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Abstract. The direct dynamics study of Gough–Stewart hexapod platforms
presented in this paper represents a preparatory step towards the direct dynamics
study of a double hexapod, i.e., two Gough–Stewart platforms mounted in
parallel one above the other. The direct dynamics model used here is based on
the redundant parameterisation of rotations by full 3 � 3 rotation matrices. The
dynamics of each solid of the hexapod platform comprises 12 scalar differential
Eqs. (3 for each translation and 9 for each solid rotation) and 6 algebraic scalar
orthogonality equations, plus the algebraic constraints characterizing the joints.
For the entire hexapod, the overall differential-algebraic system comprises 156
scalar differential equations and 78 + 72 = 150 scalar algebraic equations. Of
course, a number of 150 scalar Lagrange multipliers are introduced in associ-
ation with fulfilling the algebraic equations. So, our dynamic modelling tech-
nique involves an increased number of parameters and equations, but this
disadvantage is compensated by the fact that the dynamic equations can be
written in a systematic way, being structurally similar for each solid of the
hexapod multibody system. From the numerical point of view, the differential-
algebraic system is solved by an iterative “shooting method”, using classical
adaptive stepsize Runge–Kutta integration. No convergence troubles were
encountered so far, when studying the direct dynamics of the Gough–Stewart
hexapod platform considered as case study.

Keywords: Gough–Stewart � Hexapod platform � Direct dynamics �
Redundant rotation parameterisation � Lagrange multipliers

1 Introduction

Having as project objective the control of a double hexapod platform, involving inverse
kinematics but also inverse dynamics (for a good/improved force balance between leg
actuators), a necessary preparatory step is the direct dynamics study of a single
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hexapod platform. The dynamics and control of Gough–Stewart platforms (single
hexapod platforms) has been intensively studied in the last two decades (e.g., see
[1–4]), using Newton-Euler approach [1, 4], the Lagrange formulation [2] or the virtual
work method [3], etc. These parallel robots dynamics studies use various rotation
parameterisations, e.g., the Euler angles are still very popular to parameterise 3D
rotations [1–3], sometimes in the framework of Denavit–Hartenberg convention.

The difference and originality of our approach consists in applying the Lagrange
formulation for the redundant parameterisation of 3D rotations using rotation matrices
elements (full 3 � 3 matrices). This choice of 9 redundant parameters for 3 rotational
degrees of freedom is currently rarely used in rigid multibody dynamics, due to the fact
that the redundancy means an increased number of parameters and equations, more
precisely 9 − 3 = 6 constraint equations per solid must be considered. Of course,
specific Lagrange multipliers must be introduced in order to take into account these
rigidity/orthogonality constraints. Other Lagrange multipliers must be considered to
take into account the constraints characterizing the joints between the different solids
composing the multibody system. Thus, our dynamic modelling technique involves an
increased number of parameters and equations, but this disadvantage is compensated
by the fact that the dynamics equations can be written in a systematic way, being
structurally similar for each solid of any multibody system.

Prof. Claude Vallée has developed such a “rotationless formulation” [5], which
represents a 3D rotation in rigid multibody dynamics by preserving all 9 elements of
the rotation matrix and by imposing the orthogonality constraints. He focussed the
research of several of his PhD students at the University of Poitiers in France on
working on this “rotationless formulation”, more precisely: F. Isnard contributed to
consolidate and validate this “rotationless formulation”, proposing the shooting method
and a Lagrange multipliers elimination method as numerical solving possibilities and
applying the proposed formulation to virtual reality realistic simulations [6]; Vallée and
Dumitriu exploited the algebraic simplicity of the “rotationless formulation” and found
new integrals of motion for a rigid body rotating about its centre of mass [7, 8]; finally,
Atchonouglo et al. [9] and Monnet et al. [10] applied this redundant parameterisation
method for a more precise identification of mechanical parameters, more precisely to
the identification of kinematic and body segment inertial parameters in biomechanics.

