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Kim Guldstrand Larsen



One Step Ahead

It is with pleasure and pride that I congratulate Kim Guldstrand Larsen on his 60th
birthday. I do so with pride because he represents my department and his achievements
shed positive light on us all, and with pleasure because I have benefitted from his
enthusiasm and insight since my own student days. In the early years of our university,
there was a shortage of computer scientists and the concept of bootstrapping was
illustrated in practice by letting the elder students teach the younger ones. This is where
I first benefitted from Kim’s insight and overview. The fundamentals of algorithms and
data structures were described in an abstract, machine-independent language and were
subsequently realized in Pascal. Nowadays this course is considered relatively difficult,
but thanks to Kim it sharpened our interest for the core of our exciting field of science.
Kim was one step ahead: not yet graduated, but already active in teaching the next
generation.

Master level education was underway and our friends in mathematics played an
important role in realizing the new studies. The major in computer science was
introduced in the early 1980s, but Kim had already obtained his master’s degree when
it was formally approved. Hence, I can reveal that Kim is formally not a computer
scientist, but a mathematician. One step ahead.

Computer science was consolidated in Denmark in those years and a number of
Ph.D. stipends were granted to expand the field. It was discussed whether a stay abroad
should be a requirement as part of a Ph.D. study and this is indeed the case today.
I know that Kim approves of this decision, but he did not engage in the local discussion
at the time. He was in Edinburgh doing his doctoral studies — one step ahead.

During the following three decades, the establishment of research activities became
the focus area and, with the emergence of the UPPAAL tool and the formation of the
Center for Embedded Software Systems, Kim became internationally recognized for
useful and influential contributions. Since then, Kim has been heading numerous
national and international projects that have impacted science and society. This is
reflected in substantial recognitions, including two honorary doctorates, the CAV
Award, the Grundfos Prize, and an advanced grant from the European Research
Council. Kim is also Knight of the Order of the Dannebrog and member of national and
international science academies. He is always on the move, always one step ahead.

Dear Kim. We congratulate you and salute you. And, should we lose sight of you,
we know where to look — one step ahead.

May 2017 Kristian G. Olesen
Head of the Dept. of Computer Science, Aalborg University



Preface

Time flows by and many of us often have the feeling that its speed increases with every
passing day. However, it is almost unbelievable that Kim Guldstrand Larsen will turn
60 this year. Indeed, despite the passing of time and his seemingly ever-increasing
number of research projects to manage, research ideas to pursue, students to supervise,
courses to give, invited talks to deliver, grant applications to write, and trips to make,
Kim maintains the youthful enthusiasm, energy, and drive he had when he started as a
young researcher about 30 years ago. Since then, he has built a truly remarkable
research career and has offered a crucial contribution in making the Department of
Computer Science at Aalborg University a very well respected center for research in
concurrency theory, computer-aided verification, and the design and analysis of
embedded software systems amongst others.

During the last three decades, Kim Guldstrand Larsen has made major contributions
across a remarkably wide range of topics, including real-time, concurrent, and prob-
abilistic models of computation, logic in computer science, and model checking. His
work is characterized by a harmonious blend of theory, practice, and concern for
industrial application, and it has been instrumental in making connections between
different research areas and communities. For example, since 1995, he has been one
of the prime movers behind the model-checking tool for real-time systems UPPAAL,
for which he was a co-recipient of the CAV Award in 2013, and co-founder of the
company UP4ALL International.

The influence of his work within the research community is witnessed, for instance,
by the over 22,000 citations to his published papers and his h-index of 71, according to
Google Scholar. Moreover, he was the recipient of the Danish Citation Laureates
Award (Thomson Scientific) as the most cited Danish Computer Scientist in the period
1990–2004. Among his many seminal contributions, we recall the introduction of
Probabilistic Modal Logic (PML) and a simple test language for checking the equiv-
alence of probabilistic transition systems. In the same work from 1989, he contributed
with the notion of probabilistic bisimulation, one of the most influential equivalences
for reasoning about the behavior of probabilistic systems quantitatively. One year
earlier, Kim introduced the very influential notion of modal transition system, a simple,
yet powerful, specification formalism with a clear and elegant operational interpretation
that allows for model refinement. Since its introduction, variations on the model of
modal transition system have played a key rôle in a variety of fields including the study
of interface theories and the synthesis of supervisory controllers. Other very significant
research contributions by Kim include work on local model checking for the modal
l-calculus, compositional verification methodologies, symbolic model checking and,
most recently, statistical model checking. By way of example, we mention the
development of the so-called compositional backward reachability technique for the
algorithmic analysis of models consisting of parallel compositions of hierarchical



finite-state machines, which allowed for the verification of models with up to 1421
concurrent state machines and 10476 states.

The aforementioned contributions would be sufficient for several very successful
research careers. However, most of Kim G. Larsen’s work since 1995 can be related in
some form or other to the development and application of UPPAAL, which is the
foremost tool suite for the verification of real-time systems modeled as networks of
timed automata.

UPPAAL has its roots in a tool originally developed in Uppsala and described in the
conference paper “Automatic Verification of Real-Time Communicating Systems by
Constraint-Solving” co-authored by Wang Yi, Paul Pettersson, and Mads Daniels
(proceedings of FORTE 1994). Since then, UPPAAL has been jointly developed by
Kim G. Larsen’s research group at Aalborg University and by the group led by Wang
Yi at Uppsala University. In this period, UPPAAL has become an industrial-strength
tool for computer-aided verification of computing systems that has been applied to
many case studies by several research groups in academia and industry. The efficiency
of its computational engine has been improved greatly by theoretical and practical
advances relying on highly non-trivial insights. Moreover, the tool now supports the
analysis of quantitative extensions of timed automata, automatic model-based testing of
real-time systems, and the synthesis of controllers in the context of timed games,
amongst other things.

Overall, the UPPAAL tool is a real success story for the research community
working on automated verification of computer systems. Like all long-term research
and tool development efforts, the work on UPPAAL and its applications is due to many
gifted researchers and their students. However, the creativity, vision, originality,
important investment of time and effort, and the enormous drive and enthusiasm of
Kim G. Larsen have played a crucial rôle in this success. Moreover, from the very
beginning of the development of the tool, Kim applied UPPAAL to solve problems of
relevance to industry, thus providing very successful examples of the holy grail for
many computer science researchers, namely, the transfer of research results to industry.
Indeed, UPPAAL has been applied to many industrial case studies. Here we limit
ourselves to mentioning a few high-profile examples and invite the reader to consult the
UPPAAL website for more recent ones.

– In 1996, the tool UPPAAL was used to carry out the automatic analysis of a version
of the Philips Audio Control Protocol with two senders and bus collision handling.
This case study was significantly larger than the real-time/hybrid systems previ-
ously analyzed using automatic tools. As written by Clarke and Wing in their article
“Formal Methods: State of the Art and Future Directions,” this work completed
“the quest of fully automating a human proof that as little as two years ago was
considered far out of reach for algorithmic methods.”

– In breakthrough work from 1997, Havelund, Larsen, and Skou used UPPAAL in
the analysis of a protocol used by Bang & Olufsen to control the transmission of
messages between audio/video components over a single bus. Although the pro-
tocol was known to be faulty, in that messages were lost occasionally, Bang &
Olufsen were unable to detect the error using standard testing approaches. However,
using UPPAAL, a shortest error trace consisting of 1998 basic transition steps was
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automatically generated, and Larsen and his group were able to propose a corrected
version of the protocol. This work is an elegant demonstration of the impact that
UPPAAL has had on practical software development. The effort of modeling this
protocol has, in addition, generated a number of suggestions for enriching the
modeling language supported by UPPAAL. Hence, it is also an excellent example
of the reverse impact.

– UPPAAL has been used to synthesize schedules for the SIDMAR steel production
plant located at Ghent in Belgium and to analyze memory management for radars
developed by Terma.

– In the European project Quasimodo (2008–2011), UPPAAL and its derivatives
were applied to wireless sensor network protocols from Chess IT. Frits Vaan-
drager’s group in Nijmegen discovered subtle timing issues in the MAC-layer
protocols for certain network topologies by model checking with UPPAAL. These
issues could be demonstrated on a real sensor network with the help of UPPAAL’s
automatic test generation tools.

– In the same project, Kim, with Jean-François Raskin et al., applied UPPAAL TiGa
—based on Timed Games— to a plastic injection molding machine from
Hydac GMBH, in order to synthesize a safe, robust, and optimal control for this
hybrid system. They achieved 45% improvement in efficiency compared with a
classic controller and a 33% gain with respect to Hydac’s hand-made controller.

In addition, UPPAAL is being used in the teaching of various courses at several
universities in the world and computer science students become acquainted with the
tool even during their first year of study! For example, Roelof Hamberg and Frits
Vaandrager have used the UPPAAL model checker in an introductory course on
operating systems for first-year computer science students at the Radboud University
Nijmegen. Using UPPAAL, their students have found mistakes in purported solutions
to concurrency-control problems presented by Allen Downey in his popular textbook
The Little Book of Semaphores. Moreover, Luca Aceto and Anna Ingólfsdóttir have
successfully used the tool in a first-year, flipped-teaching course on modeling and
verification at Reykjavik University. We believe that this pedagogical impact of the
tool is important, as the use of UPPAAL may help current and future generations of
computer science students develop an appreciation for computer-aided verification
early on in their career.

The fact that Kim was one of the earliest precursors of Computer Science in
Denmark makes his accomplishments even more impressive and provides yet another
illustration of his quality as a researcher. We consider ourselves lucky to have had the
pleasure to work with him at different stages of our research careers, as have many
of the contributors to this volume. What better way to celebrate Kim’s 60th birthday
than this Festschrift with a large variety of papers dedicated to him and with a two-day
workshop, the KiMfest, featuring a diverse range of speakers, held in Aalborg in his
honor in August 2017.

We thank the authors for their contributions to this Festschrift and also for their help
with the reviewing process. We are also thankful to the other external reviewers. We
are grateful to Jiří Srba for providing us with the picture of Kim at the beginning of this
volume. We also thank Alfred Hofmann for his support and help in producing this
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Festschrift. Rikke W. Uhrenholt deserves our special thanks for helping in the orga-
nization of the KiMfest, the workshop in honor of Kim G. Larsen on the occasion of his
60th birthday. We also acknowledge the support we received from the Department of
Computer Science at Aalborg University and the Technical Faculty of IT and Design.

May 2017 Luca Aceto
Giorgio Bacci

Giovanni Bacci
Anna Ingólfsdóttir

Axel Legay
Radu Mardare
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Information Flow for Timed Automata

Flemming Nielson(B), Hanne Riis Nielson, and Panagiotis Vasilikos

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

{fnie,hrni,panva}@dtu.dk

Abstract. One of the key demands of cyberphysical systems is that
they meet their safety goals. Timed Automata has established itself as
a formalism for modelling and analysing the real-time safety aspects
of cyberphysical systems. Increasingly it is also demanded that cyber-
physical systems meet a number of security goals for confidentiality and
integrity. Information Flow Control is an approach to ensuring that there
are no flows of information that violate the stated security policy.

We develop a language based approach to the modelling and analysis
of timed systems that allows to incorporate considerations of informa-
tion flow control. We define a type system for information flow that
takes account of the non-determinism and clocks of timed systems. The
adequacy of the type system is ensured by means of a non-interference
result.

1 Introduction

Motivation. Embedded systems are key components of cyberphysical systems
and are often subject to stringent safety goals. Among the current approaches to
the modelling and analysis of timed systems, the approach of Timed Automata [3]
stands out as being a very successful approach with well-developed tool support
– in particular the UPPAAL suite [16] of tools.
As cyberphysical systems become increasingly distributed and interconnected
through wireless communication links it becomes even more important to ensure
that they meet suitable security goals. This may involve safeguarding the confi-
dentiality (or privacy) of sensor data or ensuring the integrity (or authenticity)
of control commands; in both cases we need to limit the way information flows
through the program. Information Flow Control [9,17] is a key approach to
ensuring that software systems admit no flow of information that violate the
stated security policy for confidentiality and/or integrity.

Contribution. It is therefore natural to extend the enforcement of safety proper-
ties of Timed Automata with the enforcement of appropriate Information Flow
policies. It is immediate that the treatment of clocks will pose a challenge. It
turns out that the non-determinism inherent in automata poses another chal-
lenge. More fundamentally there is the challenge that Timed Automata is an
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automata based formalism whereas most approaches to Information Flow take a
language based approach by developing type systems for programming languages
or process calculi.

Consequently we take a language based approach to the study of timed sys-
tems. We adapt the Guarded Commands language of Dijkstra [10] to more closely
correspond to the primitives of the Timed Automata formalism – resulting in
the Timed Command language – and we show how to obtain Timed Automata
from programs in Timed Commands. We then develop a type system for enforc-
ing an Information Flow policy on programs in Timed Commands – the main
novelty being our treatment of non-determinism. We demonstrate the adequacy
of the type system by means of a non-interference result [17,18]. Throughout we
demonstrate the development on a simple voting protocol.

Related Work. There are other papers dealing with Information Flow on systems
with a notion of time. Discrete time is considered in [11] that develops a non-
interference property based on bisimulations of processes from a discrete time
process algebra. A somewhat different direction in taken in [2] where a transfor-
mational type system is used to remove discrete timing as a covert channel for
deterministic programs. Our contribution focuses on the challenges of continuous
time and guarded actions of Timed Automata.

Continuous time is considered in [6] and [7] that present a notion of a timed
non-interference for timed automata, while the work of [13] defines a notion of
timed non-interference based on bisimulations for probabilistic timed automata.
Our contribution considers a model closer to the Timed Automata of UPPAAL
[16] and the development of a type system. A somewhat different approach is
taken in [12] that studies the synthesis of controllers. Our key contribution is to
develop a type system that prevents unnecessary label creep (where the boolean
conditions passed exercise information flow to all variables subsequently used)
and that deals with non-determinism, non-termination and continuous real-time.

2 Timed Automata

A Timed Automaton [1,3] TA consists of a set of nodes Q, a set of annotated
edges E, and a labelling function I on nodes. A node q◦ ∈ Q will be the initial
node and a node q• ∈ Q will be the final node; often q• is intended not to be
reachable. The mapping I maps each node in Q to a condition (to be introduced
below) that will be imposed as an invariant at the node; we sometimes write
dom(I) for Q and TA = (E, I) or TA = (E, I, q◦, q•).

The edges are annotated with actions and take the form (qs, g → act: r, qt)
where act is given by

act:: = x :=e | publish e

and qs ∈ Q is the source node and qt ∈ Q is the target node. The action
g → x := e: r consists of a guard g that has to be satisfied in order for the
multiple assignments x :=e to be performed and the clock variables r to be
reset. We shall assume that the sequences x and e of program variables and
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no1 noN

cntNcnt1

count publ

Invariants:
1 tt
2 t ≤ 50
3 t ≤ 30
4 tt

cast: → x1, ..., xN , y1, ..., yN , v1, ..., vN , c:=0: t
count: t = 50 → : t
publ: t = 30 → publish c: t

yesi: t < 50 ∧ xi = 0 → xi, vi:=1, 1:
noi: t < 50 ∧ xi = 0 → xi, vi:=1, 0:
cnti: t < 30 ∧ xi = 1 ∧ yi = 0 → yi, c:=1, c+ vi:

Fig. 1. The timed automaton VP (and the abbreviations used).

expressions, respectively, have the same length and that x does not contain any
repetitions. To cater for special cases we shall allow to omit the assignments
of g → x := e: r when x (and hence e) is empty; also we shall allow to omit
the guard g when it equals tt and to omit the clock resets when r is empty.
The action g → publish e: r is fairly similar, the main difference being that no
assignments are performed – the role of this action will become clear later when
we discuss the security policies.

It has already emerged that we distinguish between (program) variables x
and clock variables (or simply clocks) r. We write R for the set of clocks. The
expressions e, guards g and conditions c are defined as follows using boolean
tests b:

e :: = e1 opa e2 | x | n
b :: = tt | ff | e1 opr e2 | ¬b | b1 ∧ b2
g :: = b | r opc n | (r1 − r2) opc n | g1 ∧ g2
c :: = b | r opd n | (r1 − r2) opd n | c1 ∧ c2

The arithmetic operators opa and the relational operators opr are as usual. For
comparisons of clocks we use the operators opc ∈ {<, ≤, =≥, >} in guards and
the less permissive set of operators opd ∈ {<, ≤, =} in conditions.

Example 1. To illustrate our development we shall consider the voting protocol
given by the timed automaton VP of Fig. 1. The protocol has N voters and three
phases: casting (all edges leading to node number 2), counting (all edges leading
to node number 3) and publishing (the edge leading to node number 4). For the
casting phase a voter can choose to vote either yes (vi = 1) or no (vi = 0), or not
to vote at all; xi indicates whether or not the voter has voted. In the counting
phase the votes are being counted using the variable c; here yi indicates whether
the vote has been counted or not. Finally at the end of the counting phase the
result is published. The clock t bounds the duration of the different phases of
the protocol as expressed by the invariants of the nodes.

To specify the semantics of timed automata let σ be a state mapping vari-
ables to values (which we take to be integers) and let δ be a clock assignment
mapping clocks to non-negative reals. We then have total semantic functions [[·]]
for evaluating the expressions, boolean tests, guards and conditions; the values
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of the expressions and boolean expressions only depend on the states whereas
that of guards and conditions also depend on the clock assignments.
The configurations of the timed automata have the form 〈q, σ, δ〉 and we have
transitions of two forms. Whenever (qs, g → act: r, qt) is in E we have the instant
rule:

〈qs, σ, δ〉 −→ 〈qt, σ
′, δ′〉 if

⎧
⎨

⎩

[[g]](σ, δ) = tt,
σ′ = [[act]]σ, δ′ = δ[r 	→ 0],
[[I(qt)]](σ′, δ′) = tt

Whenever q is in Q we have a delay rule:

〈q, σ, δ〉 −→ 〈q, σ, δ′〉 if
{∃ d > 0 : δ′ = λr. δ(r) + d,

[[I(qs)]](σ, δ′) = tt

The instant rule ensures that the guard is satisfied in the starting configuration
and updates the mappings σ and δ and finally it ensures that the invariant is
satisfied in the resulting configuration. Here the semantics of actions is given by
[[x := e]]σ = σ[x 	→ [[e ]]σ] (using the notation ·[· 	→ ·]) whereas [[publish e]]σ =
σ. The delay rule only modifies the clock assignment with a delay d while ensuring
that the invariant is satisfied in the resulting configuration. Initial configurations
assume that all clocks are initialised to 0 and have the form 〈q◦, σ, λr.0〉 where
[[I(q◦)]](σ, λr.0) = tt.

Trace Behaviour. We do not want to admit Zeno behaviours nor do we want to
admit systems that delay forever. We therefore combine the instant and delay
rules into a joint rule that effectively first performs a number of delay rules
(possibly none) and then an instant rule. So whenever (qs, g → act: r, qt) is in
E we have:

〈qs, σ, δ〉 =⇒ 〈qt, σ
′, δ′〉 if ∃ d ≥ 0 :

⎧
⎨

⎩

[[g]](σ, (δ + d)) = tt,
σ′ = [[act]]σ, δ′ = (δ + d)[r 	→ 0],
[[I(qs)]](σ, δ + d) = tt, [[I(qt)]](σ′, δ′) = tt

where δ + d abbreviates λr. δ(r) + d. Here we use that it suffices to test the
condition at the beginning and at the end of the periods of delay, because a
condition c satisfies that if [[c]](σ, δ) and [[c]](σ, δ + d + d′) for d, d′ ≥ 0 then also
[[c]](σ, δ + d).
We define a trace from 〈qs, σ, δ〉 to qt in a timed automaton TA to have one of
three forms. It may be a finite “successful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 =⇒ · · · =⇒ 〈q′

n, σ′
n, δ′

n〉
such that {n} = {i | q′

i = qt ∧ 0 < i ≤ n}.

in which case at least one step is performed. It may be a finite “unsuccessful”
sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 =⇒ · · · =⇒ 〈q′

n, σ′
n, δ′

n〉
such that 〈q′

n, σ′
n, δ′

n〉 is stuck and qt �∈ {q′
1, · · · , q′

n}
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where 〈q′
n, σ′

n, δ′
n〉 is stuck when there is no joint action starting from 〈q′

n, σ′
n, δ′

n〉.
Finally, it may be an infinite “unsuccessful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 =⇒ · · · =⇒ 〈q′

n, σ′
n, δ′

n〉 =⇒ · · ·
such that qt �∈ {q′

1, · · · , q′
n, · · · }.

We may summarise the trace behaviour [[TA : qs 	→ qt]](σ, δ) of all traces from
〈qs, σ, δ〉 to qt in the timed automaton TA by defining:

[[TA : qs 	→ qt]](σ, δ) =
{(σ′, δ′) | a successful trace from 〈qs, σ, δ〉 to qt in TA ends in 〈qt, σ

′, δ′〉}
∪ {⊥ | there is an unsuccessful trace from 〈qs, σ, δ〉 to qt in TA}

The only behaviour not accounted for by this definition is the potential delay in
qt and the potential joint actions starting from qt.

3 Information Flow

We envisage that there is a security lattice expressing the permissible flows [9].
Formally this is a complete lattice and the permitted flows go in the direction
of the partial order. In our development it will contain just two elements, L (for
low) and H (for high), and we set L � H so that only the flow from H to L is
disallowed. For confidentiality one would take L to mean public and H to mean
private and for integrity one would take L to mean trusted and H to mean
dubious. A more general development might consider a richer security lattice
encompassing the Decentralized Label Model [14].

Example 2. Returning to the voting protocol of Example 1 we shall assume that
the variables xi (indicating whether or not the i’th participant has voted) and
yi (indicating whether or not the vote of the i’th participant has been counted)
are public whereas the variables vi (the actual vote of the i’the participant) and
c (the result of the voting) are private. We shall consider it natural to let the
clock t be public as well.

A security policy is then expressed by a mapping L that assigns an element of the
security lattice to each program variable, clock variable, and node (i.e. program
point). An entity is called high if it is mapped to H by L, and it is said to be
low if it is mapped to L by L.

Example 3. Returning to the voting protocol of Examples 1 and 2 we shall let the
security policy L map the variables xi and yi and the clock t to the low security
level (L), while it maps vi and c to the high security level (H). Furthermore, L
maps all nodes to the low security level (L).

To express adherence to the security policy we use the binary operation �
defined on sets χ and χ′ (of variables, clocks and nodes):

χ � χ′ ⇔ ∀u ∈ χ : ∀u′ ∈ χ′ : L(u) � L(u′)
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This expresses that all the entities of χ may flow into those of χ′; note that if
one of the entities of χ has a high security level then it must be the case that all
the entities of χ′ have high security level.

Information flow control enforces a security policy by imposing constraints
of the form {y} � {x} whenever the value of y may somehow influence (or flow
into) that of x. Traditionally we distinguish between explicit and implicit flows
as explained below.

As an example of an explicit flow consider a simple assignment of the form
x:=e. This gives rise to a condition fv(e) � {x} so as to indicate that the explicit
flow from the variables of e to the variable x must adhere to the security policy: if
e contains a variable with high security level then x also must have high security
level.

For an example of an implicit flow consider a conditional assignment
g → x:=0 where x is assigned the constant value 0 in case g evaluates to true.
This gives rise to a condition fv(g) � {x} so as to indicate that the implicit flow
from the variables of g to the variable x must adhere to the security policy: if g
contains a variable with high security level then x also must have high security
level. (If used indiscriminately this gives rise to label creep where variables tend
to have to be given the high security classification.)

In this paper we develop an approach to ensuring that the security policy is
adhered to by the Timed Automaton of interest. The key idea is to ensure that
{x} � {y} whenever there is an explicit flow of information from x to y (as illus-
trated above) or an implicit flow from x to y; traditionally, implicit flows arise
because of testing guards and conditions, but we shall see that the highly non-
deterministic nature of Timed Automata provide yet another contribution. We
shall say that we prevent information flows from high variables to low variables.

To overcome the vagueness of this explanation we need to define a semantic
condition that encompasses our notion of permissible information flow. We begin
by defining (σ, δ) ≡ (σ′, δ′) to indicate that the two pairs are equal on low
variables and low clocks:

(σ, δ) ≡ (σ′, δ′) iff ∀x : L(x) = L ⇒ σ(x) = σ′(x) ∧
∀r : L(r) = L ⇒ δ(r) = δ′(r)

To cater for the ⊥ behaviour produced by the trace behaviour we shall allow
to write ⊥ ≡ ⊥ and take it for granted that ⊥ �≡ (σ, δ) and (σ, δ) �≡ ⊥. It is
immediate that this definition of ≡ gives rise to an equivalence relation.

We next lift the operation ≡ to work on sets:

Γ ≡ Γ ′ iff ∀γ ∈ Γ : ∃γ′ ∈ Γ ′ : γ ≡ γ′ ∧
∀γ′ ∈ Γ ′ : ∃γ ∈ Γ : γ ≡ γ′

Here γ ranges over pairs (σ, δ) as well as ⊥, and it is immediate that this defin-
ition of ≡ gives rise to an equivalence relation.
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We can now express our semantic condition for when a Timed Automaton TA =
(E, I) satisfies the Information Flow security policy by the condition:

(σ, δ) ≡ (σ′, δ′) ∧ [[I(q◦)]](σ, δ) ∧ [[I(q◦)]](σ′, δ′)
⇓
[[(E, I) : q◦ 	→ q•]](σ, δ) ≡ [[(E, I) : q◦ 	→ q•]](σ′, δ′)

It says that if we consider two initial configurations that only differ on high
variables and clocks then the final configurations are also only allowed to differ
on high variabels and clocks; it is immediate that the final configurations (except
⊥) also satisfy I(q•). In other words, there is no information flow from the initial
values of high variables and clocks to the final values of low variables and clocks.
The fact that the trace behaviour produces a set of configurations means that
we take due care of non-determinism, and the fact that the trace behaviour may
contain ⊥ means that we take due care of non-termination (be it because of
looping or because of getting stuck).

This semantic condition is more involved than in classical papers like [17] due
to the highly non-deterministic nature of Timed Automata. As an example of
the difficulties of treating non-determinism, the previous attempt of [5] is flawed
because a command may terminate as well as loop – this was pointed out in
[17, Sect. 7] which therefore performs a development for deterministic programs
only. For another example, illustrating one of the problems solved by our type
system, consider the program y > 0 → skip [] tt → x := 0 making a non-
deterministic choice between two guarded actions. Writing x �� y to indicate
that y does not depend on x, the type system of [5] allows to establish

�1 {x �� y, y �� x} y > 0 → skip [] tt → x := 0 {y �� x}
which is unsound. To see this note that for σ1 = [y 	→ 1, x 	→ 2] the final values
of x can be 0 and 2, while for σ2 = [y 	→ 0, x 	→ 2], the final value of x can only
be 0.

4 Timed Commands

The semantic condition for Information Flow is undecidable in general. To obtain
a sound and decidable enforcement mechanism, the traditional approach is to
develop a type system for a suitable programming language or process calculus.
To this end we introduce the language TC of Timed Commands. It is strongly
motivated by Dijkstra’s language of Guarded Commands [10] but is designed so
that it combines guards and assignments in the manner of Timed Automata.
The syntax is given by:

TC :: = begin[c◦] C [c•]end
C :: = g → act: r | C1;[c]C2 | doT1 [] · · · [] Tn od [] Tn+1 [] · · · [] Tm

T :: = g → act: r | T ;[c]C

A timed command TC specifies a condition c◦ that must hold initially and a
condition c• that must hold if the command terminates. The command C itself
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can have one of three forms. One possibility is that it is an action of the form
g → act: r. Another possibility is that it is a sequence of commands and then
the condition c must be satisfied when moving from the first command to the
second. The third possibility is that it is a looping construct with a number of
branches T1, · · · , Tn that will loop and a number of branches Tn+1, · · · , Tm that
will terminate the looping behaviour. In case n = 0 and m > 1 we allow to
dispense with the do od. Here T is a special form of command that starts with
an action and potentially is followed by a number of commands. Conditions,
guards and expressions are defined as in Sect. 2.

Example 4. Using the abbreviations of Fig. 1 the voting protocol of Example 1
is given by the following timed command:

begin[tt] cast;[t≤50]

(do yes1 [] . . . [] yesN [] no1 [] . . . [] noN od [] count) ;[t≤30]

(do cnt1 [] . . . [] cntN od [] publ)
[tt]end

The first line performs the initialisation for the casting phase which happens
in the second line; the third line expresses the counting of the votes and their
publication. The timing constraints are expressed in the superscripts.

Transformational Semantics. We shall define the semantics of a timed command
by mapping it into a timed automaton. Consider begin[c◦] C [c•]end and let q◦
and q• be two disctinct nodes; they will be the initial and final node of the
resulting timed automaton and we shall ensure that I(q◦) = c◦ and I(q•) = c•.
Additional nodes will be created during the construction using a judgement of
the form:

�qt
qs C : E, I

�qt
qs

g → act: r : {(qs, g → act: r, qt)}, [ ]

�q
qs

C1 : E1, I1 �qt
q C2 : E2, I2

�qt
qs

C1;
[c]C2 : E1 ∪ E2, I1 ∪ I2 ∪ [q �→ c]

where q is fresh

∧n
i=1 �qs

qs
Ti : Ei, Ii

∧m
i=n+1 �qt

qs
Ti : Ei, Ii

�qt
qs

doT1 [] · · · []Tn od []Tn+1 [] · · · []Tm :
⋃

i Ei,
⋃

i Ii

�q•
q◦ C : E, I

� begin[c◦] C [c•]end : E, I′, q◦, q•
where

{
I′ = I[q◦ �→ c◦; q• �→ c•]
q◦, q• are fresh

Fig. 2. From timed commands to timed automata.
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Here C is a timed command, qs and qt are nodes, E is a set of edges, and the
judgement will introduce additional nodes whose invariants are given by the
labelling function I. This defines a timed automaton with initial node qs, final
node qt, edges E, and labelling function I.

The judgement is specified by the axioms and rules of Fig. 2. In the axiom
we simply create the edge (qs, g → act: r, qt) starting in qs and ending in qt and
indicating the action to be performed; the resulting labelling function is empty
as no new nodes are created in the construct.

In the first rule we create a fresh node q to be used to glue the timed automata
for C1 and C2 together; the node q has the invariant c and is used as target node
for C1 as well as source node for C2. The resulting set of edges is the union of the
two sets; the two branches will create disjoint sets of nodes so the two mappings
I1 and I2 will have disjoint domains and we write union for their combination.

In the rule for the looping construct we achieve the looping of the branches
T1, · · · , Tn by using qs as source as well as target node, whereas for Tn+1, · · · , Tm

we use qt as target node. The overall set of edges are obtained as the union of
the edges Ei and as in the previous case the domains of the mappings Ii will be
disjoint so the mappings are easily combined.

Recall that T is a special form of timed command and hence timed automata
can be constructed using the judgements of Fig. 2. The timed automata con-
structed from T always have exactly one edge leaving the initial node and do
not contain any edge back to the initial node unless the initial and final nodes
coincide. The timed automata constructed from C may have more than one edge
leaving the initial node and may contain edges back to the initial node even when
the initial and final nodes are distinct.

For the overall timed command begin[c◦] C [c•]end we can now obtain a timed
automaton with initial node q◦, final node q•, and edges E, and labelling function
I′ given by the last inference rule of Fig. 2.

Example 5. The transformation applied to the timed command of Example 4
gives rise to the timed automata of Fig. 1.

5 Type System

The information flow type system is specified using judgements of the form

�[qt:ct]
[qs:cs]

C : E, I&χ

This is an extension of the judgements �qt
qs C : E, I of the previous section for

constructing timed automata from commands. The new judgements maintain
information about the invariants cs and ct associated with the nodes qs and qt

and a set χ of latent variables and nodes that influence the termination of the
command; the influence of χ on qt remains to be enforced. The type system is
specified in Fig. 3 and explained below.

Assignment. Consider the first axiom of Fig. 3. The second line of the side condi-
tion expresses all the explicit flows from components of the vector of expressions
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�[qt:ct]
[qs:cs]

g → x := e: r : {(qs, g → x := e: r, qt)}, [ ] &

{qs} ∪ fv(cs ∧ g ∧ ct[e/x][0/r])

if {qs} � {qt,x, r}∧
i fv(ei) � {xi}

fv(cs ∧ g ∧ ct[e/x][0/r]) � {x, r}

�[qt:ct]
[qs:cs]

g → publish e: r : {(qs, g → publish e: r, qt)}, [ ] &

{qs} ∪ fv(cs ∧ g ∧ ct[0/r])

if {qs} � {qt, r}
fv(cs ∧ g ∧ ct[0/r]) � {r}

�[q:c]
[qs:cs]

C1 : E1, I1 &χ1 �[qt:ct]
[q:c] C2 : E2, I2 &χ2

�[qt:ct]
[qs:cs]

C1;
[c]C2 : E1 ∪ E2, I1 ∪ I2 ∪ [q �→ c] &χ2

if q is fresh
fv(c) ∪ {q} � R ∪ {q}
χ1 � {q}

∧n
i=1 �[qs:cs]

[qs:cs]
Ti : Ei, Ii &χi

∧m
i=n+1 �[qt:ct]

[qs:cs]
Ti : Ei, Ii &χi

�[qt:ct]
[qs:cs]

doT1 [] · · · []Tn od []Tn+1 [] · · · []Tm :
⋃

i Ei,
⋃

i Ii & {qt}
if {qs} � {qt}∧n

i=1 χi � {qs}
ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ct
qs:cs

] ⇒ ∧m
i=n+1 χi � {qt}∧

i,j|i�=j,sat(fst
ζi
cs (Ti)∧fst

ζj
cs (Tj))

χi � ass(Tj)

where ζl is cs if l ≤ n and ζl is ct if l > n∧m
i=n+1 (∀r ∈ fv(fstct

cs
(Ti)) ∩ R : L(r) = L ∧∧m

j=n+1 fstct
cs
(Ti) ⇔ fstct

cs
(Tj)

)

�[q•:c•]
[q◦:c◦] C : E, I&χ

� begin[c◦] C [c•]end : E, I′, q◦, q•
where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I′ = I[q◦ �→ c◦; q• �→ c•]
fv(c◦) ∪ {q◦} � R ∪ {q◦}
fv(c•) ∪ {q•} � R ∪ {q•}
χ � {q•}
L(q•) = L
q◦, q• are fresh

Fig. 3. Type system for timed commands.

to corresponding components of the vector of variables. The first line of the side
condition expresses that the modifications of variables and clocks as well as the
termination relies on having started the action. The third line of the side con-
dition expresses our knowledge that cs holds and the implict flows arising from
testing the guard g in the pre-state and the condition ct in the post-state before
performing the modifications of variables and clocks. (We are using the insight
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from Hoare logic [4] that evaluating ct in the post-state is the same as evaluating
ct[e/x ][0/r ] in the pre-state.) Rather than also expressing the implicit flow for
termination (in the form of a side condition fv(cs ∧ g ∧ ct[e/x ][0/r ]) � {qt})
we produce the latent set of variables and nodes {qs}∪ fv(cs ∧ g ∧ ct[e/x ][0/r ])
as listed after the ampersand in the axiom. (We shall see the flexibiliity offered
by this approach shortly.)

Example 6. Consider the action cnti of Fig. 1. It will be the case that qs = qt = 3
and cs = ct = t ≤ 30. The type system imposes the following constraints on the
flows:

{3} � {3, yi, c}, { } � {yi}, {c, vi} � {c}, {t, xi, yi} � {yi, c}
It is easy to check that they are fulfilled for the security assignment of Example 3.
The latent set of variables is {3, t, xi, yi}.

Publish. The second axiom of Fig. 3 is a simplification of the first axiom in
that the values computed are “published” but not recorded in the state. (The
main purpose of this rule is to “bypass” the security policy in that we allow the
publication of expressions even when they contain high variables.)

Example 7. For the action publ of Fig. 1 we have qs = 3, qt = 4, cs = t ≤ 30
and ct = tt. The type system impose the contraints {3} � {4, t} and {t} � {t}
which clearly hold with the security assignment of Example 3.

Sequence. The first inference rule of Fig. 3 deals with the sequential composition
of two commands. The second line of the side condition expresses the explicit
flow possible due to the delay at the node q separating the two commands; here
R is the set of all clock variables and it is included to mimick the effect of the
potential delay. The third line of the side condition takes care of imposing the
latent effect of the first command on the node q following immediately after it.

Example 8. Let us consider the sequencing construct ;[t≤30] between the two
loops of the command of Example 4. The latent set of variables from the first
loop will simply be {3} and the two constraints will amount to {t, 3} � {t, 3}
and {3} � {3} which are satisfied for the security assignment of Example 3.

Auxiliary Operations. Before approaching the last inference rule in Fig. 3 we
shall introduce three auxiliary operations.

The auxiliary operation ass(C) overapproximates the set of variables and
clocks modified by the command (ignoring any initial and final delays):

ass(g → x :=e: r) = {x, r}
ass(g → publish e: r) = {r}

ass(C1;[c]C2) = ass(C1) ∪ ass(C2) ∪ R

ass(
(
doT1 [] · · · [] Tn od
[] Tn+1 [] · · · [] Tm

)

) =
{

ass(T1) ∪ · · · ∪ ass(Tm) ∪ R if n > 0
ass(T1) ∪ · · · ∪ ass(Tm) if n = 0

where R is the set of all clocks and it is included to mimick the effect of the
potential (internal) delays of the loop.
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Fact 1. If �qt
qs C : E, I and if (σ′, δ′) ∈ [[(E, I[qs 	→ cs][qt 	→ ct] : qs 	→ qt]](σ, δ)

then ∃d ≥ 0 : {x | σ(x) �= σ′(x)} ∪ {r | δ(r) + d �= δ′(r)} ⊆ ass(C), where d
corresponds to the initial delay.

The auxiliary operation fstctcs(T ) determines the initial guard and the condi-
tion immediately following it (in the manner of the rule for assignment):

fstctcs(g → x := e: r) = cs ∧ g ∧ ct[e/x ][0/r ]
fstctcs(g → publish e: r) = cs ∧ g ∧ ct[0/r ]

fstctcs(T ;[c]C) = fstccs(T )

The inclusion of cs is so as to get the strongest information for use in the rule
for the looping construct in Fig. 3.

We shall need the auxiliary predicate ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs ] that must be true

whenever it is possible that the construct doT1 [] · · · [] Tn od [] Tn+1 [] · · · [] Tm

does not terminate from a state satisfying cs; we return to this below.

Looping. We can now explain the inference rule in Fig. 3 for looping. The first
line in the side condition expresses that the termination relies on having started
the action as we saw in the axiom for assignment. The second line in the side
condition takes care of imposing the latent effect χi of the looping commands
on the loop header qs.

The third line in the side condition takes care of imposing the latent effect of
the terminating commands on the final node qt. However, by using the predicate
ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs ] we allow to dispense with imposing this latent effect in case

termination of the looping construct is guaranteed. As an example this means
that the type system will allow the following Timed Command

(
(h = 0 → h:=h: ) [] (h �= 0 → h:=h: )

)
;[tt]tt → l:=l:

that would otherwise be disallowed (assuming that h is a high variable and l is
a low variable). Indeed it is in order to accomodate this kind of behaviour that
the type system makes use of latent variables and nodes. This is essential for
preventing unnecessary label creep where programs operating on high data too
often end up in a high control point.

Using the notation of Fig. 3 we can now clarify our demands on the auxiliary
notation ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs ] used in the third line:

⊥ ∈ ⋃
(σ,δ)|[[cs]](σ,δ)[[(∪iEi,∪iIi[qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ, δ)

⇓
ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs ]

The subscript (σ, δ) | [[cs]](σ, δ) is intended to let (σ, δ) range over all possibilities
that satisfy [[cs]](σ, δ). Note that we do not require to capture non-termination
precisely but will allow any over-approximation.

Before explaining the fourth line in the side condition it is helpful to establish
the following property of the type system as stated in Fig. 3.
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Lemma 1. If �[qt:ct]
[qs:cs]

C : E, I&χ then we have that {qs} � ass(C) ∪ {qt} and
∀χ′ : (χ � χ′) ⇒ ({qs} � χ′).

If �[qt:ct]
[qs:cs]

T : E, I&χ then ∀χ′ : (χ � χ′) ⇒ ({qs} ∪ fv(fstctcs(T )) � χ′) and
{qs} ∪ fv(fstctcs(T )) � ass(T ), and {qs} � {qt}.
(Note that the lack of reflexivity of � means that we need to write slightly
complex formulae like ∀χ′ : (χ � χ′) ⇒ ((· · · ) � χ′) because the formula
((· · · ) � χ is in general incorrect.)

Proof. We prove the first statement by induction on �[qt:ct]
[qs:cs]

C : E, I&χ using
that � is transitive.

We prove the second statement by induction on �[qt:ct]
[qs:cs]

T : E, I&χ. It is imme-
diate for the two axioms for actions because {qs}∪fv(fstctcs(T )) = χ. In the rule for
composition for T ;[c]C observe that {qs} ∪ fv(fstctcs(T ;[c]C)) = {qs} ∪ fv(fstccs(T ))
and that the induction hypothesis gives that {qs} ∪ fv(fstccs(T )) � {q} because
χ1 � {q}. We have {qs} ∪ fv(fstccs(T )) � ass(T ) from the induction hypothesis,
{q} � R from the rule, and {q} � ass(C) from the previous result, and then
get {qs} ∪ fv(fstctcs(T ;[c]C)) � ass(T ;[c]C). Next suppose χ = χ2 � χ′; from the
previous result we have {q} � χ′ and hence {qs} ∪ fv(fstctcs(T ;[c]C)) � χ′.

This lemma shows that we have already taken care of the so-called block
labels of [9] and thereby take care of the implicit flows due to testing guards
and conditions in the manner of [17]. However, the language considered in [17] is
deterministic and the presence of non-determinism in Timed Commands poses
a complication as illustrated by the following command:

tt → l:=0: ;[tt]
(
(h = 0 → h:=h: ) [] (tt → l:=1: )

)

Here the final value of l will be 1 if h �= 0, but the final value of l may be either
0 or 1 if h = 0. This presents a violation of our semantic conditions for adherence
to the Information Flow security policy.

The purpose of the fourth line in the side condition is to take care of this
possibility and this is a novel contribution with respect to [5,9,17] as discussed
in Sect. 3. The notation sat(· · · ) is intended to express the satisfiability of the · · ·
formula. We are considering all terminating branches in the looping construct
and whenever there are two branches that are not mutually exclusive (that is,
where sat(fstζics(Ti) ∧ fstζjcs(Tj))) we make sure to record the information flow
arising from bypassing the branch that would otherwise perform an assignment.
This is essential for dealing with non-determinism and non-termination.

Before explaining the fifth condition let us consider the following command
operating on a low clock l and a high clock h:

tt → : l;[tt]
(
do od [] h ≥ 100 → :

)

Here we have that (σ, δ[h 	→ 110]) ≡ (σ, δ[h 	→ 90]) but running the command
from (σ, δ[h 	→ 110]) might produce (σ, δ[h 	→ 110]) ifself whereas running the
command from (σ, δ[h 	→ 90]) can only produce (σ, (δ[h 	→ 90]) + d) for d ≥ 10
in which case (σ, δ[h 	→ 110]) �≡ (σ, (δ[h 	→ 90]) + d).
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The purpose of the fifth line in the side condition is to take care of this
possibility by enforcing that the terminating branches only test on low clocks
and that the conditions on clocks are the same. To this end we define g as follows

b = tt
r opc n = r opc n

(r1 − r2) opc n = (r1 − r2) opc n
g1 ∧ g2 = g1 ∧ g2

and we write g ⇔ g′ to express the equivalence of the guards g and g′. This is
essential for the type system to deal correctly with the continuous clocks.

Example 9. Returning to Example 4 let us consider the looping command of
the third line. Using the latent set of variables from Example 6 we obtain the
following constraints from the first two lines of the condition:

{3} � {4}, {3, t, x1, . . . , xN , y1, . . . , yN} � {3}

We have no contribution from the third side condition of the rule since termi-
nation of the loop is guaranteed. From the fourth side condition we get

⋃

i�=j

{3, t, xi, yi} � {yj , c}

and from the fifth line we get L(t) = L. It is easy to check that the above
conditions are fulfilled with the security assignment of Example 3.

Timed Commands. Consider the last inference rule in Fig. 3. The first and last
lines of the side condition are as in Fig. 2. The second and third lines of the side
condition express the explicit flow possible due to the delay at the node q◦ and
q• and is analogous to our treatment of sequencing. The fourth line of the side
condition takes care of imposing the latent effect of the command on the final
node qt and is analogous to our treatment of sequencing. The fifth line will allow
us to invoke Theorem 1 of the next section.

6 Adequacy

To prove the adequacy of the type system we shall establish some terminology.
A function like [[TA : qs 	→ qt]] mapping a pair of state and clock assignment to
a set of pairs of states and clock assignments and possibly the symbol ⊥ will be
called a semantic function. Whenever F is a semantic function we define

F |= cs 	→ ct iff ∀(σ, δ), (σ′, δ′) : (σ, δ) ≡cs (σ′, δ′)
⇓
F (σ, δ) ≡ct F (σ′, δ′)
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where (using ≡ as defined in Sect. 3)

(σ, δ) ≡c (σ′, δ′) abbreviates (σ, δ) ≡ (σ′, δ′) ∧ [[c]](σ, δ) ∧ [[c]](σ′, δ′)
Γ ≡c Γ ′ abbreviates Γ ≡ Γ ′ ∧

∀(σ, δ) ∈ Γ : [[c]](σ, δ) ∧ ∀(σ′, δ′) ∈ Γ ′ : [[c]](σ′, δ′)

The semantic condition for when a Timed Automaton TA = (E, I, q◦, q•) satisfies
the Information Flow security policy discussed in Sect. 3 then amounts to [[(E, I) :
q◦ 	→ q•]] |= I(q◦) 	→ I(q•). Finally, let us define the composition of two semantic
functions F1 and F2 as follows:

F1 � F2 = λ(σ0, δ0). (F1(σ0, δ0) ∩ {⊥}) ∪⋃
(σ1,δ1)∈F (σ0,δ0)\{⊥} F2(σ1, δ1)

Fact 2. If F1 |= c0 	→ c1 and F2 |= c1 	→ c2 then F1 � F2 |= c0 	→ c2.

We are then ready to state a non-interference result in the manner of [18]:

Theorem 1 (Adequacy of Commands). If �[qt:ct]
[qs:cs]

C : E, I&χ and χ � {qt}
and L(qt) = L and fv(cs) � {qs} then we have [[(E, I[qs 	→ cs][qt 	→ ct]) : qs 	→
qt]] |= cs 	→ ct.

Proof. We proceed by induction on �[qt:ct]
[qs:cs]

C : E, I&χ.

Case: Assignment. Assume that (σ0, δ0) ≡cs (σ′
0, δ

′
0) and that

γ ∈ [[({(qs, g → x := e: r, qt)}), [qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ0, δ0)

In case γ = (σ1, δ1) it follows that there exists d ≥ 0 such that σ1 = [[x :=e]]σ0

and δ1 = (δ0+d)[r 	→ 0 ], and such that [[g]](σ0, (δ0+d)) = tt, [[cs]](σ0, δ0+d) = tt
and [[ct]](σ1, δ1) = tt. Defining γ′ = (σ′

1, δ
′
1) = ([[x :=e]]σ′

0, (δ
′
0 + d)[r 	→ 0 ])

ensures that [[g]](σ′
0, (δ

′
0 + d)) = tt, [[cs]](σ′

0, δ
′
0 + d) = tt and [[ct]](σ′

1, δ
′
1) = tt

because all variables and clocks tested are low and hence

γ ≡ct γ′ ∈ [[({(qs, g → x := e: r, qt)}), [qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ′
0, δ

′
0)

In case γ = ⊥ it follows that there is no value of d ≥ 0 such that [[g]](σ0, (δ0+d)) =
tt, [[cs]](σ0, δ0 + d) = tt and [[ct]](σ1, δ1) = tt. Then there also is no value of d ≥ 0
such that [[g]](σ′

0, (δ
′
0 +d)) = tt, [[cs]](σ′

0, δ
′
0 +d) = tt and [[ct]](σ′

1, δ
′
1) = tt because

all variables and clocks tested are low and hence setting γ′ = ⊥ establishes that

γ ≡ γ′ ∈ [[({(qs, g → x :=e: r, qt)}), [qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ′
0, δ

′
0)

The other direction is similar and this completes the assignment case.

Case: Publish. This case is analogous to the case for assignment.

Case: Sequence. We shall write

F = [[(E1 ∪ E2, I1 ∪ I2[qs 	→ cs][q 	→ c][qt 	→ ct]) : qs 	→ qt]]
F1 = [[(E1, I1[qs 	→ cs][q 	→ c]) : qs 	→ q]]
F2 = [[(E2, I2[q 	→ c][qt 	→ ct]) : q 	→ qt]]
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and observe that F = F1�F2. The result then follows from the induction hypothe-
ses and Fact 2.

Case: Looping. We shall write

F = [[(
⋃

i Ei,
⋃

i Ii[qs 	→ cs][qt 	→ ct]) : qs 	→ qt]]

Fi =
{

[[(Ei, Ii[qs 	→ cs]) : qs 	→ qs]] whenever i ≤ n
[[(Ei, Ii[qs 	→ cs][qt 	→ ct]) : qs 	→ qt]] whenever i > n

and this gives rise to the equation

F = (
n⋃

i=1

Fi � F ) ∪
m⋃

i=n+1

Fi

We shall consider two subcases, one where the condition ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs ] is true

and one where it is false.

Subcase: Looping when ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs ] is true. In this case (using the notation

of Fig. 3) all the variables and clocks in
⋃m

i=1 fv(fstcics(Ti)) are low. Assume that
(σ0, δ0) ≡cs (σ′

0, δ
′
0) and that γ ∈ F (σ0, δ0). This must be because of a trace as

considered in Sect. 2.

If this trace visits qs infinitely often we will be able to construct a sequence
k1, k2, · · · , ki, · · · such that each ki ≤ n and

∀i > 0 : (σi, δi) ∈ Fki
(σi−1, δi−1)

and γ = ⊥. By the induction hypothesis we can find (σ′
i, δ

′
i) such that

∀i > 0 : (σi, δi) ≡cs (σ′
i, δ

′
i) ∈ Fki

(σ′
i−1, δ

′
i−1)

and this establishes that ⊥ ∈ F (σ′
0, δ

′
0).

If the trace visits qs only finitely often we will be able to construct a sequence
k1, k2, · · · , kj such that ∀i < j : ki ≤ n and kj ≤ m and

∀i ∈ {1, · · · , j − 1} : (σi, δi) ∈ Fki
(σi−1, δi−1)

γ ∈ Fkj
(σj−1, δj−1)

By the induction hypothesis we can find (σ′
i, δ

′
i) and γ′ such that

∀i ∈ {1, · · · , j − 1} : (σi, δi) ≡cs (σ′
i, δ

′
i) ∈ Fki

(σ′
i−1, δ

′
i−1)

γ ≡ γ′ ∈ Fkj
(σ′

j−1, δ
′
j−1)

and this establishes that γ′ ∈ F (σ′
0, δ

′
0).

The other direction is similar and this completes the subcase.

Subcase: Looping when ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs ] is false. In this case all the variables

and clocks in
⋃n+1

i=1 fv(fstcics(Ti)) are low but this is not necessarily the case for
those in

⋃m
i=n+1 fv(fstcics(Ti)); however, we do know that [[cs]](σ, δ) ⇒ ⊥ �∈ F (σ, δ).
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Assume that (σ0, δ0) ≡cs (σ′
0, δ

′
0) and that γ ∈ F (σ0, δ0). The assumptions of

the subcase ensure that γ �= ⊥.
We will be able to construct a sequence k1, k2, · · · , kj such that ∀i < j : ki ≤

n and kj > n and

∀i ∈ {1, · · · , j − 1} : (σi, δi) ∈ Fki
(σi−1, δi−1)

γ ∈ Fkj
(σj−1, δj−1)

By the induction hypothesis we can find (σ′
i, δ

′
i) such that

∀i ∈ {1, · · · , j − 1} : (σi, δi) ≡cs (σ′
i, δ

′
i) ∈ Fki

(σ′
i−1, δ

′
i−1)

There are now two scenarios for how to proceed.

Subcase scenario where all variables and clocks in fv(fstctcs(Tkj
)) are low. In this

case we can find γ′ ∈ Fkj
(σ′

j−1, δ
′
j−1) such that γ ≡ γ′.

Subcase scenario where at least one variable or clock in fv(fstctcs(Tkj
)) is high.

Then ass(Tkj
) cannot contain any low variable or clock and hence there is d ≥ 0

such that γ ≡ (σj−1, δj−1 +d) where the addition of d takes care of the potential
delay in qs. Next we use that ⊥ �∈ F (σ′

j−1, δ
′
j−1) to obtain k′

j , σ
′
j , δ

′
j such that

(σ′
j , δ

′
j) ∈ Fk′

j
(σ′

j−1, δ
′
j−1).

It cannot be the case that k′
j ≤ n. To see this, assume by way of contradiction

that k′
j ≤ n. Then (σj−1, δj−1) would be a witness for sat(fstctcs(Tkj

)∧ fstcscs(Tk′
j
))

ensuring that fstctcs(Tkj
) � ass(Tk′

j
) so that ass(Tk′

j
) could not contain a low

variable or clock. It would follow that there would be d′ ≥ 0 such that (σ′
j , δ

′
j) ≡cs

(σj−1, δj−1 + d′) where the addition of d′ is due to the possibility of delay in qs.
But then we would be able to construct an infinite sequence (σ′

l, δ
′
l) for l > j

such that (σ′
l, δ

′
l) ∈ Fk′

j
(σ′

l−1, δ
′
l−1) and (σ′

l, δ
′
l) ≡cs (σ′

j−1, δ
′
j−1 + d′ would hold

for l ≥ j. But this would contradict the fact that ⊥ �∈ F (σ′
j , δ

′
j).

We are left with the case where k′
j > n. We must have that ass(Tk′

j
) cannot

contain any low variable or clock: either one variable or clock in fstctcs(Tk′
j
) is high

and it follows as in a case above, or all variables and clocks in fstctcs(Tk′
j
) are low

and it follows because (σj−1, δj−1 +d) is a witness for sat(fstctcs(Tkj
)∧ fstcscs(Tk′

j
))

and we could proceed as in a case above. Hence (σ′
j , δ

′
j) = (σ′

j−1, δ
′
j−1 + d′) for

some d′ ≥ 0.
It remains to show that d′ can be chosen to be d. For this we use that all

clocks in fstctcs(Tkj
) and fstcscs(Tk′

j
) are low and that fstctcs(Tkj

) = fstcscs(Tk′
j
).

The other direction is similar and this completes the subcase.

We can now establish our main result that the type system enforces a suffi-
cient condition for the absence of information flows violating the security policy.

Corollary 1 (Adequacy). If � begin[c◦] C [c•]end : E, I, q◦, q• then we have
that [[(E, I) : q◦ 	→ q•]] |= I(q◦) 	→ I(q•).
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7 Conclusion

We have shown how to successfully merge Timed Automata with Information
Flow and Language Based Security through the introduction of the Timed Com-
mands language patterned after Dijkstra’s Guarded Commands. This has facil-
itated developing a type system that prevents unnecessary label creep and that
deals with non-determinism, non-termination and continuous real-time. The
type system has been proved adequate by means of a non-interference result
(with observable non-determinism).

We are exploring how to automate the analysis and in particular how to
implement (a sound approximation of) the ΦT1,··· ,Tn

Tn+1,··· ,Tm
predicate indicating the

lack of termination of the looping construct. One possible way, is to use exist-
ing methodologies that deal with time-lock (deadlock) freedom checks for timed
automata. The check of the predicate ΦT1,··· ,Tn

Tn+1,··· ,Tm
then amounts to check for

time-lock freedom (infinite loops) or time-locks that do not occur at the final
nodes (stack configurations) of the particular loop construct that the ΦT1,··· ,Tn

Tn+1,··· ,Tm

predicate refers too. The work of [8] presents a tool which is used in the con-
juction with UPPAAL and is able to detect possible sources of deadlocks in
timed-automata.

We are considering how to deal with more concepts from Timed Automata as
for example urgents actions. Our treatment of publish e could be extended to a
more general treatment of declassification and endorsement as permitted in the
Decentralized Label Model [14]; our flow based security condition should suffice
for expressing semantic correctness. To strengthen the security policies that can
be expressed we are contemplating incorporating the content-dependent policies
of [15].

A longer term goal is to allow policies to simultaneously dealing with safety
and security properties of cyberphysical systems.
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Abstract. We derive a Nivat theorem for weighted unranked tree
automata which states that their behaviors are exactly the functions
which can be constructed from recognizable unranked tree languages
and behaviors of very simple weighted unranked tree automata by
using operations like relabelings and intersections. Thereby we prove the
robustness of the weighted unranked tree automata model introduced
recently. Moreover, we derive a similar theorem for weighted ranked tree
automata. The characterizations work for valuation monoids as weight
structures; they include all semirings, bounded lattices, and computa-
tions of averages of weights.

Keywords: Weighted tree automata · Nivat classes · Valuation
monoids · Nivat theorem

1 Introduction

In 1967, Thatcher [32] investigated the theory of finite pseudoterms (nowadays
known as unranked trees) and pseudoautomata (or unranked tree automata). In
contrast to ranked trees (see [9,22,23] for surveys), for unranked trees the number
of children of a node is not determined by the label of that node. Since then,
due to the development of the modern document language XML and the fact
that (fully structured) XML-documents can be formalized as unranked trees, the
theory of unranked tree automata and unranked tree languages has developed
intensively, cf. e.g. [2,7,28–30,32] and Chap. 8 of [9].

Classical unranked tree automata (amongst others) provide the opportunity
to cope with qualitative questions, like reachability. More recently, also quanti-
tative aspects gained much attention in automata theory. For instance, weighted
real-time automata were investigated in [27], weighted modal systems in [4], and
axiomatizations of weighted transition systems in [25]. For ranked trees, weighted
automata were introduced in [1,6]; for surveys we refer to [13,21]. Weighted
automata for unranked trees over semirings were investigated in [20,26].
A weighted unranked tree automata model over tree valuation monoids was intro-
duced in [12]. Tree valuation monoids provide a very general weight structure
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including all semirings, bounded (possibly non-distributive) lattices, and in addi-
tion, computations of averages or discounting of weights.

Nivat-type results provide a close relationship between weighted and
unweighted automata models. In 1968, Nivat [31] (see also [5], Theorem 4.1)
proved the fundamental theorem which characterizes rational transductions, and
thereby established a connection between rational transductions and rational
languages. Droste and Kuske [14] extended Nivat’s theorem to weighted word
automata over semirings. They showed that recognizable word series are exactly
those which can be constructed from recognizable languages and very particular
recognizable series using operations like morphisms and intersections. Recently,
other extensions followed. Nivat theorems were given in [17,18] for weighted
timed automata and weighted timed pushdown automata over timed valuation
monoids and thereby implicitly also for weighted word automata over valuation
monoids, in [3] for weighted picture automata over picture valuation monoids,
in [10] for weighted graph automata over semirings, and in [33,34] for proba-
bilistic automata on finite and infinite words and ranked trees, respectively.

The goal of this paper is such a Nivat result for weighted unranked tree
automata over tree valuation monoids. Such automata consist of a state set and
a family of weighted word automata. The latter are used to calculate the local
weight at a position of a tree by letting the weighted word automaton run on
states at the children of the position. To define the behavior, we use extended
runs which were already introduced in [20]. Additionally to the information of
classical runs, extended runs also include runs of the weighted word automata
called at positions of the input tree. Then the local weight of a position equals
the weight of the transition taken for this position in the run of the position’s
parent. We use the valuation function of the tree valuation monoid to calculate
the weights of an extended run in a global way, i.e. given a run we apply the
valuation function to all local weights which appear along the extended run.
We obtain the weight of the tree as the sum of the weights of all its extended
runs. In [12] it was shown that this model of weighted unranked tree automata
is expressively equivalent to a suitable weighted MSO logic for unranked trees.

The main result of this paper gives a Nivat-type result for weighted unranked
tree automata. We show that the behaviors of weighted unranked tree automata
are exactly the functions which can be constructed from recognizable tree lan-
guages and behaviors of very simple weighted unranked tree automata by using
operations like relabelings and intersections. Indeed, it even suffices to take func-
tions mapping tree labels to tree valuation monoid elements instead of the very
simple weighted unranked tree automata. It is clear that these functions define
simple, recognizable tree series. Together with the results of [12], our present
main result shows that the weighted unranked tree automata model of [12] is
robust. In comparison to the proofs of the Nivat theorem for words (cf. [14]),
for unranked trees technical difficulties arise from the technically more complex
extended runs. Moreover, we also give a Nivat theorem for weighted ranked tree
automata over tree valuation monoids.
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2 Preliminaries

Let N = {1, 2, . . .} be the set of all natural numbers and N0 = N∪{0}. For a set
H, we denote by |H| the cardinality of H and by H∗ the set of all finite words over
H. The empty word is denoted by ε. For sets H1, . . . , Hn and x ∈ H1 × . . .×Hn,
xi equals the i-th component of x.

2.1 Trees and Tree Valuation Monoids

A tree domain is a finite, non-empty subset B of N∗ such that for all u ∈ N∗ and
i ∈ N, if u.i ∈ B, then u, u.1, . . . , u.(i − 1) ∈ B. An unranked tree over a set H
(of labels) is a mapping t : B → H such that dom(t) = B is a tree domain. The
set of all unranked trees over H is denoted by UH . For every h ∈ H, we denote
also by h the particular tree defined by t : {ε} → H and t(ε) = h. Let t ∈ UH .
The elements of dom(t) are called positions of t. Let u ∈ dom(t). We call t(u) the
label of t at u. The rank rkt(u) of u is defined to be max{i ∈ N | u.i ∈ dom(t)}.
If rkt(u) = 0, then u is also called a leaf of t. We denote by leaf(t) the set of all
leaves of t.

A tree valuation monoid (tv-monoid for short) [11,15] is a quadruple
(D,+,Val,0) such that (D,+,0) is a commutative monoid and Val : UD → D
is a function, called (tree) valuation function, which satisfies that Val(d) = d for
every tree d ∈ D, and Val(t) = 0 for every t ∈ UD with 0 ∈ im(t).

Example 1. Qmax = (Q ∪ {−∞},max, avg,−∞) with avg(t) =
∑

u∈dom(t) t(u)

| dom(t)| for
all t ∈ UQ∪{−∞} is a tv-monoid. The valuation function of this tv-monoid cal-
culates the average of all weights of a tree. The idea for the average calculation
was already suggested in [8,16] for words and in [11] for trees.

2.2 Weighted Unranked Tree Automata

Here we recall the definition of the class of recognizable tree series which were
introduced in connection with restricted weighted MSO logics, cf. [12]. Since
weighted unranked tree automata use weighted word automata we first recall
the definition of weighted word automata over tree valuation monoids.

Let D be a tv-momoid and Σ an alphabet, i.e. a non-empty, finite set.
A weighted word automaton over Σ and D is a quadruple A = (P, I, μ, F ) where
P is a non-empty, finite set of states, I, F ⊆ P are the sets of initial and final
states, respectively, and μ : P × Σ × P → D . A run of A on w = w1 . . . wn with
w1, . . . , wn ∈ Σ and n ≥ 0 is a sequence π = (pi−1, wi, pi)1≤i≤n if n > 0, and
a state π = p0 if n = 0 where p0, . . . , pn ∈ P . The run π is successful if p0 ∈ I
and pn ∈ F . In order to define the weight wt(π) of π using a tree valuation
function Val, we define a tree tπ by letting dom(tπ) = {1i | 0 ≤ i < n} and
tπ(1i) = μ(pi−1, wi, pi) (0 ≤ i < n) if n > 0, and tπ(ε) = 0 if n = 0. Then
let wt(π) = Val(tπ). The behavior of A is the function ‖A‖ : Σ∗ → D with
‖A‖(w) =

∑
π successful run on w wt(π) for w ∈ Σ∗.
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A weighted unranked tree automaton (WUTA for short) over Σ and D is a
triple M = (Q,A, γ) where Q is a non-empty, finite set of states, A = (Aq,a |
q ∈ Q, a ∈ Σ) is a family of weighted word automata over Q as alphabet and
D , and γ : Q → D is a root weight function. Let Aq,a = (Pq,a, Iq,a, μq,a, Fq,a) for
all q ∈ Q, a ∈ Σ. We assume the sets Pq,a to be pairwise disjoint and let PA =⋃

q∈Q,a∈Σ Pq,a. Moreover, let μA be the union of the transition functions μq,a.
Intuitively, an extended run assigns a state q ∈ Q to each position u of a

given tree t ∈ UΣ and then consists of one run of Aq,t(u) on q1 . . . qrkt(u) where
qi is the state assigned to the i-th child of u. Formally, an extended run of M
on a tree t is a triple (q, s, l) such that

– q ∈ Q is the root state;
– s : dom(t) \ {ε} → PA × Q × PA is a function such that s(1) . . . s(rkt(ε))

is a run of Aq,t(ε) and s(u.1) . . . s(u. rkt(u)) is a run of As(u)2,t(u) for every
u ∈ dom(t) \ (leaf(t) ∪ {ε});

– l : leaf(t) → PA is a function satisfying l(ε) ∈ Pq,t(ε) if t only consists of the
root, and if u 
= ε is a leaf, then l(u) ∈ Ps(u)2,t(u).

An extended run (q, s, l) is successful if s(u.1) . . . s(u. rkt(u)) is successful for
all u ∈ dom(t) \ leaf(t) and if l(u) is successful for all u ∈ leaf(t) (i.e., l(u) is an
initial and final state of As(u)2,t(u) if u 
= ε respectively of Aq,t(ε) if u = ε). We
let succ(M, t) denote the set of all successful extended runs of M on t.

We will define the local weight of a position u by the weight of the transition
taken for u in the run of the parent of u. This gives a tree μ(t, (q, s, l)) ∈ UD

of weights with the same domain as t; then we apply Val to obtain the weight
of the run (q, s, l) on t. Formally, we define a tree μ(t, (q, s, l)) ∈ UD where
dom(μ(t, (q, s, l))) = dom(t) and

μ(t, (q, s, l))(u) =

{
γ(q) if u = ε,

μA(s(u)) otherwise

for all u ∈ dom(t). We call μ(t, (q, s, l))(u) the local weight of u. Then
Val(μ(t, (q, s, l))) is the weight of (q, s, l) on t. The behavior of a WUTA M
is the function ‖M‖ : UΣ → D defined by

‖M‖(t) =
∑

(q,s,l)∈succ(M,t)

Val(μ(t, (q, s, l)))

for all t ∈ UΣ . If no successful extended run on t exists, we put ‖M‖(t) = 0.
Any mapping from UΣ to D is called an (unranked) tree series. A tree series

S : UΣ → D is called recognizable over D if there is a WUTA M over Σ and D
with ‖M‖ = S.

Remark: Every unranked tree automaton M (see [32] for a definition of unranked
tree automata) over an alphabet Σ can be seen as a weighted unranked
tree automaton over Σ and the boolean semiring B = ({0, 1},∧,∨, 0, 1). Let
M = (Q,A, γ) be an unranked tree automaton. In the following, we identify
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the weight functions γ and μq,a (q ∈ Q, a ∈ Σ) with their support sets. The
language of M is defined as follows. We say that M recognizes t ∈ UΣ if there
is a function r : dom(t) → Q (which we call successful run) with r(ε) ∈ γ and
such that there is a successful run of Ar(u),t(u) on r(u.1) . . . r(u. rk(t(u))) with
wt(r(u.1) . . . r(u. rk(t(u)))) = 1 for all u ∈ dom(t). The tree language recognized
by M is defined by L(M) = {t ∈ UΣ | M recognizes t}. A tree language L ⊆ UΣ

is recognizable if there is a unranked tree automaton M with L(M) = L. Note
that this behavior definition is expressively equivalent to the earlier extended
run behavior over the boolean semiring, nevertheless, we later use this behavior
definition to avoid the syntactically more complex extended runs.

Example 2. Let Qmax be the tv-monoid from Example 1 and Σ be an arbitrary,
but fixed alphabet. In [12], a WUTA M which calculates the leaves-to-size ratio
of a given input tree were given. The size of a tree is the number of all positions
of the tree. For sake of completeness we include the definition of M and some
considerations concerning M’s behavior here. Let M = ({c, n},A, γ) over Σ
with γ(c) = 1, γ(n) = 0, and

– An,a = ({i, f}, {i}, μn,a, {f}) where μn,a(i, n, f) = μn,a(f, n, f) = 0,
μn,a(i, c, f) = μn,a(f, c, f) = 1 and μn,a(f, q, i) = μn,a(i, q, i) = −∞

– Ac,a = ({p}, {p}, μc,a, {p}) where μc,a(p, q, p) = −∞
for all q ∈ {c, n} and a ∈ Σ; for notational convenience, here we have dropped
the condition on pairwise disjointness of the state sets. The sub-automata An,a

and Ac,a depicted in Fig. 1 for some a ∈ Σ.
First, let us consider an example tree. For this, we choose Σ = {α, β} and

the tree
tex = α

α β

β

.

An,a : i f
0, n | 1, c

0, n | 1, c

An,a : p

Fig. 1. Sub-automata of the example WUTA M. Here, incoming arrows symbolize
that a state is initial whereas a double border indicates that a state is final. An edge
from one state p1 to another state p2 (p1 and p2 can be the same state) labeled with
a, d stands for the transition (p1, a, p2) with weight d. Transitions with weight −∞ are
omitted.
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Then (n, s, l) with s =

(i, c, f) (f, n, f)

(i, c, f)

and l=

p

p

is an extended run on tex. Note that the domain of s excludes ε. therefore,
above, the position ε is unlabeled for s. Similarly, the function l has leaves of tex
as domain; therefore, above, the positions ε and 1 are unlabeled for l.

Obviously (n, s, l) is successful, since the runs s(1)s(2) = (i, c, f)(f, n, f) and
s(2.1) = (i, c, f) are successful in An,α and An,β , respectively, and the run p is
successful in Ac,α as well as in Ac,β . The local weights of (n, s, l) are

μ(tex, (n, s, l)) = γ(n)

μA(i, c, f)μA(f, n, f)

μA(i, c, f)

= 0

1 0

1

and thus the weight of (n, s, l) equals 1
2 .

Now let t be an arbitrary, but fixed tree. It is easy to see that for every
successful extended run (q, s, l) on t, l(u) = p for every leaf u of t. Assume that
in addition (q, s, l) assigns the state n to each inner position of t. Let πu be the
unique run of An,t(u) for which tπu

has no label equal to −∞, thus, πu leads
directly from i to f and finally loops in f . If (q, s, l) consists for every inner
position u 
= ε of πu, then (q, s, l) is the only successful extended run such that
μ(t, (q, s, l)) does not contain −∞. Let π denote this unique extended run. For
leaves u of t, μ(t, π)(u) = 1 and for inner positions u′, μ(t, π)(u′) = 0. Thus,

‖M‖(t) = avg(μ(t, π)) =

∑
u∈dom(t) μ(t, π)(u)

|dom(t)| =
“number of leaves of t”

“size of t”
.

We will recall some properties of recognizable unranked tree series. Let L ⊆
UΣ and S : UΣ → D . We define the restriction of S on L by the tree series
S ∩L : UΣ → D by letting (S ∩L)(t) = S(t) if t ∈ L and (S ∩L)(t) = 0 if t /∈ L.

Proposition 3 [12, Lemma 3.4(2)]. Let D be a tv-monoid, L ⊆ UΣ and
S : UΣ → D be recognizable. Then S ∩ L is also recognizable.

Now we consider the closure under relabeling, similarly to [16,19]. Let Σ and Γ
be two alphabets and h : Σ → 2Γ be a mapping. Then h can be extended to a
mapping h′ : UΣ → 2UΓ by letting h′(t) be the set of all unranked trees t′ over Γ
such that dom(t′) = dom(t) and t′(w) ∈ h(t(w)) for each position w ∈ dom(t).
For every S : UΣ → D the tree series h′′(S) : UΓ → D is defined by

h′′(S)(t′) =
∑

t∈UΣ ∧ t′∈h′(t)

S(t)
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for all t′ ∈ UΓ . Clearly, the index set of the summation is finite. We denote h′

and h′′ also by h which we call a relabeling.

Proposition 4 [12, Lemma 3.6]. Recognizable tree series are closed under rela-
beling.

3 Nivat-Classes for Unranked Trees

Here we will define the set of all tree series which can be constructed from
recognizable tree languages and behaviors of very simple weighted unranked
tree automata by using operations like relabelings and intersections. Inspired by
Weidner [35], we will call this set Nivat-class for unranked trees.

For the rest of this section let D = (D,+,Val,0) be a tv-monoid, Γ be
an alphabet and g : Γ → D be a function. The function g later assigns labels
to valuation monoid elements. The extension g′ : UΓ → UD of g is defined by
g′(t)(u) = g(t(u)) for all t ∈ O(Γ ) and u ∈ dom(t). In the following we denote
g′ also by g. Then Val ◦ g assigns to each tree t ∈ UΓ the weight Val(g(t)).

Definition 5. Let Σ be an alphabet, D be a tv-monoid. The Nivat-class ND (UΣ)
for unranked trees consists of all S : UΣ → D for which there are:

– an alphabet Γ ,
– a recognizable tree language L ⊆ UΓ ,
– a relabeling h : Γ → Σ,
– a function g : Γ → D

such that
S = h((Val ◦ g) ∩ L).

Example 6. Let Qmax be the tv-monoid of Example 1 and Σ be an arbitrary,
but fixed alphabet. We will show that the tree series defined by the WUTA
in Example 2, which calculates the leaves-to-size ratio of trees, is in NQmax(UΣ).
For this, let

– Γ = Σ × {leaf,noleaf},
– L = {t ∈ UΓ | ∀u ∈ dom(t) \ leaf(t) : t(u)2 = noleaf

∧∀u ∈ leaf(t) : t(u)2 = leaf},
– h(a) = a1 for all a ∈ Γ ,
– g(a, leaf) = 1 and g(a,noleaf) = 0 for all a ∈ Σ.

It is easy to check that L is indeed recognizable and that

h((Val ◦ g) ∩ L)(t) =
“number of leaves of t”

“size of t”

for all t ∈ UΣ .

Our main result will show that the Nivat-class for unranked trees and the set
of all recognizable tree series are the same. For the proof of the inclusion of the
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Nivat-class in the set of all recognizable tree series we first prove that Val(g) is
recognizable by an especially simple weighted tree automaton M. In particular,
we can choose M with state set Γ and A = (Aq,a | q ∈ Γ, a ∈ Γ ) where Aq,a has
only one state.

Lemma 7. Let Γ be an alphabet, D = (D,+,Val,0) be a tv-monoid, and
g : Γ → D. Then Val ◦ g is recognizable.

Proof. We will build a WUTA M which recognizes Val ◦ g. Basically, M will
have exactly one successful extended run per input tree t ∈ UΓ . The local weight
of this extended run at a position u shall be g(t(u)). For this we set the state
set of M to Γ and let the root weight of state a ∈ Γ be g(a). Moreover, each
subautomaton Aa,a (a ∈ Γ ) of M has only one state q which is initial and final
(so that there is only one successful run), and each transition of Aa,a labeled with
b ∈ Γ has weight g(b) (this generates the local weight which we would like to
produce). All other subautomata do not produce any successful run. The latter
secures that one only gets a successful extended run if for a-labeled positions
Aa,a is called. Formally, let M = (Γ,A, γ) with γ(a) = g(a) for all a ∈ Γ and
A = (Aq,a | q ∈ Γ, a ∈ Γ ) with Aa,a = ({q}, {q}, μa,a, {q}) with μa,a(b) = g(b)
for all b ∈ Γ and Ac,a = ({q}, {q},0, ∅) for all a, c ∈ Γ with a 
= c where 0
denotes a function which maps all triples to 0.

Using the intuition behind M given above, one can easily check that
‖M‖(t) = Val(g(t)) for all t ∈ UΓ . ��

Now we prove our main theorem.

Theorem 8. Let Σ be an alphabet, D be a tv-monoid, and S : UΣ → D a tree
series. Then S is recognizable iff S ∈ ND (UΣ).

Proof. We start with the proof of the “if”-implication. For this, let Γ be an
alphabet, L ⊆ UΓ a recognizable tree language, h : Γ → Σ a relabeling, and
g : Γ → D a function such that S = h((Val ◦ g) ∩ L). By Lemma 7, Val ◦ g is
recognizable, and thus, by Proposition 3, also (Val ◦ g)∩L is recognizable. Hence
by Proposition 4, S = h((Val ◦ g) ∩ L) is recognizable.

For the converse, let S be recognizable and M = (Q,A, γ) be a WUTA with
‖M‖ = S. Moreover let Aq,a = (Pq,a, Iq,a, μq,a, Fq,a) for all q ∈ Q, a ∈ Σ. We
assume the sets Pq,a to be pairwise disjoint and let PA =

⋃
q∈Q,a∈Σ Pq,a. Let μA

be the union of the transition functions μq,a.
We will simulate the behavior of M by appropriately chosen Γ , L, h, and

g. The main idea for the choice of Γ , L, h, and g is that L will be the set of
successful extended runs of M, g will determine the local weights of the extended
runs in L, the valuation function Val will calculate the weights of the extended
runs, and h will be a projection of the extended runs on their related trees (this
results in the “sum over all trees” since h is a relabeling). Since L shall be a
set of trees over an alphabet Γ , we have to encode (successful) extended runs
by trees. As indicated in Example 2, each component q, s, and l, respectively,
of an extended run (q, s, l) on a tree t can be viewed as a tree with possibly
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unlabeled positions over the tree domain dom(t). Then q has labels in Γ1 = Q, s
in Γ2 = PA × Q × PA, and l in PA whereby the root is the only labeled position
in q and the only unlabeled position in s, respectively, and in l only leaves are
labeled. We combine these three trees to one tree via building tuples from the
labels of q, s, and l. The resulting tree then has labels in Γ1 ∪ Γ2 ∪ Γ3 where
Γ3 = ((PA × Q × PA) × PA). Thus we set Γ = (Γ1 ∪ Γ2 ∪ Γ3) × Σ. We built the
Cartesian product with Σ, so that later h can extract the related tree. Let t ∈ UΣ ,
(q, s, l) an extended run on t, and τ a tree over Γ . We say that τ encodes the pair
((q, s, l), t) if dom(t) = dom(τ) and τ(ε) = (q, t(ε)), τ(u) = (s(u), t(u)) for all
u ∈ dom(t)\({ε}∪ leaf(t)), and τ(u) = ((s(u), l(u)), t(u)) for all u ∈ leaf(t)\{ε}.
From now on we identify a pair ((q, s, l), t) and its encoding τ ∈ UΓ .

Now we can define Γ , L, h, and g:

– Γ = (Γ1 ∪ Γ2 ∪ Γ3) × Σ
– L = {((q, s, l), t) ∈ UΓ | (q, s, l) ∈ succ(M, t)}
– h(q′, a) = a

– g(q′, a) =

{
γ(a) if q′ ∈ Γ1

μ(p1, q, p2) if q′ = (p1, q, p2) ∈ Γ2 or q′ = ((p1, q, p2), p) ∈ Γ3

for a ∈ Σ and (q′, a) ∈ Γ .
We show that L is actually recognizable. For this, we construct an unranked

tree automaton Mruns = (Qruns, A, γruns) which has only τ as successful run on
an input tree τ = ((q, s, l), t) ∈ UΓ iff (q, s, l) is a successful extended run of
M on t. Thus, the state set Qruns of Mruns will be Γ and only subautomata
Aα,α (α ∈ Γ ) actually accept a non-empty language. The subautomaton Aα,α of
Mruns will be a version of the subautomaton Aq,a (where q is the Q-component
and a is the Σ-component, respectively, of α) of M without weights. Hence

– τ(1) . . . τ(rkτ (ε)) ∈ L(δ(τ(ε), τ(ε))) iff s(1) . . . s(rkt(u)) is a successful run in
Aq,t(ε),

– τ(u.1) . . . τ(u. rkτ (u)) ∈ L(δ(τ(u), τ(u))) iff s(u.1) . . . s(u. rkt(u)) is a success-
ful run in As(u)2,t(u) for all u ∈ dom(t) \ ({ε} ∪ leaf(t)),

– ε ∈ L(δ(τ(u), τ(u))) iff l(u) is a successful run in As(u)2,t(u) for all leaves u

for all trees τ = ((q, s, l), t) ∈ UΓ . To guarantee that trees accepted by Mruns

have their root label in Γ1 × Σ, we let Γ1 × Σ be the set of final states γruns of
Mruns. Moreover, subautomata associated to a state in Γ2×Σ will not accept the
empty word, hence, Mruns does not allow runs where states in Γ2 × Σ occur at
leaf positions. Leaf positions shall be labeled with states in Γ3 × Σ. We achieve
this by letting Aα,α for α ∈ Γ3 ×Σ be a word automaton which at most accepts
the empty word.

Formally, let Mruns = (Γ,A,Q × Σ) with

– Aα,α = (Pq,a, Iq,a, μq,a, Fq,a) for α = (q, a) ∈ (Γ1 × Σ) where Pq,a, Iq,a, Fq,a

are as in Aq,a and

μq,a = {(p1, (p1, q′, p2), p2) | p1, p2 ∈ Pq,a, q′ ∈ Q}
∪ {(p1, ((p1, q′, p2), p), p2) | p1, p2, p ∈ Pq,a, q′ ∈ Q}



A Nivat Theorem for Quantitative Automata on Unranked Trees 31

– Aα,α = (Pq,a ∪ Iq,a, Iq,a, μ′
q,a, Fq,a) for α = ((p′

1, q, p
′
2), a) ∈ (Γ2 × Σ) where

Pq,a, Iq,a, Fq,a are as in Aq,a, Iq,a is a disjoint copy of Iq,a, and

μ′
q,a = Tq,a ∪ {(i1, (i, q′, p2), p2) | i ∈ Iq,a, p2 ∈ Pq,a, q′ ∈ Q}

∪ {(i, ((i, q′, p2), p), p2) | i ∈ Iq,,a, p2, p ∈ Pq,a, q′ ∈ Q}
with

μq,a = {(p1, (p1, q′, p2), p2) | p1, p2 ∈ Pq,a, q′ ∈ Q}
∪ {(p1, ((p1, q′, p2), p), p2) | p1, p2, p ∈ Pq,a, q′ ∈ Q}

– Aα,α = ({pα}, {pα}, ∅, {pα}) for α = (((p′
1, q, p

′
2), p

′), a) ∈ (Γ3 × Σ) with
p′ ∈ Iq,a ∩ Fq,a and Aα,α = ({pα}, {pα}, ∅, ∅) for α = (((p′

1, q, p
′
2), p

′), a) with
p′ /∈ Iq,a ∩ Fq,a

– Aα,β = ({p}, {p}, ∅, ∅)

for α, β ∈ Γ and α 
= β. One can easily prove that L(Mruns) = L.
Now let t ∈ UΣ . Then

h((Val ◦ g) ∩ L)(t) =
∑

τ∈UΓ ∧t∈h(τ)

((Val ◦ g) ∩ L)(τ)

=
∑

τ=((q,s,l),t)∧(q,s,l)∈succ(M,t)

Val(g(τ))

=
∑

τ=((q,s,l),t)∧(q,s,l)∈succ(M,t)

Val(μ(t, (s, q, l)))

=
∑

(q,s,l)∈succ(M,t)

Val(μ(t, (s, q, l)))

= ‖M‖(t) .

��

4 The Ranked Tree Case

In this section we will show a version of Theorem 8 for ranked trees. For this,
we briefly recall the definitions of ranked alphabets, ranked trees and weighted
ranked tree automata over tv-monoids as well as some considerations on the
relationship between weighted ranked tree automata and weighted unranked
tree automata.

A ranked alphabet is a pair (Σ, rkΣ), where Σ is an alphabet and rkΣ : Σ →
N0 is a mapping which assigns to each symbol of Σ its rank. We denote by
Σ(k) the set of all symbols which have rank k and by a(k) that a is in Σ(k).
Usually we drop rkΣ and denote a ranked alphabet simply by Σ. In this paper
we assume that Σ(0) 
= ∅. We define maxΣ = max{rkΣ(σ) | σ ∈ Σ}. A ranked
tree over a ranked alphabet Σ is an unranked tree over the set Σ such that for
all u ∈ dom(t), rkt(u) = k whenever t(u) ∈ Σ(k). We denote the set of all ranked
trees over Σ by TΣ .
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Let Σ be a ranked alphabet and (D,+,Val,0) a tv-monoid. A weighted ranked
tree automaton (WRTA for short) over Σ and D is a triple M = (Q,μ, F ) where
Q is a non-empty finite set of states, μ = (μm)0≤m≤maxΣ

is a family of transition
mappings μm : Qm × Σ(m) × Q → D, and F ⊆ Q is a set of final states.

A run r of M on a tree t ∈ TΣ is a mapping r : dom(t) → Q. Since the
domain of a run is a tree domain, each run r on t defines a tree μ(t, r) ∈ TD

where dom(μ(t, r)) = dom(t) and μ(t, r)(u) = μm(r(u.1) . . . r(u.m), t(u), r(u))
with t(u) ∈ Σ(m) for all u ∈ dom(t). We call r on t successful if r(ε) ∈ F . The
behavior of a WRTA M is the function ‖M‖ : TΣ → D defined by

‖M‖(t) =
∑(

Val(μ(t, r)) | r is successful run of M on t
)

for all t ∈ TΣ . If no successful run on t exists, we put ‖M‖(t) = 0.
A ranked tree series is a mapping S : TΣ → D . A tree series S is called

recognizable if S = ‖M‖ for some WRTA M. As is well-known, a ranked tree
automaton (cf. [9]) can be seen as a weighted ranked tree automaton over the
boolean semiring, and conversely.

In passing, we note the following result. It shows that on ranked trees WRTA
and WUTA have the same expressive power.

Proposition 9 [24, Lemma 3.10 and Lemma 3.11]. Let Σ be a ranked alpha-
bet.

1. For every WRTA N over Σ there exists a WUTA M such that ‖M‖(t) =
‖N‖(t) for all t ∈ TΣ and ‖M‖(t) = 0 for all t ∈ UΣ \ TΣ.

2. For every WUTA M over Σ there exists a WRTA N such that ‖N‖(t) =
‖M‖(t) for all t ∈ TΣ.

Now we define a Nivat-class for ranked trees. For this, we define for all L ⊆ TΣ

and S : TΣ → D the restriction of S on L analogously to the respective definition
of the restriction of a tree series and an unranked tree language. Moreover,
let Σ and Γ be two ranked alphabets and h : Σ → 2Γ be a mapping with
rkΓ (b) = rkΣ(a) for all b ∈ h(a). We extend h to a mapping h′ from ranked trees
over Σ to the power set of ranked trees over Γ , and afterwards to a mapping
h′′ from ranked tree series over Σ and D to ranked tree series over Γ and D
analogously as we did in the unranked tree case. Again, we denote h′ and h′′

also by h which we call a relabeling. Let Γ be a ranked alphabet, g : Γ → D be
a function, and the extension g′ : UΓ → UD of g be defined by g′(t)(u) = g(t(u))
for all t ∈ TΓ and u ∈ dom(t). In the following we denote g′ also by g.

Definition 10. The Nivat-class ND (TΣ) for ranked trees consists of all
S : TΣ → D for which there are:

– an alphabet Γ ,
– a recognizable ranked tree language L ⊆ TΓ ,
– a relabeling h : Γ → Σ,
– a function g : Γ → D

such that
S = h((Val ◦ g) ∩ L) .
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Example 11. Let Σ be a ranked alphabet. We will show that also the ranked
tree series which calculates the leaves-to-size ratio of trees is in NQmax(TΣ). We
let Γ = Σ, L = TΓ , h(a) = a for all a ∈ Γ , and g(a(0)) = 1 and g(a(k)) = 0 for
all a ∈ Σ and k > 0. Obviously L is recognizable and h((Val ◦ g) ∩ L) calculates
the leaves-to-size ratio of ranked trees. A WRTA that recognizes h((Val ◦ g)∩L)
was given in [11].

Next we prove a Nivat theorem for ranked trees.

Theorem 12. Let Σ be a ranked alphabet, D a tv-monoid, and S : TΣ → D a
tree series. Then S is recognizable iff S ∈ ND (TΣ).

Proof. Let Γ be an alphabet, L ⊆ TΓ a recognizable ranked tree language,
h : Γ → Σ a relabeling, and g : Γ → D a function such that S = h((Val ◦ g)∩L).
As is easy to see, Val ◦ g is accepted by a one state automaton M. Indeed,
M = ({q}, μ, {q}) with μm(q . . . q, a, q) = g(a) for all a ∈ Γ (m) and m ∈ N.
By the versions of Proposition 3 and Proposition 4 for ranked trees (cf. [11]),
(Val ◦ g) ∩ L is recognizable, and thus, S = h((Val ◦ g) ∩ L) is recognizable.

For the converse implication, let S = ‖M‖ for some WRTA M = (Q,μ, F ).
Then let

– Γ =
⋃

0≤m≤maxΣ
Qm × Σ(m) × Q with rk(q1 . . . qm, a, q) = rk(a) for all

q1, . . . , qm, q ∈ Q, a ∈ Σ(m) be the set of all transitions of M,
– L = {t ∈ TΓ | ∀u ∈ dom(t) with t(u) ∈ Γ (m) : t(u.i)3 = (t(u)1)i for all 1 ≤

i ≤ m and t(ε)3 ∈ F} describing the set of all successful runs of M,
– h((q1, . . . , qm), a, q) = a,
– g((q1, . . . , qm), a, q) = μm(q1 . . . qm, a, q)

for all q1, . . . , qm, q ∈ Q, a ∈ Σ(m). One can check that L is recognizable and
h((Val ◦ g) ∩ L) = S. ��

Conclusion

We proved two Nivat theorems for weighted unranked tree automata and for
weighted ranked tree automata over tree valuation monoids.

In [17,33,34], the Nivat theorem was used to show the expressive equivalence
of a suitable MSO logic and the respective automata model. We think that,
similarly, Theorem 8 could be used to derive an alternative proof to the one in [12]
showing that the weighted MSO logic defined there and weighted unranked tree
automata over tree valuation monoids are expressively equivalent.
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2. Brüggemann-Klein, A., Wood, D.: Regular Tree Languages Over Non-Ranked
Alphabets (1998)



34 M. Droste and D. Götze

3. Babari, P., Droste, M.: A Nivat theorem for weighted picture automata and
weighted MSO logic. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2015. LNCS, vol. 8977, pp. 703–715. Springer, Cham (2015). doi:10.
1007/978-3-319-15579-1 55

4. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.R.:
Weighted modal transition systems. Form. Methods Syst. Des. 42(2), 193–220
(2013)

5. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher:
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7. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets: version 1. Technical report HKUST-TCSC-
2001-0, The Honkong University of Sience and Technologie (2001)

8. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kamin-
ski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87531-4 28

9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
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Abstract. We survey the specification formalism of modal transition
systems (MTS). We discuss various extensions of MTS, their relation-
ships and modelling capabilities. The extensions include more involved
modalities, quantitative aspects, or infinite state spaces. Further, we dis-
cuss problems arising in verification and analysis of these systems. We
cover refinement checking, model checking and synthesis, standard logi-
cal and structural operations as used in specification theories as well as
the respective tool support.

1 Introduction

Correctness of complex systems can be ensured in various ways. The key idea of
verification is to first specify a property the system under development should
satisfy and then to verify that this is indeed the case. An alternative to verifi-
cation is refinement of the original specification into an implementation, which
is guaranteed to satisfy the specification, for the refinement is designed to pre-
serve the properties of interest. The refinement can be done either in one step,
where the implementation is synthesized from the specification, or in more steps
in a process of stepwise refinement. The latter is particularly useful when some
details of the requirements are not known at the beginning of the design process,
or synthesis of the whole system is infeasible, or in the component-based design
where other systems can be reused as parts of the new system.

The difference between verifying and refining systems is reflected in two fun-
damentally different approaches to specifications. Firstly, the logical approach,
relying on model checking algorithms, makes use of specifications given as for-
mulae of temporal or modal logics. Secondly, the behavioural approach, relying
on refinement, requires specifications to be given in the same formalism as imple-
mentations, e.g. a kind of a machine with an operational interpretation. We focus
on the latter.

Example 1. Consider the scenario of developing a piece of software illustrated in
Fig. 1. We start with a viewpoint V1 on the system, e.g. the client’s view on the
service functionality. This gets iteratively refined into a more concrete descrip-
tion Vm. Further, assume there is also another viewpoint W1, e.g. a description
of the service from the server point of view, which is refined in a similar fashion

c© Springer International Publishing AG 2017
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resulting in Wn. After these viewpoints are precise enough (although still very
underspecified), we merge them into one, say S, using an operation of conjunc-
tion. The complete description is now modelled by S, which is to be implemented.
Suppose we have components C and D at our disposal, which perform subrou-
tines needed in S. We put C and D together into a component T using an
operation of parallel composition. What remains to be designed is a component
X that we can compose with T in parallel so that the result conforms to the
specification S. The most general such X is called the quotient of S by T . Once
we have X we can further refine the underspecified behaviour in any desired
way resulting in a specification Y . The final step is to automatically synthesize
an implementation Z that, for instance, satisfies additional temporal logic con-
straints ϕ and/or is the cheapest implementation with respect to specified costs
C. Specification theories [Lar90,BDH+12] are mathematical formalisms allowing
for such development in a rigorous way. �

V1 W1

Vm Wn∧

C ‖ D ‖ X ← S/T

T

S

Y Z
ϕ,C

Fig. 1. An example of a component-based step-wise design scheme

A good specification theory should (i) allow for all the operations mentioned
in the example and efficient algorithms to compute them. Moreover, it should
(ii) be expressive enough to allow for convenient modelling. The behavioural
formalism of modal transition systems (MTS) [LT88] provides a convenient basis
for such a theory and has attracted a lot of attention. Unfortunately, it does not
satisfy either of the two stipulations above completely. In this paper, we survey
extensions of MTS that meet all these demands and efficient algorithms for
their analysis such as the mentioned operations, refinements, verification and
synthesis. Further, we discuss a link between the MTS extensions and logics,
thus building a bridge between the behavioural and the logical world, allowing
us to combine them, enjoying the best of both worlds.
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1.1 History of Modal Transition Systems

Modal transition systems (MTS) were introduced by Larsen and Thomsen [LT88]
three decades ago. The goal was to obtain an expressive specification formalism
with operational interpretation, allowing for refinement. The main advantage of
MTS is that they are a simple extension of labelled transition systems, which
have proved appropriate for behavioural description of systems as well as their
compositions.

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe what behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need
not be realized in the refinements. This allows us to underspecify non-critical
behaviour in the early stages of design, focusing on the main properties, ver-
ifying them and sorting out the details of the yet unimplemented non-critical
behaviour later.

Example 2. An MTS specification of a coffee machine is displayed in Fig. 2 on
the left. May transitions are depicted using dashed arrows, must transitions using
solid arrows. In the left state, the machine can either start to clean or accept
a coin. It may not always be possible to take the coin action, but if we do so
the machine must offer coffee and possibly supplement the choice with tea. An
implementation of this specification is displayed on the right. Here the clean is
scheduled regularly after every two beverages. In addition, tea can always be
chosen instead of coffee. �

coin
clean

coffee

tea

coin coffee

tea

coin coffee

tea

clean

Fig. 2. An MTS specification and its implementation

The formalism of MTS has proven to be useful, most importantly in com-
positional reasoning and component-based design. Industrial applications are as
old as [Bru97] where MTS have found use for an air-traffic system at Heathrow
airport. Besides, MTS are advocated as an appropriate base for interface the-
ories in [AHL+08a,RBB+09b,RBB+09a,RBB+11] and for product line theo-
ries in [LNW07a,Nym08,tBDG+15,tBFGM16,DSMB16]. Further, MTS-based
software engineering methodology for design via merging partial descriptions
of behaviour has been established in [UC04,BCU06,UBC07] and using residu-
ation in [Rac07,Rac08,Ben08]. The theory found its applications also in test-
ing [BDH+15,LML15]. MTS are used for program analysis using abstraction
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[GHJ01,DGG97,Nam03,DN04,dAGJ04,NNN08,CGLT09,GNRT10]. MTS spec-
ificationformalismsaresupportedbyseveraltools[DFFU07,BML11,KS13a,VR14].

Over the years, many extensions of MTS have been proposed. While MTS can
only specify whether or not a particular transition is required, some extensions
equip MTS with more general abilities to describe what combinations of tran-
sitions are possible. For instance, disjunctive MTS (DMTS) [LX90] can specify
that at least one of a given set of transitions is present. One-selecting MTS [FS08]
specify that exactly one of them is present. Acceptance automata [Rac07] can
even express any Boolean combination of transitions, but only for deterministic
systems. In all the mentioned cases, every must transition is also automatically
a may transition, modelling that whatever is required is also allowed. Sometimes
this assumption is dropped and the two transition relations are given indepen-
dently, giving rise to mixed transition systems (MixTS) [DGG97,AHL+08b].

These formalisms have also been studied under other names in different
contexts. To some extent equivalent variations of MTS have been adapted
for model-checking: Kripke modal transition systems (KMTS) [HJS01], partial
Kripke structures [BG00], and 3-valued Kripke structures [CDEG03]. In the same
manner MixTS correspond to Belnap transition systems [GWC06a]. Further,
DMTS correspond to generalized KMTS [SG04] or abstract transition systems
[dAGJ04]. While the variants of MTS and MixTS have been used in practi-
cal symbolic model-checkers (e.g. [CDEG03,GC06,GWC06b]), the “hypermust”
transitions in DMTS are hard to encode efficiently into BDDs. A comparison of
usability of these systems for symbolic model checking can be found in [WGC09].
Acceptance automata were also studied as acceptance trees [Hen85].

1.2 Outline of the Paper

Section 2 introduces modal transition systems formally, recalls several logics used
later, and explains the stipulations on good specification formalisms. Section 3
discusses extensions of MTS with respect to specifying the combinations of
present transitions. Section 4 discusses extensions of MTS with respect to the
underlying graph structure of the MTS, focusing on weighted graphs and infinite
graphs. In Sect. 5, results on refinements, operations, implementation synthesis,
and the available tools are surveyed. Section 7 concludes and mentions several
possible future directions.

1.3 Further Sources

This survey is an updated adaptation of the author’s thesis [Kře14]. An excel-
lent overview, however older, is provided in [AHL+08a]. Particular topics are
explained in depth in several theses, e.g. applications to interface and product-
line theories [Nym08], or extensions of MTS such as acceptance automata
[Rac07], disjunctive MTS [Ben12], MTS under different semantics [Fis12], in
quantitative settings [Juh13], with data [Bau12], or parameters and synchro-
nization [Møl13].
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2 Preliminaries

2.1 Modal Transition Systems

The original modal transition systems were introduced in [LT88] as follows,
where Σ is an action alphabet.

Definition 1 (Modal transition system). A modal transition system (MTS)
is a triple (P, ���,−→), where P is a set of processes and −→ ⊆ ��� ⊆ P ×Σ×P
are must and may transition relations, respectively.

The must and may transitions capture the required and allowed behaviour,
as discussed in the introduction. The most fundamental notion of the theory of
modal transition systems is the modal refinement. Intuitively, a process s refines
a process t if s concretizes t (or in other words, t is more abstract than s).
Since processes are meant to serve as specifications, this is defined by (i) only
allowing in s what is already allowed in t and (ii) requiring in s what is already
required in t.

Definition 2 (Modal refinement). Let (P1, ���1,−→1), (P2, ���2,−→2) be
MTS and s ∈ P1, t ∈ P2 be processes. We say that s modally refines t, written
s ≤m t, if there is a refinement relation R ⊆ P1 × P2 satisfying (s, t) ∈ R and
for every (p, q) ∈ R and every a ∈ Σ:

1. if p
a���1 p′ then there is a transition q

a���2 q′ such that (p′, q′) ∈ R, and
2. if q

a−→2 q′ then there is a transition p
a−→1 p′ such that (p′, q′) ∈ R.

Example 3. In the course of the refinement process, must transitions are pre-
served, may transitions can turn into must transitions or disappear, and no new
transitions are added. Note that refinement is a more complex notion than that
of subgraph. Indeed, the same transition can be refined in different ways in
different places as illustrated in Fig. 3. �

i j1

j2

k1

k2

�

a

a

b

b

b

a

b s t

a

b

Fig. 3. The refinement i ≤m s is witnessed by the refinement relation
{(i, s), (j1, t), (j2, t), (k1, s), (k2, s), (�, t)}. Note that whenever there is a must transi-
tion in an MTS, we do not depict its underlying may transitions. Moreover, when a
designated process of an MTS is considered initial, it is depicted with an incoming
arrow.



30 Years of Modal Transition Systems: Survey of Extensions and Analysis 41

Whenever s ≤m t, we call s a refinement of t and t an abstraction of s. We
often consider MTS with a designated initial process; in such a case we say that
an MTS refines another one if this is true of their initial processes.

One may refine MTS in a stepwise manner until ��� = −→ is obtained and no
further refinement is possible. MTS with ��� = −→ are called implementations
and can be considered as the standard labelled transition systems (LTS). Given
a process s we denote by �s� = {i | i is an implementation and i ≤m s} the set of
all implementations of s.1 In the previous example, j1 is not an implementation,
while j2 is considered an implementation since all reachable transitions satisfy
the requirement. Further notice that k2 ∈ �s�.

Note that on implementations the refinement coincides with the strong bisim-
ilarity, and on modal transition systems without any must transitions it corre-
sponds to the simulation preorder. Further, the refinement has a respective game
characterization [BKLS09b] similar to (bi)simulation games.

2.2 Logics

A set of implementations can be specified not only by a behavioural specification
such as an MTS, but also by a formula of a logic. Here we briefly recall two logics:
μ-calculus [Koz83] and LTL [Pnu77]. Let Ap be a set of atomic propositions.

µ-calculus is given by the syntax

ϕ ::= tt | ff | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | μX.ϕ | νX.ϕ

where p ranges over Ap, a over Σ, and X over a set Var of variables. We call μ
the least fixpoint and ν the greatest fixpoint.

Linear temporal logic (LTL) is given by the syntax

ϕ ::= tt | ff | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Xaϕ | Fϕ | Gϕ | ϕUϕ

where p ranges over Ap and a over Σ. Given an implementation (P,−→) and
a valuation ν : P → 2Ap over its state space, any run (maximal path in the
directed graph of the LTS) induces a sequence from (2Ap × Σ)N capturing the
labelling of the visited processes and the actions taken there. The semantics here
is a mixture of state-based and action-based properties:2 given a sequence α0a0w
we define α0a0w |= Xϕ iff w |= ϕ; besides, α0a0w |= Xaϕ iff w |= ϕ and a = a0.
The semantics of other operators is standard. An LTS satisfies ϕ if all runs from
its initial process satisfy ϕ.

Example 4. Consider the LTS and its valuation depicted in Fig. 4. While it sat-
isfies Gp and νX.p ∧ [a]X, it does satisfy neither Fq nor μX.q ∨ [a]X due to the
run looping in s. �

1 The notation introduced in [BKLS09b] is adopted from semantics.
2 In the context of MTS, [Ben12] elaborates on the differences of the two.
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s t

a

a a

ν(s) = {p}
ν(t) = {p, q}

Fig. 4. An LTS with a valuation ν

2.3 Specification Theories

In order to support component based development, many specification theories
have been designed. One usually requires existence and effective computability
of several operations subject to various axioms. In the following, let s and t be
processes, arguments of the operations.

Some operations are structural, stemming from the nature of behavioural
descriptions, such as the operations of parallel composition and quotient. The
parallel composition ‖ should satisfy

(parallel) for any processes x and y, x ‖ y ≤m s ‖ t if x ≤m s and y ≤m t,

called independent implementability. The quotient is an adjoint to parallel com-
position, hence the quotient s/t of s by t should satisfy

(quotient) for any process x, x ≤m s/t if and only if t ‖ x ≤m s.

Given a specification s of the whole system and t of its component, the quotient
s/t is thus a compact description of all systems that can be put in parallel with
t to get a system complying with s.

Other operations are inherited from the logical view, such as Boolean oper-
ations. A conjunction of two systems is the most general refinement of the two
systems. As the greatest lower bound with respect to ≤m it must satisfy

(conjunction) for any process x, x ≤m s ∧ t if and only if x ≤m s and x ≤m t.

A bit weaker notion is that of consistency relation: a set of systems is consistent
if they have a common implementation, i.e. if their conjunction has a non-empty
set of implementations. Dually, one can define disjunction by requiring

(disjunction) for any process x, s ∨ t ≤m x if and only if s ≤m x and t ≤m x.

The remaining Boolean operation is that of complement :

(complement) for any process x, x ≤m s̄ if and only if x ≤m s.

For the related notion of difference, see e.g. [SCU11].
It is often not possible to satisfy all axioms in this strong form. For instance,

automata-based specification formalisms are sometimes too weak to express the
complement, which is the case also for MTS. Besides, the “complete specifi-
cation theories” of [BDH+12] only require (parallel) in the above-mentioned
“if” form. The other desired direction cannot in general be achieved in MTS
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[HL89,BKLS09b], see Fig. 5. Further, according to [BDH+12], existence of quo-
tients and conjunctions is required if they have non-empty set of implementa-
tions. Here we presented a simpler version of the operator requirements, which
is equivalent when MTS are enriched with the “inconsistent” specification with
no implementations.

s1

a

b

c
s2

a

b

c
s1 ‖ s2

a

b

c
i

a

b

ca

Fig. 5. i ≤m s1 ‖ s2, but i cannot be written as i1 ‖ i2 for any i1 ≤m s1, i2 ≤m s2

3 Extensions of Modalities

Since the modelling capabilities of basic MTS are quite limited, many extensions
have appeared in the literature. In this section, we focus on extensions of the
may and must transition relations. Standard MTS have two transition relations
−→, ��� ⊆ P × Σ × P satisfying −→ ⊆ ���, which is called the syntactic consis-
tency requirement. If this requirement is not imposed we obtain mixed transition
systems as introduced in [DGG97].

Definition 3 (Mixed transition system). A mixed transition system
(MixTS) over an action alphabet Σ is a triple (P, ���,−→), where P is a set
of processes and −→, ��� ⊆ P × Σ × P are must and may transition relations,
respectively.

This extension allows us not only to have inconsistent specifications, but also
a certain form of enforced non-deterministic choice:

Example 5. The specification of Fig. 6 requires an a transition followed by either
only b’s or only c’s. Indeed, the must transition under a enforces a transition,
but does not automatically allow it; only the two may transitions under a are
allowed. �

Nevertheless, even this feature is often insufficient to specify which combina-
tions of transitions can be implemented.

Example 6. Figure 7 on the left depicts an MTS that specifies the following.
A request from a client may arrive. Then we can process it directly on the server
or make a query to a database where we are guaranteed an answer. In both cases
we send a response.

An MTS can be refined in two ways: a may transition is either implemented
(and becomes a must transition) or omitted (and disappears as a transition).
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a

a

a

b, c

b

c

Fig. 6. A mixed transition system. Since must transitions are not necessarily also may
transitions in MixTS, we depict may transitions explicitly for mixed systems here, even
when there is a corresponding must transition.

client

s

server database

request query

processing

response answer

i1

request

processing

response

i2

request

Fig. 7. A potentially deadlocking s and two of its implementations i1, i2

On the right of Fig. 7 there is an implementation i1 of the system, where
the processing branch is implemented and the database query branch is omit-
ted. Similarly, there is also an implementation omitting the process branch and
implementing only the query. However, there is also an undesirable implementa-
tion i2 that does not implement any option and deadlocks as seen on the right
of Fig. 7. �

To avoid deadlocking, we want to specify that either processing or query will
be implemented. This is possible in disjunctive modal transition systems [LX90].
They were actually introduced as natural means for solutions to process equa-
tions since they can express both conjunctions and disjunctions of properties.

Definition 4 (Disjunctive modal transition system). A disjunctive modal
transition system (DMTS) is a triple (P, ���,−→), where P is a set of processes
and ��� ⊆ P ×Σ×P is the may and −→ ⊆ P ×2Σ×P the must (or hyper-must)
transition relation.

Example 7. Intuitively, in DMTS we can enforce a choice between arbitrary tran-
sitions, not just with the same action as in Example 5. Instead of forcing a par-
ticular transition, a must transition in DMTS specifies a whole set of transitions
at least one of which must be present in any refinement. In our example, it would
be the set consisting of processing and query transitions, see Fig. 8. �
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s

request query

processing

response answer

Fig. 8. A disjunctive modal transition system

Note that DMTS are capable of forcing any positive Boolean combination of
transitions, simply by turning it into the conjunctive normal form. If the choice
is supposed to be exclusive, we can use one-selecting MTS (1MTS) introduced
in [FS08] with the property that exactly one transition from the set must be
present. In 1MTS and also in underspecified transition systems (UTS) [FS05],
both (hyper)must and (hyper)may transition relations are subsets of P × 2Σ×P .
For UTS, the syntactic consistency is required, i.e. the hyper-may is larger than
the hyper-must.

Finally, explicit listing of all allowed combinations of outgoing transitions is
used in acceptance automata [Rac08]. However, the language-theoretic definition
is limited to deterministic systems.

Definition 5 (Acceptance automaton). An acceptance automaton (AA) is
a pair (P,PossibleTranSets), where P is a prefix-closed language over Σ and
PossibleTranSets : P → 22

Σ \∅ satisfies the consistency condition: wa ∈ P if and
only if a ∈ TranSet ∈ PossibleTranSets(w) for some TranSet.

Nevertheless, as the following example shows, convenient modelling requires
even more features such as conditional or persistent choices.

Example 8. Consider a simple specification of a traffic light controller for several
national variants for vehicles as well as for pedestrians, displayed on the right
of Fig. 9. At any moment it is in one of the four states red , green, yellow or
yellowRed . The intuitive requirements are: if green is on then the traffic light
may either change to red or yellow , and if it turned yellow (as for vehicles) it
must go to red afterwards; if red is on then it may either turn to green (as for
pedestrians and also for vehicles in some countries) or yellowRed , and if it turns
yellowRed it must go to green afterwards.

However, these requirements (expressible as MTS) allow for three different
undesirable implementations: (i) the light is constantly green, (ii) the lights
switch non-deterministically, (iii) the lights switch deterministically, but yellow
is only displayed sometimes (e.g. every other time). While the first problem
can be avoided using the choice in DMTS, the latter two cannot. To eliminate
the second implementation, one needs an exclusive choice, as in 1MTS; for the
third implementation to be removed, one needs a persistent choice. These can be
modelled in parametric MTS [BKL+11,BKL+15] where a parameter describes
whether and when the yellow light is used, making the choices permanent in the
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go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}

Obligation function:
Φ(green) = ((stop, red) ⊕ (ready, yellow))

∧(reqYfromG ⇔ (ready, yellow))
Φ(red) = ((go, green) ⊕ (ready, yellowRed))

∧(reqYfromR ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

Parameters: {reqY }

Obligation function:
Φ(green) = ((stop, red) ⊕ (ready, yellow))

∧(reqY ⇔ (ready, yellow))
Φ(red) = ((go, green) ⊕ (ready, yellowRed))

∧(reqY ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

Fig. 9. Examples of PMTS and their modal refinement (Color figure online)

whole implementation. Additionally, the dependence on the parameter allows
for modelling a conditional choice. Indeed, as illustrated in the middle of Fig. 9,
depending on the value of another parameter, the yellow light can be consistently
used or skipped in both phases. �

Definition 6 (Parametric modal transition system). A parametric MTS
(PMTS) is a tuple (P, ���,Par , Φ) where P is a set of processes, ��� ⊆ P ×
Σ × P is a transition relation, Par is a finite set of parameters, and Φ : P →
BoolExp((Σ × P ) ∪ Par) is an obligation function assigning to each process a
Boolean expression over outgoing transitions and parameters.

These systems are “mixed”; a syntactic consistency ∀s ∈ P : ∀(a, t) ∈ Φ(s) :
s

a��� t may be additionally required, making them “pure”. Intuitively, a set S
of transitions from s is allowed if Φ(s) is true under the valuation induced by S
and the fixed parameters; for an example see Fig. 9. A PMTS is

– Boolean MTS (BMTS) [BKL+11] if it is parameter-free, i.e. if Par = ∅,
– transition system with obligation (OTS) [BK10] if it is BMTS and only para-

meters can be negated,
– DMTS is an OTS with Φ(s) in the conjunctive normal form for all s ∈ P ,

DMTS is considered both mixed [LX90] and pure [BČK11],
– MixTS is a DMTS with Φ(s) being a conjunction of positive literals (transi-

tions) for all s ∈ P (and the syntactic consistency not required),
– MTS is a MixTS with the and the syntactic consistency required,
– LTS is an MTS with Φ(s) =

∧
T (s) for all s ∈ P , where T (s) = {(a, t) | s

a���
t} is the set of all outgoing transitions of s.

The modal refinement over BMTS is an expected extension of that for MTS.
Technically, let Tran(s) = {E ⊆ T (s) | E |= Φ(s)} be the set of all admissible
sets of transitions from s and the refinement relation satisfies for every (p, q) ∈ R:
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∀M ∈ Tran(p) : ∃N ∈ Tran(q) : ∀(a, p′) ∈ M : ∃(a, q′) ∈ N : (p′, q′) ∈ R ∧
∀(a, q′) ∈ N : ∃(a, p′) ∈ M : (p′, q′) ∈ R.

For PMTS, intuitively, whatever parameters of the refining system we pick, the
abstract system can emulate the same behaviour (by BMTS refinement) for
some choice of its parameters. The original definition [BKL+11] requires a single
refinement relation for all parameter choices. Later it was superseded by a more
natural definition [BKL+15] where different relations are allowed for different
parameter valuations; it is closer to the semantically defined notion of thorough
refinement, see Definition 10, and keeps the same complexity.

Example 9. Consider the rightmost PMTS in Fig. 9. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can
be refined by the system in the middle of the figure having only one parameter
reqY . This single parameter binds the two original parameters to the same value.
The PMTS in the middle can be further refined into the implementations where
either yellow is always used in both cases, or never at all. �

Expressive Power

Most of the formalisms have the same expressive power, as summarized in Fig. 10.
However, they differ significantly in succinctness. In [KS13b], PMTS are trans-
formed into exponentially larger BMTS and BMTS into exponentially larger
DMTSm, see Fig. 10. Here Cm denotes a class C where systems are considered
with more (but only finitely many) initial processes.

mixed PMTS

mixed BMTS

mixed OTS

mixed DMTS

MixTS

pure PMTS

pure BMTS

pure OTS

pure DMTS

MTS

LTS

νHML =
PMTS =
BMTS =
OTSm =
DMTSm

DMTS

MixTS

MTS

LTS

Fig. 10. The syntactic hierarchy of MTS extensions (on the left) and the semantic one,
not considering empty specifications (on the right)
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Except for the already discussed extra power of MixTS over MTS, mixed
variants of systems can be transformed into pure, again at an exponential cost
[BK10], up to the inconsistent specification, i.e. specifications with no implemen-
tations. Since this difference is not very important, we shall only deal with pure
systems unless stated otherwise.

Each of the formalisms presented so far in this section was an automata-
based behavioural formalism. These are often preferred as they are easier to
read than, for instance, formulae of modal logics. The choice between logical
and behavioural specifications is not only a question of preference. Automata-
based specifications [Lar89,BG99] have a focus on compositional and incremental
design in which logical specifications are somewhat lacking, with the trade-off of
generally being less expressive than logics. Logical specification formalisms put
a powerful logical language at the disposal of the user, and the logical approach
to model checking [QS82,CE81] has seen a lot of success and tool implemen-
tations. Therefore, one would like to establish connections between behavioural
and logical formalisms to exploit advantages of both at once. The relationship
of MTS to logic was studied in [BL92,FP07]. It is established that MTS are
equivalent to a fragment of μ-calculus where formulae are (1) consistent, (2)
“prime”, meaning the disjunction is allowed only in very special cases, and (3)
do not contain the least fixpoint. Further, [BDF+13] proves that DMTSm (and
thus BMTS and PMTS) are equivalent to ν-calculus (or Hennessy-Milner logic
with greatest fixpoints, abbreviated νHML), which is a fragment of μ-calculus
without the least fixpoint μ. Finally, the refinement corresponds to implication
[FLT14], similarly to the refinement calculus for HML with recursion of [Hol89].
Moreover, both formalisms can be equipped with the desired operations coming
from the other formalism, see Fig. 11, as further discussed in Sect. 5, bridging
the gap between the two approaches.

logic MTS
model ∼ implementation

implication/entailment ∼ refinement
conjunction ∧ ∼ ?
disjunction ∨ ∼ ?

? ∼ parallel composition ‖
? ∼ quotient /

Fig. 11. Correspondences between the logical and the behavioural world

Example 10. Consider the following property: “at all time points after execut-
ing request, no idle nor further requests but only work is allowed until grant is
executed”. The property can be written in e.g. CTL [CE81] as

AG(request ⇒ AX(work AW grant))

Figure 12 shows an example of an equivalent νHML formula and a DMTS cor-
responding to this property. �
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X = [grant, idle, work]X ∧ [request]Y
Y = (〈work〉Y ∨ 〈grant〉X) ∧ [idle, request]ff

request

grant, work, idle

workgrant

Fig. 12. Example of a νHML formula and an equivalent DMTS

Apart from the logical characterization, one can also describe processes using
a process algebra and obtain the discussed subclasses mixed DMTS, pure DMTS,
MixTS, MTS, LTS as syntactic subclasses [BK10].

4 Extensions of Transition Systems

The extensions discussed in the previous section focus on what combinations
of transitions are possible. In this section, we discuss mainly extensions con-
cerned with quantitative features or infinite memory/communication. Besides,
to provide a better basis for interface theories, MTS have been also com-
bined with I/O automata [GSSL94] and interface automata [dAH01] into modal
I/O transition systems [LNW07a,RBB+09a,BHJ10,BMSH10,BHW10,BHB10,
KM12,KDMU14] with input, output and internal actions, and its subset modal
interface automata [LV13,LVF15,BFLV16,SH15]. Other MTS extensions feature
specifically modified semantics, e.g., [BV15,BSV15,DSMB16].

4.1 Quantities

Here we discuss lifting the underlying transition systems to quantitative settings
[LL12], with clear applications in the embedded systems design. This includes
probabilistic specifications (see below) and various weighted specifications, where
weights stand for various quantitative aspects (e.g. time, power or memory),
which are highly relevant in the area of embedded systems. As far as the par-
ticular case of timed systems is concerned, the quantity of time can be refined
in various ways. In the early work [CGL93,LSW95], the precise quantities are
almost disregarded. More recently [JLS12,BPR09,BLPR09,DLL+10], the pos-
sible times are usually specified as time intervals, which can be narrowed down
and thus made more specific. A more general option is to permit label refinement
to anything smaller with respect to some abstract ordering of labels; [BJL+12a]
provides the following conservative extension of MTS modal refinement along
these lines:

Definition 7 (Modal refinement of MTS with structured labels). Let
the alphabet Σ be equipped with an ordering �. Let (P1, ���1,−→1), (P2, ���2,
−→2) be MTS over Σ and s ∈ P1, t ∈ P2 be processes. We say that s modally
refines t, written s ≤m t, if there is a refinement relation R ⊆ P1 × P2 such that
(s, t) ∈ R and for every (p, q) ∈ R and every a ∈ Σ:

1. if p
a���1 p′ then q

ā���2 q′ for some a � ā and (p′, q′) ∈ R, and
2. if q

ā−→2 q′ then p
a−→1 p′ for some a � ā and (p′, q′) ∈ R.
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Example 11. Consider Σ = L × I where L is a finite set ordered by identity
and I is the set of intervals ordered by inclusion and Σ is ordered point-wise,
standing for the action and the time required to perform it. A transition labelled
by (�, [a, b]) can thus be implemented by a transition (�, c) for any c ∈ [a, b]. �

This definition generalizes also previously studied MTS with more weights
at once [BJL+12b]. Moreover, one can also consider MTS with timed-automata
clocks [BLPR12,FL12]. In all the quantitative settings, it is also natural to
extend the qualitative notion of refinement into a quantitative notion of dis-
tance of systems [BFJ+11,BFLT12].

Another previously studied instantiation is the modal transition systems with
durations (MTSD) [BKL+12]. It models time durations of transitions as con-
trollable or uncontrollable intervals. Controllable intervals can be further refined
into narrower intervals, whereas uncontrollable are considered under the control
of an unpredictable environment and cannot be further narrowed down. Addi-
tionally, the actions are assigned running cost (or rewards) per time unit.

MTS have also been lifted to the probabilistic setting. In the classical set-
ting, LTS is underspecified in that the presence of a certain transition is not
specified. For Markov chains, one can underspecify the probability distributions
on the outgoing transitions. Interval Markov chains [JL91] describe them with
intervals of possible values. Additionally, we can consider 3-valued valuations of
atomic propositions in processes (similarly to [HJS01,BG00,CDEG03], useful for
abstractions), yielding abstract Markov chains [FLW06]. This approach is exten-
sible also to continuous-time Markov chains [KKLW07,KKLW12]. Besides, con-
straint Markov chains [CDL+10] use richer constraints than intervals and usual
operations on them have also been studied [DLL14]. Finally, abstract probabilis-
tic automata [DKL+11a] combine this with the MTS may-must modality on
transitions, allowing for abstractions of Markov decision processes. They have
been studied with respect to the supported operations [DKL+11b,DFLL14],
state space reduction [SK14], hidden actions (stutter steps) [DLL14], and there
is a support by the tool APAC [DLL+11].

Moreover, probabilistic and timed-automata extensions are combined in
abstract probabilistic timed automata [HKKG13]. Finally, modal continuous-time
automata [HKK13] extend MTS with continuous time constraints on stochastic
waiting times, allowing for specification of systems with stochastic continuous
time.

Specification theories have been lifted to the quantitative settings and equipped
with the notion of distance between systems [BFLT12,FL14,FKLT14,FLT14].

4.2 Infinite State Space

In this section, we consider infinite-state extensions of MTS. Several exten-
sions have been proposed, such as systems with asynchronous communication
based on FIFO [BHJ10] or Petri nets [EBHH10,HHM13]. Other extensions focus
on input/output extensions of MTS with data constraints [BHB10,BHW10] or
explicit representation of data [BLL+14].
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A systematic exploration of infinite-state MTS is also possible. A convenient
unifying framework for (non-modal) infinite-state systems is provided by process
rewrite systems (PRS) [May00]. A PRS Δ is a finite set of rewriting rules,
which model sequential and parallel computation. Depending on the syntactic
restrictions imposed on the rules, we obtain many standard models such as
pushdown automata (PDA) or Petri nets (PN), see Fig. 13. A finite PRS Δ thus
induces possibly infinite LTS LT S(Δ).

PRS

PAD PAN

PDA PNPA

BPA BPP

FSM

Fig. 13. PRS hierarchy

Example 12. A transition t of a Petri net with input places p, q and output places
r, s can be described by the rule p ‖ q

t−→ r ‖ s. A transition of a pushdown
automaton in a state s with a top stack symbol X reading a letter a resulting
in changing the state to r and pushing Y onto the stack can be written as
sX

a−→ rY X.

One can naturally lift PRS to the modal world [BK12] by having two sets
of rules: may and must rules. The finite set of rules then generates a generally
infinite MTS.

Definition 8 (Modal process rewrite system). A modal process rewrite
system (mPRS) is a tuple Δ = (Δmay,Δmust) where Δmust ⊆ Δmay are two PRS.
The mPRS Δ induces an MTS MT S(Δ) = (E , ���,−→) defined by (E , ���) =
LT S(Δmay) and (E ,−→) = LT S(Δmust).

Each subclass C of PRS has a corresponding modal extension mC containing
all mPRS (Δmay,Δmust) with both Δmay and Δmust in C. For instance, mFSM
correspond to the standard finite MTS and mPN are modal Petri nets as intro-
duced in [EBHH10].

Definition 9 (Modal refinement). Given mPRS Δ1 ∈ mC1,Δ2 ∈ mC2 and
process terms δ1, δ2, we say δ1 refines δ2, written δ1 ≤m δ2, if δ1 ≤m δ2 as
processes of MTS(Δ1) and MTS(Δ2), respectively.

What is the use of infinite MTS? Firstly, potentially infinite-state systems
such as Petri nets are very popular for modelling whenever communication
and/or synchronization between processes occurs. This is true even in cases
where they are actually bounded and thus with a finite state space.
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Example 13. Consider the following may rule (we use dashed arrows to denote
may rules) generating a small Petri net.

resource
produce��� money ‖ trash

If this is the only rule with trash on the right side a safety property is guaranteed
for all implementations of this system, namely that trash can only arise if there
is at least one resource. On the other hand, it is not guaranteed that money can
indeed be produced in such a situation. This is very useful as during the design
process new requirements can arise, such as necessity of adding more participants
to perform this transition. For instance,

resource‖ permit
produce��� money ‖ trash

expresses an auxiliary condition required to produce trash, namely that a permit
is available. Replacing the old rule with the new one is equivalent to adding
an input place permit to the modal Petri net, see Fig. 14 in yellow. In the modal
transition system view, the new system refines the old one. Indeed, the new
system is only more specific about the allowed behaviour than the old one and
does not permit any previously forbidden behaviour.

•P

•R ••••••

c

p

M

T

Fig. 14. A modal Petri net given by rules Resource‖ Permit
produce��� Money ‖ Trash and

Trash
clean−→ Permit with may transitions drawn as empty boxes and must transitions as

full boxes (Color figure online)

One can further refine the system into the one given by

resource ‖ permit ‖ bribe
produce−→ money ‖ trash

where additional condition is imposed and now the money-producing transition
has to be available (denoted by an unbroken arrow) whenever the left hand side
condition is satisfied. �

Further, infinitely many states are useful to capture unbounded memory.
For instance, consider a specification where the total amount of permits is not
explicitly limited. In an implementation, the number of permits might need to
be remembered in the state of the system.



30 Years of Modal Transition Systems: Survey of Extensions and Analysis 53

Example 14. Consider a basic process algebra (BPA) given by rules X
(−→ XX

and X
)−→ ε for correctly parenthesized expressions with X

a��� X for all other
symbols a, i.e. with no restriction on the syntax of expressions. One can easily
refine this system into a PDA that accepts correct arithmetic expressions by
remembering in a control state whether the last symbol read was an operand or
an operator. �

5 Analysis

In this section, we survey algorithms for and complexities of the most important
problems on MTS and their extensions.

5.1 Refinements

Modal refinement is a syntactically defined notion extending both bisimulation
and simulation. Similarly to bisimulation having a semantic counterpart in trace
equivalence, here the semantic counterpart of modal refinement is the thorough
refinement. As opposed to the syntactic definition using local notions, the seman-
tic definition relates (by inclusion) the sets of implementations of the specifica-
tions. The definition is universal for all extensions of MTS as it only depends on
the notion of implementation and not on syntax of the particular extension.

Definition 10 (Thorough refinement). Given processes s and t, we say that
s thoroughly refines t, written s ≤t t, if �s� ⊆ �t�.

Note that the two refinements are in general different as we illustrate in the
following example due to [BKLS09b], simplifying [HL89]:

Example 15. Consider processes s and t of Fig. 15. On the one hand, the sets of
implementations of s and t are the same, namely those that can perform either
no action or one a or two a’s or combine the latter two options. On the other
hand, s does not modally refine t. Indeed, whenever s ≤m t then either s′ ≤m t1
or s′ ≤m t2. However, neither is true, as s′ allows a transition while t1 does not,
and s′ does not require any transition while t2 does.

Although the two refinements differ, modal refinement is a sound under-
approximation of the thorough refinement. Indeed, whenever we have s ≤m t
and i ∈ �s� we also have i ≤m s and by transitivity of the modal refinement we
obtain i ≤m t.

Proposition 1. Let s, t be processes. If s ≤m t then s ≤t t.

Moreover, [BKLS09b] shows the other direction holds whenever the refined
system is deterministic. A process is deterministic if, for each process s of its
underlying MTS and for each a ∈ Σ, there is at most one s′ such that s

a��� s′.
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s s′

a a

t

t1

t2

a

a
a

Fig. 15. s ≤t t, but s 
≤m t

Proposition 2. Let s, t be processes and t deterministic. If s ≤t t then s ≤m t.

In Table 1 we give an overview of the results related to deciding modal
and thorough refinements for different combinations of processes on the left-
and right-hand side (here D stands for deterministic processes and N for non-
deterministic processes). Note that the co-inductive refinement relations are easy
to compute using a fixed-point computation, although other methods are also
possible, e.g. logical programming [AKRU11] or QBF solving [KS13b,BKL+15].

Table 1. MTS refinement complexity for various cases of (non)determinism

Modal refinement ≤m Thorough refinement ≤t

D≤D NL-complete [BKLS09b] NL-complete [BKLS09b]

N≤D NL-complete [BKLS09b] NL-complete [BKLS09b]

D≤N ∈ P [KS90,PT87] ∈ EXP [AHL+08b]

P-hard [BKLS09b] EXP-hard [BKLS12]

N≤N ∈ P [KS90,PT87] ∈ EXP [AHL+08b,BKLS09a]

P-hard [BGS92] EXP-hard [BKLS09a]

Since the thorough refinement is EXP-hard, it is much harder than the modal
refinement. Therefore, we also investigate how the thorough refinement can be
approximated by the modal refinement. While under-approximation is easy, as
modal refinement implies thorough refinement, over-approximation is more diffi-
cult. Here one can use the method of the deterministic hull for MTS [BKLS09b].
The deterministic hull D is a generalization of the powerset construction on finite
automata and it is the smallest (w.r.t. modal refinement) deterministic system
refined by the original system.

Proposition 3. Let s be an arbitrary MTS process. Then D(s) is a determinis-
tic MTS process such that s ≤m D(s) and, for every deterministic MTS process
t, if s ≤t t then D(s) ≤m t.

Corollary 1. For any processes s, t, if s ≤m D(t) then s ≤t t.

There are also other notions of refinements of systems close to MTS, such as
alternating refinements [AHKV98,AFdFE+11], branching refinement [FBU09],
refinement preserving the termination possibility [CR12], or refinement for prod-
uct lines [DSMB16].
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Extensions. As to extensions of MTS with more complex modalities, the local
conditions in modal refinement are more complex. Although various extensions
have the same expressive power (see Fig. 10), the transformations are exponential
and thus the extensions differ in succinctness. Therefore, the respective refine-
ment problems are harder for the more succinct extensions. All the cases depend-
ing on the type of the left-hand and right-hand sides are discussed in [BKL+15].
In most cases without parameters, the refinement can be decided in P or NP,
which is feasible using SAT solvers. For systems with parameters, the complexity
is significantly higher, reaching up to Πp

4 . Since all the complexities are included
in PSPACE, QBF solvers have been applied to this problem, improving scala-
bility to systems with hundreds of states [KS13c,BKL+15]. The QBF approach
basically eliminates the complexity threat of parameters, but is quite sensitive
to the level of non-determinism.

Furthermore, the decision algorithm for thorough refinement checking over
MTS [BKLS12,BKLS12] has been extended to the setting of DMTS [BČK10]
and of BMTS and PMTS [KS13b], see Table 2. [KS13b] also generalizes the
notion of the deterministic hull.

Table 2. Complexity of the thorough refinement and the relationship to the modal
refinement

MTS DMTS BMTS PMTS

N≤tN ∈ EXP EXP NEXP 2-EXP

for N≤D ≤m = ≤t ≤m = ≤t ≤m = ≤t ≤m 
= ≤t

We now turn our attention to the refinement problems on other kinds of
extensions of MTS. Assuming polynomial procedures for operations on struc-
tured labels, the complexity of the modal refinement stays the same as for the
underlying MTS. As for infinite state systems, [BK12] shows that refinement
between finite MTS and modal pushdown automaton and between modal visi-
bly pushdown automata is decidable and EXP-complete, whereas between basic
process algebras it is undecidable. When parallelism is involved, undecidabil-
ity occurs very soon, already for finite MTS and basic parallel process. How-
ever, it is decidable for Petri nets when a weak form of determinism is imposed
[EHH12,HHM13]. Finally, in the spirit of [AHKV98], a symmetric version of
refinement resulting into a bisimulation notion over MTS is considered and shown
decidable between a finite MTS and any modal process rewrite system, using the
results of [KŘS05]. This allows us to check whether we can replace an infinite
MTS with a particular finite one, which in turn may allow for checking further
refinements.

5.2 Operations

Specification theories require the specification formalism to be closed under cer-
tain operations, as described in Sect. 2. However, not all classes of modal systems



56 J. Křet́ınský

support all the operations. As an automata-based formalism, MTS automatically
allow to compose systems structurally, whereas logical operations are either dif-
ficult to compute or cannot be expressed in the formalism at all. Therefore,
most of the focus has been directed to the simple deterministic case, where some
operations can be defined using local syntactic rules, even for the quantitative
extensions [BFJ+13].

‖ The parallel composition can often be lifted to the modal setting simply
by applying the same SOS rules, e.g. for synchronous message passing, to
both may and must transition functions. This holds for a wide class of
operators as described in [BKLS09b] for MTS. Parallel composition can be
extended to DMTS and other classes [BČK10,BDF+13]. Unfortunately, they
inherit the incompleteness with respect to modal refinement from MTS, see
[HL89,BKLS09b]. Therefore, the axiom (parallel) is only satisfied in one direc-
tion (the independent implementability), but not every implementation of the
composition can actually be decomposed into a pair of implementations, see
Fig. 5, and in general we have �s� ‖ �t� ⊂ �s ‖ t�.

/ The quotient for deterministic MTS can be defined syntactically, using a few
SOS rules [Rac07,Rac08]. For non-deterministic MTS, the problem is con-
siderably more complex and the question was open for a long time. A con-
struction for BMTS and DMTSm and an exponentially smaller one for MTS
was given in [BDF+13]. Further related questions such as decomposition of a
system into several components put in parallel [SUBK12] or quotient under
reachability constraints [VR15] have also been investigated, but again only
for deterministic systems.

∧ The situation is similar with conjunction. For deterministic MTS, we can
again define it syntactically. For non-deterministic systems, there were several
attempts. Unfortunately, the resulting MTS is not minimal (with respect to
modal refinement) [UC04], or not finite even when claimed to be finite [FU08]:
the “clone” operation may not terminate even in cases when it is supposed to,
for example, for processes s1, s2 of Fig. 16 where the self-loops are redirected
back to the initial processes. Actually, MTS are not closed under conjunction,
see Fig. 16. However, a conjunction of two MTS has a unique greatest DMTS
solution.

s1 s2 (s1, s2)

aa

b, c

a a

b c b c

M1 M2

a a a a

b c b c

Fig. 16. MTS processes s1, s2, their greatest lower bound (s1, s2), and their two max-
imal MTS lower bounds M1, M2
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Moreover, DMTS with one or more initial processes, and thus also BMTS and
PMTS are closed under conjunction [BČK11]. The result of the construction is
based on the synchronous product. Thus it is a system over tuples of processes
where the length of the tuple is the number of input systems. This means that
the conjunction (and thus also a common implementation) can be constructed
in polynomial time, if n is fixed; and in exponential time, if n is a part of
the input. Further, if deterministic MTS are input, the algorithm produces
a deterministic MTS. Moreover, the conjunction is also the greatest lower
bound with respect to the thorough refinement: �s1 ∧ s2� = �s1�∩�s2� which is
not achievable for the parallel composition. The conjunction construction was
later extended to systems with different alphabets [BDCU13] and invisible
actions [BCU16].

∨ Disjunction is easy to obtain for DMTSm, BMTS, and PMTS, again in the
stronger form �s1 ∨ s2� = �s1�∪�s2�. However, for MTS (deterministic or not)
and DMTS with a single initial process this is not possible. Indeed, consider
the MTS specifications in Fig. 17. While the disjunction can be described
simply as a BMTS with obligation Ω(s1 ∨ s2) = ((a, •) ∧ (b, •)) ∨ (¬(a, •) ∧
¬(b, •)), no DMTS can express this.

s1 s2 s1 ∨ s2

a b a b

Fig. 17. MTS s1 and s2, and their MTS and BMTS least upper bounds s1 ∨ s2

¬ While MTS are not closed under complement (not even deterministic ones),
there have been attempts at characterizing symmetric difference [SCU11].

The results are summed up in the following statements and Table 3. With
operations ∧ and ∨, the set of BMTS (or DMTSm) processes forms a bounded
distributive lattice up to (≤m ∩ ≥m)-equivalence. Moreover, with operations
∧,∨, ‖ and /, the set of BMTS (or DMTSm) forms a commutative residuated
lattice up to (≤m ∩ ≥m)-equivalence [BDF+13].

We are also interested in questions closely related to the discussed conjunc-
tion. The common implementation decision problem (CI) contains tuples of sys-
tems, such that there is an implementation refining each system of the tuple.
For tuples of size two this is equivalent to non-emptiness of the conjunction, for
one system (for instance a MixTS) this is equivalent to semantic consistency (or
non-emptiness) [LNW07b], i.e. existence of implementation. Note that despite
the lack of results on conjunction of non-deterministic systems the complexity
was known long ago. The complexity improves when the input processes are
deterministic (CID problem). Finally, rather surprisingly, the problem whether
there is a deterministic common implementation (dCI) is hard. We display the
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Table 3. Closure properties

∧ ∨ ¬ ‖ /

Deterministic MTS � × × � �
MTS × × × � ?

MixTS � × × � ?

DMTS � × × � ?

DMTSm/BMTS/PMTS � � × � �

Table 4. Complexity of the common implementation problems

Single MTS Single MixTS Fixed # of systems Arbitrary # of systems

CI Trivial EXP-c. [AHL+09] P-c. [BGS92,HH08] EXP-c. [AHL+09]

CID Trivial Trivial NL-c. [BKLS09b] PSPACE-c. [BKLS09b]

dCI EXP-c. [BKLS09b] EXP-c. [BKLS09b] EXP-c. [BKLS09b] EXP-c. [BKLS09b]

known results in Table 4 for several cases depending on whether the number of
input processes is fixed or a part of the input. The results again indicate that sev-
eral problems become more tractable if the given specifications are deterministic.

5.3 Model Checking and Synthesis

Given a valuation ν : P → 2Ap assigning to each process a set of atomic propo-
sitions valid in the process, one can check whether an MTS satisfies a CTL, LTL
or μ-calculus formula ϕ over Ap. Since an MTS stands for a class of implemen-
tations, the question of satisfaction can be posed in two flavours:

(|=∀-problem) Do all implementations satisfy ϕ?
(|=∃-problem) Is there an implementation satisfying ϕ?

The problem of generalized model checking is to decide which of the three possi-
ble cases holds: whether all, only some, or no implementations satisfy ϕ. Further,
if there exists a satisfying implementation it should also be automatically syn-
thesized.

Generalized model checking of MTS was investigated with respect to a variant
of safety [DDM10] as well as computation tree logic (CTL) [AHL+08a,GAW13],
establishing it EXP-complete and providing a polynomial over- and under-appro-
ximation, similarly for μ-calculus. The EXP lower bound follows from the hard-
ness of satisfiability of CTL and μ-calculus; the upper bound can be obtained
through alternating tree automata [BG00].

In the rest, we focus on LTL. In [GP09] the generalized model checking of
LTL over partial Kripke structures (PKS) is shown to be 2-EXP-hard. Further,
[GJ03] describes a reduction from generalized model checking of μ-calculus over
PKS to μ-calculus over MTS [Hut02,Hut99,GHJ01]. However, the hardness for
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LTL does not follow since the encoding of an LTL formula into μ-calculus is
exponential. There is thus no straightforward way to use the result of [GJ03] to
establish the complexity for LTL.

On the one hand, answering the |=∀-problem is easy. Indeed, it is sufficient
to perform standard model checking on the “greatest” implementation, i.e. such
where all mays are turned into musts and thus all possible runs are present. On
the other hand, the |=∃-problem is trickier. Similarly to the for |=∀-problem, we
can take the minimal implementation of the MTS. However, whenever a deadlock
occurs, the corresponding finite runs are ignored since LTL is usually interpreted
over infinite words only. However, an undesirable consequence of this problem
definition (call it ω, standing for infinite runs) is that all formulae are satisfied
whenever there is an implementation without infinite runs, i.e. without a lasso
of must transitions. There are several ways to avoid this vacuous satisfaction.
Firstly, we can define LTL also on finite words [BČK11], which we denote by ∞
(for both finite and infinite runs). Secondly, we can consider only implementa-
tions without deadlocks, which we denote df . The deadlock-free approach has
been studied in [UBC09] and the proposed solution was implemented in the tool
MTSA [DFCU08]. It attempts to find a deadlock-free implementation of a given
MTS that satisfies a given formula. However, the solution given in [UBC09]
is incorrect in that the existence of a deadlock-free implementation satisfying
a given formula is claimed even in some cases where no such implementation
exists.

Example 16. The flaw can be seen on an example given in Fig. 18 [BČK11].
Clearly, s has no deadlock-free implementation with action a only, i.e. satisfying
GXatt. Yet the method of [UBC09] as well as the tool [DFCU08] claim that
such an implementation exists. �

s
a

a

b

Fig. 18. No deadlock-free implementation of s satisfies GXatt

While the solution attempt of [UBC09] yields a PSPACE algorithm, the df -
problem is actually 2-EXP-complete[BČK11]. Note that in this setting, there
are no minimal implementations; non-trivial decisions have to be made which
transitions to implement. For example, an MTS with only one may a-successor
and one may b-successor cannot avoid deadlock in a unique way. Moreover, even
if deadlocks are allowed, not implementing any choice may result in not satisfy-
ing Xtt.

A solution to both df and ∞ as well as DMTS is provided in [BČK11]. It
reduces the problem to a game where one player decides which transitions to
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implement in each step and another player chooses which of the implemented
transitions is taken. Decisions of the players determine a run. The objective
of the first player is to satisfy the formula on the run. He can always succeed
irrespective of what the other player does if and only if there is an implementation
satisfying the formula. Such LTL games are in general 2-EXP-complete [PR89].
The consequences are summarized in Table 5. Note that the winning strategy
in the game yields a satisfying implementation, thus also solving the synthesis
problem. This approach of reduction to an LTL game was also used to solve a
similar problem of deciding whether all/some implementation can be pruned to
satisfy a given LTL formula [DBPU12].

Table 5. Complexities of generalized LTL model checking (ω denoting finite runs
are ignored, df denoting deadlock-free implementations are ignored, ∞ denoting no
restriction)

|=∀ |=∃

ω-MTS PSPACE-complete PSPACE-complete

df -MTS, ∞-MTS, DMTS PSPACE-complete 2-EXP-complete

The best known time complexity bounds with respect to the size of system
|S| and the size of LTL formula |ϕ| are the following. In all PSPACE-complete
cases the time complexity is O(|S| · 2|ϕ|); in all 2-EXP-complete cases the time
complexity is |S|2O(|ϕ|) ·22O(|ϕ|)

. The latter upper bound is achieved by translating
the LTL formula into a deterministic (possibly generalized) Rabin automaton
of size 22

O(|ϕ|)
with 2O(|ϕ|) accepting pairs, thus changing the LTL game into

a Rabin game. For an efficient translation see e.g. [EK14,KK14]; for an algorithm
solving Rabin games see [PP06,CGK13].

Another synthesis problem is the cheapest implementation, considered for
(P)MTS with durations [BKL+12]. Intuitively, the constraint on the implemen-
tation here is to maximize the average reward per time unit while conforming
to the specification and a budget allowing only for some combinations of actions
implemented. The problem is NP-complete. Further, the problem of synthesizing
a satisfying implementation in the form of a bounded Petri net was considered
and shown undecidable [Sch16]. Finally, MTS themselves can be synthesized
from constraints given as e.g. scenarios [SBUK13].

LTL model checking has also shed a better light on the problem of incom-
pleteness of the parallel composition. Recall that there is a composition s1 ‖ s2
with an implementation i that does not arise as a composition i1 ‖ i2 of any
two implementations i1 ≤m s1, i2 ≤m s2. Completeness can be achieved only
under some restrictive conditions [BKLS09b]. [BČK11] shows that composition
is sound and complete with respect to every logic of linear time: For DMTS and
both ω and ∞,

s1 ‖ s2 |=∀ ϕ iff i1 ‖ i2 |= ϕ for all implementations i1 ≤m s1, i2 ≤m s2

s1 ‖ s2 |=∃ ϕ iff i1 ‖ i2 |= ϕ for some implementations i1 ≤m s1, i2 ≤m s2
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Thus ‖ is “LTL complete”, i.e. preserves and reflects all LTL properties. There-
fore, the only spurious implementations are sums of legal implementations.

6 Tools

The tool support is quite extensive; we focus our attention to the support for
the operations required for complete specification theories [BDH+12] and several
further problems. This includes modal refinement checking, parallel composition,
quotient, conjunction (merge) and the related consistency checking and maxi-
mal implementation generation, deterministic hull and generalized LTL model
checking. The comparison of the functionality of the available tools is depicted
in Table 6. Apart from no longer maintained TAV [BLS95], the currently available
tools are the following:

MTSA (Modal Transition System Analyzer) [DFFU07]

– is a tool for MTS,
– supports modal refinement, parallel composition and consistency using the

cloning operation, which may not terminate; it also offers a model checking
procedure, which is, unfortunately, flawed as discussed in Example 16.

MIO (Modal Input Output Workbench) [BML11,BMSH10]

– is a tool for modal I/O automata (MIOA) [LNW07a,RBB+11], which com-
bine MTS and interface automata based on I/O automata; although MIOA
have three types of may and must transitions (input, output, and internal),
if we restrict to say only input transitions, the refinement works the same as
for MTS, and some other operations, too,

– supports modal refinement, the MIOA parallel composition, conjunction for
deterministic systems, and quotient for deterministic systems.

−→=⇒���
MoTraS (Modal Transition Systems) [KS13a]

– is a tool for MTS and DMTS, with partial support for BMTS and PMTS,
– supports full functionality for MTS as well as more general DMTS and in

all cases also for non-deterministic systems; in particular, the algorithms for
conjunction and quotient are considerably more complex than for the deter-
ministic case; further, it features QBF-based algorithms for BMTS and PMTS
refinement; finally, it also provides the deterministic hull, which enables us to
both over- and under-approximate the very hard thorough refinement using
the fast modal refinement.

MAccS (Marked Acceptance Specifications) [VR14]

– is a tool for acceptance automata (deterministic BMTS) with accepting states,
– features all the operations for acceptance automata, hence also for determin-
istic MTS.
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Table 6. Functionality of the available tools. Here “det.” denotes a functionality lim-
ited to deterministic systems.

Operation MTS DMTS B/PMTS det.AA

Parallel composition MTSA MIO MoTraS MoTraS MAccS

Consistency MTSA(of 2 systems) MIO(det.) MoTraS MoTraS MAccS

Conjunction MIO(det.) MoTraS MoTraS MAccS

Quotient (det.) MIO MoTraS MAccS

Generalized LTL MTSA(incorrect) MoTraS MoTraS

Det. hull MoTraS MoTraS MoTraS

Refinement MTSA MIO MoTraS MoTraS MoTraS MAccS

Note that both MTSA and MIO can only handle modal systems, not their dis-
junctive extension. MoTraS supports DMTS, which have more expressive power.
In contrast to (non-deterministic) MTS, DMTS are rich enough to express solu-
tions to process equations [LX90] (hence a specification of a missing component
in a system can be computed) and are closed under all operations, particularly
conjunction. MAccS is similar in that AA are equally expressive and it supports
all the operations, however, only for deterministic systems.

In order to make the tools easily extensible, a file format xmts was designed
[MTS], which facilitates textual representation of different extensions of modal
transition systems.

Besides, there are the following tools for related formalisms:
ECDAR (Environment for Compositional Design and Analysis of Real Time
Systems) [DLL+10]

– is a tool for timed I/O automata (with no modalities);
– supports refinement, conjunction, composition and quotient, but all for only

deterministic systems, as can be expected in the timed setting.

APAC (Abstract Probabilistic Automata Checker) [DLL+11]

– is a tool for abstract probabilistic automata;
– supports refinement, abstraction, conjunction, and composition.

7 Conclusion and Some Directions for Future Work

Firstly, we have surveyed MTS and its many extensions, including more involved
modalities (combined, exclusive, persistent or conditional choices), quantitative
models, or infinite-state systems. The comparison of various classes leads us to
identifying a robust class of DMTS with more initial states, equivalent to several
other formalisms, including the modal ν-calculus. This unifies the behavioural
and logical approach to specification and verification and enables us to mix the
two.

Secondly, we have surveyed solutions to problems arising in system design
via MTS, such as logical and structural operations, refinement (modal, thorough,
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approximations using the deterministic hull) and synthesis of implementations
based on temporal or reward constraints. We have also discussed the tool support
for these problems.

As for future work, we mention several open issues. Firstly, although the com-
plexity of many problems has been established, there are still several complexity
gaps left open, for instance, the complexity of thorough refinement for BMTS
and PMTS, the quotient construction (we conjecture the exponential blow-up
is in general unavoidable), whether MTS, MixTS and DMTS are closed under
quotient (we conjecture the opposite), or conditions on decidability of refinement
over infinite systems, e.g. determinism as in [BKLS09b,EBHH10,HHM13].

Secondly, one may also extend the model checking and synthesis algorithms
to more complex settings such as the cheapest implementation with an addi-
tional requirement that the partial sums stay within given bounds as done
in [BFL+08], or cheapest implementation satisfying a temporal property as sug-
gested in [CdAHS03,CD10], model checking metric temporal logic (LTL with
time durations) [Koy90], model checking infinite-state MTS similarly to PDA in
[Wal96], or cheapest implementation of mPDA using methods like [CV12].

Thirdly, on the practical side, all the tools only offer a limited support. In par-
ticular, the quotient of non-deterministic systems is very important for practical
design and has not yet been implemented. Refinement algorithms do not scale
too well on MTS extensions. Apart from multi-threading for all algorithms, one
could use a combined modal refinement checker, which uses the standard modal
refinement checker to prune the initial relation before the QBF-based checker is
called. Altogether, the topic is still lively and subject to further practical devel-

opments, e.g. the currently prepared update of
−→=⇒���
MoTraS features faster model

checking due to integrating a better LTL-to-automata translator Rabinizer 3
[KK14] and the cheapest implementation synthesizer [BKL+12,Man13].

Finally, the practical usability of MTS could be greatly improved by providing
a higher-level language, possibly tailored to particular domains, which has MTS
semantics, but a friendlier appearance to the domain-specific engineering practice.
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rabin pairs for probabilistic model checking and LTL synthesis. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 37
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[GM12] Giannakopoulou, D., Méry, D. (eds.): FM 2012. LNCS, vol. 7436.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9

[GNRT10] Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional
may-must program analysis: unleashing the power of alternation. In:
Hermenegildo, M.V., Palsberg, J. (eds.) POPL, pp. 43–56. ACM (2010)

[GP09] Godefroid, P., Piterman, N.: LTL generalized model checking revisited.
In: Jones, N.D., Müller-Olm, M. (eds.) [JMO09], pp. 89–104

[GSSL94] Gawlick, R., Segala, R., Søgaard-Andersen, J., Lynch, N.: Liveness in
timed and untimed systems. In: Abiteboul, S., Shamir, E. (eds.) ICALP
1994. LNCS, vol. 820, pp. 166–177. Springer, Heidelberg (1994). doi:10.
1007/3-540-58201-0 66

[GWC06a] Gurfinkel, A., Wei, O., Chechik, M.: Systematic construction of abstrac-
tions for model-checking. In: Emerson, E.A., Namjoshi, K.S. (eds.)
VMCAI 2006. LNCS, vol. 3855, pp. 381–397. Springer, Heidelberg
(2005). doi:10.1007/11609773 25

[GWC06b] Gurfinkel, A., Wei, O., Chechik, M.: Yasm: a software model-checker for
verification and refutation. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 170–174. Springer, Heidelberg (2006). doi:10.1007/
11817963 18

[Hen85] Hennessy, M.: Acceptance trees. J. ACM 32(4), 896–928 (1985)
[HH08] Hussain, A., Huth, M.: On model checking multiple hybrid views. Theor.

Comput. Sci. 404(3), 186–201 (2008)
[HHM13] Haddad, S., Hennicker, R., Møller, M.H.: Specification of asynchronous

component systems with modal I/O-petri nets. In: Abadi, M., Lluch
Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 219–234. Springer,
Cham (2014). doi:10.1007/978-3-319-05119-2 13

[HJS01] Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: a foun-
dation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001.
LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001). doi:10.1007/
3-540-45309-1 11

[HKK13] Hermanns, H., Krčál, J., Křet́ınský, J.: Compositional verification and
optimization of interactive Markov chains. In: D’Argenio, P.R., Mel-
gratti, H.C. (eds.) [DM13], pp. 364–379

[HKKG13] Han, T., Krause, C., Kwiatkowska, M.Z., Giese, H.: Modal specifications
for probabilistic timed systems. In: Bortolussi, L., Wiklicky, H. (eds.)
QAPL. EPTCS, vol. 117, pp. 66–80 (2013)
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Abstract. Quantitative regular expressions (QREs) have been recently
proposed as a high-level declarative language for specifying complex
numerical queries over data streams in a modular way. QREs have
appealing theoretical properties, and each QRE can be compiled into an
efficient streaming algorithm for its evaluation. In this paper, we general-
ize the notion of Brzozowski derivatives for classical regular expressions
to QREs. Such derivatives immediately lead to an algorithm for incre-
mental evaluation of QREs. While this algorithm does not have better
time or space complexity than the previously known evaluation tech-
nique, it has the benefit of being simpler to explain and easier to prove
correct.

1 Introduction

There are numerous applications that require the real-time processing of data
generated at high rates such as: analyzing stock market data, monitoring pro-
duction and manufacturing using sensors, network traffic monitoring, and click-
stream analysis on the web. A core computational problem that is relevant to
all such applications is the incremental aggregation of a stream of data items
into numerical values that are useful for real-time decision making. Due to the
enormous volume of data, these applications have hard constraints regarding
space usage and the time required to process each newly arriving element.

There is a large body of prior research on stream processing which focuses
on algorithmic techniques, often involving approximation and randomization, for
computing efficiently specific numerical quantities such as the median [18], the
number of distinct elements [17], the frequency moments [2], and aggregates over
sliding windows [15]. There have also been several proposals for languages and
systems that integrate stream processing with the data processing capabilities
of traditional relational database systems [1,8,9].

The formalism of Quantitative Regular Expressions (QREs) was recently
introduced in [5] with the orthogonal goal of providing convenient high-level
programming abstractions for specifying complex queries over data streams in a
modular way. QREs extend regular expressions, a well-established formalism for
imparting hierarchical structure to sequences of symbols, with numerical oper-
ations such as sum, difference, min, max, average, and median. A QRE thus
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describes both the regular parsing of the stream prefix seen so far and the hier-
archical calculation of a quantitative aggregate that reflects the structure of the
parse tree. This combination gives rise to a powerful declarative language, which
can express conveniently many useful queries and is amenable to space- and
time-efficient evaluation in the streaming model of computation. An implemen-
tation of QREs extended with extra features for processing realistic workloads is
reported in [21]. The expressiveness of QREs coincides with the class of regular
functions, which can be characterized with the model of Cost Register Automata
(CRAs) [4] or, equivalently, with the MSO-definable graph transformations [14].

The main computational problem for QREs is their evaluation in the stream-
ing model of computation. An efficient algorithm has already been described in
[5] and implemented in [21], but it is not based on automata-theoretic techniques,
and the question remains of whether there exists a simple model of automata
for the streaming evaluation of QREs. In the simpler setting of classical regular
expressions, the translation into a Nondeterministic Finite Automaton (NFA)
gives rise to a very efficient streaming evaluation algorithm: the state of the
algorithm consists of the active states of the NFA, and upon the arrival of a new
symbol the state is updated by performing all possible transitions. Another app-
roach for the evaluation problem is based on a technique proposed by Brzozowski
in 1964 [11], where he introduced the notion of derivation for regular expressions
extended with arbitrary Boolean operations. The derivative of an expression e
with respect to a symbol a, typically denoted as Da(e), is an expression given by
a simple recursive definition on the structure of e. The crucial property of these
derivatives is that a string of the form aw (starting with the symbol a) matches
an expression e iff the suffix w matches the derivative Da(e). This suggests a
streaming evaluation algorithm for regular expressions: the state is an expres-
sion, and upon arrival of a new symbol a the state is replaced by its derivative
with respect to a. A refinement of Brzozowski’s ideas was proposed by Antimirov
[7] under the name of partial derivatives. He described a representation of deriv-
atives as sets of partial derivatives, which correponds closely to the construction
of a NFA from an expression.

Given the success of automata-based techniques for the evaluation of plain
regular expressions, it is worthwhile investigating whether similar ideas can be
used for QRE evaluation. The well-studied model of weighted automata over
semirings (see the monograph [16] for a broad survey) seems relevant, but unfor-
tunately it is not expressive enough to handle the complex nesting of several
different quantitative operations found in QREs. In particular, by the Kleene-
Schützenberger theorem [22], weighted regular expressions can be easily trans-
lated into equivalent weighted automata and evaluated efficiently. On the other
hand, QREs can be translated into the model of deterministic CRAs [4], but this
translation incurs a doubly exponential blowup and is therefore not conducive to
efficient evaluation. A hierarchical automaton model for the streaming compu-
tation of an interesting class of quantitative queries is introduced in [6], but its
precise relationship to QREs and other automata formalisms remains to be clar-
ified. A conclusively appropriate notion of automaton for the efficient evaluation
of general quantitative queries has not been proposed yet, therefore a meaningful
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Table 1. Complexity results under syntactic and semantic restrictions

Query language Time-per-element and space complexity

Unrestricted, multiset semantics Exponential in stream/query

Unrestricted, unambiguous semantics Constant in stream, exponential in query

Strongly typed Constant in stream, polynomial in query

investigation is the development of a notion of derivative. Indeed, in the present
paper, we extend the notion of Brzozowski derivatives to QREs, and we show
that there is a representation of QRE derivatives that gives rise to an efficient
evaluation algorithm. This result offers a simple and clean alternative proof of
why QREs can be efficiently evaluated, and it strongly suggests the possibility
of an automata-based formulation of the evaluation algorithm. We should note
here that derivatives have already been studied in the weighted setting [20], but
the case of QREs is substantially different. See also [10] for an investigation of
how Brzozowski derivatives can be extended to various algebraic structures.

Outline of Paper. In Sect. 2 we present the syntax and meaning of QREs.
We consider two different natural semantics: (1) The multiset semantics allows
for several output values for a given stream prefix, each of which corresponds
to a different parse tree. (2) The unambiguous semantics, on the other hand,
specifies the output to be undefined when the input stream can be parsed in
more than one way. Thus, the unambiguous semantics ensures a single output
value for each input sequence. In Sect. 3 we define derivatives of QREs by gen-
eralizing the classical notion of Brzozowski derivatives of regular expressions,
and we propose an incremental evaluation algorithm based on derivatives. We
also consider in Sect. 4 a representation of QRE derivatives that is analogous to
Antimirov’s partial derivatives [7]. In the presence of intersection the number
of distinct Antimirov derivatives (for plain regular expressions) is exponentially
bounded by the size of the expression. We show how to obtain a similar bound
for QRE evaluation using the unambiguous semantics. Finally, we consider in
Sect. 5 a syntatic restriction for QREs [5] that guarantees unambiguous parsing.
Our complexity results for the streaming evaluation problem are summarized in
Table 1. Although the proposed derivative-based algorithm has the same time
and space complexity as the previously known method [5], our approach here is
cleaner and the analysis of the algorithm much simpler. We conclude in Sect. 6
with a summary of our results and directions for future work.

2 Quantitative Regular Expressions

The formalism of Quantitative Regular Expressions offers a declarative language
for describing complex hierarchical computations on streams of data values. As
an illustrative example, consider the application of patient monitoring, where
the data stream is a time series of timestamped measurements produced by a
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sensor attached to a patient. We want to analyze the data stream by first iden-
tifying regions of interest which we call “episodes”. These are maximal inter-
vals where the measurements are above a fixed threshold value. Every episode
is summarized by recording the average measurement, the maximum measure-
ment, and the duration of the episode. The top-level query is an aggregation over
the last 30 days (e.g., by calculating the average) of the episode statistics. This
query imparts a hierarchical structure on the data stream by splitting it into
episodes, bucketing episodes into days, and considering the last 30 days every
time the aggregate statistics are computed. To describe this computation we
need a language that supports regular constructs such as iteration (to express,
e.g., that an episode is a sequence of measurements exceeding the threshold)
and concatenation (to express, e.g., that an episode is followed by a sequence
of measurements below the threshold), extended with quantitative operations
for computing numerical aggregates (e.g., the maximum measurement of the
sequence of measurements that constitute an episode).

