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Abstract. The linear formulation does not yield acceptable results when is used
to the beams that experience large deflections. Further, the linear models could
accommodate large deflections such as those encountered in some machinery
where bending does not exceed three times the thickness of the beam. However,
the defection of beams subjected to arbitrary loads that yield non-linear
deflection has been solved so far only for two loading conditions; point moment
and point force. The present work presents a general method based on Lie
symmetry groups that yields an exact solution to the general problem involving
any arbitrary loading.

Keywords: Lie group symmetry � Beam structures � General loading
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1 Introduction

Nonlinear deflection of beams under the various forces and boundary conditions has
been widely studied. Differential equation of large deflection of cantilever beams under
point force at tip was solved on 1944 [1]. In this approach the differential equation
expressing the slope of beam versus the length of the deflected curve was formulated and
solved based on complete second and first kind elliptic integrals. Differential equation of
slope versus length of the deflected curve based on consideration of shear force was
numerically solved [2]. The authors used finite difference methods to solve the ODE for
distributed force on the cantilever and the simple supported beams. They also used the
same method to solve ODE of simple supported beam under a point force. A numerical
solution for the tapered cantilever beam under a point force at the tip was presented in
1968 [3]. The author converted the ODE to a non-dimensional ODE and used a com-
puter to solve it. A cantilever beam made from materials exhibiting nonlinear properties
and subjected to a point force was also studied [4]. The deflection equation was cal-
culated based on Ludwick experimental strain-stress curve. The integral equation solved
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numerically and the deflection at the end of the beam and the rotation were calculated.
The same problem of large deflection of cantilever beams made from nonlinear materials
under tip point force was solved by finite deference methods [5]. The authors solved
numerically the nonlinear ODE of the curvature for a cantilever made from a material
experiencing nonlinear characteristics and subjected to point force at the tip by. Power
series and neural network were used to solve large deflection of a cantilever beam
subjected to tip force [6]. Nonlinear ODE were decomposed to a system of ODEs and
solved by neural networks. Large deflections of cantilever beams made from nonlinear
elastic materials under uniform distributed forces and a point force at tip was also
studied [7]. In this work a system of nonlinear ODEs was formulated to model the
system which was solved by Runge-Kutta method. Researchers used in [8] almost the
same method that was used in [1] to solve the large deflection of a cantilever under the
point force at the tip and they validated their results with experiments. Also they used
non-dimensional formulation to simplify the nonlinear deflection to linear analysis.
They showed that nonlinear small deflections are same as those found through the linear
analysis. Two dimensional loading of cantilever beams with point force loads at the free
end was studied for non-prismatic and prismatic beams [9]. Authors formulated the
model for the general loading conditions in beams. The result is a nonlinear PDE which
is presented in this paper. Further, the authors numerically solved the non-dimensional
equation using a polynomial to define the rotating angle of the beam. They presented
few examples which if solved with their method. A cantilever beam subjected to a point
moment at the tip made from nonlinear bimorph material was theoretically and
numerically studied [10]. The authors used an exact solution for the deflection of a
cantilever with a moment applied at the tip. Cantilever beams under uniform and tip
point force were numerically and experimentally studied [11]. The authors used a
system of ODEs to solve numerically this problem. Finite difference methods for
analysis of large deflection of a non-prismatic cantilever beam subjected to different
types of continuous and discontinuous loadings was studied [12]. Authors formulated
the problem based on [9] and further used quasi-linearization central finite differences
method to solve the problem. An explicit solution for large deflection of cantilever
beams subjected to point force at the tip was obtained by using the homotopy analysis
method (HAM) presented in [13]. Large deflection of a non-uniform spring-hinged
cantilever beams under a follower point force at the tip was formulated and solved
numerically [14]. In this paper stability of the beam was also studied.

2 Nonlinear Deflection of Beams

Deflection of a cantilever can be described by the following differential equation:

d2y
dx2

ð1þ dy
dx

� �2
Þ32
¼ M(x)

EI
ð1Þ
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where:

E is Young modules of elasticity of the homogeneous material of the beam.
I is bending cross-section moment of inertia.
y is the current deflection.
x is the current coordinate along the beam (Fig. 1).

