
Chapter 1
Preliminaries

This chapter deals with basic definitions from convex analysis and nonlinear
analysis, such as convex sets and cones, convex functions and their properties,
generalized derivatives, and continuity for set-valued maps. We also gather some
known results from fixed point theory for set-valued maps, namely, Nadler’s fixed
point theorem, Fan-KKM lemma and its generalizations, Fan section lemma and
its generalizations, Browder fixed point theorem and its generalizations, maximal
element theorems and Kakutani fixed point theorem. A brief introduction of scalar
variational inequalities, nonsmooth variational inequalities, generalized variational
inequalities and equilibrium problems is given.

1.1 Convex Sets and Cones

Throughout the book, all vector spaces are assumed to be defined over the field of
real numbers, and we adopt the following notations.

We denote by R, Q and N the set of all real numbers, rational numbers and
natural numbers, respectively. The interval Œ0; 1/ is denoted by RC. We denote by
R

n the n-dimensional Euclidean space and byRnC the nonnegative orthant inRn. The
zero element in a vector space will be denoted by 0. Let A be a nonempty set. We
denote by 2A (respectively, ˘.A/) the family of all subsets (respectively, nonempty
subsets) of A and by F .A/ the family of all nonempty finite subsets of A. If A and
B are nonempty subsets of a topological space X such that B � A, we denote by
intA.B/ (respectively, clA.B/) the interior (respectively, closure) of B in A. We also
denote by int.A/, cl.A/ (or A), and bd.A/ the interior of A in X, the closure of A in
X, and the boundary of A, respectively. Also, we denote by Ac the complement of
the set A. If X and Y are topological vector spaces, then we denote by L.X;Y/ the
space of all continuous linear functions from X to Y.
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Fig. 1.1 Illustration of a
convex set and of a
nonconvex set, respectively
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Definition 1.1 Let X be a vector space, and x and y be distinct points in X. The set
L D fz W z D �x C .1 � �/y for all � 2 Rg is called the line through x and y.

The set Œx; y� D fz W z D �x C .1 � �/y for 0 � � � 1g is called a line segment
with the endpoints x and y.

Definition 1.2 A subset W of a vector space X is said to be a subspace if for all
x; y 2 W and �; � 2 R, we have �x C �y 2 W.

Geometrically speaking, a subset W of X is a subspace of X if for all x; y 2 W,
the plane through the origin, x and y lies inW.

Definition 1.3 A subset M of a vector space X is said to be an affine set if for all
x; y 2 M and �; � 2 R such that � C � D 1 imply that �xC �y 2 M, that is, for all
x; y 2 M and � 2 R, we have �x C .1 � �/y 2 M.

Geometrically speaking, a subset M of X is an affine set if it contains the whole
line through any two of its points.

Definition 1.4 A subset K of a vector space X is said to be a convex set if for all
x; y 2 K and �; � � 0 such that � C � D 1 imply that �x C �y 2 K, that is, for all
x; y 2 K and � 2 Œ0; 1�, we have �x C .1 � �/y 2 K.

Geometrically speaking, a subset K of X is convex if it contains the whole line
segment with endpoints through any two of its points (see Fig. 1.1).

Definition 1.5 A subset C of a vector space X is said to be a cone if for all x 2 C
and � � 0, we have �x 2 C.

A subset C of X is said to be a convex cone if it is convex and a cone; that is, for
all x; y 2 K and �; � � 0 imply that �x C �y 2 C (see Fig. 1.2 and 1.3).

Remark 1.1 If C is a cone, then 0 2 C. In the literature, it is mostly assumed that
the cone has its apex at the origin. This is the reason why � � 0 is chosen in the
definition of a cone. However, some references define a set C � X to be a cone if
�x 2 C for all x 2 C and � > 0. In this case, the apex of the “shifted” cone may not
be at the origin, or 0 may not belong to C.

Remark 1.2 It is clear from the above definitions that every subspace is an affine
set as well as a convex cone, and every affine set and every convex cone are convex.
But the converse of these statements may not be true in general.

Evidently, the empty set, each singleton set fxg and the whole space X are all
both affine and convex. In R

n, straight lines, circular discs, ellipses and interior of
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Fig. 1.2 A convex cone
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Fig. 1.3 A convex cone in
R
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Fig. 1.4 A cone which is not
convex
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triangles are all convex. A ray, which has the form fx0 C �v W � � 0g, where v ¤ 0,
is convex, but not affine.

Remark

(a) A cone C may or may not be convex (see Figs. 1.2 - 1.4).
(b) A cone C may be open, closed or neither open nor closed.
(c) A set C is a convex cone if it is both convex as well as a cone.
(d) If C1 and C2 are convex cones, then C1 \C2 and C1 CC2 are also convex cones.

Definition 1.6 Let X be a vector space. Given x1, x2, : : :, xm 2 X, a vector x D
�1x1 C �2x2 C � � � C �mxm is called

(a) a linear combination of x1; x2; : : : ; xm if �i 2 R for all i D 1; 2; : : : ;m;
(b) an affine combination of x1; x2; : : : ; xm if �i 2 R for all i D 1; 2; : : : ;m withPm

iD1 �i D 1;
(c) a convex combination of x1; x2; : : : ; xm if �i � 0 for all i D 1; 2; : : : ;m withPm

iD1 �i D 1;
(d) a cone combination of x1; x2; : : : ; xm if �i � 0 for all i D 1; 2; : : : ;m.

A set K is a subspace, affine, convex or a cone if it is closed under linear, affine,
convex or cone combination, respectively, of points of K.

Theorem 1.1 A subset K of a vector space X is convex (respectively, subspace,
affine, convex cone) if and only if every convex (respectively, linear, affine, cone)
combination of points of K belongs to the set K.
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Proof Since a set that contains all convex combinations of its points is obviously
convex, we only consider K is convex and prove that it contains any convex
combination of its points, that is, if K is convex and xi 2 K, �i � 0 for all
i D 1; 2; : : : ;m with

Pm
iD1 �i D 1, then we have to show that

Pm
iD1 �ixi 2 K.

We prove this by induction on the number m of points of K occurring in a convex
combination. If m D 1, the assertion is simply x1 2 K implies x1 2 K, evidently
true. If m D 2, then �1x1 C �2x2 2 K for �i � 0, i D 1; 2,

P2
iD1 �i D 1, holds

because K is convex. Now suppose that the result is true form. Then (for �mC1 ¤ 1/

mC1X

iD1

�ixi D
mX

iD1

�ixi C �mC1xmC1

D
mX

iD1

.1 � �mC1/
�ixi

1 � �mC1

C �mC1xmC1

D .1 � �mC1/

mX

iD1

�i

1 � �mC1

xi C �mC1xmC1

D .1 � �mC1/

mX

iD1

�ixi C �mC1xmC1;

where �i D �i

.1 � �mC1/
, i D 1; 2; : : : ;m: But then �i � 0 for i D 1; 2; : : : ;m and

mX

iD1

�i D
Pm

iD1 �i

1 � �mC1

D 1 � �mC1

1 � �mC1

D 1;

so by the result form, y D Pm
iD1 �ixi 2 K. Immediately, by convexity of K, we have

mC1X

iD1

�ixi D .1 � �mC1/y C �mC1xmC1 2 K:

The proof for subspace, affine and convex cone cases follows exactly the same
pattern. ut
Remark 1.3

(a) The intersection of any number of convex sets (respectively, subspaces, affine
sets, convex cones) is a convex set (respectively, subspace, affine set, convex
cone).

(b) The union of any number of convex sets need not be convex.

(c) For i 2 N, let Ki be convex. If Ki � KiC1, i 2 N, then
1[

iD1

Ki is convex.
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Fig. 1.5 Illustration of the
convex hull of 14 points and a
convex hull of a set A

A

Fig. 1.6 Conic hull of 8
points and the cone generated
by the set A

A
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(d) If K1 and K2 are convex subsets of a vector space X and ˛ 2 R, then K1 CK2 D
fx C y W x 2 K1; y 2 K2g and ˛K1 D f˛x W x 2 K1g are convex sets.

(e) A subset K of a vector space X is convex if and only if .� C �/K D �K C �K
for all � � 0, � � 0.

Definition 1.7 Let A be a nonempty subset of a vector space X. The intersection
of all convex sets (respectively, subspaces, affine sets) containing A is called a
convex hull (respectively, linear hull, affine hull) of A, and it is denoted by co.A/

(respectively, ŒA�, aff.A/) (see Fig. 1.5). Similarly, the intersection of all convex
cones containing A is called a conic hull of A, and it is denoted by cone.A/ (see
Fig. 1.6).

By Remark 1.3 (a), the convex (respectively, affine, conic) hull is a convex set
(respectively, affine set, convex cone). In fact, co.A/ (respectively, aff.A/, cone.A//

is the smallest convex set (respectively, affine set, convex cone) containing A.
The cone cone.A/ can also be written as

cone.A/ D fx 2 X W x D �y for some � � 0 and some y 2 Ag:

It is also called a cone generated by A (see Fig. 1.6).

Theorem 1.2 Let A be a nonempty subset of a vector space X. Then x 2 co.A/ if
and only if there exist xi in A and �i � 0, for i D 1; 2; : : : ;m, for some positive
integer m, where

Pm
iD1 �i D 1 such that x D Pm

iD1 �ixi.

Proof Since co.A/ is a convex set containing A, therefore, from Theorem 1.1, every
convex combination of its points lies in it, that is, x 2 co.A/.
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Conversely, let K.A/ be the set of all convex combinations of elements of A. We
claim that the set

K.A/ D
(

mX

iD1

�ixi W xi 2 A; �i � 0; i D 1; 2; : : : ;m;

mX

iD1

�i D 1; m � 1

)

is convex. Indeed, consider y D Pm
iD1 �iyi and z D P`

jD1 �jzj where yi 2 A, �i � 0,

i D 1; 2; : : : ;m,
Pm

iD1 �i D 1 and zj 2 A, �j � 0, j D 1; 2; : : : ; `,
P`

jD1 �j D 1, and
let 0 � � � 1. Then

�y C .1 � �/z D
mX

iD1

��iyi C
X̀

jD1

.1 � �/�jzj;

where ��i � 0, i D 1; 2; : : : ;m, .1 � �/�j � 0, j D 1; 2; : : : ; ` and

mX

iD1

��i C
X̀

jD1

.1 � �/�j D �

mX

iD1

�i C .1 � �/
X̀

jD1

�j D � C .1 � �/ D 1:

Also, the set K.A/ of convex combinations contains A (each x in A can be written as
x D 1 � x). By the definition of co.A/ as the intersection of all convex supersets of A,
we deduce that co.A/ is contained in K.A/.

Thus the convex hull of A is the set of all (finite) convex combinations from
within A. ut

The above result also holds for an affine set and a convex cone.

Corollary 1.1

(a) The set A is convex if and only if A D co.A/.
(b) The set A is affine if and only if A D aff.A/.
(c) The set A is a convex cone if and only if A D cone.A/.
(d) The set A is a subspace if and only if A D ŒA�.

Definition 1.8 The relative interior of a set C in a topological vector space X,
denoted by relint.C/, is defined as

relint.C/ D fx 2 C W N".x/ \ aff.C/ � C for some " > 0g ;

where N".x/ denotes the neighborhood of x.

Remark 1.4

(a) We have relint.C/ � aff.C/.
(b) relint.C/ D aff.C/ if and only if aff.C/ D X.
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Example 1.1

(a) Consider the set C D f.x; y; z/ 2 R
3 W x2 C y2 � 1; z D 0g. Then int.C/ D ;,

but relint.C/ D f.x; y; z/ 2 R
3 W x2 C y2 < 1; z D 0g.

(b) For the set C D f.x; y; z/ 2 R
3 W x2Cy2Cz2 � 1g, we have int.C/ D relint.C/ D

f.x; y; z/ 2 R
3 W x2 C y2 C z2 < 1g.

Definition 1.9 The relative boundary of a set C in a topological vector space X,
denoted by relb.C/ or rb.C/, defined as

relb.C/ D cl.C/ n relint.C/:

Example 1.2 Consider a square in the .x1; x2/-plane in R
3 defined as

C D ˚
x D .x1; x2; x3/ 2 R

3 W �1 � x1 � 1; �1 � x2 � 1; x3 D 0
�

:

Its affine hull is the .x1; x2/-plane, that is,

aff.C/ D ˚
x D .x1; x2; x3/ 2 R

3 W x3 D 0
�

:

The interior of C is empty, but the relative interior is

relint.C/ D ˚
x D .x1; x2; x3/ 2 R

3 W �1 < x1 < 1; �1 < x2 < 1; x3 D 0
�

:

Its boundary (in R3) is itself; its relative boundary is the wire-frame outline,

relb.C/ D ˚
x D .x1; x2; x3/ 2 R

3 W max fjx1j; jx2jg D 1; x3 D 0
�

:

Definition 1.10 A subset C of a topological vector space X is called relatively open
if relint.C/ D C.

Remark 1.5 If C1 � C2, then

(a) cl.C1/ � cl.C2/ and
(b) int.C1/ � int.C2/.

Note that property (b) does not hold for relative interior, that is, relint.C1/ �
relint.C2/ is not true in general. For example, if C2 is a cube in R

3 and C1 is one of
the faces of C2. Then relint.C2/ and relint.C1/ are both nonempty but disjoint.

Remark 1.6 Let C be a subset of a topological vector space X.

(a) Every affine set is relatively open by definition and at the same time closed.
(b) cl.C/ � cl.aff.C// D aff.C/ for every C � X.
(c) Any line through two different points of cl.C/ lies entirely in aff.C/.

If C � X is convex, then we have the following assertions:

(d) int.C/ and relint.C/ are convex.
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(e) cl.C/ is also convex.
(f) If C � X is a convex set with nonempty interior, then cl.int.C// D cl.C/.
(g) If C � X is a convex set with nonempty interior, then int.cl.C// D int.C/.
(h) relint.C/ D relint.cl.C//. Moreover, it holds int.C/ D int.cl.C//.
(i) cl.C/ D cl.relint.C// as well as cl.C/ D cl.int.C// if int.C/ ¤ ;.
Remark 1.7 ([127, Corollary 6.3.2]) If C is a convex set in Rn, then every open set
which meets cl.C/ also meets relint.C/.

Proposition 1.1 ([86]) Let Y be a topological vector space with a cone C, c0 2
int.C/ and V WD int.C/ � c0. Then Y D f�V W � � 0g.
Definition 1.11 A cone C in a vector space X is said to be

(a) nontrivial or proper if C ¤ f0g and C ¤ X;
(b) reproducing if C � C D X;
(c) pointed if for x 2 C, x ¤ 0, the negative �x … C, that is, C \ .�C/ D f0g.
Definition 1.12 A cone C in a topological vector space X is said to be a

(a) closed cone if it is also closed;
(b) solid cone if it has nonempty interior.

Below we give some properties of a cone.

Remark 1.8

(a) If C is a cone, then the convex hull of C, co.C/ is a convex cone.
(b) If C1 and C2 are convex cones, then C1 C C2 D co.C1 [ C2/.

Example 1.3 Let

R
nC D fx D .x1; x2; : : : ; xn/ 2 R

n W xi � 0 for all i D 1; 2; : : : ; ng :

Then R
nC is a proper, closed, pointed, reproducing convex cone in the vector space

R
n.

Example 1.4 Let CŒ0; 1� be the vector space of all real-valued continuous linear
functionals defined on the interval Œ0; 1�. Then

CCŒ0; 1� D f f 2 CŒ0; 1� W f .t/ � 0 for all t 2 Œ0; 1�g

is a proper, reproducing, pointed, convex cone in CŒ0; 1�. Note that the set

CC D f f 2 CCŒ0; 1� W f is nondecreasingg

is also a proper, pointed, convex cone in the space CŒ0; 1� but it is not reproducing as
CC � CC is the proper subspace of all functions with bounded variation of CŒ0; 1�.
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Example 1.5 Let

C D ˚
x D .x1; x2; : : : ; xn/ 2 R

n W x1 > 0; or

x1 D 0; x2 > 0; or

: : :

x1 D � � � D xn�1 D 0; xn > 0; or

x D 0
�
;

where 0 is the zero vector in R
n. Then C is a proper, closed, pointed, reproducing

convex cone in the vector space Rn.
Let C be a subset of a vector space X. We denote by `.C/ D C \ .�C/.

Definition 1.13 Let X be a topological vector space. A convex cone C in X is said
to be

(a) acute if its closure cl.C/ is pointed;
(b) correct if cl.C/ C C n `.C/ � C.

Example 1.6

(a) The nonnegative orthant RnC of all vectors of Rn with nonnegative coordinates
is a convex, closed, acute and correct cone. The set f0g is also such a cone, but
it is a trivial cone. The set composed of zero and of the vectors with the first
coordinates being positive, is a pointed, correct cone, but it is not acute.

(b) Let

C D ˚
.x; y; z/ 2 R

3 W x > 0; y > 0; z > 0
�

[ ˚
.x; y; z/ 2 R

3 W x � y � 0; z D 0
�

:

Then C is a convex, acute cone but not correct.
(c) Let ˝ be the vector space of all sequences x D fxmg of real numbers. Let

C D fx D fxmg 2 ˝ W xm � 0 for all mg :

Then C is a convex pointed cone. We cannot say whether it is correct or acute
because no topology has been given on the space.

Proposition 1.2 A cone C is correct if and only if cl.C/ C C n `.C/ � C n `.C/.

Proof If cl.C/ C C n `.C/ � C n `.C/, then the cone is obviously correct because
C n `.C/ � C.

Conversely, assume that C is a correct convex cone. Since `.C/ is a subspace and
C is convex, for all a; b 2 C, a C b 2 `.C/ implies a; b 2 `.C/. Therefore,

C n `.C/ C C n `.C/ D C n `.C/;
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and

C C C n `.C/ � C n `.C/:

Thus,

cl.C/ C C n `.C/ D cl.C/ C C n `.C/ C C n `.C/

� C C C n `.C/ � C n `.C/:

This completes the proof. ut
The cone RnC � R

n has the following interesting property: Consider the set

B D
(

x D .x1; x2; : : : ; xn/ 2 R
nC W

nX

iD1

xi D 1

)

:

Then for every x 2 R
nC nf0g, there exist a unique b 2 B and � > 0 such that x D �b.

Indeed, consider � D x1 Cx2C� � �Cxn (> 0) and b D ��1x. In view of this property,
we have the following definition.

Definition 1.14 Let X be a vector space and C be a proper cone in X. A nonempty
subset B � C is called a base for C if each nonzero element x 2 C has a unique
representation of the form x D �b for some � > 0 and some b 2 B (Figs. 1.7 and
1.8).

Fig. 1.7 B is a base for the
cone C

B

C

Fig. 1.8 B is base for C, but
Q and P are not a base for C

R

R

C

B

P

Q
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Remark 1.9 Note that if B is a convex base of a proper convex cone C, then 0 … B.
Indeed, suppose that 0 2 B. Since B is convex, for every element b 2 B, the convex
combination of 0 and b also belongs to B. Then we also have b D 2 � 1

2
b 2 B,

contradicting the uniqueness of the representation of b 2 C n f0g.
Theorem 1.3 Let C be a proper convex cone in a vector space X and B � X be a
convex set. Then the following assertions are equivalent:

(a) B is a base for C;
(b) C D RCB and 0 … aff.B/;
(c) There exists a linear functional � W X ! R such that �.x/ > 0 for every

x 2 C n f0g and B D fx 2 C W �.x/ D 1g.
Proof (a) ) (b) Let B be a base for C. Then by Definition 1.14, C D RCB.
Because B is convex, aff.B/ D f�b C .1 � �/b0 W b; b0 2 B; � 2 Rg. Assume that
0 2 aff.B/, then 0 D �b C .a � �/b0 for some b; b0 2 B and � 2 R. Since
0 … B, � … Œ0; 1�. Thus, there exists some �0 > 1, b0; b0

0 2 B such that
�0b0 D .�0 � 1/b0

0 2 C, in contradiction to the definition of the base. Therefore,
0 … aff.B/.

(b) ) (c) Assume that C D RCB and 0 … aff.B/. Consider b0 2 B and X0 WD
aff.B/ � b0. Then X0 is a linear subspace of X and b0 … X0. Let L0 � X0 be a base of
X0. Then L0 [ fb0g is linearly independent, so, we can complete L0 [ fb0g to a base
L of X. There exists a unique linear function � W X ! R such that �.x/ D 0 for all
x 2 L n fb0g and �.b0/ D 1. Since aff.B/ D b0 C X0, it holds �.x/ D 1 for all x 2
aff.B/, thus, B � fx 2 C W �.x/ D 1g. Conversely, let x 2 C be such that �.x/ D 1.
Then x D tb for some t > 0 and b 2 B. It follows that 1 D �.x/ D t�.b/ D t, thus,
x 2 B.

(c) ) (a) Assume that � W X ! R is linear, '.x/ > 0 for every x 2 C n f0g,
and B D fx 2 C W �.x/ D 1g. Consider x 2 C n f0g and take t WD �.x/ > 0 and
b WD t�1x. Then x D t b. Since b 2 C and �.b/ D 1, we have b 2 B. Suppose
that x D t0b0 for some t0 > 0 and b0 2 B. Then t D �.x/ D t0�.b0/ D t0, whence
b D b0. So, every nonzero element x of C has a unique representation tb with t > 0

and b 2 B. This means that B is a base of C. ut
Lemma 1.1 Each proper convex cone with a convex base in a vector space is
pointed.

Proof Let C be a proper convex cone with a convex base B. Take any x 2 C\ .�C/

and assume that x ¤ 0. Then there are b1; b2 2 B and �1; �2 > 0 with x D �1b1 D
��2b2. Since B is convex, we have

�1

�1 C �2

b1 C �2

�1 C �2

b2 D 0 2 B;

a contradiction to Remark 1.9. ut
Example 1.7 The cone C D fx W x D � � .1; 2/; � � 0g [ fx W x D � � .2; 1/; � � 0g
is pointed, proper and has a base B D f.1; 2/; .2; 1/g, but C is not convex.
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Remark 1.10 If B is a base of a cone C, then cone.B/ D C. If 0 2 cor.C/, the core
of C, for a nonempty subset C of a vector space X, then cone.C/ D X.

