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Abstract Aiming for an efficient simulation of gas networks with active elements
a structure-preserving model order reduction (MOR) approach is presented. Gas
networks can be modeled by partial differential algebraic equations. We identify
connected pipe subnetworks that we discretize in space and explore with index
and decoupling concepts for differential algebraic equations. For the arising input-
output system we derive explicit decoupled representations of the strictly proper
part and the polynomial part, only depending on the topology. The proper part
is characterized by a port-Hamiltonian form that allows for the development of
reduced models that preserve passivity, stability and locally mass. The approach
is exemplarily used for an open-loop MOR on a network with a nonlinear active
element.

1 Gas Pipe Network Modeling and Discretization

Gas networks consist of pipes and active elements, such as compressor stations and
valves. They are modeled as coupled systems of nonlinear partial differential and
algebraic equations. Especially, the space discretization of the pipes might lead to
large dimensional systems whose efficient simulation and optimization motivate the
use of MOR. In the following we exploit a structure-preserving MOR approach for
connected pipe subnetworks that is based on an appropriate space discretization,
index and decoupling concepts and a port-Hamiltonian formulation.

Pipe Network Model The topology of a pipe network can be modeled by a graph
consisting of directed edges E connecting nodes N which we distinguish in those
without and with pressure (boundary) conditions,NJ andNS, respectively. On each
edge/pipe e the gas dynamics is described by simplified 1d Euler equations with
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friction—in terms of pressure and mass flow pe; qe W ŒxeL; xeR� � R
C ! R satisfying

@tp
e.x; t/ D �c2

a
@xq

e.x; t/; @tq
e.x; t/ D �a@xp

e.x; t/ � �c2

2aD

qe.x; t/jqe.x; t/j
pe.x; t/

with area a, and diameter D, and a possibly nonlinear friction factor �, [3]. In
particular, we presuppose an ideal gas such that the gas density � is expressed by
� D c�2p with speed of sound c. Mass conservation and pressure continuity at the
nodes are ensured by the coupling and boundary conditions, i.e.,

X
e2E .v/

ne.v/qe.v/ D qv
dem; v 2 N

pe.v/ D pe
0

.v/; v 2 NJ; pe.v/ D pv
sup; v 2 NS;

where E .v/ is the set of edges incident to the node v, and ne.v/ 2 f1; �1; 0g
depending on whether the pipe e starts or ends at the node v or none of both.
The functions pv

sup and qv
dem prescribe pressure (supply) and flow (demand) at the

boundary.

Space Discretization Introducing peL=R.t/ � pe.xL=R; t/, qeL=R.t/ � qe.xL=R; t/,
approximating pressure and mass flow by linear functions on ŒxeL; xeR�, �e

x D xeR �xeL,
and applying a central stencil for the friction term, we deal with the following two-
point space discretization for a pipe
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peL C peR
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D �c2

a

qeR � qeL
�e

x
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qeL C qeR
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D �a

peR � peL
�e

x

� �c2

4aD

.qeL C qeR/j.qeL C qeR/j
. peL C peR/

:

Finer spatial meshes can be certainly obtained straightforward by subdividing a long
pipe into several short ones. Note that the first equation represents the space-discrete
mass conservation: apart from a constant scaling the left side equals the integral over
the density, and the right side equals the mass flux over the boundaries of ŒxeL; xeR�.

The overall network topology can be characterized by the incidence matrix
Aall 2 R

jN j�jE j, ŒAall�ij D nej.vi/. Without loss of generality we compose Aall

of the respective matrices Ak 2 R
jNk j�jE j associated to the nodes in Nk, k 2 fJ; Sg.

Let pk.t/ 2 R
jNk j be the vector of node pressures belonging to Nk, k 2 fJ; Sg.

Moreover, let the vectors of edge flows qC.t/, q�.t/ 2 R
jE j be entrywisely defined

by Œq˙.t/�j D .q
ej
R ˙ q

ej
L /=2. Collecting all states in x and all boundary conditions

(inputs) in u, our space-discretized pipe network model can be written as

E
d

dt
x.t/ D Ax.t/ C Bu.t/; x D �

pJ ; pS; qC; q�
�T

; u D �
psup; qdem

�T
(1)
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E D

0

BBB@

jAT
J j=2 jAT

S j=2 0 0
0 0 I 0
0 0 0 0
0 0 0 0

1

CCCA ; A D

0

BBB@

0 0 0 �D2

�D1AJ
T �D1AT

S �DF 0
0 �I 0 0
0 0 �jAJ j �AJ

1

CCCA ; B D

0

BBB@

0 0
0 0
I 0
0 QJ

1

CCCA

and identity matrix I. Here, D1, D2 and DF are positive definite diagonal matrices,
where DF particularly represents the friction. Note that nonlinear friction models
result in state dependent matrices QDF.x/. In view of MOR in Sect. 2, we use here a
linearization around the initial value, i.e., DF D QDF.x.0//, however the subsequent
analysis and decoupling could analogously be performed for a nonlinear model.
The matrix QJ is sparse with some one-entries and represents the flow boundary
conditions. The absolute value of a matrix is taken elementwisely.

