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Abstract. We derive a Nivat theorem for weighted unranked tree
automata which states that their behaviors are exactly the functions
which can be constructed from recognizable unranked tree languages
and behaviors of very simple weighted unranked tree automata by
using operations like relabelings and intersections. Thereby we prove the
robustness of the weighted unranked tree automata model introduced
recently. Moreover, we derive a similar theorem for weighted ranked tree
automata. The characterizations work for valuation monoids as weight
structures; they include all semirings, bounded lattices, and computa-
tions of averages of weights.
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1 Introduction

In 1967, Thatcher [32] investigated the theory of finite pseudoterms (nowadays
known as unranked trees) and pseudoautomata (or unranked tree automata). In
contrast to ranked trees (see [9,22,23] for surveys), for unranked trees the number
of children of a node is not determined by the label of that node. Since then,
due to the development of the modern document language XML and the fact
that (fully structured) XML-documents can be formalized as unranked trees, the
theory of unranked tree automata and unranked tree languages has developed
intensively, cf. e.g. [2,7,28–30,32] and Chap. 8 of [9].

Classical unranked tree automata (amongst others) provide the opportunity
to cope with qualitative questions, like reachability. More recently, also quanti-
tative aspects gained much attention in automata theory. For instance, weighted
real-time automata were investigated in [27], weighted modal systems in [4], and
axiomatizations of weighted transition systems in [25]. For ranked trees, weighted
automata were introduced in [1,6]; for surveys we refer to [13,21]. Weighted
automata for unranked trees over semirings were investigated in [20,26].
A weighted unranked tree automata model over tree valuation monoids was intro-
duced in [12]. Tree valuation monoids provide a very general weight structure
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including all semirings, bounded (possibly non-distributive) lattices, and in addi-
tion, computations of averages or discounting of weights.

Nivat-type results provide a close relationship between weighted and
unweighted automata models. In 1968, Nivat [31] (see also [5], Theorem 4.1)
proved the fundamental theorem which characterizes rational transductions, and
thereby established a connection between rational transductions and rational
languages. Droste and Kuske [14] extended Nivat’s theorem to weighted word
automata over semirings. They showed that recognizable word series are exactly
those which can be constructed from recognizable languages and very particular
recognizable series using operations like morphisms and intersections. Recently,
other extensions followed. Nivat theorems were given in [17,18] for weighted
timed automata and weighted timed pushdown automata over timed valuation
monoids and thereby implicitly also for weighted word automata over valuation
monoids, in [3] for weighted picture automata over picture valuation monoids,
in [10] for weighted graph automata over semirings, and in [33,34] for proba-
bilistic automata on finite and infinite words and ranked trees, respectively.

The goal of this paper is such a Nivat result for weighted unranked tree
automata over tree valuation monoids. Such automata consist of a state set and
a family of weighted word automata. The latter are used to calculate the local
weight at a position of a tree by letting the weighted word automaton run on
states at the children of the position. To define the behavior, we use extended
runs which were already introduced in [20]. Additionally to the information of
classical runs, extended runs also include runs of the weighted word automata
called at positions of the input tree. Then the local weight of a position equals
the weight of the transition taken for this position in the run of the position’s
parent. We use the valuation function of the tree valuation monoid to calculate
the weights of an extended run in a global way, i.e. given a run we apply the
valuation function to all local weights which appear along the extended run.
We obtain the weight of the tree as the sum of the weights of all its extended
runs. In [12] it was shown that this model of weighted unranked tree automata
is expressively equivalent to a suitable weighted MSO logic for unranked trees.

The main result of this paper gives a Nivat-type result for weighted unranked
tree automata. We show that the behaviors of weighted unranked tree automata
are exactly the functions which can be constructed from recognizable tree lan-
guages and behaviors of very simple weighted unranked tree automata by using
operations like relabelings and intersections. Indeed, it even suffices to take func-
tions mapping tree labels to tree valuation monoid elements instead of the very
simple weighted unranked tree automata. It is clear that these functions define
simple, recognizable tree series. Together with the results of [12], our present
main result shows that the weighted unranked tree automata model of [12] is
robust. In comparison to the proofs of the Nivat theorem for words (cf. [14]),
for unranked trees technical difficulties arise from the technically more complex
extended runs. Moreover, we also give a Nivat theorem for weighted ranked tree
automata over tree valuation monoids.
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2 Preliminaries

Let N = {1, 2, . . .} be the set of all natural numbers and N0 = N∪{0}. For a set
H, we denote by |H| the cardinality of H and by H∗ the set of all finite words over
H. The empty word is denoted by ε. For sets H1, . . . , Hn and x ∈ H1 × . . .×Hn,
xi equals the i-th component of x.

