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Preface

Going back to the groundbreaking works by Edgeworth (1881) and Pareto (1906),
the notion of optimality in multiobjective optimization is an efficient tool for
describing optimal solutions of real-world problems with conflicting criteria. This
branch of optimization has formally started with the pioneering work by Kuhn and
Tucker (1951). The concept of multiobjective optimization is further generalized
from finite-dimensional spaces to vector spaces leading to the field of vector
optimization. This theory has bourgeoned tremendously due to rich application
fields in economics, management science, engineering design, etc.

A powerful tool to study vector optimization problems is the theory of vector
variational inequalities which was started with the fundamental work of F. Giannessi
in 1980, where he extended classical scalar variational inequalities to the vector
setting. Later, he has shown equivalence between optimal solutions of vector
optimization problems with differentiable convex objective function and solutions
of vector variational inequalities of Minty type.

It is well known that many practical equilibrium problems with vector payoff can
be formulated as vector variational inequalities. In the last two decades, extensive
research has been devoted to the existence theory of their solutions.

The objective of this book is to present a mathematical theory of vector
optimization, vector variational inequalities, and vector equilibrium problems. The
well-posedness and sensitivity analysis of vector equilibrium problems are also
studied. The reader is expected to be familiar with the basic facts of linear algebra,
functional analysis, optimization, and convex analysis.

The outline of the book is as follows. Chapter 1 collects basic notations and
results from convex analysis, functional analysis, set-valued analysis, and fixed
point theory for set-valued maps. A brief introduction to variational inequalities
and equilibrium problems is also presented. Chapter 2 gives an overview on
analysis over cones, including continuity and convexity of vector-valued functions.
Several notions for solutions of vector optimization problems are presented in
Chap. 3. Classical linear and nonlinear scalarization methods for solving vector
optimization problems are studied in Chap. 4. Chapter 5 is devoted to the vector
variational inequalities and existence theory for their solutions. The relationship
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vi Preface

between a vector variational inequality and a vector optimization problem with
smooth objective function is given. Chapter 6 deals with scalarization methods for
vector variational inequalities. Such scalarization methods are used to study several
existence results for solutions of vector variational inequalities. In Chap. 7, we
consider nonsmooth vector variational inequalities defined by means of a bifunction
and present several existence results for their solutions. The relationship between
nonsmooth vector variational inequalities and vector optimization problems in
which the objective function is not necessarily differentiable but has some kind
of generalized directional derivative is discussed. Chapter 8 presents vector vari-
ational inequalities for set-valued maps, known as generalized vector variational
inequalities, and gives several existence results for their solutions. It is shown
that the generalized vector variational inequalities provide the optimal solutions
of nonsmooth vector optimization problems. Chapter 9 is devoted to the detailed
study of vector equilibrium problems, e.g., existence results, duality, and sensitivity
analysis. It is worth mentioning that the vector equilibrium problems include
vector variational inequalities, nonsmooth vector variational inequalities, and vector
optimization problems as special cases. Chapter 10 deals with vector equilibrium
problems defined by means of a set-valued bifunction, known as generalized
vector equilibrium problems. The generalized vector equilibrium problems include
generalized vector variational inequalities and vector optimization problems with
nonsmooth objective function as special cases. The existence of solutions, duality,
and sensitivity analysis of generalized vector equilibrium problems are studied in
detail.

We would like to take this opportunity to express our most sincere thanks to
Kathrin Klamroth, Anita Schöbel, and Christiane Tammer for their support and
collaboration. The second author is truly grateful to her husband Markus Köbis and
her parents for patience and encouragement.

Moreover, we are thankful to Johannes Jahn for encouraging and supporting our
plan to write this monograph. We are grateful to Christian Rauscher, Senior Editor,
Springer, for taking a keen interest in publishing this monograph.

This book is dedicated to our families. We are grateful to them for their support
and understanding.

Finally, we thank our coauthors for their support, understanding, and hard work
for this fruitful collaboration. We are also grateful to all researchers whose work is
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Chapter 1
Preliminaries

This chapter deals with basic definitions from convex analysis and nonlinear
analysis, such as convex sets and cones, convex functions and their properties,
generalized derivatives, and continuity for set-valued maps. We also gather some
known results from fixed point theory for set-valued maps, namely, Nadler’s fixed
point theorem, Fan-KKM lemma and its generalizations, Fan section lemma and
its generalizations, Browder fixed point theorem and its generalizations, maximal
element theorems and Kakutani fixed point theorem. A brief introduction of scalar
variational inequalities, nonsmooth variational inequalities, generalized variational
inequalities and equilibrium problems is given.

1.1 Convex Sets and Cones

Throughout the book, all vector spaces are assumed to be defined over the field of
real numbers, and we adopt the following notations.

We denote by R, Q and N the set of all real numbers, rational numbers and
natural numbers, respectively. The interval Œ0;1/ is denoted by RC. We denote by
Rn the n-dimensional Euclidean space and byRnC the nonnegative orthant inRn. The
zero element in a vector space will be denoted by 0. Let A be a nonempty set. We
denote by 2A (respectively,˘.A/) the family of all subsets (respectively, nonempty
subsets) of A and by F .A/ the family of all nonempty finite subsets of A. If A and
B are nonempty subsets of a topological space X such that B � A, we denote by
intA.B/ (respectively, clA.B/) the interior (respectively, closure) of B in A. We also
denote by int.A/, cl.A/ (or A), and bd.A/ the interior of A in X, the closure of A in
X, and the boundary of A, respectively. Also, we denote by Ac the complement of
the set A. If X and Y are topological vector spaces, then we denote by L.X;Y/ the
space of all continuous linear functions from X to Y.

© Springer International Publishing AG 2018
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Fig. 1.1 Illustration of a
convex set and of a
nonconvex set, respectively

x y

x

y

Definition 1.1 Let X be a vector space, and x and y be distinct points in X. The set
L D fz W z D �x C .1 � �/y for all � 2 Rg is called the line through x and y.

The set Œx; y� D fz W z D �x C .1 � �/y for 0 � � � 1g is called a line segment
with the endpoints x and y.

Definition 1.2 A subset W of a vector space X is said to be a subspace if for all
x; y 2 W and �;� 2 R, we have �x C �y 2 W.

Geometrically speaking, a subset W of X is a subspace of X if for all x; y 2 W,
the plane through the origin, x and y lies inW.

Definition 1.3 A subset M of a vector space X is said to be an affine set if for all
x; y 2 M and �;� 2 R such that �C� D 1 imply that �xC�y 2 M, that is, for all
x; y 2 M and � 2 R, we have �x C .1 � �/y 2 M.

Geometrically speaking, a subset M of X is an affine set if it contains the whole
line through any two of its points.

Definition 1.4 A subset K of a vector space X is said to be a convex set if for all
x; y 2 K and �;� � 0 such that �C � D 1 imply that �x C �y 2 K, that is, for all
x; y 2 K and � 2 Œ0; 1�, we have �x C .1 � �/y 2 K.

Geometrically speaking, a subset K of X is convex if it contains the whole line
segment with endpoints through any two of its points (see Fig. 1.1).

Definition 1.5 A subset C of a vector space X is said to be a cone if for all x 2 C
and � � 0, we have �x 2 C.

A subset C of X is said to be a convex cone if it is convex and a cone; that is, for
all x; y 2 K and �;� � 0 imply that �x C �y 2 C (see Fig. 1.2 and 1.3).

Remark 1.1 If C is a cone, then 0 2 C. In the literature, it is mostly assumed that
the cone has its apex at the origin. This is the reason why � � 0 is chosen in the
definition of a cone. However, some references define a set C � X to be a cone if
�x 2 C for all x 2 C and � > 0. In this case, the apex of the “shifted” cone may not
be at the origin, or 0 may not belong to C.

Remark 1.2 It is clear from the above definitions that every subspace is an affine
set as well as a convex cone, and every affine set and every convex cone are convex.
But the converse of these statements may not be true in general.

Evidently, the empty set, each singleton set fxg and the whole space X are all
both affine and convex. In Rn, straight lines, circular discs, ellipses and interior of
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Fig. 1.2 A convex cone

R

R

C

Fig. 1.3 A convex cone in
R
3

x + yx

y

λx

Fig. 1.4 A cone which is not
convex

R

R

C

triangles are all convex. A ray, which has the form fx0 C�v W � � 0g, where v ¤ 0,
is convex, but not affine.

Remark

(a) A cone C may or may not be convex (see Figs. 1.2 - 1.4).
(b) A cone C may be open, closed or neither open nor closed.
(c) A set C is a convex cone if it is both convex as well as a cone.
(d) If C1 and C2 are convex cones, then C1\C2 and C1CC2 are also convex cones.

Definition 1.6 Let X be a vector space. Given x1, x2, : : :, xm 2 X, a vector x D
�1x1 C �2x2 C � � � C �mxm is called

(a) a linear combination of x1; x2; : : : ; xm if �i 2 R for all i D 1; 2; : : : ;m;
(b) an affine combination of x1; x2; : : : ; xm if �i 2 R for all i D 1; 2; : : : ;m withPm

iD1 �i D 1;
(c) a convex combination of x1; x2; : : : ; xm if �i � 0 for all i D 1; 2; : : : ;m withPm

iD1 �i D 1;
(d) a cone combination of x1; x2; : : : ; xm if �i � 0 for all i D 1; 2; : : : ;m.

A set K is a subspace, affine, convex or a cone if it is closed under linear, affine,
convex or cone combination, respectively, of points of K.

Theorem 1.1 A subset K of a vector space X is convex (respectively, subspace,
affine, convex cone) if and only if every convex (respectively, linear, affine, cone)
combination of points of K belongs to the set K.
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Proof Since a set that contains all convex combinations of its points is obviously
convex, we only consider K is convex and prove that it contains any convex
combination of its points, that is, if K is convex and xi 2 K, �i � 0 for all
i D 1; 2; : : : ;m with

Pm
iD1 �i D 1, then we have to show that

Pm
iD1 �ixi 2 K.

We prove this by induction on the number m of points of K occurring in a convex
combination. If m D 1, the assertion is simply x1 2 K implies x1 2 K, evidently
true. If m D 2, then �1x1 C �2x2 2 K for �i � 0, i D 1; 2,

P2
iD1 �i D 1, holds

because K is convex. Now suppose that the result is true form. Then (for �mC1 ¤ 1/

mC1X

iD1
�ixi D

mX

iD1
�ixi C �mC1xmC1

D
mX

iD1
.1 � �mC1/

�ixi
1 � �mC1

C �mC1xmC1

D .1 � �mC1/
mX

iD1

�i

1 � �mC1
xi C �mC1xmC1

D .1 � �mC1/
mX

iD1
�ixi C �mC1xmC1;

where �i D �i

.1� �mC1/
, i D 1; 2; : : : ;m: But then �i � 0 for i D 1; 2; : : : ;m and

mX

iD1
�i D

Pm
iD1 �i

1 � �mC1
D 1 � �mC1
1 � �mC1

D 1;

so by the result form, y D Pm
iD1 �ixi 2 K. Immediately, by convexity of K, we have

mC1X

iD1
�ixi D .1 � �mC1/y C �mC1xmC1 2 K:

The proof for subspace, affine and convex cone cases follows exactly the same
pattern. ut
Remark 1.3

(a) The intersection of any number of convex sets (respectively, subspaces, affine
sets, convex cones) is a convex set (respectively, subspace, affine set, convex
cone).

(b) The union of any number of convex sets need not be convex.

(c) For i 2 N, let Ki be convex. If Ki � KiC1, i 2 N, then
1[

iD1
Ki is convex.
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Fig. 1.5 Illustration of the
convex hull of 14 points and a
convex hull of a set A

A

Fig. 1.6 Conic hull of 8
points and the cone generated
by the set A

A

0

(d) If K1 and K2 are convex subsets of a vector space X and ˛ 2 R, then K1 CK2 D
fx C y W x 2 K1; y 2 K2g and ˛K1 D f˛x W x 2 K1g are convex sets.

(e) A subset K of a vector space X is convex if and only if .�C �/K D �K C �K
for all � � 0, � � 0.

Definition 1.7 Let A be a nonempty subset of a vector space X. The intersection
of all convex sets (respectively, subspaces, affine sets) containing A is called a
convex hull (respectively, linear hull, affine hull) of A, and it is denoted by co.A/
(respectively, ŒA�, aff.A/) (see Fig. 1.5). Similarly, the intersection of all convex
cones containing A is called a conic hull of A, and it is denoted by cone.A/ (see
Fig. 1.6).

By Remark 1.3 (a), the convex (respectively, affine, conic) hull is a convex set
(respectively, affine set, convex cone). In fact, co.A/ (respectively, aff.A/, cone.A//
is the smallest convex set (respectively, affine set, convex cone) containing A.

The cone cone.A/ can also be written as

cone.A/ D fx 2 X W x D �y for some � � 0 and some y 2 Ag:

It is also called a cone generated by A (see Fig. 1.6).

Theorem 1.2 Let A be a nonempty subset of a vector space X. Then x 2 co.A/ if
and only if there exist xi in A and �i � 0, for i D 1; 2; : : : ;m, for some positive
integer m, where

Pm
iD1 �i D 1 such that x D Pm

iD1 �ixi.

Proof Since co.A/ is a convex set containing A, therefore, from Theorem 1.1, every
convex combination of its points lies in it, that is, x 2 co.A/.
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Conversely, let K.A/ be the set of all convex combinations of elements of A. We
claim that the set

K.A/ D
(

mX

iD1
�ixi W xi 2 A; �i � 0; i D 1; 2; : : : ;m;

mX

iD1
�i D 1; m � 1

)

is convex. Indeed, consider y D Pm
iD1 �iyi and z D P`

jD1 �jzj where yi 2 A, �i � 0,

i D 1; 2; : : : ;m,
Pm

iD1 �i D 1 and zj 2 A, �j � 0, j D 1; 2; : : : ; `,
P`

jD1 �j D 1, and
let 0 � � � 1. Then

�y C .1� �/z D
mX

iD1
��iyi C

X̀

jD1
.1 � �/�jzj;

where ��i � 0, i D 1; 2; : : : ;m, .1 � �/�j � 0, j D 1; 2; : : : ; ` and

mX

iD1
��i C

X̀

jD1
.1 � �/�j D �

mX

iD1
�i C .1 � �/

X̀

jD1
�j D �C .1 � �/ D 1:

Also, the set K.A/ of convex combinations contains A (each x in A can be written as
x D 1 � x). By the definition of co.A/ as the intersection of all convex supersets of A,
we deduce that co.A/ is contained in K.A/.

Thus the convex hull of A is the set of all (finite) convex combinations from
within A. ut

The above result also holds for an affine set and a convex cone.

Corollary 1.1

(a) The set A is convex if and only if A D co.A/.
(b) The set A is affine if and only if A D aff.A/.
(c) The set A is a convex cone if and only if A D cone.A/.
(d) The set A is a subspace if and only if A D ŒA�.

Definition 1.8 The relative interior of a set C in a topological vector space X,
denoted by relint.C/, is defined as

relint.C/ D fx 2 C W N".x/\ aff.C/ � C for some " > 0g ;

where N".x/ denotes the neighborhood of x.

Remark 1.4

(a) We have relint.C/ � aff.C/.
(b) relint.C/ D aff.C/ if and only if aff.C/ D X.
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Example 1.1

(a) Consider the set C D f.x; y; z/ 2 R3 W x2 C y2 � 1; z D 0g. Then int.C/ D ;,
but relint.C/ D f.x; y; z/ 2 R3 W x2 C y2 < 1; z D 0g.

(b) For the set C D f.x; y; z/ 2 R3 W x2Cy2Cz2 � 1g, we have int.C/ D relint.C/ D
f.x; y; z/ 2 R3 W x2 C y2 C z2 < 1g.

Definition 1.9 The relative boundary of a set C in a topological vector space X,
denoted by relb.C/ or rb.C/, defined as

relb.C/ D cl.C/ n relint.C/:

Example 1.2 Consider a square in the .x1; x2/-plane in R3 defined as

C D ˚
x D .x1; x2; x3/ 2 R

3 W �1 � x1 � 1; �1 � x2 � 1; x3 D 0
�
:

Its affine hull is the .x1; x2/-plane, that is,

aff.C/ D ˚
x D .x1; x2; x3/ 2 R

3 W x3 D 0
�
:

The interior of C is empty, but the relative interior is

relint.C/ D ˚
x D .x1; x2; x3/ 2 R

3 W �1 < x1 < 1; �1 < x2 < 1; x3 D 0
�
:

Its boundary (in R3) is itself; its relative boundary is the wire-frame outline,

relb.C/ D ˚
x D .x1; x2; x3/ 2 R

3 W max fjx1j; jx2jg D 1; x3 D 0
�
:

Definition 1.10 A subset C of a topological vector space X is called relatively open
if relint.C/ D C.

Remark 1.5 If C1 � C2, then

(a) cl.C1/ � cl.C2/ and
(b) int.C1/ � int.C2/.

Note that property (b) does not hold for relative interior, that is, relint.C1/ �
relint.C2/ is not true in general. For example, if C2 is a cube in R3 and C1 is one of
the faces of C2. Then relint.C2/ and relint.C1/ are both nonempty but disjoint.

Remark 1.6 Let C be a subset of a topological vector space X.

(a) Every affine set is relatively open by definition and at the same time closed.
(b) cl.C/ � cl.aff.C// D aff.C/ for every C � X.
(c) Any line through two different points of cl.C/ lies entirely in aff.C/.

If C � X is convex, then we have the following assertions:

(d) int.C/ and relint.C/ are convex.
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(e) cl.C/ is also convex.
(f) If C � X is a convex set with nonempty interior, then cl.int.C// D cl.C/.
(g) If C � X is a convex set with nonempty interior, then int.cl.C// D int.C/.
(h) relint.C/ D relint.cl.C//. Moreover, it holds int.C/ D int.cl.C//.
(i) cl.C/ D cl.relint.C// as well as cl.C/ D cl.int.C// if int.C/ ¤ ;.
Remark 1.7 ([127, Corollary 6.3.2]) If C is a convex set in Rn, then every open set
which meets cl.C/ also meets relint.C/.

Proposition 1.1 ([86]) Let Y be a topological vector space with a cone C, c0 2
int.C/ and V WD int.C/ � c0. Then Y D f�V W � � 0g.
Definition 1.11 A cone C in a vector space X is said to be

(a) nontrivial or proper if C ¤ f0g and C ¤ X;
(b) reproducing if C � C D X;
(c) pointed if for x 2 C, x ¤ 0, the negative �x … C, that is, C \ .�C/ D f0g.
Definition 1.12 A cone C in a topological vector space X is said to be a

(a) closed cone if it is also closed;
(b) solid cone if it has nonempty interior.

Below we give some properties of a cone.

Remark 1.8

(a) If C is a cone, then the convex hull of C, co.C/ is a convex cone.
(b) If C1 and C2 are convex cones, then C1 C C2 D co.C1 [ C2/.

Example 1.3 Let

R
nC D fx D .x1; x2; : : : ; xn/ 2 R

n W xi � 0 for all i D 1; 2; : : : ; ng :

Then R
nC is a proper, closed, pointed, reproducing convex cone in the vector space

Rn.

Example 1.4 Let CŒ0; 1� be the vector space of all real-valued continuous linear
functionals defined on the interval Œ0; 1�. Then

CCŒ0; 1� D f f 2 CŒ0; 1� W f .t/ � 0 for all t 2 Œ0; 1�g

is a proper, reproducing, pointed, convex cone in CŒ0; 1�. Note that the set

CC D f f 2 CCŒ0; 1� W f is nondecreasingg

is also a proper, pointed, convex cone in the space CŒ0; 1� but it is not reproducing as
CC � CC is the proper subspace of all functions with bounded variation of CŒ0; 1�.
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Example 1.5 Let

C D ˚
x D .x1; x2; : : : ; xn/ 2 R

n W x1 > 0; or
x1 D 0; x2 > 0; or

: : :

x1 D � � � D xn�1 D 0; xn > 0; or

x D 0
�
;

where 0 is the zero vector in R
n. Then C is a proper, closed, pointed, reproducing

convex cone in the vector space Rn.
Let C be a subset of a vector space X. We denote by `.C/ D C \ .�C/.

Definition 1.13 Let X be a topological vector space. A convex cone C in X is said
to be

(a) acute if its closure cl.C/ is pointed;
(b) correct if cl.C/C C n `.C/ � C.

Example 1.6

(a) The nonnegative orthant RnC of all vectors of Rn with nonnegative coordinates
is a convex, closed, acute and correct cone. The set f0g is also such a cone, but
it is a trivial cone. The set composed of zero and of the vectors with the first
coordinates being positive, is a pointed, correct cone, but it is not acute.

(b) Let

C D ˚
.x; y; z/ 2 R

3 W x > 0; y > 0; z > 0�

[ ˚
.x; y; z/ 2 R

3 W x � y � 0; z D 0
�
:

Then C is a convex, acute cone but not correct.
(c) Let˝ be the vector space of all sequences x D fxmg of real numbers. Let

C D fx D fxmg 2 ˝ W xm � 0 for all mg :

Then C is a convex pointed cone. We cannot say whether it is correct or acute
because no topology has been given on the space.

Proposition 1.2 A cone C is correct if and only if cl.C/C C n `.C/ � C n `.C/.
Proof If cl.C/C C n `.C/ � C n `.C/, then the cone is obviously correct because
C n `.C/ � C.

Conversely, assume that C is a correct convex cone. Since `.C/ is a subspace and
C is convex, for all a; b 2 C, a C b 2 `.C/ implies a; b 2 `.C/. Therefore,

C n `.C/C C n `.C/ D C n `.C/;
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and

C C C n `.C/ � C n `.C/:

Thus,

cl.C/C C n `.C/ D cl.C/C C n `.C/C C n `.C/
� C C C n `.C/ � C n `.C/:

This completes the proof. ut
The cone RnC � Rn has the following interesting property: Consider the set

B D
(

x D .x1; x2; : : : ; xn/ 2 R
nC W

nX

iD1
xi D 1

)

:

Then for every x 2 R
nC nf0g, there exist a unique b 2 B and � > 0 such that x D �b.

Indeed, consider � D x1Cx2C� � �Cxn (> 0) and b D ��1x. In view of this property,
we have the following definition.

Definition 1.14 Let X be a vector space and C be a proper cone in X. A nonempty
subset B � C is called a base for C if each nonzero element x 2 C has a unique
representation of the form x D �b for some � > 0 and some b 2 B (Figs. 1.7 and
1.8).

Fig. 1.7 B is a base for the
cone C

B

C

Fig. 1.8 B is base for C, but
Q and P are not a base for C

R

R

C

B

P

Q
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Remark 1.9 Note that if B is a convex base of a proper convex cone C, then 0 … B.
Indeed, suppose that 0 2 B. Since B is convex, for every element b 2 B, the convex
combination of 0 and b also belongs to B. Then we also have b D 2 � 1

2
b 2 B,

contradicting the uniqueness of the representation of b 2 C n f0g.
Theorem 1.3 Let C be a proper convex cone in a vector space X and B � X be a
convex set. Then the following assertions are equivalent:

(a) B is a base for C;
(b) C D RCB and 0 … aff.B/;
(c) There exists a linear functional � W X ! R such that �.x/ > 0 for every

x 2 C n f0g and B D fx 2 C W �.x/ D 1g.
Proof (a) ) (b) Let B be a base for C. Then by Definition 1.14, C D RCB.
Because B is convex, aff.B/ D f�b C .1� �/b0 W b; b0 2 B; � 2 Rg. Assume that
0 2 aff.B/, then 0 D �b C .a � �/b0 for some b; b0 2 B and � 2 R. Since
0 … B, � … Œ0; 1�. Thus, there exists some �0 > 1, b0; b0

0 2 B such that
�0b0 D .�0 � 1/b0

0 2 C, in contradiction to the definition of the base. Therefore,
0 … aff.B/.

(b) ) (c) Assume that C D RCB and 0 … aff.B/. Consider b0 2 B and X0 WD
aff.B/� b0. Then X0 is a linear subspace of X and b0 … X0. Let L0 � X0 be a base of
X0. Then L0 [ fb0g is linearly independent, so, we can complete L0 [ fb0g to a base
L of X. There exists a unique linear function � W X ! R such that �.x/ D 0 for all
x 2 L n fb0g and �.b0/ D 1. Since aff.B/ D b0 C X0, it holds �.x/ D 1 for all x 2
aff.B/, thus, B � fx 2 C W �.x/ D 1g. Conversely, let x 2 C be such that �.x/ D 1.
Then x D tb for some t > 0 and b 2 B. It follows that 1 D �.x/ D t�.b/ D t, thus,
x 2 B.

(c) ) (a) Assume that � W X ! R is linear, '.x/ > 0 for every x 2 C n f0g,
and B D fx 2 C W �.x/ D 1g. Consider x 2 C n f0g and take t WD �.x/ > 0 and
b WD t�1x. Then x D t b. Since b 2 C and �.b/ D 1, we have b 2 B. Suppose
that x D t0b0 for some t0 > 0 and b0 2 B. Then t D �.x/ D t0�.b0/ D t0, whence
b D b0. So, every nonzero element x of C has a unique representation tb with t > 0
and b 2 B. This means that B is a base of C. ut
Lemma 1.1 Each proper convex cone with a convex base in a vector space is
pointed.

Proof Let C be a proper convex cone with a convex base B. Take any x 2 C\ .�C/
and assume that x ¤ 0. Then there are b1; b2 2 B and �1; �2 > 0 with x D �1b1 D
��2b2. Since B is convex, we have

�1

�1 C �2
b1 C �2

�1 C �2
b2 D 0 2 B;

a contradiction to Remark 1.9. ut
Example 1.7 The cone C D fx W x D � � .1; 2/; � � 0g [ fx W x D � � .2; 1/; � � 0g
is pointed, proper and has a base B D f.1; 2/; .2; 1/g, but C is not convex.
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Remark 1.10 If B is a base of a cone C, then cone.B/ D C. If 0 2 cor.C/, the core
of C, for a nonempty subset C of a vector space X, then cone.C/ D X.

The following result can be found in Jameson [82, p. 80] and known as Jameson
lemma.

Proposition 1.3 (Jameson Lemma) Let X be a Hausdorff topological vector
space with its zero vector being denoted by 0. Then a cone C � X with a closed
convex bounded base B is closed and pointed.

Proof We show that C is closed. Let fc˛g � C be a net converging to c. Since B is
a base, there exist a net fb˛g � B and a net ft˛g of positive numbers such that c˛ D
t˛b˛. We claim that t˛ is bounded. Suppose, contrary, that lim

˛
t˛ D 1. Then the

net
n
b˛ D c˛

t˛

o
converges to 0 as X is Hausdorff. Since B is closed, 0 D lim

˛
b˛ 2 B

which contradicts to the fact that B does not contain the zero element. So, we may
assume that ft˛g converges to some t0 � 0. If t0 D 0, then by the boundedness of B,
lim
˛

t˛b˛ D 0. Hence, c D 0 and, of course, c D 0 2 C. If t0 > 0, we may assume

that t˛ > " for all ˛ and some positive ". Now, b˛ D c˛
t˛

converges to c
t0
and again

by the closedness of B, c
t0

2 B. Hence, c 2 C and so C is closed. The pointedness of
C can be easily seen. ut
Definition 1.15 Let Y be a topological vector space with its topological dual Y�,
and C be a convex cone in Y. The dual cone C� of C is defined as

C� D f� 2 Y� W h�; yi � 0 for all y 2 Cg ;

where h�; yi denotes the evaluation of � at y. The strict dual cone C�C of C is defined
as

C�C D f� 2 Y� W h�; yi > 0 for all y 2 Cg :

The quasi-interior of C� is defined as

C# WD f� 2 Y� W h�; yi > 0 for all y 2 C n f0gg :

If C is empty, then C� interprets as the whole space Y�.
For example, in R2 the dual of a convex cone C consists of all vectors making a

non-acute angle with all vectors of the cone C (see Fig. 1.9). For an example of a
dual cone in R3, see Fig. 1.10.

The following proposition can be proved easily by using the definition. There-
fore, we omit the proof.

Proposition 1.4 Let Y be a topological vector space with its topological dual Y�.
Let C, C1 and C2 be convex cones in Y.

(a) The dual cone C� is a closed convex cone.
(b) The strict dual cone C� is a convex cone.
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Fig. 1.9 A dual cone in R2

R

R

C
C ∗

Fig. 1.10 A dual cone in R
3

C

C ∗

(c) C� D .cl.C//�.
(d) If C1 � C2, then C�

2 � C�
1 and C�

2C � C�
1C.

(e) .C�/� D C�� D cl.C/.
(f) .C1 C C2/

� D C�
1 \ C�

2 D .C1 \ C2/
�.

(g) .C1 \ C2/
� � C�

1 C C�
2 D co .C1 [ C2/

�.
(h) If C1 and C2 are closed convex cones with nonempty intersection, then

.C1 \ C2/
� D cl

�
C�
1 C C�

2

� D cl
�
co .C1 [ C2/

�� :

We now define the recession cone and asymptotic cone and discuss their
properties.

Definition 1.16 Let C be a nonempty subset of a vector space Y. A vector d 2 Y
is said to be a direction of recession if for any x 2 C, the ray fx C �d W � � 0g
(starting from x and going indefinitely along d) lies inC (or never crosses the relative
boundary of C).

Definition 1.17 Let C be a nonempty subset of a vector space Y. The set of all
directions of recession is called recession cone and it is denoted by C1 (see
Fig. 1.11). That is, for any x 2 C,

C1 D fd 2 Y W x C �d 2 C for all � � 0g:

Below we collect some properties of a recession cone.
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Fig. 1.11 A recession cone
(see [21])

x +
λd

x
Rece

ssi
on cone C

∞

d

Convex set C

Remark 1.11

(a) C1 depends only on the behavior of C at infinity. In fact, x C �d 2 C implies
x C ˛d 2 C for all ˛ 2 Œ0; ��. Thus, C1 is just the set of all directions from
which one can go straight from x to infinity, while staying in C.

(b) If C is closed and convex, then for all x 2 C, we have

C1 D
\

�>0

C � x

�
:

(c) C1 does not depend on x 2 C.

Definition 1.18 Let Y be a topological vector space. A recession cone of a
nonempty closed convex set C � Y is called asymptotic cone.

In other words, if C is a nonempty closed convex subset of Y, then the asymptotic
cone of C is defined as

C1 D
�

d 2 Y W 9 �m ! C1; 9 xm 2 C with lim
m!1

xm
�m

D d

�

:

If Y is a reflexive Banach space and C is a weakly closed convex set C in Y, then
the asymptotic cone C1 of C is defined as

C1 D fx 2 X W 9 �m # 0 and 9 xm 2 C such that �mxm * xg;

where “*” means convergence in the weak topology.
We set ;1 D ;.

Example 1.8

(a) If C D ˚
.x1; x2/ 2 R2 W jx1j � x2

�
, then C is unbounded and C1 D C.

(b) If C D ˚
.x1; x2/ 2 R2 W jx1j < x2

�
, then C is unbounded and C1 D cl.C/.

(c) If C D ˚
.x1; x2/ 2 R2 W jx1jk � x2; k > 1

�
, then C is unbounded and

C1 D f.0; x2/ W x2 � 0g:
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(d) If C D
n
.x1; x2/ 2 R

2 W x1 > 0; x2 � 1
x1

o
, then C is unbounded and

C1 D ˚
.x1; x2/ 2 R

2 W x1 � 0; x2 � 0
�
:

(e) If C D ˚
.x1; x2/ 2 R2 W x2 � x21

�
, then C is unbounded and

C1 D ˚
.x1; x2/ 2 R

2 W x1 D 0; x2 � 0
�
:

(f) If C D ˚
.x1; x2/ 2 R2 W x21 C x22 � 1

�
, then C is bounded and

C1 D ˚
.x1; x2/ 2 R

2 W x1 D x2 D 0g D f.0; 0/� :

(g) If C D ˚
.x1; x2/ 2 R2 W x1 > 0; x2 > 0

� [ f.0; 0/g, then C is unbounded and
C1 D C.

(h) The recession cone of a nonempty affine set M is the subspace L parallel toM.

Theorem 1.4 Let Y be a topological vector space and C be a nonempty closed
convex subset of Y.

(a) The recession cone C1 is a closed convex cone containing the origin, that is,
C1 D fd W C C d � Cg.

(b) Furthermore, let . Y; k � k/ be a normed vector space. Then d 2 C1 if and only
if there exists a vector x 2 C such that x C �d 2 C for all � � 0, that is,

C1 D fd W there exists x 2 C; x C �d 2 C for all � � 0g :

(c) If . Y; k�k/ is a normed vector space, then C is bounded if and only if C1 D f0g.
Proof

(a) Let d 2 C1, then x C d 2 C for any x 2 C, that is, C C d � C.
On the other hand, if C C d � C, then

C C 2d D .C C d/C d � C C d � C;

and so forth, implying xCmd 2 C for any x 2 C and for any positive integerm.
The line segments joining the points x, xC d, xC 2d, : : :, are then all contained
in C by convexity, so that x C �d 2 C for every � � 0. Thus, d 2 C1. Since
positive scalar multiplication does not change directions, C1 is truly a cone.

It remains to show that C1 is convex. Let d1; d2 2 C1 and 0 � � � 1, then
we have

.1 � �/d1 C �d2 C C D .1 � �/ .d1 C C/C � .d2 C C/

� .1 � �/C C �C D C:

Hence, .1 � �/d1 C �d2 2 C1.
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(b) If d 2 C1, then x C �d 2 C for all � � 0 for all x 2 C by the definition of C1.
Conversely, let d ¤ 0 be such that there exists a vector x 2 C such that

x C �d 2 C for all � � 0. We fix Nx 2 C and � > 0, and we show that
NxC�d 2 C. It is sufficient to show that NxCd 2 C, that is, to assume that � D 1,
since the general case where � > 0 can be reduced to the case where � D 1 by
replacing d with d=�.

Let zm D xCmd for m D 1; 2; : : : and note that zm 2 C for allm, since x 2 C
and d 2 C1. If Nx D zm for some m, then Nx C d D x C .m C 1/d, which belongs
to C and we are done. We thus assume that Nx ¤ zm for all m, and we define

dm D .zm � Nx/
kzm � Nxkkdk; m D 1; 2; : : : :

so that Nx C dm lies on the line that starts at Nx and passes through zm. We have

dm
kdk D kzm � xk

kzm � Nxk
zm � x

kzm � xk C x � Nx
kzm � Nxk D kzm � xk

kzm � Nxk
d

kdk C x � Nx
kzm � Nxk :

Since fzmg is an unbounded sequence,
kzm � xk
kzm � Nxk ! 1;

x � Nx
kzm � Nxk ! 0;

so by combining the preceding relations, we have dm ! d. The vector Nx C dm
lies between Nx and zm in the segment connecting Nx and zm for all m such that
kzm�Nxk � kdk, so by the convexity ofC, we have NxCdm 2 C for all sufficiently
large m. Since Nx C dm ! Nx C d and C is closed, it follows that Nx C d 2 C.

(c) If C is bounded, then it is clear that C1 can not contain any nonzero direction.
Conversely, let fxmg � C be such that kxmk ! C1 (we assume

xm ¤ 0). The sequence
�

dm W xm
kxmk

�

is bounded, so we can extract a convergent

subsequence, namely, fdkg such that lim
k!1 dk D d with k 2 K � N (kdk D 1).

Now, given x 2 C and � > 0, take k so large that kxkk � �. Then we see that

x C �d D lim
k!1

��

1 � �

kxkk
	

x C �

kxkkxk



is in the closed convex set C and hence d 2 C1. ut
Below we present some properties of recession cones and asymptotic cones.

Remark 1.12 Let X be a topological vector space.

(a) For a nonempty convex set C � X, we have .cl.C//1 D .relint.C//1, where
relint.C/ denotes the relative interior of C; Furthermore, for any x 2 relint.C/,
one has d 2 .cl.C//1 if and only if x C �d 2 relint.C/ for all � > 0.
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(b) Moreover, for a nonempty convex set C � X, it holds .C C x/1 D C1 for all
x 2 X.

(c) For two nonempty closed convex sets QC; OC � Y, QC � OC implies QC1 � OC1.
(d) Let fC˛g˛2	 be any family of nonempty sets in X, then

� \

˛2	
C˛
�

1 �
\

˛2	
.C˛/1:

If, in addition,
T
˛2	 C˛ ¤ ; and each set C˛ is closed and convex, then we

obtain an equality in the previous inclusion.
Moreover, If C1 � X1;C2 � X2; : : : ;Cm � Xm are closed convex sets, where

Xi, i D 1; 2; : : : ;m are topological vector spaces, then

.C1 	 C2 	 � � � 	 Cm/1 D .C1/1 	 .C2/1 	 � � � 	 .Cm/1:

We present the definition of a contingent cone and its properties.

Definition 1.19 Let C be a nonempty subset of a normed space X.

(a) Let Nx 2 cl.C/ be given. An element u 2 X is said to be a tangent to C at Nx if
there exist a sequence fxmg of elements xm 2 C and a sequence f�mg of positive
real numbers �m such that lim

m!1 xm ! Nx and lim
m!1�m.xm � Nx/ D u.

(b) The set T.C; Nx/ of all tangents to C at Nx is called the contingent cone (or the
Bouligand tangent cone) to C at Nx.
In other words, a contingent cone T.C; Nx/ to C at Nx is defined as

T.C; Nx/ D ˚
u 2 X W 9 fxmg � C and f�mg � .0;1/

such that xm ! Nx and �m.xm � Nx/ ! u
�
:

Figure 1.12 visualizes two contingent cones.

Fig. 1.12 Tangent to C at Nx
and contingent cone T.C; Nx/

y1

y2

x̄
C

T (C,x)¯

y1

y2

C

x̄

T (C,x)¯
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It is easy to see that the above definition of contingent cone can be written as

T.C; Nx/ D
(

u 2 X W 9 fxmg � C and f�mg

such that xm ! Nx; �m ! 0C and
xm � Nx
�m

! u

)

:

If Nx 2 int.C/, then T.C; Nx/ is clearly the whole space. That is why we considered
Nx 2 cl.C/.

If um D xm � Nx
�m

( ! u), that is, xm D NxC�mum (2 C), then we have d 2 T.C; Nx/ if
and only if there exist sequences fumg ! u and f�mg ! 0C such that NxC�mum 2 C
for all m 2 N.

It is equivalent to saying that u 2 T.C; Nx/ if and only if there exist sequences
fumg ! u and f�mg � RC such that

Nx C �mum 2 C; for all m 2 N and f�mxmg ! 0:

Remark 1.13

(a) A contingent cone to a set C at a point Nx 2 cl.C/ describes a local approximation
of the set C�fNxg. This concept is very helpful for the investigation of optimality
conditions.

(b) From the definition of T.C; Nx/, we see that Nx belongs to the closure of the set C.
It is evident that the contingent cone is really a cone.

Lemma 1.2 Let C and D be nonempty subsets of a normed space X.

(a) If Nx 2 cl.C/ � cl.D/, then T.C; Nx/ � T.D; Nx/.
(b) If Nx 2 cl.C \ D/, then T.C \ D; Nx/ � T.C; Nx/ \ T.D; Nx/.
Definition 1.20 Let C be a subset of a vector space X is called starshaped at Nx 2 C
if for all x 2 C and for every � 2 Œ0; 1�,

�x C .1 � �/Nx 2 C:

An example for a starshaped set C � R
2 is given in Fig. 1.13.

Fig. 1.13 A starshaped set C

x̄

CC
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Theorem 1.5 Let C be a nonempty subset of a normed space X. If C is starshaped
at some Nx 2 C, then cone .C � fNxg/ � T.C; Nx/.
Proof Take any x 2 C. Then we have

xm D Nx C 1

m
.x � Nx/ D 1

m
x C

�

1 � 1

m

	

Nx 2 C; for all m 2 N:

Hence, we get Nx D lim
m!1 xm and x � Nx D lim

m!1m.xm � Nx/. But this implies that

x � Nx 2 T.C; Nx/ and therefore, we obtain C � fNxg � T.C; Nx/.
Since T.C; Nx/ is a cone, it follows further that cone .C � fNxg/ � T.C; Nx/. ut

Theorem 1.6 Let C be a nonempty subset of a normed space X. For every Nx 2
cl.C/, we have T.C; Nx/ � cl .cone.C � fNxg//.
Proof Take an arbitrary tangent u to C at Nx. Then there exist a sequence fxmg of
elements in X and a sequence f�mg of positive real numbers such that

Nx D lim
m!1 xm and u D lim

m!1�m.xm � Nx/:

The last equality implies u 2 cl .cone.C � fNxg//. ut
Theorem 1.7 Let C be a nonempty subset of a normed space X. The contingent
cone T.C; Nx/ is closed for every Nx 2 cl.C/.

Proof Let fumg be an arbitrary sequence in T.C; Nx/ with lim
m!1 um D u 2 X. For

every tangent um, there exist a sequence fxmig of elements in C and a sequence f�mig
of positive real numbers such that

Nx D lim
i!1 xmi and um D lim

i!1�mi.xmi � Nx/:

Consequently, for every m 2 N, there exists an i.m/ 2 N such that

kxmi � Nxk � 1

m
; for all i � i.m/;

and

k�mi.xmi � Nx/� umk � 1

m
; for all i � i.m/:

If we define ym D xmi.m/ 2 C and �m D �mi.m/ > 0 for all m 2 N, then we get
Nx D lim

m!1 ym and

k�m. ym � Nx/ � uk � k�m. ym � Nx/ � umk C kum � uk

� 1

m
C kum � uk; for all m 2 N:
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This implies that u D lim
m!1�m. ym � Nx/. Hence, u 2 T.C; Nx/ and so T.C; Nx/ is

closed. ut
Corollary 1.2 Let C be a nonempty subset of a normed space X. If C is starshaped
at some Nx 2 C, then T.C; Nx/ D cl .cone.C � fNxg//.
Theorem 1.8 Let C be a nonempty convex subset of a normed space X. The
contingent cone T.C; Nx/ is convex for every Nx 2 cl.C/.

Proof Since C is convex, C � fNxg and cone.C � fNxg/ are convex as well. Since the
closure of a convex set is convex, we have cl .cone.C � fNxg// is also convex. Finally,
from above corollary, we have T.C; Nx/ D cl .cone.C � fNxg//. ut

1.2 Convex Functions and Their Properties

Definition 1.21 Let X be a vector space. A function f W X ! R is said to be

(a) positively homogeneous if for all x 2 X and all r > 0, we have f .rx/ D rf .x/;
(b) subodd if for all x 2 X n f0g, we have f .x/ � �f .�x/.

Example 1.9

(a) Every linear function is positively homogeneous.
(b) The function f .x/ D jxj is positively homogeneous.
(c) Every norm is positively homogeneous.

(d) The function f .x/ D
�

x; if x > 0;
� 1
2
x; if x � 0

is positively homogeneous.

(e) f .x/ D x2 is subodd.

Definition 1.22 Let K be a subspace of a vector space X. A function f W K ! R is
said to be linear if for all x; y 2 K and all �;� 2 R,

f .�x C �y/ D �f .x/C �f . y/: (1.1)

Definition 1.23 Let K be a nonempty affine subset of a vector space X. A function
f W K ! R is said to be affine if (1.1) holds for all x; y 2 K and all �;� 2 R such
that �C � D 1.

In other words, f is affine if and only if

f .�x C .1 � �/y/ D �f .x/C .1 � �/f . y/; (1.2)

for all x; y 2 K and all � 2 R.

Definition 1.24 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is said to be convex if for all x; y 2 K and all �;� � 0 with �C � D 1,
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we have

f .�x C �y/ � �f .x/C �f . y/: (1.3)

In other words, f is convex if and only if

f .�x C .1 � �/y/ � �f .x/C .1 � �/f . y/; (1.4)

for all x; y 2 K and all � 2 Œ0; 1�.
The functional f is said to be strictly convex if inequality (1.4) is strict for all

x ¤ y.
A function f is said to be concave if �f is convex.

Example 1.10

(a) Let K D X D R and f .x/ D x2 for all x 2 K. Then f is a convex function.
(b) Let K D Œ0; 
� and f .x/ D sin x for all x 2 K. Then f is a convex function.
(c) Let K D X D R and f .x/ D jxj for all x 2 K. Then f is a convex function. In

fact, the functions in (a) and (b) are strictly convex but the function in (c) is not.
(d) The functions f .x/ D ln jxj for x > 0, and g.x/ D Cp

1 � x2 for x 2 Œ�1; 1� are
concave.

Remark 1.14 An affine function is both convex and concave.

Definition 1.25 Let K be a nonempty subset of a vector space X and f W K ! R be
a function. The set

epi. f / D f.x; ˛/ 2 K 	 R W f .x/ � ˛g

is called epigraph of f .

Theorem 1.9 Let K be a nonempty convex subset of a vector space X and f W K !
R be a function. Then f is convex if and only if its epigraph is a convex set.

Proof Let f be a convex function. Then for any .x; ˛/ and . y; ˇ/ 2 epi. f /, we have
f .x/ � ˛ and f . y/ � ˇ. Also, for all � 2 Œ0; 1�, we have

f .�x C .1 � �/y/ � �f .x/C .1 � �/f . y/ � �˛ C .1 � �/ˇ:

Thus,

..�x C .1 � �/y/; �˛ C .1 � �/ˇ/ D �.x; ˛/C .1 � �/. y; ˇ/ 2 epi. f /:

Hence, epi. f / is convex.
Conversely, let epi. f / be a convex set, and .x; f .x// 2 epi. f / and .y; f . y// 2

epi. f /. Then for all x; y 2 K and all � 2 Œ0; 1�, we have

� .x; f .x//C .1 � �/ .y; f . y// 2 epi. f /:
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This implies that

.�x C .1� �/y; �f .x/C .1 � �/f . y// 2 epi. f /

and thus,

f .�x C .1 � �/y/ � f .x/C .1 � �/f . y/:

Hence, f is convex. ut
Theorem 1.10 Let K be a nonempty convex subset of a vector space X and f W K !
R be a convex function. Then the lower level set L˛ D fx 2 K W f .x/ � ˛g is convex
for every ˛ 2 R.

Proof Let x; y 2 L˛ . Then .x; ˛/ 2 epi. f / and . y; ˛/ 2 epi. f /. Therefore, for all
� 2 Œ0; 1�,

�.x; ˛/C .1 � �/. y; ˛/ 2 epi. f /;

equivalently,

.�x C .1 � �/y; �˛ C .1 � �/˛/ 2 epi. f /

and thus

f .�x C .1 � �/y/ � �˛ C .1 � �/˛ D ˛:

Hence, �x C .1 � �/y 2 L˛ and so L˛ is convex. ut
Remark 1.15 The converse of above theorem may not hold. For example, the
function f .x/ D x3 defined on R is not convex but its lower level set L˛ D fx 2
R W x � ˛1=3g is convex for every ˛ 2 R.

Theorem 1.11 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is convex if and only if for all x1; x2; : : : ; xm 2 K and �i 2 Œ0; 1�,
i D 1; 2; : : : ;m with

Pm
iD1 �i D 1,

f

 
mX

iD1
�ixi

!

�
mX

iD1
�i f .xi/: (1.5)

The inequality (1.5) is called Jensen’s inequality.

Proof Suppose that the Jensen’s inequality (1.5) holds. Then trivially, f is convex.
Conversely, we assume that the function f is convex. Then we show that the

Jensen’s inequality (1.5) holds. We prove it by induction on m. For m D 1 and
m D 2, the inequality (1.5) trivially holds. Assume that the inequality (1.5) holds
for m. We shall prove the result for m C 1. If �mC1 D 1, the result holds because
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�i D 0, for i D 1; 2; : : : ;m and the result is true for m D 1. If �mC1 ¤ 1, we have

f

 
mC1X

iD1
�ixi

!

D f

 
mX

iD1
�ixi C �mC1xmC1

!

D f

 
mX

iD1
.1 � �mC1/

�ixi
1 � �mC1

C �mC1xmC1

!

D f

 

.1� �mC1/
mX

iD1

�i

1 � �mC1
xi C �mC1xmC1

!

D f

 

.1� �mC1/
mX

iD1
�ixi C �mC1xmC1

!

� .1 � �mC1/f
 

mX

iD1
�ixi

!

C �mC1 f .xmC1/

� .1 � �mC1/
mX

iD1
�i f .xi/C �mC1 f .xmC1/;

where �i D �i

.1� �mC1/
, i D 1; 2; : : : ;m with �i � 0 for i D 1; 2; : : : ;m and

mX

iD1
�i D

Pm
iD1 �i

1 � �mC1
D 1 � �mC1
1 � �mC1

D 1:

This completes the proof. ut
The following theorems provide some properties of convex functions. The proof

of these theorems is quite trivial, and hence, omitted.

Theorem 1.12 Let K be a nonempty convex subset of a vector space X.

(a) If f1; f2 W K ! R are two convex functions, then f1 C f2 is a convex function on
K.

(b) If f W K ! R is a convex function and ˛ � 0, then ˛f is a convex function on K.
(c) For each i D 1; 2; : : : ;m, if fi W K ! R is a convex function and ˛i � 0,

then
Pm

iD1 ˛i fi is a convex function. Further, if at least one of the functions fi is
strictly convex with the corresponding ˛i > 0, then

Pm
iD1 ˛i fi is strictly convex

on K.

Theorem 1.13 Let K be a nonempty convex subset of a vector space X. For each
i D 1; 2; : : : ;m, if fi W K ! R is a convex function, then maxf f1; f2; : : : ; fmg is also
a convex function on K.

Next we provide characterizations of a differentiable convex function.
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Theorem 1.14 ([10, 110]) Let K be a nonempty open convex subset of Rn and f W
K ! R be a differentiable function. Then

(a) f is convex if and only if for all x; y 2 K,

hrf .x/; y � xi � f . y/� f .x/: (1.6)

(b) f is strictly convex if and only if the inequality (1.6) is strict for x ¤ y.

Proof

(a) If f is a convex function, then for all � 2 Œ0; 1�

f ..1 � �/x C �y/ � .1� �/f .x/C �f . y/:

For � > 0, we have

f ..1 � �/x C �y/� f .x/

�
� f . y/� f .x/;

which on taking limit � ! 0C leads to (1.6) as f is a differentiable function.
Conversely, let � 2 Œ0; 1� and u; v 2 K. On taking x D .1 � �/u C �v and

y D u in (1.6), we have

�hrf ..1 � �/u C �v/; u � vi � f .u/� f ..1 � �/u C �v/: (1.7)

Similarly, on taking x D .1 � �/u C �v and y D v in (1.6), we have

� .1 � �/hrf ..1 � �/u C �v/; u � vi � f .v/ � f ..1 � �/u C �v/: (1.8)

Multiplying inequality (1.7) by .1 � �/ and inequality (1.8) by �, and then
adding the resultants, we obtain

f ..1 � �/u C �v/ � .1 � �/f .u/C �f .v/:

(b) Suppose that f is strictly convex and x; y 2 K be such that x ¤ y. Since f
is convex, the inequality (1.6) holds. We need to show the inequality is strict.
Suppose on the contrary that

hrf .x/; y � xi D f . y/� f .x/:

Then for � 2 �0; 1Œ, we have

f ..1 � �/x C �y/ < .1 � �/f .x/C �f . y/ D f .x/C �hrf .x/; y � xi:
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Let z D .1� �/x C �y, then z 2 K and the above inequality can be written as

f .z/ < f .x/C hrf .x/; z � xi;

which contradicts the inequality (1.6). Proof of the converse part follows as
given for the convex case. ut

Theorem 1.15 ([63, 110]) Let K be a nonempty open convex subset of Rn and f W
K ! R be a differentiable function. Then f is convex if and only if for all x; y 2 K,

hrf . y/� rf .x/; y � xi � 0:

Proof Let f be a differentiable convex function. Then by Theorem 1.14 (a), we have

hrf .x/; y � xi � f . y/� f .x/; for all x; y 2 K:

By interchanging the roles of x and y, we have

hrf . y/; x � yi � f .x/ � f . y/; for all x; y 2 K:

On adding the above inequalities we get the conclusion.
Conversely, by mean value theorem, for all x; y 2 K, there exists z D .1��/xC�y

for some � 2 �0; 1Œ such that

f . y/� f .x/ D hrf .z/; y � xi D .1=�/hrf .z/; z � xi
� .1=�/hrf .x/; z � xi D hrf .x/; y � xi;

where the above inequality is obtained on using the given hypothesis. Hence, by
Theorem 1.14 (a), f is a convex function. ut

The following example illustrates the above theorem.

Example 1.11 The function f .x/ D x21 C x22, where x D .x1; x2/ 2 R2, is a convex
function on R2 and rf .x/ D 2.x1; x2/. For x; y 2 R2,

hrf . y/� rf .x/; y � xi D h2. y1 � x1; y2 � x2/; . y1 � x1; y2 � x2/i
D 2. y1 � x1/

2 C 2. y2 � x2/
2 � 0:

Definition 1.26 Let K be a nonempty subset of a normed space X and x 2 K be a
given point. A function f W K ! R is said to be locally Lipschitz around x if for
some k > 0

j f . y/� f .z/j � kky � zk; for all y; z 2 N.x/\ K; (1.9)

where N.x/ is a neighborhood of x. The constant k is called Lipschitz constant and
it varies as the point x varies.



26 1 Preliminaries

The function f is said to be Lipschitz continuous onK if the inequality (1.9) holds
for all y; z 2 K.

A continuously differentiable function always satisfies the Lipschitz condition
(1.9). However, a locally Lipschitz function at a given point need not be differen-
tiable at that point. For example, the function f W R ! R, defined by f .x/ D jxj,
satisfies the Lipschitz condition on R. But f is not differentiable at 0.

The class of Lipschitz continuous functions is quite large. It is invariant under
usual operations of sum, product and quotient.

It is clear that every Lipschitz continuous function is continuous. Also, every
convex function is not only continuous but also locally Lipschitz in the interior of
its domain.

Theorem 1.16 ((See [6, Theorem 1.14])) Let K be a nonempty convex subset of
Rn, f W K ! R be a convex function and x be an interior point of K. Then f is
locally Lipschitz at x.

As we have seen, the convex functions cannot be characterized by lower level
sets. However, if the function is convex then lower level sets are convex but the
converse is not true. Now we define a class of such functions, called quasiconvex
functions, which are characterized by convexity of their level sets.

Definition 1.27 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is said to be

(a) quasiconvex if for all x; y 2 K and all � 2 �0; 1Œ,

f .x C �. y � x// � max f f .x/; f . y/g I

(b) strictly quasiconvex if for all x; y 2 K, x ¤ y and all � 2 �0; 1Œ,

f .x C �. y � x// < max f f .x/; f . y/g I

(c) semistrictly quasiconvex if for all x; y 2 K with f .x/ ¤ f . y/,

f .x C �. y � x// < f .x/; for all � 2 �0; 1Œ:

A function f W K ! R is said to be (strictly, semistrictly) quasiconcave if �f is
(strictly, semistrictly) quasiconvex.

Note that in Definition 1.27 (b), the premise excludes the case f .x/ D f . y/.
Therefore, the formulation of the definition of semistrictly quasiconvexity differs
from (a). Also, note that a strictly quasiconvex function was referred to as a strongly
quasiconvex function in [17] and a semistrictly quasiconvex function was referred
to as a strictly quasiconvex function in [17, 19, 110].
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Example 1.12

(a) Every convex function is quasiconvex.
(b) The function f W R ! R, defined by f .x/ D pjxj, is quasiconvex, but not

convex.
(c) Every strictly convex function is semistrictly quasiconvex.
(d) The function f W R ! R, defined by f .x/ D x, is semistrictly quasiconvex, but f

is not strictly convex.

Obviously, every (strictly) convex function is (strictly) quasiconvex but the
converse is not necessarily true. The function f W R ! R defined by f .x/ D x3

is a quasiconvex function but not a convex function. Also, a convex function is
semistrictly quasiconvex but the conversemay not be true. Again, we see that f .x/ D
x3 is semistrictly quasiconvex but not convex.We note that the strict quasiconvexity
is not a generalization of convexity as a constant function is convex but not strictly
quasiconvex. Obviously, a strictly quasiconvex function is quasiconvex but the
converse is not true, For example, the greatest integer function f .x/ D Œx� is
quasiconvex but not strictly quasiconvex on R.

We now give the characterization of a quasiconvex function in terms of convexity
of its lower level sets.

Theorem 1.17 Let K be a nonempty convex subset of a vector space X. A function
f W K ! R is quasiconvex if and only if the lower level sets L. f ; ˛/ are convex for
all ˛ 2 R.

Proof Let f be a quasiconvex function and for ˛ 2 R, let x; y 2 L. f ; ˛/. Then
f .x/ � ˛ and f . y/ � ˛. Since f is a quasiconvex function, for all � 2 Œ0; 1�, we have

f ..1 � �/x C �y/ � maxf f .x/; f . y/g � ˛;

that is, .1 � �/x C �y 2 L. f ; ˛/ for all � 2 Œ0; 1�. Hence, L. f ; ˛/ is convex.
Conversely, let x; y 2 K and N̨ D maxf f .x/; f . y/g. Then x; y 2 L. f ; N̨ /, and by

convexity of L. f ; N̨ /, we have .1 � �/x C �y 2 L. f ; N̨ / for all � 2 Œ0; 1�. Thus for
all � 2 Œ0; 1�,

f ..1 � �/x C �y/ � N̨ D maxf f .x/; f . y/g:

This completes the proof. ut
Next result gives the characterization of a quasiconvex function in terms of its

gradient.

Theorem 1.18 ([6, 10, 110]) Let K be a nonempty open convex subset of Rn and
f W K ! R be a differentiable function. Then f is quasiconvex if and only if for all
x; y 2 K,

f . y/ � f .x/ ) hrf .x/; y � xi � 0: (1.10)
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It can be easily seen that if fi W K ! R, i D 1; 2; : : : ;m, is a quasiconvex function
on a nonempty convex subset K of a vector space X, then maxf f1; f2; : : : ; fmg is also
a quasiconvex function on K.

