Chapter 8
Generalized Vector Variational Inequalities

When the objective function involved in the vector optimization problem is not
necessarily differentiable, then the method to solve VOP via corresponding vector
variational inequality problems is no longer valid. We need to generalize the vector
variational inequality problems for set-valued maps. There are several ways to
generalize vector variational inequality problems discussed in Chap.5. The main
objective of this chapter is to generalize the vector variational inequality problems
for set-valued maps and to present the existence results for such generalized vector
variational inequality problems with or without monotonicity assumption. We also
present some relations between a generalized vector variational inequality problem
and a vector optimization problem with a nondifferentiable objective function.
Several results of this chapter also hold in the setting of Hausdorff topological vector
spaces, but for the sake of convenience, our setting is Banach spaces.

8.1 Formulations and Preliminaries

When the map 7 involved in the formulation of vector variational inequality
problems and Minty vector variational inequality problems is a set-valued map, then
the vector variational inequality problems and Minty vector variational inequality
problems, discussed in Chap. 5, are called (more precisely, Stampacchia) general-
ized vector variational inequality problems and Minty generalized vector variational
inequality problems, respectively.

Let X and Y be Banach spaces and K be a nonempty convex subset of X. Let
T : K — 25X be a set-valued map with nonempty values, and C : K — 27 be
a set-valued map such that for all x € K, C(x) is a closed convex pointed cone. We
also assume that int(C(x)) # @ wherever int(C(x)) the interior of the set C(x) is
involved in the formulation of a problem. For every [ € £(X, Y), the value of / at x
is denoted by (/, x).
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8 Generalized Vector Variational Inequalities

We consider the following generalized vector variational inequality prob-
lems (SGVVIP) and Minty generalized vector variational inequality problems

(MGVVIP).

(GSVVIP),:

(GSVVIP),:

(MGSVVIP),:

(MGSVVIP),:

(GVVIP),:

(GVVIP);:

(GVVIP),,:

(MGVVIP),:

Find x € K such that there exists E € T(x) satisfying

(£.y—%) € C(®), forallyeK. (8.1)

Find ¥ € K such that for all y € K, there exists ¢ € T(%)
satisfying

(L,y—X) € C(R). (8.2)
Find x € K such that forall y € K and all £ € T(y), we have

&,y —x) € C(x). (8.3)

Find x € K such that for all y € K, there exists £ € T(y)
satisfying

(§.y—x) € C(x). (8.4)
Find X € K such that for all ¢ € T(x), we have

(£,y—3%) ¢ —C(x) \ {0}, forallyeK. (8.5)

Find X € K such that there exists ¢ € T(%) satisfying

(E.y—Xx) ¢ —C(X) \ {0}, forallye K. (8.6)

Find ¥ € K such that for all y € K, there exists ¢ € T(%)
satisfying

(£.y=3) ¢ —C() \ {0}. 8.7)
Find x € K such that forall y € K and all £ € T(y), we have

(§.y—x) £ —C() \ {0}. (8.8)
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Find x € K such that for all y € K, there exists £ € T(y)

satisfying

(MGVVIP),,:

(§.y—x) ¢ —C(x) \ {0}. (8.9)
Find x € K such that for all E € T(x), we have

GWVVIP),: =

( )e (¢,y—x) ¢ —int(C(x)), forally e K. (8.10)
Find X € K such that there exists ¢ € T(x) satisfying

GWVVIP);: = _ . -

( ) (¢,y—X) ¢ —int(C(x)), forally e K. (8.11)
Find x € K such that for all y € K, there exists E e T(x)
satisfying

(GWVVIP),,: )

(.y—Xx) ¢ —int(C()). (8.12)
Find x € K such that for all y € K for all £ € T(y), we have

MGWYVVIP),: - . -

( )e (6.y ) ¢ —int(C@)). (8.13)
Find x € K such that for all y € K, there exists £ € T(y)
satisfying

(MGWVVIP),,;:

(£, y —Xx) ¢ —int(C(X)). (8.14)

In (GSVVIP),,, (GVVIP),,, and (GWVVIP),,, E € T(x) depends on y € K; Also,
in (MGSVVIP),,, MGVVIP),,, and MGWVVIP),,, £ € T(y) dependson y € K.
We denote by  Sol(GSVVIP){,  Sol(GSVVIP){,  Sol(GSVVIP)!

wo

Sol(MGSVVIPY!, Sol(MGSVVIP)!, Sol(GVVIP), Sol(GVVIP)?, Sol(GVVIP)!

w? w?

Sol(MGVVIP)!,  Sol(MGVVIP)! SOl(GWVVIP)!,  Sol(GWVVIP),

w?

So(GWVVIP){, So(MGWVVIP){, and So(MGWVVIP)q, the set of solutions of
(GSVVIP),, (GSVVIP),, (GSVVIP),, (MGSVVIP),, (MGSVVIP),, (GVVIP),,
(GVVIP),, (GVVIP),, (MGVVIP),, (MGVVIP),, (GWVVIP),, (GWVVIP),,
(GWVVIP),,,  MGWVVIP),, and (MGWVVIP),, respectively.

If forallx € K, C(x) = Dis a fixed closed convex pointed cone with int(D) # @,
then the solution set of (GSVVIP),, (GSVVIP);, (GSVVIP),,, (MGSVVIP),,
(MGSVVIP),,, (GVVIP),, (GVVIP),, (GVVIP),, (MGVVIP),, (MGVVIP),,
(GWVVIP),, (GWVVIP),, (GWVVIP),,, (MGWVVIP),, and (MGWVVIP),, are
denoted by Sol(GSVVIP),, Sol(GSVVIP);, Sol(GSVVIP),, Sol(MGSVVIP),,

Sol(MGSVVIP),,, Sol(GVVIP),, Sol(GVVIP),, Sol(GVVIP),, Sol(MGVVIP),,



302 8 Generalized Vector Variational Inequalities

Sol(MGVVIP),, Sol(GWVVIP),, Sol(GWVVIP);, Sol(GWVVIP),,,
Sol(MGWVVIP),, and Sol(MGWVVIP),,, respectively

Remark 8.1 It is clear that

(2) Sol(GSVVIP)! C Sol(GSVVIP)! C Sol(GSVVIP)!;
(b) Sol(MGSVVIP)! C Sol(MGSVVIP)!;

(©) Sol(GVVIP)! C Sol(GVVIP)? C Sol(GVVIP)!;
(d) Sol(MGVVIP)! C Sol(MGV VIP)!;

() Sol(GWVVIP)! C Sol(GWVVIP)! C Sol(GWV VIP)!;

() SOl(MGWVVIP)? C Sol(MGWVVIP)!;

(2) Sol(GSVVIP)! C Sol(GVVIP)! € Sol(GWVVIP);

(h) Sol(GSVVIP)! € Sol(GVVIP)! C Sol(GWVVIP)Y;

(i) Sol(SGVVIP)!, C Sol(GVVIP)!, C Sol(GWVVIP);

(j) Sol(MGSVVIP)? C Sol(MGVVIP)! C Sol(MGWVVIP)!;
(k) Sol(MGSVVIP)!, € Sol(MGVVIP)? € Sol(MGWVVIP)!.

w —

Definition 8.1 Let K be a nonempty convex subset of X and x € K be an arbitrary
element. The set-valued map T : K — 2°*Y) s said to be

(a) strongly generalized C,-upper sign continuous if for all y € K,

there exists £, € T(x + A(y — x)) for A €]0, 1] such that
(&), y — x) € C(x) implies that there exists ¢ € T(x)
such that (¢,y —x) € C(x);

(b) strongly generalized Cy-upper sign continuous if for all y € K,

there exists &4 € T(x + A(y — x)) for A €]0, 1] such that
(&1,y — x) € C(x) implies that ({,y — x) € C(x) forall ¢ € T(x);

(c) strongly generalized Cy-upper sign continuous™ if for all y € K,

forall & € T(x + A(y —x)) for A €]0, 1] such that (&;,y —x) € C(x)

implies that there exists { € T(x) such that ({,y —x) € C(x);
(d) strongly generalized Cy-upper sign continuousi ifforally € K,

forall &, € T(x + A(y — x)) for A €]0, 1] such that (£,,y —x) € C(x)
implies that ({,y —x) € C(x) for all ¢ € T(x);
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(e) generalized Cy-upper sign continuous if for all y € K,

there exists £, € T'(x + A(y — x)) for A €]0, 1] such that
(1, y —x) ¢ —C(x) \ {0} implies that there exists { € T'(x) such that

(&.y—x) ¢ =C(x) \ {0}
(f) generalized C,-upper sign continuous if forally € K,

there exists £, € T(x + A(y —x)) for A €]0, 1] such that

{61,y —x) ¢ —C(x) \ {0} implies that ({,y —x) ¢ —C(x) \ {0}
forall ¢ € T(x);

(g) generalized Cy-upper sign continuous™ if for all y € K,

forall &, € T(x + A(y — x)) for A €]0, 1] such that
(1, y —x) ¢ —C(x) \ {0} implies that there exists { € T(x) such that

(&.y—x) ¢ =C(x) \ {0}
(h) generalized C-upper sign continuousi ifforally € K,

forall & € T(x + A(y — x)) for A €]0, 1] such that
{61,y —x) ¢ —C(x) \ {0} implies that ({,y —x) ¢ —C(x) \ {0}
forall ¢ € T(x);

(i) weakly generalized C,-upper sign continuous if for all y € K,

there exists £, € T(x + A(y —x)) for A €]0, 1] such that
(&1, y — x) ¢ —int(C(x)) implies that there exists ¢ € T(x) such that

(€.y —x) ¢ —int(C(x));
(j) weakly generalized C-upper sign continuousy if forall y € K,

there exists £, € T(x + A(y — x)) for A €]0, 1] such that

(&1, y —x) ¢ —int(C(x)) implies that ({,y —x) ¢ —int(C(x))
forall ¢ € T(x);
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(k) weakly generalized Cy-upper sign continuous™ if forall y € K,
Y8 PP 8 y

forall & € T(x + A(y — x)) for A €]0, 1] such that
(&), y —x) ¢ —int(C(x)) implies that there exists { € T(x)
such that (¢,y —x) ¢ —int(C(x));

(1) weakly generalized C,-upper sign continuousi ifforally € K,

forall & € T(x + A(y — x)) for A €]0, 1] such that
(&1, y —x) ¢ —int(C(x)) implies that ({,y —x) ¢ —int(C(x))
forall ¢ € T(x).