2.1 Trees and Tree Valuation Monoids

A tree domain is a finite, non-empty subset B of N∗ such that for all u ∈ N∗ and
i ∈ N, if u.i ∈ B, then u, u.1, . . . , u.(i − 1) ∈ B. An unranked tree over a set H
(of labels) is a mapping t : B → H such that dom(t) = B is a tree domain. The
set of all unranked trees over H is denoted by UH . For every h ∈ H, we denote
also by h the particular tree defined by t : {ε} → H and t(ε) = h. Let t ∈ UH .
The elements of dom(t) are called positions of t. Let u ∈ dom(t). We call t(u) the
label of t at u. The rank rkt(u) of u is defined to be max{i ∈ N | u.i ∈ dom(t)}.
If rkt(u) = 0, then u is also called a leaf of t. We denote by leaf(t) the set of all
leaves of t.

A tree valuation monoid (tv-monoid for short) [11,15] is a quadruple
(D,+,Val,0) such that (D,+,0) is a commutative monoid and Val : UD → D
is a function, called (tree) valuation function, which satisfies that Val(d) = d for
every tree d ∈ D, and Val(t) = 0 for every t ∈ UD with 0 ∈ im(t).

Example 1. Qmax = (Q ∪ {−∞},max, avg,−∞) with avg(t) =
∑

u∈dom(t) t(u)

| dom(t)| for
all t ∈ UQ∪{−∞} is a tv-monoid. The valuation function of this tv-monoid cal-
culates the average of all weights of a tree. The idea for the average calculation
was already suggested in [8,16] for words and in [11] for trees.

2.2 Weighted Unranked Tree Automata

Here we recall the definition of the class of recognizable tree series which were
introduced in connection with restricted weighted MSO logics, cf. [12]. Since
weighted unranked tree automata use weighted word automata we first recall
the definition of weighted word automata over tree valuation monoids.

Let D be a tv-momoid and Σ an alphabet, i.e. a non-empty, finite set.
A weighted word automaton over Σ and D is a quadruple A = (P, I, μ, F ) where
P is a non-empty, finite set of states, I, F ⊆ P are the sets of initial and final
states, respectively, and μ : P × Σ × P → D . A run of A on w = w1 . . . wn with
w1, . . . , wn ∈ Σ and n ≥ 0 is a sequence π = (pi−1, wi, pi)1≤i≤n if n > 0, and
a state π = p0 if n = 0 where p0, . . . , pn ∈ P . The run π is successful if p0 ∈ I
and pn ∈ F . In order to define the weight wt(π) of π using a tree valuation
function Val, we define a tree tπ by letting dom(tπ) = {1i | 0 ≤ i < n} and
tπ(1i) = μ(pi−1, wi, pi) (0 ≤ i < n) if n > 0, and tπ(ε) = 0 if n = 0. Then
let wt(π) = Val(tπ). The behavior of A is the function ‖A‖ : Σ∗ → D with
‖A‖(w) =

∑
π successful run on w wt(π) for w ∈ Σ∗.
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A weighted unranked tree automaton (WUTA for short) over Σ and D is a
triple M = (Q,A, γ) where Q is a non-empty, finite set of states, A = (Aq,a |
q ∈ Q, a ∈ Σ) is a family of weighted word automata over Q as alphabet and
D , and γ : Q → D is a root weight function. Let Aq,a = (Pq,a, Iq,a, μq,a, Fq,a) for
all q ∈ Q, a ∈ Σ. We assume the sets Pq,a to be pairwise disjoint and let PA =⋃

q∈Q,a∈Σ Pq,a. Moreover, let μA be the union of the transition functions μq,a.
Intuitively, an extended run assigns a state q ∈ Q to each position u of a

given tree t ∈ UΣ and then consists of one run of Aq,t(u) on q1 . . . qrkt(u) where
qi is the state assigned to the i-th child of u. Formally, an extended run of M
on a tree t is a triple (q, s, l) such that

– q ∈ Q is the root state;
– s : dom(t) \ {ε} → PA × Q × PA is a function such that s(1) . . . s(rkt(ε))

is a run of Aq,t(ε) and s(u.1) . . . s(u. rkt(u)) is a run of As(u)2,t(u) for every
u ∈ dom(t) \ (leaf(t) ∪ {ε});

– l : leaf(t) → PA is a function satisfying l(ε) ∈ Pq,t(ε) if t only consists of the
root, and if u 
= ε is a leaf, then l(u) ∈ Ps(u)2,t(u).

