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Abstract. We survey the specification formalism of modal transition
systems (MTS). We discuss various extensions of MTS, their relation-
ships and modelling capabilities. The extensions include more involved
modalities, quantitative aspects, or infinite state spaces. Further, we dis-
cuss problems arising in verification and analysis of these systems. We
cover refinement checking, model checking and synthesis, standard logi-
cal and structural operations as used in specification theories as well as
the respective tool support.

1 Introduction

Correctness of complex systems can be ensured in various ways. The key idea of
verification is to first specify a property the system under development should
satisfy and then to verify that this is indeed the case. An alternative to verifi-
cation is refinement of the original specification into an implementation, which
is guaranteed to satisfy the specification, for the refinement is designed to pre-
serve the properties of interest. The refinement can be done either in one step,
where the implementation is synthesized from the specification, or in more steps
in a process of stepwise refinement. The latter is particularly useful when some
details of the requirements are not known at the beginning of the design process,
or synthesis of the whole system is infeasible, or in the component-based design
where other systems can be reused as parts of the new system.

The difference between verifying and refining systems is reflected in two fun-
damentally different approaches to specifications. Firstly, the logical approach,
relying on model checking algorithms, makes use of specifications given as for-
mulae of temporal or modal logics. Secondly, the behavioural approach, relying
on refinement, requires specifications to be given in the same formalism as imple-
mentations, e.g. a kind of a machine with an operational interpretation. We focus
on the latter.

Example 1. Consider the scenario of developing a piece of software illustrated in
Fig. 1. We start with a viewpoint V1 on the system, e.g. the client’s view on the
service functionality. This gets iteratively refined into a more concrete descrip-
tion Vm. Further, assume there is also another viewpoint W1, e.g. a description
of the service from the server point of view, which is refined in a similar fashion
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resulting in Wn. After these viewpoints are precise enough (although still very
underspecified), we merge them into one, say S, using an operation of conjunc-
tion. The complete description is now modelled by S, which is to be implemented.
Suppose we have components C and D at our disposal, which perform subrou-
tines needed in S. We put C and D together into a component T using an
operation of parallel composition. What remains to be designed is a component
X that we can compose with T in parallel so that the result conforms to the
specification S. The most general such X is called the quotient of S by T . Once
we have X we can further refine the underspecified behaviour in any desired
way resulting in a specification Y . The final step is to automatically synthesize
an implementation Z that, for instance, satisfies additional temporal logic con-
straints ϕ and/or is the cheapest implementation with respect to specified costs
C. Specification theories [Lar90,BDH+12] are mathematical formalisms allowing
for such development in a rigorous way. �

V1 W1

Vm Wn∧

C ‖ D ‖ X ← S/T

T

S

Y Z
ϕ,C

Fig. 1. An example of a component-based step-wise design scheme

A good specification theory should (i) allow for all the operations mentioned
in the example and efficient algorithms to compute them. Moreover, it should
(ii) be expressive enough to allow for convenient modelling. The behavioural
formalism of modal transition systems (MTS) [LT88] provides a convenient basis
for such a theory and has attracted a lot of attention. Unfortunately, it does not
satisfy either of the two stipulations above completely. In this paper, we survey
extensions of MTS that meet all these demands and efficient algorithms for
their analysis such as the mentioned operations, refinements, verification and
synthesis. Further, we discuss a link between the MTS extensions and logics,
thus building a bridge between the behavioural and the logical world, allowing
us to combine them, enjoying the best of both worlds.
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1.1 History of Modal Transition Systems

Modal transition systems (MTS) were introduced by Larsen and Thomsen [LT88]
three decades ago. The goal was to obtain an expressive specification formalism
with operational interpretation, allowing for refinement. The main advantage of
MTS is that they are a simple extension of labelled transition systems, which
have proved appropriate for behavioural description of systems as well as their
compositions.

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe what behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need
not be realized in the refinements. This allows us to underspecify non-critical
behaviour in the early stages of design, focusing on the main properties, ver-
ifying them and sorting out the details of the yet unimplemented non-critical
behaviour later.

Example 2. An MTS specification of a coffee machine is displayed in Fig. 2 on
the left. May transitions are depicted using dashed arrows, must transitions using
solid arrows. In the left state, the machine can either start to clean or accept
a coin. It may not always be possible to take the coin action, but if we do so
the machine must offer coffee and possibly supplement the choice with tea. An
implementation of this specification is displayed on the right. Here the clean is
scheduled regularly after every two beverages. In addition, tea can always be
chosen instead of coffee. �

coin
clean

coffee

tea

coin coffee

tea

coin coffee

tea

clean

Fig. 2. An MTS specification and its implementation

The formalism of MTS has proven to be useful, most importantly in com-
positional reasoning and component-based design. Industrial applications are as
old as [Bru97] where MTS have found use for an air-traffic system at Heathrow
airport. Besides, MTS are advocated as an appropriate base for interface the-
ories in [AHL+08a,RBB+09b,RBB+09a,RBB+11] and for product line theo-
ries in [LNW07a,Nym08,tBDG+15,tBFGM16,DSMB16]. Further, MTS-based
software engineering methodology for design via merging partial descriptions
of behaviour has been established in [UC04,BCU06,UBC07] and using residu-
ation in [Rac07,Rac08,Ben08]. The theory found its applications also in test-
ing [BDH+15,LML15]. MTS are used for program analysis using abstraction
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[GHJ01,DGG97,Nam03,DN04,dAGJ04,NNN08,CGLT09,GNRT10]. MTS spec-
ificationformalismsaresupportedbyseveraltools[DFFU07,BML11,KS13a,VR14].

Over the years, many extensions of MTS have been proposed. While MTS can
only specify whether or not a particular transition is required, some extensions
equip MTS with more general abilities to describe what combinations of tran-
sitions are possible. For instance, disjunctive MTS (DMTS) [LX90] can specify
that at least one of a given set of transitions is present. One-selecting MTS [FS08]
specify that exactly one of them is present. Acceptance automata [Rac07] can
even express any Boolean combination of transitions, but only for deterministic
systems. In all the mentioned cases, every must transition is also automatically
a may transition, modelling that whatever is required is also allowed. Sometimes
this assumption is dropped and the two transition relations are given indepen-
dently, giving rise to mixed transition systems (MixTS) [DGG97,AHL+08b].

These formalisms have also been studied under other names in different
contexts. To some extent equivalent variations of MTS have been adapted
for model-checking: Kripke modal transition systems (KMTS) [HJS01], partial
Kripke structures [BG00], and 3-valued Kripke structures [CDEG03]. In the same
manner MixTS correspond to Belnap transition systems [GWC06a]. Further,
DMTS correspond to generalized KMTS [SG04] or abstract transition systems
[dAGJ04]. While the variants of MTS and MixTS have been used in practi-
cal symbolic model-checkers (e.g. [CDEG03,GC06,GWC06b]), the “hypermust”
transitions in DMTS are hard to encode efficiently into BDDs. A comparison of
usability of these systems for symbolic model checking can be found in [WGC09].
Acceptance automata were also studied as acceptance trees [Hen85].

1.2 Outline of the Paper

Section 2 introduces modal transition systems formally, recalls several logics used
later, and explains the stipulations on good specification formalisms. Section 3
discusses extensions of MTS with respect to specifying the combinations of
present transitions. Section 4 discusses extensions of MTS with respect to the
underlying graph structure of the MTS, focusing on weighted graphs and infinite
graphs. In Sect. 5, results on refinements, operations, implementation synthesis,
and the available tools are surveyed. Section 7 concludes and mentions several
possible future directions.

1.3 Further Sources

This survey is an updated adaptation of the author’s thesis [Kře14]. An excel-
lent overview, however older, is provided in [AHL+08a]. Particular topics are
explained in depth in several theses, e.g. applications to interface and product-
line theories [Nym08], or extensions of MTS such as acceptance automata
[Rac07], disjunctive MTS [Ben12], MTS under different semantics [Fis12], in
quantitative settings [Juh13], with data [Bau12], or parameters and synchro-
nization [Møl13].



40 J. Křet́ınský

2 Preliminaries

2.1 Modal Transition Systems

The original modal transition systems were introduced in [LT88] as follows,
where Σ is an action alphabet.

