
Chapter 8
Generalized Vector Variational Inequalities

When the objective function involved in the vector optimization problem is not
necessarily differentiable, then the method to solve VOP via corresponding vector
variational inequality problems is no longer valid. We need to generalize the vector
variational inequality problems for set-valued maps. There are several ways to
generalize vector variational inequality problems discussed in Chap. 5. The main
objective of this chapter is to generalize the vector variational inequality problems
for set-valued maps and to present the existence results for such generalized vector
variational inequality problems with or without monotonicity assumption. We also
present some relations between a generalized vector variational inequality problem
and a vector optimization problem with a nondifferentiable objective function.
Several results of this chapter also hold in the setting of Hausdorff topological vector
spaces, but for the sake of convenience, our setting is Banach spaces.

8.1 Formulations and Preliminaries

When the map T involved in the formulation of vector variational inequality
problems and Minty vector variational inequality problems is a set-valuedmap, then
the vector variational inequality problems and Minty vector variational inequality
problems, discussed in Chap. 5, are called (more precisely, Stampacchia) general-
ized vector variational inequality problems andMinty generalized vector variational
inequality problems, respectively.

Let X and Y be Banach spaces and K be a nonempty convex subset of X. Let
T W K ! 2L.X;Y/ be a set-valued map with nonempty values, and C W K ! 2Y be
a set-valued map such that for all x 2 K, C.x/ is a closed convex pointed cone. We
also assume that int.C.x// ¤ ; wherever int.C.x// the interior of the set C.x/ is
involved in the formulation of a problem. For every l 2 L.X;Y/, the value of l at x
is denoted by hl; xi.
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300 8 Generalized Vector Variational Inequalities

We consider the following generalized vector variational inequality prob-
lems (SGVVIP) and Minty generalized vector variational inequality problems
(MGVVIP).

(GSVVIP)s:

Find Nx 2 K such that there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi 2 C.Nx/; for all y 2 K: (8.1)

(GSVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/
satisfying

h N�; y � Nxi 2 C.Nx/: (8.2)

(MGSVVIP)g:

Find Nx 2 K such that for all y 2 K and all � 2 T.y/, we have

h�; y � Nxi 2 C.Nx/: (8.3)

(MGSVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists � 2 T.y/
satisfying

h�; y � Nxi 2 C.Nx/: (8.4)

(GVVIP)g:

Find Nx 2 K such that for all N� 2 T.Nx/, we have

h N�; y � Nxi … �C.Nx/ n f0g; for all y 2 K: (8.5)

(GVVIP)s:

Find Nx 2 K such that there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi … �C.Nx/ n f0g; for all y 2 K: (8.6)

(GVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/
satisfying

h N�; y � Nxi … �C.Nx/ n f0g: (8.7)

(MGVVIP)g:

Find Nx 2 K such that for all y 2 K and all � 2 T.y/, we have

h�; y � Nxi … �C.Nx/ n f0g: (8.8)
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(MGVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists � 2 T.y/
satisfying

h�; y � Nxi … �C.Nx/ n f0g: (8.9)

(GWVVIP)g:

Find Nx 2 K such that for all N� 2 T.Nx/, we have

h N�; y � Nxi … � int.C.Nx//; for all y 2 K: (8.10)

(GWVVIP)s:

Find Nx 2 K such that there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi … � int.C.Nx//; for all y 2 K: (8.11)

(GWVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/
satisfying

h N�; y � Nxi … � int.C.Nx//: (8.12)

(MGWVVIP)g:

Find Nx 2 K such that for all y 2 K for all � 2 T.y/, we have

h�; y � Nxi … � int.C.Nx//: (8.13)

(MGWVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists � 2 T.y/
satisfying

h�; y � Nxi … � int.C.Nx//: (8.14)

In (GSVVIP)w, (GVVIP)w, and (GWVVIP)w, N� 2 T.Nx/ depends on y 2 K; Also,
in (MGSVVIP)w, (MGVVIP)w, and (MGWVVIP)w, � 2 T.y/ depends on y 2 K.

We denote by Sol(GSVVIP)dg, Sol(GSVVIP)ds , Sol(GSVVIP)dw,
Sol(MGSVVIP)dg, Sol(MGSVVIP)dw, Sol(GVVIP)

d
g, Sol(GVVIP)

d
s , Sol(GVVIP)

d
w,

Sol(MGVVIP)dg, Sol(MGVVIP)dw, Sol(GWVVIP)dg, Sol(GWVVIP)ds ,
Sol(GWVVIP)dw, Sol(MGWVVIP)dg, and Sol(MGWVVIP)dw, the set of solutions of
(GSVVIP)g, (GSVVIP)s, (GSVVIP)w, (MGSVVIP)g, (MGSVVIP)w, (GVVIP)g,
(GVVIP)s, (GVVIP)w, (MGVVIP)g, (MGVVIP)w, (GWVVIP)g, (GWVVIP)s,
(GWVVIP)w, (MGWVVIP)g, and (MGWVVIP)w, respectively.

If for all x 2 K, C.x/ D D is a fixed closed convex pointed cone with int.D/ ¤ ;,
then the solution set of (GSVVIP)g, (GSVVIP)s, (GSVVIP)w, (MGSVVIP)g,
(MGSVVIP)w, (GVVIP)g, (GVVIP)s, (GVVIP)w, (MGVVIP)g, (MGVVIP)w,
(GWVVIP)g, (GWVVIP)s, (GWVVIP)w, (MGWVVIP)g, and (MGWVVIP)w, are
denoted by Sol(GSVVIP)g, Sol(GSVVIP)s, Sol(GSVVIP)w, Sol(MGSVVIP)g,
Sol(MGSVVIP)w, Sol(GVVIP)g, Sol(GVVIP)s, Sol(GVVIP)w, Sol(MGVVIP)g,
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Sol(MGVVIP)w, Sol(GWVVIP)g, Sol(GWVVIP)s, Sol(GWVVIP)w,
Sol(MGWVVIP)g, and Sol(MGWVVIP)w, respectively

Remark 8.1 It is clear that

(a) Sol(GSVVIP)dg � Sol(GSVVIP)ds � Sol(GSVVIP)dw;
(b) Sol(MGSVVIP)dg � Sol(MGSVVIP)dw;
(c) Sol(GVVIP)dg � Sol(GVVIP)ds � Sol(GVVIP)dw;
(d) Sol(MGVVIP)dg � Sol(MGVVIP)dw;
(e) Sol(GWVVIP)dg � Sol(GWVVIP)ds � Sol(GWVVIP)dw;
(f) Sol(MGWVVIP)dg � Sol(MGWVVIP)dw;
(g) Sol(GSVVIP)dg � Sol(GVVIP)dg � Sol(GWVVIP)dg;
(h) Sol(GSVVIP)ds � Sol(GVVIP)ds � Sol(GWVVIP)ds ;
(i) Sol(SGVVIP)dw � Sol(GVVIP)dw � Sol(GWVVIP)dw;
( j) Sol(MGSVVIP)dg � Sol(MGVVIP)dg � Sol(MGWVVIP)dg;
(k) Sol(MGSVVIP)dw � Sol(MGVVIP)dw � Sol(MGWVVIP)dw.

Definition 8.1 Let K be a nonempty convex subset of X and x 2 K be an arbitrary
element. The set-valued map T W K ! 2L.X;Y/ is said to be

(a) strongly generalized Cx-upper sign continuous if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi 2 C.x/ implies that there exists � 2 T.x/

such that h�; y � xi 2 C.x/I

(b) strongly generalized Cx-upper sign continuousC if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi 2 C.x/ implies that h�; y � xi 2 C.x/ for all � 2 T.x/I

(c) strongly generalized Cx-upper sign continuousC if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that h��; y � xi 2 C.x/

implies that there exists � 2 T.x/ such that h�; y � xi 2 C.x/I

(d) strongly generalized Cx-upper sign continuous
C
C if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that h��; y � xi 2 C.x/

implies that h�; y � xi 2 C.x/ for all � 2 T.x/I
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(e) generalized Cx-upper sign continuous if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … �C.x/ n f0g implies that there exists � 2 T.x/ such that

h�; y � xi … �C.x/ n f0gI

(f) generalized Cx-upper sign continuousC if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … �C.x/ n f0g implies that h�; y � xi … �C.x/ n f0g
for all � 2 T.x/I

(g) generalized Cx-upper sign continuousC if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … �C.x/ n f0g implies that there exists � 2 T.x/ such that

h�; y � xi … �C.x/ n f0gI

(h) generalized Cx-upper sign continuous
C
C if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … �C.x/ n f0g implies that h�; y � xi … �C.x/ n f0g
for all � 2 T.x/I

(i) weakly generalized Cx-upper sign continuous if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … � int.C.x// implies that there exists � 2 T.x/ such that

h�; y � xi … � int.C.x//I

( j) weakly generalized Cx-upper sign continuousC if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … � int.C.x// implies that h�; y � xi … � int.C.x//

for all � 2 T.x/I
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(k) weakly generalized Cx-upper sign continuousC if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … � int.C.x// implies that there exists � 2 T.x/

such that h�; y � xi … � int.C.x//I

(l) weakly generalized Cx-upper sign continuous
C
C if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that

h��; y � xi … � int.C.x// implies that h�; y � xi … � int.C.x//

for all � 2 T.x/:

Example 8.1 Let X DR, Y DR
2, K D �0; 1� and C.x/ DR

2C for all x2K. Consider
the map T.x/ WD ˚

.y1; y2/ 2 R
2 W jy1j � x; jy2j � x

�
. Then T is strongly generalized

Cx-upper sign continuous, strongly generalized Cx-upper sign continuousC,
generalized Cx-upper sign continuous, generalized Cx-upper sign continuousC,
weakly generalized Cx-upper sign continuous, and weakly generalized Cx-
upper sign continuousC. However, T is not strongly generalized Cx-upper
sign continuousC, strongly generalized Cx-upper sign continuousC

C, generalized
Cx-upper sign continuousC, generalized Cx-upper sign continuousC

C, weakly
generalized Cx-upper sign continuousC, or weakly generalized Cx-upper sign
continuousC

C (Fig. 8.1).

Definition 8.2 Let K be a nonempty convex subset of X. A set-valued map T W
K ! 2L.X;Y/ is said to be generalized v-hemicontinuous if for all x; y 2 K, the
set-valued map F W Œ0; 1� ! 2Y , defined by F.�/ D hT.x C �.y � x//; y � xi, is
upper semicontinuous at 0C, where hT.x C �.y � x//; y � xi D fh�; y � xi W � 2
T.x C �.y � x//g.