An extended run (q, s, l) is successful if s(u.1) . . . s(u. rkt(u)) is successful for
all u ∈ dom(t) \ leaf(t) and if l(u) is successful for all u ∈ leaf(t) (i.e., l(u) is an
initial and final state of As(u)2,t(u) if u 
= ε respectively of Aq,t(ε) if u = ε). We
let succ(M, t) denote the set of all successful extended runs of M on t.

We will define the local weight of a position u by the weight of the transition
taken for u in the run of the parent of u. This gives a tree μ(t, (q, s, l)) ∈ UD

of weights with the same domain as t; then we apply Val to obtain the weight
of the run (q, s, l) on t. Formally, we define a tree μ(t, (q, s, l)) ∈ UD where
dom(μ(t, (q, s, l))) = dom(t) and

μ(t, (q, s, l))(u) =

{
γ(q) if u = ε,

μA(s(u)) otherwise

for all u ∈ dom(t). We call μ(t, (q, s, l))(u) the local weight of u. Then
Val(μ(t, (q, s, l))) is the weight of (q, s, l) on t. The behavior of a WUTA M
is the function ‖M‖ : UΣ → D defined by

‖M‖(t) =
∑

(q,s,l)∈succ(M,t)

Val(μ(t, (q, s, l)))

for all t ∈ UΣ . If no successful extended run on t exists, we put ‖M‖(t) = 0.
Any mapping from UΣ to D is called an (unranked) tree series. A tree series

S : UΣ → D is called recognizable over D if there is a WUTA M over Σ and D
with ‖M‖ = S.

Remark: Every unranked tree automaton M (see [32] for a definition of unranked
tree automata) over an alphabet Σ can be seen as a weighted unranked
tree automaton over Σ and the boolean semiring B = ({0, 1},∧,∨, 0, 1). Let
M = (Q,A, γ) be an unranked tree automaton. In the following, we identify
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the weight functions γ and μq,a (q ∈ Q, a ∈ Σ) with their support sets. The
language of M is defined as follows. We say that M recognizes t ∈ UΣ if there
is a function r : dom(t) → Q (which we call successful run) with r(ε) ∈ γ and
such that there is a successful run of Ar(u),t(u) on r(u.1) . . . r(u. rk(t(u))) with
wt(r(u.1) . . . r(u. rk(t(u)))) = 1 for all u ∈ dom(t). The tree language recognized
by M is defined by L(M) = {t ∈ UΣ | M recognizes t}. A tree language L ⊆ UΣ

is recognizable if there is a unranked tree automaton M with L(M) = L. Note
that this behavior definition is expressively equivalent to the earlier extended
run behavior over the boolean semiring, nevertheless, we later use this behavior
definition to avoid the syntactically more complex extended runs.

Example 2. Let Qmax be the tv-monoid from Example 1 and Σ be an arbitrary,
but fixed alphabet. In [12], a WUTA M which calculates the leaves-to-size ratio
of a given input tree were given. The size of a tree is the number of all positions
of the tree. For sake of completeness we include the definition of M and some
considerations concerning M’s behavior here. Let M = ({c, n},A, γ) over Σ
with γ(c) = 1, γ(n) = 0, and

– An,a = ({i, f}, {i}, μn,a, {f}) where μn,a(i, n, f) = μn,a(f, n, f) = 0,
μn,a(i, c, f) = μn,a(f, c, f) = 1 and μn,a(f, q, i) = μn,a(i, q, i) = −∞

– Ac,a = ({p}, {p}, μc,a, {p}) where μc,a(p, q, p) = −∞
for all q ∈ {c, n} and a ∈ Σ; for notational convenience, here we have dropped
the condition on pairwise disjointness of the state sets. The sub-automata An,a

and Ac,a depicted in Fig. 1 for some a ∈ Σ.
First, let us consider an example tree. For this, we choose Σ = {α, β} and

the tree
tex = α

α β

β

.