The following result can be found in Jameson [82, p. 80] and known as Jameson
lemma.

Proposition 1.3 (Jameson Lemma) Let X be a Hausdorff topological vector
space with its zero vector being denoted by 0. Then a cone C � X with a closed
convex bounded base B is closed and pointed.

Proof We show that C is closed. Let fc˛g � C be a net converging to c. Since B is
a base, there exist a net fb˛g � B and a net ft˛g of positive numbers such that c˛ D
t˛b˛. We claim that t˛ is bounded. Suppose, contrary, that lim

˛
t˛ D 1. Then the

net
n
b˛ D c˛

t˛

o
converges to 0 as X is Hausdorff. Since B is closed, 0 D lim

˛
b˛ 2 B

which contradicts to the fact that B does not contain the zero element. So, we may
assume that ft˛g converges to some t0 � 0. If t0 D 0, then by the boundedness of B,
lim

˛
t˛b˛ D 0. Hence, c D 0 and, of course, c D 0 2 C. If t0 > 0, we may assume

that t˛ > " for all ˛ and some positive ". Now, b˛ D c˛

t˛
converges to c

t0
and again

by the closedness of B, c
t0

2 B. Hence, c 2 C and so C is closed. The pointedness of
C can be easily seen. ut
Definition 1.15 Let Y be a topological vector space with its topological dual Y�,
and C be a convex cone in Y. The dual cone C� of C is defined as

C� D f� 2 Y� W h�; yi � 0 for all y 2 Cg ;

where h�; yi denotes the evaluation of � at y. The strict dual cone C�C of C is defined
as

C�C D f� 2 Y� W h�; yi > 0 for all y 2 Cg :

The quasi-interior of C� is defined as

C# WD f� 2 Y� W h�; yi > 0 for all y 2 C n f0gg :

If C is empty, then C� interprets as the whole space Y�.
For example, in R

2 the dual of a convex cone C consists of all vectors making a
non-acute angle with all vectors of the cone C (see Fig. 1.9). For an example of a
dual cone in R3, see Fig. 1.10.

The following proposition can be proved easily by using the definition. There-
fore, we omit the proof.

Proposition 1.4 Let Y be a topological vector space with its topological dual Y�.
Let C, C1 and C2 be convex cones in Y.

(a) The dual cone C� is a closed convex cone.
(b) The strict dual cone C� is a convex cone.
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Fig. 1.9 A dual cone in R2

R

R

C
C ∗

Fig. 1.10 A dual cone in R
3

C

C ∗

(c) C� D .cl.C//�.
(d) If C1 � C2, then C�

2 � C�
1 and C�

2C � C�
1C.

(e) .C�/� D C�� D cl.C/.
(f) .C1 C C2/� D C�

1 \ C�
2 D .C1 \ C2/�.

(g) .C1 \ C2/
� � C�

1 C C�
2 D co .C1 [ C2/

�.
(h) If C1 and C2 are closed convex cones with nonempty intersection, then

.C1 \ C2/� D cl
�
C�

1 C C�
2

� D cl
�
co .C1 [ C2/

�� :

We now define the recession cone and asymptotic cone and discuss their
properties.

Definition 1.16 Let C be a nonempty subset of a vector space Y. A vector d 2 Y
is said to be a direction of recession if for any x 2 C, the ray fx C �d W � � 0g
(starting from x and going indefinitely along d) lies inC (or never crosses the relative
boundary of C).

Definition 1.17 Let C be a nonempty subset of a vector space Y. The set of all
directions of recession is called recession cone and it is denoted by C1 (see
Fig. 1.11). That is, for any x 2 C,

C1 D fd 2 Y W x C �d 2 C for all � � 0g:

Below we collect some properties of a recession cone.
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Fig. 1.11 A recession cone
(see [21])

x +
λd

x
Rece

ssi
on cone C

∞

d

Convex set C

Remark 1.11

(a) C1 depends only on the behavior of C at infinity. In fact, x C �d 2 C implies
x C ˛d 2 C for all ˛ 2 Œ0; ��. Thus, C1 is just the set of all directions from
which one can go straight from x to infinity, while staying in C.

(b) If C is closed and convex, then for all x 2 C, we have

C1 D
\

�>0

C � x

�
:

(c) C1 does not depend on x 2 C.

Definition 1.18 Let Y be a topological vector space. A recession cone of a
nonempty closed convex set C � Y is called asymptotic cone.

In other words, if C is a nonempty closed convex subset of Y, then the asymptotic
cone of C is defined as

C1 D
�

d 2 Y W 9 �m ! C1; 9 xm 2 C with lim
m!1

xm
�m

D d

�

:

If Y is a reflexive Banach space and C is a weakly closed convex set C in Y, then
the asymptotic cone C1 of C is defined as

C1 D fx 2 X W 9 �m # 0 and 9 xm 2 C such that �mxm * xg;

where “*” means convergence in the weak topology.
We set ;1 D ;.

Example 1.8

(a) If C D ˚
.x1; x2/ 2 R

2 W jx1j � x2

�
, then C is unbounded and C1 D C.

(b) If C D ˚
.x1; x2/ 2 R

2 W jx1j < x2

�
, then C is unbounded and C1 D cl.C/.

(c) If C D ˚
.x1; x2/ 2 R

2 W jx1jk � x2; k > 1
�
, then C is unbounded and

C1 D f.0; x2/ W x2 � 0g:
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(d) If C D
n
.x1; x2/ 2 R

2 W x1 > 0; x2 � 1
x1

o
, then C is unbounded and

C1 D ˚
.x1; x2/ 2 R

2 W x1 � 0; x2 � 0
�

:

(e) If C D ˚
.x1; x2/ 2 R

2 W x2 � x2
1

�
, then C is unbounded and

C1 D ˚
.x1; x2/ 2 R

2 W x1 D 0; x2 � 0
�

:

(f) If C D ˚
.x1; x2/ 2 R

2 W x2
1 C x2

2 � 1
�
, then C is bounded and

C1 D ˚
.x1; x2/ 2 R

2 W x1 D x2 D 0g D f.0; 0/
�

:

(g) If C D ˚
.x1; x2/ 2 R

2 W x1 > 0; x2 > 0
� [ f.0; 0/g, then C is unbounded and

C1 D C.
(h) The recession cone of a nonempty affine set M is the subspace L parallel toM.

Theorem 1.4 Let Y be a topological vector space and C be a nonempty closed
convex subset of Y.

(a) The recession cone C1 is a closed convex cone containing the origin, that is,
C1 D fd W C C d � Cg.

(b) Furthermore, let . Y; k � k/ be a normed vector space. Then d 2 C1 if and only
if there exists a vector x 2 C such that x C �d 2 C for all � � 0, that is,

C1 D fd W there exists x 2 C; x C �d 2 C for all � � 0g :

(c) If . Y; k�k/ is a normed vector space, then C is bounded if and only if C1 D f0g.
Proof

(a) Let d 2 C1, then x C d 2 C for any x 2 C, that is, C C d � C.
On the other hand, if C C d � C, then

C C 2d D .C C d/ C d � C C d � C;

and so forth, implying xCmd 2 C for any x 2 C and for any positive integerm.
The line segments joining the points x, xC d, xC 2d, : : :, are then all contained
in C by convexity, so that x C �d 2 C for every � � 0. Thus, d 2 C1. Since
positive scalar multiplication does not change directions, C1 is truly a cone.

It remains to show that C1 is convex. Let d1; d2 2 C1 and 0 � � � 1, then
we have

.1 � �/d1 C �d2 C C D .1 � �/ .d1 C C/ C � .d2 C C/

� .1 � �/C C �C D C:

Hence, .1 � �/d1 C �d2 2 C1.
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(b) If d 2 C1, then x C �d 2 C for all � � 0 for all x 2 C by the definition of C1.
Conversely, let d ¤ 0 be such that there exists a vector x 2 C such that

x C �d 2 C for all � � 0. We fix Nx 2 C and � > 0, and we show that
NxC�d 2 C. It is sufficient to show that NxCd 2 C, that is, to assume that � D 1,
since the general case where � > 0 can be reduced to the case where � D 1 by
replacing d with d=�.

Let zm D xCmd for m D 1; 2; : : : and note that zm 2 C for allm, since x 2 C
and d 2 C1. If Nx D zm for some m, then Nx C d D x C .m C 1/d, which belongs
to C and we are done. We thus assume that Nx ¤ zm for all m, and we define

dm D .zm � Nx/
kzm � Nxkkdk; m D 1; 2; : : : :

so that Nx C dm lies on the line that starts at Nx and passes through zm. We have

dm
kdk D kzm � xk

kzm � Nxk
zm � x

kzm � xk C x � Nx
kzm � Nxk D kzm � xk

kzm � Nxk
d

kdk C x � Nx
kzm � Nxk :

Since fzmg is an unbounded sequence,
kzm � xk
kzm � Nxk ! 1;

x � Nx
kzm � Nxk ! 0;

so by combining the preceding relations, we have dm ! d. The vector Nx C dm
lies between Nx and zm in the segment connecting Nx and zm for all m such that
kzm�Nxk � kdk, so by the convexity ofC, we have NxCdm 2 C for all sufficiently
large m. Since Nx C dm ! Nx C d and C is closed, it follows that Nx C d 2 C.

(c) If C is bounded, then it is clear that C1 can not contain any nonzero direction.
Conversely, let fxmg � C be such that kxmk ! C1 (we assume

xm ¤ 0). The sequence
�

dm W xm
kxmk

�

is bounded, so we can extract a convergent

subsequence, namely, fdkg such that lim
k!1 dk D d with k 2 K � N (kdk D 1).

Now, given x 2 C and � > 0, take k so large that kxkk � �. Then we see that

x C �d D lim
k!1

��

1 � �

kxkk
	

x C �

kxkkxk



is in the closed convex set C and hence d 2 C1. ut
Below we present some properties of recession cones and asymptotic cones.

Remark 1.12 Let X be a topological vector space.

(a) For a nonempty convex set C � X, we have .cl.C//1 D .relint.C//1, where
relint.C/ denotes the relative interior of C; Furthermore, for any x 2 relint.C/,
one has d 2 .cl.C//1 if and only if x C �d 2 relint.C/ for all � > 0.
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(b) Moreover, for a nonempty convex set C � X, it holds .C C x/1 D C1 for all
x 2 X.

(c) For two nonempty closed convex sets QC; OC � Y, QC � OC implies QC1 � OC1.
(d) Let fC˛g˛2� be any family of nonempty sets in X, then

� \

˛2�

C˛

�

1 �
\

˛2�

.C˛/1:

If, in addition,
T

˛2� C˛ ¤ ; and each set C˛ is closed and convex, then we
obtain an equality in the previous inclusion.

Moreover, If C1 � X1;C2 � X2; : : : ;Cm � Xm are closed convex sets, where
Xi, i D 1; 2; : : : ;m are topological vector spaces, then

.C1 	 C2 	 � � � 	 Cm/1 D .C1/1 	 .C2/1 	 � � � 	 .Cm/1:

We present the definition of a contingent cone and its properties.

Definition 1.19 Let C be a nonempty subset of a normed space X.

(a) Let Nx 2 cl.C/ be given. An element u 2 X is said to be a tangent to C at Nx if
there exist a sequence fxmg of elements xm 2 C and a sequence f�mg of positive
real numbers �m such that lim

m!1 xm ! Nx and lim
m!1 �m.xm � Nx/ D u.

(b) The set T.C; Nx/ of all tangents to C at Nx is called the contingent cone (or the
Bouligand tangent cone) to C at Nx.
In other words, a contingent cone T.C; Nx/ to C at Nx is defined as

T.C; Nx/ D ˚
u 2 X W 9 fxmg � C and f�mg � .0; 1/

such that xm ! Nx and �m.xm � Nx/ ! u
�
:

Figure 1.12 visualizes two contingent cones.

Fig. 1.12 Tangent to C at Nx
and contingent cone T.C; Nx/

y1

y2

x̄
C

T (C,x)¯

y1

y2

C

x̄

T (C,x)¯
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It is easy to see that the above definition of contingent cone can be written as

T.C; Nx/ D
(

u 2 X W 9 fxmg � C and f�mg

such that xm ! Nx; �m ! 0C and
xm � Nx

�m
! u

)

:

If Nx 2 int.C/, then T.C; Nx/ is clearly the whole space. That is why we considered
Nx 2 cl.C/.

If um D xm � Nx
�m

( ! u), that is, xm D NxC�mum (2 C), then we have d 2 T.C; Nx/ if
and only if there exist sequences fumg ! u and f�mg ! 0C such that NxC�mum 2 C
for all m 2 N.

It is equivalent to saying that u 2 T.C; Nx/ if and only if there exist sequences
fumg ! u and f�mg � RC such that

Nx C �mum 2 C; for all m 2 N and f�mxmg ! 0:

Remark 1.13

(a) A contingent cone to a set C at a point Nx 2 cl.C/ describes a local approximation
of the set C�fNxg. This concept is very helpful for the investigation of optimality
conditions.

(b) From the definition of T.C; Nx/, we see that Nx belongs to the closure of the set C.
It is evident that the contingent cone is really a cone.

Lemma 1.2 Let C and D be nonempty subsets of a normed space X.

(a) If Nx 2 cl.C/ � cl.D/, then T.C; Nx/ � T.D; Nx/.
(b) If Nx 2 cl.C \ D/, then T.C \ D; Nx/ � T.C; Nx/ \ T.D; Nx/.
Definition 1.20 Let C be a subset of a vector space X is called starshaped at Nx 2 C
if for all x 2 C and for every � 2 Œ0; 1�,

�x C .1 � �/Nx 2 C:

An example for a starshaped set C � R
2 is given in Fig. 1.13.

Fig. 1.13 A starshaped set C

x̄

CC
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Theorem 1.5 Let C be a nonempty subset of a normed space X. If C is starshaped
at some Nx 2 C, then cone .C � fNxg/ � T.C; Nx/.
Proof Take any x 2 C. Then we have

xm D Nx C 1

m
.x � Nx/ D 1

m
x C

�

1 � 1

m

	

Nx 2 C; for all m 2 N:

Hence, we get Nx D lim
m!1 xm and x � Nx D lim

m!1m.xm � Nx/. But this implies that

x � Nx 2 T.C; Nx/ and therefore, we obtain C � fNxg � T.C; Nx/.
Since T.C; Nx/ is a cone, it follows further that cone .C � fNxg/ � T.C; Nx/. ut

Theorem 1.6 Let C be a nonempty subset of a normed space X. For every Nx 2
cl.C/, we have T.C; Nx/ � cl .cone.C � fNxg//.
Proof Take an arbitrary tangent u to C at Nx. Then there exist a sequence fxmg of
elements in X and a sequence f�mg of positive real numbers such that

Nx D lim
m!1 xm and u D lim

m!1 �m.xm � Nx/:

The last equality implies u 2 cl .cone.C � fNxg//. ut
Theorem 1.7 Let C be a nonempty subset of a normed space X. The contingent
cone T.C; Nx/ is closed for every Nx 2 cl.C/.

Proof Let fumg be an arbitrary sequence in T.C; Nx/ with lim
m!1 um D u 2 X. For

every tangent um, there exist a sequence fxmig of elements in C and a sequence f�mig
of positive real numbers such that

Nx D lim
i!1 xmi and um D lim

i!1 �mi.xmi � Nx/:

Consequently, for every m 2 N, there exists an i.m/ 2 N such that

kxmi � Nxk � 1

m
; for all i � i.m/;

and

k�mi.xmi � Nx/ � umk � 1

m
; for all i � i.m/:

If we define ym D xmi.m/
2 C and �m D �mi.m/

> 0 for all m 2 N, then we get
Nx D lim

m!1 ym and

k�m. ym � Nx/ � uk � k�m. ym � Nx/ � umk C kum � uk

� 1

m
C kum � uk; for all m 2 N:
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This implies that u D lim
m!1 �m. ym � Nx/. Hence, u 2 T.C; Nx/ and so T.C; Nx/ is

closed. ut
Corollary 1.2 Let C be a nonempty subset of a normed space X. If C is starshaped
at some Nx 2 C, then T.C; Nx/ D cl .cone.C � fNxg//.
Theorem 1.8 Let C be a nonempty convex subset of a normed space X. The
contingent cone T.C; Nx/ is convex for every Nx 2 cl.C/.

Proof Since C is convex, C � fNxg and cone.C � fNxg/ are convex as well. Since the
closure of a convex set is convex, we have cl .cone.C � fNxg// is also convex. Finally,
from above corollary, we have T.C; Nx/ D cl .cone.C � fNxg//. ut

1.2 Convex Functions and Their Properties

Definition 1.21 Let X be a vector space. A function f W X ! R is said to be

(a) positively homogeneous if for all x 2 X and all r > 0, we have f .rx/ D rf .x/;
(b) subodd if for all x 2 X n f0g, we have f .x/ � �f .�x/.

Example 1.9

(a) Every linear function is positively homogeneous.
(b) The function f .x/ D jxj is positively homogeneous.
(c) Every norm is positively homogeneous.

(d) The function f .x/ D
�

x; if x > 0;

� 1
2
x; if x � 0

is positively homogeneous.

(e) f .x/ D x2 is subodd.

Definition 1.22 Let K be a subspace of a vector space X. A function f W K ! R is
said to be linear if for all x; y 2 K and all �; � 2 R,

f .�x C �y/ D �f .x/ C �f . y/: (1.1)

Definition 1.23 Let K be a nonempty affine subset of a vector space X. A function
f W K ! R is said to be affine if (1.1) holds for all x; y 2 K and all �; � 2 R such
that � C � D 1.

In other words, f is affine if and only if

f .�x C .1 � �/y/ D �f .x/ C .1 � �/f . y/; (1.2)

for all x; y 2 K and all � 2 R.

Definition 1.24 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is said to be convex if for all x; y 2 K and all �; � � 0 with � C � D 1,
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we have

f .�x C �y/ � �f .x/ C �f . y/: (1.3)

In other words, f is convex if and only if

f .�x C .1 � �/y/ � �f .x/ C .1 � �/f . y/; (1.4)

for all x; y 2 K and all � 2 Œ0; 1�.
The functional f is said to be strictly convex if inequality (1.4) is strict for all

x ¤ y.
A function f is said to be concave if �f is convex.

Example 1.10

(a) Let K D X D R and f .x/ D x2 for all x 2 K. Then f is a convex function.
(b) Let K D Œ0; �� and f .x/ D sin x for all x 2 K. Then f is a convex function.
(c) Let K D X D R and f .x/ D jxj for all x 2 K. Then f is a convex function. In

fact, the functions in (a) and (b) are strictly convex but the function in (c) is not.
(d) The functions f .x/ D ln jxj for x > 0, and g.x/ D Cp

1 � x2 for x 2 Œ�1; 1� are
concave.

Remark 1.14 An affine function is both convex and concave.

Definition 1.25 Let K be a nonempty subset of a vector space X and f W K ! R be
a function. The set

epi. f / D f.x; ˛/ 2 K 	 R W f .x/ � ˛g

is called epigraph of f .

Theorem 1.9 Let K be a nonempty convex subset of a vector space X and f W K !
R be a function. Then f is convex if and only if its epigraph is a convex set.

Proof Let f be a convex function. Then for any .x; ˛/ and . y; ˇ/ 2 epi. f /, we have
f .x/ � ˛ and f . y/ � ˇ. Also, for all � 2 Œ0; 1�, we have

f .�x C .1 � �/y/ � �f .x/ C .1 � �/f . y/ � �˛ C .1 � �/ˇ:

Thus,

..�x C .1 � �/y/; �˛ C .1 � �/ˇ/ D �.x; ˛/ C .1 � �/. y; ˇ/ 2 epi. f /:

Hence, epi. f / is convex.
Conversely, let epi. f / be a convex set, and .x; f .x// 2 epi. f / and .y; f . y// 2

epi. f /. Then for all x; y 2 K and all � 2 Œ0; 1�, we have

� .x; f .x// C .1 � �/ .y; f . y// 2 epi. f /:
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This implies that

.�x C .1 � �/y; �f .x/ C .1 � �/f . y// 2 epi. f /

and thus,

f .�x C .1 � �/y/ � f .x/ C .1 � �/f . y/:

Hence, f is convex. ut
Theorem 1.10 Let K be a nonempty convex subset of a vector space X and f W K !
R be a convex function. Then the lower level set L˛ D fx 2 K W f .x/ � ˛g is convex
for every ˛ 2 R.

Proof Let x; y 2 L˛ . Then .x; ˛/ 2 epi. f / and . y; ˛/ 2 epi. f /. Therefore, for all
� 2 Œ0; 1�,

�.x; ˛/ C .1 � �/. y; ˛/ 2 epi. f /;

equivalently,

.�x C .1 � �/y; �˛ C .1 � �/˛/ 2 epi. f /

and thus

f .�x C .1 � �/y/ � �˛ C .1 � �/˛ D ˛:

Hence, �x C .1 � �/y 2 L˛ and so L˛ is convex. ut
Remark 1.15 The converse of above theorem may not hold. For example, the
function f .x/ D x3 defined on R is not convex but its lower level set L˛ D fx 2
R W x � ˛1=3g is convex for every ˛ 2 R.

Theorem 1.11 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is convex if and only if for all x1; x2; : : : ; xm 2 K and �i 2 Œ0; 1�,
i D 1; 2; : : : ;m with

Pm
iD1 �i D 1,

f

 
mX

iD1

�ixi

!

�
mX

iD1

�i f .xi/: (1.5)

The inequality (1.5) is called Jensen’s inequality.

Proof Suppose that the Jensen’s inequality (1.5) holds. Then trivially, f is convex.
Conversely, we assume that the function f is convex. Then we show that the

Jensen’s inequality (1.5) holds. We prove it by induction on m. For m D 1 and
m D 2, the inequality (1.5) trivially holds. Assume that the inequality (1.5) holds
for m. We shall prove the result for m C 1. If �mC1 D 1, the result holds because
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�i D 0, for i D 1; 2; : : : ;m and the result is true for m D 1. If �mC1 ¤ 1, we have

f

 
mC1X

iD1

�ixi

!

D f

 
mX

iD1

�ixi C �mC1xmC1

!