Definition 1 (Modal transition system). A modal transition system (MTS)
is a triple (P, ���,−→), where P is a set of processes and −→ ⊆ ��� ⊆ P ×Σ×P
are must and may transition relations, respectively.

The must and may transitions capture the required and allowed behaviour,
as discussed in the introduction. The most fundamental notion of the theory of
modal transition systems is the modal refinement. Intuitively, a process s refines
a process t if s concretizes t (or in other words, t is more abstract than s).
Since processes are meant to serve as specifications, this is defined by (i) only
allowing in s what is already allowed in t and (ii) requiring in s what is already
required in t.

Definition 2 (Modal refinement). Let (P1, ���1,−→1), (P2, ���2,−→2) be
MTS and s ∈ P1, t ∈ P2 be processes. We say that s modally refines t, written
s ≤m t, if there is a refinement relation R ⊆ P1 × P2 satisfying (s, t) ∈ R and
for every (p, q) ∈ R and every a ∈ Σ:

1. if p
a���1 p′ then there is a transition q

a���2 q′ such that (p′, q′) ∈ R, and
2. if q

a−→2 q′ then there is a transition p
a−→1 p′ such that (p′, q′) ∈ R.

Example 3. In the course of the refinement process, must transitions are pre-
served, may transitions can turn into must transitions or disappear, and no new
transitions are added. Note that refinement is a more complex notion than that
of subgraph. Indeed, the same transition can be refined in different ways in
different places as illustrated in Fig. 3. �

i j1

j2

k1

k2

�

a

a

b

b

b

a

b s t

a

b

Fig. 3. The refinement i ≤m s is witnessed by the refinement relation
{(i, s), (j1, t), (j2, t), (k1, s), (k2, s), (�, t)}. Note that whenever there is a must transi-
tion in an MTS, we do not depict its underlying may transitions. Moreover, when a
designated process of an MTS is considered initial, it is depicted with an incoming
arrow.
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Whenever s ≤m t, we call s a refinement of t and t an abstraction of s. We
often consider MTS with a designated initial process; in such a case we say that
an MTS refines another one if this is true of their initial processes.

One may refine MTS in a stepwise manner until ��� = −→ is obtained and no
further refinement is possible. MTS with ��� = −→ are called implementations
and can be considered as the standard labelled transition systems (LTS). Given
a process s we denote by �s� = {i | i is an implementation and i ≤m s} the set of
all implementations of s.1 In the previous example, j1 is not an implementation,
while j2 is considered an implementation since all reachable transitions satisfy
the requirement. Further notice that k2 ∈ �s�.

Note that on implementations the refinement coincides with the strong bisim-
ilarity, and on modal transition systems without any must transitions it corre-
sponds to the simulation preorder. Further, the refinement has a respective game
characterization [BKLS09b] similar to (bi)simulation games.

2.2 Logics

A set of implementations can be specified not only by a behavioural specification
such as an MTS, but also by a formula of a logic. Here we briefly recall two logics:
μ-calculus [Koz83] and LTL [Pnu77]. Let Ap be a set of atomic propositions.

µ-calculus is given by the syntax

ϕ ::= tt | ff | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | μX.ϕ | νX.ϕ

where p ranges over Ap, a over Σ, and X over a set Var of variables. We call μ
the least fixpoint and ν the greatest fixpoint.

Linear temporal logic (LTL) is given by the syntax

ϕ ::= tt | ff | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Xaϕ | Fϕ | Gϕ | ϕUϕ

where p ranges over Ap and a over Σ. Given an implementation (P,−→) and
a valuation ν : P → 2Ap over its state space, any run (maximal path in the
directed graph of the LTS) induces a sequence from (2Ap × Σ)N capturing the
labelling of the visited processes and the actions taken there. The semantics here
is a mixture of state-based and action-based properties:2 given a sequence α0a0w
we define α0a0w |= Xϕ iff w |= ϕ; besides, α0a0w |= Xaϕ iff w |= ϕ and a = a0.
The semantics of other operators is standard. An LTS satisfies ϕ if all runs from
its initial process satisfy ϕ.

Example 4. Consider the LTS and its valuation depicted in Fig. 4. While it sat-
isfies Gp and νX.p ∧ [a]X, it does satisfy neither Fq nor μX.q ∨ [a]X due to the
run looping in s. �

1 The notation introduced in [BKLS09b] is adopted from semantics.
2 In the context of MTS, [Ben12] elaborates on the differences of the two.
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s t

a

a a

ν(s) = {p}
ν(t) = {p, q}

Fig. 4. An LTS with a valuation ν

2.3 Specification Theories

In order to support component based development, many specification theories
have been designed. One usually requires existence and effective computability
of several operations subject to various axioms. In the following, let s and t be
processes, arguments of the operations.

Some operations are structural, stemming from the nature of behavioural
descriptions, such as the operations of parallel composition and quotient. The
parallel composition ‖ should satisfy

(parallel) for any processes x and y, x ‖ y ≤m s ‖ t if x ≤m s and y ≤m t,

called independent implementability. The quotient is an adjoint to parallel com-
position, hence the quotient s/t of s by t should satisfy

(quotient) for any process x, x ≤m s/t if and only if t ‖ x ≤m s.

Given a specification s of the whole system and t of its component, the quotient
s/t is thus a compact description of all systems that can be put in parallel with
t to get a system complying with s.

Other operations are inherited from the logical view, such as Boolean oper-
ations. A conjunction of two systems is the most general refinement of the two
systems. As the greatest lower bound with respect to ≤m it must satisfy

(conjunction) for any process x, x ≤m s ∧ t if and only if x ≤m s and x ≤m t.

A bit weaker notion is that of consistency relation: a set of systems is consistent
if they have a common implementation, i.e. if their conjunction has a non-empty
set of implementations. Dually, one can define disjunction by requiring

(disjunction) for any process x, s ∨ t ≤m x if and only if s ≤m x and t ≤m x.

The remaining Boolean operation is that of complement :

(complement) for any process x, x ≤m s̄ if and only if x ≤m s.

For the related notion of difference, see e.g. [SCU11].
It is often not possible to satisfy all axioms in this strong form. For instance,

automata-based specification formalisms are sometimes too weak to express the
complement, which is the case also for MTS. Besides, the “complete specifi-
cation theories” of [BDH+12] only require (parallel) in the above-mentioned
“if” form. The other desired direction cannot in general be achieved in MTS
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[HL89,BKLS09b], see Fig. 5. Further, according to [BDH+12], existence of quo-
tients and conjunctions is required if they have non-empty set of implementa-
tions. Here we presented a simpler version of the operator requirements, which
is equivalent when MTS are enriched with the “inconsistent” specification with
no implementations.

s1

a

b

c
s2

a

b

c
s1 ‖ s2

a

b

c
i

a

b

ca

Fig. 5. i ≤m s1 ‖ s2, but i cannot be written as i1 ‖ i2 for any i1 ≤m s1, i2 ≤m s2

3 Extensions of Modalities

Since the modelling capabilities of basic MTS are quite limited, many extensions
have appeared in the literature. In this section, we focus on extensions of the
may and must transition relations. Standard MTS have two transition relations
−→, ��� ⊆ P × Σ × P satisfying −→ ⊆ ���, which is called the syntactic consis-
tency requirement. If this requirement is not imposed we obtain mixed transition
systems as introduced in [DGG97].

Definition 3 (Mixed transition system). A mixed transition system
(MixTS) over an action alphabet Σ is a triple (P, ���,−→), where P is a set
of processes and −→, ��� ⊆ P × Σ × P are must and may transition relations,
respectively.

This extension allows us not only to have inconsistent specifications, but also
a certain form of enforced non-deterministic choice:

Example 5. The specification of Fig. 6 requires an a transition followed by either
only b’s or only c’s. Indeed, the must transition under a enforces a transition,
but does not automatically allow it; only the two may transitions under a are
allowed. �

Nevertheless, even this feature is often insufficient to specify which combina-
tions of transitions can be implemented.

Example 6. Figure 7 on the left depicts an MTS that specifies the following.
A request from a client may arrive. Then we can process it directly on the server
or make a query to a database where we are guaranteed an answer. In both cases
we send a response.