Definition 1.28 Let X be a topological space. A function f W X ! R[f˙1g is said
to be lower semicontinuous (respectively, upper semicontinuous) at a point x 2 X
if for every " > 0, there exists a neighborhood U of x such that f . y/ � f .x/ C "

(respectively, f . y/ � f .x/ � ") for all y 2 U when f .x/ > �1, and f . y/ ! �1
as y ! x when f .x/ D �1 (respectively, f .x/ < C1, and f . y/ ! C1 as y ! x
when f .x/ D C1).

A function f is lower semicontinuous (respectively, upper semicontinuous) on
X if it is lower semicontinuous (respectively, upper semicontinuous) at every point
of X.

If X is a metric space then it can be expressed as

lim sup
y!x

f . y/ � f .x/ .respectively; lim inf
y!x

f . y/ � f .x//:

For non-metric spaces, an equivalent definition using nets may be stated.
It can be easily seen that a function f W X ! R[ f˙1g is lower semicontinuous

(respectively, upper semicontinuous) on X if and only if the set fx 2 X W f .x/ � rg
(respectively, fx 2 X W f .x/ � rg) is closed for all r 2 R.

Theorem 1.19 Let X be a topological space and f W X ! R[f˙1g be a function.
Then f is lower semicontinuous if and only if epi. f / WD f.x; r/ 2 X 	 R W f .x/ � rg
is closed.

The following theorem gives a sufficient condition for a semistrictly quasiconvex
function to be quasiconvex.

Theorem 1.20 Every lower semicontinuous semistrictly quasiconvex function on a
convex set is quasiconvex.

Proof Let f be a semistrictly quasiconvex function defined on a convex subset K of
a vector space X. Then for all x; y 2 K, f .x/ ¤ f . y/ and � 2 �0; 1Œ, we have

f ..1 � �/x C �y/ < maxf f .x/; f . y/g:

It remains to show that if f .x/ D f . y/ and � 2 �0; 1Œ, then

f ..1 � �/x C �y/ � maxf f .x/; f . y/g:

Assume contrary that f .z/ > f .x/ for some z 2 �x; yŒ. Then z 2 ˝ WD fz 2
�x; yŒ W f .z/ > f .x/g. Since f is a lower semicontinuous function, the set ˝ is open.
Therefore, there exists z0 2 �x; zŒ such that z0 2 ˝ . Since z; z0 2 ˝ , by semistrict
quasiconvexity of f , we have

f .x/ < f .z/ ) f .z0/ < f .z/;
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and

f . y/ < f .z0/ ) f .z/ < f .z0/;

which is a contradiction. ut
Definition 1.29 Let K be a nonempty open subset of Rn. A differentiable function
f W K ! R is said to be

(a) pseudoconvex if for all x; y 2 K,

hrf .x/; y � xi � 0 ) f . y/ � f .x/I

(b) strictly pseudoconvex if for all x; y 2 K, x ¤ y,

hrf .x/; y � xi � 0 ) f . y/ > f .x/:

A function f is (strictly) pseudoconcave if �f is (strictly) pseudoconvex.
Clearly, every differentiable convex function is pseudoconvex, but the converse

is not true. For example, the function f W R ! R, defined by f .x/ D x C x3, is
pseudoconvex, but not convex.

Theorem 1.21 ([6, 19]) Let K � Rn be a nonempty, open and convex set and f W
K ! R be a differentiable and pseudoconvex function. Then f is both semistrictly
quasiconvex and quasiconvex.

The converse of above theorem does not hold. For example, the function f W R !
R, defined by f .x/ D x3, is quasiconvex, but not pseudoconvex because for x D 0

and y D �1, hrf .x/; y � xi D 0 and f . y/ < f .x/.

Definition 1.30 Let K be a nonempty open convex subset of Rn. A differentiable
function f W K ! R is said to be pseudolinear if it is both pseudoconvex and
pseudoconcave.

Some of the examples of pseudolinear function defined on R are ex, x C x3 and
tan�1 x.

We present certain characterizations of a pseudolinear function given by Chew
and Choo [44].

Theorem 1.22 Let K be a nonempty open convex subset of Rn and f W K ! R be a
differentiable function. Then the following statements are equivalent:

(a) f is a pseudolinear function;
(b) For any x; y 2 K, hrf .x/; y � xi D 0 if and only if f .x/ D f . y/;
(c) There exists a real-valued function p defined on K	K such that for any x; y 2 K,

p.x; y/ > 0 and f . y/ D f .x/C p.x; y/hrf .x/; y � xi:

The function p obtained in the above theorem is called the proportional function
of f .
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Theorem 1.23 ([6, Thoerem 1.39]) Let K be a nonempty open convex subset ofRn

and f W K ! R be a continuously differentiable function. Then f is pseudolinear if
and only if for any x; y 2 K,

hrf .x/; y� xi D 0 ) f .x/ D f ..1��/xC�y/; for all � 2 Œ0; 1�: (1.11)

Now we give a brief introduction of the concept of monotonicity and give
some characterizations of convex and generalized convex functions in terms of
monotonicity of their gradient function.

Definition 1.31 Let K be a nonempty subset of Rn. A map F W K ! Rn is said to
be

(a) monotone if for all x; y 2 K, x ¤ y, we have

hF.y/� F.x/; y � xi � 0I

(b) strictly monotone if for all x; y 2 K, x ¤ y, we have

hF. y/� F.x/; y � xi > 0I

(c) strongly monotonewith modulus � if there exists a real number � > 0 such that
for all x; y 2 K, x ¤ y, we have

hF. y/� F.x/; y � xi � �ky � xk2:

It is clear that a strictly monotone map is monotone but the converse is not true.
For example, the map F W R2 ! R2 defined by F.x1; x2/ D .2x1; 0/, is monotone
but not strictly monotone as the definition fails at x D .0; 1/, y D .0; 2/.

Also, every strongly monotone map is strictly monotone but the converse is not
true. For instance, the map F W R ! R defined by

F.x/ D
�
1C x2; if x � 0;

1 � x2; if x < 0;

is strictly monotone but it is not strongly monotone. We observe that if we restrict
the domain of the function F defined above to Œ1;1/, then it is strongly monotone
with modulus � D 2.

In view of Theorem 1.15, we have the following result.

Theorem 1.24 Let K be a nonempty open convex subset of Rn. A differentiable
function f W K ! R is

(a) convex if and only if its gradient rf is monotone;
(b) strictly convex if and only if its gradient rf is strictly monotone.

Analogous to Theorem 1.24, we have the following theorem.
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Theorem 1.25 ([6, Theorem 4.2]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is strongly convex with modulus � > 0 if and
only if its gradient rf is strongly monotone with modulus � D 2�.

Next we define generalizedmonotonemaps and relate generalized convexitywith
generalized monotonicity of its gradient function. Karamardian [88] introduced the
concept of pseudomonotonemaps whereas the notions of strict pseudomonotonicity
and quasimonotonicity were introduced by Hassouni [73] and independently by
Karamardian and Schaible [89].

Definition 1.32 Let K be a nonempty subset of Rn. A map F W K ! Rn is said to
be

(a) quasimonotone if for all x; y 2 K, x ¤ y, we have

hF.x/; y � xi > 0 ) hF. y/; y � xi � 0I
(b) pseudomonotone if for all x; y 2 K, x ¤ y, we have

hF.x/; y � xi � 0 ) hF. y/; y � xi � 0I
(c) strictly pseudomonotone if for all x; y 2 K, x ¤ y, we have

hF.x/; y � xi � 0 ) hF. y/; y � xi > 0:

It is clear that a (strictly) monotone map is (strictly) pseudomonotone but the
converse is not true. For example, the map F W R ! R defined by F.x/ D xe�x2 is
pseudomonotone but the definition of monotonicity fails at x D 1, y D 2.

A strictly pseudomonotone map is pseudomonotone but the converse is not true.
For instance, the map F W R ! R defined as F.x/ D maxfx; 0g is pseudomonotone
but it is not strictly pseudomonotone.

Also, every pseudomonotone map is quasimonotone but the converse is not true
as the map F.x/ D x2 is quasimonotone on R but it is not pseudomonotone on R.

The following result gives a characterization of quasiconvex functions.

Theorem 1.26 ([6, Theorem 4.3]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is quasiconvex if and only if its gradient rf is
quasimonotone.

As expected we have a similar characterization for (strict) pseudoconvexity of a
function in terms of the (strict) pseudomonotonicity of the gradient map.

Theorem 1.27 ([6, Theorem 4.4]) Let K be a nonempty open convex subset of
R

n. A differentiable function f W K ! R is pseudoconvex (respectively, strictly
pseudoconvex) if and only if its gradient rf is pseudomonotone (respectively,
strictly pseudomonotone).

Proof Assume that f is pseudoconvex but rf is not pseudomonotone. Then there
exist x; y 2 K, x ¤ y, such that

hrf .x/; y � xi � 0 and hrf . y/; x � yi > 0:
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Since f is pseudoconvex, the first inequality leads to f . y/ � f .x/, and the second
one leads to f .x/ > f . y/ as every pseudoconvex function is quasiconvex. We thus
arrive at a contradiction as the two conclusions are contradictory to each other.

Conversely, assume on the contrary that rf is pseudomonotone but f is not
pseudoconvex. Then there exist x; y 2 K such that

hrf .x/; y � xi � 0 and f . y/ < f .x/:

By the mean value theorem, there exists z D .1� �/xC �y for some � 2 �0; 1Œ such
that

f . y/� f .x/ D hrf .z/; y � xi D .1=�/hrf .z/; z � xi:

Since f . y/ < f .x/, it follows that hrf .z/; z � xi < 0. Now by pseudomonotonicity
of rf , we have

hrf .x/; z � xi < 0; that is, hrf .x/; y � xi < 0;

which leads to a contradiction. ut
The following concepts of strict and semistrict quasimonotonicity were intro-

duced by Blum and Oettli [28].

Definition 1.33 Let K be a nonempty convex subset of Rn. A map F W K ! Rn is
said to be

(a) strictly quasimonotone if F is quasimonotone and for all x; y 2 K, x ¤ y, there
exists z 2 �x; yŒ such that hF.z/; y � xi ¤ 0;

(b) semistrictly quasimonotone if F is quasimonotone and for x; y 2 K, x ¤ y,

hF.x/; y � xi > 0 ) there exists z 2 �.x C y/=2; yŒ

such that hF.z/; y � xi > 0:

Obviously, a pseudomonotone map is semistrictly quasimonotone, and a strictly
pseudomonotone map is strictly quasimonotone.

The following diagram gives the relationship among different classes of mono-
tone maps defined above.

Strong monotonicity
+

Strict monotonicity ) Monotonicity
+ +

Strict pseudomonotonicity ) Pseudomonotonicity ) Semistrict
+ + Quasimonotonicity

Strict quasimonotonicity ) Quasimonotonicity
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Theorem 1.28 Let K be a nonempty convex subset of Rn. If F W K ! Rn is strictly
quasimonotone, then it is semistrictly quasimonotone.

Proof If hF.x/; y � xi > 0 for all x; y 2 K, x ¤ y, then

hF.x/; z � xi > 0; for all z 2 �x; yŒ:

Since F is quasimonotone, we have hF.z/; z � xi � 0 which implies that

hF.z/; y � xi � 0; for all z 2 �x; yŒ:

Since F is strictly quasimonotone, there exists Oz 2 �.xC y/=2; yŒ such that hF.Oz/; y�
xi ¤ 0. Thus, we have hF.Oz/; y � xi > 0, that is, F is semistrictly quasimonotone.

ut
We now link strict quasiconvexity of a function with strict quasimonotonicity of

its gradient.

Theorem 1.29 ([6, Theorem 4.7]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is strictly quasiconvex if and only if its gradient
rf is strictly quasimonotone.

The following theorem relates semistrict quasiconvexity of a function with
semistrict quasimonotonicity of its gradient.

Theorem 1.30 ([6, Theorem 4.8]) Let K be a nonempty open convex subset of Rn.
A differentiable function f W K ! R is semistrictly quasiconvex if and only if its
gradient rf is semistrictly quasimonotone.

1.3 Generalized Derivatives

In order to deal with the optimality conditions for optimization problems of
functions whose ordinary derivative does not exist but they have some kind of
generalized derivatives, we give the concept of some generalized derivatives.

Definition 1.34 Let X and Y be locally convex topological vector spaces, K be a
nonempty convex subset of X, and f W X ! Y be a given mapping.

(a) If for some x 2 K and some d 2 X, the limit

˝
f 0.x/; d

˛ WD lim
t!0

1

t
Œ f .x C td/ � f .x/�

exists, then h f 0.x/; di is called the directional derivative of f at x in the direction
d. If this limit exists for all d 2 X, then f is called directionally differentiable
at x.

(b) If for some x 2 K and all d 2 X, the limit

hDf .x/; di WD lim
t!0

1

t
Œ f .x C td/� f .x/�
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exists and Df .x/ is a continuous linear map from X to Y, then Df .x/ is called
the Gâteaux derivative of f at x, and f is called Gâteaux differentiable at x.
If f is Gâteaux differentiable at every x 2 K, then we say that f is Gâteaux
differentiable on K.

Example 1.13 It is well known that the function f W R ! R, defined by f .x/ D jxj,
is not Gâteaux differentiable, but it is directionally differentiable at 0.

Definition 1.35 Let .X; k � kX/ and . Y; k � kY/ be normed spaces, K be a nonempty
open subset of X, and f W X ! Y be a mapping. Let x 2 K be given. If there is a
continuous linear map f 0.x/ W X ! Y with

lim
jjhjjX!0

k f .x C h/� f .x/� h f 0.x/; hikY
khkX

D 0;

then f 0.x/ is called the Fréchet derivative of f at x and f is called Fréchet
differentiable at x.

Lemma 1.3 ([81, Lemma 2.17]) Let .X; k � kX/ and . Y; k � kY / be normed spaces,
K be a nonempty open subset in X, and f W X ! Y be a mapping. If the Fréchet
derivative of f at x 2 K exists, then the Gâteaux derivative of f at x exists and both
are equal.

Definition 1.36 Let K � Rn be an open convex set and f W Rn 
 K ! R be a real-
valued function. The upper and lower Dini directional derivatives of f at x 2 K in
the direction d 2 Rn are defined as

DCf .xI d/ D lim sup
t#0

f .x C td/� f .x/

t
;

and

DCf .xI d/ D lim inf
t#0

f .x C td/ � f .x/

t
;

respectively.

Remark 1.16 It is easy to see that DCf .xI d/ � DCf .xI d/. If the function f is
convex, then the upper and lower Dini directional derivatives are equal to the
directional derivative.

Definition 1.37 Let K be a nonempty convex subset of Rn. The function f W K !
R is called radially upper (lower) semicontinuous (also known as upper (lower)
hemicontinuous on K) if for every pair of distinct points x; y 2 K, the function f is
upper (lower) semicontinuous along the line segment Œx; y�.

Theorem 1.31 (Diewert Mean Value Theorem) [50] Let K be a nonempty convex
subset of Rn and f W K ! R be radially upper semicontinuous on K. Then for any
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pair x; y of distinct points of K, there exists w 2 Œx; yŒ such that
f . y/ � f .x/ � DCf .wI y � x/;

where Œx; yŒ denotes the line segment joining x and y including the endpoint x. In
other words, there exists � 2 Œ0; 1Œ such that

f . y/� f .x/ � DCf .wI y � x/; where w D x C �. y � x/:

If f is radially lower semicontinuous on K, then for any pair x; y of distinct points
of K, there exists v 2 Œx; yŒ such that

f . y/ � f .x/ � DCf .vI y � x/;

Definition 1.38 [97] Let K � Rn be a nonempty set and q W K 	 Rn ! R be a
bifunction. A function f W K ! R is said to be

(a) q-quasiconvex if for all x; y 2 K,

f .x/ � f . y/ ) q. yI x � y/ � 0I
(b) q-quasiconcave if �g is q-quasiconvex;
(c) q-pseudoconvex if for all x; y 2 K, x ¤ y,

f .x/ < f . y/ ) q. yI x � y/ < 0I
(d) strictly q-pseudoconvex if for all x; y 2 K, x ¤ y,

f .x/ � f . y/ ) q. yI x � y/ < 0I
(e) q-pseudoconcave if �f is q-pseudoconvex;
(f) q-pseudolinear if it is both q-pseudoconvex as well as q-pseudoconcave.

If q.xI d/ D DCf .xI d/ (q.xI d/ D DCf .xI d/), then the above definitions
are called DC-quasiconvex, DC-quasiconcave, DC-pseudoconvex, strictly DC-
pseudoconvex, DC-pseudoconcave, and DC-pseudolinear (DC-quasiconvex,
DC-quasiconcave, DC-pseudoconvex, strictly DC-pseudoconvex, DC-pseudo-
concave, and DC-pseudolinear), respectively.

Remark 1.17 It is clear that strict q-pseudoconvexity implies q-pseudoconvexity
and also q-quasiconvexity. But, as pointed out in [97], neither q-quasiconvexity
implies q-pseudoconvexity nor the reverse implication holds.

Example 1.14 Let K D Œ�1; 1� and

f .x/ D
�

x; if x � 0
1
2
x; if x < 0:

Then f is DC-pseudolinear over K.
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Remark 1.18 Let K be a nonempty convex subset of Rn and f W Rn ! R be a
function.

(a) If f is DC-pseudoconvex over K, then it is pseudoconvex over K in the sense of
Diewert [50], that is, for all x; y 2 K, f .x/ < f . y/ implies DCf . yI x � y/ < 0.

(b) If f is DC-pseudoconvex (DC-pseudoconcave) over K and lower semicontinu-
ous (upper semicontinuous), then it is quasiconvex (quasiconcave) over K (see
Corollary 15 in [50]).

(c) If f is quasiconvex over K, then for all x; y 2 K,

f .x/ � f . y/ ) DCf . yI x � y/ � 0:

(d) If f is quasiconcave over K, then for all x; y 2 K,

f .x/ � f . y/ ) DCf . yI x � y/ � 0:

(e) Any linear fractional function whose denominator is positive over K is DC-
pseudolinear.

Lemma 1.4 ([50]) Let K � Rn be nonempty set and f W K ! R be upper
semicontinuous and DC-pseudoconvex, that is, for all x; y 2 K, f .x/ < f . y/ )
DCf . yI x � y/ < 0. Then f is quasiconvex and semistrictly quasiconvex.

Lemma 1.5 ([97]) Let K � Rn be a nonempty set, f W K ! R be a func-
tion, and p; q W K 	 Rn ! R be bifunctions such that for all x 2 K and
all d 2 Rn, p.xI d/ � q.xI d/. Then q-quasiconvexity, q-pseudoconvexity, and
strict q-pseudoconvexity imply p-quasiconvexity, p-pseudoconvexity, and strict p-
pseudoconvexity, respectively.

Proof Let f be q-quasiconvex. Then we have for all x; y 2 K,

f .x/ � f . y/ ) q. yI x � y/ � 0:

Because p. yI x � y/ � q. yI x � y/ for all x; y 2 K, the implication

f .x/ � f . y/ ) p. yI x � y/ � 0

also holds, and thus, f is p-quasiconvex. The remaining assertions can be proven in
a similar way. ut
Definition 1.39 [68, 97] Let K � Rn be a nonempty set. A bifunction q W K	Rn !
R is said to be pseudomonotone if for every pair of distinct points x; y 2 K, we have

q.xI y � x/ � 0 ) q. yI x � y/ � 0: (1.12)

Remark 1.19 The above implication (1.12) is equivalent to the following implica-
tion:

q. yI x � y/ > 0 ) q.xI y � x/ < 0: (1.13)
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Lemma 1.6 A bifunction q W K 	 Rn ! R is pseudomonotone if and only if for
every pair of distinct points x; y 2 K � Rn, we have

q.xI y � x/ > 0 ) q. yI x � y/ < 0: (1.14)

Proof The implication (1.14) is equivalent to the following implication:

q. yI x � y/ � 0 ) q.xI y � x/ � 0:

Interchanging x and y, we get (1.12). ut
Lemma 1.7 ([129]) Let f W K ! R be radially upper semicontinuous on K � Rn

and q W K	Rn ! R be subodd and positively homogeneous in the second argument
such that for all x 2 K, q.xI �/ � DCf .xI �/. Then
(a) f is quasiconvex over K if and only if it is q-quasiconvex;
(b) f is q-pseudoconvex if and only if q is pseudomonotone.

Definition 1.40 Let K be a nonempty subset of a Banach space, f W K ! R be
locally Lipschitz at a given point x 2 K. The Clarke directional derivative of f at
x 2 K in the direction of a vector v 2 K, denoted by f ı.xI v/, is defined by

f ı.xI v/ D lim sup
y!x
t#0

f . y C tv/ � f . y/

t
:

Clearly, for all x; v 2 K, we have DCf .xI v/ � f ı.xI v/.
Definition 1.41 Let K be a nonempty subset of a Banach space with its dual space
X�, f W K ! R be locally Lipschitz at a given point x 2 K. The Clarke generalized
subdifferential of f at x 2 K, denoted by @cf .x/, is defined by

@cf .x/ D f� 2 X� W f ı.xI v/ � h�; vi for all v 2 Kg :

Remark 1.20 It follows from the definition that for every v 2 K,

f ı.xI v/ D maxfh�; vi W � 2 @cf .x/g:
If f is convex, then the Clarke generalized subdifferential coincides with the

subdifferential of f in the sense of convex analysis [127].

Proposition 1.5 ([48, Proposition 2.1.1]) Let K be a nonempty subset of a normed
space X and f W K ! R be a locally Lipschitz at a point x 2 K.

(a) The function v 7! f ı.xI v/ is finite, positively homogeneous, and subadditive,
and satisfies j f ı.xI v/j � kjjvjj.

(b) f ı.xI v/ is upper semicontinuous as a function of .xI v/ and, satisfies the
Lipschitz condition as a function of v alone.

(c) f ı.xI �v/ D .�f /ı.xI v/.
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Lemma 1.8 ([48]) Let K be a nonempty subset of a Banach space and f W K ! R

be locally Lipschitz. Then the set-valued map @cf is upper semicontinuous (see,
Sect. 1.4 for upper semicontinuity of a set-valued map).

Theorem 1.32 (Lebourg’s Mean Value Theorem) [48] Let x and y be points in a
Banach space X, and suppose that f is Lipschitz on an open set containing the line
segment Œx; y�. Then there exists a point u in �x; yŒ such that

f . y/� f .x/ 2 h@cf .u/; y � xi:

Since when f is convex, the Clarke subdifferential coincides with the subdifferen-
tial of f in the sense of convex analysis, Theorem 1.32 also holds for subdifferential
in the sense of convex analysis.

1.4 Tools from Nonlinear Analysis

In this section, we recall some concepts and results from nonlinear analysis which
will be used in the sequel.

1.4.1 Continuity for Set-Valued Maps

Definition 1.42 ([15, 20]) Let X and Y be topological spaces. A set-valued map
T W X ! 2Y is said to be

(a) upper semicontinuous at x0 2 X if for any open set V in Y containing T.x0/,
there exists an open neighborhood U of x0 in X such that T.x/ � V for all
x 2 U;

(b) lower semicontinuous at x0 2 X if for any open set V in Y such that V\T.x0/ ¤
;, there exists an open neighborhood U of x0 in X such that T.x/ \ V ¤ ; for
all x 2 U;

(c) upper semicontinuous (respectively, lower semicontinuous) on X if it upper
semicontinuous (respectively, lower semicontinuous) at every point x 2 X;

(d) continuous on X if it is upper semicontinuous as well as lower semicontinuous
on X;

(e) compact if there exists a compact subset K � Y such that T.X/ � K;
(f) closed if its graph G.T/ WD f.x; y/ W x 2 X; y 2 T.x/g is closed in X 	 Y.

Remark 1.21 If T.x/ is a singleton in a neighborhood of x, then the upper
semicontinuous and the lower semicontinuous of T at x are equivalent.

Example 1.15 Let X D R, Y D R2, and consider the set-valued mapping T W X !
2Y given by

T.x/ WD Œ.1� x; x/; .1; 1/� ;
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Fig. 1.14 An illustration of
the set-valued mapping T
defined in Example 1.15

y1

y2

1

1
(1,1)

where Œ.a; b/; .c; d/� is the line segment between .a; b/ and .c; d/ (see Fig. 1.14).
Then T is upper and lower semicontinuous, and therefore continuous. If the set-
valued map is changed slightly to

T1.x/ WD
�
Œ.1 � x; x/; .1; 1/� ; if x 2 Œ0; 1�;
;; else,

then T1 is upper semicontinuous, but T1 is not lower semicontinuous. If we choose

T2.x/ WD
�
Œ.1 � x; x/; .1; 1/� ; if x 2 �0; 1Œ;

;; else,

then T2 is lower semicontinuous, but not upper semicontinuous, and therefore not
continuous.

Several other examples of upper semicontinuous and lower semicontinuous set-
valued maps can be found in [3, 20].

Lemma 1.9 ([15, 20]) Let X and Y be topological spaces. A set-valued map T W
X ! 2Y is lower semicontinuous at x 2 X if and only if for any net fx˛g � X,
x˛ ! x and for any y 2 T.x/, there is a net f y˛g such that y˛ 2 T.x˛/ and y˛ ! y.

Lemma 1.10 Let X be a topological space, Y be a topological vector space and
T W X ! 2Y be a set-valued map such that T.x/ is nonempty and compact for all
x 2 X. Then T is upper semicontinuous at x 2 X if and only if for any nets fx�g � X
with x� ! x and fy�g � Y with y� 2 T.x�/, there exists a subnet fyg � fy�g such
that y ! y for some y 2 T.x/.

Proof Let T be upper semicontinuous at x 2 X. Assume that fx�g � X with x� !
x and fy�g 2 Y with y� 2 T.x�/. Let V 2 V, where V stands for a basis of
neighborhoods of 0. Then

S

u2T.x/
fu C Vg is an open covering of T.x/. Since T.x/ is

compact, there exists a finite subset fu1; u2; : : : ; umg � T.x/ such that
mS

iD1
fui CVg 


T.x/. Since T is upper semicontinuous at x 2 X, there exists a neighborhood U of x
such that

T.x0/ �
n[

iD1
fui C Vg; for all x0 2 U :
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Since x� ! x, there exists �0 such that fx�g � U for all � � �0. Hence for each
� � �0, y� 2 ui C V for some ui 2 fu1; u2; : : : ; umg. Therefore, there exist a subnet
fyg � fy�g and ui 2 fu1; u2; : : : ; umg such that fyg � ui C V . Let this ui DW uV .
Corresponding to V 2 V, that is, for each V 2 V, there exist a subnet fyg � fy�g
and uV 2 T.x/ such that

fyg � uV C V : (1.15)

Let V2 � V1 for each V1;V2 2 V, if V2 � V1. Then V is a directed set and fuVg
is a net of T.x/. Since T.x/ is compact, there exist V0 � V and y 2 T.x/ such that
uV

0 ! y, where V 0 2 V0. Let V be a neighborhood of y. Since Y is a topological
vector space, there exists NV 2 V such that NV C NV 2 V � y. Since uV

0 ! y, there
exists V 00 2 V0 such that

uV
0 2 y C NV ; for all V 0 � V 00:

Hence for any � 2 V0 with � � NV \ V 00,

fu� g C V 0 � . y C NV/C NV � V:

Therefore by (1.15), there exists a subnet fyg � fy�g such that fyg � V . Thus
there exists a subnet fyg � fy�g such that y ! y for some y 2 T.x/.

Suppose that T is not upper semicontinuous at x 2 X. Then there exists an open
set V containing T.x/ such that for any neighborhood U� of x, there is a point x� 2
U� with T.x�/ \ Vc ¤ ;. Hence, there exist fxg � X converging to x and y 2
T.x/\Vc. Since y … T.x/ for all , fyg does not have subnet converging to some
point of T.x/. ut

The following results provide the characterization of upper semicontinuity and
lower semicontinuity, respectively.

Proposition 1.6 Let X and Y be topological spaces and T W X ! 2Y be a set-valued
map such that T.x/ is compact for each x 2 X. Then T is upper semicontinuous if
and only if for each open subset G of Y, the set

T�1C .G/ D fx 2 X W T.x/ � Gg

is open.

Proposition 1.7 Let X and Y be topological spaces. A set-valued map T W X ! 2Y

is lower semicontinuous if and only if T�1.G/ D fx 2 X W T.x/ \ G ¤ ;g is open
for every open subset G of Y.

Proposition 1.8 ([20, p.112, Theorem 6]) Let X and Y be topological spaces and
T W X ! 2Y be a set-valued map. If T is upper semicontinuous, then T is closed.
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Proposition 1.9 ([20, p.112, Theorem 7]) Let X and Y be topological spaces and
T1;T2 W X ! 2Y be set-valued maps. If T2 is upper semicontinuous, then the
mapping T D T1 \ T2 is upper semicontinuous.

The following proposition shows that under the compactness assumption on the
space Y, a set-valued map is closed if and only if it is upper semicontinuous. Notice
that this proposition cannot be applied to Example 1.15, as R2 is not compact.

Proposition 1.10 ([20, p.112, Corollary]) Let X and Y be topological spaces such
that Y is compact and T W X ! 2Y be a set-valued map. Then T is closed if and only
if it is upper semicontinuous.

Proof Assume that T is closed. Let eT be a set-valued map such that eT.x/ D Y for
each x 2 X. Then, by Proposition 1.9, T D T \eT is upper semicontinuous, because
eT is upper semicontinuous.

The reverse implication follows from Proposition 1.8. ut
Lemma 1.11 ([20, Theorem 3]) Let X and Y be topological spaces. If T W X ! 2Y

is upper semicontinuous on X and D is a compact subset of X, then T.D/ is compact.

Example 1.16 The function T1, defined in Example 1.15, is upper semicontinuous,
and for D1 D Œ0; 1�, T1.D1/ is compact. However, for the compact set D2 D 

1
4
; 1
2

�
,

the set T2.D2/, where T2 is also defined in Example 1.15, is compact, but T2 is not
upper semicontinuous.

The following lemma has been applied to the study of game theory (see [141]).

Lemma 1.12 ([141]) Let X and Y be Hausdorff topological vector spaces such that
Y is compact. Let f W X 	 Y ! R be a lower semicontinuous function and for each
fixed y 2 Y, the function x 7! f .x; y/ be upper semicontinuous on X. Then the
function � W X ! R defined by

�.x/ D min
y2Y f .x; y/; for all x 2 X

is continuous on X.
Let X be a metric space with metric d. We use the following notations:

2Xq D set of all nonempty and compact subsets of XI
2Xcl D set of all nonempty, closed and bounded subsets of XI

For any nonempty subset M and N of X and for any x 2 M, we define the distance
from x to N by

d.x;N/ D inf
y2N d.x; y/:

We define the number d.M;N/ as

d.M:N/ D sup
x2M

d.x;N/ D sup
x2M

inf
y2N d.x; y/:
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The Hausdorff metric H .M;N/ on 2Xcl is defined as

H .M;N/ D maxfd.M;N/; d.N;M/g; for all M;N 2 2Xcl:

Then H is metric on 2Xcl. If .X; d/ is complete metric space with metric d, then
.2Xcl;H / is a complete metric space.

Lemma 1.13 (Nadler’s Theorem) [115] Let .X; d/ be a metric space andH be a
Hausdorff metric on 2Xcl. If M and N are compact sets in X, then for each x 2 M,
there exists y 2 N such that

d.x; y/ � H .M;N/:

Now we define the continuity of a set-valued map in terms of " and ı.

Definition 1.43 Let .X; d/ and . Y; �/ be metric spaces. A set-valued map T W X !
2Yq is said to beH -continuous on X if for every " > 0, there exists a ı > 0 such that
for all x; y 2 X

H .T.x/;T. y// < " whenever d.x; y/ < ı:

Remark 1.22 The notions of continuity in the sense of Definitions 1.42 and 1.43 are
equivalent if T is compact-valued.

Definition 1.44 (H-Hemicontinuity) [145] Let K be a nonempty convex subset of
a normed space X and Y be a normed vector space. A nonempty compact-valued
map T W K ! 2L.X;Y/ is said to be H -hemicontinuous if for any x; y 2 K, the
mapping ˛ 7! H .T.x C ˛. y � x/;T.x// is continuous at 0C, where H is the
Hausdorff metric defined on 2L.X;Y/cl .

Definition 1.45 (u-Hemicontinuity) Let X and Y be topological vector spaces. A
set-valued map T W X 
 K ! 2Y n f;g is said to be u-hemicontinuous if for any
x; y 2 K and ˛ 2 Œ0; 1�, the set-valued map ˛ 7! T.˛x C .1 � ˛/y/ is upper
semicontinuous at 0C.

1.4.2 Fixed Point Theory for Set-Valued Maps

In 1929, Knaster, Kuratowski and Mazurkiewicz [96] formulated the so-called
KKM principle in the finite dimensional Euclidean space. Later, in 1961, it has
been generalized to infinite dimensional Hausdorff topological vector spaces by
Ky Fan [59]. Fan also established an elementary but very basic geometric lemma
for set-valued maps which is called Fan’s geometric lemma. In 1968, Browder
gave a fixed point version of Fan’s geometric lemma and this result is known as
Browder fixed point theorem. Since then there have been numerous generalizations



1.4 Tools from Nonlinear Analysis 43

of Browder fixed point theorem their applications to coincidence and fixed point
theory, minimax inequalities, variational inequalities, convex analysis, game theory,
mathematical economics, social sciences, and so on.

It is well known that the famous Browder fixed point theorem [33] is equivalent
to a maximal element theorem (see [138]). Such kind of maximal element theorems
are useful to establish the existence of solutions of vector variational inequalities,
vector equilibrium problems and their generalizations.

In this section, we recall some basic definitions from nonlinear analysis and
present Fan-KKM lemma and its generalizations and some famous fixed point
theorems for set-valued maps, namely, Nadler’s fixed point theorem, Browder fixed
point theorem and its generalizations, Kakutani fixed point theorem, etc.

Definition 1.46 Let X be a metric space and T W X ! 2X be a set-valued map with
nonempty values. A point x 2 X is said to be a fixed point of T if x 2 T.x/.

Definition 1.47 Let .X; d/ and . Y; �/ be metric spaces and H be a Hausdorff
metric on 2Ycl. A set-valued map T W X ! 2Ycl is said to be set-valued Lipschitz
map if there exists a constant ˛ > 0 such that

H .T.x/;T. y// � ˛d.x; y/; for all x; y 2 X:

The constant ˛ is called a Lipschitz constant for T. If ˛ < 1, then T is called a
set-valued contraction map. If ˛ D 1, then T is called nonexpansive.

In 1969, Nadler [115] extended the well-known Banach contraction principle for
set-valued maps and established the following fixed point theorem.

Theorem 1.33 (Nadler’s Fixed Point Theorem) [115] Let .X; d/ be a complete
metric space. If T W X ! 2Xcl is a set-valued contraction map, then T has a fixed
point.

Definition 1.48 Let X be a topological vector space and K be a nonempty subset of
X. A set-valued map T W K ! 2X is said to be a KKM-map if

co .fx1; x2; : : : ; xmg/ �
mS

iD1
T.xi/

for every finite subset fx1; x2; : : : ; xmg of X.
Obviously, if T is a KKM-map, then x 2 T.x/ for every x 2 K.

Example 1.17 Let X D K D R and the set-valued map T W X ! 2X be defined
by T.x/ D Œ0; x�, where Œ0; x� is the line segment between 0 and x. Then T is a
KKM-map.

Lemma 1.14 (Fan-KKM Lemma) [59] Let X be a Hausdorff topological vector
space and K a nonempty subset of X. Let T W K ! 2X be a KKM-map such that
T.x/ is a closed subset of X for all x 2 K and compact for at least one x 2 K. ThenT

x2K
T.x/ ¤ ;.
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Chang and Zhang [41] introduced the following concept of generalized KKM
mapping.

Definition 1.49 Let K be a nonempty subset of a Hausdorff topological vector
space X. A set-valued map T W K ! 2X is called a generalized KKM map if for
any finite set fx1; x2; : : : ; xmg � K, there is a finite subset fy1; y2; : : : ; ymg � X such
that for any subset fyi1 ; yi2 ; : : : ; yikg � fy1; y2; : : : ; ymg, 1 � k � m, we have

co .fyi1 ; yi2 ; : : : ; yikg/ �
k[

jD1
T.xij/:

Clearly, if T W K ! 2X is a KKM map, then it is generalized KKM map. Indeed,
for any finite set fx1; x2; : : : ; xmg � K, taking yi D xi, i D 1; 2; : : : ;m, then since T
is a KKM map, we have

co .fyi1 ; yi2 ; : : : ; yikg/ �
k[

jD1
T.xij/:

However, if T is a generalized KKM map, then it may not be a KKM map.

Example 1.18 [41] Let X D R, K D Œ�2; 2� and T W K ! 2X be defined by

T.x/ D
�

�
�

1C x2

5

	

; 1C x2

5




; for all x 2 K:

Then
S

x2K T.x/ D � 9
5
; 9
5

�
and x … T.x/ for all x 2 Œ�2;�9=5/ [ .9=5; 1�. It

follows that T is not a KKMmap. Next we prove that T is a generalized KKMmap.
If for any finite subset fx1; x2; : : : ; xmg of K, we take f y1; y2; : : : ; ymg � Œ�1; 1�, then
for any finite subset f yi1 ; yi2 ; : : : ; yikg � f y1; y2; : : : ; ymg, we have

co .f yi1 ; yi2 ; : : : ; yikg/ � Œ�1; 1� D
\

x2K
T.x/ �

k[

jD1
T.xij/;

that is, T is a generalized KKM map.
The following lemma is proved in [41] where convexity on K is assumed.

However, Ansari et al. [7] pointed out that this lemma is true without convexity
assumption on K.

Lemma 1.15 Let K be a nonempty subset of a Hausdorff topological vector space
X. If T W K ! 2X is a set-valued map and for each x 2 K, the set T.x/ is finitely
closed (i.e., for every finite-dimensional subspace L in X, T.x/ \ L is closed in the
Euclidean topology in L). Then the family of sets fT.x/ W x 2 Kg has the finite
intersection property if and only if T W K ! 2X is a generalized KKM mapping.
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Definition 1.50 [135] Let X and Y be topological spaces. A set-valued map T W
X ! 2Y is said to be transfer open-valued (respectively, transfer closed-valued) if
for every x 2 X, y 2 T.x/ (respectively, y … T.x/), there exists a point z 2 X such
that y 2 int.T.z// (respectively, y … cl.T.z//).

It is easy to see that a open-valued (respectively, closed-valued) set-valued map
is a transfer open-valued (respectively, transfer closed-valued) set-valued map. But
the converse is not true.

Lemma 1.16 ([42]) Let X be a nonempty set, Y be a topological space and T W
X ! 2Y be a set-valued map.

(a) T is transfer closed-valued if and only if
T

x2X T.x/ D T
x2X cl.T.x//.

(b) T is transfer open-valued if and only if
S

x2X T.x/ D S
x2X int.T.x//.

(c) X is a topological space, T.x/ is nonempty for each x 2 X and T�1 is transfer
open-valued, then X D S

y2Y int.T�1. y//.

Ansari et al. [7] established the following generalized form of Fan-KKM lemma.

Theorem 1.34 Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Let T W K ! 2X be a transfer closed-valued map such that cl.T.x0//
is compact for at least one x0 2 K, and let cl T W K ! 2X be a generalized KKM
map. Then

T
x2K T.x/ ¤ ;.

Proof Since cl T W K ! 2X is defined by .cl T/.x/ D cl.T.x// for all x 2 K, we
have that clT is a generalized KKM map with closed values. By Lemma 1.15, the
family of sets fT.x/ W x 2 Kg has the finite intersection property. Since cl.T.x0// is
compact, we have

T
x2K cl.T.x// ¤ ;. Since T is transfer closed-valued,

\

x2K
T.x/ D

\

x2X
cl.T.x// ¤ ;:

This completes the proof. ut
The following section lemma, due to Xiang and Debnath [137], is a gener-

alization of Fan section lemma [61] which can be derived by using Fan-KKM
Lemma 1.14.

Lemma 1.17 (Fan Section Lemma) Let K be a nonempty subset of a Hausdorff
topological vector space X. Let A be a subset of K 	 K such that the following
conditions hold.

(i) .x; x/ 2 A for all x 2 K;
(ii) For all y 2 K, the set Ay D fx 2 K W .x; y/ 2 Ag is closed in K;
(iii) For all x 2 K, the set Ax D f y 2 K W .x; y/ … Ag is convex or empty;
(iv) For a nonempty compact convex subset D � K with each x 2 K, there exists

y 2 D such that .x; y/ … A:

Then there exists Nx 2 K such that fNxg 	 K � A.
The following lemma is a generalization of Lemma 1.14.
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Lemma 1.18 ([46]) Let K be a nonempty convex subset of a topological vector
space X. Let T W K ! 2K be a KKM-map such that the following conditions hold.

(i) clK.T.Qx// is compact for some Qx 2 K;
(ii) For each A 2 F .K/ with Qx 2 A and each x 2 co.A/, T. y/\ co.A/ is closed in

co.A/.
(iii) For each A 2 F .K/ with Qx 2 A,

0

@clK

0

@
\

x2co.A/
T.x/

1

A

1

A \ co.A/ D
0

@
\

x2co.A/
T.x/

1

A \ co.A/:

Then
\

x2K
T.x/ ¤ ;.

Definition 1.51 Let X be a topological space and Y be a nonempty set. A set-valued
map T W X ! 2Y is said to have open lower section if the set T�1. y/ D fx 2 X W
y 2 T.x/g is open in X for every y 2 Y.

Lemma 1.19 ([136]) Let X be a topological space and Y be a convex subset of a
topological vector space. Let S;T W X ! 2Y be set-valued maps with open lower
sections. Then

(a) the set-valued map H W X ! 2Y, defined by H.x/ D co.S.x// for all x 2 X, has
open lower sections;

(b) the set-valued map J W X ! 2Y, defined by J.x/ D S.x/ \ T.x/ for all x 2 X,
has open lower sections.

The following fixed-point theorem has been proven by Browder [33].

Lemma 1.20 (Browder Fixed Point Theorem) Let K be a nonempty compact
convex subset of a Hausdorff topological vector space X. Suppose that T W K ! 2K

is a set-valued map with nonempty convex values and has open lower sections. Then
T has a fixed point.

We present a Browder type fixed point theorem for set-valued maps under
noncompact setting.

Theorem 1.35 ([9]) Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Let S;T W K ! 2K be set-valued maps such that the following
conditions hold.

(i) For all x 2 K, co.S.x// � T.x/ and S.x/ ¤ ;;
(ii) K D SfintK.S�1.x// W x 2 Kg;
(iii) If K is not compact, assume that there exist a nonempty compact convex subset

B of K and a nonempty compact subset D of K such that for each x 2 K n D
there exists Qy 2 B such that x 2 intK.S�1. Qy//.

Then there exists Nx 2 K such that Nx 2 T.Nx/.
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If S has open lower sections, then condition (ii) in Theorem 1.35 holds, and
hence, we have the following result.

Corollary 1.3 [9] Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Let S;T W K ! 2K be set-valued maps such that the following
conditions hold.

(i) For all x 2 K, co.S.x// � T.x/ and S.x/ ¤ ;;
(ii) The set S�1. y/ D fx 2 K W y 2 S.x/g is open;
(iii) If K is not compact, assume that there exist a nonempty compact convex subset

B of K and a nonempty compact subset D of K such that for each x 2 K n D
there exists Qy 2 B such that x 2 S�1.Qy/.

Then there exists Nx 2 K such that Nx 2 T.Nx/.
Chowdhury and Tan [47] establish the following version of Browder type fixed

point theorem for non-Hausdorff spaces.

Theorem 1.36 Let K be a nonempty convex subset of a topological vector space
Y and S;T W K ! 2K be set-valued maps. Assume that the following conditions
hold:

(a) For all x 2 K, S.x/ � T.x/.
(b) For all x 2 K, T.x/ is convex and S.x/ is nonempty.
(c) For all y 2 K, S�1. y/ D fx 2 K W y 2 S.x/g is compactly open.
(d) There exists a nonempty closed compact (not necessarily convex) subset D of K

and an element Qy 2 D such that K n D � T�1. Qy/.
Then there exists Ox 2 K such that Ox 2 T.Ox/.

The following maximal element theorem for a set-valued map is equivalent to
Corollary 1.3.

Theorem 1.37 ([49, 105]) Let K be a nonempty convex subset of a Hausdorff
topological vector space X. Let S;T W K ! 2K be set-valued maps satisfying the
following conditions:

(i) For all x 2 K, co.S.x// � T.x/;
(ii) For all x 2 K, x … T.x/;
(iii) For all y 2 K, S�1. y/ D fx 2 K W y 2 S.x/g is open in K;
(iv) There exist a nonempty compact subset D of K and a nonempty compact convex

subset B of K such that for all x 2 K n D, S.x/\ B ¤ ;.
Then there exists Nx 2 K such that S.Nx/ D ;.
Definition 1.52 (˚-Condensing Map) [125, 126] Let X be a Hausdorff topolog-
ical vector space, L be a lattice with a minimal element, and let ˚ W 2X ! L be
a measure of noncompactness on X and D � X. A set-valued map T W D ! 2X

is called ˚-condensing if M � D with ˚.T.M// � ˚.M/ implies that M is
precompact.
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Remark 1.23 Note that every set-valuedmap defined on a compact set is necessarily
˚-condensing. If X is locally convex, then a compact set-valued map (that is, T.D/
is precompact) is ˚-condensing for any measure of noncompactness˚ . Obviously,
if T W D ! 2X is ˚-condensing and if S W D ! 2X satisfies S.x/ � T.x/ for all
x 2 D, then S is also ˚-condensing.

Remark 1.24 If K is a nonempty, closed and convex subset of a locally convex
Hausdorff topological vector space X, then condition (iii) of Theorem 1.35 and
condition (iv) of Theorem 1.37 can be replaced by the following condition:

(iv)0 The set-valued map S W K ! 2K is ˚-condensing,

see Corollary 4 in [43].

Theorem 1.38 (Kakutani Fixed Point Theorem) [85] Let K be a nonempty
compact convex subset of a locally convex topological vector space X and Y be
a topological vector space. Let T W K ! 2Y be a set-valued map such that for each
x 2 K, T.x/ is nonempty, compact and convex. Then T has a fixed point, that is,
there exists Nx 2 K such that Nx 2 T.Nx/.

The Kakutani fixed point theorem is a set-valued version of the following
Brouwer fixed point theorem.

Theorem 1.39 (Brouwer’s Fixed Point Theorem) Let K be a nonempty, compact
and convex subset of a finite dimensional space Rn and f W K ! K be a continuous
map. Then there exists x 2 K such that f .x/ D x.

1.5 Variational Inequalities

Theory of variational inequalities is one of the powerful tools of current mathe-
matical technology, introduced separately by G. Fichera and G. Stampacchia in
early sixties. The ideas and techniques of variational inequalities are being applied
in various fields of mathematics, engineering, management and social sciences
including fluid flow through porous media, contact problems in elasticity, optimal
control, nonlinear optimization, transportation and economic equilibria, etc. During
the last three decades, variational inequalities are used as tools to solve optimization
problems; See for example [2, 6, 7, 11–16, 18, 30–33, 45, 55, 56, 64, 67, 69, 94, 98,
116, 121, 124, 132, 134, 139, 140, 142] and the references therein. In this section,
we give a brief introduction to the theory of variational inequalities.

Let X be a topological vector space with its topological dual X�, and K be a
nonempty convex subset of X. The value of l 2 X� at x is denoted by hl; xi. Let
F W K ! X� be a mapping. The variational inequality problem (in short, VIP) is to
find Nx 2 K such that

hF.Nx/; y � Nxi � 0; for all y 2 K: (1.16)

The inequality (1.16) is called variational inequality.
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Roughly speaking, the variational inequality (1.16) states that the vector F.Nx/
must be at a non-obtuse angle with all the feasible vectors emanating from Nx. In
other words, the vector Nx is a solution of VIP if and only if F.Nx/ forms a non-obtuse
angle with every vector of the form y � Nx for all y 2 K.

First let us consider an application of varianal inequalities in Partial Differential
Equations.

Example 1.19 (Inverse Problems in Partial Differential Equations) There is a
large number of examples in applied sciences that can be modeled by means of
partial differential equations (PDEs). The corresponding PDEs often involve certain
unknown variable parameters when a measurement of a solution of the PDE is
available. This leads to so-called inverse problems. The direct problem, on the other
hand, is to solve the PDE. As an example, let us consider the following elliptic
boundary value problem (BVP)

� r � .qru/ D f in˝; u D 0 on @˝; (1.17)

where˝ denotes a domain inR2 orR3 and @˝ is its boundary. Problems of the form
(1.17) have been studied in great detail in the literature due to their wide real-world
applications. For example, u D u.x/ may be the steady-state temperature at a fixed
point x of a body. Then qwould represent a variable thermal conductivity coefficient
and f would constitute the external heat source.When the problem (1.17) needs to be
solved, one can choose from a large number of concepts proposed in the literature.
Most approaches either regard problem (1.17) as a hyperbolic PDE in q or pose an
optimization problemwhose solution is an estimate of q. There exist two approaches
involving the reformulation of (1.17) as an optimization problem: The problem
(1.17) can either be formulated as an unconstrained optimization problem, or it can
be handled as a constrained optimization problem which involves the PDE in as a
constraint. Since the solution of equations corresponds to minimization problems
and therefore to variational inequalities as optimality conditions, the results to be
presented in this chapter are directly applicable to (1.17). For further applications
and in-depth analysis of inverse problems, we refer to [76].

The simplest example of a variational inequality problem is the problem of
solving a system of nonlinear equations.

Proposition 1.11 Let F W Rn ! Rn be a mapping. A vector Nx 2 Rn is a solution of
VIP if and only if F.Nx/ D 0.

Proof Let F.Nx/ D 0. Then, obviously, inequality (1.16) holds with equality.
Conversely, suppose that Nx satisfies the inequality (1.16). Then, by taking y D

Nx � F.Nx/ in (1.16), we get

hF.Nx/; Nx � F.Nx/� Nxi D hF.Nx/;�F.Nx/i � 0;

that is, �kF.Nx/k2 � 0, which implies that F.Nx/ D 0. ut
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If F.x/ is the gradient of a differentiable convex function f W Rn ! R, then the
VIP provides the necessary and sufficient condition for a solution of an optimization
problem.

Proposition 1.12 Let K be a nonempty convex subset of Rn and f W K ! R be a
differentiable function. If Nx is a solution of the following optimization problem:

minimize f .x/; subject to x 2 K; (1.18)

then Nx is a solution of VIP with F � rf .

Proof For any y 2 K, define a function ' W Œ0; 1� ! R by

'.�/ D f .Nx C �. y � Nx//; for all � 2 Œ0; 1�:

Since '.�/ attains its minimum at � D 0, therefore, ' 0.0/ � 0, that is,

hrf .Nx/; y � Nxi � 0; for all y 2 K: (1.19)

Hence, Nx is a solution of VIP with F � rf . ut
Proposition 1.13 Let K be a nonempty convex subset of Rn and f W K ! R be a
pseudoconvex function. If Nx is a solution of VIP with F.Nx/ D rf .Nx/, then it is a
solution of the optimization problem (1.18).

Proof Suppose that Nx is a solution of VIP, but not an optimal solution of the
optimization problem (1.18). Then there exists a vector y 2 K such that f . y/ < f .Nx/.
By pseudoconvexity of f , we have hrf .Nx/; y � Nxi < 0, which is a contradiction to
the fact that Nx is a solution of VIP. ut

Let K be a closed convex cone in a topological vector space X and F W K ! X�
be a mapping. The nonlinear complementarity problem (NCP) is to find a vector
Nx 2 K such that

F.Nx/ 2 K� and hF.Nx/; Nxi D 0; (1.20)

where K� is the dual cone of K.
For further details and applications of complementarity problems, we refer to

[56, 64, 74, 75, 87–89, 131] and the references therein.
The next result provides the equivalence between a nonlinear complementarity

problem and a variational inequality problem.

Proposition 1.14 If K is a closed convex pointed cone in a topological vector space
X, then VIP and NCP have precisely the same solution sets.

Proof Let Nx 2 K be a solution of VIP. Then

hF.Nx/; y � Nxi � 0; for all y 2 K: (1.21)
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In particular, taking y D x C Nx in the above inequality, we get

hF.Nx/; xi � 0; for all x 2 K;

which implies that F.Nx/ 2 K�.
By substituting y D 2Nx in inequality (1.21), we obtain

hF.Nx/; Nxi � 0; (1.22)

and again taking y D 0 in inequality (1.21), we get

hF.Nx/;�Nxi � 0: (1.23)

Inequalities (1.22) and (1.23) together imply that hF.Nx/; Nxi D 0. Hence, Nx is a
solution of NCP.

Conversely, suppose that Nx 2 K is a solution of NCP, then we have

hF.Nx/; Nxi D 0 and hF.Nx/; yi � 0; for all y 2 K:

Thus,

hF.Nx/; y � Nxi � 0; for all y 2 K:

Hence, Nx is a solution of VIP. ut
Let K be a nonempty subset of a normed space X and T W K ! K be a mapping.

The fixed point problem (FPP) is to find Nx 2 K such that

T.Nx/ D Nx: (1.24)

Now we give a relationship between a VIP and a FPP.

Proposition 1.15 Let K be a nonempty subset of a normed space X and T W K ! K
be a mapping. If the mapping F W K ! K is defined by

F.x/ D x � T.x/; (1.25)

then VIP (1.16) coincide with FPP (1.24).

Proof Let Nx 2 K be a fixed point of the problem (1.24). Then, F.Nx/ D 0, and thus,
Nx solves (1.16).

Conversely, suppose that Nx solves (1.16) with F.Nx/ D Nx � T.Nx/. Then T.Nx/ 2 K
and letting y D T.Nx/ in (1.16) gives �kNx � T.Nx/k2 � 0, that is, Nx D T.Nx/. ut

A problem closely related to the VIP is the following problem, known as Minty
variational inequality problem (MVIP): Find Nx 2 K such that

hF. y/; y � Nxi � 0; for all y 2 K: (1.26)
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The inequality (1.26) is known as Minty variational inequality (MVI). Minty [113]
gave a complete characterization of the solutions of VIP in terms of the solutions of
MVIP. Since the origin of VIP, most of the existence results for a solution of a VIP
are established by showing the equivalence between VIP and MVIP.

To distinguish between a variational inequality and Minty variational inequality,
we sometimes write Stampacchia variational inequality (SVI) instead of a varia-
tional inequality.

Contrary to the Stampacchia variational inequality problem (SVIP), Minty
variational inequality problem (MVIP) is a sufficient optimality condition for the
optimization problem (1.18) which becomes necessary if the objective function f is
pseudoconvex and differentiable.

Theorem 1.40 (Giannessi 1998) Let K be a nonempty convex subset of Rn and
f W K ! R be a differentiable function. The following statements hold:

(a) If Nx 2 K is a solution of MVIP with F � rf , then Nx is a solution of optimization
problem (1.18).

(b) If f is pseudoconvex and Nx 2 K is a solution of the optimization problem (1.18),
then it is a solution of MVIP with F � rf .

Proof

(a) Let y 2 K be arbitrary. Consider the function '.�/ D f .Nx C �. y � Nx// for all
� 2 Œ0; 1�. Since ' 0.�/ D hrf .NxC�. y� Nx//; y� Nxi and Nx is a solution of MVIP
with F � rf , it follows that

' 0.�/ D hrf .Nx C �. y � Nx//; y � Nxi � 0; for all � 2 Œ0; 1�:

This implies that ' is a nondecreasing function on Œ0; 1�, and therefore,

f . y/ D '.1/ � '.0/ D f .Nx/:

Thus, Nx is a solution of the optimization problem (1.18).
(b) Let Nx be an optimal solution of the optimization problem (1.18). Then for all

y 2 K, f .Nx/ � f . y/. Since f is a pseudoconvex differentiable function, by
Theorem 1.21, f is quasiconvex. Then by Theorem 1.18, we have

hrf . y/; y � Nxi � 0; for all y 2 K:

Thus, Nx is a solution of MVIP. ut
Definition 1.53 Let K be a nonempty convex subset of topological vector space X.
A mapping F W K ! X� is said to be

(a) lower hemicontinuous or radially lower semicontinuous if for any fixed x; y 2
K, the function � 7! F.xC�. y� x// defined on Œ0; 1� is lower semicontinuous;

(b) upper hemicontinuous or radially upper semicontinuous if for any fixed x; y 2
K, the function � 7! F.xC�. y� x// defined on Œ0; 1� is upper semicontinuous;
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(c) hemicontinuous or radially semicontinuous if for any fixed x; y 2 K, the
mapping � 7! F.x C �. y � x// defined on Œ0; 1� is continuous, that is, if F
is continuous along the line segments in K.

The following Minty lemma is an important tool in the theory of variational
inequalities when the mapping is monotone and the domain is convex.

Lemma 1.21 (Minty Lemma) Let K be a nonempty subset of a topological vector
space X and F W K ! X� be a mapping. The following assertions hold.

(a) If K is convex and F is hemicontinuous, then every solution of MVIP is a
solution of VIP.

(b) If F is pseudomonotone, then every solution of VIP is a solution of MVIP.

