
A Scratch-Based Collaborative Learning System
with a Shared Stage Screen

Yusuke Fukuma, Kumpei Tsutsui, Hideyuki Takada(B), and Ian Piumarta

Faculty of Information Science and Engineering, Ritsumeikan University,
1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

htakada@cs.ritsumei.ac.jp

http://www.cm.is.ritsumei.ac.jp/∼htakada/index e.html

Abstract. Opportunities for elementary and junior high school students
to learn programming have been increasing over the last few years, and
programming education in elementary schools will become compulsory in
2020. Applying ‘collaborative learning’ to programming education can be
considered an effective method, but the current environment for collabo-
rative learning in programming education needs to be improved because
in many cases the creation and execution of programs are completed on
isolated personal computers. To improve this situation we have devel-
oped a collaborative learning support system featuring a shared ‘stage’
screen based on the visual programming environment Scratch. Our sys-
tem keeps each individual’s Scratch programming environment separate
from the shared stage screen, but allows each of the individual stages to
be displayed together on the shared screen at the same time. The system
was used during collaborative learning workshops at a local community
center. Evaluations were made with post-workshop survey questionnaires
and analysis of the learners’ behavior. We confirmed that co-teaching and
communication among learners occurred because the programs developed
by others were visible on the shared stage screen.

Keywords: Collaborative learning · Programming education · Shared
screen

1 Introduction

With the introduction of compulsory programming education in the Japanese
standard curriculum for elementary schools in 2020 [3], increasing interest in
programming education is gaining the attention of workshop organizers. Pro-
gramming workshops for elementary and secondary school students are being
held by various organizations, including non-profit organizations and companies.

At the same time, the Japanese Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT) is emphasizing collaborative learning as one of
the key methods of education for the 21st century [2]. In collaborative learning,
a teacher facilitates communication and mutual teaching between children dur-
ing classes. Collaborative learning can deepen the students’ understanding by
c© Springer International Publishing AG 2017
T. Yoshino et al. (Eds.): CollabTech 2017, LNCS 10397, pp. 84–98, 2017.
DOI: 10.1007/978-3-319-63088-5 8



A Scratch-Based Collaborative Learning System 85

encouraging them to exchange ideas, thoughts, and opinions with their peers.
Through the advocacy of MEXT, various new methods of classroom teaching
(such as collaborative learning) are being introduced to schools, in contrast to
the ‘one-way guidance’ from teacher to students that was normal in the past.

Collaborative learning, involving teaching and learning within a group instead
of traditional one-way guidance or individual learning, could also be an effective
method for programming education. In most practical situations, however, stu-
dents are isolated with their own computer on which they create and execute their
programs. This is far from an effective environment for collaborative learning.
Communication among students must also be promoted for effective collabora-
tive learning, which is outside the scope of conventional methods.

To improve this situation we developed a collaborative learning system based
on Scratch [5]. Scratch is a visual programming environment in which users create
projects using multimedia and scripts. A typical Scratch user creates programs
to control object movement on a ‘stage’ displayed on their personal computer,
leading to isolated project work. We extended Scratch to be suitable for collab-
orative learning, by allowing multiple users’ individually-created moving objects
to be displayed on a single, shared stage. It is expected that seeing the movement
of objects created by others on the shared stage will promote communication and
co-learning between users. We evaluated the effectiveness of our system by using
it during programming workshops with young students.

2 Collaborative Learning with Programming

In this section we describe some of the problems faced when introducing collab-
orative learning into programming education at elementary schools, in order to
formulate the requirements for an effective system.

2.1 Programming Education in Elementary School

The MEXT suggests that programming education at elementary schools should
address the following four points:

– Children notice that computers are being used in their daily lives.
– Children notice the necessity of solving problems by taking a series of steps.
– Children acquire programming thinking.
– Children try to make use of computers in their own lives.

To achieve these learning goals, the MEXT also suggests that it is impor-
tant to create a method of programming education that encourages “subjective,
interactive and deep learning”, and that classes should never become silent with
students just facing their own computers.