In this section we present the syntax and semantics of Quantitative Regular
Expressions. A QRE is interpreted over a stream of data values, and specifies
for each finite prefix of the stream an output value. We consider two different
semantics: the multiset semantics which records several different output possibil-
ities, and the unambiguous semantics which only allows the output to be defined
when it is uniquely determined. Since we are interested in computing well-defined
functions on data streams, the multiset semantics is not satisfactory. We con-
sider it here, however, because it is a natural semantics from a mathematical
perspective, and it is useful for formulating and proving our results regarding
efficient evaluation. The unambiguous semantics is simply a projection of the
multiset semantics, and therefore several results w.r.t. to the multiset semantics
transfer essentially unchanged to the unambiguous semantics.

To define QREs, we first choose a typed signature which describes the basic
data types and operations for manipulating them. We fix a collection of basic
types, and we write A,B, . . . to range over them, as well as a collection of basic
operations on them, e.g. op : A1 × · · · × Ak → B. The identity function on
D is written idD : D → D. For every basic type D, assume that we have
fixed a collection of atomic predicates, so that the satisfiability of their Boolean
combinations is decidable. We write φ : D → B to indicate that φ is a predicate
on D, and trueD : D → B for the predicate that is always true. The unit type,
with unique inhabitant def, is U and !D : D → U is the unique function from
D to U. We also write π1 : A × B → A and π2 : A × B → B for the left and
right projection respectively. We assume that the collection of basic operations
contains all identities and projections, and is closed under pairing and function
composition. For example, if op : A × B → C and a ∈ A are basic operations,
then so is (op a) = λb.op(a, b) : B → C.

Every QRE is defined on a regular subset of stream prefixes, so we first
introduce a variant of regular expressions with unary predicates to describe the
domains of definition of QREs. For a basic type D, we define (Symbolic) Regular
Expressions (REs) over D with the grammar r ::= ⊥ | ε | φ | r�r | r·r | r∗ | r�r,
where φ : D → B. The expression rn is abbreviation for r ·r · · · r with r repeated
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(bottom)⊥ : QRE〈D, C〉
c ∈ C

(empty)
eps(c) : QRE〈D, C〉

satisfiable φ : D → B op : D → C
(single item)

atom(φ, op) : QRE〈D, C〉
f, g : QRE〈D, C〉

(choice)
f � g : QRE〈D, C〉

f : QRE〈D, A〉 g : QRE〈D, B〉 op : A × B → C
(split)

split(f, g, op) : QRE〈D, C〉
init : QRE〈D, B〉 body : QRE〈D, A〉 E(body) = ∅ op : B × A → B

(iteration)
iter(init, body, op) : QRE〈D, B〉
f : QRE〈D, A〉 op : A → B

(application)
op(f) : QRE〈D, B〉

f : QRE〈D, A〉 g : QRE〈D, B〉 op : A × B → C
(combination)

op(f, g) : QRE〈D, C〉
E(⊥) = E∅ (f � g) = E(f) 	 E(g)

E(eps(c)) = {c} E(split(f, g, op)) = M(op)(E(f), E(g))

E(atom(φ, op)) = ∅ E(iter(f, g, op)) = E(f)

E(op(f)) = M(op)(E(f)) E(op(f, g)) = M(op)(E(f), E(g))

Fig. 1. Syntax of Quantitative Regular Expressions (QREs) without ε-cycles.

n times. We write r : RE〈D〉 to indicate that r is a regular expression over D.
We define �r� : D∗ → N to be the weighted semantics of regular expressions
without ε-cycles (i.e., no ε-cycles in the corresponding ε-NFA [19]) that counts
the number of different parse trees.

�⊥�w = 0
�ε� ε = 1

�ε�w = 0 (w 	= ε)
�φ� d = 1 (d |= φ)
�φ� d = 0 (d 	|= φ)
�φ�w = 0 (w /∈ D)

�r1 � r2�w = (�r1�w) + (�r2�w)
�r1 · r2�w =

∑
w=uv(�r1�u) · (�r2� v)

�r∗�w =
∑

w=u1···un
(�r�u1) · · · (�r�un)

�r1 � r2�w = (�r1�w) · (�r2�w)

This semantics corresponds to standard operations for formal power series [16].
In Fig. 1 we define Quantitative Regular Expressions (QREs), which we also

call queries. The queries are typed, and we write f : QRE〈D,C〉 to indicate that
the query f has input type D and output type C. The original definition of QREs
in [5] was more general in that it involved an extra sort of typed parameters, and
the outputs were essentially algebraic terms built from the parameters and the
operations of the signature. The definition of [5] was motivated by expressiveness
considerations, i.e. so that QREs capture exactly the class of regular functions
over the same signature [3,4,14]. We consider here a simpler language, where the
outputs are just values. This simplification makes QREs significantly more usable
for practical queries and obviates the need for a term simplification procedure
(see Sect. 3.2 of [5]) that depends on the nature of the data types and operations
of the signature.
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The language of Fig. 1 has eight core constructs: (1) ⊥ is undefined for
every input sequence; (2) eps(c) maps the empty stream to the output value c;
(3) atom(φ, op) maps an input stream consisting of a single item satisfying the
predicate φ to an output computed by applying the operation op; (4) f � g
nondeterministically chooses either f or g to apply; (5) split(f, g, op) splits
the input stream into two parts, applies the queries f and g to the left and
right parts respectively, and combines their results using the operation op; (6)
iter(init, body, op) splits the input into multiple parts uv1v2 . . . vn, applies
init to u (which gives b) and body to each vi (which gives ai), and combines the
sequence of values a1a2 . . . an using the initial value b and the binary aggregation
operation op in the style of the fold combinator used in functional programming;
(7) op(f) applies the query f and transforms its output using the operation op;
(8) op(f, g) applies both f, g and combines their results using the operation op.

The definition of queries is by mutual induction with the function E ,
which sends a query of type QRE〈D,C〉 to a finite multiset over its output
type C. The E function is meant to give the output of a query on the empty
sequence, and it is used for the assumption E(body) = ∅ for the iteration query
iter(init, body, op). It is necessary to define the syntax of queries simultane-
ously with E in order to eliminate queries with ε-cycles, that is, queries where
the body g of the iteration query iter(f, g, op) matches the empty sequence ε.
When the semantics is defined later, we will see that ε-cycles result in having
an infinity of output values. This complication of ε-cycles appears also in the
context of weighted automata and expressions [16]. The operation � in Fig. 1
is multiset union. For a set X, we write M(X) to denote the set of all finite
multisets over X. For a unary operation op : A → B, we define the lifting
M(op) : M(A) → M(B) by M(op)(X) = {op(a) | a ∈ X}. Similarly, for an oper-
ation op : A × B → C, we define the lifting M(op) : M(A) × M(B) → M(C) by
M(op)(X,Y ) = {op(a, b) | a ∈ X and b ∈ Y }.

Multiset Semantics. We give a denotational semantics of queries in terms of
functions of type D∗ → M(C). We call this the multiset semantics of queries.
The domain of f is the set of sequences for which the value of f is nonempty,
i.e. dom(f) = {w ∈ D∗ | f(w) 	= ∅}. The denotation of a query f : QRE〈D,C〉
is the function �f� : D∗ → M(C), where �·� is called the interpretation function
and is defined by induction on the structure of queries as shown in Fig. 2. To
reduce the notational clutter we sometimes write �f�w instead of �f�(w). The
semantics of iteration involves the multiset fold combinator mfold, which is a
generalization of the familiar fold combinator to multisets of values. The def-
initions of mfold and fold are by recursion on the length of the sequence. For
example, fold(s, op, a1a2) = op(op(s, a1), a2)) and

mfold({b1, b2}, op, {a1} {a2, a3}) =
{op(op(b1, a1), a2), op(op(b1, a1), a3), op(op(b2, a1), a2), op(op(b2, a1), a3)}.

For an iteration query h = iter(f, g, op), the typing restriction E(g) = ∅ implies
that �g� ε = ∅ (formally proved later in Theorem5). So, to calculate the value
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Fig. 2. Finite multiset semantics of Quantitative Regular Expressions without ε-cycles.

�h�w (see Fig. 2) we only need to consider the splittings w = uv1 . . . vn of w
where n ≥ 0 and vi 	= ε for every i = 1, . . . , n.

For every input sequence w, the value �f�w is a finite multiset whose size is
at most exponential in the size of w. More precisely, (size of �f�w) ≤ 2|f|·|w| for
every query f : QRE〈D,C〉 and every sequence w ∈ D∗.

The multiset semantics of queries induces an equivalence relation on them,
written as ≡. Two queries are equivalent if their denotations are equal. We can
then write equations such as split(f, eps(b), op) ≡ opb(f), where opb is the
unary operation given by opb(x) = op(x, b) for all x.

Example 1. The query f = atom(trueN, idN) : QRE〈N,N〉 matches a single
number and returns it. Using it as the body of an iteration, we write the query
g = iter(f, f,+) which processes a nonempty sequence of numbers and returns
their sum. Now, the query g′ = iter(f′, f′,+), where f′ = atom(trueN, λx.1),
processes a nonempty sequence and returns its length. If div : N × N → Q and
div(x, y) is the result of dividing x by y, the query h = div(g, g′) : QRE〈N,Q〉
calculates the average of a nonempty sequence of natural numbers.

Rates. The rate of a query is a symbolic regular expression that denotes its
domain. It is defined by induction:

rate(⊥) = ⊥ rate(f � g) = rate(f) � rate(g)
rate(eps(c)) = ε rate(split(f, g, op)) = rate(f) · rate(g)

rate(atom(φ, op)) = φ rate(iter(f, g, op)) = rate(f) · rate(g)∗

rate(op(f)) = rate(f) rate(op(f, g)) = rate(f) � rate(g)

Notice that the value of rate is always an expression without ε-cycles.

Unambiguous Semantics. We defined previously the multiset semantics of
queries, which allows a query to have several (finitely many) outputs for a given
input sequence. Now, we take the viewpoint that a query should specify a unique
output value (or be undefined) for a given input sequence. This means that we
want to ignore output multisets of cardinality greater than one, which we do
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by setting the output to be undefined. This is the unambiguous semantics for
queries. For a query f : QRE〈D,C〉, this is given formally as follows:

〈〈f〉〉 w = θ(�f�w), where θ(X) = X if |X| = 1 and θ(X) = ∅ otherwise

So, 〈〈f〉〉 is a function D∗ → M(C) so that each output multiset is of cardinal-
ity at most one, which we call an unambiguous function. This means that 〈〈f〉〉
can be also represented as a partial function D∗ ⇀ C. We say that a query
f is unambiguous when the multiset meaning �f� is an unambiguous function.
This is equivalent to �f� = 〈〈f〉〉, which says that the multiset and unambiguous
semantics coincide. See the papers [12,13] for recent surveys of unambiguity in
traditional automata theory.

It is necessary that the �−� semantics records the multiplicity of each output
value, otherwise 〈〈 − 〉〉 cannot be defined as a projection or �−�. Indeed, we see
in the example below that we can write queries that return exactly one output
value of multiplicity greater than one.

Example 2. The query f = iter(eps(0), atom(trueN, idN),+) : QRE〈N,N〉,
which processes a sequence of natural numbers and returns their sum, is unam-
biguous. The query g = iter(eps(def), atom(trueN, !N), !N×N) : QRE〈N,U〉,
which matches a sequence of natural numbers and returns nothing, is also unam-
biguous. The query split(g, f, π2) : QRE〈N,N〉, which matches a sequence of
natural numbers and returns the sum of every suffix of the sequence, is ambigu-
ous because every sequence of length � can be parsed in �+1 different ways. The
query that matches sequences of length at least two and returns the sum of the
last two elements is split(g, split(atom(trueN, idN), atom(trueN, idN),+), π2) :
QRE〈N,N〉 and is unambiguous. The query split(f, f,+) : QRE〈N,N〉 is ambigu-
ous but single-valued: for a sequence of length �, it returns the sum of its elements
with multiplicity equal to � + 1.

The unambiguous semantics of queries induces an equivalence relation on
them, written as ∼∼∼. Two queries f and g are ∼∼∼-equivalent if their denotations
〈〈f〉〉 and 〈〈g〉〉 are equal. We observe that the equivalence relation ∼∼∼ is strictly
coarser than ≡, that is, f ≡ g implies f ∼∼∼ g and there exist queries that are
∼∼∼-equivalent but ≡-inequivalent.

Observation 3. A finite multiset Q of queries of the same type can also be
thought of as a query, namely the finite choice over the queries of Q. We now
want to find some sufficient conditions for reducing the cardinality of Q, while
preserving its meaning under the unambiguous semantics. This will turn out
to be useful later in Sect. 4, where an evaluation algorithm for QREs using
Antimirov derivatives is presented (Fig. 3 and Theorem 9).

Suppose Q contains the queries f1, f2, . . . , fk with k ≥ 2 that have the
same rate, that is r = rate(fi) for every i, and there is no other query in Q that
has this rate. The condition on the rates implies that all functions �fi� have the
same domain D1 = dom(�fi�), and moreover all functions 〈〈fi〉〉 have the same
domain D2 = dom(〈〈fi〉〉) ⊆ D1.
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(1) Remove all of f1, . . . , fk (wrong): We claim that Q′ = Q \ {f1, . . . , fk}
is not necessarily equivalent to Q. Suppose that Q = {f1, . . . , fk, g}, the
queries of Q are all unambiguous, and the domains dom(�g�) = dom(〈〈g〉〉)
and D1 = D2 intersect. So, all queries of Q are defined on some sequence w.
Then, 〈〈Q〉〉 is not defined on w because the cardinality of �Q�w is greater
than one, but 〈〈Q′〉〉 is defined on w and equal to 〈〈g〉〉 w. So, Q 	∼∼∼ Q′.

(2) If k ≥ 3 then remove f3, . . . , fk and keep f1, f2 (correct): Define the multiset
Q′ = Q\{f3, . . . , fk}. We claim that Q ∼∼∼ Q′. Let w be an arbitrary sequence.
If w belongs to the domain of the functions �fi�, then both 〈〈Q〉〉 and 〈〈Q′〉〉
are undefined on w, because the cardinalities of �Q�w and �Q′�w are greater
than one. Suppose now that w does not belong to the domain of the functions
�fi�. Then, �Q�w = �Q \ {fi | i}�w = �Q′�w and hence 〈〈Q〉〉 w = 〈〈Q′〉〉 w.

This means that we can always reduce Q so that it has at most two queries with
the same rate, while preserving its unambiguous semantics.

3 Brzozowski Derivative

We introduce in this section the Brzozowski derivative [11] of Quantitative Reg-
ular Expressions, which is a straightforward adaption of derivatives for classical
regular expressions. The main property of these derivatives is that their seman-
tic counterpart agrees with the syntactic counterpart. This agreement property
gives as a corollary the existence of an incremental algorithm for evaluating
QREs on streams of data items.

Example 4. The Brzozowski derivative DB
a(r) of a regular expression r w.r.t.

the letter a denotes the language that results from the language of r by removing
the starting a letter from those words that start with a. For example, r =
(a � b)∗bb denotes the language of all strings over Σ = {a, b} that end in bb,
DB

a(r) = (a � b)∗bb = r, DB

ab(r) = DB

b(DB
a(r)) = DB

b(r) = r � b and DB

abb(r) =
DB

b(DB

ab(r)) = DB

b(r � b) = r � b � ε. The string abb matches r because the empty
string ε matches the derivative DB

abb(r).
A query of type QRE〈N,N〉 that is similar in form to the regex r is k = split

(g, h,max), where g = iter(eps(0), fe � fo,+), fe = atom(evenN, idN), fo =
atom(oddN, idN), and h = split(fo, fo,+). The unambiguous query k matches
sequences that end with two odd numbers and returns the maximum of x, y where
y is the sum of the last two numbers and x is the sum of the rest of the numbers.
The extension of derivatives to QREs should give rise to the following calculations:

DB

4(k) = split(iter((λx.0 + x)(eps(4)), fe � fo,+), h,max)
DB

43(k) = split(iter((λx.4 + x)(eps(3)), fe � fo,+), h,max) �
(λx.max(4, x))((λx.3 + x)(fo))

DB

435(k) = split(iter((λx.7 + x)(eps(5)), fe � fo,+), h,max) �
(λx.max(7, x))((λx.5 + x)(fo)) �
(λx.max(4, x))((λx.3 + x)(eps(5)))
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DB

4351(k) = split(iter((λx.12 + x)(eps(1)), fe � fo,+), h,max) �
(λx.max(12, x))((λx.1 + x)(fo)) �
(λx.max(7, x))((λx.5 + x)(eps(1)))

From the above we notice that ε matches DB
435(k) with value max(4, 3 + 5) = 8,

and it also matches DB
4351(k) with value max(7, 5 + 1) = 7.

A simple streaming algorithm that implements the computation described
by h can be given by maintaining the following state: the sum of all elements so
far except for the last two, and the two most recent elements. The reader can
observe that the derivatives calculated earlier record this information, and it can
be found inside the queries that are constructed. For example, in the derivative
DB

4351(k) we see (last line) the sum 7 and the elements 5, 1. The structure of the
derivative also encodes how these three numbers should be combined to produce
the output max(7, 5 + 1) = 7. ��

For a function f : D∗ → M(C), we define the semantic derivative Du(f) :
D∗ → M(C) with respect to the sequence u ∈ D∗ of data items as

Du(f)w = f(uw) for all w ∈ D∗.

An immediate consequence is that Dv(Du(f)) = Duv(f) for all sequences u and
v in D∗. Moreover, f(u) = Du(f)(ε) for every sequence u ∈ D∗. For a query f of
type QRE〈D,C〉 and a data item d ∈ D, the (syntactic) Brzozowski derivative
DB

d(f) of f w.r.t. d is also a query of type QRE〈D,C〉.

DB

d(eps(c)) = DB

d(⊥) = ⊥
DB

d(atom(φ, op)) = ⊥, if d 	|= φ

DB

d(atom(φ, op)) = eps(op(d)), if d |= φ

DB

d(f � g) = DB

d(f) � DB

d(g)
DB

d(op(f)) = op(DB

d(f))
DB

d(op(f, g)) = op(DB

d(f),DB

d(g))

DB

d(split(f, g, op)) = split(DB

d(f), g, op) � ⊔
a∈E(f)(op a)(DB

d(g))

DB

d(iter(f, g, op)) = iter(DB

d(f), g, op) � ⊔
b∈E(f)iter((op b)(DB

d(g)), g, op)

The derivative DB
w(f) w.r.t. a sequence w ∈ D∗ is defined by induction on w:

DB
ε(f) = f and DB

dw(f) = DB
w(DB

d(f)). A crucial result is the correpondence
between semantic and syntactic derivatives:

Theorem 5 (Derivative Agreement). For every query f of type QRE〈D,C〉
and every data item d ∈ D, we have that E(f) = �f� ε and Dd(�f�) = �DB

d(f)�.

Theorem 5 suggests immediately an algorithm for evaluating queries. Given
a sequence w = d1d2 . . . dn and a query f, we notice that �f�w is equal to

Dw(�f�) ε = Ddn
· · · Dd1(�f�) ε = �DB

dn
· · · DB

d1
(f)� ε = E(DB

dn
· · · DB

d1
(f)).

So, to compute the value of a query on a given input, we iteratively calculate
the derivative of the query w.r.t. each input item, and finally apply the E func-
tion. We suggest an optimization of this evaluation procedure by incorporating
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query rewriting to eliminate subqueries that cannot contribute to the result. The
equations op(⊥) ≡ ⊥ and

⊥ � f ≡ f split(⊥, f, op) ≡ ⊥ op(⊥, f) ≡ ⊥ iter(⊥, f, op) ≡ ⊥
f � ⊥ ≡ f split(f,⊥, op) ≡ ⊥ op(f,⊥) ≡ ⊥ iter(f,⊥, op) ≡ f

are all valid, that is, they are true for every query f. If we orient these equations
from left to right, then we get a rewrite system for simplifying queries. We will
assume that our Brzozowski derivative-based evaluation procedure simplifies all
intermediate queries as much as possible (according to this rewrite system).

Example 6. Consider the always-true predicate trueN : N → B, the identity
function idN : N → N, the constant zero function λx.0 : N → N, and the binary
sum + : N × N → N. Using these operations we write the queries

f = atom(trueN, idN) g = atom(trueN, λx.0) h = iter(eps(0), f � g,+)

of type QRE〈N,N〉. The top-level query is h, which maps an input sequence of
natural numbers into the multiset of all possible partial sums over those numbers.
First, notice that the derivatives of f and g w.r.t. the number d ∈ N are DB

d(f) =
eps(d) and DB

d(g) = eps(0) respectively. Moreover, E(eps(0)) = {0}. We will use
the derivative-based evaluation algorithm to find the value of the query h on the
input sequence abc ∈ N

∗. This amounts to calculating E(DB
c(DB

b(DB
a(h)))), since

Theorem 5 implies that it equals �h� abc. The steps of this calculation are:

DB

a(h) = iter(eps(a) � eps(0), f � g,+)
E(DB

a(h)) = {a, 0}
DB

b(DB

a(h)) = iter((λx.a + x)(eps(b) � eps(0)), f � g,+) �
iter((λx.0 + x)(eps(b) � eps(0)), f � g,+)

E(DB

b(DB

a(h))) = {a + b, a, b, 0}
DB

c(DB

b(DB

a(h))) = iter((λx.(a + b) + x)(eps(c) � eps(0)), f � g,+) �
iter((λx.a + x)(eps(c) � eps(0)), f � g,+) �
iter((λx.b + x)(eps(c) � eps(0)), f � g,+) �
iter((λx.0 + x)(eps(c) � eps(0)), f � g,+)

E(DB

c(DB

b(DB

a(h)))) = {a + b + c, a + b, a + c, a, b + c, b, c, 0}

We have used implicitly the rewrite rules for eliminating ⊥ as much as possible.

The previous example shows that there are queries whose evaluation requires
an enormous amount of computational resources. Given that the size of the
output can be exponential in the size of the input sequence and the size of the
query, we have exponential time and space requirements for every evaluation
algorithm.
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4 Antimirov Derivative

The evaluation of the general QREs of Fig. 1 w.r.t. the multiset semantics is
inherently expensive, since the output itself can be of size exponential in the
size of the query and the input sequence. So, we focus here on the evaluation of
QREs w.r.t. the unambiguous semantics, and our goal is to describe a stream-
ing algorithm that uses resources that are independent of the size of the input
stream. Using a variant of the partial derivatives of Antimirov [7], we show that
this is indeed possible. We obtain a streaming algorithm for evaluation that uses
space and time-per-element exponential in the size of the query and indepen-
dent of the stream length. The crucial idea for this algorithm is that we can
prune the Antimirov derivative to contain only a couple of QREs with the same
rate without changing its unambiguous meaning. Antimirov-style derivatives are
preferable for the results of this section, because the representation itself encodes
many valid equations on queries that are useful for proving the result. This is
similar to classical regular expressions where the Antimirov derivatives encode
the ACI rules (associativity, commutativity and idempotence) by virtue of the
set-based representation.

Example 7. We continue with Example 4 to consider Antimirov derivatives.
Recall that r = (a � b)∗bb, and that Antimirov derivatives are a set-based repre-
sentation of Brzozowski derivatives. That is, DA

a(r) = {r}, DA

ab(r) = DA

b({r}) =
{r, b} and DA

abb(r) = DA

b({r, b}) = {r, b, ε}. For the query k of Example 4 we
calculate using Antimirov-style derivatives:

DA

4(k) = {split(iter((λx.0 + x)(eps(4)), fe � fo,+), h,max)}
DA

43(k) = {split(iter((λx.4 + x)(eps(3)), fe � fo,+), h,max),
(λx.max(4, x))((λx.3 + x)(fo))}

DA

435(k) = {split(iter((λx.7 + x)(eps(5)), fe � fo,+), h,max),
(λx.max(7, x))((λx.5 + x)(fo)),
(λx.max(4, x))((λx.3 + x)(eps(5)))}

Since the choice operation � for queries is not idempotent, we need multisets for
the representation of QRE Antimirov derivatives. ��

For a regular expression r : RE〈D〉 we define E(r) ∈ {0, 1} (the two-element
Boolean algebra with join operation + and meet operation ·) and the Antimirov
derivative DA

d(r) w.r.t. d ∈ D, which is a set of regular expressions of type RE〈D〉:
E(⊥) = 0
E(ε) = 1
E(φ) = 0

E(r1 � r2) = E(r1) + E(r2)
E(r1 � r2) = E(r1) · E(r2)
E(r1 · r2) = E(r1) · E(r2)

E(r∗) = 1

DA

d(ε) = DA

d(⊥) = ∅
DA

d(φ) = ∅, if d 	|= φ

DA

d(φ) = {ε}, if d |= φ

DA

d(r1 � r2) = DA

d(r1) ∪ DA

d(r2)
DA

d(r1 � r2) = DA

d(r1) � DA

d(r2)
DA

d(r1 · r2) = DA

d(r1) · r2 ∪ E(r1) · DA

d(r2)
DA

d(r
∗) = DA

d(r) · r∗
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Fig. 3. Streaming evaluation algorithm for an arbitrary query f : QRE〈D, C〉, with
respect to the unambiguous semantics of QREs.

For subsets X,Y of expressions we have used in the definition the abbreviations:
X � Y = {r � s | r ∈ X, s ∈ Y }, X · s = {r · s | r ∈ X}, 0 · X = ∅ and 1 · X = X.

Lemma 8. For every regular expression r, the set
⋃

w∈D∗DA
w(r) of all derivatives

of r is of size exponential in r.

For a query f of type QRE〈D,C〉 and a data item d ∈ D, the Antimirov
derivative DA

d(f) of f w.r.t. d is a finite multiset of queries of type QRE〈D,C〉.

DA

d(eps(c)) = DA

d(⊥) = ∅
DA

d(atom(φ, op)) = ∅, if d 	|= φ

DA

d(atom(φ, op)) = {eps(op(d))}, if d |= φ

DA

d(f � g) = DA

d(f) � DA

d(g)
DA

d(op(f)) = op(DA

d(f))
DA

d(op(f, g)) = op(DA

d(f),DA

d(g))

DA

d(split(f, g, op)) = split(DA

d(f), g, op) � ⊎
a∈E(f)(op a)(DA

d(g))

DA

d(iter(f, g, op)) = iter(DA

d(f), g, op) � ⊎
b∈E(f)iter((op b)(DA

d(g)), g, op)

We have used above convenient abbreviations like op(X) = {op(f) | f ∈ X}.
The derivative DA

w(f) w.r.t. a sequence w ∈ D∗ is defined by induction on w:
DA

ε(f) = {f} and DA

dw(f) =
⋃{DA

w(g) | g ∈ DA

d(f)}.

Theorem 9. The algorithm of Fig. 3 solves the evaluation problem for QREs
w.r.t. the unambiguous semantics. It requires space and time-per-element that
are constant in the length of the stream, and exponential in the size of the
query.

Proof. To prove that the algorithm of Fig. 3 is correct, we observe that it satisfies
the following crucial invariant: after consuming the input w ∈ D∗, the multiset
S is ∼∼∼-equivalent to the derivative DA

w(f). This is because the removal step of
the Update procedure preserves the unambiguous meaning of S (recall Obser-
vation 3). It remains to see that the Antimirov derivative is a streamlined repre-
sentation of the Brzozowski derivative. That is, for every query f : QRE〈D,C〉
and every data item d ∈ D, it holds that DB

d(f) ≡ ⊔DA

d(f). The equivalences
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f � g ≡ g � f op(f � g, h) ≡ op(f, h) � op(g, h)
op(f � g) ≡ op(f) � op(g) op(f, g � h) ≡ op(f, g) � op(f, h)

split(f � g, h) ≡ split(f, h) � split(g, h)
iter(f � g, h, op) ≡ iter(f, h, op) � iter(g, h, op)

are used in the proof of this claim. Essentially, the above equations are encoded in
the derivatives by way of their representation as multisets of queries. The output
procedure returns 〈〈S〉〉 ε = 〈〈DA

w(f)〉〉 ε = θ(�DB
w(f)� ε) = θ(�f�w) = 〈〈f〉〉 w.

The Antimirov derivatives on QREs correspond closely to the Antimirov
derivatives on regular expressions. For every query g ∈ DA

d(f), it holds that
rate(g) ∈ DA

d(rate(f)). Because of the pruning step, the state S contains at most
two queries for every possible rate of the derivatives. Since there are at most
exponentially many derivatives of rate(f) by Lemma 8, the cardinality of S is
also at most exponential in f and independent of the size of the input sequence.
The time to process each element is also exponential in |f|. ��
Example 10. The query f = atom(trueN, idN) is of type QRE〈N,N〉 and it maps
a single natural number to itself. The query g = iter(eps(0), f,+) maps any
sequence of natural numbers to their sum. We calculate the derivative of g:

E(eps(0)) = {0} DA

d(f) = {eps(d)} DA

d(eps(0)) = ∅
DA

d(g) = iter(DA

d(eps(0)), f,+) � iter((λx.0 + x)(DA

d(f)), f,+)
= {iter((λx.0 + x)(eps(d)), f,+)}

For x, y ∈ N define gxy = iter((λz.x + z)(eps(y)), f,+). The derivative of gxy

is:

DA

d(gxy) = iter(DA

d((λz.x + z)(eps(y))), f,+) �
iter((λz.(x + y) + z)(DA

d(f)), f,+)
= {iter((λz.(x + y) + z)(eps(d)), f,+)} = gx+y,d

because E((λz.x + z)(eps(y))) = {x + y} and DA

d((λz.x+z)(eps(y))) = ∅. ��

5 Strongly Typed Queries and Hierarchical Derivatives

Following [5], we consider a syntactic restriction of QREs that ensures unam-
biguity of parsing. This means that the multiset and unambiguous semantics
coincide, thus this subclass of QREs inherently describes well-defined functions
on data streams. Together with an additional restriction that demands in expres-
sions of the form op(f, g) the subqueries f and g to have the same domain, it
can be ensured that the evaluation of QREs can be performed efficiently, that
is, using space and time-per-element that is polynomial in the size of the query
and independent of the stream. Such an algorithm is proposed in [5] and imple-
mented in [21], but it is hard to describe and even harder to analyze. We consider
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here an alternative approach based on derivatives, which gives rise to an evalua-
tion algorithm of the same complexity that is much easier to describe and prove
correct. The main technical tool is a novel representation of derivatives, which
we call hierarchical derivatives. This is a very space-efficient representation and
is crucial for obtaining our complexity bounds.

Before defining the subclass of strongly typed queries, we introduce some
definitions that will be used for formalizing the idea of uniqueness of parsing.
The languages L1, L2 are said to be unambiguously concatenable if for every
word w ∈ L1 · L2 there are unique w1 ∈ L1, w2 ∈ L2 with w = w1w2. The
language L is said to be unambiguously iterable if for every word w ∈ L∗ there is
a unique integer n ≥ 0 and unique wi ∈ L with w = w1 · · · wn. These definitions
extend to regular expressions in the obvious way.

We say that a query is strongly typed if the following hold: (1) for every
subquery f � g the rates rate(f) and rate(g) are disjoint, (2) for every subquery
split(f, g, op) the rates rate(f) and rate(g) are unambiguously concatenable. (3)
for every subquery iter(f, g, op) the rate rate(g) is unambiguously iterable and
rate(f), rate(g)∗ are unambiguously concatenable, and (4) for every subquery
op(f, g) the rates rate(f) and rate(g) are equivalent. It is shown in [5] that
checking whether a query is strongly typed can be done in polynomial-time.

Lemma 11. If the query f is strongly typed, then �f� is an unambiguous func-
tion. So, the multiset and unambiguous semantics coincide, i.e. �f� = 〈〈f〉〉.

The main problem with the Antimirov derivative of Sect. 4 is the treatment of
op(f, g), where DA

d(op(f, g)) = {op(f′, g′) | f′ ∈ DA

d(f), g
′ ∈ DA

d(g)}. This defini-
tions corresponds to a cartesian product of derivatives, thus causing a quadratic
blowup in the number of possible derivatives. As we will see later in Example 14,
this blowup can materialize even in the context of strongly typed queries. Since
the output combination operation can nest with other regular constructs, the
Antimirov representation can result in an exponenial blowup, which is avoidable
in the strongly typed case. In order to prove this, we need a new representa-
tion that avoids this “cartesian product” problem of the Antimirov derivative
by allowing sets of queries to be used as subexpressions.

We thus generalize the syntax of strongly typed queries to allow finite sets
of queries as subexpressions. Intuitively, these finite sets of queries extend the
choice operation � to a finite number of arguments. Since the subqueries of f�g
must have disjoint domains, the � constructor is associative and commutative,
which means that we can represent (f � g) � h as {f, g, h}. This finite choice
constructor can be nested arbitrarily with the other query constructors. In Fig. 4
we see the formal definition, where queries and q-sets (finite sets of queries) are
defined by mutual induction. To reduce the notational clutter, we sometimes
write the query f instead of the q-set {f}, for example iter〈f, g, op〉 instead of
iter〈{f}, {g}, op〉. The rate of a generalized query is defined in the usual way,
the only difference being rate({f1, . . . , fk}) = rate(f1) � · · · � rate(fk).

For the expressions of Fig. 4 we define in Fig. 5 a new kind of derivative,
called the (syntactic) hierarchical derivative DH

d(·), which maps a query of type
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Fig. 4. Generalized syntax for strongly typed QREs.

Fig. 5. Hierarchical derivatives for generalized QREs.

QRE〈D,C〉 or a q-set of type QSET〈D,C〉 to a q-set of type QSET〈D,C〉. The
hierarchical derivative DH

w(F) w.r.t. a sequence w ∈ D∗ is defined by induction
on w: DH

ε(F) = F and DH

dw(F) = DH
w(DH

d(F)). For every sequence u ∈ D∗, the
derivative DH

u(split〈F, G, op〉) is of the form:

{split〈DH

u(F), G, op〉, op〈a1,DH

v1
(G)〉, . . . , op〈an,DH

vn
(G)〉}

for some ai ∈ A and sequences vi ∈ D∗. Because of unambiguity, the rates
of the derivatives DH

v1
(G), . . . , DH

vn
(G) are pairwise disjoint. Similarly, for every

sequence u ∈ D∗, the derivative DH
u(iter〈F, G, op〉) is of the form:

{iter〈DH

u(F), G, op〉, iter〈op〈b1,DH

v1
(G)〉, G, op〉, . . . , iter〈op〈bn,DH

vn
(G)〉, G, op〉}
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for some bi ∈ B and sequences vi ∈ D∗. Again, because of unambiguity, the
rates of the derivatives DH

u(F), DH
v1

(G), . . . , DH
vn

(G) are pairwise disjoint. A key
technical lemma to obtain an efficient evaluation algorithm is that the derivatives
of strongly typed queries are of polynomial size. To show this, first we define a
reasonable notion of size of queries:

size({fi}i) =
∑

isize(fi)
size(eps(c)) = 1

size(atom(φ, op)) = 2

size(op〈F〉) = 1 + size(F)
size(op〈F, G〉) = 1 + size(F) + size(G)

size(split〈F, G, op〉) = 1 + size(F) + size(G)
size(iter〈F, G, op〉) = 1 + size(F) + size(G)

In order to obtain the desired lemma, the claim has to be strengthened:

Lemma 12. Let F be a q-set in QSET〈D,C〉 and u1, . . . , un be sequences over
D such that the rates of DH

u1
(F), . . . , DH

un
(F) are pairwise disjoint. Then:

(1) At most size(F) of the sets DH
u1

(F), . . . , DH
un

(F) are nonempty.
(2) The space needed to represent DH

u1
(F)∪ · · · ∪DH

un
(F) is bounded by size(F)2.

Proof. To prove the lemma, we must extend the same claim to queries as well.
The proof then proceeds by induction on the structure of queries and q-sets. The
base cases eps(c) and atom(φ, op) and the step case op〈F〉 are easy.

For the case of a q-set F = {f1, . . . , fm} we first notice for an arbitrary j in
{1, . . . , m} that: rate(fj) ⊆ rate(F) and therefore rate(DH

v(fj)) ⊆ rate(DH
v(F)) for

every v ∈ D∗. It follows that the rates of the derivatives DH
u1

(fj), . . . , DH
un

(fj)
are pairwise disjoint. To show part (1), we observe that

{i | DH

ui
(F) 	= ∅} = {i | DH

ui
(f1) ∪ · · · ∪ DH

ui
(fm) 	= ∅} =

⋃m
j=1{i | DH

ui
(fj) 	= ∅}.

By the induction hypothesis, the size of this set is bounded by
∑m

j=1size(fj) =
size(F). Now,

space(
⋃n

i=1DH

ui
(F)) = space(

⋃n
i=1

⋃n
j=1DH

ui
(fj))

=
∑n

j=1space(
⋃n

i=1DH

ui
(fj))

≤ ∑n
j=1size(fj)2,

which is less than (size(f1) + · · · + size(fm))2 = size(F)2.
For the case of the query h = op〈F, G〉, we first recall that rate(h) = rate(F) ≡

rate(G). So, the hypotheses of the lemma hold for both F and G. This means
that at most min(size(F), size(G)) ≤ size(h) of the sets DH

u1
(h), . . . , DH

un
(h) are

nonempty. For part (2), we have that

space(
⋃n

i=1DH

ui
(h)) = space({op〈DH

ui
(F),DH

ui
(G)〉 | i = 1, . . . , n})

≤ size(F) +
(∑n

i=1space(DH

ui
(F))

)
+

(∑n
i=1space(DH

ui
(G))

)

≤ size(F) + size(F)2 + size(G)2,

which is less than (1 + size(F) + size(G))2 = size(op〈F, G〉)2.
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Fig. 6. Streaming evaluation algorithm for a strongly typed query f : QRE〈D, C〉.

We handle now the case h = split〈F, G, op〉. As discussed previously, the
union DH

u1
(h) ∪ · · · ∪ DH

un
(h) of the derivatives is of the form

H = {split〈DH

u1
(F), G, op〉, . . . , split〈DH

un
(F), G, op〉,

op〈a1,DH

v1
(G)〉, . . . , op〈an,DH

vm
(G)〉}

for some a1, . . . , am ∈ A and v1, . . . , vm ∈ D∗. Now, H is unambiguous and
therefore the q-sets DH

u1
(F), . . . , DH

un
(F) are pairwise disjoint, and similarly the

q-sets DH
v1

(G), . . . , DH
vm

(G) are pairwise disjoint. From the induction hypothesis
(part 1) for F and G, we get that H is of size ≤ size(F) + size(G), which implies
part (1) for h. To measure the space needed to represent H, we first observe that
the subquery G is shared by several queries in H and therefore we can replace
every G occurrence with a pointer to a representation of G. Total space:

space(H) ≤ size(F)2 + 2 · size(F) + size(G)2 + size(G),

which is less than (1 + size(F) + size(G))2 = size(h)2.
Finally, we consider the case h = iter〈F, G, op〉 of iteration. As discussed

previously, the union DH
u1

(h) ∪ · · · ∪ DH
un

(h) of the derivatives is of the form

H = {iter〈DH

u1
(F), G, op〉, . . . , iter〈DH

un
(F), G, op〉,

iter〈op〈b1,DH

v1
(G)〉, G, op〉, . . . , iter〈op〈bn,DH

vm
(G)〉, G, op〉}

for some b1, . . . , bm ∈ B and v1, . . . , vm ∈ D∗. The total space requirements are:

space(H) ≤ size(F)2 + 2 · size(F) + size(G)2 + 3 · size(G),

which is less than (1 + size(F) + size(G))2 = size(h)2. ��
Lemma 12 establishes, in particular, that the hierarchical derivative of any

strongly typed q-set F w.r.t. any sequence is of size at most quadratic in the size
of F. Using this fact, we can prove the main theorem of this paper:

Theorem 13. The algorithm of Fig. 6 solves the evaluation problem for strongly
typed QREs. It requires space and time-per-element that are constant in the
length of the stream, and polynomial in the size of the query.

Proof. First, we observe that the hierarchial derivative is simply a different rep-
resentation of the Brzozowski derivative, which is streamlined for space effi-
ciency. This implies that DB

d(f), DA

d(f) and DH

d(f) are all ≡-equivalent when
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f : QRE〈D,C〉 is strongly typed. The algorithm of Fig. 6 satisfies the invariant:
after consuming input w ∈ D∗, the q-set H is equal to the hierarchical deriva-
tive DH

w(f). The correctness of the algorithm then follows immediately from the
semantic agreement of the hierarchical derivative with the Brzozowski deriva-
tive. At every step of the computation the state H is of the form DH

w(f), where
w is the input sequence seen so far. Lemma 12 give us immediately that H can
be represented using space that is quadratic in the size of the input query. It
follows that the time to process each element is also quadratic in the query. ��
Example 14. The queries h1, h2 below calculate the maximum and minimum
respectively of two consecutive natural numbers, where f = atom(trueN, idN).
The top-level query k shown below is strongly typed, and it calculates the average
of the maximum and minimum of the last two elements of the stream.

h1 = split(f, f,max) k1 = split(g, h1, π2)
h2 = split(f, f,min) k2 = split(g, h2, π2)
g = iter(eps(0), atom(trueN, λx.0), π2) k = avg(k1, k2)

The Antimirov and hierarchical derivatives of g are the following:

{g′} = DA

w(g) = {iter((λx.π2(0, x))(eps(0)), atom(trueN, λx.0), π2)}
g′′ = DH

w(g) = {iter〈(λx.π2(0, x))〈eps(0)〉, atom(trueN, λx.0), π2〉}

for every w 	= ε. For the Antimirov derivative of k w.r.t. 3 we calculate:

DA

3(k1) = {split(g′, h1, π2), (λx.π2(0, x))((λx.max(3, x))(f))}
DA

3(k2) = {split(g′, h2, π2), (λx.π2(0, x))((λx.min(3, x))(f))}
DA

3(k) = {avg(split(g′, h1, π2), split(g′, h2, π2)),
avg(split(g′, h1, π2), (λx.π2(0, x))((λx.min(3, x))(f))),
avg((λx.π2(0, x))((λx.max(3, x))(f)), split(g′, h2, π2)),
avg((λx.π2(0, x))((λx.max(3, x))(f)),

(λx.π2(0, x))((λx.min(3, x))(f)))}

and then the Antimirov derivative DA
35(k) contains 3 · 3 = 9 queries. For the

hierarchical derivative of k w.r.t. 3 we calculate:

DH

3(k1) = {split〈g′′, h1, π2〉, (λx.π2(0, x))〈(λx.max(3, x))〈f〉〉}
DH

3(k2) = {split〈g′′, h2, π2〉, (λx.π2(0, x))〈(λx.min(3, x))〈f〉〉}
DA

3(k) = {avg〈DH

3(k1),DH

3(k2)〉}

In the hierarchical derivative DH
35(k), on the other hand, the subexpressions

DH
35(k1) and DH

35(k2) contain a total of 3 + 3 = 6 queries. This example illus-
trates the quadratic blowup for Antimirov derivatives, which is avoided using
hierarchical derivatives.
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6 Conclusion

This paper introduces syntactic derivatives for the Quantitative Regular Expres-
sions (QREs) of [5]. The most natural generalization of the classical Brzozowski
derivative to QREs is appropriate for the so-called multiset semantics of QREs,
which records the possibility of several (finitely many) outputs. Since QREs are
meant to describe well-defined functions on streams, we consider a projection of
the multiset semantics into the so-called unambiguous semantics. Using a rep-
resentation of derivatives that is inspired from Antimirov’s variant of classical
derivatives, we obtain an evaluation algorithm for QREs with streaming space
and time complexity that is constant in the stream and exponential in the query.
We then restrict attention to the strongly-typed QREs, also considered in [5],
which admit more efficient streaming evaluation. We devise a novel represen-
tation of derivatives on QREs, which we call hierarchical derivatives, and we
obtain an evaluation algorithm that streaming space and time complexity that
is polynomial in the query. This matches the bounds of [5,21], but the algorithm
presented here is much easier to describe, prove correct, and analyze.

The treatment of QRE evaluation using derivatives is a significant step
towards developing automata models for QREs that play the same role as NFAs
do for plain regular exressions. The definition of the space-efficient hierarchical
derivatives of Sect. 5 suggests that the parallel evaluation of f, g in subqueries of
the form op(f, g) and some form of hierarchical nesting are essential features of
a model that can support efficient evaluation of QREs. A hierarchical automa-
ton model for the streaming computation of quantitative queries is described
in [6], but its precise relationship to the QREs of [5] remains to be clarified.
Finding the appropriate model of automata for QREs is an important direction
for future work, since it would also open the door for query optimization by
applying equivalence preserving transformations on the automata.
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Abstract. Biological systems such as regulatory or gene networks can
be seen as a particular type of distributed systems, and for this rea-
son they can be modeled within the Timed Automata paradigm, which
was developed in the computer science context. However, tools designed
to model distributed systems often require a computer science back-
ground, making their use less attractive for biologists. ANIMO (Analysis
of Networks with Interactive MOdeling) was built with the aim to pro-
vide biologists with access to the powerful modeling formalism of Timed
Automata in a user friendly way. Continuous dynamics is handled by
discrete approximations.

In this paper we introduce an improved modeling approach that allows
us to considerably increase ANIMO’s performances, opening the way for
the analysis of bigger models. Moreover, this improvement makes the
introduction of model checking in ANIMO a realistic feature, allowing
for reduced computation times. The user interface of ANIMO allows
to rapidly build non-trivial models and check them against properties
formulated in a human-readable language, making modeling a powerful
support for biological research.

1 Introduction

To understand the possible causes of a disease and design effective cures it is
necessary to closely study the behavior exhibited by biological cells under partic-
ular conditions. A signaling pathway describes the chain of interactions occurring
between the reception of a signal and the response with which the cell reacts
to such signal. A signal is typically represented by a substance which can bind
to specific receptors on the cell surface, activating them. Active molecules relay
the signal inside the cell by activating other molecules until a target is reached.
The target of a signaling pathway is usually a transcription factor, a molecule
with the task of controlling the production of some protein. Such regulation is
considered to be the response of the cell to the received signal.

The current knowledge on signaling pathways (mostly organized in databases
such as KEGG [11] or PhosphoSite [10]) suggests that the interactions involved
in a cellular response assume more often the shape of a network than that of
a simple chain of signal relays. Such networks are typically highly connected,
involving feedback loops and crosstalk between multiple pathways, making it
c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 96–111, 2017.
DOI: 10.1007/978-3-319-63121-9 5
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difficult to grasp their dynamic behavior. For this reason, computational support
is required when studying non-trivial biological networks.

A number of software tools are available for modeling complex networks
of biochemical interactions [3,8,9,14,24]. These tools significantly contribute
to the process of formalizing the knowledge on biological processes, render-
ing them amenable to computational analysis. However, a lack of familiar-
ity with the formalisms underlying many available tools hampers their direct
application by biology experts. ANIMO (Analysis of Networks with Interac-
tive Modeling, [2,18,19,22]) is a software tool based on the formalism of Timed
Automata [1] that supports the modeling of biological signaling pathways by
adding a dynamic component to traditional static representations of signal-
ing networks. ANIMO allows to compare the behavior of a model with wet-
lab data, and to explore such behavior in a user-friendly way. In order to
achieve a good level of user-friendliness for a public of biologists, the complexity
of Timed Automata is hidden under the hood, presenting ANIMO as an app
for Cytoscape [12], a tool specifically developed for visualizing and elaborating
biological networks. Additionally, a web interface for ANIMO has been devel-
oped [23], that allows to access the tool from any web browser without the need
to install any software. Students in biology and bio-medical courses have been
using ANIMO to learn about signaling networks, explain existing data and plan
experiments. Thanks to the students’ feedback the features of ANIMO have been
constantly improving. Moreover, the tool is currently being applied in biological
research to gain insight on cell differentiation. Models are built and managed
by biologists independently, and provide a useful and visually appealing way to
represent the key interactions under investigation.

Previously, ANIMO supported only interactive exploration of network
dynamics based on simulation runs. Model checking queries could be answered
through the UPPAAL tool [13], but the required knowledge of temporal logic
together with the usually long response times slowed down the investigation
process. In order to encourage the use of model checking on non-trivial models
of signaling networks, we updated ANIMO with a new way of modeling reactions.
This marks a relevant improvement in terms of performance with respect to the
model previously used in ANIMO. Moreover, consistently with the intents of our
tool, we implemented also a user interface for the definition of model checking
queries in ANIMO. This allows a user to interrogate an ANIMO model without
requiring previous experience in temporal logics. These new features are avail-
able in the latest version of ANIMO, which was recently reimplemented as a
Cytoscape 3 app [4]: this lets users profit from the additional analysis features
made available by the other apps in the Cytoscape environment.

The paper continues as follows. After introducing the basic concepts in
Sect. 2, we illustrate in Sect. 3 a new way of using Timed Automata in ANIMO.
In Sect. 4 we present a comparison between the new modeling approach and the
one previously used in ANIMO, focusing on model analysis performances. In
Sect. 5 we describe how model checking was made accessible to ANIMO users.
We conclude the paper with Sect. 6, discussing future work.
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2 Preliminaries

2.1 Signaling Pathways in Biology

A signaling pathway is an abstract representation of the reactions occurring
inside a biological cell when, e.g., a signaling substance comes in contact with
the cell surface receptors. In this setting, a reaction is the interaction between
two components: the upstream enzyme (the molecule holding the active role in
the reaction) and the downstream substrate (the passive molecule). The enzyme
can be for example a kinase, which attaches a phosphate group to its substrate,
performing a phosphorylation: this determines a change in the shape of the
substrate and consequently a new function (Fig. 1). The new state reached by
the substrate is often called active: if the substrate of the reaction is itself a
kinase, it can then proceed in passing on the signal by activating its own target
molecule, continuing a chain of reactions leading to the target of the signaling
chain. Such target is usually a transcription factor, i.e. a molecule that influences
the genetic response of the cell, for example promoting the production of a
particular protein.

Pathways are traditionally represented in a nodes-edges form (see Fig. 1a),
with nodes representing molecular species and edges standing for reactions,
where → represents activation and � represents inhibition (i.e. inactivation).

Fig. 1. A kinase signaling network represented in the nodes-edges form (a) and its
evolution represented by abstract molecular interactions (b–d). T is the target of the
signaling pathway, TK is the kinase that activates T, and TKK is the kinase that
activates TK. (b) An already active (yellow) TKK can bind to an inactive (empty) TK,
catalyzing its phosphorylation (i.e. binding of a phosphate group, P). This causes a
change in the shape of TK, activating its enzymatic function (c). The active TK can
in turn activate its target T, enabling it to carry out its function (d). (Color figure
online).

The current knowledge on signaling pathways [10,11] evidences the fact that
signaling interactions are rarely a simple chain of activations as represented in
Fig. 1a. More often, they assume the shape of a network with multiple feedback
loops and crosstalk from different signaling sources. This complexity is an added
difficulty for the study of such networks, reducing the possibilities to deduce the
dynamic behavior of a signaling network by inspecting its static representation.
For this reason, efficient computational support is essential when representing
and analyzing the behavior of complex signaling networks.
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2.2 Timed Automata

Timed Automata (TA) are finite-state automata enriched with real-valued clocks
and synchronization channels. All clocks in a TA system advance with the same
rate, and transitions between the locations of an automaton depend on conditions
on clocks. In particular, a guard defines when a transition may be taken, while
an invariant is the condition for permanence in a location. A transition can also
allow two automata to synchronize, with each participant performing one of two
complementary actions (input and output) on a synchronization channel. A set
of clocks may also be reset by a transition, causing them to restart from 0.

The models we will present here were implemented using the software tool
UPPAAL [13], which adds a number of features to the basic definition of TA.
Some of these extensions include: support for integer variables in addition to
clocks, broadcast synchronization channels (one sender, many receivers), def-
inition of C-like functions to perform more operations besides clock resets.
UPPAAL also allows for a special type of locations, named committed (marked
with a C in the graphical representation). As long as an automaton is in a
committed location, time is not allowed to flow. This feature can be used for
example to perform immediate updates to local variables before letting the com-
putation proceed. Examples of the listed features are found in the TA model
in Sect. 3.2.

2.3 Activity-Based Models in ANIMO

ANIMO allows the definition of activity-based models. This means that we
assume each signaling molecule in a cell to be at any time in one of two states:
active or inactive. Active molecules can take an active role in reactions, chang-
ing the state of other molecules, activating inactive molecules or inhibiting (i.e.
deactivating) active molecules. In a kinase-based signaling network an activation
process can be a phosphorylation, and it is usually countered by the correspond-
ing dephosphorylation. However, our models are not limited to kinase networks:
other features like different post-translational modifications or gene promotion
can be likewise represented, as long as their role has immediate effects on the
ability of a target to perform its task.

As ANIMO is a Cytoscape app, models are defined through the Cytoscape
user interface (see Fig. 2), where the user inserts a node for each molecular species
and an edge for each reaction, with → indicating activation and � indicating
inhibition similarly to traditional representations of signaling networks (Fig. 1a).

We consider a molecular species (also called reactant) to include all the mole-
cules of the same substance in both their active and inactive state inside the cell.
In order to distinguish between the two activity states in which each molecule
can be, we define the activity level to represent the percentage of active molecules
over an entire molecular species. In an ANIMO model, this value is discretized on
a given integer interval. The user can choose the granularity for each molecular
species separately, on a scale between 2 (the reactant is seen as either completely
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Fig. 2. The Cytoscape 3 user interface running the new ANIMO app (model from [19]).
The Network panel in the center contains the nodes-edges model of the cross-talking
signaling pathways of growth factors NGF and EGF, with colors indicating node activ-
ity levels and shapes representing different protein categories (see the Legend on the
left). The Results Panel on the right contains a graph plotting activity levels of selected
nodes during the first hour of evolution of the model. The slider under the graph allows
the user to select the time instant (marked as a vertical red line in the graph) on which
the colors of the nodes in the Network are based. The edge thickness is used to give an
idea of the reactions’ speed at the selected time instant. The series Erk (EGF) data in
the graph is the experimental data from [16] for the 100 ng/ml EGF treatment. (Color
figure online)

inactive or completely active) and 101 levels (allowing to represent activity as
0, 1%, 2% . . . 100%). The activity level of a molecular species is represented in
the ANIMO network by coloring the corresponding node according to the scale
shown in the Activity legend in Fig. 2, where the minimum indicates that all
molecules of the given species are inactive.

The occurrence of a reaction modifies by one discrete step the activity level
of its target reactant, making it increase or decrease depending on whether the
reaction is defined, respectively, as activating or inhibiting. The rate with which
a reaction occurs depends on a formula selected by the user. Choosing one of
three available scenarios allows the user to make the reaction rate depend on the
activity of one or two reactants. The rate of each reaction can be scaled by mod-
ifying the value of one kinetic constant k, possibly using a qualitative measure
from a predefined set (very slow, slow, medium, fast, very fast). The approxi-
mation allows us to reduce the dependence of a model from often unavailable
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quantitative parameters for biochemical reaction kinetics, while keeping a pre-
cision level that is still high enough to be useful. For a more precise explanation
on how reaction rates are computed in ANIMO, we recommend [19], where the
previously used TA model is presented. The reader interested in the current
methods for parameter setting in ANIMO can refer to [17].

3 A New Way of Modeling Signaling Pathways
with TA

We present here a novel model to represent signaling pathways with TA in
ANIMO. We define the model previously used in ANIMO to be reaction-centered,
as for each reaction in the network an instance of a TA template is generated to
mimic the occurrences of that reaction. Observing that signaling networks tend
to be highly connected, containing noticeably more reactions than reactants, we
shift the focus on reactants instead, achieving what we call a reactant-centered
model. This change of view is inspired by the classical way in which biological
events are modeled with ordinary differential equations (ODEs) [5].

3.1 The Reactant-Centered Approach

The reactant-centered model presented here is based on the concept of net effect
of a set of reactions on a reactant: instead of considering each reaction in iso-
lation, we consider their combined influence on each reactant. As an example,
consider a reactant A activated by reactions R1 and R2, and inhibited by reac-
tion R3 (see Fig. 3a). The net effect of these three reactions on A defines the net
reaction RA = R1 + R2 − R3. Applying a concept similar to the definition of
an ODE, where the rate of change of each reactant depends on the rate of the
reactions influencing it, the rate of RA is computed as the sum of the rates of
the reactions influencing A:

rA = r1 + r2 − r3

where ri is the rate of reaction Ri and is defined as follows. Consider R1 to be the
reaction B → A with kinetic constant k1. Suppose the settings in the ANIMO
network for R1 make its rate depend only on the activity level of B. Then we
compute the rate of R1 as r1 = [B]×k1, with [B] the current activity level of B.

If rA is positive, the activity level of A will increase; otherwise, A will decrease
its activity level. The absolute value of rA determines the speed with which such
change happens. The value of the reaction rate is thus translated into a time
value to be used as time bound in the TA representing RA (see Fig. 3b) by
computing

TA =
1

abs(rA)
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(a)
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Fig. 3. (a) A signaling network where one node is influenced by three distinct reactions.
The (virtual) reaction RA is defined in the reactant-centered model as the algebraic
sum of the reactions influencing A. (b) TA template generated by ANIMO for the
reactant-centered model of the network in (a). The template has been edited to increase
readability. All the functions used in (b) are described in Sect. 3.2.

with abs(rA) the absolute value of rA. In order to represent a natural uncertainty
or variability in reaction timing, we relax the exact value of TA by defining
bounds of ± 5% (which can be changed by the user):

tL = TA × 0.95 tU = TA × 1.05

Analogously to the reaction-centered model of [19], we will call tL the lower time
bound and tU the upper time bound. So we replace an exact reaction time by
an interval of possible reaction times, implicitly assuming a uniform distribution
over this interval.

3.2 The New Timed Automata Model

The TA model we propose uses one TA template to represent each reactant: in
Fig. 3b we show the automaton that models how the activity level of reactant A
is changed by the (virtual) reaction RA. Note that automata for B, C and D are
not needed in our example, as no reactions influence them. We will now explain
how the TA template for RA works and how its discrete behavior approximates
a continuous model.
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The proposed TA template fulfils two main tasks:

– Perform the reaction, changing the activity level of the modelled reactant A
– Update the time bounds tL and tU in response to changes in the network.

The occurrence of the reaction is modelled with the central location waiting,
where the automaton waits for the internal clock c to reach the time interval
[tL, tU]; when the condition tL ≤ c ≤ tU is verified, the reaction can occur.
This takes the automaton to location updating and simultaneously changes the
activity level of A (react() in the transition). Together with all the remaining
locations, updating is used to update the time bounds tL and tU to reflect the
new state of the network and to determine how the reaction RA will continue.

Note that all locations apart from waiting and not reacting are declared
as committed (C inside the location’s circle): we use them to perform instant
updates to the automaton and its variables. In UPPAAL, no clock advances as
long as an automaton is in a committed location, and transitions exiting from
committed locations have the precedence over other transitions.

Location updating: Decide Whether A Can Change. All transitions entering
location updating call the function update() (a call to update() is performed inside
react() before returning), which performs the computations described in Sect. 3.1
and thus determines the new values of rA, tL and tU. At this point, one of the
following conditions is true:

1. The newly computed reaction rate rA is 0
2. A has reached its maximum activity level and rA > 0
3. A has reached the activity level 0 and rA < 0
4. The boundaries for A’s activity level have not been reached and rA �= 0.

In the first three cases, the function can react() will return false, meaning that
the activity level of A cannot be updated further in the current conditions. This
enables the transition to not reacting, as the guard !can react() is true.

In the case 4, the reaction RA can still occur (can react() evaluates to true),
so the automaton returns to the waiting location to perform a new step of the
reaction. The passage through the interposed committed location allows us to
ensure that the invariant c ≤ tU of location waiting is always respected. In fact, it
is possible that c has not been reset upon entering location updating (transition
from stubborn, explained later on).

Channel reacting[]: Adapt to Changes in the Environment. When the
reaction RA occurs, A is updated to its new activity level (call to react() when
exiting from waiting) and a synchronization is performed, using reacting[0]! to
indicate that the activity level of A has changed. reacting[] is an array of broad-
cast channels, each one associated to a reactant in the network: in the example
network, the channel with index 0 corresponds to A, 1 to B, and so on. The
reception of a communication along one of those channels indicates that the cor-
responding reactant has changed its activity level. The automaton representing
RA can receive communications on the channels associated to the three reactants
influencing A (see the transitions exiting from not reacting and those entering
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stubborn). Note that in UPPAAL synchronizations along broadcast channels
allow output (!) actions to be performed even if no receiver is present. How-
ever, whenever an automaton performs an output action, any other automaton
currently in a location where the corresponding input (?) action is enabled will
necessarily synchronize with the sender. In our example, this means that A is
able to perform the output action reacting[0]! even if no other automaton is
present in the network, and would be able to react to any changes in B, C or D
if automata representing those reactants were added to the model.

Location stubborn: Reduce the Approximation Error. The transitions
entering location stubborn after a synchronization on a reacting[] channel allow
to respond to a change in the environment while RA is occurring. In this event,
one of the following conditions is true:

1. At least half of the current reaction step has been performed
2. Less than half of the current reaction step has been performed.

In case 1 (c ≥ tHalf = TA

2 , transition to waiting), the current reaction step will
be completed immediately if the effect of the changes occurred in the reactants
influencing A is dramatic. We define a change to be dramatic if it causes the new
value of rA to be at least twice the old value, or if it changes the direction of the
reaction (rA changes sign). The comparison between the possible values of rA,
together with the actions to immediately enable1 RA, are taken in the function
decide react(). From this behavior comes the name of location stubborn.

In case 2 (c < tHalf, transition to updating), the new status of the system
is immediately acknowledged (call to function update()) without performing the
reaction first. Here, a decision is taken on whether to reset clock c, i.e. whether
to throw away the “job already done” or not. Again, the decision depends on
the change: a dramatic change causes clock c to be reset, while a non-dramatic
change implies that the work will proceed at a slightly different speed instead
of being restarted. This allows to avoid starvation for RA in case of a series of
changes with minor effects. Note that in some conditions we could have c > tU:
this means that with the new configuration the reaction should already have
occurred. Thanks to the committed location leading to location waiting we make
sure that the reaction occurs as soon as possible without violating the invariant.

Locations not reacting and start. While the automaton cannot perform any
change to A’s activity level, it waits in location not reacting for changes in the
reactants from which A depends. In the event of any such changes, location
updating is reached to check on the feasibility of RA.

Location start is used to perform the first step of the model, which is to
initialize the parameters of the automaton.

3.3 Computations on the Fly

Reaction rates are all computed at run-time by the function update(), and are
based on the user-chosen scenarios, their kinetic constant k and the activity level
1 In practice, we set tL = tU = c = 0.
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of the involved reactants. As such computations require floating-point precision
but UPPAAL only provides integer variables and operators, we use a significand-
and-exponent notation with 4 significant figures, which allows for an error in
the order of 0.1% while avoiding integer overflow in UPPAAL’s engine. For
example, the floating point number a = 1.23456 will be represented as the pair
〈1235,−3〉, which is translated back as a = 1235 × 10−3 = 1.235. The interested
reader can find the UPPAAL definitions and functions needed to compute rate
and time values for the TA templates, together with all other functions such as
update() and react(), inside any UPPAAL model file generated by ANIMO with
a reactant-centered model type2.

4 Reaction-Centered vs Reactant-Centered

We will now apply some basic model checking queries to the case study pre-
sented in [19], measuring the performances of the two modeling approaches.
This will allow us to evaluate the benefit brought by the shift in perspective
from a reaction- to a reactant-centered model.

All experiments were carried out on an Intel�CoreTM i7 CPU at 2.80 GHz
equipped with 12 Gb RAM and running Ubuntu GNU/Linux 16.04 64 bit.
UPPAAL version 4.1.19 64 bit was used to compute the result of the queries,
asking for “some trace” with random depth-first search order when an execu-
tion trace was expected to be produced. For the simulation queries using the
statistical model checking engine, we left all options at their default values.

The case study we use as a testbed is the network model shown in the Net-
work panel in Fig. 2, which represents signaling events downstream of growth
factors EGF (epidermal growth factor) and NGF (nerve growth factor) in PC12
cells (a cell line used to study neuronal differentiation). The model topology
proposed in [16] was analyzed with an ANIMO model based on the reaction-
centered approach, reproducing the experimentally observed ERK (extracellular
signal-regulated kinase) activity changes [19].3 In particular, a 10 min stimula-
tion with EGF resulted in transient behavior (i.e. peak-shaped, see also the graph
in Fig. 2), while NGF stimulation led to sustained activity (data not shown).

4.1 Simulation Cost

We start by evaluating the cost of simulation with the two different models. This
is a particularly important aspect to consider, as during the model building phase
a user may need to perform a large number of simulations, continuously adapting
the topology or quantitative parameters of a network model. In order to make
the modeling approach in ANIMO as interactive as possible, it is desirable to
decrease waiting times, and this translates into reducing the computational cost
2 Models generated by ANIMO are saved in the system’s temporary directory. Further

details are available in the ANIMO manual at http://fmt.cs.utwente.nl/tools/animo/
content/Manual.pdf.

3 Model available at http://fmt.cs.utwente.nl/tools/animo/models.html.

http://fmt.cs.utwente.nl/tools/animo/content/Manual.pdf
http://fmt.cs.utwente.nl/tools/animo/content/Manual.pdf
http://fmt.cs.utwente.nl/tools/animo/models.html
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of model analysis as much as possible. In this experiment, we query UPPAAL for
simulation runs on the models generated by ANIMO applying the reaction- and
reactant-centered modeling approaches to the case study. To define the initial
state of the model, we consider the starting condition to be the treatment with
50 ng/ml NGF, which translates into setting the activity level of node NGF to
15/15, while changing EGF to be at 0/15 activity. This configuration was chosen
as it generates a more interesting behavior from the biological point of view,
also w.r.t. the model checking queries in Sect. 4.2; the treatment with 100 ng/ml
EGF was also tested and gave similar performance results. Table 1 illustrates the
computation time and memory usage when performing 100 simulation runs on
each of the two considered models. Computing the simulation runs took about
91% less time with the reactant-centered model, using 97% less memory. This
decrease in computation time for long simulation runs brings the approach nearer
to the idea of interactive exploration of a network.

Table 1. UPPAAL processor time and memory usage for reaction- and reactant-
centered modeling approaches when computing the query simulate 100 [36000]

{ R1, R2, ..., R11 } on the model from [19] with starting condition NGF = 15/15,
EGF = 0/15, corresponding to a treatment with 50 ng/ml NGF. The query asks for
100 time series of the activity levels of all reactants in the model over the first 60 min
of execution.

Model type Time (s) Memory (peak KB)

Reaction-centered 30.72 291 576

Reactant-centered 2.86 9 768

The scalability of the reactant-centered model was further tested perform-
ing 100 simulation runs on a much larger network, consisting of 93 nodes and
297 edges [20,21]. The network represents the main signaling and transcription
events involved in osteoarthritis in human chondrocytes (cells involved in the pro-
duction and maintainance of cartilage). In the test, we analyzed a particularly
complex scenario, which models a possible path from healthy to osteoarthritic
chondrocyte. Using the reactant-centered approach required 757.14 s of CPU
time and 128 840 KBs of memory, while the analysis of the reaction-centered did
not terminate after several hours.

4.2 Model Checking Performances

Next, we set out to test the model checking performances on the two versions
of the TA model, comparing the execution times and memory requirements for
a number of interesting queries:

– (1) and (2): A[] not deadlock. The model continues to execute indefinitely
(A refers to all possible paths in the transition system of the model, and []
asks the property to always hold along a path).
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– (3): RKIP < 10 − − > ERK >= 40. After RKIP (Raf kinase inhibitory protein)
activity has been lowered, ERK activity increases. As in the model RKIP has
20 levels of granularity and ERK has 100 levels, RKIP < 10 means that RKIP
is less than half active, and ERK >= 40 means that ERK activity is at least
40%.

– (4): E <> RKIP < 10. Find a point when RKIP is low (E asks for the existence
of at least one path for which the property holds, while <> requires the
property to hold at least once in a given path). This query is expected to
generate a trace, the last point of which will be used as initial configuration
for model checking queries (5) and (6).

– (5): A[]ERK < 70 and (6): A[]ERK > 35. Once RKIP activity has significantly
decreased, ERK activity is sustained at an intermediate level.

The initial conditions are:

– (1): EGF = 15/15 and NGF = 0/15, all others as the original configuration,
corresponding to the treatment condition with 100 ng/ml EGF.

– (2) – (4): EGF = 0/15, NGF = 15/15, all others as the original configuration,
corresponding to the treatment condition with 50 ng/ml NGF4.

– (5) and (6): all activities as in the last state of the trace computed from
query (4).

We note that performing model checking means dealing with state space
explosion problems, and model reduction is recommendable in order to obtain
any result within adequate time limits. One of the most user-accessible ways
available in ANIMO to reduce the size of a model is setting the “natural uncer-
tainty” defined in Sect. 3.1 to 0 before performing model checking queries. In
order to still consider some biological variability, the user can manually perform
multiple model checking queries with changed interaction parameters. The tests
performed in this section have an uncertainty level set to 0, instead of the 5%
recommended for simulation-based experiments, to make model checking feasible
within seconds.

The queries were used with both the reaction- and reactant-centered TA mod-
els, and returned the same results as expected: in particular, query (1) returned
false and all other queries returned true. From the biological point of view, the
answer to query (1) confirms that under EGF treatment no other activity is
observed in the model after the initial peak, while query (2) confirms that with
NGF activity continues indefinitely. Moreover, queries (3)–(6) confirm the result
of the simulations shown in [19], with NGF treatment leading to sustained ERK
activity.

The results of the model checking performance test are shown in Table 2.

4 In the laboratory experimental setting, NGF is used at a lower concentration than
EGF, but it is still enough to saturate all NGF receptors, which are rarer than EGF
receptors.
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Table 2. UPPAAL processor time and memory usage for reaction- and reactant-
centered modeling approaches when computing the given queries on the case study
from [19].

Query Reaction-centered Reactant-centered Improvement

Computation Memory usage Computation Memory usage Time Memory

time (s) (peak KB) time (s) (peak KB) (n-fold) (n-fold)

(1) 126.56 523 448 1.04 9 236 122 57

(2) 159.29 436 496 1.73 11 480 92 38

(3) 146.09 439 484 1.04 10 384 140 42

(4) 0.74 293 508 0.06 7 484 12 39

(5) 581.79 448 764 6.86 16 880 85 27

(6) 561.01 449 248 6.42 15 852 87 28

4.3 Analysis of the Results

Requesting a full inspection of the state space as we do when using a query of
the type A[]φ returning true in cases (5) and (6), allows us to indirectly com-
pare the state space size of the two model versions. As the computation time
improvements in Table 2 show, the reactant-centered model produces indeed a
noticeably smaller state space, allowing for a higher level of interactivity also
when performing non-trivial model checking. Moreover, our experiments point
out that the reactant-centered approach considerably lowers the memory require-
ments for the model. This is not only due to the absence of possibly large pre-
computed time tables, which can contain thousands of elements each. Indeed,
this point was further investigated by implementing a reaction-centered model
which avoids the use of tables and instead makes on-the-fly computations of the
time bounds with the same number representation as in the reactant-centered
model. This resulted in improved performances in the cases of reachability and
simulation-based queries, with memory requirements closer to the ones for the
reactant-centered model (0.69 s and 24 796 KB for query (4)). However, in all
other cases a much larger amount of memory (around 2 Gb) was used with
respect to the table-based implementation of the same model, without leading
to appreciable benefits in terms of execution time: in some cases performances
were noticeably deteriorated (600–800 s for queries (1)–(3)). These findings seem
to support the idea that reactant-centered models have a smaller state space.

5 Model Checking in ANIMO

In order to allow a non-expert user to profit from the power of model checking, we
have implemented a template-based user interface to define queries directly inside
the ANIMO Cytoscape App: Fig. 4 shows the interface for composing a model
checking query in ANIMO. The mappings between user interface templates and
actual model checking queries were inspired by the ones proposed in [15], and
are shown in Table 3.
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Fig. 4. The interface used in ANIMO to compose a model checking query. The settings
on the three lines correspond, from top to bottom, to queries (4), (3) and (6).

Table 3. Mapping between queries as presented in ANIMO user interface and the
corresponding model checking queries in UPPAAL syntax. State formulas indicated by
φ and ψ are all in the form R �� n, with R the identifier of a reactant in the model,
��∈ {<, ≤, =, ≥, >} and n ∈ [0, g(R)] a valid activity level value between 0 and the
granularity (number of discrete levels) of R.

ANIMO template UPPAAL formula

It is possible for state φ to occur E <> φ

State φ never occurs A[] !(φ)

If a state φ occurs, then it is φ−−>ψ

necessarily followed by a state ψ

A state φ can persist indefinitely E[] φ

A state φ must persist indefinitely A[] φ

If the answer to a model checking query contains a (counter-) example trace,
the trace is automatically parsed by ANIMO and presented to the user in form of
a graph of activity levels, in the same fashion as is normally done with simulation
runs. Finally, a button positioned near the time slider under a simulation graph
allows the user to easily change the initial activity levels of the whole network
by setting them as in the currently selected time instant. This feature was used
after executing query (4) to set the initial conditions for queries (5)–(6). Such an
addition makes it easier to inspect the behavior of a network by using a sequence
of model checking interrogations.

6 Conclusions and Future Work

We have presented here how the ANIMO tool was improved to provide a more
interactive modeling process. Thanks to the increased performances of the new
reactant-centered modeling approach, we are able to obtain answers to model
checking queries in a matter of seconds. The features of model checking are made
accessible without the need to directly deal with TA models. In this way, ANIMO
acts as an intermediary between the biologist and a formal representation of
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biological signaling pathways, letting the experts concentrate on investigating
the mechanisms of cellular responses.

In order to enforce the concept of user interaction as a primary focus of the
tool, we plan to extend ANIMO with support for parameter sensitivity analysis
and parameter fitting, as a follow-up to what was presented in [17]. Moreover,
inspired by a work on automata learning [25], we plan to add also the possibility
to automatically derive a network topology based on experimental data and
previous knowledge.

We aim at widening the available set of model checking queries, in order to
allow biologists to perform in silico experiments on an already fitting model and
to obtain answers to more relevant questions. This would increase the useful-
ness of a model as a help to drive wet-lab investigation. In order to allow for
meaningful in silico experiments, we plan to purposefully introduce user-defined
non-deterministic parts in our models, which would allow for drug dosage inves-
tigations through model checking. This can be done e.g. through the definition
of intervals for the values of some reaction kinetic constants, adding consid-
erable uncertainty in the timing of those reactions. Interesting work has been
done on statistical model checking using UPPAAL SMC on models created via
ANIMO [7]. Finally, in order to further improve performances, the extension of
ANIMO with support for a multi-core model checking approach based on the
work by Dalsgaard et al. [6] is under study.
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Abstract. We construct bicategories of Markov processes where the
objects are input and output sets, the morphisms (one-cells) are Markov
processes and the two-cells are simulations. This builds on the work of
Baez, Fong and Pollard, who showed that a certain kind of finite-space
continuous-time Markov chain (CTMC) can be viewed as morphisms in a
category. This view allows a compositional description of their CTMCs.
Our contribution is to develop a notion of simulation between processes
and construct a bicategory where the two-cells are simulation morphisms.
Our version is for processes that are essentially probabilistic transition
systems with discrete time steps and which do not satisfy a detailed
balance condition. We have also extended the theory to continuous space
processes.

1 Introduction

A recent paper by Baez et al. [1] develops a compositional framework for Markov
processes. More precisely, they work with finite-state processes with a population
associated with each state. Transitions are governed by rates and are memoryless.
Thus, they are working with continuous-time Markov chains (see e.g. [8]). The
important innovation in their work is to define “open” Markov chains with inputs
and outputs. This allows them to connect Markov chains together and build more
complex ones from simpler ones.

Our work is inspired by their treatment but differs in two significant ways.
First, we work with Markov processes viewed operationally. That is, the states
represent states of a transition system and the system moves between states
according to a probabilistic law: thus they are closer in spirit to probabilistic
automata. We do not impose a detailed balance condition; it would not make
any sense in the scenario we are examining. Importantly we allow continuous
state spaces; which forces us into some measure-theoretic considerations. The
crucial idea that we borrow from Baez et al. [1] is the use of open processes
that can be composed. Though the details are different from [1] essentially the
mathematics is inspired by their work and the work of Fong [3] on decorated
cospans.

The second significant difference is the development of a bicategorical pic-
ture. The idea here is to have two-cells that capture simulation. The concepts
of simulation and bisimulation have played a central role in the development of

c© Springer International Publishing AG 2017
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process algebra [5,6,10] and the probabilistic version has been similarly impor-
tant [4,9]. We have used simulation morphisms similar in spirit to those used by
Desharnais et al. [2,9].

Dedication

It is a pleasure for the third author to dedicate this paper to Kim Larsen. Kim’s
fundamental work on probabilistic bisimulation nearly 30 years ago was a break-
through and the inspiration for his own work [2] on the subject. Ever since then
he has been infected with the probability bug and has maintained ties with
Kim and his research group. This paper also deals with exactly those topics and
we hope that Kim will accept this as a tribute to his remarkable career and
achievements.

2 Discrete Markov Processes

We begin by developing the theory on finite state spaces so that we can postpone
the measure theory issues until later. It is pleasing that the measure theory and
the category theory can be more or less “factored” into separate sections.

Definition 1. Given a finite set M , a Markov kernel on M is a map τ : M ×
M → [0, 1] such that for all m ∈ M , τ(m, .) is a subprobability measure on M .
A labelled Markov process on M is a collection (τa) of Markov kernels on M
that is indexed by a set of actions Act.

Markov processes are the standard model of memoryless probabilistic dynam-
ical systems like a probabilistic program executing or particles moving over time
subject to random influences. Let us fix a set of actions Act throughout this
paper. These actions correspond to interactions between the process and the
environment; for instance, a user performing control actions on a stochastic
system.

Note that here we are only requiring subprobability measures. This is because
it might be the case that the process does not terminate and some of the proba-
bility mass might be lost. We also want to have some cases where the transition
probabilities are zero which subprobability distributions allow us to accommo-
date.

As in [1], we can view our labelled Markov processes as morphisms between
input and output sets.

Definition 2. Given two finite sets X,Y , a discrete labelled Markov process
(DLMP) from X to Y is a tuple (M, (τa)a∈Act, i, o) consisting of a finite set
M , a labelled Markov process (τa)a∈Act on M , and two injective morphisms
i : X → M and o : Y → M called input and output.

We also require that for a ∈ Act, y ∈ Y and m ∈ M , τa(o(y),m) = 0.
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The last condition says that when the process reaches a state corresponding to
the output it stops there. When we compose processes, these will become inputs
to the next process and will be subject to a new dynamics. Note that a state can
be input and output: this means that if the system is started in this state it will
just stay there. We will also write τa(m,A), where A ⊆ M, to mean

∑

x∈A

τa(m,x).

The key difference between the standard definition of finite labelled Markov
process and this definition of DLMP is the use of input and output sets that
allows us to specify the state in which the system is at the start and the state
when the experiment stops.

An outside observer is allowed to influence the system using the actions in
Act, which result in a probabilistic response by the system; the response to
performing the action a at state m is given by the final state (sub)distribution
τa(m, ·). Particles flow through the Markov process, beginning at inputs, accord-
ing to the kernels τa, until they reach an output state. When a system hits an
output state it stops. Later we will describe how composed systems behave;
essentially the output states become the input states of the next system.

Let us illustrate this definition using the example of a pinball machine. The
position of the ball represents the state of the process. The ball is introduced
when the player starts the game; this is the input state. The ball then moves
around (this is the process) with the player using flippers (actions) to act on its
trajectory. The game ends when the ball reaches the drain (output).

Note that the requirement on the Markov kernels is not symmetric between
inputs and outputs. This is a direct consequence of the fact that input and
output correspond respectively to start and end of observation or experiment.
In that setting, a start state can lead to another start state whereas once the
experiment is over, it cannot evolve anymore.

2.1 Viewing DLMPs as Morphisms

Viewing Markov processes as processes from inputs to outputs makes it tempting
to construct a category DLMP. However, we will see that there is a problem
with the composition being associative only up to isomorphism. The objects are
finite sets and the morphisms X → Y are DLMPs from X to Y .

Let us first give an intuition for this composition: this corresponds to cas-
cading the Markov processes one after the other by identifying states that were
outputs in the first DLMP with inputs in the second DLMP. Consider three
finite sets X,Y,Z and two DLMPs

M := (M, (τM
a )a∈Act, iM , oM ) : X → Y

and

N := (N, (τN
a )a∈Act, iN , oN ) : Y → Z

The category of finite sets and functions between them has pushouts. Let us
denote M +Y N the pushout of M and N along iN and oM , and let jN and jM

be the inclusion maps.
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Y
oM ��

iN

��

M

jM

��
N

jN
�� M +Y N

The pushout M +Y N can be expressed as M +Y N := (M � N)/ ∼ where
∼ denotes the smallest equivalence relation on M + N such that for all y ∈ Y ,
jM (oM (y)) ∼ jN (iN (y)).

The composition of M and N denoted N ∗ M is the DLMP with input X
and output Z defined as follows.

N ∗ M := (M +Y N, (τ ′
a)a∈Act, jM ◦ iM , jN ◦ oN )

where, for m,n ∈ M +Y N

τ ′
a(m,n) =

⎧
⎪⎨

⎪⎩

τN
a (m,n) if m,n ∈ jN (N)

τM
a (m,n) if m,n /∈ jN (N) and m,n ∈ jM (M)

0 otherwise

Note that if m and n are both outputs of the first DLMP and inputs of the
second one, we use τN .

The universal property of the pushout in FinSet ensures that composi-
tion is associative only up to isomorphism. This will be explained in more
detail in the coming section; but note that it prevents us from constructing
a category of DLMPs. Given any finite set X, the identity 1X is the DLMP
(X, (τa)a∈Act, idX , idX), where for all a ∈ Act, and for all x, y ∈ X, τa(x, y) = 0.
Note that it is only an identity up to isomorphism.

2.2 Simulations as Morphisms Between DLMPs

Given two Markov processes with the same input and output sets, it is natural to
ask whether they are related in some way or not. To this end, we first introduce
the notion of simulation, and then show how it provides a natural framework for
extending the previous construction to a bicategory.

Definition 3. Given two DLMPs N = (N, (τN
a )a∈Act, iN , oN ) and M = (M,

(τM
a )a∈Act, iM , oM ) defined with the same input and output sets, a simulation of

N by M is a function f : N → M on the state spaces satisfying the following
conditions:

– f ◦ iN = iM and f ◦ oN = oM , and
– for all a ∈ Act, n ∈ N and m ∈ M , τM

a (f(n),m) ≥ τN
a (n, f−1(m)).

where f−1(m) stands for f−1({m}). In such a case, we say that M simulates
N and write f : N ⇒ M.
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Given two finite sets X and Y , we have the “hom-set” DLMP(X,Y ) of
the previously defined “category DLMP.” The quotation marks signify that
we don’t really have a category. However, it is possible to extend the set
DLMP(X,Y ) to a category with objects the DLMPs from X to Y and as
morphisms simulations between such DLMPs in such a way that we obtain a
bicategory. We carry this out in the next subsection.

The composition of two simulations with the same input and output sets is
given by standard function composition; it is denoted ◦. The standard composi-
tion is associative which ensures that ◦ is also associative.

Proof. Let us now check that the composition of two simulations is a simulation.
Consider two simulations f : M1 ⇒ M2 and g : M2 → M3 with Mk =
(Mk, (τk

a )a∈Act, ik, ok) : X → Y . Note that for any m in M1 and n in M3:

τ3
a (g ◦ f(m), n) ≥ τ2

a (f(m), g−1(n)) ≥ τ1
a (m, (g ◦ f)−1(n))

using the fact that g and f are both simulations. Finally note that (g ◦ f) ◦ i1 =
g ◦ i2 = i3 and similarly for the output map. This proves that the composition
of two simulations is a simulation.

Given a DLMP M = (M, (τM
a )a∈Act, iM , oM ), the identity idM is the identity

on the underlying set idM . It is indeed an identity for the composition we have
just defined.

2.3 The Bicategory DLMP

We had started with trying to construct a category DLMP with finite sets as
objects and DLMPs as morphisms. We have constructed a categorical structure
on the hom-set DLMP(X,Y ) for all finite sets X, Y. It is natural to further
extend it in order to make DLMP into a bicategory.

One of the things missing from our construction is a horizontal composition,
namely for every triple of finite sets X,Y and Z a functor.

cXY Z : DLMP(Y,Z) × DLMP(X,Y ) → DLMP(X,Z)

Given two DLMPs M : X → Y and N : Y → Z, cXY Z(N ,M) is their compo-
sition N ∗ M defined in Sect. 2.1.

Let us now define the functor cXY Z acting on the simulations. Let us consider
four DLMPs (with k = 1, 2):

Mk = (Mk, (τM,k
a )a∈Act, iM,k, oM,k) : X → Y

and

Nk = (Nk, (τN,k
a )a∈Act, iN,k, oN,k) : Y → Z

as well as two simulations

f : M1 ⇒ M2 and g : N1 ⇒ N2
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Let us denote jN,k : Nk → Mk +Y Nk and jM,k : Mk → Mk +Y Nk the
pushout maps obtained by performing the horizontal composition Nk ∗ Mk.

We are now ready to define their horizontal composition cXY Z(g, f) : N1 ∗
M1 ⇒ N2 ∗ M2 as follows. For m ∈ M1 +Y N1,

(g ∗ f)(m) =

{
jN,2 ◦ g(n′) if ∃n′ ∈ N1 such that m = jN,1(n′)
jM,2 ◦ f(m′) if ∃m′ ∈ M1 such that m = jM,1(m′)

We denote cXY Z(g, f) by g ∗ f .
Note that g ∗ f(m) is well defined.

Proof. Assume that there exists n′ in N1 and m′ ∈ M1 such that m = jN,1(n′) =
jM,1(m′). By definition of the pushout, there exists y in Y such that m′ = oM,1(y)
and n′ = iN1(y).

(jM,2 ◦ f)(m′) = (jM,2 ◦ f ◦ oM,1)(y)
= (jM,2 ◦ oM,2)(y) as f is a simulation
= (jN,2 ◦ iN,2)(y) using the pushout
= (jN,2 ◦ g ◦ iN,1)(y) as g is a simulation
= (jN,2 ◦ g)(n′)

The case where there would be n1 and n2 in N1 (resp. m1 and m2 in M1)
satisfying both the first (resp. second) condition is prevented by the injectivity
of iN,1 (resp. oM,1).

Lemma 1. The horizontal composition g ∗ f is a simulation.

Proof. Diagrammatically, the situation is the following:

M1 +Y N1

M1 N1

X Y Z

M2 N2

M2 +Y N2

g∗f

jM,1

f

jN,1

g

iM,1

iM,2

oM,1 iN,1

oM,2 iN,1

oN,1

oN,2

jM,2 jN,2
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In order to prove that it is indeed a simulation, we have first to prove that
(g∗f)◦jM,1◦iM,1 = jM,2◦iM,2. Let x in X, note that iM,1(x) ∈ M1, therefore by
definition of g∗f , (g∗f)◦jM,1◦iM,1(x) = jM,2◦f(iM,1(x)). But f is a simulation,
hence f(iM,1(x)) = iM,2(x) proving the desired equality. The corresponding
equality with output maps is proven similarly.

Let us denote (τk
a )a∈Act the Markov process corresponding to the composition

Nk ∗ Mk. There remains to prove that for all a ∈ Act, m1 ∈ M1 +Y N1 and
m2 ∈ M2 +Y N2, τ2

a ((g ∗ f)(m1),m2) ≥ τ1
a (m1, (g ∗ f)−1(m2)). There are many

cases that correspond to the different cases for g ∗ f , τ1
a and τ2

a . The proof is
straightforward but tedious.

Lemma 2. The exchange law holds. Namely, let Mk,Nk with k = 1, 2, 3 be
DLMPs with Mk : X → Y and Nk : Y → Z and let us consider simulations f1 :
M1 ⇒ M2, f2 : M2 ⇒ M3, g1 : N1 ⇒ N2 and g2 : N2 ⇒ N3 corresponding to

f1

��
g1

��
X

M1

��M2 ��

M3

��
f2

��

Y

N1

��N2 ��

N3

��
g2

��

Z

then (g2 ◦ g1) ∗ (f2 ◦ f1) = (g2 ∗ f2) ◦ (g1 ∗ f1).

Proof. Let us denote as usual jM,k : Mk → Mk+Y Nk and jN,k : Nk → Mk+Y Nk

for k = 1, 2, 3 the corresponding pushout maps. As g1 and g2 are simulations,
we know that

jN,3 ◦ g2 ◦ g1 ◦ iN,1 = jN,3 ◦ g2 ◦ iN,2 = jN,3 ◦ iN,3

and similarly jM,3 ◦ f2 ◦ f1 ◦ oM,1 = jM,3 ◦ oM,3. By the universal property of the
pushout, there is a unique map h making the following diagram commute:

Y
iN,1 ��

oM,1

��

N1
jN,1

��

jN,3◦g2◦g1

��

M1

jM,3◦f2◦f1

��

jM,1 �� M1 +Y N1

h

��
M3 +Y N3

It can be easily verified that both (g2 ◦ g1)∗ (f2 ◦f1) and (g2 ∗f2)◦ (g1 ∗f1) work
for h, hence they are equal.
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Lemma 3. The horizontal composition is associative up to isomorphisms, i.e.
for any finite sets X,Y,Z and W , we have natural isomorphisms called the asso-
ciators.

αWXY Z : cWY Z ◦ (id, cWXY ) → cWXZ ◦ (cXY Z , id)

Proof. Let us consider three DLMPs M = (M, (τM
a ), iM , oM ) : W → X, N =

(N, (τN
a ), iN , oN ) : X → Y and P = (P, (τP

a ), iP , oP ) : Y → Z. Let us construct
the associator αMNP : P ∗ (N ∗ M) ⇒ (P ∗ N ) ∗ M, i.e. a simulation map.

αMNP : (M +X N) +Y P → M +X (N +Y P )

We will denote the pushout maps jM+Y N
M : M → M +Y N etc.

First note that X
iN−→ N

j
N+Y P

N−→ N +Y P is the input map of the DLMP
N ∗ P, making the outer diagram commute:

X

oM

��

iN �� N

j
M+XN

N

��

j
N+Y P

N �� N +Y P

j
M+X (N+Y P )
N+Y P

��

M
j
M+XN

M ��

j
M+X (N+Y P )
M

		���������������������� M +X N

α1




M +X (N +Y P )

By the universal property of the pushout M +X (N +Y P ), there exists a unique
map α1 : M +X N → M +X (N +Y P ) making the above diagram commute.

To show that the outer diagram commutes, we calculate as follows:

α1 ◦ jM+Y N
N ◦ oN = j

M+X (N+Y P )
N+Y P ◦ jN+Y P

N ◦ oN using the definition of α1

= j
M+X (N+Y P )
N+Y P ◦ jN+Y P

P ◦ iP using the pushout square of N +Y P

Y
oN ��

iP

��

N
j
M+XN

N �� M +X N

α1

������������������������

j
(M+XN)+Y P

M+XN

��
P

j
N+Y P

P ����
��

��
��

�� j
(M+XN)+Y P

P

�� (M +X N) +Y P

��
N +Y P

j
M+X (N+Y P )
N+Y P

�� M +X (N +Y P )

By universal property of the pushout (M +X N) +Y P , there exists a unique
map (M +X N) +Y P → M +X (N +Y P ) making this diagram commute. We
call this map αMNP . Note that we could have constructed the associator from
the explicit definition of the pushout given in Sect. 2.1.
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Naturality and isomorphism of the associator follow from similar construc-
tions and the fact that all pushout maps are injective as the input and output
maps are injective.

Remember that we had defined identity DLMP 1X = (X, (0)a∈Act, idX , idX).
Similar constructions using pushouts give us two natural isomorphisms corre-
sponding to the unitors: for all M : X → Y a DLMP, we have

λM : M ∗ 1X → M and ρM : M → 1Y ∗ M
Pentagon identities and triangle identities are proven using similar computations.
This proves the following result: the main goal of this section.

Theorem 4. DLMP is a bicategory.

3 Continuous State Space

While the finite case is interesting to start with, in many cases of interest the
underlying state space of an LMP is not finite but an arbitrary measurable set
or perhaps a more restricted structure like a Polish space or an analytic space.
However, most of the work we did in the previous section does not rely on
LMPs having a finite state space and it becomes very tempting to extend the
bicategory DLMP we just constructed to a more general notion of LMP. It is
not as straightforward as it may seem as the output map is more complicated in
the continuous case. The restriction to analytic spaces is important for proving
the logical characterization of bisimulation or simulation. Since we are not doing
that here we will consider general measurable spaces.

3.1 LMP and Simulation in the Continuous Case

Definition 5. Given a measurable space (M,Σ) a Markov kernel is a function
τ : M ×Σ → [0, 1] where for each m ∈ M the function τ(m, ·) is a subprobability
measure on (M,Σ) and for each measurable set B ∈ Σ the function τ(·, B) :
M → [0, 1] is measurable where [0, 1] is equipped with the standard Borel-algebra.
A labelled Markov process is a collection (τa) of Markov kernels on (M,Σ) that
is indexed by a set of actions Act.

Let us now extend our previous definition of DLMPs to deal with the con-
tinuous case.

Definition 6. Given two finite sets X and Y , a continuous labelled Markov
process (CLMP) from X to Y is a tuple (M,Σ, (τa)a∈Act, i, o) consisting of
(M,Σ) a measurable space, a labelled Markov Process (τa)a∈Act, an injective
function i : X → M and a function o : Y → Σ such that for all y1 and y2 in Y
o(y1) ∩ o(y2) = ∅, satisfying the following additional condition for all a ∈ A:

for all y ∈ Y, m ∈ o(y) and B ∈ Σ τa(m,B) = 0
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Note that here we have an input point but a (measurable) output set. To avoid
painfully long notations, we will also write o(Y ) for the set

⋃
y∈Y o(y) ∈ Σ.

We now adapt the definition of simulation to this setting.

Definition 7. Given two CLMPs N = (N,Λ, (τN
a )a∈Act, iN , oN ) and M = (M,

Σ, (τM
a )a∈Act, iM , oM ) defined with the same input and output sets, a simulation

of N by M is a measurable function f : N → M on the state spaces satisfying
the following conditions:

– f ◦ iN = iM and oN = f−1 ◦ oM , and
– for all a ∈ Act, n ∈ N and B ∈ Σ, τM

a (f(n), B) ≥ τN
a (n, f−1(B)).

In such a case, we say that M simulates N and write f : N ⇒ M.

3.2 The Bicategory CLMP

We now extend what was done in the finite case to the continuous case in order
to construct the bicategory CLMP.

Given two finite sets X,Y , there is a category CLMP(X,Y ) which has as
objects the CLMPs X → Y and as morphisms the simulations between them.
Composition is given by the standard composition on their underlying sets and
the identities are the standard identities on the underlying state spaces.

The next order of business is to define the horizontal composition both on
the CLMPs and the simulations. Let us start with the CLMPs.

Given three finite sets X, Y and Z and two CLMPs M=(M,Σ, iM , oM , τM ) :
X → Y and N = (N,Λ, iN , oN , τN ) : Y → Z, there are two inclusion maps
jN : N → M + N and jM : M → M + N . We then define the relation ∼ on
M + N as the smallest equivalence such that

∀y ∈ Y ∀m ∈ oM (y) jM (m) ∼ jN (iN (y))

We then define the quotient map q between measurable spaces q : (M + N,Σ +
Λ) → ((M + N)/ ∼, (Σ + Λ)/ ∼) where (Σ + Λ)/ ∼ is the smallest σ-algebra
such that q is measurable.

Note that here we are mimicking the explicit construction of the pushout
given in the finite case. We will therefore also denote (N + M)/ ∼ as N +Y M
and (Σ + Λ)/ ∼ as Σ +Y Λ. We define the horizontal composition of M and
N as:

N ∗ M = (M +Y N,Σ +Y Λ, q ◦ jM ◦ iM , q ◦ jN ◦ oN , τ ′)

where the LMP is defined for m ∈ M +Y N and B ∈ Σ +Y Λ as

τ ′
a(m,B) =

⎧
⎪⎨

⎪⎩

τM
a (m′, j−1

M q−1(B)) if ∃m′ ∈ M \ oM (Y ) m = q ◦ jM (m′)
τN
a (n′, j−1

N q−1(B)) if ∃n′ ∈ N m = q ◦ jM (n′)
0 otherwise

Note here how the condition on the input and output maps is used: remember
that the input map is injective and that the output maps gives sets that are
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pairwise disjoint. This ensures that if m1 ∼ m2 with m1 and m2 in M then
there exists y in Y such that m1 and m2 are in oM (y) and if n1 ∼ n2 with n1

and n2 in N then n1 = n2. This guarantees that τ ′
a is well-defined.

The identity is the same as the one we have defined in the discrete case: let
X be a finite set and let Σ be the discrete σ-algebra on X, then the identity is

1X = (X,Σ, (τa), idX , oX)

where τa(x,B) = 0 for all x ∈ X and B ∈ Σ and oX(x) = {x}.
For every triple of finite sets X, Y and Z, we define the horizontal composition

on the simulations. Consider f : M1 ⇒ M2 : X → Y and g : N1 ⇒ N2 : Y → Z
where Mk = (Mk, Σk, τM,k, iM,k, oM,k) and Nk = (Nk, Λk, τNk , iN,k, oN,k) (k =
1, 2). We use similar notations as for the composition of CLMPs but index them
by 1 or 2 (see following diagram).

We define their horizontal composition as

g ∗ f : M1 +Y N1 → M2 +Y N2

n �→ q2 ◦ j2N ◦ g(n′) if ∃n′ ∈ N1 n = q1 ◦ j1N (n′)

m �→ q2 ◦ j2M ◦ f(m′) if ∃m′ ∈ M1 m = q1 ◦ j1M (m′)

(M1 +Y N1, Σ1 +Y Λ1)

(M1 + N1, Σ1 + Λ1)

q1



(M1, Σ1)

j1
M

���������������

f

��

(N1, Λ1)

j1
N

���������������

g

��

X

iM,2 �����������

iM,1
�����������

Y

oM,1
��																

iN,1
��

















oM,2��

















iN,2 ��																 Z

oN,1
�����������

oN,2�����������

(M2, Σ2)

j2
M ���������������

(N2, Λ2)

j2
N���������������

(M2 + N2, Σ2 + Λ2)

q2

��
(M2 +Y N2, Σ2 +Y Λ2)

This is again mimicking what happens in the finite case. Note that the remark
used previously to show that the horizontal composition of DLMPs is well-
defined is used here to prove that the horizontal composition of the CLMPs
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is well-defined. The proofs with the associators and the unitors are similar to
the finite case except that they rely on the universal property of the quotient
instead of the universal property of the pushout.

We can now state the main result of this paper.

Theorem 8. CLMP is a bicategory.

4 Conclusions

We have developed a notion of bicategory of Markov processes where the two-
cells capture the notion of simulation. The original paper of Baez, Fong and
Pollard developed a compositional theory of a certain class of CTMCs. We have
developed an analogous theory for Markov processes in both discrete and con-
tinuous state-space versions. By adding the two-cells we have incorporated one
of the most powerful and widely used tools for reasoning about the behaviour of
Markov processes and this opens the way for compositional reasoning.

Of course, this paper is just a start. There are many interesting directions
to explore. Perhaps the most pressing is to understand how feedback can be
incorporated via a trace structure. Certain categories of probabilistic relations do
have a traced monoidal structure; it remains to be seen how to incorporate that
here in a manner consistent with the two-cell structure. We are also working on
using more general coalgebras as the morphisms instead of just Markov processes.

In earlier work [9] logical formalisms (modal logics) for reasoning about bisim-
ulation have been developed. Here we have the framework where one can think
about compositional logical reasoning. In a paper about a decade ago Mislove et
al. [7] have studied duality for Markov processes (our CLMPs) and also devel-
oped a notion of composing Markov processes. We have not yet worked out the
relations between that framework and ours but clearly it is an interesting topic
to be examined.
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Abstract. We propose a systematic approach to generate highly paral-
lel benchmark systems with guaranteed temporal properties. Key to our
approach is the iterative property-preserving parallel decomposition of an
initial Modal Transition System, which is based on lightweight assump-
tion commitment. Property preservation is guaranteed on the basis of
Modal Contracts that permit a refinement into a component and its con-
text while supporting the chaining of dependencies that are vital for the
validity of considered properties. We illustrate our approach, which can
be regarded as a simplicity-oriented variant of correctness by construc-
tion, by means of an accompanying example.

1 Introduction

Today’s software verification and analysis tools are increasingly complex and
often comprise diverse technologies like SMT solving, data and process mining,
statistical methods or even runtime analysis. This hybrid tool structure makes
traditional verification of verification tools almost intractable and asks for alter-
native validation support. Bottleneck of experimental evaluation approaches, in
particular for analysis and verification tools for distributed systems, is the short-
age of adequate benchmark problems [22,23] which are of challenging size and
structure, and guaranteed to exhibit/violate interesting (temporal) properties.
’Realistic’ benchmark systems come with the risk that it is unknown whether
the considered property holds [22]. In such cases, the presumed solution is often
chosen by some kind of majority vote which is, of course, no guarantee for cor-
rectness. On the other hand, manual benchmark design typically does not scale
and therefore does not provide truly challenging verification scenarios. Work on
the systematic construction of benchmark systems, like [12,19,38], is still very
limited for distributed systems.

In this paper, we systematically enhance the approach sketched in [12] by
proposing an incremental process to expand a given benchmark scenario B(M,Φ)
that consists of a Modal Transition System (MTS) [29] specification M for some
concurrent implementation of controllable size1 together with a set of properties

1 What we mean here is that M can be conveniently model checked with state-of-the-
art technology.

c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 125–145, 2017.
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Φ that is guaranteed to be correct for M2. This expansion results in a system
with an arbitrary degree of parallelism, where all parallel components need to
be considered for validation.

Key to our approach is the property-preserving parallel decomposition in a
light-weight assumption commitment style. Property preservation is guaranteed
on the basis of Modal Contracts (MCs) that permit a (weak) refinement into
a component and its context while supporting the propagation of dependencies
that are vital for the validity of considered properties. More technically, our
development is based on the weak refinement [20] of convergent systems which
preserves an interesting class of temporal properties. In the following, we will
not discuss sufficient conditions for this kind of preservation, but simply assume
that properties are preserved by weak refinement of convergent systems, be they
branching time, linear time, safety or liveness properties.

Even though we eventually aim at parallel compositions of Labeled Tran-
sition Systems (LTSs) for our benchmark problems, we will mainly focus on
MTSs in the following, as the missing part is just a straightforward (random-
ized) refinement process (see Fig. 1).

( M1 || ... || Mn )

( P1 || ... || Pn )

� �

Fig. 1. Obtaining a parallel composition of LTSs (P1 || ... || Pn) by refinement.

We present our approach in two parts, one explaining our MC-based parallel
decomposition and the other concerning a subsequent alphabet expansion which
is in particular required for scalability.

Figure 2 sketches the first part that consists of two phases. It starts with an
existing benchmark scenario B(M,Φ). In this figure, Ms and Mc are the result
of the decomposition on the basis of an MC I. UΣ is an MTS that semantically
reflects the effect of abstracting from structure imposed by the corresponding
component with its alphabet Σ (cf. Definition 5).

Part two of our presentation concerns how the first part can be enhanced to
achieve scalability and to guarantee a certain hardness of the constructed bench-
mark problems. This is realized by allowing each of the indicated decomposition
steps to be enhanced by alphabet expansion as described in Sect. 7.

2 Our exposition focuses on the preservation of validity. It should be noted that our
MTS-based approach also maintains the existence of counterexamples, which is some-
thing different for linear time temporal formulas.
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Fig. 2. Our iterative destroy and repair process. (Parallel compositions below the flow-
chart are colored green, those above red.) (Color figure online)

Characteristic of our overall approach is a repetitive destroy (Ms does no
longer satisfy the envisioned property) and repair (parallel composition with
Mc reinforces the validity of the envisioned property) pattern which essentially
works as follows3:

Phase I: Starting with B(M,Φ) a contract in terms of an MC I is constructed
from M by

– choosing a sub-alphabet Γ of M ’s alphabet Σ,
– marking must transitions with labels from Γ by coloring them green, and
– (randomly) adding red transitions with labels from Γ in a way that they do

not conflict with existing may transitions.

The intuition here is that the to be constructed context component Mc must
guarantee to provide communication partners for green transitions, while it has
to make sure that red transitions will never find a communication partner.

Phase II: Decomposing I into a system component Ms that will be maintained
in the following and a context component Mc which may be further decomposed.
Important here is that both components are vital for the validity of Φ: Neither
Ms nor Mc alone suffice to guarantee Φ, but their parallel composition does.

This way, our approach harnesses the power of correctness by construc-
tion [24] where the essential dependencies are designed and therefore known
during the iterative decomposition process. Revealing them afterwards during
a-posteriori verification is a very different challenge, similar in flavor to the dif-
ference between proof checking and proof construction.

In the last almost three decades, variants and applications of MTSs have
been proposed to serve as light-weight versions of temporal specifications [7,34],
primarily with the goal of establishing a specification/implementation relation
3 The following sketch omits some details which are however elaborated on in the

corresponding sections of this paper.



128 B. Steffen and M. Jasper

via a notion of refinement [4,10,25–28,31,41]. In this paper, we specifically follow
the idea of context dependency: Given a certain (internally parallel) process, we
express how to decompose its MTS representation into a system and its context
such that both system and context are required to make the overall system
satisfy a given property. In other words, we decompose an MTS by generating
a partial implementation and a specification of external commitments that still
need to be implemented. A similar question was systematically analyzed by Kim
Larsen et al. in [21,31] where he showed that MTSs, in contrast to temporal
logics [3,9,30], are not enough to provide a complete specification relative to a
context.

The approach introduced in this paper is somewhat dual. It is based on the
following question: How can we decompose a process into a system and its con-
text such that the behavior of the corresponding parallel composition which is
relevant to the considered properties depends on both components? Moreover, as
our goal is only to construct valid benchmarks, completeness of the arising speci-
fications is not an issue. For our goal, it is sufficient to iteratively establish depen-
dencies between components and their contexts without which the benchmark
verification problem cannot be solved. In other words, we construct benchmark
scenarios that feature highly parallel systems whose corresponding verification
problem cannot be solved without considering all parallel components.

Our MC, an extension of MTSs following and generalizing the ideas of [8],
is specifically designed to manage the system/context relationship in a way so
that the system can be iteratively decomposed into arbitrarily many parallel
components while propagating dependencies throughout the entire system.

An MC is a contract according to the definition in [5]. Even though MCs
induce a related refinement, they do, however, not implement the meta-theory
proposed in [5] because similar to regular MTS refinement, a greatest lower
bound of two specifications typically does not exist.

In contrast to classical assumption commitment [1,16,35] and approaches like
the ones presented in [14,15], the iterative decomposition based on MCs scales
very well. However, admittedly, to achieve a different kind of goal because we do
not require completeness and can therefore focus on a simplistic approach [32].
This scalability, which intuitively exists due to the difference between a-posteriori
verification and correctness by construction, can be regarded as the essence of
our benchmark generation approach [12,19,38].

After introducing relevant preliminaries in Sect. 2, Sect. 3 presents our notion
of parallel composition that requires synchronization whenever the alphabets of
components overlap, and Sect. 4 our notion of a parallel verification benchmark
scenario. Subsequently, Sect. 5 introduces our notion of Modal Contracts, the
basis for our corresponding decomposition process, before the construction of an
adequate context MTS Mc is described in Sect. 6. Finally, Sect. 7 sketches how
the decomposition described in Sect. 5 can be enhanced to guarantee scalability
as well as a notion of benchmark hardness, before Sect. 8 concludes this paper
and presents some directions to future work.
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2 Preliminaries

The Modal Contracts (MCs) proposed in this paper are an extension of Modal
Transition Systems (MTSs). This section introduces fundamental definitions that
are important for understanding the remainder of this paper. We assume that
the reader is familiar with regular languages and related automata. Knowledge of
linear temporal logic (LTL) and (action-based) computational tree logic (CTL)
might help to better understand Example 2.

Definition 1 (Modal Transition Systems). Let S be a set of states and Σ
an alphabet of action symbols. M = (S, s0, Σ, �, ���) is called a (rooted) Modal
Transition System (MTS) with root s0 if the following condition holds:

� ⊆ � ⊆ (S × Σ × S)

Elements of � are called may transitions, those of � must transitions. We
sometimes call the set (� \ �) may-only transitions. Throughout this paper, the
domain of all possible MTSs is referred to as M.

We further define the following operators:

states(M) =def S

alph(M) =def Σ

may(M) =def �
must(M) =def �

For any t = (p, σ, q) ∈ �, we call sym(t) =def σ the symbol or label of t. Operator
sym(·) extends naturally to transition relations, sym(T ) =def

⋃
t∈T ({sym(t)})

for any T ⊆ (S × Σ × S).

An MTS can be seen as an extension of a traditional (rooted) Labeled Tran-
sition System (LTS), which allows the following definition.

Definition 2 (Labeled Transition Systems). A Labeled Transition Sys-
tem (LTS) is an MTS M = (S, s0, Σ, �,�) with

� = �.

The language L(M) of M is defined as the language of the related prefix-closed
non-deterministic finite automaton (NFA) that results from marking all states
in S as accepting.

Intuitively speaking, a may transition in an MTS stands for an underspeci-
fication and indicates a transition that may or may not be present in an actual
implementation. An MTS therefore specifies a set of LTSs. These LTSs can be
retrieved by refinement according to the following definition [29].
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Definition 3 (MTS Refinement). Let Mp = (Sp, s
p
0, Σp, �p,�p),Mq =

(Sq, s
q
0, Σq, �q,�q) ∈ M be two MTSs. A relation ��� ⊆ (Sp × Sq) is called a

refinement if the following hold for all (p, q) ∈ �:

1. ∀(p, σ, p′) ∈ �p, ∃(q, σ, q′) ∈ �q : (p′, q′) ∈ �
2. ∀(q, σ, q′) ∈ �q, ∃(p, σ, p′) ∈ �p : (p′, q′) ∈ �

Mp refines Mq, written as Mp � Mq, if there exists a refinement � with (sp
0, s

q
0) ∈

�. In addition, we call Mp a strict refinement of Mq, denoted as Mp � Mq, if
Mp � Mq and Mq �� Mp.

For the construction of adequate contexts, the maximal language defined by
an MTS is important.

Definition 4 (Largest Language of an MTS). Let M = (S, s0, Σ, �,�) be
an MTS. We call the language

L�(M) =def L((S, s0, Σ, �, �))

the largest language of M .

Parallel components might need to be considered during verification if they
cannot be abstracted away according to the following notion of a weakest spec-
ification [30].

Definition 5 (Weakest Modal Specification). Let Σ be an alphabet. We
call the one-state MTS UΣ that always features an enabled may-only transition
for every σ ∈ Σ the weakest modal Σ-specification:

UΣ =def ({s}, s,Σ, ({s} × Σ × {s}), ∅).

3 Parallel MTS Composition

Our parallel composition operator for MTSs is reminiscent of CSP [18] with
synchronization of components on their common alphabets:

Definition 6 (Parallel MTS Composition). Let Mp = (Sp, s
p
0, Σp, �p,�p),

Mq = (Sq, s
q
0, Σq, �q,�q) ∈ M be two MTSs, and let T ∈ {�,�} identify the type

of transition. The parallel composition

(Mp || Mq) =def (Sp × Sq, (s
p
0, s

q
0), Σp ∪ Σq, �,�)

is then defined as a commutative and associative operation satisfying the follow-
ing operational rules with p, p′ ∈ Sp and q, q′ ∈ Sq:4

p
σ→T p′ q

σ→T q′

(p, q) σ→T (p′, q′)

p
σ→T p′ σ /∈ Σq

(p, q) σ→T (p′, q)

4 This definition depends on the fact that each must transition is also a may transition.
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Fig. 3. A parallel composition (M1 || M2 || M3 || M4) of four MTSs. Transitions with
the same label have to synchronize (see Definition 6). Dashed transitions are may-only
transitions and therefore represent uncertain behavior.

Example 1 (Parallel MTS Composition). Figure 3 illustrates four MTSs that are
components in a parallel composition M = (M1 || M2 || M3 || M4). The expanded
MTS that represents the semantics of this parallel composition is depicted in
Fig. 4.

It is straightforward to establish that ‖ preserves refinement for both
operands.

Fig. 4. Expanded MTS M = (M1 || M2 || M3 || M4) that represents the semantics of
the parallel composition illustrated in Fig. 3.

Proposition 1 (Refinement Monotonicity). Let M,M ′,M ′′ ∈ M be three
arbitrary MTSs. Refining a component of a parallel composition also refines the
composition:

(M � M ′) =⇒ ((M || M ′′) � (M ′ || M ′′)).

Note that due to the commutativity of operator ‖, this monotonicity holds
for both components of a composition.
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4 Benchmark Scenario

Throughout this paper, we are interested in the generation of complex bench-
mark scenarios that provide intricate challenges to state-of-the-art model check-
ing tools. This section is dedicated to the development of a notion of hardness
for parallel verification benchmarks based on the possibility to abstract from
entire components. We therefore first of all define our notion of a benchmark
scenario.5

Definition 7 (Benchmark Scenario). Let M = (M1 || ... || Mn) be the par-
allel composition of n MTSs and Φ a set of properties. Then we call B(M, Φ)
a benchmark scenario if each property φ ∈ Φ is either satisfied or violated
by M .

The following four definitions are required to establish our notion of bench-
mark hardness.

Definition 8 (Component Abstraction). Let M = (M1 || ... || Mn) be a
parallel MTS composition, alph(Mi) = Σi be the alphabet of the i-th component
of M , and UΣi

be the weakest modal Σi-specification (see Definition 5). Then we
call the parallel MTS composition

α(M, i) =def (M1 || ... || Mi−1 || UΣi
|| Mi+1 || ... || Mn)

the i-th component abstraction of M .

Definition 9 (φ-Lossy Generalization). Let M ∈ M be an MTS and φ be
a temporal property. We call any MTS M ′ a φ-lossy generalization of M if
and only if φ can be verified or disproved for M , but yields an indecisive result
for M ′.

Now we can state what it means for a set of temporal properties Φ to be
sensitive to a parallel composition M .

Definition 10 (System-Sensitive Properties). Let M = (M1 || ... || Mn)
be a parallel MTS composition and φ be a temporal property. We call φ
M-sensitive if the following holds:

∀i ∈ N≤n : α(M, i) is a φ-lossy generalization of M

Furthermore, a set Φ of temporal properties is called M -sensitive if the fol-
lowing holds

∀i ∈ N≤n, ∃φ ∈ Φ : α(M, i) is a φ-lossy generalization

5 As stated in Sect. 1, we focus on a parallel composition M of MTSs because a later
refinement can yield a concrete implementation (see Fig. 1).
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Note that due to the monotonicity of || w.r.t. refinement, the fact that φ is M -
sensitive means that no subset of the components in M can be reduced without
losing the ability to successfully analyze φ for M .

Definition 11 (Benchmark Hardness). Let B(M,Φ) be a benchmark sce-
nario with M = (M1 || ... || Mn) and let r ∈ N≤n. We call B(M,Φ) (n, r)-hard
if the following three conditions are met:

1. Φ is M -sensitive
2. Φ only considers symbols from the alphabets of r different MTSs
3. The expanded MTS M consists of at least 2n distinct states

The following Section defines Modal Contracts as a basis to automatically gen-
erate arbitrarily hard benchmarks.

5 Modal Contracts

This section establishes our notion of a Modal Contract which is designed to
support the property-preserving decomposition of its argument MTS into two
components that both need to be considered for verification.

Definition 12 (Label Projection). Let T be a transition relation with
sym(T ) = Σ. Let Γ ⊆ Σ be a subset of Σ. We call the transition relation

αΓ (T ) =def {(p, γ, q) ∈ T | γ ∈ Γ}

the (label) projection of T onto Γ .

Definition 13 (Modal Contract (MC)). Let M = (S, s0, Σ, �,�) be an MTS
and Γ ⊆ Σ. A Modal Contract (MC) of M with communication alphabet
Γ (I) =def Γ is a tuple

I = (S, s0, Σ, �,�, G,R)

where

– G =def αΓ (�), and
– R is a set of transitions over the alphabet Γ that do not exist in � and such

that they are not in conflict with G, meaning there do not exist two paths of
may transitions in M with the same label sequence such that one ends with a
transition in G and the other with one in R.6

Moreover G(I) =def G and R(I) =def R, and we color transitions of G(I) green
and transitions of R(I) red.

6 Such a conflict can easily be detected via the determinization of the may automaton
of I.
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Definition 14 (Meaning of an MC). Let I = (S, s0, Σ, �,�, G,R) be an MC.
Let

R′ =def {(p, σ, r) | q ∈ S : (p, σ, q) ∈ R}
be a redirection of transitions in R to a new (sink) state r /∈ S and let

R∗ =def R′ ∪ {(r, σ, r) | σ ∈ Σ}
denote the extension of R with arbitrary subsequent behavior.

I defines a so called system MTS

Ms(I) =def ((S  {r}), s0, Σ, (� ∪ R∗),�)

and a set of corresponding context MTSs

MC(I) =def {Mc(I) | (Ms(I) || Mc(I)) � M}
An MTS Mc(I) ∈ MC(I) is called a correct context of I.

Intuitively speaking, an MC specifies an assume-guarantee contract [1,5,16,
35] based on an MTS M such that the parallel composition of the system MTS
and a corresponding context MTS is guaranteed to refine M .

Our initial setting illustrated in Fig. 2 is an MTS M for which a set of proper-
ties Φ is guaranteed to hold. The following definition expresses in which situation
none of the components of an MC-based decomposition can be ignored for veri-
fication:

Definition 15 (Property-Sensitive Decomposition). Let φ be a temporal
property, M ∈ M be an MTS with alph(M) = Σ such that M |= φ, and I be an
MC of M . We call I a φ-sensitive decomposition of M if the following hold
for all correct contexts Mc(I) ∈ MC(I):

1. (Ms(I) || UΓ (I)) �|= φ

2. (UΣ || Mc(I)) �|= φ

We further call an MC I a Φ-sensitive decomposition for a given set of properties
Φ if I is a φ-sensitive decomposition for some φ ∈ Φ.

We are now going to start with an example that illustrates the generation
of a (3, 2)-hard benchmark based on the initial MTS M that is illustrated in
Fig. 4 (see also Fig. 2). This implies that there exists a property φ ∈ Φ that
cannot be analyzed successfully when abstracting from one or more of these
three components entirely (see Definition 11).

Example 2 (Property-Sensitive Decomposition). Let M be the MTS illustrated
in Fig. 4. According to our initial setting depicted in Fig. 2, we know that M
satisfies a given set of temporal properties Φ. Let Φ = {φ1, φ2, φ3} consist of the
following three properties:
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φ1 (LTL, safety): G(c =⇒ (¬bWU d))
“Whenever c is observed, b does not occur before d”

φ2 (LTL, safety): G(y =⇒ X(xR¬y))
“Whenever y is observed, y is only allowed once released by a preceding x”

φ3 (CTL, bounded liveness): EF(< y > (EF < y > true))
“There exists a path where y is observed twice”

As an initial step, we define an MC I1 of M with Γ (I1) = {x, y} which means
that I1 is a Φ-sensitive decomposition7. This MC I1 is illustrated in Fig. 5.
Note that subsets of Γ (I1) might suffice to guarantee a Φ-sensitive decompo-
sition: The green transitions in Fig. 5 for example yield a φ3-sensitive decom-
position, however the alternative choice Γ (I ′) = {y} that results in the set
G(I ′) =def α{y}(must(M)) would suffice to ensure the φ3-sensitive decomposi-
tion. The unique system MTS Ms(I1) corresponding to the MC I1 is illustrated
in Fig. 6.

Fig. 5. MC I1 based on the initial composition M = (M1 || M2 || M3 || M4) illustrated
in Fig. 4. (Transitions (3212, x, 1111) and (2131, y, 2221) are colored red, all others
labeled x or y are colored green.) (Color figure online)

Given an MTS M and a corresponding Modal Contract I, the corresponding
system MTS is uniquely determined. The next section discusses how to obtain
a matching context MTS.

6 Green/Red-Based Context Generation

Given an MC I, we now define a specific MTS M∗
c (I), called the green/red

context of I, such that M∗
c (I) is correct with regards to I. Our goal is to specify

an M∗
c (I) with little must behavior in order to have many possible choices in

the actual implementation of this context. We first define the green-only context

7 Note that within this example, I1 is also a φ-sensitive decomposition for all φ ∈ Φ.
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Fig. 6. System MTS Ms(I1) of the MC I1 that is depicted in Fig. 5. The transition
labeled Σ represents a set of transitions, one for each symbol of Σ = {a, b, c, d, e, x, y}.

Mg
c (I) and the red-only context Mr

c (I) of I separately. They are correct if R(I) =
∅ and if G(I) = ∅ respectively. Afterwards, we introduce the green/red context
M∗

c (I) through a notion of MTS conjunction.

Definition 16 (Language Projection). Let Σ,Γ be two alphabets with Γ ⊆
Σ. For any word w = (σ1, ..., σn) ∈ Σ∗, the projection αΓ (w) of w onto
Γ results from skipping symbols σi /∈ Γ . This projection extends naturally to
languages.

Using this projection, we can now define the green-only context.

Definition 17 (Green-Only Context Mg
c (I)). Let M ∈ M be an MTS and

let I be an MC of M (Definition 13) and Fd be the minimal DFA that describes
the prefix-closed language αΓ (I)(L�(M)).

We define the green-only context Mg
c (I) as the MTS that is the result of

the following transformation based on Fd:

1. Consider all incoming and outgoing transitions of the unique non-accepting
sink state as may-only transitions.

2. Consider all other transitions as must transitions.
3. Disregard the property of accepting/non-accepting states.

Note that a correct green-only context that is coarser than Mg
c (I) in terms of

MTS refinement can be realized based on the notion of weak refinement and a
definition of MTS determinization. For the sake of simplicity, we focus on the
presented heuristic Mg

c (I) in this section.
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Fig. 7. Green-red correct context M∗
c (I1) based on the MC I1 of Fig. 5. It would be the

green-only context Mg
c (I1) if there existed may-only transitions (2, x, 6) and (3, y, 6).

Example 3 (Green-Only Context). Let us consider the MC I1 of Fig. 5. Let us
have a look at the MTS illustrated in Fig. 7. If we add a x-labeled may-only
transitions from state 2 to state 6 and a y-labeled may-only transitions from
state 3 to state 6, then the resulting MTS is the green-only context Mg

c (I1).

The following lemma states the correctness of the green-only context.

Lemma 1 (Correctness of Green-Only Context). Let M ∈ M be an MTS.
Let Ig be an MC of M (Definition 13) with R(Ig) = ∅ and Mg

c (Ig) be the corre-
sponding green-only context according to Definition 17. Then the following holds:

(Ms(Ig) || Mg
c (Ig)) � M

In order to fully harness the potential of context-based assumptions that can
be expressed by an MC, we would like to generate a correct context M∗

c (I) for
an MC I with both green and red transitions. We now first define the red-only
context Mr

c (I) which we afterwards try to combine with the green-only context
Mg

c (I) in order to retrieve M∗
c (I).

Definition 18 (Red-Only Context Mr
c (I)). Let I (Definition 13) be an MC.

Let LR be the language of words for which a path in I exists that contains a red
transition t ∈ R. Let Fd be the minimal DFA that describes the prefix-closed
language (Γ (I)∗ \ αΓ (I)(LR)) (see also Definition 16).

We define the red-only context MTS Mr
c (I) as the MTS that results from

the following transformations of Fd:

1. Remove all incoming and outgoing transitions of the unique non-accepting
sink state together with this sink state itself.

2. Consider all remaining transitions as may-only transitions.
3. Disregard the property of accepting/non-accepting states.

Example 4 (Red-Only Context). Consider again the MC I1 of Fig. 5. Figure 8
illustrates the corresponding red-only context Mr

c (I1).

The following lemma states the correctness of a red-only context.
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Fig. 8. Red-only context Mr
c (I1) based on the MC I1 of Fig. 5.

Lemma 2 (Correctness of Red-Only Context). Let M ∈ M be an MTS,
Ir be an MC of M (Definition 13) with G(Ir) = ∅, and Mr

c (Ir) be the red-only
context according to Definition 18. Then the following holds:

(Ms(Ir) || Mr
c (Ir)) � M

Having defined both the green-only and red-only context, we now specify our
notion of MTS conjunction in a fashion similar to Definition 6 and as a prepa-
ration for defining the green/red context.

Definition 19 (MTS Conjunction). Let Mp = (Sp, s
p
0, Σ, �p,�p),Mq =

(Sq, s
q
0, Σ, �q,�q) ∈ M be two MTSs. The conjunction

(Mp ∧ Mq) =def (Sp × Sq, (s
p
0, s

q
0), Σ, �,�)

of Mp and Mq is then defined as a commutative and associative operation satis-
fying the following operational rules with p, p′ ∈ Sp and q, q′ ∈ Sq:8

p
σ→�p

p′ q
σ→�q

q′

(p, q) σ→� (p′, q′)

p
σ→�p

p′ q
σ→�q

q′

(p, q) σ→� (p′, q′)

p
σ→�p

p′ q
σ

�→�q

(p, q) σ→ error

Whenever an error occurs, the conjunction of Mp and Mq is undefined.

The MTS conjunction of Definition 19 guarantees that a refining MTS refines
both components:

Proposition 2 (Conjunction of Refinement Constraints). Let
M,Mp,Mq ∈ M be three MTSs. If (Mp ∧ Mq) is defined, then the following
holds:

(M � (Mp ∧ Mq)) ⇐⇒ (M � Mp ∧ M � Mq)

Based on the just defined conjunction of two MTSs, we can now realize our
green/red context M∗

c (I):

Definition 20 (Green/Red Context M∗
c (I)). Let I be an MC with green-

only context Mg
c (I) (Definition 17) and red-only context Mr

c (I) (Definition 18).
Then the corresponding green/red context M∗

c (I) is defined as follows:

M∗
c (I) =def (Mr

c (I) ∧ Mg
c (I))

8 This definition again depends on the fact that each must transition is also a may
transition.
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Example 5 (Green/Red Context). Figure 7 illustrates the green/red context MTS
M∗

c (I1) based on the MC I1 of Fig. 5.

As green and red transitions are guaranteed to be non-conflicting (see Defin-
ition 13), the following theorem follows straightforwardly from Lemmas 1 and 2,
as well as Proposition 2.

Theorem 1 (Correctness of Green/Red Context). Let M ∈ M be an
MTS. Let I be an MC of M (Definition 13) with its green/red context M∗

c (I)
according to Definition 20. Then M∗

c (I) is well-defined and the following holds:

(Ms(I) || M∗
c (I)) � M

7 Hardness and Scalability

Is is easy to see that green/red-based modal decomposition guarantees the first
hardness property, but is insufficient to achieve the second hardness property
and scalability:

– The globally reachable state space does not grow, and
– the decomposition potential is limited by the alphabet of the original system.

Both problems can be overcome if we constrain the considered properties, allow
dynamic alphabet extension and base our development on weak refinement,
which requires the following definitions:

Definition 21 (Label Hiding). Let M = (S, s0, Σ, �,�) ∈ M be an MTS. Let
Γ ⊆ Σ be a sub-alphabet. The Γ -hiding

hidΓ (M) =def (S, s0, ((Σ \ Γ ) ∪ {τ}), hid(�), hid(�))

of M relabels all transitions t of M such that sym(t) ∈ Γ with the special symbol
τ and therefore features the following transition relations for all T ∈ {�,�}:

hid(T ) = {(p, τ, q) | ∃γ ∈ Γ : (p, γ, q) ∈ T} ∪ {(p, σ, q) ∈ T | σ ∈ (Σ \ Γ )}
In order to prepare the (standard) definition of weak MTS refinement, we define
the usual observational relation of a transition relation.

Definition 22 (Observational Relation). Let (Σ ∪ {τ}) be an alphabet with
τ and let T ⊆ (S × (Σ ∪ {τ}) × S) be a transition relation between states in
S. Let p, p′, q, q′ ∈ S. We define the observational relation obs(T ) of T as
follows.

Let p
σ→ p′ denote a feasible transition (p, σ, p′) ∈ T and p

σ=⇒ p′ a feasi-
ble transition (p, σ, p′) ∈ obs(T ). The transition relation obs(T ) results from an
exhaustive application of the following three rules for all σ ∈ Σ:

p
ε=⇒ p

p
τ→ p′ p′ ε=⇒ q

p
ε=⇒ q

p
ε=⇒ p′ p′ σ→ q′ q′ ε=⇒ q

p
σ=⇒ q
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The observational MTS is now simply defined by replacing the original transition
relations by their observable counterparts.

Definition 23 (Observational MTS). Let M = (S, s0, Σ, �,�) ∈ M be an
MTS. The observational MTS ω(M) of M is based on the observational
expansion of its transition relations (Definition 22):

ω(M) =def (S, s0, ((Σ \ {τ}) ∪ {ε}), obs(�), obs(�))

This is sufficient to introduce weak MTS refinement [20].

Definition 24 (Weak MTS Refinement). Let M,M ′ ∈ MTS be two MTSs.
Weak refinement ��� is defined as follows:

(M � M ′) ⇐⇒ (ω(M) � ω(M ′))

Weak refinement is insensitive to divergence, i.e. the possibility that the system
engages in an infinite τ sequence, and therefore does not preserve liveness prop-
erties. In order to partially repair this drawback we will reduce our attention to
convergent systems.

Definition 25 (Convergent MTS). An MTS is called convergent if every
allowed τ -sequence is finite.

Weak refinement of convergent systems preserves an interesting class of temporal
properties. We will therefore restrict our attention to properties of this class, be
they branching time, linear time, safety or liveness properties.

Definition 26 (ΣE Context Extension). Let M ∈ M be an MTS and let I
be an MC of M . Let ΣE be a new alphabet, i.e. (ΣE ∩ alph(M)) = ∅.
1. An MTS ME is called ΣE context extension of Γ (I) if it results from the

following three-step construction.
– Choose an arbitrary MTS M ′ over ΣE with the following two properties:

• M ′ restricted to its must transitions is deadlock free
• Each state of M ′ is reachable via must transitions

– Select a set S of transitions with the property that every infinite trace in
M ′ visits a state in S infinitely often.9

– Replace each transition of S by a set of must transitions, one for each
symbol in Γ (I).

2. Let M∗
c (I) be the green/red context of I (Definition 20) and let ME be a ΣE

context extension of Γ (I). An MTS

M∗
c (I,ME) =def (M∗

c (I) || ME)

is called a ΣE-extended context of I.

We have:
9 This definition is similar to the notion of cut points in Floyd’s inductive assertion

method.
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Fig. 9. MC I2 based on an ΣE-extended context M∗
c (I1, ME) (see Example 6). Transi-

tion (45, t, 34′) is colored red. Transitions (12′, p, 2a), (2a, r, 2b), (2b, q, 23), (23b′, t, 3b4),
(34′, p, 4), and (4, q, 45) are colored green. (Color figure online)

Theorem 2 (Correctness of ΣE-Extended Context). Let M ∈ M be an
MTS, let I be an MC of M (Definition 13), and let ME be a ΣE context extension
of Γ (I). Then we have:

1. hidΣE
(Ms(I) || M∗

c (I,ME)) � M

2. hidΣE
(Ms(I) || M∗

c (I,ME)) is convergent.

Without going into detail here, it should be (intuitively) clear that, based on
ΣE-extended contexts, it is possible to iteratively generate benchmark systems
of exponentially growing size, and that there is no limit to this process when
successively extending the alphabet. A concrete strategy pattern for generating
such benchmark systems is presented in [39]. This strategy underlies the gen-
eration of the parallel benchmark problems for future iterations of the RERS
Challenge.

Example 6 (New MC Based on a ΣE-Extended Context). Note that none of the
three temporal properties of Example 2 require that a system performs an action
in the next time step or at any time that lies a fixed number of steps in the
future. Let ΣE = {p, q, r, s, t} be a new alphabet. We can choose a ΣE-extended
context M∗

c (I1,ME) and define a second MC I2 based on this extended context.
One possible I2 that still preserves all properties of Example 2 is illustrated in
Fig. 9.

8 Conclusion

In this paper, we have proposed a systematic approach to generate highly par-
allel benchmark systems with guaranteed temporal properties. Key to our app-
roach is the iterative property-preserving parallel decomposition in a light-weight
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assumption commitment style on the basis of Modal Contracts. We have illus-
trated how design choices, which may well be automated, steer the applied
assumption-commitment chaining in order to generate highly parallel bench-
mark problems that are very difficult to verify. The described procedure will be
employed for generating the parallel problems of future iterations of the RERS
Challenge.

Currently, generated context components are deterministic on their globally
reachable parts concerning the initial alphabet by construction, a property that
may be potentially exploited by verifiers. We are therefore planning to elimi-
nate this determinisms via a notion of context-dependent semantic determinism,
which we envisage to be hard to distinguish from full non-determinism. In this
context, we will also investigate which influence dedicated properties have on the
tools performance, e.g. when they come close to characteristic formulae [36,37].

Benchmark problems generated with our method can be guaranteed to
explode in size [39]. It has to be seen whether our notion of hardness is sta-
ble in the context of advanced reduction/verification techniques such as (lazy)
CEGAR [6,17] and partial order reduction [11,13,33,40]. The planned investi-
gation of the corresponding interplay between the introduction and reduction of
difficulty is envisioned to boost the progress of system verification.

Another line of future research is to include data and arithmetic in the mod-
eling language [2], for example in the fashion proposed for sequential benchmarks
in [38]. In particular when allowing shared memory between the components this
imposes new challenges both for the generation process and, even more so, for
the solution of resulting benchmark problems.

We plan to make our generation tool available open source in order to invite
users to enhance the generation potential and to contribute to a library of classifi-
able benchmarks. Ideally, this will help to establish an accepted quality standard.

Acknowledgement. We are very grateful to Axel Legay and Maximilian Fecke for
their suggestions and remarks regarding this paper.
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Abstract. We present a generic algorithmic scheme for learning lan-
guages defined over large or infinite alphabets such as bounded subsets
of N and R, or Boolean vectors of high dimension. These languages are
accepted by deterministic symbolic automata that use predicates to label
transitions, forming a finite partition of the alphabet for every state.
Our learning algorithm, an adaptation of Angluin’s L∗, combines stan-
dard automaton learning by state characterization, with the learning
of the static predicates that define the alphabet partitions. We do not
assume a helpful teacher who provides minimal counter-examples when
the conjectured automaton is incorrect. Instead we use random sampling
to obtain PAC (probably approximately correct) learnability. We have
implemented the algorithm for numerical and Boolean alphabets and
the preliminary performance results show that languages over large or
infinite alphabets can be learned under more realistic assumptions.

Keywords: Symbolic automata · Automata learning · Infinite
alphabets

1 Introduction

The (classical) theory of regular languages and automata [14,19,27] deals mainly
with alphabets that are small and “flat”, that is, sets without any additional
structure. In many applications, however, alphabets are large and structured. In
hardware verification, for example, behaviors are sequences of states and inputs
ranging over valuations of Boolean state variables that give rise to exponentially
large alphabets, treated symbolically using BDDs and other logical formalisms.
As another motivation, consider the verification of continuous and hybrid sys-
tems against specifications written in formalisms such as signal temporal logic
(STL) [20,21]. Automata over numerical alphabets, admitting an order or partial-
order relation, can define the semantics of such requirements.

In recent years, symbolic automata [31] have been studied extensively as a
generic framework for recognizing regular languages over large alphabets. In such
automata the number of states and transitions is typically small and the transi-
tions are labeled by predicates from a corresponding theory, denoting subsets of
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the alphabet. The extension of classical results of automata theory to symbolic
automata has become an active area of research, including fundamental issues
such as minimization [10] or effective closure under various operations [30,32,33]
as well as the adaptation of learning algorithms [6,17,23]. The comparison with
other related work is postponed to the conclusion section, after the technical
issues are explained in the body of the paper.

In [23] Angluin’s L∗ algorithm [1] for learning automata from queries and
counter-examples has been extended to learn languages over an alphabet Σ
which is a high-cardinality bounded subset of N or R. Such languages are repre-
sented by symbolic automata where transitions are labeled by symbolic letters,
such that the concrete semantics [[a]] of a symbolic letter a is a sub-interval
of Σ. Determinism is maintained by letting the semantics at each state form
a partition of Σ. The learning algorithm uses symbolic observation tables with
symbolic words in the rows to provide access sequences s to discovered states.
To determine the transitions outgoing from state s, one needs, in principle, to
ask membership queries concerning s · a · e for every s ∈ [[s]], a ∈ Σ and e ∈ E
where E is a set of distinguishing suffixes. To avoid a large or infinite number
of queries, the characterization of states is based on partial information: a small
set μ(a) of concrete letters, called the evidence for a, is associated with every
symbol a. This notion is lifted to symbolic words and membership queries are
asked only for the words in μ(s) · μ(a) · E.

In this framework, the learning procedure is decomposed into a verti-
cal/temporal component, consisting of discovering new states as in the original
L∗ algorithm, and a horizontal/spatial component where the boundaries of the
alphabet partitions in every state are learned and modified. The advantage of this
decomposition is that the first part is generic, invariant under alphabet change,
while the second part has some alphabet specific features. To take a concrete
example, alphabet partitions over a totally-ordered alphabet such as R are made
using intervals with endpoints that can be shifted as new evidence accumulates.
On the other hand, for an alphabet like B

n, the partitions are represented by
decision trees which are modified by restructuring.

A major weakness of [23], partly inherited from L∗, is that in addition to
membership queries, it also uses equivalence queries: each time an automaton is
conjectured, an oracle eq either confirms the conjecture or provides a counter-
example which is also minimal in the lexicographic order on Σ∗. Counter-
examples of this type facilitate significantly the discovery of new states and
the detection of the alphabet partition boundaries but such a helpful teacher is
unrealistic in most real-life situations. In this paper we develop an algorithm that
uses only membership queries. Some of those are used to fill the observation table
in order to characterize states, while others, posed for randomly selected words,
are used to test conjectures. Consequently, we have to replace certain and exact
learnability by a weaker notion, in the spirit of Valiant’s PAC (probably approx-
imately correct) learning [29]: the algorithm converges with high probability to
a language close to the target language.
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Adapting the algorithm to this more challenging and less pedagogical setting
of random sampling involves several modifications relative to [23]. First, when a
new state q is discovered, we sample the alphabet at several points rather than
only at the minimal elements. The sampled letters are used in queries to charac-
terize the successors of q. In order to avoid an exponential growth in the number
of membership queries, we refine the notion of evidence for symbolic words and
ask queries only for the successors of representative evidences. Secondly, to deter-
mine whether a given counter-example leads to the discovery of a new state, to
the introduction of a new transition or just to a modification of the partition
boundaries associated with some existing transitions, we use an extended version
of the breakpoint method of [26] which also appears in [16] in a similar form.
This method identifies an erroneous position in the counter-example, classifies
its nature and reacts accordingly.

We thus obtain an efficient algorithm for learning languages over large alpha-
bets under much more realistic assumptions concerning the information available
to the learner. We use one-dimensional numerical alphabets, partitioned into a
bounded number of intervals, to illustrate the principles of the algorithm. The
algorithmic scheme can be easily adapted to other domains provided that alpha-
bet partitions are not too complex and consist of a small number of simple
blocks. We demonstrate this fact by adapting the algorithm to Boolean alpha-
bets partitioned into finitely many unions of sub-cubes.

The rest of the paper is organized as follows. In Sects. 2 and 3 we define,
respectively, symbolic automata and symbolic observation tables while explain-
ing their role in learning. The symbolic learning algorithm is described in detail
in Sect. 4 for one-dimensional numerical domains, followed by its extension to
Boolean alphabets in Sect. 5. Section 6 provide some theoretical and empirical
evaluation of the algorithm performance. In Sect. 7 we summarize our results,
compare with other work on learning over large alphabets and suggest directions
for future work.

The paper assumes some familiarity with automaton learning and the reader is
invited to readmoredetailed explanations of concrete learning algorithms in [5] and
of the framework underlying this paper in [23]. Likewise, some basic acquaintance
with decision trees is assumed that can be obtained by consulting [8].

2 Preliminaries

Let Σ be an alphabet, and let Σ∗ be the set of all finite sequences (words) over Σ.
With a language L ⊆ Σ∗ we associate a characteristic function f : Σ∗ → {+,−},
where f(w) = + if w ∈ L and f(w) = −, otherwise. With every s ∈ Σ∗ we asso-
ciate a residual characteristic function defined as fs(w) = f(s·w). Two sequences
s and r are Nerode equivalent [24] with respect to L, denoted by s ∼L r, if
fs = fr. The relation ∼L is a right congruence satisfying s ∼L r → s · a ∼L r · a
and its equivalence classes correspond to the states of the minimal automaton
that accepts L. The identification of these classes underlies minimization proce-
dures as well as most automaton learning algorithms since [13].
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A symbolic automaton over a concrete alphabet Σ is an automaton whose
transitions are labeled by symbolic letters or symbols, taken from a symbolic
alphabet Σ, that denote subsets of Σ. We assume Σ to be a disjoint union of
finite alphabets of the form Σq, each associated with a state of the automa-
ton. Concrete letters are mapped to symbols through a mapping ψ : Σ → Σ,
decomposable into state-specific mappings ψq : Σ → Σq. The Σ-semantics of a
symbol a ∈ Σq is the inverse of ψq, that is, [[a]] = {a ∈ Σ : ψq(a) = a}. The
Σ-semantics is extended to symbolic words of the form w = a1 · · · a|w| ∈ Σ∗

as the concatenation of the concrete one-letter languages associated with the
respective symbolic letters or, recursively speaking, by letting [[ε]] = {ε} and
[[w · a]] = [[w]] · [[a]] for w ∈ Σ∗, a ∈ Σ.

A symbolic automaton is complete and deterministic over Σ when for each
state q the set {[[a]] : a ∈ Σq} forms a partition of Σ. For this, we always let
ψq be a total function. Moreover, by letting ψ to be surjective we avoid symbols
with empty semantics. We often omit ψ and ψq from the notation and use [[a]]
when ψ, which is always present, is clear from the context.

Definition 1 (Symbolic Automaton). A deterministic symbolic automaton
is a tuple A = (Σ,Σ, ψ,Q, δ, q0, F ), where Σ is the input alphabet, Σ is a finite
alphabet, decomposable into Σ =

⊎
q∈Q Σq, ψ = {ψq : q ∈ Q} is a family of total

surjective functions ψq : Σ → Σq, Q is a finite set of states, q0 is the initial
state and F is the set of accepting states, δ : Q × Σ → Q is a partial transition
function decomposable into a family of total functions δq : {q} × Σq → Q.

The transition function is extended to words as in the concrete case. The
symbolic automaton can be viewed as an acceptor of a concrete language, that
is, when at q and reading a concrete letter a, the automaton takes the transition
δ(q, ψ(a)). Hence, the language L(A) consists of all concrete words whose run
leads from q0 to a state in F . A language L ⊆ Σ∗ is symbolic recognizable if
there exists a symbolic automaton A such that L = L(A).

3 Symbolic Observation Tables

The present algorithm relaxes the strong assumption of a helpful teacher [1,23].
Such a teacher responds positively to an equivalence query eq(A), where A is an
automaton conjectured by the learning algorithm, only if L(A) is indeed equiv-
alent to the target language; otherwise, it returns a minimal counter-example
which helps the learner to localize the modification site. In the new relaxed set-
ting, equivalence queries are approximated by testing queries: a call to eq yields
membership queries for a set of randomly selected words; when all of them agree
with the hypothesis, the algorithm terminates with a non-zero probability of
misclassification; otherwise, we have a counter-example to process. The number
of such queries may depend on what we assume about the distribution over Σ∗

and what we want to prove about the algorithm, for example PAC learnability
as in [1], which is further discussed in Sect. 6.
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Fig. 1. (a) A symbolic observation table, (b) its balanced symbolic Σ-tree, and (c) the
conjectured automaton.

Counter-examples obtained via testing queries need not be minimal neither in
length nor lexicographically and hence partition boundaries are determined with
some possible approximation error. Unlike [23], the present algorithm requires
the use of multiple evidences for each symbol. To avoid an undesirable growth
in the number of queries one of the evidences is chosen as a representative and
certain queries during subsequent stages of the learning process are restricted to
words with a representative prefix.

As an underlying data-structure for identifying states based on examples we
use symbolic observation tables [23], slightly modified to accommodate for rep-
resentative and non-representative evidences. The rows of the table correspond
to symbolic words (access sequences to states) while the columns are concrete
words. Readers unfamiliar with L∗ [1] can find in [23] more detailed intuitive
explanations of observation tables and their adaptation to the symbolic setting.

Let Σ and Σ be two alphabets, let S � R be a prefix-closed subset of Σ∗

and let ψ = {ψs}s∈S be a family of total surjective functions of the form ψs :
Σ → Σs, where

⊎
s∈S Σs = Σ. A balanced symbolic Σ-tree is a tuple (Σ,S,R,

ψ), where for every s ∈ S and a ∈ Σs, s · a ∈ S ∪ R, and for any r ∈ R and
a ∈ Σ, r · a �∈ S ∪ R. Elements of R are called boundary elements of the tree.

The structure of a balanced tree appears in Fig. 1-(b) together with its cor-
responding automaton at Fig. 1-(c). The underlying intuition is that elements of
S, also known as access sequences, correspond to a spanning tree of the transi-
tion graph of the automaton to be learned, while elements of the boundary R
correspond to back- and cross-edges relative to this spanning tree.

Definition 2 (Symbolic Observation Table). A symbolic observation table
is a tuple T = (Σ,Σ,S,R, ψ,E,f , μ, μ̂) such that

– Σ is an alphabet,
– (Σ,S,R, ψ) is a balanced symbolic Σ-tree,
– E ⊆ Σ∗ is a set of distinguishing words,
– f : (S ∪ R) · E → {−,+} is the symbolic classification function,
– μ : Σ → 2Σ − {∅} is the evidence function, where μ(a) ⊆ [[a]] for all a ∈ Σ,
– μ̂ : Σ → Σ is the representative function, where μ̂(a) ∈ μ(a) for all a ∈ Σ.
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The evidence and representative functions are extended to symbolic words in
S ∪ R as follows:

μ(ε) = {ε} μ̂(ε) = ε
μ(s · a) = μ̂(s) · μ(a) μ̂(s · a) = μ̂(s) · μ̂(a). (1)

The symbolic characteristic function values are based on the representative of
the symbolic prefix rather than the set of all evidences, i.e., to fill the (s, e) entry
in the table we let f(s, e) = f(μ̂(s) · e), where f is the characteristic function of
the target language. With every s ∈ S ∪ R we associate a residual classification
function defined as fs(e) = f(s, e). The symbolic sample associated with T is
the set MT = (S ∪ R) · E and the concrete sample is MT = μ(S ∪ R) · E.

Handling multiple evidences to determine partition boundaries is the major
novel feature in learning symbolic automata. Evidences of the same symbol
should behave the same and when this is not the case, that is, when two con-
crete letters in the evidence of a symbol lead to different residual functions, we
call this a manifestation of evidence incompatibility. The rigorous detection and
resolution of evidence incompatibility is a major contribution of the algorithm
presented in this work. The topic has also been addressed in [17] but in an unsat-
isfactory manner, leaving the transition function undefined outside the evidence.
Evidence incompatibility can be characterized and measured as follows.

Definition 3 (Incompatibility Instance). Let μs =
⋃

a∈Σs
μ(a) be the set

of all evidences for state s. A state s ∈ S has an incompatibility instance at
evidence a ∈ μs when fμ̂(s)·a �= fμ̂(s)·μ̂(ψs(a)), and this fact is denoted inc(s, a).
The evidence incompatibility degree associated with s is M(s) = |{a ∈ μs :
inc(s, a)}|.
Definition 4 (Table Properties). A table T = (Σ,Σ,S,R, ψ,E,f , μ, μ̂) is

– Closed if ∀r ∈ R, ∃s ∈ S, fr = fs,
– Reduced if ∀s, s′ ∈ S, fs �= fs′ , and
– Evidence compatible if M(s) = 0, ∀s ∈ S.

The following result [23] is the natural generalization of the derivation of an
automaton from an observation table [1] to the symbolic setting.

Theorem 1 (Automaton from Table). From a closed, reduced and evidence
compatible table one can construct a deterministic symbolic automaton compat-
ible with the concrete sample.

Proof. The proof is similar to the concrete case. Let T = (Σ,Σ,S,R, ψ,E,f ,
μ, μ̂) be such a table, which is reduced and closed and thus a function g : R → S,
such that g(r) = s iff fr = fs, is well defined. The automaton derived from the
table is then AT = (Σ,Σ, ψ,Q, δ, q0, F ), where Q = S, q0 = ε, F = {s ∈ S :
fs(ε) = +}, and δ : Q × Σ → Q is defined as

δ(s,a) =
{

s · a when s · a ∈ S
g(s · a) when s · a ∈ R
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By construction and like the L∗ algorithm, AT classifies correctly via f the
symbolic sample and, due to evidence compatibility, this classification agrees
with the characteristic function f on the concrete sample. �

4 The Symbolic Learning Algorithm

In this section we present the symbolic learning algorithm using a high-
cardinality bounded subset of N or R as an input alphabet. The concrete seman-
tics of each symbolic letter is a sub-interval of the alphabet. We disallow dis-
connected partition blocks, for example, two subsets of even and odd numbers,
respectively. Thus, if two disconnected intervals take the same transition, two
symbolic letters will be considered. In this setting, the endpoints of an interval
associated with a symbolic letter are such that all evidence points between them
have the same residual function, while the nearest points outside the interval
have different residuals. The algorithm adapts easily to other alphabet types as
we will show in Sect. 5.

The symbolic learning algorithm (Algorithm1) alternates between two
phases. In the first phase it attempts to make the table closed and evidence com-
patible so as to construct a symbolic automaton. In the second phase, after for-
mulating an equivalence query (eq), it processes the provided counter-example
which renders the table not closed or evidence incompatible. These phases alter-
nate until no counter-example is found. Note that the table, by construction, is
always kept reduced. We use mq as a shorthand for membership queries.

Table Initialization (Procedure 2). The algorithm builds an initial observa-
tion table T , with Σε = {a}, S = {ε}, R = {a}, E = {ε}. The newly introduced
symbol a is initialized with concrete semantics, evidence and a representative,

Algorithm 1. A sampling-based symbolic learning algorithm
1: learned = false

2: InitTable(T )
3: repeat
4: while T is not closed or not evidence compatible do
5: Close

6: EvComp

7: end while

8: if eq(AT ) then � check hypothesis AT

9: learned = true

10: else � a counter-example w is provided
11: CounterEx(AT , w) � process counter-example
12: end if
13: until learned



A Generic Algorithm for Learning Symbolic Automata 153

Procedure 2. Initialize the table
1: procedure InitTable(T )

2: Σε = {a}; S = {ε}; R = {a}; E = {ε} � a is a new symbol
3: InitSymbol(a)
4: Ask mq(u) for all u ∈ μ(a) ∪ {ε}
5: f(ε) = f(ε); f(a) = f(μ̂(a))
6: T = (Σ,Σ,S,R, ψ,E,f , μ, μ̂)
7: end procedure

Procedure 3. Initialize new symbol a

1: procedure InitSymbol(a)

2: [[a]] = Σ

3: μ(a) = sample(Σ, k)
4: μ̂(a) = select(μ(a))
5: end procedure

via the procedure InitSymbol which is invoked each time a new state is intro-
duced. Then membership queries are posed to update f and fill the table.

Symbol Initialization (Procedure 3). For a new symbolic letter a we let
[[a]] = Σ and as an evidence μ(a) we take a set of k concrete letters, denoted
by sample(Σ, k). This set can be selected randomly or be the result of a more
adaptive process that may depend on the outcome of membership queries. One
element of the evidence, denoted by select(μ(a)), is chosen as a representative
and will be used to fill table entries for all rows in which a appears. Already
at this stage, some elements of μ(a) may behave differently from the repre-
sentative and this will flag an evidence incompatibility condition to be treated
subsequently.

Table Closing (Procedure 4). A table is not closed when there exists some
r ∈ R without any equivalent element s ∈ S such that fr = fs. To render the
table closed r should be considered as a new state. To this end, r is moved from
R to S with alphabet Σr = {a}, where a is a new symbol which is initialized.
To balance the table a new word r · a is added to R, its evidence μ(r · a) and
representative μ̂(r · a) are computed following (1) and membership queries are
posed to update f and fill the table.

Fixing Evidence Incompatibility (Procedure 5). A table is not evidence
compatible when the incompatibility degree of a state in S is greater than zero.
Evidence incompatibility appears either after the initialization of a symbol, or
after a counter-example treatment. It is resolved by consecutive calls to EvComp
where each call reduces M(s) until the total incompatibility degree of the obser-
vation table becomes zero.
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Procedure 4. Close the table
1: procedure Close

2: Given r ∈ R such that ∀s ∈ S, fr �= fs

3: S = S ∪ {r} � declare r a new state
4: Σr = {a} � introduce a new symbol a

5: InitSymbol(a)
6: R = (R − {r}) ∪ {r · a} � add new boundary element
7: Ask mq(u) for all u ∈ μ(r · a) · E

8: fr·a = fμ̂(r·a)

9: end procedure

For a state s, an incompatibility instance at a indicates either that the par-
tition boundary is imprecise or that a transition (and its corresponding symbol)
is missing. In the first case, the incompatible evidence a appears next to the
boundary of the interval and its classification matches the classification of a
neighboring symbol a′. In this situation, modifying the boundary so that a is
moved to [[a′]] resolves the incompatibility. On the the other hand, when the
evidence a is in the interior of an interval, or does not behave like a neighboring
symbol, the incompatibility is resolved by adding a new symbol and refining
the existing partition. These two cases are illustrated in Figs. 2-(a) and (b),
respectively.

Formally, let s ∈ S be a state with positive incompatibility degree M(s) > 0,
and let μs = {a1, . . . , ak} ⊂ S be the set of evidences, ordered such that ai−1<ai

for all i. To simplify notation, f i denotes the residual fμ̂(s)·ai when state s
is understood from the context. Moreover, let aj and aj+1 denote symbols in
Σs with adjacent semantics, that is, given any three letters a, b, c ∈ Σ, with
a < b < c, then a ∈ [[aj ]] ∧ c ∈ [[aj+1]] implies b ∈ [[aj ]] ∪ [[aj+1]].

Let ai−1, ai ∈ μs be two evidences from the same interval that behave dif-
ferently, f i−1 �= f i, and let aj ∈ Σs be the symbol such that ai−1, ai ∈ μ(aj)
where [[aj ]] = [c, c′). Procedure p = split(ai−1, ai) returns a point p ∈ (ai−1, ai)
between them. We let split return the middle point, split(a, a′) = (a + a′)/2.
One can think of more sophisticated methods, based on binary search, that can
be applied instead.

Procedure 5 fixes the incompatibility by separating ai−1 and ai and mapping
them to different symbols. The way this separation is realized, with or without
introducing a new symbol, depends on the positions of ai−1 and ai in the set of
evidences and the residual functions of their neighboring intervals.

1. Boundary modification. Suppose the incompatibility instance is at ai ∈ μ(aj)
and that all other evidences μ(aj) to the right of ai behave like min μ(aj+1).
By changing the partition boundaries and moving ai from [[aj ]] to [[aj+1]],
the incompatibility instance at ai is eliminated. The new boundary between
these two intervals is set to p, see Fig. 2-(a). The symmetric case, where the
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Procedure 5. Make evidence compatible
1: procedure EvComp

2: Let s ∈ S, for which M(s) > 0, where

3: μs = {a1, . . . , ak} such that ai−1 < ai, ∀i = 2, . . . , k

4: Let aj ∈ Σs , [[aj ]] = [c, c′), such that ∃i : f i−1 �= f i for ai−1, ai ∈ μ(aj)

5: p = split(ai−1, ai) � new partitioning point

6: if f i = f i+1 = · · · = f i+l+1 where ai, . . . , ai+l ∈ μ(aj), ai+l+1 ∈ μ(aj+1) then

7: [[aj ]] = [c, p); [[aj+1]] = [p, c′) ∪ [[aj+1]] � change right frontier

8: μ(aj+1) = (μ(aj+1) ∪ μ(aj)) ∩ [[aj+1]]

9: μ(aj) = μ(aj) ∩ [[aj ]]

10: else if f i−1 = · · · = f i−l where ai−1, . . . , ai−l+1 ∈ μ(aj), ai−l ∈ μ(aj−1) then

11: [[aj−1]] = [[aj−1]] ∪ [c, p); [[aj ]] = [p, c′) � change left frontier

12: μ(aj−1) = (μ(aj−1) ∪ μ(aj)) ∩ [[aj−1]]

13: μ(aj) = μ(aj) ∩ [[aj ]]

14: else

15: Σs = Σs ∪ {b} � introduce a new symbol b

16: R = R ∪ {s · b}
17: if μ̂(aj) ≤ p then

18: [[aj ]] = [c, p); [[b]] = [p, c′)
19: else

20: [[b]] = [c, p); [[aj ]] = [p, c′)
21: end if

22: μ(b) = μ(aj) ∩ [[b]]; μ(aj) = μ(aj) ∩ [[aj ]]

23: μ̂(b) = select(μ(b))

24: fs·b = fµ̂(s·b)
25: end if

26: end procedure

incompatibility occurs at ai−1 ∈ aj with all other evidences of μ(aj) on its
left behaving like maxμ(aj−1), is treated similarly.

2. Symbol introduction. When the above condition does not hold and boundary
modification cannot be applied, the incompatibility is solved by refining the
partition. The semantics [[aj ]] is split into two intervals [c, p) and [p, c′), a new
symbol b is introduced and the interval not containing μ̂(aj) is moved from
[[aj ]] to [[b]] along with the evidences it contains, see Fig. 2-(b).

Processing Counter-Examples (Procedure 6). A counter-example is a
word w misclassified by the current hypothesis. The automaton should be mod-
ified to classify w correctly while remaining compatible with the evidence accu-
mulated so far. These modifications can be of two major types that we call
vertical and horizontal. The first type, which is the only possible modification in
concrete learning, involves the discovery of a new state s · a. A counter-example
which demonstrates that some letter a took a wrong transition δ(s, a) has a hor-
izontal effect that fixes a transition or adds a new one without creating a new
state. The procedure described in the sequel reacts to the counter-example by
adding a to the evidence of s and thus modifying the table, which should then be
made closed and evidence compatible before we continue with a new hypothesis.
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Fig. 2. Evidence incompatibility solved either by (a) boundary modification, or by (b)
introducing a new symbol. This depends on the position of the incompatibility instance
inside the partition.

The same counter-example is tested again and when it is correctly classified, we
proceed by posing a new equivalence query. We treat counter-examples using a
symbolic variant of the breakpoint method introduced in [26]. A similar method
has been proposed in [16].

Let AT be a symbolic automaton derived from a symbolic table T , and let
w = a1 · · · a|w| be a counter-example whose symbolic image is a1 · · · a|w|. An i-
factorization of w is w = ui ·ai ·vi such that ui = a1 · · · ai−1 and vi = ai+1 · · · a|w|.
For every i-factorization of w, we let ui be the symbolic image of ui, and si =
δ(ε,ui ·ai) be the symbolic state (an element of S) reached in AT after reading
ui · ai.