Example 8.1 Let X=R,Y=R? K=10,1] and C(x) = Rﬁ_ for all x € K. Consider
the map T'(x) := {(yl,yz) eR?: |y| <x, |y < x}. Then T is strongly generalized
C,-upper sign continuous, strongly generalized C,-upper sign continuous™,
generalized C,-upper sign continuous, generalized C,-upper sign continuous™,
weakly generalized C,-upper sign continuous, and weakly generalized C,-
upper sign continuoust. However, T is not strongly generalized C,-upper
sign continuousy, strongly generalized Cy-upper sign continuousi, generalized
C,-upper sign continuousy, generalized C,-upper sign continuousi, weakly
generalized C,-upper sign continuousy, or weakly generalized C,-upper sign
continuousi (Fig.8.1).

Definition 8.2 Let K be a nonempty convex subset of X. A set-valued map T :
K — 25%Y) s said to be generalized v-hemicontinuous if for all x,y € K, the
set-valued map F : [0, 1] — 2Y, defined by F(A) = (T(x + A(y — x)),y — x), is
upper semicontinuous at 07, where (T(x + A(y —x)),y —x) = {{{,y—x) : { €
T(x+ Ay —x)}.

Generalized C,-Upper Generalized C,-Upper
Sign Continuityi Sign Continuity

| |

Generalized C,-Upper Generalized C,-Upper
Sign Continuity 4 Sign Continuity

Fig. 8.1 Relations among different kinds of generalized C,-upper sign continuities. The similar
diagram also holds for weak as well as for strong cases



8.1 Formulations and Preliminaries 305

Lemma 8.1 Let K be a nonempty convex subset of X and x € K be an arbitrary ele-
ment. If the set-valued map T : K — 25%Y) s generalized v-hemicontinuous, then
it is strongly generalized Cy-upper sign continuous as well as weakly generalized
C-upper sign continuous.

Proof Let x be an arbitrary but fixed element. Suppose to the contrary that T is
not weakly generalized C,-upper sign continuous. Then for some y € K and all
£ € T(x+ A(y —x)), A €]0, 1], we have

(§2.y —x) ¢ —int(C(x)) (8.15)
implies
(¢,y—x) € —int(C(x)), forall¢ e T(x).

Since T is generalized v-hemicontinuous, the set-valued map F : [0,1] — 2r
defined in Definition 8.2, is upper semicontinuous at 0", and F(0) = (T(x),y—x) C
—int(C(x)), we have that there exists an open neighborhood V =10, §[ C [0, 1] such
that F(A) = (T(x + A(y —x)),y —x) € —int(C(x)) for all A €]0, §], that is, for
all§, € T(x + A(y —x)) and all A €]0,§[, we have {1,y — x) € —int(C(x)), a
contradiction of (8.15). Hence, T is weakly generalized C,-upper sign continuous.
Since W(x) = Y\ {C(x)} is an open set for all x € K, the proof for strong case is
similar, and therefore, we omit it. O

Remark 8.2 The generalized v-hemicontinuity does not imply the generalized C,-
upper sign continuity.

Definition 8.3 Let K be a nonempty convex subset of X and T : K — 2£&D)

be a set-valued map with nonempty compact values. Then T is said to be .7-
hemicontinuous if for all x,y € K, the set-valued map F : [0, 1] — 2Y  defined by
F(A) = 2 (T(x + A(y — x)), T(x)), is #-continuous at 0, where .77 denotes the
Hausdorff metric on the family of all nonempty closed bounded subsets of L(X, Y).

Lemma 8.2 Let K be a nonempty convex subset of X and x € K be an arbitrary
element. If the set-valued map T : K — 2°%Y) is nonempty compact valued and
SC-hemicontinuous, then it is strongly generalized Cy-upper sign continuous™ as

well as weakly generalized Cy-upper sign continuous™.

Proof Let x be an arbitrary but fixed element and suppose that T is strongly
generalized C,-upper sign continuous™. Let x; := x + A(y — x) forall y € K
and A €]0, 1[. Assume that forall y € K and all §;, € T(x3), A €]0, 1[, we have

{62,y —x) € C(x).

Since T'(x;) and T(x) are compact, from Lemma 1.13, it follows that for each fixed
&, € T(xy), there exists ¢, € T(x) such that

62 = &all = (T (x2). T(x)).
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Since T'(x) is compact, without loss of generality, we may assume that {; — ¢ €
T(x) as A — 0%. Since T is .#/-hemicontinuous, 57 (T (x;), T(x)) — Oas A — 0T,
Thus,

162 = ¢l < & = &all + 18 — <l
< H(T(x), T(x) + |6 — ¢ = 0as A — 0.

This implies that £, — ¢ € T(x). Since C(x) is closed, we have that there exists
¢ € T(x) such that ({,y —x) € C(x) for all y € K. Hence, T is strongly generalized

C,-upper sign continuous™.
Since W(x) = Y \ {—int(C(x))} is closed for all x € K, by using the similar
argument, it is easy to show that T is weakly generalized C,-upper sign continuous™.
|

Remark 8.3 The .7#-hemicontinuity does not imply the generalized C,-upper sign
continuity ™.

Lemma 8.3 Let K be a nonempty convex subset of X and T : K — 2% pe q
set-valued map with nonempty values. Then

(@) Sol(MGSVVIP)¢ C Sol(GSVVIP)‘: if T is strongly generalized C,-upper sign
continuous,

(b) Sol(MGVVIP) C Sol(GVVIP)? C Sol(GVVIP)! if T is generalized Cy-upper
sign continuous;

(c) SO(MGWVVIP)! < Sol(GVVIP)Zl - SOl(GWVVIP)ﬁ if T is weakly
generalized C,-upper sign continuous.

Proof (a) Letx € Sol(MGSVVIP)i. Then for all y € K, there exists £ € T(y) such
that

(§.y —X) € C(®).

Since K is convex, for all A €]0, 1[, y» := x+ A(y —X) € K. Therefore, for y, € K,
there exists £, € T(y,) such that

(g, X+ A0 —X%) —X) € C(x),
equivalently,
A(Eny —X) € CX).
Since C(x) is a convex cone, we have

(§,y — %) € C(X).
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By strong generalized C,-upper sign continuity of 7', there exists ¢ € T(%) such that
(¢.y—3) eC@®, forallyeK.

Hence, X € Sol(GSVVIP)!.
Since W(x) = Y \ {—C(x) \ {0}} and W(x) = Y \ {—int(C(x))} are cones, the
proof of the part (b) and (c) lies on the lines of the proof of part (a). |
Similarly, we can prove the following lemma.

Lemma 8.4 Let K be a nonempty convex subset of X and T : K — 2°%Y) pe g
set-valued map with nonempty values. Then

(a) Sol(MGSVVIP)g C Sol(GSVVIP)g if T is strongly generalized C-upper sign

continuousi;
(b) Sol(MGSVVIP)g C Sol(GSVVIP)‘: if T is strongly generalized C-upper sign
continuous™;
() Sol(MGSVVIP)ﬁ, - SOI(GSVVIP)Z if T is strongly generalized C-upper sign
continuous+;
(d) SOI(MGVVIP)Z - SOI(GVVIP)‘; if T is generalized Cy-upper sign continu-
+.
ousy;
(e) SOI(MGVVIP);’ - SOl(GVVIP)? if T is generalized Cy-upper sign continu-
ous™;
(f) Sol(MGVVIP)¢ C Sol(GVVIP)Z if T is generalized Cy-upper sign
CONtinUoOus;
(g) Sol(MGWVVIP)! C Sol(GWVVIP)Z if T is weakly generalized C,-upper sign
continuousi;
(h) Sol(MGWVVIP)g C Sol(GWVVIP)f if T is weakly generalized C,-upper sign
continuous™;
1) Sol(MGWVVIP)ﬁ, C Sol(GWVVIP), if T is weakly generalized Cy-upper sign
continuous 4.

We introduce the following set-valued maps:

« S5(y) = fx € K : V¢ € T(x) satisfying ({,y —x) € C()};

. S5(y) = {re K : I € T(x) satisfying (£,y—x) € CO};

© M(y) = {x € K : V£ € T(y) satisfying (£,y —x) € C(x)};

© Mp(y) = {x € K : 3 € T(y) satisfying (§,y — x) € C(x)};

* Sg(y) = {x € K: VY € T(x) satisfying (§,y —x) ¢ —=C(x) \ {0}};

© Su(y) ={x € K:30 € T(x) satisfying ({,y —x) ¢ —C(x) \ {0}};
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* My(y) = {x € K:VE € T(y) satisfying (§,y —x) ¢ —C(x) \ {0}};
* M, (y) = {x € K: 3§ € T(y) satisfying (§,y —x) ¢ —C(x) \ {0}};
- SY(y) = {x € K : V{ € T(x) satisfying (¢,y — %) ¢ —int(C()};
- SY(y) = {x € K : 3 € T(x) satisfying (¢, y —x) ¢ —int(C(0)}:
© MY (y) = {x € K : V& € T(y) satisfying (§,y —x) ¢ —int(C(x))};

o MW (y) = {x € K: 3t € T(y) satisfying (§,y — x) ¢ —int(C(x))}.

From the above definition of set-valued maps, the following result can be easily
derived.

Proposition 8.1
(@) Sol(GSVVIPY! = () S3(y) and Sol(GSVVIP)! = () S5(y);

yEK yEK
(b) Sol(MGSVVIPY! = () M;(y) and Sol(MGSVVIP)!, = (| M5(y);
yEK yEK
(©) Sol(GVVIP)! = (") S,(y) and Sol(GVVIP), = () S,,();
yEK yeEK
(d) So(MGVVIP)! = (| M(y) and So(MGVVIPY, = (| M,,(»);
YEK yeEK
(€) Sol(GWVVIPY! = ()57 (y) and So(GWVVIP), = () S\ (3);
yek yek
(f) SO(MGWVVIP)! = (| M} (y) and SO(MGWVVIPY, = (| M)} (y).
yek yek

Proposition 8.2

(a) If the set-valued map C : K — 2V is closed, then for each 'y € K, Mf,(y) is a
closed set.