D f

 
mX

iD1

.1 � �mC1/
�ixi

1 � �mC1

C �mC1xmC1

!

D f

 

.1 � �mC1/

mX

iD1

�i

1 � �mC1

xi C �mC1xmC1

!

D f

 

.1 � �mC1/

mX

iD1

�ixi C �mC1xmC1

!

� .1 � �mC1/f

 
mX

iD1

�ixi

!

C �mC1 f .xmC1/

� .1 � �mC1/

mX

iD1

�i f .xi/ C �mC1 f .xmC1/;

where �i D �i

.1 � �mC1/
, i D 1; 2; : : : ;m with �i � 0 for i D 1; 2; : : : ;m and

mX

iD1

�i D
Pm

iD1 �i

1 � �mC1

D 1 � �mC1

1 � �mC1

D 1:

This completes the proof. ut
The following theorems provide some properties of convex functions. The proof

of these theorems is quite trivial, and hence, omitted.

Theorem 1.12 Let K be a nonempty convex subset of a vector space X.

(a) If f1; f2 W K ! R are two convex functions, then f1 C f2 is a convex function on
K.

(b) If f W K ! R is a convex function and ˛ � 0, then ˛f is a convex function on K.
(c) For each i D 1; 2; : : : ;m, if fi W K ! R is a convex function and ˛i � 0,

then
Pm

iD1 ˛i fi is a convex function. Further, if at least one of the functions fi is
strictly convex with the corresponding ˛i > 0, then

Pm
iD1 ˛i fi is strictly convex

on K.

Theorem 1.13 Let K be a nonempty convex subset of a vector space X. For each
i D 1; 2; : : : ;m, if fi W K ! R is a convex function, then maxf f1; f2; : : : ; fmg is also
a convex function on K.

Next we provide characterizations of a differentiable convex function.
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Theorem 1.14 ([10, 110]) Let K be a nonempty open convex subset of Rn and f W
K ! R be a differentiable function. Then

(a) f is convex if and only if for all x; y 2 K,

hrf .x/; y � xi � f . y/ � f .x/: (1.6)

(b) f is strictly convex if and only if the inequality (1.6) is strict for x ¤ y.

Proof

(a) If f is a convex function, then for all � 2 Œ0; 1�

f ..1 � �/x C �y/ � .1 � �/f .x/ C �f . y/:

For � > 0, we have

f ..1 � �/x C �y/ � f .x/

�
� f . y/ � f .x/;

which on taking limit � ! 0C leads to (1.6) as f is a differentiable function.
Conversely, let � 2 Œ0; 1� and u; v 2 K. On taking x D .1 � �/u C �v and

y D u in (1.6), we have

�hrf ..1 � �/u C �v/; u � vi � f .u/ � f ..1 � �/u C �v/: (1.7)

Similarly, on taking x D .1 � �/u C �v and y D v in (1.6), we have

� .1 � �/hrf ..1 � �/u C �v/; u � vi � f .v/ � f ..1 � �/u C �v/: (1.8)

Multiplying inequality (1.7) by .1 � �/ and inequality (1.8) by �, and then
adding the resultants, we obtain

f ..1 � �/u C �v/ � .1 � �/f .u/ C �f .v/:

(b) Suppose that f is strictly convex and x; y 2 K be such that x ¤ y. Since f
is convex, the inequality (1.6) holds. We need to show the inequality is strict.
Suppose on the contrary that

hrf .x/; y � xi D f . y/ � f .x/:

Then for � 2 �0; 1Œ, we have

f ..1 � �/x C �y/ < .1 � �/f .x/ C �f . y/ D f .x/ C �hrf .x/; y � xi:
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Let z D .1 � �/x C �y, then z 2 K and the above inequality can be written as

f .z/ < f .x/ C hrf .x/; z � xi;

which contradicts the inequality (1.6). Proof of the converse part follows as
given for the convex case. ut

Theorem 1.15 ([63, 110]) Let K be a nonempty open convex subset of Rn and f W
K ! R be a differentiable function. Then f is convex if and only if for all x; y 2 K,

hrf . y/ � rf .x/; y � xi � 0:

Proof Let f be a differentiable convex function. Then by Theorem 1.14 (a), we have

hrf .x/; y � xi � f . y/ � f .x/; for all x; y 2 K:

By interchanging the roles of x and y, we have

hrf . y/; x � yi � f .x/ � f . y/; for all x; y 2 K:

On adding the above inequalities we get the conclusion.
Conversely, by mean value theorem, for all x; y 2 K, there exists z D .1��/xC�y

for some � 2 �0; 1Œ such that

f . y/ � f .x/ D hrf .z/; y � xi D .1=�/hrf .z/; z � xi
� .1=�/hrf .x/; z � xi D hrf .x/; y � xi;

where the above inequality is obtained on using the given hypothesis. Hence, by
Theorem 1.14 (a), f is a convex function. ut

The following example illustrates the above theorem.

Example 1.11 The function f .x/ D x2
1 C x2

2, where x D .x1; x2/ 2 R
2, is a convex

function on R2 and rf .x/ D 2.x1; x2/. For x; y 2 R
2,

hrf . y/ � rf .x/; y � xi D h2. y1 � x1; y2 � x2/; . y1 � x1; y2 � x2/i
D 2. y1 � x1/

2 C 2. y2 � x2/
2 � 0:

Definition 1.26 Let K be a nonempty subset of a normed space X and x 2 K be a
given point. A function f W K ! R is said to be locally Lipschitz around x if for
some k > 0

j f . y/ � f .z/j � kky � zk; for all y; z 2 N.x/ \ K; (1.9)

where N.x/ is a neighborhood of x. The constant k is called Lipschitz constant and
it varies as the point x varies.
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The function f is said to be Lipschitz continuous onK if the inequality (1.9) holds
for all y; z 2 K.

A continuously differentiable function always satisfies the Lipschitz condition
(1.9). However, a locally Lipschitz function at a given point need not be differen-
tiable at that point. For example, the function f W R ! R, defined by f .x/ D jxj,
satisfies the Lipschitz condition on R. But f is not differentiable at 0.

The class of Lipschitz continuous functions is quite large. It is invariant under
usual operations of sum, product and quotient.

It is clear that every Lipschitz continuous function is continuous. Also, every
convex function is not only continuous but also locally Lipschitz in the interior of
its domain.

Theorem 1.16 ((See [6, Theorem 1.14])) Let K be a nonempty convex subset of
R

n, f W K ! R be a convex function and x be an interior point of K. Then f is
locally Lipschitz at x.

As we have seen, the convex functions cannot be characterized by lower level
sets. However, if the function is convex then lower level sets are convex but the
converse is not true. Now we define a class of such functions, called quasiconvex
functions, which are characterized by convexity of their level sets.

Definition 1.27 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is said to be

(a) quasiconvex if for all x; y 2 K and all � 2 �0; 1Œ,

f .x C �. y � x// � max f f .x/; f . y/g I

(b) strictly quasiconvex if for all x; y 2 K, x ¤ y and all � 2 �0; 1Œ,

f .x C �. y � x// < max f f .x/; f . y/g I

(c) semistrictly quasiconvex if for all x; y 2 K with f .x/ ¤ f . y/,

f .x C �. y � x// < f .x/; for all � 2 �0; 1Œ:

A function f W K ! R is said to be (strictly, semistrictly) quasiconcave if �f is
(strictly, semistrictly) quasiconvex.

Note that in Definition 1.27 (b), the premise excludes the case f .x/ D f . y/.
Therefore, the formulation of the definition of semistrictly quasiconvexity differs
from (a). Also, note that a strictly quasiconvex function was referred to as a strongly
quasiconvex function in [17] and a semistrictly quasiconvex function was referred
to as a strictly quasiconvex function in [17, 19, 110].
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Example 1.12

(a) Every convex function is quasiconvex.
(b) The function f W R ! R, defined by f .x/ D pjxj, is quasiconvex, but not

convex.
(c) Every strictly convex function is semistrictly quasiconvex.
(d) The function f W R ! R, defined by f .x/ D x, is semistrictly quasiconvex, but f

is not strictly convex.

Obviously, every (strictly) convex function is (strictly) quasiconvex but the
converse is not necessarily true. The function f W R ! R defined by f .x/ D x3

is a quasiconvex function but not a convex function. Also, a convex function is
semistrictly quasiconvex but the conversemay not be true. Again, we see that f .x/ D
x3 is semistrictly quasiconvex but not convex.We note that the strict quasiconvexity
is not a generalization of convexity as a constant function is convex but not strictly
quasiconvex. Obviously, a strictly quasiconvex function is quasiconvex but the
converse is not true, For example, the greatest integer function f .x/ D Œx� is
quasiconvex but not strictly quasiconvex on R.

We now give the characterization of a quasiconvex function in terms of convexity
of its lower level sets.

Theorem 1.17 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is quasiconvex if and only if the lower level sets L. f ; ˛/ are convex for
all ˛ 2 R.

Proof Let f be a quasiconvex function and for ˛ 2 R, let x; y 2 L. f ; ˛/. Then
f .x/ � ˛ and f . y/ � ˛. Since f is a quasiconvex function, for all � 2 Œ0; 1�, we have

f ..1 � �/x C �y/ � maxf f .x/; f . y/g � ˛;

that is, .1 � �/x C �y 2 L. f ; ˛/ for all � 2 Œ0; 1�. Hence, L. f ; ˛/ is convex.
Conversely, let x; y 2 K and N̨ D maxf f .x/; f . y/g. Then x; y 2 L. f ; N̨ /, and by

convexity of L. f ; N̨ /, we have .1 � �/x C �y 2 L. f ; N̨ / for all � 2 Œ0; 1�. Thus for
all � 2 Œ0; 1�,

f ..1 � �/x C �y/ � N̨ D maxf f .x/; f . y/g:

This completes the proof. ut
Next result gives the characterization of a quasiconvex function in terms of its

gradient.

Theorem 1.18 ([6, 10, 110]) Let K be a nonempty open convex subset of Rn and
f W K ! R be a differentiable function. Then f is quasiconvex if and only if for all
x; y 2 K,

f . y/ � f .x/ ) hrf .x/; y � xi � 0: (1.10)
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It can be easily seen that if fi W K ! R, i D 1; 2; : : : ;m, is a quasiconvex function
on a nonempty convex subset K of a vector space X, then maxf f1; f2; : : : ; fmg is also
a quasiconvex function on K.

Definition 1.28 Let X be a topological space. A function f W X ! R[f˙1g is said
to be lower semicontinuous (respectively, upper semicontinuous) at a point x 2 X
if for every " > 0, there exists a neighborhood U of x such that f . y/ � f .x/ C "

(respectively, f . y/ � f .x/ � ") for all y 2 U when f .x/ > �1, and f . y/ ! �1
as y ! x when f .x/ D �1 (respectively, f .x/ < C1, and f . y/ ! C1 as y ! x
when f .x/ D C1).

A function f is lower semicontinuous (respectively, upper semicontinuous) on
X if it is lower semicontinuous (respectively, upper semicontinuous) at every point
of X.

If X is a metric space then it can be expressed as

lim sup
y!x

f . y/ � f .x/ .respectively; lim inf
y!x

f . y/ � f .x//:

For non-metric spaces, an equivalent definition using nets may be stated.
It can be easily seen that a function f W X ! R[ f˙1g is lower semicontinuous

(respectively, upper semicontinuous) on X if and only if the set fx 2 X W f .x/ � rg
(respectively, fx 2 X W f .x/ � rg) is closed for all r 2 R.

Theorem 1.19 Let X be a topological space and f W X ! R[f˙1g be a function.
Then f is lower semicontinuous if and only if epi. f / WD f.x; r/ 2 X 	 R W f .x/ � rg
is closed.

The following theorem gives a sufficient condition for a semistrictly quasiconvex
function to be quasiconvex.

Theorem 1.20 Every lower semicontinuous semistrictly quasiconvex function on a
convex set is quasiconvex.

Proof Let f be a semistrictly quasiconvex function defined on a convex subset K of
a vector space X. Then for all x; y 2 K, f .x/ ¤ f . y/ and � 2 �0; 1Œ, we have

f ..1 � �/x C �y/ < maxf f .x/; f . y/g:

It remains to show that if f .x/ D f . y/ and � 2 �0; 1Œ, then

f ..1 � �/x C �y/ � maxf f .x/; f . y/g:

Assume contrary that f .z/ > f .x/ for some z 2 �x; yŒ. Then z 2 ˝ WD fz 2
�x; yŒ W f .z/ > f .x/g. Since f is a lower semicontinuous function, the set ˝ is open.
Therefore, there exists z0 2 �x; zŒ such that z0 2 ˝ . Since z; z0 2 ˝ , by semistrict
quasiconvexity of f , we have

f .x/ < f .z/ ) f .z0/ < f .z/;
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and

f . y/ < f .z0/ ) f .z/ < f .z0/;

which is a contradiction. ut
Definition 1.29 Let K be a nonempty open subset of Rn. A differentiable function
f W K ! R is said to be

(a) pseudoconvex if for all x; y 2 K,

hrf .x/; y � xi � 0 ) f . y/ � f .x/I

(b) strictly pseudoconvex if for all x; y 2 K, x ¤ y,

hrf .x/; y � xi � 0 ) f . y/ > f .x/:

A function f is (strictly) pseudoconcave if �f is (strictly) pseudoconvex.
Clearly, every differentiable convex function is pseudoconvex, but the converse

is not true. For example, the function f W R ! R, defined by f .x/ D x C x3, is
pseudoconvex, but not convex.

Theorem 1.21 ([6, 19]) Let K � R
n be a nonempty, open and convex set and f W

K ! R be a differentiable and pseudoconvex function. Then f is both semistrictly
quasiconvex and quasiconvex.

The converse of above theorem does not hold. For example, the function f W R !
R, defined by f .x/ D x3, is quasiconvex, but not pseudoconvex because for x D 0

and y D �1, hrf .x/; y � xi D 0 and f . y/ < f .x/.

Definition 1.30 Let K be a nonempty open convex subset of Rn. A differentiable
function f W K ! R is said to be pseudolinear if it is both pseudoconvex and
pseudoconcave.

Some of the examples of pseudolinear function defined on R are ex, x C x3 and
tan�1 x.

We present certain characterizations of a pseudolinear function given by Chew
and Choo [44].

Theorem 1.22 Let K be a nonempty open convex subset of Rn and f W K ! R be a
differentiable function. Then the following statements are equivalent:

(a) f is a pseudolinear function;
(b) For any x; y 2 K, hrf .x/; y � xi D 0 if and only if f .x/ D f . y/;
(c) There exists a real-valued function p defined on K	K such that for any x; y 2 K,

p.x; y/ > 0 and f . y/ D f .x/ C p.x; y/hrf .x/; y � xi:

The function p obtained in the above theorem is called the proportional function
of f .
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Theorem 1.23 ([6, Thoerem 1.39]) Let K be a nonempty open convex subset ofRn

and f W K ! R be a continuously differentiable function. Then f is pseudolinear if
and only if for any x; y 2 K,

hrf .x/; y� xi D 0 ) f .x/ D f ..1 � �/xC�y/; for all � 2 Œ0; 1�: (1.11)

Now we give a brief introduction of the concept of monotonicity and give
some characterizations of convex and generalized convex functions in terms of
monotonicity of their gradient function.

Definition 1.31 Let K be a nonempty subset of Rn. A map F W K ! R
n is said to

be

(a) monotone if for all x; y 2 K, x ¤ y, we have

hF.y/ � F.x/; y � xi � 0I

(b) strictly monotone if for all x; y 2 K, x ¤ y, we have

hF. y/ � F.x/; y � xi > 0I

(c) strongly monotonewith modulus 	 if there exists a real number 	 > 0 such that
for all x; y 2 K, x ¤ y, we have

hF. y/ � F.x/; y � xi � 	ky � xk2:

It is clear that a strictly monotone map is monotone but the converse is not true.
For example, the map F W R2 ! R

2 defined by F.x1; x2/ D .2x1; 0/, is monotone
but not strictly monotone as the definition fails at x D .0; 1/, y D .0; 2/.

Also, every strongly monotone map is strictly monotone but the converse is not
true. For instance, the map F W R ! R defined by

F.x/ D
�

1 C x2; if x � 0;

1 � x2; if x < 0;

is strictly monotone but it is not strongly monotone. We observe that if we restrict
the domain of the function F defined above to Œ1; 1/, then it is strongly monotone
with modulus 	 D 2.

In view of Theorem 1.15, we have the following result.

Theorem 1.24 Let K be a nonempty open convex subset of Rn. A differentiable
function f W K ! R is

(a) convex if and only if its gradient rf is monotone;
(b) strictly convex if and only if its gradient rf is strictly monotone.

Analogous to Theorem 1.24, we have the following theorem.
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Theorem 1.25 ([6, Theorem 4.2]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is strongly convex with modulus 
 > 0 if and
only if its gradient rf is strongly monotone with modulus 	 D 2
.

Next we define generalizedmonotonemaps and relate generalized convexitywith
generalized monotonicity of its gradient function. Karamardian [88] introduced the
concept of pseudomonotonemaps whereas the notions of strict pseudomonotonicity
and quasimonotonicity were introduced by Hassouni [73] and independently by
Karamardian and Schaible [89].

Definition 1.32 Let K be a nonempty subset of Rn. A map F W K ! R
n is said to

be

(a) quasimonotone if for all x; y 2 K, x ¤ y, we have

hF.x/; y � xi > 0 ) hF. y/; y � xi � 0I
(b) pseudomonotone if for all x; y 2 K, x ¤ y, we have

hF.x/; y � xi � 0 ) hF. y/; y � xi � 0I
(c) strictly pseudomonotone if for all x; y 2 K, x ¤ y, we have

hF.x/; y � xi � 0 ) hF. y/; y � xi > 0:

It is clear that a (strictly) monotone map is (strictly) pseudomonotone but the
converse is not true. For example, the map F W R ! R defined by F.x/ D xe�x2

is
pseudomonotone but the definition of monotonicity fails at x D 1, y D 2.

A strictly pseudomonotone map is pseudomonotone but the converse is not true.
For instance, the map F W R ! R defined as F.x/ D maxfx; 0g is pseudomonotone
but it is not strictly pseudomonotone.

Also, every pseudomonotone map is quasimonotone but the converse is not true
as the map F.x/ D x2 is quasimonotone on R but it is not pseudomonotone on R.

The following result gives a characterization of quasiconvex functions.

Theorem 1.26 ([6, Theorem 4.3]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is quasiconvex if and only if its gradient rf is
quasimonotone.

As expected we have a similar characterization for (strict) pseudoconvexity of a
function in terms of the (strict) pseudomonotonicity of the gradient map.

Theorem 1.27 ([6, Theorem 4.4]) Let K be a nonempty open convex subset of
R

n. A differentiable function f W K ! R is pseudoconvex (respectively, strictly
pseudoconvex) if and only if its gradient rf is pseudomonotone (respectively,
strictly pseudomonotone).

Proof Assume that f is pseudoconvex but rf is not pseudomonotone. Then there
exist x; y 2 K, x ¤ y, such that

hrf .x/; y � xi � 0 and hrf . y/; x � yi > 0:
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Since f is pseudoconvex, the first inequality leads to f . y/ � f .x/, and the second
one leads to f .x/ > f . y/ as every pseudoconvex function is quasiconvex. We thus
arrive at a contradiction as the two conclusions are contradictory to each other.

Conversely, assume on the contrary that rf is pseudomonotone but f is not
pseudoconvex. Then there exist x; y 2 K such that

hrf .x/; y � xi � 0 and f . y/ < f .x/:

By the mean value theorem, there exists z D .1 � �/xC �y for some � 2 �0; 1Œ such
that

f . y/ � f .x/ D hrf .z/; y � xi D .1=�/hrf .z/; z � xi:

Since f . y/ < f .x/, it follows that hrf .z/; z � xi < 0. Now by pseudomonotonicity
of rf , we have

hrf .x/; z � xi < 0; that is, hrf .x/; y � xi < 0;

which leads to a contradiction. ut
The following concepts of strict and semistrict quasimonotonicity were intro-

duced by Blum and Oettli [28].

Definition 1.33 Let K be a nonempty convex subset of Rn. A map F W K ! R
n is

said to be

(a) strictly quasimonotone if F is quasimonotone and for all x; y 2 K, x ¤ y, there
exists z 2 �x; yŒ such that hF.z/; y � xi ¤ 0;

(b) semistrictly quasimonotone if F is quasimonotone and for x; y 2 K, x ¤ y,

hF.x/; y � xi > 0 ) there exists z 2 �.x C y/=2; yŒ

such that hF.z/; y � xi > 0:

Obviously, a pseudomonotone map is semistrictly quasimonotone, and a strictly
pseudomonotone map is strictly quasimonotone.

The following diagram gives the relationship among different classes of mono-
tone maps defined above.

Strong monotonicity
+

Strict monotonicity ) Monotonicity
+ +

Strict pseudomonotonicity ) Pseudomonotonicity ) Semistrict
+ + Quasimonotonicity

Strict quasimonotonicity ) Quasimonotonicity
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Theorem 1.28 Let K be a nonempty convex subset of Rn. If F W K ! R
n is strictly

quasimonotone, then it is semistrictly quasimonotone.

Proof If hF.x/; y � xi > 0 for all x; y 2 K, x ¤ y, then

hF.x/; z � xi > 0; for all z 2 �x; yŒ:

Since F is quasimonotone, we have hF.z/; z � xi � 0 which implies that

hF.z/; y � xi � 0; for all z 2 �x; yŒ:

Since F is strictly quasimonotone, there exists Oz 2 �.xC y/=2; yŒ such that hF.Oz/; y�
xi ¤ 0. Thus, we have hF.Oz/; y � xi > 0, that is, F is semistrictly quasimonotone.

ut
We now link strict quasiconvexity of a function with strict quasimonotonicity of

its gradient.

Theorem 1.29 ([6, Theorem 4.7]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is strictly quasiconvex if and only if its gradient
rf is strictly quasimonotone.

The following theorem relates semistrict quasiconvexity of a function with
semistrict quasimonotonicity of its gradient.

Theorem 1.30 ([6, Theorem 4.8]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is semistrictly quasiconvex if and only if its
gradient rf is semistrictly quasimonotone.