Fig. 8.1 Relations among different kinds of generalized Cx-upper sign continuities. The similar
diagram also holds for weak as well as for strong cases
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Lemma 8.1 Let K be a nonempty convex subset of X and x 2 K be an arbitrary ele-
ment. If the set-valued map T W K ! 2L.X;Y/ is generalized v-hemicontinuous, then
it is strongly generalized Cx-upper sign continuous as well as weakly generalized
Cx-upper sign continuous.

Proof Let x be an arbitrary but fixed element. Suppose to the contrary that T is
not weakly generalized Cx-upper sign continuous. Then for some y 2 K and all
�� 2 T.x C �.y � x//, � 2 �0; 1Œ, we have

h��; y � xi … � int.C.x// (8.15)

implies

h�; y � xi 2 � int.C.x//; for all � 2 T.x/:

Since T is generalized v-hemicontinuous, the set-valued map F W Œ0; 1� ! 2Y ,
defined in Definition 8.2, is upper semicontinuous at 0C, and F.0/ D hT.x/; y�xi �
� int.C.x//, we have that there exists an open neighborhoodV D �0; ıŒ � Œ0; 1� such
that F.�/ D hT.x C �.y � x//; y � xi � � int.C.x// for all � 2 �0; ıŒ, that is, for
all �� 2 T.x C �.y � x// and all � 2 �0; ıŒ, we have h��; y � xi 2 � int.C.x//, a
contradiction of (8.15). Hence, T is weakly generalized Cx-upper sign continuous.

SinceW.x/ D Y n fC.x/g is an open set for all x 2 K, the proof for strong case is
similar, and therefore, we omit it. ut
Remark 8.2 The generalized v-hemicontinuity does not imply the generalized Cx-
upper sign continuity.

Definition 8.3 Let K be a nonempty convex subset of X and T W K ! 2L.X;Y/

be a set-valued map with nonempty compact values. Then T is said to be H -
hemicontinuous if for all x; y 2 K, the set-valued map F W Œ0; 1� ! 2Y , defined by
F.�/ D H .T.x C �.y � x//;T.x//, is H -continuous at 0C, whereH denotes the
Hausdorff metric on the family of all nonempty closed bounded subsets of L.X;Y/.

Lemma 8.2 Let K be a nonempty convex subset of X and x 2 K be an arbitrary
element. If the set-valued map T W K ! 2L.X;Y/ is nonempty compact valued and
H -hemicontinuous, then it is strongly generalized Cx-upper sign continuousC as
well as weakly generalized Cx-upper sign continuousC.

Proof Let x be an arbitrary but fixed element and suppose that T is strongly
generalized Cx-upper sign continuousC. Let x� WD x C �.y � x/ for all y 2 K
and � 2 �0; 1Œ. Assume that for all y 2 K and all �� 2 T.x�/, � 2 �0; 1Œ, we have

h��; y � xi 2 C.x/:

Since T.x�/ and T.x/ are compact, from Lemma 1.13, it follows that for each fixed
�� 2 T.x�/, there exists �� 2 T.x/ such that

k�� � ��k � H .T.x�/;T.x//:
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Since T.x/ is compact, without loss of generality, we may assume that �� ! � 2
T.x/ as � ! 0C. Since T isH -hemicontinuous,H .T.x�/;T.x// ! 0 as � ! 0C.
Thus,

k�� � �k � k�� � ��k C k�� � �k
� H .T.x�/;T.x// C k�� � �k ! 0 as � ! 0C:

This implies that �� ! � 2 T.x/. Since C.x/ is closed, we have that there exists
� 2 T.x/ such that h�; y � xi 2 C.x/ for all y 2 K. Hence, T is strongly generalized
Cx-upper sign continuousC.

Since W.x/ D Y n f� int.C.x//g is closed for all x 2 K, by using the similar
argument, it is easy to show that T is weakly generalizedCx-upper sign continuousC.

ut
Remark 8.3 The H -hemicontinuity does not imply the generalized Cx-upper sign
continuityC.

Lemma 8.3 Let K be a nonempty convex subset of X and T W K ! 2L.X;Y/ be a
set-valued map with nonempty values. Then

(a) Sol(MGSVVIP)dw � Sol(GSVVIP)ds if T is strongly generalized Cx-upper sign
continuous;

(b) Sol(MGVVIP)dw � Sol(GVVIP)ds � Sol(GVVIP)dw if T is generalized Cx-upper
sign continuous;

(c) Sol(MGWVVIP)dw � Sol(GVVIP)ds � Sol(GWVVIP)dw if T is weakly
generalized Cx-upper sign continuous.

Proof (a) Let Nx 2 Sol(MGSVVIP)dw. Then for all y 2 K, there exists � 2 T.y/ such
that

h�; y � Nxi 2 C.Nx/:

Since K is convex, for all � 2 �0; 1Œ, y� WD xC �.y� Nx/ 2 K. Therefore, for y� 2 K,
there exists �� 2 T.y�/ such that

h��; Nx C �.y � Nx/ � Nxi 2 C.Nx/;

equivalently,

� h��; y � Nxi 2 C.Nx/:

Since C.x/ is a convex cone, we have

h��; y � Nxi 2 C.Nx/:
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By strong generalized Cx-upper sign continuity of T, there exists N� 2 T.Nx/ such that
˝ N�; y � Nx˛ 2 C.Nx/; for all y 2 K:

Hence, Nx 2 Sol(GSVVIP)ds .
Since W.x/ D Y n f�C.x/ n f0gg and W.x/ D Y n f� int.C.x//g are cones, the

proof of the part (b) and (c) lies on the lines of the proof of part (a). ut
Similarly, we can prove the following lemma.

Lemma 8.4 Let K be a nonempty convex subset of X and T W K ! 2L.X;Y/ be a
set-valued map with nonempty values. Then

(a) Sol(MGSVVIP)dg � Sol(GSVVIP)dg if T is strongly generalized Cx-upper sign

continuousC
C;

(b) Sol(MGSVVIP)dg � Sol(GSVVIP)ds if T is strongly generalized Cx-upper sign
continuousC;

(c) Sol(MGSVVIP)dw � Sol(GSVVIP)dg if T is strongly generalized Cx-upper sign
continuousC;

(d) Sol(MGVVIP)dg � Sol(GVVIP)dg if T is generalized Cx-upper sign continu-

ousC
C;

(e) Sol(MGVVIP)dg � Sol(GVVIP)ds if T is generalized Cx-upper sign continu-
ousC;

(f) Sol(MGVVIP)dw � Sol(GVVIP)dg if T is generalized Cx-upper sign
continuousC;

(g) Sol(MGWVVIP)dg � Sol(GWVVIP)dg if T is weakly generalized Cx-upper sign

continuousC
C;

(h) Sol(MGWVVIP)dg � Sol(GWVVIP)ds if T is weakly generalized Cx-upper sign
continuousC;

(i) Sol(MGWVVIP)dw � Sol(GWVVIP)dg if T is weakly generalized Cx-upper sign
continuousC.

We introduce the following set-valued maps:

• SSg.y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi 2 C.x/g;

• SSw.y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi 2 C.x/g;

• MS
g.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi 2 C.x/g;

• MS
w.y/ D fx 2 K W 9� 2 T.y/ satisfying h�; y � xi 2 C.x/g;

• Sg.y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg;

• Sw.y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg;
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• Mg.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg;

• Mw.y/ D fx 2 K W 9� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg;

• SWg .y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi … � int.C.x//g;

• SWw .y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … � int.C.x//g;

• MW
g .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … � int.C.x//g;

• MW
w .y/ D fx 2 K W 9� 2 T.y/ satisfying h�; y � xi … � int.C.x//g.

From the above definition of set-valued maps, the following result can be easily
derived.

Proposition 8.1

(a) Sol(GSVVIP)dg D
\

y2K
SSg.y/ and Sol(GSVVIP)

d
w D

\

y2K
SSw.y/;

(b) Sol(MGSVVIP)dg D
\

y2K
MS

g.y/ and Sol(MGSVVIP)dw D
\

y2K
MS

w.y/;

(c) Sol(GVVIP)dg D
\

y2K
Sg.y/ and Sol(GVVIP)dw D

\

y2K
Sw.y/;

(d) Sol(MGVVIP)dg D
\

y2K
Mg.y/ and Sol(MGVVIP)dw D

\

y2K
Mw.y/;

(e) Sol(GWVVIP)dg D
\

y2K
SWg .y/ and Sol(GWVVIP)dw D

\

y2K
SWw .y/;

(f) Sol(MGWVVIP)dg D
\

y2K
MW

g .y/ and Sol(MGWVVIP)dw D
\

y2K
MW

w .y/.

Proposition 8.2

(a) If the set-valued map C W K ! 2Y is closed, then for each y 2 K, MS
g.y/ is a

closed set.
(b) If the set-valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is

closed, then for each y 2 K, MW
g .y/ is a closed set.

(c) If K is compact and the set-valued map T W K ! 2L.X;Y/ is nonempty compact
valued and the set-valued map C W K ! 2Y is closed, then for each y 2 K,
MS

w.y/ is a closed set.
(d) If K is compact and the set-valued map T W K ! 2L.X;Y/ is nonempty

compact valued and the set-valued map W W K ! 2Y, defined by W.x/ D
Y n f� int.C.x//g, is closed, then for each y 2 K, MW

w .y/ is a closed set.



8.1 Formulations and Preliminaries 309

(e) If the set-valued map T W K ! 2L.X;Y/ is lower semicontinuous and the set-
valued map C W K ! 2Y is closed, then for each y 2 K, SSg.y/ is a closed
set.

(f) If the set-valued map T W K ! 2L.X;Y/ is lower semicontinuous and the set-
valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is closed, then
for each y 2 K, SWg .y/ is a closed set.

(g) If the set-valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is
concave, then for each y 2 K, MW

g .y/ is a convex set.
(h) If the set-valued map C W K ! 2Y is concave, then for each y 2 K, MS

g.y/ is a
convex set.

Proof The proof of part (a) is similar to that of (b), therefore, we prove only part
(b).