When considering a form of programming education based on the points
above, we note that conventional one-way teaching cannot be subjective because
in most cases it forces children to learn passively. Similarly, private one-on-one



86 Y. Fukuma et al.

lessons cannot promote interaction among learners. The conventional method is
therefore considered inappropriate.

In elementary school programming education, conventional classroom lessons
or personal lessons should therefore be replaced by learning methods that pro-
mote inter-student interactions in addition to self-directed learning.

2.2 Problems in Collaborative Learning of Programming

To engage in collaborative learning, the following two conditions should be
satisfied:

– Learners can share their thoughts through communication with others.
– Learners can incorporate the opinions of others and improve their own per-

formance based on them.

In programming education, however, learners have little chance to be involved
with others as they focus on using just the computer in front of them. Commu-
nication is subsequently less motivated, and opportunities to incorporate others’
opinions are reduced.

To solve this problem it is necessary for learners to be exposed not only to
their own project but also to the projects developed by others. By learning in an
environment where they can take an interest in other projects, they are naturally
encouraged to talk about their projects, ask questions, make suggestions, and
teach each other new skills.

2.3 Related Work

The system described in this paper is an extension of Single Display Groupware
(SDG) [6]. SDG enables co-located users to collaborate using a single, shared
display while simultaneously using multiple input devices. In order to adapt
SDG to a visual programming environment such as Scratch, we placed a single
stage on a shared display screen while keeping the programming pane on the
individual users’ personal computers.

Some research work emphasizes collaborative scripting by multiple users for
visual programming environments [4,7,8], but they are based on a ‘multiple
computers, multiple displays’ paradigm.

3 Development of the System

In this section we first describe the requirements, functions and implementation
of a collaborative learning system based on Scratch. We then describe a scenario
for its use in a practical situation.



A Scratch-Based Collaborative Learning System 87

3.1 Requirements

As mentioned above, Scratch is essentially a single-user application. A single
window displays three panes containing command blocks, scripts, and the stage.
To make collaborative learning possible, the system should be modified to satisfy
the following requirements:

– The stage pane, showing the results of executing scripts, can be shared.
– Both individual development and group development can be performed.

Based on these requirements, the stage pane (where scripted actions are dis-
played) is separated from the other panes and displayed on a different screen
shared among the co-located users. As shown in Fig. 1, in addition to the indi-
vidual development terminals used by the learners, a ‘shared stage screen’ dis-
plays all the stage panes belonging to the users within the collaborating group.
Furthermore, as shown in Fig. 2, the shared stage can be unified into a single
project by removing the frames separating one individual stage from the others,
allowing objects from different stages to interact with each other on a single,
shared stage.

Shared stage screen

Individual development terminals

Fig. 1. Sharing the stages on the shared stage screen

Unified stage of A, B, C, D

Fig. 2. Removing the frame on the shared stage screen



88 Y. Fukuma et al.

3.2 Functions

The system has four major functions: a ‘programming’ function allowing the
user to create and execute programs, a ‘stage sharing’ function for displaying
the multiple stages of projects developed on the users’ computers, a ‘group man-
agement’ function for choosing which individual computers belong to the shared
stage group, and a ‘frame removal’ function to switch between multiple individ-
ual stages and a single, shared stage.

Programming. In Scratch, users can easily develop a program by combin-
ing prepared command blocks using drag-and-drop, and then see the resulting
motion of their objects on the stage. Figure 3 shows the screen used for program
development. It is an extended version of Scratch, displayed on the personal
computer of an individual user.

Fig. 3. Screen of the development terminal

In our system, to make scripted objects appear on the shared stage screen
(rather than on the user’s own development terminal), special command blocks
(shown in the center column on the screen) are used for programming. As shown
in Fig. 4, the object to be controlled is chosen using a pull-down menu on the
command block, and the action invoked by the command block will be sent to
the server driving the shared stage instead of to the locally-displayed stage.