(b) If the set-valued map W : K — 2Y, defined by W(x) = Y \ {—int(C(x))}, is
closed, then for eachy € K, M;V(y) is a closed set.

(c) IfK is compact and the set-valued map T : K — 2~%Y) is nonempty compact
valued and the set-valued map C : K — 2Y is closed, then for each y € K,
M3 () is a closed set.

(d) If K is compact and the set-valued map T : K — 2°%Y s nonempty
compact valued and the set-valued map W : K — 2Y, defined by W(x) =
Y\ {—int(C(x))}, is closed, then for eachy € K, MY (y) is a closed set.
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(e) If the set-valued map T : K — 25X is lower semicontinuous and the set-
valued map C : K — 2Y is closed, then for each y € K, Sg(y) is a closed
set.

() If the set-valued map T : K — 25XV s lower semicontinuous and the set-
valued map W : K — 2¥, defined by W(x) = Y \ {—int(C(x))}, is closed, then
foreachy € K, S;V(y) is a closed set.

(g) If the set-valued map W : K — 2Y, defined by W(x) = Y \ {—int(C(x))}, is
concave, then for eachy € K, M;V(y) is a convex set.

(h) If the set-valued map C : K — 2Y is concave, then for eachy € K, Mg(y) isa
convex set.

Proof The proof of part (a) is similar to that of (b), therefore, we prove only part
(b).

(b) For any fixed y € K, let {x,,} be a sequence in M;V (y) such that {x,,} converges
tox € K. Since x,, € M} (y), for all § € T(y), we have

(£,y —xm) € W(xy) = Y \ {—int(C(x,,))}, forall m.

Since £ € L(X,Y), £ is continuous, and so, the sequence {(&,y — x,,)} converges to
(§,y — x) € Y. Since W is closed, so its graph G(W) is closed, and therefore, we
have (x,,, (€,y — xn)) converges to (x, (§,y — x)) € G(W). Thus,

(§.y—x) € W(x) =Y\ {—=int(C(x))},

so that x € M}’ (y). Consequently, M, (y) is a closed subset of K.
The proof of part (c) is similar to that of (d), therefore, we prove only part (d).
(d) For any fixedy € K, let {x,,} be a sequence in M) (y) such that {x,,} converges
to x € K. Since x,, € MY (), there exists &, € T(y) such that

(Em,y — xXm) € W(xy) = Y\ {—int(C(x,,))}, for all m.

Since T(y) is compact, we may assume that {&,} converges to some & € T(y).
Besides, since K is compact, {x,,} is bounded. Therefore, (£, — &, y — x,,) converges
to 0, but (&, y—x,,) convergesto (&, y—x) € Y dueto & € L(X,Y). Hence, (&, y—xm)
convergesto (£, y—x) € Y. Therefore, (x,,, (£, y—xu)) convergesto (x, (§,y—x)) €
G(W) since G(W) is closed. Thus, for & € T(y),

(§.y—x) € W(x) =Y\ {—in(C(x))},

so that x € M (y). Consequently, M (y) is a closed subset of K.
The proof of part (f) is similar to that of (e), therefore, we prove only part (e).
(e) For any fixed y € K, let {x,} be a sequence in Sg(y) converging to x € K.
By lower semicontinuity (see Lemma 1.9) of T, for any { € T(x), there exists
Cm € T(xy,) for all m such that the sequence {{,,} convergesto { € L£(X,Y). Since
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X € S3(y) for all m, we have

(é‘mvy _xm> € C(xm)

Moreover,

[{Cm.y = xm) = (&3 =) = {Cm.y = Xm) — (Gmns X) + (G x) = (S y — 1) |
= [{Cm X = Xm) + (Gnoy — %) = (& y — 2|
= [{Cmx = Xm) + (Gn — &y — 2|
< NGmll = 2nll 4+ 1Em = 1 1y — ]I
Since {{,,} is bounded in L(X,Y), {({m,y — xm)} converges to ({,y — x). By the
closedness of C, we have ({,y —x) € C(x). Hence, x € S:;(y), and therefore, S:;(y)
is closed.

(g) Lety € K be any fixed element and let x;, x, € M;’ (y). Then forall £ € T(y),
we have

(§.y—x) e W(x) and (§.y—x) € W(x).

By concavity of W, for all A € [0, 1], we have

(y—Axa+A-Mx)) =2 y—x) + A -1)(§y—x)
(S )LW(xl) + (1 — A)W(XQ)
€ WAxi + (1 = )x2).
Therefore, Ax; 4 (1 — A)x; € M}’ (y), and hence, M}’ (y) is convex.
Similarly, we can prove part (h). O

Remark 8.4 The set-valued maps S, S,,, M, and M,, fail to have the property that
S (), Sw(y), My(y), and M,,(y) are closed for ally € K.

Example 8.2 Consider X = Y = R, K =]0,1], C(x) = Ry forall x € K and
T(x) = [0, 1]. Then the set
Sg(y) = {x € K : V¢ € T(x) satisfying ({,y —x) ¢ —C(x) \ {0}}
={xe€]0,1]:x <y}

is not closed.

Proposition 8.3 Let K be a nonempty convex subset of X. The set-valued maps S,,
and SV are KKM-maps.
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Proof Let X be in the convex hull of any finite subset {yi,y2,...,y,} of K. Then
% = Y_P_, Aiy; for some nonnegative real number A;, 1 <i <p,with ) ©_ A; = 1.
If x ¢ U, Sw(yi), then for all { € T(%), we have

(¢,yi—x) € —C(x) \ {0}, foreachi=1,2,...,p.

Since —C(x) is a convex cone and A; > 0 with Z?:l Ai = 1, we have

p
Z (C.yi—%) € =C@) \ {0}.

It follows that

p P
0=<§,%—2>=<5,iny,-—ZA,-fc>
i=1 i=1
P 14
=<§,in(yi—fc)>=2 (¢.yi— %) € —C®) \ {0}.
i=1

Thus, we have 0 € —C(x) \ {0}, a contradiction. Therefore, we must have

P
co(fy,ya. - S [ Sw(),
i=1

and hence, S,, is a KKM map on K.
Since —C(x) is a convex cone, by using the similar argument, we can easily prove
that S}V is a KKM map on K. O

Remark 8.5 The above argument cannot be applied for S and S, In general, S§
and S5 are not KKM maps.

Example 8.3 LetX = K = R, Y = R? and let the operator T : K — 2™V be the
single-valued map 7'(x) := (x, —x). Then the sets Sg and S5 coincide, and it can be
easily seen that they are not KKM maps: Consider, for instance, the points y; = 0
and y, = 1. Then Sg(yl) = 85(y1) = {0} and Sg(yz) = 85(y2) = {0, 1}. However,

5 €co(yr.y:) and S5 (5) =85 (3) = {0.}}. but ) ¢ {0, 1}.

8.2 Existence Results under Monotonicity

Let X and Y be Banach spaces and K be a nonempty convex subset of X. Let T :
K — 25X pe a set-valued map with nonempty values, and C : K — 2 be a
set-valued map such that for all x € K, C(x) is a closed convex pointed cone with

int(C(x)) # 0.
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Definition 8.4 Let x € K be an arbitrary element. A set-valued map 7 : K —
2£XY) s said to be

(a) strongly generalized Cy-monotone on K if for every y € K and for all { € T(x),
& € T(y), we have

(=& x—y) e Clv);

(b) strongly generalized C,-monotone™ on K if forevery y € K and forall ¢ € T(x),
there exists £ € T(y) such that

(=& x—y) e Clv);

(c) strongly generalized C-monotoney on K if forevery y € K and forall £ € T(y),
there exists { € T(x) such that

(=& x—y) e Clv);

(d) strongly generalized Cy-pseudomonotone on K if for every y € K and for all
{ € T(x) and & € T(y), we have

(¢,y—x) € C(x) implies (§,y—x) € C(x);

(e) strongly generalized C,-pseudomonotone™ on K if for every y € K and for all
¢ € T(x), we have

(¢,y—x) € C(x) implies (&,y—x) € C(x), forsome & € T(y);

(f) strongly generalized C-pseudomonotone on K if for every y € K, we have for
some ¢ € T(x),

(¢,y —x) € C(x) implies (§,y —x) € C(x), forall £ € T(y).

Definition 8.5 Let x € K be an arbitrary element. A set-valued map 7 : K —
2£(4Y) 5 said to be

(a) generalized Cy-monotone on K if foreveryy € K and forall ¢ € T(x), § € T(y),
we have

(=& x—y) ¢ —C(x)\{0};

(b) generalized C,-monotone™ on K if for every y € K and for all ¢ € T(x), there
exists £ € T(y) such that

(=& x—y) ¢ —C(»)\ {0}
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(c) generalized Cy-monotone, on K if for every y € K and for all £ € T(y), there
exists ¢ € T(x) such that

(=& x—y) ¢ —C(x)\{0};

(d) generalized Cy-pseudomonotone on K if for every y € K and for all ¢ € T(x)
and &£ € T(y), we have

(C.y—x) ¢ =C)\ {0} implies (§.y—x) ¢ —C(x)\ {0}

(e) generalized C-pseudomonotone™ on K if for every y € K and for all ¢ € T(x),
we have

(€.y—x) ¢ =C(x) \ {0} implies (£,y —x) ¢ —C(x) \ {0},

for some & € T(y);
(f) generalized Cy-pseudomonotone on K if for every y € K, we have

for some ¢ € T(x), (¢, y—x) ¢ —C(x) \ {0}
implies (§,y —x) ¢ —C(x) \ {0}, forall& € T(y).

When we replace C(x) \ {0} by int(C(x)) in the above definitions, then T is called
weakly generalized C.-monotone, weakly generalized Cy-monotone™, weakly gen-
eralized Cy-monotoney, weakly generalized C.-pseudomonotone, weakly general-
ized Cy-pseudomonotone™, and weakly generalized C,-pseudomonotone.., respec-
tively.