General Input-Output System, Port-Hamiltonian Form Consider an input-
output system in state representation of the following form

E
d

dt
x.t/ D Ax.t/ C Bu.t/; y.t/ D Cx.t/: (2)

The same mapping from the input u to the output y can be described by different
state representations, but its characterization in the frequency space, i.e., the transfer
function G.s/ D C.sE � A/�1B, if it exists, is unique.

Definition 1 A transfer function Gsp with lims!1 Gsp.s/ D 0 is called strictly
proper. Any transfer functionG can be additively decomposed into its strictly proper
part and a remainder, the polynomial part Gpol, i.e., G D Gsp C Gpol.
An input-output system with a representation (2) with regular E is strictly proper.

Definition 2 An input-output system is called passive, if u and y have the same
dimension and for all u it holds 0 � uT.t/y.t/ for all t.
In the following we focus on a subclass of port-Hamiltonian systems. Port-
Hamiltonian systems inherit passivity and stability, for a general overview see [5].

Lemma 1 ([5]) An input-output system in the form

M
d

dt
e.t/ D ŒJ � R� e.t/ C Bu.t/; y.t/ D BTe.t/ (3)

with M D MT , J D �JT , R D RT , M > 0, R � 0 is stable and passive. It is a
regular linear port-Hamiltonian system in co-energy form.

Decoupled Formulation for Space-Discrete Pipe Network For the pipe network
we consider an input-output system (2) consisting of the state equation (1) and its
power conjugated output y D �.qsup; pdem/T . Then yTu corresponds to the product
of pressure and mass flow at the boundaries and can be interpreted as the supplied
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power of the pipe system. Note that all these boundary quantities are required for
the interconnection of a pipe (sub-)networkwith other (active) elements (cf. Sect. 3).
Proceeding from (1) and using some refactorizations it can be shown that the strictly
proper part of the system has a state representation as in (3), Lemma 1 with

e.t/ D
�

pJ.t/ C QMpS.t/
qC.t/

�
; M D

��jAJjD1jAJjT
�

=4 0
0 D�1

2

�
; (4)
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�

0 AJ

�AT
J 0

�
; R D

�
0 0
0 �D�1

2 DF

�
; B D

 
0 �QJ

�
�

AT
S � AT

J
QM
�

0

!
;

where QM D �jAjJD1jAJ jT
��1 jAJjD�1

1 jASjT :

Similarly, a topologically based representation of the polynomial part can be given.
It is linear (regardless of the friction model) and also passive, [3]. Additionally, the
tractability index of the system, which is 2, can be easily concluded, cf. also [2].

2 Model Order Reduction Framework

Starting from an input-output system of the form (2), the idea of projection based
MOR is to find appropriate basis matrices V; W W RN�n, n � N, both full column
rank, such that the reduced low-dimensional model

WTEV
d

dt
xr.t/ D WTAVxr.t/ C WTBu.t/; Qy.t/ D CVxr.t/

with transfer function Gr is a good approximation of the full-order model. We use
here a Pade-type approximation constructed by Krylov-subspace methods [1].

Definition 3 For appropriately dimensioned matrices S and R, the q-th Krylov-
subspace is defined as Kq.S; R/ D range

��
R; SR; S2R; : : : ; Sq�1R

	�
.

Theorem 1 ([1]) Let s0 2 C be fixed. A reduced model constructed by the
projection ansatz with W D V, det.s0E � A/ ¤ 0, det.VT.s0E � A/V/ ¤ 0 and

Kq

�
Œs0E � A��1 E; Œs0E � A��1 B

�
� range.V/

is a so-called Pade-type approximation with .G � Gr/.s/ D O ..s � s0/
q/.

Let blkdiag.A1; A2/
1 abbreviate the block-diagonal matrix with blocks A1; A2.

1blkdiag.A1; A2/ D
�

A1 0
0 A2

�
.
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We distinguish three levels of structure-preserving model reduction methods:

Theorem 2 A projection-based MOR for the strictly proper part of the space-
discrete pipe network (3)–(4) preserves

1. . . . passivity and stability, if a Galerkin-type projection, i.e., V D W, is used.
2. . . . additionally2 the block-structure, if additionally V D blkdiag.V1; V2/.
3. . . . additionally the local mass conservation-property, if additionally for a factor-

ization (e.g., Cholesky factorization) of M11 D LLT :
V1 D L�1 QV1, range. QV1/ 	 range.L�1

�
ŒJ12V2� B1

�
/, QV1 orthogonal.

Proof To 1. and 2.: Since the port-Hamiltonian form (3) of Lemma 1 is kept
under the projection, passivity and stability are inherited [5]—analogously the block
structure.