The idea of using the “rotationless formulation” of SO(3) is not widely spread in
mechanics, nevertheless it is not new and several authors have preferred to use this highly
redundant parameterisation. Thus, Betsch et al. have preferred the representation of 3D
rotations by preserving all 9 elements of the rotationmatrix as parameters, in the framework
of energy-momentum consistent time-stepping schemes for finite-dimensional mechanical
systems with holonomic constraints [11–13]. The method of using a discrete null space
matrix was used to eliminate the discrete Lagrange multipliers [11]. The same idea of
eliminating explicitly the Lagrange multipliers associated with the internal zero-strain
constraints is used also by Krenk and Nielsen [14], in order to reduce the size of the
differential-algebraic system to be solved.

Using the same “rotationless formulation” of SO(3) special orthogonal Lie group,
Gros et al. [15] obtained similar model equations in the form of index-3 differential-
algebraic equations of reduced nonlinearity. They have also proposed a projection of
the resulting Lagrange equations, so as to reduce the number of states that need to be

Direct Dynamics of Gough–Stewart Hexapod Platforms 53



integrated by the Nonlinear Model Predictive Control. The “rotationless formulation” is
also used by Seguy [16] and Samin and Fisette [17], for modular and symbolic
modelling of multibody systems.

2 Single Hexapod Model

Figure 1 shows the scheme of a classical Gough–Stewart platform (single hexapod
with 6 legs). Only the first leg of the single hexapod is presented in detail, being
composed of its lower part S1 and its upper part S2. In what concerns the numbering of
the solids, the second leg will be composed by its lower part S3 and its upper part S4
and so on. Thus, the generic notation will be as follows: S2i−1 (i = 1,…,6) will denote
the lower parts of the six legs, being articulated to the ground/fixed base in points A1,
A2,… and A6, by means of cardanic/universal joints, while S2i (i = 1,…,6) will denote
the upper parts of the six legs, being linked to the corresponding lower part of each leg
by cylindrical joints and to the end-effector platform in points B1, B2,… and B6 by
means of cardanic/universal joints. The end-effector platform of the single hexapod is

denoted by S13. The cylindrical joints allow simultaneously the translation along AiBi

�!

axis (i = 1,…,6) and the rotation around the same axis between the lower and the upper
leg parts.

In our formulation, everything is expressed with respect to the orthonormal inertial
reference frame O;~x0;~y0;~z0ð Þ shown also in Fig. 1, having its origin in O which is also
the centre of the irregular hexagon A1A2A3A4A5A6, placed in the fixed base plan. Axes
~x0 and~y0 are included in this fixed basis plan A1A2A3A4A5A6, while axis~z0 ¼~y0 �~x0
is of course perpendicular. Let us denote by Gi0 the initial position of the centre of mass
Gi of solid Si (i = 1,…,13) of the rigid multibody system.

Fig. 1. Classical single hexapod model
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3 Direct Dynamic Model of a Single Hexapod Using
the “Rotationless Formulation”

Let us recall that “rotationless formulation” concerns the representation/
parameterisation of each 3D rotation by the 9 elements of the respective 3 � 3 rota-
tion matrix. Let us denote by Ri the rotation matrix of solid Si (i = 1,…,13), while for
the translation parameterisation a pseudo-translation vector T�i will be used [18],

instead of the classical translation vector Ti ¼ Gi0Gi

�!
. So, a total of 12 scalar parameters

(9 for rotation and 3 for translation) will parameterise the position and motion of each
solid Si [5–10, 18]:

Ri ¼
Ri;11 Ri;12 Ri;13

Ri;21 Ri;22 Ri;23

Ri;31 Ri;32 Ri;33

2
4

3
5; respectively T�i ¼

T�i;1
T�i;2
T�i;3

2
4

3
5 ¼ OGi

�!
�Ri OGi0

�!
ð1Þ

In order to preserve the rigidity of each solid Si, the rotation matrix Ri has to be an
orthogonal matrix, i.e., to fulfil the rigidity/orthogonality constraint:

RT
i Ri ¼ I3: ð2Þ

The orthogonality constraint (2) is symmetric, involving in fact only 6 scalar
independent conditions to be fulfilled by the 9 elements of the 3 � 3 rotation matrix,
leaving 3 = 9−6 degrees of freedom for the rotational motion of each solid Si. So, the
degree of redundancy of this parameterisation of rotations is 6.

