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Preface

This volume contains a selection of the papers presented at LOPSTR 2016, the 26th
International Symposium on Logic-Based Program Synthesis and Transformation, held
during September 6-8, 2016, at the University of Edinburgh, Scotland, UK. It was
co-located with two other conferences: PPDP 2016, the 18th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming, and
SAS 2016, the 23rd Static Analysis Symposium. The co-location of these three related
conferences has been shown to be very productive and cross-fertilizing. Previ-
ous LOPSTR symposia were held in Siena (2015), Canterbury (2014), Madrid (2013
and 2002), Leuven (2012 and 1997), Odense (2011), Hagenberg (2010), Coimbra
(2009), Valencia (2008), Lyngby (2007), Venice (2006 and 1999), London (2005 and
2000), Verona (2004), Uppsala (2003), Paphos (2001), Manchester (1998, 1992, and
1991), Stockholm (1996), Arnhem (1995), Pisa (1994), and Louvain-la-Neuve (1993).
More information about the symposium can be found at: http://www.cliplab.org/
Conferences/LOPSTR16/.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration in logic-based program development. LOPSTR is open to contri-
butions in all aspects of this area, including all stages of the software life cycle and
dealing with issues related to both programming-in-the-small and programming-
in-the-large. LOPSTR traditionally solicits contributions, in any language paradigm, in
the areas of synthesis, specification, transformation, analysis and verification, spe-
cialization, testing and certification, composition, program/model manipulation, opti-
mization, transformational techniques in SE, inversion, applications, and tools.
LOPSTR has a reputation for being a lively forum that allows presenting and dis-
cussing both finished work and work in progress. Formal proceedings are produced
only after the symposium so that authors can incorporate the feedback from the con-
ference presentation and discussions.

In response to the call for papers, 45 abstracts were submitted to LOPSTR 2016, of
which 38 resulted in full submissions, from 21 different countries. After the first round
of reviewing, the Program Committee accepted two full papers for direct inclusion in
the formal proceedings, and 18 full papers presented at the symposium were accepted
after a post-conference revision and another round of reviewing. Each submission was
reviewed by at least three Program Committee members or external reviewers. The
paper “A Hiking Trip Through the Orders of Magnitude: Deriving Efficient Generators
for Closed Simply-Typed Lambda Terms and Normal Forms” by Paul Tarau won the
best paper award, sponsored by Springer. In addition to the 20 contributed papers, this
volume includes the abstracts of the talks by our three outstanding invited speakers:
Francesco Logozzo (Facebook, USA) and Greg Morrisett (Cornell University, USA),
whose talks were shared with PPDP, and Martin Vechev (ETH Zurich, Switzerland),
whose talk was shared with SAS.


http://www.cliplab.org/Conferences/LOPSTR16/
http://www.cliplab.org/Conferences/LOPSTR16/
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We would like to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the LOPSTR 2016
Organizing Committee composed by James Cheney (local organizer) and Moreno
Falaschi for the wonderful job they did in managing the symposium. Many thanks also
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Challenges in Compiling Coq

Greg Morrisett

Cornell University, Ithaca, USA
jgml9@cornell.edu

Abstract. The Coq proof assistant is increasingly used for constructing verified
software, including everything from verified micro-kernels to verified databases.
Programmers typically write code in Gallina (the core functional language of
Coq) and construct proofs about those Gallina programs. Then, through a
process of “extraction”, the Gallina code is translated to either OCaml, Haskell,
or Scheme and compiled by a conventional compiler to produce machine code.
Unfortunately, this translation often results in inefficient code, and it fails to take
advantage of the dependent types and proofs. Furthermore, it is a bit embar-
rassing that the process is not formally verified.

Working with Andrew Appel’s group at Princeton, we are trying to formalize
as much of the process of extraction and compilation as we can, all within Coq.
I will talk about both the opportunities this presents, as well as some of the key
challenges, including the inability to preserve types through compilation, and
the difficulty that axioms present.



Static Analysis for Security
at the Facebook Scale

Francesco Logozzo

Facebook, Seattle, USA
logozzo@fb.com

Abstract. The scale and continuous growth of commercial code bases are the
greatest challenges for adoption of automated analysis tools in industry. Alas,
scale is largely ignored by academic research. We developed a new static
analysis tool for security to scale to Facebook scale. It relies on abstract inter-
pretation to focus on the properties that really matter to security engineers and
provides fine control on the cost/precision ratio. It was designed from day one
for “real world” security and privacy problems at scale. Facebook codebase is
huge, and we can analyze it, from scratch in 13 min. This talk will give attendees
a peek at some of the secret sauce we use to achieve such amazing performance
and precision.



Learning from Programs: Probabilistic
Models, Program Analysis and Synthesis

Martin Vechev

ETH Zurich, Zurich, Switzerland
martin.vechev@inf.ethz.ch

Abstract. The increased availability of massive codebases (e.g., GitHub) creates
an exciting opportunity for new kinds of programming tools based on proba-
bilistic models. Enabled by these models, tomorrow’s tools will provide sta-
tistically likely solutions to programming tasks difficult or impossible to solve
with traditional techniques. An example is our JSNice statistical program
de-minification system (http://jsnice.org), now used by more than 150,000 users
in every country worldwide. In this talk, I will discuss some of the latest
developments in this new inter-disciplinary research direction: the theoretical
foundations used to build probabilistic programming systems, the practical
challenges such systems must address, and the conceptual connections between
the areas of statistical learning, static analysis and program synthesis.


http://jsnice.org
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Partial Evaluation of Order-Sorted Equational
Programs Modulo Axioms

Maria Alpuente!, Angel Cuenca-Ortegal3®),

Santiago Escobar!, and José Meseguer?

! DSIC-ELP, Universitat Politécnica de Valéncia, Valencia, Spain
{alpuente,acuenca,sescobar}@dsic.upv.es
2 University of Illinois at Urbana-Champaign, Champaign, IL, USA
meseguer@illinois.edu
3 Universidad de Guayaquil, Guayaquil, Ecuador
angel.cuencao@ug.edu.ec

Abstract. Partial evaluation (PE) is a powerful and general program
optimization technique with many successful applications. However, it
has never been investigated in the context of expressive rule-based lan-
guages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which sup-
port: rich type structures with sorts, subsorts and overloading; and equa-
tional rewriting modulo axioms such as commutativity, associativity—
commutativity, and associativity—commutativity—identity. In this paper,
we illustrate the key concepts by showing how they apply to partial eval-
uation of expressive rule-based programs written in Maude. Our partial
evaluation scheme is based on an automatic unfolding algorithm that
computes term wvariants and relies on equational least general general-
ization for ensuring global termination. We demonstrate the use of the
resulting partial evaluator for program optimization on several examples
where it shows significant speed-ups.

1 Introduction

Partial evaluation (PE) is a semantics-based program transformation technique
in which a program is specialized to a part of its input that is known statically
(at specialization time) [7]. PE has currently reached a point where theory and
refinements have matured, substantial systems have been developed, and real-
istic applications benefit from partial evaluation in a wide range of fields that
transcend by far program optimization.

Narrowing-driven PE (NPE) [3,4] is a generic algorithm for the specializa-
tion of functional programs that are executed by narrowing [10], an extension
of rewriting where matching is replaced by unification. Essentially, narrowing

This work has been partially supported by the EU (FEDER) and the Spanish
MINECO under grants TIN 2015-69175-C4-1-R and TIN 2013-45732-C4-1-P, and
by Generalitat Valenciana under grant PROMETEOII/2015/013, and by NSF
grant CNS-1319109. Angel Cuenca-Ortega has been supported by the SENESCYT,
Ecuador (scholarship program 2013).

© Springer International Publishing AG 2017

M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 3-20, 2017.
DOI: 10.1007/978-3-319-63139-4_1



4 M. Alpuente et al.

consists of computing an appropriate substitution for a symbolic program call in
such a way that the program call becomes reducible, and then reduce it: both the
rewrite rule and the term can be instantiated. As in logic programming, narrow-
ing computations can be represented by a (possibly infinite) finitely branching
tree. Since narrowing subsumes both rewriting and SLD-resolution, it is com-
plete in the sense of both functional programming (computation of normal forms)
and logic programming (computation of answers). By combining the functional
dimension of narrowing with the power of logic variables and unification, NPE
has better opportunities for optimization than the more standard partial eval-
uation of logic programs (also known as partial deduction, PD) and functional
programs [4].

Partial evaluation has never been investigated in the context of expressive
rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which
support: (1) rich type structures with sorts, subsorts and overloading; and
(2) equational rewriting modulo axioms such as commutativity, associativity—
commutativity, and associativity-commutativity—identity. The key NPE ingre-
dients of [3] have to be further generalized to corresponding (order—sorted) equa-
tional notions (modulo axioms): e.g., equational unfolding, equational closedness,
equational embedding, and equational abstraction; and the associated partial eval-
uation techniques become more sophisticated and powerful. In this paper, we
illustrate the key concepts by showing how they apply to partial evaluation of
expressive rule-based programs written in Maude.

Let us motivate the power of our technique by reproducing the classical
specialization of a program parser w.r.t. a given grammar into a very specialized
parser [7].

Ezample 1. Consider the following rewrite theory (written in Maude! syntax)
that defines a generic parser for the language generated by simple, right regu-
lar grammars. We define a symbol _| _| _ to represent the parser configurations,
where the first underscore represents the (terminal or non-terminal) symbol
being processed, the second underscore represents the current string pending
to be recognized, and the third underscore stands for the considered grammar.
We provide two non-terminal symbols init and S and three terminal symbols 0,
1, and the finalizing mark eps (for €, the empty string). These are useful choices
for this example, but they can be easily generalized to any terminal and non-
terminal symbols by defining a Maude parameterized theory. Parsing a string st
according to a given grammar I is defined by rewriting the configuration (init |
st | I') using the rules of the grammar (in the opposite direction) to incrementally
transform st until the final configuration (eps | eps | I') is reached.

! In Maude 2.7, only equations with the variant attribute are used by the folding
variant narrowing strategy, which is the only narrowing strategy considered in this
paper. We sometimes remove the variant attribute for saving space.
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fmod PARSER is
sorts Symbol NSymbol TSymbol String Production Grammar Parsing .
subsort Production < Grammar . subsort TSymbol < String .
subsorts TSymbol NSymbol < Symbol .
ops 0 1 eps : -> TSymbol . ops init S : -> NSymbol .
op mt : -> Grammar . op _|_|_ : Symbol String Grammar -> Parsing .
op __ : TSymbol String -> String [right id: eps].
op _—>_ : NSymbol TSymbol -> Production .
op _—>_._ : NSymbol TSymbol NSymbol -> Production .
op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt]
var E : TSymbol . vars N M : NSymbol . var L : String . var G : Grammar.
eq (N | eps | (N ->eps) ; G
= (eps | eps | (N -> eps ) ; G) [variant]
eq W|EL| (N->E.M) ; ®
=M |L|] (N->E.M); G) [variant]
endfm

Note that this Maude equational?, program theory contains several novel
features that are unknown territory for (narrowing-driven) partial evaluation:
(1) a subsorting relation TSymbol NSymbol < Symbol, and (2) an associative-
commutative with identity symbol _; _ for representing grammars (meaning that
they are handled as a multiset of productions), together with the symbol __ with
right identity for the input string. The general case of the parser is defined by
the second equation that, given the configuration (N | E L | I') where (E L)
is the string to be recognized, searches for the grammar production (N -> E .
M) in I" to recognize symbol E, and proceeds to recognize L starting from the
non-terminal symbol M. Note that the combination of subtypes and equational
(algebraic) axioms allows for a very compact definition.

For example, given the following grammar I' generating the language
(0)(1)*:
init -> eps init -> 0 . init init -> 1 . S S -> eps S->1.8

the initial configuration (init | 0011eps | I') is simplified into
(init | 0011 | I) by using right identity and then deterministically rewrit-
ten as (init | 0011 |I) — (init | 011 |I) — (init | 11|T) — (S |
L|T) = (s | eps | I) — (eps | eps | I).

We can specialize our parsing program to the productions of the given gram-
mar I" by partially evaluating the input term (init | L | I"), where L is a logical
variable of sort String. By applying our partial evaluator, we aim to obtain the
specialized code:

eq init || eps = eps || eps . eq init || 1 = eps || eps .
eq S || eps = eps || eps . eq init || O L = init || L .
eq init || 1 1 L =S || L . eqS Il 1L =8 ||L.

2 We assume there are no two grammar productions of the form N -> E.M; and
N -> E.Ms.
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which gets rid of the grammar I" (and hence of costly ACU-matching operations)
while still recognizing string st by rewriting the simpler configuration (init || st)
to the final configuration (eps || eps). We have run some test on both the origi-
nal and the specialized programs with an impressive performance improvement,
discussed in Sect. 4.

Our contribution. In this paper, we delve into the essential ingredients of a
partial evaluation framework for order sorted equational theories that is able
to cope with subsorts, subsort polymorphism, convergent rules (equations), and
equational axioms. and state its correctness. We base our partial evaluator Vic-
toria on a suitably extended version of the general NPE procedure of [3], which
is parametric w.r.t. the unfolding rule used to construct finite computation trees
and also w.r.t. an abstraction operator that is used to guarantee that only finitely
many expressions are evaluated. For unfolding we use (folding) variant narrowing
[6], a novel narrowing strategy for convergent equational theories that computes
most general variants modulo algebraic axioms and is efficiently implemented in
Maude. For the abstraction we rely on the (order-sorted) equational least general
generalization recently investigated in [2].

2 Specializing Equational Theories Modulo Axioms

In this section, we introduce a partial evaluation algorithm for an equational
theory decomposed as a triple (X, B, E)O), where X' is the signature, Ej is a set
of convergent (equations that are implicitly oriented as) rewrite rules and B is
a set of commonly occurring axioms such as associativity, commutativity, and
identity. Let us start by recalling the key ideas of the NPE approach. We assume
the reader is acquainted with the basic notions of term rewriting, Rewriting
Logic, and Maude (see, e.g., [5]).

2.1 The NPE Approach

Given a set R of rewrite rules and a set ) of program calls (i.e., input terms),
the aim of NPE [3] is to derive a new set of rules R’ (called a partial evaluation
of R w.r.t. @, or a partial evaluation of @ in R) which computes the same
answers and irreducible forms (w.r.t. narrowing) than R for any term that ¢ is
inductively covered (closed) by the calls in . This means that every subterm
in the leaves of the execution tree for ¢ in R that can be narrowed (modulo B)
in R can also be narrowed (modulo B) in R’. Roughly speaking, R’ is obtained
by first constructing a finite (possibly partial) narrowing tree for the input term
t, and then gathering together the set of resultants t0, — ti,...,t0; — ti that
can be constructed by considering the leaves of the tree, say t1,...,tx, and the
computed substitutions 61, ..., 0y of the associated branches of the tree (i.e., a
resultant rule is associated to each root-to-leaf derivation of the narrowing tree).
Resultants perform what in fact is an n-step computation in R, with n > 0, by
means of a single step computation in R’. The unfolding process is iteratively
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repeated for every narrowable subterm of ¢q,...,¢; that is not covered by the
root nodes of the already deployed narrowing trees. This ensures that resultants
cover all calls that may occur at run-time in R’.

Let us illustrate the classical NPE method with the following example that
shows its ability to perform deforestation, a popular transformation that neither
standard PE nor PD can achieve [3]. Essentially, the aim of deforestation is
to eliminate useless intermediate data structures, thus reducing the number of
passes over data.

Ezample 2. Consider the following Maude program that computes the mirror
image of a (non-empty) binary tree, which is built with the free constructor
_{_}- that stores an element as root above two given (sub-)trees, its left and
right children. Note that the program does not contain any equational attributes
either for -{_}_ or for flip:

fmod FLIP-TREE is protecting NAT .

sort NatTree . subsort Nat < NatTree . vars R L : NatTree .
op _{_}_ : NatTree Nat NatTree -> NatTree .

op flip : NatTree -> NatTree . var N : Nat .

eq flip(N) = N [variant]

eq flip(L {N} R) = flip(R) {N} flip(L) [variant]

endfm

f1ip(£1ip(T))
£1ip(N) flip(flip(R) {N} flip(L))
\% \
N £1lip(£f1ip(L)) {N} flip(flip(R))

Fig. 1. Folding variant narrowing tree for the goal £1ip(£1ip(T)).

By executing £1ip(£1ip(T)) this program returns the original tree T back, but
first computes an intermediate, mirrored tree £1ip(T) of T, which is then flipped
again.

Let us partially evaluate the input term £1ip(£f1ip(T)) following the NPE
approach. We compute the folding variant narrowing tree depicted® in Fig. 1.
This tree does not contain, altogether, uncovered calls in its leaves. Thus, after
introducing the new symbol dflip we get the following residual program:

eq dflip(N) = N . eq dflip(L {N} R) = dflip(L) {N} dflip(R)

which is completely deforested, since the intermediate tree is not constructed in
the residual, specialized program dflip. This is equivalent to the program gen-
erated by deforestation but with a much better performance (see Sect.4). Note

3 We show narrowing steps in solid arrows and rewriting steps in dotted arrows.
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that the fact that folding variant narrowing [6] ensures normalization of terms at
each step is essential for computing the calls f1ip(f1ip(R)) and £1ip(£f1ip(L))
that appear in the rightmost leaf of the tree in Fig. 1, which are closed w.r.t. the
tree root.

When we specialize programs that contain sorts, subsorts, rules, and equa-
tional axioms, things get considerably more involved, as discussed in the following
section.

2.2 Partial Evaluation of Convergent Rules Modulo Axioms

Let us motivate the problem by considering the following variant of the flip
function of Example 2 for (binary) graphs instead of trees.

Ezxample 3. Consider the following Maude program for flipping binary graphs
that are represented as multisets of nodes that may contain explicit, left and
right, references (pointers) to their child nodes in the graph. We use symbol § to
denote an empty pointer. As expected, the BinGraph (set) constructor _; _ obeys
axioms of associativity, commutativity and identity (ACU). For simplicity we
consider a fixed set of identifiers.

fmod GRAPH is sorts BinGraph Node Id Ref .
subsort Node < BinGraph . subsort Id < Ref .
ops 01234 : ->1Id . op# : —-> Ref .
op {___} : Ref Id Ref -> Node . op mt : -> BinGraph .

op _;_ : BinGraph BinGraph -> BinGraph [assoc comm id: mt]
var I : Id . vars R1 R2 : Ref . var BG : BinGraph .
endfm

We are interested in flipping a graph and define* a function flip that takes a
reference and a binary graph and returns the flipped graph.

op flip : BinGraph -> BinGraph .
eq [E1] : flip(mt) = mt [variant]
eq [E2] : flip({R1 I R2} ; BG) = {R2 I R1} ; flip(BG) [variant]

We can represent the graph shown on the left-hand side of Fig.2 as the
following term BG of sort BinGraph: {102} ; {#1#}; {324} ; {#34};
{ # 40 }. By invoking £1ip(BG), the graph shown on the right-hand side of Fig. 2
is computed.

In order to specialize the previous program for the call £1ip(£f1ip(BG)),
we need several PE ingredients that have to be generalized to the correspond-
ing (order—sorted) equational notions: (i) equational closedness, (ii) equational
embedding, and (iii) equational generalization. In the following, we discuss some
subtleties about these new notions gradually, through our graph-flipping running
example.

4 From now on, we attach a label to each equation.
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Fig. 2. A binary graph (left) and its flipped version (right).

2.3 Equational Closedness

_
Roughly speaking, in order to compute a specialization for ¢ in (X, B, Ey), we

construct a finite (possibly partial) (E; , B)-narrowing tree for ¢ using the folding
variant narrowing strategy [6], and then extract the specialized rules to = r
(resultants) for each narrowing derivation t~_ g p7 in the tree. However, in
order to ensure that resultants form a complete description covering all calls that
may occur at run-time in the final specialized theory, partial evaluation must
rely on a parametric general notion of equational @Q-closedness (modulo B) that
is not a mere syntactic subsumption check (i.e., to be a substitution instance of
some term in @ as in the partial deduction of logic programs), but recurses over
the algebraic B-structure of the terms.

Definition 1 (equational closedness). Let (¥, B, E)O) be an equational the-
ory decomposition and @ be a finite set of X-terms, i.e., terms that are built
from X and a countably infinite set of variables Z . Assume the signature X
splits into a set Dg, of defined function symbols and a set €, of constructor
symbols (i.e., }_70), B-irreducible), so that X = Pg,WEE,. We say that a X-term t
is closed modulo B (w.r.t. Q and X)), or B—closed, if closedp(Q,t) holds, where
the predicate closedp is defined as follows:

true ifte 2
closedp(Q,t) < ¢ closedp(Q,t1) A ... Aclosedp(Q,tn) if t = c(tn), c € €g,, n >0
Ny cg closedp(Q,t") if 3q € Q, 30 such that qf =p t

A set T of terms is closed modulo B (w.r.t. Q and X) if closedg(Q,t) holds for
each t in T. A set R of rules is closed modulo B (w.r.t. Q and X) if so is the
set that can be formed by taking the right-hand sides of all the rules in R.

Ezample 4. In order to partially evaluate the program in Example 3 w.r.t. the
input term £1ip(£f1ip(BG)), we set Q = {f1lip(£f1ip(BG))} and start by con-
structing the folding variant narrowing tree that is shown® in Fig. 3.

When we consider the leaves of the tree, we identify two requirements for
Q-closedness, with B being ACU: (i) closedp(Q,t;) with t; = mt and (ii)
closedp(Q,t2) with to = {R1 I R2};£f1ip(£f1lip(BG’)). The call closedp(Q,t1)

5 To ease reading, the arcs of the narrowing tree are decorated with the label of the
corresponding equation applied at the narrowing step.
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holds straightforwardly (i.e., it is reduced to true) since the mt leaf is a con-
stant and cannot be narrowed. The second one closedp(Q, t2) also returns true
because {R1 I R2} is a flat constructor term and f1ip(£f1ip(BG’)) is a (syn-
tactic) renaming of the root of the tree.

We now show an example that requires to use B-matching in order to ensure
equational closedness modulo B.

flip(f1ip(BG))
— T~
[Ell [E2]
{BG+>mt} {BG—{R1 I R2} ; BG’}
flip(mt) flip({R2 I R1} ; £1lip(BG’))
[E1] [E2]
\ \
mt {R1 I R2} ; flip(flip(BG’))

Fig. 3. Folding variant narrowing tree for the goal £1ip(£1ip(BG)).

Ezample 5. Let us introduce a new sort BinGraph? to encode bogus graphs that
may contain spurious nodes in a sort Id? and homomorphically extend the rest
of symbols and sorts. For simplicity, we just consider one additional constant
symbol e in sort Id7.

sorts BinGraph? Id? Node? Ref? . subsorts BinGraph Node? < BinGraph? .
subsort Node < Node? . subsort Ref Id? < Ref? . op e : —> Id? .

op {___} : Ref? Id Ref? -> Node? . op {___} : Ref? Id? Ref? -> Node? .
var BG : BinGraph . var BG? : BinGraph? .

op _;_ : BinGraph? BinGraph? -> BinGraph? [assoc comm id: mt]

vars I I1 : Id . var I? : Id? . vars R1 R2 : Ref . vars R17 R27 : Ref?.

Let us consider a function fix that receives an extended graph BG?, an unwanted
node I7, and a new content I, and traverses the graph replacing I? by I.

op fix : Id Id? BinGraph? -> BinGraph? .

eq [E3] : fix(I, I?, {R1? I? R27} ; BG?) = fix(I, I?, {R1? I R27} ; BG?) [variant] .
eq [E4] : fix(I, I7, {I? I1 R2?} ; BG?) = fix(I, I?, {I I1 R2?} ; BG?) [variant] .
eq [E5] : fix(I, I7, {R1? I1 I?} ; BG?) = fix(I, I?, {R1? I1 I} ; BG?) [variant] .
eq [E6] : fix(I, I?, BG) = BG [variant] .

For example, consider the following term ¢ of sort BinGraph? : “{# 1 e} ; {e
0 #} ; {e e 3} ; {e 3 #}” that represents the graph shown on the left-hand side
of Fig.4. We can fix the graph ¢ by invoking fix(2,e,t), which computes the
corresponding fixed graph shown on the right-hand side of Fig. 4.

Now assume we want to specialize the above function fix w.r.t. the input
term fix(2,e,{R1 I R2} ; BG?), that is, a bogus graph with at least one non-
spurious node {R1 I R2} (non-spurious because of the sort of variable I). Fol-
lowing the proposed methodology, we set Q = {fix(2,e,{R1 I R2} ; BG?)}
and start by constructing the folding variant narrowing tree shown in Fig. 5.
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Fig. 4. A binary graph with node e (left) and its fixed version (right).

fix(2, e, {R1 I R2} ; BG?)

/ ‘ \\(BG? E}c) —

[E3] [E4

(BG7 > {R17° e 27’} ; {BG7w»{e I1 R27°} ; {BG7{R17> I1 o} ; TR1 I R2} ; BG
/ BG?7} BG’!¢:} BG?7} \
fix(2, e, {R17?> 2 R27’} ; fix(2, e, {2 I1 R27°} ; fix(2, e, {R17’> I1 2} ;
BG?> ; {R1 I R2}) BG?’> ; {R1 I R2}) BG?> ; {R1 I R2})

Fig. 5. Folding variant narrowing tree for the goal fix(2, e, {R1 I R2};BG?).

The right leaf {R1 I R2} ; BG is a constructor term and cannot be
unfolded. The three branches to the left of the tree are closed modulo
ACU with the root of the tree in Fig.5. For instance, for the left leaf
t = fix(2,e,{R1? 2 R27'}; BG?'; {R1 I R2}), the condition closedp(Q,t) is
reduced® to true because ¢ is an instance (modulo ACU) of the root node of the
tree, and the subterm ¢ = ({R1?’ 2 R2?'}; BG?’) occuwrring in the correspond-
ing (ACU-)matcher is a constructor term. The other branches can be proved
ACU-closed with the tree root in a similar way.

Ezample 6 (Example 5 continued). Now let us assume that the function f1lip
of Example 2 is replaced by the following definition extended to (bogus graphs
of sort) BinGraph?, where the former equation E2 is an instance of the new
equation E2a:

op flip : BinGraph? -> BinGraph? .
eq [Elx] : flip(mt) = mt [variant]
eq [E2a] : flip({R1? I R2?} ; BG?) = {R2? I R17} ; flip(BG?) [variant].
eq [E2b] : flip({R17? I? R27} ; BG?) = {R2? I? R17} ; flip(BG?) [variant].

We specialize the whole program containing functions £1ip and fix w.r.t. input
term flip(fix(2,e,f1ip(BG))), that is, take a graph BG, flip it, then fix any
occurrence of nodes e, and finally flip it again. Unfortunately, the corresponding
folding variant narrowing tree, shown in Fig.6, does not represent all possible
computations for (any ACU-instances of) the input term, since the narrowable
redexes occurring in the tree leaves are not a recursive instance of the only
partially evaluated call so far. That is, the term £f1lip(£fix(2, e, f1ip(BG’) ;

5 Note that this is only true because pattern matching modulo ACU is used for testing
closedness.
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flip(fix(2, e, f1lip(BG)))
\

[E1x] [E2a)
{BG > mt} {BG—BG’ ; {R1 I R2}}
flip(fix(2, e, mt)) flip(fix(2, e, flip(BG’) ; {R2 I R1}))
E6|
Y
flip(mt) > mt

[E1x]

Fig. 6. Folding variant narrowing tree for the goal £f1ip(fix(2, e, £1ip(BG))).

Algorithm 1. Partial evaluation for equational theories

Require:
An equational theory & = (X, B, E))) and a set of terms @ to be specialized in &
Ensure:
A set Q' of terms s.t. UNFOLD(Q’, &,.¥) is closed modulo B w.r.t. Q’
1: function EQNPE(£,Q,.7)
2 Q=Qlg,
3 repeat
4: Q' =Q
5: Z « UnroLD(Q', &,.7)
6: Q@ < ABSTRACT(Q’, %, B)
7 until Q' =5 Q
8 return Q’

{R2 I R1})) of the rightmost leaf is not ACU-closed w.r.t. the tree root. As in
NPE, we need to recurse (modulo B) over the structure of the terms to augment
the set of specialized calls in a controlled way, so as to ensure that all possible
calls are covered by the specialization.

3 The Partial Evaluation Scheme for Equational Theories

We are now ready to formulate the backbone of our partial evaluation method-
ology for equational theories that crystallizes the ideas of the example above.
Following the NPE approach, we define a generic algorithm (Algorithm 1) that
is parameterized by:

1. a narrowing relation (with narrowing strategy %) that constructs search
trees,

2. an unfolding rule, that determines when and how to terminate building a
tree, and

3. an abstraction operator, that is used to guarantee that the set of terms
obtained during partial evaluation (i.e., the set of deployed narrowing trees)
is kept finite.

Informally, the algorithm proceeds as follows. Given the input theory &
and the set of terms @, the first step consists in applying the unfolding rule



Partial Evaluation of Order-Sorted Equational Programs Modulo Axioms 13

UNFOLD(Q, &, ) to compute a finite (possibly partial) narrowing tree in & for
each term ¢ in @, and return the set .Z of the (normalized) leaves of the tree.
Then, instead of proceeding directly with the partial evaluation of the terms in
%, an abstraction operator ABSTRACT(Q,.%, B) is applied that properly com-
bines each uncovered term in . with the (already partially evaluated) terms of
@, so that the infinite growing of @ is avoided. The abstraction phase yields a
new set of terms which may need further specialization and, thus, the process is
iteratively repeated while new terms are introduced.

Algorithm 1 does not explicitly compute a partially evaluated theory &' =
(X,B,E’). Tt does so implicitly, by computing the set of partially evaluated
terms @’ (that unambiguously determine E’ as the set of resultants to = r
associated to the root-to-leaf derivations t~, 5" in the tree, with ¢ in Q’),
such that the closedness condition for £/ modulo B w.r.t. )’ is satisfied.

3.1 Equational Homeomorphic Embedding

Partial evaluation involves two classical termination problems: the so-called local
termination problem (the termination of unfolding, or how to control and keep
the expansion of the narrowing trees finite, which is managed by an unfold-
ing rule), and the global termination (which concerns termination of recursive
unfolding, or how to stop recursively constructing more and more narrowing
trees).

For local termination, we need to define the notion of equational homeomor-
phic embedding by extending the standard notion of homeomorphic embedding
with order-sorted information and reasoning modulo axioms. Embedding is a
structural preorder under which a term t is greater than, i.e., it embeds, another
term ¢, written as t > ¢', if ¢’ can be obtained from ¢ by deleting some parts.

Embedding relations are very popular to ensure termination of symbolic
transformations because, provided the signature is finite, for every infinite
sequence of terms t1,12,. .., there exist ¢ < j such that ¢; < ¢;. Therefore, when
iteratively computing a sequence t1, %o, ..., t,, finiteness of the sequence can be
guaranteed by using the embedding as a whistle [9]: whenever a new expression
tn+1 is to be added to the sequence, we first check whether ¢, embeds any
of the expressions already in the sequence. If that is the case, we say that <
whistles, i.e., it has detected (potential) non-termination and the computation
has to be stopped. Otherwise, ¢,,+1 can be safely added to the sequence and the
computation proceeds. For instance, if we work modulo commutativity (C), we
must stop a sequence where the term u = s(s(X + Y) * (s(X) 4+ 0)) occurs after
v =s(X)*xs(X+Y), since v embeds u modulo commutativity of .

Definition 2 ((order-sorted) equational homeomorphic embedding).

Let (E,B,E))) be an equational theory decomposition. Let us introduce the fol-
lowing signature transformation X > (f : s1...8, — 8) — (f : U U —
U) € X%, Also, for any X-term t, t* leaves the terms unchanged but regards all
variables as unsorted. Consider the TRS Emb(X) that consists of all rewrite
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rules” f(X1:U,...,X,:U) — XU for f @ Ay,...,A, — A in X and
it € {1,...,n}. For terms u and v we write u >g v if u _’Emb(z)/B v and
v’ is equal to v up to B-renaming (i.e., there is a renaming substitution o such

that v =g v'c ). The relation g is called B—embedding (or embedding modulo
B).

By using this notion, we stop a branch ¢ ~» ¢’ of a folding variant narrowing
tree, if any narrowing redex t'|, of the leaf ¢’ is embedded (modulo B) by the
narrowing redex ul, of a preceding term u in the branch, i.e., ul, <p t',.

Ezample 7 (Example 6 continued). Consider again the (partial) folding variant
narrowing tree of Fig. 6. The narrowing redex
t=flip(fix(2, e, f1ip(BG'); {R2 I R1}) in the right branch of the tree embeds
modulo ACU the tree root u = flip(fix(2, e, £1ip(BG))), hence the unfolding
of this branch is stopped.

3.2 Equational Abstraction via Equational Least General
Generalization

For global termination, PE evaluation relies on an abstraction operation to
ensure that the iterative construction of a sequence of partial narrowing trees
terminates while still guaranteeing that the desired amount of specialization is
retained and that the equational closedness condition is reached. In order to
avoid constructing infinite sets, instead of just taking the union of the set £ of
non-closed terms in the leaves of the tree and the set @Q of specialized calls, the
sets Q and & are generalized. Hence, the abstraction operation returns a safe
approximation A of Q U _.Z so that each expression in the set Q U.Z is closed
w.r.t. A. Let us show how we can define a suitable abstraction operator by using
the notion of equational least general generalization (lggp) [2]. Unlike the syn-
tactical, untyped case, there is in general no unique lggp in the framework of [2]
but a finite, minimal and complete set of lggp’s for any two terms, so that any
other generalizer has at least one of them as a B-instance.

More precisely, given the current set of already specialized calls @), in order
to add a set T of new terms, the function ABSTRACT®(Q, T, B) of Algorithm 1
is instantiated with the function of Definition 3 below, which relies on the notion
of best matching terms (BMT), which is aimed at avoiding loss of specialization
due to generalization. Roughly speaking, the function BMTg(U,t) determines
the best matching terms for ¢ in a set U of terms w.r.t. B, i.e., for each u; in U,
we compute the set W; of lggp’s of t and u;, and select the subset M of minimal
upper bounds of the union J; W;. Then, u; € BMTg(Q,t) if at least one lgg
element in the corresponding W; belongs to M.

Ezample 8. Let t = g(1) @10 g(Y), U = {1®g(X), X ® g(1),X @Y}, and
consider B to consist of the associative-commutative (AC) axioms for @. To

" The expression X:S represents an explicit definition of a variable X of sort S. It is
worth noting that Maude automatically provides B-coherence completion of rules.
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compute the best matching terms for ¢ in U, we first compute the sets of lggp’s
of t with each u in U:

Wi =lggac({g() @1@g(Y),1@g(X)}) ={{{Z@1},{Z/g9(1) ® g(Y)}, {Z/9(X)}),
{zegW)}{Z/189(1),W/Y},{Z/1,W/X})}

Wy =lggac({g(l) @1 g(Y), X ®g(1)}) = {<{Z€B W3} {2/g() & g(¥V)},{Z/X})}

Wi =lggac({g(M) @ 1@ g(Y), X ®Y)}) = {{{Z® W}, {Z/1,W/9(1) ® ()}, {Z/X, W/Y})}

Now, the set M of minimal upper bounds of the set Wy U Wy U W3 is M =
{Z®1,Z®g(1)} and thus we have: BMTac(S,t) = {1 ®g(X), X & g(1)}.

Definition 3 (equational abstraction operator). Let (Z’,B,E)}) be an
—

equational theory decomposition. Let Q,T be two sets of Ey, B-normalized terms.
The abstraction function is:

=0 or T= {X}, with X € &
absQ(Q, {t1, .. -, tn}) if T = {t},with t = c(t1, ..., tn), ¢ € Cr,

abs(...absg(Q.{t1}), ... {ta}) f T ={t1,...,tn},n > 1
abs5(Q,T) yr
generalizep (Q, Q t) if T = {t},with t = f(t1,...,tn), f € Dr,

where Q' = {t' € Q | root(t) = root(t') and t' <p t}, and the function generalize is:

generalizep(Q, O,
generalizep(Q,Q’,
Q,Q,

generalizep(

t) = Qu{t}
t) = Q if t 1s Q — closed
1) = absp(Q\ BMT5(Q',1),Q" 1 5 )

where Q"={l | ¢ € BMTs(Q',t), {(w,{01,02}) € lgga({q,t}),z € Dom (01 U b), | €
{w, x61,262}}.

Ezample 9 (Example 7 continued). Consider again the (partial) folding variant
narrowing tree of Fig. 6 with the leaf ¢t = f1ip(fix(2, e, f1ip(BG'); {R2 I R1}))
at the right branch of the tree and the tree root uw = f1lip(fix(2, e, £1ip(BG))).
We apply the abstraction operator with @ = {u} and T = {t}. Since ¢ is
operation-rooted, we call generalizescy(Q,Q’,t) with Q' = @, which calls
absG oy (Q \ BMTacu(Q',t),Q"), where Q" = {w,v}, v = {R2’ I’ R}, and
w=£1lip(fix(2, e, £1ip(BG);BG’)) is the only ACU-lgg of u and ¢t. We compute
the best matching terms, i.e., BMT4cy(Q’,t) = Q. Then the call to absSCU
returns the set {w}. However, this means that the previous folding narrowing
tree of Fig. 6 is now discarded, since the previous set of input terms @ = {u} is
now replaced by Q' = {w}.

We start from scratch and the tree resulting for the new call w is showed
in Fig. 7. The right leaf embeds the tree root and is B-closed w.r.t. it. The left
leaf mt is a constructor term. For the middle leaf ¢ = {R2 I R1};£1ip(BG’’?)
the whistle £1ip(BG’’) <ucy t” blows and we stop the derivation. However,
it is not B-closed w.r.t. w and we have to add it to the set ', obtaining the
new set of input terms Q" = {w,f1ip(BG’’’)}. The specialization of the call
f1ip(BG’’’) amounts to constructing the narrowing tree of Fig.8, which is
trivially ACU-closed w.r.t. its root.
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flip(fix(2, e, flip(BG) ; BG’))

/ \
[E1x [E2a]
{BG > mt,BG’ > BG*} {BG>BG&* ; {R1 I R2}, BG’ ~5 B}
e —
flip(fix(2, e, BG’)) flip(fix(2, e, BG’’ ; flip(BG’>) ; {R2 I R1}))
[E6]
\
£1ip(BG’*)
| ~
[E1x] [E2a)
{B&” > mt} {B&’+—BG** ; {R1 I R2}}
\ ™~
mt {R2 I R1} ; flip(BG’*’)

Fig. 7. Folding variant narrowing tree for the goal £1ip(fix(2, e, £1ip(BG); BG')).

£1ip(BG*?)
| ~—
[Elx [E2a]
{BG» —mt} {BG” —BE” ; {R1 I R2}}
Y ~
mt {R2 I R1} ; flip(BG””)

Fig. 8. Folding variant narrowing tree for the goal £1ip(BG’’’).

Ezample 10 (Example 9 continued). Since the two trees in Figs.7 and 8 do
represent all possible computations for (any ACU-instance of) uw = flip
(fixz(2, e, flip(BG))), the partial evaluation process ends. Actually w is an
instance of the root of the tree in Fig. 7 with {BG’ — mt} because of the identity
axiom. Now we can extract the set of resultants to = r associated to the root-to-

leaf derivations t«»g " in the two trees:

eq flip(fix(2, e, flip(mt))) = mt .
eq flip(fix(2, e, flip({R1 I R2} ; BG’)))

= flip(fix(2, e, flip(BG’) ; {R2 I R1}))
eq flip(fix(2, e, flip(mt) ; mt)) = mt .
eq flip(fix(2, e, flip(mt) ; BG ; {R1 I R2})) = {R2 I R1} ; flip(BG)
eq flip(fix(2, e, flip({R1 I R2} ; BG) ; BG’))

= flip(fix(2, e, flip(BG) ; {R2 I R1} ; BG’))

eq flip(mt) = mt .

eq flip(BG ; {R1 I R2}) = {R2 I R1} ; flip(B®)

The reader may have realized that the specialization call flip(fix(2,
e,f1ip(BG))) should really return the same term BG, since the variable BG is of
sort BinGraph instead of BinGraph?, i.e., flip(fix(2,e,f1ip(BG))) = BG. The
resultants above traverse the given graph and return the same graph. Though
the code may seem inefficient, we have considered this example to illustrate the
different stages of partial evaluation. The following example shows how a better
specialization program can be obtained.

Ezxample 11. Let us now overload the flip operator, having simultaneously
two declarations for f1ip that are related in the subsort ordering Bingraph <
Bingraph?: “op flip : BinGraph -> BinGraph .” and “op flip : BinGraph? ->
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flip(fix(2, e, flip(BG)))

(e8]

v
flip(£f1lip(BG))
B T [e2)
{BG > mt} {BGr>{R1 T R2} ; BG’}

flip(mt) flip({R2 I R1} ; flip(BG’))

[E1] [E2)

v v
mt {R1 I R2} ; £lip(flip(BG’))

Fig. 9. Folding variant narrowing tree for the goal f1ip(fix(2, e, f1lip(BG))).

BinGraph? .”, and four equations: E1, E2, E2a, and E2b. By specializing the call
t = flip(fix(2,e,f1ip(BG))), the subtype definition of flip allows Maude
to simplify the term ¢ using equation E6, which eliminates the occurrence of the
fix symbol. The narrowing tree for ¢ is shown in Fig.9. The narrowing tree is
B-closed w.r.t. the set of calls {f1ip(fix(2,e,f1ip(BG))) ,flip(f1lip(BG’))}.
This leads to the following, optimal specialized equations:

eq flip(fix(2,e,flip(mt))) = mt .

eq flip(fix(2,e,flip({R1 I R2} ; B&))) = {R1 I R2} ; flip(flip(B&)) .
eq flip(flip(mt)) = mt .

eq flip(flip({R1 I R2} ; BG)) = {R1 I R2} ; flip(£1lip(BG))

3.3 Equational Post-processing Renaming

The resulting partial evaluations might be further optimized by eliminating
redundant function symbols and unnecessary repetition of variables. Essentially,
we define a mapping p (independent renaming) that introduces a new function
symbol for each specialized term and then we replace, by means of a suitable
function ren,(u), each call u in the specialized program by a call to the corre-
sponding renamed function.