An MTS can be refined in two ways: a may transition is either implemented
(and becomes a must transition) or omitted (and disappears as a transition).
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b

c

Fig. 6. A mixed transition system. Since must transitions are not necessarily also may
transitions in MixTS, we depict may transitions explicitly for mixed systems here, even
when there is a corresponding must transition.

client

s

server database

request query

processing

response answer

i1

request

processing

response

i2

request

Fig. 7. A potentially deadlocking s and two of its implementations i1, i2

On the right of Fig. 7 there is an implementation i1 of the system, where
the processing branch is implemented and the database query branch is omit-
ted. Similarly, there is also an implementation omitting the process branch and
implementing only the query. However, there is also an undesirable implementa-
tion i2 that does not implement any option and deadlocks as seen on the right
of Fig. 7. �

To avoid deadlocking, we want to specify that either processing or query will
be implemented. This is possible in disjunctive modal transition systems [LX90].
They were actually introduced as natural means for solutions to process equa-
tions since they can express both conjunctions and disjunctions of properties.

Definition 4 (Disjunctive modal transition system). A disjunctive modal
transition system (DMTS) is a triple (P, ���,−→), where P is a set of processes
and ��� ⊆ P ×Σ×P is the may and −→ ⊆ P ×2Σ×P the must (or hyper-must)
transition relation.

Example 7. Intuitively, in DMTS we can enforce a choice between arbitrary tran-
sitions, not just with the same action as in Example 5. Instead of forcing a par-
ticular transition, a must transition in DMTS specifies a whole set of transitions
at least one of which must be present in any refinement. In our example, it would
be the set consisting of processing and query transitions, see Fig. 8. �
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s

request query

processing

response answer

Fig. 8. A disjunctive modal transition system

Note that DMTS are capable of forcing any positive Boolean combination of
transitions, simply by turning it into the conjunctive normal form. If the choice
is supposed to be exclusive, we can use one-selecting MTS (1MTS) introduced
in [FS08] with the property that exactly one transition from the set must be
present. In 1MTS and also in underspecified transition systems (UTS) [FS05],
both (hyper)must and (hyper)may transition relations are subsets of P × 2Σ×P .
For UTS, the syntactic consistency is required, i.e. the hyper-may is larger than
the hyper-must.

Finally, explicit listing of all allowed combinations of outgoing transitions is
used in acceptance automata [Rac08]. However, the language-theoretic definition
is limited to deterministic systems.

Definition 5 (Acceptance automaton). An acceptance automaton (AA) is
a pair (P,PossibleTranSets), where P is a prefix-closed language over Σ and
PossibleTranSets : P → 22

Σ \∅ satisfies the consistency condition: wa ∈ P if and
only if a ∈ TranSet ∈ PossibleTranSets(w) for some TranSet.

Nevertheless, as the following example shows, convenient modelling requires
even more features such as conditional or persistent choices.

Example 8. Consider a simple specification of a traffic light controller for several
national variants for vehicles as well as for pedestrians, displayed on the right
of Fig. 9. At any moment it is in one of the four states red , green, yellow or
yellowRed . The intuitive requirements are: if green is on then the traffic light
may either change to red or yellow , and if it turned yellow (as for vehicles) it
must go to red afterwards; if red is on then it may either turn to green (as for
pedestrians and also for vehicles in some countries) or yellowRed , and if it turns
yellowRed it must go to green afterwards.

However, these requirements (expressible as MTS) allow for three different
undesirable implementations: (i) the light is constantly green, (ii) the lights
switch non-deterministically, (iii) the lights switch deterministically, but yellow
is only displayed sometimes (e.g. every other time). While the first problem
can be avoided using the choice in DMTS, the latter two cannot. To eliminate
the second implementation, one needs an exclusive choice, as in 1MTS; for the
third implementation to be removed, one needs a persistent choice. These can be
modelled in parametric MTS [BKL+11,BKL+15] where a parameter describes
whether and when the yellow light is used, making the choices permanent in the
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go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}

Obligation function:
Φ(green) = ((stop, red) ⊕ (ready, yellow))

∧(reqYfromG ⇔ (ready, yellow))
Φ(red) = ((go, green) ⊕ (ready, yellowRed))

∧(reqYfromR ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

Parameters: {reqY }

Obligation function:
Φ(green) = ((stop, red) ⊕ (ready, yellow))

∧(reqY ⇔ (ready, yellow))
Φ(red) = ((go, green) ⊕ (ready, yellowRed))

∧(reqY ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

Fig. 9. Examples of PMTS and their modal refinement (Color figure online)

whole implementation. Additionally, the dependence on the parameter allows
for modelling a conditional choice. Indeed, as illustrated in the middle of Fig. 9,
depending on the value of another parameter, the yellow light can be consistently
used or skipped in both phases. �

Definition 6 (Parametric modal transition system). A parametric MTS
(PMTS) is a tuple (P, ���,Par , Φ) where P is a set of processes, ��� ⊆ P ×
Σ × P is a transition relation, Par is a finite set of parameters, and Φ : P →
BoolExp((Σ × P ) ∪ Par) is an obligation function assigning to each process a
Boolean expression over outgoing transitions and parameters.

These systems are “mixed”; a syntactic consistency ∀s ∈ P : ∀(a, t) ∈ Φ(s) :
s

a��� t may be additionally required, making them “pure”. Intuitively, a set S
of transitions from s is allowed if Φ(s) is true under the valuation induced by S
and the fixed parameters; for an example see Fig. 9. A PMTS is

– Boolean MTS (BMTS) [BKL+11] if it is parameter-free, i.e. if Par = ∅,
– transition system with obligation (OTS) [BK10] if it is BMTS and only para-

meters can be negated,
– DMTS is an OTS with Φ(s) in the conjunctive normal form for all s ∈ P ,

DMTS is considered both mixed [LX90] and pure [BČK11],
– MixTS is a DMTS with Φ(s) being a conjunction of positive literals (transi-

tions) for all s ∈ P (and the syntactic consistency not required),
– MTS is a MixTS with the and the syntactic consistency required,
– LTS is an MTS with Φ(s) =

∧
T (s) for all s ∈ P , where T (s) = {(a, t) | s

a���
t} is the set of all outgoing transitions of s.

The modal refinement over BMTS is an expected extension of that for MTS.
Technically, let Tran(s) = {E ⊆ T (s) | E |= Φ(s)} be the set of all admissible
sets of transitions from s and the refinement relation satisfies for every (p, q) ∈ R:
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∀M ∈ Tran(p) : ∃N ∈ Tran(q) : ∀(a, p′) ∈ M : ∃(a, q′) ∈ N : (p′, q′) ∈ R ∧
∀(a, q′) ∈ N : ∃(a, p′) ∈ M : (p′, q′) ∈ R.

For PMTS, intuitively, whatever parameters of the refining system we pick, the
abstract system can emulate the same behaviour (by BMTS refinement) for
some choice of its parameters. The original definition [BKL+11] requires a single
refinement relation for all parameter choices. Later it was superseded by a more
natural definition [BKL+15] where different relations are allowed for different
parameter valuations; it is closer to the semantically defined notion of thorough
refinement, see Definition 10, and keeps the same complexity.

Example 9. Consider the rightmost PMTS in Fig. 9. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can
be refined by the system in the middle of the figure having only one parameter
reqY . This single parameter binds the two original parameters to the same value.
The PMTS in the middle can be further refined into the implementations where
either yellow is always used in both cases, or never at all. �

Expressive Power

Most of the formalisms have the same expressive power, as summarized in Fig. 10.
However, they differ significantly in succinctness. In [KS13b], PMTS are trans-
formed into exponentially larger BMTS and BMTS into exponentially larger
DMTSm, see Fig. 10. Here Cm denotes a class C where systems are considered
with more (but only finitely many) initial processes.

mixed PMTS

mixed BMTS

mixed OTS

mixed DMTS

MixTS

pure PMTS

pure BMTS

pure OTS

pure DMTS

MTS

LTS

νHML =
PMTS =
BMTS =
OTSm =
DMTSm

DMTS

MixTS

MTS

LTS

Fig. 10. The syntactic hierarchy of MTS extensions (on the left) and the semantic one,
not considering empty specifications (on the right)
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Except for the already discussed extra power of MixTS over MTS, mixed
variants of systems can be transformed into pure, again at an exponential cost
[BK10], up to the inconsistent specification, i.e. specifications with no implemen-
tations. Since this difference is not very important, we shall only deal with pure
systems unless stated otherwise.