Proof

(a) Let Nx 2 K be a solution of MVIP. Then for any y 2 K and � 2 �0; 1�, z D
Nx C �. y � Nx/ 2 K, and hence,

hF.z/; z � Nxi � 0; for all � 2 �0; 1�;

which implies that

hF. y C �.Nx � y//; y � Nxi � 0; for all � 2 �0; 1�:

By the hemicontinuity of F, we have

hF.Nx/; y � Nxi � 0; for all y 2 K:

Hence, Nx is a solution of VIP.
(b) Obvious, by pseudomonotonicity of F. ut

It can be easily seen that if K is a nonempty closed convex subset of X and
F W K ! X� be hemicontinuous and pseudomonotone, then the solution set of VIP
is closed and convex. Moreover, if the F is strictly monotone, then the solution of
VIP is unique, provided it exists. Finally, we present a result on the existence of a
solution of VIP (1.16).

Theorem 1.41 ([131, Theorem 3.1]) Let X be a reflexive Banach space, K be a
nonempty bounded closed convex subset of X and T W K ! X� be a mapping.
Suppose that T is pseudomonotone and hemicontinuous. Then there exists a solution
x 2 K of VIP (1.16). Furthermore, if in addition T is strictly pseudomonotone, then
the solution is unique.
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1.5.1 Nonsmooth Variational Inequalities

Motivated by the optimality conditions in terms of the generalized directional
derivatives, we associate an optimization problem with the variational inequality
problem defined by means of a bifunction h.

Let K be a nonempty subset of Rn and h W K 	Rn ! R[ f˙1g be a bifunction.
The variational inequality problem in terms of a bifunction h is defined as follows:

Find Nx 2 K such that h.NxI y � Nx/ � 0; for all y 2 K: (VIP)h

When h.xI y � x/ D hF.x/; y � xi, where F W Rn ! Rn, then (VIP)h reduces to
the VIP studied in the previous section.

As we have seen in the previous section that the Minty variational inequality
problem is closely related to VIP, and also provides a necessary and sufficient
optimality condition for a differentiable optimization problem under convexity or
pseudoconvexity assumption. Therefore, the study of Minty variational inequality
defined by means of a bifunction h is also very important in the theory of nonsmooth
variational inequalities. The Minty variational inequality problem in terms of a
bifunction h is defined as follows:

Find Nx 2 K such that h. yI Nx � y/ � 0; for all y 2 K: (MVIP)h

To prove the equivalence between (VIP)h and (MVIP)h, we introduce the
following concept of upper sign continuity.

Definition 1.54 Let K be a nonempty convex subset of Rn. A bifunction h W K 	
Rn ! R[f˙1g is said to be upper sign continuous if for all x; y 2 K and � 2 �0; 1Œ,

h.x C �. y � x/I x � y/ � 0 implies h.xI y � x/ � 0:

This notion of upper sign continuity for a bifunction extends the concept of upper
sign continuity introduced in [70].

Clearly, every subodd radially upper semicontinuous bifunction is upper sign
continuous.

The following lemma is a generalization of Minty Lemma 1.21.

Lemma 1.22 Let K be a nonempty convex subset of Rn and h W K 	 Rn !
R [ f˙1g be a pseudomonotone and upper sign continuous bifunction such that
h is positively homogeneous in the second argument. Then Nx 2 K is a solution of
(VIP)hif and only if it is a solution of (MVIP)h.

Proof The pseudomonotonicity of h implies that every solution of (VIP)h is a
solution of (MVIP)h.

Conversely, let Nx 2 K be a solution of (MVIP)h. Then

h. yI Nx � y/ � 0; for all y 2 K: (1.27)
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Since K is convex, we have y� D Nx C �. y � Nx/ 2 K for all � 2 �0; 1Œ: Therefore,
inequality (1.27) becomes

h. y�I Nx � y�/ � 0:

As Nx � y� D �.Nx � y/ and h is positively homogeneous in the second argument, we
have

h. y�I Nx � y/ � 0:

Thus, the upper sign continuity of h implies that Nx 2 K is a solution of (VIP)h. ut
Let us recall the optimization problem:

minimize f .x/; subject to x 2 K; (P)

where K is a nonempty convex subset of Rn and f W K ! R is a function.
In the subsequent theorems, we relate the solutions of the problem (P) and (VIP)h.

Theorem 1.42 Let K be a nonempty convex subset of Rn, f W K ! R be a function
and h W K 	 Rn ! R [ f˙1g be a bifunction. If f is h-convex and Nx 2 K is a
solution of (VIP)h, then Nx solves the problem (P).

Proof By h-convexity of f , we have

f . y/� f .Nx/ � h.NxI y � Nx/; for all y 2 K:

Since Nx is a solution of (VIP)h, we have

h.NxI y � Nx/ � 0; for all y 2 K:

The last two inequalities together imply that

f . y/� f .Nx/ � 0; for all y 2 K;

that is, Nx is a solution of problem (P). ut
The h-convexity assumption in the above theorem can be weakened to h-

pseudoconvexity.
For the converse of Theorem 1.42 to hold, we do not require the function f to be

h-convex. However, we assume that the function f and the bifunction h satisfy the
following condition:

8 x 2 K; d 2 R
n W DCf .xI d/ � h.xI d/: (1.28)

Theorem 1.43 Let K be a nonempty convex subset of Rn, f W K ! R be a function
and h W K	Rn ! R[f˙1g satisfy the condition (1.28). If Nx is an optimal solution
of the problem (P), then Nx 2 K is a solution of (VIP)h.
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Proof Since K is convex and Nx is an optimal solution of problem (P), for any y 2 K,
we have

f .Nx/ � f .Nx C �. y � Nx//; for all � 2 �0; 1�:

This implies that

f .Nx C �. y � Nx// � f .Nx/
�

� 0; for all � 2 �0; 1�:

Taking lim inf as � ! 0C, we obtain

DCf .NxI y � Nx/ � 0; for all y 2 K;

which on using (1.28) implies that

h.NxI y � Nx/ � 0; for all y 2 K:

Hence, Nx is a solution of (VIP)h. ut
Thus, it is possible to identify the solutions of the optimization problem (P) with

those of the (VIP)h provided the objective function is h-convex or h-pseudoconvex.

Theorem 1.44 Let K be a nonempty convex subset of Rn and f W K ! R be a
function such that

h.xI y � x/ > f . y/ � f .x/; for all x; y 2 K and x ¤ y: (1.29)

Then every solution of the problem (P) is a solution of (VIP)h.

Proof Assume that Nx is a solution of the problem (P) but not a solution of (VIP)h.
Then there exists y 2 K such that

h.NxI y � Nx/ < 0: (1.30)

From (1.29), we reach to a contradiction to our assumption that Nx is a solution of the
problem (P). Hence, Nx is a solution of (VIP)h. ut

Next we establish that a solution of the Minty variational inequality problem
(MVIP)h is an optimal solution of the problem (P) under specific assumptions.

Theorem 1.45 Let K be a nonempty convex subset of Rn, f W K ! R be a radially
lower semicontinuous function and h W K 	 Rn ! R [ f˙1g satisfy condition
(1.28) and be positively homogeneous in the second argument. If Nx 2 K is a solution
of (MVIP)h, then it is a solution of the problem (P).

Proof Let Nx 2 K be a solution of (MVIP)h. Then

h. yI Nx � y/ � 0; for all y 2 K: (1.31)
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Let y 2 K, y ¤ Nx be arbitrary. Since f is radially lower semicontinuous, by
Theorem 1.31, there exists � 2 Œ0; 1Œ such that for w D y C �.Nx � y/, we have

DCf .wI Nx � y/ � f .Nx/ � f . y/: (1.32)

As � < 1, by the positive homogeneity of h in the second argument, we have from
relation (1.32) and the condition (1.28) that

.1 � �/�1h.wI Nx � w/ � f .Nx/ � f . y/:

From (1.31), we have

0 � h.wI Nx � w/ � .1� �/. f .Nx/ � f . y//;

and as � < 1, it follows that f .Nx/ � f . y/ � 0. Since y 2 K was arbitrary, it follows
that Nx is a solution of problem (P). ut

As in the differentiable case, the problem (MVIP)h is a necessary optimality
condition under the assumption of the convexity (or pseudoconvexity) of f .

Theorem 1.46 Let K be a nonempty convex subset ofRn, h W K	Rn ! R[f˙1g
be a bifunction and f W K ! R be a h-convex function. If Nx 2 K is solution of
problem (P), then it solves (MVIP)h.

Proof Since f is h-convex, we have

f .Nx/ � f . y/� h. yI Nx � y/ � 0; for all y 2 K:

Since Nx is a solution of problem (P), we obtain

0 � f .Nx/ � f . y/ � h. yI Nx � y/; for all y 2 K;

thus Nx solves (MVIP)h. ut
In the following theorem, we relax the h-convexity assumption but we add some

other assumptions.

Theorem 1.47 Let K be a nonempty convex subset ofRn, h W K	Rn ! R[f˙1g
satisfy the condition

8 x 2 K; d 2 R
n W h.xI d/ � DCf .xI d/ (1.33)

and be positively homogeneous and subodd in the second argument and f W K ! R

be a h-pseudoconvex function. If Nx 2 K is solution of problem (P), then it solves
(MVIP)h.

Proof Since Nx is a solution of problem (P), we have

f .Nx/ � f . y/; for all y 2 K:
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By Lemma 1.7(a), f is h-quasiconvex and hence,

h. yI Nx � y/ � 0; for all y 2 K;

thus Nx solves (MVIP)h. ut
We close this section by giving the following existence result for a solution of

(VIP)h.

Theorem 1.48 ([6, Theorem 6.8]) Let K be a nonempty compact convex subset of
Rn and h W K 	 Rn ! R [ f˙1g be a pseudomonotone bifunction such that h is
proper subodd in the second argument and the function x 7! h. yI x � y/ is lower
semicontinuous. Then (MVIP)h has a solution Nx 2 K. Furthermore, if h is upper sign
continuous and positively homogeneous as well as subodd in the second argument,
then Nx 2 K is a solution of (VIP)h.

For a thorough study on nonsmooth variational inequalities, we refer to [6].

1.5.2 Generalized Variational Inequalities

Let X be a topological vector space with its dual X�, K be a nonempty subset of
X, F W K ! 2X

�

be a set-valued map with nonempty values. The generalized
variational inequality problem (GVIP) is to find Nx 2 K and Nu 2 F.Nx/ such that

hNu; y � Nxi � 0; for all y 2 K: (1.34)

An element Nx 2 K is said to be a strong solution of GVIP if there exists Nu 2 F.Nx/
such that the inequality (1.34) holds.

The weak form of the GVIP is the problem of finding Nx 2 K such that for each
y 2 K, there exists Nu 2 F.Nx/ satisfies

hNu; y � Nxi � 0: (1.35)

It is called a weak generalized variational inequality problem (WGVIP). An element
Nx 2 K is said to be a weak solution of GVIP if for each y 2 K, there exists Nu 2 F.Nx/
such that the inequality (1.35) holds. It should be noted that Nu in WGVIP depends on
y. Of course, if F is a single-valued map, then both the problems mentioned above
reduce to the variational inequality problem (1.16).

Clearly, every strong solution of GVIP is a weak solution. However, the converse
is not true in general, see, for example, Example 8.1 in [6].

For the next result, we need the following theorem.

Theorem 1.49 (Kneser Minimax Theorem) [95] Let K be a nonempty convex
subset of a vector space X and D be a nonempty compact convex subset of a
topological vector space Y. Suppose that f W K 	 D ! R is lower semicontinuous
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and convex in the second argument and concave in the first argument. Then

min
y2D sup

x2K
f .x; y/ D sup

x2K
min
y2D f .x; y/:

The following lemma says that every weak solution of GVIP is a strong solution
if the set-valued map F is nonempty, compact and convex valued.

Lemma 1.23 Let K be a nonempty convex subset of X and F W K ! 2X
�

be a set-
valued map such that for each x 2 K, F.x/ is nonempty, compact and convex. Then
every weak solution of GVIP is a strong solution.

Proof Let Nx 2 K be a weak solution of GVIP. Then for each y 2 K, there exists
Nu 2 F.Nx/ such that

hNu; Nx � yi � 0;

that is,

inf
u2F.Nx/hu; Nx � yi � 0; for all y 2 K:

Define a functional f W K 	 F.Nx/ ! R by

f . y; u/ WD hu; Nx � yi:

Then for each y 2 K, the real-valued functional u 7! f . y; u/ is lower semicontinu-
ous and convex, and for each u 2 F.Nx/, the functional y 7! f . y; u/ is concave. Since
F.Nx/ is compact and convex, by Theorem 1.49, we have

inf
u2F.Nx/ supy2K

hu; Nx � yi D sup
y2K

inf
u2F.Nx/hu; Nx � yi � 0: (1.36)

Since F.Nx/ is compact, there exists Nu 2 F.Nx/ such that

sup
y2K

hNu; Nx � yi � 0;

and hence

hNu; y � Nxi � 0; for all y 2 K:

ut
If K D X, then clearly, WGVIP reduces to the following set-valued inclusion

problem : Find Nx 2 X such that

0 2 F.Nx/: (1.37)
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We consider the generalized complementarity problem which is one of the
most important problems from operations research. For details on complementarity
problems and their generalizations, we refer [2, 56, 64, 74, 75, 87–89, 130, 131, 135]
and the references therein.

Let K be a convex cone in X with its dual cone K� D fu 2 X� W hu; xi � 0
for all x 2 Kg. The generalized complementarity problem (GCP) is to find Nx 2 K
and Nu 2 F.Nx/ such that

Nu 2 K� and hNu; Nxi D 0: (1.38)

Proposition 1.16 ([6, Proposition 8.1]) .Nx; Nu/ is a solution of GVIP if and only if
it is a solution of GCP.

Let K be a nonempty subset of a normed space X and T W K ! 2K be a set-valued
map with nonempty values. The set-valued fixed point problem (in short, SVFPP)
associated with T is to find Nx 2 K such that

Nx 2 T.Nx/: (1.39)

The point Nx 2 K is called a fixed point of T if the relation (1.39) holds. This
problem can be converted into a generalized variational inequality formulation as
shown below in the set-valued version of Proposition 1.15.

Proposition 1.17 ([6, Proposition 8.2]) Let K be a nonempty subset of a normed
space X and T W K ! 2K be a set-valued map with nonempty values. If the set-
valued map F W K ! 2X is defined by

F.x/ D x � T.x/; (1.40)

then an element Nx 2 K is a strong solution of GVIP (1.34) if and only if it is a fixed
point of T.

Let K be a nonempty convex subset of a Banach space X and f W K ! R be a
function. Consider the following optimization problem:

minimize f .x/; subject to x 2 K: (1.41)

The following result shows that the GVIP with F.x/ D @f .x/, the subdifferential
of a convex function f , is a necessary and sufficient optimality condition for the
optimization problem (1.41).

Proposition 1.18 Let K be a nonempty convex subset of a Banach space X and
f W K ! R be a convex function. If Nx 2 K is a solution of the minimization
problem (1.41), then it is a strong solution of GVIP with F.x/ D @f .x/ for all
x 2 K. Conversely, if .Nx; Nu/ is a solution of GVIP with Nu 2 @f .Nx/, then Nx solves the
optimization problem (1.41).
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Proof Let Nx 2 K be a solution of the minimization problem (1.41). Then, f .Nx/ �
f . y/ for all y 2 K. By the definition of subdifferential of a convex function, 0 2
@f .Nx/. Hence, .Nx; 0/ is a solution of GVIP, that is, Nx is a strong solution of GVIP
with F.x/ D @f .x/ for all x 2 K.

Conversely, assume that .Nx; Nu/ is a solution of GVIP with F.x/ D @f .x/ for all
x 2 K. Then Nu 2 @f .Nx/ and

hNu; y � Nxi � 0; for all y 2 K: (1.42)

Since Nu 2 @f .Nx/, we have
hNu; y � Nxi � f . y/� f .Nx/; for all y 2 X: (1.43)

By combining inequalities (1.42) and (1.43), we obtain

f .Nx/ � f . y/; for all y 2 K:

Hence, Nx is a solution of the minimization problem (1.41). ut
It can be easily seen that if Nx is a weak solution of GVIP, even then it is a solution

of the minimization problem (1.41).

Theorem 1.50 ([130]) Let K be a nonempty compact convex subset of Rn and F W
K ! 2R

n
be an upper semicontinuous set-valued map such that for each x 2 K,

F.x/ is nonempty, compact and convex. Then there exists a solution .Nx; Nu/ of GVIP.
If K is not necessarily bounded, then we have the following result.

Theorem 1.51 ([6, Theorem 8.2]) Let K be a nonempty closed convex subset of
Rn and F W K ! 2R

n
be an upper semicontinuous set-valued map such that for each

x 2 K, F.x/ is nonempty, compact and convex. If there exist an element Qy 2 K and a
constant r > kQyk such that

max
u2F.x/hu; Qy � xi � 0; (1.44)

for all x 2 K with kxk D r, then there exists a solution .Nx; Nu/ of GVIP.
Theorems 1.50 and 1.51 also hold in the setting of Banach spaces. Some

existence results for a solution of GVIP under the assumption that the underlying
set K is convex but neither bounded nor closed, are derived in [62].

The following problem is the set-valued version of the Minty variational
inequality problem, known as generalized Minty variational inequality problem (in
short, GMVIP): Find Nx 2 K such that for all y 2 K and all v 2 F.y/, we have

hv; y � Nxi � 0: (1.45)

A weak form of the generalized Minty variational inequality problem is the
following problem which is called weak generalized Minty variational inequality
problem (WGMVIP): Find Nx 2 K such that for all y 2 K, there exists v 2 F. y/
satisfying the inequality (1.45).
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A solution of WGMVIP is called a weak solution of GMVIP. It is clear that every
solution of GMVIP is a weak solution of GMVIP.

The following result provides a necessary and sufficient condition for a solution
of the minimization problem (1.41).

Proposition 1.19 Let K be a nonempty convex subset of a Banach space X and
f W K ! R be a convex function. Then Nx 2 K is a solution of the minimization
problem (1.41) if and only if it is a solution of GMVIP (1.45) with F.x/ D @f .x/.

Proof Let Nx 2 K be a solution of GMVIP (1.45) but not a solution of minimization
problem (1.41). Then there exists z 2 K such that

f .z/ < f .Nx/: (1.46)

By Theorem 1.32, there exist � 2 �0; 1Œ and v 2 @f .z.�//, where z.�/ D �z C .1 �
�/Nx, such that

hv; z � Nxi D f .z/ � f .Nx/: (1.47)

By combining (1.46) and (1.47), we obtain

hv; z � Nxi < 0:
Since �.z � Nx/ D z.�/� Nx, we have

hv; z.�/� Nxi < 0;
a contradiction to our supposition that Nx is a solution of GMVIP (1.45).

Conversely, suppose that Nx 2 K is a solution of the minimization problem (1.41).
Then we have

f . y/� f .Nx/ � 0; for all y 2 K: (1.48)

Since f is convex, we deduce that

hv; y � Nxi � f . y/� f .Nx/; for all y 2 K and all y 2 @f . y/: (1.49)

From inequalities (1.48) and (1.49), it follows that Nx is a solution of GMVIP (1.45).
ut

Definition 1.55 Let K be a nonempty convex subset of a topological vector space
X. A set-valued map F W K ! 2X is said to be generalized hemicontinuous if for
any x; y 2 K and for all � 2 Œ0; 1�, the set-valued map

� 7! hF.x C �. y � x//; y � xi D
[

w2F.xC�. y�x//

hw; y � xi

is upper semicontinuous at 0.
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Definition 1.56 Let K be a nonempty convex subset of a topological vector space
X. A set-valued map F W K ! 2X

�

is said to be generalized pseudomonotone if for
every pair of distinct points x; y 2 K and for any u 2 F.x/ and v 2 F. y/, we have

hu; y � xi � 0 ) hv; y � xi � 0:

F is called generalized weakly pseudomonotone if for every pair of distinct points
x; y 2 K and for any u 2 F.x/, we have

hu; y � xi � 0 ) hv; y � xi � 0 for some v 2 F. y/:

Now we present some existence results for solutions of GVIP under different
kinds of generalized monotonicities.

The following result which was established by Konnov and Yao [103], is a set-
valued version of the Minty lemma.

Lemma 1.24 (Generalized Linearization Lemma) [6, Lemma 8.2] Let K be a
nonempty convex subset of a topological vector space X and F W K ! 2X

�

be a
set-valued map with nonempty values. The following assertions hold.

(a) If F is generalized hemicontinuous, then every solution of WGMVIP is a
solution of WGVIP.

(b) If F is generalized pseudomonotone, then every solution of WGVIP is a solution
of GMVIP.

(c) If F is generalized weakly pseudomonotone, then every solution of WGVIP is
a solution of WGMVIP.

Theorem 1.52 Let K be a nonempty compact convex subset of a Banach space
X and F W K ! 2X

�

be a generalized pseudomonotone and generalized
hemicontinuous set-valued map such that for each x 2 K, F.x/ is nonempty. Then
there exists a solution Nx 2 K of WGVIP. If, in addition, the set F.Nx/ is also compact
and convex, then Nx 2 K is a strong solution of GVIP.

Proof For each y 2 K, define two set-valued maps S;T W K ! 2K by

S. y/ D fx 2 K W 9u 2 F.x/; hu; y � xi � 0g ;

and

T. y/ D fx 2 K W 8v 2 F. y/; hv; y � xi � 0g ;

respectively. We divide the proof into five steps.

(i) We claim that S is a KKM map, that is, the convex hull co.f y1; y2; : : : ; ymg/
of every finite subset f y1; y2; : : : ; ymg of K is contained in the corresponding
union

Sm
iD1 S. yi/.
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Let Ox 2 co.f y1; y2; : : : ; ymg/. Then

Ox D
mX

iD1
�iyi; for some �i � 0 with

mX

iD1
�i D 1:

If Ox … Sm
iD1 S. yi/, then for all w 2 F.Ox/,

hw; yi � Oxi < 0; for all i D 1; 2; : : : ;m:

For all w 2 F.Ox/, it follows that

0 D hw; Ox � Oxi

D
*

w;
mX

iD1
�iyi �

mX

iD1
�i Ox
+

D
*

w;
mX

iD1
�i. yi � Ox/

+

D
mX

iD1
�ihw; yi � Oxi < 0;

which is a contradiction. Therefore, we must have

co.f y1; y2; : : : ; ymg/ �
m[

iD1
S. yi/;

and hence, S is a KKM map.
(ii) We show that S. y/ � T. y/ for all y 2 K, and hence T is a KKM map.

By generalized pseudomonotonicity of F, we have that S. y/ � T. y/ for all
y 2 K. Since S is a KKM map, so is T.

(iii) We assert that
T

y2K S. y/ D T
y2K T. y/.

From step (ii), we have

\

y2K
S. y/ �

\

y2K
T. y/;

and from Lemma 1.24, we have

\

y2K
S. y/ 


\

y2K
T. y/:

Therefore, the conclusion follows.
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(iv) We prove that for each y 2 K, T. y/ is a closed subset of K.
For any fixed y 2 K, let fxmg be a sequence in T. y/ such that xm ! Qx 2 K.

Since xm 2 T. y/, for all v 2 F. y/, we have hv; y � xmi � 0 for all m. As
hv; y�xmi converges to hv; y�Qxi, therefore hv; y�Qxi � 0, and hence, Qx 2 T. y/.
Consequently, T. y/ is closed.

(v) Finally, we show that the WGVIP is solvable.
From step (iv), T. y/ is a closed subset of the compact set K, and hence,

it is compact. By step (ii) and Lemma 1.14, we have
T

y2K T. y/ ¤ ;.
Consequently, by step (iii), we also have

T
y2K S. y/ ¤ ;. Hence, there exists

Nx 2 K such that

8y 2 K; 9Nu 2 F.Nx/ W hNu; y � Nxi � 0: (1.50)

Thus, Nx is a solution of WGVIP.

If, in addition, the set F.Nx/ is also compact and convex, then by Lemma 1.23,
Nx 2 K is a strong solution of GVIP. ut

1.6 Equilibrium Problems

Investigations of equilibrium states of a system play a central role in such diverse
fields as economics, mechanics, biology and social sciences. There are many general
mathematical problems which were suggested for modeling and studying various
kinds of equilibria. Many researchers were / are considering these problems in order
to obtain existence and uniqueness results and to propose solution methods. The Ky
Fan [59–61] type inequality is one of such problems, which plays an important role
in the theory of nonlinear analysis and optimization. It was W. Oettli who coined
the name “Equilibrium Problem” to the Ky Fan type inequality, perhaps, because it
is equivalent to find the equilibrium point of an optimization problem under certain
conditions. The mathematical formulation of an equilibrium problem (in short, EP)
is to find an element Nx of a set K such that

f .Nx; y/ � 0; for all y 2 K; (1.51)

where f W K 	 K ! R is a bifunction such that f .x; x/ � 0 for all x 2 K. It
seems the most general problem and includes other equilibrium type ones such as
optimization problem, saddle point problem, fixed point problem, complementarity
problems, variational inequality problems, Nash equilibrium problem, etc. In this
general form, EP was first considered by H. Nikaido and K. Isoda [119] as an
auxiliary problem to establish existence results for Nash equilibrium points in non-
cooperative games [117, 118]. This transformation allows one to extend various
iterative methods, which were proposed for saddle point problems, for the case of
EP. In the theory of EPs, the key contribution was made by Ky Fan [59–61], whose
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new existence results contained the original technique which became a basis for
most further existence theorems in topological spaces. The work of Ky Fan perhaps
motivated by the min-max problems appearing in economic equilibrium. Within
the context of calculus of variations, motivated mainly by the work of Stampacchia
[132], there arises the work of Brézis, Niremberg and Stampacchia [31] establishing
a more general result than that in [61]. After the work of Blum and Oettli [29], it
emerged as a new direction of research in nonlinear analysis, optimization, optimal
control, game theory, mathematical economics, etc.

Example 1.20

(a) Minimization Problem. Let K be a nonempty set and ' W K ! R be a real-
valued function. The minimization problem (in short, MP) is to find Nx 2 K such
that

'.Nx/ � '. y/; for all y 2 K: (1.52)

If we set f .x; y/ D '. y/� '.x/ for all x; y 2 K, then MP is equivalent to EP.
(b) Saddle Point Problem. Let K1 and K2 be nonempty sets and ` W K1 	 K2 ! R

be a real-valued bifunction. The saddle point problem (in short, SPP) is to find
.Nx1; Nx2/ 2 K1 	 K2 such that

`.Nx1; y2/ � `. y1; Nx2/; for all . y1; y2/ 2 K1 	 K2: (1.53)

Set K WD K1 	 K2 and define f W K 	 K ! R by

f ..x1; x2/; . y1; y2// D `. y1; x2/ � `.x1; y2/ (1.54)

for all .x1; x2/; . y1; y2/ 2 K1 	 K2. Then SPP coincides with EP.
(c) Nash Equilibrium Problem. Let I D f1; 2; : : : ;mg be the set of players. For

each player i 2 I, let Ki be the strategy set of the ith player. Let K D Qm
iD1 Ki.

For every player i 2 I, let 'i W K ! R be the loss function of the ith player,
depending on the strategies of all players. For x D .x1; x2; : : : ; xm/ 2 K, we
define xi D .x1; : : : ; xi�1; xiC1; : : : ; xm/. Then Nx D .Nx1; Nx2; : : : ; Nxm/ 2 K is called
a Nash equilibrium point if for all i 2 I,

'i.Nx/ � 'i.Nxi; yi/; for all yi 2 Ki: (1.55)

This means that no player can reduce his loss by varying his strategy alone. We
now define

f .x; y/ D
mX

iD1

�
'i.x

i; yi/ � 'i.x/
�
:

For such f , EP coincides with Nash equilibrium problem (in short, NEP) of
finding Nx D .Nx1; Nx2; : : : ; Nxm/ 2 K such that (1.55) holds. Indeed, if (1.55) holds
for all i 2 I, obviously (1.51) is fulfilled. If, for some i 2 I, we choose y 2 K
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such that yi D Nxi, then

f .Nx; y/ D 'i
�Nxi; yi

� � 'i.Nx/:

Thus EP implies NEP.
(d) Fixed Point Problem. Let X be an inner product space whose inner product is

denoted by h:; :i. Let K be a nonempty subset of X and ' W K ! K be a given
mapping. The fixed point problem (in short, FPP) is to find Nx 2 K such that
'.Nx/ D Nx.

Setting f .x; y/ D hx � '.x/; y � xi. Then Nx is a solution of FPP if and only if
it is a solution of EP.

Indeed, FPP implies EP is obvious. If EP is satisfied, then by choosing y D
'.Nx/, we obtain

0 � f .Nx; '.Nx// D �kNx � '.Nx/k2:

(e) Variational Inequality Problem. Let X, X�, K and F be the same as in
the formulation of variational inequality problem defined by (1.16). We set
f .x; y/ D hF.x/; y � xi for all x; y 2 K. Then VIP is equivalent to EP.

Let K and h be the same as defined in the formulation of nonsmooth
variational inequality problem (VIP)h. If we define f .x; y/ D h.xI y � x/, then
(VIP)h is equivalent to EP.

For further details on different special cases of EP, we refer to [3, 29, 65, 66, 80,
91–93] and the references therein.

Most of the results on the existence of solutions for equilibrium problems
are derived in the setting of topological vector spaces either by using Browder
type or Kakutani type fixed point theorems or by using Fan-KKM type theorems.
Blum, Oettli and Théra [29, 120] have studied the existence of solutions of
equilibrium problems in the setting of complete metric spaces inspired by the well-
known Ekeland’s variational principle [53, 54]. They extended Ekelend’s variational
principle for bifunctions and established several equivalent formulations, namely,
Takahashi’s minimization theorem [133] and Caristi-Kirk’s fixed point theorem
[34]. After the work of Blum, Oettli and Théra, several people have started working
in this direction and established existence results for solutions of equilibrium
problems in different settings or under different assumptions, see, for example,
[1, 3–5, 26, 90, 106, 122, 123] and the references therein.

For solution methods for equilibrium problems, we refer to [51, 79, 99–101, 104,
109, 144] and the references therein.

Let X be a topological vector space, K be a nonempty convex subset of X and
f W K 	 K ! R be a bifunction such that f .x; x/ D 0 for all x 2 K. A problem
closely related to EP is the following problem, called dual equilibrium problem (in
short, DEP) orMinty equilibrium problem (in short, MEP): find Nx 2 K such that

f . y; Nx/ � 0; for all y 2 K: (1.56)
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Konnov and Schaible [102] defined the duality for equilibrium problems by using
the rule that the dual of the dual is the primal, and used dual equilibrium problem.
They proposed various duals of EP. The duality of equilibrium problems is also
studied by Martínez-Legaz and Sosa [111] and Bigi et al. [27] but by using dif-
ferent approaches. However, Mastroeni [112] studied gap functions for equilibrium
problems which convert an equilibrium problem to an optimization problem.

When f .x; y/ D g.x; y/C h.x; y/ for all x; y 2 K with g; h W K 	K ! R such that
g.x; x/ � 0 and h.x; x/ D 0 for all x 2 K, then EP reduces to find Nx 2 K such that

g.Nx; y/C h.Nx; y/ � 0; for all y 2 K: (1.57)

It was first proposed by Blum and Oettli [29] and further studied by Chadli et
al. [38, 39], Kalmoun [83] and Chadli et al. [40] with applications to eigenvalue
problems, hemivariational inequalities and anti-periodic solutions for nonlinear
evolution equations, see also [35, 37] and the references therein.

Let l W K 	 K ! R be a function. The implicit variational problem (for short,
IVP) is to find Nx 2 K such that

l.Nx; Nx/C g.Nx; Nx/ � l.Nx; y/C g.Nx; y/; for all y 2 K: (1.58)

It is considered and studied by Mosco [114] and it contains EP (1.51) and (1.57)
as special cases. It also includes variational and quasi-variational inequalities [18],
fixed point problem and saddle point problem, Nash equilibrium problem of non-
cooperative games as special cases. The existence of solutions of IVP was studied by
Mosco [114], while Dolcetta and Matzeu [52] discussed its duality and applications.

Let F;G W K ! L.X;Y/ be nonlinear operators. Set

l.x; y/ D hF.x/; y � xi and g.x; y/ D hG.x/; y � xi; for all x; y 2 K:

Then IVP reduces to the problem of finding Nx 2 K such that

hF.Nx/C G.Nx/; y � Nxi � 0; for all y 2 K: (1.59)

It is known as strongly nonlinear variational inequality problem (in short, SNVIP).
Now we present some basic results on the existence of solutions for EP (1.51).

Theorem 1.53 Let K be a nonempty convex subset of a Hausdorff topological
vector space X and f W K 	 K ! R be a bifunction vanishing on the diagonal,
i.e. f .x; x/ D 0 for all x 2 K such that the following conditions hold.

(i) f is quasiconvex in the second variable;
(ii) lim infx!x� f .x; y/ � f .x�; y/ for all y 2 K whenever x ! x� 2 K;
(iii) There exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B such that
f .x; Qy/ < 0.

Then EP (1.51) has a solution in K.
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Proof For each y 2 K, define

P. y/ D fx 2 K W f .x; y/ � 0g:

Then the solution set of EP (1.51) is S D T
y2K P. y/. By condition (ii), for each

y 2 K, P. y/ is closed.
Now we prove that the solution set S is nonempty. Assume contrary that S D ;.

Then for each x 2 K, the set

S.x/ WD f y 2 K W x … P. y/g D f y 2 K W f .x; y/ < 0ig ¤ ;:

By quasiconvexity of f in the second variable, we have that S.x/ is convex for each
x 2 K. Thus, S W K ! 2K defines a set-valued map such that for each x 2 K, S.x/ is
nonempty and convex. Now for each y 2 K, the set

S�1. y/ D fx 2 K W y 2 S.x/g D fx 2 K W f .x; y/ < 0g
D fx 2 K W f .x; y/ � 0gc D ŒP. y/�c

is open in K. Then the set-valued map S W K ! 2K satisfies all the conditions of
Corollary 1.3 (with S D T), and therefore, there exists a point Ox 2 K such that
Ox 2 S.Ox/, that is, 0 D f .Ox; Ox/ < 0, which is a contradiction. Hence the solution set S
of EP (1.51) is nonempty. ut

Allen [2] also proved a similar result with different coercivity condition (iii) but
by using Fan-KKM Lemma. If K is compact, then the condition (iii) in the above
theorem is satisfied. Therefore, if K is compact and f is upper semicontinuous in the
first argument, then Theorem 1.53 reduces to the well-known Ky Fan theorem [61].

The following result is a slight generalization of a particular form of Theorem 10
in [37].

Theorem 1.54 Let X be a Hausdorff topological vector space, K be a closed convex
subset of X and f W K 	 K ! R be a bifunction such that f .x; x/ D 0 for all x 2 K.
Suppose that

(i) for each finite subset E of K, min
x2co.E/max

y2E f .x; y/ � 0;

(ii) for each fixed y 2 K, the function x 7! f .x; y/ is upper semicontinuous;
(iii) there exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B such that
f .x; Qy/ < 0.

Then EP (1.51) has a solution.
Now we present a theorem which will be used in the sequel.

Theorem 1.55 ([29, Lemma 1]) Let X be a Hausdorff topological vector space,
K be a nonempty compact convex subset of X, D be a convex subset of X and f W
K	D ! R be concave and upper semicontinuous in the first argument, and convex
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in the second argument. Assume that

max
x2K f .x; y/ � 0; for all y 2 D:

Then there exists Nx 2 K such that f .Nx; y/ � 0 for all y 2 D.

Proof Assume contrary that the conclusion does not hold. Then for every x 2 K,
there exist y 2 D and " > 0 such that f .x; y/ < �". Therefore, the open sets

S". y/ WD fx 2 K W f .x; y/ < �"g; for y 2 D; " > 0;

cover the compact set K. Hence there exists a finite subcover fS"i. yi/gmiD1 of K. Let
" WD min1�i�m "i. Then from the fact that K � Sm

iD1 S"i. yi/, we have

min
1�i�m

f .x; yi/ � �"; for all x 2 K:

Since the function x 7! f .x; yi/ is concave, it follows from [127, Theorem 21.1]
that there exist real numbers �i � 0 for i D 1; 2; : : : ;m with

Pm
iD1 �i D 1 such

that
Pm

iD1 f .x; yi/ � �" for all x 2 K. The convexity of y 7! f .x; y/ implies with
Qy WD Pm

iD1 �iyi 2 D that f .x; Qy/ � �" for all x 2 K. Hence maxx2K f .x; Qy/ < 0, a
contradiction of our hypothesis. ut
Definition 1.57 ([146]) Let K be a nonempty convex subset of a topological vector
space X. A bifunction f W K 	 K ! R is said to be diagonally quasiconvex in y if
for any finite set fy1; y2; : : : ; ymg � K and any x0 2 co.fy1; y2; : : : ; ymg/, we have

f .x0; x0/ � max
1�i�m

f .x0; yi/:

f is said to be diagonally quasiconcave in y if �f is diagonally quasiconvex in y.
A bifunction f W K	K ! R is said to be � -diagonally quasiconvex in y for some

� 2 R if for any finite set fy1; y2; : : : ; ymg � K and any x0 2 co.fy1; y2; : : : ; ymg/,
we have

� � max
1�i�m

f .x0; yi/:

f is said to be � -diagonally quasiconcave in y for some � 2 R if �f is�� -diagonally
quasiconvex in y.

Definition 1.58 ([41]) Let K be a nonempty convex subset of a topological vector
space X. A bifunction f W K 	 K ! R is said to be � -generalized diagonally
quasiconvex in y if for any finite set fy1; y2; : : : ; ymg � K, there is a finite set
fx1; x2; : : : ; xmg � K such that for any set fxi1 ; xi2 ; : : : ; xikg � fx1; x2; : : : ; xmg and



1.6 Equilibrium Problems 71

any x0 2 co.fxi1 ; xi2 ; : : : ; xikg/, we have

� � max
1� j�k

f .x0; yij /:

f is said to be � -generalized diagonally quasiconcave in y if �f is �� -generalized
diagonally quasiconvex in y.

Chang and Zhang [41] gave the relation between generalized KKM maps and
� -generalized diagonally quasiconvexity (quasiconcavity).

Proposition 1.20 Let K be a nonempty convex subset of a topological vector space
X, f W K 	 K ! R be a bifunction and � 2 R. Then the following statements are
equivalent:

(a) The set-valued map T W K ! 2K defined by

T. y/ D fx 2 K W f .x; y/ � �g .respectively, T. y/ D fx 2 K W f .x; y/ � �g/

is a generalized KKM map.
(b) f .x; y/ is � -generalized diagonally quasiconcave (respectively, � -generalized

diagonally quasiconvex) in y.

Tian [136] introduced the following definition of � -transfer lower semicontinu-
ous functions.

Definition 1.59 Let X and Y be topological spaces. A bifunction f W X 	 Y !
R is said to be � -transfer lower semicontinuous (respectively, � -transfer lower
semicontinuous) function in the first argument for some � 2 R if for all x 2 X
and y 2 Y with f .x; y/ > � (respectively, f .x; y/ < � ), there exist a point z 2 Y and
a neighborhood N.x/ of x such that f .u; z/ > � (respectively, f .u; z/ < � ) for all
u 2 N.x/.

The bifunction f is said to be to � -transfer lower semicontinuous (respectively,
� -transfer lower semicontinuous) in the first argument if it is � -transfer lower
semicontinuous (respectively, � -transfer lower semicontinuous) for every � 2 R.

Ansari et al. [7] established the following minimax inequality theorem.

Theorem 1.56 Let K be a nonempty closed convex subset of a Hausdorff topolog-
ical vector space X and f ; g W K 	 K ! R be bifunctions such that the following
conditions hold.

(i) For any fixed y 2 K, the function x 7! f .x; y/ is 0-transfer upper semicontinu-
ous.

(ii) For any fixed x 2 K, the function y 7! g.x; y/ is 0-generalized diagonally
quasiconvex.

(iii) f .x; y/ � g.x; y/ for all .x; y/ 2 K 	 K.
(iv) The set fx 2 K W f .x; y0/ � �g is precompact (that is, its closure is compact)

for at least one y0 2 K.

Then there exists a solution Nx 2 K of EP (1.51).
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Proof Define set-valued maps S;T W K ! 2K by

S. y/ D fx 2 K W f .x; y/ � �g and T. y/ D fx 2 K W g.x; y/ � �g;

for all y 2 K. Condition (i) implies that S is a transfer closed-valued map. Indeed,
if x … S. y/, then f .x; y/ < 0. Since f .x; y/ is 0-transfer lower semicontinuous in x,
there is a z 2 K and a neighborhoodN.x/ of x such that f .u; z/ < 0 for all u 2 N.x/.
Then S.z/ � K n N.x/. Hence, x 2 cl .S.z//. Thus, S is transfer closed-valued.

From condition (ii) and Proposition 1.20, T is a generalized KKM map. From
(iii), we have that T. y/ � S. y/ for all y 2 K, and hence S is also a generalized KKM
map. So, cl S is also a KKM map. Condition (iv) implies that S. y0/ is precompact.
Hence, cl S. y0/ is compact. By Theorem 1.34,

\

y2K
S. y/ ¤ ;:

As a result, there exists Nx 2 K such that f .Nx; y/ � � for all y 2 K. ut
Remark 1.25

(a) If for every fixed y 2 K, the function x 7! f .x; y/ is upper semicontinuous in x,
then condition (i) of Theorem 1.56 is satisfied immediately.

(b) The following condition implies condition (iv) in Theorem 1.56.
(iv)0 There exist a compact subset D of K and y0 2 K such that for all

x 2 K n D, f .x; y0/ < 0.

For further details, existence results and applications of equilibrium problems,
we refer [1, 3–5, 7, 8, 22–29, 31, 35–41, 46, 47, 49, 51, 52, 57, 58, 65, 66, 71, 72,
77, 78, 80, 83, 84, 90–93, 99–102, 104, 107–109, 111, 112, 120, 128, 135, 142, 143]
and the references therein.
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Chapter 2
Analysis over Cones

An optimization problem is called a vector optimization problem if the objective
function is vector-valued. In general, a vector optimization problem is stated as
follows:

minimize g.x/

subject to x 2 K;
(2.1)

where g W K ! Y is a vector-valued function, X is a vector space, and Y is a
topological vector space and K � X is a nonempty set. Specifically, we consider
the special case of problem (2.1) with X D Rn and Y D R`, namely, we study the
problem

minimize f .x/ D �
f1.x/; f2.x/; : : : ; f`.x/

�

subject to x 2 K;
(2.2)

where f D �
f1; f2; : : : ; f`

� W Rn ! R` is called an objective function, x D
.x1; x2; : : : ; xn/ is called a decision (variable) vector, K � Rn is called the feasible
region, Rn is called the decision variable space, and f .K/ is called the feasible
objective region and it is a subset of the objective spaceR`. The problem (2.2) is also
called multiobjective optimization problem or multicriteria optimization problem.

Now, the question is, what does the word ‘minimize’ mean? Do we want to
minimize all the objective functions simultaneously? If yes, then it can be achieved
if there is no conflict between the objective functions. In this case, a solution can be
found, without requiring any special method, where every objective function attains
its minimum. Almost every real-world application of mathematics has conflictive
multiple criteria. For example, we consider a formal mathematical problem with
feasible set K D fx 2 R W �5 � x � 5g and objective functions

f1.x/ D x2; f2.x/ D x
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Fig. 2.1 Visualization of the
functions
f1.x/ D x2; f2.x/ D x for
x 2 Œ�5; 5�

and we want to minimize both objective functions over K:

minimize
�
f1.x/; f2.x/

�

subject to x 2 K:

In this problem, we have two criteria and one decision variable. Note that for each
function individually the corresponding optimization problem is easy, and x1 D 0

and x2 D �5 are the (unique) minimizers for f1 and f2 on K, respectively. Now the
questions are: What are the ‘minima’ and the ‘minimizer’ in this situation? Does
x1 D 0 or x2 D �5 or both simultaneously minimize f1 and f2? Of course, the
answer to the latter question is ‘no’. Both functions f1 and f2 are plotted against
each other at the right hand side in Fig. 2.1. We can see that there does not exist a
solution that minimizes f1 and f2 at the same time. In order to determine minimal
solutions of this problem, consider, for instance, the vector Qf in Fig. 2.1. We can
move Qf along the parabola, minimizing both objective functions at the same time,
until the vertex Nf of the parabola. If we want to minimize f2 further, we can only
do so by maximizing f1. The lower bound of the parabola is called Pareto frontier,
and it symbolizes that one objective function cannot be minimized without the other
being worsened. In this example, both objectives f1 and f2 are clearly conflicting, as
minimizing f1 results in a maximization of f2 on the Pareto frontier.

The following example describes a well-known application of vector optimiza-
tion in financial mathematics.

Example 2.1 (Portfolio Optimization) A shareholder would like to invest in a
portfolio consisting of n shares that maximizes his wins and minimizes the risk
associated with the shares at the same time. Let x D .x1; x2; : : : ; xn/ denote the
vector of shares and r D .r1; r2; : : : ; rn/ be the vector of returns of the respective
shares. The return of the whole portfolio is then rp WD hr; xi. Of course, the return
vector r is subject to uncertainties, and r is a vector of random variables, such that
we write E.r/ DW � (here E.�/ denotes the expected values of r) and E.ri/ DW �i,
i D 1; 2; : : : ; n. The covariance matrix that represents the risk is denoted by
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C D

0

B
@

c11 � � � c1n
:::
: : :

:::

c1n � � � cnn

1

C
A, which is assumed to be positive definite. The entries in the

covariance matrix C can be computed by means of cij D EŒ.ri �E.ri// � .rj �E.rj//�
for i; j D 1; 2; : : : ; n. The values in the main diagonal of C are the variances of
the respective shares. The risk of a portfolio x can then be described by hx;Cxi.
Moreover, it is assumed that no short sales are allowed, i.e., xi � 0; i D 1; 2; : : : ; n,

and all available capital shall be used and normed to one, i.e.,
nX

iD1
xi D 1. The

problem of finding a portfolio of shares then reads

minimize
�
f1.x/; f2.x/

�

subject to x 2 K;

where f1 WD h��; xi, f2.x/ WD hx;Cxi, and K WD fx 2 Rn W xi � 0; i D
1; 2; : : : ; n;

Pn
iD1 xi D 1g. These objective functions are contradictive, because

higher returns are usually accompanied by higher risk.
The following example describes an application of vector optimization in

location theory.

Example 2.2 (Location Theory) Let m locations ai; i D 1; 2; : : : ;m, in the plane
R2 be given. Consider the problem of choosing a location for a new facility x 2 R2

with minimal distance to all given facilities. The problem then reads

minimize
�jja1 � xjjp ; jja2 � xjjp ; : : : ; jjam � xjjp

�

subject to x 2 R
2;

where jj � jjp is an arbitrary norm in R2. Figure 2.2 shows a visualization of this
problem with three existing locations ai, i D 1; 2; 3. One searches for one new
location x with minimal Euclidian distance to all three existing locations. Now,
when moving x towards Nx, we can see that the distance to a2 declines, whereas
the distances towards a1 and a2 increase. Thus, here we have the typical situation of
conflicting goals in vector optimization.

As we have seen above, because of the contradiction and possible incommensura-
bility of the objective functions, it is not possible to find a single solution that would
be optimal for all the objectives simultaneously. Vector optimization problems are
in a sense ill-defined. There is no natural ordering in the objective space because

Fig. 2.2 Visualization of
Example 2.2 with three
existing locations
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it is only partially ordered, meaning that, for example, .1; 1/ can be said to be less
than .3; 3/, but how to compare .1; 3/ and .3; 1/? This means that the objective
functions are at least partially conflicting. They may also be incommensurable (that
is, in different units). Before defining the solution concepts of a vector optimization
problem, we study (preference) orders.

2.1 Orders

A preference order represents a preference attitude of the decision maker in the
objective space. It is a binary relation on a set f .K/ WD

[

x2K
f .x/, where f is a vector-

valued function and K is a feasible decision set. Below we give the definition of a
binary relation.

Definition 2.1 (Binary Relation) Let A be an arbitrary nonempty set and let A	A
represent the set of ordered pairs f.a; b/ W a; b 2 Ag. Then a binary relation (or an
order relation)R on A is a subset of A 	 A.

Definition 2.2 A binary relationR on an arbitrary set A is called

(a) reflexive if for all a 2 A, .a; a/ 2 R;
(b) irreflexive if for all a 2 A, .a; a/ … R;
(c) symmetric if for all a; b 2 A, .a; b/ 2 R implies .b; a/ 2 R;
(d) asymmetric if for all a; b 2 A, .a; b/ 2 R implies .b; a/ … R;
(e) antisymmetric if for all a; b 2 A, .a; b/ 2 R and .b; a/ 2 R imply a D b;
(f) transitive if for all a; b; c 2 A, .a; b/ 2 R and .b; c/ 2 R imply .a; c/ 2 R;
(g) negatively transitive if for all a; b; c 2 A, .a; b/ … R and .b; c/ … R imply

.a; c/ … R;
(h) connected or complete if for all a; b 2 A, .a; b/ 2 R or .b; a/ 2 R (possibly

both);
(i) weakly connected if for all a; b 2 A, a ¤ b implies .a; b/ 2 R or .b; a/ 2 R.

As a first example, consider for a nonempty set A the binary relation

RA WD f.x; x/ W x 2 Ag:

Then the relation RA is reflexive, transitive and antisymmetric. Furthermore, an
illustrative example is given by the binary relation

R� WD f.x; y/ 2 R
2 W x � yg;

which is also reflexive, transitive and antisymmetric.
The following proposition gives some interrelations between binary relations.



2.1 Orders 83

Proposition 2.1

(a) An asymmetric binary relation is irreflexive.
(b) A transitive and irreflexive binary relation is asymmetric.
(c) A negatively transitive and asymmetric relation is transitive.

Proof

(a) It is obvious.
(b) Suppose thatR is a transitive and irreflexive binary relation, but assume thatR

is not asymmetric. Then there exist two elements a; b 2 A with .a; b/ 2 R and
.b; a/ 2 R. Because R is transitive, we conduct .a; a/ 2 R, in contradiction to
R being irreflexive.

(c) Let R be a negatively transitive and asymmetric relation, but assume that R is
not transitive. Then there exist a; b; c 2 A such that .a; b/ 2 R and .b; c/ 2 R,
but .a; c/ … R. SinceR is asymmetric, it follows that .b; a/ … R. BecauseR is
negatively transitive, .b; a/ … R and .a; c/ … R imply .b; c/ … R, contradicting
.b; c/ 2 R. ut

Let R be a binary relation on an arbitrary set A. For any a; b 2 A, we also write
aRb instead of .a; b/ 2 R.

Definition 2.3 (Orders) A binary relationR on an arbitrary set A is called

(a) a preorder or quasi-order if it is reflexive and transitive;
(b) a weak order if it is asymmetric and negatively transitive;
(c) a partial order if it is reflexive, antisymmetric and transitive;
(d) a strict partial order if it is irreflexive and transitive (or equivalently, if it is

asymmetric and transitive);
(e) a total order or linear order if it is reflexive, antisymmetric, transitive (that is,

R is a partial order) andR weakly connected;
(f) a strict or strong order if it is transitive, irreflexive and weakly connected;
(g) an equivalence relation if it is reflexive, symmetric and transitive.

The following result can be easily proved and therefore we omit the proof.

Proposition 2.2 A total order is a weak order, and a weak order is a strict partial
order.

Definition 2.4 The pair .A;R/ is called an ordered structure if A is an arbitrary
set and R is a binary relation (or an order relation). An ordered structure .A;R/ is
called well-ordered if each nonempty subset B of A has first element b, meaning that
b 2 B and .b; a/ 2 R for all a 2 A.

At this point it is interesting to recall Zermelo’s Theorem: For every nonempty
set A there exists a partial order R on A such that the ordered structure .A;R/ is
well-ordered.
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In the context of orders, the relation R is usually written as 4. We use the
following convention for an arbitrary set A and for a; b 2 A:

a 4 b , .a; b/ 2 R; and a 64 b , .a; b/ … R:

Given any preorder 4, two other relations closely associated with 4 are defined
for a; b 2 A as follows:

a � b if and only if a 4 b and b 64 a; (2.3)

a  b if and only if a 4 b and b 4 a: (2.4)

The relation � is called strict preference relation associated with the preference
given by the preorder 4. The relation  is called equivalence (or indifference)
relation. The binary relation � means: a � b implies that a is preferred to b.

Proposition 2.3 Let 4 be a preorder on any arbitrary set A. Then the relation �
defined by (2.3) is irreflexive and transitive and the relation  defined by (2.4) is an
equivalence relation.

Proof Since 4 is a preorder, it is reflexive and transitive. Therefore,  is reflexive
and it is symmetric by definition. Now, we prove that  is transitive. Let a; b; c 2 A
such that a  b and b  c. Then by using transitivity of 4, we have

a 4 b 4 c ) a 4 c
c 4 b 4 a ) c 4 a

�

) a  c: (2.5)

Hence, 4 is transitive and thus it is an equivalence relation. By definition, � is
irreflexive. We have only to show that � is transitive. Let a; b; c 2 A such that a � b
and b � c. Then a 4 b 4 c and from the transitivity of 4, we have a 4 c. To show
that a � c, we assume that c 4 a. Since a 4 b, by transitivity of 4, we have c 4 b.
This contradiction implies that c 64 b, that is, a � c. ut
Definition 2.5 (Total Preorder) A binary relation 4 on an arbitrary set A is called
a total preorder if it is reflexive, transitive and weakly connected.

In the light of Definition 2.5, we can say that a binary relation is a total order if
it is antisymmetric and a total preorder. In other words, a binary relation 4 on an
arbitrary set A is a total order if4 is a partial order and for any a; b 2 A, either a 4 b
or b 4 a.

Proposition 2.4 If 4 is a total preorder on A, then the associated relation � is a
weak order. If � is a weak order on A, then 4 defined by

a 4 b , either a � b or .a 6� b and b 6� a/ (2.6)

is a total preorder.
For the proof of above proposition, we refer to Proposition 1.3 in [5, p. 9].
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Example 2.3 [5, Table 1.2.] Here we give some orders on the Euclidean space Rn.
For all x D .x1; x2; : : : ; xn/ 2 Rn and y D . y1; y2; : : : ; yn/ 2 Rn, we have

Name Definition

Weak componentwise order if xi � yi, i D 1; 2; : : : ; n

Componentwise order if xi � yi, i D 1; 2; : : : ; n; x ¤ y

Strict componentwise order if xi < yi, i D 1; 2; : : : ; n

Max order if max
iD1;2;:::;n

xi � max
iD1;2;:::;n

yi

Example 2.4 [15, Example 2.1.5 (1)] Let X be a nonempty set and P.X/ be the
class of all subsets of X. The binary relationR D f.A;B/ 2 P.X/	 P.X/ W A � Bg
is a partial order on P.X/. However, if X contains at least two elements, then R
is not weakly connected, and therefore R is not a total order. Moreover, R is not
connected.

Another example for a binary relation that is not a total order is given below.

Example 2.5 Let X WD fa; b; cg. The binary relation R D f.a; a/; .b; b/; .c; c/g is a
partial order on X, but R is not connected, not weakly connected and therefore not
a total order.

Example 2.6 [15, Example 2.1.5 (2)] Let N be the set of nonnegative integers and

RN D f.n;m/ 2 N 	 N W 9p 2 N such that m D n C pg:

Then N is well-ordered by RN, because .0;m/ 2 RN for all m 2 N. Clearly, RN

defines the usual order relation on N, and .n;m/ 2 RN is denoted by n � m or,
equivalently,m � n.

Below we give an example of a set which is not well-ordered by a total order
relation.

Example 2.7 Let Z be the set of integers and

RZ D f.n;m/ 2 Z 	 Z W 9p 2 N such that m D n C pg:

Apparently, Z is not well-ordered byRZ, althoughRZ is a total order.

Example 2.8 [15, Example 2.1.5 (4)] Let n 2 N and n � 2 be two given integers.
We define a binary relationRn on Rn by

Rn D f.x; y/ 2 R
n 	 R

n W for all i D 1; 2; : : : ; n; xi � yig;

where x D .x1; x2; : : : ; xn/ and y D .y1; y2; : : : ; yn/. Then Rn is a partial order on
Rn, but Rn is not a total order. For instance, the vectors e1 D .1; 0; 0; : : : ; 0/ and
e2 D .0; 1; 0; : : : ; 0/ cannot be compared by means ofRn.
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Example 2.9 Consider the binary relation

R2 D f.n;m/ 2 N 	 N W m D n C 1g:

Then the binary relationR2 is irreflexive and asymmetric.

Example 2.10 Let M WD f1; 2; 3; 6g, and consider the binary relation

R3 D f.n;m/ 2 M 	 M W n j mg;

where n j m denotes that n
m 2 N, i.e., n is divisible by m. Then the binary relation

R3 is a partial order onM.
Since the preference orders (and, more generally binary relations) on a set A are

subsets of the product space A	A, we can treat them as a graph of a set-valued map
T from A to 2A. Namely, we identify the preference order � with

Graph.T/ D f.a; b/ 2 A 	 A W b 2 T.a/g D f.a; b/ 2 A 	 A W a � bg

where Graph.T/ denotes the graph of a set-valued map T W A ! 2A defined by

T.a/ D fb 2 A W a � bg:

Another way of representing preference order by a set-valued map is the concept
of dominated structures.

Let X be a vector space, and A � X. For each a 2 A, the domination factor is
defined as

D.a/ D fb 2 X W a � a C bg [ f0g:

Then, clearly, the set-valued map D W A ! 2A represents the given preference order
and it is called domination structure.

Definition 2.6 The domination structure D.�/ is said to be

(a) asymmetric if for all a 2 A � X, b 2 D.a/ and b ¤ 0 implies �b … D.a C b/,
that is, if a 2 c C D.c/ and c 2 a C D.a/ then a D c;

(b) transitive if for all a 2 A � X, b 2 D.a/ and c 2 D.a C b/ imply b C c 2 D.a/,
that is, if a 2 c C D.c/ and c 2 d C D.d/ then a 2 d C D.d/;

(c) negatively transitive if for all a 2 A � X, b … D.a/ and c … D.a C b/ imply
b C c … D.a/.