Ezample 12 (Ezample 11 continued). Consider the following indepen-
dent renaming for the specialized calls: {flip(flip(BG)) + dflip(BG),
flip(fix(2,e,f1ip(BG))) — flix(BG)}. The post-processing renaming derives
the renamed program

eq flix(mt) = mt . eq flix({R1 I R2} ; BG)

{R1 I R2} ; dflip(BG)
eq dflip(mt) = mt . eq dflip({R1 I R2} ; BG’) =

{R1 I R2} ; dflip(BG’) .

Example 13. Consider again the elementary parser defined in Example 1 and
the initial configuration init | L | I. The PE algorithm constructs the two
folding variant narrowing trees that are shown in Figs. 10 and 11. Now all leaves
in the trees are closed w.r.t. @, and by applying the post-partial evaluation
transformation with the independent renaming p = {init | L | I' — finit (L),
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init | L |T

{LHEPS}/{LHO L’)\L N L}

eps | eps | I' init | L> | I s| L | T
{L/Heps} {%
eps | eps | I’ s || T

Fig. 10. Folding variant narrowing tree for the goal init | L | I".

S| |

(L/»—}eps} {L’m
eps | eps | I’ s |y | I
Fig. 11. Folding variant narrowing tree for the goal 8 | L’’ | I'.

S|L| I~ £S(L), eps | eps | I’ — feps}, we get the following specialized
program

eq finit(eps) = feps . eq finit(1) = feps .
eq fS(eps) = feps . eq finit(0 L) = finit(L).
eq finit(1 1 L) = £S(L) . eq £S(1 L) = £S(L) .

that is even more efficient and readable than the specialized program shown in
the Introduction. Note that we obtain “finit(1 eps) = feps” but it is simpli-
fied to “finit(1) = feps” modulo identity.

3.4 Strong Correctness

In this section we state the strong correctness of our partial evaluation method.
Here I/Né;v> (u) represents the set of all folding variant narrowing sequences for u
in &.

Theorem 1 (Strong correctness). Let & = (E,B,E;) be a decomposition of

an equational theory (X, Eo W B), u be a X-term, and Q be a finite set of X-

terms. Let p be an independent renaming of Q, v’ = ren,(u) and Q' = ren,(Q).
— —

Let & = (X,B,E}) be an EqNPE of & w.r.t. Q (under p). If E} and u

are closed modulo B w.r.t. Q', then (u~* 2 Bv) € VNS (u) if and only if

o,L0,
(u wz/ 7 Bv’) € VNS (u), where v' =g ren,(v).
L0

4 Experiments

We have implemented the transformation framework presented in this paper.
We do not yet have an automated tool where one can give both a Maude pro-
gram and an initial call, and the tool returns the specialized program. However,
all the independent components are already available and we have performed
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Table 1. Experimental results

Original PE before renaming PE after renaming
Benchmark | Data | Time (ms) | Time (ms) | Improvement | Time (ms) | Improvement
Parser 100k | 164 39 76,22 33 79,88
1M |10.561 411 96,11 348 96,70
5M | 275.334 2.058 99,25 1.685 99,39
Double-flip | 100k | 188 143 23,94 76 59,567
IM | 1.636 1.427 12,78 759 53,61
5M | 8.425 7.503 10,94 4.100 51,34
Flip-fix 100k | 203 177 12,81 143 29,56
1M | 1.955 1.778 9,05 1.427 27,01
5M |10.185 9.219 9,48 7.458 26,77
KMP 100k | 401 57 87,79 36 91,02
1M |3.872 531 86,29 331 91,45
5M |19.932 2.530 87,31 1.661 91,67

various experiments in a semi-automated way, i.e., we make calls to the differ-
ent components already available without having a real interface yet: equational
unfolding (by using folding variant narrowing already available in Maude; see
[5]), equational closedness (we have implemented Definition 1 as a Maude pro-
gram), equational embedding (we have implemented Definition 2 as a Maude
program), and equational generalization and abstraction (we have implemented
Definition 3 as a Maude program that invokes the lggp implementation of [2]).

Table 1 contains the experiments that we have performed using an Intel Core2
Quad CPU Q9300 (2.5 GHz) with 6 Gigabytes of RAM running Maude v2.7
and considering the average of ten executions for each test. These experiments
are available at http://safe-tools.dsic.upv.es/victoria. We have considered the
three Maude programs discussed in the paper: Parser (Example 1), Double-flip
(Example 2), and Flip-fix (Example 3). We have also considered the classical
KMP string pattern matcher [3]. For all four Maude programs, we consider
input data of three different sizes: one hundred thousand elements, one mil-
lion elements, and five million elements; elements here refer to graph nodes for
Double-flip and Flip-fix, and list elements for Parser and KMP. We have bench-
marked three versions of each program on these data: original program, partially
evaluated program (before post-processing renaming), and final specialization
(with post-processing renaming). The relative speedups that we achieved thanks
to specialization are given in the Improvement column(s) and computed as the
percentage 100 x (OriginalTime — PETime)/OriginalTime. For all the examples,
the partially evaluated programs achieve a significant improvement in execution
time when compared to the original program, both with and without renaming,
but more noticeable after renaming. The average improvement for these bench-
marks is 66.5%. Regarding the KMP test, the average improvement is 91, 67%.
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That is, the achieved speedup is 12 (OriginalTime/PETime), which is compa-
rable to the average speedup 14 of both the CPD-based partial evaluator ECCE
[8] and the PE tool of [1] (actually, the generated residual programs are iden-
tical to [1] on this benchmark). This indicates thar our new partial evaluation
scheme is a conservative extension of previous approaches on comparable exam-
ples. Moreover, matching modulo axioms such as associativity, commutativity,
and identity are fairly expensive operations that are massively used in Maude,
and can sometimes be drastically reduced after specialization (i.e., the Parser
example moves from a program with ACU and Ur operators to a program with-
out axioms). This transformation power can not be achieved by traditional NPE
nor by competing on-line partial evaluation techniques, such as CPD or positive
supercompilation [4].

5 Conclusion and Future Work

A complete partial evaluator for the entire Maude language requires dealing
with some features not considered in this work, and to experiment with more
refined heuristics that maximize the specialization power. Future implementation
work will focus on automating the entire PE process for a large subset of the
language, including conditional rules, memberships, and conditional equations.
This, in turn, will necessitate some new developments in the Maude narrowing
infrastructure. In this sense, advancing the present PE research ideas will be a
significant driver of new symbolic reasoning features in Maude.
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Abstract. We present a formal translation of an actor-based language
with cooperative scheduling to the functional language Haskell. The
translation is proven correct with respect to a formal semantics of the
source language and a high-level operational semantics of the target, i.e. a
subset of Haskell. The main correctness theorem is expressed in terms of a
simulation relation between the operational semantics of actor programs
and their translation. This allows us to then prove that the resource
consumption is preserved over this translation, as we establish an equiv-
alence of the cost of the original and Haskell-translated execution traces.

1 Introduction

Abstract Behavioural Specification (ABS) [9] is a formally-defined language for
modeling actor-based programs. An actor program consists of computing enti-
ties called actors, each with a private state, and thread of control. Actors can
communicate by exchanging messages asynchronously, i.e. without waiting for
message delivery/reply. In ABS, the notion of actor corresponds to the active
object, where objects are the concurrency units, i.e. each object conceptually
has a dedicated thread of execution. Communication is based on asynchronous
method calls where the caller object does not wait for the callee to reply with the
method’s return value. Instead, the object can later use a future variable [5,8] to
extract the result of the asynchronous method. Each asynchronous method call
adds a new process to the callee object’s process queue. ABS supports coopera-
tive scheduling, which means that inside an object, the active process can decide
to explicitly suspend its execution so as to allow another process from the queue
to execute. This way, the interleaving of processes inside an active object is tex-
tually controlled by the programmer, similar to coroutines [10]. However, flexible
and state-dependent interleaving is still supported: in particular, a process may
suspend its execution waiting for a reply to a method call.

This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu), by the Span-
ish MINECO projects TIN2012-38137 and TIN2015-69175-C4-2-R, and by the CM
project S2013/ICE-3006.
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Whereas ABS has successfully been used to model [19], analyze [2], and ver-
ify [9] actor programs, the “real” execution of such programs has been a struggle,
attributed to the fact that implementing cooperative scheduling efficiently can
be hard (common languages as Java and C++ have to resort to instrumentation
techniques, e.g. fibers [16]). This led to the creation of numerous ABS backends
with different cooperative scheduling implementations:' ABS—Maude using an
interpreter and term rewriting, ABS— Java using heavyweight threads and man-
ual stack management, ABS—Erlang using lightweight threads and thread park-
ing, ABS—Haskell using lightweight threads and continuations.

The overall contribution of this paper is a formal, resource-consumption pre-
serving translation of the concurrency subset of the ABS language into Haskell,
given as an adaptation of the canonical ABS—Haskell backend [4]. We opted for
the Haskell backend relying on the hypothesis that Haskell serves as a better
middleground between execution speed and most importantly semantic correct-
ness. The translation is based on compiling ABS methods into Haskell functions
with continuations—similar transformations have been performed in the actor-
based Erlang language wrt. rewriting systems [14, 18] and rewriting logic [13], in
the translation of ABS to Prolog [3] and a subset of ABS to Scala [11]. However,
what is unique in our translation and constitutes our main contribution, is that
the translation is resource preserving as we prove in two steps:

— Soundness. We provide a formal statement of the soundness of this translation
of ABS into Haskell which is expressed in terms of a simulation relation
between the operational ABS semantics and the semantics of the generated
Haskell code. The soundness claim ensures that every Haskell derivation has
an equivalent one in ABS. However, since for efficiency reasons, the translation
fixes a selection order between the objects and the processes within each
object, we do not have a completeness result.

— Resource-preservation. As a corollary we have that the transformation pre-
serves the resource consumption, i.e., the cost of the Haskell-translated pro-
gram is the same as the original ABS program wrt. any cost model that assigns
a cost to each ABS instruction, since both programs execute the same trace
of ABS instructions. This result allows us to ensure that upper bounds on
the resource consumption obtained by the analysis of the original ABS pro-
gram are preserved during compilation and are thus valid bounds for the
Haskell-translated program as well.

In Sect. 2 we specify the syntax of the source language and detail its operational
semantics. Section 3 describes our target language and defines the compilation
process. We present the correctness and resource preservation results in Sect. 4,
as well as the intermediate semantics used in this process. In Sect.5 we show
that the runtime environment does not introduce any significant overhead when
executing ABS instructions, and show that the upper bounds obtained by the
cost analysis are sound. Finally, Sect. 6 contains the conclusions and future work.

! See http://abs-models.org/documentation /manual /#-abs-backends for more infor-
mation about ABS backends.
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S = z:=E | fr=x'm(y)

i 2 = f2.get;
| await f | skip | return z main() { ©r ge
| 1355 | if B {S} else {S} > nodel = new; 10 r = reduce(rl,r2);
12 3 node2 = new; 11 return r; }

| while B {S} f1 = nodellmap(vi);

— 4
5: ‘I/‘\Tn‘ewl\ fget | m(y) s 2 = node2!map(vq); s map(v) {
Bi=BAB|BVB|-B|v=y° it il woee b
D= m(F){ S } 7 await f2; 15 reduce(vl,v2) {
P:i=D : main(){ S} e rl = fl.get; 6 ... }

Fig. 1. (a) syntax of source language (b) a simplified MapReduce task in ABS

Complete proofs of the theoretical results can be found at http://gpd.sip.ucm.
es/enrique/publications/lopstrl6_ext.pdf.

2 Source Language

Our language is based on ABS [9], a statically-typed, actor-based language with
a purely-functional core (ADTs, functions, parametric polymorphism) and an
object-based imperative layer: objects with private-only attributes, and inter-
faces that serve as types to the objects. ABS extends the OO paradigm with
support for asynchronous method calls; each call results in a new future (place-
holder for the method’s result) returned to the caller-object, and a new process
(stored in the callee-object’s process queue) which runs the method’s activation.
The active process inside an object (only one at any given time) may decide to
explicitly suspend its execution so as to allow another process from the same
queue to execute.

In this paper, we simplify ABS to its subset that concerns the concurrent
interaction of processes (inside and between objects), so as to focus solely on the
more challenging part of proving correctness of the cooperative concurrency. In
other words, the ABS language is stripped of its functional core, local variables,
object groups [15] and types (we assume the input programs are well-typed w.r.t
ABS type-system). The formal syntax of the statements .S of the subset is shown
in Fig. 1(a). Values in our subset are references (object or futures) and integer
numbers; values can be stored in method’s formal parameters or attributes.
We syntactically distinguish between method parameters r and attributes. The
attributes are further distinguished for the values they hold: attributes holding
object references or integer values (denoted by z,y, z...), and future attributes
holding future references (denoted by f). An assignment f:=xz!m(g) stores to
the future attribute f a new future reference returned by asynchronously calling
the method m on the object attribute x passing as arguments the values of
object attributes . An assignment x:=F stores to an object attribute the result
of executing the right-hand side E. A right-hand side can be the value of a
method parameter r, an attribute z, an integer expression I (an integer value,
addition, subtraction, etc.), a reference to a new object new, the result of a
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synchronous same-object method call m(g), or the result of an asynchronous
method call f.get stored in the future attribute f. A call to f.get will block the
object and all its processes until the result of the asynchronous call is ready. The
statement await f may be used (usually before calling f.get) to instead release
the current process until the result of f has been computed, allowing another
same-object process to execute. Sequential composition of two statements S; and
S5 is denoted by S1;S2. The Boolean condition B in the if and while statement is
a Boolean combination of reference equality between values of attributes. Again,
note that, we assume expressions to be well-typed: integer expressions cannot
contain futures or object references and boolean equality is between same-type
values. The statement return z returns the value of the attribute z both in
synchronous and asynchronous method calls. A method declaration D maps
a method’s name and formal parameters to a statement S (method body). We
consider that every method has one return and it is the final statement. Finally,
a program P is a set of method declarations D and a special method main that
has no formal parameters and acts as the program’s entry point.

The program of Fig.1(b) shows a basic version of a MapReduce task [7]
implemented using actors in ABS. For clarity the example uses only two map
nodes and a single reduce computation performed in the controller node (the
actor running main). First the controller creates two objects nodel and node2
(L2-L3), and invokes asynchronously map with different values v; and vy (L4—
L5). In MapReduce, all map invocations must finish before executing the reduce
phase: therefore, the await instructions in L6-L7 wait for the termination of
the two calls to map, releasing the processor so that any other process in the
same object of main can execute. Once they have finished, the get statements in
L8-L9 obtain the results from the futures £1 and £2. Although get statements
block the object (in this case main) and all of its processes until the result is
ready, this does not occur in our example because the preceding awaits assure
the result is available. Finally, .10 contains a synchronous-method self call to
reduce that combines the partial results from the map phase.

2.1 Operational Semantics

In order to describe the operational semantics of the language defined above
we first introduce the following concepts and assumptions. We consider a set A
of attributes and P of method parameters. The values considered in this paper
are in the Int set: integer constants and dynamically generated references to
objects and futures. We denote by X = A — Int the set of assignments of values
to the attributes (of an object), with empty element e. A closure consists of a
statement S obtained by replacing its free variables by actual values (note that
variables are introduced as method parameters and can only appear in E) and a
future reference, represented by an integer, for storing the return value. By ST,
where 7 € P — Int, we denote the instantiation obtained from S by replacing
each variable x in S by 7(z). Finally, we represent the global heap h by a triple
(n, h1, ha) consisting of an integer number n and partial functions (with finite
disjoint domains) hy : Int — X and hs : Int — Int,, where Int | = IntU{L} (L
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getVal(h(n),V)=v L' =h[(n)(z) — v)]
(n:(x:=V;8,0)-Q,h) — (n:(S,1)-Q,h")

h(count) =m A’ = h[(n)(z) — m, (m) — ¢, count — m + 1]

(AsSIGN)

(NEW) ;
(n: (x:=new; S,1)- Q,h) — (n:(S,1)-Q,n")
(Ger) h(h(n)(f)) #L  h' = h[(n)(z) — h(h(”)(f)/)]
(n:(x:=f.get;S,1)-Q,hy — (n:(S,1)-Q,h")
h(h(n)(f)) # L
(Awarr 1) (n: (await £;5,0)-Q,h) — (n:(S,1)-Q,h)
h(h(n)(f)) = L
(Awarr IT) (n: (await £;5,1)-Q,h) — (n: Q- (await £;S5,1),h)
h(n)(x) =d  h(count) =1 © = h(n)(2)
(Asyxe) B =h[n)(f)—U,1") — L, count — 1" + 1]
(n:(£:=xm(2); 5,0 - Q, k) “ ™5 (02 (S,1)- Q. )
(Syne) @) = Sn) €D 7= (@ h(m)(2)] 8= (Swr)’
(n:(x:=m(2);S,1)-Q,h) — (n:(5;5,1)-Q,h)
W = hl(1) > h(n)(@)]
(RETURN) (n: (return*x; S,1) - Q,h) — (n: Q,h)
o) W = () (2) > h(n) ()]

(n : (return® x;S,1) - Q,h) — (n: (S,1)-Q,h)

Fig. 2. Operational semantics: Local rules

is used to denote “undefined”). The number n is used to generate references to
new objects and futures. The function h; specifies for each existing object, i.e.,
a number n such hy(n) is defined, its local state. The function hy specifies for
each existing future reference, i.e., a number n such hs(n) is defined, its return
value (absence of which is indicated by _L). In the sequel we will simply denote
the first component of h by h(count), and write h(n)(x), instead of hq(n)(z),
and h(n), instead of ha(n). We will use the notation h[count — n| to generate a
heap equal to h but with the counter set to n. A similar notation h[n — L] will
be used for future variables, h[(n)(z) — v] for storing the value v in the variable
x in object n and hln — €] for initializing the mapping of an object.

An object’s local configuration denoted by the (object) reference n consists
of a pair (n : Q,h) where @ is a list of closures and h is the global heap.
We use - to concatenate lists, i.e., (S,1) - Q represents a list where (S5,1) is the
head and @ is the tail. A global configuration—denoted with the letters A and
B—is a pair (C,h) containing a set of lists of closures C = {Q} and a global
heap h. Figure2 contains the relation that describes the local behavior of an
object (omitting the standard rules for sequential composition, if and while
statements). Note that the first closure of the list @ is the active process of the
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(n:Qh) = (n: Q1)

(INTERNAL) ; ;
(n:Q)UC,h) = ((n:QHUC,h)

d.m(l',7)
—

n:Qum) D gy
m(w) — S, €D T=[w—1 S =(SmT)
(- 0n) U(d: Q) UCH) — (0 @) U(d:Qa (5 0)) UC,H)

*

(MESSAGE)

Fig. 3. Operational semantics: Global rules

object, so the different rules process the first statement of this closure. When
the active process finishes or releases the object in an await statement, the
next process in the list will become active, following a FIFO policy. The rule
(AssIGN) modifies the heap storing the new value of variable x of object n. It
uses the function getVal(X, V) to evaluate an expression V involving integer
constants and variables in the object’s current state X'. The (NEW) rule stores a
new object reference in variable z, increments the counter of objects references
and inserts an empty mapping e for the variables of the new object m. Rule
(GET) can only be applied if the future is available, i.e., if its value is not L. In
that case, the value of the future is stored in the variable z. Both rules (AWAIT
I) and (Awart II) deal with await statements. If the future f is available, it
continues with the same process. Otherwise it moves the current process to the
end of the queue, thus avoiding starvation. Note that the await statement is not
consumed, as it must be checked when the process becomes active again. When
invoking the method m asynchronously in rule (AsyNC) the destination object
d and the values of the parameters 7 are computed. Then a new future reference
! initialized to L is stored in the variable f, and the counter is incremented.
The information about the new process that must be created is included as the
decoration d.m(l’,v) of the step. Synchronous calls—rule (SYNC)—extend the
active task with the statements of the method body, where the parameters have
been replaced by their value using the substitution 7. In order to return the
value of the method and store it in the variable z, the return statement of the
body is marked with the destination variable x, called write-back variable. This
marking is formalized in the *° function, defined as follows (recall that return
is the last statement of any method):

—~s

R S1;52 if S = 51;85,,

S® = return® z if S = return z,
S i.o.c.

Rule (RETURN,4) finishes an asynchronous method invocation (in this case the
return keyword is marked with *, see rule (MESSAGE) in Fig. 3), so it removes
the current process and stores the final value in the future [. On the other hand,
rule (RETURNg) finishes a synchronous method invocation (marked with the
write-back variable), so it behaves like a z:=x statement.
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Based on the previous rules, Fig. 3 shows the relation describing the global
behavior of configurations. The (INTERNAL) rule applies any of the rules in
Fig. 2, except (ASYNC), in any of the objects. The (MESSAGE) rule applies the

—

rule (ASYNC) in any of the objects. It creates a new closure (S,,7 ,I’) for the
new process invoking the method m, and inserts it at the back of the list of
the destination object d. Note the use of =™ to mark that the return statement
corresponds to an asynchronous invocation. Note that in both (INTERNAL) and
(MESSAGE) rules the selection of the object to execute is non-deterministic.
When needed, we decorate both local and global steps with object reference n
and statement S executed, i.e., (n: Q,h) =% (n: Q',h') and (C, h) —% (C', }).

We remark that the operational semantics shown in Figs. 2 and 3 is very sim-
ilar to the foundational ABS semantics presented in [9], considering that every
object is a concurrent object group. The main difference is the representation of
configurations: in [9] configurations are sets of futures and objects that contain
their local stores, whereas in our semantics all the local stores and futures are
merged in a global heap. Finally, our operational semantics considers a FIFO
policy in the processes of an object, whereas [9] left the scheduling policy unspec-
ified.

3 Target Language

Our ABS subset is translated to Haskell with coroutines. A coroutine is a gen-
eralization of a subroutine: besides the usual entry-point/return-point of a pro-
cedure a coroutine can have other entry/exit points, at intermediate locations
of the procedure’s body. Simply put, a coroutine does not have to run to com-
pletion; the programmer can specify places where a coroutine can suspend and
later resume exactly where it left off.

Coroutines can be implemented natively on top of programming languages
that support first-class continuations (which subsequently require support for
closures and tail-call optimization). A continuation with reference to a program’s
point of execution, is a datastructure that captures what the remaining of the
program does (after the point). As an example, consider the Haskell program at
Fig. 4(a). The continuation of the call to (even 3) at L2 is Aa — print a, assuming
a is the result of call to even and the continuation is represented as a function.
The continuation of (mod x 2) at L1 is the function Aa — print (eq a 0) where x
is bound by the even function and a is the result of (mod x 2). Abstracting over
any program, an expression with type expr::a has a continuation k with type
k::(a — r) with a being the expression’s result type and r the program’s overall
result type. To benefit from continuations (and thus coroutines), a program has
to be transformed in the so-called continuation-passing style (CPS): a function
definition of the program f:: args — a is rewritten to take its current continuation
as an extra last argument, as in f ':: args — (a — r) — r. A function call is also
rewritten to apply this extra argument with the actual continuation at point.

A CPS transformation can be applied to all functions of a program, as in
the example of Fig. 4(b), or (for efficiency reasons) to only the subset that relies
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mod’ x y k = k (mod x y)

eq’ xy k =k (eq x y)

even’ x k = mod’ x 2 (A a — eq’ a 0 k)
main = even’ 3 (A a — print a)

1 even x = eq (mod x 2) 0
> main = print (even 3)

W N e

Fig. 4. (a) Example program in direct style and (b) translated to CPS

on continuation support, e.g. only those functions that need to suspend/resume.
For our case, ABS is translated to Haskell with CPS applied only to statements
and methods, but not (sub)expressions. Continuations have the type k::a — Stm
where Stm is a recursive datatype with each one of its constructors being a
statement, and the recursive position being the statement’s current continuation.
Stm being the program’s overall result type (Stm = r), reveals the fact that the
translation of ABS constructs a Haskell AST-like datatype “knitted” with CPS
(Fig.5), which will only later be interpreted at runtime (Sect.3.1): capturing
the continuation of an ABS process allows us to save the process’ state (e.g. call
stack) and rest of statements as data. For technical convenience, our statements
and methods do not directly pass results among each other but only indirectly
through the state (heap); thus, we can reduce our continuation type to k::() —
Stm and further to the “nullary” function k::Stm. Accordingly the CPS type
of our methods (functions) and statements (constructors) becomes f':: args —
Stm — Stm. Worth to mention in Fig. 5 is that the body of While statement and
the two branch bodies of If can be thought of as functions with no args written
also in CPS (thus type Stm — Stm) to “tie” each body’s last statement to the
continuation after executing the control structure.

A Method definition is a CPS function that takes as input a list [Ref] of
the method’s parameters (passed by reference), the callee object named this,
a writeback reference (Maybe Ref), and last its current continuation Stm. In
case of synchronous call the callee method indirectly writes the Return value
to the writeback reference of the heap and the execution jumps back to the
caller by invoking the method’s continuation; in case of asynchronous call the
writeback is empty, the return value is stored to the caller’s future (destiny) and
the method’s continuation is invoked resulting to the exit of the ABS process. An
object or future reference Ref is represented by an integer index to the program’s
global heap array; similarly, an object attribute Attr is an integer index to
an internal-to-the-object attribute array, hence shallow-embedded (compared to
embedding the actual name of the attribute). Values (V) in our language can be
this-object attributes (A), parameters to the method (P), integer literals (I), and
integer arithmetic on those values (Add, Sub...). The right-hand side (Rhs) of an
assignment directly reflects that of the source language. Boolean expressions are
only appearing as predicates to If and While and are inductively constructed
by the datatype B, that represents reference and integer comparison.

The compilation of statements is shown in Fig. 6. The translation *[S]x, wb
takes two arguments: the continuation k and the writeback reference wb.
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type Method = [Ref] — Ref — Maybe Ref — Stm — Stm
data Stm where —— (formatted in GADT syntax)

Skip :: Stm — Stm

Await :: Attr — Stm — Stm

Assign :: Attr — Rhs — Stm — Stm

If :: B — (m—>8t:m) — (§/‘E/nl—>St:m) —>§/1;E—>St:m

While :: B — (Stm—Stm) — Stm — Stm

Return :: Attr — Maybe Ref — Stm — Stm

data Rhs = Val V type Ref = Int
| New type Attr = Int
| Get Attr dataB=B:AB | B:VB| =B | V:i=V
| Async Attr Method [Attr] data V = A Ref | P Ref | I Int
| Sync Method [Attr] | Add VV | SubV V...

Fig.5. The syntax and types of the target language. Continuations are
wave-underlined. The program/process final result type is double-underlined

*[skip]k,wb = Skip k *[x:=V ks = Assign z Y [V] k
*lawait f£]w,wp = Await f k ®[x:=new]s,w» = Assign x New k
*[return x]k o = Return z wb k *[x:=f.get]k,wo = Assign x (Get f) k

*[return” x]x,w» = Return x Nothing k *[x:=y!m(2) [x,wt = Assign = (Async y m z) k
*[return® x]i,wb = Return x (Just 2) k& °[x:=m(2) Jx,w» = Assign z (Sync m 2) k
S[[51; SQ]]k,wb = S[[Sl:ﬂk’,wb with k/ = SIISQHIC,‘lUb

*[if B {S1} else {So} ks = If Z[B] (\K — [ 1]k .ws) (\E" — *[S2]er.wn) k
*[while B {S}]kws = While ®[B] (\k — *[STk’.wb) k

"[m] = (m1this wbk = °[Sm]uxuw)
where m(w) — Sy, € D and 1 is the Haskell list that contains
the same elements as the sequence w

Fig. 6. Translation of ABS-subset programs to Haskell AST

Each statement is translated into its Haskell counterpart, followed by the
continuation k. The multiple rules for the return statement are due to the dif-
ferent uses of the translation: when compiling methods the return statement will
appear unmarked, so we include the writeback passed as an argument; otherwise
it is used to translate runtime configurations, so return statements will appear
marked and we generate the writeback related to the mark. When omitted, we
assume the default values k¥ = undefined and wb = Nothing for the *[STx wb
translation. B[ B] represents the translation of a boolean expression B, and V[V]
the translation of integer expressions, references or variables. A method definition
translates to a Haskell function that includes the compiled body.

3.1 Runtime Execution

The program heap is implemented as the triple: array of objects, array of futures
and a Int counter. Every cell in the objects-array designates 1 object holding a
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+ main, map, reduce :: Method 10 Assign r2 (Get £2) §
> main [] this wb k = 11 Assign r (Sync reduce [r1,r2]) ¢
s Assign nodel New § 12 Return r wb k

Assign node2 New § 13

Assign f1 (Async nodel map [v1])$ 1 map [v] this wb k = ...
Assign f2 (Async node2 map [v2])#i1s reduce [a,b] this wb k = ...

© ® N o o »

Await f1 $ 16
Await £2 § 17 —— Position in the attribute array
Assign r1 (Get f1) ¢ 15 [nodel,node2,f1,f2,r1,r2,r] = [0..]

Fig. 7. The Haskell-translated running example of MapReduce

pair of its attribute array and process queue (double-ended) in Haskell I0Vector
(IOVector Ref, Seq Proc). A cell in futures-array denotes a future which is
either unresolved with a number of listener-objects awaiting for it to be com-
pleted, or resolved with a final value, i.e. I0Vector (Either [Ref] Ref). An
ever-increasing counter is used to pick new references; when it reaches the arrays’
current size both of the arrays double in size (i.e. dynamic arrays). The size of
all attribute arrays, however, is fixed and predetermined at compile-time, by
inspecting the source code (as shown in L18 of Fig. 7).

An eval function accepts a this object reference and the current heap and
executes a single statement of the head process in the process queue, return-
ing a new heap and those objects that have become active after the execution
(eval this heap :: IO(Heap, [Ref]). An await executed statement will put
its continuation (current process) in the tail of the process queue, effectively
enabling cooperative multitasking, whereas all others will keep it as the head. A
Return executed statement originating from an asynchronous call is responsible
for re-activating the objects that are blocked on its resolved future. A global
scheduler “trampolines” over a queue of active objects: it calls eval on the head
object, puts the newly-activated objects in the tail of the queue, and loops until
no objects are left in the queue—meaning the ABS program is either finished or
deadlocked. At any point in time, the pair of the scheduler’s object queue with
the heap comprise the program’s state.

Comparison. The described target language is an untyped extract of the canoni-
cal ABS-Haskell backend [4], with the main difference being that ABS statements
are translated to an AST interpreted by eval function, while the canonical ver-
sion compiles statements down to native code, which naturally yields faster exe-
cution. However, this deep embedding of an AST allows multiple interpretations
of the syntax: debug the syntax tree and have an equivalence result. At runtime,
the eval function operates in “lockstep” (i.e. executing one CPS statement at a
time) whereas the canonical backend applies CPS between release points (await,
get and return from asynchronous calls) which benefits in performance but
would otherwise make reasoning about correctness and resource preservation for
this setup more involved. Another argument for lockstep execution is that we
can “simulate” a global Haskell-runtime scheduler (with a N:1 threading model)
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and include it in our proofs, instead of reasoning for the lower-level C internals
of the GHC runtime thread scheduler (with M:N parallelism).

Our target language is also related to Coroutining Logic Engines presented
in [17] for concurrent Prolog. These engines encapsulate multi-threading by pro-
viding entities that evaluate goals and yield answers when requested. They fol-
low a similar coroutining approach, however, logic engines can produce several
results, whereas asynchronous methods can be suspended by the scheduler many
times but they only generate one result when they finish.

4 Correctness and Resource Preservation

To prove that the translation is correct and resource preserving, we use an inter-
mediate semantics — closer to the Haskell programs. This semantics, depicted in
Fig. 8, considers configurations (h, [0,,]) where all the information of the objects
is stored in a unified heap—concretely h(o,)(Q) returns the process queue of
object 0,,. The semantics in Fig.8 presents two main differences w.r.t. that in
Figs. 2 and 3 of Sect. 2. First, the list [05,] is used to apply a round-robin policy:
the first unblocked object? o, in [0,,] is selected using next(h,[o,,]), the first
statement of the active process of o, is executed and then the list is updated to
continue with the object 0,1. The other difference is that process queues do not
contain sequences of statements but continuations, as explained in the previous
section. To generate these continuation rules (AsyYNC) and (SYNC) invoke the
translation of the methods m with the adequate parameters. Nevertheless, the
rules of the — semantics correspond with the semantic rules in Sect. 2.

Given a list [0,,,;] we use the notation [0;5%] for the sublist [0;, 0;44, - ., 0k,
and the operator (:) for list concatenation. In the rules (AsyNcC) and
(RETURN 4), where the object list can increase or decrease one object, we use the
following auxiliary functions. newQqqq([0m), 0n, 0y) inserts the object o, into [0y,
if it is new (i.e., it does not appear in [0,,]), and newQge;([0m], 0n, ¢n) removes
the object o, from [0,,] if its process queue g, is empty. In both cases they
advance the list of objects to 0,,41.

I 9

. _ [Ont1=m] : [015n) if 0, € [Om]
neradd([Om]aonaoy) B { [On+1~>m] : [Olﬂn] : [Oy] if OZ ¢ [@]

S _ [0n+1~>m} : [01*,7171] if qn = €

nerdel([Om]a on Qn) B { [0n+1~>m] : [Olﬁn] if qn 75 €
In order to reason about the different semantics, we define the translation
from runtime configurations (C, h) of Sect. 2 to concrete Haskell data structures
used in the intermediate — semantics and in the compiled Haskell programs (see
Fig.9). The set of closure lists C' is translated into a list of object references, and
the process queues inside C' are included into the heap related to the special term
Q. Although we use the same notation h, we consider that the heap is trans-
lated into the corresponding Haskell tuple (object_vector, future_vector, counter)

2 Object whose active process is not waiting for a future variable in a get statement.
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next(h, [om]) = on h(on)(Q) = (Assign z V K',1) - q
getVal(h(o,), V) =v h' = h[(on)(x) — v, (0n)(Q) (kZ l)-dq]

(h, [om]) = (W [oni1=m] : [01=0])

(ASSIGN)

next(h, [om]) = on h(0,)(Q) = (Assign x New k',1) - ¢
h(count) = onew  h' = h[(0n)(x) — Onew, count — opew + 1,
(0new)(Q) = €, (0n)(Q) = (K1) - q]
(h, [om]) — (B, [ons1—m.
next(h, [om]) = on h(0,)(Q) = (Assign z (Ge
h(h(on)(f)) =Right v ' = h[(on)(z) — v, (0n)(Q
(h7 [@]) — (h,7 [On+1~>m] : [Olﬂn})
next(h, [0m]) = on h(0,)(Q) = (Await f k')1) - q
h(h(0n)(f)) =Right v B’ = h[(0)(Q) — (K1) - q]
(hy [om]) = (B, [onri=m] : [01=0))
next(h, [om]) = on h(on)(Q) = (Await f k',1) - ¢
h(h(on)(f)) =Left e K = h[(0n)(Q) — q - (Await f k', 1)]
(s [ow]) — (), o] - [o7])
m]) = On h(0,)(Q) = (Assign f (Async x m 2) K',1) - q
=1 h(on)(x)=0s Nh(0:)(Q) =¢: (m(w)— S)€D
(Z) on Nothing undefined newQadd ([0m], On, 0z) = s

(on

(NEW)
0n+1—»m] : [Olﬂn})

t f) k'7/l) q
(Grn) dadliLl

(Awarr I)

(Awarr 1II)

next(h, [om

h(count)

k" =m h(o,)(2)

R = hl[(on)(f) — U',count — 1" + 1,I' — Left [ ],

)(Q) = (K1) - 4, (0:)(Q) > go - (K", 1]
(h, [om]) — (1, 5)

next(h, [om]) = on  h(0n)(Q) = (Assign z (Sync m z) K1) -q (m(w S)eD

(Async)

) —
(Syng)— = R(ea)(2) on (Just z) k hl(on ))(Q)H(k ) - q]

(h, [om]) — (b’ [m] [o1=7]
next(h, [om]) = on h(0,)(Q) = (Return z Nothing _,1) - ¢

(Rerury )0 Quet([Om]0n, @) =5 W = hfl — Right h(0n)(z), (0n)(Q) — d]

(h, [om]) — (R, s)
next(h,[om]) = on  h(0,)(Q) = (Return z (Just z) k',1) - q
W = h[(on)(2) = h(on)(x), (0n)(Q) = (K',1) - ]
(h [om]) — (A, [oni=m] = [01=n])

(RETURNg)

Fig. 8. Intermediate semantics.

explained in Sect.3. As usual with heaps, we use the notation h[(0,)(Q) — ¢]

to update the process queue of the object o, to ¢. Finally, object attributes
and method parameters become Integers and Int; values in the futures become
Either values. To denote the inverse translation from data structures to runtime

configurations we use °[(h’, act)]~! = (C,h)—the same for queues [-]~! and
statements *[-]~!. Note that the translation ¢[-]. is not deterministic because it

generates a list of object references from a set of closures C, so the order of the
objects in the list is not defined. On the other hand, the translation of the heap

in °[-] and the inverse translation ¢[-]~! are deterministic.
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e ml

(', act), where el =€
act [on | (on

Qn) €C,Qn # ¢ 1650 -l = CIs1y - [Q]

={(n1,@Q1),..., (nm, Qm)} and
h’:h[( i)(Q )Hq[[Q]H

Fig. 9. Translation from source to target configurations.

Based on the previous definitions we can state the soundness of the traces,
i.e., every trace of eval steps is a valid trace w.r.t. —. Note that for the sake of
conciseness we unify the statements S and their representation as Haskell terms
res, since there is a straightforward translation between them. We consider the
auxiliary function updL([0m,], 0n,1) = [Ont1om) : [01on-1) : | to update the list
of object references.

Theorem 1 (Trace soundness). Consider an initial state (hi,s1) and a
sequence of n — 1 consecutive eval steps defined as: (1) next(hi,s;) = o0, (2)
eval o;h; = (’r‘esl, L, hi+1), (3) Sit1 = ’U,de(Si,Oi,li). Thenc[[(hl,sl)]]*l Hgésl
[[(h2782)]] - r352 _ﬂg;nl—l c[[(hnasn)]]il'

Note that it is not possible to obtain a similar result about trace completeness
since the —-semantics in Fig. 3 selects the next object to execute nondeterminis-
tic (random scheduler), whereas the intermediate —-semantics in Fig. 8 follows a
concrete round-robin scheduling policy. As a final remark notice that the interme-
diate semantics ~ can be seen as a specification of the eval function. Therefore
it can be used to guide the correctness proof of eval using proof assistance tools
like Isabelle [12] or to generate tests automatically using QuickCheck [6].

4.1 Preservation of Resource Consumption

A strong feature of our translation is that the Haskell-translated program pre-
serves the resource consumption of the original ABS program. As in [1] we use
the notion of cost model to parameterize the type of resource we want to bound.
Cost models are functions from ABS statements to real numbers, i.e., M : S — R
that define different resource consumption measures. For instance, if the resource
to measure is the number of executed steps, M : S — 1 such that each instruc-
tion has cost one. However, if one wants to measure memory consumption, we
have that M(new) = c, where c refers to the size of an object reference, and
M(instr) = 0 for all remaining instructions. The resource preservation is based
on the notion of trace cost, i.e., the sum of the cost of the statements executed.

Given a concrete cost model M, an object reference o and a program execution
T=A - ... —>g’:;11 A,,, the cost of the trace C(7,0, M) is defined as:

C(T,ooM)= > M(S)

SGT‘{O}
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Notice that, from all the steps in the trace 7, it takes into account only those
performed in object o (denoted as 7|;,}), so the cost notion is object-sensitive.
Since the trace soundness states that the eval function performs the same steps
as some trace 7, the cost preservation is a straightforward corollary:

Corollary 1 (Consumption Preservation). Let (hy,s1) be an initial state
and consider a sequence Ty of n — 1 consecutive eval steps defined as: a) 0; =
next(h;, s;), b) (res;, L, hix1) = eval o; h;, ¢) ;41 = updL(s;,04,1;). Then
T = °[(hy,51)] 7" =9, °[(ha,s2)]% =92, ... —pest s [(hn,80)] "' such that

resy resa

C(Tg,0, M) =C(T,0,M).

As a side effect of the previous result, we know that the upper bounds that
are inferred from the ABS programs (using resource analyzers like [1]) are valid
upper bounds for the Haskell translated code. We denote by UBj,qin()]o the
upper bound obtained for the analysis of a main method for the computation
performed on object o.

Theorem 2 (Bound preservation). Let P be a program, Tg a sequence of
eval steps from an initial state (h1, 1) and UBpain()|o the upper bound obtained
for the program P starting from the main block, restricted to the object o. Then
C(TE7 0, M) < UBmain()‘o-

5 Experimental Evaluation

In the previous section we proved that the execution of compiled Haskell pro-
grams has the same resource consumption as the original ABS traces wrt. any
concrete cost model M, i.e., both programs execute the same ABS statements
in the same order and in the same objects. However, cost models are defined in
terms of ABS statements so they are unaware of low-level details of the Haskell
runtime environment as f-reductions or garbage collection. Studying the rela-
tion between cost models and some significant low-level details of the Haskell
runtime in a formal way is an interesting line of future work. In this section we
address empirically one particular topic: the Haskell runtime does not introduce
additional overhead, i.e., the execution of one ABS statement requires only a
constant amount of work. In order to evaluate this hypothesis, we have elabo-
rated programs® with different asymptotic costs and measured the number of
statements executed (steps) and their run-time. The Primality test computes
the primality of a number n: the program creates n objects and checks every
possible divisor of n on each object. The difference is that the low paralellism
version awaits for the result of one divisor before invoking the next check and
the high parallelism version does not. Both programs have a O(n) cost. The
Logarithm computation program computes the integer part n logarithms. It has
cost O(n.log n). Finally Primes in a range computes the prime numbers in the
interval [1..n], thus having a O(n?) cost.

3 The ABS-subset experimental programs and measurements together with the target
language & runtime reside at http://github.com/abstools/abs-haskell-formal.
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Fig. 10. Execution steps vs. time (Intel® Core™ i7-4790 at 3.60 GHz, 16 GB).

We have tested the programs with n ranging from 500 to 5000, running 20
experiments for every value of n, and measured the time. This is plotted in the
cross line (right margin) in Fig. 10. The plot represents the mode times and the
minimum and maximum times as whiskers. We have also measured the actual
number of steps, represented in the square line (left margin) in Fig. 10. These
two plots show that the execution time and the number of executed steps grows
with a similar rate in all the programs, independently of their asymptotical cost,
thus confirming that the compilation does not incur any overhead.