3 Lie Symmetry of Large Deflection of Beams

Infinitesimal transformation can be defined according to [20] as following:

Xf ¼ n x; yð Þ @f
@x

þg x; yð Þ @f
@y

ð2Þ

Where:

n x; yð Þ ¼ @u
@x

����
a¼0

g x; yð Þ ¼ @u
@y

����
a¼0

ð3Þ

f ¼ fðx; yÞ ð4Þ

X is an operator
It can be shown [22] that for a second order differential equation like:

d2y

dx2
¼ xðx; y; dy

dx
Þ ð5Þ

The transformation must satisfy the below equation:

gxx þ 2gxy � nxx
� �

y
0 þ gyy � 2nxy

� �
y
0 2 � nyyy

0 3 þ gy � 2nx � 3nyy
0� �
x

¼ nxx þ gxy þðgx þ gy � nx
� �

y
0 � nyy

0 2Þx
y
0 ð6Þ

Fig. 1. Deflection of a beam under various kind of loads
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By decomposing (4) into a system of PDEs, n and η can be calculated. Also the
transformation u and w can be calculated from (3). One can consider the infinitesimal
transformation as of the following form:

n ¼ C1 þC2xþC3y

g ¼ C4 þC5xþC6y
ð7Þ

C1;C2;C3;C4;C5;C6 are constant numbers. As most of Lie symmetries including
rotation translation and scaling could be found with the above transformations. For
Eq. (5) x in implicit form is given by:

d2y

dx2
¼ x x; y; y

0� �
¼ M xð Þ

EI
ð1þ dy

dx

� �2

Þ32 ð8Þ

Substitution of (4) and (5) in (6) gives:

�M xð ÞC6 þ 2M xð Þ dy
dx

� �2

C6 þ 2M xð ÞC2 �M xð Þ dy
dx

� �2

C2

þ 3M xð Þ dy
dx

C3
dM xð Þ
dx

C1 þ dM xð Þ
dx

C1
dy
dx

� �2

þ dM xð Þ
dx

C2 þ dM xð Þ
dx

C2x
dy
dx

� �2

þ dM xð Þ
dx

C3y

þ dM xð Þ
dx

C3y
dy
dx

� �2

þ 3M xð ÞC5
dy
dx

¼ 0

ð9Þ

This can be further written as:

�M xð ÞC6 þ 2M xð ÞC2 þ dM xð Þ
dx C1 þ dM xð Þ

dx C2x
� �

þ 2M xð ÞC6 �M xð ÞC2 þ dM xð Þ
dx C1 þ dM xð Þ

dx C2xþ dM xð Þ
dx C3y

� �
dy
dx

� �2
þ 3M xð ÞC3 þ 3M xð ÞC5ð Þ dydx ¼ 0

ð10Þ

As all three parentheses must be zero, in first parenthesis coefficients of x and dM xð Þ
dx are

zero:

C1 ¼ 0;C2 ¼ 0 ð11Þ

C6 ¼ 0 ð12Þ

In the second parenthesis coefficient of y must be zero so:
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C3 ¼ 0 ð13Þ

In the last parenthesis,C5 must be zero in order to get a zero in both sides.
Therefore only C4 6¼ 0, so:

g ¼ C4 ¼ 1 ð14Þ

Therefore:

Xf ¼ @f
@y

ð15Þ

Canonical coordinates can be calculated as [21]:

s r; xð Þ ¼
Z

dx
n x; y r; xð Þð Þ

� �����
r¼rðx;yÞ

ð16Þ

rðx; yÞ is the solution of:

dy
dx

¼ gðx; yÞ
nðx; yÞ ð17Þ

One can show that:

r x; yð Þ ¼ x

s x; yð Þ ¼ y
ð18Þ

Any canonical coordinates must satisfy the following conditions [19]:

n x; yð Þrx þg x; yð Þry ¼ 0

n x; yð Þsx þg x; yð Þsy ¼ 1

ds
dr

¼ sx þxðx; yÞsy
rx þxðx; yÞry ð19Þ

rx ry
sx sy

����
���� 6¼ 0

It is easy to show that (16) satisfies (17). Reduced form of (19) becomes:

v ¼ x

u vð Þ ¼ dyðxÞ
dx

ð20Þ

Substituting (18) in (19) gives:
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duðvÞ
dv

¼ M vð Þ
EI

ð1þ u vð Þ2Þ32 ð21Þ

This is a first order ODE and it is possible to further solve it by Lie symmetry method.
It can be shown that [19] for a first order differential equation like:

dy
dx

¼ xðx; yÞ ð22Þ

where:

duðvÞ
dv

¼ x u; vð Þ ¼ MðvÞ
EI

ð1þ u vð Þ2Þ32 ð23Þ

n and η in (21) must satisfy the below equation:

gx þ gy � nx
� �

x� nyx
2 ¼ nxx þgxy ð24Þ

Substituting (23) in (24) yields:

gv þ gu � nvð ÞMðvÞ
EI ð1þ u vð Þ2Þ32 � nu

M vð Þ
EI

� �2
1þ u vð Þ2

� �3
2

¼ n 1
EI

dM vð Þ
dv 1þ u vð Þ2

� �3
2

þ 3gMðvÞ
EI uðvÞð1þ u vð Þ2Þ32

ð25Þ

There is no term of u vð Þ 1þ u vð Þ2
� �1

2
in left hand side of equation, so the equation

yields:

g ¼ 0 ð26Þ

Therefore (25) can be written as:

