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Abstract. Probabilistic timed automata are a formalism for mod-
elling systems whose dynamics includes probabilistic, nondeterministic
and timed aspects including real-time systems. A variety of techniques
have been proposed for the analysis of this formalism and successfully
employed to analyse, for example, wireless communication protocols and
computer security systems. Augmenting the model with prices (or, equiv-
alently, costs or rewards) provides a means to verify more complex quan-
titative properties, such as the expected energy usage of a device or the
expected number of messages sent during a protocol’s execution. How-
ever, the analysis of these properties on probabilistic timed automata cur-
rently relies on a technique based on integer discretisation of real-valued
clocks, which can be expensive in some cases. In this paper, we propose
symbolic techniques for verification and optimal strategy synthesis for
priced probabilistic timed automata which avoid this discretisation. We
build upon recent work for the special case of expected time properties,
using value iteration over a zone-based abstraction of the model.

1 Introduction

Real-time systems are at the heart of application domains such as communi-
cation protocols, embedded systems, hardware circuits, autonomous transport,
robotics and manufacturing. The presence of hard real-time constraints within a
distributed, reactive environment means that their correct functioning depends
on the timing pattern of the interaction of the system with its environment,
making correctness guarantees difficult.

Timed automata [2] are a powerful formalism for modelling and verification
of real-time systems. They are finite-state automata equipped with real-valued
clocks which measure the passage of time, and whose transitions are annotated
with guards that specify the time constraints that have to be satisfied for the
transition to be taken. Since timed automata allow the modelling of dense real-
time, the decidability of model checking depends on a number of assumptions.

Several verification approaches have been introduced, see e.g. [1,21,22,32], of
which the symbolic zone-based approach enables greater scalability compared to
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the digital clocks method, which assumes an integral model of time as opposed
to a dense model of time. Timed automata have been widely used for modelling
and analysis of real-world systems; in particular, they are supported by the
UPPAAL [31] model checker, the gold standard in computer-aided verification
for real-time systems.

When modelling and analysing real-time systems, it is often necessary to
consider quantities other than time, for example energy consumption, network
bandwidth or number of packets lost. The model of (linearly) priced timed
automata [3,7] extends timed automata with prices (weights) annotating the
locations and transitions, thus enabling reasoning about costs or rewards accu-
mulated over time as the execution progresses. This model has good decidability
properties and several algorithms have been proposed for its analysis, based on
an extension of regions or zones with prices. Priced timed automata are also
supported by UPPAAL, and have been used for timing analysis of a range of
embedded real-time systems, with several flaws discovered and corrected.

However, many distributed real-time systems also employ randomisation, for
example random back-off in wireless network protocols. A natural model for such
systems is a probabilistic extension of (priced) timed automata called probabilis-
tic timed automata (PTAs) [6,19,29]. They can be viewed as timed automata
whose transitions are probability distributions over the set of edges, where each
such edge specifies a successor location and a set of clocks to reset.

A key property studied here is expected reachability, namely the expected
time/price until some event occurs. This problem has been found unsuitable for
symbolic zone-based methods, including priced zones, since accumulated prices
are unbounded. Recently, [24,25] introduced a zone-based symbolic method to
compute minimum and maximum expected time for PTAs and to synthesise a
corresponding strategy. Prior to this, expected reachability properties of PTAs
could only be verified using the digital clocks method [28] that can suffer from
state-space explosion.

Probabilistic timed automata are supported by the PRISM [27] model checker
via the zone-based and digital clocks abstractions (though not yet the method
of [25]) and have used been for the analysis of a broad range of real-world pro-
tocols, see for example [18,28]. A second tool supporting PTAs is mcpta [20],
which applies the digital clocks abstraction to translate a subset of the modelling
language Modest [15] directly into the PRISM modelling language. The related
problem of price-bounded probabilistic reachability [10] (known to be undecid-
able [9]) can be analysed via a semi-decision procedure using priced zones, imple-
mented in Fortuna [11].

In this paper we study the computation of the minimum/maximum expected
price for linearly-priced probabilistic timed automata, for which, to the best of
our knowledge, no zone-based method exists at present. More specifically, we
extend [25], where only the restricted case of expected time is considered. The
minimum expected price problem for a related model of priced timed games in
stochastic environments was tackled in [16] using statistical model checking with
Uppaal-SMC. Since this approach is based on simulation, rather than numerical
model checking, it gives approximate results with probabilistic guarantees.
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As in [24,25], our method relies on an interpretation of the PTA as an
uncountable-state Markov decision process (MDP) and employs a representation
in terms of an extension of the ‘simple’ and ‘nice’ functions of [4]. The optimal
prices are computed via a Bellman equation using value iteration, which gives
guaranteed eventual convergence to the correct values. Moreover, an ε-optimal
strategy can be extracted by stepping backwards and retrieving the locally opti-
mal choices once some convergence criterion has been satisfied. For minimum
expected time, it is always optimal to let as little time pass as possible. How-
ever, for minimum price, it turns out that this is not always the case, and it can
be optimal to let time pass now and accumulate a lower price, as opposed to
waiting and accumulating a higher price later. The case of maximum time/price
is dual.

Paper Structure. In Sect. 2 we summarise the relevant background, mainly
concerning uncountable MDPs and the computation of optimal reward. Section 3
defines the priced extension of probabilistic timed automata (PTAs) and their
interpretation as an uncountable MDP under appropriate assumptions. In
Sect. 4, we introduce a representation of the value functions that generalise the
simple and nice functions of [4], and present our algorithms for computing opti-
mal expected price and synthesis of an ε-optimal strategy using the backwards
zone graph of a PTA.

2 Background

Let R denote the non-negative reals, N natural numbers, Q rationals and Q+ non-
negative rationals. A discrete probability distribution over a (possibly uncount-
able) set S is a function μ : S→[0, 1] such that

∑
s∈S μ(s) = 1 and the set

{s ∈ S | μ(s)>0} is finite. Let dist(S) denote the set of distributions over S.
A distribution μ ∈ dist(S) is a point distribution if μ(s) = 1 for some s ∈ S.

