between this work and termination
checking in TRS [1,8,22].

Termination checking via the transformation of LP into TRS has been studied
in [20]. Here we consider termination of restricted form of SLD-resolution (given
by rewriting derivations), and so a much simpler method for translating LP
into TRS can be used for our purposes [6]: Given a logic program P and a
clause P (i) = A ← B1, . . . , Bn containing no existential variables, we define a
rewrite rule A → fi(B1, . . . , Bn) for some fresh function symbol fi. Performing
this translation for all clauses, we get a translation from P to a term rewriting
system TP . Rewriting derivations for P can be shown operationally equivalent to
term rewriting reductions for TP ; see [6] for a proof. Therefore, for logic programs
containing no existential variables, any termination method from TRS may be
applied to check universal observability (but not existential liveness).

Algorithmically, our guardedness check compares directly with the method
of dependency pairs due to Arts and Giesl [1,8]. Consider again the TRS TP

obtained from a logic program P . The set R of dependency pairs contains, for
each rewrite rule A → fi(B1, . . . , Bn) in TP , a pair (A,Bj), j = 1, . . . , n; see [6].
The method of dependency pairs consists of checking whether there exists an infi-
nite chain of dependency pairs (si, ti)i=1,2,3,... such that σi(ti) →∗ σi+1(si+1).
If there is no such infinite chain, then TP is terminating. Again this translation
from LP to dependency pairs in TRS is simpler than in [15], since rewriting
derivations are a restricted form of SLD-resolution. Due to the restricted syntax
of TP (compared to the general TRS syntax), generating the set of dependency
pairs is equivalent to generating a set of rewriting trees for each clause of P and
assuming σi = σi+1 (cf. GC2). To find infinite chains, a dependency graph is
defined, in which dependency pairs are nodes, and arcs are defined whenever
a substitution that allows a transition from one pair to another can be found.
Finding such substitutions is the hardest part algorithmically. Note that every
pair of neighbouring and-nodes in a rewriting tree corresponds to a node in a
dependency graph. Generating arcs in a dependency graph is equivalent to using
GC3 to find a representative set of substitutions. However, the way GC3 gen-
erates such substitutions via rewriting tree transitions differs completely from
the methods approximating dependency graphs [1,22], and relies on the proper-
ties of S-resolution, rather than recursive path orderings. This is because GC3
additionally generates coinductive invariants for checking existential liveness of
programs.

Conceptually, observational productivity is a new property that does not
amount to either termination or nontermination in LP or TRS. For instance,
programs P3 and P4 are nonterminating (seen as LP or TRS), and P8 : p(X) ←
q(Y) is terminating (seen as LP or TRS) but none of them is productive. This
is why the existing powerful tools (such as AProVE) and methods [1,8,15,20]
that can check termination or nontermination in TRS or LP are not sufficient

184 E. Komendantskaya et al.

to serve as productivity checks. To check termination of rewriting trees, GC3
can be substituted by existing termination checkers for TRS, but none of the
previous approaches can semi-decide existential liveness as GC3 does.

6 Implementation and Applications

We implemented the observational productivity checker in parallel Go
(golang.org) [19], which allows experimentation with parallelisation of proof
search [10]. Loading a logic program P , one runs a command line to initialise the
GC3 check. The algorithm then certifies whether or not the program is guarded
(and hence universally observable). If that is the case, it also checks whether GC3
found valid coinductive invariants, i.e. whether P is existentially live, and hence
admits coinductive interpretations for some predicates. Appendix B (available
online) gives further details.

In the context of S-resolution [9,11], observational productivity of a pro-
gram is a precondition for (coinductive) soundness of S-resolution derivations.
This gives the first application for the productivity checker. But the notion of
global productivity (as related to computations at infinity [14]) was first investi-
gated in the 1980s. A program is productive, if it admits SLD- (or S-resolution)
derivations that compute (or produce) an infinite term at infinity. Thus the pro-
ductivity checker has more general practical significance for Prolog. In this paper
we further exposed its generality by showing that productivity can be seen as a
general property of logic programs, rather than property of derivations in some
special dialect of Prolog.

Based on this observation, we identify three applications for productiv-
ity checks encompassing the S-resolution framework. First, in the context of
CoLP [7,21] or any other similar tool based on loop detection in SLD-derivations,
one can run the observational productivity checker for a given program prior to
running the usual interpreter of CoLP. If the program is certified as productive,
all computations by CoLP for this program will be sound relative to computa-
tions at infinity [14]. It gives a way to characterise a subset of theorems proven
by CoLP that describe the process of production of infinite data. For example,
as explained in the introduction, CoLP will return answers for programs P3, P4

and P5. But if we know that only P5 is productive, then we also know that only
CoLP’s answers for P5 will correspond to production of infinite terms at infin-
ity. Secondly, since our productivity checker also checks liveness of programs, it
effectively identifies which predicates may be given coinductive semantics. This
knowledge can be used to type predicates as inductive or coinductive. We can
use these types to mark predicates in CoLP or any other coinductive dialect of
logic programming, cf. Appendix B. Finally, observational productivity is also
a guarantee that a sequence of mgus approximating the infinite answer can be
constructed lazily even if the answer is irregular. For instance, our running exam-
ple of program P6 defines an irrational term and hence cannot be handled by
CoLP’s loop detection. But even if we cannot form a closed-term answer for a
query from(0, X), the productivity checker gives us a weaker but more general
certificate that lazy approximation of our infinite answer is possible.

https://golang.org/

A Productivity Checker for Logic Programming 185

These three classes of applications show that the presented productivity
checker can be implemented and applied in any dialect of logic programming,
irrespective of the fact that it initially arose from S-resolution research [9,11].

7 Conclusions

In this paper we have introduced an observational counterpart to the classical
notion of global productivity of logic programs. Using the recently introduced
formalism of S-resolution, we have defined observational productivity as a combi-
nation of two program properties, namely, universal observability and existential
liveness. We have introduced an algorithm for semi-deciding observational pro-
ductivity for any logic program. We did not impose any restrictions on the syntax
of logic programs. In particular, our algorithm handles both existential variables
and non-linear recursion.

The algorithm relies on the observation that rewriting trees for productive
and guarded programs must show term reduction relative to a contraction order-
ing from their roots to their leaves. But S-resolution derivations involving such
trees can only proceed by adding term structure back in transitioning to new
rewriting trees via mgus. This “producer/consumer” interaction can be formally
traced by observing a derivation’s coinductive invariants: these record exactly
the term patterns that both reduce in the loops of rewriting trees and are added
back in transitions between these trees.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS
236(12), 133–178 (2000)

2. Courcelle, B.: Fundamental properties of infinite trees. TCS 25, 95–169 (1983)
3. de Schreye, D., Decorte, S.: Termination of logic programs: the never-ending story.

J. Logic Program. 19–20(Supplement 1), 199–260 (1994)
4. Endrullis, J., et al.: Productivity of stream definitions. TCS 411(4–5), 765–782

(2010)
5. Endrullis, J., et al.: A coinductive framework for infinitary rewriting and equational

reasoning. In: RTA, pp. 143–159 (2015)
6. Fu, P., Komendantskaya, E.: Operational semantics of resolution and productivity

in horn clause logic. Formal Aspects of Computing (2016)
7. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic program-

ming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol.
4670, pp. 27–44. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74610-2 4

8. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: Oostrom, V. (ed.)
RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25979-4 18

9. Johann, P., et al.: Structural resolution for logic programming. In: Technical Com-
munications of ICLP (2015)

10. Komendantskaya, E., et al.: Exploiting parallelism in coalgebraic logic program-
ming. Electron. Notes Theor. Comput. Sci. 33, 121–148 (2014)

http://dx.doi.org/10.1007/978-3-540-74610-2_4
http://dx.doi.org/10.1007/978-3-540-25979-4_18
http://dx.doi.org/10.1007/978-3-540-25979-4_18

186 E. Komendantskaya et al.

11. Komendantskaya, E., et al.: Coalgebraic logic programming: from semantics to
implementation. J. Logic Comput. 26(2), 745–783 (2016)

12. Komendantskaya, E., Li, Y.: Productive corecursion in logic programming. In: Pro-
ceedings of ICLP 2017 (2017). arXiv:1707.01541. To appear in Journal of Theory
and Practice of Logic Programming

13. Leino, K.R.M., Moskal, M.: Co-induction simply. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 382–398. Springer, Cham (2014).
doi:10.1007/978-3-319-06410-9 27

14. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1988)

15. Nguyen, M.T., et al.: Termination analysis of logic programs based on dependency
graphs. In: LPOSTR, pp. 8–22 (2007)

16. Pfenning, F.: Types in Logic Programming. The MIT Press, Cambridge (1992)
17. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT

solvers. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 197–213. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 13

18. Rohwedder, E., Pfenning, F.: Model and termination checking for higher-order
logic programs. In: ESOP, pp. 296–310 (1996)

19. Schmidt, M.: Productivity checker for LP (2016). www.macs.hw.ac.uk/∼ek19/
CoALP/

20. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated termina-
tion analysis for logic programs by term rewriting. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71410-1 13

21. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73420-8 42

22. Terese: Term Rewriting Systems. Cambridge University Press, New York (2003)

http://arxiv.org/abs/1707.01541
http://dx.doi.org/10.1007/978-3-319-06410-9_27
http://dx.doi.org/10.1007/978-3-319-21401-6_13
www.macs.hw.ac.uk/~ek19/CoALP/
www.macs.hw.ac.uk/~ek19/CoALP/
http://dx.doi.org/10.1007/978-3-540-71410-1_13
http://dx.doi.org/10.1007/978-3-540-71410-1_13
http://dx.doi.org/10.1007/978-3-540-73420-8_42

Symbolic Abstract Contract Synthesis
in a Rewriting Framework

Maŕıa Alpuente, Daniel Pardo(B), and Alicia Villanueva

DSIC, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain

{alpuente,daparpon,villanue}@dsic.upv.es

Abstract. We propose an automated technique for inferring software
contracts from programs that are written in a non-trivial fragment of
C, called KernelC, that supports pointer-based structures and heap
manipulation. Starting from the semantic definition of KernelC in the K
framework, we enrich the symbolic execution facilities recently provided
by C with novel capabilities for assertion synthesis that are based on
abstract subsumption. Roughly speaking, we define an abstract symbolic
technique that explains the execution of a (modifier) C function by using
other (observer) routines in the same program. We implemented our
technique in the automated tool KindSpec 2.0, which generates logical
axioms that define the precise input/output behavior of the C routines.

1 Introduction

Checking software contracts [15] is one of the most promising techniques for
achieving software reliability. Contracts essentially consist of requirements that
are imposed on the arguments and result values when functions are invoked.
Given its interest, considerable effort has recently been invested towards giv-
ing automatic support for equipping programs with extensive contracts, yet the
current contract inference tools are still often unsatisfactory in practice [7].

This paper describes a symbolic inference system that synthesizes contracts
for heap-manipulating programs that are written in a non-trivial fragment of
C, called KernelC [8], which includes functions, I/O primitives, dynamically
allocated structures, and pointer manipulation. By automating the tedious and
time-consuming process of generating contracts, programmers can reap the bene-
fits of assertion–based debugging and verification methods with reasonable effort.

Given a program P , the contract discovery problem is generally described
as the problem of inferring a likely specification for every function m in P that
uses I/O primitives and/or modifies the state. The specifications that we aim
to infer consist of logical assertions that characterize the function behavior and
that are expressed as method pre-conditions (imposed on the arguments) and
post-conditions (relating the arguments and the result for a method).

This work has been partially supported by the EU (FEDER) and Spanish
MINECO project TIN2015-69175-C4-1-R, and by Generalitat Valenciana PROME-
TEOII/2015/013. D. Pardo is supported by FPU-ME grant FPU14/01830.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 187–202, 2017.
DOI: 10.1007/978-3-319-63139-4 11

188 M. Alpuente et al.

In [1,2], a preliminary specification inference technique was proposed that is
based on the classification scheme for data abstractions developed in [13], where
a function (method) may be either a constructor, a modifier, or an observer. The
intended behavioral specification of any modifier function m of P is expressed
as a set of logical assertions that characterize the pre- and post-states of the m
execution by using the observer functions in P .

The inference technique of [1,2] is on top of the (rewriting logic) semantic
framework K and relies on symbolic execution (SE) [12], a well-known program
analysis technique that allows programs to be executed using symbolic input val-
ues instead of actual (concrete) data so that the program execution manipulates
symbolic expressions involving the symbolic values. More precisely, for each pair
(s,s′) of initial and final states in the symbolic execution of m, an implicative
axiom p =⇒ q is synthesized where both the antecedent p and the consequent
q are expressed in terms of the (sub-)set of program observers that explain s
and s′. This is achieved by analyzing the results of symbolically executing each
observer method o from initial configurations that characterize s and s′.

In this work, we improve the inference power of [1,2] by endowing K’s sym-
bolic execution with modern subsumption techniques based on approximation
[3] and lazy initialization [11]. The fact that this symbolic infrastructure is more
flexible and (potentially) language-independent allows us to define a generic,
more accurate, easily maintainable and robust framework for the inference of
program contracts that could be adapted to other languages defined within the
K framework with negligible effort. We summarize our contributions as follows.

1. A symbolic algorithm that synthesizes contracts for heap-manipulating code
while coping with infinite computations. This is done by
(a) augmenting K’s symbolic execution with lazy initialization and a widening

operator based on abstract subsumption (in Sect. 4), and
(b) synthesizing method pre- and post-conditions by means of a contract

inference algorithm that explains the (initial and final) abstract symbolic
execution states by using the program observers (in Sect. 5).

Because of the abstraction, some inferred axioms for method m cannot be
guaranteed to be correct and are kept apart as “candidate” (or overly gen-
eral) axioms. A contract refinement algorithm is then formalized that tries to
falsify them by checking whether an input call to m that satisfies the axiom
antecedent ends in a final state that does not satisfy the given consequent.

2. The proposed inference technique is implemented in the KindSpec 2.0 sys-
tem, which builds on the capabilities of the SMT solver Z3 [16] to simplify
the axioms (in Sect. 6). Also, the inferred contracts are given a compact rep-
resentation that abstracts the user from any implementation details.

2 Method Specification: A Running Example

By abuse, we use the standard terminology for contracts of object-oriented pro-
gramming and we refer to KernelC functions as methods. Like many state-of-
the-art formal specification approaches, we assume to work in a contract-based

Symbolic Abstract Contract Synthesis in a Rewriting Framework 189

setting [15], where the granularity of specification units is at the level of one
method. Our inference technique relies on the classification scheme for data
abstractions of [13], where a function (method) may be either a constructor, a
modifier, or an observer. A constructor returns a new data object from scratch; a
modifier alters an existing object; and an observer inspects the object and returns
a value characterizing one or more of its state attributes. Since the C language
does not enforce data encapsulation, we cannot assume purity of any function;
thus, we do not assume the traditional premise which states that observer func-
tions do not cause side effects. In other words, any function can potentially be
a modifier and we simply define an observer as any function whose return type
is different from void.

Let us introduce the leading example that we use to describe our inference
methodology: a KernelC implementation of an abstract datatype for repre-
senting sets by using linked lists. The example is composed of 7 methods: one
constructor (new), one modifier (insert), and five observers (isnull, isempty,
isfull, contains, and length). Note that the observers in this program do
not modify any program objects, even if purity of observers is not required in
our framework. As is usual in C, logical observers return value 1 (resp. 0) to
represent the traditional boolean value true (resp. false).

Example 1. Consider the program fragment given in Fig. 1 (the full program
code can be found in the KindSpec 2.0 webpage), where we define set opera-
tions over a data structure (struct set) that records the number of elements
contained in the set (field size), the maximum number of elements that can be
held (field capacity), and a pointer to a list that stores the set elements (field
elems). Each node of the list is a record data structure (struct lnode) that
contains an integer value (field value) and a pointer to the next element.

A call insert(s,x) to the insert function proceeds as follows: if the set
structure has been initialized, the set is not full and it does not contain the
element yet, then a new node filled with the value x is inserted at the beginning
of the list and the size of the set is increased by one.

The following observers return 0 unless explicitly stated otherwise.
isnull(s) returns 1 if the pointer s references to NULL memory; isempty returns
1 if s is initialized but its elems field is NULL; isfull(s) returns 1 if the size of
s is greater than or equal to its capacity; and contains(s,x) returns 1 if the
value x is found in s. The function length(s) incrementally counts the number
of elements (nodes) in the set s and returns this number, or it returns 0 if the
set s pointer is NULL.

For each modifier function m in the source program, we aim to synthesize a
contract < P,Q,L >, where P is the method precondition, Q is the method post-
condition, and L is the set of program locations (local variables, data-structure
pointers and fields, and method parameters) that are (potentially) affected by
the method execution. We first compute a set of implication formulas p ⇒ q,
where p and q are conjunctions of equations l = r. The left-hand side l of each
equation can be either (1) a call to an observer function, and then r represents

190 M. Alpuente et al.

Fig. 1. Fragment of the KernelC implementation of a set datatype.

the return value of that call; or (2) the keyword ret, and then r represents the
value returned by the modifier function m being observed. Then, given the set
of implication formulas {p1 ⇒ q1, . . . , pn ⇒ qn}, P is defined as p1 ∨ . . .∨pn, the
postcondition Q is the formula (p1 ⇒ q1) ∧ . . . ∧ (pn ⇒ qn) (similar to the idea
of named behaviors as provided in the ACSL contract specification language for
C), and the elements of L refer to locations whose value might be affected by
the execution of m, that is, all memory locations of the pre-state that do not
belong to the set L remain allocated and are left unchanged in the post-state.

Fig. 2. Expected postcondition axioms for the insert method

Example 2. The intended postcondition Q for the function insert(s,x) of
Example 1 contains five axioms (Fig. 2). We adopt the standard primed notation
to distinguish variable values after the execution of the method from their value
before the execution. The first axiom can be read as: if the outcome of isnull(s)
is 1 before the call to insert(s,x), then, after execution, the set is still null and

Symbolic Abstract Contract Synthesis in a Rewriting Framework 191

the value returned by insert(s,x) is 0, which means that the element was not
inserted. The last axiom reads as: if the set is neither null, full nor empty and
there is no node in the list with value x, then, after execution, the set remains
non-null and non-empty, the value x is now in the set, the length is increased by
1, and the call to insert(s,x) returns 1, which denotes a successful insertion.

3 The (symbolic) K Framework

K is a rewriting-based framework for engineering language semantics [18]. Given
a language definition written in K, the system automatically generates a parser,
an interpreter, and formal analysis tools such as model checkers and deductive
theorem provers. Complete formal program semantics are currently available in
K for Scheme, Java 1.4, JavaScript, Python, Verilog, and C among others [18].

A language definition in K consists of three parts: the BNF language syntax,
the structure of program configurations, and the semantic rules. Program con-
figurations are represented in K as potentially nested structures of labeled cells
(or containers) that represent the program state. Similarly to the classic oper-
ational semantics, program configuration cells include a computation stack or
continuation (named k), one or more environments (env, heap), and a call stack
(stack) among others, and are represented as algebraic datatypes in K.

The part of the K program configuration structure for the KernelC seman-
tics that is relevant to this work is

〈 〈K〉k〈Map〉env〈Map〉heap
〉
cfg

, where the env

cell is a mapping of variable names to their memory positions, the heap cell
binds the active memory positions to the actual values (i.e., it stores infor-
mation about pointers and data structures), and the k cell represents a stack
of computations waiting to be run, with the left-most element of the stack
being the next computation to be undertaken. For example, the configuration〈 〈tv(int, 0)〉k〈x �→ &x〉env〈&x �→ tv(int, 5)〉heap

〉
cfg

models a final state whose
return value is the integer 0 (stored in the k cell), while program variable x
(stored in the env cell) has the integer value 5 (stored in the memory address
given by &x in the heap cell). The symbol tv is a semantic construct aimed to
encapsulate typed values. Variables representing symbolic memory addresses are
written in sans-serif font preceded by the & symbol.

The semantic rules in K state how configurations (terms) evolve throughout
the computation. A useful feature of K is that 	rules only need to mention the
minimum part of the configuration that is relevant for their operation
.

For symbolic reasoning, K uses a particular class of first-order formulas with
equality (encoded as boolean non–ground terms with constraints over them).
These formulas, called patterns, specify those configurations that match the pat-
tern algebraic structure and that satisfy its constraints. For instance, the pattern

〈 〈tv(int, 0)〉k
〈··· x �→ &x, s �→ &s ···〉env

〈··· &s �→ (size �→ ?s.size, capacity �→ ?s.capacity) ···〉heap

〉

cfg〈
&s �= NULL ∧ ?s.size ≥ ?s.capacity

〉
path−condition

192 M. Alpuente et al.

specifies the configurations satisfying that: (1) the k cell only contains the integer
value 0; (2) in the env cell, program variable x (in typographic font) is associated
to the memory address &x while s is bound to the pointer &s; and (3) in the
heap cell, the field size of (the data structure pointed by) &s (resp. its capacity
field) contains the symbolic value1 ?s.size (resp. ?s.capacity). Additionally, &s is
not null and the value of its size field is greater than or equal to its capacity.

Since patterns allow logical variables and constraints over them, by using
patterns, the K execution principle (which is based on term rewriting) becomes
symbolic execution. Symbolic execution in K relies on an automated transfor-
mation of K configurations and K rules into corresponding symbolic K configu-
rations (i.e., patterns) and symbolic K rules that capture all required symbolic
ingredients: symbolic values for data structure fields and program variables; path
conditions that constrain the variables in cells; multiple branches when a condi-
tion is reached during execution, etc. [4]. The transformed, symbolic rules define
how symbolic configurations are rewritten during computation. Roughly speak-
ing, by symbolically executing a program statement, the configuration cells are
updated by mapping fields and variables to new symbolic values that are rep-
resented as symbolic expressions, while the path conditions (stored in a new
path-condition cell) are correspondingly updated at each branching point.

In [2], an inference procedure for KernelC programs was defined using the K
symbolic execution infraestructure described above. In order to avoid the expo-
nential blow-up that is inherent to path enumeration, the symbolic procedure
of [2] follows the standard approach of exploring loops up to a specified number
of unfoldings. In the following, given a method call m(args) and an initial path
condition φ, and assuming an unspecified unrolling bound for loops, we denote
by SE (m(args){φ}) the symbolic execution of method m with input arguments
args as described in [2], which returns the set of leaves (patterns) of the symbolic
execution tree for m under the constraints given by φ. For any function f , by
f(args){φ}, we represent the K pattern 〈〈f(args)〉k ···〉cfg〈φ〉path−condition that is
built by inserting the call f(args) at the top of the k cell and by initializing the
path condition cell with φ.

4 Improving Symbolic Execution in K

In this section, we extend K’s symbolic execution machinery with lazy initial-
ization techniques and abstract subsumption checking in order to support the
synthesis of contracts for methods that require refined loop finitization and C
pointer dereference and initialization.

Lazy initialization. Structured datatypes (struct) in C are aggregate types
that define non-empty sets of sequentially allocated member objects2, called
fields, each of which has a name and a type. In our symbolic setting, pointer
arithmetics and memory layout of C programs are abstracted by: (1) operating

1 Symbolic values are preceded by aquestion mark.
2 An object in C is a region of data storage in the execution environment.

Symbolic Abstract Contract Synthesis in a Rewriting Framework 193

with symbolic addresses instead of concrete addresses, and (2) mapping each
structure object into a single element of the heap cell that groups all object
fields (and associated values). A specific field is then accessed by combining the
identifiers of both the structure object and the field name.

Symbolic execution with complex data uses lazy initialization to avoid a
priori bounds on input structures [3]. We adapt the lazy initialization approach
of [11] to our setting as follows: when a symbolic address (or address expression)
is accessed for the first time, two cases are considered: the case in which the
memory stores a null pointer; and the case in which the memory is initialized
and it stores an object of its respective type. The mapping in the heap cell is
correspondingly updated by assigning a new symbolic value that represents the
assumptions made on the dynamic data structure. In order to deal with cyclic
data structures, a third possibility is to be considered: the case in which the
symbolic memory references an already existing object in the heap (aliasing).
Since this generates a new path for every single object of the same type existing
in the memory heap, to avoid state blow-up we enable lazy initialization to
consider aliasing only when explicitly asked by the user.

To keep track of the constraints that are introduced by the lazy initialization,
a new cell 〈〉init-heap is added to the configuration that represents the initialization
assumptions on the heap memory at a given program point.

Symbolic subsumption. The exhaustive exploration of all program paths is in
general unaffordable because the search space may be infinite and, consequently,
the number of symbolic execution paths may be unbounded. A classical solution
(used in [1,2]) is to establish a bound to the depth of the symbolic execution tree
by specifying the maximum number of unfoldings for each loop and recursive
function. As an alternative, the subsumption approach of [3] determines the
length of the symbolic execution paths in a dynamic way. Intuitively, symbolic
execution with subsumption checking proceeds as standard symbolic execution,
except that before entering a loop, it is checked that the current state has not
already been explored; otherwise, the execution of the loop stops. Supporting
this check does not require whole execution paths to be recorded; only symbolic
states that correspond to the evaluation of loop guards need to be recorded.

An algorithm for symbolic subsumption that naturally transfers to our frame-
work is given in [3]. Let us augment symbolic program configurations C into
program states S = 〈C, i〉 by giving the configuration pattern C a program
counter i that corresponds to the line number in the source code of the subse-
quent instruction to be executed, or the return statement if the configuration
C is final. Also, let us represent the conjunction of all constraints over the sym-
bolic values of primitive-type variables and structure fields expressed3 in the
env, heap, and path-condition cells of pattern C in S, called state constraint, by
SC (S). By using the subsumption algorithm, we can decide state subsumption
S2 S1 by checking that: (1) S1 and S2 have the same program counter; (2) the

3 By abuse, we assume a logical constraint representation x1 = v1 ∧ . . . ∧ xn = vn of
the symbolic heap {x1 �→ v1, . . . , xn �→ vn}, where every xi refers to a field of a heap
data object, or to a primitive-type program variable if xi occurs in env.

194 M. Alpuente et al.

symbolic heap in S2 is subsumed by the symbolic heap in S1 (i.e., all possible
program heaps whose concrete shape and values match the constraints in S1

includes all concrete program heaps that satisfy the constraints in S2); and (3)
SC (S2) ⇒ SC (S1).

Abstract subsumption. Symbolic execution with state subsumption is not
guaranteed to terminate. In order to ensure termination and improve scalabil-
ity of symbolic execution, we enhance symbolic state subsumption checking by
means of abstract interpretation [3]. We abstract both primitive domains and
heaps by using the abstraction function α proposed in [3]. The idea for this heap
abstraction is to apply a shape transformation that collapses two or more nodes
into a summary node. Nodes can be collapsed when they are in a sequence and
can only be accessed by traversing all their predecessors.

Example 3. Node S27 of Fig. 3 illustrates shape abstraction for the given state.
The circled nodes are abstracted into a summary node and the valuation for the
field value of the summary node (identified by e3) is e3 = ?v0 ∨ e3 = ?v1.

Given the symbolic state S, we define the abstraction S� = α(S). Then, the
abstract symbolic subsumption relation S2 � S1 is given by S�

2 S�
1.

4.1 Symbolic Execution with Abstract Subsumption

The symbolic execution with abstract subsumption (and lazy initialization) of
a given method m with arguments args and initial path condition φ, written
SE�(m(args){φ}), is an approximation of the SE mechanism of [2] where, when a
symbolic state S2 is visited that corresponds to a recursive call or loop guard eval-
uation with the same program counter as a previously visited state S1, abstract
subsumption S2 � S1 is checked; if the test succeeds, the loop or recursive
function stops, and the execution flow proceeds to the subsequent instruction.

Example 4. The uncontrolled symbolic execution SE of the function
insert(s,x) from Example 1 generates an infinite state space. In contrast,
SE� terminates after three iterations of the loop. Figure 3 illustrates the frag-
ment of the symbolic execution tree for insert(s,x) where the subsumption
between two abstract states is exposed. The state (S18) corresponds to the state
where the loop guard is to be checked for the third time. This requires evaluat-
ing n, which points to an uninitialized node; hence, lazy initialization is applied.
The left child S19 corresponds to the case when the loop guard is not satisfied
and the loop is exited, whereas the right child S21 represents entering the loop
iteration.

Program counter 29 is reached again at state S27 in the right branch after
lazy initialization, and then the abstract subsumption check S27 � S21 succeeds.

Let SE�(f(args){φ}) return the set of final patterns obtained from the
abstract symbolic execution of the pattern f(args){φ} (i.e., the leaves of the
deployed abstract symbolic execution tree). We assume appropriate abstractions

Symbolic Abstract Contract Synthesis in a Rewriting Framework 195

Fig. 3. Fragment of the abstract symbolic execution of insert(s,x)

are defined to ensure termination of SE�. A new (abstract subsumption) cell
〈〉aSubFlag identifies with a true value those final abstract configurations ending
any branch that was folded (at some intermediate configuration) by the applica-
tion of abstract subsumption. This is used for the inference process to distinguish
the inferred axioms that are ensured to hold from the plausible, candidate axioms
that are not demonstrably correct because of the potential precision loss caused
by the abstraction. Furthermore, assignable locations are easily obtained as a
by-product of the SE by just adding a new cell 〈〉locations that is used to record
any program location whenever it is overwritten.

5 Inference Algorithm

Let us introduce the basic notions that we use in our formalization. Given an
input program P , we distinguish the set of observers O and the set of modifiers

196 M. Alpuente et al.

M in P . A function can be considered to be an observer if it explicitly returns
a value, whereas any method can be considered to be a modifier.

Algorithm 1. Specification Inference
Input: m ∈ M : a modifier function with arity n
Output: contract : a specification contract for m
1: root := m(an); F :=SE�(root{true});
2: P := false; Q := true; Q� := true; L := ∅;
3: for all F ∈ F , with F = 〈〈v〉k〈ϕ〉init−heap ···〉cfg〈φ〉path−condition〈�〉aSubFlag〈L〉locations do
4: p := explain(I, an), where I = 〈〈root〉k〈ϕ〉heap ···〉cfg〈φ〉path−condition;
5: q := explain(F, an) ∧ (ret = v);
6: P := P ∨ p;
7: ax := (p ⇒ q);
8: if � then Q� := Q� ∧ ax; else Q := Q ∧ ax;
9: L := L ∪ {L};

10: end for
11: return < P , refine(Q ,Q�), L >;

Our specification inference methodology is formalized in Algorithm1. Let an

denote the list of fresh symbolic variables a1, . . . , an. First, the modifier method
of interest m is symbolically executed with argument list an and path condition
true, and the set F of final configurations is retrieved from the leaves of the
abstract symbolic execution tree.

After initializing the contract components (Line 2), we proceed to compute
one axiom for each (abstract) symbolic configuration F in F . First, the premise p
of the axiom p ⇒ q is computed (Line 4) by means of the function explain(I, as)
originally proposed in [1]. This function receives as argument the pattern I, which
expresses the initial symbolic configuration leading to F in the execution tree
for m. Roughly speaking, by means of a conjunction of equations, explain(I, an)
describes what can be observed when running (under the constraints given by I)
the observer functions o ∈ O over appropriate symbolic variables from an. Each
delivered equation is formed by equating each observer call to the (symbolic)
value that the call returns. We require o to compute the same symbolic values
at the end of all its symbolic execution branches in order to distill a (partial)
observational abstraction or explanation for a given configuration in terms of o.

The consequent q of the axiom is the conjunction of ret = v, which specifies
the return value v of the method m as recorded in the k cell of F , and the
equations given by explain(F, an), which in terms of the observers characterizes
the final pattern F of the given branch.

It is important to note that, in the axioms, the different function calls in
the antecedent (resp. consequent) of every implication formula are run indepen-
dently of each other under the same initial configuration. This avoids making
any assumptions about function purity or side-effects. Depending on the boolean
value of the abstract subsumption flag � in F (Line 8), the synthesized axiom ax
is directly added to the postcondition Q (when � is false) or to the conjunction

Symbolic Abstract Contract Synthesis in a Rewriting Framework 197

Q� (when � is true) that collects all candidate axioms extracted from branches
that contain at least one node that was folded by abstract subsumption. Note
that, due to the under-approximation introduced by abstract subsumption [3],
there may be some behaviors that are not captured by the deployed symbolic
abstract traces. Therefore, axioms in Q� could have spurious instances and must
be double-checked. We apply a post-processing refinement refine(Q ,Q�) which
tries to build specialized (demonstrably correct) instances of the axioms in Q�

that can be added to Q , while keeping in Q� any axioms that remain overly
general (i.e., that might have both true and false instances). A further post-
processing purges the augmented Q from less general axioms.

When Algorithm 1 terminates, the generated contract is < P ,Q ,L > where
the method precondition P is the disjunction of all axiom premises, the method
postcondition is given by refine(Q ,Q�), and L records all program locations that
are (potentially) modifiable by m. Note that we do not need to specialize the
disjunction P according to the final refined postcondition Q because correctness
of the contract is ensured by the specialized axiom guards of Q .

Lazy initialization is not applied when symbolically executing the observer
functions. This is because we want to start from an initial configuration whose
dynamic memory satisfies ϕ, and if any uninitialized addresses are expanded by
lazy initialization, such an initial configuration (and thus the target of the obser-
vation) would be altered. This implies that some final patterns in the symbolic
execution trees for the given observer may contain uninit return values, meaning
that we know nothing regarding the dynamic memory from that point on. When
this occurs (for all branches), the explain algorithm generates a conjunct where
the observer call is equated to a fresh symbolic value.

Example 5. Let us use Algorithm 1 to compute a specification for insert of
Example 1. We first compute SE�(insert(&s, ?x){true}) with &s being a sym-
bolic address with initial value uninit and with ?x being a symbolic integer value.
The abstract symbolic execution computes ten final configurations. Figure 4 rep-
resents the final state for the path where the while loop stops due to abstract
subsumption (Nodes S18 and S27 of Example 4).

Roughly speaking, the execution of this path corresponds to the case when
the element x (with symbolic value ?x) is effectively inserted in a non-empty list
that contains three elements. The return value (k cell) of the call insert(&s, ?x)
is the integer 1 (standing for success); the symbolic (initial) value ?s.size of the
field size of s is increased by 1 and now the field elems of s points to an object
&new node with value ?x as the first node of the set. For the sake of simplicity,
we omit any cell components that are irrelevant for comprehension.

As a side effect of applying abstract subsumption to stop the while loop,
the node pointed by the field next of the last object node is not null but uninit.
This implies a loss of precision: the symbolic heap is matched by any concrete
heap whose first node contains the value ?x and is followed by 3 or more nodes.

The algorithm computes the explanation for the corresponding initial and
final state of each of those ten configurations. Let us illustrate one of the cases.

198 M. Alpuente et al.

Fig. 4. Final configuration example

Example 6. In order to explain the final pattern F of Fig. 4, the function explain
considers the universe of observer calls of the program, which includes the call
contains (&s, ?x). The symbolic execution of contains (&s, ?x) under the con-
straints given by the heap and path-condition cells of F results in a single-branch
tree with return value 1; hence, the equation contains(s,x)=1 is added as part
of the equational explanation of F .

Example 7. In order to explain the corresponding initial pattern I, we symbol-
ically execute the observer contains(&s, ?x) under the constraints given by I
(i.e., the init-heap and path-condition cells of F); and since no element with value
?x is found in the set &s, the list is traversed until the uninit node is reached.
Hence, the equation contains(s,x)= v is generated, with v being a symbolic
value that stands for any possible value that the function may return.

Let us now illustrate how the refinement process refine(Q ,Q�) for method m
works. For each candidate axiom p ⇒ q in Q�, we first generate test cases (initial
configurations) that satisfy the axiom antecedent p, then we run the modifier
method m on the initial configurations, and finally we check whether or not the
consequent q is satisfied after the method execution. Refuted candidate axioms
are not automatically removed: a counterexample-guided, specialization post-
process defined in [1] is attempted first. It uses the deployed symbolic execution
branches refuting the axiom as counterexample behaviors to be excluded from
the symbolic execution tree. Then, by iteratively repeating the inference process
on the reduced tree, new axioms that are either eventually correct (and then
added to Q) or can be further specialized are distilled. Note that this process is
guaranteed to terminate since the size of the tree is reduced at each iteration.

Example 8. After the for loop of Algorithm 1, one axiom for each of the (10)
final patterns is synthesized. After removing duplicates, 7 axioms are kept (see
Fig. 5), together with one candidate axiom (labelled as C1) that derives from the
final configuration discussed in Example 5.

The refinement process is then triggered over C1 to check if it can first be
falsified and then refined. Given the binary domain 0/1 of the contains(s,x)
function, the axiom is straightforwardly falsified. The final state does not satisfy

Symbolic Abstract Contract Synthesis in a Rewriting Framework 199

Fig. 5. Set of axioms and candidates for Example 5.

the postcondition of axiom C1 because, since the set s already contained the
desired element, insert(s,x) does not return 1 and the length is not increased.

Since the axiom has been falsified (with contains(s,x)=1), the refinement
process is run with i1 �→ 0 and a (specialized and correct) axiom is obtained:

A8

⎛
⎝

isnull(s) = 0 ∧ isempty(s) = 0 ∧
isfull(s) = 0 ∧ contains(s, x) = 0 ∧
length(s) = i1

⎞
⎠⇒

⎛
⎝

isnull(s′) = 0 ∧ isempty(s′) = 0 ∧
contains(s′, x) = 1 ∧ length(s′) = i1 + 1 ∧
ret = 1

⎞
⎠

Note that the new axiom subsumes axioms A5, A6 and A7 of Fig. 5; hence,
they are removed. After the refinement, the contract postcondition returned for
insert(s,x) contains five axioms, specifically the axioms A1-4 and A8.

As for the last element of the contract, the set of assignable program locations
L is obtained as the union of the location sets that are recorded in the 〈〉locations
cells of the final symbolic execution states.

6 Implementation

We have developed a prototype implementation of the extended K symbolic
machinery and contract inference algorithm, which we used to mechanize our
running example. The KindSpec2 tool is publicly available together with more
detailed experiments at http://safe-tools.dsic.upv.es/kindspec2.

Specification inference is notoriously expensive for accurate and strong prop-
erties. We evaluated our prototype in classical contract inference benchmark

http://safe-tools.dsic.upv.es/kindspec2

200 M. Alpuente et al.

programs. Our main objective was to probe the quality of the discovered con-
tracts as well as the viability of the method on a variety of programs with loops
and recursion that are commonly used in the literature on shape analysis and
program verification with automatic inference of contracts [5,9].

Our test platform was an Intel Core2 Quad CPU Q9300(2.50GHz) with 6
Gigabytes of RAM running K v3.4 on Maude v2.6. Table 1 summarizes the figures
that we obtained for benchmark programs that contain (both cyclic and acyclic)
nested data structures. The LOC column shows the number of lines of code,
while the Modifiers and Observers columns list the names of the symbolically
executed functions in each category. #Paths shows the number of final symbolic
execution configurations reached for each program, while Extr. axioms reflects
how many different axioms are retrieved from them. The Overly general axioms
column indicates the number of candidate axioms; Discard.axioms counts how
many of these candidate axioms were falsified and not specialized, so they were
discarded; and Correct refined axioms are the number of axioms obtained by
refining the candidate ones, as explained in Sect. 5. The Final correct axioms
column shows the total number of correct axioms that are automatically distilled
as a result of the whole inference process, including subsumption checking for
all obtained axioms. Finally, Expected contract counts the number of axioms
in a classical reference specification. Assuming an appropriate set of observer
functions, we are able to infer accurate (even complete) contracts that equal the
expected specification. As an exception, the inferred axioms for merge.c include
the expected ones plus redundant axioms that are instances of the candidate
one. This is because the only candidate axiom is indeed correct; hence, it cannot
be falsified and then refined by our algorithm. If the candidate axiom could have
been demonstrated to be correct (e.g., by using an automatic prover) and then
added to the correct axiom set, the redundant axioms would get filtered out.

Table 1. Results for KindSpec 2.0 on programs manipulating lists and trees

Program LOC Modifiers Observers #Paths Extr.

axioms

Overly

general

axioms

Discard.

axioms

Correct

refined

axioms

Final

correct

axioms

Expected

contract

insert.c

(running

example)

122 insert isnull, isempty

isfull, length

contains

10 8 1 0 1 5 5

delete.c

(sequence of

loops)

127 delete isnull, isempty

contains node

length

interval length

23 17 6 0 6 6 6

del-all-circ.c

(cyclic lists)

73 delete all isnull, isempty

length-circular

21 12 6 2 4 4 4

merge.c (two

symb. lists)

134 merge isnull, isempty

length

sum sizes

124 18 1 0 0 18 6

treeinsert.c

(trees and

recursion)

80 insert isnull, isempty

find, depth

31 4 1 0 1 4 4

Symbolic Abstract Contract Synthesis in a Rewriting Framework 201

With respect to the time cost of the inference, our preliminary results are
very encouraging since they show that general correct axioms can be inferred,
leading to quite compact, clear, and correct specifications. The time spent in
K’s symbolic execution of methods ranges from 1 min to 5 min (depending on
the quantity and complexity of the method definitions), while the time taken
for actual inference of contracts (once the symbolic execution trees have been
deployed) ranges from approximately 150 ms to 300 ms. The backend of K is cur-
rently being ported into Java, and future versions of the K’s symbolic framework
are expected to be greatly optimized.

7 Related Work and Conclusion

The wide interest in formal specifications as helpers for other analysis, validation,
and verification tools has resulted in numerous approaches for (semi-) automat-
ically computing different kinds of specifications that can take the form of con-
tracts, snippets, summaries, properties, process models, rules, graphs, automata,
interfaces, or component abstractions.

Let us briefly discuss those strands of research that have influenced our
work the most. A detailed description of the related literature can be found
in [1,7,9,17,20]. Our axiomatic representation is inspired by [19], which relies
on a model checker for symbolic execution and generates either Spec# specifi-
cations or parameterized unit tests. Similarly to [19], we aim to infer high-level
(rich) information that is easily understable by the programmer; however, we
take advantage of K symbolic capabilities to generate simpler and more accu-
rate formulas that avoid reasoning with the global heap. By relying on symbolic
execution and abstraction, our approach is able to guarantee completeness/cor-
rectness under some conditions. This is different from testing-based approaches
such as [6,10] which are limited to delivering properties that have not been pre-
viously falsified by a (finite) number of tests.

Another related thread of research concerns the inference of Hoare triples
(and invariants) that summarize a heap manipulating program. Existing
approaches usually infer low-level specifications that are intended to be used later
by automated verification or optimization tools [5,14,17]. This is in contrast to
our approach, which infers richer (human-readable) assertions. In addition, we
handle unbounded structures by means of lazy initialization and ensure termi-
nation by using abstraction. Our experiments show that our method can infer
rich summaries that advance the state of the art. For example, our tool infers
contracts for challenging programs with recursive predicates, tree-like structures,
and cyclic lists, which are not handled by competing tools, e.g., [5,9].

The contracts generated by our tool may be easily translated to richer (but
also heavier) notations for behavioural interface C specifications such as ACSL
or to the native syntax of some SMT solvers, which is planned as future work.
We also plan to explore other existing abstract domains for structured data and
integrate them in our tool in order to improve accuracy results and applicability.

202 M. Alpuente et al.

References

1. Alpuente, M., Feliú, M.A., Villanueva, A.: Automatic inference of specifications
using matching logic. In: Proceedings of PEPM 2013, pp. 127–136. ACM (2013)

2. Alpuente, M., Pardo, D., Villanueva, A.: Automatic inference of specifications in
the K framework. EPTCS 200, 1–17 (2015)

3. Anand, S., Păsăreanu, C.S., Visser, W.: Symbolic execution with abstraction.
STTT 11(1), 53–67 (2008)

4. Arusoaie, A., Lucanu, D., Rusu, V.: Symbolic execution based on language trans-
formation. Comput. Lang. Syst. Struct. 44(Part A), 48–71 (2015)

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Footprint analysis: a
shape analysis that discovers preconditions. In: Nielson, H.R., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74061-2 25

6. Claessen, K., Smallbone, N., Hughes, J.: QuickSpec: guessing formal specifications
using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
6–21. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13977-2 3

7. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35873-9 10

8. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of POPL 2012, pp. 533–544. ACM (2012)

9. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis using LISF. ACM Trans. Program. Lang. Syst. 33(5), 17 (2011)

10. Henkel, J., Diwan, A.: Discovering algebraic specifications from Java classes. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 431–456. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45070-2 19

11. Khurshid, S., PĂsĂreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X 40

12. King, J.C.: Symbolic execution and program testing. Comm. ACM 19(7), 385–394
(1976)

13. Liskov, B., Guttag, J.: Abstraction and Specification in Program Development.
MIT Press, Cambridge (1986)

14. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in separation
logic for imperative list-processing programs. In: Proceedings of SPACE Workshop
(2006)

15. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
16. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,

J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

17. Moy, Y., Marché, C.: Modular inference of subprogram contracts for safety check-
ing. J. Symbolic Comput. 45(11), 1184–1211 (2010)

18. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. JLAP 79(6),
397–434 (2010)

19. Tillmann, N., Chen, F., Schulte, W.: Discovering likely method specifications.
In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 717–736. Springer,
Heidelberg (2006). doi:10.1007/11901433 39

20. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: Pro-
ceedings of the ICSE 2011, 191–200. ACM (2011)

http://dx.doi.org/10.1007/978-3-540-74061-2_25
http://dx.doi.org/10.1007/978-3-540-74061-2_25
http://dx.doi.org/10.1007/978-3-642-13977-2_3
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-540-45070-2_19
http://dx.doi.org/10.1007/3-540-36577-X_40
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/11901433_39

Testing

On the Completeness of Selective Unification
in Concolic Testing of Logic Programs

Fred Mesnard1, Étienne Payet1, and Germán Vidal2(B)

1 LIM - Université de la Réunion, Saint-Denis, France
{frederic.mesnard,etienne.payet}@univ-reunion.fr

2 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain
gvidal@dsic.upv.es

Abstract. Concolic testing is a popular dynamic validation technique
that can be used for both model checking and automatic test case gen-
eration. We have recently introduced concolic testing in the context of
logic programming. In contrast to previous approaches, the key ingredi-
ent in this setting is a technique to generate appropriate run-time goals
by considering all possible ways an atom can unify with the heads of some
program clauses. This is called “selective” unification. In this paper, we
show that the existing algorithm is not complete and explore different
alternatives in order to have a sound and complete algorithm for selective
unification.

1 Introduction

A popular approach to software validation is based on so called concolic execution
[4,11], which combines both concolic and symbolic execution [1,3,6]. Concolic
testing [4] is a technique based on concolic execution for finding run time errors
and automatically generating test cases. In this approach, both concrete and
symbolic executions are performed in parallel, so that concrete executions may
help to spot (run time) errors—thus avoiding false positives—and symbolic exe-
cutions are used to generate alternative input data—new test cases—so that a
good coverage is obtained.

In concolic testing of imperative programs, one should augment the states
with a so called path condition that stores the constraints on the variables of the
symbolic execution. Then, after a (possibly incomplete) concolic execution, these
constraints are used for producing alternative input data (e.g., by negating one of
the constraints). Furthermore, and this is one of the main advantages of concolic
testing over the original approach based solely on symbolic execution, if the con-
straints in the path condition become too complex, one can still take some values

This work has been partially supported by the EU (FEDER) and the Spanish
Ministerio de Economı́a y Competitividad under grants TIN2013-44742-C4-1-
R and TIN2016-76843-C4-1-R, and by the Generalitat Valenciana under grant
PROMETEO-II/2015/013 (SmartLogic).

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 205–221, 2017.
DOI: 10.1007/978-3-319-63139-4 12

206 F. Mesnard et al.

from the concrete execution to simplify them. This is sound (but typically incom-
plete) and often allows one to explore a larger execution space than just giving
up (as in the original approach based only on symbolic execution). Some success-
ful tools that are based on concolic execution are, e.g., CUTE [11], SAGE [5],
and Java Pathfinder [10].

We have recently introduced concolic testing in the context of logic program-
ming [7]. There, a concolic state has the form 〈S][S′〉, where S and S′ are
sequences of concrete and symbolic goals,1 respectively. In logic programming,
the notion of symbolic execution is very natural. Indeed, the structure of both
S and S′ is the same—the sequences of atoms have the same predicates and
in the same order—and the only difference is that some atoms might be less
instantiated in S′ than in S.

A key ingredient of concolic testing in logic programming is the search for
new concrete goals so that alternative paths can be explored, thus improving
the coverage achieved so far. Let us illustrate it with an example. Consider the
following (labelled) logic program:

(�1) p(s(a)). (�4) q(a). (�6) r(a).
(�2) p(s(W)) ← q(W). (�5) q(b). (�7) r(c).
(�3) p(f(X)) ← r(X).

Given the initial goal p(f(a)), a concolic execution would combine a concrete
execution of the form

p(f(a)) →id r(a) →id true

where id denotes the empty substitution, with another one for the more general
goal p(N):

p(N) →{N/f(Y)} r(Y) →{Y/a} true

that only mimicks the steps of the former derivation despite being more general.
The technique in [7] would basically produce the following concolic execution:

〈p(f(a))id][p(N)id〉�c({�3},{�1,�2,�3})〈r(a)id][r(Y){N/f(Y)}〉
�c({�6},{�6,�7}) 〈trueid][true{N/f(a)}〉

where the goals are annotated with the answer computed so far. Roughly speak-
ing, the above concolic execution is comprising the two standard SLD derivations
for p(f(a)) and p(N) above. Moreover, it also includes some further information:
the labels of the clauses that unified with each concrete and symbolic goals.

For instance, the first step in the concolic execution above is labelled with
c({�3}, {�1, �2, �3}). This means that the concrete goal only unified with clause
�3, but the symbolic goal unified with clauses �1, �2 and �3. Therefore, when
looking for new run time goals that explore alternative paths, one should look
1 Following the linear semantics of [12], we consider sequences of goals to represent

the leaves of the SLD tree built so far.

On the Completeness of Selective Unification in Concolic Testing 207

for goals that unify with �1 but not with �2 and �3, that unify with �1 and �2 but
not with �3, and so forth. In general, we should look for atoms that unify with
all (and only) the feasible—i.e., those for which a solution exists—sets of clauses
in {{}, {�1}, {�1, �2}, {�1, �2, �3}, {�2}, {�2, �3}}. Also, some additional constraints
on the groundness of some arguments are often required (e.g., to ensure that
the generated goals are valid run time goals and, thus, will be terminating). A
prototype implementation of the concolic testing scheme for pure Prolog, called
contest, is publicly available from http://kaz.dsic.upv.es/contest.html.

In this paper, we focus on the so called selective unification problem that
must be solved in order to produce the alternative goals during concolic testing.
To be more precise, a selective unification problem is determined by a tuple
〈A,H+,H−, G〉 where

– A is the selected atom in a symbolic goal, e.g., p(N),
– H+ are the atoms in the heads of the clauses we want A to unify with, e.g.,

for {�1, �2} in the example above, we have H+ = {p(s(a)), p(s(W))},
– H− are the atoms in the heads of the clauses we do not want A to unify with,

e.g., for {�1, �2} in the example above, we have H− = {p(f(X))},
– G is a set with the variables we want to be ground, e.g., {N}.

In this case, the problem is satisfiable and a solution is {N/s(a)} since then
p(s(a)) will unify with both atoms, p(s(a)) and p(s(W)), but it will not unify
with p(f(X)) and, moreover, the variable N is ground.

In contrast, the case {�1} is not feasible, since there is no ground instance of
p(N) such that it unifies with p(s(a)) but not with p(s(W)).

In [7], we introduced a first algorithm for selective unification. Unfortunately,
this algorithm was incomplete. In this paper, we further analyze this problem,
identifying the potential sources of incompleteness, proving a number of prop-
erties, and introducing refined algorithms which are sound and complete under
some circumstances.

2 Preliminaries

We assume some familiarity with the standard definitions and notations for logic
programs as introduced in [2]. Nevertheless, in order to make the paper as self-
contained as possible, we present in this section the main concepts which are
needed to understand our development.

We denote by |S| the cardinality of the set S. In this work, we consider
a first-order language with a fixed vocabulary of predicate symbols, function
symbols, and variables denoted by Π, Σ and V, respectively. We let T (Σ,V)
denote the set of terms constructed using symbols from Σ and variables from V.
Positions are used to address the nodes of a term viewed as a tree. A position p
in a term t, in symbols p ∈ Pos(t), is represented by a finite sequence of natural
numbers, where ε denotes the root position. We let t|p denote the subterm of
t at position p and t[s]p the result of replacing the subterm t|p by the term s.
The depth depth(t) of a term t is defined as: depth(t) = 0 if t is a variable and

http://kaz.dsic.upv.es/contest.html

208 F. Mesnard et al.

depth(f(t1, . . . , tn)) = 1+max(depth(t1), . . . , depth(tn)), otherwise. We say that
t|p is a subterm of t at depth k if there are k nested function symbols from the
root of t to the root of t|p. An atom has the form p(t1, . . . , tn) with p/n ∈ Π and
ti ∈ T (Σ,V) for i = 1, . . . , n. The notion of position is extended to atoms in the
natural way. A goal is a finite sequence of atoms A1, . . . , An, where the empty
goal is denoted by true. A clause has the form H ← B where H is an atom and
B is a goal (note that we only consider definite programs). A logic program is
a finite sequence of clauses. Var(s) denotes the set of variables in the syntactic
object s (i.e., s can be a term, an atom, a query, or a clause). A syntactic object
s is ground if Var(s) = ∅. In this work, we only consider finite ground terms.