Each of the formalisms presented so far in this section was an automata-
based behavioural formalism. These are often preferred as they are easier to
read than, for instance, formulae of modal logics. The choice between logical
and behavioural specifications is not only a question of preference. Automata-
based specifications [Lar89,BG99] have a focus on compositional and incremental
design in which logical specifications are somewhat lacking, with the trade-off of
generally being less expressive than logics. Logical specification formalisms put
a powerful logical language at the disposal of the user, and the logical approach
to model checking [QS82,CE81] has seen a lot of success and tool implemen-
tations. Therefore, one would like to establish connections between behavioural
and logical formalisms to exploit advantages of both at once. The relationship
of MTS to logic was studied in [BL92,FP07]. It is established that MTS are
equivalent to a fragment of μ-calculus where formulae are (1) consistent, (2)
“prime”, meaning the disjunction is allowed only in very special cases, and (3)
do not contain the least fixpoint. Further, [BDF+13] proves that DMTSm (and
thus BMTS and PMTS) are equivalent to ν-calculus (or Hennessy-Milner logic
with greatest fixpoints, abbreviated νHML), which is a fragment of μ-calculus
without the least fixpoint μ. Finally, the refinement corresponds to implication
[FLT14], similarly to the refinement calculus for HML with recursion of [Hol89].
Moreover, both formalisms can be equipped with the desired operations coming
from the other formalism, see Fig. 11, as further discussed in Sect. 5, bridging
the gap between the two approaches.

logic MTS
model ∼ implementation

implication/entailment ∼ refinement
conjunction ∧ ∼ ?
disjunction ∨ ∼ ?

? ∼ parallel composition ‖
? ∼ quotient /

Fig. 11. Correspondences between the logical and the behavioural world

Example 10. Consider the following property: “at all time points after execut-
ing request, no idle nor further requests but only work is allowed until grant is
executed”. The property can be written in e.g. CTL [CE81] as

AG(request ⇒ AX(work AW grant))

Figure 12 shows an example of an equivalent νHML formula and a DMTS cor-
responding to this property. �
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X = [grant, idle, work]X ∧ [request]Y
Y = (〈work〉Y ∨ 〈grant〉X) ∧ [idle, request]ff

request

grant, work, idle

workgrant

Fig. 12. Example of a νHML formula and an equivalent DMTS

Apart from the logical characterization, one can also describe processes using
a process algebra and obtain the discussed subclasses mixed DMTS, pure DMTS,
MixTS, MTS, LTS as syntactic subclasses [BK10].

4 Extensions of Transition Systems

The extensions discussed in the previous section focus on what combinations
of transitions are possible. In this section, we discuss mainly extensions con-
cerned with quantitative features or infinite memory/communication. Besides,
to provide a better basis for interface theories, MTS have been also com-
bined with I/O automata [GSSL94] and interface automata [dAH01] into modal
I/O transition systems [LNW07a,RBB+09a,BHJ10,BMSH10,BHW10,BHB10,
KM12,KDMU14] with input, output and internal actions, and its subset modal
interface automata [LV13,LVF15,BFLV16,SH15]. Other MTS extensions feature
specifically modified semantics, e.g., [BV15,BSV15,DSMB16].

4.1 Quantities

Here we discuss lifting the underlying transition systems to quantitative settings
[LL12], with clear applications in the embedded systems design. This includes
probabilistic specifications (see below) and various weighted specifications, where
weights stand for various quantitative aspects (e.g. time, power or memory),
which are highly relevant in the area of embedded systems. As far as the par-
ticular case of timed systems is concerned, the quantity of time can be refined
in various ways. In the early work [CGL93,LSW95], the precise quantities are
almost disregarded. More recently [JLS12,BPR09,BLPR09,DLL+10], the pos-
sible times are usually specified as time intervals, which can be narrowed down
and thus made more specific. A more general option is to permit label refinement
to anything smaller with respect to some abstract ordering of labels; [BJL+12a]
provides the following conservative extension of MTS modal refinement along
these lines:

Definition 7 (Modal refinement of MTS with structured labels). Let
the alphabet Σ be equipped with an ordering �. Let (P1, ���1,−→1), (P2, ���2,
−→2) be MTS over Σ and s ∈ P1, t ∈ P2 be processes. We say that s modally
refines t, written s ≤m t, if there is a refinement relation R ⊆ P1 × P2 such that
(s, t) ∈ R and for every (p, q) ∈ R and every a ∈ Σ:

1. if p
a���1 p′ then q

ā���2 q′ for some a � ā and (p′, q′) ∈ R, and
2. if q

ā−→2 q′ then p
a−→1 p′ for some a � ā and (p′, q′) ∈ R.
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Example 11. Consider Σ = L × I where L is a finite set ordered by identity
and I is the set of intervals ordered by inclusion and Σ is ordered point-wise,
standing for the action and the time required to perform it. A transition labelled
by (�, [a, b]) can thus be implemented by a transition (�, c) for any c ∈ [a, b]. �

This definition generalizes also previously studied MTS with more weights
at once [BJL+12b]. Moreover, one can also consider MTS with timed-automata
clocks [BLPR12,FL12]. In all the quantitative settings, it is also natural to
extend the qualitative notion of refinement into a quantitative notion of dis-
tance of systems [BFJ+11,BFLT12].

Another previously studied instantiation is the modal transition systems with
durations (MTSD) [BKL+12]. It models time durations of transitions as con-
trollable or uncontrollable intervals. Controllable intervals can be further refined
into narrower intervals, whereas uncontrollable are considered under the control
of an unpredictable environment and cannot be further narrowed down. Addi-
tionally, the actions are assigned running cost (or rewards) per time unit.

MTS have also been lifted to the probabilistic setting. In the classical set-
ting, LTS is underspecified in that the presence of a certain transition is not
specified. For Markov chains, one can underspecify the probability distributions
on the outgoing transitions. Interval Markov chains [JL91] describe them with
intervals of possible values. Additionally, we can consider 3-valued valuations of
atomic propositions in processes (similarly to [HJS01,BG00,CDEG03], useful for
abstractions), yielding abstract Markov chains [FLW06]. This approach is exten-
sible also to continuous-time Markov chains [KKLW07,KKLW12]. Besides, con-
straint Markov chains [CDL+10] use richer constraints than intervals and usual
operations on them have also been studied [DLL14]. Finally, abstract probabilis-
tic automata [DKL+11a] combine this with the MTS may-must modality on
transitions, allowing for abstractions of Markov decision processes. They have
been studied with respect to the supported operations [DKL+11b,DFLL14],
state space reduction [SK14], hidden actions (stutter steps) [DLL14], and there
is a support by the tool APAC [DLL+11].

Moreover, probabilistic and timed-automata extensions are combined in
abstract probabilistic timed automata [HKKG13]. Finally, modal continuous-time
automata [HKK13] extend MTS with continuous time constraints on stochastic
waiting times, allowing for specification of systems with stochastic continuous
time.

Specification theories have been lifted to the quantitative settings and equipped
with the notion of distance between systems [BFLT12,FL14,FKLT14,FLT14].

4.2 Infinite State Space

In this section, we consider infinite-state extensions of MTS. Several exten-
sions have been proposed, such as systems with asynchronous communication
based on FIFO [BHJ10] or Petri nets [EBHH10,HHM13]. Other extensions focus
on input/output extensions of MTS with data constraints [BHB10,BHW10] or
explicit representation of data [BLL+14].
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A systematic exploration of infinite-state MTS is also possible. A convenient
unifying framework for (non-modal) infinite-state systems is provided by process
rewrite systems (PRS) [May00]. A PRS Δ is a finite set of rewriting rules,
which model sequential and parallel computation. Depending on the syntactic
restrictions imposed on the rules, we obtain many standard models such as
pushdown automata (PDA) or Petri nets (PN), see Fig. 13. A finite PRS Δ thus
induces possibly infinite LTS LT S(Δ).