A Scratch-Based Collaborative Learning System 89

(1) Assemble blocks with 
drag and drop

(3) Execute a 
program

(4) Send executed 
instructions to 
server

(2) Choose a target 
object with pull-
down menu

Development panel

Fig. 4. Programming on our Scratch-based system

Fig. 5. Shared stage screen

Stage Sharing. Figure 5 shows the shared stage screen. A single display shows
the stages from every user in the group. Frames divide the screen into four
areas, each of which is assigned to display one of the user stages. In the example
shown, each stage contains a single object which will move according to the
actions generated from the script running on the user’s personal computer.

Group Management. Figure 6 shows the group management Web interface,
running on the server, allowing the system operator to manage group mem-
bership. The stages for individual development computers can be assigned to a
specific quadrant of the group’s shared stage screen.

Frame Removal. This server function is also provided by the Web interface,
accessed with a Web browser. Pressing the ‘toggle frame’ button removes the
frame separating the stages on the shared display. Removing the frame switches
the system from individual development mode to group development mode. In



90 Y. Fukuma et al.

Fig. 6. Management console

group development mode, objects can move beyond the bounds of their ‘home’
stage and can be programmed to interact with objects created by other users.

3.3 Implementation

The structure of our system is shown in Fig. 7. Each group consists of four devel-
opment terminals, one shared stage screen terminal, and a server. The develop-
ment terminals and the shared stage screen terminal communicate with the
server using the WebSocket API. Commands executed on the development ter-
minals are transmitted to the shared stage screen terminal via the server. Object
coordinates, and collisions between objects, are monitored on the shared stage
screen terminal and transmitted back to the server. The server then forwards
this information to the individual development terminals.

The individual development environments run in the users’ Web browsers.
The functionalities of the shared stage screen terminal and the server are pro-
vided by Windows applications. The server and the shared stage screen appli-
cation can be operated on the same computer. Figure 8 shows a picture of the
entire system in use.

Development Terminal. Special command blocks for interacting with objects
on the shared stage screen were added using ScratchX [1], an extension of Scratch
that facilitates the addition of new command blocks written in JavaScript. Our
additional command blocks are shown in Table 1.

When a command block in the ‘operation’ category is executed, the develop-
ment terminal does not perform the block’s operation locally. Instead it trans-
mits the attributes of the executed operation to the server, along with the ID



A Scratch-Based Collaborative Learning System 91

ScratchX
Extended set of blocks 

with JavaScript

Development terminal

Node.js

Server

Unity 5

Shared stage 
screen terminal

Communicate with WebSocket

Fig. 7. System structure

Fig. 8. Actual application environment

assigned to the development terminal. Command blocks in the ‘monitoring’ cat-
egory are triggered in response to information received from the server about
object coordinates and collisions.

Server. The server mediates communication between the development termi-
nals and the shared stage screen terminal. It transmits executed commands from
the development terminal to the shared stage screen terminal, and sends infor-
mation about the monitored status of object coordinates and collisions received
from the shared stage back to individual development terminals. The server is
implemented using JavaScript, Node.js, and the Apache HTTP daemon.

Group membership is managed by the system operator using the group man-
agement interface. When a development terminal is added to a group, the server
allocates a unique ID that will be associated with the terminal. Terminal IDs
are stored on the server to allow group membership to be determined. When
the server receives information from a development terminal, it uses the termi-
nal’s ID to identify its group. The information is then propagated to the other
terminals belonging to the group.