Proposition 1 (Symbolic Breakpoint). If w is a counter-example to AT

then there exists an i-factorization of w such that either

f(μ̂(si−1) · ai · vi) �= f(μ̂(si−1) · μ̂(ai) · vi) (2)

or

f(μ̂(si−1 · ai) · vi) �= f(μ̂(si) · vi) (3)

Proof. Condition (2) states that ai is not well represented by μ̂(ai) while Con-
dition (3) implies si−1 · ai is a new state different from si, see Fig. 3. We prove
the proposition assuming that none of the above inequalities holds for any i-
factorization of w. By using alternatively the negations of (2) and (3) for all
values of i, we conclude that f(μ̂(s0) ·a1 ·v1) = f(μ̂(s|w|)), where μ̂(s0) ·a1 ·v1 is
the counter-example and s|w| is the state reached in AT after reading w. Thus
w cannot be a counter-example. �

Procedure 6 iterates over i values and checks whether one of the conditions
(2) and (3) holds for some i. We let i take values in a monotonically descending
order and keep the suffixes as short as possible. In this case, it suffices to compare
f(μ̂(si−1 · ai) · vi) and f(μ̂(si−1) · ai · vi) with the classification of the counter-
example, which is kept in a flag variable. In line 5, Condition (3) is checked
and if it holds, adding vi to E will distinguish between states si−1 · ai and
si, resulting in a table which is not closed. Otherwise, if Condition (2) holds,
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Fig. 3. A counter-example expands a hypothesis either (a) vertically, discovering a new
state; or (b) horizontally, modifying the alphabet partition in a state.

which is checked in line 9, the letter ai is added to the evidence of ai and
new membership queries are posed. These queries will render the table evidence
incompatible and will lead to refining [[ai]]. The suffix vi is added to E in case
it is the only witness for the incompatibility. Note that checking the conditions
involves supplementary membership queries, based on the suffix of the counter-
example w, where the prefix ui of w is replaced by μ̂(si−1), the representative
of its shortest equivalent symbolic word in the table. Both cases will lead to a
new conjectured automaton which might still not classify w correctly. In that
case, the procedure should be invoked with the same counter-example and the
new hypothesis until AT classifies w correctly.

Example 1. We demonstrate the working of the algorithm in learning a target
language L over the alphabet Σ = [0, 100) ⊆ R. The observation tables, semantic
functions and hypotheses used in this example are shown in Figs. 4 and 5.

The table is initialized with S = {ε} and E = {ε}. To determine the alpha-
bet partition at the initial state ε, the learner asks membership queries for
the randomly selected one-letter words {13, 42, 68, 78, 92}. All words in this set
except 13 are rejected. Consequently, there are at least two distinct intervals
that we take split(13, 42) = 27 as their boundary. Each interval is represented
by a symbolic letter resulting in Σε = {a1,a2}, μ(a1) = {13}, μ̂(a1) = 13,
μ(a2) = {42, 68, 78, 92}, and μ̂(a2) = 68. The representatives are randomly cho-
sen from the set of evidences. The semantics, ψ maps all letters smaller than 27
to a1, and maps the rest to a2, that is, [[a1]] = [0, 27) and [[a2]] = [27, 100). The
table boundary updates to R = {a1,a2} and the observation table is T0, shown
in Fig. 4.
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Procedure 6. Counter-example treatment
1: procedure CounterEx(AT , w)
2: flag = f(μ̂(δ(ε,w))) � flag = f(w) when iterating on 1, . . . , |w|
3: for i = |w|, . . . , 1 do

4: For an i-factorization w = ui · ai · vi
5: if f(μ̂(si−1 · ai) · vi) �= flag then � check (3)

6: E = E ∪ {vi} � add a new distinguishing word

7: Ask mq(u) for all u ∈ μ(S ∪ R) · vi
8: break

9: else if f(μ̂(si−1) · ai · vi) �= flag then � check (2)

10: μ(ai) = μ(ai) ∪ {ai} � add new evidence

11: Ask mq(u) for all u ∈ μ̂(si−1) · ai · E

12: if M(si) = 0 then

13: E = E ∪ {vi} � add distinguishing word

14: Ask mq(u) for all u ∈ μ(S ∪ R) · vi
15: end if

16: break

17: end if

18: end for

19: end procedure

Fig. 4. Observation tables used in Example 1.

Table T0 is not closed and in order to fix this, the learner moves a1 to the set
of states S. To find the possible partitions of Σ at this new state a1, the learner
randomly chooses a sample {2, 18, 26, 46, 54} of letters and asks membership
queries concerning the words in {13 · 2, 13 · 18, 13 · 26, 13 · 46, 13 · 54}. Note that
the prefix used here is the representative of a1. The teacher classifies all words
as rejected. The new table is T1 with Σa1 = {a3}, μ(a3) = {2, 18, 26, 46, 54},
μ̂(a3) = 18, and [[a3]] = [0, 100). The new table is closed and the first hypothesis
A1 is conjectured.
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Fig. 5. Symbolic automata and semantics function learned in Example 1.

The hypothesis is tested on a set of words, randomly chosen from some
distribution, typically unknown to the learner. After some successful tests, a
word 35 · 52 · 11 is found, which is accepted by A1 but is outside the target
language. The learner takes this word as a counter-example and analyzes it using
the symbolic breakpoint method. At iteration i = 2 of Procedure 6, condition
(3) is violated, in particular mq(μ̂(ε · a2) · 11) = mq(68 · 11) �= flag = +. Thus,
the suffix 11 is added as a distinguishing word to E. The observation table T2

obtained after adding the new suffix is, as expected, not closed. The table is made
closed by letting a2 be a new state, resulting in table T3, where Σa2 = {a4,a5},
μ(a4) = {17, 27}, μ̂(a4) = 17, [[a4]] = [0, 45), μ(a5) = {64, 72, 94}, μ̂(a5) = 72
and [[a5]] = [45, 100). The corresponding new conjecture is A3.

Automaton A3 is tested and a counter-example 12 · 73 · 4 is provided. The
breakpoint method discovers that condition (2) is violated, because letter 73 is
not part of the semantics of a3. This letter is added as a new evidence to μ(a3).
The evidence inconsistency is solved by splitting the existing partition into two
subintervals. A new symbol a6 is added to Σa1 , such that μ(a6) = {73} and
[[a6]] = [63, 100). The new observation table and hypothesis automaton are T4

and A4, respectively.
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The next counter-example 52 · 47, also adds a new evidence, this time to
symbol a5. The classification of the new evidence matches the classification of
a4, which is a neighboring symbol. The boundary between [[a4]] and [[a5]] is moved
from 45 to 55, thus resolving the evidence incompatibility. The new hypothesis
A5 is successfully tested without discovering any other counter-example and the
algorithm terminates while returning A5 as an answer. �

5 Adaptation to Boolean Alphabets

We demonstrate the versatility of the algorithm by adapting it to languages
over the alphabet Σ = B

n of Boolean vectors accessed by variables {x1, . . . , xn}.
All components of the algorithm remain the same except the construction of
alphabet partitions and their modification due to evidence incompatibility. These
should be adapted to the particular nature of the Boolean hyper-cube. The
concrete semantics of the symbolic letters in a state q will be defined by a
function ψq : Bn → Σq. Let μs be the set of all evidences for state s. At any
given moment, the raw data for inducing the alphabet partition at s is the sample
{(ai, f i) : ai ∈ μs} where for every ai, f i = fμ̂(s)·ai is the residual associated
with ai. Let Fs denote the set of all observed distinct residuals associated with
the one-letter successors of s. On our way to construct ψq, we first derive another
function ψs : Bn → Fs associated with any s ∈ S. The function ψs is compatible
with the sample if it agrees with it on the elements of μs.

We represent both ψs and ψq by isomorphic decision trees [8] whose leaf
nodes are labeled by elements of Fs and Σq, respectively. By abuse of notation,
we use ψ for the functions and for their associated decision trees. We first build
ψs as a decision tree where all evidences mapped to the same leaf node agree
on their residual function. Hence, learning alphabet partitions is an instance of
learning decision trees using algorithms such as CART [8], ID3 [25], or ID5 [28]
that construct a tree compatible with a labeled sample.

These algorithms work roughly as follows. They start with a tree consisting
of a single root node, with which all sample points are associated. A node is
said to be pure if all its sample points have the same label. For each impure
node, two descendants are created and the sample is split among them based
on the value of some selected variable xi. The variable is chosen according to
some purity measure, such as information gain, that characterizes the quality
of the split based on each variable. The selection is greedy and the algorithm
terminates when the tree becomes sample compatible and sends each sample
point to a pure leaf node.

Evidence incompatibility in a state s appears when the decision tree ψs is
not compatible with the sample. This may happen in three occasions during
the execution of the algorithm, the first being symbol initialization. Recall that
when a new state s is introduced, we create a new symbol a and collect evidences
for it, which may have different residuals while being associated with the same
single root node. The second occasion occurs when new evidence is added to a
symbol, making a leaf node in the tree impure. Finally, when some new suffix
is added to E, the set Fs of distinct residuals (rows in the table) may increase
and the labels of existing evidences may change.
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Procedure 7. Make evidence compatible (Boolean alphabets)
1: procedure EvComp

2: Let s ∈ S be a state for which M(s) > 0

3: Update(ψs) � build a tree consistent with sample

4: for all h ∈ Fs do � for all existing residuals

5: if ∃a ∈ Σs s.t. h = fµ̂(s)·µ̂(a) then

6: � h is already associated with an existing symbol a

7: μ(a) = {ai ∈ μs : f i = h} � update evidence

8: [[a]] =
⋃{[[t]] : t ∈ leaves(ψs) and label(t) = h} � update semantics

9: else � h does not match any pre-existing residual

10: Σs = Σs ∪ {b} � introduce a new symbol

11: R = R ∪ {s · b} � and a new candidate state

12: μ(b) = {ai ∈ μs : f i = h} � define evidence

13: μ̂(b) = select(μ(b)) � select representative

14: [[b]] =
⋃{[[t]] : t ∈ leaves(ψs) and label(t) = h} � update semantics

15: end if

16: end for

17: end procedure

The simplest way to fix a decision tree is to split impure leaf nodes until
purification. However, this may lead to very deep trees and it is preferable to
reconstruct the tree each time the sample is updated in a way that leads to
incompatibility. In the simple (second) case where a new evidence is added, we
can use an incremental algorithm such as ID5 [28], which restructures only parts
of the tree that need to be modified, leaving the rest of the tree intact. This
algorithm produces the same tree as a non-incremental algorithm would, while
performing less computation. In the third case, we build the tree from scratch
and this is also what we do after initialization where the incremental and non-
incremental algorithms coincide.

Once a tree ψs is made compatible with the sample, the semantics of the
symbolic alphabet, expressed via ψs, is updated. This is nothing but mapping
the leaves of ψs to Σq. Had we wanted to follow the “convex” partition approach
that we used for numerical alphabets, we should have associated a fresh symbol
with each leaf node of the tree, thus letting [[a]] be a cube/term for every a ∈ Σq.
We prefer, however, to associate the same symbol with multiple leaf nodes that
share the same label, allowing the semantics of a symbol to be a finite union
of cubes. This way |Σs| = |Fs| and there is at most one symbol that labels a
transition between any pair of states.

Each time ψs is restructured, we modify ψq as follows. First, with each sym-
bol a that already exists, we re-associate the leaves that agree with the labels
of its representative (note that the representative of an existing symbol never
changes). Then, in the case where the set Fs of distinct residuals has increased,
we introduce a new symbolic letter for each new residual and select its represen-
tative. The whole process is described in Procedure 7. We use [[t]] to denote all
evidences associated with a leaf node t and label(t) to denote its residual.
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Fig. 6. Observation tables generated during the execution of the algorithm on
Example 2.

Fig. 7. Semantics functions used in Example 2. We show the evolution of ψε over time,
while for the other states we show only the final partition. We use symbols such as
{ , , } to indicate different residuals.

Example 2. We show how the algorithm learns a target language over Σ = B
4.

All tables encountered during the execution of the algorithm are shown in Fig. 6
and the decision trees appear in Fig. 7 in the form of Karnaugh maps. The
learner starts by initializing the observation table. Like any new state, initial
state ε admits one outgoing transition that represents all concrete letters, that is
Σε = {a0} and [[a0]] = Σ. A set of concrete letters is sampled and is used as the
evidence for the new symbol, μ(a0) = {(0000), (0010), (1011), (1000), (1101)},
while μ̂(a0) = (0000) is chosen as a representative. At this point, the observation
table is T0 and the decision tree is ψ0

ε , consisting of a single node.
The observation table is not evidence compatible because evidence (1101) ∈

μ(a0) behaves differently, and thus the partition needs refinement. The tree
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Fig. 8. Intermediate and final conjectured automata for Example 2.

induction algorithm CART, which is used throughout this example, finds that
Σ is best split into two blocks based on the values of variable x2. That is, all
letters for which x2 = 0 are mapped to a0 while the others are mapped to a
new symbol a1, added to Σε (see ψ2

ε). The resulting observation table T1 is
made closed by letting a1 be a state. The evidence for the new state/symbol is
sampled and, after resolving evidence incompatibility for it, we obtain the table
T2 with ψ = {ψ2

ε, ψa1}.
The first conjectured automaton A2, shown in Fig. 8, is tested. A counter-

example w = (1010) · (0000) is found and the learner applies the breakpoint
method which adds the distinguishing word (0000) to E. The table is filled in
by posing mq’s, resulting in T3 which is neither closed nor evidence compatible.

The table is made closed with a1a2 becoming a state. The outgoing tran-
sitions are defined as before, resulting in table T4 and ψa1a2 . The added suffix
(0000) causes an evidence incompatibility at ε by changing the residual func-
tions of the evidence, see ψ3

ε. The decision tree is reconstructed from scratch to
become compatible with the updated sample. Then the symbols are rearranged
so as to match the residuals of their representatives and a new symbol a5 is
added. The partition is updated to the evidence compatible ψ4

ε and the corre-
sponding observation table is T5.

The new hypothesis A5 is tested for equivalence, providing the counter-
example (1111). The breakpoint method adds (1111) to μ(a5) as a new evi-
dence, causing once more an incompatibility at the initial state, which is fixed
by updating the tree ψε into ψ5

ε. Since this incompatibility is due to a new evi-
dence, the tree is updated using an incremental algorithm. Observe that this
last counter-example only fixes the partition by rearranging the sub-cubes of B4

without adding any new transition.
A counter-example to the next hypothesis A6 is w = (1000) · (1000) · (0000) ·

(0000) · (1110), which adds the new suffix (1110) to E. The prefix a0 is now
identified as a state and after refining ψa0 to become evidence compatible, the
observation table T7 is obtained. The new and last hypothesis A7 is tested on
855 words with no counter-example. We can conclude (see next section) with
95% confidence that A7 is correct with a maximum error of 1%. �
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6 Theoretical and Empirical Results

We assume a probability distribution D defined over Σ∗ which is expressed via
a density function when Σ is a sub-interval of R. For any L ⊆ Σ∗ let PrD(L) be
the probability of L, obtained by summing up the probabilities of its elements or
by integrating densities in the real-valued case. Let L be a target language and
let A be a conjectured automaton accepting the language LA. The quality of A
is defined by the probability of error, that is, the probability of the symmetric
difference between L and LA: d(L,LA) = PrD(L ⊕ LA).

Definition 5 (PAC Learning [29]). A learning algorithm learns a language L
in a probably-approximately correct (PAC) manner with probability parameters ε
(accuracy) and δ (confidence) if its output A satisfies Pr(d(L,LA) ≤ ε) ≥ 1−δ.

Given that our algorithm implements equivalence checks by comparing member-
ship in L and in LA for words randomly selected according to D, the following
result from [1] applies in a straightforward way to the symbolic case.

Proposition 2. The symbolic learning algorithm PAC-learns a language L if
the i-th equivalence query tests ri = 1

ε (ln 1
δ + (i + 1) ln 2) random words without

finding a counter-example.

A class of functions or sets is efficiently PAC learnable if there is an algorithm
that PAC learns it in time (and number of queries) polynomial in 1/ε, 1/δ, and
in the size parameters of the learned object. For a target language L ⊂ Σ∗,
the size is based on the minimal symbolic automaton A recognizing L which is
assumed to have n states and at most m outgoing transitions from every state.

Concerning the size of the observation table and the sample used to learn L,
the set of prefixes S is monotonically increasing and reaches the size of at most n
elements. Since the table, by construction, is always kept reduced, the elements
in S represent exactly the states of the automaton. The size of the boundary
is always smaller than the total number of transitions in the automaton, that
is, mn − n + 1. The number of suffixes in E, that play a distinguishing role for
the states of the automaton, range between log2 n and n. The size of the table
ranges between (n + m) log2 n and n(mn + 1). The size of the symbolic sample
follows the size of prefixes and boundary which is at most O(mn2), while the
concrete sample depends on the number of evidences used in the table and its
size is

∑
s∈S |μs| · |E|.

A counter-example improves a hypothesis either by expanding the automa-
ton, discovering a new state or transition, or by modifying the boundaries
of already existing transitions. At most n − 1 counter-examples discover new
states and at most n(m − 1) introduce new transitions, resulting in at most
O(mn) equivalence queries and counter-examples of this kind. The number of
counter-examples that only change the boundaries in a partition is bounded
in a probabilistic setting of approximate learning. The probability of finding a
non-expansive counter-example ultimately decreases converging to zero. Hence,
there exists a hypothesis i for which after ri tests no counter-example is returned.
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From this we can conclude that our algorithm terminates, resulting in a symbolic
automaton which is a PAC representation of the target language L.

Proposition 3. The symbolic learning algorithm terminates with probability 1
returning a symbolic automaton that is a PAC acceptor of the target language L.

Algorithm 1 and all procedures that appear in the present paper have been imple-
mented in Python. In particular, methods sample(Σ, k) in Procedure 3 returns
a sample of size k chosen uniformly from Σ. Likewise, method select(·) uses
a uniform distribution over the set of evidences to choose one representative.
The split method, used in Procedure 5, returns the middle point of the interval.
For the case of Boolean alphabets the Update method in Procedure 7 uses the
CART algorithm [8] with information gain as the purity measure.

For theoretical results, it is sufficient that the same distribution is assumed
for the random queries and the error estimation. For the implementation of
random queries and for the empirical evaluation we have to be more concrete.
The distribution D that we use is a composition of two distributions: a log-normal
distribution, used to select the length of the word, and a uniform distribution over
the alphabet, used to choose a letter at each position in the word. The log-normal
distribution is chosen so that shorter words are preferred over longer ones.

Once an automaton A has been learned by our algorithm, its quality can be
evaluated as follows. When we have an explicit description of the automaton for
the target language L, we can build its product with A to accept the symmetric
difference L′ = L ⊕ LA. Then for any given k, using techniques similar to the
volume computation applied by [2] to timed automata, we can compute the
relative volume |L′ ∩ Σk|/|Σ|k which gives the probability of error over words
of length k. Since the probability becomes negligible beyond some k, this is
sufficient to obtain a good approximation of the error. Note that we can use
volume because we assume a uniform distribution over Σ. Other distributions
can be handled by more complex integration. It is worth mentioning the result of
[11] concerning the influence of noise on automata which states that for certain
types of automata, even a very small difference in the transition probabilities
between a pair of automata may lead to a divergence in their long run behavior
as k → ∞. The use of a log-normal distributions protects our evaluation from
this effect. An alternative way to evaluate the quality of the approximation,
which can be applied also when the target language is represented as a black
box, is just to draw words according to D and compare their classification by
the target and learned languages.

We have compared our algorithm with three non-symbolic algorithms due
to [1,22,26] using the same oracle for membership and equivalence queries. All
algorithms were tested on the same target languages defined over a numerical
input alphabet Σ, intersected with N to allow the concrete enumerative algo-
rithms to run as well. We evaluated the behavior of the algorithm in two ways.
The first was to keep the structure of the automaton fixed while increasing the
size of the alphabet. The second kept the alphabet size fixed and varied the
number of states in the (randomly generated) target automaton. Naturally, the
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symbolic algorithm admits the most modest growth in the total number of mem-
bership queries including queries used for testing, in both evaluation scenarios.
Not surprisingly, it generates more hypotheses and testing queries, and obtains
more counter-examples. Similar results were observed in a case study where the
target languages were sets of valid passwords. Here too, the symbolic algorithm
required less mq’s on average than any other method in all types of passwords,
and the difference increases as the passwords rules become more complicated
and the automata require more states and transitions. It is remarkable, how-
ever, that the symbolic algorithm managed to discover more states in general.
More experimental results will be reported elsewhere.

7 Conclusions and Future Work

We presented an algorithmic scheme for learning languages over large alpha-
bets. The algorithm targets languages acceptable by symbolic automata with
a modest number of states and transitions, guarded by simple constraints on
the alphabet, which can be arbitrarily large. The new algorithm replaces the
helpful teacher of the L∗ algorithm by random testing and is thus applicable to
more realistic settings. The price of this modification is in the probabilistic relax-
ation of the correctness criterion and in a more general procedure for handling
counter-examples and refining the alphabet partitions. This generality pays off
as attested by the easy adaptation of the algorithm to the Boolean domain.

Concerning related work, ideas similar to ours have been suggested and
explored in a series of papers [4,16,17] that also adapt automaton learning to
large alphabets. While some design decisions are similar, for example, to use
distinct symbolic alphabets at every state [17], our approach is more rigorous
in the way it treats evidence incompatibility and the modification of partition
boundaries. We do not consider each modification as a partition refinement, but
rather try first just to modify the boundaries without adding a new symbol.
As a result, we have the following property whenever we conclude the treat-
ment of evidence incompatibility: the mapping of concrete letters to symbols is
always sample-compatible and is well-defined for the whole alphabet, which does
not seem to be the case for the scheme presented in [4], which has the poten-
tial of generating new symbols indefinitely, or the case in [16,17], which results
in a partially-defined hypothesis. Recently, new results presented in [12] in the
context of learning symbolic automata give a more general justification for a
learning scheme like ours by proving that learnability is closed under product
and disjoint union.

Our work on abstract automata should not be confused with work dealing
with register automata, another extension of automata to infinite alphabets [3,
15,18]. These are automata augmented with additional variables that can store
some input letters and newly-read letters. Newly-read letters can be compared
with the registers but typically not with constants in the domain. Such automata
can express, for example, the requirement that the password at login is the same
as the password at sign-up. In the most recent work on learning register automata
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[9], a strong tree oracle is used. Given a concrete prefix and a symbolic prefix, the
teacher returns a special type of a register automaton that has a tree structure.
This fills in the entries of the observation table and provides the information
about the registers and guards in the automaton. This algorithm is efficient only
in the presence of shortest counter-examples and, in addition, when applied on
a theory of inequalities and extended to use constants, these constants should
be known in advance.

We believe that our comprehensive framework for learning languages over
large alphabets is unique in employing all the following features:

1. It is based on a clean and general definition of the relation between the
concrete and symbolic alphabets;

2. It can work without a helpful teacher and replace its counter-examples by
random sampling, resulting in counter-examples which are not assumed to be
minimal (neither in length nor in lexicographic order);

3. It employs an adaptation of the breakpoint method to analyze in an efficient
way the information provided by counter-examples;

4. It treats the modification of alphabet partitions in a rigorous way which
guarantees that no superfluous symbols are introduced;

5. It is modular, separating the general aspects from those that are alphabet
specific, thus providing for a relatively easy adaptation to new alphabets.

A natural future extension of the algorithm is to consider alphabets which are
subsets of Nn and R

n. Preliminary work in this direction has been reported in
[23] but used a very restricted type of monotone partitions in order to keep the
notion of a minimal counter-example meaningful. Now that we are not restricted
to such counter-examples we can use more general partitions, represented by
regression trees, a generalization of decision trees to numerical domains.

We are currently conducting more experiments to assess the scalability of our
algorithms, mostly in the Boolean domain. These are mostly synthetic examples
which are intended to confirm the sensitivity of the algorithm to the complex-
ity of the partitions (the number of blocks and the number of variables that
are involved on their definition, rather on the total number of variables which
determines the alphabet size. Once the scalability issue is resolved, it remains to
find a convincing class of real-world applications that benefits from such algo-
rithms. In the numerical domain we are rather convinced in the existence of
mechanisms, say, in cellular information processing in Biology [7] where discrete
transitions are taken based on threshold crossings of continuous variables with-
out remembering their values. Likewise, in the Boolean domain, we have to find
applications in the specification of large complex systems with many components
(digital circuit, distributed multi-agent systems). Hopefully such specifications
could be expressible by symbolic automata where the complexity can be con-
fined to the alphabet partitions and need not proliferate into states and cause
explosion.
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Abstract. Milner’s CCS is a cornerstone of concurrency theory. This
paper presents CCS as a cornerstone of concurrency practice. CCS is the
semantic footing of pseuCo, an academic programming language designed
to teach concurrent programming. The language features a heavily sim-
plified Java-like look and feel. It supports shared-memory as well as
message-passing concurrent programming primitives, the latter being
inspired by the Go programming language. The behaviour of pseuCo pro-
grams is described by a formal translational semantics mapping on value-
passing CCS and made executable using compilation to Java. pseuCo is
not only a language but an interactive experience: pseuCo.com provides
access to a web application designed for first hands-on experiences with
CCS and with concurrent programming patterns, supported by a rich and
growing toolset. It provides an environment for students to experiment
with and understand the mechanics of the fundamental building blocks
of concurrency theory and concurrent programming based on a complete
model of the program behaviour. Altogether this implements the TACAS
(Teaching Academic Concurrency to Amazing Students) vision.

1 Introduction

In our times, concurrency is a topic that affects computing more than ever
before. The Calculus of Communicating Systems, CCS, is a foundational pillar
of concurrency theory, developed by Robin Milner in Edinburgh [21,22] in the
80ies of the last century. In this period, Kim Larsen was working towards his
PhD thesis under the guidance of Milner [17]. And Rance Cleaveland, Joachim
Parrow, and Bernhard Steffen were working on a verification tool for CCS, the
Concurrency Workbench [6,7].

The Concurrency Workbench is an automated tool to cater for the analysis
of networks of finite-state processes expressed in Milner’s Calculus of Commu-
nicating Systems. It was part of a first wave of initiatives providing tool sup-
port for process algebraic principles. Other initiatives at that time included the
AUTO/AUTOGRAPH project by Robert de Simone and Didier Vergamini [3]
in Sophia Antipolis, the tool VENUS [26] by Amelia Soriano, as well as
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the Caesar/Aldebaran tools developed by Hubert Garavel and coworkers in
Grenoble [10]. The latter focussed on LOTOS, an ISO standard developed by
a committee around Ed Brinksma [2,16] from Twente. In turn, AUTOGRAPH
pioneered graph visualisation and animation using early versions of tcl/tk. All
three initiatives provided inspirations, in one way or another, to Kim Larsen in
his early efforts to pioneer tool support for real-time system verification [18],
the topic for which he would later become world famous [4]. And Bernhard, Ed,
Kim, and Rance later joined forces to found TACAS, a scientific conference that
is considered the flagship of European verification research by many.

In subsequent years, further tools emerged, such as the FDR toolset [24]
supporting Hoare’s CSP approach to concurrency theory, or the PAC tool [5]
that aimed at providing a front-end for different process algebras via instanti-
ation of the individual operational semantics. Also, the principles behind the
Concurrency Workbench were further developed by Rance Cleaveland in North
Carolina [8]. Lately, an Aalborg edition of the workbench has been announced [1]
for the purpose of teaching concurrency theory with CCS [19].

At the turn of the millennium, Jeff Kramer and Jeff Magee proposed a new
level of tool support for process calculi as part of their textbook on “Concur-
rency – state models and Java programs” [20]. This book came with an easy-
to-install and ready-to-use tool LTSA supporting their language FSP, a CSP-
inspired process calculus. The (to our opinion) most remarkable aspect of this
toolset was the deep integration of process-algebraic thinking into a lecture con-
cept introducing concurrency practice: To develop a thorough understanding of
concurrent programming principles and pitfalls, informal descriptions and con-
crete Java examples were paired with abstract FSP models, readily supported
by the LTSA tool.

The present paper follows this very line of work by presenting an even deeper
integration of concurrency theory into concurrency practice for the purpose of
teaching concurrent programming. It revolves around a programming language
called pseuCo. The language features a heavily simplified Java-like look and
feel. It supports shared-memory as well as message-passing concurrent program-
ming primitives, the latter being inspired by the Go programming language. The
behaviour of pseuCo programs is described by a formal translational semantics
mapping on value-passing CCS and made executable using compilation to Java.
pseuCo is not only a language, it is an interactive experience: pseuCo.com pro-
vides access to a web application designed for first hands-on experiences with
CCS and with concurrent programming patterns, supported by a rich and grow-
ing toolset. It provides an environment for students to experiment with and
understand the mechanics of the fundamental building blocks of concurrency
theory and concurrent programming based on a complete model of the program
behaviour. This platform provides access to the tools targeting pseuCo, most
notably: the pseuCo-to-Java compiler, the translation of pseuCo programs to
CCS, the CCS semantics in terms of LTS, and more.
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2 The Concepts Behind PSEUCO

This section describes the context, features, and semantic embedding of pseuCo.

2.1 Context

A profound understanding of concurrency has to be part of the basic repertoire
of every computer scientist. Concurrency phenomena are omnipresent in data-
bases, communication networks, and operating systems, in multi-core comput-
ing, and massively parallel graphics systems, as well as in emerging fields such
as computational biology. Nowadays, software developers are confronted with
concurrency problems on a daily basis, problems which are notoriously difficult
to handle. Therefore, competence in this field is a must for every computer sci-
entist. Unlike sequential systems, even non-critical applications can no longer be
adequately tested for functional correctness. Therefore, it is indispensable that
formal verification procedures are known, at least conceptually, to every under-
graduate computer science student we educate. A solid theoretical underpinning
of the matter and its interrelation with the practice of concurrent programming
is a necessary prerequisite.

A Lecture on Concurrent Programming. For this purpose, the lecture “Concur-
rent Programming” at Saarland University develops these competences starting
off with a solid explanation of concurrency theory and then lifts and intertwines
them with practical aspects of concurrent programming. The lecture is a manda-
tory module worth 6 ECTS points in the Bachelor education of computer science
and related fields and is currently in its tenth edition. It is scheduled at the end
of the second year but we encourage talented students to already enrol into it at
the end of their first year. It received the 2013 award for innovations in teaching
from the Fakultätentag Informatik, the association of German computer science
faculties.

After an extensive motivation which stresses the relevance of the matter, the
students embark into the basics of CCS including syntax, labelled transition sys-
tems, operational semantics, trace equivalence, strong bisimulation, and obser-
vational congruence, and finally value-passing CCS. At various places along the
lecture, the understanding is supported by the CCS view of pseuCo.com shown
in Fig. 3.

At this point, the main innovation of our approach gradually enters the stage:
pseuCo. Contrary to CCS, pseuCo is a real programming language. It supports
both the shared-memory and message-passing programming paradigms. In order
to connect concurrency theory and concurrency practice, pseuCo has a transla-
tional semantics mapping on value-passing CCS.

https://pseuco.com/#/sku/default/tool/edit/remote/script-3-match-cracker
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Listing 1.1: Distortion-tolerant transmission protocol in CCS

CCS with Value-Passing. We will base the discussion of our pragmatic extension
of CCS on the example shown in Listing 1.1. It describes a simple distortion-
tolerant transmission protocol between a sender and a receiver. While the data
is transmitted over a medium that may distort messages, for simplicity, acknowl-
edgements are assumed to travel directly from receiver to sender.

The first line defines a finite range of values to be used later. In line 3, we see
the defining equation of the Sender process. It receives a value x and continues by
sending out that value with the action send. It then turns into the process Sending
defined in line 4 which is parametric in the value x so as to make it possible to
remember the value in case retransmissions are needed. This demonstrates that
process definitions can be parametrised by data values. Our CCS dialect allows
Booleans, integers or strings as process parameters. The Sending process waits
for either a positive acknowledgement and then returns to being a Sender or for
a negative acknowledgement which triggers a retransmission of the value.

Line 7 defines the Medium over which Sender and Receiver communicate data.
First, the Medium receives a value that was sent with the action snd!. After having
received a value in the range defined before, the Medium decides nondeterministi-
cally to either pass it on or to instead transmit a (distorted) garbled! message.
In both cases, this part of the process ends as the special process 1 indicat-
ing successful termination. This allows the sequence operator ; to continue to
a fresh Medium which waits for the next transmission. Sequencing is usually not
part of CCS but since it increases specification convenience and is semantically
well understood [2,22], it is included in our CCS dialect. The operator is present
in this line of our example for the sole purpose of demonstrating its use, and
the same holds true for the action snd appearing as a process parameter of the

https://pseuco.com/#/sku/default/tool/edit/remote/knb6ay351rb4i492lz7w
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get!(2)
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Fig. 1. Behaviour of the process shown in Listing 1.1

Medium process. Using actions as process parameters enables emulating restricted
forms of action relabelling. Other than this, no explicit relabelling operator is
supported in our dialect of CCS.

Line 9 contains the definition of the Receiver process. It offers up to three
behaviours: (a) If a value x is received that lies in the integer range from 0
to 9, that value is passed on with the get! action and acknowledged; (b) if a
garbled? message is received, a negative acknowledgement is sent; or (c) if 4
digits have been received, "success" (formed via string concatenation) is printed
and the receiver stops. For the latter, the process uses a data parameter and
simple arithmetic to count the digits that have been received. A when guard
disables the "success" message until this counter reaches 4. Such guards form
the expectable link between data values and behaviour.

Line 13 composes Sender, Receiver and Medium (appropriately parametrised)
running parallel to form a single Protocol process. The restriction operator \
enforces synchronisation between the processes where appropriate. Finally,
line 15 defines the overall process consisting of the Protocol and a user request-
ing the values 2, 4, 2 and 8 to be sent. The resulting behaviour (more precisely
the quotient transition system under observational congruence) of this example
is depicted in Fig. 1.

2.2 The Language PSEUCO

Nowadays, mainstream programming is carried out in imperative programming
languages. pseuCo is an imperative language featuring a heavily simplified Java-
like look and feel paired with language concepts inspired by the Go program-
ming language. It also has similarities with Holzmann’s Promela language [15].
A first, very simplistic pseuCo example is depicted in Listing 1.2.

https://pseuco.com/#/sku/default/tool/edit/remote/1pe1ay37jyzqnwkj3fmt
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Listing 1.2. Shared memory concurrent counting in pseuCo

1 int n = 10;

2 lock guard_n;

3

4 void countdown () {

5 for (int i = 5; i >= 1; i--) {

6 lock(guard_n);

7 n--;

8 unlock(guard_n);

9 }

10 }

11

12 mainAgent {

13 agent a = start(countdown ());

14 countdown ();

15 join(a);

16 println("The�value�is�"+ n);

17 }

This program implements concurrent counting. A shared integer, n, is ini-
tialised to 10. The procedure countdown() decrements this counter five times.
The mainAgent, which is run when the program is started, starts a second agent
that runs countdown() before calling countdown() itself. After both agents have
executed this procedure, the mainAgent prints the final value of n. To ensure
mutually exclusive access to the shared variable, a globally defined lock named
guard_n is used within the countdown() procedure.

An alternative (and usually recommended) way to perform safe computations
in the presence of concurrency and shared-memory is to encapsulate critical
sections within a monitor [12,14]. This concept is indeed supported in pseuCo.
For the example above, this would mean to wrap the shared variable in a monitor
AtomicInteger, offering procedures to read and to modify its value without
interference by others.

We demonstrate the pseuCo support for monitors by an implementation
of a semaphore [9]. Semaphores provide means of controlling access to com-
mon resources, similar to locks, but are more general: they manage a pool of
an initially provided, limited number of resources (allocated by init(v)). Any
agent can request one of the resources by calling down(). When the agent does
not need the resource anymore, it can hand it back to the semaphore by call-
ing up(). Listing 1.3 presents the implementation of a semaphore providing the
three procedures init, down, and up as a monitor in pseuCo. An instance sem of
such a monitor is obtained by declaring Semaphore sem. For these instances, no
explicit locking is necessary because the data structure is declared as a monitor

as opposed to a simple struct. This means that each instance has an implicit,
built-in lock. This lock is automatically locked at the entrance of any procedure
declared in the monitor and unlocked on its exit.

https://pseuco.com/#/sku/default/tool/edit/remote/hpq5zweyhk0mxzxzzor1
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Listing 1.3. A monitor in pseuCo implementing a semaphore

1 monitor Semaphore {

2 int value ;

3 condition valueNonZero with (!( value ==0));

4

5 void init (int v) {

6 value = v;

7 }

8 void down () {

9 waitForCondition (valueNonZero);

10 value -- ;

11 }

12 void up () {

13 value ++ ;

14 signalAll (valueNonZero);

15 }

16 }

As in the example, monitors can be equipped with conditions and condition
synchronisation in a way that very closely follows the original proposal [13]. For
the semaphore example, an agent has to wait in case it is requesting a resource
but finds the pool of resources to be empty. This non-emptiness condition (a
predicate on variables guarded by the monitor) is declared in line 3. It is checked
in line 9. The semantics of waitForCondition is exactly as described above: If the
condition is satisfied, the procedure continues. If it is not, the implicit lock of the
monitor is released and the agent needs to wait. In order to wake up the agent
and let it re-check the condition, the waiting agents are signaled in line 14 after
a resource has been handed back (which makes the condition satisfied). While
signalAll wakes up all agents waiting for the specific condition, signal would
nondeterministically pick a single waiting agent to wake up.

Message-passing concurrency is arguably less difficult to handle than shared-
memory concurrency. pseuCo provides native support for message-passing con-
currency, and indeed, this is explained to the students before discussing the
latter. An example is presented in Listing 1.4. An agent running the procedure
concat interacts via three different channels with the mainAgent. In a nutshell,
concat builds up a string s by prefixing it with parts received from channel arg.
Empty parts make it report an error on channel err while otherwise the updated
value of s is reported on channel res. This channel is declared globally in line 1,
the others are parameters of concat and declared in lines 16 and 17. Two of
them are channels that can hold strings (res and parts), one can hold Booleans
(err). Channel parts is a FIFO buffer which can hold up to 2 elements, the oth-
ers are unbuffered, meaning that they induce a handshake between the agents
sending to (via <!) and receiving from (via <?) them. After starting the agent,
the mainAgent feeds three strings into the channel parts (one of them empty)

https://pseuco.com/#/sku/default/tool/edit/remote/ak13mtyjx81zn163dp29
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Listing 1.4. Message-passing concurrency in pseuCo

1 stringchan res;

2

3 void concat (stringchan arg , boolchan emp) {

4 string s = "";

5 while (true) {

6 string pref = <? arg;

7 if (pref == "") emp <! true;

8 else {

9 s = pref + s;

10 res <! s;

11 }

12 }

13 }

14

15 mainAgent {

16 stringchan2 parts;

17 boolchan err;

18

19 start(concat(parts , err));

20 parts <! "strand";

21 parts <! "";

22 parts <! "Guld";

23

24 string r;

25 while (true) {

26 select {

27 case r = <? res: {

28 println(r);

29 }

30 case <? err: {

31 println("Empty�string�reported!");

32 }

33 }

34 }

35 }

and then waits for results sent back to him. These may arrive on two different
channels (err and res) and therefore a select-case statement is used to specify
dedicated reactions. In case an error is reported, this is reported to the user in a
println. Otherwise, the results received on channel res are printed out. pseuCo
has borrowed the select-case concept from Go [11]. A select statements consist
of several cases. Except for default cases, each case has a guard and a statement.
The guard contains exactly one send (<!) or receive operation (<?). At runtime,
a case can be selected only if the message-passing operation of the guard is pos-
sible, i.e. if the channel can be read or be written to, respectively. One of those
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cases is selected nondeterministically and its guard and statement are processed.
A default case can always be selected. If there are multiple cases that can be
selected, one of them is selected non-deterministically.

These examples give an impression of the features provided by pseuCo, all
of which are given semantics by translation to CCS.

2.3 Translational Semantics

Several of the peculiarities of imperative programming languages do not have
a direct counterpart in process calculi like CCS. The most challenging ones
include jumping and branching, buffers, memory and dynamic object referencing,
buffered channels, reentrant locks, monitors, and condition synchronisation. In
the following sections, we give an intuition of how pseuCo programs are given
semantics in terms of CCS. We cover each part of the pseuCo language and
explain the non-trivial parts in particular detail.

Program Structure. In Listings 1.2 and 1.4, we have seen that concurrency is sup-
ported in pseuCo by the possibility of wrapping procedures into agents which run
concurrently to the remainder of the program. Similar to the Go language [11],
any procedure can be started as an agent by using the start primitive in front of
the procedure call (lines 13 and 19). On the CCS level, each agent corresponds
to a process that runs in parallel to the others. In addition, further parallel
processes implement the necessary bookkeeping and coordination.

The translational semantics of pseuCo to CCS is of compositional nature
and best explained by looking at the abstract syntax tree of a pseuCo pro-
gram. Roughly speaking, the closer nodes are to the root of the tree, the more
they determine the top-level structure by influencing whether processes are com-
posed in parallel or sequentially. Nodes that are lowest in the syntax tree map
pseuCo terms to CCS terms. When passed to their parent nodes, these are
usually composed sequentially or as nondeterministic alternatives such that the
control flow of the pseuCo program is respected. The topmost nodes compose
global variables, locks, conditions, arrays, and channels (and the bookkeeping
needed to support those) as processes running in parallel to the execution of the
main agent. Moreover, for each procedure that is wrapped as an agent, there is a
process responsible for starting it, also running in parallel to the other processes.
On the outermost level, we hide all actions of the resulting model that are not
println! or exception!.

Whereas composing everything in parallel is very intuitive, finding appropri-
ate CCS terms and coordinating them in a control-flow-preserving way requires
some interesting concepts. In the remainder of this section, we provide a descrip-
tion of the main ideas and concepts structured along the different language fea-
tures of pseuCo.

Expressions and Assignments. pseuCo supports arithmetic and Boolean expres-
sions, constants, and variables. For now, we only consider variables local to an
agent. Global variables are discussed later. Local variables in pseuCo are mapped
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to process parameters on the CCS level. However, assignments to variables are
not supported there. Instead, an assignment triggers that on the CCS level, all
occurrences of that variable are substituted by the expression on the right side
of the assignment. For each arithmetic and Boolean operator in pseuCo there is
a counterpart operator in CCS. For instance, the following program is compiled
into the single CCS action println!3+(2*3)+(2*3):

1 int x = 3;

2 int y = 2 * x;

3 x = x + y;

4 println(x + y);

Memory. While local variables in a pseuCo program can be cast into process
parametrisation on the CCS level, we need to proceed differently for non-local
pseuCo variables. This applies especially to shared variables in shared-variable
concurrency. In order to represent such variables on the CCS level, we need to
represent memory in CCS. A common abstraction of memory is a set of memory
cells. A cell is independent of the representation of values (e.g. bits), its only
purpose is to store a particular value. In CCS, a memory Cell can be modelled
as a parallel process that provides actions for getting the currently stored value
cur and for setting it to a new value:

1 Cell_x[cur] := get_x!cur. Cell_x[cur]

2 + set_x?new. Cell_x[new]

When a process reads or writes the value of a cell, it needs to perform a hand-
shake synchronisation with the action provided by the cell as in the following
CCS snippet:

1 (get_x?x. println!x. 0 | Cell_x [-3]) \{ get_x}

Object References. Imperative programming languages use references in order to
access objects in memory. In pseuCo, structs and monitors are accessed by ref-
erences, but also locks, arrays and channels are accessed this way. Consequently,
there can be arbitrarily many objects. Hence, memory cells of an object must
store the reference to the object they represent. Therefore, the cell definitions
for a member of a structure or monitor A need an additional argument i for
the reference as in Env_class_A[i, x]. For example, the process for the mon-
itor Semaphore in Listing 1.3 has the name Env_class_Semaphore[i, g, value]

because it holds a reference to its implicit lock g and it stores the value for its
variable.

Anyhow, the actions for accessing variable x, get_x and set_x, would still be
shared across all memory cells for x of the struct (or the monitor), so using get_x

(for example) would cause an x-value from any struct instance to be read. In
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order to make access to struct and monitor instances unique, each cell needs
unique actions for accessing it. Since there may be arbitrarily many instances,
making actions unique is not trivial. With the intention of keeping the resulting
CCS code readable and intuitive, we have added the possibility of parametrising
action names to our CCS dialect. This parametrisation effectively extends the
expressiveness of our dialect to that of the π-calculus [23] since the parameters
can be passed around as values. However, we restrict this mechanism to integer
parameters and allow integer arithmetic on those. The pseuCo semantics uses
this for integer references to memory cells and other objects. The definition of
such cells is to be adjusted as follows, where the (i) is the parametrisation
occurring in the action name:

1 Env_class_A[i, x] :=

2 env_class_A_get_x(i)!x. Env_class_A[i, x] +

3 env_class_A_set_x(i)?v. Env_class_A[i, v]

Another example of objects that are accessed by reference are arrays. Arrays
are modelled as simple CCS processes that have as many process parameters as
there are elements in the array (plus one reference i for identifying the object,
as explained above). In order to access a specific array element, the user must
first communicate the element index and can then choose between reading or
writing. For each array capacity occurring in the pseuCo program, there must
be a dedicated CCS process. Below we present one for capacity 3:

1 Array3[i, v0 , v1, v2] := array_access(i)?idx. (

2 when (idx == 0) (

3 array_get(i)!v0. Array3[i, v0, v1 , v2] +

4 array_set(i)?v. Array3[i, v, v1 , v2]

5 ) + when (idx == 1) (

6 ...

7 ) + when (idx == 2) (

8 ...

9 )

As it is the case for real memory, it must be possible to allocate a memory cell.
For example, in Listing 1.3, there is an allocation of a lock in line 2. Hence,
each type of cell has a constructor that manages the references and adds a new
memory process in parallel to the program processes whenever necessary. The
following listing shows the constructor for a struct A containing a single variable
x. The process Env_class_A is as shown above.

1 Env_class_A_cons [i] := class_A_create !(i).

2 (Env_class_A[i, 0] | Env_class_A_cons [i+1])

Some types of objects are supported by several constructors. Arrays, for example,
have a distinct constructor for every array size. Still, all arrays must share the
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same reference space. There is one process that manages the references (using
integer arithmetic on references) for arrays and each array constructor requests
a free reference for the next instance it is supposed to initialise.

1 ArrayManager[i] := array_new !(i). ArrayManager[i+1]

Below is how the constructor of arrays of size 3 uses the array manager. The
constructor itself acts independent of the type of the elements so it is necessary
for initialisation to provide the constructor with a default value for the cells (i.e.
Array3_cons can be used for bool, int, or string arrays so the default value is
false, zero, or the empty string).

1 Array3_cons := array_new?i. array3_create !(i).

2 array_setDefault (i)?d. (Array3_cons | Array3[i, d, d, d])

The necessary communication with the array manager introduces some superflu-
ous interleavings because the next array reference can be requested at any time.
This can be avoided at the price of a more involved encoding.

Procedures and Jumping. In CCS, the base “execution” order is linear, i.e. its
semantics executes one prefix after the other. There is no built-in history that
enables going back to a previous point in execution. In pseuCo (and other lan-
guages), however, it is possible to call procedures. After the procedure has been
executed, the execution of the program jumps back to the point where the proce-
dure was called. Hence, procedure calls can not be defined within CCS directly,
but they can be tackled by means of sequencing (;). With sequencing, it is
indeed straightforward to embed procedures in CCS processes. When a proce-
dure is called, the process’ name appears in front of the sequence operator.

For non-void procedures, it is necessary to return a value to the caller, but a
direct handshake is not possible (since they run sequentially, not in parallel). In
our encoding, we use a dedicated parallel process which collects and delivers the
values to return. With that, a procedure can return a value by sending it to the
dedicated process, and the caller can receive it from there as part of a sequence
operator.

Control Flow. Most imperative programs need conditional branching. For exam-
ple, the for loop in Listing 1.2 must jump from the end of its body either to the
beginning of the loop or behind the loop, and the if-then-else in Listing 1.4
determines the control flow according to its condition. In CCS, jumping and
branching is not supported directly. However, processes can be given names
(appearing on the left hand side of defining equations). Similarly to what has
been discussed for procedures, we accommodate conditional branching by split-
ting into several named sub-processes. Each sub-process name is the equivalent
of a jump label, and branching to a sub-process boils down to using the name
of the sub-process. The following listing shows a simple loop:
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1 while(a > 0) {

2 println("loop");

3 a = a-1;

4 }

5 println("a�is�zero");

Its semantics is the CCS code below:

1 P[a] := when (a <= 0) Q[a]

2 + when (a > 0) println!"loop". P[a-1]

3 Q[a] := println!"a�is�zero". 0

The presented pattern can be used for the other branching statements as well.

Mutual Exclusion and Locks. pseuCo supports locks, monitors, and conditions.
In its basic form, a lock is encoded as a process occupying one out of two states,
locked and unlocked. Only one parallel process can perform the locking at a
time:

1 Lock[i] := lock(i)?. unlock(i)!. Lock[i]

As we have seen previously, the parameter i is a reference to allow uniquely
identifying a specific lock. The actions lock and unlock can then be used
to lock and unlock the lock, respectively, as demonstrated in the example
Lock[i] | lock(i)!. println!"CriticalSection". unlock(i)?. 0.

An advanced variant of locks are reentrant locks where a single agent, the
lock owner, is allowed to take the lock multiple times. The lock is released to
other potential owners only if the owner has unlocked it the same number of
times it has been locked. Modelling this in CCS is more intricate than single-
entrant locks. The lock process needs two additional arguments: one that holds
the agent identity owning the lock and one that keeps a count of the number
of locks still to be unlocked. The process allows anyone to become owner by
acquiring the lock provided nobody else already owns it. If an agent a owns the
lock, then the process ensures that further locks are only made possible for a. It
throws an exception if an unlock is requested by a non-owner:

1 Lock[i, c, a] :=

2 when (c==0) lock(i)?a. Lock[i, 1, a] +

3 when (c>0) (

4 lock(i)?(a). Lock[i, c+1, a] +

5 unlock(i)?a2. (

6 when (a==a2) Lock[i, c-1, a] +

7 when (a!=a2) exception !("Exception").0))
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In this fragment, there is a peculiar difference between the lock actions in
lines 2 and 4. In line 4, there are additional parentheses around a. This forces
the current value of the expression a to be evaluated (instead of overriding it)
and therefore ensures that lock(i)!e (effectuated by some agent referenced as
e who may not be the owner) and lock(i)?(a) can handshake if and only if
e and a evaluate to the same value (a concept called value matching in some
calculi). This is how we ensure that re-entrances are only granted to the agent
that already owns the lock.

Agents. For each procedure that is used as an agent, there is an agent process
in parallel to existing agents. It is responsible for starting the agent, similar
to a constructor. The following listing shows the agent process Agent f that is
responsible for starting a procedure f with one argument x:

1 Agent_f := get_free_ref?a. start_f!a. set_arg_x?v.

2 (Agent_f | Proc_f[a, v]; 0)

As we have seen already for arrays, agents share a common reference space,
so Agent_f first gets an unused reference from a management process. It then
offers to send this reference with start f!a. As soon as an agent wants to start f
as a new agent, it begins by receiving this message start_f?a to get the reference
for the new agent. If f needs arguments to be called, as in the example above,
then the starting agent has to send values for each of the arguments. Afterwards,
Agent_f calls the procedure f with the arguments it has received in parallel with
a fresh copy of itself.

Other agents can choose to wait for this new agent’s termination before they
continue their own execution. In pseuCo, this is done by calling the primitive
join. Hence, we augment the CCS representation so that after termination of
the agent, the process continues with a process that offers an unlimited num-
ber of join(a)! actions. The translational semantics of the join primitive is
the complementary action join(a)?. Due to the unlimited offers of individual
join(.)!-transitions provided by each agent upon termination, any attempt to
join(.)? an already terminated agent will not block.

1 AgentJoins[a] := join(a)!. AgentJoins[a]

2 Agent_f := get_free_ref?a. start_f!a. set_arg_x?v.

3 (Agent_f | Proc_f[a, v] ; AgentJoins[a])

Message Passing via Channels. As shown in Listing 1.4, pseuCo supports
message-passing communication via unbuffered and via (FIFO) buffered chan-
nels of fixed capacity (as in lines 17 and 16). CCS, on the other hand, pro-
vides unbuffered communication via handshaking of complementary actions with
value-passing. Hence, pseuCo’s unbuffered channels can be encoded directly. For
buffered channels, we need the ability to store the buffer state which is comprised
of the items to be buffered and their order. Basically, a buffered channel behaves
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similarly to an array of memory cells, however it has restricted actions for access
(namely only pushing and popping). A straightforward encoding is as follows:

1 Buffer_n[i, c, v_1 , ..., v_n] :=

2 when (c==0) put(i)?v_1. Buffer_n[i, c, v_1 , ..., v_n] +

3 ... +

4 when (c==n-1) put(i)?v_n. Buffer_n[i, c, v_1 , ..., v_n] +

5 when (c>0) chan(i)!v_0. Buffer_n[i, c-1, v_2 , ..., v_n ,0]

Here, n is the capacity of the buffer, c is the number of items that are currently
buffered and v_j are the cells of the buffer (i is the buffer reference as usual).
The channel allows sending values to it provided c < n. Due to the dedicated
when-statements guarding each put, the value received over action put is stored
in the next free cell. Values can be received from the channel provided c > 0.
The channel sends the value contained in v_0 over action chan, decreases the
item counter by one and shifts all buffered values to the left.

The type system of pseuCo needs to accommodate for the fact that channels
can be referred to without specifying whether they are buffered or unbuffered.
For example, in Listing 1.4, the type of the parameter arg of concat is stringchan
although the main agent passes a stringchan2 to it. Once such a channel is used
for sending, it is necessary to determine the buffer type dynamically because
unbuffered channels are used with action chan(i)! and buffered channels are
filled with action put(i)!. We overcome this problem by using negative numbers
as references for unbuffered channels and positive numbers for buffered ones. The
following listing shows the CCS code corresponding to sending a value v over a
channel with reference i for which the buffer type is not known in advance.

1 when (i < 0) chan(i)!v. 1 + when (i > 0) put(i)!v. 1

Select Statement. The select statement introduces nondeterministic choice to
pseuCo. For example, in Listing 1.4, the main agent can nondeterministically
choose to either process a result or an error sent by concat. There is a direct coun-
terpart in CCS, namely the nondeterministic choice operator +. In the encoding,
it is important to assure that on the CCS level, the leftmost prefix of each
resulting nondeterministic alternative corresponds to the channel appearing in
the respective case to ensure that the selection is made based on the correct
external stimulus.

Monitors and Conditions. As already shown in Listing 1.3, pseuCo supports
monitors in the form of a struct that has an implicit, built-in lock. We have
seen that monitors can be enhanced with conditions so as to support condi-
tion synchronisation. The Semaphore in Listing 1.3 employs a condition to make
agents wait until a resource becomes available. A waiting agent does not per-
form any work. In particular, it does not run in a loop that tries to enter and
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exit the monitor over and over until the condition is found to be satisfied (a
so-called busy-wait). Instead, the classical monitor concept comes with a noti-
fication mechanism where waiting agents wait until they are notified. pseuCo
supports this via the two primitives signal and signalAll that need to be used
actively by some agents. The Semaphore example in Listing 1.3 uses signalAll in
line 14 once a resource has been handed back.

We illustrate the behaviour of a condition as agents that rest inside a waiting
room until they are notified that a change they are waiting for happened. This
metaphor emphasizes that agents actually stop working and do not have to do
anything actively until they receive a signal. In the semaphore example, an agent
that finds the pool of resources empty goes to the waiting room and stays there
until a resource is handed back and thus signalAll is called. pseuCo’s conditions
are only available inside monitors so there is always the implicit monitor lock
that the condition is related to.

In CCS, we adapt the waiting room metaphor and use two processes: one for
the waiting room and one that broadcasts the signal to waiting agents.

1 WaitRoom[i, c] :=

2 signal(i)?.(

3 when (c==0) WaitRoom[i, c] +

4 when (c>0) wait(i)?. WaitRoom[i, c-1] ) +

5 add(i)?. WaitRoom[i, c+1] +

6 signal_all(i)?. WaitDistributor[i, c] ; WaitRoom[i, 0]

7

8 WaitDistributor[i, c] :=

9 when (c<=0) 1 +

10 when (c>0) wait(i)?. WaitDistributor[i, c-1]

The waiting room counts the number of waiting agents and supports the
following four operations:

– If an agent wants to use a condition, it must perform two steps. First, it must
add itself to the waiting room (using add) while still holding the monitor lock.

– After an unlock, the agent synchronises over channel wait. However, the wait-
ing room joins the synchronisation only when the agent is supposed to con-
tinue its work.

– Working agents use the action signal in order to notify one of the waiting
agents that the condition may have changed. When a signal is received, the
waiting room either ignores it if no agent is waiting or it offers a single wait

for synchronisation to the waiting agents. Which of the waiting agents syn-
chronises with the waiting room is non-deterministic.

– Similarly, signal_all is used to notify all waiting agents. This task is dele-
gated to the process WaitDistributor. The wait distributor gets the number of
waiting agents and then offers each of them a wait action for synchronisation.
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The resulting CCS encoding of some program using conditions may look as
follows:

1 WaitAgt[m, c] := lock(m)!. getB?b.

2 when (b) println!"Condition�holds". unlock(m)!. 1 +

3 when (!b) add(c)!. unlock(m)!. wait(c)!. WaitAgt[m, c]

4 WorkAgt[m, c] := lock(m)!.

5 setB!true. signal_all(c)!.

6 unlock(m)!. 1

7

8 WaitAgt[m, c] | WorkAgt[m, c] | Lock[m] | WaitRoom[c, 0]

3 PSEUCO.COM – A Web Platform for Learning PSEUCO

To propel the use of pseuCo in academic teaching, we have developed a web
application available on https://pseuco.com/. It serves as an interactive platform
for students learning CCS and pseuCo as part of our concurrent programming
lecture and provides the user with access to the translational semantics of pseuCo
described in Sect. 2.3. The following section provides a detailed description of
pseuCo.com.

LTS Viewing. pseuCo.com users will often find themselves looking at an LTS –
either one that was generated by the semantics of a CCS expression that they
entered or that was generated by the pseuCo compiler, or one that was sent to
them. In all cases, pseuCo.com uses the same approach to display them:

In the beginning, only the initial state of the LTS is shown. Clicking or, for
touch-enabled devices, tapping it reveals the initial state’s successors. The user
can continue expanding states step by step, either by continuing to click states
they are interested in, or by using the Expand all button which will reveal the
successors of all visible states. Expanded states can also be collapsed by another
click on them which hides all successor nodes that no longer have a path to the
initial state. Figure 2 demonstrates this behaviour in a small LTS.

This behaviour and the absence of support for infinitely branching transition
systems ensure that pseuCo.com never tries to display an infinite number of
states. The LTS itself can be infinite. In that case, the users will never be able
to fully expand the system. Still, he is free to explore any part of the graph he
can reach from the initial state.

Because of this interactive approach, we have certain requirements for our
graph layout algorithm:

1. Graph layout must be continuous: When the graph changes (for example
because a node has been expanded), the existing nodes should not move far,
and this move should be animated so users can easily keep track of the states.

2. Graph layout must be interactive: Users need to be able to move nodes as
they see fit, and the graph layout should pay respect to the user-given node
placement while still optimising overall readability.

https://pseuco.com/
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Fig. 2. A labelled transition system as shown in pseuCo.com. The user has to click on
a state to reveal its successors. This is explained to first-time users by a floating hint
shown until two states have been expanded.

3. Graph layout must feel natural so users are not confused by the visual changes
they cause by moving nodes.

To fulfil these requirements, we use a force-based approach to graph layout:
The visible part of the LTS behaves like a physical simulation where nodes are
inert masses that carry an electrical charge, connected by springs, with a grav-
itational pull towards the middle of the graph. The inertia ensures a smooth,
continuous movement of all nodes. The electrical charge ensures that nodes repel
each other, avoiding overlap and keeping a reasonable distance from other nodes.
The springs can push or pull on nodes to achieve consistent spacing between
nodes. Finally, the gravitational pull centres the whole system within the allo-
cated space.

Because transitions are labelled by actions and multiple transitions may exist
between the same pair of states, both states and transitions correspond to nodes
in the simulation. The nodes for states directly correspond to the position where
the state is rendered. For transitions, the corresponding nodes (which have a
weaker simulated electrical charge than states) correspond to the position where
the transition’s label is drawn. Therefore, the electrical charge of these nodes
automatically optimises for overlap-free rendering of the labels. The transition is
rendered as a Bézier curve between the two states with the transition node’s posi-
tion serving as the control point. This ensures that multiple transitions between
the same states are rendered correctly as demonstrated in Fig. 2c by the transi-
tions A

c−→ C and C
a−→ A. It also allows self-loops to automatically rotate away

from other transitions or states.
If the user wants to layout parts of the graph himself, he can drag and drop

nodes at any time using the mouse or touch. In the latter case, we also support
simultaneous dragging of multiple nodes. The remaining nodes continue to be
affected by the forces, and after the user stops dragging a node, it returns to
normal behaviour. This allows the user to get the graph into another stable state
that he prefers.

To gain even more control over the placement of nodes, the user can check
Pin dragged nodes . If this setting is enabled, after the user lets go of a node,
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Fig. 3. A screenshot of the CCS editing interface

Fig. 4. A screenshot of the pseuCo editing interface

it will seize all movement and will no longer be affected by the forces. This allows
the user to layout any part of the graph manually without interference from the
automatic layout while the remaining part of the graph will still be arranged
automatically.

CCS Editing. While editing a CCS file, the user sees two windows as demon-
strated in Fig. 3. The first one contains a text editor with his CCS code while
the second one contains the LTS editor described in Sect. 3. The user can drag
the grey separator bar to freely distribute the horizontal space between both
windows or use a Maximize button in the title bar to allocate all horizontal
space to that window. In that case, the other window will be reduced to a thin
vertical strip.

During editing, the CCS expression is parsed continuously so the LTS shown
to the right is never stale.

pseuCo Editing. When editing a pseuCo file, the user is shown the pseuCo
code, the CCS code produced by the pseuCo compiler, and the corresponding
LTS, as demonstrated in Fig. 4. As with CCS editing, the input is evaluated
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Fig. 5. A screenshot of the pseuCo text editor

automatically, and the user can freely divide the horizontal space between the
windows. While the CCS code is read-only (as it is generated by the compiler),
the user can experiment with it: A Fork button in the title bar of the CCS
window opens the generated CCS code as a new file to allow the user to edit it.
Of course, the user can always go Back to his original pseuCo file.

The pseuCo editor provides the support typical of a basic IDE including
snippet completion and in-line highlighting of compiler error messages as demon-
strated in Fig. 5.

File Management and Sharing. pseuCo.com allows users to store and manage
files in a virtual file system stored locally by their web browser. Files are always
saved automatically and kept until they are deleted assuming that the user has
entered a file name. Even unnamed files are saved temporarily to allow recovering
lost data but they expire after one week.

To encourage students to discuss their findings, pseuCo.com features a file
sharing facility. At any time during editing, users can select Share this file
to upload a copy of their current file to our server. In return, they receive
a sharing link containing a random identifier for them to share, for example
https://pseuco.com/#/edit/remote/50xshwwyuza86w4pjtke. Anyone opening
this link in a modern browser will immediately be presented with a read-only
view of this file.

pseuCo.com also allows users to export transition systems as TRA-, AUT-, and
DOT-files (in addition to its own JSON-based format) for processing with external
tools. It can also import AUT1-files.

Tracing Support. The application provides a way to compute random traces
through an LTS which can by shown including or omitting τ -steps.
1 http://cadp.inria.fr/man/aut.html.

https://pseuco.com/#/edit/remote/50xshwwyuza86w4pjtke
http://cadp.inria.fr/man/aut.html
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Fig. 6. A compressed, infinite LTS where states A and B have been merged

In addition to allowing random tracing, pseuCo.com also collects a list
of (non-τ) actions found within an LTS (which can be shown by clicking

Actions ) and can compute traces leading to these actions by backchaining.
For example, this can be used to check whether a pseuCo program can produce
an unexpected output and to synthesise an interleaving explaining this output.

Minimization. To aid in analysing large LTS, pseuCo.com implements mini-
mization under observational congruence [22]. This feature can be invoked by
the Minimize button in the LTS toolbar.

Whenever an LTS is displayed, a background thread is dispatched to precom-
pute all its states. When minimization is invoked, it only considers states that
have been found up to this point. If minimization is started before all states have
been explored, the result is not guaranteed to be minimal – it is only minimal
with respect to the already explored part of the system. While exploration is
running, the minimization button is labelled Compress to emphasize this
fact.

This behaviour allows compression of systems that are infinite or too large
to be explored in a reasonable time frame. Figure 6 shows an example of this.

Offline Use. pseuCo.com is a pure, JavaScript-based web application. While this
provides many benefits, most importantly the ability to run without any installa-
tion or bootstrapping, this opens up the question of whether the application can
be used without an internet connection. Indeed, pseuCo.com provides full sup-
port for offline use using the HTML5 Application Cache APIs. Upon the first
visit of pseuCo.com, all major modern web browsers automatically download
the full web application and store it in a permanent cache. Afterwards, network
connectivity is only needed to download application or template updates and to
upload and download shared files.

All computation, including pseuCo-to-Java compilation and the CCS seman-
tics, is always performed directly in the user’s browser.
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Modes, Exercises, and Use in Teaching. While pseuCo.com can be used by any-
one as a tool for exploring CCS and pseuCo semantics, it is specifically tailored
to educational usage. The needs of students learning concurrent programming
differ from those of an expert looking for a tool. By our experience, providing
features like CCS semantics or LTS minimization to students that have not yet
understood the corresponding concepts impedes learning because it takes away
an incentive to explore and apply these concepts by hand.

To accommodate these different needs, pseuCo.com can be operated in two
different modes. In tool mode, all features are available without restriction. In
teaching mode, users are prevented from creating files initially, only allowing
them to view (but not edit) files that were shared with them. Instead, they get
access to a set of exercises.

These exercises are meant to accompany a lecture or book teaching concur-
rent programming and provide milestones that unlock pseuCo.com features. For
example, users need to demonstrate their ability to infer transitions of CCS terms
by the SOS rules and to write small CCS terms with predetermined character-
istics to unlock the ability to create and edit CCS files including the automatic
creation of the corresponding LTS.

Upon first use, pseuCo.com will normally ask the user to select a mode. When
providing links to students as part of the lecture notes, we use special links that
cause pseuCo.com to default to teaching mode.

pseuCo.com has been introduced in the Concurrent Programming lecture at
Saarland University in the summer term 2014.

4 Analysis Support

In our concurrent programming lecture, we sensitise our students to problems
related to concurrency. We explicate that data races (race conditions), deadlocks
and such are considered program errors and must be avoided at all costs. To
further aid our students, we want to have tool support to detect, investigate,
and possibly fix such errors.

This requires sophisticated and often computationally intensive program
analyses. This is where the pseuCo.com platform – and its JavaScript basis –
reaches its limits. To circumvent this issue and to complement the capabilities of
the pseuCo.com platform we have started exploring new ways of giving students
access to enhanced tools and analyses.

The first tool developed under this premise is able to statically detect data
races on a subset of the language facilities of pseuCo. It is implemented in C++.

Next, we describe the major ideas that underlie this analysis based on the
example in Listing 1.2 from Sect. 2.2.

Static Data Race Detection. In pseuCo, a data race occurs if two or more agents
can access the same global variable simultaneously and at least one of these
accesses is writing. In this respect, the example presented in Listing 1.2 is free of
data races. However, the statement in line 7 is an access to the global variable n.

https://pseuco.com/#/exercises
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Fig. 7. Annotated control flow graph. A: accesses to global variables (R: read, W:
write, R/W: read and write), L: locks guaranteed to be held. Nodes without annotation
default to A: {} and L: {}

Without the lock and unlock statements in lines 6 and 8, respectively, this pro-
gram would have a data race due to the concurrent, i.e. potentially simultaneous
accesses to n. How can we infer this automatically without running the program?

To do so, we use a static program analysis that computes an overapprox-
imation of all possible program behaviours and then tries to find unguarded
concurrent memory accesses to global variables. This is done in three steps:

1. Compute a graph that holds all control flow information.
2. Annotate this graph with information relevant to identifying data races:

accesses to global variables and which regions are guarded by locks.
3. Perform a graph search to find pairs of memory accesses.
4. Check each of these pairs for a potential data race.

Figure 7 shows the relevant part of the annotated graph for the example
program. Deriving it is mostly straightforward2.

The graph search is a basic reachability analysis and applied to pairs of
memory accesses. First, all candidate memory accesses are collected (i.e. accesses
to global variables) and grouped by the accessed variables. Then, for each such
access group a list containing all the individual access pairs is constructed3.

The characteristics differentiating potentially harmful from harmless access
pairs are more interesting:

1. Do both accesses happen in the same agent?
2. Are both accesses read-only?

2 There are some corner cases requiring careful analysis. We omit them due to scope
and space constraints.

3 Reflexive and symmetric pairs are omitted directly for precision (by construction a
memory access cannot race with itself) and efficiency reasons.
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3. Do these accesses share common locks, i.e. is there at least one lock that is
held during both of the accesses?

4. Using the graph search, is it possible to construct a causality path between
the two accesses?

If at least one of these indicators is satisfied, the affected pair is no longer
considered to be a data race candidate. Otherwise, the access pair is considered
a potential data race. This does not imply that an actual data race materialises
but warns the user that the program may need more thought and reasoning. This
imprecision is rooted in our decision to overapproximate program behaviour and
to underapproximate locking information, if necessary. An argument showing the
absence of a data race in a program that exhibits more behaviour and has weaker
locking information than the real program (and its semantics) also extends to
that original program while the converse does not.

Continuing with our example, there are three memory accesses to n: cd1, cd2

and print . This yields the following data race candidates: (cd1, cd2), (cd1, print),
and (cd2, print). The first candidate is covered by the third indicator since
guard_n is a common lock held during both accesses. Candidate two is not con-
sidered a data race as both accesses happen in the same agent and thus satisfy
indicator one. As illustrated in Fig. 7, there is a causality path p (indicated in
red) connecting cd2 to print . Hence, the last candidate satisfies the fourth indi-
cator and is no data race either.

Without lines 6 and 8, the pair (cd1, cd2) would not satisfy any of the indi-
cators and would be returned by the analysis as a potential data race.

5 Conclusion

This paper has introduced the pseuCo approach to teaching concurrent pro-
gramming. We have presented an overview of the language features and pre-
sented details of a translational semantics that maps any pseuCo program to
the variant of CCS we presented. That semantics is implemented as part of an
interactive web platform, pseuCo.com. This platform provides access to the tools
targeting pseuCo, most notably: the translation of pseuCo programs to CCS,
the CCS semantics in terms of LTS, the pseuCo-to-Java compiler, and more.
Due to space constraints, we have not covered the compilation of pseuCo to
Java which makes it possible to execute any pseuCo program, and we have only
sketched our efforts to enable deep semantic analyses for pseuCo, especially for
flagging data race problems in shared-memory concurrency. We will continue to
work on the TACAS (Teaching Academic Concurrency to Amazing Students)
vision.
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Abstract. This paper studies the decidability and small model property
of process equations of the form

(P |Πn
i=1Ci(Xi))\L ≡ (Q|Πm

j=1Dj(Yj))\K

where P, Q are finite state processes, Xi, Yj are process variables, and
Ci(Xi), Dj(Yj) are process expressions linear in Xi and Yj respectively.
It shows that, when n + m > 1, the equation problem is not decidable
and does not have small model property for any equivalence relation ≡
which is at least as strong as complete trace equivalence but not stronger
than strong bisimilarity.

1 Introduction

This paper examines small model property and decidability of equations in process
algebras [Mil89,Hoa85,BK85]. In general, process equations have the follow-
ing form

C(X1, . . . , Xn) ≡ D(Y1, . . . , Ym) (1)

where C,D are process contexts, X1, . . . , Xn and Y1, . . . , Ym are process vari-
ables, ≡ is some equivalence relation on processes. Some well studied equiva-
lence relations on processes are strong and weak bisimilarities ∼ and ≈ [Mil89],
branching bisimilarity ≈b [vGW96], testing equivalence [NH84], failure equiv-
alence [BHR84], GSOS trace congruence or 2

3 -bisimilarity [BIM95,LS91], and
2-nested simulation equivalence [GV89]. Equation (1) is said to be solved by
processes P1, . . . , Pn and Q1, . . . , Qm if the following equality holds

C(P1, . . . , Pn) ≡ D(Q1, . . . , Qm).

In this case we say that (1) is solvable. A type of equation is said to be decidable if
the solvability of that type of equation is decidable. A type of equation is said to
have small model property if whenever an equation of that type is solvable then it
can be solved by finite-state processes. We are interested in these two properties
because decidability indicates that the possibility of solving the problem by
automatic tools and small model property often suggests some simple method
of finding solutions.
c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 199–210, 2017.
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Throughout the paper it is assumed that the reader is familiar with Milner’s
CCS [Mil82,Mil89]. We study the decidability and small model property of a
class of process equations which take the following form

(P |Πn
i=1Ci(Xi))\L ≡ (Q|Πm

j=1Dj(Yj))\K (2)

where P,Q are finite state processes, | and Π are the parallel operator and the
parallel product of CCS, \L and \K are restriction operators of CCS with L,K
being sets of actions, ≡ is some equivalence relation, Ci(Xi) and Dj(Yj) are CCS
expressions linear in Xi and Yj respectively. An expression C(X) is said to be
linear in X if the only variables in it are X (if any) and no two occurrences of X
are subexpressions of two processes in parallel position, for example a.X + b.X
is linear in X while a.X|b.X is not. More precisely, for a given variable X,
the set LE(X) of the expressions linear in X is the smallest set such that X ∈
LE(X), P ∈ LE(X), if C(X),D(X) ∈ LE(X) then C(X)+D(X) ∈ LE(X), and
if C(X) is in LE(X) then so are a.C(X), C(X)|P, P |C(X), C(X)\L,C(X)[f ],
where a is any action, P is any finite state process expression not containing
any free variables, f is any rename function, and L is any set of labels. The
variables Xi’s and Yj ’s in Eq. (2) are not necessarily all distinct, i.e. some parallel
components (even from different sides of the equation) may share the same
variable, thus the total number of variables in Eq. (2) can be less than m + n.
For convenience we will call equations of form (2) which satisfy these restrictions
k-ary n ≡ m equations, where k is the total number of variables in the equation.
Note that only when the contexts Ci’s and Dj ’s are restricted to linear contexts,
the classification using m,n can be made meaning full (otherwise the equation
(a.X +P )|(b.X +Q)\L ≡ R can be an unary 2 ≡ 0 equation as well as an unary
1 ≡ 0 equation).

Many 1 ≡ 0 equations (unary of cause) have already been studied in the
literature. In [Shi89,Par89,QL90], some subclasses of 1 ≈ 0 equations of the
form (P |X)\L ≈ Q are studied with various restrictions on P,L, and Q. The
results show that these subclasses are all decidable with small model property.
Results in [LX90b] show that the whole 1 ∼ 0 class is decidable with small model
property. Later in [Liu92], the whole 1 ≈ 0 class and 1 ≈b 0 class are shown to
be decidable with small model property.

The above mentioned works mainly concentrate on how to actually find a
solution whenever solutions exist, rather than simply to decide whether the
equation is solvable. In fact, from the decidability and small model property
of the modal μ-calculus [Koz82,KP83,SE89] one can also conclude the decid-
ability and small model property of many 1 ≡ 0 type equation problems. To see
this, consider the following equation where Q is a finite state process and C(X)
is linear in X:

C(X) ≡ Q (3)

Results in [ZIG87,SI94,Liu92] show that, for many equivalence relations ≡
(including ∼,≈, and ≈b), Q has a Characteristic formula F≡

Q in the modal μ-
calculus such that, for any process P , C(P ) ≡ Q if and only if C(P ) satisfies F≡

Q .
According to [LX90a], a formula W(C,F≡

Q ) can be effectively constructed such
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that C(P ) satisfies F≡
Q just in case P satisfies W(C,F≡

Q ). Thus the solutions to
Eq. (3) are exactly those processes satisfying W(C,F≡

Q ). It is obvious that any
1 ≡ 0 equation has form (3), so the decidability and small model property of
these 1 ≡ 0 equations are guaranteed by the fact that the satisfiability of modal
μ-calculus formula is decidable and that if such a formula is satisfiable then it is
satisfiable by a finite state process.

Now it is tempting to try to obtain similar results for equation problems with
more variables. In [JJLL93], the problem of constructing processes P1, . . . , Pn

such that C(P1, . . . , Pn) satisfies F is considered, where C is an arbitrary con-
text described as action transducer and F is a formula of modal μ-calculus with
pure maximal fixed-point operators. In that paper, a procedure for constructing
models was proposed. If this procedure terminates successfully then a finite state
model can be constructed while if it terminates unsuccessfully it is guaranteed
that no model exists. It is conjectured in [JJLL93] that the method guaran-
tees termination in all circumstances. This conjecture implies that n-ary n ∼ 0
equation problem is decidable and has small model property. This is because
for any n-ary n ∼ 0 equation (P |Πn

i=1Ci(Xi))\L ∼ Q, the left hand side can
be expressed as C(X1, . . . , Xn) where C is a context described as an action
transducer, and the characteristic formula F∼

Q is a formula with pure maximal
fixed-point operator.

In summary, the picture as we see it at the moment is that, 1 ≡ 0 equation
problems are decidable with small model property for many useful equivalence
relations and the cases for k-ary n ≡ m equations such that n + m > 1 are not
clear. In this paper, we show that the unary and binary 1 ≡ 1 equation problems,
and the unary and binary 2 ≡ 0 equation problems are already undecidable and
do not have small model property for those equivalence relations. Then, since by
a simple reduction these problems are special cases of the more general problem,
we know that for most of the interesting equivalence relations including those
mentioned earlier, the more general case of k-ary n ≡ m equation problem is not
decidable and does not have small model property when n + m > 1. This gives
a negative answer to the conjecture put forward in [JJLL93].

2 Some Useful CCS Processes and Contexts

A standard way to show undecidability is to demonstrate an effective reduction
from some known undecidability problem. The first undecidable problem to come
into one’s mind would probably be the halting problem of Turing machines. We
will show this kind of reduction to prove the undecidability of equation problems
in the next section. For this purpose, in this section we construct some useful
CCS processes and contexts and show some of their properties.

First we construct a process T which imitates the blank tape of a Turing
machine. A Turing machine tape can be seen as a row of cells, each holding a
letter of a finite alphabet A or holding the bland symbol b. Each cell must be
in one of the following states according to its relative position to the read and
write head and the letter it holds:
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Fig. 1. A cell and the tape

1. It holds x with the head pointing to it. We write W (x) for this state and say
that the cell is awake.

2. It holds x with the head on its left. We write Sl(x) for this state and say that
the cell is asleep and waiting to be awakened from the left.

3. It holds x with the head on its right. We write Sr(x) for this state and say
that the cell is asleep and waiting to be awakened from the right.

When a cell is in the state W (x), that is awake and holding x, the following
actions and only the following actions can happen to it. The environment can
read out its contents by synchronizing on the port x. The environment can also
change its content by synchronizing on the port y and thereby changing its state
to W (y). On receiving a signal on the port ml (moving to the left), the cell
will wake its left side neighbor by signaling on the port sl (signal left) and then
enter the state Sl(x). Likewise, on receiving a signal on the port mr (moving
to the right), the cell will wake its right side neighbor by signaling on the port
sr (signal right) and then enter the state Sr(x). When a cell is asleep in Sl(x)
(Sr(x)), the only possible action for it is to receive a signal on the port sl (sr)
and enter the state W (x). The precise behavior is expressed by the following
CCS expressions:

W (x) d= x.W (x) + Σy∈Ay.W (y) + ml.sl.Sl(x) + mr.sr.Sr(x),
Sl(x) d= sl.W (x),
Sr(x) d= sr.W (x).

Now, the blank tape in its initial state is just a row of cells in state Sl(b).
The following recursive definition gives the blank tape T :

T
d= (Sl(b)[link/sr]|T [link/sl])\link.

The construction is pictured in Fig. 1, where A and A are in fact two sets of ports
named by the letters and barred letters in the alphabet of the Turing machine.

A Turing machine tape can also be described by the following infinite set
of equations about B(s1, s2), where s1 ∈ (A ∪ {b})∗ is the contents of the tape
between the end of the tape and the current position of the read/write head,



Negative Results on Decidability and Small Model Property 203

s2 ∈ (A ∪ {b})∗bω is the contents of the rest of the tape, hd, tl, and ˆ are the
usual head, tail and concatenation functions on strings.

B(s1, s2)
d= hd(s1).B(s1, s2) + Σy∈Ay.B(y t̂l(s1), s2)

+ml.τ.B(tl(s1), hd(s1)̂ s2) + mr.τ.B(hd(s2)̂ s1, tl(s2)), (s1 �= ε)
B(ε, s2)

d= sl.I(s2),
I(s2)

d= sl.B(hd(s2), tl(s2)).

We can take I(bω) to be a blank tape in its initial state.
It is not difficult to check that both I(bω) and T solve the following equation

when ≡ is ∼ (strong bisimilarity)

X ≡ sl.(W (b)[link/sr]|X[link/sl])\link (4)

(note that the τ actions in the definition of I(bω) are not necessary apart
from making I(bω) into a solution to that equation in terms of ∼). Because
this equation is weakly guarded, it has unique solution modulo ∼ (Proposi-
tion 14, page 103 of [Mil89]). Thus T ∼ I(bω), which is a formal justification
that T indeed simulates a blank tape of Turing machine. We will talk more
about this equation later, and in the rest of the paper we will write D(X) for
sl.(W (b)[link/sr]|X[link/sl])\link, hence Eq. (4) above is X ≡ D(X).

At this point we clarify some notations. The reader is referred to [Mil89] for a
full account of the operational semantics of CCS processes. Following [Mil89] we
write P

a−→ Q to mean that the process P (in this state) can perform action a

and change its state to Q, P � a−→ to mean that P is not capable of any a action.
Let a1, . . . , an be a sequence of visible actions (not τ), then P

a1...an=⇒ Q means
that P can reach Q by performing action sequence a1, . . . , an with finitely many
τ ’s interleaved.

Definition 1. A finite sequence of visible actions s is a trace of P if P
s=⇒ P ′

for some P ′. A finite sequence of visible actions s is a complete trace of P if
P

s=⇒ P ′ for some P ′ with P ′ � a−→ for any a. Let Tr(P ) denotes the set of
traces of P and CTr(P ) the set of complete traces of P , two processes P and
Q are said to be trace equivalent, written P ≈t Q, if Tr(P ) = Tr(Q), and two
processes P and Q are said to be complete trace equivalent, written P ≈ct Q, if
Tr(P ) = Tr(Q) and CTr(P ) = CTr(Q).

Note that, with this definition CTr(P ) contains only finite complete traces (those
ending with a dead locked state) but not infinite traces.

Lemma 1. When ≡ is ≈t, Eq. (4) has unique solution modulo ≈t.

Proof. For any process P , lets write Dn(P ) for D(Dn−1(P )) when n > 0 and
D0(P ) for P . Notice that if Dn(P ) s=⇒ R and the number of mr’s in s is less
than n, then the transitions must be independent of P . More precisely, in this
case R has the form H{P/X} for some expression H such that for any process
Q, Dn(Q) s=⇒ H{Q/X}. Now suppose P and Q are two solutions and P

s=⇒ P ′
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for some P ′. We can choose a sufficiently large n such that the number of mr’s
in s is less than n. By the congruence property of ≈t (Proposition 2, page 204 of
[Mil89]), P ≈t D(P ) implies P ≈t Dn(P ). Thus Dn(P ) s=⇒ R for some R. By
the above analysis, there exists an expression H such that Dn(Q) s=⇒ H{Q/X}.
So Q

s=⇒ Q′ for some Q′ because Q ≈t D(Q) implies Q ≈t Dn(Q). Thus
Tr(P ) ⊆ Tr(Q). We can show Tr(Q) ⊆ Tr(P ) in the same way, so P ≈t Q.
It is interesting to observe that Eq. (4) is not sequential, thus does not satisfy
the sufficient condition for having unique solution (Proposition 13, page 158
of [Mil89]). ��
Lemma 2. If P ≈t I(bω) then P is an infinite state process.

Proof. Assume that P has a finite state space, then Tr(P ) is a regular set
because by treating each state of P as acceptance state and each τ move as
empty move we obtain a finite automaton which accepts Tr(P ). Since we start
from P ≈t I(bω), this implies that Tr(bω) is a regular set which further implies
that Tr(I(bω))∩sl(ml+mr)∗sl is also regular. However the latter is not regular
for the following reason. By the construction, I(bω) starts with an sl action, and
from then on before the second sl action, the number of ml’s is exactly one more
than the number of mr’s, and they are balanced like left and right parenthesis
(intuitively, after the signal sl, the read-write head of the tape is at the starting
of the tape, so when sl is enabled the second time the head has just returned to
the starting position for the first time). Thus Tr(I(bω)) ∩ sl(ml + mr)∗sl is not
regular because it consists of strings of the form sl̂ ŝ ml̂ sl where s is a sequence
of mr’s and ml’s balanced like left and right parenthesis. Thus P must have
infinite states. ��

Next, we construct a dyadic context C which acts as a coordinator between
the sub-processes in this context such that it will deadlock if one of the sub-
process cannot follow the actions of the other. Let L = A∪A∪{ml,mr, sl}, where
A is the finite alphabet of the Turing machine. It is obvious that all possible
visible actions of T are contained in L. Let L1, L2 be two disjoint sets of actions
such that they are both isomorphic to L with f1, f2 being the corresponding
isomorphic maps (that is fi is one and onto and fi(a) = fi(a) for a ∈ L). Let
syn, err (for synchronizing and error) be two labels not in L1 ∪ L2. Then f1, f2
can be extended to rename functions by defining f1(a) = f2(a) = err for any
a �∈ L. Now define

R
d= Σa∈L−{ml,mr}f1(a).Qa + f1(ml).f2(ml).syn.R + f1(mr).f2(mr).syn.R,

Qa
d= f2(a).Q1 + τ.f2(a).Q2, (a ∈ L − {ml,mr})

Q1
d= syn.τ.τ.R + τ.Q2,

Q2
d= syn.τ.R + τ.syn.R.

R is to be used in a context C( , ) in which R will monitor the coordination
of two processes P,Q such that C(P,Q) will indicate everything is fine by only
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performing synω, and C(P,Q) will produce err action or deadlock otherwise.
This definition of R is slightly complicated by the insertion of τ ’s in various
places. Basically, R could be defined as R

d= Σa∈Lf1(a).f2(a).syn.R, which may
still give a better idea how R actually works. However, these τ ’s are necessary in
order to satisfy the equation in the first part of Lemma3 below which enables us
to derive more general conclusions. Otherwise, using the simpler definition, we
can only show a weaker version of the equation with ≈ in place of ∼. From now
on we will write C(X,Y ) for (X[f1]|R|Y [f2])\L1 ∪ L2. It is not difficult to see
that a necessary condition for C(P,Q) to be always capable of doing syn and
nothing else (no err) is that whatever visible action P may perform, Q must
be able to follow. This and some other useful properties of C are stated in the
following lemma. In the lemma, as well as the rest of the paper, T0 is a finite
state process defined by T0

d= sl.T0 + mr.τ.T0.

Lemma 3. For C, T , and T0 constructed as above, the following hold:

1. C(T, T ) ∼ C(T0, T0);
2. CTr(C(P,Q)) ⊆ CTr(C(T0, T0)) and Tr(C(P,Q)) ⊆ Tr(C(T0, T0)) implies

Tr(P ) ⊆ Tr(Q).

Proof. Let Dir(I(bω)) = {P |∃s ∈ L∗.I(bω) s=⇒ P}, i.e. the set of derivatives of
I(bω). It is not difficult to see that the following is a strong bisimulation relation
containing (C(I(bω), I(bω)), C(T0, T0)):

{((P [f1]|Q|P [f2])\L1 ∪ L2, (T0[f1]|Q|T0[f2])\L1 ∪ L2) |
P ∈ Dir(I(bω)), P � τ−→, Q ∈ {R, τ.R, τ.τ.R, syn.R,Q1, Q2}}∪

((P ′[f1]|Qa|P [f2])\L1 ∪ L2, (T0[f1]|Qsl|T0[f2])\L1 ∪ L2) |
P ∈ Dir(I(bω)), a ∈ L − {ml,mr}, P

a−→ P ′}∪
((P ′[f1]|f2(a).Q2|P [f2])\L1 ∪ L2, (T0[f1]|f2(sl).Q2|T0[f2])\L1 ∪ L2) |

P ∈ Dir(I(bω)), a ∈ L − {ml,mr}, P
a−→ P ′}∪

((P ′[f1]|f2(a).syn.R|P [f2])\L1 ∪ L2, (τ.T0[f1]|f2(mr).syn.R|T0[f2])\L1 ∪ L2) |
P ∈ Dir(I(bω)), a ∈ {ml,mr}, P

a−→ P ′}∪
((P ′[f1]|f2(a).syn.R|P [f2])\L1 ∪ L2, (T0[f1]|f2(mr).syn.R|T0[f2])\L1 ∪ L2) |

P ∈ Dir(I(bω)), a ∈ {ml,mr},∃P ′′.P a−→ P ′′, P ′′ τ−→ P ′}∪
((P [f1]|Q|τ.P [f2])\L1 ∪ L2, (T0[f1]|Q|τ.T0[f2])\L1 ∪ L2) |

P ∈ Dir(I(bω)), P � τ−→, Q ∈ {R, syn.R}}.

Hence C(I(bω), I(bω)) ∼ C(T0, T0) and C(T, T ) ∼ C(T0, T0).
Note that C(T0, T0) ≈ct synω, where synω is the process which performs

syn forever. Moreover according to Definition 1, CTr(synω) = ∅ because synω

does not have any finite complete trace. So to prove 2 it is equivalent to prove
CTr(C(P,Q)) = ∅ and Tr(C(P,Q)) ⊆ Tr(syncω) implies Tr(P ) ⊆ Tr(Q).
Suppose CTr(C(P,Q)) = ∅ and Tr(C(P,Q)) ⊆ Tr(synω). Now if P

a=⇒ P ′

for some action a �= τ , then a ∈ L (otherwise, f1(a) = err and C(P,Q) err=⇒
C(P ′, Q), contradict to the assumption that Tr(C(P,Q)) ⊆ Tr(C(T0, T0))).
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And moreover Q
a=⇒ Q′ for some Q′ (otherwise C(P,Q) would deadlock, con-

tradict to the fact that C(P,Q) does not have finite complete trace). Now
we have C(P,Q)

syc
=⇒ C(P ′, Q′), thus CTr(C(P ′, Q′)) ⊆ CTr(P,Q) = ∅

and Tr(C(P ′, Q′)) ⊆ Tr(P,Q) ⊆ Tr(synω). Then it is easy to see that for
any finite visible action sequence s, if P

s=⇒ P ′ then Q
s=⇒ Q′, that is

Tr(P ) ⊆ Tr(Q). In fact, here we have outlined a proof that CTr(C(P,Q)) = ∅
and Tr(C(P,Q)) ⊆ Tr(synω) implies that (P,Q) is contained in a weak simula-
tion relation, which would guarantee that Tr(P ) ⊆ Tr(Q). However since we did
not formally state the definition and properties of weak simulations, we should
stay within trace based relations. ��

The processes T, T0, R, contexts C,D, and label sets L,L1, L2 with rename
functions f1, f2 defined here are referred in the proofs of the main results in the
next section.

3 Main Results

With the preparation in the last section, we are now ready to show the main
results of the paper, namely that many equation problems are undecidable and
do not have small model property.

Theorem 1. For any ≡ such that ∼ ⊆ ≡ ⊆ ≈t, both the unary 1 ≡ 1 equation
problem and the binary 1 ≡ 1 equation problem are not decidable and do not
have small model property.

Proof. It is sufficient to construct some effective reduction from the divergence
problem of Turing machines, which is well known to be not even semi-decidable.
There is a systematic way of constructing a finite state process Mi which sim-
ulates the finite-state control mechanism of the i-th Turing machine for each i.
Thus (Mi|T )\L will simulate the i-th Turing machine such that (Mi|T )\L ∼ τω

if and only if the i-th Turing machine does not holt on a blank tape, and also
that (Mi|T )\L

a=⇒ P for some P if and only if the i-th Turing machine halts,
where τω is the process which only performs internal actions forever.

Now we can show that the i-th Turing machine diverges if and only if the
following unary 1 ≡ 1 equation is solvable when ∼⊆≡⊆≈t and a �= b.

a.(Mi|X)\L + b.X ≡ a.τω + b.D(X) (5)

For one direction, suppose the i-th Turing machine diverges, that is to say
(Mi|T )\L ∼ τω. Since T ∼ D(T ), and ∼⊆≡, T solves Eq. (5).

For the converse direction, suppose T ′ solves Eq. (5). Because ≡⊆≈t and a �=
b, in this case (Mi|T ′)\L ≈t τω and T ′ ≈t D(T ′). By Lemma 1 T ′ ≈t T , thus
(Mi|T )\L ≈t (Mi|T ′)\L ≈t τω, and the i-th Turing machine diverges on a blank
tape(otherwisetheremustexistavisibleactionaandP suchthat(Mi|T )\L

a=⇒ P ).
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Similarly, it is easy to work out that the i-th Turing machine diverges if and
only if the following binary 1 ≡ 1 equation is solvable when ∼ ⊆ ≡ ⊆ ≈t and
a, b, c are three different actions.

a.(Mi|X)\L + b.X + c.D(X) ≡ a.τω + b.Y + c.Y (6)

Thus we showed effective reductions from the divergence problem of Turing
machines to the unary and binary 1 ≡ 1 equation problems. So the unary 1 ≡ 1
equation problem and the binary 1 ≡ 1 equation problem are not even semi-
decidable and thus not decidable.

In order to prove that a type of equations does not have small model property,
we only need to find a solvable equation of that type and show that any solution
to the equation has infinite states. It is easy to see from Lemmas 1 and 2 that,
when ≡ ⊆ ≈t, Eq. (4) is a solvable unary 1 ≡ 1 equation which only has infinite
state solutions. Also for the same reason, when ≡ ⊆ ≈t and a �= b, the following
is a solvable binary 1 ≡ 1 equation which only has infinite state solutions

a.X + b.D(X) ≡ a.Y + b.Y.

Thus both unary and binary 1 ≡ 1 equation problems do not have small model
property. ��
Theorem 2. For any ≡ such that ∼ ⊆ ≡ ⊆ ≈ct, both unary 2 ≡ 0 equation
problem and binary 2 ≡ 0 equation problem are not decidable and do not have
small model property.

Proof. Again we will construct some effective reduction from the divergence
problem of Turing machines. Lets say that Mi is a finite state process which
simulates the finite-state control mechanism of the i-th Turing machine. Thus
(Mi|T )\L will simulate the i-th Turing machine such that (Mi|T )\L ∼ τω if and
only if the i-th Turing machine does not halt on blank tape, and if and only if
Tr((Mi|T )\L) = {ε} and CTr((Mi|T )\L) = ∅, that is Tr((Mi|T )\L) does not
have any trace other than the empty trace and CTr((Mi|T )\L) does not contain
any finite complete trace. We will show that, when ∼ ⊆ ≡ ⊆ ≈ct, the i-th Turing
machine diverges if and only if the following equation is solvable

τ.(Mi[f2]|X[f2])\L1 ∪ L2 + τ.C(D(X),X) + τ.C(X,D(X)) ≡ τω + τ.C(T0, T0)
(7)

which has the exact solution set as the following unary 2 ≡ 0 equation where
a, b ∈ L1 ∪ L2 and a �= b

((a.Mi[f2] + a.(D(X)[f1]|R) + b.X[f1])
|(a.X[f2] + b.(R|D(X)[f2])))\L1 ∪ L2 ≡ τω + τ.C(T0, T0).

The reason that the above two equations have the same set of solution follows
is that, by the expansion law (Proposition 9, page 96 of [Mil89]), the left hand
sides of the equations are equal under strong bisimilarity.
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For one direction, suppose the i-th Turing machine diverges, that is to say
(Mi|T )\L ∼ τω and therefor (Mi[f2]|T [f2])\L1 ∪L2 ∼ ((Mi|T )\L)[f2]\L1 ∼ τω.
Since T ∼ D(T ) and by Lemma 3 C(T, T ) ∼ C(T0, T0), thus T solves Eq. (7)
since ∼ ⊆ ≡.

For the converse direction, suppose Eq. (7) is solvable with solution T ′.
Because ≡⊆≈ct, this implies that (Mi[f2|T ′[f2]])\L1 ∪ L2 has no complete
trace, and that CTr(C(T ′,D(T ′))) and CTr(C(D(T ′), T ′)) are both subsets
of CTr(C(T0, T0)). By Lemma 3, T ′ ≈t D(T ′), and by Lemma1 T ′ ≈t T . Thus
(Mi[f2|T [f2]])\L1 ∪ L2 has no complete trace, nor has ((Mi|T )\L)[f2]\L1 nor
(Mi|T )\L. So the i-th Turing machine diverges on a blank tape.

In a similar way, we can work out that the i-th Turing machine diverges if
and only if the following binary 2 ≡ 0 equation is solvable with ∼⊆≡⊆≈ct and
a, b ∈ L1 ∪ L2, a �= b:

((a.Mi[f2] + a.(X[f1]|R) + a.(D(X)[f1]|R) + b.X[f2]
+b.D(X)[f2])|(a.Y [f2] + b.(Y [f1]|R))\L1 ∪ L2 ≡ τω + τ.C(T0, T0).

Thus we showed effective reductions from the divergence problem of Turing
machine to the unary and binary 2 ≡ 0 equation problems. So the unary 2 ≡ 0
and binary 2 ≡ 0 equation problems are not even semi-decidable, and thus not
decidable.

Now, let a, b ∈ L1 ∪ L2, a �= b. With Lemmas 1 and 3, the Turing machine
tape T is a solution for X in the following unary 2 ≡ 0 equation when ≡ ⊆ ≈ct

((a.((D(X)[f1])|R)+b.(X[f1]|R))|(a.X[f2]+b.D(X)[f2]))\L1 ∪L2 ≡ τ.C(T0, T0),

and T is also a solution for both X and Y in the following binary 2 ≡ 0 equation
when ≡ ⊆ ≈ct

((a.X[f1] + a.D(X)[f1] + b.X[f2] + b.D(X)[f2])
|(a.(R|Y [f2]) + b.(Y [f1]|R)))\L1∪ L2 ≡ τ.C(T0, T0).

And moreover, by Lemmas 1 and 2, the above equations do not have finite-state
solutions. Thus both unary and binary 2 ≡ 0 equation problems do not have
small model property. ��

In the last section we showed that four types of n ≡ m equation problems are
not decidable and do not have small model property for any equivalence relation
which is at least as strong as complete trace equivalence (this can be relaxed to
trace equivalence in the case of 1 ≡ 1) but not stronger than strong bisimilarity.
These four types of equation problems are the unary and binary 1 ≡ 1 equation
problems and the unary and binary 2 ≡ 0 equation problems. Undecidability of
1 ≡ 1 is somewhat expected because recursion can be coded into such an equation
problem, but undecidability of 2 ≡ 0 equation problems is rather unexpected. In
a sense this shows the computation power of communication.

The negative results about these four basic type of equation problems have
very general implications. Because any k-ary n ≡ m equation problem with
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m + n > 1 would have one of these basic problems as special case, such k-
ary n ≡ m equation problem is surely undecidable and does not have small
model property if ≡ is at least as strong as complete trace equivalence but not
stronger than strong bisimilarity. Also the range of equivalence relations from
complete trace equivalence to strong bisimilarity covers the most interesting
equivalence relations in the study of concurrency, including all the equivalence
relations mentioned in the beginning of the Introduction. Indeed, one would
expect a reasonable equivalence relation of concurrent system to be in this range.
Although the constructions are specific for CCS, similar reductions could be
constructed to show similar results within other process algebras.

Undecidability results show the limitation of automatic tools for solving
process equations. Lack of small model property means the need for more insight
in order to construct solutions for these equations. Thus machine assisted semi-
automatic tool such as the one proposed in [JJLL93] and techniques of con-
structing infinite state solutions seem to be necessary.
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Abstract. Since the early 1990’s, classical temporal logics have been
extended with timing constraints. While temporal logics only express
contraints on the order of events, their timed extensions can add quanti-
tative constraints on delays between those events. We survey expressive-
ness and algorithmic results on those logics, and discuss semantic choices
that may look unimportant but do have an impact on the questions we
consider.

1 Introduction

Timed automata [6] are a well-established model for real-time systems. One of
their most fundamental properties is that reachability properties can be decided.
This has given rise to multiple works, both on theoretical aspects and on more
algorithmic and practical aspects. Several tools have even been developed for
automatically verifying timed automata, for instance HyTech [28], Kronos [21]
or Uppaal [12,41]. Among the success stories of that model, one can cite the
verification and the correction of the Bang & Olufsen audio/video protocol [27]
made using the tool Uppaal.

Timed automata are adequate to represent systems, but not that much for
representing properties of systems. If A is a timed automaton representing the
system, and P a timed automaton representing the property, verifying that A
satisfies the property P corresponds to checking that all behaviours of A are
also behaviours of P. This is a language-inclusion question, which turns out to
be undecidable for timed automata [6].

In order to circumvent this difficulty, following the development of tempo-
ral logics in model-checking [20,50], timed temporal logics have been proposed,
which extend classical untimed temporal logics with timing constraints. There
are several ways of expressing such constraints, a standard one consists in con-
straining temporal modalities. For instance, one can write a formula such as

G(problem → F≤5minrepair)

c© Springer International Publishing AG 2017
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to express the quantitative property that any problem must be followed by a
repair action within 5 min. This kind of properties cannot be expressed using
standard temporal logics, as those logics can only refer to the relative order of
events, not to their relative distance (in time).

Several timed extensions of CTL [20] and LTL [50] have been proposed. In this
paper, we focus on some of those extensions that have been studied for the pur-
pose of model-checking real-time systems. We start with the definition of timed
automata, and we discuss several possible semantics for this model (Sect. 2).
While the choice of semantics is harmless for many issues, it is crucial here in
the context of timed temporal logics. We then turn to branching-time logics, and
present TCTL as well as timed extensions of modal logics (Sect. 3). We end with
linear-time logics, which are strongly related to first-order logics over the reals
(Sect. 4). We end up with some conclusions and with further research directions
(Sect. 5).

2 Continuous vs. Pointwise Semantics

Timed automata [6] are extensions of standard finite automata with finitely
many clock variables. These variables, which take their values in a time domain,
aim at constraining delays between events. The choice of the time domain has
been discussed from the early definition of the model (see e.g. [4]); there has
been a clear partition between papers considering dense-time domains such as the
set Q≥0 of nonnegative rationals, or the set R≥0 of nonnegative reals, and papers
considering a discrete-time domain like the set Z≥0 of nonnegative integers.
In this paper, we assume that the time domain is R≥0.

In the setting of dense time, there is another distinction, which has been
less clearly identified in the framework of timed automata: it is related to the
nature of runs in a timed automaton. Indeed, the observation of the system can
be considered continuous (executions are then viewed as signals), or it can be
discrete (executions are then viewed as timed words) [4,52]. This distinction will
be important in the context of logics, as we will see in this article. We begin
with discussing this issue.

2.1 Timed Automata

Timed automata extend finite-state automata with a finite set C of clocks, which
measure delays between events that occur in the automaton. A configuration of a
timed automaton is thus given by a pair (s, v) where s is a state of the automaton
and v : C → R≥0 is a clock valuation. For d ∈ R≥0, we let v′ = v +d be the clock
valuation such that v′(c) = v(c) + d for each clock, corresponding to letting d
time units elapse. For a subset R ⊆ C, we let v′ = v[R] be the valuation such
that v′(c) = 0 when c ∈ R, and v′(c) = v(c) when c ∈ C \ R. This corresponds
to resetting clocks in R.

A clock constraint is a conjunction of atomic constraints of the form c ∈ J ,
where c ∈ C and J is an interval of R≥0 with bounds in Z≥0 ∪{+∞}. Whether a
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clock valuation satisfies a clock constraint is defined in the natural way. We write
G(C) for the set of clock constraints on C, and GM (C) for the set of all clock
constraints on C using integer constants less than or equal to integer M .

Definition 1. Let AP be a finite set of atomic propositions. A timed automa-
ton A = 〈S,C,E, �〉 over AP is made of a finite set S of states, a finite set C
of clocks, a finite set of edges E ⊆ S × G(C) × 2C × S, and a labelling function
� : S → 2AP.

The operational semantics of a timed automaton is defined through an
infinite-state transition system, whose states are all the configurations (s, v) ∈
S×R

C
≥0, with transitions from configuration (s, v) to configuration (s′, v′) when

one of the following two conditions is fulfilled:

– s = s′ and there exists a delay d ∈ R≥0 such that v′ = v + d;1

– there exists an edge e = (s, g,R, s′) ∈ E such that v |= g and v′ = v[R].

This transition system mixes discrete changes (given by the second rule) with
continuous changes due to time elapsing (given by the first rule). In particular,
since delays are taken in R≥0, the underlying graph has infinite branching.

2.2 Semantics for Temporal Logics over Timed Automata

We assume the reader is reasonably familiar with standard untimed temporal
logics like LTL [50] and CTL [19,51]. While these untimed logics can well be
interpreted over timed automata, extensions with quantitative constraints over
delays are very much relevant in this setting. To define such constraints, one
can either decorate the modalities with intervals specifying time delays that are
allowed to satisfy the properties, or explicitly use clock variables in the formulas,
in pretty much the same way as they are used in automata. These considerations
will be discussed specifically in the sections over branching-time logics and linear-
time logics.

There is a second important issue with interpreting temporal logics over
timed automata, which is semantical. We need indeed to make precise which
part of the behaviour of the timed automaton A = 〈S,C,E, �〉 is observed.
We illustrate the possible choices using the constrained until formula. Intuitively,
φ1UJφ2 (where J is an interval of R≥0 with bounds in Q≥0∪{+∞}) holds along
an execution of A if it is the case that φ2 eventually holds, within a delay that
belongs to interval J , and that φ1 holds at all intermediary points in time. We
will see that the choice of the semantics (more precisely, which intermediary
points in time we consider) is crucial.

Discrete-Observation Semantics. A natural way to observe the system is
to see paths in the transition system of the timed automaton as sequences of
configurations reached when the automaton performs discrete transitions.
1 Zero-delay transitions are not allowed here, but could be included without affecting

the presented results.
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Formally, a path is a (finite or infinite) sequence π = (si, vi)i<L of configura-
tions, such that there is a delay transition between (si, vi) and (si, vi + di), and
a discrete transition between (si, vi +di) and (si+1, vi+1). Notice that we do not
require time divergence here, even for paths of infinite length.

For convenience, we assume that our timed automata include a special clock,
named t hereafter, that is never reset and never used in any timing constraint.

The discrete-observation semantics (also called the pointwise semantics in
the literature) of the constrained-until modality along a path π = (si, vi)i<L

in A can be defined as follows:

A, π |=disc φ1UJφ2 ⇔ ∃n > 0. A, π≥n |=disc φ2 and vn(t) − v0(t) ∈ J

and ∀0 < m < n. A, π≥m |=disc φ1 (1)

where π≥k is the path (si, vi)k≤i<L. We see here that satisfaction of subformulas
is checked only at discrete time points, precisely when there is a transition taken
in the timed automaton, and not while delaying in the timed automaton. Notice
that we consider the strict version of the until modality, imposing no constraint
in the present time point. This is an arbitrary choice, which makes the logic
slightly more expressive.

Continuous-Observation Semantics. It is also natural to consider continu-
ous observations of the evolution of the automaton: let π = (si, vi)<L be a path
as formerly defined, with an additional global clock t. We associate with π a
signal � which maps every nonnegative real number to the configuration of the
system at that time: for every r ∈ R≥0, �(r) = (si, v) where i is the largest
index such that vi(t) ≤ r, and v = vi + r − vi(t). This can be interpreted intu-
itively as follows: the system is observed continuously, hence when time elapses,
increasing values of clocks are observed. So, at time vi(t), state si is entered, and
then, while delaying, all clocks increase. We made the arbitrary choice to assume
that at time vi(t), the system is already in state si. In order to avoid arbitrary
switches between states, it is often required that � has finite variability, that is,
its set of discontinuities has no limit points.

The continuous-observation semantics of the constrained-until modality
along a path π (or equivalently, along its associated signal �) in A can then
be defined as follows:

A,� |=cont φ1UJφ2 ⇔ ∃r > 0. A,�≥r |=cont φ2 and r ∈ J

and ∀0 < r′ < r. A,�≥r′ |=cont φ1 (2)

where �≥r is the signal which associates to r′ ∈ R≥0 the value �(r′+r). We also
write A, π |=cont φ when A,� |=cont φ.

Example 1. Consider the timed automaton depicted on Fig. 1. A path in that
timed automaton is π = (a, 0)(c, 3.2). The corresponding signal is � which
associates to every r < 3.2 the configuration (a, r) and to every r ≥ 3.2 the
configuration (c, r).
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ab c
1≤x≤2 3≤x

π

(a, 0) (c, 3.2)

Discrete Continuous
observation observation

ϕ1 = aU c π |= ϕ1 � |= ϕ1

ϕ2 = F≤2 F c π �|= ϕ2 � |= ϕ2

ϕ3 = ¬aU c π |= ϕ3 � �|= ϕ3

Fig. 1. A run π of a timed automaton, and its value against some formulas

Interestingly, we get different satisfaction relations, depending on the partic-
ular choice of the semantics. Classically, the modality FJφ stands for trueUJφ.
Formula ϕ2 in Fig. 1 requires the existence of an intermediary point along the
execution where the subformula Fc holds. This is the case in the continuous-
observation setting, but not in the discrete-observation setting. On the other
hand, ϕ3 holds on π since there is no point in time where ¬a has to be tested,
whereas ϕ3 does not hold on �.

3 Branching-Time Temporal Logics with Timing
Constraints

In this section, we present some of the main results about the branching-time
framework.

3.1 Timed CTL

Let us begin with the simpler case of plain CTL, with no constraints on until
modalities. The main ingredient for model checking CTL, which already gives its
lower-bound, is the original algorithm for reachability in timed automata:

Theorem 1 [6]. Reachability in timed automata is PSPACE-complete.

Let A = 〈S,C,E, �〉 be a timed automaton, and let M be the maximal con-
stant appearing in a clock constraint of A. The above result is proved by quo-
tienting the infinite state space of timed automata into finitely many regions:
a region for a timed automaton A is made of a state of A and of sets of valua-
tions defined by equivalence classes of the region equivalence ≡M . This relation
is defined by v ≡M v′ whenever: for every x ∈ C, (i) v(x) > M iff v′(x) > M ,
(ii) if v(x) ≤ M , then the integral parts of v(x) and v′(x) coincide; and for every
x, y ∈ C such that v(x), v(y) ≤ M , {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)} ({·}
denotes the fractional part). The main property of region equivalence is that it
defines a time-abstract bisimulation, and a finite automaton called the region
automaton can be constructed based on this equivalence, which represents in an
abstract manner the behaviour of A.

A second ingredient for CTL model checking is that any two configurations
whose clock valuations belong to the same region satisfy the same CTL formulas.
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As a consequence, standard CTL model checking can be performed on the region
automaton by labelling all regions with the subformulas they satisfy. Such an
algorithm would take exponential time in the worst case, since the number of
regions is exponential. Several techniques can be used to circumvent this blowup,
e.g. by using tree automata, or space-efficient techniques recomputing the infor-
mation on-demand while evaluating the truth value of a formula. In the end:

Theorem 2. CTL model checking is PSPACE-complete over timed automata.

Remark 1. It must be noted that there are CTL formulas that take different truth
values in a given region, depending on the (discrete-observation or continuous-
observation) semantics. Consider formula E(¬EFc)U b. This formula expresses
the existence of a path eventually reaching a b-state, without l visiting intermedi-
ary states from which c would be reachable. In the automaton depicted at Fig. 1,
this formula holds true in the discrete-observation semantics, as witnessed by the
path (a, 0)(b, 3): along this path, the latter condition holds vacuously. Obviously,
in the continuous-observation semantics, the formula fails to hold.

This can be reflected in the algorithm by considering different constructions
for the region automaton: for the discrete-observation semantics, we would merge
a delay and an action transition into a single transition of the region automaton
(as performed e.g. in [6]). For the continuous-observation semantics we would
have delay transitions to the immediate time-successor region only, and action
transitions directly translated in the region automaton (as e.g. in [5]).

We now focus on TCTL. Two versions of this logic have been considered in
the literature, either using decorated modalities or with formula clocks. We only
consider the latter logic here, as it has more expressive power while having very
similar algorithmic properties. Syntactically, the logic is defined as

TCTL � φ ::= � | p | x ∈ J | ¬φ | φ ∧ φ | EφUφ | AφUφ | x · φ

where p ranges over the set of atomic propositions AP, x ranges over a finite
set of formula clocks CF (these are not the clocks appearing in the automaton),
J ranges over the set of intervals of R≥0 with integral bounds2.

The two semantics discussed in Sect. 2.2 for the Until modality can be applied
to TCTL. The semantics of � (always true) and of Boolean operators is omitted.
Given a configuration (s, v) of A, and a valuation u for the formula clocks, the
satisfaction relation is defined as:

A, (s, v, u) |= p ⇔ p ∈ �(s)
A, (s, v, u) |= x ∈ J ⇔ u(x) ∈ J
A, (s, v, u) |= x · φ ⇔ A, (s, v, u[{x}]) |= φ
A, (s, v, u) |= Eφ1Uφ2 ⇔ there is a path π (resp. signal �) from (s, v, u) s.t.

A, π |= φ1Uφ2 (resp. A,� |= φ1Uφ2)A, (s, v, u) |= Aφ1Uφ2 ⇔ for every path π (resp. signal �) from (s, v, u),
A, π |= φ1Uφ2 (resp. A,� |= φ1Uφ2)

2 Rational bounds could be considered at the expense of scaling all constants by an
appropriate factor.
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Formula clocks are integrated to the paths and signals (without being reset by
the timed automaton).

Example 2. The constrained-until formula Eφ1UJφ2 can be written as:

x · Eφ1U(φ2 ∧ x ∈ J)

It is not difficult to extend the CTL model-checking algorithm above to TCTL:
one easily shows that again two valuations in the same region satisfy the same
TCTL formulas. This can be shown by induction on the structure of the for-
mula, taking formula clocks into account in the definition of region equivalence.
Then the algorithm is similar to the algorithm for CTL, again taking care of the
considered semantics.

Theorem 3 [5]. TCTL model checking is PSPACE-complete over timed
automata (regardless of the semantics choice).

Note that the syntax of the specification language used in Uppaal is inspired
from TCTL, but basically all properties can be reduced to some kind of reacha-
bility properties. See Remark 2 later for more details.

As is the case for CTL, TCTL cannot express fairness properties. In partic-
ular, it cannot rule out Zeno runs, which are infinite runs along which time
converges. Following the untimed approach, one may consider TCTL*, in which
Until modalities can be freely nested (without inserting path quantifications).
This logic then embeds MTL, the extension of LTL with timing constraints, for
which model checking is undecidable (see Sect. 4). An intermediary fragment is
defined in [17], with the following syntax:

TCTLLTL � φs ::= � | p | x ∈ J | ¬φs | φs ∧ φs | Eφp | x · φs

φp ::= φs | ¬φp | φp ∧ φp | φpUφp.

Notice that in this fragment, formula clocks may only be reset at the level of state
formulas. This allows us to recover decidability of model checking (in exponential
space) [17], while being able to express fairness properties.

We conclude this section with a few words on the satisfiability problem for
TCTL. We only deal here with finite satisfiability [5], asking whether there exists
a finite-state timed automaton in which a given TCTL formula holds true. This
problem is undecidable, which can be derived from the undecidability of satisfi-
ability for MTL (see Sect. 4) by pairing each temporal modality with a universal
path quantifier: such a formula is satisfiable if, and only if, the original MTL for-
mula is. It is proven in [37] that forbidding equality constraints in TCTL makes
finite satisfiability decidable; this is to be compared with what happens for MITL
in the setting of linear-time logics (see Theorem 9).

3.2 Timed Modal Logics

In this section, we consider timed modal logics. The development of these logics
is related to the attempt to extend different frameworks to the timed setting,
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such as Milner’s work on process algebra CCS, the HML logic [44], and the
framework of modal specifications [40]. Here we only consider the logic part,
and we interpret formulas over timed automata (see [54] for a contribution on
timed CCS, [18] for the timed modal specifications and [26] for a presentation
of the tool Epsilon for timed modal specifications).

Let Σ be a finite alphabet of actions. We assume that every edge of a timed
automaton is labelled with an action a ∈ Σ, in addition to the guard and the set
of clocks to be reset; thus we now assume E ⊆ S×G(C)×Σ×2C×S. Since modal
logics are appropriate for compositional analysis, we also consider parallel com-
positions of timed automata (A1 | . . . | An)f , where f is an n-ary synchronization
function over Σ with renaming. We refer to [3, Sect. 4] for a formal definition,
but the intuition is that f specifies how the various automata should synchro-
nize on labels over transitions; for instance, f can force processes A1 and A2

to synchronize on action a while producing a b, by defining f(a, a, •, . . . , •) = b;
here labels • indicate that the corresponding processes do not take part in the
synchronization. Such a parallel composition does not add expressive power (i.e.,
the parallel composition of several automata is equivalent to a single automa-
ton) but it is a convenient way to describe complex systems. We will see that the
modal logics we consider enjoy interesting expressiveness and compositionality
properties over such parallel compositions.

HML is a modal logic interpreted over labelled transition systems: in addi-
tion to Boolean operators, there are two modalities: the existential and the uni-
versal quantification over actions (which we denote 〈a〉 and [a], respectively).
For example, formula [a]〈b〉� specifies that after any a-transition, a b-transition
is enabled.

Timed extensions of HML use the same syntax and, moreover, allow one to
quantify over delay transitions: for delay transitions, instead of using explicit val-
ues (representing the delays) as labels, we consider a symbolic label δ to represent
any delay; 〈δ〉 (resp. [δ]) stands for the existential (resp. universal) quantifica-
tion over delay transitions. The formula [a] [δ]〈b〉� specifies that after any a-
transition and any delay, a b-transition is enabled, while the formula [a]〈δ〉〈b〉�
specifies that after any a-transition, a b-transition will be enabled after some
delay. To complete these modalities, we use formula clocks (as in TCTL): a for-
mula clock x can be reset before evaluating ϕ (written x · ϕ), and it can be used
in constraints of the form x ∈ J , where J is an interval of R≥0 with bounds
in Q≥0 ∪ {+∞}. We use CF to denote the set of formula clocks. Note that
this logic has been mostly studied using the discrete-observation paradigm, even
though one could extend it to a continuous-observation setting. In this section,
we focus on the former semantics.

As for HML, we can add maximal or minimal fixpoint operators to specify
properties over executions based on unbounded sequences of actions: for example
min(X,ϕ ∨ ∨

a∈Σ〈a〉X ∨ 〈δ〉X) holds for a state when it is possible to reach a
state satisfying ϕ. The dual formula max(X,ϕ∧∧

a∈Σ [a]X ∧ [δ]X) specifies that
ϕ holds for every reachable state. We use Var to denote the set of variables.
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We can define several logics depending on which of the above operators are
allowed. Here we just introduce the logic Lν [39] whose syntax is given by the
following grammar:

Lν � ϕ,ψ ::= � | ⊥ | x ∼ c | x · ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈�〉ϕ | [�]ϕ | max(X,ϕ) | X

where � ∈ Σ ∪ {δ}, x ∈ CF , ∼ ∈ {<,>}, c ∈ N, and X ∈ Var. An Lν formula ϕ
is interpreted over a configuration (s, v) of a timed automaton A (or over a
configuration (s̄, v̄) of a parallel composition

(A1 | . . . | An

)
f
) with a valuation u

for the formula clocks. We omit the formal semantics, which can be derived from
the previous discussion.

Lν benefits from the same decidability properties as TCTL: two (extended)
states in the same region satisfy the same Lν formulas.

Theorem 4 [3]. Lν model checking is EXPTIME-complete over (parallel compo-
sitions of) timed automata.

The EXPTIME membership can be obtained by applying standard model-
checking algorithms over the region automaton corresponding to the system
(note that adding minimal fixpoints would not change the complexity). The
EXPTIME-hardness proof uses the same encoding of linear-bounded Turing
machines we use to show PSPACE-hardness of reachability in timed automata,
extended to simulate alternating Turing machine with the existential and uni-
versal modalities in Lν .

Remark 2. The tool Uppaal mostly analyzes reachability-like properties. It was
therefore natural, early in the process of development of the tool, to prop-
erly understand which properties can be expressed and verified using the tool.
To that aim, a fragment of Lν has been investigated [1], which fully characterizes
properties that can be expressed through a reachability query via test automata.
A test automaton for a property ϕ ∈ Lν is a timed automaton Aϕ such that for
every timed automaton A, it holds A |= ϕ if, and only if, some designated target
set of states in the composition

(A | Aϕ

)
fs

where fs enforces the synchronization
of actions of the automata, is not reachable. The resulting fragment of Lν has a
PSPACE-complete model-checking problem.

Lν is very expressive as a specification language. For example, it is easy to
observe that timed bisimilarity can be expressed in Lν : two timed automata
over the same alphabet Σ A1 and A2 are strongly timed bisimilar (denoted
A1 ∼ A2) if, and only if, their parallel composition

(A1 | A2

)
finter

, where finter

is an interleaving synchronization with a renaming3 of every action a ∈ Σ of Ai

by action ai, satisfies the following Lν formula:

Ψbisim = max
(
Z,

∧

a∈Σ

(
[a1]〈a2〉Z ∧ [a2]〈a1〉Z

) ∧ [δ]Z
)

.

3 That is, for every a ∈ Σ, finter(a, •) = a1 and finter(•, a) = a2.
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This ability to deal with single action transitions of an automaton is very
useful and allows a compositional algorithm for model-checking (as for the clas-
sical modal μ-calculus [11]). Given a specification ϕ, an automaton A and a
synchronization function f describing its interaction with another component B,
one can build a quotient formula ϕ/fA such that

(A | B)
f

|= ϕ if, and only if,
B |= (ϕ/fA). Note that the clocks of the quotiented automaton A become for-
mula clocks in ϕ/fA: any behaviour of A that is relevant w.r.t. ϕ is encoded in
the formula and this includes all timing informations.

By iterating this quotienting, one can reduce a model-checking instance(A1 | . . . | An

)
f

|= ϕ to some question nil |= ϕ′ where ϕ′ is the quotient
formula ϕ/A1/A2/ . . . /An, and nil is a process letting time elapse without per-
forming any action. Of course, in this approach, the size of the formula grows
exponentially with quotienting (the state-space explosion problem is translated
from the model to the formula), but this approach still provides an alternative
way of performing model-checking [38], and it gives also many interesting results
for such logics.

From the previous properties, it is easy to deduce the construction of charac-
teristic formulas for timed automata: the quotient formula Ψbisim/finterA1 holds
true for some automaton A2 if, and only if, A1 ∼ A2. The formula Ψbisim/finterA1

is the characteristic formula of A1, it describes the precise behaviour of A1 up to
timed bisimulation. See [2] for more results on characteristic formulas for timed
automata.

Finally, quotienting is also useful for the control synthesis problem. The prob-
lem is defined as follows: given a system S to be controlled and a global specifica-
tion Φ that has to be satisfied by the complete system, one aims at synthesizing
a controller C such that

(S | C)f |= Φ. The quotient construction allows us to
build a specification for the controller with Φ/fS. Notice however that the satis-
fiability for Lν is undecidable (actually even for its non-recursive fragment) [33],
and only a strong bounded-resources version of the problem has been shown
decidable [39].

4 Linear-Time Temporal Logics with Timing Constraints

In this section we survey some of the main results concerning expressiveness
and decidability of linear-time temporal logics in the metric setting. In general,
a linear-time specification determines a set of runs of a given system: a collec-
tion of signals in the continuous semantics and a collection of timed words in
the pointwise semantics. In this section we will mostly focus on the continuous
semantics when talking about expressiveness (because the theory is cleaner), but
we consider decidability issues with respect to both semantics.

The results surveyed in this section should be read in the context of two
classical theorems about linear temporal logic in the non-metric setting. The first,
a celebrated result of Kamp [34], is that the linear-time temporal logic (LTL) is
expressively complete for monadic first-order logic over both the ordered integers
(Z, <) and ordered reals (R, <). The second result, due to Wolper et al. [53],
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is that the model checking problem for LTL formulas on Kripke structures is
PSPACE-complete (Note that, notwithstanding the equivalent expressiveness of
LTL and monadic first-order logic, the model checking problem for monadic first-
order logic is non-elementary).

4.1 Monadic First-Order Logic

A natural approach to specifying properties of signals is to use first-order logic.
Consider a first-order language LMET over a signature with a binary relation
symbol <, an infinite collection of unary predicate symbols AP = {P1, P2, . . .},
and an infinite family of unary function symbols +q, q ∈ Q.

Formulas of LMET can naturally be interpreted over signals � : R → 2AP. Such
a signal determines a first-order structure in which the universe is R, the relation
symbol < and function symbols +q, q ∈ Q, are interpreted by the standard order
relation and addition function on R, and where each unary predicate symbol Pi

is interpreted as {r ∈ R | Pi ∈ �(r)}. For example, the formula

ϕ(x) := ∃y ∃z ((x < y < z < x + 1) ∧ P (y) ∧ P (z)) (3)

holds at a point r ∈ R in a signal if P is true at least twice in the open interval
(r, r + 1).

The satisfiability problem for LMET asks whether a given sentence is satisfied
by some signal. The model-checking problem asks whether a given sentence is
satisfied by all signals in the language of a given timed automaton.

Theorem 5. The satisfiability and model checking problems for LMET are
undecidable.

Proof (Sketch). Let P be a monadic predicate symbol and consider the following
two properties of a signal:

– for all r ∈ R, P is true at r if and only if it is true at r + 1;
– the set of r ∈ R at which P holds has no accumulation point.

These two properties can easily be expressed in LMET, using only the order
relation < and +1 function. Moreover any signal satisfying these properties
embeds a grid of dimensions Z×{0, . . . , N}, for some N ∈ N, where the (i, j)-th
cell in the grid maps to the j-th P -position within the open interval (i, i+1). We
can use the relation < and function +1 to navigate horizontally and vertically
through such a grid and thereby reduce the halting problem for Turing machines
to the satisfiability problem for LMET.

Undecidability of model checking follows immediately from undecidability of
satisfiability. ��

4.2 Metric Temporal Logic

The above-mentioned result of Kamp [34] on the expressiveness of LTL moti-
vates the search for an expressively complete temporal logic for LMET. A natural
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candidate is Metric Temporal Logic (MTL) [35], a popular and widely studied
temporal logic that augments LTL with time-constrained versions of the Until
and Since modalities (Since is symmetric to Until : ϕ1Sϕ2 requires that ϕ2 holds
at some position in the past, and that ϕ1 holds in all intermediary positions).

Given a set AP of atomic propositions, the formulas of MTL are given by the
following grammar

MTL � ϕ ::= � | p | ϕ ∧ ϕ | ¬ϕ | ϕUI ϕ | ϕSI ϕ ,

where p ∈ AP and I ⊆ (0,∞) is an interval with endpoints in Q≥0∪{∞}. We also
use derived boolean operators such as ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2 =
(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), and derived temporal connectives like FI ϕ = �UI ϕ
and PI ϕ = �SI ϕ.

Note that we consider signals whose domain is the set R of all real numbers.
Below we will also consider the future fragment of MTL on signals over the
non-negative real numbers R≥0.

4.3 Expressive Completeness

At first glance MTL seems to have weak expressive power. For example, consider
the formula (3) expressing that there will be at least two p-states in the next
time unit. MTL cannot naturally express both the consecution of two events and
a timing constraint on the second event. This led to the conjecture that such
constraints cannot be expressed in MTL (try to express (3) before reading fur-
ther!); cf. [9,10]. However, as shown in [14], this formula can indeed be expressed
in MTL:

Example 3. We give an MTL formula ϕ† that is equivalent to the LMET formula
ϕ(x) in (3) in the sense that for every signal � and r ∈ R, � |= ϕ[r] if and
only if �, r |= ϕ†. The key is to use fractional constants in the definition of ϕ†.
We define the formula as a disjunction of three overlapping cases according to
position of the two times at which p holds that witness the truth of ϕ.

ϕ† := F(0, 12 )
(p ∧ F(0, 12 )

p) ∨ F(0, 12 )
(F(0, 12 )

p ∧ F{ 1
2}p) ∨ (F(0, 12 )

p ∧ F( 1
2 ,1)p) .

The “trick” in the previous example of using fractional constants to boost
the expressiveness of MTL turns out to be very powerful:

Theorem 6 [32]. For every LMET formula ϕ(x) there is an equivalent MTL
formula ϕ†.

Let us briefly discuss two key ideas underlying the proof of Theorem 6: namely
boundedness and separation. Given N ∈ N, an LMET formula ϕ(x) is N -bounded
if all quantifiers are relativised to the interval (x−N,x+N). Exploiting a normal
form for FO(<) [25], we show how to translate bounded LMET formulas into MTL.
Extending this translation to arbitrary LMET formulas requires an appropriate
analog of Gabbay’s notion of separation [24].
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Gabbay [24] shows that every LTL formula can be equivalently rewritten as
a Boolean combination of formulas, each of which depends only on the past,
present, or future. This property underlies an inductive translation from first-
order logic over (R, <) to LTL. The proof of Theorem 6 relies on an analogous
result for MTL:

Lemma 1 (Separation Lemma). Every MTL formula can be equivalently
rewritten as a Boolean combination of MTL formulas, each of which has one
of the following three forms:

– Bounded: the interval I in every temporal operator UI and SI is bounded;
– Distant Future: has the form F(1,∞)ϕ, for ϕ a formula with no past

connectives;
– Distant Past: has the form P(1,∞)ϕ, for ϕ a formula with no future

connectives.

Gabbay’s separation result for LTL is an ingredient of the proof of the Sepa-
ration Lemma for MTL. As we have said, the latter result can be used to give an
inductive translation from LMET to MTL. A key difference to the purely order-
theoretic case is that in the metric setting the different types of formulas in the
Separation Lemma may talk about overlapping parts of the signal. For this rea-
son it is crucial that we already have a separate translation of bounded LMET

formulas to MTL.

Integer Constants. Having rational constants plays a crucial role in the proof
of Theorem 6. Indeed, as illustrated in Example 3, the translation from LMET

to MTL does not preserve the granularity of timing constraints. Pursuing this
issue, define L(1)MET to be the fragment of LMET in which the family of unary addi-
tion function symbols +q, q ∈ Q, is replaced by a single unary function symbol
+1. It was shown by Hirshfeld and Rabinovich [29] that MTL with integer con-
stants is not expressively complete for L(1)MET. Indeed [29] proves a much stronger
impossibility result: no temporal logic whose modalities are definable by a set
of formulas of L(1)MET of bounded quantifier depth can be expressively complete
for L

(1)
MET. Later, and again based on the Separation Lemma, Hunter [31] gave

an expressively complete temporal logic for L
(1)
MET by taking the fragment of

MTL with integer constants and augmenting it with an infinite family of unary
counting modalities Cn (first considered in [29]).

Given a positive integer n, the semantics of the counting modality Cn is
defined as follows:

– �, r |= Cn(ϕ) if there exist r < r1 < . . . < rn < r + 1 such that �, ri |= ϕ for
i = 1, . . . , n.

Notice that the L
(1)
MET-formula in (3) is equivalent to C2(p). Notice also that the

the natural way to render Cn(p) as an LMET formula requires quantifier depth
n, consistent with the above-referenced “impossibility result” of [29].
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Theorem 7 [31]. For every L
(1)
MET formula ϕ(x) there is an equivalent formula

ϕ† in MTL augmented with the unary counting modalities Cn, n ∈ N, such that
ϕ† mentions only integer constants.

Future Modalities. Another crucial feature of MTL for obtaining expressive
completeness is the presence of past connectives. Recall in this regard that for any
sentence ϕ of monadic first-order logic over the structure (R≥0, <), there is an
equivalent LTL formula ϕ† that uses only future connectives. Here equivalence is
considered with respect to the initial semantics and over finitely variable signals.
More precisely we have that for any finitely variable signal � : R≥0 → 2AP, (i.e.,
one with finitely many discontinuities in any bounded interval) one has � |= ϕ
if, and only if, �, 0 |= ϕ†.4 The following result, which follows immediately
from [14, Proposition 4], shows that the analogous expressive completeness fails
for MTL.

Theorem 8. Over the initial semantics the LMET sentence

ϕ = ∃x∃y∀z (x < y < x + 1 ∧ p(y) ∧ (y < z < x + 1 → q(z)))

cannot be expressed in MTL using only UI .

4.4 Satisfiability and Model Checking

The satisfiability and model checking problems for MTL are formulated in a
similar manner to the corresponding problems for LMET.

Since the translation from LMET to MTL in Theorem 6 is effective, it follows
that satisfiability and model checking for MTL are undecidable. Alternatively,
one can give a direct proof along the same lines of Theorem 5 (see, e.g., [10]).
However a number of expressive and decidable fragments of MTL have been
identified. The best-known such fragment, called Metric Interval Temporal Logic
(MITL), arises by restricting the interval I in the modalities UI and SI to be
non-singular. In particular, the formula

G(0,∞)(p ↔ F{1}p) ,

which features in the undecidability proof of MTL cannot be expressed in MITL.
Both the satisfiability and model checking problems for MITL were shown to

be decidable in [7] via an exponential translation of MITL formulas to equivalent
timed automata. Combined with the fact that language emptiness for timed
automata is in PSPACE one obtains:

Theorem 9 [7]. The model checking problem for MITL is EXPSPACE-complete.

Another decidable fragment of MTL, called Bounded MTL, arises by restrict-
ing the interval I in the modalities UI and SI to be bounded. While Bounded

4 As shown in [30] this property fails without the assumption of finite variability.
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MTL can express punctual properties, it obviously can only express time-
bounded properties. A common extension of MITL and Bounded MTL with an
EXPSPACE-complete model checking problem is identified in [15].

The proof that satisfiability and model checking for MTL are undecidable
works similarly in the pointwise semantics as in the continuous semantics. How-
ever, if one restricts to the future fragment of MTL (that is, keeping UI but
omitting SI) then the situation becomes more delicate. While both problems
are again undecidable, the proof becomes substantially different.

Consider the formula G(0,∞)(p ↔ F{1}p), which is instrumental in the proof
of undecidability of MTL. A timed word satisfies this formula if every p-event is
followed by a p-event exactly one time unit later. However, the formula does not
require that every p-event be preceded by a p-event one time unit earlier (indeed,
one cannot enforce that there be any event one time unit earlier). For this reason,
a direct encoding of the computations of a Turing machine or 2-counter machine
into a language of timed words (as in the undecidability proofs in [6] and [10])
fails for MTL. However one can encode computations of channel machines (finite
automata, equipped with an unbounded FIFO memory) with insertion errors,
that is, channel machines under a semantics in which extra letters may non-
deterministically be inserted anywhere in the channel during each transition.
Using this idea, [47] shows undecidability of satisfiability for the future fragment
of MTL in the pointwise semantics by reduction from the recurrence problem
for channel machines with insertion errors, that is, the problem of whether a
given channel machine has a computation that visits an accepting control state
infinitely often. Naturally, the ability of MTL to express the recurrence property
GFp plays a key role in this proof.

The undecidability result of [47] only works over infinite words. Indeed, it
was shown in [46] that both satisfiability and model checking are decidable for
the future fragment of MTL over finite timed words. The decision procedure
in [46] involves translating an MTL formula into an equivalent alternating timed
automaton. Crucially such an automaton requires only a single clock. The main
technical result of [46] was to show that the language emptiness problem for
one-clock alternating timed automata is decidable. This was done by a method
analogous to the region-automaton construction for ordinary timed automata.
However in the case of alternating automata this construction does not yield
a finite quotient, and [46] relies on the existence of a well-quasi-order (estab-
lished using Higman’s Lemma) on the set of configurations of a given one-clock
alternating timed automaton to prove termination of the algorithm for deciding
language emptiness.

Theorem 10 [46]. The satisfiability and model checking problems for (the future
fragment of) MTL over finite timed words are non-primitive recursive.

Over infinite words, using similar methods, one can identify a safety fragment
of MTL for which model checking is decidable [48].
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4.5 Timed Propositional Temporal Logic

The logic TPTL [8] is another extension of LTL to the metric setting, this time
using so-called formula clocks. The formulas of TPTL are given by the following
grammar:

ϕ ::= p | x ∼ c | ¬ϕ | ϕ ∧ ϕ | x · ϕ | ϕUϕ | ϕSϕ

where p ∈ AP, x is a formula clock, ∼ ∈ {<,>} and c ∈ Q≥0.

Example 4. As for the case of branching-time, one easily expresses decorated
modalities using formula clocks: formula pUIq translates as x · pU(q ∧ x ∈ I),
which is in TPTL since I is required to have rational endpoints.

It is easy to see that for every MTL formula there is an equivalent TPTL for-
mula, and for every TPTL formula there is an equivalent LMET formula. It imme-
diately follows from Theorem 6 that TPTL with rational constants is expressively
complete for LMET. Similarly, it follows from Theorem 7 that TPTL with inte-
ger constants is expressively complete for L

(1)
MET. Finally, if we disallow the past

operator SI in both MTL and TPTL, then the latter is strictly more expressive,
since it can express the property of Theorem 8.

5 Conclusion

Timed temporal logics have been defined to express quantitative constraints
over delays between events. For instance, one can express the property that any
request is answered within some fixed delay. We have first discussed seman-
tic choices: formulas of (linear-time) timed temporal logics can either be inter-
preted using a discrete-observation setting (only actions are observed), or using
a continuous-observation setting (time elapsing in states and changes of states
are both observed). While this may seem harmless (though one can easily exhibit
examples distinguishing the two semantics), it actually impacts the complexity
of model-checking.

In a second part, we have focused on branching-time temporal logics. We
have both discussed extensions of CTL and of modal logics. We have explained
that the model-checking problem of TCTL over timed automata can be done
using a simple extension of standard technics for reachability analysis. We have
then turned to timed extensions of HML and have discussed the model-checking
problem as well as other properties like compositionality.

In the last part of the paper, we have focused on linear-time, and we have
explained the expressive completeness of MTL with respect to the natural metric
extension of first-order logic over the reals. We have then discussed the model-
checking and the satisfiability problems for (fragments of) MTL, and finished the
section with a short discussion on a timed extension of LTL with explicit clock
variables.

A short survey cannot be exhaustive on such a wide topic, and there are
a number of related results that we could not mention in this paper. We refer
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e.g. to [13,22,23,36,45,49,52, to cite only a few] for more results on the very
topic developed in this paper. (Linear-time) timed temporal logics have also
been used in other domains, e.g. in the prolific domains of monitoring and run-
time verification for real-time systems [43]. We refer to [42] for a recent discussion
on this problematic.

While timed temporal logics are rather well-understood now, several impor-
tant questions are still to be investigated. In particular, the satisfiability (or syn-
thesis) problem for timed logics is not fully (or satisfactorily) understood yet.
For instance, the synthesis problem for TCTL and Lν is undecidable, and only
a strong assumption on the resources leads to decidability [39]. Similar resource
restrictions have to be made [16] to be able to solve the so-called reactive-
synthesis problem for MITL (while without restrictions it is shown to be unde-
cidable). Therefore, designing (efficient) algorithms for the synthesis of real-time
systems is a real challenge!
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16. Brihaye, T., Estiévenart, M., Geeraerts, G., Ho, H.-M., Monmege, B., Sznajder, N.:
Real-time synthesis is hard!. In: Fränzle, M., Markey, N. (eds.) FORMATS
2016. LNCS, vol. 9884, pp. 105–120. Springer, Cham (2016). doi:10.1007/
978-3-319-44878-7 7

17. Brihaye, T., Laroussinie, F., Markey, N., Oreiby, G.: Timed concurrent game struc-
tures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 445–459. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 30
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Abstract. In this short note, we establish a link between the the-
ory of Moore Interfaces proposed in 2002 by Chakraborty et al. as
a specification framework for synchronous transition systems, and the
Assume/Guarantee contracts as proposed in 2007 by Benveniste et al.
as a simple and flexible contract framework. As our main result we show
that the operation of saturation of A/G contracts (namely the mapping
(A,G) �→ (A,G∨¬A)), which was considered a drawback of this theory, is
indeed implemented by the Moore Game of Chakraborty et al. We further
develop this link and come up with some remarks on Moore Interfaces.

Keywords: Assume/Guarantee contract · Moore interface · Synchro-
nous interface · Compositional design

1 Introduction

Since the early 2000 and the pioneering paper [22], the community of formal
verification started to address component based design in a new, game based,
way. The idea is to support a process, by which different actors would contribute
to developing a system by designing sub-systems independently, for subsequent
integration by the system designer. Each sub-system is developed with some
abstract specification of what the system should do, as well as its contexts of
use. And the goal is, of course, that, after integration, the resulting system shall
work as expected.

Hej Kim!: It is both a pleasure and an honor to write a tribute to Kim. Kim was
preincarnated a “contractor”: in his previous life, by inventing modal specifications
he contributed to contracts way before the concept ever existed. But there was a
long way to the grail: getting to the point where Modal Interfaces have become
comprehensive and solid occurred only recently. While joining the aristocracy of
formal methods, Modal Interfaces have become terribly sophisticated. Tom (Hallo
Tom!) kept telling us: “those asynchronous interfaces are too complex, look for the
synchronous ones”. We offer this trial to Kim as a gift. Is it really simple? We let
you judge.
The authors apologize for having used sometimes set theoretic operations {union,
intersection} and in other places logical operations {or, and}. The reader will easily
correct this.

c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 233–248, 2017.
DOI: 10.1007/978-3-319-63121-9 12
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Specification [1–3,6–9], Interface [15–17,19,22,23,25–27], and Contract [9,10,
14,20,21,24] theories were proposed with this common objective in mind. The
models are numerous and vary in many respects: automata or state machines,
transition systems, dataflow systems are considered as an underlying paradigm;
assumptions and guarantees may be explicitly manipulated, or they may be
folded into a single entity called the “interface”; in all cases, however, a notion
of environment is considered. The area is rich in technicalities. As a result, the
reader may get confused when searching for the essence of the subject beyond
its general objectives.

For these reasons a group of hard workers has proposed a meta-theory of
contracts [12] as an attempt to capture the essence of all the different frameworks.
This meta-theory supports the cooperative development of systems from sub-
systems and/or components, all of them generically referred to as components
in the meta-theory. Regarding the components, we assume a composition × for
them that is commutative and associative. The meta-theory defines the semantics
of a contract as a pair of two sets of components: a set of legal environments (or
contexts of use), and a set of implementations: Sem(C ) = (E,M). To rephraze
this, a component E is a legal environment for C (written E |=E C ) if E ∈ E and
a component M is a legal implementation for C (written M |=M C ) if M ∈ M.
To account for the fact that some syntax must exist for contracts to be finitely
described, not all pairs of sets of components define contracts. We thus assume
some underlying abstract class C of contracts, whose semantics are pairs (E,M).
To capture substitutability, we say that C ′ refines C , written C ′ � C , if E ′ ⊇ E
and M′ ⊆ M, which immediately defines the conjunction as the Greatest Lower
Bound (GLB) C1 ∧ C2. Most interesting is then the definition of the contract
composition C1 ⊗C2 in the meta-theory: it is the min of the set of all contracts
C such that: (i) M1 |=M C1 and M2 |=M C2 imply M1 × M2 |=M C , and (ii)
E |=E C and M2 |=M C2 imply E × M2 |=E C1. Parallel composition is shown
to be monotonic with respect to refinement. We regard as axioms the existence
of the above invoked GLB and min. To summarize, it is shown in [12] that
the meta-theory by itself supports substitutability and other properties that are
useful for systems design in an OEM/supplier context.

In [12], it was also shown that, by instantiating the framework of com-
ponents in various ways, the meta-theory instantiates as existing theories of
interfaces or contracts, thus capturing the very essence of them. Among them,
Assume/Guarantee contracts (A/G contracts) are simple and elegant [10,12].
An A/G contract is a pair (A,G) of assumption and guarantee, consisting of
predicates over the sets of behaviors of a tuple of variables. The pairs (E,M) of
the meta-theory follow directly via the association E ↔ A (legal environments
are those satisfying A) and M ↔ [A ⇒ G], where ⇒ denotes implication (legal
implementations are those satisfying the entailment A ⇒ G). The latter asso-
ciation reflects that implementations must meet the guarantees only if put in
a legal context. The need for manipulating the so-called saturation operation
(A,G) 
→ [A ⇒ G] = [A∨¬G], which seemingly requires computing disjunctions
and complements, has been considered a drawback of A/G contracts — even if G
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Table 1. Two verbatims from [19]

In the study of compatibility, game-based approaches quantify inputs existentially,
and outputs universally. When two interfaces C1 and C2 are composed, their
composition may have illegal states, where one component emits outputs that are
illegal inputs for the other one. Yet, C1 and C2 are considered compatible as long
as there is some input behavior that ensures that, for all output behaviors, the
illegal states are avoided: in other words, C1 and C2 are compatible if there is some
environment in which they can be used correctly together. In turn, the input
behaviors that ensure compatibility constitute the legal behaviors for the
composition C1 ⊗ C2: when composing component models, both the possible
output behaviors, and the legal input behaviors, are composed

The game view leads to an alternating view of refinement: a more detailed
interface C2 refines an abstract interface C1 if all legal inputs for C1 are also legal
for C2, and if, when C1 and C2 are subject to the same legal inputs, C2 generates
output behaviors that are a subset of those of C1. This definition ensures that,
whenever C2 � C1, we can substitute C2 for C1 in every design without creating
any incompatibility: in the game view, substitutivity of refinement holds

is a finite state automaton, computing its complement is computationally costly
as soon as G is nondeterministic.

In a landmark paper [19], Synchronous Interfaces with the special case of
Moore Interfaces, were introduced. Two verbatims from [19] (modulo nota-
tions) are reproduced in Table 1. These requirements for an interface theory
stated in [19] suggest that synchronous interfaces should obey the meta-theory.
While reading the above reference in an attempt to properly discussing it in
our paper [12], we observed that the game associated to the composition of
Moore interfaces seemed to solve the saturation operation on A/G contracts:
(A,G) 
→ (A,G ∨ ¬A), see (6). We thought that this observation was worth
further investigations, which lead to this paper in which we show that this guess
was indeed correct. The contributions of this paper are the following:

1. We show that the Moore Game of [19] yields an effective algorithm for per-
forming the saturation operation (A,G) 
→ (A,G ∨ ¬A).

2. We clarify the correspondence between A/G contracts and Moore Interfaces.
It turns out to be almost perfect. The only missing feature of the alter-
nating refinement of Moore Interfaces is the proper consideration of legal
environments, which has consequences for the parallel composition of Moore
Interfaces as well.

3. We propose a slight adjustment of the Moore Interfaces that match A/G
contracts (and thus the meta-theory).

2 Background on Synchronous Assume/Guarantee
Contracts

In Assume/Guarantee contracts (A/G contracts), Assumptions characterize
the valid environments for the considered component, whereas the Guarantees
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specify the commitments of the component itself, when put in interaction with a
valid environment. We develop here A/G contracts for synchronous frameworks
in which behaviors are sequences of successive reactions assigning values to the
set of variables of the considered system. To simplify the exposure, we focus on
the simplest case of a fixed alphabet of variables. The extension to the general
case relies on a standard mechanism of alphabet extension, for which the reader
is referred to [12].

We consider a finite alphabet V of variables possessing identical
domain D. Synchronous assertions, which constitute the basis of synchronous
A/G-components and contracts, are introduced next. A reaction assigns to each
variable of V a value from its domain: s ∈ DV . By adding a distinguished symbol
⊥ �∈ D to model the absence of an actual variable in the considered reaction, we
get the multiple-clocked synchronous model used by synchronous languages [13].
Denote by ε = ⊥V the silent reaction, assigning ⊥ to every variable. A syn-
chronous behavior σ is a finite or infinite sequence of reactions. A synchronous
assertion P is a set of synchronous behaviors:

P ⊆ (V 
→ (D ∪ {⊥}))ω. (1)

Say that P is stuttering invariant [11] if: (1) it is closed under the
transformations

σ = s1, . . . , sk, sk+1, . . . 
→ stretchk(σ) = s1, . . . , sk,⊥V , sk+1, . . . (2)

where k is an arbitrary integer — inserting at any time k a silent reaction in
a behavior of P still yields a behavior of P —, and (2) P is a closed set when
(V 
→ (D∪{⊥}))ω is equipped with the product discrete topology. In particular,
if P is stuttering invariant, then by using condition (1) of stuttering invariance,
it contains behaviors beginning with the silent behavior εk with an arbitrary
length k. By condition (2) of stuttering invariance, the behavior εω having only
silent reactions, which is the limit with respect to the product topology of a
sequence of behaviors beginning by εk, also belongs to P . Stuttering invariance
is a desirable property for an open system, since it may be subsequently put in
an environment that is acting when the considered system is sleeping. From now
on and until otherwise mentioned, we omit the term “synchronous”. Assertions
are equipped with the set algebra ∩,∪,¬, where ¬ denotes set complement.

Definition 1. A component is any stuttering invariant assertion.

Thus, it is always allowed for a component to do nothing. The class of com-
ponents is stable under intersection. Two components are always composable
and we define component composition by the intersection of their respective
assertions:

P1 × P2 = P1 ∩ P2 (3)

Formulas (1) and (3) define a framework of synchronous components. It coincides
with the framework used in [11].
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Definition 2. A contract is a pair C = (A,G) of assertions, called the assump-
tions and the guarantees. The set EC of the legal environments for C collects all
components E such that E ⊆ A. The set MC of all components implementing
C is defined by A × M ⊆ G.

Observe that we are not requiring any particular condition on the sets A and G.
In particular, they may not be stuttering invariant — for instance the guaran-
tee G may request that every reaction shall be non-silent, which is a progress
condition. A or G may even be empty. For this section, the underlying set C of
contracts is the set of all pairs (A,G) of assumptions and guarantees as defined
above. By Definition 1,

contract C = (A,G) is compatible if and only if εω ∈ A, and in this case
EC = A is the maximal (for set inclusion) environment of C . (4)

Denoting by ¬A the complement of set A, any component M such that M ⊆
G ∪ ¬A is an implementation of C . Thus,

contract C = (A,G) is consistent if and only εω ∈ G ∪ ¬A, and in this case
MC = G ∪ ¬A is the maximal (for set inclusion) implementation of C . (5)

Observe that two contracts C and C ′ with identical alphabets of variables, iden-
tical assumptions A′ = A, and such that G′ ∪ ¬A′ = G ∪ ¬A, possess identical
sets of implementations: MC ′ = MC . According to our meta-theory, such two
contracts are equivalent. Say that contract

C = (A,G) is saturated if G = G ∪ ¬A, or, equivalently, if G ∪ A = Ω , (6)

where Ω =def (V 
→ D)∗ ∪ (V 
→ D)ω is the trivial assertion collecting all
behaviors. Contract C = (A,G) is equivalent to its saturated form (A,G ∪ ¬A).
Refinement, conjunction, and parallel composition are defined as follows, for
A/G contracts in saturated form:

Definition 3. Let C1 and C2 be two saturated contracts with identical alphabets
of variables.

1. Say that C2 refines C1, written C2 � C1, iff A2 ⊇ A1 and G2 ⊆ G1;
2. The conjunction of C1 and C2 is defined as being the corresponding GLB:

C1 ∧ C2 =def (A1∪A2, G1∩G2);
3. The parallel composition of C1 and C2, denoted by C1⊗C2, is defined as being

the pair (A,G) such that G = G1 ∩ G2 and A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2).

Comment 1 (Regarding saturated contracts). As the reader has noticed,
getting saturated contracts is important in A/G contracts. This seems to require
computing unions and complements of assertions. In fact, we only need to be
able to compute the operation (A,G) 
→ G∪¬A, which we like to interpret as
the entailment A ⇒ G. As we shall see in Sect. 4, it turns out that the Moore
Interfaces, the simplest form of Synchronous Component Interfaces proposed
by Chakrabarti et al. [19], provide a way of computing this entailment, for a
restricted class of A/G contracts.



238 A. Benveniste and B. Caillaud

3 An Illustration Example for Moore Interfaces

To give the intuition behind Moore Interfaces, we reproduce the following exam-
ple, borrowed verbatim from the thesis of Arindam Chakrabarti [18]. It is shown
in Fig. 1.

The guarded-command syntax used in this figure is derived from the one
of reactive modules [4] and Mocha [5]; input atoms describe the input assump-
tions, and the output atoms describe the output behavior. When more than one
guard is true, the command is selected nondeterministically. Input variables not
mentioned by the command are updated nondeterministically.

We illustrate the features of Moore interfaces by modeling a simple example:
a ±1 adder driven by a binary counter. The adder Adder has two control inputs
q0 and q1, data inputs i7, . . . , i0, and data outputs o7, . . . , o0. When q0 = q1 = 1,
the adder leaves the input unchanged: the next value of o7, . . . , o0 is equal to
i7, . . . , i0. When q0 = 0 and q1 = 1, the next outputs are given by [o′

7, . . . , o
′
0] =

[i7, . . . , i0]+1 mod 28, where primed variables denote the values at the next clock
cycle, and [o′

7, . . . , o
′
0] is the integer encoded in binary by o′

7, . . . , o
′
0. Similarly,

when q1 = 0 and q0 = 1, we have [o′
7, . . . , o

′
0] = [i7, . . . , i0] − 1 mod 28.

The adder is designed with the assumption that q0 and q1 are not both 0:
hence, the input transition relation of Adder states that q′

0q
′
1 �= 00. In order to

cycle between adding 0,+1,−1, the control inputs q0 and q1 are connected to
the outputs q1 and q0 of a two-bit count-to-zero counter Counter. The counter
has only one input, cl : when cl = 0, then q′

0q
′
1 = 11; otherwise, [q′

1q
′
0] = [q1q0]−1

mod 4.
When the counter is connected to the adder, the joint system can take a

transition to a state where q1q0 = 00, violating the adder’s input assumptions.
In spite of this, the counter and the adder are compatible, since there is a
way to use them together: to avoid the incompatible transition, it suffices to
assert cl = 0 early enough in the count-to-zero cycle of the counter. To reflect

Fig. 1. A counter (left) and an adder (right) modeled as Moore interfaces.
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this, when we compose Counter and Adder, we synthesize for their composition
Counter× Adder a new input assumption, that ensures that the input assump-
tions of both Counter and Adder are satisfied.

To determine the new input assumption, we solve a game between Input,
which chooses the next values of cl and i7, . . . , i0, and Output, which chooses
the next values of q0, q1, and o7, . . . , o0. The goal of Input is to avoid a transition
to q1q0 = 00. At the states where q1q0 = 01, Input can win if cl = 0, since at
the next clock cycle we will have q′

0q
′
1 = 11; but Input cannot win if cl = 1.

By choosing cl ′ = 0, Input can also win from the states where q1q0 = 10.
Finally, Input can always win from the states where q1q0 = 11, for all cl ′. Thus,
we associate with Counter× Adder a new input assumption encoded by the
transition relation requiring that whenever q1q0 = 10, then cl ′ = 0. The input
requirement q1q0 = 00 of the adder gives rise, in the composite system, to the
requirement that the reset-to-1 occurs early in the count-to-zero cycle of the
counter.

So far this was verbatim quote from [18]. This text illustrates the intuition
for how composition works for Moore Interfaces. Can we relate this to the com-
position of A/G contracts?

Item 3 of Definition 3 states that, in the composition of A/G contracts, the
overall assumption A is discharged from what is already mutually guaranteed
by the two contracts — this corresponds to the term ∪¬(G1 ∩ G2). To parallel
this with the discussion of the game associated with Moore Interfaces, the Input
only checks what, in the raw product of the two machines, may lead to violating
input assumptions of one interface. This expresses that the job of the game is to
complement what is already natively offered by each interface.

Considering again the composition of A/G contracts, the remaining duty of
the overall assumption A is to ensure that input assumptions of both interfaces
remain satisfied in the composition — referring to Item 3 of Definition 3, this
corresponds to the term A1 ∩ A2. But this is exactly what the game associated
with Moore Interfaces finds, namely: “whenever q1q0 = 10, then cl ′ = 0” is the
missing global property that inputs must satisfy in the composition of the two
Moore interfaces.

This parallel suggests that there should be a tight relation between Moore
Interfaces and A/G contracts. Formalizing this relation is the subject of this
paper.

4 Implementing Contract Saturation Using Moore
Interfaces [19]

In this section we develop the results announced in Comment 1 regarding con-
tract saturation. We specialize our previous trace- or behavior-based framework
of A/G contracts to a sub-case where the saturation operation can be made
effective by using the Moore Interfaces.
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4.1 Moore Interfaces and Associated A/G Contracts

We now assume that assertions A and G are defined via transition relations
having a specific structure. We are given a disjoint copy V ′ of the set V of
variables and call it the set of next variables. For x∈V , its counterpart in V ′ is
x′. For P a predicate on V , we denote by P ′ the predicate obtained by replacing
in P every x ∈ V by x′ ∈ V ′. We next assume that each variable from V has
finite domain D ∪ {⊥} and a decomposition of V is given into input and output
variables: V = V in � V out. We finally assume

a predicate IA on V in and a predicate TA on V ∪ (V in)′;
a predicate IG on V out and a predicate TG on V ∪ (V out)′. (7)

Thus, predicates IA and TA control input variables, whereas predicates IG and
TG control output variables.1 Call Moore Interface [19] the tuple

C = (V , IA, IG, TA, TG).

Each Moore Interface defines an A/G contract (A,G) where the two synchronous
assertions A (assumption) and G (guarantee) are given by

A = { σ | σ(0) |= IA and ∀k. (σ(k), σ(k+1)) |= TA }
G = { σ | σ(0) |= IG and ∀k. (σ(k), σ(k+1)) |= TG } (8)

where, as usual, symbol |= means “satisfies”. We now need to define what the
components are, for this contract framework.

4.2 Components for Moore Interfaces

Throughout this section we use the concepts introduced in Sect. 4.1 and develop
what the right notion of component is, for A/G contracts defined by Moore
Interfaces. Since assumptions A and guarantees G are both specified as transition
systems, it is natural to require that the underlying class M of components
consists of all transitions systems on V of the form

M = (V in
M , V out

M , IM , TM ),

where V = V in
M � V out

M is a decomposition of V into input and output variables,
the initial condition IM is a predicate over V out, and the transition relation TM

is a predicate over V ∪(V out)′. We assume the following conditions on predicates
IM and TM , where [V/⊥] denotes the assignment of the value ⊥ to every variable
belonging to V and similarly for [V ′out/⊥]:

[V/⊥] satisfies IM ; and (a)
∀V.TM [V ′out/⊥] holds, (b) (9)

1 In addition, [19] assumes some kind of satisfiability condition for these four predi-
cates. We do not consider this assumption in our development.
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which means that M is stuttering invariant. Note that, for an arbitrary pair
(IM , TM ), the transformation

(IM , TM ) 
→ ( IM ∨ [∀v∈V : v=⊥] , TM ∨ [∀v′∈V ′out : v′=⊥] ) (10)

returns a pair satisfying (9). It is, however, a weakening of the original pair.
Two components M1 and M2 are composable if V out

M1
∩ V out

M2
= ∅. The com-

position M = M1×M2 is given by

– V out
M = V out

M1
∪ V out

M2
, V in

M = V \V out
M ,

– IM = IM1 ∧ IM2 , and TM = TM1 ∧ TM2 .

Observe that the so defined pair (IM , TM ) satisfies (9). The composition × is
associative and commutative.

4.3 Computing the Maximal Environment and the Maximal
Implementation

The authors of [19] associate, to a pair of Moore Interfaces, a certain two-player
game and use it to define the parallel composition and compatibility condition.
In our development, we reuse a variation of this game to compute the most
liberal environment and the most liberal implementation.

More precisely, to C a Moore Interface as above, we associate the two-player
“Moore game” ΓC introduced next. Playing ΓC results in the construction of
a certain behavior σ through its successive reactions. Each round of the game
extends the current behavior by one more reaction. We borrow the description
of the game ΓC from [19], while exchanging the roles of players in and out :

Definition 4 (Moore Game ΓC [19])

– At each round of the game, player in chooses new values for the input variables
V in according to IA at the first round, and then according to TA;

– Simultaneously and independently, player out chooses unconstrained new val-
ues for the output variables V out;

– Player out wins if the resulting behavior σ belongs to G defined in (8).

The Moore game ΓC is an adaptation of the game introduced in [19] — the
original game will be reintroduced in our context in Sect. 4.4, when discussing
the compatibility between Moore Interfaces and their parallel composition. We
closely adapt from [19] an iterative algorithm for computing, if it exists, the most
liberal winning strategy for player out. This algorithm approximates iteratively

– the predicate C characterizing the set of states from which the player out can
win the game, and

– the most liberal winning transition relation.