An,a : i f
0, n | 1, c

0, n | 1, c

An,a : p

Fig. 1. Sub-automata of the example WUTA M. Here, incoming arrows symbolize
that a state is initial whereas a double border indicates that a state is final. An edge
from one state p1 to another state p2 (p1 and p2 can be the same state) labeled with
a, d stands for the transition (p1, a, p2) with weight d. Transitions with weight −∞ are
omitted.
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Then (n, s, l) with s =

(i, c, f) (f, n, f)

(i, c, f)

and l=

p

p

is an extended run on tex. Note that the domain of s excludes ε. therefore,
above, the position ε is unlabeled for s. Similarly, the function l has leaves of tex
as domain; therefore, above, the positions ε and 1 are unlabeled for l.

Obviously (n, s, l) is successful, since the runs s(1)s(2) = (i, c, f)(f, n, f) and
s(2.1) = (i, c, f) are successful in An,α and An,β , respectively, and the run p is
successful in Ac,α as well as in Ac,β . The local weights of (n, s, l) are

μ(tex, (n, s, l)) = γ(n)

μA(i, c, f)μA(f, n, f)

μA(i, c, f)

= 0

1 0

1

and thus the weight of (n, s, l) equals 1
2 .

Now let t be an arbitrary, but fixed tree. It is easy to see that for every
successful extended run (q, s, l) on t, l(u) = p for every leaf u of t. Assume that
in addition (q, s, l) assigns the state n to each inner position of t. Let πu be the
unique run of An,t(u) for which tπu

has no label equal to −∞, thus, πu leads
directly from i to f and finally loops in f . If (q, s, l) consists for every inner
position u 
= ε of πu, then (q, s, l) is the only successful extended run such that
μ(t, (q, s, l)) does not contain −∞. Let π denote this unique extended run. For
leaves u of t, μ(t, π)(u) = 1 and for inner positions u′, μ(t, π)(u′) = 0. Thus,

‖M‖(t) = avg(μ(t, π)) =

∑
u∈dom(t) μ(t, π)(u)

|dom(t)| =
“number of leaves of t”

“size of t”
.

We will recall some properties of recognizable unranked tree series. Let L ⊆
UΣ and S : UΣ → D . We define the restriction of S on L by the tree series
S ∩L : UΣ → D by letting (S ∩L)(t) = S(t) if t ∈ L and (S ∩L)(t) = 0 if t /∈ L.

Proposition 3 [12, Lemma 3.4(2)]. Let D be a tv-monoid, L ⊆ UΣ and
S : UΣ → D be recognizable. Then S ∩ L is also recognizable.

Now we consider the closure under relabeling, similarly to [16,19]. Let Σ and Γ
be two alphabets and h : Σ → 2Γ be a mapping. Then h can be extended to a
mapping h′ : UΣ → 2UΓ by letting h′(t) be the set of all unranked trees t′ over Γ
such that dom(t′) = dom(t) and t′(w) ∈ h(t(w)) for each position w ∈ dom(t).
For every S : UΣ → D the tree series h′′(S) : UΓ → D is defined by

h′′(S)(t′) =
∑

t∈UΣ ∧ t′∈h′(t)

S(t)
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for all t′ ∈ UΓ . Clearly, the index set of the summation is finite. We denote h′

and h′′ also by h which we call a relabeling.

Proposition 4 [12, Lemma 3.6]. Recognizable tree series are closed under rela-
beling.

3 Nivat-Classes for Unranked Trees

Here we will define the set of all tree series which can be constructed from
recognizable tree languages and behaviors of very simple weighted unranked
tree automata by using operations like relabelings and intersections. Inspired by
Weidner [35], we will call this set Nivat-class for unranked trees.

For the rest of this section let D = (D,+,Val,0) be a tv-monoid, Γ be
an alphabet and g : Γ → D be a function. The function g later assigns labels
to valuation monoid elements. The extension g′ : UΓ → UD of g is defined by
g′(t)(u) = g(t(u)) for all t ∈ O(Γ ) and u ∈ dom(t). In the following we denote
g′ also by g. Then Val ◦ g assigns to each tree t ∈ UΓ the weight Val(g(t)).

Definition 5. Let Σ be an alphabet, D be a tv-monoid. The Nivat-class ND (UΣ)
for unranked trees consists of all S : UΣ → D for which there are:

– an alphabet Γ ,
– a recognizable tree language L ⊆ UΓ ,
– a relabeling h : Γ → Σ,
– a function g : Γ → D

such that
S = h((Val ◦ g) ∩ L).