For further detail on domination structure and its properties, we refer to [20, 28,
29, 35] and the references therein.

Definition 2.7 Let A be a partially ordered set with partial order 4 on A, and let B
be a nonempty subset of A.
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(a) An element a 2 A is called a lower bound of B if a 4 b for all b 2 B.
(b) An element a 2 A is called an upper bound of B if b 4 a for all b 2 B.
(c) An element a 2 A is called a minimal element of A if for all c 2 A such that

c 4 a implies a 4 c.
(d) An element a 2 A is called a maximal element of A if for all c 2 A such that

a 4 c implies c 4 a.

Remark 2.1 Since in Definition 2.7 the binary relation4 is a partial order and hence
it is antisymmetric, a 2 A is a minimal element of the set A if and only if

for c 2 A W c 4 a ) c D a

and a 2 A is a maximal element of A if and only if

for c 2 A W a 4 c ) a D c:

The existence of minimal and maximal elements of sets is an important issue
in vector optimization that is addressed in the following Zorn’s Lemma (or Zorn’s
Axiom).

Lemma 2.1 (Zorn’s Lemma) Let .A;4/ be a preordered set. If every nonempty
totally ordered subset B of A has an upper bound (lower bound), then A has at least
one maximal element (minimal element).

Next we show how the set of nonnegative elements of a set (here Rn, and R2

for purposes of illustration) can be used to derive a geometric interpretation of
properties of orders.

We use a cone to define an ordering which is compatible with scalar multiplica-
tion.

Proposition 2.5 Let C be a cone in a vector space X. Then �C defined as

x �C y , y � x 2 C (2.7)

is compatible with scalar multiplication and addition in X, that is,

for all x; y 2 X and � � 0 W x �C y ) �x �C �y (2.8)

and

for all x; y; z 2 X W x �C y ) .x C z/ �C . y C z/: (2.9)

Furthermore,

(a) �C is reflexive;
(b) C is convex if and only if �C is transitive;
(c) C is pointed if and only if �C is antisymmetric.
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Conversely, if 4 is a reflexive relation on X such that

for all x; y 2 X and � � 0 W x 4 y ) �x 4 �y (2.10)

and

for all x; y; z 2 X W x 4 y ) .x C z/ 4 . y C z/; (2.11)

then C D fx 2 X W 0 4 xg is a cone and 4 and �C are equivalent.

Proof Let x; y; z 2 X and � � 0 be arbitrarily chosen. If x �C y, then by (2.7) we
have y � x 2 C and �. y � x/ 2 C because C is a cone. Again, by (2.7), �x �C �y.
Also, x �C y implies y�x D . yCz/�.xCz/ 2 C, and therefore .xCz/ �C . yCz/.

(a) Let x 2 C. Because C is a cone, 0 � x D x � x D 0 2 C, i.e., x �C x, and hence,
�C is reflexive.

(b) We show that �C is transitive if C is convex.
Let x; y; z 2 X such that x �C y and y �C z. Then by (2.7), y � x 2 C and

z � y 2 C. Since the cone C is convex, we have . y � x/C .z � y/ D z � x 2 C
and so x �C z. Hence, �C is transitive.

Conversely, assume that �C is transitive. Let x; y 2 C. Then by (2.7), 0 �C x
and 0 �C y and so by (2.9), we have x �C x C y. The transitivity of �C implies
that 0 �C x C y and so x C y 2 C. Hence, the cone C is convex.

(c) We show that �C is antisymmetric if C is pointed. Let x; y 2 X such that x �C y
and y �C x. These yield y�x 2 C and x�y 2 C, that is, y�x 2 C\.�C/ D f0g.
Therefore, y D x.

Conversely, assume that �C is antisymmetric. If x 2 C\ .�C/, then by (2.7)
0 �C x and x �C 0. The antisymmetry of �C implies that x D 0.

Finally, let4 be a reflexive relation on X that satisfies (2.10) and (2.11). Consider
the set

C D fx 2 X W 0 4 xg: (2.12)

Then C is a cone. Indeed, let � � 0 and x 2 C. Then, 0 4 x. Since4 satisfies (2.10),
we obtain that �0 4 �x, and so �x 2 C. Moreover,

x 4 y ,
by (2.11)

.x � x/ 4 . y � x/ ,
by (2.12)

y � x 2 C ,
by (2.7)

x �C y:

Therefore,4 and �C are equivalent. ut
Remark 2.2 The preceding proposition shows that when f0g ¤ C � X, then the
relation �C defined by (2.7) is a preorder if and only if C is a convex cone, and �C

is a partial order if and only if C is a pointed convex cone.
The preceding proposition and remark say that with the help of a pointed convex

cone, we can always define a partial ordering �C on a vector space X. We also write
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x �C y for y �C x. Similarly, if C is a solid closed convex cone in a topological
vector space X, we define an associated strict partial ordering by

x <C y , y � x 2 int.C/; (2.13)

and write x >C y for y <C x. Note that the term strict partial ordering is adopted
here, although <C is not a partial order, as <C is not reflexive.

Proposition 2.6 Let C be a solid closed convex cone in a topological vector
space X. Then the strict partial ordering <C given by (2.13) has the following
properties:

(a) x 6<C x (i.e., <C is irreflexive).
(b) If x <C y, then x �C y.
(c) If x <C y and y <C z, then x <C z (transitivity).
(d) If x <C y and u <C v, then x C u <C y C v.
(e) If x <C y and � > 0, then �x <C �y (compatibility with positive scalar

multiplication).
(f) If x <C y, then for u and v small enough, x C u <C y C v (compatibility with

addition).

When C D RC, the partial ordering �C is the usual ordering � on R, and strict
partial ordering<C is the same as the usual strict ordering< on R.

Example 2.11 The nonnegative orthant C D R
nC is a closed, solid, pointed and

convex cone. The associated partial ordering �C corresponds to componentwise
inequality between vectors, such that x �C ymeans that xi � yi, i D 1; 2; : : : ; n. The
associated strict partial ordering <C corresponding to componentwise inequality
between vectors is then introduced as x <C y, which means that xi < yi, i D
1; 2; : : : ; n.

Example 2.12 The positive semidefinite cone SnC D fX 2 Sn W X � 0g is a closed,
solid, pointed and convex cone in the set of symmetric n 	 n matrices, Sn D fX 2
Rn�n W X D X>g which is a vector space of dimension n.n C 1/=2. The set of all
symmetric positive definite matrices is denoted by SnCC D fX 2 Sn W X � 0g. The
interior of SnC in Sn is SnCC. The partial ordering �C on Sn associated with C D SnC
is defined as X �C Y, means Y�X is positive semidefinite. The strict partial ordering
<C on Sn associated with C D SnCC is defined as X <C Y, means Y � X is positive
definite.

Example 2.13 [33, p. 6] Let K be a compact set in R and let CŒK� denote the space
of continuous functionals defined on K. Then the set

CŒK�C WD fx 2 CŒK� W x.t/ � 0; 8 t 2 Kg

is a convex pointed cone. The associated partial ordering �CŒK� corresponds to

x �CŒK� y , . y � x/.t/ � 0; for all t 2 K:
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Furthermore, we have

int.CŒK�C/ WD fx 2 CŒK� W x.t/ > 0; 8 t 2 Kg ¤ ;;

and the strict partial order then means that

x <CŒK� y , . y � x/.t/ > 0; for all t 2 K:

Example 2.14 [33, p. 7] Let K WD Œa; b� be an interval for a; b 2 R, and let CŒK� be
the space of all continuous functionals defined on K. Then the set

CŒK�mC WD fx 2 CŒK� W x.t/ � 0; 8t 2 K; x is monotone increasingg

is a convex pointed cone. Notice that int.CŒK�mC/ D ;, because for every Nx 2 CŒK�mC
and for every " > 0, we can find a functional x" 2 CŒK� with the property kNx�x"k �
" (where jjxjj WD sup

t2K
jx.t/j) such that x" is not monotone increasing on an arbitrary

value t 2 K. Thus no strict partial ordering can be defined here using CŒK�mC.
Throughout the book, we adopt the following notations.
Let Y be a topological vector space, C be a solid (that is, int.C/ ¤ ;), closed and

pointed convex cone in Y, and 0 denote the zero element in the considered space. We
denote by C0 D C n f0g. With respect to the cones C, C0 and int.C/, we define the
following partial ordering and strict partial ordering relationships: For all x; y 2 Y,

x �C y , y � x 2 CI x 6�C y , y � x … CI

x �C y , x � y 2 CI x 6�C y , x � y … CI

x �C0 y , y � x 2 C n f0gI x 6�C0 y , y � x … C n f0gI

x <C y , y � x 2 int.C/I x 6<C y , y � x … int.C/I

x >C y , x � y 2 int.C/I x 6>C y , x � y … int.C/:

For two given subsets A and B of Y, the following partial ordering and strict
partial ordering relationships are defined as follows:

A �C B , x �C y; for all x 2 A; y 2 BI

A 6�C B , x 6�C y; for all x 2 A; y 2 BI

A <C B , x <C y; for all x 2 A; y 2 BI

A 6<C B , x 6<C y; for all x 2 A; y 2 B:
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A topological vector space Y with a pointed convex cone C which induces the
partial ordering is called an ordered topological vector space and it is denoted by
.Y;C/.

Let Y be a topological vector space with partial ordering generated by a pointed
convex cone and x; y 2 Y, then y �C 0 implies y 6<C 0. Furthermore,

x �C 0 and y �C 0 imply .x C y/ �C 0;

x 6>C y and x �C 0 imply y 6<C 0;

x >C 0 and y �C 0 imply .x C y/ >C 0;

since C C int.C/ � int.C/.
In view of Proposition 2.5, we have the following lemmas.

Lemma 2.2 Let C be a solid pointed convex cone in a topological vector space Y.
Then for all x; y; z 2 Y, we have the following implications:

(a) x �C y implies x C z �C y C z;
(b) x >C y implies x C z >C y C z;
(c) x �C0 y implies x C z �C0 y C z;
(d) x 6�C y implies x C z 6�C y C z;
(e) x 6>C y implies x C z 6>C y C z;
(f) x 6�C0 y implies x C z 6�C0 y C z.

The same is true for �C, <C, �C0 , 6�C, 6<C, and 6�C0 , respectively.

Proof We prove this lemma for the binary relations �C, >C and �C0 . The proof for
the relations �C, <C, �C0 , 6�C, 6<C, and 6�C0 follows analogously.

(a) The compatibility with addition is proven in Proposition 2.5.
(b) If x >C y, then x � y 2 int.C/ and x � y D .x C z/ � . y C z/ 2 int.C/, and

therefore .x C z/ >C . y C z/.
(c) Let x �C0 y, and thus x � y 2 C n f0g and x � y D .x C z/� . y C z/ 2 C n f0g,

and therefore .x C z/ �C0 . y C z/.
(d) Let x 6�C y, which means x � y … C. Suppose that for arbitrary z 2 Y, x C z �C

y C z. But this means that .x C z/ � . y C z/ D x � y 2 C, a contradiction.
(e) and (f) can be proven analogously. ut
Lemma 2.3 Let C be a solid pointed convex cone in a topological vector space Y.
Then for all x; y; z 2 Y, we have the following implications:

(a) x �C y �C z implies x �C z;
(b) x �C y �C0 z implies x �C0 z;
(c) x �C y <C z implies x <C z;
(d) x 6�C y >C z implies x 6<C z;
(e) x 6<C y �C z implies x 6<C z;
(f) x 6>C y <C z implies x 6<C z;
(g) x 6>C y �C z implies x 6<C z.

The same is true for �C, <C, �C0 , 6�C, 6<C, and 6�C0 , respectively.



92 2 Analysis over Cones

Lemma 2.4 ([1]) Let C be a solid pointed convex cone in a topological vector
space Y, and x; y 2 Y with x <C 0 and y <C 0. Then the set of upper bounds
of x and y is nonempty and intersects with .� int.C//.

Proof We have to show that there exists c <C 0 such that x �C c and y �C c. It is
sufficient to choose c D ˛y with ˛ > 0 close to zero. ut
Lemma 2.5 ([1]) Let C be a solid pointed convex cone in a topological vector
space Y, and x; y 2 Y with x <C 0 and y 6�C 0. Then the set of upper bounds
of x and y is nonempty and intersects with Y n C.

Proof We have to show that there exists c 6�C 0 such that x �C c and y �C c. Since
int.C/ ¤ ;, there exists d 2 int.C/ such that d � y 2 C (see [18]). For t 2 Œ0; 1�,
set dt WD td C .1 � t/y. Since C is closed convex, there exists t0 2 �0; 1Œ such that
dt 2 C for all t 2 Œt0; 1�, and dt … C for all t 2 Œ0; t0Œ. In particular, we have that
dt0 �C 0 >C x implying dt0 � x 2 int.C/. Hence, for t1 < t0 sufficiently close to t0,
we still have dt1�x 2 int.C/. Set x D dt1 . Then c … C and thus c 6�C 0. Furthermore,
we have c �C x and c � y D t1.d � b/ �C 0. ut

2.2 Some Basic Properties

Proposition 2.7 Let Y be a topological vector space, and let K and E be two
nonempty subsets of Y such that K is open, E is convex and int.E/ ¤ ;. Then

K C cl.E/ D K C E D K C int.E/:

Proof Clearly, K C int.E/ � K C E � K C cl.E/. We next show that K C int.E/ 

K C cl.E/. Let y 2 K C cl.E/. Then there exist k 2 K and e 2 cl.E/ such that
y D k C e. Since Y is a topological vector space and K is an open subset of Y, there
is a balanced neighborhood V of 0 such that V C k � K. On the other hand, since
E is convex and e 2 cl.E/, for any neighborhood U of 0, .U C e/ \ int.E/ ¤ ;.
Hence, there exists v 2 V such that v C e 2 int.E/. Since V is balanced, �v 2 V .
Therefore, y D k C e D .k � v/C .e C v/ with .k � v/ 2 K and .e C v/ 2 int.E/.
Hence y 2 K C int.E/. ut
Proposition 2.8 Let Y be a topological vector space and C be a solid pointed
convex cone in Y. Then

cl.C/C int.C/ D int.C/:

Proof By Proposition 2.7, cl.C/ C int.C/ D int.C/ C int.C/. Since C is convex
cone, int.C/C int.C/ D int.C/. ut
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Proposition 2.9 Let Y be a topological vector space, A be a subset of Y and C a
solid pointed convex cone in Y. If A \ .� int.C// D ;, then

.A C cl.C// \ .� int.C// D ;:

Proof Suppose to the contrary that there exists y 2 .A C cl.C// \ .� int.C//. Then
there exist a 2 A, c0 2 cl.C/ and c 2 int.C/ such that y D a C c0 D �c. Hence,
a D �.c0 C c/ 2 � int.C/ by Proposition 2.8. This contradicts to the hypothesis that
A \ .� int.C// D ;. ut
Proposition 2.10 Let Y be a topological vector space and C be a solid pointed
convex cone in Y. Then

.cl.C//c � cl.C/ D .int.C//c � int.C/ D .cl.C//c:

Proof Since .cl.C//c is open and cl.C/ is convex with int.C/ ¤ ;, by Proposi-
tion 2.7, we have

.cl.C//c � clC D .clC/c � int.C/; (2.14)

because int.cl.C// D int.C/. Since .cl.C//c � .int.C//c, we obtain

.cl.C//c � int.C/ � .int.C//c � int.C/: (2.15)

By combining (2.14) and (2.15), we get

.cl.C//c � cl.C/ � .int.C//c � int.C/: (2.16)

Now, we claim that

.int.C//c � int.C/ � .cl.C//c: (2.17)

Indeed, suppose that there exist z 2 .int.C//c, c0 2 int.C/ and Qc 2 cl.C/ such
that z � c0 D Qc. Then by Proposition 2.8, z D Qc C c0 2 int.C/, a contradiction.

Finally,

.cl.C//c D .cl.C//c � 0 � .cl.C//c � cl.C/: (2.18)

Then, from (2.16) – (2.18), we have

.cl.C//c � cl.C/ � .int.C//c � int.C/ � .cl.C//c � .cl.C//c � cl.C/;
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that is,

.cl.C//c � cl.C/ D .int.C//c � int.C/ D .cl.C//c: ut

Proposition 2.11 Let Y be a topological vector space and C be a pointed convex
cone in Y with k 2 int.C/. Then the following statements hold:

(a) For every y 2 Y, there exists � 2 R such that y 2 � � k C int.C/;
(b) For every y 2 int.C/, there exists � > 0 such that y � � � k 2 int.C/.

Proof

(a) Let y 2 Y. Since k 2 int.C/, �k C int.C/ is a neighborhood of 0. Since Y is
a topological vector space, each neighborhood of 0 is absorbing. Hence, there
exists � > 0 such that y 2 �.�k C int.C//, that is, y 2 .�� � k C int.C//.

(b) Let y 2 int.C/. Then there exists a neighborhood U of 0 such that y � U �
int.C/. Since Y is a topological vector space, there exists � > 0 such that k 2
� � U. Hence y � 1

�
� k 2 y � U � int.C/. ut

Lemma 2.6 ([12]) Let Y be a topological vector space and C be a cone in Y and
e 2 int.C/. Then

Y D
[

f�e � int.C/ W � > 0g:

Proof Let U WD e � int.C/. Then U is an open set in Y. Since e 2 int.C/, 0 2 U.
Since C is a cone, we get

�U D �.e � int.C// � �e � int.C/; for all � > 0:

Thus,

[
f�U W � � 0g �

[
f�e � int.C/ W � > 0g;

because �e 2 int.C/. From Y D Sf�U W � � 0g (see Proposition 1.1), we conclude
that

Y D
[

f�e � int.C/ W � > 0g: ut

Lemma 2.7 ([3, Lemma 1.51]) Let Y be a topological vector space, C be a proper,
closed and convex cone in Y and e 2 int.C/. For � 2 R, we set C� D �e � C.
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(a) If z 2 C� for some � 2 R, then

z 2 �e � int.C/; for each � > �I

moreover,

z 2 �e � C; for each � > �:

(b) For each z 2 Y, there exists a real number � 2 R such that z … C�.
(c) Let z 2 Y. If z … C� for some � 2 R, then z … C� for each � < �.

Proof

(a) Let � > � and z 2 C�. Then we have

�e � z D .� � �/e C �e � z 2 int.C/C C � int.C/:

Thus,

z 2 �e � int.C/ � �e � C:

(b) Suppose contrary that there exists z0 2 Y such that for all � 2 R, z0 2 C�.
From (a), we have

z0 2 �e � int.C/; for all � 2 R:

Thus,

f�e � z0 W � 2 Rg � int.C/; equivalently, f��e � z0 W � 2 Rg � int.C/:

From Lemma 2.6, we have

Y D f�e � int.C/ W � 2 RC n f0gg:

Therefore, for each y 2 Y, there exist c 2 int.C/ and ˛ > 0 such that �y D
˛e � c, because �y 2 Y as Y is a vector space. Then,

y D �˛e C c D .�˛e � z0/C c C z0

2 int.C/C int.C/C z0 D z0 C int.C/:

Thus, Y � z0 C int.C/ which contradicts C ¤ Y.
(c) Let z … C� for some � 2 R. Suppose contrary that for some � < �, z 2 C�.

From (a), we have that z 2 C� which is a contradiction of our supposition. ut
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2.3 Cone Topological Concepts

In scalar optimization theory, compactness assumptions on the feasible solution
set plays an important role in existence results for a solution of an optimization
problem. It is well-known by the Weierstrass theorem that if a functional f W Rn 

K ! R is continuous and the set K is compact, then f attains its extremum on K.
A generalization of the Weierstrass theorem states that f has a minimal point if f is
lower semicontinuous and K is a compact set. When we consider the image of K,
we observe that f .K/ WD

[

x2K
f .x/ attains its minimum if f .K/ C RC is closed and

bounded from below. In this section, we focus on corresponding results for vector-
valued functions.

We start with a definition of C-closed and C-bounded sets.

Definition 2.8 Let Y be a Hausdorff topological vector space, and C be a convex
cone in Y. A set K � Y is said to be

(a) C-closed if K C cl.C/ is closed;
(b) C-bounded if K1 \ .� cl.C// D f0g, where K1 is the recession cone of the set

K.

Example 2.15 Consider the set K D f.x1; x2/ 2 R2 W x1 � 0; x2 � 0g and C D
f.x1; x2/ 2 R2 W x1 D x2 � 0g. Then the set K is C-closed as well as C-bounded.

We note that there is no implication between the closedness of K and its C-
closedness. Let C1 WD fx 2 R2 W x D r � .0; 2/; r 2 RCg be a given cone. The
set K1 WD ˚

.x1; x2/ 2 R2 W x1x2 D �1; x1 > 0
�
is closed but not C1-closed. For a

visualization of K1 and K1CC1, see the left illustration in Fig. 2.3. Furthermore, the
set K1 WD ˚

.x1; x2/ 2 R2 W x1x2 D �1; x1 > 0
�
is closed but not R2C-closed, see the

second illustration in Fig. 2.3. We can see that K1 C R2C yields the open halfplane
f.x1; x2/ 2 R2 W x1 > 0g. Also, the set K2 WD ˚

.x1; x2/ 2 R2 W x21 C x22 < 1
� [˚

.x1; x2/ 2 R2 W x21 C x22 D 1; x1 � 0; x2 � 0
�
is not closed but R2C-closed (see the

third illustration in Fig. 2.3). Moreover, the set K2 C R2C is R2C-bounded.

Remark 2.3 A bounded set is also C-bounded.

Remark 2.4 The following definition of C-boundedness is given by Luc [25]: K �
Y is C-bounded if for each neighborhood U of 0, there exists a positive number �
such that K � �U C C. We note that these two definitions of C-boundedness are
not comparable. For example, consider the set K D C D f.x1; x2/ 2 R

2 W x1 D x2g.
ThenK is C-bounded in the sense of Luc. But there exist some points ofK1, namely
.1; 1/, that belong to .� cl.C// n f0g. Hence, K is not C-bounded.

Lemma 2.8 Let Y be a Hausdorff topological vector space, K a nonempty subset
of Y and C a pointed, closed and convex cone in Y. Then the set K is C-bounded if
and only if K C C is C-bounded.

Proof SinceK1 � .KCC/1, we obtain thatK is C-bounded if .KCC/1\.�C/ D
f0g. Conversely, assume contrary that .K C C/1 \ .�C/ ¤ f0g. Then there exist
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+ + R+

+ R+

Fig. 2.3 Left: The set K1 is closed but not C1-closed. Right: The set K1 is closed but not R2
C
-

closed. Below: Here, the set K2 is not closed but R2
C
-closed. Moreover, K2 is R2C-bounded

sequences f�ng � RC with lim
n!C1�n D 0 and fyn C cng � Y C C with yn 2 Y and

cn 2 C such that lim
n!C1�n. yn C cn/ D �c 2 .�C/ n f0g.

Let us suppose that f�ncng has a convergent subsequence. We may assume that
lim

n!C1�ncn D Qc 2 C. Therefore, f�nyng converges to �c � Qc which is a nonzero

vector in K1 \ .�C/ since C is a pointed cone. So that we have K1 \ .�C/ ¤ f0g.
If we suppose that f�ncng has no convergent subsequence, then f�ncng is

unbounded. Then from the fact that K is bounded if and only if K1 D f0g,
we have .f�ncng/1 ¤ f0g. Namely, we may assume by taking a subsequence
of f�ncng that there exists another sequence ˛n � RC with lim

n!C1˛n D 0 and

lim
n!C1˛n.�ncn/ D Nc ¤ 0. Naturally, Nc 2 C. Since

k˛n�ncn C Nck D k˛nŒ�n. yn C cn/C c� � .˛n�ncn � Nc/ � ˛nck
� ˛nk�n. yn C cn/C ck C k˛n�ncn � Nc/k C ˛nkck;

it follows that lim
n!C1˛n�nyn D �Nc or K1 \ .�C/ ¤ f0g. ut

Definition 2.9 (C-Compact Set) Let C be a convex cone in a Hausdorff topologi-
cal vector space Y. A nonempty set K � Y is called
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(a) C-compact if for all y 2 K, the set . y � cl.C// \ K is compact;
(b) C-semicompact if every open cover of K of the form f. y˛ � cl.C//c W

y˛ 2 K; ˛ 2 	g has a finite subcover. In other words, whenever K �[

˛2	
.y˛ � cl.C//c, there is m 2 N and f˛1; ˛2; : : : ; ˛mg � 	 such that

K �
m[

iD1
.y˛i � cl.C//c ;

where . y˛ � cl.C//c denotes the complement of . y˛ � cl.C// in Y.

Note that the complement Y n . y˛ � cl.C// of . y˛ � cl.C// in Y is always open.

Remark 2.5 Notice that a compact set is always C-compact, while the reverse
statement is generally not true. Consider, for instance, the set K1 WD f.x1; x2/ 2
R2 W x1 C x2 � 0g and C D R2C. Then the set K1 is R2C-compact, while K1 is not a
compact set. Alternatively, the set K2 WD R2C is not compact but R2C-compact. For a
visualization, see Fig. 2.4.

Example 2.16

(a) The set

K D f.x1; x2/ 2 R
2 W x21 C x22 � 0; x1 < 0; x2 < 0g

is R2C-compact, R2C-bounded, but not R2C-closed.
(b) The set

K D ˚
.x1; x2/ 2 R

2 W x1x2 D �1; x1 > 0
�

is R2C-closed, R2C-bounded, but not R2C-compact.

+ R+
− R+

R+

− R+

Fig. 2.4 Left: The set K1 WD f.x1; x2/ 2 R
2 W x1 C x2 � 0g is R2

C
-compact, while K1 is not a

compact set. Right: R2
C

is not compact but R2
C
-compact (see Remark 2.5)
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(c) The set

K D f.x1; x2/ 2 R
2 W x1x2 D 1; x1 < 0g

is R2C-compact, R2C-closed, but not R2C-bounded.

Proposition 2.12 Every C-compact set is C-semicompact.

Proof Let K be a C-compact set and f. y˛ � cl.C//c W y˛ 2 K; ˛ 2 	g be an open
covering of K. For arbitrary y˛0 2 K, .y˛0 � C/ \ K is a compact set because K is
C-compact. Consider an open covering

O D ˚
.y˛ � cl.C//c W y˛ 2 K; ˛ 2 	; ˛ ¤ ˛0�

of .y˛0 � cl.C//\K. Since .y˛0 � cl.C//\K is a compact set, the open coverO has
a finite subcover of .y˛0 � cl.C// \ K. This subcover together with .y˛0 � cl.C//c

yields a finite cover of K, and so K is C-semicompact. ut
As we have seen in Proposition 2.12 that every C-compact set is C-semicompact.

But converse assertion may not be true in general.

Example 2.17 Consider C D R2C and the set K D f. y1; y2/ 2 R2 W y21 C y22 �
1; y1 > 0; y2 > 0g [ f.0; 0/g. Then K is C-semicompact but not C-compact.

Lemma 2.9 Let Y be a Hausdorff topological vector space and C be a closed
convex cone in Y. If M C C is C-semicompact, then M is C-semicompact.

Proof Let f. y˛ � C/c W y˛ 2 K; ˛ 2 	g be an open cover of K. For any y 2 K, let
y 2 . y˛0 �C/c with y˛0 2 K. Since C is a convex cone, we have yCC � . y˛0 �C/c.
In fact, if yCc 2 . y˛0�C/ for some c 2 C, then y 2 y˛0�C which is a contradiction.
Hence, f. y˛ �C/c W y˛ 2 K; ˛ 2 	g is also an open cover of K CC. Since this last
set is C-semicompact, this cover has a finite subcover which is a subcover of K. ut
Proposition 2.13 Let Y be a Hausdorff topological vector space and C be a closed
convex cone in Y. If K is C-closed and C-bounded, then K C C is C-compact, and
K is C-semicompact.

Proof For any y 2 K C C, let us consider the set . y � C/ \ .K C C/. Since
.K1 \ K2/1 � .K1/1 \ .K2/1 for any K1;K2 � Y and by Lemma 2.8, we have

.. y � C/ \ .K C C//1 � . y � C/1 \ .K C C/1 D .�C/\ .K C C/1 D f0g

as K is C-bounded. Therefore, . y � C/\ .K C C/ is a closed and bounded set, that
is, a compact set for all y 2 Y C C. By the definition of C-compactness, we have
K C C is C-compact set and, by Proposition 2.12, also C-semicompact. Hence by
Lemma 2.9, K is C-semicompact. ut
Definition 2.10 Let Y be a Hausdorff topological vector space, and letC be a closed
cone in Y. A net fy˛g˛2	 � Y is said to be decreasing (with respect to C) if y˛�yˇ 2
C n f0g for every ˛; ˇ 2 	, ˇ > ˛.
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Definition 2.11 Let Y be a Hausdorff topological vector space with its ordering
cone C.

(a) The convex cone C is called Daniell if every decreasing net which has a lower
bound converges to its infimum.

(b) Y is called boundedly order complete if every bounded decreasing net has an
infimum.

Below we give an example of a Daniell cone, and we present an example of a
convex cone which is not Daniell in a space that is not boundedly order complete.

Example 2.18

(a) A convex cone with a weakly compact base is a Daniell cone (see [20, Example
2.2.8, 3]).

(b) Let Y WD CŒK� be the space of all continuous functionals defined on the compact
set K � Rn. The natural ordering cone in CŒK� is CŒK�C WD fy 2 CŒK� W y.t/ �
0; 8 t 2 Kg. Let us consider the special case for K WD Œ0; 1�. We choose the
net yk W Œ0; 1� ! R, yk WD �t1=k (illustrated in Fig. 2.5), which is decreasing,
because for l > k, we have

yk � yl 2 CŒK�C n f0g;

as �t1=k �.�t1=l/ D t1=l� t1=k > 0 for all t 2 Œ0; 1�. One lower bound for this net
is given by the constant function Ny W� �1, which is also the infimum of the net.
But this net does not possess a limit in CŒ0; 1�, and is therefore not convergent.
The (pointwise) limit function of the net is the function

Qy WD
�
0; if t D 0;

�1; otherwise.

But Qy is not continuous, thus Qy … CŒ0; 1�. Furthermore, the space CŒ0; 1� is not
boundedly order complete. This is shown by considering the net

zk WD
(
0; if t � 1

2
;

�.2 � .x � 1
2
//.1=k/; if t > 1

2
;

(2.19)

Fig. 2.5 Left: The net
yk WD �t1=k for k D 1; 2; 3; 4,
which is considered in
Example 2.18. Right: The net
zk given in (2.19) for
k D 1; 2; 3; 4
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see the right image in Fig. 2.5. The net zk does not possess an infimum, and thus
CŒ0; 1� is not boundedly order complete.

Definition 2.12 Let C be a convex cone in a Hausdorff topological vector space Y.
A set K � Y is said to be C-complete (respectively, strongly C-complete) if it has
no covers of the form f. y˛ � cl.C//c W ˛ 2 	g (respectively, f. y˛ � C/c W ˛ 2 	g)
for every decreasing net fy˛g in K.
Example 2.19 The set K1 WD f. y1; y2/ 2 R

2 W y21 C y12 < 1g is not R2C-complete,
whereas K2 WD K1 [ f. y1; y2/ 2 R

2 W y21 C y12 D 1; y1; y2 � 0g is R2C-complete.

Remark 2.6 It is obvious that whenever C is closed, C-completeness and strong C-
completeness coincide. Also note that if K is an open set, K cannot be C-complete.

We present some criteria for a set to be C-complete.

Lemma 2.10 A set K � Y is C-complete if any one of the following conditions
holds.

(a) K is C-semicompact, in particular, K is C-compact or compact;
(b) K is weakly compact and Y is a locally convex space;
(c) K is closed bounded and C is Daniell, Y is boundedly order complete;
(d) K is closed minorized (that is, there is x 2 X such that K � x C C/ and C is

Daniell.

Proof

(a) Assume, to the contrary, that there is a cover as required in the definition of C-
completeness. By the C-semicompactness, there is a finite number of indexes,
say, 1; 2; : : : ;m from 	 such that f. yi � cl.C//c W i D 1; 2; : : : ;mg covers K,
where y1 >C y2 >C � � � >C ym. This is a contradiction because

ym 2 yi � C � yi � cl.C/; for all i D 1; 2; : : : ;m;

consequently, no element of that cover contains ym 2 K.
(b) Consider K and C in the weak topology and taking into account the fact that a

closed convex set in a locally convex space is also weak closed. Then by (a), we
obtain the result.

(c) and (d) It suffices to observe the following fact: If a net fy˛g is a decreasing
net in K, then it has an infimum to which it converges. Moreover, this infimum
must be in K and therefore it belongs to y˛ � cl.C/ for every ˛. Hence, the net
cannot provide a cover of the form as in the definition of C-completeness. ut

Theorem 2.1 Let C be a closed convex cone in a Hausdorff topological vector
space Y. A set K � Y is C-complete if it is C-semicompact.

Proof Assume to the contrary that K has a cover of the form f. y˛ � C/cg˛2	, where
fy˛g is a decreasing net in K. Since K is C-semicompact, there is m 2 N and



102 2 Analysis over Cones

f˛1; ˛2; : : : ; ˛mg � 	 such that

K �
m[

iD1
.y˛i � C/c or K � .y˛m � C/c

which contradicts the fact that y˛m … .y˛m � C/. ut
The following example shows that a C-complete set need not be a C-

semicompact set.

Example 2.20 Let

K D ˚
. y1; y2/ 2 R

2 W y2 < 0; y1y2 D 1
�[ ˚

. y1; y2/ 2 R
2 W y2 � 0; y2 D �y1

�
:

Then K is R2C-complete, but it is not R2C-semicompact, as its cover

˚
. ym � R

2C/c
�
;

with ym D .m;�m/, has no finite subcovers.

2.4 Cone Convexity

It is well-known that convex functions and their generalizations play an important
role in scalar optimization theory as a local minimum of a convex function
is also a global minimum. Corresponding to scalar convex functions and their
generalizations, we have the concept of vector-valued functions, so-called cone
convexity. In this section, we present such cone convexity and its generalizations.

Definition 2.13 (C-Convexity) Let Y be a vector space with a partial ordering
defined by a solid pointed convex cone C, and K be a nonempty convex subset
of a vector space X. A vector-valued function ' W K ! Y is said to be

(a) C-convex if for all x; y 2 K and t 2 Œ0; 1�,

'.tx C .1 � t/y/ �C t'.x/C .1 � t/'. y/;

that is,

'.tx C .1� t/y/ 2 t'.x/C .1 � t/'. y/ � CI

(b) strictly C-convex if for all x; y 2 K, x ¤ y and t 2 �0; 1Œ,

'.tx C .1 � t/y/ <C t'.x/C .1 � t/'. y/;
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that is,

'.tx C .1 � t/y/ 2 t'.x/C .1 � t/'. y/ � int.C/I

(c) C-quasiconvex if for each ˛ 2 Y, and for all x; y 2 K and t 2 Œ0; 1�,

'.x/; '. y/ 2 ˛ � C imply '.tx C .1 � t/y/ 2 ˛ � C;

equivalently, for all x; y 2 K and t 2 Œ0; 1�,

'.tx C .1 � t/y/ 2 ˛ � C; for all ˛ 2 C.'.x/; '. y//;

where C.'.x/; '. y// is the set of upper bounds of '.x/ and '. y/, that is,

C.'.x/; '. y// WD f˛ 2 Y W ˛ 2 '.x/C C and ˛ 2 '. y/C CgI

(d) strictly C-quasiconvex if for each ˛ 2 Y and for all x; y 2 K, x ¤ y and
t 2 �0; 1Œ,

'.x/; '. y/ 2 ˛ � C imply '.tx C .1 � t/y/ 2 ˛ � int.C/I

(e) properly C-quasiconvex if for all x; y 2 K and t 2 Œ0; 1�, either

'.tx C .1 � t/y/ �C '.x/;

or

'.tx C .1 � t/y/ �C '. y/I

(f) strict properly C-quasiconvex if for all x; y 2 K and t 2 �0; 1Œ, either

'.tx C .1 � t/y/ <C '.x/;

or

'.tx C .1 � t/y/ <C '. y/I

(g) naturally C-quasiconvex if for all x; y 2 K and t 2 Œ0; 1�, there exists s 2 Œ0; 1�

such that

'.tx C .1 � t/y/ �C s'.x/C .1 � s/'. y/;

equivalently, for all x; y 2 K and t 2 Œ0; 1�,

'.tx C .1 � t/y/ 2 cof'.x/; '. y/g � C;
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where coA denotes the convex hull of a set A;
(h) explicitly C-quasiconvex if it is C-quasiconvex and for all x; y 2 K such that

'.x/ <C '. y/, we have

'.tx C .1 � t/y/ <C '. y/; for all t 2 �0; 1ŒI

(i) C-convex-like if for all x; y 2 K and t 2 Œ0; 1�, there exists z 2 K such that

'.z/ �C t'.x/C .1 � t/'. y/I

( j) C-subconvex-like if for all x; y 2 K, t 2 �0; 1Œ and " > 0, there exist z 2 K and
c 2 int.C/ such that

'.z/ �C t'.x/C .1 � t/'. y/C "c:

The function ' is said to be C-concave (respectively, strictly C-concave, C-
quasiconcave, strictly C-quasiconcave, properly C-quasiconcave, strict properly
C-quasiconcave, naturally C-quasiconcave, explicitly C-quasiconcave, C-concave-
like, C-subconcave-like) if �' is C-convex (respectively, strictly C-convex, C-
quasiconvex, strictly C-quasiconvex, properly C-quasiconvex, strict properly C-
quasiconvex, naturally C-quasiconvex, explicitly C-quasiconvex, C-convex-like,
C-subconvex-like).

When Y D R and C D RC, then the above definitions of different types of
C-convexity reduce to the ordinary definition of different types of corresponding
convexity.

Remark 2.7

(a) It can be easily seen that ' is C-convex if and only if for any xi 2 K and
ti 2 Œ0; 1�, i D 1; 2; : : : ;m with

Pm
iD1 ti D 1,

'

 
mX

iD1
tixi

!

�C

mX

iD1
ti'.xi/;

that is,

'

 
mX

iD1
tixi

!

2
mX

iD1
ti'.xi/� C:

(b) Let K � Rn, Y D R` and C D R`C. The vector-valued function ' D
.'1; '2; : : : ; '`/ W K ! R` is (strictly) R

`C-convex if and only if every
component 'i W K ! R of ' is (strictly) convex. Similarly, ' is (strictly) R`C-
quasiconvex if and only if every component 'i W K ! R of ' is (strictly)
quasiconvex. Moreover, ' is naturally R`C-quasiconvex if and only if each 'i is
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naturally R`C-quasiconvex, where i D 1; 2; : : : ; `. A corresponding relationship
also holds for explicitly C-quasiconvexity, C-convex-like functions as well as
C-subconvex-like functions. These assertions can be easily proved by contra-
diction. However, this relationship is not true for properly R`C-quasiconvexity.
The reason for this is the lack of a total order in R`. Consider, for instance,
the functions '1.x/ D x and '2.x/ D �x and K D Œ0; 1�. These functions are
properly RC-quasiconvex. However, the function ' WD .'1; '2/ D .x;�x/ is
not properly R2C-quasiconvex. To see this, consider, for example, x D 0, y D 1,
t D 0:5. Then, '.tx C .1 � t/y/ D '.0:5/ D .0:5;�0:5/. But we have

.0:5;�0:5/ … '.x/ � R
2C

as well as

.0:5;�0:5/ … '. y/� R
2C:

Therefore, ' is not properly R2C-quasiconvex.
(c) If ' W K ! Y is explicitly C-quasiconvex, then it can be easily proved that

'.x/ <C '. y/ and '. y/ 6>C 0 ) '. y C t.x � y/ <C '. y/; for all t 2 �0; 1Œ:

For a first idea on C-convexity, consider the following simple example.

Example 2.21 Let K D Œ�5; 5�, Y D R2, C D R2C D f. y1; y2/ 2 R2 W y1 � 0; y2 �
0g and define a function ' W K ! Y by '.x/ D .x2; x/. Then we have for all x; y 2 K
and for every t 2 Œ0; 1�,

�
.tx C .1 � t/y/2; tx C .1 � t/y

� 2 t
�
x2; x

�C .1 � t/
�
y2; y

� � C;

and thus, ' is a C-convex function. Notice that ' is not strictly C-convex, because

tx C .1 � t/y 6<C tx C .1 � t/y;

and thus,

'.tx C .1� t/y/ … t'.x/C .1 � t/'. y/ � int.C/;

for arbitrary x; y 2 K and t 2 Œ0; 1�.
Remark 2.8 From Definition 2.13, it is clear that C-convexity implies natural
C-quasiconvexity. Moreover, proper C-quasiconvexity implies natural C-
quasiconvexity. Furthermore, from Definition 2.13, it is evident that C-convexity
implies the C-convex-like condition, and the C-convex-like condition implies the
C-subconvex-like condition.
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In the following proposition (see Fig. 2.6), we present an equivalent condition for
C-convex-like vector-valued functions.

Proposition 2.14 ([31, Lemma 1]) Let Y be a vector space with a partial ordering
defined by a pointed convex cone C, and let K be a nonempty convex subset of
a vector space X. Let a vector-valued function ' W K ! Y be given, and define
'.K/ WD

[

x2K
'.x/. Then ' is C-convex-like if and only if the set '.K/CC is convex.

Proof Let ' be C-convex-like. Choose z1; z2 2 '.K/CC. Then there exist x; y 2 K
and c1; c2 2 C with z1 D '.x/ C c1, z2 D '. y/C c2. Because ' is C-convex-like,
we have for all t 2 Œ0; 1�, t'.x/C .1 � t/'.x/ 2 '.K/C C. This yields

tz1 � tc1 C .1 � t/z2 � .1 � t/c2 2 '.K/C C;

which due to the cone property of C results in

tz1 C .1 � t/z2 2 '.K/C C:

Thus, '.K/C C is a convex set.
Conversely, let '.K/C C be a convex set. Now choose z1; z2 2 '.K/C C. Then

there exist x; y 2 K and c1; c2 2 C such that z1 D '.x/ C c1 and z2 D '. y/C c2.
Since '.K/C C is convex, we have tz1 C .1 � t/z2 2 '.K/C C, and thus for every
t 2 Œ0; 1�, t'.x/C .1� t/'. y/ 2 '.K/CC. This means that ' is C-convex-like. ut

In the following proposition, we show that the condition defining C-
quasiconvexity can be replaced by a convexity condition on a specifically defined
set.

Proposition 2.15 ([31, Lemma 3]) Let Y be a vector space with a partial ordering
defined by a pointed convex cone C, and let K be a nonempty convex subset of a
vector space X. A vector-valued function ' W K ! Y is C-quasiconvex if and only if
the set

A.˛/ WD fx 2 K W '.x/ �C ˛g; for all ˛ 2 Y

is convex or empty.

Fig. 2.6 Left: The cone C.
Right: The function ' is
C-convex-like, because the
set '.K/C C is convex (see
Proposition 2.14)

+
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Proof Let x; y 2 K and let t 2 Œ0; 1� be arbitrarily chosen. For all ˛ 2
C.'.x/; '. y// WD f˛ 2 Y W ˛ 2 '.x/C C and ˛ 2 '. y/C Cg, we have x; y 2 A.˛/.
Now let A.˛/ be a convex and nonempty set. Then for all t 2 Œ0; 1�, it holds
tx C .1 � t/y 2 A.˛/, and thus '.tx C .1 � t/y/ �C ˛. This means that ' is C-
quasiconvex.

Conversely, let ' be C-quasiconvex. Now choose x; y 2 A.˛/ and t 2 Œ0; 1�. Then
we have tx C .1 � t/y 2 K, '.x/ �C ˛ and '. y/ �C ˛. Hence, ˛ 2 C.'.x/; '. y//.
Because ' is C-quasiconvex, we conclude with '.tx C .1 � t/y/ �C ˛, and thus
tx C .1 � t/y 2 A.˛/. This means that A.˛/ is a convex set. ut
Remark 2.9 If ' is C-quasiconvex, then the set fx 2 K W '.x/ <C ˛g is convex.

The following theorem describes a relationship between natural C-quasi-
convexity and C-quasiconvexity of a vector-valued function.

Theorem 2.2 ([31, Theorem 2]) Let Y be a vector space with a partial ordering
defined by a pointed convex cone C, and let K be a nonempty convex subset of a
vector space X. If a vector-valued function ' W K ! Y is naturally C-quasiconvex,
then it is C-quasiconvex.

Proof Let ' be naturally C-quasiconvex. Then for all x; y 2 K and t 2 Œ0; 1�, there
exists s 2 Œ0; 1� such that

'.tx C .1 � t/y/ �C s'.x/C .1 � s/'. y/: (2.20)

For all ˛ 2 C.'.x/; '. y// WD f˛ 2 Y W ˛ 2 '.x/C C and ˛ 2 '. y/C Cg, it holds

s'.x/C .1 � s/'. y/ 2 s˛ C .1 � s/˛ � C � ˛ � C:

Thus, together with (2.20), this yields for all x; y 2 K and t 2 Œ0; 1�, '.tx C .1 �
t/y/ �C ˛ for every ˛ 2 C.'.x/; '. y//. ut

The following Theorem 2.3 verifies that a naturally C-quasiconvex vector-valued
function ' is C-convex-like if ' is continuous and C is closed.

Theorem 2.3 ([31, Theorem 3]) Let Y be a vector space with a partial ordering
defined by a solid pointed closed convex cone C, and let K be a nonempty convex
subset of a vector space X. Furthermore, let a vector-valued function ' W K ! Y be
continuous. If ' is naturally C-quasiconvex, then ' is C-convex-like.

Example 2.22 Let K D Œ0; 1�, Y D R2, C D R2C D f. y1; y2/ 2 R2 W y1 � 0; y2 �
0g and define a function ' W K ! Y by '.x/ D �

x2; 1 � x2
�
. Then the function

' is continuous and naturally C-quasiconvex (and thus C-quasiconvex), but neither
C-convex nor properly C-quasiconvex.

The following figure comprises the relationships among some of the convexity
notions (Fig. 2.7).
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C-convexC-subconvex-like properly C-quasiconvex

C-convex-like naturally C-quasiconvex

C-quasiconvexC is convex
is convex or empty

C closed, cont.

Fig. 2.7 Relationships between some of the convexity notions

Example 2.23 Let X;Y;C be the same as in Example 2.22. We define the function
� W K ! Y by

�.x/ D
�
cos

�
x

2

�
; sin

�
x

2

��

and the function � W K ! Y by

�.x/ D .cos.2
x/; sin.2
x// :

Then the function � is continuous and C-quasiconvex, but not naturally C-
quasiconvex, and the function � is continuous and C-convex-like, but not naturally
C-quasiconvex and hence, not C-convex.

Example 2.24 Let � W R2 ! R be a real-valued function defined by

�.x; y/ D x2 C y2; for all .x; y/ 2 R
2:

Let ' W .x; y/ 7! .x; y; '.x; y// and C D f.z1; z2; z3/ W z3 > 0g [ f0g be the ordering
cone in R3. Then ' is strict properly C-quasiconvex on R2.

Indeed, let .x1; x2/; . y1; y2/ 2 R2 with .x1; x2/ ¤ . y1; y2/ and �.x1; x2/ �
�. y1; y2/. Then by the strict convexity of �, we have

�.t.x1; x2/C .1 � t/. y1; y2// <C �.x1; x2/; for all t 2 �0; 1Œ:

Therefore,

'.t.x1; x2/C .1 � t/. y1; y2// 2 '.x1; x2/� int.C/; for all t 2 �0; 1Œ:

Thus, ' is strict properly C-quasiconvex on R2.
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The following proposition follows directly from the definitions of (strictly) C-
(quasi)convexity.

Proposition 2.16 Let K be a nonempty convex subset of a vector space X, Y a
vector space, and C a pointed convex cone in Y. Let '; � W K ! Y be vector-valued
functions. Then the following statements hold.

(a) If ' is C-convex (respectively, strictly C-convex), then t' is also C-convex
(respectively, strictly C-convex) for all t > 0.

(b) If ' and � are C-convex (respectively, C-quasiconvex), then so is ' C �

(respectively, C-quasiconvex).
(c) If ' and � are C-convex and at least one of them is strictly C-convex, then 'C�

is strictly C-convex.

Definition 2.14 Let X and Y be vector spaces, K a nonempty subset of X and C a
pointed convex cone in Y. Let ' W K ! Y be a vector-valued function. The set

epi.'/ D f.x; y/ 2 X 	 Y W x 2 K; y 2 f'.x/g C Cg (2.21)

is called epigraph of '.
We note that (2.21) can also be written as

epi.'/ D f.x; y/ 2 X 	 Y W x 2 K; '.x/ �C yg:

The following theorem shows that a C-convex vector-valued function can be
characterized by its epigraph.

Theorem 2.4 Let X and Y be vector spaces, K be a nonempty convex subset of
X and C be a pointed convex cone in Y. A vector-valued function ' W K ! Y is
C-convex if and only if epi.'/ is a convex set.

Proof Let ' be a C-convex vector-valued function and let z1 D .x1; y1/, z2 D
.x2; y2/ 2 epi.'/ and t 2 Œ0; 1�. Then we have tx1 C .1 � t/x2 2 K and

ty1 C .1 � t/y2 2 t .f'.x1/g C C/C .1 � t/ .'.fx2/g C C/

D ft'.x1/C .1 � t/'.x2/g C C

� f'.tx1 C .1 � t/x2/g C C:

Consequently, we have tz1 C .1 � t/z2 2 epi.'/. Thus, epi.'/ is a convex set.
Conversely, let epi.'/ be a convex set, x1, x2 2 K and t 2 Œ0; 1�. Then we have

t.x1; '.x1//C .1 � t/.x2; '.x2// 2 epi.'/ and

'.tx1 C .1 � t/x2/ �C t'.x1/C .1 � t/'.x2/:

Hence, ' is C-convex. ut
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Proposition 2.17 Let K be a nonempty convex subset of a topological vector space
X and Y be a Hausdorff topological vector space ordered by a closed convex pointed
cone C. If ' W X ! Y is Gâteaux differentiable and C-convex on K, then for every
x; y 2 K,

'. y/ �C '.x/C hD'.x/; y � xi; (2.22)

where D'.x/ is the Gâteaux derivative of ' at x.

Proof Since ' is C-convex on K, for every x; y 2 K and t 2 �0; 1Œ, we have

'.x C t. y � x// D '.ty C .1 � t/x/ 2 t'. y/C .1 � t/'.x/ � C;

that is,

'. y/ 2 '.x/C '.x C t. y � x// � '.x/
t

C C:

Taking t ! 0C and using the definition of the Gâteaux derivative, we obtain
'. y/ �C '.x/C hD'.x/; y � xi. ut

In the same way, we obtain the following result.

Proposition 2.18 Let K be a nonempty convex subset of a topological vector space
X and Y be a Hausdorff topological vector space ordered by a closed convex pointed
cone C. If ' W! Y is Gâteaux differentiable and C-concave on K, then for every
x; y 2 K,

'. y/ �C '.x/C hD'.x/; y � xi;

where D'.x/ is the Gâteaux derivative of ' at x.
Below we present another notion of generalized convexity.

Definition 2.15 (C-Pseudoconvexity) Let K be a nonempty convex subset of a
vector space X, Y be a topological vector space with a convex cone C and ' W
K ! Y be a Gâteaux differentiable vector-valued function. Then ' is called C-
pseudoconvex at x if for all y 2 K,

hD'.x/; y � xi 2 C implies '. y/ � '.x/ 2 C:

If ' is C-pseudoconvex at all x 2 K, then we say that ' is C-pseudoconvex.

Remark 2.10 Let K � Rn, Y D R` and C D R`C. The vector-valued function
' D .'1; '2; : : : ; '`/ W K ! R

` isR`C-pseudoconvex if and only if every component
'i W K ! R of ' is pseudoconvex.

The following theorem shows that the class of C-pseudoconvex functions is
broader than the class of C-convex functions.
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Theorem 2.5 Let K be a nonempty convex subset of a vector space X, Y be a
topological vector space with a closed convex pointed cone C and ' W K ! Y
be a Gâteaux differentiable vector-valued function. If ' is C-convex, then ' is C-
pseudoconvex.

Proof According to (2.22), we have

'. y/ �C '.x/C hD'.x/; y � xi;

being equivalent to

'. y/� '.x/ 2 hD'.x/; y � xi C C:

If hD'.x/; y � xi 2 C, then due to the convexity of the cone C, we obtain '. y/ �
'.x/ 2 C. Thus, ' is C-pseudoconvex. ut

In the following example we present a function which is R2C-pseudoconvex, but
not R2C-convex.

Example 2.25 The function ' W R ! R2 with

'.x/ D .'1.x/; '2.x// WD
�

� 1

1C x2
; x2

	

is R2C-pseudoconvex, because

hD'1.x/; y � xi D 2x

.1C x/2
. y � x/ � 0 , x. y � x/ � 0:

So, necessarily '1. y/ � '1.x/ � 0 is satisfied. For the convex function '2.x/ D x2,
the implication is fulfilled accordingly. Note that '.x/ is not R2C-convex, because
'2.x/ is not convex.

Let us give the brief description of the scalarization procedure due to Jayakumar
et al. [19]. Let Z� be the dual of a locally convex topological vector space Z, P a
convex cone in Z, and P� � Z� the dual cone of P, that is, P� D fz� 2 Z� W
hz�; zi � 0; for all z 2 Pg. We assume that P� has a weak� compact convex base
B�. This means that B� � P� is a weak� compact convex set such that 0 … B� and
P� D S

��0 �B�; See, for example, [19].
For each z 2 Z, consider the scalar function  W Z ! R defined by

 .z/ D max
�2B�

h�; zi:

Then the function  is sublinear, hence convex, and lower semicontinuous. For all
z 2 Z, there holds for P D int.C/[ f0g and C � Z a convex cone (see, for example,
[19])

z 2 P , z 2 .� int.C//c ,  .z/ � 0: (2.23)
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Proposition 2.19 Let X be a Hausdorff topological vector space, P D int.C/[ f0g
and h W X ! Z be a vector-valued function. If h is P-convex (respectively, P-
concave), then the real-valued function g W X ! R defined by g.x/ D  .h.x// for
all x 2 X, is convex (respectively, concave).

Proof Let x; y 2 X and t 2 Œ0; 1�. Suppose that h is P-convex, then

th.x/C .1 � t/h. y/ � h.tx C .1 � t/y/ 2 P:

It follows from (2.23) that

max
�2B�

h�; h.tx C .1 � t/y/ � th.x/� .1 � t/h. y/i � 0;

and hence,

max
�2B�

h�; h.tx C .1 � t/y/i � tmax
�2B�

h�; h.x/i C .1 � t/max
�2B�

h�; h. y/i:

Therefore,

g.tx C .1 � t/y/ � tg.tx/C .1 � t/g. y/

and thus, g is convex. The case that h is P-concave can be treated similarly and
hence the details will be omitted. ut

Usually, we define cone concavity of f by the fact that �f is cone convex.
However the following definition for cone concavity is also natural.

Definition 2.16 (C-Quasiconcave-Like Function) Let Y be a vector space with a
partial ordering defined by a pointed solid convex cone C and K be a nonempty
convex subset of a vector space X. A vector-valued function ' W K ! Y is said to
be C-quasiconcave-like on K if for every ˛ 2 Y, the set

fx 2 K W '.x/ … ˛ � int.C/g

is convex or empty. The function ' is said to be strictly C-quasiconcave-like on K
if for every ˛ 2 Y, the set

fx 2 K W '.x/ … ˛ � cl.C/g

is convex or empty.
The following example illustrates the notion of a C-quasiconcave-like function.

Example 2.26 Consider the function ' W Œ�1; 1� ! R defined as

'.x/ D
� �x2 C 1; if � 1 � x � 0;

0; if 0 < x � 1:
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Fig. 2.8 The function ' isRC-quasiconcave-like. For example, for ˛ D 0:5, we obtain the convex

set fx 2 K W '.x/ … ˛ � int.C/g D
h
� 1

p

2
; 0
i

Apparently, ' is RC-quasiconcave-like, but ' is not concave (see Fig. 2.8).

Proposition 2.20 Let K be a nonempty convex subset of a vector space X and Y be
a topological vector space with a proper solid pointed convex cone C. If ' W K ! Y
is properly .�C/-quasiconvex on K, then it is C-quasiconcave-like on K.

Proof Let ˛ 2 Y and x1; x2 2 fx 2 K W '.x/ … ˛ � int.C/g. Since ' is properly
.�C/-quasiconvex on K, for every t 2 Œ0; 1�

'.tx1 C .1 � t/x2/ 2 f'.x1/; '.x2/g C int.C/:

Hence, '.tx1 C .1 � t/x2/ … ˛ � int.C/. Therefore, fx 2 K W '.x/ … ˛ � int.C/g is
convex on X, that is, ' is C-quasiconcave-like on K. ut
Definition 2.17 (Finite Concave-Like Function) Let Y be a vector space with a
partial ordering defined by a pointed convex cone C, and K be a nonempty convex
subset of a vector space X. A vector-valued function ' W K ! Y is said to be finite
concave-like if for any finite subset K0 of K, and for any x; y 2 K and t 2 Œ0; 1�,
there exists z 2 K0 such that

t'.x/C .1 � t/'. y/ �C '.z/:

Definition 2.18 (Downward Directed Set) Let Y be a vector space with partially
ordering defined by a pointed convex cone C. A nonempty subset D of Y is said
to be a downward directed set if for all d1; d2 2 D, there exists d 2 D such that
d �C d1 and d �C d2.