(b) For any fixed y 2 K, let fxmg be a sequence inMW
g .y/ such that fxmg converges

to x 2 K. Since xm 2 MW
g .y/, for all � 2 T.y/, we have

h�; y � xmi 2 W.xm/ D Y n f�int.C.xm//g; for all m:

Since � 2 L.X;Y/, � is continuous, and so, the sequence fh�; y � xmig converges to
h�; y � xi 2 Y. Since W is closed, so its graph G.W/ is closed, and therefore, we
have .xm; h�; y � xmi/ converges to .x; h�; y � xi/ 2 G.W/. Thus,

h�; y � xi 2 W.x/ D Y n f� int.C.x//g;

so that x 2 MW
g .y/. Consequently,MW

g .y/ is a closed subset of K.
The proof of part (c) is similar to that of (d), therefore, we prove only part (d).
(d) For any fixed y 2 K, let fxmg be a sequence inMW

w .y/ such that fxmg converges
to x 2 K. Since xm 2 MW

w .y/, there exists �m 2 T.y/ such that

h�m; y � xmi 2 W.xm/ D Y n f�int.C.xm//g; for all m:

Since T.y/ is compact, we may assume that f�mg converges to some � 2 T.y/.
Besides, since K is compact, fxmg is bounded. Therefore, h�m � �; y� xmi converges
to 0, but h�; y�xmi converges to h�; y�xi 2 Y due to � 2 L.X;Y/. Hence, h�m; y�xmi
converges to h�; y�xi 2 Y. Therefore, .xm; h�m; y�xmi/ converges to .x; h�; y�xi/ 2
G.W/ since G.W/ is closed. Thus, for � 2 T.y/,

h�; y � xi 2 W.x/ D Y n f� int.C.x//g;

so that x 2 MW
w .y/. Consequently,MW

w .y/ is a closed subset of K.
The proof of part (f) is similar to that of (e), therefore, we prove only part (e).
(e) For any fixed y 2 K, let fxmg be a sequence in SSg.y/ converging to x 2 K.

By lower semicontinuity (see Lemma 1.9) of T, for any � 2 T.x/, there exists
�m 2 T.xm/ for all m such that the sequence f�mg converges to � 2 L.X;Y/. Since
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xm 2 SSg.y/ for all m, we have

h�m; y � xmi 2 C.xm/:

Moreover,

kh�m; y � xmi � h�; y � xik D kh�m; y � xmi � h�m; xi C h�m; xi � h�; y � xik
D kh�m; x � xmi C h�m; y � xi � h�; y � xik
D kh�m; x � xmi C h�m � �; y � xik
� k�mk kx � xmk C k�m � �k ky � xk:

Since f�mg is bounded in L.X;Y/, fh�m; y � xmig converges to h�; y � xi. By the
closedness of C, we have h�; y � xi 2 C.x/. Hence, x 2 SSg.y/, and therefore, SSg.y/
is closed.

(g) Let y 2 K be any fixed element and let x1; x2 2 MW
g .y/. Then for all � 2 T.y/,

we have

h�; y � x1i 2 W.x1/ and h�; y � x2i 2 W.x2/:

By concavity ofW, for all � 2 Œ0; 1�, we have

h�; y � .�x1 C .1 � �/x2/i D � h�; y � x1i C .1 � �/ h�; y � x2i
2 �W.x1/ C .1 � �/W.x2/

� W.�x1 C .1 � �/x2/:

Therefore, �x1 C .1 � �/x2 2 MW
g .y/, and hence,MW

g .y/ is convex.
Similarly, we can prove part (h). ut

Remark 8.4 The set-valued maps Sg, Sw, Mg, and Mw fail to have the property that
Sg.y/, Sw.y/, Mg.y/, andMw.y/ are closed for all y 2 K.

Example 8.2 Consider X D Y D R, K D �0; 1�, C.x/ D RC for all x 2 K and
T.x/ D Œ0; 1�. Then the set

Sg.y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg
D fx 2 �0; 1� W x � yg

is not closed.

Proposition 8.3 Let K be a nonempty convex subset of X. The set-valued maps Sw
and SWw are KKM-maps.
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Proof Let Ox be in the convex hull of any finite subset fy1; y2; : : : ; ypg of K. Then
Ox D Pp

iD1 �iyi for some nonnegative real number �i, 1 � i � p, with
Pp

iD1 �i D 1.
If Ox … Sp

iD1 Sw.yi/, then for all � 2 T.Ox/, we have

h�; yi � Oxi 2 �C.Ox/ n f0g; for each i D 1; 2; : : : ; p:

Since �C.Ox/ is a convex cone and �i � 0 with
Pp

iD1 �i D 1, we have

pX

iD1

�ih�; yi � Oxi 2 �C.Ox/ n f0g:

It follows that

0 D h�; Ox � Oxi D
*

�;

pX

iD1

�iyi �
pX

iD1

�i Ox
+

D
*

�;

pX

iD1

�i.yi � Ox/
+

D
pX

iD1

�i h�; yi � Oxi 2 �C.Ox/ n f0g:

Thus, we have 0 2 �C.Ox/ n f0g, a contradiction. Therefore, we must have

co.fy1; y2; : : : ; ypg/ �
p[

iD1

Sw.yi/;

and hence, Sw is a KKM map on K.
Since �C.x/ is a convex cone, by using the similar argument, we can easily prove

that SWw is a KKM map on K. ut
Remark 8.5 The above argument cannot be applied for SSg and SSw. In general, SSg
and SSw are not KKM maps.

Example 8.3 Let X D K D R, Y D R
2 and let the operator T W K ! 2L.X;Y/ be the

single-valued map T.x/ WD .x; �x/. Then the sets SSg and SSw coincide, and it can be
easily seen that they are not KKM maps: Consider, for instance, the points y1 D 0

and y2 D 1. Then SSg.y1/ D SSw.y1/ D f0g and SSg.y2/ D SSw.y2/ D f0; 1g. However,
1
2

2 co .y1; y2/ and SSg
�

1
2

� D SSw
�

1
2

� D ˚
0; 1

2

�
, but 1

2
… f0; 1g.

8.2 Existence Results under Monotonicity

Let X and Y be Banach spaces and K be a nonempty convex subset of X. Let T W
K ! 2L.X;Y/ be a set-valued map with nonempty values, and C W K ! 2Y be a
set-valued map such that for all x 2 K, C.x/ is a closed convex pointed cone with
int.C.x// ¤ ;.
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Definition 8.4 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be

(a) strongly generalized Cx-monotone on K if for every y 2 K and for all � 2 T.x/,
� 2 T.y/, we have

h� � �; x � yi 2 C.x/I

(b) strongly generalized Cx-monotoneC onK if for every y 2 K and for all � 2 T.x/,
there exists � 2 T.y/ such that

h� � �; x � yi 2 C.x/I

(c) strongly generalized Cx-monotoneC onK if for every y 2 K and for all � 2 T.y/,
there exists � 2 T.x/ such that

h� � �; x � yi 2 C.x/I

(d) strongly generalized Cx-pseudomonotone on K if for every y 2 K and for all
� 2 T.x/ and � 2 T.y/, we have

h�; y � xi 2 C.x/ implies h�; y � xi 2 C.x/I

(e) strongly generalized Cx-pseudomonotoneC on K if for every y 2 K and for all
� 2 T.x/, we have

h�; y � xi 2 C.x/ implies h�; y � xi 2 C.x/; for some � 2 T.y/I

(f) strongly generalized Cx-pseudomonotoneC on K if for every y 2 K, we have for
some � 2 T.x/,

h�; y � xi 2 C.x/ implies h�; y � xi 2 C.x/; for all � 2 T.y/:

Definition 8.5 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be

(a) generalized Cx-monotone onK if for every y 2 K and for all � 2 T.x/, � 2 T.y/,
we have

h� � �; x � yi … �C.x/ n f0gI

(b) generalized Cx-monotoneC on K if for every y 2 K and for all � 2 T.x/, there
exists � 2 T.y/ such that

h� � �; x � yi … �C.x/ n f0gI
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(c) generalized Cx-monotoneC on K if for every y 2 K and for all � 2 T.y/, there
exists � 2 T.x/ such that

h� � �; x � yi … �C.x/ n f0gI

(d) generalized Cx-pseudomonotone on K if for every y 2 K and for all � 2 T.x/
and � 2 T.y/, we have

h�; y � xi … �C.x/ n f0g implies h�; y � xi … �C.x/ n f0gI

(e) generalized Cx-pseudomonotoneC on K if for every y 2 K and for all � 2 T.x/,
we have

h�; y � xi … �C.x/ n f0g implies h�; y � xi … �C.x/ n f0g;

for some � 2 T.y/;
(f) generalized Cx-pseudomonotoneC on K if for every y 2 K, we have

for some � 2 T.x/; h�; y � xi … �C.x/ n f0g
implies h�; y � xi … �C.x/ n f0g; for all � 2 T.y/:

When we replace C.x/ n f0g by int.C.x// in the above definitions, then T is called
weakly generalized Cx-monotone, weakly generalized Cx-monotoneC, weakly gen-
eralized Cx-monotoneC, weakly generalized Cx-pseudomonotone, weakly general-
ized Cx-pseudomonotoneC, and weakly generalized Cx-pseudomonotoneC, respec-
tively.

The following example shows that the weakly generalized Cx-pseudo-
monotonicity does not imply weakly generalized Cx-monotonicity.

Example 8.4 Let X D Y D R, C.x/ D Œ0; 1/ for all x 2 X, and let T W R ! 2R

be defined as T.x/ D � � 1; x� for all x 2 R. Then it is easy to see that T is weakly
generalized Cx-pseudomonotone but not weakly generalized Cx-monotone.

From the above definition, we have the following diagram (Fig. 8.2).
The implications in the following lemma follow from the definition of different

kinds of monotonicities, and therefore, we omit the proof.

Lemma 8.5 Let K be a nonempty subset of X and T W K ! 2L.X;Y/ be a set-valued
map with nonempty values. Then

(a) Sol(GSVVIP)dw � Sol(MGSVVIP)dw if T is strongly generalized Cx-
pseudomonotoneC;

(b) Sol(GSVVIP)dw � Sol(MGSVVIP)dg if T is strongly generalized Cx-pseudo-
monotoneC;

(c) Sol(GVVIP)dw � Sol(MGVVIP)dw if T is generalized Cx-pseudomonotoneC;
(d) Sol(GVVIP)dw � Sol(MGVVIP)dg if T is generalized Cx-pseudomonotoneC;
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GM GPM GPM + GM+

GM+ GPM + GPM +
+ GM+

+

Fig. 8.2 Relations among different kinds of generalized Cx-monotonicity. GM and GPM stand for
generalized Cx-monotonicity and generalized Cx-pseudomonotonicity, respectively

(e) Sol(GWVVIP)dw � Sol(MGWVVIP)dw if T is weakly generalized Cx-
pseudomonotoneC;

(f) Sol(GWVVIP)dw � Sol(MGWVVIP)dg if T is weakly generalized Cx-
pseudomonotoneC.

Next we give the first result on the existence of a solution of (GWVVIP)w.

Theorem 8.1 Let X and Y be Banach spaces and K be a nonempty compact convex
subset of X. Let C W K ! 2Y be a set-valued map such that for each x 2 K, C.x/ is
a proper, closed and convex (not necessarily pointed) cone with int.C.x// ¤ ;; and
let W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g, such that the graph G.W/

of W is closed in X � Y. Let x 2 K be arbitrary and suppose that T W K ! 2L.X;Y/

is weakly generalized Cx-pseudomonotoneC and weakly generalized Cx-upper sign
continuousC on K. Then there exists a solution of (GWVVIP)w.