In preparation for the sections that follow, we present some background mate-
rial and known results for the model of Markov decision processes (MDPs).

Definition 1. An MDP is a tuple M = (S, s0, A,ProbM,PriceM), where:

– S is a (possibly uncountable) set of states and s0 ∈ S is an initial state;
– A is a (possibly uncountable) set of actions;
– ProbM : S × A → dist(S) is a (partial) probabilistic transition function;
– PriceM : S × A → R is a price function.

In each state s of an MDP M, there is a set of enabled actions, denoted by A(s),
containing those actions a for which ProbM(s, a) is defined. In state s, a transi-
tion corresponds to first nondeterministically choosing an available action and,
assuming action a ∈ A(s) is chosen, then selecting a successor state randomly
according to the distribution ProbM(s, a). Taking an a-labelled transition from
state s incurs a price of PriceM(s, a). We use the terminology “price” for con-
sistency with the model of priced probabilistic timed automata used later, but
these are commonly also referred to as costs or, dually, rewards for MDPs.
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A path of an MDP M is given by a finite or infinite sequence of transitions
ω = s0

a0−→s1
a1−→s2

a2−→· · · with ProbM(si, ai)(si+1) > 0 for all i ≥ 0. The (i + 1)th
state of a path ω and action associated with the (i+1)th transition are denoted
by ω(i) and ω[i] respectively. The set of infinite (finite) paths is denoted by
IPathsM (FPathsM) and the last state of a finite path ω by last(ω).

A strategy (also called an adversary, scheduler or policy) of an MDP M rep-
resents one resolution of the nondeterminism in M.

Definition 2. A strategy of an MDP M is a function σ : FPathsM→dist(A)
such that σ(ω)(a)>0 only if a ∈ A(last(ω)).

For a given strategy σ and state s of an MDP M, we can construct a probability
measure Pσ

s over the set of infinite paths starting in s [26]. A strategy σ is
memoryless if its choices only depend on the current state, and deterministic
if σ(ω) is a point distribution for all ω ∈ FPathsM. The set of all strategies of
MDP M is denoted ΣM.

Key quantitative properties for MDPs are the probability of reaching a tar-
get and the expected price incurred before doing so. We will refer to these as
probabilistic reachability and expected reachability, respectively. For a strategy σ,
state s and set of target states F ⊆ S of an MDP M, these values are given by:

P
σ
M(s, F ) def= Pσ

s {ω ∈ IPathsM | ∃k ∈ N. ω(k) ∈ F}
E

σ
M(s, F ) def=

∫

ω∈IPathsM

price(ω, F ) dPσ
s

where for any infinite path ω:

price(ω, F ) def=
∑kF

i=0 PriceM(ω(i), ω[i])

and kF = min{k − 1 | ω(k) ∈ F} if there exists k ∈ N such that ω(k) ∈ F and
kF = ∞ otherwise. As usual we consider the optimal values of these properties,
i.e. the minimum and maximum values over all strategies:

P
min
M (s, F ) def= infσ∈ΣM

P
σ
M(s, F ) P

max
M (s, F ) def= supσ∈ΣM

P
σ
M(s, F )

E
min
M (s, F ) def= infσ∈ΣM

E
σ
M(s, F ) E

max
M (s, F ) def= supσ∈ΣM

E
σ
M(s, F )

One approach to computing these optimal values is through Bellman opera-
tors [8] using either value iteration or policy iteration [12,13]. In the case of
expected reachability, the Bellman operators have the following form.

Definition 3. Let M be an MDP with state space S, F ⊆ S be a target set,
and let opt ∈ {min,max}. The Bellman operator T opt

M : (S→R) → (S→R) for
optimal expected reachability is defined as follows. For any function f : S → R

and state s ∈ S:

T opt
M (f)(s) =

{
0 if s ∈ F

opt�
a∈A(s)

{
PriceM(s, a) +

∑
s′∈S ProbM(s, a)(s′) · f(s′)

}
if s �∈ F

where min� = inf and max� = sup.
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Value iteration works by starting with an initial approximation f0 : S → R and
repeatedly applying T opt

M until it converges to the optimal expected reachability
value. In practice, an approximate result is obtained by terminating the com-
putation once some convergence criterion is satisfied, for example, by checking
that the maximum pointwise difference between (T opt

M )n(f0) and (T opt
M )n+1(f0)

is below some threshold ε ∈ R. The process also yields an (approximately) opti-
mal strategy for either minimising or maximising expected reachability. Policy
iteration starts from a (deterministic and memoryless) strategy, and repeatedly
attempts to find an improved (deterministic and memoryless) strategy by com-
puting the expected reachability values for the current strategy and trying to
update action choices to optimise expected reachability values.

Below, we state some known results from [23] regarding MDPs and value
iteration, which are needed later in the paper (and which were adapted for the
case of PTAs in [25]). This requires us to make the following assumptions.

Assumption 1. For any MDP M = (S, s0, A,ProbM,PriceM) and target set F :

(a) A(s) is compact for all s ∈ S;
(b) PriceM is bounded and a 	→ PriceM(s, a) is continuous for all s ∈ S;
(c) if σ is a memoryless, deterministic strategy which is not proper, then

E
σ
M(s, F ) is unbounded for some s ∈ S;

(d) there exists a proper, memoryless, deterministic strategy;

where a strategy σ is called proper if P
σ
M(s, F ) = 1 for all s ∈ S.

Theorem 1 [23]. If M and F are an MDP and target set for which Assumption 1
holds, and the minimum expected price values are bounded below, then:

– there exists a memoryless, deterministic strategy that achieves the minimum
expected price of reaching F ;

– the minimum expected price values are the unique solutions to Tmin
M ;

– value iteration over Tmin
M converges to the minimum expected price values

when starting from any bounded function;
– policy iteration converges to the minimum expected price values when starting

from any proper, memoryless, deterministic strategy.