The following example shows that the weakly generalized C,-pseudo-
monotonicity does not imply weakly generalized C,-monotonicity.

Example 8.4 1LetX =Y =R, C(x) = [0,00) forallx € X,andlet T : R — 2R
be defined as T'(x) =] — oo, x] for all x € R. Then it is easy to see that T is weakly
generalized C,-pseudomonotone but not weakly generalized Cy-monotone.

From the above definition, we have the following diagram (Fig. 8.2).

The implications in the following lemma follow from the definition of different
kinds of monotonicities, and therefore, we omit the proof.

Lemma 8.5 Let K be a nonempty subset of X and T : K — 2°%Y) be q set-valued
map with nonempty values. Then

(@) Sol(GSVVIP)¢ C Sol(MGSVVIP)‘fV if T is strongly generalized Ci-
pseudomonotone™;

(b) Sol(GSVVIP)! C Sol(MGSVVIP)g if T is strongly generalized Cy-pseudo-
monotone;

(c) Sol(GVVIP)‘fV - Sol(MGVVIP)‘fV if T is generalized Cy-pseudomonotone™;

(d) Sol(GVVIP)? Sol(MGVVIP)Z if T is generalized Cy-pseudomonotone 4,
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GM — GPM — > GPM T «— oM+t

l J

GM . GPM GPM GM

++

Fig. 8.2 Relations among different kinds of generalized C,-monotonicity. GM and GPM stand for
generalized C,-monotonicity and generalized C,-pseudomonotonicity, respectively

(e) Sol(GWVVIP)f{, - SOI(MGWVVIP)EIV if T is weakly generalized C,-

pseud0m0n0t0n6+,'

) Sol(GWVVIP)f{, C SOI(MGWVVIP)Z if T is weakly generalized Ci-

pseudomonotone .
Next we give the first result on the existence of a solution of (GWVVIP),,.

Theorem 8.1 Let X and Y be Banach spaces and K be a nonempty compact convex
subset of X. Let C : K — 2Y be a set-valued map such that for each x € K, C(x) is
a proper; closed and convex (not necessarily pointed) cone with int(C(x)) # 0, and
let W : K — 2Y be defined by W(x) = Y \ {—int(C(x))}, such that the graph G(W)
of W is closed in X x Y. Let x € K be arbitrary and suppose that T : K — 2-XY)
is weakly generalized Cy-pseudomonotone and weakly generalized C,-upper sign
continuous™ on K. Then there exists a solution of (GWVVIP),..

Proof Define set-valued maps )/, M} : K — 2K by
SY(y) = {x € K : 3¢ € T(x) satisfying (£,y — x) ¢ —int(C(x))},
and
w _ 3 . . .
M, (y) = {x € K : V& € T(y) satisfying (§,y —x) ¢ —int(C(x))},

for all y € K. Then by Proposition 8.3, S? is a KKM map on K. By generalized
C.-pseudomonotonicity 1 of T, S} (y) € M, (y) for all y € K. Since S} is a KKM

map, so is M;V. Also,

sV < Mo

yEK yEK

by Lemma 8.4 (i),

(M) < [)SVB).

yEK yeEK



8.2 Existence Results under Monotonicity 315

and thus,

(SKo) =\ M) ).

yEK yeEK

By Proposition 8.2 (b) and the assumption that the graph G(W) of W is closed,
W . . . .

M, (y) is closed for all y € K. Since K is compact, so is M;,’V(y) forally € K. By

Fan-KKM Lemma 1.14, we have

(SG) = (MY () # 9.

yEK yeEK
Hence, there exists x € K such that for all y € K, there exists E € T(x) satisfying

(C.y—X) ¢ —int(C(¥)).

The proof of theorem is complete. O

Remark 8.6 We note that the assumptions of Theorem 8.1 imply that, in case of
an infinite-dimensional space Y, the cone C(x) cannot be pointed for each x € K.
Indeed, the assumptions imply that Y \ {—int(C(x))} is closed for each x € K;
hence int(C(x)) is open. Since Y is infinite-dimensional, int(C(x)) contains a whole
straight line. That is, there exist y,z € Y such that y 4 tz, y — #z € int(C(x)) for all
t € R. By convexity, 0 € C(x) which gives (1/1)y + z, (1/f)y + z € C(x) for all
t > 1. Since C(x) is closed, z € C(x) and —z € C(x). Consequently, C(x) cannot be
pointed.

Analogously to Theorem 8.1, we have the following existence result for a
solution of (GVVIP),,.

Theorem 8.2 Let X, Y, K, C and W be the same as in Theorem 8.1. Let x € K be
arbitrary and suppose that T : K — 25XV s generalized Cy-pseudomonotone ;.
and generalized C-upper sign continuous™ on K such that the set M;V (y) ={xe
K : V& € T(y) satisfying (§,y — x) ¢ —int(C(x))} is closed for all y € K. Then
there exists a solution of (GVVIP),.

Remark 8.7 Theorem 8.1 and 8.2 also hold when K is nonempty weakly compact
convex subset of a Banach space X.

Since S5 is not a KKM map, the argument similar to Theorem 8.2 cannot be
used for proving the existence of a solution of (GSVVIP),,. Therefore, we define the
following concept of pseudomonotonicity.

Definition 8.6 Let x € K be an arbitrary element. A set-valued map 7 : K —
2L s said to be generalized C,-pseudomonotone® on K if for every y € K and
forall ¢ € T(x) and & € T(y), we have

(C.y—x) ¢ =C(x) \ {0} implies (£,y—x) € C(x).
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We use the above definition of pseudomonotonicity and establish the following
existence result for a solution of (GSVVIP),,.

Theorem 8.3 Let X, Y, K and C be the same as in Theorem 8.1. In addition, we
assume that the graph of C is closed. Let x € K be arbitrary and suppose that
T : K — 28X s eeneralized C,-pseudomonotone® and strongly generalized
upper sign continuous™ on K. Then there exists a solution of (GSVVIP),,.

Proof Define set-valued maps S,,, M; : K — 2% by
Sw(y) = {x € K: 3¢ € T(x) satisfying (¢,y —x) ¢ —C(x) \ {0}},
and
M;(y) = {x € K : V& € T(y) satisfying (€. y —x) € C(x)}.

for all y € K. Then by Proposition 8.3, S, is a KKM map on K. By generalized
C,-pseudomonotonicity® of T, S,,(y) < Mg(y) for all y € K. Since S,, is a KKM

map, so is MQ”. Also,

(5w S (M)

yEK yEK

By using strongly generalized C,-upper sign continuity™ of T and Lemma 8.4 (b),
we have

ﬂ M;(y) = Sol(MGSVVIP){ C Sol(GSVVIP){
yEK

C Sol(GVVIP)? C Sol(GVVIPY,

= m Sw(y)s

yEK

and thus,

()S0() = (M ).

yEK yEK

Since the graph G(C) of C is closed and K is compact, we have that Mg(y) is
compact for all y € K. By Fan-KKM Lemma 1.14, we have

()8:0) = (M) # 0.

yEK yEK
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Hence, there exists x € K such that for all y € K, there exists { € T(x) satisfying

(C.y—X) ¢ —=C(x) \ {0}.

This completes the proof. O

To give the existence results for solutions of (GWVVIP),, defined on a closed (not
necessarily bounded) convex subset K of a Banach space X, we need the following
coercivity conditions.

Definition 8.7 The set-valued map T : K — 2°XY) is said to be

(a) weakly generalized v-coercive on K if there exist a compact subset B of X and
y € BN K such that for every ¢ € T(x),

(¢,y —x) € —int(C(x)), forallx e K\ B. (8.16)

(b) generalized v-coercive on K if there exist a compact subset Bof X andy € BNK
such that for every ¢ € T(x),

(¢,y—x) € —C(x) \ {0}, forallx e K\ B. (8.17)

Theorem 8.4 Let X, Y, C, W and G(W) be the same as in Theorem 8.1, and K
be a nonempty closed convex subset of X. Let x € K be an arbitrary element and
suppose that T : K — 25XV js weakly generalized C,-pseudomonotone.., weakly
generalized Cy-upper sign continuous™ and weakly generalized v-coercive on K
and it has nonempty values. Then (GWVVIP),, has a solution.

Proof Let S and M;V be the set-valued maps defined as in the proof of Theo-
rem 8.1. Choose a compact subset B of X and y € B N K such that for every
¢ € T(x), (8.16) holds.

We claim that the closure cI(S}) (7)) of S}) (7) is a compact subset of K. If SY () &
B, then there exists x € S (7) such that x € K\ B. It follows that, for some ¢ € T(x),

(.5 —x) ¢ —int(C(x)),

which contradicts (8.16). Therefore, we have S)V(3) < B; hence, cl(SV¥(9)) is a
compact subset of K.
As in the proof of Theorem 8.1, by Fan-KKM Lemma 1.14, we have

(cl(SY3)) # 0.

yeEK

Again, as in the proof of Theorem 8.1, M;”(y) is closed for all y € K. By

weakly generalized C,-pseudomonotonicity . of T, S\ (y) € My’ (y) forall y € K.
Therefore,

cl(Sy () € M (y), forally e K.
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Consequently,
(M () # 0.
yEK
Furthermore, as in the proof of Theorem 8.1, we have
(S =\ MY () #9.
yeEK yEK

Hence, (GWVVIP),, has a solution. O
Analogous to Theorem 8.4, we can prove the following existence result for a
solution of (GVVIP),,.

Theorem 8.5 Let X, Y, C, W and G(W) be the same as in Theorem 8.2, and K be a
nonempty closed convex subset of X. Let x € K be an arbitrary element and suppose
that T : K — 2°XY s nonempty valued, generalized C,-pseudomonotone.,
generalized Cy-upper sign continuous™ and generalized v-coercive on K such that
the set

M,(y) = {x € K : V§ € T(y) satisfying (§,y —x) ¢ —C(x) \ {0}}

is closed for all y € K. Then (GVVIP),, has a solution.
Definition 8.8 The set-valued map 7 : K — 25X is said to be

(a) weakly generalized d-coercive on K if there exist a point y and a number d > 0
such that for every ¢ € T(x),

(¢,y—x) € —int(C(x)), if x € K and ||y — x| > d;

(b) generalized d-coercive on K if there exist a point ¥ and a number d > 0 such
that for every ¢ € T(x),

(¢,y—x) € =C(x) \ {0}, ifx € K and ||y — x| > d.