PRS

PAD PAN

PDA PNPA

BPA BPP

FSM

Fig. 13. PRS hierarchy

Example 12. A transition t of a Petri net with input places p, q and output places
r, s can be described by the rule p ‖ q

t−→ r ‖ s. A transition of a pushdown
automaton in a state s with a top stack symbol X reading a letter a resulting
in changing the state to r and pushing Y onto the stack can be written as
sX

a−→ rY X.

One can naturally lift PRS to the modal world [BK12] by having two sets
of rules: may and must rules. The finite set of rules then generates a generally
infinite MTS.

Definition 8 (Modal process rewrite system). A modal process rewrite
system (mPRS) is a tuple Δ = (Δmay,Δmust) where Δmust ⊆ Δmay are two PRS.
The mPRS Δ induces an MTS MT S(Δ) = (E , ���,−→) defined by (E , ���) =
LT S(Δmay) and (E ,−→) = LT S(Δmust).

Each subclass C of PRS has a corresponding modal extension mC containing
all mPRS (Δmay,Δmust) with both Δmay and Δmust in C. For instance, mFSM
correspond to the standard finite MTS and mPN are modal Petri nets as intro-
duced in [EBHH10].

Definition 9 (Modal refinement). Given mPRS Δ1 ∈ mC1,Δ2 ∈ mC2 and
process terms δ1, δ2, we say δ1 refines δ2, written δ1 ≤m δ2, if δ1 ≤m δ2 as
processes of MTS(Δ1) and MTS(Δ2), respectively.

What is the use of infinite MTS? Firstly, potentially infinite-state systems
such as Petri nets are very popular for modelling whenever communication
and/or synchronization between processes occurs. This is true even in cases
where they are actually bounded and thus with a finite state space.
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Example 13. Consider the following may rule (we use dashed arrows to denote
may rules) generating a small Petri net.

resource
produce��� money ‖ trash

If this is the only rule with trash on the right side a safety property is guaranteed
for all implementations of this system, namely that trash can only arise if there
is at least one resource. On the other hand, it is not guaranteed that money can
indeed be produced in such a situation. This is very useful as during the design
process new requirements can arise, such as necessity of adding more participants
to perform this transition. For instance,

resource‖ permit
produce��� money ‖ trash

expresses an auxiliary condition required to produce trash, namely that a permit
is available. Replacing the old rule with the new one is equivalent to adding
an input place permit to the modal Petri net, see Fig. 14 in yellow. In the modal
transition system view, the new system refines the old one. Indeed, the new
system is only more specific about the allowed behaviour than the old one and
does not permit any previously forbidden behaviour.

•P

•R ••••••

c

p

M

T

Fig. 14. A modal Petri net given by rules Resource‖ Permit
produce��� Money ‖ Trash and

Trash
clean−→ Permit with may transitions drawn as empty boxes and must transitions as

full boxes (Color figure online)

One can further refine the system into the one given by

resource ‖ permit ‖ bribe
produce−→ money ‖ trash

where additional condition is imposed and now the money-producing transition
has to be available (denoted by an unbroken arrow) whenever the left hand side
condition is satisfied. �

Further, infinitely many states are useful to capture unbounded memory.
For instance, consider a specification where the total amount of permits is not
explicitly limited. In an implementation, the number of permits might need to
be remembered in the state of the system.
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Example 14. Consider a basic process algebra (BPA) given by rules X
(−→ XX

and X
)−→ ε for correctly parenthesized expressions with X

a��� X for all other
symbols a, i.e. with no restriction on the syntax of expressions. One can easily
refine this system into a PDA that accepts correct arithmetic expressions by
remembering in a control state whether the last symbol read was an operand or
an operator. �

5 Analysis

In this section, we survey algorithms for and complexities of the most important
problems on MTS and their extensions.

5.1 Refinements

Modal refinement is a syntactically defined notion extending both bisimulation
and simulation. Similarly to bisimulation having a semantic counterpart in trace
equivalence, here the semantic counterpart of modal refinement is the thorough
refinement. As opposed to the syntactic definition using local notions, the seman-
tic definition relates (by inclusion) the sets of implementations of the specifica-
tions. The definition is universal for all extensions of MTS as it only depends on
the notion of implementation and not on syntax of the particular extension.

Definition 10 (Thorough refinement). Given processes s and t, we say that
s thoroughly refines t, written s ≤t t, if �s� ⊆ �t�.

Note that the two refinements are in general different as we illustrate in the
following example due to [BKLS09b], simplifying [HL89]:

Example 15. Consider processes s and t of Fig. 15. On the one hand, the sets of
implementations of s and t are the same, namely those that can perform either
no action or one a or two a’s or combine the latter two options. On the other
hand, s does not modally refine t. Indeed, whenever s ≤m t then either s′ ≤m t1
or s′ ≤m t2. However, neither is true, as s′ allows a transition while t1 does not,
and s′ does not require any transition while t2 does.

Although the two refinements differ, modal refinement is a sound under-
approximation of the thorough refinement. Indeed, whenever we have s ≤m t
and i ∈ �s� we also have i ≤m s and by transitivity of the modal refinement we
obtain i ≤m t.

Proposition 1. Let s, t be processes. If s ≤m t then s ≤t t.

Moreover, [BKLS09b] shows the other direction holds whenever the refined
system is deterministic. A process is deterministic if, for each process s of its
underlying MTS and for each a ∈ Σ, there is at most one s′ such that s

a��� s′.



54 J. Křet́ınský

s s′

a a

t

t1

t2

a

a
a

Fig. 15. s ≤t t, but s 
≤m t

Proposition 2. Let s, t be processes and t deterministic. If s ≤t t then s ≤m t.

In Table 1 we give an overview of the results related to deciding modal
and thorough refinements for different combinations of processes on the left-
and right-hand side (here D stands for deterministic processes and N for non-
deterministic processes). Note that the co-inductive refinement relations are easy
to compute using a fixed-point computation, although other methods are also
possible, e.g. logical programming [AKRU11] or QBF solving [KS13b,BKL+15].

Table 1. MTS refinement complexity for various cases of (non)determinism

Modal refinement ≤m Thorough refinement ≤t

D≤D NL-complete [BKLS09b] NL-complete [BKLS09b]

N≤D NL-complete [BKLS09b] NL-complete [BKLS09b]

D≤N ∈ P [KS90,PT87] ∈ EXP [AHL+08b]

P-hard [BKLS09b] EXP-hard [BKLS12]

N≤N ∈ P [KS90,PT87] ∈ EXP [AHL+08b,BKLS09a]

P-hard [BGS92] EXP-hard [BKLS09a]

Since the thorough refinement is EXP-hard, it is much harder than the modal
refinement. Therefore, we also investigate how the thorough refinement can be
approximated by the modal refinement. While under-approximation is easy, as
modal refinement implies thorough refinement, over-approximation is more diffi-
cult. Here one can use the method of the deterministic hull for MTS [BKLS09b].
The deterministic hull D is a generalization of the powerset construction on finite
automata and it is the smallest (w.r.t. modal refinement) deterministic system
refined by the original system.

Proposition 3. Let s be an arbitrary MTS process. Then D(s) is a determinis-
tic MTS process such that s ≤m D(s) and, for every deterministic MTS process
t, if s ≤t t then D(s) ≤m t.

Corollary 1. For any processes s, t, if s ≤m D(t) then s ≤t t.

There are also other notions of refinements of systems close to MTS, such as
alternating refinements [AHKV98,AFdFE+11], branching refinement [FBU09],
refinement preserving the termination possibility [CR12], or refinement for prod-
uct lines [DSMB16].
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Extensions. As to extensions of MTS with more complex modalities, the local
conditions in modal refinement are more complex. Although various extensions
have the same expressive power (see Fig. 10), the transformations are exponential
and thus the extensions differ in succinctness. Therefore, the respective refine-
ment problems are harder for the more succinct extensions. All the cases depend-
ing on the type of the left-hand and right-hand sides are discussed in [BKL+15].
In most cases without parameters, the refinement can be decided in P or NP,
which is feasible using SAT solvers. For systems with parameters, the complexity
is significantly higher, reaching up to Πp

4 . Since all the complexities are included
in PSPACE, QBF solvers have been applied to this problem, improving scala-
bility to systems with hundreds of states [KS13c,BKL+15]. The QBF approach
basically eliminates the complexity threat of parameters, but is quite sensitive
to the level of non-determinism.