Corollary 1. If M and F are an MDP and target set for which Assumption 1
holds and the maximum expected price values are bounded above, then:

– there exists a memoryless, deterministic strategy that achieves the maximum
expected price of reaching F ;

– the maximum expected price values are the unique solutions to Tmax
M ;

– value iteration over Tmax
M converges to the maximum expected price values

when starting from any bounded function;
– policy iteration converges to the maximum expected price values when starting

from any proper, memoryless, deterministic strategy.
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3 Priced Probabilistic Timed Automata

In this section we introduce probabilistic timed automata (PTAs) [6,19,29], a for-
malism for modelling systems whose dynamics includes probabilistic, nondeter-
ministic and timed aspects, and the extended model of linearly-priced PTAs [28],
which augment PTAs with prices. We will commonly refer to the latter simply
as PTAs.

Clocks, Clock Valuations and Zones. We assume we have a finite set X
of real-valued variables called clocks which increase at the same, constant rate.
A clock valuation is a function v : X→R and let R

X be the set of all clock
valuations. We denote by 0 the clock valuation that assigns 0 to all clocks. For
any subset of clocks R, non-negative real value t and clock valuation v, v[R] is
the clock valuation where v[R](x) = 0 if x ∈ R and v[R](x) = v(x) if x ∈ X\R,
and v + t is the clock valuation where (v + t)(x) = v(x) + t for all x ∈ X . The
set of zones over X , written Zones(X ), is defined by the syntax:

ζ ::= true | x ≤ d | c ≤ x | x + c ≤ y + d | ¬ζ | ζ ∧ ζ

where x, y ∈ X and c, d ∈ N. We can restrict the syntax to convex zones by
removing negation. For a clock valuation v and zone ζ, we say v satisfies ζ,
denoted v|=ζ, if ζ is true after substituting each occurrence of each clock x with
v(x). The semantics of a zone ζ is the set of clock valuations satisfying it. We
require the following zone operations [33], for zone ζ and subset of clocks R:

– ↙ζ = {v ∈ R
X | ∃t ∈ R. v + t |= ζ};

– ζ[R] = {v[R] | v |= ζ};
– [R]ζ = {v ∈ R

X | v[R] |= ζ}.

Syntax and Semantics of PTAs. We now present the formal syntax and
semantics of linearly-priced PTAs.

Definition 4. A linearly-priced probabilistic timed automaton (PTA) P is a
tuple (L, l0,X ,Act , enab, prob, inv, price) where:

– L is a finite set of locations and l0 ∈ L is an initial location;
– X is a finite set of clocks;
– Act is a finite set of actions;
– enab : L × Act → Zones(X ) is an enabling condition;
– prob : L × Act → dist(2X × L) is a probabilistic transition function;
– inv : L → Zones(X ) is an invariant condition;
– price = (priceL, priceAct) is a price structure where priceL : L → Q+ is a

location price function and priceAct : L×Act → Q+ an action price function.

The underlying semantics of PTA P is an MDP with an infinite set of both states
and actions. The states are location-valuation pairs (l, v) such that v satisfies
the invariant inv(l) and the initial state is the initial location with all clocks set
to 0. The available actions in state (l, v) are the time-action pairs (t, a) such
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the invariant inv(l) remains true while letting t time units pass, after this time
the enabling condition enab(l, a) is satisfied, and the successor location and the
clocks that are reset are then chosen according to the distribution prob(l, v).
Furthermore, a price is incurred at rate priceL(l) while letting the t time units
pass and a price priceAct(l, a) is incurred when performing the action a.

Definition 5. For a PTA P = (L, l0,X ,Act , enab, prob, inv, price) the semantics
of P is given by the MDP [[P]] = (S, s0, R × Act ,Prob[[P]],Price [[P]]) where:

– S = {(l, v) ∈ L × R
X | v |= inv(l)} and s0 = (l0,0);

– if (l, v) ∈ S and (t, a) ∈ R ×Act, then Prob[[P]]((l, v), (t, a)) = μ if and only if
v + t′ |= inv(l) for 0 ≤ t′ ≤ t, v + t |= enab(l, a) and for any (l′, v′) ∈ S:

μ(l′, v′) =
∑

R⊆X∧v′=(v+t)[R] prob(l, a)(R, l′)

– Price [[P]]((l, v), (t, a)) = priceL(l) ·t+priceAct(l, a) for all (l, v) ∈ S and (t, a) ∈
R × Act.

Expected Prices. The property of PTAs on which we focus in this paper is
the optimal (minimum or maximum) expected price incurred before reaching a
target, which is defined along the same lines as the equivalent property for MDPs
defined in Sect. 2. The differences are that, firstly, the target is now defined as
a set F ⊆ L of locations and, secondly, prices are incurred both when time
elapses in a location, and when an action is performed. Since the semantics of
a PTA is an (infinite-state) MDP, the expected price for a PTA is defined in
straightforward fashion in terms of the MDP. For PTA P, target locations F ,
state (l, v) and opt ∈ {min,max}, we have:

E
opt
P ((l, v), F ) def= E

opt
[[P]]((l, v), SF ) where SF

def= {(l, v) | l ∈ F ∧ v |= inv(l)}.

When computing these values, we make several assumptions about PTAs, similar
to those imposed in [25]. Firstly, this will ensure that Assumption 1 holds for the
underlying MDP, which allows us to apply Theorem1 and Corollary 1. Secondly,
it makes sure that unrealistic behaviours are discarded.

Assumption 2. For any PTA P, we have:

(a) all invariants of P are bounded;
(b) only non-strict inequalities are allowed in clock constraints, i.e., P is closed;
(c) all invariant and enabling conditions of P are convex;
(d) all location prices of P are positive;
(e) P is structurally non-zeno [34] (this can be identified syntactically and in a

compositional fashion [35] and guarantees time-divergent behaviour).

The reasons for these assumptions are similar to those given in [25]. The main
difference is that, in order to ensure that Assumption 1(c) holds, we require
that all location prices are positive (Assumption 2(d)), in addition to the struc-
tural non-zeno assumption. More precisely, for any PTA satisfying Assump-
tion 2(d) and (e), if, from some state and under some strategy a target is not
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reached with probability 1, then from this state and under this strategy the
expected price of reaching the target is infinite. Expected time (as in [25]) is a
special case of expected price where all action prices are 0 and all location prices
are 1, and therefore Assumption 1(d) will always hold in this case.