Definition 2.19 (Downward Directed Function) Let Y be a vector space with
partially ordering defined by a pointed and convex cone C, and K be a nonempty
subset of a vector space X. A vector-valued function ' W K ! Y is said to be
downward directed if for any x; y 2 K, there exists z 2 K such that

'.z/ �C '.x/ and '.z/ �C '. y/:

Remark 2.11 If K is a nonempty convex subset of X and ' W K ! Y is C-lower
semicontinuous (see Definition 2.25) and finite concave-like, then ' is downward
directed.
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Definition 2.20 (Arc-Concave-Like Function) Let Y be a topological vector
space with a partially ordering defined by a pointed closed and convex cone C, and
K be a nonempty convex subset of a topological vector space X. A vector-valued
function ' W K ! Y is said to be arc-concave-like if for any x; y 2 K, there exists
an arc Ix;y.t/ � K such that for each t 2 Œ0; 1�,

t'.x/C .1 � t/'. y/ �C '.Ix;y.t//;

where Ix;y W Œ0; 1� ! K is a continuous map with Ix;y.0/ D x and Ix;y.1/ D y.

Remark 2.12 It is easy to see that every arc-concave-like function is finite concave-
like.

Definition 2.21 Let X and Y be vector spaces and K be a nonempty convex set of
X. A set-valued map T W X ! 2Y with nonempty values is said to be

(a) convex on K if for each x; y 2 K and t 2 Œ0; 1�

T.tx C .1� t/y/ 
 tT.x/C .1 � t/T. y/I

(b) concave on K if for each x; y 2 K and t 2 Œ0; 1�

T.tx C .1� t/y/ � tT.x/C .1 � t/T. y/I

(c) affine on K if T is convex as well as concave on K.

The proof of the following proposition is straightforward and hence is omitted.

Proposition 2.21 Let K and D be nonempty convex subsets of two vector spaces,
respectively, Y be a topological vector space with a solid pointed convex cone C and
g W K 	 D 	 D ! Y be a function. Suppose that for each y 2 D, g.�; �; y/ is properly
.�C/-quasiconvex and that S W K ! 2D is defined by

S. p/ D fx 2 D W g. p; x; y/ … � int.C/ for all y 2 Dg
is nonempty for each p 2 K. Then S is a convex set-valued mapping.

Definition 2.22 (C-Quasiconcavity) Let K be a nonempty convex subset of a
topological vector space X and C be a proper closed convex solid cone in a
topological vector space Y. A set-valued map T W K ! 2Y n f;g is said to be
C-quasiconcave on K if for each x1; x2 2 K and y 2 Y such that T.x1/ 6� y � int.C/
and T.x2/ 6� y � int.C/, we have

T.x�/ 6� y � int.C/; for all x� 2 �x1; x2Œ:
We also say that T is strictly C-quasiconcave on K if for each x1; x2 2 K and

y 2 Y such that T.x1/ 6� y � int.C/ and T.x2/ 6� y � int.C/, we have

T.x�/ 6� y � cl.C/; for all x� 2 �x1; x2Œ:
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Definition 2.23 (C-Proper Quasiconcavity) Let K be a nonempty convex subset
of a topological vector space X and C be a proper closed convex solid cone in a
topological vector space Y. A set-valuedmap T W K ! 2Ynf;g is said to beC-proper
quasiconcave onK if for each x1; x2 2 K and y 2 Y such that T.x1/\

�
y� int.C/

� D
; and T.x2/ \ �

y � int.C/
� D ;, we have

T.x�/\ �
y � int.C/

� D ;; for all x� 2 �x1; x2Œ:

We also say that T is strictly C-properly quasiconcave on K if for each x1; x2 2 K
and y 2 Y such that T.x1/\ � y � int.C/

� D ; and T.x2/\ � y � int.C/
� D ; imply

T.x�/ \ �
y � clC

� D ;; for all x� 2 �x1; x2Œ:

Remark 2.13 If T is single-valued,Definitions 2.22 and 2.23 reduce to the definition
of .�C/-proper quasiconvexity.

Definition 2.24 Let K be a nonempty convex subset of X and C be a proper closed
convex cone in Y. A set-valued map S W K ! 2Y n f;g is called:
(a) C-convex if

˛S.x/C.1�˛/S. y/ � S.˛xC.1�˛/y/CC; for all x; y 2 K and all ˛ 2 Œ0; 1�I

(b) C-quasiconvex if for all y1; y2 2 K and ˛ 2 Œ0; 1�, we have either

S. y1/ � S.˛y1 C .1 � ˛/y2/C C

or

S. y2/ � S.˛y1 C .1 � ˛/y2/C CI

(c) C-quasiconvex-like if for all y1; y2 2 K and ˛ 2 Œ0; 1�, we have either

S.˛y1 C .1 � ˛/y2/ � S. y1/ � C

or

S.˛y1 C .1 � ˛/y2/ � S. y2/� CI

(d) properly C-quasiconvex if for all x; y 2 K and all ˛ 2 �0; 1Œ,

S.x/ � S.˛x C .1 � ˛/y/C C or S. y/ � S.˛x C .1 � ˛/y/C CI

(e) explicitly ı-C-quasiconvex [21] if for all x; y 2 K and all ˛ 2 �0; 1�, we have
either

S.x/ � S.˛x C .1 � ˛/y/C C or S. y/ � S.˛x C .1 � ˛/y/C C
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and if .S. y/� S.x//\ .� int.C// ¤ ;, we have

S.x/ � S.˛x C .1 � ˛/y/C int.C/; for all ˛ 2 �0; 1�:

(f) explicitly C-quasiconvex-like if it is C-quasiconvex-like and, in case

S. y2/ � S. y1/ 6� � int.C/; for all y1; y2 2 K and ˛ 2 �0; 1Œ;

we have

S.˛y1 C .1 � ˛/y2/ � S. y2/ � int.C/:

Clearly, every C-quasiconvex set-valued map is explicitly ı-C-quasiconvex.
To show that the class of C-quasiconvex-like set-valued maps is nonempty, we

give the following example.

Example 2.27 Let K D Œ0; 1� and C D Œ0;C1/. We define S W K ! 2R by

S.x/ D Œ0; x C 1�; for all x 2 K:

For all x; x1; x2 2 K and 0 � ˛ � 1, we note that

if x1 � x2; then ˛x1 C .1 � ˛/x2 � x2

and

if x1 > x2; then ˛x1 C .1 � ˛/x2 � x1:

Therefore, we have for each t 2 S.˛x1 C .1 � ˛/x2/;

t D
�
.x2 C 1/� Œ.x2 C 1/� t�; x1 � x2
.x1 C 1/� Œ.x1 C 1/� t�; x1 > x2:

Hence we have either

S.˛x1 C .1 � ˛/x2/ � S.x1/ � C

or

S.˛x1 C .1 � ˛/x2/ � S.x2/ � C:

Thus S is C-quasiconvex-like.
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2.5 Cone Continuity

Definition 2.25 (C-Continuity) Let K be a nonempty subset of a topological
vector space X and Y be a topological vector space with a partial ordering defined
by a pointed closed convex cone C. A function ' W K ! Y is said to be C-lower
semicontinuous (respectively, C-upper semicontinuous) at x0 2 K if for any open
neighborhood V � Y of '.x0/ 2 Y, there exists an open neighborhoodU � X of x0
such that

'.x/ 2 V C C for all x 2 U \ K (2.24)

.respectively; '.x/ 2 V � C for all x 2 U \ K/: (2.25)

Furthermore, ' is C-lower semicontinuous (respectively, C-upper semicontinuous)
on K if it is C-lower semicontinuous (respectively, C-upper semicontinuous) at
every point of K.
' is called C-continuous on K if it is C-lower semicontinuous as well as C-upper

semicontinuous on K.

Definition 2.26 (C-Pseudocontinuity) [13] Let X be a topological space, and Y a
vector space with a pointed convex cone C. A vector-valued function f W X ! Y
is said to be C-pseudocontinuous at x 2 X if for each k 2 C n f0g, there exists a
neighbourhoodUx � X of x such that f .u/ 2 f .x/� kCC for all u 2 Ux. Moreover,
f is said to be C-psudocontinuous on X if it is C-pseudocontinuous at every of X.

Example 2.28 Consider the mapping 'WR ! R2 defined by

'.x/ WD .'1.x/; '2.x// D
( �

1
x ; x
�
; for x > 0;

.�1;�1/; for x � 0 :

The function values are depicted in Fig. 2.9. One can see that ' is R2C-lower
semicontinuous: For x0 ¤ 0, there is nothing to show. As long as the neighborhood

Fig. 2.9 The function ' is
R
2
C
-lower semicontinuous

+

−

−
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U of x0 is chosen small enough, the inclusion follows from the continuity of '1 and
'2, respectively. For x0 D 0, the neighborhood U also contains x > 0 but since for
those arguments '2.x/ > 0 holds, the inclusion is still fulfilled. Note that ' is not
R2C-upper semicontinuous, and thus ' is not R2C-continuous.

Remark 2.14 Whenever Y D R and C D RC, C-lower semicontinuity and C-
upper semicontinuity are the same as ordinary lower and upper semicontinuity,
respectively. In [25, Definition 5.1, p. 22], a C-lower semicontinuous function
(respectively, C-upper semicontinuous function) is called C-continuous function
(respectively, (-C)-continuous function). If the function ' is f0g-continuous, then
it is continuous in ordinary sense.

The following lemma can be easily proved, and therefore we omit the proof.

Lemma 2.11 A vector-valued function ' W R
n ! R

` is C-upper semicontinuous
(respectively, C-lower semicontinuous) if and only if each 'i W R

n ! R, i D
1; 2; : : : ; `, is upper semicontinuous (respectively, lower semicontinuous), where C
is a pointed closed convex cone in R`.

Proposition 2.22 Let X be a topological space and Y be a topological vector space
with a partial ordering defined by a solid pointed convex cone C. A vector-valued
function ' W X ! Y is C-lower semicontinuous on X if and only if for each ˛ 2 Y,
'�1.˛ C int.C// is an open subset of X.

Proof Suppose that '�1.˛C int.C// is open for all ˛ 2 Y. For each x0 2 X and any
d 2 int.C/, we have x0 2 '�1 .int.C/C .'.x0/� d//, which is open. Hence, there
exists an open neighborhood U � X of x0 such that '.x/ 2 '.x0/ � d C int.C/ for
all x 2 U.

Conversely, let x 2 '�1.˛C int.C// and d WD '.x0/� ˛. Since d 2 int.C/, there
exists an open neighborhoodU � X of x0 such that '.x/ 2 '.x0/�dC int.C/ for all
x 2 U, and hence '.x/ 2 ˛C int.C/. This implies that '�1.˛C int.C// is open. ut

Similarly, we can prove the following propositions.

Proposition 2.23 Let X be a topological space and Y be a topological vector space
with a partial ordering defined by a solid pointed convex cone C. A vector-valued
function ' W X ! Y is C-upper semicontinuous on X if and only if for each ˛ 2 Y,
'�1.˛ � int.C// is an open subset of X.

Proposition 2.24 Let X be a topological space and Y be a topological vector space
with a partial ordering defined by a pointed closed convex cone C. A vector-valued
function ' W X ! Y is C-upper semicontinuous on X if and only if for each ˛ 2 Y,
'�1.˛ � C/ D fx 2 X W '.x/ �C ˛g is a closed subset of X.

Proposition 2.25 Let K be a nonempty subset of a topological vector space X, Y
be a topological vector space with a partial ordering defined by a pointed closed
convex cone C and ' W K ! Y be a function. The following statements are
equivalent:

(a) ' W K ! Y is C-lower semicontinuous on K.
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(b) For each ˛ 2 Y, the (lower level) set

L.˛/ D fx 2 K W '.x/ 6>C ˛g

is closed in K.
(c) For each x0 2 K and any � 2 int.C/, there exists an open neighborhood U � X

of x0 such that '.x/ 2 '.x0/� �C int.C/, for all x 2 U \ K.

Proof (a) ) (b): Since

L.˛/ D fx 2 K W '.x/ � ˛ … int.C/g D '�1Œ.˛ C int.C//c�:

In view of Proposition 2.22, it is sufficient to prove that for each ˛ 2 Y,

ŒL.˛/�c D fx 2 K W '.x/� ˛ 2 int.C/g D '�1Œ.˛ C int.C//�

is open in K.
Suppose that ' is C-lower semicontinuous on K. Let x� 2 ŒL.˛/�c. Then ˛ C

int.C/ is an open neighborhood of '.x�/. Hence, there exists an open neighborhood
U of x� such that

'.x/ 2 .˛ C int.C//C C D ˛ C int.C/; for all x 2 U \ K;

that is, for all x 2 U \ K, we have x 2 ŒL.˛/�c. Then, ŒL.˛/�c is open in K.
(b) ) (c): It is sufficient to show that for each ˛ 2 Y,

ŒL.˛/�c D fx 2 K W '.x/� ˛ 2 int.C/g D '�1Œ.˛ C int.C//�

is open in K implies (c).
Suppose that for each ˛ 2 Y, ŒL.˛/�c is open in K. For each x0 2 K and z 2

int.C/, we have x0 2 '�1.int.C/ C .'.x0/ � z// which is open in K. Hence, there
exists an open neighborhood U of x0 such that '.x/ 2 '.x0/ � z C int.C/ for all
x 2 U \ K.

(c) ) (a): Let x0 2 K and V an open neighborhood of '.x0/. There is � 2 int.C/
such that '.x0/ � � 2 V . Then there exists an open neighborhood U of x0 such
that '.x/ 2 '.x0/ � � C int.C/ for all x 2 U \ K. Since V is open and so by
Proposition 2.7, we have V C int.C/ D V C C, and hence '.x/ 2 V C C for all
x 2 U \ K. Thus, ' is C upper semicontinuous. ut

Similarly, we can prove the following proposition.

Proposition 2.26 Let K be a nonempty subset of a topological vector space X, Y
be a topological vector space with a partial ordering defined by a pointed closed
convex cone C and ' W K ! Y be a function. The following statements are
equivalent:

(a) ' W K ! Y is C-upper semicontinuous on K.
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(b) For each ˛ 2 Y, the (upper level) set L.˛/ D fx 2 K W '.x/ 6<C ˛g is closed in
K.

(c) For each x0 2 K and any � 2 int.C/, there exists an open neighborhood U of
x0 such that '.x/ 2 '.x0/ � � � int.C/, for all x 2 U \ K.

Proposition 2.27 ([2]) Let K be a nonempty subset of a topological vector space
X and Y be a topological vector space with a partial ordering defined by a
pointed closed convex cone C. A vector-valued function ' W K ! Y is C-upper
semicontinuous on K if and only if for each x 2 K, d 2 int.C/ and for any net
fx˛g˛2	 converging to x, there exists ˛0 in the index set 	 such that

cl.f'.xˇ/ W ˇ � ˛g/ � '.x/C d � int.C/; for all ˛ � ˛0:

Proof For ˛ 2 	, let A˛ D f'.xˇ/ W ˇ � ˛g. Suppose ' is C-upper semicontinuous.
Then there exists an open neighborhoodU of x such that '. y/ 2 '.x/C v

2
� int.C/

for all y 2 U. Hence, there is ˛0 in the index set 	 such that

˛ � ˛0 ) x˛ 2 U and '.x˛/ 2 '.x/C 1

2
v � int.C/:

This implies that A˛ � '.x/C 1
2
v � int.C/ and cl.A˛/ � '.x/C 1

2
v � C whenever

˛ � ˛0. Since 1
2
v � C D v D v

2
� C � v � int.C/, we have

cl..A˛/ � '.x/C v � int.C/; for all ˛ � ˛0:

Conversely, assume that ' is not C-upper semicontinuous on X. Then there is
y0 2 Y such that '�1. y0 � int.C// is not open in X. Hence there is x0 2 '�1. y0 �
int.C// such that every neighborhood of x0 is not contained in '�1. y0 � int.C//.
Write '.x0/ D y0 � v0 for some v0 2 int.C/. Hence, there exists a net fx˛g˛2	 in X
such that x˛ ! x and every '.x˛/ does not lie in y0 � int.C/ D '.x0/C v0 � int.C/.
Since the complement of '.x0/C v0 � int.C/ is closed, for every ˛ 2 	,

cl.A˛/\ .'.x0/C v0 � int.C// D ;;

which is a contradiction. ut
Proposition 2.28 Let X and Z be Hausdorff topological vector spaces and f W X !
Z be a vector-valued function. If ' is C-upper semicontinuous on X, then the real-
valued function g W X ! R defined by g.x/ D  . f .x// is upper semicontinuous.

Proof Since f is C-upper semicontinuous on X, from Proposition 2.27, we have
that for each w 2 int.C/ and for any net fx˛g˛2	 in X converging to x, there exists
˛0 2 	 such that

cl.fg.xˇ/ W ˇ � ˛g/ � g.x/C w � int.C/; for all ˛ � ˛0:
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Let us consider a net fwjgj2J � int.C/ such that wj ! 0. Then from the C-upper
semicontinuity of f , we deduce that for each j 2 J, there exists ˛0. j/ 2 J such that

f .xˇ/ � f .x/ � wj 2 � int.C/; for all ˇ � ˛0. j/:

Hence,  
�
f .xˇ/ � f .x/ � wj

�
< 0 for all ˇ � ˛0. j/. It follows that

max
�2B�

h�; f .xˇ/i � max
�2B�

h�; f .x/i C max
�2B�

h�;wj/i; for all ˇ � ˛0. j/:

Consequently,

g.xˇ/ � g.x/C max
�2B�

h�;wj/i; for all ˇ � ˛0. j/;

from which it follows that lim sup
ˇ

g.xˇ/ � g.x/ since wj ! 0. Therefore, g is upper

semicontinuous. ut
Proposition 2.29 Let K be a nonempty subset of a topological vector space X and
Y be a topological vector space with a partial ordering defined by a pointed closed
convex cone C. Let '; � W K ! Y be C-lower semicontinuous functions. Then

(a) ' C � is C-lower semicontinuous;
(b) t' is C-lower semicontinuous for t > 0.

Proof We only prove part (a). Part (b) is left as an exercise. For a given x0 2 K, for
every neighborhoodV of '.x0/C �.x0/, we can find open neighborhoods V1 and V2
of '.x0/ and �.x0/, respectively, such that V1 C V2 � V . Since ' and � are C-lower
semicontinuous, we can find neighborhoodsU1 and U2 of x0 such that

'.x/ 2 V1 C C; for all x 2 U1 \ K

and

�.x/ 2 V2 C C; for all x 2 U2 \ K:

SettingU D U1CU2, we see that the function 'C� is C-lower semicontinuous. ut
Proposition 2.30 Let K be a nonempty subset of a topological vector space X and
Y be a topological vector space with a partial ordering defined by a pointed closed
convex cone C. Let ' W K ! Y be a C-lower semicontinuous function. Then the
real-valued function � ı ' is lower semicontinuous for all � 2 C�, where C� is the
dual cone of C.

Proof If � is a zero function in C�, then this is obvious. So, suppose that � 2 C� is
not a zero function and let x0 2 K. For any " > 0, define

V D fy 2 '.K/ W j�. y/j < "g:
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Since ' is C-lower semicontinuous, for any x0 2 K, there exists an open
neighborhoodU of x0 such that

'.x/ 2 .'.x0/C V/C C; for all x 2 U \ K:

It follows that, for any x 2 U \ K, there exists y 2 V such that '.x/ �C '.x0/C y.
Hence,

� ı '.x/ � � ı '.x0/� ";

that is, � ı ' is lower semicontinuous. ut
Proposition 2.31 Let K be a nonempty subset of a topological vector space X and
Y be a topological vector space with a partial ordering defined by a pointed closed
convex cone C. Let ' W K ! Y be a C-lower semicontinuous function at x0 2 K,
and for every x 2 K n fx0g, 0 6<C '.x/. Then '.x0/ 6>C 0.

Proof Suppose to the contrary that '.x0/ >C 0, that is, '.x0/ 2 int.C/. Then there
is a neighborhood V of '.x0/ such that V � int.C/. We have V CC � int.C/. Since
' is C-lower semicontinuous at x0, one can find a neighborhood U of x0 such that
'.U \ K/ � V C C. Taking x 2 U \ K, x ¤ x0, we have '.x/ 2 int.C/. This
contradicts the assumption that '.x/ … int.C/ for all x 2 K n fx0g. This completes
the proof. ut
Proposition 2.32 ([25, Proposition 1.8]) Let Y be a Hausdorff topological vector
space. Assume that the cone C � Y has a closed convex bounded base. Then for any
neighborhood V of the origin in Y, there exists a neighborhoodW of the origin in Y
such that

.W C C/ \ .W � C/ � V: (2.26)

Theorem 2.6 Let Y be a Hausdorff topological vector space, X a topological vector
space and ; ¤ K � X. Assume that the cone C � Y has a closed convex bounded
base. Then the continuity in ordinary sense is equivalent to the C-continuity, that is,
the function ' W K ! Y is continuous (in ordinary sense) if and only if it is both
C-lower semicontinuous as well as C-upper semicontinuous.

Proof It is obvious that if ' W K ! Y is continuous, that is, f0g-continuous, then it
is C-continuous for any cone C in Y.

Suppose that ' W K ! Y is C-continuous at a point x0 2 X. Then it is C-
lower semicontinuous as well as C-upper semicontinuous at x0 2 X. Let V � Y be
a neighborhood of '.x0/. Then we have to show that there exists a neighborhood
U � X of x0 such that

'.x/ 2 V; for all x 2 U \ K: (2.27)



2.5 Cone Continuity 123

By Proposition 2.32, for the neighborhood V , we can find a neighborhood W of
'.x0/ in Y such that (2.26) holds. By the assumption of the theorem, for W, there
are two neighborhoodsU1 � X and U2 � X of x0 such that

'.x/ 2 W C C; for all x 2 U1 \ K

and

'.x/ 2 W � C; for all x 2 U2 \ K:

This and (2.26) imply (2.27) for U D U1 \ U2. ut
Lemma 2.12 ([25, Theorem 7.2]) Let K be a nonempty compact convex subset of
a Hausdorff topological vector space. Let Y be a topological vector space with a
solid pointed convex cone C � Y. If ' W K ! Y is C-continuous, then

S
x2Kf'.x/g

is C-compact.

Definition 2.27 Let X and Y be topological vector spaces, C be a pointed closed
convex cone in Y and e 2 Y n f0g. A function ' W X ! Y is said to be

(a) C-bounded below if there exists ˛ 2 Y such that '.x/ � ˛ C C for all x 2 X;
(b) .e;C/-lower semicontinuous if for all r 2 R, the set fx 2 X W '.x/ 2 re � Cg is

closed;
(c) .e;C/-upper semicontinuous if for all r 2 R, the set fx 2 X W '.x/ 2 re C Cg is

closed;
(d) .e;C/-continuous if it is both .e;C/-lower semicontinuous as well as .e;C/-

upper semicontinuous.

Remark 2.15 It is easy to see that the C-lower (respectively,C-upper) semicontinu-
ity of ' implies the .e;C/-lower (respectively, .e;C/-upper) semicontinuity.

Remark 2.16

(a) For Y D R, C D RC, e D 1, let fx 2 X W '.x/ 2 re � Cg D fx 2 X W '.x/ � rg
be a closed set for all r 2 R. This is the usual definition of lower semicontinuity
for functionals ' W X ! R.

(b) Luc [25] used the following notion of cone-continuity: ' is C-semicontinuous
if the set fx 2 X W '.x/ 2 y � Cg is closed at every y 2 Y. It is easy to see that
C-semicontinuity implies .e;C/-lower semicontinuity for all e 2 Y.

Example 2.29 Consider the mapping 'WR ! R2 defined in Example 2.28 by

'.x/ WD .'1.x/; '2.x// D
( �

1
x ; x
�
; for x > 0;

.�1;�1/; for x � 0 :

It is easy to see that ' is R2C-bounded below. Let e D .1; 1/. Then ' is .e;C/-
lower semicontinuous and .e;C/-upper semicontinuous with C D R2C, and hence
.e;C/-continuous.
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Definition 2.28 A vector-valued function ' W K ! Y is called C-upper hemicon-
tinuous (respectively, C-lower hemicontinuous) if for all x; y 2 K, the vector-valued
function t 7! '.x C t. y � x// defined for t 2 Œ0; 1�, is C-upper semicontinuous
(respectively, C-lower semicontinuous) at t D 0.
' is called C-hemicontinuous if it is C-upper semicontinuous as well as C-lower

semicontinuous at t D 0.

Example 2.30

(a) The mapping 'WR ! R
2 defined in Example 2.28 is C-lower hemicontinuous.

Because ' is not C-upper semicontinuous and ' maps from R to R
2, the

function cannot be C-upper hemicontinuous.
(b) The function ' W K ! R

2, defined by '.x1; x2/ WD �
x21; x

2
2

� � �
1
2
; 1
2

�
on the set

K WD ˚
.x1; x2/ 2 R2 W �1 < x1 < 1;�1 < x2 < 1

�
, is C-hemicontinuous.

Example 2.31 Let f WR2 ! R with

f .x1; x2/ WD
8
<

:

0 ; if .x1; x2/ D 0 ;
x21x2
x41Cx22

; else.

For .x1; x2/ ¤ 0, the function f is obviously continuous and therefore hemicontinu-
ous as well. If one approaches 0 along the path .x1.t/; x2.t// D  .t/ D .t; sgn.t/�t2/,
where

sgn.t/ WD

8
ˆ̂
<

ˆ̂
:

1 ; if t > 0;

0 ; if t D 0;

�1 ; if t < 0;

the corresponding function values are

f . .t// D t2 � sgn.t/ � t2
t4 C .sgn.t//2t4

D sgn.t/

2
;

which has a discontinuity at t D 0, see Fig. 2.10. If, on the other hand, one only
considers straight lines approaching 0, i. e. .x1.t/; x2.t// D '.tI˛; ˇ/ D t.˛; ˇ/
with ˛2 C ˇ2 > 0, the corresponding function values are a continuous function in t:

f .'.tI˛; ˇ// D ˛2ˇt3

˛4t4 C ˇ2t2
D ˛2ˇt

˛4t2 C ˇ2
:

Therefore, the function f is hemicontinuous at 0.
Now we discuss cone continuity of set-valued maps.
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Fig. 2.10 Function values of
the hemicontinuous function
f from Example 2.31 along
paths

− − −

−

−

Definition 2.29 (C-Semicontinuity) Let X be a topological space, Y be a topologi-
cal vector space andC be a proper closed convex cone with int.C/ ¤ ;. A set-valued
map T W X ! 2Y n f;g is said to be:

(a) C-lower semicontinuous at x 2 X if for each open subset V of Y with T.x/\V ¤
;, there exists a neighborhood U of x such that

T.u/\ �
V C int.C/

� ¤ ;; for all u 2 U :

(b) C-upper semicontinuous at x 2 X if for each open subset V of Y with V 
 T.x/,
there exists a neighborhood Ux of x such that

T.u/ � V C int.C/; for all u 2 Ux:

(c) C-continuous at x 2 X if it is C-lower semicontinuous as well as C-upper
semicontinuous at x.

Georgiev and Tanaka [9] defined C-upper semicontinuity of a set-valued map in
a different way.

Proposition 2.33 Let X and Z be two topological spaces, and Y be a topological
vector space with two proper solid convex cones C and D such that C 
 D. Suppose
that T W X ! 2Y nf;g is a set-valued map and f W Z ! Y is a vector-valued function
such that for fixed x 2 X and fixed z 2 Z,

(i) T is D-upper semicontinuous at x;
(ii) f is D-continuous at z;
(iii) T.x/ is D-compact;
(iv) T.x/C f .z/ � int.C/.
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Then there exist two neighborhoods Ux of x and Vy of y such that

T.u/C f .v/ � int.C/; for all u 2 Ux and v 2 Vy:

Also, if C D D, for each " 2 int D there exist t > 0 and neighborhoods Ux of x and
Vy of y such that

T.u/C f .v/ � t"C int.C/; for all u 2 Ux and v 2 Vy:

Proof Let A WD T.x/ C f .z/. Then for each y 2 A, there exists a positive number
tz > 0 such that y � ty" 2 int.C/. Note that y � ty" C int D � int.C/ and it is a
neighborhood of y. Obviously,

S
y2A

�
y�ty"Cint D

� � A. Hence, by condition (iii),
there exist y1; y2; : : : ; ym 2 A and corresponding positive numbers ty1 ; ty2 ; : : : ; tym >
0 such that

m[

iD1

�
yi � tyi"C int D

� � A

By condition (i), there exists a neighborhood Ux of x such that

T.u/C f .z/ �
m[

iD1

�
yi � tyi"C int D

�
:

Since y1�ty1 "; : : : ; yn�tyn" 2 int.C/ are finitely many, there exists a positive number
� > 0 such that

yi � .tyi C 2�/" 2 int.C/; i D 1; 2; : : : ;m: (2.28)

By condition (ii), there exists a neighborhood Vy of y such that

f .v/ 2 f .z/ � �"C int D; for all v 2 Vy:

Note that int.C/C int D � int.C/C int.C/ D int.C/. Hence, we have

T.u/C f .v/ � int.C/; for all u 2 Ux and z 2 Vz:

Also if C D D, by (2.28), we have

yi � .tyi C �/" 2 �"C int.C/; i D 1; 2; : : : ;m:

Hence, we have

T.u/C f .v/ � �"C int.C/; for all u 2 Ux and y 2 Vy:

This completes the proof. ut
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Remark 2.17 If T.x/ is not C-compact, then Proposition 2.33 may not be true even
if T has a constant value and f is continuous on Z.

Example 2.32 Let X D �0;1Œ, Z D R2, Y D R2, and C D R2C. Suppose that
T W X ! 2Y is defined by

T.x/ WD
�

.u; v/ 2 Y W v D 1

u

�

;

and that f W Z ! Y is defined by

f .z/ D z:

Then T has constant values and f is continuous on Z. Also, we have

T.0/C f .0Z/ � int.C/;

where 0Z denotes the zero vector in Z. However for any neighborhood V of 0Z ,
V \ � int.C/ ¤ ;. Let Oz 2 V \ � int.C/. Then T.0/C f .Oz/ 6� int.C/. Hence, there
is no neighborhood of U � X of 0 and V � Z of 0Z such that

T.u/C f .v/ � int.C/; for all u 2 U and v 2 V:

2.6 Nonlinear Scalarization Functions

The most useful and common practice to solve a vector optimization problem
is to convert it into a scalar optimization problem. Gerstewitz [10] introduced a
nonlinear scalarization function for such conversion. Pascoletti and Serafini [26]
used this functional in multiobjective optimization. In the context of operator theory,
this functional was mentioned by Krasnoselskiı̆ [22] (see Rubinov [27]). Essential
properties of such a functional were shown by Gerstewitz and Iwanow [11], Gerth
and Weidner [12] and Göpfert et al. [14].

Several other mathematicians, namely, Chen et al. [3], Luc [25], etc., further
used this scalarization function. Notice that Wierzbicki [32] was the first researcher
to investigate nonconvex separation techniques.

Let Y be a topological vector space and e a fixed nonzero vector in Y.
Furthermore, let D be a nonempty closed proper (i.e., D ¤ f0g and D ¤ Y) subset
of Y. We assume that

D C Œ0;1/ � e � D; (2.29)

which means that D contains the rays generated by e.
Now we introduce the following nonlinear scalarization function.
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Fig. 2.11 Level sets of the
functional �e;D

−

−

Definition 2.30 For any closed set D � Y and e 2 Y n f0g satisfying (2.29), a
nonlinear scalarization function �e;D W Y ! R [ f˙1g is defined by

�e;D. y/ D infft 2 R W y 2 te � Dg; for all y 2 Y:

Applications of �e;D include coherent risk measures in financial mathematics
(see, for instance, [17]). Furthermore, the functional �e;D can be used to separate
nonconvex sets (see Theorem 2.8).

A visualization of the functional �e;D is given in Fig. 2.11.
Note that it is also possible to introduce a parameter ˛ in the definition of the

functional �e;D. We have for a fixed ˛ 2 Y

�e;DC˛. y/ D inf ft 2 R W y 2 te � .D C ˛/g
D inf ft 2 R W y C a 2 te � Dg D �e;D. y C ˛/:

The nonlinear scalarizing functional fulfills some important properties, some of
which we need to define first.

Definition 2.31 Let Y be a topological vector space and C be a closed proper
pointed convex cone in Y. A function � W Y ! R is said to be

(a) monotone with respect to C if for all y1; y2 2 Y,

y1 �C y2 implies �. y1/ � �. y2/I

(b) strictly monotone with respect to C if for all y1; y2 2 Y,

y1 >C y2 implies �. y1/ > �. y2/I

(c) strongly monotone with respect to C if for all y1; y2 2 Y,

y1 �C0 y2 implies �. y1/ > �. y2/:
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Of course, strong monotonicity implies strict monotonicity.
The nonlinear scalarization function satisfies the following important properties.

Theorem 2.7 ([12, 15]) Let Y be a topological vector space, D � Y a closed proper
set and B � Y. Furthermore, let e 2 Y n f0g be such that (2.29) is satisfied. Then
the following properties hold for �e;D:

(a) �e;D is lower semicontinuous.
(b) �e;D is convex , D is convex.
(c) Œfor all y 2 Y; for all t > 0 W �e;D.ty/ D t�e;D. y/� , D is a cone.
(d) �e;D is proper , D does not contain lines parallel to e, i.e., for all y 2 Y, there

exists r 2 R such that y C re … D.
(e) �e;D is monotone with respect to B , D C B � D.
(f) �e;D is subadditive , D C D � D.
(g) For all y 2 Y and all r 2 R : �e;D. y/ � r , y 2 rk � D. Equivalently, for all

y 2 Y and all r 2 R : �e;D. y/ > r , y … rk � D.
(h) For all y 2 Y and all r 2 R : �e;D. y C rk/ D �e;D. y/C r.
(i) �e;D is finite-valued , D does not contain lines parallel to e and Re � D D Y.

Let furthermore D C .0;1/ � e � int.D/. Then

( j) For all y 2 Y and all r 2 R : �e;D. y/ < r , y 2 re � int.D/. Equivalently, for
all y 2 Y and all r 2 R : �e;D. y/ � r , y … re � int.D/.

(k) �e;D is continuous.
(l) For all y 2 Y and all r 2 R : �e;D. y/ D r , y 2 re � bd.D/.
(m) If �e;D is proper, then �e;D is monotone with respect to B , D C B � D ,

bd.D/C B � D.
(n) If �e;D is finite-valued, then �e;D is strongly monotone with respect to B , DC

.B n f0g/ � int.D/ , bd.D/C .B n f0g/ � int.D/.
(o) Suppose �e;D is proper. Then �e;D is subadditive , D C D � D , bd.D/C

bd.D/ � D.

Proof

(a) To show that �e;D is lower semicontinuous, we prove that epi �e;D is closed. In
fact, for D0 WD f. y; t/ 2 Y 	 R W y 2 te � Dg, we observe that D0 � epi �e;D �
clD0. Notice that if D is closed, then D0 is closed. Thus, if D is closed, we have
D0 D epi �e;D, and �e;D is lower semicontinuous.

(b) Let �e;D be convex, and choose t1 WD �e;D. y1/ and t2 WD �e;D. y2/, which means
that y1 D t1e � d1, y2 D t2e � d2 for some d1; d2 2 D. We have

�y1 C .1 � �/y2 D �.t1e � d1/C .1 � �/.t2e � d2/:

Because �e;D is convex, we have �e;D.�y1 C .1 � �/y2/ � ��e;D. y1/ C
.1 � �/�e;D. y2/, which means that �y1 C .1� �/y2 2 .�t1 C .1� �/t2/e � D,
taking into account (g). Thus,

�y1 C .1� �/y2 D �.t1e � d1/C .1� �/.t2e � d2/ 2 .�t1 C .1� �/t2/e � D;
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and D is convex.
Conversely, let D be a closed convex set, t1 WD �e;D. y1/ and t2 WD �e;D. y2/.

Then y1 D t1e� d1, y2 D t2e� d2 for some d1; d2 2 D. It follows for � 2 Œ0; 1�
that

�y1 C .1� �/y2 D �.t1e � d1/C .1� �/.t2e � d2/

D .�t1 C .1 � �/t2e/� �d1 � �d2
2 .�t1 C .1 � �/t2e/ � D:

Thus, �e;D.�y1 C .1� �/y2/ � �t1 C .1��/t2 D ��e;D. y1/C .1� �/�e;D. y2/,
and thus �e;D is convex.

(c) Let �e;D.ty/ D t�e;D. y/. It holds y 2 �e;D. y/e � D and ty 2 �e;D.ty/ � D D
t�e;D.ty/ � D. Thus, D is a cone.

Conversely, let D be a cone. Then we have for Nt > 0

�e;D.Nty/ D infft 2 R W Nty 2 te � Dg

D infft 2 R W y 2 1

Nt te � Dg
D inffNt � Qt 2 R W y 2 Qte � Dg
D Nt inffQt 2 R W y 2 Qte � Dg
D Nt�e;D. y/;

with Qt WD 1

Nt t.
(d) �e;D. y/ D �1 if and only if y 2 te � D for all t 2 R. This means fy � te W t 2

Rg � D. So, �e;D is proper , D does not contain lines parallel to e.
(e) Let D C B � D. Take y1; y2 2 Y such that y1 2 y2 � B holds. Let t be the

smallest value such that y2 2 te�D. Then y1 2 y2 �B � te�D�B � te�D.
So, �e;D. y1/ � t D �e;D. y2/. Now assume that �e;D is monotone with respect
to B and take y 2 D and b 2 B. y 2 D implies �y 2 �D, and because of (g)
with r D 0, we get �e;D.�y/ � 0. We have .�y/� .�y� b/ 2 B, which implies
�e;D.�y � b/ � �e;D.�y/ � 0. Again by (g), we conclude with �y � b 2 �D,
thus y C b 2 D.

(f) Let �e;D be subadditive, and choose y1; y2 2 D. Then by (g), we have
�e;D.�y1/; �e;D.�y2/ � 0. Because �e;D is subadditive, we obtain �e;D.�y1 �
y2/ � �e;D.�y1/C �e;D.�y2/ � 0. Again by (g), we conclude �y1 � y2 2 �D,
that is, y1 C y2 2 D.

(g) The implication ( is obvious from the definition of the functional �e;D, while
the inverse implication is immediate taking into account the closedness of D.

(h) We have y 2 �e;D. y/e � D for some y 2 Y. Adding Nte, we get y C Nte 2
.�e;D. y/C Nt/e � D, and thus �e;D. y C Nte/ � �e;D. y/C Nt. Conversely, consider
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y C Nte 2 �e;D. y C Nte/e � D, so y 2 .�e;D. y C Nte/ � Nt/e � D. Hence �e;D. y/ �
�e;D. y C Nte/ � Nt. In conclusion, we have �e;D. y C Nte/ D �e;D. y/C Nt.

(i) The assertion is deduced from (d) and dom �e;D D Re � D.
( j) Let t 2 R and choose y 2 te � int.D/. Then there exists some � > 0 such that

te � y � �e 2 int.D/ � D. This means �e;D. y/ � t � � < t. Conversely, choose
t 2 R and y 2 Y such that �e;D. y/ < t. Then there exists Nt such that Nt < t, with
y 2 Nte � D. Then we obtain y 2 te � .D C .t � Nt/e/ � te � int.D/.

(k) This assertion follows from ( j).
(l) We obtain this result directly from (g) and ( j).
(m) Let �e;D be proper and monotone with respect to B. Choose y 2 bd.D/ and

b 2 B. Then, by (l), we obtain �e;D.�y/ D 0. By the monotonicity assumption,
we have �e;D.�y � b/ � �e;D.�y/ D 0. Then by (g), y C b 2 D. This shows
bd.D/ C B � D. Now let bd.D/ C B � D. We show that �e;D is monotone
w. r. t. B. Choose y2 � y1 2 B. We know from (l) that y2 2 �e;D. y2/e � bd.D/,
which means �e;D. y2/e � y2 2 bd.D/. Due to the assumption bd.D/C B � D,
we obtain that �e;D. y2/e � y2 C y2 � y1 2 D, hence �e;D. y2/e � y1 2 D. This
means �e;D. y1/ � �e;D. y2/. Thus, �e;D is monotone w. r. t. B. The remaining
equivalence has been proved in (e).

(n) Let �e;D be finite-valued. Assume that �e;D is strictly monotone with respect to
B. Take y 2 D and b 2 B n f0g. It follows from (g) that �e;D.�y/ � 0. Because
�e;D is strictly monotone with respect to B, we obtain from .�y/� .�y � b/ D
b 2 B n f0g that �e;D.�y � b/ < �e;D.�y/ � 0. Using ( j), we obtain y C b 2
int.D/. Now let bd.D/C .Bnf0g/ � int.D/. Consider y2�y1 2 Bnf0g. Due to
(l), we have y2 2 �e;D. y2/e�bd.D/, which means �e;D. y2/e�y2 2 bd.D/. Thus,
by hypothesis, �e;D. y2/e�y2Cy2�y1 2 int.D/, and thus �e;D. y2/e�y1 2 int.D/.
That is y1 2 �e;D. y1/e � int.D/, implying �e;D. y1/ < �e;D. y2/. The remaining
implication follows since D is a closed set.

(o) Notice that the first part of this assertion was proven in (f). Let �e;D be proper,
and let bd.D/C bd.D/ � D. We consider y1; y2 2 dom �e;D. By (l), we obtain
yi 2 �e;D. yi/e � bd.D/, leading to

y1Cy2 2 .�e;D. y1/C �e;D. y2// e�bd.D/�bd.D/ � .�e;D. y1/C �e;D. y2// e�D:

Thus, �e;D. y1 C y2/ � �e;D. y1/C �e;D. y2/. ut
We summarize the properties of the functional �e;B for the case when B D C is a

given proper closed convex cone.

Corollary 2.1 ([15, Corollary 2.3.5.]) Let C � Y be a proper closed convex cone
and e 2 int.C/. Then �e;C, given in Definition 2.30, is finite-valued continuous,
sublinear and strictly monotone with respect to C such that

�e;C. y/ � r , y 2 rk � C; for all y 2 Y and all r 2 R;

�e;C. y/ < r , y 2 rk � int.C/; for all y 2 Y and all r 2 R:
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Lemma 2.13 ([25, Theorem 1.6]) Let Y be a topological vector space which
is partially ordered by a pointed convex cone C. Let X be a vector space with
a nonempty subset K. A function ' W K ! Y is C-quasiconvex (respectively,
C-quasiconcave) if and only if the composite mapping �e;D ı ' W K ! R is RC-
quasiconvex (respectively, RC-quasiconcave), where RC D fx 2 R W x � 0g:
Proof Let �e;D ı ' be quasiconvex. Suppose that ' is not C-quasiconvex, that is,
there exist some N̨ 2 Y, x; y 2 K and t 2 Œ0; 1� such that

'.x/; '. y/ 2 ˛ � C and '.tx C .1� t/y/ … ˛ � C:

By the definition of �e;D with D WD C � ˛, we have

�e;D.'.x// D infft 2 R W '.x/ 2 te � Dg D infft 2 R W '.x/ 2 te � C C ˛g � 0

and

�e;D.'. y// � 0;

while,

�e;D.'.tx C .1 � t/y/ > 0

which shows that �e;Dı' is not quasiconvex and so notRC-quasiconvex. The inverse
implication of the assertion can be shown analogously. ut

The following lemma relates .e;C/-lower (upper, respectively) semicontinuity of
a vector-valued function ' (see Definition 2.27) to the lower (upper, respectively)
semicontinuity of the composite mapping �e;D ı '.
Lemma 2.14 ([30]) Let Y be a topological vector space which is partially ordered
by a pointed convex cone C. Let X be a vector space with a nonempty subset K.
Consider a function ' W K ! Y and the functional �e;C with C � Y a closed convex
pointed cone and e 2 int.C/.

(a) If ' is .e;D/-lower semicontinuous and C-bounded below, then �e;D ı' is lower
semicontinuous and bounded below.

(b) If ' is .e;D/-upper semicontinuous, then �e;D ı ' is upper semicontinuous.

We recall the following separation theorem for not necessarily convex sets.

Theorem 2.8 (Separation Theorem for Not Necessarily Convex Sets) [15, The-
orem 2.3.6] Let Y be a topological vector space, D � Y be a closed proper set with
nonempty interior, A � Y be a nonempty set such that A \ .� int.D// D ; and
e 2 Y. Assume that one of the following two conditions holds:

(i) There is a cone C � Y such that e 2 int.C/ and D C int.C/ � D;
(ii) D is convex, and (2.29) and D C .0;1/ � e � int.D/ are satisfied.
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Then �e;D is a finite-valued continuous functional such that for all y 2 A, d 2 int.D/

�e;D. y/ � 0 > �e;D.�d/:

Moreover, �e;D. y/ > 0 for every y 2 int.A/.
Now we consider the nonlinear scalarizing functional with a variable ordering

structure. Let X and Y be locally convex Hausdorff topological vector spaces. We
consider a set-valued map C W X ! 2Y such that for each x 2 X, C.x/ is a proper
closed and convex cone with nonempty interior. Furthermore, let e W X ! Y be a
map. Suppose that for all x 2 X, e.x/ 2 int.C.x//. Let Y� be the dual space of Y
equipped with weak�-topology. Let C� W Y ! 2Y

�

be defined as

C�.x/ D f� 2 Y� W h�; yi � 0 for all y 2 C.x/g; for all x 2 X:

Then the set

B�.x/ D f� 2 C�.x/ W h�; e.x/i D 1g

is a weak� compact base of the cone C�.x/.

Definition 2.32 ([4]) The nonlinear scalarization function �ve;C W X 	 Y ! R is
defined as

�ve;C.x; y/ D inff� 2 R W y 2 �e.x/� C.x/g; for all .x; y/ 2 Y 	 Y:

Remark 2.18 Let P be a proper, closed and convex cone in Y with int.P/ ¤ ;, and
Oe 2 int.P/. If C.x/ D P is a constant set-valued map and e.x/ D Oe a fixed vector in
int.P/ for all x 2 X, then Definition 2.32 reduces to Definition 2.30.

In order to show that �ve;C is well-defined, we first have to prove the following
important proposition.

Proposition 2.34 ([12]) For arbitrary x 2 X, let C.x/ � Y be a solid cone. Then

Y D
[

fint.C.x// � �e.x/ W � 2 RC n f0gg;

for all e.x/ 2 int.C.x//.

Proof For arbitrary e.x/ 2 int.C.x//, we consider V WD int.C.x//� e.x/. Of course,
it holds 0 2 V . Because C.x/ is a cone, we obtain

�V D � int.C.x//� �e.x/ � int.C.x// � �e.x/; for all � 2 RC n f0g:

Consequently,

[
f�V W � 2 RC n f0gg �

[
fint.C.x// � �e.x/ W � 2 RC n f0gg
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and because of 0 2 V , we obtain

[
f�V W � 2 RCg �

[
fint.C.x//� �e W � 2 RC n f0gg:

By Proposition 1.1, we obtain

Y D
[

f�V W � 2 RCg ;

and therefore,

Y D
[

fint.C.x// � �e.x/ W � 2 RC n f0gg : ut

Example 2.33 For Y D R2, the constant cone C D R2C and fixed e D .1; 0/ …
int.C/, we have

[˚
int.R2C/ � �.1; 0/ W � 2 RC n f0g� D ˚

y 2 R
2 W y2 > 0

� ¤ R
2:

Proposition 2.35 The function �ve;C W X 	 Y ! R is well defined.

Proof We show that for any fixed x 2 X and e.x/ 2 int.C.x//, the set

Ae.x/. y/ D ft 2 R W y 2 ˛ C te.x/� C.x/g

is nonempty, closed and bounded from below for each y 2 Y.
Since 0 2 e.x/ � int.C.x//, for each fixed ˛ 2 Y, there is a positive number t

such that

y

t
2 e.x/ � int.C.x//;

that is, y 2 te.x/ � int.C.x// � te.x/ � C.x/, and so t 2 Ae.x/. y/. Thus, Ae.x/. y/ is
nonempty for all y 2 Y.

To show that Ae.x/. y/ is closed for all y 2 Y, we let ftng � �e.x/. y/ be a sequence
in Ae.x/. y/ such that tn ! t as n ! 1. Then y 2 tne.x/�C.x/ for all n 2 N, that is,
tne.x/� y 2 C.x/. Since C.x/ is closed, we have te.x/� y 2 C.x/. Thus, t 2 Ae.x/. y/
and so Ae.x/. y/ is closed.

Now we show that Ae.x/ is bounded from below. We have to show that for each
t 2 R, there exists some � < t and y 2 �e.x/ � C.x/. We proceed in two steps.
At first we show that � 2 Ae.x/. y/ implies � 2 Ae.x/. y/ for all � > �. This is true
because for � 2 Ae.x/. y/, we have

y 2 �e.x/ D y � �e.x/C .� � �/e.x/
2 �C.x/ � int.C.x// � � int.C.x// � �C.x/:

(2.30)
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Therefore, � 2 Ae.x/.
Next we show that for all y 2 Y, there is some � 2 R such that � … Ae.x/. Now

assume that there exists y0 2 Y with � 2 Ae.x/. y0/ for all � 2 R. Then due to (2.30),
we have y0 2 � int.C.x// C �e.x/ for all � 2 R. Hence, fy0 � �e.x/ W � 2 Rg �
� int.C.x//. Because of Proposition 2.34, we have

Y D
[

fint.C.x//� �e.x/ W � 2 RC n f0gg:

Moreover, because Y is a vector space, we have �y 2 Y. Therefore, for all y 2 Y,
there is some c0 2 int.C.x// and some �0 2 RC n f0g such that �y D c0 � �0e.x/.
Hence,

y D �c0 C �0e.x/C y0 � y0

D y0 C �0e.x/� c0 � y0

2 � int.C.x//� int.C.x//� y0:

Consequently, y 2 �C.x/ � y0 for all y 2 Y, and we obtain Y � �C.x/ � y0, which
implies Y D C.x/, a contradiction. Thus, for all y 2 Y there is some � 2 R such that
� … Ae.x/.

In conclusion, this shows that for all t 2 R, there is some �t < t such that
y 2 �te.x/ � C.x/. Hence, �ve;C is well defined. ut

The following result is important for the numerical treatment of the nonlinear
scalarizing functional �ve;C.

Proposition 2.36 ([4]) For any .x; y/ 2 X 	 Y,

�ve;C.x; y/ D max
�2B�.x/

h�; yi
h�; e.x/i ;

where B�.x/ is a base for C�.x/.

Proof We first show that

�ve;C.x; y/ D sup
�2C�.x/nf0g

h�; yi
h�; e.x/i :

Due to the definition of �ve;C, it holds �ve;C.x; y/e.x/ � y 2 C.x/. So, for any
� 2 C�.x/ n f0g � C�.x/, we have h�; �ve;C.x; y/e.x/ � yi � 0, or equivalently,
�ve;C.x; y/h�; e.x/ � yi � 0. Because e.x/ 2 int.C.x// and � 2 C�.x/ n f0g, it holds
h�; e.x/i > 0. Thus, we obtain �ve;C.x; y/ � h�;yi

h�;e.x/i , resulting in

�ve;C.x; y/ � sup
�2intC�.x/nf0g

h�; yi
h�; e.x/i :
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Now let

�0 WD sup
�2C�.x/nf0g

h�; yi
h�; e.x/i :

Then for any � 2 C�.x/ n f0g, �0 � h�;yi
h�;e.x/i . Because h�; e.x/i > 0, we have

h�; �0e.x/ � yi � 0. Then �0e.x/ � y 2 C.x/. This means y 2 �0e.x/ � C.x/, and
by the definition of �ve;C, we immediately obtain �ve;C.x; y/ � �0, i.e.,

�ve;C.x; y/ � sup
�2C�.x/nf0g

h�; yi
h�; e.x/i :

Consequently, we get

�ve;C.x; y/ D sup
�2C�.x/nf0g

h�; yi
h�; e.x/i :

Because B�.x/ is a base for C�.x/, for any x 2 Y and � 2 C�.x/ n f0g, there exist
some � > 0 and ' 2 B�.x/ such that � D �'. So we obtain for all x 2 Y,

h�; yi
h�; e.x/i D h�'; yi

h�'; e.x/i D h'; yi
h'; e.x/i :

Thus, we have

�ve;C.x; y/ D sup
�2C�.x/nf0g

h�; yi
h�; e.x/i D sup

�2B�.x/

h�; yi
h�; e.x/i :

Finally, since B�.x/ is weakly� compact, we conclude with

�ve;C.x; y/ D max
�2B�.x/

h�; yi
h�; e.x/i : ut

The following results provide some important properties of the nonlinear scalar-
ization function �ve;C .

Lemma 2.15 ([3]) Let X and Y be locally convex Hausdorff topological vector
spaces, C W X ! 2Y a set-valued map such that for all x 2 X, C.x/ is a proper,
pointed, closed and convex cone in Y with int.C.x// 6D ;. Let e W X ! Y be a
vector-valued map such that for any x 2 X; e.x/ 2 int.C.x//. For each � 2 R and
.x; y/ 2 X 	 Y, we have

(a) �ve;C.x; y/ < � , y 2 �e.x/� int.C.x//;
(b) �ve;C.x; y/ � � , y 2 �e.x/ � C.x/;
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(c) �ve;C.x; y/ � � , y 62 �e.x/� int.C.x//;
(d) �ve;C.x; y/ > � , y 62 �e.x/ � C.x/;
(e) �ve;C.x; y/ D � , y 2 �e.x/� bd.C.x//,

where bd.C.x// denotes the topological boundary of C.x/.

Proof We only prove part (a), as the remaining assertions can be proven in a similar
way. Due to Proposition 2.36, it holds

�ve;C.x; y/ < � , max
�2B�.x/

h�; yi
h�; e.x/i < �

, 8 � 2 B�.x/ W h�; yi < �h�; e.x/i
, 8 � 2 B�.x/ W h�; �e.x/� yi > 0
, 8 � 2 C�.x/ n f0g W h�; �e.x/� yi > 0
, �e.x/ � y 2 int.C.x//

, y 2 �e.x/ � int.C.x//: ut

Proposition 2.37 ([3]) Let X and Y be a locally convex Hausdorff topological
vector spaces. Then for any given x 2 X,

(a) �ve;C.x; �/ is positive homogeneous;
(b) �ve;C.x; �/ is strictly monotone, that is, if y1 >C y2, then �ve;C.x; y2/ < �

v
e;C.x; y1/.

Proof

(a) Let � > 0. For y 2 Y, we have

�ve;C.x; �y/ D max
�2B�.x/

h�; �yi
h�; e.x/i

D � max
�2B�.x/

h�; yi
h�; e.x/i

D ��ve;C.x; y/:

(b) Let y1 >C y2 and set r D �ve;C.x; y1/. Then by the definition of �ve;C.x; y1/, we
have

y2 2 y1 � int.C/ � re.x/ � C.x/ � int.C.x// � re.x/ � int.C.x//:

By Proposition 2.15 (a), we have

�ve;C.x; y2/ < r D �ve;C.x; y1/: ut
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Proposition 2.38 ([3]) For any fixed x 2 X, and any y1; y2 2 Y, the following
assertions hold:

(a) �ve;C.x; y1 C y2/ � �ve;C.x; y1/C �ve;C.x; y2/;
(b) �ve;C.x; y1 � y2/ � �ve;C.x; y1/ � �ve;C.x; y2/.

Proof

(a) It holds

�ve;C.x; y1 C y2/ D max
�2B�.x/

h�; y1 C y2i
h�; e.x/i

� max
�2B�.x/

h�; y1i
h�; e.x/i C max

�2B�.x/

h�; y2i
h�; e.x/i

D �ve;C.x; y1/C �ve;C.x; y2/:

(b) It follows from (a) that

�ve;C.x; y1/ D �ve;C.x; y1 � y2 C y2/ � �ve;C.x; y1 � y2/C �ve;C.x; y2/:

Then �ve;C.x; y1/� �ve;C.x; y2/ � �ve;C.x; y1 � y2/, and hence (b) holds. ut
Remark 2.19 It is important to mention that there exist several other extensions of
the nonlinear scalarizing functional �e;D introduced in Definition 2.30.

Hernández and Rodríguez-Marín [16] introduced the functional Ze;C W 2Y 	2Y !
R [ fC1g

Ze;C.A;B/ WD sup
b2B

infft 2 R W b 2 te C A C Cg;

where C is a closed pointed convex cone in Y and ; ¤ A;B 2 2Y . Note that we have
Ze;C.A;B/ D supb2B �e;�.CCA/.b/ with the notations from Definition 2.30. Hernán-
dez and Rodríguez-Marín [16] used this functional in set-valued optimization for
characterizing optimal solution sets of set optimization problems. They showed the
equivalence

B � A C C , for some e 2 int.C/ W Ze;C.A;B/ � 0;

see [16, Thm. 3.10]. Thus, the functional Ze;C implicitly uses the lower set less
order relation A �l

C B W, B � A C C introduced by Kuroiwa [23, 24]. Moreover,
Eichfelder [8, Sect. 5.2.1] (see also [6, 7]) studied the functional �e;C�a W Y !
R [ fC1g

�e;C�a. y/ WD infft 2 R W y 2 te � .C. y/� a/g;
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where e 2 Ty2Y int.C/. y/ n f0g for a characterization of nondominated elements of
a vector optimization problem equipped with a variable ordering structure.