For any point Mj of each solid Si (i = 1,…,13) of the single hexapod, its position
and velocity V(Mj) at any time t during the motion are given by [5–10, 18]:

OMj

�!
¼ OGi

�!
þ GiMj

�!
¼ OGi

�!
þRi Gi0Mj0

�!
¼

¼ OGi

�!
�Ri OGi0

�!
þRi OMj0

�!
¼definitionð1Þ

T�i þRi OMj0

�!
;

VðMjÞ ¼ _T
�
i þ _Ri OMj0

�!
; ð3Þ

where Mj0 is the initial position (at time t0 = 0) of point Mj. Definitions (3) are valid for
any point Mj of each solid Si (i = 1,…,13), showing in fact the way in which the
pseudo-translation vector T�i and the rotation matrix Ri fully characterise the position
and motion of all solids composing the rigid multibody system (single hexapod).

The derivatives of the pseudo-translation vector and of the rotation matrix are given
by:

_Ri ¼ jðXiÞRi

T�i
:

¼ VðMjÞ � _Ri OMj0

�!
¼ VðMjÞ � jðXiÞRi OMj0

�!

8<
: ð4Þ

Direct Dynamics of Gough–Stewart Hexapod Platforms 55



where Xi denotes the instantaneous rotation vector of solid Si at time t, expressed in the
orthonormal inertial basis ~x0;~y0;~z0ð Þ, being defined as jðXiÞ ¼ _RiRT

i , where j(•) is the
skew-symmetric cross-product matrix defined by jðuÞv ¼ u ^ v, for 8u,v and with ^
denoting the classical cross-product between two 3 � 1 vectors.

At the initial time t0 = 0, the following initial conditions in terms of the proposed
redundant parameterisation must be fulfilled for each solid Si (i = 1,…,13):

Rið0Þ ¼ I3
T�i ð0Þ ¼ 0

� _Rið0Þ ¼ jðXi0Þ
T�i
:

ð0Þ ¼ V0ðMjÞ � jðXi0ÞOMj0

�!

(
i ¼ 1; . . .; 13ð Þ ð5Þ

In Lagrangian formulation, the dynamics of the rigid multibody system (our single
hexapod) composed by 13 solids Si is proved [5–10, 18] to be described by the
following 12 � 13 = 156 Lagrange equations written in explicit form:

T�i
::

¼ 1
mi

Xi � ½ðYiþRiKiÞK�1Gi0�OGi0

�!
þ hK�1Gi0 OGi0

�!
; OGi0

�!
iXi

€Ri ¼ ðYiþRiKi � Xi � OGi0

�!
ÞK�1Gi0 , for 8 solid Si ði ¼ 1; . . .; 13Þ

8><
>: ð6Þ

where ⊗ denotes the tensor product, mi is the mass of the solid Si (i = 1,…,13) and Gi0

is the initial position of the centre of mass of the solid Si. KGi0 is the Poinsot inertia
matrix of the solid Si calculated at the initial time in its centre of mass the point Gi, with

respect to the inertial basis ~x0;~y0;~z0ð Þ, defined by: KGi0 ¼
R
Si

Gi0Mi0

�!
�Gi0Mi0

�!
dmi or by

its relationship with the corresponding classical inertia matrix KGi0 ¼ tr(JGi0Þ
2 I3 � JGi0,

with the classical inertia matrix given by Ji0 ¼
R
Si

�½j ðOMi0

�!
Þ�2dmi.

Still in Eq. (6) expressing the Lagrange equations of motion for our “rotationless
formulation”, vector Xi and matrix Yi are the generalized efforts acting on each solid Si
(i = 1,…,13), being composed of the external efforts acting on each solid Si and of the
internal efforts dues to the joints between Si and other solids or between Si and the
ground. In the following, these generalized efforts will be explicitly expressed for the
case of the single hexapod (Gough–Stewart platform).