4 Optimal Expected Price Algorithms for PTAs

In this section, we present our symbolic approach for computing optimal
expected reachability prices and for synthesising a corresponding optimal strat-
egy. We first extend the approach of [25] for computing optimal expected times,
a key building block of which is an initial backwards exploration of the state
space, using the techniques from [30]. Computing expected rewards can then be
performed using value iteration over the zone graph constructed during back-
wards exploration. This process is described in Sect. 4.1. Next, in Sect. 4.2, we
discuss the use of rational k-simple functions and rational (r, k)-nice functions
to represent the prices stored during value iteration. Finally, Sect. 4.3 presents
an example of the process.

To simplify the presentation, for the remainder of this section we will fix a
PTA P = (L, l0,X ,Act , enab, prob, inv, price), target set of locations F ⊆ L and
let [[P]] = (S, s0, R × Act ,Prob[[P]],Price [[P]]).

4.1 Computation of Expected Prices and Optimal Strategies

The first step is the construction of a zone graph G = (Z, E), whose vertices
Z are symbolic states. A symbolic state of P is a location-zone pair (l, ζ) and
represents the set of states {(l, v) | v ∈ R

X ∧ v |= ζ∧inv(l)} of [[P]]. If z = (l, ζ)
and z′ = (l, ζ ′) are symbolic states, then let z∧z′ = (l, ζ∧ζ ′), z ⊆ z′ when ζ ⊆ ζ ′

and z = ∅ if and only if ζ = false. For any symbolic state z = (l, ζ), locations
l′ and l′′, action a and set of clocks R we will use the following time and discrete
predecessor operations:

tpre(z) def= (l, inv(l)∧ ↙ζ)

dpre(l′, a, (R, l′′))(z) def=
{

(l′, false) if l �= l′′

(l′, enab(l′, a) ∧ [R]ζ) otherwise.

As in [25], we use the backwards reachability algorithm of [30] (adding action
labels to the edge tuples) to build a zone graph, shown in Fig. 1.

Given a zone graph G = (Z, E), for any (l, ζ) ∈ Z let E(l, ζ) ⊆ 2E represent the
following sets of edges: E ∈ E(l, ζ) if and only if there exists a ∈ Act such that
edges(l, a) = {(R1, l1), . . . , (Rn, ln)} and:

E = {(z, a, (R1, l1), z1), . . . , (z, a, (Rn, ln), zn)}

for some z1, . . . , zn ∈ Z.
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Fig. 1. Backwards reachability algorithm [30]

After building the zone graph, the next step is to find and restrict [[P]] and
G to include only those states for which the optimal expected price to reach the
target is finite, i.e., states for which the maximum probability of reaching the
target is 1 in the case of minimum expected prices and for which the minimum
probability of reaching the target is 1 in the case of maximum expected prices.

Symbolic (zone-based) algorithms for performing this restriction, which
extend the algorithms developed for MDPs [14,17], can be found in [25]. For
the remainder of the section we suppose that Smin and Smax are the states of
[[P]] for which the minimum and maximum reachability probability is 1, and
[[P]]min and [[P]]max are the sub-MDPs restricted to these sets of states. We will
also assume that Gmin = (Zmin, Emin) and Gmax = (Zmax, Emax) are the restrictions
of the zone graph G = (Z, E) to these sets of states.

It follows that the restricted MDPs [[P]]min and [[P]]max satisfy Assumption 1,
and we can therefore use Theorem 1 in the case of minimum expected pices and
Corollary 1 in the case of maximum expected prices. In particular, we can use
the fact that value iteration for the Bellman operators Tmin

[[P]]min
and Tmax

[[P]]max
(see

Definition 3) for the target set SF converges to the minimum and maximum
expected prices, respectively, when starting from any bounded function.

Next, we present a value iteration method over the restricted zone graphs
Gmin and Gmax, based on the function T opt

Gopt
, which has a direct correspondence

with value iteration over the sub-MDPs [[P]]min and [[P]]max.



298 M. Kwiatkowska et al.

Definition 6. The operator T opt
Gopt

: (Zopt→(Sopt→R))→(Zopt→(Sopt→R)) on
the zone graph Gopt is such that for g : Zopt→(Sopt→R), z = (l, ζ) ∈ Zopt and
s = (l, v) ∈ Sopt where s ∈ tpre(z) we have T opt

Gopt
(g)(z)(s) equals 0 if l ∈ F and

otherwise equals:

opt�

t∈R∧
v+t∈ζ

opt
E∈E(z)

{

priceL(l) · t + priceAct(l, a)

+
∑

(z,a,(R,l′),z′)∈E

prob(l, a)(R, l′) · g(z′)(l′, (v + t)[R])

}

.

for opt ∈ {min,max}, and where min� = inf and max� = sup.

The proof of the following proposition follows directly from the proofs pre-
sented in [25] for optimal expected time computation.

Proposition 1. For opt ∈ {min,max}, if f : Sopt→R and g : Zopt→(Sopt→R)
are functions such that f(s) = g(z)(s) for all s ∈ Sopt and z ∈ Zopt such that
s ∈ tpre(z), then for any s ∈ Sopt and n ∈ N we have:

(T opt
[[P]]opt

)n(f)(s) = opt{ (T opt
Gopt

)n(g)(z)(s) | z ∈ Zopt ∧ s ∈ tpre(z) }.

Consequently, value iteration, using function T opt
Gopt

, converges to the opti-
mal expected reachability price for the original PTA, a result that follows from
Theorem 1, Corollary 1 and Proposition 1. The final step is then to synthesise an
ε-optimal deterministic, memoryless strategy for expected reachability on the
PTA. This can be done by stepping through the backwards graph and selecting
the time-action pairs that achieve the results returned by value iteration in each
state of the zone graph.