Example 6. Let Qmax be the tv-monoid of Example 1 and Σ be an arbitrary,
but fixed alphabet. We will show that the tree series defined by the WUTA
in Example 2, which calculates the leaves-to-size ratio of trees, is in NQmax(UΣ).
For this, let

– Γ = Σ × {leaf,noleaf},
– L = {t ∈ UΓ | ∀u ∈ dom(t) \ leaf(t) : t(u)2 = noleaf

∧∀u ∈ leaf(t) : t(u)2 = leaf},
– h(a) = a1 for all a ∈ Γ ,
– g(a, leaf) = 1 and g(a,noleaf) = 0 for all a ∈ Σ.

It is easy to check that L is indeed recognizable and that

h((Val ◦ g) ∩ L)(t) =
“number of leaves of t”

“size of t”

for all t ∈ UΣ .

Our main result will show that the Nivat-class for unranked trees and the set
of all recognizable tree series are the same. For the proof of the inclusion of the
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Nivat-class in the set of all recognizable tree series we first prove that Val(g) is
recognizable by an especially simple weighted tree automaton M. In particular,
we can choose M with state set Γ and A = (Aq,a | q ∈ Γ, a ∈ Γ ) where Aq,a has
only one state.

Lemma 7. Let Γ be an alphabet, D = (D,+,Val,0) be a tv-monoid, and
g : Γ → D. Then Val ◦ g is recognizable.

Proof. We will build a WUTA M which recognizes Val ◦ g. Basically, M will
have exactly one successful extended run per input tree t ∈ UΓ . The local weight
of this extended run at a position u shall be g(t(u)). For this we set the state
set of M to Γ and let the root weight of state a ∈ Γ be g(a). Moreover, each
subautomaton Aa,a (a ∈ Γ ) of M has only one state q which is initial and final
(so that there is only one successful run), and each transition of Aa,a labeled with
b ∈ Γ has weight g(b) (this generates the local weight which we would like to
produce). All other subautomata do not produce any successful run. The latter
secures that one only gets a successful extended run if for a-labeled positions
Aa,a is called. Formally, let M = (Γ,A, γ) with γ(a) = g(a) for all a ∈ Γ and
A = (Aq,a | q ∈ Γ, a ∈ Γ ) with Aa,a = ({q}, {q}, μa,a, {q}) with μa,a(b) = g(b)
for all b ∈ Γ and Ac,a = ({q}, {q},0, ∅) for all a, c ∈ Γ with a 
= c where 0
denotes a function which maps all triples to 0.

Using the intuition behind M given above, one can easily check that
‖M‖(t) = Val(g(t)) for all t ∈ UΓ . ��

Now we prove our main theorem.

Theorem 8. Let Σ be an alphabet, D be a tv-monoid, and S : UΣ → D a tree
series. Then S is recognizable iff S ∈ ND (UΣ).

Proof. We start with the proof of the “if”-implication. For this, let Γ be an
alphabet, L ⊆ UΓ a recognizable tree language, h : Γ → Σ a relabeling, and
g : Γ → D a function such that S = h((Val ◦ g) ∩ L). By Lemma 7, Val ◦ g is
recognizable, and thus, by Proposition 3, also (Val ◦ g)∩L is recognizable. Hence
by Proposition 4, S = h((Val ◦ g) ∩ L) is recognizable.

For the converse, let S be recognizable and M = (Q,A, γ) be a WUTA with
‖M‖ = S. Moreover let Aq,a = (Pq,a, Iq,a, μq,a, Fq,a) for all q ∈ Q, a ∈ Σ. We
assume the sets Pq,a to be pairwise disjoint and let PA =

⋃
q∈Q,a∈Σ Pq,a. Let μA

be the union of the transition functions μq,a.
We will simulate the behavior of M by appropriately chosen Γ , L, h, and