Substitutions and their operations are defined as usual. In particular, the set
Dom(σ) = {x ∈ V | σ(x) �= x} is called the domain of a substitution σ. We let id
denote the empty substitution. The application of a substitution θ to a syntactic
object s is usually denoted by juxtaposition, i.e., we write sθ rather than θ(s).
The restriction θ |̀V of a substitution θ to a set of variables V is defined as follows:
xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise. We say that θ = σ [V] if θ |̀V = σ |̀V .
A syntactic object s1 is more general than a syntactic object s2, denoted s1 �
s2, if there exists a substitution θ such that s2 = s1θ. A variable renaming is a
substitution that is a bijection on V. Two syntactic objects t1 and t2 are variants
(or equal up to variable renaming), denoted t1 ∼ t2, if t1 = t2ρ for some variable
renaming ρ. A substitution θ is a unifier of two syntactic objects t1 and t2 iff t1θ =
t2θ; furthermore, θ is the most general unifier of t1 and t2, denoted bymgu(t1, t2) if,
for every other unifier σ of t1 and t2, we have that θ � σ. We write t1 ≈ t2 to denote
that t1 and t2 unify for some substitution, which is not relevant here. By abuse of
notation, we also use mgu to denote the most general unifier of a conjunction of
equations of the form s1 = t1∧. . .∧sn = tn, i.e.,mgu(s1 = t1∧. . .∧sn = tn) = θ if
siθ = tiθ for all i = 1, . . . , n and for every other unifier σ of si and ti, i = 1, . . . , n,
we have that θ � σ.

We say that a syntactic object o is linear if it does not contain multiple
occurrences of the same variable. A substitution {X1/t1, . . . , Xn/tn} is linear if
t1, . . . , tn are linear and, moreover, they do not share variables.

3 The Selective Unification Problem

In this section, we first recall the unification problem from [7]. There, an algo-
rithm for “selective unification” was proposed, and it was conjectured to be com-
plete. Here, we prove that it is indeed incomplete and we identify two sources of
incompleteness.

Definition 1 (selective unification problem). Let A be an atom with G ⊆
Var(A) a set of variables, and let H+ and H− be finite sets of atoms such that all
atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪H−. Then, the
selective unification problem for A w.r.t. H+, H− and G is defined as follows:

P(A,H+,H−, G) =

⎧
⎨

⎩
σ|̀Var(A)

∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is ground

⎫
⎬

⎭

On the Completeness of Selective Unification in Concolic Testing 209

When the considered signature is finite, the following algorithm is sound and
complete for solving the selective unification problem: first, bind the variables of
A with terms of depth 0. If the condition above does not hold, then we try with
terms of depth 1, and check it again. We keep increasing the considered term
depth until a solution is found. Here, we prove that there exists a finite number
n such that, if a solution has not been found when considering terms of depth
n, then the problem is not satisfiable.

Theorem 1. Let A be a linear atom with G ⊆ Var(A), H+ be a finite set
of linear atoms and H− be a finite set of atoms such that all atoms are pair-
wise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then, checking that
P(A,H+,H−, G) �= ∅ is decidable.

Proof. Here, we assume the naive algorithm sketched above. Let us first consider
that all atoms in {A}∪H+ ∪H− are linear. Let k be the maximum depth of the
atoms in {A} ∪ H+ ∪ H−. Consider the set

Θ′ = {θ | Dom(θ) ⊆ Var(A), depth(Aθ) � k + 1}

On Θ′, we define the binary relation θ1 � θ2 iff Aθ1 ∼ Aθ2. The relation � is an
equivalence relation. Let Θ = Θ′/�. The set Θ is usually large but finite. Now,
we proceed by contradiction and assume that the problem is satisfiable but there
is no solution in Θ.

Let σ ∈ P(A,H+,H−, G) be one of such solutions with σ �∈ Θ. Let k′ � k be
the maximum depth of the atoms in H+. Let s1, . . . , sn be the non-variable terms
at depth k′ +1 or higher in Aσ, which occur at positions p1, . . . , pn. Trivially, all
atoms in H+ should have a variable at depth k′ or lesser in order to still unify
with Aσ. Therefore, replacing these terms by any term would not change the
fact that it unifies with all atoms in H+. Formally, (. . . (Aσ[t1]p1) . . .)[tn]pn

≈ H
for all H ∈ H+ and for all terms t1, . . . , tn.

Now, let us consider the negative atoms H−. Let us focus in the worst case,
where the maximum depth of the atoms in H− is k ≥ k′. Since ¬(Aσ ≈ H) for
all H ∈ H− and (. . . (Aσ[t1]p1) . . .)[tn]pn

≈ H for all H ∈ H+ and for all terms
t1, . . . , tn, let us choose terms t′1, . . . , t

′
n such that ¬((. . . (Aσ[t′1]p1) . . .)[t′n]pn

≈ H)
for all H ∈ H− and (. . . (Aσ[t′1]p1) . . .)[t′n]pn

has depth k + 1. Note that this is
always possible since, in the worst case, for each term in the atoms of H− at depth
k, we might need a term at depth k+1 (when the term in the atom of H− is the only
constant of the signature, so we need to introduce a function symbol and another
constant if the argument should be ground). Let σ′ ⊆ Dom(A) be a subtitution
such that Aσ′ = (. . . (Aσ[t′1]p1) . . .)[t′n]pn

. Then, σ′ ∈ P(A,H+,H−, G) with σ′ ∈
Θ and, thus, we get a contradiction.

Extending the proof to non-linear atoms is not difficult but it is tedious since
we have to consider a higher depth that may depend on the multiple occurrences
of the same variables. ��

We conjecture that the above naive algorithm would also be complete for
infinite signatures (e.g., integers) since the number of symbols in the considered

210 F. Mesnard et al.

atoms is finite. Nonetheless, such algorithms may be so inefficient that they are
impractical in the context of concolic testing.

We note that the set P(A,H+,H−, G) is usually infinite. Moreover, even
when considering only the most general solutions in this set, there may still
exist more than one:

Example 1. Consider A = p(X,Y), H+ = {p(Z,Z), p(a, b)}, H− = {p(c, c)} and
G = ∅. Then, both substitutions {X/a, Y/U} and {X/U, Y/b} are most general
solutions in P(A,H+,H−, G). In principle, any of them is equally good in our
context.

In [7], we have introduced a stepwise method that, intuitively speaking, proceeds
as follows:

– First, we produce some “maximal” substitutions θ for A such that Aθ still
unifies with the atoms in H+. Here, we use a special set U of fresh variables
with Var({A} ∪ H+ ∪ H−) ∩ U = ∅. The elements of U are denoted by U ,
U ′, U1. . . Then, in θ, the variables from U (if any) denote positions where
further binding might prevent Aθ from unifying with some atom in H+.

– In a second stage, we look for another substitution η such that θη is a solution
of the selective unification problem, i.e., θη ∈ P(A,H+,H−, G). Here, we
basically follow a generate and test algorithm (as in the naive algorithm
above), but it is now much more restricted thanks to the bindings in θ and
the fact that binding variables from U is not allowed.

In the first stage, we use the variables from the special set U to replace disagree-
ment pairs (see [2] p. 27). Roughly speaking, given terms s and t, a subterm s′

of s and a subterm t′ of t form a disagreement pair if the root symbols of s′ and
t′ are different, but the symbols from s′ up to the root of s and from t′ up to
the root of t are the same. For instance, X, g(a) and b, h(Y) are disagreement
pairs of the terms f(X, g(b)) and f(g(a), g(h(Y))). A disagreement pair t, t′ is
called simple if one of the terms is a variable that does not occur in the other
term and no variable of U occurs in t, t′. We say that the substitution {X/s} is
determined by t, t′ if {X, s} = {t, t′}.

Definition 2 (algorithm for positive unification)

Input: an atom A and a set of atoms H+ such that all atoms are pairwise
variable disjoint and A ≈ B for all B ∈ H+.

Output: a substitution θ.

1. Let B := {A} ∪ H+.
2. While simple disagreement pairs occur in B do

(a) nondeterministically choose a simple disagreement pair X, t (respectively,
t,X) in B;

(b) set B to Bη where η = {X/t}.
3. While |B| �= 1 do

(a) nondeterministically choose a disagreement pair t, t′ in B;
(b) replace t, t′ with a fresh variable from U .

On the Completeness of Selective Unification in Concolic Testing 211

4. Return θγ, where B = {B}, Aθ = B, Dom(θ) ⊆ Var(A), and γ is a variable
renaming for the variables of Var(Aθ)\U with fresh variables from V\U .

We denote by SU+(A,H+) the set of non-deterministic substitutions com-
puted by the above algorithm.

Observe that the step (2a) involves two types of non-determinism:

– Don’t care nondeterminism, when there are several disagreement pairs X, t
(or t,X) for different variables. In this case, we can select any of them and
continue with the next step. The final solution would be the same no matter
the selection. This is also true for step (3a), since the order in which the
non-simple disagreement pairs are selected will not affect the final result.

– Don’t know nondeterminism, when there are several disagreement pairs X, t
(or t,X) for the same variable X. In this case, we should consider all possi-
bilities since they may give rise to different solutions.

Example 2. Let A = p(X,Y) and H+ = {p(a, b), p(Z,Z)}. Therefore, we start
with B := {p(X,Y), p(a, b), p(Z,Z)}. The algorithm then considers the simple
disagreement pairs in B. From X, a, we get η1 := {X/a} and the action (2b) sets
B to Bη1 = {p(a, Y), p(a, b), p(Z,Z)}. The substitution η2 := {Y/b} is deter-
mined by Y, b and the action (2b) sets B to Bη2 = {p(a, b), p(Z,Z)}. Now, we
have two don’t know nondeterministic possibilities:

– If we consider the disagreement pair a, Z, we have a substitution η3 := {Z/a}
and action (2b) then sets B to Bη3 = {p(a, b), p(a, a)}. Now, no simple dis-
agreement pair occurs in B, hence the algorithm jumps to the loop at line 3.
Action (3b) replaces the disagreement pair b, a with a fresh variable U ∈ U ,
hence B is set to {p(a, U)}. As |B| = 1 the loop at line 3 stops and the
algorithm returns the substitution {X/a, Y/U}.

– If we consider the disagreement pair b, Z instead, we have a substitution
η′
3 := {Z/b}, and action (2b) sets B to Bη′

3 = {p(a, b), p(b, b)}. Now, by
proceeding as in the previous case, the algorithm returns {X/U ′, Y/b}.

Therefore, SU+(A,H+) = {{X/a, Y/U}, {X/U ′, Y/b}}.

The soundness of the algorithm in Definition 2 can then be proved as follows
(termination is straightforward, see [8]). Note that this result was incomplete in
[7] since the condition on Ran(η) was missing.

Theorem 2. Let A be an atom and H+ be a set of atoms such that all atoms
are pairwise variable disjoint and A ≈ B for all B ∈ H+. Then, for all θ ∈
SU+(A,H+), we have that Aθη ≈ H for all H ∈ H+ and for any idempotent
substitution η with Dom(η) ⊆ Var(Aθ)\U and Ran(η)∩(Var(H+∪{A})∪U) = ∅.

In order to prove this theorem, we first need the following results, which can
be found in [8, Appendix B.2]:

212 F. Mesnard et al.

Lemma 1. Suppose that Aθ = Bθ for some atoms A and B and some sub-
stitution θ. Then we have Aθη = Bηθη for any substitution η with [Dom(η) ∩
Var(B)] ∩ Dom(θ) = ∅ and Ran(η) ∩ Dom(θη) = ∅.

Proposition 1. The loop at line 3 always terminates and the following state-
ment is an invariant of this loop.

(inv′) For each A′ ∈ {A}∪H+ there exists B ∈ B and a substitution θ such that
A′θ = Bθ, Dom(θ) ⊆ (Var(H+ ∪ {A}) ∪ U) and Var(B) ∩ Dom(θ) ⊆ U .

The proof of Theorem 2 can now proceed as follows:

Proof. Upon termination of the loop at line 3 we have |B| = 1. Let B be the
element of B with Aθ = B, and let θ′ ∈ SU+(A,H+) be a renaming of θ for the
variables of Aθ\U . By Proposition 1, we have that, for all H ∈ H+, there exists
a substitution μ such that Aθμ = Hμ and the following conditions hold:

– Dom(μ) ⊆ (Var(H+ ∪ {A}) ∪ U) and
– Var(Aθ) ∩ Dom(μ) ⊆ U .

Trivially, there exists a unifier μ′ for Aθ′ and H too, and the same conditions
hold: Dom(μ′) ⊆ (Var(H+ ∪ {A}) ∪ U) and Var(Aθ′) ∩ Dom(μ′) ⊆ U .

Now, in order to apply Lemma 1, we need to prove the following conditions:

– [Dom(η)∩Var(Aθ′)]∩Dom(μ′) = ∅. This is trivially implied by the fact that
Dom(η) ⊆ Var(Aθ′)\U and Var(Aθ′) ∩ Dom(μ′) ⊆ U .

– Ran(η) ∩ Dom(μ′η) = ∅. First, since Dom(μ′η) ⊆ Dom(μ′) ∪ Dom(η), we
prove the stronger claim: Ran(η) ∩ Dom(μ′) = ∅ and Ran(η) ∩ Dom(η) = ∅.
The second condition is triviallly implied by the idempotency of η. Regarding
the first condition, it is implied by Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅ since
Dom(μ′) ⊆ (Var(H+ ∪ {A}) ∪ U), which is true.

Therefore, by Lemma 1, we have that Aθ′ημ′η = Hμ′η and, thus, Aθ′η unifies
with H. Hence, we have proved that Aθ′η unifies with every atom in H+. ��

Now we deal with the negative atoms and the groundness constraints by means
of the following algorithm:

Definition 3 (algorithm for selective unification)

Input: an atom A with G ⊆ Var(A) a set of variables, and two finite sets H+

and H− such that all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪ H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Generate—using a fair algorithm—pairs (θ, η) with θ ∈ SU+(A,H+) and η
an idempotent substitution such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U
and Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅, otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.

On the Completeness of Selective Unification in Concolic Testing 213

3. Return θηγ (restricted to the variables of A), where γ is a variable renaming
for Aθη with fresh variables from V\U .

We denote by SU(A,H+,H−, G) the set of non-deterministic (non-failing)
substitutions computed by the above algorithm.

Note that step (1) above is don’t know nondeterministic and, thus, all sub-
stitutions in SU+(A,H+) should in principle be considered. On the other hand,
computing the first solution of the above algorithm is enough for concolic testing.

The soundness of the selective unification algorithm is a straightforward con-
sequence of Theorem 2 and the fact that the algorithm in Definition 3 is basically
a fair generate-and-test procedure.

Unfortunately, the selective unification algorithm is not complete in general,
as Examples 3 and 4 below illustrate. Example 3 shows that the algorithm cannot
always compute all the solutions while Example 4 shows that it may even find
no solution at all for a satisfiable instance of the problem.

Example 3. Consider the atom A = p(X1,X2) with G = {X1}, and the sets
H+ = {p(X, g(X)), p(Z,Z)} and H− = {p(g(b),W)}. Here, we have

SU+(A,H+) = {{X1/X ′,X2/U}
︸ ︷︷ ︸

θ1

, {X1/U,X2/g(X ′)}
︸ ︷︷ ︸

θ2

}

The algorithm is able to compute the solution {X1/g(a),X2/U} from θ1, η =
{X ′/g(a)} and γ = id . However, it cannot compute {X1/g(a),X2/g(X ′)} ∈
P(A,H+,H−, G).

The algorithm fails here because the instantiation of variables from U is
not allowed. In [7], it was incorrectly assumed that any binding of a variable
from U will result in a substitution θ′ such that Aθ′ does not unify will all the
atoms in H+ anymore. However, the universal quantification was not right. For
each variable from U , we can only ensure that there exists some term t such
that binding this variable to t will result in a substitution that prevents A from
unifying with some atom in H+. Therefore, since the algorithm of Definition 3
forbids the bindings of the variables in U , completeness is lost. We will propose
a solution to this problem in the next section.

Example 4. Consider A = p(X1,X2), H+ = {p(X, a), p(b, Y)}, H− = {p(b, a)},
and G = ∅. Here, we have SU+(A,H+) = {{X1/b,X2/a}} and, thus, the algo-
rithm in Definition 3 fails. However, the following substitution {X1/Z,X2/Z} is
a solution, i.e., {X1/Z,X2/Z} ∈ P(A,H+,H−, G).

Unfortunately, we do not know how to generate such non-linear solutions except
with the naive semi-algorithm mentioned at the beginning of this section, which
is not generally useful in practice. Therefore, in the next section we will rule out
these solutions.

214 F. Mesnard et al.

4 Recovering Completeness for Linear Selective
Unification

In this section, we introduce different alternatives to recover the completeness
of the selective unification algorithm.

In the following, we only consider a subset of the solutions to the selective
unification problem, namely those which are linear :

Plin(A,H+,H−, G) = {σ ∈ P(A,H+,H−, G) | σ is linear}

i.e., we rule out solutions like those in Example 4 since we do not know how
such solutions can be produced using a constructive algorithm. We refer to
Plin(A,H+,H−, G) as the linear selective unification problem.

4.1 A Naive Extension

One of the sources of incompleteness of the algorithm in Definition 3 comes from
the fact that the variables from U cannot be bound. Therefore, one can consider
a naive extension of this algorithm as follows:

Definition 4. (extended algorithm for selective unification)

Input: an atom A with G ⊆ Var(A) a set of variables, and two finite sets H+

and H− such that all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪ H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Generate—using a fair algorithm—pairs (θ, η) with θ ∈ SU+(A,H+) and η
an idempotent substitution such that Gθη is ground, Dom(η) ⊆ Var(Aθ) and
Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅, otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.
3. Return θηγ (restricted to the variables of A), where γ is a variable renaming

for Aθη with fresh variables from V\U .

We denote by SU∗(A,H+,H−, G) the set of non-deterministic (non-failing)
substitutions computed by the above algorithm.

In general, though, the above algorithm can be very inefficient since all variables
in Aθ can now be bound, even those in U . Nevertheless, one can easily define a
fair procedure for generating pairs (θ, η) in step (1) above which gives priority
to binding the variables in Var(Aθ)\U , so that the variables from U are only
bound when no solution can be found otherwise.

4.2 The Positive Unification Problem

Now, we introduce a more efficient instance of the algorithm for linear selective
unification which is sound and complete when the atoms in A and H+ are linear.
Formally, we are concerned with the following unification problem:

On the Completeness of Selective Unification in Concolic Testing 215

Definition 5 (positive linear unification problem). Let A be a linear atom
and let H+ be a finite set of linear atoms such that all atoms are pairwise variable
disjoint and A ≈ B for all B ∈ H+. Then, the positive linear unification problem
for A w.r.t. H+ is defined as follows:

P+
lin(A,H+) = {σ|̀Var(A)| (∀H ∈ H+ : Aσ ≈ H) and σ is linear}

Note that we do not want to find a unifier between A and all the atoms in H+, but
a substitution θ such that Aθ still unifies with each atom in H+ independently.
So this problem is different from the usual unification problems found in the
literature.

Clearly, |P+
lin(A,H+)| ≥ 1 since the identity substitution is always a solution

to the positive linear unification problem. In general, though, the set P+
lin(A,H+)

is infinite.

Example 5. Let us consider A = p(X) and H+ = {p(f(Y)), p(f(g(Z)))}. Then,
we have {id , {X/f(X ′)}, {X/f(g(X ′))}, {X/f(g(a))}, {X/f(g(f(X ′)))}, . . .}} ⊆
P+
lin(A,H+), which is clearly infinite.

Therefore, in the following, we restrict our interest to so called maximal solutions:

Definition 6 (maximal solution). Let A be a linear atom and H+ be a finite
set of linear atoms such that all atoms are pairwise variable disjoint and A ≈ B
for all B ∈ H+. We say that a substitution θ ∈ P+

lin(A,H+) is maximal when
the following conditions hold:

1. for any idempotent substitution γ with Dom(γ) ⊆ Var(Aθ) \U and Ran(γ)∩
(Var(H+ ∪ {A}) ∪ U) = ∅, (θγ) |̀Var(A) is still an element of P+

lin(A,H+),
2. for any variable U ∈ Var(Aθ) ∩ U , we have that (θ{U/t}) |̀Var(A) is not an

element of P+
lin(A,H+) for all non-variable term t, and

3. for any X/t ∈ θ and for all non-variable term t|p, replacing it by a non-
variable term rooted by a different symbol will result in a substitution which
is not an element of P+

lin(A,H+) anymore.

We let max (A,H+) denote the set of maximal solutions in P+
lin(A,H+).

Intuitively speaking, given a maximal solution θ, the first condition implies
that (θγ) |̀Var(A) is still a solution of the positive linear unification problem as
long as no variables from U are bound. The second and third conditions mean
that the rest of the symbols in θ cannot be changed, i.e., binding a variable from
U with a non-variable term or changing any constant or function symbol by a
different one, will always result in a substitution which is not a solution of the
positive linear unification problem anymore.

Example 6. Consider, e.g., A = p(X1,X2) and H+ = {p(f(Y), a),
p(f(g(Z)), b)}. Here, we have {X1/X ′,X2/X ′′} ∈ P+

lin(A,H+) but it is not a
maximal solution, i.e., {X1/X ′,X2/X ′′} �∈ max (A,H+) since binding X ′′ to,
e.g., a, will result in a substitution which is not in P+

lin(A,H+). In contrast,

216 F. Mesnard et al.

{X1/f(g(Z ′)),X2/U} is a maximal solution. However, any substitution of the
form {X1/f(g(t)),X2/U} for any non-variable term t is not a maximal solu-
tion since the third condition will not hold anymore (one can change the sym-
bols introduced by t and still get a solution in P+

lin(A,H+)). The substitution
{X1/f(Y ′),X2/U} is not a maximal solution as well since binding Y ′ to, e.g., a,
will result in a substitution which is not in P+

lin(A,H+), hence the first condition
does not hold. And the same applies to {X1/f(U ′),X2/U}, which is not a max-
imal solution either since we can bind U ′ to g(X ′) and still get a substitution in
P+
lin(A,H+).

In contrast to P+
lin(A,H+), the set max (A,H+) is finite, since it is bounded by

the depth of the terms in H+. Actually, for linear atoms in {A} ∪ H+, there is
only one maximal solution.

Proposition 2. Let A be a linear atom and H+ be a finite set of linear atoms
such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+.
Then, the set max (A,H+) is a singleton (up to variable renaming).

Proof. We proceed by contradiction. Let us assume that there are two maximal
solutions σ, θ ∈ max (A,H+), where X/s ∈ σ and X/t ∈ θ for some variable
X ∈ Var(A). Let us consider that s and t differ at position p such that s|p and
t|p are rooted by a different symbol. Now, we distinguish the following cases:

– If s|p and t|p are rooted by different constant or function symbols, we get a
contradiction by condition (3) of maximal solution.

– If s|p is rooted by a constant or function symbol, while t|p is rooted by a
variable from U (or viceversa), we get a contradiction by condition (2) of
maximal solution.

– If s|p is rooted by a constant or function symbol, while t|p is rooted by a
variable from V\U (or viceversa), we get a contradiction either by condition
(1) or (3) of maximal solution.

– Finally, if s|p is rooted by a variable from U , while t|p is rooted by a variable
from V\U (or viceversa), we get a contradiction either by condition (1) or (2)
of maximal solution.

Therefore, the set max (A,H+) is necessarily a singleton. ��

Moreover, the following key property holds: a maximal solution can always be
completed in order to get a solution to the linear unification problem when it
is satisfiable. In order to prove this result, we need to recall the definition of
parallel composition of substitutions, denoted by ⇑ in [9].

Definition 7 (parallel composition [9]). Let θ1 and θ2 be two idempotent
substitutions. Then, we define ⇑ as follows:

θ1 ⇑ θ2 =
{
mgu(θ̂1 ∧ θ̂2) if θ̂1 ∧ θ̂2 has a solution (a unifier)
fail otherwise

where θ̂ denotes the equational representation of a substitution θ, i.e., if θ =
{X1/t1, . . . , Xn/tn} then θ̂ = (X1 = t1 ∧ · · · ∧ Xn = tn).

On the Completeness of Selective Unification in Concolic Testing 217

Proposition 3. Let A be a linear atom and H+ be a finite set of linear
atoms such that all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+. Let θ ∈ max (A,H+) be the maximal solution for A and H+. Then, if
Plin(A,H+,H−, G) is satisfiable (the set contains at least one substitution), then
there exists some substitution γ such that θγ ∈ Plin(A,H+,H−, G).

Proof. For simplicity, we consider that A = p(X), H+ = {p(t1), . . . , p(tn)} and
H− = {p(s1), . . . , p(sm)}. Since the atoms are linear, the claim would follow by a
similar argument. Let θ = {X/t} ∈ max (A,H+) be the maximal solution. Hence,
we have t ≈ ti for all i = 1, . . . , n. Let σ ∈ Plin(A,H+,H−, G) be a solution to
the selective unification problem. By definition of maximal solution, there may
be other solutions to the positive unification problem, but every introduced
symbol cannot be different if we want to still unify with all terms t1, . . . , tn by
condition (3) in the definition of maximal solution. Therefore, both substitutions
must be compatible, i.e., we have θ ⇑ σ = δ �= fail. Furthermore, taking into
account the negative atoms in H− as well as the groundness constraints w.r.t.
G, δ can only introduce further bindings, but would never require to generalize
any term introduced by θ and, thus, δ can be decomposed as θγ, with θγ ∈
Plin(A,H+,H−, G). ��

Therefore, computing the maximal solution suffices to check for satisfiability.
Here, we use again the algorithm in Definition 2 for computing the maximal
solution, with the following differences: (i) first, both A and the atoms in H+

are now linear; (ii) step (2a) is now don’t care nondeterministic, so the algorithm
will return a single solution, which we denote by SU+

lin(A,H+).

Proposition 4. Let A be a linear atom and H+ be a finite set of linear atoms
such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+.
Then, SU+

lin(A,H+) = max (A,H+).

Proof (sketch). The fact that SU+
lin(A,H+) returns a singleton is trivial by defin-

ition, since the algorithm has no don’t know nondeterminism and no step admits
a failure.

Regarding the fact that θ is a maximal solution, let us prove that all three
conditions in Definition 6 hold. The first condition of maximal solution follows
by Theorem 2, which is proved for the more general case of arbitrary (possibly
non-linear) atoms. The third condition holds from the fact that in step (2) of
SU+

lin only symbols from the atoms A and H+ are introduced following a mgu-
like algorithm; therefore they are possibly not necessary, but cannot be replaced
by different symbols and still unify with all the atoms in H+. Finally, the second
condition derives from step (3) of SU+

lin where non-simple disagreement pairs are
replaced by fresh variables from U and, thus, any binding to a non-variable term
would result in Aθ not unifying with some atom of H+.

��

218 F. Mesnard et al.

4.3 Dealing with the Negative Atoms

The algorithm SU in Definition 3 is now redefined as follows:

Definition 8. (algorithm for linear selective unification).

Input: a linear atom A with G ⊆ Var(A) a set of variables, and two finite sets
H+ and H− such that the atoms in H+ are linear and all atoms are pairwise
variable disjoint and A ≈ B for all B ∈ H+ ∪ H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Let {θ} = SU+
lin(A,H+). Then, generate—using a fair algorithm—linear

idempotent substitutions η such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U
and Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅, otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.
3. Return θηγ (restricted to the variables of A), where γ is a variable renaming

for Aθη with fresh variables from V\U .

We denote by SU lin(A,H+,H−, G) the set of non-deterministic (non-failing)
substitutions computed by the above algorithm.

Example 7. Consider again A = p(X1,X2) and H+ = {p(f(Y), a), p(f(g(Z)), b)},
together with H− = {p(f(g(a)), c)} and G = {X1}. The algorithm for linear pos-
itive unification returns the maximal substitution {X1/f(g(Z ′)),X2/U}. There-
fore, the algorithm for linear selective unification would eventually produce a solu-
tion of the form θ = {X1/f(g(b)),X2/X ′} since Aθ = p(f(g(b),X ′) unifies with
p(f(Y), a) and p(f(g(Z)), b) but not with p(f(g(a)), c) and, moreover, X1 is not
ground. However, if we consider a non-maximal solution, the algorithm in Def-
inition 3 may fail, even if there exists some solution to the linear selective uni-
fication problem. This is the case, e.g., if we consider the non-maximal solution
{X1/f(g(a)),X2/U}.

Theorem 3 (soundness). Let A be a linear atom with G ⊆ Var(A), H+ be
a finite set of linear atoms and H− be a finite set of atoms such that all atoms
are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then, we have
SU lin(A,H+,H−, G) ⊆ Plin(A,H+,H−, G).

Proof. The claim follows from Proposition 4 by assuming that the don’t know
nondeterministic substitutions considered in step (1) of the algorithm of Defin-
ition 8 are obtained by a fair generate-and-test algorithm which produces sub-
stitutions systematically starting with terms of depth 0, then depth 1, etc., as
in the naive algorithm described at the beginning of Sect. 3. ��

The following result states the completeness of our algorithm. In principle, we
do not guarantee that all solutions are computed using our algorithms, even for
the linear case. However, we can ensure that if the linear selective unification
problem is satisfiable, our algorithm will find at least one solution.

On the Completeness of Selective Unification in Concolic Testing 219

Theorem 4 (completeness). Let A be a linear atom with G ⊆ Var(A), H+

be a finite set of linear atoms and H− be a finite set of atoms such that all
atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then, if
Plin(A,H+,H−, G) �= ∅ (i.e., it is satisfiable), then SU lin(A,H+,H−, G) �= ∅.

Proof. By Proposition 3, if Plin(A,H+,H−, G) �= ∅ and θ is the computed
maximal solution, then there exists a substitution γ such that (θγ) |̀Var(A)∈
Plin(A,H+,H−, G). Moreover, such a substitution γ can be obtained by a fair
generate-and-test algorithm such as that considered in Definition 8. Finally, the
claim follows by Proposition 4 which ensures that the algorithm in Definition 2
will always produce the maximal solution for A and H+.

In general, though, we cannot ensure that all solutions are computed (which
is not a drawback of the algorithm since we are only interested in finding one
solution if it exists):

Example 8. Consider again A = p(X1,X2) and H+ = {p(f(Y), a), p(f
(g(Z)), b)}, together with H− = {p(g(W), c)} and G = ∅. The algorithm for lin-
ear positive unification returns the maximal substitution {X1/f(g(Z ′)),X2/U}.
Therefore, it is impossible that the algorithm in Definition 3 could produce a
solution like {X1/f(X ′),X2/X ′′} ∈ Plin(A,H+,H−, G).

5 Discussion

In this paper, we have studied the soundness and completeness of selective unifi-
cation, a relevant operation in the context of concolic testing of logic programs.
In contrast to [7], we have provided a refined correctness result (one condition
was missing in [7]), and we have also identified the main sources of incomplete-
ness for the algorithm in [7]. Then, we have introduced several refinements so
that the procedure is now sound and complete w.r.t. linear solutions. We are not
aware of any other work that deals with the kind of unification problems that
we consider in this paper.

Clearly, the fact that we only consider linear solutions (i.e., the relation Plin)
means that our procedure can be incomplete in general. For instance, we consider
the problem shown in Example 4 unsatisfiable, though a nonlinear solution exists.
Nevertheless, we do not expect this restriction to have a significant impact in
practice and, moreover, concolic testing algorithms are usually incomplete in
order to avoid a state explosion. On the other hand, the refined algorithm in
Sects. 4.2 and 4.3 only considers linear atoms. This restriction may have a more
significant impact since many programs have nonlinear atoms in the heads of
the clauses and/or equalities in the bodies. In such cases, we can still resort to
using the algorithm of Sect. 4.1, though it may be less efficient.

As for future work, we are considering to introduce a technique to “linearize”
the atoms in A∪H+ by introducing some constraints which could be solved later
in the algorithm (e.g., replacing p(X,X) by p(X,Y) and the constraint X = Y).

220 F. Mesnard et al.

Another interesting line of research involves improving the efficiency of the
selective unification algorithm. For this purpose, we plan to investigate the con-
ditions ensuring the following property:

if Plin(A,H+,H−, G) = ∅, then Plin(Aθ,H+,H−, G) = ∅ for all substitution θ

If this property indeed holds, then one could check statically the satisfiability
of all possible selective unification problems in a program, e.g., for atoms of the
form p(X1, . . . , Xn). We can then use this information during concolic testing to
rule out those problems which we know are unfeasible no matter the run time
values (denoted by θ). From our preliminary experience with the tool contest
(http://kaz.dsic.upv.es/contest.html), this might result in significant efficiency
improvements.

Finally, we are also considering the definition of a possibly approximate for-
mulation of selective unification which could be solved using an SMT solver. This
might imply a loss of completeness, but will surely improve the efficiency of the
process. Moreover, it will also allow a smoother integration with the constraint
solving process which is required when extending our concolic testing technique
to full Prolog programs.

Acknowledgements. We would like to thank the anonymous reviewers and the par-
ticipants of LOPSTR 2016 for their suggestions to improve this paper.

References

1. Anand, S., Pasareanu, C.S., Visser, W.: Symbolic execution with abstraction.
STTT 11(1), 53–67 (2009)

2. Apt, K.R.: From Logic Programming to Prolog. Prentice Hall, Englewood Cliffs
(1997)

3. Clarke, L.A.: A program testing system. In: Proceedings of the 1976 Annual Con-
ference (ACM 1976), pp. 488–491 (1976)

4. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of PLDI 2005, pp. 213–223. ACM (2005)

5. Godefroid, P., Levin, M.Y., Molnar, D.A.: Sage: whitebox fuzzing for security test-
ing. CACM 55(3), 40–44 (2012)

6. King, J.C.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)
7. Mesnard, F., Payet, É., Vidal, G.: Concolic testing in logic programming. TPLP

15(4–5), 711–725 (2015)
8. Mesnard, F., Payet, É., Vidal, G.: Concolic testing in logic programming (extended

version). CoRR abs/1507.05454 (2015). http://arxiv.org/abs/1507.05454
9. Palamidessi, C.: Algebraic properties of idempotent substitutions. In: Paterson,

M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 386–399. Springer, Heidelberg (1990).
doi:10.1007/BFb0032046

10. Pasareanu, C.S., Rungta, N., PathFinder, S.: symbolic execution of Java bytecode.
In: Pecheur, C., Andrews, J., Nitto, E.D. (eds.) ASE, pp. 179–180. ACM (2010)

http://kaz.dsic.upv.es/contest.html
http://arxiv.org/abs/1507.05454
http://dx.doi.org/10.1007/BFb0032046

On the Completeness of Selective Unification in Concolic Testing 221

11. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of ESEC/SIGSOFT FSE 2005, pp. 263–272. ACM (2005)

12. Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A linear oper-
ational semantics for termination and complexity analysis of ISO Prolog. In:
Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 237–252. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32211-2 16

http://dx.doi.org/10.1007/978-3-642-32211-2_16

CurryCheck: Checking Properties
of Curry Programs

Michael Hanus(B)

Institut Für Informatik, CAU Kiel, 24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. We present CurryCheck, a tool to automate the testing of
programs written in the functional logic programming language Curry.
CurryCheck executes unit tests as well as property tests which are para-
meterized over one or more arguments. CurryCheck tests properties by
systematically enumerating test cases so that, for smaller finite domains,
CurryCheck can actually prove properties. Unit tests and properties can
be defined in a Curry module without being exported. Thus, they are
also useful to document the intended semantics of the source code. Fur-
thermore, CurryCheck also supports the automated checking of specifi-
cations and contracts occurring in source programs. Hence, CurryCheck
is a useful tool that contributes to the property- and specification-based
development of reliable and well tested declarative programs.

1 Motivation

Testing is an important step to get confidence in the functionality of a program.
The advantage of testing compared to program verification is its potential for
automation. If test cases are encoded as input to test frameworks, one can auto-
matically run and repeat them when the software is further developed, which is
also known as regression testing.

A difficulty in testing is to find appropriate inputs for the individual tests.
For this purpose, property-based testing has been proposed, well known in the
functional language Haskell with the QuickCheck tool [15]. Properties are pred-
icates parameterized over one or more arguments. QuickCheck automates the
test execution by applying properties to randomly generated test inputs. Since
this idea is particularly reasonable for declarative languages, it is been adapted
in different forms to functional and logic programming languages. For instance,
SmallCheck [32] and GAST [26] focus on a systematic enumeration of test inputs
for functional programs, PropEr [30] adapts ideas of QuickCheck to the concur-
rent functional language Erlang, PrologCheck [1] transfers and extends ideas of
QuickCheck to Prolog, and EasyCheck [14] exploits functional logic program-
ming features to property-based testing of Curry programs.

CurryCheck follows the same ideas. Actually, it is based on EasyCheck to
define properties. However, CurryCheck is intended as a comprehensive tool to
simplify the automation of test execution. To use CurryCheck, properties are
interspersed into the program as top-level definitions. Thus, properties are used
c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 222–239, 2017.
DOI: 10.1007/978-3-319-63139-4 13

CurryCheck: Checking Properties of Curry Programs 223

to document the intended semantics of the source code, which also supports
test-driven program development known as “extreme programming.” When Cur-
ryCheck is applied to a (set of) Curry modules, it extracts all properties, gen-
erates a program to test these properties, executes this generated program, and
reports any errors. Furthermore, CurryCheck also analyzes possible contracts
[7] provided in source programs and generates properties to test these contracts.
Thanks to this automation, CurryCheck is a useful tool for continuous integra-
tion and deployment processes. It is used for this purpose in the Curry imple-
mentations PAKCS [22] and KiCS2 [13].

In this paper we present the ideas and usage of CurryCheck. After a review
of the main features of Curry in the next section, we introduce properties in
Sect. 3 and explain how they are tested in Sect. 4. The support of CurryCheck
to define test inputs is presented in Sect. 5. CurryCheck’s support for contract
checking is described in Sect. 6. Some initial features of CurryCheck to combine
testing and verification are sketched in Sect. 7. We report about our practical
experience with CurryCheck in Sect. 8 before we compare CurryCheck to some
related tools and conclude.

2 Functional Logic Programming and Curry

Functional logic languages [6,21] integrate the most important features of func-
tional and logic languages in order to provide a variety of programming concepts.
They support functional concepts like higher-order functions and lazy evalua-
tion as well as logic programming concepts like non-deterministic search and
computing with partial information. The declarative multi-paradigm language
Curry [19] is a modern functional logic language with advanced programming
concepts. In the following, we briefly review some features of Curry relevant
for this paper. More details can be found in recent surveys on functional logic
programming [6,21] and in the language report [23].

Curry has a Haskell-like syntax but also allows free (logic) variables in rules
and initial expressions. Function calls with free variables are evaluated by a
possibly non-deterministic instantiation of demanded arguments.

Example 1. The following simple program shows the functional and logic fea-
tures of Curry. It defines the well-known list concatenation and an operation
that returns some element of a list having at least two occurrences:

Since “++” can be called with free variables in arguments, the condition in
the rule of someDup is solved by instantiating x and the anonymous free variables
“_” to appropriate values before reducing the function calls. This corresponds
to narrowing [31], but Curry narrows with possibly non-most-general unifiers to
ensure the optimality of computations [2].

224 M. Hanus

Note that someDup is a non-deterministic operation since it might
deliver more than one result for a given argument, e.g., the evaluation of
someDup [1,2,2,1] yields the values 1 and 2. Non-deterministic operations,
which can formally be interpreted as mappings from values into sets of values
[18], are an important feature of contemporary functional logic languages. Hence,
Curry has also a predefined choice operation:
x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value
non-deterministically chosen.

Functional patterns [3] are useful to define some operations more easily. A
functional pattern is a pattern occurring in an argument of the left-hand side
of a rule containing defined operations (and not only data constructors and
variables). Such a pattern abbreviates the set of all standard patterns to which
the functional pattern can be evaluated (by narrowing). For instance, we can
rewrite the definition of someDup as
someDup (_++[x]++_++[x]++_) = x

Functional patterns are a powerful feature to express arbitrary selections in tree
structures, e.g., in XML documents [20]. Details about their semantics and a con-
structive implementation of functional patterns by a demand-driven unification
procedure can be found in [3].

Curry has also features which are useful for application programming, like
set functions [5] to encapsulate non-deterministic computations, default rules [8]
to deal with partially specified operations and negation, and standard features
from functional programming, like modules or monadic I/O [35]. Other features
are explained when they are used in the following.

3 Properties

In this section we briefly discuss which kind of program properties to be tested
are supported by CurryCheck. Since CurryCheck extends the functionality of
EasyCheck [14], it supports all kinds of EasyCheck’s properties which we review
first.

Properties are defined top-level entities with a distinct type (see below).
Thus, their syntax and type-correctness can be checked by the standard front
end of any Curry system. Properties do not require a specific naming convention
but CurryCheck recognizes them by their type. Moreover, the name and position
of the property in the source file are used by CurryCheck to identify properties
when errors are reported.

For instance, consider the list concatenation operation “++” defined in
Example 1. Before discussing general properties, we define some unit tests for
fixed arguments, like
concNull12 = [] ++ [1,2] -=- [1,2]
concCurry = "Cu" ++ "rry" -=- "Curry"

CurryCheck: Checking Properties of Curry Programs 225

The infix operator “-=-” specifies a test which is successful if both sides have
single values which are identical (we will later see tests for non-deterministic
operations). Since the expressions can be of any type (of course, the two argu-
ments must be of the same type), the operator is polymorphic and has the type
(-=-) :: a →a →Prop

Hence, all entities defined above have type Prop.
The power of CurryCheck and similar property-based test frameworks comes

from the fact that one can also test properties which are parameterized over some
input data. For instance, we can check whether the concatenation operation is
associative by:
concIsAssoc xs ys zs = (xs++ys)++zs -=- xs++(ys++zs)

This property is parameterized over three input values xs, ys, and zs. To test
this property, CurryCheck guesses values for these parameters (see below for
more details) and tests the property for these values:
concIsAssoc_ON_BASETYPE (module ConcDup, line 18):
OK, passed 100 tests.

Indicated by the suffix _ON_BASETYPE, we see another feature of CurryCheck. If
properties are polymorphic (the above property has type [a] → [a] → [a] →
Prop), CurryCheck specializes the type to some base type, since there is no con-
crete value of a polymorphic type (and EasyCheck would fail on such properties).
As a default, CurryCheck uses the predefined type Ordering having the three
values LT, EQ, GT (another more involved method to instantiate polymorphic
types in purely functional programs can be found in [11]). This default type can
be changed to other base types, like Bool, Int, or Char, with a command-line
option. One could also provide an explicit type declaration for the property.
For instance, we can test the commutativity of the list concatenation on lists of
integers by the property
concIsCommutative :: [Int] →[Int] →Prop
concIsCommutative xs ys = (xs ++ ys) -=- (ys ++ xs)

Of course, this property does not hold so that CurryCheck reports an error
together with a counter-example:
. . .
concIsCommutative (module ConcDup, line 20) failed
Falsified by 8th test.
Arguments: [-1] [-3]
Results: ([-1,-3],[-3,-1])

Note that the arguments of a test are ordinary expressions so that one can use
any defined operation in the tests. For instance, we can (successfully) check
whether the list concatenation is the addition on their lengths:
concAddLengths xs ys = length xs + length ys -=- length (xs++ys)

Since Curry covers also logic programming features, CurryCheck supports the
testing of non-deterministic properties. For instance, one can check whether an
expression reduces to some given value with the operator is

226 M. Hanus

Another important operator is which denotes the property that both
arguments have the same set of values. We can write unit tests by enumerating
all expected values with the choice operator “?”:

It should be noted that the operator really compares sets and not
multi-sets: Although the evaluation of someDup [1,2,1,2,1] returns the value
1 three times in a typical Curry system, the property someDup12 holds. This is
intended since CurryCheck tests declarative properties which are independent
of specific compiler optimizations (this is in contrast to PrologCheck which tests
operational properties like multiplicity of answers and modes [1]).

As another example, consider the following definition of a permutation of a
list by exploiting a functional pattern to select some element in the argument
list:
perm (xs++[x]++ys) = x : perm (xs++ys)
perm [] = []

An important property of a permutation is that the length of the list is not
changed. Hence, we check it by the property

Since the left argument of evaluates to many (identical) values, it is
important to use instead of “-=-” in this property.

We might also want to check whether our definition of perm computes the
correct number of solutions. Since we know that a list of length n has n! permu-
tations, we write the following property, where fac is the factorial function and
the property x # n is satisfied if x has n different values:
permCount :: [Int] →Prop
permCount xs = perm xs # fac (length xs)

However, this test will be falsified with the test input [1,1], since [1,1] has
only one permuted value (actually, both computed values are identical). We can
obtain a correct property if we add the condition that all elements in the input
list xs are pairwise different. For this purpose, we use a conditional property :
the property b ==> p is satisfied if p is satisfied for all values where b evaluates
to True. If the predicate allDifferent is satisfied iff its argument list does not
contain duplicated elements, then we can reformulate our property as follows:
permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Furthermore, we want to check the existence of distinguished permutations. For
this purpose, consider a predicate to check whether a list is sorted:
sorted :: [Int] →Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

Then we can check whether there are sorted permutations (“eventually x” is
satisfied if some value of x is True):
permIsEventuallySorted :: [Int] →Prop
permIsEventuallySorted xs = eventually (sorted (perm xs))

CurryCheck: Checking Properties of Curry Programs 227

Property-based testing is appropriate for declarative languages since the absence
of side effects allows the execution of tests on any number of test data without
influencing the individual tests. Nevertheless, real programming languages have
to deal with the real world so that they support also I/O operations. Clearly, such
operations should also be tested. Although there are methods to test monadic
code [16], the generation of test data for I/O monadic operations (e.g., file
names, socket connections) seems not reasonable. Therefore, CurryCheck sup-
ports only non-parameterized unit tests for I/O operations. For instance, the test
(a ‘returns‘ x) is satisfied if the I/O action a returns the value x. For instance,
we can test whether writing a file and reading it yields the same contents:
writeReadFile = (writeFile "TEST" "Hello">> readFile "TEST")

‘returns‘ "Hello"

Since CurryCheck executes the tests written in a source program in their textual
order, one can write also several I/O tests whose side effects depend on each
other. For instance, we can split the previous I/O test into two consecutive
tests:
writeTestFile = (writeFile "TEST" "Hello") ‘returns‘ ()
readTestFile = (readFile "TEST") ‘returns‘ "Hello"

4 Testing Properties

After having seen several methods to define properties, we sketch in this section
how they are actually tested. Our motivation for the development of CurryCheck
is manifold:

1. Properties are an executable documentation for the intended semantics of
operations.

2. Properties increase the confidence in the quality of the developed software.
3. Properties can be used for software verification by proving their validity for

all possible input data.

The first point is supported by interspersing properties into the source code of
the program instead of putting them into separate files. Thus, properties play the
same role as comments or type annotations: they document the intended seman-
tics. Hence, they can be extracted and put into the program documentation by
automatic documentation tools [24]. In order to avoid that properties influence
the interface of a module, they do not need to be exported. As an example,
consider the following simple module defining the classical list reverse opera-
tion (the imported module Test.Prop contains the definitions of the property
combinators introduced in Sect. 3):
module Rev(rev) where

import Test.Prop

rev :: [a] →[a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

revLength xs = length (rev xs) -=- length xs
revRevIsId xs = rev (rev xs) -=- xs

228 M. Hanus

We can run all tests of this module by invoking CurryCheck with the module
name:1

> curry check Rev
Analyzing module ’Rev’ . . .
. . .
Executing all tests . . .
revLength_ON_BASETYPE (module Rev, line 9):
OK, passed 100 tests.

revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Although module Rev only exports the operation rev, all properties defined in
the top-level of Rev are passed to the underlying EasyCheck library for testing.
For this purpose, CurryCheck creates a copy of this module where all entities
are exported (note that the original module cannot be modified since it might
be imported to other modules to be tested). For each property a corresponding
call to an operation of EasyCheck is generated which actually performs the
generation of test data, runs the test, and collects all results which are passed
back to CurryCheck. Furthermore, polymorphic properties are not checked but a
corresponding new property on the default base type is generated which calls the
polymorphic property. For instance, if the default base type is Int, CurryCheck
generates the new property
revRevIsId_ON_BASETYPE :: [Int] →Prop
revRevIsId_ON_BASETYPE = revRevIsId

which is actually checked instead of revRevIsId. Note that it might lead to a
failure if the type of revRevIsId is directly specialized, since the polymorphic
property revRevIsId might be used in other property definitions with a different
specialized type.

After these preparations, EasyCheck tests the properties by generating test
data as described in [14]. EasyCheck does not use random generators like
QuickCheck or PrologCheck, but it exploits functional logic programming fea-
tures to enumerate possible input values. Since logic variables are equivalent to
non-deterministic generators [4], one can evaluate a logic variable of a particu-
lar type in order to get all values of this type in a non-deterministic manner.
For instance, if we evaluate the Boolean variable b::Bool, we obtain the val-
ues False and True as results. Similarly, for bs::[Bool] we obtain values like
[], [False], [True], [False,False], etc. In order to select a finite amount
of these infinite values, one can use Curry’s feature for encapsulated search to
collect all non-deterministic results in a tree structure, traverse the tree with
some strategy and return the result of the traversal into a list. If one selects only
a finite amount of this list, the lazy evaluation strategy of Curry ensures a finite
computation even if the tree is infinite. Based on these features, the EasyCheck
library contains an operation

1 One can also provide several module names so that they are tested at once. Further-
more, CurryCheck has various options to influence the number of test cases, default
types for polymorphic properties, etc.

CurryCheck: Checking Properties of Curry Programs 229

valuesOf :: a →[a]

which computes the list of all values of the given argument according to a fixed
strategy (in the current implementation by randomized level diagonalization
[14]). Hence, we can get 20 values for a list of integers by
. . .> take 20 (valuesOf (_::[Int]))
[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],
[2],[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

It should be noted that valuesOf enumerates all values of the given type com-
pletely and without duplicates.2 Hence, if the set of possible input values is finite,
it is ensured that all of them are tested if sufficiently many tests are performed.
In this case, the property is also verified (where QuickCheck or PrologCheck
does not give such guarantees). For instance, consider the De Morgan law from
Boolean algebra:
negOr b1 b2 = not (b1 || b2) -=- not b1 && not b2

This property is proved by CurryCheck after four tests with all possible input
values, and the output of CurryCheck indicates that the testing was exhaustive:
negOr (module BoolTest, line 4):
Passed all available tests: 4 tests.

5 User-Defined Test Data

Due to the use of functional logic features to generate test data, one can write
properties not only on predefined data types but also on user-defined data types.
For instance, consider the following definition of general polymorphic trees:
data Tree a = Leaf a | Node [Tree a]

We define operations to compute the leaves of a tree and mirroring a tree:
leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) = Node (reverse (map mirror ts))

The following properties should increase our confidence in the correctness of the
implementation:
doubleMirrorIsId t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse(leaves(mirror t))

CurryCheck successfully tests these properties without providing any further
information about how to generate test data. However, in some cases it might
be desirable to define our own test data since the generated structures are not
appropriate for testing. For instance, if we test algorithms working on balanced
search trees, we need correctly balanced search trees as test data. As a naive
approach, we can limit the tests to correct test inputs by using conditional
properties. As a simple example, consider the following operation that adds all
numbers from 1 to a given limit:

2 In order to get an idea of the distribution of the generated test data, CurryCheck also
provides property combinators collect and classify known from QuickCheck.

230 M. Hanus

sumUp n = if n==1 then 1 else n + sumUp (n-1)

Since there is also a simple formula to compute this sum, we can check it:
sumUpIsCorrect n = n>0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

Note that the condition is important since sumUp diverges on non-positive num-
bers. As a result, CurryCheck tests this property by enumerating integers and
dropping tests with non-positive numbers. While this works well, since Cur-
ryCheck performs a fairly good distribution between positive and negative num-
bers, this approach might have a serious drawback if the proportion of correct
test data is small. In the case of balanced search trees, there are many more
unbalanced trees than balanced search trees. This has the effect that CurryCheck
generates many test data and drops it so that it does not make much progress.
CurryCheck has an upper limit for dropping test data in the conditional opera-
tor in order to avoid spending too much work on generating unusable test data.
For instance, if we want to test the above property revRevIsId on long input
lists, we could define it as follows:
revRevIsIdLong :: [Int] →Prop
revRevIsIdLong xs = length xs > 100 ==> rev (rev xs) -=- xs

Since there are a huge number of integer lists with a length smaller than 100,
CurryCheck does not find any test case (with a default limit of dropping at most
10,000 incorrect test data values):
revRevIsIdLong (module Rev, line 13):
Arguments exhausted after 0 test.

This shows that the fully automatic generation of test data is not always appro-
priate. Therefore, CurryCheck provides some combinators to explicitly define
test data (more advanced enumeration combinators in the context of Scala are
discussed in [27]).