Unlike traditional value iteration for MDPs, which iterates over real-valued
vectors over states, the value iteration process for PTAs outlined above uses
state vectors whose values are themselves real-valued functions. In the following
section, we will show how this can be achieved using classes of functions called
rational k-simple functions and rational (r, k)-nice functions.

4.2 Rational Simple Functions and Rational Nice Functions

To simplify the presentation we will assume that X = {x1, . . . , xn} and k ∈ N is
the maximum constant appearing in P. Since P satisfies Assumption 2(a), it is
bounded, and therefore all clock values appearing in [[P]] are bounded by k. We
first define polyhedra with rational time bounds.

Definition 7. A (convex) k-polyhedron C ⊆ {v ∈ R
X | v(x) ≤ k for x ∈ X} is

defined by finitely many linear inequalities; formally, it is of the form:

C =
{
v ∈ R

X | ∑n
i=1 qij · v(xi) ≤ fj for 1 ≤ j ≤ M

}
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where qij , fj ∈ Q and fj ≤ k for all 1 ≤ i ≤ n and 1 ≤ j ≤ M for some M ∈ N.
Furthermore, a k-bipolyhedron is a set of the form {(v, t) | v ∈ C ∧ v + t ∈ D}
where C and D are k-polyhedra.

For the case of expected price reachability computation, [25] introduced the
notions of rational k-simple and k-nice functions to represent the functions
encountered during value iteration.

Definition 8. For zone ζ, a function f : ζ→R is rational k-simple if and only
if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil · v(xi) if v ∈ Dl

where cj , dl, pil ∈ Q+ such that
∑n

i=1 pil ≤ 1 and Cj ,Dl are k-polyhedra for all
1 ≤ i ≤ n, 1 ≤ j ≤ M and 1 ≤ l ≤ N for some M,N ∈ N.
Furthermore, a function f : Z→(S→R) is rational k-simple if the function
f(l, ζ)(l, ·) : ↙ζ→R is rational k-simple for all (l, ζ) ∈ Z.

Definition 9. For a zone ζ, a function g : (ζ × R)→R is rational k-nice if and
only if it can be represented as:

g(v, t) =

{
cj + t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (1 − ∑n

i=1 pil) · t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q+ such that
∑n

i=1 pil ≤ 1 and Fj , Gl are rational k-
bipolyhedra for all 1 ≤ i ≤ n, 1 ≤ j ≤ M and 1 ≤ l ≤ N for some M,N ∈ N.

We now extend these definitions to allow the representation of the value func-
tions encountered when computing optimal expected price reachability using
value iteration and either Tmin

Gmin
or Tmax

Gmax
(see Definition 6). We first extend the

definition of rational k-simple functions and then consider the different oper-
ations performed by Tmin

Gmin
and Tmax

Gmax
and analyse their effect on the extended

definition of rational k-simple functions.

Definition 10. For zone ζ, a function f : ζ→R is rational k-simple if and only
if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil · v(xi) if v ∈ Dl

where cj , dl, pil ∈ Q and Cj ,Dl are k-polyhedra for all 1 ≤ i ≤ n, 1 ≤ j ≤ M
and 1 ≤ l ≤ N for some M,N ∈ N.

Furthermore, a function f : Z→(S→R) is rational k-simple if the function
f(l, ζ)(l, ·) : ↙ζ→R is rational k-simple for all (l, ζ) ∈ Z.
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The above definition extends the k-simple functions of [25] (see Definition 8) by
allowing any linear combination of clock values and allowing negative as well
as non-negative rational constants. The first operation we consider for rational
k-simple functions is the resetting of clocks.

Definition 11. If f : ζ→R is a rational k-simple function and R ⊆ X , let
f [R] : [R]ζ→R be the function where f [R](v) = f(v[R]) for all v ∈ ζ.

The following lemma demonstrates that resetting clocks preserves rational
simplicity.

Lemma 1. If f : ζ→R is rational k-simple and R ⊆ X , then f [R] : [R]ζ→R is
rational k-simple.

Proof. For any k-polyhedron C and R ⊆ X , let [R]C be the k-polyhedron {v ∈
R

X | v[R] ∈ C ∧ v(x) ≤ k for x ∈ X}. Now consider any R ⊆ X and rational
k-simple function f : ζ→R such that for any v ∈ ζ:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil · v(xi) if v ∈ Dl

(1)

where cj , dl, pil ∈ Q and Cj ,Dl are k-polyhedra for all 1 ≤ i ≤ n, 1 ≤ j ≤ M
and 1 ≤ l ≤ N for some M,N ∈ N. By Definition 11, for any v ∈ [R]ζ we have:

f [R](v) = f(v[R])

=

{
cj if v[R] ∈ Cj

dl − ∑n
i=1 pil · v[R](xi) if v[R] ∈ Dl

(by (1))

=

{
cj if v ∈ [R]Cj

dl − ∑n
i=1 pil · v[R](xi) if v ∈ [R]Dl

(by definition of [R]C)

=

{
cj if v ∈ [R]Cj

dl − ∑n
i=1 p′

il · v(xi) if v ∈ [R]Dl

where p′
il = 0 if xi ∈ R and p′

il = pil otherwise. It therefore follows that f [R] is
rational k-simple as required. �

The next operation performed by Tmin
Gmin

and Tmax
Gmax

builds function of the
form v 	→ p · t + p′ + f(l, ζ)(l, v + t). This motivates first demonstrating that
adding constants (corresponding to the accumulation of action prices) preserves
k-simplicity.

Lemma 2. If f : ζ→R is rational k-simple and p′ ∈ Q+, then f + p′ : ζ→R is
also rational k-simple.

Proof. The proof follows from the definition of k-simple functions (see
Definition 10). �
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We now extend rational k-nice functions of [25] (see Definition 9) to (p, k)-nice
functions, where the additional parameter p corresponds to the current rate at
which prices are accumulated as time passes.

Definition 12. For p ∈ Q+ and zone ζ, a function g : (ζ × R)→R is rational
(p, k)-nice if and only if it can be represented as:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q and Fj , Gl are rational k-bipolyhedra for all 1 ≤ i ≤ n, 1 ≤
j ≤ M and 1 ≤ l ≤ N for some M,N ∈ N.

