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Abstract Direct method for the solution of eddy current testing problem for the
case where an air core coil is located above a conducting two-layer plate with a
flaw in the form of a cylindrical inclusion with reduced electrical conductivity is
presented in the paper. Semi-analytical approach (the TREE method) is used to
construct the solution of the system of equations for the components of the vector
potential. The flaw is assumed to be symmetric with respect to the coil. Numerical
calculations are performed using the proposed model and Comsol Multiphysics
software. The obtained values of the change in impedance of the coil for both
methods are found to be in a good agreement. The proposed model can be used
for the assessment of the effect of corrosion in metal plates.

1 Introduction

Eddy current methods are widely used to analyze the effect of corrosion in metal
plates [2]. Mathematical methods that are used to analyze such problems can be
divided into two broad categories: (a) numerical methods and (b) analytical and
semi-analytical methods. Methods from category (a) include, for example, finite
element methods or finite difference methods (see [4, 9]). Analytical methods
can be used for the cases where conducting medium is unbounded with respect
to one or two spatial coordinates. Such models are discussed in detail in [1, 7].
Corroded samples have finite sizes so that truly analytical approach cannot be used.
However, the domain of applicability of analytical methods can be extended using
the following idea described in [8]: it is assumed that the electromagnetic field is
exactly zero at a sufficiently large distance from the source of alternating current.
In this case the domain where the problem has to be solved becomes finite and
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method of separation of variables can be used to solve the system of equations
for the vector potential in each of the regions of interest. Examples where such an
approach (known as the TREE method in the literature) is used for solution of eddy
current testing problems with asymmetric flaws can be found in [5, 6]. In the present
paper we present semi-analytical solution of direct eddy current testing problem for
a two-layer plate. The plate contains a flaw in the form of a cylindrical inclusion
with reduced electrical conductivity. The axis of the inclusion coincides with the
axis of an air core coil. The formula for the change in impedance of the coil is
derived. Numerical computations show good agreement of the proposed model with
the computations performed using Comsol Multiphysics software.

2 Mathematical Analysis

Suppose an air core coil carrying alternating current of frequency f is located
above a conducting nonmagnetic two-layer plate. The conductivites of the upper
and lower layers are o] and o5, respectively. The lower layer is infinite in the vertical
direction.The upper layer has a flaw in the form of a circular cylinder of radius c. The
flaw has the two layers in the vertical direction: the upper layer where —d; < z < 0
and the lower layer where —d; < z < —d». The upper layer of the flaw has zero
conductivity while the lower layer has a reduced electrical conductivity o3 < 0.
This is a typical situation in corroded samples [2]. It is assumed that the axis of the
flaw coincides with the axis of the coil. The geometrical parameters of the coil are
as follows: the inner and outer radii are r; and r,, respectively, z; is the distance
from the bottom of the coil to the upper layer of the conducting plate, z, — z; is
the height of the coil and N is the number of turns. Due to axial symmetry only the
azimuthal component of the vector potential is not equal to zero. Thus, in the system
of cylindrical polar coordinates (r, ¢, z) centered at the axis of the coil at the point
located on the upper surface of the plate we have

A = A(r,z) exp(jwi)e,, (D

where w = 2nf,j = +/—1 and e, is the unit vector in the azimuthal direction. We
denote by Ry, R, R, and Rj the regions where z > 0, —d| < 7 < 0, —d|} — d, <
7z < —dp and z < —d; — d», respectively. The component of the vector potential in
region R; is denoted by A;,i = 0, 1, 2, 3. All the components of the vector potential
are equal to zero at r = b:

Ai(b,z) =0, i=0,1,2,3. 2)
Since the problem is linear it is natural to use the superposition principle. First, we

consider a single-turn coil of radius ry located at distance & above the conducting
plate. The problem is solved for the case of the single-turn coil and then the solution
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is integrated over the cross-section of the coil in order to find the vector potential
for the coil of finite dimensions.

The system of equations for the components of the vector potential in regions R;
has the form

A0 1040 Ao N 9*Ag

a2 Trar T a2 T —pol8(r —ro)8(z— h), 3)
a;le ia;rl - ézl — jooi (r) oA + a;;‘ =0, 4)
3;:‘22 + 13(‘32 B 1222 — Jjwoa(r) oAz + 3;;2 =0, 5)

3;?23 + 1854: - 1223 — jwos oAz + 3;;3 =0, (6)

where 6(x) is the Dirac delta function, u is the magnetic constant, o;(r) = o7 if
c<r<bando(r) =0if0 < r < c. Similarly, 0,(r) = o1 if c < r < b and
02(r) = 03 if 0 < r < ¢. The current in the coil is given by