We have also plotted the resource bounds obtained by the SACO tool [2] for
the different values of n (triangle line, left margin in Fig. 10). SACO can ana-
lyze full ABS programs and thus also the subset considered in this paper, and
allows the selection of the cost model of interest. In this case we have analyzed
the original ABS programs using the cost model that obtains the number of
ABS statements executed. As can be appreciated, the upper bounds are sound
and overapproximate the actual number of executed statements. The difference
between the upper bounds and the actual number of statements executed is
explained for two reasons. First, the SACO tool considers constructor meth-
ods, i.e., methods that are invoked on every new object, so the SACO tool will
count a constant number of extra statements whenever a new object is created.
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However, the main source of imprecision are branching points where SACO com-
bines different fragments of information. A clear example are loops like the one
in the Primes in a range program. The main loop checks if a number i € [1..n]
is a prime number on each iteration, and this check needs the execution of ¢
statements. In this situation SACO considers that every iteration has the maxi-
mum cost (n statements) and generate an upper bound of n? instead of the more
precise (but asymptotically equivalent) expression 1+ 2+ ...+ n.

6 Conclusion and Future Work

We have presented a concurrent object-oriented language (a subset of ABS) and
its compilation to Haskell using continuations. The compilation is formalised in
order to establish that the program behaviour and the resource consumption are
preserved by the translation. Compared to the only other formalised ABS back-
end [9] (in Maude), our Haskell translation admits the preservation of resource
consumption, and as a side benefit, makes uses of an overall faster backend.*

In the future we plan to extend our formalisations to accommodate full
ABS, both in terms of the omitted parts of the language as well as the
non-deterministic behaviour of a multi-threaded scheduler, e.g. by broadening
our simulated scheduler to non-determinism, and perhaps (M:N) thread paral-
lelism. Another consideration is to relate our resource-preservation result to a
distributed-object extension of ABS [4]; specifically, how the resource analysis
translates to network transport costs after any network optimizations or proto-
col limitations. Finally, we plan to formally relate the ABS cost models used to
define the cost of a trace and some of the low-level runtime details of the Haskell
runtime like B-reductions, garbage collections or main memory usage. Thus, we
could express trace costs and upper bounds in terms closer to the actual running
environment.
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Abstract. We present a method for verifying properties of time-aware
business processes, that is, business processes where time constraints on
the activities are explicitly taken into account. Business processes are
specified using an extension of the Business Process Modeling Notation
(BPMN) and durations are defined by constraints over integer numbers.
The definition of the operational semantics is given by a set OpSem
of constrained Horn clauses (CHCs). Our verification method consists
of two steps. (Stepl) The specialization of OpSem with respect to a
given business process and a given temporal property to be verified. This
specialization produces a set of CHCs whose satisfiability is equivalent to
the validity of the given property. (Step 2) The use of any state-of-the-art
solver for CHCs to check the satisfiability of such sets of clauses. We have
implemented our verification method using the VeriMAP transformation
system and the Z3 solver for CHCs.

1 Introduction

A business process, or BP for short, consists of a set of activities, performed in
coordination within a single organization, which realize a business goal [31,34].
The Business Process Model and Notation, or BPMN for short, is one of the most
popular graphical languages proposed for visualizing business processes [27]. The
primary goal of BPMN is to provide a standard notation that can be understood
by all business stakeholders, which include the business analysts who define and
modify the processes, the technical developers in charge of their implementation,
and the business managers who monitor and manage the processes.

A BPMN model is a procedural, semi-formal description of the order of exe-
cution of the activities of a given process and how these activities must coor-
dinate, abstracting away from many other aspects of the process itself, such as
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the manipulation of data and the duration of the activities. However, for many
analysis tasks these aspects are very significant in practice and should be taken
into consideration. In particular, the duration of the activities is crucial when we
want to reason about time constraints (such as deadlines or earliest completion
times) that should be satisfied by the executions of the process.

Various approaches for BP modeling with duration and time constraints
have been proposed in the literature (see [6] for a recent survey). Some of these
approaches define the semantics of time-aware BPMN models by means of for-
malisms such as time Petri nets [24], timed automata [32], and process alge-
bras [35]. Properties of these models can then be verified by using very effective
reasoning tools available for those formalisms [4,14,22].

However, the above mentioned formalisms and tools may not be adequate
if we want to complement time-based reasoning with general purpose logical
reasoning, which is often needed if we take into account more complex aspects
of knowledge manipulation activities relative to business processes. For instance,
some verification approaches make use of ontology-based reasoning about the
business domain where processes are executed [30,33], while others combine
reasoning on the finite-state process behavior with reasoning on the manipulation
of data objects of infinite types such as databases or integers [2,9,29].

Thus, in view of an integration of various reasoning tasks needed to analyze
business processes from different perspectives, we propose a logic-based approach
to modeling and verifying time-aware business processes.

The main contributions of the paper are the following. We present a logic-
based language to specify time-aware BPMN models, where time and duration
of activities are explicitly represented. Then we define an operational semantics
of time-aware BPMN models by means of deduction rules that allow us to infer
the time intervals when a particular activity is in execution or ‘is enacting’, using
the BPMN terminology. Next, in order to prove properties of time-aware BPMN
models, we follow a transformational approach similar to the one proposed
in [11] for the verification of imperative programs. First, we consider an encoding
OpSem of the operational semantics of business processes into Constrained Horn
Clauses (CHCs) [5] (or, equivalently, Constraint Logic Programs [20]). Then, we
specialize OpSem with respect to the time-aware BPMN model under consider-
ation and the temporal property of interest, thereby deriving a new set of CHCs
whose satisfiability is equivalent to (and thus implies) the validity of the prop-
erty to be verified. Finally, we use the state-of-the-art solver Z3 [12] for CHCs
to check the satisfiability of such set of clauses.

Since the CHCs are generated in an automatic way by the CHC specializer
from the formal definition of the semantics of the BPMN models, and the CHC
solvers are general purpose reasoning systems, our approach is, to a large extent,
parametric with respect to other extensions of BP models one may want to
consider in the future. Moreover, recent advances in the field of CHC solving
can be exploited to get very effective reasoning tools for verifying other classes
of properties of business processes besides the temporal ones.
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The paper is structured as follows. In Sect.2 we recall some basic notions
about Constrained Horn Clauses (CHCs) over integer numbers and Business
Process Model and Notation (BPMN). In Sect.3 we present our logic-based
language for specifying time-aware BPMN models and the operational semantics
of the language. In Sect.4 we present the CHC encoding of the semantics and
the transformation techniques for specializing OpSem with respect to a given
time-aware BPMN model and a given property. In Sect.5 we report on the
implementation of the verification technique we have made using the VeriMAP
transformation and verification system [10], and the CHC solver Z3. Finally, in
Sect. 6 we discuss related work in the field of Business Process verification.

2 Preliminaries

In the next two subsections we recall some basic notions concerning constrained
Horn clauses and the Business Process Model and Notation.

We consider time to be a discrete quantity and we consider the ‘time line’
to be the set of integers. However, our approach applies directly to dense or
continuous time as well.

2.1 Constrained Horn Clauses over Integers

First we need the following notions about constraints, constrained Horn clauses,
and constraint logic programming. For related notions not familiar to the reader,
we refer to [20,23].

Constraints are defined as follows. Let RelOp be the set of predicate symbols
{=,#,<,>,<,>}. If p; and ps are linear polynomials with integer variables and
coefficients, then p; R po, with R € RelOp, is an atomic constraint. A constraint ¢
is a (possibly empty) conjunction of atomic constraints. An atom is a formula of
the form p(t1,...,tm), where p is a predicate symbol not in RelOp and t1, ..., ¢y
are terms constructed as usual from variables, constants, and function symbols. In
particular, we assume that there are two predicate symbols true and false of arity 0,
and a predicate symbol eq denoting identity. A constrained Horn clause (or simply,
a clause) is an implication of the form A « ¢, G, where the conclusion (or head) A
is an atom, and the premise (or body) ‘c, G’ is the conjunction of a constraint ¢ and
a (possibly empty) conjunction G of atoms. The empty conjunction is identified
with true. A constrained factis a clause of the form A « ¢, and if ¢ is true we will
call it simply a fact. A constrained goal (or simply, a goal) is a clause of the form
false «— ¢, G. Given a formula ¢, vars(¢) denotes the set of variables occurring in
©. A clause C is said to be ground if vars(C) = 0.

Given a set P of clauses, a Z-interpretation is defined to be an interpretation I
of P such that: (i) true holds in I, (ii) false does not hold in I, (iii) I is the
usual interpretation over the set of the integer numbers Z for the constraints,
and (iv) I is the Herbrand interpretation for predicate and function symbols
not in RelOp U {true, false,+, x} (in particular, eq(x,y) holds if and only if x
and y are identical terms in the Herbrand universe). For any formula ¢ we write
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Zl= if ¢ holds in all Z-interpretations. A Z-model of P is a Z-interpretations M
such that every clause of P holds in M. A set of CHCs is satisfiable if it has
a Z-model. (Note that a set of CHCs may be unsatisfiable if it contains goals.)
Every satisfiable set P of CHCs has a unique least Z-model, denoted M (P) [20].

2.2 Business Processes Model and Notation

A BPMN model is defined through a diagram drawn by using graphical con-
structs representing flow objects and sequence flows (sequence flows will also be
called flows for short). That diagram can be extended, if so desired, to include
information about data flow, resource allocation (for instance, how the work to
be done is assigned to the participants in the process), and exception handling
(for instance, how erroneous behaviors should be handled).

For reasons of simplicity, in this paper we will only consider a subset of
the flow objects and sequence flows that can occur in a BPMN model, but
our approach can easily be extended to full BPMN. The flow objects we will
consider are of three kinds: either (i) tasks, denoted by rounded rectangles, or
(ii) events, denoted by circles, or (iii) gateways, denoted by diamonds. Tasks rep-
resent atomic units of work performed within the process. Events denote some-
thing that happens during the execution, or the enactment, using the BPMN
terminology, of a business process. We will only consider the start event and
the end event, which starts and ends the process enactment, respectively. Gate-
ways model the branching and merging of activities. There are several types of
gateways in BPMN, each of which can be a branch gateway if it has a single
incoming flow and multiple outgoing flows, or a merge gateway if it has mul-
tiple incoming flows and a single outgoing flow. We will consider the following
gateways: (i) the parallel branch gateway that activates all the outgoing flows at
the same time instant, (ii) the parallel merge gateway that activates the outgo-
ing flow when all the incoming flows have been activated (that is, the parallel
merge synchronizes the incoming flows) (iii) the exclusive branch gateway that
(non-deterministically) activates exactly one out of the (possibly many) outgoing
flows, and (iv) the ezclusive merge gateway that activates the single outgoing
flow upon activation of one of the (possibly many) incoming flows. The dia-
monds representing parallel and exclusive gateways are labeled by ‘+” and ‘x’,
respectively.

A sequence flow, denoted by an arrow, links two flow objects and denotes a
control flow relation, that is, it states that the control flow can pass from the
source to the target flow object. If there is a sequence flow from x to y, then x
is a predecessor of y and y is a successor of x. A path in a BPMN model is a
sequence of flow objects such that every pair of consecutive objects is connected
by a sequence flow.

We assume that BPMN models are well-formed, that is, they satisfy the
following properties: (1) every process contains a unique start event and a unique
end event, (2) every flow object occurs on a path from the start event to the end
event, (3) the start event has exactly one successor and no predecessor, (4) the
end event has exactly one predecessor and no successor, (5) branch gateways
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have exactly one predecessor and at least one successor, while merge gateways
have at least one predecessor and exactly one successor, (6) tasks have exactly
one predecessor and one successor, and (7) on every cyclic path there is at least
one occurrence of a task (that is, no cycles through gateways only are allowed).

In Fig. 1 we show the BPMN model of a purchase order process, called PO,
describing a interaction pattern between an e-commerce vendor and a customer.

Fig. 1. The BPMN model of the purchase order process PO.

At the beginning of the purchase order process the customer adds one or
more items to the shopping cart. Then, he pays for all the items, and the vendor
(i) issues the invoice and sends it to the customer, and also (ii) prepares the
order and ships it by a standard or an express delivery method. The process
terminates when the invoice has been sent and the order has been delivered.

3 Specification and Semantics of Business Processes

In this section we introduce the notion of a Business Process Specification, which
formally represents a business process by means of set of Constrained Horn
Clauses, and we define the operational semantics of a BPS.

3.1 Business Process Specification via CHCs

A Business Process Specification, or BPS for short, contains: (i) a set of ground
facts that specify the flow objects and the sequence flows between them, and
(ii) a set of constrained facts that specify the duration of each flow object.

We will use the following predicates: (i) flow_object(x): z is either a task, or an
event, or a gateway; (ii) task(z): x is a task; (iil) start(z) and end(x): x is a start
event and an end event, respectively; (iv) exc_branch(z) and exc.merge(z): x is
an exclusive branch and exclusive merge gateway, respectively; (v) par_branch(x)
and par_merge(z): z is a parallel branch and a parallel merge gateway, respec-
tively; (vi) seq(z,y): there is a sequence flow from z to y; (vii) duration(z,d): the
enactment of the flow object = takes d units of time to be completed.

In the Business Process Specification we assume that: (i) for every task x
there exists a single clause of the form duration(z,d) «— dmin < d < dimag,
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where d,,;, and d,,., are positive integer constants representing the minimal
and the maximal time duration of z, respectively, and (ii) for every event and
gateway x there exists a single clause of the form duration(x,0) (that is, the
enactment of any event or gateway takes no time).

The CHC specification of the BPMN process PO of Fig. 1 is shown in Table 1.
Note that a BPS is always satisfiable because it contains no goals, and hence it
has a least Z-model.

Table 1. BPS for the purchase order process PO of Fig. 1.

task(ai). task(pt). task(ii). task(si). task(po). task(sd). task(ed).
start(s). end(e). exc_merge(gl). exc_branch(g2). par_branch(g3).
exc_branch(g4). exc_merge(ghb). par_merge(g6).

seq(s,gl). seq(gl,ai). seq(ai,g2). seq(g2,gl). seq(g2,pt). seq(pt,g3).
seq(g3,ii). seq(g3,po). seq(ii,si). seq(si,g6). seq(po,gd). seq(gd,sd).
seq(sd,gb). seq(gd,ed). seq(ed,gb). seq(gh,gb). seq(gb,e).
duration(s,0). duration(e,0). duration(gl,0). duration(g2,0).
duration(g3,0). duration(g4,0). duration(g5,0). duration(g6,0).
duration(ai,D):- D>=1, D=<6. ¥ add item

duration(pt,D):- D>=1, D=<2. Y, pay total

duration(ii,D):- D>=1, D=<2. Y% issue invoice

duration(si,D):- D>=1, D=<3. Y% send invoice

duration(po,D):- D>=3, D=<5. 7, prepare order

duration(sd,D):- D>=2, D=<4. 7, standard delivery

duration(ed,D):- D>=1, D=<3. 7, express delivery

Our formalization of a BPS also includes a set of clauses that represent the
meta-model of any BPS. In particular, these meta-model clauses express: (i) the
disjointness properties of the sets of its flow objects (for instance, we have the
clause: false «— task(X), par_branch(X)), and (ii) the well-formedness properties
corresponding to Conditions (1)—(7) of Sect.2.2. This second set of clauses is as
follows:

(cl) eq(X,Y)«—start(X), start(Y) and eq(X,Y )« end(X), end(Y);
(c2) seqq(S,X) « start(S), flow.object( X ) and seqq(X,E) «— flow-object(X), end (E)
where seqq is the reflexive, transitive closure of segq;

(c3) eq(Y, Z) — start(S), seq(S,Y), seq(S,Z) and false— start(S), seq(Y, S);
(c4) eq(Y,Z)—end(E), seq(Y, E), seq(Z,E) and false—end(E), seq(E,Y);
(ch) eq(Y, Z)—par_branch(X), seq(Y, X), seq(Z, X) and

eq(Y, Z) —par_merge(X), seq(X,Y), seq(X, Z)

and, similarly, for the exc_branch and exc_merge gateways;
(c6) eq(Y,Z)—task(X), seq(X,Y), seq(X,Z) and
eq(Y, Z) —task(X), seq(Y, X), seq(Z, X);
(c7) false«— gateway-path(X, X)

where gateway-path(X,Y) is a predicate that holds iff there is a path from X
to Y made out of gateways only.
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Note that the existence of at least one predecessor and at least one successor
for any task or gateway (required by Conditions (5) and (6) of Sect.2.2) is
enforced by the clauses at Point (c2).

A BPS B is well-formed if clauses (c1)—(c7) hold in the least Z-model of B.

3.2 Operational Semantics

We start off by introducing the notion of a state at a time instant t. A state s is
a pair (F,t), where F' is a set of terms, called fluents, representing the properties
that hold at the time instant ¢ in Z. Let States be the set of states.

A fluent is a term of one of the following forms, for any flow object x:
(i) begins(x), which represents the beginning of the execution, or enactment,
of x, (i) completes(x), which represents that x has completed its execution,
and (iii) enables(x,y), which represents that & upon completion of its execution
enables the execution of its successor y, and (iv) enacting(z,r), which repre-
sents that the enactment of x requires r units of time to completion (for this
reason r is also called the residual time of x). From these definitions it follows
that begins(x) is equivalent to enacting(z,r), where r is the duration of x, and
completes(z) is equivalent to enacting(x,0). (This redundant representation of
fluents allows us to write simpler rules for the operational semantics below.)

The operational semantics is defined by a binary transition relation — which
is a subset of States x States and is derived according to the rules below. In the
rules for —, besides the predicates introduced in Sect. 3.1, we use the follow-
ing ones: (i) not_par_branch(z), which holds if = is not a parallel branch, and
(i) not_par_merge(z), which holds if x is not a parallel merge.

(S1)

begins(z) € F duration(x, d)
(F,ty — {((F \ {begins(z)}) U {enacting(x,d)}, t)

(5) completes(z) € F' par-branch(z)

(F,t) — ((F \ {completes(x)}) U {enables(x, s) | seq(x,s)}, t)
(S5) completes(z) € F not_par-branch(x) seq(z, s)

(F,t) — ((F'\ {completes(x)}) U {enables(x, s)}, t)

(S4) Vp seq(p,x) — enables(p,x) € F par_merge(x)

(F,t) — ((F'\ {enables(p, z) | enables(p, x) € F}) U {begins(z)}, t)
(S5) enables(p, z) € F not_par-merge(x)

(F,t) — ((F \ {enables(p,z)}) U {begins(x)}, t)
(S6) enacting(z,0) € F

(F,t) — ((F'\ {enacting(x,0)}) U {completes(z)}, t)
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no_other_premises(F') Jz 3Ar enacting(x,r) € F m>0
(F,t) — (F & m, t+m)

(S7)

where: (i) no_other_premises(F) holds iff none of the rules S;—Sg has its premise
true, (ii) m = min{r | enacting(z,r)€ F}, and (iii) F ©m is the set F of fluents
where every enacting(x,r) is replaced by enacting(xz,r—m).

Note that rule (S7) is the only rule that formalizes the flow of time, as it
infers transitions of the form (F,t) — (F’,t+m), with m>0. In contrast, rules
(S1)—(Se) infer instantaneous state transitions of the form (F,t) — (F”,1).

Now let us explain the meaning of rules (S1)—(S7).

(S1) If the execution of a flow object = begins at time ¢, then, at the same time ¢,
x is enacting and its residual time is the duration d of x;

(S2) If the execution of the parallel branch = completes at time ¢, then x enables
all its successors at time t;

(S3) If the execution of x completes at time ¢ and x is not a parallel branch,
then z enables precisely one of its successors at time t (in particular, this
case occurs when z is a task);

(S4) If all the predecessors of x have enabled the parallel merge = at time ¢,
then the execution of x begins at time t;

(S5) If at least one predecessor p of x enables x at time ¢ and x is not a parallel
merge, then the execution of x begins at time ¢ (in particular, this case
occurs when z is a task);

(S¢) If a flow object = is enacting at time ¢ with residual time 0, then the
execution of x completes at time ¢;

(S7) Let us assume that at time ¢: (i) none of rules (S1)—(S6) can be applied,
(ii) there at least one task whose execution requires r (>0) units of time to
get to completion (recall that among the flow objects, tasks only may have
positive residual time), and (iii) m is the least among the residual times of
all the tasks which are in execution (that is, enacting). Then every task z
that is in execution at time ¢ with residual time r, is in execution at time
t + m with residual time r — m.

We say that state (F’,t’) is reachable from state (F,t), if (F,t) —* (F',t'),
where —* denotes the reflexive, transitive closure of the transition relation —.
The initial state is the pair ({begins(s)},0), where s denotes the start event.

Note that in our formalization we cannot represent multiple, concurrent exe-
cutions of the same flow object, because a state is a set of fluents. However, this
limitation can easily be overcome by considering multisets of fluents.

4 Encoding Time-Dependent Properties into CHCs

In this section we show the CHC interpreter that encodes the operational seman-
tics of business processes and we show how to encode the time-dependent prop-
erties to be verified. We also briefly present two transformation techniques:
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(RI): a technique for performing the removal of the interpreter (see [11,28] for
more details), whereby deriving a set of clauses that can be submitted
to automatic tools for satisfiability checking such as the Z3 [12] or the
ELDARICA [18] solvers for CHCs, and

(PE): a technique for reducing the size of the set of CHCs generated by the RI
technique. This PE technique is based on a suitable notion of predicate
equivalence (see Sect.4.3) that may be used, if so desired, for improving
the time and space efficiency of the satisfiability checking.

4.1 Encoding the Operational Semantics in CHCs

A state (F,t) of the operational semantics is encoded by a term of the form
s(F,T), where F is a list encoding the set F' of fluents and T encodes the time
instant ¢ at which the fluents of F' hold. The transition relation — between
states and its reflexive, transitive closure —* are encoded by the binary predi-
cates tr and reach, respectively, whose defining clauses are shown in Table 2. In
the body of the clauses, we have underlined the atoms that encode the premises
of the rules of the operational semantics.

The predicate member (X,L) selects an element X from the list L. The pred-
icate update(F,R,A,FU) holds iff FU is the list obtained from the list F by
removing all the elements of R and adding all the elements of A. The predicate
no_other_premises (F) holds iff the premise of every rule in {S1,...,S6} is false.
The predicate mintime (Enacts,M) holds iff Enacts is a list of terms of the form

Table 2. The CHC interpreter for the operational semantics of time-aware BPs.

S1. tr(s(F,T), s(FU,T)) :- member (begins(X),F), duration(X,D),
update (F, [begins(X)], [enacting(X,D)],FU).

S2. tr(s(F,T), s(FU,T)) :- member (completes(X),F), par_branch(X),
findall(enables(X,S), (seq(X,S)) ,Enbls),
update (F, [completes(X)],Enbls,FU).

S3. tr(s(F,T), s(FU,T)) :- member(completes(X),F), not_par_branch(X),seq(X,S),
update (F, [completes(X)], [enables(X,S)],FU).

S4. tr(s(F,T), s(FU,T)) :- member(enables(_,X),F), par_merge(X),
findall(enables(P,X), (seq(P,X)) ,Enbls),
sublist (Enbls,F), update(F,Enbls, [begins(X)],FU).

S5. tr(s(F,T), s(FU,T)) :- member(enables(P,X),F), not_par_merge(X),
update(F, [enables(P,X)], [begins(X)],FU).

S6. tr(s(F,T), s(FU,T)) :- member(enacting(X,R),F), R=0,
update (F, [enacting(X,R)], [completes(X)],FU).

S7. tr(s(F,T), s(FU,TU)) :- no_other_premises(F), member (enacting(_,_),F),
findall(Y, (Y=enacting(X,R) ,member(Y,F)) ,Enacts),
mintime (Enacts,M), M>0,
decrease_residual_times(Enacts,M,EnactsU),
update (F,Enacts,EnactsU,FU), TU=T+M.

R1. reach(S,S).
R2. reach(S,S82) :- tr(S,S1), reach(S1,S2).
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enacting(X,R) and Mis the minimum value of R for the elements of Enacts. The
predicate decrease_residual_times(Enacts,M,EnactsU) holds iff EnactsU is
the list of terms obtained by replacing every element of Enacts, of the form
enacting(X,R), by the term enacting(X,RU) where RU=R-M. The predicates
sublist(S,L) and findall(X,G,L) have the usual meaning.

4.2 Encoding Time-Dependent Properties

By using the reach predicate and integer constraints, we can specify many useful
time-dependent properties. In particular, we can specify safety properties (sta-
ting that ‘no unsafe state can be reached’), schedulability properties (stating
that a process will be completed within a given deadline), response properties
(stating that, whenever a task is executed, another task will be executed within
a given time).

In order to see how we encode time-dependent properties of business
processes, we consider a property of the process PO stating that, whenever the
customer pays and the process PO completes, then completion occurs within 9
time units after payment. By using the reachability relation —*, this property
can be written as follows:

Q: if ({begins(s)},0) —* ({completes(pt)}, tpr) —* ({completes(e)},te),
then t. <t,;+9

The reader can check that @ holds for the process PO because, in the worst
case, the time needed for preparing and delivering the order is actually 9 time
units and this time is greater than the time needed for issuing and sending the
invoice, which is 5 time units. The property @ is encoded by the following goal
(where s (_, _) is the constructor for states, while the constant s of arity 0 denotes
the start event):

Q. false :- Ts=0, Tpt>Ts, Te>Tpt+9,
reach(s([begins(s)],Ts), s([completes(pt)],Tpt)),
reach(s([completes(pt)],Tpt), s([completes(e)],Te)).

The clauses S1-87,R1,R2,Q, together with the clauses encoding the
process PO, will be collectively referred to as the interpreter I. We have that
the property @ is valid for the process PO iff the set I of CHCs is satisfiable.

Despite several tools have been developed for checking the satisfiability of
constrained Horn clauses, none of them can effectively be leveraged in our exam-
ple. Constraint logic programming systems [20] are focused on proving the unsat-
isfiability of sets of clauses, rather then their satisfiability, and they may fail to
terminate for the given set I because a clause for reach is recursive (note, in
particular that the add_item task can be executed an unbounded number of
times). State-of-the-art CHC solvers [12,18] also fail because the predicates in I
are defined over lists and structured terms (not just integers) and they depend
on the findall predicate, which is not available in those solvers.

In order to be able to effectively use off-the-shelf CHC solvers for checking
the validity of time-dependent properties, we apply the so-called removal of the
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interpreter transformation, denoted RI [11,28]. This transformation is a program
specialization strategy based on unfold/fold transformation rules, which takes
the program I as input and produces as output a program I, that is equivalent
to I with respect to satisfiability. Indeed, by the correctness of the unfold/fold
transformation rules [13], we have that I is satisfiable iff I, is satisfiable.

A notable effect of applying the transformation RI, which removes the inter-
preter, is that the program I, contains no occurrences of the predicates and
terms used for encoding the operational semantics and the process PO. In par-
ticular, the clauses of I, will be of the form A < ¢, G, where the arguments of
the atoms are variables and c is a constraint. For instance, the goal Q expressing
the property @ above is transformed into the following goal:

Q1. false :- A=0, B=<2, C=<6, D=<5, E>0, F-E>9, B>=1, C>=1, D>=3,
newl(C,A,E), new2(B,D,E,F).

The new predicates newl and new2 have been introduced by the definition
rule, and the extra constraints have been derived by the unfolding rule. We refer
to [11] for the details of the transformation. The whole set of clauses derived by
the transformation RI is listed in the online Appendix A.1'. The satisfiability of
this derived set of clauses can be proved in a fully automatic way by using the
73 CHC solver, as it will be shown in Sect. 5.

4.3 Predicate Equivalence

Now we present a transformation, called predicate equivalence, denoted PE, that
allows us to reduce the size of a set of constrained Horn clauses when suitable
equivalences between predicates hold. Since predicate equivalence is undecidable
in general, we introduce a restricted, decidable notion of equivalence based on
constraint equivalence and predicate renaming.

First we need some preliminary notions. Let 3Y (¢1,G1) and 3Z (c2,Ga)
be two existentially quantified conjunctions of constraints and atoms, where
Y Noars(ca, G2) =0 and ZNwars(c;, G1) =0 (we extend, in the obvious way, to
tuples of variables notions defined for variables and sets of variables). We say
that Y (¢1, G1) and AZ (co, Go) are equivalent modulo constraints, if there exists
a renaming substitution {Y’/Z’} for (¢1,G1), with Y’ CY and Z' C Z, such that:

(i) G1{Y'/Z'} = G2, modulo reordering of atoms, and
(ii) ZEV@EU c1{Y'/Z'} < TV ¢3), where U=Y —-Y' and V=2-Z".

For instance, 3Y (X > Y, p(X,Y)) and IV, W (X >V, V> W, p(X,W))
are equivalent modulo constraints. Clearly, if 3Y (¢;,G1) and 3Z (c2,G2) are
equivalent modulo constraints, then ZEV(3Y (¢1,G1) < 37 (¢q, G2)).

Let P be a set of CHCs. By Pred(P) we denote the set of predicate symbols
occurring in P. A predicate renaming for P is a, possibly not injective, mapping
m: Pred(P) — @, where Q is a set of predicate symbols. Given a set S of formulas

! Available at http://map.uniroma2.it/lopstr16/appendix.pdf.
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with predicates in Pred(P), w(S) is a new set of formulas obtained by replacing,
for all predicates p€ Pred(P), every occurrence of p in S by 7(p).

For every k > 1, let X be a fixed k-tuple of distinct variables. Without
loss of generality, we assume that for every k-ary predicate p € Pred(P), all
clauses are of the form p(X) « B, where B is a conjunction of constraints and
atoms. By Bodies(p(X), P) we denote the set {B | p(X) < B is a clause in P}.
We write Bodies(p(X),P) = Bodies(q(X),P) if there exists a bijection
n :  Bodies(p(X),P) —  Bodies(q(X),P) such that, for every
B € Bodies(p(X),P), 3Y B and 3Zn(B) are equivalent modulo constraints,
where Y is the tuple of variables occurring in B and not in X, and Z is the
tuple of variables occurring in n(B) and not in X.

Definition 1 (Predicate Equivalence). Let P be a set of clauses and E =
{P1,...,P,} be a partition of Pred(P). For i = 1,...,n, let e; be a predicate
symbol in P;, and 7 : Pred(P) — {e1,...,e,} be a predicate renaming for P
such that, fori=1,...,n, w(p)=e; iff p€P;.

The partition E is a cp-equivalence on P if, for i = 1,...,n, given any two
predicates p,q in P;, p and q have the same arity k and, for any fized k-tuple X
of distinct variables, w(Bodies(p(X), P)) = n(Bodies(q(X), P)).

Note that one can compute the coarsest cp-equivalence on P by a greatest
fixpoint construction starting from the partition where all predicate symbols
belong to the same equivalence class.

Given a cp-equivalence E on P together with the predicate renaming 7 con-
sidered in Definition 1, we can transform P into a set 7(P, E) of clauses in two
steps: (i) we remove from P all clauses whose head predicate does not appear in
the range of 7, and (ii) we apply 7 to the remaining clauses.

Theorem 1. For any cp-equivalence E on a set P of clauses, P is satisfiable
iff 7(P, E) is satisfiable.

Checking the satisfiability of (P, E) is often more efficient than checking the
satisfiability of P, specially when we use solvers, like Z3, that construct a model
of each predicate. Indeed, when checking the satisfiability of 7(P, E), the solver
has to construct, for each equivalence class E, a model of one predicate only.

To see an example of cp-equivalence, let us consider the following subset of
the 51 clauses derived by the removal of the interpreter in our PO example (the
complete listing of those clauses is given in the online Appendix A.2?):

new5(A,B,C,D) :- A=0, new21(B,C,D).

new5(A,B,C,D) :- A=0, B=0, E=<3, E>=1, newlO(E,C,D).
new5(A,B,C,D) :- B=0, E=<3, E>=1, new7(A,E,C,D).

new5(A,B,C,D) :- E=0, F=-A+B, G=A+C, A-B=<0, A>0, new5(E,F,G,D).
new5(A,B,C,D) :- E=0, F=A-B, G=B+C, B>0, A-B>=0, new5(F,E,G,D).
new4 (A,B,C,D) :- A=0, new21(B,C,D).

new4(A,B,C,D) :- A=0, B=0, E=<3, E>=1, newlO(E,C,D).

2 Available at http://map.uniroma2.it/lopstr16/appendix.pdf.
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new4(A,B,C,D) :- B
new4(A,B,C,D) :- E
new4(A,B,C,D) :- E

0, E=<3, E>=1, new6(A,E,C,D).
0, F=-A+B, G=A+C, A-B=<0, A>0, new4(E,F,G,D).
0, F=A-B, G=B+C, B>0, A-B>=0, new4(F,E,G,D).

The partition £ = {{new5,new4}, {new7,new6}, {new21}, {new10}} of the set
of predicates occurring in the above clauses is a cp-equivalence. The predicate
renaming associated with F is:

7(new5) =7 (new4d) =newsd m(new7)=7(new6) =new6
m(new21) =new21 7m(newl0) =new10.

By applying the predicate equivalence transformation to the whole set of 51
clauses, we get an equisatisfiable set of 35 clauses. In particular, in the resulting
set the clauses for new5 are no longer present and all occurrences of new5 are
replaced by new4.

5 Automated Verification

We have implemented the Removal of the Interpreter (RI) and the Predicate
Equivalence (PE) transformations presented in Sects. 4.2 and 4.3, respectively,
by using the VERIMAP transformation system [10].

We use these transformations for verifying properties of business processes
in the following two different ways:

(i) ‘RI; Z3’, that is, we execute RI, and then we check the satisfiability of the
clauses generated by RI by applying the solver Z3? [12], and

(ii) ‘RI; PE; Z3’, that is, we execute RI, then PE, and finally we check the
satisfiability of the clauses generated by PE by applying the solver Z3.

In Table 3 we report the results obtained by using our prototype implemen-
tation for the following business processes:

(1) the Purchase Order (PO) shown in Fig. 1, consisting of 7 tasks, 6 gateways,
and 17 flows,

(2) the Request Day Off Approval (RDOA), adapted from [19], consisting of
7 tasks, 4 gateway, 14 flows and representing the activities involving a com-
pany’s leadership to approve an employee’s request for a day off,

(3) the ST-segment Elevation Myocardial Infarction (STEMI), adapted
from [7], consisting of 11 tasks, 6 gateways, 22 flows and representing an
excerpt of the triage process for hospital admission, and

(4) the STEMI with Coronary Care Unit admission (STEMI+CCU), adapted
from [8], consisting of 26 tasks, 18 gateways, and 52 flows and representing
an extension of STEMI which also includes the activities for admitting a
patient to the Coronary Care Unit.

3 v4.4.2, master branch as of 2016-02-18, with the Duality fixed-point engine [25].
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For these processes we have considered ten temporal properties (denoted P1-P10
in Table 3)} each one being of the form: if some reachability properties between
states hold, then some constraints between their associated time instants hold.

The experiments have been performed on an Intel Core i5-2467M 1.60 GHz
processor with 4 GB of memory under GNU/Linux OS.

Table 3. Columns ‘RI.time’ and ‘Rl.cls’ denote the time taken by RI and the number
of clauses generated by RI, respectively. Column ‘Z3.timel’ denotes the time taken
by Z3 when executed after RI. Column ‘answer’ tells us whether or not the property
holds. Columns ‘PE.time’ and ‘PE.cls’ denote the time taken by PE and the number
of clauses generated by PE, respectively. Column ‘Z3.time2’ denotes the time taken by

Z3 when executed after PE. The reduction of the number of clauses (cls reduction) is

Rlcls = PB.Cls ;.4 the time speedup is Z3.timel  pijeg are in seconds.

Rl.cls Z3.time2
Business |Property |RI Z3.timel | Answer | PE Z3.time2 | cls Time
process time | cls Time |cls reduction | speedup
PO P1 0.49 | 51| 0.82 True 0.05 | 35| 0.57 0.31 1.44
P2 0.27 | 51| 0.68 True 0.05 | 37| 0.53 0.27 1.28
P3 0.35| 12| 0.10 False |0.04 | 12| 0.10 0.00 1.00
RDOA P4 0.14 | 20| 0.31 False |0.03 | 16| 0.22 0.20 1.41
STEMI |P5 0.34 | 52| 1.04 True 0.05 | 43| 0.88 0.17 1.18
P6 0.31 7| 0.09 False |0.02 7 0.09 0.00 1.00
P7 0.36 | 67| 1.62 True 0.06 | 56| 1.60 0.16 1.01
STEMI+ | P8 1.58 {226 /10.70 True 0.17 |181| 9.75 0.20 1.10
ccu P9 0.14 | 29/30.17 False |0.03 | 23|11.62 0.21 2.60
P10 0.10 | 15| 2.08 False |0.03 | 15| 2.08 0.00 1.00

In Table 3 we have not reported the results of applying the solver Z3 directly
to the clauses encoding the given business processes and properties. Indeed, as
already mentioned in Sect. 4.2, Z3 is not able to prove the satisfiability of those
clauses, if one does not first apply the transformation RI.

The transformation RI is quite efficient and takes less than half a second for
all properties with the exception of property P8, which generates 226 clauses.
The time taken by Z3 for the verification of the properties (with or without the
preliminary application of PE) is generally small (indeed, it is not greater than
1.62s), with the exception of properties P8—P10 referring to the most complex
business process we have considered, which is the STEMI+ CCU process.

Note also that the transformation PE often reduces the number of clauses
generated by RI and speeds up the satisfiability check performed by Z3. More-
over, in our examples PE never deteriorates the total verification time in any
significant way, in the sense that the time taken by ‘RI; PE; Z3’ is never signifi-
cantly greater than the time taken by ‘RI; Z3’.

4 The VeriMAP tool and the encodings of the examples of Table3 are available at
http://map.uniroma2.it /lopstr16/VeriMAP lopstr16-linux_x86_64.tar.gz.
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6 Related Work

Several papers have proposed approaches to model business processes with
time constraints and, in particular, duration [1,7,15,16,35] (see [6] for a recent
survey).

The approach of Arbab et al. [1] provides a translation of BPMN into the
coordination language Reo. Due to Constraint Automata semantics of Reo,
in principle this translation allows formal reasoning about BPMN processes
depending on time and resources. However, the paper does not provide any
formalized verification technique.

The workflow conceptual model proposed by Combi and Posenato [7] enables
the specification and analysis of time constraints in business processes. They
propose temporal constructs for expressing various kinds of time constraints, and
also introduce the notion of controllability for workflow schemata. Controllability
ensures the executability of a workflow for any duration of the tasks performed
by the ‘external world’. Unfortunately, the algorithms for testing controllability
presented in [7] may require a costly, exhaustive exploration of the search space.

del Foyo and Silva consider workflow diagrams extended with task durations
and the latest execution deadline of each task [15]. They provide a translation
into Time Petri Nets [3] (where clocks are associated with transitions in the net)
and use the tool TINA [4] to answer schedulability questions.

The approach proposed by Gagné and Trudel [16] enables the specification
of temporal constraints (such as ‘As Soon As Possible’) and temporal depen-
dencies. However, unlike the approach presented here, no automated verification
mechanism of time-dependent properties is provided.

The approach proposed by Wong and Gibbons [35] uses a timed semantic
function which takes a diagram describing a collaboration, and returns a CSP
process [17] that models the timed behavior of that diagram, by using the notion
of a relative time in the form of delays chosen non-deterministically within given
intervals. Properties are then verified by using the FDR system [14].

The proposal by Watahiki et al. [32] and other proposals surveyed in [6] use
Timed Automata to model business processes with time constraints. They also
use the UPPAAL tool [22] for the automatic proof of the properties of interest.

As already mentioned in the Introduction, the translations into formalisms
such as Timed Automata, Time Petri Nets, and CSP, may not be adequate when
taking into consideration properties of business processes that require general
purpose logical reasoning.

Finally, we would like to mention work on modeling and analyzing business
processes with explicit time representation based on the Fvent Calculus [21] (see,
for instance, [26]). However, the Event Calculus lacks a simple translation into
constrained Horn clauses (in particular, it makes use of negation), and hence it
cannot be directly handled by CHC solvers.
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7 Conclusions

We have presented a logic-based language to specify BPMN models where time
and duration of activities are explicitly represented. The language enables the
specification of time constraints, given in the form of lower and upper bounds
associated with the duration of tasks. These are useful features with an intuitive
meaning that allow the specifier to annotate activities with some time restric-
tions. The language supports the specification of a wide range of time-dependent
properties such as the schedulability and the response time.

The main advantage of our approach is that it allows us to automatically
generate constrained Horn clauses from the formal definition of the semantics
of the BPMN models and the time-dependent properties of interest. Then, by
exploiting recent advances in the field of CHC solving, we get very effective
reasoning tools for verifying properties of business processes. Finally, since our
approach is parametric with respect to the language used for modeling processes,
it is possible to incorporate various extensions of that language with little effort.
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Abstract. Strings are extensively used in modern programming lan-
guages and constraints over strings of unknown length occur in a wide
range of real-world applications such as software analysis and verifica-
tion, testing, model checking, and web security. Nevertheless, practically
no constraint programming solver natively supports string constraints.
We introduce string variables and a suitable set of string constraints as
builtin features of the MiniZinc modelling language. Furthermore, we
define an interpreter for converting a MiniZinc model with strings into
a FlatZinc instance relying only on integer variables. This conversion
is obtained via rewrite rules, and does not require any extension of the
existing FlatZinc specification. This provides a user-friendly interface for
modelling combinatorial problems with strings, and enables both string
and non-string solvers to actually solve such problems.

1 Introduction

Strings are widely adopted in modern programming languages for representing
input/output data as well as actual commands to be executed dynamically. The
latter is particularly critical for security reasons: consider, e.g., the dynamic
execution of a malicious SQL query that might dump a database or delete entire
tables. Apart from security issues, tracking (an approximation of) the possible
values of a string variable can also help in bug detection and code optimisation.

String analysis — needed in real-life applications such as test-case genera-
tion [13], program analysis [8], model checking [17], web security [5] — is an active
and growing field, [11,25,28], and requires the processing of string constraints
such as string (in-)equality, concatenation, and so on. Nevertheless, in constraint
programming (CP), practically no solver natively supports string constraints.
To our knowledge, the only exception is a new extension [33,36] with bounded-
length string variables of the GECODE solver [18], here called GECODE+S for
convenience, which will become part of the official GECODE release. Empirical
results show that GECODE4S is usually better than dedicated string solvers such
as HaMPp1 [23], KALUZA [32], and SusHI [14].