Now we present an existence theorem for a solution of problem (GWVVIP),,
under weakly generalized C,-pseudomonotonicity assumption.

Theorem 8.6 Let X, Y, C, W and G(W) be the same as in Theorem 8.1. Let K
be a nonempty convex subset of X and T : K — 2°XY) be a weakly generalized
C.-pseudomonotone ., weakly generalized Cy-upper sign continuous™ on K with

nonempty compact values. Suppose that at least one of the following assumptions
holds:

(1) K is weakly compact.
(i) X is reflexive, K is closed, and T is generalized d-coercive on K.

Then (GWVVIP),, has a solution.
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Proof Let S be the set-valued map defined as in the proof of Theorem 8.1. Define
a set-valued map MY by

Mx/(y) = {x € K : 3¢ € T(y) satistying (§y — x) ¢ —int(C(x))},

for all y € K. In order to prove the theorem under assumptions (i) it suffices to
follow the proof of Theorem 8.1.

As in the proof of Theorem 8.1, S? is a KKM map. By weakly generalized C,-
pseudomonotone, SV (y) € MY (y) for all y € K, and so MY is a KKM-map. As
in the proof of Proposition 8.2 (d), we can easily show that MY (y) is weakly closed
forall y € K.

Let us now consider the case (ii). Let B, denote the closed ball (under the norm)
of X with center at origin and radius r. If KNB, # @, part (i) guarantees the existence
of a solution x, for the following problem, denoted by (GWVVIP)!,:

find x, € K N B, such that forally € K N B,,
there exists ¢, € T'(x,) satisfying (,,y — x,) ¢ —int(C(x;)).
We observe that {x, : r > 0} must be bounded. Otherwise, we can choose r large

enough so that r > ||y|| and d < ||y — x,||, where y satisfies the weakly generalized
d-coercivity of T. It follows that, for every ¢, € T(x,),

(&royo — x,) € —int(C(x,)),

that is, x, is not a solution of problem (GWVVIP)! , a contradiction. Therefore, there
exist r such that ||x,|| < r. Choose for any x € K. Then we can choose ¢ > 0 small
enough such that x, + e(x —x,) € K N B,. If we suppose that for every ¢, € T(x,),

(¢, x —x,) € —int(C(x,)),

then
(Cryxr +e(x—x,) —x,) = &(&,x —x,) € —int(C(x,)),

that is, x, is not a solution of (GWVVIP)! . Thus, x, is a solution of (GWVVIP),,.
O
Analogous to Theorem 8.6, we have the following existence result for a solution
of (GVVIP),,.

Theorem 8.7 Let X, Y, C, W and G(W) be the same as in Theorem 8.2. Let K be a
nonempty convex subset of X and T : K — 25XY) be nonempty valued, generalized
C,-pseudomonotone . and generalized C-upper sign continuous™ on K such that
the set

Sy (v) = {x € K : V& € T(y) satisfying (€.y —x) ¢ —C(x) \ {0}}
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is weakly closed for all y € K. Suppose that at least one of the following assumptions
holds:

(1) K is weakly compact.
(i) X is reflexive, K is closed, and T is generalized d-coercive on K.

Then (GVVIP),, has a solution.

In order to derive the existence results for solution of (GWVVIP),, and
(GWVVIP), by the way of solving an appropriate Stampacchia generalized (scalar)
variational inequality problem (in short, GVIP), we use the following scalarization
technique.

Lets € Y*and T : K — 2™ be a set-valued map with nonempty values. We
define a set-valued map Ty : K — 2X by

(Ts(x),y) = (s, T(x),y), forallxe Kandy € X.
Also, set
H(s) ={y€Y:(sy) =0}

Then for all s € Y*, H(s) is a closed convex cone in Y.

Recall that a set-valued map O : X — 2X" is said to be generalized
pseudomonotone on X if for every pair of points x,y € X and for all u € Q(x),
v € Q(y), we have

(u,y—x) >0 implies (v,y—x)>0.

Also, a set-valued map Q : X — 2X" is said to be generalized pseudomonotone™

X if for every pair of points x,y € X and for all u € Q(x), we have

on

(u,y —x) >0 implies (v,y—x) >0, forsome v € Q(y).

Obviously, every generalized pseudomonotone set-valued map is generalized

pseudomonotone™.

Proposition 8.4 Let X and Y be Banach spaces and K be a nonempty closed
convex subset of X. Suppose that T : K — 25XV s strongly generalized
H(s)-pseudomonotone (respectively, strongly generalized H(s)-pseudomonotone™)
for some s € Y* \ {0}. Then the mapping T, is generalized pseudomonotone
(respectively, generalized pseudomonotone™) on K.

Proof For any x,y € K, let
(Cs,y—x) =0, forall ¢ € Ty(x). (8.18)

Then (s, (¢,y — x)) > 0 for all { € T(x). Therefore, ({,y — x) € H(s) for all
¢ € T(x). If T is strongly generalized H (s)-pseudomonotone, then we must have
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(§,y — x) € H(s) for all £ € T(y), and thus (s, (§,y — x)) > O for all £ € T(y).
Hence, for all & € Ti(y),

(s, y—x) =0, (8.19)

that is, Ty is generalized pseudomonotone on K. Analogously, if T is strongly
generalized H (s)-pseudomonotone™, (8.18) implies (8.19) for some &, € Ty(y) and
T, is generalized pseudomonotone™ on K. O

Theorem 8.8 Let X and Y be Banach spaces and K be a nonempty compact convex
subset of X. Let C : K — 2Y be defined as in Theorem 8.1 such that CL\ {0} # 0.
Let x € K be arbitrary and suppose that T : K — 25XV isweakly generalized C,-
upper sign continuous and weakly generalized H(s)-pseudomonotone on K for some
s € CY where H(s) # Y, and has nonempty values. Then the following statements
hold.

(a) There exists a solution of (GWVVIP),,.
(b) If for each x € K, the set T(x) is convex and weakly compact in L(X,Y), then
there exists a solution of (GWVVIP);.

Proof

(a) Since H(s) # Y, we note that int H(s) = s~'((0, 00)). To see this, consider the
following argument. It is clear that s~ ((0, c0)) C int(H(s)).

Conversely, let y € int(H(s)). Then there exists » > 0 such that B,(y) C
H(s), where B,(y) denotes the ball with center at y and radius r. Hence,
(s,y + rz) = 0 for all ||z]] < 1. If {s,y) = 0, then from the above
inequality we conclude that (s,w) > 0 forallw € Y or Y C H(s) which
is a contradiction. Therefore, (s.w) > 0 and y € s~'((0, 00)). Consequently,
int(H(s)) = s~1((0, 00)).

As s € C} \ {0}, the mapping T is generalized pseudomonotone on K
due to Proposition 8.4. Beside, since T is weakly generalized C,-upper sign
continuous, so is 75. Now, in the special case where Y = R, C(x) = R for all
x € K. Theorem 8.1 guarantees the existence of a solution x € K of (GVIP);,,
that is, for all y € K, there exists {; € T,(x) satisfying

(¢ y—x) = 0. (8.20)

Consequently, for every y € K, there exists E € T(x) such that

(s.(C.y—%) =0,

hence, ({,y — ) ¢ —int(H(s)). Since s € C*, —int(H(s)) 2 —int(Cy) 2
—int(C(X)), so that

((.y—%) ¢ —int(C(R)).
Therefore, X is a solution of (GWVVIP),,.
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(b) Let, in addition, the set 7T'(x) be convex and compact. Then T;(x) is obviously
convex in X*. We show that Ty(X) is also compact.
Let {z,} be a net in T,(x). Then there exists a net {{,} in 7'(x) such that
(za, x) = (5, (4, x)), forallx e X.
Since T (X) is compact, there exists a subnet of {{,} which is converging to some

¢ € T(x). Without loss of generality, we suppose that ¢, converges to {. Fix any
x € X. Then we can define

(Luy = (s, (u,x)), forallue L(X,Y),
hence, [ € L(X, Y)*. Therefore, there exists z € X* such that
lim(zg, x) = im(/, o) = (1, §) = (s, ({, %)) = (2. %),

that is, 7 € T(x). Thus, Ty(X) is compact set in X*.
By (8.20) and the well known minimax theorem [4], we have

max min({,y —X) = min max ({;,y —x) > 0.
éseT.ch)yeK(g‘y ) yEK;YGTx()_C)(Csy ) >

Hence, there exists {; € Ty(x) such that
(¢, y—X) >0, forallyeK,
that is, there exists ¢ € T'(x) such that
(s, {(¢,y—X)) >0, forallyeK.
Analogously, it follows that
(¢,y—X) ¢ —int(C(x)), forally€ K.

Therefore, X is a strong solution of (GWVVIP),,. O

In order to solve (GWVVIP),, with an unbounded domain, we need the following
coercivity conditions. We first note that

Cy={leY":(ly)=0forally e Cy},
and
int(C}) ={leY*:(Ly)>0forally e Cy},

where C+ = co({C(x) : x € K}).
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Definition 8.9 Let X and Y be Banach spaces and K be a nonempty closed convex
subset of X. Let C : K — 2Y be a set-valued map such that Ci\{0} #0.A
set-valued map T : K — 259 is said to be

(a) generalized v-coercive if there exist xo € K and s € C7 \ {0} such that

JX—X
inf (€ o) — o0, asx €K, |x|| — oo.
teTy () lx — xo|

(b) weakly generalized v-coercive if there exist y € K and s € C7 \ {0} such that

inf ({,x—y) > o0, asxeKk, |x| — oo.
{ETs(x)

It is clear that if T is generalized v-coercive, then it is weakly generalized v-
coercive.

Under the assumption of the weak generalized v-coercivity of T, we have the
following existence theorem for solutions of (GWVVIP),, and (GWVVIP);.