2.7 Vector Conjugate

Let Y be a locally convex space with its dual Y� and C � Y be a proper closed
solid convex cone with its dual C�. Since int.C/ ¤ ; and C ¤ Y, we have C� ¤
f0g, besides, C� has a weakly� compact base, that is, there exists a convex, weak�
compact set B � C� such that 0 … B and C� D S

t�0 tB. We fix such a base and set

�.u/ WD max
t2B .t; u/; for all u 2 Y:

Then for all u 2 Y,

u < 0 , �.u/ < 0I u � 0 , �.u/ � 0I
u 6< 0 , �.u/ � 0I u 6� 0 , �.u/ > 0:

(2.31)

Let g W X ! Y and y 2 X. If a linear operator l 2 L.X;Y/ satisfies

hl; zi 6>C g.z C y/� g. y/; for all z 2 X;

then l is said to be a weak subgradient of g at y [34]. The set of all weak subgradients
of g at y is denoted by @wg. y/ and g is said to be weakly subdifferentiable at y [34]
if @wg. y/ ¤ ;:

Let A � Y. Denote

Supint.C/A D fu 2 cl.A/ W .A � fug/\ int.C/ D ;g:

In the case that Y D R and C D Œ0;1/, we have

Supint.C/A D
(
Sup A ; if fu 2 cl.A/ W .A � fug/\ int.C/ D ;g ¤ ;;
1 ; if fu 2 cl.A/ W .A � fug/\ int.C/ D ;g D ;:

Let g W X ! Y and l 2 L.X;Y/. The vector conjugate function [34], denoted by
g�
sup, of g at l is defined by

g�
sup.l/ D Supint.C/fhl; yi � g. y/ W y 2 Xg:

Let y 2 X. The vector biconjugate function, denoted by g��
sup, of g at y is defined

by

g��
sup. y/ D Supint.C/

[
fhl; yi � g�

sup.l/ W l 2 L.X;Y/g:
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Note that both g�
sup and g��

sup are set-valued maps and g�
sup W L.X;Y/ ! 2Y , g��

sup W
X ! 2Y . Throughout this section, we assume that g�

sup.l/ ¤ ; and g��
sup. y/ ¤ ;.

Let g W X ! Y and y 2 X. g is said to be externally stable at y if g. y/ 2 g��
sup. y/:

The external stability was introduced in [29] when the vector conjugate function
is defined via the set of efficient points.

Lemma 2.16 Let g W X ! Y and y 2 X. Then

l 2 @wg. y/ , hl; yi � g. y/ 2 g�
sup.l/: (2.32)

Proof It follows from the definitions of the vector conjugate function and the
subgradient that l 2 @wg. y/ if and only if

hl; zi 6>C g.z C y/� g. y/; for all z 2 X;

equivalently,

hl; z C yi � g.z C y/ 6>C hl; yi � g. y/; for all z 2 X;

if and only if hl; yi � g. y/ 2 g�
sup.l/ as y 2 X. ut

Before we give an existence result for the weak subdifferential @wg. y/, we need
the following lemma.

Lemma 2.17 Let Y be a locally convex space, B � Y a set with nonempty interior
and C � Y a solid pointed cone. Let g W B ! Y be C-convex and continuous at
y 2 int.B/. Then the epigraph of g

epi.g/ D f.x; y/ 2 X 	 Y W x 2 B; y 2 fg.x/g C Cg

has nonempty interior.

Proof Choose z 2 Y such that z�g. y/ 2 int.C/. Then z�g. y/�2M � C for some
neighborhood M of 0 in Y. Since y 2 int.B/ and g is continuous at y, there exists
some neighborhoodN of 0 in X such that yCN � B, and g. yCN/ � g. y/CM. Then
we have z�g. yCN/�M � z�g. y/�M�M � C. Therefore, . yCN; z�M/ � epi.g/,
and int.epi.g// is nonempty. ut
Theorem 2.9 Let Y be a locally convex space, B � Y a convex set with nonempty
interior and C � Y a solid pointed cone. Let g W B ! Y be C-convex and continuous
at y 2 int.B/. Then there exists a weak subgradient l 2 @wg. y/.
Proof Let y 2 int.B/, and define D WD B � fyg. Then 0 2 int.D/. Let '.z/ WD
g. yC z/� g. y/. Then '.0/ D g. y/� g. y/ D 0, and ' is C-convex and continuous
at 0. Therefore, the set K WD f.z; x/ 2 .D 	 Y/ W x � '.z/ 2 int.C/g is nonempty
(see Lemma 2.17) and convex (see Theorem 2.4). Since .0; 0/ … K, by a separation
theorem for convex sets there exists nonzero .�l1; l2/ 2 X� 	 Y� with �l1.z/ C
l2.x/ � 0 for all .z; x/ 2 K. If l1 D 0, then l2.x/ � 0 for all x 2 Y, contradicting
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.�l1; l2/ ¤ .0; 0/. If l2 D 0, then �l1.z/ � 0 for all z 2 D. This, together with
0 2 int.D/, shows that l1 D 0 contradicting .�l1; l2/ ¤ .0; 0/; hence, l2 ¤ 0.

Since g is continuous at y, for all z 2 D, we have �l1.z/ C l2.'.z// � 0. A
continuous linear mapping l 2 L.X;Y/ is a weak subgradient of ' at 0 if for all
z 2 D, we have '.z/� l.z/ … � int.C/. If, for some z 2 D, this does not hold and l is
chosen to satisfy for all z 2 D the relation l2.l.z// D l1.z/ (which is always possible
since l2 ¤ 0), then we have l2.'.z// � l1.z/ < 0 for this z 2 D, a contradiction.
Therefore, any l 2 L.X;Y/ satisfying l2l D l1 gives a weak subgradient to ', and
therefore to g. ut
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Chapter 3
Solution Concepts in Vector Optimization

Many applications require the optimization of multiple conflicting goals at the
same time. Such a problem can be modeled as a vector optimization problem. The
concept of vector optimization goes back to Edgeworth [4] and Pareto [16] who gave
the definition of the standard optimality concept in multiobjective optimization.
Vector optimization deals with the problem of finding efficient elements of a vector-
valued function. In that sense, vector optimization generalizes the concept of scalar
optimization. In scalar optimization, there is only one concept for efficiency which
characterizes efficient elements, namely the solution which generates the smallest
function value. But, due to the lack of a total order in R` (` � 2), there are
elements which cannot be compared, for example the vectors .1; 0/ and .0; 1/ are
incomparable with respect to R2C. Therefore, one has to define a different solution
concept, and usually there does not exist one efficient solution, but a whole set
of solutions. Moreover, different efficiency notions exist. For instance, we can
define an element Nx for a vector optimization problem with an objective function
f W Rn ! R` to be an efficient solution if there does not exist another element
x 2 Rn such that fi.x/ � fi.Nx/ for all i D 1; 2; : : : ; `, and fj.x/ < fj.Nx/ for some
j D 1; 2; : : : ; `. A weaker notion is to define an element Nx to be a weakly efficient
solution if there does not exist another element x 2 Rn such that fi.x/ < fi.Nx/ for all
i D 1; 2; : : : ; `. Of course, it would be desirable to obtain a strongly (or an ideal)
efficient solution Nx where fi.Nx/ � fi.x/ holds for all objectives i D 1; 2; : : : ; ` and for
all x 2 Rn. The selection of the particular solution concept depends on the concrete
application. In case the function f is linear, the reader may refer to Luc [15] for an
introduction to multiobjective linear programming.

In this chapter, we discuss several solution concepts for a vector optimization
problem. We present some existence results for solutions of vector optimization
problems. Most of the definitions and results appearing in this chapter can be found
in any standard book on vector optimization, see, for example, [3, 5, 11, 14, 17].

© Springer International Publishing AG 2018
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Vector Optimization, DOI 10.1007/978-3-319-63049-6_3

143
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3.1 Optimality Notions

We have already defined the concept of minimal and maximal elements of a
preordered set A which is not assumed to have a linear structure. If A is a subset of a
preordered vector space, then Definition 2.7 is equivalent to the following definition.

Definition 3.1 ((Strong) Efficient Element) Let A be a nonempty subset of a
preordered vector space Y with an ordering cone C.

(a) An element Ny 2 A is called a strong (or ideal) efficient element or strong (or
ideal) minimal element of the set A (with respect to C) if

A � fNyg C C; equivalently, Ny �C y for all y 2 A: (3.1)

We denote by SE.A;C/ the set of all strong efficient elements of A with respect
to C.

(b) An element Ny 2 A is called a strong (or ideal) maximal element of the set A if

A � fNyg � C; equivalently, y �C Ny for all y 2 A: (3.2)

(c) An element Ny 2 A is called an efficient element or minimal element of the set A
(with respect to C) if

.fNyg � C/ \ A � fNyg C C: (3.3)

The set of all efficient elements of A with respect to C is denoted by E.A;C/.
(d) An element Ny 2 A is called a maximal element of the set A if

.fNyg C C/ \ A � fNyg � C: (3.4)

Since every (strong) maximal element of A is a (strong) efficient element with
respect to the preordering induced by the convex cone .�C/, without loss of
generality it is sufficient to study the (strong) efficiency notion.

If the ordering cone C is pointed, then the inclusions (3.3) and (3.4) can be
replaced, respectively, by the following relations:

.fNyg � C/\ A D fNyg; equivalently, y �C Ny; y 2 A ) y D Ny: (3.5)

and

.fNyg C C/ \ A D fNyg; equivalently, Ny �C y; y 2 A ) y D Ny: (3.6)

In other words, an element Ny 2 A is said to be an efficient element or minimal
element (respectively, maximal element) of the set A if there is no y 2 A with y ¤ Ny
and y �C Ny (respectively, Ny �C y).
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Fig. 3.1 (a) The point
.0; 0; 0/ is a strong efficient
element of the set A, where
the ordering cone is
C WD R

3
C
. (b) The element Ny

is a strong efficient element
of the set A with the given
ordering cone C

(a)

A

0

(b)

A

0

C

ȳ

Fig. 3.2 Illustration of an
efficient element Ny of the set A

A
ȳ

{ȳ} − C

C

0

Fig. 3.3 Illustration of a
maximal element Ny of the
set A

A

ȳ

{ȳ} + C

C

0

Figures 3.1, 3.2 and 3.3 display a strong efficient element, an efficient element
and a maximal element, respectively.

Example 3.1 Consider the set

A D ˚
. y1; y2/ 2 R

2 W 2y21 C y22 � 3
�
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Fig. 3.4 Efficient and
maximal elements of the set
A WD ˚

. y1; y2/ 2 R
2 W 2y21C

y22 � 3
�
, where the ordering

cone is given by R
2
C

y1

y2

11

maximal elements

efficient elements

with the ordering cone C D R2C (see Fig. 3.4). The set of all maximal elements of
A is

(

. y1; y2/ 2 R
2 W y1 2

"

0;

r
3

2

#

and y2 D
q
3 � 2y21

)

and the set of all efficient elements of A is
(

. y1; y2/ 2 R
2 W y1 2

"

�
r
3

2
; 0

#

and y2 D �
q
3 � 2y21

)

:

Remark 3.1

(a) For C D RC, which induces the usual ordering on R, the concepts of efficient
and strong efficient elements coincide, and agree with the usual definition of the
minimum element of a set in R.

(b) If A is a subset of a partially ordered vector space, then every strong efficient
element of the set A is also an efficient element of A.

(c) Consider the cone C D R2C, which induces the componentwise ordering in
R2. The inequality Ny �C y means y is above and to the right of Ny. To say that
Ny 2 A � R2 is a strong efficient element of a set Ameans that all other points of
A lie above and to the right. To say that Ny 2 A is an efficient element of a set A
means that no other point of A lies to the left and below Ny.
Later, we will see that to determine a solution of vector optimization problem is

nothing else than to find the efficient element of the image set f .A/.
The following lemma shows that the efficient elements of a set A and the efficient

elements of the set A C C are closely related, where C is the ordering cone.

Lemma 3.1 Let A be a nonempty subset of a preordered vector space Y with an
ordering cone C.

(a) If the ordering cone C is pointed, then every efficient element of the set A C C
is also an efficient element of the set A.

(b) Every efficient element of the set A is also an efficient element of the set A C C.
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Proof

(a) Let Ny 2 A C C be an arbitrary efficient element of the set A C C. Then we have
.fNyg � C/ \ .A C C/ D fNyg, because the cone C is assumed to be pointed. We
suppose that Ny … A. Then there exists an element y 2 A such that y ¤ Ny and
y 2 fNyg � C. Consequently, we obtain

y 2 .fNyg � C/ \ .A C C/ ;

because fNyg D .fNyg � C/ \ .A C C/. But this contradicts the assumption that Ny
is an efficient element of the set A C C. Hence, we obtain Ny 2 A � A C C, and
therefore, Ny is also an efficient element of the set A.

(b) Let Ny be an efficient element of the set A. Then

.fNyg � C/\ A � fNyg C C:

Now suppose that Ny is not an efficient element of the set ACC. Then we choose
y 2 .fNyg � C/ \ .A C C/ ¤ ;. Assume that y … fNyg C C. Then there are
elements z 2 A and c 2 C such that y D z C c. Consequently, we obtain
z D y�c 2 fNyg�C, and since Ny is an efficient element of the set A, we conclude
z 2 fNyg C C. But then we get y 2 fNyg C C, a contradiction. ut

Definition 3.2 (Properly Efficient Element) Let Y be an ordered normed space, A
be a nonempty subset of Y and C be a pointed convex cone in Y which induces the
partial ordering on Y.

(a) An element Ny 2 A is called a properly minimal element or properly efficient
element of the set A if Ny is an efficient element of the set A and the zero element
0 is an efficient element of the contingent cone T.A C C; Ny/. The set of all
properly efficient elements of A with respect to C is denoted by PE.A;C/.

(b) An element Ny 2 A is called a properly maximal element of the set A if Ny is a
maximal element of the set A and the zero element 0 is a maximal element of
the contingent cone T.A � C; Ny/.
It is obvious that a properly efficient element of a set A is also an efficient element

of A. For a visualization of an efficient element which is not properly efficient,
consider the illustration in Fig. 3.5.

Definition 3.3 (Weakly Efficient Element) Let A be a nonempty subset of a
preordered vector space Y with an ordering cone C which has a nonempty core.

(a) An element Ny 2 A is called aweakly efficient element orweakly minimal element
of the set A if

.fNyg � cor.C//\ A D ;: (3.7)

The set of all weakly efficient elements of A with respect to C is denoted by
WE.A;C/.



148 3 Solution Concepts in Vector Optimization

Fig. 3.5 Let C D R
2
C
. Ny 2 A

is an efficient element of the
set A, but Ny is not properly
efficient, as 0 is not an
efficient element of the
contingent cone T.A C C; Ny/ ȳ

y1

y2

A

A + C

T (A + C, ȳ)

0

Fig. 3.6 A weakly efficient
element Ny of a set A, where
the ordering cone is given by
C D R

2
C

ȳ

{ȳ} − int( C )

A

(b) An element Ny 2 A is called a weakly maximal element of the set K if

.fNyg C cor.C// \ A D ;: (3.8)

In a more general setting, if A is a nonempty subset of a partially ordered
topological vector space Y with a pointed closed convex solid cone C, then an
element Ny 2 A is called a weakly minimal element or weakly efficient element of
the set A if Ny is an efficient element of A ordered by the cone QC D f0g [ int C. An
element Ny 2 A is called a weakly maximal element of the set A if Ny is a maximal
element of A ordered by the cone QC D f0g [ int C.

A visualization of a weakly efficient element of a set A with the ordering cone
C D R

2C is given in Fig. 3.6.
The next lemma is similar to Lemma 3.1 and therefore, we omit the proof. It can

be found in [11, pp. 110].

Lemma 3.2 Let A be a nonempty subset of a preordered vector space Y with an
ordering cone C which has a nonempty core. Then Ny 2 A is a weakly efficient element
of the set A if and only if it is a weakly efficient element of the set A C C.

The following lemma gives the relationship between efficient and weakly
efficient elements of a set.

Lemma 3.3 Let A be a nonempty subset of a preordered vector space Y with an
ordering cone C for which C ¤ Y and cor.C/ ¤ ;. Then every efficient element of
the set A is also a weakly efficient element of the set A.
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Fig. 3.7 The set of efficient
elements is not equal to the
set of weakly efficient
element. Thus, we have
E.A;C/ ¤ WE.A;C/ (see
Example 3.2)

y1

y2

1

− 1

1

− 1 A

Proof Since C ¤ Y, we have
� � cor.C/

� \ C D ;. Therefore, for an arbitrary
efficient element Ny of A, we have

; D .fNyg � cor.C//\ .fNyg C C/

D .fNyg � cor.C//\ .fNyg � C/\ A

D .fNyg � cor.C//\ A

that is, Ny is also a weakly efficient element of A. ut
The following example shows that the converse of the above lemma is not true in

general.

Example 3.2 Consider the set

A D ˚
. y1; y2/ 2 R

2 W �y1 � 2 � y2; � 2 � y2 � 0
�

in Y D R2 with the natural ordering cone C D R2C (see Fig. 3.7). There are no
strong efficient elements of the set A. The set E.A;C/ of all efficient elements of A
is given by

E.A;C/ D ˚
. y1; y2/ 2 R

2 W y2 D �y1 � 2; � 2 � y2 � 0
�
:

The set WE.A;C/ of all weakly efficient elements of A is

WE.A;C/ D E.A;C/ [ ˚
. y1; y2/ 2 R

2 W y2 D �2; 0 � y1
�
:

Consequently, we have E.A;C/ ¤ WE.A;C/.

Example 3.3 Consider the set

A D ˚
. y1; y2/ 2 R

2 W y1 � 2 � y2; � 2 � y2 � 0; y1 � �2�

in Y D R
2 with the natural ordering cone C D R

2C. There is one strong efficient
elements of the set A which is the only efficient element in A, namely, .�2;�2/.
The set WE.A;C/ of all weakly efficient elements of A is given by WE.A;C/
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Fig. 3.8 There is only one
efficient element .�2;�2/,
and the set of weakly efficient
element is given by
f. y1; y2/ 2 R

2 W �2 � y1 �
0; y2 D �2g [ f. y1; y2/ 2
R
2 W �2 � y2 � 0; y1 D

�2g. Thus, we have
E.A;C/ ¤ WE.A;C/

y1

y2

1

−1

1

−1A

Fig. 3.9 The feasible
objective region A given in
Example 3.4 y1

y2

1

− 1

1

− 1 A

(
− 2
− 2

)

D ˚
. y1; y2/ 2 R

2 W �2 � y1 � 0; y2 D �2�[ f. y1; y2/ 2 R
2 W �2 � y2 � 0; y1 D

�2g (Fig. 3.8).
Example 3.4 Consider the set

A D ˚
. y1; y2/ 2 R

2 W y21 C y22 � 1; y2 � 0
�

[˚
. y1; y2/ 2 R

2 W 0 � y1 � 2; � 1:5 � y2 � 0
�

and

D D A [ f.�2;�2/g

with the ordering cone C D R2C (see, Fig. 3.9). Then

SE.D;C/ D PE.A;D/ D E.D;C/ D WE.D;C/ D f.�2;�2/g:

We also have

SE.A;C/ D ;I
PE.A;C/ D f. y1; y2/ 2 R

2 W y21 C y22 D 1; y1; y2 < 0g [ f.0;�1:5/gI
E.A;C/ D PE.A;C/[ f.�1; 0/gI

WE.A;C/ D E.A;C/ [ f. y1; y2/ 2 R
2 W y2 D �1:5; 0 � y1 � 2g

[ f. y1; y2/ 2 R
2 W y1 D 0; � 1:5 � y2 � �1g:
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Consequently, we conclude

PE.A;C/ ¤ E.A;C/ ¤ WE.A;C/:

For the cone C D .R; 0/ � R2 which is not pointed, we have SE.D;C/ D ;;
E.D;C/ D D; SE.A;C/ D ;; E.A;C/ D A.

Proposition 3.1 Let A be a nonempty subset of a vector space Y with an ordering
cone C for which C ¤ Y. If SE.A;C/ ¤ ;, then

SE.A;C/ D E.A;C/

and SE.A;C/ is a singleton whenever C is pointed.

Proof Let Ny 2 SE.A;C/, that is, Ny 2 fyg � C for all y 2 A. Now suppose that
Ny … E.A;C/. This means that .fNyg�C/\A 6� fNygCC. Then there is an element z 2 A
with z 2 fNyg �C, but z … fNyg CC, a contradiction. This shows SE.A;C/ � E.A;C/.

Conversely, let SE.A;C/ ¤ ; and choose y 2 SE.A;C/, which means y 2 fzg�C
for all z 2 A. Then for each Qy 2 E.A;C/, Qy �C y implies y �C Qy. From the
transitivity of order, we have z �C Qy for all z 2 A. This means that Qy 2 SE.A;C/
and hence E.A;C/ � SE.A;C/.

Furthermore, we now assume that the cone C is pointed. Because the ordering
�C is antisymmetric, for y 2 SE.A;C/ and Qy 2 E.A;C/, y �C Qy and Qy �C y yield
y D Qy. Thus, SE.A;C/ is a singleton. ut

The following proposition follows from the definitions of a strong efficient
element, an efficient element and a weakly efficient element. Therefore, we omit
the proof which can be found in [14, pp. 43].

Proposition 3.2 Let A and M be two subsets of a preordered vector space Y with
an ordering cone C such that M � A. Then

(a) SE.A;C/\ M � SE.M;C/;
(b) E.A;C/ \ M � E.M;C/;
(c) WE.A;C/\ M � WE.M;C/;

Figure 3.10 illustrates this result.

Fig. 3.10 The element Ny
belongs to E.A;C/\ M, and
by Proposition 3.2, we have
Ny 2 E.M;C/

C

0

ȳ

ȳ − C

M

A
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Fig. 3.11 A section AOy of A
at Oy

C

0
ŷ − C

ŷ

AAŷ

Definition 3.4 (Section of a Set) Let A be a subset of a preordered vector space Y
with an ordering cone C. If for some Oy 2 Y, the set AOy D .Oy � C/ \ A is nonempty,
then AOy is called a section of y at Oy (see, Fig. 3.11).

The following proposition, which can be found in [14, Proposition 2.8] and [11,
Lemma 6.2.], shows relations between efficient (strong efficient, weakly efficient)
elements of a section AOy at some Oy and efficient (strong efficient, weakly efficient,
respectively) elements of the set A.

Proposition 3.3 Let A be a nonempty subset of a partially ordered vector space Y
with an ordering cone C. For any Oy 2 Y, let the section AOy of A at Oy be nonempty.
(a) If SE.A;C/ ¤ ;, then SE.AOy;C/ � SE.A;C/.
(b) E.AOy;C/ � E.A;C/.
(c) WE.AOy;C/ � WE.A;C/.

Proof

(a) Let y 2 SE.AOy;C/. We prove that A � fygCC which implies that y 2 SE.A;C/.
Let z 2 SE.A;C/. Then A � fzg C C and, in particular,

y 2 fzg C C: (3.9)

This implies that z 2 AOy, and hence, z 2 fyg C C. From the latter relation and
(3.9), we have z � y 2 `.C/ D C \ .�C/. Thus,

A � fzg C C D fyg C fzg � fyg C C � fyg C `.C/C C � fyg C C:

(b) Let y 2 E.AOy;C/, i.e., .fyg � C/ \ �
AOy
� � fyg C C. If there is some Ny 2 A such

that Ny 2 fyg � C, then Ny 2 AOy. Hence, y 2 fNyg � C and so y 2 E.A;C/.
(c) Let y 2 WE.AOy;C/, i.e., .fyg�cor.C//\�AOy

� D ;. Suppose that y … WE.A;C/.
Then .fyg � cor.C// \ A ¤ ;, and thus there exists Ny 2 A such that Ny 2
fyg � cor.C/. But then Ny 2 AOy, a contradiction. ut

It should be mentioned that a similar result for properly efficient elements is
generally not true.
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Example 3.5 Consider the set

A WD
n
. y1; y2/ 2 Œ0; 1� 	 Œ0; 3� W y2 � 1 �

p
1 � . y1 � 1/2; 8y1 2 Œ0; 1�

o
:

For Oy D .0; 3/, the element .0; 1/ is properly efficient in the section AOy D f0g	Œ1; 3�,
but .0; 1/ is not properly efficient in A.

The following theorem provides the existence of efficient elements.

Theorem 3.1 ([14, Theorem 3.3]) Let Y be a topological vector space, A be a
nonempty subset of Y, and C be a convex correct cone in Y. Then E.A;C/ is
nonempty if and only if A has a nonempty C-complete section.

Proof Let E.A;C/ ¤ ;. Then any point of E.A;C/ will provide a C-complete
section because no decreasing nets exist there.

Conversely, let Ay be a nonempty C-complete section of A. In view of Proposi-
tion 3.3, it is sufficient to show that E.Ay;C/ is nonempty. First, we consider the set
P consisting of decreasing nets from A. Since A is nonempty, so is P. Further, for
two elements a; b 2 P, we write a � b if fbg � fag as two sets. It is clear that �
is a partial order in P. We claim that any chain in P has an upper bound. Indeed, let
fa�g�2� be a chain in P and B denote the set of finite subsets B of � ordered by
inclusion and let

aB D
[

fa� W � 2 Bg:

Now, set

ao D
[

faB W B 2 Bg:

Then, ao is an element of P and ao � a� for each � 2 � , that is, ao is an upper
bound of the chain. Applying Zorn’s Lemma, we obtain a maximal element, say,
a� D fx˛ W ˛ 2 	g forms a cover of Ay. With this in mind, remembering that a�
is a decreasing net in Ay, we arrive at a contradiction: Ay is not C-complete and the
theorem is proven. Our last aim is to show that for each Qy 2 Ay, there is some ˛ 2 	
such that . y˛ � cl C/c contains Qy. If that is not the case, then Qy 2 y˛ � cl C for each
˛ 2 	. Since E.Ay;C/ ¤ ;, there is some z 2 Ay with Qy >C z. Since C is correct,
we obtain that y˛ >C z for all ˛ 2 	. Adding z to the net a�, we see that this net
cannot be maximal, a contradiction. ut
Theorem 3.2 ([14, Theorem 3.4]) Let Y be a topological vector space, A be a
nonempty subset of Y and C be a convex correct cone in Y. Then E.A;C/ is
nonempty if and only if A has a nonempty strongly C-complete section.

Proof Clearly, if E.A;C/ is nonempty, then any point of this set gives a required
section. Now, let AOy denote the strongly C-complete section of A. If E.Ay;C/ ¤ ;,
then by the same argument as in the proof of Theorem 3.1, we get a maximal net
fy˛g˛2	 in P and we prove that this net provides a cover of the second form in the
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definition. Indeed, if that is not true, then there is some y 2 AOy such that y 2 y˛ � C
for all ˛ 2 	. Since E.AOy;C/ ¤ ;, there is some z 2 AOy with y >C z. Since C is
correct, we have

.cl C/C C n `.C/ � C n `.C/;

and conclude that y˛ >C z for all ˛ 2 	. So, the net a� cannot be maximum. This
contradiction completes the proof. ut
Corollary 3.1 (Corley 1980, 1987) Let C be an acute convex cone in a topological
vector space Y and A be a C-semicompact set in Y. Then E.A;C/ is nonempty.

Proof By Lemma 2.10, A is .clC/-complete. In view of Theorem 3.1, the set
E.A; clC/ is nonempty. So, let y 2 E.A; clC/. Then A \ .fyg � clC/ D fyg. Since
C � clC, A\ .fyg �C/ � A\ .fyg � clC/. Consequently, A\ .fyg �C/ D fyg and
y 2 E.A;C/. Hence, E.A;C/ is nonempty. ut
Corollary 3.2 (Borwein 1983) Let C be a closed convex cone in a topological
vector space Y. Suppose that any one of the following conditions hold:

(i) A has a nonempty minorized closed section and C is Daniell;
(ii) A is closed and bounded, C is Daniell and Y is boundedly order complete;
(iii) A has a nonempty compact section.

Then E.A;C/ is nonempty.

Proof Due to Proposition 1.2, C is correct and in virtue of Lemma 2.10, the set A in
the case (ii), or its section in the cases (i) and (iii) is C-complete. The result follows
from Theorem 3.1 and Proposition 3.3. ut

3.2 Solution Concepts

Let Y be a topological vector space with a pointed convex cone C, and let X be
a vector space. We consider the following vector optimization problem (in short,
VOP):

minimize f .x/;

subject to x 2 K;
(3.10)

where

• ; ¤ K � X is a feasible region
• f W X ! Y is an objective function
• Y is the objective space
• x is a decision (variable) vector
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• X is the decision variable space
• Y WD f .K/ is the feasible objective region

Let C be a convex cone generating the preorder in Y. A point Nx 2 K is said to
be

(a) a strongly efficient solution of VOP if f .Nx/ 2 SE.Y;C/;
(b) an efficient or Pareto efficient solution of VOP if f .Nx/ 2 E.Y;C/;
(c) a weakly efficient or weakly Pareto efficient solution of VOP if f .Nx/ 2

WE.Y;C/.

If we choose X D Rn and Y D R`, then f D . f1; f2; : : : ; f`/ W K ! R` is a
multiobjective function. In that case, the VOP is the following:

minimize f .x/ D . f1.x/; f2.x/; : : : ; f`.x// ;

subject to x 2 K:
(3.11)

Then corresponding efficient solutions can be defined, for instance, with respect
to C D R`C. In the next subsections, one by one, we shall discuss these solution
concepts and some other solution concepts. We will also study the properties and
existence of these solutions.

3.2.1 Efficient Solutions

Minimization of a vector-valued function f means that we look for the preimage
of efficient elements of the set Y WD f .K/ with respect to the pointed convex cone
C � Y. In practice, the minimal elements of the image set f .K/ do not play the
central role but their preimages.

Definition 3.5 (Efficient Solution) An element Nx 2 K is said to be an efficient
solution or a Pareto optimal solution or minimal solution of VOP if f .Nx/ is an
efficient element of the image set f .K/ with respect to C. In other words, Nx 2 K
is an efficient solution of VOP if

.f f .Nx/g � C/ \ Y D f f .Nx/g :

The set of all efficient solutions Nx 2 K is denoted by Keff and it is called the efficient
solution set. The set of all efficient elements Ny D f .Nx/ 2 Y , where Nx 2 Keff, is
denoted by E.Y;C/ and it is called nondominated set. If there is no confusion which
cone C is being used, we also denoteYeff WD E.Y;C/. If x; Qx 2 K and f .x/ �C f .Qx/,
then we say that x dominates Qx and f .x/ dominates f .Qx/.



156 3 Solution Concepts in Vector Optimization

Fig. 3.12 Visualization of an
efficient element Ny

f (K )

ȳ = f (x̄ )

ȳ − R
�
+

Remark 3.2 If Y D R`, X D Rn and C D R
`C, then an element Nx 2 K is an efficient

solution of VOP if there is no x 2 K such that

fi.x/ � fi.Nx/; for all i 2 F D f1; 2; : : : ; `g
and fi.x/ < fi.Nx/; for some i 2 F D f1; 2; : : : ; `g:

When ` D 2, f .K/ � R2. In this case, the definition of an efficient solution says that
when shifting the origin to a point f .Nx/, if �R

`C n f0g does not intersect the set f .K/,
then Nx is an efficient solution of the VOP. See, Fig. 3.12 for an illustration.

The following are equivalent definitions of an efficient solution. Let .R`;�C/ be
an ordered space with ordering cone C D R

`C which induces the componentwise
ordering as Ny �C0 y , Nyi � yi for all i D 1; 2; : : : ; ` and Ny ¤ y. In particular, Nx 2 K
is an efficient solution of VOP if any one of the following equivalent conditions
hold:

• there is no x 2 K such that f .x/ �C0 f .Nx/
• there is no x 2 K such that f .x/ � f .Nx/ 2 �R

`C n f0g
• . f .K/ � f .Nx//\ ��R`C n f0g� D ;
• f .x/ � f .Nx/ 2 R` n ˚�R`C n f0g� for all x 2 K
• f .K/ \ �

f .Nx/� R
`C
� D f f .Nx/g

• there is no f .x/ 2 f .K/ n f f .Nx/g such that f .x/ 2 f .Nx/� R`C
• f .x/ �C f .Nx/ for some x 2 K implies f .x/ D f .Nx/
Example 3.6 Let K WD ˚

.x1; x2/ 2 R2 W �1 < x1 < 1;�1 < x2 < 1
�
and let the

objective function f .x1; x2/ WD �
x21; x

2
2

� � �
1
2
; 1
2

�
be given. We consider the ordering

cone C D R
2C. Then the only efficient solution of the corresponding VOP is

.x1; x2/ D .0; 0/ with objective function values
�� 1

2
;� 1

2

�
(see Fig. 3.13).
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K ⊂ R
2

x 1

x 2

1−1

1

−1

f ( K  ) ⊂ R
2

Yeff

f 1

f 2

1−1

1

−1

Fig. 3.13 Left: The feasible region K. Right: The feasible objective region. The only efficient
solution is .x1; x2/ D .0; 0/ with objective function values

�� 1
2
;� 1

2

�
(see Example 3.6)

K ⊂ R
2

x 1

x 2

1−1

1

−1

f̄ (K ) ⊂ R
2

Yeff

f 2

10  f1−10

10

−10

Fig. 3.14 Left: The feasible region K. Right: The feasible objective region with the nondominated
set Yeff (see Example 3.7)

Example 3.7 Let K WD f.x1; x2/ 2 R2 W x21 C x22 � 1g and consider the

objective function f .x1; x2/ WD
�
1

x21
; 1
x22

�
. As in the previous example, we use

the cone C D R2C. Then the set of efficient solutions is given by Keff D˚
.x1; x2/ 2 R2 W x21 C x22 D 1; x1 ¤ 0; x2 ¤ 0

�
(see Fig. 3.14).

Let Y � R` and Yeff D fy 2 Y W À Qy 2 Y such that Qy �C yg.
Next we collect important properties of the nondominated set Yeff, where Y D

R` and C D R`C. The following proposition is a direct consequence of Lemma 3.1.

Proposition 3.4 Let Y � R`. Then Yeff D �
Y C R

`C
�
eff.
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Proposition 3.5 Let Y � R`. Every efficient point must lie on the boundary of Y ,
that is, Yeff � bd.Y/.

Proof Let y 2 Yeff and suppose y … bd.Y/. Then y 2 int.Y/ and there exists a
neighborhood N". y/ of y with N". y/ WD y C N".0/ � Y , where N".0/ is an open
ball with radius " centered at the origin. Let d 2 R

`C such that d ¤ 0. Then, we can
choose some � > 0 such that �d 2 N".0/. Now, y � �d 2 Y with �d 2 R`C n f0g,
that is, y … Yeff, a contradiction. Hence y 2 bd.Y/. ut

From Propositions 3.4 and 3.5, we can easily derive the following corollary.

Corollary 3.3 Let Y � R`. If Y is open or if Y C R`C is open, then Yeff D ;.
Proposition 3.6 Let Y � R`. Then .Y1 C Y2/eff � .Y1/eff C .Y2/eff.

Proof Let y 2 .Y1 C Y2/eff. Then y D y1 C y2 for some y1 2 Y1 and y2 2 Y2.
Assume that y1 … .Y1/eff. Then there exist Qy 2 Y1 and d 2 R

`C n f0g such that
y1 D QyCd, and thus, y D QyCy2Cd with QyCy2 2 Y1CY2. Hence y … .Y1 C Y2/eff,
a contradiction of our assumption. Thus, y1 2 .Y1/eff. Similarly, y2 2 .Y2/eff.
Therefore, y1 C y2 2 .Y1/eff C .Y2/eff. ut
Remark 3.3 We note that .Y1/eff C .Y2/eff � .Y1 C Y2/eff is not true in general,
see the following example.

Example 3.8 Consider ` D 2 and the sets

Y1 WD f. y1; y2/ 2 R
2 W 2y1 C y2 � 0g; Y2 WD f. y1; y2/ 2 R

2 W y1 C 2y2 � 0g:

For both sets the nondominated set comprises the entire boundary. Nevertheless,
the nondominated set of Y1 C Y2 D R

2 is empty (cf. Fig. 3.15). So, the inclusion
.Y1/eff C .Y2/eff � .Y1 C Y2/eff is not fulfilled in general.

The proof of the following proposition can be easily derived, and therefore, it is
omitted.

Fig. 3.15 Counterexample
for Remark 3.3

y1

y2

Y1

Y2

Y1 + Y2

(Y1 )eff

(Y2 )eff
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Proposition 3.7 Let Y � R`. Then .˛Y/eff D ˛Yeff for all ˛ > 0.

3.2.2 Weakly and Strongly Efficient Solutions

The efficiency concept is the main optimality notion in vector optimization. But
there are also other concepts being more weakly or more strongly formulated than
the concept of efficiency. The Pareto optimality or efficiency is defined by using the
componentwise ordering (x �C0 y , xi � yi for all i D 1; 2; : : : ; ` and x ¤ y) on
R`. When we replace it by the strict componentwise ordering (x <C y , xi < yi
for all i D 1; 2; : : : ; `) on R`, we obtain the definition of weakly Pareto optimal
solution of VOP.

Definition 3.6 (Weakly Efficient Solution) An element Nx 2 K is said to be a
weakly efficient solution or a weakly Pareto optimal solution or weakly minimal
solution of VOP if f .Nx/ is a weakly efficient element of the image set Y D f .K/
with respect to the pointed convex cone C � Y with int.C/ ¤ ;. In other words, Nx
is a weakly efficient solution of VOP if

.f f .Nx/g � int.C//\ Y D ;:

The set of all weakly efficient solutions Nx 2 K is denoted by Kw-eff and it is called
theweakly efficient set. The set of all weakly efficient elements Ny D f .Nx/ 2 Y , where
Nx 2 Kw-eff, is denoted by WE. f .K/;C/ and it is called weakly nondominated set.
If there is no confusion about the selection of the cone C, we also use Yw-eff WD
WE. f .K/;C/.

Remark 3.4 If ` D 2, Y D R2, X D Rn, C D R2C, then f .K/ � R2. In this case,
geometrically, a weakly efficient solution Nx of VOP is a point in f .K/ if we shift the
origin to the point Nx, then f .K/ does not intersect � int.R2C/.

Remark 3.5 In case Y D R`, X D Rn, C D R
`C, the definition of weakly efficient

solutions reduces to the following: Nx 2 Kw-eff if and only if there is no y 2 K such
that

fi. y/ < fi.Nx/ for all i 2 F D f1; 2; : : : ; `g:

Moreover, Nx 2 Kw-eff if and only if there is no x 2 K such that f .Nx/ � f .x/ 2
int.R`C/. Equivalently, Nx 2 Kw-eff if and only if

. f .K/ � f .Nx//\ �� int.R`C/
� D ;:

Example 3.9 We reconsider Example 3.6, and we observe that the set of
weakly efficient solutions is Kw-eff D ˚

.x1; x2/ 2 R2 W x1 D 0; x2 2 Œ0; 1Œ� [˚
.x1; x2/ 2 R2 W x2 D 0; x1 2 Œ0; 1Œ�.
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We know that every efficient solution is also weakly efficient. A converse
statement is true under a certain convexity assumption on the set of feasible elements
Y . The following definition of a C-quasi-strictly convex set is given in [13].

Definition 3.7 (C-Quasi-Strict Convexity) Let C � R` be a cone. A set Y � R`

is C-quasi-strictly convex if Y is C-convex (that is, Y C C is a convex set) and if
for each y 2 R` n Yeff, the set y � C has a nonempty intersection with the relative
interior relint.Y C C/ of the set Y C C.

It is easy to see that the following lemma holds.

Lemma 3.4 ([13]) Let C � R
`C be a pointed convex cone defining efficiency in R`.

Let Y � R` be C-quasi-strictly convex and C-closed (that is, Y CC is closed). Then
every weakly efficient solution is also efficient.

The following stronger notion of strict convexity is also known.

Definition 3.8 (C-Strict Convexity) Let C � R` be a cone. A set Y � R` is C-
strictly convex if Y is C-convex (that is, Y C C is a convex set) with nonempty
interior, and for each y1; y2 2 Y (y1 ¤ y2), the set . y1 C y2/=2 � C has nonempty
intersection with int.Y/.

Example 3.10 Let Y D R2 and C D R
2C.

(a) Let Y be a square. Because there exists weakly efficient solutions which are not
efficient andYCC is closed,Y is notC-quasi-strictly convex due to Lemma 3.4.

(b) Every C-strictly convex set is C-quasi-strictly convex. However, the converse
implication is not generally true. For instance, the triangle with vertices .1; 1/,
.1; 0/ and .0; 1/ is R2C-quasi-strictly convex, but not R2C-strictly convex.

(c) A circle is R2C-strictly convex, and therefore R2C-quasi-strictly convex.

Definition 3.9 (Strongly Efficient Solution) An element Nx 2 K is said to be a
strongly efficient solution or an ideal efficient solution if f .Nx/ is a strongly efficient
element of the image set Y D f .K/ with respect to the pointed convex cone C � Y.
In other words, Nx is a strongly efficient solution of VOP if

Y � f f .Nx/g C C:

The set of all strongly efficient solutions Nx 2 K is denoted by Ks-eff and it is called
the strongly efficient set. The set of all strongly efficient elements Ny D f .Nx/ 2 Y ,
where Nx 2 Ks-eff, is denoted by SE.Y;C/ and it is called strongly nondominated
set. If there is no confusion about the choice of the cone C, we denote Ys-eff WD
SE.Y;C/.

Remark 3.6 We consider the case Y D R`, X D Rn, C D R`C. An element Nx 2 K
is a strongly efficient solution of VOP if f .Nx/ is a strongly efficient element of the
image set f .K/ with respect to the componentwise ordering onR`, that is, if f .Nx/ �C

f . y/ for all y 2 K. In other words, f .Nx/ is a strongly efficient solution of VOP if

fi.Nx/ � fi. y/; for all y 2 K and i 2 F D f1; 2; : : : ; `g:
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Example 3.11 We revisit Example 3.6. We observe that .x1; x2/ D �� 1
2
;� 1

2

�
is the

only strongly efficient solution of the VOP.
It is clear that Ys-eff � Yeff � Yw-eff and Ks-eff � Keff � Kw-eff.

Example 3.12 Consider the VOP with feasible set

K D ˚
.x1; x2/ 2 R

2 W 0 � x1 � 2; 0 � x2 � 3
�

and objective function f W K ! R2 defined as

f .x1; x2/ D .x1; x2/; for all .x1; x2/ 2 K:

K describes a square in R2. Since f is the identity mapping, f .K/ D K. The point
.0; 0/ is the strongly efficient solution (in fact, .0; 0/ is the only efficient solution)
whereas the set

f.x1; x2/ 2 K W x1 D 0 or x2 D 0g
is the set of all weakly efficient solutions of VOP.

Example 3.13 Consider the VOP with feasible set

K D ˚
.x1; x2/ 2 R

2 W x21 C 2x22 � 1
�

and objective function f W K ! R2 defined as

f .x1; x2/ D .x1; x2/; for all .x1; x2/ 2 K;

see Fig. 3.16. Since f is the identity mapping, it holds f .K/ D K. The set of efficient
solutions is

8
<

:
.x1; x2/ 2 R

2 W x1 2 Œ�1; 0� and x2 D �
s

1

2
� x21
2

9
=

;
:

But there is no strongly efficient solution.

Fig. 3.16 The feasible
solution set from
Example 3.13

x1

x2

√
2

1f (K )
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3.2.3 Properly Efficient Solutions

In this section, we present various types of proper efficiency for a solution x of a
VOP. Here, we consider the following setting. Let X D Rn, Y D R`, ; ¤ K � Rn

be the feasible region, f W X ! R` be the objective function, Y WD f .K/ be the
feasible objective set, and C � R` be a proper closed convex cone (unless otherwise
noted). Most of the results in this section can be found in Sawaragi et al. [17].

Borwein [2] introduced the following sharper notion of a solution of a vector
optimization problem, which we call proper efficiency in the sense of Borwein.

Definition 3.10 (Borwein 1977) An element Nx 2 K is called properly efficient in
the sense of Borwein if

T . f .K/C C; f .Nx//\ .�C/ D f0g;

where T . f .K/C C; f .Nx// denotes the contingent cone of f .K/C C at f .Nx/.
Proposition 3.8 ([17, Proposition 3.1.5]) If an element Nx 2 K is properly efficient
in the sense of Borwein, then Nx is an efficient solution of VOP.
Proof Let Nx 2 K be properly efficient in the sense of Borwein, but suppose that Nx is
not efficient for VOP. Then there exists a nonzero vector c 2 C such that c D f .Nx/�y
for some y 2 Y . Let ck D �

1 � 1
k

�
c 2 C and tk D k for k D 1; 2; : : :. Then

y C ck D f .Nx/ � c C
�

1 � 1

k

	

c D f .Nx/ � 1

k
c ! f .Nx/; for k ! C1;

and

tk. y C ck � f .Nx// D k.�c C
�

1 � 1

k

	

c/ D �c ! �c; for k ! C1:

Therefore, T . f .K/C C; f .Nx// \ .�C/ ¤ f0g, and Nx is not a properly efficient
solution in the sense of Borwein, a contradiction.

The converse assertion of Proposition 3.8 is not fulfilled, as the following
example shows.

Example 3.14 In Example 3.13, the elements .�1; 0/ and .0;�1/ are efficient, but
they are not properly efficient solutions in the sense of Borwein.
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Definition 3.11 (Benson 1979) An element Nx 2 K is called properly efficient in the
sense of Benson if

cl .cone . f .K/C C � f f .Nx/g// \ .�C/ D f0g;

where cone . f .K/C C � f f .Nx/g/ denotes the cone generated by f .K/CC� f f .Nx/g.
Remark 3.7 It holds T . f .K/C C; f .Nx// � cl .cone . f .K/C C � f f .Nx/g//, which
implies that proper efficiency in the sense of Benson strengthens the notion of proper
efficiency in the sense of Borwein.

Before we show that a properly efficient solution in the sense of Borwein is,
under appropriate assumptions, a properly efficient solution in the sense of Benson,
we need the following lemma.

Lemma 3.5 Let S � R` be a convex set and let y 2 S. Then

T.S; y/ D cl.cone.S � y//;

which is a closed convex cone.

Proof Due to its definition and because S is a convex set, cl.cone.S� y// is a closed
convex cone. As the relation T.S; y/ � cl.cone.S � y// is obvious, we only need to
show that cone.S � y/ � T.S; y/, because T.S; y/ is closed. Let t 2 cone.S � y/.
Then t D �.s � y/ for some � � 0 and s 2 S. Let for k D 1; 2; : : :

yk D
�

1 � 1

k

	

y C 1

k
s;

and tk D �k � 0. Then tk. yk � y/ D �.s � y/. Because S is a convex set, we obtain
that yk 2 S, and

yk ! y and tk. y
k � y/ ! t as k ! C1:

Hence, t 2 T.S; y/, which completes the proof. ut
Theorem 3.3 If Nx 2 K is a properly efficient solution in the sense of Benson, then it
is also a properly efficient solution in the sense of Borwein. If K is a convex set and
f is C-convex, then the converse statement is true as well.

Proof If C is a convex cone and if f is C-convex on the convex set K, then f .K/CC
is a convex set. Then by Lemma 3.5, T.S; y/ D cl.cone.S � y//. Therefore, proper
efficiency in the sense of Benson is equivalent to the notion of proper efficiency in
the sense of Borwein. ut

The following example verifies that the converse statement of Theorem 3.3 is not
true in general if K is not convex.

Example 3.15 Let Y D R2, C D R2C, K D f.x1; x2/ 2 R2 W x1 C x2 � �1g [
f.x1; x2/ 2 R2 W x1 � 0g [ f.x1; x2/ 2 R2 W x2 � 0g, and f W K ! R2 with
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Fig. 3.17 The solution
x D .�0:5;�0:5/ is properly
efficient in the sense of
Borwein, but not properly
efficient in the sense of
Benson (see Example 3.15)

y1

y2

x

f (K )

f .x1; x2/ D .x1; x2/. Then the solution x D .�0:5;�0:5/ is properly efficient in the
sense of Borwein, but not properly efficient in the sense of Benson (see Fig. 3.17).

The following lemma will be used to show that if f .K/ is a polyhedral convex
set, then any efficient solution is also properly efficient in the sense of Benson and
Borwein.

Lemma 3.6 Let ˇi 2 R, bi 2 R`, i D 1; 2; : : : ; n be given, and let A � R` be a
polyhedral convex set, i.e., A WD fa 2 R` W hbi; ai � ˇi; i D 1; : : : ; `g, Oa 2 A, and
I.Oa/ WD fi 2 f1; 2; ; : : : ; `g W hbi; Oai D ˇig. Then

T.A; Oa/ D cone.A � Oa/ D fh 2 R
` W hbi; hi � 0 for i 2 I.Oa/g:

Theorem 3.4 Let f .K/ be a polyhedral convex set, C a pointed closed convex cone
inR`. Then any efficient solution of VOP is properly efficient in the sense of Borwein
and in the sense of Benson.

Proof Let Nx 2 K be an efficient solution of (VOP). Suppose that Nx 2 K is not
properly efficient in the sense of Borwein or Benson. Then we can prove that there
exists a nonzero vector c 2 C such that �c 2 T. f .K/; f .Nx//, which means that

hbi;�ci � 0 for all i 2 I. f .Nx//:

Then for sufficiently small ˛ > 0,

hbi; f .Nx � ˛c/i � ˇi; for all i D 1; 2; : : : ; `:

Thus, f .Nx/ � . f .Nx/ � ˛c/ 2 C n f0g and f .Nx/ � ˛c 2 f .K/. But this means that Nx is
not an efficient solution of VOP, a contradiction. ut
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Fig. 3.18 The solution
x D .0; 2/ is an efficient
solution of VOP, but x does
not belong to the closure of
the set of properly efficient
solutions in the sense of
Benson (see Example 3.16)

y1

y2

1

2

Theorem 3.5 Let C be a pointed closed convex cone in R`, Y D f .K/ be C-closed
(that is, f .K/C C is closed) and YC \ .�C/ D f0g, where

YC WD ˚
y 2 R

` W there exist sequences f˛kg � R; fykg � Y

such that ˛k > 0; ˛k ! 0 and ˛ky
k ! y

�
: (3.12)

Then an efficient solution of VOP belongs to the closure of the set of properly
efficient solutions in the sense of Benson.

Remark 3.8 Note that YC is an extension of the recession cone (see Defini-
tion 1.17).

The closedness assumption in Theorem 3.5 cannot be omitted, as the following
example verifies.

Example 3.16 Let Y D R2, C D R2C, K D f.x1; x2/ 2 R2 W x1 D x42; x2 <
0g [ f.0; 2/g, and f W K ! R2 with f .x1; x2/ D .x1; x2/ (see Fig. 3.18). Note that
YC \ .�C/ D f0g is satisfied, but f .K/ is not C-closed. Then the set of efficient
solutions is the whole set K, but the set of properly efficient solutions in the sense
of Benson is f.x1; x2/ 2 R2 W x1 D x42; x2 < 0g. Therefore, the closure of the set
of properly efficient solutions in the sense of Benson is f.x1; x2/ 2 R2 W x1 D x42;
x2 � 0g.

The converse assertion of the statement in Theorem 3.5 is generally not true,
which can be seen in the following example.

Example 3.17 Consider K D f.x1; x2/ 2 R2 W x2 D x1; x1 � 0g [ f.x1; x2/ 2 R2 W
x1 D 0;�2 � x2 � 0g, C D R

2C and f .x1; x2/ D .x1; x2/ (see Fig. 3.19). Note
that f .K/ is C-closed and YC \ .�C/ D f0g. Then the set of efficient solutions
is equal to the set of properly efficient solutions in the sense of Benson, namely,
Keff D f.x1; x2/ 2 R2 W x2 D x1; x1 < 0g [ f.0;�2/g. Thus, .0; 0/ is not efficient.
However, .0; 0/ belongs to the closure of the set of properly efficient solutions in
the sense of Benson.

Another relation between efficient solutions of VOP and properly efficient
solutions in the sense of Benson is given in the following corollary.
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Fig. 3.19 The feasible
solution set from Example
3.17
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Corollary 3.4 Let C be a pointed closed convex cone in R` and f .K/ be a closed
convex set or C-convex and C-closed. Then an efficient solution of VOP belongs to
the closure of the set of properly efficient solutions in the sense of Benson.

Definition 3.12 (Henig 1982)

(a) An element Nx 2 K is called a global properly efficient solution in the sense of
Henig if for some convex cone C0 � R` with C n f0g � int.C0/ it holds that

�f f .Nx/g � C0� \ Y D f0g:

(b) An element Nx 2 K is called a local properly efficient solution in the sense of
Henig if for every " > 0, there exists a convex cone C0 � R` with C n f0g �
int.C0/ it holds that

�f f .Nx/g � C0� \ ..Y C C/\ .f f .Nx/g C "B// D f0g;

where B denotes the closed unit ball in R
`.

The following theorem states that global (local, respectively) proper efficiency
in the sense of Henig reduces to proper efficiency in the sense of Borwein (Benson,
respectively) if the cone C is closed and acute.

Theorem 3.6 If C is closed and acute, then global proper efficiency in the sense of
Henig is equivalent to proper efficiency in the sense of Benson. Moreover, under the
assumption that C is closed and acute, then local proper efficiency in the sense of
Henig is equivalent to proper efficiency in the sense of Borwein.

Theorem 3.7 A global properly efficient solution in the sense of Henig is also a
local proper efficient solution in the sense of Henig. Conversely, if C is closed and
acute, and if YC \ .�C/ D f0g, then local proper efficiency in the sense of Henig
implies global proper efficiency in the sense of Henig, where YC is defined by (3.12).
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Now we turn our attention to the special case where Y D R` and the partial
ordering is induced by the natural ordering coneC D R

`C. Geoffrion [10] introduced
the following sharper notion of a solution of a vector optimization problem, known
as properly Pareto optimal solution. The idea behind this kind of solution concept is
to eliminate unbounded tradeoffs between various criteria.

Definition 3.13 (Geoffrion 1968) An element Nx 2 K is said to be a properly
efficient solution in the sense of Geoffrion or a properly Pareto optimal solution
in the sense of Geoffrion or a properly minimal solution in the sense of Geoffrion of
VOP if it is an efficient solution and there is a real number � > 0 such that for all
i 2 f1; 2; : : : ; `g and every y 2 K with fi. y/ < fi.Nx/, there exists at least one index
j 2 f1; 2; : : : ; `g such that fj. y/ > fj.Nx/ and

fi.Nx/� fi. y/

fj. y/ � fj.Nx/ � �:

An efficient solution which is not a properly efficient solution in the sense of
Geoffrion is called an improperly efficient solution in the sense of Geoffrion.

In most applications, improperly efficient solutions in the sense of Geoffrion are
not desired because a possible improvement of one component leads to a drastic
deterioration of another component, and a decision maker wishes to prevent the
existence of unbounded trade-offs.

Definition 3.13 is a refinement of a notion of proper efficiency by Kuhn and
Tucker [12]. Engau [9] extends Definition 3.13 to the case of an infinite number of
objectives.

In Example 3.13, the set of all properly efficient solutions in the sense of
Geoffrion is

8
<

:
.x1; x2/ 2 R

2 W x1 2 .�1; 0/ and x2 D �
s

1

2
� x21
2

9
=

;
;

thus, the points .�1; 0/ and .0;�1/ are efficient, but not properly efficient solutions
in the sense of Geoffrion. This means that .�1; 0/ and .0;�1/ are improperly
efficient solutions in the sense of Geoffrion.

Remark 3.9 In case Y D R`, C D R
`C, K � Rn is a convex set and fi W Rn ! R,

i 2 f1; 2; : : : ; `g are convex functions, it follows from Benson [1] and Ehrgott [5,
Theorem 2.26] that Definition 3.10 and Definition 3.13 coincide.

Theorem 3.8 Let C D R
`C. Then Nx 2 K is a properly efficient solution in the sense

of Geoffrion if and only if it is a properly efficient solution in the sense of Benson.

Proof Let Nx 2 K be a properly efficient solution in the sense of Geoffrion. Then Nx is
efficient. Suppose that Nx is not a properly efficient solution in the sense of Benson.
Then there exists a vector d ¤ 0 such that

d 2 cl.cone.Y C R
`C � f f .Nx/g//\ .�R

`C/:
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Without loss of generality, we assume that d1 < �1, di � 0 (i D 2; 3; : : : ; `). Let
tk. f .xk/ C rk � f f .Nx/g/ ! d, where rk 2 R`C, tk > 0, and xk 2 K. By choosing
a subsequence we can assume that QI WD fi W fi.xk/ > fi.Nx/g is constant for all k,
and nonempty since Nx is efficient. Choose a positive numberM. Then there is some
number k0 such that for all k with k � k0, we have

f1.x
k/� f1.Nx/ < � 1

2tk

and

fi.x
k/ � fi.Nx/ � 1

2
Mtk .i D 2; 3; : : : ; `/:

Then for all i 2 QI, we have for k � k0

0 < fi.x
k/ � fi.Nx/ � 1

2Mtk

and

f1.Nx/� f1.xk/

fi.xk/� fi.Nx/ >
1
2tk
1

2Mtk

D M:

Therefore, Nx is not properly efficient in the sense of Geoffrion, a contradiction.
Conversely, let Nx 2 K be properly efficient in the sense of Benson, and let Nx be an

efficient solution. Assume that Nx is not properly efficient in the sense of Geoffrion.
Let fMkg be an unbounded sequence of positive real numbers. Then, by reordering
the objective functions (if necessary), we can assume that for each Mk there exists
an xk 2 K such that f1.xk/ < f1.Nx/ and

f1.Nx/ � f1.xk/

fi.xk/ � fi.Nx/ > Mk

for all i D 2; 3; : : : ; ` such that fi.xk/ > fi.Nx/. By choosing a subsequence of Mk (if
necessary), we can assume that QI WD fi W fi.xk/ > fi.Nx/g is constant and nonempty
as Nx is efficient. For each k let tk WD . f1.Nx/ � f1.Nx//�1. Then tk is positive for all k.
Define

rki WD
(
0; for i D 1 or i 2 QI;
fi.Nx/ � fi.xk/; for i ¤ 1; i … QI:
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Clearly, rk 2 R`C, and

tk. fi.x
k//C rki � fi.Nx/ D

(
�1; for i D 1;

0; for i ¤ 1; i … QI;

0 < tk. fi.x
k/C rki � fi.Nx// D tk. fi.x

k/� fi.Nx// < M�1
k for i 2 QI:

For i D 1; 2; : : : ; `, let di WD limk!C1 tk. fi.xk/ C rki � fi.x//. Then d1 D �1 and
di D 0 when i ¤ 1 and i … QI. Since fMkg is an unbounded sequence of positive real
numbers, we have di D 0 for i 2 QI. Therefore,

d D .�1; 0; 0; : : : ; 0/ ¤ 0 2 cl.cone. f .K/C R
`C � f f .Nx/g//\ �R

`C:

Hence Nx is not a properly efficient solution in the sense of Benson, in contradiction
to the assumption. ut

Furthermore, we introduce the following problem, which will be called VOP0.
Let f W Rn ! R` and g W Rn ! Rm, and for all i D 1; 2; : : : ; `, j D 1; 2; : : : ;m, let
fi and gj be continuously differentiable. Then VOP0 reads

minimize f .x/;

subject to x 2 K;

where K WD fx 2 R
n W g1.x/ � 0; g2.x/ � 0; : : : ; gm.x/ � 0g.