In this paper we take a further step towards the definition and solving of
string constraints. The three contributions of this paper are as follows.
© Springer International Publishing AG 2017
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First, an extension of the MiniZinc [30] modelling language by string vari-
ables of possibly unknown length. MiniZinc enables the specification of con-
straint problems over (sets of) integers and real numbers, but currently does not
allow models containing string variables. Thanks to the extension we describe, a
MiniZinc user can now naturally define and solve a MiniZinc model containing
string variables and constraints, as well as other constraints on other variable
types.

Second, we provide a solver independent conversion of MiniZinc models
with strings into equivalent FlatZinc instances containing only integer variables.
Thus, every solver supporting FlatZinc can now solve a MiniZinc model with
strings. This conversion follows the padding representation advocated in [21] and
implemented in [35]. However, we underline that our contribution is orthogonal
to [35] and generalises its work (see Sect.4.2): our MiniZinc formulation does
not impose restrictions on the string length (enabling us to express unbounded-
length strings), and further allows any solver to use its preferred string represen-
tation (e.g., bit vectors or automata), and handles a superset of the constraints
of [35].

Third, we provide an experimental evaluation on the NORN string bench-
mark [1] used in GECODE+S [33,36] and the state-of-the-art constraint solvers
CHUFFED [10], GECODE [18], 1ZPLUS [15], P1CAT-SAT [43], MZN/GUROBI [4],
MZN/Y1cEs2 [9] and MZN/OscAR.CBLS [7]. Results indicate that native sup-
port for string variables usually pays off, but not always, in which case the
technology of the best solver varies. Indeed, we show that — despite longer
flattening times — sometimes our conversion is more beneficial than using a
dedicated string solver.

Paper Structure. Section?2 gives some background notions about string vari-
ables, MiniZinc and FlatZinc. Sections3 and 4 describe the string extensions
we implemented for MiniZinc and FlatZinc. Section 5 presents the experimental
results before we discuss related work in Sect. 6 and conclude in Sect. 7.

2 Background

MiniZinc [30] is a flexible and user-friendly modelling language for representing
constraint problems. The motto is model once, solve anywhere: each MiniZinc
model is solver-independent, although it may contain annotations to communi-
cate with the underlying solver.

MiniZinc supports the most common global constraints (constraints defined
over an arbitrary number of variables [3]) and allows the separation between
model and data: a MiniZinc model can be defined as a generic template to be
instantiated by different data.

As an example, consider the n-queens problem, where n > 4 queens have to
be placed on an nxn chessboard in such a way that they do not attack each other.
This problem can be modelled in MiniZinc in terms of an unspecified number n
of queens, and then instantiated by providing the value of parameter n.
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FlatZinc is a solver-specific target language for MiniZinc. Each MiniZinc
model (together with corresponding data, if any) is converted into FlatZinc in the
form required by a solver. In other terms, from the same MiniZinc model different
FlatZinc instances can be derived according to solver-specific redefinitions.

For example, the n-queens problem can be modelled with the well-known
alldifferent([xy,...,2,]) global constraint, which holds if and only if all vari-
ables z; take different values. In this case a solver can decide to keep the con-
straint as is or to unfold it into the logical conjunction /\1§z‘<j§n i # Ty

Following the approach of [23,32,33,35,36] we focus in this work on con-
straint solving over bounded string variables, i.e., string variables x having a
bounded length ¢, with |z| < ¢ € N. We point out that our MiniZinc language
extension allows us to express problems with unbounded string variables. Note
that, while problems over bounded-length string variables are trivially decidable,
satisfiability with unbounded-length strings is not decidable in general [16].

Notation. Given a fixed alphabet X, a string x € ¥X* is a finite sequence of
|z| > 0 characters of 3, where |z| is the length of x. Let ASC denote the set of
the ASCII symbols: we define the function Z: ASC — [1, 128] such that Z(a) = k
if and only if a is the k-th ASCII symbol.

The symbols =, #, and = respectively denote string equality, inequality, and
lexicographical order on ¥*. The concatenation of x and y is denoted by x - ¥,
while 2™ denotes the iterated concatenation of x for n times; z° denotes the
empty string €, while 27! denotes the reverse of z.

If z is a string (resp., an array), then we denote by z[i] its i-th character
(resp., element) and by z[i..j] the subsequence x[i]z[i + 1] - - - z[j]; indices start
from 1 in both cases. The symbol € is used for both set membership and character
occurrence within a string.

3 MiniZinc with Strings

MiniZinc supports plenty of builtins (e.g., comparisons, basic and advanced
numeric operations, set operations, logical operators, . .. ) and global constraints.
It currently permits four types of variables (i.e., Booleans, integers, floats, and
sets of integers) while strings can only be fixed literals, used for formatting out-
put or defining model annotations.

Our first contribution is introducing string variables, i.e., variables x € X%,
where ¥ is a given alphabet. As a first step, we assume that the alphabet X is
always the set ASC of ASCII characters. Although we focus on bounded-length
strings, we do not impose any limitation on the maximum string length £.

Figure 1 shows three string variable declarations in a MiniZinc model. Vari-
able x belongs to ASC* but its maximum length is not specified: a solver can
choose the preferred upper bound ¢ for its length or consider it unbounded. For
example, a solver using automata for representing strings does not need to set a
maximum length since it can represent strings of arbitrary length. Conversely, a
bounded-length string solver such as GECODE+S has to fix a maximum string
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1 int: N;

2 var string: x;

var string(N): y;

4 var string(500) of {"a", "b", "c"}: z;

Fig. 1. Examples of string variable declarations.

Table 1. MiniZinc string constraints, for each z,y,z € ASC*, a,b € ASC,
n,m,q,qo € N, S CASC, FCN, D e N¥I5I and N € P(N)?*I5],

Constraint MiniZinc Syntax Description

rT=y, x#Y xX=y, xl=y (in-)equality
r<y, 3y, =y, x>y |x<y,x<=y,x>=y, x> y|lexicographic order
xeS* x in S character set
x€eS* str_alphabet(x, S) alphabet

x € [a,b]” str_range(x, a, b) character range
Z=x-y zZ=x ++y concatenation

a = z[n] a = x[n] character access

y = z[n..m] y = str_sub(x, n, m) sub-string

y=z" y = str_pow(x, n) iterated concatenation
y=xz" y = str_rev(x) reverse

n = |z n = str_len(x) length

z € Lp(g, S, D, qo, F) str_dfa(x, q, S, D, qo,F) DFA membership
x € Ln(q,S, N, qo, F) strnfa(x, q, S, N, qo,F) NFA membership
GCC(z, A, N) str_gce(x, A, N) global cardinality

length ¢. This tricky part is analogous to a MiniZinc declaration of the form “var
int: i” for an integer variable i: a finite-domain solver assumes the domain of
i to be finite and chooses its preferred bounds, while for a MIP solver i is
unbounded. The length of y in Fig.1 can be at most N, where N is an integer
parameter to be initialised within the model or in a separate data file. Variable
z even has a constrained alphabet: z € {w € {"a", "b", "c"}* | |w| < 500}.

Given that we now have string variables, inspired by [33,35,36], we introduce
the string constraints specified in Table1. A constraint for membership in a
context-free language could be added; it was considered in [33,35,36] for inclusion
in GECODE4S, but not implemented for time-reasons as the state-of-the-art
propagator of [21] for fixed-length string variables needs work to be generalised
to bounded-length string variables.

The constraints =, #, <, =<, =, > have the semantics of their standard defini-
tions. Given S C ASC, the semantics of x € S* isVa:a € x = a € S, while
x € S also enforces the reverse implication, i.e., Va:a € x <= a € S.

The constraint str_range offers a shortcut for defining a set of strings over
a range of characters: [a,b]* = {¢ € ASC | a < ¢ < b}*, so for instance
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int: m;
var int: n;
var string(m): x;

constraint x = str_rev(x);

constraint str_range(x, "a", "z");

constraint str_len(x) mod 2 = 1;

constraint str_gcc(x, ["a", "b", "c¢"], [n, n, nl);

constraint n > 0;
solve minimize str_len(x);

Fig. 2. A model for finding minimum-odd-length palindromes with the same, positive
number of a’s, b’s, and ¢’s. An optimal solution must have n = 2 A |z| = 7.

[*a","d"]* = {"a","b","c","d"}*. The function z[i..j] returns the substring
z[n]z[n + 1] - - x[m], where n = max(1,4) and m = min(j,|z|). In particular,
i > j implies z[i..j] = €.

The constraint = € Lp(q,S, D, qo, F) constrains = to be accepted by the
deterministic finite automaton (DFA) (@, S, 0, qo, F) where: Q@ = {1,...,q} is
the state set, S = {a1,...,a;5} is the alphabet, § : @ x S — @ is the tran-
sition function such that D[i,j] = k <= 0(i,a;) = k, o € Q is the initial
state, and F' C @ is the set of accepting states. The same applies to the non-
deterministic finite automaton (NFA) constraint = € £n(q, S, N, qo, F'), with the
only difference that, while DJi, j] € @, in this case N[i, j] C Q.

Finally, we add a global cardinality constraint GCC(z, A, N) for strings, stating
that each character A[i] € ASC must occur exactly N[i] times in string .

The constraints in Table 1 express all those used in existing string solvers [1,
14,23,24,32,41] and reflect the most used string operations in modern program-
ming languages. We are not aware of string solvers supporting constraints like
lexicographic ordering and global cardinality, but these are natural for a CP
solver.

Some constraints are redundant. For example we have that z[i] = x[i..i] and
y =afi.j] <= Gy,y2 €ASC) z =y -y -y Alp|l=i-1Aly -yl =j.
The rationale behind such redundancy is to ease the model writing and to allow
solvers to define a specialised treatment for each constraint in order to optimise
the solving process.

The constraint set we added to MiniZinc is intended to be an extensible
interface for the definition of string problems to be solved by fixed, bounded,
and unbounded-length string solvers.

Consider the MiniZinc model in Fig.2, encoding the problem of find-
ing a minimum-length palindrome string belonging to {"a",...,"z"}*, hav-
ing an odd length, and containing the same, positive number of occurrences of
"a", "b", and "c". We can see in this example the potential of MiniZinc with
strings: the model is succinct and readable, it allows the specification of optimi-
sation problems and not just of satisfaction problems, it accepts constraints over
different types than just strings, it does not impose any bounds on the lengths
of the strings, and it enables expressing the membership of a string variable to
a context-sensitive language.
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string sql;

var int: m; var int: n;

var string: pref; var string: suff; var string: expr;

constraint sql = pref ++ expr ++ str_pow(" ", m) ++ "=" ++ str_pow(" ", n) ++
expr ++ suff;

constraint str_len(expr) > O;

solve satisfy;

Fig. 3. A model for detecting a possible SQL injection.

A more interesting example is provided in Fig. 3, where we show a simplified
way to detect a potential SQL injection attack in a script. An SQL injection
is a technique where a malicious SQL statement is injected into a regular SQL
command. A well-known example is the injection of the condition "OR 1=1" into
the WHERE clause of an SQL query. Since every Boolean expression containing
such a condition evaluates to true, an SQL injection of this type may cause
the deletion or communication of tables of a database. The model in Fig.3 is
actually more general, by detecting an injection into the parametric string sql
of a substring of the form expr-b" = b* - expr, where expr can be any non-empty
string while 0™ and b™ are arbitrary sequences of m and n blanks respectively,
where m and n are non-negative integer variables. The prefix pref and the suffix
suff of sql can be any string. Clearly, this simplified example is not general
enough to cover all the possible SQL injections. Nonetheless, this MiniZinc model
is strictly more powerful than when using only regular expressions: the constraint
in line 4 cannot be replaced by an equivalent str_dfa or str_nfa constraint, but
could alternatively be modelled using the mentioned constraint for membership
in a context-free language, which is not considered in this paper.

4 FlatZinc With(out) Strings

MiniZinc is a solver-independent modelling language. In practice, this is achieved
by the MiniZinc compiler, which can translate any MiniZinc model into a spe-
cialised FlatZinc instance for a particular solver, using a solver-specific library
of suitable redefinitions for basic and global constraints.

In order to extend MiniZinc with support for string variables, our second
contribution consists of two redefinition libraries to perform different conversions:

— a string-to-string conversion F** that flattens a model M with string con-
straints into a FlatZinc instance F5 (M) with all such constraints preserved;

— a string-to-integers conversion F™ that flattens a model M with string con-
straints into a FlatZinc instance (M) with string constraints transformed
into integer constraints.

We now discuss these two conversions in turn.
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4.1 The F5* Conversion

The conversion F*% is straightforward and we omit its technical details. Each
string predicate is preserved in the resulting FlatZinc instance, with a few excep-
tions in order to be consistent with the FlatZinc syntax. For example, the con-
straints x = y and x = y are rewritten into str_eq(x, y) and str_neq(x, y)
respectively. Similarly, a string function is rewritten into a corresponding Flat-
Zinc predicate; e.g., n = str_len(x) is translated into str_len(x, n), while z
= x ++ y translates into str_concat(x, y, z).

array [1..3] of string: X_INTRODUCED_3 = ["a","b","c"];

var int: n :: output_var;

var string(100): x :: output_var;

var string: X_INTRODUCED_O :: var_is_introduced :: is_defined_var;
var int: X_INTRODUCED_1 :: var_is_introduced :: is_defined_var;
constraint str_eq(x,X_INTRODUCED_O);

constraint str_range(x,"a","z");

constraint int_mod (X_INTRODUCED_1,2,1);

constraint str_gcc(x,X_INTRODUCED_3,[n,n,n]);

constraint int_le(1,n);

constraint str_rev(x,X_INTRODUCED_O) :: defines_var (X_INTRODUCED_O);
constraint str_len(x,X_INTRODUCED_1) :: defines_var (X_INTRODUCED_1);
solve minimize X_INTRODUCED_1;

Fig. 4. FlatZinc instance resulting from F= applied to the MiniZinc model in Fig. 2.

Figure4 gives the FlatZinc instance obtained by the F5' conversion of the
MiniZinc model in Fig. 2, assuming that the length-bound parameter m is instan-
tiated with value 100 (see line 3).

F5 s a straightforward and fast conversion aimed at solvers supporting
(some of) the constraints of Table 1. At present, to the best of our knowledge,
the only CP solver with such a capability is the new GECODE+S [33,36].

4.2 The Ft Conversion

When extending MiniZinc with new features, the goal is to be always conser-
vative: the compiler should produce FlatZinc code executable by any current
FlatZinc solver, albeit less efficiently than by a solver with native support for
the new features. Hence we also develop the F™™* conversion.

The underlying idea of F™* is to map each string variable x to an integer
variable ¢, € [0, n] representing the string length |z| and an array X € [0, 128]"

of n integer variables representing the string itself; we choose n = min (m, E),

where |z| denotes the upper bound on |z| if it is specified in the model and || = ¢
otherwise, as we cannot exceed the maximum string length ¢. For i = 1,...,n
the invariant i > ¢, <= X][i] = 0 enforces that the end X||z| 4+ 1] Xn]
of the array X is padded with trailing zeros. The notation (V;—i .. |) P(i) is
actually a shortcut for the constraint (V,c(; 777) @ < |z| — P(i), and similarly
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Vstr(m7 n, S) — {A(x)}

n = min(|z|, £), Var (X, n,0.Z(D(z))),
Ale) = (X) {vim(zw,o..n),zzw — |2, (Vicpn) i > lo <= X[ :0}
z €S = {(Viep, o) A@)[i] € {0} UI(S)}
€S = {x €8, (Viexs))Gjen, ) Al@)j] = i}
z € [a,b]" = {(Vien,jzn) A(2)[i] € {0} U [Z(a), Z(b)]}
v=y = {lz| =y, (Viep =) Al@)[] = A(y)[il}
£y {lz] =yl = Fiep,en) Al@)[i] # Aly)[d}
x =Xy~ {lex lesseq(A(z),A(y))}
GCC(z,A,N) — {global cardinality(A(z),[Z(a) | a € A],N)}

|a:| = (n) {Vint(n,0..0)}
) Wenly |x| W], (Vie s jol)) AW = A(@)[z] — i + 1]}
N Ver |x|+|y|< e ) AR = A,
v { Vet i) AR + |2]] = A@W)LJ] }

Vser () [yl = nlwl

{ Viep,jzll.jelly) A@)[i] = Aly )[le(j—1)+i]}
n = max(1,4), m = min(|z|,j),

x[i..j] Vistr( |y|*max0m—n+1)
(Vke[l lvll) = A(z)[k+n—1]

l'[l VSt |y‘ <1
(i€ [0 lz] A A(y)[1] = A@)[i]) vV (i ¢ [0, |z]] Ay =€)
x e ﬁD(q, S7D7 qO7 F) H
s=|S|+1, D' €[1,q|"°, T = sort(Z(9)),

. 0 iftj=1AD[i,j] ¢ F
Vi j s D' s = ’
(Vietw.asena) Dl J] DJi,j] otherwise
Va”(X,|{l7|,0..|ZE|), regular(Xv qulequvF)7

(Vie[l,lx\]) .A(JS)[Z] = {g[X[Z] - 1] i)ft}i[ri\}v;el

Fig. 5. Rewrite rules of F"t,

(16)
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for existential quantification, where £, denotes the current upper bound of the
domain of £,.

The main issue of '™ is the maximum size ¢, since FlatZinc does not allow
dynamic-length arrays. We set £ = 1000 by default and issue a warning to the
user if an unbounded string variable is artificially restricted by this transforma-
tion. The user (and in fact each solver) can override this parameter.

The F™ conversion follows the padding representation advocated in [21]
and implemented in [35]: it works through the rewrite rules listed in Fig.5.
This conversion is specified as a library containing the rewrite rules expressed in
the MiniZinc language itself and does not require any extension of the existing
FlatZinc specification.! Each rewrite rule has one of the following forms:

- P~ {C,...,C,}, meaning that predicate P is rewritten into the constraint
conjunction C1 A --- A Cy; or

— F(xy,...,25) — (EY{C4,...,C,}, meaning that function F is rewritten into
expression F subject to constraint C1 A -+ A C,,.

We use a more readable meta-syntax instead of using MiniZinc/FlatZinc directly.
We denote by D(z) C ASC the auxiliary function that returns the set of charac-
ters that may occur in x, and by Z(.5) the set {Z(a) | a € S} of the ASCII codes
for each character of S. Given D C N and S C ASC, the constructs Vint(n, D),
Vstr(x,m, S), and Va (X, m, D) denote respectively: an integer variable decla-
ration var D: n, a string variable declaration var string(m) of S: x, and an
array of integer variables declaration array[1..m] of var D: X.If a parameter
is omitted, then we assume D = [0,128], m = ¢, and S = ASC.

Rule (1) of Fig.5 transforms a declaration of a string variable z into the
corresponding declaration of an array X of integer variables via the A(x) function
of Rule (2), which enforces the properties of X described above. It is important to
note that this transformation relies on the same array of integer variables being
returned by A(z) for a variable z, even if the function is called multiple times.
This is achieved through the common subexpression elimination mechanism built
into MiniZinc functions [37].

Rules (3) to (9) are examples of predicate rewriting. In particular, the latter
two rules take advantage of MiniZinc expressiveness by rewriting z < y and
GCC(z, A, N) in terms of the lex_lesseq and the global_cardinality global
constraints over integers. The rewrite rules for predicates €, €, =, and # are
intuitive.

Rules (10) to (15) are examples of function rewriting: a string variable is cre-
ated, constrained, and then returned. We can see that dealing with special cases
enables us to reduce the number of generated constraints; e.g., see Rules (14)
and (15).

Rule (16) for str_dfa predicate is tricky. Indeed, the regular global con-
straint cannot straightforwardly encode = € Lp(q, S, D, qo, F) since the “empty
character” 0 might occur in A(x). In order to agree with the semantics of

! This library, called nostrings.mzn, is publicly available at https://bitbucket.org/
jossco/gecode-string.
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regular, it is necessary to increment the number s of its symbols (so, the i-th
character of S becomes the (i + 1)-st symbol of the DFA encoded by regular),
and to add a column at the head of D for dealing with the 0 character (matrix
D’ is the result of this addition — note that the state 0 is always a failing
state).? If regular is satisfiable, then the accepted sequence X is re-mapped to
a corresponding string thanks to the auxiliary array T'. The rule for str_nfa is
analogous.

We remark that the F™* converter enables the solving of string problems by
any solver. Clearly, this is achieved at the expense of efficiency. Indeed, several
new constraints and reifications are introduced.

Consider for example the model M of Fig. 2: the F5* (M) conversion is instan-
taneous and produces a FlatZinc instance of only 13 lines, regardless of the
maximum length m of string variable x (see Fig.4). Conversely, the F1t(M)
conversion can be considerably less efficient depending on the m parameter. For
example, if m = 100, then F*(M) consists of 4,511 lines; if m = 1000, then a
FlatZinc instance of 45,011 lines is produced.

5 Evaluation

Our third contribution is an evaluation of our framework with different solvers.
We compared the string CP solver GECODE4S [33,36] against various state-of-
the-art constraint solvers, namely:

— CHUFFED [10] is a CP solver with lazy clause generation [31];

— GECODE [18] is a CP solver;

— 1ZPLUS [15] is a CP solver that also exploits local search;

— P1CAT-SAT [43] translates a CP problem into a Boolean satisfiability (SAT)
problem, solved by LINGELING;

— MZN/GUROBI [4] translates a MiniZinc (MZN) model into a mixed-integer
linear program, solved by GUROBI OPTIMIZER. [20];

— MZN/Y1cEs2 [9] translates a MiniZinc model into a SAT modulo theories
(SMT) model without string variables, solved by YICES2;

— MZN/OscAR.cBLS [7] translates a MiniZinc model in a constraint-
based local search model and a black-box search procedure, run by
OscaR.cBLs [12].

There is a lack of standardised and challenging string benchmarks [21,33,35,36].
However, we stress that the goal of this paper is not an evaluation of solver
performance, but the introduction of a framework for modelling string prob-
lems easily, with solving by both string and non-string solvers. Moreover, one
of the benefits of introducing string variables and constraints in MiniZinc is the
possibility of designing and comparing challenging and standard benchmarks.
We picked five problems from the NORN benchmark [1]: a®b™, ChunkSplit,
HammingDistance, Levenshtein, and StringReplace (we use the same names as

2 Details at http://www.minizinc.org/doc-1ib/doc-globals-extensional.html.
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in [1]). We also used our Palindrome problem of Fig.2 and our SQL injection
problem of Fig.3. All these problems have no parameters, except for the maxi-
mum string length ¢. For each problem, we:

1. wrote a MiniZinc model M with parametric bound ¢ on string length;

2. obtained FlatZinc instances Fys(f,¢) by flattening M with f € {F5%, Fint}
and ¢ € {250,500, 1000};

3. solved each Fy/(F®*, () with GECODE+S (we extended the FlatZinc inter-
preter of GECODE for handling 5 builtins) and each Fy;(F™, ) with the
other solvers.

We ran the experiments on Ubuntu 15.10 machines with 16 GB of RAM and
2.60 GHz Intel® i7 CPU. The source code for GECODE+S and the used MiniZinc
models are available at https://bitbucket.org/jossco/gecode-string. The versions
of the solvers with results in Table 2 are those used by the sunny-cp portfolio
solver [2], version 2.2, in the MiniZinc Challenge 2016.> We do not compare with
the NORN solver, as our results are incomparable with those of an unbounded-
length solver such as NORN, which generates the language of all satisfying assign-
ments for each string variable.

Table 2. Runtimes of the solvers. Bold font indicates the best performance for each
problem instance.

CHUFFED GECODE 1ZPLUS MZN /GUROBI Prcar-SAT GECODE4-S

4 250 500 |1000/250 (500 {1000 |250 [500 |1000 [250 |500 |1000|250 500 |1000 [250/500 |1000
ab™ 0.9 |2 4.5 |2.6 [16.8/145.2|2.2 6.8 |22.7 9.7 [20.7 |54.7(2.1 |[3.9 7.2 |0.4|2.7 |28.2
Chunk 4.7 |14.9 n/a (3.5 |8 26 7.2 |22.2 |24.8 t/o |t/o [t/o |46.8/152 |291.1/1.4|14.2|187.9
Hamm. [25.7|283.6\n/a [84.6/t/o [t/o |t/o |t/o |t/o |363.6/t/o |t/o |46.8/454 |t/o |0.6|3.8 |37.4
Leven. 1.3 2.6 |6 1.2 |2.3 |5.4 3.7 |19.5 |8.1 |91 345.7/t/o [1.7 3.8 |26.8 |0.1]0.1 0.1
Str. Rep.2.4 (6.8 [23.2t/o [t/o t/o [3.1 [9.7 |44.2 |264.2t/o |t/o |28.3[148.1/t/o |0.2|0.8 |4.7
Palind. |[1.6 |23.4 90 [t/o |t/o [t/o |0.8 |2.3 |7.1 |119.5|t/o [t/o |16.6/93.7 |504.5\n/an/a|n/a
SQLInj. |17.9/399.8n/a (4.6 |10.2396.3/108.9/431.1/617.9/t/o |t/o |t/o |83.3/148.7/502.6/0.5/0.1 0.1

Table 2 shows the runtimes, in seconds, to conclude the search, i.e., the time
needed by a solver to prove the (un-)satisfiability of a problem (for satisfaction
problems) or to find and prove an optimal solution (for Palindrome, the only
optimisation problem). The ‘t/o’ abbreviation means that the time-out of 600
seconds was reached, while ‘n/a’ means that a solver failed prematurely (e.g.,
due to a segmentation fault) or is not applicable. For instance, GECODE+S is
not applicable to the Palindrome problem since it does not implement the GCC
constraint, which, to the best of our knowledge, has not been proposed before
in the literature. Our MiniZinc extension (see Table 1) covers all the constraints
implemented by GECODE+S.

3 sunny-cp is available at https://github.com/CP-Unibo/sunny-cp. We actually took

advantage of its architecture for running and evaluating the solvers in Table 2.
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Fig. 6. Average time (in seconds) taken by F'™* or F'r.

The chosen solvers whose results are not listed in Table 2 were not competitive
on the chosen problems. Local search, performed by MZN/OSCAR.CBLS, is by
design unable to prove unsatisfiability and thus always times out on the unsat-
isfiable a”b™, Hamming, and StringReplace problems. Further, the black-box
local search performed by MZN/OscAR.cBLs unfortunately meanders on some
of the chosen satisfiable problems and optimisation problems upon flattening by
the F™ conversion: our future work includes integrating the extension [6] for
string variables and constraints of OSCAR.CBLS [12] into MZN/OSCAR.CBLS,
so that the 5t conversion can be used instead. Similarly, MZN /YICES2 makes
the state-of-the-art SMT solver Y1CES2 suffer from the result of the composi-
tion of the F* conversion with the FlatZinc-to-SMT-LIB-format conversion [9],
which has not been modernised for a while. We hope that somebody will enable
the use of the F5% conversion so that SMT solvers with a string theory — such
as CVC4 [27], S3 [39], and Z3STR2 [41] — can be used instead, though not for
optimisation problems.

All the runtimes in Table 2 include the FlatZinc flattening time. As explained
at the end of Sect.4, this time is far greater when the F™* conversion is used.
This is clearly noticeable in Fig. 6, where the average flattening time (in seconds)
taken by F't (for all the solvers except GECODE+S) or F5% (for GECODE+S)
is shown.* As mentioned at the end of Sect.4, this time is proportional to the
maximum string length /.

While GECODE, CHUFFED, PICAT-SAT, and 1ZPLUS have comparable per-
formance, the flattening time for MZN/GUROBI is remarkably higher. This is
due to the fact that the complex reified expressions created by F*% must be lin-
earized for use with MZN /GUROBI and hence this further expands the resulting
FlatZinc. The average percentage of the total solving time (when a problem is

4 We assume a flattening time of 7' = 600 seconds when the conversion time exceeded
the time limit 7. This happened only for MZN /GUROBLI.
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solved) taken by F'* is 42.41% for 1ZPLUS, 47.10% for CHUFFED, 55.97% for
GECODE, and 62.36% for MZN /GUROBI. Conversely, the average percentage of
the total solving time taken by F*% for GECODE+S is only 6.95%.

The message of this evaluation is twofold. On the one hand, the GECODE+S
CP solver is by far the best solver overall, due to its native string support
and the short flattening times via 5% to FlatZinc. On the other hand, solvers
without native string support sometimes benefit from F"* for being faster than
GECODE+S despite longer flattening times. This is interesting and should stim-
ulate further development of native string support in CP solvers.

6 Related Work

GECODEHS [33,36] is currently the only CP solver that handles bounded-length
string variables; its representation of string variables improves over the prefix-
suffix pairs representation [34] and the open-sequence representation [35]. Fixed-
length Boolean string variables, that is bit vectors, are handled in a CP fashion
in [29]. Older CP approaches are surveyed in [33].

Apart from these systems, there are a number of string solvers, some custom-
made and some others relying on existing solving technologies such as satisfia-
bility modulo theories (SMT). We now discuss three approaches.

Bit-vector solvers map string constraints into bit-vector constraints. Exam-
ples of solvers using this approach are HAMPI [23,24] and KALUZA [32]. The
effectiveness of this approach appears to be limited when compared with other,
more recent string solving techniques [22,41].

Automaton-based solvers rely on regular expressions or (simplified) context-
free grammars in order to represent strings and handle string constraints. Exam-
ples of these approaches are STRSOLVE [22], STRANGER [40], PASS [26], and
PISA [26]. While they can naturally deal with unbounded-length strings, the
main drawback of these solvers is their inability to capture other variable types,
such as integers. For example, as observed in [41], the PISA solver can pro-
vide good performance but cannot model string lengths and symbolic arithmetic
operations.

Word-based string solvers, according to [41], are SMT solvers that treat
strings without abstractions or representation conversions. They take advan-
tage of already defined theories, and enable a precise modelling of unbounded
strings and length constraints. For instance, Z3STR [42], Z3STR2 [41], and
Z3sTRBV [38] extend the well-known SMT solver Z3. Other SMT-based string
solvers are SuUsHI [14], CVC4 [27], and NORN [1]. Although it is out of the
scope of this paper to provide a comparison with all of them, we remark that
GECODE+S provides a better performance than SUSHI in the evaluation reported
in [33].

7 Conclusion

We presented an extension of the MiniZinc language that allows users to model
and solve combinatorial problems with strings. The framework we propose is
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expressive enough to encode the most used string operations in modern pro-
gramming languages, and — via proper FlatZinc translations — it also enables
both string and non-string solvers to solve such problems. All the solvers having
a FlatZinc interface can now solve string problems without manual intervention.

We took advantage of our framework for evaluating the state-of-the-art con-
straint solvers — CHUFFED, GECODE, 1ZPLUS PICAT-SAT, MZN/GUROBI,
MZN/Y1cES2, and MZN/OsCAR.CBLS — on problems with bounded-length
strings. The results indicate that, despite longer flattening times, sometimes our
FlatZinc decomposition can be more beneficial than using a dedicated string
solver.

We are not aware of similar works in CP, and we see our work as a solid start-
ing point for the handling of string variables and constraints with the MiniZinc
toolchain. We hope our extension encourages the development of further CP
solvers that can natively deal with strings. This will hopefully lead to the cre-
ation of new, challenging string benchmarks, and to the development of dedicated
search heuristics (e.g., heuristics based on character frequencies in a string).

We are planning to enhance our framework by adding new search annotations,
constraints, and features, as well extending the string domain from ASCII to
other alphabets, such as Unicode. In particular, the useful missing constraint for
membership in a context-free language should at least have a default handling
under the F™* conversion, if not a propagator in GECODE+S used via the F5t
conversion.

Finally, non-character alphabets could be useful, such as for the generation
of protocol logs [19], where the natural model would use strings of timestamps.
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Abstract. Concurrent Constraint Programming (CCP) is a declara-
tive model for concurrency where agents interact by telling and ask-
ing constraints (pieces of information) in a shared store. Some previous
works have developed (approximated) declarative debuggers for CCP
languages. However, the task of debugging concurrent programs remains
difficult. In this paper we define a dynamic slicer for CCP and we show
it to be a useful companion tool for the existing debugging techniques.
We start with a partial computation (a trace) that shows the presence of
bugs. Often, the quantity of information in such a trace is overwhelming,
and the user gets easily lost, since she cannot focus on the sources of the
bugs. Our slicer allows for marking part of the state of the computation
and assists the user to eliminate most of the redundant information in
order to highlight the errors. We show that this technique can be tailored
to timed variants of CCP. We also develop a prototypical implementation
freely available for making experiments.

Keywords: Concurrent Constraint Programming + Program slicing -
Debugging

1 Introduction

Concurrent constraint programming (CCP) [24,26] (see a survey in [22]) com-
bines concurrency primitives with the ability to deal with constraints, and hence,
with partial information. The notion of concurrency is based upon the shared-
variables communication model. CCP is intended for reasoning, modeling and
programming concurrent agents (or processes) that interact with each other and
their environment by posting and asking information in a medium, a so-called
store. Agents in CCP can be seen as both computing processes (behavioral style)
© Springer International Publishing AG 2017
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and as logic formulae (declarative style). Hence CCP can exploit reasoning tech-
niques from both process calculi and logic.

CCP is a very flexible model and then, it has been applied to an increasing
number of different fields such as probabilistic and stochastic [4], timed [8,18,25]
and mobile [23] systems. More recently, CCP languages have been proposed for the
specification of spatial and epistemic behaviors as in, e.g., social networks [14,20].

One crucial problem when working with a concurrent language is being able
to provide tools to debug programs. This is particularly useful for a language
in which a program can generate a large number of parallel running agents.
In order to tame this complexity, abstract interpretation techniques have been
considered (e.g. in [6,7,11]) as well as (abstract) declarative debuggers following
the seminal work of Shapiro [27]. However, these techniques are approximated
(case of abstract interpretation) or it can be difficult to apply them when dealing
with complex programs (case of declarative debugging). It would be useful to
have a semi automatic tool able to interact with the user and filter, in a given
computation, the information which is relevant to a particular observation or
result. In other words, the programmer could mark the outcome that she is
interested to check in a particular computation that she suspects to be wrong.
Then, a corresponding depurated partial computation is obtained automatically,
where only the information relevant to the marked parts is present.

Slicing was introduced in some pioneer works by Mark Weiser [28]. It was
originally defined as a static technique, independent of any particular input of
the program. Then, the technique was extended by introducing the so called
dynamic program slicing [15]. This technique is useful for simplifying the debug-
ging process, by selecting a portion of the program containing the faulty code.
Dynamic program slicing has been applied to several programming paradigms,
for instance to imperative programming [15], functional programming [19], Term
Rewriting [1], and functional logic programming [2]. The reader may refer to [13]
for a survey.

In this paper we present the first formal framework for CCP dynamic slicing
and show, by some working examples and a prototypical tool, the main features
of this approach. Our aim is to help the programmer to debug her program, in
cases where she could not find the bugs by using other debuggers. We proceed
with three main steps. First we extend the standard operational semantics of
CCP to a “collecting semantics” that adds the needed information for the slicer.
Second, we propose several analyses of the faulty situation based on error symp-
toms, including causality, variable dependencies, unexpected behaviors and store
inconsistencies. Thirdly, we define a marking algorithm of the redundant items
and define a trace slice. Our algorithm is flexible and it can deal with different
variants of CCP. In particular, we show how to apply it to timed extensions of

CCP [25].

Organization. Section 2 describes CCP and its operational semantics. In Sect. 3
we introduce a slicing technique for CCP. In Sect.4 we extend our method to
consider timed CCP programs. We present a working prototypical implemen-
tation of the slicer available at http://subsell.logic.at/slicer/. We describe an
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example using the slicer to debug a multimedia interacting system programmed
in timed CCP. Due to lack of space, other examples are given only in the web
page of the tool as, for instance, a biochemical system specified in timed CCP.
Finally, Sect. 5 concludes.

2 Concurrent Constraint Programming

Processes in CCP interact with each other by telling and asking constraints
(pieces of information) in a common store of partial information. The type of
constraints is not fixed but parametric in a constraint system (CS). Intuitively,
a CS provides a signature from which constraints can be built from basic tokens
(e.g., predicate symbols), and two basic operations: conjunction (L) and variable
hiding (3). The CS defines also an entailment relation (|) specifying inter-
dependencies between constraints: ¢ = d means that the information d can
be deduced from the information c. Such systems can be formalized as a Scott
information system as in [26], as cylindric algebras [9], or they can be built upon
a suitable fragment of logic e.g., as in [18]. Here we follow [9], since the other
approaches can be seen as an instance of this definition.

Definition 1 (Constraint System —CS—). A cylindric constraint system is
a structure C = (C, <,U, t, f, Var,3, D) s.t.

- {C,<, U, t, f) is a complete algebraic lattice with U the lub operation (repre-
senting conjunction). Elements in C are called constraints with typical ele-
ments ¢, ,d,d ..., and t, f the least and the greatest elements. If ¢ < d, we
say that d entails ¢ and we write d = c. If ¢ < d and d < ¢ we write ¢ = d.

— Var is a denumerable set of variables and for each x € Var the function
Jz : C — C is a cylindrification operator satisfying: (1) Jx(c) <ec. (2) Ifc < d
then x(c) < x(d). (3) Fx(clTFz(d)) = Fz(c)UTx(d). (4) FxTy(c) = FyTx(c).
(5) For an increasing chain c; < ¢z < c3..., Jx| |, ¢; = |, Fx(cs).

— For each z,y € Var, the constraint d., € D is a diagonal element and it
satisfies: (1) dyy = t. (2) If z is different from x,y then dyy = 32(dy. Ud.y).
(3) If x is different from y then ¢ < dyy U 3x(c U dyy).

The cylindrification operator models a sort of existential quantification for hiding
information. As usual, 3z.c binds x in ¢. We use fv(c) (resp. bv(c)) to denote the
set of free (resp. bound) variables in ¢. The diagonal element d,, can be thought
of as the equality x = y, useful to define substitutions of the form [t/x] (see the
details, e.g., in [11]).

As an example, consider the finite domain constraint system (FD) [12]. This
system assumes variables to range over finite domains and, in addition to equal-
ity, one may have predicates that restrict the possible values of a variable as in
T < 42.
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2.1 The Language of CCP Processes

In the spirit of process calculi, the language of processes in CCP is given by a
small number of primitive operators or combinators as described below.

Definition 2 (Syntax of Indeterminate CCP [26]). Processes in CCP are
built from constraints in the underlying constraint system and the syntaz:

P,Q ::= skip | tell(c) | Zask (c;) then P; | P || Q| (localz) P | p(T)
iel

The process skip represents inaction. The process tell(c) adds ¢ to the cur-
rent store d producing the new store c¢ LI d. Given a non-empty finite set of
indexes I, the process »_ ask (¢;) then P, non-deterministically chooses Py

i€l
for execution if the store entails c. The chosen alternative, if any, precludes the
others. This provides a powerful synchronization mechanism based on constraint
entailment. When [ is a singleton, we shall omit the “> " and we simply write
ask (¢) then P.

The process P || Q represents the parallel (interleaved) execution of P and Q.
The process (local ) P behaves as P and binds the variable z to be local to it. We
use fv(P) (resp. bv(P)) to denote the set of free (resp. bound) variables in P.

Given a process definition p(7) 2 P, where all free variables of P are in the
set of pairwise distinct variables 7, the process p(Z) evolves into P[Z/y]. A CCP
program takes the form D.P where D is a set of process definitions and P is a
process.

The Structural Operational Semantics (SOS) of CCP is given by the transi-
tion relation v — ~/ satisfying the rules in Fig. 1. Here we follow the formulation
in [10] where the local variables created by the program appear explicitly in the
transition system and parallel composition of agents is identified to a multiset of
agents. More precisely, a configuration -y is a triple of the form (X;I';c), where
c is a constraint representing the store, I" is a multiset of processes, and X is
a set of hidden (local) variables of ¢ and I'. The multiset I' = Py, Ps,..., P,
represents the process Py || Po || -+ || P,. We shall indistinguishably use both
notations to denote parallel composition. Moreover, processes are quotiented by
a structural congruence relation 2 satisfying: (STR1) P = @ if they differ only
by a renaming of bound variables (alpha conversion); (STR2) P || Q =2 Q || P;
(STR3) P || (Q || R) = (P || Q) || R; (STR4) P || skip = P.

Let us briefly explain the rules in Fig. 1. A tell agent tell(c) adds ¢ to the
current store d (Rule Rrgry); the process Y ask (¢;) then P; executes Py if

iel
its corresponding guard ¢, can be entailed from the store (Rule Rgum); a local
process (localz) P adds x to the set of hidden variable X when no clashes of
variables occur (Rule Rioc). Observe that Rule Rgquiv can be used to do alpha
conversion if the premise of R,oc cannot be satisfied; the call p(T) executes the
body of the process definition (Rule Rcary).
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d':(fk kel R
TELL (XS ask (¢;) then P, I'yd) — (X3 Py, Iyd) 0™

iel

(X;tell(c), I';d) — (X;skip, ;e U d) R

2 ¢ XU fo(d) U fu(T) 1 P =PED 1
(X (locala) P, T5d) — (X U{ahi P.1d) °° (Xip(@), [id) — (X Pla/gl. L) MM

(X;Te) 2 (XI5 d) — (YA d) 2 (Y A;d)
(X;T¢) — (Y5 Asd)

Requrv

Fig. 1. Operational semantics for CCP calculi

Definition 3 (Observables). Let —* denote the reflexive and transitive clo-
sure of —. If (X;1';d) —* (X5 I;d') and 3X'.d" = ¢ we write (X; T;d) {e.
If X =0 and d = t we simply write I' |}..

Intuitively, if P is a process then P . says that P can reach a store d strong
enough to entail ¢, i.e., ¢ is an output of P. Note that the variables in X’ above
are hidden from d’ since the information about them is not observable.

3 Slicing a CCP Program

Dynamic slicing is a technique that helps the user to debug her program by

simplifying a partial execution trace, thus depurating it from parts which are

irrelevant to find the bug. It can also help to highlight parts of the programs

which have been wrongly ignored by the execution of a wrong piece of code.
Our slicing technique consists of three main steps:

S1. Generating a (finite) trace of the program. For that, we propose a collecting
semantics that generates the (meta) information needed for the slicer.