To show the method for test data generation in more detail, we have to
review Curry’s methods to encapsulate non-deterministic computations. Curry
defines the following structure to represent the results of a non-deterministic
computation [12]:
data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

(Value v) and Fail represent a single value or a failure (i.e., no value), respec-
tively, and (Or t1 t2) represents a non-deterministic choice between two search
trees t1 and t2. Furthermore, there is a primitive search operator
someSearchTree :: a →SearchTree a

which yields a search tree for an expression. For instance, someSearchTree

(0?1) evaluates to the search tree
Or (Value 0) (Value 1)

The expression
someSearchTree (id $## (_::[Bool]))

(where “$##” is an infix application operator which evaluates the right argument
to ground normal form before applying the left argument to it) yields an (infinite)
search tree of all Boolean lists:
(Or (Value []) (Or (Or (Or (Value [False]) . . .) (Or . . .)) . . .))

CurryCheck: Checking Properties of Curry Programs 231

EasyCheck defines various strategies to traverse such search trees (see [14] for
details) in order to enumerate test data. Hence, if we want to define our own test
data, we have to define an operation that generates a search tree containing the
test data in Value leaves. Although this is not difficult for simple data types,
it could be demanding for polymorphic types where generators for polymorphic
arguments must be weaved with generators for the main data structure. To sim-
plify this task, CurryCheck offers a family of combinators genConsn where each
combinator takes an n-ary constructor function and n generators as arguments
and produces a search tree for this constructor and all combinations of generated
arguments. Hence, these combinators have the type
genConsn :: (a1 → · · · → an → a) → SearchTree a1 → · · ·

→ SearchTree an → SearchTree a

Furthermore, there is an infix combinator “|||” to combine two search trees.
For instance, consider the straightforward definition of Peano numbers:
data Nat = Z | S Nat

Then we can define a search tree generator for this type as follows:
genNat :: SearchTree Nat
genNat = genCons0 Z ||| genCons1 S genNat

Similarly, we can define a search tree generator for polymorphic trees which takes
a search tree for the argument type as a parameter (where genList denotes the
corresponding generator for list values):
genTree :: SearchTree a →SearchTree (Tree a)
genTree ta = genCons1 Leaf ta ||| genCons1 Node (genList(genTree ta))

The explicit definition of value generators is reasonable when only a subset of
all values should be used for testing. For instance, sumUpIsCorrect should be
tested with positive numbers only. Hence, we define a generator for positive
numbers:
genPos = genCons0 1 ||| genCons1 (+1) genPos

Since these numbers are slowly increasing, i.e., the search tree is actually degen-
erated to a list, we can also use the following definition to obtain a more balanced
search tree:
genPos = genCons0 1 ||| genCons1 (\n → 2*(n+1)) genPos

||| genCons1 (\n → 2*n+1) genPos

To test properties with user-defined data, CurryCheck provides the property
combinator
forAll :: [a] →(a →Prop) → Prop

which is satisfied if the parameterized property given as the second argument
is satisfied for all values of the first argument list. Since there is also a library
operation
valuesOfSearchTree :: SearchTree a →[a]

(actually, the operation valuesOf introduced in Sect. 4 is defined via this oper-
ation) to enumerate all values of a search tree, we can redefine the property
sumUpIsCorrect as follows:
sumUpIsCorrect = forAll (valuesOfSearchTree genPos)

(\n → sumUp n -=- n*(n+1) ‘div‘ 2)

232 M. Hanus

Using this technique, we could also define finite tests for potentially infinite
structures, e.g., one can easily define tree generators that generate all trees up to
a particular depth.

6 Contract and Specification Testing

As discussed in detail in [7], the distinctive features of Curry (e.g., non-
deterministic operations, demand-driven evaluation, functional patterns, set
functions) support writing high-level specifications as well as efficient implemen-
tations for a given problem in the same programming language. When applying
this idea, Curry can be used as a wide-spectrum language for software develop-
ment. If a specification or contract is provided for some function, one can exploit
this information to support run-time assertion checking with these specifications
and contracts. As an additional use of this information, CurryCheck automat-
ically generates properties to test the given specifications and contracts, which
is described in the following.

According to the notation proposed in [7], a specification for an operation
f is an operation f’spec of the same type as f . A contract consists of a pre-
and a postcondition, where the precondition could be omitted. When provided,
a precondition for an operation f of type τ → τ ′ is an operation
f’pre :: τ → Bool

restricting allowed argument values, whereas a postcondition for f is an
operation
f’post :: τ → τ ′ → Bool

which relates input and output values (the generalization to operations with
more than one argument is straightforward). A specification should precisely
describe the meaning of an operation, i.e., the declarative meaning of the specifi-
cation and the implementation of an operation should be equivalent. In contrast,
a contract is a partial specification, e.g., all results computed by the implemen-
tation should satisfy the postcondition.

As a concrete example, consider the problem of sorting a list. The specifica-
tion defines a sorted version of a given list as a permutation of the input which
is sorted. Exploiting the operations introduced in Sect. 3, we define the following
specification for the operation sort:
sort’spec :: [Int] →[Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

A postcondition, which is easier to check, states that the input and output lists
should have the same length:
sort’post :: [Int] →[Int] →Bool
sort’post xs ys = length xs == length ys

To provide a concrete implementation, we implement the quicksort algorithm as
follows:
sort :: [Int] →[Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

CurryCheck: Checking Properties of Curry Programs 233

Note that specifications and contracts are optional. However, if they are included
in a module processed with CurryCheck, CurryCheck automatically generates
and checks properties that relate the specification and contract to the imple-
mentation. For instance, an implementation satisfies a specification if both yield
the same values, and a postcondition is satisfied if each value computed for
some input satisfies the postcondition relation between input and output. For
our example, CurryCheck generates the following properties (if there are also
preconditions for some operation, these preconditions are used to restrict the
test cases via the condition operator “==>”):3

sortSatisfiesSpecification :: [Int] →Prop
sortSatisfiesSpecification x = sort x <˜> sort’spec x

sortSatisfiesPostCondition :: [Int] →Prop
sortSatisfiesPostCondition x = always (sort’post x (sort x))

With CurryCheck, the framework of [7] becomes more useful since contracts are
not only used as run-time assertions in concrete computations, but many possi-
ble computations are checked with various test data. For instance, CurryCheck
reports that the above implementation of sort is incorrect for the example input
[1,1] (as the careful reader might have already noticed). When reporting the
error, the module and source code line number of the erroneous operation is
shown so that the programmer can easily spot the problem.

Another kind of contracts taken into account by CurryCheck are determinism
annotations [9]. An operation that yields always identical results (maybe multiple
times) on identical argument values can be annotated as “deterministic” by
adding DET to the result type of its type signature. For instance, the following
operation tests whether a list represents a set, i.e., has no duplicate elements
(the definition exploits functional patterns [3] as well as default rules [8]):
isSet :: [a] →DET Bool
isSet (_++[x]++_++[x]++_) = False
isSet’default _ = True

The determinism annotation “→DET” has the effect that at most one result
is computed for a given input, e.g., a single value False is returned for
isSet [1,3,1,3,1], although the first rule can be applied multiple times to
this call. Thus, after computing a first value, all attempts to compute further
values are ignored. In order to ensure that this does not destroy completeness,
i.e., it behaves like a “green cut” in Prolog, such operations must be deterministic
from a semantical point of view. CurryCheck tests this property by generating a
property for each DET-annotated operation that expresses that there is at most
one value for each input. For instance, for isSet, the DET annotation is removed
and the property
isSetIsDeterministic x1 = isSet x1 #< 2

is added by CurryCheck, where “e #< n” is satisfied if the set of all values of e
contains less than n elements.

3 The property “always x” is satisfied if all values of x are True.

234 M. Hanus

7 Combining Testing and Verification

The objective of CurryCheck is to increase the confidence in the reliability of
Curry programs. Testing with a lot of input data is one important step but, in
case of input data types with an infinite number of values, it can only show possi-
ble errors but not the absence of them. In order to support the latter, CurryCheck
has also some (preliminary) support to include the verification of program prop-
erties. For this purpose, a programmer might prove properties stated in a source
program. Since there are many different possibilities to prove such properties,
ranging from manual proofs to interactive proof assistants and fully automatic
provers, CurryCheck does not enforce a particular proof technique. Instead, Cur-
ryCheck trusts the programmer and uses a naming convention for files containing
proofs: if there is a file with name proof-t.*, CurryCheck assumes that this file
contains a valid proof for property t. For instance, the following property states
that sorting a list does not change its length:

If there is a file proof-sortlength.txt containing a proof for this property,
CurryCheck considers this property as valid and does not check it. Moreover,
it uses this information to simplify other properties to be tested. For instance,
consider the property sortSatisfiesPostCondition of the previous section.
This can be simplified to always True so that it does not need to be tested.
Similarly, a determinism annotation for operation f is not tested if there is a
proof file fIsDeterministic.*.

Since program verification is a notoriously difficult task, a mixture of different
techniques is required. Some purely functional properties can be proved in a fully
automatic way. For instance, the properties
concLength xs = length (xs ++ ys) -=- length xs + length ys
revLength xs = length (rev xs) -=- length xs

can be proved by the SMT solver Alt-Ergo. [25] discusses techniques to use
the Isabelle/HOL proof assistant to verify functional properties inspired by
QuickCheck. [10] describes a method to prove non-deterministic computations
by translating Curry programs into the dependently typed language Agda [28].
Since these proofs can be verified by the Agda compiler, CurryCheck can test the
validity of a given proof file by simply invoking the Agda compiler. For instance,
assume that the file ListProps.curry contains the property concIsAssoc

shown in Sect. 3. Then one can translate this property and all operations used
by this property into Agda by the command
> curry verify --target=Agda ListProps

This generates the Agda program TO-PROVE-concIsAssoc.agda containing the
definitions
++ : {a : Set} → L a → L a → L a
++ [] x = x
++ (y :: z) u = y :: (++ z u)

concIsAssoc : {a : Set} → (x : L a) → (y : L a) → (z : L a)
→ (++ (++ x y) z) ≡ (++ x (++ y z))

concIsAssoc x y z = ?

CurryCheck: Checking Properties of Curry Programs 235

Since the actual proof is an easy induction on the first argument x, we use
standard proof techniques of Agda [34] to complete the proof obligation in the
last line to
concIsAssoc [] y z = refl
concIsAssoc (x :: xs) y z rewrite concIsAssoc xs y z = refl

Finally, we rename the complete proof file to proof-concIsAssoc.agda. Then
further tests of this property are omitted by CurryCheck.

8 Practical Experience

The implementation of CurryCheck is available with the (Prolog-based) Curry
implementation PAKCS [22] (since version 1.14.0) and the (Haskell-based) Curry
implementation KiCS2 [13] (since version 0.5.0). The implementation exploits
meta-programming features available in these systems to parse programs and
transform them into new programs as described in the previous sections.

Although we could show in this paper only simple examples, we would like to
remark that CurryCheck is successfully applied in a larger context. CurryCheck
is regularly used for automatic regression testing during continuous integration
and nightly builds of PAKCS and KiCS2. Currently, approximately 600 proper-
ties (the number is continuously growing) are regularly used to test the libraries
and tools of these systems. Our practical experience is quite promising. After the
development and use of CurryCheck, we found a bug in the implementation of
the prelude operations quot and rem w.r.t. negative numbers and free variables
which was undetected for a couple of years. Although the bug was easy to fix,
the definition of a general property relating both operations and testing it with
all smaller values was essential for its detection.

The run time of CurryCheck mainly depends on the specific properties to be
tested. The initial translation phase, which extracts properties, contracts, and
specifications from a given module and transforms them into executable tests,
is a straightforward compilation process. The run time of the subsequent test
execution phase depends on the number of test cases and the time needed to
evaluate each property. The functional logic programming technique to generate
test data described in Sect. 4 (i.e.,. collecting all non-deterministic results of
evaluating a logic variable) is reasonable in practice. For instance, KiCS2 needs
0.6 seconds to test a trivial property on a list of integers with 10,000 test cases
computed by the randomized level diagonalization strategy described in [14] (on
a Linux machine with Intel Core i7-4790/3.60 Ghz and 8 GiB of memory).

CurryCheck has also been applied to implement semantic versioning in a
package manager [29]. Semantic versioning aims to express semantic properties
of different releases of software packages with a hierarchy of version numbers,
e.g., 1.5.3, consisting of a major, minor, and patch version number. Whereas
different major version numbers provide no guarantees about the compatibility of
APIs, minor version numbers are incremented if new functionality is introduced,
and patch version numbers are incremented if APIs are unchanged (e.g., bug
fixes, code refactoring, efficiency improvements). Hence, the correct usage of

236 M. Hanus

this semantic versioning scheme can be tested by comparing the functionality
of different versions of a software package. This is done in the Curry package
manager [29] by exploiting CurryCheck. For two versions of a software package
with identical major release numbers, the package manager generates a set of
CurryCheck properties which test, for each operation occurring in the API of
both versions, whether they compute the same sets of results. Using CurryCheck
for semantic versioning increases the confidence in the correct releases of software
packages.

9 Related Work

Since testing is an important part of the software development process, there
is a vast literature on this topic. In the following, we compare our approach
to testing, in particular, property-based testing, in declarative languages. We
already mentioned QuickCheck [15] which was influential in this area and fol-
lowed by other property-testing systems for functional languages, like GAST [26]
or SmallCheck [32]. The same idea has also been transferred to other languages
like PropEr [30] for Erlang and PrologCheck [1] for Prolog. In contrast to Cur-
ryCheck, most of these systems (except for SmallCheck) are based on randomly
generating test data so that they do not provide guarantees for a complete enu-
meration if the sets of input values are finite, i.e., they cannot verify properties.
PropEr also supports contract checking but these function contracts are limited
to type specifications. PrologCheck could also check operational aspects likes
modes or multiplicity of answers, whereas our properties are oriented towards
declarative aspects, i.e., the input/output relation of values.

Closely related to CurryCheck is EasyCheck [14] since it can be seen as our
back end. EasyCheck is the only property-based test tool covering functional
and logic aspects but it is more limited than CurryCheck. EasyCheck does not
support polymorphic properties, I/O properties, or combinators for user-defined
generation of test data. This has been added in CurryCheck together with a full
automation of the test process in order to obtain an easily usable tool. Moreover,
CurryCheck expands the use of automatic testing by using it for contract and
specification checking, where functional logic programming has been shown to be
an appropriate framework [7], and combines it with static verification techniques.

10 Conclusion

We have presented CurryCheck, the first fully automatic tool to test functional
as well as non-deterministic properties of Curry programs. CurryCheck supports
unit tests and tests of I/O operations with fixed inputs as well as property
tests which are parameterized over some arguments. In the latter case, they
are executed with test inputs which are systematically generated for the given
argument types. CurryCheck also supports specification and contract testing if
such information is present in the source program.

CurryCheck: Checking Properties of Curry Programs 237

To simplify and, thus, enhance the use property testing, properties can be
interspersed in the source program and are automatically extracted by Cur-
ryCheck. Hence, CurryCheck supports test-driven program development meth-
ods like extreme programming. Properties are not only useful to obtain more
reliable programs, but they can also be used by automated documentation tools
to describe the intended meaning of operations, a feature which has been recently
added to the CurryDoc documentation tool.4 Moreover, properties can be inter-
preted as theorems about programs. If these theorems are statically proved,
CurryCheck considers them to simplify the test tasks.

For future work we plan to extend the functionality of CurryCheck (e.g., gen-
erating functional values). Furthermore, we intend to integrate into CurryCheck
more features that can help to improve the reliability of the source code, like
abstract interpretation to approximate specific run-time properties [17,33], or
program covering to show whether the test data was sufficient to reach all parts
of a source program.

Acknowledgements. The author is grateful to Jan-Patrick Baye for implementing
an initial version of CurryCheck and to the anonymous reviewers for their suggestions
to improve this paper.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). doi:10.1007/978-3-319-07151-0 1

2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

3. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006).
doi:10.1007/11680093 2

4. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 87–101. Springer, Heidelberg (2006). doi:10.1007/11799573 9

5. Antoy, S., Hanus, M.: Set functions for functional logic programming. In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pp. 73–82. ACM Press (2009)

6. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

7. Antoy, S., Hanus, M.: Contracts and specifications for functional logic program-
ming. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149, pp. 33–47.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-27694-1 4

8. Antoy, S., Hanus, M.: Default rules for Curry. Theory Pract. Logic Program. 17(2),
121–147 (2017)

9. Antoy, S., Hanus, M.: Eliminating irrelevant non-determinism in functional logic
programs. In: Lierler, Y., Taha, W. (eds.) PADL 2017. LNCS, vol. 10137, pp. 1–18.
Springer, Cham (2017). doi:10.1007/978-3-319-51676-9 1

4 See http://www.informatik.uni-kiel.de/∼pakcs/lib/Combinatorial.html for an
example.

http://dx.doi.org/10.1007/978-3-319-07151-0_1
http://dx.doi.org/10.1007/11680093_2
http://dx.doi.org/10.1007/11799573_9
http://dx.doi.org/10.1007/978-3-642-27694-1_4
http://dx.doi.org/10.1007/978-3-319-51676-9_1
http://www.informatik.uni-kiel.de/~pakcs/lib/Combinatorial.html

238 M. Hanus

10. Antoy, S., Hanus, M., Libby, S.: Proving non-deterministic computations in Agda.
In: Proceeding of the 24th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2016), vol. 234 of Electronic Proceedings in Theoret-
ical Computer Science, pp. 180–195. Open Publishing Association (2017)

11. Bernardy, J.-P., Jansson, P., Claessen, K.: Testing polymorphic properties. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 125–144. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-11957-6 8

12. Braßel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional logic
computations. J. Funct. Logic Program. 2004(6) (2004)

13. Braßel, B., Hanus, M., Peemöller, B., Reck, F.: KiCS2: a new compiler from Curry
to Haskell. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 1–18. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22531-4 1

14. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78969-7 23

15. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming (ICFP
2000), pp. 268–279. ACM Press (2000)

16. Claessen, K., Hughes, J.: Testing monadic code with QuickCheck. ACM SIGPLAN
Not. 37(12), 47–59 (2002)

17. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-18070-5 2

18. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. Logic Program. 40, 47–87 (1999)

19. Hanus, M.: A unified computation model for functional and logic programming. In:
Proceeding of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93 (1997)

20. Hanus, M.: Declarative processing of semistructured web data. In: Technical Com-
munications of the 27th International Conference on Logic Programming, vol. 11,
pp. 198–208. Leibniz International Proceedings in Informatics (LIPIcs) (2011)

21. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1 6

22. Hanus, M., Antoy, S., Braßel, B., Engelke, M., Höppner, K., Koj, J., Niederau, P.,
Sadre, R., Steiner, F.: PAKCS: The Portland Aachen Kiel Curry System (2016).
http://www.informatik.uni-kiel.de/pakcs/

23. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (vers. 0.9.0)
(2016). http://www.curry-language.org

24. Hermenegildo, M.: A documentation generator for (C)LP systems. In: Lloyd, J.,
Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L.M.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS, vol. 1861, pp. 1345–1361. Springer,
Heidelberg (2000). doi:10.1007/3-540-44957-4 90

25. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory
exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108–122.
Springer, Cham (2014). doi:10.1007/978-3-319-08434-3 9

26. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003). doi:10.1007/3-540-44854-3 6

http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/10.1007/978-3-540-78969-7_23
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://www.informatik.uni-kiel.de/pakcs/
http://www.curry-language.org
http://dx.doi.org/10.1007/3-540-44957-4_90
http://dx.doi.org/10.1007/978-3-319-08434-3_9
http://dx.doi.org/10.1007/3-540-44854-3_6

CurryCheck: Checking Properties of Curry Programs 239

27. Kuraj, I., Kuncak, V., Jackson, D.: Programming with enumerable sets of struc-
tures. In: Proceeding of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2015), pp. 37–56. ACM (2015)

28. Norell, U.: Dependently typed programming in Agda. In: Koopman, P.,
Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04652-0 5

29. Oberschweiber, J.: A package manager for Curry. Master’s thesis, University of
Kiel (2016)

30. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifi-
cations with property-based testing. In: Proceeding of the 10th ACM SIGPLAN
Workshop on Erlang, pp. 39–50 (2011)

31. Reddy, U.S.: Narrowing as the operational semantics of functional languages. In:
Proceeding of IEEE International Symposium on Logic Programming, pp. 138–151,
Boston (1985)

32. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: auto-
matic exhaustive testing for small values. In: Proceeding of the 1st ACM SIGPLAN
Symposium on Haskell, pp. 37–48. ACM Press (2008)

33. Stulova, N., Morales, J.F., Hermenegildo, M.: Reducing the overhead of assertion
run-time checks via static analysis. In: Proceeding 18th International Symposium
on Principles and Practice of Declarative Programming (PPDP 2016), pp. 90–103.
ACM Press (2016)

34. Stump, A.: Verified Functional Programming in Agda. ACM and Morgan &
Claypool, New York (2016)

35. Wadler, P.: How to declare an imperative. ACM Comput. Surv. 29(3), 240–263
(1997)

http://dx.doi.org/10.1007/978-3-642-04652-0_5

A Hiking Trip Through the Orders
of Magnitude: Deriving Efficient Generators

for Closed Simply-Typed Lambda Terms
and Normal Forms

Paul Tarau(B)

Department of Computer Science and Engineering,
University of North Texas, Denton, USA

paul.tarau@unt.edu

Abstract. Contrary to several other families of lambda terms, no closed
formula or generating function is known and none of the sophisticated
techniques devised in analytic combinatorics can currently help with
counting or generating the set of simply-typed closed lambda terms of
a given size.

Moreover, their asymptotic scarcity among the set of closed lambda
terms makes counting them via brute force generation and type infer-
ence quickly intractable, with previous published work showing counts
for them only up to size 10.

By taking advantage of the synergy between logic variables, unifica-
tion with occurs check and efficient backtracking in today’s Prolog sys-
tems, we climb 4 orders of magnitude above previously known counts by
deriving progressively faster Horn Clause programs that generate and/or
count the set of closed simply-typed lambda terms of sizes up to 14. A
similar count for closed simply-typed normal forms is also derived up to
size 14.

Keywords: Logic programming transformations · Type inference ·
Combinatorics of lambda terms · Simply-typed lambda calculus ·
Simply-typed normal forms

1 Introduction

Generation of lambda terms [1] has practical applications to testing compilers
that rely on lambda calculus as an intermediate language, as well as in genera-
tion of random tests for user-level programs and data types. At the same time,
several instances of lambda calculus are of significant theoretical interest given
their correspondence with logic and proofs. Among them, simply-typed lambda
terms [2,3] enjoy a number of nice properties, among which strong normaliza-
tion (termination for all evaluation-orders), a cartesian closed category mapping
and a set-theoretical semantics. More importantly, via the Curry-Howard cor-
respondence lambda terms that are inhabitants of simple types can be seen as
c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 240–255, 2017.
DOI: 10.1007/978-3-319-63139-4 14

A Hiking Trip Through the Orders of Magnitude 241

proofs for tautologies in minimal logic which, in turn, correspond to the types.
Extended with a fix-point operator, simply-typed lambda terms can be used as
the intermediate language for compiling Turing-complete functional languages.
Generation of large simply-typed lambda terms can also help with automation
of testing and debugging compilers for functional programming languages [4].

Recent work on the combinatorics of lambda terms [5–8], relying on recursion
equations, generating functions and techniques from analytic combinatorics [9]
has provided counts for several families of lambda terms and clarified important
properties like their asymptotic density. With the techniques provided by gener-
ating functions [9], it was possible to separate the counting of the terms of a given
size for several families of lambda terms from their more computation intensive
generation, resulting in several additions (e.g., A220894, A224345, A114851) to
The On-Line Encyclopedia of Integer Sequences, [10].

On the other hand, the combinatorics of simply-typed lambda terms, given
the absence of closed formulas, recurrence equations or grammar-based genera-
tors, due to the intricate interaction between type inference and the applicative
structure of lambda terms, has left important problems open, including the very
basic one of counting the number of closed simply-typed lambda terms of a given
size. At this point, obtaining counts for simply-typed lambda terms requires
going through the more computation-intensive generation process.

As a fortunate synergy, Prolog’s sound unification of logic variables, back-
tracking and definite clause grammars have been shown to provide compact com-
binatorial generation algorithms for various families of lambda terms [11–14].

For the case of simply-typed lambda terms, we have pushed (in the unpub-
lished draft [15]) the counts in sequence A220471 of [10] to cover sizes 11 and
12, each requiring about one magnitude of extra computation effort, simply by
writing the generators in Prolog. In this paper we focus on going two more mag-
nitudes higher, while also integrating the results described in [15]. Using similar
techniques, we achieve the same, for the special case of simply-typed normal
forms.

The paper is organized as follows. Section 2 describes our representation of
lambda terms and derives a generator for closed lambda terms. Section 3 defines
generators for well-formed type formulas. Section 4 introduces a type inference
algorithm and then derives, step by step, efficient generators for simply-typed
lambda terms and simple types inhabited by terms of a given size. Section 5
defines generators for closed lambda terms in normal form and then replicates
the derivation of an efficient generator for simply-typed closed normal forms.
Section 6 aggregates our experimental performance data and Sect. 7 discusses
possible extensions and future improvements. Section 8 overviews related work
and Sect. 9 concludes the paper.

The paper is structured as a literate Prolog program. The code has been
tested with SWI-Prolog 7.3.8 and YAP 6.3.4. It is also available as a separate
file at http://www.cse.unt.edu/∼tarau/research/2016/lgen.pro.

http://www.cse.unt.edu/~tarau/research/2016/lgen.pro

242 P. Tarau

2 Deriving a Generator for Lambda Terms

Lambda terms can be seen as Motzkin trees [16], also called unary-binary trees,
labeled with lambda binders at their unary nodes and corresponding variables
at the leaves. We will thus derive a generator for them from a generator for
Motzkin trees.

2.1 A Canonical Representation with Logic Variables

We can represent lambda terms [1] in Prolog using the constructors a/2 for appli-
cations, l/2 for lambda abstractions and v/1 for variable occurrences. Variables
bound by the lambdas and their occurrences are represented as logic variables.
As an example, the lambda term λa.(λb.(a (b b)) λc.(a (c c))) will be represented
as l(A,a(l(B,a(v(A),a(v(B),v(B)))),l(C,a(v(A),a(v(C),v(C)))))). As
variables share a unique scope (the clause containing them), this representa-
tion assumes that distinct variables are used for distinct scopes induced by the
lambda binders in terms occurring in a given Prolog clause.

Lambda terms might contain free variables not associated to any binders.
Such terms are called open. A closed term is such that each variable occurrence
is associated to a binder.

2.2 Generating Motzkin Trees

Motzkin-trees (also called binary-unary trees) have internal nodes of arities 1 or
2. Thus they can be seen as a skeleton of lambda terms that ignores binders and
variables and their leaves.

The predicate motzkin/2 generates Motzkin trees with S internal and leaf
nodes.

motzkin(S,X):-motzkin(X,S,0).

motzkin(v)-->[].

motzkin(l(X))-->down,motzkin(X).

motzkin(a(X,Y))-->down,motzkin(X),motzkin(Y).

down(s(X),X).

Motzkin-trees, with leaves assumed of size 1 are counted by the sequence
A001006 in [10]. Alternatively, as in our case, when leaves are assumed of size
0, we obtain binary-unary trees with S internal nodes, counted by the entry
A006318 (Large Schröder Numbers) of [10].

Note the use of the predicate down/2, that assumes natural numbers in unary
notation, with n s/1 symbols wrapped around 0 to denote n ∈ N. As our combi-
natorial generation algorithms will usually be tractable for values of n below 15,
the use of unary notation is comparable (and often slightly faster) than the call to
arithmetic built-ins. Note also that this leads, after the DCG translation, to “pure”
Prolog programs made exclusively of Horn Clauses, as the DCG notation can be
eliminated by threading two extra arguments controlling the size of the terms.

A Hiking Trip Through the Orders of Magnitude 243

To more conveniently call these generators with the usual natural numbers
we define the converter n2s as follows.

n2s(0,0).

n2s(N,s(X)):-N>0,N1 is N-1,n2s(N1,X).

Example 1. Motzkin trees with 2 internal nodes.

?- n2s(1,S),motzkin(S,T).

S = s(0), T = l(v) ;

S = s(0), T = a(v, v) .

2.3 Generating Closed Lambda Terms

We derive a generator for closed lambda terms by adding logic variables as labels
to their binder and variable nodes, while ensuring that the terms are closed, i.e.,
that the function mapping variables to their binders is total.

The predicate lambda/2 builds a list of logic variables as it generates binders.
When generating a leaf variable, it picks “nondeterministically” one of the
binders among the list of binders available, Vs. As in the case of Motzkin trees,
the predicate down/2 controls the number of internal nodes.

lambda(S,X):-lambda(X,[],S,0).

lambda(v(V),Vs)-->{member(V,Vs)}.

lambda(l(V,X),Vs)-->down,lambda(X,[V|Vs]).

lambda(a(X,Y),Vs)-->down,lambda(X,Vs),lambda(Y,Vs).

The sequence A220471 in [10] contains counts for lambda terms of increasing
sizes, with size defined as the number of internal nodes.

Example 2. Closed lambda terms with 2 internal nodes.

?- lambda(s(s(0)),Term).

Term = l(A, l(B, v(B))) ;

Term = l(A, l(B, v(A))) ;

Term = l(A, a(v(A), v(A))) .

3 A Visit to the Other Side: The Language of Types

As a result of the Curry-Howard correspondence, the language of types is iso-
morphic with that of minimal logic, with binary trees having variables at leaf
positions and the implication operator (“->”) at internal nodes. We will rely
on the right associativity of this operator in Prolog, that matches the standard
notation in type theory.

The predicate type skel/3 generates all binary trees with given number of
internal nodes and labels their leaves with unique logic variables. It also collects
the variables to a list returned as its third argument.

244 P. Tarau

type_skel(S,T,Vs):-type_skel(T,Vs,[],S,0).

type_skel(V,[V|Vs],Vs)-->[].

type_skel((X->Y),Vs1,Vs3)-->down,

type_skel(X,Vs1,Vs2),

type_skel(Y,Vs2,Vs3).

Type skeletons are counted by the Catalan numbers (sequence A000108 in [10]).

Example 3. All type skeletons for N = 3.

?- type_skel(s(s(s(0))),T,_).

T = (A->B->C->D) ;

T = (A-> (B->C)->D) ;

T = ((A->B)->C->D) ;

T = ((A->B->C)->D) ;

T = (((A->B)->C)->D) .

The next step toward generating the set of all type formulas is observing that
logic variables define equivalence classes that can be used to generate partitions
of the set of variables, simply by selectively unifying them.

The predicate mpart of/2 takes a list of distinct logic variables and generates
partitions-as-equivalence-relations by unifying them “nondeterministically”. It
also collects the unique variables, defining the equivalence classes as a list given
by its second argument.

mpart_of([],[]).

mpart_of([U|Xs],[U|Us]):-

mcomplement_of(U,Xs,Rs),

mpart_of(Rs,Us).

To implement a set-partition generator, we will split a set repeatedly in
subset+complement pairs with help from the predicate mcomplement of/2.

mcomplement_of(_,[],[]).

mcomplement_of(U,[X|Xs],NewZs):-

mcomplement_of(U,Xs,Zs),

mplace_element(U,X,Zs,NewZs).

mplace_element(U,U,Zs,Zs).

mplace_element(_,X,Zs,[X|Zs]).

To generate set partitions of a set of variables of a given size, we build a list
of fresh variables with the equivalent of Prolog’s length predicate working in
unary notation, len/2.

partitions(S,Ps):-len(Ps,S),mpart_of(Ps,_).

len([],0).

len([_|Vs],s(L)):-len(Vs,L).

The count of the resulting set-partitions (Bell numbers) corresponds to the
entry A000110 in [10].

A Hiking Trip Through the Orders of Magnitude 245

Example 4. Set partitions of size 3 expressed as variable equalities.

?- partitions(s(s(s(0))),P).

P = [A, A, A] ;

P = [A, B, A] ;

P = [A, A, B] ;

P = [A, B, B] ;

P = [A, B, C].

We can then define the language of formulas in minimal logic, among which
tautologies will correspond to simple types, as being generated by the predicate
maybe type/3.

maybe_type(L,T,Us):-type_skel(L,T,Vs),mpart_of(Vs,Us).

Example 5. Well-formed formulas of minimal logic (possibly types) of size 2.

?- maybe_type(s(s(0)),T,_).

T = (A->A->A) ;

T = (A->B->A) ;

T = (A->A->B) ;

T = (A->B->B) ;

T = (A->B->C) ;

T = ((A->A)->A) ;

T = ((A->B)->A) ;

T = ((A->A)->B) ;

T = ((A->B)->B) ;

T = ((A->B)->C) .

The sequence 2,10,75,728,8526,115764,1776060,30240210 counting these
formulas corresponds to the product of Catalan and Bell numbers.

4 Merging the Two Worlds: Generating Simply-Typable
Lambda Terms

One can observe that per-size counts of both the sets of lambda terms and their
potential types are very fast growing. There is an important difference, though,
between computing the type of a given lambda term (if it exists) and computing
an inhabitant of a type (if it exists). The first operation, called type inference is
an efficient operation (linear in practice) while the second operation, called the
inhabitation problem is P-space complete [17].

This brings us to design a type inference algorithm that takes advantage of
operations on logic variables.

4.1 A Type Inference Algorithm

While in a functional language inferring types requires implementing unification
with occurs-check, as shown for instance in [5], this operation is available in

246 P. Tarau

Prolog as a built-in predicate, optimized, for instance, in SWI-Prolog [18], to
proceed incrementally, only checking that no new cycles are introduced during
the unification step as such.

The predicate infer type/3 works by using logic variables as dictionaries
associating terms to their types. Each logic variable is then bound to a term of
the form X:T where X will be a component of a fresh copy of the term and T will
be its type. Note that we create this new term as the original term’s variables
end up loaded with chunks of the partial types created during the type inference
process.

As logic variable bindings propagate between binders and occurrences, this
ensures that types are consistently inferred.

infer_type((v(XT)),v(X),T):-unify_with_occurs_check(XT,X:T).

infer_type(l((X:TX),A),l(X,NewA),(TX->TA)):-infer_type(A,NewA,TA).

infer_type(a(A,B),a(X,Y),TY):-infer_type(A,X,(TX->TY)),infer_type(B,Y,TX).

Example 6. illustrates typability of the term corresponding to the S combinator
λx0.λx1.λx2.((x0 x2) (x1 x2))
and untypabilty of the term corresponding to the Y combinator
λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))).

?- infer_type(l(A,l(B,l(C,a(a(v(A),v(C)),a(v(B),v(C)))))),X,T),

portray_clause((T:-X)),fail.

(A->B->C)-> (A->B)->A->C :-

l(D,l(F,l(E, a(a(v(D), v(E)), a(v(F), v(E)))))).

?- infer_type(

l(A,a(l(B,a(v(A),a(v(B),v(B)))),l(C,a(v(A),a(v(C),v(C)))))), X, T).

false.

By combining generation of lambda terms with type inference we have our
first cut to an already surprisingly fast generator for simply-typable lambda
terms, able to generate in a few hours counts for sizes 11 and 12 for sequence
A220471 in [10].

lamb_with_type(S,X,T):-lambda(S,XT),infer_type(XT,X,T).

Example 7. Lambda terms of size up to 3 and their types.

?- lamb_with_type(s(s(s(0))),Term,Type).

Term = l(A, l(B, l(C, v(C)))), Type = (D->E->F->F) ;

Term = l(A, l(B, l(C, v(B)))), Type = (D->E->F->E) ;

Term = l(A, l(B, l(C, v(A)))), Type = (D->E->F->D) ;

Term = l(A, l(B, a(v(B), v(A)))), Type = (C-> (C->D)->D) ;

Term = l(A, l(B, a(v(A), v(B)))), Type = ((C->D)->C->D) ;

Term = l(A, a(v(A), l(B, v(B)))), Type = (((C->C)->D)->D) ;

Term = l(A, a(l(B, v(B)), v(A))), Type = (C->C) ;

Term = l(A, a(l(B, v(A)), v(A))), Type = (C->C) ;

Term = a(l(A, v(A)), l(B, v(B))), Type = (C->C).

A Hiking Trip Through the Orders of Magnitude 247

Note that, for instance, when one wants to select only terms having a given
type, this is quite inefficient. Next, we will show how to combine size-bound term
generation, testing for closed terms and type inference into a single predicate.
This will enable more efficient querying for terms inhabiting a given type, as one
would expect from Prolog’s multi-directional execution model, and more impor-
tantly for our purposes, to climb two orders of magnitude higher for counting
simply-typed terms of size 13 and 14.

4.2 Combining Term Generation and Type Inference

We need two changes to infer type to turn it into an efficient generator for
simply-typed lambda terms. First, we need to add an argument to control the
size of the terms and ensure termination, by calling down/2 for internal nodes.
Second, we need to generate the mapping between binders and variables. We
ensure this by borrowing the member/2-based mechanism used in the predicate
lambda/4 generating closed lambda terms in Subsect. 2.3.

The predicate typed lambda/3 does just that, with helper from DCG-
expanded typed lambda/5.

typed_lambda(S,X,T):-typed_lambda(_XT,X,T,[],S,0).

typed_lambda(v(V:T),v(V),T,Vs)--> {

member(V:T0,Vs),

unify_with_occurs_check(T0,T)

}.

typed_lambda(l(X:TX,A),l(X,NewA),(TX->TY),Vs)-->down,

typed_lambda(A,NewA,TY,[X:TX|Vs]).

typed_lambda(a(A,B),a(NewA,NewB),TY,Vs)-->down,

typed_lambda(A,NewA,(TX->TY),Vs),

typed_lambda(B,NewB,TX,Vs).

Like lambda/4, the predicate typed lambda/5 relies on Prolog’s DCG nota-
tion to thread together the steps controlled by the predicate down. Note also
the nondeterministic use of the built-in member/2 that enumerates values for
variable:type pairs ranging over the list of available pairs Vs, as well as the
use of unify with occurs check to ensure that unification of candidate types
does not create cycles.

Example 8. A simply-typed term of size 15 and its type.

l(A,l(B,l(C,l(D,l(E,l(F,l(G,l(H,l(I,l(J,l(K,

a(v(I),l(L,a(a(v(E),v(J)),v(J)))))))))))))))

M->N->O->P-> (Q->Q->R)->S->T->U-> ((V->R)->W)->Q->X->W

We will discuss exact performance data later, but let’s note here that this
operation brings down by an order of magnitude the computational effort to
generate simply-typed terms. As expected, the number of solutions is computed
as the sequence A220471 in [10]. Interestingly, by interleaving generation of closed
terms and type inference in the predicate typed lambda, the time to generate

248 P. Tarau

all the closed simply-typed terms is actually shorter than the time to generate
all closed terms of the same size, e.g., 17.123 vs. 31.442 seconds for size 10 with
SWI-Prolog. As, via the Curry-Howard isomorphism, closed simply typed terms
correspond to proofs of tautologies in minimal logic, co-generation of terms and
types corresponds to co-generation of tautologies and their proofs for proofs of
given length.

4.3 One More Trim: Generating Inhabited Types

Let’s first observe that the actual lambda term does not need to be built, pro-
vided that we mimic exactly the type inference operations that one would need
to perform to ensure it is simply-typed. It is thus safe to remove the first argu-
ment of typed lambda/5 as well as the building of the fresh copy performed
in the second argument. To further simplify the code, we can also make the
DCG-processing of the size computations explicit, in the last two arguments.

This gives the predicate inhabited type/4 and then inhabited type/2,
that generates all types having inhabitants of a given size, but omits the inhab-
itants as such.

inhabited_type(X,Vs,N,N):-

member(V,Vs),

unify_with_occurs_check(X,V).

inhabited_type((X->Xs),Vs,s(N1),N2):-

inhabited_type(Xs,[X|Vs],N1,N2).

inhabited_type(Xs,Vs,s(N1),N3):-

inhabited_type((X->Xs),Vs,N1,N2),

inhabited_type(X,Vs,N2,N3).

Clearly the multiset of generated types has the same count as the set of their
inhabitants and this brings us an additional 1.5x speed-up.

inhabited_type(S,T):-inhabited_type(T,[],S,0).

One more (easy) step, giving a 3x speed-up, makes reaching counts
for sizes 13 and 14 achievable: using a faster Prolog, with a similar
unify with occurs check built-in, like YAP [19], with the last value computed
in less than a day.

Example 9. The sequence A220471 completed up to N = 14

first 10: 1,2,9,40,238,1564,11807,98529,904318,9006364

11: 96,709,332

12: 1,110,858,977

13: 13,581,942,434

14: 175,844,515,544

A Hiking Trip Through the Orders of Magnitude 249

5 Doing It once More: Generating Closed Simply-Typed
Normal Forms

We will devise similar methods for an important subclass of simply-typed lambda
terms.

5.1 Generating Normal Forms

Normal forms are lambda terms that cannot be further reduced. A normal form
should not be an application with a lambda as its left branch and, recursively,
its subterms should also be normal forms. The predicate normal form/2 uses
normal form/4 to define them inductively and generates all normal forms with
S internal nodes.

normal_form(S,T):-normal_form(T,[],S,0).

normal_form(v(X),Vs)-->{member(X,Vs)}.

normal_form(l(X,A),Vs)-->down,normal_form(A,[X|Vs]).

normal_form(a(v(X),B),Vs)-->down,normal_form(v(X),Vs),normal_form(B,Vs).

normal_form(a(a(X,Y),B),Vs)-->down,normal_form(a(X,Y),Vs),normal_form(B,Vs).

Example 10. Illustrates closed normal forms with 2 internal nodes.

?- normal_form(s(s(0)),NF).

NF = l(A, l(B, v(B))) ;

NF = l(A, l(B, v(A))) ;

NF = l(A, a(v(A), v(A))) .

The number of solutions of our generator replicates entry A224345 in [10] that
counts closed normal forms of various sizes.

The predicate nf with type applies the type inference algorithm to the gen-
erated normal forms of size S.

nf_with_type(S,X,T):-normal_form(S,XT),infer_type(XT,X,T).

5.2 Merging in Type Inference

Like in the case of the set of simply-typed lambda terms, we can define the more
efficient combined generator and type inferrer predicate typed nf/2.

typed_nf(S,X,T):-typed_nf(_XT,X,T,[],S,0).

It works by calling the DCG-expended typed nf/4 predicate, with the last
two arguments enforcing the size constraints.

typed_nf(v(V:T),v(V),T,Vs)--> {

member(V:T0,Vs),

unify_with_occurs_check(T0,T)

}.

typed_nf(l(X:TX,A),l(X,NewA),(TX->TY),Vs)-->down,

250 P. Tarau

typed_nf(A,NewA,TY,[X:TX|Vs]).

typed_nf(a(v(A),B),a(NewA,NewB),TY,Vs)-->down,

typed_nf(v(A),NewA,(TX->TY),Vs),

typed_nf(B,NewB,TX,Vs).

typed_nf(a(a(A1,A2),B),a(NewA,NewB),TY,Vs)-->down,

typed_nf(a(A1,A2),NewA,(TX->TY),Vs),

typed_nf(B,NewB,TX,Vs).

Example 11. Simply-typed normal forms up to size 3.
?- typed_nf(s(s(s(0))),Term,Type).

Term = l(A, l(B, l(C, v(C)))),

Type = (D->E->F->F) ;

...

Term = l(A, a(v(A), l(B, v(B)))),

Type = (((C->C)->D)->D) .

We are now able to efficiently generate counts for simply-typed normal forms
of a given size.
Example 12. Counts for closed simply-typed normal forms up to N=14.
first 10: 1,2,6,23,108,618,4092,30413,252590,2297954

11: 22,640,259

12: 240,084,189

13: 2,721,455,329

14: 32,783,910,297

Note that if we would want to just collect the set of types having inhabitants
of a given size, the preservation of typability under β-reduction property [3] would
allow us to work with the (smaller) set of simply-typed terms in normal form.

6 Experimental Data

Figure 1 gives the number of logical inferences as counted by SWI-Prolog. This
is a good measure of computational effort except for counting operations like
unify with occurs check as a single step, while its actual complexity depends
on the size of the terms involved. Therefore, Fig. 2 gives actual timings for the
same operations above N=5, where they start to be meaningful.

The “closed λ-terms” column gives logical inferences and timing for gen-
erating all closed lambda terms of size given in column 1. The column “gen,
then infer” covers the algorithm that first generates lambda terms and then
infers their types. The column “gen + infer” gives performance data for the
significantly faster algorithm that merges generation and type inference in the
same predicate. The column “inhabitants” gives data for the case when actual
inhabitants are omitted in the merged generation and type inference process. The
column “typed normal form” shows results for the fast, merged generation and
type inference for terms in normal form.

As moving from a size to the next typically adds one order of magnitude of
computational effort, computing values for N=15 and N=16 is reachable with our
best algorithms for both simply typed terms and their normal form subset.

A Hiking Trip Through the Orders of Magnitude 251

Size closed λ-terms gen, then infer gen + infer inhabitants typed normal form
1 15 19 16 9 19
2 44 59 50 28 47
3 166 261 188 113 127
4 810 1,517 864 553 429
5 4,905 10,930 4,652 3,112 1,814
6 35,372 92,661 28,878 19,955 9,247
7 294,697 895,154 202,526 143,431 55,219
8 2,776,174 9,647,495 1,586,880 1,146,116 377,745
9 29,103,799 114,273,833 13,722,618 10,073,400 2,896,982

10 335,379,436 1,471,373,474 129,817,948 96,626,916 24,556,921

Fig. 1. Number of logical inferences used by our generators, as counted by SWI-Prolog

Size closed λ-terms gen, then infer gen + infer inhabitants typed normal form
5 0.001 0.001 0.001 0.000 0.001
6 0.005 0.011 0.004 0.002 0.004
7 0.028 0.114 0.029 0.018 0.011
8 0.257 1.253 0.242 0.149 0.050
9 2.763 15.256 2.080 1.298 0.379

10 32.239 199.188 19.888 12.664 3.329

Fig. 2. Timings (in seconds) for our generators up to size 10 (on a 2015 MacBook,
with 1.3 GHz Intel Core M processor)

7 Discussion

An interesting open problem is if this can be pushed significantly farther. We
have looked into term hash based indexing and tabling-based dynamic program-
ming algorithms, using de Bruijn terms. Unfortunately as subterms of closed
terms are not necessarily closed, even if de Bruijn terms can be used as ground
keys, their associated types are incomplete and dependent on the context in
which they are inferred.

While it only offers a constant factor speed-up, parallel execution is a more
promising possibility. However, given the small granularity of the generation
and type inference process, the most useful parallel execution mechanism would
simply split the task of combined generation and inference process into a number
of disjoint sets, corresponding to the number of available processors. A way to
do this, is by using unranking functions (bijections originating in N) to the sets
of combinatorial objects involved, and then, for k processors, assign work on
successive numbers belonging to the same equivalence class modulo k. Another
way is to first generate Motzkin trees and then launch threads to “flesh them
up” with logic variables, run the type inference steps and collect success counts
atomically.

We have not seen any obvious way to improve these results using constraint
programing systems, partly because the “inner loop” computation is unification

252 P. Tarau

with occurs check with computations ranging over Prolog terms rather than
being objects of a constraint domain. On the other hand, for a given size, explor-
ing grounding to propositional formulas or answer-set programming seems worth
exploring as a way to take advantage of today’s fast SAT-solvers.

Several concepts of size have been used in the literature, for reasons ranging
from simplifying evaluation procedures, to matching the structure of the terms
naturally occurring in practical programs [20]. As a byproduct, some size defi-
nitions also result in better convergence conditions of formal series in analytic
combinatorics [21]. Our techniques can be easily adapted to a different size def-
inition like the ones in [20,21] where variables in de Bruijn notation have a size
proportional to the distance to their binder. We have not discussed here the
use of similar techniques to improve the Boltzmann samplers described to [22],
but clearly interleaving type checking with the probability-driven building of the
terms would improve their performance, by excluding terms with ill-typed sub-
terms as early as possible, during the large number of retries needed to overcome
the asymptotically 0-density of simply-typed terms in the set of closed terms [6].

8 Related Work

The classic reference for lambda calculus is [1]. Various instances of typed lambda
calculi are overviewed in [3].

The combinatorics and asymptotic behavior of various classes of lambda
terms are extensively studied in [5,8]. Distribution and density properties of
random lambda terms are described in [6].

Generation of random simply-typed lambda terms and its applications to
generating functional programs from type definitions is covered in [23].

Asymptotic density properties of simple types (corresponding to tautologies
in minimal logic) have been studied in [24] with the surprising result that “almost
all” classical tautologies are also intuitionistic ones.

In [4] a “type-directed” mechanism for the generation of random terms is
introduced, resulting in more realistic (while not uniformly random) terms, used
successfully in discovering some bugs in the Glasgow Haskell Compiler (GHC).
A statistical exploration of the structure of the simple types of lambda terms of
a given size in [14] gives indications that some types frequent in human-written
programs are among the most frequently inferred ones.

Generators for closed simply-typed lambda terms, as well as their normal
forms, expressed as functional programming algorithms, are given in [5], derived
from combinatorial recurrences. However, they are significantly more complex
than the ones described here in Prolog, and limited to terms up to size 10.

In the unpublished draft [15] we have collected several lambda term gen-
eration algorithms written in Prolog and covering mostly de Bruijn terms and
a compressed de Bruijn representation. Among them, we have covered linear,
affine linear terms as well as terms of bounded unary height and in binary
lambda calculus encoding. In [15] type inference algorithms are also given for
SK and Rosser’s X-combinator expressions. A similar (but slower) program for

A Hiking Trip Through the Orders of Magnitude 253

type inference using de Bruijn notation is also given in the unpublished draft
[15], without however describing the step-by-step derivation steps leading to it,
as done in this paper.

In [25] a general constraint logic programming framework is defined for size-
constrained generation of data structures as well as a program-transformation
mechanism. While our fine-tuned interleaving of term generation and type infer-
ence directly provides the benefits of a CLP-based scheme, the program transfor-
mation techniques described in [25] are worth exploring for possible performance
improvements. In [26] a general Haskell-based framework for generating enumer-
able structures is introduced. While clearly useful for arbitrary free structures,
the fine-grained interleaving of generation and type inference of this paper do
not seem to be embeddable in it with similar performance gains.

9 Conclusion

We have derived several logic programs that have helped solve the fairly hard
combinatorial counting and generation problem for simply-typed lambda terms,
4 orders of magnitude higher than previously published results.

This has put at test two simple but effective program transformation tech-
niques naturally available in logic programming languages: (1) interleaving gen-
erators and testers by integrating them in the same predicate and (2) dropping
arguments used in generators when used simply as counters of solutions, as in
this case their role can be kept implicit in the recursive structure of the pro-
gram. Both have turned out to be effective for speeding up computations with-
out changing the semantics of their intended application. We have also managed
(after a simple DCG translation) to work within in the minimalist framework
of Horn Clauses with sound unification, showing that non-trivial combinatorics
problems can be handled without any of Prolog’s impure features.

Our techniques, combining unification of logic variables with Prolog’s back-
tracking mechanism and DCG grammar notation, recommend logic program-
ming as a convenient meta-language for the manipulation of various families of
lambda terms and the study of their combinatorial and computational properties.

Acknowledgement. This research has been supported by NSF grant 1423324.
We thank the anonymous reviewers of LOPSTR’16 for their constructive sugges-

tions and the participants of the 9th Workshop Computational Logic and Applications
(https://cla.tcs.uj.edu.pl/) for enlightening discussions and for sharing various tech-
niques clarifying the challenges one faces when having a fresh look at the emerging,
interdisciplinary field of the combinatorics of lambda terms and their applications.

References

1. Barendregt, H.P.: The Lambda Calculus its Syntax and Semantics. Revised edn.
vol. 103. North Holland (1984)

2. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction.
vol. 13. Cambridge University Press, Cambridge (2008)

https://cla.tcs.uj.edu.pl/

254 P. Tarau

3. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science, vol. 2. Oxford University Press (1991)

4. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Work-
shop on Automation of Software Test, AST 2011, pp. 91–97. ACM, New York
(2011)

5. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(5), 594–628 (2013)

6. David, R., Raffalli, C., Theyssier, G., Grygiel, K., Kozik, J., Zaionc, M.: Some
properties of random lambda terms. Logical Methods Comput. Sci. 9(1) (2009)

7. Bodini, O., Gardy, D., Gittenberger, B.: Lambda-terms of bounded unary height.
In: ANALCO, SIAM, pp. 23–32 (2011)

8. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing. Preprint: arXiv: math.
LO/0903.5505 v3 (2010)

9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University
Press, New York (2009)

10. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. (2014) Published
electronically at https://oeis.org/

11. Tarau, P.: On logic programming representations of lambda terms: de bruijn
indices, compression, type inference, combinatorial generation, normalization. In:
Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp. 115–131. Springer,
Cham (2015). doi:10.1007/978-3-319-19686-2 9

12. Tarau, P.: Ranking/unranking of lambda terms with compressed de bruijn
indices. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS, vol. 9150, pp. 118–133. Springer, Cham (2015). doi:10.1007/
978-3-319-20615-8 8

13. Tarau, P.: On a uniform representation of combinators, arithmetic, lambda terms
and types. In: Albert, E. (ed.) PPDP’15: Proceedings of the 17th international
ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming, pp. 244–255. ACM, New York (2015)

14. Tarau, P.: On type-directed generation of lambda terms. In: De Vos, M., Eiter, T.,
Lierler, Y., Toni, F. (eds.) 31st International Conference on Logic Programming
(ICLP 2015), Technical Communications, Cork, Ireland, CEUR available online at
September 2015 http://ceur-ws.org/Vol-1433/

15. Tarau, P.: A logic programming playground for lambda terms, combinators, types
and tree-based arithmetic computations. CoRR abs/1507.06944 (2015)

16. Stanley, R.P.: Enumerative Combinatorics. Wadsworth Publ. Co., Belmont (1986)
17. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theor.