Set C0 = t and, for k ≥ 0:

Tk+1 = ∀(V in)′. [TA ⇒ (TG ∧ C ′
k)]

Ck+1 = Ck ∧ ∃(V out)′.Tk+1
(11)
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Note that Tk+1 is a predicate on V ∪ (V out)′ and Ck+1 is a predicate on V . The
sequences of predicates Ck and Tk are non-increasing. Since all variables possess
a finite domain, the convergence of Ck and Tk to their limits C∞ and T∞ arises
in finitely many steps and we have

C∞ = ∃(V out)′.∀(V in)′. [TA ⇒ (TG ∧ C ′
∞)]

T∞ = ∀(V in)′. [TA ⇒ (TG ∧ C ′
∞)] (12)

which expresses that C∞ represents the set of states from which player out can
win the game when setting the initial condition of G to true. Hence,

– I� =def [IA ⇒ IG] ∧ C∞ is the weakest initial condition that player out must
select;

– T� =def [C∞ ⇒ T∞] is the most liberal transition relation for out to win the
game.

The following result is immediate:

Lemma 1. If TG satisfies condition (9-b ), then the pair (C∞, T∞) satisfies
(9). If, in addition, IG satisfies condition (9-a ), then the pair (I�, T�) also
satisfies (9).

Reference [19] contains detailed implementation considerations regarding algo-
rithm (11). If (IA, TA) satisfies (9), then C is compatible and we can consider
the component EC =def (V out, V in, IA, TA). If player out can win, i.e., I� is
satisfiable, and if (I�, T�) satisfies (9), then C is consistent and we can consider
the component MC =def (V in, V out, I�, T�).

Theorem 1

1. When seeing C as an A/G contract, EC is the maximal environment for C ,
and MC is the maximal implementation of C , see (5).

2. The map (TA, TA⇒TG) 
→ MC is nondecreasing, when predicates are equipped
with the order inherited from f ≤ t and components are ordered by inclusion.

Proof. Statement 1 holds by the very definition of the Moore game. We thus
focus on Statement 2. To prove it, it is enough to prove by induction that

the map (TA, TA ⇒ TG) 
→ (Ck, Tk+1, TA ⇒ C ′
k) is nondecreasing. (13)

Property (13) holds for k = 0 by construction, since C0 = t and T1 =
∀(V in)′. [TA ⇒ TG]. Assume that (13) holds until k − 1 and consider two pairs
(TA1 , TG1) and (TA2 , TG2) s.t.

TA1 ≤ TA2 and [TA1 ⇒ TG1 ] ≤ [TA2 ⇒ TG2 ]

By the induction assumption we have

C1
k−1 ≤ C2

k−1 and T 1
k ≤ T 2

k and [TA1 ⇒ C1
k

′
] ≤ [TA2 ⇒ C2

k
′
]
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Using (11) we get, on the one hand,

C1
k = C1

k−1 ∧ ∃(V out)′.T 1
k ≤ C2

k−1 ∧ ∃(V out)′.T 2
k = C2

k

which implies, since TA1 ≤ TA2

[T 1
A ⇒ C1

k
′
] ≤ [T 2

A ⇒ C2
k

′
]

On the other hand, we have:

T 1
k+1 = ∀(V in)′.

[
T 1

A ⇒ (T 1
G ∧ C1

k
′
)
]

= ∀(V in)′.
[
(T 1

A ⇒ T 1
G) ∧ (T 1

A ⇒ C1
k

′
)
]

≤ ∀(V in)′.
[
(T 2

A ⇒ T 2
G) ∧ (T 2

A ⇒ C2
k

′
)
]

≤ T 2
k+1

which finishes the proof of Statement 2. ��

4.4 Moore Interfaces, Seen as A/G Contracts

The Parallel Composition: We continue our development of the link between
Moore Interfaces and A/G contracts by considering the parallel composition. The
parallel composition and associated compatibility property were the motivation
for the authors of [19] to introduce Moore Interfaces and their associated game.
Two Moore Interfaces C1 and C2 are composable if V out

1 ∩ V out
2 = ∅ and their

parallel composition should then coincide with the composition C1 ⊗ C2 where
C1 and C2 are seen as A/G contracts.

Returning to A/G contracts, if C1 and C2 are two A/G contracts in satu-
rated form, then we have seen that their parallel composition is given by the
assume/guarantee pair

C1 ⊗ C2 =
(
[A1 ∧ A2] ∨ ¬[G1 ∧ G2] , G1 ∧ G2

)
. (14)

We immediately see that the computation of this parallel composition can be
performed as follows:

1. Introduce the dual contract C̃ = (G1 ∧ G2 , A1 ∧ A2);
2. Compute its saturated form

(
G1∧G2 , [A1∧A2]∨¬[G1∧G2]

)
;

3. Take the dual of the result.
(15)

The key point is that step 2 of (15) can be performed by computing the winning
strategy of the game associated to C̃ , seen as a Moore Interface. This indeed
yields the algorithm originally presented in equation (1) of [19] for checking
compatibility:

Tk+1 = ∀(V out)′. [(TG1 ∧ TG2) ⇒ (TA1 ∧ TA2 ∧ C ′
k)]

Ck+1 = Ck ∧ ∃(V in)′.Tk+1
(16)

This is summarized in the following result:
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Theorem 2. Computing the parallel composition of two saturated contracts C1⊗
C2, as defined in (14), is achieved by computing the fixpoint of the algorithm
originally presented in equation (1) of [19] for checking compatibility.

Refinement: We now compare the refinement relation C2 � C1 stated in Def-
inition 3 for saturated contracts, with the alternating simulation of the game
ΓC2 by the game ΓC1 , as proposed in [19]. The phrazing from [19] reproduced
in Table 1 suggests that this alternating refinement should coincide with the
refinement for A/G contracts. We now investigate this question.

Let Ci = (V in
i � V out

i , IAi
, IGi

, TAi
, TGi

), i = 1, 2, be two Moore Interfaces
and denote by (Ai, Gi) their associated A/G contracts. Following Definition 3 of
Sect. 2, we have

(A2, G2) � (A1, G1) iff
{

EC2 ⊇ EC1 (a)
MC2 ⊆ MC1 (b) (17)

By Statement 2 of Theorem 1, a sufficient condition for the right hand side of
(17) to hold is

{
IA1 ⇒ IA2 and TA1 ⇒ TA2 (a)

[IA2 ⇒ IG2 ] ⇒ [IA1 ⇒ IG1 ] and [TA2 ⇒ TG2 ] ⇒ [TA1 ⇒ TG1 ] (b) (18)

Following Definition 5 of [19] with appropriate change of notations and taking
into account the fact that the alphabet of actions V is fixed, we have C2 � C1

iff V in
2 = V in

1 and the following formulas are valid:

[IA1 ∧ IG2 ⇒ IA2 ∧ IG1 ] and [TA1 ∧ TG2 ⇒ TA2 ∧ TG1 ] (19)

Setting Q = IA or TA and P = IG or TG, we wish to check the following:

[Q2 ⇒ P2] ⇒ [Q1 ⇒ P1]
?= [Q1 ∧ P2 ⇒ Q2 ∧ P1]

On the one hand we have:

[Q1 ∧ P2 ⇒ Q2 ∧ P1] = [Q2 ∧ P1] ∨ ¬ [Q1 ∧ P2]
= [Q2 ∧ P1] ∨ ¬Q1 ∨ ¬P2

= [Q2 ∨ ¬Q1 ∨ ¬P2] ∧ [P1 ∨ ¬Q1 ∨ ¬P2]

On the other hand, we have:

[Q2 ⇒ P2] ⇒ [Q1 ⇒ P1] = [P2 ∨ ¬Q2] ⇒ [P1 ∨ ¬Q1]
= P1 ∨ ¬Q1 ∨ [¬P2 ∧ Q2]
= [P1 ∨ ¬Q1 ∨ ¬P2] ∧ [P1 ∨ ¬Q1 ∨ Q2]
= [Q2 ∨ ¬Q1 ∨ P1] ∧ [P1 ∨ ¬Q1 ∨ ¬P2]

The two expressions differ by the two terms in red. Now, taking (18-a) into
account, i.e., Q1 ⇒ Q2, the substitution P1 ↔ ¬P2 is absorbed by the tautology
Q2 ∨ ¬Q1. Thus,

assuming condition (18 − a), conditions (18 − b) and (19) become equivalent. (20)

Hence, we can state:
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Theorem 3. Augmenting the alternating refinement (19) with condition (18−a)
makes it stronger than A/G contract refinement.

The possible gap between alternating refinement and A/G contract refinement
lies in the fact that (18) is only sufficient for A/G contract refinement. Having
(18) restricted to the set of reachable states is necessary and sufficient.

The bottom line is that the refinement developed in [19] seems to ignore the
condition regarding assumptions. Interestingly enough, the authors were able
to relate refinement to parallel composition as expected: parallel composition
is monotonic w.r.t. refinement, thus supporting independent development. The
following question arises then:

Is there really any added value in paying attention to both implementations
and environments as we did in A/G contracts (and in the meta-theory)?

So, what are we missing for sure if we do not handle environments as first class
citizens? The answer lies in the meta-theory. One property is lost by Moore
Interfaces à la Chakrabarti, namely:

If E is a legal environment for the composition C1 ⊗ C2, and M1 is an
implementation of C1, then E × M1 is a legal environment for C2.

This is a missing property in Moore Interfaces — even in the mind of the authors,
see the quotes from [19] reproduced in Table 1 — and we believe its lack weakens
somehow Moore Interfaces as a support for independent development.

5 Conclusion

One can say that our contribution in this paper is to mildly modify the Moore
Interfaces to make them equivalent to A/G contracts and thus meta-theory com-
pliant, with the advantage of being computationally effective.

We think that the term “interface” used by the authors of [19] is in disagree-
ment with our terminology — we nevertheless kept this term for our exposure.
Indeed the “synchronous interfaces” are not an interface model, in which envi-
ronments and implementations are folded into a single entity: the “interface”. In
Moore Interfaces, we rather have two entities TA and TG, although both act on
the same underlying set of variables. The tight link between Moore Interfaces
and A/G contracts — they are nearly identical — that we have just established,
further justifies this standpoint. We believe that this link is beneficial both for
the A/G contracts and the Moore Interfaces. For A/G contracts, it provides a
solution to the embarrassing issue of contract saturation. For Moore Interfaces
it points out a (seemingly) missing condition in the alternating refinement.

Reference [19] also generalizes the Moore Interfaces to Bidirectional Inter-
faces. Bidirectional Interfaces offer a dynamic definition of the i/o profile and
initial and transition predicates, in that the decomposition V =V in(q)�V out(q)
and predicates IA(q), IG(q) and TA(q), TG(q) depend on some location q ∈ Q,
where the location q evolves according to a deterministic transition system whose
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transitions are guarded by predicates over the variables of V . This additional
flexibility preserves the possibility of considering the game ΓC . The follow-up
paper [23] studies the conjunction of such interfaces, under the term of shared
refinement.

As a final observation, Moore Interfaces require finite domains for their vari-
ables. Clearly, contract frameworks allowing for any type of data are needed. By
only manipulating abstract assertions (sets of behaviors), A/G contracts offer
this possibility [12]. In this case, of course, the contract algebra is no longer
effective, hence, in [12] we proposed semi-decision procedures based either on
observers (a kind of test) or on abstractions. It may be worth exploring how to
extend the Moore Interfaces to this situation. Can Moore Games still be defined?
Can we propose semi-decision procedures based on Moore Games? Is this any
superior to the existing approaches?

Hej Kim, what do you think?
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15. Bujtor, F., Fendrich, S., Lüttgen, G., Vogler, W.: Nondeterministic modal inter-
faces. Theoret. Comput. Sci. 642, 24–53 (2016)

16. Bujtor, F., Vogler, W.: Error-pruning in interface automata. In: Geffert, V., Pre-
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Abstract. Variational systems (system families) allow effective building
of many custom system variants for various configurations. Lifted (family-
based) verification is capable of verifying all variants of the family simulta-
neously, in a single run, by exploiting the similarities between the variants.
These algorithms scale much better than the simple enumerative “brute-
force” way. Still, the design of family-based verification algorithms greatly
depends on the existence of compact variability models (state representa-
tions). Moreover, developing the corresponding family-based tools for each
particular analysis is often tedious and labor intensive.

In this work, we make two contributions. First, we survey the his-
tory of development of variability models of computation that compactly
represent behavior of variational systems. Second, we introduce vari-
ability abstractions that simplify variability away to achieve efficient
lifted (family-based) model checking for real-time variability models.
This reduces the cost of maintaining specialized family-based real-time
model checkers. Real-time variability models can be model checked using
the standard UPPAAL. We have implemented abstractions as syntactic
source-to-source transformations on UPPAAL input files, and we illus-
trate the practicality of this method on a real-time case study.

1 Introduction

The strong trend for customization in modern economy leads to construction of
many highly-configurable systems. Efficient methods to achieve customization,
such as Software Product Line Engineering (SPLE), use features, or a similar
concept, to mark the variable functionality. Family members, called variants of
a variational system, are derived by switching features on and off. The reuse
of code common to many variants is maximized. The SPLE method is very
popular in the embedded systems domain. Moreover, many of the variational
systems, such as device drivers, controllers, and communication protocols are
time-critical. A rigorous verification and validation of their timing properties is
important. Model checking [3] is an automatic technique often used to check for
temporal properties of their designs.
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Variability and SPLE are major enablers, but also a source of complex-
ity. Analyzing variational systems is challenging. From only a few configuration
options, exponentially many variants can be derived. Thus, a simple brute-force
application of single-system model checking to each variant is infeasible for real-
istic systems. In essence, the same behaviour is checked multiple times, when-
ever it is shared by many variants. To address this problem, we need compact
structures exploiting the similarity within the family, on which specialized lifted
(family-based) verification algorithms can operate. The quest for obtaining such
compact models of computation, underpins a great deal of SPLE research. Many
of the efforts are inspired by seminal works of Kim Larsen in concurrency the-
ory, originally conceived with an entirely different goal (abstraction in system
modeling and verification). We now survey the history of these efforts.

One of the earliest related models is the Modal Transition System (MTS)
introduced by Larsen and Thomsen in 1988 [30]. It inspired Larsen et al. who
proposed to use MTSs as a framework for describing behavioral variational sys-
tems 20 years later [27]. In the first part of this work, we survey the history
of development of various variability models, largely inspired by the seminal
work of Kim and Bent cited above. Ultimately, we arrive at the popular Fea-
tured Transition Systems (FTSs) introduced by Classen et al. [10,11] and widely
accepted as the model essentially sufficient for most purposes of family-based
model checking of variational systems.

Then we turn our attention to the corresponding models with a real-time fla-
vor, an area where Kim Larsen was particularly prolific throughout his research
career. Here, a similar story of inspiration leading from his early works on
Timed Automata and UPPAAL [29] to the ultimate Featured Timed Automata
(FTAs) [13] can be traced—achieving model-checking capability for a wide class
of real-time variational systems. Both for FTSs and FTAs specifically designed
family-based model checking algorithms exist, which check common execution
behaviour only once across variants that are able to produce it. The algorithms
are implemented in the ProVeLines family-based model checker [12].

Unfortunately, maintaining specialized family-based model-checkers is expen-
sive, and these tools do not benefit from continuous improvements introduced by
research in the classic (non family-based) model checking. Moreover, their perfor-
mance still heavily depends on the size and complexity of the configuration space
of the analyzed system. In the second part of this work, we introduce a range of
variability abstractions for real-time variational systems. The abstractions are
applied at the variability level and aim to reduce the exponential blow-up of the
number of variants (configurations) to be more tractable. These new variability
abstractions are applied to a FTA, producing an “abstract FTA” which is smaller
than the input one, while having at least the same universal Timed CTL prop-
erties. We can use the variability abstractions to obtain an abstract FTA (with
a low number of variants), which can then be model checked in the brute-force
fashion using the (single-system) UPPAAL model-checker. In the extreme case,
all variability can be abstracted away, and the classic UPPAAL can be used to
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show universal properties for the entire system family. We illustrate this method
on a simple real-time example, and show that it is still considerably faster than
the brute-force enumeration.

2 Superimposition-Based Behavioral Variability Models

We now survey the historical development of several modeling formalisms that
have either directly, or indirectly contributed to development of behavioral vari-
ability models. We begin with standard (discrete-time) models, and then discuss
the parallel line of the related real-time models. The presentation uses a simple
example of a mine pump system adapted from models by Cordy et al. [13].

2.1 From Transition Systems to FTSs

Transition systems [3,32] have for long been used to model the behavior of sys-
tems. A transition system (S,Act , trans, I,AP , L) comprises a set of states S; a
set of initial states I ⊆ S, a transition relation trans relating source and target
states from S with action labels from Act ; and a labelling function L determin-
ing which atomic propositions from a set AP hold at which state. An execution
(behavior) of a transition system is a sequence of transitions starting from an
initial state. We take the semantics of a transition system to be the set of all its
executions.

Figure 1a shows a transition system modeling behavior of a basic mine pump,
using the familiar concrete syntax. States are shown as circle nodes. Initial states
are pointed to by dangling arrows (a single one in this example, labelled by off).
The transition relation is represented by arrows between states: each triple in the
relation consists of the source state of the arrow, target state of the arrow and
the action label placed on the arc. Finally, the L function is shown by listing
the names of propositions that hold in each state. In our example, off holds
in the left state, and on holds in the right state. We will use similar notation
in further examples, only explaining significant differences from now on. The
atomic proposition indicates the pump’s current status: on or off. Initially, the

Fig. 1. From single-system models to variability models.
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pump is in the off state. Transitions start and stop model switching between
states, while the transition run indicates that the pump is still working in the
state on.

In his PhD dissertation [26], Larsen developed the notion of contextual equiv-
alence between CCS processes known as relativized bisimulation. Roughly speak-
ing, two processes S and T (represented by their transition systems) are equiv-
alent in the context process E, written S ∼E T , iff the context process cannot
observe any difference in their behavior. Twenty years later, this notion inspired
one of the authors to create an early behavioral variability model, the colour-blind
transition systems (CBTSs) [28]. In this model, the behavior of many variants in
a family is captured in a single transition system, as the union of all behaviors,
a kind of superimposition of all variants [14]. Variant selection is done by model-
ing contexts representing different users. Given a family model F and a variant
context model V one can obtain a variant product model P by bisimulation
minimization against the criterion P ∼V F . CBTSs allowed natural modeling
of variability in the input alphabet of a system. For instance, one variant model
allows the users less interaction modes with the machine than another, blocking
availability of a given feature. It was however cumbersome to model different
reactions of variants to the same environment interaction.

Modal Transition Systems (MTSs), also known as modal specifications, are a
generalization of transition systems that allows describing not just a sum of all
behavior of a system but also an over- and under-approximation of the behav-
ior. MTSs were introduced about thirty years ago by Larsen and Thomsen [30].
A MTS is a transition system equipped with two transition relations: must and
may. The former (must) is used to specify the required behavior of a system,
while the latter (may) is used to specify the allowed behavior of a system. Now
an implementation of a MTS is a standard transition system that realizes all the
required (must) behavior, and adds some (possibly none) of the allowed (may)
behavior. We take the semantics of a MTS to be the set of all the transition
systems that implement the MTS. In this sense, a MTS can be seen as a super-
imposition of many transition systems, each representing a single system variant.
This inspired the idea of using modalities to represent variability in behavior [27].

Figure 1b shows an example of a MTS that models a (minuscule) family of
pumps. Must transitions are denoted by solid lines, may transitions by dotted
lines. Each must transition is also a may transition. The allowed part of the
behavior includes the rem-start and rem-stop transitions that can be used for
remotely changing the state of the pump. The regular stop/start transitions are
modeling the switch placed physically on the device. The transition system of
Fig. 1a, discussed above, is one of the possible variants implementing this MTS.

In fact, the example MTS describes infinitely many variants, due to co-
inductive semantics, allowing different implementation choices at each visit to a
specification state. For instance rem-start might become available only from the
second power cycle of the pump. This co-inductive variation was an advantage
of MTSs when used for abstracting behaviors, but less so in variability model-
ing, where one would expect a single variant to behave consistently whenever
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it visits the same specification state (rem-start should be always available in
off, not only sometimes). Furthermore, there is not easy way in MTSs to rep-
resent dependency between variations—for instance, it is not easy to say that if
rem-start is available in state off then rem-stop should be available in state on.
These problems have ultimately led to development of feature transition systems
and similar models.

Featured transition systems (FTSs) [10,11] are a compact representation of the
behavior of all instances of a variational system, similar to MTSs but relying
on a syntactic notion of implementation (subgraph projection) and allowing
to constrain which transitions must, or must not, co-occur in implementation
variants. To formally define FTSs, assume a finite set F = {A1, . . . , An} of
Boolean variables representing features. A specific set of features k ⊆ F, known
as configuration, specifies a variant of a variational system. The set of all valid
configurations is a subset K ⊆ 2F (equivalently represented using a Boolean
formula). Each configuration k ∈ K can be represented by a term formula:
k(A1) ∧ . . . ∧ k(An), where k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if Ai /∈ k
for 1 ≤ i ≤ n. FTSs are an extension of transition systems, where transitions
are guarded (labeled) with feature expressions, known as presence conditions.
Presence conditions are propositional formulae over F: ψ ::= true | A ∈ F |
¬ψ | ψ1 ∧ ψ2. We use FeatExp(F) to denote the set of all feature expressions.
The presence condition ψ labelling a transition indicates for which variants the
corresponding transition is enabled. We write [[ψ]] to denote the set of variants
k ∈ K that satisfy the presence condition ψ, i.e. k ∈ [[ψ]] iff k |= ψ.

Definition 1. A featured transition system is a tuple F = (S,Act , trans, I,AP ,
L,F,K, δ), where (S,Act , trans, I,AP , L) is a transition system; F is the set of
available features, K is a set of valid configurations, and δ : trans → FeatExp(F)
is a total function labelling transitions with presence conditions.

The projection of an FTS F to a variant k ∈K, denoted πk(F), is the tran-
sition system (S,Act , trans ′, I,AP , L), where trans ′ = {t ∈ trans | k |= δ(t)}.
The semantics of a FTS F , denoted [[F ]]FTS , is the union of behaviors of the
projections on all variants k ∈ K, i.e. [[F ]]FTS = ∪k∈K[[πk(F)]]TS , where [[T ]]TS

denotes the semantics of the transition system T .
Figure 1c presents a FTS describing the behavior of a variational pump. It

contains two features: Button (denoted by B) for turning on/off the pump man-
ually using a button; and Remote (denoted by R) for turning on/off the pump
using a remote control. The presence condition of a transition is shown next to its
action label, placed in square brackets. For ease of reading the transitions enabled
by the same feature are colored in the same way. For example, [B]start means
that the transition start is enabled only for variants satisfying B. Figure 1a shows
the basic variant of the pump that can be operated only manually using a button.
This variant is selected by configuration {B} (or B ∧¬R). It can be obtained by
projecting the FTS of Fig. 1c onto the configuration {B}. The set of all valid con-
figurations of the variational pump can be obtained by combining the available
features F = {B,R}. The pump has four variants: K = {{B,R}, {B}, {R}, ∅},
or written as the formula: K = (B ∧ R) ∨ (B ∧ ¬R) ∨ (¬B ∧ R) ∨ (¬B ∧ ¬R).
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Summary. Figure 2 summarizes the history of development of variability models.
The left side is concerned with models discussed above. All points in the figure
representing variability modeling contributions are typeset with a bold font. The
papers introducing foundational models of computation that influenced the later
variability models, are typeset with a regular font.

MTSs generalize transition systems with mandatory (must) transitions and
optional (may) transitions, with the main applications originally being under-
specification and abstraction. Their semantics superimposes multiple variants.
It took however almost 20 years until the first works using MTSs for variability
modeling appeared around 2006. Although, MTSs are suitable for representing
optional behavior using may transitions, there is no explicit notion of variability
in MTSs and so they cannot associate behaviors with the exact set of variants
able to execute them. To overcome this limitation, FTSs rely on presence con-
ditions guarding transitions that determine in which variants the transitions
appear. Therefore, the presence of a transition may depend on the transitions
taken before as well. FTSs are closely related to parametric MTSs (PMTSs)
introduced by Benes et al. [5]. PMTSs extend considerably the expressiveness of
MTSs, thus overcoming many of their limitations. A PMTS is equipped with a
finite set of parameters (which are Boolean variables) that have fixed values for
any implementation. Fixing a priori the parameters makes the instantiation of
the (may) transitions permanent (uniform) in the whole implementation. How-
ever, no model checking tool that works on PMTS have been implemented so
far, which was the main limitation for their wider application. So far they were
mostly studied from theoretical points of view.

2.2 From Timed Automata to FTA

Alur and Dill have introduced timed automata (TA) [2] as a modelling formal-
ism for time-critical systems. Timed automata are an application of transition
systems (more precisely, program graphs [3]) in which real-valued clock variables

Fig. 2. The history of development of variability models (left part) and real-time vari-
ability models (right part). Bold labels indicate variability models, while the regular
font labels denote the basic models of computation that laid the foundation and inspired
the variability models.
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(or clocks for short) are made part of the state and used to measure the elapse
of time. The real-time assumptions on system behavior are specified using clock
constraints, which are conditions that depend on the values of clocks.

A timed automaton (Loc,Act, C, trans, I, Inv,AP, L) consist of a set of loca-
tions l ∈ Loc each equipped with an invariant, Inv(l), which is a constraint
over clocks in the set C. The constraint Inv(l) limits the amount of time that
may be spent in the location l. A set I ⊆ Loc defines the locations active in
the initial state of any execution. A transition relation trans comprises guarded
transitions between locations. Guards are (again) clock constraints that spec-
ify when the transition may be taken. Each transition also has an action label
λ ∈ Act; and a subset of clocks C which are reset to zero upon the firing of
the transition. A labelling function L specifies which atomic propositions from
AP hold at what locations. As any program graph, a timed automaton can be
unfolded into an (infinite-state) transition system [3]. The semantics of a timed
automaton is determined by the semantics of the underlying transition system
obtained from unfolding, where only time-divergent executions are considered
(infinite executions in which the time progress is unbounded).

Figure 3a shows an example of a timed automaton that models the basic
behavior of a pump. Like in the transition system in Fig. 1a, the pump has two
locations on and off, and transitions start, stop, and run that describe how the
locations can evolve. In addition to these constructs, the timed automaton has
a clock x to characterize time passing. Initially, the clock x has the value 0.
Invariants are shown inside locations and are omitted when they are true. Thus,
the system can remain in off only when the value of clock x is less than 9.
Similarly, it can move from location off to on when the value of x is greater
than 6. Overall, this means that the system remains in off between 6 and 9 time
units. Upon execution of start and stop transitions, the value of x is reset to 0.
We often omit to write true guards and empty sets of clocks to reset.

Cernas et al. [8] have introduced timed modal specifications (TMSs), which
represent timed automata equipped with may (allowed) and must (required)
transitions. We observe that a family of timed automata can be derived as

Fig. 3. From timed single-system to timed variability models.
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implementations of a specification given as a TMS. We show one example of
a TMS in Fig. 3b, such that the timed automaton in Fig. 3a represents an imple-
mentation of it.

Like for the MTSs, the timed modal specifications have been generalized to
featured timed automata (FTA) by Cordy et al. [12], where different variants
(implementations) are derived by feature selection. A featured clock constraint
over a set F of features and a set C of clocks is a formula of the form:

g ::= true | [χ](c < n) | [χ](c ≤ n) | [χ](c > n) | [χ](c ≥ n) | g1 ∧ g2 ,

where c ∈ C, n ∈ N, χ ∈ FeatExp(F). We denote the set of featured clock
constraints over C and F by FCC(C,F). We can now define FTA for modelling
behavior of real-time variational systems.

Definition 2. A featured timed automaton is a tuple FTA = (Loc,Act , C, trans ,
I, Inv ,AP , L,F,K, δ), where Loc,Act , I,AP , L,F,K, and δ are defined as in
FTSs; trans ⊆ Loc × FCC (C,F) × Act × C × Loc is a finite set of transitions,
Inv : Loc → FCC (C,F) is an invariant function that associates featured clock
constraints (called invariants) to locations.

The projection of a featured timed automaton FTA to a variant k ∈ K,
denoted πk(FTA), is the timed automaton (Loc,Act , C, trans ′, I, Inv ′,AP , L),
with Inv ′(l) = Inv(l)|k and trans ′ = {t = (l, g|k, λ,R, l′) | t ∈ trans ∧ k |= δ(t)},
where the projection of a featured clock constraint g to a variant k is defined
inductively:

g|k =

⎧
⎪⎨

⎪⎩

(g1)|k ∧ (g2)|k if g = g1 ∧ g2

g′ if g = [χ]g′ ∧ k |= χ

true otherwise
(1)

The semantics of an FTA FTA, denoted [[FTA]]FTA, is the union of behaviors of
the projections on all variants k ∈ K, that is [[FTA]]FTA = ∪k∈K[[πk(FTA)]]TA,
where [[T A]]TA denotes the semantics of the timed automaton T A.

Figure 3c presents an FTA describing the timed behavior of several variants
of a pump. Both invariants and time guards depend on variability. For example,
[¬R](x < 9) is a featured clock constraint occurring in the invariant of the
location off, which means that the system is forbidden to be in that location
when the value of x is greater than 9 for variants that do not have the feature
R. On the other hand, the invariant [R](x < 7) specifies that the system is
forbidden to be in off when the value of x is greater than 7 for variants that
have the feature R. Transitions are also guarded with featured clock constraints
in order to model requirement that the pump will need different preheating time
before it begins to run. For example, [R](x > 4) ∧ [¬R](x > 6) means that the
transition start can be taken after 4 time units for systems that have R, whereas
for systems without R this delay is 6 time units. For ease of reading the presence
conditions δ(t) labelling transitions are placed in square brackets next to action
labels. The timed automaton shown in Fig. 3a is obtained by projection of the
FTA of Fig. 3c to the variant {B} (that is, B ∧ ¬R).
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Summary. The right side of Fig. 2 summarizes the history of development of
the real-time variability models. Timed automata were introduced as a concise
syntax for a class of infinite transition systems. The timed modal specifications
generalized timed automata by adding may and must modality to transitions.
Finally, the featured timed automata were developed as generalizations of the
timed modal specifications, arriving at an expressive formalism for modeling
real-time behavior in variational system models.

3 Variability Abstractions

In this section, first we show how FTA can be transformed into FTA that con-
tain only clock constraints and presence condition (feature expression) labels on
transitions. Then, we define variability abstractions [18,19] for decreasing the
size of such transformed FTA. Finally, we show that the obtained abstract FTA
preserve the universal fragment of Timed CTL properties.

3.1 Transforming FTA

It has been shown [12] that any FTA can be transformed into an equivalent FTA
without featured clock constraints. In particular, any featured clock constraint
g ∈ FCC(C,F) can be replaced with a combination of classical clock constraints
and presence conditions. For each g, we create a partitionings K1, . . . ,Kn of K
such that any two variants k and k′ from the same partitioning Kj (1 ≤ j ≤ n)
have the same projections g|k and g|k′ . Those projections are classical clock
constraints, and we denote them c1, . . . , cn, respectively. Let t = (l, g, λ,R, l′)
be a transition and g be a featured clock constraint. We create a copy of t,
denoted tj (that is, (l, cj , λ,R, l′)), for each partitioning Kj where the guard
is cj and the presence condition is δ(tj) = δ(t) ∧ Kj . We add all transitions
tj in the transformed FTA, but we remove t from it. Let l be a location and
Inv(l) be a featured clock constraint. We create a copy of l, denoted lj , for each
partitioning Kj such that Inv(lj) is cj . We copy all outgoing transitions t of l to
be outgoing of any lj , and all incoming transitions t to l to be incoming to any
lj with the corresponding presence condition δ(t) ∧Kj . If l is an initial location,
we create a new initial location with all clocks set to zero and add transitions to
all lj labelled with presence condition Kj , (silent) action label τ , and time guard
true. Finally, we remove l and all associated transitions from the transformed
FTA. We show in Fig. 4 the result of transforming the FTA in Fig. 3c. Note that
for ease of reading presence conditions are placed in square brackets before the
labelling of a transition (which is a triple: time guard, action label, and set of
resettable clocks). Both FTA have the same semantics, but the transformed one
uses only classical clock constraints and presence conditions. From now on, we
only consider such transformed FTA.
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Fig. 4. An FTA with classical clock constraints and presence condition labels.

3.2 Abstracting FTA

Sometimes the computational task on a concrete complete lattice (domain) may
be too costly or even uncomputable and this motivates replacing it with a sim-
pler abstract lattice. A Galois connection is a pair of total functions, α : L → M
and γ : M → L (respectively known as the abstraction and concretization func-
tions), connecting two complete lattices, 〈L,�L〉 and 〈M,�M 〉 (often called the
concrete and abstract domain, respectively), such that: α(l) �M m ⇐⇒ l �L

γ(m) for all l ∈ L,m ∈ M , which is often typeset as: 〈L,�L〉 −−−→←−−−
α

γ
〈M,�M 〉.

Here �L and �M are the partial-order relations for L and M , respectively.
The aim of variability abstractions is to weaken feature expressions, effec-

tively making transitions of an FTS present in more variants. In the follow-
ing, we define variability abstractions as Galois connections for reducing the
Boolean complete lattice of feature expressions (propositional formulae over F):
(FeatExp(F)/≡, |=,∨,∧, true, false). Elements of FeatExp(F)/≡ are equivalence
classes of propositional formulae ψ ∈ FeatExp(F) obtained by quotienting by
the semantic equivalence ≡. The partial-order relation |= is defined as the satis-
faction relation from propositional logic, whereas the least upper bound operator
is ∨ and the greatest lower bound operator is ∧. Furthermore, the least element
is false, and the greatest element is true. Subsequently, we will lift the definition
of variability abstractions to FTA.

The join abstraction, αjoin, merges the control-flow of all variants, obtaining
a single variant that includes all executions occurring in any variant. The infor-
mation about which transitions are associated with which variants is lost. Each
feature expression ψ defined over F is replaced with true if there exists at least
one configuration from K that satisfies ψ. The new abstract set of features is
empty: αjoin(F) = ∅, and the abstract set of valid configurations is a singleton:
αjoin(K) = {true} if K �= ∅. The abstraction αjoin : FeatExp(F) → FeatExp(∅)
and concretization functions γjoin : FeatExp(∅) → FeatExp(F) are:

αjoin(ψ) =

{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(true) = true
γjoin(false) =

∨
k∈2F\K k
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The proposed abstraction-concretization pair is a Galois connection [18,19].
The feature ignore abstraction, αfignore

A , ignores a single feature A ∈ F by
merging the control flow paths that only differ with regard to A, but keeps
the precision with respect to control flow paths that do not depend on A. Let
ψ be a formula in negation normal form (NNF). We write ψ[lA �→ true] to
denote the formula ψ where the literal of A, that is A or ¬A, is replaced with
true. The abstract sets of features and configurations are: αfignore

A (F) = F\{A},
and αfignore

A (K) = {k[lA �→ true] | k ∈ K}. The abstraction and concretization
functions between FeatExp(F) and FeatExp(αfignore

A (F)), which form a Galois
connection [18,19], are defined as:

αfignore
A (ψ) = ψ[lA �→ true] γfignore

A (ψ′) = (ψ′ ∧ A) ∨ (ψ′ ∧ ¬A)

where ψ and ψ′ are in NNF.
The composition α2 ◦ α1 runs two abstractions α1 and α2 in sequence (see

[18,19] for precise definition). In the following, we will simply write (α, γ) for any
Galois connection 〈FeatExp(F)/≡, |=〉 −−−→←−−−

α

γ
〈FeatExp(α(F))/≡, |=〉 constructed

using the operators presented in this section.
Given a Galois connection (α, γ) defined on the level of feature expressions,

we now induce a notion of abstraction between (transformed) FTA.

Definition 3. Let FTA = (Loc,Act, C, trans, I, Inv,AP,L,F,K, δ) be an FTA,
and (α, γ) be a Galois connection. We define the abstract FTA α(FTA) as the
tuple (Loc,Act, C, trans, I, Inv,AP,L, α(F), α(K), α(δ)), where α(δ) : trans →
FeatExp(α(F)) is defined as: α(δ)(t) = α(δ(t)).

We also define the projection of an (transformed) FTA with classical clock
constraints FTA to a set of variants K

′ ⊆ K, denoted as πK′(FTA), as the
FTA (Loc,Act, C, trans′, I, Inv,AP,L,F,K′, δ), where trans′ = {t ∈ trans |
∃k ∈ K

′.k |= δ(t)}. We observe that we can combine variability abstractions
with various projections on FTA, thus obtaining interesting (featured) timed
automata that can be used for verification of the concrete FTA.

Example 1. Consider FTA in Fig. 4 with the set of valid configurations K =
{{B}, {R}, {B,R}, ∅}. We show αjoin(π[[R]](FTA)), αjoin(π[[¬R]](FTA)), and
αfignore

R (FTA) in Fig. 5. We do not show transitions labelled with the feature
expression false and unreachable locations. Note that both αjoin(π[[R]](FTA))
and αjoin(π[[¬R]](FTA)) are ordinary timed automata, since all transitions are
labelled with the feature expression true. For αjoin(π[[R]](FTA)) in Fig. 5a, we
have K ∩ [[R]] = {{R}, {B,R}} so transitions annotated with ¬R are removed.
For αjoin(π[[¬R]](FTA)) in Fig. 5b, we have K ∩ [[¬R]] = {{B}, ∅}, so transitions
annotated with R are removed. Note that αfignore

R (FTA) in Fig. 5c is an FTA
with the singleton set of features {B} and two valid configurations {B} and ∅
(that is, B and ¬B respectively). ��
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Fig. 5. Some abstractions of the real-time variability pump.

3.3 TCTL Properties and Their Preservation

We consider the universal fragment of the Timed CTL (TCTL) [1]. TCTL is a
timed variant of CTL used to express properties of timed automata. An universal
TCTL formula is defined inductively as:

Φ ::= true | a ∈ AP | ¬a | g ∈ CC(C) | Φ1 ∧ Φ2 | ∀(Φ1 UJ Φ2) | ∀♦JΦ | ∀�JΦ

where the formulae are in negation normal form (¬ is applied only to atomic
propositions), CC(C) is a set of classical clock constraints over the set of clocks
C, and J ⊆ R

+ is a subinterval of [0,∞). The quantifier ∀ means that all time-
divergent executions that start in a state satisfy the following temporal operator.
Intuitively, ∀(Φ1 UJ Φ2) means that for all (time-divergent) executions whenever
at some point in J , a state is reached satisfying Φ2 then at all previous time
instants Φ1 ∨Φ2 holds. ∀♦JΦ = ∀(trueUJ Φ) means that for all (time-divergent)
executions a state satisfying Φ can be reached during the interval J ; whereas
∀�JΦ asserts that for all (time-divergent) executions during the interval J the
formula Φ always holds.

We show that abstract FTA have some interesting preservation properties.
In particular, we show that an universal TCTL formula satisfied by an abstract
FTA is also satisfied by the corresponding concrete FTA. First, we use a helping
lemma shown in [18,19], which states that for any valid variant k ∈ K that can
execute a behaviour guarded by feature expressions ψ0, ψ1, . . ., there exists an
abstract variant k′ ∈ α(K) that can execute the same behaviour.
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Lemma 1. Let ψ0, ψ1, . . . ∈ FeatExp(F), K be a set of configurations over F,
and (α, γ) be a Galois connection. Let k ∈ K, such that k |= ψi for all i ≥ 0.
Then there exists k′ ∈ α(K), such that k′ |= α(ψi) for all i ≥ 0.

By using Lemma 1, we can prove the following result.

Theorem 1 (Soundness). Let (α, γ) be a Galois connection. We have that
α(FTA) |= Φ =⇒ FTA |= Φ.

Proof. We proceed by contraposition. Assume FTA �|= Φ. Then, there exist
a configuration k ∈ K and an (time-divergent) execution ρ = s0λ1s1λ2 . . . ∈
[[πk(FTA)]]TA such that ρ �|= Φ, i.e. ρ |= ¬Φ. Note that ρ is an execution of the
underlying transition system obtained by unfolding πk(FTA). This means that

for all transitions in ρ, ti = si
λi+1−→ si+1 for i = 0, 1, . . ., we have that k |= δ(ti)

for all i ≥ 0. By Lemma 1, we have that there exists k′ ∈ α(K), such that
k′ |= α(δ(ti)) for all i ≥ 0. Hence, the execution ρ is realizable for α(FTA), i.e.
ρ ∈ [[πk′(α(FTA))]]TA and ρ |= ¬Φ. It follows that α(FTA) �|= Φ. ��

The family-based model checking problem, FTA |= Φ, can be reduced to a
number of smaller problems by partitioning the set of valid configurations K.

Proposition 1. Let the subsets K1,K2, . . . ,Kn form a partition of the set K.
Then: FTA |= Φ, if and only if, πK1(FTA) |= Φ ∧ . . . ∧ πKn

(FTA) |= Φ.

Corollary 1. Let K1,K2, . . . ,Kn form a partition of K, and (α1,γ1), . . . ,
(αn,γn) be Galois conn. If α1(πK1(FTA)) |= Φ, . . . , αn(πKn

(F)) |= Φ, then
FTA |= Φ.

The soundness results (Theorem 1 and Corollary 1) mean that the correctness
of abstract FTA implies correctness of the concrete FTA. Note that verification
of the abstract FTA can be drastically (even exponentially) faster. However, if
the abstract FTA invalidate a property then the concrete FTA may still satisfy
the property, i.e. the found counterexample in the abstract FTA may be spurious
(introduced due to the abstraction) for some variants.

Example 2. Consider the property: “the pump will move from state off to
on within 7 time unit”, which is expressed by the universal TCTL formula
Φ = ∀�(off =⇒ ∀♦7 on). We also consider timed automata αjoin(π[[R]](FTA))
and αjoin(π[[¬R]](FTA)) shown in Fig. 5. First, we can successfully verify that
αjoin(π[[R]](FTA)) |= Φ, which implies that all valid variants from K that
contain the feature R satisfy the property Φ. On the other hand, we have
αjoin(π[[¬R]](FTA)) �|= Φ with the counterexample where the system remains
in off more than 7 time units and afterwards (e.g. at 8.5 time unit) it goes to
on. This counterexample is genuine for the variants from K that do not con-
tain the feature R. In this way, the problem of verifying FTA against Φ can
be reduced to verifying whether two timed automata, αjoin(π[[¬R]](FTA)) and
αjoin(π[[R]](FTA)), satisfy Φ. ��
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4 A Case Study: The Train-Gate System

The train-gate example comes with the installation of UPPAAL. It represents
a railway control system which automatically controls access to a bridge for
several trains, such that the bridge may be accessed only by one train at a time.
The system should safely guide trains from several tracks crossing the bridge.
First, we describe the basic version of the train-gate system [4,34]. Then, we
add variability into it thus creating a variational version of the system. Finally,
we evaluate the verification of several interesting universal properties of the
variational system using variability abstractions and UPPAAL.

4.1 Basic System

The basic system is modelled as a network of n trains and a controller in parallel.
The model of a train, Traini, is shown in Fig. 6a. It has five locations: Safe,
Appr, Stop, Start, and Cross. The initial location is Safe, which corresponds
to a train not approaching the bridge yet. When a train is approaching the
bridge, it sends the signal appri to the controller and goes to location Appr. This
location has the invariant xi ≤ 20 (written next to the location), so it must be
left within 20 time units. If the bridge is occupied the controller sends a stopi
signal to prevent the train from entering the bridge by going to the location
Stop. Otherwise, if Traini does not receive a stopi signal within 10 time units,
it will start to cross the bridge by going to location Cross. The crossing train is
assumed to leave the bridge within 3 to 5 time units by sending the signal leavei .
A stopped train waits for a goi signal sent from the controller to the first train
in the waiting list to restart. A restarted train from Start location reaches the
crossing section between 7 and 15 time units non-deterministically.

The model of a gate controller, which synchronizes with trains, is shown in
Fig. 6b. It uses a list L to keep record of the trains waiting to cross the bridge and

Fig. 6. The basic train-gate system.
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an integer variable len for the length of L. The controller starts in the location
Free, where the bridge is free and checks whether the list L is empty. If L is
empty and a train is approaching, then this train is added at the back of L with
enqueue() operation. If L is not empty, then Traini at the front of L is restarted
with the goi signal. In the Occ location, the train at the front of L, Traini, is
crossing the bridge. When the crossing train leaves the bridge, the controller
receives a leavei signal and removes it from the list L with dequeue() operation.
If another Traini is approaching the bridge in Occ location, that train is added
at the back of L and stopped with the stopi signal. Note that the location C
represents a committed location which avoids any time delay in it [4].

4.2 Variational System

We now extend the basic train-gate system given in Fig. 6, to construct a vari-
ational system that describes the behaviours of a family of train-gate systems.
Figure 7 shows all additional transitions in the variational system that do not
occur in the basic system in Fig. 6. They are labelled with presence conditions,
which denote whether a transition is included (present) in a given variant. We
assume that all transitions in the basic system in Fig. 6, which are shown in bold
in Fig. 7, are enabled in all variants, i.e. their presence condition is true. The
variational train-gate system has four optional features, which are assigned an
identifying letter and a color. The feature Fast (denoted by F , in red) is used for
denoting fast approaching trains, which are placed at the front of the waiting list
L thus having higher priority than the others. When a fast approaching Traini

comes to the bridge it sends the fasti signal to the controller. If the bridge is
occupied, the train is stopped and added at the second position of L just after
the crossing train using secqueue(i) operation. The second feature Capacity
(denoted by C, in green) is used for a controller that allows 2

3n trains to be able

Fig. 7. The variational train-gate system. (Color figure online)
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to approach the bridge. When the feature Capacity is enabled, the controller
will ignore any approach signal if the number of approaching and crossing trains
is greater or equal than 2

3n. The feature GoSecond (denoted by GS, in brown)
is used for controller to allow the second train in the waiting list L to restart
instead of the first one, after a crossing train has left the bridge. The transitions
enabled by GoSecond use the operations: second() to retrieve the second ele-
ment of L, and desecqueue() to remove the second element of L. The feature
GoLast (denoted by GL, in blue) is used for controller to allow the last train in
the waiting list L to restart after a crossing train has left the bridge. The oper-
ations are: tail() to retrieve the last element of L, and destack() to remove
the last element of L.

4.3 Verification

Implementation. Inputs to UPPAAL represent XML files where all locations and
transitions are described in separate tags. To describe variational systems, we
use the color attribute of the transition tag to encode the presence condition
that labels a transition. The sets of available features and valid configurations
are defined using TVL files [9]. We have implemented variability abstractions as
source-to-source transformations of XML files that represent variational systems.

Properties. We check several interesting universal properties to check on the vari-
ational train-gate system. The property “φ1 = ∀� forall (i : int[0, n−1]) forall (j :
int[0, n−1]) (Traini.Cross ∧ Trainj .Cross =⇒ i == j)” states that there
is never more than one train crossing the bridge at any time instance. The
property “φ2 = ∀� (Gate.L[n] == 0)” states that there can never be n ele-
ments in the waiting list, thus the list L will not overflow. The property
“φ3 = ∀� (Train0.Appr =⇒ ∀♦Train0.Cross)” states that whenever the train
0 approaches the bridge, it will eventually cross. Similar properties can be written
for the other trains from 1 to n−1. Finally, the property “φ4 = ∀�not deadlock”
checks that the system is deadlock-free.

The basic system in Fig. 6 satisfies all four properties. All properties also
hold for variants where feature Capacity is enabled (the others are disabled).
For variants with all (or some) of features Fast, GoSecond, GoLast enabled, the
properties φ1, φ2 still hold, but φ3 and φ4 are violated. In case of Fast enabled
and φ3, a counter-example is shown where an approaching train is stopped and
added to L but all next trains are fast approaching, so the (no fast) approaching
one can never cross the bridge. In case of GoSecond enabled and φ3, the reported
counter-example shows that when a train leaves the bridge the train that restarts
is never the first one, so this train at the head of L is stuck and can never
cross the bridge. A similar counter-example is obtained if GoLast is enabled.
In case of both Fast and GoSecond enabled and φ4, the system is deadlocked
when it chooses the second train in L to restart with go signal, but then a fast
approaching train is added to L using fast signal. Thus, the restarted train is
not able to leave the bridge since it is now on the third place in L and the first
two trains in L are both stopped.
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The variational train-gate system has 24 = 16 variants in total. We use two
approaches to check the above four properties. First, the brute-force approach
consists of verifying a property by calling UPPAAL to check it for each indi-
vidual variant (thus we have 16 UPPAAL calls). Second, the approach based
on variability abstractions consists of applying an abstraction on the varia-
tional system and then verifying the corresponding property on the obtained
abstract system. The properties φ1 and φ2 (satisfied by all variants) can be
checked by applying αjoin, on the variational system and then calling UPPAAL
once to verify the obtained abstract system. The property φ3 is violated by
variants that satisfy Fast ∨ GoSecond ∨ GoLast (14 in total). We use UPPAAL
to verify satisfaction of φ3 against four models obtained by applying αjoin, on
the following projections of the variational train-gate system: π[[Fast]], π[[GoSecond]],
π[[GoLast]], and π[[¬Fast∧¬GoSecond∧¬GoLast]]. Using four calls to UPPAAL we obtain
that φ3 is violated by the first three abstracted projections, and is satisfied by the
last abstracted projection. The property φ4 is violated by variants that satisfy
(Fast∧GoSecond)∨GoLast (10 in total). In this case, we verify φ4 against four
models obtained by applying αjoin, on the following projections: π[[¬Fast∧¬GoLast]],
π[[¬GoSecond∧¬GoLast]], π[[Fast∧GoSecond]], and π[[GoLast]]. The first two abstract models
satisfy φ4, but the last two models do not satisfy φ4.

Results. All experiments are executed on a 64-bit Intel�CoreTM i5 CPU with 8
GB memory. All times are reported as averages over five runs with the highest
and lowest number removed. Figure 8 compares the performance of our approach
based on variability abstractions with the brute-force approach to verify the
above four properties for the system with n = 6 trains. For each experiment, we
report: the number of calls to UPPAAL, the total verification time (Time) and
the total number of explored states (Space). Time (resp., Space) is the sum of
verification times (resp., the number of explored states) of all individual UPPAAL
calls taken in verifying each property. We can see that our abstraction-based
approach achieves improvements in both Time and Space for all properties.

Fig. 8. Performances of the brute-force vs. abstraction-based approaches for the vari-
ational train-gate system with n = 6. Time in seconds.

5 Related Work

Recently, various family-based techniques have been proposed which lift existing
single-program verification techniques to work on the level of program families.
This includes family-based syntax checking [22,25], family-based type checking
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[24], family-based static analysis [6,7,31], family-based verification by rewrit-
ing variability [23,33], etc. TypeChef [25] and SuperC [22] are variability-
aware parsers, which can parse C language with preprocessor annotations;
whereas family-based type checking for Featherweight Java was presented in [24].
Brabrand et al. [7] show how to lift any single-program dataflow analysis from
the monotone framework to work on the level of program families; whereas Midt-
gaard et al. [31] show the lifting for any static analysis from the abstract interpre-
tation framework. The obtained family-based analyses are much faster than ones
based on the naive brute-force approach that generates and analyzes all variants
one by one. In order to speed-up such family-based static analyses, variability
abstractions have been introduced in [15,20]. They aim to abstract (reduce) the
configuration space of the given family. Each abstraction expresses a compro-
mise between precision and speed in the induced abstract family-based analyses
[15]. However, the number of possible abstractions is intractably large with most
abstractions being too imprecise or too costly to show the analysis’s ultimate
goal. The work in [20] proposes a technique to efficiently find a suitable vari-
ability abstraction for a family-based static analysis to establish a given query.
Another efficient implementation of family-based analysis formulated within the
IFDS framework for inter-procedural distributive environments has been pro-
posed in SPLLIFT [6]. The works [23,33] are based on using transformations
to generate a single program which simulates the behaviour of all variants in
a family. This is achieved by replacing compile-time variability with run-time
variability (non-determinism). Then, existing single-system analyzers are used
to analyze the generated simulator. An approach for family-based software model
checking using game semantics has been introduced in [17]. It verifies safety of
#ifdef-based second-order program families containing undefined components,
which are compactly represented using symbolic game semantics models [16].

6 Conclusion

We have proposed variability abstractions to derive abstract model checking for
real-time variational systems. By exploiting the knowledge of a variability model
and property, we may carefully devise variability abstractions that are able to
verify interesting properties in only a few calls to UPPAAL. As a future work,
we want to automate our verification approach by developing an abstraction
refinement procedure, similarly to the context of SPIN and FPromela [21]. The
abstraction refinement procedure will use spurious counterexample to iteratively
refine abstract variational models until either a genuine counter-example is found
or the property satisfaction is shown for all variants in the family.
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24. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based prod-
uct lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14 (2012)
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Abstract. In cyber-physical applications many programs have hard
real-time constraints that have to be stringently validated. In some appli-
cations, there are programs that have hard deadlines, which must not
be violated. Other programs have soft deadlines where the value of the
response decreases when the deadline is passed although it is still a valid
response. In between, there are programs with firm deadlines. Here the
response may be occasionally delayed; but this should not happen too
often or with too large an overshoot. This paper presents an extension
to an existing approach and tool for checking hard deadline constraints
to the case of firm deadlines for application programs written in Safety-
Critical Java (SCJ). The existing approach uses models and model check-
ing with the Uppaal toolset; the extension uses the statistical model
checking features of Uppaal-smc to provide a hold on firm deadlines and
performance in the case of soft deadlines. The extended approach is illus-
trated with examples from applications.

1 Introduction

Real-time programs are typically embedded in cyber-physical systems, and con-
sist of a number of logically concurrently executing tasks. Each task is typically
released periodically or when certain external or internal events occur. The result
of the computation during each release typically ends up in updating directly
or indirectly the state of the cyber-physical system through actuators. For a
popular illustration, just consider the software of an autonomous vehicle. It is
evident that the system as a whole may enter undesirable physical states if the
internally computed state deviates too much from the external system state. For
the physical state it is very reasonable to assume that it changes little within a
short time period, thus the correspondence of the internal state can be assured
when computations are completed within a specified time. This is realised by
computations having deadlines for each release. Clearly, the deadlines vary for
different tasks. Think of an ABS-brake versus a cruise-control, they operate at
different time scales.
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For any real-time application it is crucial to check that deadlines for the var-
ious tasks are satisfied. Thus the topic schedulability analysis has been investi-
gated for decades, and many important results have emerged. The primary focus
has been on hard deadlines, where the aim is to guarantee that the deadlines
are met under all circumstances. Established techniques, see e.g. [8], separate
the analysis into determining a Worst Case Execution Time (WCET ) for each
task, and then analyse, for a collection of tasks, their schedulability under a given
scheduling regime. WCET analysis has to be conservative, for instance use upper
bounds for loops, and expect cache and pipeline flows to be interrupted during
execution. Also, schedulability analysis relies on over-approximations of control
flow, for instance in inter-task synchronisation and for multi-core systems, known
techniques do not readily apply [14].

For real-time systems developed in Java, the mentioned conservatism can
be even higher. This is partly due to the fact that Java is object-oriented, but
also due to the fact that Java usually is implemented via a translation to Java
Bytecode, which is then either interpreted by a Java Virtual Machine (JVM)
or further translated to native code. This level of indirection complicates formal
analysis as both program and JVM implementation have to be taken into account
for a given hardware platform.

To accommodate these issues, we have developed an open-source tool called
TetaSARTS1. It was introduced at the Workshop on Java Technologies for Real-
time and Embedded Systems 2013 (JTRES’13) [28]. It analyses real-time pro-
grams that conform to the upcoming Safety-Critical Java profile (SCJ ) [26]. In
the tool, the tasks are modelled with exact release patterns, interleavings, and syn-
chronisation. Also, the tool has a pluggable platform model with details of caching
and pipelining. Thus less pessimistic schedulability analysis can be conducted.

The tool uses a model-based approach inspired by the TIMES [1], SARTS [6]
and TetaJ [16] tools. TetaSARTS can be viewed as an optimising compiler
that produces a model of the system amenable to model checking using Uppaal
[3,22], given the program source as input. The model is constructed such that
model checking simulates an abstract execution of the real-time tasks, taking
into account the exact execution environment and scheduling policy.

However, hard deadlines are often too strict a requirement in practice. For
many control applications, transient violations of their deadlines are acceptable;
they can be interpreted as the usual disturbances that occur due to ignored
physical impacts in the control laws. Thus the concept of a firm deadline arises.
It is a deadline which should be satisfied most of the time. In order to make
this operational, a stochastic formulation is useful. A firm deadline is satisfied
when the deadline can be assumed to be satisfied for some proportion of releases,
see for instance the paper by Liu [25] for more details. As a simple example, if
the deadline is satisfied for 95% of the releases and the variation in execution
time occurs independently for each release, then the probability of violation
for more than a succession of 10 releases is in the order of 10−6 which is an
acceptable failure rate for many systems. Thus, there are good reasons to study
such applications.
1 The tool can be obtained at http://people.cs.aau.dk/∼boegholm/tetasarts/.

http://people.cs.aau.dk/~boegholm/tetasarts/
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Since the developed tool is using the Uppaal toolset with engines for Sta-
tistical Model Checking Uppaal-smc [11,12], we have extended it to analyse
features like firm deadlines as well as other quality of service or performance
properties related to the expected (timing) behaviour of the analysed system.
These are expressed in terms of probabilistic quantitative guarantees that may
be useful for soft deadlines, where the deadline is essentially a decreasing value
function of the execution time.

This paper presents this result as follows: in Sect. 2, we present related work
followed by Sect. 3, which discusses our overall SCJ related framework. Section 4
is a discussion of the merits of the model checking approach compared to tradi-
tional approaches for schedulability analysis. The design of the TetaSARTS tool
is summarised in Sect. 5. Section 6 introduces the new extension to TetaSARTS
that uses statistical model checking. Section 7 presents the evaluation of the
extended TetaSARTS showing its applicability for the use of statistical tech-
niques to gather refined performance properties for systems understanding and
for finding concrete counter examples that disprove schedulability. Section 8
presents the conclusion.

2 Related Work

For analysing timing properties of systems, the traditional methods for schedu-
lability analysis include response time analysis [8]: For each task, the response
time is calculated, and the system is schedulable if the response times for the
tasks are less than their respective deadlines. Tools and techniques based on
the traditional method tend to be rather conservative. In general, response time
analysis is based on a coarse, control-flow insensitive model. Hence, it cannot
account for the release patterns of sporadic tasks which are regarded as periodic
with a period set to the minimum inter-arrival time. Yet, it is a mature method,
as an example, the RapidRMA [19] tool can be used for conducting response
time analysis.

Also, the required WCET analysis is difficult, when it has to include detailed
information about the underlying hardware, such as caching and pipelines. Even
if the WCET analysis takes into account the state of the cache during the exe-
cution of a task, the improved WCET result may not be useful for response time
analysis, since the result of the WCET analysis assumes the analysed code to be
executed in isolation, i.e. without being interrupted, and thereby have its cache
state invalidated by other tasks. That benefits can be had by tighter modelling
of a platform is evident, an influential early example is by Zhang et al. [37]. For
a survey of results and challenges, many of which remain, see [35].

The TIMES [1] tool presents a model-based, control-flow sensitive technique
for schedulability analysis in which a specification for the real-time system is built
as a set of tasks modeling their timing properties e.g. cost, dependencies, and
deadlines. Supplementary code can be provided. This results in an NTA model
which is checked using the Uppaal [3] model checker. TIMES does not perform
timing analysis of the code associated with the tasks, which must be performed
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using external WCET analysis tools such as aiT [15], METAMOC [10], WCET
Analyzer (WCA) [33] or TetaJ [16]. The aiT and METAMOC tools are targeted
at timing analysis of C-programs and use respectively a combination of abstract
interpretation and integer linear programming, and model checking. For Java,
either WCA or TetaJ can be used. WCA makes available two techniques for
timing analysis; model checking and Implicit Path Enumeration [24]. WCA,
however, is targeted at the JOP [30], a JVM implementation in hardware. For
dedicated schedulability analysis of Java programs, SARTS [6] can be used which
also employs a model-based technique itself inspired from TIMES.

Firm deadlines have been studied less intensively, although the paper by
Bernat et al. [4] gives a firm foundation. It is however extending classical schedul-
ing analysis, so WCET is still needed. A stochastic approach to WCET analysis
using extreme value statistical theory is demonstrated by Hansen et al. [17].
Yet, it turns out that a purely statistical approach, where measurements are
collected from executing the task on a given platform, shows little promise of
success, because a huge amount of measurements have to be used. This is prob-
ably due to the fact that the system under observation is regarded as a black
box, so internal structure cannot be used to constrain the search. First with
Statistical Model Checking (SMC)[20,23,34,36], where modelling and statistical
analysis come together, there may be a way forward. It is interesting to note
that in more recent work, SMC is used for the even more intricate problem of
distributed real-time systems [21].

3 Real-Time Programming Model

Safety-critical applications have different complexity levels. To cater for this the
SCJ programming model is based on tasks grouped in missions, where a mis-
sion encapsulates a specific functionality or phase in the lifetime of the real-time
system as a set of schedulable entities. The SCJ specification lets developers tai-
lor the capabilities of the platform to the needs of the application through three
compliance levels. Level 0, provides a simple, frame-based cyclic executive model
which is single threaded with a single mission. Level 1 extends this model with
multi-threading via periodic and aperiodic event handlers, multiple missions, and
a fixed-priority preemptive scheduler (FPS). Level 2 lifts restrictions on threads
and supports nested missions. The development of SCJ applications at Level 0
is well described in [32]. We will focus on Level 1 and review some important
areas and concepts of the SCJ programming model that are particularly relevant
to our work.

Missions. A mission is used for capturing a phase during the lifetime of the
system: Each phase contains a set of schedulable entities that collectively fulfills
the tasks of the phase. A schedulable entity encapsulates a specific functional-
ity, and has assigned certain temporal parameters, notably the temporal scope
describing its release time and deadline. In addition, a release pattern is also
attached which can be either periodic or aperiodic.
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The classic example for illustrating the mission concept, is that of flight-
control system: during the lifetime of such a system it goes through states corre-
sponding to when the aircraft is taking off, cruising, and landing. Each of states
are encapsulated in their own dedicated mission. A mission encapsulates a spe-
cific functionality or phase in the lifetime of the real-time system as a set of
schedulable entities. For instance, a flight-control system may be composed of
take-off, cruising, and landing each of which can be assigned a dedicated mission.

Fig. 1. Overview of the concept of missions [27].

The concept of missions is illustrated in Fig. 1; it contains five phases:

Setup. In this phase, mission objects are allocated when the system starts.
Tasks of this phase are not time-critical.

Initialisation. Here all object allocations that pertain to the operations of the
mission (or the application) are performed. This phase is time-critical in appli-
cations with mode changes consisting of a sequence of missions.

Execution. This is the phase in which the entire application logic is executed
and schedulable entities are set for execution governed by a pre-emptive pri-
ority scheduler. This phase is considered time-critical.

Termination. This phase will be entered if the mission terminates and will
be used for completing execution the schedulable entities of the mission. In
addition, this phase is used for executing logic pertaining to the cleanup of
the mission. When this phase completes, the mission may either be restarted,
a new mission is selected, or the final phase, Teardown, is entered. This phase
is time-critical in applications with mode changes consisting of a sequence of
missions.

Teardown. This is the final phase of the application and is used for performing
proper cleanup of objects, locks etc. For example, certain application-wide
objects are deallocated at this point. This phase is not time-critical.

To govern the order with which missions are selected, a mission sequencer is
used.

Memory Model. The memory model of SCJ is based on the concept of scoped
memory from RTSJ [7]. It is a memory model that avoids the use of a (garbage
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collected) heap which eases the task of verifying temporal properties of SCJ
applications. An overview of the SCJ memory model is shown in Fig. 2, which
has three levels of memories;

Fig. 2. The memory model in SCJ [27].

Private memory which is associated with each real-time event handler. The
private memory exists for the entire duration of the handler. Upon task finish,
the memory area is reset.

Mission memory is associated with every mission of the system and manages
the memories of all real-time handlers part of the mission as well as objects
that are shared among the handlers. When the mission completes execution,
the mission memory is reset.

Immortal memory is the memory area that exists for the lifetime of the
system.

Dynamic class loading is not part of the SCJ specification, which would
greatly complicate timing analysis if classes were to, e.g., be loaded over a net-
work connection. Furthermore, the SCJ specification prescribes that finalizers
will not be executed.

We make the reasonable assumption that Java Bytecode verification is done
before a time-critical phase. Finalizers can however be accommodated; not by
SCJ, but the Predictable Java profile [5] (a Java profile for hard real-time sys-
tems) has support for finalizers. As shown in [9] timing analysis is possible when
finalizers are used with this profile.

4 Merits of Model-Checking Approach

The primary functionality of TetaSARTS is schedulability analysis, which takes
into account the scheduling policy and task interactions. In this section we
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illustrate how the presented model-checking approach may give tighter results
than traditional Response-time analyses based on plain WCET and blocking
times. We consider two examples:

– Branching involving sporadic tasks.
– Blocking involving access to shared resources.

These examples are indeed very simple in nature, but the effect illustrated could
be significant in larger systems involving multiple tasks. To illustrate the dif-
ference between the methods, we use the timeline notation in Fig. 3. In our
illustrations execution time is expressed as time units as opposed to actual exe-
cution times in clock cycles or similar, and we assume fixed-priority preemptive
scheduling with priority ceiling protocol. We will compare our results to the tra-
ditional approaches, and begin this by a short introduction to the traditional
response time analysis method [8].

Fig. 3. Timeline notation used for task-illustration.

4.1 Response-Time Analysis

In the response time analysis, the response time is calculated for each task in
the system, and the system is schedulable if the response time for each task
is less than its respective deadline. Sporadic tasks can be included as periodic
tasks with period set to the minimum inter-arrival time. The blocking time is
calculated based on priority inversion avoidance protocols, priority inheritance or
priority ceiling. In our example, only the priority ceiling protocol is considered.

For a set of tasks, {task1, . . . , taskn}, each with static priority according to
deadline monotonic priority assignment2 the response time analysis of taski, Ri

is given by the equation:
Ri = Ci + Bi + Ii (1)

where

– Ci is the execution time of taski,
– Bi is the maximum blocking time of taski. This is dependent on the protocol

used for priority inversion avoidance.

2 In case of identical deadlines, one can safely arbitrarily assign different priorities, as
long as these do not violate the priority of other tasks.
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• The maximum blocking time for taski using the priority ceiling protocol
is given by:

Bi = max
r∈R

(usage(i, r)WCETr) (2)

where R is a set of resources, WCETr is the WCET of the critical sections
involving resource r, and usage(i, r) evaluates to 1 if resource r is used by a
task with lower priority than taski and used by a task with priority higher
than or equal to the priority of taski; 0 otherwise,

– and Ii is the maximum interruption time of taski by tasks of higher priority,
given by the equation

Ii =
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (3)

where hp(i) is the set of tasks of higher priority than task i and Ti is the
period of taski.

This gives the recursion:

Rn+1
i = Ci + Bi +

∑

j∈hp(i)

⌈
Rn

i

Tj

⌉
Cj (4)

for which a fixed-point solution, Rn+1
i = Rn

i with R0
i = Ci, is guaranteed if the

utilization is less than 1 [2].

4.2 Conditional Sporadic-Release

In this example, we illustrate how two sporadic tasks running mutually exclusive
are analysed in our approach and the traditional approach. Consider the periodic
task, PTask with

– Total cost: 4
– Period: 10
– Deadline: 5

and the implementation given by:
protected boolean run ( ) {

// read sensors /compute
i f (<condition >){

sporadic1 . fire ( ) ;
} else {

sporadic2 . fire ( ) ;
}
return true ;

}

And two sporadic tasks, Spo. 1 and Spo. 2, with identical characteristics,
except for deadlines which are 6 and 7 for the respectively:

– Total cost: 2
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Fig. 4. Timeline considered in the response time analysis.

Fig. 5. Real timeline as expressed by the system

– Min. inter-arrival time: 10
– Deadline: 6 and 7

and trivial implementations.
Using the traditional response time analysis, the system is deemed not-

schedulable, as the response time of task Spo. 2 is 8, which exceeds the deadline,
which for this task is 7:

(PTask) R0
1 =4 R1

1 = 4 R2
1 =4 = 4
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2 =2 R1

2 = 2 +

⌈
2
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⌈
2

10

⌉
4

︸ ︷︷ ︸
4

+

⌈
2

10

⌉
2

︸ ︷︷ ︸
2

R2
3 =2 +

⌈
8

10

⌉
4

︸ ︷︷ ︸
4

+

⌈
8

10

⌉
2

︸ ︷︷ ︸
2

= 8

The system execution considered in the response time analysis could be illus-
trated by the timeline in Fig. 4, in which the utilization is seemingly 80%. It
is clear, however, that this does not correspond to an actual execution of the
system since the two sporadic tasks are mutually exclusive.

In any execution of the tasks, the utilization would be only 60%, as seen
in Fig. 5, and additionally, it is clear from the figure, that the system is indeed
schedulable. The strength of the presented approach is, that in this case, it is
the actual execution displayed in Fig. 5, which is analysed. The more precise
analysis would yield the utilization of 60% and possibly allow the addition of
extra tasks or even to use a cheaper or more energy efficient(and slower) CPU.
By manually inspecting the system, one could adjust their analysis according to
such patterns. However, as this requires manual work and intricate knowledge
about the system, one might end up with an unsafe result, especially in later
development cycles.
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4.3 Blocking

In this example, we illustrate how blocking is handled in our approach and how
it compares to the traditional approach to schedulability analysis. We consider
a system of two tasks, sharing a common resource, given by the code:
// Task1
// Period : 9
// Deadline : 4
protected boolean run ( ) {

calc ( ) ; // one time unit
critical ( ) ; // two time units , using shared resource
return true ;

}

// Task2
// Period : 18
// Deadline : 17
protected boolean run ( ) {

i f (<condition >) // one time unit
extra_calc ( ) ; // seven time uni t s

critical ( ) ; // two time units , using shared resource
calc ( ) ; // one time unit
return true ;

}

In this example, using the response time analysis we would determine this sys-
tem as not schedulable, since Task1 might be blocked for up to two time units,
completing execution five time units after its release, missing its deadline. The
calculated response time is as follows:

The worst case blocking times experienced by the tasks B1 and B2 are,
calculated using the method described above, as follows:

B1 = 1 ∗ 2 = 2
B2 = 0 ∗ 2 = 0

And then the response time calculations are as follows:

R0
1 = 3 R1

1 = 3 + 2 R2
1 = 3 + 2 = 5

R0
2 = 11 R1

2 = 11 + 0 +
⌈

11
9

⌉
3

︸ ︷︷ ︸
6

R2
2 = 11 + 0 +

⌈
17
9

⌉
3

︸ ︷︷ ︸
6

= 17

Using the response-time analysis, the system is not schedulable, which is illus-
trated graphically in Fig. 6. The illustration depicts the time-line from the critical
instant, from a classical response-time analysis perspective. Task1 is blocked for
2 units and then needs to execute for 3 units, missing its deadline. Task2 is
pre-empted for 6 time units, and then needs 11 time units of execution time,
before it meets its deadline.

The actual execution pattern for the tasks, and the execution pattern also
considered using the presented approach, is illustrated in Fig. 7. It is clear from
the time line, that the system is actually schedulable because of the actual
interaction with the shared resource.
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Fig. 6. Illustration of time-line for Task1 and Task2, as considered in the response
time analysis; a depiction of the analysis rather than the actual execution pattern.

Fig. 7. Actual time-line for Task1 and Task2. Here, Task2a and Task2b illustrates
the two different execution patterns of Task2 caused its branch.

5 TetaSARTS Architecture

TetaSARTS employs a model checking approach for its timing analyses. In this
approach, both the application classes constituting the real-time systems as well
as the underlying JVM implementation are transformed into individual Networks
of Timed Automata (NTA); the modeling formalism of Uppaal. These models,
capturing the timing behavior of their respective component, are then combined
with proper models of the underlying hardware of the system. The composition
of these models is then used for checking properties with Uppaal.

TetaSARTS performs the translation of the application classes and the JVM
into NTAs in an automated way. A benefit of this approach is that the produced
models have a tight correspondence with the actual code that is run by the
system. We note that the translation process is fairly fast—usually taking less
than a minute—hence being applicable for, e.g., an agile development process
where timing properties are analyzed frequently to test how changes affect them.

Figure 8 shows an overview of the architecture of TetaSARTS.
TetaSARTS takes as input the class files (i.e., Java Bytecode) of the real-

time system, and transforms the tasks into an TetaSARTS Intermediate Repre-
sentation (TIR), a CFG-based representation annotated with additional details.
TIR is used for performing various static analyses like loop identification analy-
sis which is used for retrieving loop bounds. Loop bounds are currently specified
manually using annotations in the source code. TetaSARTS will extract the
bounds, and annotate the corresponding loops in TIR with this information.

TetaSARTS currently disallows recursion, despite being permitted by the
current version of the SCJ specification. However, we note that usually, recursion
is avoided in real-time systems, since it complicates memory analysis [26].

After generating TIR, TetaSARTS proceeds to the next phase where a high-
level translation to NTA is performed from the TIR. We refer to the resulting
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Fig. 8. The components of TetaSARTS.

NTA as the Program NTA. Provided a hardware model (referred to as the Hard-
ware NTA and information about the temporal behavior of the JVM (see below),
the two NTAs are synthesised into a single NTA that is amenable to model check-
ing of temporal properties such as schedulability.

The temporal behavior of the JVM can be provided in two ways: either a
precise model of the JVM in the form of an NTA (similar to the Program NTA)
that captures the control-flow of the individual bytecode instructions; or from
a so-called JVM Timing Doc that draws similarities with VMTMs [18]. A JVM
Timing Doc captures the Best Case Execution Time (BCET) and WCET of the
Java Bytecode implementations as obtained by an auxiliary tool: JVM Timing
Document Generator that for each Java Bytecode implementation, generates
an NTA (similar to how the Program NTA is constructed) and then checks for
properties that yield the BCET and WCET.

Thus, the JVM Timing Doc is the less precise alternative to using the explicit
model of the JVM NTA at the benefit that the state space is significantly
reduced. The reader is referred to [16,28,29] for more information about the
JVM NTA.

6 Performance Analysis

In this section, we introduce the extension to TetaSARTS that allows analysing
performance properties of the SCJ system as well as for finding concrete traces
for, e.g., disproving schedulability. Our approach is inspired by the work of [13,31]
with the difference that our approach applies to a model generated from the
actual source code of the system thus having a tight correspondence with the
evolving development process as opposed to a manually encoded architecture
and design of the system. The enabling technology is Statistical Model Checking,
a technique that relies on monitoring a series of randomly generated runs and
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applying statistical algorithms on the results for estimating property satisfaction.
An SMC engine, Uppaal-smc, has recently been integrated into the toolset of
Uppaal, which analyses NPTAs [11] (a generalization of NTA where clocks can
evolve with different rates in different locations) under a stochastic semantics,
which, informally, is defined by associating to each location a delay density
function and an output probability function. The former will be either a uniform
distribution or an exponential distribution (with an additional distribution rate
component) depending on whether the delay is bounded or not. The output
probability function will be the uniform distribution over the possible outputs
in that location.

Uppaal-smc generates random runs corresponding to the stochastic seman-
tics up to a certain bound (thus we are considering finite runs), which may be
defined, e.g., in terms of discrete steps or a clock value of a specified clock present
in the model. In this work, we assume that data-dependent choices as generated
by, e.g., the conditional instructions, are resolved according to a uniform distri-
bution. However, a refined system model that takes into account domain/expert
knowledge of the data-choices can be embedded in the model as well by adding
weights i.e. probabilities (a feature of Uppaal-smc) to the choices accordingly.

While generating the run, Uppaal-smc monitors the checked properties,
and based on the results applies a statistical algorithm. These permit to answer
questions of the type:

– Qualitative: is the probability of satisfying a property (within the specified
bound) greater or equal to a certain threshold? This problem is formulated as
a hypothesis testing problem and solved using Wald’s sequential hypothesis
test.

– Quantitative: what is the probability for satisfying the property? In this case,
the algorithm, based on the Chernoff-Hoeffding bound, computes the number
of runs required to produce an interval, [p−ε, p+ε], for satisfying the property
with probability p with confidence 1 − α.

– Comparative: is the probability of satisfying a property greater or equal to
the probability of satisfying another property? This check relies on an exten-
sion to the sequential hypothesis test that compares the probabilities without
computing them.

Furthermore, Uppaal-smc supports evaluating the expected values of the
minimum and maximum of, e.g., clock variables.

Naturally, SMC cannot be used for providing hard guarantees of correctness,
but it can be seen as a complementary technique because it can be used for
disproving schedulability, since it relies on analysing concrete traces. SMC can be
seen as the dual of symbolic model checking, which can provide hard guarantees
on schedulability but may possibly be inconclusive in disproving schedulability
as a consequence of over-approximation.

Enabling the NTA model to be used for statistical model checking requires
only minor modifications. We use stop-watch expressions in all locations of the
Program NTA to capture pre-emption thus, from a static point of view, the
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delay is unbounded meaning that the delay density function is defined by an
exponential distribution with rate component, R(l) for location l. Essentially it
means that a delay will be picked from an exponential distribution and added
after an outgoing edge of a location becomes enabled.

This is clearly not what we want; instead we want the edge to be immediately
taken when it is enabled. We can obtain this behaviour by using a sufficiently
high rate component which will be defined as a constant and used throughout
the entire model. In the limit of R(l), the delay will become zero, thus giving us
the desired behaviour.

7 Evaluation

We will demonstrate the uses of the performance analysis extension of
TetaSARTS using the Real-Time Sorting Machine (RTSM) [6] example.

As an initial result, we harness the simulate query extension to the Uppaal
specification language. These can be used to visualise the value of an expression
as a function of time (or discrete steps) and we will use this feature to visu-
alise the behaviour of the tasks by plotting their state as function of time thus
resembling the conventional time-line notation [8]. Figure 9 shows the states of
the four tasks of the RTSM with the clock frequency set at 100 MHz. The query
used here is

simulate 1 [# <= 150]{running[PT1] − 2 ∗ blocked[PT1],
running[PT2] − 2 ∗ blocked[PT2] + 2,

running[ST1] − 2 ∗ blocked[ST1] + 4,

running[ST2] − 2 ∗ blocked[ST2] + 6}
PT# and ST# where # ∈ {1, 2} denote the ID of respectively the periodic

tasks and sporadic tasks of the RTSM. Peaks represent that the respective task
is running. The example also demonstrates that in the particular run, none of
the tasks were blocked.

Fig. 9. Task behaviour over time for the RTSM at 60 MHz.
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Fig. 10. Task behaviour over time for the RTSM at 1 MHz. Sporadic Task 1 is released,
but misses its deadline.

Using simulate queries, we also get the possibility of providing concrete wit-
nesses to non-schedulability; a feature that is not possible with regular, symbolic
model checking due to over-approximation. To demonstrate this, let us revisit
the RTSM on the JOP with clock frequency set to 1 MHz and VTA used for
devirtualisation for which symbolic model checking was inconclusive as to the
schedulability of the system [28]. Using simulate queries, it turns out, that in
fact schedules exist for which the system is schedulable and we will therefore
expand our query to keep sampling possible behaviours and return a counter
example to schedulability (in case it exists). Our new query is:

simulate 1000 [<=4000]{running[PT1] − 2 ∗ error[PT1],

running[PT2] − 2 ∗ error[PT2] + 2,

running[ST1] − 2 ∗ error[ST1] + 4,

running[ST2] − 2 ∗ error[ST2] + 6}
: 1 : error[PT1] || error[PT2] || error[ST1] || error[ST2]

The new query uses a filter to filter out a single run for which at least one of
the error flags of the tasks have been set (signalling deadline violation). After
12 simulations of system behaviours (which takes a couple of seconds), Uppaal
returns the example shown in Fig. 10 which disproves that the RTSM at 1 MHz
(using VTA for devirtualisation) is schedulable because Sporadic Task 1 misses
its deadline.

Another feature of the combination of SMC and our timing model, is that
we can estimate performance properties of the system as well as estimating
the likelihood of timing events. Having shown that the RTSM at 1 MHz is not
schedulable, we can now try to quantify the likelihood of this event happening,
thus giving us refined information about system behaviour. The probability esti-
mation extension to the query language allows us to answer these questions and
we will formulate this property as

Pr[<= 5000] (<> error[ST1])
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Fig. 11. Evaluating execution time and response time for Periodic Task 1 with 20.000
samples.

i.e. we are asking what the probability is for a run to reach a state where the
error[ST1] flag is set within 5000 time units (note that the task misses its dead-
line much earlier according to Fig. 10). Uppaal settles this query after 287 runs
(taking a second to perform) and the result is [0.1794, 0.2793] with the confidence
parameter set to 95%. Note that Uppaal returns an interval which is a conse-
quence of the approximation procedure. Also note that the lower bound is strictly
greater than zero, thus again confirming that the system is not schedulable.

Let us now focus on the second use of statistical model checking to esti-
mate the expected performance of the system. Uppaal allows us to estimate the
maximum value of expressions including clocks. Thus, estimating the maximum
value of the wcrt clock gives an estimate on the overall responsiveness of the
respective task. Also, we could estimate the maximum value of the wcet clock
which estimates the distribution of the execution times of the task. The query
can be formulated as

E[<= bound; samples] (max : clock)

As an example, we estimate execution and response times of Periodic Task 1 of
the RTSM on the JOP at 60 MHz for making a comparison with the exact analy-
sis presented in [28]. For all results, we set a bound on the wcrt corresponding
to their exact values obtained previously and we are interested in results for
the 95% confidence interval. Furthermore, as an initial experiment, we ran the
estimation procedure with 20.000 samples. In all cases the analysis times ranged
from 16–17 s with a modest memory consumption of approximately 200 MB.

The results of this analysis are shown in Fig. 11.
Note that time is represented as clock cycles. Interestingly for Periodic Task 1,

we exercise the behaviour of the system that yields the WCET (2.188 clock cycles
corresponds to 36.5µs) of the task whereas the maximum response time is found
to be 52.2 µs (which is a 19% deviation from the exact result). The expected
average execution time and response time for the 95% confidence interval are
calculated to be 15.8 ± 0.068 µs and 24.6 ± 0.08µs.

We can also get results more rapidly by decreasing the number of samples at
the expense of loss of precision. Figure 12 shows the distributions of execution
time and response time when decreasing the sample size to 1.000. The analyses
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Fig. 12. Evaluating execution time and response time for Periodic Task 1 with 1000
samples.

take less than a second. The results for expected execution time and response
time for the 95% confidence interval are 16.0 ± 0.3µs and 24.6 ± 0.4µs.

8 Conclusion

This paper presented an extension of the TetaSARTS schedulability analysis
tool with Statistical Model Checking (SMC) facilities. The original tool focused
on giving hard guarantees for Safety-Critical Java programs on specified plat-
forms. The primary purpose of that tool is schedulability analysis, but it also
facilitates processor utilisation and idle time analysis, Worst Case Execution
Time analysis, Worst Case Blocking Time analysis, and Worst Case Response
Time analysis taking into account any pre-emption and blocking. The extended
tool provides probabilistic estimates of expected behaviour with user specified
confidence levels. This addresses needs for analyzing real-time systems with firm
or soft deadlines, or even mixed-criticality requirements. Expected behaviour
is provided as distributions of the analysed property resulting from a sample-
based approach. We envision this to be particularly useful for comprehending
the dynamics of a system as well as for profiling and performance analysis.

We have shown on realistic real-time systems that such information can be
obtained in a few seconds, thus TetaSARTS is an efficient tool during real-
time systems development. The combination of the timing analyses facilitates
multiple development approaches; if a system is not schedulable, the other analy-
ses can be used for debugging timing properties, e.g., revealing unusually high
blocking times or WCET of real-time tasks. The statistical approach embed-
ded in TetaSARTS can find concrete witnesses disproving schedulability. The
tool can even produce a timeline notation of task behaviour especially useful for
understanding systems behaviour leading to a deadline violation.
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Abstract. Probabilistic timed automata are a formalism for mod-
elling systems whose dynamics includes probabilistic, nondeterministic
and timed aspects including real-time systems. A variety of techniques
have been proposed for the analysis of this formalism and successfully
employed to analyse, for example, wireless communication protocols and
computer security systems. Augmenting the model with prices (or, equiv-
alently, costs or rewards) provides a means to verify more complex quan-
titative properties, such as the expected energy usage of a device or the
expected number of messages sent during a protocol’s execution. How-
ever, the analysis of these properties on probabilistic timed automata cur-
rently relies on a technique based on integer discretisation of real-valued
clocks, which can be expensive in some cases. In this paper, we propose
symbolic techniques for verification and optimal strategy synthesis for
priced probabilistic timed automata which avoid this discretisation. We
build upon recent work for the special case of expected time properties,
using value iteration over a zone-based abstraction of the model.

1 Introduction

Real-time systems are at the heart of application domains such as communi-
cation protocols, embedded systems, hardware circuits, autonomous transport,
robotics and manufacturing. The presence of hard real-time constraints within a
distributed, reactive environment means that their correct functioning depends
on the timing pattern of the interaction of the system with its environment,
making correctness guarantees difficult.

Timed automata [2] are a powerful formalism for modelling and verification
of real-time systems. They are finite-state automata equipped with real-valued
clocks which measure the passage of time, and whose transitions are annotated
with guards that specify the time constraints that have to be satisfied for the
transition to be taken. Since timed automata allow the modelling of dense real-
time, the decidability of model checking depends on a number of assumptions.

Several verification approaches have been introduced, see e.g. [1,21,22,32], of
which the symbolic zone-based approach enables greater scalability compared to
c© Springer International Publishing AG 2017
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the digital clocks method, which assumes an integral model of time as opposed
to a dense model of time. Timed automata have been widely used for modelling
and analysis of real-world systems; in particular, they are supported by the
UPPAAL [31] model checker, the gold standard in computer-aided verification
for real-time systems.

When modelling and analysing real-time systems, it is often necessary to
consider quantities other than time, for example energy consumption, network
bandwidth or number of packets lost. The model of (linearly) priced timed
automata [3,7] extends timed automata with prices (weights) annotating the
locations and transitions, thus enabling reasoning about costs or rewards accu-
mulated over time as the execution progresses. This model has good decidability
properties and several algorithms have been proposed for its analysis, based on
an extension of regions or zones with prices. Priced timed automata are also
supported by UPPAAL, and have been used for timing analysis of a range of
embedded real-time systems, with several flaws discovered and corrected.

However, many distributed real-time systems also employ randomisation, for
example random back-off in wireless network protocols. A natural model for such
systems is a probabilistic extension of (priced) timed automata called probabilis-
tic timed automata (PTAs) [6,19,29]. They can be viewed as timed automata
whose transitions are probability distributions over the set of edges, where each
such edge specifies a successor location and a set of clocks to reset.

A key property studied here is expected reachability, namely the expected
time/price until some event occurs. This problem has been found unsuitable for
symbolic zone-based methods, including priced zones, since accumulated prices
are unbounded. Recently, [24,25] introduced a zone-based symbolic method to
compute minimum and maximum expected time for PTAs and to synthesise a
corresponding strategy. Prior to this, expected reachability properties of PTAs
could only be verified using the digital clocks method [28] that can suffer from
state-space explosion.

Probabilistic timed automata are supported by the PRISM [27] model checker
via the zone-based and digital clocks abstractions (though not yet the method
of [25]) and have used been for the analysis of a broad range of real-world pro-
tocols, see for example [18,28]. A second tool supporting PTAs is mcpta [20],
which applies the digital clocks abstraction to translate a subset of the modelling
language Modest [15] directly into the PRISM modelling language. The related
problem of price-bounded probabilistic reachability [10] (known to be undecid-
able [9]) can be analysed via a semi-decision procedure using priced zones, imple-
mented in Fortuna [11].

In this paper we study the computation of the minimum/maximum expected
price for linearly-priced probabilistic timed automata, for which, to the best of
our knowledge, no zone-based method exists at present. More specifically, we
extend [25], where only the restricted case of expected time is considered. The
minimum expected price problem for a related model of priced timed games in
stochastic environments was tackled in [16] using statistical model checking with
Uppaal-SMC. Since this approach is based on simulation, rather than numerical
model checking, it gives approximate results with probabilistic guarantees.
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As in [24,25], our method relies on an interpretation of the PTA as an
uncountable-state Markov decision process (MDP) and employs a representation
in terms of an extension of the ‘simple’ and ‘nice’ functions of [4]. The optimal
prices are computed via a Bellman equation using value iteration, which gives
guaranteed eventual convergence to the correct values. Moreover, an ε-optimal
strategy can be extracted by stepping backwards and retrieving the locally opti-
mal choices once some convergence criterion has been satisfied. For minimum
expected time, it is always optimal to let as little time pass as possible. How-
ever, for minimum price, it turns out that this is not always the case, and it can
be optimal to let time pass now and accumulate a lower price, as opposed to
waiting and accumulating a higher price later. The case of maximum time/price
is dual.

Paper Structure. In Sect. 2 we summarise the relevant background, mainly
concerning uncountable MDPs and the computation of optimal reward. Section 3
defines the priced extension of probabilistic timed automata (PTAs) and their
interpretation as an uncountable MDP under appropriate assumptions. In
Sect. 4, we introduce a representation of the value functions that generalise the
simple and nice functions of [4], and present our algorithms for computing opti-
mal expected price and synthesis of an ε-optimal strategy using the backwards
zone graph of a PTA.

2 Background

Let R denote the non-negative reals, N natural numbers, Q rationals and Q+ non-
negative rationals. A discrete probability distribution over a (possibly uncount-
able) set S is a function μ : S→[0, 1] such that

∑
s∈S μ(s) = 1 and the set

{s ∈ S | μ(s)>0} is finite. Let dist(S) denote the set of distributions over S.
A distribution μ ∈ dist(S) is a point distribution if μ(s) = 1 for some s ∈ S.

In preparation for the sections that follow, we present some background mate-
rial and known results for the model of Markov decision processes (MDPs).

Definition 1. An MDP is a tuple M = (S, s0, A,ProbM,PriceM), where:

– S is a (possibly uncountable) set of states and s0 ∈ S is an initial state;
– A is a (possibly uncountable) set of actions;
– ProbM : S × A → dist(S) is a (partial) probabilistic transition function;
– PriceM : S × A → R is a price function.

In each state s of an MDP M, there is a set of enabled actions, denoted by A(s),
containing those actions a for which ProbM(s, a) is defined. In state s, a transi-
tion corresponds to first nondeterministically choosing an available action and,
assuming action a ∈ A(s) is chosen, then selecting a successor state randomly
according to the distribution ProbM(s, a). Taking an a-labelled transition from
state s incurs a price of PriceM(s, a). We use the terminology “price” for con-
sistency with the model of priced probabilistic timed automata used later, but
these are commonly also referred to as costs or, dually, rewards for MDPs.
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A path of an MDP M is given by a finite or infinite sequence of transitions
ω = s0

a0−→s1
a1−→s2

a2−→· · · with ProbM(si, ai)(si+1) > 0 for all i ≥ 0. The (i + 1)th
state of a path ω and action associated with the (i+1)th transition are denoted
by ω(i) and ω[i] respectively. The set of infinite (finite) paths is denoted by
IPathsM (FPathsM) and the last state of a finite path ω by last(ω).

A strategy (also called an adversary, scheduler or policy) of an MDP M rep-
resents one resolution of the nondeterminism in M.

Definition 2. A strategy of an MDP M is a function σ : FPathsM→dist(A)
such that σ(ω)(a)>0 only if a ∈ A(last(ω)).

For a given strategy σ and state s of an MDP M, we can construct a probability
measure Pσ

s over the set of infinite paths starting in s [26]. A strategy σ is
memoryless if its choices only depend on the current state, and deterministic
if σ(ω) is a point distribution for all ω ∈ FPathsM. The set of all strategies of
MDP M is denoted ΣM.

Key quantitative properties for MDPs are the probability of reaching a tar-
get and the expected price incurred before doing so. We will refer to these as
probabilistic reachability and expected reachability, respectively. For a strategy σ,
state s and set of target states F ⊆ S of an MDP M, these values are given by:

P
σ
M(s, F ) def= Pσ

s {ω ∈ IPathsM | ∃k ∈ N. ω(k) ∈ F}
E

σ
M(s, F ) def=

∫

ω∈IPathsM

price(ω, F ) dPσ
s

where for any infinite path ω:

price(ω, F ) def=
∑kF

i=0 PriceM(ω(i), ω[i])

and kF = min{k − 1 | ω(k) ∈ F} if there exists k ∈ N such that ω(k) ∈ F and
kF = ∞ otherwise. As usual we consider the optimal values of these properties,
i.e. the minimum and maximum values over all strategies:

P
min
M (s, F ) def= infσ∈ΣM

P
σ
M(s, F ) P

max
M (s, F ) def= supσ∈ΣM

P
σ
M(s, F )

E
min
M (s, F ) def= infσ∈ΣM

E
σ
M(s, F ) E

max
M (s, F ) def= supσ∈ΣM

E
σ
M(s, F )

One approach to computing these optimal values is through Bellman opera-
tors [8] using either value iteration or policy iteration [12,13]. In the case of
expected reachability, the Bellman operators have the following form.

Definition 3. Let M be an MDP with state space S, F ⊆ S be a target set,
and let opt ∈ {min,max}. The Bellman operator T opt

M : (S→R) → (S→R) for
optimal expected reachability is defined as follows. For any function f : S → R

and state s ∈ S:

T opt
M (f)(s) =

{
0 if s ∈ F

opt�
a∈A(s)

{
PriceM(s, a) +

∑
s′∈S ProbM(s, a)(s′) · f(s′)

}
if s �∈ F

where min� = inf and max� = sup.
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Value iteration works by starting with an initial approximation f0 : S → R and
repeatedly applying T opt

M until it converges to the optimal expected reachability
value. In practice, an approximate result is obtained by terminating the com-
putation once some convergence criterion is satisfied, for example, by checking
that the maximum pointwise difference between (T opt

M )n(f0) and (T opt
M )n+1(f0)

is below some threshold ε ∈ R. The process also yields an (approximately) opti-
mal strategy for either minimising or maximising expected reachability. Policy
iteration starts from a (deterministic and memoryless) strategy, and repeatedly
attempts to find an improved (deterministic and memoryless) strategy by com-
puting the expected reachability values for the current strategy and trying to
update action choices to optimise expected reachability values.

Below, we state some known results from [23] regarding MDPs and value
iteration, which are needed later in the paper (and which were adapted for the
case of PTAs in [25]). This requires us to make the following assumptions.

Assumption 1. For any MDP M = (S, s0, A,ProbM,PriceM) and target set F :

(a) A(s) is compact for all s ∈ S;
(b) PriceM is bounded and a 	→ PriceM(s, a) is continuous for all s ∈ S;
(c) if σ is a memoryless, deterministic strategy which is not proper, then

E
σ
M(s, F ) is unbounded for some s ∈ S;

(d) there exists a proper, memoryless, deterministic strategy;

where a strategy σ is called proper if P
σ
M(s, F ) = 1 for all s ∈ S.

Theorem 1 [23]. If M and F are an MDP and target set for which Assumption 1
holds, and the minimum expected price values are bounded below, then:

– there exists a memoryless, deterministic strategy that achieves the minimum
expected price of reaching F ;

– the minimum expected price values are the unique solutions to Tmin
M ;

– value iteration over Tmin
M converges to the minimum expected price values

when starting from any bounded function;
– policy iteration converges to the minimum expected price values when starting

from any proper, memoryless, deterministic strategy.

Corollary 1. If M and F are an MDP and target set for which Assumption 1
holds and the maximum expected price values are bounded above, then:

– there exists a memoryless, deterministic strategy that achieves the maximum
expected price of reaching F ;

– the maximum expected price values are the unique solutions to Tmax
M ;

– value iteration over Tmax
M converges to the maximum expected price values

when starting from any bounded function;
– policy iteration converges to the maximum expected price values when starting

from any proper, memoryless, deterministic strategy.
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3 Priced Probabilistic Timed Automata

In this section we introduce probabilistic timed automata (PTAs) [6,19,29], a for-
malism for modelling systems whose dynamics includes probabilistic, nondeter-
ministic and timed aspects, and the extended model of linearly-priced PTAs [28],
which augment PTAs with prices. We will commonly refer to the latter simply
as PTAs.

Clocks, Clock Valuations and Zones. We assume we have a finite set X
of real-valued variables called clocks which increase at the same, constant rate.
A clock valuation is a function v : X→R and let R

X be the set of all clock
valuations. We denote by 0 the clock valuation that assigns 0 to all clocks. For
any subset of clocks R, non-negative real value t and clock valuation v, v[R] is
the clock valuation where v[R](x) = 0 if x ∈ R and v[R](x) = v(x) if x ∈ X\R,
and v + t is the clock valuation where (v + t)(x) = v(x) + t for all x ∈ X . The
set of zones over X , written Zones(X ), is defined by the syntax:

ζ ::= true | x ≤ d | c ≤ x | x + c ≤ y + d | ¬ζ | ζ ∧ ζ

where x, y ∈ X and c, d ∈ N. We can restrict the syntax to convex zones by
removing negation. For a clock valuation v and zone ζ, we say v satisfies ζ,
denoted v|=ζ, if ζ is true after substituting each occurrence of each clock x with
v(x). The semantics of a zone ζ is the set of clock valuations satisfying it. We
require the following zone operations [33], for zone ζ and subset of clocks R:

– ↙ζ = {v ∈ R
X | ∃t ∈ R. v + t |= ζ};

– ζ[R] = {v[R] | v |= ζ};
– [R]ζ = {v ∈ R

X | v[R] |= ζ}.

Syntax and Semantics of PTAs. We now present the formal syntax and
semantics of linearly-priced PTAs.

Definition 4. A linearly-priced probabilistic timed automaton (PTA) P is a
tuple (L, l0,X ,Act , enab, prob, inv, price) where:

– L is a finite set of locations and l0 ∈ L is an initial location;
– X is a finite set of clocks;
– Act is a finite set of actions;
– enab : L × Act → Zones(X ) is an enabling condition;
– prob : L × Act → dist(2X × L) is a probabilistic transition function;
– inv : L → Zones(X ) is an invariant condition;
– price = (priceL, priceAct) is a price structure where priceL : L → Q+ is a

location price function and priceAct : L×Act → Q+ an action price function.

The underlying semantics of PTA P is an MDP with an infinite set of both states
and actions. The states are location-valuation pairs (l, v) such that v satisfies
the invariant inv(l) and the initial state is the initial location with all clocks set
to 0. The available actions in state (l, v) are the time-action pairs (t, a) such
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the invariant inv(l) remains true while letting t time units pass, after this time
the enabling condition enab(l, a) is satisfied, and the successor location and the
clocks that are reset are then chosen according to the distribution prob(l, v).
Furthermore, a price is incurred at rate priceL(l) while letting the t time units
pass and a price priceAct(l, a) is incurred when performing the action a.

Definition 5. For a PTA P = (L, l0,X ,Act , enab, prob, inv, price) the semantics
of P is given by the MDP [[P]] = (S, s0, R × Act ,Prob[[P]],Price [[P]]) where:

– S = {(l, v) ∈ L × R
X | v |= inv(l)} and s0 = (l0,0);

– if (l, v) ∈ S and (t, a) ∈ R ×Act, then Prob[[P]]((l, v), (t, a)) = μ if and only if
v + t′ |= inv(l) for 0 ≤ t′ ≤ t, v + t |= enab(l, a) and for any (l′, v′) ∈ S:

μ(l′, v′) =
∑

R⊆X∧v′=(v+t)[R] prob(l, a)(R, l′)

– Price [[P]]((l, v), (t, a)) = priceL(l) ·t+priceAct(l, a) for all (l, v) ∈ S and (t, a) ∈
R × Act.

Expected Prices. The property of PTAs on which we focus in this paper is
the optimal (minimum or maximum) expected price incurred before reaching a
target, which is defined along the same lines as the equivalent property for MDPs
defined in Sect. 2. The differences are that, firstly, the target is now defined as
a set F ⊆ L of locations and, secondly, prices are incurred both when time
elapses in a location, and when an action is performed. Since the semantics of
a PTA is an (infinite-state) MDP, the expected price for a PTA is defined in
straightforward fashion in terms of the MDP. For PTA P, target locations F ,
state (l, v) and opt ∈ {min,max}, we have:

E
opt
P ((l, v), F ) def= E

opt
[[P]]((l, v), SF ) where SF

def= {(l, v) | l ∈ F ∧ v |= inv(l)}.

When computing these values, we make several assumptions about PTAs, similar
to those imposed in [25]. Firstly, this will ensure that Assumption 1 holds for the
underlying MDP, which allows us to apply Theorem1 and Corollary 1. Secondly,
it makes sure that unrealistic behaviours are discarded.

Assumption 2. For any PTA P, we have:

(a) all invariants of P are bounded;
(b) only non-strict inequalities are allowed in clock constraints, i.e., P is closed;
(c) all invariant and enabling conditions of P are convex;
(d) all location prices of P are positive;
(e) P is structurally non-zeno [34] (this can be identified syntactically and in a

compositional fashion [35] and guarantees time-divergent behaviour).

The reasons for these assumptions are similar to those given in [25]. The main
difference is that, in order to ensure that Assumption 1(c) holds, we require
that all location prices are positive (Assumption 2(d)), in addition to the struc-
tural non-zeno assumption. More precisely, for any PTA satisfying Assump-
tion 2(d) and (e), if, from some state and under some strategy a target is not
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reached with probability 1, then from this state and under this strategy the
expected price of reaching the target is infinite. Expected time (as in [25]) is a
special case of expected price where all action prices are 0 and all location prices
are 1, and therefore Assumption 1(d) will always hold in this case.

4 Optimal Expected Price Algorithms for PTAs

In this section, we present our symbolic approach for computing optimal
expected reachability prices and for synthesising a corresponding optimal strat-
egy. We first extend the approach of [25] for computing optimal expected times,
a key building block of which is an initial backwards exploration of the state
space, using the techniques from [30]. Computing expected rewards can then be
performed using value iteration over the zone graph constructed during back-
wards exploration. This process is described in Sect. 4.1. Next, in Sect. 4.2, we
discuss the use of rational k-simple functions and rational (r, k)-nice functions
to represent the prices stored during value iteration. Finally, Sect. 4.3 presents
an example of the process.

To simplify the presentation, for the remainder of this section we will fix a
PTA P = (L, l0,X ,Act , enab, prob, inv, price), target set of locations F ⊆ L and
let [[P]] = (S, s0, R × Act ,Prob[[P]],Price [[P]]).

4.1 Computation of Expected Prices and Optimal Strategies

The first step is the construction of a zone graph G = (Z, E), whose vertices
Z are symbolic states. A symbolic state of P is a location-zone pair (l, ζ) and
represents the set of states {(l, v) | v ∈ R

X ∧ v |= ζ∧inv(l)} of [[P]]. If z = (l, ζ)
and z′ = (l, ζ ′) are symbolic states, then let z∧z′ = (l, ζ∧ζ ′), z ⊆ z′ when ζ ⊆ ζ ′

and z = ∅ if and only if ζ = false. For any symbolic state z = (l, ζ), locations
l′ and l′′, action a and set of clocks R we will use the following time and discrete
predecessor operations:

tpre(z) def= (l, inv(l)∧ ↙ζ)

dpre(l′, a, (R, l′′))(z) def=
{

(l′, false) if l �= l′′

(l′, enab(l′, a) ∧ [R]ζ) otherwise.

As in [25], we use the backwards reachability algorithm of [30] (adding action
labels to the edge tuples) to build a zone graph, shown in Fig. 1.

Given a zone graph G = (Z, E), for any (l, ζ) ∈ Z let E(l, ζ) ⊆ 2E represent the
following sets of edges: E ∈ E(l, ζ) if and only if there exists a ∈ Act such that
edges(l, a) = {(R1, l1), . . . , (Rn, ln)} and:

E = {(z, a, (R1, l1), z1), . . . , (z, a, (Rn, ln), zn)}

for some z1, . . . , zn ∈ Z.
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Fig. 1. Backwards reachability algorithm [30]

After building the zone graph, the next step is to find and restrict [[P]] and
G to include only those states for which the optimal expected price to reach the
target is finite, i.e., states for which the maximum probability of reaching the
target is 1 in the case of minimum expected prices and for which the minimum
probability of reaching the target is 1 in the case of maximum expected prices.

Symbolic (zone-based) algorithms for performing this restriction, which
extend the algorithms developed for MDPs [14,17], can be found in [25]. For
the remainder of the section we suppose that Smin and Smax are the states of
[[P]] for which the minimum and maximum reachability probability is 1, and
[[P]]min and [[P]]max are the sub-MDPs restricted to these sets of states. We will
also assume that Gmin = (Zmin, Emin) and Gmax = (Zmax, Emax) are the restrictions
of the zone graph G = (Z, E) to these sets of states.

It follows that the restricted MDPs [[P]]min and [[P]]max satisfy Assumption 1,
and we can therefore use Theorem 1 in the case of minimum expected pices and
Corollary 1 in the case of maximum expected prices. In particular, we can use
the fact that value iteration for the Bellman operators Tmin

[[P]]min
and Tmax

[[P]]max
(see

Definition 3) for the target set SF converges to the minimum and maximum
expected prices, respectively, when starting from any bounded function.

Next, we present a value iteration method over the restricted zone graphs
Gmin and Gmax, based on the function T opt

Gopt
, which has a direct correspondence

with value iteration over the sub-MDPs [[P]]min and [[P]]max.
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Definition 6. The operator T opt
Gopt

: (Zopt→(Sopt→R))→(Zopt→(Sopt→R)) on
the zone graph Gopt is such that for g : Zopt→(Sopt→R), z = (l, ζ) ∈ Zopt and
s = (l, v) ∈ Sopt where s ∈ tpre(z) we have T opt

Gopt
(g)(z)(s) equals 0 if l ∈ F and

otherwise equals:

opt�

t∈R∧
v+t∈ζ

opt
E∈E(z)

{

priceL(l) · t + priceAct(l, a)

+
∑

(z,a,(R,l′),z′)∈E

prob(l, a)(R, l′) · g(z′)(l′, (v + t)[R])

}

.

for opt ∈ {min,max}, and where min� = inf and max� = sup.

The proof of the following proposition follows directly from the proofs pre-
sented in [25] for optimal expected time computation.

Proposition 1. For opt ∈ {min,max}, if f : Sopt→R and g : Zopt→(Sopt→R)
are functions such that f(s) = g(z)(s) for all s ∈ Sopt and z ∈ Zopt such that
s ∈ tpre(z), then for any s ∈ Sopt and n ∈ N we have:

(T opt
[[P]]opt

)n(f)(s) = opt{ (T opt
Gopt

)n(g)(z)(s) | z ∈ Zopt ∧ s ∈ tpre(z) }.

Consequently, value iteration, using function T opt
Gopt

, converges to the opti-
mal expected reachability price for the original PTA, a result that follows from
Theorem 1, Corollary 1 and Proposition 1. The final step is then to synthesise an
ε-optimal deterministic, memoryless strategy for expected reachability on the
PTA. This can be done by stepping through the backwards graph and selecting
the time-action pairs that achieve the results returned by value iteration in each
state of the zone graph.

Unlike traditional value iteration for MDPs, which iterates over real-valued
vectors over states, the value iteration process for PTAs outlined above uses
state vectors whose values are themselves real-valued functions. In the following
section, we will show how this can be achieved using classes of functions called
rational k-simple functions and rational (r, k)-nice functions.

4.2 Rational Simple Functions and Rational Nice Functions

To simplify the presentation we will assume that X = {x1, . . . , xn} and k ∈ N is
the maximum constant appearing in P. Since P satisfies Assumption 2(a), it is
bounded, and therefore all clock values appearing in [[P]] are bounded by k. We
first define polyhedra with rational time bounds.

Definition 7. A (convex) k-polyhedron C ⊆ {v ∈ R
X | v(x) ≤ k for x ∈ X} is

defined by finitely many linear inequalities; formally, it is of the form:

C =
{
v ∈ R

X | ∑n
i=1 qij · v(xi) ≤ fj for 1 ≤ j ≤ M

}
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where qij , fj ∈ Q and fj ≤ k for all 1 ≤ i ≤ n and 1 ≤ j ≤ M for some M ∈ N.
Furthermore, a k-bipolyhedron is a set of the form {(v, t) | v ∈ C ∧ v + t ∈ D}
where C and D are k-polyhedra.

For the case of expected price reachability computation, [25] introduced the
notions of rational k-simple and k-nice functions to represent the functions
encountered during value iteration.

Definition 8. For zone ζ, a function f : ζ→R is rational k-simple if and only
if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil · v(xi) if v ∈ Dl

where cj , dl, pil ∈ Q+ such that
∑n

i=1 pil ≤ 1 and Cj ,Dl are k-polyhedra for all
1 ≤ i ≤ n, 1 ≤ j ≤ M and 1 ≤ l ≤ N for some M,N ∈ N.
Furthermore, a function f : Z→(S→R) is rational k-simple if the function
f(l, ζ)(l, ·) : ↙ζ→R is rational k-simple for all (l, ζ) ∈ Z.

Definition 9. For a zone ζ, a function g : (ζ × R)→R is rational k-nice if and
only if it can be represented as:

g(v, t) =

{
cj + t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (1 − ∑n

i=1 pil) · t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q+ such that
∑n

i=1 pil ≤ 1 and Fj , Gl are rational k-
bipolyhedra for all 1 ≤ i ≤ n, 1 ≤ j ≤ M and 1 ≤ l ≤ N for some M,N ∈ N.

We now extend these definitions to allow the representation of the value func-
tions encountered when computing optimal expected price reachability using
value iteration and either Tmin

Gmin
or Tmax

Gmax
(see Definition 6). We first extend the

definition of rational k-simple functions and then consider the different oper-
ations performed by Tmin

Gmin
and Tmax

Gmax
and analyse their effect on the extended

definition of rational k-simple functions.

Definition 10. For zone ζ, a function f : ζ→R is rational k-simple if and only
if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil · v(xi) if v ∈ Dl

where cj , dl, pil ∈ Q and Cj ,Dl are k-polyhedra for all 1 ≤ i ≤ n, 1 ≤ j ≤ M
and 1 ≤ l ≤ N for some M,N ∈ N.

Furthermore, a function f : Z→(S→R) is rational k-simple if the function
f(l, ζ)(l, ·) : ↙ζ→R is rational k-simple for all (l, ζ) ∈ Z.
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The above definition extends the k-simple functions of [25] (see Definition 8) by
allowing any linear combination of clock values and allowing negative as well
as non-negative rational constants. The first operation we consider for rational
k-simple functions is the resetting of clocks.

Definition 11. If f : ζ→R is a rational k-simple function and R ⊆ X , let
f [R] : [R]ζ→R be the function where f [R](v) = f(v[R]) for all v ∈ ζ.

The following lemma demonstrates that resetting clocks preserves rational
simplicity.

Lemma 1. If f : ζ→R is rational k-simple and R ⊆ X , then f [R] : [R]ζ→R is
rational k-simple.

Proof. For any k-polyhedron C and R ⊆ X , let [R]C be the k-polyhedron {v ∈
R

X | v[R] ∈ C ∧ v(x) ≤ k for x ∈ X}. Now consider any R ⊆ X and rational
k-simple function f : ζ→R such that for any v ∈ ζ:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil · v(xi) if v ∈ Dl

(1)

where cj , dl, pil ∈ Q and Cj ,Dl are k-polyhedra for all 1 ≤ i ≤ n, 1 ≤ j ≤ M
and 1 ≤ l ≤ N for some M,N ∈ N. By Definition 11, for any v ∈ [R]ζ we have:

f [R](v) = f(v[R])

=

{
cj if v[R] ∈ Cj

dl − ∑n
i=1 pil · v[R](xi) if v[R] ∈ Dl

(by (1))

=

{
cj if v ∈ [R]Cj

dl − ∑n
i=1 pil · v[R](xi) if v ∈ [R]Dl

(by definition of [R]C)

=

{
cj if v ∈ [R]Cj

dl − ∑n
i=1 p′

il · v(xi) if v ∈ [R]Dl

where p′
il = 0 if xi ∈ R and p′

il = pil otherwise. It therefore follows that f [R] is
rational k-simple as required. �

The next operation performed by Tmin
Gmin

and Tmax
Gmax

builds function of the
form v 	→ p · t + p′ + f(l, ζ)(l, v + t). This motivates first demonstrating that
adding constants (corresponding to the accumulation of action prices) preserves
k-simplicity.

Lemma 2. If f : ζ→R is rational k-simple and p′ ∈ Q+, then f + p′ : ζ→R is
also rational k-simple.

Proof. The proof follows from the definition of k-simple functions (see
Definition 10). �
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We now extend rational k-nice functions of [25] (see Definition 9) to (p, k)-nice
functions, where the additional parameter p corresponds to the current rate at
which prices are accumulated as time passes.

Definition 12. For p ∈ Q+ and zone ζ, a function g : (ζ × R)→R is rational
(p, k)-nice if and only if it can be represented as:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q and Fj , Gl are rational k-bipolyhedra for all 1 ≤ i ≤ n, 1 ≤
j ≤ M and 1 ≤ l ≤ N for some M,N ∈ N.

Next we show that rational k-nicety is preserved under taking convex combina-
tions of functions of the form v 	→ p · t + f(l, ζ)(l, v + t).

Lemma 3. A convex combination of rational (p, k)-nice functions is rational
(p, k)-nice.

Proof. It is sufficient to consider a binary convex combination, as any other con-
vex combination can be rewritten as a sequence of binary convex combinations.
Therefore, consider any zone ζ, rationals λ, λ′ ∈ Q+ and rational (p, k)-nice
functions g, g′ : (ζ × R)→R such that λ + λ′ = 1 and for any v ∈ ζ:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

g′(v, t) =

{
c′
j′ + p · t if (v, t) ∈ F ′

j′

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′

where cj , dl, pil, c
′
j′ , d′

l′ , p
′
il′ ∈ Q and Cj ,Dl, C

′
j′ ,D′

l′ are k-polyhedra for all 1 ≤
i ≤ n, 1 ≤ j ≤ M, 1 ≤ l ≤ N, 1 ≤ j′ ≤ M ′ and 1 ≤ l′ ≤ N ′ for some
M,M ′, N,N ′ ∈ N. Let h : (ζ × R)→R be the function such that h(v, t) =
λ · g(v, t) + λ′ · g′(v, t) for all (v, t) ∈ ζ × R. Taking any (v, t) ∈ ζ × R, we have
the following four cases to consider.

– If (v, t) ∈ Fj ∩ F ′
j′ for some j and j′, then

h(v, t) = λ · (cj + p · t) + λ′ · (c′
j′ + p · t) = (λ · cj + λ′ · c′

j′) + p · t

since λ + λ′ = 1.
– If (v, t) ∈ Fj ∩ G′

l′ for some j and l′, then

h(v, t) = λ · (cj + p · t) + λ′ ·
(
d′
l′ −∑n

i=1 p′
il′ · v(xi) + (p −∑n

i=1 p′
il′) · t

)

= (λ · cj + λ′ · d′
l′) −∑n

i=1(λ
′ · p′

il′) · v(xi) +
(
λ · p + λ′ · p −∑n

i=1(λ
′ · p′

il′)
)

· t

(rearranging)
= (λ · cj + λ′ · d′

l′) −∑n
i=1(λ

′ · p′
il′) · v(xi) + (p −∑n

i=1(λ
′ · p′

il′)) · t

since λ + λ′ = 1.
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– If (v, t) ∈ Gl ∩ F ′
j′ for some l and j′, then similarly to the above:

h(v, t) = λ ·
(
dl − ∑n

i=1 pil · v(xi) + (p − ∑n
i=1 pil) · t

)
+ λ′ · (c′

j′ + t)

= (λ · dl + λ′ · c′
j′) − ∑n

i=1(λ · pil) · v(xi) + (p − ∑n
i=1(λ · pil)) · t.

– If (v, t) ∈ Gl ∩ G′
l′ for some l and l′, then using fact λ + λ′ = 1 we have:

h(v, t) = λ ·
(
dl −∑n

i=1 pil · v(xi) +
(
p −∑n

i=1 pil
) · t
)

+λ′ ·
(
d′
l′ −∑n

i=1 p′
il′ · v(xi) +

(
p −∑n

i=1 p′
il′
) · t
)

= (λ · dl + λ′ · d′
l′ ) +

∑n
i=1(λ · pil + λ′ · p′

il′ ) · v(xi) +
(
r −∑n

i=1(λ · pil + λ′ · p′
il′ )
) · t.

As these are all the cases to consider and the intersection of k-polyhedra is a
k-polyhedron, it follows that h is a rational (p, k)-nice function as required. �
After the convex combination, Tmin

Gmin
and Tmax

Gmax
take a minimum or maximum

value respectively, and therefore we show that these operations also preserve
(p, k)-nicety.

Lemma 4. The minimum and maximum of rational (p, k)-nice functions are
rational (p, k)-nice.

Proof. We prove the case for the minimum of rational (p, k)-nice functions; the
case for maximum follows similarly. Given rational (p, k)-nice functions g, g′ :
(ζ × R)→R such that for any (v, t) ∈ ζ × R:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

g′(v, t) =

{
cj′ + p · t if (v, t) ∈ F ′

j′

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′

where cj , dl, pil, c
′
j′ , d′

l′ , p
′
il′ ∈ Q and Cj ,Dl, C

′
j′ ,D′

l′ are k-polyhedra for all 1 ≤
i ≤ n, 1 ≤ j ≤ M, 1 ≤ l ≤ N, 1 ≤ j′ ≤ M ′ and 1 ≤ l′ ≤ N ′ for some
M,M ′N,N ′ ∈ N. Letting h = min{g, g′} and considering h(v, t) for any (v, t) ∈
ζ × R, we have the following four cases to consider.

– If (v, t) ∈ Fj ∩ F ′
j′ for some j and j′, then

h(v, t) =

{
cj + p · t if (v, t) ∈ Fj ∩ H

cj′ + p · t if (v, t) ∈ F ′
j′ ∩ H ′

where H = {(v, t) ∈ ζ × R | cj + p · t ≤ c′
j′ + p · t} = {(v, t) ∈ ζ × R | cj ≤ c′

j′}
and similarly H ′ = {(v, t) ∈ ζ × R | c′

j′ ≤ cj}.
– If (v, t) ∈ Fj ∩ G′

l′ for some j and l′, then

h(v, t) =

{
cj + p · t if (v, t) ∈ Fj ∩ H

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′ ∩ H ′
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where

H = {(v, t) ∈ ζ × R | cj + p · t ≤ d′
l′ −∑n

i=1 p′
il′ · v(xi) +

(
p −∑n

i=1 p′
il′
) · t}

= {(v, t) ∈ ζ × R | ∑n
i=1 p′

il′ · (v(xi) + t) ≤ d′
l′ − cj} (rearranging)

= {(v, t) ∈ ζ × R | ∑n
i=1 p′

il′ · (v + t)(xi) ≤ d′
l′ − cj} (by definition of v + t)

and similarly H ′ = {(v, t) ∈ ζ × R | ∑n
i=1 −p′

il′ · (v + t)(xi) ≤ cj − d′
l′}.

– If (v, t) ∈ Gl ∩ F ′
j′ for some l and j′, then

h(v, t) =

{
dl − ∑n

i=1 pil · v(xi) + (p − ∑n
i=1 pil) · t if (v, t) ∈ Gl ∩ H

cj′ + t if (v, t) ∈ F ′
j′ ∩ H ′

and by a similar reduction to the case above we have:

H = {(v, t) ∈ ζ × R | ∑n
i=1 −pil · (v + t)(xi) ≤ cj′ − dl}

H ′ = {(v, t) ∈ ζ × R | ∑n
i=1 pil · (v + t)(xi) ≤ dl − cj′}.

– If (v, t) ∈ Gl ∩ G′
l′ for some l and l′, then

h(v, t) =

{
dl − ∑n

i=1 pil · v(xi) + (p − ∑n
i=1 pil) · t if (v, t) ∈ Gl ∩ H

d′
l′ − ∑n

i=1 p′
il′ · v(xi) + (p − ∑n

i=1 p′
il′) · t if (v, t) ∈ G′

l′ ∩ H ′

where

H = {(v, t) ∈ ζ × R | dl −∑n
i=1 pil · v(xi) +

(
p −∑n

i=1 pil

) · t

≤ d′
l′ −∑n

i=1 p′
il′ · v(xi) +

(
p −∑n

i=1 p′
il′
) · t}

= {(v, t) ∈ ζ × R | ∑n
i=1(p

′
il′ − pil) · v(xi) +

∑n
i=1(p

′
il′ − pil) · t ≤ d′

l′ − dl}
(rearranging)

= {(v, t) ∈ ζ × R | −∑n
i=1(p

′
il′ − pil) · (v(xi) + t) ≤ d′

l′ − dl}
(rearranging again)

= {(v, t) ∈ ζ × R | −∑n
i=1(p

′
il′ − pil) · (v + t)(xi) ≤ d′

l′ − dl}

by definition of v + t and similarly we have:

H ′ = {(v, t) ∈ ζ × R | − ∑n
i=1(pil − p′

il′) · (v + t)(xi) ≤ dl − d′
l′}.

Since in each case H and H ′ are k-bipolyhedra, if follows from Definition 12 that
the lemma holds. �
The final operations performed by Tmin

Gmin
and Tmax

Gmax
concern taking the infimum

or supremum over t of a function of the form v 	→ p · t + f(l, ζ)(l, v + t). Hence,
we now show that performing either of these operations on a rational (p, k)-nice
function returns a rational k-simple function.

Lemma 5. For any zone ζ, if g : (ζ × R)→R is rational (p, k)-nice, then the
functions f1 : ζ→R and f2 : ζ→R where f1(v) = inft∈R g(v, t) and f2(v) =
supt∈R g(v, t) for v ∈ ζ are rational k-simple.
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Proof. We prove the case for f1; the case for f2 follows similarly (swapping Δ−

and Δ+). Consider any zone ζ and rational (p, k)-nice function g : (ζ × R)→R.
By Definition 12, for any (v, t) ∈ ζ × R, we have:

g(v, t) =

{
cj + p · t if (v, t) ∈ Fj

dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q and

Fj = {(v, t) | v ∈ Cj ∧ v + t ∈ C ′
j} and Gl = {(v, t) | v ∈ Dl ∧ v + t ∈ D′

l}
for some k-polyhedra Cj , C

′
j ,Dl and D′

l for all 1 ≤ i ≤ n, 1 ≤ j ≤ M and
1 ≤ l ≤ N for some M,N ∈ N.

For any k-polyhedron C, let

Δ−(v, C) def= inf{t | v + t ∈ C} and Δ+(v, C) def= sup{t | v + t ∈ C}.

Following the arguments of [4], it follows that the functions Δ−(·, C) : ζ→R and
Δ+(·, C) : ζ→R are both k-simple over k-polyhedra. If f1(v) = inft∈R g(v, t), for
any v ∈ ζ we have f1(v) equals:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cj if v ∈ Cj ∩ C′
j

cj + p · Δ−(v, C′
j) if v ∈ Cj \ C′

j

dl −∑n
i=1 pil · v(xi) if v ∈ Dl ∩ D′

l and p −∑n
i=1 pil ≥ 0

dl −∑n
i=1 pil · v(xi) +

(
p −∑n

i=1 pil
) · Δ−(v, D′

l) if v ∈ Dl \ D′
l and p −∑n

i=1 pil ≥ 0

dl −∑n
i=1 pil · v(xi) +

(
p −∑n

i=1 pil
) · Δ+(v, D′

l) if v ∈ Dl and p −∑n
i=1 pil < 0

In all except the final two cases, since Δ−(·, C) : ζ→R is k-simple, it follows
that f1 is rational k-simple. Considering the penultimate case, by definition of
k-simple functions we have the following two cases to consider.

– if Δ−(v,D′
l) = d′

l for some d′
l ∈ Q+, then for any v ∈ Dl \ D′

l:

f1(v) = dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · Δ−(v,D′
l)

=
(
dl + (p − ∑n

i=1 pil) · d′
l

)
− ∑n

i=1 pil · v(xi) (rearranging)

which is rational k-simple, since g is rational (p, k)-nice.
– if Δ−(v,D′

l) = d′
l − v(xi′

l
) for some d′

l ∈ Q+ and 1 ≤ i′l ≤ n, then for any
v ∈ Dl \ D′

l:

f1(v) = dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · Δ−(v,D′
l)

= dl − ∑n
i=1 pil · v(xi) + (p − ∑n

i=1 pil) · (d′
l − v(xi′

l
)) (rearranging)

=
(
dl + (p − ∑n

i=1 pil) · d′
l

)
− ∑n

i=1 p′
il · v(xi)

where p′
il = pil + (p − ∑n

i=1 pil) if i = i′l and p′
il = pil otherwise.

The final case follows similarly to the penultimate using the fact Δ+(v,D′
l) is

a k-simple function. Therefore, we can conclude that f1 is rational k-simple as
required. �
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In the related proof of [25] we see that, for minimum expected time computation,
it is always optimal to let as little time pass as possible in the current polyhedron
and, for maximum expected time computation, it is always optimal to let as much
time pass as possible. However, for prices, we see that this is not always the case,
e.g., Δ+(v, C) is used in the computation of minimum expected prices. This is
due to the fact that price rates in locations reached at a later stage can be higher,
and in such cases it can be optimal to let time pass now and accumulate a lower
price, as opposed to waiting and accumulating a higher price later.

We now combine the above results and show that rational k-simple func-
tions are a suitable representation for value functions when computing optimal
expected time using value iteration and either Tmin

Gmin
or Tmax

Gmax
.

Proposition 2. For opt ∈ {min,max}, if f : Zopt→(Sopt→R) is a rational
k-simple function, then T opt

Gopt
(f) is rational k-simple.

Proof. We only the consider when opt = min, the case when opt = max follows
similarly. Consider any rational k-simple function, z = (l, ζ) ∈ Zmin and E ∈
E(z). For any v ∈ R

X and t ∈ R and letting r = priceL(l) and p′ = priceAct(l, a):

p · t + p′ +
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · f(z(R,l′))(l′, (v + t)[R])

= p · t + p′ +
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · f [R](z(R,l′))(l′, v + t)

(by Definition 11)

=
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · (
p · t + p′ + f [R](z(R,l′))(l′, v + t)

)

(2)

since prob(l, a) is a distribution. By construction, f is rational k-simple, and
hence for any (z, a, (R, l′), z(R,l′)) ∈ E using Lemmas 1 and 2 we have that
p′ + f [R] is also rational k-simple. Using Definition 12 it follows that:

(v, t) 	→ p · t + p′ + f [R](z(R,l′))(l′, v + t)

is rational (p, k)-nice. Thus, since (z, a, (R, l′), z(R,l′)) ∈ E was arbitrary, using
Lemma 3 and (2) we have that:

(v, t) 	→ p · t + p′ +
∑

(z,a,(R,l′),z(R,l′))∈E prob(l, a)(R, l′) · f(z(R,l′))(l′, (v + t)[R])

is also rational (p, k)-nice. Since E ∈ E(z) was arbitrary and E(z) is finite,
Lemma 4 tells us:

(v, t) �→ min
E∈E(z)

{
p · t + p′ +

∑
(z,a,(R,l′),z(R,l′))∈E

prob(l, a)(R, l′) · f(z(R,l′))(l
′, (v + t)[R])

}

is again rational (p, k)-nice. Finally, using Definition 6 and Lemma 5, it follows
that TG(f)(z) is rational k-simple as required. �
Proposition 2 tells us that value iteration over a zone graph to compute expected
prices, as specified in Definition 6, can be performed using rational k-simple
functions (and rational (p, k)-nice functions).
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4.3 Example

Figure 2 shows an example of a linearly-priced PTA. Location prices are indi-
cated next to each location; all action prices are zero so they are omitted from
the figure. For this example, we consider the target set F = {l2} and compute
both the minimum and maximum expected price of reaching F . For this PTA,
all states reach the target with minimum (and maximum) probability 1, and
therefore the zone graphs used for minimum and maximum expected price com-
putation are the same and equal that constructed using the algorithm presented
in Fig. 1. This zone graph is shown in Fig. 3.

In the case of the minimum expected price, performing value iteration over
the zone graph G of Fig. 3 gives, for n≥ 3:

(Tmin
G )n(f0)(z0)(l0, v) =

(
2 + 0.5 ·

(
3 +

∑n−3
i=0 0.25i

))
− v(x)

(Tmin
G )n(f0)(z1)(l1, v) =

{
9 − 3 · v(x) if v(x) ≤ 3
0 if 3 ≤ v(x) ≤ 4

(Tmin
G )n(f0)(z2)(l2, v) =

∑n−2
i=0 0.25i − v(x)

(Tmin
G )n(f0)(z3)(l3, v) = 0

Fig. 2. Example PTA P

Fig. 3. Backwards zone graph G for PTA of Fig. 2 and target set {l3}
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It then follows that the minimum expected price to reach the target from the
initial state equals 4.166667. On the other hand, for the maximum expected
price, performing value iteration yields for n ≥ 3:

(Tmax
G )n(f0)(z0)(l0, v) =

⎧
⎨

⎩

(
1 + 0.5 ·

(
9 +

∑n−3
i=0 0.25i

))
− v(x) if x ≤ 1

0.5 ·
(
12 +

∑n−3
i=0 0.25i

)
− 3 · v(x) if 1 ≤ x ≤ 2

(Tmax
G )n(f0)(z1)(l1, v) = 12 − 3 · v(x)

(Tmax
G )n(f0)(z2)(l2, v) =

∑n−2
i=0 0.25i − v(x)

(Tmax
G )n(f0)(z3)(l3, v) = 0

and hence the maximum expected price for the initial state is 6.166667.
The optimal strategy for the minimum expected price is to always perform

an action as soon as it is enabled. The choices of the optimal strategy for the
maximum expected price are to leave l0 as soon as the action a is enabled, as
this allows it to remain longer in l1, yielding a higher overall expected price.

5 Conclusions

We have extended the techniques of [25] for the symbolic computation of opti-
mal expected time and strategy synthesis to expected prices for linearly-priced
probabilistic timed automata. The approach involves building the backwards
zone graph of the PTA under study and then performing value iteration over
this graph. We have demonstrated that an extension of simple and nice func-
tions over rational valued polyhedra provide an effective representation of the
value functions required for this computation. One restriction that we impose on
the linearly-priced PTAs we consider is that all location prices are positive. We
note that it should be possible to remove this restriction by extending the algo-
rithms of [17] for removing zero-priced end components for finite state MDPs to
linearly-priced PTAs.

As already mentioned in [25], an important next step is to perform a rigorous
investigation into the advantages and disadvantages of our approach in compar-
ison with the digital clocks method [28]. This will require implementing the
algorithms introduced here, for example using the Parma Polyhedra Library [5],
which includes efficient ways of manipulating convex polyhedra and has already
been used effectively to implement a number of real-time verification algorithms.
Finally, we also plan to investigate policy iteration since it converges to optimal
expected prices (see Theorem 1 and Corollary 1).
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Abstract. Runtime Verification is a light-weight approach to systems
verification, where actual executions of a system are processed and ana-
lyzed using rigorous techniques. In this paper we shall narrow the term’s
definition to represent the commonly studied variant consisting of verify-
ing that a single system execution conforms to a specification written in a
formal specification language. Runtime verification (in this sense) can be
used for writing test oracles during testing when the system is too com-
plex for full formal verification, or it can be used during deployment of
the system as part of a fault protection strategy, where corrective actions
may be taken in case the specification is violated. Specification languages
for runtime verification appear to differ from for example temporal log-
ics applied in model checking, in part due to the focus on monitoring
of events that carry data, and specifically due to the desire to relate
data values existing at different time points, resulting in new challenges
in both the complexity of the monitoring approach and the expressive-
ness of languages. Over the recent years, numerous runtime verification
specification languages have emerged, each with its different features and
levels of expressiveness and usability. This paper presents an overview
and a discussion of this design space.

1 Introduction

Runtime Verification (RV) [31,48] is narrowly viewed1 as the process of mon-
itoring and checking the runtime behavior of a system, from here on referred
to as the System Being Monitored (SBM), against a formal specification. RV
can be applied for safety, security, and comprehension purposes. The SBM must
emit an event stream (via instrumentation or otherwise), the execution trace,
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which is then consumed by a monitor, which as a secondary input takes a formal
specification. RV can be applied in online mode, where the monitor executes at
the same time as the SBM, tracking its moves step by step, or it can be applied
in offline mode to a log produced by the SBM. Orthogonally, RV can be applied
before deployment of the software, for example as part of the testing process, or
after deployment, for example as part of a fault protection strategy, where the
monitor can influence the behavior of the SBM. In this case, the monitor will
usually be run in online mode. The monitor in the simplest case will produce a
true/false verdict, but can be more informative, and produce richer information
about the trace seen so far.

To be effective, a runtime verification method requires an expressive specifica-
tion language to capture properties of interest, an elegant specification language
allowing specifications to be succinct and easy to write and read, and an efficient
monitoring algorithm to ensure that monitoring does not impede the running of
the monitored system. In this paper we shall focus on the former two (although
efficiency will be discussed as it does indeed influence the design space), and
investigate what we consider the most common variations of specification lan-
guages for RV. Numerous such specification languages have been developed in
recent time. These are usually based on well known concepts such as e.g. state
machines, regular expressions, temporal logics (past time as well as future time),
timed logics, context free grammars, variations of the μ-calculus, rule-based sys-
tems, stream processing, and process algebras.

A big emphasis over the last decade has been on data parameterized log-
ics, suited for monitoring sequences of events carrying data parameters (named
records). Temporal logics applied in model checking (MC) [39] have to some
extent allowed data as well. However, state of the art RV logics tend to support
relating data across time points in a manner not as commonly supported in tem-
poral logics for MC (although instances exist, e.g. [1]). To illustrate this, assume
that we analyze finite traces (logs), and that we operate with a variant of LTL
[53] with a finite trace semantics. Consider the following classical MC formula:
�(p → ♦q), meaning if p is true in a position in the trace, then q must be true
at a later point in that finite trace. In a system such as SPIN, it is possible
to associate expressions over the state to the propositions p and q, for example
p = x ≥ 0 and q = y ≥ 0. Expanding these names in the formula, we get the
formula: �(x ≥ 0 → ♦y ≥ 0). This formula refers to data. However, to monitor
such a formula (on a finite trace) requires a memory of only 1 bit, raised iff.
x ≥ 0 has been observed true and y ≥ 0 has not yet been observed true when
analyzing the trace from left to right. Consider now a different formula, express-
ing that whenever x ≥ 0 and has a value k then y should eventually obtain that
value: ∀k �((x ≥ 0 ∧ x = k) → ♦y = k). This property can be very costly to
monitor since the monitor from any point where x ≥ 0 will have to remember
the value k of x until y catches up.

Due to the nature of RV where only a single trace is examined, it is con-
sidered possible to allow very expressive specification languages, in contrast to
static analysis, where expressiveness of the specification language normally is
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considered in conflict with degree of automation achievable. It is this perceived
freedom to explore richer logics that have caused RV logics to incorporate data
on a larger scale. It is, however, not the case that RV logics need to be so dif-
ferent from for example MC logics. RV logics can fundamentally focus on finite
traces (safety properties), whereas MC logics must handle infinite traces (safety
and liveness properties). But beyond this point, the two classes of logics could
in principle have a very large intersection. Runtime verification can be seen as
exploring new branches of logics also potentially useful for model checking.

This paper presents a discussion of some of the design space for state-of-the-
art RV logics, that we have found of general interest. The presentation is split
into a discussion of core temporal constructs without considering data (although
data occur), followed by considerations of how to deal with data. The discus-
sion is in part based on property examples and their specifications produced by
participants of two recent runtime verification competitions, CRV (Competition
on Runtime Verification) 2014 [8] and CRV 2015 [32]. Participants used their
favorite specification language to specify a set of shared properties proposed by
the participants. In this study we inspected properties submitted by the devel-
opers of MarQ [55], LogFire [37], Larva [22], JavaMOP [51], JUnitRV [24],
Monpoly [10], and Solist [17]. The paper focuses due to lack of space specifically
on state machines, regular expressions and temporal logics, since these are the
most commonly seen. This leaves out RV systems for such formalisms as context
free grammars [51], variations of the μ-calculus [4], rule-based systems [6,37],
stream processing [23], and process algebras [7], all of which are quite interest-
ing alternatives. As the focus of this paper is on the usability of specification
languages, we will often make use of ASCII representations of specifications in
different formalisms. However, where the focus is not on usability, but on some
other feature of the language, we will use more convenient formalisms such as
graphical automata and mathematical formula.

The paper is organized as follows. We begin with a brief summary of the
main elements considered of importance in runtime verification (Sect. 2). We
then present parts of the design space for propositional logics ignoring data
(Sect. 3) and then with data (Sect. 4). We conclude with a summary of our
findings (Sect. 5).

2 Fundamentals of Runtime Verification

To set the scene we briefly recall what we mean by runtime verification (RV) in
this paper and, therefore, what a specification language for RV involves. In run-
time verification we abstract an executing system being monitored (SBM) as a
sequence of discrete observations, also referred to as a trace. We call these obser-
vations events. Commonly events are either propositional names or named data
records i.e. a pair of a name and a list of data values. Events can be produced
directly by the system, or extracted by code instrumentation: special code pieces
inserted in the executing code, either manually or using some form of automated
code instrumentation software, for example aspect-oriented programming tech-
nology [41]. In the case of offline monitoring, the trace will be finite. In the case of
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online monitoring, the executing system may be theoretically non-terminating.
However, even in this case any monitor will at any time have to rely only on a
finite set of observations - a finite prefix of the theoretically infinite execution.

We shall refer to a desired behavior of a system to be monitored as a property.
Let Γ denote the set of all possible traces. A property is abstractly seen as a
subset P ⊆ Γ of traces, namely the traces that we say satisfy (belong to) the
property. We shall usually describe properties in informal English, and then
formalize them in a specification language. A specification language allows us
to formally define P via a textual specification ϕ. The property (set of traces)
represented by a specification ϕ is denoted by P(ϕ). The monitoring problem
is then to check whether a particular trace τ belongs to this set i.e. to check
τ ∈ P(ϕ). This is often referred to as matching the trace against the property.
Note that specifications can be provided in negative form as discussed below.
For this reason we need to distinguish between the language L(ϕ) denoted by a
specification, which is a very straight forward definition, and the property P(ϕ)
denoted by the specification, defined in terms of L(ϕ). This will be clarified in
the following. A number of concerns must be addressed in any RV system, as
discussed below.

Polarity. A specification ϕ may specify the good (desired) behavior or the
bad (undesired) behavior. In the positive case P(ϕ) = L(ϕ). In the negative
case P(ϕ) = Γ \ L(ϕ). In the former case matching represents validation and
in the latter it represents violation of the property. This choice can have an
impact on the readability of a specification. For example, consider the following
UnsafeMapIterator property about Java collection objects.

Property 1 (UnsafeMapIterator). Given a map object m, collection object c, and
iterator object i, if c is created from m (c is for example the set of m’s key values),
and i is created from c, and later m is updated, then i should not be used any
further. We use the event create(x, y) to indicate that object y is created from
object x, use(i) to indicate that iterator i is used for iteration, and update(m)
to indicate that map m is updated.

A positive formulation of this property using a data parameterized regular
expression2 (note that the main emphasis is not on data here) could be:

Λm, c, i : create(m, c).update(m)∗.create(c, i).use(i)∗.update(m)∗ (1)

This property states the sequence of events that are allowed (for a map m,
collection c and iterator i). Most notably, this sequence disallows an use event
occurring after a map update. The positive formulation needs to capture all
acceptable behaviors. A negative formulation could be:

∃m, c, i : create(m, c).create(c, i).update(m).use(i) (2)

2 Here Λm, c, i is related to trace-slicing (see Sect. 4.4) and has the meaning that the
property should hold for all subtraces projected on possible values for m, c, i.
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Where we take a non-standard skip semantics (see Sect. 3.1) that skips any
event that does not match the next expected event. In the negative formulation
it suffices to describe the sequence of events required to lead to failure, which
in some cases can be simpler. Therefore, there is an argument for allowing for
both positive and negative formulations even if the underlying language is closed
under negation.

Where to Match. In the previous example we matched the total trace against
the formulas, that is checking τ ∈ L(ϕ) in the positive case and τ ∈ Γ \ L(ϕ) in
the negative case. This is referred to as total matching, and is the most common
approach. An alternative is to perform suffix matching, first proposed in [2],
where a trace belongs to the property denoted by the specification if a suffix of
the trace belongs to the language of the specification. That is: P(ϕ) = {σ.τ |
τ ∈ L(ϕ), σ ∈ Γ}. To see how this can improve readability consider the following
property, also about Java objects.

Property 2 (HasNextIterator). For every iterator object i, a call to next must
be preceded by a call to hasNext returning true, without any other next calls
occurring in between.

The following two specifications of this property are negative (the undesired
case). One (left) uses total-matching on the whole trace, and the other (right)
uses suffix-matching.

Λi : (hasNext(i, true)+.next(i))∗.next(i) Λi : (ε | next(i)).next(i)

Where ε denotes the start of the trace. Suffix-matching also allows us to write
the slightly more concise Λi : next(i).next(i), which is not quite equivalent as it
misses the case where the trace begins with next(i). Suffix matching is typically
combined with negatively formulated regular expressions.

Finite versus Infinite Traces. When monitoring a trace produced by a sys-
tem, at any point in time the trace observed so far will be finite. This means that
the semantics of runtime verification logics should deal with finite traces. Finite
state machines and regular expressions are typically defined over finite traces.
However, traditionally, temporal logics applied in, for example, model checking,
are defined over infinite traces, and such temporal logics must be adapted to the
finite trace scenario, re-defining their semantics, when applied in a runtime ver-
ification context. One such approach, which for example is applicable to off-line
log file analysis, is to handle obligations such as ♦p as false on a finite trace where
p never occurs. Hence the result of evaluating a temporal formula on a trace is
either true or false, as in the case of finite state machines and regular expressions
(language membership). A different approach, applicable to online monitoring,
consists of viewing a finite trace as a prefix of some infinite trace. At each time
point the current verdict depends on whether the finite trace observed so far
potentially can be extended to a satisfying (finite or infinite) trace. This natu-
rally leads one to go beyond the true and false verdicts, and introduce additional
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verdicts, such as “so far true” and “so far false”, for cases where there are both
satisfying and violating extensions. The reader is invited to consult [14,31] for
further discussions.

Safety and Co-safety Properties. A safety property intuitively captures
the notion that nothing bad happens [44]. The languages of such properties
are prefix-closed since if a trace is safe then all of its prefixes must be safe.
A consequence of this is that safety properties can be falsified by a finite prefix
of a trace i.e. there can be a point before the end of the trace where it is known
that the property has been falsified. Conversely, co-safety properties capture the
notion that something good happens, are extension-closed3, and can be validated
by a finite prefix. Properties may be neither safety or co-safety properties but
may share qualities with both classes. A response property of the form “whenever
A happens B should eventually happen” is an example of a property that is
neither, and can not be decided by a prefix of a trace. One may therefore deem
such a property non-monitorable. However, in the case of offline monitoring,
where one checks a finite trace that is not extended, it is possible to give a very
precise true/false semantics to such a formula. Classes of monitorable properties
are discussed further in [15,30].

Beyond Language Inclusion. So far we have mostly discussed logics for check-
ing Boolean satisfaction in the form of: τ ∈ P(ϕ). We have, however, briefly
mentioned extending the Boolean verdict domain {true, false} with values such
as “so far true” and “so far false” [14,15], in some work unified into a “so far
unknown” ?-result [51]. The full generalization of the Boolean result domain is
any data domain D considered useful. For example, a logic could be designed for
computing statistical information as to how well the trace satisfies a property,
or even producing user-defined computations over the trace. Collecting statisti-
cal information as a query is described in [33]. The LOLA system [23] produces
streams of data. Statistical model checking [46,47] is an approach where execu-
tions of the systems are monitored until an algorithm from statistics can produce
an estimate for the system to satisfy a given property.

3 The Choice of Base Language

The first, and most important, choice when designing an RV logic is that of the
base language. Here we consider the most classical choices of state machines and
regular expressions [58], as well as temporal logic [49].

3.1 State Machines

One of the most fundamental formalisms for specifying orderings of events
is state machines. We begin by introducing a property well-suited to state
machines, concerned with the allocation of resources to tasks.
3 A language is extension closed if whenever τ is in the language then so is τ.σ for

any σ.
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Property 3 (Resource Lifecycle). For every task t and resource r there is a life-
cycle of allowed actions. Initially the task does not own the resource and from
this state it can request the resource. This request can be denied or granted. If
denied it returns to the unowned state, if granted it moves to an owned state. In
an owned state the task can be asked to rescind the resource (hand it back), in
which case it stays in this state, or the task can cancel its ownership, in which
case it returns to the unowned state. A granted resource must eventually be
canceled. No other action orderings are allowed.

If we ignore the data part (task and resource identities), this property can be
specified as a state machine as follows, where only states 1 and 2 are acceptance
states, meaning that a granted resource must be eventually canceled. We give
both a graphical and textual representation of the state machine.

1 2 3

request

deny

grant

cancel

rescind accept state 1 {
request -> 2

}
accept state 2 {

deny -> 1
grant -> 3

}
state 3 {

rescind -> 3
cancel -> 1

}

The Semantics of Missing Transitions. In the above state machine the tran-
sition relation is not complete (closed) i.e. we do not have a next target state for
each combination of source state and event. For example, there is no transition
with the label +deny+ leaving state 1. The implicit understanding is that the
transition relation is closed to an implicit failure state: all missing transitions
lead to the failure state. We will call this approach a next semantics as it requires
each next event to cause a transition. The alternative is a skip semantics where
observed events may be skipped if there is no transition for them. Note that
the standard interpretation of finite state machines (in theoretical computer sci-
ence) is a next semantics. In contrast, UML statecharts [27,52] are often given
a skip semantics. See [3,5] for RV systems allowing a mix of next and skip
semantics.

To illustrate the difference, let us return to Property 1 (UnsafeMapIterator)
where we gave a positive (formula (1) page 4) and negative (formula (2) page 4)
formulation of the property as regular expressions. We can turn these regular
expressions into state machines4 as follows. Graphically we represent states with

4 As before, the focus is not on the data part. Here we use the same operators as
before, which are like universal and existential quantification for the positive and
negative formulations respectively. The way we add parameters to state machines is
covered extensively in Sect. 4.
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a next and skip semantics as circles and squares respectively5. The positive state
machine formulation is:

1 2 3 4
create(m, c) create(c, i) update(m)

update(m) use(i) update(m)

The negative state machine formulation of this property is:

1 2 3 4 5
create(m, c) create(c, i) update(m) use(i)

Traditionally regular expressions are translated to finite state machines with
next-states. We observe that the positive formulation uses next-states whilst
the negative uses skip-states. It is quite common to use a next semantics with
positive formulations and a skip semantics with negative formulations. We would,
however, want to allow a mixture of such states within one specification, allowing
a fine-grained control over the closure. As a simple example demonstrating this
desire, consider a property over an alphabet of events {e1, . . . , en, quiet, loud}
stating that no other events should occur between quiet and loud. Below we
demonstrate three different state machines capturing this property. The first
uses implicit next states, the second uses implicit skip states, and the third uses
a mixture. Using a mixture of states allows us to specify the property more
concisely. Whilst this is a simple example, the general idea extends to more
complex properties.

accept state 1 {
e1 -> 1
...
en -> 1
quiet -> 2

}
accept state 2 {

loud -> 2
}

accept state 1 {
quiet -> 2

}
accept state 2 {

e1 -> error
...
en -> error
loud -> 2

}

accept skip state 1 {
quiet -> 2

}
accept next state 2 {

loud -> 2
}

Alphabets. In the case where next-states are used, as in the first positive
formulation above, where each observed incoming event must match a transition,
it is crucial that only events of concern are matched against the transitions.
Otherwise any trace with additional events might easily fail to conform. To
avoid this problem, such a specification must be associated with an alphabet:
the events of concern. A trace that contains events not in the alphabet must first
be projected to remove such. Often the alphabet is the set of events mentioned
in the specification, but that is not always the case.
5 We note that this graphical presentation has been reversed compared to some previ-

ous work [3,55]. We have chosen this presentation here as a next semantics is more
typical for state machines as is a circle being used to represent a state, and states
in state charts, which usually have skip semantics, normally are drawn as boxes,
although typically with rounded corners.
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Fine-Grained Acceptance. An advantage of state machines is that they allow
for a fine-grained notion of acceptance. This is demonstrated in the above state
machine for Property 3 (Resource Lifecycle) where state 3 is non-final whilst
states 1 and 2 are final. This is key for any language wanting to capture prop-
erties which are not purely safety properties. An extension of this fine-grained
acceptance is the ability to attach different kinds of failures to different states.
This has particular use in runtime monitoring where different correction actions
may be required for different forms of failure, as i.e. supported in [51]. Indeed, it
would allow a specification to separate soft failures that only require reporting
and hard failures that require immediate termination or intervention.

Anonymous States. One reason that temporal logics and regular expressions
often yield more succinct specifications than state machines is that all interme-
diate states need to be explicitly named in the state machine. A simple syntactic
layer of syntax on top of state machines can, however, allow anonymous states
[5], making state machines more succinct. Below left we merge states 1 and 2 of
the Resource Lifecycle property by turning state 2 into an anonymous acceptance
state (state 3, which is not shown, is the same as before). Ignoring the rescind
event, below right is shown how an event with a single outgoing transition can
be treated even more concisely (here states are accepting by default and there
is a next-semantics).

accept state 1 {
request -> accept {

deny -> 1
grant -> 3

}
}

state 1 {
request -> {

deny -> 1
grant -> cancel -> 1

}
}

Generally, one has to capture these assumptions (acceptance state or not, next-
state or skip-state) with an additional annotations in the non-default cases.

3.2 Regular Expressions

Anonymous states are carried to the extreme in regular expressions i.e. there are
no named states. State machines and regular expressions have the same expres-
sive power in the propositional case. Regular expressions are more succinct than
their corresponding state machines since intermediate states are not mentioned
by name, only transitions are mentioned.

Standard Operators. We have already seen several examples of regular expres-
sions and how they related to state machines, including how next-states and
skip-states can be used to model their semantics. The basic form of a regular
expression is a letter, such as for example: a, representing the language {a}. The
operators apply semantically to languages and produce new languages. Given
two regular expressions E1 and E2, the basic operators are union: E1|E2 (the
union of the languages denoted by E1 and E2, sometimes written, although not
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here, as E1 + E2); concatenation: E1E2 (the set of words, each of the form l1l2
where li is a word in the language denoted by Ei); and finally closure: E∗ (set
of words each obtained by concatenating any number of words denoted by E).
Additional operators are usually defined for convenience, but provide no addi-
tional expressive power. These include the dot: ‘.’ (representing any letter, the
union of all letters in the alphabet); plus: E+ (meaning one or more, equivalent
to EE∗); optional: E? (meaning E|ε where ε accepts the empty string); and
repetition: En (for some number n, meaning n copies of E, and variants of this
operator indicating minimum and maximum number of occurrences). Negation
is also commonly seen but most typically on letters. A common approach is to
write unions of many letters: a1|a2| . . . |an, as a list: [a1, a2, . . . , an], and negation
of all these letters is then written as [∧a1, a2, . . . , an]. Negation of entire regular
expressions, as in ¬E, is also semantically possible, but usually avoided due to
complexity in generating the corresponding state machine.

Safety Properties. The standard interpretation of the regular expression con-
catenation operator (that E1E2 denotes the set of words l1l2 where li is in the
language denoted by Ei) makes it inconvenient to express certain safety proper-
ties. Consider for example the language denoted by the following state machine:

1 2 3
a b

c

The main observation here is that all states are acceptance states, hence the
language includes strings such as a, ab, abc, abca, etc. Representing this language
as a regular expression with the standard semantics, however, becomes slightly
inconvenient and error prone to write:

(a b c)∗(ε | a | a b)

It would instead be desirable just to write:

(a b c)∗

However, this formula denotes the following automaton with the standard inter-
pretation of regular expressions:

1 2 3
a b

c

If we want the former interpretation, but the latter formulation of the regular
expression, we need to provide a closure operation that closes a language to
include all its prefixes. That is, given a regular expression E with the standard
interpretation one can form the closure closure(E) of this to include the lan-
guage denoted by E as well as all its prefixes. Our property would then become
closure((a b c)∗).
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Limitations of Regular Expressions. While regular expressions generally
are very succinct and useful, in some cases the regular expression formulation
of e.g. a state machine can become so convoluted that an ordinary user will
be challenged in creating it, as well as in reading it. To illustrate this let us
revisit Property 3 (ResourceLifecycle). Recall that the state machine was pretty
straightforward to create. A regular expression version of this property is the
following:

((request deny)∗ request grant rescind∗ cancel)∗ request?

This regular expression is not completely obvious to create, in part due to the
fact that some of the states in the state machine are acceptance states and some
are not. In fact, we got this regular expression wrong in the first attempt. It is
easy to see that if the state machine gets much more complicated, the regular
expression becomes overly complex to write and even read. Furthermore, updat-
able data variables, which are straightforward to support in state machines, are
not straightforward to introduce in regular expressions, this will be discussed in
the subsequent section. Consequently, one may want to pursue a formalism that
supports state machines (or a similar concept such as rule systems or variants of
the μ-calculus [43], which in common have that states can be named and used in
loops) in addition to a logic such as regular expressions or/and temporal logic.

3.3 Temporal Logic

In Sect. 3.1 it was discussed how states in a state machine can be anonymous, mix-
ing anonymous states and named states in one notation. Regular expressions go to
the extreme and eliminate the notion of named state all together. Likewise, tem-
poral logic eliminates the notion of named states. It was generally clear from the
competition benchmarks that temporal logic provided the most elegant formula-
tion of many properties. The difference was rather remarkable in several cases.

Standard Operators. Introducing temporal logic in its many variations is
beyond the scope of this paper. However, we will discuss the standard operators
of future time Linear Temporal Logic (LTL) [53], the most common temporal
logic used in runtime verification6, and their past time counterparts. Future time
LTL can be described as propositional logic plus the temporal operators © (next)
and U (until). Their semantics are that ©ϕ holds if ϕ holds at the next time
point, and ϕ1 U ϕ2 holds if ϕ2 holds at some future time point and ϕ1 holds at all
time points from the current until and including the one before that future time
point. The operators ♦ (eventually), � (always), and W (weak until) can then be
defined as follows: ♦ϕ = true U ϕ, �ϕ = ¬♦¬ϕ, and ϕ1 W ϕ2 = �ϕ1∨(ϕ1 U ϕ2).
Similarly, past time operators include � (previous, the dual of ©) and S (since,
the dual of U). Their semantics are that �ϕ holds if ϕ holds at the previous
6 CTL (Computation Tree Logic) [21] is a logic on execution path trees, and has

therefore not been popular in runtime verification. However, one can imagine a
CTL-like logic being used for analyzing a set of traces, merged into a tree.
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time point, and ϕ1 S ϕ2 holds if ϕ2 holds at some past time point and ϕ1 holds
at all time points since then to the current. The operators � (sometime in the
past) and � (always in the past) can then be defined as follows: �ϕ = true S ϕ,
�ϕ = ¬�¬ϕ. A convenient logic is likely one that includes past time as well as
future time operators.

The symbols just introduced look mathematically elegant, but they are not
in ASCII format. Therefore it is typical to replace these logical symbols by text.
For example � may be written as the word always, or as the symbol []. We
will use a mix of the logical and textual word presentations here.

Illustrating Strength of Temporal Logic. With the following property we
shall illustrate the advantage of a temporal logic over a state machine.

Property 4 (ResourceConflictManagement). This property represents the man-
agement of conflicts between resources as managed by a planetary rover’s internal
resource management system - or any resource management system in general.
It is assumed that conflicts between resources are declared at the beginning of
operation. After this point resources that are in conflict with each other cannot
be granted at the same time. A conflict between resources r1 and r2 is cap-
tured by the event conflict(r1,r2) and a conflict is symmetrical. Resources are
granted and canceled using grant(r) and cancel(r) respectively.

The specification of this property as a state machine in textual format becomes
somewhat verbose (note that here we write properties in ASCII format for better
illustrating how they would be written down in practice):

For all r1,r2
accept skip state start {

conflict(r1,r2) -> free
conflict(r2,r1) -> free

}
accept skip state free {

grant(r1) -> granted
}
accept skip state granted {

cancel(r1) -> free
grant(r2) -> failure

}

Alternatively, this property can be stated as a more concise temporal logic for-
mula, for example as the following future time temporal logic formula:

forall r1,r2
always (( conflict(r1,r2) or conflict(r2,r1)) =>

(always (grant(r1) =>
((not grant(r2)) weakuntil cancel(r1)))))

That is, it is always the case that if a conflict is declared between two resources
r1 and r2, then it is always the case that if r1 is granted then r2 is not there-
after granted unless r1 is canceled first. In both formulations, to capture the
symmetric conflict event, we need to match against either conflict(r1, r2) or
conflict(r2, r1).
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We can express this as a negative (a match is an error) regular expression as
follows:

forall r1,r2
(conflict(r1,r2)|conflict(r2,r1)).* grant(r1) (! cancel(r1))* grant(r2)

When working in temporal logic one usually formulates properties positively:
what is desired to hold, whereas when formulating the same properties as regu-
lar expressions they appear easier to write in negative form. When formalizing
requirements, however, it may appear somewhat inconvenient to have to negate
the properties. Another example is the property �(a ⇒ ♦b), which as a regu-
lar expression may be stated as a suffix matching negative expression a.(¬b)∗.
A positive regular expression formulation gets rather convoluted: ((¬a)∗(a.∗b)?)∗.
Hence if a positive formulation of requirements is desired, as e.g. in project
requirement documents, temporal logic may in some scenarios be more attrac-
tive than regular expressions.

The Convenience of Past Time Operators. The same property can also
be stated as a past time formula, as follows.

(∀r1, r2)�

⎛
⎝

⎛
⎝grant(r1) ∧ �

⎛
⎝

conflict(r1, r2)
∨

conflict(r2, r1)

⎞
⎠

⎞
⎠ ⇒ ¬�

⎛
⎝

¬cancel(r2)
S

grant(r2)

⎞
⎠

⎞
⎠

However, this past time logic formula is not convincingly easier to read than
the future time version. Especially as there are multiple references to different
points in the past. There are, however, cases where past time is more convenient,
as also pointed out in [45]. Consider the hasNextIterator Property 2 again. The
property states that every call of next on an iterator should be preceded by a
call of hasNext (which returns true). If we should state this property as a future
time property, it would become:

(∀i)
(

(¬next(i) W hasNext(i, true))∧
�(next(i) ⇒ ©(¬next(i) W hasNext(i, true)))

)

This property seems overly complicated. This is caused by the necessity to sep-
arate two scenarios: (i) the first occurring next in the trace, and (ii) subsequent
next events, appearing after previous next events. The property becomes slightly
more concise, and thus more readable, when formulated in past time logic:

(∀i) �(next(i) → �(¬next(i) S hasNext(i, true)))

Adding Convenient Operators. Temporal logic is often attributed being dif-
ficult to use, and it is occasionally claimed that even state machines are easier
to use by practitioners. The specification of the competition exercises, how-
ever, shows to us that temporal logic makes specification substantially easier
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in quite many cases. A logic like LTL, however, appears to have some flaws
from a usability point of view, including: binary operators that are tricky to
remember the semantics of (such as weak until versus until, since, etc.), formulas
tend to get nested, requiring use of parentheses for grouping sub-expressions for
even the simplest formulas, and cumbersome handing of sequencing. We briefly
recall how some of these problems can be alleviated with convenient alternative
syntax.

Consider the previous past time formulation of the HasNextIterator prop-
erty, that contains the subterm: ¬next(i) S hasNext(i, true), meaning: hasNext
(i, true) has occurred in the past and since then no next(i) has occurred. This
is not a very readable formulation of this property. An example of a more con-
venient operator is the temporal operator [P,Q) from MaC [42], meaning P has
been true in the past and since then Q has not. Using this operator the sub-
term becomes: [hasNext(i, true), next(i)), which visually better illustrates the
temporal order of events. The property now becomes:

(∀i) �(next(i) → �[hasNext(i, true), next(i)))

Consider further that in such implications usually the right-hand temporal
expression is meant to be true in the previous state (hence the use of the�-operator). One could fold the →-operator and �-operator into one opera-

tor �→, assume all variables quantified, and a � in front of all properties, and
write the property as follows:

next(i) �→ [hasNext(i, true), next(i))

Similarly one can imagine a P
©→ Q = P → ©Q operator for future time logic.

Another classical convenient operator is never P being equivalent to �¬P .

