
Chapter 7
Nonsmooth Vector Variational Inequalities

We have seen in Chap. 5 that if the objective function of a vector optimization
problem is smooth (that is, differentiable), then its solution, namely, weak efficient
solution, strong efficient solution, efficient solution, properly efficient solution, can
be characterized by the corresponding vector variational inequality problems. If
the objective function is not smooth but it has some kind of directional derivative,
namely, (upper or lower) Dini directional derivative, Clarke directional derivative,
Dini-Hadamard directional derivative, etc., then the vector variational inequality
problems studied in Chap. 5 would not be useful, and therefore, we need to define
different kinds of vector variational inequality problems by means of bifunctions,
called nonsmooth vector variational inequality problems. In the formulation of
nonsmooth vector variational inequality problems, we consider different kinds of
directional derivatives as a bifunction. For a comprehensive study of different kinds
of directional derivatives and nonsmooth (scalar) variational inequalities, we refer
the recent book [2]. Some recent papers on this topic are [1, 5, 7–9].

In this chapter, we define different kinds of nonsmooth vector variational
inequality problems by means of a bifunction. Several existence results for solutions
of these nonsmooth vector variational inequality problems are studied. We give
some relations among different kinds of solutions of nonsmooth vector optimization
problems and nonsmooth vector variational inequality problems.

7.1 Formulations and Preliminary Results

Throughout the section, unless otherwise specified, we assume that K is a nonempty
convex subset of Rn and C D R

`C. Let h D .h1; h2; : : : ; h`/ W K � R
n ! R

`

be a vector-valued function such that for each fixed x 2 K, h.xI d/ is positively
homogeneous in d, that is, h.xI ˛d/ D ˛h.xI d/ for all ˛ > 0.
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276 7 Nonsmooth Vector Variational Inequalities

We consider the following nonsmooth vector variational inequality problems:

• Strong h-Vector Variational Inequality Problem (h-SVVIP): Find Nx 2 K such that

h.NxI y � Nx/ D �
h1.NxI y � Nx/; : : : ; h`.NxI y � Nx/� 2 C; for all y 2 K: (7.1)

• h-Vector Variational Inequality Problem (h-VVIP): Find Nx 2 K such that

h.NxI y�Nx/ D �
h1.NxI y�Nx/; : : : ; h`.NxI y�Nx/� … �C n f0g; for all y 2 K: (7.2)

• Weak h-Vector Variational Inequality Problem (h-WVVIP): Find Nx 2 K such that

h.NxI y� Nx/ D �
h1.NxI y� Nx/; : : : ; h`.NxI y� Nx/� … �int.C/; for all y 2 K: (7.3)

As we have seen in Chap. 5, the Minty vector variational inequality problems
are closely related to the (Stampacchia) vector variational inequality problems,
therefore, we also consider the following Minty nonsmooth vector variational
inequality problems.

• Minty Strong h-Vector Variational Inequality Problem (h-MSVVIP): Find Nx 2 K
such that

h.yI Nx � y/ D �
h1.yI Nx � y/; : : : ; h`.yI Nx � y/

� 2 �C; for all y 2 K: (7.4)

• Minty h-Vector Variational Inequality Problem (h-MVVIP): Find Nx 2 K such that

h.yI Nx� y/ D �
h1.yI Nx� y/; : : : ; h`.yI Nx� y/

� … C n f0g; for all y 2 K: (7.5)

• Minty Weak h-Vector Variational Inequality Problem (h-MWVVIP): Find Nx 2 K
such that

h.yI Nx � y/ D �
h1.yI Nx � y/; : : : ; h`.yI Nx � y/

� … int.C/; for all y 2 K: (7.6)

The set of solutions of h-SVVIP, h-VVIP, h-WVVIP, h-MSVVIP, h-MVVIP and
h-MWVVIP are denoted by Sol(h-SVVIP), Sol(h-VVIP), Sol(h-WVVIP), Sol(h-
MSVVIP), Sol(h-MVVIP) and Sol(h-MWVVIP), respectively.

Let f D . f1; f2; : : : ; f`/ W Rn ! R
` be avector-valued function and

DCf .xI d/ D �
DCf 1.xI d/; : : : ;DCf `.xI d/

�
;

where DCf i.xI d/ denotes the upper Dini directional derivative of fi at x in the
direction d.

When h.xI �/ D DCf .xI �/, then h-SVVIP, h-VVIP, h-WVVIP, h-MSVVIP,
h-MVVIP and h-MWVVIP become the following nonsmooth vector variational
inequality problems.
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• (DC-SVVIP): Find Nx 2 K such that

DCf .NxI y � Nx/ 2 C; for all y 2 K: (7.7)

• (DC-VVIP): Find Nx 2 K such that

DCf .NxI y � Nx/ … �C n f0g; for all y 2 K: (7.8)

• (DC-WVVIP): Find Nx 2 K such that

DCf .NxI y � Nx/ … �int.C/; for all y 2 K: (7.9)

• (DC-MSVVIP): Find Nx 2 K such that

DCf .yI Nx � y/ 2 �C; for all y 2 K: (7.10)

• (DC-MVVIP): Find Nx 2 K such that

DCf .yI Nx � y/ … C n f0g; for all y 2 K: (7.11)

• (DC-MWVVIP): Find Nx 2 K such that

DCf .yI Nx � y/ … int.C/; for all y 2 K: (7.12)

Similarly, we can defineDC-SVVIP,DC-VVIP,DC-WVVIP,DC-MSVVIP,DC-
MVVIP and DC-MWVVIP by consideringDCf .xI �/ in place of h.xI �/ in h-SVVIP,
h-VVIP, h-WVVIP, h-MSVVIP, h-MVVIP and h-MWVVIP, respectively.