1.3 Generalized Derivatives

In order to deal with the optimality conditions for optimization problems of
functions whose ordinary derivative does not exist but they have some kind of
generalized derivatives, we give the concept of some generalized derivatives.

Definition 1.34 Let X and Y be locally convex topological vector spaces, K be a
nonempty convex subset of X, and f W X ! Y be a given mapping.

(a) If for some x 2 K and some d 2 X, the limit

˝
f 0.x/; d

˛ WD lim
t!0

1

t
Œ f .x C td/ � f .x/�

exists, then h f 0.x/; di is called the directional derivative of f at x in the direction
d. If this limit exists for all d 2 X, then f is called directionally differentiable
at x.

(b) If for some x 2 K and all d 2 X, the limit

hDf .x/; di WD lim
t!0

1

t
Œ f .x C td/ � f .x/�
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exists and Df .x/ is a continuous linear map from X to Y, then Df .x/ is called
the Gâteaux derivative of f at x, and f is called Gâteaux differentiable at x.
If f is Gâteaux differentiable at every x 2 K, then we say that f is Gâteaux
differentiable on K.

Example 1.13 It is well known that the function f W R ! R, defined by f .x/ D jxj,
is not Gâteaux differentiable, but it is directionally differentiable at 0.

Definition 1.35 Let .X; k � kX/ and . Y; k � kY/ be normed spaces, K be a nonempty
open subset of X, and f W X ! Y be a mapping. Let x 2 K be given. If there is a
continuous linear map f 0.x/ W X ! Y with

lim
jjhjjX!0

k f .x C h/ � f .x/ � h f 0.x/; hikY
khkX

D 0;

then f 0.x/ is called the Fréchet derivative of f at x and f is called Fréchet
differentiable at x.

Lemma 1.3 ([81, Lemma 2.17]) Let .X; k � kX/ and . Y; k � kY / be normed spaces,
K be a nonempty open subset in X, and f W X ! Y be a mapping. If the Fréchet
derivative of f at x 2 K exists, then the Gâteaux derivative of f at x exists and both
are equal.

Definition 1.36 Let K � R
n be an open convex set and f W Rn 
 K ! R be a real-

valued function. The upper and lower Dini directional derivatives of f at x 2 K in
the direction d 2 R

n are defined as

DCf .xI d/ D lim sup
t#0

f .x C td/ � f .x/

t
;

and

DCf .xI d/ D lim inf
t#0

f .x C td/ � f .x/

t
;

respectively.

Remark 1.16 It is easy to see that DCf .xI d/ � DCf .xI d/. If the function f is
convex, then the upper and lower Dini directional derivatives are equal to the
directional derivative.

Definition 1.37 Let K be a nonempty convex subset of Rn. The function f W K !
R is called radially upper (lower) semicontinuous (also known as upper (lower)
hemicontinuous on K) if for every pair of distinct points x; y 2 K, the function f is
upper (lower) semicontinuous along the line segment Œx; y�.

Theorem 1.31 (Diewert Mean Value Theorem) [50] Let K be a nonempty convex
subset of Rn and f W K ! R be radially upper semicontinuous on K. Then for any
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pair x; y of distinct points of K, there exists w 2 Œx; yŒ such that

f . y/ � f .x/ � DCf .wI y � x/;

where Œx; yŒ denotes the line segment joining x and y including the endpoint x. In
other words, there exists � 2 Œ0; 1Œ such that

f . y/ � f .x/ � DCf .wI y � x/; where w D x C �. y � x/:

If f is radially lower semicontinuous on K, then for any pair x; y of distinct points
of K, there exists v 2 Œx; yŒ such that

f . y/ � f .x/ � DCf .vI y � x/;

Definition 1.38 [97] Let K � R
n be a nonempty set and q W K 	 R

n ! R be a
bifunction. A function f W K ! R is said to be

(a) q-quasiconvex if for all x; y 2 K,

f .x/ � f . y/ ) q. yI x � y/ � 0I
(b) q-quasiconcave if �g is q-quasiconvex;
(c) q-pseudoconvex if for all x; y 2 K, x ¤ y,

f .x/ < f . y/ ) q. yI x � y/ < 0I
(d) strictly q-pseudoconvex if for all x; y 2 K, x ¤ y,

f .x/ � f . y/ ) q. yI x � y/ < 0I
(e) q-pseudoconcave if �f is q-pseudoconvex;
(f) q-pseudolinear if it is both q-pseudoconvex as well as q-pseudoconcave.

If q.xI d/ D DCf .xI d/ (q.xI d/ D DCf .xI d/), then the above definitions
are called DC-quasiconvex, DC-quasiconcave, DC-pseudoconvex, strictly DC-
pseudoconvex, DC-pseudoconcave, and DC-pseudolinear (DC-quasiconvex,
DC-quasiconcave, DC-pseudoconvex, strictly DC-pseudoconvex, DC-pseudo-
concave, and DC-pseudolinear), respectively.

Remark 1.17 It is clear that strict q-pseudoconvexity implies q-pseudoconvexity
and also q-quasiconvexity. But, as pointed out in [97], neither q-quasiconvexity
implies q-pseudoconvexity nor the reverse implication holds.

Example 1.14 Let K D Œ�1; 1� and

f .x/ D
�

x; if x � 0
1
2
x; if x < 0:

Then f is DC-pseudolinear over K.
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Remark 1.18 Let K be a nonempty convex subset of Rn and f W R
n ! R be a

function.

(a) If f is DC-pseudoconvex over K, then it is pseudoconvex over K in the sense of
Diewert [50], that is, for all x; y 2 K, f .x/ < f . y/ implies DCf . yI x � y/ < 0.

(b) If f is DC-pseudoconvex (DC-pseudoconcave) over K and lower semicontinu-
ous (upper semicontinuous), then it is quasiconvex (quasiconcave) over K (see
Corollary 15 in [50]).

(c) If f is quasiconvex over K, then for all x; y 2 K,

f .x/ � f . y/ ) DCf . yI x � y/ � 0:

(d) If f is quasiconcave over K, then for all x; y 2 K,

f .x/ � f . y/ ) DCf . yI x � y/ � 0:

(e) Any linear fractional function whose denominator is positive over K is DC-
pseudolinear.

Lemma 1.4 ([50]) Let K � R
n be nonempty set and f W K ! R be upper

semicontinuous and DC-pseudoconvex, that is, for all x; y 2 K, f .x/ < f . y/ )
DCf . yI x � y/ < 0. Then f is quasiconvex and semistrictly quasiconvex.

Lemma 1.5 ([97]) Let K � R
n be a nonempty set, f W K ! R be a func-

tion, and p; q W K 	 R
n ! R be bifunctions such that for all x 2 K and

all d 2 R
n, p.xI d/ � q.xI d/. Then q-quasiconvexity, q-pseudoconvexity, and

strict q-pseudoconvexity imply p-quasiconvexity, p-pseudoconvexity, and strict p-
pseudoconvexity, respectively.

Proof Let f be q-quasiconvex. Then we have for all x; y 2 K,

f .x/ � f . y/ ) q. yI x � y/ � 0:

Because p. yI x � y/ � q. yI x � y/ for all x; y 2 K, the implication

f .x/ � f . y/ ) p. yI x � y/ � 0

also holds, and thus, f is p-quasiconvex. The remaining assertions can be proven in
a similar way. ut
Definition 1.39 [68, 97] Let K � R

n be a nonempty set. A bifunction q W K	R
n !

R is said to be pseudomonotone if for every pair of distinct points x; y 2 K, we have

q.xI y � x/ � 0 ) q. yI x � y/ � 0: (1.12)

Remark 1.19 The above implication (1.12) is equivalent to the following implica-
tion:

q. yI x � y/ > 0 ) q.xI y � x/ < 0: (1.13)
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Lemma 1.6 A bifunction q W K 	 R
n ! R is pseudomonotone if and only if for

every pair of distinct points x; y 2 K � R
n, we have

q.xI y � x/ > 0 ) q. yI x � y/ < 0: (1.14)

Proof The implication (1.14) is equivalent to the following implication:

q. yI x � y/ � 0 ) q.xI y � x/ � 0:

Interchanging x and y, we get (1.12). ut
Lemma 1.7 ([129]) Let f W K ! R be radially upper semicontinuous on K � R

n

and q W K	R
n ! R be subodd and positively homogeneous in the second argument

such that for all x 2 K, q.xI �/ � DCf .xI �/. Then
(a) f is quasiconvex over K if and only if it is q-quasiconvex;
(b) f is q-pseudoconvex if and only if q is pseudomonotone.

Definition 1.40 Let K be a nonempty subset of a Banach space, f W K ! R be
locally Lipschitz at a given point x 2 K. The Clarke directional derivative of f at
x 2 K in the direction of a vector v 2 K, denoted by f ı.xI v/, is defined by

f ı.xI v/ D lim sup
y!x
t#0

f . y C tv/ � f . y/

t
:

Clearly, for all x; v 2 K, we have DCf .xI v/ � f ı.xI v/.

Definition 1.41 Let K be a nonempty subset of a Banach space with its dual space
X�, f W K ! R be locally Lipschitz at a given point x 2 K. The Clarke generalized
subdifferential of f at x 2 K, denoted by @cf .x/, is defined by

@cf .x/ D f� 2 X� W f ı.xI v/ � h�; vi for all v 2 Kg :

Remark 1.20 It follows from the definition that for every v 2 K,

f ı.xI v/ D maxfh�; vi W � 2 @cf .x/g:
If f is convex, then the Clarke generalized subdifferential coincides with the

subdifferential of f in the sense of convex analysis [127].

Proposition 1.5 ([48, Proposition 2.1.1]) Let K be a nonempty subset of a normed
space X and f W K ! R be a locally Lipschitz at a point x 2 K.

(a) The function v 7! f ı.xI v/ is finite, positively homogeneous, and subadditive,
and satisfies j f ı.xI v/j � kjjvjj.

(b) f ı.xI v/ is upper semicontinuous as a function of .xI v/ and, satisfies the
Lipschitz condition as a function of v alone.

(c) f ı.xI �v/ D .�f /ı.xI v/.
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Lemma 1.8 ([48]) Let K be a nonempty subset of a Banach space and f W K ! R

be locally Lipschitz. Then the set-valued map @cf is upper semicontinuous (see,
Sect. 1.4 for upper semicontinuity of a set-valued map).

Theorem 1.32 (Lebourg’s Mean Value Theorem) [48] Let x and y be points in a
Banach space X, and suppose that f is Lipschitz on an open set containing the line
segment Œx; y�. Then there exists a point u in �x; yŒ such that

f . y/ � f .x/ 2 h@cf .u/; y � xi:

Since when f is convex, the Clarke subdifferential coincides with the subdifferen-
tial of f in the sense of convex analysis, Theorem 1.32 also holds for subdifferential
in the sense of convex analysis.

1.4 Tools from Nonlinear Analysis

In this section, we recall some concepts and results from nonlinear analysis which
will be used in the sequel.

1.4.1 Continuity for Set-Valued Maps

Definition 1.42 ([15, 20]) Let X and Y be topological spaces. A set-valued map
T W X ! 2Y is said to be

(a) upper semicontinuous at x0 2 X if for any open set V in Y containing T.x0/,
there exists an open neighborhood U of x0 in X such that T.x/ � V for all
x 2 U;

(b) lower semicontinuous at x0 2 X if for any open set V in Y such that V\T.x0/ ¤
;, there exists an open neighborhood U of x0 in X such that T.x/ \ V ¤ ; for
all x 2 U;

(c) upper semicontinuous (respectively, lower semicontinuous) on X if it upper
semicontinuous (respectively, lower semicontinuous) at every point x 2 X;

(d) continuous on X if it is upper semicontinuous as well as lower semicontinuous
on X;

(e) compact if there exists a compact subset K � Y such that T.X/ � K;
(f) closed if its graph G.T/ WD f.x; y/ W x 2 X; y 2 T.x/g is closed in X 	 Y.

Remark 1.21 If T.x/ is a singleton in a neighborhood of x, then the upper
semicontinuous and the lower semicontinuous of T at x are equivalent.

Example 1.15 Let X D R, Y D R
2, and consider the set-valued mapping T W X !

2Y given by

T.x/ WD Œ.1 � x; x/; .1; 1/� ;
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Fig. 1.14 An illustration of
the set-valued mapping T
defined in Example 1.15

y1

y2

1

1
(1,1)

where Œ.a; b/; .c; d/� is the line segment between .a; b/ and .c; d/ (see Fig. 1.14).
Then T is upper and lower semicontinuous, and therefore continuous. If the set-
valued map is changed slightly to

T1.x/ WD
�

Œ.1 � x; x/; .1; 1/� ; if x 2 Œ0; 1�;

;; else,

then T1 is upper semicontinuous, but T1 is not lower semicontinuous. If we choose

T2.x/ WD
�

Œ.1 � x; x/; .1; 1/� ; if x 2 �0; 1Œ;

;; else,

then T2 is lower semicontinuous, but not upper semicontinuous, and therefore not
continuous.

Several other examples of upper semicontinuous and lower semicontinuous set-
valued maps can be found in [3, 20].

Lemma 1.9 ([15, 20]) Let X and Y be topological spaces. A set-valued map T W
X ! 2Y is lower semicontinuous at x 2 X if and only if for any net fx˛g � X,
x˛ ! x and for any y 2 T.x/, there is a net f y˛g such that y˛ 2 T.x˛/ and y˛ ! y.

Lemma 1.10 Let X be a topological space, Y be a topological vector space and
T W X ! 2Y be a set-valued map such that T.x/ is nonempty and compact for all
x 2 X. Then T is upper semicontinuous at x 2 X if and only if for any nets fx�g � X
with x� ! x and fy�g � Y with y� 2 T.x�/, there exists a subnet fy�g � fy�g such
that y� ! y for some y 2 T.x/.

Proof Let T be upper semicontinuous at x 2 X. Assume that fx�g � X with x� !
x and fy�g 2 Y with y� 2 T.x�/. Let V 2 V, where V stands for a basis of
neighborhoods of 0. Then

S

u2T.x/
fu C Vg is an open covering of T.x/. Since T.x/ is

compact, there exists a finite subset fu1; u2; : : : ; umg � T.x/ such that
mS

iD1

fui CVg 

T.x/. Since T is upper semicontinuous at x 2 X, there exists a neighborhood U of x
such that

T.x0/ �
n[

iD1

fui C Vg; for all x0 2 U :
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Since x� ! x, there exists �0 such that fx�g � U for all � � �0. Hence for each
� � �0, y� 2 ui C V for some ui 2 fu1; u2; : : : ; umg. Therefore, there exist a subnet
fy�g � fy�g and ui 2 fu1; u2; : : : ; umg such that fy�g � ui C V . Let this ui DW uV .
Corresponding to V 2 V, that is, for each V 2 V, there exist a subnet fy�g � fy�g
and uV 2 T.x/ such that

fy�g � uV C V : (1.15)

Let V2 � V1 for each V1;V2 2 V, if V2 � V1. Then V is a directed set and fuVg
is a net of T.x/. Since T.x/ is compact, there exist V0 � V and y 2 T.x/ such that
uV

0 ! y, where V 0 2 V0. Let V be a neighborhood of y. Since Y is a topological
vector space, there exists NV 2 V such that NV C NV 2 V � y. Since uV

0 ! y, there
exists V 00 2 V0 such that

uV
0 2 y C NV ; for all V 0 � V 00:

Hence for any � 2 V0 with � � NV \ V 00,

fu� g C V 0 � . y C NV/ C NV � V:

Therefore by (1.15), there exists a subnet fy�g � fy�g such that fy�g � V . Thus
there exists a subnet fy�g � fy�g such that y� ! y for some y 2 T.x/.

Suppose that T is not upper semicontinuous at x 2 X. Then there exists an open
set V containing T.x/ such that for any neighborhood U� of x, there is a point x� 2
U� with T.x�/ \ Vc ¤ ;. Hence, there exist fx�g � X converging to x and y� 2
T.x�/ \Vc. Since y� … T.x/ for all �, fy�g does not have subnet converging to some
point of T.x/. ut

The following results provide the characterization of upper semicontinuity and
lower semicontinuity, respectively.

Proposition 1.6 Let X and Y be topological spaces and T W X ! 2Y be a set-valued
map such that T.x/ is compact for each x 2 X. Then T is upper semicontinuous if
and only if for each open subset G of Y, the set

T�1C .G/ D fx 2 X W T.x/ � Gg

is open.

Proposition 1.7 Let X and Y be topological spaces. A set-valued map T W X ! 2Y

is lower semicontinuous if and only if T�1.G/ D fx 2 X W T.x/ \ G ¤ ;g is open
for every open subset G of Y.

Proposition 1.8 ([20, p.112, Theorem 6]) Let X and Y be topological spaces and
T W X ! 2Y be a set-valued map. If T is upper semicontinuous, then T is closed.
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Proposition 1.9 ([20, p.112, Theorem 7]) Let X and Y be topological spaces and
T1;T2 W X ! 2Y be set-valued maps. If T2 is upper semicontinuous, then the
mapping T D T1 \ T2 is upper semicontinuous.

The following proposition shows that under the compactness assumption on the
space Y, a set-valued map is closed if and only if it is upper semicontinuous. Notice
that this proposition cannot be applied to Example 1.15, as R2 is not compact.

Proposition 1.10 ([20, p.112, Corollary]) Let X and Y be topological spaces such
that Y is compact and T W X ! 2Y be a set-valued map. Then T is closed if and only
if it is upper semicontinuous.

Proof Assume that T is closed. Let eT be a set-valued map such that eT.x/ D Y for
each x 2 X. Then, by Proposition 1.9, T D T \eT is upper semicontinuous, because
eT is upper semicontinuous.

The reverse implication follows from Proposition 1.8. ut
Lemma 1.11 ([20, Theorem 3]) Let X and Y be topological spaces. If T W X ! 2Y

is upper semicontinuous on X and D is a compact subset of X, then T.D/ is compact.

Example 1.16 The function T1, defined in Example 1.15, is upper semicontinuous,
and for D1 D Œ0; 1�, T1.D1/ is compact. However, for the compact set D2 D 


1
4
; 1

2

�
,

the set T2.D2/, where T2 is also defined in Example 1.15, is compact, but T2 is not
upper semicontinuous.

The following lemma has been applied to the study of game theory (see [141]).

Lemma 1.12 ([141]) Let X and Y be Hausdorff topological vector spaces such that
Y is compact. Let f W X 	 Y ! R be a lower semicontinuous function and for each
fixed y 2 Y, the function x 7! f .x; y/ be upper semicontinuous on X. Then the
function 
 W X ! R defined by


.x/ D min
y2Y f .x; y/; for all x 2 X

is continuous on X.
Let X be a metric space with metric d. We use the following notations:

2Xq D set of all nonempty and compact subsets of XI
2Xcl D set of all nonempty, closed and bounded subsets of XI

For any nonempty subset M and N of X and for any x 2 M, we define the distance
from x to N by

d.x;N/ D inf
y2N d.x; y/:

We define the number d.M;N/ as

d.M:N/ D sup
x2M

d.x;N/ D sup
x2M

inf
y2N d.x; y/:
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The Hausdorff metric H .M;N/ on 2Xcl is defined as

H .M;N/ D maxfd.M;N/; d.N;M/g; for all M;N 2 2Xcl:

Then H is metric on 2Xcl. If .X; d/ is complete metric space with metric d, then
.2Xcl;H / is a complete metric space.

Lemma 1.13 (Nadler’s Theorem) [115] Let .X; d/ be a metric space andH be a
Hausdorff metric on 2Xcl. If M and N are compact sets in X, then for each x 2 M,
there exists y 2 N such that

d.x; y/ � H .M;N/:

Now we define the continuity of a set-valued map in terms of " and ı.

Definition 1.43 Let .X; d/ and . Y; 
/ be metric spaces. A set-valued map T W X !
2Yq is said to beH -continuous on X if for every " > 0, there exists a ı > 0 such that
for all x; y 2 X

H .T.x/;T. y// < " whenever d.x; y/ < ı:

Remark 1.22 The notions of continuity in the sense of Definitions 1.42 and 1.43 are
equivalent if T is compact-valued.

Definition 1.44 (H-Hemicontinuity) [145] Let K be a nonempty convex subset of
a normed space X and Y be a normed vector space. A nonempty compact-valued
map T W K ! 2L.X;Y/ is said to be H -hemicontinuous if for any x; y 2 K, the
mapping ˛ 7! H .T.x C ˛. y � x/;T.x// is continuous at 0C, where H is the
Hausdorff metric defined on 2

L.X;Y/
cl .

Definition 1.45 (u-Hemicontinuity) Let X and Y be topological vector spaces. A
set-valued map T W X 
 K ! 2Y n f;g is said to be u-hemicontinuous if for any
x; y 2 K and ˛ 2 Œ0; 1�, the set-valued map ˛ 7! T.˛x C .1 � ˛/y/ is upper
semicontinuous at 0C.

1.4.2 Fixed Point Theory for Set-Valued Maps

In 1929, Knaster, Kuratowski and Mazurkiewicz [96] formulated the so-called
KKM principle in the finite dimensional Euclidean space. Later, in 1961, it has
been generalized to infinite dimensional Hausdorff topological vector spaces by
Ky Fan [59]. Fan also established an elementary but very basic geometric lemma
for set-valued maps which is called Fan’s geometric lemma. In 1968, Browder
gave a fixed point version of Fan’s geometric lemma and this result is known as
Browder fixed point theorem. Since then there have been numerous generalizations
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of Browder fixed point theorem their applications to coincidence and fixed point
theory, minimax inequalities, variational inequalities, convex analysis, game theory,
mathematical economics, social sciences, and so on.

It is well known that the famous Browder fixed point theorem [33] is equivalent
to a maximal element theorem (see [138]). Such kind of maximal element theorems
are useful to establish the existence of solutions of vector variational inequalities,
vector equilibrium problems and their generalizations.

In this section, we recall some basic definitions from nonlinear analysis and
present Fan-KKM lemma and its generalizations and some famous fixed point
theorems for set-valued maps, namely, Nadler’s fixed point theorem, Browder fixed
point theorem and its generalizations, Kakutani fixed point theorem, etc.