S2. Marking the final store, to choose some of the constraints that, according
to the symptoms detected, should or should not be in the final store.

S3. Computing the trace slice, to select the processes and constraints that were
relevant to produce the (marked) final store.

3.1 Collecting Semantics (Step S1)

The slicer we propose requires some extra information from the execution of
the processes. More precisely, (1) in each operational step v — 7/, we need to
highlight the process that was reduced; and (2) the constraints accumulated in
the store must reflect, exactly, the contribution of each process to the store.

In order to solve (1) and (2), we propose a collecting semantics that extracts
the needed meta information for the slicer. The rules are in Fig. 2 and explained
below.

The semantics considers configurations of the shape (X;I;.5) where X is a
set of hidden variables, I" is a sequence of processes with identifiers and S is a set
of atomic constraints. Let us explain the last two components. We identify the
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(Y, Se) = atoms(c, foars) ,
T RreLL
(X;tell(e):i, I"; 8) s (X UV I I7, S U S,)
UdEea kel
des ,
Rsunm

(X1, Y ask (¢;) then P:i,I"'; S) L, (X510, Py:j, I3 S)
ier

z' € Var )\ foars

(X; I, (localz) P:i, I"; §) Y5 (X U {«'}; T, Pla’ /-5, "; 5)

’
RLOC

p@2PeD

P R
(X; I, p(@) 11, 15 ) — (X; I, Pz /y]:5, 1" 5)

Fig. 2. Collecting semantics for CCP calculi. I" and I"” are (possibly empty) sequences
of processes. fvars = X U fv(S) U fu(I") U fu(I"). In “57, j is a fresh identifier.

parallel composition @ = P; || - -- || P, with the sequence I'g = Py :i1,--+ , Py iy
where i; € N is a unique identifier for P;. Abusing of the notation, we usually
write @:7 instead of I'g when the indexes in the parallel composition are unim-
portant. Moreover, we shall use € to denote an empty sequence of processes.
The context I', P : i,I"” represents that P is preceded and followed, respec-
tively, by the (possibly empty) sequences of processes I' and I"”. The use of
indexes will allow us to distinguish, e.g., the three different occurrences of P in
“I'l, P:i, I, P:j, (ask (c) then P):k”.

Transitions are labeled with ﬂ where 7 is the identifier of the reduced

process and k can be either L (undefined) or a natural number indicating the
branch chosen in a non-deterministic choice (Rule Rgyy). In each rule, the
resulting process has a new/fresh identifier (see e.g., j in Rule Rf ). This
new identifier can be obtained, e.g., as the successor of the maximal identifier
in the previous configuration. For the sake of readability, we write [i] instead of
[i].. Moreover, we shall avoid the identifier “:4” when it can be inferred from
the context.

Stores and Configurations. The solution for (2) amounts to consider the store, in
a configuration, as a set of (atomic) constraints and not as a constraint. Then,
the store {cl, s ,cn} represents the constraint ¢; U --- L ¢,.

Consider the process tell(c) and let V' C Vars. The Rule R/, first decom-
poses the constraint ¢ in its atoms. For that, assume that the bound variables in
c are all distinct and not in V' (otherwise, by alpha conversion, we can find ¢’ & ¢
satisfying such condition). We define atoms(c, V') = (bv(c), basic(c)) where

cif ¢ is an atom, t, £ or dgy
basic(c) = ¢ basic(c') if ¢ =Jx.c/
basic(cy) Ubasic(c) if ¢ = ¢1 U ey

Observe that in Rule R/pg 1, the parameter V of the function atoms is the
set of free variables occurring in the context, i.e., fvars in Fig. 2. This is needed to
perform alpha conversion of ¢ (which is left implicit in the definition of basic(-))
to satisfy the above condition on bound names.
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Rule R§ signals the number of the branch k chosen for execution. Rule
Ri,oc chooses a fresh variable 2/, i.e., a variable not in the set of free variables
of the configuration (fvars). Hence, we execute the process Plz'/x] and add z’
to the set X of local variables. Rule R{; 1, is self-explanatory.

It is worth noticing that we do not consider a rule for structural congruence in
the collecting semantics. Such rule, in the system of Fig. 1, played different roles.
Axioms STR2 and STR3 provide agents with a structure of multiset (commuta-
tive and associative). As mentioned above, we consider in the collecting semantics
sequences of processes to highlight the process that was reduced in a transition.
The sequence I" in Fig. 2 can be of arbitrary length and then, any of the enabled
processes in the sequence can be picked for execution. Axiom STR1 allowed us to
perform alpha-conversion on processes. This is needed in Ry,o¢ to avoid clash of
variables. Note that the new Rule R o internalizes such procedure by picking
a fresh variable z’. Finally, Axiom STR4 can be used to simplify skip processes
that can be introduced, e.g., by a Rrgry, transition. Observe that the collecting
semantics does not add any skip into the configuration (see Rule R/rgy1)-

Example 1. Consider the following toy example. Let D contain the process def-
inition A 2 tell(z > z 4+ 4) and D.P be a program where
P =tellly < 7) | ask (z < 0) then A || tell(z = —3). The following is a
possible trace generated by the collecting semantics.
(0;tell(y < 7):1,ask (z < 0) then A:2 tell(x = —3):3; t)
u, (0;ask (x < 0) then A:2 tell(x = —=3):3;y < 7)

i(@ ask (z < 0) then A:2; y<7x——3) B, B; A4y < 7,2 = —=3)
ﬂ>((Z);tell(z>9€—l—4):5;y<77:132—3) —>(®;6;y<77x:—3,z>x+4)

Now we introduce the notion of observables for the collecting semantics and
we show that it coincides with that of Definition 3 for the operational semantics.

Definition 4

[i1]ay - [171]1%

ever v = (Xo;1L0;S0) (Xn; Tn; Sn) = . Moreover, if

3X,,. |_| d = ¢, then we write llc If Xq = So = 0, we simply write Iy ||..
des,

Theorem 1 (Adequacy). For any process P, constraint ¢ and i € N, P | iff
P:i|l.

Proof (sketch) (=). The proof proceeds by induction on the length of the deriva-
tion needed to perform the output ¢ in P |, and using the following results.
Given a set of variables V', a constraint d and a set of constraints S, let us
use |d]y to denote (the resulting tuple) atoms(d,V) and [S]y to denote the
constraint V. || ¢. If (Y,S) = |d]v, from the definition of atoms, we have

c, €S
d=[S]y.
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Let I" (resp. ¥) be a multiset (resp. sequence) of processes. Let us use |I'] to
denote any sequence of processes with distinct identifiers built from the processes
in I and [¥] to denote the multiset built from the processes in ¥. Consider
now the transition v = (X;I;d) — (X';I";d'). Let (Y,S) = |d]v where
V = X Ufu(I')Ufu(d). By choosing the same process reduced in -y, we can show
that there exist i, k s.t. the collecting semantics mimics the same transition as
(XuY,|I'l,S) LN (X'UY’; | I'|;8") where d' = [S"|y, and I = I,

The (<) side follows from similar arguments.

3.2 Marking the Store (Step S2)

From the final store the user must indicate the symptoms that are relevant to the
slice that she wants to recompute. For that, she must select a set of constraints
that considers relevant to identify a bug. Normally, these are constraints at the
end of a partial computation, and there are several strategies that one can follow
to identify them.

Let us suppose that the final configuration in a partial computation is
(X;I';S). The symptoms that something is wrong in the program (in the sense
that the user identifies some unexpected configuration) may be (and not limited
to) the following:

1. Causality: the user identifies, according to her knowledge, a subset S’ C
S that needs to be explained (i.e., we need to identify the processes that
produced S”).

2. Variable Dependencies: The user may identify a set of variables V' C fu(.S)
whose constraints need to be explored. Then, one would be interested in
marking the following set of constraints

Ssticed = {c € S | vars(c) NV # 0}

3. Unexpected behaviors: there is a constraint ¢ entailed from the final store that
is not expected from the intended behavior of the program. Then, one would
be interested in marking the following set of constraints:

Ssticed = U{S/ cS| |_|S' = cand S’ is set minimal}

where “S’ is set minimal” means that for any S” C S', S” £ c.

4. Inconsistent output: The final store should be consistent with respect to a
given specification (constraint) ¢, i.e., S in conjunction with ¢ must not be
inconsistent. In this case, the set of constraints to be marked is:

Ssticed = U{S’ cS| |_|S’ Uc = £ and S’ is set minimal}
where “S’ is set minimal” means that for any S” C S’, S” Uc }~ £.

We note that “set minimality”, in general, can be expensive to compute.
However, we believe that in some practical cases, as shown in the examples in
Sect. 4.1, this is not so heavy. In any case, we can always use supersets of the
minimal ones which are easier to compute but less precise for eliminating useless
information.
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3.3 Trace Slice (Step S3)

Starting from the set Sgjceq above we can define a backward slicing step. We
shall identify, by means of a backward evaluation, the set of transitions (in the
original computation) which are necessary for introducing the elements in Sgj;ced-
By doing that, we will eliminate information not related to Sgjiced-

Notation 1 (Sliced Terms). We shall use the fresh constant symbol e to
denote an “irrelevant” constraint or process. Then, for instance, “c Ll ®” results
from a constraint ¢l d where d is irrelevant. Similarly, ask (c¢) then (P || o)+
results from a process of the form ask (¢) then (P || Q) + > ask (¢;) then P,
where @ and the summands in ) ask (¢;) then P, are irrelevant. We also assume
that a sequence e, ..., e with any number (>1) of occurrences of e is equivalent
to a single occurrence.

A replacement is either a pair of the shape [T'/i] or [T'/c]. In the first (resp.
second) case, the process with identifier ¢ (resp. constraint c) is replaced with T'.
We shall use 0 to denote a set of replacements and we call these sets as “replacing
substitutions”. The composition of replacing substitutions #; and 65 is given by
the set union of 6; and 65, and is denoted as 61 005. If I' = Py 14y, ..., P, iy, for
simplicity, we shall write [I/j] instead of [Py || --- || P./j]. Moreover, we shall
write, e.g., ask (c¢) then I instead of ask (c) then (P1 || --- || Pp).

Algorithm 1 computes the slicing. The last configuration in the sliced trace
is (X, Nwars(S);e;S). This means that we only observe the local variables of
interest, i.e., those in vars(S). Moreover, note that the processes in the last
configuration were not executed and then, they are irrelevant (and abstracted
with e). Finally, the only relevant constraints are those in S.

Input: - a trace o Hdes L Ll vn where v; = (X;; I3 S;)
-aset SCS,
Output: a sliced trace v — -+ — 75,
1 begin
2 let 6 =0 in
3 Y — (X5 Nwvars(S); e; S);
4 for I=n—1 to 0 do
5 0 — sliceProcess(vi, Vi+1, ti+1, ki+1, 6, 5) o 6;
6 v — (XyNwars(S); 10 ; SiNS)
7 end
8 end

Algorithm 1: Trace Slicer

The algorithm backwardly computes the slicing by accumulating replac-

ing pairs in #. The new replacing substitutions are computed by the func-

tion slice Process in Algorithm 2. Suppose that & We consider each kind

of process. For instance, assume a R transition v = (X,;I7,tell(c) :
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1 Function sliceProcess(v,1,1,k,0,S)

2 let v = (X, I, P:i,I";S,) and ¢ = (Xy; I, [o, "5 Sy) in

3 match P with

4 case tell(c)

5 let ¢’ = sliceConstraints(X~, Xy, Sy, Sy, S) in

6 if ¢ = e or ¢ = J7.e then return [e/i] else return [tell(c’)/i];
7 ase Y ask (¢) then Q,

8 if I'o0 = e then return [e/i] else return

[ask (cx) then (I'gf) +e / i];

[¢]

9 case (localz) Q

10 let {z'} = Xy \ X, in

11 if I'g[z'/z]0 = e then return [e/i] else return
[(localzx’) I'g[z' /x]0/1];

12 case p(7y)

13 ‘ if I'o0 = e then return [e/i] else return {;

14 end

15 end

16 Function sliceConstraints(X~, Xy, S+, Sy, S)
17 let Sc =Sy \ Sy and 0 =0 in

18 foreach ¢, € Sc\ Sdo 0 — 60oe/c,];
19 return HXW\XW.L]SCG

20 end

Algorithm 2: Slicing Processes and Constraints

i, 19 8,) L (X1, T Sy) = 9. We note that X, C X, and S, C Sy.
We replace the constraint ¢ with its sliced version ¢’ computed by the function
sliceConstraints. In that function, we compute the contribution of tell(c) to
the store, ie., S; = Sy\S,. Then, any atom ¢, € S, not in the relevant set
of constraints S is replaced by e. By joining together the resulting atoms, and
existentially quantifying the variables in X\ X, (if any), we obtain the sliced
constraint ¢’. In order to further simplify the trace, if ¢’ is ® or 3z.e then we
substitute tell(c) with e (thus avoiding the “irrelevant” process tell(e)).

In a non-deterministic choice, all the precluded choices are discarded (“+ o”).
Moreover, if the chosen alternative @y does not contribute to the final store (i.e.,
I'g6 = e), then the whole process > ask (¢;) then P; becomes e.

Consider the process (localz)@. Note that  may be replaced to avoid a
clash of names (see Rf o). The (new) created variable must be {z'} = X\ X,.
Then, we check whether I'g[z’/z] is relevant or not to return the appropriate
replacement. The case of procedure calls can be explained similarly.

Ezxample 2 Let a, b, ¢, d, e be constraints without any entailment and consider the
process R = ask (a) then tell(c) || ask (c) then (tell(d) || tell(b)) || tell(a) || ask (e) then skip.

In any execution of R, the final store is {a,b,c,d}. If the user selects only
{d} as slicing criterion, our implementation (see Sect.4.1) returns the following
output (omitting the processes’ identifiers):
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[0; * || ask(c, tell(d) || *) || * || = || * ; %] -—>
[0; = || tell(d) || = || = || * || * ; x] -->

[O; = 11 * |1 x|l x| x| *; d,*x]-—>

[O; « 11 * I1 % || x|l * || *; d,x] -—> stop

Note that only the relevant part of the process ask (¢) then (tell(d) || tell(d))
is highlighted as well as the process tell(d) that introduced d in the final store.

Also note that the process P = ask (a) then tell(c) is not selected in the
trace since c¢ is not part of the marked store. However, one may be interested
in marking this process to discover the causality relation between P and @ =
ask (c) then (tell(d) || tell(b)). Namely, P adds ¢ to the store, needed in Q to
produce d.

It turns out that we can easily adapt Algorithm 2 to capture such causality
relations as follows. Assume that slice Process returns both, a replacement 6 and
a constraint ¢, i.e., a tuple of the shape (6, ¢). In the case of >_ ask (¢;) then P, if
I'q6 # e, we return the pair ([ask (ci) then I'y0+e/i], cx). In all the other cases,
we return (, t) where 6 is as in Algorithm 2. Intuitively, the second component
of the tuple represents the guard that was entailed in a “relevant” application
of the rule R§;,;. Therefore, in Algorithm 1, besides accumulating 6, we add the
returned guard to the set of relevant constraints S. This is done by replacing the
line 5 in Algorithm 1 with

let(¢’, c) = sliceProcess(yi, Yi+1, t1+1, ki+1,0,S) 06 in
0—600
S« Su Smim'mal(slv C)

where Sinimai(S,c) = 0 if ¢ = t; otherwise, Sninimai(S,c) = U{S" C S |
L]S" E cand S is set minimal}. Therefore, we add to S the minimal set of
constraints in Sy that “explains” the entailed guard c¢ of an ask agent.

With this modified version of the algorithm (supporting causality relations),
the output for the program in Example 2 is:

[0 ; ask(a, tell(c)) || ask(c, tell(d) || *) || * || tell(a) || * ; *]1[3]

where the process tell(a) is also selected since the execution of ask (a) then tell(c)
depends on this process.

Soundness. We conclude here by showing that the slicing procedure computes
a suitable approximation of the concrete trace. Given two processes P, P’, we
say that P’ approximates P, notation P <f P’ if there exists a (possibly empty)
replacement 0 s.t. P’ = P (i.e., P’ is as P but replacing some subterms with e).
Let v = (X;I;9) and v/ = (X'; I'"; S7) be two configurations s.t. |I'| = [I”'|. We
say that +' approximates v, notation v <* v/, if X’ C X, S’ C S and P, <* P/
for all ¢ € 1..|I.

Theorem 2. Let 7o % M Yn be a partial computation and )

[in]kn,
- —

(1],
_—

. ~., be the resulting sliced trace according to an arbitrary slicing crite-
rion. Then, for allt € 1., v; <% ~/. Moreover, let Q = 3 ask (c) then P
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[it] Ky

and assume that (X;—1;1,Q 144, I Sy—1) — (X431, Py, 1 4,17 St) for some
t € 1..n. If the sliced trace is computed with the Algorithm that supports causality
relations, then 3X,_1(]S;_1) F ck,-

4 Applications to Timed CCP

Reactive systems [3] are those that react continuously with their environment
at a rate controlled by the environment. For example, a controller or a signal-
processing system, receives a stimulus (input) from the environment, computes
an output and then waits for the next interaction with the environment.

Timed CCP (tcc) [18,25] is an extension of CCP tailoring ideas from Syn-
chronous Languages [3]. More precisely, time in tcc is conceptually divided into
time intervals (or time-units). In a particular time interval, a CCP process P
gets an input ¢ from the environment, it executes with this input as the initial
store, and when it reaches its resting point, it outputs the resulting store d to
the environment. The resting point determines also a residual process @ that is
then executed in the next time-unit. The resulting store d is not automatically
transferred to the next time-unit. This way, outputs of two different time-units
are not supposed to be related.

Definition 5 (Syntax of tcc [18,25]). The syntaz of tcc is obtained by adding
to Definition 2 the processes next P | unless (c¢) next P | |P.

The process next P delays the execution of P to the next time interval.
We shall use next "P to denote P preceded with n copies of “next ” and
next P = P.

The time-out unless (¢) next P is also a unit-delay, but P is executed in
the next time-unit only if ¢ is not entailed by the final store at the current time
interval.

The replication !P means P || next P || next?P || ..., i.e., unboundedly
many copies of P but one at a time. We note that in tcc, recursive calls must be
guarded by a next operator to avoid infinite computations during a time-unit.
Then, recursive definitions can be encoded via the ! operator [17].

The operational semantics of tcc considers internal and observable tran-
sitions. The internal transitions correspond to the operational steps that take
place during a time-unit. The rules are the same as in Fig. 2 plus:

LS Ec¢
(X;I'yunless (c¢) next P:i,I";S) M, (X;I,17;8)

Run

- Ry
(X:['PT";S) L (X1 P:jnext 1P, T"; S)
where j and j' are fresh identifiers. The unless process is precluded from
execution if its guard can be entailed from the current store. The process !P
creates a copy of P in the current time-unit and it is executed in the next time-

unit. The seemingly missing rule for the next operator is clarified below.
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. d . . .
The observable transition P (e,d) Q@ (“P on input ¢, reduces in one time-

unit to @ and outputs d”) is obtained from a finite sequence of internal reduc-
tions:

Rows

r 22 ocal X) F(I7)
The process F(I'') (the continuation of I"”) is obtained as follow:

skip if R = skip or R = ask (c¢) then R’
F(R)=< F(Ry) || F(R2) it R=R1 | Re
Q if R =next @ or R = unless (¢) next Q

The function F(R) (the future of R) returns the processes that must be exe-
cuted in the next time-unit. More precisely, it unfolds next and unless expres-
sions. Notice that an ask process reduces to skip if its guard was not entailed
by the final store. Notice also that F is not defined for tell(c), !Q, (localz) P or
p(T) processes since all of them give rise to an internal transition. Hence these
processes can only appear in the continuation if they occur within a next or
unless expression.

4.1 A Trace Slicer for tcc

From the execution point of view, only the observable transition is relevant
since it describes the input-output behavior of processes. However, when a tcc
program is debugged, we have to consider also the internal transitions. This
makes the task of debugging even harder when compared to CCP.

We implemented in Maude (http://maude.cs.illinois.edu) a prototypical ver-
sion of a slicer for tcc (and then for CCP) that can be found at http://subsell.
logic.at/slicer/.

The slicing technique for the internal transition is based on the Algorithm 1
by adding the following cases to Algorithm 2:

1 case unless (¢) next ) return [e/i] ;
2 case Q)
3 ‘ if I'x0 = e then return [e/i] else return [!/(Q0)/i];
Note that if an unless process evolves during a time-unit, then it is irrelevant.
In the case of |P, we note that I'g = Q:j,next !Q:j'. We check whether P is
relevant in the current time-unit (@) or in the following one (next !Q). If this
is not the case, then !Q is irrelevant.
Recall that next processes do not exhibit any transition during a time-unit
and then, we do not consider this case in the extended version of Algorithm 2.
For the observable transition we proceed as follows. Consider a trace of n
observable steps g - ¥, and a set Sg;ce of relevant constraints
to be observed in the last configuration -,,. Let 6,, be the replacement computed
during the slicing process of the (internal) trace generated from ~,,. We propagate
the replacements in 6,, to the configuration ,_; as follows:
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1. In y,_1 we set Sgiceq = 0. Note that the unique store of interest for the user
is the one in ,,. Recall also that the final store in tcc is not transferred to the
next time-unit. Then, only the processes (and not the constraints) in v,

are responsible for the final store in ~,.

2. Let 9 be the last internal configuration in 7,,_1, i.e., yn_1 Barrsbmlby, o

1Y /— and v, = F(¢). We propagate the replacements in 6,, to ¢ before
running the slicer on the trace starting from ~,_1. For that, we compute a
replacement ¢’ that must be applied to 1 as follows:

— If there is a process R = next P:i in ¢, then 6’ includes the replacement
[next (I'pf,)/i]. For instance, if R = next (tell(c) || tell(d)) and tell(c)
was irrelevant in -, the resulting process in 9 is next (e || tell(d)). The
case for unless (c) next P is similar.

— If there is a process R = ), ask (¢;) then F;:i in ¢ (which is irrelevant
since it was not executed), we add to 6’ the replacement [e/i].

3. Starting from ¥, we compute the slicing on v,,—; (Algorithm 1).
4. This procedure continues until the first configuration =y, is reached.

Example 3 Consider the following process definitions:

System 2 Beat2 || Beat4 Beat2 2 tell(b2) || next ? Beat2
Beatd 2 tell(b4) || next * Beatd

This is a simple model of a multimedia system that, every 2 (resp. 4) time-
units, produces the constraint b2 (resp. b4). Then, every 4 time-units, the system
produces both b2 and b4. If we compute 5 time-units and choose Sgice = {04}
we obtain (omitting the process identifiers):

{1 / 5 > [System ; *] --> [Beat4 ; *] --> [next~4(Beat4) ; *]} ==>
{2 / 5 > [next~3(Beatd) ; *]} ==>

{3 / 5 > [next~2(Beat4) ; *] } ==>

{4 / 5 > [next(Beatd) ; *]} ==>

{5 / 5> [Beat4 ; *] -—> [tell(b4) || * ; *x] --> [* ; b4l}

Note that all the executions of Beat2 in time-units 1, 3 and 5 are hidden
since they do not contribute to the observed output b4. More interestingly,
the execution of tell(b4) in time-unit 1, as well as the recursive call of Beat4
(next 4 Beat4) in time-unit 5, are also hidden.

Now assume that we compute an even number of time-units. Then, no con-
straint is produced in that time-unit and the whole execution of System is
hidden:

{174 > [x ; *1} ==> {2/4 > [* ; *]} ==>
{374 > [x ; *1} ==> {4/4 > [* ; =]}
As a more compelling example, consider the following process definitions:

Beat 2 [1 next itell(beat) Start 2 >" next ‘(tell(start))
i€l i€ls

Check Zlask (start) then next 1%(tell(stop)) System 2 Beat | Start || Check

where I; = {0,3,5,7,9,11,14,16,18,20,22}, I, = {0,3,5,7,9,11} and II;
stands for parallel composition. This process represents a rhythmic pattern
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where groups of “2”-unit elements separate groups of “3”-unit elements, e.g.,
3 2222 3 22222, Such pattern appears in repertoires of Central African
—_—

Republic music [5] and were programmed in tcc in [21].

This pattern can be represented in a circle with 24 divisions, where “2” and
“3”-unit elements are placed. The “3”-unit intervals are displayed in red in Fig. 3.
The important property is asymmetry: if one attempts to break the circle into
two parts, it is not possible to have two equal parts. To be more precise, the
start and stop constraints divide the circle in two halves (see process Start)
and it is always the case that the constraint beat does not coincide in a time-
unit with the constraint stop. For instance, in Fig. 3(a) (resp. (b)), the circle is
divided in time-units 1 —start— to 13 —stop— (resp. 4 —start— to 16 —stop—). The
signal beat does not coincide with a stop: in Fig.3(a) (resp. (b)), the beat is
added in time-unit 12 (resp. 15).

If we generate one of the possible traces and perform the slicing processes
for the time-unit 13 with Ssceq = {beat, stop}, we only observe as relevant
process Check (since no beat is produced in that time-unit):

{1 / 13 > [System ; *] --> [Check ; *] --> [! ask(start, next~12(tell(stop)) ; *]

--> [ask(start, next~12(tell(stop)) ; *] --> [next~12(tell(stop) ; *]} ==>
ceel ==
{11 / 13 > [next(next(tell(stop))) ; *]} ==>
{12 / 13 > [next(tell(stop)) || * ; *]} ==>
{13 / 13 > [tell(stop) ; *] -—> [* ; stop] [0]}
More interestingly, assume that we wrongly write a process Check that is not
“well synchronized” with the process Beat. For instance, let 15 = {2}. In this
case, the start signal does not coincide with a beat. Then, in time-unit 15, we
(wrongly) observe both beat and stop (i.e., asymmetry is broken!). The trace
of that program (that can be found in tool’s web page) is quite long and difficult
to understand. On the contrary, the sliced one is rather simple:

{1 / 15 > [System ; *] --> [Beat || Check ; *] -->
[next~14(tell(beat) || next(! ask(start, next~12(tell(stop)); *]} ==>
{2 / 15 > [next~13(tell(beat)) || ! ask(start, next~12(tell(stop))) ; *]} ==>
{3 / 15 > [next~12(tell(beat))) || ! ask(start, next~12(tell(stop)) ; *]} ==>
{4 / 15 > [next~11(tell(beat)) || next~11(tell(stop)|| * ; *] --> stop} ==>

%ié / 15 > [next(tell(beat)) || next(tell(stop)) || * ; *] --> stop} ==>
{156 / 15 > [tell(beat) || tell(stop) || * ; *] --> [tell(stop) || * ; beat] -->
[* ; beat,stopl}

Something interesting in this trace is that the ask in the C'heck process is hidden
from the time-unit 4 on (since it is not “needed” any more). Moreover, the only
tell(beat) process (from Beat definition) displayed is the one that is executed in
time-unit 15 (i.e., the one resulting from next “tell(beat)). From this trace, it
is not difficult to note that the Start process starts on time-unit 3 (the process
next !!tell(stop) first appears on time-unit 4). This can tell the user that the
process Start begins its execution in a wrong time-unit. In order to confirm
this hypothesis, the user may compute the sliced trace up to time-unit 3 with
Ssticed = {beat,start} and notice that, in that time-unit, start is produced
but beat is not part of the store.

The reader may find in the web page of the tool a further example related to
biochemical systems. We modeled in tcc the P53/Mdm2 DNA-damage Repair
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Mechanism [16]. The slicer allowed us to detect two bugs in the written code.
We invite the reader to check in this example the length (and complexity) of the
buggy trace and the resulting sliced trace.

Fig. 3. Pattern of “2” and “3”-unit elements (taken from [5]).

5 Conclusions and Future Work

In this paper we introduced the first framework for slicing concurrent constraint
based programs, and showed its applicability for CCP and timed CCP. We imple-
mented a prototype of the slicer in Maude and showed its use in debugging a
program specifying a biochemical system and a multimedia interacting system.

Our framework is a good basis for dealing with other variants of CCP such as
linear CCP [10], spatial and epistemic CCP [14] as well as with other temporal
extensions of it [8]. We are currently working on extending our tool to cope with
these languages. We also plan to incorporate into our framework an assertion
language based on a suitable fragment of temporal logic. Such assertions will
specify invariants the program must satisfy during its execution. If the assertion
is not satisfied in a given state, then the execution is interrupted and a concrete
trace is generated to be later sliced. For instance, in the multimedia system, the
user may specify the invariant stop — (—beat) (if stop is entailed then beat
cannot be part of the store) or stop — Obeat (a stop state must be preceded
by a beat state).
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Abstract. We introduce a new native code compiler for Curry code-
named SPRITE. SPRITE is based on the Fair Scheme, a compilation
strategy that provides instructions for transforming declarative, non-
deterministic programs of a certain class into imperative, deterministic
code. We outline salient features of SPRITE, discuss its implementation
of Curry programs, and present benchmarking results. SPRITE is the
first-to-date operationally complete implementation of Curry. Prelimi-
nary results show that ensuring this property does not incur a significant
penalty.

Keywords: Functional logic programming - Compiler implementation -
Operational completeness

1 Introduction

The functional-logic language Curry [16,18] is a syntactically small extension of
the popular functional language Haskell. Its seamless combination of functional
and logic programming concepts gives rise to hybrid features that encourage
expressive, abstract, and declarative programs [5,18].

One example of such a feature is a functional pattern [3], in which functions
are invoked in the left-hand sides of rules. This is an intuitive way to construct
patterns with syntactically-sugared high-level features that puts patterns on a
more even footing with expressions. In Curry, patterns can be composed and
refactored like other code, and encapsulation can be used to hide details. We
illustrate this with function get, defined below, which finds the values associated
with a key in a list of key-value pairs.

with x = _ ++ [x] ++ _ (1)
get key (with (key, value)) = value

Operation with generates all lists containing x. The anonymous variables, indi-
cated by “_”, are place holders for expressions that are not used. Function “++”
is the list-appending operator. When used in a left-hand side, as in the rule

This material is based upon work partially supported by the National Science Foun-
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© Springer International Publishing AG 2017

M.V. Hermenegildo and P. Lopez-Garcia (Eds.): LOPSTR 2016, LNCS 10184, pp. 97-113, 2017.
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for get, operation with produces a pattern that matches any list containing x.
Thus, the second argument to get is a list — any list — containing the pair
(key, value). The repeated variable, key, implies a constraint that, in this
case, ensures that only values associated with the given key are selected.

By similar means, we may identify keys:

key_of (with (key, _)) = key (2)

This non-deterministically returns a key of the given list; for example:

> key_of [(’a’,0), (°b’,1), (°c’,2)]
Ja7

3
@ 3)
,C,

This is just one of many features [5,18] that make Curry an appealing choice,
particularly when the desired properties of a program result are easy to describe,
but a set of step-by-step instructions to obtain the result is more difficult to
come by.

This paper describes work towards a new Curry compiler we call SPRITE.
SPRITE aims to be the first operationally complete Curry compiler, meaning it
should produce every value of a source program (given sufficient time and space
resources). This paper does not present new theoretical results. The foundations
of our work were previously presented in [7], that sets out rules for compil-
ing a functional-logic program (in the form of a graph rewriting system) into
abstract deterministic procedures that easily map to the instructions of a low-
level programming language. The main contribution of this work is a compiler
whose existence and performance prove that the completeness of the strategy
presented in [7] can be operationally achieved without incurring noticeable over-
head. The compiler generates object code that include several novel ideas. The
code, based on an open-source effort [22], is machine-independent and suitable
for optimization on various architectures. The graphs rewritten by the code have
nodes all of the same size. This allows destructive updates for redex replacement
which entirely by-pass the pointer redirection phase of a step and consequently
improves the efficiency eases memory management. The code also introduces a
very lean pattern matching scheme, specifically designed for functional logic
languages, which accommodate non-determinism and consequently is failure
tolerant.

Section 2 introduces SPRITE at a high level, and describes the transforma-
tions it performs. Section 3 describes the implementation of Curry programs as
imperative code. Section 4 contains benchmark results. Section 5 describes other
Curry compilers. Section 6 addresses future work, and Sect. 7 contains our con-
cluding remarks.
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2 The Sprite Curry Compiler

SPRITE is a native code compiler for Curry. Like all compilers, SPRITE subjects
source programs to a series of transformations. To begin, an external program
is used to convert Curry source code into a desugared representation called
FlatCurry [17], which SPRITE further transforms into a custom intermediate
representation we call ICurry. Then, following the steps laid out in the Fair
Scheme, SPRITE converts ICurry into a graph rewriting system that implements
the program. This system is realized in a low-level, machine-independent lan-
guage provided by the open-source compiler infrastructure library LLVM [22].
That code is then optimized and lowered to native assembly, ultimately pro-
ducing an executable program. SPRITE provides a convenience program, scc, to
coordinate the whole procedure.

2.1 ICurry vs FlatCurry

ICurry, where the “I” stands for “imperative,” is a form of Curry programs
suitable for translation into imperative code. ICurry is inspired by FlatCurry
[17], a popular representation of Curry programs that has been very successful
for a variety of tasks including implementations in Prolog [19]. FlatCurry pro-
vides expressions that resemble those of a functional program — e.g., pattern-
matching strategy is made explicit through case expressions that use symbolic
variables that have no corresponding element in an imperative language. These
case expressions may include local mutually recursive declarations in the form
of let blocks and conditionals in the form of nested case constructs which again
have no corresponding elements in an imperative language. ICurry’s purpose is to
represent the program in a more convenient imperative form — more convenient
since SPRITE will ultimately implement it in an imperative language. In imper-
ative languages, local declarations and conditionals take the form of statements
while expressions are limited to constants and/or calls to subroutines, possibly
nested. ICurry provides statements for local declarations and conditionals. It
provides expressions that avoid constructs that cannot be directly translated
into the expressions of a imperative language.

In ICurry all non-determinism — including the implicit non-determinism in
high-level features, such as functional patterns — is expressed through choices.
A choice is the archetypal non-deterministic function, indicated by the symbol
“?” and defined by the following rules:

X ?7_=X
4
_?7y=y3 ()

The use of only choices is made possible, in part, by a duality between choices
and free variables [4,23]: any language feature expressed with choices can be
implemented with free variables and vice versa. Algorithms exists to convert one
to the other, meaning we are free to choose the most convenient representation
in SPRITE.
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Finally, as in FlatCurry, the pattern-matching strategy in ICurry is made
explicit and guided by a definitional tree [1], a structure made up of stepwise
case distinctions that combines all rules of a function. We illustrate this for the
zip function, defined as:

zip [1 - =1
zip (_:) [1 =1 (5)
zip (x:xs) (y:ys) = (x,y) : zip xs ys

The corresponding definitional tree is shown below as it might appear in ICurry.

zip = \a b -> case a of
(] -> [
(x:x8) -> case b of (6)
d -> [
(y:ys) -> (x,y) : zip xs ys

2.2 Evaluating ICurry

It is understood how to evaluate the right-hand side of (6) efficiently; the Spine-
less Tagless G-machine (STG) [28], for instance, is up to the task. But the
non-deterministic properties of functional-logic programs complicate matters.
To evaluate zip, its first argument must be reduced to head-normal form. In
a purely functional language, the root node of a head-normal form is always a
data constructor symbol (assuming partial application is implemented by a data-
like object), or else the computation fails. But for functional-logic programs,
two additional possibilities must be considered, leading to an extended case
distinction:

zip = \a b -> case a of

x 7y -> (pull-tab) - - implied
1 -> 1 - - implied (7)
(] -> []

(x:xs8) —-> case b of ...

The infrastructure for executing this kind of pattern matching very efficiently
by means of dispatch tables will be described shortly, but for now we note two
things. First, there is no need for ICurry to spell out these extra cases, as they
can be generated by the compiler. Second, their presence calls for an expanded
notion of the computation that allows for additional node states. Because of this,
SPRITE hosts computations in a graph whose nodes are taken from four classes:
constructors, functions, choices, and failures. Constructors and functions are pro-
vided by the source program; choices are built-in; and failures, denoted “1”, arise
from incompletely defined operations such as head, the function that returns the
head of a list. For example, head [] rewrites to “L”. A simple replacement there-
fore propagates failure from needed arguments to roots.
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Choices execute a special step called a pull-tab [2,9]. Pull-tab steps lift non-
determinism out of needed positions, where they prevent completion of pattern
matches. The result is a choice between two more-definite expressions. A pull-tab
step is shown below:

zip (@ ? b) ¢ — zip a x ? zip b x where x = ¢ (8)

A pattern match cannot proceed while (a ? b) is the first argument to zip
because there is no matching rule in the function definition (one cannot exist
because the choice symbol is disallowed on left-hand sides). We do not want
to choose between a and b because such a choice would have to be reconsid-
ered to avoid losing potential results. The pull-tab transformation “pulls” the
choice to an outermore position, producing two new subexpressions, zip a c and
zip b c, that can be evaluated further. The fact that c is shared in the result
illustrates a desirable property: that node duplication is minimal and localized.
Pull-tabbing involves some technicalities that we address later. The complete
details are in [2].

Due to the extra cases, additional node types, and, especially, the unusual
mechanics of pull-tabbing steps, we chose to develop in SPRITE a new evalua-
tion machine from scratch rather than augment an existing one such as STG.
The property of pull-tabbing that it “breaks-out” of recursively-descending eval-
uation into nested expressions fundamentally changes the computation so that
existing functional strategies are difficult to apply. In SPRITE, we have imple-
mented de novo an evaluation mechanism and runtime system based on the Fair
Scheme. These are the topic of the next section.

3 Implementation

In this section, we describe the implementation of Curry programs in imperative
code. SPRITE generates LLVM code, but we assume most readers are not familiar
with that. So, rather than presenting the generated code, we describe the imple-
mented programs in terms of familiar concepts that appear directly in LLVM.
In this way, the reader can think in terms of an unspecified target language —
one similar to assembly — that implements those concepts. To facilitate the fol-
lowing description, we indicate in parentheses where a similar feature exists in
the C programming language.

In the target language, values are strongly typed, and the types include inte-
gers, pointers, arrays, structures and functions. Programs are arranged into com-
pilation units called modules that contain symbols. Symbols are visible to other
modules, and to control access to them each one is marked internal (static)
or external (extern). Control flow within functions is carried out by branch
instructions. These include unconditional branches (goto), conditional branches
(if, for, while) and indirect branches (goto*). The target of every branch
instruction is a function-local address (label). A call stack is provided, and it
is manipulated by call and return instructions that enter and exit functions,
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respectively. Calls are normally executed in a fresh stack frame, but the target
language also supports explicit tail recursion, and SPRITE puts it to good use.

3.1 Expression Representation

The expressions evaluated by a program are graphs consisting of labeled nodes
having zero or more successors. Each node belongs to one of four classes, as
discussed in the previous section. For constructors and functions, node labels
are equivalent to symbols defined in the source program. Failures and choices
are labeled with reserved symbols. Successors are references to other nodes. The
number of successors, which equals the arity of the corresponding symbol, is fixed
at compile time. Partial applications are “firstfied”, i.e., encoded in first-order
rule as per [26].

Heap Object

Info Pointer Payload

Info Table

Step Function

Fig. 1. The heap object layout.

SPRITE implements graph nodes as heap objects. The layout of a heap object
is shown in Fig. 1. The label is implemented as a pointer to a static info table
that will be described later. SPRITE emits exactly one table for each symbol
in the Curry program. Successors are implemented as pointers to other heap
objects.

3.2 Evaluation

Evaluation in SPRITE is the repeated execution of rewriting and pull-tabbing
steps. Both are implemented by two interleaved activities: replacement and
pattern-matching. A replacement produces a new graph from a previous one
by replacing a subexpression matching the left-hand side of a rule with the cor-
responding right-hand side. For instance, 1 + 1 might be replaced with 2. A
replacement is implemented by overwriting the heap object at the root of the
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subexpression being replaced. The key advantage of this destructive update is
that no pointer redirection [12, Definition 8] [15] is required during a rewrite
step. Reusing a heap object also has the advantage of saving one memory allo-
cation and deallocation per replacement, but requires that every heap object be
capable of storing any node, whatever its arity. SPRITE meets this requirement
by providing in heap objects a fixed amount of space capable of holding a small
number of successors. For nodes with more successors than would fit in this
space, the payload instead contains a pointer to a larger array. This approach
simplifies memory management for heap objects: since they are all the same
size, a single memory pool suffices. Because arities are known at compile time,
no runtime checks are needed to determine whether successor pointers reside in
the heap object. Sprite uses a simple mark-and-sweep garbage collector. It can
be changed or replaced easily and is not a focus of this work.

Pattern-matching consists of cascading case distinctions over the root symbol
of the expression being matched that culminate either in a replacement or in the
patter match of a subexpression. The Fair Scheme implements this according to
a strategy guided by the definitional trees encoded in ICurry. Case distinction
as exemplified in (7) assumes that an expression being matched is not rooted by
a function symbol. Thus, when a node needed to complete a match is labeled
by a function symbol, the expression rooted by that node is evaluated until it
is labeled by a non-function symbol. A function-labeled node, n, is evaluated
by a target function called the step function that performs a pattern match and
replacement at n. Each Curry function gives rise to one target function, a pointer
to which is stored in the associated info table (see Fig.1).

range 0 .. 4

—— function
—— choice
—— failure
—— nil

—T—> cons

Fig. 2. Schematic representation of the SPRITE tagged dispatching mechanism for a
distinction of a List type.

Operationally, pattern-matching amounts to evaluating nested case expres-
sions similar to the one shown in (7). SPRITE implements this through a mech-
anism we call tagged dispatch. With this approach, the compiler assigns each
symbol a tag at compile time. Tags are sequential integers indicating which of
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the four classes discussed earlier the node belongs to. The three lowest tags are
reserved for functions, choices, and failures (all functions have the same tag).
For constructors, the tag additionally indicates which constructor of its type the
symbol represents. To see how this works, consider the following type definition:

data ABC = A | B | C 9)

ABC comprises three constructors in a well-defined order (any fixed order would
do). To distinguish between them, SPRITE tags these with sequential numbers
starting at the integer that follows the reserved tags. So, the tag of A is one less
than the tag of B, which is one less than the tag of C. These values are unique
within the type, but not throughout the program: the first constructor of each
type, for instance, always has the same tag. Following these rules, it is easy to see
that every case selector is a node tagged with one of 3+ N consecutive integers,
where NN is the number of constructors in its type. To compile a case expression,
SPRITE emits a jump table that transfers control to a code block appropriate for
handling the selector tag. For example, the block that handles failure rewrites
to failure, and the block that handles choices executes a pull-tab. This is shown
schematically in Fig. 2. It is in general impossible to know at compile time which
constructors may be encountered when the program runs, so the jump table
must be complete. If a functional logic program does not define a branch for
some constructor — i.e., a function is not completely defined — the branch for
that constructor is a rewrite to failure.