Limitations of Temporal Logic. As shown in [61], LTL cannot express all
regular properties (it is only star-free regular), for example it cannot express the
property: “p holds at every other moment”, which can easily be expressed as a
state machine or a regular expression as follows: (. p)∗. LTL is furthermore also
at times inconvenient as a notation. We shall consider two examples here, a state
machine, and a temporal formula conditioned on a sequence of events. First the
state machine. The temporal logic formulation of Property 3 (ResourceLifecycle),
ignoring the data element, can be given as follows:

stop ∨ (request ∧ �

⎛
⎜⎜⎝

request → ©(deny ∨ grant ∨ stop)
deny → ©(request ∨ stop)
grant → ©(rescind U cancel)
cancel → ©(request ∨ stop)

⎞
⎟⎟⎠

where stop = �¬(request ∨ deny ∨ grant∨ rescind ∨ cancel), and is used to
indicate that no further events are required. These rules exactly mirror the state
transitions of the state machine. In this case, temporal logic, specifically LTL,
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is arguably less elegant than state machines. Note that without introducing the
name stop the formula would become even more complicated.

As our second example, let us consider a temporal formula conditioned on a
sequence of events. To do this we will use Property 1 (UnsafeMapIterator). Sup-
pose we wanted to express this property in temporal logic. A possible formulation
would be the following rather unreadable formula:

Λm, c, i : �¬
(

(create(m, c) ∧
(

¬create(c, i) U (create(c, i) ∧
(¬update(m) U (update(m) ∧ ♦use(i))))

))

A more readable temporal logic formula is the following, which, however, does
not say quite the same thing (since the second and third �-operator occurrences
each quantify over all future events), although it seems in this case to be usable.

Λm, c, i : �(create(m, c) ⇒ �(create(c, i) ⇒ �(update(m) ⇒ �¬use(i))))

To obtain a more readable formula, we could instead combine regular expressions
and temporal logic and write it as follows, using a regular expression on the left-
hand side of the implication and an LTL formula on the right-hand side:

Λm, c, i : create(m, c).create(c, i).update(m) ⇒ �¬use(i)

The temporal logic PSL [28] adds an operator to LTL named suffix implication,
and denoted r �→ ψ, for a regular expression r and a temporal logic formula ψ,
which holds on a word w if for every prefix of w recognized by r, the suffix of w
starting at the letter on which that prefix ends, satisfies ψ. This addition to LTL
results in a logic with an expressive power corresponding to ω-regular languages
(PSL is a logic intended for model checking, where infinite words are considered).
Similar ideas are also seen in dynamic logic, see for example [34]. PSL generally
contains several operators, which make modeling easier. These include beyond
the suffix implication also: repetition r ∗n (repeat a regular expression n times);
intersection r1 ∩ r2; a past time operator ended(r) that turns a regular expression
r to hold on the past trace; strong r! and weak regular expressions r, where
strong is the normal interpretation of a regular expression, and a weak regular
expression denotes the language of the strong regular expression augmented with
all prefixes (what on page 10 was referred to as the closure of a regular expression
and denoted by closure(r)).

4 Handling Data

The previous section ignored the details of how each of the languages could be
extended to deal with data. Here we review the main approaches. We shall first
outline what we mean by data. Subsequently, the handling of data is discussed in
the contexts of state machines, regular expressions and temporal logics. However,
the discussion of data for one base language usually carries over to other base
languages.
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4.1 Where Do Data Occur?

Data can come from three sources.

Variables in the SBM. The monitor may be able to directly observe the internal
state of the executing program. For example, if the monitor code is embedded
(as code snippets) into the SBM. Program assertions, as supported by most
programming languages, form an example of this. Alternatively, a transition
of a state machine may be guarded by x > 4 where x is a program variable.
This introduces a tight coupling between the specification and system being
monitored. This form of data is not discussed here.

Event Parameters. Events transmitted from the SBM to the monitor can carry
data as parameters. That is, an event consist of a name and a list of data values.
An example is the event login(u, t) representing the logging in by user u at
time t. Within the runtime verification community such events are often called
parametric events, as the data values are seen as parameters, and traces of these
events are called parametric traces. Parametric events are the main source of
data in this presentation.

Variables in the Monitor. The monitor itself can declare, update and read vari-
ables local to the monitor. This is seen in solutions where monitors are given as
state machines or written in a programming language. This approach will also
be discussed below.

4.2 Extended Finite State Machines

Conventional finite state machines have a finite number of control states and
transitions are labelled with atomic letters over a finite alphabet. Extended
finite state machines (EFSM) [19,40] extend finite state machines by allowing the
declaration of a set of mutable variables, which can be read in transition guards,
and updated in transition actions, where an action is a sequence of assignment
statements assigning values to the variables. The standard transition relation
is lifted to configurations, i.e. pairs of (control) states and variable valuations.
Turing machines and pushdown automata (with the expressive power of context
free languages) [58] are examples of EFSMs, so this is a powerful model. However,
as we shall see, EFSMs are not convenient for our purposes in their original form.
We use the following property to illustrate EFSMS.

Property 5 (Reconciling Account). The administrator must reconcile an account
every 1000 attempted external money transfers or an aggregate total of one
million dollars. The reconcile event is recorded when accounts are reconciled
and the event transfer(a) records a transfer of a dollars.

Note that the transfer(a) event in this property carries data (the amount a
transferred). EFSMs traditionally do not operate on such parameterized events
but on atomic events. We shall, however, make this extension here in our first
example, moving from evaluating input over a finite alphabet to input over an
infinite alphabet. The EFSM for this property is shown in the following.
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1

2

3

transfer(a)/count := 1; total := a

reconcile

transfer(a)[count ≥ 1000 ∨ total ≥ 1M ]

transfer(a)[count < 1000 ∧ total < 1M ]/count += 1; total += a
reconcile/count := 0; total := 0

Two variables are introduced. The variables count and total hold the num-
ber of transfers respectively the sum of amounts transferred since the last
reconciliation. Transitions are now written as event[guard ]/assignment . Event
transfer(a) on a transition is used to match a concrete event in the trace and
bind the value in that event to the variable a. Each new transfer in the trace
causes a to be bound to a new value, it is essentially just a variable just like
count and total . Typically variables are used to hold data of primitive types
(integers, reals, Booleans, etc.), but they could be used to hold more complex
data structures. It is worth observing that UML state charts effectively are a
form of extended state machines, with added concepts such as hierarchical states.

4.3 Typestates

Extended state machines with parameterized events as described above, where
parameters are mutable variables, however, are still not convenient for specifi-
cation purposes. We need an event parameter concept where parameters once
bound stay constant, and we have a copy of the state machine for each parame-
ter value. In other words, we need to quantify over parameters. To demonstrate
a case where this may be required let us consider a further extension of the
account reconciliation example.

Property 6 (Reconciling Accounts). The administrator must reconcile every
account x every 1000 attempted external money transfers or an aggregate total
of one million dollars. The reconcile event is recorded when accounts are recon-
ciled and the event transfer(x, a) records a transfer of a dollars for account x.

This can be specified in the same way as before but this time adding a
quantification over account x.

1

2

3

∀x

transfer(x, a)/count := 1; total := a

reconcile

transfer(x, a)[count ≥ 1000 ∨ total ≥ 1M ]

transfer(x, a)[count < 1000 ∧ total < 1M ]/count += 1; total += a
reconcile/count := 0; total := 0
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There will be an instance spawned of this state machine for each account x
being monitored. This notion of quantification corresponds to what is also referred
to as a typestate property [60], a programming language concept for static typing,
which extends the notion of type with a (safety) state machine over the methods
of that type. This state machine is quantified over all objects of the given type.
Consider the account as a type with the methods transfer(a) and reconcile().
A typestate is a refinement of such a type where a constraint is defined on the
order in which these methods can be called. A typestate monitor can very simply
be implemented by adding the EFSM monitor to each object of the type (state).
This approach can also be used for Property 2 (HasNextIterator).

As noted, there are now two kinds of variables in the state machine, those
that are quantified (x) and constant once bound, and those that are continuously
mutable (a, count , total), referred to as free variables. In this formulation we want
each instance of the state machine to have its own copies of the free variables.
Therefore, we can view these variables as having local scope i.e. they are local
to each particular instantiation of quantified variables. In extended finite state
machines variables are often thought of us global, but it is clear that in this case
we want locality. There is, however, a case to be made for variables with global
scope where all instances of the extended finite state machine read from and
write to such. This would be needed i.e. if reconciliation frequency depended on
the total number of transfers for all accounts.

4.4 Parametric Trace Slicing

Typestates, implemented as extended state machines, although pleasantly sim-
ple, are not sufficiently convenient for commonly occurring monitoring scenarios
due to the restriction of only quantifying over one variable. Consider for exam-
ple Property 3 (Resource Lifecycle). We here need to deal with tasks as well
as resource objects. We want to specify the appropriate behavior for each pair
of tasks and resources. Similarly for Property 1 (UnsafeMapIterator). A gener-
alization of the typestate approach is the concept of parametric trace slicing,
first introduced in Tracematches [2] to work for regular expressions, and then
generalized in JavaMOP [18,51] for adding parametric trace slicing to any propo-
sitional temporal language, that can be defined as a “plugin”. Quantified Event
Automata (QEA) [3,54] are a further generalization adding existential quantifi-
cation and free variables (see below). Consider for example the following property
(not taken from the competitions).

Property 7 (Simple ResourceManagement). A resource can only be granted once
to a task until the task cancels the resource (granting and canceling a resource
wrt. a particular task must alternate). A resource r is granted to a task t using
the event grant(t, r) and canceled using cancel(t, r).

This property can be formalized as follows using a trace slicing approach.
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1 2

∀t∀r grant(t, r)

cancel(t, r)

The parametric trace slicing approach considers collections of instantiations of
quantified variables. In the original formulation of this idea, each collection is
associated with a propositional monitor for that combination of parameter val-
ues. In this case the propositional monitor is a standard state machine. The trace
is then projected into slices: one for each instantiation (combination of parameter
values), so that only events relevant to the instantiation are included in the mon-
itoring wrt. these particular values. This view of quantification requires domains
for the quantified variables (the sets of values they quantify over). A typical
choice is to let these domains consist of the values occurring in the trace. Given
the above state machine, the following (satisfying) trace results in the domain
for the variable t to be {A} and the domain for the variable r to be {R1, R2}:

grant(A,R1).cancel(A,R1).grant(A,R2).cancel(A,R2)

4.5 Parametric Trace Slicing with Free Variables

In parametric trace slicing each instantiation of quantified variables encountered
in the trace is associated with a propositional monitor, and only events concerned
with that instantiation are mapped to the monitor. Things, however, become
more complex when free variables are introduced, which is necessary to increase
expressiveness (see [3] for how parametric trace slicing is extended with free
variables). To illustrate this, we introduce a more complex version of Property 7
(SimpleResourceManagement).

Property 8 (ResourceManagement). In addition to Property 7 (i.e. granting and
canceling a resource wrt. a particular task must alternate), a resource can only
be held by at most one task at a time. Recall that a resource r is granted to a
task t using the event grant(t, r) and canceled using cancel(t, r).

The previous specification for Property 7 does not capture this property.
Consider the trace grant(A,R).grant(B,R), violating the property. This gen-
erates two variable valuations: [t = A, r = R] and [t = B, r = R]. The event
grant(B,R) is not relevant for the instance [t = A, r = R], it is only relevant
for the instance [t = B, r = R], and vice versa. The trace is unfortunately con-
sequently sliced into two independent subtraces: grant(A,R) and grant(B,R),
with no connection between them. Therefore this formulation will not detect a
violation in this trace.

To detect a violation we need to detect the existence of a violating task, i.e.
the one that tries to take the resource r whilst it is held by task t. We could
attempt to do this using a free variable tfree to capture the violating task as
follows.
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1 2 3

∀t∀r grant(t, r)

cancel(t, r)

grant(tfree , r)

It turns out that we need to re-define the notion of projection to handle
such free variables. Assume again the quantification instance [t = A, r = R].
Clearly, events that only mention A and R are relevant as before. But also
grant events mentioning R and some other task are also relevant as they could
match grant(tfree , r). This would mean that grant(B,R) would be relevant to
the instance [t = A, r = R]. But now we can see a further issue. Consider the safe
trace grant(B,R).cancel(B,R). grant(A,R). The projection to [t = A, r = R]
will be grant(B,R).grant(A,R), since grant(B,R) is considered relevant for
the reason mentioned above, and since cancel(B,R) is not since A �= B. This
trace will therefore be rejected as the monitor cannot make a transition on the
first event grant(B,R).

This highlights the subtleties that occur when dealing with free variables and
projection. Once an event with a free variable has been added to the alphabet
the user should consider how this affects the events that could be relevant at
other states. This leads to a final correct, but less attractive, formulation:

1 2 3

∀t∀r grant(t, r)

cancel(t, r)

grant(tfree , r)
grant(tfree , r)[t �= tfree ]

This extends the state machine with a looping transition to skip grants of the
resource to other tasks when the current task t does not hold the resource. An
alternative solution would have been to existentially quantify tfree. However, this
has implications related to the efficiency of the associated monitoring algorithm,
which we do not discuss here [54].

4.6 Quantification in Temporal Logics

First-Order Quantification. The standard way of dealing with data in logic
via quantification is relevant to temporal logic, and is based on the notion of
evaluating a formula with respect to a first-order temporal structure. The stan-
dard approach is to add a formula expression such as ∀x.ϕ to the syntax of the
logic and include a case similar to the following in the trace semantics [10]

T , i, σ |= ∀x.ϕ iff for every d ∈ D(x) we have T , i, σ[x �→ d] |= ϕ

where the temporal structure T captures the trace, i.e. it is a finite sequence of
structures where each structure describes which events are present in that time
point. This usually follows the standard logical approach of modeling events
as predicates and defining an interpretation evaluating events occurring at that
time point to true and all other events to false. The temporal structure also
defines the domain function D but the way in which it does this differs between
approaches, as described below.
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The notion of first-order LTL introduced by Emerson [29] follows this app-
roach, although assumes predicates have global interpretation, which is not suit-
able here but the extension is straightforward. However, for pragmatic reasons,
languages for runtime verification have been designed to consider alternative
first-order extensions of LTL. The rest of this section discusses these alternative
design decisions.

Different Notions of Quantification. There are two main approaches to
defining the domain function D above. Simply, either D is local to the current
time point (as in [13,36]), or it is constant throughout the temporal structure
(as in [10] and the original work of Emerson). If the domain function is local
then it is typically derived from the events occurring in that time point. If the
domain function is constant then it typically consists of (a superset of) values
appearing in the trace. The idea of the first approach is to restrict quantification
so that it is only used to create future obligations about events occurring at the
current point in time. For this to work it is necessary to syntactically restrict
the occurrence of quantification so that the values it is quantifying over occur at
the current time point e.g. the first of the following two (normally) equivalent
formulas would break this rule.

(∀f)�(open(f) → ♦close(f)) �(∀f)(open(f) → ♦close(f))

The second formula has the same interpretation in the two models of quantifi-
cation (where we assume that the domain in the current time point is a subset
of the constant domain) as the right-side of the implication will only be true for
values in the current time point. This demonstrates that, under certain syntactic
restrictions, the two models of quantification coincide. This can be advantageous
as monitoring algorithms dealing with the first model of quantification will gen-
erally be more straightforward as decisions about quantification can be local. To
see that the two models are different, note that the formula

�(∃x)(¬p(x))

is unsatisfiable in general for the first model of quantification as the domain of
x is given exactly by the values such that p(x) is true at the current time point.
But in the second model of quantification this becomes a reasonable statement.

Note that the first model is dependent on where quantification happens and
as a result cannot express some formulas. For example, this formula cannot be
expressed in this model as the values being quantified over cannot be present in
the current time point:

(∀f)�(open(f) → ∃u : (♦read(f, u) ∨ ♦write(f, u)))

In either setting it is possible for domains to be infinite (in theory) as long
as formulas are domain independent, which is a semantic notion ensuring that
only a finite subset of the domain is required for trace-checking (see [11,20]). As
an example, (∀x)♦p(x) is not domain independent, but (∀x)�p(x) → ♦q(x) is
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domain independent as checking this formula only requires checking the finite
subset of values v such that p(v) appears in the trace. Note that determining
whether a formula is domain independent is undecidable and practically this is
checked via conservative syntactic restrictions.

The Difference with Parametric Trace Slicing. It is at this point appro-
priate to point out, that the standard logic interpretation of quantification pre-
sented above is different from the parametric slicing approach, resulting in subtly
different interpretations of formulas. Consider Property 3 (Resource Lifecycle).
Previously (page 14) we gave a propositional temporal logic formulation (no
data) that included the sub-formula:

�(request → ©(deny ∨ grant ∨ stop)

When we add first-order quantification this becomes:

(∀r)�(request(r) → ©(deny(r) ∨ grant(r) ∨ stop(r))

This formula, however, no longer means what we want it to. Consider e.g. the
trace:

request(A).request(B).deny(A).deny(B)

This is expected to be a correct trace, but it does not satisfy the quantified for-
mula since in the first state request(A) is true but none of deny(A), grant(A),
nor stop(A) are true in the next (second) state. However, with parametric trace
slicing, the formula (note the use of Λ instead of ∀).

Λr. �(request(r) → ©(deny(r) ∨ grant(r) ∨ stop(r))

has the intended interpretation (accepting the trace), as parametric trace slicing
projects the trace to a slice only including events relevant for r. As outlined in
[57], the main difference is the treatment of the notion of next.

Everything is Quantification. We have previously seen the need for introduc-
ing free variables in state machines in combination with parametric trace slicing.
Free variables are not needed in temporal logic, where quantification is sufficient.
Consider for example Property 8 (ResourceManagement) and the corresponding
state machine on page 19, which uses a free task variable tfree in addition to
the quantified t. The property can alternatively be formulated in temporal logic
only using quantification as follows:

(∀t, r)�(grant(t, r) ⇒ ©((¬(∃t′) grant(t′, r)) W cancel(t, r)))

The approach is to allow quantification inside the formula, and not only at the
outermost level. In first-order temporal logic it is generally possible to write the
quantifiers at arbitrary points of the specification. It is important to understand
that quantification is to be evaluated at the point in the trace that it is met. For
example,

(∀x)♦f(x) �≡ ♦(∀x)f(x)



332 K. Havelund and G. Reger

as the first property says that for every x the event f(x) eventually happens,
but for different values for x this could happen at different points, whereas the
second property requires that these all happen at the same point. However, in
some cases quantification inside a temporal operator can be lifted outside, the
standard identities are the following:

(∀x)�ϕ ≡ �(∀x)ϕ (∃x)♦ϕ ≡ ♦(∃x)ϕ

The main reason why quantification is enough in temporal logic is due to the
fact that temporal logic has a notion of sub-formula, and a quantification is
over some sub-formula. In state machines we usually do not operate with a
notion of sub-machine (except in state charts), and it therefore becomes difficult
to define the scope of a quantifier. One can imagine embedded quantifiers in
regular expressions, however, just as one can imagine free variables in regular
expressions.

Section 4.3 discussed the concept of free variables with global scope. A similar
notion in temporal logic could correspond to the usage of so-called counting
quantifiers. Suppose for example that we wanted to state that each task t can
at most hold N resources at a time. This can be captured as the property:

�(∀t)(∃≤Nr)(¬cancel(t, r) S grant(t, r))

This can be read as: it is always the case that for all tasks, there exist at most N
resources r, that have not been canceled by t since they were granted to t. Count-
ing quantifiers typically preserve the expressiveness of the language, assuming
that the language includes predicates.

Some properties of interest to runtime verification go beyond the expressive-
ness of first-order temporal logic. A simple extension is the usage of so-called
percentage counting quantifiers [50] of the form A≥Px : p(x) ⇒ φ which capture
the property that for at least P% of the values d in the domain of x such that
p(d) holds, the statement φ holds. This allows for the expression of properties
such as

A≥0.95s : socket(s) ⇒ (�receive(s) ⇒ ♦respond(s))
stating that at least 95% of open sockets are eventually closed.

Another property of interest corresponding to second-order quantification is
that of deadlock avoidance. As described in [16], if a graph is constructed where
directed edges between locks indicate a lock ordering, then a cycle in this graph
indicates a potential deadlock. Cycle detection is a reachability property, which
is inherently second-order i.e. it relates to the second-order temporal property

¬∃{l1, . . . ln}
(
lock(ln+1, l1) ∧

i=n−1∧
i=0

lock(li, li+1)

)

i.e. there does not exist a set of locks containing a cycle.
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The Past is Not Simpler. Concerning monitoring algorithms, future time
logic with data lends itself to a very simple syntax-oriented tableaux-like pro-
cedure, as in [4,5,12,36]. Past time logics interestingly require a different more
elaborate approach, i.e. dynamic programming, as described in [10,38].

Events and the Signature. Typically in first-order logic one has predicates
and functions. As mentioned previously, it is normal for first-order extensions of
LTL for runtime verification to model events as predicates interpreted as either
true or false in the current time point. This easily supports the notion of multiple
events occurring in a single time point. Indeed, if one were to restrict this to a
single event then this notion becomes an implicit axiom of the logic, changing
the semantics i.e. the formula (∀x, y)♦(f(x) ∧ g(y)) becomes unsatisfiable.

Some extensions also allow other non-event predicates and functions to
appear in the signature. In this case the temporal structure should provide an
interpretation for these symbols. This can support the calling of external func-
tions. It would be usual for these interpretations to be constant throughout the
trace. A specific case of this is when those predicates and functions are taken
from a particular theory as described next.

Modulo Theories. There has been a lot of recent interest in automated reason-
ing in first-order logic, also referred to as Satisfiability Modulo Theories (SMT).
The general idea is to extend first order logic with theories for particular sub-
domains (i.e. arithmetic, arrays, datatypes, etc.), and build decision procedures
specific to those domains. The same concept can be extended to reasoning in
first-order temporal logic. SMT can specifically be applied in runtime verifica-
tion, as described in [25], which presents an approach for monitoring modulo
theories, which relies on an SMT solver to discharge the data related obligations
in each state.

4.7 Register Automata and Freeze Quantification

Register automata [40] and freeze quantifiers in temporal logic [26] are systems
based on the notion of registers, in which data observed in the trace can be
stored, and later read and compared with other data in the trace. A register
automaton [40] has in addition to the traditional control states also a finite set of
registers. Data observed in the trace can be stored in registers when encountered,
and can later be read for comparison with other data. Register automata form
a subclass of extended finite state machines where the registers play the role
of the variables. Similarly, freeze quantifiers [26] are used in temporal logic to
capture “storing” of values. The formula ↓r ϕ stores the data value at the current
position in the trace in register r (actually it stores an equivalence class denoting
all those positions having an equivalent value), and evaluates the formula with
that register assignment. The unfreeze formula ↑r checks whether the data value
at the current position is equivalent to that in register r. As an example, the
following temporal property using quantification:

(∀f)�(open(f) → ♦close(f))
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can instead be formulated as follows using a freeze quantifier:

�(open → ↓r ♦(close ∧ ↑r))

Such registers here can be seen as the equivalent of the pattern matching solu-
tions found in systems such as JLO [59] and TraceContract [5], and correspond to
quantification over the current time point (see page 20). Register-based systems
are typically studied for their theoretical properties, and are usually somewhat
limited. For example is it usually only possible to compare data for equality.
Register automata have been used within runtime verification [35].

5 Conclusion

Our discussion has centered around state machines, regular expressions, and tem-
poral logics, and how data can be integrated in such. Important systems have due
to lack of space been left out of this discussion, including context free grammars,
variations of the μ-calculus, rule-based systems, stream processing, and process
algebras. We have, however, hopefully succeeded in illustrating important parts
of the design space for runtime verification logics. It has been pointed out that
formulas in a logic can be used to identify good traces (positive formulations)
or bad traces (negative formulations), and that the succinctness of specifications
can depend on this choice. Furthermore, such formulas can be matched against
the entire trace, or just against a suffix of the trace. Negative formulations usu-
ally go with suffix matching. The useful distinction between next-states and
skip-states in state machines has also been pointed out. For writing formalized
requirements for a project, the positive formulation over total traces is probably
to be preferred, whereas negative formulations over suffixes can be more succinct
in some cases. It has been illustrated how different base logics appear advanta-
geous for particular examples, a fact that is not too surprising. How to (whether
to) handle data is a crucial problem in the design of a runtime verification logic,
and alternative approaches have been promoted in the literature. Parametric
trace slicing has so far shown the most efficient [9,56], although initially causing
limited expressiveness.

If we allow ourselves to dangerously imagine an ideal runtime verification
logic, it would be a combination of regular expressions (allowing to conveniently
express sequencing) and future and past time temporal logic (often resulting in
succinct specifications). However, the notion of states, as found in state machines
and rule systems is important as well. The ability to distinguish between next-
states and skip-states seems useful, in state machines as well as in regular expres-
sions. It is interesting that state machines with anonymous states (where inter-
mediate states are not named) is a formalism very related to future time temporal
logic. It would be useful if convenient shorthands for formulas and aggregation
operators could be user-defined. A logic should support time, scopes, and should
allow for modularizing specifications. The Eagle logic [4], based on a linear μ-
calculus with future and past time operators as well as a sequencing operator,
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was an attempt to support many of these ideas. Eagle allowed for user defined
temporal operators, including the standard Linear Temporal Logic operators.

Working with engineers has shown that current practice to write trace check-
ers consists of programming in high-level scripting/programming languages, such
as for example Python. Observing the kind of checks performed on such traces
suggests that a monitoring logic needs to be rather expressive, and probably
Turing complete for practical purposes, allowing for example advanced string
processing features and arithmetic computations. Some specification logics have
been developed as APIs in programming languages, in the realization of these
observations. The distinction between formal specification in a domain-specific
logic on the one hand, and programming in a general purpose programming lan-
guage on the other hand, might get blurred in the field of runtime verification
due to the practical needs of monitoring systems. We also expect to see more
systems that compute data from traces rather than just produce Boolean-like
verdicts.
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Abstract. We revisit model-based testing for labelled transition sys-
tems in the context of specifications that may contain divergent behav-
iour, i.e., infinite paths of internal computations. The standard approach
based on the theory of input-output conformance, known as the ioco-
framework, cannot deal with divergences directly, as it restricts spec-
ifications to strongly convergent transition systems. Using the model
of Quiescent Input Output Transition Systems (QIOTSs), we can han-
dle divergence successfully in the context of quiescence. Quiescence is
a fundamental notion that represents the situation that a system is not
capable of producing any output, if no prior input is provided, represent-
ing lack of productive progress. The correct treatment of this situation
is the cornerstone of the success of testing in the context of systems
that are input-enabled, i.e., systems that accept all input actions in any
state. Our revised treatment of quiescence also allows it to be preserved
under determinization of a QIOTS. This last feature allows us to refor-
mulate the standard ioco-based testing theory and algorithms in terms
of classical trace-based automata theory, including finite state divergent
computations.

1 Introduction

Quiescence is a fundamental notion that represents the situation that a system
is not capable of producing any output, if no prior input is provided, represent-
ing lack of productive progress. The correct treatment of this situation is the
cornerstone of the success of testing in the context of systems that are input-
enabled, i.e., systems that accept all input actions in any state. The standard
approach to model-based testing of labelled transition systems, based on the
theory of input-output conformance, known as the ioco-framework, is based on
the explicit treatment of quiescence as an observable property of a system under
test, by treating inaction with respect to output as a special kind of null action.

The proper treatment of quiescence is complicated by the phenomenon of
divergence. Transition systems are said to be divergent if their computation
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Fig. 1. A simple communication system with acknowledgements.

traces include infinite sequences of internal steps, i.e., steps that are not observ-
able as part of the communication of the system with its environment. The pos-
sibility of such infinite internal computations can be a source of quiescence. The
ioco-framework cannot deal with divergent behaviour in specifications directly:
it requires specifications to be strongly convergent, i.e., they must contain only
finite sequences of internal actions in computations [1]. Divergence, however,
does often occur in practice.

Example 1.1. Consider for instance the simple communication system with
acknowledgements and retransmissions shown in Fig. 1. When hiding all actions
related to retransmissions (ackreq, negack, posack, and resend) by renaming them
to the internal action τ , we obtain a specification in which infinite cycles of
internal actions are possible in the two ‘triangles’ of the system, cycling through
s1, s3, s6, and s4, s5, s7, respectively. ��

We use this example to show that there are differences between divergences
that matter in the context of testing. It would be too simple, for example, to
create observations of quiescence for every τ -loop. In the example, the infinite
execution of the loops of the triangles can be considered unfair, in the sense that
they would ignore the transitions of the (hidden) posack action. Our approach
will be that such unfair divergences cannot occur, expecting internal or output
actions to never be delayed infinitely many times. This means that the triangle
s1, s3, s6 will ultimately enable a send action in state s0, and will not cause qui-
escence, whereas the control cycling through s4, s5, s7 will eventually reach s2,
which is quiescent. Of course, some τ -loops can occur fairly. If we turn the above
example into an input-enabled system, which will be the typical case in the con-
text of this theory, then self-loops with missing input actions will be added to
states. In particular, state s2 will get three extra transitions to itself, labelled
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with posack?, negack? and disconnect?. Upon hiding, the first two become
τ -loops, and cycling continuously through both of them is a fair execution of
divergence, as this does not compete with other locally controlled actions such
as other outgoing τ -actions or outputs. The theory that we wish to develop must
deal with this variety in divergences and all the subtleties involved.

A way forward has been proposed in [2] in the form of the model of Divergent
Quiescent Transition Systems (DQTSs). This model is formulated using input-
output automata (IOA), introduced by Lynch and Tuttle [3], and improves the
existing theory in three respects. Firstly, it removes the restriction to strongly
convergent specifications; secondly, it deals correctly with the notion of quies-
cence in the presence of divergence, i.e., it distinguishes between infinite com-
putations that can block output from occurring (and therefore should signal
quiescence) vs. those that do not; and thirdly, it revises the definition of quies-
cence so that it is preserved under determinization, allowing the reformulation of
ioco-based testing theory including divergence and the related test generation
algorithms in terms of classical trace-based automata theory.

Our purpose in this paper is also threefold. First, we want to obtain a simpli-
fied version of the model that does not need the full works of the IOA framework,
such as the possibility to name internal actions and to specify fairness constraints
in great generality using task partitions. Instead, and this is our second goal,
when dealing with divergences it should use the notion of fair execution that
is implicitly behind most labelled transition system modelling involving just a
single anonymous internal step τ , as for example captured by Milner’s weak
bisimulation equivalence [4]. Finally, we want to connect this theory to the stan-
dard ioco-algorithms for test generation [5], which is only suggested by the work
in [2], but has not yet been carried out. In doing so, this paper is nicely repre-
sentative of the work on model-based testing at the University of Twente during
the long period of collaboration that we have had with Kim Larsen.

Origins. The notion of quiescence was first introduced by Vaandrager [6] to
obtain a natural extension of blocking states: if a system is input-enabled (i.e.,
always ready to receive inputs), then no states are blocking, since each state
has outgoing input transitions. Quiescence models the fact that a state is block-
ing when considering only the internal and output actions. In the context of
model-based testing, Tretmans introduced repetitive quiescence [1,7]. This notion
emerged from the need to continue testing, even in a quiescent state. To accom-
modate this, Tretmans introduced the Suspension Automaton (SA) as an aux-
iliary concept [8]. An SA is obtained from an Input-Output Transition System
(IOTS) by first adding to each quiescent state a self-loop labelled by the quies-
cence label δ and by subsequently determinizing the model. As stated above, SAs
cannot cope with divergence, since divergence leads to new quiescent states. In
an attempt to remedy this situation, the TGV framework [9] handles divergence
by adding δ-labelled self-loops to such states. However, this treatment is not
satisfactory in our opinion: quiescence due to divergence can in [9] be followed
by an output action, which we find counterintuitive.
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Overview of the Paper. The rest of the paper is organized as follows. Section 2
introduces the QIOTS model, and Sect. 3 provides operations and properties
for them. Sections 4, 5 and 6 present the notions of test cases for QIOTSs, an
overview of testing with respect to ioco and algorithms for generating test cases,
respectively. Conclusions and future work are presented in Sect. 7.

This paper simplifies and unites the concepts from [2] and [5] (partly by the
same authors); parts of this paper overlap with these works.

2 Quiescent Input Output Transition Systems

Preliminaries. Given a set L, we use L∗ to denote the set of all finite sequences
σ = a1 a2 . . . an over L. We write |σ| = n for the length of σ, and ε for the empty
sequence, and let L+ = L∗\{ ε }. We let Lω denote the set of all infinite sequences
over L, and use L∞ = L∗ ∪ Lω. Given two sequences ρ ∈ L∗ and υ ∈ L∞, we
denote the concatenation of ρ and υ by ρ υ. The projection of an element a ∈ L
on L′ ⊆ L, denoted a � L′, is a if a ∈ L′ and ε otherwise. The projection of a
sequence σ = a σ′ is defined inductively by (a σ′) � L′ = (a � L′)(σ′ � L′), and
the projection of a set of sequences Z is defined as the set of projections.

If σ, ρ ∈ L∗, then σ is a prefix of ρ (denoted by σ � ρ) if there is a σ′ ∈ L∗

such that σσ′ = ρ. If σ′ ∈ L+, then σ is a proper prefix of ρ (denoted by σ � ρ).
We use ℘(L) to denote the power set of L. Finally, we use the notation ∃∞ for
‘there exist infinitely many’.

2.1 Basic Model and Definitions

Quiescent Input Output Transition Systems (QIOTSs) are labelled transition
systems that model quiescence, i.e., the absence of outputs or internal transitions,
via a special δ-action. Internal actions, in turn, are all represented by the special
τ -action. Thus, QIOTSs are a variety of Input Output Transition Systems of the
ioco-framework, and an adaptation of the DQTS model of [2], which, in turn,
is based on the well-known model of Input-Output Automata [3,10].

Definition 2.1 (Quiescent Input Output Transition Systems). A Quies-
cent Input Output Transition System (QIOTS) is a tuple A=〈S, s0, LI, LO,→ 〉,
where S is a set of states; s0 ∈ S is its initial state; LI and LO are disjoint sets
of input and output labels, respectively; and → ⊆ S × L × S is the transition
relation, where L = LI ∪ LO ∪ { τ, δ }. We assume δ, τ /∈ (LI ∪ LO) and δ �= τ ,
and use LO

δ = LO ∪ { δ }. We refer to (LI, LO
δ ) as the action signature of A.

The following two requirements apply:

1. A QIOTS must be input-enabled, i.e., for each s ∈ S and a ∈ LI, there exists
an s′ ∈ S such that (s, a, s′) ∈ →.

2. A QIOTS must be well-formed. Well-formedness requires technical prepara-
tion and is defined in Sect. 2.3.

We write QIOTS(LI, LO
δ ) for the set of all possible QIOTSs over the action

signature (LI, LO
δ ).
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Semantically, QIOTSs assume progress. That is, QIOTSs are not allowed to
remain idle forever when output or internal actions are enabled. Without this
assumption, each state would be potentially quiescent. All sets in the definition
of QIOTSs can potentially be uncountable.

Given a QIOTS A, we denote its components by SA, s0A, LI
A, LO

A,→A. We
omit the subscript when it is clear from the context.

Actions. We use the terms label and action interchangeably. We often suffix a
question mark (?) to input labels and an exclamation mark (!) to output labels.
These are, however, not part of the label. The label τ represents an internal
action. Output and internal actions are called locally controlled, because their
occurrence is under the control of the QIOTS. The special label δ is used to
denote the occurrence of quiescence.

We use the standard notations for transitions.

Definition 2.2 (Transitional notations). Let A be a QIOTS with s, s′ ∈
S, a, ai ∈ L, b, bi ∈ L \ { τ }, and σ ∈ (L \ { τ })+, then:

s −a→ s′ =def (s, a, s′) ∈ →
s −a→ =def ∃ s′′ ∈ S . s −a→ s′′

s �−a→ =def � s′′ ∈ S . s −a→ s′′

s −a1·...·an−−−−−→ s′ =def ∃ s0, . . . , sn ∈ S . s = s0 −a1−→ · · · −an−→ sn = s′

s =ε⇒ s′ =def s = s′ or s −τ ·...·τ−−−→ s′

s =b⇒ s′ =def ∃ s0, s1 ∈ S . s =ε⇒ s0 −b→ s1 =ε⇒ s′

s =b1·...·bn====⇒ s′ =def ∃ s0, . . . , sn ∈ S . s = s0 =b1=⇒ · · · =bn=⇒ sn = s′

If s −a→, we say that a is enabled in s. We use L(s) to denote the set of all
actions a ∈ L that are enabled in state s ∈ S, i.e., L(s) = { a ∈ L | s −a→ }. The
notions are lifted to infinite traces in the obvious way.

We use the following language notations for QIOTSs and their behaviour.

Definition 2.3 (Language notations). Let A be a QIOTS, then:

– A finite path in A is a sequence π = s0 a1 s1 a2 s2 . . . sn such that si−1 −ai−→ si

for all 1 ≤ i ≤ n. Infinite paths are defined analogously. The set of all paths
in A is denoted paths(A).

– Given any path, we write first(π) = s0. Also, we denote by states(π) the set of
states that occur on π, and by ω-states(π) the set of states that occur infinitely
often. That is, ω-states(π) = { s ∈ states(π) | ∃∞j . sj = s }.

– We define trace(π) = π � (L \ { τ }), and say that trace(π) is the trace of
π. For every s ∈ S, traces(s) is the set of all traces corresponding to paths
that start in s, i.e., traces(s) = { trace(π) | π ∈ paths(A) ∧ first(π) = s }.
We define traces(A) = traces(s0), and say that two QIOTSs B and C are
trace-equivalent, denoted B ≈tr C, if traces(B) = traces(C).

– For a finite trace σ and state s ∈ S, reach(s, σ) denotes the set of states in A
that can be reached from s via σ, i.e., reach(s, σ) = { s′ ∈ S | s =σ⇒ s′ }. For
a set of states S′ ⊆ S, we define reach(S′, σ) =

⋃
s∈S′ reach(s, σ).

When needed, we add subscripts to indicate the QIOTS these notions refer to.
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Definition 2.4 (Determinism). A QIOTS A is deterministic if s −a→ s′ and
s −a→ s′′ imply a �= τ and s′ = s′′, for all s, s′, s′′ ∈ S and a ∈ L. Otherwise, A is
nondeterministic.

Each QIOTS has an obviously trace-equivalent deterministic QIOTS. Deter-
minization is carried out using the well-known subset construction procedure.
This construction yields a system in which every state has a unique target state
per action, and internal transitions are not present anymore.

Definition 2.5 (Determinization). The determinization of a QIOTS A =
〈S, s0, LI, LO,→ 〉 is the QIOTS det(A) = 〈℘(S)+, { s0 }, LI, LO,→D 〉, with
℘(S)+ = ℘(S) \ ∅ and →D = { (U, a, V ) ∈ ℘(S)+ × L × ℘(S)+ | V =
reachA(U, a) ∧ V �= ∅ }.

Example 2.1. The (not yet well-formed) QIOTS A in Fig. 2(a) is nondetermin-
istic; its determinization det(A) is shown in Fig. 2(b). ��

2.2 Quiescence, Fairness and Divergence

Definition 2.6 (Quiescent state). Let A be a QIOTS. A state s ∈ S is qui-
escent, denoted q(s), if it has no locally-controlled actions enabled, i.e. q(s) if
s �−a→ for all a ∈ LO ∪ { τ }. The set of all quiescent states of A is denoted q(A).

Example 2.2. States s0, s5 and s6 of the QIOTS in Fig. 2(a) are quiescent. ��

As we have already discussed in the introduction, the notion of fairness plays
a crucial role in the treatment of divergences in QIOTSs. As announced, we
take the solution proposed in [2] for DQTSs—which in turn uses a notion of
fairness that stems from [3,10,11]—and simplify it for our purposes. Restricted
to QIOTSs, fairness states that every locally controlled action enabled from a
state that is visited infinitely often, must also be executed infinitely often. Note
that finite paths are fair by default.

Fig. 2. Visual representations of the (not yet well-formed) QIOTSs A and det(A).
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Fig. 3. A simple transition system with two types of divergence.

Definition 2.7 (Fair path). Let A be a QIOTS and π = s0 a1 s1 a2 s2 . . . a
path of A. Then, π is fair if for all s ∈ ω-states(π) and s −a→ s′ with a ∈ (LO ∪
{ τ }) the transition s a s′ occurs infinitely often in π.

The set of all fair paths of a QIOTS A is denoted fpaths(A), and the set of
corresponding traces is denoted ftraces(A).

Unfair paths are considered not to occur, so from now on we only consider
fpaths(A) and ftraces(A) for the behaviour of A.

Example 2.3. Consider the QIOTS in Fig. 3. The infinite path given by π =
s0 τ s0 τ s0 . . . is not fair as the b-output is ignored forever. ��

We can now formally introduce divergence as fair infinite internal behaviour.

Definition 2.8 (Divergent path). Let A be a QIOTS, then a path π is diver-
gent if π ∈ fpaths(A) and it contains only transitions labelled with the internal
action τ . The set of all divergent paths of A is denoted dpaths(A).

Example 2.4. Consider the QIOTS in Fig. 3 again. The infinite path given by
π = s1 τ s1 τ s1 . . . is divergent. Note that divergent traces are not preserved by
determinization. ��

We are now all set to allow divergent paths to occur in QIOTSs. For com-
putability reasons, however, we assume that each divergent path in a QIOTS
contains only a finite number of states.

Definition 2.9 (State-finite path). Let A be a QIOTS and let π ∈ fpaths(A)
be an infinite path. If |states(π)| < ∞, then π is state-finite.

When the system is on a state-finite divergent path, it continuously loops
through a finite number of states on this path. We call these states divergent.

Definition 2.10 (Divergent state). Let A be a QIOTS. A state s ∈ S is
divergent, denoted d(s), if there is a (state-finite and fair) divergent path on
which s occurs infinitely often, i.e., if there is a path π ∈ dpaths(A) such that
s ∈ ω-states(π). The set of all divergent states of A is denoted d(A).

Divergent paths in QIOTSs may cause the observation of quiescence in states
that are not necessarily quiescent themselves. As already illustrated in Fig. 3,
state s1 is not quiescent, since it enables the internal action τ . Still, output is
never observed on the divergent path π = s1 τ s1 τ . . . , so that quiescence is
observed from a non-quiescent state. Note that the assumption of strong con-
vergence of [1] does not allow such behaviour.
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2.3 Well-Formedness

In Definition 2.1 we have already stipulated that, for QIOTS to be meaningful,
they have to adhere to some well-formedness conditions ensuring the consistency
of the representation of quiescence and divergence. Technically speaking, these
conditions ensure that our QIOTSs are particular instances of the DQTS model
of [2], so that we may profit from the proven properties of the more elaborate
model from [2]. We first introduce the DQTS model.

Definition 2.11 (Divergent Quiescent Transition System). A Divergent
Quiescent Transition System (DQTS) is a tuple A = 〈S, S0, LI, LO, LH, P,→ 〉,
where S is a set of states; S0 ⊆ S is a non-empty set of initial states; LI, LO

and LH are disjoint sets of input, output and internal labels, respectively; P is
a partition of LO ∪ LH; and → ⊆ S × L × S is the transition relation, where
L = LI ∪ LO ∪ LH ∪ { δ }. We assume δ /∈ (LI ∪ LO ∪ LH).

1. A DQTS A must be input-enabled, i.e. for each s ∈ S and a ∈ LI, there
exists an s′ ∈ S such that (s, a, s′) ∈ →.

2. A DQTS must be well-formed, i.e. it fulfils Rules R1, R2, R3, and R4 stipu-
lated below.

We use the notions q(s) and d(s), defined earlier for QIOTSs, for DQTSs as well
in the obvious way.

Definition 2.12 (Well-formedness). A DQTS (or a QIOTS) A is well-
formed if it satisfies the following rules for all s, s′, s′′ ∈ S and a ∈ LI:

Rule R1 (Quiescence is observable): if q(s) or d(s), then s −δ→.

Rule R2 (Quiescence follows quiescence): if s −δ→ s′, then q(s′).

We require the observation of quiescence to result in a quiescent state. This
makes sure that no outputs are observed following a quiescence observation.
We could have been a bit more liberal for QIOTSs, replacing this rule by “if
s −δ→ s′, then q(s′) ∨ d(s′)”. After all, divergent states can never invisibly reach
any output transitions under our current fairness assumption. However, we chose
to be more strict here, requiring traditional quiescence (the absence of any locally
controlled actions) following a δ-transition. That way, these rules still work in
the presence of a more liberal fairness assumption that also allows output actions
to be enabled from divergent states (as in [2]).

Rule R3 (Quiescence enables no new behaviour): if s −δ→ s′, then traces(s′) ⊆
traces(s).

The observation of quiescence must not lead to actions that were not enabled
before its observation. As the observation of quiescence may be the result of an
earlier nondeterministic choice, its observation may lead to a state with fewer
enabled actions.
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Fig. 4. Illustration of Rule R3.

Rule R4 (Repeated quiescence preserves behaviour): if s −δ→ s′ and s′ −δ→ s′′,
then traces(s′′) = traces(s′).

The potential reduction of enabled actions of the previous clause only manifests
itself in the first observation of quiescence; its continued observation adds no
new information.

For finite DQTSs/QIOTSs the validity of all rules is computable. Further
below we will discuss the computation of d(s).

Example 2.5. To illustrate the necessity of using ⊆ instead of = in Rule R3,
observe the (not yet well-formed) nondeterministic system in Fig. 4(a). To make
it follow Rule R1, we added a δ-transition to state s2, as shown in Fig. 4(b).
Then, we determinized the system, obtaining the QIOTS shown in Fig. 4(c). All
rules are satisfied. Indeed, as allowed by Rule R3, traces(s2) is a proper subset
of traces(s0). ��

2.4 QIOTSs versus DQTSs

Looking at the definition of DQTSs we observe a few differences with QIOTSs.
As the definition of DQTSs is based on the Input-Output Automata model of
Lynch and Tuttle [3], the three differences are that there is a set of initial states,
rather than a single state; that there is a set of named internal actions, rather
than just τ ; and that a partition P of LO ∪ LH is part of the model. Concerning
the first two differences, the QIOTS model is just a straightforward special case
of the DQTS model. The partition P represents the fairness conditions that
apply to the model, which can be tuned as part of the model. The definition of
a fair path for a DQTS is as follows: a path π = s0 a1 s1 a2 s2 . . . is fair if for
every A ∈ P such that ∃∞j . L(sj) ∩ A �= ∅, we have ∃∞j . aj ∈ A. As for
QIOTSs, state-finite divergence is assumed. The definition below shows which
DQTSs correspond to QIOTSs.

Definition 2.13 (AssociatedDQTS). LetA=〈S, s0, LI, LO,→ 〉 be aQIOTS,
then its associated Divergent Quiescent Transition System DQTS(A) is defined
by the tuple 〈S, { s0 }, LI, LO, LH, P,→′ 〉 with
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1. LH = { τ(s,s′) | s −τ→ s′ ∈ → };
2. P = { { a } | a ∈ LO ∪ LH };
3. →′ = → \ { (s, τ, s′) | (s, τ, s′) ∈ → } ∪ { (s, τ(s,s′), s

′) | (s, τ, s′) ∈ → }.

It is straightforward to check that this association preserves the intended
fairness condition for QIOTSs. In [2] it is proven that well-formed DQTSs and
SAs are equivalent in terms of expressible observable behaviour: it is shown that
for every DQTS there exists a trace equivalent SA, and vice versa. Hence, except
for divergences, their expressivity coincides. This result carries over to QIOTSs,
as their restriction with respect to DQTSs does not affect the observable traces.

3 Operations and Properties

3.1 Deltafication: From IOTS to QIOTS

Usually, specifications are not modelled as QIOTSs directly, but rather in a for-
malism whose operational semantics can be expressed in terms of IOTSs. Hence,
we need a way to convert an IOTS to a (well-formed) QIOTS that captures all
possible observations of it, including quiescence. This conversion is called deltafi-
cation. As for QIOTSs, we require all IOTSs to be input-enabled for deltafication.

To satisfy rule R1, every state in which quiescence may be observed (i.e.,
all quiescent and divergent states) must have an outgoing δ-transition. Hence,
to go from an IOTS to a QIOTS, the deltafication operator adds a δ-labelled
self-loop to each quiescent state. Also, a new quiescence observation state qoss

is introduced for each divergent state s ∈ S: When quiescence is observed in s,
a δ-transition will lead to qoss. To preserve the original behaviour, inputs from
qoss must lead to the same states that the corresponding input transitions from
s led to. All these considerations together lead to the following definition for the
deltafication procedure for IOTSs.

As mentioned before, the SA construction that adds δ-labelled self-loops to
all quiescent states does not work for divergent states, since divergent states
must have at least one outgoing internal transition (and possibly even output
transitions when taking a more lenient fairness assumption, as in [2]). So, a
δ-labelled self-loop added to a divergent state would contradict rule R2.

Definition 3.1 (Deltafication). Let A = 〈SA, s0, LI, LO,→A 〉 be an IOTS
with δ /∈ L. The deltafication of A is δ(A) = 〈Sδ, s

0, LI, LO,→δ 〉. We define
Sδ = SA ∪ { qoss | s ∈ d(A) }, i.e., Sδ contains a new state qoss /∈ SA for every
divergent state s ∈ SA of A. The transition relation →δ is as follows:

→δ = →A ∪ { (s, δ, s) | s ∈ q(A) }
∪ { (s, δ, qoss) | s ∈ d(A) } ∪ { (qoss, δ, qoss) | s ∈ d(A) }
∪ { (qoss, a?, s′) | s ∈ d(A) ∧ a? ∈ LI ∧ s −a?−→A s′ }

Note that computing q(A) is trivial: simply identify all states without outgo-
ing output or internal transitions. Determining d(A) is discussed further below.
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Fig. 5. An IOTS A and its deltafication δ(A). Newly introduced states are grey.

Example 3.1. See Fig. 5 for IOTS A and its deltafication. States s1 and s2 are
divergent, and q0 and q1 quiescence observation states. Note that s0 has an out-
going divergent path, while in accordance to rule R1 it is not given an outgoing
δ-transition. The reason is that, when observing quiescence due to divergence,
rule R4 prescribes that the system can only reside in s1 or s2. The states reach-
able from a given state via unobservable paths assume a similar role as the
stable states (not having outgoing τ -transitions) in [1], which does not deal with
divergence. So, quiescence cannot be observed from s0, and therefore also the
a-transition to s3 should not be enabled anymore after observation of quiescence.
This is now taken care of by not having a direct δ-transition from s0. Because
of this, no trace first having δ and then the b! output is present. ��

The results from [2] imply directly that the deltafication δ(A) indeed yields
a well-formed QIOTS for every IOTS A.

In order to compute the set of divergent states d(A) in a QIOTS A, we
proceed as follows. First, we mark all states that enable an output action; say
we colour those states red. Then, we consider the directed graph G that we obtain
from A by keeping only the τ transitions, and removing all transitions labelled
by an input or output action. Thus, G = (S,E) with E = {(s, s′) | s −τ→ s′}.
In G, we compute, using Tarjan’s algorithm [12], the set of all bottom strongly
connected components. Now, a state is divergent if and only if it is contained in
a bottom strongly connected component that contains no red state and has at
least one τ -transition.

3.2 Composition of QIOTSs

Parallel composition is an important standard operation on well-formed QIOTSs,
and again is a straightforward specialization of the corresponding definition for
DQTSs in [2]. To apply the parallel composition operator we require every output
action to be under the control of at most one component [3].

Definition 3.2 (Compatibility). Two QIOTSs A and B are compatible if
LO

A ∩ LO
B = ∅.
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Definition 3.3 (Parallel composition). Given two well-formed compatible
QIOTSs A and B, the parallel composition of A and B is the QIOTS A ‖ B,
with SA‖B = SA × SB, s0A‖B = (s0A, s0B), LI

A‖B = (LI
A ∪ LI

B) \ (LO
A ∪ LO

B ),
LO

A‖B = LO
A ∪ LO

B , and

→A‖B = { ((s, t), a, (s′, t′)) ∈ SA‖B × ((LA ∩ LB) \ { τ }) × SA‖B |
s −a→A s′ ∧ t −a→B t′ }

∪ { ((s, t), a, (s′, t)) ∈ SA‖B × (LA \ (LB \ { τ })) × SA‖B | s −a→A s′ }
∪ { ((s, t), a, (s, t′)) ∈ SA‖B × (LB \ (LA \ { τ })) × SA‖B | t −a→B t′ }

We have LA‖B = LI
A‖B ∪ LO

A‖B ∪ { τ } = LA ∪ LB.

In essence this is the usual process algebraic definition of parallel composi-
tion with synchronization on shared labels (first set of transitions in the defini-
tion of →A‖B) and interleaving on independent labels (second and third sets of
transitions in the definition of →A‖B). Note that δ is a shared label that must
synchronize, and that τ never synchronizes.

3.3 Preservation Properties

In [2] it is shown that well-formed DQTSs are preserved under parallel compo-
sition and determinization. These results carry over directly to QIOTSs. This is
only possible because of the refined treatment of the definition of quiescence.

With the representation of quiescence by simple δ-loops, as it is done in the
SA model, preservation under determinization fails. It requires that δ-loops can
be unwound, because of the need to preserve Rule R2 under determinization.

Another crucial operation (on IOTSs) is deltafication. A pleasing result is
that deltafication and parallel composition commute [2]. That is, given two com-
patible IOTSs A,B, such that δ /∈ LA ∪ LB, we have δ(A ‖ B) ≈tr δ(A) ‖ δ(B).

With deltafication and determinization the situation is more involved. This
is a direct consequence of the fact that determinization does not preserve quies-
cence. Of course, determinization removes divergences by construction, but this
is not the only source of problems, as the example in Fig. 6 shows (omitting some
self-loops needed for input-enabledness, for presentation purposes).

It follows that when transforming a nondeterministic IOTS A to a deter-
ministic, well-formed QIOTS, one should always first derive δ(A) and only then
obtain a determinized version. As demonstrated in Fig. 6(e), self-loops labelled δ
may turn into regular transitions, motivating once more our choice of moving
away from Suspension Automata (that were not closed under determinization)
to a more general framework in which δ-transitions are treated as first-class
citizens.

3.4 Conformance for QIOTSs

The core of the ioco-framework is its conformance relation, relating specifica-
tions to implementations if and only if the latter is ‘correct’ with respect to
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Fig. 6. Determinization and deltafication.

the former. For ioco, this means that the implementation never provides an
unexpected output (including quiescence) when it is only fed inputs that are
allowed by the specification. Traditionally, this was formalized based on the SAs
corresponding to the implementation and the specification. Now, we can apply
well-formed QIOTSs, as they already model the expected absence of outputs
by explicit δ-transitions. As QIOTSs support divergence, using them also allows
ioco to be applied in the presence of (finite state) divergence.

Definition 3.4 (ioco). Let Impl,Spec be well-formed QIOTSs over the same
alphabet. Then, Impl �ioco Spec if and only if

∀σ ∈ traces(Spec) . out Impl(σ) ⊆ outSpec(σ),

where outA(σ) = {a ∈ LO
δ | σa ∈ traces(A)}.

This new notion of ioco-conformance can be applied to extend the testing
frameworks in [5,8], using the same basic schema: during testing, continuously
choose to either try and provide an input, observe the behaviour of the system
or stop testing. As long as the trace obtained this way, including the δ actions as
the result of either quiescence or divergence, is also a trace of the specification,
the implementation is correct.

Since all QIOTSs are required to be input-enabled, it is easy to see that ioco-
conformance precisely corresponds to traditional trace inclusion over well-formed
QIOTSs (and hence, �ioco is transitive). Note that this only holds because the
specification Spec and implementation Impl are already represented as QIOTSs;
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Fig. 7. Illustration of Example 3.2.

trace inclusion of the IOTSs Impl′ and Spec′ from which these QIOTSs may have
been generated does not necessarily imply that Impl �ioco Spec. The following
example illustrates this.

Example 3.2. Consider the systems shown in Fig. 7, all over the action signa-
ture (LI, LO

δ ) = ({a?}, {b!, δ}). Clearly, both the IOTSs Spec′ and Impl′ are
input-enabled, and also traces(Impl′) ⊆ traces(Spec′). However, when looking
at the corresponding QIOTSs Spec and Impl, we see that δ ∈ outImpl(ε), but
δ �∈ outSpec(ε). Therefore, outImpl(ε) �⊆ outSpec(ε), and as ε ∈ traces(Spec) by
definition Impl ��ioco Spec. ��

Clearly, action hiding—renaming output actions to τ—does not necessarily
preserve �ioco. After all, it may introduce quiescence where that is not allowed
by the specification. (Note also that δ-transitions may need to be added after
hiding. We refer to [2] for a detailed exposition of the hiding operator on DQTSs.)

4 Test Cases and Test Suites

We present part of the testing framework introduced in [5], applying it to
QIOTSs instead of the more basic QTSs used there. Whether the δ-transitions
in QIOTSs were introduced because of traditional quiescence or divergence does
not influence their behaviour, so all results from [5] still hold and the proofs are
not all repeated here.

4.1 Tests over an Action Signature

We apply model-based testing in a black-box manner: to execute a test case
on a system, one only needs an executable of the implementation. Hence, test
cases and test suites can be defined solely based on the so-called action signature
(LI, LO

δ ), also called interface, of the implementation.
A test case describes the behaviour of a tester. At each moment in time the

tester either stops, or waits for the system to do something, or tries to provide
an input. This is represented for each trace (a history) σ in the test case having
either (1) no other traces of which σ is a prefix, (2) several traces σb! that extend
σ with all output actions from LO

δ , or (3) a single trace σa? extending σ with
an input action a? ∈ LI. In the third case, there should also be traces σb! for
all actions b! ∈ LO (excluding δ), as the implementation may be faster than the
tester. A test case contains all behaviour that may occur during testing—during
an actual test, however, only one complete trace of the test will be observed.
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Definition 4.1 (Test case). A test case (or shortly a test) over an action
signature (LI, LO

δ ) is a set of traces t ⊆ (LI ∪ LO
δ )∗ such that

– t is prefix-closed;
– t does not contain an infinite increasing sequence σ0 � σ1 � σ2 � . . . 1;
– For every trace σ ∈ t, we have either

1. {a ∈ LI ∪ LO
δ | σa ∈ t} = ∅, or

2. {a ∈ LI ∪ LO
δ | σa ∈ t} = LO

δ , or
3. {a ∈ LI ∪ LO

δ | σa ∈ t} = {a?} ∪ LO for some a? ∈ LI.

Test cases should not contain an infinite trace aaa . . . (taken care of by
using (LI ∪ LO

δ )∗ instead of (LI ∪ LO
δ )∞) or an infinite increasing sequence

a, aa, aaa, . . . (taken care of by the second condition), since we want the test
process to end at some point. By requiring them to adhere to the observations
made above on the type of traces that they contain, they necessarily represent
a deterministic tester (i.e., they never nondeterministically choose between dif-
ferent input actions).

We note that test cases can be represented as directed acyclic graphs (DAGs)
as well.

Definition 4.2 (Test case notations). Given an action signature (LI, LO
δ ),

– we use T (LI, LO
δ ) to denote the set of all tests over (LI, LO

δ ).
– we define a test suite over (LI, LO

δ ) to be a set of tests over (LI, LO
δ ). We

denote the set of all test suites over (LI, LO
δ ) by TS(LI, LO

δ ).

Given a test case t over (LI, LO
δ ),

– we say that the length of t is the supremum of the lengths of the traces in t,
i.e., sup{|σ| | σ ∈ t}. Note that this length is an element of N ∪ {∞}.

– we say that t is linear if there exists a trace σ ∈ t such that every non-empty
trace ρ ∈ t can be written as σ′a, where σ′ � σ and a ∈ LI ∪ LO

δ . The trace
σ is called the main trace of t.

– we use ctraces(t) to denote the complete traces of t, i.e., all traces σ ∈ t for
which there is no ρ ∈ t such that σ � ρ.

Example 4.1. The restriction that a test case cannot contain an infinite increas-
ing sequence makes sure that every test process will eventually terminate. How-
ever, it does not mean that the length of a test case is necessarily finite.

To see this, observe the two tests shown in Fig. 8 (represented as DAGs,
and for presentation purposes not showing all transitions). The DAG shown in
Fig. 8(a) is not allowed, as it contains the infinite path b! b! b! b! . . . . Therefore,
a test process based on this DAG may never end. The DAG shown in Fig. 8(b),
however, is a valid test. Although it has infinite length (after all, there is no
boundary below which the length of every path stays), there does not exist
an infinite path; every path begins with an action ai and then continues with
i − 1 < ∞ actions.

Note that every test that can be obtained by cutting off Fig. 8(a) at a certain
depth is linear, whereas the test in Fig. 8(b) is not. ��
1 If LI ∪ LO

δ is finite, we can replace this requirement by asking that t is finite.
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Fig. 8. Infinite tests.

Definition 4.3 (Tests for a specification). Let Spec = 〈S, s0, LI, LO,→ 〉 be
a specification (i.e., a QIOTS), then a test for Spec is a test over (LI, LO

δ ). We
denote the universe of tests and test suites for Spec by T (Spec) and TS(Spec),
respectively.

4.2 Test Annotations, Executions and Verdicts

Before testing a system, we obviously need to define which outcomes of a test case
are considered correct (the system passes), and which are considered incorrect
(the system fails). For this purpose we introduce annotations.

Definition 4.4 (Annotations). Let t be a test case, then an annotation of t
is a function a : ctraces(t) → {pass, fail}. A pair t̂ = (t, a) consisting of a test
case together with an annotation for it is called an annotated test case, and a
set of such pairs T̂ = {(ti, ai)} is called an annotated test suite.

When representing a test case as DAG, we depict the annotation function by
means of labels on its leaves (see Fig. 9(b)).

Running a test case can basically be considered as the parallel composition
of the test and the implementation, after first mirroring the action labels of
the test for synchronisation to take place (changing inputs into outputs and the
other way around)2. Note that the test and the implementation synchronise on
all visible actions, that the implementation cannot block any inputs and that the
test cannot block any outputs (except at the end). Therefore, it can easily be seen
that the set of possible traces arising from this parallel composition is just the
intersection of the trace sets of the test and the implementation. We are mainly
interested in the complete traces of this intersection, as they contain the most
information. Also, we prefer to exclude the empty trace, as it cannot be observed
during testing anyway (rather, it could be observed by means of a δ-transition).

2 Technically, parallel composition was only defined for QIOTSs, and test cases are
no QIOTSs. However, the idea can easily be lifted. Moreover, the actual formal
definition of the execution of a test case below circumvents this issue by directly
defining the results of the parallel composition.
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Fig. 9. An implementation, test case and their parallel composition.

To accommodate this, we directly define the set of possible executions of a test
case t given an implementation Impl as follows.

Definition 4.5 (Executions). Let (LI, LO
δ ) be an action signature, t a test

case over (LI, LO
δ ), and Impl an QIOTS over (LI, LO

δ ). Then,

exect(Impl) = traces(Impl) ∩ ctraces(t)

are the executions of t given Impl.

Example 4.2. Consider the implementation in Fig. 9(a) and the corresponding
test case in Fig. 9(b). Figure 9(b) additionally shows their parallel composition
(after first mirroring the test case). Note that it is immediately clear from this
parallel composition that the erroneous output ping ! is not present in the imple-
mentation. By definition, the executions of this test case t given the implemention
Impl are exect(Impl) = {beep!, δ}. ��

Based on an annotated test case (or test suite) we assign a verdict to imple-
mentations; the verdict pass is given when the test case can never find any
erroneous behaviour (i.e., there is no trace in the implementation that is also
in ctraces(t) and was annotated by fail), and the verdict fail is given otherwise.

Definition 4.6 (Verdict functions). Let (LI, LO
δ ) be an action signature and

t̂ = (t, a) an annotated test case over (LI, LO
δ ). The verdict function for t̂ is the

function
vt̂ : QIOTS(LI, LO

δ ) → {pass, fail},

given for any QIOTS Impl by

vt̂(Impl) =
{
pass if ∀σ ∈ exect(Impl) . a(σ) = pass;
fail otherwise.

We extend vt̂ to a function v̂T : QIOTS(LI, LO
δ ) → {pass, fail} assigning a ver-

dict to implementations based on a test suite, by putting v̂T (Impl) = pass if
vt̂(Impl) = pass for all t̂ ∈ T̂ , and v̂T (Impl) = fail otherwise.
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Remark 4.1. Note that during (and after) testing we only have a partial view
of the set exect(Impl), and hence of Impl: each time we run a test case on an
implementation, we see only one single trace in the test case. Additionally, we
are not in control of which traces we see. It is the implementation that decides
which branch is selected. Hence, each test case should be executed a number of
times to cover all behaviour. This implies that testing is inherently incomplete;
even though no failure has been observed, there still may be faults left in the
system. ��

5 Testing with Respect to �ioco

The conformance relation �ioco is of vital importance in the test process, as it
captures precisely which behaviour is considered valid and which is considered
invalid. Based on Definition 3.4, it induces the following annotation function:

Definition 5.1 (ioco-annotation). Let t be an (unannotated) test case for
a specification Spec. The annotation function aioco

Spec,t : ctraces(t) → {pass, fail}
for t is given by

aioco
Spec,t(σ) =

⎧
⎨

⎩

fail if ∃σ1 ∈ traces(Spec), a! ∈ LO
δ .

σ � σ1a! ∧ σ1a! /∈ traces(Spec);
pass otherwise.

The basic idea is that we generally assign a fail verdict only to sequences
σ that can be written as σ = σ1a!σ2 such that σ1 ∈ traces(Spec) and σ1a! /∈
traces(Spec); that is, when there is an output action that leads us out of the
traces of Spec. Note that if we can write σ = σ1b?σ2 such that σ1 ∈ traces(Spec)
and σ1b? /∈ traces(Spec), then we assign a pass, because in this case an unex-
pected input b? ∈ LI was provided by the test case. Hence, any behaviour that
comes after this input is ioco-conforming.

Remark 5.1. In our setting of input-enabled specifications, the scenario in which
σ = σ1b?σ2 such that σ1 ∈ traces(Spec) and σ1b? /∈ traces(Spec), cannot occur.
The definition reduces to aioco

Spec,t(σ) = pass if and only if σ ∈ traces(Spec). ��

Example 5.1. In Fig. 10, test case t3 is annotated according to aioco
Spec,t3

. Test
case t1 is not, though, since it should allow the trace a! and not the trace b!
(since ε ∈ traces(Spec), b! ∈ LO

δ and b! �∈ traces(Spec)). Test case t2 is also not
annotated according to aioco

Spec,t3
, since it erroneously allows δ. ��

Given a specification Spec, any test case t annotated according to aioco
Spec,t is

sound for Spec with respect to �ioco. Intuitively, a sound test case never rejects a
correct implementation. That is, for all implementations Impl ∈ QIOTS(LI, LO

δ )
it holds that vt̂(Impl) = fail implies Impl ��ioco Spec. It is easy to see that, as
�ioco coincides with trace inclusion due to input-enabledness, a test case is sound
if ∀σ ∈ ctraces(t) . σ ∈ traces(Spec) =⇒ a(σ) = pass.

The fact that aioco
Spec,t yields sound test cases follows directly from the above

observation and Remark 5.1.
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Proposition 5.1. Let Spec be a specification, then the annotated test suite T̂ =
{(t, aioco

Spec,t) | t ∈ T (Spec)} is sound for Spec with respect to �ioco.

To also state a completeness property we first introduce a canonical form
for sequences, based on the idea that it is never needed to test for quiescence
multiple times consecutively.

Definition 5.2 (Canonical traces). Let σ be a sequence over a label set L with
δ ∈ L, then its canonical form canon(σ) is the sequence obtained by replacing
every occurrence of two or more consecutive δ actions by δ, and, when σ ends
in one or more δ actions, removing all those. The canonical form of a set of
sequences S ⊆ L∗ is the set

canon(S) = {canon(σ) | σ ∈ S}.

The following proposition precisely characterises the requirement for a test
suite to be complete with respect to �ioco. Intuitively, a complete test suite
never accepts an incorrect implementation. That is, T̂ is complete for Spec with
respect to �ioco if for all implementations Impl ∈ QIOTS(LI, LO

δ ) it holds that
Impl ��ioco Spec =⇒ v̂T (Impl) = fail .

Proposition 5.2. Given a specification Spec and a test suite T̂ ⊆ {(t, aioco
Spec,t) |

t ∈ T (Spec)}, T̂ is complete for Spec with respect to �ioco if and only if

∀σ ∈ canon(traces(Spec)) .(
outSpec(σ) �= LO

δ =⇒ ∃ (t, a) ∈ T̂ . σδ ∈ t
)

Proof (sketch). This proposition states that a complete test suite should be able
to observe the implementation’s behaviour following every canonical trace of the
specification (except when all behaviour is allowed). Hence, no possible unex-
pected (erroneous) outputs are impossible to detect, and indeed every incorrect
implementation can be caught. The fact that we can restrict to canonical traces
stems from well-formedness rules R2 and R4, which make sure that it is never
necessary to directly observe again after observing quiescence. ��

Example 5.2. Consider the specification, implementation and test cases shown
in Fig. 10, all assuming LO = {a!, b!} and LI = ∅. Note that Impl ��ioco Spec due
to the unexpected b! output.

Test case t1 is not sound for Spec with respect to �ioco, since it fails the
correct implementation Spec. Test case t2 is sound, though, as it only rejects
implementations that start with an unexpected b! (as not allowed by �ioco).
Although t2 is sound, it is not complete; it does not detect Impl to be erroneous,
since it stops testing after the first transition.

Using the characterisation of completeness, we can now easily show that each
test suite containing the test case t3 is complete for Spec with respect to �ioco.
After all, canon(traces(Spec)) = {ε, a!}, and indeed δ ∈ t3 and a!δ ∈ t3. Note
that we can indeed stop testing after the δ observation, since the well-formedness
rules of QIOTSs do not allow any outputs after a δ transition. ��
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Fig. 10. A specification, implementation and test cases.

Soundness is a necessary, but not a sufficient property for an annotated test
case to be useful. Indeed, a test case annotated with only pass verdicts is always
sound. Therefore, we prefer a test case to give a fail verdict whenever it should,
i.e., whenever its execution with an implementation produces a trace that is not
allowed by the specification. Of course, completeness of a test suite makes sure
that such traces are failed by at least one test case in the suite, but that is
not necessarily efficient, and moreover, full completeness is rarely achievable. In
practice, there are two reasons why testing is always incomplete: first, a complete
test suite typically has infinitely many test cases, whereas we can execute only
finitely many of them. Second, as observed in Remark 4.1, executing one test case
yields only a partial view of the implementation, as each test execution reveals
a single trace from the test. Therefore, we propose the more local notion of
consistency, extending soundness by requiring that implementations should not
pass a test case that observes behaviour that is not allowed by the specification.

Definition 5.3 (Consistency). Let Spec be a specification over an action sig-
nature (LI, LO

δ ), and t̂ = (t, a) an annotated test case for Spec. Then, t̂ is consis-
tent for Spec with respect to �ioco if it is sound, and for every trace σ ∈ ctraces(t)
it holds that a(σ) = pass implies that σ is indeed allowed by the specification,
i.e.,

∀σ ∈ ctraces(t) . a(σ) = pass =⇒ σ ∈ traces(Spec)

An annotated test suite is consistent with respect to �ioco if all its test cases are.
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As soundness requires that σ ∈ traces(Spec) implies a(σ) = pass for every
σ ∈ ctraces(t), and consistency additionally requires that a(σ) = pass implies
σ ∈ traces(Spec), together they require

∀σ ∈ ctraces(t) . a(σ) = pass ⇐⇒ σ ∈ traces(Spec)

Clearly, if a consistent (and hence sound) test suite contains all traces of the
specification, it is complete.

Example 5.3. In Example 5.2, the test case t2 is not consistent, since it allows
quiescence in the initial state. The specification does not allow this behaviour,
though. Test case t3 is sound, complete and consistent. ��

Besides being sound and possibly complete, the test cases annotated accord-
ing to aioco are also consistent. Hence, whenever they detect behaviour that
could not occur in any correct implementation, they assign a fail verdict. This
follows directly from Remark 5.1 and the definition of consistency.

Proposition 5.3. Let Spec be a specification, then the annotated test suite T̂ =
{(t, aioco

Spec,t) | t ∈ T (Spec)} is consistent for Spec with respect to �ioco.

Obviously, for all practical purposes test suites definitely should be sound,
and preferably complete (although the latter can never be achieved for any
nontrivial specification due to an infinite amount of possible traces). Moreover,
inconsistent test suites should be avoided as they ignore erroneous behaviour.

Note that, as already mentioned in Remark 4.1, not the whole possible range
of traces that Impl may exhibit will in general be observed during a single test
execution. Moreover, although our fairness assumption implies that all traces of
Impl will eventually be seen, many executions may be necessary to indeed detect
all erroneous behaviour.

5.1 Optimisation: Fail-Fast and Input-Minimal Tests

The tests from Tretmans’ ioco-theory [8] are required to be fail-fast (i.e., they
stop testing after the first observation of an error) and input-minimal (i.e., they
do not apply input actions that are unexpected according to the specification).

Definition 5.4 (Optimisations). Let Spec be a specification over an action
signature (LI, LO

δ ), then

– a test t is fail-fast with respect to Spec if σ �∈ traces(Spec) implies that ∀ a ∈
L . σa �∈ t;

– a test t is input-minimal with respect to Spec if for all σa? ∈ t with a? ∈ LI

it holds that σ ∈ traces(Spec) implies σa? ∈ traces(Spec).

The reason for restricting to fail-fast test cases is that ioco defines implementa-
tions to be nonconforming if they have at least one nonconforming trace. Hence,
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once such a trace is observed, the verdict can be given and no further testing
is needed. The reason for restricting to input-minimal test cases is that ioco
allows any behaviour after a trace σ �∈ traces(Spec) anyway, invalidating the
need to test for such behaviour. We note that, in our context of input-enabled
specifications, all tests are input-minimal.

Note that for a test case t that is both fail-fast and input-minimal σa? ∈ t
implies σa? ∈ traces(Spec).

6 Algorithms for Test Case Derivation

So far, we defined a framework in which specifications can be modelled as
QIOTSs and test cases for them can be specified, annotated and executed. More-
over, we presented the conformance relation ioco, and provided a way to anno-
tate test cases according to ioco in a sound manner. Finally, we discussed that
we can restrict test suites to only contain fail-fast and input-minimal test cases.

The one thing still missing is a procedure to automatically generate test
cases from a specification. We describe two algorithms for test case generation:
batch testing, or offline testing, that generates a set of test cases first, and then
executes these; and on-the-fly or online test case generation, which generates
test inputs while executing the system-under-test.

6.1 Batch Test Case Derivation

Algorithm 1 describes batchGen, which generates a set of test cases. The input of
this function is a specification Spec and a history σ ∈ traces(Spec). The output
then is a test case that can be applied after the history σ has taken place. The
idea is to call the function initially with history ε, obtaining a test case that can
be applied without any start-up phase.

For each call to batchGen, a nondeterministic choice is made. Either the
empty test case is returned (used for termination), or a test case is generated
that starts by observation, or a test case is generated that starts by stimulation.
The fair execution of these alternatives will guarantee eventually the selection
of the first alternative, and with that, termination.

In case stimulation of some input action a? is chosen, this results in the test
case containing the empty trace ε (to stay prefix-closed), a number of traces of
the form a?σ′ where σ′ is a trace from a test case starting with history σa?,
and, for every possible output action b! ∈ LO (so b! �= δ), a number of traces of
the form b!σ′, where σ′ is a trace from a test case starting with history σb!. No
traces of the form b!σ′ (with σ′ �= ε) are added when the output b! is erroneous;
this makes sure that the resulting test case will be fail-fast.

If observation is chosen, this results in the test case containing the empty
trace ε (again, to stay prefix-closed) and, for every possible output action b! ∈
LO

δ , some traces of the form b!σ′, where σ′ is a trace from a test case starting
with history σa?. Again, we stop instantly after an erroneous output.
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Algorithm 1. Batch test case generation for ioco.

Input: A specification Spec and history σ ∈ traces(Spec)
Output: A test case t for Spec such that t is input-minimal and fail-fast

procedure batchGen(Spec, σ)
1 [true] →
2 return {ε}
3 [true] →
4 result := {ε}
5 forall b! ∈ LO

δ do
6 if σb! ∈ traces(Spec) then
7 result := result ∪ {b!σ′ | σ′ ∈ batchGen(Spec, σb!)}

else
8 result := result ∪ {b!}

end

end
9 return result

10 [a? ∈ LI] →
11 result := {ε} ∪ {a?σ′ | σ′ ∈ batchGen(Spec, σa?)}
12 forall b! ∈ LO do
13 if σb! ∈ traces(Spec) then
14 result := result ∪ {b!σ′ | σ′ ∈ batchGen(Spec, σb!)}

else
15 result := result ∪ {b!}

end

end
16 return result

Remark 6.1. Note that, for efficiency reasons, the algorithm could be changed
to remember the states in which the system might be after history σ. Then,
the parameters of batchGen would become (Spec, σ, S′), the conditions in line 6
and 16 would become ∃ s ∈ S′ . b! ∈ LSpec(s), the recursive calls in line 7 and 14
would add a third parameter reachSpec(S′, b!), and the recursive call in line 14
would add a third parameter reachSpec(S′, a?). ��

Remark 6.2. Clearly, it is impossible to explicitly store any nontrivial test case
for a specification over an infinite number of output actions, as for such sys-
tems a single observation already leads to an infinite test case. In that case, the
algorithm should be considered a pseudo-algorithm. The algorithm for on-the-fly
test case derivation, presented in the next section, will still be feasible. ��

Theorem 6.1. Let Spec be a specification, and t = batchGen(Spec, ε). Then, t
is a fail-fast and input-minimal test case for Spec.
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Proof (sketch). We need to show that the conditions of Definition 4.1 are satis-
fied. Prefix-closedness can be shown using induction over the length of a trace,
as every step of the algorithm suffixes at most one action and also returns ε. Fur-
thermore, as every iteration of the algorithm increases the length of the test case
by one, a test case obtained by running the algorithm (a finite amount of time)
can never have an infinite increasing sequence. Finally, the required structure of
the traces precisely corresponds to what’s happening in the three nondeterminis-
tic choices: either suffixing nothing, suffixing all outputs including δ, or suffixing
an input and all output actions excluding δ. ��

Note that Propositions 5.1 and 5.3 imply that t̂ = (t, aioco
Spec,t) is sound and

consistent for Spec with respect to �ioco.
The next theorem states that, in principle, every possible fault can be dis-

covered by a test case generated using Algorithm 1. More specifically even, it
can always be found by a linear one.

Theorem 6.2. Let Spec be a specification, and T the set of all linear test cases
that can be generated using Algorithm1. Then, the annotated test suite T̂ =
{(t, aioco

Spec,t) | t ∈ T} is complete for Spec with respect to �ioco.

Proof. By Proposition 5.2 we know that T̂ is complete for Spec with respect to
�ioco if for all σ ∈ canon(traces(Spec)) either the specification allows all outputs
(including quiescence) after σ, or there exists an annotated test case (t, a) ∈ T̂
such that σδ ∈ t.

Let σ = a1a2 . . . an ∈ canon(traces(Spec)). We now show that indeed there
exists a linear test case t ∈ T such that σδ ∈ t by constructing this test case.
We will construct it in such a way that σ will be the main trace of t.

In the first iteration, we resolve the nondeterminism based on the action a1.
If a1 ∈ LI, then we choose to stimulate a1. This results in several recursive calls;
one for the history a? and one for every b! ∈ LO. For all the outputs b! the next
choice should be to return ε; that way, t remains linear as all traces only deviate
one action from the main trace σ. If a1 ∈ LO

δ , then we choose to observe. This
results again in several recursive calls; one for every b! ∈ LO

δ . Now, for all outputs
b! �= a1 the recursive call should return ε for t to remain linear.

In the second iteration, caused by the recursive call with history a1, the same
strategy should be applied. Finally, at the (n + 1)th iteration, having history σ,
choose to observe. This causes σδ to be added to t. Now return ε in all remaining
recursive calls to terminate the algorithm. ��

Clearly, this implies that the set of all (not necessarily linear) test cases that
can be generated using Algorithm 1 is complete. Still, some issues need to be
taken into consideration.

First, as mentioned before, almost every system needs an infinite test suite
to be tested completely, which of course is not achievable in practice. In case of a
countable number of actions and states this test suite can at least be provided by
the algorithm in the limit to infinitely many recursive steps, but for uncountable
specifications this would not even be the case anymore (because in infinitely
many steps the algorithm is only able to provide a countable set of test cases).



Testing Divergent Transition Systems 363

Second, although the set of all test cases derivable using the algorithm is
in theory complete, this does not necessarily mean that every erroneous imple-
mentation is detected by running all of these tests once. After all, because of
nondeterminism, faulty behaviour might not show during testing, even though it
may turn up afterwards. Only if all possible outcomes of every nondeterministic
choice are guaranteed to be taken at least once during testing, a complete test
suite can indeed observe all possible erroneous traces of an implementation. We
refer to [13] for more details on expected test coverage (including probabilistic
computations).

Despite these restrictions, the completeness theorem provides important
information about the test derivation algorithm: it has no ‘blind spots’. That
is, for every possible erroneous implementation there exists a test case that can
be generated using Algorithm 1 and can detect the erroneous behaviour. So, in
principle every fault can be detected.

6.2 On-the-Fly Test Case Derivation

Instead of executing predefined test cases, it is also possible to derive test cases
on-the-fly. A procedure to do this in a sound manner is depicted in Algorithm 2.
We note that the efficiency considerations of Remark 6.1 also apply to this
algorithm.

The input of the algorithm consists of a specification Spec and a concrete
implementation Impl. The algorithm contains one local variable, σ, which repre-
sents the trace obtained thus far; it is therefore initialised with the empty trace ε.
Then, the while loop is executed a nondeterministic number of times.

For every test step there is a nondeterministic choice between ending the
test, observing, or stimulating the implementation by any of the input actions.
In case observation is chosen, the output provided by the implementation (either
a real output action or δ) is appended to σ. Also, the correctness of this output
is verified by checking if the trace obtained thus far is contained in traces(Spec).
If not, the verdict fail can be given, otherwise we continue. In case stimulation is
chosen, the implementation is stimulated with one of the inputs that are allowed
by the specification, and the history is updated. By definition of ioco no fail
verdict can immediately follow from stimulation, so we continue with the next
iteration. As the implementation might provide an output action before we are
able to stimulate, a try-catch block is positioned around the stimulation to be
able to handle an incoming output action. Moreover, the stimulation and the
update of σ are put in an atomic block, preventing the scenario where an output
that occurs directly after a stimulation prevents σ from being updated properly.

Theorem 6.3. Algorithm2 is sound and consistent with respect to �ioco.

Proof. We first prove soundness. Note that σ keeps track of the trace exhibited
by the implementation thus far. The only way for the algorithm to return fail is
when σ �∈ traces(Spec) after an observation. In that case, indeed we found that
traces(Impl) �⊆ traces(Spec) and hence Impl ��ioco Spec.
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Algorithm 2. On-the-fly test case derivation for ioco.

Input: A specification Spec, a concrete implementation Impl.
Output: The verdict pass when the observed behaviour of Impl was

ioco-conform Spec, and the verdict fail when a nonconforming trace
was observed during the test.

1 σ := ε
2 while true do
3 [true] →
4 return pass
5 [true] →
6 observe Impl’s next output b! (possibly δ)
7 σ := σb!
8 if σ �∈ traces(Spec) then return fail

9 [a? ∈ LI] →
10 try
11 atomic
12 stimulate Impl with a?
13 σ := σa?

end

14 catch an output b! occurs before a? could be provided
15 σ := σb!
16 if σ �∈ traces(Spec) then return fail

end

end
17 return pass

For consistency, note that the only way for the algorithm to return pass
is when σ ∈ traces(Spec) by the end of the last iteration. As the on-the-fly
algorithm basically is a test case with only one complete trace, this directly
satisfies the definition of consistency. ��

The algorithm is obviously not complete when run only once. However, it is
easy to see that, just like for the batch test case generation algorithm, there is
no erroneous implementation that cannot be caught in principle. The more often
it is run, the more likely that erroneous transitions are detected.

7 Conclusions and Future Work

This paper has revisited the ioco-theory for model-based testing so that it
can handle divergences, i.e., τ -loops. Divergences are common in practice, for
instance as a result of action hiding. Hence, our results extend model-based
testing techniques to an important class of new models.

We have phrased ioco-theory in a trace-based setting, using only standard
concepts from labelled transition systems. Technically, our treatment of diver-
gence proceeds via the QIOTS model, where quiescence is modelled as a special
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output action. QIOTSs constitute a clean modelling framework, closed under
parallel composition, action hiding and determinization. This paves the way to
further study compositionality results; compositionality is widely recognized as
one of the most crucial techniques to handle the complexity of today’s systems.
Further, testers can be oblivious of the QIOTS model, since any input/output
transition system can be transformed into a QIOTS via a deltafication operator.

This work spawns two directions for future research. First, our setting
requires that τ -loops contain finitely many states only. This restriction is needed
to ensure well-formedness of the deltification operator. Second, as mentioned, it
is interesting to study compositionality results for systems with divergences.
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Abstract. In the analysis of reactive systems a quantitative objective
assigns a real value to every trace of the system. The value decision
problem for a quantitative objective requires a trace whose value is at
least a given threshold, and the exact value decision problem requires
a trace whose value is exactly the threshold. We compare the compu-
tational complexity of the value and exact value decision problems for
classical quantitative objectives, such as sum, discounted sum, energy,
and mean-payoff for two standard models of reactive systems, namely,
graphs and graph games.

1 Introduction

The formal analysis of reactive systems is a fundamental problem in computer
science. Traditionally the analysis focuses on correctness properties, where a
Boolean objective classifies the traces of the reactive system as either correct or
incorrect. Recently there has been significant interest in the performance analy-
sis of reactive systems as well as the analysis of reactive systems in resource-
constrained environments such as embedded systems. In such scenarios quanti-
tative objectives are necessary. A quantitative objective assigns a real value to
every trace of the system which measures how desirable the trace is.

Given a reactive system and a quantitative objective, we consider two variants
of the decision problem. First, the value decision problem for a quantitative
objective requires a trace whose value is at least a given threshold. Second,
the exact value decision problem requires a trace whose value is exactly the
threshold.

Based on the length of the traces to be analyzed, quantitative objectives
can be classified into three categories as follows: (a) infinite-horizon objectives
where traces of infinite length are considered; (b) finite-horizon objectives where
traces of a given bounded length are considered; (c) indefinite-horizon objectives

This research was supported in part by the Austrian Science Fund (FWF) under
grants S11402-N23 and S11407-N23 (RiSE/SHiNE), and Z211-N23 (Wittgenstein
Award), ERC Start grant (279307: Graph Games), Vienna Science and Technology
Fund (WWTF) through project ICT15-003.

c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 367–381, 2017.
DOI: 10.1007/978-3-319-63121-9 18



368 K. Chatterjee et al.

where, given source and target vertices of the system, traces starting at the
source and ending at the target are considered. While infinite-horizon and finite-
horizon objectives have been traditionally studied, indefinite-horizon objectives
are natural in many applications, such as robotics, where the robot must reach
a goal state while optimizing the cost of the path [4].

In this work, we focus on two finite-state models of reactive systems, namely,
graphs and graph games. Every transition of the system is assigned an integer-
valued weight representing a reward (or cost). We consider three classical quan-
titative objectives, which are variants of the sum of the weights: (i) the standard
sum of the weights, (ii) the discounted sum of the weights, and (iii) the energy
objective, which is the sum but requires that all partial sums along the trace are
non-negative. We study the computational complexity of the value and exact-
value decision problems for the indefinite-horizon case of the above three quan-
titative objectives, both for graphs and games. We also distinguish whether the
numbers are represented in unary and binary. We show how to extend and adapt
existing results from the literature to obtain a comprehensive picture about the
computational complexity of the problems we study. The results are summarized
in Table 1 for graphs and Table 2 for graph games.
Related Works. The value decision problem for quantitative objectives has been
extensively studied for graphs and games. For the finite-horizon case the standard
solution is the value iteration (or dynamic programming) approach [17,27]. For
the infinite-horizon case there is a rich literature: for mean-payoff objectives in
graphs [25] and games [8,16,19,30], for energy objectives in graphs and games [5,
8,9], for discounted-sum objectives in graphs [1] and games [21,30]. The exact
value decision problem represents an important special case of the problem where
there are multiple objectives. The multiple objectives problem has been studied
for mean-payoff and energy objectives [14,24,29]. For discounted-sum objectives
the problem has been studied in other contexts (such as for randomized selection
of paths) [12,13]. The special case of multiple objectives defined using a single
quantitative function leads to interval objectives [23]. While finite-horizon and
infinite-horizon problems have been studied for graphs and games, the indefinite-
horizon problem has been studied mainly in artificial intelligence and robotics
for different models (such as partially-observable MDPs) [4,10,11]. In this work
we present a comprehensive study for indefinite-horizon objectives in graphs and
games.

2 Preliminaries

A weighted graph G = 〈V,E,w〉 consists of a finite set V of vertices, a set
E ⊆ V × V of edges, and a function w : E → Z that assigns an integer weight
to each edge of the graph. In the sequel, we consider weights encoded in unary,
as well as in binary.

A path in G is a sequence ρ = v0v1 . . . vk such that (vi, vi+1) ∈ E for all
0 ≤ i < k. We say that ρ is a path from v0 to vk. Given two vertices s, t ∈ V ,
we denote by Paths(s, t) the set of all paths from s to t in G (we assume that
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Table 1. The complexity of the quantitative (s, t)-reachability problem for graphs, for
threshold and exact value, with weights encoded in unary or in binary.

≥ 0 = 0

Unary Binary Unary Binary

Sum PTIME PTIME NP-c

Discλ PTIME Decidability is open; finite-path hard

Energy PTIME PTIME NP-c

the graph G is clear from the context). A prefix of ρ is a sequence ρ[0 . . . j] =
v0v1 . . . vj where j ≤ k. We denote by Pref(ρ) the set of all prefixes of ρ.

The total weight of ρ is defined by Sum(ρ) =
∑k−1

i=0 w(vi, vi+1), and given
a discount factor 0 < λ < 1, the discounted sum of ρ is Discλ(ρ) =

∑k−1
i=0 λi ·

w(vi, vi+1). Note that for λ = 1, we have Disc1(ρ) = Sum(ρ). In the sequel, we
consider a rational discount factor represented by two integers encoded like the
weights in the graph (in unary or in binary). A winning condition is a set of
paths. We consider the following winning conditions, which contain paths from
s to t satisfying quantitative constraints. For ∼∈ {=,≥}, define

– Sum∼0(s, t) = {ρ ∈ Paths(s, t) | Sum(ρ) ∼ 0},
– Disc∼0

λ (s, t) = {ρ ∈ Paths(s, t) | Discλ(ρ) ∼ 0},
– Energy∼0(s, t) = {ρ ∈ Sum∼0(s, t) | Sum(ρ′) ≥ 0 for all ρ′ ∈ Pref(ρ)}.

Note that the energy condition is a variant of the sum requiring that all
partial sums are nonnegative. For example, Sum=0(s, t) is the set of all paths
from s to t with a total weight equal to 0, and Energy=0(s, t) are all such
paths that maintain the total weight nonnegative along all their prefixes. Note
that the energy condition is the same as the requirement that counters remain
nonnegative used in VASS (Vector Addition Systems with States) and counter
automata [2].

Definition 1 (Quantitative (s, t)-reachability problem for graphs). The
quantitative (s, t)-reachability problem for graphs asks, given a graph G and a
winning condition ϕ ∈ {Sum∼0,Disc∼0

λ ,Energy∼0}, whether the set ϕ(s, t) is
nonempty.

3 Graphs

In this section we assume without loss of generality that there is no incoming
edge in vertex s, and no outgoing edge from vertex t. We discuss the details of
the complexity results for graphs.

Theorem 1. The complexity bounds for the quantitative (s, t)-reachability prob-
lem for graphs are shown in Table 1.
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va1 va2 . . . van t

a1

0

0

0

a2

0

0

0
−B

Fig. 1. Reduction from the subset-sum problem with A = {a1, . . . , an} for the NP-
hardness result of Sum=0 in graphs (s = va1).

3.1 Results for Sum

Results for Sum≥0. The problem asks whether there exists a path from s to
t of total weight at least 0. We can compute the longest path between s and
t using Bellman-Ford algorithm, which detects positive cycles (the algorithm is
the same as for finding a shortest path with opposite sign of the weights). Hence
the problem is in PTIME for weights encoded in binary (and thus for weights
encoded in unary as well).

Results for Sum=0. The problem asks whether there exists a path from s to t
of total weight exactly 0. A pseudo-polynomial algorithm is known for this prob-
lem [26, Theorem 6]. Therefore, the problem is in PTIME for weights encoded
in unary. It is also known that the problem is NP-complete for weights encoded
in binary [26, Theorem 1, Theorem 9]. The NP upper bound is obtained by a
reduction to integer linear programming (ILP) over variables xe (e ∈ E) that
represent the number of times edge e is used in a path from s to t, and where the
ILP constraints require that for every vertex v, the number of incoming edges
in v is equal to the number of outgoing edges from v (except for the source and
target nodes s and t). The solution of the ILP should form a strongly connected
component when a back-edge is added from t to s, which can be checked in poly-
nomial time. The NP lower bound is obtained by a reduction from the subset
sum problem, which asks, given a finite set A ⊆ N and a number B ∈ N, whether
there exists a subset Z ⊆ A such that Σz∈Zz = B (the sum of the elements of
Z is B). The reduction, illustrated in Fig. 1, consists in constructing a graph in
which there is a vertex va for each a ∈ A, and from va there are two outgoing
edges, one with weight a, the other with weight 0. The two edges lead to inter-
mediate vertices from which there is one edge with weight 0 to the vertex va′

(where a′ is the successor of a in some total order over A). From the last vertex
va, there is an edge to t with weight −B. The answer to the subset sum problem
is Yes if and only if there is a path of total weight 0 from the first vertex va to t.

3.2 Results for Discλ

Results for Disc
≥0
λ . We present a polynomial-time algorithm for weights and

discount factor encoded in binary (thus also for weights and discount factor
encoded in unary). First we compute the co-reachable vertices in the graph,
namely the set coReach(t) = {v ∈ V | Paths(v, t) 
= ∅} of vertices from which
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there exists a path to t, and we consider the graph G′ = 〈V ∩ coReach(t), E ∩
(coReach(t) × coReach(t))〉 in which the vertex t has a self-loop with weight 0.

Then, we compute for each vertex v ∈ coReach(t), the largest value of the
discounted sum of an infinite path from v in G′. The discounted sum of an infinite
path v0v1 · · · ∈ V ω is

∑∞
i=0 λi ·w(vi, vi+1). Note that the series converges because

λ < 1 and the weights are bounded. The largest discounted sum of a path from
a given vertex can be computed in polynomial time using linear programming
[1, Section 3.1].

We consider the following cases:

– If the value val(s) in the source vertex s is strictly greater than 0, then the
answer to the (s, t)-reachability problem is Yes. Indeed, consider a prefix ρ′ of
length n of an optimal path ρ from s, where n is such that 2λn

1−λ · W < val(s)
(where W is the largest weight of G′ in absolute value). Then it is easy to
show that ρ′ can be continued to a path that reaches t with positive weight.

– If val(s) < 0 then the answer to the (s, t)-reachability problem is No, as
all finite paths from s to t have negative value (otherwise, there would be
an infinite path with value at least 0, by prolonging the path through the
self-loop on t).

– If val(s) = 0 then consider the graph G′′ obtained from G′ by keeping only
the optimal edges, where an edge e = (v, v′) is optimal if val(v) = w(v, v′) +
λ · val(v′). The answer to the (s, t)-reachability problem is Yes if and only if
there is a path from s to t in G′′, which can be computed in polynomial time.
Indeed, if there exists a path from s to t with discounted sum equal to 0,
then this path is optimal for the infinite-path problem since val(s) = 0, and
therefore it uses only optimal edges. Moreover, if an infinite path from s uses
only optimal edges, then it has value val(s) = 0, thus if such a path reaches
t, then it gives a solution to the problem since from t the only outgoing edge
is a self-loop with weight 0.

Results for Disc=0
λ . The decidability of the problem is open. Note that the

decidability of the problem of finding an infinite path with exact discounted
sum 0 is also open [3].

3.3 Results for Energy

Results for Energy≥0. The problem asks whether there exists a path from s
to t that maintains the total weight (of all its prefixes) at least 0. We present a
polynomial-time algorithm for weights encoded in binary (thus also for weights
encoded in unary).

The algorithm relies on the fact that if there exists a path from s to t, then
either the path is acyclic, or it contains a cycle, and that cycle needs to be positive
(otherwise, we can remove the cycle and get an equally good path). Accordingly,
the algorithm has two steps. First, we compute for each vertex v ∈ V the largest
total weight of a path from s to v (where the path must have all its prefixes
nonnegative). To do that, we start from a function μ0 : V → N ∪ {−∞} such
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that μ0(s) = 0 and μ0(v) = −∞ for all v ∈ V \ {s} and we iterate the operator
Post : (V → N ∪ {−∞}) → (V → N ∪ {−∞}) defined as follows:

Post(μ)(v) = max{μ(u) + w(u, v) | (u, v) ∈ E ∧ μ(u) + w(u, v) ≥ 0} ∪ {μ(v)}
where max ∅ = −∞. Consider Postn(μ0), the nth iterate of Post on μ0 where
n = |V |. Intuitively, the value Postn(μ0)(v) is the largest credit of energy (i.e.,
total weight) with which it is possible to reach v from s with a path of length
at most n while maintaining the energy always nonnegative along the way. If
Postn(μ0)(t) ≥ 0, then the answer to the (s, t)-reachability problem is Yes. Oth-
erwise, it means that there is no acyclic path from s to t that satisfies the energy
constraint, and thus a positive cycle is necessary to reach t.

The second step of the algorithm is to check, for each vertex v with initial
energy μ̃0 defined by μ̃0(v) = Postn(μ0)(v) and μ̃0(v′) = −∞ for all v′ 
= v,
whether a positive cycle can be executed from v, that is whether Postn(μ̃0)(v) >
μ̃0(v). Note that only the vertices v such that Postn(μ0)(v) 
= −∞ need to be
considered. If there exists such a vertex from which t is reachable (without any
constraint on the path from v to t), then the answer to the (s, t)-reachability
problem is Yes. Otherwise, the answer to the problem is No because if there
existed a path from s to t satisfying the energy constraint, it could not be an
acyclic path (by the result of the first step of the algorithm), and it could not
contain a cycle because (i) there is no positive cycle that can be reached from
s and executed (by the result of the second step of the algorithm), and (ii) all
negative cycles can be removed from the path to obtain a simpler, eventually
acyclic, path that satisfies the energy constraint, which is impossible, as shown
above. It is easy to see that the above computation can be done in polynomial
time.

Consider the weighted graph with five vertices in Fig. 2. The graph has two
cycles around v2, both are positive. The vertex t is reachable from s, but in order
to maintain the energy level nonnegative, we need to go through a cycle around
v2 which increases the energy level and allows to take the transition from v2 to
t with weight −15.

The algorithm first computes for each vertex the largest energy level that
can be obtained by a path of length 5 from s (while maintaining the energy
level always nonnegative). The result is shown in Fig. 2 as μ5 = Post5(μ0). Note
that μ5(t) = −∞, thus there is no acyclic path from s to t with nonnegative
energy level. The second step of the algorithm is a positive cycle detection, from
each vertex of the graph. The computation from v2 is illustrated in Fig. 2. Since
the value at v2 has strictly increased, a positive cycle is detected, and since t
is reachable from v2 (even if it is by a negative path), we can reach t from s
(through v2) with energy always at least 0.

Results for Energy=0. The problem is in PTIME for weights encoded in unary,
as this a reachability problem in VASS (Vector Addition Systems with States)
of dimension one, which is known to be NL-complete [2, Section 1]. The problem
is NP-complete for weights encoded in binary, as this is exactly the reachability
problem for one-counter automata, which is NP-complete [20, Proposition 1,
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s v1 v2 v3 t

1

−3
−4

5 5

−2

−15

= µ00 −∞ −∞ −∞ −∞
Post(µ0) = = µ10 −∞ 1 −∞ −∞
Post(µ1) = = µ20 6 1 −∞ −∞
Post(µ2) = = µ30 6 2 −∞ −∞
Post(µ3) = = µ40 7 2 0 −∞
Post(µ4) = = µ50 7 5 0 −∞

= µ̃0 (at v2)−∞ −∞ 5 −∞ −∞
Post(µ̃0) = = µ̃1−∞ 10 5 3 −∞
Post(µ̃1) = = µ̃2−∞ 10 8 3 −∞
Post(µ̃2) = = µ̃3−∞ 13 8 6 −∞
Post(µ̃3) = = µ̃4−∞ 13 11 6 −∞
Post(µ̃4) = = µ̃5−∞ 16 11 9 −∞

Fig. 2. Sample of the fixpoint iterations to decide if there exists a path from s to t
with energy (sum of weights) always at least 0.

Theorem 1]. The NP upper bound follows since one-counter automata allow
zero-tests along the execution, and the NP lower bound holds even without
zero-tests using a reduction from the subset-sum problem (see also Fig. 1).

4 Games

A game consists of a weighted graph G = 〈V,E,w〉 where V is partitioned into
the sets V1 of player-1 vertices, and the set V2 of player-2 vertices. We assume that
player-1 vertices and player-2 vertices alternate, i.e., E ⊆ (V1 × V2) ∪ (V2 × V1).
This incurs no loss of generality as we can insert intermediate vertices along
every transition that does not ‘alternate’. We also assume that every vertex has
a successor, that is for all v ∈ V there exists v′ ∈ V such that (v, v′) ∈ E.

A strategy of player 1 is a function σ : V ∗V1 → V such that (v, σ(ρ · v)) ∈ E
for all ρ ∈ V ∗ and all v ∈ V1. A strategy σ is memoryless if it depends on the
last vertex only, that is σ(ρ ·v) = σ(ρ′ ·v) for all ρ, ρ′ ∈ V ∗ and all v ∈ V1. Given
an initial vertex v, and a strategy σ of player 1, we say that an infinite path
ρ = v0v1 . . . is an outcome of σ from v if v0 = v and σ(v0 . . . vj) = vj+1 for all
j ≥ 0 such that vj ∈ V1. We denote by Outcomeω

v (σ) the set of all outcomes of
strategy σ from vertex v.
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Table 2. The complexity of the quantitative (s, t)-reachability problem for games, for
threshold and exact value, with weights encoded in unary or in binary.

≥ 0 = 0

Unary Binary Unary Binary

Sum PTIME NP ∩ coNP PSPACE-c EXPSPACE-c

Discλ PTIME NP ∩ coNPa Decidability is open; finite-path hard

Energy PTIME NP ∩ coNP PSPACE-c EXPSPACE-c
aThe problem can be solved in PTIME if the weights in the graph are
in binary, and the discount factor is in unary [21]

Definition 2 (Quantitative (s, t)-reachability problem for games). The
quantitative (s, t)-reachability problem for games asks, given a game G and a
winning condition ϕ ∈ {Sum∼0,Disc∼0

λ ,Energy∼0}, whether there exists a strat-
egy σ of player 1 such that for all outcomes ρ ∈ Outcomeω

s (σ) there exists a
prefix of ρ that belongs to the set ϕ(s, t).

Theorem 2. The complexity bounds for the quantitative (s, t)-reachability prob-
lem for games are shown in Table 2.

We now discuss the details of the results.

4.1 Results for Sum

Results for Sum≥0. The game problem for Sum≥0 is also known as the max-
cost reachability problem. The problem is in NP ∩ coNP for weights encoded in
binary [18, Theorem 5.2]. The result of [18, Theorem 5.2] holds for the winning
conditions defined as a strict threshold, namely Sum>0(s, t) = {ρ ∈ Paths(s, t) |
Sum(ρ) > 0}, and the same proof idea works for non-strict threshold. The result
is obtained by a reduction to mean-payoff games [16,30], which can be viewed
as games where one player 1 wins if he can ensure that all cycles formed along
a play are positive. Such games can be solved in NP ∩ coNP. The reduction
constructs a mean-payoff game as a copy of the original game over the set of
states from which player 1 can ensure to reach t, and adds an edge from t back
to s with weight 0. Then player 1 can ensure a positive cycle if and only if he
can ensure the objective Sum>0(s, t): either he can reach t and loop through
it (with a positive total weight), or he can ensure positive cycles that can be
repeated until the total weight is sufficiently high to let him reach t while the
total weight remains positive. Conversely, if he can reach t with positive total
weight, then he can win the mean-payoff game by repeatedly reaching t. Note
that memoryless strategies are sufficient for player 2, but not for player 1 as he
may need to accumulate weights along positive cycles before switching to the
strategy that ensures reaching t.

It is not known whether mean-payoff games can be solved in polynomial
time. The game problem for Sum≥0 is at least as hard as mean-payoff games,
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thus in the same status as mean-payoff games. This result is analogous to [7,
Theorem 1(2)]. The idea of the reduction is, given a mean-payoff game G with
initial vertex v, to construct a game G′ from G by adding a transition with
weight −nW − 1 from every player-1 vertex to a new vertex t where n is the
number of vertices in G and W is the largest absolute weight in G. The reduction
works because player-1 vertices and player-2 vertices alternate. The reduction is
correct because if player 1 wins the mean-payoff game (with strict threshold),
then he has a memoryless strategy to ensure that all reachable cycles are positive.
Then, in G′ player 1 can play the mean-payoff winning strategy long enough to
accumulate total weight nW+1, and then use the transition with weight −nW−1
to reach t, and thus win in G′. In the other direction, if player 1 does not win
the mean-payoff game, then player 2 can fix a memoryless strategy to ensure
that all cycles are non-positive. Hence, the total weight of all finite prefixes of all
outcomes is at most nW (the largest possible weight of an acyclic path), which
is not sufficient to reach t, thus player 2 wins in G′.

For weights encoded in unary, the game problem for Sum≥0 can be solved
in polynomial time using the algorithm of [7, Theorem 1(4)], a fixpoint iter-
ation that relies on backward induction to compute the optimal cost for i + 1
rounds of the game, knowing the optimal cost for i rounds, similar to the pseudo-
polynomial algorithm for solving mean-payoff games [8,30]. The fixpoint itera-
tion stops when the cost stabilizes to a finite value, or exceeds nW indicating
that an arbitrary large cost can be achieved.

Results for Sum=0. The game problem for Sum=0 is a reachability problem
where the target consists in both the vertex and the weight value. The problem
was shown to be PSPACE-complete for weights encoded in unary [28, Theo-
rem 5], and EXPSPACE-complete for weights encoded in binary [22, Theorem 1].

4.2 Results for Discλ

Results for Disc
≥0
λ . The game problem for Disc≥0

λ is in NP ∩ coNP for weights
encoded in binary, by an argument similar to [18, Theorem 5.2] which shows
the result for strict threshold (where the winning condition is the set of paths
ρ from s to t such that Discλ(ρ) > 0). The solution for strict threshold can be
modified for non-strict threshold along the same idea as for the graph problem,
thus by a reduction to infinite-horizon discounted sum games, which are solvable
in NP ∩ coNP [30], and even in PTIME for unary encoding of the discount factor
(even if the weights are encoded in binary) [21].

It is not known whether discounted sum games can be solved in polynomial
time, and we show that discounted sum games reduce to the (s, t)-reachability
problem for Disc≥0

λ . Given an infinite-horizon discounted sum game G, consider
the game G′ obtained from G by adding a vertex t, and edges (v, t) for all
vertices v of player 1 in G (with weight 0). The reduction works because player-
1 vertices and player-2 vertices alternate. Given the rational threshold ν for the
game G, due to the separation of values in discounted sum games (which means
that the optimal value in discounted sum games is the value of a play consisting
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of an acyclic prefix followed by a simple cycle, thus a rational number with
denominator bounded by bn, where b is the denominator of the discount factor
λ, and n is the number of vertices in G) we can construct a number ν′ < ν such
that if the optimal value in G is smaller than ν, then it is also smaller than ν′.
The reduction produces the game G′ with vertices s, t and threshold ν′ (which
can be replaced by threshold 0, by subtracting (1 − λ) · ν′ to all weights). It is
easy to see that (i) if player 1 can ensure discounted sum at least ν from an
initial vertex s in G, then by playing sufficient long the optimal strategy from s,
player 1 can ensure a value sufficiently close to ν to ensure reaching t with value
at least ν′. Conversely, (ii) if player 1 does not win the discounted sum game G
from s with threshold ν, then player 1 cannot win for threshold ν′ and thus he
cannot win in G′ for (s, t)-reachability, which establishes the correctness of the
reduction.

Results for Disc=0
λ . For Disc=0

λ , the decidability of the problem is open, as it
is already open for graphs.

4.3 Results for Energy

Results for Energy≥0. For Energy≥0, the problem is inter-reducible with energy
games: we consider infinite-horizon energy games where the winning condition for
player 1 requires to maintain the total payoff (i.e., the energy) at least 0 along all
prefixes of the (infinite) play, starting with initial energy 0. Memoryless strategies
are sufficient for player 1 in energy games, and after fixing a memoryless strategy,
all finite outcomes have nonnegative total weight thus all reachable simple cycles
are nonnegative.

The reductions follow the same general ideas as between Sum≥0 and mean-
payoff games, with some additional care. While nonnegative cycles are sufficient
for player 1 in energy games, the reduction works only for the slightly stronger
winning condition that asks player 1 to form only strictly positive cycles (while
maintaining the energy condition on all acyclic outcomes as well). This stronger
winning condition is equivalent to an energy condition in a modified graph where
the weights are decreased by a value ε > 0 where ε is sufficiently small to ensure
that negative simple cycles remain negative (thus nε < 1). Moreover, since the
initial energy 0 may now no longer be sufficient to survive the acyclic paths,
we need to give a slightly positive initial energy value (by an initial transition
of weight nε). Note that this initial energy does not allow player 1 to survive a
negative finite prefix as nε < 1. We can take ε = 1

n+1 and scale up the weights
by a factor n + 1 to get integer weights. From this game graph with modified
weights, we can use the same reductions as between Sum≥0 and mean-payoff
games.

It follows that the problem has the same status as energy games with fixed
initial credit, namely it is in NP ∩ coNP for weights encoded in binary, and in
PTIME for weights encoded in unary [5, Proposition 12,Theorem 13].
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Results for Energy=0. For Energy=0, the game problem is PSPACE-complete
for weights encoded in unary [6, Theorem 11], and EXPSPACE-complete for
weights encoded in binary [22, Theorem 1].

5 Survey of Infinite-Horizon Quantitative Objectives

We present a survey of the computational complexity for the problem of satis-
fying a quantitative objective over an infinite duration, that requires an infinite
trace with value either at least, or exactly a given threshold.

We consider winning conditions defined by the following quantitative mea-
sures over infinite paths (we denote by Pathsω the set of all infinite paths in the
graph G, where G is clear from the context), for ∼∈ {=,≥}:

– Disc∼0
λ = {ρ ∈ Pathsω | Discλ(ρ) ∼ 0},

– MP
∼0

= {ρ ∈ Pathsω | lim supn→∞
1
n · Sum(ρ[0 . . . n]) ∼ 0},

– MP∼0 = {ρ ∈ Pathsω | lim infn→∞ 1
n · Sum(ρ[0 . . . n]) ∼ 0}.

The discounted sum is well defined for infinite paths (the infinite sum always
exists). The MP and MP conditions are the mean-payoff objectives (see also
Sect. 4.1), which are well defined as the limsup and liminf always exist, although
the limit itself may not exist.

5.1 Results for Graphs

We consider the infinite-horizon quantitative problem for graphs, which is to
decide, given a graph G and a winning condition ϕ ∈ {Disc∼0,MP

∼0
,MP∼0},

whether the set ϕ is nonempty.

Theorem 3. The complexity bounds for the infinite-horizon quantitative prob-
lem for graphs are shown in Table 3.

The results of Table 3 for discounted sum follow from the linear program-
ming approach for computing the largest discounted sum of an infinite path [1,
Section 3.1], and the decidability of the exact-value problem is open [3].

For mean-payoff, the infinite-horizon quantitative problem can be solved in
polynomial time using Karp’s algorithm to compute the reachable cycle with

Table 3. The complexity of the infinite-horizon quantitative problem for graphs, for
threshold and exact value, with weights encoded in unary or in binary.

≥ 0 = 0

Unary Binary Unary Binary

Discλ PTIME Decidability is open; infinite-path hard

MP, MP PTIME PTIME
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Table 4. The complexity of the infinite-horizon quantitative problem for games, for
threshold and exact value, with weights encoded in unary or in binary.

≥ 0 = 0

Unary Binary Unary Binary

Discλ PTIME NP ∩ coNPa Decidability is open

Infinite-path hard

MP, MP PTIME NP ∩ coNP PTIME NP ∩ coNP
aThe problem can be solved in PTIME if the weights
in the graph are in binary, and the discount factor is in
unary [21]

largest mean value, which runs in polynomial time [25]. For the exact-value
problem, it is easy to see that the answer is Yes if and only if there exists
a strongly connected component (scc) that contains both a nonnegative cycle
and a nonpositive cycle. The path that reaches such an scc and then alternates
between the two cycles (essentially repeating the nonnegative cycle until the
partial sum of weights becomes positive, then switching to the nonpositive cycle
until the partial sum of weights becomes negative, and so on) has mean-payoff
value 0 (for both limsup and liminf) because the partial sum of the acyclic parts
of the path (obtained by removing all cycles) is bounded by nW , where n is
the number of vertices in G and W is the largest absolute weight in G. The scc
decomposition and cycle with largest (resp., least) mean value can be computed
in polynomial time.

5.2 Results for Games

We consider the infinite-horizon quantitative problem for games, which is to
decide, given a graph G, an initial vertex v, and a winning condition ϕ ∈
{Disc∼0,MP

∼0
,MP∼0}, whether there exists a strategy σ of player 1 such that

Outcomeω
v (σ) ⊆ ϕ.

Theorem 4. The complexity bounds for the infinite-horizon quantitative prob-
lem for games are shown in Table 4.

The results of Table 4 for discounted sum follow from the results of [3,21,30]
(see also Sect. 4.2).

For mean-payoff, the results for the threshold problem follow from [16,30]
in particular there is a pseudo-polynomial algorithm for solving mean-payoff
games [8,30]. The NP ∩ coNP result for the exact-value problem follows from [23,
Corollary 6], and the set Z of initial vertices from which player 1 has a winning
strategy has the following characterization: from every vertex in Z, player 1
has a strategy to ensure nonnegative mean-payoff value, and player 1 has a
(possibly different) strategy to ensure nonpositive mean-payoff value. Moreover
if from some vertex player 1 does not have a strategy to ensure nonnegative (or
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nonpositive) mean-payoff value, then player 1 does not have a winning strategy
from that vertex for the exact-value objective. By an argument analogous to
the case of graphs, we can show that player 1 wins from every vertex in Z by
switching between the strategies to ensure nonpositive and nonnegative mean-
payoff value, because the partial sums will remain bounded by nW , thus the
mean-payoff value is 0 (both for limsup and liminf).

We can compute the set Z by removing from the set V of vertices the vertices
that are losing for player 1, iteratively as follows, until a fixpoint is obtained: at
each iteration, remove the vertices where player 1 does not win either the non-
positive or the nonnegative mean-payoff objective, and remove the vertices from
which player 2 can ensure to reach an already removed vertex (this amounts to
solving a reachability game, thus in polynomial time). The number of iterations
is at most n, thus the algorithm is polynomial for weights in unary. Note that
player 2 has a memoryless strategy from all removed vertices, to ensure that the
mean-payoff value is not 0.

It follows that for weights in binary, the exact-value problem can be solved
in NP by guessing the set Z and checking that from every vertex in Z player 1
wins the nonpositive mean-payoff objective as well as the nonnegative mean-
payoff objective (possibly with a different strategy), and in coNP by guessing a
memoryless winning strategy for player 2 in V \ Z and solving in PTIME the
exact-value problem for mean-payoff in graphs.

Note that the exact-value problem can be reduced to a two-dimensional
mean-payoff objective, which is known to be solvable in NP ∩ coNP for MP,
but only in coNP for MP [29]. In contrast, the exact-value problem is solvable
in NP as well for MP.

6 Conclusion

In this work we studied the complexity of the value decision problem and the
exact-value decision problem for sum, discounted sum, and energy objectives for
the indefinite-horizon case. We studied them for graphs and graph games, and
also distinguished the representation of numbers in unary and binary. In several
cases the exact decision problem is computationally harder as compared to the
non-exact counterpart. An interesting direction of future work is to consider the
problems we studied in other related models, such as stochastic games (extending
the work of [15]), Markov decision processes, timed games, etc.
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Abstract. Heterogeneous hardware/software systems that include
many components with different characteristics offer great potential for
high performance and energy-efficient computing. To exploit this poten-
tial, adaptive allocation and scheduling algorithms are needed for select-
ing software variants and mapping them to processing elements that
attempt to achieve a good balance between resource-awareness and per-
formance. The evaluation is typically carried out using simulation tech-
niques. However, the space spanned by the possible combinations of
hardware/software variants and management strategies is huge, which
makes it nearly impossible to find an optimum using simulation-based
methods. The purpose of the paper is to illustrate the general feasibility
of an alternative approach using probabilistic model checking for fami-
lies of systems that are obtained by varying, e.g., the hardware-software
combinations or the resource management strategies. More precisely, we
consider heterogeneous multi-processor systems based on tiled architec-
tures and provide a tool chain that yields a flexible and comfortable
way to specify families of concrete systems and to analyze them using
the probabilistic model checker PRISM and ProFeat as a front end.
We illustrate how the family-based approach can be used to analyze
the potential of heterogeneous hardware elements, software variants and
adaptive resource management and scheduling strategies by applying our
framework to a simplified model of the multi-processor Tomahawk plat-
form that has been designed for integrating heterogeneous devices.

1 Introduction

Tiled architectures are designed to exploit massive quantities of resources, includ-
ing computing elements and storage elements. For this, processing elements and
memory components are equipped with a switch to create modular elements
which are called tiles. Tiles are connected via their switch to a communication
network [15], e.g., a mesh network based network on chip (NoC), that allows
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for sending and receiving messages as well as for exchanging data between tiles.
The major advantage of tiled architectures is that they are scalable (both, in
performance and energy) due to vast amount of resources available for differ-
ent types of parallel computing, including instruction-level parallelism, task and
data parallelism, as well as stream parallelism. Tile-based computing platforms
often provide special instruction sets that allow software to take advantage of the
available resources for parallel applications and hence for further improvements
in performance and efficiency. Prominent examples of tiled system architectures
are the Raw processor [23], the TILE64, TILEPro, TILE-Gx and Stratton plat-
forms by Tilera [4] and Intel’s Single-Chip Cloud Computer [16].

Heterogeneous tile-based multi-processor systems (such as the Chameleon
architecture [22] or the Tomahawk platform [1]) yield additional options on
how to take advantage of the flexibility provided by the computing platform.
These kinds of platforms combine different types of tiles, such as special purpose
processing elements that are optimized for specific types of computational tasks.
Heterogeneous hardware enables additional flexibility on the software level as
software could be made available in different variants. For example, one par-
allel implementation that can be executed on general purpose processing ele-
ments and another implementation for special purpose processing elements. The
flexibility of such hardware/software system comes at the price that program-
ming and the design of low-level protocols become a highly non-trivial task (see
e.g. [11,19,28,30,31]). One major challenge is how to construct, manage and use
heterogeneous tile-based multi-processor systems efficiently, not only in terms
of performance, but also by means of energy consumption. This task includes
finding a beneficial hardware architecture (e.g., by identifying advantageous mix-
tures of tiles), but also the development of heuristics for selecting among software
variants and mapping them to the compatible tiles at run time. Additionally,
the task of resource allocation, configuration and reallocation becomes more
complex and goes beyond what is classically being done by operating systems.
Optimal usage of such systems requires a global view on the system, including
the hardware characteristics, the current system configuration and its state, as
well as knowledge about the applications, algorithms, the current load situation
and user requirements.

As the number of possible combinations arising by selecting concrete
instances of hardware tiles, software variants and resource management strate-
gies grows exponentially, an exhaustive comparison using simulation techniques
is nearly impossible. Nevertheless, the simulation-based analysis for a few
selected combinations is the de-facto standard in the design of tile architectures.
The purpose of this paper is to propose an alternative approach that relies on a
family-based analysis and probabilistic model checking.

Contribution. The paper provides a first step towards supporting the design
of tiled architectures and resource management strategies by means of formal
methods for the quantitative evaluation. For this, we introduce a tool chain
that provides a flexible approach for the analysis of families C = (Ci)i∈I of
concrete systems Ci using the probabilistic model checker PRISM [17,20,21].
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Fig. 1. The tool chain.

The family members Ci rely on a common tiled architecture, but differ, e.g.,
in the resource management or the variant selection strategies. This family is
modeled by a (single) Markov decision process (MDP) MC with one initial state
for each system Ci. Probabilistic behaviour is given by stochastic assumptions
on the execution times of tasks in the resource profiles (see below).

With PRISM’s (symbolic) analysis engines for MDPs one can, e.g., com-
pute the expected energy requirements of all systems Ci in the family. This,
for instance, yields a simple way to compare different strategies with a single
analysis. If all decisions of the strategies are modelled nondeterministically, the
analysis with PRISM can be used to synthesize a strategy where the expected
energy requirements are minimal.

The tool chain as depicted in Fig. 1 takes as input a series of feature templates
specifying tiles, software variants and resource management strategies together
with some meta information (e.g., number and type of tiles and jobs, resource
profiles) required for the instantiation. The instance generator of the tool chain
then automatically translates the feature templates into feature modules in the
syntax of the tool ProFeat [7], which yields a feature-oriented specification
of system family (Ci)i∈I . ProFeat then translates the feature modules into
PRISM’s syntax, which yields a feature-less PRISM specification for a combined
system C that contains each family member Ci as a subsystem.

The template-based approach offers a comfortable way to analyze different
system families by modifying the meta information, e.g., by adding new tile
types, increasing the number of tiles or changing the energy characteristics in
the resource profiles. The meta information can also contain analysis-specific
elements, such as additional fairness constraints to exclude nonsensical behaviour
or counters that only serve to compute certain performance measures, but do
not affect the operational behavior of the hardware tiles or software components.
As such counters can lead to a drastic blow up of the MDP size, it is desirable
to include them only in case of need. Thus, the template-based approach also
provides a simple way to choose the granularity of the models for (families of)
concrete systems, depending on the evaluation criteria.

To illustrate the feasibility of our approach, we provide a template-based
specification of a heterogeneous tile architecture that can be viewed as a sim-
plification of the Tomahawk platform [1]. Its tiles are general purpose RISC
computing elements or computing elements designed for digital signal process-
ing (DSP). Apart from the tiles, the Tomahawk platform contains a logically
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decoupled piece of hardware, called core manager, responsible for the allocation
and configuration of processing elements as well as for task scheduling and the
data transfer from the global memory. Using the tool chain, we consider several
system families and employ PRISM’s symbolic MDP engines to demonstrate
the benefit of heterogeneous structures over homogeneous ones and to study the
impact of power and scaling strategies on the energy requirements.

Related Work. To the best of our knowledge, family-based approaches for the
formal analysis of tile architectures and to determine optimal hardware-software
combinations using probabilistic model checking have not been addressed before.
Several authors have studied formal verification techniques to establish func-
tional properties of heterogeneous multiprocessor systems (see, e.g., [6,13,29]).
Research on the use of model checking for the quantitative analysis of hetero-
geneous multiprocessor systems has mainly concentrated on statistical model
checking (see, e.g., [3]). An exception is [18] where probabilistic model checking
has been used to analyze dynamic power management strategies for multicore
systems.

Family-based approaches for (software) product lines have been studied by
several authors. This includes the work on feature transition systems and sym-
bolic model checking techniques [8,9] as well as other formal analysis techniques
for product lines [5,10,24,26,27]. The formal quantitative analysis of product
lines using Markovian models has been addressed only recently in combination
with probabilistic model checking [7,14] or statistical model checking [12,25].
As stated before, our tool chain uses the tool ProFeat of [7] for translating
feature-oriented specifications into PRISM’s input language.

2 The Tool Chain

In this section we present the tool chain for automated model generation and the
(family-based) quantitative analysis of heterogeneous tiled multi-processor archi-
tectures in detail1. Apart from the details considered below, additional aspects
could naturally be added as part of future work. (See Sect. 4 for a discussion on
possible extensions.)

The heterogeneous tiled system as supported by the tool chain consists of a
pool of processing elements called tiles with different types and with different
resource characteristics. Additionally, there is a core manager providing the inter-
face to the tiles, allowing for frequency scaling, job scheduling, and for powering
up and down tiles. For the moment we not consider the NoC communication
and fully abstract from the topology of the system. Our simplified assumption
here is, that the NoC communication between arbitrary tiles is (equally) fast and
negligible compared to the computation time of jobs. Jobs are characterized by
their type and a weight that stands for their expected number of atomic steps.
Jobs can be scheduled completely in parallel, but only on compatible tiles suited

1 The implementation and examples are available for download at https://wwwtcs.
inf.tu-dresden.de/ALGI/PUB/KimFest17/.

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/KimFest17/
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/KimFest17/
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Fig. 2. Feature diagram of the output of the instance generator, a hierarchical feature
model. Left out are leaves of varying number, of which either some or one can be active
at the same time.

for the respective job type. Furthermore, we consider the jobs to be compute
intensive and independent in terms of order and communication. The concrete
execution time and energy consumption depend on the tile type on which the
jobs are scheduled.

2.1 Instance Generator

The starting point for our tool chain is the instance generator, which takes
as input a set of component feature templates, meta information and a family
declaration and generates a hierarchical feature model as shown in Fig. 2.

At the top of the feature diagram is the Root feature which has the a feature
for the system’s hardware/software stack one with information for probabilistic
model checking (PMC) as children. The stack contains all hardware and software
components whereas the PMC feature contains the analysis specific components.
One can see that the hardware part consists of the core manager and a set of
tiles whereas the software is characterized by a set of queues for the different
job types. There are additional constrains on the compatibility of tiles and job
types as well as information on the boost factor a given job has for each type of
tile. On the management side we have the resource management strategies which
split into the different domains for power management, scaling and scheduling.
A combination of such strategies yields a combined strategy, restricting and
potentially resolving the nondeterministic choices in the MDP model. Leaving
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Fig. 3. The instance generator and its inputs.

one or more parts of this combined strategy underspecified leads again to an
MDP model where we can ask for best (or worst) possible schedulers resolving
the nondeterministic choices. In the experiment section (cf. Sect. 3) we leave the
scheduling nondeterministic and compare the best (and worst) possible schedul-
ing for different variants of hardware/software/strategy variants. Together with
the meta information on the variant space to be considered, a family model with
the above structure is being created.

Figure 3 shows the details of the instance generator. The first part of the
input are the feature templates that capture the general operational behavior
of all relevant components. These feature templates are used as building blocks
within the instantiation. This set includes feature templates for (1) the parts of
the architecture (e.g., the operational behavior of a tile and a core manager), (2)
describing the characteristic behavior of running applications (e.g., the classifica-
tion of different job types), (3) declaring the characteristic behavior of resource
management strategies, and (4) a few analysis-specific components, which will
be instantiated whenever needed in the later analysis.

The second part of the input is meta information about the concrete instance
that should be generated. This meta information is provided in configuration files
and includes (a) type declarations of tiles and jobs, (b) compatibility information
regarding jobs and tiles, (c) resource profiles for tiles and jobs, (d) global resource
profiles, and (e) variable values on how many tiles should be instantiated.

The third part of the input is a family declaration, i.e., the variants for which
a family model will be created and hence which alternative designs should be
considered in the later comparative analysis.

The output of the instance generator is formalized in the ProFeat input lan-
guage. The semantics of the family model created by the instance generator is
given in terms of a weighted MDP. This MDP for the family of hardware/software
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systems contains annotations for cost/reward structures that result from the
meta information given in the configuration files. The tools ProFeat and
PRISM are then be used in our tool chain for a (family-based) quantitative
analysis that allows evaluating and comparing, e.g., alternative architectures,
implementation variants, and/or resource management policies.

In the following, we describe the inputs of the generator in more detail.

2.2 Feature Templates

The templates describe the general workings of the hardware and software com-
ponents of an arbitrary tile-based architecture, as well as possible management
strategies for its resources. Just like the components in the generated model,
they are compositional and have a one-to-one correspondence to the diagram in
Fig. 2.

To reuse the templates for general tile-based architectures, abstractions in
the form of parametrizations are necessary. While the main characteristics of
heterogeneous systems are encoded in the templates, the specific characteristics
of a platform are left out, so they can be defined in the meta information.

Tiles. The atomic hardware components of a tile-based architecture are tiles.
They are processing elements that can be turned on or off during run time.
They exhibit characteristic cost and performance measures due to their substrate
material, purpose, architecture and quality. The corresponding templates need to
be parametrized by their type, their possible scaling multipliers (i.e., processing
speeds) and the corresponding power consumption. It is also possible to modify
the probability distribution governing their task completion probabilities.

Tiles can be in one of two modes, idle or working mode, and react to three
actions: setting their power state, their current multiplier, and scheduling a job
on them. While the first two are simple state changes, scheduling a job causes the
tile to go into working mode. Then, it is impossible to turn it off or to schedule
another job onto it until it is idle again. The completion of jobs is governed
by a geometric distribution, i.e., jobs are completed with a certain probability
p in each step. p depends on the mean execution time of the job, the current
multiplier of the tile and the boost the job may receive because of advantageous
hardware properties. The exact recipe for the composition of p can be given in
the meta information.

Job Queues. To leverage specialized hardware components, it is necessary
to generate specialized code for the tasks to be done. Therefore, we introduce
multiple typed job queues with specific mean running times for their jobs. While
the job queues are assumed to have infinite capacity in the most general case,
job counters can be added to them via an analysis-specific component.

Core Manager. We assume a global controlling component for the system
runtime, the core manager. The core manager can turn idle tiles on or off, set
their scaling factor and schedules tasks on them according to their compatibility.
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Fig. 4. Definition of the performance scaling strategy. Lines with % and $ symbols
denote template macros which are sensitive to meta information.

In general, we make no assumptions on its behaviour or timing. It can however
only schedule jobs onto compatible tiles. The core manager is also responsible
for the system clocking: it splits the run time into turns, called ticks, during
which each of the components can choose its actions in an ordered fashion.

Strategies. While the core manager has total control over the tiles and schedul-
ing in general, we allow restrictions on its behaviour. For this, we identify three
kinds of management strategies, depending on what they restrict or control:
power, scaling and scheduling strategies. They can influence the behaviour dur-
ing initialization as well as during run time.

Power strategies control the power toggling actions of the core manager. They
restrict the powering or unpowering of tiles. We only provide one such strategy:
the alwayson strategy, which forces the core manager to turn on all tiles during
initialization and subsequently forbids their switching off.

To restrict and control the setting of scaling multipliers, scaling strategies
are used. They are orthogonal to power strategies since they do not control a
tiles’ power state directly. One prominent example here is the powersave strategy,
which locks all multipliers to their lowest setting. Its opposite is the performance
strategy, locking them to their highest setting.

To decide which job is scheduled on which tile, a scheduling strategy is used.
We only provide a simple probabilistic scheduling strategy here, that assigns jobs
to compatible tiles according to a probability distribution. In our case the distri-
bution is uniform, but it can easily be replaced by a more realistic distribution
derived from simulations or measurements.

Since strategies are compositional like the rest of the model, it is possible to
introduce new strategies by adding new templates for them in a straightforward
fashion. As an example, consider the listing for the performance scaling strategy
in Fig. 4.
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Analysis-Specific Components. We provide modules to add on-demand
tracking to the model and disable corner-case behaviour. This is sometimes nec-
essary to obtain proper results. However, it may also change the model size sig-
nificantly. To enable quotas on the job queues, we give the JobCounter module,
adding a counter to each queue. The TimeStop module reduces all transitions
to self-loops after all job counters reach zero. The FairSchedule module forbids
scheduling jobs from queues that reached their quota as long as uncompleted
queues are still available. As long as valid scheduling mappings are available, the
ForceSchedule module forces the core manager to schedule something.

2.3 Meta Information

The meta information given to the generator contains the specific information
about the given architecture. It consists of a set of configuration files, using a
domain specific language for the creation of tiles and queues, the expression of
compatibilities and speed boosts and the concise description of resource profiles
and the number of used components.

Type Descriptions. Concrete types and their associated characteristics are
given to the tiles and queues. To define a tile type, we assign a name, a set of
possible scaling multipliers and an associated energy consumption profile. For
example, to configure a RISC tile with possible scaling multipliers 1, 2 and 4
and a DSP tile with multipliers 1 and 2 with a corresponding quadratic increase
in power consumption (in the chosen multiplier) for both, we write

% Tile(type, multipliers, energy_profile)
tileRISC = Tile("RISC", [1,2,4], quadratic)
tileDSP = Tile("DSP", [1,2], quadratic)

Similarly, job queue types are defined by a name and a mean execution time for
the job. This way, it is possible to represent non-atomic jobs that need multiple
processing steps to complete. For example, to define a queue for Default jobs
with a mean runtime of four steps, and a SignalProc queue with the same
average, we write

% JobQueue(type, mean_execution_time)
queueDefault = JobQueue("Default", 4)
queueSignalProc = JobQueue("SignalProc", 4)

Compatibilities and Resource Profiles. One important aspect of hetero-
geneous systems is the speed up of certain hardware-software combinations,
achieved by leveraging different kinds of processors and instruction sets. In our
model, we consider types of job queues to be compatible with types of tiles. Addi-
tionally, we allow speed boosts for certain advantageous combinations. Both are
encoded into a simple array (see below). For example, a SignalProc job can
be worked by a general purpose RISC processor, but receives an two-fold boost
when scheduled on a specialized DSP tile. Conversely, a generic Default com-
putation can be done by the RISC tile but not the DSP one:
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% speed[jobtype] = {tiletype: boost, ...}
speed["Default"] = {"RISC": 1}
speed["SignalProc"] = {"RISC": 1, "DSP": 2}

The speed mapping signifies compatibilities and boosts at the same time: non-
existent tile type entries stand for incompatible tiles.

Number of Components. With the declared types of tiles and queues, we
can now give the concrete sets of components necessary to define a platform.
The enabled job queues are given by a list, for example, to have a Default and
a SignalProc queue as defined above:

queues = [queueDefault, queueSignalProc]

Sets of tiles are given in the form of tile configurations, given each occurring
tile type and its cardinality. It is possible to define multiple configurations. For
example, to give a platform which can be either homogeneous with four RISC
tiles or heterogeneous with two RISC and two DSP tiles:

% TileConfig(name, tile_multiset)

tcHomogeneous = TileConfig("Homogeneous", {tileRISC: 8})

tcHeterogeneous = TileConfig("Heterogeneous", {tileRISC: 4, tileDSP: 4})

tileConfigs = [tcHomogeneous, tcHeterogeneous]

2.4 Family Declaration and Variants

Depending on the possible configurations given above, the instance generator
produces a family model. Besides generating a family member for each entry
in the tileConfigs array, there are more options to automatically generate
variants. By giving possible active strategies, a family member is generated for
each entry. For example, to have all the choices of the strategies described in the
previous section as well as no strategy in each category:

strategies_power = ["alwayson","none"]
strategies_scale = ["powersave","performance","none"]
strategies_schedule = ["none"]

This alone would generate 2 · 3 · 1 = 6 individual members.
It is also possible to generate variants by varying the job counters. For exam-

ple, to generate all possibilities of distributing eight jobs among the job queues:

max_job_count = 8;
jobs_are_even = False; % jobs are not evenly distributed

If jobs are even is set to True, only one variant with, e.g., four jobs in each of
the two queues, is generated.

3 Experiments

We now describe our experimental results for a model instance representing
the second iteration of the Tomahawk architecture. We therefore used the meta
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information as exemplified in Sect. 2.3 within the instance generation. To recall:
the Tomahawk contains two different types of tiles, general purpose RISC tiles
and DSP tiles for digital signal processing jobs. Jobs can either be of type Sig-
nalProc for signal processing jobs or of type Default. Jobs of type Default
can only be executed on RISC tiles, whereas SignalProc jobs can be executed
more efficiently on DSP tiles (SignalProc jobs enjoy a speed-up of two). For
the experiments we fix the number of tiles to four which are either of the type
RISC or DSP. For the different jobs we introduce two queues, one for Default
jobs and one for SignalProc jobs. At the end of this section we address the
scalability considering larger numbers of tiles and jobs. Analysis-specific compo-
nents for job counting and fair and forced scheduling are enabled.

In the given setting, the comparative studies focus on three different aspects.
In the first family-based analysis we compare a homogeneous architecture (four
RISC tiles) with a heterogeneous architecture (two RISC and two DSP tiles).
The second family-analysis focuses on the influence of specialized software vari-
ants on a heterogeneous architecture, whereas in the third part of the exper-
iments the focus is on comparing variants of resource management strategies,
again for the a heterogeneous architecture. In all three parts of the experiments
we compute expected run times and the expected energy consumption for fin-
ishing certain number of jobs (quota for each job queue), and the minimum
energy needed to finish this number of jobs with significantly high probability.
The comparison is made on the basis of the best (and worst) possible scheduling
of jobs in the given setting. This corresponds to computing minimal and max-
imal probabilities and expectations as well as quantiles [2] in the MDP of the
respective family. The used reward functions “ticks” and “energy” are defined
as expected: a tick is a turn in the core manager, and energy is used by tiles
during power-up, idling and working.

All experiments were carried out on a machine with two Intel Xeon E5-
2680 4-core CPUs at 2.13 GHz and 192 GB RAM, running Linux. Turbo-Boost
was enabled. The tool chain used ProFeat version 0.108.0.0 and PRISM ver-
sion 4.3.1.dev with custom patches supporting among other things the sym-
bolic computation of quantile values. The experimental setting and full tool
chain are available for download at https://wwwtcs.inf.tu-dresden.de/ALGI/
PUB/KimFest17/.

3.1 Homogeneous vs. Heterogeneous Architectures

This experiment compares performance, energy and the tradeoff between energy
and performance for the homogeneous architecture with four general purpose
RISC tiles and a heterogeneous architecture with two RISC tiles and two DSP
tiles. We assume that the given job quota is evenly distributed among the two
queue for Default and the SignalProc. As no strategies are set, the minimal
(and maximal) expectation corresponds to the best (and worst) possible choices
available to the worst core manager. An overview of the results can be seen in
Table 1. Clearly, the heterogeneous system outperforms the homogeneous system
in terms of energy consumption, in the worst as well as in the best case. At the

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/KimFest17/
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/KimFest17/
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Table 1. Maximal and minimal expected energy and time consumption to fulfill the
job quota for a homogeneous and a heterogeneous tile configuration.

Job quota Architecture Exmin
energy Exmax

energy Exmin
ticks Exmax

ticks

(3, 3) Homogeneous 72.915 280.741 5.691 40.589

Heterogeneous 51.808 264.705 5.738 38.147

(4, 4) Homogeneous 96.868 356.227 7.623 52.521

Heterogeneous 68.359 339.523 7.709 50.096

(5, 5) Homogeneous 120.812 430.930 9.576 64.436

Heterogeneous 84.899 414.356 9.693 62.029

(6, 6) Homogeneous 144.737 505.595 11.548 76.338

Heterogeneous 101.436 489.204 11.682 73.953

(8, 8) Homogeneous 192.567 654.967 15.522 100.069

Heterogeneous 134.504 638.676 15.672 97.732
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Fig. 5. The minimal necessary energy (left) and time (right) budget to fulfill the job
quota with a probability threshold, for the homogeneous and heterogeneous model with
four tiles and eight jobs.

same time, the best case run times are better and the worst case ones almost the
same. This yields a strong indication that heterogeneous architecture provide
large potential for energy-efficient computing.

While the expected optimal values give an indication on the average behav-
iour of a model, hard guarantees are also interesting. We investigated two quan-
tiles: the minimal energy and run time budget necessary to complete the job
quota with a certain probability threshold. As can be seen in Fig. 5 the hetero-
geneous model is better for every threshold.

As the results for the heterogeneous architecture seem to be very promising
we will now focus on this architecture and consider software variants and strategy
variants in the following. The goal is to quantify the additional potential of
considering software variants and strategy variants.
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3.2 Software Variants

While the generated jobs were evenly spread among the job queues before, we
now consider the case of varying ratios between the queues in the heterogeneous
model from before. A total amount of eight jobs is distributed among two job
queues in varying ratios.

The interpretation is that an incoming task can be solved using different algo-
rithmic approaches or by using alternative variants a compiler has generated for
the same piece of code. The different software variants lead to different numbers
of jobs for each job type to be scheduled on the system, i.e., to different quotas
for the job queues. In the given example we only consider the balance between
SignalProc jobs and Default jobs as characteristic for alternative software
variants of, e.g., a Fourier transform task.

The results can be seen in Table 2. A clear trend towards specialized jobs
for a better minimal energy consumption can be seen. The maximal energy
consumption behaves similarly, but becomes slightly better again if no specialized
jobs at all are generated. For the minimal run time almost no difference is visible.
The maximal run time is quite stable as well, with slight differences at the
extreme ends of the spectrum. We also investigated the quantile questions from
above for the cases of a (0, 8), (4, 4) and (8, 0) distribution. The results can
be seen in Fig. 6, indicating the same close results from above with a slight
advantage for the mixed (4, 4) case. Here, one can see that proving software
variants suited to be executed on special purpose hardware yields additional
benefit in energy efficiency. Tasks can potentially be finished faster while using
less energy. Still, we need to find and implement resource management strategies
that can exploit this potential. In the next section we compare alternative simple
heuristics responsible for powering and scaling of the tiles and compare them on
the basis of the best (and worst) possible scheduling.

3.3 Influence of Strategies

The impact of given power and scaling strategies can be seen in Table 3. For this
experiment, no scheduling strategy has been given, but the power and scaling
strategies have been present. Recall that the alwayson strategy forces all tiles
to be powered at all times and the powersave and performance strategies lock
their scaling multiplier to their lowest or highest value respectively. The fully
nondeterministic case (i.e., no power and no scaling strategy) served as a baseline
for the comparison, as there can not exist any better heuristics. In Table 3 these
cases are marked with “none”.

In the given setting, it can be seen that the powersave scaling strategy is
optimal for minimizing the expected energy consumption. An optimal value can
however not be reached if all tiles are always powered. Interestingly, when com-
paring the maximum expected energy for the case where all tiles are always on
is lower than in the nondeterministic power management case. This is due to
the fact that powering tiles requires additional energy. Regarding the expected
run time, the performance and the alwayson strategies are optimal within their
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Table 2. Maximal and minimal expected energy and time consumption for a hetero-
geneous system a varying distribution of Default (d) and SignalProc (s) jobs.

d s Exmin
energy Exmax

energy Exmin
ticks Exmax

ticks

0 8 37.571 238.585 7.462 30.974

1 7 42.249 247.239 7.462 32.250

2 6 45.678 247.591 7.462 32.248

3 5 49.106 247.857 7.462 32.248

4 4 52.534 248.153 7.463 32.248

5 3 55.960 248.442 7.464 32.248

6 2 59.338 248.741 7.470 32.248

7 1 62.552 248.614 7.504 32.250

8 0 64.949 240.432 7.707 30.974
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Fig. 6. The minimal necessary energy (left) and time (right) budget to fulfill the job
quota with a probability threshold for the heterogeneous model with four tiles and
eight jobs of which 0, 4 or 8 are of Default type and the rest of SignalProc type.

domain. Combining the two strategies alwayson and performance yields the best
result for the worst case expected execution time. The results for the quantile
questions can be seen in Fig. 7. The minimal energy budget is smallest for the
powersave strategy. It has better guarantees then no scaling strategy, since the
worst-case behaviour of the latter allows to use more energy. Interestingly, the
alwayson strategy allows for better guarantees as no strategy as well. The min-
imal time budget is best for the alwayson strategy, since it disallows delaying
computations by disabling tiles.

In the remainder of this section we address the scalability and present the
sizes of the created MDP models for an increasing number of tiles and increased
quotas for the jobs.
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Table 3. Maximal and minimal expected energy and time consumption to finish eight
jobs for differing power and scaling strategies. The lowest numbers in each column are
printed in bold.

Power Scaling Exmin
energy Exmax

energy Exmin
ticks Exmax

ticks

Alwayson Powersave 87.232 146.664 11.626 20.807

Alwayson Performance 169.541 315.603 7.709 9.180

Alwayson None 87.232 317.065 7.709 20.807

None Powersave 68.350 198.419 11.626 50.096

None Performance 69.350 339.865 7.709 50.095

None None 68.350 339.924 7.709 50.096
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Fig. 7. The minimal necessary energy (left) and time (right) budget to fulfill the job
quota with a probability threshold for the heterogeneous model with four tiles and
eight jobs with a choice of enabled power and scaling strategies.

3.4 Scalability

The growth in the model size depending on the length of the job queues can
be seen in Table 4 and depending on the number of tiles in Table 5. We list the
number of reachable states and the number of transition in the MDP along with
the number of nodes in the binary decision diagram (BDD) that PRISM used
to store the MDP model symbolically. It can be seen that the model scales well
in the number of jobs, but not so well in the number of tiles. Even for six tiles
results can hardly be expected, as the number of reachable states is too large.

Besides handling the family members one-by-one in separate models instead
of as a single larger model for all of them, one possibility to reduce the model sizes
is to enable deterministic or probabilistic strategies. For example, by enabling
all three kinds of the management strategies described above, the size of the
eight-tile model can be brought down to 27.902.368.740 states, i.e., by a factor
of 200. This allows the evaluation of pre-generated strategies even for otherwise
too large models.
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Table 4. Model sizes for the homogeneous-heterogeneous comparison for an architec-
ture with four tiles and varying job quotas.

Jobs States Transitions BDD nodes

6 45.182.997 166.721.618 143.394

8 77.520.707 284.561.823 145.098

10 118.177.353 432.630.772 145.364

12 167.103.823 610.795.529 145.428

16 289.766.235 1.057.412.467 146.502

Table 5. Model sizes for the homogeneous-heterogeneous comparison for a system with
a quota of eight jobs and varying number of tiles.

Tiles States Transitions BDD nodes

4 77.520.707 284.561.823 145.098

6 63.785.055.348 344.857.398.616 431.427

8 59.336.342.091.105 425.950.823.937.621 988.555

4 Conclusion

In this paper we presented a tool chain for the automated generation and quan-
titative analysis of families of system models for heterogeneous multi-processor
systems based on tiled architectures. The families are obtained by varying, e.g.,
the hardware-software combinations and/or the resource management strate-
gies and analyzed by means of probabilistic model checking using ProFeat and
PRISM. We illustrated how the family-based analysis can be used to quantify
the potential of heterogeneous hardware elements, software variants and adap-
tive resource management and scheduling strategies. For this we applied our tool
chain to a simplified model of the multi-processor Tomahawk platform that has
been designed for integrating heterogeneous devices. The presented approach is
rather flexible and can in principle be easily extended in various ways. New tile
types and job types can simply be characterized by providing the meta informa-
tion that characterize a new tile, job type and the corresponding compatibility.
Additional resource management strategies can simply be provided by defin-
ing a new feature template that can then be used in the automated instance
generator. In the same way new feature templates can be added that provide
additional functionality, e.g., a more detailed view on the applications would
require a component that creates concrete jobs/tasks according to some prob-
ability distribution. Also in this case the instance generator must be extended
accordingly. Similarly, adding new characteristics, e.g., cost/reward parameters
demands for extending existing feature templates with the respective informa-
tion and adding their treatment to the instance generator. Additional aspects
that are not yet considered, e.g., dependencies between jobs, can also be added,
but require more involved modifications in particular to the instance generator.
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13. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 280–295. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12002-2 24
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Abstract. In this paper, we study the notion of admissibility in timed
games. First, we show that admissible strategies may not exist in timed
games with a continuous semantics of time, even for safety objectives.
Second, we show that the discrete time semantics of timed games is
better behaved w.r.t. admissibility: the existence of admissible strategies
is guaranteed in that semantics. Third, we provide symbolic algorithms
to solve the model-checking problem under admissibility and the assume-
admissible synthesis problem for real-time non-zero sum n-player games
for safety objectives.

1 Introduction

An embedded controller is a reactive system that maintains a continuous inter-
action with its environment and has the objective to enforce outcomes, from this
interaction, that satisfy some good properties. As the actions taken by the envi-
ronment in this interaction are out of the direct control of the controller, those
actions should be considered as adversarial. Indeed, a controller should be correct
no matter how the environment in which it operates behaves. As reactive sys-
tems most often exhibit characteristics, like real-time constraints, concurrency,
or parallelism, etc., which make them difficult to develop correctly, formal tech-
niques have been advocated to help to their systematic design. One well-studied
formal technique is model checking [3] which compares a model of a system with
its specification. Model-checking either provides a proof of correctness of the
model of the controller within its environment or provides a counter-example
that can be used to improve the design.

A scientifically more challenging technique is synthesis that uses algorithms
that transform the specification of a reactive system and a model of its envi-
ronment into a correct system, i.e., a system that enforces the specification no
matter how the environment behaves. Synthesis can take different forms: from
computing optimal values of parameters to the full-blown automatic synthesis
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of a model of the system’s components. Albeit this diversity, one mathematical
model has emerged to perform synthesis for reactive systems: two-player zero-
sum games played on graphs; and the main solution concept for those games is
the notion of winning strategy. Zero-sum timed games played on timed automata
(defined by [1]) have been introduced in [27] as a formal model for the synthesis of
reactive systems with timed specifications. A practical algorithm for the problem
was first presented in [17] and implemented in the tool Uppaal-Tiga [5].

Timed games, as defined in [27] and in almost all subsequent works, see e.g. [2,
15–17], are zero-sum games. In zero-sum games, the environment is considered as
fully antagonist. The zero-sum game abstraction is often used because it is simple
and sound: a winning strategy against an antagonistic environment is winning
against any environment including obviously those that strive to secure their own
objective. But, in general the zero-sum hypothesis is a bold abstraction of reality:
most often the environment has its own objective which, in general, does not
correspond to that of falsifying the specification of the controller. Then, it should
be clear that the zero-sum approach may fail to find a winning strategy even if
solutions exist when the objective of the environment is taken into account, or
it may produce sub-optimal solutions because those solutions are overcautious
in order to be able to face with all possible behaviors of the environment, even
if they are in contradiction with the environment’s objectives. Recently, several
new solution concepts for synthesis of reactive systems that take the objectives
of the environment into account, and so relax the fully adversarial assumption,
have been introduced [10]. One approach that is particularly promising is based
on the notion of admissible strategies [7,11–13,23].

Assume Admissible Synthesis. In [12], we have introduced a new synthesis
rule based on admissibility in the general case of n-player multiplayer games.
This synthesis rule can be summarized as follows. For a player with objective
φ, a strategy σ is dominated by σ′ if σ′ does as well as σ w.r.t. φ against all
strategies of the other players, and better for some of those strategies. A strategy
σ is admissible if it is not dominated by another strategy. Starting from the fact
that only admissible strategies should be played by rational players (dominated
strategies being clearly sub-optimal options), when synthesizing a controller, we
search for an admissible strategy that is winning against all admissible strategies
of the environment. Assume admissible synthesis is sound: if all players choose
admissible strategies that are winning against all admissible strategies of the
other players, the objectives of all players is guaranteed to be satisfied.

Assume Admissible Timed Synthesis. In the classical setting of game
graphs with ω-regular objectives, admissibility is well behaved: admissible strate-
gies always exist in perfect information n-player game graphs with ω-regular
objectives, both for turn-based games [7,13,23] and for concurrent games [4].
By contrast, in this paper, we show that, in the continuous time semantics,
players in a timed game are not guaranteed to have admissible strategies. This
is because in some timed games there may not exist an optimal time to play.
This is the case for example if a player has to play as soon as possible but strictly
after a given deadline. We exhibit concrete games with this property. We also
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show that those problems are an artefact of the continuous time semantics. In
contrast, in the discrete-time semantics of timed games, admissible strategies
always exist.

To obtain our results in the discrete-time semantics we provide a reduction
to finite concurrent games with an additional player that arbitrates situations
in which several players propose to play at the exact same time. While the
reduction to finite concurrent games is adequate to obtain theoretical results, it
is not practical. This is why we define symbolic algorithms based on zones to
solve the model-checking under admissible strategies and the assume admissible
synthesis problem for safety objectives. To obtain those symbolic algorithms,
we show how to use (continuous) timed zones to represent efficiently sets of
discrete time valuations. We believe that those results are also interesting on
their own. Note that it is possible to solve discrete-time games by enumerative
techniques [25]; however, our algorithms require representing complex sets of
states, so being able to solve a given game is not sufficient, and we do need some
form of succinct representation.

Other Related Works. Related works on zero-sum timed games have been
given above. To the best of our knowledge, our work is the first to deal with
admissibility for timed games. In this paragraph we discuss several works related
to admissibility in (untimed) games.

Other works in the literature propose the use of Nash equilibria (NE) in
n-players non-zero sum games to model variants of the reactive synthesis prob-
lem. Most notably, assume-guarantee synthesis, based on secure equilibria [19]
(refining Nash equilibria), has been proposed in [18], while cooperative ratio-
nal synthesis has been proposed in [24], and non-cooperative rational synthesis
in [26]. In the context of infinite duration games played on graphs, one well known
limitation of Nash equilibria is the existence of non-credible threats. Refinements
of the notion of NE, like sub-game perfect equilibria (SPE), have been proposed
to overcome this limitation. SPE for games played on graphs have been studied
in e.g. [14,29]. Admissibility does not suffer from this limitation. In [23], Faella
proposes several alternatives to the notion of winning strategy including the
notion of admissible strategy. His work is for two-players but only the objec-
tive of one player is taken into account, the objective of the other player is left
unspecified. In that work, the notion of admissibility is used to define a notion of
best-effort in synthesis. The notion of admissible strategy is definable in strategy
logics [20,28] and decision problems related to the assume-admissible rule can
be reduced to satisfiability queries in such logics. This reduction does not lead
to worst-case optimal algorithms; we presented worst-case optimal algorithms
in [21] based on our previous work [13].

The only works that we are aware of and that consider non-zero sum timed
games are the following two papers [8,9] that study decision problems related to
the concept of Nash equilibria and not to the concept of admissibility.
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2 Admissibility in Concurrent Games

Let P = {1, 2, . . . n} denote a set of players. A concurrent game played by players
P is a tuple G = (S, sinit, Σ, (Mi)i∈P , δ) where,

– S is a set of states, and sinit ∈ S the initial state;
– Σ is a set of moves;
– For all i ∈ P,Mi : S → 2Σ \ {∅} assigns to every state s ∈ S and player i the

set of available moves from state s.
– δ : S × Σ × . . . × Σ → S is the transition function.

The game is called finite if S and Σ are finite. We write M(s) = M1(s) ×
. . . × Mn(s) for every s ∈ S. A history is a finite path h = s1s2 . . . sN ∈ S∗

such that (i) N ∈ N; (ii) s1 = sinit; and (iii) for every 2 ≤ k ≤ N , there
exists (a1, . . . , an) ∈ M(sk−1) with sk = δ(sk−1, a1, . . . , an). A run is defined
similarly as a history except that its length is infinite. For a history or a run ρ,
let us denote its i-th state by ρi. The game is played from the initial state sinit
for an infinite number of rounds, producing a run. At each round k ≥ 1, with
current state sk, all players i select simultaneously moves ai ∈ Mi(sk), and the
state δ(sk, a1, . . . , an) is appended to the current history.

It is often convenient to consider a player i separately and see the set of other
players P \ {i} as a single player denoted −i. Hence, the set of moves of −i in
state s is M−i(s) =

∏
j∈P\{i} Mj(s).

An objective φ is a subset of runs of the game. We assume that concurrent
games are equipped with a function Φ mapping all players i ∈ P to an objective
Φ(i). Thus, a run ρ is winning for player i iff ρ ∈ Φ(i). An objective φ ⊆ Sω

is a simple safety objective if there exists B ⊆ S such that ρ ∈ φ if, and only
if ∀j, ρj 	∈ B; and for all s ∈ B and m ∈ M(s), δ(s,m) ∈ B. In other terms, once B
is reached, the play never leaves B. The set B is informally called bad states for
the objective φ. Note that contrary to general safety objectives, simple safety
objectives are prefix independent. Also, any safety objective can be turned into
a simple safety objective by modifying the underlying concurrent game. Games
equipped with simple safety objectives are called simple safety games.

A strategy for player i is a function σ from histories to moves of player i such
that for all histories h: σ(h) ∈ Mi(s) where s is the last state of h. We denote
by Γi(G) the set of player i’s strategies in the game; we might omit G if it is
clear from context. A strategy profile σ for a subset A ⊆ P of players is a tuple
(σi)i∈A with σi ∈ Γi for all i ∈ A. When the set of players A is omitted, we
assume A = P . Let σ = (σi)i∈P be a strategy profile. Then, for all players i, we
let σ−i denote the restriction of σ to P \ {i} (hence, σ−i can be regarded as a
strategy of player −i that returns, for all histories h, a move from M−i(s) where
s is the last state of h). We denote by Γ−i the set {σ−i | σ ∈ Γ}. We sometimes
denote by σ the pair (σi,σ−i). For any history h, let σ(h) = (σi(h))i∈A and be
the tuple of choices made by all players (when they play from h according to σ)
and the resulting state, respectively. We let Out(σ) be the outcome of σ, i.e.
the unique run ρ = s1s2 · · · such that sk = δ(sk−1,σ(s1 · · · sk−1)).
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Assume the game we consider has winning condition Φ. Then, we say that σ is
winning for i, from h, written σ |=h Φ(i), if h is a prefix of Out(σ) and Out(σ) ∈
Φ(i). We write σ |=h Φ(i), if for every τ ∈ Γ−i such that h is a prefix of Out((σ, τ))
it holds that Out((σ, τ)) ∈ Φ(i).

Dominance and Admissibility. Fix a game G and a player i. Given two
strategies σ, σ′ ∈ Γi, we say that σ is weakly dominated by σ′, denoted σ � σ′ if
for all σ−i ∈ Γ−i, (σ, σ−i) |= Φ(i) implies (σ′, σ−i) |= Φ(i). Intuitively, this means
that σ′ is not worse than σ, because it yields a winning outcome (for i) every
time σ does. When σ � σ′ but σ′ 	� σ we say that σ is dominated by σ′. Note
that σ ≺ σ′ if and only if σ � σ′ and there exists at least one σ−i ∈ Γ−i, such
that (σ, σ−i) 	|= Φ(i) and (σ′, σ−i) |= Φ(i). That is, σ′ is now strictly better than
σ because it yields a winning outcome for i every time σ does; but i secures a
winning outcome against at least one strategy of the other players by playing σ′

instead of σ. A strategy is called admissible if it is not dominated.

Theorem 1 [4]. For every finite concurrent game, for all objectives, the set of
admissible strategies of each player is non-empty.

Now that we have defined a notion of dominance on strategies, let us turn our
attention to a more local definition of dominance on moves. Let h be a history.
We say that a move a ∈ Mi is h-dominated by another move a′ ∈ Mi iff for
all σ ∈ Γi s.t. σ(h) = a, there exists σ′ ∈ Γi s.t. σ′(h) = a′ and σ ≺h σ′. We
denote this by a <h a′. If a move a is not h-dominated by any move, we say
that a is h-admissible. This allows us to define a more local notion of dominated
strategy: a strategy σ of player i is called locally-admissible (LA for short) if for
every h, σ(h) is an h-admissible move. By definition, all admissible strategies are
also LA, but the converse only holds for simple safety games.

Theorem 2 [4]. In concurrent finite simple safety games, a strategy is locally
admissible if, and only if it is admissible.

We close these preliminaries by explaining how to associate values to histories
and moves. First, the value of history h for player i is defined as follows. χi

h = 1
if ∃σ ∈ Γi ∀σ−i ∈ Γ−i, (σi, σ−i) |=h Φ(i); χi

h = −1 if ∀σ ∈ Γ,σ 	|=h Φ(i);
and χi

h = 0 otherwise.
So the intuition is that: (i) χi

h = 1 iff i has a winning strategy from h; (ii)
χi

h = −1 iff no outcome is winning for i from h; and (iii) χi
h = 0 when i has no

winning strategy from h but can still win with the help of other players. Thus,
χi

h = −1 is stronger than saying that i has no winning strategy from h, since, in
this case, i can never win, even with the help of other players. When the other
players can help, we have rather χi

h = 0, which means that there is some strategy
σ of i such that there is a profile σ with σi = σ and σ |=h Φ(i).