Furthermore, the decision algorithm for thorough refinement checking over
MTS [BKLS12,BKLS12] has been extended to the setting of DMTS [BČK10]
and of BMTS and PMTS [KS13b], see Table 2. [KS13b] also generalizes the
notion of the deterministic hull.

Table 2. Complexity of the thorough refinement and the relationship to the modal
refinement

MTS DMTS BMTS PMTS

N≤tN ∈ EXP EXP NEXP 2-EXP

for N≤D ≤m = ≤t ≤m = ≤t ≤m = ≤t ≤m 
= ≤t

We now turn our attention to the refinement problems on other kinds of
extensions of MTS. Assuming polynomial procedures for operations on struc-
tured labels, the complexity of the modal refinement stays the same as for the
underlying MTS. As for infinite state systems, [BK12] shows that refinement
between finite MTS and modal pushdown automaton and between modal visi-
bly pushdown automata is decidable and EXP-complete, whereas between basic
process algebras it is undecidable. When parallelism is involved, undecidabil-
ity occurs very soon, already for finite MTS and basic parallel process. How-
ever, it is decidable for Petri nets when a weak form of determinism is imposed
[EHH12,HHM13]. Finally, in the spirit of [AHKV98], a symmetric version of
refinement resulting into a bisimulation notion over MTS is considered and shown
decidable between a finite MTS and any modal process rewrite system, using the
results of [KŘS05]. This allows us to check whether we can replace an infinite
MTS with a particular finite one, which in turn may allow for checking further
refinements.

5.2 Operations

Specification theories require the specification formalism to be closed under cer-
tain operations, as described in Sect. 2. However, not all classes of modal systems
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support all the operations. As an automata-based formalism, MTS automatically
allow to compose systems structurally, whereas logical operations are either dif-
ficult to compute or cannot be expressed in the formalism at all. Therefore,
most of the focus has been directed to the simple deterministic case, where some
operations can be defined using local syntactic rules, even for the quantitative
extensions [BFJ+13].

‖ The parallel composition can often be lifted to the modal setting simply
by applying the same SOS rules, e.g. for synchronous message passing, to
both may and must transition functions. This holds for a wide class of
operators as described in [BKLS09b] for MTS. Parallel composition can be
extended to DMTS and other classes [BČK10,BDF+13]. Unfortunately, they
inherit the incompleteness with respect to modal refinement from MTS, see
[HL89,BKLS09b]. Therefore, the axiom (parallel) is only satisfied in one direc-
tion (the independent implementability), but not every implementation of the
composition can actually be decomposed into a pair of implementations, see
Fig. 5, and in general we have �s� ‖ �t� ⊂ �s ‖ t�.

/ The quotient for deterministic MTS can be defined syntactically, using a few
SOS rules [Rac07,Rac08]. For non-deterministic MTS, the problem is con-
siderably more complex and the question was open for a long time. A con-
struction for BMTS and DMTSm and an exponentially smaller one for MTS
was given in [BDF+13]. Further related questions such as decomposition of a
system into several components put in parallel [SUBK12] or quotient under
reachability constraints [VR15] have also been investigated, but again only
for deterministic systems.

∧ The situation is similar with conjunction. For deterministic MTS, we can
again define it syntactically. For non-deterministic systems, there were several
attempts. Unfortunately, the resulting MTS is not minimal (with respect to
modal refinement) [UC04], or not finite even when claimed to be finite [FU08]:
the “clone” operation may not terminate even in cases when it is supposed to,
for example, for processes s1, s2 of Fig. 16 where the self-loops are redirected
back to the initial processes. Actually, MTS are not closed under conjunction,
see Fig. 16. However, a conjunction of two MTS has a unique greatest DMTS
solution.

s1 s2 (s1, s2)

aa

b, c

a a

b c b c

M1 M2

a a a a

b c b c

Fig. 16. MTS processes s1, s2, their greatest lower bound (s1, s2), and their two max-
imal MTS lower bounds M1, M2
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Moreover, DMTS with one or more initial processes, and thus also BMTS and
PMTS are closed under conjunction [BČK11]. The result of the construction is
based on the synchronous product. Thus it is a system over tuples of processes
where the length of the tuple is the number of input systems. This means that
the conjunction (and thus also a common implementation) can be constructed
in polynomial time, if n is fixed; and in exponential time, if n is a part of
the input. Further, if deterministic MTS are input, the algorithm produces
a deterministic MTS. Moreover, the conjunction is also the greatest lower
bound with respect to the thorough refinement: �s1 ∧ s2� = �s1�∩�s2� which is
not achievable for the parallel composition. The conjunction construction was
later extended to systems with different alphabets [BDCU13] and invisible
actions [BCU16].

∨ Disjunction is easy to obtain for DMTSm, BMTS, and PMTS, again in the
stronger form �s1 ∨ s2� = �s1�∪�s2�. However, for MTS (deterministic or not)
and DMTS with a single initial process this is not possible. Indeed, consider
the MTS specifications in Fig. 17. While the disjunction can be described
simply as a BMTS with obligation Ω(s1 ∨ s2) = ((a, •) ∧ (b, •)) ∨ (¬(a, •) ∧
¬(b, •)), no DMTS can express this.

s1 s2 s1 ∨ s2

a b a b

Fig. 17. MTS s1 and s2, and their MTS and BMTS least upper bounds s1 ∨ s2

¬ While MTS are not closed under complement (not even deterministic ones),
there have been attempts at characterizing symmetric difference [SCU11].

The results are summed up in the following statements and Table 3. With
operations ∧ and ∨, the set of BMTS (or DMTSm) processes forms a bounded
distributive lattice up to (≤m ∩ ≥m)-equivalence. Moreover, with operations
∧,∨, ‖ and /, the set of BMTS (or DMTSm) forms a commutative residuated
lattice up to (≤m ∩ ≥m)-equivalence [BDF+13].

We are also interested in questions closely related to the discussed conjunc-
tion. The common implementation decision problem (CI) contains tuples of sys-
tems, such that there is an implementation refining each system of the tuple.
For tuples of size two this is equivalent to non-emptiness of the conjunction, for
one system (for instance a MixTS) this is equivalent to semantic consistency (or
non-emptiness) [LNW07b], i.e. existence of implementation. Note that despite
the lack of results on conjunction of non-deterministic systems the complexity
was known long ago. The complexity improves when the input processes are
deterministic (CID problem). Finally, rather surprisingly, the problem whether
there is a deterministic common implementation (dCI) is hard. We display the
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Table 3. Closure properties

∧ ∨ ¬ ‖ /

Deterministic MTS � × × � �
MTS × × × � ?

MixTS � × × � ?

DMTS � × × � ?

DMTSm/BMTS/PMTS � � × � �

Table 4. Complexity of the common implementation problems

Single MTS Single MixTS Fixed # of systems Arbitrary # of systems

CI Trivial EXP-c. [AHL+09] P-c. [BGS92,HH08] EXP-c. [AHL+09]

CID Trivial Trivial NL-c. [BKLS09b] PSPACE-c. [BKLS09b]

dCI EXP-c. [BKLS09b] EXP-c. [BKLS09b] EXP-c. [BKLS09b] EXP-c. [BKLS09b]

known results in Table 4 for several cases depending on whether the number of
input processes is fixed or a part of the input. The results again indicate that sev-
eral problems become more tractable if the given specifications are deterministic.

5.3 Model Checking and Synthesis

Given a valuation ν : P → 2Ap assigning to each process a set of atomic propo-
sitions valid in the process, one can check whether an MTS satisfies a CTL, LTL
or μ-calculus formula ϕ over Ap. Since an MTS stands for a class of implemen-
tations, the question of satisfaction can be posed in two flavours:

(|=∀-problem) Do all implementations satisfy ϕ?
(|=∃-problem) Is there an implementation satisfying ϕ?

The problem of generalized model checking is to decide which of the three possi-
ble cases holds: whether all, only some, or no implementations satisfy ϕ. Further,
if there exists a satisfying implementation it should also be automatically syn-
thesized.

Generalized model checking of MTS was investigated with respect to a variant
of safety [DDM10] as well as computation tree logic (CTL) [AHL+08a,GAW13],
establishing it EXP-complete and providing a polynomial over- and under-appro-
ximation, similarly for μ-calculus. The EXP lower bound follows from the hard-
ness of satisfiability of CTL and μ-calculus; the upper bound can be obtained
through alternating tree automata [BG00].