Definition 3.14 (Kuhn-Tucker 1951) An element Nx 2 K � Rn is a properly
efficient solution of VOP0 in the sense of Kuhn-Tucker if it is efficient and if there is
no h 2 Rn such that

hrfi.Nx/; hi � 0 for all i D 1; 2; : : : ; `;

hrfi.Nx/; hi < 0 for some i D 1; 2; : : : ; `;

and hrgj.Nx/; hi � 0 for all j 2 J.Nx/ D f j 2 f1; 2; : : : ;mg W gj.Nx/ D 0g:

Theorem 3.9 Let the functions fi and gj be convex for all i D 1; 2; : : : ; `, j D
1; 2; : : : ;m. If Nx 2 K is a properly efficient solution of VOP0 in the sense of Kuhn-
Tucker, then it is also properly efficient in the sense of Geoffrion.

The following example shows that the converse statement in Theorem 3.9 is not
generally true.

Example 3.18 Let K D f.x1; x2/ 2 R2 W �x1 � 0;�x2 � 0; .x1 � 1/5 C x2 � 0g,
f1.x/ D �3x1 � 2x2 C 3, f2.x/ D �x1 � 3x2, and C D R2C (see Fig. 3.20). Then
the element x D .1; 0/ is properly efficient in the sense of Geoffrion, but it is not a
properly efficient solution in the sense of Kuhn-Tucker.
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Fig. 3.20 The solution
x D .1; 0/ with
f .x/ D .0;�1/ is properly
efficient in the sense of
Geoffrion, but not properly
efficient in the sense of
Kuhn-Tucker (see Example
3.18)
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Fig. 3.21 Nx D 0 with
f .Nx/ D .0; 0/ is a properly
efficient solution in the sense
of Kuhn-Tucker, but not
properly efficient in the sense
of Geoffrion (see Example
3.19) f1

f1

1

−1

The following example shows that the assertion in Theorem 3.9 is not true if the
objective functions are not convex.

Example 3.19 Let K D fx 2 R W �x � 0g, f W K ! R2 with f1 D �x3, which is
not convex on K, and f2 D x5 (see Fig. 3.21). Then obviously Nx D 0 is a properly
efficient solution in the sense of Kuhn-Tucker. However, we show that Nx D 0 is not
properly efficient in the sense of Geoffrion. We have to show that for all M > 0,
there exists an index i and elements x 2 K such that fi.x/ < fi.Nx/, such that for all j
with fj.Nx/ < fj.x/, we have

fi.Nx/ � fi.x/

fj.x/ � fj.Nx/ > M:

Let i D 1, and choose x D " for some " 2 �0; 1Œ. Then we have f1.x/ D �"3 < 0 D
f1.Nx/, as well as f2.x/ D "5 > 0 D f2.Nx/. Moreover,

f1.Nx/ � f1.x/

f2.x/ � f2.Nx/ D "3

"5
D 1

"2
�!
"!0

C1:

Therefore, Nx D 0 is not properly efficient in the sense of Geoffrion.
Figure 3.22 describes the discussed relations between the notions of proper

efficiency.
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efficiency

Borwein Henig local

Henig global

Benson

Geoffrion

Kuhn-Tucker

polyhedral

C closed, acute

C closed, acute,

{ }

polyhedral

C = R
�
+ f, g convex

C closed, acute

K convex,   f
C-convex

Y+ ∩ (−C ) =
0

Fig. 3.22 Relations among different kinds of proper efficiency and efficiency

3.3 Existence of Solutions

For scalar optimization problems, Weierstrass’s theorem guarantees the existence
of extremal points for a continuous function f W K � Rn ! R if K is compact.
The well-known generalization assures the existence of a minimal point under the
hypotheses that f is lower semicontinuous and the set K is compact. If we turn our
attention to the image set Y D f .K/, then we can state that Y has a minimal value
when Y C RC is closed and bounded from below.

In this section, unless otherwise specified, we assume that Y is a subset of R`

and C D R
`C or C is any proper convex pointed closed cone in R`.

Theorem 3.10 (Borwein 1983) Suppose that there is some Oy 2 Y such that the
section OY D fy 2 Y W y �C Oyg D .Oy � C/ \ Y is compact (“Y contains a compact
section”). Then Yeff is nonempty.

Theorem 3.11 (Corley 1980) If Y is a nonempty C-semicompact set, then
Yeff ¤ ;.
Corollary 3.5 (Hartley 1978) If Y � R` is nonempty and C-compact, then
Yeff ¤ ;.
Proof The result follows from Theorem 3.1 and Proposition 2.12. ut
Proposition 3.9 Let K � Rn be a nonempty compact set and f W Rn ! R` be a
C-upper semicontinuous vector-valued function. Then the nondominated set Yeff is
C-semicompact.
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Proof Let f. y˛�C/ W y˛ 2 Y; ˛ 2 	g be an open cover of Y . By C-semicontinuity
of f , f f�1.. y˛ �C/c/ W y˛ 2 Y; ˛ 2 	g is an open cover of K. Since K is compact,
this open cover has a finite subcover of K. The image of such open subcover is a
finite subcover of Y and whence Y is C-semicompact. ut
Theorem 3.12 Let K � R

n be a nonempty compact set and f W R
n ! R

` be a
C-upper semicontinuous vector-valued function. Then Keff ¤ ;.
Proof It follows directly from Proposition 3.9. ut
Theorem 3.13 If Y � R` is a nonempty and compact set, then Yw-eff ¤ ;.
Proof Suppose that Yw-eff D ;. Then for all y 2 Y , there is some Qy 2 Y such that
y 2 Qy C int.C/. Taking the union over all y 2 Y , we obtain

Y �
[

Qy2Y
.Qy C int.C// :

Since Qy C int.C/ is an open set, above inclusion implies that
S

Qy2Y .Qy C int.C//
forms an open covering of Y . Since Y is compact, there exists a finite subcover with

Y �
n[

iD1
.Qyi C int.C// :

Choosing especially Qyi on the left hand side yields that for all i D 1; 2; : : : ; k, there
is some 1 � j � k with Qyi 2 Qyj C int.C/. In other words, for all i there is a j such that
Qyj <C Qyi. By transitivity of <C and because there are finitely many Qyi there is some
i� and a chain of inequalities such that

Qyi� <C Qyi1 <C � � � <C Qyim <C Qyi� ;

which is impossible. ut
Corollary 3.6 Let K � Rn be a nonempty and compact set, C D R`C and let
f W Rn ! R` be continuous. Then Kw-eff ¤ ;.
Proof The result follows from Theorem 3.13 and Keff � Kw-eff or from
Theorem 3.12 and the fact that f .K/ is compact for compact K and continuous f .

ut
Next we verify that the compactness assumption on K and the continuity of f is

indeed necessary for the assertion in Corollary 3.6.

Example 3.20 In the following examples, we use the natural ordering cone C D
R2C.

(a) Consider the set K WD f.x1; x2/ 2 R2 W 0 < x1 � 1;�p
x1 < x2 <

p
x1g

and the objective function defined as f .x1; x2/ WD .x1; 12 � x22/. Then the set
of weakly (in (a)): efficient solutions is empty, and therefore there do not exist
any efficient solutions either. If, on the other hand, one considers the objective
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Fig. 3.23 The set of weakly
efficient solutions of f .K/ is
empty, whereas weakly
efficient solutions exist for
the set Nf .K/ (see Example
3.20 (a))
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f̄ 2

1−1
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Nf .x1; x2/ WD .x1;� 1
2

C x22/ instead the set of weakly efficient solutions is not
empty and given as f.x1; x2/ 2 R2 W 0 � x1 � 1; x2 D 0g. For an illustration,
see Fig. 3.23.

(b) The same idea remains valid for the example K WD f.x1; x2/ 2 R2 W �1 <
x1; x2 < 1g and the objective function f .x1; x2/ WD .�x21;�x22/ C . 1

2
; 1
2
/.

However, if we choose Nf .x1; x2/ WD .x21; x
2
2/ � . 1

2
; 1
2
/, then there exist weakly

efficient solutions (see Examples 3.6 and 3.9 and Fig. 3.24).
(c) To show that the continuity is necessary, we consider an example with the

compact set R1 � K WD Œ0; 1� and the objective function

f .x/ WD
(

�x�1; if x ¤ 0;

1; otherwise.

The image set of f is the open interval .�1; 1� such that no weakly efficient
solutions can be determined.

(d) This example can be extended to Rn in a straightforward manner. For the image
space R2 and the choice K WD f.x1; x2/ W x21 C x22 � 1g consider the objectives
f .x1; x2/ WD .� 1

x21
;� 1

x22
/ and Nf .x1; x2/ WD �f .x1; x2/ (see Example 3.7). Again,

we have an empty set of weakly efficient solutions for f , but in the latter case
there are even efficient solutions. For an illustration, see Fig. 3.25.

(e) Let K WD f.x1; x2/ W x21 C x22 < 1g the open unit ball in R2. We consider any
linear mapping f W R2 ! R2 with f .x1; x1/ WD A � .x1; x2/ C .b1; b2/ for an
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Fig. 3.24 Again, the set of
weakly efficient solutions of
f .K/ is empty, whereas
weakly efficient solutions
exist for the set Nf .K/ (see
Example 3.20 (b))
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Fig. 3.25 The set of weakly
efficient solutions for f .K/ is
empty, but weakly efficient
solutions of Nf .K/ exist (see
Example 3.20 (d))
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invertible matrix A 2 R2 	 R2 and .b1; b2/ 2 R2. The set of weakly efficient
solutions is empty because K as well as the image set of K is an open set.
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3.4 Optimality Notions for Variable Ordering Structures

It is well known from various applications that for modeling a problem as VOP,
a fixed ordering cone is not sufficient for the description of efficient solutions. The
motivation of introducing variable ordering cones is presented in [6–8] in the context
of medical image registration.

Let X and Y be topological vector spaces and K be a nonempty subset of X. Let
C W K ! 2Y be a set-valued map such that for all x 2 K, C.x/ is a closed convex
pointed cone. We further assume that int.C.x// ¤ ; wherever int.C.x// is involved.
Let f W K ! Y be a vector-valued function. Recall the vector optimization problem
(VOP):

(VOP) minimize f .x/; subject to x 2 K:

Definition 3.15 A point Nx 2 K is said to be a

(a) dominated strong efficient solution or dominated strong Pareto solution of VOP
if

f . y/� f .Nx/ 2 C.Nx/; for all y 2 KI

(b) dominated efficient solution or dominated Pareto solution of VOP if

f . y/� f .Nx/ … �C.Nx/ n f0g; for all y 2 KI

(c) dominated weakly efficient solution or dominated weakly Pareto solution of
VOP if

f . y/� f .Nx/ … � int.C.Nx//; for all y 2 KI

(d) dominated properly efficient solution (in the sense of Henig) or dominated
properly Pareto solution (in the sense of Henig) of VOP if there is a set-
valued map D W K ! 2Y such that for all x 2 K, D.x/ is a convex set and
C.x/ n f0g � int.D.x//, and

f . y/� f .Nx/ … �D.Nx/ n f0g; for all y 2 K:

Remark 3.10

(a) If C is a constant map, that is, for each x 2 K, C.x/ is a fixed closed convex
pointed cone with nonempty interior, then dominated strong efficient solution,
dominated efficient solution, dominated weak efficient solution, and dominated
properly efficient solution are called strong efficient solution (or strong Pareto
solution), efficient solution (or Pareto solution), weak efficient solution (or weak
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Pareto solution), and properly efficient solution (or properly Pareto solution),
respectively.

(b) It is obvious that every (dominated) strong efficient solution is a (dominated)
efficient solution, every (dominated) efficient solution is a (dominated) weak
efficient solution and every (dominated) properly efficient solution is a (domi-
nated) efficient solution.

Example 3.21 We revisit Example 3.6, that is, we consider the feasible set K WD˚
.x1; x2/ 2 R2 W �1 < x1 < 1;�1 < x2 < 1

�
and the objective function f .x1; x2/ WD

�
x21; x

2
2

� � �
1
2
; 1
2

�
. Let the variable ordering cone be given by

C.x/ D
�
R2C; if x2 D 0; x1 2 Œ0; 1Œ;
eC; else,

where eC WD f. y1; y2/ 2 R2 W . y1; y2/ D r1 � .1; 2/ C r2 � .2; 1/; r1; r2 2 RCg
(see, Fig. 3.26). Then x D .0; 0/ is not a dominated strong efficient solution, but
it is a dominated efficient solution. The set of all dominated efficient solutions is
f.x1; x2/ 2 K W x1 D 0; x2 2 Œ0; 1Œg. The set of all dominated weakly efficient solu-
tions is f.x1; x2/ 2 K W x1 D 0; x2 2 Œ0; 1Œg S f.x1; x2/ 2 K W x2 D 0; x1 2 Œ0; 1Œg,
which equals the set of weakly efficient solutions if the fixed ordering cone C D R2C
is chosen (see Example 3.6). The set of dominated properly efficient solutions is
equal to the set of dominated efficient solutions.

Example 3.22 Consider the feasible set K D ˚
.x1; x2/ 2 R2 W x21 C x22 � 1

�
, the

objective function f .x1; x2/ D .x1; x2/ and the ordering cone

C.x/ D
�
eC; if x1 D 0; x2 D �1;
R2C; else,

whereeC WD f. y1; y2/ 2 R2 W . y1; y2/ D r1 �.0:25; 1/Cr2 �.1; 0:5/; r1; r2 2 RCg (see,
Fig. 3.27). It can be seen that x D .0;�1/ is a dominated properly efficient solution,
but x D .�1; 0/ is not a dominated properly efficient solution. The set of dominated

properly efficient solutions is f.x1; x2/ 2 K W x1 < 0; x2 D �
q
1 � x21g

Sf.�1; 0/g.
Theorem 3.14 Define C1 WD T

x2K C.x/ and C2 WD S
x2K C.x/, and assume that

these cones are pointed and convex. Then we have the following assertions:

(a) If Nx 2 K is a dominated efficient solution of VOP, then Nx is an efficient solution
of VOP, where efficiency is defined by means of the cone C1 in the sense of
Definition 3.5.

(b) If Nx is an efficient solution of VOP, where efficiency is defined by means of
the cone C2 in the sense of Definition 3.5, then Nx 2 K is a dominated efficient
solution of VOP.
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K ⊂ R
2

x1

x2

1−1

1

−1

y1

y2

C̃

f (K ) ⊂ R
2

f1

f2

1−1

1

−1

Fig. 3.26 The feasible region K, the coneeC and the feasible region K with some attached variable
ordering cones of Example 3.21

y1

y2

C (−1, 0)

f (K ) ⊂ R
2

f1

f2

1−1

1

−1

Fig. 3.27 Illustration of Example 3.22

Proof We only prove part (a), as (b) can be proven in a similar way. Let Nx 2 K be a
dominated efficient solution of VOP. Then, for all y 2 K,

f . y/� f .Nx/ … �C.Nx/ n f0g:
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Now suppose that Nx is not an efficient solution of VOP, where efficiency is defined by
means of the coneC2 in the sense of Definition 3.5. Then, . f .Nx/�C2/\Y ¤ f f .Nx/g.
This means that there is some x 2 K such that f .x/ 2 Y and

f .x/ 2 f .Nx/� C2 n f0g � f .Nx/ � C.Nx/ n f0g;

contradicting the assumption. ut
A similar result can be formulated for dominated weakly efficient solutions of

VOP. We refer to [8] for corresponding results.

Example 3.23 Coming back to Example 3.21, Theorem 3.14 can be applied as
follows. We have C1 D R2C \ eC D eC and C2 D R2C [ eC D R2. The set
of all dominated efficient solutions of VOP has been identified in Example 3.21
as Kd-eff WD f.x1; x2/ 2 K W x1 D 0; x2 2 Œ0; 1Œg. Therefore, we obtain with Theo-
rem 3.14 (a) that every element in Kd-eff is an efficient solution of VOP, where
efficiency is defined by means of the cone C1 in the sense of Definition 3.5. In order
to apply Theorem 3.14 (b), we have to determine the efficient solution of VOP, by
means of C2 D R2 in the sense of Definition 3.5. The only efficient solution, which
has already been found in Example 3.6, is .x1; x2/ D .0; 0/. Therefore, we conclude
that .0; 0/ is a dominated efficient solution of VOP.

Definition 3.16 Let K be a nonempty convex subset of X and f W K ! Y be
a Gâteaux differentiable function with Gâteaux derivative Df . Let x 2 K be an
arbitrary element. Then f is said to be:

(a) Cx-convex if for all y 2 K,

f . y/� f .x/ � hDf .x/; y � xi 2 C.x/I

(b) strictly Cx-convex if for all y 2 K, y ¤ x,

f . y/� f .x/ � hDf .x/; y � xi 2 int.C.x//I

(c) strongly Cx-pseudoconvex if for all y 2 K,

hDf .x/; y � xi 2 C.x/ implies f . y/ � f .x/ 2 C.x/I

(d) Cx-pseudoconvex if for all y 2 K,

hDf .x/; y � xi … �C.x/ n f0g implies f . y/ � f .x/ … �C.x/ n f0gI

(e) weakly Cx-pseudoconvex if for all y 2 K,

hDf .x/; y � xi … � int.C.x// implies f . y/� f .x/ … � int.C.x//:
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If C.x/ is a fixed closed convex pointed cone P with int.P/ ¤ ;, then Cx-
convexity, strict Cx-convexity, strong Cx-pseudoconvexity,Cx-pseudoconvexity and
weak Cx-pseudoconvexity are called P-convexity, strict P-convexity, strong P-
pseudoconvexity,P-pseudoconvexity and weak P-pseudoconvexity, respectively.

Example 3.24 For the objective function f .x1; x2/ WD �
x21; x

2
2

� � �
1
2
; 1
2

�
considered

in Example 3.21, we observe that

hDf .x/; y � xi D .2x1. y1 � x1/; 2x2. y2 � x2//;

and therefore, it holds

f . y/� f .x/� hDf .x/; y � xi D �
. y1 � x1/

2; . y2 � x2/
2
�
:

One observes that f is Cx-convex for all x D .x1; x2/ with x2 D 0, x1 2 Œ0; 1Œ. If one
chooses, for example, x1 D 0, x2 D 0:5. Then, for y D .0; 0/,

f . y/� f .x/ � hDf .x/; y � xi D �
. y1 � x1/

2; . y2 � x2/
2
� D .0; 0:25/ … C.x/:

Therefore, f is not Cx-convex for x D .0; 0:5/.

Example 3.25 Coming back to Example 3.22, we observe that the objective
function f .x1; x2/ D .x1; x2/ is Cx-convex, strongly Cx-convex, Cx-pseudoconvex,
weakly Cx-pseudoconvex for all x 2 K, but it is not strictly Cx-convex for any
x 2 K.
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Chapter 4
Classical Methods in Vector Optimization

In this chapter, we investigate solution procedures to obtain efficient solutions of a
vector optimization problem.

The results that we are recalling in this chapter are standard and can be found in
several books on vector optimization, for example in [10, 13, 32, 39, 44].

We briefly recall the vector optimization problem (in short, VOP): Let Y be a
topological vector space with a nontrivial closed pointed convex cone C, and X be a
vector space. Whenever we use int.C/, we assume that int.C/ ¤ ;. We consider the
problem

minimize f .x/;

subject to x 2 K;
(4.1)

where

• ; ¤ K � X is a feasible region
• f W X ! Y is a objective function
• Y is the objective space
• x is a decision (variable) vector
• X is the decision variable space
• Y WD f .K/ is the feasible objective region

In the following sections, we show how VOP (4.1) can be converted into several
scalar-valued minimization problems, and how solutions of the corresponding
scalar-valued minimization problems relate to the efficient solutions of VOP. We
present linear and nonlinear scalarization techniques. By means of these methods,
we are able to characterize efficient solutions of VOP. The presented procedures are
based on the scalarization of VOP, that is, on the principle of transforming VOP
into a scalar optimization problem. The scalarization problem in these methods is
formulated in a parameterizable way. By varying the parameter, different scalar
optimization problems can be generated, and hence, several optimal solutions of

© Springer International Publishing AG 2018
Q.H. Ansari et al., Vector Variational Inequalities and Vector Optimization,
Vector Optimization, DOI 10.1007/978-3-319-63049-6_4
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such problems can be found. Because a scalarized problem is often easier to solve,
there is a huge advantage of using scalarization techniques.

For the particular case where X D Rn and Y D R`, we present some well known
and widely used methods, namely, the weighted sum method, "-constraint method
and the hybrid method.

For each given ` 2 N, we denote by R`C the non-negative orthant of R`, that is,

R
`C D ˚

x D .x1; x2; : : : ; x`/ 2 R
` W xi � 0; for i D 1; 2; : : : ; `

�
;

so that R`C has a nonempty interior with the topology induced in terms of
convergence of vectors with respect to the Euclidean metric. That is,

int.R`C/ D ˚
x D .x1; x2; : : : ; x`/ 2 R

` W xi > 0; for i D 1; 2; : : : ; `
�
:

We denote by T
`C and int.T`C/ the simplex of R

`C and its relative interior,
respectively, that is,

T
`C D

(

x D .x1; x2; : : : ; x`/ 2 R
`C W kxk D

X̀

iD1
xi D 1

)

;

and

int.T`C/ D
(

x D .x1; x2; : : : ; x`/ 2 int.R`C/ W kxk D
X̀

iD1
xi D 1

)

:

e denotes the unit vector in R`, that is, e D .1; 1; : : : ; 1/.

4.1 Linear Scalarization

This section deals with a linear scalarization of VOP. As we will see further on,
such a method is beneficial for a convex VOP. The next theorem states how a linear
scalarization of VOP relates to weakly efficient solutions of VOP.

Theorem 4.1 Let Y be a topological vector space with a nontrivial pointed convex
cone C, X be a vector space with ; ¤ K � X, and f W X ! Y be a given function.
If there exist a linear functional W 2 C� n f0g and Nx 2 K such that

W
�
f .Nx/� � W

�
f .x/

�
; for all x 2 K;

then Nx is a weakly efficient solution of VOP.
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Proof Suppose that Nx is not a weakly efficient solution of VOP. Then . f .Nx/ �
int.C// \ Y ¤ ;, and there is some element Qx with f .Qx/ 2 Y such that f .Qx/ 2
f .Nx/ � int.C/. Hence, we conclude that for all W 2 C� n f0g,

W
�
f .Qx/� < W

�
f .Nx/�;

a contradiction to our supposition. ut
As a particular case of the linear scalarization technique, we obtain the weighted

sum method, which was presented by Gass and Saaty [18] and Zadeh [54]. The
weighted sum method scalarizes a set of objectives into a single objective by pre-
multiplying each objective with a user-supplied weight. In other words, the idea
behind the weighted sum method is to associate each objective function with a
weight coefficient and minimize the weighted sum of the objectives. In this way,
the multiple objective functions are transformed into a single objective function.
This method is the simplest approach and is probably the most widely used classical
approach. Faced with multiple objectives, this method is the most convenient one
that comes to mind.

Let Y D R`, ; ¤ K � X D Rn, f W X ! Y, and let W D .W1;W2; : : :W`/ 2
R
`C n f0g be a vector of weight coefficientsWi. Then by multiplying each objective

function fi by the weight coefficientWi and taking the sum of the resulting functions,
we convert VOP into the following scalar optimization problem, called weighted
optimization problem (in short, WOP):

minimize
X̀

iD1
Wi fi.x/;

subject to x 2 K:

(4.2)

The weight coefficientWi (i D 1; 2; : : : ; `) can be interpreted as some nonnega-
tive weight or priority assigned to the ith objective criterion by the decision maker.
Hypothetically, if ` D 3 and W1 D 1, W2 D 2, W3 D 3, then this means that
the third objective criterion is 3 times important than the first objective criterion
and 1.5 times more important in comparison with the second objective criterion,
while second criterion is 2 times more important in comparison to the first objective
criterion. Therefore, we can restrict the weights to belong toT`Cnf0g, i.e., we replace
W1, W2, W3 by 1

4
, 2
4

D 1
2
and 3

4
, respectively (see Remark 4.1).

A geometric interpretation of the weighted sum method can be easily seen by

considering the scalar-valued function gW.x/ WD
X̀

iD1
Wi fi.x/. Since

X̀

iD1
Wi fi.x/

defines a plane in the objective space characterized by its normal vector W D
.W1;W2; : : : ;W`/, each choice of the transformation parameter W induces a par-
tition of the objective space into planes of identical gW -values as shown in Fig. 4.1.

The following corollary follows from Theorem 4.1
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Fig. 4.1 Visualization of a
feasible objective region f .K/
and some hyperplanes. If we
minimize the weighted sum
problem on the set f .K/, we
obtain the efficient element
f .Nx/

1

2

Corollary 4.1 If W 2 R`C n f0g, then every solution of WOP is a weakly efficient
solution of VOP.

If the linear function belongs to the quasi-interior of the dual cone of C, then
we can state the following connection between a linear scalarization and efficient
solutions of VOP.

Theorem 4.2 Let Y be a topological vector space with a nontrivial pointed convex
cone C, X be a vector space with ; ¤ K � X, and f W X ! Y be a given function.
If there exist a linear functional W 2 C# and Nx 2 K such that

W
�
f .Nx/� � W

�
f .x/

�
; for all x 2 K;

then Nx is an efficient solution of VOP.
Proof Suppose that Nx is not an efficient solution of VOP. Then . f .Nx/ � C/ \ Y ¤
f f .Nx/g, and there is some element Qx with f .Qx/ 2 Y , f .Qx/ ¤ f .Nx/ such that f .Qx/ 2
f .Nx/ � C. Therefore, due to the definition of the quasi-interior of C�, we obtain

W
�
f .Qx/� < W

�
f .Nx/�; for allW 2 C#;

a contradiction to our supposition. ut
For the weighted sum scalarization, we have the following corollary that is an

immediate consequence of Theorem 4.2.

Corollary 4.2 If W 2 int.R`C/, then every solution of WOP is an efficient solution
of VOP.

The next result relates unique solutions of a linear scalarization to efficient
solutions of VOP.

Theorem 4.3 Let Y be a topological vector space with a nontrivial pointed convex
cone C, X be a vector space with ; ¤ K � X, and f W X ! Y be a given function.
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If there exist a linear functional W 2 C� and Nx 2 K such that

W
�
f .Nx/� < W

�
f .x/

�
; for all x 2 K;

then Nx is an efficient solution of VOP.
Proof Suppose that Nx is not an efficient solution of VOP. Then . f .Nx/ � C/ \ Y ¤
f f .Nx/g. Thus, there exists some Qx with f .Qx/ 2 Y , f .Qx/ ¤ f .Nx/ such that f .Qx/ 2
f .Nx/ � C. Then we have

W
�
f .Qx/� � W

�
f .Nx/�; for allW 2 C�;

in contradiction to the supposition. ut
For the weighted sum scalarization, we obtain the following consequence of

Theorem 4.3.

Corollary 4.3 If W 2 R`C and Nx is a unique solution of WOP, then it is an efficient
solution of VOP.

Example 4.1 Consider the following VOP:

minimize f .x/ D .x1; x2/;

subject to x 2 K;
(4.3)

where K WD f.x1; x2/ 2 R2 W x21 � x2; x2 � x1 C 2g (see Fig. 4.2). By choosing the
weightsW1 D W2 D 1, we obtain the following WOP:

minimize x1 C x2;

subject to x 2 K:

Fig. 4.2 Nx is a unique
optimal solution of the
weighted sum scalarization
with weightsW1 D W2 D 1,
and thus Nx is an efficient
solution of VOP (see
Example 4.1)

−
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The unique solution of this WOP is Nx D �� 1
2
; 1
4

�
. By Corollary 4.3, Nx is an efficient

solution of VOP (4.3).

Remark 4.1 The assumptionW 2 R`C nf0g (respectively,W 2 R`C) in Corollary 4.1
(respectively, Corollary 4.3) can be replaced by the assumption W 2 T`C n f0g
(respectively, W 2 T

`C), and W 2 int.R`C/ in Corollary 4.2 can be replaced by
W 2 int.T`C/.

For the next results, we need the following separation theorem.

Theorem 4.4 ([32, Theorem 3.14.]) Let A and B be nonempty convex subsets of a
real vector space Y with cor.A/ ¤ ;. Then cor.A/ \ B D ; if and only if there is
a linear functional W 2 C� n f0g and a real number ˛ with W.a/ � W.b/ for all
a 2 A and for all b 2 B and W.a/ < ˛ for all a 2 cor.A/.

The following theorem describes a necessary condition for weakly efficient
solutions of VOP.

Theorem 4.5 Let Y be a topological vector space with a nontrivial pointed convex
cone C, X be a vector space with ; ¤ K � X, f W X ! Y be a given function and
the set Y C C be convex. Then for every weakly efficient solution Nx 2 K of VOP,
there exists a linear functional W 2 C� n f0g such that

W
�
f .Nx/� � W

�
f .x/

�
; for all x 2 K:

Proof Let Nx 2 K be a weakly efficient solution of VOP. Then f .Nx/ 2 f .K/ D Y is a
also a weakly efficient element of Y . Thus, by Lemma 3.2 (b), f .Nx/ is also a weakly
efficient element of the set Y C C. Then

. f .Nx/� int.C// \ .Y C C/ D ;: (4.4)

Because f .Nx/ � int.C/ and Y C C are convex sets, we can apply Theorem 4.4 and
we observe that there exists a linear functional W 2 Y� n f0g and a real number ˛
with

W
�
f .Nx/� c1

� � W
�
f .x/C c2

�
; for all x 2 K and all c1; c2 2 C:

Because C is a cone, we obtain that W 2 C� n f0g, and by choosing c1 D c2 D 0,
we conclude with

W
�
f .Nx/� � W

�
f .x/

�
; for all x 2 K: ut

We apply Theorem 4.5 to the weighted sum scalarization.

Corollary 4.4 Let the set Y C R`C be convex. For every weakly efficient solution
Nx 2 K of VOP, there exists W 2 R

`C n f0g such that Nx is a solution of WOP.
A necessary condition for efficient solutions is the following.
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Theorem 4.6 Let Y be a topological vector space with a nontrivial pointed convex
cone C, X be a vector space with ; ¤ K � X, f W X ! Y be a given function,
and let the set Y CC be convex and have nonempty interior. Then for every efficient
solution Nx 2 K of VOP, there exists a linear functional W 2 C� n f0g such that

W
�
f .Nx/� � W

�
f .x/

�
; for all x 2 K:

The proof of Theorem 4.6 is similar to the proof of Theorem 4.5, and therefore,
it is omitted.

In the following corollary, we apply Theorem 4.6 to the weighted sum scalariza-
tion.

Corollary 4.5 Let the set Y C R`C be convex. For every efficient solution Nx 2 K of
VOP, there exists W 2 R

`C n f0g such that Nx is a solution of WOP.
The next result characterizes strongly efficient solutions of VOP.

Theorem 4.7 Let Y be a topological vector space with a nontrivial pointed convex
cone C, X be a vector space with ; ¤ K � X, and f W X ! Y be a given function.
Then Nx 2 K is a strongly efficient solution for VOP if and only if for every linear
functional W 2 C�, we have

W
�
f .Nx/� � W

�
f .x/

�
; for all x 2 K:

Proof Let Nx 2 K be a strongly efficient solution of VOP. Then f .K/ D Y � f f .Nx/gC
C. This means that for every x 2 K, f .x/ 2 f f .Nx/g C C, and hence W

�
f .Nx/� �

W
�
f .x/

�
for all x 2 K and for allW 2 C�.

Conversely, suppose thatW
�
f .Nx/� � W

�
f .x/

�
holds true for all x 2 K and for all

W 2 C�, but suppose that Nx is not strongly efficient for VOP. Then Y 6� f .Nx/C C,
and thus there exists some Qx 2 K with f .Qx/ … f f .Nx/g C C. But then there is some
W 2 C� such that W . f .Qx// < W . f .Nx//, a contradiction. ut
Corollary 4.6 Nx 2 K is a strongly efficient solution of VOP if and only if for all
x 2 K and all W 2 R

`C,

X̀

iD1
Wi fi.Nx/ �

X̀

iD1
Wi fi.x/:

Now we turn our attention to VOP with Y D R`, X D Rn and C D R`C. In the
following theorem, we see that if all the weight coefficients in WOP are positive,
then the optimal solution of WOP provides the properly efficient solution of VOP.

Theorem 4.8 ([20]) Let W 2 int.T`C/. If Nx is a solution of WOP, then it is a
properly efficient solution (in the sense of Geoffrion) of VOP.
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Proof In Corollary 4.2, we have already proved that Nx is an efficient solution of
VOP. We shall show that Nx is a properly efficient solution with

� D .` � 1/ max
i; j2I

Wj

Wi
; for all ` � 2; (4.5)

whereI WD f1; 2; : : : ; `g.
Suppose that Nx is not a properly efficient solution of VOP. Then there exist i 2 I

and y 2 K such that fi. y/ < fi.Nx/ and

fi.Nx/� fi. y/ > �
�
fj. y/� fj.Nx/

�
; for all j 2 I for which fj. y/ > fj.Nx/:

Therefore, by the choice of �, we have

fi.Nx/� fi. y/ > .` � 1/Wj

Wi

�
fj. y/� fj.Nx/

�
; for all j 2 I n fig: (4.6)

Multiplying (4.6) both sides by
Wi

.` � 1/
for each j 2 I n fig, we get

Wi

.` � 1/ . fi.Nx/� fi. y// > Wj
�
fj. y/� fj.Nx/

�
; for all j 2 I n fig:

By taking the sum over all j ¤ i, we obtain

Wi . fi.Nx/� fi. y// >
X̀

jD1; j¤i

Wj
�
fj. y/� fj.Nx/

�

equivalently,

Wi . fi.Nx/ � fi. y// >
X̀

jD1; j¤i

Wj fj. y/ �
X̀

jD1; j¤i

Wj fj.Nx/:

This implies that

Wi fi.Nx/C
X̀

jD1; j¤i

Wj fj.Nx/ > Wi fi. y/C
X̀

jD1; j¤i

Wj fj. y/

and thus,

X̀

jD1
Wj fj.Nx/ >

X̀

jD1
Wj fj. y/;
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contradicting optimality of Nx for WOP. Thus, Nx is a properly efficient solution of
VOP. ut

Now we apply Theorem 4.8 to find properly efficient solutions (in the sense of
Geoffrion) of vector optimization problems in the following example.

Example 4.2 Consider the following VOP:

minimize f .x/ D .x1; x
2
2 � x1/;

subject to x 2 K;
(4.7)

where K WD f.x1; x2/ 2 R2 W 0 � x1 � 2; 0 � x2 � 2g (see Fig. 4.2). By choosing
the weightsW1 D W2 D 1

2
, we obtain the following WOP:

minimize
1

2
x1 C 1

2
x22;

subject to x 2 K:

One solution of this WOP is Nx D .0; 0/. Due to Theorem 4.8, Nx is a properly efficient
solution of VOP (4.7). The set of all properly efficient solutions is given by f.x1; x2/ W
0 � x1 � 2; x2 D 0g (Fig. 4.3).

For further examples and exercises, we refer to [9].

Remark 4.2 One of the disadvantages of linear scalarization techniques, in partic-
ular the weighted sum method, is that all efficient solutions can only be found for
convex problems, i.e., if the set Y C C is a convex set. The weighted sum method
fails to find all efficient solutions of a nonconvex problem. This is the reason why
we consider nonlinear scalarization methods in Sect. 4.2.

We state the following result to prove the necessary and sufficient conditions for
a solution of VOP. In the following, we use the set I WD f1; 2; : : : ; `g.
Theorem 4.9 ([40]) Let K � Rn be a nonempty convex set and for each i 2 I ,
fi W K ! R be convex. If the system fi.x/ < 0 for all i 2 I has no solution x 2 K,

Fig. 4.3 Nx D .0; 0/ D f .0; 0/
is one efficient solution of the
weighted sum scalarization
with weightsW1 D W2 D 1,
and thus Nx is a properly
efficient solution of VOP (see
Example 4.2)
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then there exist �i � 0, i 2 I with
P`

iD1 �i D 1 such that

X̀

iD1
�i fi.x/ � 0; for all x 2 K: (4.8)

The following theorem shows that all properly efficient solutions (in the sense of
Geoffrion) of a convex VOP can be found by means of WOP.

Theorem 4.10 ([20]) Let K � R
n be a nonempty convex set and for each i 2 I , fi W

K ! R be convex. Then Nx is a properly efficient solution (in the sense of Geoffrion)
of VOP if and only if there exists W 2 int.R`C/ such that Nx is an optimal solution of
WOP.

Proof In view of Theorem 4.8, it is sufficient to prove the necessity condition. Let
Nx be a properly efficient solution of VOP. Then, by definition, there exists a number
� > 0 such that for all i D 1; 2; : : : ; ` and all y 2 K with fi. y/ < fi.Nx/ at least one
j 2 I exists with fj. y/ > fj.Nx/ and

fi.Nx/� fi. y/

fj. y/ � fj.Nx/ � �: (4.9)

We claim that for every i 2 I , the system

fi. y/ < fi.Nx/
fi. y/C �fj. y/ < fi.Nx/C �fj.Nx/; for all j 2 I and j ¤ i

(4.10)

has no solution.
Indeed, assume that for some i 2 I , the system (4.10) has a solution y 2 K. If

there is no j 2 I with fj. y/ > fj.Nx/, Nx cannot be a properly efficient solution. On
the other hand, if there is some j 2 I with fj. y/ > fj.Nx/, we obtain from second
inequality in (4.10) that

fi.Nx/ � fi. y/ > �
�
fj. y/� fj.Nx/

�

contradicting with the inequality (4.9).
Theorem 4.9 implies that for the ith such system there exist �.i/j � 0 for j D

1; 2; : : : ; ` such that
P`

iD1 �
.i/
j D 1 and for all y 2 K, we have

�
.i/
i fi. y/C

X̀

jD1; j¤i

�
.i/
j

�
fi. y/C �fj. y/

� � �
.i/
i fi.Nx/C

X̀

jD1; j¤i

�
.i/
j

�
fi.Nx/C �fj.Nx/

�
;



4.1 Linear Scalarization 191

equivalently,

�
.i/
i fi. y/C

X̀

jD1; j¤i

�
.i/
j fi. y/C �

X̀

jD1; j¤i

�
.i/
j fj. y/

� �
.i/
i fi.Nx/C

X̀

jD1; j¤i

�
.i/
j fi.Nx/C �

X̀

jD1; j¤i

�
.i/
j fj.Nx/:

This implies that

X̀

jD1
�
.i/
j fi. y/C �

X̀

jD1; j¤i

�
.i/
j fj. y/ �

X̀

jD1
�
.i/
j fi.Nx/C �

X̀

jD1; j¤i

�
.i/
j fj.Nx/: (4.11)

Since
X̀

jD1
�
.i/
j D 1, and fi. y/ and fi.Nx/ are independent of j, we have

X̀

jD1
�
.i/
j fi. y/ D fi. y/ and

X̀

jD1
�
.i/
j fi.Nx/ D fi.Nx/:

Therefore, inequality (4.11) becomes

fi. y/C �
X̀

jD1; j¤i

�
.i/
j fj. y/ � fi.Nx/C �

X̀

jD1; j¤i

�
.i/
j fj.Nx/; for all y 2 K: (4.12)

The inequality (4.12) holds for all i D 1; 2; : : : ; `. Taking the sum over i up to `, we
obtain

X̀

iD1
fi. y/C �

X̀

iD1

X̀

jD1; j¤i

�
.i/
j fj. y/ �

X̀

iD1
fi.Nx/C �

X̀

iD1

X̀

jD1; j¤i

�
.i/
j fi.Nx/;

for all y 2 K, which implies that

X̀

iD1

0

@1C �
X̀

jD1; j¤i

�
.i/
j

1

A fi. y/ �
X̀

iD1

0

@1C �
X̀

jD1; j¤i

�
.i/
j

1

A fi.Nx/;
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for all y 2 K. Since
P`

kD1 �
.i/
k D 1, we have

X̀

iD1

0

B
B
B
B
B
@

1C �
X̀

jD1; j¤i

�
.i/
j

X̀

kD1
�
.i/
k

1

C
C
C
C
C
A

fi. y/ �
X̀

iD1

0

B
B
B
B
B
@

1C �
X̀

jD1; j¤i

�
.i/
j

X̀

kD1
�
.i/
k

1

C
C
C
C
C
A

fi.Nx/;

(4.13)
for all y 2 K. Let

ti D 1C �
X̀

jD1; j¤i

�
.i/
j

X̀

kD1
�
.i/
k

:

Then ti � 0 for all i, and the inequality (4.13) can be written as

X̀

iD1
ti fi. y/ �

X̀

iD1
ti fi.Nx/; for all y 2 K:

Hence, Nx is an optimal solution of WOP. ut

4.2 Nonlinear Scalarization Method

Here we present the concept of nonlinear scalarization introduced by Gerth and
Weidner [22]. Several scalarization concepts known from the literature may be
obtained by a variation of parameters involved in this prominent scalarization
method (see Sect. 2.6). For instance, Klamroth et al. [33] showed how robust and
stochastic scalar optimization problems can be characterized by using a nonlinear
scalarizing functional. Let Y be a topological vector space, e 2 Y n f0g and D be a
nonempty closed proper (i.e., D ¤ f0g and D ¤ Y) subset of Y satisfying

D C Œ0;C1Œ�e � D: (4.14)

We use the functional �e;D given in Definition 2.30, namely the functional �e;D W
Y ! R [ f˙1g defined by

�e;D. y/ D infft 2 R W y 2 te � Dg; for all y 2 Y: (4.15)
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Now we formulate the problem of minimizing the functional �e;D as

minimize �e;D. f .x//;

subject to f .x/ 2 f .K/; x 2 K:
(4.16)

Notice that the functional �e;D operates in the objective space Y of the multiob-
jective function f W X ! Y, where X is a vector space. When searching for efficient
solutions x 2 K � X of f , the functional �e;D can be used to scalarize f . Since the
functional’s well-studied monotonicity properties allow for connections to vector-
valued optimization problems, �e;D may be used to gain efficient solutions of the set
f .K/ D Y .

Figure 4.4 visualizes the functional �e;D for a cone D � R2C and a given vector
e 2 int.D/. We can see that the set �D is moved along the lineR�e up until y belongs
to te � D. The functional �e;D assigns the smallest value t such that the property
y 2 te � D is fulfilled. By a variation of the vector e that satisfy (4.14) all efficient
solutions of a vector optimization problem without any convexity assumptions can
be found.

The scalarizing functional �e;D was used in [22] to prove nonconvex separation
theorems. Applications of �e;D include coherent risk measures in financial mathe-
matics (see, for instance, [29]). Many properties of �e;D were studied in [22, 25, 52].

In Theorem 2.7, we already mentioned that the functional �e;D fulfills certain
monotonicity properties under quite general assumptions. The theorem below,
which appeared in [22, 31], relates functionals that are monotone with respect to
a cone C to the nondominated and weakly nondominated set of a VOP.

Theorem 4.11 Let Y be a real preordered vector space whose ordering is defined
by a convex cone C.

(a) If there exists a functional � W Y ! R which is monotone with respect to C,
where for all y 2 f .K/ n fNyg W �. Ny/ < �. y/, then Ny 2 E. f .K/;C/.

Fig. 4.4 Visualization of the
functional �e. y/ D minft 2
R W y 2 te � Dg
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(b) If there exists a functional � W Y ! R which is strictly monotone with respect to
C, where for all y 2 f .K/ W �. Ny/ � �. y/, then Ny 2 WE. f .K/;C/.

Proof

(a) Let � be monotone with respect to C and �. Ny/ < �. y/ for all y 2 f .K/ n fNyg.
Suppose that Ny … E. f .K/;C/. Then .fNyg � C/ \ f .K/ 6� fNyg C C. Thus, there
exists some y 2 f .K/, such that y 2 fNyg � C and y … fNyg C C. Then by the
monotonicity of z with respect to C, we obtain �. y/ � �. Ny/. This contradicts
the unique minimality of the element Ny.

(b) Let � be strictly monotone with respect to C and �. Ny/ � �. y/ for all y 2 f .K/,
but suppose that Ny … WE. f .K/;C/. Then there exists some y 2 f .K/ with
y 2 fNyg � int.C/. But then we immediately obtain �. y/ < �. Ny/, a contradiction.

ut
Thus, we have the following corollary, which follows from the monotonicity

properties of the functional �e;D for a cone C D D (see Theorem 2.7).

Corollary 4.7 Let C � Y be a closed convex pointed cone in a real partially
ordered topological vector space Y, K � X a nonempty set in a vector space X
and f W X ! Y be a given function. Furthermore, let e 2 Y n f0g and D D C such
that (4.14) is fulfilled. If f .Nx/ is a solution of the scalarized problem (4.16), then
f .Nx/ 2 WE. f .K/;C/. Furthermore, if f .Nx/ is a unique solution of the scalarized
problem (4.16), then f .Nx/ 2 E. f .K/;C/.

The following theorem shows that all weakly efficient solutions of VOP can be
found by means of the nonlinear scalarizing functional.

Theorem 4.12 Let Y be a topological vector space, B � Y be a closed set with
nonempty interior and 0 2 bd.B/. Assume that there exists a cone C � Y with
nonempty interior such that B C int.C/ � B. Then Ny 2 WE. f .K/;B/ if and only
if Ny 2 f .K/ and there exists a continuous function � W Y ! R such that for all
y 2 int.B/ and for all Oy 2 f .K/,

�. Ny � y/ < 0 D �. Ny/ � �. Oy/: (4.17)

Proof Let e 2 int.C/, A WD f .K/ and D WD C � Ny. Then the inequality (4.17)
follows from Theorem 2.8 for � WD �e;D. Conversely, let (4.17) be satisfied. Then
f .K/\ .Ny � int.B// D ;, which means that Ny 2 WE. f .K/;B/. ut

In case Y D R`, and by a specific selection of the set D and the vector e 2 R` n
f0g, we are able to express the objective function in the weighted sum scalarization
method by means of the functional �e;D.

Theorem 4.13 Let Y D R` and X D Rn. Choose weights W 2 T
`C n f0g and

let D WD
n
y 2 R` W P`

iD1Wiyi � 0
o
, e WD 1` D .1; 1; : : : ; 1/. Then �e;D. f .x// D

P`
iD1Wi fi.x/ for every x 2 K.
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Proof It holds for all x 2 K,

�e;D. f .x// D min ft 2 R W f .x/ 2 te � Dg

D min

(

t 2 R W
X̀

iD1
Wi � . f .x/� te/i � 0

)

D min

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

t 2 R W
X̀

iD1
Wi � fi.x/ � t �

X̀

iD1
Wi

„ƒ‚…
D1

9
>>>>=

>>>>;

D
X̀

iD1
Wi fi.x/: ut

Note that the selection of the cone D in and the vector e in Theorem 4.13 is
crucial and if these parameters are changed, Theorem 4.13 may not hold anymore.
If
P`

iD1Wi ¤ 1, then the solutions of WOP and (4.16) for the parameters e and D
given in Theorem 4.13 are the same, but the objective function values may differ.

Due to the monotonicity properties of the functional �e;D, we are able to prove
relations between solutions of the weighted sum method and efficient solutions (see
Corollaries 4.1 and 4.2).

Corollary 4.8 If W 2 R
`C n f0g, then every solution of WOP is a weakly efficient

solution of VOP. Furthermore, every unique solution of WOP is an efficient solution
of VOP.

Proof With the choice of D and e as in Theorem 4.13, the assertions follow directly
from the fact that D is a closed proper set, and together with D C R`C � D,
Theorem 2.7 implies that the functional �e;D is monotone with respect to R`C
and strictly monotone with respect to R

`C. Therefore, the assertions follow with
Theorems 4.11 and 4.13. ut

4.2.1 "-Constraint Method

Now we again turn our attention to the finite dimensional case. We consider the
selection Y D R` for the objective space and X D Rn as the decision variable space.
Furthermore, we define efficiency of VOP by means of the natural ordering cone
C D R`C. Then we consider the "-constraint method, introduced by Haimes et al.
[27] in 1971, which is probably best known technique to solve VOP besides the
weighted sum method. In the "-constraint method, only one of the original objective
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functions is selected to be optimized and all other objective functions are converted
into constraints by setting an upper bound to each of them. The problem to be solved
is now the following "-constraint optimization problem (in short, "-COP):

minimize fk.x/;

subject to fj.x/ � "j; for all j D 1; 2; : : : ; `; j ¤ k;

x 2 K;

(4.18)

where " D ."1; "2; : : : ; "`/ 2 R` and k 2 f1; 2; : : : ; `g. The component "k is
irrelevant for (4.18), but the convention is to include it as it will be convenient later.

The following theorem provides the relationship between an optimal solution of
"-COP and a weakly efficient solution of VOP.

Theorem 4.14 Every solution of "-COP is a weakly efficient solution of VOP. In
other words, if Nx 2 K is a solution of "-COP for some k, then it is a weakly efficient
solution of VOP.

Proof Let Nx 2 K be a solution of "-COP but not a weakly efficient solution of VOP.
Then there exists some y 2 K such that fi. y/ < fi.Nx/ for all i D 1; 2; : : : ; `. In
particular, fj. y/ < fj.Nx/ for all j D 1; 2; : : : ; `; j ¤ k. Since fj. y/ < fj.Nx/ � "j for
all j ¤ k, y is feasible for "-COP, but then Nx is not an optimal solution of "-COP,
contradicting our assumption that Nx is an optimal solution of "-COP. Thus, Nx is a
weakly efficient solution of VOP. ut

The following result relates optimal solutions of "-COP to efficient solutions of
VOP.

Theorem 4.15 If Nx 2 K is a unique optimal solution of "-COP, then it is an efficient
solution of VOP.

Proof Let Nx 2 K be a unique solution of "-COP for some k but not an efficient
solution of VOP. Then there exists some point y 2 K such that fj. y/ � fj.Nx/ for all
j D 1; 2; : : : ; ` and fk. y/ < fk.Nx/ for at least one k. The uniqueness of Nx implies that
for all y 2 K with fj. y/ � fj.Nx/ D "j, j ¤ k, we have fk.Nx/ < fk. y/. So, we have a
contradiction with the preceding inequalities, and x must be an efficient solution of
VOP. ut
Theorem 4.16 The vector Nx 2 K is an efficient solution of VOP if and only if there
exists an N" 2 R` such that Nx is a solution of N"-COP for every k D 1; 2; : : : ; `.

Proof Let N" D f .Nx/. Assume that Nx is an efficient solution of VOP but not a solution
of N"-COP for some k. Then there exists y 2 K such that fk. y/ < fk.Nx/ and fj. y/ �
N"j D fj.Nx/ for all j ¤ k, that is, Nx is not an efficient solution of VOP.

Conversely, let Nx 2 K be a solution of N"-COP. Then for all k D 1; 2; : : : ; `, there
is no y 2 K such that fk. y/ < fk.Nx/ and fj. y/ � fj.Nx/ D N"j when j ¤ k. So, Nx is an
efficient solution of VOP. ut

The following theorem shows that it is possible to characterize the "-constraint
method by means of the functional �e;D. Note that here, the set D is not a cone.
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Theorem 4.17 Let

e D .e1; ; e2; : : : ; e`/; where ej D
�
1; for j D k;
0; for j ¤ k;

(4.19)

and

D D R
`C � Nc; with Nc D .Nc1; Nc2; : : : ; Nc`/; Ncj D

�
0; for j D k;
"j; for j ¤ k;

(4.20)

Then Nx 2 K is a solution of "-COP if and only if f .Nx/ is a solution of problem (4.16).

Proof It holds for all x 2 K,

�e;D. f .x// D minft 2 R W f .x/ 2 te � Dg
D minft 2 R W f .x/ 2 te � R

`C � Ncg
D minf fk.x/ W fj.x/ � "j; j D 1; 2; : : : ; `; j ¤ kg: ut

The assertions in Theorems 4.14 and 4.15 can be verified by using the nonlinear
scalarizing functional �e;D.

Theorem 4.18 Every solution of "-COP is a weakly efficient solution of VOP.
Furthermore, every unique solution of "-COP is an efficient solution of VOP.

Proof Let e and D be given by (4.19) and (4.20), respectively. Then we have D C
R
`C � D, thus, by Theorem 2.7 (e), �e;D is monotone with respect to R

`C. Then
Theorem 4.11 yields the first assertion. Now we show directly that �e;D.�/ is strictly
monotonewith respect to R`C. Consider t 2 R; y 2 te�int.D/. Then te�y 2 int.D/.
Consequently, there exists an s > 0 such that te � y � se 2 int.D/ � D. We deduce
�e;D. y/ � t � s < t, and thus

te � int.D/ � fy 2 R
` W �e;D. y/ < tg: (4.21)

Furthermore, for y1 2 y2 � int.R`C/, it holds

y1 2 y2 � int.R`C/��e;D. y2/e � D � int.R`C/

� �e;D. y2/e � int.D/

�fy 2 R
` W �e;D. y/ < �e;D. y2/g because of (4.21):

We conclude that �e;D. y1/ < �e;D. y2/ and thus �e;D is strictly monotone with respect
to R`C. Then Theorem 4.11 gives the second assertion. ut

The following results provide the relationship between the weighted sum method
and the "-constraint method.
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Theorem 4.19 Let Nx 2 K be an optimal solution of WOP and W D
.W1;W2; : : : ;W`/ 2 R`C be the corresponding weight vector.

(a) If Wk > 0, then Nx is a solution of "-COP for fk as the objective function and
"j D fj.Nx/ for j D 1; 2; : : : ; `, j ¤ k.

(b) If Nx is a unique solution of WOP, then Nx is a solution of "-COP when "j D fj.Nx/
for j D 1; 2; : : : ; `, j ¤ k and for every fk, k D 1; 2; : : : ; `, as the objective
function.

Proof Let Nx 2 K be a solution of WOP for some weight vector W D
.W1;W2; : : : ;W`/ 2 R

`C.

(a) LetWk > 0. Since Nx is an optimal solution of WOP, we have

X̀

iD1
Wi fi. y/ �

X̀

iD1
Wi fi.Nx/; for all y 2 K: (4.22)

Assume that Nx 2 K is not a solution of "-COP. Then there exists a point Oy 2 K
such that fk. Oy/ < fk.Nx/ and fj. Oy/ � fj.Nx/ when j D 1; 2; : : : ; `, j ¤ k. Since
Wk > 0 andWj � 0 when k ¤ j, we have

0 > Wk . fk. Oy/ � fk.Nx//C
X̀

jD1; j¤k

Wj
�
fj. Oy/� fj.Nx/

�
;

equivalently,

0 >
X̀

jD1
Wj
�
fj. Oy/� fj.Nx/

�
;

a contradiction of inequality (4.22). Thus, Nx is an optimal solution of "-COP.
(b) If Nx 2 K is a unique solution of WOP, then

X̀

iD1
Wi fi.Nx/ <

X̀

iD1
Wi fi. y/; for all y 2 K: (4.23)

If there is some objective function fk such that Nx does not solve "-COP when
fk is to be minimized, then we can find a Oy 2 K such that fk. Oy/ < fk.Nx/ and
fj. Oy/ � fj.Nx/ when j ¤ k. Therefore, for anyW 2 R`C, we obtain

X̀

iD1
Wi fi. Oy/ �

X̀

iD1
Wi fi.Nx/;

a contradiction to inequality (4.23). Thus, Nx is a solution of "-COP for all fk to
be minimized. ut
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Theorem 4.20 Let K � Rn be a nonempty convex set and for each i 2 I , let
fi W K ! R be convex. If Nx 2 K is a solution of "-COP for some k, then there exists
W 2 R`C n f0g such that Nx 2 K is a solution of WOP.

Proof Suppose that Nx is a solution of "-COP for some k. Then there is no Oy 2 K
satisfying fk. Oy/ < fk.Nx/ and fj. Oy/ � fj.Nx/ � "j for j ¤ k. Using the convexity of fi
and Theorem 4.9, we conclude that there is a W 2 R

`C n f0g such that

X̀

iD1
Wi . fi. Oy/� fi.Nx// � 0; for all y 2 K:

SinceW 2 R`C n f0g, we have

X̀

iD1
Wi fi. Oy/ �

X̀

iD1
Wi fi.Nx/; for all y 2 K

andW is the desired weight vector. ut
The following corollary relates efficient solutions of VOP to solutions of WOP

by means of the "-constraint scalarization (see Corollary 4.4).