Definition 1.46 Let X be a metric space and T W X ! 2X be a set-valued map with
nonempty values. A point x 2 X is said to be a fixed point of T if x 2 T.x/.

Definition 1.47 Let .X; d/ and . Y; 
/ be metric spaces and H be a Hausdorff
metric on 2Ycl. A set-valued map T W X ! 2Ycl is said to be set-valued Lipschitz
map if there exists a constant ˛ > 0 such that

H .T.x/;T. y// � ˛d.x; y/; for all x; y 2 X:

The constant ˛ is called a Lipschitz constant for T. If ˛ < 1, then T is called a
set-valued contraction map. If ˛ D 1, then T is called nonexpansive.

In 1969, Nadler [115] extended the well-known Banach contraction principle for
set-valued maps and established the following fixed point theorem.

Theorem 1.33 (Nadler’s Fixed Point Theorem) [115] Let .X; d/ be a complete
metric space. If T W X ! 2Xcl is a set-valued contraction map, then T has a fixed
point.

Definition 1.48 Let X be a topological vector space and K be a nonempty subset of
X. A set-valued map T W K ! 2X is said to be a KKM-map if

co .fx1; x2; : : : ; xmg/ �
mS

iD1

T.xi/

for every finite subset fx1; x2; : : : ; xmg of X.
Obviously, if T is a KKM-map, then x 2 T.x/ for every x 2 K.

Example 1.17 Let X D K D R and the set-valued map T W X ! 2X be defined
by T.x/ D Œ0; x�, where Œ0; x� is the line segment between 0 and x. Then T is a
KKM-map.

Lemma 1.14 (Fan-KKM Lemma) [59] Let X be a Hausdorff topological vector
space and K a nonempty subset of X. Let T W K ! 2X be a KKM-map such that
T.x/ is a closed subset of X for all x 2 K and compact for at least one x 2 K. ThenT

x2K
T.x/ ¤ ;.
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Chang and Zhang [41] introduced the following concept of generalized KKM
mapping.

Definition 1.49 Let K be a nonempty subset of a Hausdorff topological vector
space X. A set-valued map T W K ! 2X is called a generalized KKM map if for
any finite set fx1; x2; : : : ; xmg � K, there is a finite subset fy1; y2; : : : ; ymg � X such
that for any subset fyi1 ; yi2 ; : : : ; yikg � fy1; y2; : : : ; ymg, 1 � k � m, we have

co .fyi1 ; yi2 ; : : : ; yikg/ �
k[

jD1

T.xij/:

Clearly, if T W K ! 2X is a KKM map, then it is generalized KKM map. Indeed,
for any finite set fx1; x2; : : : ; xmg � K, taking yi D xi, i D 1; 2; : : : ;m, then since T
is a KKM map, we have

co .fyi1 ; yi2 ; : : : ; yikg/ �
k[

jD1

T.xij/:

However, if T is a generalized KKM map, then it may not be a KKM map.

Example 1.18 [41] Let X D R, K D Œ�2; 2� and T W K ! 2X be defined by

T.x/ D
�

�
�

1 C x2

5

	

; 1 C x2

5




; for all x 2 K:

Then
S

x2K T.x/ D 
� 9
5
; 9

5

�
and x … T.x/ for all x 2 Œ�2; �9=5/ [ .9=5; 1�. It

follows that T is not a KKMmap. Next we prove that T is a generalized KKMmap.
If for any finite subset fx1; x2; : : : ; xmg of K, we take f y1; y2; : : : ; ymg � Œ�1; 1�, then
for any finite subset f yi1 ; yi2 ; : : : ; yikg � f y1; y2; : : : ; ymg, we have

co .f yi1 ; yi2 ; : : : ; yikg/ � Œ�1; 1� D
\

x2K
T.x/ �

k[

jD1

T.xij/;

that is, T is a generalized KKM map.
The following lemma is proved in [41] where convexity on K is assumed.

However, Ansari et al. [7] pointed out that this lemma is true without convexity
assumption on K.

Lemma 1.15 Let K be a nonempty subset of a Hausdorff topological vector space
X. If T W K ! 2X is a set-valued map and for each x 2 K, the set T.x/ is finitely
closed (i.e., for every finite-dimensional subspace L in X, T.x/ \ L is closed in the
Euclidean topology in L). Then the family of sets fT.x/ W x 2 Kg has the finite
intersection property if and only if T W K ! 2X is a generalized KKM mapping.
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Definition 1.50 [135] Let X and Y be topological spaces. A set-valued map T W
X ! 2Y is said to be transfer open-valued (respectively, transfer closed-valued) if
for every x 2 X, y 2 T.x/ (respectively, y … T.x/), there exists a point z 2 X such
that y 2 int.T.z// (respectively, y … cl.T.z//).

It is easy to see that a open-valued (respectively, closed-valued) set-valued map
is a transfer open-valued (respectively, transfer closed-valued) set-valued map. But
the converse is not true.

Lemma 1.16 ([42]) Let X be a nonempty set, Y be a topological space and T W
X ! 2Y be a set-valued map.

(a) T is transfer closed-valued if and only if
T

x2X T.x/ D T
x2X cl.T.x//.

(b) T is transfer open-valued if and only if
S

x2X T.x/ D S
x2X int.T.x//.

(c) X is a topological space, T.x/ is nonempty for each x 2 X and T�1 is transfer
open-valued, then X D S

y2Y int.T�1. y//.

Ansari et al. [7] established the following generalized form of Fan-KKM lemma.

Theorem 1.34 Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Let T W K ! 2X be a transfer closed-valued map such that cl.T.x0//

is compact for at least one x0 2 K, and let cl T W K ! 2X be a generalized KKM
map. Then

T
x2K T.x/ ¤ ;.

Proof Since cl T W K ! 2X is defined by .cl T/.x/ D cl.T.x// for all x 2 K, we
have that clT is a generalized KKM map with closed values. By Lemma 1.15, the
family of sets fT.x/ W x 2 Kg has the finite intersection property. Since cl.T.x0// is
compact, we have

T
x2K cl.T.x// ¤ ;. Since T is transfer closed-valued,

\

x2K
T.x/ D

\

x2X
cl.T.x// ¤ ;:

This completes the proof. ut
The following section lemma, due to Xiang and Debnath [137], is a gener-

alization of Fan section lemma [61] which can be derived by using Fan-KKM
Lemma 1.14.

Lemma 1.17 (Fan Section Lemma) Let K be a nonempty subset of a Hausdorff
topological vector space X. Let A be a subset of K 	 K such that the following
conditions hold.

(i) .x; x/ 2 A for all x 2 K;
(ii) For all y 2 K, the set Ay D fx 2 K W .x; y/ 2 Ag is closed in K;
(iii) For all x 2 K, the set Ax D f y 2 K W .x; y/ … Ag is convex or empty;
(iv) For a nonempty compact convex subset D � K with each x 2 K, there exists

y 2 D such that .x; y/ … A:

Then there exists Nx 2 K such that fNxg 	 K � A.
The following lemma is a generalization of Lemma 1.14.
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Lemma 1.18 ([46]) Let K be a nonempty convex subset of a topological vector
space X. Let T W K ! 2K be a KKM-map such that the following conditions hold.

(i) clK.T.Qx// is compact for some Qx 2 K;
(ii) For each A 2 F .K/ with Qx 2 A and each x 2 co.A/, T. y/ \ co.A/ is closed in

co.A/.
(iii) For each A 2 F .K/ with Qx 2 A,

0

@clK

0

@
\

x2co.A/

T.x/

1

A

1

A \ co.A/ D
0

@
\

x2co.A/

T.x/

1

A \ co.A/:

Then
\

x2K
T.x/ ¤ ;.

Definition 1.51 Let X be a topological space and Y be a nonempty set. A set-valued
map T W X ! 2Y is said to have open lower section if the set T�1. y/ D fx 2 X W
y 2 T.x/g is open in X for every y 2 Y.

Lemma 1.19 ([136]) Let X be a topological space and Y be a convex subset of a
topological vector space. Let S;T W X ! 2Y be set-valued maps with open lower
sections. Then

(a) the set-valued map H W X ! 2Y, defined by H.x/ D co.S.x// for all x 2 X, has
open lower sections;

(b) the set-valued map J W X ! 2Y, defined by J.x/ D S.x/ \ T.x/ for all x 2 X,
has open lower sections.

The following fixed-point theorem has been proven by Browder [33].

Lemma 1.20 (Browder Fixed Point Theorem) Let K be a nonempty compact
convex subset of a Hausdorff topological vector space X. Suppose that T W K ! 2K

is a set-valued map with nonempty convex values and has open lower sections. Then
T has a fixed point.

We present a Browder type fixed point theorem for set-valued maps under
noncompact setting.

Theorem 1.35 ([9]) Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Let S;T W K ! 2K be set-valued maps such that the following
conditions hold.

(i) For all x 2 K, co.S.x// � T.x/ and S.x/ ¤ ;;
(ii) K D SfintK.S�1.x// W x 2 Kg;
(iii) If K is not compact, assume that there exist a nonempty compact convex subset

B of K and a nonempty compact subset D of K such that for each x 2 K n D
there exists Qy 2 B such that x 2 intK.S�1. Qy//.

Then there exists Nx 2 K such that Nx 2 T.Nx/.
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If S has open lower sections, then condition (ii) in Theorem 1.35 holds, and
hence, we have the following result.

Corollary 1.3 [9] Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Let S;T W K ! 2K be set-valued maps such that the following
conditions hold.

(i) For all x 2 K, co.S.x// � T.x/ and S.x/ ¤ ;;
(ii) The set S�1. y/ D fx 2 K W y 2 S.x/g is open;
(iii) If K is not compact, assume that there exist a nonempty compact convex subset

B of K and a nonempty compact subset D of K such that for each x 2 K n D
there exists Qy 2 B such that x 2 S�1.Qy/.

Then there exists Nx 2 K such that Nx 2 T.Nx/.
Chowdhury and Tan [47] establish the following version of Browder type fixed

point theorem for non-Hausdorff spaces.

Theorem 1.36 Let K be a nonempty convex subset of a topological vector space
Y and S;T W K ! 2K be set-valued maps. Assume that the following conditions
hold:

(a) For all x 2 K, S.x/ � T.x/.
(b) For all x 2 K, T.x/ is convex and S.x/ is nonempty.
(c) For all y 2 K, S�1. y/ D fx 2 K W y 2 S.x/g is compactly open.
(d) There exists a nonempty closed compact (not necessarily convex) subset D of K

and an element Qy 2 D such that K n D � T�1. Qy/.
Then there exists Ox 2 K such that Ox 2 T.Ox/.

The following maximal element theorem for a set-valued map is equivalent to
Corollary 1.3.

Theorem 1.37 ([49, 105]) Let K be a nonempty convex subset of a Hausdorff
topological vector space X. Let S;T W K ! 2K be set-valued maps satisfying the
following conditions:

(i) For all x 2 K, co.S.x// � T.x/;
(ii) For all x 2 K, x … T.x/;
(iii) For all y 2 K, S�1. y/ D fx 2 K W y 2 S.x/g is open in K;
(iv) There exist a nonempty compact subset D of K and a nonempty compact convex

subset B of K such that for all x 2 K n D, S.x/ \ B ¤ ;.
Then there exists Nx 2 K such that S.Nx/ D ;.
Definition 1.52 (˚-Condensing Map) [125, 126] Let X be a Hausdorff topolog-
ical vector space, L be a lattice with a minimal element, and let ˚ W 2X ! L be
a measure of noncompactness on X and D � X. A set-valued map T W D ! 2X

is called ˚-condensing if M � D with ˚.T.M// � ˚.M/ implies that M is
precompact.
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Remark 1.23 Note that every set-valuedmap defined on a compact set is necessarily
˚-condensing. If X is locally convex, then a compact set-valued map (that is, T.D/

is precompact) is ˚-condensing for any measure of noncompactness ˚ . Obviously,
if T W D ! 2X is ˚-condensing and if S W D ! 2X satisfies S.x/ � T.x/ for all
x 2 D, then S is also ˚-condensing.

Remark 1.24 If K is a nonempty, closed and convex subset of a locally convex
Hausdorff topological vector space X, then condition (iii) of Theorem 1.35 and
condition (iv) of Theorem 1.37 can be replaced by the following condition:

(iv)0 The set-valued map S W K ! 2K is ˚-condensing,

see Corollary 4 in [43].

Theorem 1.38 (Kakutani Fixed Point Theorem) [85] Let K be a nonempty
compact convex subset of a locally convex topological vector space X and Y be
a topological vector space. Let T W K ! 2Y be a set-valued map such that for each
x 2 K, T.x/ is nonempty, compact and convex. Then T has a fixed point, that is,
there exists Nx 2 K such that Nx 2 T.Nx/.

The Kakutani fixed point theorem is a set-valued version of the following
Brouwer fixed point theorem.

Theorem 1.39 (Brouwer’s Fixed Point Theorem) Let K be a nonempty, compact
and convex subset of a finite dimensional space Rn and f W K ! K be a continuous
map. Then there exists x 2 K such that f .x/ D x.

1.5 Variational Inequalities

Theory of variational inequalities is one of the powerful tools of current mathe-
matical technology, introduced separately by G. Fichera and G. Stampacchia in
early sixties. The ideas and techniques of variational inequalities are being applied
in various fields of mathematics, engineering, management and social sciences
including fluid flow through porous media, contact problems in elasticity, optimal
control, nonlinear optimization, transportation and economic equilibria, etc. During
the last three decades, variational inequalities are used as tools to solve optimization
problems; See for example [2, 6, 7, 11–16, 18, 30–33, 45, 55, 56, 64, 67, 69, 94, 98,
116, 121, 124, 132, 134, 139, 140, 142] and the references therein. In this section,
we give a brief introduction to the theory of variational inequalities.

Let X be a topological vector space with its topological dual X�, and K be a
nonempty convex subset of X. The value of l 2 X� at x is denoted by hl; xi. Let
F W K ! X� be a mapping. The variational inequality problem (in short, VIP) is to
find Nx 2 K such that

hF.Nx/; y � Nxi � 0; for all y 2 K: (1.16)

The inequality (1.16) is called variational inequality.
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Roughly speaking, the variational inequality (1.16) states that the vector F.Nx/
must be at a non-obtuse angle with all the feasible vectors emanating from Nx. In
other words, the vector Nx is a solution of VIP if and only if F.Nx/ forms a non-obtuse
angle with every vector of the form y � Nx for all y 2 K.

First let us consider an application of varianal inequalities in Partial Differential
Equations.

Example 1.19 (Inverse Problems in Partial Differential Equations) There is a
large number of examples in applied sciences that can be modeled by means of
partial differential equations (PDEs). The corresponding PDEs often involve certain
unknown variable parameters when a measurement of a solution of the PDE is
available. This leads to so-called inverse problems. The direct problem, on the other
hand, is to solve the PDE. As an example, let us consider the following elliptic
boundary value problem (BVP)

� r � .qru/ D f in ˝; u D 0 on @˝; (1.17)

where˝ denotes a domain inR2 orR3 and @˝ is its boundary. Problems of the form
(1.17) have been studied in great detail in the literature due to their wide real-world
applications. For example, u D u.x/ may be the steady-state temperature at a fixed
point x of a body. Then qwould represent a variable thermal conductivity coefficient
and f would constitute the external heat source.When the problem (1.17) needs to be
solved, one can choose from a large number of concepts proposed in the literature.
Most approaches either regard problem (1.17) as a hyperbolic PDE in q or pose an
optimization problemwhose solution is an estimate of q. There exist two approaches
involving the reformulation of (1.17) as an optimization problem: The problem
(1.17) can either be formulated as an unconstrained optimization problem, or it can
be handled as a constrained optimization problem which involves the PDE in as a
constraint. Since the solution of equations corresponds to minimization problems
and therefore to variational inequalities as optimality conditions, the results to be
presented in this chapter are directly applicable to (1.17). For further applications
and in-depth analysis of inverse problems, we refer to [76].

The simplest example of a variational inequality problem is the problem of
solving a system of nonlinear equations.

Proposition 1.11 Let F W Rn ! R
n be a mapping. A vector Nx 2 R

n is a solution of
VIP if and only if F.Nx/ D 0.

Proof Let F.Nx/ D 0. Then, obviously, inequality (1.16) holds with equality.
Conversely, suppose that Nx satisfies the inequality (1.16). Then, by taking y D

Nx � F.Nx/ in (1.16), we get

hF.Nx/; Nx � F.Nx/ � Nxi D hF.Nx/; �F.Nx/i � 0;

that is, �kF.Nx/k2 � 0, which implies that F.Nx/ D 0. ut
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If F.x/ is the gradient of a differentiable convex function f W Rn ! R, then the
VIP provides the necessary and sufficient condition for a solution of an optimization
problem.

Proposition 1.12 Let K be a nonempty convex subset of Rn and f W K ! R be a
differentiable function. If Nx is a solution of the following optimization problem:

minimize f .x/; subject to x 2 K; (1.18)

then Nx is a solution of VIP with F � rf .

Proof For any y 2 K, define a function ' W Œ0; 1� ! R by

'.�/ D f .Nx C �. y � Nx//; for all � 2 Œ0; 1�:

Since '.�/ attains its minimum at � D 0, therefore, ' 0.0/ � 0, that is,

hrf .Nx/; y � Nxi � 0; for all y 2 K: (1.19)

Hence, Nx is a solution of VIP with F � rf . ut
Proposition 1.13 Let K be a nonempty convex subset of Rn and f W K ! R be a
pseudoconvex function. If Nx is a solution of VIP with F.Nx/ D rf .Nx/, then it is a
solution of the optimization problem (1.18).

Proof Suppose that Nx is a solution of VIP, but not an optimal solution of the
optimization problem (1.18). Then there exists a vector y 2 K such that f . y/ < f .Nx/.
By pseudoconvexity of f , we have hrf .Nx/; y � Nxi < 0, which is a contradiction to
the fact that Nx is a solution of VIP. ut

Let K be a closed convex cone in a topological vector space X and F W K ! X�
be a mapping. The nonlinear complementarity problem (NCP) is to find a vector
Nx 2 K such that

F.Nx/ 2 K� and hF.Nx/; Nxi D 0; (1.20)

where K� is the dual cone of K.
For further details and applications of complementarity problems, we refer to

[56, 64, 74, 75, 87–89, 131] and the references therein.
The next result provides the equivalence between a nonlinear complementarity

problem and a variational inequality problem.

Proposition 1.14 If K is a closed convex pointed cone in a topological vector space
X, then VIP and NCP have precisely the same solution sets.

Proof Let Nx 2 K be a solution of VIP. Then

hF.Nx/; y � Nxi � 0; for all y 2 K: (1.21)
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In particular, taking y D x C Nx in the above inequality, we get

hF.Nx/; xi � 0; for all x 2 K;

which implies that F.Nx/ 2 K�.
By substituting y D 2Nx in inequality (1.21), we obtain

hF.Nx/; Nxi � 0; (1.22)

and again taking y D 0 in inequality (1.21), we get

hF.Nx/; �Nxi � 0: (1.23)

Inequalities (1.22) and (1.23) together imply that hF.Nx/; Nxi D 0. Hence, Nx is a
solution of NCP.

Conversely, suppose that Nx 2 K is a solution of NCP, then we have

hF.Nx/; Nxi D 0 and hF.Nx/; yi � 0; for all y 2 K:

Thus,

hF.Nx/; y � Nxi � 0; for all y 2 K:

Hence, Nx is a solution of VIP. ut
Let K be a nonempty subset of a normed space X and T W K ! K be a mapping.

The fixed point problem (FPP) is to find Nx 2 K such that

T.Nx/ D Nx: (1.24)

Now we give a relationship between a VIP and a FPP.

Proposition 1.15 Let K be a nonempty subset of a normed space X and T W K ! K
be a mapping. If the mapping F W K ! K is defined by

F.x/ D x � T.x/; (1.25)

then VIP (1.16) coincide with FPP (1.24).

Proof Let Nx 2 K be a fixed point of the problem (1.24). Then, F.Nx/ D 0, and thus,
Nx solves (1.16).

Conversely, suppose that Nx solves (1.16) with F.Nx/ D Nx � T.Nx/. Then T.Nx/ 2 K
and letting y D T.Nx/ in (1.16) gives �kNx � T.Nx/k2 � 0, that is, Nx D T.Nx/. ut

A problem closely related to the VIP is the following problem, known as Minty
variational inequality problem (MVIP): Find Nx 2 K such that

hF. y/; y � Nxi � 0; for all y 2 K: (1.26)
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The inequality (1.26) is known as Minty variational inequality (MVI). Minty [113]
gave a complete characterization of the solutions of VIP in terms of the solutions of
MVIP. Since the origin of VIP, most of the existence results for a solution of a VIP
are established by showing the equivalence between VIP and MVIP.

To distinguish between a variational inequality and Minty variational inequality,
we sometimes write Stampacchia variational inequality (SVI) instead of a varia-
tional inequality.

Contrary to the Stampacchia variational inequality problem (SVIP), Minty
variational inequality problem (MVIP) is a sufficient optimality condition for the
optimization problem (1.18) which becomes necessary if the objective function f is
pseudoconvex and differentiable.

Theorem 1.40 (Giannessi 1998) Let K be a nonempty convex subset of Rn and
f W K ! R be a differentiable function. The following statements hold:

(a) If Nx 2 K is a solution of MVIP with F � rf , then Nx is a solution of optimization
problem (1.18).

(b) If f is pseudoconvex and Nx 2 K is a solution of the optimization problem (1.18),
then it is a solution of MVIP with F � rf .