Proof Define set-valued maps SWw ;MW
g W K ! 2K by

SWw .y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … �int.C.x//g;
and

MW
g .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �int.C.x//g;

for all y 2 K. Then by Proposition 8.3, SWw is a KKM map on K. By generalized
Cx-pseudomonotonicityC of T, SWw .y/ � MW

g .y/ for all y 2 K. Since SWw is a KKM
map, so isMW

g . Also,

\

y2K
SWw .y/ �

\

y2K
MW

g .y/:

by Lemma 8.4 (i),

\

y2K
MW

g .y/ �
\

y2K
SWw .y/;



8.2 Existence Results under Monotonicity 315

and thus,

\

y2K
SWw .y/ D

\

y2K
MW

g .y/:

By Proposition 8.2 (b) and the assumption that the graph G.W/ of W is closed,
MW

g .y/ is closed for all y 2 K. Since K is compact, so is MW
g .y/ for all y 2 K. By

Fan-KKM Lemma 1.14, we have

\

y2K
SWw .y/ D

\

y2K
MW

g .y/ ¤ ;:

Hence, there exists Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi … � int.C.Nx//:

The proof of theorem is complete. ut
Remark 8.6 We note that the assumptions of Theorem 8.1 imply that, in case of
an infinite-dimensional space Y, the cone C.x/ cannot be pointed for each x 2 K.
Indeed, the assumptions imply that Y n f� int.C.x//g is closed for each x 2 K;
hence int.C.x// is open. Since Y is infinite-dimensional, int.C.x// contains a whole
straight line. That is, there exist y; z 2 Y such that y C tz, y � tz 2 int.C.x// for all
t 2 R. By convexity, 0 2 C.x/ which gives .1=t/y C z, .1=t/y C z 2 C.x/ for all
t > 1. Since C.x/ is closed, z 2 C.x/ and �z 2 C.x/. Consequently, C.x/ cannot be
pointed.

Analogously to Theorem 8.1, we have the following existence result for a
solution of (GVVIP)w.

Theorem 8.2 Let X, Y, K, C and W be the same as in Theorem 8.1. Let x 2 K be
arbitrary and suppose that T W K ! 2L.X;Y/ is generalized Cx-pseudomonotoneC
and generalized Cx-upper sign continuousC on K such that the set MW

g .y/ D fx 2
K W 8� 2 T.y/ satisfying h�; y � xi … � int.C.x//g is closed for all y 2 K. Then
there exists a solution of (GVVIP)w.

Remark 8.7 Theorem 8.1 and 8.2 also hold when K is nonempty weakly compact
convex subset of a Banach space X.

Since SSw is not a KKM map, the argument similar to Theorem 8.2 cannot be
used for proving the existence of a solution of (GSVVIP)w. Therefore, we define the
following concept of pseudomonotonicity.

Definition 8.6 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be generalized Cx-pseudomonotone� on K if for every y 2 K and
for all � 2 T.x/ and � 2 T.y/, we have

h�; y � xi … �C.x/ n f0g implies h�; y � xi 2 C.x/:
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We use the above definition of pseudomonotonicity and establish the following
existence result for a solution of (GSVVIP)w.

Theorem 8.3 Let X, Y, K and C be the same as in Theorem 8.1. In addition, we
assume that the graph of C is closed. Let x 2 K be arbitrary and suppose that
T W K ! 2L.X;Y/ is generalized Cx-pseudomonotone� and strongly generalized
upper sign continuousC on K. Then there exists a solution of (GSVVIP)w.

Proof Define set-valued maps Sw;MS
g W K ! 2K by

Sw.y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg;

and

MS
g.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi 2 C.x/g;

for all y 2 K. Then by Proposition 8.3, Sw is a KKM map on K. By generalized
Cx-pseudomonotonicity� of T, Sw.y/ � MS

g.y/ for all y 2 K. Since Sw is a KKM
map, so isMM

g . Also,

\

y2K
Sw.y/ �

\

y2K
MS

g.y/:

By using strongly generalized Cx-upper sign continuityC of T and Lemma 8.4 (b),
we have

\

y2K
MS

g.y/ D Sol(MGSVVIP)dg � Sol(GSVVIP)ds

� Sol(GVVIP)ds � Sol(GVVIP)dw

D
\

y2K
Sw.y/;

and thus,

\

y2K
Sw.y/ D

\

y2K
MS

g.y/:

Since the graph G.C/ of C is closed and K is compact, we have that MS
g.y/ is

compact for all y 2 K. By Fan-KKM Lemma 1.14, we have

\

y2K
Sw.y/ D

\

y2K
MS

g.y/ ¤ ;:
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Hence, there exists Nx 2 K such that for all y 2 K, there exists � 2 T.Nx/ satisfying
h�; y � Nxi … �C.x/ n f0g:

This completes the proof. ut
To give the existence results for solutions of (GWVVIP)w defined on a closed (not

necessarily bounded) convex subset K of a Banach space X, we need the following
coercivity conditions.

Definition 8.7 The set-valued map T W K ! 2L.X;Y/ is said to be

(a) weakly generalized v-coercive on K if there exist a compact subset B of X and
Qy 2 B \ K such that for every � 2 T.x/,

h�; Qy � xi 2 � int.C.x//; for all x 2 K n B: (8.16)

(b) generalized v-coercive onK if there exist a compact subset B of X and Qy 2 B\K
such that for every � 2 T.x/,

h�; Qy � xi 2 �C.x/ n f0g; for all x 2 K n B: (8.17)

Theorem 8.4 Let X, Y, C, W and G.W/ be the same as in Theorem 8.1, and K
be a nonempty closed convex subset of X. Let x 2 K be an arbitrary element and
suppose that T W K ! 2L.X;Y/ is weakly generalized Cx-pseudomonotoneC, weakly
generalized Cx-upper sign continuousC and weakly generalized v-coercive on K
and it has nonempty values. Then (GWVVIP)w has a solution.

Proof Let SWw and MW
g be the set-valued maps defined as in the proof of Theo-

rem 8.1. Choose a compact subset B of X and Qy 2 B \ K such that for every
� 2 T.x/, (8.16) holds.

We claim that the closure cl
�
SWw .Qy/� of SWw .Qy/ is a compact subset ofK. If SWw .Qy/ 6�

B, then there exists x 2 SWw .Qy/ such that x 2 KnB. It follows that, for some � 2 T.x/,

h�; Qy � xi … � int.C.x//;

which contradicts (8.16). Therefore, we have SWw .Qy/ � B; hence, cl
�
SWw .Qy/� is a

compact subset of K.
As in the proof of Theorem 8.1, by Fan-KKM Lemma 1.14, we have

\

y2K
cl

�
SWw .Qy/� ¤ ;:

Again, as in the proof of Theorem 8.1, MW
g .y/ is closed for all y 2 K. By

weakly generalized Cx-pseudomonotonicityC of T, SWw .y/ � MW
g .y/ for all y 2 K.

Therefore,

cl
�
SWw .Qy/� � MW

g .y/; for all y 2 K:
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Consequently,
\

y2K
MW

g .y/ ¤ ;:

Furthermore, as in the proof of Theorem 8.1, we have
\

y2K
SWw .y/ D

\

y2K
MW

g .y/ ¤ ;:

Hence, (GWVVIP)w has a solution. ut
Analogous to Theorem 8.4, we can prove the following existence result for a

solution of (GVVIP)w.

Theorem 8.5 Let X, Y, C, W and G.W/ be the same as in Theorem 8.2, and K be a
nonempty closed convex subset of X. Let x 2 K be an arbitrary element and suppose
that T W K ! 2L.X;Y/ is nonempty valued, generalized Cx-pseudomonotoneC,
generalized Cx-upper sign continuousC and generalized v-coercive on K such that
the set

Mg.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg

is closed for all y 2 K. Then (GVVIP)w has a solution.

Definition 8.8 The set-valued map T W K ! 2L.X;Y/ is said to be

(a) weakly generalized d-coercive on K if there exist a point Qy and a number d > 0

such that for every � 2 T.x/,

h�; Qy � xi 2 � int.C.x//; if x 2 K and kQy � xk > dI

(b) generalized d-coercive on K if there exist a point Qy and a number d > 0 such
that for every � 2 T.x/,

h�; Qy � xi 2 �C.x/ n f0g; if x 2 K and kQy � xk > d:

Now we present an existence theorem for a solution of problem (GWVVIP)w
under weakly generalized Cx-pseudomonotonicityC assumption.

Theorem 8.6 Let X, Y, C, W and G.W/ be the same as in Theorem 8.1. Let K
be a nonempty convex subset of X and T W K ! 2L.X;Y/ be a weakly generalized
Cx-pseudomonotoneC, weakly generalized Cx-upper sign continuousC on K with
nonempty compact values. Suppose that at least one of the following assumptions
holds:

(i) K is weakly compact.
(ii) X is reflexive, K is closed, and T is generalized d-coercive on K.

Then (GWVVIP)w has a solution.



8.2 Existence Results under Monotonicity 319

Proof Let SWw be the set-valued map defined as in the proof of Theorem 8.1. Define
a set-valued mapMW

w by

MW
w .y/ D fx 2 K W 9� 2 T.y/ satisfying h�y � xi … � int.C.x//g;

for all y 2 K. In order to prove the theorem under assumptions (i) it suffices to
follow the proof of Theorem 8.1.

As in the proof of Theorem 8.1, SWw is a KKM map. By weakly generalized Cx-
pseudomonotoneC, SWw .y/ � MW

w .y/ for all y 2 K, and so MW
w is a KKM-map. As

in the proof of Proposition 8.2 (d), we can easily show thatMW
w .y/ is weakly closed

for all y 2 K.
Let us now consider the case (ii). Let Br denote the closed ball (under the norm)

of X with center at origin and radius r. IfK\Br ¤ ;, part (i) guarantees the existence
of a solution xr for the following problem, denoted by (GWVVIP)rw:

find xr 2 K \ Br such that for all y 2 K \ Br;

there exists �r 2 T.xr/ satisfying h�r; y � xri … �int.C.xr//:

We observe that fxr W r > 0g must be bounded. Otherwise, we can choose r large
enough so that r � kQyk and d < kQy � xrk, where Qy satisfies the weakly generalized
d-coercivity of T. It follows that, for every �r 2 T.xr/,

h�r; y0 � xri 2 �int.C.xr//;

that is, xr is not a solution of problem (GWVVIP)rw, a contradiction. Therefore, there
exist r such that kxrk < r. Choose for any x 2 K. Then we can choose " > 0 small
enough such that xr C ".x � xr/ 2 K \ Br. If we suppose that for every �r 2 T.xr/,

h�r; x � xri 2 �int.C.xr//;

then

h�r; xr C ".x � xr/ � xri D "h�r; x � xri 2 �int.C.xr//;

that is, xr is not a solution of (GWVVIP)rw. Thus, xr is a solution of (GWVVIP)w.
ut

Analogous to Theorem 8.6, we have the following existence result for a solution
of (GVVIP)w.