To 3.: It needs to be shown that the prolongation of the reduced pressure pr

onto the original grid fulfills a space discrete conservation law, which is mass
conservation along the edges, and respectively at the nodes, i.e.,

@t
QpeL C QpeR

2
D �c2

a

QqeR � QqeL
�e

x

for e 2 E ;
X

e2E .v/
ne.v/Qqe.v/ D qv

dem; v 2 N :

Hereby, Qp D OVpr for a prolongation OV, and QqeR;L can be interpreted as a mass
flux over the boundaries of ŒxeL; xeR�, if the mass conservation at the nodes holds.
The latter can be deduced from the fact that only strictly proper parts are reduced,
i.e., purely algebraic relations are kept in the reduced model. Therefore, it only
remains to show that no projection error is introduced in the strictly proper part of
the mass conservation along the edges. With some basic calculations, however, it
can be shown that the reduction as suggested in 3. with V D blkdiag.V1; V2/ leads
(up to initial value projection errors) to equivalent models as a reduction with the
basis blkdiag.I; V2/, which leads to ‘half-reduced models’. This finishes the proof.
Summarizing, the reduction of point 3 can be read as follows: only the mass flow is
directly reduced, whereby the mass conservation at the nodes is not violated for the
prolongated reduced mass flows QqeR;L. Then the thereby induced low-order pressure
and mass conservation-equation on the edges are used.

3 Simulation of Network with Active Element and Discussion

As test case for our MOR approach we consider a gas network of two pipe subnets
with a compressor, see Fig. 1. The boundary conditions of the closed-loop system
are chosen to be a pressure condition at the left end and a mass flow condition at

2An enhanced Pade-approximation condition for the block-structure preserving reduction methods
with the energy-conjugated output and s0 2 R can be shown with the help of [1], which justifies
the use of possibly enlarged block bases.
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net1

v1

Compressor

v1 v2

net2

v2

Fig. 1 Exemplary gas network consisting of two pipe subnets and a compressor. All pipes have
circular cross-sections with diameterD 2 Œ1; 1:3�m. Both subnets together comprise about 290 km
of pipe length: the pipes of net 1 are between 14 and 40 km, and the pipe of net 2 is 100 km long.
Nodes with pressure and mass flow boundary conditions are marked in green and red, respectively
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Fig. 2 Pressure-difference control �p the compressor is driven with. It increases smoothly from 0

to 7 bar within 0:5 h

the right end, both constant in time. We initialize the system with the corresponding
steady state. The transient simulation is done with a simplified linear friction model
.�jqj=p/.x; t/q.x; t/ � .�jqj=p/.x; 0/q.x; t/ (cf. Sect. 1).

Compressor and Network Parameters Let pvi ; qvi be the pressure and mass flow
at node vi, i D 1; 2 in Fig. 1. The compressor is driven by a pressure-difference
control �p, which implies a nonlinear flow consumption, modeled as in [4] with
compressor-specific constant cc, here cc D 3:93, and isentropic coefficient � D
1:25,

pv2 � pv1 D �p; qv2 � qv1 D �cc

 �
pv2

pv1

� ��1
�

� 1

!
qv1 : (5)

The applied control �p is sketched in Fig. 2. We use c D 340m/s as speed of
sound and model the friction factor � with the Chen-Formula [4] giving � 2
Œ0:008; 0:0095�. This means that all pipes are ‘technically rough’. The spatial
discretization of the pipes is chosen as uniform with a step size of 0:5 km.
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Coupling of Pipe Subnetworks The compressormodel (5) can be formulated as an
input-output mapping yc D Fc.t; uc/ with uc D .�qv1 ; pv2 /

T and yc D . pv1 ; qv2/
T .

We use an input-output coupling to interconnect the pipe subsystems to a closed-
loop system. The coupling is realized by choosing the respective outputs of the
compressor as inputs for net i at vi, and conversely the inputs of the compressor as
outputs of the net i at vi, i D 1; 2 (i.e., power-conjugated output), see Fig. 1.

Numerical Results and Discussion The suggested mass conservative MOR with
expansion frequency s0 D 0 is applied for an open-loop reduction of the two
separate pipe subnetworks. To avoid projection errors in the initial values, we use
the superposition principle to decompose these systems into a non-dynamic part
and a homogeneous part, which is actually reduced. Figure 3 shows a comparison
of the reduced and direct simulation results. High fidelity, together with a significant
order reduction can be observed. The computations are particularly performed with
Matlab solver ode15i.m with default settings.

Concluding, standard MOR methods yield usually poor results, depending on
the parameters. This is in accordance with the well-known observation that dis-
cretizations of hyperbolic equations that do not conserve the most relevant physics
of the underlying model in some discrete sense may lead to unreasonable results,
e.g., instabilities. Our approach overcomes this limitation: our results demonstrate
the applicability of MOR for gas network simulations within practically relevant

Solution:
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Fig. 3 Simulation results. Left: States over time at depicted nodes of the networks using a direct
simulation with a strictly proper parts of the pipe nets of order .766 C 400/. Right: Deviance of
the direct and the reduced results. The reduced system has strictly proper parts of order .8 C 8/
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parameter regimes, here for long ‘technically rough’ pipes. The key point is the use
of structure preservation, and preliminary, an appropriate representation in terms of
the decoupled formulation of Sect. 1.
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