I° = Iexp(jwi)e,. @)
The boundary conditions are
uir 3A0 aAair
A |:=0=AT" |:=o0, 9% l:=0= BZI l.=0, O0<r<ec, (®)
con 0Ag A"
Ag [z=0= A" |:=0, 9% l:=0= 8; l:=0, c¢<r<b, ©)
air o aAair aAred
Al |z=—d1: Azd |z=—d1s 321 |z=—d1: 3§ |z=—d1s 0<r<e, (10)
con A" 0A,
Al |z=—d1: A2 |z=—d15 a; |z=—d1: 9z |z=—d17 c<r< b, (11)
red aASed 8A3
Az |z=—d1—dz: A3 |z=—d1—dzv 9z |z=—d1—d2: 9z |z=—t11—dz7 0<r<e,
(12)
aAz 3A3
A |i=—dy—dr= A3 |;=—dy—d»» 5% li=—dy—dy= 9% l:=—dy—d,», € <r<b.
(13)

Here the notations A4 and AS™" are used to denote the vector potentials in region R;
where 0 < r < cand ¢ < r < b, respectively. Similar notation is used for the region
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of reduced electrical conductivity: Ag“’ in the region 0 < r < c. The vector potential
and its derivative with respect to r are continuous at r = c:

on uir QA con aAair
Ai |r=c: A] |r=cs 3;" |r=c: a:_ |r=cv (14’)
AT 0Ay

AQM |r=c= AZ |I‘=C9 (15)

or Ir=e= or Ir=e -

In addition, the vector potential is assumed to be bounded at infinity in the vertical
direction:

Ao |z—>+oo= 0, A |z—>—oo: 0. (16)

The solution in region Ry has the form

4 - Do) (0 tolro s~ Ji(Airo)
o(r.2) = Y _ Due I (hir) + b2 ZAiJg(Aib)

i=1 =1

e,

where A; = «;/b, ;i = 1,2, ... are the roots of the equation J; () = 0, Jy and J;
are the Bessel functions of the first kind of orders 0 and 1, respectively. The solution
in region R; is

o0
A" (r.2) = )_[Dae”* + Dyie "1 (gir), (18)
i=1
o0
AV (r,2) = Y [Dashi (pi) + Dsi¥i(pir)e" + (e (pir) + Dr¥i (pir))e 7,
i=1
(19)
where ¢; is the separation constant, p; = \/ qi2 + jwoy and Y; is the Bessel
function of the second kind of order 1. Similarly, the solution in region R; is
o0
Ay(r.z) = ) _[Dsie" + Doe 1, (gir). (20)

i=1

o)
Aged(}’, Z) = Z[(DIOiJI (Si}’) + DlliYI (sir))es,-z + (DIZiJI (sir) + D135Y1 (Si}’))e_‘viz],

i=1

2y
where §5; = \/ qi2 + jwos . Finally, the solution in region R3 has the form

o0
As(r,z) = ZD141‘€""Z11 (qir), (22)

i=1
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where u; = \/qlz + jwos .

Using the boundary conditions (8)—(13) we obtain the unknown coefficients D;—
D14;. The interface conditions (14)—(15) give the equation for the unknown complex
eigenvalues p;:

pil1(pic)T' (gic) = qiJ1(pic)T' (gic), (23)

where T(pir) = Ji(pir)Y1(pib) — Ji(pib)Y1(pir). The technical details of the
derivation are not shown here for brevity and can be found, for example, in [3]
where a similar problem with two cylindrical flaws is solved. The induced vector
potential in air due to the presence of the conducting plate is

n
AP(rozro.h) =Y Die 0y (M), (24)
i=1
where only the first n terms of the series are taken into account.

Using the superposition principle we obtain the induced vector potential in air
due to currents in the whole coil:

. n 2 .
Alnd . (r,7) = / / Al (r, 7, ro, h)drodh. (25)
ri 21

The change in impedance of the coil is computed as follows (see [8]):

in i in
=, / Apd, - 1dV. (26)
1%
Using (24)—(26) we obtain
; 2 ‘wﬂ N2 e_/meZ _ e_/lle Amra
NS 3 [ en@as
(r—r)*(z2—z1) = o
Aiza _e_klzl) ir2
X Z Vi © / nJy(n) dn. 27)

(the formulas for the elements of the matrix Y are bulky and are not shown here).

3 Numerical Results

Formula (27) is used to compute the change in impedance of the coil for the
following parameters of the problem: r; = 2.5mm, r = 5.5mm, z; = 0.3 mm,
zp =2.6mm, d; = 1lmm, d, = 1mm, b = 55mm, oy = 0.5Ms/m, 0, = 7Ms/m,
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Fig. 1 The change in impedance of the coil for the nine frequencies

¢ = 3mm. Nine frequencies are used for the calculations: from 1 to 9 kHz with the
stepsize of 1 kHz. The results of computations are shown in Fig. 1. The solid curve
represents theoretical calculations with the TREE method. In addition, the problem
is solved using Comsol Multiphysics software. The points on the graph represent
the values computed using Comsol Multiphysics. As can be seen from the graph,
both calculations are in a good agreement.
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