Theorem 8.7 Let X, Y, C, W and G.W/ be the same as in Theorem 8.2. Let K be a
nonempty convex subset of X and T W K ! 2L.X;Y/ be nonempty valued, generalized
Cx-pseudomonotoneC and generalized Cx-upper sign continuousC on K such that
the set

SMg .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg
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is weakly closed for all y 2 K. Suppose that at least one of the following assumptions
holds:

(i) K is weakly compact.
(ii) X is reflexive, K is closed, and T is generalized d-coercive on K.

Then (GVVIP)w has a solution.
In order to derive the existence results for solution of (GWVVIP)w and

(GWVVIP)s by the way of solving an appropriate Stampacchia generalized (scalar)
variational inequality problem (in short, GVIP), we use the following scalarization
technique.

Let s 2 Y� and T W K ! 2L.X;Y/ be a set-valued map with nonempty values. We
define a set-valued map Ts W K ! 2X

�

by

hTs.x/; yi D hs;T.x/; yi; for all x 2 K and y 2 X:

Also, set

H.s/ D fy 2 Y W hs; yi � 0g:

Then for all s 2 Y�, H.s/ is a closed convex cone in Y.
Recall that a set-valued map Q W X ! 2X

�

is said to be generalized
pseudomonotone on X if for every pair of points x; y 2 X and for all u 2 Q.x/,
v 2 Q.y/, we have

hu; y � xi � 0 implies hv; y � xi � 0:

Also, a set-valued map Q W X ! 2X
�

is said to be generalized pseudomonotoneC on
X if for every pair of points x; y 2 X and for all u 2 Q.x/, we have

hu; y � xi � 0 implies hv; y � xi � 0; for some v 2 Q.y/:

Obviously, every generalized pseudomonotone set-valued map is generalized
pseudomonotoneC.

Proposition 8.4 Let X and Y be Banach spaces and K be a nonempty closed
convex subset of X. Suppose that T W K ! 2L.X;Y/ is strongly generalized
H.s/-pseudomonotone (respectively, strongly generalized H.s/-pseudomonotoneC)
for some s 2 Y� n f0g. Then the mapping Ts is generalized pseudomonotone
(respectively, generalized pseudomonotoneC) on K.

Proof For any x; y 2 K, let

h�s; y � xi � 0; for all �s 2 Ts.x/: (8.18)

Then hs; h�; y � xii � 0 for all � 2 T.x/. Therefore, h�; y � xi 2 H.s/ for all
� 2 T.x/. If T is strongly generalized H.s/-pseudomonotone, then we must have
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h�; y � xi 2 H.s/ for all � 2 T.y/, and thus hs; h�; y � xii � 0 for all � 2 T.y/.
Hence, for all �s 2 Ts.y/,

h�s; y � xi � 0; (8.19)

that is, Ts is generalized pseudomonotone on K. Analogously, if T is strongly
generalized H.s/-pseudomonotoneC, (8.18) implies (8.19) for some �s 2 Ts.y/ and
Ts is generalized pseudomonotoneC on K. ut
Theorem 8.8 Let X and Y be Banach spaces and K be a nonempty compact convex
subset of X. Let C W K ! 2Y be defined as in Theorem 8.1 such that C�C n f0g ¤ ;.
Let x 2 K be arbitrary and suppose that T W K ! 2L.X;Y/ is weakly generalized Cx-
upper sign continuous and weakly generalized H.s/-pseudomonotone on K for some
s 2 C�C where H.s/ ¤ Y, and has nonempty values. Then the following statements
hold.

(a) There exists a solution of (GWVVIP)w.
(b) If for each x 2 K, the set T.x/ is convex and weakly compact in L.X;Y/, then

there exists a solution of (GWVVIP)s.

Proof

(a) Since H.s/ ¤ Y, we note that int H.s/ D s�1..0; 1//. To see this, consider the
following argument. It is clear that s�1..0; 1// � int.H.s//.

Conversely, let y 2 int.H.s//. Then there exists r > 0 such that Br.y/ �
H.s/, where Br.y/ denotes the ball with center at y and radius r. Hence,
hs; y C rzi � 0 for all kzk < 1. If hs; yi D 0, then from the above
inequality we conclude that hs;wi � 0 for all w 2 Y or Y � H.s/ which
is a contradiction. Therefore, hs:wi > 0 and y 2 s�1..0; 1//. Consequently,
int.H.s// D s�1..0; 1//.

As s 2 C�C n f0g, the mapping Ts is generalized pseudomonotone on K
due to Proposition 8.4. Beside, since T is weakly generalized Cx-upper sign
continuous, so is Ts. Now, in the special case where Y D R, C.x/ D RC for all
x 2 K. Theorem 8.1 guarantees the existence of a solution Nx 2 K of (GVIP)sw,
that is, for all y 2 K, there exists �s 2 Ts.Nx/ satisfying

h�s; y � Nxi � 0: (8.20)

Consequently, for every y 2 K, there exists N� 2 T.Nx/ such that

hs; h N�; y � Nxii � 0;

hence, h N�; y � Nxi … �int.H.s//. Since s 2 C�C, �int.H.s// � �int.CC/ �
� int.C.Nx//, so that

h N�; y � Nxi … � int.C.Nx//:
Therefore, Nx is a solution of (GWVVIP)w.
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(b) Let, in addition, the set T.Nx/ be convex and compact. Then Ts.Nx/ is obviously
convex in X�. We show that Ts.Nx/ is also compact.

Let fz˛g be a net in Ts.Nx/. Then there exists a net f�˛g in T.Nx/ such that

hz˛; xi D hs; h�˛; xii; for all x 2 X:

Since T.Nx/ is compact, there exists a subnet of f�˛g which is converging to some
� 2 T.Nx/. Without loss of generality, we suppose that �˛ converges to �. Fix any
x 2 X. Then we can define

hl; ui D hs; hu; xii; for all u 2 L.X;Y/;

hence, l 2 L.X;Y/�. Therefore, there exists Nz 2 X� such that

lim
˛

hz˛; xi D lim
˛

hl; �˛i D hl; �i D hs; h�; xii D hNz; xi;

that is, Nz 2 Ts.Nx/. Thus, Ts.Nx/ is compact set in X�.
By (8.20) and the well known minimax theorem [4], we have

max
�s2Ts.Nx/

min
y2K h�s; y � Nxi D min

y2K max
�s2Ts.Nx/

h�s; y � Nxi � 0:

Hence, there exists �s 2 Ts.Nx/ such that

h�s; y � Nxi � 0; for all y 2 K;

that is, there exists � 2 T.Nx/ such that

hs; h�; y � Nxii � 0; for all y 2 K:

Analogously, it follows that

h�; y � Nxi … � int.C.Nx//; for all y 2 K:

Therefore, Nx is a strong solution of (GWVVIP)w. ut
In order to solve (GWVVIP)w with an unbounded domain, we need the following

coercivity conditions. We first note that

C�C D fl 2 Y� W hl; yi � 0 for all y 2 CCg;

and

int.C�C/ D fl 2 Y� W hl; yi > 0 for all y 2 CCg;

where CC D co.fC.x/ W x 2 Kg/.
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Definition 8.9 Let X and Y be Banach spaces and K be a nonempty closed convex
subset of X. Let C W K ! 2Y be a set-valued map such that C�C n f0g ¤ ;. A
set-valued map T W K ! 2L.X;Y/ is said to be

(a) generalized v-coercive if there exist x0 2 K and s 2 C�C n f0g such that

inf
�2Ts.x/

h�; x � xoi
kx � x0k ! 1; as x 2 K; kxk ! 1:

(b) weakly generalized v-coercive if there exist y 2 K and s 2 C�C n f0g such that

inf
�2Ts.x/

h�; x � yi ! 1; as x 2 K; kxk ! 1:

It is clear that if T is generalized v-coercive, then it is weakly generalized v-
coercive.

Under the assumption of the weak generalized v-coercivity of T, we have the
following existence theorem for solutions of (GWVVIP)w and (GWVVIP)s.

Theorem 8.9 Let X, Y and C be the same as in Theorem 8.8 and, in addition, X be
reflexive. Let K be a nonempty convex closed subset of X. Suppose that T W K !
2L.X;Y/ is weakly generalized H.s/-upper sign continuous, weakly generalized H.s/-
pseudomonotone, and weakly generalized v-coercive with respect to an s 2 C�C nf0g
on K, where H.s/ ¤ Y, and has nonempty values. Then the following statements
hold.

(a) There exists a solution of (GWVVIP)w.
(b) If, for each x 2 K, the set T.x/ is convex and weakly compact in L.X;Y/, there

exists a solution of (GWVVIP)s.

Proof If, for the given s 2 C�C n f0g, there exists Nx 2 K which is a solution of
(GVIP)w, that is, for all y 2 K, there exists �s 2 Ts.Nx/ satisfying

h�s; y � Nxi � 0:

Then as in the proof of Theorem 8.8, assertions (a) and (b) are true. So, for the proof
of this theorem, it is sufficient to prove that there exists a solution of (GVIP)w.

Let Br denote the closed ball (under the norm) of X with center at origin and
radius r. In the special case where Y D R, C.x/ D RC for all x 2 K \ Br,
Proposition 8.4 and Theorem 8.1 with Remark 8.7 guarantee the existence of a
solution xr for the following problem, denoted by (GVIP)rw:

Find xr 2 K \ Br such that for all y 2 K \ Br;

there exists �s 2 Ts.Nx/ satisfying h�s; y � Nxi � 0;
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ifK\Br ¤ ;. Choose r � kx0k, where x0 satisfies the weak generalized v-coercivity
of T. Then for some � 0

s 2 Ts.Nx/, we have

h� 0
s; y � Nxi � 0: (8.21)

We observe that fxr W r > 0g must be bounded. Otherwise, we can choose r large
enough so that the weak generalized v-coercivity of T yields

h�s; x0 � Nxi < 0; for all �s 2 Ts.Nx/;

which contradicts (8.21). Therefore, there exists r such that kx0k < r. Now, for each
x 2 K, we can choose " > 0 small enough such that xr C ".x � xr/ 2 K \ Br. Then

h�s; xr C ".x � xr/ � Nxi � 0; for some �s 2 Ts.Nx/:

Dividing by " on both sides of the above inequality, we obtain

h�s; x � xri � 0; for all x 2 K;

which shows that xr is s solution of (GVIP)sw and the result follows. ut
We now obtain similar results in the case of weak generalized H.s/-

pseudomonotonicity.