Proof

(a) Let y 2 K be arbitrary. Consider the function '.�/ D f .Nx C �. y � Nx// for all
� 2 Œ0; 1�. Since ' 0.�/ D hrf .NxC �. y� Nx//; y� Nxi and Nx is a solution of MVIP
with F � rf , it follows that

' 0.�/ D hrf .Nx C �. y � Nx//; y � Nxi � 0; for all � 2 Œ0; 1�:

This implies that ' is a nondecreasing function on Œ0; 1�, and therefore,

f . y/ D '.1/ � '.0/ D f .Nx/:

Thus, Nx is a solution of the optimization problem (1.18).
(b) Let Nx be an optimal solution of the optimization problem (1.18). Then for all

y 2 K, f .Nx/ � f . y/. Since f is a pseudoconvex differentiable function, by
Theorem 1.21, f is quasiconvex. Then by Theorem 1.18, we have

hrf . y/; y � Nxi � 0; for all y 2 K:

Thus, Nx is a solution of MVIP. ut
Definition 1.53 Let K be a nonempty convex subset of topological vector space X.
A mapping F W K ! X� is said to be

(a) lower hemicontinuous or radially lower semicontinuous if for any fixed x; y 2
K, the function � 7! F.xC �. y� x// defined on Œ0; 1� is lower semicontinuous;

(b) upper hemicontinuous or radially upper semicontinuous if for any fixed x; y 2
K, the function � 7! F.xC�. y� x// defined on Œ0; 1� is upper semicontinuous;
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(c) hemicontinuous or radially semicontinuous if for any fixed x; y 2 K, the
mapping � 7! F.x C �. y � x// defined on Œ0; 1� is continuous, that is, if F
is continuous along the line segments in K.

The following Minty lemma is an important tool in the theory of variational
inequalities when the mapping is monotone and the domain is convex.

Lemma 1.21 (Minty Lemma) Let K be a nonempty subset of a topological vector
space X and F W K ! X� be a mapping. The following assertions hold.

(a) If K is convex and F is hemicontinuous, then every solution of MVIP is a
solution of VIP.

(b) If F is pseudomonotone, then every solution of VIP is a solution of MVIP.

Proof

(a) Let Nx 2 K be a solution of MVIP. Then for any y 2 K and � 2 �0; 1�, z D
Nx C �. y � Nx/ 2 K, and hence,

hF.z/; z � Nxi � 0; for all � 2 �0; 1�;

which implies that

hF. y C �.Nx � y//; y � Nxi � 0; for all � 2 �0; 1�:

By the hemicontinuity of F, we have

hF.Nx/; y � Nxi � 0; for all y 2 K:

Hence, Nx is a solution of VIP.
(b) Obvious, by pseudomonotonicity of F. ut

It can be easily seen that if K is a nonempty closed convex subset of X and
F W K ! X� be hemicontinuous and pseudomonotone, then the solution set of VIP
is closed and convex. Moreover, if the F is strictly monotone, then the solution of
VIP is unique, provided it exists. Finally, we present a result on the existence of a
solution of VIP (1.16).

Theorem 1.41 ([131, Theorem 3.1]) Let X be a reflexive Banach space, K be a
nonempty bounded closed convex subset of X and T W K ! X� be a mapping.
Suppose that T is pseudomonotone and hemicontinuous. Then there exists a solution
x 2 K of VIP (1.16). Furthermore, if in addition T is strictly pseudomonotone, then
the solution is unique.
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1.5.1 Nonsmooth Variational Inequalities

Motivated by the optimality conditions in terms of the generalized directional
derivatives, we associate an optimization problem with the variational inequality
problem defined by means of a bifunction h.

Let K be a nonempty subset of Rn and h W K 	R
n ! R[ f˙1g be a bifunction.

The variational inequality problem in terms of a bifunction h is defined as follows:

Find Nx 2 K such that h.NxI y � Nx/ � 0; for all y 2 K: (VIP)h

When h.xI y � x/ D hF.x/; y � xi, where F W Rn ! R
n, then (VIP)h reduces to

the VIP studied in the previous section.
As we have seen in the previous section that the Minty variational inequality

problem is closely related to VIP, and also provides a necessary and sufficient
optimality condition for a differentiable optimization problem under convexity or
pseudoconvexity assumption. Therefore, the study of Minty variational inequality
defined by means of a bifunction h is also very important in the theory of nonsmooth
variational inequalities. The Minty variational inequality problem in terms of a
bifunction h is defined as follows:

Find Nx 2 K such that h. yI Nx � y/ � 0; for all y 2 K: (MVIP)h

To prove the equivalence between (VIP)h and (MVIP)h, we introduce the
following concept of upper sign continuity.

Definition 1.54 Let K be a nonempty convex subset of Rn. A bifunction h W K 	
R

n ! R[f˙1g is said to be upper sign continuous if for all x; y 2 K and � 2 �0; 1Œ,

h.x C �. y � x/I x � y/ � 0 implies h.xI y � x/ � 0:

This notion of upper sign continuity for a bifunction extends the concept of upper
sign continuity introduced in [70].

Clearly, every subodd radially upper semicontinuous bifunction is upper sign
continuous.

The following lemma is a generalization of Minty Lemma 1.21.

Lemma 1.22 Let K be a nonempty convex subset of Rn and h W K 	 R
n !

R [ f˙1g be a pseudomonotone and upper sign continuous bifunction such that
h is positively homogeneous in the second argument. Then Nx 2 K is a solution of
(VIP)hif and only if it is a solution of (MVIP)h.

Proof The pseudomonotonicity of h implies that every solution of (VIP)h is a
solution of (MVIP)h.

Conversely, let Nx 2 K be a solution of (MVIP)h. Then

h. yI Nx � y/ � 0; for all y 2 K: (1.27)
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Since K is convex, we have y� D Nx C �. y � Nx/ 2 K for all � 2 �0; 1Œ: Therefore,
inequality (1.27) becomes

h. y�I Nx � y�/ � 0:

As Nx � y� D �.Nx � y/ and h is positively homogeneous in the second argument, we
have

h. y�I Nx � y/ � 0:

Thus, the upper sign continuity of h implies that Nx 2 K is a solution of (VIP)h. ut
Let us recall the optimization problem:

minimize f .x/; subject to x 2 K; (P)

where K is a nonempty convex subset of Rn and f W K ! R is a function.
In the subsequent theorems, we relate the solutions of the problem (P) and (VIP)h.

Theorem 1.42 Let K be a nonempty convex subset of Rn, f W K ! R be a function
and h W K 	 R

n ! R [ f˙1g be a bifunction. If f is h-convex and Nx 2 K is a
solution of (VIP)h, then Nx solves the problem (P).

Proof By h-convexity of f , we have

f . y/ � f .Nx/ � h.NxI y � Nx/; for all y 2 K:

Since Nx is a solution of (VIP)h, we have

h.NxI y � Nx/ � 0; for all y 2 K:

The last two inequalities together imply that

f . y/ � f .Nx/ � 0; for all y 2 K;

that is, Nx is a solution of problem (P). ut
The h-convexity assumption in the above theorem can be weakened to h-

pseudoconvexity.
For the converse of Theorem 1.42 to hold, we do not require the function f to be

h-convex. However, we assume that the function f and the bifunction h satisfy the
following condition:

8 x 2 K; d 2 R
n W DCf .xI d/ � h.xI d/: (1.28)

Theorem 1.43 Let K be a nonempty convex subset of Rn, f W K ! R be a function
and h W K	R

n ! R[f˙1g satisfy the condition (1.28). If Nx is an optimal solution
of the problem (P), then Nx 2 K is a solution of (VIP)h.
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Proof Since K is convex and Nx is an optimal solution of problem (P), for any y 2 K,
we have

f .Nx/ � f .Nx C �. y � Nx//; for all � 2 �0; 1�:

This implies that

f .Nx C �. y � Nx// � f .Nx/
�

� 0; for all � 2 �0; 1�:

Taking lim inf as � ! 0C, we obtain

DCf .NxI y � Nx/ � 0; for all y 2 K;

which on using (1.28) implies that

h.NxI y � Nx/ � 0; for all y 2 K:

Hence, Nx is a solution of (VIP)h. ut
Thus, it is possible to identify the solutions of the optimization problem (P) with

those of the (VIP)h provided the objective function is h-convex or h-pseudoconvex.

Theorem 1.44 Let K be a nonempty convex subset of Rn and f W K ! R be a
function such that

h.xI y � x/ > f . y/ � f .x/; for all x; y 2 K and x ¤ y: (1.29)

Then every solution of the problem (P) is a solution of (VIP)h.

Proof Assume that Nx is a solution of the problem (P) but not a solution of (VIP)h.
Then there exists y 2 K such that

h.NxI y � Nx/ < 0: (1.30)

From (1.29), we reach to a contradiction to our assumption that Nx is a solution of the
problem (P). Hence, Nx is a solution of (VIP)h. ut

Next we establish that a solution of the Minty variational inequality problem
(MVIP)h is an optimal solution of the problem (P) under specific assumptions.

Theorem 1.45 Let K be a nonempty convex subset of Rn, f W K ! R be a radially
lower semicontinuous function and h W K 	 R

n ! R [ f˙1g satisfy condition
(1.28) and be positively homogeneous in the second argument. If Nx 2 K is a solution
of (MVIP)h, then it is a solution of the problem (P).

Proof Let Nx 2 K be a solution of (MVIP)h. Then

h. yI Nx � y/ � 0; for all y 2 K: (1.31)
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Let y 2 K, y ¤ Nx be arbitrary. Since f is radially lower semicontinuous, by
Theorem 1.31, there exists � 2 Œ0; 1Œ such that for w D y C �.Nx � y/, we have

DCf .wI Nx � y/ � f .Nx/ � f . y/: (1.32)

As � < 1, by the positive homogeneity of h in the second argument, we have from
relation (1.32) and the condition (1.28) that

.1 � �/�1h.wI Nx � w/ � f .Nx/ � f . y/:

From (1.31), we have

0 � h.wI Nx � w/ � .1 � �/. f .Nx/ � f . y//;

and as � < 1, it follows that f .Nx/ � f . y/ � 0. Since y 2 K was arbitrary, it follows
that Nx is a solution of problem (P). ut

As in the differentiable case, the problem (MVIP)h is a necessary optimality
condition under the assumption of the convexity (or pseudoconvexity) of f .

Theorem 1.46 Let K be a nonempty convex subset ofRn, h W K	R
n ! R[f˙1g

be a bifunction and f W K ! R be a h-convex function. If Nx 2 K is solution of
problem (P), then it solves (MVIP)h.

Proof Since f is h-convex, we have

f .Nx/ � f . y/ � h. yI Nx � y/ � 0; for all y 2 K:

Since Nx is a solution of problem (P), we obtain

0 � f .Nx/ � f . y/ � h. yI Nx � y/; for all y 2 K;

thus Nx solves (MVIP)h. ut
In the following theorem, we relax the h-convexity assumption but we add some

other assumptions.

Theorem 1.47 Let K be a nonempty convex subset ofRn, h W K	R
n ! R[f˙1g

satisfy the condition

8 x 2 K; d 2 R
n W h.xI d/ � DCf .xI d/ (1.33)

and be positively homogeneous and subodd in the second argument and f W K ! R

be a h-pseudoconvex function. If Nx 2 K is solution of problem (P), then it solves
(MVIP)h.

Proof Since Nx is a solution of problem (P), we have

f .Nx/ � f . y/; for all y 2 K:
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By Lemma 1.7(a), f is h-quasiconvex and hence,

h. yI Nx � y/ � 0; for all y 2 K;

thus Nx solves (MVIP)h. ut
We close this section by giving the following existence result for a solution of

(VIP)h.

Theorem 1.48 ([6, Theorem 6.8]) Let K be a nonempty compact convex subset of
R

n and h W K 	 R
n ! R [ f˙1g be a pseudomonotone bifunction such that h is

proper subodd in the second argument and the function x 7! h. yI x � y/ is lower
semicontinuous. Then (MVIP)h has a solution Nx 2 K. Furthermore, if h is upper sign
continuous and positively homogeneous as well as subodd in the second argument,
then Nx 2 K is a solution of (VIP)h.

For a thorough study on nonsmooth variational inequalities, we refer to [6].

1.5.2 Generalized Variational Inequalities

Let X be a topological vector space with its dual X�, K be a nonempty subset of
X, F W K ! 2X

�

be a set-valued map with nonempty values. The generalized
variational inequality problem (GVIP) is to find Nx 2 K and Nu 2 F.Nx/ such that

hNu; y � Nxi � 0; for all y 2 K: (1.34)

An element Nx 2 K is said to be a strong solution of GVIP if there exists Nu 2 F.Nx/
such that the inequality (1.34) holds.

The weak form of the GVIP is the problem of finding Nx 2 K such that for each
y 2 K, there exists Nu 2 F.Nx/ satisfies

hNu; y � Nxi � 0: (1.35)

It is called a weak generalized variational inequality problem (WGVIP). An element
Nx 2 K is said to be a weak solution of GVIP if for each y 2 K, there exists Nu 2 F.Nx/
such that the inequality (1.35) holds. It should be noted that Nu in WGVIP depends on
y. Of course, if F is a single-valued map, then both the problems mentioned above
reduce to the variational inequality problem (1.16).

Clearly, every strong solution of GVIP is a weak solution. However, the converse
is not true in general, see, for example, Example 8.1 in [6].

For the next result, we need the following theorem.

Theorem 1.49 (Kneser Minimax Theorem) [95] Let K be a nonempty convex
subset of a vector space X and D be a nonempty compact convex subset of a
topological vector space Y. Suppose that f W K 	 D ! R is lower semicontinuous
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and convex in the second argument and concave in the first argument. Then

min
y2D sup

x2K
f .x; y/ D sup

x2K
min
y2D f .x; y/:

The following lemma says that every weak solution of GVIP is a strong solution
if the set-valued map F is nonempty, compact and convex valued.

Lemma 1.23 Let K be a nonempty convex subset of X and F W K ! 2X
�

be a set-
valued map such that for each x 2 K, F.x/ is nonempty, compact and convex. Then
every weak solution of GVIP is a strong solution.

Proof Let Nx 2 K be a weak solution of GVIP. Then for each y 2 K, there exists
Nu 2 F.Nx/ such that

hNu; Nx � yi � 0;

that is,

inf
u2F.Nx/hu; Nx � yi � 0; for all y 2 K:

Define a functional f W K 	 F.Nx/ ! R by

f . y; u/ WD hu; Nx � yi:

Then for each y 2 K, the real-valued functional u 7! f . y; u/ is lower semicontinu-
ous and convex, and for each u 2 F.Nx/, the functional y 7! f . y; u/ is concave. Since
F.Nx/ is compact and convex, by Theorem 1.49, we have

inf
u2F.Nx/ supy2K

hu; Nx � yi D sup
y2K

inf
u2F.Nx/hu; Nx � yi � 0: (1.36)

Since F.Nx/ is compact, there exists Nu 2 F.Nx/ such that

sup
y2K

hNu; Nx � yi � 0;

and hence

hNu; y � Nxi � 0; for all y 2 K:

ut
If K D X, then clearly, WGVIP reduces to the following set-valued inclusion

problem : Find Nx 2 X such that

0 2 F.Nx/: (1.37)
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We consider the generalized complementarity problem which is one of the
most important problems from operations research. For details on complementarity
problems and their generalizations, we refer [2, 56, 64, 74, 75, 87–89, 130, 131, 135]
and the references therein.

Let K be a convex cone in X with its dual cone K� D fu 2 X� W hu; xi � 0

for all x 2 Kg. The generalized complementarity problem (GCP) is to find Nx 2 K
and Nu 2 F.Nx/ such that

Nu 2 K� and hNu; Nxi D 0: (1.38)

Proposition 1.16 ([6, Proposition 8.1]) .Nx; Nu/ is a solution of GVIP if and only if
it is a solution of GCP.

Let K be a nonempty subset of a normed space X and T W K ! 2K be a set-valued
map with nonempty values. The set-valued fixed point problem (in short, SVFPP)
associated with T is to find Nx 2 K such that

Nx 2 T.Nx/: (1.39)

The point Nx 2 K is called a fixed point of T if the relation (1.39) holds. This
problem can be converted into a generalized variational inequality formulation as
shown below in the set-valued version of Proposition 1.15.

Proposition 1.17 ([6, Proposition 8.2]) Let K be a nonempty subset of a normed
space X and T W K ! 2K be a set-valued map with nonempty values. If the set-
valued map F W K ! 2X is defined by

F.x/ D x � T.x/; (1.40)

then an element Nx 2 K is a strong solution of GVIP (1.34) if and only if it is a fixed
point of T.

Let K be a nonempty convex subset of a Banach space X and f W K ! R be a
function. Consider the following optimization problem:

minimize f .x/; subject to x 2 K: (1.41)

The following result shows that the GVIP with F.x/ D @f .x/, the subdifferential
of a convex function f , is a necessary and sufficient optimality condition for the
optimization problem (1.41).

Proposition 1.18 Let K be a nonempty convex subset of a Banach space X and
f W K ! R be a convex function. If Nx 2 K is a solution of the minimization
problem (1.41), then it is a strong solution of GVIP with F.x/ D @f .x/ for all
x 2 K. Conversely, if .Nx; Nu/ is a solution of GVIP with Nu 2 @f .Nx/, then Nx solves the
optimization problem (1.41).
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Proof Let Nx 2 K be a solution of the minimization problem (1.41). Then, f .Nx/ �
f . y/ for all y 2 K. By the definition of subdifferential of a convex function, 0 2
@f .Nx/. Hence, .Nx; 0/ is a solution of GVIP, that is, Nx is a strong solution of GVIP
with F.x/ D @f .x/ for all x 2 K.

Conversely, assume that .Nx; Nu/ is a solution of GVIP with F.x/ D @f .x/ for all
x 2 K. Then Nu 2 @f .Nx/ and

hNu; y � Nxi � 0; for all y 2 K: (1.42)

Since Nu 2 @f .Nx/, we have
hNu; y � Nxi � f . y/ � f .Nx/; for all y 2 X: (1.43)

By combining inequalities (1.42) and (1.43), we obtain

f .Nx/ � f . y/; for all y 2 K:

Hence, Nx is a solution of the minimization problem (1.41). ut
It can be easily seen that if Nx is a weak solution of GVIP, even then it is a solution

of the minimization problem (1.41).

Theorem 1.50 ([130]) Let K be a nonempty compact convex subset of Rn and F W
K ! 2R

n
be an upper semicontinuous set-valued map such that for each x 2 K,

F.x/ is nonempty, compact and convex. Then there exists a solution .Nx; Nu/ of GVIP.
If K is not necessarily bounded, then we have the following result.

Theorem 1.51 ([6, Theorem 8.2]) Let K be a nonempty closed convex subset of
R

n and F W K ! 2R
n
be an upper semicontinuous set-valued map such that for each

x 2 K, F.x/ is nonempty, compact and convex. If there exist an element Qy 2 K and a
constant r > kQyk such that

max
u2F.x/

hu; Qy � xi � 0; (1.44)

for all x 2 K with kxk D r, then there exists a solution .Nx; Nu/ of GVIP.
Theorems 1.50 and 1.51 also hold in the setting of Banach spaces. Some

existence results for a solution of GVIP under the assumption that the underlying
set K is convex but neither bounded nor closed, are derived in [62].

The following problem is the set-valued version of the Minty variational
inequality problem, known as generalized Minty variational inequality problem (in
short, GMVIP): Find Nx 2 K such that for all y 2 K and all v 2 F.y/, we have

hv; y � Nxi � 0: (1.45)

A weak form of the generalized Minty variational inequality problem is the
following problem which is called weak generalized Minty variational inequality
problem (WGMVIP): Find Nx 2 K such that for all y 2 K, there exists v 2 F. y/
satisfying the inequality (1.45).
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A solution of WGMVIP is called a weak solution of GMVIP. It is clear that every
solution of GMVIP is a weak solution of GMVIP.

The following result provides a necessary and sufficient condition for a solution
of the minimization problem (1.41).

Proposition 1.19 Let K be a nonempty convex subset of a Banach space X and
f W K ! R be a convex function. Then Nx 2 K is a solution of the minimization
problem (1.41) if and only if it is a solution of GMVIP (1.45) with F.x/ D @f .x/.

Proof Let Nx 2 K be a solution of GMVIP (1.45) but not a solution of minimization
problem (1.41). Then there exists z 2 K such that

f .z/ < f .Nx/: (1.46)

By Theorem 1.32, there exist � 2 �0; 1Œ and v 2 @f .z.�//, where z.�/ D �z C .1 �
�/Nx, such that

hv; z � Nxi D f .z/ � f .Nx/: (1.47)

By combining (1.46) and (1.47), we obtain

hv; z � Nxi < 0:

Since �.z � Nx/ D z.�/ � Nx, we have
hv; z.�/ � Nxi < 0;

a contradiction to our supposition that Nx is a solution of GMVIP (1.45).
Conversely, suppose that Nx 2 K is a solution of the minimization problem (1.41).

Then we have

f . y/ � f .Nx/ � 0; for all y 2 K: (1.48)

Since f is convex, we deduce that

hv; y � Nxi � f . y/ � f .Nx/; for all y 2 K and all y 2 @f . y/: (1.49)

From inequalities (1.48) and (1.49), it follows that Nx is a solution of GMVIP (1.45).
ut

Definition 1.55 Let K be a nonempty convex subset of a topological vector space
X. A set-valued map F W K ! 2X is said to be generalized hemicontinuous if for
any x; y 2 K and for all � 2 Œ0; 1�, the set-valued map

� 7! hF.x C �. y � x//; y � xi D
[

w2F.xC�. y�x//

hw; y � xi

is upper semicontinuous at 0.



1.5 Variational Inequalities 63

Definition 1.56 Let K be a nonempty convex subset of a topological vector space
X. A set-valued map F W K ! 2X

�

is said to be generalized pseudomonotone if for
every pair of distinct points x; y 2 K and for any u 2 F.x/ and v 2 F. y/, we have

hu; y � xi � 0 ) hv; y � xi � 0:

F is called generalized weakly pseudomonotone if for every pair of distinct points
x; y 2 K and for any u 2 F.x/, we have

hu; y � xi � 0 ) hv; y � xi � 0 for some v 2 F. y/:

Now we present some existence results for solutions of GVIP under different
kinds of generalized monotonicities.

The following result which was established by Konnov and Yao [103], is a set-
valued version of the Minty lemma.

Lemma 1.24 (Generalized Linearization Lemma) [6, Lemma 8.2] Let K be a
nonempty convex subset of a topological vector space X and F W K ! 2X

�

be a
set-valued map with nonempty values. The following assertions hold.

(a) If F is generalized hemicontinuous, then every solution of WGMVIP is a
solution of WGVIP.

(b) If F is generalized pseudomonotone, then every solution of WGVIP is a solution
of GMVIP.