If we consider (upper or lower) Dini directional derivative as a bifunction h.xI d/,
with x referring to a point in R

n and d referring to a direction from R
n, then

(7.1), (7.2), (7.3), (7.4), (7.5) and (7.6) are equivalent to (7.7), (7.8), (7.9), (7.10),
(7.11) and (7.12), respectively. In general, if we treat any generalized directional
derivative as a bifunction h.xI d/ with x referring to a point in R

n and d referring to
a direction fromR

n, then the corresponding nonsmooth vector variational inequality
problems can be defined in the same way.

Definition 7.1 A vector-valued bifunction h D .h1; h2; : : : ; h`/ W K � R
n ! R

` is
said to be:

(a) strongly C-pseudomonotone if for all x; y 2 K,

h.xI y � x/ 2 C implies h.yI x � y/ 2 �CI

(b) C-pseudomonotone if for all x; y 2 K,

h.xI y � x/ … �C n f0g implies h.yI x � y/ … C n f0gI
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(c) weakly C-pseudomonotone if for all x; y 2 K,

h.xI y � x/ … �int.C/ implies h.yI x � y/ … int.C/I

(d) C-properly subodd if

h.xI d1/ C h.xI d2/ C � � � C h.xI dm/ 2 C;

for every di 2 R
n with

Pm
iD1 di D 0 and for all x 2 K.

If m D 2, the definition of proper suboddness reduces to the definition of
suboddness.

Example 7.1 The function h W R � R ! R
2, with h.x; d/ D .x; �x � d/ is strongly

R
2C-pseudomonotone, R2C-pseudomonotone and weakly R

2C-pseudomonotone, but
h is not R2C-properly subodd.

Definition 7.2 A vector-valued bifunction h D .h1; h2; : : : ; h`/ W K � R
n ! R

` is
said to be C-upper sign continuous (respectively, strongly C-upper sign continuous
and weakly C-upper sign continuous) if for all x; y 2 K and � 2 �0; 1Œ,

h.x C �.y � x/I x � y/ … C n f0g implies h.xI x � y/ … C n f0g
�
respectively; h.x C �.y � x/I x � y/ 2 �C implies h.xI x � y/ 2 �C

and h.x C �.y � x/I x � y/ … int.C/ implies h.xI x � y/ … int.C/
�
:

Definition 7.3 A vector-valued bifunction h D .h1; h2; : : : ; h`/ W K � R
n ! R

` is
said to be v-hemicontinuous if for each fixed d 2 R

n and for all x; y 2 K,

lim
�!0C

h.x C �.y � x//I d/ D h.xI d/:

It can be easily seen that if each component hi, i D 1; 2; : : : ; `, of h is
hemicontinuous, that is,

lim
�!0C

hi.x C �.y � x//I d/ D hi.xI d/;

then h is v-hemicontinuous.

Remark 7.1 If h is v-hemicontinuous, then it is strongly C-upper sign continuous
and weakly C-upper sign continuous as C and R` n fint.C/g are closed sets.
Example 7.2 The function h W R � R ! R

2, which is defined by h.xI d/ D�jxj � x2 � d; exp.x/ � d�
, is strongly R2C-upper sign continuous.
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The following result provides the relationship between nonsmooth vector vari-
ational inequality problems and Minty nonsmooth vector variational inequality
problems.

Lemma 7.1 Let h W K � R
n ! R

` be C-pseudomonotone (respectively, strongly
C-pseudomonotone and weakly C-pseudomonotone) and C-upper sign continuous
(respectively, strong C-upper sign continuous and weakly C-upper sign continuous)
such that for each fixed x 2 K, h.xI �/ is C-properly subodd and positively
homogeneous. Then Nx 2 K is a solution of h-VVIP (respectively, h-SVVIP and
h-WVVIP) if and only if it is a solution of h-MVVIP (respectively, h-MSVVIP and
h-MWVVIP) .

Proof The C-pseudomonotonicity of h implies that every solution of h-VVIP is a
solution of h-MVVIP.

Conversely, let Nx 2 K be a solution of h-MVVIP. Then

h.yI Nx � y/ … C n f0g; for all y 2 K: (7.13)

SinceK is convex, we have y� WD NxC�.y�Nx/ 2 K for all � 2 �0; 1Œ, therefore, (7.13)
becomes

h.y�I Nx � y�/ … C n f0g:

Since Nx � y� D �.Nx � y/ and h.xI �/ is positively homogeneous, we have

h.y�I Nx � y/ … C n f0g:

Thus, the C-upper sign continuity and the C-proper suboddness of h imply that
Nx 2 K is a solution of h-VVIP.

Similarly, we can prove Sol(h-SVVIP)D Sol(h-MSVVIP) and Sol(h-WVVIP)D
Sol(h-MWVVIP). ut
Example 7.3 Let X D R, K D Œ0; 1�, Y D R

2, and C D R
2C. Consider the function

h.xI d/ D �
x2d; jxjd�

. Note that h is strongly R
2C-pseudomonotone, strongly R

2C-
upper sign continuous, R2C-properly subodd and positive homogeneous in the
second variable. The element Nx D 0 is the only solution of the strong h-vector
variational inequality problem h-SVVIP as well as the only solution of the Minty
strong h-vector variational inequality problem h-MSVVIP.

In general, Sol(h-SVVIP) ¤ Sol(h-MSVVIP), Sol(h-VVIP) ¤ Sol(h-MVVIP)
and Sol(h-WVVIP)) ¤ Sol(h-MWVVIP).

To overcome this deficiency, we define the following perturbed h-vector varia-
tional inequality problems.