92 Y. Fukuma et al.

Table 1. Extended set of blocks

Category Block Function

Connection Connect [A] Connect to server A

Operation Move [A] [B] steps Move object A in B steps

Turn [A] clockwise [B] degrees Turn object A clockwise in B degrees

Turn [A] counter-clockwise [B] degrees Turn object A counter-clockwise in B

degrees

Point [A] in direction [B] Point object A in direction B degrees

Point [A] towards [B]’s [C] Point object A towards object C of user B

Change [A]’s x by [B] Add B to x-axis of object A

Change [A]’s y by [B] Add B to y-axis of object A

Move [A] to center Move object A to the center of the

coordinate

Move [A] to [B]’s [C] Move object A to the coordinate of object C

of user B

Show [A] Show object A in the stage

Hide [A] Hide object A in the state

Send [A] Send message A to all objects in the group

Monitoring [A] touches [B]’s [C] Check if object A touches object C of user B

x position of [A]’s [B] X-axis of object B of user A

y position of [A]’s [B] Y-axis of object B of user A

When I receive [A] An event receiving message A

Shared Stage Screen Terminal. The shared stage screen terminal is imple-
mented using C# and the Unity engine. It renders users’ objects according the
information received from the server about ‘operation’ commands executed on
the development terminals. It also monitors its own objects’ coordinates and
collisions, transmitting this information back to the server. Transmissions to the
server are made every few tens of milliseconds. From the server, relevant parts
of this information are forwarded back to the development terminals where it is
used to control ‘monitor’ command execution.

3.4 Use Case

A typical scenario of multiple users using our system for collaborative program-
ming is described below.

Every user executes the command ‘Connect A’ at their development termi-
nal, causing the terminal to be connected to server A. After all terminals are
connected, the operator forms a group by choosing four development terminals
from the list of connected terminals. Each development terminal is assigned to
a quadrant of the shared stage.

Figure 9 shows an example of individual development with our system. Users
create and then execute a program. Their scripted objects are displayed on the
shared stage screen, within the area assigned to their development terminal.
Their objects cannot move beyond the frame separating their area from the
three other areas.



A Scratch-Based Collaborative Learning System 93

Script on
development terminal

Sent to
server

Detail

Stage sharing terminal

Move

Cannot move beyond the frame

Fig. 9. Example of use for personal development

When the operator presses the ‘toggle frame’ button on the group manage-
ment console, the frame separating the four user areas is removed and users
can perform group development. In group development, objects are free to move
over the entire shared stage as shown in Fig. 10. In addition, objects can be pro-
grammed to interact with other objects; for example, one user turns their ‘ghost’
object towards the ‘cat’ object created by another user, as shown in Fig. 11.

Script on
development terminal

Sent to
server

Detail

Stage sharing terminal
Can move within the entire screen

Move

Fig. 10. Use case in group development

DetailTurn
Script on

development terminal

Sent to
server

Stage sharing terminal

Fig. 11. Interaction between objects in group development

4 Application of the System

In this section we describe our experiences using the system for collaborative
learning in practical programming workshops.



94 Y. Fukuma et al.

4.1 Overview

We held two programming workshops to evaluate our system, which we will refer
to as ‘Workshop 1’ and ‘Workshop 2’. Table 2 shows the details of each workshop.

Table 2. Workshops

Workshop 1 Workshop 2

Place: Kodomo Mirai-kan (Kyoto City)

Date: November 27th, 2016 December 4th, 2016

Duration: 50 min 90 min

Participants: 4 (2 × 3rd + 2 × 4th grade) 7 (4 × 3rd, 1 × 4th, 1 × 6th
grade, 1 × 1st grade junior
high school)

Groups: 1 2 (3rd grade students, others)

We used normal laptop computers for the individual development terminals,
and all-in-one desktop computers for the server and shared stage screen terminal.

Evaluation was performed during the workshops by observing the behav-
ior of children while using the system, and after the workshops by conducting
questionnaires.

4.2 Workshop Content

For these workshops we challenged the children to “make a dodgeball game”.
Participants created a game in which players throw a ball at each other on

a dodgeball court displayed on the shared stage screen. In the first half of the
workshops they worked individually to create a script moving an object with
the arrow keys, and showing a ball at the position of the object when the space
key was pressed. In the second half of workshops they changed from individual
development to group development and modified their program to move the ball
towards the objects created by other participants.

As they develop this kind of program in the workshop, children are expected
to share information, teach each other new techniques, and improve their own
programming by observing the different motions generated by the three solutions
produced by the other group members. Creating a program that interacts with
objects developed by the other participants promotes communication with them.

4.3 Results and Discussion

Tables 3, 4, 5 and 6 show the results of the questionnaires conducted after the
workshops. Note that Q1 and Q2 in Workshop 2 (Table 4) are slightly modified
from those in Workshop 1 (Table 3), reflecting the experience we gained during
the first workshop. Q3 through Q6 were the same in both workshops.