Lemma 1 [4]. In finite concurrent games, for any player i, history h that ends
in a state s, and moves a, b ∈ Mi(s), we have a <h b if, and only if the conjunc-
tion of the following conditions holds:
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(i) χi
hδ(s,a,c) ≤ χi

hδ(s,b,c) for every c ∈ M−i(s);
(ii) χi

hδ(s,a,c) < χi
hδ(s,b,c) for at least one c ∈ M−i(s);

(iii) if χi
hδ(s,a,c) = χi

hδ(s,b,c) = 0 then δ(s, a, c) = δ(s, b, c), for every c ∈ M−i(s).

3 Multi-player Timed Games

In this section, we define multiplayer timed games and apply previously defined
admissibility notions to this setting.

Given a finite set of clocks X, we call the elements of R
X
≥0 valuations,

and those of N
X discrete valuations. Let N

X
≤M denote the subset of N

X in
which all components are bounded by M . For a subset R ⊆ X and a valua-
tion ν, ν[R ← 0] is the valuation defined by ν[R ← 0](x) = ν(x) for x ∈ X \ R
and ν[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation ν, the valuation
ν + d is defined by (ν + d)(x) = ν(x) + d for all x ∈ X. We extend these opera-
tions to sets of valuations in the obvious way. We write 0 for the valuation that
assigns 0 to every clock.

An atomic clock constraint over X is a formula of the form k ≤ x ≤ l or
k ≤ x − y ≤ l where x, y ∈ X, k, l ∈ Z ∪ {−∞,∞}. A guard is a conjunction of
atomic clock constraints. A valuation ν satisfies a guard g, denoted ν |= g, if all
constraints are satisfied when each x ∈ X is replaced with ν(x). We write ΦX

for the set of guards built on X.
Let P be a finite a set of players. A multi-player timed game between play-

ers P is a tuple G = (L, ι, I,X, (Δi)i∈P ) where (i) L is a finite set of locations,
(ii) ι is the initial location, (iii) X is a finite set of clocks, (iv) I : L → Φ(X) is
the invariant associated to each location; we assume that invariants only contain
upper bounds on clocks, (v) Δi ⊆ L × Φ(X) × 2X × L, the set of Player-i edges:
in each tuple (�, g, R, �′), � is the source location, g is the guard, R the reset set,
and �′ the target location. For any edge e ∈ Δi, let us denote by (�e, ge, Re, �

′
e)

the tuple associated to it.

The Discrete-Time Semantics. In this paper, timed games are equipped with a
discrete time semantics described now. We explain later why problems happen
when a continuous time semantics is considered instead.

In the discrete-time semantics, not only are all delays restricted to be discrete,
but we also assume that each clock tick is globally observable by all players. Thus,
at each clock tick, all players simultaneously decide either to wait another clock
tick, or to take an enabled edge. The non-determinism between suggested edges
is resolved by an additional player called scheduler.

Given state (�, ν) and an edge e = (�, g, R, �′) such that ν |= g, and ν[R ←
0] |= I(�′), let us write (�′, ν′) = Succe((�, ν)) where ν′ = ν[R ← 0].

Consider a bound M > 0 larger than all constants that appear in the guards
and define the operation +M by a +M b = min(M,a + b) for every a, b ∈ R. We
define the semantics of a timed game G = (L, ι, I,X, (Δi)i∈P ) as a concurrent
game DM (G) = (S, sinit, Σ, (Mi)i∈P ′ , δ) where P ′ = P ∪{sched}. Let S(n) denote
the set of permutations over {1, 2, . . . , n}. We have S = {(�, ν) ∈ L×N

X
≤M | ν |=
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I(�)}, Σ = ∪i∈P Δi ∪{⊥}∪S(n) where ⊥ is a fresh symbol. For every (�, ν) ∈ S,
and i ∈ P , we have Mi(�, ν) = {e ∈ Δi | ν |= ge ∧I(�), ν[Re ← 0] |= I(�′

e)}∪{⊥ |
ν+M1 |= I(�)}. For player sched, we have Msched(�, ν) = S(|P |). Note that
DM (G) is a finite concurrent game due to the bound M .

The transition function δ is defined from the current state (�, ν) given moves
m1, . . . ,mn chosen by the players of P and a permutation π chosen by the
scheduler as follows:

δ((�, ν),m1, . . . ,mn, π) =

⎧
⎨

⎩

(�, ν+M1) if ∀i ∈ P,mi = ⊥,
(�′, ν′) if i = arg minj∈P :mj∈Δj

π(j),
mi = (�, g, R, �′), ν′ = ν[R ← 0].

The intuition of the game is that at each discrete time step, each player can
choose either to wait, or to switch state by picking an edge. If several players pick
edges, then the player sched determines, by the permutation it has chosen, which
edge is to be taken. In general, one add fairness constraints for the scheduler by
specifying an objective for this player. However, we consider safety objectives in
the present work, for which fairness is not useful.

In the rest of the paper, we only consider timed games with non-strict guards,
since any strict constraint can be converted into a non-strict one when working
in discrete time.

We denote by Δi(s) = Mi(s)\{⊥} the set of edges of player i available in s
and by Δ−i(s) = ∪j∈P\{i}Mj(s)\{⊥} the other edges available in s.

Non-existence of Admissible Strategy in Continuous-Time Semantics. We now
show that admissible strategies are not guaranteed to exist if one considers a
continuous-time semantics instead of the discrete time semantics.

In the continuous-time semantics, all players simultaneously suggest moves
that are pairs of delay and edges to be taken, and a move with the least delay
is taken. The precise choice of the edge with the least delay is determined by an
additional player, named scheduler, which determines a priority order between
players.

Given a timed game G = (L, ι, I,X, (Δi)i∈P ) we define an infinite-state con-
current game C(G) = (Sc, Σc, sc

init, (M
c
i )i∈P ′ , δc) where P ′ = P ∪ {sched}. We

have Sc = {(�, ν) ∈ L × R
X
≥0 | ν |= I(�)}. The moves are Σc = {(d, e) | d ∈

R≥0, e ∈ ∪iΔi} ∪ S(|P |), and Mc
i ((�, ν)) = {(d, e) | d ≥ 0, e ∈ Δi, ν + d |=

ge ∩ I(�) ∧ ν[Re ← 0] |= I(�′
e)}. For player sched, we have Σsched(�, ν) = S(|P |).

The initial state is sc
init = (ι,0). The transitions are defined as follows. Intuitively,

each player in P suggests a pair (d, e) of delay and an edge, and player sched’s
choice determines which player’s move is to be taken among those that have
suggested the least delay. Formally, we have δ((�, ν), (d1, e1), . . . , (dn, en), π) =
Succei0

((�, ν + di0)) where i0 = argmini∈P :di=minj∈P dj
π(i).

Consider the game on the left in Fig. 1 where the safety objective of player
P1 is to avoid location BAD1. Consider any move (t, e) of P1, the move (t/2, e)
dominates (t, e) because any strategy of P2 that plays (t′, e′) either makes both
moves winning if t′ > t (or t = t′ and P1 is scheduled); either makes both moves
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�0

�1

BAD1

e, x > 0 (P1)

x > 1 (P2)

x > 1 (P2)

e′, x > 0 (P2)
�0

�1

BAD1

BAD′
1

e, x ≥ 0 (P1)

e′′, x = 0 (P3)

e′, x ≥ 0 (P2)

x ≥ 1 (P2)

x ≥ 1 (P2)

x ≥ 1 (P2)

Fig. 1. Two timed games. Invariants are x ≤ 2 everywhere.

losing if t′ < t/2 (or t = t′/2 and P2 is scheduled); either makes (t/2, e) wins
and (t, e) loses otherwise. However, it can be seen that (t/2, e) is also dominated
by (t/4, e), which is itself dominated, and so on. Thus, there is no admissible
strategy in this game.

Here the non-existence of admissible strategy in the continuous time seman-
tics is partly due to the presence of open guards (that is, involving strict inequal-
ities only). With these guards, there is no minimal delay that players can choose.
Unfortunately problems also occurs in games with closed guards. Consider the
game on the right in Fig. 1. The same discussion holds for moves of P1 with
positive delays, each such move is dominated by any move with strictly smaller
but positive delays. This time there is a unique admissible strategy, the one that
plays (0, e). However, the move (0, e) leads to the state (�1, 0) where player P3
can make P1 lose by going to the right, so the unique admissible strategy does
not dominate the other strategies. Further, there exist safety conditions for P2
and P3 such that (0, e) is arguably the worst possible move for P1 (e.g. P2 wants
to avoid BAD1 ∧ x = 0 so does not play (0, e′) and P3 wants to avoid �1 ∧ x > 0
so plays (0, e′′) in (�1, 0)).

4 Admissible Strategies in Discrete Timed Games

Consider a gameDM (G) for some constantM , and simple safety objectives (φi)i∈P .
We will only consider simple safety objectives, which are prefix-independent.
Therefore, the value of a history only depends on its last state. For each player i,
let us partition the state space S of DM into Wini = {s ∈ S | χi

s = 1}, Maybei =
{s ∈ S | χi

s = 0}, Losei = {s ∈ S | χi
s = −1}.

For each player i and history h ending in a state s, a move m ∈ Mi(s) is said
to be a winning move from h if there exists a winning strategy σ for Player i
such that h is compatible with σ, and σ(h) = m.

We introduce the following notations. For any edge e = (�, g, R, �′), and set of
states Z, let Succe(Z) = {(�′, ν′) | ∃(�, ν) ∈ Z, ν |= I(�)∧ge, ν[R ← 0] = ν′, ν′ |=
I(�′)}, which is the immediate successors of Z through edge e. We define the
immediate predecessors through e as Prede(Z) = {(�, ν) | ν |= ge∧I(�),∃(�′, ν′) ∈



Admissible Strategies in Timed Games 411

Z, ν′ |= I(�′), ν[R ← 0] = ν′}, and immediate predecessors for Players I ⊆ P
as PredI(Z) =

⋃
i∈I,e∈Δi

Prede(Z).
Lemma 1 applied to discrete-time semantics of Sect. 3 gives the following

characterisation of dominance of moves in terms of values obtained in case the
prescribed move is selected.

Theorem 3. Consider any player i and state q of DM (G). If q ∈ Wini, then
exactly all winning moves from q are locally admissible. If q ∈ Losei then all
available moves are locally admissible. Assume now that q ∈ Maybei. A move e ∈
Δi(q) is locally admissible from q if, and only if either Succe(q) ∈ Wini or the
following conditions hold

– ∀e′ ∈ Mi(q), Succe′(q) 	∈ Wini,
– Succe(q) ∈ Maybei, or ⊥ 	∈ Mi(q) ∧ ∀e′ ∈ Δi(q), Succe′ ∈ Losei,
– q+M1 ∈ Wini ⇒ ∃e′ ∈ Δ−i(q), Succe′(q) 	∈ Wini ∧ Succe(q) 	= Succe′(q).

Moreover, ⊥ is locally admissible if, and only if, ⊥∈Mi(q),∀e∈Δi(q), Succe(q) 	∈
Wini and one of the following conditions holds.

1. q+M1 ∈ Maybei ∪ Wini, and if ∃e ∈ Δi(q), Succe(q) = q and q+M1 = q, then
∃e′ ∈ Δ−i(q), Succe′(q) 	∈ Losei, and Succe′(q) 	= q.

2. ∀e ∈ Δi(q) such that Succe(q) ∈ Maybei, we have that ∃e′ ∈ Δ−i(q), with
Succe′(q) 	∈ Losei and Succe′(q) 	= Succe(q).

Proof. Let us show that moves satisfying the above properties are locally admis-
sible. We consider history h ending in some state q ∈ Maybei which is the only
non-trivial case.

Let us start with the following simple but useful remark.

Remark 1. Consider any state q, c∈M−i(q), e, e′ ∈Δi(q). Then, either δ(q, e, c) =
Succe(q) and δ(q, e′, c) = Succe′(q) or δ(q, e, c) = δ(q, e′, c).

– Consider e ∈ Mi(q) where Succe(q) ∈ Wini. If e <h e′, by Remark 1 and
Lemma 1 item (i), we must have Succe′(q) ∈ Wini too. But by the same
remark, item (ii) of Lemma 1 cannot hold, which shows e 	<h e′.

– Consider e∈Mi(q) with Succe(q)∈Maybei, and assume ∀e′ ∈ Mi(q), Succe′(q)
	∈ Wini.

• Assume e <h e′. If Succe(q) = Succe′(q), then e′ cannot dominate e by
Remark 1 and Lemma 1 item (ii). Otherwise, by assumption, Succe′(q) 	∈
Wini. If Succe′(q) ∈ Losei, then e 	<h e′ by Lemma 1 item (i). If Succe′(q)
∈ Maybei, since Succe(q) 	= Succe′(q), we have e 	<h e′ by Lemma 1,
item (iii).

• Assume ⊥ ∈ Mi(q) and e <h ⊥.
– Consider the case q+M1 	∈ Wini. Let c ∈ M−i(q) be such that all

players wait. Then, δ(q,⊥, c) = q+M1 	∈ Wini, while δ(q, e, c) =
Succe(q) ∈ Maybei. Assume q+M1 	= q. Then, we also have q+M1 	=
Succe(q), so e 	<h ⊥ by Lemma 1, item (iii).
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Assume q+M1 = q. If Succe(q) 	= q, then we conclude similarly as
above since Succe(q) ∈ Maybei. Assume Succe(q) = q. Since q 	∈ Wini,
there must be an edge e′ ∈ Δ−i(q), such that q 	= Succe′(q) 	∈ Wini.
If c ∈ M−i(q) denotes the profile which gives Player i priority, and oth-
erwise chooses e′, we have δ(q, e, c) = q, and δ(q,⊥, c) = Succe′(q) 	=
q. This shows that e 	<h ⊥: if Succe′(q) ∈ Losei, this follows by
item (i) of Lemma 1, and if Succe′(q) ∈ Maybei, by item (iii).

– Consider now the case q+M1 ∈ Wini, and let e′ ∈ Δ−i(q) such that
Succe′(q) 	∈ Wini ∧ Succe(q) 	= Succe′(q). Let c ∈ M−i(q) which gives
priority to Player i, and otherwise picks e′. We thus have δ(q, e, c) 	=
δ(q,⊥, c) and neither of them are winning, while δ(q, e, c) ∈ Maybei.
So, by Lemma 1, e 	<h ⊥.

Consider the delays. Assume that ⊥ ∈ Mi(q), and ∀e ∈ Mi(q), Succe(q) 	∈ Wini.

– Assume q+M1∈Maybei∪Wini and fix e ∈ Δi(q). If q+M1 ∈ Wini or Succe(q) ∈
Losei, then, we cannot have ⊥ <h e by case (i) of Lemma 1. Assume that both
belong to Maybei. Whenever q+M1 	= q or Succe(q) 	= q, we have q+M1 	=
Succe(q) for any target location and reset set e might have, which entails
⊥ 	<h e by Lemma 1, item (iii). Assume now that q+M1 = q and Succe(q) = q.
In this case, there is e′ ∈ Δ−i(q), Succe′(q) ∈ Maybei ∪ Wini, Succe′(q) 	= q.
For c ∈ M−i(q) which gives priority to Player i, and otherwise chooses e′,
we have δ(q,⊥, c) = Succe′(q) and δ(q, e, c) = q. If δ(q,⊥, c) has value 1,
then ⊥ 	<h e by Lemma 1 item (i); and if it has value 0,⊥ 	<h e follows from
Lemma 1, item (iii) since Succe′(q) 	= q.

– Assume that ∀e ∈ Δi(q) such that Succe(q) ∈ Maybei, we have that
∃e′ ∈ Δ−i(q), with Succe′(q) 	∈ Losei and Succe′(q) 	= Succe(q).
Assume that ⊥ <h e. If Succe(q) ∈ Losei, then item (ii) of Lemma 1 cannot
be satisfied which contradicts ⊥ <h e. Suppose that Succe(q) ∈ Maybei, and
let e′ ∈ Δ−i(q) given by the above property. Let c ∈ M−i(q) which gives
Priority to i, and otherwise chooses e′. We have that δ(q,⊥, c) = Succe′(q) ∈
Maybei ∪ Wini while δ(q, e, c) = Succe(q) ∈ Maybei. If Succe(q) ∈ Losei

or Succe′(q) ∈ Wini, this contradicts ⊥ <h e by item (i) of Lemma 1; and
if Succe(q) ∈ Maybei, by item (iii) since Succe(q) 	= Succe′(q).

We now show the other direction. We prove that any move that does not
satisfy the conditions is locally dominated. Consider any history h ending in q,
and e ∈ Δi(q) that satisfies Succe(q) 	∈ Wini and

∃e′ ∈ Δi(q), Succe′(q) ∈ Wini

∨
Succe(q) 	∈ Maybei ∧ (⊥ ∈ Mi(q) ∨ ∃e′ ∈ Δi(q), Succe′(q) ∈ Maybei)
∨
q + M1∈Wini ∧ ∀e′∈Δ−i(q), (Succe′(q) ∈ Wini ∨ Succe(q) = Succe′(q)) .

– Case ∃e′ ∈ Mi(q), Succe′(q) ∈ Wini. We have e <h e′ by Remark 1. In fact,
if Player i’s move is selected given some c ∈ M−i(q), from δ(q, e, c), he can
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continue with a winning strategy, although from δ(q, e′, c) he can lose. If
another player’s move is selected, then the successors are identical.

– Case Succe(q) 	∈ Maybei ∧(⊥ ∈ Mi(q)∨∃e′ ∈ Δi(q), Succe′(q) ∈ Maybei). This
means that Succe(q) ∈ Losei. We distinguish two cases. If such an e′ exists,
then it is clear that e <h e′ by Remark 1. Let us assume that no such e′ exists
and ⊥ ∈ Mi(q).
Define a move c ∈ M−i(q) as follows. If there exists e′ ∈ Δj for some j ∈ P
such that Succe′(q) ∈ Maybei ∪ Wini, then cj = e′, ck = ⊥ for all k 	= i, j;
and sched gives priority to i, and then to j. Notice that all players k can wait
since ⊥ ∈ Mi(q). Otherwise, let ∀k ∈ P, ck = ⊥, and sched is arbitrary.
Since q ∈ Maybei, we have δ(q,⊥, c) ∈ Maybei ∪ Wini in all cases. We show
that e <h ⊥ using Lemma 1. Notice that χi

δ(h,e,c) < χi
δ(h,⊥,c) since e moves

to Losei, and χi
δ(h,⊥,c) ≥ 0 by the previous remark. This shows (ii). Further-

more, for all c ∈ M−i(q), χi
hδ(h,e,c) ≤ χi

hδ(h,⊥,c) since either Player i’s edge is
picked and the inequality is strict, or another move is picked and the successor
states are identical in both cases (Remark 1). This shows (i) and (iii), proving
e <h ⊥.

– Case q+M1 ∈ Wini and for all e′ ∈ Δ−i(q), either Succe′(q) ∈ Wini or
Succe(q) = Succe′(q). Here, we show that e <h ⊥. Note that q+M1 ∈ Wini

means ⊥ ∈ Mi(q). Item (i) of Lemma 1 is satisfied since for all c ∈ M−i(q),
either δ(q, e, c) = δ(q,⊥, c) or δ(q,⊥, c) ∈ Wini. Item (iii) follows from this
remark. Moreover, q +M 1 is a possible successor under ⊥, which shows
item (ii).

Consider the move ⊥ from history h ending in q with ⊥ ∈ Mi(q), such that either
∃e ∈ Δi(q), Succe(q) ∈ Wini or we have the conjunction of the following:

(a) q+M1 ∈ Losei, or q+M1 = q and ∃e ∈ Δi(q), Succe(q) = q and ∀e′ ∈
Δ−i(q), Succe′(q) ∈ Losei ∨ Succe′(q) = q.

(b) ∃e ∈ Δi(q) with Succe(q) ∈ Maybei and ∀e′ ∈ M−i(q), Succe′(q) ∈ Losei ∨
Succe′(q) = Succe(q).
– If ∃e ∈ Δi, Succe(q) ∈ Wini, then ⊥ <h e. In fact, whenever Player i

has priority, the move e yields to a winning state; while if Player i waits,
then either a delay or another edge e′ ∈ Δ−i(q) must yield to a state in
Maybei ∪ Losei since q ∈ Maybei.

– Consider first the case q+M1 ∈ Losei and (b). We show that ⊥ <h e. For
all c ∈ M−i(q), by hypothesis, δ(q,⊥, c) is losing if δ(q,⊥, c) = q+M1
or δ(q,⊥, c) = Succe′(q) ∈ Losei for some e′ ∈ Δ−i(q). Otherwise,
if δ(q,⊥, c) = Succe′(q) 	∈ Losei then, we must have Succe(q) =
Succe′(q). This shows items (i) and (iii) of Lemma 1. Moreover, we have
item (ii) since when all other players wait, δ(q,⊥, c) = q+M1 ∈ Losei

while δ(q, e, c) ∈ Maybei.
Last, assume that q+M1 = q and ∃e ∈ Δi(q), Succe(q) = q, and
∀e′ ∈ Δ−i(q), Succe′(q) ∈ Losei ∨ Succe′(q) = q, and (b). This means
that ∀e′ ∈ Δ−i(q), Succe′(q) ∈ Losei or Succe′(q) = q. Observe also
that since q ∈ Maybei, and q+M1 = q, there must exist e0 ∈ Δ−i(q)
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with q 	= Succe0(q) ∈ Losei ∪ Maybei since otherwise q would be a win-
ning state. It follows that Succe0(q) ∈ Losei. Let us show ⊥ <h e.
Let c ∈ M−i(q). If δ(q,⊥, c) 	∈ Losei, then δ(q,⊥, c) = q, that is,
either δ(q,⊥, c) ∈ Losei, or δ(q,⊥, c) = δ(q, e, c). This shows item (i)
and (iii) of Lemma 1. Moreover, if c gives Priority to i, and otherwise
chooses e0, we have δ(q,⊥, c) = Succe0(q) ∈ Losei and δ(q, e, c) = q ∈
Maybei, which shows item (ii). ��

5 Computation Using Zones

We assume that clocks are bounded in all locations by an invariant:

Assumption 4. In all considered timed games, the invariant at each location
implies

⋂
x∈X x < M .

5.1 Zones and Difference-Bound Matrices

Formally, a zone Z is a convex subset of R
X
≥0 definable by a conjunction of

constraints of the form x �� k, l �� x, or x − y �� m where x, y ∈ X, k, l ∈
N≥0,m ∈ Z, and �� ∈ {<,≤}.

We recall a few basic operations defined on zones. Let Z↑ denote the time-
successors of Z, i.e., Z↑ = {ν ∈ R

X
≥0 | ∃ν′ ∈ Z,∃t ≥ 0, ν = ν′ + t}; and

similarly the time-predecessors are Z↓ = {ν ∈ R
X
≥0 | ∃t ≥ 0, ν + t ∈ Z}.

For R ⊆ X, we define Z[R ← 0] = {ν ∈ R
X
≥0 | ∃ν′ ∈ Z, ν = ν′[R ← 0]},

and FreeR(Z) = {ν ∈ R
X
≥0 | ν[R ← 0] ∈ Z}. Intersection is denoted Z ∩ Z ′. It is

well known that zones are closed under all these operations [6].
Zones can be represented by difference-bound matrices (DBM) which are

|X0| × |X0|-matrices with values in Z × {<,≤} [22], where X0 = X ∪ {0}.
Here 0 is seen as a clock whose value is always 0. Intuitively, each compo-
nent (x, y) ∈ X0 × X0 of a DBM stores a bound on the difference x − y. We use
the following notations to access to components of a DBM D. For x, y ∈ X0, let
the component (x, y) be written as (Dx,y,≺D

x,y). For any DBM D, let �D� denote
the zone it defines. The DBM D is reduced if no constraint can be made tighter
without changing the defined zone. This is true when the following inequalities
are satisfied: for all x, y, z ∈ X0, (Dx,y,≺D

x,y) < (Dx,z,≺D
x,z)+ (Dz,y,≺D

z,y) where
we define (a,≺)+(b,≺′) = (a+b,≺′′) with ≺′′=< if, and only if ≺=< or ≺′=<;
while (a,≺) < (b,≺′) if a < b or a = b and either ≺=≺′ or ≺=< and ≺′=≤.
Every DBM can be made reduced using shortest path algorithms. We refer the
reader to [6] for details on operations on DBMs.

We define an extended DBM as a pair (�, Z) where � is a location and Z
a zone. Let �(�, Z)� denote the set {�} × �Z�. By a slight abuse of notation,
we will use the same operations for DBMs as for zones, for instance, we will
write D′ = D↑ where D and D′ are DBMs such that �D′� = �D�↑. In this
case, D′ can be computed using algorithms described in [6]. Successors and
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predecessors of zones are zones as well, and can be computed efficiently using
DBMs. Let us consider an extended state (�, Z) and an edge e = (�, g, R, �′). We
define Succe((�, Z)) = ∪q∈�(�,Z)�Succe(q), and Prede((�′, Z)) = {�} × {ν | ν |=
g, ν[R ← 0] ∈ �Z�}. A DBM (resp. a zone) is closed if the set it defines is topo-
logically closed. Equivalently, a closed DBM can be defined using a conjunction
of non-strict constraints.

A federation is a list of DBMs F = ∪iDi, and defines the set �F � = ∪i�Di�.
We define the complement of a zone Z in R

X
≥0 as Z. If a zone is represented

as a DBM D, its complement can be computed as a federation, denoted D;
that is, �D� = �D�. By extension, we also call an extended federation a union
of extended zones. Given an extended federation F and location �, we denote
by � ∩ F the set {�} × R

X
≥0 ∩ F ; thus, each location � denotes an extended zone

at that location with no constraint on clocks. A closed federation is a federation
whose DBMs are closed. We extend all operations on DBMs to federations by
applying them on all elements of the federation. For instance, F↓ = ∪iDi↓; while
intersection is defined by (∪iDi) ∩ (∪jD

′
j) = ∪i,jDi ∩ D′

j . For the complement,
we set F = ∩iDi.

In order to consider the discrete-time semantics, let us define �Z�d = {ν ∈
N

X0 | ν |= Z}. In other terms, �Z�d = N
X0 ∩ �Z�. Given any DBM D,

let closed(D) denote the largest closed zone contained in D. Formally, we
have D′ = closed(D) where for all i, j, Di,j = D′

i,j if the latter is a non-strict
constraint, and Di,j = (a − 1,≤) if D′

i,j = (a,<). Intuitively, the closed(D)
returns a closed DBM whose discrete valuations are identical to those of D.
Notice that closed(D) can be empy although D is not. For any zone Z,
let Z

d
= N

X \Z; and we extend this notation to DBMs and federations. We also
define discrete time-successors as Z↑d = {ν + d | d ∈ N, ν ∈ Z}, and Z↓d = {ν |
∃d ∈ N, ν + d ∈ Z}. Similarly, let FreedR(Z) = {ν ∈ N

X | ν[R ← 0] ∈ Z}.

Lemma 2. Let Z,Z ′ be DBMs and R ⊆ X. The following properties hold.

– �closed(Z)�d = �Z�d,

– �Z�d
d

= �closed(Z)�d,
– �Z�d ∩ �Z ′�d = �Z ∩ Z ′�d,
– FreedR(�Z�d) = �FreeR(Z)�d,
– if Z is closed, �Z�d[R ← 0] = �Z[R ← 0]�d,
– if Z is closed, �Z�d↓d = �Z↓�d,
– if Z is closed, �Z�d↑d = �Z↑�d.

Closed federations are closed under all above operations.

Thanks to the above lemma, we will represent sets of discrete states using DBMs.
Intuitively, we let a closed zone represent the set of discrete valuations it contains,
while the lemma ensures that basic operations applied on the zone corresponds
to the corresponding operations in the discrete semantics.

Note that all operations but complementation are continuous, thus preserve
closedness. Since all guards are closed in the discrete-time setting, the successor
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and predecessor operators are defined identically to the continuous case, without
using the closed operator. That is, given extended zone (�, Z) where Z is repre-
sented by closed DBM D, and edge e = (�, g, R, �′), �Succe((�, Z))�d = {(�′, ν′) ∈
L ×N

X | ν |= g ∧ I(�), ν[Re ← 0] = ν′ |= I(�′)}, while this set can be computed
by (((D ∩ ge ∩ Inv(�))[R ← 0]) ∩ Inv(�′))↑ ∩ Inv(�′), where Inv is the extended
federation defining for each � the invariant Inv(�) at location �. The predecessors
are computed similarly by (FreeR(Z ∩Inv(�′)∩(R = 0))∩ge ∩Inv(�))↓∩Inv(�).

5.2 Computing State Values

We show how to use a zone-based exploration to compute state values for each
player. As in the previous section, we consider the extended federation Inv which
defines the set I of states that satisfy their locations’ invariants, that is, I =
�Inv� = ∪�∈L� × �Inv(�)�.

Given B,G ⊆ S. Let TPreddi (G,B) = {q ∈ S | ∃d ∈ N, q + d ∈ G, q + [0, d] ∩
B = ∅}. This is the set of states which, by a discrete delay, can reach G while
avoiding B in during the delay. One could also define TPreddi by fixing a unit
delay d = 1, and repeating it. However, quantifying over d ∈ N will allow us to
use DBMs to compute this operator efficiently.

We define πd
i (Z) = TPreddi (Predi(Z), Pred−i(Z

d
)). Let us thus first state

the set theoretic fixpoint defining the winning region in the discrete semantics.
Below, ν is the greatest fixpoint operator; we will also use the least fixpoint
operator μ.

Lemma 3. For any timed game G, player i, bad states Bi, we have Wini =
νZ.Bi

d ∩ S ∩ πd
i (Z).

When G and B are federations, we write TPreddi (G,B) = TPreddi (�G�d, �B�d),
and πd

i (G) = πd
i (�G�d). The following lemma is adapted from [17, Lemma 4].

Lemma 4. Consider any timed game G, player i, bad states B. Given closed
federations G = ∪kGk and B = ∪jBj both contained in Inv, TPred(G,B)
can be computed as follows. TPredd(G,B) =

⋃
k

⋂
j TPred

d(Gk, Bj), where

TPredd(Gk, Bj) = �Inv ∩
(
(Gk↓ ∩ Bj↓d) ∪

(
Gk ∩ (Bj↓) ∩ Bj

d
)

↓
)
�d.

It follows from Lemmas 2 and 4 that given a closed federation F, πd
i (F ) can

be computed as a closed federation. Thus, Wini can be computed as an extended
closed federation. The next lemma will show that Maybei can also be computed
as an extended closed federation.

We define the discrete variant of Pred by PreddI(Z) = ∪i∈I,e∈Δi
Predde(Z),

where Predde(Z) = {q ∈ S | Succe(q) ∈ Z}.

Lemma 5. For any timed game G, player i, bad states Bi, we have Maybei =
νZ.Bi

d ∩ S ∩ PreddP (Z)↓d.
Last, the set Losei can be computed as the complement of Wini ∪ Maybei.

We thus showed, in this section, that sets of states with a given value can be
computed using federations.
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6 Model Checking Under Admissibility

In this section, we show how to check whether all states reachable under admis-
sible strategy profiles satisfy a given invariance property. Formally, the problem
is stated as follows.

Problem 1 (Model Checking Under Admissibility). Given a timed game G, simple
safety objectives (φi)i∈P , and (arbitrary) safety property φ, check

∀σ ∈
∏

i∈P

Admi(DM (G)),∀σsched ∈ Γsched, Out(DM , σ, σsched) |= φ.

We describe a forward exploration algorithm using federations similar to the
usual reachability algorithm except that both discrete transitions and time delays
are modified so that only locally admissible moves are considered by players.

For I ⊆ P , let TrapI(Z) = ∩i∈IPredi(Z
d
)
d

, that is, the set of states from
which no player in I can avoid the set Z by choosing a move.

For a reduced DBM D, and a, b ∈ N, define Shifta,b(D) = D′ as D′
i,j = Di,j

for all i, j 	= 0; D′
i,0 = Di,0 + b and D′

0,i = D0,i − a for all i 	= 0. Notice that the
resulting DBM D′ may no more be reduced, so it must be made reduced.

Lemma 6. Let D be a reduced DBM.

– �Shift−1,−1(D)�d = {ν ∈ N
X | ν + 1 ∈ �D�d},

– �Shift0,−1(D)�d = {ν ∈ �D�d | ν + 1 ∈ �D�d},
– �Shift−1,0(D)�d = {ν ∈ N

X | ν ∈ �D�d ∨ ν + 1 ∈ �D�d},
– �Shift0,1(D)�d = {ν | ν ∈ �D�d ∨ ν − 1 ∈ �D�d}.

Constrained Guards. For any location � and edge e ∈ Δi(�), let us define

We = {(�, ν) ∈ Wini | ν |= ge, Succe((�, ν)) ∈ Wini, Succ−i((�, ν)) ∈ Wini}.

In other terms, We is the set of states from which Player i can pick the transition
e ∈ Δi which guarantees staying in Wini.

Given two edges ei = (�i, gi, Ri, �
′
i) for i = 1, 2, let us define the expres-

sion Eq(e1, e2) ≡ (∧x∈X((x ∈ R1 ∩ R2) ∨ x = 0)) ∧ �′
1 = �′

2. In other terms,
Eq(e1, e2) are the set of states from which the successors through these edges are
identical. Let us define

g′
e = ge ∧ (Wini ⇒ We) ∧ (Maybei ⇒ Prede(Wini) ∨ g′′

e ) , (1)

where

g′′
e = Trapi(Losei ∪ Maybei) ∧

(
Prede(Maybei) ∪ Shift0,−1(Inv)

d ∧ Trapi(Losei)
)

∧(
Shift−1,−1(Wini) ⇒ (∨e′∈Δ−i

¬Eq(e, e′) ∧ Prede′(Wini))
)
.

Lemma 7. For any player i ∈ P , an edge e = (�, g, R, �′) ∈ Δi is locally admis-
sible at (�, ν) if, and only if ν |= g′

e.
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The proof follows immediately from Theorem3.

Constrained Time Successors. For each location �, and edge e ∈ Δi(�),
define Ge = � ∧ ge. For each player i, we define Ai, as the set of states from
which waiting is locally admissible, as follows.

Ai = Shift0,−1(Inv)∩
(
Losei∪Shift0,−1(Wini)∪

(
Maybei∩Predi(Wini)∩(Bi∪Ci)

))
,

(2)

where Bi = Shift−1,−1(Wini ∪ Maybei) and

Ci =
⋂

e∈Δi

⎛

⎝Ge ∩ Prede(Maybei) ⇒
⋃

e′∈Δ−i

Ge′ ∩ Prede′(Losei) ∩ ¬Eq(e, e′)

⎞

⎠ .

Lemma 8. Consider state q, and player i ∈ P . Move ⊥ is locally admissible
at q for player i if, and only if q ∈ �Ai�d.

Let A = ∩i∈P Ai. Given set F , let F↑dA = {q ∈ S | ∃q′ ∈ F, d ∈ N, q′ + d =
q, q′ + [0, d − 1] ⊆ A}. Hence, this is the set of time successors of F which are
reachable by staying inside A (except that the last state can be outside of A).
Notice that all states of F↑dA satisfy the invariants.

Lemma 9. For any set F, F↑dA = μZ.F ∪ I ∩ Shift0,1(Z ∩ A).

Algorithm 1. Model checking under admissibility algorithm for safety properties
1: Input: Game G, simple safety objectives (φi)i∈P , M ∈ N, safety property φ
2: Let Wini = νZ.φi ∩ πd

i (Z), Maybei = νZ.φi ∩ πd
P (Z), Losei = Wini ∪ Maybei

3: For all i ∈ P , let Δ′
i = {(�, g′, R, �′) | (�, g, R, �′) ∈ Δi} where g′ is defined (1).

4: Define A as in (2)
5: Waiting = {(�0,0)}
6: Passed = ∅
7: while Waiting �= ∅ do
8: Let Z = Pop(Waiting)
9: if Z �|= φ then

10: return False
11: Passed = Passed ∪ {Z}
12: for all i ∈ P, e ∈ Δ′

i do
13: Z′ = Succe′(Z)↑d

A

14: if ¬∃Z′′ ∈ Passed ∪ Waiting, Z′ ⊆ Z′′ then
15: Waiting = Waiting ∪ {Z′}
16: return True

Exploration. Now during the exploration, given any federation F in the waiting
list, and edge e, we expand the search by Succe′(F ) where e′ is the edge e whose
guard ge is replaced by g′

e. We then compute its constrained time successors by
restricting the delays to those states A where all players can indeed wait. The
algorithm is summarized in Algorithm1 Notice that Assumption 4 allows us to
ensure the termination of the algorithm without using extrapolation operators.
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7 Assume-Admissible Synthesis

We now show how to solve the assume-admissible synthesis problem.

Problem 2 (Assume-Admissible Synthesis). Given a timed game G, simple safety
objectives (φi)i∈P , check if for each player i,

∃σi ∈ Admi(DM (G)), ∀σ−i∈Adm−i(DM (G)), ∀σsched∈Γsched, Out(DM , σ, σsched) |= φi.

If for each player i, we manage to find an admissible strategy that is winning
against all admissible strategy profiles of −i, then the combination of these
strategies is a profile that satisfies all objectives. Note that players can choose
their strategies arbitrarily among these winning ones without coordination with
other players as long as other players choose admissible strategies. Let us call σi

assume-admissible-winning (AA-winning) if it witnesses the above condition for
Player i.

We are going to solve this problem by using the results of the previous section.
In fact, we showed how to strengthen the guards of the edges of the timed
automaton so that they are only taken by respective players if the corresponding
move is locally admissible. We also characterized those states from which a delay
is locally admissible for all players. It remains to show how to solve the game
where all players are restricted to behave admissibly.

Given a timed game G, let G′ be obtained by strengthening the guards of all
edges as in the previous section. Let A be the set from which waiting is locally
admissible for all players, as defined in the previous section. For any set F of
states, let us define the A -constrained time-predecessors as F↓dA = {q ∈ S | ∃d ∈
N, q + d ∈ F, q + [0, d − 1] ⊆ A}. Intuitively, this is precisely the set of states
which can reach F by time delays while staying in A (except at the last state).
This operator can be computed as follows.

Lemma 10. For all sets F ⊆ R
X
≥0, F↓dA = μZ.F ∪ (A ∩ Shift−1,0(Z ∩ I)).

We define TPreddA,i(G,B) = {q ∈ S | ∃d ∈ N, q + d ∈ G, q + [0, d] ∩ B =
∅, q + [0, d − 1] ⊆ A}. This defines the set of states from it is admissible for
players to wait until reaching G while avoiding B.

Lemma 11. Consider any timed game G, player i, bad states B. Given closed
federations G = ∪kGk and B = ∪jBj both implying Inv, TPreddA,i(G,B)
can be computed as follows. TPreddA,i(G,B) =

⋃
k

⋂
j TPred

d
A,i(Gk, Bj), where

TPreddA,i(Gk, Bj) = �Inv ∩
(

(Gk↓dA ∩ Bj↓dA
d
) ∪

(
Gk ∩ (Bj↓dA) ∩ Bj

d
)

↓A

)

�d.

Let πd
i,A(Z) = TPreddA,i(Predi(Z), Pred−i(Z̄)).

Theorem 5. Let G be a game with simple safety objectives (φi)i∈P . Let G′ be
obtained by replacing each guard ge by g′

e as defined in (1). Let Wi = νZ.φi ∩
S ∩ πd

i,A(Z) computed in G′. Then, Player i has a AA-winning strategy in G if,
and only if the initial state belongs to Wi.
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8 Example: Synthesis of Train Controllers

We consider a one-way circular train network with n segments, and K trains.
Each segment models either a station, or a part of the line between two stations.
For safety reasons, each segment can accomodate at most one train. In order to
optimize performance criteria, trains are allowed to independently regulate their
travel time at each segment as long as they meet this safety critical requirement.

Freej Occj

mj?

mj+1?, yj := 0

Fig. 2. Component for seg-
ment j

Model. We describe the system as a network of
timed automata defining a discrete timed game with
Boolean variables. Each segment j is modeled as in
Fig. 2: it can be “occupied” by a train upon receiving
event mj , after which it is “freed” by the occupation
of the next segment, by event mj+1. The clock yj

stores the time elapsed since the latest train leaving.
Each train i is modeled as a separate player, and

its moves are defined by the component in Fig. 3. If the current state of the
component is si,j or s′

i,j , this means that the train i is at segment j. The train
can attempt to move to segment j + 1 by sending event mj+1 if it has spent at
least 10 s in the current segment. This lower bound corresponds to the minimum
travel time (with maximal speed) of a train over a segment. If 30 s have elapsed
in a given segment, the train either has to move to the next segment, or enters
state s′

i,j from which at least one unit of time will elapse and the variable erri

will be set. In our model, the segments are passive, and they only react to actions
received by trains.

For better readability, we use a particular synchronization semantics: we
assume that an event mi is only possible if three components synchronize on the
action. That is, if a train enters from segment j to segment j + 1, then the train
sends mj+1!, upon which the first segment is freed by mj+1?, and the second
one is occupied by mj+1?

Each train controls the edges of its automaton, and the edges of the segments
are only taken in synchronization with trains’ edges. Thus, each transition in the
overall system is controlled by a unique player (i.e. train).

We define the initial state by assigning each train i to an arbitrary segment j
while respecting mutual exclusion: no pair of trains can be at the same segment.
Moreover, the segment j is at state Occj if, and only if some train is in state sj .
All clocks are initially 0.

Specification. Our overall objective Φ is that each segment is served at least
once every 150 s; in other words, the clocks yj never exceed 150. Let us thus
write Φ = ∧jG(yj ≤ 150). It is clear that this is not the case in general: if
a train stops moving, the following segment is never served. However, we also
know that trains do not behave arbitrarily. In fact, to guarantee acceptable
passenger experience, each train is also required not to stay for more than 30 s
at each segment. Let us define φi = G(¬erri ∧ xi ≤ 30), which is the local
specification of train i, that is, its objective. Notice that φi is a simple safety
objective: once erri is set to 1, it remains so. Moreover, if xi exceeds 30, the
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si,1
xi ≤ 30

s′
i,1

xi ≤ 40

si,2

xi ≤ 30

s′
i,2

xi ≤ 40

. . . si,n

xi ≤ 30

m2!, 10≤xi≤30, xi:=0

xi=30, xi:=0

m2!, xi≥1

xi:=0, erri:=1

m3!, 10≤xi≤30, xi:=0

xi=30, xi:=0

m2!, xi≥1

xi:=0, erri:=1

s′
i,n

xi ≤ 40

m1!, 10≤xi≤30, xi:=0

xi=
30, xi:=

0
m1!, xi≥1

xi :=0, err1:=1

Fig. 3. Component for train i whose edges are controlled by Player i. In addition to the
transitions shown in the figure, we add the self-loops with no resets at each state si,j

and s′
i,j , with the following guard:

∨
j,k(sj,k ∧ xj = 30 ∨ s′

j,k ∧ xj = 40). In fact, if
some train j reaches the upper bound of its invariant, then train i can still choose this
self-loop to remain in the current segment.

train is necessarily at some state s′
i,j at which the variable erri will be set to 1

simultaneously when xi is reset.
We assume that each train regulates its travel time with the restriction of

behaving admissibly with respect to its objective φi. Now, assuming each train i
is admissible for objective φi, does the global objective Φ hold under all induced
executions? This is precisely a model checking under admissibility problem.

Admissible Strategies. We have Wini = ∅, Losei = erri ∨ (∨js
′
i,j), and Maybei

is the rest of the states, that is, ¬erri ∧ (∨jsi,j). We have already explained
why there are no winning states in the system. To see that all states satisfying
¬erri ∧xi ≤ 30 have value 0, consider such a state where train i is at segment j.
If station j + 1 is free, then train i can move as soon as xi ≥ 10. Otherwise, if
i + 1 is the index of the train at segment j + 1, then xi ≤ xi+1 since train i + 1
must have entered segment j + 1 before train i has entered segment j. In this
case, all segments and n − 1 trains in the network, all trains that are blocking
the way to train i can wait until their clocks reach 10, and simultaneously move
one after the other to free segment j + 1. At this point, train i can (wait and)
move to segment j + 1. By repeating this argument, one can construct a run in
which train i satisfies its specification.

Let us now apply Theorem 3 to describe locally admissible moves from states
of Maybei. Notice that the successor of any state of Maybei through edges of
type si,j → si,j+1 leads to Maybei. Since there is no winning states, all these
edges are locally admissible according to the theorem. On the other hand, an
edge si,j → s′

i,j is only locally admissible if xi = 30 and no other edge is available.
Moreover, any delay at states si,j is locally admissible as long as the delay is
allowed (that is, ∀i, xi ≤ 29). Last, from Losei, any move is locally admissible.

Model Checking Under Admissibility. At any moment, the trains form several
blocks of consecutive occupied segments. By the previous description of the
locally admissible moves, it follows that the train at the head of each block must
eventually move to the next segment before its clock exceeds 30, thus allowing



422 N. Basset et al.

the previous train to move as well. One shows by induction on n that all trains
move before their clocks exceed 30, thus along all runs with locally admissible
moves, all objectives φi are satisfied.

Now, the satisfaction of Φ depends on the parameters n and K. One can
see that Φ is satisfied as long as K ≥ n − 4. In fact, if there are four consec-
utive segments at any time, each segment will be entered and left by a train
within 150 time units. The specification fails however, when K < n−4. This can
also be determined by Algorithm1 applied to the game described above with
specifications (φi)i for the trains, and the global safety property Φ.

Assume-Admissible Synthesis. Rather than checking whether all executions
under admissible strategies satisfy the specification, let us now apply assume-
admissible synthesize to synthesize an admissible strategy for each train sat-
isfying its objective against all admissible strategies. One solution to the AA-
synthesis is to let trains move to the next segment as soon as possible, that
is, whenever the following segment is free, and the guards allow them to move.
Let σASAP

i denote this strategy. According to the previous paragraph, σASAP
i is

admissible since it only chooses locally admissible moves. Moreover, it ensures φi

against all admissible strategies of the other trains since we saw that all execu-
tions under admissible strategy profiles satisfy φi.

Thus, for each i, the particular strategy σASAP
i is admissible and ensures φi.

What are possible outcomes under the profile (σASAP
1 , . . . , σASAP

n )? Observe that
all trains move to the next segment whenever their clocks reach 10 (in fact, this
is true for the train at the head of its block, and this shows that other trains will
also move at the same time). Thus, each train moves to the next segment every 10
time units under this profile. This means that the specification Φ actually holds
when K ≥ n− 14. In fact, given any block of at most 14 unoccupied consecutive
segments, each of them will be served by a train in at most (14 + 1) × 10 time
units. Hence, we have synthesized a particular admissible strategy profile in
which, not only, each train ensures its own specification against all admissible
strategy profiles of other trains, but moreover, together, the strategy profile
satisfies the specification Φ for a larger choice of parameters K and n.

Discussion. We showed that all admissible strategies satisfy the minimal perfor-
mance requirement Φ in our system (given constraints on the parameters K,n).
Thus, an admissible strategy for each train can be chosen separately according
to other given performance criteria if desired, and Φ will hold regardless of the
precise choice.

We thus suggest a two-step synthesis methodology where we separate min-
imal performance requirement Φ from further optimization criteria. We ensure
this first step formally using admissibility, while the further steps can be done
using other methods: above, we used assume-admissible synthesis, but other
methods can be used as well such as statistical learning with the only require-
ment of being compatible with locally admissible moves. Thus, one is able to
formally ensure strong guarantees for Φ, and use other methods with relaxed
guarantees for further optimization.
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We kept the model extremely simple in order to make it human-readable.
Several details can be added to approach a more realistic model. First, the
topology of the network can be made arbitrary, and two-way traffic can be
incorporated with possible shared (thus, mutually exclusive) portions between
different lines. Most importantly, perturbations in travel times can be added by
introducing a player which adds a bounded amount of error to each travel time.

9 Conclusion

We studied admissible strategies in non-zero sum multiplayer timed games. As we
showed that admissible strategies do not always exist in the continuous seman-
tics, so we concentrated here on the discrete-time setting. By a reduction to
finite concurrent games, we showed the existence of admissible strategies, and
gave a characterization of admissible strategies. We gave algorithms to compute
the set of admissible outcomes using zone federations, yielding algorithms for
model checking under admissibility and assume-admissible synthesis. As future
work, we would like to study these symbolic algorithms without the assumption
of bounded clocks, thus, using extrapolation operators. We will also implement
a prototype tool to test the feasability of our methods.
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ICALP 2007. LNCS, vol. 4596, pp. 825–837. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-73420-8 71

17. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CON-
CUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). doi:10.1007/
11539452 9

18. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 21

19. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria.
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Abstract. This paper presents an abstraction-refinement framework for
Segala’s probabilistic automata (PA), a slight variant of Markov decision
processes. We use Condon and Ladner’s two-player probabilistic game
automata extended with possible and required transitions—as in Larsen
and Thomsen’s modal transition systems—as abstract models. The key
idea is to refine player-one and player-two states separately resulting in
a nested abstract-refine loop. We show the adequacy of this approach for
obtaining tight bounds on extremal reachability probabilities.

1 Introduction

Probabilistic automata (PAs) [1] extend Markov decision processes (MDPs) by
allowing for states having more than one choice labeled with the same action.
This extension is needed for parallel composition. Whereas in an MDP, each
distribution (over states) is unique, this no longer holds for PA. PAs have been
used as operational model for probabilistic process algebras, the PIOA language,
and have served to reason about randomized distributed algorithms, see [2].
Segala [1] has studied several behavioral relations on PAs such as (weak and
strong) bisimulation and simulation pre-orders, as well as trace inclusions. These
relations form the basis for obtaining abstractions of PAs, i.e., smaller models
that then can be used for further analysis. This includes for instance, determining
extremal (minimal and maximal) reachability probabilities.

To obtain coarser abstractions, more aggressive abstraction schemes have
been proposed in the literature. These include finite-state approximations [3],
abstract probabilistic automata [4], game-based abstractions [5], abstractions
that are based on distribution-based simulation pre-orders [6], and compositional
abstraction [7]. This paper is a continuation of this line of research that is aimed
at obtaining an automated abstraction-refinement framework for PAs that yields
tight bounds on extremal reachability probabilities.

The first key ingredient of this paper is to use Condon and Ladner’s two-
player probabilistic game automata (PGAs) [8] and extend them with possible
and required transitions as known from modal transition systems [9,10]. There
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are two main differences with existing works on game-based abstraction of PAs:
(1) both players are fully symmetric (and randomized), and (2) transitions have
modalities. We define satisfaction and refinement relations—much in the style
of modal transition systems—on these models, define (alternating) simulation
relations, and prove the special role of two specific implementations that provide
(upper and lower) bounds on extremal reachability probabilities for competing
and collaborating players.

The second key ingredient, and the major contribution of this paper, is
an (nested) abstraction-refinement scheme. The main idea is separate refining
player-one and player-two states. We formally define the notion of stable abstrac-
tion from the perspective of each player, prove that each refinement loop indeed
yields a refinement, and that the iterative abstraction-refinement terminates for
every PA with a finite bisimulation quotient.

Put shortly, the major contributions of this paper are: (1) generalizing two-
player probabilistic game automata (by annotating transitions with modalities)
and proposing them as abstractions of PAs, (2) showing that our abstractions
yield at most as tight bounds on extremal reachability probabilities as game-
based abstractions, however, they are at most the sizes of game-based abstrac-
tions, and (3) proposing an abstraction-refinement framework consisting of a
nested loop – the inner-loop (outer-loop) refines player-one (player-two) states.

This paper is organized as follows. Section 2 sets the ground for this work.
Sections 3 and 4 introduce abstract PGAs and the abstraction technique based
on it, respectively. Section 5 proposes our abstraction-refinement framework for
PAs. Section 6 discusses related work. Section 7 concludes the paper. Proofs of
theorems can be found in the Ph.D. thesis [18].

2 Preliminaries

A distribution μ is a function on a countable set S iff μ : S → [0, 1] and 0 <∑
s∈S μ(s) ≤ 1; its support set is supp(μ) = {s ∈ S | μ(s) > 0}; and its mass

w.r.t. set S′ ⊆ S is given as μ(S′) =
∑

s∈S′ μ(s). A distribution μ is a full-
distribution iff μ(S) = 1, otherwise, it is a sub-distribution. Let Dist(S) denote
the set of full-distributions over S. Let ιs ∈ Dist(S) denote the Dirac distribution
for s ∈ S, i.e., ιs(s) = 1.

2.1 Probabilistic Game Automata

PGAs are used for modeling systems in which players, behaving probabilistically,
compete for certain objectives, i.e., some players maximize whereas the others
minimize the probability of reaching a set of goal states. In this paper, we deal
with PGAs having only two players that make their moves alternatively. Intu-
itively, it is a game of chance played between two players, say, player one and
player two. The game arena is a bipartite graph—having, say, S1 and S2 as sets
of vertices—in which each player owns a specific set of vertices; say, the players
one and two own S1 and S2 respectively. The game is started by player one and
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evolves in a turn-based fashion. Starting from the initial state in S1, player one
non-deterministically chooses an action-distribution pair. Based on the selected
distribution, a state in S2, say s2, is randomly selected and the control is passed
to player two; who then behaves in the same way as player one and the control
passes back to player one. This goes on until some goal is achieved either by
player one or player two. Let UAct be a countable universe of actions including
the internal action τ .

Definition 1 (Probabilistic game automaton [8]). A PGA is a tuple G =
(S, {S1, S2}, A,Δ, s0) where S is a non-empty, countable set of states, partitioned
into S1 and S2, with s0 ∈ S1; A ⊆ UAct, and Δ ⊆ (S1 × A × Dist(S2)) ∪ (S2 ×
A × Dist(S1)) is a set of transitions.

s0

s1

s2

s3

s4

t1

t2

t3

a
0.5

0.
5

a

a

a

0.
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a

a

Fig. 1. A sample PGA G

We denote (s, a, μ) ∈ Δ by s
a→ μ; Act(s) =

{a ∈ A | s
a→ μ} as the set of enabled actions

from state s; succ(s) = {u ∈ S | ∃(s, a, μ) ∈
Δ : μ(u) > 0} as the set of successor states of
s; and Δ(s) = {(s, a, μ) | s

a→ μ} as the set of
transitions emanating from s. PGAs are thus a
generalization of SGs [11] in which both players
are random; in SGs only one player is random.
In the sequel, let G = (S, {S1, S2}, A,Δ, s0) be a
finitely branching – each state has a finite num-
ber of transitions and each distribution has a
finite support – PGA. To depict PGAs we rep-
resent states in S1 and S2 as rectangles and
double rectangles respectively. Moreover, if a
player-one state s has a unique predecessor t, we show s inside t for simplic-
ity. Figure 1 illustrates a sample PGA with S1 = {s0, . . . , s4}, S2 = {t1, t2, t3}
and transitions t1

a→ μ with μ(s1) = μ(s2) = 1
2 . In order to analyze reachability

properties on PGA G, at each state non-determinism is resolved by means of
a scheduler for each player, resulting in a Markov chain with a countable state
space. The induced chain further reduces to a path once probabilistic choices are
resolved. A set of paths obtained thus is measurable, see e.g., [12, Ch. 10]. Let
Prκ1

κ2
(T ) be the probability of the set of paths from the initial state s0 in G that

reach some set of states T ⊆ S under schedulers (κ1, κ2) for players one and two
respectively. Let

Pr+−(T ) = supκ1
infκ2 Prκ1

κ2
(T )

Pr++(T ) = supκ1
supκ2

Prκ1
κ2

(T )
Pr−−(T ) = infκ1 infκ2 Prκ1

κ2
(T )

Pr−+(T ) = infκ1supκ2
Prκ1

κ2
(T )

be the optimal (i.e., maximum and minimum) probabilities for reaching states
in T . They can be achieved by deterministic memoryless schedulers [8], and
computed through value iteration, policy iteration or by linear programming for
games with finite state spaces.
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Let wT : S → [0, 1] be a probability valuation function mapping a state s
to the probability of reaching T ⊆ S from s under a given pair of deterministic
memoryless schedulers. We omit the subscript T whenever T is clear from the
context. The probability valuation functions WT = {w | w : S → [0, 1]} form
a complete lattice (WT ,≤,⊥,	) with order ≤⊆ WT × WT , bottom element
⊥ ∈ WT and top element 	 ∈ WT . We write w ≤ w′ iff ∀s ∈ S : w(s) ≤ w′(s);
⊥(s) = 0 and 	(s) = 1 for s ∈ S. For a set M ⊆ WT , the least upper bound
is given as

⊔
M(s) = supw∈Mw(s), and the greatest lower bound as

�
M(s) =

infw∈Mw(s) for s ∈ S. Let w(μ) =
∑

s∈S μ(s) · w(s) for μ ∈ Dist(S). For PGA
G, let τ(G) be the closed PGA, a PGA G in which all actions of G are changed
into τ .1

Definition 2 (Probability valuation transformer [8]). Let T ⊆ S be the
set of goal states in PGA τ(G). For reachability objectives 1,2 ∈ {min,max} for
players one and two respectively, the probability valuation transformer Prt12 :
WT → WT is defined for w ∈ WT and s ∈ S as:

Prt12(w)(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if s ∈ T
1 = max? 0 : 1 if s ∈ S1 ∩ T0

2 = max? 0 : 1 if s ∈ S2 ∩ T0

1{w(μ) | s
τ→ μ} if s ∈ S1 \ (T ∪ T0)

2{w(μ) | s
τ→ μ} if s ∈ S2 \ (T ∪ T0)

where T0 ⊆ S is the set of all states without outgoing transitions.

Prt12 is a monotonic function over the complete lattice W . By Tarski’s theorem
[14], it has a least Fix Prt12(⊥) and a greatest Fix Prt12(	) fixed point. For
finite-state PGA, they can be computed through e.g., value iteration [13].

2.2 Probabilistic Automata
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Fig. 2. A sample PA M

PAs [1] extend labeled transition systems (LTSs)
in which the target of any action-labeled transi-
tion is a distribution over states instead of a single
state. A probabilistic automaton (PA) is a quadru-
ple M = (S,A,Δ, s0) where S, A, and s0 are as
before, and Δ ⊆ S ×A×Dist(S) is a set of transi-
tions. A PA can be embedded into a PGA (where
player-two states have one emanating transition)
in a straightforward manner. Figure 2 depicts a
sample PA. Its embedding as PGA is provided in
Fig. 4 (left, page 8).

1 As this paper does not cover parallel composition all PGAs are closed. For modeling
PGAs in a compositonal manner though, the distinction between internal and other
actions is important, see [7].
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Definition 3 (Embedding a PA into an PGA [6]). PA M = (S,A,Δ, s0)
induces the PGA αPA(M) = (S′, {S′

1, S
′
2}, A,Δ′, (s0, 1)) with S′

1 = S × {1},
S′
2 = S × {2} and for every s ∈ S:

1. (s, 1) a→ μ′ iff s
a→ μ and μ′(u, 2) = μ(u), and

2. (s, 2) a→ μ′ with μ′(s, 1) = 1 iff for some u ∈ S with u
a→ μ and s ∈ supp(μ).

2.3 Simulation Relations

Simulation relations for probabilistic systems are pre–orders requiring that when-
ever state u simulates state s, then u can at least mimic the stepwise behaviour
of s. They can be computed for finite models by reducing them to network
max-flow problems [15]. They are lifted to distributions over states as follows:

Definition 4 (Simulation relation [16]). Let S be a countable, non-empty set
of states, and let μ, μ′ ∈ Dist(S). For R ⊆ S×S, μ′ simulates μ w.r.t. R, denoted
μRμ′, iff there exists a function δ : S × S → [0, 1] such that for all u, v ∈ S: (1)
δ(u, v) > 0 ⇒ uRv, (2)

∑
s∈S δ(u, s) = μ(u), and (3)

∑
s∈S δ(s, v) = μ′(v).

We define two simulation relations on PGAs: simulation and alternating sim-
ulation. Simulation relations compare reachability probabilities in case of col-
laborating players (i.e., both players want to maximize/minimize reachability
probabilities), whereas alternating simulation relations do so in case of compet-
ing players.

Definition 5 (Simulation on PGAs [6]). R ⊆ ⋃
j∈{1,2} Sj×Sj is a simulation

relation on PGA G iff for every sRs′, s
a→ μ implies s′ a→ μ′ with μRμ′. Let ≺

be the largest simulation relation.

Definition 6 (Alternating simulation on PGAs [6]). R ⊆ ⋃
j∈{1,2} Sj ×Sj

is an alternating simulation relation on PGA G iff for every sRs′ the following
holds: (1) if s, s′ ∈ S1, then s′ a→ μ′ implies s

a→ μ such that μRμ′, (2) if
s, s′ ∈ S2, then s

a→ μ implies s′ a→ μ′ such that μRμ′. Let � be the largest
alternating simulation relation. We write “s′ alt-simulates s” iff s � s′.

Intuitively, in case of player-one states, the behaviour of s′ is mimicked by that
of s; whereas in case of player-two states, it is the other way round.

We write G ≺ G′ (G � G′) if s0 ≺ s′
0 (s � s′

0), where ≺ (�) is taken on the
disjoint union of G and G′. By the following theorem, G ≺ G′ (G � G′) implies
that G′ bounds Pr++ (Pr+−) and Pr−− (Pr−+) values of G from above (below)
and below (above) in case of collaborating (competing) players.

Theorem 1. For PGA G and G′, and T ⊆ S. Then:

1. G ≺ G′ implies Pr−−(T ′) ≤ Pr−−(T ) and Pr++(T ) ≤ Pr++(T ′), and
2. G � G′ implies Pr−+(T ′′) ≥ Pr−+(T ) and Pr+−(T ) ≥ Pr+−(T ′′)

where T ′ = {s′ ∈ S′ | ∃s ∈ T : s ≺ s′} and T ′′ = {s′ ∈ S′ | ∃s ∈ T : s � s′}.
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3 Modal Stochastic Games

This section presents an extension of PGAs by annotating their transitions with
required (must) and possible (may) modalities as in modal transition systems
[9,10]. This results in abstract probabilistic game automata (APGAs, for short).
The semantics of an APGA is a set of PGAs, namely all PGAs that have at
least all required transitions and zero or more possible transitions. These games
are called implementations of APGA.

Definition 7 (Abstract PGA). An abstract PGA (APGA) is a tuple H =
(S, {S1, S2}, A,Δr,Δp, s0) with S, S1, S2, A, and s0 as in PGA, Δp ⊆ S1+x ×
A×Dist(S2−x) is a set of possible transitions and Δr ⊆ S1+x ×A×Dist(S2−x)
is a set of required transitions with Δr ⊆ Δp, where x ∈ {0, 1}.
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Fig. 3. A sample APGA H

We denote (s, a, μ) ∈ Δy by s
a→y μ, and tran-

sitions emanating from a state s as Δy(s) =
{(s, a, μ) | s

a→y μ} for y ∈ {p, r}. Every PGA
is an APGA with Δr = Δp. We depict required
transitions as solid lines, and others as dotted
lines (see Fig. 3). Let closed APGA be defined
in a similar way as closed PA (page 4). In the
sequel, let H = (S, {S1, S2}, A,Δr,Δp, s0) be a
finitely branching APGA.

APGAs are compared using refinement rela-
tions. Intuitively, when a state s refines a state
s′, then s′ mimics at least the step-wise possi-
ble behaviour of s, whereas s mimics at least
the step-wise required behaviour of s′. A special
class of refinement relations, called satisfaction
relations, relates implementations (concrete models, i.e., PGAs) with APGA
(specifications). In the sequel, let Sj be the set of states of player i in PGA G
(APGA H), and S′

j be its set of states in the APGA H′.

Definition 8 (Satisfaction relation). R ⊆ ⋃
j∈{1,2} Sj × S′

j is a satisfaction

relation between PGA G and APGA H′ iff for sRs′, (1) s
a→ μ implies s′ a→p μ′

such that μRμ′, and (2) s′ a→r μ′ implies s
a→ μ such that μRμ′. Let |= be the

largest satisfaction relation.

The set of implementations of APGA H is defined by �H� = {G | G |= H}.

Definition 9 (Refinement relation). R ⊆ ⋃
j∈{1,2} Sj × S′

j is a refinement

relation between APGA H and H′ iff for sRs′, (1) s
a→p μ implies s′ a→p μ′ such

that μRμ′, and (2) s′ a→r μ′ implies s
a→r μ such that μRμ′. Let � be the largest

refinement relation.

The conditions (1) and (2) are the same as in Definition 8 except that in (1) the
transition from s is a possible transition, whereas in (2) the transition from s is
a required transition.
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Example 1. R =
⋃

i=1...3(ti, t
′
i) ∪ ⋃

i=0...4(si, s
′
i) is a refinement (in fact, a satis-

faction) relation between PGA G (Fig. 1) and APGA H (Fig. 3).

Proposition 1. � is a pre–order.

Extremal Implementations. We focus on two special implementations of
APGA H, denoted Gp and Gr, and show that they bound the optimal reach-
ability probabilities of every implementation of H. We call Gp and Gr extreme
PGAs (EPGAs, for short). Both Gp and Gr inherit the player-two transitions
from its possible transitions in H. They differ for player one, though. EPGA Gp

inherits its player-one transitions (denoted by the superscript) from the possible
transitions of player one in H, whereas Gr inherits its player-one transitions from
the required transitions in H.

Definition 10 (Extremal PGAs implementations). For y ∈{p, r}, Gy is an
EPGA of H iff S, S1, S2, A and s0 in Gy are as in H, Δ(s) = Δp(s) for s ∈ S2,
and Δ(s) = Δy(s) for s ∈ S1.

In the sequel, Gy = (S, {S1, S2}, A,Δ, s0) is an EPGA of H for y ∈ {p, r}.

Proposition 2. For every G ∈ �H�, it holds G ≺ Gp and G � Gr.

By Theorem 1 and Proposition 2, EPGAs suffice for the optimal reachability
analysis of H. Note that the two extreme implementations by considering the
required (as opposed to the possible) transitions of player two are simulated and
alt-simulated by Gp and Gr respectively.).

Proposition 3. H1 � H2 implies (1) Gp
1 ≺ Gp

2 and (2) Gr
1 � Gr

2.

It follows from Propositions 2, 3 and Theorem 1 that if H1 � H2, then H2 bounds
the extremal reachability probabilities in H1.

4 Abstraction

This section presents our abstraction technique, a combination of abstraction of
PA using modalities [7] and game-based abstraction [5]. It is based on partition-
ing the state space such that player-one and player-two states are kept separate.
The key principle is that player-one states that have the same set of transitions
(after abstraction) must at least be assigned to the same abstract state. Every
transition from a concrete state, either belonging to player-one or two, becomes
a possible transition from its corresponding abstract state. For player-one states
we additionally apply the following approach. An abstract player-one state is
equipped with a required a-transition to distribution μ′ iff every of its concrete
states has a required a-transition to μ such that μ′ is the abstract counterpart of
μ. Required transitions for player-two states are not detailed further, as they play
no role in the analysis of optimal reachability probabilities (see Proposition 2).

Let α : S → S′ be an abstraction (a surjective function) and γ : S′ → 2S be
the corresponding concretization function. That is, α(s) is the abstract state of
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Fig. 4. The embedding H (left) of the PA in Fig. 2, and its abstraction H′ = α(H)
(right)

s whereas γ(s′) is the set of concrete states abstracted by s′. The abstraction of
distribution μ is given as α(μ)(s′) = μ(γ(s′)). The functions α and γ are lifted
to sets of states or sets of distributions in a point-wise manner.

Definition 11 (Abstraction). For APGA H, the abstraction function α :
S → S′ induces the APGA H′ = α(H) if the following conditions are satisfied:
A′ = A; S′

i = α(Si) for i ∈ {1, 2}; ∀s, u ∈ S1 : α(Δy(s)) = α(Δy(u)) for y ∈
{p, r} implies α(s) = α(u); and for every s′ ∈ S′:

1. s′ ∈ S′
1 implies s′ a→r μ′ iff ∀s ∈ γ(s′) : s

a→r μ such that α(μ) = μ′,
2. ∃s ∈ γ(s′) : s

a→p μ implies s′ a→p μ′ such that α(μ) = μ′, and
3. s′ a→p μ′ implies ∃s ∈ γ(s′) : s

a→p μ such that α(μ) = μ′.

In the sequel, α denotes an abstraction function. Our framework considers
abstractions of APGAs. For simplicity, all examples consider the abstractions
of PAs.

Example 2. Let H′ = α(H) in Fig. 4 (right) be the induced abstract model of
APGA H (left) with γ(t′0) = {t0}, γ(t′1) = {t1, t2, t3}, γ(t′2) = {t4, t5} and
γ(t′3) = {t6} as well as γ(v′

0) = {v0}, γ(v′
1) = {v1, v2}, γ(v′

2) = {v3}, γ(v′
3) =

{v4, v5} and γ(v′
4) = {v6}. Let us consider the abstract state v′

1, it has a required
a-transition to t′2 because both of its concrete states (v1 and v2) have required
a-transitions with target distributions over t4 and t5 (the concrete states of t′2).
By a similar reason there exists a required b-transition from v′

1 to t′1. However,
only v2 has a required c-transition to t3, therefore, v′

1 has a possible c-transition
to t′1 (the abstract state of t3). Note that the incoming transition of state v0
indicates that v0 is initial; there is no transition from t0 to v0. The rest of the
example is self-explanatory.
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Fig. 5. For PA M (Fig. 2), APGA-based abstraction H̃ = α(αPA(M)) (left) with
|Δ̃| = 17, |S̃1| = 5 and |S̃2| = 5; and game-based abstraction Ĥ = α(αPA(M)) (right)
with |Δ̂| = 26, |Ŝ1| = 8 and |Ŝ2| = 5.

The proposition below establishes that concrete models refine their abstractions;
therefore, by Theorem1 and Proposition 3, their reachability probabilities are
bounded by those of their abstractions.

Proposition 4. H � α(H).

Proposition 4 and the corollary below (that follows from Definition 11) prove that
APGA-based abstractions yield at most as tight bounds as SG-based abstrac-
tions, whereas they are at most the sizes of SG-based abstractions. (Note that
in order to compare concrete with abstract models (in terms of their sizes), we
take the sizes of probabilistic transitions equal to the cardinality of the support
sets of their target distributions, e.g., the size of a transition s

a→ μ is equal to
|supp(μ)|.)
Corollary 1. Let Hsg be an SG-based abstraction and Hapga be an APGA-
based abstraction of PA M with Ssg

2 = Sapga
2 . Then: (1) |Ssg

1 | ≥ |Sapga
1 |, and (2)

Hsg � Hapga.

Example 3. Consider the game-based abstraction Ĥ (Fig. 5 right) of PA M
(Fig. 2). The maximum probability to reach states {s6, s7} lies in [0.75, 1] in
Ĥ whereas in APGA-based abstraction H̃ (Fig. 5 left), it lies in [0.5, 1]. Note
that both S̃2 and Ŝ2 represent the same partitioning of the concrete state space,
the reachability probability bounds of S̃2 states contain that of Ŝ2 states, and
H̃ is smaller than Ĥ.
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Sher [18] defines a composition operator in a TCSP-like manner for the class
of APGAs representing abstract models of PAs, and shows that our abstraction
technique is compositional.

5 Iterative Abstraction-Refinement

The key idea of our abstract-refine framework (see Fig. 6) is to separate the iter-
ative refinement of player-one and player-two states. It automatically generates
APGA-based abstractions of (closed) PAs with a finite bisimulation quotient in
which the bounds on probabilities for reaching a set of goal states are within the
allowed range.

The input is a closed PA, a reachability property (max/min probability to
goal states) and an error bound ε ∈ R(0,1). Starting from an initial abstraction
(obtained by partitioning S1 and S2 states in the embedding of PA), we incre-
mentally refine player-one states (yielding a new partitioning for the player-one
state space) until the reachability probability bounds of player-two states sta-
bilize. Next, we check whether the probability bounds of a set of player-two
states (that are of interest) are within the allowed range ε. If not, some of the
player-two states are refined yielding a new partitioning of the concrete state
space—recall that S1 states having the same set of transitions under a given
partitioning of S2 states are at least assigned to the same abstract state (see
Definition 11). The first step is then repeated for the new abstract model. The

Closed PA M
Embedding H′ of M

Abstraction α
Property Prx(T ′)
x ∈ {min, max}

Error bound ε ∈ R(0,1)

Abstraction
H = α(H′)
T = α(T ′)

Bounds on
Prx(T ) for S2

Does refining S1

impact the
bounds on Prx(T )

for S2?

Are bounds on
Prx(T )≤ε for S2?

New abstraction α

abstract analyse
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refine S1
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Fig. 6. Abstraction-refinement framework for closed PAs
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above two steps form the inner and the outer loop, that refine player-one and
player-two states respectively, of our abstract-refine framework.

Our refinement strategy is based on optimal probability valuation functions.
It induces a strictly finer partition in each iteration, and thus makes the nested
loop eventually terminate for PA having a finite bisimulation quotient.

Let M be a closed finite PA, having a finite bisimulation quotient, with
its embedding H′ = αPA(M) and set of goal states T ′ ⊆ S′

2. Let Prx(T ′) be
the probability for reaching states in T ′ from the initial state s0, where x ∈
{min,max}. Let Abst(H′) be the set of abstraction functions defined on H′ such
that γ(α(T ′)) = T ′ for all α ∈ Abst(H′), i.e., α does not merge T ′ states with
S′
2\T ′ states. Let H = α(H′) and T = α(T ′) for α ∈ Abst(H′).

Depending on the property Prx(T ′), let 1,2 ∈ {min,max} with 1 �= 22.
Let w11, w12 ∈ W be the probability valuation functions (see Definition 2) such
that w12 = Fix Prt12(⊥) and w11 = Fix Prt11(⊥) (both players have the same
objective, i.e., 1) are defined on EPGA Gp of H for the set of goal states T .
Thus, w12/w11 maps a state s ∈ S to the probability of reaching T in case of
competing/collaborating players; and therefore define bounds on Prx(T ′) for the
initial state in H′. In the sequel, we assume (α, γ), H′, H, 1, 2, w11 and w12 are
given; unless stated otherwise. Moreover, let Δy(s) = {μ | s

τ→y μ} for y ∈ {p, r}.

5.1 Stable Abstractions

We now explain our abstract-refine framework (Fig. 6). We only consider states s
with Δp(s) �= ∅ for refinement, as only their refinement can affect the reachability
probabilities.

We first check whether the probabilities for reaching goal states from player-
two states in H depend on the non-determinism induced by the abstraction
process in their successor (player-one) states. Alternatively, we check whether
the splitting of player-one states (alone) affects the reachability probabilities
of their corresponding player-two states. (Recall we allow to merge concrete
player-one states even if their behaviour after abstraction is not the same (see
Definition 11), therefore their splitting may change the reachability probabilities
of their corresponding player-two states.). Let us first define some notions.
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Fig. 7. A PA M.

State t ∈ S2 in APGA H is called stable
whenever the value w12(t) (a) coincides with
that of one of its direct successors that obtains
it via a required transition, and (b) remains
unchanged after splitting its direct successor
states. To formally define this notion, we first
define the notion of a stable player-one state.
A state s ∈ S1 is stable if its reachability proba-
bility w12(s) is obtained via some of its required
transitions.

2 For example, let x = max in Prx(T ′) then 1 = max and 2 = min (player-one
maximizes whereas the player-two minimizes the probability) or vice versa.
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Fig. 8. For 1 = min and 2 = max, APGA H (left) is a stable abstraction of PA M
(Fig. 7) w.r.t. T = {t3}; and APGA Ĥ (right) is a bounded abstraction w.r.t. T = {t̂4}
and ε = 0.4.

Definition 12 (Stable player-one states). State s∈S1 is stable iff w12(s) =
w12(μ) for some μ ∈ Δr(s). States that are not stable are unstable.

Example 4. APGA H (Fig. 8 left) is an abstraction of PA M (Fig. 7). Let
1 = min, 2 = max, T = {t3} with w = Fix Prt12(⊥) where w(v0) = 0.25,
w(v1) = 0, w(v2) = 0.5, w(v3) = 0, w(v4) = 0, w(t0) = 0, w(t1) = 0.5, w(t2) = 0
and w(t3) = 1. Note that Δr(v1) �= ∅ and Δp(v1) �= ∅. As w(v1) = w(ιt2) = 0,
and ιt2 ∈ Δr(v1), v1 is stable.

Proposition 5. Refining stable player-one states preserves reachability
probabilities.

Intuitively, if the reachability probability (w.r.t. w12) of a player-two state, say
t, depends on one of its stable successors, it remains unchanged if any of them is
split. This is because a stable (player-one) state, say s, obtains its reachability
probability via a required transition. And if s is split, then the partitions of s
inherit the required transitions of s; as a result the reachability probabilities
of partitions of s remain unchanged – because they obtain them via the same
required transition as s. Thus, in the refined model the reachability probability
of t again depends on one of its stable successors, and remains unchanged. This
is not ensured if an unstable successor, say u, of t is split. Because in this
case different partitions of u might have different sets of required and possible
transitions, possibly resulting in different reachability probabilities in the refined
model. Now if the reachability probability of t depends on one of them, it might
be different from that in the abstract model.

In the following definition, we state conditions that guarantee the preserva-
tion of reachability probability w.r.t. w12 of a player-two state irrespective of
whether its stable or unstable successor is refined.
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Fig. 10. H (left) and Ĥ (right) are abstract models of PA M in Fig. 9 with H � Ĥ.

Definition 13 (Stable player-two states). State t ∈ S2 is stable iff (1)
w12(t) = w12(v) for a stable v ∈ succ(t), and (2) ∀u ∈ succ(t): w12(t) =
2{w12(v), w12(η)} for every η ∈ Δp(u). States that are not stable are unstable.

Condition (1) assures that the reachability probability of t depends on a stable
successor. Condition (2) assures that w12(t) will remain unchanged even if the
successor states of t are split into their constituent states.

Example 5. Let 1 = min and 2 = max for APGA H (left in Fig. 10) with
w = Fix Prt12(⊥) for T = {t3}, where w(v0) = 0.25, w(v1) = 0, w(v2) = 0.5,
w(v3) = 0, w(v4) = 0, w(t0) = 0, w(t1) = 0.5, w(t2) = 0 and w(t3) = 1. (Note
that this APGA is a copy of Fig. 8 left, except that v1 → t2 is now a possible tran-
sition.) The reachability probability of t1 depends on a stable successor v2, i.e.,
w(t1) = 0.5 = max{w(v1) = 0, w(v2) = 0.5} (fulfilling condition (1) of Defini-
tion 13). Moreover, as w(v2) = 0.5 = max{w(ιt1) = 0.5, w(ιt2) = 0, w(v2) = 0.5}
(fulfilling condition (2) of Definition 13), therefore the possible transitions of
unstable state v1 have no impact on the reachability probability of t1 in any
refinement of v1. Thus, t1 is stable. Note that in APGA Ĥ (right in Fig. 10), the
state t̂1 is not stable w.r.t. the above objectives as the reachability probability
of t̂1 does not depend on a stable successor.
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Proposition 6. The reachability probabilities of stable player-two states are
invariant to the refinement of their direct successors.

An APGA H = α(H′) is stable if all player-two states t with Δp(t) �= ∅ are stable;
we call α a stable abstraction function. Any refinement of a stable abstraction,
with the same player-two state space, preserves reachability probabilities. There-
fore, if further tightening of probability bounds is required, we should consider
refining player-two states (see Fig. 6). First we discuss the refinement of player-
one states.

5.2 Refining Player-One States

We consider unstable successors of unstable player-two states for refinement.

Definition 14 (Effective unstable). State s ∈ S1 is effectively unstable iff
(1) s is unstable, and (2) there exists an unstable t ∈ S2 with s ∈ succ(t).

Let eus(H) be the set of effectively unstable states. We define how to split an
effectively unstable state in H into two blocks yielding a new partitioning of the
state space of H′. (Recall H′ = αPA(M), and H = α(H′)).

Definition 15. For s ∈ eus(H), let μ ∈ Δp(s) : w12(s) = w12(μ). Then,
B1(s) = {s′ ∈ γ(s) | ∃ρ′ ∈ Δ′(s′) : α(ρ′) = μ} and B2(s) = γ(s)\B1(s).

This is the basis for the inner-loop of our abstract-refine framework (Fig. 6).

Definition 16 (Inner abstraction). The inner abstraction transformer func-
tion IAT : Abst (H′) → Abst(H′) is defined for α ∈ Abst(H′) with H = α(H′)
and s′ ∈ S′ as:

IAT(α)(s′) =

⎧
⎨

⎩

α(s′) if α(s′) ∈ S2, or α(s′) ∈ S1\eus(H)
B1(α(s′)) if α(s′) ∈ eus(H) and s′ ∈ B1(α(s′))
B2(α(s′)) if α(s′) ∈ eus(H) and s′ ∈ B2(α(s′))

Note that IAT(α) maps s′ to the same partition block as α does if either α(s′)
is a player-two or a stable player-one state. In case α(s′) = s is an effectively
unstable state, it is either mapped to the partition block B1(s) or B2(s).

Example 6. APGA Ĥ (right Fig. 10) is an abstraction of PA M (left in Fig. 9).
Let 1 = min and 2 = max for Ĥ with ŵ = Fix Prt12(⊥) for T̂ = {t̂2}, where
ŵ(v̂0) = 0.5, ŵ(v̂1) = 0, ŵ(v̂2) = 0, ŵ(v̂3) = 0, ŵ(t̂0) = 0, ŵ(t̂1) = 0, ŵ(t̂2) = 1
and ŵ(t̂3) = 0. Note that t̂1 has only one successor, i.e. v̂1, having only possible
transitions. Therefore, Ĥ is not a stable abstraction of PA M.

Let us refine Ĥ, and let H′ = αPA(M). For the successor state v̂1 of t̂1, we
have v̂1 → ιt̂3 with ŵ(ιt̂3) = ŵ(v̂1) = 0. We separate the concrete states of v̂1
that have a transition (after abstraction) to ιt̂3 , which is v′

3. Therefore, v̂1 is
partitioned into two blocks v1 = {v′

1, v
′
2} and v2 = {v′

3}; and H (left in Fig. 10)
is the APGA induced by the new partitioning of the state space of H′. Note
that H is a stable abstraction w.r.t. objectives 1, 2 and T = {t2}; and moreover
H � Ĥ.
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Instead of refining all states in eus(H) in one step, one may pick some of them. In
this way, unnecessary refinements of some states in eus(H) in the next iteration
may be avoided (because of splitting of states in the current step).

Proposition 7. IAT(α) � α for α ∈ Abst(H′).

The fixpoint of the function IAT is guaranteed to exist for abstraction functions
defined (on the embedding of) PAs with finite bisimulation quotient. Intuitively,
because of the finite number of player-one states and transitions, the refinement
process (in the worst case) will eventually result in a model having only required
transitions from player-one states. At that point, all player-one states will be
stable, thus, making their further partitioning impossible (see Definition 16).
This provides the basis to iteratively refine player-one states in α(H′) resulting
in a stable abstraction Fix IAT(α)(H′) of H′.

Theorem 2. Fix IAT(α)(H′) is a stable abstraction.

The following corollary follows from Theorem2, and shows that for a given par-
titioning of states of PA M, the SG-based abstraction [5] is as precise as the
APGA-based abstraction when refined to a stable abstraction. However, the size
of the latter is at most that of the former.

Corollary 2. Let Hsg be an SG-based abstraction and α(H′) = Ĥapga be an
APGA-based abstraction of APGA H′ with Ssg

2 = Ŝapga
2 . Let wsg

12 and wapga
12

be defined on Hsg and Hapga = Fix IAT(α)(H′) respectively. Then, (1) ∀t ∈
Ssg
2 , u ∈ Sapga

2 : wsg
12(t) = wapga

12 (u), and (2) |Ssg
1 | ≥ |Sapga

1 | ≥ |Ŝapga
1 |.

Example 7. APGA H (right) is an SG-based abstraction [5] of PA M (left) in
Fig. 9; whereas the left APGA in Fig. 10, say H′′, is a stable abstraction of M
w.r.t. the objectives 1 = min, 2 = max and T = {t3}. Note that both models
have the same reachability probabilities to t3 (i.e., 0.25) from the initial states.
Moreover, |S1| = 6 and |S′′

1 | = 5, and |Δ| = 12 and |Δ′′| = 11.

5.3 Refining Player-Two States

We now discuss the outermost loop refining player-two states. This is, in prin-
ciple, similar to strategy-based refinement in [5]. Let H be a stable abstraction
of APGA H′. If the reachability probabilities – w.r.t w12 and w11 – of S2 states
(that are of interest) are at most ε-apart, we are done. Otherwise, we refine some
of the player-two states.

Definition 17 (ε-boundedness). State s ∈ S is ε-bounded for ε ∈ R(0,1)

iff |w12(s) − w11(s)| ≤ ε. Distribution μ ∈ Dist(S) is ε-bounded iff |w12(μ) −
w11(μ)| ≤ ε. APGA H is ε-bounded iff all its states are bounded.

Lemma 1. In an unbounded APGA, the reachability probabilities of some
player-two state—w.r.t. w11 and w12—depend on two different successors.
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The lemma follows from the fact that if the reachability probabilities of each
player-two state in an APGA depends on one of its successors, then the APGA
represents the embedding of a PA that is 0-bounded—upper and lower bounds
of reachability probabilites coincide for each player-two state.

The above lemma helps finding player-two states that can be refined. Let
ub(H) = {t ∈ S2 | ∃u, v ∈ succ(t) : u �= v ∧ w12(t) = w12(u) ∧ w11(t) = w11(v)}
be the set of player-two states in H whose reachability probability bounds depend
on two different successors. A state in ub(H) can be refined as:

Definition 18. State t ∈ ub(H) can be partitioned into P1(t) = {t′ ∈ γ(t) |
∃ιu′ ∈ Δ′(t′) : w12(t) = w12(α(u′))}, and P2(t) = γ(t)\P1(t).

Intuitively, concrete states (of t) whose player-one abstract states’ reachability
probabilities (w.r.t. w12) coincide with w12(t) are separated from other con-
crete states. This is the basis for the outer-loop of our abstract-refine framework
(Fig. 6).

Definition 19 (Outer abstraction). The outer abstraction transformer
function OAT : Abst (H′) → Abst(H′) is defined for α̂ ∈ Abst(H′) with
H = Fix IAT(α̂)(H′) and s′ ∈ S′ as:

OAT(α = Fix IAT(α̂))(s′) =

⎧
⎨

⎩

α(s′) if α(s′) ∈ S1 orα(s′) ∈ S2\ub(H)
P1(α(s′)) if α(s′) ∈ ub(H) and s′ ∈ P1(α(s′))
P2(α(s′)) if α(s′) ∈ ub(H) and s′ ∈ P2(α(s′))

Note that OAT(α) maps s′ to the same partition block as α does if α(s′) is a
player-one state or a bounded -player-two state. Otherwise, it maps s′ either to
P1(s) or P2(s).

Example 8. For ε = 0.4, 1 = min, 2 = max and T = {t3}, the APGA H in Fig. 8
(left) is not an ε-bounded abstraction of PA M in Fig. 7, as |w12(t1)−w11(t1)| =
|0.5 − 0| > ε (0 is the reachability probability with 1 = min and 2 = min). It
is possible to refine H in order to have reachability probability bounds of t1 at
most ε-apart. Ĥ (Fig. 8 right) is an ε-bounded abstraction of M obtained by
partitioning the concrete states of t1 in H into two blocks, i.e., P1 = {s3} = v′

2

and P2 = {s1, s2} = v′
1. Note that 0 = |0 − 0| < ε and 0 = |0.5 − 0.5| < ε for t̂1

and t̂2 respectively.

The following theorem asserts that for α̃ ∈ Abst(H′) with α = Fix IAT(α̃),
the model induced by Fix IAT(OAT(α)) has at least as tight bounds on the
reachability probabilities of player two states as the model induced by α.

Theorem 3. For α̃ ∈ Abst(H′) with α = Fix IAT(α̃), Fix IAT(OAT(α))(H′)
has at least as tight bounds on the reachability probabilities of player-two states
as α(H′).

Like IAT, the fixpoint of the function OAT is guaranteed to exist for abstraction
functions defined on the embedding of PAs with finite bisimulation quotient.
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Fig. 11. α�(H′) for APGA H′.

Because in the worst case, the refinement of player-two states will eventually
result in the embedding of PA that is 0-bounded, i.e., upper and lower bounds
of reachability probabilites coincide for each player-two state. This therefore
provides the basis to iteratively compute the partitioning of the state space of
the model induced by α ∈ Abst(H′) such that the model induced by Fix OAT(α)
is an ε-bounded abstraction.

Theorem 4. For fixed ε ∈ R(0,1), Fix OAT(α)(H′) is an ε-bounded abstraction.

In order to have an ε-bounded abstraction, one can start with a coarsest
abstraction H′ given as α�(H′) = ({s = α(S′

1), t = α�(T ′), u = α�(S′
2\T ′)},

{{s}, {t, u}}, {τ}, ∅, {s →p t, s →p u, t →p s, u →p s}, s)—recall that T ′ is a set
of goal states in H′—(see Fig. 11), and then refine it iteratively by Definition 19.

Corollary 3. Fix OAT(α�)(H′) is an ε-bounded abstraction.

6 Related Work

Abstraction of probabilistic automata (PAs) and the strongly related MDPs
has received considerable attention. Starting from initial work by D’Argenio et
al. [19] in 2001, techniques such as three-valued abstraction [20], counterexample-
guided abstraction refinement (CEGAR) [21], and game-based abstraction [5]
have been tailored to these probabilistic models. For a recent overview of abstrac-
tion techniques of probabilistic models, see [22].

Abstraction. Our abstraction is closely related to game-based abstraction. We
separate the non-determinism in the concrete model and the non-determinism
introduced by the abstraction. For each source of non-determinism, one player
is used. Whereas [5] uses Shapley’s stochastic games [11] as abstract models, we
use (1) a variant in which both players are symmetric, and (2) extend this with
modal transitions. Our abstract models are thus a modal variant of probabilistic
game automata [8]. Whereas [5] uses the principle “states must have the same
step-wise behaviour after abstraction to be merged together [5]”; in our setting
states having the same step-wise behaviour after abstraction are at least merged
together. SG-abstractions are thus a special case of our abstractions.

Modal Games and Probabilistic Models. Modal extensions of two-player games
have been studied in [23]. De Alfaro et al. show that modal game abstraction
preserves alternating μ-calculus, and provide (amongst others) a completeness
results for a safety fragment of that logic. Our abstract stochastic games can be
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considered as lifting their model to the stochastic setting. Modal transitions for
probabilistic models have been advocated in our earlier work [4,7].

Tighter Abstractions. All aforementioned abstraction techniques (including the
one in this paper) for probabilistic models are state-based. That is, the relation
between the concrete and abstract model is given by a simulation relation that
relates groups of concrete states to an abstract state. This has been casted in
a general abstract interpretation setting in [24]. The abstraction in [5] is opti-
mal in the sense of abstract interpretation [25] when relating states. Our earlier
work [6] showed that using simulation and refinement relations that relate prob-
ability distributions rather than states has the potential to provide more precise
abstractions. Relating distributions has also been applied [26] so as to obtain a
distribution-based variant of Larsen and Skou’s notion of probabilistic bisimu-
lation [27]. Applying this principle to our abstraction-refinement framework has
been briefly described in [18].

Refinement. Depending on whether the two players join forces so as to maximize
or minimize the reachability probability or they act as opponents, analyzing
the abstract game yields a lower or upper bound on the minimal or maximal
reachability probability. If these bounds are sufficiently precise, the satisfaction
or refutation of the property on the original PA can be concluded. Otherwise,
the abstraction is refined. The resulting game then yields more precise results
and, similarly to CEGAR, the procedure may be iterated until the obtained
bounds are precise enough. In contrast to other refinement techniques, the crux
of our technique is to separate the refinement of the various players, resulting in
a nested abstraction-refinement loop. Player-two refinement is a mild variant of
that in [5] in which states are always split in two parts3. Player-one refinement
heavily relies on exploiting the modal transitions in the abstract model, a concept
that is absent in [5].

7 Conclusion

This paper presented a nested abstraction-refinement framework for Segala’s
probabilistic automata (PAs). It is complete in the sense that termination is guar-
anteed for every PA with a finite bisimulation quotient. The key to our technique
is to use a modal variant of Condon and Ladner’s two-player probabilistic game
automata. Abstraction using this model yields (tight) upper and lower bounds
on extremal reachability probabilities. We believe that modal stochastic games
are of interest as such and deserve further investigation. This paper focused on
the theoretical underpinnings of our abstraction-refinement technique. An imple-
mentation and experimental comparison to game-based abstraction [5] is needed
to check its practical feasibility and performance.

3 This may converge slower than allowing for coarser splittings (as in [5]), but yields
smaller state spaces.
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Abstract. In 1966 Arto Salomaa gave a complete axiomatisation of
regular expressions. It can be viewed as a sound and complete proof
system for regular processes with respect to the behavioural equivalence
called language equivalence. This proof system consists of a finite set of
axioms together with one inductive proof rule.

We show that the behavioural preorder called language containment
or trace inclusion can be characterised in a similar manner, but using a
coinductive rather than an inductive proof rule.

1 Introduction

In 1966 Arto Salomaa gave two complete axiomatisations for regular expressions;
see [8,13]. We concentrate on the first one where the key idea is the uniqueness
of the solution of certain regular expression equations. This is recalled in Sect. 2
within the framework of regular processes, from [9]. We use a language for defin-
ing recursive processes of the form recx.t where the body t can be defined using
prefixing, a.u, nondeterministic choice, u1 + u2, or a termination event 0; of
course the body t may also contain further regular processes.

This language, referred to as rCCS, can be given various semantic inter-
pretations, which can be expressed in terms of behavioural equivalences between
processes. One such behavioural equivalence is called language equivalence, where
each process p in rCCS is interpreted as a (regular) set of sequences of actions
L(p), intuitively the sequences of actions it can perform. Then two processes are
deemed to be language equivalent, written p ≡L q whenever L(p) = L(q). This
corresponds to may equivalence from [6] or trace equivalence from [7].

In this framework Salomaa’s result, as formulated for example in [12], is
a sound and complete proof system for determining when p ≡L q. The proof
system consists of

– simple proof rules for embodying the principle of substitution of equals for
equals
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– a set of equations (or axiom schemas)
– an inductive proof rule for ≡L for regular processes, called unique fixpoint

induction

Unique fixpoint induction is very intuitive:1

t{x �→ q} = q

recx.t = q
(Ufi)

It states that if a process q satisfies (semantically) the body of a recursive process
then it is semantically equal to the recursive process itself.

Many other behavioural equivalences for regular processes can be captured in
the same manner, simply by varying the equations. For example strong bisimula-
tion equivalence and weak bisimulation equivalence are captured in this manner
in [10,11].

However many behavioural theories of processes are expressed in terms
of behavioural preorders rather than equivalences. Typical examples include
refusals [7], must testing [6], or the various contract preorders considered in
[2]. It is unclear how Salomaa’s proof system can be adapted for such behav-
ioural preorders. In particular there is no known complete induction principle to
replace unique fixpoint induction.

Here we consider a simple behavioural preorder, language or trace inclusion.
Let p ≤L q if L(p) ⊆ L(q). Of course it is straightforward to establish for a
particular pair of processes p, q whether or not p ≤L q using Salomaa’s proof
system; it is sufficient to try to establish p + q =L q. But this does not in itself
give a sound and complete proof system for the behavioural preorder ≤L based
on the ideas outlined above, namely

– simple proof rules for embodying the principle of substitution of equals for
equals

– a set of inequations
– some inductive proof rule for ≤L over regular processes.

This is the purpose of the current short paper. We show that by using a simple
coinductive proof rule we can give such a sound and complete proof system for
regular processes.

We now outline the remainder of the paper. In the next section we define
formally the language of regular processes, and their semantics. We then outline
the sound and complete proof system for language equivalence, based on an
inductive proof rule. In Sect. 4 we outline our novel proof system, based on a
set of standard inequations, together with one coinductive proof rule. Proving
the soundness of the proof system is non-trivial, and is given in Sect. 5. The
following section is devoted to completeness. The proof here depends on the fact
that the set of reachable states of processes, in a novel interpretation as a labeled
transition system, is finite. This topic is isolated in the independent Sect. 7. The
paper ends with a short conclusion.
1 For soundness the variable x in body t should be guarded.
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μ.p
μ−→ p

(a-Pre)
recx.t

τ−→ t{x �→ recx.t}
(Rec)

p
μ−→ p′

p + q
μ−→ p′ (Ext-l)

q
μ−→ q′

p + q
μ−→ q′ (Ext-r)

Fig. 1. Operational semantics

2 Regular Processes and Language Equivalence

The language of recursive terms is given by the following grammar:

rCCS : t ::= 0 | μ.t, μ ∈ Actτ | t1 + t2

| x ∈ Var | recx.t

where Act is a set of actions, ranged over by a, and Actτ represents Act � { τ },
where τ is a special symbol for an internal action. All occurrences of the variable
x in t are bound in the term recx.t, and this leads to the standard notion of free
and bound variables. We are only interested in closed terms, those not containing
any free variables, which we refer to as processes. For the sake of simplicity we will
also assume that all terms of the form recx.t are guarded ; that is every occurence
of x in the body of the recursion t appears underneath an external prefix a.−.

The (standard) operational semantics of processes is given in Fig. 1, with
judgements for transitions of the form p

μ−→ q, where μ ranges over Actτ . The
rule (Rec) uses the standard notion of substitution: in general t{x �→ p} repre-
sents the result of substituting all free occurrences of the variable x in the term
t by the closed term p. This may be defined by structural induction on t.

The transitions in Fig. 1 are generalised to weak transitions of the form p
s=⇒

q, where s ranges over Act� as follows:

– p
ε=⇒ p

– p
a−→ p′, p′ s=⇒ q imply p

as=⇒ q
– p

τ−→ p′, p′ s=⇒ q imply p
s=⇒ q

We use p
s=⇒ to indicate that for some q, p

s=⇒ q.

Definition 1 (Language of a process). For every k ≥ 0 let Lk(p) = { s ∈
Act� | p

s=⇒, |s| ≤ k }, and let L(p) = ∪k≥0Lk(p). L(p) is refered to as the
language of the process p, or it’s set of traces.

We write p ≤L q if L(p) ⊆ L(q), and p ≡L q if L(p) ⊆ L(q) and L(q) ⊆ L(p).
�

3 The Proof System for Language Equivalence

The proof system for language equivalence is given in Fig. 2, with judgements
are of the form � p = q where p, q are processes. A simple side-condition would
be required on the rule (UFI), if we did not have our simplifying assumption
that all recursive processes are guarded.
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Fig. 2. The proof system for language equivalence

X + X = X X + Y = Y + X τ.X = X
X + (Y + Z) = (X + Y ) + Z X + 0 = X a.(X + Y ) = a.X + a.Y

Fig. 3. The equations for language equivalence

The rule (Eq) presupposes a set of equations Eq such as those in Fig. 3.
In general axioms take the form T = U where T,U are words formed from the
alphabet { 0, μ.−, − + −} using axiom-variables X,Y, . . . taken from a set AVar.
We say the pair 〈p, p′〉 is an instance of an equation, written 〈p, p′〉 ∈ Ins(Eq),
if there exists some axiom T = U in Eq such that p = σ(T ), p′ = σ(U) where σ
is an instantiation, that is a mapping from AVar to processes.

Let us write �eq p = q if there is a proof of � p = q in the proof system using
the equations in Fig. 3. Those on the left hand side determine an idempotent
commutative monoid; on the right hand side there is an axiom which says that
τ transitions are essentially invisible, together with the distribution of prefixing
over nondeterministic choice.

This proof system is both sound and complete with respect to language
equivalence:

Theorem 1 (Salomaa, Rabinovich). For all processes, �eq p = q if and only
if p ≡L q.

Proof. The proof for a corresponding property for regular expressions was given
in [13]. This was adapted in [12] for a slight variation on our regular processes,
using a proof technique from [10]. �

One could attempt to adapt this proof system to deal with language inclusion,
with judgements of the form � p ≤ q; for example the set of equations could be
replaced by inequations. However the major issue would be the replacement of
the fixpoint rule (UFI) with a fixpoint rule for inequations which is sufficiently
powerful to attain completeness.

In the next section we suggest an alternative approach.
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Fig. 4. The proof system

4 The Proof System for Trace Inclusion

This proof system has judgements of the form

A � p ≤ p′

where p, p′ are processes and A is a finite set of assumptions, each of which takes
the form p1 ≤ p2. The rules for forming proof trees are given in Fig. 4, many
of which are straightforward adaptations of corresponding rules from Fig. 2. We
have (inEq) for instantiating inequations and the rule (Rec) from Fig. 2 has
been split into two rules, one for unfolding and the other for folding. There are
also two obvious rules for managing assumptions, (Hyp) and (W). The major
change is the replacement of the structural rule for prefixing, (Pre) in Fig. 2,
with the rule (coRec). Note that this can be viewed as a generalisation as in
the new proof system the rule (Pre) can be derived:

A � p ≤ p′
W

A, a.p ≤ a.p′ � p ≤ p′
CoRec

A � a.p ≤ a.p′

We call this a coinductive rule because the conclusion of the rule is one of it’s
hypotheses. This of course makes it’s soundness problematic; see the discussion
in the next section.

Each equation in Fig. 3 can be interpreted as two inequations. For example
in place of idempotency X + X = X we have the two inequations X + X ≤ X
and X ≤ X + X. In addition we need one new inequation:

X ≤ X + Y (1)

Let us write �leq A � p ≤ p′ to mean that there is a valid proof tree with
conclusion A � p ≤ p′; that is a proof tree constructed using the rules in Fig. 4,
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using the set of inequations just outlined. We abbreviate �leq ∅ � p ≤ p′ to
�leq p ≤ p′. We also use p ≤ineq p′ to mean that p may be rewritten to p′ using
this set of inequations. More specifically, in the rewriting all the rules in Fig. 4
may be used, except (Hyp), (W) and (coREC).

Example 1. Let r1, r2 denote recx.a.x, recx.a.a.x respectively. The following
is a valid proof tree:

(Hyp,W)

a.r1 ≤ a.a.r2, a.r1 ≤ a.r2 � a.r1 ≤ a.a.r2
(Tr,Fld,Ufd)

a.r1 ≤ a.a.r2, a.r1 ≤ a.r2 � r1 ≤ r2
(coRec)

a.r1 ≤ a.a.r2 � a.r1 ≤ a.r2
(Ufd)� r1 ≤ a.r1
(Tr)

a.r1 ≤ a.a.r2 � r1 ≤ a.r2
(coRec)� a.r1 ≤ a.a.r2

(Ufd)� r1 ≤ a.r1
(Ufd)� a.a.r2 ≤ r2
Tr� r1 ≤ r2

This means that �leq recx.a.x ≤ recx.a.a.x. �

5 Soundness

To prove soundness of the proof system we need a semantic interpretation of
the judgements A � p ≤ p′ which is preserved by all instances of the proof rules.
There is an obvious choice, which is however unsound.

Example 2. Let us write

p1 ≤ p′
1, . . . pk ≤ p′

k �w p ≤ p′, for k ≥ 0,

if p1 ≤L p′
1, . . . pk ≤L p′

k implies p ≤L p′.
Unfortunately this is not preserved by the rule (coRec). An instance of this

rule is

a.b. 0 ≤ a. 0 � b. 0 ≤ 0

� a.b. 0 ≤ a. 0

Note that the premise is (vacuously) semantically valid, a.b. 0 ≤ a. 0 �w b. 0 ≤
0, because a.b. 0 �≤L a. 0. However the conclusion is not semantically valid,
��wa.b. 0 ≤ a. 0, because a.b. 0 �≤L a. 0. �

Instead, as in [3], we base our semantic interpretation on a stratified charac-
terisation of language inclusion.

Definition 2 (Semantic interpretation). For n ≥ 0 write

p1 ≤ p′
1, . . . , pk ≤ p′

k �n p ≤ p′

if Ln(p1) ⊆ Ln(p′
1), . . . ,Ln(pk) ⊆ Ln(p′

k) implies Ln(p) ⊆ Ln(p′).
We use A � p ≤ p′ to mean that A �n p ≤ p′ for every n ≥ 0. �
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The counterexample given above no longer works for this stratified semantic
interpretation. This is because

a.b. 0 ≤ a. 0 � � b. 0 ≤ 0

In particular a.b. 0 ≤ a. 0 � �1 b. 0 ≤ 0 because L1(a.b. 0) ⊆ L1(a. 0) but L1(b. 0)
is not a subset of L1(0).

Theorem 2 (Soundness). �leq A � p ≤ p′ implies A � p ≤ p′.

Proof. It suffices to show that each of the proof rules in Fig. 4 preserves the
semantics. The only non-trivial case is the rule (coRec).

So suppose A, a.p ≤ a.p′ � p ≤ p′; that is

A, a.p ≤ a.p′ �k p ≤ p′ for all k ≥ 0 (2)

We have to show that from this hypothesis, which we refer to as the outer
hypothesis, the conclusion A � a.p ≤ a.p′ follows. In particular we show that
A �n a.p ≤ a.p′, for every n ≥ 0, by induction on n.

The base case, when n = 0, is straightforward, as L0(r) = { ε } for any
process r.

In the inductive case we let n = (m + 1), and we can assume

A �m a.p ≤ a.p′ (3)

which we refer to as the inner hypothesis. We have to deduce A �(m+1) a.p ≤ a.p′.
To this end suppose L(m+1)(q) ⊆ L(m+1)(q′) for every q ≤ q′ ∈ A. We have

to show L(m+1)(a.p) ⊆ L(m+1)(a.p′).
First we apply the inner hypothesis (3): this is possible since L(m+1)(q) ⊆

L(m+1)(q′) implies Lm(q) ⊆ Lm(q′). So we obtain Lm(a.p) ⊆ Lm(a.p′).
With this we can apply the outer hypothesis (2) with k = m. We obtain

Lm(p) ⊆ Lm(p′), from which the required L(m+1)(a.p) ⊆ L(m+1)(a.p′) follows.
�

In particular this soundness result means that if we can construct a valid
proof tree for the judgement � p ≤ p′ then p ≤L p′:

Corollary 1. �leq p ≤ p′ implies p ≤L p′.

Proof. Suppose �leq p ≤ q, that is ∅ � p ≤ q. By Theorem 2 we have that
Ln(p) ⊆ Ln(q) for all n ≥ 0. This means that L(p) ⊆ L(q) and therefore by
definition p ≤L q. �

6 Completeness

The proof of completeness is constructive; we design an algorithm for construct-
ing valid proof trees. To describe the algorithm we need to introduce some
notation.
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Definition 3 (Head normal forms). A process of the form
∑

a∈A a.pa, where
A is a finite subset of Act is said to be a head normal form, abbreviated
to hnf. �
Proposition 1. For every process p there exists some head normal form,
hnf(p), such that p =ineq hnf(p).

Proof. See the appendix. The proof relies on the fact that all proceses are
guarded. �

It will also be convenient at some point to work with processes up to the
equivalence generated by three axioms from Fig. 3; that is the commutativity
and associativity of + together with idempotency. Let [p] denote the equivalence
class of all processes equivalent to p. However rather than manipulating these
sets of processes we will use particular representatives. We use (p)r to refer to any
actual process in the set [p], for which the idempotency axiom X+X = X cannot
be applied to it from left to right. Thus it will take the form s1 + s2 . . . + sn

where each of the processes si are syntactically different. We call such processes
reduced.

The algorithm also uses the three following derived proof rules:

A � p1 ≤ q, A � p2 ≤ q

A � p1 + p2 ≤ q
(PlusL)

A � p ≤ q1
A � p ≤ q1 + q

(PlusRq)

A � 0 ≤ q
(Zeroq)

We leave the reader to show that these can be derived from the rules in Fig. 4. All
use the transitivity rule (Tr). The derivation of (PlusL) uses two applications
of (Pl), and an application of the inequation X + X ≤ X. That of (Plusq)
uses an application of the new inequation (1) above; this is also required in the
derivation of (Zeroq), in addition to the inequation 0 ≤ 0 + X.

The pseudo-code for the algorithm C(A, p, q) is given in Fig. 5. It takes as
parameters A, a finite set of premises of the form pi ≤ qi, and a pair of processes
p, q. It returns with

– FAIL, indicating that p �≤Lq,
– or a proof tree T , which is a valid proof tree for the judgement A � p ≤ q.

The code is executed by matching the actual parameters sequentially against
the patterns on the left hand side in Fig. 5; each of the possible five patterns
may be considered as rules for matching the actual parameters. The first call
transforms the parameters p, q into head normal forms. The remainder can be
considered as a case analysis on the structure of p, which when line 6 is reached
is guaranteed to be in head normal form. Note that if the final rule, on line 16,
is ever fired then we know that q, which is a hnf, does not have an a transition,
and therefore we can conclude the a.p �≤L q.

The non-trivial rule is on line 11. Here both the processes being analysed
have a transitions. Moreover because they are hnfs we know r does not have
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Fig. 5. The algorithm

an a transition. If the assumption a.p ≤ a.q is already available in A then the
required proof tree is readily constructed. Otherwise this assumption is added
to A to get the set of assumptions B, and a proof tree T is constructed for
the judgement B � (p)r ≤ (q)r. The returned proof tree for the judgement
A � p ≤ q is then constructed using T , with an instance of the coinductive rule
(coRec), together with the derived rule (PlusRr) We elide the transformation
of (p)r, (q)r into the original parameters p, q respectively, but the use of these
reduced processes will be important in showing that the algorithm terminates.
For the purposes of later discussions we label this recursive call which constructs
the proof tree T with corec.

Note that in order to simplify the pseudo-code we have assumed that occur-
rences of FAIL are percolated upwards through the code. For example on line
8 if the innner call to C(A, p2, q) returns FAIL then FAIL is also returned by
the outer call C(A, p1 + p2, q).

Execution of the code for given parameters, C(A, p, q) consists of a sequence
of recursive calls C(Ai, pi, qi) until at some point a base case, such as on lines 6,
or 11, or 16, is reached. In order to analyse the behaviour of the algorithm we
introduce some notation for describing these sequences.

Definition 4 (Call trees). Let us write

C(A, p, q) �→ C(A′, p′, q′)

if executing C(A, p, q) leads directly to a recursive call to C(A′, p′, q′). The call
tree of C(A, p, q) is defined to be the tree with root labelled by C(A, p, q) with
sub-trees consisting of all the call trees of the recursive calls C(A′, p′, q′) such
that C(A, p, q) �→ C(A′, p′, q′). Note that in these trees the out-degree of each
node is at most 2. A recursive call matching line 7 generates two sub-nodes; all
other recursive calls generates at most one.

A call path for C(A, p, q) is a path (finite or infinite) in the call tree of
C(A, p, q) starting with the root. �
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Fig. 6. Towards hnfs

Proposition 2 (Algorithmic correctness). Suppose C(A, p, q) terminates.

(i) If it returns FAIL then p �≤Lq.
(ii) If it returns a proof tree, then this is a valid proof tree for the judgement

A � p ≤ q.

Proof. In each case the proof is by induction on the number of recursive calls to
C(−,−,−).

(i) FAIL can be returned on any one of the lines 3,7,8,13, or 16.
If it is the last then p has the form a.p′ and moreover, because there was no
match on line 11, we also know that q, which is a hnf, does not have an a
derivative. Consequently a.p′ �≤L q.
Suppose it is on line 13, because the recursive call C(B, (p′)r, (q′)r) returns
FAIL, in which case p, q have the form a.p′, a.q′ + r. By induction we know
that (p′)r �≤L (q′)r, that is p′ �≤L q′. Since a.q′ + r is a hnf we know that r
does not have an a derivative, and therefore it follows that a.p′ �≤L a.q′ + r.
The other cases are handled in a similar manner.

(ii) A proof schema can be returned on any of the lines 4, 6, 10, 11, or 15.
In each case the proof consists in checking that the returned schema is
indeed a valid proof of the judgement A � p ≤ q, if necessary by invoking
induction. �

The main difficulty in proving that the algorithm always terminates is to
characterise the parameters which can be used in a call path from C(A, p, q).
This characterisation is complicated by the use of head normal forms in the code.
We can capture their use via a relation t

μ−→→ t′ defined by the rules in Fig. 6. Note
that for reasons which will be come apparent presently this relation is defined
over arbitrary process terms, rather than simply closed terms, as used in Fig. 1.
So in the rule (Rec) we assume the standard notion of general substitution of
(open) terms for variables, which may involve applications of α-conversion in
order to avoid free variables being captured.
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Fig. 7. r1 = recx.a.x, r2 = recx.a.(x+ a.x)

Proposition 3. Suppose hnf(p) a−→ q. Then p
τ−→→ � a−→→ q.

Proof. See the appendix. �
Let Reach(t) = {u | t

s−→→ u, s ∈ Act� }. In general Reach(t) is not finite.

Example 3. Consider r2 = recx.a.(x + a.x). Then Reach(r2) contains all
processes of the form r2 +

∑
1≤i≤n ui where each ui is the process r2 + a.r2;

therefore Reach(r2) is infinite.
This explains the use of the function (−)r in line 13 of the algorithm in Fig. 5.

Without the application of this function one can check that a call to C(∅, r1, r2),
where r1 denotes recx.a.x, would not terminate. However with the use of (−)r

one can check that C(∅, r1, r2) terminates after six recursive calls.
Moreover in Fig. 7 we have constructed a valid proof tree for the judgement

� r1 ≤ r2, although some abbreviations are used. We have indicated in bold font
an essential use of the idempotency axiom X = X + X. �

Definition 5. Let t
μ−→→→ u if t

μ−→→ u′ for some u′ such that u = (u′)r. Thus if
t

μ−→→→ u the rules in Fig. 6 are used to find a u′ such that t
μ−→→ u′, and then u′ is

reduced to u. Let rReach(t) = {u | t
s−→→→ u, s ∈ Act� }. �

It is easy to check that rReach(r2), where r2 is defined in Example 3, is the finite
set { r2, r2 + a.r2, a(r2 + a.r2), a.(r2 + a.r2) + a.r2 }. This is a particular
instance of a general phenomenon:

Theorem 3. For every term t, the set rReach(t) is finite.

Proof. See the next section. �
In the sequel we use Act(p) to denote the (finite) set of actions from Act

which appear in the process p.

Proposition 4. Suppose

C(A0, p0, q0) �→ C(A1, p1, q1) �→ . . . �→ C(Ak, pk, qk), k ≥ 0

is an arbitrary call path.Then
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(1) Ai ⊆ Ai+1, Act(pn) ⊆ Act(p0)
(2) If none of the recursive calls C(Ak, pk, qk) triggers the rule labelled corec,

on line 13 in Fig. 5, then there exists some bound K such that k ≤ K.
(3) If p ≤ q ∈ Ak then either p ≤ q ∈ A0 or p, q have the form a.p′, a.q′

respectively, where a ∈ Act(p) and p′ ∈ rReach(p0), q′ ∈ rReach(q0).

Proof. The statement (1) follows by an analysis of the pseudo-code in Fig. 5. First
note that nowhere is the set of assumptions Ak decreased. Only in one place,
line 12, is it changed; it is augmented. Secondly note that Act(hnf(p)) = Act(p),
and therefore by code one can check that Act(pn+1) ⊆ Act(pn).

Similarly (2) follows by an analysis of the code.
Part (3) is proved by induction on the number of i, 0 ≤ i ≤ k such that

Ai+1 �= Ai. We look at the first step, the least i such that C(Ai−1, pi−1, qi−1) �→
C(Ai, p1, q1) where Ai �= A0.

This call must be as a result of matching the rule labelled corec on line 13 in
Fig. 5. So pi−1, qi−1 must have the form a.p′, a.q′ + r, and pi, qi the form p′, q′,
and Ai must be A0 � { a.p′ ≤ a.q′ }.

From part (1) we immediately have that a ∈ Act(p0). Moreover all preceeding
recursive calls must have either matched line 3, transforming p0, q0 to hnfs, or
successive matches to line 7. Therefore hnf(p) has the form a.p′ + . . . and hnf(q)
has the form a.q′ + r. It now follows from Proposition 3 that p′ ∈ rReach(p0)
and q′ ∈ rReach(q0), as required. �
Theorem 4 (Termination). The recursive procedure C(A, p, q) terminates for
all parameters A, p, q.

Proof. Suppose

C(A, p, q) = C(A0, p0, q0) �→ . . . �→ C(Ak, pk, qk) �→ . . . (4)

is an arbitrary call path, finite or infinite.
First consider any step C(An, pn, qn) �→ C(An+1, pn+1, qn+1) resulting from

a successful match to line 13 in the algorithm, which we have labelled corec.
We know that pn, qn have the form a.p′, a.q′ + r respectively and pn+1, qn+1 are
p′, q′. Because the test on line 11 failed we have that An+1 = An �{ a.p′ ≤ a.q′ }.
By Proposition 4(3) p′ ∈ rReach(p0), q′ ∈ rReach(q0) and a ∈ Act(p). Obviously
Act(p) is a finite set, as are rReach(p0), rReach(q0) from Theorem 3. Therefore
there exists some k such that for all i ≥ k Ai = Ak.

It follows that in the sequence (4) above the rule labelled corec on line 13
can only be called a finite number of times. By part (2) of Proposition 4 we have
that the sequence (4) can only be finite. �

We can now conclude with the main result of the paper:

Corollary 2 (Soundness and Completeness). �leq p ≤ q if and only if
p ≤L q.
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Proof. One direction, Soundness, follows from Corollary 1.
Conversely suppose p ≤L q. We know from Theorem 4 that the algorithm

C(∅, p, q) terminates. By design this algorithm either returns FAIL or a proof
tree. By algorithmic correctness, Proposition 2, the former is not possible; the
same proposition ensures that the returned proof tree is a valid proof tree for
∅ � p ≤ q. That is �leq p ≤ q. �

7 Finite Reachability

We prove Theorem 3 by giving an over-approximation to the set of terms reach-
able from an arbitrary term t. The definition is by structural induction on t, and
by construction the resulting set is obviously finite.

Definition 6 (Over-approximation). For every term t the set of approxi-
mants t� is defined as follows:

(i) 0� = { 0 }, x� = {x }
(ii) (μ.t)� = {μ.t } ∪ {μ.t′ | t′ ∈ t′� }
(iii) (t1 + t2)� = t�1 ∪ t�2 ∪ { t′1 + t′2 | ti ∈ t�i }
(iv) (recx.t′)� = {recx.t′ } ∪ {Σ(S) | S ⊆ T },

where T = { t′′{x �→ recx.t′} | t′′ ∈ t′� or t′′ + x ∈ t′� } and for any set of
terms S = { s1, s2, . . . sn }, Σ(S) denotes the term s1 + s2 + . . . + sn. �

Lemma 1. For every t, the set t� is finite.

Proof. By structural induction on t. �
The proof that rReach(t) ⊆ t∗ is also by structural induction on t and most of

the cases are straightforward. For example the case when t has the form t1 + t2
is handled by the following lemma. Here, and in subsequent proofs we ignore the
sequence of actions performed by terms, writing t −→→→ � t′ in place of t

s−→→→ t′, or
sometimes t −→→→ k t′ when we know that there are k steps in the derivation. We
also use some standard notion of the size of such a derivation.

Lemma 2. Suppose t1 + t2 −→→→ � u, with a derivation of size n. Then

1. t1 −→→→ � u, with a derivation of size less then n
2. t2 −→→→ � u, with a derivation of size less then n
3. or u = u1 + u2 where ti −→→→ � ui, each also having a derivation size less than n.

Proof. A straightforward induction on the length of the derivation t1 + t2 −→→→ � u
and a case analysis of why t1 + t2 −→→→ u. �

The most difficult case of rReach(t) ⊆ t∗ to treat is when t has the form
recx.u. In general a sequence of transitions takes the form

recx.u −→→ u{x �→ recx.u} −→→ . . . −→→ t′

Therefore in order to understand the forms that t′ can take we need to charac-
terise the derivatives of u{x �→ r} in terms of those of u and r.
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Definition 7. We define the predicate t ↓ x by structural induction on t,as
follows:

(i) recy.u ↓ x, for all x and y
(ii) t1 ↓ x, t2 ↓ x implies t1 + t2 ↓ x
(iii) μ.u ↓ x for every μ ∈ Actτ .

We use t ↑ to mean that t ↓ is not true. �
Intuitively t ↓ x means that r does not play any role in any transition from

t{x �→ r}. This is captured in the first part of the following proposition.

Proposition 5. Suppose t{x �→ r} μ−→→ u, where t is reduced. Then if t is differ-
ent from x, one of the following holds:

(i) t ↓ x and u = t′{x �→ r} where t
μ−→→ t′

(ii) t ↑ x, t = t1 + x, t1 is reduced, and
(a) u = t1{x �→ r} + r′ where r

μ−→→ r′

(b) u = t′1{x �→ r} + r where t1
μ−→→ t′1

(c) u = t′1{x �→ r} + r′ where t1
μ−→→ t′1, r

μ−→→ r′

Proof. By structural induction on t, with an intricate case analysis. �
Proposition 6. Suppose t{x �→ r} −→→→ � (u)r, with a derivation of size k. Then
u has one of the following forms:

(i) t′{x �→ r}, where t −→→→ � t′ has a derivation of size less then k
(ii)

∑
1≤i≤n r′

i, where each r −→→→ � r′
1 has a derivation of size less than k

(iii) t′{x �→ r} +
∑

1≤i≤n r′
i, where the derivations t −→→→ � t′ + x and r −→→→ � r′

i

again have smaller size.

Proof. By induction on the size of the derivation k. In the general case the
transitions have the form

t{x �→ r} −→→→ � u′ μ−→→ (u)r

where u′ is reduced. Induction can be applied to the derivation t{x �→ r} −→→→ � u′′,
to give three possibilities for the structure of u′′, (i), (ii), (iii) above. In case (i) we
apply Proposition 5 to the transition u′ μ−→→ u. The case (ii) is a straightforward
argument, while (iii) is a combination of the first two cases. �
Theorem 5. For every term t, rReach(t) ⊆ t�.

Proof. By structural induction on t. We show that if t −→→→ � u then u ∈ t�.
The cases when t has one of the forms x, 0 are trivial, while when it is of the

form μ.t′ a very simple inductive argument suffices. When it has the form t1 + t2
an inductive argument is also used, supported by Lemma2. We look briefly at
the final and most difficult, case when it has the form recx.t1.
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Here we use an inner induction on the size of the derivation recx.t1 −→→→ � u.
If u is recx.t1, that is the length of the derivation is zero, then the result is
immediate as by definition recx.t1 ∈ (recx.t1)�. Otherwise we have

recx.t1
τ−→→ t1{x �→ r} −→→→ � u

where r denotes recx.t1, and we can read off the possible structure of u from
Proposition 6. There are three possibilities, and we examine the third when u
has the form

t′{x �→ r} +
∑

1≤i≤n

r′
i

where t −→→→ � t′ + x, r −→→→ � r′
i, and each of these derivations being smaller in size

than the original one.
Using the inner induction we have ri ∈ (recx.t1)� for each 1 ≤ i ≤ n. Using

the other (structural) induction we have t′ + x ∈ t�1, and therefore by definition
t′{x �→ r} ∈ (recx.t1)�.

It follows that u ∈ (recx.t1)�, since this is defined so that ui ∈ (recx.t1)�,
1 ≤ i ≤ n, implies u1 + . . . + un ∈ (recx.t1)�. �

8 Conclusions

We have given a novel sound and complete proof system for trace inclusion of
regular processes. The novel rule of the proof system is co-inductive in nature,
in that the conclusion of the rule is already one of it’s hypotheses. Proof of
soundness is based on a technique used in [3] for a proof system for recursive
types, while completeness is demonstrated constructively; an algorithm is given
which constructs a proof for every semantically valid judgement. Intuitively the
algorithm works by on the fly determinising the processes, and systematically
comparing their a-derivatives, for each action a from Act. The proof that the
algorithm actually terminates is conceptually straightforward, but syntactically
intricate. It relies on the fact the set of reachable states from a given process
is finite, modulo a structural equivalence. A similar result is proved in [5] for
the language of regular expressions, where the equivalence used, between regular
expressions, is semantic identity. An alternative approach to proving termination
of our algorithm might be based on defining a relation between our semantics
for regular processes, and the derivatives of regular expressions given in [5].

We believe that our proof system can be adapted to a range of semantic
preorders between regular processes, such as the testing preorders of [6]. Of
particular interest are the contract preorders from [2,4], and variations thereof.
Such preorders often have alternative characterisations, often expressed in terms
of intricate behavioural properties of processes; as an example see Definition 6 of
[1]. It would be instructive to instead characterise these preorders over regular
processes using variations on our proof system; the rules, including (coRec),
would remain but the set of inequations used would depend on the particular
contact preorder in mind.
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A Some Proofs

Guarded Terms: A variable x is guarded in the term t if each free occurrence
of x in t occurs underneath a prefix a.−. A recursion recx.t is guarded if x is
guarded in t. Finally a term u is a guarded term if every sub-term of the form
recx.t is guarded.

It will be convenient to have an inductive principle for guarded processes,
that is closed terms which are guarded.

Definition 8. Let ⇓ be the least predicate over processes which satisfies the fol-
lowing rules:

(a) 0 ⇓, a.p ⇓
(b) p ⇓, q ⇓ implies τ.p ⇓ and (p + q) ⇓
(c) t{x �→ recx.t} ⇓ implies recx.t ⇓.

Lemma 3. Suppose x is guarded in t for every x ∈ fv(t). Then tρ ⇓, for any
substitution ρ such that dom(ρ) ⊆ fv(t).

Proof. By structural induction on t. �
Proposition 7. If p is guarded then p ⇓.

Proof. By structural induction on p. The only non-trivial case is when it has the
form recx.t, where we know that x is guarded in t. By the previous lemma this
means that t{x �→ recx.t} ⇓, and therefore employing rule (c) from Definition 8
we can conclude that recx.t ⇓. �

In the remainder of this appendix we will assume that all processes are
guarded; this assumption is also used throughout the paper.

Proposition 8 (Proposition 1). For every process p there exists a head normal
form hnf(p) such that p =ineq hnf(p).

Proof. By induction on p ⇓. We proceed by an analysis of the structure of p.

– If p has the form a.q, or 0 then it is already a hnf.
– If p is recx.t then by induction on ⇓ we know that there is some hnf h such

that t{x �→ recx.t} =ineq h. Using the (Ufd) and (Fld) rules we obtain
recx.t =ineq h.

– If p is τ.q again the result follows by induction, using the axiom τ.X = X.
– Finally suppose p has the form p1 + p2. By induction pi =ineq hi for some

hnfs h1, h2. Suppose these have the form
∑

a∈Ai
a.pi

a, for i = 1, 2. Then one
can show that

p =ineq

∑

a∈(A1−A2)

a.p1a +
∑

a∈(A2−A1)

a.p2a +
∑

a∈(A2∩A1)

a.(p1a + p2a)

which is in hnf. �
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Corollary 3 (Proposition 3). If hnf(p) a−→ q then p
τ−→→ � a−→→ q.

Proof. The proof proceeds by induction on p ⇓ and a case analysis on the con-
struction of hnf(p) as outlined in the previous proposition. �
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Abstract. In chemical reaction networks (CRNs) with stochastic
semantics based on continuous-time Markov chains (CTMCs), the typ-
ically large populations of species cause combinatorially large state
spaces. This makes the analysis very difficult in practice and represents
the major bottleneck for the applicability of minimization techniques
based, for instance, on lumpability. In this paper we present syntac-
tic Markovian bisimulation (SMB), a notion of bisimulation developed
in the Larsen-Skou style of probabilistic bisimulation, defined over the
structure of a CRN rather than over its underlying CTMC. SMB identi-
fies a lumpable partition of the CTMC state space a priori, in the sense
that it is an equivalence relation over species implying that two CTMC
states are lumpable when they are invariant with respect to the total
population of species within the same equivalence class. We develop an
efficient partition-refinement algorithm which computes the largest SMB
of a CRN in polynomial time in the number of species and reactions. We
also provide an algorithm for obtaining a quotient network from an SMB
that induces the lumped CTMC directly, thus avoiding the generation of
the state space of the original CRN altogether. In practice, we show that
SMB allows significant reductions in a number of models from the liter-
ature. Finally, we study SMB with respect to the deterministic seman-
tics of CRNs based on ordinary differential equations (ODEs), where
each equation gives the time-course evolution of the concentration of a
species. SMB implies forward CRN bisimulation, a recently developed
behavioral notion of equivalence for the ODE semantics, in an analogous
sense: it yields a smaller ODE system that keeps track of the sums of
the solutions for equivalent species.

1 Introduction

Chemical reaction networks (CRNs) are a powerful model of interaction at the
basis of many branches of science such as organic and inorganic chemistry, ecol-
ogy, epidemiology and systems biology. In computer science, the interpretation
of biological systems as computing devices has stimulated a vigorous line of
research ranging from the understanding of the computational power of such
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models (e.g., [13,40,48]) to the development of formal techniques for their spec-
ification, analysis, and verification (e.g., [15,17,29,46]).

Traditionally, CRNs have been equipped with the well-known quantitative
semantics based on a system of ordinary differential equations (ODEs), where
an ODE relates to the time-course deterministic evolution of the concentra-
tion of each species. It is well-known, however, that such semantics may not
always accurately reflect the observed behavior, for example when some species
are present in low copies [22]. The alternative stochastic semantics based on
continuous-time Markov chains (CTMCs) may provide more accurate estimates,
but at an increased computational expense. Indeed, since each CTMC state is a
population vector giving the number of copies of each species, there is a combina-
torial explosion of the CTMC state space as a function of the initial population
of species. In order to cope with this, it would be highly desirable to be able
to perform CTMC aggregation, e.g., based on lumpability [5,20]. However, its
applicability in practice is fundamentally hampered by the fact that available
methods require to explicitly enumerate the state space. This is typically infea-
sible for realistic CRNs sizes, or even impossible because CRNs may give rise to
infinite state spaces.

Inspired from the seminal work of Larsen and Skou on probabilistic bisim-
ulation [36], in this paper we propose a reduction technique that avoids the
generation of the original state space. Instead of reasoning at the semantic level,
we identify conditions on the CRN syntax. More precisely, we provide a new
notion of equivalence over CRN species, called syntactic Markovian bisimulation
(SMB), based on properties that can be checked by inspecting the set of reac-
tions only, but it induces a partition on states of the underlying CTMC: two
CTMC states are related if they are invariant with respect to the total popula-
tion of species in the same SMB equivalence class. To clarify this, suppose we
have a CRN with species A, B, and C, and the SMB that gives the partition
{{A,B}, {C}}. Then the CTMC state (nA = 1, nB = 2, nC = 1) belongs to the
same block as state (nA = 2, nB = 1, nC = 1) because they have equal sums
within the equivalence classes. The resulting CTMC partition is an ordinarily
lumpable one [5]: in the lumped CTMC each macro-state represents the sum of
the probabilities of the original states of a partition block.

Importantly, the lumped CTMC can be obtained avoiding the generation of
the original state space altogether, owing to an algorithm that constructs a quo-
tient CRN for an SMB. The possibility of such a CRN-to-CRN transformation
is useful not only for model minimization, but also for using bisimulation as a
technique for model comparison. This has received increased attention, largely
motivated by applications to evolutionary biology [7–9,11,14,25,41,47].

SMB turns out to be a natural extension of the ordinary lumpability condition
(defined on the underlying CTMC semantics) to the CRN syntax. Ordinary
lumpability relates two CTMC states whenever they have the same cumulative
transition rates toward any partition block. Analogously, SMB relates two species
when, roughly speaking, the cumulative kinetic parameters of the reactions where
they are involved as reagents are the same for every lifted equivalence class
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of products. This lifting is defined by relating two products that are invariant
up to the SMB equivalence classes, as above. An important consequence of this
definition style is that it allows us to also extend the aforementioned CTMC
minimization algorithms to SMB. In particular, we present an algorithm for
computing the largest SMB that refines a given input partition of species in
polynomial time and space.

Being syntactically driven, it is perhaps not surprising that SMB is only a
sufficient condition for CTMC lumpability. As a consequence, it is important
to understand to what extent it can be effectively applied in practice. On CRN
models of biological systems taken from the literature we show that SMB can
achieve substantial compressions, yielding reduced CRNs with significantly fewer
species and reactions in some cases. We measure the impact of SMB on the
analysis of the CRN when this is done by means of stochastic simulation [27],
the method of choice in realistic systems due to the large state spaces involved
(e.g., [18]). We report noticeable runtime speed-ups in many cases, up to two
orders of magnitude, even allowing the execution of benchmark models that
would otherwise generate out of memory errors if not reduced. These numerical
tests also reveal an interesting connection between SMB and the deterministic
semantics of CRNs: the equivalence classes of species found in all the analyzed
models coincide with those recently reported in [8] for forward CRN bisimulation
(FB), an equivalence relation over species that aggregates related ODEs in an
analogous way, exactly preserving their total concentration trajectories at all
time points. We explain this fact by showing that SMB implies an FB, however
the converse is not true in general. Nevertheless, in our tests FB was not able to
aggregate more than SMB.

Further Related Work. The closest approach to ours is by Feret et al. [24]
who identify stochastic fragments on the rule-based language κ [19]. These repre-
sent syntactic criteria that yield a sufficient condition for weak lumpability (see,
e.g., [5]) on the CTMC. The advantage is that the rule-based model is often
combinatorially smaller than its underlying CRN description; however, the app-
roach is domain specific in that it can be applied to systems, e.g., protein-protein
interaction networks, which can be conveniently expressed as rule-based systems.
On the contrary, since SMB works at the level of the CRN it is more general, at
the expense of a more expensive syntactic analysis in this application domain.

For process algebra with quantitative semantics based on CTMCs, several
approaches have been proposed for on-the-fly computations of lumped chain
that avoid the generation of the original state space. These are based on deriving
transitions of the lumped chain from a canonical representative of an equivalence
class (e.g., [28,30,35,43]). Here considerable state-space compressions are owed
to symmetry reduction, whereby identical copies of a process in parallel compo-
sition can be collapsed through a lumpable partition that contains all processes
that are equal up to a permutation of the composed sub-terms. Symmetry reduc-
tion could be useful in the case that the CRN is described at the individual mole-
cular level, as for instance in Cardelli’s Chemical Ground Form [6]. However, we
remark that a CRN gives a CTMC that tracks the population sizes of each
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species, implicitly accounting already for symmetry due to the assumption that
two molecules of the same species are identical. SMB, instead, captures struc-
tural relations, see [8] for a physical interpretation of some equivalence classes.
In this sense, SMB is closer in spirit to the idea of place bisimulation for Petri
nets, which establishes a relation over places that induces a bisimulation in the
classical, non-quantitative strong sense [2].

Paper Structure. Section 2 introduces the notion of CRN and defines its
semantics. SMB is introduced in Sect. 3, while in Sect. 4 it is shown that SMB
induces a reduced CRN whose CTMC is related via ordinary lumpability to the
CTMC of the original CRN. Section 5 presents the algorithm for computing the
largest SMB. Applicability and efficiency of the algorithm are demonstrated on
biological models from the literature in Sect. 6. A formal comparison of SMB
with FB complements the experiments. Conclusions are drawn in Sect. 7.

2 Chemical Reaction Networks

In this paper we consider mass-action CRNs, where each reaction is labeled with
a constant, the reaction rate. The speed of the reaction will be proportional
with this rate to the product of the abundances of the reactants. In particular,
we focus on basic chemistry where only elementary reactions are considered:
unary reactions, involving a single reactant performing a spontaneous reaction,
and binary reactions, where two reactants interact; we call a binary reaction a
homeoreaction if the two reactants are of the same species. Elementary reactions
pose no restrictions on products. Several models found in the literature (including
those discussed in Sect. 6) belong to this class. Also, this is consistent with
the physical considerations which stipulate that reactions with more than two
reactants are very unlikely to occur in nature [26]. In the rest of the paper we
will refer to such elementary mass-action CRNs as just CRNs.

Formally, a CRN (S,R) is a set of species S and a set of chemical reactions
R. Each reaction is a triple written in the form ρ

α−−→ π, where ρ and π are the
multi-sets of species representing the reactants and products, respectively, and
α ≥ 0 is the reaction rate. We denote by ρ(X) the multiplicity of species X in
the multi-set ρ, and by MS(S) the set of finite multi-sets of species in S. To
adhere to standard chemical notation, we shall also use the operator + to denote
multi-set union, e.g., X +Y +Y (or just X +2Y ) denotes the multi-set of species
{|X,Y, Y |}; similarly ρ − X denotes multi-set difference ρ \ {|X|}. We also use X
to denote either the species X or the singleton {|X|}.

Example 1. We now provide a simple CRN, (Se, Re), with Se = {A,B,C,D,E}
and

Re ={A
6−−→D,A

2−−→3C,C+D
5−−→2C+D,B

6−−→C,

B
2−−→3D,E+D

5−−→2C+D, 2D
3−−→C},

which will be used as a running example throughout the paper.
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We next recall the well-known CTMC semantics of CRNs (see, e.g., [6,27]),
which allows us to associate a population-based CTMC to a given CRN and an
initial population of its species. Here the state descriptor gives the number of ele-
ments for each species, hence it is formally represented as a multi-set of species.
The CTMC specification is mediated by a multi-transition system (MTS), to
record multiplicity of transitions. This is needed to account for two or more
reactions contributing to the same CTMC transition, e.g., A+B

α1−−→ B +C and
A

α2−−→ C. The whole state space is defined by enumerating states, starting from
some initial state.

Definition 1 (Multi-transition system of a CRN). Let (S,R) be a CRN.
The multiset of outgoing transitions from state σ ∈ MS(S) is obtained as

out(σ) ={|σ α·σ(X)−−−−−→ σ − X + π | (X α−−→ π) ∈ R|}
� {|σ α·σ(X)·σ(Y )−−−−−−−−→ ((σ − X) − Y ) + π | X �= Y ∧ (X + Y

α−−→ π) ∈ R|}
� {|σ

α
2 ·σ(X)·(σ(X)−1)−−−−−−−−−−−−→ ((σ − X) − X) + π | (X + X

α−−→ π) ∈ R|}

The set of reachable states from σ, denoted by reach(σ), is the smallest set such
that: (i) σ ∈ reach(σ); and (ii) if σ′ ∈ reach(σ), then the target states of out(σ′)
belong to reach(σ). Finally, for an initial state σ0 ∈ MS(S), the MTS for (S,R)
and σ0 is the union of the multi-sets of transitions outgoing from any reachable
state, i.e. MTS (σ0) =

⊎
θ∈reach(σ0)

out(θ).

We note that each reaction ρ
α−−→ π can be applied to source states σ con-

taining ρ, i.e. σ = σ′ +ρ for some multi-set σ′. The corresponding target state is
σ′ +π. The rate for unary reactions X

α−−→ π is α ·σ(X) and accounts for the fact
that each instance of the reagent can perform the reaction independently. For
binary reactions X+Y

α−−→ π with X �= Y , instead, the transition rate is propor-
tional to the product of the populations of the species involved, i.e. α·σ(X)·σ(Y ).
This corresponds to the number of possible interactions between molecules, pro-
portionally to the reaction propensity α [27,34]. For a homeoreaction involving
X, the number of distinct interactions is given by

(
σ(X)

2

)
= 1

2 ·σ(X) · (σ(X)−1).

Example 2. Consider the initial population σ0e = 2A+C +D for (Se, Re). Then
we have out(σ0e) = {|σ0e

6·2−−→A+C+2D,σ0e
2·2−−→A+4C+D,σ0e

5−−→2A+2C+D|}.
The three transitions are due, respectively, to the first, second and third reaction
of Re.

We wish to stress the difference between a CRN and its MTS. While both
are collections of triples in MS(S) × R × MS(S), the elements of the former
are syntactic. Instead, the nature of the latter is semantic because it induces
the underlying CTMC. In particular, given an MTS the CTMC is obtained by
collapsing all transitions between the same source and target into a single CTMC
transition and summing their rates.
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Definition 2 (CTMC semantics). Let (S,R) be a CRN, and σ0 an initial
population. The CTMC of (S,R) for σ0 has states reach(σ0) and its transitions
are given by

MC(σ0) = {σ
r−−→ θ | σ, θ ∈ reach(σ0) ∧ σ �= θ ∧ r =

∑

σ
r′−−→θ∈MTS(σ0)

r′}.

For any two states σ, θ ∈ MS(S) the element of the infinitesimal generator
matrix of MC(σ0) from σ to θ is defined as:

q(σ, θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r if σ �= θ ∧ σ
r−−→ θ ∈ MC(ν0)

−
∑

θ′∈MS(S) s.t. θ′ �=σ

q(σ, θ′) if σ = θ

0 otherwise

For any M ⊆ MS(S), we define q[σ,M] =
∑

θ∈M q(σ, θ) and q[M, θ] =∑
σ∈M q(σ, θ).

3 Syntactic Markovian Bisimulation

This section introduces Syntactic Markovian Bisimulation (SMB) as a sufficient
condition for CTMC ordinary lumpability. We first recast this latter notion to
our notation.

Definition 3. Let (S,R) be a CRN, σ0 an initial population, MC(σ0) the
underlying CTMC and H a partition of MS(S). Then, MC(σ0) is ordinar-
ily lumpable with respect to H iff for any σ1, σ2 in the same block of H we have
q[σ1,M] = q[σ2,M] for all M ∈ H.

Lumpability is given in terms of an equivalence relation among the states
of a CTMC. Instead, SMB is an equivalence over the species of a CRN. Note
that there is no one-to-one correspondence between species and the state space
of the CTMC underlying a CRN. Indeed, the species define the state descriptor,
but the cardinality of the state space is typically much larger since it depends
on all the possible configurations of populations that are reachable from a given
initial population. Thus we need to lift a relation over species to one over CTMC
states. We do so by providing the notion of multi-set lifting : given a CRN (S,R)
and an equivalence relation R over S, the lifting of R relates multi-sets with
same number of R-equivalent species.

Definition 4 (Multi-set Lifting). Let (S,R) be a CRN, R ⊆ S × S be
an equivalence relation over S, and H be the partition induced by R over S.
We define the multi-set lifting of R on MS(S), denoted by R↑ ⊆ MS(S) ×
MS(S), as

R↑ �
{
(σ1, σ2) | σ1, σ2 ∈ MS(S) ∧ ∀H ∈ H :

∑

X∈H

σ1(X) =
∑

X∈H

σ2(X)
}
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The multi-set lifting of R can be readily seen to be an equivalence relation
over MS(S).

Example 3. Consider the equivalence relation Rm over Se inducing Hm =
{{A}, {B}, {C,E}, {D}}. Examples of multi-sets related by R↑

m are C and E,
2C and 2E, and C + E and 2E, while (A + C,B + C) �∈ R↑

m.

The syntactic checks of SMB are performed via the notion of reaction rate
given below. It computes, in essence, the cumulative rate that transforms a given
reagent ρ into a certain product π.

Definition 5 (Reaction rate). Let (S,R) be a CRN, and ρ, π ∈ MS(S). The
reaction rate from ρ to π is defined as rr(ρ, π) =

∑
ρ

α−−→π ∈ R
α. For any M⊆

MS(S), we define rr[ρ,M] =
∑

π∈M rr(ρ, π).

We can now define SMB.

Definition 6 (Syntactic Markovian Bisimulation). Let (S,R) be a CRN,
R an equivalence relation over S, R↑ the multi-set lifting of R and H↑ =
MS(S)/R↑. We say that R is a syntactic Markovian bisimulation (SMB) for
(S,R) if and only if

rr[X + ρ,M] = rr[Y + ρ,M], for all (X,Y ) ∈ R, ρ ∈ MS(S), and M ∈ H↑.

We define the syntactic Markovian bisimilarity of (S,R) as the union of all
SMBs of (S,R).

Remark 1. Note that the multi-sets X+ρ and Y +ρ differ only in one species (X
and Y ), thus projecting comparisons involving multisets (i.e., X + ρ and Y + ρ)
onto species (i.e., X and Y ). In this view, ρ plays a role similar to an action type
in traditional bisimulations, since it restricts interactions with a given reagent
partner (or ∅ in case of unary reactions). Furthermore, Definition 6 entails a finite
number of checks because all evaluations of rr are equal to zero for multisets
that are not products in the CRN, see the algorithm of Sect. 5.

Example 4. Consider again Rm and Hm. From rr(C + D, 2C + D) = rr(E +
D, 2C + D) can be inferred that Rm is an SMB.

As usual, we are interested in the largest bisimulation. The next result ensures
that syntactic Markovian bisimilarity is an SMB, thus showing that it is also the
largest one. Following the approach of [31], we show this by proving that the
transitive closure of a union of SMBs is an SMB.1

Proposition 1. Let (S,R) be a CRN, I a set of indices, and Ri an SMB for
(S,R), for all i ∈ I. The transitive closure of their union R=(

⋃
i∈I Ri)∗ is an

SMB for (S,R).

We now provide our first major result.
1 The proofs of all statements are provided in the technical report available at http://

sysma.imtlucca.it/tools/erode/.

http://sysma.imtlucca.it/tools/erode/
http://sysma.imtlucca.it/tools/erode/
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CRN reduced CRN

CTMC lumped CTMC

semantics

reduce wrtR

lump wrt R↑

semantics

Fig. 1. The relation among (R-reduced) CRNs and (R↑-lumped) semantics, with R an SMB.

Theorem 1. Let R be an SMB for the CRN (S,R). Then, its multi-set lift-
ing R↑ induces the ordinarily lumpable partition H↑ on MC(σ0) for any initial
state σ0.

Three remarks are in order. First, we stress that a single SMB induces infi-
nitely many ordinarily lumpable partitions because there are no constraints on
σ0. Second, Theorem 1 makes no assumption on the cardinality of the CTMC
state space underlying the CRN. In particular, it can also be applied to infi-
nite state spaces; indeed Example 1 is an instance of such a situation because,
e.g., of the reaction C+D

5−−→2C+D, which may generate infinitely many copies
of C whenever the initial state has at least one copy of species D and one of
species C. The original result of ordinary lumpability applies to finite CTMCs.
However, using concepts from functional analysis and the theory of linear ODEs
on Banach spaces, this statement can be extended, under certain assumptions,
to CTMCs with countably infinite state spaces [38]. A sufficient condition for
the theory to apply is to assume that the state space of the CTMC is partitioned
in blocks of finite size. Indeed, the multi-set lifting ensures that any CTMC par-
tition stemming from SMB enjoys this property. Third, as anticipated in Sect. 1,
SMB is only a sufficient condition for CTMC ordinary lumpability.

Example 5. Consider the CRN ({F,G}, {F
α1−−→ G,G

α2−−→ F}) with α1 �= α2 and
σ0 = F . The underlying CTMC has the state space {F,G} and it readily follows
that {{F,G}} is an ordinarily lumpable partition, while it is not an SMB.

At the same time, however, SMB can be computed efficiently and induces
significant reductions to biological models from literature, as discussed in Sect. 6.

4 Reduced CRN

Given a CRN (S,R) and an SMB R, we next provide an algorithm that effi-
ciently computes a R-reduced CRN that induces directly the CTMC aggregated
according to R↑, without exploring the state space of the original CTMC. This
is visualized in Fig. 1.

We wish to point out that this reduction algorithm happens to coincide with
the forward reduction of [8], which has been applied to obtain a quotient CRN
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up to an FB, mentioned in Sect. 1, defined for the ODE semantics of CRNs.
For the sake of completeness we state the notion of reduced CRN according to
this paper’s notation. To this end, we introduce the following notions. Given a
partition H of S such that H = S/R, let XH denote the canonical representative
of a block H ∈ H. Moreover, for any ρ ∈ MS(S), set ρR =

∑
X∈ρ XH for the

multiset obtained replacing each species with its canonical representative. Also,
for any M ∈ H↑ we use MR for ρR, with ρ any multi-set in M.

Definition 7 (Reduced CRN). Let (S,R) be a CRN, R an equivalence rela-
tion on S and H = S/R. The R-reduction of (S,R) is defined as (S,R)R =
(SR, RR), where SR = {XH | H ∈ H} and RR is computed as follows: (F1) Dis-
card all reactions ρ

α−−→ π such that ρ �= ρR, i.e. whose reagents have species that
are not representatives; (F2) Replace the species in the products of the remaining
reactions with their canonical representatives; (F3) Fuse all reactions that have
the same reactants and products by summing their rates.

In the case of our running example, the above definition yields the following.

Example 6. Consider the SMB Rm of Example 3 and the underlying partition
Hm = {{A}, {B}, {C,E}, {D}}. With C being the representative of its block,
the Rm-reduction of (Se, Re) is Se

Rm = {A,B,C,D}, Re
Rm = {A

6−−→D,A
2−−→

3C,B
6−−→ C,B

2−−→ 3D,C+D
5−−→ 2C+D, 2D

3−−→ C}. Note that the reaction
E + D

5−−→ 2C + D is discarded.

Theorem 2. Let (S,R) be a CRN, R denote an SMB and H = S/R. Further,
let H↑ denote the partition induced by R↑ on MS(S). Then, for any initial
population σ0 of (S,R), the underlying CTMC is such that for all σ ∈ MS(S)
it holds that q(S,R)[σ,M] = q(SR,RR)(σR,MR) for any M ∈ H↑.

If we assume that each block of an SMB partition stores a pointer to its
representative, the reduced CRN can be computed in O(r · s · log s) steps [8],
where s := |S| and r := |R|.

5 Computing Syntactic Markovian Bisimilarities

Syntactic Markovian bisimilarity can be encoded as a partition refinement prob-
lem [37], analogously to well-known algorithms for quantitative extensions of
labeled transition systems [3,10,32]. Hence, we only detail the conceptually novel
parts, i.e., the computation of the quantities in Definition 6 and the notion of
multi-set lifting.

Notation and Data Structures. Our algorithm for syntactic Markovian
bisimilarity, SMBisimilarity, is given in Fig. 2, where (S,R) is the input
CRN, and H the initial partition to be refined up to SMB. We use s := |S|,
r := |R|, and L(R) for the set of all labels, i.e., all species multi-sets ρ to
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Fig. 2. Syntactic Markovian bisimilarity

be considered according to Definition 6 in the computation of rr. That is,
L(R) = {{|X|} | X ∈ S ∧ ∃Y ∈ S,∃X + Y

r−−→ π ∈ R} ∪ {|∅|}. We use {|∅|}
to account for unary reactions, and {|X|} ∈ L(R) for each reagent X occurring
in at least one binary reaction in the CRN. We set l := |L(R)|, which is bounded
by min(s + 1, 2 · r).

In this pseudo-code we assume that species and reactions are stored in data
structures via pointers. Species are stored in a list, while a block of H is a list
of its species, each species in turn having a pointer to its block, requiring O(s)
space. Also R is stored in a list. Each reaction has two fields for the reagents, and
a list of pairs in the form (species,multiplicity) for the products, sorted according
to a total ordering on species. Thus, R requires O(s · r) space. Finally, L(R) is
stored in a list too, for an overall O(s · r) space complexity.

Overview. SMBisimilarity is based on Paige and Tarjan’s classical solution to
the relational coarsest partition problem [37] and quantitative extensions thereof
(e.g., [3,20]). A given initial partition is iteratively refined (i.e., its blocks are
split), until a partition satisfying the required conditions is found. Refinements
are based on the notion of splitter, here given by (ρ,Mspl), with ρ ∈ L(R) and
Mspl ∈ H↑: a block of H is split in sub-blocks of species with same ρ-reaction
rate towards a block Mspl of equivalent multi-sets of species. We stress that,
differently from classic bisimulations, in SMB splitters are blocks of products
obtained via the multi-set lifting from a species partition H, rather than blocks
of H itself. Note that the set MS(S) of all possible multi-sets of species in S

is infinite. However, we can restrict to the set Π(R) = {π | (ρ α−−→ π) ∈ R}
only, collecting the multi-sets of species appearing as products in the reactions
of the considered CRN. This is because any multi-set in MS(S) \ Π(R) will
not contribute to the reaction rates. We store Π(R) as a list, requiring O(r)
space, while a partition of Π(R) is encoded by representing a block with a list
of pointers to its products.

The SMBisimilarity Procedure (Lines 1–6). The procedure starts (Line 2)
by creating the partition H↑ of Π(R) according to the multi-set lifting of H. This
requires O(s·r ·log r) time; this is because O(s·r) is required to count the number
of species of each block of H, for each product, while O(s · r · log r) is required to
partition the products. This is done by iteratively sorting the products according
to the number of H-species they have, for each H ∈ H. It requires O(r · log r)
per block of H. Then, a set spls of initial candidate splitters is generated for
each ρ ∈ L(R) and M ∈ H↑. In order to bound the size of spls to O(s) we
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do not explicitly store each pair (ρ,Mspl) for all ρ. Instead we store only one,
initialized with a reference to the first position of L(R), and then update the
pointer to the next position when necessary.

Lines 4–6 iterate until there are candidate splitters to be considered. One is
selected and removed from spls, and the procedure Split is invoked to refine
each block of H according to that splitter, and to generate new candidate ones.

The Split Procedure (Lines 1–7). Each species X has associated a real-
valued field X.rr, initialized to 0 in Lines 2–3 in O(s) time. Also, we assume
that each product π ∈ Π(R) is provided with a list, inc, which points to all the
reactions that have that product. Each list inc has size O(r), while exactly r
entries appear in all inc. The inc list allows to compute the reaction rates by
iterating all reactions at most only once. In fact, given an input splitter (ρ,Mspl),
Lines 4–6 store rr[X + ρ,Mspl] in X.rr, for each species X, by iterating once
the inc list of each product multi-set π ∈ Mspl. In particular, we can have two
cases: either ρ = ∅, when only unary reactions are considered (as X + ∅ = X),
or ρ = Z, with Z ∈ S, when only binary reactions having Z in their reagents
are considered. In both cases, checking for the presence of ρ in the reagents of
each reaction takes constant time. The computation has O(r) time complexity,
since each reaction appears in π.inc for one π only.

The Actual Splitting (Line 7). Using the computed rates, Line 7 then per-
forms the actual splitting. We do not detail this part, as it is inspired by the
usual approach, e.g., [3,20], consisting of the following three steps: (i) Each
block is split using an associated balanced binary search tree (BST) in which
each species X of the block is inserted providing rr[X + ρ,Mspl] as key, and a
new block is added to H for each leaf of the BST; this requires O(s · log s) time,
as there are at most s insertions in the BSTs, each having size at most s; (ii) If
at least one block has been split, all candidate splitters must be discarded; this
takes O(r) time, as spls contains at most an entry per product π ∈ Π(R), 2

while deletion from spls takes constant time assuming that it is implemented
as a linked list; (iii) If at least a block has been split, all splitters have to be
recomputed. This is because another multi-set lifting must be considered from
the new partition. It takes O(s · r · log r) to do so. Thus, overall Split has time
complexity O(s · (log s + r · log r)). Also, note that the BSTs do not worsen the
space complexity, as only one for a block is built at a time.

Complexity. We observe that Split is invoked O(l ·s ·r) times. This is because,
initially, l ·r candidate splitters have to be considered. At every step where some
blocks of H get split (which happens at most s times), all splitters are removed,
and at most l · r new candidate splitters are added to spls. In conclusion,
syntactic Markovian bisimilarity takes O(l · s2 · r · (log s + r · log r)) time and
O(s · r) space.

2 Recall that, given a block Mspl, only one entry is stored to represent all pairs
(ρ,Mspl).
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Table 1. SMB reductions and corresponding speed-ups in CTMC simulation.

Remark 2. We wish to stress that step (iii) of the actual splitting phase is not
necessary in classic partition refinement algorithms [3,10,20]. This is because
only blocks of the current partition are used as splitters in those algorithms.
Hence, splitters are computed and maintained at no additional cost. It is exactly
due to this reason that the time complexity of our algorithm exceeds those
from [3,10,20].

6 Evaluation

In this section we experimentally evaluate SMB studying its effectiveness to
reduce a number of biochemical models from the literature. All experiments were
performed on a 2.6 GHz Intel Core i5 with 4 GB of RAM, and are replicable using
a prototypal tool available at http://sysma.imtlucca.it/tools/erode/samba/. The
tool takes in input CRNs specified in the .net format of BioNetGen [4], version
2.2.5-stable. The CRN reduced by SMB is then converted back to the BioNetGen
format to perform stochastic simulations using Gillespie’s stochastic simulation
algorithm [27].

SMB was tested in terms of model reduction capabilities and corresponding
CTMC analysis speed-ups on the collection of models listed in Table 1. Models
with labels starting with “M” are the largest models also considered in [8].
Additionally, in this paper we analyze models S1–S3; M1–M3 and S1–S2 belong
to the same family of synthetic benchmarks that are generated by varying the
number of phosphorylation sites in a complex described in BioNetGen’s rule-
based format [39]. S3 arises by studying ultrasensitivity in multisite proteins [21].
In all cases we applied our reduction technique starting from the trivial partition
with one block only (i.e., {S} for every CRN (S,R)).

Column “Int.” shows the units of time used for the simulation, taken from the
respective papers. This information was missing for M1–M3 and S1–S2, for which

http://sysma.imtlucca.it/tools/erode/samba/
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we used an estimate of their steady states. Initial populations for the simulations
were taken as well from the respective papers. Under “Original model” are listed
the number of reactions (|R|) and species (|S|) of the CRN, and the overall time
to perform 10 simulations. The same information is given in the columns under
“SMB reduction” for the corresponding CRNs reduced up to SMB, providing in
addition the time necessary to compute the SMB partition (SMB (s)) and to
perform the reduction (Red. (s)).

The results indicate that SMB can find equivalences in a significant number of
models concerning different biological mechanisms. In the three largest models,
M1–M3, SMB was able to provide a compact aggregated CRN which could
be straightforwardly analyzed, while the simulations of the original models did
not terminate due to out-of-memory errors in our experimental set-up. This is
consistent with [39], where the same issue was reported for model M1. Models
with more sensible reductions in the number of reactions gave better speed-ups.
For example, for S1–S2 and M6–M7, the reduced CRN could be analyzed in
about one tenth of the time necessary for the original one. We attribute this to
the fact that at every simulation step, Gillespie’s algorithm scans all reactions
(in the worst case) to decide which one to fire next. Also, we note that typically
many simulations, often in the order of hundreds or thousands, are necessary
to satisfy a given confidence interval (or precision); hence, even small speed-ups
per single run may turn into consistent gains in the overall simulation runtimes.
Finally, as can be expected from their respective computational complexities, the
runtimes to reduce a CRN by SMB according to Definition 7 are considerably
smaller compared to the runtimes for computing the largest SMB.

Comparison with κ-Based Reduction Techniques. SMB and stochastic
fragmentation can be experimentally compared in rule-based biochemical models
with finite underlying CRNs, like those in Table 1, where both techniques can be
applied. In [8] we have shown that FB and differential fragmentation, a variant
of fragmentation defined for the ODE semantics of κ, are not comparable. The
same holds for SMB and stochastic fragmentation. For example, SMB reduces
M12 from [8] to 56 species, while fragmentation does not. Conversely, the κ
model of cross-talk between a model of the early events of the EGF pathway
and the insulin receptor of [16] can be reduced by stochastic fragmentation, but
not by SMB.

Comparison with Forward Bisimulation. We now relate SMB with FB,
introduced in [8] for the ODE semantics of CRNs. For this, it is convenient to
recall such semantics. The ODE system V̇ = F (V ) underlying a CRN (S,R)
(where the dot notation indicates derivative with respect to time) is given by
F : R

S
≥0 → R

S , where each component FX , with X ∈ S is defined by the
expression

FX(V ) :=
∑

ρ
α−−→π∈R

(π(X) − ρ(X)) · α ·
∏

Y ∈S

V
ρ(Y )
Y . (1)

This provides the well-known mass-action kinetics, where the reaction rate is
proportional to the concentrations of the reactants involved.
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Example 7. The ODE system associated to our running example is as follows.

V̇A = −8VA V̇C = 6VA + 5VC VD + 6VB + 10VD VE + 3V 2
D V̇E = −5VD VE

V̇B = −8VB V̇D = 6VA + 6VB − 6V 2
D

As for SMB, FB is an equivalence over the species of a CRN computed by
looking at the reactions only. Also, FB induces a notion of lumpability similar
in spirit to that of Definition 3, as it allows to rewrite the ODEs underlying a
CRN in terms of macro-variables that govern the evolution of the cumulative
concentrations of the species of each block.