Comput. Sci. 9, 67–72 (1979)
18. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract.

Logic Program. 12, 67–96 (2012)
19. Costa, V.S., Rocha, R., Damas, L.: The YAP Prolog system. Theory and Practice

of Logic Programming 12, 5–34 (2012)
20. Grygiel, K., Lescanne, P.: Counting and generating terms in the binary lambda

calculus. J. Funct. Program. 25 (2015)
21. Bendkowski, M., Grygiel, K., Lescanne, P., Zaionc, M.: A natural counting of

lambda terms. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 183–194. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 15

http://arxiv.org/abs/math
https://oeis.org/
http://dx.doi.org/10.1007/978-3-319-19686-2_9
http://dx.doi.org/10.1007/978-3-319-20615-8_8
http://dx.doi.org/10.1007/978-3-319-20615-8_8
http://ceur-ws.org/Vol-1433/
http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/978-3-662-49192-8_15

A Hiking Trip Through the Orders of Magnitude 255

22. Lescanne, P.: Boltzmann samplers for random generation of lambda terms. CoRR
abs/1404.3875 (2014)

23. Fetscher, B., Claessen, K., Pa�lka, M., Hughes, J., Findler, R.B.: Making random
judgments: automatically generating well-typed terms from the definition of a type-
system. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 383–405. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46669-8 16

24. Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. classical tautologies, quan-
titative comparison. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES
2007. LNCS, vol. 4941, pp. 100–109. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68103-8 7

25. Fioravanti, F., Proietti, M., Senni, V.: Efficient generation of test data structures
using constraint logic programming and program transformation. J. Logic Comput.
25(6), 1263–1283 (2015)

26. Kuraj, I., Kuncak, V., Jackson, D.: Programming with enumerable sets of struc-
tures. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, pp. 37–56. ACM, New York (2015)

http://dx.doi.org/10.1007/978-3-662-46669-8_16
http://dx.doi.org/10.1007/978-3-540-68103-8_7
http://dx.doi.org/10.1007/978-3-540-68103-8_7

Semantics and Model Checking

A Reversible Semantics for Erlang

Naoki Nishida1, Adrián Palacios2, and Germán Vidal2(B)

1 Graduate School of Informatics, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 4648603, Japan

nishida@i.nagoya-u.ac.jp
2 MiST, DSIC, Universitat Politècnica de València,

Camino de Vera, s/n, 46022 Valencia, Spain
{apalacios,gvidal}@dsic.upv.es

Abstract. In a reversible language, any forward computation can be
undone by a finite sequence of backward steps. Reversible computing
has been studied in the context of different programming languages and
formalisms, where it has been used for debugging and for enforcing fault-
tolerance, among others. In this paper, we consider a subset of Erlang, a
concurrent language based on the actor model, and formally introduce a
semantics for reversible computation. To the best of our knowledge, this
is the first attempt to define a reversible semantics for Erlang.

1 Introduction

Let us consider that the operational semantics of a programming language is
specified by a state transition relation R such that R(s, s′) holds if the state
s′ is reachable—in one step—from state s. As it is common practice, we let R∗

denote the reflexive and transitive closure of R. Then, we say that a programming
language (or formalism) is reversible if there exists a constructive algorithm that
can be used to, given a computation from state s to state s′, in symbols R∗(s, s′),
obtain the state s from s′. In general, such a property does not hold for most
programming languages and formalisms. We refer the interested reader to, e.g.,
[3,10,24,25] for a high level account of the principles of reversible computation.

The notion of reversible computation was first introduced in Landauer’s sem-
inal work [14] and, then, further improved by Bennett [2] in order to avoid the
generation of “garbage” data. The idea underlying these works is that any pro-
gramming language or formalism can be made reversible by adding the history of

This work has been partially supported by the EU (FEDER) and the Spanish Min-
isterio de Economı́a y Competitividad (MINECO) under grants TIN2013-44742-
C4-1-R and TIN2016-76843-C4-1-R, by the Generalitat Valenciana under grant
PROMETEO-II/2015/013 (SmartLogic), and by COST Action IC1405 on Reversible
Computation - extending horizons of computing.
Partially supported by the EU (FEDER) and the Spanish programs Ayudas para
contratos predoctorales para la formación de doctores and Ayudas a la movilidad
predoctoral para la realización de estancias breves en centros de I+D, MINECO
(SEIDI), under FPI grants BES-2014-069749 and EEBB-I-16-11469.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 259–274, 2017.
DOI: 10.1007/978-3-319-63139-4 15

260 N. Nishida et al.

the computation to each state, which is usually called a Landauer’s embedding.
Although carrying the history of a computation might seem infeasible because
of its size, there are several successful proposals that are based on this idea. In
particular, one can restrict the original language or apply a number of analysis
in order to restrict the required information in the history as much as possible,
as in, e.g., [18,19,22] in the context of a functional language.

In this paper, we aim at introducing a form of reversibility in the context
of a programming language that follows the actor model (concurrency based
on message passing), and that can be considered as a subset of the concurrent
and functional language Erlang [1]. Previous approaches have mainly considered
reversibility in—mostly synchronous—concurrent calculi like CCS [7,8], a gen-
eral framework for reversibility of algebraic process calculi [20], or the recent
approach to reversible session-based π-calculus [23]. However, we can only find
a few approaches that considered the reversibility of asynchronous calculi, e.g.,
Cardelli and Laneve’s reversible structures [5] or the approach based on a roll-
back construct of [11,15,16] (for a higher-order asynchronous π-calculus), [12]
(for μKlaim) and [17] (for μOz).

To the best of our knowledge, our work is the first one that considers
reversibility in the context of the functional, concurrent, and distributed lan-
guage Erlang. Here, given a running Erlang system consisting of a pool of inter-
acting processes, possibly distributed in several computers, we aim at allowing
a single process to undo its actions in a stepwise manner, including the inter-
actions with other processes, following a rollback fashion. In this context, we
must ensure causal consistency [7], i.e., an action cannot be undone until all the
actions that depend on it have already been undone. E.g., if a process spawns
another process, we cannot undo this process spawning until all the actions per-
formed by the new process are undone too. This is particularly challenging in
our asynchronous and distributed setting since there is no global order for the
language events. In this paper, we introduce a rollback operator that undoes the
actions of a process until a given checkpoint is reached.

In this paper, we consider a simple Erlang-like language that can be consid-
ered a subset of Core Erlang [6]. We present the following contributions: First,
we introduce an appropriate standard semantics for the language. In contrast
to monolothic previous semantics like that in [4], our semantics is more modu-
lar, which simplifies the definition of a reversible extension. In contrast to [21],
although we follow some of the ideas in this approach (e.g., the use of a global
mailbox), we include the evaluation of expressions and, moreover, our treatment
of messages is more deterministic.1 We then introduce a reversible extension of
the standard semantics (basically, a Landauer’s embedding) where forward and
backward computations are done stepwise. Here, we focus only on the concur-
rent actions (namely, process spawning, message sending and receiving) and,
thus, do not consider the reversibilization of the functional component of the

1 E.g., in the semantics of [21], at the expression level, the semantics of an expres-
sion containing a receive statement is, in principle, infinitely branching, since their
formulation allows for an infinite number of possible queues and selected messages.

A Reversible Semantics for Erlang 261

Module ::= module Atom = fun1, . . . , funn

fun ::= fname = fun (X1, . . . , Xn) expr
fname ::= Atom/Integer

lit ::= Atom | Integer | Float | []
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 expr2
pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Fig. 1. Language syntax rules

language; rather, we assume that the state of the process—the current expres-
sion and its environment—is stored in the history after each execution step.
This approach could be improved following, e.g., the approaches from [18,19,22].
Finally, we introduce a backward semantics that can be used to undo the actions
of a given process, in a rollback fashion, until a checkpoint—introduced by the
programmer—is reached. Here, ensuring causal consistency is essential and might
propagate the rollback action to other, dependent processes.

2 Language Syntax

In this section, we present the syntax of a first-order concurrent and distrib-
uted functional language that follows the actor model. Our language is basically
equivalent to a subset of Core Erlang [6].

The syntax of the language can be found in Fig. 1. Here, a module is a
sequence of function definitions, where each function name f/n (atom/arity)
has an associated definition of the form fun (X1, . . . , Xn) → e. We consider
that a program consists of a single module for simplicity. The body of a func-
tion is an expression, which can include variables, literals, function names, lists,
tuples, calls to built-in functions—mainly arithmetic and relational operators—,
function applications, case expressions, let bindings, and receive expressions; fur-
thermore, we also consider the functions spawn, “!” (for sending a message), and
self() that are usually considered built-ins in the Erlang language.

Despite the general syntax in Fig. 1, as mentioned before, we only consider
first-order expressions. Therefore, the first expression in calls, applications and
spawns can only be function names (instead of arbitrary expressions or closures).

In this language, we distinguish expressions, patterns, and values. As men-
tioned before, expressions can include all constructs of the language. In contrast,
patterns are built from variables, literals, lists, and tuples. Finally, values are built
from literals, lists, and tuples, i.e., they are ground—without variables—patterns.
Expressions are denoted by e, e′, e1, e2, . . ., patterns by p, p′, p1, p2, . . . and
values by v, v′, v1, v2, . . . As it is common practice, a substitution θ is a mapping

262 N. Nishida et al.

from variables to expressions such that Dom(θ) = {X ∈ Var | X �= θ(X)}
is its domain. Substitutions are usually denoted by sets of mappings like, e.g.,
{X1 �→ v1, . . . , Xn �→ vn}. Substitutions are extended to morphisms from expres-
sions to expressions in the natural way. The identity substitution is denoted by
id. Composition of substitutions is denoted by juxtaposition, i.e., θθ′ denotes a
substitution θ′′ such that θ′′(X) = θ′(θ(X)) for all X ∈ Var . Also, we denote by
θ[X1 �→ v1, . . . , Xn �→ vn] the update of θ with the mapping X1 �→ v1, . . . , Xn �→
vn, i.e., it denotes a new substitution θ′ such that θ′(X) = vi if X = Xi, for some
i ∈ {1, . . . , n}, and θ′(X) = θ(X) otherwise.

In a case expression “case e of p1 when e1 → e′
1; . . . ; pn when en → e′

n end”,
we first evaluate e to a value, say v; then, we should find (if any) the first clause
pi when ei → e′

i such that v matches pi (i.e., there exists a substitution σ for the
variables of pi such that v = piσ) and eiσ—the guard—reduces to true; then,
the case expression reduces to e′

iσ. Note that guards can only contain calls to
built-in functions (typically, arithmetic and relational operators).

As for the concurrent features of the language, we consider that a system
is of a pool of processes that can only interact through message sending and
receiving (i.e., there is no shared memory). Each process has an associated pid
(process identifier), which is unique in a system. For clarity, we often denote
pids with roman letters p,p′,p1, . . ., though they are considered values in our
language (i.e., atoms). By abuse of notation, when no confusion can arise, we
refer to a process with its pid.

An expression of the form spawn(f/n, [e1, . . . , en]) has, as a side effect, the
creation of a new process with a fresh pid p which is initialized with the expres-
sion apply f/n (e1, . . . , en); the expression spawn(f/n, [e1, . . . , en]) itself evalu-
ates to the new pid p. The function self() just returns the pid of the current
process. An expression of the form p ! v evaluates to the value v and, as a side
effect, stores the value v—the message—in the queue or mailbox of process p.

Finally, an expression “receive p1 when e1 → e′
1; . . . ; pn when en → e′

n end”
traverses the messages in the process’ queue until one of them matches a branch
in the receive statement; i.e., it should find the first message v in the process’
queue (if any) such that case v of p1 when e1 → e′

1; . . . ; pn when en → e′
n end

can be reduced; then, the receive expression evaluates to the same expression
to which the above case expression would be evaluated, with the additional side
effect of deleting the message v from the process’ queue. If there is no match-
ing message in the queue, the process suspends its execution until a matching
message arrives.

Example 1. Consider the program shown in Fig. 2, where the symbol “ ” is used
to denote an anonymous variable, i.e., a variable whose name is not relevant.
The computation starts with “apply main/0 ().” Then, this process, say P1,
spawns two new processes, say P2 and P3, and then sends the message “world”
to process P3 and the message {P3, hello} to process P2, which then resends
“hello” to P3. In our language, there is no guarantee regarding which message
arrives first to P3, i.e., “apply main/0 ()” can evaluate nondeterministically to
either {hello, world} or {world, hello}. This is coherent with the semantics of

A Reversible Semantics for Erlang 263

Fig. 2. A simple concurrent program

Erlang, where the only guarantee is that if two messages are sent from process
p to process p′ and both are delivered, then the order of these messages is kept.

3 The Language Semantics

In order to set precisely the framework for our proposal, in this section we
formalize the semantics of the considered language.

Definition 1 (process). A process is denoted by a tuple of the form 〈p, (θ, e), q〉
where p is the pid of the process, (θ, e) is the control of the state—which consists
of an environment (a substitution) and an expression to be evaluated—, and q
is the process’ mailbox, a FIFO queue with the sequence of messages that have
been sent to the process.

A running system is then a pool of processes, which is formally defined as follows:

Definition 2 (system). A system is denoted by Γ ;Π, where Γ is a global mail-
box of the system (see below) and Π is a pool of processes, denoted by an expres-
sion of the form 〈p1, (θ1, e1), q1〉 & · · · & 〈pn, (θn, en), qn〉, where “&” is an asso-
ciative and commutative operator. We typically denote a system by an expression
of the form Γ ; 〈p, (θ, e), q〉&Π to point out that 〈p, (θ, e), q〉 is an arbitrary process
of the pool (thanks to the fact that “&” is associative and commutative).

The role of Γ (which is similar to the “ether” in [21]) will be clarified later,
but it is essential to guarantee that all admissible interleavings can be mod-
elled with the semantics. Here, we define Γ as a set of FIFO queues among
all (non-necessarily different) pids, i.e., Γ is made of elements of the form
(p, q, [v1, . . . , vn]), where p, q are (not necessarily different) pids and [v1, . . . , vn]
is a (possibly empty) ordered list of messages such that v1 is the oldest mes-
sage and vn is the most recent one. For simplicity, we assume that Γ is initial-
ized as follows: {(p, q, []) | p, q are pids}. Then, we use the following notation:
Γ ∪ (p, q, v) denotes Γ \{(p, q, vs)}∪{(p, q, vs++[v])}, while Γ \ (p, q, v) denotes
Γ \ {(p, q, v : vs)} ∪ {(p, q, vs)}, where ++ is the list concatenation operator.

In the following, we denote by on the sequence of syntactic objects o1, . . . , on
for some n. We also write oi,j for the sequence oi, . . . , oj when i ≤ j (and the

264 N. Nishida et al.

Fig. 3. Standard semantics: evaluation of sequential expressions

empty sequence otherwise). We write o when the number of elements is not
relevant.

The semantics is defined by means of two transition relations: −→ for expres-
sions and �−→ for systems. Let us first consider the labelled transition relation

−→ : (Env,Exp) × Label × (Env,Exp)

where Env and Exp are the domains of environments (i.e., substitutions) and
expressions, respectively, and Label denotes an element of the set

{τ, send(v1, v2), rec(y, cln), spawn(y, a/n, [en]), self(y)}

whose meaning will be explained below. For clarity, we divide the transition
rules of the semantics for expressions in two sets, depicted in Figs. 3 and 4 for
sequential and concurrent expressions, respectively.

Most of the rules are self-explanatory. In the following, we only discuss some
subtle or complex issues. In principle, the transitions are labelled either with τ (a
sequential expression) or with a label that identifies a concurrent action. Labels
are used in the system rules (Fig. 5) to perform the associated side effects.

In some of the rules (e.g., for evaluating tuples, lists, etc.) we consider for
simplicity that elements are evaluated in a non-deterministic way. In an actual
programming language the order of evaluation of the arguments in the tuple or
list is usually fixed. E.g., in Erlang, reduction takes place from left to right.

A Reversible Semantics for Erlang 265

(Send1)
θ, e1

�
θ′, e′

1

θ, e1 ! e2
�

θ′, e′
1 ! e2

θ, e2
�

θ′, e′
2

θ, e1 ! e2
�

θ′, e1 ! e′
2

(Send2)
θ, v1 ! v2

send(v1,v2)
θ, v2

(Receive)

θ, receive cl1; . . . ; cln end
rec(y,cln)

θ, y

(Spawn)
θ, spawn(a/n, [e1, . . . , en])

spawn(y,a/n,[en])
θ, y

(Self)
θ, self()

self(y)
θ, y

Fig. 4. Standard semantics: evaluation of concurrent expressions

For case evaluation, we assume an auxiliary function match which selects the
first clause, cli = (pi when e′

i → ei), such that v matches pi, i.e., v = θi(pi), and
the guard holds, i.e., θθi, e

′
i −→∗ θ′, true. Note that, for simplicity, we do not

consider here the case in which the argument v matches no clause.
Function calls can either be defined in the program (apply) or be a built-in

(call). In the latter case, they are evaluated using the auxiliary function eval. In
rule Apply2 , we consider that the mapping μ stores all function definitions, i.e., it
maps every function name a/n to its definition fun (X1, . . . , Xn) → e in the pro-
gram. As for the applications, note that we only consider first-order functions. In
order to extend our semantics to also consider higher-order functions, one should
reduce the function name to a closure of the form (θ′, fun (X1, . . . , Xn) → e)
and, then, reduce e in the environment θ′[X1 �→ v1, . . . , Xn �→ vn]. We skip this
extension since it is orthogonal to our approach.

Let us now consider the evaluation of concurrent expressions that produce
some side effect (Fig. 4). Here, we can distinguish two kinds of rules. On the
one hand, we have the rules for “!”, Send1 and Send2 . In this case, we know
locally what the expression should be reduced to (i.e., v2 in rule Send2). For the
remaining rules, this is not known locally and, thus, we return a fresh distin-
guished symbol, y �∈ Var (by abuse, y is dealt with as a variable), so that the
system rules will eventually bind y to its correct value. This trick allows us to
keep the rules for expressions and systems separated (i.e., the semantics shown
in Figs. 3 and 4 is mostly independent from the rules in Fig. 5), in contrast to
other calculi, e.g., [4], where they are combined into a single transition relation.

Let us finally consider the system rules, which are depicted in Fig. 5. In most
of the rules, we consider an arbitrary system of the form Γ ; 〈p, (θ, e), q〉&Π,
where Γ is the global mailbox and 〈p, (θ, e), q〉&Π is a pool of process that
contains at least one process 〈p, (θ, e), q〉.

Note that, in rule Send , we add the triple (p,p′′, v) to Γ instead of adding
it to the queue of process p′′. This is necessary to ensure that all possible non-
deterministic results can be obtained (as discussed in Example 1). Observe that

266 N. Nishida et al.

(Exp)
θ, e

τ
θ′, e′

Γ ; 〈p, (θ, e), q〉&Π Γ ; 〈p, (θ′, e′), q〉&Π

(Send)
θ, e

send(p′′,v)
θ′, e′

Γ ; 〈p, (θ, e), q〉&Π Γ ∪ (p, p′′, v); 〈p, (θ′, e′), q〉&Π

(Receive)
θ, e

rec(y,cln)
θ′, e′ matchrec(cln, q) = (θi, ei, q

′)
Γ ; 〈p, (θ, e), q〉&Π Γ ; 〈p, (θ′θi, e′{y ei}), q′〉&Π

(Spawn)
θ, e

spawn(y,a/n,[en])→ θ′, e′ p′ is a fresh pid

Γ ; 〈p, (θ, e), q〉&Π Γ ; 〈p, (θ′, e′{y p′}), q〉&〈p′, (θ′, apply a/n (en)), []〉&Π

(Self)
θ, e

self(y)
θ′, e′

Γ ; 〈p, (θ, e), q〉&Π � Γ ; 〈p, (θ′, e′{y p}), q〉&Π

(Sched)
α(Γ) = (p′, p) Π = 〈p, (θ, e), q〉&Π ′

Γ ; Π Γ \ {(p′, p, v)}; 〈p, (θ, e), v :q〉&Π ′

Fig. 5. Standard semantics: system rules

e′ is usually different from v since e may have different nested operators. E.g., if
e has the form “case p ! v of {. . .},” then e′ will be “case v of {. . .}” with label
send(p, v).

In rule Receive, we use the auxiliary function matchrec to evaluate a receive
expression. The main difference with match is that matchrec also takes a queue q
and returns the modified queue q′. Then, the distinguished variable y is bound to
the expression in the selected clause, ei, and the environment is extended with the
matching substitution. If no message in the queue q matches any clause, then the
rule is not applicable and the selected process cannot be reduced (i.e., it suspends).

With the rules presented so far, any system will soon reach a state in which no
reduction can be performed, since messages are stored in the global mailbox, but
they are not dispatched to the queues of the processes. This is precisely the task
of the scheduler, which is modelled by rule Sched . The rule is non-deterministic,
so any scheduling policy can be modelled by the semantics. A message is selected
from the list of messages by the auxiliary function α, which can select any
arbitrary pair of (non-necessarily different) pids (p′,p). Note that we take the
oldest message in the queue—the first one in the list—, which is necessary to
ensure that “the messages sent—directly—between two given processes arrive in
the same order they were sent”, as mentioned in the previous section.

Example 2. Let us consider the program shown in Fig. 6 and a possible execution
trace. This trace is modelled by our semantics. For clarity, we only show in Fig. 7
the transition steps that correspond to the last two messages sent between client1
and server .

A Reversible Semantics for Erlang 267

Fig. 6. A simple client-server

Fig. 7. A trace with σ = {S �→ s}, θ2 = {P �→ c1, M �→ req}, and v2 = {c1, req}.

4 Reversible Semantics

In this section, we introduce a reversible extension of the semantics defined so
far. Moreover, thanks to our modular design, the semantics for the language
expressions needs not be changed.

To be precise, in this section we introduce two transition relations: ⇀ and ↽.
The first relation, ⇀, is a conservative extension of the standard semantics �−→
(Fig. 5) to also include some additional information in the states, following a typ-
ical Landauer’s embedding. We refer to ⇀ as the forward reversible semantics (or
simply the forward semantics). In contrast, the second relation, ↽, proceeds in the
backwards direction, “undoing” the actions of a single process step by step (and,
by causal consistency, possibly propagating it to other processes). We refer to ↽
as the backward (reversible) semantics. We denote the union ⇀ ∪ ↽ by �. Then,

268 N. Nishida et al.

in a computation modelled with � the system mainly evolves forwards, except for
some processes that can run backwards in order to undo some particular actions
(and, afterwards, will run forwards again).

Here, we will introduce a (non-deterministic) “undo” operation which has
some similarities to, e.g., the rollback operator of [11]. In order to delimit the
scope of this operation (i.e., to determine when to stop undoing the actions of
a process), we allow the programmer to introduce checkpoints in a program.
Syntactically, they are denoted with the built-in function check, which takes
an identifier t as an argument, which is supposed to be unique in the program.
Given an expression, expr, we can introduce a checkpoint by replacing expr with
“let x = check(t) in expr”. A call of the form check(t) just returns t (see below).
In the following, we consider that the rules to evaluate the language expressions
(Figs. 3 and 4) are extended with the following rule:

(Check)
θ, check(t)

check(t)−→ θ, t

In the next section, we will see that the only effect of a call to function check is
to add a checkpoint to the trace of a given process.

4.1 Forward Semantics

First, we introduce the forward (reversible) semantics. Since the expression rules
are the same (except for the additional rule for check mentioned above), we will
only introduce the reversible system rules, which are shown in Fig. 8. Processes
now include amemory (or trace)π that records the intermediate states of a process.
Here, we use terms headed by constructors τ , check, send, rec, spawn, self, and sched
to record the steps given with the forward semantics. Note that we could optimize
the information stored in these terms by following a strategy similar to that in
[18,19,22] for the reversibility of functional expressions, but this is orthogonal to
our purpose in this paper, so we focus only on the concurrent actions.

The rules are mostly self-explanatory. Checkpoints introduced by the pro-
grammer, of the form check(θ, e, t), represent a safe point in the program execu-
tion. Rollback operations and checkpoints introduced by the programmer lay the
ground for defining safe sessions whose actions can be undone if, e.g., an excep-
tion occurs before they are completed. Besides these checkpoints, we also con-
sider checkpoints associated to receiving a message, denoted by sched(p,p′, v),
and spawning a process (empty trace). These checkpoints are internal and only
used to ensure causal consistency.

Example 3. Consider again the program shown in Fig. 6, where the function
client/1 is now defined as follows:

client/1 = fun (S) → let = check(t) in let = S ! {self(), req}
in receive ack → ok end

and the execution trace shown in Fig. 7. The corresponding forward (reversible)
computation is shown in Fig. 9.

A Reversible Semantics for Erlang 269

(Internal)
θ, e

τ→ θ′, e′

Γ ; 〈π, p, (θ, e), q〉&Π ⇀ Γ ; 〈τ(θ, e) :π, p, (θ′, e′), q〉&Π

(Check)
θ, e

check(t)→ θ′, e′

Γ ; 〈π, p, (θ, e), q〉&Π ⇀ Γ ; 〈check(θ, e, t) :π, p, (θ′, e′), q〉&Π

(Send)
θ, e

send(p′′,v)→ θ′, e′

Γ ; 〈π, p, (θ, e), q〉&Π ⇀ Γ ∪ (p, p′′, v); 〈send(θ, e, p, p′′, v) :π, p, (θ′, e′), q〉&Π

(Receive)
θ, e

rec(y,cln)→ θ′, e′ matchrec(cln, q) = (θi, ei, q
′)

Γ ; 〈π, p, (θ, e), q〉&Π ⇀ Γ ; 〈rec(θ, e, q) :π, p, (θ′θi, e′{y �→ ei}), q′〉&Π

(Spawn)
θ, e

spawn(y,a/n,[e1,...,en])→ θ′, e′ p′ is a fresh pid

Γ ; 〈π, p, (θ, e), q〉&Π ⇀ Γ ; 〈spawn(θ, e, p′) :π, p, (θ′, e′{y �→ p′}), q〉
&〈[], p′, (θ, apply a/n (e1, . . . , en)), []〉&Π

(Self)
θ, e

self(y)→ θ′, e′

Γ ; 〈π, p, (θ, e), q〉&Π ⇀ Γ ; 〈self(θ, e) :π, p, (θ′, e′{y �→ p}), q〉&Π

(Sched)
α(Γ) = (p′, p) Π = 〈π, p, (θ, e), q〉&Π ′

Γ ; Π ⇀ Γ \ (p′, p, v); 〈sched(p′, p, v) :π, p, (θ, e), v :q〉&Π ′

Fig. 8. Reversible semantics: system rules

[]; 〈[], c1, (id, apply main/0 ()), []〉
⇀ . . .
⇀ []; 〈πi, c1, (σ, let = check(t) in . . .), []〉 & 〈π′

i, s, (id, receive {P, M} → . . .), []〉 &

〈π′′
i , c2, (σ, ok), []〉

⇀ []; 〈check(σ, let = check(t) in . . . , t) :πi, c1, (σ, let = t in . . .), []〉 &
〈π′

i, s, (id, receive {P, M} → . . .), []〉 & 〈π′′
i , c2, (σ, ok), []〉

⇀ []; 〈τ(σ, let = t in . . .) :check(σ, let = check(t) in . . . , t) :πi,
c1, (σ, let = S ! v2 in . . .), []〉 &

〈π′
i, s, (id, receive {P, M} → . . .), []〉 & 〈π′′

i , c2, (σ, ok), []〉
⇀ [(c1, s, [v2])]; 〈send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)

:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, let = v2 in . . .), []〉 &
〈π′

i, s, (id, receive {P, M} → . . .), []〉 & 〈π′′
i , c2, (σ, ok), []〉

⇀ [(c1, s, [v2])]; 〈τ(σ, let = v2 in . . .) : send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)

:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, receive ack → . . .), []〉 &
〈π′

i, s, (id, receive {P, M} → . . .), []〉 & 〈π′′
i , c2, (σ, ok), []〉

⇀ []; 〈τ(σ, let = v2 in . . .) : send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)
:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, receive ack → . . .), []〉 &

〈sched(c1, s, v2) :π
′
i, s, (id, receive {P, M} → . . .), [v2]〉 &

〈π′′
i , c2, (σ, ok), []〉

⇀ []; 〈τ(σ, let = v2 in . . .) : send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)
:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, receive ack → . . .), []〉 &

〈rec(id, receive {P, M} → . . . , [v2]) : sched(c1, s, v2) :π
′
i,

s, (θ2, let = P ! ack in . . .), []〉 & 〈π′′
i , c2, (σ, ok), []〉

⇀ . . .

Fig. 9. A (partial) trace with the forward reversible semantics, where σ = {S �→ s},
θ2 = {P �→ c1, M �→ req}, and v2 = {c1, req}

270 N. Nishida et al.

In the following, we let s1, s2, . . . denote systems of the standard semantics
(Fig. 5) and rs1, rs2, . . . denote systems of the instrumented reversible semantics
(Fig. 8). Here, we denote by rs the system that results from rs by removing the
traces of the processes; formally, Γ ; 〈π1,p1, (θ1, e2), q1〉& . . . &〈πn,pn, (θn, en), qn〉
= Γ ; 〈p1, (θ1, e2), q1〉& . . . &〈pn, (θn, en), qn〉. The following result states that ⇀ is
indeed a conservative extension of the standard semantics �−→:

Theorem 1. Let P be a program without occurrences of “check”. Let s1 be a
system of the standard semantics and rs1 a system of the reversible semantics
with rs1 = s1. Then, s1 �−→∗ s2 iff rs1 ⇀∗ rs2 and rs2 = s2.

4.2 Backward Semantics

In the following, we denote a process running backwards with
proc�#, where # is a
rollback label that refers to the checkpoint that the backward computation of proc
has to go through before resuming its forward computation. For instance, a process
of the form
proc�#t

ch
should go backwards until a checkpoint check(θ, e, t) is found

in its trace, a process
proc�#p,v
sch

should go backwards until an event of the form
sched(p,p′, v) is found in its trace, and a process
proc�#sp should go backwards
until its initial state is reached (i.e., it should be completely undone).

In order to introduce a rollback operator (e.g., when a process crashes or
some undesired situation occurs), we fire the following rule:

(Undo) Γ ; 〈π, p, (θ, e), q〉 & Π ↽ Γ ;
〈π, p, (θ, e), q〉�#t
ch

& Π

for some checkpoint identifier t.
Let us now discuss the rules for performing backward computations, which

are shown in Fig. 10, where # denotes an arbitrary rollback label. In general, all
rules restore the control (and sometimes also the queue) of a process.

Rule Check1 resumes the forward computation of a process rolling back with
#t

ch when we reach a term of the form check(. . . , t) in the trace. When the label
is different (i.e., #sp or #p,v

sch) or it is a label #t′
ch with t �= t′, then rule Check2

just removes the check(. . .) from the trace.
In order to undo the sending of a message, rule Send1 removes a message from

Γ when the message has not been delivered yet (using rule Sched). Here, we use the
operator “\\” to denote the removal of the last (newest) message between two given
processes—in contrast to “\”, which always removes the oldest one. Otherwise,
i.e., when the message has already been delivered, rule Send2 freezes the process,2

denoted with �. . .#, and applies a rollback operator to the receiver labelled with
#p,v

sch . This will cause the receiver process to undo all the actions that it has per-
formed since it received the message, thus ensuring causal consistency. Once all
these actions have been undone, rule Send3 applies, resuming the forward compu-
tation for the receiver and the backward computation for the sender.

Analogously, for undoing the creation of a process, rule Spawn1 freezes the
process and marks the child process with label #sp. The child process will then
2 Note that we use the notation �. . .� to explicitly denote that a process is frozen, though

it is not really necessary since no transition rule would be applicable anyway.

A Reversible Semantics for Erlang 271

(Internal) Γ ; 	〈τ(θ, e) :π, p, (θ′, e′), q〉
# & Π ↽ Γ ; 	〈π, p, (θ, e), q〉
& Π

(Check1) Γ ; 	〈check(θ, e, t) :π, p, (θ′, e′), q〉
#t
ch

& Π ↽ Γ ; 〈π, p, (θ, e), q〉 & Π

(Check2) Γ ; 	〈check(θ, e, t) :π, p, (θ′, e′), q〉
# & Π ↽ Γ ; 	〈π, p, (θ′, e′), q〉
& Π if # �= #t
ch

(Send1)
Γ ; 	〈send(θ, e, p, p′, v) :π, p, (θ′, e′), q〉
# & Π ↽ Γ ′; 	〈π, p, (θ, e), q〉
& Π

if (p, p′, v) occurs in Γ, with Γ ′ = Γ \\(p, p′, v)

(Send2)

Γ ; 	〈send(θ, e, p, p′′, v) :π, p, (θ′, e′), q〉
& 〈π′′, p′′, (θ′′, e′′), q′′〉 & Π
↽ Γ ; �〈send(θ, e, p, p′′, v) :π, p, (θ, e), q〉�# & 	〈π′′, p′′, (θ′′, e′′), q′′〉
#p,v

sch
& Π

if (p, p′′, v) does not occur in Γ

(Send3)
Γ ; �〈send(θ, e, p, p′′, v) :π, p, (θ, e), q〉�# & 	〈sched(p, p′′, v) :π′′, p′′, (θ′′, e′′), v : q′′〉
#p,v

sch
& Π

↽ Γ ; 	〈π, p, (θ, e), q〉
& 〈π′′, p′′, (θ′′, e′′), q′′〉 & Π

(Receive) Γ ; 	〈rec(θ, e, q) :π, p, (θ′, e′), q′〉
# & Π ↽ Γ ; 	〈π, p, (θ, e), q〉
& Π

(Spawn1)
Γ ; 	〈spawn(θ, e, p′′) :π, p, (θ′, e′), q〉
& 〈π′′, p′′, (θ′′, e′′), q′′〉 & Π

↽ Γ ; �〈spawn(θ, e, p′′) :π, p, (θ, e), q〉�# & 	〈π′′, p′′, (θ′′, e′′), q′′〉
#sp & Π

(Spawn2)
Γ ; �〈spawn(θ, e, p′′) :π, p, (θ, e), q〉�# & 	〈[], p′′, (θ′′, e′′), q′′〉
#sp & Π

↽ Γ ; 	〈π, p, (θ, e), q〉
& Π

(Self) Γ ; 	〈self(θ, e) :π, p, (θ′, e′), q〉
# & Π ↽ Γ ; 	〈π, p, (θ, e), q〉
& Π

(Sched)
Γ ; 	〈sched(p′′, p, v) :π, p, (θ, e), v :q〉
& Π

↽ Γ ∪ (p′′, p, v); 	〈π, p, (θ, e), q〉
& Π if # �= #p′′,v
sch

Fig. 10. Backward semantics: Rules for backward computation.

run backwards until, eventually, its trace is empty and rule Spawn2 removes it
from the system, resuming the backward computation for the spawning process.

Observe that, at first glance, one may think rule Receive should also introduce
some new rollback operation for causal consistency. However, if we take a closer
look, we will realize that receiving a message in our context is just about process-
ing the message, and not actually receiving it. In fact, the processed message
could have been delivered to the process mailbox a long time ago, and triggering
a backward computation on the sending process would be unnecessary.

Finally, rule Sched applies when we find a term of the form sched(p, p′′, v)
in a trace and the rollback is not labelled with #p′′,v

sch (since, in this case, rule
Send3 should be applied). Here, we just move the message back to the global
mailbox Γ and continue undoing the remaining actions. The operator ∪ is used
to add messages to the head of the corresponding list instead of to its end, i.e.,
Γ ∪ (p, q, {t, v}) denotes Γ \ {(p, q, vs)} ∪ {(p, q, {t, v} : vs)}.

Example 4. Consider the forward execution trace shown in Fig. 9. A correspond-
ing backward computation is shown in Fig. 11.

Correctness. The rules of the backward semantics in Fig. 10 basically sequen-
tialize the backward computations for a given process. When a rollback operator
is applied to a process p, we start undoing the actions in its trace until we find a
concurrent action that may affect to other processes, like spawning a process or

272 N. Nishida et al.

[]; �〈τ(σ, let = v2 in . . .) : send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)
:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, receive ack → . . .), []〉	#t

ch
&

〈rec(id, receive {P, M} → . . . , [v2]) : sched(c1, s, v2) :π
′
i,

s, (θ2, let = P ! ack in . . .), []〉 & 〈π′′
i , c2, (σ, ok), []〉

↽ []; �〈send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)
:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, let = v2 in . . .), []〉	#t

ch
&

〈rec(id, receive {P, M} → . . . , [v2]) : sched(c1, s, v2) :π
′
i,

s, (θ2, let = P ! ack in . . .), []〉 & 〈π′′
i , c2, (σ, ok), []〉

↽ [];
〈send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)
:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, let = S ! v2 in . . .), []〉�#t

ch
&

�〈rec(id, receive {P, M} → . . . , [v2]) : sched(c1, s, v2) :π
′
i,

s, (θ2, let = P ! ack in . . .), []〉	#sch
& 〈π′′

i , c2, (σ, ok), []〉
↽ [];
〈send(σ, let = S ! v2 in . . . , c1, s, v2) :τ(σ, let = t in . . .)

:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, let = S ! v2 in . . .), []〉�#t
ch

&

�〈sched(c1, s, v2) :π
′
i,

s, (id, receive {P, M} → . . .), [v2]〉	#sch
& 〈π′′

i , c2, (σ, ok), []〉
↽ []; �〈τ(σ, let = t in . . .)

:check(σ, let = check(t) in . . . , t) :πi, c1, (σ, let = S ! v2 in . . .), []〉	#t
ch

&

〈π′
i, s, (id, receive {P, M} → . . .), []〉 & 〈π′′

i , c2, (σ, ok), []〉
↽ []; �〈check(σ, let = check(t) in . . . , t) :πi, c1, (σ, let = t in . . .), []〉	#t

ch
&

〈π′
i, s, (id, receive {P, M} → . . .), []〉 & 〈π′′

i , c2, (σ, ok), []〉
↽ []; 〈πi, c1, (σ, let = check(t) in . . . , t), []〉 &

〈π′
i, s, (id, receive {P, M} → . . .), []〉 & 〈π′′

i , c2, (σ, ok), []〉

Fig. 11. A (partial) trace with the backward reversible semantics, where σ = {S �→ s},
θ2 = {P �→ c1, M �→ req}, and v2 = {c1, req}.

sending a message. In these cases, we freeze the backward computation of process
p and propagate the rollback operator to the spawned process or to the receiver
of a message, respectively. In particular, for a term of the form spawn(θ, e,p′′), we
freeze the process p and put a rollback operator on the spawned process p′′. Only
when all the actions of process p′′ are undone and its trace is empty, we remove
process p′′ and resume the backward computation of process p. A similar behav-
ior occurs when we find a term of the form send(θ, e,p,p′′, v). Therefore, causal
consistency is ensured since no action can be undone until all the consequences
of such an action are undone first.

Note that for undoing the delivery of a message, we do not propagate the
rollback to the sender but just move the message back to the global mailbox.
This is enough to ensure the correctness of the approach while minimizing the
effects of the backward computation. Moreover, it can help to avoid a (possibly
cyclic) cascade of rollback operators.

The correctness of our rollback operator is now stated as follows. Here, we
consider a limited scenario for simplicity. Extending the proof to a more general
case is not difficult but would require a longer proof scheme.

Lemma 1. Let P be a program, and consider the following forward derivation:

Γ ; 〈π,p, (θ, let = check(t) in e), q〉&Π
⇀ Γ ; 〈check(θ, let = check(t) in e, t) :π,p, (θ, let = t in e), q〉&Π
⇀∗ Γ ′; 〈π′,p, (θ′, e′), q′〉&Π ′

A Reversible Semantics for Erlang 273

where the processes of Π do not send messages to process p. Then, we have

Γ ′;
〈π′,p, (θ′, e′), q′〉�#t
ch
&Π ′ ↽∗ Γ ; 〈π,p, (θ, let = check(t) in e), q〉&Π

5 Discussion

We have defined a reversible semantics for a first-order subset of Erlang that
undoes the actions of a process step by step in a sequential way. To the best of our
knowledge, this is the first attempt to define a reversible semantics for Erlang.
As mentioned in the introduction, the closest to our work is the debugging
approach based on a rollback construct of [11,12,15–17], but it is defined in the
context of a different language or formalism. Also, we share some similarities with
the checkpointing technique for fault-tolerant distributed computing of [9,13],
although the aim is different (they aim at defining a new language rather than
extending an existing one).

As future work, we consider the definition of mechanisms to control reversibil-
ity to avoid storing history information at any time. This could be essential to
extend Erlang with a new construct for safe sessions, where all the actions in a
session can be undone if the session aborts. Such a construct could have a great
potential to automate the fault-tolerance capabilities of the language Erlang.

Acknowledgements. We would like to thank Ivan Lanese and the anonymous review-
ers for many useful suggestions to improve this paper.

References

1. Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in Erlang, 2nd
edn. Prentice Hall, Englewood Cliffs (1996)

2. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

3. Bennett, C.: Notes on the history of reversible computation. IBM J. Res. Dev.
44(1), 270–278 (2000)

4. Caballero, R., Martn-Martn, E., Riesco, A., Tamarit, S.: A declarative debugger
for concurrent Erlang programs (extended version). Technical report SIC-15/13,
UCM (2013). http://maude.sip.ucm.es/∼adrian/files/conc cal tr.pdf

5. Cardelli, L., Laneve, C.: Reversible structures. In: Proceedings of CMSB 2011, pp.
131–140. ACM (2011)

6. Carlsson, R., Gustavsson, B., Johansson, E., et al.: Core Erlang 1.0.3. lan-
guage specification (2004). https://www.it.uu.se/research/group/hipe/cerl/doc/
core erlang-1.0.3.pdf

7. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28644-8 19

8. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005). doi:10.
1007/11539452 31

http://maude.sip.ucm.es/~adrian/files/conc_cal_tr.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1007/11539452_31
http://dx.doi.org/10.1007/11539452_31

274 N. Nishida et al.

9. Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In: Proceedings of POPL
2005, pp. 195–208. ACM (2005)

10. Frank, M.P.: Introduction to reversible computing: motivation, progress, and chal-
lenges. In: Proceedings of 2nd Conference on Computing Frontiers, pp. 385–390.
ACM (2005)

11. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54804-8 26

12. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent Reversibility
in a Tuple Based Language. In: Proceedings of PDP 2015, pp. 467–475. IEEE
Computer Society (2015)

13. Kuang, P., Field, J., Varela, C.A.: Fault tolerant distributed computing using asyn-
chronous local checkpointing. In: Proceedings of AGERE! 2014, pp. 81–93. ACM
(2014)

14. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

15. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 20

16. Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order π-calculus.
Theor. Comput. Sci. 625, 25–84 (2016)

17. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30793-5 1

18. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In
Proceedings of ICFP 2007, pp. 47–58. ACM (2007)

19. Nishida, N., Palacios, A., Vidal, G.: Reversible term rewriting. In: Proceedings of
FSCD 2016. Leibniz International Proceedings in Informatics (2016)

20. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Pro-
gram. 73(1–2), 70–96 (2007)

21. Svensson, H., Fredlund, L.A., Earle, C.B.: A unified semantics for future Erlang.
In: Proceedings of the 9th ACM SIGPLAN workshop on Erlang, pp. 23–32. ACM
(2010)

22. Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible
functional language RFUN. In: Proceedings of IFL 2015, p. 8:1–8:13. ACM (2016)

23. Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth.
Program. 84(5), 684–707 (2015)

24. Yokoyama, T.: Reversible computation and reversible programming languages.
Electron. Notes Theor. Comput. Sci. 253(6), 71–81 (2010). Proceedings of the
Workshop on Reversible Computation (RC 2009)

25. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of the 5th Conference on Computing Frontiers, pp. 43–
54. ACM (2008)

http://dx.doi.org/10.1007/978-3-642-54804-8_26
http://dx.doi.org/10.1007/978-3-642-23217-6_20
http://dx.doi.org/10.1007/978-3-642-30793-5_1
http://dx.doi.org/10.1007/978-3-642-30793-5_1

Scaling Bounded Model Checking
by Transforming Programs with Arrays

Anushri Jana1(B), Uday P. Khedker2, Advaita Datar1,
R. Venkatesh1, and Niyas C.1

1 Tata Research Development and Design Centre, Pune, India
{anushri.jana,advaita.datar,r.venky,niyas.c}@tcs.com

2 Indian Institute of Technology Bombay, Mumbai, India
uday@cse.iitb.ac.in

Abstract. Bounded Model Checking is one the most successful tech-
niques for finding bugs in program. However, model checkers are resource
hungry and are often unable to verify programs with loops iterating over
large arrays. We present a transformation that enables bounded model
checkers to verify a certain class of array properties. Our technique trans-
forms an array-manipulating (Ansi-C) program to an array-free and
loop-free (Ansi-C) program thereby reducing the resource requirements
of a model checker significantly. Model checking of the transformed pro-
gram using an off-the-shelf bounded model checker simulates the loop
iterations efficiently. Thus, our transformed program is a sound abstrac-
tion of the original program and is also precise in a large number of
cases—we formally characterize the class of programs for which it is guar-
anteed to be precise. We demonstrate the applicability and usefulness of
our technique on both industry code as well as academic benchmarks.

Keywords: Program transformation · Bounded model checking ·
Array · Verification

1 Introduction

Bounded Model Checking is one of the most successful techniques for finding
bugs [11] as evidenced by success achieved by the tools implementing this tech-
nique in verification competitions [1,2]. Given a program P and a property ϕ,
Bounded Model Checkers (BMCs) unroll the loops in P, a fixed number of times
and search for violations to ϕ in the unrolled program. However, for programs
with loops of large or unknown bounds, bounded model checking instances often
exceed the limits of resources available. In our experience, programs manipulat-
ing large arrays invariably have such loops iterating over indices of the array.
Consequently, BMCs routinely face the issue of scalability in proving proper-
ties on arrays. The situation is no different even when the property is an array
invariant i.e., it holds for every element of the array—a characteristic which can
potentially be exploited for efficient bounded model checking.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 275–292, 2017.
DOI: 10.1007/978-3-319-63139-4 16

276 A. Jana et al.

1. struct S {
2. unsigned int p;
3. unsigned int q;
4. } a[100000];
5. int i,k;

06. main()
07. {
08. for(i=0; i<100000; i++)
09. {
10. k = i;
11. a[i].p = k;
12. a[i].q = k * k ;
13. }

14. for (i=0; i<100000; i++)
15. {
16. assert(a[i].q ==

a[i].p * a[i].p);
17. }
18. }

Fig. 1. Motivating example

1. struct S{
2. unsigned int p;
3. unsigned int q;
4. }x_a;
5. int i_a;
6. int i,k;
7. main()
8. {
9. i_a = nd(0 ,99999);

//first loop body
10. k = nd(0 ,100000);
11. i = i_a;
12. k = i;
13. (i == i_a)? x_a.p = k : k;
14. (i == i_a)? x_a.q = k * k : k*k ;
15. k = nd(0 ,100000);

//second loop body
16. i = i_a;
17. assert(((i==i_a)?x_a.q:nd())

==((i==i_a)?x_a.p:nd())
*((i==i_a)?x_a.p:nd()));

18. }

Fig. 2. Transformed code

Consider the example in Fig. 1 manipulating an array of structures a. The
structure has two fields, p and q, whose values are assigned in the first for loop
(lines 8–13) such that a[i].q is the square of a[i].p for every index i. The second
for loop (lines 14–17) asserts that this property indeed holds for each element
in a. This is a safe program i.e., the assertion does not admit a counterexample.
CBMC [9], a bounded model checker for C, tries to unwind the first loop 100000
times and runs out of memory before reaching the loop with the assertion. We
tried this example with several model checkers1 and none of them was able to
prove this property because of a large loop bound.

One of the ways of proving this example safe is to show that the property
holds for any arbitrary element of the array, say at index ic. This allows us to
get rid of those parts of the program that do not update a[ic] which, in turn,
eliminates the loop iterating over all the array indices. This enables CBMC to
verify the assertion without getting stuck in the loop unrolling. Moreover, since
ic is chosen nondeterministically from the indices of a, the property holds for
every array element without loss of generality.

This paper presents the transformation sketched above with the aim that the
transformed program is easier for a BMC to verify as compared to the original
program. The transformation is over-approximative i.e., it give more values than
that by the original program. This ensures that if the original program is safe
with respect to the chosen property, so is the transformed program. However,

1 Result for motivatingExample.c at
https://sites.google.com/site/datastructureabstraction/.

https://sites.google.com/site/datastructureabstraction/

Scaling Bounded Model Checking by Transforming Programs with Arrays 277

the over-approximation raises two important questions spanning practical and
intellectual considerations:

(1) Is the proposed approach practically useful? Does the transformation enable
a BMC to verify real-world programs or academic benchmarks fairly often?
We answer this through an extensive experimental evaluation over industry
code as well as examples in the array category of SV-COMP 2016 bench-
marks. Our approach helps CBMC to scale in each case. We further demon-
strate the applicability of our technique to successfully identify a large num-
ber of false warnings (on an average 73%) reported by a static analyzer on
arrays in large programs.

(2) Is it possible to characterize a class of properties for which it is precise?
In order to address this we provide a formal characterization of properties
for which the transformation is precise i.e., we state criteria under which
the transformed program is unsafe only when the original program is unsafe
(Sect. 6).

To summarize, this paper makes the following contributions:

– A new technique combining static analysis and model checking enabling ver-
ification of array invariant properties in programs with loops iterating over
large arrays.

– A novel concept of using pair of a witness variable and a witness index which
allows us to remove the loops and arrays from programs and simulate the
iterations accessing different elements of arrays during model checking.

– A formal characterization of properties for which the transformation is pre-
cise.

– A transformation engine implementing the technique.
– An extensive experimental evaluation showing the applicability of our tech-

nique to real-world programs as well as academic benchmarks.

The rest of the paper starts with an informal description of the transfor-
mation (Sect. 2) before we define the semantics (Sect. 3) and formally state the
transformations rules (Sect. 4). Sections 5 and 6, respectively, describe the sound-
ness and precision of our approach. Section 7 presents the experimental setup and
results. We discuss the related work in Sect. 8 before concluding in Sect. 9.

2 Informal Description

Given a program P containing loops iterating over an array a, we transform
it to a program P ′ that has a pair 〈xa, ia〉 of a witness variable and a witness
index for the array and its index such that xa represents the element a[ia] of the
original program. Further, loops are replaced by their customized bodies that
operate only on the witness variable xa instead of all elements of the array a.

To understand the intuition behind our transformation, consider a trace t
of P ending on the assertion An. Consider the last occurrence of a statement
s : a[e1] = e2 in t. We wish to transform P such that there exists a trace t′ of

278 A. Jana et al.

P ′ ending on An in which the value of ia is equal to that of e1 and the value of
xa is equal to that of e2. We achieve this by generating a transformed program
such that:

– ia gets a non-deterministically chosen value at the start of the program (this
facilitates an arbitrary choice of array element a[ia]).

– array writes and reads for a[ia] are replaced by the witness variable xa.
– array writes other than a[ia] are eliminated and reads are replaced by a non-

deterministically chosen value.
– loop body is executed only once either unconditionally or non-deterministically;

based on loop characteristics. During the execution of the transformed loop
body,

• the loop iterator variable either gets the value of ia or a non-
deterministically chosen value (depending on loop characteristics), and

• all other scalar variables whose values may be different in different itera-
tions gets non-deterministically chosen values.

Figure 2 shows the transformed program P ′ for the program P of Fig. 1. Func-
tion nd(l,u) returns a non-deterministically chosen value in the range [l..u]. In
P ′, the witness index i a for array a is globally assigned a non-deterministically
chosen value within the range of array size (at line 9). In a run of BMC, the
assertion is checked for this non-deterministically chosen element a[ia]. To ensure
that the values for the same index a[ia] are written and read, we replace the array
accesses by the witness variable x a only when the value of the index i matches
with that of i a (lines 13, 14 and 17). We remove the loop header but retain
the loop body. To over-approximate the effect of the removal of loop iterations,
we add non-deterministic assignments to all variables modified in the loop body,
at the start of the transformed loop body and also after the transformed loop
body (lines 11 and 15). Note that we retain the original assignment statements
too (line 12). Since the loops at line 8 and line 14 in the original program iter-
ate over the entire array, we equate loop iterator variable i to i a (line 11 and
16) and the transformed loop bodies (lines 10–14 and lines 16–17) are executed
unconditionally.