Next we show that rational k-nicety is preserved under taking convex combina-
tions of functions of the form v 	→ p · t + f(l, ζ)(l, v + t).

Lemma 3. A convex combination of rational (p, k)-nice functions is rational
(p, k)-nice.

Proof. It is sufficient to consider a binary convex combination, as any other con-
vex combination can be rewritten as a sequence of binary convex combinations.
Therefore, consider any zone ζ, rationals λ, λ′ ∈ Q+ and rational (p, k)-nice
functions g, g′ : (ζ × R)→R such that λ + λ′ = 1 and for any v ∈ ζ:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

g′(v, t) =

{
c′
j′ + p · t if (v, t) ∈ F ′

j′

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′

where cj , dl, pil, c
′
j′ , d′

l′ , p
′
il′ ∈ Q and Cj ,Dl, C

′
j′ ,D′

l′ are k-polyhedra for all 1 ≤
i ≤ n, 1 ≤ j ≤ M, 1 ≤ l ≤ N, 1 ≤ j′ ≤ M ′ and 1 ≤ l′ ≤ N ′ for some
M,M ′, N,N ′ ∈ N. Let h : (ζ × R)→R be the function such that h(v, t) =
λ · g(v, t) + λ′ · g′(v, t) for all (v, t) ∈ ζ × R. Taking any (v, t) ∈ ζ × R, we have
the following four cases to consider.

– If (v, t) ∈ Fj ∩ F ′
j′ for some j and j′, then

h(v, t) = λ · (cj + p · t) + λ′ · (c′
j′ + p · t) = (λ · cj + λ′ · c′

j′) + p · t

since λ + λ′ = 1.
– If (v, t) ∈ Fj ∩ G′

l′ for some j and l′, then

h(v, t) = λ · (cj + p · t) + λ′ ·
(
d′
l′ −∑n

i=1 p′
il′ · v(xi) + (p −∑n

i=1 p′
il′) · t

)

= (λ · cj + λ′ · d′
l′) −∑n

i=1(λ
′ · p′

il′) · v(xi) +
(
λ · p + λ′ · p −∑n

i=1(λ
′ · p′

il′)
)

· t

(rearranging)
= (λ · cj + λ′ · d′

l′) −∑n
i=1(λ

′ · p′
il′) · v(xi) + (p −∑n

i=1(λ
′ · p′

il′)) · t

since λ + λ′ = 1.
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– If (v, t) ∈ Gl ∩ F ′
j′ for some l and j′, then similarly to the above:

h(v, t) = λ ·
(
dl − ∑n

i=1 pil · v(xi) + (p − ∑n
i=1 pil) · t

)
+ λ′ · (c′

j′ + t)

= (λ · dl + λ′ · c′
j′) − ∑n

i=1(λ · pil) · v(xi) + (p − ∑n
i=1(λ · pil)) · t.

– If (v, t) ∈ Gl ∩ G′
l′ for some l and l′, then using fact λ + λ′ = 1 we have:

h(v, t) = λ ·
(
dl −∑n

i=1 pil · v(xi) +
(
p −∑n

i=1 pil
) · t
)

+λ′ ·
(
d′
l′ −∑n

i=1 p′
il′ · v(xi) +

(
p −∑n

i=1 p′
il′
) · t
)

= (λ · dl + λ′ · d′
l′ ) +

∑n
i=1(λ · pil + λ′ · p′

il′ ) · v(xi) +
(
r −∑n

i=1(λ · pil + λ′ · p′
il′ )
) · t.

As these are all the cases to consider and the intersection of k-polyhedra is a
k-polyhedron, it follows that h is a rational (p, k)-nice function as required. �
After the convex combination, Tmin

Gmin
and Tmax

Gmax
take a minimum or maximum

value respectively, and therefore we show that these operations also preserve
(p, k)-nicety.

Lemma 4. The minimum and maximum of rational (p, k)-nice functions are
rational (p, k)-nice.

Proof. We prove the case for the minimum of rational (p, k)-nice functions; the
case for maximum follows similarly. Given rational (p, k)-nice functions g, g′ :
(ζ × R)→R such that for any (v, t) ∈ ζ × R:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

g′(v, t) =

{
cj′ + p · t if (v, t) ∈ F ′

j′

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′

where cj , dl, pil, c
′
j′ , d′

l′ , p
′
il′ ∈ Q and Cj ,Dl, C

′
j′ ,D′

l′ are k-polyhedra for all 1 ≤
i ≤ n, 1 ≤ j ≤ M, 1 ≤ l ≤ N, 1 ≤ j′ ≤ M ′ and 1 ≤ l′ ≤ N ′ for some
M,M ′N,N ′ ∈ N. Letting h = min{g, g′} and considering h(v, t) for any (v, t) ∈
ζ × R, we have the following four cases to consider.

– If (v, t) ∈ Fj ∩ F ′
j′ for some j and j′, then

h(v, t) =

{
cj + p · t if (v, t) ∈ Fj ∩ H

cj′ + p · t if (v, t) ∈ F ′
j′ ∩ H ′

where H = {(v, t) ∈ ζ × R | cj + p · t ≤ c′
j′ + p · t} = {(v, t) ∈ ζ × R | cj ≤ c′

j′}
and similarly H ′ = {(v, t) ∈ ζ × R | c′

j′ ≤ cj}.
– If (v, t) ∈ Fj ∩ G′

l′ for some j and l′, then

h(v, t) =

{
cj + p · t if (v, t) ∈ Fj ∩ H

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′ ∩ H ′
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where

H = {(v, t) ∈ ζ × R | cj + p · t ≤ d′
l′ −∑n

i=1 p′
il′ · v(xi) +

(
p −∑n

i=1 p′
il′
) · t}

= {(v, t) ∈ ζ × R | ∑n
i=1 p′

il′ · (v(xi) + t) ≤ d′
l′ − cj} (rearranging)

= {(v, t) ∈ ζ × R | ∑n
i=1 p′

il′ · (v + t)(xi) ≤ d′
l′ − cj} (by definition of v + t)

and similarly H ′ = {(v, t) ∈ ζ × R | ∑n
i=1 −p′

il′ · (v + t)(xi) ≤ cj − d′
l′}.

