
Chapter 6
Linear Scalarization of Vector Variational
Inequalities

This chapter deals with linear scalarization techniques for vector variational inequal-
ity problems and Minty vector variational inequality problems. Such concepts
are important for deriving numerical algorithms for solving vector variational
inequalities.

For each given ` 2 N, we denote by R`C the non-negative orthant of R`, that is,

R
`C D ˚

x D .x1; x2; : : : ; x`/ 2 R
` W xi � 0; for i D 1; 2; : : : ; `

�
;

so that R
`C has a nonempty interior with the topology induced in terms of

convergence of vectors with respect to the Euclidean metric. That is,

int.R`C/ D ˚
x D .x1; x2; : : : ; x`/ 2 R

` W xi > 0; for i D 1; 2; : : : ; `
�

:

We denote by T
`C and int.T`C/ the simplex of R

`C and its relative interior,
respectively, that is,

T
`C D

(

x D .x1; x2; : : : ; x`/ 2 R
`C W kxk D

X̀

iD1

xi D 1

)

;

and

int.T`C/ D
(

x D .x1; x2; : : : ; x`/ 2 int.R`C/ W kxk D
X̀

iD1

xi D 1

)

:

e denotes the unit vector in R`, that is, e D .1; 1; : : : ; 1/.
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266 6 Linear Scalarization of Vector Variational Inequalities

Let K be a nonempty convex subset of Rn. For each i D 1; 2; : : : ; `, let Ti W K !
R

n be a vector-valued function such that T D .T1;T2; : : : ;T`/ W K ! R
`�n is a

matrix-valued function. For abbreviation, we put

hT.x/; vi` WD .hT1.x/; vi; : : : ; hT`.x/; vi/ ; for all x 2 K and all v 2 R
n:

Let us define the vector variational inequality problem and weak vector varia-
tional inequality problem in these settings.

• Vector Variational Inequality Problem (in short, FVVIP): Find Nx 2 K such that
for all y 2 K

hT.Nx/; y � Nxi` WD .hT1.Nx/; y � Nxi; : : : ; hT`.Nx/; y � Nxi/ … �R
`C n f0g: (6.1)

• Weak Vector Variational Inequality Problem (in short, FWVVIP): Find Nx 2 K
such that for all y 2 K

hT.Nx/; y � Nxi` WD .hT1.Nx/; y � Nxi; : : : ; hT`.Nx/; y � Nxi/ … �int.R`C/: (6.2)

We denote the solution set of FVVIP and FWVVIP by Sol(FVVIP) and
Sol(FWVVIP), respectively.

Let W D .W1;W2; : : : ;W`/ 2 R
`C n f0g be arbitrary. The weighted variational

inequality problem (in short, WVIP) consists of finding Nx 2 K w. r. t. the weight
vectorW D .W1;W2; : : : ;W`/ 2 R

`C n f0g such that

W � hT.Nx/; y � Nxi` WD
X̀

iD1

WihTi.Nx/; y � Nxi � 0; for all y 2 K: (6.3)

The solution set of WVIP is denoted by Sol(WVIP).
If W 2 T

`C, then the solution of WVIP is called normalized. The set of
normalized solutions of WVIP is denoted by Sol(WVIP)n.

The following lemmas show the relationship among Sol(FVVIP), Sol(FWVVIP)
and Sol(WVIP).

Lemma 6.1 For any given weight vector W D .W1;W2; : : : ;W`/ 2 int.R`C/

(respectively, W D .W1;W2; : : : ;W`/ 2 R
`C n f0g), Sol(WVIP) � Sol(FVVIP)

(respectively, Sol(WVIP) � Sol(FWVVIP)).

Proof Let Nx 2 Sol(WVIP) w. r. t. the weight vector W 2 int.R`C/ (respectively,
W 2 R

`C n f0g) but Nx … Sol(FVVIP) (respectively, Nx … Sol(FWVVIP)). Then, there
would exist some y 2 K such that

hT.Nx/; y � Nxi` D †T1.Nx; y � Nxi; : : : ; hT`.Nx; y � Nxi 2 �R
`C n f0g; for all y 2 K

�
hT.Nx/; y � Nxi` D †T1.Nx; y � Nxi; : : : ; hT`.Nx; y � Nxi 2 �int.R`C/; for all y 2 K

�
:
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SinceW 2 int.R`C/ (respectively,W 2 R
`C n f0g), we have

W � hT.Nx/; Nx � yi` D
X̀

iD1

WihTi.Nx/; y � Nxi > 0;

that is,

W � hT.Nx/; y � Nxi` < 0;

which contradicts our assumption that Nx 2 K is a solution of WVIP. Hence, Nx 2 K
is a solution of FVVIP (respectively, FWVVIP). ut
Lemma 6.2 If Nx is a solution of FWVVIP, then there exists a weight vector W D
.W1;W2; : : : ;W`/ 2 R

`C n f0g such that Nx 2 Sol(WVIP) w. r. t. W.