(c) If F is generalized weakly pseudomonotone, then every solution of WGVIP is
a solution of WGMVIP.

Theorem 1.52 Let K be a nonempty compact convex subset of a Banach space
X and F W K ! 2X

�

be a generalized pseudomonotone and generalized
hemicontinuous set-valued map such that for each x 2 K, F.x/ is nonempty. Then
there exists a solution Nx 2 K of WGVIP. If, in addition, the set F.Nx/ is also compact
and convex, then Nx 2 K is a strong solution of GVIP.

Proof For each y 2 K, define two set-valued maps S;T W K ! 2K by

S. y/ D fx 2 K W 9u 2 F.x/; hu; y � xi � 0g ;

and

T. y/ D fx 2 K W 8v 2 F. y/; hv; y � xi � 0g ;

respectively. We divide the proof into five steps.

(i) We claim that S is a KKM map, that is, the convex hull co.f y1; y2; : : : ; ymg/
of every finite subset f y1; y2; : : : ; ymg of K is contained in the corresponding
union

Sm
iD1 S. yi/.
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Let Ox 2 co.f y1; y2; : : : ; ymg/. Then

Ox D
mX

iD1

�iyi; for some �i � 0 with
mX

iD1

�i D 1:

If Ox … Sm
iD1 S. yi/, then for all w 2 F.Ox/,

hw; yi � Oxi < 0; for all i D 1; 2; : : : ;m:

For all w 2 F.Ox/, it follows that

0 D hw; Ox � Oxi

D
*

w;

mX

iD1

�iyi �
mX

iD1

�i Ox
+

D
*

w;

mX

iD1

�i. yi � Ox/
+

D
mX

iD1

�ihw; yi � Oxi < 0;

which is a contradiction. Therefore, we must have

co.f y1; y2; : : : ; ymg/ �
m[

iD1

S. yi/;

and hence, S is a KKM map.
(ii) We show that S. y/ � T. y/ for all y 2 K, and hence T is a KKM map.

By generalized pseudomonotonicity of F, we have that S. y/ � T. y/ for all
y 2 K. Since S is a KKM map, so is T.

(iii) We assert that
T

y2K S. y/ D T
y2K T. y/.

From step (ii), we have

\

y2K
S. y/ �

\

y2K
T. y/;

and from Lemma 1.24, we have

\

y2K
S. y/ 


\

y2K
T. y/:

Therefore, the conclusion follows.
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(iv) We prove that for each y 2 K, T. y/ is a closed subset of K.
For any fixed y 2 K, let fxmg be a sequence in T. y/ such that xm ! Qx 2 K.

Since xm 2 T. y/, for all v 2 F. y/, we have hv; y � xmi � 0 for all m. As
hv; y�xmi converges to hv; y�Qxi, therefore hv; y�Qxi � 0, and hence, Qx 2 T. y/.
Consequently, T. y/ is closed.

(v) Finally, we show that the WGVIP is solvable.
From step (iv), T. y/ is a closed subset of the compact set K, and hence,

it is compact. By step (ii) and Lemma 1.14, we have
T

y2K T. y/ ¤ ;.
Consequently, by step (iii), we also have

T
y2K S. y/ ¤ ;. Hence, there exists

Nx 2 K such that

8y 2 K; 9Nu 2 F.Nx/ W hNu; y � Nxi � 0: (1.50)

Thus, Nx is a solution of WGVIP.

If, in addition, the set F.Nx/ is also compact and convex, then by Lemma 1.23,
Nx 2 K is a strong solution of GVIP. ut

1.6 Equilibrium Problems

Investigations of equilibrium states of a system play a central role in such diverse
fields as economics, mechanics, biology and social sciences. There are many general
mathematical problems which were suggested for modeling and studying various
kinds of equilibria. Many researchers were / are considering these problems in order
to obtain existence and uniqueness results and to propose solution methods. The Ky
Fan [59–61] type inequality is one of such problems, which plays an important role
in the theory of nonlinear analysis and optimization. It was W. Oettli who coined
the name “Equilibrium Problem” to the Ky Fan type inequality, perhaps, because it
is equivalent to find the equilibrium point of an optimization problem under certain
conditions. The mathematical formulation of an equilibrium problem (in short, EP)
is to find an element Nx of a set K such that

f .Nx; y/ � 0; for all y 2 K; (1.51)

where f W K 	 K ! R is a bifunction such that f .x; x/ � 0 for all x 2 K. It
seems the most general problem and includes other equilibrium type ones such as
optimization problem, saddle point problem, fixed point problem, complementarity
problems, variational inequality problems, Nash equilibrium problem, etc. In this
general form, EP was first considered by H. Nikaido and K. Isoda [119] as an
auxiliary problem to establish existence results for Nash equilibrium points in non-
cooperative games [117, 118]. This transformation allows one to extend various
iterative methods, which were proposed for saddle point problems, for the case of
EP. In the theory of EPs, the key contribution was made by Ky Fan [59–61], whose
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new existence results contained the original technique which became a basis for
most further existence theorems in topological spaces. The work of Ky Fan perhaps
motivated by the min-max problems appearing in economic equilibrium. Within
the context of calculus of variations, motivated mainly by the work of Stampacchia
[132], there arises the work of Brézis, Niremberg and Stampacchia [31] establishing
a more general result than that in [61]. After the work of Blum and Oettli [29], it
emerged as a new direction of research in nonlinear analysis, optimization, optimal
control, game theory, mathematical economics, etc.

Example 1.20

(a) Minimization Problem. Let K be a nonempty set and ' W K ! R be a real-
valued function. The minimization problem (in short, MP) is to find Nx 2 K such
that

'.Nx/ � '. y/; for all y 2 K: (1.52)

If we set f .x; y/ D '. y/ � '.x/ for all x; y 2 K, then MP is equivalent to EP.
(b) Saddle Point Problem. Let K1 and K2 be nonempty sets and ` W K1 	 K2 ! R

be a real-valued bifunction. The saddle point problem (in short, SPP) is to find
.Nx1; Nx2/ 2 K1 	 K2 such that

`.Nx1; y2/ � `. y1; Nx2/; for all . y1; y2/ 2 K1 	 K2: (1.53)

Set K WD K1 	 K2 and define f W K 	 K ! R by

f ..x1; x2/; . y1; y2// D `. y1; x2/ � `.x1; y2/ (1.54)

for all .x1; x2/; . y1; y2/ 2 K1 	 K2. Then SPP coincides with EP.
(c) Nash Equilibrium Problem. Let I D f1; 2; : : : ;mg be the set of players. For

each player i 2 I, let Ki be the strategy set of the ith player. Let K D Qm
iD1 Ki.

For every player i 2 I, let 'i W K ! R be the loss function of the ith player,
depending on the strategies of all players. For x D .x1; x2; : : : ; xm/ 2 K, we
define xi D .x1; : : : ; xi�1; xiC1; : : : ; xm/. Then Nx D .Nx1; Nx2; : : : ; Nxm/ 2 K is called
a Nash equilibrium point if for all i 2 I,

'i.Nx/ � 'i.Nxi; yi/; for all yi 2 Ki: (1.55)

This means that no player can reduce his loss by varying his strategy alone. We
now define

f .x; y/ D
mX

iD1

�
'i.x

i; yi/ � 'i.x/
�

:

For such f , EP coincides with Nash equilibrium problem (in short, NEP) of
finding Nx D .Nx1; Nx2; : : : ; Nxm/ 2 K such that (1.55) holds. Indeed, if (1.55) holds
for all i 2 I, obviously (1.51) is fulfilled. If, for some i 2 I, we choose y 2 K
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such that yi D Nxi, then

f .Nx; y/ D 'i
�Nxi; yi

� � 'i.Nx/:

Thus EP implies NEP.
(d) Fixed Point Problem. Let X be an inner product space whose inner product is

denoted by h:; :i. Let K be a nonempty subset of X and ' W K ! K be a given
mapping. The fixed point problem (in short, FPP) is to find Nx 2 K such that
'.Nx/ D Nx.

Setting f .x; y/ D hx � '.x/; y � xi. Then Nx is a solution of FPP if and only if
it is a solution of EP.

Indeed, FPP implies EP is obvious. If EP is satisfied, then by choosing y D
'.Nx/, we obtain

0 � f .Nx; '.Nx// D �kNx � '.Nx/k2:

(e) Variational Inequality Problem. Let X, X�, K and F be the same as in
the formulation of variational inequality problem defined by (1.16). We set
f .x; y/ D hF.x/; y � xi for all x; y 2 K. Then VIP is equivalent to EP.

Let K and h be the same as defined in the formulation of nonsmooth
variational inequality problem (VIP)h. If we define f .x; y/ D h.xI y � x/, then
(VIP)h is equivalent to EP.

For further details on different special cases of EP, we refer to [3, 29, 65, 66, 80,
91–93] and the references therein.

Most of the results on the existence of solutions for equilibrium problems
are derived in the setting of topological vector spaces either by using Browder
type or Kakutani type fixed point theorems or by using Fan-KKM type theorems.
Blum, Oettli and Théra [29, 120] have studied the existence of solutions of
equilibrium problems in the setting of complete metric spaces inspired by the well-
known Ekeland’s variational principle [53, 54]. They extended Ekelend’s variational
principle for bifunctions and established several equivalent formulations, namely,
Takahashi’s minimization theorem [133] and Caristi-Kirk’s fixed point theorem
[34]. After the work of Blum, Oettli and Théra, several people have started working
in this direction and established existence results for solutions of equilibrium
problems in different settings or under different assumptions, see, for example,
[1, 3–5, 26, 90, 106, 122, 123] and the references therein.

For solution methods for equilibrium problems, we refer to [51, 79, 99–101, 104,
109, 144] and the references therein.

Let X be a topological vector space, K be a nonempty convex subset of X and
f W K 	 K ! R be a bifunction such that f .x; x/ D 0 for all x 2 K. A problem
closely related to EP is the following problem, called dual equilibrium problem (in
short, DEP) orMinty equilibrium problem (in short, MEP): find Nx 2 K such that

f . y; Nx/ � 0; for all y 2 K: (1.56)
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Konnov and Schaible [102] defined the duality for equilibrium problems by using
the rule that the dual of the dual is the primal, and used dual equilibrium problem.
They proposed various duals of EP. The duality of equilibrium problems is also
studied by Martínez-Legaz and Sosa [111] and Bigi et al. [27] but by using dif-
ferent approaches. However, Mastroeni [112] studied gap functions for equilibrium
problems which convert an equilibrium problem to an optimization problem.

When f .x; y/ D g.x; y/ C h.x; y/ for all x; y 2 K with g; h W K 	K ! R such that
g.x; x/ � 0 and h.x; x/ D 0 for all x 2 K, then EP reduces to find Nx 2 K such that

g.Nx; y/ C h.Nx; y/ � 0; for all y 2 K: (1.57)

It was first proposed by Blum and Oettli [29] and further studied by Chadli et
al. [38, 39], Kalmoun [83] and Chadli et al. [40] with applications to eigenvalue
problems, hemivariational inequalities and anti-periodic solutions for nonlinear
evolution equations, see also [35, 37] and the references therein.

Let l W K 	 K ! R be a function. The implicit variational problem (for short,
IVP) is to find Nx 2 K such that

l.Nx; Nx/ C g.Nx; Nx/ � l.Nx; y/ C g.Nx; y/; for all y 2 K: (1.58)

It is considered and studied by Mosco [114] and it contains EP (1.51) and (1.57)
as special cases. It also includes variational and quasi-variational inequalities [18],
fixed point problem and saddle point problem, Nash equilibrium problem of non-
cooperative games as special cases. The existence of solutions of IVP was studied by
Mosco [114], while Dolcetta and Matzeu [52] discussed its duality and applications.

Let F;G W K ! L.X;Y/ be nonlinear operators. Set

l.x; y/ D hF.x/; y � xi and g.x; y/ D hG.x/; y � xi; for all x; y 2 K:

Then IVP reduces to the problem of finding Nx 2 K such that

hF.Nx/ C G.Nx/; y � Nxi � 0; for all y 2 K: (1.59)

It is known as strongly nonlinear variational inequality problem (in short, SNVIP).
Now we present some basic results on the existence of solutions for EP (1.51).

Theorem 1.53 Let K be a nonempty convex subset of a Hausdorff topological
vector space X and f W K 	 K ! R be a bifunction vanishing on the diagonal,
i.e. f .x; x/ D 0 for all x 2 K such that the following conditions hold.

(i) f is quasiconvex in the second variable;
(ii) lim infx!x� f .x; y/ � f .x�; y/ for all y 2 K whenever x ! x� 2 K;
(iii) There exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B such that
f .x; Qy/ < 0.

Then EP (1.51) has a solution in K.
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Proof For each y 2 K, define

P. y/ D fx 2 K W f .x; y/ � 0g:

Then the solution set of EP (1.51) is S D T
y2K P. y/. By condition (ii), for each

y 2 K, P. y/ is closed.
Now we prove that the solution set S is nonempty. Assume contrary that S D ;.

Then for each x 2 K, the set

S.x/ WD f y 2 K W x … P. y/g D f y 2 K W f .x; y/ < 0ig ¤ ;:

By quasiconvexity of f in the second variable, we have that S.x/ is convex for each
x 2 K. Thus, S W K ! 2K defines a set-valued map such that for each x 2 K, S.x/ is
nonempty and convex. Now for each y 2 K, the set

S�1. y/ D fx 2 K W y 2 S.x/g D fx 2 K W f .x; y/ < 0g
D fx 2 K W f .x; y/ � 0gc D ŒP. y/�c

is open in K. Then the set-valued map S W K ! 2K satisfies all the conditions of
Corollary 1.3 (with S D T), and therefore, there exists a point Ox 2 K such that
Ox 2 S.Ox/, that is, 0 D f .Ox; Ox/ < 0, which is a contradiction. Hence the solution set S
of EP (1.51) is nonempty. ut

Allen [2] also proved a similar result with different coercivity condition (iii) but
by using Fan-KKM Lemma. If K is compact, then the condition (iii) in the above
theorem is satisfied. Therefore, if K is compact and f is upper semicontinuous in the
first argument, then Theorem 1.53 reduces to the well-known Ky Fan theorem [61].

The following result is a slight generalization of a particular form of Theorem 10
in [37].

Theorem 1.54 Let X be a Hausdorff topological vector space, K be a closed convex
subset of X and f W K 	 K ! R be a bifunction such that f .x; x/ D 0 for all x 2 K.
Suppose that

(i) for each finite subset E of K, min
x2co.E/

max
y2E f .x; y/ � 0;

(ii) for each fixed y 2 K, the function x 7! f .x; y/ is upper semicontinuous;
(iii) there exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B such that
f .x; Qy/ < 0.

Then EP (1.51) has a solution.
Now we present a theorem which will be used in the sequel.

Theorem 1.55 ([29, Lemma 1]) Let X be a Hausdorff topological vector space,
K be a nonempty compact convex subset of X, D be a convex subset of X and f W
K	D ! R be concave and upper semicontinuous in the first argument, and convex
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in the second argument. Assume that

max
x2K f .x; y/ � 0; for all y 2 D:

Then there exists Nx 2 K such that f .Nx; y/ � 0 for all y 2 D.

Proof Assume contrary that the conclusion does not hold. Then for every x 2 K,
there exist y 2 D and " > 0 such that f .x; y/ < �". Therefore, the open sets

S". y/ WD fx 2 K W f .x; y/ < �"g; for y 2 D; " > 0;

cover the compact set K. Hence there exists a finite subcover fS"i. yi/gmiD1 of K. Let
" WD min1�i�m "i. Then from the fact that K � Sm

iD1 S"i. yi/, we have

min
1�i�m

f .x; yi/ � �"; for all x 2 K:

Since the function x 7! f .x; yi/ is concave, it follows from [127, Theorem 21.1]
that there exist real numbers �i � 0 for i D 1; 2; : : : ;m with

Pm
iD1 �i D 1 such

that
Pm

iD1 f .x; yi/ � �" for all x 2 K. The convexity of y 7! f .x; y/ implies with
Qy WD Pm

iD1 �iyi 2 D that f .x; Qy/ � �" for all x 2 K. Hence maxx2K f .x; Qy/ < 0, a
contradiction of our hypothesis. ut
Definition 1.57 ([146]) Let K be a nonempty convex subset of a topological vector
space X. A bifunction f W K 	 K ! R is said to be diagonally quasiconvex in y if
for any finite set fy1; y2; : : : ; ymg � K and any x0 2 co.fy1; y2; : : : ; ymg/, we have

f .x0; x0/ � max
1�i�m

f .x0; yi/:

f is said to be diagonally quasiconcave in y if �f is diagonally quasiconvex in y.
A bifunction f W K	K ! R is said to be � -diagonally quasiconvex in y for some

� 2 R if for any finite set fy1; y2; : : : ; ymg � K and any x0 2 co.fy1; y2; : : : ; ymg/,
we have

� � max
1�i�m

f .x0; yi/:

f is said to be � -diagonally quasiconcave in y for some � 2 R if �f is�� -diagonally
quasiconvex in y.

Definition 1.58 ([41]) Let K be a nonempty convex subset of a topological vector
space X. A bifunction f W K 	 K ! R is said to be � -generalized diagonally
quasiconvex in y if for any finite set fy1; y2; : : : ; ymg � K, there is a finite set
fx1; x2; : : : ; xmg � K such that for any set fxi1 ; xi2 ; : : : ; xikg � fx1; x2; : : : ; xmg and
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any x0 2 co.fxi1 ; xi2 ; : : : ; xikg/, we have

� � max
1� j�k

f .x0; yij /:

f is said to be � -generalized diagonally quasiconcave in y if �f is �� -generalized
diagonally quasiconvex in y.

Chang and Zhang [41] gave the relation between generalized KKM maps and
� -generalized diagonally quasiconvexity (quasiconcavity).

Proposition 1.20 Let K be a nonempty convex subset of a topological vector space
X, f W K 	 K ! R be a bifunction and � 2 R. Then the following statements are
equivalent:

(a) The set-valued map T W K ! 2K defined by

T. y/ D fx 2 K W f .x; y/ � �g .respectively, T. y/ D fx 2 K W f .x; y/ � �g/

is a generalized KKM map.
(b) f .x; y/ is � -generalized diagonally quasiconcave (respectively, � -generalized

diagonally quasiconvex) in y.

Tian [136] introduced the following definition of � -transfer lower semicontinu-
ous functions.

Definition 1.59 Let X and Y be topological spaces. A bifunction f W X 	 Y !
R is said to be � -transfer lower semicontinuous (respectively, � -transfer lower
semicontinuous) function in the first argument for some � 2 R if for all x 2 X
and y 2 Y with f .x; y/ > � (respectively, f .x; y/ < � ), there exist a point z 2 Y and
a neighborhood N.x/ of x such that f .u; z/ > � (respectively, f .u; z/ < � ) for all
u 2 N.x/.

The bifunction f is said to be to � -transfer lower semicontinuous (respectively,
� -transfer lower semicontinuous) in the first argument if it is � -transfer lower
semicontinuous (respectively, � -transfer lower semicontinuous) for every � 2 R.

Ansari et al. [7] established the following minimax inequality theorem.

Theorem 1.56 Let K be a nonempty closed convex subset of a Hausdorff topolog-
ical vector space X and f ; g W K 	 K ! R be bifunctions such that the following
conditions hold.

(i) For any fixed y 2 K, the function x 7! f .x; y/ is 0-transfer upper semicontinu-
ous.

(ii) For any fixed x 2 K, the function y 7! g.x; y/ is 0-generalized diagonally
quasiconvex.

(iii) f .x; y/ � g.x; y/ for all .x; y/ 2 K 	 K.
(iv) The set fx 2 K W f .x; y0/ � �g is precompact (that is, its closure is compact)

for at least one y0 2 K.

Then there exists a solution Nx 2 K of EP (1.51).
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Proof Define set-valued maps S;T W K ! 2K by

S. y/ D fx 2 K W f .x; y/ � �g and T. y/ D fx 2 K W g.x; y/ � �g;

for all y 2 K. Condition (i) implies that S is a transfer closed-valued map. Indeed,
if x … S. y/, then f .x; y/ < 0. Since f .x; y/ is 0-transfer lower semicontinuous in x,
there is a z 2 K and a neighborhoodN.x/ of x such that f .u; z/ < 0 for all u 2 N.x/.
Then S.z/ � K n N.x/. Hence, x 2 cl .S.z//. Thus, S is transfer closed-valued.

From condition (ii) and Proposition 1.20, T is a generalized KKM map. From
(iii), we have that T. y/ � S. y/ for all y 2 K, and hence S is also a generalized KKM
map. So, cl S is also a KKM map. Condition (iv) implies that S. y0/ is precompact.
Hence, cl S. y0/ is compact. By Theorem 1.34,

\

y2K
S. y/ ¤ ;:

As a result, there exists Nx 2 K such that f .Nx; y/ � � for all y 2 K. ut
Remark 1.25

(a) If for every fixed y 2 K, the function x 7! f .x; y/ is upper semicontinuous in x,
then condition (i) of Theorem 1.56 is satisfied immediately.

(b) The following condition implies condition (iv) in Theorem 1.56.
(iv)0 There exist a compact subset D of K and y0 2 K such that for all

x 2 K n D, f .x; y0/ < 0.

For further details, existence results and applications of equilibrium problems,
we refer [1, 3–5, 7, 8, 22–29, 31, 35–41, 46, 47, 49, 51, 52, 57, 58, 65, 66, 71, 72,
77, 78, 80, 83, 84, 90–93, 99–102, 104, 107–109, 111, 112, 120, 128, 135, 142, 143]
and the references therein.