Example 8. Consider the partition {{A,B}, {C,E}, {D}} for our running exam-
ple. This can be shown to be an FB. Indeed, the ODEs of (S,R) can be rewritten,
under the variable renaming VAB = VA + VB , VCE = VC + VE , as

V̇AB = −8VAB V̇CE = 6VAB + 5VCE VD + 3V 2
D V̇D = 6VAB − 6V 2

D

Although SMB and FB work on different semantics, the fact that they are
both equivalences over species that induce analogous aggregations at the seman-
tic level calls for the question of establishing a formal relation between the two
equivalences.

Theorem 3. Let (S,R) be a CRN, and R an equivalence relation over S. Then,
if R is an SMB for (S,R), it also is an FB for (S,R′), with

R′ = {X
α−−→ π | (X α−−→ π) ∈ R} ∪

{X + Y
α−−→ π | (X + Y

α−−→ π) ∈ R ∧ X �= Y } ∪
{X + X

α/2−−→ π | (X + X
α−−→ π) ∈ R}

When R has singleton products only, then R is an SMB for (S,R) iff it is an
FB for (S,R′).

An important remark to be made regarding this result is that it requires to
halve the rates of homeoreactions. This is due to an inherent, well-known incon-
sistency existing between the CTMC and ODE semantics of CRNs. While, as
discussed in Sect. 2, homeoreactions are treated specially in the CTMC semantics
in order to capture the combinatorial nature of the discrete molecular interac-
tions, the ODE semantics does not make such difference, e.g., [23], see also (1).
We refer to [6] for a more in depth discussion on this. It is interesting to note
that a different ODE semantics would be possible, grounded on a limit result
by Kurtz which establishes the ODE solution as the asymptotic behavior of a
sequence of infinitely large CTMCs induced by the same CRN with increasing
volumes of a solution having given initial concentrations of species. This inter-
pretation would lead to a 1/2 coefficient in the rates of homeoreactions also in
the ODE case [34]. We leave it for future work to understand if, by appropriately
adapting FB to this different ODE semantics, Theorem3 can be stated so as to
relate SMB and FB on the same CRN also in presence of homeoreactions.
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We also remark that the converse of the theorem does not hold in
general for CRNs with non-singleton products: in our running example
{{A,B}, {C,E}, {D}} has been discussed to be an FB. However, given that
rr(A + ∅,D) = 6 and rr(B + ∅,D) = 0, it is not an SMB.

FB has been applied to the models of Table 1 in [8], where a biological
interpretation of the obtained aggregations was also provided. Interestingly, the
largest SMBs of Table 1 correspond to the largest FBs of [8] on these models.
Since none of these models have homeoreactions, we conclude that for these
CRNs FB has the same discriminating power as SMB. Since S3 has unary prod-
ucts only, in that case this is guaranteed by Theorem 3.

7 Conclusion

Syntactic Markovian bisimulation (SMB) is an equivalence relation operating at
the syntactic level of a chemical reaction network that induces a reduced one
in the sense of the theory of Markov chain lumpability. A numerical evaluation
has demonstrated its usefulness in practice by showing significant reductions
in a number of models available in the literature, even if SMB is only a suffi-
cient condition for aggregation. A partition-refinement algorithm computes the
largest SMB that refines a given input partition. The freedom in choosing such
input may be exploited to single out certain observable species. Thus, SMB may
give a reduced model that exactly preserves the dynamics of interest. Since the
CRN syntax is often combinatorially smaller than the underlying CTMC, we
envisage SMB to be used as a pre-processing stage for CTMC analyses or for
further reduction techniques on the semantics, either in exact or approximate
form (e.g., [1]). Indeed, it would be interesting to conduct further experiments
in order to understand how tight the lumping is with respect to the coarsest
one obtained by applying Markov chain minimization algorithms on the fully
enumerated state space; for this, we plan to develop fully integrated support
for SMB into our software tool for model reduction techniques, ERODE [12]
(http://sysma.imtlucca.it/tools/erode/). We have shown that SMB is stricter
than forward bisimulation (FB), a recently introduced bisimulation for the ODE
semantics of CRNs. In related line of research, we have developed behavioural
equivalences for the ODE semantics of process algebra [33,42,44,45]. In the
future, we plan to investigate variants which imply lumpability for the CTMC
semantics underlying stochastic process algebra.
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Abstract. Wireless technology has been widely used in various wire-
less network scenarios and applications. To model and analyze wireless
systems, a calculus of wireless system called CWS has been introduced.
In this paper, we put forward an assertion-based reasoning method for
this calculus in order to support the verification of the correctness and
some interesting properties of wireless system. To simplify the complex-
ity of verification, we first present the assertion-based verification rules
for processes separately. Due to the features of wireless system (e.g.,
broadcast, synchrony, interference), cooperation rules are introduced to
combine the processes into a complete system. Finally, there is a case
study about using our method to analyze and prove the correctness of
Stop-and-Wait ARQ Protocol as well as some properties.

1 Introduction

With the rapid development of wireless technology, wireless networks and appli-
cations are playing an increasing role in the lives of people throughout the world.
Wireless applications range from user applications for Personal Communica-
tion Services (PCS) to industrial applications for commerce, including personal
area network, ambient intelligence, cellular network, sensor network, wireless
local network, etc. [1,2]. There are several important features in wireless system
including broadcast, synchrony and interference. Broadcast means the wireless
device can transmit message to many other devices without waiting the feedback
at the same time [3]. Interference is an essential aspect of wireless systems, which
gives rise to complex situations on communications in wireless network. When
there is an interference, the wireless device cannot receive the data correctly.
Therefore, a number of formal languages and methods have been proposed in
order to analyze and model the wireless system, including CWS [4], CMAN [5],
CMN [6], CBS# [7], etc.

Among all these formal languages and methods, CWS is a calculus of wire-
less systems used to specify the behaviors of wireless systems combined with
features of local broadcast, interference and synchrony [4]. Each wireless device
named as node has a unique location, a valid transmission radius and transmis-
sion channel. Every single transmission is divided into two boundary events to
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-63121-9 24



Assertion-Based Reasoning Method for Calculus of Wireless System 485

distinguish the beginning and end of a transmission in this language. Instead of
treating broadcast as an atomic action in other calculi, this calculus can simulate
a wireless system at the lower level. In particular, it can describe the forms of
interference among the activities of processes in accordance with the physical
aspect of wireless devices.

In this paper, we put forward an assertion-based reasoning method for CWS
in order to support the verification of the correctness of wireless systems. We
verify the wireless system by verification rules from the perspective of logic. The
correctness in this context means that the systems enjoy certain desirable prop-
erties, such as interference-free [8]. Due to the features of wireless systems, the
properties of interference freedom, fair behavior and data transmission security
are also taken into account. In our method, a wireless system is considered as a
distributed system enjoying the properties of broadcast, synchrony and interfer-
ence. Here, synchrony means in a single time unit multiple events can happen
in a wireless system, such as message transmission. There are two models for
message transmitting from one node to another. The first approach is via com-
munication by a channel. The second approach is via shared-variable mechanism
in rely-guarantee techniques [9]. Here, we use the first approach to formalise the
message passing between two nodes. To make verification more straightforward,
we first investigate each process considered in isolation and provide verification
rules separately. However, some communication commands such as out〈e〉.P and
in(x).P are meaningful only in the context of parallel composition or distributed
system. Hence we then deduce properties of complete system by comparing the
proof rules for the component processes and present cooperation proof rules for
the whole system.

The remainder of this paper is organized as follows. Section 2 introduces the
core language of the calculus for wireless systems and lists some assumptions
about wireless system used in this paper. In Sect. 3, we provide the assertion-
based reasoning rules, including the rules for dealing with communication com-
mands, sequential composition and the whole system composition. Furthermore,
the Subsect. 3.3 mainly provides the cooperation verification rules for the whole
system and a few simple examples are given to illustrate the rules. In the last
subsection of Sect. 3, we discuss the soundness of our assertion-based reason-
ing rules [10]. Sect. 4 gives a case study of correctness proofs by applying our
method. We show the verification of the Stop-and-Wait ARQ protocol as well
as the property that can be formalized in this framework. Sect. 5 concludes the
paper.

2 Calculus for Wireless System

The Calculus for Wireless Systems (CWS), first put forward by Mezzetti and
Sangiorgi, is a calculus for specifying the behavior of wireless communication
[11]. It is applied to formalization of the wireless system at the lower level with
several interesting features, including local broadcasting, half-duplex channel and
transmission interference. In this section, we give a brief recapitulation of CWS.
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The core language consists of two parts, including the process part as P and
the network part as N . P represents a sequence of processes in a single wireless
device considered as node. Thus, each node is the basic network element which
cannot be created or destroyed. In addition, the wireless system can be modeled
by a number of nodes which work independently and also communicate from
time to time by message passing.

The syntax of core language, which models the basic communication mecha-
nism in wireless systems, is given in Table 1. The full version of CWS language
is contained in [4,11], including other sequential program commands.

Table 1. The syntax of CWS

P ::= out〈e〉.P output
∣
∣ 〈v〉.P active output
∣
∣ in(x).P input
∣
∣ (x).P active input
∣
∣ 0 inactive process

N ::= n[P ]cl,r node (or device)
∣
∣ N | N parallel composition
∣
∣ 0 empty network

For process P , there are five key processes listed for describing the commu-
nication in this calculus, including begin and end of a broadcast transmission
action, begin and end of a reception action and empty process.

– out〈e〉.P represents a begin transmission process. If the transmission can be
initiated, it broadcasts the value of expression e and evolves to 〈v〉.P . Note
that v is the value of expression e defined as [|e|] = v.

– 〈v〉.P is an end transmission process, which means that the value v is currently
being transmitted. The number of nodes which can receive the data ranges
from zero to many. After the process is terminated, it becomes P .

– in(x).P is a begin reception process. If there is only one begin transmission
process, the reception process can be initiated and process (x).P is active.

– (x).P describes that the process is currently receiving the data. If the process
can be terminated successfully, the data is stored into the variable x. Other-
wise, x is assigned with a notation ⊥.

– 0 is an inactive process used to stand for the terminated process.

In the syntax for networks, N denotes the whole wireless network system,
which consists of three constructs including a single network node, parallel com-
position of nodes and empty network.

– n[P ]cl,r indicates the node which is addressed as n, located at l, with a trans-
mission radius r, and using channel c for communication. Here, P is the
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process executed in node n. Note that two different nodes cannot share the
same location. Thus, each node identifier is unique and can be defined by the
location l.

– N | N denotes two network nodes that execute in parallel. When we model
the network system, we can add more nodes and each node can communicate
with others by message passing.

– 0 means there is no active node in a network.

Next, we provide some assumptions and list some notations which will be
used in our work. We put forward our method based on the well-formed network
definition in [4]. Each node status can be expressed as a triple s =df (l, r, c) with
a unique location l, transmission radius r and communication channel c. Besides,
both of the end transmission process 〈v〉.P and the end reception process (x).P
cannot be considered as the initial state in a system.

Distance function is presented for the purpose of describing the network topol-
ogy. d(l1, l2) returns the distance between two locations named as l1 and l2.

Active sets T and R are two sets of nodes. Each node in the active transmission
set T is currently transmitting the data. Likewise, each node in active reception
set R is currently receiving the data.

Active neighbor node of node n[P ]cl,r is a subset of T , denoted as T |(l, r, c).
As the name implies, the nodes in this set are transmitting the data to the node
n[P ]cl,r at that moment. The formal definition is as below.

T |(l, r, c) =df {(l′, r′, c′) | (l′, r′, c′) ∈ T ∧ d(l′, l) ≤ r′ ∧ c′ = c}
Example 2.1. We model a network with an interference

Network = N1 | N2 | N3 | N4

Fig. 1. The network topology for example 2.1

where the node N1 sends the data to the nodes N3 and N4, while the node N2

also sends the data to the node N3 at the same time via channel c. The nodes
of this network can be defined as follows:
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Let N1 =df n1[out〈e1〉.P1]cl1,r1 N2 =df n2[out〈e2〉.P2]cl2,r2
N3 =df n3[in(x3).P3]cl3,r3 N4 =df n4[in(x4).P4]cl4,r4

where, we have d(l1, l3) ≤ r1, d(l2, l3) ≤ r2 and d(l1, l4) ≤ r1.
Moreover, the network topology is illustrated in Fig. 1. We can see that the

node N3 is in the transmission range of both N1 and N2. However, N1 and N2

cannot transmit to each other. As a result, there is an interference when N1

and N2 are both sending data to N3. In contrast, the node N4 is only in the
transmission range of N1, so it can get the data from N1. Hence, the transition
can be displayed as below.

n1[out〈e1〉.P1]cl1,r1 | n2[out〈e2〉.P2]cl2,r2 | n3[in(x3).P3]cl3,r3 | n4[in(x4).P4]cl4,r4
→ n1[〈[|e1|]〉.P1]cl1,r1 | n2[out〈e2〉.P2]cl2,r2 | n3[(x3).P3]cl3,r3 | n4[(x4).P4]cl4,r4
→ n1[〈[|e1|]〉.P1]cl1,r1 | n2[〈[|e2|]〉.P2]cl2,r2 | n3[(x3).P3]cl3,r3 | n4[(x4).P4]cl4,r4
→ n1[P1]cl1,r1 | n2[〈[|e2|]〉.P2]cl2,r2 | n3[P3{⊥/x3}]cl3,r3 | n4[P4{[|e1|]/x4}]cl4,r4

where, ei represents the message transmitted by node Ni and xi is the variable
in node Ni used to receive the message from other node. Note that [|e|] is the
value of expression e which can be computed by the program in the node.

3 Assertion-Based Reasoning Rules

We present an assertion-based reasoning method for Calculus of Wireless Sys-
tems in order to prove the correctness of wireless systems formalized in CWS.
Due to the features of wireless system, the properties of interference freedom,
fair behavior and data transmission security are very important.

Firstly, we consider each process in isolation and provide the verification
rules separately. However, some communication commands such as out〈e〉.P and
in(x).P are meaningful only in the context of parallel composition or distributed
system. Consequently, we then deduce the properties of complete system by
comparing the verification rules for the component processes and put forward
some cooperation verification rules.

Here we show the form of our assertion-based reasoning rules. To put it most
simply, our assertion-based reasoning rules are in the form of a Hoare triple
{p} N {q}, where N stands for the network system, while p and q stand for the
precondition and the postcondition respectively. Essentially, the network system
consists of program commands, while p and q are assertions. It describes how the
execution of programs changes the state of the computation. When the network
system starts in a state that satisfies p, after the execution, postcondition q
should be satisfied [12].

3.1 Communication Command Rules

In this subsection we give the verification rules for the core part of the language
viewed in isolation as follows.
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In order to model the interference of communication in distributed system,
the action of output is divided into two parts: the output command which is
used to check whether a node can start to output data or not and the active
output command which is used to transmit v.

Rule 1. Output

{T |l,c = ∅} n[out〈e〉]cl,r {(l, r, c) ∈ T}
This rule describes the changes of the state when the output command is

executed. Here, T |l,c is short for active neighbor node set T |(l, r, c). The nodes
in this set are those who can reach a node located in l and synchronized on
channel c. In other words, the node in T |l,c is transmitting the data to the
node with location l and channel c. In addition, only when T |l,c is empty can
the output command be executed. After the execution of output command, the
node with location l and channel c is in the set of active transmitter T .

Rule 2. Active Output

{(l, r, c) ∈ T} n[〈v〉]cl,r {(l, r, c) /∈ T}
The meaning of this rule is that before the active output command is exe-

cuted, the node should be in the active transmitter set T . After the transmission,
the node is no longer in set T .

Similarly, the input action also consists of two parts: input command and
active input command. Before input command, the node will check if it can
receive data from other nodes. Once the input action begins, the input command
will be executed and the interference may occur between input command and
active input command.

Rule 3. Input

{T |l,c = ∅} n[in(x)]cl,r {(l, r, c) ∈ R}
This rule gives the precondition and postcondition of the input command.

Note that T |l,c is a set of neighbor active transmitter nodes whose transmissions
reach a node with location l and channel c. When the node starts to receive the
data, it will detect whether there is a node transmitting the data or not. If the
set T |l,c is empty, the process can execute and become the active input process.
Thus, the node is in the active receive set R.

Rule 4. Active Input

{(l, r, c) ∈ R ∧ T |l,c 
= ∅} n[(x)]cl,r {(l, r, c) /∈ R}
Note that the set T |l,c should not be empty before the active input can be

executed. That is to say, only when there is a node currently transmitting data
to node n[(x)]cl,r can the receiver get the data. Also, R is the active receiver set.

Rule 5. Empty

{p} n[0]cl,r {p}
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In the context of process, 0 represents an inactive process. In the context of
network, 0 represents an empty network. Therefore, this empty rule has no side
effect, which is a terminated signal.

3.2 Sequential Program Rules

The sequential node programs constitute the whole distributed network system.
We define the behavior of the sequential node program in a manner analogous
to the while system in [8]. The following verification rules establish a sequential
node program proof system.

Rule 6. Skip

{p} n[Skip]cl,r {p}
Rule 7. Assignment

{p[u := t]} n[u := t]cl,r {p}
Note that the u is a variable and t is an expression.

Rule 8. Composition

{p} n[S1]cl,r {r}, {r} n[S2]cl,r {q}
{p} n[S1.S2]cl,r {q}

The rule states that the processes are connected by the notation . in our
system.

Rule 9. Conditional

{p ∧ B} n[S1]cl,r {q}, {p ∧ ¬B} n[S2]cl,r {q}
{p} n[if B then S1 else S2 fi]cl,r {q}

Rule 10. Loop

{p ∧ B} n[S]cl,r {p}
{p} n[while B do S od]cl,r {p ∧ ¬B}

Rule 11. Consequence

p → p1, {p1} n[S]cl,r {q1}, q1 → q

{p} n[S]cl,r {q}
Rule 12. Conjunction

{p} n[S]cl,r {q}, {p} n[S]cl,r {r}
{p} n[S]cl,r {q ∧ r}

Since communication rules and sequential rules have been introduced, we
here give a simple example to show how it works.
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Example 3.1. Let N = n1[S1]cl1,r1 , where

S1 =df flag := 1. if flag = 1 then out〈open〉
else out〈close〉

fi.

We prove the correctness formula: {T |l1,c = ∅} N {flag = 1}.
To this end, we apply the composition rule, then we have

{T |l1,c = ∅} n1[flag := 1]cl1,r1 {T |l1,c = ∅ ∧ flag = 1},

{T |l1,c = ∅ ∧ flag = 1} n1[S′
1]

c
l1,r1

{q}
{T |l1,c = ∅} n1[flag := 1.S′

1]
c
l1,r1

{q}
where

S′
1 =df if flag = 1 then out〈open〉

else out〈close〉
fi.

Now we should prove that the assertion q in the correctness formula {T |l1,c =
∅ ∧ flag = 1} n1[S′

1] {q} equals to or implies the desired assertion {flag = 1}.
To this end we apply the conditional rule, the output rule, the active output rule
and empty rule, then we have

{T |l1,c = ∅ ∧ flag = 1}
n1[out〈open〉]cl1,r1{flag = 1 ∧ (l1, r1, c) ∈ T}
n1[〈open〉]cl1,r1{flag = 1 ∧ (l1, r1, c) /∈ T}
n1[0]cl1,r1{flag = 1 ∧ (l1, r1, c) /∈ T}
Since flag = 1 ∧ (l1, r1, c) /∈ T → flag = 1, by the consequence rule, we get

the desired result.

3.3 Wireless System Composition Rules

Wireless network system is a kind of distributed system, which consists of a
number of physically wireless network nodes. On the one hand, these nodes work
independently using their own private storage. On the other hand, these nodes
communicate with each other from time to time by message passing. However,
the way of message passing in wireless system is different from the way it works
in concurrent system. In the wireless system, if there are no transmission or
reception tasks, one node can start a broadcast transmission process at any time
and finish the transmission regardless of whether there is a reception node or not.
Moreover, a node can start a reception process at any time, but only can finish
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the reception when there is a node which is currently transmitting the data. We
assume there are no internal conditions (e.g., timeouts, interrupts, exceptions)
in order to focus on the feature of interference.

For the verification of correctness in wireless system, we here introduce wire-
less system composition rules. First of all, we give some definitions and notations
in our rules. Let N stands for a wireless network system which is of the form:

N = [N1 | .... | Nm],

where there is no nested parallelism in Ni and processes N1, ..., Nm are pairwise
disjoint. In addition, each node Ni for i ∈ {1, ...,m} can be formalized as below:

Ni = ni[Si,0]cili,ri ;do �Mi
j=1Bi,j ;ni[αi,j ]cili,ri → ni[Si,j ]cili,ri od,

where n[.] means process in a network program and Si,0 denotes the initial
process in the sequential node program Ni. The loop body between do and od is
the main loop of Ni which may be further do loops inside Ni. Note that when
M = 0, the loop is considered as skip. Besides, any nondeterministic program is
a process. Here, αi,j represents the communication command such as output or
input command which is listed in Subsect. 3.2. Moreover, αi,j can be executed
when the boolean guard B is true. Finally, if all guards evaluate to false, the
main loop terminates.

Definition 3.1 (Disjoint). For process N , let change(N) indicate the set of all
variables in N on the left-hand side of an assignment or in an input command.
Let var(N) denote the set of all variables appearing in N . Furthermore, let
channel(N) denote the set of channels in N . Nodes N1 and N2 are called disjoint
if they satisfy:

change(N1) ∩ var(N2) = var(N1) ∩ change(N2) = ∅.

We say that a channel c connects two node Ni and Nj if

c ∈ channel(Ni) ∩ channel(Nj).

Definition 3.2 (Match). We consider output and input commands in node
ni[P ]cli,ri(i ∈ {1, ...,m}) match, if the following conditions hold:

(i) The same channel connects these nodes.
(ii) The distance between input and output nodes is in the range of output

node transmission radius, i.e. d(l1, l2) ≤ r1, where r1 is an output node
transmission radius.

(iii) If there are more than two input and output commands satisfying (i) and
(ii), link every two commands which can communicate with each other. The
topology of the graph should be all connected.

Once there are input and output commands matched and the Boolean guards
before them are true, the communication takes place. Formally, we use the nota-
tion below to stand for the match among the different components:

match(n[α1]cl1,r1 | ... | n[αm]clm,rm);
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Table 2. The relationship between rules and cases

Rule number
Relationship between
receiver and sender

Example

Match Cooperate
Rule I

every receiver in
one sender S2

R1 R2S1

Match Cooperate
Rule II

one receiver in multiple
senders and senders can
transmit to each other S1

R1

S2

R2

Match Cooperate
Rule III

one receiver in multiple
senders and not all senders

can transmit to others

S2

R
S1

Match Cooperate
Rule IV

one receiver in multiple
senders and none of senders

can transmit to others S1 S2
R

The match part of the wireless network system can be verified by the following
Match Rule.

Match Rule

{pi}ni[α]cli,ri{qi}, i = 1...m, cooperate

{p1 ∧ ... ∧ pm} n1[α]cl1,r1 |...|nm[α]clm,rm
{q1 ∧ ... ∧ qm}

where, cooperate means other four match cooperate rules should be used in ver-
ification. There are four match cooperate rules corresponding to different com-
munication cases. We list the corresponding relations between match cooperate
rules and communication cases in Table 2. In addition, four network topology
examples are shown after each communication case, where the computer icon
represents the receiver node and base station icon represents the sender node.
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Match Cooperate Rule I

{true}nj [out〈e〉.Pj ]clj ,rj | ∏
i∈I ni[(xi).Pi]cli,ri{

∧
i∈I xi = [|e|]}

{true}nj [〈v〉.Pj ]clj ,rj | ∏
i∈I ni[(xi).Pi]cli,ri{

∧
i∈I xi = v}

where, the notation
∏

i∈I ni[(xi)]cli,ri stands for the parallel composition for all
processes ni[(xi)]cli,ri which communicate with nj [out〈e〉]clj ,rj . Pi and Pj repre-
sent the remainder of the process in ni and nj respectively.

For match cooperate rule III, we assume every receiving node is only in the
sending range of just one transmitting node. Formally, this rule can be used
when the following formula holds:

∀i∈I(ni[in(x)]cli,ri (∃na[out〈v〉.P ]cla,ra(d(li, la) ≤ ra) ∧
∃nb[out〈v〉]clb,rb(d(li, lb) ≤ rb) → ra = rb))

Match Cooperate Rule II

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [out〈ej〉.Pj ]clj ,rj{

∨
j∈J xi = [|ej |]}

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [〈vj〉.Pj ]clj ,rj{

∨
j∈J xi = vj}.

For match cooperate rule II, we assume every receiver is in more than one
transmission range of the transmitting nodes. Besides, the transmitting nodes
are also in the transmission range of each other.

Match Cooperate Rule III

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [out〈ej〉.Pj ]clj ,rj{xi = ⊥ ∨ xi = [|emax|]}

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [v〈ej〉.Pj ]clj ,rj{xi = ⊥ ∨ xi = vmax}

where, max is the maximum value of r among the nodes nj [out〈ej〉]clj ,rj . In
addition, notation ⊥ indicates there is an interference in communication and
input node has not received the correct value.

For match cooperate rule III, we assume every receiver is in more than one
transmission range of the transmitting nodes. Besides, not all transmitting nodes
are in the transmission range of each other.

Match Cooperate Rule IV

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [out〈ej〉.Pj ]clj ,rj{xi = ⊥}

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [〈vj〉.Pj ]clj ,rj{xi = ⊥}

For match cooperate rule IV, we assume every receiver is in more than one
transmission range of the transmitting nodes. Besides, all of transmitting nodes
are not in the transmission range of each other.
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Rule 13. Wireless System Composition

{p} n1[S1,0]c1l1,r1 ; ...;nm[Sn,0]cmlm,lm
{I}

{I ∧ Bi,j ∧ ... ∧ Bix,jy} match(ni[αi,j ]cili,ri | ... | nx[αix,jy ]cxlx,rx);
ni[Si,j ]cili,ri ; ...;nx[Six,jy ]cxlx,rx {I},

for all(i1, i2, ..., ix, j1, j2, ..., jy) ∈ Network

{p} N {I ∧ TERM}
where I is a global invariant variable. Network is a set defined as
{(i1, i2, ..., ix, j1, j2, ..., jy)|ni1,j1 , ni2,j2 , ..., nix,jy match}. The signal TERM =∧m

i=1

∧mi

j=1 ¬Bi,j . m is the number of the total nodes in network. mi means the
number of all the input/output commands in node i. As for the processes in
match(...), it should be verified by match rule as below.

Example 3.2. Let N = n1[S1]cl1,r1 | n2[S2]cl2,r2 , where d(l1, l2) ≤ r1, S2 =df

in(x).(x) and S1 has been defined in Example 3.1. This example describes a
communication between a sender and a receiver which also can be extended to
multiple senders and receivers. At the very beginning, there is no communication
happening in nodes N1 and N2. Hence the precondition can be described as:
{T |l1,c = ∅ ∧ T |l2,c = ∅}. After execution, we should verify that the receiver
has successfully accepted the value open from sender which can be defined as:
{x = open}. Here, the verification is given as below:

{T |l1,c = ∅ ∧ T |l2,c = ∅}
n1[S1]cl1,r1 | n2[S2]cl2,r2

We notice that only out〈open〉 and in(x) match in this case. From Example
3.1, we can obtain some assertions as below:

{T |l1,c = ∅ ∧ flag = 1 ∧ T |l2,c = ∅}
n1[out〈open〉.S′

1]
c
l1,r1

| n2[in(x).S′
2]

c
l2,r2

{(l1, r1, c) ∈ T ∧ (l2, r2, c) ∈ R ∧ flag = 1}
Here, we get rid of the assertion {flag = 1} by consequence rule:

{(l1, r1, c) ∈ T ∧ (l2, r2, c) ∈ R}
n1[〈open〉.S′

1]
c
l1,r1

| n2[(x).S′
2]

c
l2,r2

The communication meets the condition of match case I, so we can use match
cooperate rule I to get the key assertion:

{x = open ∧ (l1, r1, c) /∈ T ∧ (l2, r2, c) /∈ R}
n1[0] | n2[0]

{x = open}.

Finally, we verify that the program satisfies the postcondition. This indicates
that the second node in wireless system has received the value from the first
node and the data transmission has finished successfully.
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3.4 Soundness

In this subsection we discuss the soundness of our approach. Firstly, we define
the meaning of soundness based on the operational semantics described in [4].
In order to prove our reasoning system is sound, we should show every verifi-
cation rule in the reasoning system is indeed valid [13]. For most verification
rules, soundness follows directly from the definition of the semantics and part of
rules in subsect. 3.2 has been proved in [8]. Therefore, we take a typical match
cooperate rule III as an example to give the proof process. Here is the definition
of soundness.

Definition 3.3. Let N be a network system and σ a proper state.

(i) a configuration C is a pair 〈N,σ〉.
(ii) a transition 〈N,σ〉 → 〈N ′, τ〉 means when the first command in N with the

state σ is executed, it will lead to the state τ . N ′ is the remainder of N .
The transition should abide by the operational semantics.

(iii) the correctness semantics is a mapping

M[N ] : Σ → P (Σ)

with M[N ](σ) = {τ |〈N,σ〉 →∗ 〈E, τ〉}
where Σ is a set of output states, E means empty program and the system
terminates in state τ .

(iv) |= {p} N {q} means the verification rule {p} N {q} is true, which meets if
and only if M[N ]([p]) ⊆ [q] holds.

Definition 3.4 (Soundness). Let G be a reasoning system which can be used
to prove the correctness of the wireless system defined in CWS. �G {p} N {q}
means {p} N {q} is provable in G. We say that G is sound for correctness of
the wireless system defined in CWS if for all verification rules {p} N {q}, we
have:

�G {p} N {q} implies |= {p} N {q}
Proof for Match Cooperate Rule III

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [out〈ej〉.Pj ]clj ,rj{xi = ⊥ ∨ xi = [|emax|]}

{true}ni[(x).Pi]cli,ri | ∏
j∈J nj [v〈ej〉.Pj ]clj ,rj{xi = ⊥ ∨ xi = vmax}

Let N = ni[(x).Pi]cli,ri | ∏
j∈J nj [out〈ej〉.Pj ]clj ,rj . According to the proof system,

to prove this rule is sound is to prove: M[N ]({true}) ⊆ ({xi = ⊥∨xi = [|emax|]}).
For the first rule, since M[N ]({true}) = {τ |〈N, {true}〉 →∗ 〈E, τ〉}, we should

find the transition sequence of the command in N . There are two kinds of tran-
sition sequences in this case.

In the first case, from the operational semantics I in [4]:

T |l,c = φ ∀h ∈ I ∪ J ∪ K.d(l, lh) ≤ r∀i ∈ I.T |li,c = φ ∀j ∈ J.T |lj ,c 
= φ

T � n[out〈e〉.P ]cl,r | ∏
h∈I∪J nh[in(xh).Ph]clh,rh | ∏

k∈K nk[(xk).Pk]clk,rk ↪→c
l.r

n[〈|e|〉.P ]cl,r|
∏

i∈I ni[(xi).Pi]cli,ri |∏
j∈J nj [in(xj).Pj ]clj ,cj |

∏
k∈K nk[Pk{⊥/xk}]clk,rk
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we can deduce that one situation is same as the node n[out〈e〉.P ]cl,r and
nk[(xk).Pk]clk,rk , the transition is as followed.

seq1 =< N, {true} >→< ni[Pi{⊥/xi}]cli,ri |
∏

j∈J nj [〈|e|〉.P ]clj ,rj , {xi = ⊥} >

The second situation is according to the operation semantics I and II in [4]:

∀i ∈ I, d(l, li) ≤ r

T � n[〈v〉.P ]cl, r | ∏
i∈I ni[(xi).Pi]cli, ri|

∏
j∈J nj [in(xj).Pj ]clj , rj ↪→

n[P ]cl, r | ∏
i∈I ni[Pi{v/xi}]cli, ri | ∏

j∈J nj [in(xj).Pj ]clj , rj

We can deduce that other situation is like the sender with the max value
of transition radius can send to the receiver and other senders can not. So the
transition is as followed and m means the node with the max value of transition
radius.

seq2 =< N, {true} >→< ni[Pi{〈|emax|〉/xi}]cli,ri |
∏

j∈(J−max) nj [out〈e〉.P ]clj ,rj |
nmax[out〈e〉.P ]clmax,rmax

, {xi = 〈|emax|〉} >

In conclusion, the M[N ]({true}) = {xi = ⊥ ∨ xi = 〈|emax|〉}.
Therefore, M[N ]({true}) ⊆ ({xi = ⊥∨xi = [|emax|]}), the first rule is sound.

The proof process is similar to the second rule. Thus, the whole rule is sound. ��

4 Case Study: Stop-and-Wait ARQ Protocol

In this section we study an example about Stop-and-Wait ARQ (automatic
repeat-request) protocol operating at the data link layer. Additionaly, we show
how to apply our method to prove the correctness and a few properties of this
protocol.

Stop-and-Wait ARQ protocol is one of automatic repeat request protocols
widely used to ensure reliability for transmitted data [14]. It can retransmit lost
or corrupted messages and restrict the order of messages to ensure receivers get
messages in turn.

The working idea of this kind of protocol is as follows. The sender A has to
send a sequence of messages to receiver B. Each message is in a packet consisting
of information bits and a one-bits sequence number s. The one-bits sequence
number s can either be 0 or 1. When A sends a message packet, it waits for
an acknowledgment (ACK) before sending a new packet. If the acknowledgment
from B contains the same sequence number, it means that the message packet
has been successfully received by B and A starts transmitting the next packet.
On the contrary, if the acknowledgment is not expected or a timeout expires,
it means that the message packet is received in error and A should resend the
message packet with the same sequence number. Retransmissions continue until
an ACK is received.

On the other hand, when B receives a message packet with a sequence number
0, it will send back an acknowledgment ACK0 with a sequence number 0 and
keep sending until it receives a valid message with sequence number 1. Note that
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Table 3. An example for Stop-and-Wait ARQ in CWS

Sender[q, s] =def while ¬empty(q)
do

if empty(q) then out〈(l1, End, s)〉.in(x).
if x = (l2, Ack, s) then Skip fi

else
out〈(l1, front(q), s)〉.in(x).
if x = (l2, Ack, s) then

pop(q).s := ¬s.
fi

fi
od

Receiver[q, s] =def in(x).
while snd(x) �= End

do if fst(x) = l1 ∧ trd(x) = s then
out〈l1, Ack, s〉.push(q, snd(x)).s := ¬s.

else
out〈l1, Ack,¬s〉.

fi
in(x).

od
push(q, End)

in our model, we assume that all the messages have been transmitted correctly
so that we can focus on other simultaneous transmissions. That is to say, failure
is due to interference in this model. Table 3 displays the model of this protocol.

Sender A and receiver B are modeled in CWS and defined above. We assume
that the sender is located at l1 and the receiver is located at l2, while d(l1, l2) ≤
r1, r2. The parameter q in sender represents a queue with a sequence of messages
to be sent. In the very beginning, sequence number s is initialized as 0. There
are several operations about the queue which are similar to C++ STL (Standard
Template Library). Front(q) returns the first element; back(q) returns the last
element; empty(q) returns true when q is empty; pop(q) drops the first element
of q; push(q, element) can push the element in the end of q. Moreover, fst(x),
snd(x) and trd(x) return the first, second and third element in x respectively.

In this case study, we should prove the correctness of protocol by verifying
that the receiver can accept the message of qs successfully. On the purpose of
this, we first construct the program in CWS and then give the precondition.
Finally, we apply our method to deduce that whether the program meet the
postcondition or not.

Let N = ns[Sender[qs, s]]cls,rs | nr[Receiver[qr, s]]clr,sr | M .
where, M is the network environment and there is no malicious process in it,

while d(ls, lr) ≤ rs, rr indicates the topology of these two nodes.
At the very beginning, there is no transmission in the network and node

sender has the message in queue qs. Besides, the queue qr in node receiver is



Assertion-Based Reasoning Method for Calculus of Wireless System 499

empty. Therefore, the precondition can be defined below:

{T |ls,c = ∅ ∧ T |lr,c = ∅ ∧ qs 
= ∅ ∧ qr = ∅}.

Likewise, when the transmission has finished, the queue qr has received the
value from the queue qs. Therefore, the value of the last element in the queue qr
is equal to that in the queue qs. Hence, the postcondition is described below:

{back(qr) = End}.

Proof Process

In this case, due to the features of ARQ protocol, once the transmission fails,
the transmission will repeat again and again. Therefore, we assume the system
can terminate and focus on the correctness of this system. For N , we apply the
wireless system composition rule in order to get the postcondition {back(qr) =
End}. Firstly, we assume the p in wireless system composition rule is equal to
the precondition we have given in the beginning and set the global invariant
variable I as the assertion T |ls,c = ∅ ∧ T |lr,c = ∅. Then, we can obtain:

{T |ls,c = ∅ ∧ T |lr,c = ∅ ∧ qs 
= ∅ ∧ qr = ∅}
N

{T |ls,c = ∅ ∧ T |lr,c = ∅ ∧ TERM}

Note that the TERM is
∧n

i=1

∧mi

j=1 ¬Bi,j and n means the number of nodes
in N which are match, while m is the number of transmissions among match
pairs. Also, we find that the n[B] in receiver node is about the first and third
elements of message, so we cannot get our postcondition in TERM . Thus, we
continue to consider other parts in details. Firstly, we consider the sender and
receiver nodes separately.

Sender Part. For sender node, before the empty(q) becomes true, the loop part
in the node sender is like:

out〈(l1, front(q), s)〉.in(x).if x = (l2, Ack, s) then pop(q).s := ¬s.fi

It sends the message with location, the front element of qs and the sequence
number s. Then, it waits for an Ack. If the Ack is true, it will send the next
element of qs, otherwise it repeats the transmission.

For ns[Sender[qs, s]]cls,rs , we use the loop rule 10, if the process can terminate
then we have:

{T |ls,c = ∅ ∧ qs 
= ∅}
ns[Sender[qs, s]]cls,rs{T |ls,c = ∅ ∧ qs = ∅}.
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Receiver Part. As for the node receiver, the main loop is described as:

if fst(x) = l1 ∧ trd(x) = s then out〈l1, Ack, s〉.push(q, snd(x)).s := ¬s.
else out〈l1, Ack,¬s〉. fi in(x).

It will check whether the location and sequence number are right or not and
send the Ack back to node sender and push the element in the qr. Then it waits
for other messages. In addition, the postcondition is similar to node sender.

Match Part. Next, we consider the match part in the system. If we can get the
postcondition in match part, then the result can be verified by using conjunction
rule.

There are four kinds of match situation in this case and all of them can satisfy
the match cooperation rule I. We list them as below:

ns[out〈(l1, front(q), s)〉.P ′
s]

c
ls,rs

| nr[in(x).P ′
r]

c
lr,rr

ns[in(x).P ′
s]

c
ls,rs

| nr[out〈l1, Ack, s〉.P ′
r]

c
lr,rr

ns[in(x).P ′
s]

c
ls,rs

| nr[out〈l1, Ack,¬s〉.P ′
r]

c
lr,rr

ns[out〈(l1, End, s)〉.P ′
s]

c
ls,rs

| nr[in(x).P ′
r]

c
lr,rr

Take the first situation as example:

{T |ls,c = ∅ ∧ T |lr,c = ∅ ∧ qs = ∅}
ns[out〈(l1,End, s)〉.P ′

s]
c
ls,rs

| nr[in(x).P ′
r]

c
lr,rr{(ls, rs, c) ∈ T ∧ (lr, rr, c) ∈ R ∧ qs = ∅}

ns[〈(l1,End, s)〉.P ′
s]

c
ls,rs

| nr[(x).P ′
r]

c
lr,rr{x = (l, End, s) ∧ (ls, rs, c) /∈ T ∧ (lr, rr, c) /∈ R}

From the assertion above, we can deduce the assertion that

{x = (l, End, s) ∧ T |ls,c = ∅ ∧ T |lr,c = ∅}.
Moreover, because x = (l, End, s), so snd(x) = End. The final command in

the node receiver can be executed and we finally get the target postcondition.

{snd(x) 
= End}
Push(q,End)
{back(qr) = End}
Therefore, when there is no malicious process, the program can receive the

message successfully.

5 Conclusion

In this paper, we have presented an assertion-based reasoning method for Cal-
culus of Wireless Systems in order to prove the correctness of wireless systems
formalized in CWS. Our approach firstly introduces the assertion in the form
of Hoare triple to verify the wireless system combined with the features of local
broadcast, asynchrony and synchrony. In order to make the verification more
straightforward, we first provide the verification rules for each process viewed in
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isolation. Then we give a set of composition rules which can be used for making
every process meaningful in a complete system. The key contribution we have
made is the cooperation rules which can be applied in verification of various
broadcast situations in wireless systems. In addition, our method also can be
used to describe the interference in transmission of wireless system, which is an
essential feature of this kind of systems.

For the future, we are continuing to explore the assertion-based reasoning
method for wireless systems. On one hand, the mobility feature in wireless system
is very important [15]. We can introduce some specific assertions used to describe
this feature and verify some properties related to mobility. On the other hand,
it is also challenging to investigate the linking theories between our deduction
approach and the semantics (operational, denotational and algebraic) for wireless
systems [4,16,17]. Furthermore, this reasoning system can be implemented in a
tool so that it can be automated and become usable for verifying larger programs.
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Abstract. One of the goals of synthetic biology is to build genetic circuits to
control the behavior of a cell for different application domains, such as medical,
environmental, and biotech. During the design process of genetic circuits,
biologists are often interested in the probability of a system to work under
different conditions. Since genetic circuits are noisy and stochastic in nature, the
verification process becomes very complicated. The state space of stochastic
genetic circuit models is usually too large to be handled by classical model
checking techniques. Therefore, the verification of genetic circuit models is
usually performed by the statistical approach of model checking. In this work,
we present a workflow for checking genetic circuit models using a stochastic
model checker (Uppaal) and a stochastic simulator (D-VASim). We demonstrate
with experimentations that the proposed workflow is not only sufficient for the
model checking of genetic circuits, but can also be used to design the genetic
circuits with desired timings.

1 Introduction

Synthetic biology has emerged as an important discipline in which the synthetic digital
[1, 2] and analog [2] computations in living cells have been implemented. Computation
in living cells will revolutionize the fields of medicine and biotechnology. The aim of
biological computation is to develop genetic devices to address the real-world problems
including tumor destruction [4], bio-fuels [5], consuming toxic wastes [6], pharma-
ceuticals [7], etc. These biological devices are constructed from genetic circuits.
A genetic circuit represents a gene regulatory network (GRN), which is composed of
small genetic components, e.g., promoter, operator, ribosome binding site, protein
coding site, and terminator. These components interact with the external signals (like
temperature, light, etc.) to control the behavior of a living cell. Similar to electronic
engineers who develop circuits using electronic logic gates (such as AND, NAND, and
NOT gates), genetic network engineers use biological equivalents of these components
to control the function of a cell [1, 8].

Figure 1(a) shows an example of a genetic implementation of a NAND gate rep-
resented in SBOL [9] notation. P1 and P2 are promoters, which are the regions of DNA
that initiates the process of transcription (or production) of a gene. In this case, when
two proteins, LacI and TetR, are present in sufficient amount within the cell, they
inhibit promoters P1 and P2 to produce the output protein i.e. green fluorescent protein
(GFP). This type of gene regulatory networks is based on the “central dogma” of
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molecular biology, which states that genes in the DNA specify the sequence of mes-
senger RNA (the transcription process by RNA polymerase), which in turn specify the
sequence of proteins (the translation process by ribosomes). Regulatory proteins can
control gene expression by either preventing transcription (repression), which is the
case for LacI and TetR in the NAND gate, or by promoting RNA polymerase binding
to the promoter (activation). A careful selection and balance of the genetic components,
as expressed in the NAND gate in Fig. 1, can provide a functional gene regulatory
network. To make genetic circuits work, it is not enough to be able to control the
production of certain proteins, i.e. increasing the concentration, but also to be able to
reduce concentrations of proteins. This happens by natural degradation of proteins, i.e.
a protein has a certain lifetime, before it is dissolved into the amino acids from which it
was constructed.

Signals in electronic logic gates propagate in separate electrical wires which do not
interfere with each other, if designed correctly. However, in genetic circuits, signals are
proteins drifting in the same volume of the cell, in order to establish a connection (a
biological “wire”), compatibility between input- and output-proteins must be ensured
and crosstalk with other signals from neighboring components, has to be avoided. This
makes it challenging to work with genetic circuits, and thus requires a library of genetic
components that can be used to develop complex circuits without causing crosstalk.
The standard part libraries and toolboxes of well-characterized genetic components
have been constructed through numerous laboratory experiments over the last decade
[10–18]. These components have been extensively used to develop genetic circuits with
different functionalities including oscillators [3], amplifiers [19, 20], linearizer gene
circuit [21], memory devices [22, 23], switches [1, 12, 24], time-delay circuits [25, 26],
genetic logic gates [27–30] etc.

LacI TetR

GFP
P1 P2

(b)

LacI

TetR
GFP

(a)

LacI TetR GFP
0 0 1
0 1 1
1 0 1
1 1 0

(c)

Fig. 1. Genetic NAND gate [55]. (a) Genetic implementation in SBOL notation. (b) Circuit
schematic (c) Truth table.
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The field of synthetic biology is still in its infancy, and the process of design and
implementation of genetic circuits remains very slow. Similar to the electronic design
automation (EDA) process which dramatically enhanced the design, verification, val-
idation and production of electronic circuits, researchers have started to work on the
development of genetic design automation (GDA) tools to automate the design, test and
verification processes of genetic circuits prior to their validation in laboratory. Several
computational tools [31–34] have been developed to assist users in the model con-
struction and design [35–37], simulation [35, 36, 38–40], logic and timing analysis of
genetic circuits [40], and model checking [36, 41–44]. Model checking of biological
systems is getting popular as it is an effective means of analyzing the dynamics of
complex biological systems [45–53]. The dynamics of genetic circuits, and hence their
correct functioning, are dependent on a large set of parameters (such as reaction and
degradation rates) which in general are very difficult to predict and control. Hence,
biologists are usually interested in determining the sensitivity of their circuits for
fluctuations in these parameters. For instance, it might be a question of interest to find
out, if the circuit behaves as expected when the values of certain parameters are varied
within a specified range. Such sensitivity analysis is well suited for explorations using
statistical model checking (SMC) and the aim of this work is to show how
Uppaal SMC can be used to address the problem, effectively taming living logic.

In this work, we propose a flow of statistical model checking for genetic circuits
using Uppaal [41] and D-VASim [39]. In particular, we performed experimentations on
genetic circuit models and explored their design parameter sensitivity using
Uppaal SMC [42]. There are a certain number of tasks which cannot be performed in
Uppaal [41]. We therefore used D-VASim [39] to address those, which will be detailed
in the experimentation section. The paper is organized as follows; Sect. 2 describes the
digital abstraction and a brief introduction to D-VASim and Uppaal SMC. Section 3
contains the experimentation on genetic circuit models and Sect. 4 concludes the
results.

2 Methodology

To determine the range of parameter values for which the genetic circuit would work, it
is first important to know the threshold concentration levels of the inputs of those
circuits. The threshold level of a genetic circuit can be defined as the minimum con-
centration of input protein(s), which causes the average concentration of output
protein to cross the level of input protein(s) concentration [40]. D-VASim [39] is a
simulation tool which supports the capability of analyzing the threshold value and
timings of genetic circuits through an automated process. It further allows the user to
perform runtime interactive simulations. For example, Fig. 2(d) shows the stochastic
simulation traces of a genetic NOT gate obtained from D-VASim. The input is TetR
protein and the output is GFP protein. When the input concentration of TetR goes high,
the output concentration of GFP goes low.

In Fig. 2(d), the initial output concentration is about 100 molecules when the input
concentration of TetR protein is low. When the concentration of TetR is triggered to 4
molecules, the concentration of output protein starts to degrade, but stays above the
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input concentration level. Increasing the input concentration further up (10 molecules)
causes the output concentration to oscillate around the input concentration level. When
we increase the input concentration level further (21 molecules), the output concen-
tration stops oscillating around the input concentration level and settles down to zero.
Here, the first input concentration level (up to 4 molecules) can be considered as
low-threshold level as it does not cause the output concentration level to fall below it.
Similarly, the third input concentration level (21 or more molecules) can be considered
as high-threshold level as it causes the output concentration level to be in a clear
logic-low state. The region between these two levels is considered as a transition
region. This behavior is analogous to electronic circuits where the logic levels are well
characterized. For example, the logic-1 of a 3.3 V CMOS-based electronic device is at
least 2.4 V, which means that a minimum of 2.4 V is required to turn the circuit on.
Similarly, the circuit is considered off, when the output voltage is below 0.8 V. The
region between 0.8 V and 2.4 V is considered as a transition region, where the output
is considered invalid.

Once the correct threshold levels are found, the inputs are triggered to that level and
the circuit parameters can be varied to determine if the circuit still behaves correctly.

(b)(a) (c)

(d)

TetR

GFP
P1

TetR GFP

0 1
1 0

TetR GFP

Fig. 2. Genetic inverter (NOT) gate. (a) Genetic implementation in SBOL notation. (b) Circuit
schematic. (c) Truth table. (d) Stochastic simulation traces in D-VASim.
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As shown in Fig. 2(d), the threshold value and the logic of a circuit can be determined
by varying the input concentration level and check if it significantly effects the con-
centration level of output. The case discussed above is a very simple case in which the
genetic circuit has only one input and one output. However, this analysis could be very
time consuming for large genetic circuit models with more inputs. For large-scale
circuits, it is difficult to determine or verify the expected logic of a circuit without
careful analysis. To determine or verify the logic of a genetic circuit, it is important to
know the correct input combination with the correct threshold levels which trigger the
output of the circuit. This may apparently become a tedious task to check different
input concentration levels for each input combination.

The search process of threshold value can be automated by the use of statistical
model checking in Uppaal. Uppaal is an integrated tool environment for modeling,
verification and validation of real-time systems modeled as networks of timed automata.

Fig. 3. Experimental flow of genetic circuit model checking and verification.
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Uppaal SMC is an extended plug-in tool to Uppaal which allows the user to check the
expected behavior of models in the form of probability distributions. In Uppaal SMC, it
is possible to let the tool arbitrarily select any input concentration value, within a
specified range, and see if the chosen value significantly effects the output concentration
level. This can, however, only be achieved when the correct input combinations trig-
gering the output of the circuit are known. As Uppaal does not have the capability to
automatically detect the input combination which triggers the output of the circuit, the
threshold value analysis of a genetic circuit cannot be performed automatically in
Uppaal. D-VASim [39] is the only tool which allow users to perform threshold value
and propagation delay analysis of genetic circuits through an automated process [40].
However, D-VASim is not capable of performing the automated statistical model
checking. Thus, we used D-VASim for threshold value analysis and then perform the
statistical model checking in Uppaal to determine the range of circuit parameters within
which the circuit satisfy the desired behavior.

The proposed experimental flow of checking genetic circuit models is shown in
Fig. 3. The genetic circuit models developed in the systems biology markup language
(SBML) [54] are used in this work. The SBML model of a genetic circuit is used as
input to D-VASim. D-VASim analyses the threshold and propagation delay (details are
given in Sect. 3). The threshold value is then used in Uppaal to trigger the input levels
to this value and observe the output behavior of the circuit while varying the circuit
parameters. The effects of varying parameters on the threshold value and propagation
delay of the circuit are then analyzed in D-VASim.

3 Experimentation

In this work, we test genetic circuit models from [55], by varying the degradation rate
parameter (Kd) to determine the range within which the circuit exhibits the expected
behavior. The aim is to propose an experimental flow for model checking of genetic
circuits. To demonstrate that this flow can be applied to a complex genetic circuit as
well, we have included the experimental results of a small (NAND gate) and a rea-
sonably large (toggle switch with memory) genetic circuit models. The NAND gate
contains 5 species and 5 kinetic reactions, whereas the toggle switch contains 20
species and its behavior is defined by 18 kinetic reactions. The schematic circuit
models of the NAND gate and the toggle switch are shown in Figs. 1 and 4, respec-
tively. In Fig. 4, the input protein A suppresses promoter P1 to produce protein D,
which in turn inhibits promoter P4 to reduce the production of protein F, and so on.

Table 1 shows the threshold and propagation delay values for both of the circuits
obtained from D-VASim. The high threshold value specifies the input concentration
level above which the logic is considered high, and the low threshold value specify the
input concentration level below which the logic is considered low. The propagation
delay is defined as the time from when the input concentration reaches its threshold
value until the corresponding output concentration crosses the same threshold value
[40]. The confidence intervals of threshold values are not specified in this table because
D-VASim analyzes threshold values for pre-defined intervals of concentrations. For
example, in the case of genetic NAND gate, the threshold level is analyzed for
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predefined concentration intervals each of which have a difference of 5 molecules.
Therefore, D-VASim gradually increases the concentration from 0 ➔ 5 ➔ 10➔ 15 and
so on, to determine the lower and upper threshold levels of a NAND gate. For more
accurate results, the concentration intervals for these analyses can be minimized in
D-VASim.

These models are then checked in Uppaal by randomly choosing the value of Kd
within a certain interval and checking if the output of the circuit satisfy the expected
behavior for all possible input combinations. Uppaal uses a continuous time markov
chain model (CTMC) for model checking, therefore the SBML models were first
converted into CTMC models using the simple conversion utility in Uppaal. It creates a
separate automaton for each of the reaction kinetics defined in the SBML file. For
instance, Fig. 5(a) shows one of the processes, in the genetic NAND gate circuit, which
represents the kinetic reaction (Fig. 5(b)) to produce the 10 molecules of GFP when the
input protein LacI is not sufficiently present in the cell.

Figures 6 and 7 shows the Uppaal SMC simulation results of the genetic NAND
and the toggle switch circuits, respectively. These figures show all the simulation traces
for 100 iterations. All possible input combinations are applied and the correct operation
is verified within a defined range of Kd. Due to the stochastic nature of a model, the
probability of an expected behavior cannot be 100% satisfied when the value of Kd is

Fig. 4. Genetic toggle switch with memory [55]. (a) Genetic implementation in SBOL notation.
(b) Circuit schematic. (c) Truth table.

Table 1. Threshold and propagation delay values obtained in D-VASim prior to SMC in
Uppaal.

Circuit name Threshold value (High) Threshold value (low) Propagation delay value

NAND 15 5 324 (±51.61)
Toggle switch 10 5 1108 (±272.89)
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randomly chosen from a defined range. We, therefore, set the probability of the
expected behavior to be greater than at least 90% as the acceptance criteria. Inputs
correspond to the applied combination of input proteins over the course of simulation
time. The logic-1 for the NAND gate corresponds to 15 or more molecules and logic-0
corresponds to 5 or less molecules. For the toggle switch, the logic-1 corresponds to 20
or more molecules and logic-0 corresponds to 10 or less molecules, as obtained from
D-VASim.

Fig. 5. The process of a genetic NAND gate to produce the 10 molecules of GFP when the input
LacI is not present in a cell (a) Uppaal interpretation. (b) Kinetic Reaction. Note that the value of
ncLacIP1 is 2, due to which the factor KrLacIP1 is multiplied twice in (a).

0.92-0.99
Input combina ons: 0011 10 01

0.95-10.95-1 0.95-1Probability:

98 % 100 % 100 % 100 %Sa sfying Simula ons:

Fig. 6. Statistical model checking of the genetic NAND gate in Uppaal.
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Probability values at the bottom of both figures signifies the probability of the
expected behavior of a circuit for all possible input combinations, where each input
combination is applied for 1000 time units for the NAND gate and 2000 time units for
the toggle switch. These values are chosen sufficiently larger than their respective
propagation delay values, estimated from D-VASim, to ensure that the appropriate
amount of delay is provided to observe the effects of applied input combinations on the
output of the circuit.

Satisfying Simulations indicates the percentage of simulations which satisfy the
defined condition for specific input combination. These conditions are set according to
the truth tables of respective circuits. For example, for the NAND gate, the condition to
be checked for when the input combination is 11, is to see if the concentration of output
protein, GFP, falls below its lower threshold level i.e. 5 molecules. The NAND gate
circuit exhibits the probability of greater than 98% to work correctly when the value of
Kd varies between 45 � 10−4 and 85 � 10−4. Similarly, the toggle switch is at least
93% probable to work correctly when the value of Kd varies between 60 � 10−4 and
85 � 10−4. Outside, these ranges of Kd, the expected behavior do not satisfy the
acceptance criteria mentioned above. In a similar manner, other circuit parameters can
be varied to check the output response of genetic circuits.

Finally, we used D-VASim to observe how the changes of Kd values impact the
threshold value and the output of a circuit. In Table 2, we show the effects of the
boundary values of Kd for both circuits. For example, in the case of the NAND gate,
the effects of lower and higher-bound values of a Kd, 45 � 10−4 and 85 � 10−4,
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Fig. 7. Statistical model checking of the genetic toggle switch in Uppaal.
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respectively, are checked. It is observed that the upper threshold concentration level
required to trigger the output of the NAND gate is increased from 15 to 20 molecules
when the value of Kd was decreased from 75 � 10−4 (default value) to 45 � 10−4. An
increment in the propagation delay value is also observed. The latter is due to the fact
that a decrease in the degradation rate causes the output response of the circuit to be
slower, and thus more input concentration may be required to trigger the output. If the
threshold value of a circuit is kept to its previous value, i.e., 15 at Kd = 45 � 10−4, the
output may appear after a very long time; in other words, the propagation delay
increases further. Likewise, when the value of Kd is increased to 85 � 10−4, the
threshold values as well as the propagation delays are decreased. Similar observations
have been made for the toggle switch as shown in Table 2. These observations indicate
the minimum-high and maximum-low threshold values. For example, in order for the
toggle switch to work within a range of Kd between 60 � 10−4 and 85 � 10−4, the
minimum-high threshold value would be 20 molecules and a maximum-low threshold
value would be 10 molecules.

4 Conclusion

In this paper, we propose a workflow for checking genetic circuit models using sta-
tistical model checking and stochastic simulation. We performed experimentations on
two different-sized genetic circuit models to demonstrate that the proposed workflow
can be applied for the timing and threshold values analysis of any genetic circuit model.
We varied the design parameters of the genetic circuits and checked their probabilities
of working correctly. Furthermore, we analyzed the effects of changing design
parameters on the behavior of a given circuit. The proposed work flow can be used to
check any other property of a genetic circuit; such as the probability of a circuit to reach
a certain state within a specific amount of time. Future work includes using the work
flow to experiment with models of recently published genetic circuits [37] and to verify
those results directly in the laboratory.
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Table 2. Threshold and propagation delay values obtained in D-VASim for upper and lower
bounds of Kd values found in Uppaal.

Circuit name Kd
(� 10−4)

Threshold
value (High)

Threshold
value (low)

Propagation
delay value

NAND 45 20 10 554 (±56.07)
85 15 0 274 (±91.78)

Toggle switch 60 20 10 1228 (±135.11)
85 10 5 833(±97.41)
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Abstract. Partial order reduction has traditionally been based on per-
sistent sets, ample sets, stubborn sets, or variants thereof. Recently,
we have presented a strengthening of this foundation, using source sets
instead of persistent/ample/stubborn sets. Source sets subsume persis-
tent sets and are often smaller than persistent sets. We introduced source
sets as a basis for Dynamic Partial Order Reduction (DPOR), in a frame-
work which assumes that processes are deterministic and that all pro-
gram executions are finite. In this paper, show how to use source sets
for partial order reduction in a framework which does not impose these
restrictions. We also compare source sets with persistent sets, providing
some insights into conditions under which source sets and persistent sets
do or do not differ.

1 Introduction

Verification and systematic testing of concurrent programs are difficult, since
they must consider all the different ways in which processes/threads can inter-
act. Model checking [6,19] addresses this problem by systematically exploring the
state space of a given program and verifying that each reachable state satisfies
a given property. A serious hindrance to the applicability of model checking is
the state-space explosion problem, i.e., that the number of possible interleavings
grows exponentially with the length of program execution. There are several
approaches that limit the number of explored interleavings. Among them, Par-
tial Order Reduction (POR) [7,9,18,27] stands out, as it provides full coverage
of all behaviours that can occur in any interleaving, even though it explores only
a representative subset. POR is based on the observation that two interleavings
can be regarded as equivalent if one can be obtained from the other by swap-
ping adjacent, non-conflicting (independent) execution steps. POR exploits this
observation by guaranteeing that for each possible interleaving, it explores one
that is equivalent to it. This is sufficient for checking many interesting safety
properties, including race freedom, absence of global deadlocks, and absence of
assertion violations [7,9,27].
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Partial order reduction approaches are based on reducing the set of process
steps that are explored at each scheduling point. This set of process steps has
been given different names, including stubborn sets [27], persistent sets [9], and
ample sets [7]. These approaches are rather similar: their differences are mainly
due to the considered model of computation and the class of properties to be
checked. In the following, we will consider the approach based on persistent sets.
Recently, we have proposed an improvement over the persistent set technique,
which is based on a new class of sets called source sets [2]. Source sets subsume
persistent sets (i.e., any persistent set is also a source set), and source sets are
often smaller than persistent sets. Moreover, source sets are provably minimal,
in the sense that the set of explored processes from some scheduling point must
be a source set in order to guarantee exploration of all equivalence classes. This
implies that techniques based on source sets have the potential to produce better
reduction than techniques based on persistent sets.

In our previous work [2], we introduced source sets in the context of stateless
model checking, as a basis for Dynamic Partial Order Reduction (DPOR). We
used a framework, which assumes as restrictions on analyzed programs that
processes (or threads) are deterministic and that all program executions are
finite. We demonstrated the power of source sets by using them as the basis for
two DPOR algorithms: (i) Source-DPOR, which minimally adapts the original
DPOR algorithm due to Flanagan and Godefroid [8] to use source sets instead
of persistent sets, leading to notably better reduction, and (ii) Optimal-DPOR,
which is provably optimal in the sense that it explores exactly one representative
execution in each equivalence class.

In this paper, we consider how to use source sets for partial order reduc-
tion in a framework which does not impose the restrictions of deterministic
processes and terminating computations. We therefore consider a framework
of arbitrary finite-state concurrent programs, in which processes can be non-
terminating and exhibit control non-determinism. This is essentially the class of
programs that is considered in classical works [7,9,18,27] on POR that employ
ample/persistent/stubborn sets, and is used, e.g., in the Promela language of the
widely used SPIN model checker [11]. For this model, we show in this paper how
source sets can be used as a basis for POR in enumerative state-space explo-
ration. We also show how the theory of POR can equally well be based on source
sets, and that the underlying theory is at least as simple as when using persistent
sets.

We first consider the basic principles for partial order reductions, as they
have been formulated for non-deterministic finite-state concurrent programs
in standard texts, e.g., the survey by Clarke et al. [7] or the textbook by
Baier and Katoen [3, Chap. 8]. For simplicity, we limit the exposition to the
detection of local assertion violations and deadlocks. We show that the use of
ample/persistent/stubborn sets can be replaced by source sets.

We thereafter consider the framework of stateless model checking for ter-
minating programs, but allowing control non-determinism, thereby generalizing
the standardly used restriction to deterministic processes [2,8]. We present a
generalization of the Source-DPOR algorithm to this setting.
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Finally, we make a direct comparison between source sets and persistent sets,
with the purpose to characterize under which conditions source sets provide a
strict advantage over persistent sets. We provide examples of situations in which
sources sets are guaranteed to be strictly smaller than corresponding persistent
sets, and also situations in which this is not the case.

To keep the presentation simple, we do not include complementary tech-
niques, most notably sleep sets [10]. Sleep sets are complementary to persistent
sets and source sets; especially in stateless model checking they are essential for
reduction. Including sleep sets, as we did in our prior paper [2], makes the algo-
rithms, and particularly their correctness proofs, more complex. For simplicity,
we have omitted them from this paper, but the observed differences between
source sets and persistent sets remain essentially the same also in the presence
of sleep sets.

Related Work. Early persistent set techniques [7,9,27] relied on static analysis
to compute persistent sets. Sleep set techniques [10] were also used to dynam-
ically prevent explorations that would be redundant. The DPOR algorithm of
Flanagan and Godefroid [8] showed how to construct persistent sets on-the-fly
“by need”, leading to better reduction. Similar techniques have been combined
with dynamic symbolic execution, which is also known as concolic testing, where
new test runs are initiated in response to detected races by flipping these races
using postponed sets [24]. Since then, several variants, improvements, and adap-
tations of DPOR for stateless model checking [14,26] and concolic testing [21,23]
have appeared, all based on persistent sets. In 2014, we introduced source sets,
which are provably more succinct than persistent sets, as a basis for two DPOR
algorithms [2]. We subsequently applied one of them, namely the Source-DPOR
algorithm, to programs executing under the TSO and PSO memory model [1].

Other techniques for reducing state-space explosion in model checking
include, unfoldings [16], which can in principle achieve better reduction than
POR in number of interleavings. However, such techniques [13,20] have larger
cost per explored execution than techniques based on POR, and one of them [13]
also needs an additional post-processing step for checking non-local properties
such as races and deadlocks. Another line of work exploits a weaker form of
equivalence, the maximal causal model for a concurrent computation from a
given execution trace, a notion defined by Serbanuta et al. [25]. This was used
recently [12] for a stateless model checking algorithm, which also explores fewer
traces than classical DPOR techniques. The corresponding algorithm, called
Maximal Causality Reduction, relies on an offline constraint analyzer to for-
mulate constraints that are then solved using an SMT solver.

For the analyses of timed systems, such as those performed by the UPPAAL
model checker [5], partial order reduction techniques have been developed [4,22],
but they have not achieved reductions that are comparable in magnitued to those
observed for untimed concurrent programs.

Organization. In the next section, we introduce our computational model.
In Sect. 3 we formulate a partial-order view of program executions, the
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partial-order framework, along with the definition of source sets. In Sect. 4 we
show that source sets can be used as a basis for POR in state-space exploration.
In Sect. 5 we consider how to actually construct source sets, and consider two
settings: static computation of source sets, as performed in model checkers such
as SPIN, and dynamic computation, as performed in DPOR. We present algo-
rithms for constructing source sets in both these settings. In Sect. 6 we recall the
definition of persistent sets, and show how, under various conditions, source sets
are strictly smaller than persistent sets, but that the strictness may disappear
in some settings. Finally, in Sect. 7 we summarize the findings of the paper.

2 Framework

Let us introduce the technical background material. First, we present our model
of concurrent programs, and thereafter the concepts of independence, races,
and the happens-before relation. To keep the exposition simple, we assume a
simple model of concurrent programs as composed of a finite set of processes,
each of which is finite-state, can be non-terminating, and exhibit control non-
determinism. Processes communicate by reading from and writing to a set of
shared variables. Locks can be seen as shared variables that are manipulated in
a certain way.

2.1 Computation Model

We model a concurrent program as a transition system TS = 〈P,X , S, s0, T 〉,
where P is a finite set of processes (or threads), X is a finite set of shared
variables, S is a finite set of global states, each of which consists of a valuation
of the shared variables and a local state of each process, s0 ∈ S is the initial
global state, and T is a finite set of transitions. Each transition t belongs to a
unique process, denoted ̂t. We assume that each transition can be represented as
a guarded command over the shared variables and the local state of its processes.
If the guard of transition t evaluates to true in s, we say that t is enabled in s;
we denote this by s � t and write t(s) for the unique state that results after t is
executed from state s. We let enabled(s) be the set of transitions that are enabled
in s. A process is said to be blocked in some state s if none of its transitions is
enabled in s. Often, the local state of a process will include a control location,
which is updated by transitions in the usual way.

For a sequence w = t1 . . . tk of transitions, we write s � w to denote that the
sequence w can be executed from s, i.e., that there are states s1 . . . sk such that
with s0 = s we have si−1 � ti and si = ti(si−1) for i = 1, . . . , k, and write w(s)
for sk. If s � w we say that w is an execution sequence from s. An execution
sequence of TS is an execution sequence from its initial state. We will use w and
v with sub- and superscripts for execution sequences from some state, and E
with sub- and superscripts for execution sequences from the initial state. Since
transitions are deterministic, an execution sequence w from s takes the program
to a unique state w(s). When s is the initial state, we will use s[E] to denote
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E(s0). We sometimes use execution sequences instead of states in concepts and
notations; e.g., we sometimes write E � w to denote s[E] � w. For a sequence
of transitions w, we let w\t denote w with the first occurrence of t removed; if
t �∈ w, then w\t is w.

For a set of sequences of transitions W , we write s � W to denote that s � w
for each w ∈ W . We write E(s) for the set of execution sequences w with s � w.

2.2 Partial Order Representation

The basic idea in partial order reduction is to consider executions as partial
orders on transitions. Executions that are represented by the same partial order
are considered equivalent. We therefore formalize how to view executions as
partially ordered sets of events.

Let E be an execution sequence. An event of E is a particular occurrence of
a transition in E. More precisely, an event is a pair 〈t, i〉, representing the ith
occurrence of transition t in the execution sequence. We use e, e′, . . . to range
over events. We let [e] denote the transition of e, and ê denote the process of [e].
We let dom(E) denote the set of events 〈t, i〉 which are in E (i.e., 〈t, i〉 ∈ dom(E)
iff E contains at least i occurrences of t). We use <E to denote the total order
between events in E, i.e., e <E e′ denotes that e occurs before e′ in E. We
use next [E](t) to denote the event that transition t represents when executed
immediately after E.

The partial order view of an execution sequence is obtained by defining a
happens-before relation on its events. Intuitively, the happens-before relation
captures the causal ordering between events in an execution sequence. More
precisely, it captures the orderings that are important for the result of the exe-
cution sequence. For each execution sequence E, the happens-before relation
→E is defined on dom(E) as the transitive closure of the relation �E defined
by letting e �E e′ if e <E e′ (i.e., e occurs before e′ in E) and either

(i) e and e′ are performed by the same process, or
(ii) some shared variable is accessed by both e and e′, and at least one of e or

e′ performs a write access.

Note that two events that are different occurrences of the same transition can
access different sets of variables, e.g., if the accesses are conditional on some
test. It follows that →E is a partial order on dom(E). Any linearization E′

of →E on dom(E) is an execution sequence that has exactly the same events
as E (i.e., dom(E′) = dom(E)) and the same happens-before relation →E′ as
→E . This means that the relation →E induces a set of equivalent execution
sequences, all with the same happens-before relation. We will sometimes refer to
such equivalence classes as Mazurkiewicz traces [15]. We use E � E′ to denote
that E and E′ are linearizations of the same happens-before relation, and [E]�
to denote the equivalence class of E. If E � E′, then all variables are modified
by the same sequence of statements, implying that s[E] = s[E′].
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p: q: r:
write x; read y; read z;

read x; read x;

Fig. 1. Writer-readers code excerpt.

Example 1. In Fig. 1, the three processes p, q, and r perform dependent accesses
to a shared variable x. In this example, let us consider two accesses as dependent
if they concern the same variable and one of them is a write. Since there are no
writes to y and z here, accesses to y and z are not dependent with anything else.
For this program, there are four Mazurkiewicz traces (i.e., equivalence classes of
executions), each characterized by its sequence of accesses to x (three accesses
can be ordered in six ways, but two pairs of orderings are equivalent since they
differ only in the ordering of adjacent reads, which are not dependent). An
execution sequence and its corresponding happens-before relation is shown in
Fig. 2.

p q q r r

E′ w
E

q: r(x)

q: r(y) p: w(x) r: r(z)

r: r(x)

Fig. 2. A sample execution sequence of the program in Fig. 1 is shown to the left. This
execution sequence is annotated by a happens-before relation (the dotted arrows). To
the right, the happens-before relation is shown as a partial order.

Partial order reduction reduces the effort for analyzing a concurrent system
by analyzing only a representative subset of all execution sequences. The idea is
that for each execution sequence E of TS, it is sufficient to analyze a sequence E′

which is equivalent to E. In fact, it is sufficient to analyze a sequence E′ which
is equivalent to some extension of E, i.e., such that E′ � E.v for some v. Any
local assertion violation or global deadlock in E is then also visible in E′. This
relation between E′ and E is important, so we will introduce some additional
notation that will make the subsequent exposition more convenient.

Definition 1. Let E and E′ be execution sequences.

– Let E 	 E′ denote that there is a sequence w such that E.w is an execution
sequence with E.w � E′.

– Let E ∼ E′ denote that there are sequences w and w′ such that E.w and
E′.w′ are execution sequences with E.w � E′.w′.

Intuitively, E 	 E′ denotes that the sequence E is a possible way to start
an execution that is equivalent to E′; thus E can be thought of a “partial order
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prefix” of E′, in the sense that the events in E are a downward-closed subset of
the events in E′, with the same happens-before relation as in E′. Analogously,
E ∼ E′ denotes that the sequence E is a possible way to start an execution
that is equivalent to an execution sequence of the form E′.w′; thus E and E′ are
“consistent” in the sense that they can be extended to produce two equivalent
sequences.

We also introduce relativized versions of these definitions:

Definition 2. Let E be an execution sequence. Then

– v 	[E] w denotes that E.v 	 E.w.
– v ∼[E] w denotes that E.v ∼ E.w.
– v �[E] w denotes that E.v � E.w.

We will sometimes use 	[s] for 	[E], where E is such that s is s[E], and
analogously for ∼[s] and �[s] (note that 	[E] and ∼[E] and �[E] are uniquely
determined by s[E]). An important property is that

– v 	[E] w and w ∼[E] w
′ implies v ∼[E] w

′.

Note that v 	[E] w and w ∼[E] w
′ does not in general imply v 	[E] w

′. As a
simple counterexample, let v and w be p and let w′ be the empty sequence 〈〉,
and observe that v′ ∼[E] 〈〉 for any sequence v′. From this observation, it also
follows that ∼[E] is not transitive.

Finally, we introduce special notation and terminology for the case that w
consists of a single transition:

Definition 3 (Initials and Weak Initials). For an execution sequence w
from s, the set I[s](w) of initials and the set WI [s](w) of weak initials are sets
of transitions defined as follows:

– t ∈ I[s](w) iff t 	[s] w, and
– t ∈ WI [s](w) iff t ∼[s] w.

We let s � t♦w denote that s � t.w and next [E](t) �→E.t.w e for each e ∈
dom[E.t](w) (i.e., the event of t does not “happen before” any event in w), where
E is such that s is s[E]. Intuitively, s� t♦w means that t and w are independent
after the state s. If s � t♦w and s is s[E], then E.t.w � E.w.t, which implies
s[E.t.w] = s[E.w.t], i.e., t and w can be swapped without changing the resulting
state. In the special case when w contains only one transition t′, then s � t♦t′

denotes that the transitions t and t′ are independent after s. We use s �� t♦w to
denote that s � t and s � w, but that s� t♦w does not hold.

As examples, in Fig. 2, we have q.r 	[E′] q.q.r.r but q.q �	[E′] r.r. We also
have q.q ∼[E′] r.r since E′.q.q.r.r � E′.r.r.q.q. In Fig. 2, we further have E′ �q♦r
since q and r are not happens-before related in E′.r.q. We also observe that
I[E′](w) = {q}, as q is the only process occurring in w and its first occurrence
has no predecessor in the dotted relation in w. Furthermore, WI [E′](w) = {q, r},
since r is not happens-before related to any event in w.
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3 Principles of Partial Order Reduction

The purpose of partial order reduction is to reduce the state-space explosion that
arises from the many possible interleavings of transitions of concurrent processes.
Instead of generating and analyzing all executions of a concurrent system, POR
generates and analyzes only a representative subset.

Following other works [7,9], we can consider partial order reduction as con-
structing a reduced state graph. A transition system 〈P,X , S, s0, T 〉 induces a
labeled state-transition graph AG, whose nodes are the states in S, with labeled
edges of the form s

t−→ s′ whenever t(s) = s′. Each execution sequence of the
concurrent system corresponds to a path from the initial node of AG. One can
explain POR as constructing a reduced state-transition graph AR, whose nodes
are a subset SR of S, and whose edges are a subset of the edges of AG. The
reduced graph AR must still cover all behaviors of AG in the sense that for
any execution sequence E of AG, there is an execution sequence E′ in AR with
E 	 E′. Note that the above principle of constructing a reduced state-transition
graph represents the situation both in stateful model checking, with an arbitrary
AG, as well as in stateless model checking, where AG is tree-shaped.

In enumerative state-space exploration, AG is constructed by a recursive
exploration of all enabled transitions from global states already found to be
reachable, starting from the initial global state. When applying partial-order
reduction, only a subset of the enabled transitions are explored from any global
state, thereby constructing a reduced state-transition graph AR. Let us consider
what are the restrictions on this subset. Consider a global state s. The above
requirement that AR must cover all behaviors of AG can be satisfied by requiring
that for any execution sequence w from s in AG, there is an execution sequence
w′ from s in AR with w 	[s] w

′. Let now w′ be of the form t.w′′, i.e., let t be the
first transition in w′. From w 	[s] t.w

′′ it follows that w ∼[s] t, i.e., t ∈ WI [s](w).
Since w is an arbitrary execution sequence from s, we conclude that the set of
transitions explored from s must include some transition in WI [s](w) for each
execution sequence from w. Thus, in the reduced state graph, it is is necessary
to explore at least one transition in WI [s](w) for each execution w from s. We
therefore give a name to such sets.

Definition 4 (Source Sets). Let s be a state, and let W be a set of execution
sequences from s. A set T of transitions is a source set for W after s if for each
w ∈ W we have WI [s](w) ∩ T �= ∅.

We say that T is a source set after s to denote that T is a source set for E(s).
For an execution sequence E, we say that T is a source set (for W ) after E if T
is a source set (for W ) after s[E].

The key property is that if T is a source set after s, then for each execution
sequence w ∈ W , there is a transition t ∈ T and an execution sequence w′ such
that E.t.w′ � E.w.v for some sequence v. In particular, if E.w is maximal, then
E.t.w′ � E.v. Therefore, when an exploration algorithm intends to cover all of
E(s), the set of transitions that are chosen for exploration from s must be a
source set after s. We formulate this observation as a theorem.
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Theorem 1 (Key Property of Source Sets). Let s be a state, and let W ′ be
a subset of E(s) such that for each w ∈ E(s) there is a w′ ∈ W ′ with w 	[s] w

′.
Then the set of first transitions of sequences in W ′ is a source set after E.

This theorem implies that a necessary condition for the correctness of POR
is that the set of explored transitions is a source set. As we will show in the next
section, this condition is actually sufficient if AG is acyclic. If AG may contain
cycles, one more condition will be needed.

4 Partial Order Reduction in State-Space Exploration

In this section, we show how source sets can be used for partial order reduction
in enumerative model checking. This section has borrowed inspiration from the
presentation by Clarke et al. [7, Sect. 4], that shows how to use ample sets (which
for the purposes of this paper are essentially the same as persistent sets) in POR.
We show that source sets can be used instead of ample sets or persistent sets to
obtain reduction. Since, as we show in Sect. 6, source sets are at least as powerful
as persistent sets of ample sets, the obtained reduction will be at least as good
and sometimes better.

Let us consider the conditions for producing a reduced state transition graph
AR by restricting the set of enabled transitions that are explored from each state.
We have the following main theorem.

Theorem 2. Assume a concurrent system with global state graph AG. Let AR

be a reduced state transition graph obtained from AG by restricting the set of
transitions that are explored from each state. If the following two conditions are
satisfied:

1. for each state s in AR, the set of explored transitions is a source set after s,
and

2. for each cycle in AR, if a transition t is enabled in all states of the cycle, then
t must be explored from some state of the cycle,

then for each execution E in AG, there is an execution E′ in AR with E 	 E′.

Proof. We will prove the following stronger property:

for each state s ∈ AR and execution sequence w from s in AG, there is an
execution w′ in AR with w 	[s] w

′

by induction on the length of w. The base case is trivial. For the inductive step,
by condition (1), AR explores some transition t in WI [s](w) from s. We have two
cases.

– t ∈ w. From t ∈ WI [s](w) we infer t.(w\t) � w. By the induction hypothesis
applied to the state t(s) and execution sequence w\t from t(s), the reduced
state graph AR contains a sequence w′′ with (w\t) 	[t(s)] w

′′, implying that
AR contains the sequence t.w′′ from s. We furthermore have that t.(w\t) 	[s]

t.w′′, i.e., since t.(w\t) �[s] w we have w 	[s] t.w
′′, meaning that we can take

t.w′′ as w′.
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– t �∈ w. Let us use t1 to denote t. Then t1 ∈ WI [s](w) and t1 �∈ w imply
s� t1♦w, which implies that w is an execution sequence also from t1(s). There-
fore, again by condition (1), AR explores some transition t2 in WI [t(s)](w)
from t(s). Continuing in this way, we have two cases:
(i) there is a sequence t1t2 . . . tk such that for i = 1, . . . , k, the sequence w

is an execution from (t1 . . . ti−1)(s) and (t1 . . . ti−1)(s) � ti♦w but tk ∈
I[(t1...tk−1)(s)](w). By extending the reasoning from the first case, we have
that AR contains a sequence t1 . . . tk.w

′′ from s such that tk.(w \ tk) 	[s]

t1 . . . tk−1w
′′. Since tk.(w \ tk) �[s] w, we have w 	[s] t1t2 . . . tk−1w

′′,
meaning that we can take t1t2 . . . tk−1w

′′ as w′.
(ii) there is an unbounded sequence t1t2 . . . such that for i = 1, 2, . . ., the

sequence w is an execution from t1 . . . ti−1(s) and t1t2 . . . ti−1(s)� ti♦w.
It follows that the sequence of states t1 . . . ti−1(s) must form a loop
somewhere, and furthermore that the first transition of w is enabled
in all states of that loop. By condition (2), the first transition must
then be executed from some state of the loop, and we are back to the
previous case. ��

5 Computing Source Sets

In the previous section, we showed how source sets can be used for partial order
reduction in model checking. In this section, we consider the problem of how to
actually compute source sets, given some transition system model. The definition
of source sets can not be used directly for this purpose, since it is formulated in
terms of all possible sequences that should be analyzed, and we do not want to
explore all of them in the first place. For the case of persistent sets, a variety of
techniques for computing them have been proposed. One broad classification of
techniques is into static techniques, which compute source sets by analyzing the
program source, and dynamic techniques, which compute persistent sets incre-
mentally by analyzing already performed exploration. We will present algorithms
for computing source sets in both these settings. We first present a technique for
static computation of source sets, and thereafter a dynamic one.

5.1 Static Computation of Source Sets

Early approaches to partial order reduction [9,18,27] computed persistent sets
statically, by analyzing the program text. Various static algorithms were pro-
posed for computing persistent sets, ample sets, or stubborn sets; these algo-
rithms are not so different from each other, and are related to an earlier algo-
rithm by Overman [17]. Below, we present an analogous technique for static
computation of source sets.

We say that a transition t is may-enabled in a state s if it is enabled in s or
can become enabled after a sequence of transitions from processes other than
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̂t. An access is defined to be a read or a write to some shared variable. Two
accesses conflict if they access the same shared variable and at least one of them
is a write.

For the computation of source sets, we assume that for each state we can com-
pute an over-approximation of the set of may-enabled transitions in that state.
Define a may-set in a state s to be a set of transitions which contains exactly
one may-enabled transition of each process that has a may-enabled transition
in s; for this definition, we use the computed over-approximation of the set of
may-enabled transitions. We further assume that we can compute the following,
possibly overapproximating, sets. This can be done, e.g., by static analysis of
the control flow of the code of each process.

– init accesses [s](t), for an enabled transition t, contains the set of accesses t

can perform when t is executed as the first transition of process ̂t from s.
– future accesses [s](t), for a may-enabled transition t, contains the set of

accesses that can be performed by ̂t in any execution sequence from s, in
which t is the first transition of ̂t.

We expect that init accesses [s](t) ⊆ future accesses [s](t).
The following theorem provides a sufficient characterization of source sets.

Theorem 3. Let s be a global state, A set T ⊆ enabled(s) of transitions is a
source set after s if each may-set T ′ in s contains a non-empty subset T ′′ such
that

– for each t′′ ∈ T ′′ and each t′ ∈ (T ′\T ′′), no access in init accesses [s](t′′)
conflicts with any access in future accesses [s](t′).

Proof. We use the definition of source sets (Definition 4). Consider a sequence
w ∈ E(s). Define a may-set T ′ in s which for each process p that has a transition
in w contains the transition of p that occurs first; if p has no transition in w then
T ′ can contain any may-enabled transition of p. By the condition in the theorem,
the set T ′ has a subset T ′′ ⊆ T such that for each t′′ ∈ T ′′ and each t′ ∈ (T ′\T ′′),
no access in init accesses [s](t′′) conflicts with any access in future accesses [s](t′).
We split the proof into two cases.

1. w contains no transition in T ′′. We then claim that s � t′′♦w for each t′′ ∈
T ′′. This follows by establishing that no access by t′′, when performed in
s, conflicts with any access by any transition in w. To see this, consider an
arbitrary transition t′′′ in w. Let t′ be the first transition of process ̂t′′′ in w.
The condition in the theorem then implies that no access in init accesses [s](t′′)
conflicts with any access in future accesses [s](t′), in particular not with any
access by t′′′.

2. w contains a transition in T ′′. Then let t′′ be the first of these. Then w has
a prefix of the form v.t′′, and by using the condition in the theorem in the
same way as in the previous case, we infer that s� t′′♦v, which implies that
t′′ ∈ I[s](w), i.e., t′′ ∈ WI [s](w). ��
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p: q:
write x; (t1) write y; (t3)

or
write y; (t2)

Fig. 3. Non-deterministic program.

Let us illustrate a use of Theorem 3, and also contrast it with persistent sets.
Consider the simple program with two processes in Fig. 3. Here, the set {t2, t3}
is a source set, which satisfies the conditions in Theorem 3. If we choose T ′ as
{t1, t3} in the theorem, then we can choose T ′′ as {t3}. Note that {t2, t3} is not
a persistent set: any persistent set must include all transitions.

5.2 Dynamic Computation of Source Sets

Let us next consider how source sets can be computed dynamically, i.e., by
actually exploring execution sequences from a state. The motivation for the
dynamic approach is that static analysis often over-approximates possible con-
flicts between transitions, thereby limiting the achievable reduction. Dynamic
approaches improve the precision by recording actually occurring conflicts dur-
ing the exploration and using this information to construct source sets on-the-fly,
“by need”. The dynamic approach has been particularly successful in stateless
model checking, under the name Dynamic Partial Order Reduction (DPOR),
first presented by Flanagan and Godefroid [8]. DPOR requires that the state
space is acyclic and finite. This means that executions must terminate by them-
selves within a bounded number of steps. Then the state space is a finite tree,
built from execution sequences E. Each execution sequence E leads to a unique
s[E]. From the point of view of the exploration, two different execution sequences
E and E′ are considered to be different states, even if s[E] = s[E′].

Let us consider how to compute source sets dynamically. A näıve approach
may consume a significant effort in exploring sequences from s[E] only for the
purpose of computing source sets, exploration which is otherwise wasted. A key
idea of DPOR is to compute source sets, not by separate exploration, but by
analyzing the execution sequences that are anyway explored for analyzing the
transition system. More precisely, if E is an explored execution sequence, then
the set of transitions which will be explored from s[E] is constructed incremen-
tally by the DPOR algorithm. Following [8], we use backtrack(E) to denote this
set of transitions. When initiating the exploration from s[E], the set backtrack(E)
is initialized with the enabled transitions of an arbitrary process. During the
exploration from s[E], the algorithm explores sequences of the form t.w from
s[E], for each t ∈ backtrack(E). These sequences are analyzed and, if needed,
transitions are added to backtrack(E), which will then induce exploration of
additional sequences, etc. The key idea is that whenever a sequence of form
t.w′.t′ is explored from s[E], in which the events corresponding to t and t′ are
in a race, then the DPOR algorithm must ensure that backtrack(E) contains a
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transition which begins some execution sequence in which this race is reversed.
At the end of the exploration, the set backtrack(E) should be a source set
after s[E].

Let us now make this idea more precise in our context. We first introduce
some notation. For an execution sequence E and an event e ∈ dom(E), let:

– pre(E, e) denote the prefix of E up to, but not including, the event e.
– notdep(e,E) denote the sub-sequence of E consisting of the events that occur

after e but do not “happen after” e (i.e., the events e′ that occur after e such
that e �→E e′).

Let E be an execution sequence, and let e and e′ be two events in dom(E), with
e <E e′. We say that e and e′ are in a reversible race, denoted e �E e′, if

– ê �= ̂e′ and e →E e′ and there is no event e′′ ∈ dom(E), different from e′ and
e, such that e →E e′′ →E e′, i.e., e and e′ are in a race, and

– pre(E, e) � notdep(e,E).[e′], i.e., e′ can be executed even if e is not, i.e., it is
not the case that e′ is enabled by e.

Intuitively, e �E e′ denotes that there is an equivalent execution sequence E′ �
E in which e and e′ are adjacent, and that e does not enable e′. Therefore, the
order of e and e′ can be reversed.

Example 2. In Fig. 2, there are two pairs of events e and e′ that are in a race,
namely 〈p, 1〉, 〈q, 2〉 and 〈p, 1〉, 〈r, 2〉. It also holds for both these pairs that e �E

e′ since both q and r are enabled before 〈p, 1〉. In other words, both the races in
the program are reversible.

We will now derive sufficient conditions for adding transitions to
backtrack(E). For this derivation, we assume, as inductive hypothesis, that when-
ever t ∈ backtrack(E), our algorithm explores all sequences in E(E.t) in the sense
that for each w ∈ E(E.t) it explores a sequence w′ with w 	[E.t] w

′. This induc-
tive hypothesis can also be used to build a proof of correctness the resulting
DPOR algorithm (see [2,8]).

The requirement that backtrack(E) be a source set after s[E] upon finish-
ing the exploration implies that upon finishing the exploration from s[E], there
should be no execution sequence w from s[E] with WI [E](w)∩backtrack(E) = ∅.
Assume, to derive a contradiction, that such a sequence w anyway exists. W.l.o.g.
we can assume that w does not have any proper prefix with this property. It then
follows from Definition 4 that w is of form w′.t′ such that E � t♦w′ for some
t ∈ backtrack(E). To see this, note that by the assumption that w is shortest
there is a transition t in WI [E](w′) ∩ backtrack(E), and since we cannot have
t ∈ I[E](w′) (this would imply t ∈ I[E](w)), we must have E � t♦w′. Since
t ∈ backtrack(E), it could be hoped that the exploration will explore a sequence
of the form t.w′.t′ from s[E]. However, in spite of the fact that E � (w′.t′),
it is not certain that E � (t.w′.t′), since t′ may be disabled by t (note that
E.t.w′ � E.w′.t since E� t♦w′). We must therefore consider two cases.
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1. E � (t.w′.t′), i.e., t′ is not disabled by t after E.w′. Let the events in E.t.w′.t′

corresponding to t and t′ be e and e′, respectively. Then e �E.t.w′.t′ e′, i.e.,
e and e′ are in a reversible race, since e depends with e′ but not with any
event in w′. In this case, since t is already in backtrack(E), by the above
inductive hypothesis, some sequence of the form w′′ with w′.t′ 	[E.t] w

′′ is
explored from s[E.t]. Since the sequence w′.t′ is a partial-order prefix of w′′,
the race between e and e′ will occur also in E.t.w′′, i.e., w′′ has a prefix
w′′′.t′ where t′ corresponds to e′, such that e �E.t.w′′′.t′ e′. Now let u be
notdep(e,E.t.w′′′), i.e., u consists of the events of w′′′ that do not happen-
after e (note that e corresponds to t in E.t.w′′′). It follows that u 	[E.t] w

′′′,
hence that u 	[E.t] w

′′, which together with w′.t′ 	[E.t] w
′′ implies w′ ∼[E.t] u.

Noting that no events in w′ nor in u happen-after e, we derive w′ ∼[E] u. More-
over, since w′ and u contain the same events that happen-before e′ after E,
we infer w′.t′ ∼[E] u.t

′. Let us now impose the requirement that backtrack(E)
must contain some transition t′′ in I[E](u.t′): if backtrack(E) does not already
contain such a transition, then one is added. Then w′.t′ ∼[E] u.t

′ and t′′ in
I[E](u.t′) implies t′′ ∈ WI [E](w′.t′), i.e., t′′ ∈ WI [E](w). This violates the
assumption WI [E](w) ∩ backtrack(E) = ∅, and we have derived our contra-
diction.
The conclusion in this case is that the dynamic computation of source works if
it has the property that whenever a race of the form e �E.t.w′′′.t′ e′ is encoun-
tered during exploration, then backtrack(E) must contain some transition in
I[E](u.t′), where u.t′ is as above.

2. E �� (t.w′.t′), i.e., t′ is disabled by t after w′. In this case, we can only rely
on the fact that E � (t.w′). As in the previous case, it is guaranteed that a
sequence of the form w′′ such that w′ 	[E.t] w

′′ will be explored from s[E.t] We
would now like to find some prefix of w′′ which plays the same role as w′′′ in
the preceding case, i.e., such that thereafter t′ could be executed but has been
disabled by t. If so, we could detect a “race” between the (blocked) execution
of t′ and e (corresponding to t), and proceed as in case 1. The problem is
that, in general, there may not be such a prefix. Namely, it may be the case
that w′′ contains other transitions of ̂t′ that are independent from the events
in w′, and change the control location of ̂t′ so that t′ cannot be performed
even if it had not been disabled by t. This can be solved by requiring that
the race detection in the construction of source sets consider the possible
subsequences u of w′′ that may be equivalent with w′, for which w′ �[E] u
could be possible. Since the race detection does not know the sequence w′′′, it
must consider any subsequence u with u 	[E] w

′′. For any such subsequence,
we let u play the same role as in the previous case, and continue as in the
previous case.

In conclusion, we have derived requirements on how to add transitions to the
set backtrack(E), which guarantee that backtrack(E) is a source set when the
exploration from s[E] has completed. The above inductive hypothesis can then
be used to prove that the resulting DPOR algorithm explores all equivalence
classes of executions, in the same way as in Theorem 2.
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Algorithm 1. Source-DPOR algorithm.

Initial call : Explore(〈〉)
1 Explore(E)
2 foreach e ∈ dom(E) do
3 let E′ = pre(E, e);
4 let w = notdep(e, E);
5 foreach subsequence u of w such that u �[E′] w do
6 foreach transition t that is blocked in s[E] do
7 if [e] disables t after E.u then
8 let v = u.t;
9 if I[E′](v) ∩ backtrack(E′) = ∅ then

10 add some t′ ∈ I[E′](v) to backtrack(E′);

11 if there is some enabled process p at s[E] then
12 backtrack(E) := all enabled transitions of p;
13 while ∃t ∈ backtrack(E) do
14 foreach e ∈ dom(E) such that(e �E.t next [E](t)) do
15 let E′ = pre(E, e);
16 let v = notdep(e, E).t;
17 if I[E′](v) ∩ backtrack(E′) = ∅ then
18 add some t′ ∈ I[E′](v) to backtrack(E′);

19 Explore(E.t);

Let us now collect this reasoning into an algorithm. Algorithm 1 shows an
adaptation of the Source-DPOR algorithm [2, Algorithm 5] to our setting, with-
out the use of sleep sets.

Source-DPOR uses the recursive procedure Explore(E) to perform a depth-
first search, where E can be interpreted as the stack of the search, i.e. the past
execution sequence explored so far. The algorithm maintains, for each E′E, a set
backtrack(E′) of transitions that will eventually be explored from E′. Each set
backtrack(E) is a set of transitions that are enabled from s[E]. It will be gradually
expanded during the exploration; at the end it will be a source set after E.
Explore(E) initializes backtrack(E) to consist of all enabled transitions of some
arbitrary process (line 12). Thereafter, for each transition t in backtrack(E) the
algorithm performs two phases: race detection (lines 14–18) and state exploration
(line 19). In addition, for each explored execution E, it performs a race detection
for disabled transitions (lines 2–10).

In the race detection phase, which corresponds to case 1 above and starts at
line 14, the algorithm finds the events e ∈ dom(E) that are in a reversible race
with the next step of t. This next step of t corresponds to event e′ in the above
case 1. For each such event e ∈ dom(E), the algorithm must explore execution
sequences in which the race is reversed. This is done as explained in case 1 above,
where E′ in the algorithm corresponds to E in case 1, where E in the algorithm
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corresponds to E.t.w′′′ in case 1, where t in the algorithm corresponds to t′ in
case 1, and where v in the algorithm corresponds to u.t′ in case 1.

The race detection for disabled transitions, corresponding to case 2 above, is
at lines 2–10. It is done for each execution sequence E, as explained in the text
in case 2, where E′ in the algorithm corresponds to E in case 2, where E in the
algorithm corresponds to E.t.w′′ in case 2, where u in the algorithm corresponds
to u in case 2, and where t in the algorithm corresponds to t′ in case 2.

6 Relating Source Sets and Persistent Sets

In this section, we provide some comparisons between source sets and persistent
sets. We first define persistent sets. Thereafter, we show some properties of
source sets and persistent sets that distinguish them from each other, followed by
theorems that provide conditions under which source sets can be strictly smaller
than persistent sets.

6.1 Persistent Sets

Let us first define persistent sets in our framework. Adapted to our context, a
set T of transitions is a persistent set for W after s if for each sequence in W ,
the first step that is dependent with the first step of some transition in T must
be taken by some transition in T . A formalization could go as follows.

Definition 5. (Persistent Sets). Let s be a state, and let W ⊆ E(s) be a set
of execution sequences from s. A set T of transitions is a persistent set for W
after s if for each prefix w of some sequence in W , which contains no occurrence
of a transition in T , we have E� t♦w for each t ∈ T .

We say that T is a persistent set after s to mean that T is a persistent set for
E(s) after s. We note that the definition of persistent sets is slightly more com-
plex than the definition of source sets. In particular, since its definition involves
universal quantification over all elements of the persistent set, the elements of a
persistent set are not independent of each other. This is noted in the following
theorem.

Theorem 4. If T is a source set after s and T ⊆ T ′, then T ′ is a source set
after s. This property does not hold for persistent sets, i.e., it is possible that T
is a persistent set after s, but T ′ is not.

In other words, persistent sets have the unpleasant property that adding a
process may disturb the persistent set so that even more process may have to be
added. This property is relevant in the context of DPOR, where the first member
of the persistent set is often chosen rather arbitrarily (it is the next process in
the first exploration after E), and where the persistent set is expanded by need.

For source sets, Theorem 4 follows directly from Definition 4. For persistent
sets, a counter-example is provided by the program in Fig. 1, where {q} is a
persistent set, but {p, q} is not.
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Continuing the comparison between source sets and persistent sets, we first
note some rather direct properties, including the following.

– Any persistent set is a source set.
– Any one-process source set is a persistent set.

An interesting question is then whether there are situations where any persistent
set contains a strictly smaller source set. We note that the program in Fig. 1 does
not illustrate such a situation, since the smallest persistent sets and the smallest
source sets coincide: they are either {q} or {r}. Nevertheless, the answer to this
question is yes, and we formulate this as a theorem.

Theorem 5. There are programs for which any persistent set from the initial
state contains a strictly smaller source set.

Proof. We give an example. In Fig. 4, the three processes p, q, and r perform
dependent accesses to the shared variables x, y, and z. Two accesses are depen-
dent if they access the same variable and at least one is a write. For this program,
there are 75 possible execution sequences, partitioned over 7 Mazurkiewicz traces
(there are 8 ways to direct the three races in the program, but it is not possible
to let the read precede the write in all of them).

Initially: x = y = z = 0

p: q: r:
m := x; (p1) n := y; (q1) o := z; (r1)
if (m = 0) then if (n = 0) then if (o = 0) then

z := 1; (p2) x := 1; (q2) y := 1; (r2)

Fig. 4. Program with non-minimal persistent sets.

In Fig. 4, it is obvious that a single transition cannot be a source set. For
instance, the set {p1} does not contain the initials of execution q1.q2.p1.r1.r2,
since q2 and p1 perform conflicting accesses. On the other hand, any subset
containing two enabled transitions is a source set. To see this, let us choose
{p1, q1} as the source set. Obviously, {p1, q1} contains an initial of any execution
that starts with either p1 or q1. Any execution sequence which starts with r1 is
equivalent to an execution obtained by moving the first step of either p1 or q1
to the beginning:

– If q1 occurs before r2, then q1 is an initial, since it does not conflict with any
other transition.

– If q1 occurs after r2, then p1 is independent of all steps, so p1 is an initial.

We claim that {p1, q1} cannot be a persistent set. The reason is that the exe-
cution sequence r1.r2 does not contain any transition in the persistent set, but
its second step is dependent with q1. By symmetry, it follows that no other
two-transition set can be a persistent set. ��
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6.2 Fine-Grained Source Sets

It follows rather directly from the definition that for persistent sets we have the
following property:

If some enabled transition of process p is in the persistent set at s, then all
enabled transitions of process p are in the persistent set at s.

The property follows by observing that if transition t of process p is in the
persistent set, and t′ is some other enabled transition of p, then the execution
sequence t′ is dependent with t, and therefore t′ must be in the persistent set.

Initially: x = y = flg = 0

p: q:
await (flg = 0) then flg := 1; (p1) await (flg = 0) then flg := 1; (q1)

or or
x := 1; (p2) y := 1; (q2)

Fig. 5. Program with fine-grained source set.

For source sets, however, this property need not hold. Consider the program
in Fig. 5. Here the transitions (p1) and (q1) should be interpreted as guarded
commands that are enabled only when flg = 0. (It is possible to make example
programs also without disabling transitions, but merely changing their effect
depending on some test.) We claim that the set {(p2), (q2)} is a source set from
the initial state. For instance, if an execution sequence E begins with (p1), then
(q1) is disabled, so (q2) is a weak initial of E.

6.3 Excluding Conditionals

We note that the example in Fig. 4 uses conditionally executed statements. This
is not a coincidence. In fact, it turns out that if the code of the processes does
not contain any branches or conditionals, i.e., all executions of a process access
the same variables in the same order, then Theorem 5 does not hold as long as
processes are deterministic. Still recall however, that non-minimal source sets
need not be persistent sets.

If we allow non-determinism, then it was shown in Fig. 3 that there are simple
programs whose minimal source sets are strictly included in any persistent sets.
In the absence of both conditionals and non-determinism, minimal source sets
and persistent sets are the same, as shown in the following theorem.

Theorem 6. For programs, in which each process performs a single sequence
of unconditional reads and writes, minimal source sets coincide with minimal
persistent sets.
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Proof. To see this, consider a program consisting of a set of processes, in which
each process executes a deterministic straight-line program without conditionals.
We can uniquely identify a transition by the process that executes it. Let us
consider the program in its initial state. For processes p, q, let p� q denote that
the first step of p is dependent with some step of q. It can easily be seen that
persistent sets satisfy the following property:

P is a persistent set iff p ∈ P and p � q implies q ∈ P .

This follows rather naturally from the definition of persistent sets: if p ∈ P and
p � q and q �∈ P , then consider the sequence of steps of q up to and including
the step that is dependent with the first step of p. This sequence is outside
P , but is dependent with the first step of some process in P , hence P is not
a persistent set. The above property implies that each minimal persistent set
is a terminal strongly connected component (SCC) in the direct graph whose
nodes are processes, and whose directed edges are defined by the relation �.
Conversely, a terminal SCC P is a persistent set, since any execution sequence
that does not contain steps of processes in P is by definition independent of the
first steps ot processes in P .

For source sets, it also holds that a source set must include a terminal SCC
in the direct graph defined by the relation �. Namely, suppose some set T does
not include a terminal SCC. This means that for each p1 ∈ T there is a sequence
of processes p1 p2 . . . pn with pi ∈ T and pi � pi+1 for i = 1, . . . , n − 1, but
pn �∈ T . Consider a longest such sequence. We first assume that it includes all
processes in T . Let the execution sequence E consist of all the steps of process
pn, thereafter the steps of process pn−1 and so on, until finally all steps of p1.
It is obvious that no process in T can be a weak initial of E. This argument
can also be extended to the case where there is no sequence that includes all
processes in T . Conversely, any set which includes a terminal SCC is a source
set, since for any execution sequence E we can take as initial the first occurring
process of that SCC. ��

7 Concluding Remarks

In this paper, we have shown that source sets are suitable as a general foun-
dation for partial order reduction. We have shown that source sets can be used
both in enumerative model checking, as performed by SPIN, and in stateless
model checking for possibly non-deterministic terminating programs. We have
also highlighted some differences between source sets and persistent sets, thereby
providing some insights into conditions under which source sets and persistent
sets do or do not differ.

Since source sets are more succinct, and often strictly more succinct than
corresponding persistent sets, it means that source sets can replace persistent
sets as a foundation for partial order reduction.

Acknowledgments. We would like to thank the anonymous reviewers for comments
and suggestions that have improved the presentation.
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Abstract. There exists a large variety of schedulability analysis tools
based on different, often incomparable timing models. This variety makes
it difficult to choose the best fit for analyzing a given real-time system.
To help the research community to better evaluate analysis tools and
their underlying methods, we are developing a framework which consists
of (1) a simple language called RTSpec for specifying real-time systems,
(2) a tool chain which translates a system specification in RTSpec into
an input for various analysis tools, and (3) a set of benchmarks. Our
goal is to enable users and developers of schedulability analysis tools to
compare such tools systematically, automatically and rigorously.

Keywords: Real-time systems · Schedulability analysis · Formal
semantics

1 Introduction

Schedulability analysis is an offline approach to evaluating the temporal correct-
ness of real-time (RT) systems in terms of whether all software tasks meet their
deadlines at runtime. Numerous timing models and corresponding schedulability
tests have been proposed since the 1970s; see [10,24] for surveys. Some of them
have been implemented in tools, called analyzers in the sequel, e.g. MAST [15],
TIMES [5], Cheddar [26], SymTA/S [16], SchedMCore [8], pyCPA [12], etc.

This variety of analyzers makes it difficult to choose the best fit for a given
real-time system under study. Indeed, the timing models underlying analyzers
are often incomparable, mainly because they make incomparable choices on the
precision with which one can express the timing-relevant aspects of an RT sys-
tem. Such choices mainly concern the models describing (1) the activation of
tasks, (2) their resource requirements and (3) the scheduling policies used to
arbitrate between them. Also, schedulability is only one possible type of timing
requirement: other options include e.g. weakly-hard properties (no more than m
deadline misses out of k task executions).

To compare the expressivity of the models used by analyzers as well as the
precision of the analysis results that they produce, we need a common set of
c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 539–559, 2017.
DOI: 10.1007/978-3-319-63121-9 27
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test cases provided in a common input format. Several formalisms exist (e.g.
MARTE [20] and Amalthea [1]) whose goal is to be as expressive as possible.
Unfortunately they are not suitable for our purpose as they do not provide a
formal semantics. In contrast, timed automata [3] provide a formal model which
can be used to represent real-time systems at an arbitrary level of precision,
and can thus express the operational semantics of any RT system model. This
expressivity comes at a price: there is currently no generic way of specifying
real-time systems in a timed automata based tool such as UPPAAL [17].

In this paper we propose RTSpec, a formalism for real-time system specifica-
tion with flexible syntax and rigorous semantics. A modular library of UPPAAL
models provides the operational semantics of RTSpec. Based on this library, the
timing model of various analyzers can be formalized, and mappings between
their respective input formats can be rigorously defined. Our overall target is a
framework which comprises the RTSpec formalism, a tool chain for automati-
cally translating RTSpec into the input of various analysis tools, and a set of
benchmarks which are synthetic or derived from industrial case studies. Such
a framework would provide a systematic, automated and rigorous methodology
for evaluating analyzers.

The paper is structured as follows. Section 2 discusses related work. Section 3
sets the background of our work with a brief introduction to RT systems and
timed automata. Section 4 overviews the automata library RTLib. Section 5
presents the syntax of RTSpec. Section 6 presents the methodology our frame-
work provides for different types of users. Section 7 concludes the paper and
discusses the future work.

2 Related Work

Our contribution relates to the research in three areas: specification languages
for real-time systems, formal models for real-time system specification and com-
parison of real-time analyzers.

2.1 Specification Languages for Real-Time Systems

Let us first note that, in principle, the input format of any existing analyzer
could be a candidate for the role of common input format. But these specification
languages can only express, quite understandably, the system features that their
analyzer can handle. For example, only a few tools such as pyCPA [12] propose an
expressive activation model which specifies the maximum number of activations
in a given time window. Using an input format which does not encompass such
functions would be unfair towards the corresponding family of tools and analysis
methods. The same goes for input formats which do not allow specifying offsets,
or dependent tasks etc. Note that some simulation tools, e.g. ARTISST [11],
provide much more expressive specification languages. In that case however, the
semantics of the input format is not formally given and can only be clarified
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through simulation. We therefore restrict ourselves for the moment to static
analyzers. RTSpec could be a good starting point to providing a common input
format for simulation tools as well.

There exist a few high-level specification languages aiming at generality. For
example, MARTE [20] is a UML profile for embedded and real-time aspects of
systems that has been defined with the aim of putting together all the concepts
used in some existing framework or tool. This generality, however, is mainly
meant at the level of vocabulary. No formal semantics is given for the different
concepts in the vocabulary, and this is done on purpose, in order to leave room
for semantic variations. Note that there exists a semantic framework but it would
only allow to define a declarative semantics — defined by a set of constraints on
timed event streams. Amalthea [1] is an open source framework for specifying
real-time embedded systems maintained by an industrial consortium. It aims to
be comprehensive with respect of the real-time features captured by its language.
It additionally provides connections to simulation and analysis. Unfortunately,
there is no explicit effort to formally define a semantics for the Amalthea lan-
guage. Instead, the semantics is implicitly defined by the connections with these
external tools, and hopefully in a non-contradictory manner.

Another related work is the on-going project Waruna1, which aims to inte-
grate tools at different development stages so as to automate the analysis of tim-
ing properties on design models of real-time systems. Seeing that architecture
design models in AADL [13], SysML [28] or MARTE [21] may contain timing
properties, Waruna intends to extract timing related information from design
models and input them to analysis tools, e.g. Cheddar, MAST, RTaW-Pegase2,
etc. In contrast to RTSpec, the model transformations in Waruna are defined at
the metamodel level and lacking of a formal semantics.

We view our RTSpec contribution as complementary to initiatives such as
MARTE, Amalthea or Waruna. Indeed, our effort is less focused on having an
exhaustive set of timing features. Instead, we provide a well-founded semantic
background for those features that can currently be handled by at least one
schedulability verification tool.

2.2 Formal Models for Real-Time System Specifications

We aim to provide a unified semantic framework for specifying real-time systems.
Let us here review existing formalisms which could provide such a framework
and show their limitations.

The UPPAAL [17] model checker can be used for the verification of real-
time systems. TIMES [5] is a front-end for UPPAAL dedicated to schedulability
analysis. TIMES however deals with a restricted set of concepts (uniprocessor
systems with sporadic tasks). Another tool which uses UPPAAL is SchedMCore
[8], a multiprocessor schedulability analyzer. But the task model supported by
SchedMCore is restricted to periodic tasks.
1 http://www.waruna-projet.fr/, https://www.polarsys.org/projects/polarsys.time4s

ys.
2 http://www.realtimeatwork.com/software/rtaw-pegase/.

http://www.waruna-projet.fr/
https://www.polarsys.org/projects/polarsys.time4sys
https://www.polarsys.org/projects/polarsys.time4sys
http://www.realtimeatwork.com/software/rtaw-pegase/
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UPPAAL has also been used directly for the timing analysis of industrial
case studies, e.g. [19,25]. The model proposed in [19] and extended in [25] allows
describing uniprocessor systems of periodic tasks with a preemptive fixed-priority
scheduler and shared memory. Synchronization protocols for shared memory
access are implemented, including priority-inheritance and priority-ceiling.

Even more relevant to us are two UPPAAL-based modeling frameworks: [9]
comprises 5 Timed Automata (TA) templates to specify sporadic tasks and
partitioned schedulers on multiprocessor systems, and a sub-template for job
enqueuing for each scheduling policy. [7] proposes a framework, which consists
of templates for specifying sporadic tasks, schedulers and processing units, for
hierarchical scheduling systems.

All the above-mentioned approaches are of rather limited expressivity. They
do not support, for example, weakly-hard real-time systems. To fit our purpose,
they would therefore need to be easily extendable. This is unfortunately not
the case because they have not been designed with modularity and reusabil-
ity in mind. For example, the Task template in all these frameworks captures
not only the task activation and task execution pattern, but also its worst-case
response-time computation and deadline-miss analysis. As a result, one cannot
define independently variants of, e.g., the activation pattern and of the execu-
tion pattern. Instead, one would need to define a specific template for all possible
combinations of variants of the aspects handled in Task.

In comparison, the primary focus of our formal library is on modularity. Our
work builds on top of the TA-based representation of real-time systems — in
particular tasks and schedulers — of [19]. Our representation of task activation
patterns is inspired by task automata [14], which is a variant of TA for expressing
task activation patterns.

2.3 Comparison of Analyzers

To our knowledge, the work presented in [22,23] is the only effort on systematic
evaluation of schedulability analyzers. Four tools for performance analysis of dis-
tributed embedded systems are evaluated, namely MAST, SymTA/S, Real-Time
Calculus [29] and UPPAAL. A formalism in SystemC is proposed for specify-
ing the benchmarks which are then manually translated into an input for each
analyzer under study. By observing the output of each tool for the chosen bench-
marks, their underlying analysis algorithms are compared in terms of precision
and efficiency.

This work sets a good starting point for further investigation in two direc-
tions. First, this evaluation of analyzers is restricted to their common function-
ality. In practice however, given a complex system, various analyzers allow to
characterize the system with different abstractions, such that the result obtained
using one tool depends both on its timing model and its underlying analysis algo-
rithm. The effect of the composition of these two factors cannot be inferred from
the conclusion of [22]. Secondly, a manual construction of the inputs for various
tools is impractical for evaluating analyzers on more complex benchmarks than
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the ones of [22,23]. We aim to provide a tool chain which automates the trans-
lation of a system specification into the input of several tools, so that a system
can be specified once in RTSpec and analyzed with multiple tools.

3 Preliminaries

To set the background of our work, this section will first introduce the termi-
nology on real-time systems with some typical examples. Then we will briefly
present the timed automata formalism and the UPPAAL model checker.

3.1 Terminology on Real-Time Systems

A real-time system usually comprises three parts: a hardware platform which
provides computation and communication resources; a set of software tasks which
require access to the resources; a set of schedulers which manage the allocation
of resources to tasks.

Platform. The hardware resources of an RT system include processing units,
i.e. processors and cores, and possibly shared resources e.g. memory and com-
munication network. For example, a distributed RT system consists of a number
of nodes, where each node contains a number of processors. For simplifying
schedulability analysis, the communication network which connects the distrib-
uted nodes can also be regarded as a node, and messages transmitted over the
network can be considered as tasks on this network node.

Task Set. The software in an RT system is usually a task set, where each task
is a piece of code. An execution of a task is also called a job. One task may have
a number of jobs running in parallel.

A task is characterized by a set of parameters on its timing features, includ-
ing its arrival pattern i.e. the time of the task’s first arrival and recurrence, its
resource requirement e.g. the CPU time it needs for execution, and its timing
requirement e.g. a relative deadline. In their seminal paper [18], Liu and Layland
proposed to characterize a task with two parameters: period for both the arrival
interval and the deadline, and WCET for (an upper bound on) the worst-case
execution time. This abstraction is called the periodic task model. A period task
set consists of periodic, synchronous and independent tasks with implicit dead-
lines. To describe tasks with more diverse features, researchers have extended
the Liu and Layland task model with different additional parameters, which
lead to variations in the tractability and precision of feasibility and schedulabil-
ity analysis [27].

Scheduler Set. Scheduling policies can be static (also called offline) or dynamic
(also called online). The former group provides a scheduling table for all tasks
before the system’s execution, hence only applies to periodic task sets. The latter
group is applicable to any task sets. Our work focuses on the more challenging
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class of dynamic schedulers. Relevant properties of dynamic scheduling policies
include preemptiveness (a scheduler can interrupt the execution of a job to allo-
cate the resource to another job), job migration, etc. Additionally a scheduler
may take decisions according to fixed priorities assigned to tasks, as for e.g. the
Deadline Monotonic (DM) policy, or to dynamic priorities (priorities are assigned
at the job level), e.g. Earliest Deadline First (EDF), or without any notion of
priority, e.g. First-In-First-Out (FIFO).

Timing Model. A set of parameters which characterize the timing properties
of a platform, a task set and a scheduler set of an RT system compose a tim-
ing model. A system can be captured by diverse timing models. With a more
expressive timing model, the schedulability analysis is more precise at the cost
of a higher computational complexity.

Many timing models have been used for specifying and analyzing RT systems.
But they lack a common formal background. Even more problematic, different
schedulability analysis methods and tools may interpret one parameter differ-
ently, which brings difficulty for their users to understand and compare them. In
order to clarify the existing terminology and to facilitate rigorous definition of
diverse extensions on it, we propose to formally define the semantics of timing
models using timed automata.

3.2 Timed Automata

Timed automata [6] has been widely adopted as the language for formal repre-
sentation and analysis of RT systems, because it allows to specify RT systems at
an arbitrary level of precision, meaning that it can express the semantics of any
concept proposed by a timing model. Therefore, we chose timed automata as the
language for building RTLib, which is the library of TA templates providing a
formal semantics for RTSpec.

A timed automaton is a finite automaton consisting of a finite set of nodes
denoted locations and a finite set of labeled edges denoted transitions, extended
with real-valued variables [6]. Time progress and time-dependent behavior are
expressed using a set of clocks that can be started, reset, halted and read. A loca-
tion can be assigned with an invariant, which is a clock constraint. A transition
can be labeled with a guard i.e. the condition for enabling the transition, a chan-
nel with which an automaton synchronizes with another automaton and moves
simultaneously, and an update which may contain actions and reset of clocks.
UPPAAL supports stopwatch automata [4], an extension of timed automata
where clocks may be stopped occasionally. Syntactically, a stopwatch expression
is an invariant in the form of x′ == c, where x is a clock and c is an integer
expression which evaluates to either 0 or 1 [19].

As an example, Fig. 1 shows a timed automaton representing a task execu-
tion process in a preemptive environment, assuming that a task has at most one
live job at any moment. A clock resTime tracks the task’s response time, i.e.,
the time span between its activation and finish. Another clock exeTime tracks
its execution time. On the location Scheduled, the invariant exeTime <= WCET
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Fig. 1. An example of timed automata: task’s execution process

ensures that the duration of the task’s execution is at most WCET . The invariant
exeTime ′ == 1 ensures that the clock exeTime progresses when the task is exe-
cuting on a processor. The invariant exeTime ′ == 0 on the location Preempted
stops the clock exeTime when the task is preempted. A job finishes execution
when the CPU time it consumes is between BCET (best case execution time)
and WCET. This automaton exhibits the operational semantics of the two task
parameters BCET and WCET.

3.3 UPPAAL

UPPAAL is the standard tool for editing, executing and analyzing timed
automata. UPPAAL supports the specification of timed automata as well as
automata templates, i.e., parameterized timed automata. In a valid UPPAAL
model, automata templates have to be instantiated into automata. As a result,
UPPAAL models consist of three parts (the keywords given by UPPAAL are
denoted in bold font):

– Declarations. Elements used by the model templates, which can be:
• Generic: user-defined data types (e.g. bounded integers, structs, arrays);

(parameterized) synchronization channels; global variables; functions
used within the templates.

• Specific to a system: global variables instantiated with actual parameters.
– Templates. Parameterized timed automata.
– System declarations. Elements which are specific to an instance system:

• Instantiation statements : statements which instantiate templates into
automata by assigning values to the template parameters.

• System: declaration of a system as a set of automata.

Logically, such a UPPAAL input file is composed of two levels:

1. a system type made of the generic part in Declarations and the Templates;
2. an instantiation into a specific system which consists of the specific part in

Declarations and the System declarations.

Since UPPAAL was designed for formalizing specific systems rather than
system types, it does not provide sufficient support for defining system types on
a higher abstraction level. For example, data type definitions, which are logically
a part of system type, may depend on instance systems, as we explain now.
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UPPAAL provides two basic data types: bool and (bounded) integer — to
reduce the state space of a system, all integer variables must be bounded. In
particular, this means that all user-defined integer data types must be bounded.
As an example, defining a data type for WCET of tasks requires to provide a
bound for them, which can only be done for specific system instances. In other
words, the system type definition and instance definition are interleaved and
mutually dependent, which brings difficulty for users to understand and extend
a system type. Note that the limitations of UPPAAL with respect to system
type definitions have pushed us to develop a front-end tool called RTLibEx to
help with the formalization of timing models.

4 The RTLib Library

In this section, we introduce RTLib, a library of UPPAAL templates formalizing
concepts which are commonly utilized in real-time system analysis. RTLib pro-
vides the basis for a formal semantics of RTSpec, our formalism for specifying
real-time systems. The key advantages of RTLib are: (1) its formal basis, (2) its
expressivity, which can be easily increased if needed; (3) its modularity, which
makes it much easier to compare different models by allowing the user to focus
on the concepts that differ. The RTLib library is structured around a core of
basic concepts that exist in most frameworks. Thanks to its modular structure,
one can easily enrich RTLib with extensions, i.e., variants of one or more tem-
plates of the basic library. Two extensions that can be meaningfully combined
at the conceptual level can be combined directly at the library level.

RTLib can be used for specifying concrete real-time systems on which the
UPPAAL model checker can conduct exact or statistical schedulability analy-
sis. This can help evaluating the correctness and accuracy of other analyzers on
small systems. The main objective of RTLib is however at a higher abstraction
level: RTLib is meant to provide a common, formal basis to describe the seman-
tics of the timing models used by analyzers. This will help proposing rigorous
transformations between the timing models.

RTLib defines a set of system types for real-time systems, i.e. timing models.
As discussed in Sect. 3, a system type in UPPAAL consists of several parts,
among which the most complicated are data types and automata templates.
This section overviews these two parts in RTLib before describing how RTLib
can be extended.

4.1 Automata Templates

As discussed in Sect. 3, a timing model defines a set of parameters which char-
acterizes the three parts of a real-time system: platform, task set and sched-
uler. Following this compositional view, we organize RTLib as a hierarchy of
templates. The UML class diagram in Fig. 2 shows the structure of the RTLib
Basic library, where each concrete class denotes an automata template, and an
abstract class denotes a concept which is implemented by a number of automata
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Fig. 2. Structure of the library RTLib Basic

templates. Note that RTLib explicitly specifies analysis goals, but does not have
templates related to the platform, as we explain now.

For the moment RTLib only captures multiprocessor/distributed systems.
The platform information, i.e. the number of processors in each node, is thus
represented by a parameter of schedulers. We leave to future work the extension
of RTLib with templates for more complicated platforms. Besides, we have cho-
sen to explicitly specify analysis goals in RTLib, e.g. absence of deadline misses
for hard real-time systems, to cover more system-level timing requirements than
just schedulability.

In RTLib, an automata template may call its sub-templates through syn-
chronization channels. In Fig. 2, an aggregation relation connects a template
with its sub-template, and a generalization relation connects a concept with its
special case3. For instance, the Task template has two sub-templates: Activa-
tionPattern which characterizes the activation pattern of a task, and Job which
represents the lifecycle of a task’s instance. ActivationPattern has two special
cases: Act Dependent and Act Independent, for dependent tasks and independent
tasks, respectively. The activation pattern of an independent task may have
three constraints: Offset, Interval and Jitter, each denoted by a parameter of a
task model. The operational semantics of the parameters are represented by
separate automata templates.

For example, Interval constrains the separation between job arrivals. Once an
independent task τ releases a job τ i, the automaton Task immediately calls its
sub-automaton Act Independent, which in turns calls its sub-automaton Interval
through the channel Independent call Interval. As shown in Fig. 3, a transition
is triggered from the location Start to WaitInterval, and the clock x is reset

3 We use the following conventions. Template A B is a specialization of template A for
extension B. Synchronization channels are named as follows:

– A e B: automaton A sends a message to B on event e;
– A call B: automaton A calls its sub-automaton B;
– A return B: automaton A, a sub-automaton of B, returns.



548 L. Shan et al.

Fig. 3. An example of automata template in RTLib: interval

to zero for recording the time passed since the release of τ i. At an arbitrary
moment after x reaches MIN I (i.e. the minimum interval), Interval returns back
to Act Independent through the channel Interval return Independent, meaning
that the arrival constraint of job τ i+1 has been satisfied.

4.2 Data Types

User-defined data types determine the data structure processed by automata.
The structure of data type definition in RTLib resembles the structure of the
templates in the library.

We classify the data types in RTLib into two groups according to their roles:
parameter types whose variables represent the parameters of RT systems, hence
determined by a timing model; state types whose variables represent the dynamic
state of RT systems during their execution, hence common to any timing model.
Therefore, to formalize a new timing model based on RTLib Basic, state types
can be reused, while parameter types need to be extended.

Parameter Types. According to their structural relations, the parameter types
can be further classified onto three levels: elementary types, composite types and
collective types, as shown in Fig. 4.

– Elementary type: a bounded integer, representing the data type of some para-
meters, e.g. time t as the data type of tasks’ timing parameters including
period, deadline, WCET, etc.

– Composite type: a struct built upon elementary types, e.g. task t which con-
sists of a set of task parameters.

– Collective type: an array whose elements belong to some composite type, e.g.
taskSet t as an array of task t representing the taskset in a system.

Each task model which characterizes a task with a set of parameters is
mapped to a definition of task t , and any task characterized by the task model
can be expressed as a variable of the type task t . Similarly, elementary types,
composite types and collective types are defined to represent scheduler parame-
ters, schedulers and scheduler sets, respectively. Such data types form a hierarchy
following the compositional view of a real-time system. The leaves of this hierar-
chy represent the data types of the parameters defined by a timing model, hence
may vary from one timing model to another. The non-leaf part of the hierar-
chy are reusable for various timing models. This stable hierarchy of data types,
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Fig. 4. Hierarchy of parameter data types

together with the stable hierarchy of automata templates, reveals the reusabil-
ity and extensibility of RTLib. By extending the data types and the automata
templates, RTLib can be adapted to formalize a wide range of timing models.

State Types. A RT system formalized as an automata network simulates the
timing-related behavior of the system. To track the dynamic state of a system
during its execution, the following data types are defined for all timing models:

– For representing the state of tasks:
• job t : a composite data type with two fields taskID and jobID , altogether

denoting the identifier of a job;
• jobQ t : an array of job t , denoting the ready job queue.

– For representing the state of a node under the management of a scheduler:
• nodeState t : a composite data type, whose fields denote the current jobs

upon each processor, new arrived job, just finished job, etc.;
• nodeStateSet t : an array of nodeState t , denoting all nodes in a system.

4.3 Extension of RTLib

Let us now show the extension capabilities of RTLib. By extension, we under-
stand either the introduction of an entirely new concept or a new variant of an
existing one. To define an extension, one proceeds in two steps:

1. possibly extend the data type definitions to express the new concepts;
2. add or replace the relevant templates.

To argue that the chosen structure of RTLib achieves sufficient modularity, we
illustrate this process with an example.

The event stream model [2] is a generalization of the sporadic task model
which constrains not only the minimal time distance between any two consec-
utive activations of task τ , but may for any k impose a stronger constraint for
the minimal time interval that may contain k activations. In practice, it is suf-
ficient to consider a strictly increasing constraint sequence only for some first
N values for k. Thus, such a minimum distance function can be specified by a
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Fig. 5. Interval MinDistance for 3 distances

vector [D0,D1, . . . , DN−1] of minimal distances Di between the activation of job
τk and τk+i+1, ∀k. Note that the minimum interval of the sporadic task model
is a minimum distance vector with a single element D0.

Extending the basic activation pattern of the sporadic task model to han-
dle minimum distance functions only requires to modify the Interval template
(see Fig. 3). To represent a vector of N minimum distances requires N clocks.
Figure 5 shows the template for N = 3. It extends the Interval template with two
additional clocks: x1 records the distance between τk and τk+2, and x2 records
the distance between τk and τk+3. Function countJob() counts the job arrivals
up to N − 1.

4.4 RTLibEx: A GUI Tool for RTLib Extensions

As already discussed, RTLib is intended both for:

1. defining timing models i.e. system types of RT systems;
2. specifying actual systems i.e. instances of some system types.

It is however not possible to distinguish properly these two activities, which may
concern different users, in UPPAAL, as the system type definitions and instance
definitions are interleaved and mutually dependent (see Sect. 3).

RTLibEx is a front-end tool for UPPAAL intended to address this issue. It
provides two distinct editors (implemented in the same GUI): a timing model
editor and an instance editor. The timing model editor mainly supports the
extension and specialization of data types. The instance editor is then automat-
ically generated by our tool from the data type definitions, which allows users
to define an actual system by just filling an array of parameters. In the rest of
this section, we briefly describe these two editors.

The Instance Editor. As shown in Fig. 6, an instance editor is a GUI for
defining an actual system. RTLib Basic defines an RT system as a set of sched-
ulers and tasks whose parameters are defined by the data types scheduler t,
resp. task t. Thus, defining a scheduler or a task means providing values for
its parameters. The generated instance editor therefore provides two tables for
schedulers and tasks, where the system designer inputs the actual parameters
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Fig. 6. Snapshot of RTLibEx: instance editor

of a real-time system. The tables look similar to the GUI of existing analyzers,
e.g. TIMES [5] and Cheddar [26]. The significant difference is that RTLibEx
automatically generates the GUI from the relevant user-defined data types for
any user-defined timing model, while the existing timing analysis tools hard-wire
specific timing models hence cannot be extended by the user.

Once the system actual parameters are given, RTLibEx checks its consistency
and reports diagnostic information. For a consistent definition, it generates the
representation of the system as an input file for UPPAAL.

The Timing Model Editor. As stated in Sect. 3.3, a UPPAAL file contains
three parts: Declarations, Templates and System declarations. In most cases,
to define a new timing model implies extending the data types of RTLib Basic
and adding or replacing existing templates. RTLibEx facilitates the extension of
the Declarations part and then automatically generates the System declarations
part. In parallel, the user should modify Templates with UPPAAL.

Declarations include two subsets: the generic subset for a system type, and
the specific subset for a specific system. The instance editor of RTLibEx allows
users to input the parameters of a system, which becomes the specific declara-
tions of the system. The timing model editor of RTLibEx provides a GUI for
users to specify the generic subset of declarations for defining a system type.

The generic declarations consist of data type definitions, synchronization
channels, global variables and functions used within the templates. Among them,
data type definitions is the major part to be modified when defining a new timing
model based on RTLib Basic. As we stated in Sect. 4.2, we classify data types
into parameter types and state types.

RTLibEx enables users to reuse RTLib Basic as much as possible when defin-
ing a new timing model. On the left side of Fig. 7 is a tree of loaded Timing
Models, where each one is a tree with five main nodes. The first four nodes, para-
meter types, state types, functions and channels represent the respective parts
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Fig. 7. Snapshot of RTLibEx: timing model editor

of a UPPAAL system type. The last one, instantiation guides, specifies a set
of rules generating instantiation statements. Given the instantiation statements,
UPPAAL can instantiate a set of automata templates into a system instance.

The right side of Fig. 7 is a table of parameters of a composite type, i.e. task t
and scheduler t presented in Sect. 4.2. To extend the parameter list of Task or
Scheduler, the user adds items into the respective table. Each table comprises 4
columns:

– PARAMETER: name of a parameter.
– TYPE: data type of the parameter.
– ENUM VALUE: enumerated values of the data type of the parameter. This

field is useful only when the parameter has a enumeration data type.
– AUTO VALUE: default value of the parameter.

To build a new timing model, the user first builds a copy of the Basic library
by right-clicking on the node Basic, and then fills in the sub-nodes of the new
timing model. When all the nodes of a timing model tree are completed, the
timing model editor stores this model and generates the tables Scheduler Set and
Task Set in the instance editor. Thus, RTLibEx enables a logical and procedural
separation of timing model definition from instance system declaration.
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5 The RTSpec Format

Based on the formal library RTLib, we define RTSpec, a human-readable textual
format for specifying a wide scope of real-time systems. Following the structure
of RTLib, a real-time system specification in RTSpec declares a platform, a task
set and a scheduler set. An entity, e.g. a processor or a task or a scheduler, is
characterized by a set of attributes, where each attribute has its operational
semantics defined in RTLib.

As an intermediate textual format, RTSpec aims to cover not only the
features shared by all timing models underlying existing analyzers, but also
attributes which are characteristic of some existing analyzers, such that com-
parison between different tools is fair. For that reason, and following the two-
layer structure of RTLib, RTSpec provides language constructs at two levels: the
basic elements represent the concepts defined in RTLib Basic, and the extension
elements characterize concepts which may be handled only by some analyzers.
A simple system specification that conforms to the basic timing model can be
translated into the input of different analyzers through syntactical mapping,
which enables to compare their common subset. A more complex system specifi-
cation that is beyond the basic model can be translated into the input of different
analyzers through semantic mapping, i.e., abstraction and approximation.

5.1 The RTSpec Basic Syntax

We have designed the RTSpec basic syntax with three concerns in mind: con-
ciseness, flexibility and extensibility, as we briefly discuss now.

Conciseness. In RTSpec, default values for parameters allow systems to be
specified in a concise manner. For example, if a task has no jitter, instead of
declaring jitter = 0, the jitter attribute can simply be omitted. As a result,
even in presence of language extensions, it is still possible to define a simple
entity, e.g. a classic periodic task, using a small set of attributes.

Flexibility. As a unified specification format, RTSpec represents a synthesis
not only of the timing models of various analyzers, but also of the style of their
input formats. The concrete syntax of RTSpec provides 3 representation styles:

– Positional style: An entity is characterized by a set of parameters, where the
position of each parameter indicates its meaning. This style is similar to the
input format of the SchedMCore [8] tool. This style can be used to specify
simple systems which only need this limited set of attributes.

– Canonical style: An entity is characterized by a set of attributes, where each
attribute is declared as a name-value pair and the attributes of an entity can
be declared with an arbitrary order.

– Record style: An entity is characterized as a record, where each field represents
an attribute such that attributes of an entity can be declared in any order.
This style is similar to the input format of pyCPA [12]. It allows interleaving
task declarations and referring to attributes declared before.
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All task declarations are automatically translated into the canonical style
before further processing. The flexibility of the syntax style enables a user to
choose a preferred representation according to her/his habits or the complexity
of the system to be analyzed. The flexibility in the order of attribute declarations
facilitates extensions and modifications of attribute lists when incorporating new
timing models. The following listing shows an example of a task set declared
using the three representation styles.

−− Po s i t i o n a l s t y l e :
−− Task (name , per iod , wcet , deadl ine , o f f s e t ) :
Task (” task1 ” , 20 , 3 , 15 , 2)

−− Canonical s t y l e :
Task{name=”task2 ” , per iod =23, wcet=4, dead l ine=8}

−− Record s t y l e :
Task (” task3 ”)
task3 . wcet = 5
task3 . per iod = 23
task3 . dead l ine = 13
task3 . o f f s e t = 5
Task (” task4 ”)
task4 . wcet = 9
task4 . per iod = task3 . per iod
task4 . dead l ine = 2 ∗ task3 . dead l ine
task4 . o f f s e t = 7

Extensibility. We are currently extending RTSpec with constructs which are
characteristic of some analyzers, e.g. minimum distance functions for pyCPA. It
is our intention to have specific keywords identifying extensions in a specification.
Such constructs must correspond to extensions of the RTLib UPPAAL library
and whenever possible semantic mappings must be provided to transform an
extension-dependent specification into a coarser grained basic specification.

5.2 Current Status of the RTSpec-based Tool Chain

So far, we have: (1) defined the basic part of RTSpec based on a subset of the
RTLib basic library, (2) implemented a translator which takes any RTSpec input
and translates it into an equivalent canonical form, (3) implemented translators
which transform an RTSpec (canonical) specification into a number of formats,
including the CPAL Language4, MAST PTE file5, pyCPA6, SchedMCore7 and

4 http://www.designcps.com/.
5 http://mast.unican.es/.
6 http://pycpa.readthedocs.io/en/latest/.
7 https://forge.onera.fr/projects/schedmcore.

http://www.designcps.com/
http://mast.unican.es/
http://pycpa.readthedocs.io/en/latest/
https://forge.onera.fr/projects/schedmcore
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Times8. Note that these tools do not provide a formal semantics for their input
format. As a consequence it is not possible to prove the correctness of our trans-
lations in any formal way. Instead we rely on a tight collaboration with the
researchers involved in the development of the targeted analyzers. Another way
to look at this issue is then to consider RTSpec and RTLib as the reference
semantics for these input formats.

6 Methodology

Our framework is targeted at developers but also users of timing analysis tools.
This section describes the methodology that our framework supports for these
two categories of people.

6.1 For System Architects

With a variety of available tools, it can be difficult for the architect of a real-time
system to select the best fit to analyze his/her particular system. Our framework
enables her/him to compare tools by taking the following steps:

1. System specification: specify the system in RTSpec and apply automatic
translations to generate an input for some existing tools.

2. Comparative experiment: analyze the system with several tools and compare
their analysis results.

6.2 For Developers of Analyzers

With the advance of research on schedulability analysis, researchers propose
new methods and implement new tools. Such new methods often incorporate
new concepts for characterizing real-time systems more faithfully than existing
models, so as to obtain more precise analysis results. The incompatibility and
incomparability between the timing models underlying all these tools lead to
difficulties for the developer of a new analyzer to argue about the advantages of
their new tool over existing analyzers.

Our framework enables tool developers to formally relate their timing models
to existing ones and to conduct comparative experiments. More specifically, let
T denote a new tool, and MT the timing model underlying tool T . The workflow
for the developer of T is as follows:

1. Semantics definition: Formalize MT by extending RTLib, i.e. providing an
operational semantics for the new concepts in MT by refining or modifying
the related concepts in RTLib. The extension of automata templates can be
conducted with the UPPAAL model checker. Our tool RTLibEx helps to
extend the data types in RTLib.

8 http://www.timestool.com/.

http://www.timestool.com/
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2. Syntax definition: Extend the syntax of RTSpec so as to represent the new
concepts in MT . In principle this could be automated in RTLibEx but the
process is manual at the moment.

3. Translator development: Develop a translator between RTSpec and the input
format of T . Additionally, whenever possible a semantic mapping of RTSpec
extensions for T to basic elements must be provided to enable comparison
with tools which cannot handle such features.

4. Benchmark specification: Design some benchmarks in RTSpec, or in the input
format of T if a translator from T to RTSpec is implemented.

5. Comparative experiment: Conduct an analysis of the benchmarks with various
tools, and compare their analysis results.

7 Conclusion

This paper presents our ongoing work on a framework for evaluating schedu-
lability analysis tools. We propose RTSpec as a common format for specifying
real-time systems. The formal semantics of RTSpec is represented by a modular
and extensible UPPAAL model library, which covers a wide range of terminol-
ogy in schedulability analysis. We are developing a tool chain which translates
RTSpec files into an input for diverse tools, such that a system only has to be
specified once to be analyzed by several tools.

Compared to more general formalisms such as Amalthea [1] or MARTE [20],
the expressiveness of RTSpec is constrained to only support features that are use-
ful for rigorous timing analysis, i.e. supported by static analyzers. This principle
allows us to formalize all concepts used in RTSpec, and hence enables rigorous
mappings between various timing models.

For evaluating various timing analysis tools, researchers have developed tool-
neutral languages and implemented their mappings to different tools, e.g. in [22]
and Waruna. However, this approach has two defects: (1) it cannot ensure the
correctness of the mappings; (2) a special feature which can be expressed by one
tool may have no direct mapping in other tools. With our approach, the seman-
tics of the terminology is defined independent from the translations between
tools. The semantics of the formalism of each tool helps users to understand the
concepts and the assumptions underlying the tool. With the explicit semantics,
different but related concepts can be mapped to each other through approxima-
tion/abstraction.

RTSpec serves as an extensible framework for connecting different for-
malisms. Currently, the expressivity of RTSpec Basic is the common subset of
the existing formalisms. Next, we will extend RTSpec, in collaboration with the
tool developers, to incorporate the special features of their formalisms. The aim
is to incorporate the important features of existing tools, so that the tools can
be evaluated with a comprehensive set of benchmarks. We are still developing
the benchmarks, and will present them later.

Note that in this paper the primary usage of UPPAAL models is as the
operational semantics of the terminology concerning real-time systems. Given
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specific RT systems, the UPPAAL model checker can be used for exact timing
analysis, if the complexity of the model does not exceed the capability of the
model checker.

Ongoing and Future Work. Let us summarize here the topics on which we
are currently working or plan to work in the near future.

– Extension of RTLib. To encompass the key elements of the pyCPA and MAST
timing models, RTLib is currently being extended in two directions: the plat-
form model, to take shared resources into account, and the task model, to
handle more complex dependencies between tasks.

– Semantic mappings. We want to investigate mappings from timing model
extensions to the basic timing model. In particular we need to rigorously
define mappings between timing models based on their formal semantics,
and prove their correctness in the sense that schedulability analysis on the
approximated system specification is possibly pessimistic but still correct.

– Extension of RTSpec and its associated tool chain. The current RTSpec is
based on the basic timing model defined by RTLib Basic, which is the com-
mon subset of the timing models of various analyzers. Further, we will extend
RTSpec with typical special features supported by some of the existing ana-
lyzers and extend the corresponding translators.

– Comparative experiments and benchmarks. Finally, we will develop a set of
benchmarks derived from synthetic and industrial cases, and conduct a com-
parative evaluation of existing analyzers. The analysis results thus obtained
with these benchmarks will show the relative strengths of the analyzers on
different types of systems, and help users to choose tools according to the
features of their systems.
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Abstract. We address the problem of computing the worst-case execu-
tion-time (WCET) of binary programs using a real-time model-checker.
In our previous work, we introduced a fully automated and modular
methodology to build a model (network of timed automata) that com-
bined a binary program and the hardware to run the program on. Com-
puting the WCET amounts to finding the longest path time-wise in this
model, which can be done using a real-time model checker like Uppaal.

In this work, we generalise the previous approach and we define a
generic framework to support arbitrary binary language and hardware.

We have implemented our new approach in an extended version of
Uppaal, called Wuppaal. Experimental results using some standard
benchmarks suite for WCET computation (from Mälardalen University)
show that our technique is practical and promising.

Keywords: Binary program · Control flow graph · Worst-case
execution-time

1 Introduction

Embedded real-time systems (ERTS) are composed of a set of periodic tasks
(software) to run on a given architecture (hardware). The tasks are usually
released at periodic time intervals. For safety-critical ERTS, each task must be
completed by a deadline (relative to the release time). Checking whether a set of
periodic tasks can be scheduled on a processor such that they always complete
before their deadline is a schedulability analysis.

Tests for schedulability are based on the tasks’ parameters, among them an
upper bound for the execution time of each task. Over-estimating the execution
time of a task may be safe but can also result in a set of tasks being declared
non schedulable. This may lead to a choice of over-powered and over-expensive
hardware.
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With the ever increasing connectivity of many devices, ERTS are also sub-
ject to malicious attacks. Some of them can make use of time measurements to
establish communication channels (timing covert channel): private information
can be communicated or leaked to attackers by controlling/observing the time
intervals between events (e.g., how long a computation takes).

It follows that tight bounds for the execution time of the tasks are instrumen-
tal to designing safe (schedulable), efficient and secure ERTS. Each task in an
ERTS executes a program. The execution time of the program may depend on
the input. The worst-case execution-time (WCET) of the program is the supre-
mum of the execution times of the program over all the input. Computing the
WCET for binary programs is a non-trivial task for at least two reasons:

– the set of input data may be very big and simulating the program over a subset
of the input data only provides a lower bound of the worst-case execution-
time;

– the hardware that runs the program is complex (pipelined architecture,
caches) and it is effectively a timed concurrent system (e.g., the pipeline runs
in parallel with the caches and they both have timing specifications.)

The WCET Problem. Given a binary program P , some input data d and
the hardware H, the execution time of P for the input d on H, denoted Xtime
(P, d,H), is measured as the number of processor cycles between the begin-
ning and end of P ’s computation for d (we assume P always terminates.) The
worst-case execution time (WCET) of program P on hardware H, denoted
WCET(P,H), is the supremum of the Xtime(P, d,H) for d ranging over the input
data domain D:

WCET(P,H) = sup
d∈D

Xtime(P, d,H). (1)

The WCET problem asks the following:

“Given P and H, compute WCET(P,H)”.

In general, the WCET problem is undecidable because otherwise we could solve
the halting problem. However, for programs that always terminate and have
a bounded number of paths, it is computable. Indeed the possible runs of the
program can be represented by a finite tree (and there is a finite number states
for the program and the hardware). This does not mean that the problem is
tractable though: the (values of the) input data (e.g., an fixed-size array to be
sorted) are usually unknown and the number of program paths to be explored
may grow exponentially in the size of the program.

As mentioned before, programs run on increasingly complex architectures
featuring multi-stage pipelines and fast memory components like caches: they
both influence the WCET in a complicated manner. It is then a challenging prob-
lem to determine a precise WCET even for relatively small programs running
on complex single-core architectures.

Computing a precise WCET for a given program is very hard and the WCET
problem is usually re-stated as:

“Given P and H, compute a tight upper bound of WCET(P,H)”.
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Tightness can be measured (see [9]) by comparing actual WCET to the ones
computed using a particular method. In the sequel we use WCET(P,H) to denote
an upper bound of the WCET for a given program.

Standard Methods and Tools for Computing WCET. The survey arti-
cle [23] provides an exhaustive presentation of WCET computation techniques
and tools. A first set of methods based on simulations [5,18,19] are not suitable
for safety-critical ERTS as they only provide lower bounds for the WCET.

A second set of methods rely on the construction of a Control Flow Graph
(CFG) for the binary program to analyse, and the determination of loop bounds.
The CFG is then annotated with some timing information about the cache miss-
es/hits (some may/must analysis using abstract interpretation based techniques)
and pipeline stalls to build a finite model of the system. A final paths analysis is
carried out on this model e.g., using Integer Linear Programming (ILP). There
are many implementations of this technique, the most prominent one is probably
aiT [1,13] which combines static analysis tools and ILP for computing WCET.

Real-Time Model-Checking Based Methods for Computing WCET.
Considering that (i) modern architectures are composed of concurrent compo-
nents (the units of the different stages of the pipeline, the caches) and (ii) the
synchronisation of these components depends on timing constraints (time to
execute in one stage of the pipeline, time to fetch data from the cache), formal
models like timed automata [2] and state-of-the-art real-time model-checkers like
Uppaal [3,16] appear well-suited to address the WCET problem.

The use of network of timed automata (NTA) and the model-checker Uppaal
for computing WCET on pipelined processors with caches was first reported
in [11,12] where the METAMOC method is described. METAMOC consists in:
(1) computing the CFG of a program, (2) composing this CFG with a (network of
timed automata) model of the processor and the caches. Computing the WCET
is then reduced to computing the longest path (time-wise) in a NTA.

The previous framework is very elegant yet has some shortcomings: (1)
METAMOC relies on a value analysis phase to compute the CFG but this
may not terminate, (2) some programs cannot be analysed (if they contain
register-indirect jumps), (3) manual annotations (loop bounds) is required on
the binary program, and (4) the unrolling of loops is not safe for some cache
replacement policies (FIFO). In our previous work [7,9] we have reported some
results on the computation of WCET using NTA that overcome the limitations
of METAMOC: (1) we introduced an automatic method to compute a CFG and
a reduced abstract program equivalent WCET-wise to the original program; (2)
we designed detailed hardware formal models and (3) we evaluated the accuracy
of our technique (comparison of measured execution times and the results of our
analysis).

The technique we introduced in [7,9] still has some drawbacks:

– the Uppaal model (NTA) contains the CFG of the program and the machin-
ery that is needed to simulate some instructions (written as functions in
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Uppaal); some instructions (e.g., setting the overflow flag) are partially mod-
elled because of the restricted expressiveness of the C-like operators supported
by Uppaal;

– the Uppaal model (NTA) also contains components to explicitly model the
caches as large arrays (of cache lines) which contributes a big part of the state
of the system;

– as a result, we rely on Uppaal to perform a lot of discrete computations which
is not effective; moreover, the discrete state of the Uppaal model contains
a large amount of information (e.g., the full state of the caches) which also
impacts the efficiency of the Uppaal analysis engine.

Our Contribution. Based on our previous work [7,9], we propose three new
contributions: (1) a generic framework for computing WCET which is language
agnostic; (2) a new implementation of our framework based on an extended
version Uppaal and (3) a tool chain that combines our extended Uppaal and
an off-the-shelf binary program simulator (based on gdb [22]).

Outline of the Paper. In Sect. 2 we recall how the WCET can be computed
via model-checking. The material in this section is based on [7,9]. In Sect. 3,
we introduce our new generic technique to compute the WCET of arbitrary
programs. Examples are provided for an mono-processor pipelined ARM archi-
tecture. Section 4 provides details of the implementation of our technique, a tool
chain architecture and some experimental results.

2 Computation of WCET via Real-Time Model-Checking

In this section we introduce the basic concepts of program runs together with
an abstract model of the hardware in order to compute the execution time of a
sequence of program instructions.

Hardware. The hardware usually consists of a finite set R of registers, a multi-
stage execution pipeline and caches (e.g., instruction and data caches). It typ-
ically supports a finite set of instructions, I, e.g., mov r1,r2 is an instruction
that copies the contents of register r2 into register r1. The main memory compo-
nent is a table of words of a given width 32-bit or 64-bit words. M is the (finite)
set of main memory cells and we denote D the memory domain (e.g., 32-bit or
64-bit words). A memory state is thus a map from M to D. The caches and the
pipeline are essential components of the hardware performance-wise but they are
not necessary to define the semantics of the instructions. We omit them for now
and will account for them later in this section. A state of the hardware is fully
determined by the contents of the registers, the contents of the memory and the
contents of the pipelines and caches. The hardware has a designated register,
the program counter that points to the next instruction to process. An example
of such an architecture, the ARM920T, is given in Fig. 1. The orange blocks are
the blocks we need to model to compute the execution time of program runs.



564 F. Cassez et al.
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Fig. 1. Simplified ARM920T architecture (Color figure online)

Program Runs. A binary program is a map P : P → I, with P ⊆ M, that asso-
ciates with some memory locations � ∈ P an instruction. P (�) is the instruction
to be processed when the program counter of the hardware is at �.

Given a program P , we let LH(P ) ⊆ P
∗

1 int c_entry(int a, int b){
2 int c=1,i;
3 for (i = 0; i < 10; i++) {
4 if(a < b){
5 c *= 10;
6 } else {
7 c += 10;
8 }
9 }

10 return c;
11 }

Listing 1.1. Prog1

be the set of valid executions of P on H.
Actually we only require LH(P ) to over-
approximate the set of feasible executions of
the program P . To define this set we need
to take into account the semantics of each
instruction in I, and the values of the regis-
ters of H and the memory state: this state
is given by a valuation ν : R ∪ M → D.
There are usually many different possible ini-
tial states of the hardware (e.g., a sorting
program that sorts an array of k arbitrary elements, there are Dk initial possible
input data).

An example of a binary program compiled for the ARM920T is provided
in Fig. 2a. This program can be obtained by compiling the C program Prog1
(Listing 1.1). The Control Flow Graph (CFG) is given in Fig. 2b. The semantics
of the program does not depend on the pipeline architecture nor on the caches:
these components only impact the execution time of the program runs. However,
to ensure that the WCET of each program is well-defined, we may assume that
LH(P ) is finite. Otherwise it contains arbitrary long sequences (the alphabet P

is finite) and the set of execution times is unbounded and the WCET is +∞.
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10000 <_Reset>:
10000: e1a00000 nop
10004: e59fd004 ldr sp, [pc, #4]
10008: eb000001 bl 10014 <c_entry>
1000c: eafffffe b 1000c <_Reset+0xc>
10010: 00011090 .word 0x00011090

10014 <c_entry>:
10014: e24dd010 sub sp, sp, #16
10018: e3a03001 mov r3, #1
1001c: e58d300c str r3, [sp, #12]
10020: e3a03000 mov r3, #0
10024: e58d3008 str r3, [sp, #8]
10028: ea000010 b 10070 <c_entry+0x5c>
1002c: e59d2004 ldr r2, [sp, #4]
10030: e59d3000 ldr r3, [sp]
10034: e1520003 cmp r2, r3
10038: aa000006 bge 10058 <c_entry+0x44>
1003c: e59d200c ldr r2, [sp, #12]
10040: e1a03002 mov r3, r2
10044: e1a03103 lsl r3, r3, #2
10048: e0833002 add r3, r3, r2
1004c: e1a03083 lsl r3, r3, #1
10050: e58d300c str r3, [sp, #12]
10054: ea000002 b 10064 <c_entry+0x50>
10058: e59d300c ldr r3, [sp, #12]
1005c: e283300a add r3, r3, #10
10060: e58d300c str r3, [sp, #12]
10064: e59d3008 ldr r3, [sp, #8]
10068: e2833001 add r3, r3, #1
1006c: e58d3008 str r3, [sp, #8]
10070: e59d3008 ldr r3, [sp, #8]
10074: e3530009 cmp r3, #9
10078: daffffeb ble 1002c <c_entry+0x18>
1007c: e59d300c ldr r3, [sp, #12]
10080: e1a00003 mov r0, r3
10084: e28dd010 add sp, sp, #16
10088: e12fff1e bx lr

(a) ARM binary for Prog1
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(b) CFG of the binary program

Fig. 2. ARM binary and corresponding CFG for Prog1

The set LH(P ) of program runs is finite but may contain more than one
trace even if the program is deterministic. For instance in Prog1 (Listing 1.1),
the values of a, b are arbitrary at the beginning of the program because they
are parameters of the function c entry. This makes the test at line 4 a non-
deterministic choice in our program over-approximation because the values of a
and b are arbitrary (there are input parameters of the c entry function). We
can over-approximate the set of runs of this program by assuming that each
time the test at line 4 is performed, the outcome is either true or false and both
cases should be taken into account to compute the WCET. Notice that this is
an over-approximation if a < b evaluates to true (resp. false) the first time
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it must evaluate to true (resp. false) in the following iterations. Using this
strategy we generate a super set of the set feasible runs of Prog1.

Execution Time of a Run. The execution time of a run σ ∈ P
∗ typically

depends on the following factors:

– the time it takes for the instructions in σ to flow into the pipeline stages.
This is usually non-trivial as the stages run in parallel. Moreover, the flow
of instructions in the successive stages of the pipeline is governed by prece-
dence rules: the execution of an instruction may require the availability of the
result of another instruction which may temporarily block an instruction in
a pipeline stage: this is known as a pipeline stall.

– the time it takes to fetch instructions and data from the caches and main
memory.
These memory transactions are usually performed in different pipeline stages
and can be concurrent (e.g., an instruction in the fetch stage can be fetched
from the instruction cache while another instruction in the memory stage
performs some transactions with the data cache.)

In order to determine how long it takes for a run σ ∈ P
∗ to execute on the

hardware H, it is sufficient to know:

– the processing time of each instruction in the different pipeline stages,
– the registers read from/written to by each instruction (to determine pipeline

stalls),
– the status of the memory transactions for the instructions in σ: cache hits

and misses.

Given a run ρ ∈ LH(P ), we can build an annotated run ρ̃ that contains the
information required to fully determine the execution time of ρ on H. This
extended run may capture the processing time of the instruction in each pipeline
stage, the registers read from/written and the cache hits and misses. We let
La

H(P ) be the set of annotated runs associated with LH(P ).
For example, the following run ρ = 10000.10004.10008.10014.10018 in LH(P )

can be annotated with the time it takes to process each corresponding instruction
in Prog1 (Fig. 2b), and whether fetching the instruction (from the instruction
cache) will result in cache Hit or a cache Miss. Hence La

H(P ) can be defined
as sequences of pairs (k, b) ∈ N × B with the following meaning: k is the time
it takes to process the instruction at p in the execution stage (E stage) of the
pipeline; if b is true, fetching the instruction from the instruction cache results
in a Hit otherise it is a Miss. This transformation will give an annotated run
ρ̃ = (2,true).(1, false).(2,true).(2, false).(1, false).

As mentioned earlier, it is noticeable that the hardware model needed to
compute the execution time of a run is much simpler than the actual concrete
hardware model: there is no need to model the actual processing unit (e.g., reg-
isters, memory) nor to perform actual computations (e.g., execute instructions).

Formal Hardware Model. As a sequence ρ̃ ∈ La
H(P ) contains enough infor-

mation to compute the execution time of a program run ρ ∈ LH(P ) we can define



WUPPAAL: Computation of Worst-Case Execution-Time 567

an abstract model of the hardware as a timed automaton transducer, Aut(H),
that maps each ρ̃ ∈ La

H(P ) to a positive natural number Aut(H)(ρ), which is
the execution time of ρ on H. Hence the WCET of a program P on the hardware
H is defined by:

WCET(P,H) = max
σ∈La

H(P )
Aut(H)(σ). (2)

As La
H(P ) over-approximates the set of program runs, we ensure that the value

of the WCET we compute (Eq. (2)) is an upper bound of the actual WCET (this
assumes that the hardware model Aut(H) correctly models the timing behaviour
of the hardware).

Modular Computation of the WCET of a Program. In practice to com-
pute WCET(P,H) we need to provide a generator for La

H(P ) and the model
of the hardware Aut(H). La

H(P ) can be generated by a finite state automaton
Aut(P ) (see [7,9]). In general La

H(P ) is a finite set of runs and can be defined
by a finite computation tree.

Program P

Aut(P )
generates La

H(P )
Finite Automaton

Semantics

Hardware H

Aut(H)
accepts La

H(P )
Timed Automaton

HDL, . . .

Synchronisation
Aut(P ) × Aut(H)

WCET(H,P)

Uppaal Real-Time
Model-Checking

Fig. 3. Modular computation of WCET

In [7,9] the modular computation of the WCET depicted in Fig. 3 is fully
implemented in Uppaal as follows:

– a Uppaal automaton, Aut(P ), that generates La
H(P ) is computed based on

the control flow graph of a program (for an ARM architecture.)
– the hardware model is provided for a given architecture (ARM920T). It com-

prises of a model of the pipeline and a model for the caches (complete model
with the current state of the caches.) Notice that our method is robust against
the so-called timing anomalies [10].

– the WCET can be computed either using a binary search or using Uppaal
sup operator.

This implementation has several drawbacks:

– the automaton Aut(P ) that generates La
H(P ) is implemented using a limited

C-like language. This is sometimes cumbersome and the semantics of some
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instructions had to be partially modelled (e.g., some bit-wise operations on
registers). The result is that the Uppaal model of the program which is a
finite automaton, is hard to encode using Uppaal restricted set of C sup-
ported operations. This set was sufficient to model a large set of instructions
of the ARM920T processor but may be too limited to model the semantics
of more complex processors.

– the FIFO caches (instruction and data) are modelled precisely using an array
to model the lines in the caches. The hardware model Aut(H) contains the
full state of the caches. This makes the discrete part of the state of the system
Aut(P )×Aut(H) very large and impacts the efficiency of the model-checking
algorithm.

In the next section we describe how to overcome the previous limitations by
having La

H(P ) generated by a C-library outside Uppaal.

3 WUPPAAL

Program Computation Tree. In this section we assume that La
H(P ) is avail-

able and represented as a finite tree Treea
H(P ). This is based on the assumption

that the number of iterations in the loops do not depend on an (arbitrary) input
parameter. This is a usual assumption1 in the WCET methods [23] as otherwise
the WCET may be unbounded. Figure 4 shows a sub-tree of Treea

H(Prog1). We
use a sliced version of the binary program when we build the tree. This sliced
version is equivalent WCET-wise [6,9] to the actual program. The components
Mi in Fig. 4 provides the values of the variables that are in the slice (some
registers and other memory cells).
The following operations can be performed on Treea

H(P ):

– get init() returns the root of the tree Treea
H(P ).

– get next(n) returns the list of children of the node n (empty if n is a leaf).
– hit ins(n) is a Boolean that indicates whether the instruction to be executed

at n will result in a hit or a miss in the instruction cache.
– get exec(n) returns the execution (in cycles) in the E stage of the pipeline

for the instruction at n.

We refer to these operations as the tree-API in the sequel. The implementations
of the Tree-API operations live outside Uppaal in the library libgdb2uppaal
(see Sect. 4 for the Wuppaal architecture). The Uppaal template in Fig. 5
implements a full search on Treea

H(P ) given the get init() and get next(n) func-
tions; we assume each node of the tree has at most 2 children for the sake
of simplicity. The Uppaal version of get init() is get init(succ) and fills in
the vector succ with the pair (get init(),⊥) (⊥ denotes the absence of node).
Similarly get next(n) is implemented by the function get next(n,succ) and
fills in the vector of integers succ with the children of n where succ[0] (resp.
succ[1]) is the first (resp. second) child of n; the ⊥ value is represented by
1 An exact test for this assumption does not exist as this problem is undecidable.
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pc=10000,M pc=10078,M2 pc=1002c,M2

pc=10038,M3

pc=10058,M3

pc=10060,M4

pc=10064,M5

pc=10078,M6

...

pc=1003c,M3

pc=10054,M7

pc=10064,M8

pc=10078,M9

...