�M vð Þ
EI nvð1þ u vð Þ2Þ32 þ nu

M vð Þ
EI 1þ u vð Þ2

� �3
� �

¼ n 1
EI

dMðvÞ
dv ð1þ u vð Þ2Þ32

ð27Þ

Comparing the moment in both sides of equation one can show that nu ¼ 0, so:

n ¼ nðvÞ ð28Þ

Equation (27) will simplify, by considering (28), to:

� 1
M vð Þ

dM vð Þ
dv

¼ 1
nðvÞ

dnðvÞ
dv

ð29Þ
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Its solution is as following:

n vð Þ ¼ C
MðvÞ ð30Þ

C is a constant that can be considered as 1. Hence:

n vð Þ ¼ 1
MðvÞ ð31Þ

Therefore:

Xf ¼ 1
MðvÞ

@f
@x

ð32Þ

Canonical coordinates can be calculated as:

r u; vð Þ ¼ u vð Þ
s u; vð Þ ¼ Z

M vð Þdv ð33Þ

These canonical coordinates satisfy the conditions (19). Equation (19) can be written
as:

ds
dr

¼ EI

ð1þ r2Þ32
ð34Þ

Its solution is:

s rð Þ ¼ r
EI

ð1þ r2Þ12
þC1 ð35Þ

or,

r ¼ s rð ÞþC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s rð Þ2�2s rð ÞC1 � C2

1 þðEIÞ2
q ð36Þ

Substituting (33) in (36) yields to:

u vð Þ ¼
R
M vð ÞdvþC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðR M vð ÞdvÞ2 � 2C1
R
M vð Þdv� C2

1 þðEIÞ2
q ð37Þ

Further, substituting (20) in (37) results in:
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dy
dx

¼
R
M xð ÞdxþC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðR M xð ÞdxÞ2 � 2C1
R
M xð Þdx� C2

1 þðEIÞ2
q ð38Þ

Therefore, y becomes:

y xð Þ ¼
Z R

M xð ÞdxþC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðR M xð ÞdxÞ2 � 2C1

R
M xð Þdx� C2

1 þðEIÞ2
q dxþC2 ð39Þ

This solution is expressed in term of two constants C1and C2 that could be evaluated
from the boundary conditions.

4 Validation

Below a close form solution of large deflection of a cantilever beam subjected to a point
moment at the tip will be compared with the solution obtained the proposed method.

If a moment applies at the tip of cantilever beam as Fig. 2, Eq. (1) becomes:

d2y
dx2

ð1þ dy
dx

� �2
Þ32
¼ M

EI
ð40Þ

According to [10] deflection can be calculated as a function of x:

y xð Þ ¼ EI
M

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

EI

� �2

x2

s
Þ ð41Þ

Fig. 2. Cantilever beam subjected to an end moment.
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By considering the boundary condition as the deflection at the fixed point:

y 0ð Þ ¼ dy
dx

����
x¼0

¼ 0 ð42Þ

(42) satisfies Eq. (41).
One can write Eq. (38) as following by considering Eq. (38) and the boundary

conditions:

dy
dx

����
x¼0

¼ MxþC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðMxÞ2 � 2MxC1 � C2

1 þðEIÞ2
q

�������
x¼0

¼ 0 ð43Þ

hence:

C1 ¼ 0 ð44Þ

Equation (19) becomes:

y xð Þ ¼
Z

Mxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðMxÞ2 þðEIÞ2

q dxþC2 ¼ ðEI�MxÞðEIþMxÞ
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðMxÞ2 þðEIÞ2

q þC2 ð45Þ

By considering B.C, C2 Eq. (45) becomes:

C2 ¼ EI
M

ð46Þ

Finally Eq. (45) becomes:

y xð Þ ¼ ðEI�MxÞðEIþMxÞ
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðMxÞ2 þðEIÞ2

q þ EI
M

¼ EI
M

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

EI

� �2

x2

s
Þ ð47Þ

As one can see (47) is same as (41).

5 Conclusions

The above proposed method represents a general approach in solving the large
deflections of beams when subjected to point or distributed loads. The method makes
use of Lie symmetry to solve the non-linear differential equation that describes the
deflection of the beam at a current point on its length. The method could be applied for
any type of loading or combinations of it. The computation behind the problem is light
in comparison with solving elliptic integrals. The proposed procedure was validated on
a standard problem, this is a cantilever beam subjected to point moment at the tip for
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which there is an available formulation of the exact solution. The proposed method
yield same result.

Lie symmetry method is a powerful mathematical approach that could be suc-
cessfully used to reduce the order of non-linear ordinary differential equations and
ultimately, to express an exact analytical solution of the describing equation. The
method is requires lighter computation but the existence of the solution is dependent on
finding a symmetry of the equation.
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