We are using a single variable, x a, to represent the array a. However, x a
takes different values in different runs of the BMC based on an arbitrarily chosen
value of i a and k. Our technique is able to verify the program in Fig. 1 because
we do not conflate the values of expressions across different runs as is done in
any static analysis. In a sense, we go beyond a static analysis and use a dynamic
analysis through a BMC to verify the property.

We explain the transformation rules formally in Sect. 4. The transformed
program can be verified by an off-the-shelf BMC. Note that each index will be
considered in some run of the BMC since i a is chosen non-deterministically.
Hence, if an assertion fails for any index in the original program, it fails in the
transformed program too.

Scaling Bounded Model Checking by Transforming Programs with Arrays 279

3 Semantics

In this section we formalize our technique by explaining the language and defin-
ing a representation of states.

3.1 Language

We formulate our analysis over a language modelled on C. For simplicity of
exposition we restrict our description to a subset of C which includes structures
and 1-dimensional arrays. For a given program, let C, V, and E be the sets of
values computed by the program, the variables appearing in the program, and
the expressions appearing in the program, respectively. A value c ∈ C can be
an integer, a floating-point or a boolean value. A variable v ∈ V can be a scalar
variable, a structure variable, or an array variable. We define our program to
have only one array variable denoted as a. However, our implementation handles
multiple arrays as explained in our technical report [24]. We also define EA ⊆ E

as the set of array expressions of the form a [E]. An lval L can be an array access
expression or a variable. Let c ∈ C, x, i ∈ (V − {a}). We consider assignment
statements, conditional statements, loop statements, and assertion statements
defined by the following grammar. We define the grammar of our language using
the following non-terminals: Program P consists of statements S which may use
lvalues L and expressions E. We assume that programs are type correct as per
C typing rules.

P → S
S → if (E) S else S

∣
∣ if (E) S

∣
∣ for (i = E ; E ; E) S

∣
∣

S ; S
∣
∣ L = E

∣
∣ assert(E)

L → a[E]
∣
∣ x

E → E ⊕ E
∣
∣ L

∣
∣ c

(1)

In practice, we analyze Ansi-C language programs that include functions,
pointers, composite data-structures, all kinds of definitions, and all control struc-
tures except multi-dimensional arrays.

3.2 Representing Program States

We define program states in terms of memory locations and the values stored
in memory locations. We distinguish between atomic variables (such as scalar
and structure variables) whose values can be copied atomically using a single
assignment operation, from non-atomic variables such as arrays. Since we are
considering 1-dimensional arrays, the array elements are atomic locations.

Function �(a[i]) returns the memory location corresponding to the ith index
of array a. The memory of an input program consists of all atomic locations:

M = (V − {a}) ∪ {

�(a[i])
∣
∣ 0 ≤ i ≤ lastof(a)

}

(2)

The function lastof(a) returns the highest index value for array a.

280 A. Jana et al.

A program state is a map σ : M → C. [[e]]σ denotes the value of expression e
in the program state σ.

We transform a program by creating a pair 〈ia, xa〉 for array a where ia is
the witness index and xa is the witness variable. The memory of a transformed
program with additional variables is:

M
′ = (V − {a}) ∪ {xa} ∪ {ia} (3)

For a transformed program, a program state is denoted by σ′ and is defined
over M

′. A set of states is denoted by Σ′ and set of states at program point l as
Σ′

l. [[e]]Σ′ denotes the set of value of expression e in the set of program states Σ′.
We illustrate the states in the original and the transformed program through

an example. Let a program P have an array variable a and a variable k holding
the size of the array a. Let the array contain the values ci ∈ C, 0 ≤ i < n, where
n ∈ C is the value of size of the array.

Then, a program state, σ at any program point l can be:

σ =
{(

k, n
)

,
(

� (a[0]) , c0

)

,
(

� (a[1]) , c1

)

, . . . ,
(

� (a[n − 1]) , cn−1

)}

(4)

In the transformed program P ′, let xa and ia be the witness variable and
witness index respectively. Let l′ be the program point in P ′ that corresponds
to l in P . Then, all possible states in the transformed program at l′ are,

σ′
0 = {(k, n), (ia, 0), (xa, c0)}

σ′
1 = {(k, n), (ia, 1), (xa, c1)}

. . .

σ′
n−1 = {(k, n), (ia, n − 1), (xa, cn−1)}
Σ′ = {σ′

0, σ
′
1 . . . σ′

n−1}
We now formally define how the states at a program point in the transformed

program represents a state at the corresponding program point in the original
program.

Definition 1. Let σ be a state at a program point in P and let σ′ be a state at the
corresponding program point in P ′. Then, for any index c1 under consideration,
σ′ represents σ, denoted as σ′ � σ, if

(
�(a[c1]), c2

) ∈ σ ⇒ σ′ = {(ia, c1), (xa, c2)} ∪ {(y, c) | (y, c) ∈ σ, y ∈ (V − {a})}
Definition 2. Let σ be a state at a program point in P and let Σ′ be set of
states at the corresponding program point in P ′. Then, Σ′ represents σ, denoted
as Σ′ � σ, if

∀ci such that
(

�(a[ci]), cj

) ∈ σ, ∃σ′ ∈ Σ′ such that σ′ � σ.

Let An be the assertion at line n in program P. Let σ be a state reaching
An in the original program with pair (� (a [[[e1]]σ]) , [[e2]]σ). Let σ′ be the state in
transformed program, σ′ represents σ. Thus, σ′ has two pairs, (ia, [[e3]]σ′) and
(xa, [[e4]]σ′) such that [[e3]]σ′ = [[e1]]σ and [[e4]]σ′ = [[e2]]σ. Hence, if the assertion
An holds in transformed program, it holds in the original program too.

Scaling Bounded Model Checking by Transforming Programs with Arrays 281

4 Transformation

The transformation rules are given in Fig. 3. A transformed program satisfies
the following grammar derived from that of the original program (Grammar 1).
Let x, xa, ia ∈ V denote a scalar variable, the witness variable, and the witness
index, respectively. Let c, l, u ∈ C denote the values. Then,

P → I ; S
I → ia = nd(l, u)
S → if (E) S else S

∣
∣ if (E) S

∣
∣ S ; S

∣
∣ L = E

∣
∣ assert(E)

L → x
∣
∣ xa

∣
∣ ia

E → E ⊕ E
∣
∣ L

∣
∣ c

∣
∣ nd()

∣
∣ nd(l, u)

(5)

The non-terminal I represents the initialization statements for witness index.
Witness variable is initialized in the same scope as that in the original program.

Following are the functions used in the transformation rules.

– Function nd(l, u) returns a non-deterministically chosen value between the
lower limit l and the upper limit u. When a range is not provided, nd returns
a non-deterministically chosen value based on the type of L.

– Function transform transforms the code represented by its argument non-
terminal. Function emit shows the actual code that would be emitted. We
assume that it takes the code emitted by transform and possibly some addi-
tional statements and outputs the combined code. It has been used only to
distinguish the transformation time activity and run time activity. For exam-
ple, the boolean conditions in cases 3.E2 and 3S1 are not evaluated by the
body of function transform but is a part of the transformed code and is evalu-
ated at run time when the transformed program is executed. Similar remarks
apply to the if statements and other operations inside the parenthesis of emit
function.

– Function fullarrayaccess(S) analyzes2 the characteristics of the loop S.
• When the loop S accesses array a completely, fullarrayaccess(S) returns

true. This means that loop either reads from or writes to all the indices
of the array; this could well be under different conditions in the code.

• When the loop S accesses array a partially, fullarrayaccess(S) returns false.
This means that the loop may not access all the indices or some indices
are being read while some other indices are being written.

• When loop S does not access an array, fullarrayaccess(S) returns false.
– Function loopdefs(S) returns a possibly over-approximated set of variables

modified in loop S.
• Scalar variables are included in this set if they appear on the left hand

side of an assignment statement in S (except when the RHS is a constant).
• Loop iterator variable i of loop S is not included in this set.
• Array variable a is included in this set when the array access expression

appears on the left hand side of an assignment and the value of index
expression is different from the current value of the loop iterator i.

2 Results of analysis may be over-approximated.

282 A. Jana et al.

transform(E) =

E ≡ (E1 ⊕E2) ⇒ emit(transform(E1) ⊕ transform(E2)) (3.E1)
E ∈ EA, E ≡ a[E1] ⇒ emit((E1 == ia)? xa : nd()) (3.E2)
otherwise ⇒ emit (E) (3.E3)

transform(S) =

S ≡ (L = E), L ≡ a[E1] ⇒ emit (E1 == ia)?
xa = transform(E) : transform(E) (3.S1)

S ≡ (L = E),L a[E1] ⇒ emit (L = transform(E)) (3.S2)
S ≡ (for(i = E1; E2; E3) S1),

fullarrayaccess(S),
u ∈ loopdefs(S1)

⇒ emit u = nd(); //∀u ∈ loopdefs(S1)
i = ia;
transform(S1);
u = nd(); //∀u ∈ loopdefs(S1)

(3.S3)

S ≡ (for(i = E1; E2; E3) S1),
¬fullarrayaccess(S),
u ∈ loopdefs(S1)

⇒ emit if(nd(0,1))
{ u = nd(); //∀u ∈ loopdefs(S1)
i = nd(loopbound(S));
transform(S1);

}
u = nd(); //∀u ∈ loopdefs(S1)

(3.S4)

S ≡ (if(E) S1 else S2) ⇒ emit if(transform(E))

transform(S1) else transform(S2) (3.S5)
S ≡ (if(E) S1) ⇒ emit (if(transform(E)) transform(S1)) (3.S6)
S ≡ (S1;S2) ⇒ emit (transform(S1);transform(S2)) (3.S7)
S ≡ (assert(E)) ⇒ emit (assert(transform(E))) (3.S8)
otherwise ⇒ emit (S) (3.S9)

transform(P) =

P ≡ S ⇒ emit ia = nd (lastof(a)) ;
transform(S)

(3.P)

Fig. 3. Program transformation rules. Non-terminals P, S, E, L represent the code
fragment in the input program derivable from them.

– Function lastof(a) returns the highest index value for array a.

With the above functions, the transformation rules are easy to understand. Here
we explain non-trivial transformations.

– To choose an array index for a run, witness index (ia) is initialized at the
start of the program to a non-deterministically chosen value from the range
of the indices of the array (case 3.P). This value determines the array element
(a[ia]) represented by the witness variable (xa).

– An array access expression in LHS or RHS is replaced by the witness variable
(xa) only when the values of the witness index and index expression of the

Scaling Bounded Model Checking by Transforming Programs with Arrays 283

array access expression match. When the values do not match, it implies that
an element other than ia is being accessed. Hence for any other index the
assignment does not happen (case 3.S1). However RHS of such assignment
statement is retained to handle side-effects of expressions (not included in the
grammar). Similarly, when an index other than ia is read, it is replaced by a
non-deterministically chosen value (case 3.E2).

– Loop iterations are eliminated by removing the loop header containing ini-
tialization, test, and increment expression for the loop iterator variable. The
loop bodies are transformed as follows:

• Each variable in the set returned by loopdefs(S) is assigned a non-
deterministically chosen value at the start of the loop body and also after
the loop body. These assignments ensure that values dependent on loop
iterations are over-approximated when used inside or outside the loop
body.

• The loop iterator i is a special scalar variable. A loop S where
fullarrayaccess(S) holds (case 3.S3) essentially means that loop bound is
same as the array size and array is accessed using loop iterator as index.
Hence it is safe to replace array access with xa where the values of loop
iterator and index expression match. To ensure this we equate loop itera-
tor with ia. This models the behaviour of the original program precisely.
However, when fullarrayaccess(S) does not hold (case 3.S4), we assign loop
iterator i to a non-deterministically chosen value from the loop bound.

• Each statement in the loop body is transformed as per the transformation
rules.

• Finally, the entire loop body is made conditional using a non-
deterministically chosen true/false value when fullarrayaccess(S) does not
hold. This models the partial accesses of array indices which imply that
some of the values defined before the loop may reach after the loop.
However, the transformed loop body is unconditionally executed when
fullarrayaccess(S) holds.

5 Soundness

This section outlines our soundness claim: if the transformed program is safe,
then so is the original program. As discussed in Sect. 3, the soundness is imme-
diate if the abstract states “represent” the original states. We therefore, prove
that the proposed transformations ensure that the represents relation, �, holds
between abstract and original states. For the base case, we prove that � holds in
the beginning before applying any transformation (Lemma1). In the inductive
step, we prove that if � holds at some stage during the transformation, then the
subsequent transformation continues to preserve � (Lemma 3). We prove this
by structural induction on program transformations. We prove that each trans-
formed expression is over-approximated when � holds (Lemma 2). A detailed
proof is provided in our technical report [24].

284 A. Jana et al.

Lemma 1. Let the start of the original program (i.e. the program point just
before the code derivable from non-terminal S in production P → S in grammar
defined in Eq. (1) be denoted by l. The corresponding program point in the trans-
formed program P ′, denoted by l′, is just after I and just before the non-terminal
S in production P → I ; S (Grammar in Eq. 5). Let σ be the state at l and Σ′ be
the set of states at l′ in P and P ′ respectively. Then, Σ′

l′ � σl.

Proof Outline. Since the initial values of non-array variables are preserved, the
initial value of a[ia] is assigned to xa, and ia is non-deterministically chosen, the
lemma holds.

Lemma 2. Let σl be a state at a program point l in P and Σ′
l′ be set of states

at the corresponding program point l′ in transformed program P ′. Consider an
arbitrary expression e ∈ E just after l in original program P . Then,

Σ′
l′ � σl ⇒ [[transform(e)]]Σ′

l′ ⊇ {[[e]]σl
}.

Proof Outline. Since e is derived from E (Grammar 1), the over-approximation
of values can be proved by structural induction on the productions for E.

Lemma 3. Let l and m be the program points just before and after a statement
s in P and let σl and σm be the states at l and m respectively. Let l′ and m′ be
the program points just before and after the corresponding transformed statement
transform(s) in P ′. Let Σ′

l′ and Σ′
m′ be the set of states at l′ and m′ respectively.

Then, Σ′
l′ � σl ⇒ Σ′

m′ � σm.

Proof Outline. Since statement s is derived from non-terminal S in the
Grammar 1 the lemma can be proved by structural induction on S.

Theorem 1. If the assertion An is violated in the original program P , then it
will be violated in transformed program P ′ also.

Proof. Let the assert get violated for some a[c]. Since ia is initialized non-
deterministically it can take the value c and we have shown in Lemma 2 that all
expressions in P ′ are over-approximated. Lemmas 1 and 3 ensure the premise for
Lemma 2. Hence the theorem follows.

6 Precision

We characterize the assertions for which our transformation is precise – an asser-
tion will fail in P ′ if and only if it does so in P . We denote such an assertion
as Ainv

n . We focus on Ainv
n in a loop. In case of array accesses outside loops, we

do not claim precision. Our experience shows that such situations are rare in
programs with large arrays.

The transformed program is over-approximative because our transformation
rules (3.S3, 3.S4, 3.E2) introduce non-deterministically chosen values. In this

Scaling Bounded Model Checking by Transforming Programs with Arrays 285

section we show that if assertion is of the form Ainv
n then none of these transfor-

mation rules introduce non-deterministically chosen values in the transformed
program.

Our transformations replace array access expressions and loop statements
while the statements involving scalars alone outside the loop remain unmodified.
Hence precision criteria need to focus on the statements within loops and not
outside it.

Let assertion Ainv
n appear in a loop statement SA

inv
n . Let Vimpbe the set of

variables and Eimpbe the set of array access expressions on which Ainv
n is data

or control dependent within the loop SA
inv
n . Let the set of loop statements from

where definitions reach Ainv
n be denoted by Sdef , note that this set is a transitive

closure for data dependence. Our technique is precise when:

– fullarrayaccess(S) holds for each S ∈ {SA
inv
n } ∪ Sdef (rule l1)

– If a[e] ∈ Eimp then
• the index expression e = i where i is the loop iterator of loop SA

inv
n (rule

a2)
• a /∈ loopdefs(S) where S ∈ {SA

inv
n } ∪ Sdef (rule a3)

– If x ∈ Vimp then x /∈ loopdefs(S) where S ∈ {SA
inv
n } ∪ Sdef (rule s4)

– For an assignment statement of the form a[e1] = e2 in loop S where S ∈ Sdef ,
• if e2 is an array access expression then it must be of the form a[i] where

i is the loop iterator of loop S (rule d5)
• if e2 is x then x /∈ loopdefs(S) where S ∈ Sdef (rule d6)

Theorem 2. If an assertion Ainv
n that satisfies above rules holds in the original

program P , then it will hold in the transformed program P ′ also.

Proof. We show that when all of above rules hold, non-deterministically chosen
values are not introduced in transformed program.

– Since rule l1 holds unconditionally, loops will be transformed as per 3.S3 and
not 3.S4 and extra paths are not added. Also, the assignment i = ia at the
start of the loop ensures that the condition is true for each transformed array
access expression.

– When rule a2 holds, rule l1 also holds and a[e] is always replaced by xa

(case 3.E2).
– When rule a3 holds, assignment xa = nd() is not added (case 3.S3).
– When rule s4 holds, assignment x = nd() is not added (case 3.S3).
– When rule d5 holds, rule l1 holds and a[e] in RHS is replaced by xa (case 3.E2).
– When rule d6 holds, scalars used in RHS are not assigned a non-

deterministically chosen values.

Rules s4 and d6 are strong requirements for ensuring that non-
deterministically chosen values do not reach Ainv

n . We can relax these rules when
x ∈ loopdefs(SA

inv
n) when:

286 A. Jana et al.

Table 1. Results on SV-COMP benchmark programs.

#programs = 118 #correct
true

#correct
false

#incorrect
true

#incorrect
false

#no result

Expected results 84 34 – – 0

CBMCα 47 6 6 0 59

CBMCβ 9 5 0 0 104

Transformation + CBMCβ 25 34 0 59 0

CBMCα - SV-COMP2016 (unsound) CBMC, CBMCβ - sound CBMC 5.4.

– A definition of x appears before the use of x in RHS in the loop. (rule d6.1)
– Variable x is defined with a constant value or using loop iterator i only.

(rule d6.2)

Since the original assignments to x are retained in the transformed loop body,
assignment of x to non-deterministically chosen value (x = nd()) gets re-defined.
Also, when x is defined with a constant or i (i = ia is added for SA

inv
n), its value

is not over-approximated.
The assertion in Fig. 1 is Ainv

n since it satisfies all the rules:

– SA
inv
n is the loop at line 14 containing the assertion. Sdef contains the loop at

line 8. For both these loops, rule l1 holds.
– Eimp consists of the three array access expressions at line 16. Rules a2 and a3

hold for all the three expressions.
– Vimp consist of the loop iterator i hence rule s4 holds.
– For assignments at line 11 and 12 of the lone loop in Sdef ,

• rule d5 holds.
• x is k which is in loopdefs(S). However, k is defined using loop iterator i

at line 10. Hence rule d6.2 hold.

The transformed program in Fig. 2 is not over-approximated and hence BMC
is able to prove the assertion.

7 Experimental Evaluation

We have implemented our transformation engine using a static analysis frame-
work called PRISM developed at TRDDC, Pune [10,25]. Our implementation
supports Ansi-C programs with 1-dimensional arrays. The experiments are per-
formed on a 64-bit Linux machine with 16 Intel Xeon processors running at
2.4 GHz, and 20 GB of RAM. More details of optimization and implementation,
including handling of multiple arrays, are provided in our technical report [24].

Our transformation engine outputs C programs. Although we could take any
off-the-shelf BMC for C program to verify the transformed code, we use CBMC
in our experiments as it is known to handle all the constructs of Ansi-C. We
discuss the results of our experiments on academic benchmarks and industry
codes. For want of space, we omit the results of various BMCs on patterns from
industry code; those results are shared in our technical report [24].

Scaling Bounded Model Checking by Transforming Programs with Arrays 287

7.1 Experiment 1: SV-COMP Benchmarks

SV-COMP benchmarks [29] contain an established set of programs under various
categories intended for comparing software verifiers. Results for ArraysReach3

from the array category for CBMC used in SV-COMP 2016 (CBMCα), CBMC
5.4 (CBMCβ) and CBMC 5.4 on transformed programs (Transformation +
CBMCβ) are consolidated4 in Table 1. ArraysReach has 118 programs. CBMCα,
an unsound version of CBMC, gave correct results for 53 programs. However,
CBMCβ gave correct results for 14 programs. We compare the results of Trans-
formation + CBMCβ on three criteria:

– Scalability: it scaled up for all 118 programs.
– Soundness: it gave sound results for all 118 programs. For the 6 programs for

which CBMCα gave unsound results, our results are not only sound but are
also precise.

– Precision: it gave precise results for 59 programs. Out of these CBMCα ran
out of memory for 45 programs (CBMCα ran out of memory for 14 addi-
tional programs). On the other hand, 22 true programs reported correctly by
CBMCα were verified as false by Transformation + CBMCβ. Transforma-
tion + CBMCβ verified 25 programs as true which did not include 8 of the
programs reported correctly as true by CBMCβ.

Our technique is imprecise for the other 59 of 118 programs as they do not
comply with the characterization of precision provided in Sect. 6. As can be
seen, there is a trade-off between scalability and precision. From the view point
of reliability of results, soundness is the most desirable property of a verifier.
Our technique satisfies this requirement. Further, it not only scales up but is
also precise in many situations implying its practical usefulness.

7.2 Experiment 2: Real-Life Applications

We applied our technique on 3 real-life applications - navi1 and navi2 are indus-
try codes implementing the navigation system of an automobile and icecast 2.3.1
is an open source project for streaming media [23]. To verify a meaningful prop-
erty, we used Null Pointer Dereference (NPD) warnings generated by a sound
static analysis tool build using PRISM5. PRISM performs weak updates for
arrays (similar to array smashing) and hence generates a large number of warn-
ings on arrays, most of which are false. We appended assertions as follows. Lets
say the dereference expression is ∗a[i].p. A statement assert(a[i].p! = null) is

3 Programs in ArrayMemSafety access arrays without using index and cannot be trans-
formed.

4 Case by case results available at https://sites.google.com/site/datastructureabstr
action/home/sv-comp-benchmark-evaluation-1.

5 TCS Embedded Code Analyzer (TCS ECA) http://www.tcs.com/offerings/
engineering services/Pages/TCS-Embedded-Code-Analyzer.aspx.

https://sites.google.com/site/datastructureabstraction/home/sv-comp-benchmark-evaluation-1
https://sites.google.com/site/datastructureabstraction/home/sv-comp-benchmark-evaluation-1
http://www.tcs.com/offerings/engineering_services/Pages/TCS-Embedded-Code-Analyzer.aspx
http://www.tcs.com/offerings/engineering_services/Pages/TCS-Embedded-Code-Analyzer.aspx

288 A. Jana et al.

Table 2. Real-life application evaluation

Application details Sliced + CBMC Sliced + Transfor-

mation + CBMC

% False positive

reduction

Name Size (LoC) %loopfull #Asserts #P #F #T #P #F #T

navi1 1.54M 100 63 0 0 63 52 1 10 82.5

navi2 3.3M 93.4 103 0 0 103 95 1 7 92.2

icecast 2.3.1 336K 59.1 114 0 0 114 53 61 0 46.5

loopfull - loop S where fullarrayaccess(S) holds, P - Assertion Proved, F - Assertion Failed, T - Timeout.

added in the code just before the statement containing dereference expression.
We then slice6 these programs as per assertion.

Table 2 shows the consolidated results of our experiments. CBMC did not
scale on the sliced programs. However, after transformation (sliced + transfor-
mation + CBMC) CBMC proved 200 out of 280 assertions, taking 12 min on
average for transformation + verification. This is much less in comparison to the
time given to CBMC for sliced programs (sliced+CBMC), which was 30 min.

To verify the correctness of our implementation, we analyzed the warnings
manually. We found that all 280 warnings were false, implying that all the asser-
tions should have been proved successfully.

– Scalability: CBMC could scale up for such large applications because there
are no loops in transformed programs. However, CBMC could not scale for 17
cases even after transformation because of long recursive call chain through
function pointers.

– Precision: Our technique proved 200 assertions, where all the conditions
for precision mentioned in Sect. 6 get fulfilled. In all these cases since
fullarrayaccess(S) hold, the witness variable gets precise value in each run
of BMC for each value of witness index. 63 of the assertions could not be
proved since array definitions reaching at the assertion were from the loops
where fullarrayaccess(S) did not hold and values received by witness variable
is over-approximative.

Replacing array expressions with witness variable enables elimination of
loops. However, by using witness index BMC simulates loop iterations with
providing run-based value to witness variable. Note that the number of false
warnings eliminated in an application is proportional to the number of loops
for which fullarrayaccess(S) hold. Over a diverse set of applications, we found
that our technique could eliminate 40–90% of false warnings. This is a signifi-
cant value addition to static analysis tools that try to find defects and end up
generating a large number of warnings.

8 Related Work

There is a sizeable body of work on reasoning about values of array elements.
We give a brief overview of the relevant literature here.
6 PRISM implements [22] for slicing.

Scaling Bounded Model Checking by Transforming Programs with Arrays 289

Blanchet et al. proposed the use of abstract elements for array indices [8].
Though of limited practicability, they suggested two approaches - one that uses
an abstract element for each index in the array i.e. array expansion, and another
where a single abstract element is used for the entire array i.e. array smashing.
Array expansion is precise but it cannot be used effectively for large arrays. Array
smashing, on the other hand, allows handling arbitrary arrays efficiently, but
suffers significant precision losses due to its inability to perform strong updates.
As a result, it cannot be applied to prove the correctness of our example in Fig. 1.

While expansion and smashing are at two extremes in their use of abstract
elements, there are several “midway” approaches that are aimed at combining
the benefits of both. Gopan et al. [19] proposed that those elements that are read
or written could be dynamically expanded to incorporate strong updates, while
the remaining elements could be smashed. This was extended to partitioning
arrays into symbolic intervals spanning the entire array, and using an abstract
variable to represent each such interval [21]. To avoid the exponential multi-
plication of array slices that prevented these techniques from scaling, Cousot
et al. proposed an improvement [13] that automatically, semantically divides
arrays into consecutive non-overlapping segments. Clousot [17], a tool that
implements this improvement, indeed scales better than [19,21] but still runs
out of resources while verifying our example in Fig. 1.

Another way of partitioning an array is to exploit its semantic properties
and split the elements into groups. Grouping array cells of similar properties,
e.g. [27], has the advantage that it allows partitions to be non-contiguous. This
is orthogonal to the work of Dillig et al. [16] where they introduce fluid updates
of arrays using indexed locations along with bracketing constraints, to specify
the concrete elements being updated. Cornish et al. [12] apply a program-to-
program translation over the LLVM intermediate representation, followed by
a scalar analysis. Although the abstraction in these approaches is expressible
as a composition of our abstraction followed by further abstraction, our imple-
mentation of fullarrayaccess(S) guarantees an array-free and loop-free programs
whenever possible. Moreover, we exploit the power of model checking to obtain
a precise path-sensitive analysis.

In a recent work [28], Monniaux et al. proposed to convert array programs
into array-less non-linear Horn clauses. The precision of this transformation is
adjustable through a Galois connection parameterized by the number of dis-
tinguished cells, which, however, needs to be decided manually. An analogous
technique, based on Horn clauses over array variables that requires user inputs
in form of pre- and post-conditions, is that of [15] proposed by De Angelis
et al. This is practically infeasible for real-life programs, and therefore affects
scalability. Another limitation of these approaches is their back-end solvers which
cannot handle non-linear arithmetic. This reflects in their inability to work for
our motivating example of Fig. 1. Besides, unlike these approaches, our technique
needs no manual input and successfully scales to large industry code.

Template-based methods [7,20] have been very useful in synthesizing invari-
ants but these techniques are ultimately limited by the space of possible

290 A. Jana et al.

templates that must be searched for a good candidate. This has led to semi-
automatic approaches, such as [18], where the predicates are usually suggested
by the user. Our approach, in contrast, is fully automatic and proves safety by
solving a bounded model checking instance instead of computing an invariant
explicitly.

Verification tools based on CEGAR have been applied successfully to certain
classes of programs, e.g. device drivers [6]. However, this technique is orthogonal
to ours. In fact, a refinement framework in addition to our abstraction would
make our technique complete too. Several other techniques have been used to
scale bounded model checkers to tackle complex, real-world programs such as
acceleration [26] and loop-abstraction [14]. But these techniques are not shown
to be beneficial in abstracting complex data structures. Booster [4] integrates
acceleration and lazy abstraction with interpolants for arrays. However, there
are syntactic restrictions that limit the applicability of acceleration in general
for programs handling arrays. Also, interpolation over array properties is dif-
ficult, especially since the goal is not to provide any interpolant, but one that
generalizes well to an invariant [3,5].

9 Conclusions and Future Work

Verification of programs with loops iterating over arrays is a challenging prob-
lem because of large sizes of arrays. We have explored a middle ground between
the two extremes of relying completely on dynamic approaches of using model
checkers on the one hand and using completely static analysis involving complex
domains and fix point computations on the other hand. Our experience shows
that using static analysis to transform the program and letting the model check-
ers do the rest is a sweet spot that enables verification of properties of arrays
using an automatic technique that is generic, sound, scalable, and reasonably
precise.

Our experiments show that the effectiveness of our technique depends on the
characteristics of programs We are able to eliminate 40–90% of false warnings
from diverse applications. This is a significant value addition to static analysis
that try to find defects and end up generating a large number of warnings which
need to be resolved manually.

We plan to make our technique more precise and extend it for other data
structures.

References

1. 2015 4th International Competition on Software Verification. http://sv-comp.
sosy-lab.org/2015/results/. Accessed 12 Feb 2017

2. 2016 5th International Competition on Software Verification. http://sv-comp.
sosy-lab.org/2016/results/results-verified/. Accessed 12 Feb 2017

3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension
of lazy abstraction with interpolation for programs with arrays. In: Formal Methods
in System Design (2014)

http://sv-comp.sosy-lab.org/2015/results/
http://sv-comp.sosy-lab.org/2015/results/
http://sv-comp.sosy-lab.org/2016/results/results-verified/
http://sv-comp.sosy-lab.org/2016/results/results-verified/

Scaling Bounded Model Checking by Transforming Programs with Arrays 291

4. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based ver-
ification framework for array programs. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 18–23. Springer, Cham (2014). doi:10.1007/
978-3-319-11936-6 2

5. Alberti, F., Monniaux, D.: Polyhedra to the rescue of array interpolants. In: Annual
ACM Symposium on Applied Computing (2015)

6. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static
analysis. In: ACM SIGPLAN Notices, vol. 37 (2002)

7. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol.
4349, pp. 378–394. Springer, Heidelberg (2007). doi:10.1007/978-3-540-69738-1 27

8. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85–108. Springer, Heidelberg (2002). doi:10.1007/3-540-36377-7 5

9. CBMC. http://www.cprover.org/cbmc/. Accessed 12 Feb 2017
10. Chimdyalwar, B., Kumar, S.: Effective false positive filtering for evolving software.

In: ISEC (2011)
11. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,

M.Y.: Benefits of bounded model checking at an industrial setting. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer,
Heidelberg (2001). doi:10.1007/3-540-44585-4 43

12. Cornish, J.R.M., Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey,
P.J.: Analyzing array manipulating programs by program transformation. In:
Proietti, M., Seki, H. (eds.) LOPSTR 2014. LNCS, vol. 8981, pp. 3–20. Springer,
Cham (2015). doi:10.1007/978-3-319-17822-6 1

13. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: ACM SIGPLAN Notices, vol.
46 (2011)

14. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-appro-
ximating loops to prove properties using bounded model checking. In: DATE (2015)

15. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: A rule-based verification
strategy for array manipulating programs. Fundamenta Informaticae 140, 329–355
(2015)

16. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-11957-6 14

17. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-18070-5 2

18. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. ACM
SIGPLAN Not. 37, 191–202 (2002)

19. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. ACM SIGPLAN Not. 40(1), 338–350 (2005)

20. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL (2008)

21. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
ACM SIGPLAN Not. 43, 339–348 (2008)

22. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. 12, 26–60 (1990)

http://dx.doi.org/10.1007/978-3-319-11936-6_2
http://dx.doi.org/10.1007/978-3-319-11936-6_2
http://dx.doi.org/10.1007/978-3-540-69738-1_27
http://dx.doi.org/10.1007/3-540-36377-7_5
http://www.cprover.org/cbmc/
http://dx.doi.org/10.1007/3-540-44585-4_43
http://dx.doi.org/10.1007/978-3-319-17822-6_1
http://dx.doi.org/10.1007/978-3-642-11957-6_14
http://dx.doi.org/10.1007/978-3-642-18070-5_2

292 A. Jana et al.

23. Ice Cast. http://icecast.org/. Accessed 12 Feb 2017
24. Jana, A., Khedker, U.P., Datar, A., Venkatesh, R.: Scaling bounded model checking

by transforming programs with arrays. CoRR, arXiv:1606.06974 (2016)
25. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded

code base: an experience. In: ISEC (2011)
26. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-

grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 26

27. Liu, J., Rival, X.: Abstraction of arrays based on non contiguous partitions. In:
D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 282–
299. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46081-8 16

28. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn
clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53413-7 18

29. SV-COMP 2016 Benchmarks. https://sv-comp.sosy-lab.org/2016/benchmarks.
php. Accessed 12 Feb 2017

http://icecast.org/
http://arxiv.org/abs/1606.06974
http://dx.doi.org/10.1007/978-3-642-39799-8_26
http://dx.doi.org/10.1007/978-3-642-39799-8_26
http://dx.doi.org/10.1007/978-3-662-46081-8_16
http://dx.doi.org/10.1007/978-3-662-53413-7_18
https://sv-comp.sosy-lab.org/2016/benchmarks.php
https://sv-comp.sosy-lab.org/2016/benchmarks.php

Intuitionistic Logic Programming for SQL

Fernando Sáenz-Pérez(B)

Declarative Programming Group, Dept. Ingenieŕıa del Software e Inteligencia
Artificial, Universidad Complutense de Madrid, Madrid, Spain

fernan@sip.ucm.es

Abstract. Intuitionistic logic programming provides the notion of
embedded implication in rule bodies, which can be used to reason about
a current database modified by the antecedent. This can be applied to
a system that translates SQL to Datalog to solve SQL WITH queries, for
which relations are locally defined and can therefore be understood as
locally added to the current database. In addition, assumptions in SQL
queries as either adding or removing data can be modelled in this way as
well, which is an interesting feature for decision-support scenarios. This
work suggests a way to apply intuitionistic logic programming to SQL,
and provides a pointer to a working system implementing this idea.

Keywords: Intuitionistic logic programming · SQL · Datalog ·
Extended relational algebra

1 Introduction

SQL is the de facto relational database query language that stands still [2] despite
the advent of new trends as Big Data, NoSQL, RDF stores and others. It builds
upon the Codd’s [8,9] seminal relational data model accompanied by an algebra
and calculus to operate on data. Further proposals such as [12] better provide
a formal framework for current SQL implementations. As a query language,
SQL can be well understood from Codd’s tuple relational calculus but also from
logic programming (in particular, [23] includes equivalences between relational
operations and logic rules). However, among other features beyond the original
relational model, SQL provides the notion of temporary view as defined in a
WITH clause (described in Sect. 2), whose definition is available only to the query
in which it occurs [21]. This is no longer representable either in relational formal
languages or directly in logic programming.

Here is when intuitionistic logic programming may help to providing first-
class citizen semantics: Approaches as [4,10,13–15] fit into this logic, an exten-
sion of logic programming including in particular embedded implications. Adding
negation to intuitionistic logic programming might develop paradoxes which are
circumvented in [5] by dealing with two kind of implications: for rules (←) and
for goals (⇐, i.e., an embedded implication). Intuitively, whereas in the for-
mula A ← B, the atom B is “executed” for proving A, in the formula A ⇐ B,
the atom B is “assumed” to be true for proving A. The work of Bonner about
c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 293–308, 2017.
DOI: 10.1007/978-3-319-63139-4 17

http://orcid.org/0000-0001-6075-4398

294 F. Sáenz-Pérez

Hypothetical Datalog incorporated this logic and has been a proposal thoroughly
studied from semantic [3,5,6] and complexity point-of-views [4]. The work [17]
(recalled and adapted in Sect. 3) presented an extended (with respect to [3,5,6])
intuitionistic setting along with an implementation in the deductive system DES
[20], in several points: First, a rule is accepted in the antecedent of an embed-
ded implication, and not only facts as in [5], second, duplicates are allowed, and
third, strong constraints are included.

Driven from the need for supporting a broader subset of SQL in this system,
we show how to take advantage of the intuitionistic embedded implication to
model SQL WITH queries in a logic setting, an application which has not been
proposed to the best of our knowledge so far. Thus, it is possible to have such SQL
queries translated into Hypothetical Datalog, and can be therefore processed by
a deductive engine. To ensure correct results, on the one hand, we provide a
translation from SQL to extended relational algebra (ERA) and its semantics in
Sect. 2, and, on the other hand, a translation from SQL to Hypothetical Datalog
in Sect. 4, relying on an extended semantics (Sect. 3), and finally proving the
semantic equivalence between both translations (Sect. 4).

Hypothetical Datalog is powerful enough to even apply the same technique
to model assumptions in SQL queries, with the (non-standard) clause ASSUME.
This clause enables both positive and negative assumptions on data, as shown
in Sect. 5, which are useful for modelling “what-if” scenarios in typical decision-
support systems. Finally, we present the deductive system DES at work with
examples of WITH and ASSUME queries in Sect. 6. Our approach is also useful
for connecting with external relational database systems which cannot process
these clauses. DES then behaves as a front-end capable of processing either novel
(assumptions) or unsupported features (temporary views) in such systems. In
particular, this makes it easier to develop decision-support systems such as those
based on (either real or finite domain) constraints defined by relational database
tables (as in IBM ILOG OPL Studio), letting the user play with assumptions in
a layer between the constraint system and the relational database.

2 The SQL WITH Clause

Typically, complex SQL queries are broken-down for applying the divide-and-
conquer principle as well as for enhancing readability and maintenance. Intro-
ducing intermediate views with CREATE VIEW statements is in the order of the
day, but this might neither be recommendable (making these views observable
for other users) nor possible (only certain users with permissions granted by
an administrator are allowed to create views). The WITH clause provides a form
of encapsulation in SQL by locally defining those broken-down views, making
their realms pertain to the context of a given query. The syntax of a query Q
including this clause is WITH R1 AS SQL1, ..., Rn AS SQLn SQL, where each R1
is a temporary view name defined by the SQL statement SQLi, and which can be
referenced only in SQL, the ultimate query that builds the outcome of the query
Q. This query can be understood as a relation with name R and defined with
the DDL statement CREATE VIEW R AS Q.

Intuitionistic Logic Programming for SQL 295

q ::= SELECT e,...,e [FROM r,...,r [WHERE c]] |
q sop q |
WITH R AS q q

e ::= C | r.a
r ::= R | q
c ::= e cop e | NOT c | c lop c | TRUE | FALSE
cop ::= > | < | = | <> | >= | <=
sop ::= UNION | EXCEPT | INTERSECT
lop ::= AND | OR

Where true-typed words stand for terminal symbols, C for constants, and R for
relations (either tables or views). Set operators keep duplicates and the keyword ALL

is omitted for simplicity.

Fig. 1. A grammar for a simple subset of SQL

In this work we consider standard SQL as found in many textbooks (e.g.,
[21]), but also allowing FROM-less statements, i.e., providing a single-row output
constructed with the comma-separated expressions after the SELECT keyword
(Oracle, for instance, resorts to feed the single row from the dual table to express
the same feature). Figure 1 includes a grammar for a simple subset of SQL.

A series of local definitions WITH R1 AS q1, . . . , Rn AS qn q is rewritten as
a nested query WITH R1 AS q1 (WITH R2 AS q2 (. . . (WITH Rn AS qn q). . .). A
table (extensional relation) with name T is defined as CREATE TABLE T(S), with
S being a comma-separated sequence of A D, where A is an attribute name and
D its type (referred to as domain in SQL). A view (intensional relation) with
name V is defined as CREATE VIEW V AS q. View types are inherited from tables.
As syntax sugar we allow the symbol * in the projection list referring to all the
arguments of the relations in the FROM list.

With respect to the semantics of an SQL query, we recall and adapt the
notation in [7] which in turn is based on [12]. A database Δ is composed of
relation instances and relation definitions. A relation instance of a relation R
are the atoms (following logic programming instead of relational databases) of
the form RT , where T is a ground tuple. The notation Δ(R) represents the
instance of a relation R in Δ. ΦR represents the ERA (Extended Relational
Algebra) expression associated to an SQL query or view R, as explained in [11]
and formalized later (Definition 3). Figure 2 shows the grammar of ERA expres-
sions, which includes extended relational operations: π (generalized projection),
σ (selection), × (Cartesian product), ∪ (multiset union), ∩ (intersection), −
(multiset difference), duplicate elimination (δ), and ← (assignment). A set oper-
ation is built with the operation δ applied to a multiset (e.g., the set union of
r1 and r2 becomes δ(r1 ∪ r2)). Operators in conditions include: ¬ (negation), ∧
(conjunction), ∨ (disjunction), and comparison operators (<, >, =, ≤, and ≥).
The truth constants true and false are included in the signature. A relation def-
inition is the relational assignment R ← Φ for a relation R and ERA expression
Φ. An extensional database is a database with no relation definitions (i.e., a set

296 F. Sáenz-Pérez

q ::= πe,...,e(q) | σc(q) | δ(q) | q sop q
e ::= C | r.a
r ::= R | q
c ::= e cop e | ¬ c | c lop c | true | false
cop ::= > | < | = | �= | ≥ | ≤
sop ::= ∪ | − | ∩
lop ::= ∧ | ∨

Where italic words stand for terminal symbols, C for constants, and R for relations.

Fig. 2. A grammar for ERA

of atoms). Finally, C represents the constants in the database, including those
occurring in queries.

An intensional relation usually depends on previously defined relations, and
sometimes it will be useful to write ΦR(R1, . . . , Rn) indicating that R depends
on R1, . . . , Rn. Here, we assume that each extensional relation in a database
has attached type information for each one of its named arguments. As well,
each intensional relation argument receives its type via inferencing and arbitrary
names if not provided in its definition. Tables are denoted by their names, that
is, ΦT = T if T is a table.

Definition 1. The computed answer of an ERA expression ΦR with respect to
some database Δ is denoted by ‖ΦR‖Δ, where:

– If R is an extensional relation, ‖ΦR‖Δ = Δ(R).
– If R is an intensional relation and R1, . . . , Rn the relations defined in R, then

‖ΦR‖Δ = ΦR(‖ΦR1‖Δ, . . . , ‖ΦRn
‖Δ). �

Queries are executed by SQL systems. The answer for a query Q and a
database Δ in an implementation is represented by SQLΔ(Q). The notation
SQLΔ(R) abbreviates SQLΔ(SELECT * FROM R). In particular, we assume the
existence of correct SQL implementations.

Definition 2. A correct SQL implementation verifies that SQLΔ(Q) = ‖ΦQ‖Δ

for every query Q. �

Here, we define a translation function SQL to ERA that delivers a single choice
of the possible execution plans as ERA operator compositions, extending the
informal presentation in [11] and including WITH clauses. This function takes
as input an SQL query and a database, and returns an ERA expression. A
condition-less statement is equivalent to the same statement including WHERE
TRUE. We also assume the void relation DUAL with a single tuple in any database
(columns in this table are irrelevant and are not retrieved with functions as
*). Thus, a from-less statement is equivalent to the same statement including
FROM DUAL. Given these considerations we can simplify the cases of the function
SQL to ERA to the ones in next Definition 3. From here on, A[B/C] represents
the syntactic substitution C by B in A.

Intuitionistic Logic Programming for SQL 297

Definition 3. The function SQL to ERA takes an SQL statement and database
Δ as input and returns an ERA expression as defined by cases as follows:

SQL to ERA(SELECT SelectList FROM R1, . . . , Rn WHERE SCond,Δ) =
πSelectList(σECond(R1 × · · · × Rn))

where each Ri is a relation name and ECond is the corresponding ERA condition
to the SQL condition SCond, i.e., with the following syntactical replacements:
EC = (((((SC[≤ /<=])[�= /<>])[≥ />=])[¬/NOT])[∧/AND])[∨/OR]

SQL to ERA(SELECT SelectList FROM FromList WHERE Cond, Δ) =

SQL to ERA(WITH Ri AS SQLi SELECT SelectListFROM FromList′
WHERE Cond, Δ)

where the query SQLi occurs in SelectList, Ri is a fresh new relation name,
and FromList′ = FromList[Ri/SQLi].

SQL to ERA(SQL1 SQLSetOp SQL2,Δ) =
SQL to ERA(SQL1,Δ) ERASetOp SQL to ERA(SQL2,Δ)

where (SQLSetOp,ERASetOp) ∈ {(UNION,∪), (EXCEPT,−), (INTERSECT,∩)}

SQL to ERA(WITH R AS SQL1 SQL2,Δ) =
SQL to ERA(SQL2,Δ ∪ {R ← SQL to ERA(SQL1,Δ)}) �

The first case covers SELECT statements with only relations in the FROM list,
whereas the second one rewrites a SELECT statement with a query in its FROM
clause into a WITH statement, by replacing the query with a relation name defin-
ing the query. The third case covers multiset operations. Finally, the fourth case
deals with WITH statements by augmenting the database for sec4 SQL2 with a
new relation definition R as the translation of SQL1 to ERA for the current
database.

3 Hypothetical Datalog

Hypothetical Datalog is an extension of function-free Horn logic [5]. Following
[17], the syntax of the logic is first order and includes a universe of constant sym-
bols, a set of variables and a set of predicate symbols. Following Prolog syntax,
we write variables starting with either an upper-case letter or an underscore, and
the rest of symbols either starting with lower-case or delimited by single quotes.
Removing function symbols from the logic is a condition for finiteness of answers,
a natural requirement of relational database users. As in Horn-logic, a rule has
the form A ← φ, where A is an atom and φ is a conjunction of goals. Since we
consider a hypothetical system, a goal can also take the form R1 ∧ . . .∧Rn ⇒ G,
a construction known as an embedded implication. The following definition cap-
tures the syntax of the language, where vars(T) is the set of variables occurring
in T :

298 F. Sáenz-Pérez

Definition 4. R := A | A ← G1 ∧ . . . ∧ Gn

G := A | ¬A | δ(A) | G1 ∨ G2 | R1 ∧ . . . ∧ Rn ⇒ G
where R and Ri stand for rules, G and Gi for goals, A for an atom (possibly
containing variables and constants, but no compound terms), and vars(Ri) do
not occur out of Ri. �

The condition on variables of each assumed rule Ri ensures that Ri is not spe-
cialized by any substitution out of it along inferencing, so Ri can be assumed “as
is” for any inference step. The next section recalls this requirement as adequate
for modelling local definitions in SQL WITH statements.

A Datalog database can contain facts (atoms, as in SQL), and rules instead
of relation definitions. Here, a database is also referred to as a program. Each
rule A ← G1 ∨ G2 in a database is rewritten as two rules A ← G1 and A ← G2.

For dealing with negation, predicates are collected into strata, which are
built using a predicate dependency graph (PDG) [24], showing both the positive
and negative dependencies between predicates in the database. Each node in
this graph is a predicate (relation) symbol and there are as many nodes as
such symbols in the database. Arcs come from each predicate in a rule body
(antecedent) to its rule predicate. Arcs are labelled as either negative (¬←), if
the antecedent node occurs negated, or positive otherwise (←). A stratification
collects predicates into numbered strata so that, given the function str(Δ, p)
which assigns a stratum number to predicate p in the database Δ, then for a
positive arc p←q, str(Δ, p) ≤ str(Δ, q), and for a negative arc p ¬←q, str(Δ, p) <
str(Δ, q). Predicates in lower strata are solved before those in upper strata to
avoid non-monotonicity in fixpoint iterations [23].

Semantics is built with the stratified inference system defined in [17]. This
system is adapted next for dealing with SQL duplicates (identifiers for axioms are
constructed as identifier compositions), and extended with duplicate elimination
(strong constraints are omitted as they are out of the scope of this paper). As in
[17], Δ � ψ is an inference expression, where Δ is a database, ψ can be either
an identified ground atom id : A, or ⊥. A negative inference expression is of the
form Δ � id : −A.

Definition 5. Given a database Δ and a set of input inference expressions E ,
the inference system associated to the s-th stratum is defined as follows, where
ds(E) is a closure operator that denotes the set of inference expressions derivable
in this system
Axioms:

– Δ � id : A is an axiom for each (ground) atomic formula id : A in Δ, where
str(Δ, pred(A)) = s

– Each expression in E is an axiom.

Inference Rules:

– For any rule A ← φ1∧. . .∧φn with identifier id in Δ, where str(Δ, pred(A)) =
s and for any ground substitution θ:

Intuitionistic Logic Programming for SQL 299

Δ � idi : φiθ for each i

Δ � id′ : Aθ
(Clause)

where id′ is the composition of identifiers id · id1 · · · idn

– For any atom A:
Δ � id : A

Δ � α : δ(A)
(Duplicates)

where α is a single, unique identifier.
– For any goal φ:

Δ ∪ {R1, . . . , Rn} � φ

Δ � R1 ∧ . . . ∧ Rn ⇒ φ
(Assumption)

Each rule in this inference system is read as: If the formulas above the line
can be inferred, then those below the line can also be inferred. We recall the
intuition behind the inference rule for the embedded implication: For proving
the conclusion φ, rules Ri, together with the current database Δ can be used
in subsequent inference steps. So, this inference rule captures what SQL WITH
statements need if translated to Hypothetical Datalog, because each Ri can
represent each temporary view definition, as will be shown in the next section.
The inference rule (Duplicates) performs duplicate elimination by grouping all
inferred atoms with a single identifier α (recall that E is a set).

Negative information is deduced by applying the closed world assumption to
a set of inference expressions E (written as cwa(E)) as the union of E and the
negative inference expression for Δ � φ such that Δ � φ /∈ E .

Thus, a stratified bottom-up construction of the unified stratified semantics
can be specified by:

– E0 = ∅
– Es+1 = cwa(ds+1(Es)) for s ≥ 0.

which builds a set of axioms E that provides a means to assign a meaning to a goal
as: solve(φ, E) = {Δ � id : ψ ∈ E such that φθ = ψ}, where θ is a substitution
and each axiom in E is mapped to the database Δ it was deduced for, and the
inferred fact ψ is labelled with its data source (for supporting duplicates). We
use Δ(E) to denote the multiset of facts ψ so that Δ � id : ψ ∈ E for any id.

4 Translating SQL into Datalog

Here, we define the function SQL to DL which takes a relation name and an
SQL statement as input and returns a multiset of Datalog rules providing the
same meaning as the SQL relation for a corresponding predicate with the same
name as the relation. From here on, set-related operators and symbols refer to
multisets, as SQL relations can contain duplicates.

Definition 6. The function SQL to DL takes a relation name and an SQL state-
ment as input and returns a Datalog program as defined by cases as follows:

300 F. Sáenz-Pérez

% Basic SELECT statement
SQL to DL (r, SELECT A1, . . . , A n FROM Rel WHERE Cond) =

{r(X) ← DLRel(Y) ∧ DLCond(Z)}⋃
RelRules

⋃
CondRules,

where SQLREL to DL (Rel) = (DLRel(Y), RelRules), and
SQLCOND to DL (Cond) = (DLCond(Z), CondRules)

Here, each Ai is either a constant or an argument name present in the relation
Rel with corresponding logic variable Xi ∈ X. Rel is either a single defined
relation (table or view), or a join of relations, or an SQL statement. Func-
tion SQLREL to DL (respectively, SQLCOND to DL) takes an SQL relation (respec-
tively, condition) and returns a goal with as many variables Y as arguments of
Rel and, possibly, additional rules which result from the translation. Variables
Z ⊆ Y come as a result of the translation of the condition DLCond to a goal.

% Union
SQL to DL (r, SQL1 UNION SQL2) =

SQL to DL (r, SQL1)
⋃

SQL to DL(r, SQL2)

% Difference
SQL to DL (r, SQL1 EXCEPT SQL2) =

{r(X) ← s(X) ∧ ¬t(X)} ⋃
SQL to DL (s, SQL1)

⋃
SQL to DL (t, SQL2)

% Intersection
SQL to DL (r, SQL1 INTERSECT SQL2) =

{r(X) ← s(X) ∧ t(X)} ⋃
SQL to DL (s, SQL1)

⋃
SQL to DL (t, SQL2) �

Definition 7. The function SQLREL to DL takes an SQL relation (either a rela-
tion name or statement) as input and returns both a Datalog goal and program
as defined by cases as follows:

% Extensional/Intensional relation name
SQLREL to DL (RelName) = (RelName(X), {})
where X are the n variables corresponding to the n-degree relation RelName.