Theorem 8.10 Let X, Y and C be the same as in Theorem 8.8. Let K be a nonempty
convex subset of X and T W K ! 2L.X;Y/ be a weakly generalized H.s/-upper
sign continuous, weakly generalized H.s/-pseudomonotonemapping with nonempty
compact values on K with respect to s 2 C�C n f0g where H.s/ ¤ Y. Suppose that at
least one of the following conditions hold:

(i) K is weakly compact.
(ii) K is closed, T is weakly v-coercive on K with respect to the same s 2 C�C n f0g,

and X is reflexive.

Then the following statements hold.

(a) There exists a solution of (GWVVIP)w.
(b) If, for each x 2 K, the set T.x/ is convex, there exists a solution of (GWVVIP)s.

Proof We first note that, in case (i), the existence of a solution to the (GVIP)w
defined in (8.20) is guaranteed by Theorem 8.6 (a). In addition, under assumptions
of (ii), the set Ts.x/ is also convex and sequential compact. Therefore, in order to
prove this theorem it suffices to follow the proofs of Theorems 8.8 and 8.9 with the
corresponding modifications, respectively. ut
Remark 8.8 Let X and Y be Banach spaces and K be a closed convex pointed cone
in X. Let C W K ! 2Y be such that for all x 2 K, C.x/ is a closed convex pointed
cone with int.C.x// ¤ ;. Let T W K ! 2L.X;Y/ be a set-valued map with nonempty
values. The generalized vector complementarity problem (in short, GVCP) is to find
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.Nx; N�/ 2 K � T.Nx/ such that

h N�; Nxi … int.C.Nx// and h N�; yi … � int.C.Nx//; for all y 2 K:

It can be shown that if (GWVVIP)s has a solution, then (GVCP) has a solution.
Then by using Theorems 8.9 and 8.10, we can derive existence results for solutions
of (GVCP). For further details, we refer [5].

Definition 8.10 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be

(a) generalized Cx-quasimonotone on K if for every y 2 K and for all � 2 T.x/ and
all � 2 T.y/, we have

h�; y � xi … �C.x/ implies h�; y � xi … � int.C.x//I

(b) generalized Cx-quasimonotoneC on K if for every y 2 K and for all � 2 T.x/,
we have

h�; y � xi … �C.x/ implies h�; y � xi … � int.C.x//; for some � 2 T.y/:

Daniilidis and Hadjisavvas [2] established some existence results for a solu-
tion of (GWVVIP)w under generalized Cx-quasimonotonicity or generalized Cx-
quasimonotonicityC.

Now we establish some existence results for solutions of (GSVVIP)s, (GVVIP)s
and (GWVVIP)s.

Definition 8.11 Let T W K ! 2L.X;Y/ be a set-valued map. A single-valued map
f W K ! L.X;Y/ is said to be a selection of T if for all x 2 K, f .x/ 2 T.x/. It is
called continuous selection if, in addition, f is continuous

Lemma 8.6 If u is a selection of T, then every solution of SVVIP (5.1), VVIP (5.2)
and WVVIP (5.3) (all these defined by means of f ) is a solution of (GSVVIP)s,
(GVVIP)s and (GWVVIP)s, respectively.

Proof Assume that Nx 2 K is a solution of SVVIP (5.1), that is,

h f .Nx/; y � Nxi 2 C.x/; for all y 2 K:

Let N� D f .Nx/. Then, N� 2 T.Nx/ such that

h N�; y � Nxi 2 C.x/; for all y 2 K:

Thus, Nx 2 K is a solution of (GSVVIP)s.
Similarly, we can prove the other cases. ut
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Lemma 8.7 Let f W K ! L.X;Y/ be a selection of T W K ! 2L.X;Y/ and x 2 K
be an arbitrary element. If T is (respectively, strongly and weakly) generalized Cx-
pseudomonotone, then f is (respectively, strongly and weakly) Cx-pseudomonotone.

Theorem 8.11 Let X and Y be Banach spaces and K be a nonempty compact
convex subset of X. Let C W K ! 2Y be a set-valued map such that for each x 2 K,
C.x/ is a proper closed convex (not necessarily pointed) cone with int.C.x// ¤ ;;
and let W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g, such that the graph
G.W/ of W is closed in X � Y. For arbitrary x 2 K, suppose that T W K ! 2L.X;Y/

is nonempty valued, weakly generalized Cx-pseudomonotoneC and has continuous
selection f on K. Then there exists a solution of (GWVVIP)s.

Proof By the hypothesis, there is a continuous function f W K ! L.X;Y/ such that
f .x/ 2 T.x/ for all x 2 K. From Lemma 8.7, f is weakly Cx-pseudomonotone. Then
all the conditions of Theorem 5.2 are satisfied. Hence, there exists a solution of the
following WVVIP: Find Nx 2 K such that

h f .Nx/; y � Nxi … � int.C.Nx//; for all y 2 K:

By Lemma 8.6, Nx is a solution of (GWVVIP)s.
Similarly, by using Lemmas 8.6 and 8.7, and Theorem 5.3, we can establish the

following result.

Theorem 8.12 Let X and Y be Banach spaces and K be a nonempty compact
convex subset of X. Let C W K ! 2Y be a set-valued map such that for each x 2 K,
C.x/ is a proper closed convex (not necessarily pointed) cone with int.C.x// ¤ ;;
and let W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g, such that the
graph G.W/ of W is closed in X � Y. Let x 2 K be arbitrary and suppose that
T W K ! 2L.X;Y/ is nonempty valued, generalized Cx-pseudomonotoneC and has
continuous selection f on K such that the set

MW
g .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … � int.C.x//g

is closed for all y 2 K. Then there exists a solution of (GVVIP)s.

Remark 8.9 If K is compact and T W K ! 2L.X;Y/ is continuous, then T has a
continuous selection, see, for example [3].

8.3 Existence Results Without Monotonicity

Let X and Y be two Banach spaces, K � X be a nonempty, closed and convex set,
and C � Y be a closed, convex and pointed cone with int.C/ ¤ ;.

Recall that a mapping g W X ! Y is said to be completely continuous if the weak
convergence of xn to x in X implies the strong convergence of g.xn/ to g.x/ in Y.
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Definition 8.12 Let K be a nonempty, closed and convex subset of a Banach space
X and Y be a Banach space ordered by a closed, convex and pointed cone C with
int.C/ ¤ ;. A set-valued map T W K ! 2L.X;Y/ is said to be

(a) completely semicontinuous if for each y 2 K,

fx 2 K W h�; y � xi 2 � int.C/ for all � 2 T.x/g

is open in K with respect to the weak topology of X;
(b) strongly semicontinuous if for each y 2 K,

fx 2 K W h�; y � xi 2 � int.C/ for all � 2 T.x/g

is open in K with respect to the norm topology of X.

Remark 8.10

(a) Let K be a nonempty, bounded, closed and convex subset of a reflexive Banach
space X and Y be a Banach space ordered by a closed, convex and pointed cone
C with int.C/ ¤ ;. Let T W K ! L.X;Y/ be completely continuous. Then T is
completely semicontinuous.

(b) LetK be a nonempty, compact and convex subset of a Banach spaceX and Y be a
Banach space ordered by a closed, convex and pointed cone C with int.C/ ¤ ;.
Let T W K ! L.X;Y/ be continuous. Then T is strongly semicontinuous.

(c) When X D R
n, complete continuity is equivalent to continuity, and complete

semicontinuity is equivalent to strong semicontinuity.

Next we state and prove the existence result for a solution of (GWVVIP)s with
C.x/ is a fixed pointed solid closed convex cone in Y.

Theorem 8.13 Let K be a nonempty, bounded closed and convex subset of a
reflexive Banach space X and Y be a Banach space ordered by a proper closed
convex and pointed cone C with int.C/ ¤ ;. Let T W K ! 2L.X;Y/ be a completely
semicontinuous set-valued map with nonempty values. Then there exists a solution
of (GWVVIP)s for a fixed pointed solid closed convex cone C in Y, that is, there
exist Nx 2 K and � 2 T.Nx/ such that

h�; y � Nxi … � int.C/; for all y 2 K:

Proof Suppose that the conclusion is not true. Then for each Ox 2 K, there exists
y 2 K such that

h O�; y � Oxi 2 � int.C/; for all O� 2 T.Ox/: (8.22)

For every y 2 K, define the set Ny as

Ny D fx 2 K W h�; y � xi 2 � int.C/ for all � 2 T.x/g :
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Since T is completely semicontinuous, the set Ny is open in K with respect to the
weak topology of X for every y 2 K.

We assert that fNy W y 2 Kg is an open cover of K with respect to the weak
topology of X. Indeed, first it is easy to see that

[

y2K
Ny � K:

Second, for each Ox 2 K, by (8.22) there exists y 2 K such that Ox 2 Ny. Hence
Ox 2 S

y2K Ny. This shows that K � S
y2K Ny. Consequently,

K D
[

y2K
Ny:

So, the assertion is valid.
The weak compactness of K implies that there exists a finite set of elements

fy1; y2; : : : ; ymg � K such that K D Sm
iD1 Nyi . Hence there exists a continuous (with

respect to the weak topology of X) partition of unity fˇ1; ˇ2; : : : ; ˇmg subordinated
to

˚
Ny1 ;Ny2 ; : : : ;Nym

�
such that ˇj.x/ � 0 for all x 2 K, j D 1; 2; : : : ;m,

mX

jD1

ˇj.x/ D
1 for all x 2 K, and

ˇj.x/

� D 0; whenever x 62 Nyj ;

> 0; wheneverx 2 Nyj :

Let p W K ! X be defined by

p.x/ D
mX

jD1

ˇj.x/yj; for all x 2 K: (8.23)

Since ˇi is continuous with respect to the weak topology of X for each i, p is
continuous with respect to the weak topology of X. Let � WD co.fy1; y2; : : : ; ymg/ �
K. Then � is a simplex of a finite dimensional space and p maps � into itself. By
Brouwer’s Fixed Point Theorem 1.39, there exists Qx 2 � such that p.Qx/ D Qx. For
any given x 2 K, let

k.x/ D ˚
j W x 2 Nyj

� D ˚
j W ˇj.x/ > 0

�
:

Obviously, k.x/ ¤ ;.
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Since Qx 2 � � K is a fixed point of p, we have p.Qx/ D Pm
jD1 ˇj.Qx/yj and hence

by the definition of Ny, we derive for each Q� 2 T.Qx/

0 D hQ�; Qx � Qxi
D h Q�; Qx � p.Qx/i

D
*

Q�; Qx �
mX

jD1

ˇj.Qx/yj
+

D
X

j2k.x0/

ˇj.x0/h Q�; Qx � yji 2 int.C/

which leads to a contradiction. Therefore, there exist Nx 2 K and � 2 T.Nx/ such that

h�; y � Nxi … � int.C/; for all y 2 K:

This completes the proof. ut
The proof of the following result can be easily derived on the lines of the proof

of Theorem 8.13.