Theorem 8.9 Let X, Y and C be the same as in Theorem 8.8 and, in addition, X be
reflexive. Let K be a nonempty convex closed subset of X. Suppose that T : K —
2LXY) s weakly generalized H(s)-upper sign continuous, weakly generalized H (s)-
pseudomonotone, and weakly generalized v-coercive with respect to an s € C% \ {0}
on K, where H(s) # Y, and has nonempty values. Then the following statements
hold.

(a) There exists a solution of (GWVVIP),,.
(b) If, for each x € K, the set T(x) is convex and weakly compact in L(X,Y), there
exists a solution of (GWVVIP),.

Proof 1f, for the given s € CY \ {0}, there exists x € K which is a solution of
(GVIP),,, that is, for all y € K, there exists {; € T,(x) satisfying

(;vay _)_C) > 0.

Then as in the proof of Theorem 8.8, assertions (a) and (b) are true. So, for the proof
of this theorem, it is sufficient to prove that there exists a solution of (GVIP),,.

Let B, denote the closed ball (under the norm) of X with center at origin and
radius r. In the special case where ¥ = R, C(x) = R4 forallx € K N B,
Proposition 8.4 and Theorem 8.1 with Remark 8.7 guarantee the existence of a
solution x, for the following problem, denoted by (GVIP);,:

Find x, € K N B, such that forally € K N B,,

there exists ; € T(x) satisfying (¢, y —x) > 0,
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if KNB, # 0. Choose r > ||xo||, where xj satisfies the weak generalized v-coercivity
of T. Then for some ¢, € T,(x), we have

(¢l.y—x) = 0. 8.21)

We observe that {x, : r > 0} must be bounded. Otherwise, we can choose r large
enough so that the weak generalized v-coercivity of T yields

(&, x0 —Xx) <0, forall & € Ty(x),

which contradicts (8.21). Therefore, there exists r such that ||xo|| < r. Now, for each
x € K, we can choose ¢ > 0 small enough such that x, + e(x — x,) € K N B,. Then

(Cs, xr + e(x —x,) —Xx) = 0, forsome ¢, € Ty(X).
Dividing by ¢ on both sides of the above inequality, we obtain
(&, x—x,) >0, forallxeK,

which shows that x, is s solution of (GVIP);, and the result follows. ]
We now obtain similar results in the case of weak generalized H(s)-
pseudomonotonicity.

Theorem 8.10 Ler X, Y and C be the same as in Theorem 8.8. Let K be a nonempty
convex subset of X and T : K — 2%V be q weakly generalized H(s)-upper
sign continuous, weakly generalized H (s)-pseudomonotone mapping with nonempty
compact values on K with respect to s € C \ {0} where H(s) # Y. Suppose that at
least one of the following conditions hold:

(1) K is weakly compact.
(i) K is closed, T is weakly v-coercive on K with respect to the same s € C \ {0},
and X is reflexive.

Then the following statements hold.

(a) There exists a solution of (GWVVIP),,.
(b) If, for each x € K, the set T(x) is convex, there exists a solution of (GWVVIP);.

Proof We first note that, in case (i), the existence of a solution to the (GVIP),,
defined in (8.20) is guaranteed by Theorem 8.6 (a). In addition, under assumptions
of (ii), the set T(x) is also convex and sequential compact. Therefore, in order to
prove this theorem it suffices to follow the proofs of Theorems 8.8 and 8.9 with the
corresponding modifications, respectively. O

Remark 8.8 Let X and Y be Banach spaces and K be a closed convex pointed cone
in X. Let C : K — 2 be such that for all x € K, C(x) is a closed convex pointed
cone with int(C(x)) # @. Let T : K — 25V be a set-valued map with nonempty
values. The generalized vector complementarity problem (in short, GVCP) is to find
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(%,¢) € K x T(x) such that
(¢,%) ¢ int(C(X)) and (¢,y) ¢ —int(C(X)), forally e K.

It can be shown that if (GWVVIP); has a solution, then (GVCP) has a solution.
Then by using Theorems 8.9 and 8.10, we can derive existence results for solutions
of (GVCP). For further details, we refer [5].

Definition 8.10 Let x € K be an arbitrary element. A set-valued map 7 : K —
2£(4Y) 5 said to be

(a) generalized Cy-quasimonotone on K if for every y € K and for all ¢ € T(x) and
all £ € T(y), we have

(¢.y—x) ¢ =C(x) implies (§.y—x) ¢ —int(C(x));

(b) generalized C,-quasimonotone™ on K if for every y € K and for all ¢ € T(x),
we have

(¢,y—x) ¢ —C(x) implies (&,y —x) ¢ —int(C(x)), for some & € T(y).

Daniilidis and Hadjisavvas [2] established some existence results for a solu-
tion of (GWVVIP),, under generalized C,-quasimonotonicity or generalized C,-
quasimonotonicity*.

Now we establish some existence results for solutions of (GSVVIP);, (GVVIP),
and (GWVVIP);.

Definition 8.11 Let T : K — 25X be a set-valued map. A single-valued map
f K — L(X,Y) is said to be a selection of T if for all x € K, f(x) € T(x). Itis
called continuous selection if, in addition, f is continuous

Lemma 8.6 Ifu is a selection of T, then every solution of SVVIP (5.1), VVIP (5.2)
and WYVVIP (5.3) (all these defined by means of f) is a solution of (GSVVIP),,
(GVVIP); and (GWVVIP);, respectively.

Proof Assume that x € K is a solution of SVVIP (5.1), that is,
(f(x),y—x) € C(x), forallyeK.
Let £ = f(%). Then, ¢ € T (%) such that
(E,y —Xx) € C(x), forallyeK.

Thus, x € K is a solution of (GSVVIP);.
Similarly, we can prove the other cases. O
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Lemma 8.7 Letf : K — L(X,Y) be a selection of T : K — 2%V gnd x € K
be an arbitrary element. If T is (respectively, strongly and weakly) generalized C,-
pseudomonotone, then f is (respectively, strongly and weakly) C-pseudomonotone.

Theorem 8.11 Let X and Y be Banach spaces and K be a nonempty compact
convex subset of X. Let C : K — 2Y be a set-valued map such that for each x € K,
C(x) is a proper closed convex (not necessarily pointed) cone with int(C(x)) # 0,
and let W : K — 2Y be defined by W(x) = Y \ {—int(C(x))}, such that the graph
G(W) of W is closed in X x Y. For arbitrary x € K, suppose that T : K — 2~X1)
is nonempty valued, weakly generalized C,-pseudomonotone and has continuous
selection f on K. Then there exists a solution of (GWVVIP);.

Proof By the hypothesis, there is a continuous function f : K — £(X, Y) such that
f(x) € T(x) for all x € K. From Lemma 8.7, f is weakly C,-pseudomonotone. Then
all the conditions of Theorem 5.2 are satisfied. Hence, there exists a solution of the
following WV VIP: Find x € K such that

(f(x),y—Xx) ¢ —int(C(x)), forally e K.

By Lemma 8.6, x is a solution of (GWVVIP);.
Similarly, by using Lemmas 8.6 and 8.7, and Theorem 5.3, we can establish the
following result.

Theorem 8.12 Let X and Y be Banach spaces and K be a nonempty compact
convex subset of X. Let C : K — 2Y be a set-valued map such that for each x € K,
C(x) is a proper closed convex (not necessarily pointed) cone with int(C(x)) # 0,
and let W : K — 2 be defined by W(x) = Y \ {—int(C(x))}, such that the
graph G(W) of W is closed in X X Y. Let x € K be arbitrary and suppose that
T : K — 259 s nonempty valued, generalized C.-pseudomonotone and has
continuous selection f on K such that the set

M?l(y) ={x € K :VE € T(y) satisfying (§€,y —x) ¢ —int(C(x))}

is closed for all y € K. Then there exists a solution of (GVVIP);.

Remark 8.9 If K is compact and T : K — 25XV is continuous, then T has a
continuous selection, see, for example [3].

8.3 Existence Results Without Monotonicity

Let X and Y be two Banach spaces, K C X be a nonempty, closed and convex set,
and C C Y be a closed, convex and pointed cone with int(C) # 0.

Recall that a mapping g : X — Y is said to be completely continuous if the weak
convergence of x, to x in X implies the strong convergence of g(x,) to g(x) in Y.
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Definition 8.12 Let K be a nonempty, closed and convex subset of a Banach space
X and Y be a Banach space ordered by a closed, convex and pointed cone C with
int(C) # 0. A set-valued map T : K — 259 is said to be

(a) completely semicontinuous if for each y € K,
{xeK:({{,y—x) e —int(C) forall { € T(x)}

is open in K with respect to the weak topology of X;
(b) strongly semicontinuous if for each y € K,

{xeK:({{,y—x) e —int(C) forall { € T(x)}

is open in K with respect to the norm topology of X.
Remark 8.10

(a) Let K be a nonempty, bounded, closed and convex subset of a reflexive Banach
space X and Y be a Banach space ordered by a closed, convex and pointed cone
C with int(C) # 0. Let T : K — L(X, Y) be completely continuous. Then T is
completely semicontinuous.

(b) Let K be a nonempty, compact and convex subset of a Banach space X and Y be a
Banach space ordered by a closed, convex and pointed cone C with int(C) # @.
LetT : K — L(X,Y) be continuous. Then T is strongly semicontinuous.

(c) When X = R", complete continuity is equivalent to continuity, and complete
semicontinuity is equivalent to strong semicontinuity.

Next we state and prove the existence result for a solution of (GWVVIP); with
C(x) is a fixed pointed solid closed convex cone in Y.

Theorem 8.13 Let K be a nonempty, bounded closed and convex subset of a
reflexive Banach space X and Y be a Banach space ordered by a proper closed
convex and pointed cone C with int(C) # @. Let T : K — 2Y) be a completely
semicontinuous set-valued map with nonempty values. Then there exists a solution
of (GWVVIP); for a fixed pointed solid closed convex cone C in Y, that is, there
exist X € K and ¢ € T(X) such that

(¢,y—X) ¢ —int(C), forally€ K.