In the rest, we focus on LTL. In [GP09] the generalized model checking of
LTL over partial Kripke structures (PKS) is shown to be 2-EXP-hard. Further,
[GJ03] describes a reduction from generalized model checking of μ-calculus over
PKS to μ-calculus over MTS [Hut02,Hut99,GHJ01]. However, the hardness for
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LTL does not follow since the encoding of an LTL formula into μ-calculus is
exponential. There is thus no straightforward way to use the result of [GJ03] to
establish the complexity for LTL.

On the one hand, answering the |=∀-problem is easy. Indeed, it is sufficient
to perform standard model checking on the “greatest” implementation, i.e. such
where all mays are turned into musts and thus all possible runs are present. On
the other hand, the |=∃-problem is trickier. Similarly to the for |=∀-problem, we
can take the minimal implementation of the MTS. However, whenever a deadlock
occurs, the corresponding finite runs are ignored since LTL is usually interpreted
over infinite words only. However, an undesirable consequence of this problem
definition (call it ω, standing for infinite runs) is that all formulae are satisfied
whenever there is an implementation without infinite runs, i.e. without a lasso
of must transitions. There are several ways to avoid this vacuous satisfaction.
Firstly, we can define LTL also on finite words [BČK11], which we denote by ∞
(for both finite and infinite runs). Secondly, we can consider only implementa-
tions without deadlocks, which we denote df . The deadlock-free approach has
been studied in [UBC09] and the proposed solution was implemented in the tool
MTSA [DFCU08]. It attempts to find a deadlock-free implementation of a given
MTS that satisfies a given formula. However, the solution given in [UBC09]
is incorrect in that the existence of a deadlock-free implementation satisfying
a given formula is claimed even in some cases where no such implementation
exists.

Example 16. The flaw can be seen on an example given in Fig. 18 [BČK11].
Clearly, s has no deadlock-free implementation with action a only, i.e. satisfying
GXatt. Yet the method of [UBC09] as well as the tool [DFCU08] claim that
such an implementation exists. �

s
a

a

b

Fig. 18. No deadlock-free implementation of s satisfies GXatt

While the solution attempt of [UBC09] yields a PSPACE algorithm, the df -
problem is actually 2-EXP-complete[BČK11]. Note that in this setting, there
are no minimal implementations; non-trivial decisions have to be made which
transitions to implement. For example, an MTS with only one may a-successor
and one may b-successor cannot avoid deadlock in a unique way. Moreover, even
if deadlocks are allowed, not implementing any choice may result in not satisfy-
ing Xtt.

A solution to both df and ∞ as well as DMTS is provided in [BČK11]. It
reduces the problem to a game where one player decides which transitions to
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implement in each step and another player chooses which of the implemented
transitions is taken. Decisions of the players determine a run. The objective
of the first player is to satisfy the formula on the run. He can always succeed
irrespective of what the other player does if and only if there is an implementation
satisfying the formula. Such LTL games are in general 2-EXP-complete [PR89].
The consequences are summarized in Table 5. Note that the winning strategy
in the game yields a satisfying implementation, thus also solving the synthesis
problem. This approach of reduction to an LTL game was also used to solve a
similar problem of deciding whether all/some implementation can be pruned to
satisfy a given LTL formula [DBPU12].

Table 5. Complexities of generalized LTL model checking (ω denoting finite runs
are ignored, df denoting deadlock-free implementations are ignored, ∞ denoting no
restriction)

|=∀ |=∃

ω-MTS PSPACE-complete PSPACE-complete

df -MTS, ∞-MTS, DMTS PSPACE-complete 2-EXP-complete

The best known time complexity bounds with respect to the size of system
|S| and the size of LTL formula |ϕ| are the following. In all PSPACE-complete
cases the time complexity is O(|S| · 2|ϕ|); in all 2-EXP-complete cases the time
complexity is |S|2O(|ϕ|) ·22O(|ϕ|)

. The latter upper bound is achieved by translating
the LTL formula into a deterministic (possibly generalized) Rabin automaton
of size 22

O(|ϕ|)
with 2O(|ϕ|) accepting pairs, thus changing the LTL game into

a Rabin game. For an efficient translation see e.g. [EK14,KK14]; for an algorithm
solving Rabin games see [PP06,CGK13].

Another synthesis problem is the cheapest implementation, considered for
(P)MTS with durations [BKL+12]. Intuitively, the constraint on the implemen-
tation here is to maximize the average reward per time unit while conforming
to the specification and a budget allowing only for some combinations of actions
implemented. The problem is NP-complete. Further, the problem of synthesizing
a satisfying implementation in the form of a bounded Petri net was considered
and shown undecidable [Sch16]. Finally, MTS themselves can be synthesized
from constraints given as e.g. scenarios [SBUK13].

LTL model checking has also shed a better light on the problem of incom-
pleteness of the parallel composition. Recall that there is a composition s1 ‖ s2
with an implementation i that does not arise as a composition i1 ‖ i2 of any
two implementations i1 ≤m s1, i2 ≤m s2. Completeness can be achieved only
under some restrictive conditions [BKLS09b]. [BČK11] shows that composition
is sound and complete with respect to every logic of linear time: For DMTS and
both ω and ∞,

s1 ‖ s2 |=∀ ϕ iff i1 ‖ i2 |= ϕ for all implementations i1 ≤m s1, i2 ≤m s2

s1 ‖ s2 |=∃ ϕ iff i1 ‖ i2 |= ϕ for some implementations i1 ≤m s1, i2 ≤m s2
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Thus ‖ is “LTL complete”, i.e. preserves and reflects all LTL properties. There-
fore, the only spurious implementations are sums of legal implementations.

6 Tools

The tool support is quite extensive; we focus our attention to the support for
the operations required for complete specification theories [BDH+12] and several
further problems. This includes modal refinement checking, parallel composition,
quotient, conjunction (merge) and the related consistency checking and maxi-
mal implementation generation, deterministic hull and generalized LTL model
checking. The comparison of the functionality of the available tools is depicted
in Table 6. Apart from no longer maintained TAV [BLS95], the currently available
tools are the following:

MTSA (Modal Transition System Analyzer) [DFFU07]

– is a tool for MTS,
– supports modal refinement, parallel composition and consistency using the

cloning operation, which may not terminate; it also offers a model checking
procedure, which is, unfortunately, flawed as discussed in Example 16.

MIO (Modal Input Output Workbench) [BML11,BMSH10]

– is a tool for modal I/O automata (MIOA) [LNW07a,RBB+11], which com-
bine MTS and interface automata based on I/O automata; although MIOA
have three types of may and must transitions (input, output, and internal),
if we restrict to say only input transitions, the refinement works the same as
for MTS, and some other operations, too,

– supports modal refinement, the MIOA parallel composition, conjunction for
deterministic systems, and quotient for deterministic systems.

−→=⇒���
MoTraS (Modal Transition Systems) [KS13a]

– is a tool for MTS and DMTS, with partial support for BMTS and PMTS,
– supports full functionality for MTS as well as more general DMTS and in

all cases also for non-deterministic systems; in particular, the algorithms for
conjunction and quotient are considerably more complex than for the deter-
ministic case; further, it features QBF-based algorithms for BMTS and PMTS
refinement; finally, it also provides the deterministic hull, which enables us to
both over- and under-approximate the very hard thorough refinement using
the fast modal refinement.

MAccS (Marked Acceptance Specifications) [VR14]

– is a tool for acceptance automata (deterministic BMTS) with accepting states,
– features all the operations for acceptance automata, hence also for determin-
istic MTS.
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Table 6. Functionality of the available tools. Here “det.” denotes a functionality lim-
ited to deterministic systems.