• "-Perturbed Strong h-Vector Variational Inequality Problem ("-h-PSVVIP): Find
Nx 2 K for which there exists N" 2 �0; 1Œ such that

h.Nx C ".y � Nx/I y � Nx/ 2 �C; for all y 2 K and all " 2 �0; N"Œ: (7.14)
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• "-Perturbed h-Vector Variational Inequality Problem ("-h-PVVIP): Find Nx 2 K
for which there exists N" 2 �0; 1Œ such that

h.Nx C ".y � Nx/I y � Nx/ … C n f0g; for all y 2 K and all " 2 �0; N"Œ: (7.15)

• "-Perturbed Weak h-Vector Variational Inequality Problem ("-h-PWVVIP): Find
Nx 2 K for which there exists N" 2 �0; 1Œ such that

h.Nx C ".y � Nx/I y � Nx/ … int.C/; for all y 2 K and all " 2 �0; N"Œ: (7.16)

Proposition 7.1 Let h D .h1; h2; : : : ; h`/ W K � R
n ! R

` be C-pseudomonotone
(respectively, strongly C-pseudomonotone and weakly C-pseudomonotone) and
C-properly subodd such that it is positively homogeneous in the second argument.
Then Nx 2 K is a solution of "-h-PVVIP (respectively, "-h-PSVVIP and "-h-
PWVVIP) if and only if it is a solution of h-MVVIP (respectively, h-MSVVIP and
h-MWVVIP).

Proof Let Nx be a solution of h-MVVIP. Then

h.yI Nx � y/ … C n f0g; for all y 2 K: (7.17)

Since K is convex, we have

x" WD Nx C ".z � Nx/ 2 K; for all z 2 K and all " 2 Œ0; 1�:

Taking y D x" with N" D 1 and " 2 �0; N"Œ in (7.17), we have

h.x"I Nx � x"/ … C n f0g:

Since Nx � x" D ".Nx � z/ and h.xI :�/ is positively homogeneous, we have

h.x"I Nx � z/ … C n f0g; for all z 2 K and all " 2 �0; N"Œ : (7.18)

Since .z � Nx/ C .Nx � z/ D 0 and h is C-properly subodd, we have

h.x"I z � Nx/ C h.x"I Nx � z/ 2 C: (7.19)

Combining (7.18) and (7.19), we obtain

h.x"I z � Nx/ … C n f0g; for all z 2 K and all " 2 �0; N"Œ:

Therefore, Nx 2 K is a solution of "-h-PVVIP.
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Conversely, suppose that Nx 2 K is a solution of "-h-PVVIP, but not a solution of
h-MVVIP. Then there exists z 2 K such that

h.zI Nx � z/ 2 C n f0g:

Since K is convex, we have

x" WD Nx C ".z � Nx/ 2 K; for all " 2 Œ0; 1�:

Since x" � z D .1 � "/.Nx � z/ and h.xI �/ is positively homogeneous, we have

h.zI Nx � z/ D 1

1 � "
h.zI x" � z/ 2 C n f0g; for all " 2 �0; 1ŒI

thus,

h.zI x" � z/ 2 C n f0g; for all " 2 �0; 1Œ:

By C-pseudomonotonicity of h, we obtain

h.x"I z � x"/ 2 �C n f0g; for all " 2 �0; 1Œ:

Since z � x" D .1 � "/.z � Nx/ and h.xI �/ is positively homogeneous, we have

h.x"I z � Nx/ 2 C n f0g; for all " 2 �0; 1Œ;

which contradicts our supposition that Nx is a solution of "-h-PVVIP.
The rest of the part can be proved in a similar way. ut

7.2 Existence Results for Solutions of Nonsmooth Vector
Variational Inequalities

We first present an existence result for a solution of h-VVIP without using any kind
of monotonicity.

Theorem 7.1 Let K be a nonempty compact convex subset of R
n. Let h D

.h1; h2; : : : ; h`/ W K ! R
` be a vector-valued function such h.xI 0/ D 0 and h.xI �/

is positively homogeneous for each fixed x 2 K, and the set fx 2 K W h.xI y � x/ 2
�C n f0gg is open in K for every fixed y 2 K. Then h-VVIP has a solution Nx 2 K.

Proof Suppose that h-VVIP has no solution. Then for every Nx 2 K, there exists
y 2 K such that

h.NxI y � Nx/ 2 �C n f0g: (7.20)
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For every y 2 K, define the set Ny by

Ny D fx 2 K W h.xI y � x/ 2 �C n f0gg: (7.21)

By assumption, the set Ny is open in K for each y 2 K. Therefore, from (7.20),
fNy W y 2 Kg is an open cover of K. Since K is compact, there exists a finite subset
fy1; y2; : : : ; ykg of K such that

K D
k[

iD1

Nyi :

Thus, there exists a continuous partition of unity fˇ1; ˇ2; : : : ; ˇkg subordinated to
fNy1 ;Ny2 ; : : : ;Nykg such that for all x 2 K,

• ˇj.x/ � 0, j D 1; 2; : : : ; k
•

Pk
jD1 ˇj.x/ D 1

• ˇj.x/ D 0 whenever x … Nyj , and ˇj.x/ > 0 whenever x 2 Nyj

Let p W K ! R
n be defined by

p.x/ D
kX

jD1

ˇj.x/yj; for all x 2 K:

Since each ˇi is continuous, we have p is continuous. Let � D co.fy1; y2; : : :, ykg/ �
K. Then � is a simplex of the finite dimensional space and p maps � into itself. By
Brouwer’s Fixed Point Theorem 1.39, there exists Ox 2 � such that p.Ox/ D Ox.

Define q W K ! R
` by

q.x/ D h.xI x � p.x// D
kX

jD1

ˇjh.xI x � yj/; for all x 2 K: (7.22)

For any given x 2 K, let J D f j W x 2 Nyjg D f j W ˇj.x/ > 0g. Obviously, J is
nonempty. It follows from (7.21) and (7.22) that

q.x/ D
X

j2J
ˇj.x/h.xI yj � x/ 2 �C n f0g; for all x 2 K:

Since Ox 2 � � K is a fixed of p, from (7.21), we have

q.Ox/ D h.OxI Ox � Ox/ D 0 2 �C n f0g;

a contradiction. Hence, h-VVIP has a solution Nx 2 K. ut
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The following result provides the existence of a solution of h-MWVVIP
and h-WVVIP in the setting of compact convex set but under weakly
C-pseudomonotonicity.