Fig. 4. Subtree of TreeaH(Prog1) where we let M be the memory tracked, and r3 = 10
in M2. Dashed arrows indicate sequences of deterministic instructions omitted for
brevity.

a negative integer. The non-deterministic guarded choices in the template Pro-
gram Automaton (Fig. 5) push the children nodes to be processed to the first
stage of the pipeline (see hardware model below). Each path through the tem-
plate Program Automaton from the initial location (double circle) to the END
location represents an annotated trace of La

H(P ). When we model-check a safety
property on this model, Uppaal generates all the traces in La

H(P ).

Hardware Specification. The hardware consists of a multi-stage execution
pipeline and the caches (e.g., instruction and data caches). As a case-study
we model an ARM920T 5-stage execution pipeline, the instruction cache and
main memory components. The pipeline can execute concurrently the different
stages (Fetch, Decode, Execute, Memory, Writeback) needed to fully process an
instruction. An instruction is fetched (from the instruction cache) in stage F,
decoding and operand register accesses occur in D, execution in E and if there
are load/store instructions the memory accesses happen in M. The results are
written back to registers in W. The (normal) flow of instructions in the pipeline
is shown in Fig. 6. This optimal flow may be slowed down when pipeline stalls
occur: if the instruction i + 1 needs a register written to by instruction i there
will be a one cycle stall at cycle j + 3 for instruction i + 1; when the W stage is
finished for instruction i, the E stage can begin for instruction i + 1.
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Fig. 5. Program automaton to enumerate La
H(P ).

F D E M W

F D E M W

F D E M Winst. i

inst. i+1

inst. i+2

cyclej j+2 j+3j+1 j+4 j+5 j+6

Fig. 6. Pipeline of the ARM920T

Hardware Abstract Model. A formal model of the hardware for the ARM920T
can be specified by a network of timed automata [9]. We provide here simpler
models of the hardware because we factor out the actual state of the caches:
to compute the execution time of a sequence of instructions we only need to
know whether a transaction with a cache is a hit or a miss. This information
is provided by each node in Treea

H(P ) (La
H(P )) for a given program P . It can

be computed by monitoring the addresses that are used on a given trace and
using a model of the caches (e.g., number of lines, ways and FIFO replacement
policy). In [8] we also proposed an abstraction/refinement scheme to model the
caches. For instance the 5-stage pipeline of the ARM920T can be specified by a
network of 5 timed automata (see Fig. 7) each of them modelling a single stage
of the execution pipeline.

Each stage automaton has a unique identifier me (an integer). The values
of this identifier for the templates (F, D, E, M, W) are respectively (0, 1, 2,
3, 4). This encodes the fact that the stages F, D, E, M, W are ordered: each
node of Treea

H(P ) flows from one stage k to the next k + 1 when the pushTo[k]
channels synchronise. For instance, the F-Stage template automaton is idle until
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F Stage

D stage

E Stage

egatSWegatSM

Fig. 7. Timed automata for F, D, E, M and W stages (pipeline ARM920T).

the Program Automaton (Fig. 5) pushes a node via the pushTo[0]? transition.
It updates the local state of this stage 0 (locState[0]=node) where node is
a (meta) variable used to retrieve the value sent by the Program Automaton
that issues the pushTo[0]! command. The F stage template automaton then
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synchronises with the instruction cache (see Fig. 7) to simulate the time it takes
to fetch the instruction from the instruction cache.

The memory stage (M stage) assumes a constant time to read data from
the data cache: each transaction takes MEM SPEED cycles. We can easily model
the data cache but for the sake of simplicity we use a simple version here. The
other stages (D, E, M, W) are based on the same logic: they are idle until the
previous stage pushes some information to them. The copy(me,me+1) commands
transfers the information from stage me to stage me+1. When going back to the
IDLE (initial) location, the local information of the templates are reset to the
default value NO STATE which indicates that the pipeline state is empty.

Fig. 8. Instruction cache template.

The instruction cache is specified by the template timed automaton in Fig. 8.
The PMT variable holds the number of Pending Memory Transactions. This num-
ber is determined by the hit ins function that can be retrieved from the anno-
tated node in the tree.

Finally the main memory template simply simulates how long it takes to
perform a transaction (read or write) with the main memory.

Fig. 9. Main memory template.



WUPPAAL: Computation of Worst-Case Execution-Time 573

4 Implementation and Experimental Results

Tool Chain. Let us dwell on the tool chain we have constructed to demonstrate
our methodology described in Sect. 3. The tool-chain, visualized in Fig. 10, is
composed of five components:

bin.elf

pre-analysis

bin.annotatedHW.xml

Uppaal libgdb2uppaal gdb qemu

Fig. 10. The tool chain of Wuppaal. Orange blocks are the modules we implemented.
Other blocks are existing modules. (Color figure online)

– a pre-analysis module for constructing an annotated program that can
be used to generate the program traces LH(P ); this step is developed in
Scala and uses some powerful Grammar and Language Processing packages
Kiama [20] and Sbt-Rats! [21].

– qemu [4] to emulate the chosen hardware and enables us to compute the next
state after executing a program instruction. As an example of usage, we set up
the hardware to a given initial state (program counter and values of registers
and stack), and with qemu we can compute the effect of an instruction. What
is communicated back (using gdb) is the next program counter and the next
state of the registers and stack.

– gdb [22] for inspecting qemu,
– libgdb2uppaal to implement the tree-API given at the beginning of Sect. 3.
– a Timed Automaton model of the hardware HW.xml (an example is provided

on Fig. 7, page 13 for the pipelines and Fig. 8, page 14 and Fig. 9, page 14 for
the main memory and instruction cache.)

– Uppaal for computing the worst-case execution time given a sequence of
nodes using the Program Automaton template Fig. 5, page 11, The Uppaal
model uses an integer counter to identify the current state of the program.
The libgdb2uppaal maintains a table that maps integers to actual program
states (program counter, values of the registers and the stack). The get next
function in the Tree-API returns all the possible successors of a state as
integers and updates the table that maps integers to program state (when a
new state is encountered). The Program Automaton (Fig. 5) will explore all
the successor states.
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Computing the WCET for a given binary program bin.elf using our frame-
work is a two-stage process. In the first stage we compute an annotated program
(e.g., a CFG and the set of variables needed to generate the annotated language
La

H(P )) by using pre-analysis. In the second stage we use Uppaal to drive a
search through the state space, interfacing (by proxy of gdb and libgdb2uppaal)
with the emulator of the hardware as described in Sect. 3. In the current model,
we ignore the data cache but this is not a restriction as the caches can be added
to the program state and modeled in the libgdb2uppaal library.

Support for other Languages and Hardware. The approach we propose
is general enough to accommodate other languages and hardware. For instance,
assume we want to use an x86 processor and the corresponding assembly lan-
guage. What needs to be provided is a new pre-analysis module for this assem-
bly language to construct the annotated program. The pre-analysis we have
developed for the ARM assembly language is easy to re-use to build support for
other languages.

We also need to provide an abstract model for the x86 hardware as a network
of timed automata. The widgets we have proposed in Sect. 2 for the ARM920T
pipeline can be adapted to build new formal models for an x86 platform (and of
course new pipeline stages can be added if the architecture requires it).

Finally we need qemu (or an equivalent program) to support the emulation of
the hardware. The general architecture we introduced in Fig. 10 can be re-used
as well as the modular method depicted in Fig. 3 to compute the WCET for
programs running on the x86.

Results. We have experimented our technique using some of the standard bench-
marks [17] from Mälardalen University, for computing WCET. As we can see in
Table 1, we are achieving a reasonable computation time (less than 5 s for all
experiments), demonstrating the feasibility of our approach. We can also see
that for all of the test-cases, the constructed trees are fairly small in size. In
this paper we do not provide a thorough comparison with the actual measured
execution times because we use simple models for the caches. The models used
in [9] may be used in the future. The results in [9] demonstrated that our app-
roach provides very accurate WCET and the new implementation should give
similar results when precise models of the caches are used.

Table 1. The experimental results, time is given in seconds and includes startup
overhead from initializing gdb and qemu. The loc measure is the number of lines of
assembly. Note that more experiments will be added by the final submission.

Program Loc |TreeaH(P )| Time WCET

duff 145 1750 4.51 61215

fibcall 48 553 2.91 19320

insertsort 84 7 2.09 210

janne complex 67 360 3.21 12565

lcdnum 100 250 2.52 8715
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5 Conclusion

We have presented a method, based on timed automata and real-time model-
checking with Uppaal, to compute the WCET of binary programs. The method
we designed is generic and can accommodate arbitrary hardware. The proposed
tool chain allows us to achieve a modular approach to WCET-computation,
reducing the overhead needed to support new binaries, and new architectures.
To support different binaries we only have to provide pre-analysis with a
different input. To support different processors, it is sufficient to provide a new
hardware-model (HW.xml) and emulator (qemu).

Moreover, our technique does not rely on the computation of loop bounds or
the assumption that the hardware is free of timing anomalies: this is one of the
strengths of the model-checking method. Another strength is that it generates
a witness program trace that produces the WCET. Other interesting features
of this approach includes its generality: we do not need to assume that the
initial state of the caches is known. The only requirement is that the annotated
language La

H(P ) over-approximates the program behaviours.
Our technique is also general enough to be paired with program refinement

techniques. As mentioned in Sect. 3 for Prog1, some traces in LH(P ) may not be
feasible: if the first choice for the test a < b is true (resp. false), the following
test of the same condition must be true (resp. false). In that case we compute
a refinement R1 ⊆ La

H(P ) of the annotated program to rule the spurious traces
and analyse the refinement R1. This can de done using the trace abstraction
approach of [14,15]. This enables us to define an iterative method to compute
better and better over-approximations of the WCET and ensure that one witness
trace exists.

Notice that this refinement also applies to the hardware model: we can start
with a very simple model of the caches where every transaction is either a Hit
or a Miss. Once a WCET is computed with Uppaal, we can check whether the
witness trace is feasible in the program and in the caches. If the cache behaviour
that is in the witness is spurious (infeasible) we can refine it as well. We have
implemented a cache refinement technique in [8]. This enables us to get some
control on the accuracy of the computation via model-checking.

On another note, we can use our technique as a simulation based technique:
the bin.annotated component in the tool chain Fig. 10 can be replaced by a gen-
erator of traces. In this case we can only compute a lower bound for the WCET
but we get access to the statistical model-checking engine of Uppaal. This opens
a new avenue to compute some probabilistic distributions of the WCET.

In addition, outsourcing the semantics of a binary program to a trusted emu-
lation tool (qemu) eliminates errors that occurs when semantically translating
binary programs into timed automata. As such a translation necessitates a very
high level of detail, it can easily result in a state-space explosion – even for simple
architectures and programs. With our construction, knowledge of the hardware
and static-analysis and abstraction refinement methods can be used to reduce
the size of explored state space.
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Abstract. We propose the formal study of blockchains that are owned
and controlled by organizations and that neither create cryptocurrencies
nor provide incentives to solvers of cryptographic puzzles. We view such
approaches as frameworks in which system parts, such as the crypto-
graphic puzzle, may be instantiated with different technology. Owners of
such a blockchain procure puzzle solvers as resources they control, and
use a mathematical model to compute optimal parameters for the cryp-
tographic puzzle mechanism or other parts of the blockchain. We illus-
trate this approach with a use case in which blockchains record hashes of
financial process transactions to increase their trustworthiness and that
of their audits. For Proof of Work as cryptographic puzzle, we develop a
detailed mathematical model to derive MINLP optimization problems for
computing optimal Proof of Work configuration parameters that trade off
potentially conflicting aspects such as availability, resiliency, security, and
cost in this governed setting. We demonstrate the utility of such a mining
calculus by applying it on some instances of this problem. We hope that
our work may facilitate the creation of domain-specific blockchains for a
wide range of applications such as trustworthy information in Internet of
Things systems and bespoke improvements of legacy financial services.

1 Introduction

There is little doubt that modern accounting systems have benefitted, ever since
the advent of commercial computing machines, from the digitization of the
processing and recording of financial transactions. The automated processing
of payroll information in the 1950ies was perhaps one of the earliest examples of
such benefits: IBM introduced its 702 Data Processing System for businesses in
1953. And the use of RFID technology or smart phones for contactless payment
of small items such as coffees is a more recent example thereof.

It is then striking that the mechanisms used for managing the integrity of
accounts are, in essence, those developed at least a thousand years ago. What we
call the modern double-entry bookkeeping was already used by Florentine mer-
chants in the 13th century, for example. Without going into great detail, the key
idea is in simplified terms that each account has an associated dual account and
that each credit in one account is recorded as a debit in that dual account. This
allows for the formulation and verification of an important financial invariant :
c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 578–599, 2017.
DOI: 10.1007/978-3-319-63121-9 29
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no matter how complex financial transactions may be, or how many transactions
may occur, it must always be the case that over the totality of accounts

“Assets equal liabilities plus capital.”

Modern realizations of this method may enrich account entries with time
stamps and other contextual data so that the flow of assets can be better under-
stood, for example to support an audit. The above invariant may be quite simple
to verify, and its verification may give us reassurance that every debit has an
associated credit. But it does not prevent the recording of transactions that may
be unauthorized, fraudulent, or that may be incorrect due to human error. For
example, transaction records within accounting books may be manipulated to
commit fraud whilst these manipulations still satisfy the above invariant.

One may say that processing of transactions is governed by a form of legal
code that is informed by policy on fraud prevention and detection, regulation,
compliance, risk, and so forth. But the enforcement of such legal code within the
technical code that operationalizes modern financial processes has been difficult
at best, and too costly or impossible at worst.

Digitized financial processes can utilize cryptographic primitives to help with
narrowing this gap between legal and technical code: digital signatures can be
associated to transactions (for example embedded within transaction objects),
and commitment schemes can be used to realize consistent distributed stor-
age whose consistency is resilient to adversarial manipulation; see for example
the discussion of Byzantine Agreement Protocols in [19]. But the advent of de-
centralized, eventual consistency storage protocols, as pioneered in the cryp-
tocurrency Bitcoin [13], opened up a new way of thinking about the processing
of financial transactions, even of creating and managing a currency as a unit of
account.

In the Bitcoin network, a randomized race of solving a cryptographic puz-
zle, Proof of Work, is used to elect a leader whose block will be added to the
blockchain. The leader election is done for each new block, and a consensus
protocol ensures that the majority of network nodes have a consistent copy of
the blockchain. There is little doubt that cryptocurrencies are one of the most
important innovations [1,14], along with the invention and introduction of cen-
tral banks, in financial services since the advent of the double-entry bookkeeping.

In this paper, we investigate how governed, closed blockchains can be
designed so that they can support the resilient, distributed, and trustworthy
storage of authentication of transactions within conventional financial processes.
Such governed systems restrict access, notably to the definition and solving of
cryptographic puzzles. Therefore, they give us better control on balancing the
use of energy for puzzle solving with the security of the Proof of Work algo-
rithm when compared with open systems that rely on Proof of Work, such
as Bitcoin. Specifically, we propose that transactions (in the sense of Bitcoin)
within blocks are hashes of transactions (in the sense of conventional financial
processes). We then define mathematical models that describe the design space
of such a blockchain in terms of the cryptographic puzzle used – in this paper
Proof of Work, in terms of expected availability, resiliency, security, and cost,
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and in terms that reflect that the system is centrally governed. We stress that
our approach is also consistent with transactions within blockchains that encode
transaction history, which we don’t consider in the use case of this paper.

Outline of Paper. In Sect. 2 we present our use case. Our mathematical model
for governed Proof of Work is subject of Sect. 3. The derivation of optimization
problems for these is done in Sect. 4 and shown to support robust design security
in Sect. 5. An algorithm for solving such optimization problems and experimental
results are reported in Sect. 6. The wider context of our work and related work
are discussed in Sect. 7, and the paper concludes in Sect. 8.

2 Use Case

Our use case is one of a financial process that creates financial transactions. We
would like to enhance the trustworthiness of this process through a blockchain
that records hash-based authentications of transactions, see Fig. 1, where the
interaction between the legacy process and the blockchain is conceptually
simple – and consistent with the use of double-entry bookkeeping if desired.

Our assumption is that the event streams of such transactions are not lin-
earizable and so we cannot rely on techniques such as hash chains [7] to obtain
immutability of transactions. A hash chain could also be recomputed by an
attacker with partial control of the system. Alternatively a blockchain created
through consensus protocols such as BFT [10,19] would also be subject to manip-
ulation after consensus protocols have been executed and blocks added to the
chain. A blockchain based on cryptographic puzzles is thus much more resilient to
such manipulation attacks, since it takes considerable effort to solve the number
of cryptographic puzzles needed for rewriting parts or all of a blockchain.

Our data model represents a transaction as a string input, authenticated with
a hash hash(input). String input may be a serialization of a transaction object
that contains relevant information such as a time stamp of the transaction, a
digital signature of the core transaction data and so forth. The trustworthiness
of transaction input is represented outside of the blockchain by the triple

(input, hash(input), location) (1)

where location is either the block height (≥0) of a block b in the blockchain
such that hash(input) occurs in block b or location is NULL, indicating that the
transaction is not yet confirmed on the blockchain.

The hashes hash(input) of transactions that still need to be confirmed are
propagated on the blockchain network, where they are picked up by miners
and integrated into blocks for Proof of Work. We assume a suitable mechanism
by which nodes that manage legacy accounts learn the blockheights of their
transactions that have been successfully added to the blockchain. Such nodes
may have a full copy of the blockchain and update location values in accounts if
the hash of the corresponding transaction occurs in a block that was just added.
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Fig. 1. Governed blockchain for financial process authentications: note that Transac-
tions recorded in blocks on the left are mere hashes of transactions conducted in the
legacy system. The latter are listed in Accounts/Nodes on the left

A transaction is unverified if its location value is NULL or if its hash does
not equal the one stored externally as in (1); it is trustworthy if 0 ≤ location
and location + k ≤ currentBlockHeight where k ≥ 0 is a suitable constant
and currentBlockHeight denotes the number of blocks added to the blockchain
so far. The value of k may be a function of how fast blocks are added to the
chain on average, to ensure sufficient resiliency of trustworthiness. An auditor
could then inspect any transaction by examining its triple stored as in (1). If
location equals NULL or if location+ k > currentBlockHeight, the transaction
is considered neither valid nor trustworthy by the auditor. Otherwise, we have
0 ≤ location and location + k ≤ currentBlockHeight and the auditor uses the
Merkle tree hash in block location to verify that hash(input) is in the block of
height b. If that is the case, the auditor considers the transaction to be verified;
otherwise, the auditor considers the transaction not to be trustworthy.

Note that this use case does not require transaction scripts to be stored,
nor any run-time system for verifying such transactions. But the mathematical
modelling approach we present in this paper is consistent with use cases that
have such script generation and verification support.

System Architecture. A system architecture that could support such a use
case is shown in Fig. 1. Unverified transactions have their hashes propagated on
the network. Miners pick up those hashes and integrate them into blocks for
Proof of Work. We abstract away how miners manage their pools of hashes and
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how Proof of Work blocks are propagated and added to the blockchain; this
gives us flexibility in the use of blockchain technology. Once blocks are added to
the blockchain, blockheights are propagated to the legacy account. As mentioned
above, these accounts could have full copies of the blockchain and thus implement
their own update mechanisms for value location in triples stored as in (1).

Auditors would interface with both accounts and the blockchain to verify,
in a trustworthy manner, the authenticity of transactions. Any transaction that
is not verified as discussed above would be flagged up in this audit. Any pre-
existing audit process – which may focus on compliance, regulations and other
aspects – is consistent with such trustworthiness checking ; and the trustworthi-
ness of the pre-existing audit process would be increased as it would refuse to
certify any financial transaction histories that involved a transaction that is not
authenticated on the blockchain.

Analysis. The approach we advocate in this section seems consistent with con-
sensus mechanisms as used in Bitcoin but it may also support 2-phase commit-
ment schemes as proposed in [5]. Our system architecture allows for full nodes
to be associated with accounts, sets of accounts or corporate boundaries. Our
blockchain does not create any currency, and so there is no inherent incentive
to mine. But there is an incentive for the owners of this blockchain to allocate
mining resources in a manner that establishes trustworthiness of transactions as
recorded in this blockchain. We deem elimination of incentives for miners and
their game-theoretic implications to be a benefit, as well as the simple ways of
propagating trust through hashes of transactions. Such a blockchain may also
be consulted by legacy systems to inform the authorization of further financial
transactions.

Our blockchain does not spend any funds and so has no problem of double
spending, and double spending in the legacy system would be detectable with
existing mechanisms such as audits. Our approach does allow for double authen-
tication though: a transaction hash may occur more than once in a blockchain,
be it in the same block or in different blocks. We deem this to be unproblematic
as audits would only need to establish some, sufficiently old, authentication of
the transaction in the blockchain to establish its trustworthiness – noting that
hash-based authentication is deterministic.

One expectation is that blocks would only be added to the blockchain if
signed by one of the miners that is resourced for this Proof of Work service. This
requires that the public keys of such miners are securely stored and available
within the system. Over time, some of these miners may be removed from such
a list (e.g. decommissioned) and new ones may be added (e.g. system upgrade).

3 Mathematics for Centrally Governed Proof of Work

Our model assumes a cryptographic hash function

h : {0, 1}p → {0, 1}n
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where p ≥ n > 0 such that h has puzzle friendliness [14]. The level of difficulty
d is an integer satisfying 0 < d < n: Proof of Work has to produce some x where
h(x) has at least d many leftmost 0 bits. We write T > 0 for the time to compute
a sole hash h(x) and to decide whether it has at least d leftmost zeros. Since the
range of d will be relatively small, we make T a device-dependent constant.

Our probabilistic modeling will treat h in the Random Oracle Model (ROM):
function h is chosen uniformly at random from all functions of type {0, 1}p →
{0, 1}n; that is to say, h is a deterministic function such that any x for which h
has not yet been queried will have the property that h(x) is governed by a truly
random probability distribution over {0, 1}n.

We may assume that x consists of a block header which contains some random
data field – a nonce nonce of bitlength r, that this nonce is initialized, and that
the nonce is then increased by 1 each time the hash of x does not obtain Proof of
Work. In particular, this yields that {0, 1}p ∼= {0, 1}p−r×{0, 1}r where 0 < r < p:
the input to h will be of form x = data || nonce where data and nonce have p−r
and r bits, respectively. Our use of ROM will rely on the following assumption:

Assumption 1 (Invariant). The mining of a block with one or more miners
will use an input to h at most once, be it within or across miners’ input spaces.

This assumption and ROM give us that hash values are always uniformly
distributed in the output space during a mining race. Now consider having s > 1
many miners that run in parallel to find Proof of Work, engaging thus in a mining
race. We assume these miners run with the same configurations and hardware.
As already discussed, in our approach miners do not get rewarded:

Assumption 2 (Miners). Miners are a resource controlled by the governing
organization or consortium, and have identical hardware. In particular, miners
are not rewarded nor have the need for incentive structures.

But miners may be corrupted and misbehave, for example they may refuse
to mine. To simplify our analysis, we assume miners begin the computation of
hashes in approximate synchrony:

Assumption 3 (Approximate Synchrony). Miners start a mining race at
approximately the same time.

For many application domains, this is a realistic assumption as communica-
tion delays to miners would have a known upper bound that our models could
additionally reflect if needed.

Next, we want to model the race of getting a Proof of Work where each miner
j has some data dataj . To realize Assumption 1, it suffices that each miner j has
a nonce noncej in a value space of size

λ = �2r/s�

such that these nonce spaces are mutually disjoint across miners.
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Our probability space has (dataj)1≤j≤s and d as implicit parameters. For
each miner j, the set of basic events Ej is

Ej = {⊗k · � | 0 ≤ k ≤ λ} ∪ {failure} (2)

Basic event failure denotes the event that all λ nonce values noncej from {(j−1)·
λ, . . . , j · λ − 1} for miner j failed to obtain Proof of Work for dataj at level of
difficulty d. Basic event ⊗k · � models the event in which the first k such nonce
values failed to obtain Proof of Work for dataj at level d but the k + 1th value
of noncej did render such Proof of Work for dataj .

To model this mining race between s miners for (data1, data2, . . . , datas)
and d as implicit parameters, we take the product

∏s
j=1 Ej of s copies Ej and

quotient it via an equivalence relation ≡ on that product
∏s

j=1 Ej , which we
now define formally.

Definition 1

1. The s-tuple (failure, . . . , failure) models failure of this mining race, and it is ≡
equivalent only to itself.

2. All s-tuples a = (aj)1≤j≤s other than tuple (failure, . . . , failure) model that
the mining race succeeded for at least one miner. For such an s-tuple a, the
set of natural numbers k such that ⊗k · � is a coordinate in a is non-empty
and therefore has a minimum min(a). Given two s-tuples a = (aj)1≤j≤s and
b = (bj)1≤j≤s both different from (failure, . . . , failure), we can then define

a ≡ b iff min(a) = min(b)

So two non-failing tuples are equivalent if they determine a first (and so final)
Proof of Work at the same round of the race. This defines an equivalence relation
≡ and adequately models a synchronized mining race between s miners.

The interpretation of events ⊗k ·� in the mining race is then the equivalence
class of all those tuples a for which min(a) is well defined and equals k: all mining
races that succeed first at round k. The meaning of failure is still overall failure of
the mining race, the equivalence class containing only tuple (failure, . . . , failure).
The set of events for the Proof of Work race of s miners is therefore

Es = {⊗k · � | 0 ≤ k ≤ λ} ∪ {failure} (3)

In (3), expression ⊗k · � denotes an element of the quotient

( s∏

j=1

Ej
)
/≡

namely the equivalence class of tuple (⊗k · �, failure, failure, . . . , failure). Next,
we define a probability distribution probs over Es. To derive the probability
probs(⊗k · �), recall

p̃(⊗k) = (1 − 2−d)k



Centrally Governed Blockchains: Optimizing Security, Cost, and Availability 585

as the probability that a given miner does not obtain Proof of Work at level d in
the first k rounds. By Assumption 1, these miners work independently and over
disjoint input spaces. By ROM, the expression

[
(1 − 2−d)k

]s = (1 − 2−d)k·s

therefore models the probability that none of the s miners obtains Proof of Work
in the first k rounds. Appealing again to ROM and Assumption 1, the behavior
at round k + 1 is independent of that of the first k rounds. Therefore, we need
to multiply the above probability with the one for which at least one of the s
miners will obtain a Proof of Work in a single round. The latter probability is
the complementary one of the probability that none of the s miners will get a
Proof of Work in a sole round, which is (1−2−d)s due to the ROM independence.
Therefore, we get

probs(⊗k · �) = (1 − 2−d)k·s · [1 − (1 − 2−d)s] (4)

This defines a probability distribution with a non-zero probability of failure.
Firstly,

λ∑

k=0

(1 − 2−d)k·s · [1 − (1 − 2−d)s]

is in (0, 1): to see this, note that this sum equals

[1 − (1 − 2−d)s] · 1 − [(1 − 2−d)s]λ+1

1 − (1 − 2−d)s
= 1 − (1 − 2−d)s·(λ+1)

Since 0 < d, s, the real 1 − 2−d is in (0, 1), and the same is true of any integral
power thereof. Secondly, probs becomes a probability distribution with the non-
zero probability probs(failure) being 1 − probe(Es\{failure}), that is

probs(failure) = (1 − 2−d)s·(λ+1) (5)

That this failure probability is almost identical to that for s = 1 is an artefact
of our modeling: if each miner has 64 bits of nonce space, e.g., then our model
would have r = 64 · s, so failure probabilities do decrease as s increases.

4 Mathematical Optimization in Mining Design Space

Generality of Approach. We want to optimize the use of s > 1 miners using
a level of difficulty d, and a bit size r of the global nonce space with respect to
an objective function. The latter may be a cost function, if containing cost is
the paramount objective or if a first cost estimate is sought that can then be
transformed into a constraint to optimize for a security objective – for example
to maximize the level of difficulty d, as seen further below. Higher values of d
add more security: it takes more effort to mine a block and so more effort to
manipulate the mining process and used consensus mechanism. But lower values
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of d may be needed, for example, in high-frequency trading where performance
can become a real issue. We want to understand such trade-offs. Moreover, we
want to explore how corruption of some miners or inherent uncertainty in the
number of deployed miners or in the level of difficulty across the lifetime of a
system may influence the above tradeoffs.

Optimizing Cost and Security. The flexibility of our approach includes the
choice of an objective function for optimization. Let us first consider an objective
function

Cost(s, r, d) = TVC · Es(noR) · s + TFC · s (6)

that models cost as a function of the number of miners s, the bit size of the nonce
r – implicit in random variable Es(noR), and the level of difficulty d; where we
want to minimize cost.

The real variable TVC models the variable cost of computing one hash for
one miner, reflecting the device-dependent speed of hashes and the price of
energy. The real variable TFC models the fixed costs of having one miner ; this
can be seen as modeling procurement and depreciations. Variables s, r, and d are
integral, making this a mixed integer optimization problem [8]. The expression
Es(noR) denotes the expected number of rounds (of approximately synchronous
hash attempts) needed to mine a block in a mining race that uses s miners, level
of difficulty d, and nonce bitsize r. The derivation of this expression below shows
that it is non-linear, making this a MINLP optimization problem [8,16].

We may of course use other objective functions. One of these is simply
the expression d, which we would seek to maximize, the intuition being that
higher values of d give us more trust into the veracity of a mined block and
the blockchains generated in the system. Figure 2 shows an example of a set of
constraints and optimizations of security and cost for this.

Fig. 2. Constraint set C for two optimization problems: (a) minimize Cost(s, r, d)
as in (6) subject to constraints in C; and (b) maximize d subject to C ∪
{Cost(s, r, d) ≤ budget} for cost bound budget. This is parameterized by con-
stants 0 ≤ δ, δ1, δ2, ε, th, th′, τl, TVC, TFC and 0 < T, sl, rl, dl. Variables or constants
sl, su, s, dl, du, d, rl, ru, r are integral

Integer constants sl and su provide bounds for variable s, and similar integer
bounds are used to constrain integer variables r and d. The constraint for ε uses
it as upper bound for the probability of a mining race failing to mine a block.
The next two inequalities stipulate that the expected time for mining a block is
within a given time interval, specified by real constants τl and τu.
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The real constant δ2 is an upper bound for

probs(disputes within μ)

the probability that more than one miner finds PoW within μ seconds in the
same, approximately synchronous, mining race. The constraint for real constant
δ says that the probability

probs(PoWTime > th)

of the actual time for mining a block being above a real constant th is bounded
above by δ. This constraint is of independent interest: knowing that the expected
time to mine a block is within specified bounds may not suffice in systems that
need to assure that blocks are almost always (with probability at least 1 − δ)
mined within a specified time limit. Some systems may also need assurance that
blocks are almost always mined in time exceeding a specified time limit th′. We
write

probs(PoWTime < th′)

to denote that probability, and add a dual constraint, that the actual time for
mining a block has a sufficiently small probability ≤ δ1 of being faster than
threshold th′.

Constraints as Analytical Expressions. We derive analytical expressions for
random variables occurring in Fig. 2. Beginning with Es(noR), we have

Es(noR) =
∑

0≤k≤λ

probs(⊗k · �) · (k + 1) (7)

which we know to be equal to
∑

0≤k≤λ

(1 − 2−d)k·s · [1 − (1 − 2−d)s] · (k + 1)

We may rewrite the latter expression so that summations are eliminated and
reduced to exponentiations: concretely, we rewrite

∑
0≤k≤λ prob(⊗k ·�) · (k+1),

the righthand side of (7), to λ + 1 summations, each one starting at a value
between 0 and λ, where we exploit the familiar formula

b∑

k=a

xk =
xa − xb+1

1 − x

This renders

Es(noR) =
1 − yλ+1 − (λ + 1) · (1 − y) · yλ+1

1 − y
(8)

where we use the abbreviation

y = (1 − 2−d)s (9)
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The expected time needed to get a proof of work for input data is then given by

Es(poW ) = T · Es(noR) (10)

We derive an analytical expression for the probability probs(PoWTime > th)
next. Note that (th/T )− 1 < k models that the actual time taken for k +1 hash
rounds is larger than th. Therefore, we capture probs(PoWTime > th) as

∑

�(th/T )−1�<k≤λ

probs(⊗k · �) = y�(th/T )−1�+1 − yλ+1 (11)

assuming that �(th/T )− 1� < λ, the latter therefore becoming a constraint that
we need to add to our optimization problem. One may be tempted to choose the
value of δ based on the Markov inequality, which gives us

probs(PoWTime ≥ th) ≤ T · Es(noR)/th

But we should keep in mind that upper bound T · Es(noR)/th depends on
the parameters s, r, and d; for example, the analytical expression for Es(noR)
in (8) is dependent on λ and so dependent on r as well. The representation
in (11) also maintains that expression y�(th/T )−1�+1 − yλ+1 is in [0, 1], i.e. a
proper probability. Since y = (1 − 2−d)s is in (0, 1), this is already guaranteed
if �(th/T ) − 1� + 1 ≤ λ + 1, i.e. if �(th/T ) − 1� ≤ λ. But we already added that
constraint to our model. Similarly to our analysis of probs(PoWTime > th),
we get

probs(PowTime < th′) = 1−(1−2−d)s·(�(th′/T )−1�+1) = 1−y�(th′/T )−1�+1 (12)

which needs 0 < �(th′/T ) − 1� as additional constraint.
To derive an analytical expression for probs(disputes within μ), each miner

can perform �μ/T � hashes within μ seconds. Let us set

w = (1 − 2−d)�μ/T�+1 (13)

The probability that a given miner finds PoW within μ seconds is

�μ/T�∑

k=0

(1 − 2−d)k · 2−d = 2−d · 1 − (1 − 2−d)�μ/T�+1

1 − (1 − 2−d)
= 1 − w (14)

Therefore, the probability that no miner finds PoW within μ seconds is

probs(0 PoW within μ) = (1 − (1 − w))s = ws (15)

The probability that exactly one miner finds PoW within μ seconds is

probs(1 PoW within μ) = s · ws−1 · (1 − w) (16)
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Thus, the probability that more than one miner finds PoW within μ seconds is

probs(disputes within μ) = 1 − probs(0 PoW within μ) − probs(1 PoW within μ)

= 1 − ws − s · ws−1 · (1 − w)

= 1 − ws − s · ws−1 + s · ws−1 · w

= 1 + (s − 1) · ws − s · ws−1 (17)

Figure 3 shows the set of constraints C from Fig. 2 with analytical expressions
and their additional constraints, we add constraint 0 ≤ �μ/T � to get consistency
for the analytical representation of probs(disputes within μ).

Fig. 3. Arithmetic version of set of constraints C from Fig. 2, with additional soundness
constraints for this representation. Feasibility of (s, r, d) and ru ≥ r′ > r won’t generally
imply feasibility of (s, r′, d) due to the constraint in (18)

5 Robust Design Security

Our model above captures design requirements or design decisions as a set of
constraints, to optimize or trade off measures of interest subject to such con-
straints. We can extend this model to also manage uncertainty via robust opti-
mization [2]. Such uncertainty may arise during the lifetime of a system through
the possibility of having corrupted miners, needed flexibility in adjusting the
level of difficulty, and so forth. For example, corrupted miners may refuse to
mine, deny their service by returning invalid block headers, pool their mining
power to get more mining influence or they may simply break down. Robust
optimization treats such uncertainty as non-deterministic choice and refers to it
as strict or Knightian uncertainty.

Consider 1 ≤ l < s corrupted miners. We can model their pool power by
appeal to ROM and the fact that the mining race is approximately synchronized:
the probability that these l miners win c > 0 many subsequent mining races is
then seen to be (l/s)c. We can therefore bound this with a constant δ3 as in
Fig. 3.

We model uncertainty in the number of miners available by an integer con-
stant us as follows: if s miners are deployed, then we assume that at least s−us
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and at most s many miners participate reliably in the mining of legitimate blocks:
they will not mine blocks that won’t verify and only submit mined blocks that
do verify to the network. Constant us can model aspects such as denial of service
attacks or a combination of such attacks with faults: us = 3, e.g., subsumes the
scenario in which one miner fails and two miners mine invalid blocks.

Integer constant ud models the uncertainty in the deployed level of difficulty
d: intuitively, our analysis should give us results that are robust in that they
hedge against the fact that any of the values d′ satisfying

|d − d′ | ≤ ud

may be the actually running level of difficulty. This enables us to understand
a design if we are unsure about which level of difficulty will be deployed or if
we want some flexibility in dynamically adjusting the value of d in the running
system.

The corresponding robust optimization problem for cost minimization is seen
in Fig. 4. It adds to the constraints we already consider further requirements on
constants l, c, and δ3 as well as the constraint

lc ≤ δ3 · sc

The robustness of analysis is achieved by a change of the objective function from
Cost(s, r, d) to

Costus
ud

(s, r, d) = max
s−us≤s′≤s, |d−d′|≤ud

Cost(s′, r, d′) (19)

The latter computes a worst-case cost for triple (s, r, d) where s and d may
vary independently subject to the strict uncertainties us and ud, respectively.
We call a triple (s, r, d) feasible if it satisfies all constraints of its optimization
problem. Costs such as the one in (19) for a triple (s, r, d) are only considered
for optimization if all triples (s′, r, d′) used in (19) are feasible – realized with
predicate feasibleus

ud
: robust optimization guarantees [2] that the feasibility of

solutions is invariant under the specified strict uncertainty (here us and ud).

6 Experiments and Validation

We submitted simple instances of the optimization problem in Fig. 4 to state
of the art MINLP solvers. All these solvers reported, erroneously, in their pre-
processing stage that the problem is infeasible. These solvers were not designed
to deal with problems that combine such small numbers and large powers, and
rely on standard floating point implementations. Therefore, we wrote a bespoke
solver in Haskell that exploits the fact that we have only few integral variables
within limited ranges so that we can explore their combinatorial space completely
to determine feasibility and therefore optimality as well.

Experimental Setup. We solve the robust optimization problem for the ana-
lytical expressions we derived above with the algorithm depicted in Fig. 5. This
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Fig. 4. Robust cost optimization for the set of constraints from Fig. 3, where up to
us = 5 miners may be non-functioning, refusing to mine or mining invalid blocks;
where the level of difficulty may vary by up to +/−3; and where the probability of any
mining pool of size l = 4 winning c = 6 consecutive mining races is sufficiently small
(here δ3 = 0.001). Predicate feasibleus

ud
(s, r, d) characterizes robustly feasible triples

and is true iff all triples (s′, r, d′) with s − us ≤ s′ ≤ s and |d − d′ | ≤ ud are feasible

Fig. 5. Algorithm, written in imperative style of list processing, for reporting the best
p robustly feasible tuples (d, r, s, cost) such that d is maximal subject to the cost
cost = Cost(s, r, d) satisfying cost ≤ α · cm where cm is the minimal cost for all
robustly feasible tuples (s, r, d) and α ≥ 1 is a tolerance factor for increasing cost beyond
cm. Predicate feasibleF loat(s, r, d) is true iff all constraints in Fig. 3 are true for this
choice of s, r, and d under normal precision floats. Predicates feasibleBigF loat and
feasibleBigF loatus

ud
are true iff their mathematical definition is true under arbitrary-

precision floating points (applying package Data.BigFloat version 2.13.2).

algorithm has as input the set of constraints, a parameter p and a parameter
α. It will output at most p robustly feasible tuples (s, r, d, cost) from a list of
all robustly feasible such tuples as follows: it will identify the maximal values
of d for which such tuples are robustly feasible, and it will report exactly one
such tuple for each value of d where r is minimal, and cost is minimal whilst
also bounded above by α · cm where cm is the globally minimal cost. This also
determines the values of s in these tuples and so the algorithm terminates.
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Now, having defined the required analytical expressions and the algorithm to
report the best p robustly feasible tuples in Fig. 5, we also want to validate these
expressions and the algorithm experimentally. Our setup for this is based on
pure Haskell code, as functional – and in particular – Haskell programs offer the
advantages of being modular in the dimension of functionality, being strongly
typed as well as supporting an easy deconstruction of data structures, particu-
larly lists [3]. Furthermore, the arbitrary-precision verification is handled by the
external Data.BigFloat package, which is also written in Haskell. Further veri-
fication and validation of the received results are pursued by unit testing using
an arbitrary precision calculator. Moreover, our experiments ran on a machine
with the following specifications: Intel(R) Xeon(R) CPU E5-4650 with 64 cores
and 2.70 GHz and 500 GB total RAM. Our machines required between 322.12
and 261.425 s to compute the respective optimizations. The entire experiment
took 10,457.58 s.

Table 1. Constants for our experiments. This does not specify the values of τu which
will vary in experiments. Some experiments will also vary the values of δ, δ2 or δ3

sl = 4 su = 80 rl = 24 ru = 64

dl = 4 du = 64 TVC = 2 · 10−12 TFC = 3000

α = 1.5 T = 0.002 · 10−9 th = 300 th′ = 300

δ = 10−9 δ1 = 1 δ2 = 0.001 δ3 = 0.001

τl = 0 μ = 1/10000 ε = 2−64 k = 5

ud = 3 us = 5 c = 6 l = 4

We instantiate the model in Fig. 4 with the constants shown in Table 1. We
choose T to be 1/(50 · 109) = 0.02 · 10−9 for a mining ASIC from early 2016
with an estimated cost of 2700 USD at that time, so a fixed cost of TFC = 3000
USD seems reasonable. Let us now explain the value 2 · 10−12, which models
the energy cost of a sole hash (we can ignore other costs on that time scale).
A conservative estimate for the power consumption of an ASIC is 10 W per
Gigahashes per second, i.e. 10 W per Gh/s. We estimate the cost of one kilowatt
hour kWh to be about 10 cents. A kWh is 3600 s times kW and one kW is
1000 W. So 10 W per Gh/s equals 10 · 3600 W, which amounts to 36 kWh. So
the cost for this is 36 · 10 cents per hour, i.e. 360 cents per hour. But then this
costs 360/3600 = 0.1 cents per second. The price for a sole hash is therefore 0.1
divided by 50 · 109, which equals TVC = 2 · 10−12.

We insist on having at least 4 miners and cap this at 80 miners. The shared
nonce space for miners is assumed to be between 24 and 64 bits. The level of
difficulty is constrained to be between 4 and 64. We list optimal tuples that
are within a factor of α = 1.5 of the optimal cost. We make the value th′

irrelevant by setting δ1 = 1 which makes the constraint for th′ vacuously true.
The probability for mining failure is not allowed to exceed ε = 2−64. Setting
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τl = 0 means that we don’t insist on the average mining time to be above any
particular positive time. The probability that mining a block takes more than
th = 300 s is bounded by 10−9. And the probability that more than one miner
finds PoW within μ = 1/10000 s is bounded by 0.001, which we also use as
bound for winning 6 consecutive mining races. The algorithm reports the top
k = 5 optimal tuples – and reports fewer if there are no 5 feasible tuples. The
remaining constants for robustness are as given in Fig. 4.

Let us now specify some values of τu of interest. As reported in [5], Bitcoin
is believed to handle up to 7 transactions per second (although this can be
improved [6]), Paypal at least 100 transactions per second (which we take as
an average here), and Visa anywhere between 2000 and 7000 transactions per
second on average. By transactions per second we mean that blocks are mined
within a period of time consistent with this. Of course, this depends on how many
transactions are included in a block. For sake of concreteness and illustration,
we take an average number of transactions in a Bitcoin block, as reported for
the beginning of April 2016, that is 1454 transactions.

For a Bitcoin style rate, but in our governed setting, this means that a block
is mined in about 1454/7 ∼ 207.71 s. Since T ·Es(noR) is the expected (average)
time to mine a block, we can model that we have 7 transactions per second on
average by setting τBitcoin

u to be 1454/7. Similarly, we may compute τPayPal
u

and τV isa
u based on respective 100 and 7000 transactions per second:

τBitcoin
u = 1454/7 τPayPal

u = 1454/100 τV isa
u = 1454/7000 (20)

Experimental Results. We now discuss the results of our experiments. Each
experiment is conducted in three different configurations:

C1 constants in as Table 1, i.e. δ = 10−9, δ2 = δ3 = 0.001
C2 smaller δ, that is δ = 2−64, δ2 = δ3 = 0.001
C3 smaller δ and δ3, that is δ = 2−64, δ2 = 0.001, and δ3 = 0.0001.

Transactions per Second as in Bitcoin, PayPal, and Visa. We show in Table 2
output for the top 5 optimal robustly feasible tuples for the various values of
τu in (20) for configuration C1. We see that all three transaction rates can be
realized with 18 miners and a 48-bit shared nonce space in our governed setting,
and this gives each miner a nonce space of about 43 bits. The achievable level of
difficulty (within the uncertainty in us and ud) ranges from 37 to 41 for both the
Bitcoin style rate and the PayPal style rate. For the Visa style rate, the feasible
levels of difficulty are 34 and 35. For the optimal tuples reported in Table 2, the
value of r remains feasible whenever 48 ≤ r ≤ 64. Note that these results also
imply that, for all three rate styles, feasibility requires at least 18 miners.

Let us run this experiment in configuration C2. This models that the prob-
ability of mining to take more than 300 s is very small. We now only report the
changes to the results shown in Table 2 for the top rated, optimal tuple. For
τBitcoin
u , the level of difficulty drops from 41 to 40 but there are still 18 miners

and a shared nonce space of 48 bits. This tuple (s, r, d) = (18, 48, 40) is also
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Table 2. Output for top 5 optimal tuples for our robust optimization problem run
in configuration C1 and with values τu as listed in (20): 5 optimal tuples are found
for τBitcoin

u and τPayPal
u , i.e. at least 5 values of d are feasible. The problem has two

feasible levels of difficulty for τV isa
u . Costs are rounded up for three decimal places

τBitcoin
u (s, r, d, cost) τPayPal

u (s, r, d, cost) τV isa
u (s, r, d, cost)

(18, 48, 41, 54004.4) (18, 48, 41, 54004.4) (18, 48, 35, 54000.07)

(18, 48, 40, 54002.2) (18, 48, 40, 54002.2) (18, 48, 34, 54000.035)

(18, 48, 39, 54001.1) (18, 48, 39, 54001.1)

(18, 48, 38, 54000.55) (18, 48, 38, 54000.55)

(18, 48, 37, 54000.27) (18, 48, 37, 54000.27)

optimal for τPayPal
u now, whereas the optimal tuple (s, r, d) = (18, 48, 35) for

τV isa
u from configuration C1 remains to be optimal for C2.

Next, we run this experiment for configuration C3, also decreasing the prob-
ability that corrupt miners can win 6 consecutive mining races. For τBitcoin

u and
for τPayPal

u , the top 5 optimal tuples are (s, r, d) = (24, 49, d) where 36 ≤ d ≤ 40.
In particular, this requires at least one more bit for the nonce space and at least
6 more miners. For τV isa

u , only tuples (24, 49, 35) and (24, 49, 34) are reported,
so this also requires at least 24 miners and a 49-bit nonce space, where 35 and
34 are the feasible levels of difficulty.

We may explore the feasibility boundary for τu for configuration C2. The
robust optimization problem is infeasible for τu = 0.06871 but becomes feasible
when τu equals 0.06872. In that case, the only feasible tuples are (s, r, d) =
(18, r, 34, 54000.03) where 48 ≤ r ≤ 64.

Larger Transaction Rates per Second. Next, we want to vary the average number
of transactions ant in a block from ant = 1454 to larger values. This is sensible
for our use case as transactions only record a hash, which may be 8 bytes each.
These results are seen in Table 3 for 50000 transactions on average in a block,
running in the configuration C1. Let us discuss the impact of changing the ant in
a block from 1454 to 50000. This has no impact when 7 or 100 transactions per
second are desired. For 7000 transactions per second, this robust optimization
problem still has the same s and r values in optimal tuples but the level of
difficulty (which was 35 or 34) can now be between 36 and 40. This quantifies
the security and availability benefits from packing more transactions into a block
for mining throughput.

Let us now see how these results change when we run the experiment in
configuration C2. Now, all three rate styles report the same optimal 5 tuples
which are equal to the tuples listed in the rightmost column in Table 3: (s, r, d) =
(18, 48, d) where 36 ≤ d ≤ 40. The results for configuration C3 are also idential
for all three rate styles, they equal (s, r, d) = (24, 49, d) where 36 ≤ d ≤ 40. So
this requires one more bit in the nonce space and at least 6 more miners.
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Table 3. Output for top 5 optimal tuples for our robust optimization problem running
in configuration C1 and with values τu given as 50000/7, 50000/100, and 50000/7000
(respectively). Results for the first two columns are identical with those in the first two
columns of Table 2. The first 4 optimal tuples for τu = 50000/7000 equal that last 4 of
the 5 optimal tuples for 50000/7. Costs are rounded up for three decimal places

Bitcoin ≡ 7(s, r, d, cost) PayPal ≡ 100(s, r, d, cost) V isa ≡ 7000(s, r, d, cost)

(18, 48, 41, 54004.4) (18, 48, 41, 54004.4) (18, 48, 40, 54002.2)

(18, 48, 40, 54002.2) (18, 48, 40, 54002.2) (18, 48, 39, 54001.1)

(18, 48, 39, 54001.1) (18, 48, 39, 54001.1) (18, 48, 38, 54000.55)

(18, 48, 38, 54000.55) (18, 48, 38, 54000.55) (18, 48, 37, 54000.27)

(18, 48, 37, 54000.27) (18, 48, 37, 54000.27) (18, 48, 36, 54000.138)

Feasibility Boundary for Transaction Rates per Second. We repeat the last exper-
iment by varying the ant from 50000 to half a million, in increments of 50000.
We summarize these results as follows:

– Configuration C1: For all three rate styles and all transaction values in incre-
ments of 50000 up to 500000, the optimal tuples are the same: (s, r, d) =
(18, 48, d) where 37 ≤ d ≤ 41.

– Configuration C2: For all three rate styles and all transaction values in incre-
ments of 50000 from 100000 up to 500000, the optimal tuples are the same:
(s, r, d) = (18, 48, d) where 36 ≤ d ≤ 40. In contrast, for 50000/x where x is
7, 100 or 7000, we need at least a 49-bit nonce space and at least 24 miners.

– Configuration C3: For all three rate styles and all transaction values in incre-
ments of 50000 up to 500000, the optimal tuples are the same: (s, r, d) =
(24, 49, d) where 36 ≤ d ≤ 40.

Range of Feasible Sizes for Nonce Space. We can compute and validate
whether a robustly feasible tuple (s, r, d, cost) has any other values r′ for
which (s, r′, d, cost) is robustly feasible. For example, for all the optimal tuples
(s, r, d, cost) we computed above, we conclude that we may change r to any r′

satisfying r < r′ ≤ 64.

7 Discussion and Related Work

We made Assumption 1 only for appeal to the ROM model of the hash function
used for mining. Implementations may violate this assumption, without com-
promising the predictive value of our models. Our Assumption 2 is at odds with
Proof of Work as used in Bitcoin. But it does simplify the reasoning about mining
behavior, and makes that more akin to reasoning about Byzantine fault tolerant
consensus protocols [19]: for BFT protocols, network nodes are either honest
(and so comply with protocol rules without incentives) or malicious (and so may
behave in an arbitrary manner). Assumption 3 is related to the assumption that
a communication network be weakly synchronous.
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The mathematical model we proposed for Proof of Work did not specify
details of the communication environment in which Proof of Work would oper-
ate. It would be of interest to extend our mathematical model with suitable
abstractions of such a network environment, for example to reflect on upper
bound on the communication delay between any two network points. This value
could then be used to reflect Assumption 3 in finer detail in our model. Such
an extension would also allow us to investigate whether consensus protocols can
be simplified by providing Proof of Work as a service with specific behavioral
guarantees.

Let us discuss related work next. In [6], a quantitative framework is developed
for studying the security and performance of blockchains based on Proof of
Work. This framework reflects a range of parameter values such as block size and
those pertaining to network propagation, and allows to determine implications of
such choices on security (double-spending and selfish mining in particular) and
performance. It concludes that Bitcoin could well operate at a higher transaction
rate while still offering its current level of security.

In [18], the quest for the “ultimate” blockchain fabric is discussed: getting
secure blockchains that can process high transaction volumes (performance) but
do this with thousands of nodes (security). Bitcoin offers good scalability of
nodes, but its transaction rate does not scale. Dually, BFT protocols [4,10,19]
can offer high transaction throughput rates but their communication complexity
makes use of thousands of nodes impractical. The BFT state-machine replica-
tion protocol PBFT reported in [4] is designed to survive Byzantine faults in
asynchronous networks – a proven impossibility that is circumvented with the
aforementioned weak synchrony assumption in [4]. For a fixed number of 3f + 1
nodes, this resiliency to faults can be realized if at most f nodes are faulty.
A current leader proposes a new record to be added to the database, and three
phases of communication arrive at final consensus of that addition. Views man-
age the transition of leadership, for example when timeouts suggest that the
leader is not complying or not able to cooperate.

The cryptocurrency ByzCoin [9] combines ingredients from PBFT, from
Bitcoin-NG (which separates leadership election and transaction verification
aspects in the blockchain), and from Proof of Work to devise a hybrid blockchain:
its keyblock chain uses Proof of Work to elect the next leader, whereas the
microblock chain uses PBFT style consensus to add transactions during the cur-
rent leadership. The network is open (nodes may join or leave), and the current
consensus group is determined by stakes in mining that occurred within a current
window of time. It uses a collective signing mechanism to reduce the communi-
cation complexity within the prepare and commit phases of the PBFT protocol.

A growing body of work uses blockchains for transactions that are not finan-
cial as such. In [20], e.g., a blockchain is used as a manager for access control such
that this mechanism does not require trust in a third party. The architecture of
our use case can also support transactions that are not financial.

The paper [11] discusses the work we reported in this paper in more detail.
In particular, it includes a statistical validation of the random variables used in
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our mathematical model. In future work, we would like to support instances of
our robust optimization problems in which not only d, s, and r are non-constant
but also other parameters of interest – for example the time to compute a hash
T or the period of time μ during which we want to avoid a conflict in the mining
race. Current MINLP tools don’t support such capabilities at present.

8 Conclusions

In this paper we considered blockchains as a well known mechanism for the cre-
ation of trustworthiness in transactions, as pioneered in the Bitcoin system [13].
We studied how blockchains, and the choice and operation of cryptographic puz-
zles that drive the creation of new blocks, could be controlled and owned by one
or more organizations. Our proposal for such governed and more central control
is that puzzle solvers are mere resources procured by those who control or own
the blockchain, and that the solution of puzzles does not provide any mone-
tary or other reward. In particular, solved blocks will not create units of some
cryptocurrency and there is therefore no inherent incentive in solving puzzles.

We illustrated this idea with a use case in which financial transactions
recorded within conventional accounts would be recorded as hashes within a
governed blockchain and where it would be impractical to use hash chains, due
to non-linearizability of transaction flows, and due to the lack of resiliency that
such a solution would give to tampering with the blockchain.

We developed mathematical foundations for specifying and validating a cru-
cial part of a governed blockchain system, the solving of cryptographic puzzles –
where we focussed on Proof of Work. In our approach, owners of a blockchain sys-
tem can specify allowed ranges for the size of the shared nonce space, the desired
level of difficulty, and the number of miners used; and they can add mathemati-
cal constraints that specify requirements on availability, security, resiliency, and
cost containment. This gives rise to MINLP optimization problems that we were
able to express in analytical form, by appeal to the ROM model of cryptographic
hash functions used for cryptographic puzzles.

We gave an algorithm for solving such MINLP problems for sizes of practical
relevance and used it on some MINLP instances to demonstrate our capability
of computing optimal design decisions for a governed Proof of Work system,
where robust optimization models resiliency. This mining calculus also supports
change management, such as an increase in mining capacity or mining resiliency.

Our approach and mathematical model are consistent with the considera-
tion of several organizations controlling and procuring heterogeneous system
resources, with each such organization having its bespoke blockchain, and with
the provision of puzzle solving as an outsourced service. We leave the refinement
of our mathematical models to such settings as future work. It will also be of
interest to develop mathematical techniques for the real-time analysis of such
blockchains, for example, to assess statistically whether the observed history of
cryptographic puzzle solutions is consistent with the design specifications.
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We hope our work will provoke more thinking about the design, implemen-
tation, and validation of blockchains that are centrally – or in a federated man-
ner – owned and controlled and that may fulfil domain-specific needs for the
creation of trustworthiness. We believe that many domains have such needs
that the approach advocated in this paper might well be able to meet: existing
financial processes and payment workflows, but also systems that have governed
blockchains at the heart of their initial design.

Open Access of Research Data: The main algorithms needed for reproducing
the experimental results reported in this paper were mere prototypes and not
optimized very well. We make these algorithms available in a public repository
bitbucket.org/lundbaek/haskell-governed-blockchain-optimiser.
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Abstract. To balance the fluctuations of renewable energies, greater
flexibility on the consumption side is required. Moreover, solutions are
required to handle the uncertainty related to both production and con-
sumption. In this paper, we propose a probabilistic extension to FlexOf-
fers to capture both the interval in which a given energy resource can
be operated and the uncertainty that surrounds it. Probabilistic FlexOf-
fers serve as a support for a method to forecast energy production and
consumption of stochastic hybrid systems. We then show how to gener-
ate a consumption strategy to match a given consumption assignment
within a given flexibility interval. The method is illustrated on a building
equipped with solar cells, a heat pump and an ice bank used to feed the
air conditioning system.

1 Introduction

The use of renewable energies is an essential component to reduce the carbon
footprint and moving our modern society towards more sustainability. A major
inconvenience of renewables, such as solar cells or wind turbines, is that their
production cannot be controlled. Therefore, forecasts on the production from
renewable sources are often provided with some uncertainty. This is in particular
problematic during peak consumption times, where the high demand for energy
might not be matched by production from renewables. In practice, conventional
production methods using fossil energies are used to palliate the potential mis-
match. At the opposite, there may sometimes be excess of production during
off-peak hours, for example during nighttime. A solution is thus to shift part of
the consumption loads from the peak hours to the off-peak hours. If this is not
possible for all loads, it is possible for some of them. Examples include Heating
Ventilation and Air Conditioning Systems (HVAC), charging of electric vehicles
and some industrial processes. In order to make use of these flexible loads, it
is necessary to encode their energy profile to facilitate their manipulation. The
European project MIRABEL1 proposed such a representation, called FlexOf-
fers [4]. A limitation of FlexOffers is that they do not provide information about

1 www.mirabel-project.eu.
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the uncertainty of the flexibility interval. This means that either the estimation
of flexibility has to be very conservative, ensuring that any consumption trajec-
tory within the flexible interval can be followed, or errors must be tolerated when
a resource is unable to follow an assigned trajectory. An alternative, proposed
in this paper, is to quantify the uncertainty on the flexibility using probability
distributions on the bounds of a FlexOffer slice. The notion of FlexOffer and its
proposed extension to Probabilistic FlexOffers are detailed in Sect. 2.

Having a satisfactory representation of flexible loads with quantifiable uncer-
tainty, the next step is to be able to estimate both the flexibility interval and the
uncertainty on its bounds for a given system. The difficulty is that the dynamics
of flexible systems such as those previously mentioned tend to be non-linear.
Moreover, taking into account their stochasticity as well as potential environ-
mental or user constraints, render the problem particularly challenging. In this
paper, we propose to take advantage of the recent advances in controller syn-
thesis and statistical model checking as a way to forecast flexibility with explicit
uncertainty. The approach is described in Sect. 3. To illustrate it, we describe its
application on a concrete use case, with an office building equipped with solar
panels, a heat pump and an ice bank used to feed the HVAC system. The details
of this use case and the application of the proposed approach are presented in
Sect. 4. Section 5 discusses related work and Sect. 6 concludes the paper and gives
directions for future work.

2 FlexOffers and Probabilistic FlexOffers

This section introduces first the context of FlexOffers in the virtual market of
energy, then the basic notion of FlexOffers and its extension to probabilistic
FlexOffer.

2.1 Virtual Market of Energy

The Virtual Market of Energy (VME) is a market for trading flexibility in
energy consumption (when we mention energy consumption we mean consump-
tion and/or production, where production is represented as negative consump-
tion). The VME does not trade in energy, only in promises of flexibility in energy
consumption. Energy is still bought from the normal channels.

The flexibility expressed in a FlexOffer is intended to be sold on the mar-
ket to the highest bidder. The sellers on the market are entities flexible about
its consumption of energy (referred to as a flexible resource). The buyers are
Balance Responsible Parties (BRP) or Distribution System Operators (DSO)
among others (hereafter named buyers). The buyers do forecasts on the load
on the grid. If the forecasts show potential issues, such as a grid overload, the
buyers can buy flexibility on the VME to move consumption away from the grid
overload.

Given a FlexOffer, the buyers can buy an amount of flexibility. This amount
is called the schedule, and represents a request for the resource to consume (or
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produce) a given amount of energy within the flexible interval. In case a Flex-
Offer is sold but the resource does not follow the assigned schedule, a penalty
must be paid.

The benefit of FlexOffers is that loads can be shifted out of potential grid
overloads by the market buyers while normally also providing economic compen-
sation to the flexible resource provider. The cost is used by the buyer to evaluate
how much they are willing to pay. Once a schedule is assigned, the buyer will
compensate the flexible resource for the amount of energy that has been shifted.

The process for the flexible resource is to first do local energy planning,
resulting in an optimal profile for energy consumption. This profile is called the
default schedule, and will be used if the FlexOffer is not sold. Second, the flexible
resource calculates how much it can deviate from the optimal schedule, and what
costs it will incur. This deviation represents the flexibility of the resource. If
buyers on the VME are willing to pay more for the flexibility than the cost of
deviating from the optimal schedule, then it is beneficial for the flexible resource
to follow a suboptimal schedule and be compensated.

2.2 FlexOffer

The notion of FlexOffer was introduced in the MIRABEL project [4]. It is cur-
rently used in the Arrowhead2 and TotalFlex3 projects [8]. The benefits of flexible
loads have also been quantified in previous research [14]. Note that other mod-
els for representing energy flexibility exist, as for example the notion of control
space proposed in the Energy Flexibility Platform and Interface (EFPi) from
the PowerMatcher4 suite [15].

An example of a FlexOffer is shown in Fig. 1. It is composed of a number of
slices, each slice corresponding to a time interval (here one hour). A FlexOffer
encodes two types of flexibility. The first one is time flexibility, illustrated by the
possibility to move the block of slices within a given timed interval. The second
type of flexibility is energy flexibility, and is the one of interest in the context
of this paper. The lower area of a slice represents the non-flexible energy load
of a flexible resource. The upper area represents the energy interval in which it
can operate while delivering correct service. The upper and lower bound on the
upper green area represents the maximum and minimum amount of energy the
resource can consume, respectively. As illustrated by the second slice, the energy
amounts can be negative for entities producing energy. Each FlexOffer contains
a default schedule. This schedule represents the optimal energy consumption
for the resource. Along with the default schedule can be assigned some pricing
information, detailing the cost of deviating from the default schedule.

2.3 Probabilistic FlexOffer

A limitation of the FlexOffer model is that it does not capture uncertainties
about the bounds of the flexible interval. However, there are many cases where
2 www.arrowhead.eu.
3 www.totalflex.dk.
4 https://flexiblepower.github.io/.

www.arrowhead.eu
www.totalflex.dk
https://flexiblepower.github.io/
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Fig. 1. Example of a FlexOffer. (Color figure online)

it is difficult to provide strong guarantees about these bounds. Solar cells or wind
turbines are good examples on the production side, while an office building could
deviate from its expected consumption pattern based on unexpected variations
of its occupancy. Dealing with such uncertainties necessitates either making con-
servative estimates, reducing the likelihood of prediction errors, or tolerating a
certain number of them. On the other hand, making probabilities explicit can
provide valuable information on the likelihood of prediction errors, enabling to
increase or reduce the flexibility interval based on desired confidence. Figure 2
shows an example of the representation of a slice of a probabilistic FlexOffer.
The minimum and maximum bounds of the slice are expressed by probability
distributions, normal distributions in this example.

Let the minimum/maximum consumption distributions be referred to as min
and max, respectively. Then, for each energy input x, the schedule success func-
tion succ is given by

succ(x) = minCDF(x) − maxCDF(x)

where CDF refers to the associated cumulative distribution function5. The func-
tion describes the probability that the system is able to follow a given schedule.
At the mean of the minimum consumption density function (x = −1), the prob-
ability that the actual minimum consumption is greater than −1 is exactly 50%.
Thus, there is a 50% probability that a schedule assigning a consumption of
−1 cannot be executed properly by the system i.e. the rate of success is 50%,
5 Note that the Y-axis on Fig. 2 only shows relative values. The scale should not be

compared between the success function and the distribution functions.
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as witnessed by the graph of succ. Similarly, there is a 50% probability that a
schedule of x = 7 can be followed. Conservative schedules in the interval [2, 3]
would have a rate of success of approximately 100%, as it is almost certain that
the system is able to operate within this energy interval. Figure 3 depicts the
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95% and 5% success intervals. These represent energy intervals [0.15, 5.35] and
[−2.15, 8.65] in which there is at least 95% (resp. 5%) probability of being able
to follow the schedule.

If the buyer assigns a schedule with low probability, then lower penalty is
incurred for not following the schedule. This can be used by the buyer to evaluate
if they are willing to take a risk, if a grid overload is severe enough. In the example
in Fig. 2 a conservative down-scaling of consumption, with high probability of
success, might be to assign a schedule of 0. If the overload is severe enough, a
schedule of −1 or even −2 might be better. It is unlikely that the schedule will
be followed entirely, but it might give better performance for the grid.

In this way, probabilistic FlexOffers can offer more options for shifting energy
loads for the buyers, as well as higher compensations and lower penalties for the
flexible resources.

3 Probabilistic Flexibility Forecasting and Schedule
Assignment

To make use of probabilistic FlexOffers, a convenient way of generating them
is necessary. Current approaches for generation of FlexOffers, such as described
in [12], use model based prediction technique. An issue however is that popular
models such as available in Simulink do not enable the explicit specification
of stochastic parameters. In this paper, we propose an approach based on the
recent advances in synthesis and optimization of strategies for stochastic hybrid
games [5], available in the Uppaal-stratego6 tool [6]. The different steps of
the approach are described in this section.

3.1 Modeling

The objective of the modeling step is to obtain a realistic representation of the
system for which to generate probabilistic FlexOffers. The modeling formalism
employed is Stochastic Hybrid Game [10], defined as follows:

Definition 1 (Stochastic Hybrid Game). A stochastic hybrid game G is a
tuple (C,U ,X,F , δ) where:

1. C is a controller with a finite set of (controllable) modes C,
2. U is the environment with a set of (uncontrollable) modes U,
3. X = {x1, · · · , xn} is a finite set of continuous (real-valued) variables,
4. for each c ∈ C and u ∈ U,Fc,u : R>0 × R

X → R
X is the flow function that

describes the evolution of the continuous variables over time in the combined
mode (c, u), and

5. δ is a family of density functions, δγ : R≥0 × U → R≥0, where γ = (c, u, v) ∈
C × U × R

X . More precisely, δγ(τ, u′) is the density that U in the global
configuration γ = (c, u, v) will change to the uncontrollable mode u′ after a
delay of τ .

6 Available at www.uppaal.org.

www.uppaal.org
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The controller encodes different configurations of components of the under-
lying system such as the state of a heater, AC system or heat pump and is one
of the players of the game. The opponent player is the environment, encoded as
a set of uncontrollable modes. These can represent inhabitants of the building,
the temperature, humidity, sun irradiance or other completely uncontrollable
aspects. The continuous variables model the system parameters of interest, such
as temperature or energy. The dynamics of the continuous variables as flow
functions may be described by ordinary differential equations (ODEs) for each
combined mode of the system. Finally, the density functions enable specify-
ing a distribution that describes the change of uncontrollable modes over time.
These probabilities can be determined based on historical information or exter-
nal information such as weather forecast. The proper modeling of the system
can be determined using simulations to compare the results with actual system
behavior. We assume that the controller C can only change mode periodically,
with time period P .

3.2 Estimating Probabilistic Bounds

Having a satisfactory model of the system, the next step is to use it to generate
a probabilistic FlexOffer for a given time horizon H. It is assumed that the
model includes two continuous variables kWh and time representing the total
energy balance of the system and the global time respectively. The optimization
capabilities of Uppaal-stratego are then used to generate two (memoryless)
strategies σH

min and σH
max , that minimize (resp. maximize) the expected value

of kWh for the horizon H. In this setting, a strategy for a controller C is a
function σ : C → C from the set of global configurations C = C × U × R

X

to a new control mode. For a given configuration γ = (c, u, v), σ(γ) thus gives
the controllable mode to be used in the next period. A run according to the
strategy σ is then a sequence of configurations (γi) and delays (τi), γ1τ1γ2τ2 . . .
such that each τi respects the period and each γi respects the decision made
by the controller in a given configuration (see [10] for details). Under a strategy
σ, the game G becomes a stochastic process G � σ, implying the existence of a
(unique) well-defined probability measure on sets of runs. Given a time horizon
H ∈ N and a random variable D,EG,γ

σ,H(D) ∈ R≥0 is the expected value of D
with respect to random runs of G � σ of length H, starting in configuration γ.

For generation of flex-offers, the random variable is the energy consumption
kWh. Thus, σH

min = arg minσ E
G,γ
σ,H(kWh) and σH

max = arg maxσ E
G,γ
σ,H(kWh).

Assuming the existence of a reasonable Uppaal-stratego encoding of the game
G, the computation of the two strategies is done by the execution of the following
two queries7:

strategy minkWh = minE (kWh) [<=H]: <> time == H

strategy maxkWh = maxE (kWh) [<=H]: <> time == H

7 Syntax for Uppaal-stratego commands can be seen in [6].
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Under these two strategies, the expected value of the minimum and maximum
energy balance for a given number of runs N are obtained using the following
queries8:

E[<=H;N] (min:kWh) under minkWh

E[<=H;N] (max:kWh) under maxkWh

The resulting probability distributions constitute the bounds of a probabilis-
tic FlexOffer slice of duration H.

3.3 Scheduling

Once a schedule is assigned to a FlexOffer, the associated system is required to
follow it as closely as possible. A schedule corresponds to an amount of energy
schEnd to be consumed (or produced if negative) within the horizon H. The
optimization method used to generate the bounds of a FlexOffer slice can also
be applied to generate a strategy that leads the system to approach an assigned
consumption amount. To do so, a variable sch = (schEnd/H) ∗ time is defined.
This variable represents the ideal consumption pattern to be followed by the
system to fulfill the assigned schedule. The error error is then defined as error =
(kWh − sch)2, representing the (squared) distance between the expected and
actual consumption. In this way, the accumulated error function is monotone
w.r.t. time and outliers are punished harder. The objective is then to minimize
the error to obtain a strategy σsch

H that matches the expected consumption
pattern as closely as possible. The following query is used to obtain this strategy:

strategy schedule = minE (error) [<=H]: <> time == H

Assigning a schedule within the probabilistic bound of a FlexOffer can lead
to uncertainties about whether the system can follow it. To quantify this uncer-
tainty, a first possibility is to compute it from the probability distribution of the
FlexOffer. Another possibility is to estimate, under the strategy σsch

H , the prob-
ability of the consumption falling outside a given interval around the assigned
schedule. This is done using the following query:

Pr[<=H] (<> (kWh < schEnd - delta || kWh > schEnd + delta)) under schedule

where delta corresponds to an acceptable error value.
A buyer on the flexibility market can use this approach to assign a schedule

to a FlexOffer, generate a strategy for satisfying it, and then check that the
probability of the system deviating from it is within an acceptable range. In
case the uncertainty is too high, a different schedule can be assigned.

8 Note that in the case that the evolution of energy is not monotonous, modeling tricks
are required, that will be described in Sect. 4.
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4 Use Case

To illustrate the proposed methodology, we apply it on a concrete use case. The
case concerns comfort cooling for a bank building located in the northern part of
Denmark. With a facade composed mainly of glass, the large office space tends to
become hot during the summer. To improve the comfort, an innovative cooling
system was installed, using solar panels to utilize energy generated from the sun.
An overview of the system is shown in Fig. 4.

The system is based around thermal energy storage in the form of an ice
bank. The ice bank is a large tank of water with coils running through it. As
the liquid inside the coils is cooled down, the water in the tank freezes. During
a sunny day, the energy generated by the solar panels is used to power a grid-
coupled heat pump for heat exchange between the ice bank and the outside
environment. During this process, the ice bank is being “charged” i.e. ice is
forming. Finally, a heat exchanger provides an interface between the ice bank and
a ventilation system, allowing the ventilation system to “discharge” the ice bank
while providing cooling to the building. The ventilation system is configured with
a set point Tset and automatically turns on if the room temperature, Tr, exceeds
the desired set point, Tset , by a specified allowed margin of deviation, TΔ;Tr >
Tset+TΔ. Cooling is turned off when the temperate is TΔ degrees below Tset ;Tr <
Tset − TΔ. Furthermore, if the level of the ice bank falls below a lower limit, the
system is hardwired to automatically turn on the heat pump at the maximum
setting to quickly “re-charge” the ice bank. In this case, the energy generated
from the solar panels may be insufficient, implying a purchase of energy from the
grid. Note that, although the ventilation system cannot directly be controlled,
the output is completely determined for any time point by Tr, Tset and TΔ.

The control unit computes input settings to the heat pump in order to indi-
rectly adjust the level of the ice bank according to the desired objective. As

Fig. 4. System component overview.
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indicated in Fig. 4, the concrete strategy is influenced by a weather forecast.
The default schedule is given by a control strategy that computes heat pump
input settings to maximize the use of produced energy from the solar panels.
Thus, under the default schedule the goal is to keep the energy balance at zero.

One way of generating a FlexOffer for this use case would be to simply use
the lowest possible heat pump setting (off) for the minimum consumption and
the maximum possible setting for the upper bound on the flexible interval. This
approach has several drawbacks. If the heat pump is always off, the ice bank
level might violate the lower bound and therefore automatically turn on the
heat pump, for some time, with the maximum input setting. If this happens
when the sun is not shining, a purchase of energy from the grid is the only
option. In addition, this approach is only viable in the simple case where no
pricing information is available. If pricing information is available, the controller
should not only optimize for energy consumption, but also take into account the
different pricing structures for buying/selling energy from/to the grid.

4.1 Stochastic Hybrid Game Encoding

To encode the system as a stochastic hybrid game, we identify variables describ-
ing the important characteristics of the system as well as the (un)controllable
modes. As the building is mainly a large open office space, we model it as a single
room. We thus consider the stochastic hybrid game G = (C,U ,X,F , δ) where
controller C has a finite set of controllable modes S corresponding to input set-
tings to the heat pump. The environment U has modes I, encoding all possible
values of the irradiance from the sun, hence I = R. We assume 0 ∈ S to be
the lowest setting (turn off) and 100 ∈ S the highest setting available to the
controller.

In addition to kWh and time, the variables included in X are:

– HP : heat exchange between HP and ice bank (charge).
– HVAC : heat exchange between HVAC and ice bank (discharge).
– Tr: temperature of the room.
– IB : level of the ice bank.
– Tenv : outside temperature.
– Irr : irradiance from the sun.
– IrrStd : standard deviation for Irr .

For a given global configuration γ = (s, i, v) ∈ S × I × R
X with v(Irr) =

iγ , v(IrrStd) = IrrStdγ we assume that U , given density function δγ , can switch
among modes according to the normal distribution N (iγ , IrrStdγ) at every
period P . Thus, each period defines an uncontrollable update to the irradiance
forecast, according to a specific normal distribution.

For any controllable mode s ∈ S, uncontrollable mode i ∈ I, variable x ∈
X and time-delay τ we define the flow function Fs,i(τ, x). Concrete values for
constants mentioned can be found in AppendixA.
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The flow function Fs,i(τ,HP) computes the output of the heat pump after a
delay of τ :

Fs,i(τ,HP) =

⎧
⎨

⎩

0 if Fs,i(τ, IB) ≥ IB full

(As · 100 + Bs) · COPs if Fs,i(τ, IB) ≤ IBempty

(As · s + Bs) · COPs o.w

where IB full , IBempty are the bounds on the level of the ice bank, indicating if the
ice bank is full or empty. If the ice bank is full, the chosen setting is disregarded
and the output of the heat pump is set to 0. If it is empty, the current system
automatically turns on the heat pump with the highest setting (100). Otherwise,
the chosen setting, s, is applied. The first term of the product converts the setting
s to power consumption of the heat pump, which is multiplied by the coefficient
of performance (COP) of the heat pump at the given setting, s.

Flow function Fs,i(τ,HVAC ) is given by

Fs,i(τ,HVAC ) =

⎧
⎨

⎩

0 if Fs,i(τ, Tr) < Tset − TΔ

(Fs,i(τ, Tr) − THVAC ) · HHVAC if Fs,i(τ, Tr) > Tset + TΔ

HVAC o.w

where Tset is the set temperature, TΔ the allowed temperature deviation, THVAC

the temperature of the cooling air and HHVAC the heat exchange coefficient.
The flow function Fs,i(τ, Tr) computes the room temperature T ′

r after τ time
units have passed. It is given by the solution to the following differential equation,
where the initial condition is the current temperature Tr:

d

dt
Tr(t) = D · ((HVAC (t) + i · Aeff + Pfree) − (Tr(t) − Tenv (t) · Henv )) .

Pfree denotes “free” heat produced by people, electronics, lighting etc. in the
room and Aeff is the effective area of the windows through which the sun irradi-
ance heats up the room. Henv is the heat exchange coefficient for the walls of the
building and the environment. Finally HVAC (t), Tr(t) and Tenv (t) are values for
the HVAC cooling power, room temperature and outside temperature at time t,
respectively. Hence, the temperature depends on whether or not the ventilation
system is turned on or off, the irradiance from the sun heating up the building,
free heat and the heat exchange with the environment.

Finally the flow function Fs,i(τ, IB) for the ice bank level is given by the
solution to the following equation:

d

dt
IB(t) = HP(t) + HVAC (t).

The initial condition is given by the current ice bank level IB . This gives a perfect
linear model of the ice bank with no heat exchange between the ice bank and the
surrounding air. This is not expected to be a correct model, but seems to give rea-
sonable results on short timescales. It is planned to do regression learning on mea-
sured data to get a better representation of the actual behavior of the ice bank.

Note that, in addition to the infinite number of uncontrollable modes, the
flow functions are recursively defined. Although this may be problematic when
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seeking an analytical solution, simulation is possible as long as each successor
state is well defined. To this end, we impose an ordering on the computation of
the recursively defined flow functions. This ordering is the same as the one used
above in the list of variables in X: HP ,HVAC , Tr, IB .

4.2 Experimental Results

The stochastic hybrid game described in the previous section was implemented in
Uppaal-stratego. Concrete details of the model can be found in AppendixB.

The experiments are made by varying the values of some of the variables
in the model. Then a FlexOffer can be generated based on the values. The
variables are:

– Level of the ice bank.
– A forecast of the irradiance.
– A standard deviation of the irradiance forecast.

The experiments are separated into three sections. First experiments are
made at different levels of the ice bank and different forecast scenarios to see how
the ice bank performs, and what types of FlexOffers we can expect. Second we
show how the standard deviation can be used to make probabilistic FlexOffers
and how schedules can be assigned. And finally we discuss the benefits from
probabilistic FlexOffers.

Generating FlexOffers. FlexOffers can be generated with Uppaal-stratego
using the queries from Sect. 3.3. Due to technicalities in Uppaal-stratego, the
queries are slightly different than previously shown.

E[<=H;N] (min:final_kWh) under minkWh

E[<=H;N] (min:final_kWh) under maxkWh

Here final kWh is a new variable which is set to a high number at the
beginning and updated to be equal tokWhafter H time units. This is because this
type of query returns the minimum value along the trace, but we need the final
value at the end of the trace. Running this for different scenarios, we get an idea
of the FlexOffers that can be generated.

For the experiments, the ice bank level is varied in three levels: Empty, Mid
and Full, with values 0, 25, 55, respectively. The forecast is varied with High,
Average, and None (values 600, 200, 0). The standard deviation is set to be 10%
of the current forecast. Currently uncertainty is not available from irradiance
forecast services, but it is expected to be available in the near future [9].

Table 1 shows results for 9 scenarios with varying amount of solar radiation
and varying levels in the ice bank. Each result is an average of 10 runs, where each
run took an average of 200 ms on a standard modern laptop. The scenarios are
run with time horizon H = 15 (fifteen minutes). For each scenario, the maximum
is shown in the top row and the minimum in the bottom row. Six of the scenarios
are visualized in Fig. 5. These will be explain left-to-right, top-to-bottom.
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Table 1. FlexOffers generated for different scenarios.

Full Mid Empty

High irradiance Max N (−0.97, 0.03) N (1.37, 0.03) N (1.47, 0.03)

Min N (−1.17, 0.03) N (−1.17, 0.03) N (−0.98, 0.03)

Average irradiance Max N (−0.18, 0.01) N (2.26, 0.01) N (2.24, 0.01)

Min N (−0.39, 0.01) N (−0.26, 0.01) N (−0.16, 0.01)

No irradiance Max N (0.23, 0.00) N (2.50, 0.00) N (2.64, 0.00)

Min N (0.04, 0.00) N (0.06, 0.00) N (0.28, 0.00)

Fig. 5. FlexOffers generated for different scenarios.

First, we have a full ice bank and high irradiance, giving a lot of produced
energy. We can see on the FlexOffer that both maximum and minimum are
below zero. This means we have excess production we are unable to store in the
ice bank, and are forced to sell some to the grid. Second, we have medium level
in the bank and high irradiance. This scenario gives us high flexibility. We can
choose to buy extra energy from the grid or we can choose to sell production
to the grid. Third, we have an empty ice bank and no irradiance. Here we are
unable to sell much to the grid, since we need it to charge the ice bank. However,
we are able to buy extra energy to charge the bank faster.

For the bottom row in Fig. 5, we can see in all cases that we are unable to
sell energy since we have no production. First we have almost no flexibility at
all, since we cannot buy more energy for a full bank (the little we can buy is the
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Fig. 6. Histogram showing estimated minimum consumption, with high irradiance and
mid ice level.

amount used to cool the building). Second, we have flexibility in buying and,
finally, we are forced to buy some energy in case the bank is empty. Here we still
have flexibility in how much we want to buy.

Probabilistic FlexOffers and Schedules. The probabilities in the results
come from the uncertainty on the irradiance forecast. Currently uncertainty is
only added for the irradiance forecast, but it could also be added for the outside
temperature or the amount of cooling required by the building. Since the only
uncertainty in the model is sampled according to a normal distribution, the out-
put from Uppaal-stratego will also follow a normal distribution. When we
query Uppaal-stratego for the minimum and maximum values, we are given
the mean value. The standard deviation can be calculated from the frequency
histogram from Uppaal-stratego. Figure 6 show an example histogram gen-
erated for the case with high irradiance and mid ice bank level.

Probabilistic FlexOffers can be generated using the standard deviation
together with the minimum and maximum. Schedules can now be assigned
according to this FlexOffer using the query:

strategy schedule = minE (error) [<=H]: <> time == H

This creates a strategy, which minimizes the error between the schedule and
the actual energy used.

The probability of being able to follow a schedule is given by the normal
distributions formed by using the minimum and maximum values as mean and
their respective standard deviations. A strategy for following the schedule can
be generated using Uppaal-stratego. The probability of being able to follow
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Fig. 7. Probability of being able to follow an assigned schedule. (Color figure online)

a schedule can be estimated by trying to assign schedules in incremental steps
using the query:

Pr[<=H] (<> (kWh < schEnd - delta || kWh > schEnd + delta)) under schedule

We set delta = 0.1. Here schEnd is the assigned schedule. By varying this
in incremental steps from below the mean to above the mean, we can estimate
the probability of following different schedules.

Figure 7 shows this estimate for an example minimum value of −1.18 and
standard deviation of 0.03. The blue circles are values estimated in steps of
0.01, while the red line is the cumulative distribution function. Each blue circle
shows an average of 10 runs, each run an average of took 150 ms. Since the
delta is 0.1 all estimates from Uppaal-stratego are left-shifted by 0.1, due
to overestimation. The dashed yellow line shows the CDF shifted by 0.1. The
estimates from Uppaal-stratego follow the CDF quite closely. The reason
for the deviation from the CDF is that the models are made to only allow 10
different speed settings on the heat pump, while the actual heat pump supports
100 speed steps. This is done to reduce the state space such that strategies and
estimates can be generated faster.

Discussion. The amount of flexibility offered by a FlexOffer depends on the
desired accuracy. For a normal FlexOffer we can simply subtract the minimum
from the maximum to get the available flexibility. For probabilistic FlexOffers we
need to take the desired certainty and the standard deviations into account. If
we want a certainty of 95% the flexibility is decreased at both ends. Conversely,
if we want 5% the flexibility interval is expanded. For the shown FlexOffer the
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difference in flexibility offered when requiring a 95% certainty of being able to
follow the schedule versus requiring 5% is about 0.1974kWh or 197.4Wh. This
might not seem like much, but there are a few circumstances to consider. First,
this is a simulation done over a fifteen minute interval, for one hour this would
average almost 0.8kWh.

Second, the simulations are made with the standard deviation of the irradi-
ance forecast set to 10% of the mean. Extrapolating from the graphs in [9] a devi-
ation of 30% might be more realistic. When running a simulation of 24 h using a
measured irradiance from an average Danish summer day as forecast with 30%
deviation, we get a FlexOffer with min: N (−16.41, 0.30) and max: N (5.55, 0.30).
If we only include schedules with at least 95% probability, this gives a flexibil-
ity of 20.97kWh. If we include the schedules with at least 5% probability, this
increases to 22.95kWh. This is an increase of about 9.4% in flexibility.

Third, the model used currently is very deterministic in the sense that not
many stochastic elements are included. Only the forecast on the solar irradiance
is stochastic. If we include stochastic information on other elements in the model
we could increase the potential flexibility. This could for instance be uncertainty
on the outside temperature or the amount of free heat generated by people and
electronics in the building.

Finally, these FlexOffers are intended to be used together with an aggrega-
tor [8], which collects a large amount of FlexOffers from several flexible resources.
When joining all these, the difference will likely become significant from the buy-
ers perspective.

5 Related Work

The methodology presented in this paper is inspired by several applications of
control synthesis and optimization such as presented in [6,11]. In particular, the
application of these techniques to synthesize a floor heating controller in [10]
has provided good basis for developing and optimizing the model as well as
performing the synthesis and optimization. Here however, the objective differs
in that the synthesis aims at obtaining the energy bounds in which a system can
be operated, not only in optimizing the consumption. The experimental setting
described is also similar to the one employed in [1]. An addition to the setting is
the inclusion into the flexibility energy framework supported by the Arrowhead
framework described in [8,12].

The use case used to illustrate the proposed methodology was previously
presented in [2]. The main difference is that the control strategy aimed at max-
imizing the use of the solar energy while here the objective is to obtain the
control interval in which the system can be operated. The model of the system
used is derived from the one that was previously presented, with the addition of
stochasticity on the irradiance forecast.

The idea of using stochastics in the modelling of flexible loads is not new:
In [3] uncertainty about flexible loads is modelled via a single global probability
on deviating from expectations. This is used to calculate an overall probability
of overload. In [13] more refined stochastic models of households are defined and
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used to calculate an overall stochastic model of the their aggregated consump-
tion profile. In [7] parameters for price-response stochastic household models are
updated and broadcast on a daily basis in order to balance the flexible loads.
Our work on probabilistic FlexOffers extends this work by allowing storage,
consumption and generation in a single model, and also by allowing model and
parameter updates on a frequent basis.

6 Conclusion and Future Work

In this work, we have proposed a probabilistic extension of FlexOffers to model
the uncertainty of behaviour caused by an environment consisting of human
activities as well as weather conditions like e.g. sun radiation. Also, we have
demonstrated how to generate probabilistic FlexOffers from a stochastic model
of an office building containing both consumption, storage and generation devices
using the Uppaal-stratego tool. Simulations done on the case study show
that probabilistic FlexOffers can increase the flexibility available to the market
by about 9.4%.

As next steps, we plan work in two directions: First, we will experiment on
how probabilistic FlexOffers interact with the aggregators and markets as devel-
oped in other projects [4,8]. Here it will be interesting to observe how the more
optimistic constraints affect the schedules received from the market. Secondly,
we will investigate how generated FlexOffers can be exploited to optimize the
electricity costs by combining them with information on the spot price market.

A Thermodynamics

Constants from Sect. 4.

As =
{

80 if s ≤ 25
(s − 25) · 120 o.w

Bs =
{

0 · s if s ≤ 25
2000 o.w

COPs =
{

0.16 · s if s ≤ 25
4 o.w

HHVAC = Ṁair · Cair

THVAC = 18 ◦C

D =
1

Mair · Cair

Aeff =
6m2

10

Henv =
1

0.0093
IB full = 55
IBempty = 0
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where

– Ṁair = 1kg
s is the HVAC air flow rate.

– Cair = 1005.4 J
kg·K is the specific heat capacity of air.

– Mair = 7113.5 kg is the mass of air in the building.
– Mice = 1500 kg is the total mass of ice within ice bank.
– Cice = 2108 J

kg·K is the specific heat capacity of ice.

B Model Specifics

Figure 8 depicts the Uppaal-stratego model used for on-line controller syn-
thesis. It consists of two location Choose speed and Wait. The solid edge from
Choose speed to Wait encodes a non-deterministic choice between the avail-
able heat pump settings i.e. the controllable modes in the stochastic hybrid
game. When the next controllable mode is set, update irr() computes the next
uncontrollable mode, i.e. the irradiance forecast. apply flow() then updates
each variable according to the flow functions of the corresponding stochastic
hybrid game, as seen in Listing 1.1. To this end, numeric integration using the
Euler method is implemented in each update X() function call, for numSteps
number of steps. Finally, update kWh() updates the energy consumption/pro-
duction for this period. Invariant x ≤ 1 in the Wait location and guard x == 1
on the clock x together encode the period. The dotted edge encodes a reset to a
new period and is considered uncontrollable by Uppaal-stratego for control
strategy synthesis.

Fig. 8. Uppaal-stratego model for on-line controller synthesis.
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�

void apply flow () {
// Manuel integration for numSteps steps
int j ;
for (j = 0; j < numSteps; j++) {

update heatpump();
update cooler ();
update temperature();
update icebankk();
update kWh();

}
}

�

Listing 1.1. Function to update variables according to flow functions.
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Abstract. We consider a Cyber-Physical System (CPS) as a network of
components that are either physical plants with continuous behaviors or
discrete controllers. To build CPS’s in a systematic manner, the TIMES-
Pro tool is designed to support modeling, analysis and code generation
for real-time simulation and final deployment. In this paper, we present
our decisions in designing the modeling language, the tool architecture
and features of TIMES-Pro, and also a case study to demonstrate its
applicability.
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1 Introduction

Cyber-Physical Systems are systems that contain both discrete components such
as digital controllers that generate and react to discrete events according to con-
trol laws and continuous components such as physical plants whose behaviors
change continuously according to natural laws. Existing design tools for design-
ing such hybrid systems such as Simulink [1] and Modelica [2] have inherent
limitation due to the lack of expressiveness in their underlying modeling lan-
guage and ability for analysis. In this paper, we present an integrated system
design tool TIMES-Pro which adopts an expressive yet analytically tractable
modeling language based on the Digraph Real-Time (DRT) task model [3–5] to
model discrete components and conditional differential equations to model con-
tinuous physical components (differential equations with mode switches). For
analysis, the continuous components of a system will be abstracted according to
a set of predicates of interests, controlling the interaction with the discrete com-
ponents of the system. DRT models will be used to approximate the continuous
components for automated analysis. Our goal is to develop a toolbox supporting
modeling and abstraction of both discrete and continuous components, timing
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analysis and code generation for real-time simulation as well as final deploy-
ment on a given execution platform for the discrete components. The rest of the
paper is organized as such, first we present different design decisions related to
our system design tool. Next, we briefly introduce our modeling language and
its existing analysis and code generation supports. Then we present the status
of our tool implementation. Finally, we present an intended case study involving
a pacemaker and a random heart model.

2 Design Decisions

In this section we summarize design decisions concerning mainly the design of the
modeling language as well as the architecture and the features of TIMES-Pro.

Trade-Off Between Expressiveness and Analysis Efficiency. Ideally, the modeling
language of a tool should be as expressive as possible to enable faithful modeling
of complex system behaviors such as dynamic branching and looping. As the
expressiveness of models grows, so grows the complexity of their analysis. For
example, timed automata have been found to be the most expressive model
for real-time workload [6], but its analysis suffers from state-space explosion
problem which makes it impractical to be used in large system design. To study
the trade-off, different real-time models have been developed to compromise the
expressiveness and analysis efficiency [7].

The DRT task model [3] is a rather expressive model allowing large flexibility
to express release patterns accurately by representing each computation task as
a directed graph. It generalizes most existing models in real-time scheduling the-
ory [7]. It is shown that the feasibility problem of DRT can be solved in pseudo-
polynomial time [3]. Additionally, efficient techniques of exact response-time
analysis for DRT task models, for both static-priority and EDF scheduling have
been developed using over-approximation of workload abstraction and refine-
ment methods [5]. Finally, DRT model is extended to support rendezvous-style
synchronizations with efficient analysis using over-approximation and under-
approximation of workload abstractions [8]. Based on availability of these effi-
cient analysis methods we choose DRT as the core modeling language of our
design tool.

Separation of Communication and Computation Concerns. The two major
aspects of computer systems embedded in a CPS are computation and commu-
nication. Computational elements of a system should be independently designed
without adherence to any specific communication mechanism. This allows not
only, separation of concerns, in system design but also efficient analysis. From
our previous work on task automata and scheduling analysis [9], it is known
that many decision problems are computationally hard (even undecidable) for
systems where feedback is allowed. Allowing communication to occur during the
execution of a computation task may easily bring the feedback effects and change
the workload of the system dynamically [9]. Obviously, making communication
independent of computation may also allow modularity in system design, and
flexible and portable design.
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We impose this principle by allowing communication to occur only on the
release of computational jobs. This means that the released computation job
involves no blocking or non-blocking communication primitives and thus com-
munication can not happen during the execution of the job, which makes it easier
to analyse the timing properties of a computation job and also the global timing
properties of a system when scheduling is involved.

Functional Correctness Independent of Non-functional Behavior. The functional
correctness of a system should be maintained during design-space exploration for
satisfying the non-functional requirements. For example, changing the execution
time of a task should not change its output or its logical correctness. This sounds
a simple principle to implement if only the functional correctness of a task is
concerned. On the system level, this is a challenging problem. For example, a
functionality of a system is implemented by the execution of a number of tasks.
The system designer should make sure that the execution order of tasks by
the scheduler will not change the functionality. Technically, this requires that
the scheduling policies adopted by the scheduler should ensure the functional
correctness implied by system-level global invariants.

System Development in a Simulated Environment. A popular engineering tech-
nique to validate or certify CPS is emulation. Emulation, popularly known as
hardware-in-the-loop simulation, is used to validate controllers by running them
in closed-loop with the actual plant. However, in many cases the actual plant
is not available for emulation. Firstly, the plant may be a hardware which is
developed at the same time. Secondly, actual plant may be too sensitive and can
not tolerate an error during simulation (such as human organs). Finally, con-
struction of the actual plant may be too expensive for the test of a prototype of
concept. To encounter these deficiencies, we decide that our system design tool
should provide simulated environment using realistic but approximated model
of the actual plant.

Here the challenge lies in modeling the continuous semantics of a physical
process using discrete software so that all important plant behavior necessary
for the simulation can be generated. Current practice of using numerical solvers
for evaluating continuous state is either too slow or too complex for any real-
time simulation. To counter this, we tend to explore computationally efficient
approximation techniques for solving differential equations which we can model
using only software components. Our final goal in this regard is to generate code
of plant to allow real-time co-simulation.

Analysis Based on Abstraction Refinement Techniques. Analysis of complex sys-
tem behavior is computationally challenging as possible combinations of con-
current component behaviors grow exponentially with the number of active
system components. However, for analysis of many properties such as non-
functional properties (e.g. schedulability) partial orders may be derived for the
search space, preserving the properties of interests. Thus a hierarchy of abstrac-
tions may be generated and systematically evaluated using different levels of
the abstractions until an acceptable solution is found. This is the fundamental
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behind combinatorial abstraction refinement approach [5] which is generalized
in [10,11]. We intend to use this abstraction refinement framework for different
analysis problems of our design tool.

3 Modeling Language

This section introduces the modeling language of our tool. In particular, we
describe the model used to represent independent real-time tasks and its exten-
sion with inter-task synchronization.

3.1 Task Model

The core of our modeling language is the Digraph Real-Time (DRT) task model
[3]. A DRT task T is represented by a directed graph G(T ) with vertex and
edge labels. Each vertex v ∈ G(T ) represents a type of real-time job that T can
release. Here a real-time job is a piece of recurrent sequential code. A vertex v
is labeled with worst-case execution time e(v) and relative deadline d(v) of the
corresponding job. Both values are assumed to be positive integers.

The graph structure of G(T ) denotes the order in which jobs generated by
T is released. Each edge (u, v) is labeled with a positive integer p(u, v) denoting
the minimum job inter-release separation time. We assume a job deadline d(u)
is bounded by the minimal of p(u, v) for all outgoing edges (u, v). Finally, we
describe a system with a DRT task set τ = {T1, . . . , TN}.

We assume the execution of each DRT task to be independent of each other.
While DRT tasks can generate independent real-time jobs of a system, in reality
many systems contain jobs with inter-task dependencies. To support such inter-
task synchronization requirements we extend DRT task model to Synchronous
Digraph Real-Time (SDRT) task model [8]. An SDRT task has the same syntax
as a DRT task, except that an edge (u, v) may be labeled with an action a(u, v).
The actions are used to model synchronization among tasks. Two SDRT tasks
T1 and T2 are said to have a synchronization on action s if there exist some edges
(u, v) ∈ G(T1) and (u′, v′) ∈ G(T2) such that a(u, v) = s and a(u′, v′) = s. To
model these actions as rendezvous synchronization primitives of programming
language we define two types of valid actions. We use s? ending with ? to rep-
resent a get/accept action in a pairwise rendezvous. At the same time, we use
s! ending with ! to denote the corresponding send/call action of s?. a(u, v) = []
means that an edge (u, v) is not associated with any synchronization.

In a synchronous execution, the jobs of two SDRT tasks associated to a
common synchronization action must be released at the same time. If one of the
synchronizing jobs is ready to be released while the other one is not, the former
one will be blocked until the latter one becomes ready. This synchronization
behavior is a special case of rendezvous synchronization where synchronization
only happens when two synchronous jobs release together.
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(b) SDRT task T2

Fig. 1. Two SDRT tasks with two synchronizations on actions s1 and s2.

Example 1. Figure 1 shows two SDRT tasks which have two synchronizations on
actions s1 and s2. Here, the release of job v3 of task T1 is synchronized with
the release of job v4 of task T2 on action s2. As a result, v3 and v4 must be
released at the same time after satisfying their respective minimum job inter-
release separation times. The jobs that have no synchronization such as v1 of
task T1 can be released without considering release of any jobs of T2.

3.2 System Model

A CPS system model contains components which model software, hardware and
the surrounding physical environment. A software or hardware component may
be modeled with a set of discrete states and corresponding transitions among
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them. Continuous states of a physical component is usually expressed using dif-
ferential equations. A simple way to model such physical component is to adopt
a discrete time-step based approach where the continuous behavior is sampled
every time-step of length δ. The granularity of such time-step δ is chosen accord-
ing to the nature of modeled system and the differential equations involved.

A major challenge in CPS simulation is to integrate hardware, software, and
physical components so that their combined system behavior conforms to the
reality. The heterogeneity of their behaviors makes this integration difficult as
a discrete-time component may need to communicate with a continuous-time
component. A way to tackle this problem is to use assertions in component
interfaces that confirm certain component behaviors. These types of assertions
establish a clear interface of the component with precise obligations for caller,
callee and environment. This idea is similar to Design-by-contract [12] which
is a software engineering technique that exploits runtime assertions to define
precise verifiable interface specifications with so-called invariants and pre- and
post-conditions.

A system model S in TIMES-Pro is a set of interacting components
C1, C2, . . . , CN . Each component Ci is described by SDRT tasks with timing
and synchronization constraints. Tasks in two different components can be con-
nected/glued by a common synchronization action. Direction of communica-
tion between two connected components is defined based on the type of inter-
component synchronization actions. This direction is from the component with
“send” action to the components with “accept” actions. We allow two types
of inter-component connections using synchronization in TIMES-Pro. In a con-
ditional (or branching) connection, a component connects with several other
components using the same synchronization action. As a result, communica-
tion can only happen with one component at a time, among those are ready
to communicate. This means different components can share a communication
channel to receive from/send to the same component. In multi-way connection,
a component connects with different components using different synchronization
actions. As a result, different components use different communication channels
to receive from/send to the same component.

For the purpose of analysis and simulation, a CPS system model needs all
types of components (software, hardware and physical environment). However,
only software components are required for code generation.

4 Analysis and Synthesis

In TIMES-Pro, a system design is represented by a DRT or SDRT task set.
Currently the tool offers two main functions: timing analysis of design models
and generation of executable code from the models. In this section, first we
describe the analysis techniques implemented in TIMES-Pro. Then we show the
code generation approach used in the tool to generate Ada code.
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4.1 Analysis

DRT/SDRT is supported by a rich theoretical foundation for timing analysis.
Efficient feasibility and schedulability analysis algorithms have been developed,
even for those problems that are generally intractable (from the computational
complexity point of view). The following analysis algorithms are currently imple-
mented as Python scripts in our tool:
1. Feasibility analysis (or EDF schedulability analysis) of DRT tasks in

uniprocessor. It is based on an iterative graph exploration procedure based
on a novel path abstraction technique [3].

2. Static priority (SP) schedulability analysis of DRT/SDRT tasks using com-
binatorial abstraction refinement techniques [5,8].

3. Exact response-time calculation of DRT tasks under SP and EDF scheduling.
It is also based on the combinatorial abstraction refinement framework to
achieve exact results from initial overapproximations [13].

4. DRT workload partitioning on multiprocessors for Partitioned SP and EDF
scheduling algorithm. The partitioning algorithms are based on bin-packing
algorithms for sporadic task in multiprocessors [14] but extended to support
DRT tasks. These algorithms must determine two criteria:
Task ordering criteria: Different measures can be used to determine the
order by which the tasks are selected to be assigned to a core. These ordering
criteria can be considered as either “increasing” or “decreasing”. Currently,
two ordering metrics have been used in TIMES-Pro:
Utilization: The utilization of each cycle in the DRT graph is defined as the
ratio between WCET sum of nodes in that cycle, and sum of their inter-
release times. The utilization of a task is defined as the maximum utilization
among all the (simple) cycles in the graph.
Density: The density of a job is obtained by dividing its execution time by
its relative deadline. Intuitively, the density of a job shows that how stringent
the deadline of a job is with respect to its execution demand. The density of
a task is the maximum density among all of its jobs.
Core selection criteria: Different bin-packing heuristics can be used to
select a core to test for the possibility to accommodate the selected task. Cur-
rently TIMES-Pro supports two bin-packing heuristics Best-Fit and Worst-
Fit [14]. In Best-Fit packing, cores are sorted according to the decreasing
utilization order while in Worst-Fit cores are sorted in the increasing utiliza-
tion order. Uniprocessor schedulability tests of DRT for SP and EDF are used
to decide where the selected task can be assigned to that core. In case of SP,
the priorities are assumed to be unspecified. Thus, the partitioning algorithm
is free to assign suitable priorities to the tasks for better schedulability.

4.2 Code Generation

The goal of code generation is to transform a design model to executable code
while preserving the execution behavior of the model. We use the Ada pro-
gramming language [15] for code generation, as it provides a run-time system
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suitable for executing real-time tasks. The following important behaviors of the
DRT/SDRT task model need to be handled carefully for code generation:

Synchronization in Job Release: In SDRT, release of jobs from two different tasks
can be synchronized based on an action. In Ada, rendezvous is a similar mecha-
nism for controlled synchronization between two tasks. Ada’s rendezvous is based
on a client-server model. A client task requests a rendezvous with a server task
by making entry calls just as if the server is a protected object. Server tasks indi-
cate willingness to accept a rendezvous on an entry by executing an accept state-
ment. For the rendezvous to take place, both the server and the client task must
have issued their requests. A task issuing a rendezvous request is blocked until
the rendezvous happens. As described earlier, we defined two types of actions
in SDRT. The send/call action s! directly maps to Ada rendezvous entry calls.
Similarly, the get/accept action s? of SDRT matches the Ada rendezvous accept
statement. However, in SDRT semantics, a rendezvous is only allowed during a
job release. If an SDRT job release has both timing and synchronization con-
straints, then the timing one must be satisfied first. This can be implemented
in Ada code by first waiting for a delay and then executing the respective ren-
dezvous operation. For the purpose of simplicity, we only use simple rendezvous
(without exchange of parameters) of Ada to implement this behavior. As we see
next, rendezvous behaviors can be combined with branching in job releases.

Branching in Job Release: A DRT/SDRT task can release jobs sporadically, i.e.,
after the release of a job, the next job can only arrive after waiting for the
minimal inter-release separation time. This sporadic behavior may be combined
with the branching of jobs in the sense that different types of jobs can be released
if their respective inter-release times after the predecessor job are satisfied. To
generate code for this behavior, we have two options.

In branching based on condition, the next job to be released is determined
according to the satisfaction of some conditions. It is assumed that the conditions
are checked in an if-then-else structure which, at run-time, deterministically
determines which path the program should follow. For example, in Fig. 1(b) the
job v2 has two successors v1 and v3. We illustrate corresponding Ada branching
code in Listing 1.1. However, this interpretation of branching can not handle
job release constrained by a synchronization action where blocking is needed.
Therefore this type of branching is only preferable in DRT tasks.
1 case Current_job is
2 when v2 =>
3 v2_code;
4 if Branch_condition then
5 Current_job := v1;
6 Next := Next + v2_v1_del;
7 delay until Next;
8 else
9 Current_job := v3;

10 Next := Next + v2_v3_del;
11 delay until Next;
12 end if;
13 .........

Listing 1.1. Branching Ada code for job v2 of Fig. 1(b).



TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 631

In branching based on synchronization, the next job to be released is decided
non-deterministically based on satisfaction of both timing and synchronization
constraints. Here we observe three cases: (a) releases of all branch jobs that
have both timing and synchronization constraints, (b) some of the branch jobs
have release constrained by synchronization constraints but not the rest and
(c) releases of branch jobs that are only constrained by timing constraints.
Case (c) can be implemented using branching based on condition as described
earlier. An example of situation (b) is depicted for job v2 in Fig. 1(a). Here v2 has
two successors v1 and v3. The release of v3 has to be synchronized with action s2
while v1 can be released upon expiration of minimum inter-release separation.

To implement this behavior, we use selective accept feature of Ada. As men-
tioned earlier, we allow a synchronization action to be either a call or an accept
action. In selective accept of Ada, branching of code is only allowed using accept
action of rendezvous. For the case of entry call synchronization action, we assume
it to be executed once the timing requirement of the job is satisfied. This behav-
ior is implemented in the following steps: first, we sort all outgoing transitions or
edges from a job in increasing order of their inter-release times. After observing
the smallest possible delay, we insert a selective accept (which means now we
can accept an synchronization action and release the branch with the smallest
inter-release time) with a delay alternative until the time point when it is also
possible to release the next branch. These selective accept blocks are iteratively
generated until there is a branch which can be immediately released. The imme-
diate release of a job satisfying both its timing and synchronization constraints
is similar to an urgent transition in timed automata. We illustrate Ada branch-
ing code for job v2 in Fig. 1(a) using selective accept in the code segment in
Listing 1.2.

1 case Current_job is
2 when v2 =>
3 v2_code;
4 Next := Next + v2_v3_del;
5 delay until Next;
6 Next := Next + v2_v1_del;
7 select
8 accept s2;
9 Current_job := v3;

10 Next := Clock;
11 goto end_of_case;
12 or
13 delay until Next;
14 end select;
15 ..............

Listing 1.2. Branching Ada code for job v2 of Fig. 1(a).

5 Tool Overview

In this section, we present the main features of TIMES-Pro, the tool architecture
and the main components in the implementation. Architecture of our tool is
shown in Fig. 2.
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Fig. 2. Tool architecture of TIMES-Pro.

5.1 Features

– Editor (see Fig. 3) to graphically model a system and its associated timing,
execution resource and synchronization requirements. A system description
consists of either a DRT or SDRT task set. The list of all tasks with their
assigned priorities is shown in the left side of the main graphical editor. Tim-
ing properties of the jobs of a selected task is presented in a table below the
task set. All the properties (including the names) of both the task set and
jobs properties table are editable.
In the main graphical editor, a task is described by its directed cyclic graph
structure. User can define a jobtype by assigning its WCET, relative deadline
and associated execution code segment. Different job types are connected by
edges where the user can specify the minimum inter-release time between
the two jobs. As an incoming edge denotes release constraints of the job, a
synchronization action relevant to this job is also specified as the edge prop-
erty. In the first option, the system designer explicitly states the branching
condition variable together with the job code. Branching conditions are also
allowed inside a job.

Fig. 3. System modeling using SDRT tasks in TIMES-Pro editor.
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– Simulator (see Fig. 4) to dynamically visualise the execution behavior and
the resource utilization of a system model. The simulator generates possible
execution traces with zero or random initial phase. This trace is displayed
either stepwise or continuously up to the first deadline miss. It is possible
to configure the speed of visual simulation within a scale of 1 to 10. System
utilization is dynamically displayed below the main simulation. Currently
the simulator supports fixed priority and EDF scheduling simulation on a
uniprocessor.

Fig. 4. Visualization of job execution simulation in TIMES-Pro simulator.

– Analyzer to check that the tasks associated to a system model satisfy their
timing requirements. The analysis suite includes schedulability analysis of
tasks under Fixed Priority and EDF scheduling, computation of worst-case
response times of tasks and partitioning of workload into multiprocessors. To
help testing the algorithms, analyzer has a configurable random task genera-
tor which can generate task sets of different size and utilization. Additionally,
analyzer provides visualization data of different abstractions used for analysis
like request functions.

– Code Generator to generate executable Ada code from task sets. The code
generator realises a subset of the behavior specified in the DRT/SDRT task
model and assumes Ada runtime system will ensure proper execution of the
generated code.

5.2 Implementation

Current implementation of the tool is logically divided into three parts:

– Graphical User Interface consists of the editor, simulator, visualization
of analysis and code generator. It also includes an abstraction visualization
tab to visualize workload abstractions to be used in analysis (see Fig. 5). It is
possible to check syntax of the model before analysis and the whole system
model can be load from or save to an XML file. Currently, the complete GUI
has been implemented using JAVA.
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Fig. 5. Workload abstraction visualization in TIMES-Pro abstraction tab.

– Analysis Engine implements analysis algorithms using Python scripts.
Schedulability analysis and WCRT calculation algorithms for DRT tasks are
included in a Python library called libdrt. All these algorithms are available
for both preemptive Fixed Priority and EDF scheduling algorithms. Analysis
engine has a set of workload partitioning algorithms for multiprocessors. Cur-
rently implemented algorithms include Best-Fit and Worst-Fit bin-packing
algorithms [14] using density or utilization criterion for both partitioned Fixed
priority and EDF scheduling. Figure 6 shows different options available in cur-
rent implementation of the analyzer integrated with GUI. A random task set
generator is implemented for creating task sets with different utilizations, size
and timing constraints (see Fig. 7).

Fig. 6. A sample analysis scenario in TIMES-Pro analyzer using Best-Fit bin-packing
in dual core multiprocessor.
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Fig. 7. Configurations for random task generation in TIMES-Pro.

– Code Generation is currently implemented with a separate editor. The
code generator translates the graphical model of a task set loaded in the
editor into a single Ada implementation file (with .adb extension). It allows
editing and syntax checking of auto-generated Ada code. The generated code
can be compiled to run on top of generic Ada runtime system.

5.3 Ongoing and Future Extensions

Currently we are working on following feature extensions for TIMES-Pro:

– We are developing novel timing analysis techniques to precisely model the
controller software driven by physical system behavior. As a first step, we
study an engine control application and present an exact timing analysis by
partitioning the state space of the engine behaviors [17]. In future, we intend
to generalize this result for any control software driven by physical process
and integrate the method to TIMES-Pro.

– We are extending the Code Generator for C code generation that can run
using the FreeRTOS [18] real-time operating system. In future, we will gener-
ate executable code for multicore platforms based on partitioned multiproces-
sor scheduling [14].

6 Case Study

We use the heart and dual chamber DDD pacemaker model used in [16] as a
case study to illustrate CPS system modeling with our tool.
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Fig. 8. System-level view of the heart and pacemaker.

6.1 System Modeling

We deal with a closed-loop system with two main components, a pacemaker and
a human heart. A pacemaker monitors the Atrial and Ventricular events in the
heart and generates required pacing actions based on the state of the heart. The
system model is shown in Fig. 8.

The pacemaker receives Aget and Vget events from the heart. These are
internally recognized as the signals AS (Atrial Sense) and VS (Ventricular Sense)
which are used to synchronize different states of the different tasks of the pace-
maker. There is another internal signal called AR (Atrial refractory) which is
used for the monitoring purpose. The pacemaker generates AP (Atrial pacing)
and VP (Ventricular pacing) action signals to the heart model.

6.2 Component Modeling

The pacemaker has five main tasks capturing different timing requirements based
on inputs from the heart. Here we describe each of these tasks using SDRT
models:

– PVARP: Post Ventricular Atrial Refractory Period (PVARP) task receives
Atrial events (Agets) and detects them as AS for synchronizing the other
tasks. With each Ventricular event (VP or VS) there will be a period of
t PVAB + t PVARP when Agets are not recognized as AS. During the period
of t PVAB all Agets will be ignored. However during the period of t PVARP
the incoming Agets are recorded as AR signals.

– VRP (Ventricular Refractory Period): This task receives Vget events from the
heart and recognize them as VS. After each Ventricular event (VS or VP) the
task should wait for a period of t TVRP to generate next Ventricular event.

– LRI (Lower Rate Interval): This task keeps the heart rate above desired min-
imum value. If no AS is received after t TLRI − t TAVI time period following
a Ventricular event then AP is delivered.

– AVI (Atrio-Ventricular Interval): This task maintains the delay between the
Atrial and the Ventricular activations. If no VS has been sensed within t TAVI
after an Atrial event (AS, AP), the task will generate VP. The task should
maintain an interval of t TURI between two Ventricular events (VP, VS).
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– URI (Upper Rate Interval): This task works as a timer to limit Ventricular
pacing events. Two consecutive VPs should be separated by an interval of
t TURI.

The simple version of the random heart model has two tasks, one for gener-
ating the Atrial events and another for generating the Ventricular events. Both
of these components can randomly generate an intrinsic heart event within a
range of valid intervals.

Fig. 9. SDRT model of the VRP component in TIMES-Pro.

1 when Init =>
2 Init_code;
3 Next := Next + Init_to_temp_delay;
4 delay until Next;
5 Next := Next + Init_to_VRP_delay;
6 select
7 accept Vget;
8 Current_State := temp;
9 Next := Clock;

10 goto end_of_case;
11 or
12 delay until Next;
13 end select;
14 select
15 accept Vget;
16 Current_State := temp;
17 Next := Clock;
18 goto end_of_case;
19 or
20 accept VP;
21 Current_State := VRP;
22 Next := Clock;
23 goto end_of_case;
24 end select;
25 .........

Listing 1.3. Partial view of the code generated for the component VRP by TIMES-
Pro.
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Currently we have modeled these pacemaker and heart components in our
tool using SDRT tasks. We generated Ada executable code from the model. For
example, Fig. 9 shows the VRP component of pacemaker in TIMES-Pro and
Listing 1.3 partially shows the generated code. In future we would like to use
more complex heart models and visualize the simulation.

7 Conclusions and Future Work

This paper presents an integrated system design tool TIMES-Pro for the design
and implementation of CPS. Different design decisions are explained and moti-
vated; the tool architecture and the current state of implementation are pre-
sented. As future work, we will further develop the modeling language to support
continuous components of CPS, and abstraction techniques for the analysis of
combined behaviors by both types of components and generation of executable
code to simulate the behaviors in real-time.

References

1. Simulink. http://www.mathworks.com/products/simulink/
2. Modelica. http://modelica.org
3. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:

Proceedings of RTAS, pp. 71–80. IEEE Press, New York (2011)
4. Stigge, M., Yi, W.: Hardness results for static priority real-time scheduling. In:

Proceedings of ECRTS, pp. 189–198 (2012)
5. Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility analysis.

In: Proceedings of RTSS, pp. 340–349. IEEE Press, New York (2013)
6. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES — a tool

for modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002).
doi:10.1007/3-540-46002-0 32

7. Stigge, M., Yi, W.: Models of real-time workload: a survey. In: Audsley, N., Baruah,
S. (eds.) Real-Time Systems: The Past, the Present, and the Future, pp. 133–160
(2013)

8. Mohaqeqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of synchro-
nous digraph real-time task. In: Proceedings of ECRTS 2016, pp. 176–186 (2016)

9. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: schedulability, decid-
ability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)

10. Stigge, M.: Real-time workload models: expressiveness vs. analysis efficiency. Ph.D.
dissertation, Uppsala University (2014)

11. Guan, N., Tang, Y., Abdullah, J., Stigge, M., Yi, W.: Scalable timing analysis
with refinement. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 3–18. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 1

12. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).
http://dx.doi.org/10.1109/2.161279

13. Stigge, M., Guan, N., Yi, W.: Refinement-based exact response-time analysis. In:
Proceedings of ECRTS, pp. 143–152 (2014)

http://www.mathworks.com/products/simulink/
http://modelica.org
http://dx.doi.org/10.1007/3-540-46002-0_32
http://dx.doi.org/10.1007/978-3-662-46681-0_1
http://dx.doi.org/10.1109/2.161279


TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 639

14. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. 43(4), 35:1–35:44 (2011)

15. Ada programming language. http://www.adacore.com/
16. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verifica-

tion of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5 14

17. Mohaqeqi, M., Abdullah, J., Ekberg, P., Yi, W.: Refinement of workload models
for engine controllers by state space partitioning. In: Proceedings of ECRTS (2017,
to appear)

18. FreeRTOS Real-time Operating System. http://www.freertos.org

http://www.adacore.com/
http://dx.doi.org/10.1007/978-3-642-28756-5_14
http://dx.doi.org/10.1007/978-3-642-28756-5_14
http://www.freertos.org


Formalising a Hazard Warning Communication
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Ernst-Rüdiger Olderog(B) and Maike Schwammberger(B)

Department of Computing Science, University of Oldenburg, Oldenburg, Germany
{olderog,schwammberger}@informatik.uni-oldenburg.de

Abstract. In previous work, we used an extended version of timed
automata to build safe controllers for autonomous car manoeuvres like
changing lanes or crossing an intersection. These automata use formulae
of Multi-lane Spatial Logic as guards and invariants and have special con-
troller actions for car manoeuvres. As a case study, we now adapt our
approach to formalise a multi-hop communication protocol for hazard
warning for highway traffic scenarios. We prove that, if a car detects a
hazard, this information timely reaches all cars for which it is relevant via
a communication chain so that they can avoid colliding with the hazard.

Keywords: Timed automata · Multi-hop communication protocols ·
Hazard warning · Autonomous cars · Multi-dimensional spatial logic

1 Introduction

During the last years, autonomously driving cars are a topic of increasing inter-
est for society and research. In this connection, a wide range of intelligent trans-
portation systems were introduced to increase safety, security and comfort of
autonomous driving [1].

In this paper, we focus on the approach of Müllner et al. [2], where the authors
analyse a communication protocol which is used to send a timely traffic-hazard
warning to other traffic participants. The authors use simulation techniques to
estimate the probability that the hazard warning message is received in time.
Their simulation framework works with discrete time steps, where a decentralised
environmental notification message is sent at intervals of one time step.

Our contributions in this paper are as follows. We formalise the timing
aspects of the simulation-based analysis of the communication protocol studied
in [2] by using extended timed automata, called automotive-controlling timed
automata (ACTA) [3]. ACTA communicate via broadcast channels using data
structures. Using this formalisation we prove the timely warning property, partly
supported by the model checker UPPAAL [4]. Note that with extended timed
automata, we will also use a continuous time dimension instead of discrete time
steps.

This research was partially supported by the German Research Council (DFG) in
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Also, we link the timely warning property with spatial reasoning to prove
avoidance of hazard collision using a new extension of the Multi-lane Spatial
Logic MLSL [5] to cope with stationary hazards, called HMLSL. Formulae of
this logic appear in the guards and invariants of ACTA to establish the desired
spatial safety properties. Using (H)MLSL we abstract from the underlying car
dynamics [6].

In the remainder of this section, we introduce the traffic scenario and goal
of our case study. In Sect. 2, we define the adjusted abstract model and the
Hazard Warning Multi-lane Spatial Logic (HMLSL). We then explain in Sect. 3
how to derive a communication chain and define our broadcast communication
with data structures. In Sect. 4, we introduce two controllers to formalise the
proposed hazard warning communication protocol, and in Sect. 5, we describe
the adaption of these controllers for the use of UPPAAL [4]. In Sect. 6, we show
the timely hazard warning message delivery with an inductive proof assisted by
UPPAAL and further on prove spatial hazard safety. We conclude with some
ideas for future work in Sect. 7.

0 A

initial sender
C D E F

1 B

final receiver
G H I

2 J K L M

hazard

Fig. 1. The initial sender, car A, detects a hazard on lanes L� = {1, 2} and sends
a timely warning message via the communication chain −→c = 〈A,L,H,G,C,B〉 with
intermediate cars L,H,G,C to the final receiver, which is car B.

Case Study. We adopt the basic scenario for our case study from [2]. There-
fore, we consider highway traffic scenarios where all traffic drives in one driving
direction. This paper focuses on stationary traffic hazards, like traffic jams, col-
lisions, slippery street parts (ice, aquaplaning), and limited sight (e.g. due to
fog). We assume a hazard to stretch over an arbitrary amount of lanes and to
have a positive extension along the lanes. For now, we restrict the number of
occurring hazards to one at a time.

The first car to approach and perceive such a hazardous situation, we call
initial sender A (cf. Fig. 1). The overall safety goal is that A transmits a hazard
warning as fast as possible to a specific final receiver B driving behind A. We
assume that car B is about to reach the hazard in t time units. The safety goal is
missed if B reaches the hazard without receiving a hazard warning before t time
units after it has occurred. It that case B may not be able to initiate braking
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or another emergency manoeuvre preventing it from colliding with the hazard
(e.g., leaving the highway or changing to a lane without a hazardous situation). In
this paper, we do not consider how such an emergency manoeuvre is conducted,
but concentrate on sending timely warnings. Note that initial sender A sends the
warning even if itself is not affected by it because it is driving on a non-hazardous
lane, cf. Fig. 1.

The hazard warning is communicated via a broadcast channel hazard
through a communication chain comprising other traffic participants (cf. Fig. 1).
Following the approach from [2], we presume every car to have the same com-
munication antenna and thus the same communication radius r. With this, we
can determine the minimal amount of cars needed to build a communication
chain and send the hazard warning from initial sender A to final receiver B. In
the following, we assume that a communication chain between initial sender and
final receiver can always be established. Additionally, we assume that the cars in
the communication chain −→c drive spatially behind one another. We do not com-
municate the warning message forwards, because a car in front of an arbitrary
car C can not communicate further behind C itself (coherent communication
radius r for all cars).

We furthermore assume that all cars are autonomous and equipped with
the lane change and distance controllers introduced in [5] to guarantee collision
freedom while the hazard warning message is propagated.

2 Abstract Model and Spatial Logic

In this section, we summarise and modify the model of [5]. In this model, a
multi-lane highway has an infinite extension with positions represented by real
numbers in R and with lanes represented by a finite set of natural numbers, L =
{0, . . . , N}. We assume that all traffic proceeds in one direction, with increasing
position values, in pictures shown from left to right. The highway is populated
by cars with unique identities denoted by capital letters I = {A,B,C,D,E, . . .}.

At each moment in time, we represent the traffic on the highway by a traffic
snapshot. It records for each car its current position pos (at the rear end of the
car), its speed spd, and on which lanes it reserves space. For safety, we have
to show that reserved spaces of different cars are mutually exclusive. In [5] we
considered also claimed spaces for lane change manoeuvres, but these are not in
the focus of this paper.

Here we consider a new feature in the abstract model of road traffic: a hazard.
Intuitively, we think of a hazard as a space of rectangular shape on a multi-lane
road that, from a certain moment on, blocks several adjacent lanes. To this end,
we modify the notion of traffic snapshot introduced in [5] by a component haz
with three attributes:

– a Boolean attribute haz.on ranging over {0, 1} and indicating whether the
hazard is present (haz.on = 1) or not,

– an attribute haz.lanes representing the set of lanes affected by the hazard,
which is a contiguous subset of L,
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– an attribute haz.ext representing a fixed horizontal extension of the hazard,
which is an interval [haz.start, haz.end] ⊆ R with haz.start < haz.end.

A traffic snapshot is thus a structure T S = (pos, spd , res, haz) which besides
haz comprises the functions pos, spd , res:

– pos : I → R such that pos(C) is the position of car C along the lanes,
– spd : I → R such that spd(C) is the current speed of the car C,
– res : I → P(L) such that res(C) is the set of lanes C reserves.

In [5], traffic snapshots also comprise functions clm and acc for specifying the
claimed lanes and the acceleration of cars, respectively, but we omit them here
because we do not consider lane changes and overtaking in this paper.

The length of reserved spaces is given by the safety distance, which is the
length of the car plus a safe estimate of the (speed-dependent) braking distance
that the car will need to come to a complete standstill. It is not specified in
T S, but given by an uninterpreted function se for safety envelope. For a given
traffic snapshot T S, the safety envelope seT S(C) of a car C is the interval
seT S(C) = [pos(C), pos(C) + d(C)] starting at the current position pos(C) of
the car and of some uninterpreted length d(C) > 0, which is intended to be
the safety distance of car C dependent on its current speed spd(C). The exact
value of d(C) is not known in the abstract model, but will be determined in the
underlying dynamic model [6].

2.1 View

For reasoning about safety, we need to consider only finite parts of a traffic
snapshot T S called views. A view V = (L,X,E) consists of an interval of lanes
visible in the view, L = [l, n] = {� ∈ L | l ≤ � ≤ n} for some l, n ∈ L, and the
extension visible in the view, X = [r, t] = {x ∈ R | r ≤ x ≤ t} for some r, t ∈ R,
and E ∈ I, the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe.
For this we use sub- and superscript notation: V L′

= (L′,X,E) and VX′ =
(L,X ′, E), where L′ and X ′ are subintervals of L and X, respectively.

The standard view of a car E in a traffic snapshot T S = (pos, spd , res, haz)
is defined as

Vs(E, T S) = (L, [pos(E) − ho, pos(E) + ho], E),

where the horizon ho is chosen such that a car driving at maximum speed can,
with lowest deceleration, come to a standstill within the horizon.

2.2 Transitions

A traffic snapshot is an instant picture of the highway traffic. Transitions
describe how it may change. Time may pass or a car may perform actions of
a traffic manoeuvre. In this paper, we consider only time-passing transitions
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between traffic snapshots. In such a transition a hazard may occur (by switching
haz.on from 0 to 1) and remain present, i.e., haz.on = 1 is a stable predicate.
Further on, the car will move, i.e., its position will increase, and it may change
its speed. For a traffic snapshot T S = (pos, spd , res, haz) and time t ∈ R≥0, a
time transition is thus defined as follows:

T S t−→ T S ′ ⇔ T S ′ = (pos ′, spd ′, res′, haz′) and
∀C ∈ I : pos ′(C) > pos(C) and res′ = res and haz′ ≥ haz,

where haz′ ≥ haz abbreviates haz′.on ≥ haz.on, haz′.lanes = haz.lanes and
haz′.ext = haz.ext, i.e., a hazard that is present in haz remains present in haz′,
but it does not change its position and size when time is passing.

During a time transition, each car C continues to move, formalised by its
increasing position (pos′(C) > pos(C)), but it does not change its reserved lanes
(res′ = res). Note that the speed may change in an unconstrained manner.
However, for safety a distance controller will have to adapt the speed so that a
sufficient distance is kept to the cars ahead and thus the reserved spaces remain
disjoint.

2.3 Spatial Logic

To specify properties of traffic snapshots within a given view in an intuitive and
yet precise way, we use a two-dimensional spatial interval logic, MLSL (Multi-
lane Spatial Logic) [5]. In this logic, the horizontal dimension is continuous,
representing positions on a highway, and the vertical dimension is discrete, rep-
resenting the number of a lane on a highway. In the syntax, variables ranging
over car identifiers are denoted by small letters c, d, u and v. To refer to the car
owning the current view, we use a special variable ego. By Var we denote the
set of all these variables.

In this paper, we extend the logic Multi-lane Spatial Logic MLSL by a new
atom hz representing a hazard at the logical level.

Definition 1 (Syntax). The syntax of Hazard Warning Multi-lane Spatial
Logic HMLSL is defined as follows.

φ ::= true | u = v | free | re(c) | hz | ¬φ | φ1 ∧ φ2 | ∃c • φ1 | φ1 � φ2 | φ2
φ1

,

where c, u, v ∈ Var. We denote the set of all HMLSL formulas by ΦH.

Formulae of HMLSL express the spatial status of neighbouring lanes on a
multi-lane highway. For a lane, the spatial status describes whether parts of it
are completely free or reserved by a car or endangered by a hazard. To this end,
the logic has atoms free, re(c), and hz (expressing that the considered space is
not occupied by any car, that it is reserved by a car denoted by the variable c,
and that it is occupied by a hazard, respectively), propositional connectives
and quantifiers over car variables, and two chop operators: the horizontal chop
φ1 �φ2 expresses that a space can be divided into two horizontally adjacent parts
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such that φ1 holds in the left part and φ2 in the right part, and the vertical chop
φ2

φ1
expresses that a space can be divided into two vertically adjacent parts where

φ1 holds on the lower part and φ2 on the upper part. We use juxtaposition for the
vertical chop to have a correspondence to the visual layout in traffic snapshots.

The logic is given a semantics that defines when traffic snapshots satisfy a
given formula, as detailed in [5]. We focus here on the new atom hz:

Definition 2 (Semantics of hz). The satisfaction of the atom hz with respect
to a traffic snapshot T S, a view V = (L,X,E), and a valuation ν of the variables
with ν(ego) = E is defined as follows:

T S, V, ν |= hz ⇔ |L| = 1 and ‖X‖ > 0 and
hz.on = 1 and L ⊆ hz.lanes and X ⊆ hz.ext.

Note that the atom hz holds only in one lane. To express that a hazard holds in
several lanes, the vertical chop operator can be used. Often, we want to express
that there is no hazard in the considered space. To this end, we use the derived
two-dimensional modality somewhere φ, denoted by 〈φ〉 and defined by

〈φ〉 ≡ true �

⎛
⎝

true
φ

true

⎞
⎠ � true.

Informally, 〈φ〉 states that somewhere in the considered space the property φ
holds. Now, safety in the presence of hazards can be specified as follows:

Safe-hz ≡ ¬∃c : 〈re(c) ∧ hz〉 ,

i.e., no car has some overlap of its reserved space with a hazard. The hazard
detection controller introduced in Sect. 4 will use the following formula as a
transition guard:

〈re(ego)〉 � 〈hz〉 .

It specifies that to the right of the car ego (more precisely, of the car that the
variable ego currently evaluates to in the considered valuation ν) there is hazard.
By the semantics of the two somewhere operators, the hazard need not be on
the same lane that ego is driving on. This is e.g. the case for car A in Fig. 1.

3 Communication

In our abstract model, the autonomous cars can be understood as nodes in a
Vehicular ad hoc network (VANET), without a fixed wireless infrastructure and
without taking roadside units into account. Following the approach in [2], an
instantaneous transitive bridge relay between the initial sender node A and the
final receiver node B is required, once a hazard is detected. This bridge relay
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we call communication chain and formalise it as a finite sequence −→c of cars,
the first one being the initial sender and the last one being the final receiver
(cf. Fig. 1).

The warning message is distributed via a broadcast channel hazard, where
only cars contained in the communication chain actively forward the message.
This approach avoids flooding the message by all traffic participants and thus
avoids network overload. Note that due to the use of broadcast channels, all
the other cars – even while not involved in the communication chain – receive
the hazard warning, but they need not react to it. With this, all cars between
initial sender and final receiver will be warned and can react to the hazard by
e.g. (emergency) braking or changing to a non-hazardous lane. However, in this
paper we focus on safety of the cars in communication chain −→c , particularly
final receiver B.

Communication Chain. There are several results on how to calculate an opti-
mal communication chain. We refer to the approach of Claypool and Kannan [7],
where the authors introduce the concept of Selective Flooding for improved
Quality-of-Service Routing. This approach precomputes routes between all com-
munication nodes, based on static “snapshots” of the topology, which resemble
our traffic snapshots T S. These precomputed routes are then stored in a routing
table. Whenever one node requests a transitive communication link to another
node, the optimal route between those nodes is estimated by flooding control
packages through the precomputed routes. The authors furthermore propose a
combination of Selective Flooding and Source Routing to cope with network
topology changes, like moving cars in our case.

In our approach, we assume that whenever one car forwards the warning
message, it listens on channel hazard if the next car in the communication chain
really forwards the message in some time bound tw. Therefore, the cars have to
stay in communication range until the message is successfully forwarded. In [8],
Satyajeet et al. present several methods for Cluster-based Routing Protocols in
VANETs. In these hierarchical protocols, a cluster head is obligated to com-
municate with the other nodes in his cluster to maintain the cluster formation.
Additionally, the authors describe how routes from a source to a destination
node can be established via Cluster-based Routing Protocols, which again is
interesting for generating our communication chain −→c .

Broadcast Communication with Data Constraints. In Sect. 4, we present
controllers for our hazard warning protocol modelled as extended timed
automata [9]. One extension is the use of data variables and data constraints
in guards, invariants and updates, as described by Behrmann et al. in [4] for
UPPAAL. We broaden this use of data constraints in timed automata even
more by sending data via our broadcast channel hazard.

Alrahman et al. propose a Calculus for Attribute-based Communication
in [10]. The authors consider systems with a large amount of dynamically adjust-
ing components that interact via broadcast channels. Components broadcast val-
uations of data variables u via an attribute-based output (u)@Π to all processes
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whose attributes satisfy the predicate Π. By using updates a := u of local
attributes a, the received data u can be used locally by these processes, e.g. to
determine if a predicate Π is satisfied. Other components only then synchronise
with an output (u)@Π when they have an input Π(x) and their local attributes
a, together with the received message x, satisfy the predicate Π. We use this
concept of attribute-based broadcast synchronisation for the following definition
of input and output actions for our later introduced controller.

For data types on our broadcast channels, we use the Z notation [11] of
sequences: seq X denotes the set of all finite sequences of elements from a given
set X. A sequence s consisting of elements A,B,C is written as s = 〈A,B,C〉.
It stands for a function s = {1 �→ A, 2 �→ B, 3 �→ C} from indices 1, 2, 3 to
elements A,B,C. Thus the ith element of s is denoted by function application
s(i), e.g., s(2) = B. The length of s is denoted by #s, here #s = 3. For the
empty sequence 〈〉 the length is 0.

Definition 3 (Input and Output actions). For a finite list of data variables
d = 〈d1, . . . , dn〉 and a HMLSL formula ϕ we define an output action OUT
on a broadcast channel a by OUT := a!d and a related input action IN by
IN := a?d : ϕ. The set of data variables di ∈ D ranges over the set of all car
identifiers I, the power set P(L) of the set of all lanes L, and finite sequences
from the sets seq I and seq L.

In Z notation, the function head s returns the first element of a non-empty
sequence s while the function tail s returns the part that follows the first element
of s, such that s = 〈head s〉 � tail s. We add to this notation the function
second s, which returns the second element of s for |s| > 1. With s′ := tail s
and second s = head s′, this leads to s = 〈head s〉 � 〈second s〉 � tail s′.

Example. In the hazard warning controller later introduced, a warning mes-
sage is sent via broadcast channel hazard. The corresponding output action is
hazard!〈L�,−→c 〉, where L� is the set of lanes affected by the hazard and −→c is
the communication chain, comprising of unique car identifiers. With this output
action the current values ν(L�) resp. ν(−→c ) of these two data variables are sent
over broadcast channel hazard.

For synchronisation with this output, consider a corresponding input action
hazard?〈L,

−→
d 〉 : head

−→
d = ego in another automaton. There, we first store

the received values in local variables L and
−→
d , such that ν(L) = ν(L�) and

ν(
−→
d ) = ν(−→c ). This input action synchronises with the given output action only

if the HMLSL formula head
−→
d = ego evaluates to true, that is, if the first

element of the communicated chain ν(
−→
d ) = ν(−→c ) agrees with the value of ego.

4 Controller for Hazard Warning Protocol

In previous work [5] we showed that if every car on a highway is equipped with
a distance and a lane change controller, safety in the sense of disjointedness of
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reservations is preserved under all time and action transitions. To express this
property we use the somewhere operator:

Safe-re ≡ ¬∃c, d : c �= d ∧ 〈re(c) ∧ re(d)〉 ,

i.e., there is never any spatial overlap of the reservations of any two different
cars. Here we focus on safety in the sense that there is never any spatial overlap
of a reservation with a hazard. Formally,

Safe-hz ≡ ¬∃c : 〈re(c) ∧ hz〉 .

To check such properties while a car is driving, we need variants of these for-
mulae from the viewpoint of a car ego in which such a controller is deployed.
To maintain Safe-re under time transitions, each car has a distance controller.
According to [6], such a controller keeps for each car ego the property

Safe-re(ego) ≡ ¬∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉

invariant under time transitions. Note that by demanding the disjointedness of
(the speed-dependent) reserved spaces, Safe-re(ego) indirectly requires that car
ego lowers its speed (to shorten its reserved space) when a car c ahead of ego
starts breaking. This link between spatial and dynamic reasoning is formalised
in [6].

In the hazard warning controllers proposed below we need the following vari-
ant of Safe-hz from the viewpoint of a car ego:

Safe-hz(ego) ≡ ¬〈re(ego) ∧ hz〉 ,

i.e., there is never any spatial overlap of the reservation of car ego with a hazard.
In the states of the controllers, we employ the invariant

I ≡ b → Safe-hz(ego),

where b is a Boolean variable that is set to the value true if the controller detects a
hazard or receives a hazard warning message from another car. Informally, this
means that whenever a car has knowledge about a hazard, it avoids colliding
with it. Thus a kind of distance controller sensitive to hazards is part of the
controllers. We prove in Sect. 6 with the assistance of UPPAAL that the hazard
warning will arrive in time so that the car can react to it.

In [3], we introduced extended time automata, called automotive-controlling
timed automata (ACTA), to formalise the mentioned lane change and distance
controllers from [5]. Here, we formalise a multi-hop communication protocol by
using ACTA to construct our hazard warning controllers. As variables, these
controllers use both clock and data variables. For clock variables x, y ∈ X and
clock updates we refer to the classical definition of timed automata from Alur
and Dill [9] and for the use of data variables di ∈ D and data updates we
refer to the extension of timed automata proposed for UPPAAL by Behrmann
et al. [4]. These clock and data updates νact are allowed on transitions of the
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automata. Note that we allow for the same set of data variables D we introduced
in Definition 3 for input and output actions.

Further on, the controllers use HMLSL formulae ϕφ as well as clock and
data constraints ϕX resp. ϕD as guards ϕ on transitions and as invariants I(q)
in states q, such that the set Φ of all guards and invariants is defined by

ϕ ≡ ϕφ | ϕX | ϕD | ϕ1 ∧ ϕ2 | true.

Additionally, we use the broadcast communication with data structures as
defined in previous Sect. 3. Remember that we consider output actions OUT
which can synchronise with appropriate input actions IN in another controller.
In related work [3,5,12], we also use controller actions cact to commit lane change
manoeuvres and turning manoeuvres at crossings. As our hazard warning con-
troller focuses on timely message delivery, these manoeuvres and actions are
not needed here, but we mention them here for completeness. A transition in
an ACTA comprises the elements depicted in Fig. 2. The guard ϕ ∧ IN shown
before the separator / has to hold in the current traffic snapshot T S, the stan-
dard view VS(E, T S) of car E under consideration and the valuation ν in order
to execute the output, controller and update actions shown after the separator
/, yielding a sucessor state q′ and a valuation ν′. The invariant I(q′) has to hold
in ν′.

q : I(q) q′ : I(q′)
ϕ ∧ IN /OUT ; cact; νact

Fig. 2. Transition in an ACTA with communication

For the implementation of the multi-hop communication protocol, we assume
every car to be equipped with two controllers. The first one is a hazard detec-
tion controller that detects the hazard, determines the communication chain,
and sends the initial hazard warning message. The second controller is a for-
warding controller that is used to forward the message to all cars in reach of its
communication antenna. In order to send a hazard warning message, we use the
broadcast channel hazard to send and receive hazard warnings as described in
Sect. 3. In the following, we will refer to the initial sender as car A and to the
final receiver as car B.

In timed automata, transitions are taken immediately if guards and invari-
ants allow it. For the sake of reality, we assume a communication not to happen
immediately, but to take some positive upper time bound tc > 0 to take hard-
ware limitations into account. We assume all cars are equipped with the same
communication technology and therefore use the same time bound tc for all cars.
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Hazard Detection Controller. If the HMLSL formula 〈re(ego)〉 � 〈hz〉 eval-
uates to true, the hazard detection controller of initial sender A initiates the
sending of the hazard warning message by changing from its initial state q0
to q1. While doing so, A determines the set of affected lanes using the func-
tion affected lanes() and stores them in a set named L�. By definition of our
abstract model, we have affected lanes() = haz.lanes (cf. Sect. 2). On the
same transition, an optimal communication chain is calculated with the func-
tion comm chain() and stored in −→c . For details about deriving the communi-
cation chain we again refer to Sect. 3. The derived communication chain con-
tains the car identifier A of initial sender as first entry and the car identifier
B of final receiver as last entry. If we cannot establish a communication chain,
comm chain() returns −→c = 〈A〉 and the controller changes back to its initial
state, because there is no car to warn in reach (#−→c ≤ 1).

We remember whether a warning message was already sent, by setting the
value of a Boolean control variable b to true. With this we avoid unlimited resend-
ing of the warning message and thus unnecessary flooding of channel hazard.
As soon as the hazard is detected, until the next car in the communication
chain forwards the warning message, initial sender A is obligated to maintain
the communication link to the next car in chain −→c .

After tc time units, the hazard detection controller sends the initial warning
message to the next car in −→c over broadcast channel hazard, along with the
affected lanes L� and the communication chain −→c and changes to state q2. The
identifier of the next car in −→c is stored in a variable next. The controller then
listens on channel hazard to ensure that the forwarding controller of the next
car really resends the message. If the forwarding controller does not forward
the message within a (reasonable short) time bound tw, the hazard detection
controller changes back to state q1 and repeats the warning message. Note that
one could implement a continuous warning message sending – as proposed for
common decentralised environmental notification messages – by assuming a time
bound tw = 0 (cf. ETSI standard 102 637-3 [13]).

If the controller receives the forwarded message from the next car in −→c , the
warning was successful and it changes back to its initial state q0. The constructed
hazard detection controller Adet is depicted in Fig. 3.

Forwarding Controller. The forwarding controller copies part of the behav-
iour of the hazard detection controller. The main difference is the transition from
r0 to r1, where the forwarding controller does not detect a hazard, but listens
on channel hazard whether a hazard warning message is forwarded. If a warn-
ing message is received, the forwarding controller of a car synchronises with the
sender only if its car identifier is the second entry in the communication chain.
With this behaviour we prevent that every car that listens on channel hazard
resends the warning message.

If a car is second in the communication chain −→c , the forwarding controller
synchronises with the sender. Furthermore, we remove the first element of the
communication chain −→c , so that the car identifier of the active forwarding con-
troller now is the first element of the resulting shortened communication chain



Hazard Warning Protocol Formalised with Timed Automata 651

Fig. 3. Hazard detection controller Adet.

Fig. 4. Forwarding controller Afor .

−→c ′ = tail −→c . If −→c ′ contains more than one element, the forwarding controller
sends the new communication chain via channel hazard. The following behav-
iour is the same as that from the hazard detection controller; the forwarding
controller listens whether the next car in chain again forwards the warning. The
constructed forwarding controller Afor is depicted in Fig. 4.

Provided in the newly derived communication chain only contains the iden-
tifier of the current car (#−→c ′ ≤ 1), the controller confirms that the message was
delivered and changes back to the initial state. Note that this is only the case if
the current car is the final receiver.

5 Implementation in UPPAAL

For our implementation in UPPAAL we conduct the following two adaptions
of our hazard detection controller Adet and forwarding controller Afor to the
type of extended timed automata UPPAAL uses. We distinguish these adapted
automata from the controllers introduced in Sect. 4 by writing Detection
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Controller and Forwarding Controller. As before, we name the first car to
perceive the hazard by the car identifier A and the car which is supposed to
receive the timely warning message by B (cf. Fig. 1).

With UPPAAL, we verify the timely behaviour of our automata and therefore
abstract from the spatial aspects. We do not consider the affected lanes L� in our
UPPAAL implementation because it is not relevant for the timely forwarding
process and only interesting for manoeuvres that cars could conduct to avoid
the hazard. Also, we do not need the spatial invariant I described in Sect. 4 and
hence neither the Boolean variable b.

The depicted UPPAAL automata in Figs. 5, 6, 7 and 8 use the UPPAAL
colour coding, where communication via broadcast channels is shown in
turquoise, guards are depicted in green, updates in blue, and state names and
invariants in purple.

Setting and Results. In our implementation, we successfully performed sev-
eral system executions with N cars for different values for N ranging over
2 ≤ N ≤ 100. Following [2] our goal was that a warning message from A is
delivered to B in at most t time units, where t = 100, as proposed there. In the
simulation with UPPAAL each car i owns a Detection Controller Detection(i)
and a Forwarding Controller Forwarding(i). Additionally, we introduce an envi-
ronment and two observer controllers needed for the verification in the following
paragraphs. The overall number of UPPAAL timed automata for every execution
is thus 2·N +3. Every one of the verification properties later introduced was each
checked in less than 0.1 s with a memory usage peak each time less than 85 KB
on a normal work station. Note that only those automata are actively interacting
with each other the through broadcast channel hazard that are neighbouring in
the communication chain −→c (e.g., the fourteenth car in −→c is only answering
a forwarding request from the thirteenth car). In the following paragraphs, we
explain the adaptions of our controllers to UPPAAL and the additional con-
trollers needed for the verification as well as the verification properties.

HMLSL Formulae. The hazard detection controller (cf. Fig. 3) is using the
HMLSL formula 〈re(ego)〉 � 〈hz〉 as a guard at the transition from q0 to q1.
Instead of using an HMLSL formula – which is not available in UPPAAL –
for hazard detection, we introduce an additional automaton Environment that
places and removes hazards. On placing a hazard, the Environment informs
controllers via a broadcast channel att(ention) about the existence of a hazard
and additionally sets init id = A. Initially, all Detection Controllers are in state
q0 and listen on channel att. As every of those Controllers additionally checks
the guard id == init id, only the Detection Controller of initial sender A
synchronises with this output. The resulting Detection Controller for the
implementation in UPPAAL is depicted in Fig. 5.

Sending Data over Channels. Sending data over channels is not provided
by UPPAAL, therefore we cannot pass our communication chain from car to
car. But a distinction between local variables, only accessible and changeable by
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Fig. 5. Adapted Detection Controller for implementation in UPPAAL. (Color figure
online)

one specific automaton, and global variables, accessible and changeable by all
automata in the system, is available. However, by using a global variable for the
communication chain −→c , we have to restrict access to it.

Consider again the forwarding controller from Fig. 4. On sending a hazard
warning (transition from state r1 to r2), the controller remembers the second
element of −→c in a local variable next. The controller in the next car in −→c
synchronises with this output (transition from its state r0 to r1), and removes
the head of −→c on the same transition with the function tail −→c . This is consistent
with our definition of data sending, because only a local version −→c ′ of −→c is
shortened and sent later. With a global communication chain next would be
probably valuated with the wrong element, because write and read access for −→c
is uncontrolled.

We overcome this problem in our Forwarding Controller by simply sep-
arating the use of the function tail −→c from the transition from r0 to r1 and
introducing a new intermediate state rim between r0 and r1. The state rim is
committed, so no interleaving transitions from any other automata is allowed
until rim was left. On the transition from rim to r1, the global communication
chain is shortened. Since no synchronisation happens on this transition, there is
no read access on the global communication chain at the same time.

Note that besides the initial generation of −→c in the first Detection Con-
troller through function generate chain(), only the function tail() manipu-
lates the communication chain, by removing its first element. The functions
head(), second() and chain size() only return the respective elements or the
current size of −→c .

Because of the committed state rim, the special case where the current for-
warding controller is located in final receiver B, and thus #−→c ≤ 1, is handled
slightly differently in our UPPAAL implementation. Particularly no transition
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from r1 to r0 exists, but the behaviour of that transition is implemented within
the internal data structure of −→c . The adapted Forwarding Controller for the
implementation in UPPAAL is given in Fig. 6.

Fig. 6. Adapted Forwarding Controller with additional committed state rim. (Color
figure online)

Verification. We pursue two verification goals with UPPAAL. For each of
them we introduce automata Observer1 resp. Observer2. Remember that the
overall goal of our approach is a hazard warning message delivery before the
final receiver B reaches the hazard after t time units and that we assume one
single communication to take tc time units.

Following [2], we set t := 100 and assume one communication to take tc := 1
time units due to hardware restrictions (cf. Sect. 4). With these assumptions,
the hazard warning is supposed to be timely delivered if at most N = 100 cars
are considered for the communication chain and the warning delivery is finished
before t time units. This fits the maximal amount of cars that were used in the
simulation in [2].

Observer1. This Observer checks the end-to-end latency of the warning deliv-
ery between the first and the last car in the communication chain. The time
bound t introduced in Sect. 1 we use as a failure time bound in Observer1. If
t is exceeded, Observer1 changes to a distinct bad state Observer1.fail and
our timely message delivery verification goal is missed. Observer1 monitors the
following three events in the given order:

1. The environment places a hazard (change to state Observer1.hz on).
2. The detection controller of the initial sender (first element in −→c ) sends the

initial warning message (change to state Observer1.warning sent).
3. The forwarding controller of the final receiver (last element in −→c ) con-

firms that it received the warning message (change to state Observer1.
warning received).
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Fig. 7. Observer1 monitors that when initial sender A forwards the hazard warning,
car B finally receives the message in less than t time units, where t is the time in which
car B would arrive at the hazard and our timely warning goal would be missed. (Color
figure online)

Observer1 enters Observer1.fail if either 2. does not occur in less than
t time units, or if 2. occurred timely, but 3. was not reached in less than t
time units. This would be the case if final receiver reaches the hazard without
receiving a warning. Observer1 is depicted in Fig. 7. For Observer1 we verified
the following requirements with UPPAAL for N ≤ 100, where -> is the leads-to
operator in the logic of UPPAAL.

Unreachability of fail I: A[] not Observer1.fail
Liveness I: Observer1.hz on ->

(Observer1.warning sent or chain size <= 1))
Liveness II: Observer1.warning sent ->

(Observer1.warning received and Observer1.x <= t)

Observer2. This Observer checks the timely forwarding of the hazard warning
between two consecutive cars in the communication chain. In Observer2 we use
the time bound tc for one single communication as failure time bound. If a com-
munication is not resent in less than tc time units, the bad state Observer2.fail
is entered. The automaton monitors the following three events in the given order:

1. Wait for a hazard warning (by idling in state Observer2.wait).
2. A hazard warning of an arbitrary forwarding controller n is received (change

to state Observer2.listening).
3. Forwarding controller n + 1 forwarded the warning (change to state

Observer2.success).
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Fig. 8. Observer 2 monitors that whenever a car in the communication chain −→c for-
wards a warning message, the next car in −→c really reforwards this message in less than
tc time units. This verification result is used in our proof by induction for the timely
hazard warning safety property. (Color figure online)

Note that Observer2 monitors not only one hazard warning, but listens if
every single warning itself is resent timely by the next automaton in communi-
cation chain −→c . We use this timed liveness property later in our inductive proof
in Sect. 6.1. The fail state Observer2.fail is entered, if a single communication
is not forwarded in less than tc time units.

We consider the last forwarding as a special case: If forwarding con-
troller n + 1 belongs to the last car B in −→c , Observer2 does not change
back to Observer2.wait, because not further forwarding messages will occur.
Observer2 is depicted in Fig. 8. For Observer2 we verified the following require-
ments with UPPAAL for N ≤ 100:

Unreachability of fail II: A[] not Observer2.fail
Liveness III: Observer2.wait -> Observer2.success

We use the verification results of our implementation in UPPAAL to prove
the timely message propagation in the following Section.

6 Hazard Safety

In this section we stipulate that every car is equipped with a hazard detection
controller Adet and a forwarding controller Afor as introduced in Sect. 4. We
now prove that warned cars do not collide with the hazard. We divide the safety
proof into two steps.

First, we show a timing property: whenever a hazard is detected by a car
A, the final receiver B in a communication chain from A to B is warned within
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some time bound depending on the length of the chain. This proof is supported
by the model checker UPPAAL. Second, we link the timing property to a spatial
property: when the established time bound is below the time it takes car B to
reach the hazard then we can guarantee hazard safety of B in the sense that it
satisfies the spatial property

Safe-hz(ego) ≡ ¬〈re(ego) ∧ hz〉 ,

i.e., the reserved space of B does not overlap with the hazard.

6.1 Timely Hazard Warning Message Propagation

We begin with the timing property.

Theorem 1 (Timely warning). Suppose a communication chain −→c =
〈A, . . . , B〉 of length N ≥ 2 is built up after a hazard detection by the initial
car −→c (1) = A in the chain. Then a hazard warning is received by the final car
−→c (N) = B in the chain within (N − 1) · tc time after it has occurred.

Proof. We show by induction over i that
(∗) for every i ∈ {1, . . . , N} a hazard warning is detected or received by car

−→c (i) within (i − 1) · tc time after it has occurred, and if i < N holds,
the hazard warning is forwarded to car −→c (i + 1) at most tc time later.

Induction basis: i = 1. By construction of Adet, the initial car −→c (1) = A senses
the hazard immediately, i.e., within 0 time after it has occurred, and forwards
it to −→c (2) at most tc time later.

Induction step: i → i+1, where i+1 ≤ N . By induction hypothesis, the hazard
warning is received by car −→c (i) within (i−1)·tc time after it has occurred, and car
−→c (i) forwards it at most tc time later. This communication is instantaneously
received by the next car −→c (i + 1) in the chain. Thus altogether the hazard
warning is received by car −→c (i + 1) within i · tc time after it has occurred. By
construction of Afor , if i+1 < N holds, car −→c (i+1) forwards the hazard warning
at most tc time later.

We checked the induction step for fixed values in our implementation of the
controllers with UPPAAL. We refer to Observer2 which monitors the properties
Unreachability of fail II and Liveness III (cf. Sect. 5). There we showed for
a communication chain −→c with N = 100 and a fixed constant tc that if an
arbitrary car −→c (i) with i < N receives a warning message, this message is really
resent to the next car −→c (i + 1) and that this communication takes less than tc
time units: The state Observer2.fail is entered, iff one single communication
exceeds tc time units. Unreachability of Observer2.fail proves that indeed no
single communication exceeds tc time units. The property Liveness III verifies
that whenever an arbitrary element −→c (i) receives a warning, it is successfully
forwarded to −→c (i + 1).

As we can only verify our properties in UPPAAL for a fixed and finite amount
of cars N , a forwarding exception is the special case −→c (N) = B, where B is the
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final receiver and therefore last element in −→c . In this case, the message is not
forwarded, because the communication goal is reached. From (∗) the statement
of the theorem follows. �

As described, for the induction step we used the properties monitored by
Observer2, which observes if one single timely message forwarding process from
an arbitrary car −→c (i) to the next car −→c (i+1) is successful. Additionally to that,
we derived interesting verification results from Observer1, which monitors the
overall timely message sending from initial sender A to final receiver B. In several
iterations, we showed for various values of N with 2 ≤ N ≤ 100 that a warning
message from A indeed is delivered to B in at most t time units, where again
t = 100, as proposed in [2]. With Observer1, the property Liveness I verifies
that if A has knowledge of the hazard, it actually sends the initial warning and
Liveness II verifies that message is finally received by B. Unreachability of
fail I shows that the overall message sending happens in at most t time units.

6.2 Avoidance of Hazard Collisions

We now turn to the spatial property. For the following safety theorem, we state
the following assumptions:

A1. T S0 is the traffic snapshot where the hazard first occurred. In T S0 all cars
satisfy the property Safe-hz.

A2. Car A is closest to the hazard and detects it in T S0, thereby building up
a communication chain −→c = 〈A, . . . , B〉 of length N ≥ 2 to car B.

A3. Car B needs t time to reach the hazard and during this time it satisfies the
property Safe-hz.

A4. For the time bound tc used in the controllers Adet and Afor the inequality
(N − 1) · tc ≤ t holds.

Theorem 2 (Hazard safety). Suppose the assumptions A1–A4 hold. Then
in every traffic snapshot T S∗ that is reachable from T S0 via time transitions
car B satisfies the property Safe-hz(ego) (under the valuation ν(ego) = B).

Proof. Note that by A2, Theorem 1 is applicable. Let T S∗ be reachable from
T S0 via time transitions. Then T S0

t∗
−→ T S∗ for some time t∗ ∈ R≥0. If in

T S∗ car B has not yet received the hazard warning sent by car A via the
communication chain −→c , we know by Theorem 1 and A4 that t∗ < (N−1)·tc ≤ t
holds. Thus by A3, car B satisfies Safe-hz (ego) in T S∗.

If in T S∗ car B has received the hazard warning via its controller Afor , this
controller guarantees Safe-hz (ego) from the moment on that the hazard warning
has first been received by B, say in the traffic snapshot T S1. Thus we can split
the time t∗ into t∗ = t1 + t2 such that

T S0
t1−→ T S1

t2−→ T S∗,

where t1 ≤ (N − 1) · tc ≤ t due to Theorem 1 and A4. Then car B satisfies
Safe-hz (ego) in T S∗ by the invariant of its controller Afor . �
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By a similar argument, we can extend the above theorem and show that
every car in the communication chain −→c satisfies the property Safe-hz(ego).

7 Conclusion

In this paper, we formalised the timing aspects of the simulation-based analysis
of a communication protocol for timely traffic hazard warning to other traffic par-
ticipants in [2] by using extended timed automata, called automotive-controlling
timed automata (ACTA) [3]. Using this formalisation we prove the timely warn-
ing property, partly supported by the model checker UPPAAL [4].

Also, we linked the timely warning property with spatial reasoning to prove
avoidance of hazard collision using a new extension of the Multi-lane Spatial
Logic MLSL [5] dealing with hazards, called HMLSL. Formulae of this logic
appear in the guards and invariants of ACTA to establish the desired spa-
tial safety properties. Using (H)MLSL we abstract from the underlying car
dynamics [6].

Future Work. So far, we only prove hazard safety for the cars in communication
chain −→c , because only those synchronise with a hazard warning (cf. transition
in Afor from r0 to r1). However, with our broadcast communication we can also
reach all other cars not involved in the communication chain.

We therefore assume the communication radius r to stretch over all lanes L

and to have a positive extension along the lanes. For formalisation, we refer to
the definition of a view from Sect. 2.1, as the communication radius of a car can
be considered to be a communication view. Only cars inside the communication
view of a warning car C can synchronise with C.

For cars outside −→c to synchronise with a warning in their communication
view, we add a transition in the forwarding controller Afor . The new transition
leads from initial state r0 to a new state r4, where the invariant I is required to
hold (cf. Sect. 4). The new transition gets the guard

(hazard?〈L�,−→c 〉 : not-element(−→c , ego) ∧ b = false

and the variable update b := true. The function not-element(−→c , ego) evaluates
to true if the car identifier that ego evaluate to is not included in −→c .

In this paper, we consider timely hazard warnings for highway traffic scenar-
ios. In [3,12], we considered traffic safety on country roads with oncoming traffic
and in urban traffic scenarios at intersections. A linkage of our hazard warning
approach with these scenarios is highly possible for future work.
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