– If (v, t) ∈ Gl ∩ F ′
j′ for some l and j′, then

h(v, t) =

{
dl − ∑n

i=1 pil · v(xi) + (p − ∑n
i=1 pil) · t if (v, t) ∈ Gl ∩ H

cj′ + t if (v, t) ∈ F ′
j′ ∩ H ′

and by a similar reduction to the case above we have:

H = {(v, t) ∈ ζ × R | ∑n
i=1 −pil · (v + t)(xi) ≤ cj′ − dl}

H ′ = {(v, t) ∈ ζ × R | ∑n
i=1 pil · (v + t)(xi) ≤ dl − cj′}.

– If (v, t) ∈ Gl ∩ G′
l′ for some l and l′, then

h(v, t) =

{
dl − ∑n

i=1 pil · v(xi) + (p − ∑n
i=1 pil) · t if (v, t) ∈ Gl ∩ H

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′ ∩ H ′

where

H = {(v, t) ∈ ζ × R | dl −∑n
i=1 pil · v(xi) +

(
p −∑n

i=1 pil

) · t

≤ d′
l′ −∑n

i=1 p′
il′ · v(xi) +

(
p −∑n

i=1 p′
il′
) · t}

= {(v, t) ∈ ζ × R | ∑n
i=1(p

′
il′ − pil) · v(xi) +

∑n
i=1(p

′
il′ − pil) · t ≤ d′

l′ − dl}
(rearranging)

= {(v, t) ∈ ζ × R | −∑n
i=1(p

′
il′ − pil) · (v(xi) + t) ≤ d′

l′ − dl}
(rearranging again)

= {(v, t) ∈ ζ × R | −∑n
i=1(p

′
il′ − pil) · (v + t)(xi) ≤ d′

l′ − dl}

by definition of v + t and similarly we have:

H ′ = {(v, t) ∈ ζ × R | − ∑n
i=1(pil − p′

il′) · (v + t)(xi) ≤ dl − d′
l′}.

Since in each case H and H ′ are k-bipolyhedra, if follows from Definition 12 that
the lemma holds. �
The final operations performed by Tmin

Gmin
and Tmax

Gmax
concern taking the infimum

or supremum over t of a function of the form v 	→ p · t + f(l, ζ)(l, v + t). Hence,
we now show that performing either of these operations on a rational (p, k)-nice
function returns a rational k-simple function.

Lemma 5. For any zone ζ, if g : (ζ × R)→R is rational (p, k)-nice, then the
functions f1 : ζ→R and f2 : ζ→R where f1(v) = inft∈R g(v, t) and f2(v) =
supt∈R

g(v, t) for v ∈ ζ are rational k-simple.
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Proof. We prove the case for f1; the case for f2 follows similarly (swapping Δ−

and Δ+). Consider any zone ζ and rational (p, k)-nice function g : (ζ × R)→R.
By Definition 12, for any (v, t) ∈ ζ × R, we have:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q and

Fj = {(v, t) | v ∈ Cj ∧ v + t ∈ C ′
j} and Gl = {(v, t) | v ∈ Dl ∧ v + t ∈ D′

l}
for some k-polyhedra Cj , C

′
j ,Dl and D′

l for all 1 ≤ i ≤ n, 1 ≤ j ≤ M and
1 ≤ l ≤ N for some M,N ∈ N.

For any k-polyhedron C, let

Δ−(v, C) def= inf{t | v + t ∈ C} and Δ+(v, C) def= sup{t | v + t ∈ C}.

Following the arguments of [4], it follows that the functions Δ−(·, C) : ζ→R and
Δ+(·, C) : ζ→R are both k-simple over k-polyhedra. If f1(v) = inft∈R g(v, t), for
any v ∈ ζ we have f1(v) equals:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cj if v ∈ Cj ∩ C′
j

cj + p · Δ−(v, C′
j) if v ∈ Cj \ C′

j

dl −∑n
i=1 pil · v(xi) if v ∈ Dl ∩ D′

l and p −∑n
i=1 pil ≥ 0

dl −∑n
i=1 pil · v(xi) +

(
p −∑n

i=1 pil
) · Δ−(v, D′

l) if v ∈ Dl \ D′
l and p −∑n

i=1 pil ≥ 0

dl −∑n
i=1 pil · v(xi) +

(
p −∑n

i=1 pil
) · Δ+(v, D′

l) if v ∈ Dl and p −∑n
i=1 pil < 0

In all except the final two cases, since Δ−(·, C) : ζ→R is k-simple, it follows
that f1 is rational k-simple. Considering the penultimate case, by definition of
k-simple functions we have the following two cases to consider.

– if Δ−(v,D′
l) = d′

l for some d′
l ∈ Q+, then for any v ∈ Dl \ D′

l:

f1(v) = dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · Δ−(v,D′
l)

=
(
dl + (p − ∑n

i=1 pil) · d′
l

)
− ∑n

i=1 pil · v(xi) (rearranging)

which is rational k-simple, since g is rational (p, k)-nice.
– if Δ−(v,D′

l) = d′
l − v(xi′

l
) for some d′

l ∈ Q+ and 1 ≤ i′l ≤ n, then for any
v ∈ Dl \ D′

l:

f1(v) = dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · Δ−(v,D′
l)

= dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · (d′
l − v(xi′

l
)) (rearranging)

=
(
dl + (p − ∑n

i=1 pil) · d′
l

)
− ∑n

i=1 p′
il · v(xi)

where p′
il = pil + (p − ∑n

i=1 pil) if i = i′l and p′
il = pil otherwise.