Theorem 7.2 Let K � R
n be a nonempty, convex and compact set and h D

.h1; h2; : : : ; h`/ W K ! R
` be a positively homogeneous in the second argument,

C-properly subodd and weakly C-pseudomonotone vector-valued function such that
for all i 2 I D f1; 2; : : : ; `g and for each fixed x 2 K, hi.xI �/ is continuous. Then
h-MWVVIP has a solution Nx 2 K.

Furthermore, if h is weakly C-upper sign continuous, then Nx 2 K is a solution of
h-WVVIP.

Proof For all y 2 K, we define two set-valued maps S;M W K ! 2K by

S.y/ D fx 2 K W h.xI y � x/ … �int.C/g

and

M.y/ D fx 2 K W h.yI x � y/ … int.C/g :

We show that S is a KKM map. Let Ox 2 co
�fy1; y2 : : : ; ypg

�
, then Ox D Pp

kD1 �kyk
with �k � 0 and

Pp
kD1 �k D 1. If Ox … Sp

kD1 S.yk/, then

h.OxI yk � Ox/ 2 �int.C/; for all k D 1; 2; : : : ; p:

Since �C is a convex cone and �k � 0 with
Pp

kD1 �k D 1, we have

pX

kD1

�kh.OxI yk � Ox/ 2 �int.C/: (7.23)

Since

pX

kD1

�k.yk � Ox/ D
pX

kD1

�kyk �
pX

kD1

�k Ox D Ox � Ox D 0;

by C-proper suboddness of h, we have

pX

kD1

h.OxI �k.yk � Ox// 2 C:

By positive homogenuity of h, we have

pX

kD1

�kh.OxI yk � Ox/ 2 C;
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which contradicts (7.23). Therefore, co
�fy1; y2; : : : ; ypg

� � Sp
kD1 S.yk/. Hence, S is

a KKM map.
The weak C-pseudomonotonicity of h implies that S.y/ � M.y/ for all y 2 K;

hence,M is a KKM map.
We claim that M.y/ is a closed set in K for all y 2 K. Indeed, let fxmg be a

sequence inM.y/ which converges to x 2 K. Then

h.yI xm � y/ … int.C/; that is, h.yI xm � y/ 2 R
` n fint.C/g:

SinceR`nfint.C/g is a closed set and each hi.xI �/ is continuous,we have h.yI x�y/ …
int.C/, and hence, x 2 M.y/. Thus,M.y/ is closed in K.

Further, since K is compact, it follows that M.y/ is compact for all y 2 K. Then,
by Fan-KKM Lemma 1.14,

\

y2K
M.y/ ¤ ;;

that is, there exists Nx 2 K such that

h.yI Nx � y/ … int.C/; for all y 2 K:

Thus, Nx 2 K is a solution of h-MVVIP.
By Lemma 7.1, Nx 2 K is a solution of h-WVVIP. ut

Definition 7.4 A vector-valued function h D .h1; h2; : : : ; h`/ W K ! R
` is said to

be C-pseudomonotoneC if for all x; y 2 K,

h.xI y � x/ … �C n f0g implies h.yI x � y/ 2 �C:

Clearly, C-pseudomonotonicityC is stronger than C-pseudomonotonicity.

Example 7.4 Let X D R, K D Œ�2; 2�, Y D R
2, and C D R

2C. The function
h W K � R ! R

2, defined by h.xI d/ D �
x � d; x2 � d�

, is R2C-pseudomonotone, but
not R2C-pseudomonotoneC.

We have the following existence result for a solution of h-SVVIP under
C-pseudomonotonicityC assumption.

Theorem 7.3 Let K � R
n be a nonempty, convex and compact set and h D

.h1; h2; : : : ; h`/ W K ! R
` be a positively homogeneous in the second argument,

C-properly subodd and C-pseudomonotoneC vector-valued function such that for
all i 2 I D f1; 2; : : : ; `g and for each fixed x 2 K, hi.xI �/ is continuous.
Furthermore, if h is strongly C-upper sign continuous, then h-VVIP has a solution.

Proof For all y 2 K, we define set-valued maps S;M W K ! 2K by

S.y/ D fx 2 K W h.xI y � x/ … �C n f0gg
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and

M.y/ D fx 2 K W h.yI x � y/ 2 �Cg :

By C-pseudomonotonicityC, Sol(h-VVIP) � Sol(h-MSVVIP). From Lemma 7.1,
Sol(h-MSVVIP) � Sol(h-SVVIP) � Sol(h-VVIP). Thus, Sol(h-VVIP) � Sol(h-
MSVVIP) � Sol(h-VVIP), and hence, Sol(h-VVIP) D Sol(h-MSVVIP), that is,

\

y2K
S.y/ D

\

y2K
M.y/:

We prove that S is a KKM map. Let Ox 2 co
�fy1; y2; : : : ; ypg

�
, then Ox D Pp

kD1 �kyk
with �k � 0 and

Pp
kD1 �k D 1. If Ox … Sp

kD1 S.yk/, then

h.OxI yk � Ox/ 2 �C n f0g; for all k D 1; 2; : : : ; p:

Since �C is a convex cone and �k � 0 with
Pp

kD1 �k D 1, we have

pX

kD1

�kh.OxI yk � Ox/ 2 �C n f0g: (7.24)

Since

pX

kD1

�k.yk � Ox/ D
pX

kD1

�kyk �
pX

kD1

�k Ox D Ox � Ox D 0;

by C-proper suboddness of h, we have

pX

kD1

h.OxI �k.yk � Ox// 2 C:

The positive homogenuity of h in the second argument implies that

pX

kD1

�kh.OxI yk � Ox/ 2 C;

which contradicts (7.24). Therefore, co
�fy1; y2; : : : ; ypg

� � Sp
kD1 S.yk/. Hence, S is

a KKM map.
By C-pseudomonotonicityC of h implies that S.y/ � M.y/ for all y 2 K; hence,

M is a KKMmap. Since �C is closed and each hi.xI �/ is continuous, it can be easily
seen that M.y/ is closed subset of a compact set K, and hence, compact. Therefore,
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by Fan-KKM Lemma 1.14,