Theorem 8.14 Let K be a nonempty, compact and convex subset of a Banach space
X and Y be a Banach space ordered by a proper closed convex and pointed cone C
with int.C/ ¤ ;. Let T W K ! 2L.X;Y/ be strongly semicontinuous with nonempty
values. Then there exist Nx 2 K and � 2 T.Nx/ such that

h�; y � Nxi … � int.C/; for all y 2 K:

Nowwe establish an existence theorem for a solution of (GWVVIP)g under lower
semicontinuity assumption on the underlying set-valued map T.

Theorem 8.15 Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X and the set-valued map T W K ! 2L.X;Y/ be lower
semicontinuous such that the set

Ax WD fy 2 K W h�; y � xi 2 � int.C.x// for all � 2 T.x/g

is convex for all x 2 K. Let the set-valued map W W K ! 2Y, defined by W.x/ D
Y n f� int.C.x//g for all x 2 K, be closed. Assume that for a nonempty compact
convex set D � K with each x 2 D n K, there exists y 2 D such that for any
� 2 T.x/, h�; y � xi 2 � int.C.x//. Then (GWVVIP)g has a solution.

Proof Let

A D f.x; y/ 2 K � K W h�; y � xi … � int.C.x// for all � 2 T.x/g:
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Clearly, .x; x/ 2 A for all x 2 K. For each fixed y 2 K, let

Ay WD fx 2 K W .x; y/ 2 Ag
D fx 2 K W h�; y � xi … � int.C.x// for all � 2 T.x/g:

Then by Proposition 8.2 (f), Ay is closed. By hypothesis, for each fixed y 2 K, the
set Ax WD fy 2 K W .x; y/ … Ag is convex.

By Lemma 1.17, there exists Nx 2 K such that fNxg � K � A, that is, Nx 2 K such
that h�; Nx � yi … � int.C.Nx//, for all � 2 T.Nx/ and y 2 K. ut

8.4 Generalized Vector Variational Inequalities and
Optimality Conditions for Vector Optimization Problems

Throughout this section, unless otherwise specified, we assume thatK is a nonempty
convex subset of Rn and f D . f1; f2; : : : ; f`/ W Rn ! R

` be a vector-valued function.
The subdifferential of a convex function fi is denoted by @fi.

Corresponding to K and @fi, the (Stampacchia) generalized vector variational
inequality problems and Minty generalized vector variational inequality problems
are defined as follows:

(GVVIP)`g:

Find Nx 2 K such that for all y 2 K and all N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g,

h N�; y�Nxi` WD �h N�1; y�Nxi; : : : ; h N�`; y�Nxi� … �R
`Cnf0g: (8.24)

(GVVIP)`s :

Find Nx 2 K such that there exist N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g, such that for all y 2 K

h N�; y�Nxi` WD �h N�1; y�Nxi; : : : ; h N�`; y�Nxi� … �R
`Cnf0g: (8.25)

(GVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist N�i 2 @fi.Nx/,
i 2 I D f1; 2; : : : ; `g, satisfying

h N�; y�Nxi` WD �h N�1; y�Nxi; : : : ; h N�`; y�Nxi� … �R
`Cnf0g: (8.26)

(MGVVIP)`g:

Find Nx 2 K such that for all y 2 K and all �i 2 @fi.y/, i 2 I D
f1; 2; : : : ; `g,

h�; y�Nxi` WD �h�1; y�Nxi; : : : ; h�`; y�Nxi� … �R
`Cnf0g: (8.27)
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(MGVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist �i 2 @fi.y/,
i 2 I D f1; 2; : : : ; `g,

h�; y�Nxi` WD �h�1; y�Nxi; : : : ; h�`; y�Nxi� … �R
`Cnf0g: (8.28)

(GWVVIP)`g:

Find Nx 2 K such that for all y 2 K and all N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g,

h N�; y � Nxi` WD �h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R

`C
�

:

(8.29)

(GWVVIP)`s :

Find Nx 2 K such that there exist N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g, such that for all y 2 K

h N�; y � Nxi` WD �h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R

`C
�

:

(8.30)

(GWVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist N�i 2 @fi.Nx/,
i 2 I D f1; 2; : : : ; `g, satisfying

h N�; y � Nxi` WD �h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R

`C
�

:

(8.31)

(MGWVVIP)`g:

Find Nx 2 K such that for all y 2 K and all �i 2 @fi.y/, i 2 I D
f1; 2; : : : ; `g,

h�; y � Nxi` WD �h�1; y � Nxi; : : : ; h�`; y � Nxi� … �int
�
R

`C
�

:

(8.32)

(MGWVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist �i 2 @fi.y/,
i 2 I D f1; 2; : : : ; `g, such that

h�; y � Nxi` WD �h�1; y � Nxi; : : : ; h�`; y � Nxi� … �int
�
R

`C
�

:

(8.33)

We denote the solution sets of the above mentioned problems (GVVIP)`g,
(GVVIP)`s , (GVVIP)`w, (MGVVIP)`g, (MGVVIP)`w, (GWVVIP)`g, (GWVVIP)`s ,
(GWVVIP)`w, (MGWVVIP)`g and (MGWVVIP)`w by Sol(GVVIP)`g, Sol(GVVIP)

`
s ,

Sol(GVVIP)`w, Sol(MGVVIP)`g, Sol(MGVVIP)`w, Sol(GWVVIP)`g, Sol(GWVVIP)`s ,
Sol(GWVVIP)`w, Sol(MGWVVIP)`g and Sol(MGWVVIP)`w, respectively.

As in Remark 8.1, we have

(a) Sol(GVVIP)`g � Sol(GVVIP)`s � Sol(GVVIP)`w;
(b) Sol(GWVVIP)`g � Sol(GWVVIP)`s � Sol(GWVVIP)`w;
(c) Sol(GVVIP)`g � Sol(GWVVIP)`g;
(d) Sol(GVVIP)`s � Sol(GWVVIP)`s ;
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(e) Sol(GVVIP)`w � Sol(GWVVIP)`w;
(f) Sol(MGVVIP)`g � Sol(MGWVVIP)`g;
(g) Sol(MGVVIP)`w � Sol(MGWVVIP)`w.

The following example shows that Sol(GVVIP)`w � Sol(GVVIP)`s may not be
true.

Example 8.5 [7] Let K D ˚
.x1; x2/ 2 R

2 W x1 � 0; � p�x1 � x2 � 0
�
and

f1.x1; x2/ D
q
x2

1 C x2
2 C x2; for all .x1; x2/ 2 K;

f2.x1; x2/ D x2; for all .x1; x2/ 2 K:

If .x1; x2/ D .0; 0/, then

@f1.x1; x2/ D f.�1; �2/ 2 R
2 W �2

1 C �2
2 � 1g C f.0; 1/g

D f.�1; �2/ 2 R
2 W �2

1 C .�2 � 1/2 � 1g:

If .x1; x2/ ¤ .0; 0/, then

@f1.x1; x2/ D

8
<̂

:̂

0

B
@

x1q
x2

1 C x2
2

;
x2q

x2
1 C x2

2

C 1

1

C
A

9
>=

>;
:

It can be easily checked that for all .�1; �2/ 2 @f1.0; 0/, there exists .x1; x2/ 2 K
such that

.�1x1 C �2x2; x2/ 2 �R
2C n f0g;

and that for all .x1; x2/ 2 K, there exists .�1; �2/ 2 @f1.0; 0/ such that

.�1x1 C �2x2; x2/ … �R
2C n f0g:

Hence, .0; 0/ 2 Sol(GVVIP)`w, but .0; 0/ … Sol(GVVIP)`s .
Moreover, Sol(GVVIP)`s D ˚

.x; �p�x/ W x < 0
�

and Sol(GVVIP)`w D˚
.x; �p�x/ W x � 0

�
.

Proposition 8.5 For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. Then
Sol(GVVIP)`w � Sol(MGVVIP)`g � Sol(MGVVIP)`w.

Proof Let Nx 2 K be a solution of (GVVIP)`w. Then for all y 2 K, there exist N�i 2
@fi.Nx/, i D 1; 2; : : : ; `, such that

�h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �R
`C n f0g: (8.34)
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Since each fi is convex, @fi, i 2 I , is monotone, and therefore, we have

h�i � N�i; y � Nxi � 0; for all �i 2 @fi.y/ and for each i 2 I : (8.35)

From (8.34) and (8.35), it follows that for all y 2 K and all �i 2 @fi.y/, i 2 I ,

�h�1; y � Nxi; : : : ; h�`; y � Nxi� … �R
`C n f0g:

Thus, Nx 2 K is a solution of (MGVVIP)`g. ut
The converse of the above proposition may not be true, that is,
Sol(MGVVIP)`g ª Sol(GVVIP)`w.

Example 8.6 Let K D ��1; 0� and f1.x/ D x, f2.x/ D x2. Since .x; 0/ 2 �R
2C nf0g

for all x 2 � � 1; 0Œ, we have 0 … Sol(GVVIP)`w.
But, since .x; 2x2/ … �R

2C nf0g, we have 0 2 Sol(MGVVIP)`g. Moreover, we can

easily verify that Sol(GVVIP)`w D � � 1; 0Œ and Sol(MGVVIP)`g D � � 1; 0�.
The following result provides the relationship between the solutions of

(MGWVVIP)`g and (GWVVIP)`g.

Theorem 8.16 For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. Then
Nx 2 K is a solution (GWVVIP)`w if and only if it is a solution of (MGWVVIP)`w.

Proof Let Nx 2 K be a solution of (GWVVIP)`w. Then for any y 2 K, there exist
N�i 2 @fi.Nx/, i D 1; 2; : : : ; `, such that

�
h N�1; y � Nxi; : : : ; h N�`; y � Nxi

�
… �int

�
R

`C
�

: (8.36)

Since each fi is convex, @fi (i 2 I ) is monotone, and therefore, we have

h�i � N�i; y � Nxi � 0; for all y 2 K; �i 2 @fi.y/ and for each i 2 I : (8.37)

From (8.36) and (8.36), it follows that for any y 2 K and any �i 2 @fi.y/, i 2 I ,

�
h�1; y � Nxi; : : : ; h�`; y � Nxi

�
… �int

�
R

`C
�

:

Thus, Nx 2 K is a solution of (MGWVVIP)`g. Since Sol(MGWVVIP)`g �
Sol(MGWVVIP)`w, Nx 2 K is a solution of Sol(MGWVVIP)`w.