% Join of relations
SQLREL to DL ((Rel1, . . . , Reln)) = (DLRel(X1)∧· · ·∧DLRel(Xn), RelRules1∪
· · · ∪ RelRulesn)
where SQLREL to DL (Reli) = (DLRel(Xi), RelRulesi)

% SQL statement
SQLREL to DL (SQL) = (RelName(X), SQL to DL (RelName, SQL))
where X are the n variables corresponding to the n-degree statement SQL, and
RelName is an arbitrary, fresh new relation name. �

Definition 8. The function SQLCOND to DL takes an SQL condition as input
and returns both a Datalog goal and program as defined by cases as follows:

% Basic condition
SQLCOND to DL (A1 cop A2) = (X1 cop′ X2, ∅)

Intuitionistic Logic Programming for SQL 301

where each Xi is either the constant or the variable corresponding to the
attribute name A1, and cop′ is the Datalog corresponding comparison operator
to cop.

% Conjunction
SQLCOND to DL (C1 AND C2) = (C ′

1 ∧ C ′
2, CRules1 ∪ CRules2)

where Ci are conditions and SQLCOND to DL (Ci)=(C ′
i, CRulesi).

% Disjunction
SQLCOND to DL (C1 OR C2) = (δ(d), {d ← C ′

1, d ← C ′
2} ∪ CRules1 ∪ CRules2)

where Ci are conditions, SQLCOND to DL (Ci) = (C ′
i, CRulesi), and d is a fresh

atom.

% Negated condition
SQLCOND to DL (NOT C) = (C ′, CRules)
where C ′ = SQLCOND to DL (C) = (C ′, CRules), and C represents the logical
complement of C (X < Y = X ≥ Y , C1 ∧ C2 = C1 ∨ C2, and so on). �

Note that disjunction requires duplicate elimination because, otherwise, there
can be more tuples in the result as a disjunction in a rule is rewritten as two
rules (cf. Sect. 3).

Completing the function SQL to DL in Definition 6 by including the WITH
statement is straightforward because every temporary view can be represented
by a predicate resulting from the translation of the temporary view definition
into Datalog rules. Assuming such predicates as the antecedent of an embed-
ded implication can be used to augment the (local, temporary) database for
interpreting the meaning of the translated SQL outcome query, as follows:

SQL to DL (r, WITH r1 AS SQL 1 SQL) =
{r(X) ← ∧

(SQL to DL (r1, SQL 1)) ⇒ s(X)} ⋃
SQL to DL (s, SQL)

where
∧

(Bag) denotes B1 ∧ · · · ∧ Bm (Bi ∈ Bag). Note that variables in the
antecedent of the embedded implication are not in X (cf. Definition 4), which is
adequate because SQL 1 and SQL are independent sentences.

The following theorem establishes the semantic equivalence of an SQL rela-
tion and its counterpart Datalog translation.

Theorem 1. The semantics of an SQL n-degree relation r defined by the query
Q on an extensional database Δ coincides with the meaning of a goal r(Xi), 1 ≤
i ≤ n, for Δ′ = Δ

⋃
SQL to DL (r,Q), that is: SQLΔ(Q) = Δ(solve(r(Xi), E)),

where E is the unified stratified semantics for Δ′. �

Proof. To prove SQLΔ(Q) = Δ(solve(r(Xi), E)), on the one hand, as stated in
Definition 2, we assume a correct implementation such that SQLΔ(Q) = ‖ΦQ‖Δ

for every query Q. Definition 3 provides a translation from an SQL query to an
ERA expression Φ, and Definition 1 provides an interpretation for a computed
answer in terms of the ERA operators. On the other hand, Definition 6 provides a
Datalog program with a predicate r representing the relation r defined by query
Q. This Datalog program is interpreted with the unified stratified semantics in

302 F. Sáenz-Pérez

Sect. 3, which provides the set of axioms E for the original database Δ augmented
with the translation of the query Q to this Datalog program. So, the proof
proceeds by cases showing the semantic equivalence of the translation from the
SQL query Q into an ERA expression φ for a relation r (with SQL to ERA), and
the translation of Q into a Datalog program (with SQL to DL).

5 Beyond the with Clause: Expressing Assumptions

As a novel feature and inspired in [16], hypothetical SQL queries were introduced
for the first time in DES version 2.6 in order to solve “what-if” scenarios for
decision-support systems. Syntax for such queries is:

ASSUME SQL1 IN Rel1, ..., SQLn IN Reln SQL;

which makes to assume the result of SQL i in Rel i (either a relation name or a
complete schema, i.e., with attribute names) when processing SQL. This means
that the semantics of each Rel i is either overloaded (if the relation already
exists) or otherwise defined with the facts of SQL i.

For including this new statement in the SQL syntax, the case ASSUME q IN R
q is added to the definition of q in Fig. 1. Similar to WITH, a series of assumptions
ASSUME q1 IN R1, . . . , qn IN Rn q is rewritten as a nested query ASSUME q1 AS
R1 (ASSUME q2 AS R2 (. . . (ASSUME qn AS Rn q). . .).

Its semantics can be understood by adding the following case to the function
SQL to ERA in Definition 3:
SQL to ERA(ASSUMESQL1INRSQL2,Δ) =

SQL to ERA(SQL2, (Δ − {R ← ERA}) ∪
{R ← ERA ∪ SQL to ERA(SQL1,Δ)})

Note that if R is an extensional relation, it can be intensionally represented
in a database as a union of from-less select statements (SELECTtuple1 UNION ...
SELECT tuplen).

Assumptions in DES 2.6 were un-nested and restricted to the top-level (i.e.,
at the system prompt) and its implementation resorted to globally define each
Rel i. Before solving an ASSUME query, each Rel i was overloaded by inserting
into it the required tuples from its assumption, and after solving, each Rel i

was restored by deleting the same tuples that were inserted. Nested assumptions
were precluded because select statements in outer assumptions could not safely
include inner assumptions, as in:

ASSUME SELECT 1 IN r(a),
(ASSUME SELECT 2 IN r(a) SELECT * FROM r) IN s(a)

SELECT * FROM r,s;

because the meaning of r in the context of SELECT * FROM r,s would be over-
loaded with both {(1)} and {(2)}, instead of just {(1)}.

Such statements were restricted to the top-level because, otherwise they could
form part of a relation definition and the same problem might arise, as in:

Intuitionistic Logic Programming for SQL 303

CREATE VIEW v(a) AS ASSUME SELECT 2 IN r(a) SELECT * FROM r;
ASSUME SELECT 1 IN r(a), SELECT * FROM v IN s(a)

SELECT * FROM r,s;

which is an equivalent formulation to the last example query, replacing the in-line
inner-assumption statement by a reference to a relation v.

Applying hypothetical reasoning solves these issues in the (Hypothetical Dat-
alog) setting of DES. In particular, the function SQL to DL in Definition 6 is
augmented with the following case for supporting single assumptions:

SQL to DL (r, ASSUME SQL 1 IN r1 SQL) =
{r(X) ← ∧

(SQL to DL (r1, SQL 1)) ⇒ s(X)} ∪ SQL to DL (s, SQL)

Here, the antecedent of the embedded implication includes all the clauses
resulting from transforming SQL 1 into Datalog, which are (most likely) used in
solving s(Xi), the goal corresponding to SELECT * FROM s, where s ← SQL.

Intuitionistic logic programming allows us not only to deal with the issues
above, but also to take advantage of negative assumptions [5,19]. A negative
assumption allows to remove facts from the meaning of a relation, which broadens
the applicability of queries in decision-support scenarios. To specify negative
assumptions, NOT IN is used instead of just IN so that the SQL syntax (Definition
2) is enlarged with negative assumptions ASSUME q NOT IN R q. Its semantics
can be understood with the following case added to Definition 3:
SQL to ERA(ASSUME SQL1 NOT IN R SQL2, Δ) =
SQL to ERA(SQL2, (Δ − {R ← ERA}) ∪

{R ← ERA − SQL to ERA(SQL1,Δ)})
So, instead of adding the semantics of SQL1 to R in a (positive) assumption
with a union operator, a negative assumption removes this semantics from R
with a set difference operator.

Hypothetical Datalog in [19] introduces the notion of restricted predicate to
handle negative assumptions in embedded implications. A restricted predicate
includes at least a restricting rule, which is a regular rule whose head is an atom
preceded by a minus sign. (We use the term regular rule for a usual Datalog rule,
i.e., a rule whose head is an atom with non-structured arguments). Restricting
rules are intended to prune the semantics of predicates, so that the meaning of
a restricted predicate is the set of facts deduced from regular rules minus the
set of facts deduced from restricting rules. Semantics in [19] formalizes this in
the definition of the closed world assumption of a set of inference expressions
A, in which any restricting axiom Δ � id : −φ occurs as a negative inference
expression. Similar to handling negation, the inclusion of restricted predicates
involves adding negative dependencies between each restricted predicate p and
all the predicates depending on p [19]. This way, any predicate using a restricted
predicate p is located at a higher stratum and therefore its meaning is safely
computed.

An SQL negative assumption can therefore be modelled with a restricting
rule in the antecedent of an embedded implication, so that the translation from
SQL to Hypothetical Datalog for ASSUME statements becomes:

304 F. Sáenz-Pérez

SQL to DL(r, ASSUME SQL1 NOT IN r1 SQL) =
{r(X) ← ∧

(SQL to DL(r1, SQL1)[−rn/rn]) ⇒ s(X)} ∪
SQL to DL(s, SQL)
Here, translating the SQL negative assumption for a relation r1 into Datalog

rules requires replacing every occurrence of the predicate r1 by −r1, in particular
making it a restricted predicate as rule heads for r1 become restricting atoms.

6 Playing with the System

The formal setting described in this paper has been implemented in the deduc-
tive system DES [20], which in particular supports such features and inputs
from several query languages, including (hypothetical) Datalog and SQL. This
interactive system supports a dynamic database allowing users to add, modify,
remove and query relations, which can be either in-memory or persistent. Solv-
ing a query in any of the supported languages resorts to a translation from the
input language to a Datalog core language. The translated query is then solved
by the deductive engine, which may redirect some computations to an external
database system if there are persistent predicates involved. Another possibility
for external computations is opening an external database and making DES its
front-end for submitting SQL queries. In this scenario, queries in other languages
(Datalog, ERA, TRC and DRC) are solved by the deductive engine and refer-
ences to external relations are solved by the external database engine. Next, we
introduce a couple of examples to show the translation from SQL to Datalog,
its solving and the connection to external databases. Concrete, textual syntax
in DES for Datalog follows the syntax of Prolog.

student
(adam)
(bob)
(pete)
(scott)

take
(adam,db)
(pete,db)
(pete,lp)
(scott,lp)

Let us consider a database Δ containing
the relations student(name) and take(name,
title). The first one states names of stu-
dents and the second one the course (title)
each student (name) is enrolled in. Types can
be specified either with a Datalog assertion (as
:-type(student(name:string)) for the first relation) or a DDL SQL state-
ment (as create table take(name string, title string) for the second
one, where a foreign key take.name → student.name could be stated as well).
We consider the database instance depicted in the tables above.

The next SQL statement (looking for students that have not been already
enrolled in a course) is translated as follows in a system session with DES 4.0
(issuing the command “/show compilations on” makes translations to be dis-
played):

DES> SELECT * FROM student EXCEPT SELECT name FROM take
Info: SQL statement compiled to:

answer(A) :- student(A), not take(A,_B).
answer(student.name:string) ->
{ answer(bob) }
Info: 1 tuple computed.

Intuitionistic Logic Programming for SQL 305

This example shows a few of things. First, as a query Q is allowed at the
system prompt, the call to the translation function becomes SQL to DL (answer,
Q), i.e., the outcome relation is automatically renamed to the reserved keyword
answer. Second, the outcome schema answer(student.name:string) shows
that the single output argument comes from the argument name of the relation
student, with type string. Third, following the definition of the translation
function, this query should be translated into:

answer(A) :- ’$r_1’(A), not ’$r_2’(A).
’$r_1’(A) :- student(A). ’$r_2’(A) :- take(A,_B).

However, a folding/unfolding [22] stage simplifies this by removing the depen-
dent relations ‘$r 1’ and ‘$r 2’ as it was displayed in the system session. Since
DES implements a tabling mechanism [17], the meaning of each dependent rela-
tion (either complete or restricted to a given call) is stored in the answer table,
so that reducing the number of these dependent relations also reduces the space
and time requirements.

Finally, this example also shows that non-relevant variables to a rule out-
come are underscored (otherwise, they would be signalled as singletons). This is
important in this case to identify as safe the rule in which this underscored vari-
able occurs. Classical safety [23] would tag the rule answer(A) :- student(A),
not take(A, B) as unsafe because B does not occur in a positive goal in the
same rule. However, there exists an equivalent set of safe rules (as listed above
before applying folding/unfolding). Therefore, taking this fact into account,
underscored variables are used as a means to encapsulate this form of safety,
which is identified by the system and processed correspondingly with no safety
errors.

As an example of a WITH query, the following statement defines the relation
grad intended to retrieve the eligible students for graduation (those that took
both db and lp in this tiny example):

DES> WITH grad(name) AS
(SELECT student.name
FROM student, take t1, take t2
WHERE student.name=t1.name AND t1.name=t2.name AND

t1.title=’db’ AND t2.title=’lp’)
SELECT * FROM grad;

Info: SQL statement compiled to:
answer(A) :-
(grad(B) :- student(B), take(B,db), take(B,lp)) => grad(A).

answer(grad.name:string) ->
{ answer(pete) }
Info: 1 tuple computed.

Solving this query amounts to solve grad(A) in the database Δ augmented
with the single rule in the antecedent of =>.

As an example of an ASSUME query, we reuse the grad definition above, assume
that adam is not an eligible student, and that adam and scott took lp and db
respectively:

306 F. Sáenz-Pérez

DES> ASSUME
(SELECT ’adam’) NOT IN student,
(SELECT ’adam’,’lp’ UNION ALL SELECT ’scott’,’db’)

in take,
(SELECT student.name FROM student, take t1, take t2

WHERE student.name=t1.name AND t1.name=t2.name AND
t1.title=’lp’ AND t2.title=’db’) IN grad(name)

SELECT * FROM grad;
Info: SQL statement compiled to:

answer(A) :-
-student(adam) /\ take(adam,lp) /\ take(scott,db) /\
(grad(B) :- student(B), take(B,lp), take(B,db)) => grad(A).

answer(grad.name:string) ->
{ answer(pete), answer(scott) }
Info: 2 tuples computed.

Here, the assumption on student is negative and is compiled to a restricting
fact. The second one is compiled to a couple of facts because of the union. The
last one is the same as the previous example. The SQL statement after the
assumptions simply leads to the goal grad(A), for which even when adam took
the courses to graduate, he was removed as an eligible student and therefore
from the answer.

If the extensional relations student and take are already defined in an exter-
nal relational database (as, e.g., MySQL or PostgreSQL), they can be made
available to DES via an ODBC connection (with the command /open db), and
queried as if they were local [18]. This way, DES behaves as a front-end for
both straight calls to native (i.e., supported by the external relational system)
SQL queries and non-native queries (as those including ASSUME). For non-native
queries, prepending the command /des to the query makes DES to handle them.
In the next example, we consider MySQL (which does not provide support for
the WITH clause) with the relations student and take already available.

DES> /open_db mysql
DES> /des WITH grad(name) AS ...

After opening the ODBC connection, the former example query (omitted
here in the ellipses) can be solved by the deductive engine with the Datalog
translation and obtaining the same answer as before. Note that references to the
relations student and take are solved by the external MySQL engine.

Finally, we highlight that even when the WITH clause is supported in sev-
eral relational database systems (as PostgreSQL), they are somewhat restricted
because, referring to the syntax in Sect. 2, SQL cannot contain a WITH clause,
whereas we do allow for it.

7 Conclusions

This work has presented a proposal to take advantage of intuitionistic logic
programming to model both temporary definitions (with the WITH clause) and

Intuitionistic Logic Programming for SQL 307

assumptions (with the ASSUME clause) in SQL. Its motivation lies in providing
support for these clauses in a deductive system which translates SQL to Datalog,
additionally providing a clean semantics that makes assumptions to behave as
first-class citizen in the object language. The deductive database system DES was
used as a test bed to experiment with assumptions and local definitions in SQL.
Further, this system can be used first as a front-end to relational systems either
lacking support for the WITH clause or providing restricted uses of this clause,
and second, to submit out-of-the-standard ASSUME clauses to external database
systems. In particular, this is interesting as a middle-ware between a constraint
system and a relational database to experiment in decision-support scenarios.
The most related work is [1], which includes assumptions in SQL with a tailored
semantics, and generates SQL scripts implementing fixpoint computations. With
respect to the intuitionistic formal framework, our work is based on [3–6] and
adapted to assume rules and deal with duplicates in [17,19]. However, it is not
powerful enough to include embedded universal quantifiers in premises as in [6],
which provides the ability to create new constant symbols hypothetically along
inference. Though this is not directly applicable to the current work, it is indeed
an interesting subject to explore by considering that domains can be finitely
constrained in practical applications, as with foreign keys.

Acknowledgements. Thanks to the anonymous referees for their suggestions to
improve this work, which has been partially supported by the Spanish MINECO project
CAVI-ART (TIN2013-44742-C4-3-R), Madrid regional project N-GREENS Software-
CM (S2013/ICE-2731) and UCM grant GR3/14-910502.

References

1. Aranda-López, G., Nieva, S., Sáenz-Pérez, F., Sánchez-Hernández, J.: Incorpo-
rating hypothetical views and extended recursion into SQL database systems. In:
Mcmillan, K., Middeldorp, A., Sutcliffe, G., Voronkov, A. (eds.) International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-
19). EPiC Series in Computing, vol. 26, pp. 9–22. EasyChair (2014)

2. Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L., Torlone, R.: The relational
model is dead, SQL is dead, and i don’t feel so good myself. SIGMOD Rec. 42(2),
64–68 (2013)

3. Bonner, A.J., Datalog, H.: Negation and linear recursion. In: Proceedings of the
ACM Symposium on Principles of Database Systems (PODS), pp. 286–300 (1989)

4. Bonner, A.J.: Hypothetical datalog: complexity and expressibility. Theor. Comput.
Sci. 76, 3–51 (1990)

5. Bonner, A.J., McCarty, L.T.: Adding negation-as-failure to intuitionistic logic pro-
gramming. In: Lusk, E.L., Overbeek, R.A. (eds.) Proceedings of the North Amer-
ican Conference on Logic Programming (NACLP), pp. 681–703. The MIT Press
(1990)

6. Bonner, A.J., McCarty, L.T., Vadaparty, K.: Expressing database queries with
intuitionistic logic. In: Lusk, E.L., Overbeek, R.A. (eds.) Proceedings of the North
American Conference on Logic Programming (NACLP), pp. 831–850 (1989)

308 F. Sáenz-Pérez

7. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: Declarative debugging of wrong
and missing answers for SQL views. In: Schrijvers, T., Thiemann, P. (eds.)
FLOPS 2012. LNCS, vol. 7294, pp. 73–87. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29822-6 9

8. Codd, E.: A relational model for large shared databanks. Commun. ACM 13(6),
377–390 (1970)

9. Codd, E.: Relational completeness of data base sublanguages. In: Rustin, R. (ed.)
Data Base Systems, Courant Computer Science Symposia Series, vol. 6. Prentice-
Hall, Englewood Cliffs (1972)

10. Gabbay, D.M.: N-prolog: an extension of prolog with hypothetical implication II -
logical foundations, and negation as failure. J. Log. Program. 2(4), 251–283 (1985)

11. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book. Prentice Hall PTR, Upper Saddle River (2008)

12. Grefen, P.W., de By, R.A.: A multi-set extended relational algebra.: a formal app-
roach to a practical issue. In: Proceedings of the Tenth International Conference
on Data Engineering (ICDE), pp. 80–88. IEEE (1994)

13. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic.
Inf. Comput. 110(2), 327–365 (1994)

14. McCarty, L.T.: Clausal intuitionistic logic I - fixed-point semantics. J. Log. Pro-
gram. 5(1), 1–31 (1988)

15. Miller, D.: A logical analysis of modules in logic programming. J. Log. Program.
6(1), 79–108 (1989)

16. Nieva, S., Sánchez-Hernández, J., Sáenz-Pérez, F.: Formalizing a constraint deduc-
tive database language based on hereditary Harrop formulas with negation. In:
Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 289–
304. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78969-7 21

17. Sáenz-Pérez, F.: Implementing tabled hypothetical datalog. In: Proceedings of the
25th IEEE International Conference on Tools with Artificial Intelligence (ICTAI),
pp. 596–601, November 2013

18. Sáenz-Pérez, F.: Towards bridging the expressiveness gap between relational and
deductive databases. Electron. Commun. EASST 64, 1–22 (2014)

19. Sáenz-Pérez, F.: Restricted predicates for hypothetical datalog. Electron. Proc.
Theor. Comput. Sci. 200, 64–79 (2015)

20. Sáenz-Pérez, F.: Datalog educational system (2016). http://des.sourceforge.net/
21. Silberschatz, A., Korth, H., Sudarshan, S.: Database Systems Concepts, 6th edn.

McGraw-Hill Inc., New York (2010)
22. Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques.

MIT Press, Cambridge (1986)
23. Ullman, J.D.: Database and Knowledge-Base Systems, vols. I (Classical Database

Systems) and II (The New Technologies). Computer Science Press (1988)
24. Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., Zicari,

R.: Advanced Database Systems. Morgan Kaufmann, San Francisco (1997)

http://dx.doi.org/10.1007/978-3-642-29822-6_9
http://dx.doi.org/10.1007/978-3-642-29822-6_9
http://dx.doi.org/10.1007/978-3-540-78969-7_21
http://des.sourceforge.net/

Types, Unification, and Logic

Coinductive Soundness of Corecursive
Type Class Resolution

Frantǐsek Farka1,2(B), Ekaterina Komendantskaya2, and Kevin Hammond1

1 University of St Andrews, St Andrews, Scotland
{ff32,kh8}@st-andrews.ac.uk

2 Heriot-Watt University, Edinburgh, Scotland
ek19@hw.ac.uk

Abstract. Horn clauses and first-order resolution are commonly used to
implement type classes in Haskell. Several corecursive extensions to type
class resolution have recently been proposed, with the goal of allowing
(co)recursive dictionary construction where resolution does not termi-
nate. This paper shows, for the first time, that corecursive type class
resolution and its extensions are coinductively sound with respect to the
greatest Herbrand models of logic programs and that they are induc-
tively unsound with respect to the least Herbrand models. We establish
incompleteness results for various fragments of the proof system.

Keywords: Resolution · Coinduction · Herbrand models · Type
classes · Haskell · Horn clauses

1 Introduction

Type classes can be used to implement ad-hoc polymorphism and overloading
in functional languages. The approach originated in Haskell [7,16] and has been
further developed in dependently typed languages [3,6]. For example, it is con-
venient to define equality for all data structures in a uniform way. In Haskell,
this is achieved by introducing the equality class Eq:

class Eq x where
eq :: Eq x ⇒ x → x → Bool

and then declaring any necessary instances of the class, e.g. for pairs and integers:

instance (Eq x, Eq y) ⇒ Eq (x, y) where
eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

Type class resolution is performed by the Haskell compiler and involves check-
ing whether all the instance declarations are valid. For example, the following
function triggers a check that Eq (Int, Int) is a valid instance of type class Eq:

test :: Eq (Int, Int) ⇒ Bool
test = eq (1,2) (1,2)

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 311–327, 2017.
DOI: 10.1007/978-3-319-63139-4 18

312 F. Farka et al.

It is folklore that type class instance resolution resembles SLD-resolution from
logic programming. The type class instance declarations above could, for exam-
ple, be viewed as the following two Horn clauses:

Example 1 (Logic program PPair).

κ1 : eq(x), eq(y) ⇒ eq(pair(x, y))
κ2 : ⇒ eq(int)

Then, given the query ? eq(pair(int, int)), SLD-resolution terminates success-
fully with the following sequence of inference steps:

eq(pair(int, int)) →κ1 eq(int), eq(int) →κ2 eq(int) →κ2 ∅

The proof witness κ1κ2κ2 (called a “dictionary” in Haskell) is constructed by
the Haskell compiler. This is treated internally as an executable function.

Despite the apparent similarity of type class syntax and type class resolution
to Horn clauses and SLD-resolution they are not, however, identical. At a syntac-
tic level, type class instance declarations correspond to a restricted form of Horn
clauses, namely ones that: (i) do not overlap (i.e. whose heads do not unify);
and that (ii) do not contain existential variables (i.e. variables that occur in the
bodies but not in the heads of the clauses). At an algorithmic level, (iii) type
class resolution corresponds to SLD-resolution in which unification is restricted
to term-matching. Assuming there is a clause B1, . . . Bn ⇒ A′, then a query ? A′

can be resolved with this clause only if A can be matched against A′, i.e. if a
substitution σ exists such that A = σA′. In comparison, SLD-resolution incor-
porates unifiers, as well as matchers, i.e. it also proceeds to resolve the above
query and clause in all the cases where σA = σA′ holds.

These restrictions guarantee that type class inference computes the princi-
pal (most general) type. Restrictions (i) and (ii) amount to deterministic infer-
ence by resolution, in which only one derivation is possible for every query.
Restriction (iii) means that no substitution is applied to a query during infer-
ence, i.e. we prove the query in an implicitly universally quantified form. It is
common knowledge that (as with SLD-resolution) type class resolution is induc-
tively sound, i.e. that it is sound relative to the least Herbrand models of logic
programs [12]. Moreover, in Sect. 3 we establish, for the first time, that it is
alsouniversally inductively sound, i.e. that if a formula A is proved by type class
resolution, every ground instance of A is in the least Herbrand model of the
given program. In contrast to SLD-resolution, however, type class resolution is
inductively incomplete, i.e. it is incomplete relative to least Herbrand models,
even for the class of Horn clauses that is restricted by conditions (i) and (ii).
For example, given a clause ⇒ q(f(x)) and a query ? q(x), SLD-resolution is
able to find a proof (by instantiating x with f(x)), but type class resolution
fails. Lämmel and Peyton Jones have suggested [11] an extension to type class
resolution that accounts for some non-terminating cases of type class resolution.
Consider, for example, the following mutually defined data structures:

Coinductive Soundness of Corecursive Type Class Resolution 313

data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

which give rise to the following instance declarations for the Eq class:

instance (Eq a, Eq (EvenList a)) ⇒ Eq (OddList a) where
eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys

instance (Eq a, Eq (OddList a)) ⇒ Eq (EvenList a) where
eq Nil Nil = True
eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys
eq _ _ = False

The test function below triggers type class resolution in the Haskell
compiler:

test :: Eq (EvenList Int) ⇒ Bool
test = eq Nil Nil

However, inference by resolution does not terminate in this case. Consider the
Horn clause representation of the type class instance declarations:

Example 2 (Logic program PEvenOdd).

κ1 : eq(x), eq(evenList(x)) ⇒ eq(oddList(x))
κ2 : eq(x), eq(oddList(x)) ⇒ eq(evenList(x))
κ3 : ⇒ eq(int)

The non-terminating resolution trace is given by:

eq(evenList(int)) →κ2 eq(int), eq(oddList(int)) →κ3 eq(oddList(int))

→κ1 eq(int), eq(evenList(int)) →κ3 eq(evenList(int)) →κ2 . . .

A goal eq(evenList(int)) is simplified using the clause κ2 to goals eq(int) and
eq(oddList(int)). The first of these is discarded using the clause κ3. Resolution
continues using κ1 and κ3, resulting in the original goal eq(evenList(int)). It
is easy to see that such a process could continue infinitely and that this goal
constitutes a cycle (underlined above).

As suggested by Lämmel and Peyton Jones [11], the compiler can obviously
terminate the infinite inference process as soon as it detects the underlined cycle.
Moreover, it can also construct the corresponding proof witness in a form of a
recursive function. For the example above, such a function is given by the fixed
point term να.κ2κ3(κ1κ3α), where ν is a fixed point operator. The intuitive
reading of such a proof is that an infinite proof of the query ? eq (evenList(int))
exists, and that its shape is fully specified by the recursive proof witness function
above. We say that the proof is given by corecursive type class resolution.

Corecursive type class resolution is not inductively sound. For example, the
formula eq(evenList(int)) is not in the least Herbrand model of the corre-
sponding logic program. However, as we prove in Sect. 4, it is (universally)

314 F. Farka et al.

coinductively sound, i.e. it is sound relative to the greatest Herbrand models.
For example, eq(evenList(int)) is in the greatest Herbrand model of the pro-
gram PEvenOdd. Similarly to the inductive case, corecursive type class resolu-
tion is coinductively incomplete. Consider the clause κinf : p(x) ⇒ p(f(x)).
This clause may be given an interpretation by the greatest (complete) Herbrand
models. However, corecursive type class resolution does not yield infinite proofs.

Unfortunately, this simple method of cycle detection does not work for all
non-terminating programs. Consider the following example, which defines a data
type Bush (for bush trees), and its corresponding instance for Eq:

data Bush a = Nil | Cons a (Bush (Bush a))
instance Eq a, Eq (Bush (Bush a)) ⇒ Eq (Bush a) where { ... }

Here, type class resolution does not terminate. However, it does not exhibit
cycles either. Consider the Horn clause translation of the problem:

Example 3 (Logic program PBush).

κ1 : ⇒ eq(int)
κ2 : eq(x), eq(bush(bush(x))) ⇒ eq(bush(x))

The derivation below shows that no cycles arise when we resolve the query
? eq(bush(int)) against the program PBush:

eq(bush(int)) →κ2 eq(int), eq(bush(bush(int)) →κ1 . . . →κ2

eq(bush(int)), eq(bush(bush(bush(int))) →κ1 . . .

Fu et al. [5] have recently introduced an extension to corecursive type class res-
olution that allows implicative queries to be proved by corecursion and uses the
recursive proof witness construction. Implicative queries require the language of
proof terms to be extended with λ-abstraction. For example, in the above pro-
gram the Horn formula eq(x) ⇒ eq(bush(x)) can be (coinductively) proven with
the recursive proof witness κ3 = να.λβ.κ2β(α(αβ)). If we add this Horn clause
as a third clause to our program, we obtain a proof of eq(bush(int)) by apply-
ing κ3 to κ1. In this case, it is even more challenging to understand whether the
proof κ3κ1 of eq(bush(int)) is indeed sound: whether inductively, coinductively
or in any other sense. In Sect. 5, we establish, for the first time, coinductive
soundness for proofs of such implicative queries, relative to the greatest Her-
brand models of logic programs. Namely, we determine that proofs that are
obtained by extending the proof context with coinductively proven Horn clauses
(such as κ3 above) are coinductively sound but inductively unsound. This result
completes our study of the semantic properties of corecursive type class resolu-
tion. Sections 3 and 5 summarise our arguments concerning the inductive and
coinductive incompleteness of corecursive type class resolution.

Coinductive Soundness of Corecursive Type Class Resolution 315

Contributions. By presenting the described results, we answer three research
questions:

(1) whether type class resolution and its two recent corecursive extensions [5,
11] are sound relative to the standard (Herbrand model) semantics of logic
programming;

(2) whether these new extensions are indeed “corecursive”, i.e. whether they are
better modelled by the greatest Herbrand model semantics rather than by
the least Herbrand model semantics; and

(3) whether the context update technique given in [5] can be reapplied to logic
programming and can be re-used in its corecursive dialects such as CoLP [14]
and CoALP [10] or, even broader, can be incorporated into program trans-
formation techniques [2].

We answer questions (1) and (2) in the affirmative. The answer to question (3)
is less straightforward. The way the implicative coinductive lemmata are used
in proofs alongside all other Horn clauses in [5] indeed resembles a program
transformation method when considered from the logic programming point of
view. In reality, however, different fragments of the calculus given in [5] allow
proofs for Horn formulae which, when added to the initial program, may lead
to inductively or coinductively unsound extensions. We analyse this situation
carefully, throughout the technical sections that follow. In this way, we highlight
which program transformation methods can be soundly borrowed from existing
work on corecursive resolution. We will use the formulation of corecursive type
class resolution given by Fu et al. [5]. This extends Howard’s simply-typed λ-
calculus [4,8] with a resolution rule and a ν-rule. The resulting calculus is general
and accounts for all previously suggested kinds of type class resolution.

2 Preliminaries

This section describes our notation and defines the models that we will use in
the rest of the paper. As is standard, a first-order signature Σ consists of the set
F of function symbols and the set P of predicate symbols, all of which possess
an arity. Constants are function symbols of arity 0. We also assume a countable
set V of variables. Given Σ and V, we have the following standard definitions:

Definition 1 (Syntax of Horn formuale and logic programs).

First-order term Term ::= V | F(Term, . . . , T erm)
Horn formula (clause) CH ::= At, . . . ,At ⇒ At

Atomic formula At ::= P(Term, . . . , T erm)
Logic program Prog ::= CH, . . . ,CH

We use identifiers t and u to denote terms and A,B,C to denote atomic formulae.
We use P with indicies to refer to elements of Prog. We say that a term or an
atomic formula is ground if it contains no variables. We assume that all variables

316 F. Farka et al.

in Horn formulae are implicitly universally quantified. Moreover, restriction (ii)
from Sect. 1 requires that there are no existential variables, i.e. given a clause
B1, . . . , Bn ⇒ A, if a variable occurs in Bi, then it also occurs in A. We use the
common term formula to refer to both atomic formulae and to Horn formulae.
A substitution and the application of a substitution to a term or a formula are
defined in the usual way. We denote application of a substitution σ to a term t
or to an atomic formula A by σt and σA respectively. We denote composition of
substitutions σ and τ by σ ◦ τ . A substitution σ is a grounding substitution for
a term t if σt is a ground term, and similarly for an atomic formula.

2.1 Models of Logic Programs

Throughout this paper, we use the standard definitions of the least and greatest
Herbrand models. Given a signature Σ, the Herbrand universe UΣ is the set of
all ground terms over Σ. Given a Herbrand universe UΣ we define the Herbrand
base BΣ as the set of all atoms consisting only of ground terms in UΣ .

Definition 2 (Semantic operator). Let P be a logic program over signa-
ture Σ. The mapping TP : 2BΣ → 2BΣ is defined as follows. Let I be a subset of
BΣ.

TP (I) = {A ∈ BΣ |B1, . . . Bn ⇒ A is a ground instance of a clause in P ,

and {B1, . . . , Bn} ⊆ I}
The operator gives inductive and coinductive interpretation to a logic

program.

Definition 3. Let P be a logic program.

– The least Herbrand model is the least set MP ∈ BΣ such that MP is a fixed
point of TP .

– The greatest Herbrand model is the greatest set M′
P ∈ BΣ such that M′

P is
a fixed point of TP .

Lloyd [12] introduces the operators ↓ and ↑ and proves that TP ↓ ω gives
the greatest Herbrand model of P , and that TP ↑ ω gives the least Herbrand
model of P . We will use these constructions in our own proofs. The validity of a
formula in a model is defined as usual. An atomic formula is valid in a model I
if and only if for any grounding substitution σ, we have σF ∈ I. A Horn formula
B1, . . . , Bn ⇒ A is valid in I if for any substitution σ, if σB1, . . . , σBn are valid
in I then σA is valid in I. We use the notation P �ind F to denote that a formula
F is valid in MP and P �coind F to denote that a formula F is valid in M′

P .

Lemma 1. Let P be a logic program and let σ be a substitution. The following
holds:

(a) If (⇒ A) ∈ P then both P �ind σA and P �coind σA
(b) If, for all i, P �ind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �ind σA
(c) If, for all i, P �coind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �coind σA

The proof of the lemma can be found in the existing literature [12] and follows
from the fact that both MP and M′

P are fixed points of the operator TP .

Coinductive Soundness of Corecursive Type Class Resolution 317

2.2 Proof Relevant Resolution

In [5], the usual syntax of Horn formulae was embedded into a type-theoretic
framework, with Horn formulae seen as types inhabited by proof terms. In this
setting, a judgement has the form Φ
 e : F , where e is a proof term inhabiting
formula F , and Φ is an axiom environment containing annotated Horn formulae
that correspond to the given logic program. This gives rise to the following
syntax, in addition to that of Definition 1. We assume a set of proof term symbols
K, and a set of proof term variables U .

Definition 4 (Syntax of proof terms and axiom environments).

Proof term E ::= K | U | EE | λU.E | νU.E

Axiom environment Ax ::= · | Ax, (E : CH)

We use the notation κ with indices to refer to elements of K, α and β with indices
to refer to elements of U , e to refer to proof terms in E, and Φ to refer to axiom
environments in Ax. Given a judgement Φ
 e : F , we call F an axiom if e ∈ K,
and we call F a lemma if e /∈ K is a closed term, i.e. it contains no free variables.
A proof term e is in guarded head normal form (denoted gHNF(e)), if e = λα.κe
where α and e denote (possibly empty) sequences of variables α1, . . . , αn and
proof terms e1 . . . em respectively where n and m are known from the context
or are unimportant. The intention of the above definition is to interpret logic
programs, seen as sets of Horn formulae, as types. Example 1 shows how the
proof term symbols κ1 and κ2 can be used to annotate clauses in the given logic
program. We capture this intuition in the following formal definition:

Definition 5. Given a logic program PA consisting of Horn clauses H1, . . . , Hn,
with each Hi having the shape Bi

1, . . . , B
i
k ⇒ Ai, the axiom environment ΦA is

defined as follows. We assume proof term symbols κ1, . . . , κn, and define, for
each Hi, κi : Bi

1, . . . , B
i
k ⇒ Ai.

Revisiting Example 1, we can say that it shows the result of translation of
the program PPair into ΦPair and ΦPair is an axiom environment for the logic
program PPair. In general, we say that ΦA is an axiom environment for a logic
program PA if and only if there is a translation of PA into ΦA. We drop the index
A where it is known or unimportant. Restriction (i) from Sect. 1 requires that
axioms in an axiom environment do not overlap. However, a lemma may overlap
with other axioms and lemmata—only axioms are subject to restriction (i). We
refer the reader to [5] for complete exposition of proof-relevant resolution. In the
following sections, we will use this syntax to gradually introduce inference rules
for proof-relevant corecursive resolution. We start with its “inductive” fragment,
i.e. the fragment that is sound relative to the least Herbrand models, and then
in subsequent sections consider its two coinductive extensions (which are both
sound with respect to the greatest Herbrand models).

318 F. Farka et al.

3 Inductive Soundness of Type Class Resolution

This section describes the inductive fragment of the calculus for the extended
type class resolution that was introduced by Fu et al. [5]. We reconstruct the
standard theorem of universal inductive soundness for the resolution rule. We
consider an extended version of type class resolution, working with queries given
by Horn formulae, rather than just atomic formulae. We show that the resulting
proof system is inductively sound, but coinductively unsound; we also show that
it is incomplete. Based on these results, we discuss the program transformation
methods that can arise.

Definition 6 (Type class resolution).

if(e : B1, . . . , Bn ⇒ A) ∈ Φ
Φ
 e1 : σB1 · · · Φ
 en : σBn

Φ
 ee1 · · · en : σA
(Lp-m)

If, for a given atomic formula A, and a given environment Φ, Φ
 e : A
is derived using the Lp-m rule we say that A is entailed by Φ and that the
proof term e witnesses this entailment. We define derivations and derivation
trees resulting from applications of the above rule in the standard way (cf. Fu
et al. [5]).

Example 4. Recall the logic program PPair in Example 1. The inference steps
for eq(pair(int, int)) correspond to the following derivation tree:

ΦPair � κ2 : eq(int) ΦPair � κ2 : eq(int)

ΦPair � κ1κ2κ2 : eq(pair(int, int))

The above entailment is inductively sound, i.e. it is sound with respect to the
least Herbrand model of PPair:

Theorem 1. Let Φ be an axiom environment for a logic program P , and let
Φ
 e : A hold. Then P �ind A.

Proof. By structural induction on the derivation tree and construction of the
least Herbrand model, using Lemma 1. ��

The rule Lp-m also plays a crucial role in the coinductive fragment of type class
resolution, as will be discussed in Sects. 4 and 5. We now discuss the other rule
that is present in the work of Fu et al. [5], i.e. the rule that allows us to prove
Horn formulae:

Definition 7.

Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn)
 e : A

Φ
 λβ1, . . . , βn.e : B1, . . . , Bn ⇒ A
(Lam)

Coinductive Soundness of Corecursive Type Class Resolution 319

Example 5. To illustrate the use of the Lam rule, consider the following program:
Let P consist of two clauses: A ⇒ B and B ⇒ C. Both the least and the greatest
Herbrand model of P are empty. Equally, no formulae can be derived from the
corresponding axiom environment by the Lp-m rule. However, we can derive
A ⇒ C by using a combination of the Lam and Lp-m rules. Let Φ = (κ1 : A ⇒
B), (κ2 : B ⇒ C). The following is then a derivation tree for a formula A ⇒ C:

Φ, (α : ⇒ A) � α : A

Φ, (α : ⇒ A) � κ1α : B

Φ, (α : ⇒ A) � κ2(κ1α) : C
Lam

Φ � λα.κ2(κ1α) : A ⇒ C

When there is no label on the right-hand side of an inference step, inference uses
the Lp-m rule. We follow this convention throughout the paper.

We can show that the calculus comprising the rules Lp-m and Lam is again
(universally) inductively sound.

Lemma 2. Let P be a logic program and let A, B1, . . . , Bn be atomic formulae.
If P, (⇒ B1), . . . , (⇒ Bn) �ind A then P �ind B1, . . . , Bn ⇒ A.

Proof. By induction on construction of MP . ��

Theorem 2. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ
 e : F be by the Lp-m and Lam rules. Then P �ind F .

Proof. By structural induction on the derivation tree using Lemmas 1 and 2. ��

Inductive Completeness and Incompleteness of the Proof System
Lp-M + Lam. In principle, one can consider two different variants. Extending
the standard results of [12], our first formulation is:

Inductive Completeness-1: if a ground atomic formula F is in MP , then
ΦP
 e : F is in the Lp-m + Lam proof system.

Such a result can be proved, as in [12], by straightforward induction on
the construction of MP . Such a proof will be based solely on the properties
of the rule Lp-m and on the properties of the semantic operator TP that is
used to construct the least Herbrand models. An alternative formulation of the
completeness result, this time involving implicative formulae and hence the rule
Lam in the proof, would be:

Inductive Completeness-2: if MP �ind F then ΦP
 e : F is in the Lp-m +
Lam proof system.

However, this result would not hold for either system Lp-m or Lp-m + Lam.
Consider the following examples.

320 F. Farka et al.

Example 6. Let Σ be a signature consisting of a unary predicate symbol A, a
unary function symbol f and a constant function symbol g. Let P6 be a program
given by the following axiom environment:

κ1 : ⇒ A(f(x))
κ2 : ⇒ A(g)

The least Herbrand model of P6 is MP 6 = {A(g), A(f(g)), A(f(f(g))), . . . }.
Therefore, P �ind A(x). However, neither κ1 nor κ2 matches A(x) and there is
thus no way to construct a proof term e satisfying:

· · ·
P
 e : A(x)

Lp-m

We demonstrate the incompleteness of the proof system Lp-m + Lam
through the following example:

Example 7. Let Σ be a signature consisting of the unary predicate symbols A
and B, and a constant function symbol f. Consider a program P7 given by the
following axiom environment:

κ1 : ⇒ A(f)
κ2 : ⇒ B(f)

The least Herbrand model is MP 7 = {A(f), B(f)}. Therefore P �ind B(x) =>
A(x). However, any proof of B(x) => A(x) needs to show that:

· · ·
(P, α : ⇒ B(x)) � e : A(x)

Lam
P � λα.e : B(x) ⇒ A(x)

where e is a proof term. This proof will not succeed since no axiom or hypothesis
matches A(x).

Related Program Transformation Methods. For Fu et al. [5], the main
purpose of introducing the rule Lam was to increase expressivity of the proof
system. In particular, obtaining an entailment Φ
 e : H of a Horn formula H
enabled the environment Φ to be extended with e : H, which could be used in
future proofs. We show that transforming (the standard, untyped) logic programs
in this way is inductively sound. The following theorem follows from Lemma 2:

Theorem 3. Let Φ be an axiom environment for a logic program P , and let
Φ
 e : F for a formula F by the Lp-m and Lam rules. Given a formula F ′,
P �ind F ′ iff P, F �ind F ′.

Note, however, that the above theorem is not as trivial as it looks, in particular,
it would not hold coinductively, i.e. if we changed �ind to �coind in the statement
above. Consider the following proof of the formula A ⇒ A:

Coinductive Soundness of Corecursive Type Class Resolution 321

Example 8. Using the Lam rule, one can prove ∅
 λα.α : A => A:

(α : ⇒ A) � α : A
Lam∅ � λα.α : A ⇒ A

Assume a program consisting of a single formula A ⇒ B. Both the least and
the greatest Herbrand model of this program are empty. However, adding the
formula A ⇒ A to the program results in the greatest Herbrand model {A,B}.
Thus, M′

P = M′
P,(A⇒A).

4 Coinductive Soundness of Corecursive Type Class
Resolution

The Lp-m rule may result in non-terminating resolution. This can be demon-
strated by the program PEvenOdd and the query ? eq(evenList(Int)) from
Sect. 1. Lämmel and Peyton Jones observed [11] that in such cases there may be
a cycle in the inference that can be detected. This treatment of cycles amounts
to coinductive reasoning and results in building a corecursive proof witness—i.e.
a (co-)recursive dictionary.

Definition 8 (Coinductive type class resolution).

if gHNF(e)
Φ, (α : ⇒ A)
 e : A

Φ
 να.e : A
(Nu’)

The side condition of Nu’ requires the proof witness to be in guarded head
normal form. Since, in this section, we are working with a calculus consisting
of the rules Lp-m and Nu, there is no way to introduce a λ-abstraction into a
proof witness. Therefore, in this section, we restrict ourselves to guarded head
normal form terms of the form κ e.

Example 9. Recall the program PEvenOdd in Example 2. The originally non-
terminating resolution trace for the query ? eq(evenList(int)) is resolved using
the Nu’ rule as follows:

Note that we abbreviate repeated formulae in the environment using an under-
score. We will use this notation in the rest of the paper.

We can now discuss the coinductive soundness of the Nu’ rule, i.e. its sound-
ness relative to the greatest Herbrand models. We note that, not surprisingly (cf.
[13]), the Nu’ rule is inductively unsound. Given a program consisting of just one

322 F. Farka et al.

clause: κ : A ⇒ A, we are able to use the rule Nu’ to entail A (the derivation
of this will be similar to, albeit a lot simpler than, that in the above exam-
ple). However, A is not in the least Herbrand model of this program. Similarly,
the formula eq(oddList(int)) that was proved above is also not inductively
sound. Thus, the coinductive fragment of the extended corecursive resolution is
only coinductively sound. When proving the coinductive soundness of the Nu’
rule, we must carefully choose the proof method by which we proceed. Inductive
soundness of the Lp-m rule was proven by induction on the derivation tree and
through the construction of the least Herbrand models by iterations of TP . Here,
we give an analogous result, where coinductive soundness is proved by structural
coinduction on the iterations of the semantic operator TP .

In order for the principle of structural coinduction to be applicable in our
proof, we must ensure that the construction of the greatest Herbrand model is
completed within ω steps of iteration of TP . This does not hold in general for
the greatest Herbrand model construction, as was shown e.g. in [12]. However,
it does hold for the restricted shape of Horn clauses we are working with. It
was noticed by Lloyd [12] that Restriction (ii) from Sect. 1 implies that the TP

operator converges in at most ω steps. We will capitalise on this fact. The essence
of the coinductive soundness of Nu’ is captured by the following lemma:

Lemma 3. Let P be a logic program, let σ be a substitution, and let A, B1,
. . . , Bn be atomic formulae. If, ∀i ∈ {1, . . . , n}, P, (⇒ σA) �coind σBi and
(B1, . . . , Bn ⇒ A) ∈ P then P �coind σA.

The proof of the lemma is similar to the proof of the Lemma4 in the next section
and we do not state it here. Finally, Theorem 4 states universal coinductive
soundness of the coinductive type class resolution:

Theorem 4. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ
 e : F be by the Lp-m and Nu’ rules. Then Φ �coind F .

Proof. By structural induction on the derivation tree using Lemmas 1 and 3. ��

Choice of Coinductive Models. Perhaps the most unusual feature of the
semantics given in this section is the use of the greatest Herbrand models rather
than the greatest complete Herbrand models. The latter is more common in the
literature on coinduction in logic programming [10,12,14]. The greatest com-
plete Herbrand models are obtained as the greatest fixed point of the semantic
operator T ′

P on the complete Herbrand base, i.e. the set of all finite and infinite
ground atomic formulae formed by the signature of the given program. This
construction is preferred in the literature for two reasons. Firstly, T ′

P reaches
its greatest fixed point in at most ω steps, whereas TP may take more than ω
steps in the general case. This is due to compactness of the complete Herbrand
base. Moreover, greatest complete Herbrand models give a more natural charac-
terisation for programs like the one given by the clause κinf : p(x) ⇒ p(f(x)).
The greatest Herbrand model of that program is empty. However, its greatest

Coinductive Soundness of Corecursive Type Class Resolution 323

complete Herbrand model contains the infinite formula p(f(f(...)). Restrictions
(i)–(iii), imposed by type class resolution, mean that the greatest Herbrand mod-
els regain those same advantages as complete Herbrand models. It was noticed
by Lloyd [12] that restriction (ii) implies that the semantic operator converges
in at most ω steps. Restrictions (i) and (iii) imply that proofs by type class res-
olution have a universal interpretation, i.e. that they hold for all finite instances
of queries. Therefore, we never need to talk about programs for which only one
infinite instance of a query is valid.

5 Coinductive Soundness of Extended Corecursive Type
Class Resolution

The class of problems that can be resolved by coinductive type class resolution
is limited to problems where a coinductive hypothesis is in atomic form. Fu
et al. [5] extended coinductive type class resolution with implicative reasoning
and adjusted the rule Nu’ such that this restriction of coinductive type class
resolution is relaxed:

Definition 9 (Extended coinductive type class resolution).

if gHNF(e)
Φ, (α : B1, . . . , Bn ⇒ A)
 e : B1, . . . , Bn ⇒ A

Φ
 να.e : B1, . . . , Bn ⇒ A
(Nu)

The side condition of the Nu rule requires the proof witness to be in guarded
head normal form. However, unlike coinductive type class resolution, extended
coinductive type class resolution also uses the Lam rule and a guarded head
normal term is of the more general form λα.κe for a possibly non-empty sequence
of proof term variables α. First, let us note that extended coinductive type class
resolution indeed extends the calculus of Sect. 4:

Proposition 1. The inference rule Nu’ is admissible in the extended
coinductive type class resolution.

Furthermore, this is a proper extension. The Nu’ rule allows queries to be
entailed that were beyond the scope of coinductive type class resolution. In
Sect. 1, we demonstrated a derivation for query ? eq(bush(int)) where no cycles
arise and thus the query cannot be resolved by coinductive type class resolution.

Example 10. Recall the program PBush we defined in the Example 3.
The query ? eq(bush(int)) is resolved as follows:

324 F. Farka et al.

Before proceeding with the proof of soundness of extended type class resolution
we need to show two intermediate lemmata. The first lemma states that inference
by the Nu’ rule preserves coinductive soundness:

Lemma 4. Let P be a logic program, let σ be a substitution, and let A, B1,. . . ,
Bn, C1, . . . , Cm be atomic formulae. If, for all i, P,B1, . . . , Bn, (B1, . . . , Bn ⇒
σA) �coind σCi and (C1, . . . , Cm ⇒ A) ∈ P then P �coind B1 . . . Bn ⇒ σA.

Proof. Consider the construction of the greatest Herbrand model of the pro-
gram P and proceed by coinduction with coinductive hypothesis: for all n,
B1, . . . , Bn => σA is valid in TP ↓ n. Assume that, for a grounding substi-
tution τ , for all i, τBi ∈ TP ↓ n. Then also (τ ◦ σ)A ∈ TP ↓ n. For the definition
of the semantic operator, it follows from the monotonicity of the operator itself,
and from the assumptions made by the lemma that (τ ◦ σ)Ci ∈ TP ↓ n. Since
C1, . . . , Cn => A ∈ P also (τ ◦ σ)A ∈ TP ↓ (n + 1). If the assumption does not
hold then from the monotonicity of TP it follows that, for all i, τBi ∈ TP ↓ (n+1).
Therefore, B1, . . . , Bn => σA is valid in TP ↓ (n + 1). We apply the coinductive
hypothesis to conclude that the same holds for all subsequent iterations of TP .
Hence whenever, for a substitution τ , all instances of τB1 to τBn are in the
greatest Herbrand model then also all instances of (τ ◦ σ)A are in the greatest
Herbrand model. Hence P �coind B1, . . . , Bn ⇒ σA. ��

The other lemma that we need in order to prove coinductive soundness of
extended type class resolution states that inference using Lam preserves coin-
ductive soundness, i.e. we need to show the coinductive counterpart to Lemma 2:

Lemma 5. Let P be a logic program and A, B1, . . . , Bn atomic formulae. If
P, (⇒ B1), . . . (⇒ Bn) �coind A then P �coind B1, . . . , Bn ⇒ A.

Now, the universal coinductive soundness of extended coinductive type class
resolution follows straightforwardly:

Theorem 5. Let Φ be an axiom environment for a logic program P , and let be
Φ
 e : F for a formula F by the Lp-m, Lam, and Nu’ rules. Then P �coind F .