\

y2K
S.y/ D

\

y2K
M.y/ ¤ ;;

that is, there exists a solution of h-VVIP. ut
Definition 7.5 Let K be a nonempty convex subset of Rn. A vector-valued function
h D .h1; h2; : : : ; h`/ W K ! R

` is said to be

(a) strongly proper C-quasimonotone� if for every finite set fy1; y2; : : : ; ypg in K
and x 2 co

�fy1; y2; : : : ; ypg
�
, there exists i 2 f1; 2; : : : ; pg such that h.xI yi �

x/ 2 C;
(b) proper C-quasimonotone� if for every finite set fy1; y2; : : : ; ypg in K and x 2

co
�fy1; y2; : : : ; ypg

�
, there exists i 2 f1; 2; : : : ; pg such that h.xI yi � x/ …

�C n f0g;
(c) weakly proper C-quasimonotone� if for every finite set fy1; y2; : : : ; ypg in K and

x 2 co
�fy1; y2; : : : ; ypg

�
, there exists i 2 f1; 2; : : : ; pg such that h.xI yi � x/ …

� int.C/.

Example 7.5 Let X D R, K D Œ0; 1�, Y D R
2, and C D R

2C. The function h W K �
R ! R

2, defined by h.xI d/ D �
x;

p
x � jdj�, is strongly proper C-quasimonotone�.

Theorem 7.4 Let K � R
n be a nonempty, convex and compact set and

h D .h1; h2; : : : ; h`/ W K ! R
` be a C-properly subodd and strongly proper

C-quasimonotone� vector-valued function such that for all i 2 I D f1; 2; : : : ; `g
and for each fixed x 2 K, hi.xI �/ is continuous and h.xI 0/ D 0 for all x 2 K. Then
h-SVVIP has a solution Nx 2 K.

Proof For all y 2 K, we define a set-valued map S W K ! 2K by

S.y/ D fx 2 K W h.xI y � x/ 2 Cg :

Since h.xI y�y/ D h.xI 0/ D 0 2 C for each y 2 K, y 2 S.y/, and thus, S.y/ ¤ ;. We
show that S is a KKM map. Let Ox 2 co

�fy1; y2; : : : ; ypg
�
such that Ox … Sp

kD1 S.yk/.
This implies that

h.OxI yk � Ox/ … C; for all k D 1; 2; : : : ; p:

This contradicts the strong proper C-quasimonotonicity� of h. Hence, S is a KKM
map.

Since h.xI �/ is continuous and C is closed, it can be easily seen that S.y/ is a
closed subset of a compact set K, and hence, S.y/ is compact for all y 2 K. Then,
by Fan-KKM Lemma 1.14,

\

y2K
S.y/ ¤ ;;
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that is, there exists Nx 2 K such that

h.NxI y � Nx/ 2 C; for all y 2 K:

Thus, Nx 2 K is a solution of h-SVVIP. ut
Similarly, we can prove the following results.

Theorem 7.5 Let K � R
n be a nonempty, convex and compact set and

h D .h1; h2; : : : ; h`/ W K ! R
` be a C-properly subodd and weakly proper

C-quasimonotone� vector-valued function such that for all i 2 I D f1; 2; : : : ; `g
and for each fixed x 2 K, hi.xI �/ is continuous and h.xI 0/ D 0 for all x 2 K. Then
h-WVVIP has a solution Nx 2 K.

Theorem 7.6 Let K � R
n be a nonempty, convex and compact set and h D

.h1; h2; : : : ; h`/ W K ! R
` be a C-properly subodd and proper C-quasimonotone�

vector-valued function such that for all i 2 I D f1; 2; : : : ; `g and for each fixed
x 2 K, the set fx 2 K W h.xI y � x/ … �C n f0gg is closed and h.xI 0/ D 0 for all
x 2 K. Then h-VVIP has a solution Nx 2 K.

7.3 Nonsmooth Vector Variational Inequalities
and Nonsmooth Vector Optimization

The optimization problem may have a nonsmooth objective function. Therefore,
Crespi et al. [3, 4] introduced Minty variational inequality for scalar-valued func-
tions defined by means of lower Dini directional derivative. More recently, the
same authors extended their formulation to the vector case in [5]. They have also
established the relations between a Minty Vector Variational Inequality problem (in
short, MVVIP) and solutions of VOP (both ideal and weak efficient but not efficient)
solution. Crespi et al. [5] used the scalarization method to obtain their results. The
similar VVIP is also considered by Lalitha andMehta [8] and proved some existence
results. They also provided some relationships between the solutions of VOP and
this kind of VVIP.

In this section, we propose some relations between vector optimization and
vector variational inequalities when the objective functions are not necessarily
smooth.

Throughout this section, unless otherwise specified, we assume that K is
nonempty convex subset of Rn, C D R

`C and h D .h1; h2; : : : ; h`/ W K � R
n ! R

`

is a vector-valued function.

Definition 7.6 A vector-valued function f D . f1; f2; : : : ; f`/ W K ! R
` is said to

be

(a) C-h-convex if for all x; y 2 K,

f .y/ � f .x/ � h.xI y � x/ 2 CI
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(b) strictly C-h-convex if for all x; y 2 K, x ¤ y,

f .y/ � f .x/ � h.xI y � x/ 2 int.C/I

(c) strongly C-h-pseudoconvex if for all x; y 2 K,

f .y/ � f .x/ … C implies h.xI y � x/ … C;

equivalently,

h.xI y � x/ 2 C implies f .y/ � f .x/ 2 CI

(d) C-h-pseudoconvex if for all x; y 2 K,

f .y/ � f .x/ 2 �C n f0g implies h.xI y � x/ 2 �C n f0gI

equivalently,

h.xI y � x/ … C n f0g implies f .y/ � f .x/ … �C n f0gI

(e) weakly C-h-pseudoconvex if for all x; y 2 K,

f .y/ � f .x/ 2 � int.C/ implies h.xI y � x/ 2 � int.C/;

equivalently,

h.xI y � x/ … � int.C/ implies f .y/ � f .x/ … � int.C/:

Obviously, strictly C-h-convexity implies C-h-convexity, and C-h-convexity
implies C-h-pseudoconvexity.