g. The main idea for the choice of Γ , L, h, and g is that L will be the set of
successful extended runs of M, g will determine the local weights of the extended
runs in L, the valuation function Val will calculate the weights of the extended
runs, and h will be a projection of the extended runs on their related trees (this
results in the “sum over all trees” since h is a relabeling). Since L shall be a
set of trees over an alphabet Γ , we have to encode (successful) extended runs
by trees. As indicated in Example 2, each component q, s, and l, respectively,
of an extended run (q, s, l) on a tree t can be viewed as a tree with possibly
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unlabeled positions over the tree domain dom(t). Then q has labels in Γ1 = Q, s
in Γ2 = PA × Q × PA, and l in PA whereby the root is the only labeled position
in q and the only unlabeled position in s, respectively, and in l only leaves are
labeled. We combine these three trees to one tree via building tuples from the
labels of q, s, and l. The resulting tree then has labels in Γ1 ∪ Γ2 ∪ Γ3 where
Γ3 = ((PA × Q × PA) × PA). Thus we set Γ = (Γ1 ∪ Γ2 ∪ Γ3) × Σ. We built the
Cartesian product with Σ, so that later h can extract the related tree. Let t ∈ UΣ ,
(q, s, l) an extended run on t, and τ a tree over Γ . We say that τ encodes the pair
((q, s, l), t) if dom(t) = dom(τ) and τ(ε) = (q, t(ε)), τ(u) = (s(u), t(u)) for all
u ∈ dom(t)\({ε}∪ leaf(t)), and τ(u) = ((s(u), l(u)), t(u)) for all u ∈ leaf(t)\{ε}.
From now on we identify a pair ((q, s, l), t) and its encoding τ ∈ UΓ .

Now we can define Γ , L, h, and g:

– Γ = (Γ1 ∪ Γ2 ∪ Γ3) × Σ
– L = {((q, s, l), t) ∈ UΓ | (q, s, l) ∈ succ(M, t)}
– h(q′, a) = a

– g(q′, a) =

{
γ(a) if q′ ∈ Γ1

μ(p1, q, p2) if q′ = (p1, q, p2) ∈ Γ2 or q′ = ((p1, q, p2), p) ∈ Γ3

for a ∈ Σ and (q′, a) ∈ Γ .
We show that L is actually recognizable. For this, we construct an unranked

tree automaton Mruns = (Qruns, A, γruns) which has only τ as successful run on
an input tree τ = ((q, s, l), t) ∈ UΓ iff (q, s, l) is a successful extended run of
M on t. Thus, the state set Qruns of Mruns will be Γ and only subautomata
Aα,α (α ∈ Γ ) actually accept a non-empty language. The subautomaton Aα,α of
Mruns will be a version of the subautomaton Aq,a (where q is the Q-component
and a is the Σ-component, respectively, of α) of M without weights. Hence

– τ(1) . . . τ(rkτ (ε)) ∈ L(δ(τ(ε), τ(ε))) iff s(1) . . . s(rkt(u)) is a successful run in
Aq,t(ε),

– τ(u.1) . . . τ(u. rkτ (u)) ∈ L(δ(τ(u), τ(u))) iff s(u.1) . . . s(u. rkt(u)) is a success-
ful run in As(u)2,t(u) for all u ∈ dom(t) \ ({ε} ∪ leaf(t)),

– ε ∈ L(δ(τ(u), τ(u))) iff l(u) is a successful run in As(u)2,t(u) for all leaves u

for all trees τ = ((q, s, l), t) ∈ UΓ . To guarantee that trees accepted by Mruns

have their root label in Γ1 × Σ, we let Γ1 × Σ be the set of final states γruns of
Mruns. Moreover, subautomata associated to a state in Γ2×Σ will not accept the
empty word, hence, Mruns does not allow runs where states in Γ2 × Σ occur at
leaf positions. Leaf positions shall be labeled with states in Γ3 × Σ. We achieve
this by letting Aα,α for α ∈ Γ3 ×Σ be a word automaton which at most accepts
the empty word.

Formally, let Mruns = (Γ,A,Q × Σ) with

– Aα,α = (Pq,a, Iq,a, μq,a, Fq,a) for α = (q, a) ∈ (Γ1 × Σ) where Pq,a, Iq,a, Fq,a

are as in Aq,a and

μq,a = {(p1, (p1, q′, p2), p2) | p1, p2 ∈ Pq,a, q′ ∈ Q}
∪ {(p1, ((p1, q′, p2), p), p2) | p1, p2, p ∈ Pq,a, q′ ∈ Q}
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– Aα,α = (Pq,a ∪ Iq,a, Iq,a, μ′
q,a, Fq,a) for α = ((p′