Ki are symmetric Lagrange multipliers 3 � 3 matrices [5–10, 18]:

Ki ¼
Ki;11 Ki;12 Ki;13

Ki;12 Ki;22 Ki;23

Ki;13 Ki;23 Ki;33

2
4

3
5 ð7Þ

introduced in order to take into account the orthogonality condition (2) of rotation
matrix Ri. In our numerical practice, the rigidity/orthogonality constraint (2) will be
considered in its double-derived form:
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€R
T
i RiþRT

i
€Riþ 2 _R

T
i
_Ri ¼ 0 for 8 i ¼ 1; . . .; 13: ð8Þ

Of course, only 6 of the 9 scalar equations of one orthogonality condition (8) are
independent.

Equation (6) represent the differential part of the differential-algebraic equations
governing the motion of the multibody system. Equation (6) have the same form for
each solid Si (i = 1,…,13) of the single hexapod. Of course, the inertial and geometric

characteristics (mi, KGi0 and OGi0

�!
), will be different from one solid to another. But the

important issue is that we have systemically/automatically the same form of these
differential equations. Moreover, the differential Eqs. (6) are decoupled in what con-
cerns their dynamic part, being linear in €T

�
i and €Ri, which represents a major advantage

from the numerical point of view.
The algebraic part of the differential-algebraic equations governing the motion of

the rigid multibody system is composed by all rigidity/orthogonality constraints (8)
imposing the rigidity of solids Si, plus the constraint equations characterizing the
mechanical joints between solids and with the ground. In the case of the single
hexapod, there are two types of joints: cardanic/universal joints between the lower parts
S2i−1 (i = 1,…,6) of the six legs and the ground/fixed base and between the upper parts
S2i (i = 1,…,6) of the six legs and the end-effector platform S13, respectively the
cylindrical joints in-between the lower parts and the upper parts of the six legs.

The modelling of both types of joints (cardanic/universal and cylindrical) represents
an original contribution with respect to our previous work [5–10, 18]. Due to the
limited length of the paper, we will not present in the following the cases of cardanic
and cylindrical joints in general, but only the application of the general expressions to
our single hexapod case study.

By resuming, the algebraic part of the differential-algebraic system governing the
motion of the single hexapod in Fig. 1 comprises:

• the orthogonality constraints in their double-derived form (8), for 8 i = 1,…,13;
• the algebraic equations characterizing the cardanic joints between the lower parts

S2i-1 (i = 1,…,6) of the six legs of the single hexapod and the ground/fixed base S0
(denoting by Ai;0 the cardanic joints centres at t0 = 0, while uCardan0;2i�1;0 and v

Cardan
0;2i�1;0 are

the unit vectors of the two axes of the respective cardanic joint, at t0 = 0):

0 ¼ T�2i�1þR2i�1 OAi;0

�!

hð�R2i�1ÞuCardan0;2i�1;0; v
Cardan
0;2i�1;0i ¼ 0

8<
: for i ¼ 1; . . .; 6 ð9Þ

• the algebraic equations characterizing the cylindrical joints between the lower parts
S2i-1 (i = 1,…,6) and the upper parts S2i (i = 1,…,6) of the six legs of the single
hexapod (denoting by ucyli;j;0 and vcyli;j;0 two distinct unit vectors perpendicular on the
cylindrical joint axis at the initial time t0 = 0; obviously, these two unit vectors will
remain perpendicular on the cylindrical joint axis, this fact being imposed by
constraints (10)):
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hðR2i�1 � R2iÞAi;0Bi;0

�!
; ucyl2i�1;2i;0i ¼ 0

hðR2i�1 � R2iÞAi;0Bi;0

�!
; vcyl2i�1;2i;0i ¼ 0

8<
:
hR2i�1u

cyl
2i�1;2i;0; T

�
2i � T�2i�1i ¼ 0

hR2i�1v
cyl
2i�1;2i;0; T

�
2i � T�2i�1i ¼ 0

( for i ¼ 1; . . .; 6 ð10Þ

• the algebraic equations characterizing the cardanic joints between the upper parts S2i
(i = 1,…,6) of the 6 legs of the single hexapod and the end-effector platform S13:

T�2iþR2i OBi;0

�!
¼ T�13þR13 OBi;0

�!

hðR13 � R2iÞuCardan2i;13;0 ; v
Cardan
2i;13;0i ¼ 0

8<
: for i ¼ 1; . . .; 6 ð11Þ

where Bi;0 are the centres of these cardanic joints at the initial time t0 = 0, while uCardan2i;13;0

and vCardan2i;13;0 are the unit vectors of the two axes of the respective cardanic joint, obvi-
ously considered also at t0 = 0.