If h.xI d/ D DCf .xI d/ (respectively, DCf .xI d/) upper (respectively, lower) Dini
directional derivative of a function f at x in the direction d, then C-h-convexity is
called C-DC-convexity (respectively, C-DC-convexity), and so on.

Example 7.6 Let X D R, K D Œ0; 1�, Y D R
2, and C D R

2C. Let the function
h W K � R ! R

2, be given as h.xI d/ D ��x2; �jxj � jdj�. Furthermore, let f W
K ! R

2 be defined by f D �
x2; jxj�. Then f is C-h-convex, but not strictly C-h-

convex. Moreover, f is strongly C-h-pseudoconvex and C-h-pseudoconvex, but f is
not weakly C-h-pseudoconvex.

The following result provides the relation among the weakly efficient solution of
VOP and the solutions of h-WVVIP and (DC-WVVIP).

Theorem 7.7 Let f W K ! R
` be a vector-valued function. Then the following

statements hold.

(a) Every strongly efficient solution of VOP is a solution of DC-SVVIP (7.7).



7.3 Nonsmooth Vector Variational Inequalities and Nonsmooth Vector. . . 289

(b) If f is strongly C-h-pseudoconvex, then every solution of h-SVVIP is a strongly
efficient solution of VOP.

Proof

(a) Let Nx be a strongly efficient solution of VOP. Then

f .y/ � f .Nx/ 2 C; for all y 2 K:

Since K is a convex set, we have Nx C �.y � Nx/ 2 K for all � 2 Œ0; 1�; thus,

f .Nx C �.y � Nx// � f .Nx/
�

2 C; for all � 2 �0; 1Œ:

Taking the limit sup as � # 0, we obtain

DCf .NxI y � Nx/ D lim sup
�#0

f .Nx C �.y � Nx// � f .Nx/
�

2 C; for all y 2 K:

Hence, Nx is a solution of DC-SVVIP (7.7).
(b) Assume that Nx 2 K is a solution of DC-SVVIP (7.7) but not a strongly efficient

solution of VOP. Then there exists y 2 K such that

f .y/ � f .Nx/ … C:

Since f is strongly C-h-pseudoconvex, we have

h.NxI y � Nx/ … C;

contradicting our assumption that Nx is a solution of h-SVVIP. ut
Since R` n f� int.C/g is a closed convex cone, in a similar way, we can prove the

following result.

Theorem 7.8 Let f W K ! R
` be a vector-valued function. Then the following

statements hold.

(a) Every weakly efficient solution of VOP is a solution of DC-WVVIP (7.9).
(b) If f is weakly C-h-pseudoconvex, then every solution of h-WVVIP is a weakly

efficient solution of VOP.

Theorem 7.9 Let f W K ! R
` be a C-h-pseudoconvex vector-valued function. Then

every solution of h-VVIP is an efficient of VOP.

Proof It lies on the lines of the proof of Theorem 7.7 (b), therefore, we omit it. ut
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Theorem 7.10 Let f W K ! R
` be a vector-valued function such that .�f / is strictly

C-h-convex, that is,

� . f .y/ � f .x// � h.NxI y � Nx/ 2 int.C/; for all x; y 2 K: (7.25)

Then every weakly efficient solution of VOP is a solution of h-VVIP.

Proof Assume that Nx is a weakly efficient solution of VOP but not a solution of
h-VVIP. Then there exists y 2 K such that

h.NxI y � Nx/ 2 C n f0g: (7.26)

Combining (7.26) and (7.25), we obtain

f .y/ � f .Nx/ 2 � int.C/;

a contradiction to our assumption that Nx is a weakly efficient solution of VOP. Hence,
Nx is a solution of h-VVIP. ut
Theorem 7.11 If f W K ! R

` is strictly C-DC-convex function, then every weakly
efficient solution of VOP is an efficient solution of VOP.

Proof Assume that Nx is a weak efficient solution of VOP, but not an efficient solution
of VOP. Then there exists y 2 K such that

f .y/ � f .Nx/ 2 �C n f0g: (7.27)

Since f is strictly C-DC-convex, we have

DCf .NxI y � Nx/ � f .y/ C f .Nx/ 2 �int.C/: (7.28)

By combining (7.27) and (7.28), we obtain

DCf .NxI y � Nx/ 2 �int.C/:

Thus, Nx is not a solution ofDC-WVVIP (7.9). By using Theorem 7.8 (a), we see that
Nx is not a weak efficient solution of VOP, a contradiction to our assumption. ut
Theorem 7.12 For each i D 1; 2; : : : ; `, let fi W K ! R be DC-pseduoconvex and
lower semicontinuous. If Nx 2 K is a solution of DC-VVIP, then it is an efficient
solution of VOP.

Proof Suppose that Nx 2 K is not an efficient solution of VOP. Then there exists
Oy 2 K such that fi.Oy/ < fi.Nx/ for some i and fj.Oy/ � fj.Nx/ for all j ¤ i. By DC-
pseudoconvexity of fi, DCf i.NxI Oy� Nx/ < 0. By Remark 1.18 (b), fj is quasiconvex for
all j ¤ i, and hence, DCf j.NxI Oy � Nx/ � 0 for all j ¤ i. Thus, Nx 2 K is not a solution
of DC-VVIP. ut
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The following result, due to Ansari and Lee [1], provides the relationship
between a solution of an h-MVVIP and an efficient solution of VOP. It can be treated
as a nonsmooth version of Theorem 5.28.

Theorem 7.13 For each i 2 I , let fi W K ! R be upper semicontinuous and DC-
pseudoconvex. For each i 2 I D f1; 2; : : : ; `g and for all x 2 K, let hi.xI �/ be
positively homogeneous and subodd such that hi.xI �/ � DCfi.xI �/. Then Nx 2 K is a
solution of h-MVVIP if and only if it is an efficient solution of VOP.