1, q, p
′
2), a) ∈ (Γ2 × Σ) where

Pq,a, Iq,a, Fq,a are as in Aq,a, Iq,a is a disjoint copy of Iq,a, and

μ′
q,a = Tq,a ∪ {(i1, (i, q′, p2), p2) | i ∈ Iq,a, p2 ∈ Pq,a, q′ ∈ Q}

∪ {(i, ((i, q′, p2), p), p2) | i ∈ Iq,,a, p2, p ∈ Pq,a, q′ ∈ Q}
with

μq,a = {(p1, (p1, q′, p2), p2) | p1, p2 ∈ Pq,a, q′ ∈ Q}
∪ {(p1, ((p1, q′, p2), p), p2) | p1, p2, p ∈ Pq,a, q′ ∈ Q}

– Aα,α = ({pα}, {pα}, ∅, {pα}) for α = (((p′
1, q, p

′
2), p

′), a) ∈ (Γ3 × Σ) with
p′ ∈ Iq,a ∩ Fq,a and Aα,α = ({pα}, {pα}, ∅, ∅) for α = (((p′

1, q, p
′
2), p

′), a) with
p′ /∈ Iq,a ∩ Fq,a

– Aα,β = ({p}, {p}, ∅, ∅)

for α, β ∈ Γ and α 
= β. One can easily prove that L(Mruns) = L.
Now let t ∈ UΣ . Then

h((Val ◦ g) ∩ L)(t) =
∑

τ∈UΓ ∧t∈h(τ)

((Val ◦ g) ∩ L)(τ)

=
∑

τ=((q,s,l),t)∧(q,s,l)∈succ(M,t)

Val(g(τ))

=
∑

τ=((q,s,l),t)∧(q,s,l)∈succ(M,t)

Val(μ(t, (s, q, l)))

=
∑

(q,s,l)∈succ(M,t)

Val(μ(t, (s, q, l)))

= ‖M‖(t) .

��

4 The Ranked Tree Case

In this section we will show a version of Theorem 8 for ranked trees. For this,
we briefly recall the definitions of ranked alphabets, ranked trees and weighted
ranked tree automata over tv-monoids as well as some considerations on the
relationship between weighted ranked tree automata and weighted unranked
tree automata.

A ranked alphabet is a pair (Σ, rkΣ), where Σ is an alphabet and rkΣ : Σ →
N0 is a mapping which assigns to each symbol of Σ its rank. We denote by
Σ(k) the set of all symbols which have rank k and by a(k) that a is in Σ(k).
Usually we drop rkΣ and denote a ranked alphabet simply by Σ. In this paper
we assume that Σ(0) 
= ∅. We define maxΣ = max{rkΣ(σ) | σ ∈ Σ}. A ranked
tree over a ranked alphabet Σ is an unranked tree over the set Σ such that for
all u ∈ dom(t), rkt(u) = k whenever t(u) ∈ Σ(k). We denote the set of all ranked
trees over Σ by TΣ .
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Let Σ be a ranked alphabet and (D,+,Val,0) a tv-monoid. A weighted ranked
tree automaton (WRTA for short) over Σ and D is a triple M = (Q,μ, F ) where
Q is a non-empty finite set of states, μ = (μm)0≤m≤maxΣ

is a family of transition
mappings μm : Qm × Σ(m) × Q → D, and F ⊆ Q is a set of final states.

A run r of M on a tree t ∈ TΣ is a mapping r : dom(t) → Q. Since the
domain of a run is a tree domain, each run r on t defines a tree μ(t, r) ∈ TD

where dom(μ(t, r)) = dom(t) and μ(t, r)(u) = μm(r(u.1) . . . r(u.m), t(u), r(u))
with t(u) ∈ Σ(m) for all u ∈ dom(t). We call r on t successful if r(ε) ∈ F . The
behavior of a WRTA M is the function ‖M‖ : TΣ → D defined by

‖M‖(t) =
∑(

Val(μ(t, r)) | r is successful run of M on t
)

for all t ∈ TΣ . If no successful run on t exists, we put ‖M‖(t) = 0.
A ranked tree series is a mapping S : TΣ → D . A tree series S is called

recognizable if S = ‖M‖ for some WRTA M. As is well-known, a ranked tree
automaton (cf. [9]) can be seen as a weighted ranked tree automaton over the
boolean semiring, and conversely.

In passing, we note the following result. It shows that on ranked trees WRTA
and WUTA have the same expressive power.

Proposition 9 [24, Lemma 3.10 and Lemma 3.11]. Let Σ be a ranked alpha-
bet.