Proof Let Nx 2 Sol(FWVVIP). Then,

fhT.Nx/; y � Nxi` W y 2 Kg \ f�int.R`C/g D ;:

So, by a separation theorem, there existsW 2 R
`C n f0g such that

inf
y2K W � hT.Nx/; y � Nxi` � sup

v2�int.R`
C

/

W � v:

This implies that W 2 R
`C n f0g. Then, the right-hand side of the above inequality

is 0, and therefore,W � hT.Nx/; y � Nxi` � 0 for all y 2 K. Hence, Nx 2 K is a solution
of WVIP. ut

By combining Lemma 6.1 and L:5.6.2, we have the following relations in terms
of Cheng [2] and Lee et al. [4].

Remark 6.1

(a)
[

W2int.R`
C

/

Sol(WVIP) � Sol(VVIP) � Sol(WVVIP)

D
[

W2R`
C

nf0g
Sol(WVIP).

(b) Since the solution set Sol(WVIP) of the WVIP w. r. t. the weight vector W 2
R

`C n f0g is equal to the solution set of the WVIP w. r. t. the weight vector ˛W,
for any ˛ > 0, the above inclusion can be rewritten as

[

W2int.T`i
C

/

Sol(WVIP) � Sol(VVIP) � Sol(WVVIP) D
[

W2T`i
C

Sol(WVIP):

(c) Cheng [2] and Lee et al. [4] studied the nonemptyness, compactness, convexity
and connectedness of the solution set Sol(WVIP).



268 6 Linear Scalarization of Vector Variational Inequalities

As we have seen in Chap. 5, theMinty vector variational inequalities are useful to
establish the existence of a solution for (Stampacchia) vector variational inequalities
and also have their own importance while dealing with vector optimization prob-
lems. Therefore, we consider the following Minty weighted variational inequality
problem.

Let W D .W1;W2; : : : ;W`/ 2 R
`C n f0g be arbitrary. The Minty weighted

variational inequality problem (in short, MWVIP) consists in finding Nx 2 K w.
r. t. the weight vectorW D .W1;W2; : : : ;W`/ 2 R

`C n f0g such that

W � hT.y/; y � Nxi` WD
X̀

iD1

WihTi.y/; y � Nxi � 0; for all y 2 K: (6.4)

The solution set of MWVIP is denoted by Sol(MWVIP).
It can be easily seen that the solution set Sol(MWVIP) is convex for every W 2

R
`C n f0g.
The following lemmas show that the relationship among Sol(FVVIP),

Sol(FWVVIP) and Sol(WVIP).

Lemma 6.3 For any given weight vector W D .W1;W2; : : : ;W`/ 2 int.R`C/

(respectively, W D .W1;W2; : : : ;W`/ 2 R
`C n f0g), Sol(MWVIP) � Sol(FMVVIP)

(respectively, Sol(MWVIP) � Sol(FMWVVIP)).

Proof Let Nx 2 Sol(MWVIP) w. r. t. the weight vector W 2 int.R`C/ (respectively,
W 2 R

`C n f0g) but Nx … Sol(FVVIP) (respectively, Nx … Sol(FWVVIP)). Then, there
would exist some y 2 K such that

hT.Nx/; y � Nxi` 2 �R
`C n f0g; for all y 2 K

�
hT.Nx/; y � Nxi` 2 �int.R`C/; for all y 2 K

�
:

SinceW 2 int.R`C/ (respectively,W 2 R
`C n f0g), we have

W � hT.Nx/; Nx � yi` D
X̀

iD1

WihTi.Nx/; y � Nxi > 0;

that is,

W � hT.Nx/; y � Nxi` < 0;

which contradicts our assumption that Nx 2 K is a solution of WVIP. Hence, Nx 2 K
is a solution of FVVIP (respectively, FWVVIP). ut
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In general, we have

[

W2int.R`
C

/

Sol(WMVIP) � Sol(MVVIP) � Sol(MWVVIP)

D
[

W2R`
C

nf0g
Sol(MWVIP):

Definition 6.1 LetW D .W1;W2; : : : ;Wn/ 2 R
`Cnf0g be a weight vector. Amatrix-

valued function T D .T1;T2; : : : T`/ W K ! R
`�n is said to be

(a) weighted monotone w. r. t. the weight vector W if for all x; y 2 K, we have

W � hT.x/ � T.y/; x � yi` � 0;

and weighted strictly monotone w. r. t. the weight vector W if the inequality is
strict for all x ¤ y;