Proof. By induction on the derivation tree using Lemmas 1, 4, and 5. ��

Coinductive Incompleteness of the Proof System Lp-M + Lam + Nu.
In Sect. 3, we considered two ways of stating inductive completeness of type class
resolution. We state the corresponding result for the coinductive case here. As
both the notions of completeness are shown not to hold we discuss them in the
reversed order than the inductive completeness, first the more general case and
then the more restricted one:

Coinductive Completeness-2: if M′
P �coind F then ΦP
 e : F in the Lp-m

+ Lam + Nu proof system.
Recall Examples 6 and 7, and the programs P6 and P7. We demonstrated

that, in general, there are formulae that are valid in MP but do not have a

Coinductive Soundness of Corecursive Type Class Resolution 325

proof in P . The same two examples will serve our purpose here. For exam-
ple, the greatest Herbrand model of the program P6 is M′

P = MP =
{A(g), A(f(g)), A(f(f(g))), . . . }. Therefore, for an atomic formula A(x), P �coind

A(x). However, it is impossible to construct a proof:

· · ·
P
 e : A(x)

Lp-m

The rules Lp-m and Lam are not applicable for the same reasons as in the
inductive case and the rule Nu’ is not applicable since A(x) is not a Horn formula.

Moreover, a more restricted formulation in the traditional style of Lloyd [12]
does not improve the situation:

Coinductive Completeness-1: if a ground atomic formula F is in M′
P , then

ΦP
 e : F in the Lp-m + Lam + Nu proof system. Such a result does not hold,
since there exist coinductive logic programs that define corecursive schemes that
cannot be captured in this proof system. Consider the following example [5]:

Example 11. Let Σ be a signature with a binary predicate symbol D, a unary
function symbol s and a constant function symbol z. Consider a program P11

with the signature Σ given by the following axiom environment:

κ1 : D(x, s(y)) ⇒ D(s(x), y)
κ2 : D(s(x), z) ⇒ D(z, x)

Let us denote a term s(s(. . . s(x) . . .)) where the symbol s is applied i-times as
si(x). By observing the construction of M′

P we can see that, for all i, if D(z, si(x))
then D(si(x), z) ∈ M′

P and also D(z, si−1(x)) ∈ M′
P . Therefore D(z, z) ∈ M′

P .
However, there is no proof of D(z, z) since any number of proof steps resulting
from the use of Lp-m generates yet another ground premise that is different from
all previous premises. Consequently, the proof cannot be closed by Nu’. Also,
no lemma that would allow for a proof can be formulated; an example of such
a lemma would be the above D(z, si(x)) ⇒ D(z, si−1(x)). This is a higher order
formula and cannot be expressed in a first order Horn clause logic.

Related Program Transformation Methods. We conclude this section with
a discussion of program transformation with Horn formulae that are entailed by
the rules Lam and Nu. From the fact that the Nu rule is inductively unsound,
it is clear that using program transformation techniques based on the lemmata
that were proved by the Lam and Nu rules would also be inductively unsound.

However, a more interesting result is that adding such program clauses will
not change the coinductive soundness of the initial program:

Theorem 6. Let Φ be an axiom environment for a logic program P , and let
Φ
 e : F for a formula F by the Lp-m, Lam and Nu’ rules such that gHNF(e).
Given a formula F ′, P �coind F ′ iff (P, F) �coind F ′.

326 F. Farka et al.

The above result is possible thanks to the guarded head normal form condition,
since it is then impossible to use a clause A ⇒ A that was derived from an empty
context by the rule Lam. It is also impossible to make such a derivation within
the proof term e itself and to then derive A by the Nu’ rule from A ⇒ A. The
resulting proof term will fail to satisfy the guarded head normal form condition
that is required by Nu’. Since this condition guards against any such cases, we
can be sure that this program transformation method is coinductively sound and
hence that it is safe to use with any coinductive dialect of logic programming,
e.g. with CoLP [14].

6 Related Work

The standard approach to type inference for type classes, corresponding to
type class resolution as studied in this paper, was described by Stuckey and
Sulzman [15]. Type class resolution was further studied by Lämmel and Peyton
Jones [11], who described what we here call coinductive type class resolution.
The description of the extended calculus of Sect. 5 was first presented by Fu
et al. [5]. Generally, there is a body of work that focuses on allowing for infinite
data structures in logic programming. Logic programming with rational trees
[1,9] was studied from both an operational semantics and a declarative seman-
tics point of view. Simon et al. [14] introduced co-logic programming (co-LP)
that also allows for terms that are rational infinite trees and hence that have
infinite proofs. Corecursive resolution, as studied in this paper, is more expres-
sive than co-LP: while also allowing infinite proofs, and closing of coinductive
hypotheses is less constrained in our approach.

7 Conclusions and Future Work

In this paper, we have addressed three research questions. First, we provided a
uniform analysis of type class resolution in both inductive and coinductive set-
tings and proved its soundness relative to (standard) least and greatest Herbrand
models. Secondly, we demonstrated, through several examples, that coinductive
resolution is indeed coinductive—that is, it is not sound relative to least Her-
brand models. Finally, we addressed the question of whether the methods listed
in this paper can be reapplied to coinductive dialects of logic programming via
soundness preserving program transformations.

As future work, we intend to extend our analysis of Horn-clause resolution
to Horn clauses with existential variables and existentially quantified goals. We
believe that such resolution accounts to type inference for other language con-
structs than type classes, namely type families and algebraic data types.

Acknowledgements. This work has been supported by the EPSRC grant “Coalge-
braic Logic Programming for Type Inference” EP/K031864/1-2, EU Horizon 2020 grant
“RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications - a Soft-
ware Engineering Approach” (ICT-644235), and by COST Action IC1202 (TACLe),
supported by COST (European Cooperation in Science and Technology).

Coinductive Soundness of Corecursive Type Class Resolution 327

References

1. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: FGCS,
pp. 85–99 (1984)

2. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Proving correctness
of imperative programs by linearizing constrained horn clauses. TPLP 15(4–5),
635–650 (2015)

3. Devriese, D., Piessens, F.: On the bright side of type classes: instance arguments in
Agda. In: Proceedings of ICFP 2011, Tokyo, 19–21 September 2011, pp. 143–155
(2011)

4. Fu, P., Komendantskaya, E.: Operational semantics of resolution and productiv-
ity in Horn clause logic. Form. Asp. Comput. 29, 453–474 (2017). doi:10.1007/
s00165-016-0403-1

5. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp.
126–143. Springer, Cham (2016). doi:10.1007/978-3-319-29604-3 9

6. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof
automation less ad hoc. In: Proceedings of ICFP 2011, Tokyo, 19–21 September
2011, pp. 163–175 (2011)

7. Hall, C.V., Hammond, K., Jones, S.L.P., Wadler, P.: Type classes in Haskell. ACM
Trans. Program. Lang. Syst. 18(2), 109–138 (1996)

8. Howard, W.: The formulae-as-types notion of construction. In: Seldin, J.P.,
Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda-
Calculus, and Formalism, pp. 479–490. Academic Press, New York (1980)

9. Jaffar, J., Stuckey, P.J.: Semantics of infinite tree logic programming. Theor. Com-
put. Sci. 46(3), 141–158 (1986)

10. Komendantskaya, E., Li T.: Productive corecursion in logic programming. In: Pro-
ceedings of ICLP 2017. TPLP (to appear, 2017)

11. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: Proceedings of ICFP 2005, Tallinn, 26–28 September 2005,
pp. 204–215 (2005)

12. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

13. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst. 31(4), 15:1–15:41 (2009)

14. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming:
extending logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Hei-
delberg (2007). doi:10.1007/978-3-540-73420-8 42

15. Stuckey, P.J., Sulzmann, M.: A theory of overloading. ACM Trans. Program. Lang.
Syst. 27(6), 1216–1269 (2005)

16. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of POPL 1989, pp. 60–76. ACM, New York (1989)

http://dx.doi.org/10.1007/s00165-016-0403-1
http://dx.doi.org/10.1007/s00165-016-0403-1
http://dx.doi.org/10.1007/978-3-319-29604-3_9
http://dx.doi.org/10.1007/978-3-540-73420-8_42

Nominal Unification of Higher Order
Expressions with Recursive Let

Manfred Schmidt-Schauß1(B), Temur Kutsia2, Jordi Levy3,
and Mateu Villaret4

1 GU Frankfurt, Frankfurt, Germany
schauss@ki.cs.uni-frankfurt.de
2 RISC, JKU Linz, Linz, Austria

kutsia@risc.jku.at
3 IIIA - CSIC, Barcelona, Spain

levy@iiia.scic.es
4 IMA, Universitat de Girona, Girona, Spain

villaret@ima.udg.edu

Abstract. A sound and complete algorithm for nominal unification of
higher-order expressions with a recursive let is described, and shown to
run in non-deterministic polynomial time. We also explore specializations
like nominal letrec-matching for plain expressions and for DAGs and
determine their complexity.

Keywords: Nominal unification · Lambda calculus · Higher-order
expressions · Recursive let · Operational semantics

1 Introduction

Unification [7] is an operation to make two logical expressions equal by find-
ing substitutions into variables. There are numerous applications in computer
science, in particular of (efficient) first-order unification, for example in auto-
mated reasoning, type checking and verification. Unification algorithms are also
extended to higher-order calculi with various equivalence relations. If equality
includes α-conversion and β-reduction and perhaps also η-conversion of a (typed
or untyped) lambda-calculus, then unification procedures are known (see e.g.
[18]), however, the problem is undecidable [17,20].

Our motivation comes from syntactical reasoning on higher-order expres-
sions, with equality being alpha-equivalence of expressions, and where a uni-
fication algorithm is demanded as a basic service. Nominal unification is the
extension of first-order unification with abstractions. It unifies expressions w.r.t.
alpha-equivalence, and employs permutations as a clean treatment of renamings.

This research has been partially founded by the MINECO/FEDER projects RASO
(TIN2015-71799-C2-1-P) and LoCoS (TIN2015-66293-R) and the UdG project
MPCUdG2016/055.

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 328–344, 2017.
DOI: 10.1007/978-3-319-63139-4 19

Nominal Unification of Higher Order Expressions with Recursive Let 329

It is known that nominal unification is decidable [35,36], where the complex-
ity of the decision problem is polynomial time [9]. It can be seen also from a
higher-order perspective [12,22], as equivalent to Miller’s higher-order pattern
unification [26]. There are efficient algorithms [9,21], formalizations of nomi-
nal unification [6], formalizations with extensions to commutation properties
within expressions [4], and generalizations of nominal unification to narrowing
[5]. Equivariant (nominal) unification [1,10,11,14] extends nominal unification
by permutation-variables, but it can also be seen as a generalization of nominal
unification by permitting abstract names for variables.

We are interested in unification w.r.t. an additional extension with cyclic
let. To the best of our knowledge, there is no nominal unification algorithm for
higher-order expressions permitting general binding structures like a cyclic let.

The motivation and intended application scenario is as follows: constructing
syntactic reasoning algorithms for showing properties of program transforma-
tions on higher-order expressions in call-by-need functional languages (see for
example [27,31]) that have a letrec-construct (also called cyclic let) [3] as in
Haskell [24], (see e.g. [13] for a discussion on reasoning with more general name
binders, and [34] for a formalization of general binders in Isabelle). There may be
applications also to coinductive extensions of logic programming [33] and strict
functional languages [19]. Basically, overlaps of expressions have to be computed
(a variant of critical pairs) and reduction steps (under some strategy) have to
be performed. To this end, first an expressive higher-order language is required
to represent the meta-notation of expressions. For example, the meta-notation
((λx.e1) e2) for a beta-reduction is made operational by using unification vari-
ables X1,X2 for e1, e2. The scoping of X1 and X2 is different, which can be
dealt with by nominal techniques. In fact, a more powerful unification algorithm
is required for meta-terms employing recursive letrec-environments.

Our main algorithm LetrecUnify is derived from first-order unification
and nominal unification: From first-order unification we borrowed the decom-
position rules, and the sharing method from Martelli-Montanari-style unifica-
tion algorithms [25]. The adaptations of decomposition for abstractions and the
advantageous use of permutations of atoms is derived from nominal unification
algorithms. Decomposing letrec-expression requires an extension by a permuta-
tion of the bindings in the environment, where, however, one has to take care of
scoping. Since in contrast to the basic nominal unification, there are nontrivial
fixpoints of permutations (see Example 2.2), novel techniques are required and
lead to a surprisingly moderate complexity: a fixed-point shifting rule (FPS) and
a redundancy removing rule (ElimFP) together bound the number of fixpoint
equations X

.= π·X (where π is a permutation) using techniques and results
from computations in permutation groups. The application of these techniques
is indispensable (see Example 3.6) for obtaining efficiency.

Results: The nominal letrec unification algorithm LetrecUnify is complete
and runs in nondeterministic polynomial time (Theorems 4.1, 4.3). The nominal
letrec matching is NP-complete (Theorems 5.2, 6.1), as well as the nominal
unification problem (Theorems 4.3, 6.1).

330 M. Schmidt-Schauß et al.

Nominal letrec matching for dags is in NP and outputs substitutions only
(Theorem 5.4), and a very restricted nominal letrec matching problem is
graph-isomorphism hard (Theorem 6.3). Nominal matching including letrec-
environment variables is in NP (Theorem 7.4).

2 The Ground Language of Expressions

The very first idea of nominal techniques [35] is to use concrete variable
names in lambda-calculi (also in extensions), in order to avoid implicit α-
renamings, and instead uses operations for explicitly applying α-renaming oper-
ations. Suppose s = λxx.xx and t = λyy.yy are concrete (syntactically dif-
ferent) lambda-expressions. The nominal technique provides explicit name-
changes using permutations. These permutations are applied irrespective of
binders. For example (xx yy)(λxx.λxx.a) results in λyy.λyy.a. Syntactic reason-
ing on higher-order expressions, for example unification of higher-order expres-
sions modulo α-equivalence will be done by nominal techniques on a lan-
guage with concrete names, where the algorithms require certain extra con-
straints and operations. The gain is that all conditions and substitutions etc.
can be computed and thus more reasoning tasks can be automated, whereas
the implicit name conditions under implicit α-equivalence has a tendency to
complicate (unification-) algorithms and to hide the required conditions on
equality/disequality/occurrence/non-occurrence of names.

2.1 Preliminaries

We define the language LRL (LetRec Language) of (ground-)expressions, which
is a lambda calculus extended with a recursive let construct. The notation is
consistent with [35]. The (infinite) set of atoms A is a set of (concrete) symbols
a, b which we usually denote in a meta-fashion; so we can use symbols a, b also
with indices (the variables in lambda-calculus). There is a set F of function
symbols with arity ar(·). The syntax of the expressions e of LRL is:

e ::= a | λa.e | (f e1 . . . ear(f)) | (letrec a1.e1; . . . ; an.en in e)

We also use tuples, which are written as (e1, . . . , en), and which are treated
as functional expressions in the language. We assume that binding atoms
a1, . . . , an in a letrec-expression (letrec a1.e1; . . . ; an.en in e) are pairwise dis-
tinct. Sequences of bindings a1.e1; . . . ; an.en are abbreviated as env .

The scope of atom a in λa.e is standard: a has scope e. The letrec-construct
has a special scoping rule: in (letrec a1.s1; . . . ; an.sn in r), every free atom ai in
some sj or r is bound by the environment a1.s1; . . . ; an.sn. This defines the notion
of free atoms FA(e), bound atoms BA(e) in expression e, and all atoms AT (e) in
e. For an environment env = {a1.e1, . . . , an.en}, we define the set of letrec-atoms
as LA(env) = {a1, . . . , an}. We say a is fresh for e iff a �∈ FA(e) (also denoted as
a#e). As an example, the expression (letrec f = cons s1 g; g = cons s2 f in f)

Nominal Unification of Higher Order Expressions with Recursive Let 331

represents an infinite list (cons s1 (cons s2 (cons s1 (cons s2 . . .)))), where s1, s2
are expressions. However, since our language LRL is only a fragment of core
calculi [27,31], the reader may find more programming examples there.

We will use mappings on atoms from A. A swapping (a b) is a function that
maps an atom a to atom b, atom b to a, and is the identity on other atoms. We will
also use finite permutations on atoms from A, which are represented as a compo-
sition of swappings in the algorithms below. Let dom(π) = {a ∈ A | π(a) �= a}.
Then every finite permutation can be represented by a composition of at most
(|dom(π)| − 1) swappings. Composition π1 ◦ π2 and inverse π−1 can be immedi-
ately computed. Permutations π operate on expressions simply by recursing on
the structure. For a letrec-expression this is π · (letrec a1.s1; . . . ; an.sn in e)
= (letrec π · a1.π · s1; . . . ;π · an.π · sn; in π · e). Note that permutations also
change names of bound atoms.

We will use the following definition of α-equivalence:

Definition 2.1. The equivalence ∼ on expressions e ∈ LRL is defined as follows:

– a ∼ a.
– if ei ∼ e′

i for all i, then fe1 . . . en ∼ fe′
1 . . . e′

n for an n-ary f ∈ F .
– If e ∼ e′, then λa.e ∼ λa.e′.
– If a#e′, e ∼ (a b) · e′, then λa.e ∼ λb.e′.
– letrec a1.e1; . . . ; an.en in e0 ∼ letrec a′

1.e
′
1; . . . ; a

′
n.e′

n in e′
0 iff there is

some permutation ρ on {1, . . . , n}, such that λa1.λan.(e1, . . . , en, e0) ∼
λa′

ρ(1).λa′
ρ(n).(e

′
ρ(1), . . . , e

′
ρ(n), e

′
0). ��

Note that ∼ is identical to the equivalence relation generated by α-equivalence
of binding constructs and permutation of bindings in a letrec.
Note also that e1 ∼ e2 is equivalent to π·e1 ∼ π·e2, which will be implicitly used
in the arguments below.

We need fixpoint sets of permutations π: We define Fix (π) = {e | π · e ∼ e}.
In usual nominal unification, these sets can be characterized by using freshness
constraints [35]. Clearly, all these sets and also all finite intersections are non-
empty, since at least fresh atoms are elements and since A is infinite. However,
in our setting, these sets are nontrivial:

Example 2.2. The α-equivalence (a b) · (letrec c.a; d.b in True) ∼ (letrec
c.a; d.b in True) holds, which means that there are expressions t in LRL with
t ∼ (a b) · t and FA(t) = {a, b}. This is in contrast to usual nominal unification.

In the following we will use the results on complexity of operations in per-
mutation groups, see [15,23]. We consider a set {a1, . . . , an} of distinct objects
(in our case the atoms), the symmetric group Σ({a1, . . . , an}) (of size n!) of
permutations of the objects, and consider its elements, subsets and subgroups.
Subgroups are always represented by a set of generators (represented as per-
mutations on {a1, . . . , an}). If H is a set of elements (or generators), then 〈H〉
denotes the generated subgroup. Some facts are:

– A permutation can be represented in space linear in n.
– Every subgroup of Σ({a1, . . . , an}) can be represented by ≤n2 generators.

332 M. Schmidt-Schauß et al.

However, elements in a subgroup may not be representable as a product of
polynomially many generators.
The following questions can be answered in polynomial time:

– The element-question: π ∈ G?,
– The subgroup question: G1 ⊆ G2.

However, intersection of groups and set-stabilizer (i.e. {π ∈ G | π(M) = M})
are not known to be computable in polynomial time, since those problems are
as hard as graph-isomorphism (see [23]).

3 A Nominal Letrec Unification Algorithm

As an extension of LRL, there is also a countably infinite set of (unification)
variables X,Y also denoted perhaps using indices.

The syntax of the language LRLX (LetRec Language eXtended) is

e ::= a | X | π · X | λa.e | (f e1 . . . ear(c)) | (letrec a1.e1; . . . ; an.en in e)

Var is the set of variables and Var(e) is the set of variables X occurring in e.
The expression π·e for a non-variable e means an operation, which is performed

by shifting π down, using the simplification π1·(π2·X) → (π1 ◦ π2)·X, apply it to
atoms, where only expressions π · X remain, which are called suspensions.

A freshness constraint in our unification algorithm is of the form a#e, where
e is an LRLX -expression, and an atomic freshness constraint is of the form a#X.

Definition 3.1 (Simplification of Freshness Constraints).

{a#b} ·∪∇
∇

{a#(f s1 . . . sn)} ·∪∇
{a#s1, . . . , a#sn} ·∪∇

{a#(λa.s)} ·∪∇
∇

{a#(λb.s)} ·∪∇
{a#s} ·∪∇

{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇
∇ if a ∈ {a1, . . . , an}

{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇
{a#s1, . . . a#sn, a#r} ·∪∇ if a �∈ {a1, . . . , an} {a#(π · X)} ·∪∇

{π−1(a)#X} ·∪∇
Definition 3.2. An LRLX -unification problem is a pair (Γ,∇), where Γ is a
set of equations s1

.= t1, . . . , sn
.= tn, and ∇ is a set of freshness constraints,

permitting LRLX -expressions. A (ground) solution of (Γ,∇) is a substitution ρ
(mapping variables in Var(Γ,∇) to ground expressions), such that siρ ∼ tiρ for
i = 1, . . . , n and for all a#e ∈ ∇: a �∈ FA(eρ) holds.

The decision problem is whether there is a solution for given (Γ,∇).

Definition 3.3. Let (Γ,∇) be an LRLX -unification problem. We consider triples
(σ,∇′,X), where σ is a substitution (compressed as a dag) mapping variables to
LRLX -expressions, ∇′ is a set of freshness constraints, and X is a set of fixpoint
constraints of the form X ∈ Fix (π), where X �∈ dom(σ). A triple (σ,∇′,X) is a

Nominal Unification of Higher Order Expressions with Recursive Let 333

unifier of (Γ,∇), if (i) there exists a ground substitution ρ that solves (∇′σ,X), i.e.,
for every a#e in ∇′, a#eσρ is valid, and for every constraint X ∈ Fix (π) in X ,
Xρ ∈ Fix (π); and (ii) for every ground substitution ρ that instantiates all variables
in V ar(Γ,∇) which solves (∇′σ,X), the ground substitution σρ is a solution of
(Γ,∇). A set M of unifiers is complete, if every solution μ is covered by at least
one unifier, i.e. there is some unifier (σ,∇′,X) in M , and a ground substitution
ρ, such that Xμ ∼ Xσρ for all X ∈ Var(Γ,∇). ��

We will employ nondeterministic rule-based algorithms computing unifiers:
There is a clearly indicated disjunctive (don’t know non-deterministic) rule,
all other rules are don’t care non-deterministic. The collecting variant of the
algorithm runs and collects all solutions from all alternatives of the disjunctive
rule(s). The decision variant guesses one possibility and tries to compute a single
unifier.

Since we want to avoid the exponential size explosion of the Robinson-
style unification algorithms, keeping the good properties of Martelli Montanari-
style unification algorithms [25], but not their notational overhead, we stick to
a set of equations as data structure. As a preparation for the algorithm, all
expressions in equations are exhaustively flattened as follows: (f t1 . . . tn) →
(f X1 . . . Xn) plus the equations X1

.= t1, . . . , Xn
.= tn. Also λa.s is replaced

by λa.X with equation X
.= s, and (letrec a1.s1; . . . , an.sn in r) is replaced

by (letrec a1.X1; . . . , an.Xn in X) with the additional equations X1
.=

s1; . . . ;Xn
.= sn;X .= r. The introduced variables are always fresh ones. We may

denote the resulting set of equations of flattening an equation eq as flat(eq).
Thus, all expressions in equations are of depth at most 1, where we do not count
the permutation applications in the suspensions.

A dependency ordering on Var(Γ) is required: If X
.= e is in Γ , and e is not

a variable nor a suspension and X �= Y ∈ Var(e), then X �vd Y . Let >vd be the
transitive closure of �vd. This ordering is only used, if no standard rules and no
failure rules (see Definition 3.4) apply, hence if >vd is used in rule, there are no
cycles.

3.1 Rules of the Algorithm LetrecUnify

LetrecUnify operates on a tuple (Γ,∇, θ), where Γ is a set of flattened equa-
tions e1

.= e2, where we assume that .= is symmetric, ∇ contains freshness
constraints, θ represents the already computed substitution as a list of replace-
ments of the form X �→ e. Initially θ is empty. The final state will be reached,
i.e. the output, when Γ only contains fixpoint equations of the form X

.= π·X
that are non-redundant, and the rule (Output) fires.

In the notation of the rules, we use [e/X] as substitution that replaces X by e.
In the rules, we may omit ∇ or θ if they are not changed. We will use a notation
“|” in the consequence part of one rule, perhaps with a set of possibilities, to
denote disjunctive (i.e. don’t know) nondeterminism. The only nondeterministic
rule that requires exploring all alternatives is rule (7) below. The other rules can
be applied in any order, where it is not necessary to explore alternatives.

334 M. Schmidt-Schauß et al.

Standard (1, 2, 3, 3’) and decomposition rules (4,5,6,7):

(1)
Γ ·∪{e

.= e}
Γ

(2)
Γ ·∪{π · X

.= s} s �∈ Var
Γ ·∪{X

.= π−1 · s}

(3)
Γ ·∪{X

.= π·Y },∇, θ X �= Y

Γ [π·Y/X],∇[π·Y/X], θ ∪ {X �→ π·Y } (3’)
Γ ·∪{X

.= Y },∇, θ X �= Y

Γ [Y/X],∇[Y/X], θ ∪ {X �→ Y }
(4)

Γ ·∪(f s1 . . . sn) .= (f s′
1 . . . s′

n)}
Γ ·∪{s1

.= s′
1, . . . , sn

.= s′
n}

(5)
Γ ·∪(λa.s

.= λa.t}
Γ ·∪{s

.= t} (6)
Γ ·∪(λa.s

.= λb.t},∇
Γ ·∪{s

.= (a b)·t},∇ ∪ {a#t}

(7)
Γ ·∪{letrec a1.s1; . . . , an.sn in r

.= letrec b1.t1; . . . , bn.tn in r′}
|

∀ρ

Γ ·∪flat(λa1. . . . λan.(s1, . . . , sn, r) .= λbρ(1). . . . λbρ(n).(tρ(1), . . . , tρ(n), r′))

where ρ is a permutation on {1, . . . , n}.

Main Rules: The following rules (MMS) (Martelli-Montanari-Simulation) and
(FPS) (Fixpoint-Shift) will always be immediately applied followed by a decom-
position of the resulting set of equations.

(MMS)
Γ ·∪{X

.= e1,X
.= e2},∇

Γ ·∪{X
.= e1, e1

.= e2},∇ , if e1, e2 are neither variables
nor suspensions.

(FPS)
Γ ·∪{X

.= π1·X, . . . , X
.= πn·X,X

.= e}, θ

Γ ·∪{e
.= π1·e, . . . , e .= πn·e}, θ ∪ {X �→ e} ,

if X is maximal w.r.t. >vd,
X �∈ Var(Γ), and e is neither
a variable nor a suspension,
and no failure rule (see below)
is applicable.

(ElimFP)
Γ ·∪{X

.= π1·X, . . . , X
.= πn·X,X

.= π·X}, θ

Γ ·∪{X
.= π1·X, . . . , X

.= πn·X}, θ
, if π ∈ 〈π1, . . . , πn〉.

(Output)
Γ,∇, θ

θ,∇, {“X ∈ Fix (π)” | X
.= π · X ∈ Γ}

if Γ only consists of
fixpoint-equations.

We assume that the rule (ElimFP) will be applied whenever possible.
Note that the two rules (MMS) and (FPS), without further precaution, may

cause an exponential blow-up in the number of fixpoint-equations (see Example
3.6).

The rule (ElimFP) will limit the number of fixpoint equations by exploiting
knowledge on operations on permutation groups.

The rule (Output) terminates an execution on Γ0 by outputting a unifier
(θ,∇′,X). Note that in any case at least one solution is represented.

Nominal Unification of Higher Order Expressions with Recursive Let 335

The top symbol of an expression is defined as tops(X) = X, tops(π·X) = X,
tops(f s1 . . . sn) = f , tops(a) = a, tops(λa.s) = λ, tops(letrec env in s) =
letrec. Let Fx := F ∪ A ∪ {letrec, λ}.

Definition 3.4. Failure Rules of LetrecUnify

Clash Failure: If s
.= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) �= tops(t).

Cycle Detection: If there are equations X1
.= s1, . . . , Xn

.= sn where
tops(si) ∈ Fx, and Xi+1 occurs in si for i = 1, . . . , n − 1 and X1 occurs
in sn.

Freshness Fail: If there is a freshness constraint a#a.
Freshness Solution Fail: If there is a freshness constraint a#X ∈ ∇, and

a ∈ FA((X)θ).

The computation of FA((X)θ) can be done in polynomial time by iterating
over the solution components.

Example 3.5. We illustrate the letrec-rule by a ground example without
flattening. Let the equation be: letrec a.(a, b), b.(a, b) in b

.= letrec b.(b, c),
c.(b, c) in c). Select the identity permutation ρ, which results in:

λa.λb.((a, b), (a, b), b) .= λb.λc.((b, c), (b, c), c). Then:
λb.((a, b), (a, b), b) .= (a b)·λc.((b, c), (b, c), c) = λc.((a, c), (a, c), c).

(The freshness constraint a# . . . holds). Then the application of the λ-rule gives
((a, b), (a, b), b) .= (b c)·((a, c), (a, c), c) (the freshness constraint b# . . . holds).
The resulting equation is ((a, b), (a, b), b) .= ((a, b), (a, b), b), which is valid.

Example 3.6. This example shows that FPS (together with the standard and
decomposition rules) may give rise to an exponential number of equations in
the size of the original problem. Let there be variables Xi, i = 0, . . . , n and the
equations Γ = {Xn

.= π·Xn, Xn
.= (f Xn−1 ρn·Xn−1), . . . , X2

.= (f X1 ρ2·X1)}
where π, ρ1, . . . , ρn are permutations.

We prove that this unification problem may give rise to 2n−1 equations, if
the redundancy rule (ElimFP) is not there.

The first step is by (FPS):
{

f Xn−1 ρn·Xn−1
.= π·(f Xn−1 ρn·Xn−1),

Xn−1
.= (f Xn−2 ρn−1·Xn−2), . . .

}

Using decomposition and inversion:
⎧⎨
⎩

Xn−1
.= π·Xn−1,

Xn−1
.= ρ−1

n ·π·ρn·Xn−1,
Xn−1

.= (f Xn−2 ρn−1·Xn−2), . . .

⎫⎬
⎭

After (FPS):
⎧⎨
⎩

(f Xn−2 ρn−1·Xn−2)
.= π·(f Xn−2 ρn−1·Xn−2),

(f Xn−2 ρn−1·Xn−2)
.= ρ−1

n ·π·ρn·(f Xn−2 ρn−1·Xn−2),
Xn−2

.= (f Xn−3 ρn−2·Xn−3), . . .

⎫⎬
⎭

336 M. Schmidt-Schauß et al.

decomposition and inversion:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xn−2
.= π·Xn−2,

Xn−2
.= ρ−1

n−1·π·ρn−1·Xn−2,
Xn−2

.= ρ−1
n ·π·ρn·Xn−2,

Xn−2
.= ρ−1

n−1·ρ−1
n ·π·ρn·ρn−1·Xn−2,

Xn−2
.= (f Xn−3 ρn−2·Xn−3), . . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Now it is easy to see that all equations X1
.= π′·X1 are generated, with

π′ ∈ {ρ−1πρ where ρ is a composition of a subsequence of ρn, ρn−1, . . . , ρ2},
which makes 2n−1 equations. The permutations are pairwise different using an
appropriate choice of ρi and π. The starting equations can be constructed using
the decomposition rule of abstractions.

4 Soundness, Completeness, and Complexity
of LetrecUnify

Theorem 4.1. The decision variant of the algorithm LetrecUnify runs in
nondeterministic polynomial time. Its collecting version returns a complete set of
at most exponentially many unifiers, every one represented in polynomial space.

Proof. Note that we assume that the input equations are flattened before apply-
ing the rules, which can be performed in polynomial time.

Let Γ0,∇0 be the input, and let S = size(Γ0,∇0). The execution of a single
rule can be done in polynomial time depending on the size of the intermediate
state, thus we have to show that the size of the intermediate states remains
polynomial and that the number of rule applications is at most polynomial.

The termination measure (μ1, μ2, μ3, μ4, μ5, μ6), which is ordered lexico-
graphically, is as follows: μ1 is the number of letrec expressions in Γ , μ2 is
the number of letrec-, λ-symbols, function-symbols and atoms in Γ , μ3 is the
number of different variables in Γ , μ4 is the number of occurrences of variables
in Γ , μ5 is the number of equations not of the form X

.= e, and μ6 is the number
of equations.

Since shifting permutations down and simplification of freshness constraints
both terminate and do not increase the measures, we only compare states which
are normal forms for shifting down permutations and simplifying freshness con-
straints. We assume that the algorithm stops if a failure rule is applicable, and
that the rules (MMS) and (FPS) are immediately followed by a full decomposi-
tion of the results (or failure).

Now it is easy to check that the rule applications strictly decrease μ: The rules
(MMS) and (FPS) together with the subsequent decomposition strictly decrease
(μ1, μ2). Since expressions in equations are flat, (MMS) does not increase the
size: X

.= s1,X
.= s2 is first replaced by X

.= s1, s1
.= s2, and the latter is

decomposed, which due to flattening results only in equations containing vari-
ables and suspensions. Thus μ2 is reduced by the size of s2. In the same way
(FPS) strictly decreases (μ1, μ2). In addition μ2 is at most S2, since only the
letrec-decomposition rule can add λa.-constructs.

Nominal Unification of Higher Order Expressions with Recursive Let 337

The number of fixpoint-equations for every variable X is at most c1 ∗ S ∗
log(S)) for some (fixed) c1, since the number of atoms is never increased, and
since we assume that (ElimFP) is applied whenever possible. The size of the
permutation group is at most S!, and so the length of proper subset-chains and
hence the maximal number of generators of a subgroup is at most log(S!) = O(S∗
log(S)). Note that the redundancy of generators can be tested in polynomial time
depending on the number of atoms.

Now we prove a (global) upper bound on the number μ3 of variables: An
application of (7) may increase μ3 at most by S. An application of (FPS) may
increase this number at most by c1 ∗ S log(S) ∗ S, where the worst case occurs
when e is a letrec-expression. Since (MMS) and (FPS) can be applied at most S
times, the number of variables is smaller than c1 ∗ S3 log(S).

The other rules strictly decrease (μ1, μ2), or they do not increase (μ1, μ2), and
strictly decrease (μ3, μ4, μ5, μ6) and can be performed in polynomial time. ��

The problematic rule for complexity is (FPS), which does not increase μ1 and
μ2, but may increase μ3, μ4 and μ6 (see Example 3.6). This increase is defeated
by the rule (ElimFP), which helps to keep the numbers μ4 and μ6 low.

Theorem 4.2. The algorithm LetrecUnify is sound and complete.

Proof. Soundness of the algorithm holds, by easy arguments for every rule, simi-
lar as in [35], and since the letrec-rule follows the definition of ∼ in Definition 2.1.
A further argument is that the failure rules are sufficient to detect final states
without solutions.

Completeness requires more arguments. The decomposition and standard
rules (with the exception of rule (7)), retain the set of solutions. The same
for (MMS), (FPS), and (ElimFP). The nondeterministic Rule (7) provides all
possibilities for potential ground solutions. Moreover, the failure rules are not
applicable to states that are solvable.

A final output of LetrecUnify has at least one ground solution as instance:
we can instantiate all variables that remain in Γout by a fresh atom. Then all
fixpoint equations are satisfied, since the permutations cannot change this atom,
and since the (atomic) freshness constraints hold. This ground solution can be
represented in polynomial space by using θ, plus an instance X �→ a for all
remaining variables X and a fresh atom a, and removing all fixpoint equations
and freshness constraints. ��
Theorem 4.3. The nominal letrec-unification problem is in NP.

Proof. This follows from Theorems 4.1 and 4.2.

5 Nominal Matching with Letrec: LetrecMatch

Reductions in higher order calculi with letrec, in particular on a meta-notation,
require a matching algorithm, matching its left hand side to an expression.

338 M. Schmidt-Schauß et al.

Example 5.1. Consider the (lbeta)-rule, which is the version of (beta) used in
call-by-need calculi with sharing [2,27,31]. Note that only the sharing power of
the recursive environment is used here.

(lbeta) (λx.e1) e2 → letrec x.e2 in e1.

An (lbeta) step, for example, on (λx.x) (λy.y) is performed by switching to
the language LRL and then matching (app (λc.X1) X2) � (app (λa.a) (λb.b)),
where app is the explicit representation of the binary application operator. This
results in σ := {X1 �→ c;X2 �→ (λb.b)}, and the reduction result is the σ-instance
of (letrec c.X2 in X1), which is (letrec c.(λb.b) in c). Note that this form of
reduction implicitly uses α-equivalence.

We derive a nominal matching algorithm as a specialization of LetrecU-
nify. We use nonsymmetric equations written s � t, where s is an LRLX -
expression, and t does not contain variables. Note that neither freshness con-
straints nor suspensions are necessary (and hence no fixpoint equations) in the
solution. We assume that the input is a set of equations of (plain) expressions.

The rules of the algorithm LetrecMatch are:

Γ ·∪{e � e}
Γ

Γ ·∪{(f s1 . . . sn) � (f s′
1 . . . s′

n)}
Γ ·∪{s1 � s′

1, . . . , sn � s′
n}

Γ ·∪{λa.s � λa.t}
Γ ·∪{s � t}

Γ ·∪{λa.s � λb.t}
Γ ·∪{s � (a b)·t} ifa # t, otherwiseFail.

Γ ·∪{π·X � e}
Γ ·∪{X � π−1·e}

Γ ·∪{letrec a1.s1; . . . , an.sn in r � letrec b1.t1; . . . , bn.tn in r′}
|

∀ρ

Γ ·∪{λa1. . . . λan.(s1, . . . , sn, r) � λaρ(1). . . . λaρ(n).(tρ(1), . . . , tρ(n), r′)}

where ρ is a (mathematical) permutation on {1, . . . , n}
Γ ·∪{X � e1,X � e2}

Γ ·∪{X � e1} if e1 ∼ e2, otherwise Fail

The test e1 ∼ e2 will be performed as a subroutine call to this (nondetermin-
istic) matching procedure in the collecting version, i.e. the test succeeds if there
is a nondeterministic execution with success as result.

Clash Failure: if s
.= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) �= tops(t).

Theorem 5.2. LetrecMatch is sound and complete for nominal letrec
matching. It decides nominal letrec matching in nondeterministic polynomial
time. Its collecting version returns a finite complete set of an at most exponen-
tial number of matching substitutions, which are of at most polynomial size.

Proof. This follows by standard arguments.

Theorem 5.3. Nominal letrec matching is NP-complete.

Proof. The problem is in NP, which follows from Theorem 5.2. It is also NP-hard,
which follows from the (independent) Theorem 6.1.

Nominal Unification of Higher Order Expressions with Recursive Let 339

A slightly more general situation for nominal matching occurs, when the
matching equations Γ0 are compressed using a dag. We construct a practically
more efficient algorithm LetrecDagMatch from LetrecUnify as follows.
First we generate Γ1 from Γ0, which only contains (plain) flattened expressions
by encoding the dag-nodes as variables together with an equation. An expression
is said Γ0-ground, if it does not reference variables from Γ0 (also via equations).
In order to avoid suspension (i.e. to have nicer results), the decomposition rule
for λ-expressions with different binder names is modified as follows:

Γ ·∪(λa.s
.= λb.t},∇

Γ ·∪{s
.= (a b)·t},∇ ∪ {a#t} λb.t is Γ0-ground

The extra conditions a#t and Γ0-ground can be tested in polynomial time.
The equations Γ1 are processed applying LetrecUnify (with the mentioned
modification) with the guidance that the right-hand sides of match-equations
are also right-hand sides of equations in the decomposition rules. The resulting
matching substitutions can be interpreted as the instantiations into the variables
of Γ0. Since Γ0 is a matching problem, the result will be free of fixpoint equations,
and there will be no freshness constraints in the solution. Thus we have:

Theorem 5.4. The collecting variant of LetrecDagMatch outputs an at
most exponential set of dag-compressed substitutions that is complete and where
every unifier is represented in polynomial space.

6 Hardness of Nominal Letrec Matching and Unification

Theorem 6.1. Nominal letrec matching (hence also unification) is NP-hard,
for two letrec expressions, where subexpressions are free of letrec.

Proof. We encode the NP-hard problem of finding a Hamiltonian cycle in a
regular graph [16,28], which are graphs where all nodes have the same degree
k ≥ 3. Let a1, . . . , an be the vertexes of the graph, and E be the set of edges. The
first environment part is env1 = a1.(node a1); . . . ; an.(node an), and a second
environment part env2 consists of bindings b.(f a a′) and b′.(f a′ a) for every
edge (a, a′) ∈ E for fresh names b, b′. Then let s := (letrec env1; env2 in 0)
representing the graph. Let the second expression encode the question whether
there is a Hamiltonian cycle in a regular graph as follows. The first part of
the environment is env ′

1 = a1.(node X1), . . . , an.(node Xn). The second part is
env ′

2 consisting of b1.f X1 X2; b2.f X2 X3; . . . bn.f Xn X1, and the third part
consisting of a number of (dummy) entries of the form b.f Z Z ′, where b is
always a fresh atom for every binding, and Z,Z ′ are fresh variables for every
entry. The number of these dummy entries is k ∗ n − n. Then the matching
problem is solvable iff the graph has a Hamiltonian cycle.

Theorem 6.2. The nominal letrec-unification problem is NP-complete.

Proof. This follows from Theorems 4.3 and 6.1.

340 M. Schmidt-Schauß et al.

We say that an expression t contains garbage, iff there is a subexpression
(letrec env in r), and the environment env can be split into two environments
env = env1; env2, such that env1 is not trivial, and the atoms from LA(env1)
do not occur in env2 nor in r. Otherwise, the expression is free of garbage. Since
α-equivalence of LRL-expressions is Graph-Isomorphism-complete [29], but α-
equivalence of garbage-free LRL-expressions is polynomial, it is useful to look
for improvements of unification and matching for garbage-free expressions. As
a remark: Graph-Isomorphism is known to have complexity between PTIME
and NP ; there are arguments that it is weaker than the class of NP-complete
problems [32]. There is also a claim that it is quasi-polynomial [8], which means
that it requires less than exponential time.

Theorem 6.3. Nominal letrec matching with one occurrence of a single variable
and a garbage-free target expression is Graph-Isomorphism-hard.

Proof. Let G1, G2 be two graphs. Let s be (letrec env1 in g b1 . . . , bm) the
encoding of a arbitrary graph G1 where env1 is the encoding as in the proof
of Theorem 6.1 and, nodes are encoded as a1 . . . an, and the edge-binders are
bi. Then the expression s is free of garbage. Let the environment env2 be the
encoding of G2 in the expression t = letrec env2 in X. Then t matches s iff
the graphs G1, G2 are isomorphic. Hence we have GI-hardness. If there is an
isomorphism of G1 and G2, then it is easy to see that this bijection leads to an
equivalence of the environments, and we can instantiate X with (g b1 . . . , bm).

7 Nominal Letrec Matching with Environment Variables

We extend the language LRLX by variables E that may encode partial letrec-
environments, which leads to a larger coverage of unification problems in rea-
soning about the semantics of programming languages.

Example 7.1. Consider as an example a rule (llet-e) of the operational seman-
tics, that merges letrec-environments (see [31]):
(letrec E1 in (letrec E2 in X)) → (letrec E1;E2 in X).
It can be applied to an expression (letrec a.0; b.1 in letrec c.(a, b, c) in c)
as follows: The left-hand side (letrec E1 in (letrec E2 in X)) of the reduc-
tion rule matches (letrec a.0; b.1 in (letrec c.(a, b, c) in c)) with the match:
{E1 �→ {a.0; b.1};E2 �→ {c.(a, b, c)};X �→ c}, producing the next expres-
sion as an instance of the right hand side (letrec E1;E2 in X), which is:
(letrec a.0; b.1; c.(a, b, c) in c). Note that for application to extended lambda
calculi, more care is needed w.r.t. scoping in order to get valid reduction results
in all cases. The restriction that a single letrec environment binds different vari-
ables becomes more important. The reduction (llet-e) is correctly applicable, if
the target expression satisfies the so-called distinct variable convention, which
means that all bound variables are different and that all free variables in the
expression are different from all bound variables.

An alternative that is used for a similar unification task in [30] requires an
additional construct of non-capture constraints: NCC (env1, env2), which means

Nominal Unification of Higher Order Expressions with Recursive Let 341

that for every valid instantiation ρ: variables occurring free in env1ρ are not
captured by the top letrec-binders in env2ρ. In this paper we focus on matching,
and leave the combination with reduction rules for further work.

Definition 7.2. The grammar for the extended language LRLXE (LetRec
Language eXtended with Environments) is:

env ::= E | π · E | a.e | env ; env
e ::= a | X | π · X | λa.e | (f e1 . . . ear(c)) | (letrec env in e)

We define a matching algorithm, where environment variables may occur in
left hand sides. This algorithm needs a more expressive data structure in equa-
tions. The variant letr* of letrec is used with two environment-components,
(i) a list of bindings that are already fixed in the correspondence to the bind-
ings of the other environment, and (ii) an environment that is not yet fixed. We
denote the fixed bindings as a list, which is the first component. The scoping
is the same. In the notation we assume that the (non-fixed) letrec-environment
part on the right hand side may be arbitrarily permuted before the rules are
applied. The justification for this special data structure is the scoping in letrec
expressions. The usual letrec is the extended letrec with an empty list as first
component. Note that suspensions (π·E , π·X) are not generated nor a part of
the result of this matching algorithm (but may be in the input).

Definition 7.3. The matching algorithm LetrecEnvMatch for expressions
where environment variables E and expression variables X may occur only
in the left hand sides of match equations is described below. Initially, every
(letrec env in e) is modified to (letr∗ ∅; env in e). The rules are:

Γ ·∪{e � e}
Γ

Γ ·∪{(f s1 . . . sn) � (f s′
1 . . . s′

n)}
Γ ·∪{s1 � s′

1, . . . , sn � s′
n}

Γ ·∪{λa.s � λa.t}
Γ ·∪{s � t}

Γ ·∪{λa.s � λb.t}
Γ ·∪{s � (a b)·t} if, a#t otherwise Fail

Γ ·∪{(letr∗ ls; a.s; env in r) � (letr∗ ls′; b.t; env ′ in r′)}
|

∀(b.t)

Γ ·∪{(letr∗ ((a.s) : ls); env in r) � (a b)(letr∗ ((b.t) : ls′; env ′ in r′)}

if a#(letr∗ ls′; b.t; env ′in r′), otherwise Fail.

Γ ·∪{(letr∗ ls;π·E ; env in r) � (letr∗ ls′; env ′
1; env ′

2 in r′)}
|

env ′
1

Γ ·∪{(letr∗ (E : ls); env in r) � (letr∗ (π−1·(env′
1) : ls′); env ′

2 in r′)}

Γ ·∪
{

(letr∗ ls; ∅ in r)
� (letr∗ ls′; ∅ in r′)

}

Γ ·∪{ls � ls′; r � r′}
Γ ·∪{[e1; . . . ; en] � [e′

1; . . . ; e
′
n]}

Γ ·∪{e1 � e′
1; . . . ; en � e′

n}
Γ ·∪{π·X � e}

Γ ·∪{X � π−1e}
Γ ·∪{X � e1,X � e2}
Γ ·∪{X � e1, e1

.= e2}
Γ ·∪{E � env1,E � env2}

Γ ·∪{E � env1, env1
.= env2}

342 M. Schmidt-Schauß et al.

Testing e1
.= e2 and env1

.= env2 is done with high priority using the (nonde-
terministic) matching rules in Sect. 5, where for testing env1

.= env2 all permu-
tations of the bindings are checked. Fail, if the equations does not hold.

Clash Failure: If s
.= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) �= tops(t).

After successful execution, the result will be a set of match equations with
components X � e, and E � env , which represents a matching substitution,
where the letr∗-expressions are retranslated to letrec-expressions.

Theorem 7.4. The algorithm Definition 7.3 (LetrecEnvMatch) is sound
and complete. It runs in non-deterministic polynomial time. The corresponding
decision problem is NP-complete.

The collecting version of LetrecEnvMatch returns an at most exponen-
tially large, complete set of representations of matching substitutions, where the
representations are of at most polynomial size.

Proof. The reasoning for soundness, completeness and termination in polynomial
time is a variation of previous arguments. The nonstandard part is fixing the
correspondence of environment parts step-by-step and keeping the scoping.

8 Conclusion and Future Research

We constructed a nominal letrec unification algorithm, several nominal letrec
matching algorithms for variants, which all run in nondeterministic polynomial
time. Future research is to investigate extensions of unification with environment
variables E , with abstract variables for (concrete) variables, (or alternatively
extending equivariant nominal unification [1,10,11,14] to letrec,) and to inves-
tigate nominal matching together with equational theories. Also applications of
nominal techniques to reduction steps in operational semantics and transforma-
tions should be investigated.

References

1. Aoto, T., Kikuchi, K.: A rule-based procedure for equivariant nominal unification.
In: Informal Proceedings HOR, p. 5 (2016)

2. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: A call-by-need
lambda calculus. In: POPL 1995, pp. 233–246. ACM Press, San Francisco (1995)

3. Ariola, Z.M., Klop, J.W.: Cyclic lambda graph rewriting. In: Proceedings of IEEE
LICS, pp. 416–425. IEEE Press (1994)

4. Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
A formalisation of nominal alpha-equivalence with A and AC function symbols. In:
Proceedings of LSFA 2016, pp. 78–93 (2016)

5. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Nominal narrowing. In:
Pientka, B., Kesner, D. (eds.) Proceedings of First FSCD, pp. 11:1–11:17. LIPIcs
(2016)

Nominal Unification of Higher Order Expressions with Recursive Let 343

6. Ayala-Rincón, M., Fernández, M., Rocha-Oliveira, A.C.: Completeness in PVS of
a nominal unification algorithm. ENTCS 323(3), 57–74 (2016)

7. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 445–532. Elsevier, MIT Press, New York,
Cambridge (2001)

8. Babai, L.: Graph isomorphism in quasipolynomial time (2016). http://arxiv.org/
abs/1512.03547v2

9. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theor.
Comput. Sci. 403(2–3), 285–306 (2008)

10. Cheney, J.: Nominal Logic Programming. Ph.D. thesis, Cornell University, Ithaca
(2004)

11. Cheney, J.: Equivariant unification. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467,
pp. 74–89. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32033-3 7

12. Cheney, J.: Relating higher-order pattern unification and nominal unification. In:
Proceedings of 19th International Workshop on Unification (UNIF 2005), pp. 104–
119 (2005)

13. Cheney, J.: Toward a general theory of names: binding and scope. In: MERLIN
2005, pp. 33–40. ACM (2005)

14. Cheney, J.: Equivariant unification. J. Autom. Reasoning 45(3), 267–300 (2010).
http://dx.doi.org/10.1007/s10817-009-9164-3

15. Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permuta-
tion groups. In: 21st FoCS, pp. 36–41. IEEE Computer Society (1980)

16. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

17. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor.
Comput. Sci. 13, 225–230 (1981)

18. Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput.
Sci. 1(1), 27–57 (1975)

19. Jeannin, J.B., Kozen, D., Silva, A.: CoCaml: programming with coinductive types.
Technical report Computing and Information Science, Cornell University, funda-
menta Informaticae (2012). http://hdl.handle.net/1813/30798

20. Levy, J., Veanes, M.: On the undecidability of second-order unification. Inf. Com-
put. 159(1–2), 125–150 (2000)

21. Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Lynch, C. (ed.)
Proceedings of 21st RTA, LIPIcs, vol. 6, pp. 209–226. Schloss Dagstuhl (2010)

22. Levy, J., Villaret, M.: Nominal unification from a higher-order perspective. ACM
Trans. Comput. Log. 13(2), 10 (2012)

23. Luks, E.M.: Permutation groups and polynomial-time computation. In: Finkelstein,
L., Kantor, W.M. (eds.) Groups And Computation, Proceedings of a DIMACS
Workshop (DIMACS), vol. 11, pp. 139–176. DIMACS/AMS (1991)

24. Marlow, S. (ed.): Haskell 2010 - Language Report (2010)
25. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Pro-

gram. Lang. Syst. 4(2), 258–282 (1982)
26. Miller, D.: A logic programming language with lambda-abstraction, function vari-

ables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)
27. Moran, A., Sands, D., Carlsson, M.: Erratic fudgets: a semantic theory for an

embedded coordination language. In: Ciancarini, P., Wolf, A.L. (eds.) COORDI-
NATION 1999. LNCS, vol. 1594, pp. 85–102. Springer, Heidelberg (1999). doi:10.
1007/3-540-48919-3 8

28. Picouleau, C.: Complexity of the Hamiltonian cycle in regular graph problem.
Theor. Comput. Sci. 131(2), 463–473 (1994)

http://arxiv.org/abs/1512.03547v2
http://arxiv.org/abs/1512.03547v2
http://dx.doi.org/10.1007/978-3-540-32033-3_7
http://dx.doi.org/10.1007/s10817-009-9164-3
http://hdl.handle.net/1813/30798
http://dx.doi.org/10.1007/3-540-48919-3_8
http://dx.doi.org/10.1007/3-540-48919-3_8

344 M. Schmidt-Schauß et al.

29. Schmidt-SchauSS, M., Rau, C., Sabel, D.: Algorithms for extended alpha-
equivalence and complexity. In: van Raamsdonk, F. (ed.) 24th RTA 2013. LIPIcs,
vol. 21, pp. 255–270. Schloss Dagstuhl (2013)

30. Schmidt-Schauß, M., Sabel, D.: Unification of program expressions with recursive
bindings. In: Cheney, J., Vidal, G. (eds.) 18th PPDP, pp. 160–173. ACM (2016).
http://doi.acm.org/10.1145/2967973.2968603

31. Schmidt-Schauß, M., Schütz, M., Sabel, D.: Safety of Nöcker’s strictness analysis.
J. Funct. Program. 18(04), 503–551 (2008)

32. Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci.
37(3), 312–323 (1988)

33. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006). doi:10.1007/11799573 25

34. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in nominal
Isabelle. Log. Methods Comput. Sci. 8(2:14), 1–35 (2012). www.lmcs-online.org

35. Urban, C., Pitts, A., Gabbay, M.: Nominal unification. In: Baaz, M., Makowsky,
J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 513–527. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45220-1 41

36. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci.
323(1–3), 473–497 (2004)

http://doi.acm.org/10.1145/2967973.2968603
http://dx.doi.org/10.1007/11799573_25
www.lmcs-online.org
http://dx.doi.org/10.1007/978-3-540-45220-1_41

Automata Theory Approach
to Predicate Intuitionistic Logic

Maciej Zielenkiewicz(B) and Aleksy Schubert

Institute of Informatics, University of Warsaw, Warsaw, Poland
{maciekz,alx}@mimuw.edu.pl

Abstract. Predicate intuitionistic logic is a well established fragment
of dependent types. According to the Curry-Howard isomorphism proof
construction in the logic corresponds well to synthesis of a program the
type of which is a given formula. We present a model of automata that
can handle proof construction in full intuitionistic first-order logic. The
automata are constructed in such a way that any successful run corre-
sponds directly to a normal proof in the logic. This makes it possible
to discuss formal languages of proofs or programs, the closure proper-
ties of the automata and their connections with the traditional logical
connectives.