Conversely, let Nx 2 K be a solution of (MGWVVIP)`w. Consider any y 2 K and
any sequence f˛mg & 0 with ˛m 2 �0; 1�. Since K is convex, ym WD NxC ˛m.y� Nx/ 2
K. Since Nx 2 K is a solution of (MGWVVIP)`w, there exist �mi 2 @fi.ym/, i 2 I ,
such that

�h�m1 ; ym � Nx/i; : : : ; h�m` ; �.ym; Nx/i� … �int
�
R

`C
�

:
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Since each fi is convex and so it is locally Lipschitz (see Theorem 1.16), and hence,
there exists k > 0 such that for sufficiently large m and for all i 2 I ,

�
��mi

�
� � k.

So, we can assume that the sequence
˚
�mi

�
converges to N�i for each i 2 I . Since the

set-valued map y 7! @fi.y/ is closed (see Lemma 1.8), �mi 2 @fi.ym/ and ym ! Nx as
m ! 1, we have N�i 2 @fi.Nx/ for each i 2 I . Therefore, for any y 2 K, there exist
N�i 2 @fi.Nx/, i 2 I , such that

�h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R

`C
�

:

Hence, Nx 2 K is a solution of (GWVVIP)`w. ut
Next theorem provides the necessary and sufficient conditions for an efficient

solution of VOP.

Theorem 8.17 ([6]) For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex.
Then Nx 2 K is an efficient solution of VOP if and only if it is a solution of
(MGVVIP)`w.

Proof Let Nx 2 K be a solution of (MGVVIP)`w but not an efficient solution of VOP.
Then there exists z 2 K such that

�
f1.z/ � f1.Nx/; : : : ; f`.z/ � f`.Nx/� 2 �R

`C n f0g: (8.38)

Set z.�/ WD �z C .1 � �/Nx for all � 2 Œ0; 1�. Since K is convex, z.�/ 2 K for all
� 2 Œ0; 1�. Since each fi is convex, we have

fi.z.�// D fi.�z C .1 � �/Nx/ � �fi.z/ C .1 � �/fi.Nx/; for each i D 1; 2; : : : ; `;

that is,

fi.Nx C �.z � Nx// � fi.Nx/ � �Œfi.z/ � fi.Nx/�;

for all � 2 Œ0; 1� and for each i D 1; 2; : : : ; `. In particular, for � 2 �0; 1Œ, we have

fi.z.�// � fi.Nx/
�

� fi.z/ � fi.Nx/; for each i D 1; 2; : : : ; `: (8.39)

By Lebourg’s Mean Value Theorem 1.32, there exist �i 2 �0; 1Œ and �i 2 @fi.z.�i//

such that

h�i; z � Nxi D fi.z.�// � fi.Nx/; for each i D 1; 2; : : : ; `: (8.40)

By combining (8.39)–(8.40), we obtain

h�i; z � Nxi � fi.z/ � fi.Nx/; for each i D 1; 2; : : : ; `: (8.41)
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Suppose that �1; �2; : : : ; �` are all equal. Then it follows from (8.38) and (8.41)
that Nx is not a solution of (MGVVIP)`w. This contradicts to the fact the Nx is a solution
of (MGVVIP)`w.

Consider the case when �1; �2; : : : ; �` are not equal. Let �1 ¤ �2. Then
from (8.41), we have

h�1; z � Nxi � f1.z/ � f1.Nx/ (8.42)

and

h�2; z � Nxi � f2.z/ � f2.Nx/: (8.43)

Since fi and f2 are convex, @f 1 and @f 2 are monotone, that is,

h�1 � ��
2 ; z.�1/ � z.�2/i � 0; for all ��

2 2 @f 1.z.�2//; (8.44)

and

h��
1 � �2; z.�1/ � z.�2/i � 0; for all ��

1 2 @f 2.z.�1//: (8.45)

If �1 > �2, then by (8.44), we obtain

0 � h�1 � ��
2 ; z.�1/ � z.�2/i D .�1 � �2/h�1 � ��

2 ; z � Nxi;

and so,

h�1 � ��
2 ; z � Nx/i � 0 , h�1; z � Nxi � h��

2 ; z � Nxi:

From (8.42), we have

h��
2 ; z � Nxi � f1.z/ � f1.Nx/; for all ��

2 2 @f 1.z.�2//:

If �1 < �2, then by (8.45), we have

0 � h��
1 � �2; z.�1/ � z.�2/i D .�1 � �2/h��

1 � �2; z � Nxi;

and so,

h��
1 � �2; z � Nxi � 0 , h��

1 ; z � Nxi � h�2; z � Nxi:

From (8.43), we obtain

h��
1 ; z � Nxi � f2.z/ � f2.Nx/; for all ��

1 2 @f 2.z.�1//:
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Therefore, for the case �1 ¤ �2, let N� D minf�1; �2g. Then, we can find N�i 2
@fi.z. N�// such that

h N�i; z � Nxi � fi.z/ � fi.Nx/; for all i D 1; 2:

By continuing this process, we can find �� 2 �0; 1Œ and ��
i 2 @fi.z.��// such that

�� D minf�1; �2; : : : ; �`g and

h��
i ; z � Nxi � fi.z/ � fi.Nx/; for each i D 1; 2; : : : ; `: (8.46)

From (8.38) and (8.46), we have ��
i 2 @fi.z.��//, i D 1; 2; : : : ; `, and

�h��
1 ; z � Nxi; : : : ; h� �̀; z � Nxi� 2 �R

`C n f0g:

By multiplying above inclusion by ���, we obtain
�h��

1 ; z.��/ � Nxi; : : : ; h� �̀; z.��/ � Nxi� 2 �R
`C n f0g:

which contradicts to our supposition that Nx is a solution of (MGVVIP)`w.
Conversely, suppose that Nx 2 K is an efficient solution of VOP. Then we have

�
f1.y/ � f1.Nx/; : : : ; f`.y/ � f`.Nx/� … �R

`C n f0g; for all y 2 K: (8.47)

Since each fi is convex, we deduce that

h�i; Nx � yi � fi.Nx/ � fi.y/; for all y 2 K; �i 2 @fi.y/ and i 2 I :

Also, we obtain

h�i; y � Nxi � fi.y/ � fi.Nx/; for all y 2 K; �i 2 @fi.y/ and i 2 I : (8.48)

From (8.47) and (8.48), it follows that Nx is a solution of (MGVVIP)`w. ut
Theorem 8.17 is extended for Dini subdifferential by Al-Homidan and Ansari

[1].

Theorem 8.18 [6] For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. If
Nx 2 K is a solution (GVVIP)`w, then it is an efficient solution of VOP and hence a
solution of (MGVVIP)`w.

Proof Since Nx 2 X is a solution of (GVVIP)`w, for any y 2 K, there exist N�i 2 @fi.Nx/,
i D 1; 2; : : : ; `, such that

�h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �R
`C n f0g: (8.49)

Since each fi is convex, we have

h N�i; y � Nxi � fi.y/ � fi.Nx/ for any y 2 K and all i 2 I : (8.50)
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By combining (8.49) and (8.50), we obtain

�
f1.y/ � f1.Nx/; : : : ; f`.y/ � f`.Nx/� … �R

`C n f0g; for all y 2 K:

Thus, Nx 2 K is an efficient solution of VOP. ut
From Theorem 8.18, we see that (GVVIP)`w is a sufficient optimality condition

for an efficient solution of VOP. However, it is not, in general, a necessary optimality
condition for an efficient solution of VOP.

Example 8.7 Let K D Œ�1; 0� and f .x/ D .x; x2/. Consider the following
differentiable convex vector optimization problem:

minimize f .x/; subject to x 2 K; (VOP)

Then Nx D 0 is an efficient solution of VOP and Nx D 0 is a solution of the following
(MVVIP): Find Nx 2 K such that for all y 2 K,

�hrf1.y/; y � Nxi; hrf2.y/; y � Nxi� D �
y � Nx; 2y.y � Nx/� … �R

2C n f0g:

However, Nx D 0 is not a solution of the following (VVIP): Find Nx 2 K such that for
all y 2 K,

�hrf1.Nx/; y � Nxi; hrf2.Nx/; y � Nxi� D �
y � Nx; 2Nx.y � Nx/� … �R

2C n f0g:

The following result presents the equivalence between the solution of
(GWVVIP)`w and a weakly efficient solution of VOP.

Theorem 8.19 For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. If Nx 2 K
is a weakly efficient solution of VOP if and only if it is a solution of (GWVVIP)`w.

Proof Suppose that Nx is a solution of (GWVVIP)`w but not a weakly efficient solution
of VOP. Then there exists y 2 K such that

�
f1.y/ � f1.Nx/; : : : ; f`.y/ � f`.Nx/� 2 �int

�
R

`C
�

: (8.51)

Since each fi, i 2 I , is convex, we have

h�i; y � Nxi � fi.y/ � fi.Nx/; for all �i 2 @fi.Nx/: (8.52)

Combining (8.51) and (8.52), we obtain

�h�1; y � Nxi; : : : ; h�`; y � Nxi� 2 �int
�
R

`C
�

; for all �i 2 @fi.Nx/

which contradicts to our supposition that Nx is a solution of (GWVVIP)`w.
Conversely, assume that Nx 2 K is a weakly efficient solution of VOP but

not a solution of (GWVVIP)`w. Then by Theorem 8.16, Nx is not a solution of
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(MGWVVIP)`w. Thus, there exist y 2 K and �i 2 @fi.y/, i 2 I , such that

�h�1; y � Nxi; : : : ; h�`; y; Nxi� 2 �int
�
R

`C
�

: (8.53)

By convexity of fi, i 2 I , we have

0 > h�i; y � Nxi � fi.y/ � fi.Nx/: (8.54)

From (8.53) and (8.54), we then have

�
f1.y/ � f1.Nx/; : : : ; f`.y/ � f`.Nx/� 2 �int

�
R

`C
�

:

which contradicts to our assumption that Nx is a weakly efficient solution of VOP. ut
The following example shows that the weakly efficient solution of VOP may not

be a solution of (GWVVIP)`g.

Example 8.8 ([7]) Let K D � � 1; 0� and

f1.x/ D x; f2.x/ D
�
x2; x < 0

x; x � 0:

Then sol(GWVVIP)`g D � � 1; 0Œ, but the set of weakly efficient solution of VOP is
� � 1; 0�.

The relations between a properly efficient solution in the sense of Geoffrion and
a solution of (GVVIP)`w is studied in [6].
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