To implement tagged dispatch, SPRITE creates function-local code blocks as
labels, constructs a static jump table containing their addresses, and executes
indirect branch instructions — based on the selector tag — through the table.
Figure 3 shows a fragment of C code that approximates this. Case distinction
occurs over a variable of List type with two constructors, nil and cons. Five

static void* jump_table[5] = {
&function_tag, &choice_tag, &failure_tag, &nil_tag, &cons_tag

};
entry: goto* jump_table[selector.tag];
function_tag: call_step_function(selector);
goto* jump_table[selector.tag];
choice_tag: /*execute a pull tab*/
failure_tag: /*rewrite to failure*/
nil_tag: /*rewrite to []*/
cons_tag: /*process the nested case expression*/

Fig. 3. An illustrative implementation in C of the case expression shown in (7).
This code fragment would appear in the body of the step function for zip. Variable
selector refers to the case selector. Label entry indicates the entry point into this case
expression.
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labeled code blocks handle the five tags that may appear at the case selector. A
static array of label address implements the jump table. This example assumes
the function, choice, failure, nil, and cons tags take the values zero through four,
respectively. The jump table contains one extra case not depicted in (7). When
the selector is a function, the step function of the selector root label is applied
as many times as necessary until the selector class is no longer function.

3.3 Completeness and Consistency

SPRITE aims to be the first complete Curry compiler. Informally, complete means
the program produces every intended result of the source program. More pre-
cisely, and especially for infinite computations, any value will eventually be
produced, given enough resources. This is a difficult problem because a non-
terminating computation for obtaining one result could block progress of some
other computation that would obtain another result. For example, the following
program has a result, 1, that can be obtained in only a couple of steps, but
existing Curry compilers fail to produce it:

loop = loop (10)
main = loop 7 (1 7 loop)

The Fair Scheme defines a complete evaluation strategy. It creates a work queue
containing in turn any expression that might produce a result. At all times, the
expression at the head of the queue is active, meaning it is being evaluated. Ini-
tially, the work queue contains only the goal expression. Whenever pull-tabbing
places a choice at the root of an expression, that expression forks. It is removed
from the queue, and its two alternatives are added. Whenever an expression pro-
duces a value, it is removed from the queue. To avoid endlessly working on an
expression whose evaluation does not terminate, the program rotates the active
expression to the end of the work queue every so often. In so doing, SPRITE guar-
antees that no expression is ignored forever, hence no potential result is lost.

A proof of correctness of compiled programs is provided in [7] for the abstract
formulation of the compiler, the Fair Scheme. In this domain, correctness is the
property that an executable program produces all and only the values intended
by the corresponding source program. A delicate point is raised by pull-tabbing.
A pull-tab step may duplicate or clone a choice, as the following example shows.
Cloned choices should be seen as a single choice. Thus when a computation
reduces a choice to its right alternative, it should also reduce any other clone
of the same choice to the right alternative, and likewise for the left alternative.
Computations obeying this condition are called consistent.

Xor X X where x =T 7 F
—pull—tab (xor T x) 7 (xor F x) where x =T 7 F (11)

In the example above, a pull-tab step applied to the choice in x leads to its
duplication. Now, when evaluating either alternative of the topmost choice, a



106 S. Antoy and A. Jost

consistent strategy must recognize that the remaining choice (in x) is already
made. For instance, when evaluating xor T x, the value of x can only be T, the
left alternative, because the left alternative of x has already been selected to
obtain xor T x. To keep track of clones, the Fair Scheme annotates choices with
identifiers. Two choice nodes with identical identifiers represent the same choice.
Fresh identifiers are assigned when new choices arise from a replacement; pull-tab
steps copy existing identifiers. Every expression in the work queue owns a finger-
print, which is a mapping from choice identifiers to values in the set {left,right}.
The fingerprint is used to detect and remove inconsistent computations from the
work queue.

It is possible to syntactically pre-compute pull-tab steps: that is, a case state-
ment such as the one in (7) could implement pull-tabbing by defining an appro-
priate right-hand side rule for the choice branch. In fact, a major competing
implementation of Curry does exactly that [8]. A disadvantage of that approach
is that choice identifiers must appear as first-class citizens of the program and
be propagated through pull-tab steps using additional rules not encoded in the
source program. We believe it is more efficient to embed choice identifiers in
choice nodes as an implementation detail and process pull-tab steps dynami-
cally. Section 4.2 compares these two approaches in greater detail.

4 Performance

In this section we present a set of benchmark results. These programs were
previous used to compare three implementations of Curry [8]: Mcc, PAKCS,
and K1CS2. We shall use KICS2 to perform direct comparisons with SPRITE!,
since it compares favorably to the others, and mention the relative performance
of the others. KiCS2 compiles Curry to Haskell and then uses the Glasgow
Haskell Compiler (GHC) [13] to produce executables. GHC has been shown to
produce very efficient code [20,21,27]. Like SPRITE, K1CS2 uses a pull-tabbing
evaluation strategy, but unlike SPRITE, it does not form a work queue; hence,
is incomplete when faced with programs such as (10). Instead, it builds a tree
containing all values of the program and executes (lazily and with interleaved
steps) a user-selected search algorithm.

A major highlight of KiCS2 is that purely functional programs compile to
“straight” Haskell, thus incurring no overhead due to the presence of unused logic
capabilities. SPRITE, too, enjoys this zero-overhead property, but there is little
room to improve upon GHC for functional programs, as it is the beneficiary of
exponentially more effort. Our goal for functional programs, therefore, is simply
to measure and minimize the penalty of running SPRITE. For programs that
utilize logic features KiCS2 emits Haskell code that simulates non-determinism.
In these cases, there is more room for improvement since, for example, SPRITE
can avoid simulation overhead by more directly implementing logic features.

! Available at https://github.com/andyjost/Sprite-3.
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Program Type KiCS2 SPRITE A

PaliFunPats FL 0.64 0.09 -7.1
LastFunPats FL 1.85 0.30 -6.2
Last FL 1.90 0.31 -6.1
PermSortPeano FL 44.04 8.14 -5.4
PermSort FL 42.72 8.15 -5.3
ExpVarFunPats FL 5.92 1.29 -4.6
Half FL 42.31 9.55 -4.4
Reverse F 0.36 0.21 -1.7
ReverseUser F 0.34 0.21 -1.6
ReverseBuiltin F 0.40 0.39 -1.0
ReverseHO F 0.36 0.39 1.1
Primes F 0.29 0.32 1.1
ShareNonDet FL 0.28 0.33 1.2
PrimesBuiltin F 0.73 1.10 1.5
PrimesPeano F 0.41 0.66 1.6
QueensUser F 0.87 1.83 2.1
Queens F 0.80 1.81 2.3
TakPeano F 0.84 2.08 2.5
Tak F 0.32 0.92 2.9

Fig. 4. Execution times for a set of functional (F') and functional-logic (F'L) programs
taken from the KiCS2 benchmark suite. Times are in seconds. The final column (A)
reports the speed-up (negative) or slow-down (positive) factor of SPRITE relative to
Ki1CS2. System configuration: Intel i5-3470 CPU at 3.20 GHz, Ubuntu Linux 14.04.

4.1 Functional Programs

The execution times for a set of programs taken from the KiCS2 benchmark
suite’ are shown in Fig.4. The results are arranged in order from greatest
improvement to greatest degradation in execution time. The most striking fea-
ture is the clear division between the functional (deterministic) and functional-
logic (non-deterministic) subsets, which is consistent with our above-stated
expectations. On average, SPRITE produces relatively slower code for functional
programs and relatively faster code for functional-logic ones. We calculate aver-
ages as the geometric mean, since that method is not strongly influenced by
extreme results in either direction. The functional subset runs, on average, 1.4x
slower in SPRITE as compared to K1CS2. Figures published by Brafel et al. [8,
Figs. 2 and 3] indicate that PAKCS and McC run 148x and 9x slower than K1CS2,
respectively, for these programs. We take these results as an indication that the
functional parts of SPRITE — i.e., those parts responsible for pattern-matching,
rewriting, memory management, and optimization — although not as finely-
tuned as their GHC counterparts, still compare favorably to most mainstream
Curry compilers.

We note that SPRITE currently does not perform optimizations such as defor-
estation [14] or unboxing [21]. These, and other optimizations of ICurry, e.g., [6],

2 Downloaded from https://www-ps.informatik.uni-kiel.de/kics2/benchmarks.
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could potentially impact the benchmark results. Inspecting the output of GHC
reveals that the tak program (incidentally, the worse-case for SPRITE) is opti-
mized by GHC to a fully-unboxed computation. To see how LLVM stacks up,
we rewrote the program in C and converted it to LLVM using Clang [11], a C
language front-end for LLVM. When we compiled this to native code and mea-
sured the execution time, we found that it was identical® to the KiCS2 (and
GHC) time. We therefore see no fundamental barrier to reducing the SPRITE
“penalty” to zero for this program, and perhaps others, too. We have reason to
be optimistic that implementing more optimizations at the source and ICurry
levels, without fundamentally changing the core of SPRITE, will yield substantive
improvements to SPRITE.

4.2 Functional-Logic Programs

For the functional-logic subset, Fig.4 shows that SPRITE produces relatively
faster code: 4.4x faster, on average. Published comparisons [8, Fig. 4] indicate
that, compared to KiCS2, PAKCS is 5.5x slower and Mcc is 3.5x faster for
these programs. Our first thought after seeing this result was that SPRITE might
enjoy a better algorithmic complexity. We had just completed work to reduce
SPRITE’s complexity when processing choices, so perhaps, we thought, in doing
that work we had surpassed KiCS2. We set out to test this by selecting a
program dominated by choice generation and running it for different input sizes,
with and without the recent modifications to SPRITE. The results are shown
in Fig.5. Contrary to our expectation, SPRITE and KiCS2 exhibit strikingly
similar complexity: both fit an exponential curve with r2 in excess of 0.999, and
their slope coefficients differ by less than 2%. A better explanation, then, for the
difference is that some constant factor ¢ exists, such that choice-involved steps
in SPRITE are c-times faster than in KiCS2. What could account for this factor?
We believe the best explanation is the overhead of simulating non-determinism
in Haskell, which we alluded to at the end of Sect. 3.3. To see why, we need to
look at K1CS2 in more detail.

KI1CS2 uses a few helper functions [8, Sect. 3.1] to generate choice identifiers:

thisID :: IDSupply -> ID
leftSupply :: IDSupply -> IDSupply (12)
rightSupply :: IDSupply -> IDSupply

The purpose of these functions is to ensure that choice identifiers are never
reused. Here, ID is the type of a choice identifier and IDSupply is opaque (for
our purposes). Any function that might produce a choice is implicitly extended
by Ki1CS2 to accept a supply function. As an example, this program

f :: Bool
main = xor f (False 7 True)

(13)

3 Using the Linux time command, whose resolution is 0.01s.



A New Functional-Logic Compiler for Curry: SPRITE 109

PermSort Complexity

100

10
[
£
£

§ !
g
3

0.1

0.01

10 11 12 13 14
L KiCS2 A Sprite

Fig. 5. Complexity analysis of PermSort. Execution times are shown for a range of
problem sizes. The horizontal axis indicates the number of integers to sort by the
permute-and-test method.

is compiled to

main s = let sl leftSupply s

rightSupply s

leftSupply s2 (14)
s4 = rightSupply s2

in xor (f s3) (Choice (thisID s4) False True) si

n 0
w N
nn

Clearly, the conversion to Haskell introduces overhead. The point here is simply
to see that the compiled code involves five calls (to helper functions) that were
not present in the source program. These reflect the cost of simulating non-
determinism in a purely-functional language.

In SPRITE, fresh choice identifiers are created by reading and incrementing
a static integer. Compared to the above approach, fewer parameters are passed
and fewer functions are called. A similar approach could be used in a Haskell
implementation of Curry, but it would rely on impure features, adding another
layer of complexity and perhaps interfering with optimizations. By contrast, the
SPRITE approach is extreme in its simplicity, as it executes only a few machine
instructions. There is a remote possibility that a computation could exhaust the
supply of identifiers since the type integer is finite. KiCS2 uses a list structure
for choice identifiers and so does not suffer from this potential shortcoming.
Certainly, the choice identifiers could be made arbitrarily large, but doing so
increases memory usage and overhead. A better approach, we believe, would



110 S. Antoy and A. Jost

be to compact the set of identifiers during garbage collection. The idea is that
whenever a full collection occurs, SPRITE would renumber the n choice identifiers
in service at that time so that they fall into the contiguous range 0,...,n — 1.
This potential optimization illustrates the benefits of having total control over
the implementation, since in this case it makes modifying the garbage collector
a viable option.

5 Related Work

Several Curry compilers are easily accessible, most notably PAkcs [19], KiCS2
[8] and Mcc [25]. All these compilers implement a lazy evaluation strategy, based
on definitional trees, that executes only needed steps, but differ in the control
strategy that selects the order in which the alternatives of a choice are executed.

Both Pakcs and Mcc use backtracking. They attempt to evaluate all the
values of the left alternative of a choice before turning to the right alterna-
tive. Backtracking is simple and relatively efficient, but incomplete. Hence, a
benchmark against these compilers may be interesting to understand the differ-
ences between backtracking and pull-tabbing, but not to assess the efficiency of
SPRITE.

By contrast, KiCS2’s control strategy uses pull-tabbing, hence the computa-
tions executed by KiCS2 are much closer to those of SPRITE. KICS2’s compiler
translates Curry source code into Haskell source code which is then processed
by GHC [13], a mainstream Haskell compiler. The compiled code benefits from
a variety of optimizations available in GHC. Section 4 contains a more detailed
comparison between SPRITE and KiCS2.

There exist other functional logic languages, e.g., 7OY [10,24], whose oper-
ational semantics can be abstracted by needed narrowing steps of a constructor-
based graph rewriting system. Some of our ideas could be applied with almost
no changes to the implementation of these languages.

A comparison with graph machines for functional languages is problematic
at best. Despite the remarkable syntactic similarities, Curry’s syntax extends
Haskell’s with a single construct, a free variable declaration, the semantic dif-
ferences are profound. There are purely functional programs whose execution
produces a result as Curry, but does not terminate as Haskell [5, Sect. 3]. Fur-
thermore, functional logic computations must be prepared to encounter non-
determinism and free variables. Hence, situations and goals significantly differ.

6 Future Work

Compilers are among the most complex software artifacts. They are often bun-
dled with extensions and additions such as optimizers, profilers, tracers, debug-
gers, external libraries for application domains such as databases or graphical
user interfaces. Given this reality, there are countless opportunities for future
work. We have no plans at this time to choose any one of the extensions and
additions listed above before any other. Some optimizations mentioned earlier,
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e.g., unboxing integers, are appealing only because they would improve some
benchmark, and thus the overall perceived performance of the compiler, but
they may contribute very marginally to the efficiency of more realistic programs.
Usability-related extensions and additions, such as aids for tracing and debug-
ging an execution, and external libraries may better contribute to the acceptance
of our work.

7 Conclusion

We have presented SPRITE, a new native code compiler for Curry. SPRITE com-
bines the best features of existing Curry compilers. Similar to KICS2, SPRITE’s
strategy is based on pull-tabbing, hence there is no an inherent loss of complete-
ness of compilers based on backtracking such as PAKCS and Mcc. SPRITE com-
piles to an imperative target language, hence is amenable to low-level machine
optimization. It is the only compiler to date designed to ensure operational
completeness—all the values of an expression are eventually produced given
enough computational resources.

SPRITE’s main intermediate language, ICurry, represents programs as graph
rewriting systems. We described the implementation of Curry programs in imper-
ative code using concepts of a low-level target language. Graph nodes are rep-
resented in memory as heap objects, and an efficient mechanism called tagged
dispatch is used to perform pattern matches. Finally, we discussed the mecha-
nisms used by SPRITE to ensure completeness and consistency, and presented
empirical data for a set of benchmarking programs. The benchmarks reveal that
SPRITE is competitive with a leading implementation of Curry.
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Abstract. State-of-the-art answer set programming (ASP) solvers rely
on a program called a grounder to convert non-ground programs con-
taining variables into variable-free, propositional programs. The size of
this grounding depends heavily on the size of the non-ground rules, and
thus, reducing the size of such rules is a promising approach to improve
solving performance. To this end, in this paper we announce Ipopt, a tool
that decomposes large logic programming rules into smaller rules that
are easier to handle for current solvers. The tool is specifically tailored
to handle the standard syntax of the ASP language (ASP-Core) and
makes it easier for users to write efficient and intuitive ASP programs,
which would otherwise often require significant hand-tuning by expert
ASP engineers. It is based on an idea proposed by Morak and Woltran
(2012) that we extend significantly in order to handle the full ASP syn-
tax, including complex constructs like aggregates, weak constraints, and
arithmetic expressions. We present the algorithm, the theoretical foun-
dations on how to treat these constructs, as well as an experimental
evaluation showing the viability of our approach.

1 Introduction

Answer set programming (ASP) [9,14,16,18] is a well-established logic program-
ming paradigm based on the stable model semantics of logic programs. Its main
advantage is an intuitive, declarative language, and the fact that, generally, each
answer set of a given logic program describes a valid answer to the original ques-
tion. Moreover, ASP solvers—see e.g. [1,2,13,15]—have made huge strides in
efficiency.

A logic program usually consists of a set of logical implications by which new
facts can be inferred from existing ones, and a set of facts that represent the
concrete input instance. Logic programming in general, and ASP in particular,
have also gained popularity because of their intuitive, declarative syntax. The
following example illustrates this:

Ezxample 1. The following rule naturally expresses the fact that two people are
relatives of the same generation up to second cousin if they share a great-
grandparent.
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uptosecondcousin(X, Y) :-
parent (X, PX), parent(PX, GPX),
parent (GPX, GGP), parent(GPY, GGP),
parent(PY, GPY), parent(Y, PY), X != Y. O

Rules written in an intuitive fashion, like the one in the above example, are
usually larger than strictly necessary. Unfortunately, the use of large rules causes
problems for current ASP solvers since the input program is grounded first (i.e.
all the variables in each rule are replaced by all possible, valid combinations of
constants). This grounding step generally requires exponential time for rules of
arbitrary size. In practice, the grounding time can thus become prohibitively
large. Also, the ASP solver is usually quicker in evaluating the program if the
grounding size remains small.

In order to increase solving performance, we could therefore split the rule in
Example 1 up into several smaller ones by hand, keeping track of grandparents
and great-grandparents in separate predicates, and then writing a smaller version
of the second cousin rule. While this is comparatively easy to do for this example,
this can become very tedious if the rules become even more complex and larger,
maybe also involving negation or arithmetic expressions. However, since current
ASP grounders and solvers become increasingly slower with larger rules, and
noting the fact that ASP programs often need expert hand-tuning to perform
well in practice, this represents a significant entry barrier and contradicts the fact
that logic programs should be fully declarative: in a perfect world, the concrete
formulation should not have an impact on the runtime. In addition, to minimize
solver runtime in general, it is therefore one of our goals to enable logic programs
to be written in an intuitive, fully declarative way without having to think about
various technical encoding optimizations.

To this end, in this paper we propose the lpopt tool that automatically
optimizes and rewrites large logic programming rules into multiple smaller ones
in order to improve solving performance. This tool, based on an idea proposed
for very simple ASP programs in [19], uses the concept of tree decompositions
of rules to split them into smaller chunks. Intuitively, via a tree decomposition
joins in the body of a rule are arranged into a tree-like form. Joins that belong
together are then split off into a separate rule, only keeping the join result in a
temporary atom. We then extend the algorithm to handle the entire standardized
ASP language [11], and also introduce new optimizations for complex language
constructs such as weak constraints, arithmetic expressions, and aggregates.

The main contributions of this paper are therefore as follows:

— we extend, on a theoretical basis, the Ipopt algorithm proposed in [19] to
the full syntax of the ASP language according to the ASP-Core-2 language
specification [11];

— we establish how to treat complex constructs like aggregates, and propose an
adaptation of the decomposition approach so that it can split up large aggre-
gate expressions into multiple smaller rules and expressions, further reducing
the grounding size;
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— we implement the Ipopt algorithm in C++, yielding the 1popt tool for auto-
mated logic program optimization, and give an overview of how this tool is
used in practice; and

— we perform an experimental evaluation of the tool on the encodings and
instances used in the fifth Answer Set Programming Competition [12] which
show the benefit of our approach, even for encodings already heavily hand-
optimized by ASP experts.

2 Preliminaries

General Definitions. We define two pairwise disjoint countably infinite sets of
symbols: a set C of constants and a set V of wvariables. Different constants
represent different values (unique name assumption). By X we denote sequences
(or, with slight notational abuse, sets) of variables Xi,..., X} with k > 0. For
brevity, let [n] = {1,...,n}, for any integer n > 1.

A (relational) schema S is a (finite) set of relational symbols (or predicates).
We write p/n for the fact that p is an n-ary predicate. A term is a constant
or variable. An atomic formula a over S (called S-atom) has the form p(t),
where p € S and t is a sequence of terms. An S-literal is either an S-atom (i.e.
a positive literal), or an S-atom preceded by the negation symbol “=" (i.e. a
negative literal). For a literal ¢, we write dom(¢) for the set of its terms, and
var(f) for its variables. This notation naturally extends to sets of literals. For
brevity, we will treat conjunctions of literals as sets. For a domain C' C C, a (total
or two-valued) S-interpretation I is a set of S-atoms containing only constants
from C such that, for every S-atom p(a) € I, p(a) is true, and otherwise false.
When obvious from the context, we will omit the schema-prefix.

A substitution from a set of literals L to a set of literals L’ is a mapping
s : CUV — CUYV that is defined on dom(L), is the identity on C, and
p(t1,...,tn) € L (resp. =p(t1,...,tn) € L) implies p(s(t1),...,s(tn)) € L'/
(resp., =p(s(t1),...,s(tn)) € L').

Answer Set Programming (ASP). A logic programming rule is a universally
quantified reverse first-order implication of the form

H(X,Y) — BY(X,Y,Z,W) A B~ (X,Z),

where H (the head), resp. BT (the positive body), is a disjunction, resp. conjunc-
tion, of atoms, and B~ (the negative body) is a conjunction of negative literals,
each over terms from CUV. For a rule 7, let H(r), BT (7), and B~ (7) denote the
set of atoms occurring in the head, the positive, and the negative body, respec-
tively. Let B(m) = BT (m)UB ™~ (m). A rule 7 where H () = () is called a constraint.
Substitutions naturally extend to rules. We focus on safe rules where every vari-
able in the rule occurs in the positive body. A rule is called ground if all its terms
are constants. The grounding of a rule 7 w.r.t. a domain C' C C is the set of rules
ground(m) = {s(m) | s is a substitution, mapping var(m) to elements from C}.
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A logic program II is a finite set of logic programming rules. The schema of a
program II, denoted sch(II), is the set of predicates appearing in IT. The active
domain of II, denoted adom(IT), with adom(II) C C, is the set of constants
appearing in IT. A program I is ground if all its rules are ground. The grounding
of a program II is the ground program ground(II) = U, ¢ ground ,gqmm)(7)-
The (Gelfond-Lifschitz) reduct of a ground program II w.r.t. an interpretation
I is the ground program IT! = {H(7) « B*(n) |7 € II, B~ (7) NI = 0}.

A sch(IT)-interpretation I is a (classical) model of a ground program II,
denoted I F IT if, for every ground rule w € II, it holds that I N BT (x) = 0 or
IN(H(m)UB™(m)) # 0, that is, I satisfies 7. I is a stable model (or answer set)
of IT, denoted I &, IT if, in addition, there is no J C I such that J E IT7, that is,
I is subset-minimal w.r.t. the reduct II7. The set of answer sets of II, denoted
AS(IT), are defined as AS(IT) = {I | I is a sch(II)-interpretation, and I ¢ IT}.
For a non-ground program II, we define AS(IT) = AS(ground(II)). When refer-
ring to the fact that a logic program is intended to be interpreted under the
answer set semantics, we often refer to it as an ASP program.

Tree Decompositions. A tree decomposition of a graph G = (V, E) is a pair
T = (T, x), where T is a rooted tree and x is a labelling function over nodes ¢
of T, with x(t) C V called the bag of t, such that the following holds: (i) for each
v € V, there exists a node ¢ in T, such that v € x(¢); (ii) for each {v,w} € E,
there exists a node ¢ in T, such that {v,w} C x(t); and (iii) for all nodes r, s,
and ¢ in T, such that s lies on the path from r to ¢, we have x(r) N x(t) C x(s).
The width of a tree decomposition is defined as the cardinality of its largest bag
minus one. The treewidth of a graph G, denoted by tw(G), is the minimum width
over all tree decompositions of G. To decide whether a graph has treewidth at
most k is NP-complete [3]. For an arbitrary but fixed k& however, this problem
can be solved (and a tree decomposition constructed) in linear time [6].

Given a non-ground logic programming rule 7, we let its Gaifman graph G, =
(var(m), E') such that there is an edge (X,Y) in F iff variables X and Y occur
together in the head or in a body atom of w. We refer to a tree decomposition
of G as a tree decomposition of rule w. The treewidth of rule 7 is the treewidth
of G.

3 Rule Decomposition

This section lays out the theoretical foundations for our rule decomposition app-
roach. First, we recall the algorithm from [19], and then describe how it can be
extended to handle three of the main extensions of the ASP language, namely
arithmetic expressions, aggregates, and weak constraints (i.e. optimization state-
ments), as defined in the ASP-Core language standard [11].

As demonstrated in Example 1, rules that are intuitive to write and read
are not necessarily the most efficient ones to evaluate in practice. ASP solvers
generally struggle with rules that contain many variables since they rely on a
grounder-solver approach: first, the grounding of a logic program is computed
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by a grounder. As per the definition in Sect. 2, the size of the grounding can, in
the worst case, be exponential in the number of variables. For large rules, the
grounding step can already take a prohibitively large amount of time. However,
the solver is also adversely affected by this blowup. In practice, this leads to
long runtimes and sometimes the inability of the ASP system to solve a given
instance. This also contributes to the fact that, while the syntax of ASP is fully
declarative, writing efficient encodings still takes expert knowledge.

It is therefore desirable to have a way to automatically rewrite such large rules
into a more efficient representation. One way to do this is the rule decomposition
approach, first proposed in [19], which we will briefly recall next.

3.1 Decomposition of Simple Rules

Generally speaking, the approach in [19] computes the tree decomposition of a
rule, and then splits the rule up into multiple, smaller rules according to this
decomposition. While in the worst case this decomposition may not change the
rule at all, in practice it is often the case that large rules can be split up very
well. For instance, the large rule in Example 1 will be amenable for such a
decomposition.

Let us briefly recall the algorithm from [19] which we will refer to as the Ipopt
algorithm. For a given rule 7, the algorithm works as follows:

Algorithm 1. The Ipopt Algorithm [19]

1. Compute a tree decomposition 7 = (T, x) of = with minimal width where
all variables occurring in the head of 7 are contained in its root node bag.

2. For each node n, let temp, be a fresh predicate, and the same for each
variable X in 7 and predicate domx. Let Y,, = x(n) N x(pn), where p,, is
the parent node of n. For the root node root, let temp,,,, be the entire head
of 7, and, accordingly, Yoot = var(H (m)). Now, for a node n, generate the
following rule:

temp, (Yn) < {a € B(m) [var(a) € x(n)}

U{domx(X) | a€ B (w),X € var(a),var(a) C x(n),
Ab € Bt (m) : var(b) C x(n), X € var(b)}

U {temp,,(Ym) | m is a child of n}.

3. For each X € var(B~(m)), for which a domain predicate dom is needed to
guarantee safety of a rule generated above, pick an atom g € BT (r), such
that X € var(a) and generate a rule

domx (X) < a.
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Step 3 is needed because splitting up a rule may make it unsafe. In order
to remedy this, a domain predicate is generated for each unsafe variable that
arises due to the rule splitting in step 2. The following example illustrates how
the algorithm works.

Ezample 2. Given the rule
m=hX,W)—eX,Y),eY,Z),—e(Z, W), e(W,X),

a tree decomposition of 7 could look as follows (note that we write in each bag
of the tree decomposition not just the variables as per definition but also all
literals of rule 7 over these variables which is a more intuitive notation):

hMX, W), e(X,Y), e(W, X)

e(Y,Z),—e(Z, W)

Applying the Ipopt algorithm to 7 with the tree decomposition above yields the
following set of rules Ipopt(7):

domw (W) — e(W, X),
temp(Y, W) — e(Y, Z),—e(Z,W), domw (W), and
MX, W) — e(X,Y), e(W, X), temp(Y, W),
where temp is a fresh predicate not appearing anywhere else. a

Let IT be a logic program. When the above algorithm is applied to all rules in
IT, resulting in a logic program Ipopt(I]) as stated in [19], the answer sets of IT
are preserved in the following way: when all temporary atoms are removed, each
answer set of lpopt(I]) coincides with exactly one answer set from the original
program II. Furthermore, the size of the grounding now no longer depends on
the rule size. In fact, it now only depends on the rule treewidth as the following
result states.

Theorem 1 ([19]). The size of ground(lpopt(I1)) is bounded by O(2*-n), where
n is the size of I, and k is the maximal treewidth of the rules in II.

The above theorem implies that the size of the grounding of a program IT,
after optimization via the Ipopt algorithm, is no longer exponential in the size of
I, but only in the treewidth of its rules. As [19] demonstrates, this decomposition
approach already has a significant impact on the size of the grounding in practical
instances.

However, the ASP language standard [11] extends the ASP language with
other useful constructs that the Ipopt algorithm proposed in [19] cannot handle.
These include arithmetic expressions, aggregates, and weak constraints. Look-
ing at concrete, practical instances of ASP programs, e.g. the encodings used
in recent ASP competitions [12], a large majority use such constructs. In the
following, we will therefore extend the Ipopt algorithm to be able to treat them
in a similar way.
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3.2 Treating Arithmetic Expressions

Arithmetic expressions are atoms of the form X = ¢(Y), that is, an equality
with one variable (or constant number) X on the left-hand side, and an expres-
sion ¢ on the right-hand side, where ¢ is any mathematical expression built
using the variables from Y, constant numbers, and the arithmetic connectives
“py o @x» and ¢/ In addition to the positive and negative body, a rule
7 may also contain a set of such arithmetic expressions describing a relation-
ship between variables with the obvious meaning (that is, after grounding, an
arithmetic expression evaluates to true if and only if the mathematical equality
between the involved constants is valid). The arithmetic connectives are inter-
preted according to the usual mathematical preference rules.

Finally, since we require that all rules processed with the Ipopt algorithm are
safe, we need to extend the definition of safety to include arithmetic expressions.
Clearly, the conditions for safety of rules with arithmetic expressions are more
involved. In fact, instead of just requiring that each variable appears in the posi-
tive body we now have a recursive safety condition: a rule containing arithmetic
expressions is safe if and only if every variable X appears (a) in the positive
body of the rule, or (b) in an arithmetic expression of the form X = ¢(Y) where
all the variables in Y are safe.

In order to adapt the Ipopt rule decomposition algorithm to rules with arith-
metic expressions, we need to extend the definition of the graph representation
of  to handle arithmetic expressions. To this end, we simply require it to con-
tain a clique between all variables occurring together in each such expression.
The Ipopt algorithm then works as described in Algorithm 1 above up to step 2.
However, a problem may arise when, in step 3 of the Ipopt algorithm, a domain
predicate domx (X) is to be generated. Consider the following example:

Ezample 3. Let m be the rule a(X) «— —=b0(X,Y),c(Y),d(2),X = Z+ Z. A
simple decomposition according to the Ipopt algorithm may lead to the following
rules:

temp(X) — —=b(X,Y), c¢(Y), domx (X), and

a(X)—d(Z2),X =Z+ Z, temp(X).

It remains to define the domain predicate domyx. According to the original def-
inition of Ipopt, we would get

domx(X)—X=2+4+2Z
which is unsafe. O

As Example 3 shows, in order for such expressions to work with the Ipopt
algorithm a more general approach to defining the domain predicates is needed in
step 3. In fact, instead of choosing a single atom from the rule body to generate
the domain predicate, in general a set of atoms and arithmetic expressions must
be chosen. It is easy to see that if a rule 7 is safe then, for each variable X €
var(B(m)), there is a set Ax of (positive) atoms and arithmetic expressions in
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Algorithm 2. Domain Predicate Generation Algorithm

Input: A set X of variables to be made safe, a set Y of variables already made safe,
a rule m, and an upper bound mazvars
Output: A set of body elements R from 7 that has the minimum number of variables
not in X and that, together, defines the domain of the variables in X.
1: procedure DOMPRED(X, Y, 7, mazvars)
2 Let R=10
3 Let A = GETBODYELEMENTSWITHONEOF(X, )
4: while A # () do
5: Let @ = GETBESTELEMENT(A, X,Y)
6.
7
8

if a is arithmetic expression X = ¢(Z) then
Let X' = (X\{X})U (Z\Y)
Let R’ = {a} UDoMPRED(X', Y, 7\{a}, mazvars)

9: else

10: Let X' = X\var(a)

11: Let Y' =Y Uwar(a)

12: Let R' = {a} UDoMPRED(X',Y', 7\{a}, mazvars — |var(a)\Y])
13: end if

14: if |var(R")\Y| < mazvars then

15: Let R=R’

16: Let mazvars = |var(R)\Y|

17: end if

18: Let A= A\{a}

19: end while
20: Return R
21: end procedure

the body of 7 that makes that variable safe (trivially, if Ax contains all positive
body atoms and arithmetic expressions of 7 the condition is fulfilled). In step 3
of the Ipopt algorithm, for a variable X we now choose such a set Ax of body
elements to use in the body of the domain predicate rule.

However, since the grounding size of a domain predicate rule is exponential
in the number of variables occurring in atoms, we aim to choose a set Ax that
contains as few variables in atoms as possible (variables occurring only in arith-
metic expressions can be ignored since they don’t increase the number of ground
instances of a rule). To this end, we devise a depth-first search algorithm that,
given a variable X and a rule w, computes a set Ax of positive body atoms
and arithmetic expressions that make variable X safe with a minimal num-
ber of variables occurring in atoms. Algorithm 2 presents our implementation in
pseudocode. Tt is initially called with the parameters X = {X}, Y = 0, 7, and
|var(m)|. The function GETBODYELEMENTSWITHONEOF returns, for a given
set of variables X and rule 7, the set of all the positive body atoms containing
at least one variable from X and, in addition, all arithmetic expressions of the
form X = ¢(Y), where X € X that is, it returns all those body elements from
7 that can help to make the variables X safe. The function GETBESTELEMENT
returns, for a given set A of atoms and arithmetic expressions, set X of variables
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to be made safe, and set Y of variables already made safe, the element having
the minimal number of variables not in Y. If there are multiple such elements,
return the atom that contains the maximum number of variables from X. If
there are multiple such atoms, pick one at random. If there are no such atoms,
return one of the arithmetic expressions. m\{a} denotes rule = with element a
removed. Note that Algorithm 2 explores the entire search space (that is, each
subset of elements from rule 7) which may need, at worst, exponential time in
the size of m. We optimize this by immediately disregarding all subsets that are
worse than the best subset found so far (via variable mazvars). Additionally, by
using the heuristics implemented in GETBESTELEMENT and since long “chains”
of arithmetic expressions are rare (e.g. none of our benchmarks contained any)
this does not lead to long runtimes in practice.

Finally, after executing Algorithm 2 and obtaining the set Ax, generate the
rule domyx (X) <« Ax. It is easy to see that, by construction of set Ay, this rule
is safe and describes the possible domain of variable X as required. Note that the
resulting domain predicate rule may still be amenable to further decomposition.
Where this is the case, we recursively call the Ipopt algorithm on it. Below,
Example 4 shows the output of Ipopt when extended with Algorithm 2 above.

Example 4. A correct domain predicate for Example 3 would be defined as
follows:
domx (X)) — X =2+ 2Z,d(2).

This ensures the proper safety of all rules generated by the Ipopt algorithm. O

Note that the rule generated in Example 4 repeats most of the atoms that
the second rule generated in Example 3 already contains. It is not immediately
obvious how such situations can be remedied in general. Investigating this issue
is part of ongoing work.

3.3 Treating Weak Constraints

As defined in [11], a weak constraint «[k : t] is a constraint 7 annotated with
a term k representing a weight and a sequence of terms t occurring in 7. The
intended meaning is that each answer set I is annotated by a total weight w(T),
which is the sum over all k for each tuple of constants ¢ that realize t in I
and satisfy the body of m. Such a weak constraint can easily be decomposed
by replacing 7[k : t] with the rule 7’ = temp(k,t) «— B(w), where temp is a
fresh predicate, and the weak constraint L « temp(k, t)[k : t]. Finally, the Ipopt
algorithm is then applied to rule ’. This allows our rule decomposition approach
also to be applied in an optimization context (i.e. where the task for the solver
is to find optimal answer sets w.r.t. their weight).

3.4 Treating Aggregate Expressions

An aggregate expression, as defined in [11], is an expression of the form

t < #agg{t: o(X)},
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where t is a term; 5 € {<, <, =, #, >, >} is a built-in relation; agg is one of sum,
count, maz, and min; t = (t1,...,t,) is a sequence of terms; and p(X) is a set of
literals, arithmetic expressions, and aggregate expressions, called the aggregate
body. Aggregates may appear in rule bodies, or recursively inside other aggre-
gates, with the following semantic meaning: Given an interpretation I, for each
valid substitution s such that s(p(X)) C I, take the tuple of constants s(t). Let
us denote this set with 7. Now, execute the aggregate function on 7" as follows:
for #count, calculate |T'|; for #sum, calculate Yyert1, where ¢y is the first term
in t; for #max and #min, take the maximum and minimum term appearing in
the first position of each tuple in T, respectively. Finally, an aggregate expression
is true if the relation < between term ¢ and the result of the aggregate function
is fulfilled.

Extending the Ipopt algorithm to aggregate expressions is again straightfor-
ward: The rule graph G, = (V, F) of a rule 7 containing aggregate expressions
is defined as follows: Let V be the set of variables occurring in m outside of
aggregate expressions. Let FE be as before and, in addition, add, for each aggre-
gate expression e, a clique between all variables var(e) NV to E. Intuitively,
the rule graph should contain, for each aggregate expression, a clique between
all variables that appear in the aggregate and somewhere else in the rule. Vari-
ables appearing only in aggregates are in a sense “local” and are therefore not
of interest when decomposing the rule.

While the above transformation is straightforward, we can, however, go one
step further and also decompose the inside elements of an aggregate expression.
To this end, let t < #agg{t : »(X,Y)} be an aggregate expression occurring in
some rule 7, where X are variables that occur either in t or somewhere else in 7,
and Y are variables occurring inside the aggregate only. Replace the aggregate
expression with ¢ < #agg{t : Y(X,Z), temp(t,Z)}, and furthermore, generate
a rule temp(t,Z) «— ¥(Y), ¥ 4om(Y), for some fresh predicate temp. Here, 9
contains all those atoms from ¢ that contain a variable from X, and 1 contains
the rest. 1 ,,, contains domain predicates generated like in step3 of the Ipopt
algorithm, as needed to make the temporary rule safe. The temporary rule can
then be decomposed via Ipopt. This is best illustrated by an example:

Example 5. Let 7 be the following logic programming rule, saying that a vertex
is “good” if it has at least two neighbours that, themselves, have a red neighbour:

good(X) «— vertex(X),2 < #count{Y : edge(X,Y), edge(Y, Z), red(Z)}.

According to the above approach, the rule can now be split up as follows. Firstly,
the aggregate is replaced:

good(X) «— vertex(X),2 < #count{Y : edge(X,Y), temp(Y)},
and furthermore, a temporary rule is created as follows:
temp(Y) — edge(Y, Z), red(Z).

The latter rule is now amenable for decomposition via the Ipopt algorithm. O
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Note that the above approach allows us to decompose, to a degree, even the
insides of an aggregate, which, for large aggregate bodies, can lead to a further
significant reduction in the grounding size.

3.5 Correctness

The correctness of the above extensions to the original algorithm follows by the
same arguments that prove the correctness of the original algorithm proposed
in [19], and trivially from the construction for arithmetic expressions and safety.
For the latter, note that for domain predicates of a variable X we explicitly select
a set of atoms that make the variable safe, and that such a set always exists,
since the original rule is safe. For the former two (namely weak constraints and
aggregate expressions), the only thing that needs to be examined is the first
step: replacing (part of) the body with a temporary predicate. But correctness
of this is easy to see. Instead of performing all joins within the weak constraint or
aggregate, we perform the join in a new, separate rule and project only relevant
variables into a temporary predicate. The weak constraint or aggregate then
only needs to consider this temporary predicate since, by construction, all other
variables not projected into the temporary predicate do not play a role w.r.t.
optimization or aggregation. Finally, the original algorithm from [19] extended
to handle arithmetic expressions, for which correctness has already been estab-
lished, is then applied to this new, separate rule.

3.6 Further Language Extensions

The ASP-Core language specification [11], as well as the gringo grounder!, allow
further constructs like variable pooling, aggregates with multiple bodies, or with
upper and lower bounds in the same expression, in addition to various extensions
that amount to syntactic sugar. These constructs make the above explanations
unnecessarily more tedious. However, from a theoretical point of view, all of these
additional constructs can be normalized to one of the forms discussed in the
previous subsections. Furthermore, as we shall see in the next section, we have
implemented the lpopt algorithm to directly treat all standard ASP language
constructs and certain other additions, like variable pooling. More details about
this general approach, and the exact, but more tedious, algorithm details, can
be found in [4].

4 Implementation

A full implementation of the algorithm and its extensions described in Sect. 3 is
now available in the form of the 1popt tool, available with relevant documenta-
tion and examples at

http://dbai.tuwien.ac.at/proj/Ipopt.