Proof Let Nx 2 K be a solution of h-MVVIP but not an efficient solution of VOP.
Then there exists z 2 K such that

f .Nx/ � f .z/ 2 C n f0g: (7.29)

Set z.�/ WD �Nx C .1 � �/z for all � 2 Œ0; 1�. Since K is convex, z.�/ 2 K for all
� 2 Œ0; 1�. Also since each fi isDC-pseudoconvex, it follows from Lemma 1.4 that fi
is quasiconvex and semistrictly quasiconvex. By using quasiconvexity, semistrictly
quasiconvexity and (7.29), we get

fi.Nx/ � fi.z.�// 2 C n f0g; for all � 2 �0; 1Œ:

That is,

fi.Nx/ � fi.z.�//; for all � 2 �0; 1Œ and all i D 1; 2; : : : ; `; (7.30)

with strict inequality holds in (7.30) for some k such that 1 � k � `.
By Diewert Mean-Value Theorem 1.31, there exists ˛i 2 �0; 1Œ such that

fi.z.�//� fi.Nx/ � DCfi .z.˛i/I z.�/ � Nx/ ; for all � 2 �0; 1Œ and all i 2 I : (7.31)

Combining inequalities (7.30) and (7.31), we obtain

DCfi.z.˛i/I z.�/ � Nx/ � 0; for all � 2 �0; 1Œ and all i D 1; 2; : : : ; `;

with strict inequality holds for some k such that 1 � k � `. Since, for each fixed
x 2 K, hi.xI �/ � DCfi.xI �/, we have

hi.z.˛i/I z.�/ � Nx/ � 0; for all � 2 �0; 1Œ and all i D 1; 2; : : : ; `;

where strict inequality holds for some k such that 1 � k � `. By using the positive
homogeneity of hi in the second argument, we get

hi.z.˛i/I z.�/ � Nx/ D hi.z.˛i/I �Nx C .1 � �/z � Nx/ D .1 � �/hi.z.˛i/I z � Nx/
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and so,

hi.z.˛i/I z � Nx/ � 0; for all i D 1; 2; : : : ; `; (7.32)

where strict inequality holds for some k such that 1 � k � `. By the suboddness of
hi in the second argument, we have

hi.z.˛i/I Nx � z/ � 0; for all i D 1; 2; : : : ; `; (7.33)

where strict inequality holds for some k such that 1 � k � `.
Suppose that ˛1; : : : ; ˛` are all equal. Then by (7.33), the positive homogeneity

of hi in the second argument, and the fact that

Nx � z.˛i/ D .1 � ˛i/.Nx � z/;

we have

hi.z.˛i/I Nx � z.˛i// � 0; for all i D 1; 2; : : : ; `;

where strict inequality holds for some i, that is,

�
h1.z.˛1/I Nx � z.˛1//; : : : ; h`.z.˛`/I Nx � z.˛`//

� 2 C n f0g;

which contradicts to our assumption that Nx is a solution of (h-MVVIP).
Consider the case when ˛1; ˛2; : : : ; ˛` are not equal. Let ˛1 ¤ ˛2.
If ˛1 < ˛2, then by the positive homogeneity and the suboddness of hi.xI �/, we

get

h1.z.˛1/I z.˛2/ � z.˛1// D .˛2 � ˛1/h1.z.˛1/I Nx � z/;

and by using (7.33), we obtain

h1.z.˛1/I z.˛2/ � z.˛1// D .˛2 � ˛1/h1.z.˛1/I Nx � z/ � 0; (7.34)

where strict inequality holds for k D 1.
Since each fi is DC-pseudoconvex and hi.xI �/ � DCfi.xI �/, by Lemma 1.5, fi is

hi-pseudoconvex; further, by Lemma 1.7 (b), hi is pseudomonotone. Therefore, we
have

h1.z.˛2/I z.˛2/ � z.˛1// � 0; (7.35)

where strict inequality holds for k D 1 by virtue of Lemma 1.6. The positive
homogeneity of hi.xI �/ implies that

.˛2 � ˛1/h1.z.˛2/I Nx � z/ � 0;
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where strict inequality holds for k D 1. Since ˛2 � ˛1 > 0, we have

h1.z.˛2/I Nx � z/ � 0;

with strict inequality for k D 1.
If ˛1 > ˛2, then by the positive homogeneity and the suboddness of hi.xI �/, we

get

h2.z.˛2/I z.˛1/ � z.˛2// D .˛1 � ˛2/h2.z.˛2/I Nx � z/;

and by using (7.33), we obtain

h2.z.˛2/I z.˛1/ � z.˛2// D .˛1 � ˛2/h2.z.˛2/I Nx � z/ � 0; (7.36)

with strict inequality for k D 2.
As above, each hi is pseudomonotone; therefore,

h2.z.˛1/I z.˛1/ � z.˛2// � 0; (7.37)

with strict inequality for k D 2 by virtue of Lemma 1.6 Again as above, by using
the positive homogeneity of hi.xI �/, we get

h2.z.˛1/I Nx � z/ � 0;

with strict inequality for k D 2.
For the case ˛1 ¤ ˛2, let N̨ D maxf˛1; ˛2g. Then we have

hi.z. N̨ /I Nx � z/ � 0; for all i D 1; 2:

By continuing this process, we can find ˛� 2 �0; 1Œ such that

hi.z.˛
�/I Nx � z/ � 0; for all i D 1; 2; : : : ; `;

with strict inequality for some k such that 1 � k � `. By multiplying the above
inequality by 1 � ˛�, we obtain

hi.z.˛
�/I Nx � z.˛�// � 0; for all i D 1; 2; : : : ; `;

with strict inequality for some k such that 1 � k � `. Thus,

�
h1.z.˛

�/I Nx � z.˛�//; : : : ; h`.z.˛
�/I Nx � z.˛�//

� 2 C n f0g;

which contradicts our supposition that Nx is a solution of h-MVVIP.
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Conversely, suppose that Nx 2 K is an efficient solution of VOP, but not a solution
of h-MVVIP. Then there exists z 2 K such that

h.zI Nx � z/ 2 C n f0g;

that is,

hi.zI Nx � z/ � 0; for all i 2 I ;

with strict inequality holds for some i. Since hi.zI / � DCfi.zI �/ for all i 2 I ,