Operation MTS DMTS B/PMTS det.AA

Parallel composition MTSA MIO MoTraS MoTraS MAccS

Consistency MTSA(of 2 systems) MIO(det.) MoTraS MoTraS MAccS

Conjunction MIO(det.) MoTraS MoTraS MAccS

Quotient (det.) MIO MoTraS MAccS

Generalized LTL MTSA(incorrect) MoTraS MoTraS

Det. hull MoTraS MoTraS MoTraS

Refinement MTSA MIO MoTraS MoTraS MoTraS MAccS

Note that both MTSA and MIO can only handle modal systems, not their dis-
junctive extension. MoTraS supports DMTS, which have more expressive power.
In contrast to (non-deterministic) MTS, DMTS are rich enough to express solu-
tions to process equations [LX90] (hence a specification of a missing component
in a system can be computed) and are closed under all operations, particularly
conjunction. MAccS is similar in that AA are equally expressive and it supports
all the operations, however, only for deterministic systems.

In order to make the tools easily extensible, a file format xmts was designed
[MTS], which facilitates textual representation of different extensions of modal
transition systems.

Besides, there are the following tools for related formalisms:
ECDAR (Environment for Compositional Design and Analysis of Real Time
Systems) [DLL+10]

– is a tool for timed I/O automata (with no modalities);
– supports refinement, conjunction, composition and quotient, but all for only

deterministic systems, as can be expected in the timed setting.

APAC (Abstract Probabilistic Automata Checker) [DLL+11]

– is a tool for abstract probabilistic automata;
– supports refinement, abstraction, conjunction, and composition.

7 Conclusion and Some Directions for Future Work

Firstly, we have surveyed MTS and its many extensions, including more involved
modalities (combined, exclusive, persistent or conditional choices), quantitative
models, or infinite-state systems. The comparison of various classes leads us to
identifying a robust class of DMTS with more initial states, equivalent to several
other formalisms, including the modal ν-calculus. This unifies the behavioural
and logical approach to specification and verification and enables us to mix the
two.

Secondly, we have surveyed solutions to problems arising in system design
via MTS, such as logical and structural operations, refinement (modal, thorough,
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approximations using the deterministic hull) and synthesis of implementations
based on temporal or reward constraints. We have also discussed the tool support
for these problems.

As for future work, we mention several open issues. Firstly, although the com-
plexity of many problems has been established, there are still several complexity
gaps left open, for instance, the complexity of thorough refinement for BMTS
and PMTS, the quotient construction (we conjecture the exponential blow-up
is in general unavoidable), whether MTS, MixTS and DMTS are closed under
quotient (we conjecture the opposite), or conditions on decidability of refinement
over infinite systems, e.g. determinism as in [BKLS09b,EBHH10,HHM13].

Secondly, one may also extend the model checking and synthesis algorithms
to more complex settings such as the cheapest implementation with an addi-
tional requirement that the partial sums stay within given bounds as done
in [BFL+08], or cheapest implementation satisfying a temporal property as sug-
gested in [CdAHS03,CD10], model checking metric temporal logic (LTL with
time durations) [Koy90], model checking infinite-state MTS similarly to PDA in
[Wal96], or cheapest implementation of mPDA using methods like [CV12].

Thirdly, on the practical side, all the tools only offer a limited support. In par-
ticular, the quotient of non-deterministic systems is very important for practical
design and has not yet been implemented. Refinement algorithms do not scale
too well on MTS extensions. Apart from multi-threading for all algorithms, one
could use a combined modal refinement checker, which uses the standard modal
refinement checker to prune the initial relation before the QBF-based checker is
called. Altogether, the topic is still lively and subject to further practical devel-

opments, e.g. the currently prepared update of
−→=⇒���
MoTraS features faster model

checking due to integrating a better LTL-to-automata translator Rabinizer 3
[KK14] and the cheapest implementation synthesizer [BKL+12,Man13].

Finally, the practical usability of MTS could be greatly improved by providing
a higher-level language, possibly tailored to particular domains, which has MTS
semantics, but a friendlier appearance to the domain-specific engineering practice.
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[KS13c] Křet́ınský, J., Sickert, S.: On refinements of Boolean and parametric
modal transition systems. Technical report abs/1304.5278, arXiv.org
(2013)

[Lar89] Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989.
LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1990). doi:10.1007/
3-540-52148-8 19

[Lar90] Guldstrand Larsen, K.: Ideal specification formalism = expressivity +
compositionality + decidability + testability +. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 33–56. Springer,
Heidelberg (1990). doi:10.1007/BFb0039050

[LIC04] 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14–17
July 2004, Turku, Finland, Proceedings. IEEE Computer Society (2004)

[LL12] Larsen, K.G., Legay, A.: Quantitative modal transition systems. In:
Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp.
50–58. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37635-1 3

[LM09] Leucker, M., Morgan, C. (eds.): ICTAC 2009. LNCS, vol. 5684. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03466-4

[LM15] Lanese, I., Madelaine, E. (eds.): FACS 2014. LNCS, vol. 8997. Springer,
Cham (2015). doi:10.1007/978-3-319-15317-9

[LML15] Luthmann, L., Mennicke, S., Lochau, M.: Towards an I/O conformance
testing theory for software product lines based on modal interface
automata. In: Atlee, J.M., Gnesi, S. (eds.) Proceedings 6th Workshop on
Formal Methods and Analysis in SPL Engineering, FMSPLE@ETAPS
2015, London, UK, 11 April 2015. EPTCS, vol. 182, pp. 1–13 (2015)

[LNW07a] Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for
interface and product line theories. In: Nicola, R. (ed.) ESOP 2007.
LNCS, vol. 4421, pp. 64–79. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71316-6 6

[LNW07b] Larsen, K.G., Nyman, U., W ↪asowski, A.: On modal refinement and
consistency. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007.
LNCS, vol. 4703, pp. 105–119. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74407-8 8

[LSW95] Larsen, K.G., Steffen, B., Weise, C.: Fischer’s protocol revisited: a simple
proof using modal constraints. In: Alur, R., Henzinger, T.A., Sontag,
E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 604–615. Springer, Heidelberg
(1996). doi:10.1007/BFb0020979

[LT88] Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–
210. IEEE Computer Society (1988)
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[GM12], pp. 403–417

[tBDG+15] Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: From
featured transition systems to modal transition systems with vari-
ability constraints. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015.
LNCS, vol. 9276, pp. 344–359. Springer, Cham (2015). doi:10.1007/
978-3-319-22969-0 24

[tBFGM16] ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and
analysing variability in product families: model checking of modal transi-
tion systems with variability constraints. J. Log. Algebr. Meth. Program.
85(2), 287–315 (2016)

[UBC07] Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from
properties and scenarios. In: ICSE, pp. 34–43. IEEE Computer Society
(2007)

[UBC09] Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models
from properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406
(2009)

[UC04] Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Taylor,
R.N., Dwyer, M.B. (eds.) SIGSOFT FSE, pp. 43–52. ACM (2004)

[VR14] Verdier, G., Raclet, J.-B.: Maccs: a tool for reachability by design. In:
Lanese, I., Madelaine, E. (eds.) [LM15], pp. 191–197

[VR15] Verdier, G., Raclet, J.-B.: Quotient of acceptance specifications under
reachability constraints. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 299–311. Springer,
Cham (2015). doi:10.1007/978-3-319-15579-1 23

[Wal96] Walukiewicz, I.: Pushdown processes: games and model checking. In:
Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74.
Springer, Heidelberg (1996). doi:10.1007/3-540-61474-5 58

[WGC09] Wei, O., Gurfinkel, A., Chechik, M.: Mixed transition systems revisited.
In: Jones, N.D., Müller-Olm, M. (eds.) [JMO09], pp. 349–365

http://dx.doi.org/10.1007/978-3-540-24730-2_40
http://dx.doi.org/10.1007/978-3-319-22969-0_24
http://dx.doi.org/10.1007/978-3-319-22969-0_24
http://dx.doi.org/10.1007/978-3-319-15579-1_23
http://dx.doi.org/10.1007/3-540-61474-5_58

	30 Years of Modal Transition Systems: Survey of Extensions and Analysis
	1 Introduction
	1.1 History of Modal Transition Systems
	1.2 Outline of the Paper
	1.3 Further Sources

	2 Preliminaries
	2.1 Modal Transition Systems
	2.2 Logics
	2.3 Specification Theories

	3 Extensions of Modalities
	4 Extensions of Transition Systems
	4.1 Quantities
	4.2 Infinite State Space

	5 Analysis
	5.1 Refinements
	5.2 Operations
	5.3 Model Checking and Synthesis

	6 Tools
	7 Conclusion and Some Directions for Future Work
	References