! http://potassco.sourceforge.net.
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The following gives a quick outline of how to use the tool.

lpopt accepts as its input any form of ASP program that follows the ASP
input language specification laid out in [11]. The output of the program in its
default configuration is a decomposed program that also follows this specifica-
tion. In addition, the tool guarantees that no language construct is introduced in
the output that was not previously present in the input (cf. Sect. 3). Therefore,
for example, a program without aggregates will not contain any aggregates as a
result of rule decomposition. The following is a description of the parameters of
the tool:

Usage: lpopt [-idbt] [-s seed] [-f file] [-h alg] [-1 file]

-d dumb: do not perform optimization

-b print verbose and benchmark information
-t perform only tree decomposition step

-i ignore head variables when decomposing

-h alg decomposition algorithm, one of {mcs, mf, miw (def)}
-s seed initialize random number generator with seed

-f file the file to read from (default is stdin)

-1 file output infos (treewidth) to file

In what follows, we will briefly describe the most important features of the tool.

Tree Decomposition Heuristics. As stated in Sect. 2, computing an optimal tree
decomposition w.r.t. width is an NP-hard problem. We thus make use of several
heuristic algorithms, namely the mazimum cardinality search (mcs), minimum
fill (mf), and minimum induced width (miw) approaches described in [7], that
yield tree decompositions that provide good upper bounds on the treewidth (i.e.
on an optimal decomposition). It turns out that in practice, since rules in ASP
programs are usually not overly large, these heuristics come close to, and often
even yield, an optimal tree decomposition for rules. The heuristic algorithm
to use for decomposition can be selected using the ~h command line parameter.
Since these heuristic approaches rely to some degree on randomization, a seed for
the pseudo-random number generator can be passed along with the -s command
line parameter.

Measuring the Treewidth of Rules. Theorem 1 allows us to calculate an upper
bound on the size of the grounding of the input program. In order to do this,
the maximal treewidth of any rule in an ASP program must be known. The -1
switch of the 1popt tool allows this to be calculated. It forces the tool to perform
tree decompositions on all rules inside an input ASP program, simply outputting
the maximal treewidth (or, more accurately, an upper bound; see above) over
all of them into the given file, and then exiting. Clearly, when a single ASP rule
is given as input, this switch will output a treewidth upper bound of that single
rule.
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4.1 Recommended Usage

Assuming that a file enc.1lp contains the encoding of a problem as an ASP
program and that a file instance.db contains a set of ground facts representing
a problem instance, the recommended usage of the tool is as follows:

cat enc.lp instance.db | lpopt | grounder | solver

In the above command, grounder and solver are programs for grounding
and for solving, respectively. One established solver that we will use in the
next section for our experimental evaluation is clasp [15]. If clasp is used as
a solver together with the 1popt tool, we generally recommend the use of the
--sat-prepro flag, which often speeds up the solving process substantially for
decomposed rules generated by lpopt (by considering the fact that the truth
values of all temporary atoms generated by 1popt are determined exactly by the
rule body, and need never be guessed).

5 Experimental Evaluation

We have tested our lpopt tool and benchmarked the performance of ground-
ing and solving of programs preprocessed with 1lpopt against non-preprocessed
ones. All benchmarks were made on the instance sets of the fifth answer set
programming competition 20142, which, for most problem classes, provides two
encodings, one from 2013, and one from 2014. The benchmarks have been run on
a 3.5 GHz AMD Opteron Processor 6308 with 192 GB of RAM to its disposal. We
used the potassco software suite®, namely gringo verison 4.5.3 as the grounder
and clasp version 3.1.3 as the solver. A timeout of 300 s was set for solving, and
1000s for grounding. Furthermore, as suggested in the previous section, clasp
was called with the -—sat-prepro flag enabled. In this paper, we will survey the
most important results.

Remark. One central aim of our tool is to improve solving performance for
hand-written encodings by non-experts of ASP. In the spirit of a truly declar-
ative language, it shouldn’t matter how an encoding is written as long as it is
correct (i.e. w.r.t. runtime, there should not be a difference between “good” and
“bad” encodings). In this respect, the ASP competition does not offer an optimal
benchmark set since all encodings are extensively hand-tuned by ASP experts.
However, as to the best of our knowledge there is no better-suited comprehensive
benchmark set available, we will show that even for these extensively hand-tuned
ASP competition encodings our tool can still find decompositions that decrease
grounding size and improve solving performance. However, there are also encod-
ings that are so perfectly hand-tuned that only trivial optimizations are possible
with the current version of 1popt.

2 https://www.mat.unical.it/aspcomp2014/.
3 http://potassco.sourceforge.net.


https://www.mat.unical.it/aspcomp2014/
http://potassco.sourceforge.net

Ipopt: A Rule Optimization Tool for Answer Set Programming 127

Results. Let us first note that the runtime of 1popt itself, for all encodings in
the benchmark set, was always less than what can be accurately measured on a
computer system today. Applying our rule decomposition algorithm thus comes
virtually for free for hand-written encodings. Out of the 49 encodings provided
by the ASP competition, 1popt was able to syntactically rewrite 41 which indi-
cates that, as mentioned above, even extensively hand-tuned programs can be
further decomposed in an automated manner. The remaining eight encodings
contained rules that were so small that no further decomposition was possible
(i.e. their Gaifman graph was a clique of usually 3—4 nodes) and thus the output
of 1popt was the original, unmodified encoding in these cases. In 27 of the 41
encodings rewritten by 1popt, the decompositions were trivial and had no signif-
icant impact on the solving performance. This is due to the fact that only rules
that were already very small (and thus did not contribute much to the grounding
size in the first place) could be decomposed. In five cases out of the 41 rewritten
encodings, we noticed a decrease in solving performance (see the paragraph on
limitations of 1popt below for an explanation) and in the remaining seven cases,
the lpopt rewriting was able to speed up the solving process with substantial
improvements in three of these seven. Two of those were the stable marriage
problem encoding of 2013, and the permutation pattern matching encoding of
2014 which we will take a closer look at below. Full benchmark results for the
entire dataset can be found in [4].
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Fig. 1. Benchmark results for the stable marriage 2013 instances. The horizontal axis
represents the individual test instances, sorted by runtime without rule decomposition.

Let us look at the stable marriage problem first. As can be seen in Fig. 1, both
grounding and solving time decrease dramatically. Notice that the grounding
time is, in general, directly correlated with the size of the respective grounding.
With lpopt preprocessing, the grounding size decreases dramatically by a factor
of up to 65. The grounder is thirty times faster when using preprocessing, and
the solver about three times. This is because of the following constraint in the
encoding that can be decomposed very well:
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:- match(M,W1), manAssignsScore(M,W,Smw), Wi!=W,
manAssignsScore(M,W1,Smwl), Smw>Smwl, match(M1,W),
womanAssignsScore(W,M,Swm), womanAssignsScore(W,M1,Swml),
Swm>=Swm1.

The constraint rule above is quite intuitive to read: There cannot be a man
M and a woman W, such that they would both be better off if they were matched
together, instead of being matched as they are (that is, to W1 and M1, respec-
tively). It encodes, precisely and straightforwardly, the condition of a stable
marriage. The 2014 encoding splits this rule up, making the encoding much
harder to understand. However, with lpopt preprocessing, the grounding and
solving performance matches that of the hand-tuned 2014 encoding. This again
illustrates that the Ipopt algorithm allows for efficient processing of rules written
by non-experts that are not explicitly hand-tuned.

A second example of 1popt’s capabilities is the permutation pattern matching
problem illustrated in Fig. 2. The grounding time of the largest instance is 980s
without preprocessing and 17s with preprocessing. This instance was also impos-
sible to solve within the timeout window of 300s without 1popt preprocessing,
but finishing within 88 s when lpopt was run first.

Other Use Cases. 1popt has also been employed in other works that illustrate
its performance benefits. In particular, several solvers for other formalisms rely
on a rewriting to ASP in order to solve the original problem. Such rewritings
can easily lead to the generation of large rules that current ASP solving systems
are generally unable to handle. For example, in [17] ASP rewritings for several
problems from the abstract argumentation domain, proposed in [10], are imple-
mented. In [4, Sect.4.6], the performance benefits of 1popt are clearly demon-
stated for these rewritings. Interestingly, these rewritings also make heavy use
of aggregates which goes to show that 1popt also handles these constructs well.
Recently, a comprehensive overview of these techniques, making use of 1popt,
was accepted for publication at the AAAT conference of 2017 [8]. Another exam-
ple use case of lpopt is [5], where multiple rewritings for X2 and X3-hard
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Fig. 2. Benchmark results for permutation pattern matching 2014. The horizontal axis
represents the individual test instances, sorted by runtime without rule decomposition.
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problems are proposed and then benchmarked, again showcasing that without
lpopt these rewritings could not be solved by current ASP solvers in all but the
most simple cases.

Limitations. However, we also want to point out some limitations of the Ipopt
algorithm. When a domain predicate is generated by the algorithm, the selection
of atoms that generate this domain predicate may not be optimal. In fact, our
algorithm picks an optimal set with respect to the number of variables which
minimizes the number of ground instances that the rule can give rise to in the
mathematical worst case. However, in practice, the number of ground instances
depends on other factors. One major factor is the number of tuples (of constants)
that can potentially appear in a relation. State-of-the-art grounders exploit this
information, but it is not available at the time that the 1popt tool is run (that
is, before grounding). For the same reason, it may be the case that the increased
grounding size caused by the domain predicate rules may destroy any practi-
cal benefit caused by splitting up the main rule, while at the same time the
mathematical worst case bound on the grounding size was actually improved
by running lpopt. In fact, this is precisely what caused the increase in solving
time for the five encodings out of 49 that lpopt was able to rewrite but where
solving performance deteriorated. The question of what the best strategy is to
select atoms to generate domain predicates (or whether, by integrating the Ipopt
algorithm into a grounder, these domain predicates can be eliminated entirely)
is part of ongoing research.

6 Conclusions

In this paper, we present an algorithm, based on a prototype from [19], that
allows the decomposition of large logic programming rules into smaller ones
that current state-of-the-art answer set programming solvers are better equipped
to handle. Our implementation handles the entire ASP-Core-2 language [11].
Benchmark results show that in practice, even for extensively hand-tuned ASP
programs, our rule decomposition algorithm can improve solving performance
significantly. Future work will include implementing this approach directly into
state-of-the-art grounders like the gringo grounder used in our benchmarks, as
well as further refining the algorithm w.r.t. selection of domain predicate atoms,
as discussed at the end of Sect. 5.

Acknowledgments. Funded by the Austrian Science Fund (FWF): Y698, P25607.
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Abstract. Fuzzy logic programming is a growing declarative paradigm
aiming to integrate fuzzy logic into logic programming. One of the most
difficult tasks when specifying a fuzzy logic program is determining the
right weights for each rule, as well as the most appropriate fuzzy con-
nectives and operators. In this paper, we introduce a symbolic extension
of fuzzy logic programs in which some of these parameters can be left
unknown, so that the user can easily see the impact of their possible
values. Furthermore, given a number of test cases, the most appropriate
values for these parameters can be automatically computed. Finally, we
show some benchmarks that illustrate the usefulness of our approach.

Keywords: Fuzzy logic programming - Symbolic execution + Tuning

1 Introduction

Logic Programming [17] has been widely used as a formal method for problem
solving and knowledge representation. Nevertheless, traditional logic program-
ming languages do not incorporate techniques or constructs to explicitly deal
with uncertainty and approximated reasoning. In order to fill this gap, fuzzy
logic programming has emerged as an interesting—and still growing—research
area which aims to consolidate the efforts for introducing fuzzy logic into logic
programming.

During the last decades, several fuzzy logic programming systems have been
developed. Here, essentially, the classical SLD resolution principle of logic pro-
gramming has been replaced by a fuzzy variant with the aim of dealing with
partial truth and reasoning with uncertainty in a natural way. Most of these
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systems implement (extended versions of) the resolution principle introduced by
Lee [15], such as Elf-Prolog [7], F-Prolog [16], generalized annotated logic pro-
gramming [13], Fril [4], MALP [18], FASILL [11,12], the QLP scheme of [22] and
the many-valued logic programming language of [23].

In this paper we focus on the so-called multi-adjoint logic programming app-
roach MALP [18], a powerful and promising approach in the area of fuzzy logic
programming. Intuitively speaking, logic programming is extended with a multi-
adjoint lattice L of truth values (typically, a real number between 0 and 1),
equipped with a collection of adjoint pairs (&;,«;) and connectives: implica-
tions, conjunctions, disjunctions, and other operators called aggregators, which
are interpreted on this lattice. Consider, for instance, the following MALP rule:

good(X) «p Quyer(nice(X), cheap(X)) with 0.8
where the adjoint pair (&p, <p) is defined as

i <
o) 2ovy @2 {l HHET_
and the aggregator @, is typically defined as @Quyer(71,72) = (71 + 22)/2.
Therefore, the rule specifies that X is good—with a truth degree of 0.8—if X is
nice and cheap. Assuming that X is nice and cheap with, e.g., truth degrees n
and ¢, respectively, then X is good with a truth degree of 0.8 % ((n + ¢)/2).

When specifying a MALP program, it might sometimes be difficult to assign
weights—truth degrees—to program rules, as well as to determine the right
connectives! This is a common problem with fuzzy control system design, where
some trial-and-error is often necessary. In our context, a programmer can develop
a prototype and repeatedly execute it until the set of answers is the intended
one. Unfortunately, this is a tedious and time consuming operation. Actually, it
might be impractical when the program should correctly model a large number
of test cases provided by the user.

In order to overcome this drawback, in this paper we introduce a symbolic
extension of MALP programs called symbolic multi-adjoint logic programming
(sMALP). Here, we can write rules containing symbolic truth degrees and sym-
bolic connectives, i.e., connectives which are not defined on its associated multi-
adjoint lattice. In order to evaluate these programs, we introduce a symbolic
operational semantics that delays the evaluation of symbolic expressions. There-
fore, a symbolic answer could now include symbolic (unknown) truth values and
connectives. We prove the correctness of the approach, i.e., the fact that using
the symbolic semantics and then replacing the unknown values and connectives
by concrete ones gives the same result as replacing these values and connectives
in the original sSMALP program and, then, applying the concrete semantics on
the resulting MALP program. Furthermore, we show how sMALP programs can

! For instance, we have typically several adjoint pairs: Lukasiewicz logic (&, L),
Gédel logic (&g, ) and product logic (&p,«—p), which might be used for modeling
pessimist, optimist and realistic scenarios, respectively.
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be used to tune a program w.r.t. a given set of test cases, thus easing what is
considered the most difficult part of the process: the specification of the right
weights and connectives for each rule. We plan to integrate this tuning process
into the FLOPER system (Fuzzy LOgic Programming Environment for Research);
see, e.g., [19,20]. In this paper, we show the results of an experimental evaluation
using a prototype implementation of the system, which is available online from
http://dectau.uclm.es/tuning/.

The structure of this paper is as follows. After some preliminaries in Sect. 2,
we introduce the framework of symbolic multi-adjoint logic programming in
Sect.3 and prove its correctness. Then, in Sect.4, we show the usefulness of
symbolic programs for tuning several parameters so that a concrete program
is obtained. Moreover, we show some interesting experiments together with
an online implementation which also considers a very efficient tuning method
improved with thresholding techniques. Finally, Sect. 5 concludes and points out
some directions for further research.

2 Preliminaries

We assume the existence of a multi-adjoint lattice (L, <, &1, «1,...,&n,<n),
equipped with a collection of adjoint pairs (&;,«;)—where each &; is a con-
junctor which is intended to be used for the evaluation of modus ponens [18]—.
In addition, on each program rule, we can have a different adjoint implication
(<), conjunctions (denoted by Aj, Aa,...), adjoint conjunctions (&1, &s,...),
disjunctions (|1, |2, .- .), and other operators called aggregators (usually denoted
by @, @y,...); see [21] for more details. More exactly, a multi-adjoint lattice
fulfills the following properties:

~ (L,=) is a (bounded) complete lattice?

— For each truth function of &;, an increase in any of the arguments results in
an increase of the result (they are increasing).

— For each truth function of «;, the result increases as the first argument
increases, but it decreases as the second argument increases (they are increas-
ing in the consequent and decreasing in the antecedent).

— (&;,+) is an adjoint pair in (L, <), namely, for any x,y,z € L, we have
that: z < (y «—; z) if and only if (x &; z) < y.

The last condition, called the adjoint property, could be considered the most
important feature of the framework (in contrast with other approaches) which
justifies most of its properties regarding crucial results for soundness, complete-
ness, applicability, etc. [18].

2 A complete lattice is a (partially) ordered set (L, =) such that every subset S of
L has infimum and supremum elements. It is bounded if it has bottom and top
elements, denoted by 1 and T, respectively. L is said to be the carrier set of the
lattice, and =< its ordering relation.
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Aggregation operators are useful to describe or specify user preferences. An
aggregation operator, when interpreted as a truth function, may be an arith-
metic mean, a weighted sum or in general any monotone function whose argu-
ments are values of a multi-adjoint lattice L. Although, formally, these con-
nectives are binary operators, we often use them as n-ary functions so that
Q(z1,...,Q(xp-1,2n),...) is denoted by @Q(z1,...,z,). By abuse of notation,
in these cases, we consider @ an n-ary operator. The truth function of an n-ary
connective < is denoted by [¢] : L™ — L and is required to be monotonic and
fulfill the following conditions: [¢](T,..., T) =T and [¢]J(L,..., L) = L.

In this work, given a multi-adjoint lattice L, we consider a first order lan-
guage L built upon a signature X, that contains the elements of a countably
infinite set of variables V, function and predicate symbols (denoted by F and 17,
respectively) with an associated arity—usually expressed as pairs f/n or p/n,
respectively, where n represents its arity—, and the truth degree literals X7 and
connectives X'¢ from L. Therefore, a well-formed formula in £, can be either:

— A wvalue v € X1 which will be interpreted as itself, i.e., as the truth degree
v e L.

= p(t1,...,ty), if t1,...,t, are terms over VU F and p/n is an n-ary predicate.
This formula is called atomic (or just an atom).

—s(er,...,en), ifer, ..., e, are well-formed formulas and ¢ is an n-ary connec-
tive with truth function [¢] : L™ — L.

As usual, a substitution o is a mapping from variables from V to terms over VUF
such that Dom(c) = {z € V | x # o(x)} is its domain. Substitutions are usually
denoted by sets of pairs like, e.g., {z1/t1, ..., T, /ts}. Substitutions are extended
to morphisms from terms to terms in the natural way. The identity substitution
is denoted by id. Composition of substitutions is denoted by juxtaposition, i.e.,
o6 denotes a substitution ¢ such that 6(z) = 8(c(z)) for all x € V.

In the following, an L — expression is a well-formed formula of £; which is
composed only by values and connectives from L, i.e., expressions over X7 U Zg.

In what follows, we assume that the truth function of any connective ¢ in
L is given by a corresponding definition of the form [¢](x1,...,7,) = E. For
instance, in this work, we will be mainly concerned with the classical set of
adjoint pairs (conjunctors and implications) over ([0, 1], <) shown in Fig. 1, where
labels L, G and P mean respectively Lukasiewicz logic, Gddel logic and Product
logic (which might be used for modeling pessimist, optimist and realistic scenar-
ios, respectively).

A MALP rule over a multi-adjoint lattice L is a formula H «; B, where H
is an atomic formula (usually called the head of the rule), «; is an implication
symbol belonging to some adjoint pair of L, and B (which is called the body of
the rule) is a well-formed formula over L without implications. A goal is a body
submitted as a query to the system. A MALP program is a set of expressions
R with v, where R is a rule and v is a ¢ruth degree (a value of L) expressing the

3 For convenience, in the following sections, we do not distinguish between the
connective ¢ and its truth function [¢].
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1 ify<z
&p(z,y) £z *y s (2,y) 2 Product logic
z/y f0<zxz<y
&e(x,y) = min(z,y) ¢ (z,y) = Lify<a Gadel logic
’ ’ ’ x otherwise

&u(z,y) £ max(0,z +y —1) < (z,y) 2 min(z —y +1,1) Lukasiewicz logic

Fig. 1. Adjoint pairs of three different fuzzy logics over ([0, 1], <).

confidence of a programmer in the truth of rule R. By abuse of the language,
we often refer to R with v as a rule. See, e.g., [18] for a complete formulation of
the MALP framework.

3 Symbolic Multi-adjoint Logic Programming

In this section, we introduce a symbolic extension of multi-adjoint logic pro-
gramming. Essentially, we will allow some undefined values (truth degrees) and
connectives in the program rules, so that these elements can be systematically
computed afterwards. In the following, we will use the abbreviation sSMALP to
refer to programs belonging to this setting.

Here, given a multi-adjoint lattice L, we consider an augmented language
L3 2 L, which may also include a number of symbolic values, symbolic adjoint
pairs and symbolic connectives which do not belong to L. Symbolic objects are
usually denoted as 0® with a superscript s.

Definition 1 (sMALP program). Let L be a multi-adjoint lattice. An SMALP
program over L is a set of symbolic rules, where each symbolic rule is a formula
(H «—; B with v) that meets the following conditions:

- H is an atomic formula of L1, (the head of the rule);

— «—; is a (possibly symbolic) implication from either a symbolic adjoint pair
(&2, %) or from an adjoint pair of L;

- B (the body of the rule) is a symbolic goal, i.e., a well-formed formula of L3 ;

— v 1is either a truth degree (a value of L) or a symbolic value.

Ezample 1. We consider the multi-adjoint lattice ([0, 1], <, &p, <—p, &g, —q, &1,
1), where the adjoint pairs are defined in Sect. 2, also including @,ye, which is
defined as follows: Qyer (1, 29) 2 (21 +22)/2. Then, the following is an SMALP
program P:

p(X) <% &%2(q(X), Quyer (r(X), s(X))) with 0.9
q(a) with v*
r(X) with 0.7
s(X) with 0.5

where (&*1,«°1) is a symbolic adjoint pair (i.e., a pair not defined in L), &*2
is a symbolic conjunction, and v® is a symbolic value.
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The procedural semantics of SMALP is defined in a stepwise manner as fol-
lows. First, an operational stage is introduced which proceeds similarly to SLD
resolution in pure logic programming. In contrast to standard logic programming,
though, our operational stage returns an expression still containing a number of
(possibly symbolic) values and connectives. Then, an interpretive stage evalu-
ates these connectives and produces a final answer (possibly containing symbolic
values and connectives). The procedural semantics of both MALP and sMALP
programs is based on a similar scheme. The main difference is that, for MALP
programs, the interpretive stage always returns a value, while for sMALP pro-
grams we might get an expression containing symbolic values and connectives
that should be first instantiated in order to compute a value.

In the following, C[A] denotes a formula where A is a sub-expression
which occurs in the—possibly empty—context C[]. Moreover, C[A/A’] means
the replacement of A by A’ in context C[], whereas Var(s) refers to the set of
distinct variables occurring in the syntactic object s, and 8[Var(s)] denotes the
substitution obtained from 6 by restricting its domain to Var(s). An sMALP
state has the form (Q; o) where Q is a symbolic goal and o is a substitution. We
let £° denote the set of all possible SMALP states.

Definition 2 (admissible step). Let L be a multi-adjoint lattice and P an
sMALP program over L. An admissible step is formalized as a state transition
system, whose transition relation —as C (£° x %) is the smallest relation
satisfying the following transition rules:*

1. (Q[A];0) —as ((Q[A/v&;B])8;06),

if 0 = mgu({H = A}) # fail, (H «; B with v)<P and B is not empty.®
2. (Q[Al;0) —as ((Q[A/L]);0),

if there is no rule (H «—; B with v)<P such that mgu({H = A}) # fail.

Here, (H «—; B with v)<P denotes that (H «—; B with v) is a renamed apart
variant of a rule in P (i.e., all its variables are fresh). Note that symbolic values
and connectives are not renamed.

Observe that the second rule is needed to cope with expressions like
Qgper(p(a),0.8), which can be evaluated successfully even when there is no rule
matching p(a) since Qg (0,0.8) = 0.4.

In the following, given a relation —, we let —* denote its reflexive and
transitive closure. Also, an L® — expression is now a well-formed formula of £}
which is composed by values and connectives from L as well as by symbolic
values and connectives.

Definition 3 (admissible derivation). Let L be a multi-adjoint lattice and
P be an sMALP program over L. Given a goal Q, an admissible derivation is

* Here, we assume that A in Q[A] is the selected atom. Furthermore, as it is common
practice, mgu(FE) denotes the most general unifier of the set of equations E [14].

5 For simplicity, we consider that facts (H with v) are seen as rules of the form
(H«—; T with v) for some implication «—;. Furthermore, in this case, we directly
derive the state ((Q[A/v])6;00) since v &; T = v for all&;.
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a sequence (Q;id) —%g (Q';0). When Q' is an L®-expression, the derivation
is called final and the pair (Q';0), where o = 0[Var(Q)], is called a symbolic
admissible computed answer (saca, for short) for goal Q in P.

Example 2. Consider again the multi-adjoint lattice L and the sMALP program
P of Example 1. Here, we have the following final admissible derivation for p(X)
in P (the selected atom is underlined):

(p(X); id) —as (&°1(0.9,&"2(g(X1), Qaver (r(X 1), s(X1)))); {X/X1})
—as (&71(0.9, &2 (0%, Quver (r(a), s(a)))); {X/a, X1 /a})
— a5 (&°1(0.9, &2 (v®, Q,yer (0.7, (a)))) {X/a,X:1/a,Xz/a})
— a5 (&51(0.9, &% (v°, Qayer (0.7,0.5))); { X /a, X1 Ja, X2 /a, X3/a})

Therefore, the associated saca is (&°1(0.9, &°2(v®, Qayer (0.7,0.5))); { X /a}).

Given a goal Q and a final admissible derivation (Q;id) —% ¢ (Q’;0), we have
that Q" does not contain atomic formulas. Now, Q' can be solved by using the
following interpretive stage:

Definition 4 (interpretive step). Let L be a multi-adjoint lattice and P be an
sMALP program over L. Given a saca (Q); o), the interpretive stage is formalized
by means of the following transition relation —1sC (£° x £%), which is defined
as the least transition relation satisfying:

<Q[§(Tlv v 7rn)]; U> —IS <Q[§(7‘1, EEE) rn)/rn+1]§a>

where ¢ denotes a connective defined on L and [s|(r1,...,7n) = rny1-

An interpretive derivation of the form (Q;o) —3g (Q';60) such that (Q';0)
cannot be further reduced, is called a final interpretive derivation. In this case,
(Q';0) is called a symbolic fuzzy computed answer (sfca, for short). Also, if Q'
is a value of L, we say that (Q';0) is a fuzzy computed answer (fca, for short).

Ezample 3. Given the saca of Example2: (&*®1(0.9,&%2(v®, Qayer(0.7,0.5)));
{X/a}), we have the following final interpretive derlvatlon (the connective
reduced is underlined):

(&51(0.9, &2 (1%, Qayer (0.7,0.5))); {X/a}) —15 (&51(0.9, &2 (v°,0.6)): {X/a})

with [@Qayer](0.7,0.5) = 0.6. Therefore, (&*1(0.9, &%2(v*,0.6)); {X/a}) is a sfca
of p(X) in P since it cannot be further reduced.

Given a multi-adjoint lattice L and a symbolic language L7, in the following
we consider symbolic substitutions that are mappings from symbolic values and
connectives to expressions over X1 U Ef. Symbolic substitutions are denoted by
O, T, ... Furthermore, for all symbolic substitution ©, we require the following
condition: «*/—; € O iff &°/&; € ©, where (&*°,«*) is a symbolic adjoint pair
and (&;, ;) is an adjoint pair in L. Intuitively, this is required for the substi-
tution to have the same effect both on the program and on an L*®-expression.
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Given an sSMALP program P over L, we let sym(P) denote the symbolic values
and connectives in P. Given a symbolic substitution @ for sym(P), we denote
by PO the program that results from P by replacing every symbolic symbol e®
by e*@. Trivially, PO is now a MALP program.

The following theorem is our key result in order to use sMALP programs for
tuning the components of a MALP program:

Theorem 1. Let L be a multi-adjoint lattice and P be an sSMALP program over
L. Let Q be a goal. Then, for any symbolic substitution © for sym(P), we have
that (v;0) is a fca for Q in PO iff there exists a sfca (Q';6") for Q in P and
(Q'0;0") =g (v;0'), where 0’ is a renaming of 6.

Proof (Sketch) For simplicity, we consider that the same fresh variables are used
for renamed apart rules in both derivations.
Consider the following derivations for goal Q w.r.t. programs P and PO,
respectively:
Dp :(Qiid) —5g (Q":0) —75(Q;0)
Dpo : (Qsid) —5 (Q"6:6) 75 (Q'6:0)

Our proof proceeds now in three stages:

1. Firstly, observe that the sequences of symbolic admissible steps in Dp and
Dpe exploit the whole set of atoms in both cases, such that a program rule
R is used in Dp iff the corresponding rule RO is applied in Dpg and hence,
the saca’s of the derivations are (Q";0) and (Q"O;0), respectively.

2. Then, we proceed by applying interpretive steps until reaching the sfca (Q’; 6)
in the first derivation Dp and it is easy to see that the same sequence of
interpretive steps are applied in Dpg thus leading to state (Q'0; ), which is
not necessarily a sfca.

3. Finally, it suffices to instantiate the sfca (Q’;0) in the first derivation Dp
with the symbolic substitution ©, for completing both derivations with the
same sequence of interpretive steps until reaching the desired fca (v;0). g

Ezample 4. Consider again the multi-adjoint lattice L and the sSMALP program
P of Example 1. Let © = {1 /«p, &' /&p, &2 /&¢,v*/0.8} be a symbolic
substitution. Given the sfca from Example 3, we have:

(&°*(0.9, &%2(v°,0.6))0; {X/a}) = (&p(0.9, &(0.8,0.6)); {X/a})
So, we have the following interpretive final derivation for the instantiated sfca:

(&p(0.9,&¢(0.8,0.6)); {X/a}) —1s (&p(0.9,0.6);{X/a}) —1s (0.54;{X/a})

By Theorem 1, we have that (0.54; {X/a}) is also a fca for p(X) in PO.
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4 Tuning Multi-adjoint Logic Programs

In this section, we introduce an automated technique for tuning multi-adjoint
logic programs using SMALP programs.

Consider a typical Prolog clause “H : —B,...,B,”. It can be fuzzified in
order to become a MALP rule “H «4pe; B with v” by performing the following
actions:

1. weighting it with a truth degree v,

2. connecting its head and body with a fuzzy implication symbol < 44¢; (belong-
ing to a concrete adjoint pair («—japel, &iaver)) and,

3. linking the set of atoms By, ..., B, on its body B by means of a set of fuzzy
connectives (i.e., conjunctions &;, disjunctions |; or aggregators Q).

Introducing changes on each one of the three fuzzy components just described
above may affect—sometimes in an unexpected way—the set of fuzzy computed
answers for a given goal.

Typically, a programmer has a model in mind where some parameters have
a clear value. For instance, the truth value of a rule might be statistically deter-
mined and, thus, its value is easy to obtain. In other cases, though, the most
appropriate values and/or connectives depend on subjective notions and, thus,
programmers do not know how to obtain these values. In a typical scenario, we
have an extensive set of expected computed answers (i.e., test cases), so the pro-
grammer can follow a “try and test” strategy. Unfortunately, this is a tedious
and time consuming operation. Actually, it might even be impractical when the
program should correctly model a large number of test cases.

Therefore, we propose an automated technique that proceeds as follows. Here,
for simplicity, we only consider the first answer to a goal. Note that this is not
a significant restriction since one can encode multiple solutions in a list so that
the main goal is always deterministic and all non-deterministic calls are hidden
in the computation. Extending the following algorithm for multiple solutions is
not difficult, but makes the formalization more cumbersome. Hence, we say that
a test case is a pair (Q, f) where @ is a goal and f is an fca.

Definition 5 (naive algorithm for symbolic tuning of MALP programs).

Input: an sMALP program P* and a number of (expected) test cases
(Qi, (vi;0;)), where Q; is a goal and (v;; 0;) is its expected feca fori=1,... k.
Output: a symbolic substitution ©.

1. For each test case (Qq, (vi;0;)), compute the sfca (Q},0;) of (Qs,id) in P*.

2. Then, consider a finite number of possible symbolic substitutions for sym(P?),
say O1,...,60,, n> 0.

3. For each j € {1,...,n}, compute (Q}0;,0;) =75 (vi;:0:), fori=1,... k.
Let d; j = |v; j — vi|, where || denotes the absolute value.

4. Finally, return the symbolic substitution ©; that minimizes Zle d; ;.
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Observe that the precision of the algorithm can be parameterized depending
on the set of symbolic substitutions considered in step (2). For instance, one
can consider only truth values {0.3,0.5,0.8} or a larger set {0.1,0.2,...,1.0};
one can consider only three possible connectives, or a set including ten of them.
Obviously, the larger the domain of values and connectives is, the more precise
the results are (but the algorithm is more expensive, of course).

This algorithm represents a much more efficient method for tuning the fuzzy
parameters of a MALP program than repeatedly executing the program from
scratch (see Table 2, column “Basic”).

Let us explain the technique by means of a small, but realistic example. Here,
we consider a travel agency that offers booking services on a large number of
hotels. The travel agency has a web site where the user can rate every hotel with
a value between 1% and 100%. The purpose in this case is to specify a fuzzy
model that correctly represents the rating of each hotel.

In order to simplify the presentation, we consider that there are only three
hotels, named sun, sweet and luz. In the web site, these hotels have been rated
0.60, 0.77 and 0.85 (expressed as real numbers between 0 and 1), respectively. Our
simple model just depends on three factors: the hotel facilities, the convenience
of its location, and the rates, denoted by predicates facilities, location and rates,
respectively. An sMALP program modelling this scenario is the following:

popularity(X) < |*(facilities(X), Quyer (location(X), rates(X))) with 0.9

facilities(sun) with v®

location(sun) with 0.4
rates(sun) with 0.7
facilities(sweet) with 0.5
location(sweet) with 0.3
rates(sweet) with 0.1
facilities(lux) with 0.9
location (lux) with 0.8
rates(lux) with 0.2

Here, we assume that all weights can be easily obtained except for the weight of
the fact facilities(sun), which is unknown, so we introduce a symbolic weight v*.
Also, the programmer has some doubts on the connectives used in the first
rule, so she introduced a number of symbolic connectives: the implication and
disjunction symbols, i.e. «* and |*.

We consider, for each symbolic connective, the three possibilities shown in
Fig. 2 over the lattice ([0, 1], <), which are based on the so-called Product, Gédel
and Lukasiewicz logics. Adjectives like pessimist, realistic and optimist are some-
times applied to the Lukasiewicz, Product and Gdédel logics, respectively, since
conjunctive operators satisfy that, for any pair of real numbers z and y in [0, 1],
we have:

0< &L(xay) < &P(xvy) < &(;(x,y) <1
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ez, y) =c+y—zx*y Product logic
¢(x,y) = max(z,y) Gadel logic
(7, y) = min(z +y, 1) Lukasiewicz logic

&p(z,y) =z *y
&e(z,y) = min(z,y)
&i(z,y) = max(z +y —1,0)

Fig. 2. Conjunctions and disjunctions of three different fuzzy logics over ([0, 1], <).

In contrast, the contrary holds for the disjunction operations, that is:

0<le(z,y) <lp(zr,y) < |Llz,y) <1

Note that it is more difficult to satisfy a condition based on a pessimist con-
junction/disjunction (i.e., inspired by the Lukasiewicz and Gddel fuzzy logics,
respectively) than with Product logic based operators. The optimistic versions
of these connectives are less restrictive, obtaining greater truth degrees on fca’s.
This is a consequence of the following chain of inequalities:

0 < &(z,y) < &p(w,y) < &elr,y) < lo(2,y) < p(2,y) < |(z,y) <1

Therefore, it is desirable to tune the symbolic constants «* and |* in the first
rule of our symbolic sMALP program by selecting operators in the previous
sequence until finding solutions satisfying in a stronger (or weaker) way the
user’s requirements.
Focusing on our particular sMALP program, we consider the following three

test cases:

(popularity(sun), (0.60;id)),

(popularity(sweet), (0.77;id)),

(popularity(lux), (0.85;id))

for which the respective three sfca’s achieved after applying the first step of our
tuning algorithm are:

(&*4(0.9,]%(v*,0.55)); id)

(&°(0.9,1%(0.5,0.65)); id)

(&°(0.9,1%(0.9,0.5)); id)

In the second step of the algorithm, we must provide symbolic substitutions for
being applied to this set of sfca’s in order to transform them into fca’s which are
as close as possible to those in the test cases. Table 1 shows the results of the
tuning process, where each column has the following meaning;:

— The first pair of columns serve for choosing the implication® and disjunction
connectives of the first program rule (i.e., «* and |*) from each one of the
three fuzzy logics considered so far.

— In the third column, we consider three possible truth degrees (0.3, 0.5 and
0.7) as the potential assignment to the symbolic weight v*. In this example,
this set suffices to obtain an accurate solution.

6 Tt is important to note that, at execution time, each implication symbol belonging to
a concrete adjoint pair is replaced by its adjoint conjunction (see again our repertoire
of adjoint pairs in Fig. 1 in the preliminaries section).
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— Each row represents a different symbolic substitution, which are shown in
column four.

— Next, headed by the name of each hotel in the test cases, we have pairs of
columns which represent, respectively, the potential truth degree associated
to the fca obtained with the corresponding symbolic substitution, and the
deviation of such value w.r.t. the expected truth degree, thus summarizing
the computations performed on the third step of our algorithm.

— The sum of the three deviations is expressed in the last column of the table,
which constitutes the value to be minimized as indicated in the final, fourth
step of the algorithm.

According to these criteria, we observe that the cell with the lower value (0.04)
in the last column of Table 1 refers to the symbolic substitution

O13 = {<*/—», [’/ [p, v*/0.3}

which solve our tuning problem by suggesting that the first pair of rules in our
final, tuned MALP program should be the following ones:

popularity(X) <«p |p(services(X), Quyer(location(X), rates(X))) with 0.9
facilities(sun) with 0.3

Unfortunately, the naive algorithm introduced so far might be very inefficient
when dealing with many symbolic values and connectives, or when the considered
set of their possible substitutions is large. Here, in order to improve its efficiency,
we consider thresholding techniques—well-known in the fuzzy logic arena—
for prematurely disregarding useless computations leading to non-significant
answers (see our previous experiences in [2,8,10]).

The improved algorithm is perfectly analogous to the algorithm in
Definition 5, but makes use of a threshold 7 for determining when a partial
solution is acceptable. The value of 7 is initialized to oo (in practice, a very large
number). Then, this threshold dinamically decreases whenever we find a sym-
bolic substitution with an associated deviation which is lower that the actual
value of 7. Moreover, a partial solution is discarded as soon as the cumulative
deviation computed so far is greater than 7. In our running example, 7 takes the
following values: 0.42, 0.27, 0.05, and 0.04, associated to @1, O3, O4, and O3,
respectively. In general, the number of discarded solutions grows as the value of 7
decreases, improving the pruning power of thesholding. In Table 1, the discarded
solutions are shown in bold. They represent a significant percentage of the total
computations.

The symbolic execution and tuning methods explained so far can be tested
online via the following URL:
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Table 1. Table summarizing the results achieved when tuning connectives and weights.

—° ] v* |© |sun sweet lux zZ
1 |c 03 61 045 0.150.55 0.22 0.80 0.05 |0.42
0.5 62 045 0.15/0.55 |0.22 | 0.80 |0.05 | 0.42
0.7 ©5 |0.60 0.000.55 |0.22 | 0.80 |0.05 0.27
lp0.3/©4 0.590.01]0.73 0.04 0.85 0.00 0.05
0.5 s |0.68/0.08/0.73]/0.04 0.85 0.00 0.12
0.7 6 |0.77 0.17]0.73|0.04 0.85 0.00 0.21
L 0.3/ ©; 0.75]0.15 0.90  0.13]0.90 0.05 0.33
0.5 6s |0.900.30/0.90]0.13 0.90 0.05 0.48
0.7 69 |0.90 0.30/ 0.90/0.13 0.90 0.05 0.48
—p e 03O0 0.50 0.10/0.59 0.18 0.81 0.04 0.32
0.5 611]0.50 0.10/ 0.59]0.18 | 0.81 | 0.04 | 0.32
0.7 ©12]0.63 0.03/0.59 |0.18 0.81/0.04 0.25
|p 0.3 @13 0.61]0.01/0.74 0.03 0.85 0.00 |[0.04]
0.5 ©14]0.70 | 0.10| 0.74]0.03 0.86 0.01 0.14
0.7 15 0.78 0.18 0.74 | 0.03 0.86 0.01 0.22
|1 0.3 16 0.77]0.17 0.90  0.13]0.90 | 0.05 0.35
0.5 ©17]0.90 0.30/ 0.90|0.13 0.90 | 0.05 0.48
0.7 ©15/0.90 0.30/ 0.90|0.13 0.90 0.05 0.48
—c ||c 0.3 19 055 0.05 0.65 0.12 0.90 0.05 0.22
0.5 20| 0.55 0.05]0.65]0.12 0.90 0.05 0.22
0.7 @21 0.70 | 0.10 0.65 0.12 0.90 0.05 0.27
|p 0.3 ©220.69]0.09] 0.830.06|0.90 0.05 0.20
0.5 ©23]0.78 0.18 0.83]0.06 0.90  0.05 0.29
0.7 ©240.87 0.27/0.83 | 0.06 0.90 0.05 0.38
L 0.3 25 0.86]0.26 0.90 0.13]0.90 0.05 0.44
0.5 626 /0.90 0.30/ 0.90|0.13 0.90 | 0.05  0.48
0.7 ©27/0.90 0.30/ 0.90|0.13 0.90 0.05 0.48

http://dectau.uclm.es/tuning/

When introducing an sMALP program into the system, symbolic constants
must be preceded by the symbol “#”. For instance, the first couple of rules in
our running example have the following form:

popularity(X) #<sl facilities(X) #|s2 @aver(locatin(X),rates(X)) with 0.9
facilities(sun) with #s3

The lattice of truth degrees is encoded as a set of Prolog clauses (see [19,20])
where predicate members/1 contains the list of truth degrees used during the
tuning process. Each test case appears in a different line as follows: r —> Q,
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where r is the desired truth degree for the first fca associated to query Q. For
tuning an sMALP program, we have implemented the three methods mentioned
so far:

Basic: The basic method is based on applying each symbolic substitution to the
original SMALP program and then fully executing the resulting instantiated
MALP programs (both the operational and the interpretive stages).