A Scratch-Based Collaborative Learning System 95

Table 3. Questionnaire results for Q1 and Q2 in workshop 1

Question Votes

Q1 When did you look at projects of others? (single choice)

1. When I wanted to compare the movement of my project 1

2. When I wanted to see the movement of others’ project 3

3. When I wanted to know the progress of my project 0

Q2 What did you teach or learn from others? (multiple choice)

1. I taught others how to use blocks and choose sketches 2

2. I taught others how to move objects in a peculiar way 0

3. I learned how to use blocks and choose sketches 3

4. I learned how to move objects in a peculiar way 0

5. Other (free description) 0

Table 4. Questionnaire results for Q1 and Q2 in workshop 2

Question Votes

Q1 When did you look at projects of others? (multiple choice)

1. When I wanted to compare the movement of my project 2

2. When I wanted to see the movement of others’ project 4

3. When I wanted to know the progress of my project 2

Q2-1 What did you teach others? (multiple choice)

1. I taught others how to use blocks and choose sketches 1

2. I taught others how to move objects in a peculiar way 2

3. I didn’t teach anything 3

4. Other (free description)

• How to use the sound blocks 1

Q2-2 (If you chose 1, 2 or 4 in Q2-1) Why did you teach? (single choice)

1. I was asked a question 1

2. Others looked troubled when I saw the movement of their project 1

3. Others looked troubled when I saw the screen of their PC 0

4. Other (free description)

• I wanted to teach 1

• Others looked misunderstood 1

Q2-3 What did you learn from others? (multiple choice)

1. I learned how to use blocks and choose sketches 3

2. I learned how to move objects in a peculiar way 3

3. I didn’t learn anything from others 3

4. Other (free description) 0



96 Y. Fukuma et al.

Table 5. Questionnaire results for Q3 and Q4 in workshop 1 and 2

Question Votes

Q3 What was helpful to see the project of others? (multiple choice)

1. I used the same sketch because I liked it 2

2. I liked the movement I didn’t imagine 2

3. I liked the movement with different ways of using blocks 4

4. I didn’t have anything helpful 4

Q4 Do you find anything that you wanted to imitate by seeing the project of others? (single choice)

1. I found something to imitate, so I created it by myself 3

2. I found something to imitate, so I created it by learning from others 4

3. I found something to imitate, but I couldn’t create it 1

4. I didn’t find anything to imitate 3

Table 6. Questionnaire results for Q5 and Q6 in workshop 1 and 2

Q5 What did you think in creating a project with your team mates?

I tried to make my project less overlapped with others

Q6 Write your impressions of this workshop

• It was fun because I saw the way of programming of others.

• It was fun!

• I learned that I could create a game by programming with others

• I was happy because I enjoyed Scratch very much and the workshop went
well

• Making a dodgeball game was great

• I thought it difficult because this is my first experience, but it was good to
go well

We will discuss the effectiveness of the system in two major areas, according
to the results of the questionnaires and the behavior of the participants observed
in the recorded video.

Communication and Co-teaching. As shown in the results of Q2 (Table 3)
and with Q2-1 and Q2-3 (Table 4), most of the participants answered that they
taught or learned from others during the workshop. We can conclude that active
co-teaching occurred during the workshop. We can further conclude that the use
of a shared stage triggered co-teaching because of answers similar to, “others
looked troubled when I saw the motion of their project” given as reasons why
participants felt motivated to teach. Sharing of the stage also generated oppor-
tunities to learn from others, as indicated by eight out of eleven participants
who answered that, “I found something to imitate”; furthermore, four of these
eight participants indicated that they created their programs by learning from
others (Table 5).

The recorded video showed that communication among participants
increased after the transition from individual development to group development.
By collaborating in groups to create a single project, communication within the



A Scratch-Based Collaborative Learning System 97

group increased. In the questionnaires, one participant answered Q5 by saying,
“I tried to make my project less overlapped with others” (Table 6). The recorded
video also showed that they tried to choose a different dodgeball target object
from the other participants, by communicating among themselves.