Proof Suppose that the conclusion is not true. Then for each X € K, there exists
y € K such that

(£,y— %) € —int(C), forall{ € T(}). (8.22)
For every y € K, define the set N, as

Ny={xeK:({,y—x) € —int(C) forall { € T(x)} .
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Since T is completely semicontinuous, the set N, is open in K with respect to the
weak topology of X for every y € K.

We assert that {N, : y € K} is an open cover of K with respect to the weak
topology of X. Indeed, first it is easy to see that

U~ ck.

yeEK

Second, for each x € K, by (8.22) there exists y € K such that ¥ € N,. Hence
% € U, ek Ny- This shows that K € [ ¢x Ny. Consequently,

K=[]JN,

yEK

So, the assertion is valid.

The weak compactness of K implies that there exists a finite set of elements
{V1.y2. ..., ym} € K suchthat K = | JI_, N,,. Hence there exists a continuous (with
respect to the weak topology of X) partition of unity {81, 82, ..., B} subordinated

m

t0 {Ny,.Ny,..... Ny, } suchthat ;(x) > Oforallx € K.j = 1.2.....m, Y _ fi(x) =
j=1

1 forall x € K, and

=0, wheneverx ¢ Ny,
> (0, wheneverx € Ny]..

£ {

Let p : K — X be defined by

p@) =) Bix)y. forallxeK. (8.23)

Jj=1

Since B; is continuous with respect to the weak topology of X for each i, p is
continuous with respect to the weak topology of X. Let A := co({y1,¥2,...,Ym}) €
K. Then A is a simplex of a finite dimensional space and p maps A into itself. By
Brouwer’s Fixed Point Theorem 1.39, there exists X € A such that p(x) = x. For
any given x € K, let

k(x) = {j:x e Ny} ={j:Bix) > 0}.

Obviously, k(x) # @.



8.3 Existence Results Without Monotonicity 329

Since x € A C K is a fixed point of p, we have p(x) = ij=1 B;(X)y; and hence
by the definition of N,, we derive for each E e T(x)

= <E,5c— Zﬂ/(fc)yj>

J=1

= Y B (& X—y) €int(0)

JEk(x0)
which leads to a contradiction. Therefore, there exist x € K and ¢ € T(x) such that
(¢,y—Xx) ¢ —int(C), forallye K.

This completes the proof. O
The proof of the following result can be easily derived on the lines of the proof
of Theorem 8.13.

Theorem 8.14 Let K be a nonempty, compact and convex subset of a Banach space
X and Y be a Banach space ordered by a proper closed convex and pointed cone C
with int(C) # 9. Let T : K — 25XV pe strongly semicontinuous with nonempty
values. Then there exist x € K and ¢ € T(X) such that

(¢,y—Xx) ¢ —int(C), forally e K.
Now we establish an existence theorem for a solution of (GWVVIP), under lower
semicontinuity assumption on the underlying set-valued map 7.

Theorem 8.15 Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X and the set-valued map T : K — 2°%Y) pe lower
semicontinuous such that the set

Ay:={yeK:{{,y—x) € —int(C(x)) forall ¢ € T(x)}

is convex for all x € K. Let the set-valued map W : K — 2Y, defined by W(x) =
Y\ {—int(C(x))} for all x € K, be closed. Assume that for a nonempty compact
convex set D C K with each x € D \ K, there exists y € D such that for any
 eT(x), (¢,y —x) € —int(C(x)). Then (GWVVIP), has a solution.

Proof Let

A={(x,y) e KxK:({,y—x) ¢ —int(C(x)) forall ¢ € T(x)}.
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Clearly, (x,x) € A for all x € K. For each fixed y € K, let

Ay :={xeK:(x,y) €A}
={xeK:({,y—x)¢—int(C(x)) forall { € T(x)}.

Then by Proposition 8.2 (f), A, is closed. By hypothesis, for each fixed y € K, the
setAy:={y €K :(x,y) ¢ A} is convex.

By Lemma 1.17, there exists x € K such that {x} x K C A, thatis, x € K such
that (§,x —y) ¢ —int(C(x)), forall £ € T(x) and y € K. O

8.4 Generalized Vector Variational Inequalities and
Optimality Conditions for Vector Optimization Problems

Throughout this section, unless otherwise specified, we assume that K is a nonempty
convex subset of R” and f = (fi.f.....fr) : R” — R! be a vector-valued function.
The subdifferential of a convex function f; is denoted by 9f;.

Corresponding to K and df;, the (Stampacchia) generalized vector variational
inequality problems and Minty generalized vector variational inequality problems
are defined as follows:

Find X € K such that forall y € K and all ¢; € 9fi(X),i € .& =

{1,2,...,¢},
(GVVIP).: ) ) )
(€y=2)¢ = ((Cy=3) . (Gey—) ¢ —REN0). (8:24)
Find X € K such that there exist §; € fi(X), i € J =
{1,2,...,4}, such that forall y € K
(GVVIP): ) ) )
(€y=%)¢ = ((Gy=%) . (Cey—0) ¢ —REN(0). (8.25)
Find X € K such that for all y € K, there exist {; € 9f;(%),
ie s ={1,2,...,¢}, satisfying
(GVVIP),;: ) ) )
(C.y=2)p = ((Cry=)..o. (Cey=3) ¢ —REN{0). (8.26)
Find x € K such that for all y € K and all §; € 0f;(y),i € ¥ =
{1,2,...,¢},
(MGVVIP):

(E,y=3)¢ = ((E1y=3),. ., (B y—3)) ¢ —REN(0}. (8.27)
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(MGVVIP)! :

(GWVVIP).:

(GWVVIP):

(GWVVIP)::

(MGWVVIP).:

(MGWVVIP) :

Find x € K such that for all y € K, there exist & € dfi(y),
ie s ={1,2,...,¢4},

(E.y—3%)¢ = ((Er.y=X)..... (r.y—%)) ¢ “RL\{0}.  (8.28)

Find x € K such that forall y € K and all ; € 3f;(X), i € & =

(1,2,....4},

€y =3 = ((Cr.y =3 Loy —5)) ¢ —int (RY).
(8.29)

Find ¥ € K such that there exist &; € Jfi(X), i € & =

{1,2,...,¢},such that forall y € K

€y =% = ((Cry =)o Gy —3) ¢ —int (RS) .
(8.30)

Find x € K such that for all y € K, there exist Ei e dfi(»),
ie s ={1,2,...,4},satisfying

€y =% = ((Er.y =) Gy —3)) ¢ —int (RY) .
(8.31)

Find x € K such that for all y € K and all §; € 0f;(y),i € ¥ =
{1,2,...,¢},

(E.y—%) = ((E.y—X).....(E.y—%)) ¢ —int (RY).
(8.32)

Find x € K such that for all y € K, there exist & € dfi(y),
ie s ={1,2,...,£}, such that

6.y = %) = ((Er.y— D). (Ery— D) ¢ —int (RY).
(8.33)

We denote the solution sets of the above mentioned problems (GVVIP)g,
(GVVIP),, (GVVIP),, (MGVVIP)., (MGVVIP),, (GWVVIP),, (GWVVIP),,
(GWVVIP),, (MGWVVIP), and (MGWVVIP)!, by Sol(GVVIP):, Sol(GVVIP),,

Sol(GVVIP)!

w?

Sol(MGVVIP)., So(MGVVIP).,, SO(GWVVIP)’, So(GWVVIP).,

Sol(GWVVIP), Sol(MGWVVIP)ﬁ, and Sol(MGWVVIP) | respectively.
As in Remark 8.1, we have

(a) Sol(GVVIP); € Sol(GVVIP)! € Sol(GVVIP),;

(b) Sol(GWVVIP)g C Sol(GWVVIP)! C Sol(GWVVIP);
(¢) Sol(GVVIP); < Sol(GWVVIP).;

(d) Sol(GVVIP); C Sol(GWVVIP);
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(e) Sol(GVVIP),, € So(GWVVIP).;
(f) Sol(MGVVIP) C Sol(MGWVVIP)’;
(g) Sol(MGVVIP) C Sol(MGWVVIP).

The following example shows that Sol(GVVIP)Y € Sol(GVVIP)! may not be
true.

Example 8.5 [7]Let K = {(x1,x;) € R* : x; <0, — /—x; <x; <0} and

filx,x) = \/Xf + x5+ x;, forall (x,x) €K,

Hx1,x2) = xz, forall (x;,x) € K.
If (xl,xz) = (0, 0), then

WM, x2) = {(C1, &) e R*: F + 83 < 1} + {(0, 1)}
={1.) eR*: G+ (-1 <1}

If (x1,x2) # (0,0), then

X1 X2

Ifi(x1,x2) = . +1
Jas s

It can be easily checked that for all ({1, {;) € 9f1(0,0), there exists (x1,x;) € K
such that

(Gix1 + {oxa.x0) € —RE \ {0},

and that for all (x,x;) € K, there exists (§1, &) € 9f1(0, 0) such that

(E1x1 + E2x2,x0) ¢ —R%\ {0},

Hence, (0, 0) € Sol(GVVIP)., but (0,0) ¢ Sol(GVVIP)".
Moreover, Sol(GVVIP)! = {(x,—y/—x):x<0} and Sol(GVVIP) =
{(x,—/—x) :x < 0}.

Proposition 8.5 Foreachi € & = {1,2,...,4}, letf; : K — R be convex. Then
Sol(GVVIP),, € So(MGVVIP); € Sol(MGVVIP),,.

w —

Proof Let x € K be a solution of (GVVIP)fV. Then for all y € K, there exist Zi €
dfi(x),i=1,2,...,4, such that

((Cr.y=%)..... (e.y — X)) & =R\ {0}, (8.34)
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Since each f; is convex, df;, i € ., is monotone, and therefore, we have
(£ —t,y—x) >0, forall§ € df(y) and foreachi € .7. (8.35)

From (8.34) and (8.35), it follows that for all y € K and all §; € 0fi(y), i € .7,

({Ey—3) ... (B.y —X) & —RE\ {0},

Thus, x € K is a solution of (MGVVIP)g. O
The converse of the above proposition may not be true, that is,
Sol(MGVVIP). Z Sol(GVVIP);,.