References

1. S. Al-Homidan, Q.H. Ansari, J.-C. Yao, Some generalizations of Ekeland-type variational
principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal.
69(1), 126–139 (2008)

2. G. Allen, Variational inequalities, complementarity problems, and duality theorems. J. Math.
Anal. Appl. 58, 1–10 (1977)

3. Q.H. Ansari, Metric Spaces—Including Fixed Point Theory and Set-Valued Maps (Narosa
Publishing House, New Delhi, 2010). Also Published by Alpha Science International Ltd.
Oxford, U.K. (2010)

4. Q.H. Ansari, Ekeland’s variational principle and its extensions with applications, in Topics in
Fixed Point Theory, ed. by S. Almezel, Q.H. Ansari, M.A. Khamsi (Springer, Cham, 2014),
pp. 65–100



References 73

5. Q.H. Ansari, L.-J. Lin, Ekeland type variational principle and equilibrium problems, in Topics
in Nonconvex Optimization, Theory and Applications, ed. by S.K. Mishra (Springer, New
York, 2011), pp. 147–174

6. Q.H. Ansari, C.S. Lalitha, M. Mehta, Generalized Convexity, Nonsmooth Variational Inequal-
ities and Nonsmooth Optimization (CRC Press/Taylor & Francis Group, Boca Raton, 2014)

7. Q.H. Ansari, Y.C. Lin, J.C. Yao, General KKM theorem with applications to minimax and
variational inequalities. J. Optim. Theory Appl. 104(1), 41–57 (2000)

8. Q.H. Ansari, N.-C. Wong, J.C. Yao, The existence of nonlinear inequalities. Appl. Math. Lett.
12, 89–92 (1999)

9. Q.H. Ansari, J.C. Yao, A fixed point theorem and its applications to a system of variational
inequalities. Bull. Aust. Math. Soc. 59, 433–442 (1999)

10. K.J. Arrow, A.C. Enthoven, Quasi-concave programming. Econometrica 29, 779–800 (1961)
11. J.-P. Aubin, Mathematical Methods of Game and Economic Theory (North-Holland Publish-

ing Company, Amsterdam, 1979)
12. J.-P. Aubin, Optima and Equilibria (Springer, Berlin, 1993)
13. J.-P. Aubin, A. Cellina, Differential Inclusions (Springer, Berlin, 1994)
14. J.-P. Aubin, I. Ekeland, Applied Nonlinear Analysis (John Wiley & Sons, New York, 1984)
15. J.-P. Aubin, H. Frankowska, Set-Valued Analysis (Birkhäuser, Boston, 1990)
16. A. Auslender, Optimisation: Méthodes Numériques (Masson, Paris, 1976)
17. M. Avriel, Nonlinear Programming: Analysis and Methods (Prentice-Hall, Inc., Englewood

Cliffs, 1976)
18. C. Baiocchi, A. Capelo, Variational and Quasivariational Inequalities, Applications to Free

Boundary Problems (John Wiley & Sons, New York, 1984)
19. M.S. Bazara, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Applications

(John Wiley & Sons, New York, 1993)
20. C. Berge, Topological Space (Oliver & Boyd, Edinburgh, 1963)
21. D.P. Bertsekas, A. Nedic, A.E. Ozdaglar, Convex Analysis and Optimization (Athena Scien-

tific, Belmont, 2003)
22. M. Bianchi, R. Pini, A note on equilibrium problems for properly quasimonotone bifunctions.

J. Global Optim. 20, 67–76 (2001)
23. M. Bianchi, R. Pini, Coercivity conditions for equilibrium problems. J. Optim. Theory Appl.

124, 79–92 (2005)
24. M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems. J.

Optim. Theory Appl. 90, 31–43 (1996)
25. M. Bianchi, S. Schaible, Equilibrium problems under generalized convexity and generalized

monotonicity. J. Global Optim. 30, 121–134 (2004)
26. M. Bianchi, G. Kassay and R. Pini, Existence of equilibria via Ekeland’s principle. J. Math.

Anal. Appl. 305, 502–512 (2005)
27. G. Bigi, M. Castellani, G. Kassay, A dual view of equilibrium problems. J. Math. Anal. Appl.

342, 17–26 (2008)
28. E. Blum, W. Oettli, Variational principles for equilibrium problems, in Parametric Optimiza-

tion and Related Topics III, ed. by J. Guddat et al. (Peter Lang, Frankfurt am Main, 1993), pp.
79–88

29. E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems.
Math. Student 63, 123–145 (1994)

30. H. Brézis, Analyse Fonctionnelle (Masson, Paris, 1983)
31. H. Brézis, L. Nirenberg, G. Stampacchia, A remark on Ky Fan’s minimax principle. Boll.

Unione Mat. Ital. 6(4) (1972), 293–300.
32. F.E. Browder, Nonlinear monotone operators and convex sets in Banach spaces. Bull. Am.

Math. Soc. 71, 780–785 (1965)
33. F.E. Browder, The fixed point theory of multivalued mappings in topological vector spaces.

Math. Ann. 177, 283–301 (1968)



74 1 Preliminaries

34. J. Caristi, W.A. Kirk, Geometric fixed point theory and inwardness conditions, in The
Geometry of Metric and Linear Spaces. Lecture Notes in Mathematics, vol. 490 (Springer,
Berlin, 1975), pp. 74–83

35. O. Chadli, Z. Chbani, H. Riahi, Recession methods for equilibrium problems and applications
to variational and hemivariational inequalities. Discret. Cont. Dynamic. Syst. 5, 185–195
(1999)

36. O. Chadli, Z. Chbani, H. Riahi, Equilibrium problems and noncoercive variational inequali-
ties. Optimization 49, 1–12 (1999)

37. O. Chadli, Z. Chbani, H. Riahi, Equilibrium problems with generalized monotone bifunctions
and applications to variational inequalities. J. Optim. Theory Appl. 105, 299–323 (2000)

38. O. Chadli, N.C. Wong, J.C. Yao, Equilibrium problems with application to eigenvalue
problems. J. Optim. Theory Appl. 117(2), 245–266 (2003)

39. O. Chadli, S. Schaible, J.C. Yao, Regularized equilibrium problems with application to
noncoercive hemivariational inequalities. J. Optim. Theory Appl. 121, 571–596 (2004)

40. O. Chadli, Q.H. Ansari, J.-C. Yao, Mixed equilibrium problems and anti-periodic solutions
for nonlinear evolution equations. J. Optim. Theory Appl. 168(2), 410–440 (2016)

41. S.S. Chang, Y. Zhang, Generalized KKM theorem and variational inequalities. J. Math. Anal.
Appl. 159, 208–223 (1991)

42. S.S. Chang, B.S. Lee, X. Wu, J. Cho, G.M. Lee, On the generalized quasi-variational
inequality problems. J. Math. Anal. Appl. 203, 686–711 (1996)

43. S. Chebbi, M. Florenzano, Maximal elements and equilibria for condensing correspondences.
Nonlinear Anal. 38, 995–1002 (1999)

44. K.L. Chew, E.U. Choo: pseudolinearity and efficiency. Math. Program. 28, 226–239 (1984)
45. M. Chipot, Variational Inequalities and Flow in Porous Media (Springer, New York, 1984)
46. M.S.R. Chowdhury, K.K. Tan, Generalization of Ky Fan’s minimax inequality with applica-

tions to generalized variational inequalities for pseudo-monotone operators and fixed point
theorems. J. Math. Anal. Appl. 204, 910–929 (1996)

47. M.S.R. Chowdhury, K.K. Tan, Generalized variational inequalities for quasi-monotone
operators and applications. Bull. Polish Acad. Sci. Math. 45, 25–54 (1997)

48. F.H. Clarke, Optimization and Nonsmooth Analysis (SIAM, Philadelphia, 1990)
49. P. Deguire, K.K. Tan, G.X.-Z. Yuan, The study of maximal element, fixed point for LS-

majorized mappings and their applications to minimax and variational inequalities in the
product topological spaces. Nonlinear Anal. 37, 933–951 (1999)

50. W.E. Diewert, Alternative characterizations of six kinds of quasiconcavity in the nondif-
ferentiable case with applications to nonsmooth programming, in Generalized Concavity in
Optimization and Economics, ed. by S. Schaible, W.T. Ziemba (Academic Press, New York,
1981), pp. 51–93

51. B.V. Dinh, L.D. Muu, A projection algorithm for solving pseudomontone equilibrium
problems and its applications to a class of bilevel equilibria. Optimization 64(3), 559–575
(2015)

52. I.C. Dolcetta, M. Matzeu, Duality for implicit variational problems and numerical applica-
tions. Numer. Funct. Anal. Optim. 2(4), 231–265 (1980)

53. I. Ekeland, Sur les problèmes variationnels. C.R. Acad. Sci. Paris 275, 1057–1059 (1972)
54. I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
55. I. Ekeland, R. Temam, Convex Analysis and Variational Problems (North-Holland Publishing

Company, Amsterdam, 1976)
56. F. Facchinei, J.-S. Pang, Finite Dimensional Variational Inequalities and Complementarity

Problems, vol. I & II (Springer, New York, 2003)
57. M. Fakhar, J. Zafarani, Generalized equilibrium problems for quasimonotone and pseu-

domonotone bifunctions. J. Optim. Theory Appl. 123(2), 349–364 (2004)
58. M. Fakhar, J. Zafarani, Generalized vector equilibrium problems for pseudomonotone

multivalued bifunctions. J. Optim. Theory Appl. 126, 109–124 (2005)
59. K. Fan, A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)
60. K. Fan, Extension of two fixed point theorems of F.E. Browder. Math. Z. 112, 234–240 (1969)



References 75

61. K. Fan, A minimax inequality and application, in Inequalities III, ed. by O. Shisha (Academic
Press, New York, 1972), pp. 103–113

62. S.C. Fang, E.L. Peterson, Generalized variational inequalities. J. Optim. Theory Appl. 38,
363–383 (1982)

63. W. Fenchel, Convex Cones, Sets and Functions, Mimeographed Lecture Notes (Princeton
University, Princeton, 1953)

64. M. Ferris, J.S. Pang, Engineering and economic applications of complementarity problems.
SIAM Rev. 39, 669–713 (1997)

65. F. Flores-Bazán, Existence theorems for generalized noncoercive equilibrium problems: the
quasi-convex case. SIAM J. Optim. 11(3), 675–690 (2000)

66. F. Flores-Bazán, Existence theory for finite-dimensional pseudomonotone equilibrium prob-
lems. Acta Appl. Math. 77, 249–297 (2003)

67. A. Friedman, Variational Principles and Free Boundary Problems (R. E. Krieger Publishing
Company, Malabar, 1988)

68. G. Giorgi, S. Komlósi, Dini derivatives in optimization—Part III. Rivista Mat. Sci. Econom.
Soc. 18(1), 47–63 (1995)

69. R. Glowinski, J.L. Lions, R. Tremoliéres, Numerical Analysis of Variational Inequalities
(North-Holland, Amsterdam, 1981)

70. N. Hadjisavvas, Continuity amd maximality properties of pseudomonotone operators. J.
Convex Anal. 10(2), 459–469 (2003)

71. N. Hadjisavvas, S. Schaible, From scalar to vector equilibrium problems in the quasimonotone
case. J. Optim. Theory Appl. 96, 297–305 (1998)

72. N. Hadjisavvas, S. Schaible, Quasimonotonicity and pseudomonotonicity in variational
inequalities and equilibrium problems, in Generalized Convexity, Generalized Monotonicity:
Recent Results, ed. by J.P. Crouzeix, J.E. Martinez-Legaz, M. Volle (Kluwer Academic
Publications, Dordrecht, 1998), pp. 257–275

73. A. Hassouni, Sous-differentiels des fonctions quasiconvexes, Doctorat de 3ème cycle de
l’Université Paul Sabatier (Toulouse 3), 1983

74. G. Isac, Complementarity Problems. Lecture Notes in Mathematics, vol. 1528 (Springer,
Berlin, 1992)

75. G. Isac, Topological Matheods in Complementarity Theory (Kluwer Academic Publishers,
Dordrecht, 2000)

76. V. Isakov, Inverse Problems for Partial Differential Equations (Springer, New York, 2006)
77. A.N. Iusem, G. Kassay, W. Sosa, An result for equilibrium problem with surjectivity

consequences. J. Convex Anal. 16, 807–826 (2009)
78. A.N. Iusem, G. Kassay, W. Sosa, On certain conditions for the existence of solutions of

equilibrium problems. Math. Program. 116, 259–273 (2009)
79. A.N. Iusem, W. Sosa, Iterative algorithms for equilibrium problems. Optimization 52(3), 301–

316 (2003)
80. A.N. Iusem, W. Sosa, New existence results for equilibrium problems. Nonlinear Anal. 52,

621–635 (2003)
81. J. Jahn, Vector Optimization: Theory, Applications, and Extensions (Springer, Berlin, 2004)
82. G. Jameson, Ordered Linear Spaces (Springer, Berlin, 1970)
83. E.M. Kalmoun, On Ky Fan’s minimax inequalities, mixed equilibrium problems and hemi-

variational inequalities. J. Inequal. Pure Appl. Math. 12, 2(1), (2001)
84. E.M. Kalmoun, H. Riahi, Topological KKM theorems and generalized vector equilibria on

G-convex spaces with applications. Proc. Am. Math. Soc. 129, 1335–1348 (2001)
85. S. Kakutani, A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–459

(1941)
86. L.W. Kantorowitsch, G.P. Akilow, Funktionalanalysis in Normierten Räumen (Akademie-

Verlag, Berlin, 1978)
87. S. Karamardian, Generalized complementarity problem. J. Optim. Theory Appl. 8, 161–168

(1971)



76 1 Preliminaries

88. S. Karamardian, Complementarity over cones with monotone and pseudomonotone maps. J.
Optim. Theory Appl. 18, 445-454 (1976)

89. S. Karamardian, S. Schaible, Seven kinds of monotone maps. J. Optim. Theory Appl. 66,
37–46 (1990)

90. P. Kas, G. Kassay, Z.B. Sensoy, On generalized equilibrium points. J. Math. Anal. Appl. 296,
619–633 (2004)

91. G. Kassay, The Equilibrium Problem and Related Topics (Cluj-Napoca Risoprint, Cluj-
Napoca, 2000)

92. G. Kassay, On equilibrium problems, in Optimization and Optimal Control, Theory and
Applications, ed. by A. Chinchuluun, P.M. Pardalos, R. Enkhbat, I. Tseveendorj (Springer,
New York, 2010), pp. 55–83

93. G. Kassay, The equilibrium problem and its applications to optimization, minimax problems
and Nash equilibria, in Topics in Nonlinear Analysis and Optimization, ed. by Q.H. Ansari
(World Education, Delhi, 2012), pp. 203–226

94. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their
Applications (Academic Press, New York, 1980)

95. H. Kneser, Sur le théorème fondamentale de la thérie des jeux. C. R. Acad. Sci. Paris 234,
2418–2420 (1952)

96. H. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-
dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)

97. S. Komlòsi, Generalized monotonicity and generalized convexity. J. Optim. Theory Appl.
84(2), 361–376 (1995)

98. I.V. Konnov, Combined Relaxation Methods for Variational Inequalities. Lecture Notes in
Mathematical Economics (Springer, Berlin, 2000)

99. I.V. Konnov, Combined relaxation method for monotone equilibrium problems. J. Optim.
Theory Appl. 111(2), 327–340 (2001)

100. I.V. Konnov, Application of the proximal point method to nonmonotone equilibrium prob-
lems. J. Optim. Theory Appl. 119(2), 317–333 (2003)

101. I.V. Konnov, M.S.S. Ali, Descent methods for monotone equilibrium problems in Banach
spaces. J. Comput. Appl. Math. 188, 156–179 (2006)

102. I.V. Konnov, S. Schaible, Duality for equilibrium problems under generalized monotonicity.
J. Optim. Theory Appl. 104, 395–408 (2000)

103. I.V. Konnov, J.-C. Yao, On the generalized vector variational inequality problem. J. Math.
Anal. Appl. 206, 42–58 (1997)

104. I.V. Konnov, S. Schaible, J.C. Yao, Combined relaxation method for mixed equilibrium
problems. J. Optim. Theory Appl. 126(2), 309–322 (2005)

105. L.-J. Lin, Q.H. Ansari, Collective fixed points and maximal elements with applications to
abstract economies. J. Math. Anal. Appl. 296, 455–472 (2004)

106. L.-J. Lin, W.-S. Du, Onmaximal element theorems, variants of Ekeland’s variational principle
and their applications. Nonlinear Anal. 68, 1246–1262 (2008)

107. L.-J. Lin, S. Park, Z.-T. Yu, Remarks on fixed points, maximal elements, and equilibria of
generalized games. J. Math. Anal. Appl. 233, 581–596 (1999)

108. L.J. Lin, Z.T. Yu, G. Kassay, Existence of equilibria for multivalued mappings and its
applications to vectorial equilibria. J. Optim. Theory Appl. 114, 189–208 (2002)

109. R. López, Approximations of equilibrium problems. SIAM J. Control Optim. 50(2), 1038–
1070 (2012)

110. O. Mangasarian, Nonlinear Programming (McGraw Hill, New York, 1969)
111. J.E. Martínez-Legaz, W. Sosa, Duality for equilibrium problems. J. Global Optim. 35, 311–

319 (2006)
112. G. Mastroeni, Gap functions for equilibrium problems. J. Global Optim. 27, 411–426 (2003)
113. G.J. Minty, Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346

(1962)
114. U. Mosco, Implicit variational problems and quasi-variational inequalities, in Lecture Notes

in Mathematics, vol. 543 (Springer, Berlin, 1976)



References 77

115. S.B. Nadler, Jr., Multi-valued contraction mappings. Pacific J. Math. 30, 475–488 (1969)
116. A. Nagurney, Network Economics: A Variational Inequality Approach (Kluwer Academic

Publishers, Dordrecht, 1993)
117. J.F. Nash, Non-cooperative games. Ann. Math. 54, 286–295 (1951)
118. J.F. Nash, Two-persons cooperative games. Econometrica 21, 128–140 (1953)
119. H. Nikaido, K. Isoda, Note on noncooperative convex games. Pacific J. Math. 5, 807–815

(1955)
120. W. Oettli, M. Théra, Equivalents of Ekeland’s principle. Bull. Aust. Math. Soc. 48, 385–392

(1993)
121. P.D. Panagiotopoulus, Inequality Problems in Mechanics and Applications (Birkhauser,

Boston, 1985)
122. S. Park, Another generalizations of the Ekeland type variational principles. Math. Sci. Res.

Hot-Line 1(10), 1–6 (1997)
123. S. Park, On generalizations of the Ekeland-type variational principles. Nonlinear Anal. 39,

881–889 (2000)
124. M. Patriksson, Nonlinear Programming and Variational Inequality Problems (Kluwer Aca-

demic Publishers, Dordrecht, 1999)
125. W.V. Petryshyn, P.M. Fitzpatrick, Fixed point theorems of multivalued noncompact inward

maps. J. Math. Anal. Appl. 46, 756–767 (1974)
126. W.V. Petryshyn, P.M. Fitzpatrick, Fixed point theorems of multivalued noncompact acyclic

mappings. Pac. J. Math. 54, 17–23 (1974)
127. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)
128. B.D. Rouhani, E. Tarafdar, P.J. Watson, Existence of solutions to some equilibrium problems.

J. Optim. Theory Appl. 126(1), 97–107 (2005)
129. P.H. Sach, J.-P. Penot, Charaterizations of generalized convexities via generalized directional

derivative. Numer. Funct. Anal. Optim. 19(5–6), 615–634 (1998)
130. R. Saigal, Extension of generalized complementarity problem. Math. Oper. Res. 1, 260–266

(1976)
131. S. Schaible, J.C. Yao, On the equivalence of nonlinear complementarity problems. Math.

Program. 70, 191–200 (1995)
132. G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci.

Paris 258, 4413–4416 (1964)
133. W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued map-

pings, in Fixed Point Theory and Applications, ed. by J.-B. Baillon. Théra, Pitman Research
Notes in Mathematics, vol. 252 (Longman, Harlow, 1991), pp. 397–406

134. E. Tarafdar, G.X.-Z. Yuan, Generalized variational inequalities and its applications. Nonlinear
Anal. Theory Methods Appl. 30, 4171–4181 (1997)

135. G. Tian, Generalization of the FKKM theorem and the Ky Fan minimax inequality, with
applications to maximal elements, price equilibrium, and complementarity. J. Math. Anal.
Appl. 170, 457–471 (1992)

136. G. Tian, Generalized quasi-variational-like inequality problem. Math. Oper. Res. 18, 213–225
(1993)

137. F.-N. Xiang, L. Debnath, Fixed point theorems and variational inequalities with non-compact
sets. Int. J. Math. Math. Sci. 19, 111–114 (1996)

138. N.C. Yannelis, N.D. Prabhakar, Existence of maximal elements and equilibria in linear
topological spaces. J. Math. Econ. 12, 233–245 (1983)

139. J.C. Yao, Variational inequalities with generalized monotone operators. Math. Oper. Res. 19,
691–705 (1994)

140. J.C. Yao, Multi-valued variational inequalities with K-pseudomonotone operators. J. Optim.
Theory Appl. 83, 391–403 (1994)

141. J. Yu, Essential equilibria of n-person noncooperative games. J. Math. Econ. 31, 361–372
(1999)

142. G.X.-Z. Yuan, KKM Theory and Applications in Nonlinear Analysis (Marcel Dekker, Inc.,
New York, 1999)



78 1 Preliminaries

143. L.C. Zeng, S.Y. Wu, J.C. Yao, Generalized KKM theorem with applications to generalized
minimax inequalities and generalized equlibrium problems. Taiwan. J. Math. 10(6), 1497–
1514 (2006)

144. L.C. Zeng, J.C. Yao, Generalized Minty’s lemma for generalized vector equilibrium problems.
Appl. Math. Lett. 19, 1320–1326 (2006)

145. L.C. Zeng, J.C. Yao, Existence of solutions of generalized vector variational inequalities in
reflexive Banach spaces. J. Global Optim. 36, 483–497 (2006)

146. J.X. Zhou, G. Chen, Diagonally convexity conditions for problems in convex analysis and
quasi-variational inequalities. J. Math. Anal. Appl. 132, 213–225 (1988)


	1 Preliminaries
	1.1 Convex Sets and Cones
	1.2 Convex Functions and Their Properties
	1.3 Generalized Derivatives
	1.4 Tools from Nonlinear Analysis
	1.4.1 Continuity for Set-Valued Maps
	1.4.2 Fixed Point Theory for Set-Valued Maps

	1.5 Variational Inequalities
	1.5.1 Nonsmooth Variational Inequalities
	1.5.2 Generalized Variational Inequalities

	1.6 Equilibrium Problems
	References