The final case follows similarly to the penultimate using the fact Δ+(v,D′
l) is

a k-simple function. Therefore, we can conclude that f1 is rational k-simple as
required. �
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In the related proof of [25] we see that, for minimum expected time computation,
it is always optimal to let as little time pass as possible in the current polyhedron
and, for maximum expected time computation, it is always optimal to let as much
time pass as possible. However, for prices, we see that this is not always the case,
e.g., Δ+(v, C) is used in the computation of minimum expected prices. This is
due to the fact that price rates in locations reached at a later stage can be higher,
and in such cases it can be optimal to let time pass now and accumulate a lower
price, as opposed to waiting and accumulating a higher price later.

We now combine the above results and show that rational k-simple func-
tions are a suitable representation for value functions when computing optimal
expected time using value iteration and either Tmin

Gmin
or Tmax

Gmax
.

Proposition 2. For opt ∈ {min,max}, if f : Zopt→(Sopt→R) is a rational
k-simple function, then T opt

Gopt
(f) is rational k-simple.

Proof. We only the consider when opt = min, the case when opt = max follows
similarly. Consider any rational k-simple function, z = (l, ζ) ∈ Zmin and E ∈
E(z). For any v ∈ R

X and t ∈ R and letting r = priceL(l) and p′ = priceAct(l, a):

p · t + p′ +
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · f(z(R,l′))(l′, (v + t)[R])

= p · t + p′ +
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · f [R](z(R,l′))(l′, v + t)

(by Definition 11)

=
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · (
p · t + p′ + f [R](z(R,l′))(l′, v + t)

)

(2)

since prob(l, a) is a distribution. By construction, f is rational k-simple, and
hence for any (z, a, (R, l′), z(R,l′)) ∈ E using Lemmas 1 and 2 we have that
p′ + f [R] is also rational k-simple. Using Definition 12 it follows that:

(v, t) 	→ p · t + p′ + f [R](z(R,l′))(l′, v + t)

is rational (p, k)-nice. Thus, since (z, a, (R, l′), z(R,l′)) ∈ E was arbitrary, using
Lemma 3 and (2) we have that:

(v, t) 	→ p · t + p′ +
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · f(z(R,l′))(l′, (v + t)[R])

is also rational (p, k)-nice. Since E ∈ E(z) was arbitrary and E(z) is finite,
Lemma 4 tells us:

(v, t) �→ min
E∈E(z)

{
p · t + p′ +

∑
(z,a,(R,l′),z(R,l′))∈E

prob(l, a)(R, l′) · f(z(R,l′))(l
′, (v + t)[R])

}

is again rational (p, k)-nice. Finally, using Definition 6 and Lemma 5, it follows
that TG(f)(z) is rational k-simple as required. �
Proposition 2 tells us that value iteration over a zone graph to compute expected
prices, as specified in Definition 6, can be performed using rational k-simple
functions (and rational (p, k)-nice functions).
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4.3 Example

Figure 2 shows an example of a linearly-priced PTA. Location prices are indi-
cated next to each location; all action prices are zero so they are omitted from
the figure. For this example, we consider the target set F = {l2} and compute
both the minimum and maximum expected price of reaching F . For this PTA,
all states reach the target with minimum (and maximum) probability 1, and
therefore the zone graphs used for minimum and maximum expected price com-
putation are the same and equal that constructed using the algorithm presented
in Fig. 1. This zone graph is shown in Fig. 3.

In the case of the minimum expected price, performing value iteration over
the zone graph G of Fig. 3 gives, for n≥ 3:

(Tmin
G )n(f0)(z0)(l0, v) =

(
2 + 0.5 ·

(
3 +

∑n−3
i=0 0.25i

))
− v(x)

(Tmin
G )n(f0)(z1)(l1, v) =

{
9 − 3 · v(x) if v(x) ≤ 3
0 if 3 ≤ v(x) ≤ 4

(Tmin
G )n(f0)(z2)(l2, v) =

∑n−2
i=0 0.25i − v(x)

(Tmin
G )n(f0)(z3)(l3, v) = 0

Fig. 2. Example PTA P

Fig. 3. Backwards zone graph G for PTA of Fig. 2 and target set {l3}
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It then follows that the minimum expected price to reach the target from the
initial state equals 4.166667. On the other hand, for the maximum expected
price, performing value iteration yields for n ≥ 3:

(Tmax
G )n(f0)(z0)(l0, v) =

⎧
⎨

⎩

(
1 + 0.5 ·

(
9 +

∑n−3
i=0 0.25i

))
− v(x) if x ≤ 1

0.5 ·
(
12 +

∑n−3
i=0 0.25i

)
− 3 · v(x) if 1 ≤ x ≤ 2

(Tmax
G )n(f0)(z1)(l1, v) = 12 − 3 · v(x)

(Tmax
G )n(f0)(z2)(l2, v) =

∑n−2
i=0 0.25i − v(x)

(Tmax
G )n(f0)(z3)(l3, v) = 0

and hence the maximum expected price for the initial state is 6.166667.
The optimal strategy for the minimum expected price is to always perform

an action as soon as it is enabled. The choices of the optimal strategy for the
maximum expected price are to leave l0 as soon as the action a is enabled, as
this allows it to remain longer in l1, yielding a higher overall expected price.

5 Conclusions

We have extended the techniques of [25] for the symbolic computation of opti-
mal expected time and strategy synthesis to expected prices for linearly-priced
probabilistic timed automata. The approach involves building the backwards
zone graph of the PTA under study and then performing value iteration over
this graph. We have demonstrated that an extension of simple and nice func-
tions over rational valued polyhedra provide an effective representation of the
value functions required for this computation. One restriction that we impose on
the linearly-priced PTAs we consider is that all location prices are positive. We
note that it should be possible to remove this restriction by extending the algo-
rithms of [17] for removing zero-priced end components for finite state MDPs to
linearly-priced PTAs.

As already mentioned in [25], an important next step is to perform a rigorous
investigation into the advantages and disadvantages of our approach in compar-
ison with the digital clocks method [28]. This will require implementing the
algorithms introduced here, for example using the Parma Polyhedra Library [5],
which includes efficient ways of manipulating convex polyhedra and has already
been used effectively to implement a number of real-time verification algorithms.
Finally, we also plan to investigate policy iteration since it converges to optimal
expected prices (see Theorem 1 and Corollary 1).
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