1 Introduction

Investigations in automata theory lead to abstraction of algorithmic processes
of various kinds. This enables analysis of their strength both in terms of their
expressibility (i.e. which problems can be solved with them) and in terms of
resources they consume (e.g. time or space). They also make it possible to shed
a different light on the original problem (e.g. the linguistic problem of languages
generated by grammars can be reduced to the analysis of pushdown automata)
which makes it possible to conduct analysis that was not possible before. In
addition, the automata become a particular compact data structure that can
in itself, when defined formally, be subject to further investigation, as finite or
pushdown automata are in automata theory.

Typically, design of automata requires one to select a finite control over the
process of interest. This is not always immediate when λ-calculi come into play
as λ-terms can contain bound variables from an infinite set. One possibility
consists of restricting the programming language so that there is no need to
introduce binders. This method was used in the work of Düdder et al. [3], which
was powerful enough to synthesise λ-terms that were programs in a simple but
expressive functional language.

Another approach would be to restrict the program search to programs in
total discharge form. In programs of this form, it is needed to keep track of
types of available library calls, but not of the call names themselves. This idea
was explored by Takahashi et al. [11] who defined context-free grammars that
can be used for proof search in propositional intuitionistic logic, which is, by

c© Springer International Publishing AG 2017
M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 345–360, 2017.
DOI: 10.1007/978-3-319-63139-4 20

346 M. Zielenkiewicz and A. Schubert

Curry-Howard isomorphism, equivalent to program search in the simply typed
λ-calculus. Actually, the grammars can be viewed as performing program search
using tree automata by means of the known correspondence between grammars
and tree automata. However, the limitation to the total discharge form can be
avoided by means of techniques developed by Schubert, Dekkers and Baren-
dregt [8].

A different approach to abstract machinery behind program search process
was proposed by Broda and Damas [2] who developed a formula-tree proof
method. This technique provides a realisation of the proof search procedure
for a particular propositional formula as a data structure, which can be further
subject to algorithmic manipulation.

In addition to these investigations for intuitionistic propositional logic there
was a proposal of applying automata theoretic notions to proof search in first-
order logic [6]. In this paper, Hetzl characterises a class of proofs in intuitionistic
first-order logic recognisable by tree automata with global equalities and disequal-
ities (TAGED) [4]. The characterisation makes it possible to recognise proofs
that are not necessarily in normal form, but is also limited to certain class of
tautologies as the emptiness problem for the automata is decidable.

In this paper we propose an automata-theoretical abstraction of the proving
process in full intuitionistic first-order logic. Its advantages can be best expressed
by stating in which implicit but crucial features of the proof search process
become explicit. In our automata the following elements of the proving process
are exposed.

– The finite control of the proving process is made explicit.
– A binary internal structure of the control is explicated where one component

corresponds to a subformula of the original formula and one to the internal
operations that should be done to handle the proof part relevant for the
subformula. As a by-product of this formulation it becomes apparent how
crucial a role the subformula property plays in the proving process.

– The resource that serves to represent eigenvariables which occur in the process
is distinguished. This abstraction is important as the variables play a crucial
role in complexity results concerning the logic [9,10].

– The automata enable the possibility of getting rid of the particular syntactical
form of formulas and instead work on more abstract structures.

– The definition of automaton distils the basic instructions necessary to conduct
the proof process, which brings into the view more elementary operations the
proving process depends on.

Although the work is formulated in terms of logic, it can be viewed as synthesis
of programs in a restricted class of dependently typed functional programs.

Organisation of the paper. We fix the notation and present intuitionistic first-
order logic in Sect. 2. Next, we define our automata in Sect. 3. We summarise
the account in Sect. 4.

Automata Theory Approach to Predicate Intuitionistic Logic 347

2 Preliminaries

We present the notation and the basic facts about intuitionistic first-order logic.
The notation A ⇀ B is used to denote the type of partial functions from A to
B. We write dom(f) for the domain of the function f : A ⇀ B. For two partial
functions f, g we define f � g = f ∪ {〈x, y〉 ∈ g | x �∈ dom(f)}. The set of all
subsets of a set A is P (A).

A prefix closed set of strings N
∗ over N is called a carrier of a tree. A tree

is a tuple 〈A,≤, L, l〉 where A is a carrier of the tree, ≤ is the prefix order on
N

∗, L is the set of labels and l : A → L is the labelling function. Whenever the
set of labels and the labelling function are clear from the context, we abbreviate
the quadruple to the tuple 〈A,≤〉. Since the formula notation makes it easy, we
sometimes use a subtree ϕ of A to actually denote a node in A at which ϕ starts.

2.1 Intuitionistic First-Order Logic

The basis for our study is the first-order intuitionistic logic (for more details see
e.g. the work of Urzyczyn [12]). We assume that we have a set of predicates P
that can be used to form atomic formulae and an infinite set X1 of first-order
variables, usually noted as X,Y,Z etc. with possible annotations. Each element
P of P has an arity, denoted arity(P). The formulae of the system are:

ϕ,ψ ::=P(X1, . . . , Xn) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ∀X.ϕ | ∃X.ϕ | ⊥
where P is an n-ary predicate and X,X1, . . . , Xn ∈ X1. We follow Prawitz and
introduce negation as a notation defined ¬ϕ ::= ϕ → ⊥. A formula of the form
P(X1, . . . , Xn) is called an atom. A pseudo-atom formula is a formula of one of
the three forms: atom formula, a formula of the form ∃X.ϕ, or a formula of the
form ϕ1 ∨ ϕ2. We do not include parentheses in the grammar since we actually
understand the formulas as abstract syntax trees instead of strings. The tree is
traditionally labelled with the cases of the above mentioned grammar. We assume
that, for a given case in the grammar, the corresponding node of the tree has as
many sons as there are non-terminal symbols in the case. In addition, we use in
writing traditional disambiguation conventions for ∧,∨ and insert parentheses to
further disambiguate whenever this is necessary. The connective → is understood
as right-associative so that ϕ1 → ϕ2 → ϕ3 is equivalent to ϕ1 → (ϕ2 → ϕ3). In
a formula ϕ = ϕ1 → · · · → ϕn → ϕ′, where ϕ′ is a pseudo-atom, the formula ϕ′

is called the target of ϕ.
Each time we use the term subformula ψ of ϕ, we implicitly mean a particular

occurrence of ψ in ϕ. This occurrence is in our text either unimportant or obvious
from the context.

We define the set of free first-order variables in a formula ϕ:

– FV1(P(X1, . . . , Xn)) = {X1, . . . , Xn},
– FV1(ϕ1 ∗ ϕ2) = FV1(ϕ1) ∪ FV1(ϕ2) where ∗ ∈ {∧,∨,→},
– FV1(�X.ϕ) = FV1(ϕ)\{X} where � ∈ {∃,∀},
– FV1(⊥) = ∅.

348 M. Zielenkiewicz and A. Schubert

Other variables that occur in a formula are bound. Terms that differ only
in renaming of bound variables are α-equivalent and we do not distinguish
between them. To describe the binding structure of a formula we use a spe-
cial bind function. Let us assume that a formula ϕ has no free variables (i.e.
FV1(ϕ) = ∅) and let ψ be its subformula together with a variable X free in
ψ. We define bindϕ(ψ,X) as the subformula of ϕ that binds the free occur-
rences of X in ψ, i.e. the least subformula ϕ′ of ϕ such that, for each its proper
subformula ψ′′ that contains ψ as a subformula, X ∈ FV(ψ′′). For instance
bind⊥→∃X.⊥→P (X)(P (X),X) = ∃X.⊥ → P (X).

Fig. 1. The rules of the intuitionistic first-order logic

For the definition of proof terms we assume that there is an infinite set of
proof term variables Xp, usually noted as x, y, z etc. with possible annotations.
These can be used to form the following terms.

M,N ::= x | 〈M1,M2〉 | π1M | π2M |
in1ϕ1∨ϕ2

M | in2ϕ1∨ϕ2
M | case M of [x : ϕ1] N1, [y : ϕ2] N2 |

λx : ϕ.M | M1M2 | λXM | MX |
pack M, Y to ∃X.ϕ | let x : ϕ be M1 : ∃X.ϕ in M2 | ⊥⊥ϕM

Automata Theory Approach to Predicate Intuitionistic Logic 349

where x is a proof term variable, ϕ,ϕ1, ϕ2 are first-order formulas and X,Y
are first-order variables. Due to Curry-Howard isomorphism the proof terms
can serve as programs in a functional programming language. Their operational
semantics is given in terms of reductions. Their full exposition can be found
in the work of de Groote [5]. We omit it here, but give an intuitive account
of the meaning of the terms. In particular, 〈M1,M2〉 represents the product
aggregation construct and πiM for i = 1, 2 decomposition of the aggregation by
means of projections. The terms in1ϕ1∨ϕ2

M , in2ϕ1∨ϕ2
M reinterpret the value

of M as one in type ϕ1 ∨ ϕ2. At the same time case M of [x : ϕ1] N1, [y : ϕ2] N2

construct offers the possibility to make case analysis of a value in an ∨-type.
This construct is available in functional programming languages in a more gen-
eral form of algebraic types. The terms λx : ϕ.M , M1M2 represent traditional
function abstraction and application. The proof terms that represent universal
quantifier manipulation make it possible to parametrise type with a particular
value λXM and use the parametrised term for a particular case MX. At last
pack M, Y to ∃X.ϕ makes it possible to hide behind a variable X an actual reali-
sation of a construction that uses another individual variable Y . The abstraction
obtained in this way can be exploited using letx : ϕ be M1 : ∃X.ϕ in M2. At last
the term ⊥⊥ϕM corresponds to the break instruction.

The environments (Γ,Δ, etc. with possible annotations) in the proving sys-
tem are finite sets of pairs x : ψ that assign formulas to proof variables. We write
Γ � M : A to express that the judgement is indeed derivable. The inference rules
of the logic are presented in Fig. 1. We have two kinds of free variables, namely
free proof term variables and free first-order variables. The set of free proof-term
variables is defined inductively as follows

– FV(x) = {x},
– FV(〈M1,M2〉) = FV(M1M2) = FV(M1) ∪ FV(M2),
– FV(π1M) = FV(π2M) = FV(in1ϕ1∨ϕ2

M) = FV(in2ϕ1∨ϕ2
M) =

FV(λXM) = FV(MX) = FV(pack M, Y to ∃X.ϕ) = FV(⊥⊥ϕM) =
FV(M),

– FV(case M of [x : ϕ1] N1, [y : ϕ2] N2) =
FV(M) ∪ (FV(N1)\{x}) ∪ (FV(N2)\y),

– FV(λx : ϕ.M) = FV(X)\{x},
– FV(let x : ϕ beM1 : ∃X.ϕ in M2) = FV(M1) ∪ (FV(M2)\{x}).

Again, the terms that differ only in names of bound proof-term variables are
considered α-equivalent and are not distinguished. Note that we can use the
notation FV1(M) to refer to all free type variables that occur in M . This set
is defined by recursion over the terms and taking all the free first-order vari-
ables that occur in formulas that are part of the terms so that for instance
FV1(in1ϕ1∨ϕ2

M) = FV1(ϕ1) ∪ FV1(ϕ2) ∪ FV1(M). At the same time there are
naturally terms that bind first-order variables, FV1(λXM) = FV1(M)\{X} and
bring new free first-order ones, e.g. FV1(MX) = FV(M) ∪ {X}.

Traditionally, the (cut) rule is not mentioned among standard rules in Fig. 1,
but as it is common in λ-calculi, it is included it in the system in the form of
a β-reduction rule. This rule forms the basic computation mechanism in the

350 M. Zielenkiewicz and A. Schubert

system understood as a programming language. We omit the rules due to the
lack of space, but an interested reader can find them in the work of de Groote [5].
Still, we want to focus our attention to terms in normal form (i.e. terms that
cannot be reduced further). Partly because the search for terms in such form is
easier and partly because source code of programs contains virtually exclusively
terms in this form. The following theorem states that this simplification does
not make us lose any possible programs in our program synthesis approach.

Theorem 1 (Normalisation). First-order intuitionistic logic is strongly nor-
malisable i.e. each reduction has a finite number of steps.

The same paper by de Groote contains also (implicitly) the following result.

Theorem 2 (Subject reduction). First-order intuitionistic logic has the sub-
ject reduction property, i.e. if Γ � M : φ and M →β∪p N then Γ � N : φ.

This theorem speaks about →β∪p reduction that is the sum of β-reduction
and permutation reduction (p stands for permutation), which makes it possi-
ble to extensively regulate the shape of normal terms. The resulting regular
form defined below is the long normal form. As a consequence of the above two
theorems we conclude that each provable formula has a proof in this regulated
normal form.

2.2 Long Normal Forms

We restrict our attention to terms which are in long normal form (lnf in short).
The idea of long normal form for our logic is best explained by the following
example ([12], Sect. 5): suppose X : r and Y : r → p ∨ q. The long normal form
of Y X is case Y X of [a : p] λu. in1 u, [b : q] λv. in2 v.

Our definitions follow those of Urzyczyn, [12]. We classify normal forms into:

– introductions λX.N , λx.N , 〈N1, N2〉, in1 N , in2 N , pack N, y to ∃X.ϕ,
– proper eliminators X, PN , πiP , P (x),
– improper eliminators ⊥⊥ϕ(P), case P of [x : ϕ1] N1, [y : ϕ2] N2,

let x : ϕ be N : ∃X.ϕ in P

where P is a proper eliminator and N is a normal form. The long normal forms
(lnfs) are defined recursively with quasi-long proper eliminators:

– A quasi-long proper eliminator is a proper eliminator where all arguments
are of pseudo-atom type.1

– A constructor λX.N , 〈N1, N2〉, ∈i N , pack N, y to ∃X.ϕ, let x : ϕ be N1 :
∃X.ϕ in N2 is a lnf when its arguments N,N1, N2 are lnfs.

– A case-eliminator case P of [x : ϕ1] N1, [y : ϕ2] N2 is a lnf when N1 and N2

are lnfs and P is a quasi-long proper eliminator. A miracle (ex falso quodlibet)
⊥⊥ϕ(P) of a target type ϕ is a long normal form when P is a quasi-long proper
eliminator of type ⊥.

1 Note that a variable is a quasi-long proper eliminator because all arguments is an
empty set in this case.

Automata Theory Approach to Predicate Intuitionistic Logic 351

– An eliminator letx : ϕ be N : ∃X.ϕ in P is an lnf when N is an lnf and P is
a quasi-long proper eliminator.

The usefulness of these forms results from the following proposition, [12].

Proposition 1 (Long normal forms). If Γ � M : φ then there is a long
normal form N such that Γ � N : φ.

The design of automata that handle proof search in the first-order logic
requires us to find out what are the actual resources the proof search should
work with. We observe here that the proof search process—as it is the case of
the propositional intuitionistic logic—can be restricted to formulas that occur
only as subformulas in the initial formula. Of course this time we have to take
into account first-order variables. The following proposition, which we know how
to prove for long normal forms only, sets the observation in precise terms.

Proposition 2. Consider a derivation of � M : ϕ such that M is in the long
normal form. Each judgement Γ � N : ψ that occurs in this derivation has the
property that, for each formula ξ in Γ and for ψ, there is a subformula ξ′ of
ϕ such that ξ = ξ′[X1 := Y1, . . . , Xn := Yn] where FV(ξ′) = {X1, . . . , Xn} and
Y1, . . . , Yn are some first-order variables.

Proof. Induction over the size of the term N . The details are left to the reader. ��
We can generalise the property expressed in the proposition above and say

that a formula ψ emerged from ϕ when there is a subformula ψ0 of ϕ and
a substitution [X1 := Y1, . . . , Xn := Yn] with FV1(ψ0) = {X1, . . . , Xn} such
that ψ = ψ0[X1 := Y1, . . . , Xn := Yn]. We say that a context Γ emerged from ϕ
when, for each its element x : ψ, the formula ψ emerged from ϕ.

3 Arcadian Automata

Our Arcadian automaton2
A is defined as a tuple 〈A, Q, q0, ϕ0, I, i, fv〉, where

– A = 〈A,≤〉 is a finite tree, which formally describes a division of the automa-
ton control into intercommunicating modules; the root of the tree is written
ε; since the tree is finite we have the relation ρ succ ρ′ when ρ ≤ ρ′ and there
is no ρ′′ �= ρ and ρ′′ �= ρ′ such that ρ ≤ ρ′′ ≤ ρ′;

– Q is a set of states;
– q0 ∈ Q is an initial state of the automaton;
– ϕ0 ∈ A is an initial tree node of the automaton;
– I is a set of all instructions;

2 The name Arcadian automata stems from the fact that a slightly different and weaker
notion of Eden automata was developed before [10] to deal with the fragment of the
first-order intuitionistic logic with ∀ and → and in which the universal quantifier
occurs only on positive positions.

352 M. Zielenkiewicz and A. Schubert

– i : Q → P(I) is a function which gives the set of instructions available in
a given state; the function i must be such that every instruction belongs to
exactly one state;

– fv : A → P (A) is a function that describes the binding, it has the property
that for each node v of A it holds that fv(v) =

⋃
w∈B fv(w) where B = {w |

v succ w}.

Each state may be either existential or universal and belongs to an element
a ∈ A, so Q = Q∃ ∪ Q∀, and Q∀ =

⋃
a∈A Q∀

a and Q∃ =
⋃

a∈A Q∃
a. The set of

states Q is divided into two disjoint sets Q∀ and Q∃ of, respectively, universal
and existential states.

Operational semantics of the automaton. An instantaneous description (ID) of
A is a tuple 〈q, κ, w,w′, S, V 〉 where

– q ∈ Q is the current state,
– κ is the current node in A,
– w : A ⇀ V is the interpretation of bindings associated with κ by fv(κ), in

particular we require here that fv(κ) ⊆ dom(w),
– w′ : A ⇀ V is the auxiliary interpretation of bindings that can be stored in

this location of the ID to implement some operations. w′ is the value of a
temporary register of the automaton, role of which will be discussed later.

– S is the store of the automaton, which is a set of pairs 〈ρ, v〉 where ρ ∈ A
and v : A ⇀ V and we require that fv(ρ) ⊆ dom(v),

– V is the working domain of the automaton, i.e. a set of eigenvariables, which
can be represented for example as natural numbers.

Predicate logic is defined in two flavours. In one of them empty structure carriers
are allowed in the other one, forbidden. We choose as the initial ID the tuple
〈q0, ϕ0, ∅, ∅, ∅, ∅〉. This choice is correct for the version of logic with empty carriers
allowed.

Intuitively speaking the automaton works as a device which discovers the
knowledge accumulated in the tree A. It can distinguish new items of interest
in the domain of the discourse and these are stored in the set V while the facts
concerning the elements of V are stored in S. Traditionally, the control of the
automaton is represented by the current state q, which belongs to a “module”
indicated by κ. We can imagine the automaton as a device that tries to check if
a particular piece of information encoded in the tree A is correct. In this view
the piece of information which is being checked for correctness at a given point
is represented by the current node κ combined with current interpretation of
bindings w. The interpretation of bindings w′ is used to temporarily hold an
interpretation of some bindings.

We have 7 kinds of instructions in our automata. We give here their oper-
ational semantics. Let us assume that we are in a current ID 〈q, κ, w,w′, S, V 〉.
The operation of the instructions is defined as follows, where we assume q′ ∈ Q,
ρ, ρ′ ∈ A.

Automata Theory Approach to Predicate Intuitionistic Logic 353

1. q : storeρ, ρ′q′ turns the current ID into
〈q′, ρ′, w, ∅, S ∪ {〈ρ, (w′ � w)|fv(ρ)〉}, V 〉,

2. q : jmpρ, q′ turns the current ID into 〈q′, ρ, w′′, ∅, S, V 〉, where
(w � w′)|fv(κ) ⊆ w′′ and fv(ρ) ⊆ dom(w′′),

3. q : newρ, q′ turns the current ID into 〈q′, ρ, w, ∅, S, V ∪ {X}〉, where X �∈ V ,
4. q : checkρ, ρ′, q′ turns the current ID into 〈q′, ρ′, w, ∅, S, V 〉, the instruction is

applicable only when there is a pair 〈ρ, v〉 ∈ S such that v(ρ) = w(κ),
5. q : instLρ, ρ′, q′ turns the current ID into 〈q′, ρ′, w, ∅, S ∪ {〈ρ,w′′|fv(ρ)〉}, V ∪

{X}〉, the instruction is applicable only when there is a node ρ′′ ∈ A such
that ρ′′ succ ρ and where w′′ = ([ρ′′ := X] � w) � w′ and X �∈ V ,

6. q : instRρ, q′ turns the current ID into 〈q′, ρ, w′′, ∅, S, V 〉, the instruction is
applicable only when an additional condition is met that κ succ ρ and where
w′′ = [γ := X] � w|fv(ρ) and γ ∈ fv(ρ)\fv(κ) and X ∈ V ,

7. q : loadρ, q′ turns the current ID into 〈q′, ρ, w′′, v, S, V 〉, where
(w � w′)|fv(κ) ⊆ w′′ and fv(ρ) ⊆ dom(w′′), and v : A ⇀ V .

When an element of the resulting ID is underspecified in instruction semantics
it should be understood that any of the IDs fulfilling the description can be the
result.

These instructions abstract the basic operations associated with the process
of proving in predicate logic. Observe that the content of the additional register
loaded by the instruction load can be used only by the immediately following
instruction as all the other instructions erase the content of the register.

It is also interesting to observe that the set of instructions contains, in addi-
tion to standard assembly-like instructions, two instructions instL and instR that
deal with pattern instantiation.

The following notion of acceptance is defined inductively. We say that the
automaton A eventually accepts from an ID a = 〈q, κ, w,w′, S, V 〉 when

1. q is universal and there are no instructions available in state q (i.e. i(q) = ∅,
such states are called accepting states), or

2. q is universal and, for each instruction i available in q, the automaton started
in an ID a′ eventually accepts, where a′ is obtained from a by executing i,

3. if q is existential and, for some instruction i available in state q the automa-
ton started in an ID a′ eventually accepts, where a′ is obtained from a by
executing i.

The definition above actually defines inductively a certain kind of tree, the
nodes of which are IDs and children of a node are determined by the configu-
rations obtained by executing available instructions. Actually, we can view the
process described above not only as a process of reaching acceptance, but also
as a process of accepting the ID tree. In this light the automaton is eventually
accepting from an initial configuration if and only if the language of its ‘runs’ is
not empty. As a result we can talk about the acceptance of such automata by
referring to the emptiness problem.

Here is a basic monotonicity property of Arcadian automata.

354 M. Zielenkiewicz and A. Schubert

Fig. 2. Structural decomposition instructions of the automaton

Proposition 3. If the automaton A eventually accepts from 〈q, κ, w,w′, S, V 〉
and w ⊆ ŵ then the automaton A eventually accepts from 〈q, κ, ŵ, w′, S, V 〉.
Proof. Induction over the definition of the configuration from which automaton
eventually accepts. The details are left to the reader. ��

3.1 From Formulas to Automata

We can now define an Arcadian automaton Aϕ = 〈A, Q, q∃
ϕ, ϕ, I, i, fv〉 that corre-

sponds to provability of the formula ϕ. For technical reasons we assume that the
formula is closed. This restriction is not essential since the provability of a for-
mula with free variables is equivalent to the provability of its universal closure.
The components of the automaton are as follows.

– A = 〈A,≤〉 is the syntax tree of the formula ϕ.
– Q = {q∀

ψ, q∃
ψ, q∀

ψ,∨, q∀
ψ,→, q∀

ψ,∃, q∀
ψ,⊥ | for all subformulas ψ of ϕ}. The states

annotated with the superscript ∀ belong to Q∀ while the states with the
superscript ∃ belong to Q∃.

– q∃
ϕ is the initial state (which reflects that the goal of the proving process is ϕ).

– The initial state and initial tree node are q∃
ϕ and ϕ, respectively.

– I and i are presented in Figs. 2 and 3. We describe them in more detail below.
– fv : A → P (A) is defined so that fv(ψ) = {bindϕ(ψ,X) | X ∈ FV(ψ)}.

Automata Theory Approach to Predicate Intuitionistic Logic 355

Fig. 3. Non-structural instructions of the automaton

356 M. Zielenkiewicz and A. Schubert

Figures 2 and 3 present the patterns of possible instructions in I. Each of the
instruction patterns starts with a state of the form q�

ψ or of the form q�
ψ,• where

� is a quantifier (∀ or ∃), ψ is a subformula of ϕ and • is one of the symbols
∨,→,⊥,∃. For each of the patterns we assume I contains all the instructions
that result from instantiating the pattern with all possible subformulas that
match the form of ψ (e.g. in case ψ = ψ1 → ψ2 we take all the subformulas with
→ as the main symbol). The function i : Q → P (I) is defined so that for a state
q�
ψ it returns all the instructions which start from the state. In addition to the

instructions they present the way a configuration is transformed by each of the
instructions. This serves to facilitate understanding of the proofs.

As the figure suggests, the instructions of the automaton can be divided into
two groups—structural decomposition instructions and non-structural ones. The
structural instructions are used to decompose a formula into its structural sub-
formulas. On the left-hand side of each of the structural instructions we present
the formula the instruction decomposes. The other rules represent operations
that manipulate other elements of configuration with possible change of the goal
formula, which is illustrated in the following example.

Example. Consider the formula ϕpos = ∀x(P (x)) → ∀y∃xP (x). In order to build
the Arcadian automaton for that formula first we have to build the tree A of it,
which is shown in Fig. 4.

Fig. 4. Syntax tree of the
formula φpos.

The instructions available (I) are:

(1) q∀
1 : store2, 4, q∃

4 (19) q∀
1,∃ : jmp5, q∃

5

(4) q∀
2 : new3, q∃

3 (19) q∀
4,∃ : jmp5, q∃

5

(4) q∀
4 : new5, q∃

5 (19) q∀
5,∃ : jmp5, q∃

5

(5) q∀
5 : instR6, q∃

6 (20) q∀
1,∃ : instL5, 1, q∃

1

(10) q∃
3 : jmp2, q∃

2 (20) q∀
4,∃ : instL5, 4, q∃

4

(10) q∃
6 : jmp2, q∃

2 (20) q∀
5,∃ : instL5, 5, q∃

5

the instructions available for any a ∈ A are:

(6) q∃
a : jmpa, q∀

a (8) q∃
a : loada, q∀

a,∨ (9) q∃
a : jmpa, q∀

a,→
(11) q∃

a : loada, q∀
a,∃ (12) q∃

a : jmpa, q∀
a,⊥ (13) q∃

a : checka, a, q∀
axiom

(21) q∀
a,→ : jmp⊥, q∃

⊥

The set of states can be easily written using the definition. To calculate fv
we need to calculate binds first. We have bind1(3, x) = 2 and bind1(6, x) = 5;
therefore fv(3) = {2}, fv(6) = {5} and fv(x) = ∅ for x �= 3, x �= 6. We let q0 = q∃

1

and ϕ0 = ϕpos. The initial ID is q = q∃
1 , κ = 1, and the other elements of

the description are empty sets. A successful run of the automaton is as follows:
jmp1, q∀

1 (rule (6), initial instruction leads to the structural decomposition of the
main connective →); store2, 4, q∃

4 (r. (1), as the result of the decomposition, the
formula at the node 2 is moved to the context, and the formula at 4 becomes
the proof goal); jmp4, q∀

4 (r. (6), we progress to the structural decomposition of
∀); new5, q∃

5 (r. (4), we introduce fresh eigenvariable, say X1, for the universal
quantifier); jmp5, q∀

5 (r. (6), we progress to the structural decomposition of ∃);
instR6, q∃

6 (r. (5), we produce a witness for the existential quantifier, which can

Automata Theory Approach to Predicate Intuitionistic Logic 357

be just X1); jmp2, q∃
2 (r. (10), we progress now with the non-structural rule that

handles instantiation of the universal assumption from the node 2); and now we
can conclude with check2, 2, qaxiom (r. (13)) that directly leads to acceptance.

Fig. 5. Syntax tree of ϕdiv.

Negative example. Consider the formula ϕdiv =
(((∀x.Q(x)) → p) → p) → p; its tree is presented
in Fig. 5. Obviously it does not have an inhabitant.
The run of the corresponding automaton is infinite,
and its main loop of states begins from q∃

1 . We pro-
ceed first with the instruction (rule 1) store2, 8, q∃

8 ,
then (r. 9) jmp8, q∀

8,→. Now one of the applications of
(17) results in jmp1, q∃

1 which closes the loop. Note
that there is no other way to construct a run for the
automaton.

From derivability questions to IDs. A proof search
process in the style of Ben-Yelles [1] works by solv-
ing derivability questions of the form Γ �? : ψ. We
relate this style of proof search to our automata model by a translation of such
a question into an ID of the automaton. Suppose that the initial closed for-
mula is ϕ. We define the configuration of Aϕ that corresponds to Γ �? : ψ
by exploiting the conclusion of Proposition 2. This proposition makes it pos-
sible to associate a substitution wψ with ψ and wξ with each assignment
x : ξ ∈ Γ . The resulting configuration is aΓ,ψ = 〈q∃

ψ0
, ψ0, wψ, ∅, SΓ,ψ, VΓ,ψ〉 where

SΓ,ψ = {〈ξ, ψξ〉 | x : ξ ∈ Γ} and VΓ,ψ = FV1(Γ, ψ) as well as wψ(ψ0) = ψ.

Lemma 1. If Γ � M : ψ is derivable and such that Γ and ψ emerged from
ϕ then Aϕ eventually accepts from the configuration 〈q∃

ψ0
, ψ0, wψ, ∅, SΓ,ψ, VΓ,ψ〉,

where wψ(ψ0) = ψ and dom(wψ) = fv(ψ0).

Proof. We may assume that M is in the long normal form. The proof is by
induction over the derivation of M . We give here only the most interesting cases.

If the last rule is (var), we can apply the non-structural instruction (13) that
checks if the formula wψ(ψ0) is in SΓ,ψ. Then the resulting state q∀

axiom is an
accepting state.

If the last rule is the (∧I) rule then ψ = ψ1 ∧ ψ2 and we have shorter
derivations for Γ � M1 : ψ1 and Γ � M2 : ψ2, which by induction hypothesis give
that Aϕ eventually accepts from the configurations 〈q∃

ψi0
, ψi0, wψi

, ∅, SΓ,ψi
, VΓ,ψi

〉
for i = 1, 2 where we note that wψi

= wψ, SΓ,ψi
= SΓ,ψ and VΓ,ψi

= VΓ,ψ. We
can now use the non-structural rule (6) to turn the existential state q∃

ψ into the
universal one q∀

ψ for which there are two instructions available in (2), and these
turn the current configuration into the corresponding above mentioned ones.

If the last rule is the (∧Ei) rule for i = 1, 2 then we know that ψ = ψi for
one of i = 1, 2 and Γ � M ′ : ψ1 ∧ ψ2 is derivable through a shorter deriva-
tion, which means by the induction hypothesis that Aϕ eventually accepts from
the configuration 〈q∃

ψ1∧ψ2
, ψ1 ∧ ψ2, wψ1∧ψ2 , ∅, SΓ,ψ1∧ψ2 , VΓ,ψ1∧ψ2〉 where actually

358 M. Zielenkiewicz and A. Schubert

wψ1∧ψ2 |fv(ψi) ⊆ wψi
and fv(ψi) ⊆ dom(wψ1∧ψ2) for both i = 1, 2. Moreover,

SΓ,ψ1∧ψ2 = SΓ,ψ and VΓ,ψ1∧ψ2 = VΓ,ψ. This configuration can be obtained from
the current one using respective non-structural instruction presented at (7).

If the last rule is the (→ E) rule then we have shorter derivations for Γ � M1 :
ψ′ → ψ and Γ � M2 : ψ′. The induction hypothesis gives that Aϕ eventually
accepts from the configurations

〈q∃
ψ′

0→ψ0
, ψ′

0 → ψ0, wψ′→ψ, ∅, SΓ,ψ′→ψ, VΓ,ψ′→ψ〉,
〈q∃

ψ′
0
, ψ′

0, wψ′ , ∅, SΓ,ψ′ , VΓ,ψ′〉.
Note that SΓ,ψ′→ψ = SΓ,ψ and VΓ,ψ′→ψ = VΓ,ψ. We can now use the instruction
(9) to turn the current configuration into

〈q∀
ψ0,→, ψ0, wψ′→ψ, ∅, SΓ,ψ, VΓ,ψ〉,

which can be turned into the desired two configurations with the instructions
(17) and (18) respectively.

If the last rule is the (∀I) rule then ψ = ∀X.ψ1 and we have a shorter
derivation for Γ � M1 : ψ1 (where X is a fresh variable by the eigenvariable
condition), which by the induction hypothesis gives that Aϕ eventually accepts
from the configuration

〈q∃
ψ10

, ψ10, wψ1 , ∅, SΓ,ψ1 , VΓ,ψ1〉,
where wψ1(ψ10) = ψ1, SΓ,ψ1 = SΓ,ψ and VΓ,ψ1 = VΓ,ψ ∪ {X}.

We observe now that the non-structural instruction (6) transforms the cur-
rent configuration to 〈q∀

∀X.ψ10
, ψ, wψ, ∅, SΓ,ψ, VΓ,ψ〉 and then the new instruction

from (4) adds appropriate element to VΓ,ψ and turns the configuration into the
awaited one.

If the last rule is the (∃E) rule then we know that Γ � M1 : ∃X.ψ1 and
Γ, x : ψ1 � M2 : ψ are derivable through shorter derivations, which means by
the induction hypothesis that Aϕ eventually accepts from configurations

〈q∃
∃X.ψ10

,∃X.ψ10, w∃X.ψ1 , ∅, SΓ,∃X.ψ1 , VΓ,∃X.ψ1〉,
〈q∃

ψ0
, ψ0, wψ, ∅, SΓ ′,ψ, VΓ ′,ψ〉 (I)

where w∃X.ψ1(∃X.ψ10) = ∃X.ψ1, wψ(ψ0) = ψ and Γ ′ = Γ, x : ψ1, which conse-
quently means that SΓ ′,ψ = SΓ,ψ ∪ {〈ψ10, w

′〉} and VΓ ′,ψ = VΓ,ψ ∪ {X} where
w′ = ([∃X.ψ10 := X] � w∃X.ψ1)|fv(ψ10).

Note that x is a fresh proof variable by definition and X is a fresh variable
by the eigenvariable condition.

We observe that the current configuration can be transformed to

〈q∀
ψ0,∃, ψ0, wψ, w∃X.ψ1 , SΓ,ψ, VΓ,ψ〉 (II)

by the non-structural instruction (11). This in turn is transformed to the config-
urations (I) by non-structural instructions (19) and (20) respectively. Note that
the correctness of the guess of w∃X.ψ1 in the step to ID (II) is verified by the
step to the first ID in (I) ��

Automata Theory Approach to Predicate Intuitionistic Logic 359

We need a proof in the other direction. To express the statement of the next
lemma we need the notation ΓS for a context x1 : w1(ψ1), . . . , xn : wn(ψn) where
S = {〈ψ1, w1〉, . . . , 〈ψn, wn〉}.

Lemma 2. If Aϕ eventually accepts from the configuration 〈q∃
ψ, ψ, w, ∅, S, V 〉

then there is a proof term M such that ΓS � M : w(ψ).

Proof. The proof is by induction over the definition of the eventually accepting
configuration by cases depending on the currently available instructions. Note
that only instructions (3), (6), (7), (8), (9), (10), (11), (12) and (13) are available
for states of the form q∃

φ.
We can immediately see that if one of the instructions (3) from Fig. 2 is

used then the induction hypothesis applied to resulting configurations brings
the assumption of the respective rule (∨Ii) for i = 1, 2 and we can apply it to
obtain the conclusion.

Then taking the non-structural instruction (6) moves control to one of the
instructions present in Fig. 2 and these move control to configurations from
which the induction hypothesis gives the assumptions of the introduction rules
(→ I), (∧I), (∀I), (∃I) respectively.

Next taking the non-structural instructions (8), (9), (11) and (12) move con-
trol to further non-structural rules in Fig. 3 and these move control to con-
figurations from which the induction hypothesis gives the assumptions of the
elimination rules (∨E), (→ E), (∃E), and (⊥E). At the same time the instruc-
tions (7), (10), move control directly to configurations from which the induction
hypothesis gives the assumptions of the elimination rules (∧E), (∀E).

At last the non-structural instruction (13) directly represents the use of the
(var) rule.

More details of the reasoning can be observed by referring to relevant parts
in the proof of Lemma 1 and adapting them to the current situation. ��
Theorem 3 (Main theorem). The provability in intuitionistic first-order logic
is reducible to the emptiness problem for Arcadian automata.

Proof. Let ϕ be a formula of the first-order intuitionistic logic. The emptiness
problem for Aϕ is equivalent to checking if the initial configuration of this Arca-
dian automaton is eventually accepting. This in turn is by Lemmas 1 and 2
reducible to derivability of � ϕ. ��

4 Conclusions

We propose a notion of automata that can simulate search for proofs in normal
form in the full first-order intuitionistic logic, which can be viewed by the Curry-
Howard isomorphism as a program synthesis for a simple functional language.
This notion enables the possibility to apply automata theoretic techniques to
inhabitant search in this type system. Although the emptiness problem for such
automata is undecidable (as the logic is, [9]), the notion brings a new perspective

360 M. Zielenkiewicz and A. Schubert

to the proof search process which can reveal new classes of formulae for which the
proof search can be made decidable. In particular this automata, together with
earlier investigations [9,10], bring to the attention that decidable procedures
must constrain the growth of the subset V in IDs of automata presented here.

Our automata by design find only terms in total discharge convention [7],
i.e. such that if there is more than one variable of a given type available for
use at some point in program, the most recently introduced one is used. This
does not influence completeness of the search for inhabitants, but it has an effect
on program synthesis. In order to check that it is not a big limiting factor we
checked how many of the functions in real world programs are in total discharge
convention by analysing the source code of the GHC. It turns out that 74% of
the functions defined there are in total discharge convention, so using it does
not excessively restrict program synthesis. The code and instructions needed
to reproduce our results is available at http://www.mimuw.edu.pl/∼maciekz/
HaskellTdcStats.

References

1. Ben-Yelles, C.B.: Type-assignment in the lambda-calculus; syntax and semantics.
Ph.D. thesis, Mathematics Department, University of Wales, Swansea, UK (1979)

2. Broda, S., Damas, L.: On long normal inhabitants of a type. J. Logic Comput.
15(3), 353–390 (2005)

3. Düdder, B., Martens, M., Rehof, J.: Staged composition synthesis. In: Shao, Z.
(ed.) ESOP 2014. LNCS, vol. 8410, pp. 67–86. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54833-8 5

4. Filiot, E., Talbot, J., Tison, S.: Tree automata with global constraints. Int. J.
Found. Comput. Sci. 21(4), 571–596 (2010)

5. de Groote, P.: On the strong normalisation of intuitionistic natural deduction with
permutation-conversions. Inf. Comput. 178(2), 441–464 (2002)

6. Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., Mart́ın-Vide,
C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-28332-1 26

7. Prawitz, D.: Natural Deduction. Almqvist and Wiksell, Sweden (1965)
8. Schubert, A., Dekkers, W., Barendregt, H.P.: Automata theoretic account of proof

search. In: Kreutzer, S. (ed.) 24th EACSL Annual Conference on Computer Science
Logic (CSL 2015). LIPIcs, vol. 41, pp. 128–143. Dagstuhl (2015)

9. Schubert, A., Urzyczyn, P., Zdanowski, K.: On the mints hierarchy in first-order
intuitionistic logic. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 451–465.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46678-0 29

10. Schubert, A., Urzyczyn, P., Walukiewicz-Chrzaszcz, D.: Restricted positive quan-
tification is not elementary. In: Herbelin, H., Letouzey, P., Sozeau, M. (eds.) Pro-
ceedings of TYPES 2014. LIPIcs, vol. 39, pp. 251–273. Dagstuhl (2015)

11. Takahashi, M., Akama, Y., Hirokawa, S.: Normal proofs and their grammar. Inf.
Comput. 125(2), 144–153 (1996)

12. Urzyczyn, P.: Intuitionistic games: determinacy, completeness, and normalization.
Studia Logica 104(5), 957–1001 (2016). doi:10.1007/s11225-016-9661-4

http://www.mimuw.edu.pl/~maciekz/HaskellTdcStats
http://www.mimuw.edu.pl/~maciekz/HaskellTdcStats
http://dx.doi.org/10.1007/978-3-642-54833-8_5
http://dx.doi.org/10.1007/978-3-642-54833-8_5
http://dx.doi.org/10.1007/978-3-642-28332-1_26
http://dx.doi.org/10.1007/978-3-662-46678-0_29
http://dx.doi.org/10.1007/s11225-016-9661-4

Author Index

Albert, Elvira 21
Alpuente, María 3, 187
Amadini, Roberto 59
Antoy, Sergio 97

Bezirgiannis, Nikolaos 21
Bichler, Manuel 114

C., Niyas 275
Cuenca-Ortega, Angel 3

Datar, Advaita 275
De Angelis, Emanuele 38
de Boer, Frank 21

Escobar, Santiago 3

Falaschi, Moreno 76
Fang, Bin 151
Farka, František 311
Fioravanti, Fabio 38
Flener, Pierre 59

Gabbrielli, Maurizio 76

Hammond, Kevin 311
Hanus, Michael 222

Jana, Anushri 275
Johann, Patricia 168
Jost, Andy 97

Khedker, Uday P. 275
Komendantskaya, Ekaterina 168, 311
Kutsia, Temur 328

Levy, Jordi 328

Martin-Martin, Enrique 21
Meo, Maria Chiara 38

Meseguer, José 3
Mesnard, Fred 205
Morak, Michael 114
Moreno, Ginés 131

Nishida, Naoki 259

Olarte, Carlos 76

Palacios, Adrián 259
Palamidessi, Catuscia 76
Pardo, Daniel 187
Payet, Étienne 205
Pearson, Justin 59
Penabad, Jaime 131
Pettorossi, Alberto 38
Proietti, Maurizio 38

Riaza, José A. 131

Sáenz-Pérez, Fernando 293
Schmidt, Martin 168
Schmidt-Schauß, Manfred 328
Schubert, Aleksy 345
Scott, Joseph D. 59
Sighireanu, Mihaela 151
Stuckey, Peter J. 59

Tack, Guido 59
Tarau, Paul 240

Venkatesh, R. 275
Vidal, Germán 131, 205, 259
Villanueva, Alicia 187
Villaret, Mateu 328

Woltran, Stefan 114

Zielenkiewicz, Maciej 345

	Preface
	Organization
	Abstracts of Invited Talks
	Challenges in Compiling Coq
	Static Analysis for Security at the Facebook Scale
	Learning from Programs: Probabilistic Models, Program Analysis and Synthesis
	Contents
	Program Transformation
	Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms
	1 Introduction
	2 Specializing Equational Theories Modulo Axioms
	2.1 The NPE Approach
	2.2 Partial Evaluation of Convergent Rules Modulo Axioms
	2.3 Equational Closedness

	3 The Partial Evaluation Scheme for Equational Theories
	3.1 Equational Homeomorphic Embedding
	3.2 Equational Abstraction via Equational Least General Generalization
	3.3 Equational Post-processing Renaming
	3.4 Strong Correctness

	4 Experiments
	5 Conclusion and Future Work
	References

	A Formal, Resource Consumption-Preserving Translation of Actors to Haskell
	1 Introduction
	2 Source Language
	2.1 Operational Semantics

	3 Target Language
	3.1 Runtime Execution

	4 Correctness and Resource Preservation
	4.1 Preservation of Resource Consumption

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Verification of Time-Aware Business Processes Using Constrained Horn Clauses
	1 Introduction
	2 Preliminaries
	2.1 Constrained Horn Clauses over Integers
	2.2 Business Processes Model and Notation

	3 Specification and Semantics of Business Processes
	3.1 Business Process Specification via CHCs
	3.2 Operational Semantics

	4 Encoding Time-Dependent Properties into CHCs
	4.1 Encoding the Operational Semantics in CHCs
	4.2 Encoding Time-Dependent Properties
	4.3 Predicate Equivalence

	5 Automated Verification
	6 Related Work
	7 Conclusions
	References

	Constraint Programming
	MiniZinc with Strings
	1 Introduction
	2 Background
	3 MiniZinc with Strings
	4 FlatZinc With(out) Strings
	4.1 The Fstr Conversion
	4.2 The Fint Conversion

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Slicing Concurrent Constraint Programs
	1 Introduction
	2 Concurrent Constraint Programming
	2.1 The Language of CCP Processes

	3 Slicing a CCP Program
	3.1 Collecting Semantics (Step S1)
	3.2 Marking the Store (Step S2)
	3.3 Trace Slice (Step S3)

	4 Applications to Timed CCP
	4.1 A Trace Slicer for tcc

	5 Conclusions and Future Work
	References

	Compilation and Optimization
	A New Functional-Logic Compiler for Curry: SPRITE
	1 Introduction
	2 The SPRITE Curry Compiler
	2.1 ICurry vs FlatCurry
	2.2 Evaluating ICurry

	3 Implementation
	3.1 Expression Representation
	3.2 Evaluation
	3.3 Completeness and Consistency

	4 Performance
	4.1 Functional Programs
	4.2 Functional-Logic Programs

	5 Related Work
	6 Future Work
	7 Conclusion
	References

	lpopt: A Rule Optimization Tool for Answer Set Programming
	1 Introduction
	2 Preliminaries
	3 Rule Decomposition
	3.1 Decomposition of Simple Rules
	3.2 Treating Arithmetic Expressions
	3.3 Treating Weak Constraints
	3.4 Treating Aggregate Expressions
	3.5 Correctness
	3.6 Further Language Extensions

	4 Implementation
	4.1 Recommended Usage

	5 Experimental Evaluation
	6 Conclusions
	References

	Symbolic Execution and Thresholding for Efficiently Tuning Fuzzy Logic Programs
	1 Introduction
	2 Preliminaries
	3 Symbolic Multi-adjoint Logic Programming
	4 Tuning Multi-adjoint Logic Programs
	5 Discussion
	References

	Analysis and Verification
	Hierarchical Shape Abstraction for Analysis of Free List Memory Allocators
	1 Introduction
	2 Overview
	3 Logic Fragment Underlying the Abstract Domain
	4 Abstract Domain for Hierarchical Shape Abstraction
	5 Analysis Algorithm
	5.1 Main Principles
	5.2 Hierarchical Unfolding
	5.3 Hierarchical Folding

	6 Experiments
	7 Related Work and Conclusion
	References

	A Productivity Checker for Logic Programming
	1 Introduction
	2 Contraction Orderings on Terms
	3 Rewriting Trees: Guardedness Checks for Rewriting Derivations
	4 Derivation Trees: Observational Productivity Checks
	5 Related Work: Termination Checking in TRS and LP
	6 Implementation and Applications
	7 Conclusions
	References

	Symbolic Abstract Contract Synthesis in a Rewriting Framework
	1 Introduction
	2 Method Specification: A Running Example
	3 The (symbolic) K Framework
	4 Improving Symbolic Execution in K
	4.1 Symbolic Execution with Abstract Subsumption

	5 Inference Algorithm
	6 Implementation
	7 Related Work and Conclusion
	References

	Testing
	On the Completeness of Selective Unification in Concolic Testing of Logic Programs
	1 Introduction
	2 Preliminaries
	3 The Selective Unification Problem
	4 Recovering Completeness for Linear Selective Unification
	4.1 A Naive Extension
	4.2 The Positive Unification Problem
	4.3 Dealing with the Negative Atoms

	5 Discussion
	References

	CurryCheck: Checking Properties of Curry Programs
	1 Motivation
	2 Functional Logic Programming and Curry
	3 Properties
	4 Testing Properties
	5 User-Defined Test Data
	6 Contract and Specification Testing
	7 Combining Testing and Verification
	8 Practical Experience
	9 Related Work
	10 Conclusion
	References

	A Hiking Trip Through the Orders of Magnitude: Deriving Efficient Generators for Closed Simply-Typed Lambda Terms and Normal Forms
	1 Introduction
	2 Deriving a Generator for Lambda Terms
	2.1 A Canonical Representation with Logic Variables
	2.2 Generating Motzkin Trees
	2.3 Generating Closed Lambda Terms

	3 A Visit to the Other Side: The Language of Types
	4 Merging the Two Worlds: Generating Simply-Typable Lambda Terms
	4.1 A Type Inference Algorithm
	4.2 Combining Term Generation and Type Inference
	4.3 One More Trim: Generating Inhabited Types

	5 Doing It once More: Generating Closed Simply-Typed Normal Forms
	5.1 Generating Normal Forms
	5.2 Merging in Type Inference

	6 Experimental Data
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Semantics and Model Checking
	A Reversible Semantics for Erlang
	1 Introduction
	2 Language Syntax
	3 The Language Semantics
	4 Reversible Semantics
	4.1 Forward Semantics
	4.2 Backward Semantics

	5 Discussion
	References

	Scaling Bounded Model Checking by Transforming Programs with Arrays
	1 Introduction
	2 Informal Description
	3 Semantics
	3.1 Language
	3.2 Representing Program States

	4 Transformation
	5 Soundness
	6 Precision
	7 Experimental Evaluation
	7.1 Experiment 1: SV-COMP Benchmarks
	7.2 Experiment 2: Real-Life Applications

	8 Related Work
	9 Conclusions and Future Work
	References

	Intuitionistic Logic Programming for SQL
	1 Introduction
	2 The SQL WITH Clause
	3 Hypothetical Datalog
	4 Translating SQL into Datalog
	5 Beyond the with Clause: Expressing Assumptions
	6 Playing with the System
	7 Conclusions
	References

	Types, Unification, and Logic
	Coinductive Soundness of Corecursive Type Class Resolution
	1 Introduction
	2 Preliminaries
	2.1 Models of Logic Programs
	2.2 Proof Relevant Resolution

	3 Inductive Soundness of Type Class Resolution
	4 Coinductive Soundness of Corecursive Type Class Resolution
	5 Coinductive Soundness of Extended Corecursive Type Class Resolution
	6 Related Work
	7 Conclusions and Future Work
	References

	Nominal Unification of Higher Order Expressions with Recursive Let
	1 Introduction
	2 The Ground Language of Expressions
	2.1 Preliminaries

	3 A Nominal Letrec Unification Algorithm
	3.1 Rules of the Algorithm LetrecUnify

	4 Soundness, Completeness, and Complexity of LetrecUnify
	5 Nominal Matching with Letrec: LetrecMatch
	6 Hardness of Nominal Letrec Matching and Unification
	7 Nominal Letrec Matching with Environment Variables
	8 Conclusion and Future Research
	References

	Automata Theory Approach to Predicate Intuitionistic Logic
	1 Introduction
	2 Preliminaries
	2.1 Intuitionistic First-Order Logic
	2.2 Long Normal Forms

	3 Arcadian Automata
	3.1 From Formulas to Automata

	4 Conclusions
	References

	Author Index