(b) weighted pseudomonotone w. r. t. the weight vector W if for all x; y 2 K, we
have

W � hT.x/; y � xi` � 0 ) W � hT.y/; y � xi` � 0;

and weighted strictly pseudomonotone w. r. t. the weight vector W if the second
inequality is strict for all x ¤ y;

(c) weighted maximal pseudomonotone w. r. t. the weight vector W if it is weighted
pesudomonotone and for all x; y 2 K, we have

W � hT.z/; z � xi` � 0 8z 2 �x; y� ) W � hT.x/; y � xi � 0; (6.5)

and weighted maximal strictly pseudomonotone w. r. t. the weight vector W if it
is weighted strictly pseudomonotone and (6.5) holds.

It can easily seen that if each Ti is monotone, then T is weighted monotone w. r.
t. the any weight vectorW 2 R

`C n f0g.
Definition 6.2 Let W D .W1;W2; : : : ;Wn/ 2 R

`C n f0g be a weight vector. A
matrix-valued function T D .T1;T2; : : : ;T`/ W K ! R

`�n is said to be weighted
hemicontinuous w. r. t. the weight vector W if for all x; y 2 K and � 2 Œ0; 1�, the
mapping � 7! P`

iD1 Wi � hTi.x C �.y � x//; y � xi is continuous.
If each Ti is continuous, then T is continuous, and hence, T is hemicontinuous.

Proposition 6.1 Let W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g be a weight vector and

T D .T1;T2; : : : ;T`/ W K ! R
`�n be weighted hemicontinuous and weighted

pseudomonotone w. r. t. the weight vector W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g.

Then, T is weighted maximal pseudomonotone w. r. t. the same weight vector
W D .W1;W2; : : : ;Wn/ 2 R

`C n f0g.
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Proof Assume that for all x; y 2 K,

W � hT.z/; z � xi` � 0; for all z 2 �x; y�:

Then,

W � hT.x C �.y � x//; y � .x C �.y � x//i` � 0; for all � 2 �0; 1�

which implies that

W � hT.x C �.y � x//; y � xi` � 0; for all � 2 �0; 1�:

By the weighted hemicontinuity of T, we have

W � hT.y/; y � xi` � 0:

Hence, T is weighted maximal pseudomonotone w. r. t. the weight vectorW. ut
The following lemma can be viewed as a generalization of the Minty lemma

(see, [3]).

Lemma 6.4 Let W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g be a weight vector and T D

.T1;T2; : : : ;T`/ W K ! R
`�n be weighted maximal pseudomonotone w. r. t. the

weight vector W D .W1;W2; : : : ;Wn/ 2 R
`C nf0g. Then, Sol(WVIP) = Sol(MWVIP).

Proof It is obvious that Sol(WVIP) � Sol(MWVIP) by the weighted pseudomono-
tonicity of T.

Let Nx 2 Sol(MWVIP), then

W � hT.y/; y � Nxi` � 0; for all y 2 K:

Since K is convex, we have �Nx; y� � K, and therefore,

W � hT.z/; z � Nxi` � 0; for all z 2 �Nx; y�:

By the weighted maximal pseudomonotonicity of T, we have

W � hT.Nx/; y � Nxi` � 0; for all y 2 K:

This shows that Nx 2 Sol(WVIP), and hence, Sol(WVIP) = Sol(MWVIP). ut
Remark 6.2 In view of Proposition 6.1 and Lemma 6.4, we have that if T is
weighted hemicontinuous and weighted pseudomonotone w. r. t. the same weight
vectorW D .W1;W2; : : : ;Wn/ 2 R

`C n f0g, then Sol(WVIP) = Sol(MWVIP).
However, Charitha et al. [1] proved that Sol(WVIP) = Sol(MWVIP) if each Ti,

i D 1; 2; : : : ; ` is continuous and monotone.
We now have some existence results for solutions of WVIP.
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Theorem 6.1 Let W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g be a weight vector and K be

a nonempty convex subset of Rn. Let T D .T1;T2; : : : ;T`/ W K ! R
`�n be weighted

maximal pseudomonotone w. r. t. W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g. Assume that

there exist a nonempty, closed and compact subset D of K and Qy 2 D such that for
each x 2 K nD, W � hT.x/; y� xi` < 0. Then, there exists a solution Nx 2 K of WVIP.

Proof For each x 2 K, define set-valued maps F;G W K ! 2K by

F.x/ D fy 2 K W W � hT.y/; y � xi` < 0g

and

G.x/ D fy 2 K W W � hT.x/; y � xi` < 0g:

Then, it is clear that for each x 2 K,G.x/ is convex. By weighted pseudomonotonic-
ity of T, we have F.x/ � G.x/ for all x 2 K.