DCfi.zI Nx � z/ � 0; for all i 2 I ;

with strict inequality holds for some i. Since each fi is DC-pseudoconvex, we have

fi.Nx/ � fi.z/; for all i 2 I :

Let j 2 I be such thatDCfj.zI Nx� z/ > 0: Since fj is upper semicontinuous andDC-
pseudoconvex, it follows from Lemma 1.4 that fj is quasiconvex; hence, it follows
from Theorem 4 in [6] that fj.Nx/ > fj.z/. Thus, f .z/ � f .Nx/ 2 �C n f0g; hence, Nx is
not an efficient solution of VOP. This contradiction proves our result. ut

The following result gives the relation between a solution of h-VVIP and a
properly efficient solution (in the sense of Henig) of VOP.

Theorem 7.14 If Nx 2 K is a properly efficient solution (in the sense of Henig) of
VOP, then it is a solution of DC-VVIP.

Proof Since Nx 2 K is a properly efficient solution (in the sense of Henig) of VOP,
there is convex cone D in R` such that C n f0g � int.D/, and

f .y/ � f .Nx/ … �D n f0g; for all y 2 K:

Since � int.D/ � �D n f0g, we have

f .y/ � f .Nx/ … � int.D/; for all y 2 K:

Since K is a convex set, we have Nx C �.y � Nx/ 2 K for all � 2 Œ0; 1�; thus,

f .Nx C �.y � Nx// � f .Nx/
�

2 R
` n f� int.D/g; for all � 2 �0; 1Œ:

Since R` n f� int.D/g is a closed convex cone, by taking the limit sup as � # 0, we
obtain

DCf .NxI y� Nx/ D lim sup
�#0

f .Nx C �.y � Nx// � f .Nx/
�

2 R
` n f� int.D/g; for all y 2 K:
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Therefore,

hDCf .Nx/; y � Nxi … � int.D/; for all y 2 K:

Since C n f0g � int.D/ for all x 2 K, we obtain the result. ut
Theorem 7.15 ([10]) If Nx 2 K is a properly efficient solution (in the sense of
Geoffrion) of VOP and for each i D 1; 2; : : : ; `, DCf i.NxI �/ is finite on K � Nx, then
Nx 2 K is a solution of DC-VVIP.

Proof Let Nx 2 K be a properly efficient solution (in the sense of Geoffrion) of VOP.
Suppose on contrary that there exists d 2 R

n such that d 2 K � Nx, DCf i.NxI d/ < 0

and DCf j.NxI d/ � 0, j ¤ i. We choose v 2 K such that d D v � Nx. Since K is
convex, we can choose a sequence ftng of positive real numbers such that tn # 0,
Nx C tn.v � Nx/ 2 K for all n and

DCf i.NxI d/ D lim
n!1

fi.Nx C tn.v � Nx// � fi.Nx/
tn

:

Since DCf i.NxI d/ < 0,

lim
n!1

fi.Nx C tn.v � Nx// � fi.Nx/
tn

< 0;

and hence, there exists a natural number N such that for all n � N,

1

tn
Œfi.Nx C tn.v � Nx// � fi.Nx/� < 0;

that is, fi.Nx C tn.v � Nx// < fi.Nx/. Since Nx is an efficient solution VOP, choosing a
subsequence of the sequence fNx C tn.v � Nx/g, if necessary, we may assume that

I WD f j W fj.Nx C tn.v � Nx// > fj.Nx/g

is constant for all n � N. So, for all j 2 I, we have

lim sup
n!1

fj.Nx C tn.v � Nx// � fj.Nx/
tn

� 0:

Since DCf j.NxI d/ � 0 for all j 2 I, we have

lim sup
n!1

fj.Nx C tn.v � Nx// � fj.Nx/
tn

D 0;
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for all j 2 I. So, choosing a subsequence of ftng, if necessary, we may assume that

lim
n!1

fj.Nx C tn.v � Nx// � fj.Nx/
tn

D 0;

for all j 2 I. So, for all j 2 I, we have

fi.Nx/ � fi.Nx C tn.v � Nx//
fj.Nx C tn.v � Nx// � fj.Nx/ D

1
tn

Œfi.Nx/ � fi.Nx C tn.v � Nx//�
1
tn

Œfj.Nx C tn.v � Nx// � fj.Nx/� ! C1 as n ! 1;

which contradicts to the proper efficiency (in the sense of Geoffrion) of Nx. ut
Remark 7.2 Since proper efficiency in the sense of Benson and in the sense of
Geoffrion are equivalent when C D R

`C, Theorem 7.15 also holds for proper
efficiency in the sense of Benson.

Corollary 7.1 ([11, Theorem 4]) For each i D 1; 2; : : : ; `, let fi W K ! R be
convex and differentiable. If Nx 2 K is a properly efficient solution (in the sense of
Benson) of VOP, then it is a solution of r-VVIP.

The following example shows that the Corollary 7.1 cannot be extended to
efficient solutions of VOP even though each fi is convex.

Example 7.7 LetK D Œ�1; 0� and f .x/ D .x; x2/. Then Nx D 0 is an efficient solution
of VOP, but it is not a solution of the following r-VVIP: Find Nx 2 K such that for
all y 2 K,

.hrf1.Nx/; y � Nxi; hrf2.Nx/; y � Nxi/ D .y � Nx; 2Nx.y � Nx// … �R
2C n f0g:

We notice that Nx D 0 is not a properly efficient solution (in the sense of Benson) of
VOP.
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