Improvement of Programs. In response to Q1 (“When did you look at
projects of others?”), there is a relatively large number of participants who
answered, “When I wanted to compare the movement of my project” or, “When
I wanted to see the movement of others’ projects”. From this we conclude that
the shared stage increases the probability of participants referring to the projects
and programs developed by others. From Q3 we also see that modification and
improvement of programs was actually undertaken. Answers to Q6 similar to,
“It was fun because I saw the way of programming of others” support the con-
clusion that participants were aware of what others were developing during the
workshop.

From the discussion above, we conclude that the system is effective for pro-
moting communication and co-teaching, as well as motivating participants to
improve their own programs.

5 Conclusion

We described a collaborative learning support system based on Scratch that
enables four users to share their stages on a single, shared screen. When the sys-
tem was used during workshops we observed an awareness of others’ projects
during development, and communication and co-teaching being triggered by
viewing the shared stage screen. It was also observed that sharing the stage
and communicating with others led participants to make improvements to their
own programs.

The current system limits the number of grouped terminals to four, because
the shared stage screen is divided into four areas by the frame. In future we
would like to make the system more flexible, for example by making it possible
to divide the shared stage screen into six areas allowing six users to engage in
group project work.

Acknowledgements. This work was supported by JSPS KAKENHI Grant
Number 16H02925.

References

1. ScratchX. http://scratchx.org/. Accessed 21 Mar 2017
2. The Vision for ICT in Education, Ministry of Education, Culture, Sports, Science

and Technology (2011). http://www.mext.go.jp/b menu/houdou/23/04/ icsFiles/
afieldfile/2012/08/03/1305484 14 1.pdf. Accessed 21 Mar 2017

3. Japan Revitalization Strategy 2016, Ministry of Education Culture Sports Sci-
ence and Technology (2016). http://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/
2016 zentaihombun en.pdf. Accessed 21 Mar 2017

http://scratchx.org/
http://www.mext.go.jp/b_menu/houdou/23/04/__icsFiles/afieldfile/2012/08/03/1305484_14_1.pdf
http://www.mext.go.jp/b_menu/houdou/23/04/__icsFiles/afieldfile/2012/08/03/1305484_14_1.pdf
http://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/2016_zentaihombun_en.pdf
http://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/2016_zentaihombun_en.pdf


98 Y. Fukuma et al.

4. Engelhard, P., Hirschfeld, R., Lincke, J.: Pitsupai collaborative scripting in a distrib-
uted, persistent 3D world. In: Proceedings of the Seventh International Conference
on Creating, Connecting and Collaborating through Computing, pp. 87–94. IEEE
(2009)

5. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch pro-
gramming language and environment. ACM Trans. Comput. Educ. (TOCE) 10(4),
16 (2010)

6. Stewart, J., Bederson, B.B., Druin, A.: Single display groupware: a model for co-
present collaboration. In: Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, pp. 286–293. ACM (1999)

7. Takada, H.: A 3D collaborative creation environment with tile programming on cro-
quet. In: Proceedings of the Fifth International Conference on Creating, Connecting
and Collaborating through Computing, pp. 125–130. IEEE (2007)

8. Umezawa, M., Abe, K., Nishihara, S., Kurihara, T.: NetMorph-an intuitive mobile
object system. In: Proceedings of the First International Conference on Creating,
Connecting and Collaborating Through Computing, pp. 32–39. IEEE (2003)


	A Scratch-Based Collaborative Learning System with a Shared Stage Screen
	1 Introduction
	2 Collaborative Learning with Programming
	2.1 Programming Education in Elementary School
	2.2 Problems in Collaborative Learning of Programming
	2.3 Related Work

	3 Development of the System
	3.1 Requirements
	3.2 Functions
	3.3 Implementation
	3.4 Use Case

	4 Application of the System
	4.1 Overview
	4.2 Workshop Content
	4.3 Results and Discussion

	5 Conclusion
	References