Symbolic: This row refers to the naive algorithm introduced in Definition 5,
where the considered substitutions are directly applied to sfca’s (thus only
the interpretive stage is repeatedly executed).

Thresholded: In this row, we consider the symbolic method improved with thresh-
olding techniques, as explained above.

The system also reports the processing time required by each method and
offers an option for applying the best symbolic substitution to the original sMALP
program in order to show the final, tuned MALP program.

Table 2. Tuning runtime (in milliseconds).

Truth degrees Symbolic constants
10 |100 |1000 |5 |6 |7 8 9 10 11
Basic 1201130 | 11360 | 320 | 990 | 3030 | 9180 | 28170 | 86760 | 264850

Symbolic 30 290 2860 100|290 | 980|2970| 9930 30570 | 93360
Thresholded | 15| 130 | 1300| 50 |140| 420 |1580| 4390 13460 38310

Table 2 summarizes the results of an experimental evaluation” of the three
tuning methods described above, varying the number of truth degrees (10, 100
and 1000) used when manipulating our running example. Note that, in the most
complex case, 9000 different symbolic substitutions are considered at tuning
time, and the thresholded method is about 2 to 3 times more efficient than the
symbolic method, and even 6 to 8 times more efficient than the basic method,
which witnesses the advantages of our improved tuning mechanism. In the last
column, we consider variations of the number of symbolic constants (among
connectives and truth degrees) from 5 to 11, thus showing that the thresholded
method scales up well and solves the problem in just a few seconds.

5 Discussion

In this paper, we have been concerned with fuzzy programs belonging to the so-
called multi-adjoint logic programming approach. Our improvements are twofold:

" Each cell refers to the average of 100 executions using a desktop computer equipped
with an i3-2310 M CPU @ 2.10 GHz and 4,00 GB RAM.
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— On one side, we have extended their syntax for allowing the presence of sym-
bolic weights and connectives on program rules, which very often prevents the
full evaluation of goals. As a consequence, we have also relaxed the opera-
tional principle for producing what we call symbolic fuzzy computed answers,
where all atoms have been exploited and the maximum number of expres-
sions involving connectives of the underlaying lattice of truth degrees have
been solved too.

— On the other hand, we have introduced a tuning process for MALP programs
that takes as inputs a set of expected test cases and an sMALP program
where some connectives and/or truth degrees are unknown. The efficiency
of the method has been largely improved by combining it with thresholding
techniques, as can be checked online in our prototype implementation.

As future work, we consider the embedding of these techniques in the FLOPER
platform, which is freely available from http://dectau.uclm.es/floper/. Currently,
the system can be used for compiling MALP programs to standard Prolog code,
drawing derivation trees, generating declarative traces and executing MALP pro-
grams [9,10]. Our last update, described in [11,12], allows the system to cope
with similarity relations cohabiting with lattices of truth degrees. Extending
our tuning method in order to cope with such similarity relations is also an
interesting topic for future work.

Another interesting direction for further research consists in combining our
approach with recent fuzzy variants of SAT/SMT techniques. Research on SAT
(Boolean Satisfiability) and SMT (Satisfiability Modulo Theories) [5] has pro-
vided highly efficient solvers based on classical logic. Some recent approaches
deal with propositional fuzzy formulae which might contain connectives defined
on lattices of truth degrees quite similar to the ones used on MALP programs
[3,24].% In this context, we think that our tuning method could be significantly
improved if the set of sfca’s instantiated with symbolic substitutions could be
expressed as fuzzy formulae, which are solvable by this kind of fuzzy SAT/SMT
solvers.
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Abstract. We propose a hierarchical abstract domain for the analysis
of free list memory allocators that tracks shape and numerical properties
about both the heap and the free lists. Our domain is based on Sepa-
ration Logic extended with predicates that capture the pointer arith-
metics constraints for the heap list and the shape of the free list. These
predicates are combined using a hierarchical composition operator to
specify the overlapping of the heap list by the free list. In addition to
expressiveness, this operator leads to a compositional and compact rep-
resentation of abstract values and simplifies the implementation of the
abstract domain. The shape constraints are combined with numerical
constraints over integer arrays to track properties about the allocation
policies (best-fit, first-fit, etc.). Such properties are out of the scope of
the existing analyzers. We implemented this domain and we show its
effectiveness on several implementations of free list allocators.

1 Introduction

A dynamic memory allocator (DMA) is a piece of software managing a reserved
region of the heap. It appears in general purpose libraries (e.g., C standard
library) or as part of applications where the dynamic allocation shall be con-
trolled to avoid failure due to memory exhaustion (e.g., embedded critical soft-
ware). A client program interacts with the DMA by requesting blocks of memory
of variable size that it may free at any time. To offer this service, the DMA man-
ages the reserved memory region by partitioning it into arbitrary sized blocks of
memory, also called chunks. When a chunk is allocated to a client program, the
DMA can not relocate it to compact the memory region (like in garbage collec-
tors) and it is unaware about the kind (type or value) of data stored. The set of
chunks not in use, also called free chunks, is managed using different techniques.
In this paper, we focus on free list allocators [19,27], that records free chunk
in a list. This class of DMA includes textbook examples [17,19] and real-world
allocators [20].

The automated analysis of DMA faces several challenges. Although the code
of DMA is not long (between one hundred to a thousand LOC), it is highly
optimised to provide good performance. Low-level code (e.g., pointer arithmetics,
bit fields, calls to system routines like sbrk) is used to manage efficiently (i.e.,
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with low additional cost in memory and time) the operations on the chunks
in the reserved memory region. At the same time, the free list is manipulated
using high level operations over typed memory blocks (values of C structures)
by mutating pointer fields without pointer arithmetic. The analyser has to deal
efficiently with this polar usage of the heap made by the DMA. The invariants
maintained by the DMA are complex. The memory region is organised into a heap
list based on the size information stored in the chunk header such that chunk
overlapping and memory leaks are avoided. The start addresses of chunks shall
be aligned to some given constant. The free list may have complex shapes (cyclic,
acyclic, doubly-linked) and may be sorted by the start address of chunks to ease
free chunks coalescing. A precise analysis shall keep track of both numerical and
shape properties to infer specifications implying such invariants for the allocation
and deallocation methods of the DMA.

These challenges have been addressed partially by several works in the last
ten years [5,23,25]. In [23], efficient numerical analyses have been designed to
track address alignment and bit-fields. The most important progress has been
done by the analysis proposed by Calcagno et al. [5]. It is able to track the
free list shape and the numerical properties of chunk start addresses due to
an abstract domain built on an extension of Separation Logic (SL) [24] with
numerical constraints and predicates specifying memory blocks. However, some
properties of the heap and free list can not be tracked, e.g., the absence of
memory leaks or the ordering of start addresses of free-chunks. Although the
analysis in [25] does not concern DMA, it is the first to propose a hierarchical
abstraction of the memory to track properties of linked data structures stored
in static memory regions. However, this analysis can not track properties like
address sorting of the high level data structures (here the free list) stored in the
memory region. Furthermore, its link with a logic theory is not clear. Thus, a
precise, logic based analysis for the inference of properties of free list DMA is
still a challenge.

In this paper, we propose a static analysis that is able to infer the above com-
plex invariants of DMA on both heap list and free list. We define an abstract
domain which uses logic formulas to abstract DMA configurations. The logic
proposed extends the fragment of symbolic heaps of SL with a hierarchical com-
position operator, 3, to specify that the free list covers partially the heap list.
This operator provides a hierarchical abstraction of the memory region under
the DMA control: the low-level memory manipulations are specified at the level
of the heap list and propagated in a way controlled by the abstraction at the
level of the free list. The shape specification is combined with a fragment of
first order logic on arrays to capture properties of chunks in lists, similar to [3].
This combination is done in an accurate way as regards the logic by including
sequences of chunk addresses in the inductive definitions of list segments. The
main advantages and contributions of this work are (1) the high precision of the
abstraction which is able to capture complex properties of free list DMA imple-
mentations, (2) the strong logical basis allowing to infer invariants that may
be used by other verification methods, and (3) the modularity of the abstract
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domain permitting to reuse existing abstract domains for the analysis of linked
lists with integer data.

2 Overview

Figure 1 includes excerpts from our running example, a free list DMA implemen-
tation proposed in [1]. The type HDR (Fig.1(a)) defines the information stored
by the DMA at the start of chunks. The field size stores the full size of the
chunk (in blocks of sizeof (HDR) bytes) and it is used by the heap list to deter-
mine the start of the next chunk. The field £nx is valid only for free chunks (i.e.,
chunks in the free list) and it stores the start address of the next free chunk. To
simplify the presentation, we added the ghost field isfree, to mark explicitly
free chunks. The memory region managed by the DMA is enclosed within the
addresses stored by the global variables _hsta and _hend; they are initialised by
minit using sbrk calls. The start of the free list is stored in frhd. An intuitive
view of the concrete state of the DMA is shown in Fig. 1(d). The busy chunks
are represented in grey. The “next chunk” relation in the heap list (defined using
the field size) is represented by the lower arrows; the upper arrows represent
the “next free chunk” relation defined by the fnx field. Furthermore, other struc-
tural invariants should be maintained after each call of DMA methods: the heap
list shall be well formed inside the memory region [‘hsta, hend), consecutive
chunks of the heap list are not both free (early coalescing policy), the free list
shall include only chunks of the heap list, be acyclic and sorted by the start
address of chunks. The allocation method searches a chunk with size bigger than
the requested nbytes; if the chunk is larger, it is split in two parts such that the
last part (the end of the initial chunk) is allocated.

The goal of our analysis is to establish that, if the client uses correctly the
DMA methods, these methods (i) preserve the above structural invariants and
(ii) are memory safe. In particular, we analyse the DMA methods starting from
a client program which initialises the DMA and then calls allocation and deal-
location methods (see Sect.5) in a correct way.

Heap list abstraction. The concrete memory configurations managed by the
DMA are abstracted first using an extension of the symbolic heap graphs frag-
ment [9] of SL. The logic fragment is parameterised by a set of predicates which
capture the properties of the heap list as follows:

— The predicate blk(X;Y), introduced in [5], specifies an untyped sequence
of bytes between the symbolic addresses X and Y. E.g., the configuration
obtained at line 20 of minit is abstracted by blk(_hsta; hend).

— The predicate chd(X;Y") specifies a memory block blk(X;Y") storing a value
of type HDR; the fields of this value are represented by the symbolic variables
X .size, X .fnx, and X .isfree respectively.

— The predicate chk(X;Y) specifies a chunk built from a chunk header
chd(X; Z) followed by a block blk(Z;Y") such that the full memory occupied,
i.e., Y — X, has size given by X .size x sizeof (HDR).



154 B. Fang and M. Sighireanu

typedef struct hdr_s { void* malloc(size_t nbytes)

struct hdr_s *fnx; {

size_t size; HDR *nxt, *prv;

//@ghost bool isfree; size_t nunits =
} HDR; (nbytes+sizeof (HDR)-1) /sizeof (HDR) + 1;
static void *_hsta = NULL; for (prv = NULL, nxt = frhd; nxt;
static void *_hend = NULL; prv = nxt, nxt = nxt->fnx) {
static HDR *frhd = NULL; if (nxt->size >= nunits) {
static size_t memleft; if (nxt->size > nunits) {

nxt->size -= nunits;

void minit(size_t sz) nxt += nxt->size;
{ nxt->size = nunits;

size_t align_sz; } else {

align_sz = (sz+sizeof (HDR)-1) if (prv == NULL)

& ~(sizeof (HDR)-1); frhd = nxt->fnx;
else
_hsta = sbrk(align_sz); prv->fnx = nxt->fnx;
_hend = sbrk(0); }
memleft -= nunits;

frhd = _hsta; //@ghost nzt->isfree = false;

frhd->size = align_sz / sizeof (HDR); return ((void*) (nxt + 1));

frhd->fnx = NULL; ¥

//@ghost frhd->isfree = true; }

warning("Allocation Failed!");

memleft = frhd->size; return (NULL);
} }
(a) Globals and initialisation (b) Allocation

frhd prv nxt
flso fck flso
G @ ' ( ) _hsta, v Xt  nil hen
N Ve SV

d
e S n e
i hisc é RN N et oA

(c) Part of the abstract invariant at line 34 (d) Concrete memory

Fig. 1. Running example with code, concrete memory, and abstract specification

— A well formed heap list segment starting at address X and ending before Y
is specified using the predicate hls(X;Y)[W]. The inductive definition of this
predicate (see Table 2) requires that chunks do not overlap or leave memory
leaks. The variable W registers the sequence of start addresses of chunks in
the list segment and it is used to put additional constraints on the fields of
these chunks. For DMA with early coalescing of free-chunks (i.e., coalescing
at free), we abstract the heap list segments by a stronger predicate, hlsc.

These predicates are combined using the separation conjunction operator x
of SL, which requires disjointness of memory regions specified by its operands.
The bottom of Fig. 1(c) illustrates the heap list abstraction of the concrete mem-
ory provided in Fig. 1(d); for readability, the abstraction is represented by its
Gaifman graph. The ghost variable hli represents the end of the data segment of
the DMA, as returned by sbrk(0).
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Hierarchical abstraction of the free list. The first abstraction layer captures the
total order of chunks in the heap list. The free list defines a total order over the
set of free chunks. The second abstraction layer captures this order using the
same SL fragment but over a different set of predicates (see Table 2):

— The predicate fck(X;Y') specifies a chunk chk(X;...) starting at X, with
X .fnx bound to Y and X .isfree set to true.

— The predicate fls(X;Y)[W] specifies a free list segment starting at X, whose
last element field fnx points to Y; W registers the sequence of start addresses
of free chunks in the list segment. The predicate flso(X,...)[W] abstracts free
list segments sorted by the start address of chunks.

The top of Fig. 1(c) illustrates the free list abstraction by its Gaifman graph.

Finally, the memory shape abstraction is obtained by composing the two
abstraction levels using a new operator, denoted by 3, which requires that the
set of chunks in the free list abstraction is exactly the sub-set of chunks in the
heap list whose field isfree has value true. Notice that the operator  can
not be replaced by the logical conjunction because we are using the intuitive
semantics of SL where spatial formulas fully specify the memory configurations.
Or the free list abstraction provides only a partial specification of the heap.

Constraints over sequences of chunk addresses. The predicates presented above
specify invariants of DMA independent of parameters of DMA methods. To cap-
ture allocation policies that depend on these parameters (e.g., the first-fit policy
implemented by the malloc in Fig. 1(b)), we introduce universal constraints over
sequences of chunk start addresses W attached to shape atoms, like in [3]. For
example, the first-fit policy obtained at line 37 of malloc, is specified by:

A Yy.size > nunits A VX € W; - X .size < nunits

where Y5 is the symbolic address stored in the program variable nxt. The general
form of universal constraints is VX € W - Ag = Ay, where Ag and Ay are
arithmetic constraints over X and its fields. To obtain an efficient analysis, we
fix Ag and infer Ay. We require that both Ag and Ay belong to a class of
constraints supported by some numerical abstract domain (see Sect. 3).

Static analysis with hierarchical shape abstraction. Overall, the analysis algo-
rithm is a standard shape analysis algorithm. To expose fields constrained or
assigned by the program statements, it unfolds predicate definitions. To limit
the size of the abstraction, the algorithm normalises formulas to maintain only
symbolic addresses that are cut-points, i.e., they are stored in the program vari-
ables or are sharing points in lists. This transformation of formulas folds back
sub-formulas into more general predicates. The set of normalised shape formulas
is bounded, so we define the widening operator only for the sequence constraints.
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The hierarchical shape requires to solve a number of specific issues (see
Sect. 5). The unfolding of shape predicates shall be done at the appropriate level
of abstraction. For example, a traversal of the free list requires only unfolding
and folding at the free list level. The heap list level may abstract chunks which
are explicit in the free list level. Thus, we define protocols for the unfolding
and folding operations at each level that are sound as regards the hierarchical
composition defined by the operator  and with the sequence constraints.

3 Logic Fragment Underlying the Abstract Domain

We formalise in this section a fragment of Separation Logic [24] used to define
the values of our abstract domain in Sect. 4.

Syntaz. Let AVar be a set of location variables representing heap addresses; to
simplify the presentation, we consider that AVar contains a special variable nil
representing the null address, also denoted by nil. Let SVar be a set of sequence
variables, interpreted as sequences of heap addresses and IVar be a set of integer
variables. The full set of logic variables is denoted by Var = AVar U SVar U [Var.
The domain of heap addresses is denoted by A while the domain of values stored
in the heap is generically denoted by V, thus A C V. To simplify the presentation,
we fix HDR, the type of chunk headers, and its fields {size, fnx, isfree} typed
as declared in Fig. 1. The syntax of formulas is given in Table 1.

Formulas are in disjunctive normal form. Each disjunct is built from a pure
formula IT and a spatial formula Y. Pure formulas IT characterise the values of
logic variables using comparisons between location variables, e.g., X —Y = 0,

Table 1. Logic syntax

X,Y € AVar location variables W € SVar sequence variables

i,7 € IVar integer variables # € {=,#,<,>} comparison operators

x € Var logic variable Z, 7 € Var™ vectors of variables

X .f field access term t, A integer term resp. formula

pu= IIANEY|eVe|Iz ¢ formulas
IIT:= A|VXeW - A= A|W=w|INI pure formulas
Au= X[.fnx]—Y[.fnx] # | A|ANA location and integer constraints
wi= €| [X]|W]ww sequence terms
Y= YXg3Xp spatial formulas

Yg = emp | blk(X;Y) | chd(X;Y) | chk(X;Y) | X +— x| heap formulas

his(X; Y)[W] | hisc(X, i Y, §)[W] | Su * Su
Xp n= emp | fck(X;Y) | fls(X; Y)[W] | flso(X, z; Y, y)[W] | Xp « Xp  free list formulas
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Table 2. Derived predicates

chd(X;Y) £ blk(X;Y) A sizeof (HDR) = Y — X A X =izeoriory 0
chk(X;Y) £ 37 -chd(X; Z) *blk(Z;Y) A X .size x sizeof (HDR) = Y — X
fck(X;Y) £ 37 - chk(X; Z) A X .isfree=1A X .fnx =Y
his(X;Y)[W] 2 empAX =Y AW =¢
vV 3Z, W' chk(X;Z) xhls(Z; Y)W AW = [X]1.W'
hisc(X, fp; Y, f)[W] 2 empAX =Y AW =e A0 f+ fe <1
vV 3Z, W' f-chk(X; Z) * hisc(Z, £;Y, f) W AW = [X].W'
A f=X.isfree N0 < X.isfree+ f, <1
fis(X;Y)[W] L2 empAX =Y AW =¢
vV AZ W' fek(X; 2) xfls(Z; V) WIAW = [XIW AX #Y
flso(X,z; YV, y)[W] 2 emp AN X =Y AW =eAz—y <0
v 3Z, W' - fck(X; Z) xflso(Z, X; Y, y)[W')
ANW=I[XIWAz-X<0

constraints A over integer terms, and sequence constraints. We let constraints
in A unspecified, though we assume that they belong to decidable theories, e.g.,
linear arithmetic. The integer terms t are built over integer variables and field
accesses using classic arithmetic operations and constants. We denote by Iy
(vesp. IIw, II3) the set of sub-formulas of II built from universal constraints
(resp. sequence constraints, quantifier free arithmetic constraints).

A spatial formula has two components: X'y specifies the heap list and the
locations outside this region; X'z specifies only the free list. The operator
ensures that all locations specified by X'z are start addresses of free chunks in
the heap list. The atom emp holds iff the domain of the heap is empty. The
points-to atom X +— x specifies a heap built from one memory block at location
X storing the value given by z. The block atom blk(X;Y") holds iff the heap
contains a block of memory at location X ending before the location Y. The
other predicates are derived from blk and defined in Table2. Notice that the
chunk header atom chd(X;Y") does not expose the fields of the block at location
X using the points-to operator of SL. This ease the manipulation of heap list
level formulas, e.g., the coalescing of block and chunk atoms into a single block.

Semantics. Formulas ¢ are interpreted over pairs (I, h) where I is an interpreta-
tion of logic variables and h is a heap mapping a location to a non empty sequence
of values stored at this location. Formally, I € [(AVarUIVar) — V]U[SVar — V*]
and h € [A — VT] such that nil € dom(h). Let h(¢)[i] denote the ith element of
h(¢). Without loss of generality, we consider that a value of type HDR is a sequence
of values indexed by fields. Table 3 provides the most important semantic rules.
We following definitions are standard:
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Table 3. Logic semantics: main rules

ILLhEXy 3 XF iff I,hiEXgand 30 Chst [,h EXF

vl € dom(R') - W/ (¢)[isfree] = 1
I,h =emp iff dom(h) =10
I,h = bIk(X; Y) iff  dom(n) = I(X) A I(Y) — I(X) = |n(I(X))]
ILhEXw—z iff  dom(h) =1I1(X) A h(I(X))[0] = I(z)
I,h|221*22 iff th,hgs.t‘h:hlth and[,hz|:4‘77 fOI"iZl,Q

ILLhEVX eW- A= Ay iff I(W)=][a1,...,an] s.t.
Vi€ (1.n) I[X = a;],h = A1 = Ay

where
hi C hs iff  dom(hi) C dom(hs) and V¢ € dom(hi) - hi(£) = ha(£)
h1 ® ho iff Vi e dom(hl), ls € dom(hz) -y 75 IZYA
((da + [ ()] = 1) O (la-da + |ha(l2)] — 1) = 0)
h = hl ] hz iff h1 ® hQ, dom(h) = dom(hl) ] dOm(hg), and

a [ hi(€) if £ € dom(h)
(h1 Wha)(£) & {hz(g) if £ € dom(hs)

[e] = {I 1) | Lk = o} ¢ = ¢ iff [o] € [¢]

Transformation rules. The definitions in Table2 imply a set of lemmas used
to transform formulas in abstract values (in Sect.5). The first set of lemmas is
obtained by directing predicate definitions in both directions. For example, each
definition P(...) £ V,¢p; introduces a set of folding lemmas ¢; = P(...) and an
unfolding lemma P(...) = V,p;.

The second class of lemmas concerns list segment predicates in Table 2. The
inductive definitions of these predicates satisfy the syntactic constraints defined
in [12] for compositional predicates. Thus, every P € {hls, hlsc, fls, flso} satisfies
the following segment composition lemma:

P(X,ZY,)[Wi] « P(Y,§: Z,)[Wa) \W = W1.Wo = P(X,%2,2)[W] (2)

The reverse implication is applied to split non empty list segments. Finally,
the block sub-formulas are removed, split, or folded using the following lemmas:

bk(X;Y) A X>Y = emp (3)
bk(X;Y) A X <Y = blk(X;Z) * bk(Z;Y)AX<Z<Y (4
bk(X;Y) * blk(Y;Z) A X <Y =Y'<Z = blkX;Z2). (5)

4 Abstract Domain for Hierarchical Shape Abstraction

We define in this section the join-semilattice (A, C, L) used in our analysis. It is
parameterised by a numerical join-semilattice (N, N,V ).
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Concrete states. Let X be the set of program variables, where hli is a ghost
variable of location type. Values in A represent sets of concrete states M € M
of the program. A concrete state M encloses an environment ¢ € E = X — A
mapping each program variable to its storing location, and a heap h : A —
VT mapping locations to sequences of values. For simplicity, the symbol hli is
overloaded to denote the symbolic location stored by hli.

Abstract values. Values in A are a restricted form of logic formulas. Generally
speaking, A is a co-fibered product [6] of an extended symbolic heap domain for
the spatial part and a data word domain [3] for the pure part. More precisely,
A includes a special value for T and finite mappings of the form:

at = {(eg,Ei(f, V_V)> — Ui(f,W U{Wu,Wgrhtier (6)

where eg : X — Var is an abstract environment mapping program variables to
symbolic location variables, IT; includes arithmetic constraints allowed by N/,
and the free variables of each formula are detailed. Furthermore, the usage of
sequence variables in Y; and II; is restricted as follows:

R;i: A sequence variable is bound to exactly one list segment atom in X;; thus
X; defines an injection between list segment atoms and sequence variables.
Rs: II; contains only the sequence constraints Wy = w and Wr = w’, where
Wy and Wpg are special variables representing the full sequence of start

addresses of chunks in the heap resp. free list levels.

In addition, the universal constraints in the pure formulas II; are restricted
such that, in any formula VX € W - Ag = Ay:

Rj3: Ag and Ay use only terms where X appears inside a field access X . f.
R4: Ag has one of the forms X .size#i or X .isfree = i.

These restrictions still permit to specify DMA policies like first-fit (see
Eq. (1)) and besides enable an efficient inference of universal constraints.

Internal representation. To ease the manipulation of extended spatial formu-
las (€¥, X)), we use their Gaifman graph representation, like in Fig.1(c): nodes
represent symbolic locations variables and labeled edges represent the spatial
atoms in X or mappings in €f. The universal formulas are represented by a map
binding each pair (W, Ag) built from a sequence variable and some guard Ag
to a numerical abstract value.

Concretisation. An abstract value of the form (6) represents a formula V;3Z, w-
X NI A eg where each binding (v,z) € eg is encoded by v — x (v is the
location where is stored the program variable v). The false formula represents L,
which corresponds to the empty mapping. Therefore, we define the concretisation

v : A — M as the denotation of the formula represented by the abstract value,
ie., y(a*) = [a¥].
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Ordering. The partial order C is defined using a sound procedure inspired by
[4,12]. For any two non trivial abstract values af, b* € A, a* C b* if for each binding
<e§, X;) + II; € a* there exists a binding (eg, X;) = II; € b* such that:

— there is a graph isomorphism between the Gaifman graphs of spatial formula
at each level of abstraction from X; to X;; this isomorphism is defined by a
bijection ¥ : img(e!) — img(eg-) between symbolic location variables and a
bijection {2 between sequence variables. Thus, X;[W][2] = X,

— for each sequence constraint W = w in Iy, 2(W) = 2(w) is a sequence
constraint in Iy, ;,

~ W(Il5,) EN M3,

— for each W defined in X; and for each universal constraint VX € W-Ag = Ay
in I1y ;, then ITy ; contains a universal constraint on W’ = (W) of the form
VX € W' Ag = A}, such that ¥(IT5; A Ay) CN AL,

The following theorem is a consequence of restrictions on the syntax of formulas
used in the abstract values.

Theorem 1 (C soundness). If af C b* then [a?] C [b7].

Join. Given two non-trivial abstract values, af and b¥, their join is computed by
joining the pure parts of bindings with isomorphic shape graphs [3]. Formally,
for each two bindings (€}, ;) — II; € a* and <€§" X;) = II; € b* such that there
is a graph isomorphism defined by ¥ and {2 between <e§, Xy and (e‘g, Xy, we
define their join to be the mapping {<€§" X))+ II'} where IT is defined by:

— IT includes the sequence constraints of b¥, i.e., ITyy = Iy, ;,

~ I3 2 W(Il3,;) UN I3,

— for each W sequence variable in dom({2) and for each type of constraint Ag,
then ITy contains the formula VX € 2(W) - Ag = ¥(Au,) LV Ay,; where
Ay, (resp. Ay ;) is the constraint bound to W (resp. 2(W)) in Ily; (resp.
IIy ;) for guard Ag or T if no such constraint exists.

The join of two bindings with non-isomorphic spatial parts is the union of the
two bindings. Then, (afUbf) computes the join of bindings in a* with each binding
in b. Intuitively, the operator collects the disjuncts of af and b but replaces the
disjuncts with isomorphic spatial parts by one disjunct which maps the spatial
part to the join of the pure parts. Two universal constraints are joined when
they concern the same sequence variables and guard Ag since ((Vc eW. - Ag =
A1) V (Vee W-Ag = A2)) = (Vee W Ag = (A1 V A2)).

Theorem 2 (U soundness). For any af,b* € A, [a*] U [b*] C [a* L bF].

Cardinality of the abstract domain. The number of mappings in (6) increases
during the symbolic execution by the introduction of new existential variables
keeping track of the created chunks. Although the analysis stores only values with
linear shape of lists (other shapes are signalled as an error state), the number
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of linear shapes is exponential in the number of nodes, in general. We avoid this
memory explosion by eliminating existential variables using the transformation
rules that replace sub-formulas by predicates, an operation classically called
predicate folding. This operation uses lemmas (2)—(5), as discussed in Sect. 5.
Thus, the domain of abstract values is bounded by an exponential on the number
of pointer program variables local to DMA methods which is small in general,
e.g., < 3 in our benchmark. However, the domain of pure formulas used in the
image of abstract values is not bounded because of integer constants. This fact
requires to define widening operators for the data word domain used for the pure
constraints.

5 Analysis Algorithm

We now describe the specific issues of the static analysis algorithm based on the
hierarchical abstract domain presented in Sect. 4.

5.1 Main Principles

The analysis algorithm consists of the following three steps.
The first step targets on discovering the prop-
erties of the free and heap lists in order to select

int main(void) {

323(;054;;11“@0)- a suitable set of list segment predicates. It con-
malloc(20); ’ sists of an inter-procedural and non relational
gf:e;gl’i;cf(gz){“um; symbolic execution of a correct client program
malloc(20); like the one in Fig. 2. The sets of reachable con-
‘r"zzir(lp()) p = NULL; figurations are represented by abstract values of
} our domain built over the chunk and block atoms

only, i.e., atoms using predicates fck, chk, chd,
and blk. Thus, the heap and the free lists are
completely unfolded. For example, the abstract
value computed for the start location of method
malloc (line 28 in Fig. 1) when executing the client program in Fig.2 is built
from four disjuncts whose shape part is given in Fig. 3. The client programs are
chosen to reveal the heap list organisation (including chunk coalescing) and the
shape of the free list. We don’t employ the most general client or a client using
an incorrect sequence of calls to the DMA methods in order to speed-up this
step and avoiding configurations leading to error states.

The second step transforms the abstract values computed by the previous
step to obtain an abstract value representing a pre-condition of the DMA method
that constrains the global variables and the parameters of the method. For this,
the variables of the client program (e.g., p in Fig. 2) are projected out and folding
lemmas are applied to obtain list atoms. For example, the transformation of the
abstract value in Fig. 3 leads to an abstract value with one disjunct whose spatial
part is hlsc(Xy, 0; hli, 0) 3 flso(X¢, Xo; nil, hli). The resulting pre-condition is not
the weakest one, but it is bigger than (as regards C) the abstract value computed
by the symbolic execution at this control location.

Fig. 2. A client program
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The third step does forward, non- |trhd Line 3 | frhd Line 4
relational abstract interpretation [8] é% ()~ (@)
starting from the computed pre-

_hsta AR _hepd | _hsta n P _hend
conditions of each DMA method. The ‘ chk é x chk ® chd % bk

analysis follows the principles of [7,

frh Line 6
9,10] and uses the widening opera- ok fek
tor to speed-up the convergence of © @
the fix-point computation for program "3 A —pend
loops. The original points on abstract
transformers concern the transfer of |, Line 7
information between abstraction lay- “ L ® fok @

ers in the hierarchical unfolding, split-
| hsta _hend

ting, and folding of predicates, as A P

detailed in Sects. 5.2 and 5.3. Further- idF Z (i)
more, these operations are defined in a
modular way, by extending [6] to data
word numerical domains. The widen-

ing operator uses the widening of data
word domain defined in [10].

Fig. 3. Spatial formulas at line 28

5.2 Hierarchical Unfolding

Abstract transformers compute over-approximations of post-images of atomic
conditions and assignments in the program. For the spatial part, the abstract
value is transformed such that the program variables read or written by the
program operation are constrained using predicates that may capture the effect
of the program operation. This transformation is called predicate unfolding.

We define the following partial order between predicates blk < chd < chk <
fck < hls, hlsc, fls, flso which intuitively corresponds to an increasing degree of
specialisation. For each program operation s and each pointer variable x in s, an
atom P(X;...) with e(x) = X is transformed using lemmas in Sect. 3 to obtain
the atom Q(Xj;...) such that @ < P is the maximal predicate satisfying:

— if s reads the fields of HDR, then Q < fck,
— if s assigns x.isfree or x.fnx, then @ < chk,
— if s mutates x using pointer arithmetics or assigns x.size, then @ < chd.

We illustrate this procedure on the condition nxt->size > nunits at line 37
in Fig. 1(b), which reads the field size. Applied to the abstract value in Fig. 1(c),
it requires to unfold the flso predicate from Y5, to obtain the formula on top of
Fig. 4. To compute the post-image of the next operation, nxt->size -= nunits,
the symbolic location Y5 shall be the root a chd predicate (third case above).
Thus, Y, is instantiated in the heap list by (i) splitting and then unfolding the
hlsc predicate using the segment composition lemma, and (ii) by unfolding chk
to obtain the formula at the bottom of Fig.4. The unfolding of chk requires to
remove the fck atom from Y5 in the free list because its definition is not more
satisfied at the heap list abstraction level.
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The next assignment, frh% o e
. A flso fck fck flso
nxt += nxt->size, does not require 0, O, & (o)
to transform the predicate rooted .

in Y5 because it is already < _hsta _hend
chd. Instead, the transformer adds @
a new symbolic location Z; in the
heap list level and constrain it by
Z1 =Ys+Y5.size X sizeof (HDR). If . -
Zy goes beyond the limit of the block é 5o

of the chunk starting at Y5 (i.e., out-

side the interval [Xi,X5) in Fig.4),

the analysis signals a chunk breaking. - e e
Otherwise, the blk atom from X is H

split using lemma (4) to insert Z;; the

result is given in the top part of F]g 5. Fig. 4. Hierarchical unfolding at line 38

Unfold to assign Y,.size

®

5.3 Hierarchical Folding

To reduce the size of abstract values, the abstract transformers finish their com-
putation on a binding (eg, X;) — II; by eliminating the symbolic locations which
are not cut-points in X;. The elimination uses predicate folding lemmas like (2)
or (5) to replace sub-formulas using these variables by one predicate atom. The
graph representation eases the computation of sub-formulas matching the left
part of a folding lemma.

More precisely, the elimination process has the following steps. First, it
searches sequences of sub-formula of the form chd(Xg; X1) * blk(X7; X2) ... %
blk(X,,_1; X,,) where none of X; (1 <i < n) is in img(e*). Such sub-formulas are
folded into chk(Xy; X,,) if the pure part of the abstract value implies X, .size x
sizeof (HDR) = X,, — X (see Table 2). We use the variable elimination provided
by the numerical domain A to project out {X3,..., X,,—1} from the pure part.
Furthermore, if the pure part

implies Xy.isfree = 1, then f“‘dé , prv -, ,
the chunk atom (and its start —b‘—». @
address) is promoted as fck to the A

_hsta

free list level. e Y mschend
This step is illustrated on sub- é

formulas Chd(}/g, Xl)*blk(Xl, Zl) NY,isfree=1 AY,fnx=Y,

at the tOp Of Flg 5 The sec- ‘ Transfer free chunk Y, and fold hisc
ond step folds hisc list seg- crna -
ments by.a.upplying their induc- é ® D" @ fok ® fiso o

tive definition and the compo-
sition lemma (2). The atoms peta pena
chk(Xp;...) for which the free 3 hise ohd ~ bik hiso é
list level contains an atom
fck(Xo; . ..) may be folded at the

Fig. 5. Hi hical foldi fter line 48
heap list level into list segments ' terarciiical loldmg atter fme
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due to the semantics of . For example, the chunk starting from location Y5 is
folded inside a hlsc segment in the formula at the bottom of Fig. 5. Notice that
folding of list segments implies the update of sequence and universal constraints
like in [10].

6 Experiments

We implemented the abstract domain and the analysis algorithm in Ocaml as a
plug-in of the Frama-C platform [18]. We are using several modules of Frama-C,
e.g., C parsing, abstract syntax tree transformations, and the fix-point com-
putation. The data word domain uses as numerical join-lattice N the library
of polyhedra with congruence constraints included in APRON [16]. To obtain
precise numerical invariants, we transform program statements using bit-vector
operations (e.g., line 16 of Fig.1(a)) into statements allowed by the polyhedra
domain which over-approximate the original effet.

Table 4. Benchmark of DMA

DMA LOC' | List Pred. | Time (s) | |a*| ||Wg|/|Wr| | Invariants

DKFF[19] | 176 | hisc,flso | 0.05 25 |8/5 first-fit, MIN_SIZE-size
DKBF[19] | 130 | hlsc,flso | 0.05 26 |8/6 best-fit, MIN_SIZE-size
LA[1] 181 | hlsc,flso | 0.07 25 |8/5 first-fit, 0-size
DKNF[19] | 137 | hisc,flso | 0.05 30 |8/6 first-fit, MIN_SIZE-size
KR[17] 284 |hlsc,flso |2.8 32 |8/6 first-fit, 0-size

We applied our analysis on the benchmark of free list DMA in Table4.
(Detailed experimental results are available in [26].) DKFF and DKBF are imple-
mentations of Algorithms A and B from Sect. 2.5 of [19]. These DMA keep an
acyclic free list sorted by the start addresses of chunks. The deallocation does
coalescing of successive free chunks. The allocation implements a first-fit resp.
best-fit policy such that the fitting chunk is not split if the remaining free part
is less than MIN_SIZE (variant proposed in [19]). This property is expressed by
the following sub-formula of the invariant “MIN_SIZE-size” (for MIN_SIZE=S):

VX € Wy - X .size > 8 (7)
which is inferred by our analysis. The first-fit policy is implied by an abstract

value similar to the one in Eq. (1). The best-fit policy is implied by a value using
the constraint:

VX e W;-X.size > rsz = X .size > Y .size (8)
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where rsz is the requested size, Y is the symbolic address of the fitting chunk,
and W; represents a list segment around the fitting chunk. LA is our running
example in Fig. 1; it follows the same principles as DKFF, but get rid of the
constraint for chunk splitting. For this case study, our analyser infers the “0-size”
invariant, i.e., VX € Wy - X .size > 4 (=sizeof (HDR)). Notice that the code
analysed fixes an obvious problem of the malloc method published in [1]. DKNF
implements the next-fit policy using the “roving pointer” technique proposed
in [19]: a global variable points to the chunk in the free list involved in the
last allocation or deallocation; malloc searches for a fitting free chunk starting
from this pointer. Thus, the next-fit policy is a first-fit from the roving pointer.
DKNF is challenging because the roving pointer introduces a case splitting that
increases the size (number of disjuncts) in abstract values. The KR allocator [17]
keeps a circular singly linked list, circularly sorted by the chunk start addresses;
the start of the free list points to the last deallocated block. The circular shape
of the list requires to keep track of the free chunk with the biggest start address
and this increases the size of the abstract values.

The analysis times reported in Table4 have been obtained on a 2.53 GHz
Intel Core 2 Duo laptop with 4 GB of RAM. They correspond to the total time
of the three steps of the analysis starting from the client given in Fig.2. The
universally quantified invariants inferred for DMA policies are given in the last
column. Columns |af| and |Wg|/|Wr| provide the maximum number of disjuncts
generated for an abstract value resp. the maximum number of predicate atoms
in each abstraction level.

7 Related Work and Conclusion

Our analysis infers complex invariants of free list DMA implementations due to
the combination of two ingredients: the hierarchical representation of the shape
of the memory region managed by the DMA and an abstract domain for the
numerical constraints based on universally quantified formulas. The abstract
domain has a clear logical definition, which facilitates the use of the inferred
invariants by other verification methods.

The proposed abstract domain extends previous works [3,5,10,11,21]. We
consider the SL fragment proposed in [5] to analyse programs using pointer
arithmetic. We enrich this fragment in both spatial and pure formulas to infer
a richer class of invariants. E.g., we add a heap list level to track properties like
chunk overlapping and universal constraints to infer first-fit policy invariants.

The split of shape abstraction on levels is inspired by work on overlaid data
structures [11,21]. We consider here a specific overlapping schema based on set
inclusion which is adequate for the class of DMA we consider. We propose new
abstract transformers which do not require user annotations like in [21]. Another
hierarchical analysis of shape and numeric properties has been proposed in [25].
They consider the analysis of linked data structures coded in arrays and track
the shape of these data structures and not the organisation of the set of free
chunks. Their approach is not based on logic and the invariants inferred on the
content of list segments are simpler.
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Our abstract domain includes a simpler version of the data word domain
proposed in [3,10], since the universal constraints quantify only one position
in the list. Several abstract domains have been defined to infer invariants over
arrays, e.g., [13] for array sizes, [14,15] for array content. These works infer
invariants of different kind on array partitions and they can not be applied
directly to sequences of addresses. Recently, [22] defined an abstract domain for
the analysis of array properties and applies it to the Minix 1.1 DMA, which uses
chunks of fixed size. A modular combination of shape and numerical domains
has been proposed in [6]. We extend their proposal to combine shape domains
with domains on sequences of integers. Precise analyses exist for low level code
in C [23] or for binary code [2]. They efficiently track properties about pointer
alignment and memory region separations, but can not infer shape properties.
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Abstract. Automated analysis of recursive derivations in logic pro-
gramming is known to be a hard problem. Both termination and non-
termination are undecidable problems in Turing-complete languages.
However, some declarative languages offer a practical work-around for
this problem, by making a clear distinction between whether a program
is meant to be understood inductively or coinductively. For programs
meant to be understood inductively, termination must be guaranteed,
whereas for programs meant to be understood coinductively, produc-
tive non-termination (or “productivity”) must be ensured. In practice,
such classification helps to better understand and implement some non-
terminating computations.

Logic programming was one of the first declarative languages to make
this distinction: in the 1980’s, Lloyd and van Emden’s “computations at
infinity” captured the big-step operational semantics of derivations that
produce infinite terms as answers. In modern terms, computations at
infinity describe “global productivity” of computations in logic program-
ming. Most programming languages featuring coinduction also provide
an observational, or small-step, notion of productivity as a computa-
tional counterpart to global productivity. This kind of productivity is
ensured by checking that finite initial fragments of infinite computations
can always be observed to produce finite portions of their infinite answer
terms.

In this paper we introduce a notion of observational productivity for
logic programming as an algorithmic approximation of global productiv-
ity, give an effective procedure for semi-deciding observational produc-
tivity, and offer an implemented automated observational productivity
checker for logic programs.

Keywords: Logic programming - Corecursion - Coinduction
Termination - Productivity

1 Introduction

Induction is p