Example 8.6 Let K =]—o00,0] and f;(x) = x, fo(x) = x%. Since (x,0) € —Rﬁ_ \ {0}
for all x €] — 00, 0[, we have 0 ¢ Sol(GVVIP)fV.

But, since (x, 2x?) ¢ —Ri \ {0}, we have 0 € Sol(MGVVIP)g. Moreover, we can
easily verify that Sol(GVVIP)ﬁ, =]—00,0[ and Sol(MGVVIP)g =]—00,0].

The following result provides the relationship between the solutions of
(MGWVVIP), and (GWVVIP),.

Theorem 8.16 For eachi € % = {1,2,...,L}, let f; : K — R be convex. Then
% € K is a solution (GWVVIP)!, if and only if it is a solution of (MGWVVIP)",.

Proof Let X € K be a solution of (GWVVIP). Then for any y € K, there exist
g€ ofi(x),i =1,2,...,4, such that

(Qy =3 oy =) ¢ —ine (R)). (8.36)
Since each f; is convex, df; (i € .#) is monotone, and therefore, we have
(£ —C,y—X) >0, forallyeK, & € dfi(y) and for eachi € .7. (8.37)

From (8.36) and (8.36), it follows that for any y € K and any &; € dfi(y), i € .#,
(67 =), (e y = 1)) ¢ —int (RS).

Thus, x € K is a solution of (MGWVVIP)g. Since Sol(MGWVVIP)g -
Sol(MGWVVIP)fV, ¥ € K is a solution of SO(MGWVVIP): .

Conversely, let x € K be a solution of (MGWVVIP){V. Consider any y € K and
any sequence {&, } \ 0 with o, €]0, 1]. Since K is convex, y, := X + o, (y —X) €
K. Since X € K is a solution of (MGWVVIP):, there exist £ € dfi(yn), i € 7,
such that

(&1 v = D) (6 (s D)) ¢ —int (R) .
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Since each f; is convex and so it is locally Lipschitz (see Theorem 1.16), and hence,
there exists k > 0 such that for sufficiently large m and for all i € &, H & H < k.

So, we can assume that the sequence {g["} converges to {; for each i € .#. Since the
set-valued map y +— 9f;(y) is closed (see Lemma 1.8), £ € 9f;(y.) and y,, — X as
m — oo, we have ¢ € 9f(x) for each i € .#. Therefore, for any y € K, there exist
¢ € 0fi(x), i € 7, such that

((Gry =%, (Cy— 7)) ¢ —int (RY).
Hence, ¥ € K is a solution of (GWVVIP)! . O

Next theorem provides the necessary and sufficient conditions for an efficient
solution of VOP.

Theorem 8.17 ([6]) For eachi € & = {1,2,...,L}, letf; : K — R be convex.
Then x € K is an efficient solution of VOP if and only if it is a solution of
(MGVVIP).

Proof Letx € K be a solution of (MGVVIP)!, but not an efficient solution of VOP.
Then there exists z € K such that

(i@ = fi®), ... [i(& = fr(®) € =R, \ {0} (8.38)

Set z(A) := Az 4+ (1 — A)x for all A € [0, 1]. Since K is convex, z(1) € K for all
A € [0, 1]. Since each f; is convex, we have

fiz(V) =filkz+ (1 = )x) < Afi(z) + (1 = 1)fi(x), foreachi=1,2,...,£,
that is,
filk + Az —X) —fi(¥) = Alfi(2) — fi®)],
forall A € [0,1] and foreachi = 1,2, ..., £. In particular, for A €]0, 1[, we have

f"(z(k)l_ﬁ(’_“) <f() —f(%), foreachi=1,2,.... L. (8.39)

By Lebourg’s Mean Value Theorem 1.32, there exist A; €10, 1] and &; € 9fi(z(X;))
such that

(&,z—X%) = fi(z(h)) — fi(x), foreachi=1,2,...,¢. (8.40)
By combining (8.39)—(8.40), we obtain

(£,2—X) <fi() —fi(x), foreachi=1,2,... 4. (8.41)
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Suppose that A1, A,, ..., A are all equal. Then it follows from (8.38) and (8.41)
that x is not a solution of (MGVVIP)fV. This contradicts to the fact the x is a solution
of (MGVVIP)!.

Consider the case when Ay, A;,...,A¢ are not equal. Let A; # A,. Then
from (8.41), we have

(§1.2—%) =fi@ —A(K) (8.42)
and
(§2.2—x) = f2(2) —2(0). (8.43)
Since f; and f; are convex, df, and 9f, are monotone, that is,
(51 —&.2(01) —z2(X2)) 2 0, forall &) € df(z(A2)), (8.44)
and
(&7 —£,200) —2(ha)) = 0, forall £ € f,(z(M1)). (8.45)
If A, > Ay, then by (8.44), we obtain
0 =< (& —& . z(4) —z2(h2)) = (A1 — A) (€1 — & 2 —X),
and so,
(61-8.2-%)>20 & (f1.z—X) = (§.2—%).
From (8.42), we have
(5.2—X) =fild —fi(x), forall & € df(z(A2)).
If A, < Ay, then by (8.45), we have
0 < (& —&.z(M1) —z2(2)) = (A1 — A)(E] — 2.2 —X),
and so,
(f —6.2—-%) <0 & (§.2—-1) < (6.2—X).
From (8.43), we obtain

(§f.2—%) < fo(r) —fo(x), forall & € 9f,(z(A1)).
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Therefore, for the case A; # A, let A= min{A, A,}. Then, we can find §,~ €
9fi(z(X)) such that

(E,z—7%) <f(z) —fi(x), foralli=1,2.

By continuing this process, we can find A* €]0, 1[ and £* € 0f;(z(A*)) such that
A* = min{A, A,, ..., A¢} and

(€F,z—X) <fi(z) —fi(x), foreachi=1,2,...,¢. (8.46)

From (8.38) and (8.46), we have §* € df;(z(A*)),i = 1,2,...,¢, and

(67 2= %) (82— ) € ~RE\ {0
By multiplying above inclusion by —A*, we obtain
((67.207) =3, (6.20%) —3) € =R\ {03,

which contradicts to our supposition that x is a solution of (MGVVIP)fV.
Conversely, suppose that x € K is an efficient solution of VOP. Then we have

(AO) =), ... o)) = fu®) ¢ —RL\ {0}, forally € K. (8.47)

Since each f; is convex, we deduce that

(§i,x—y) =fi(d) —fi(y), forally € K, & € dfi(y)andi € ..

Also, we obtain
(&i,y—X) = fi(y) —fi(x), forallyeK, & € dfi(y)andi € .&. (8.48)

From (8.47) and (8.48), it follows that X is a solution of (MGVVIP)fV. O
Theorem 8.17 is extended for Dini subdifferential by Al-Homidan and Ansari

[1].

Theorem 8.18 [6] For eachi € . = {1,2,...,{}, let f; : K — R be convex. If
Xx € K is a solution (GVVIP)ﬁ,, then it is an efficient solution of VOP and hence a
solution of (MGVVIP)".

Proof Since x € X is a solution of (GVVIP)!, for any y € K, there exist é_‘i € dfi(%),
i=1,2,...,¢, such that

(G y=X)..... (L.y — X)) ¢ —RE \ {0}, (8.49)
Since each f; is convex, we have

(&i.y—X) <fi(y) —fi(x) foranyye Kandallie .7 (8.50)
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By combining (8.49) and (8.50), we obtain

(AG) =), .. o) = fo(®) ¢ R\ {0}, forally € K.

Thus, x € K is an efficient solution of VOP. O

From Theorem 8.18, we see that (GVVIP)fV is a sufficient optimality condition
for an efficient solution of VOP. However, it is not, in general, a necessary optimality
condition for an efficient solution of VOP.

Example 8.7 Let K = [—1,0] and f(x) = (x,x?). Consider the following
differentiable convex vector optimization problem:

minimize f(x), subjecttox € K, (VOP)

Then x = 0 is an efficient solution of VOP and x = 0 is a solution of the following
(MVVIP): Find x € K such that forall y € K,

(VAG).y =) (VAD).y—X) = (y =% 2y(y — X)) ¢ —R7 \ {0}.

However, x = 0 is not a solution of the following (VVIP): Find x € K such that for
ally e K,

((VA®.y = 3). (VA®.y —3) = (y— .28y - ) ¢ -’} \ {0}

The following result presents the equivalence between the solution of
(GWVVIP){V and a weakly efficient solution of VOP.

Theorem 8.19 Foreachie & = {1,2,...,{}, letf; : K — R be convex. Ifx € K
is a weakly efficient solution of VOP if and only if it is a solution of (GWVVIP)ﬁ,.

Proof Suppose that ¥ is a solution of (GWVVIP)! but not a weakly efficient solution
of VOP. Then there exists y € K such that

(i) =fi@),... . i) —fe(®)) € —int (R) . (8.51)
Since each f;, i € .7, is convex, we have
(Ciny —x) = fi(y) —fi(®), forall §; € 9fi(x). (8.52)
Combining (8.51) and (8.52), we obtain
((ci,y=%), ..., ({.y — %)) € —int (RY), forall §; € (%)
which contradicts to our supposition that x is a solution of (GWVVIP)fV.

Conversely, assume that x € K is a weakly efficient solution of VOP but
not a solution of (GWVVIP)fV. Then by Theorem 8.16, x is not a solution of
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(MGWVVIP): . Thus, there exist y € K and &; € dfi(y), i € .#, such that

((Er.y =3)s. o (6 v, ®) € —int (RY). (8.53)
By convexity of f;, i € ., we have
0> (§i,y —X) = fi(y) — fi®). (8.54)
From (8.53) and (8.54), we then have

(fi0) =A@ i) —fi(D) € —int (RY,).

which contradicts to our assumption that x is a weakly efficient solution of VOP. 0O
The following example shows that the weakly efficient solution of VOP may not
be a solution of (GWVVIP);:’,.

Example 8.8 ([7]) Let K =] — 00,0] and

A0 =2 ) = f r<0

, x> 0.

Then sol(GWVVIP)g =]— 00, 0], but the set of weakly efficient solution of VOP is
] — 00,0].

The relations between a properly efficient solution in the sense of Geoffrion and
a solution of (GVVIP){V is studied in [6].
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