In what concerns the generalized efforts, the ones acting on the lower parts S2i-1
(i = 1,…,6) of the six legs of the single hexapod are given by:

X2i�1 ¼ Xext
2i�1þXCardan

2i�1 0þXcyl
2i�1 2i ¼ �mi;infg z0

! �KCardan
0;2i�1 � R2i�1ðkcyl2i�1;2i;u2u

cyl
2i�1;2i;0þ kcyl2i�1;2i;v2v

cyl
2i�1;2i;0Þ

Y2i�1 ¼ Yext
2i�1þYCardan

2i�1 0þYcyl
2i�1 2i ¼ �mi;infg z0

! �OG2i�1;0
�!

�KCardan
0;2i�1 � OAi;0

�!
�

�kCardan0;2i�1;uðvCardan0;2i�1;0 � uCardan0;2i�1;0Þþ ðkcyl2i�1;2i;uu
cyl
2i�1;2i;0þ kcyl2i�1;2i;vv

cyl
2i�1;2i;0Þ � Ai;0Bi;0

�!

þ ðT�2i � T�2i�1Þ � ðkcyl2i�1;2i;u2u
cyl
2i�1;2i;0þ kcyl2i�1;2i;v2v

cyl
2i�1;2i;0Þ; 8i ¼ 1; . . .; 6

8>>>>>><
>>>>>>:

ð12Þ

The generalized efforts acting on the upper parts S2i (i = 1,…,6) of the six legs of
the single hexapod are:

X2i ¼ Xext
2i þXcyl

2i 2i�1þXCardan
2i 13 ¼ Fi zi

!�mi;supg z0
! þR2i�1ðkcyl2i�1;2i;u2u

cyl
2i�1;2i;0þ kcyl2i�1;2i;v2v

cyl
2i�1;2i;0ÞþKCardan

2i;13

Y2i ¼ Yext
2i þYcyl

2i 2i�1þYCardan
2i 13 ¼ Fi zi

! �OPFi; 0

�!
�mi;supg z0

! �OG2i;0

�!
þKCardan

2i;13 � OBi;0

�!
þ

þ kCardan2i;13;uðvCardan2i;13;0 � uCardan2i;13;0Þ � ðkcyl2i�1;2i;uu
cyl
2i�1;2i;0þ kcyl2i�1;2i;vv

cyl
2i�1;2i;0Þ � Ai;0Bi;0

�!

�ðT�2i � T�2i�1Þ � ðkcyl2i�1;2i;u2u
cyl
2i�1;2i;0þ kcyl2i�1;2i;v2v

cyl
2i�1;2i;0Þ; 8i ¼ 1; . . .; 6

8>>>>>><
>>>>>>:

ð13Þ

Finally, the end-effector platform S13 is actuated by the following generalized
efforts X13 and Y13:

X13 ¼ Xext
13 þ

X6
i¼1

XCardan
13 2i ¼ �m13g z0

! �
X6
i¼1

KCardan
2i;13

Y13 ¼ Yext
13 þ

X6
i¼1

YCardan
13 2i ¼ �m13g z0

! �OG13;0

�! �
X6
i¼1

KCardan
2i;13 � OBi;0

�! �
X6
i¼1

kCardan2i;13;uðvCardan2i;13;0 � uCardan2i;13;0Þ

8>>>><
>>>>:

ð14Þ
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4 Single Hexapod Numerical Case Study

A single hexapod with 6 identical legs and with the fixed base S0 and end-effector
platform S13 having the form of planar irregular convex hexagons with symmetry
(A1A2A3A4A5A6 and B1B2B3B4B5B6, respectively) is studied here. The following
inertial and geometric characteristics are considered in this case study:

• for the lower parts of each of the 6 identical legs: mass m2i-1 = mlower = 0.7 [kg];
length l2i-1 = llower = 0.40 [m]; Poinsot inertia matrix of the solid S2i-1 (i = 1,…,6)
calculated at the initial time in its centre of mass G2i-1, with respect to the local
orthonormal basis ~x2i�1;0;~y2i�1;0;~z2i�1;0

� �
, attached to lower leg S2i-1 (i = 1,…,6):

KG;2i�1 ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0:0071½ � kg �m2� �
;

• for the upper parts of each of the 6 identical legs: mass m2i = mupper = 0.3 [kg];
length l2i = lupper = 0.40 [m]; Poinsot inertia matrix of the solid S2i (i = 1,…,6)
calculated at the initial time in its centre of mass G2i, with respect to the local
orthonormal basis ~x2i;0;~y2i;0;~z2i;0

� �
, attached to upper leg S2i (i = 1,…,6):

KG;2i ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0:0031½ � kg �m2� �
;

• for the end-effector platform: mass m13 = mplatform = 3 [kg]; Poinsot inertia matrix
of the end-effector platform S13 calculated at the initial time in its centre of mass the
point G13, with respect to the local orthonormal basis ~x13;~y13;~z13ð Þ, attached to the
end-effector platform S13:

KG;13 ¼ KG;13;0 ¼ 0:0324; 0; 0; 0; 0:0324; 0; 0; 0; 0½ � kg �m2� �
:

The fixed basis A1A2A3A4A5A6 is a planar irregular convex hexagon with symmetry
having its circumscribed circle of circumcentre O and circumradius rbasis,S0 = 0.40 [m],
with angles ∠A1OA2 = ∠A3OA4 = ∠A5OA6 = 90° and ∠A2OA3 = ∠A4OA5 =
∠A6OA1 = 30°.

The end-effector platform B1B2B3B4B5B6 is a planar irregular convex hexagon
with symmetry having its circumscribed circle of circumcentre G13 and circumradius
rplatform,S13 = 0.35[m], with angles ∠B1OB2 = ∠B3OB4 = ∠B5OB6 = 36° and
∠B2OB3 = ∠B4OB5 = ∠B6OB1 = 84°.

At the initial time t0 = 0, the length of the 6 identical legs is considered the same:
lleg-i,0 = 0.5320 [m] (i = 1,…,6). For this initial configuration of the single hex-

apod, one computes for the first leg (similarly for the others):
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OA1;0

�!
¼ rbasis;S0 sin

90�

2
x0
! �rbasis;S0 cos90

�

2
y0
!
; OB1;0

�!
¼ h0 z0

! þ rplatf:;S13 sin
36�

2
x0
! �rplatf:;S13cos36

�

2
y0
!
;

h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21;0 � rplatform;S13 sin

36�

2
� rbasis;S0 sin

90�

2

� 	2
� rplatform;S13cos

36�

2
� rbasis;S0cos

90�

2

� 	2
r

;

A1;0B1;0

�!
¼ OB1;0

�!
�OA1;0

�!
; z1
! ¼ z2

! ¼ A1;0B1;0

�!

jjA1;0B1;0jj;

OG1; 0

�!
¼ OA1;0

�!
þ llower;0

2
z1
! ðG1 	 Gleg�1;lowerÞ; OG2; 0

�!
¼ OB1;0

�!
�lupper

2
z1
! ðG2 	 Gleg�1;supÞ;

OPF1; 0

�!
¼ OB1;0

�!
�lupper z1! ðPF1 	 application point of F1Þ; OG13; 0

�!
¼ h0 z0

!
:

ð15Þ

As it can be deduced, the forces are considered to be applied on the upper parts of
the legs, at their lower extremity. To statically support the end-effector platform in its
initial position, the numerical code based on the direct dynamics model proposed in this
paper provides the following necessary forces: F1 = F2 = F3 = F4 = F5 = F6 = 8.5105
[N]. These forces seem to coincide with the simple analytical calculations corre-
sponding to the static equilibrium of the platform in the considered initial position.