For each y 2 K, the complement of F�1.y/ in K is

ŒF�1.y/�c D fx 2 K W W � hT.y/; y � xi` � 0g

is closed in K, and hence, F�1.y/ is open in K. Therefore,F�1.y/ is compactly open.
Assume that for all x 2 K, F.x/ is nonempty. Then all the conditions of

Theorem 1.36 are satisfied, and therefore, there exists Ox 2 K such that Ox 2 G.Ox/. It
follows that

0 D W � hT.Qx/; Qx � Qxi < 0;

a contradiction. Hence, there exists Nx 2 K such that F.Nx/ D ;. This implies that for
all y 2 K,

W � hT.y/; y � Nxi` � 0;

that is, there exists Nx 2 K w. r. t. the weight vector W D .W1;W2; : : : ;W`/ 2
R

`C n f0g such that

W � hT.y/; y � Nxi` � 0; for all y 2 K:

By Lemma 6.4, Nx 2 K is a solution of WVIP. ut
Remark 6.3 In view of Remark 6.2, the assumption that T is weighted maximal
monotone in Theorem 6.1 can be replaced by weighted hemicontinuous and
weighted pseudomonotone w. r. t.W.

Remark 6.4 In Theorem 6.1, if T is weighted maximal strictly pseudomonotone
w. r. t. W, then solution of WVIP is unique.
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Indeed, assume that there exist two solutions x0 and x00 of WVIP. Then, we have

W � hT.x00/; x0 � x00i` � 0:

By the weighted strictly pseudomonotonicity of T, we have

W � hT.x0/; x0 � x00 � i` > 0; i.e. W � hT.x0/; x00 � x0i` < 0;

that is, x0 is not a solution of WVIP, a contradiction.
Now we present the definition of weighted B-pseudomonotonicity.

Definition 6.3 Let W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g be a weight vector. A

matrix-valued function T D .T1;T2; : : : ;T`/ W K ! R
`�n is said to be weighted

B-pseudomonotonew. r. t. the weight vector W if for each x 2 K and every sequence
fxmgm2N in K converging to x with

lim sup
m!1

W � hT.xm/; x � xmi` � 0;

we have

lim sup
m!1

W � hT.xm/; y � xmi � W � hT.x/; y � xi; for all y 2 K:

Theorem 6.2 Let W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g be a weight vector and K be

a nonempty convex subset of Rn. Let T D .T1;T2; : : : ;T`/ W K ! R
`�n be weighted

B-pseudomonotone w. r. t. W such that for each A 2 F .K/, x 7! W � hT.x/; y � xi`

is lower semicontinuous on coA. Assume that there exist a nonempty, closed and
compact subset D of K and Qy 2 D such that for all x 2 K nD, W � hT.x/; Qy� xi` < 0.
Then, there exists a solution Nx 2 K of WVIP.

Proof For each x 2 K, let G W K ! 2K be defined by

G.x/ D fy 2 K W W � hT.x/; y � xi` < 0g:

Then, for all x 2 K, G.x/ is convex. Let A 2 F .K/, then for all y 2 coA,

ŒG�1.y/�c \ coA D fx 2 coA W W � hT.x/; y � xi` � 0g

is closed in coA by lower semicontinuity of the map x 7! W � hT.x/; y � xi` on coA.
Hence G�1.y/

T
coA is open in coA.

Suppose that x; y 2 coA and fxmgm2N is a sequence in K converging to x such that

W � hT.xm/; .˛x C .1 � ˛/y/ � xmi` � 0; for all m 2 N and all ˛ 2 Œ0; 1�:
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For ˛ D 0, we have

W � hT.xm/; x � xmi` � 0; for all m 2 N;

and therefore,

lim sup
m!1

W � hT.xm/; x � xmi` � 0:

By the weighted B-pseudomonotonicity of T, we have

lim sup
m!1

W � hT.xm/; y � xmi` � W � hT.x/; y � xi`: (6.6)

For ˛ D 1, we have

W � hT.xm/; y � xmi � 0; for all m 2 N;

and therefore,

lim sup
m!1

W � hT.xm/; y � xmi` � 0: (6.7)

From (6.6) and (6.7), we get

W � hT.x/; y � xi` � 0;

and thus y … G.x/.
Assume that for all x 2 K, G.x/ is nonempty. Then all the conditions of

Theorem 1.36 are satisfied. The rest of the proof follows the lines of the proof of
Theorem 6.1. ut

Some existence results for solutions of WVIP have been studied in [4] under
strong monotonicity and Lipschitz continuity of each Ti and in [1] under continuity
and monotonicity each Ti.
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