1. For every WRTA N over Σ there exists a WUTA M such that ‖M‖(t) =
‖N‖(t) for all t ∈ TΣ and ‖M‖(t) = 0 for all t ∈ UΣ \ TΣ.

2. For every WUTA M over Σ there exists a WRTA N such that ‖N‖(t) =
‖M‖(t) for all t ∈ TΣ.

Now we define a Nivat-class for ranked trees. For this, we define for all L ⊆ TΣ

and S : TΣ → D the restriction of S on L analogously to the respective definition
of the restriction of a tree series and an unranked tree language. Moreover,
let Σ and Γ be two ranked alphabets and h : Σ → 2Γ be a mapping with
rkΓ (b) = rkΣ(a) for all b ∈ h(a). We extend h to a mapping h′ from ranked trees
over Σ to the power set of ranked trees over Γ , and afterwards to a mapping
h′′ from ranked tree series over Σ and D to ranked tree series over Γ and D
analogously as we did in the unranked tree case. Again, we denote h′ and h′′

also by h which we call a relabeling. Let Γ be a ranked alphabet, g : Γ → D be
a function, and the extension g′ : UΓ → UD of g be defined by g′(t)(u) = g(t(u))
for all t ∈ TΓ and u ∈ dom(t). In the following we denote g′ also by g.

Definition 10. The Nivat-class ND (TΣ) for ranked trees consists of all
S : TΣ → D for which there are:

– an alphabet Γ ,
– a recognizable ranked tree language L ⊆ TΓ ,
– a relabeling h : Γ → Σ,
– a function g : Γ → D

such that
S = h((Val ◦ g) ∩ L) .
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Example 11. Let Σ be a ranked alphabet. We will show that also the ranked
tree series which calculates the leaves-to-size ratio of trees is in NQmax(TΣ). We
let Γ = Σ, L = TΓ , h(a) = a for all a ∈ Γ , and g(a(0)) = 1 and g(a(k)) = 0 for
all a ∈ Σ and k > 0. Obviously L is recognizable and h((Val ◦ g) ∩ L) calculates
the leaves-to-size ratio of ranked trees. A WRTA that recognizes h((Val ◦ g)∩L)
was given in [11].

Next we prove a Nivat theorem for ranked trees.

Theorem 12. Let Σ be a ranked alphabet, D a tv-monoid, and S : TΣ → D a
tree series. Then S is recognizable iff S ∈ ND (TΣ).

Proof. Let Γ be an alphabet, L ⊆ TΓ a recognizable ranked tree language,
h : Γ → Σ a relabeling, and g : Γ → D a function such that S = h((Val ◦ g)∩L).
As is easy to see, Val ◦ g is accepted by a one state automaton M. Indeed,
M = ({q}, μ, {q}) with μm(q . . . q, a, q) = g(a) for all a ∈ Γ (m) and m ∈ N.
By the versions of Proposition 3 and Proposition 4 for ranked trees (cf. [11]),
(Val ◦ g) ∩ L is recognizable, and thus, S = h((Val ◦ g) ∩ L) is recognizable.

For the converse implication, let S = ‖M‖ for some WRTA M = (Q,μ, F ).
Then let

– Γ =
⋃

0≤m≤maxΣ
Qm × Σ(m) × Q with rk(q1 . . . qm, a, q) = rk(a) for all

q1, . . . , qm, q ∈ Q, a ∈ Σ(m) be the set of all transitions of M,
– L = {t ∈ TΓ | ∀u ∈ dom(t) with t(u) ∈ Γ (m) : t(u.i)3 = (t(u)1)i for all 1 ≤

i ≤ m and t(ε)3 ∈ F} describing the set of all successful runs of M,
– h((q1, . . . , qm), a, q) = a,
– g((q1, . . . , qm), a, q) = μm(q1 . . . qm, a, q)

for all q1, . . . , qm, q ∈ Q, a ∈ Σ(m). One can check that L is recognizable and
h((Val ◦ g) ∩ L) = S. ��

Conclusion

We proved two Nivat theorems for weighted unranked tree automata and for
weighted ranked tree automata over tree valuation monoids.

In [17,33,34], the Nivat theorem was used to show the expressive equivalence
of a suitable MSO logic and the respective automata model. We think that,
similarly, Theorem 8 could be used to derive an alternative proof to the one in [12]
showing that the weighted MSO logic defined there and weighted unranked tree
automata over tree valuation monoids are expressively equivalent.
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