The second validation simple dynamic test concerns the application of the fol-
lowing forces:

F1 ¼ F2 ¼ 9:5 N½ �;F3 ¼ F4 ¼ F5 ¼ F6 ¼ 8:5105 N½ �: ð16Þ

Since with respect to the static equilibrium case study only forces F1 and F2 are
slightly modified, also due to the symmetry of the single hexapod, it is logical to expect
a rotation of the end-effector platform S13 around~x0 axis (which is in fact the case, as
shown in Fig. 3 only angle u2 presents a variation/evolution).

Figure 2 shows the evolution in time (between 0 and 0.5 s) of the classical

translation vector T13 ¼ G13;0G13

�!
of the end-effector platform S13, of course computed

from T�13 and R13 as:

T13 ¼ G13;0G13

�!
¼ OG13

�!
�OG13;0

�!
¼ T�13þR13 OG13;0

�!
�OG13;0

�!
ð17Þ

Figure 3 shows the evolution in time of the Tait–Bryant angles (called also Cardan
angles, or even x-y-z sequence of rotations), extracted from the rotation matrix R13 of
the end-effector platform S13, based on the following correspondence relation:

R ¼
cosu2 cosu3 sinu1 sinu2 cosu3þ cosu1 sinu3 � cosu1 sinu2 cosu3þ sinu1 sinu3
� cosu2 sinu3 � sinu1 sinu2 sinu3þ cosu1 cosu3 cosu1 sinu2 sinu3þ sinu1 cosu3

sinu2 � sinu1 cosu2 cosu1 cosu2

2
4

3
5

ð18Þ

As observed, the three Tait–Bryant angles were denoted by u1, u2 and u3.
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Finally, Fig. 4 shows the variation in time of the lengths of the 6 legs of the single
hexapod, corresponding to the motion imposed by forces (16) of the considered case
study. Obviously, due to the particular symmetry of the considered case study, one has:
l1 = l2, l5 = l4 and l6 = l3.

The results presented in Figs. 2, 3, and 4 seem normal for the considered case
study. Of course, an inverse dynamics simulation would have been more suggestive,
but this will be the topics of a future paper. So far, the results have been validated using
an in-house LabView inverse kinematics modelling and simulation software [19]. More
precisely, the correct correspondence between the platform position and orientation
evolution and the variation of the lengths of the six legs has been successfully verified.
Figure 5 shows the graphical user interface of this in-house LabView single hexapod
inverse kinematics tool, which has already been validated on several case studies, so it
can be considered as a valid virtual experiment.

Fig. 2. Evolution in time of the classical translation vector of the end-effector platform S13

Fig. 3. Evolution in time of the Tait–Bryant angles corresponding to the rotation R13 of
platform S13
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5 Conclusions and Future Work

Already tested on simpler case studies [5–10, 18], the “rotationless formulation”
proposed by C. Vallée et al. is applied here for a single hexapod. More precisely, the
proposed redundant representation of rotations concerns the parameterisation of each
3D rotation by the 9 elements of the respective 3 � 3 rotation matrix. Using this 3D
rotations representation in Lagrange formulation, one obtains for the single hexapod
direct dynamics a differential-algebraic system composed by: 156 scalar differential

Fig. 4. Variation in time of the lengths of the six legs of the single hexapod, corresponding to
the imposed motion

Fig. 5. LabView single hexapod inverse kinematics validation tool
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equations, plus 78 scalar rigidity/orthogonality constraints (algebraic equations) and
other 72 scalar algebraic equations characterizing the joints of the rigid multibody
system which is the single hexapod. The unknowns are 156 scalar elements of the
pseudo-translation vectors and rotation matrices of all 13 solids of the single hexapod,
plus 150 Lagrange multipliers introduced in order to take into account the algebraic
constraints. In conclusion, the number of equations corresponds to the number of
unknowns, thus the differential-algebraic system has been solved classically by an
iterative “shooting method”, with classical adaptive stepsize Runge–Kutta integration.
From the numerical point of view, no convergence troubles were encountered so far,
when studying the direct dynamics of the Gough–Stewart hexapod platform considered
as case study.

As further work, an inverse dynamics study for the single hexapod is foreseen. On
the other hand, since the project acknowledged by the authors concerns a double
hexapod, obviously our future work will be extended to the direct and inverse
dynamics of a double hexapod, i.e., two Gough–Stewart platforms mounted in parallel
one above the other.
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