Corollary 4.9 Let K � Rn be a nonempty convex set and for each i 2 I , let
fi W K ! R be convex. If Nx 2 K is an efficient solution of VOP, then there exists a
weight vector W 2 T`C n f0g such that Nx is a solution of WOP.

Proof Since Nx is an efficient solution of VOP, by Theorem 4.16, it is an optimal
solution of "-COP for every objective function fk to be minimized. Since each fi is
convex, by Theorem 4.20 we obtain the desired result. ut

4.2.2 Hybrid Method

By combining the weighted sum method and the "-constraint method, Corley
[11] and Wendell and Lee [53] described another scalarization method which
characterizes the optimal solutions of VOP. It is called hybrid method by Chankong
and Haimes [10]. We describe the hybrid method as to solve the following problem:

minimize
X̀

iD1
Wi fi.x/;

subject to fj.x/ � "j; for all j D 1; 2; : : : ; `;

x 2 K;

(4.24)
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where Wi > 0 for all i D 1; 2; : : : ; ` and " D ."1; "2; : : : ; "`/ 2 R`. The
problem (4.24) is called hybrid problem.

The following theorem shows that all efficient solutions of VOP can be found by
means of the hybrid problem.

Theorem 4.21 If Nx 2 K is a solution of the hybrid problem for any upper bound
vector " 2 R

`, then it is an efficient solution of VOP. Conversely, if Nx 2 K is an
efficient solution of VOP, then it is a solution of the hybrid problem for " D f .Nx/.
Proof Let Nx 2 K be an optimal solution of the hybrid problem for any upper bound
vector " 2 R` and for some Wi > 0, i D 1; 2; : : : ; `. Then fj.Nx/ � "j for all
j D 1; 2; : : : ; `. Suppose that Nx is not an efficient solution of VOP. Then there exists
some y 2 K such that fi. y/ � fi.Nx/ for all i D 1; 2; : : : ; ` and fj. y/ < fj.Nx/ for at
least one j. SinceWi > 0 for all i D 1; 2; : : : ; `, we have

X̀

iD1
Wi fi. y/ <

X̀

iD1
Wi fi.Nx/

and

fi. y/ � fi.Nx/ � "i; for all i D 1; 2; : : : ; `:

The last inequality shows that y is a feasible point for the hybrid problem. Then Nx
is not an optimal solution of the hybrid problem, a contradiction to our assumption.
Hence, Nx is an efficient solution of VOP.

We prove the converse part by showing that if Nx is not an optimal solution of
the hybrid problem, then it is not an efficient solution of VOP. Assume that Nx 2 K
is not an optimal solution of the hybrid problem, where " D f .Nx/. Let Ox, Ox ¤ Nx,
be an optimal solution of the hybrid problem. Then Ox 2 K and fj.Ox/ � "j for all
j D 1; 2; : : : ; `. Since " D f .Nx/, we have fj.Ox/ � "j D fj.Nx/ for all j D 1; 2; : : : ; `.
Also,

X̀

iD1
Wi fi.Ox/ <

X̀

iD1
Wi fi.Nx/ (4.25)

and becauseWi > 0 for all i D 1; 2; : : : `,

fj.Ox/ < fj.Nx/; for some j D 1; 2; : : : ; `: (4.26)

The inequalities (4.25) and (4.26) imply that fi.Ox/ � fi.Nx/ for all i D 1; 2; : : : ; ` and
fj.Ox/ < fj.Nx/ for at least one j. Thus, Nx is a not an efficient solution of VOP. ut
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Fig. 4.5 The set of feasible
elements in Example 4.3

Example 4.3 Consider the following VOP:

minimize f .x/ D .x21 � .1 � x2/
2; x2/;

subject to x 2 K;

where K WD f.x1; x2/ 2 R2 W 1 � x1 � 2; 1 � x2 � 2g. The set of feasible elements
is illustrated in Fig. 4.5. As can be seen, the problem is nonconvex, and therefore, the
weighted-summethod would not be able to yield all efficient solutions of VOP. Only
the solutions .x1; x2/ D .

p
2; 0/ and .x1; x2/ D .1; 2/ are found by the weighted sum

method. The hybrid method, however, is able to find all efficient solutions of VOP.
The set of efficient solutions is f.x1; x2/ 2 K W 1 � x1 � 2; x2 D 1g.

We present the procedure to obtain all optimal solutions of VOP which is based
on Theorem 4.21. First one has to solve the hybrid problem for the parametric
solution x0."/. Then equate

. f1.x0."//; f2.x0."//; : : : ; f`.x0."/// D ": (4.27)

For any solution " of (4.27), x0 is a minimal point by the first part of Theorem 4.21.
The second part guarantees that all minimal points can be achieved in this way. The
hybrid problem can be solved by using any appropriate method.

If the hybrid problem is slightly modified, it can be expressed via the nonlinear
scalarizing functional �e;D. To this end, we introduce the following problem.

minimize
X̀

iD1
Wi fi.x/;

subject to fj.x/ � "j; for all j 2 P;

x 2 K;

(4.28)

where Wi > 0 for all i D 1; 2; : : : ; `, " D ."1; "2; : : : ; "`/ 2 R` and P ¨
f1; 2; : : : ; `; g. Then we have the following theorem.
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Theorem 4.22 ([52]) Let Y D R`, X D Rn. For the choice e WD .e1; e2; : : : ; e`/
with

ei WD
�
0; for all i 2 P;
1; if i … P;

N" WD .N"1; N"2; : : : ; N"`/ with

N"i WD
�
"i; for all i 2 P;
0; if i … P;

and D WD
n
y 2 R

` W yi � 0 8i 2 P;
P`

iD1Wiyi � 0
o

� N", problem (4.28) and

problem (4.16) have the same optimal solutions.

Remark 4.3 It is clear that the hybrid problem (4.24) cannot be characterized by
means of the functional �e;D, because e would need to be the zero vector. But then
the functional �e;D would not be defined. This issue is resolved in problem (4.28) by
the particular choice of the set P.

4.2.3 Application: A Unified Approach to Uncertain
Optimization

In this section, we show that the nonlinear scalarizing functional �D;e is a useful
tool to represent a wide range of uncertain optimization problems. Specifically, we
show that many different concepts of robustness and of stochastic programming
can be described as special cases of the general nonlinear scalarization method
described in Sect. 4.2 (see also Sect. 2.6) by choosing the involved parameters and
sets appropriately. This leads to a unifying concept which can be used to handle
robust and stochastic optimization problems as well as to derive new concepts
of robustness. We introduce multiple objective (deterministic) counterparts for
uncertain optimization problems and discuss their relations to well-known scalar
robust optimization problems by using the nonlinear scalarization concept. Finally,
we mention some relations between robustness and coherent risk measures. In this
section, we follow the explanations conducted in [33].

Since most real world optimization problems (OPs) are contaminated with
uncertain data, it is very important to include uncertainty into the optimization
model. One way of dealing with such optimization problems is described in the
concept of robustness: Instead of assuming that all data are known, one allows
different scenarios for the input parameters and looks for a solution that works well
in every uncertain scenario. Robust optimization is an active field of research, we
refer to Ben-Tal et al. [5] and Kouvelis and Yu [37] for an extensive collection of
results and applications for the most prominent concepts. Several other concepts
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of robustness were introduced more recently, e.g. the concept of light robustness
by Fischetti and Monaci [16] or the concept of recovery-robustness in Liebchen
et al. [38]. A scenario-based approach is suggested in Goerigk and Schöbel [23].
Moreover, there are many works devoted to uncertain discrete optimization. Various
applications of robust approaches to discrete uncertain optimization can be found,
for example, in [8, 26, 28].

In all these approaches, the uncertain optimization problem is replaced by a
deterministic version, called the robust counterpart of the uncertain problem.

Another prominent way of dealing with uncertain optimization is the field
of stochastic programming; for an introduction we refer to Birge and Louveaux
[7]. Different from robust optimization, stochastic programming assumes some
knowledge about the probability distribution of the uncertain data. The objective
usually is to find a feasible solution (or a solution that is feasible with a certain
probability) that optimizes the expected value of some objective or cost function.

In this section, we will link the different concepts of robustness and of stochastic
programming, that usually have been considered fundamentally different, in a very
general and unifying framework. Assuming that the set of scenarios is finite,
we will show that all of the considered uncertain optimization problems have
a (deterministic) counterpart in this framework. Our analysis is based on two
closely related concepts: First, we will use nonlinear scalarizing functionals to
describe the counterpart of uncertain optimization problems, and second, we will
relate the solutions of this functional (and likewise of the respective uncertain
optimization problems) to the efficient set of a multiple objective counterpart.
This will lay the ground for a thorough analysis of the interrelations and also
the differences between established concepts in robust optimization and stochastic
programming. By providing additional trade-off information between alternative
efficient solutions, the multiple objective counterpart can facilitate the decision
making process when deciding for a most preferred robust solution.

For specific robustness concepts, the connection between uncertain scalar opti-
mization problems and an associated (deterministic) multiple objective counterpart
were observed by several authors. Kouvelis and Sayin [36, 45] use this relation to
develop efficient solution methods for bi- and multiple objective discrete optimiza-
tion problems based on algorithms that were originally developed to solve uncertain
scalar optimization problems. They focus on two classical robustness concepts that
will be referred to as strict robustness and deviation robustness in below, see also
[35]. Perny et al. [42] use a multiple objective counterpart to introduce a robustness
measure based on the Lorenz dominance rule in the context of minimum spanning
tree and shortest path problems. From the stochastic programming perspective, a
multiple objective counterpart for a two-stage stochastic programming problem was
introduced in Gast [19] and used to interrelate stochastic programming models
with the concept of recoverable robustness, see Stiller [49]. A critical analysis
is given in Hites et al. [30] who give a qualitative description of the similarities
and differences between the two modeling paradigms. They conclude that from
a modeling perspective, a multiple objective counterpart can in general not be
used to represent an uncertain scalar optimization problem. However, as will
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be seen below, there certainly is a strong relation from a theoretical point of
view. This reveals interesting properties of alternative solutions of scalar uncertain
optimization problems.

In a first step, we will treat uncertain scalar optimization problems as special
cases of a nonlinear scalarizing functional. Many methods for scalarization were
suggested in the literature that are special cases of a nonlinear scalarization
concept introduced by Gerstewitz (Tammer) [21], see also Gerth and Weidner
[22], Pascoletti and Serafini [41], Göpfert et al. [24, 25]. This scalarization method
includes, for instance, weighted-sums, Chebyshev- and "-constraint-scalarization
(see Sect. 4.2).We show that this scalarization method includes a variety of different
models from robust optimization and stochastic programming as specifications. So
it is possible to get a unified approach for different types of optimization models
including uncertainties. Moreover, the well-studied properties of this scalarization
method allow the establishment of relations to multiple objective optimization
problems (MOPs).

Let Y be a topological vector space, e 2 Y n f0g and let F ;D be proper subsets
of Y. We assume that D is closed and

D C Œ0;C1 Œ�e � D: (4.29)

Now we formulate the problem

minimize �e;D. y/;

subject to y 2 F ;
(Pe;D;F )

where �e;D is defined by (4.15).
Based on the interpretation of uncertain scalar optimization problems by means

of the nonlinear scalarizing functional �e;D, we will in a second step formulate
multiple objective counterparts, whose efficient set comprises optimal solutions of
the considered uncertain scalar optimization problems.

We now formulate an optimization problem with uncertainties.
Throughout this section, let U WD f�1; �2; : : : ; �qg be a finite uncertainty set, i.e.,

� 2 U can take on q different values. One could think of � being real numbers or real
vectors. Furthermore, let f W Rn	U ! R, Fi W Rn	U ! R, i D 1; 2; : : : ;m. Then an
uncertain scalar optimization problem (uncertain OP) is defined as a parametrized
optimization problem

Q.�/; � 2 U ; (4.30)

where for a given � 2 U the optimization problem (Q.�/) is given by

minimize f .x; �/;

subject to Fi.x; �/ � 0; i D 1; 2; : : : ;m;

x 2 R
n:

(Q.�/)
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When the uncertain OP (4.30) has to be solved, it is not known which value � 2 U
is going to be realized. We call O� 2 U the nominal value, i.e., the value of � that we
believe is true today. .Q. O�// is called the nominal problem. Throughout this section,
we assume that the minima of the problems to be proposed in the following sections
exist. The results in this section are based on Klamroth et al. [33].

4.2.3.1 Strict Robustness

Our first approach to uncertain optimization is a concept called strict robustness,
which has been first mentioned by Soyster [48] and then formalized and extensively
analyzed by Ben-Tal et al. [5] in numerous publications, see e.g. [3, 15] for early
contributions and [5] for a detailed collection of results. The idea of this concept is
twofold: On the one hand, the worst possible objective function value is minimized
in order to get a solution that is “good enough” even in the worst case scenario. On
the other hand, all constraints have to be satisfied for every scenario � 2 U . Thus,
this concept is extremely convertive and would suit a risk-averse decision maker.
The strictly robust counterpart of the uncertain optimization problem .Q.�/; � 2 U/
is defined by

minimize �RC.x/ D max
�2U

f .x; �/;

subject to 8� 2 U W Fi.x; �/ � 0; i D 1; 2; : : : ;m;

x 2 R
n:

(RC)

A feasible solution of the problem (RC) is called strictly robust. The set of strictly
robust solutions is denoted as

A WD fx 2 R
n W 8� 2 U such that Fi.x; �/ � 0; i D 1; 2; : : : ;mg: (4.31)

In the following theorem, we present how (RC) can be expressed using the
nonlinear scalarizing functional �e;D (cf. [33, 34]).

Theorem 4.23 Consider

A1 WD A; (4.32)

D1 WD R
q
C; (4.33)

e1 D 1q WD .1; 1; : : : ; 1/; (4.34)

F1 D ˚
. f .x; �1/; . f .x; �2/; : : : ; f .x; �q// W x 2 A1

�
: (4.35)
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For e D e1, D D D1, condition (4.29) is satisfied and with F D F1,
problem (Pe;D;F ) is equivalent to problem (RC) in the following sense:

minf�e1;D1 . y/ W y 2 F1g D �e1;D1 . y
�/

D minf�RC.x/ W x 2 A1g
D �RC.x

�/;

where y� D . f .x�; �1/; f .x�; �2/; : : : ; f .x�; �q//.

Proof Since D1 C Œ0;1/ � e1 D R
q
C C Œ0;1/ � 1q � R

q
C D D1, condition (4.29) is

satisfied. Since e1 2 int.Rq
C/ and D1 D R

q
C is closed, the infimum in the definition

of �e;D is finite and attained such that we can replace the infimum by a minimum,
and we have for C D R

q
C:

min
y2F1

�e1;D1 . y/ D min
y2F1

min ft 2 R W y 2 te1 � D1g

D min
y2F1

min ft 2 R W y � te1 2 �D1g

D min
x2A1

min
˚
t 2 R W . f .x; �1/; f .x; �2/; : : : ; f .x; �q//� t � .1; 1; : : : ; 1/ �C 0q

�

D min
x2A1

min
˚
t 2 R W . f .x; �1/; f .x; �2/; : : : ; f .x; �q// �C t � .1; 1; : : : ; 1/�

D min

�

max
�2U f .x; �/ W x 2 A1

�

D min f�RC.x/ W x 2 A1g : ut

Note that the selection of e1 D 1q means that every objective function f .x; �/; � 2
U , is treated in the same way, i.e., no objective function is preferred to another one.

Remark 4.4 Since D1 is a proper closed convex cone and e1 2 int.D1/, the
functional �e1;D1 is continuous, finite-valued, monotone with respect to R

q
C, strictly

monotone with respect to Rq
C and sublinear, taking into account Corollary 2.1.

Remark 4.5 The concept of strict robustness is described by the Chebyshev scalar-
ization with the origin as reference point as a special case of functional �e;D.
Theorem 4.23 shows that �e;D can be interpreted as a max-ordering problem as
defined in multiple objective optimization, see [13]. This relationship was also
observed by Kouvelis and Sayin [36, 45] where it was used to determine the
nondominated set of discrete bicriteria optimization problems.
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4.2.3.2 Deviation Robustness

We now introduce another prominent robustness concept, called deviation-
robustness or min max regret robustness. In contrast to the concept of strict
robustness, the function to be minimized is max�2U . f .x; �/ � f �.�//, where
f �.�/ 2 R is the optimal value of problem (Q.�/) for the parameter � 2 U . This
robustness concept has a long tradition in many applications such as scheduling or
location theory, mostly if no uncertainty in the constraints is present. We refer to
[35] for numerous applications of this approach. We formulate the deviation-robust
counterpart of (4.30) as

minimize �dRC.x/ D max
�2U . f .x; �/� f �.�//

subject to 8� 2 U W Fi.x; �/ � 0; i D 1; 2; : : : ;m;

x 2 R
n:

(dRC)

Now let

f � WD . f �.�1/; f �.�2/; : : : ; f �.�q// (4.36)

be the vector consisting of the individual minimizers for the respective scenarios
which can be interpreted as an ideal solution vector. The relation to the ideal point
of the multiple objective counterpart of problem (4.30) will be discussed later but
can already be noted here. Then we have the following theorem:

Theorem 4.24 Consider

A2 WD A; (4.37)

D2 WD R
q
C � f �; (4.38)

e2 WD 1q; (4.39)

F2 D f. f .x; �1/; f .x; �2/; : : : ; f .x; �q// W x 2 A2g: (4.40)

For e D e2; D D D2, condition (4.29) is satisfied and with F D F2,
problem (Pe;D;F ) is equivalent to problem (dRC) in the following sense:

minf�e2;D2 . y/ W y 2 F2g D �e2;D2 . y
�/

D minf�dRC.x/ W x 2 A2g
D �dRC.x

�/;

where y� D . f .x�; �1/; f .x�; �2/; : : : ; f .x�; �q//.
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Proof Since D2 C Œ0;1/ � e2 D .R
q
C � f �/ C Œ0;1/ � 1q � R

q
C � f � D D2,

condition (4.29) is satisfied. Moreover, for C D R
q
C,

min
y2F2

�e2;D2 . y/ D min
y2F2

minft 2 R W y 2 te2 � D2g

D min
x2A2

minft 2 R W . f .x; �1/; f .x; �2/; : : : ; f .x; �q//

� . f �.�1/; f �.�2/; : : : ; f �.�q// �C t � 1qg
D minfmax

�2U . f .x; �/� f �.�// W x 2 A2g

D minf�dRC.x/ W x 2 A2g: ut

Alternatively, we could have taken fD2 WD D1 D R
q
C and we could have

minimized �e1;D1 over the setfF2 WD f. f .x; �1/; : : : ; f .x; �q//�. f �.�1/; : : : ; f �.�q// W
x 2 A2g. Therefore, one can observe that (dRC) is a shifted version of (RC). This
means, whenever we have a finite uncertainty set and f � is known beforehand, the
concepts of strict robustness and of deviation robustness can be solved within the
same complexity. However, for general uncertainty sets, (dRC) is usually harder to
solve than (RC).

Remark 4.6 Using Theorem 2.7 and the fact that D2 C .0;C1/ � e2 � int.D2/,
we can conclude that the functional �e2;D2 is continuous, finite-valued, convex,
monotone with respect to R

q
C, and strictly monotone with respect to R

q
C. Note that

since D2 is not a cone, Corollary 2.1 cannot be applied.

Remark 4.7 Similar to the case of strict robustness, the concept of deviation
robustness can be described by the Chebyshev scalarization, however, not with the
origin as reference point but with the ideal point f � defined in (4.36) as reference
point. This shows once again the close relationship between these two robustness
concepts, see also Kouvelis and Sayin [36, 45].

4.2.3.3 Reliable Robustness

Sometimes it is difficult to find a point x that satisfies all constraints Fi.x; �/ � 0

for all � 2 U , or it is simply not useful for x to satisfy the constraints at the cost
of minimality of f . We therefore introduce the concept of reliable robustness, where
the constraints are allowed to differ from the original problem. Instead of having
hard constraints Fi.x; �/ � 0 for all � 2 U , we now allow the constraints to satisfy
an infeasibility tolerance ıi 2 RC in order to achieve soft constraints Fi.x; �/ � ıi.
Nevertheless, the original constraints for the nominal value O� should be fulfilled,
i.e., Fi.x; O�/ � 0; i D 1; 2; : : : ;m. Then the reliably robust counterpart of (4.30)
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proposed by Ben-Tal and Nemirovski [4], is defined by

minimize �rRC.x/ D max
�2U f .x; �/;

subject to Fi.x; O�/ � 0; i D 1; 2; : : : ;m;

8� 2 U W Fi.x; �/ � ıi; i D 1; 2; : : : ;m;

x 2 R
n:

(rRC)

A feasible solution of (rRC) is called reliably robust. If ıi D 0 for all i D
1; 2; : : : ;m, the reliably robust OP (rRC) is equivalent to the strictly robust OP (RC).
Strict robustness is therefore a special case of reliable robustness.

Theorem 4.25 Consider

A3 WD fx 2 R
n W Fi.x; O�/ � 0;

8� 2 U W Fi.x; �/ � ıi; i D 1; 2; : : : ;mg;
(4.41)

D3 WD R
q
C; (4.42)

e3 WD 1q; (4.43)

F3 D f. f .x; �1/; f .x; �2/; : : : ; f .x; �q// W x 2 A3g: (4.44)

For e D e3, D D D3, condition (4.29) is satisfied and with F D F3,
problem (Pe;D;F ) is equivalent to problem (rRC) in the following sense:

minf�e3;D3 . y/ W y 2 F3g D �e3;D3 . y
�/

D minf�rRC.x/ W x 2 A3g
D �rRC.x

�/;

where y� D . f .x�; �1/; f .x�; �2/; : : : ; f .x�; �q//.
Because �rRC D �RC and only the set F3 of feasible points differs from the

concept of strict robustness, the proof is left out.

Remark 4.8 Since �e3;D3 D �e1;D1 , the functional �e3;D3 is again continuous, finite-
valued, monotone with respect to R

q
C, strictly monotone with respect to R

q
C and

sublinear, taking into account Corollary 2.1.

Remark 4.9 The concept of reliable robustness is - similar to strict robustness -
described by the Chebyshev scalarization with the origin as reference point and on
the basis of a relaxed feasible set, as a special case of functional �e;D.
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4.2.3.4 Light Robustness

When we examine a variation of the constraints Fi.x; �/ � ıi, where Fi; ıi; i D
1; 2; : : : ;m, are defined as in the concept of reliable robustness, it could be useful to
minimize these tolerances, which the concept of light robustness describes. It was
introduced in 2008 by Fischetti and Monaci in [16] for linear programs with the
� -uncertainty set introduced by Bertsimas and Sim [6] and generalized to general
uncertain robust optimization problems by Schöbel [46]. Let z� be the optimal value
of the nominal problem .Q. O�//, which we assume to be positive, i.e., z� > 0. We
want the nominal value f .x; O�/ to be bounded by .1 C �/z�, where � � 0. Then a
solution of the lightly robust counterpart of (4.30)

minimize �lRC.ı; x/ D
mX

iD1
wiıi;

subject to Fi.x; O�/ � 0; i D 1; 2; : : : ;m;

f .x; O�/ � .1C �/z�;

8� 2 U W Fi.x; �/ � ıi; i D 1; 2; : : : ;m;

x 2 R
n;

ıi 2 RC; i D 1; 2; : : : ;m;

(lRC)

where wi � 0; i D 1; 2; : : : ;m;
Pm

iD1 wi D 1, is called lightly robust.

Theorem 4.26 Consider

D4 WD
(

.ı1; ı2; : : : ; ım/ W
mX

iD1
wiıi � 0; ıi 2 R; i D 1; 2; : : : ;m

)

; (4.45)

e4 WD 1m; (4.46)

F4 Df.ı1; ı2; : : : ; ım/ W 9x 2 R
n W Fi.x; O�/ � 0; f .x; O�/ � .1C �/z�;

8� 2 U W Fi.x; �/ � ıi; ıi 2 RC; i D 1; 2; : : : ;mg:
(4.47)

For e D e4, D D D4, condition (4.29) is satisfied and with F D F4,
problem (Pe;D;F ) is equivalent to problem (lRC) in the following sense:

minf�e4;D4 . y/ W y 2 F4g D �e4;D4 . y
�/

D minf�lRC.ı/ W ı 2 F4g
D �lRC.ı

�/;

where y� D ı� D .ı�
1 ; ı

�
2 ; : : : ; ı

�
m/.
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Proof In this case, D4 C Œ0;C1/ � e4 D ˚
.ı1; ı2; : : : ; ım/ 2 R

m W Pm
iD1 wiıi � 0

�C
Œ0;C1/ � 1m � D4, and (4.29) is satisfied in Rm. Moreover,

min
y2F4

�e4;D4 . y/ D min
y2F4

min ft 2 R W y 2 te4 � D4g

D min
y2F4

min ft 2 R W y � te4 2 �D4g

D min
ı2F4

min

(

t 2 R W
mX

iD1
wi.ıi � t/ � 0

)

D min
ı2F4

min

(

t 2 R W
mX

iD1
wiıi � t �

mX

iD1
wi

)

D min

(
mX

iD1
wiıi W ı 2 F4

)

D min f�lRC.ı/ W ı 2 F4g : ut

Remark 4.10 Note that D4 is a proper closed convex cone with e4 2 int.D4/
and Corollary 2.1 implies that the functional �e4;D4 is continuous, finite-valued,
monotone with respect to RmC, strictly monotone with respect to RmC and sublinear.

Remark 4.11 The concept of light robustness can be interpreted as a weighted sum
approach with upper bound constraints in the dimension defined by the number of
constraints of the uncertain OP, including the original constraints in the weighted
objective function.

4.2.3.5 Stochastic Programming

Stochastic programmingmodels are conceptually different from robust optimization
models in the sense that they take information on the probability distribution of
the uncertain data into account. For an introduction to stochastic programming
we refer to [7, 47]. We focus on two-stage stochastic programming models in the
following, see Beale [2], Dantzig [12] and Tintner [51] for early references. Two-
stage stochastic programming models allow for a later correction of a solution x
selected in stage 1 of the decision process by a recourse action uwhen the realization
of the random data is known. Note that since we assumed that the scenario set U is
finite, each scenario �k 2 U now has an associated probability pk � 0, k D 1; : : : ; q,Pk

qD1 pk D 1. In this situation, a two-stage stochastic counterpart can be formulated
as

minimize �SP.x/ D EŒQ.x; �/� D
qX

kD1
pkQ.x; �k/;

subject to x 2 X:

(4.48)
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Here, X denotes the feasible set of the first-stage problem which could, for example,
be defined based on the nominal scenario as X D fx 2 Rn W Fi.x; O�/ � 0; i D
1; : : : ;mg, or as the set of strictly robust solutions X D A, see (4.31). The objective
is to minimize the expectation of the overall cost Q.x; �/ that involves, for given
x 2 X and known � 2 U , an optimal recourse action u, i.e., an optimal solution of
the second-stage problem

minimize f .x; u; �/ D Q.x; �/;

subject to u 2 G.x; �/:
(4.49)

The second-stage objective function f .x; u; �/ and the feasible set G.x; �/ of the
second-stage problem are both parametrized with respect to the stage 1 solution
x 2 X and the scenario � 2 U .

In the light of the uncertain optimization problem (4.30), we can assume that the
objective function f in (4.30) depends both on the first-stage and the second-stage
variables, i.e., on the nominal cost and the cost of the recourse action. We hence
consider the following specification of problem (4.48):

minimize �SP.x; u/ D
qX

kD1
pk f .x; uk; �k/;

subject to 8�k 2 U W Fi.x; �k/ � ık.uk/ � 0; i D 1; 2; : : : ;m;

x 2 R
n;

uk 2 G.x; �k/; k D 1; 2; : : : ; q;

(SP)

with compensations ık W RNn ! R that depend on the second-stage decisions uk 2
RNn, k D 1; : : : ; q.

Remark 4.12 If we set G.x; �/ D ; in the two-stage stochastic programming
formulation (SP), we obtain a static model as a special case in which the second-
stage variables u 2 RNnq can be omitted. Since this model plays a special role in the
comparison of the different robustness and stochastic programming concepts below,
we include it here for the sake of completeness. The static stochastic programming
problem is defined by:

minimize �sSP.x/ D
qX

kD1
pk f .x; �k/;

subject to 8�k 2 U W Fi.x; �k/ � 0; i D 1; 2; : : : ;m;

x 2 R
n:

(sSP)
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Theorem 4.27 Let

A5 WDf.x; u/ WD .x; u1; : : : ; uq/ 2 R
n�Nnq W 8�k 2 U W

Fi.x; �k/� ık.uk/ � 0; i D 1; 2; : : : ;mg;
(4.50)

D5 WD f. y1; : : : ; yq/ W
qX

kD1
pkyk � 0; yk 2 R; k D 1; 2; : : : ; qg; (4.51)

e5 WD 1q; (4.52)

F5 Df. f .x; u1; �1/; . f .x; u2; �2/; : : : ; f .x; uq; �q// W .x; u/ 2 A5g: (4.53)

For e D e5, D D D5, condition (4.29) is satisfied and with F D F5,
problem (Pe;D;F ) is equivalent to problem (SP) in the following sense:

minf�e5;D5 . y/ W y 2 F5g D �e5;D5 . y
�/

D minf�SP.x; u/ W .x; u/ 2 A5g
D �SP.x

�; u�/;

where y� D . f .x�; u�
1 ; �1/; f .x

�; u�
2 ; �2/; : : : ; f .x

�; u�
q ; �q//.

Proof We have D5 C Œ0;C1/ � e5 D ˚
. y1; : : : ; yq/ 2 Rq W Pq

kD1 pkyk � 0
� C

Œ0;C1/ � 1m � D5, thus (4.29) is satisfied. Moreover,

min
y2F5

�e5;D5 . y/ D min
y2F5

min ft 2 R W y 2 te5 � D5g

D min
y2F5

min ft 2 R W y � te5 2 �D5g

D min
y2F5

min

(

t 2 R W
qX

kD1
pk.yk � t/ � 0

)

D min
y2F5

min

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

t 2 R W
qX

kD1
pkyk � t �

qX

kD1
pk

„ƒ‚…
D1

9
>>>>=

>>>>;

D min

(
qX

kD1
pkyk W y 2 F5

)

D min f�SP.x; u/ W .x; u/ 2 A5g : ut
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Remark 4.13 D5 is a proper closed convex cone with e5 2 int.D5/ and Corollary 2.1
implies that the functional �e5;D5 is continuous, finite-valued, monotone with respect
to Rq

C, strictly monotone with respect to Rq
C and sublinear.

Remark 4.14 Similar to the case of light robustness, the above formulated two-stage
stochastic programming problem can be interpreted as a weighted sums approach,
however, in this case with a relaxed feasible set. This relation was also observed by
Gast [19] in the multiple objective context. Note that in the special case of the static
model (sSP), the feasible set is in fact identical to the set of strictly robust solutions
A (and not relaxed), see (4.31).

4.2.3.6 Properties of the Nonlinear Functional for the Description
of Robustness and Stochastic Programming

The properties of the nonlinear scalarizing functional �e;D that were used for the
description of the respective robust and stochastic programming counterparts are
summarized in the following corollary (see Theorem 2.7 and Corollary 2.1).

Corollary 4.10 The following properties hold for i D 1; 2; 3; 5 (i D 1: strict
robustness, i D 2: deviation robustness, i D 3: reliable robustness, i D 5:
stochastic programming): The corresponding functional �ei;Di is continuous, finite-
valued, convex, monotone with respect to R

q
C and strictly monotone with respect to

R
q
C, and the following properties hold:

8y 2 Fi; 8r 2 R W �ei;Di. y/ � r , y 2 rei � Di; (P1)

8y 2 Fi; 8r 2 R W �ei;Di. y C rei/ D �ei;Di. y/C r: (P2)

8y 2 Fi; 8r 2 R W �ei;Di. y/ D r , y 2 rei � @Di; (P3)

8y 2 Fi; 8r 2 R W �ei;Di . y/ < r , y 2 rei � int.Di/: (P4)

For i D 1; 3; 5, zBi;ki is even sublinear. For i D 4 (light robustness), the
properties (P1)–(P4) are fulfilled, and �e4;D4 is continuous, sublinear and finite-
valued. Additionally, �ei;Di is monotone with respect to R

mC and strictly monotone
with respect to RmC.

4.2.3.7 New Concepts for Robustness

As we have shown in Sect. 4.2, the functional �e;D contains many scalarizations
of VOP as special cases which are well known in the literature (see [50]), for
instance the weighted Chebyshev scalarization or weighted sum scalarization, see
[52] for details. These scalarizations can be regarded in the context of robustness.
Specifically, one can develop new concepts for robustness that fit the specific
needs of a decision-maker. In order to illustrate this point we exemplary use the
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well-known "-constraint scalarization method (see [13, 14, 27]). This scalarization
leads to the "-constraint method in multiple objective optimization. In the following
we analyze which type of robust counterpart is defined by this scalarization.

Note that a similar analysis can be done for every variation of the parameters D,
e and for every feasible set F in (Pe;D;F ), i.e., many other possibilities for defining
a robust counterpart of an uncertain OP may be derived.

Let us first define the "-constraint scalarization. To this end, let some k 2
f1; 2; : : : ; qg and some real values "l 2 R, l D 1; 2; : : : ; q; l 6D k be given. Then
the "-constraint scalarization is given by

e6 D .e16; e
2
6; : : : ; e

q
6/ where e

j
6 D

�
1; for j D k;
0; for j ¤ k;

(4.54)

D6 WD R
q
C � Nb; with Nb D .Nb1; Nb2; : : : ; Nbq/; Nbj D

�
0; for j D k;
"j; for j ¤ k;

(4.55)

F6 D ˚
. f .x; �1/; f .x; �2/; : : : ; f .x; �q// W x 2 A

�
: (4.56)

Then the following reformulation holds.

Theorem 4.28 Let " WD ."1; "2; : : : ; "q/ 2 Rq and k 2 f1; 2; : : : ; qg. Then for
e D e6, D D D6, (4.29) holds and with F D F6, problem (Pe;D;F ) is equivalent to

minimize �"RC.x/ D f .x; �k/;

subject to 8� 2 U W Fi.x; �/ � 0; i D 1; 2; : : : ;m;

x 2 R
n;

f .x; �j/ � "j; j 2 f1; 2; : : : ; qg; j ¤ k:

("RC)

Theorem 4.28 shows that the nonlinear scalarizing functional zB;k can be formu-
lated as ("RC). Let us call ("RC) the "-constraint robust counterpart of (4.30). We
now discuss its meaning for robust optimization. Contrary to the other robustness
concepts, the parameter k6 symbolizes that only a single objective function is
minimized. This means, the decision maker picks one particular objective function
that is to be minimized subject to the constraints that were also used in strict
and deviation-robustness. Additionally, the former objective functions f .x; �j/, j 2
f1; 2; : : : ; qg, j ¤ k, are moved to the constraints. This concept makes sense if
a solution is required with a given nominal quality for every scenario �j; j D
1; 2; : : : ; q; j 6D k while finding the best possible for the remaining scenarios k.
Applying this concept, one question immediately arises: How can a decision-maker
be sure how to pick the upper bounds "j for these constraints? If the bounds "j
are chosen too small, the set of feasible solutions of ("RC) may be empty, or the
objective function value of f .x; �k/ may decrease in an undesired manner. On the
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other hand, if the bounds "j are chosen too large, the quality for the other scenarios
decreases.

Note that we could have included the constraint f .x; �j/ � "j, j 2 f1; 2; : : : ; qg,
j ¤ k in the set of feasible points fF6, and we would have obtained fF6 D
f. f .x; �1/; f .x; �2/; : : : ; f .x; �q// W x 2 Rn W f .x; �j/ � "j; j 2 f1; 2; : : : ; qg; j ¤
k; 8� 2 U W Fi.x; �/ � 0; i D 1; 2; : : : ;mg. Then we could have used fD6 D R

q
C

instead ofD6, but the set of feasible pointsfF6 would have been smaller and possibly
harder to deal with.

Corollary 4.11 The functional �e6;D6 is lower semi-continuous, convex, proper,
monotone with respect to R

q
C and strictly monotone with respect to R

q
C, and the

properties (P1) and (P2) from Corollary 4.10 hold for i D 6.

4.2.3.8 Multiple Objective Counterpart Problems and Relations to Scalar
Robust Optimization and Stochastic Programming

In this section we propose a new concept, namely to replace an uncertain (scalar)
OP .Q.�/; � 2 U/, as introduced in (4.30), by its (deterministic) multiple objective
counterpart. The idea is that every scenario �l 2 U ; l D 1; 2; : : : ; q yields its own
objective function hl.x/ WD f .x; �l/, the only exception being the case of light
robustness where the roles of objective and constraints are reversed. Following the
example of the different robustness concepts discussed above, the multiple objective
counterparts formulated below can be distinguished with respect to the solution set
A, i.e., the way in which the (uncertain) constraints are handled. To simplify the
following analysis, in the case of stochastic programming we focus on the static
model (sSP).

Let h W R ! Rq be defined by

h.x/ WD �
h1.x/; h2.x/; : : : ; hq.x/

� D �
f .x; �1/; f .x; �2/; : : : ; f .x; �q/

�
: (4.57)

Recall from (4.31) that

A1 D A2 D A5 D A D fx 2 R
n W 8� 2 U W Fi.x; �/ � 0; i D 1; 2; : : : ;mg:

Then the multiple objective strictly robust counterpart to .Q.�/; � 2 U/ is defined
by

minimize h.x/;

subject to x 2 A1;
(RC

0

)

where (weakly) efficient elements are defined by means of the natural ordering cone
in Rq and hŒA1� D F1 (see (4.35)).
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Similarly, recall from (4.41) that

A3 WD fx 2 R
n W Fi.x; O�/ � 0; 8� 2 U W Fi.x; �/ � ıi; i D 1; 2; : : : ;mg:

We propose the multiple objective reliably robust counterpart to .Q.�/; � 2 U/ as

minimize h.x/;

subject to x 2 A3;
(rRC

0

)

and (weakly) efficient elements are defined again by means of the natural ordering
cone in Rq. We have hŒA3� D F3 (see formula (4.44)).

Now let us introduce a multiple objective counterpart that corresponds to the
lightly robust counterpart (lRC). Let F4 be defined by (4.47), i.e.,

F4 Df.ı1; ı2; : : : ; ım/ W 9x 2 R
n W Fi.x; O�/ � 0; f .x; O�/ � .1C �/z�;

8� 2 U W Fi.x; �/ � ıi; ıi 2 R; i D 1; 2; : : : ;mg:

We propose the multiple objective lightly robust counterpart to .Q.�/; � 2 U/ by

minimize ı;

subject to ı 2 F4:
(lRC

0

)

Here, (weakly) efficient elements are defined by means of the natural ordering cone
in Rm.

Using Theorem 4.11 together with Corollaries 4.10 and 4.11, we can conclude
that problem .Pei;Di;Fi/, i D 1; 2; 5; 6 (.Pe3;D3;F3 /; .Pe4;D4;F4 /, respectively) is a
scalarization of the multiple objective counterpart (RC

0

) ((rRC
0

), (lRC
0

), respec-
tively), and the following corollary holds due to the monotonicity properties of �ei;Di ,
i D 1; : : : ; 6.

Corollary 4.12 For i D 1; 2; 5; 6 (i D 1: strict robustness, i D 2: deviation
robustness, i D 5: static stochastic programming, i D 6: "-constraint robustness),
we have:

Œ8y 2 Fi n fy�g W �ei;Di . y
�/ < �ei;Di. y/� ) y� 2 E.hŒA1�;R

q
C/;

Œ8y 2 Fi W �ei;Di . y
�/ � �ei;Di. y/� ) y� 2 WE.hŒA1�;R

q
C/:

Concerning reliably robustness (i D 3), it holds

Œ8y 2 F3 n fy�g W �e3;D3 . y�/ < �e3;D3 . y/� ) y� 2 E.hŒA3�;R
q
C/;

Œ8y 2 F3 W �e3;D3 . y�/ � �e3;D3 . y/� ) y� 2 WE.hŒA3�;R
q
C/:
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For light robustness (i D 4), we conclude

Œ8y 2 F4 n fy�g W �e4;D4 . y�/ < �e4;D4 . y/� ) y� 2 E.F4;RmC/;

Œ8y 2 F4 W �e4;D4 . y�/ � �e4;D4 . y/� ) y� 2 WE.F4;RmC/:

Because problem .Pei;Di;Fi/; i D 1; 2; 5; 6, with the nonlinear scalarizing
objective functional �ei;Di is a scalarization of the multiple objective counter-
part (RC

0

) and .Pe1;D1;F1 / (.Pe2;D2;F2 /, .Pe5;D5;F5 /, .Pe6;D6;F6 /, respectively) is
equivalent to the optimization problem (RC) ((dRC), (sSP), ("RC), respectively),
we can conclude: If x� solves (RC) ((dRC), (sSP), ("RC), respectively), then
y� D . f .x�; �1/; f .x�; �2/; : : : ; f .x�; �q// is weakly efficient for (RC

0

). If x� is
the unique solution of problem (RC) ((dRC), (sSP), ("RC), respectively), then
y� D . f .x�; �1/; f .x�; �2/; : : : ; f .x�; �q// is efficient for (RC

0

).

Remark 4.15 The (weakly) efficient set of the multiple objective strictly robust
counterpart (RC

0

) thus comprises optimal solutions of the (scalar) strictly robust
counterpart (RC) (which are obtained by Chebyshev scalarization with the origin
as reference point), the deviation-robust counterpart (dRC) (Chebyshev scalariza-
tion with the ideal point as reference point), the static stochastic programming
equivalent (sSP) (weighted sums scalarization), and the "-constraint robust coun-
terpart ("RC) ("-constraint scalarization).

Analogously, similar results also hold for the other concepts of robustness:
.Pe3;D3;F3 / is equivalent to the reliably robust counterpart (rRC). Therefore, we
conclude: If x� solves (rRC), then y� D . f .x�; �1/; f .x�; �2/; : : : ; f .x�; �q// is
weakly efficient for (rRC

0

). If x� is the unique solution of problem (rRC), then
y� D . f .x�; �1/; f .x�; �2/; : : : ; f .x�; �q// is efficient for (rRC

0

). Concerning light
robustness, we can conclude: If ı� D .ı�

1 ; ı
�
2 ; : : : ; ı

�
m/ is a (unique) solution of

the lightly robust counterpart (lRC), then ı� is (efficient) weakly efficient for the
corresponding multiple objective counterpart (lRC

0

).

4.2.3.9 Application: Risk Measures and Robustness in Financial Theory

The functional �e;D is an important tool in the field of financial mathematics (see
Heyde [29]). As already mentioned before, it can be used as a coherent risk measure
of an investment. For a better understanding of the topic, we now introduce coherent
risk measures and their relation to robustness.

Let Y be a vector space of random variables, and let ˝ be a set of elementary
events (a set of all possible states of the future). Then a future payment of an
investment is a random variable y W ˝ ! R. Positive payments in the future are
wins, negative ones are losses. If no investment is being done, then y takes on
the value zero. In order to valuate such an investment, we need to valuate random
variables by comparing them. To do that, we introduce an ordering relation that is
induced by a set D � Y. Artzner et al. [1] axioms for a cone D � Y of random
variables that represent acceptable investments:
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(i) fy 2 Y W y.!/ � 0 .! 2 ˝/g � D, D \ fy 2 Y W y.!/ < 0 .! 2 ˝/g D ;,
(ii) D C D � D.

In financial terms, the cone property says that every nonnegative multiple of
an acceptable investment is again acceptable. Furthermore, axiom (i) means that
every investment with almost sure nonnegative results will be accepted and every
investment with almost sure negative results is not acceptable. The convexity
property in axiom (ii) means that merging two acceptable investments together
results again in an acceptable investment. However, in some applications the cone
property of D and axiom (ii) are not useful, especially, if the investor does not want
to lose more than a certain amount of money. In this case Föllmer and Schied [17]
replace the cone property and axiom (ii) by a convexity axiom.

Cones D � Y satisfying the axioms (i) and (ii) of acceptable investments can be
used in order to introduce a preference relation on Y. The decision maker prefers
y1 to y2 (changing from y2 to y1 is an acceptable risk) if and only if y1 � y2 is an
element of D, i.e.,

y1 �D y2 , y1 � y2 2 D:

The smallest cone D satisfying the axioms (i) and (ii) is D D fy 2 Y W
y.!/ � 0 .! 2 ˝/g. A decision maker using this particular cone D of acceptable
investments is risk-averse, i.e., he only accepts investments with nonnegative
payments.

The functional �e;D can be used to describe risks associated with investments.
Artzner et al. [1] introduced coherent risk measures, i.e., functionals � W Y ! R [
fC1g, where Y is the vector space of random variables, that satisfy the following
properties:

(a) �. y C tk/ D �. y/� t,
(b) �.0/ D 0 and �.�y/ D ��. y/ for all y 2 Y and � > 0,
(c) �. y1 C y2/ � �. y1/C �. y2/ for all y1; y2 2 Y,
(d) �. y1/ � �. y2/ if y1 � y2.

The following interpretation of the properties (a)–(d) is to mention: The trans-
lation property (a) means that the risk would be mitigated by an additional safe
investment with a corresponding amount, especially, it holds

�. y C �. y/e/ D 0:

The positive homogeneity of the risk measure in (b) means that double risk must be
secured by double risk capital; the subadditivity in (c) means that a diversification
of risk should be recompensed and finally, the monotonicity of the risk measure in
(d) means that higher risk needs more risk capital.

A risk measure may be negative. In this case it can be interpreted as a maximal
amount of cash that could be given away such that the reduced result remains
acceptable.
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It can be shown that

�. y/ D infft 2 R W y C te 2 Dg

is a coherent risk measure. Obviously, we have (cf. Heyde [29])

�. y/ D �e;D.�y/:

A risk measure induces a set D� of acceptable risks (dependent on �)

D� D fy 2 Y W �. y/ � 0g:

Based on our investigation of robustness by means of the functional �e;D, the
following interpretation of coherent risk measures is now possible: If Y D Rq (there
are q states of the future), D1 D R

q
C (that is, indeed, the smallest set that satisfies

axioms (i) and (ii)) and e1 D 1q, then

�. y/ D �e1;D1 .�y/ D max
�2U

.�f .x; �// D �min
�2U f .x; �/

is a coherent risk measure. Specifically, the risk measure max�2U .�f .x; �// is the
objective function of the strictly robust counterpart (RC) with negative values of
f . Because �. y/ D �min�2U f .x; �/, negative payments f of an investment in the
future result in a positive risk measure, and positive payments result in a negative
risk measure. This seems very reasonable since negative payments (losses) are
riskier than investments with only positive payments (bonds). The above approach
can analogously be used for other concepts of robustness (assuming that the cone D
satisfies (i) and (ii)).

Interrelations between robustness and coherent risk measures have also been
studied by Quaranta and Zaffaroni [43]: They minimized the conditional value at
risk (which is a coherent risk measure) of a portfolio of shares using concepts of
robust optimization.
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Chapter 5
Vector Variational Inequalities

The theory of vector variational inequalities began with the pioneer work of F.
Giannessi [10] in 1980 where he extended the classical variational inequality for
vector-valued functions in the setting of finite dimensional spaces. He also provided
some applications to alternative theorems, quadratic programs and complementarity
problems. Since then, a large number of papers have appeared in the literature on
different aspects of vector variational inequalities. These references are gathered in
the bibliography. Later, it is proved that the theory of vector variational inequalities
is a powerful tool to study vector optimization problems. In this chapter, we give
an introduction to vector variational inequalities, existence theory of their solutions
and some applications to vector optimization problems.

5.1 Formulations and Preliminary Results

Let X and Y be topological vector spaces and K be a nonempty subset of X. Let
T W K ! L.X;Y/ be an operator and C W K ! 2Y be a set-valued map such that for
all x 2 K, C.x/ is a closed convex pointed cone. We denote by int.C.x// the interior
of C.x/. We further assume that int.C.x// ¤ ; wherever int.C.x// is involved. For
every l 2 L.X;Y/, the value of l at x is denoted by hl; xi. The vector variational
inequality problems (in short, VVIPs) are defined as follows:

• Strong Vector Variational Inequality Problem (in short, SVVIP): Find Nx 2 K
such that

hT.Nx/; y � Nxi 2 C.Nx/; for all y 2 K: (5.1)

• Vector Variational Inequality Problem (in short, VVIP): Find Nx 2 K such that

hT.Nx/; y � Nxi … �C.Nx/ n f0g; for all y 2 K: (5.2)
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• Weak Vector Variational Inequality Problem (in short, WVVIP): Find Nx 2 K such
that

hT.Nx/; y � Nxi … � int.C.Nx//; for all y 2 K: (5.3)

Whenever we are more specific, we write Stampacchia strong vector varia-
tional inequality problem, Stampacchia vector variational inequality problem, and
Stampacchia weak vector variational inequality problem instead of strong vector
variational inequality problem, vector variational inequality problem and weak
vector variational inequality problem, respectively.

When Y D R and C.x/ D RC for all x 2 K, then above mentioned
vector variational inequality problems reduce to the classical variational inequality
problem discussed in Chap. 1.

We denote by Sol(SVVIP)d, Sol(VVIP)d and Sol(WVVIP)d the set of solutions
of SVVIP, VVIP and WVVIP, respectively. If for all x 2 K, C.x/ D P is a fixed
closed convex pointed cone with int.P/ ¤ ;, then the solution sets of SVVIP, VVIP
andWVVIP are denoted by Sol(SVVIP), Sol(VVIP) and Sol(WVVIP), respectively.
It is clear that Sol(SVVIP)d � Sol(VVIP)d � Sol(WVVIP)d, but the converse need
not be true as illustrated by the following example.

Example 5.1 ([28]) Let X D Y D R2, K D fx D .x1; x2/ 2 R2 W x1 � 0g,
C.x/ D R2C for all x 2 K and f1; f2 W R2 ! R2 be defined by

f1.x/ D .x1 � 1; x2/ and f2.x/ D
�
1

2
x1; x2 � 1

	

; for all x D .x1; x2/ 2 R
2:

Let T W K ! L.X;Y/ be defined by

T.x/ D . f1.x/; f2.x// ; for all x D .x1; x2/ 2 K:

Then

Sol(WVVIP) D ˚
x D .x1; x2/ 2 K W hT.x/; y � xi … � int

�
R
2C
�
for all y 2 K

�

D
(

x D .x1; x2/ 2 K W
 

.x1 � 1/.y1 � x1/C 1

2
x1.y2 � x2/;

x2.y1 � x1/C .x2 � 1/.y2 � x2/

!

… � int
�
R
2C
�
for all y 2 K

)

D
(

x D .x1; x2/ 2 K W 0 � x1 � 1; x2 D 2C 2

x1 � 2

)

:
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For Nx D .0; 1/ 2 Sol(WVVIP), we have

hT.Nx/; y � Nxi D f.h f1.Nx/; y � Nxi; h f2.Nx/; y � Nxi/ W y1 � 0; y2 2 Rg
D f.�y1 C y2 � 1; 0/ W y1 � 0; y2 2 Rg
D R 	 f0g:

This means that there exists y 2 K such that

hT.Nx/; y � Nxi 2 �R
2C n f0g;

that is, Nx D .0; 1/ … Sol(VVIP). Similarly, it can be easily verified that Ox D .1; 0/ 2
Sol(WVVIP) but Ox … Sol(VVIP).

Definition 5.1 A subset K of X is said to be a strictly convex body if int.K/ ¤ ;
and for arbitrary given points x; y 2 K, x ¤ y,

fx� WD �x C .1 � �/y W � 2 �0; 1Œg � int.K/:

Yen and Lee [28] provided the following criterion under which Sol(VVIP) and
Sol(WVVIP) are equal.

Theorem 5.1 Let K � X be a strictly convex body, Y D R` and C be a fixed
closed convex cone in Y with int.C/ ¤ ;. For each x 2 K, let the linear operator
v 7! hT.x/; vi from X to R` be surjective. Then Sol(VVIP) and Sol(WVVIP) are
equal.

Proof Suppose contrary that there exists Nx 2 K such that Nx 2 Sol(WVVIP) but
Nx … Sol(VVIP). Then there exists y 2 K such that

hT.Nx/; y � Nxi 2 �C n f0g: (5.4)

In particular, y ¤ Nx. Since K is a strictly convex body, y� WD �yC .1��/Nx 2 int.K/
for all � 2 �0; 1Œ. Then from (5.4), we have

hT.Nx/; y� � Nxi D �hT.Nx/; y � Nxi C .1 � �/hT.Nx/; Nx � Nxi 2 �C n f0g: (5.5)

Let " > 0 be such that B".y�/ � K, where B".y�/ denotes the open ball with center
at y� and radius ". By assumption, the linear operator v 7! hT.Nx/; vi is surjective,
so it is an open mapping (see Theorem C.10). Since B".y�/� Nx is a neighborhood of
y� � Nx, hT.Nx/; .B".y�/� y/i WD fhT.Nx/; z � Nxi W z 2 B".y�/g must be a neighborhood
of z� WD hT.Nx/; y� � Nxi. Let � > 0 be such that

B�.z�/ � hT.Nx/; .B".y�/� y/i: (5.6)



226 5 Vector Variational Inequalities

Since int.C/ ¤ ;, from (5.5) and Remark 1.7, it follows that B�.z�/ \ .� int.C/ n
f0g/ ¤ ;. Hence, (5.6) implies that there exists a point z 2 B".y�/ � K such that

hT.Nx/; z � Nxi 2 � int.C/ n f0g;

contradicting our assumption that Nx 2 Sol(WVVIP). ut
The following problems are closely related to the above mentioned vector

variational inequality problems, known as Minty vector variational inequality
problems.

• Minty Strong Vector Variational Inequality Problem (in short, MSVVIP): Find
Nx 2 K such that

hT.y/; y � Nxi 2 C.Nx/; for all y 2 K: (5.7)

• Minty Vector Variational Inequality Problem (in short, MVVIP): Find Nx 2 K such
that

hT.y/; y � Nxi … �C.Nx/ n f0g; for all y 2 K: (5.8)

• Minty Weak Vector Variational Inequality Problem (in short, MWVVIP): Find
Nx 2 K such that

hT.y/; y � Nxi … � int.C.Nx//; for all y 2 K: (5.9)

When Y D R and C.x/ D RC for all x 2 K, then the above mentioned Minty
vector variational inequality problems reduce to the Minty variational inequality
problem discussed in Chap. 1.

We denote by Sol(MSVVIP)d, Sol(MVVIP)d and Sol(MWVVIP)d the set
of solutions of MSVVIP, MVVIP and MWVVIP, respectively. It is clear that
Sol(MSVVIP)d � Sol(MVVIP)d � Sol(MWVVIP)d.

The following example shows that the converse is not true in general.

Example 5.2 Consider X D R, Y D R2, K D Œ0; 1� C.x/ D R2C for all x 2 K
and the operator T.y/ D �

y2;�y
�
. Then the whole interval Œ0; 1� is a solution of

MWVVIP, but there do not exist any solutions of MSVVIP.
If for all x 2 K, C.x/ D P a fixed closed convex pointed cone with int.P/ ¤

;, then the solution sets of MSVVIP, MVVIP and MWVVIP are denoted by
Sol(MSVVIP), Sol(MVVIP) and Sol(MWVVIP), respectively.

The following examples due to Charitha et al. [6] show that the solution set of
(Stampacchia) vector variational inequality problems is not equal to the solution set
of Minty vector variational inequality problems.

Example 5.3 Let K D Œ�1; 1�, C.x/ D R2C for all x 2 K and T W R ! R2 be
defined by

T.x/ D .�x; x2/; for all x 2 R:
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Then

Sol(WVVIP) D
\

y2Œ�1;1�

˚
x 2 Œ�1; 1� W ��x.y � x/; x2.y � x/

� … � int
�
R
2C
��

D
\

y2Œ�1;1�

˚
x 2 Œ�1; 1� W max

˚�x.y � x/; x2.y � x/
� � 0

�

D f�1g [ Œ0; 1�:

We further have

Sol(MWVVIP) D
\

y2Œ�1;1�

˚
x 2 Œ�1; 1� W ��y.y � x/; y2.y � x/

� … � int
�
R
2C
��

D
\

y2Œ�1;1�

˚
x 2 Œ�1; 1� W max

˚�y.y � x/; y2.y � x/
� � 0

�

D f�1g:

In the above example the solution set Sol(WVVIP) is disconnected and
Sol(MWVVIP) � Sol(WVVIP). However, this may not be true in general as
the following example shows.

Example 5.4 Let K D Œ�1; 1�, C.x/ D R
2C for all x 2 K and T W R ! R

2 be
defined by

T.x/ D
�
.�1; x � 1

2
/; if x � 0;

.1; x � 1
2
/; if x > 0:

Then Sol(WVVIP) D �0; 1
2
� and Sol(WMVVIP) D Œ0; 1

2
�.

The following example, due to Giannessi [11], shows that Sol(MVVIP) ª
Sol(VVIP). In general, Sol(MVVIP)d � Sol(VVIP)d does not hold.

Example 5.5 Let X D R, Y D R
2, K D Œ�1; 0�, C.x/ D R

2C for all x 2 K and
T W K ! R

2 be defined by T.x/ D .1; 2x/ 2 R
2. Then it can be easily checked that

Nx D 0 is a solution of MVVIP but not a solution of VVIP.
We next discuss the conditions under which the solution set of Stampacchia

vector variational inequality problems is equal to the solution set of Minty vector
variational inequality problems.

Definition 5.2 Let K be a nonempty convex subset of X and x 2 K be an arbitrary
element. The operator T W K ! L.X;Y/ is said to be:

(a) strongly Cx-upper sign continuous if for all y 2 K and all � 2 �0; 1Œ,

hT.x C �.y � x//; y � xi 2 C.x/ implies hT.x/; y � xi 2 C.x/I
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(b) Cx-upper sign continuous if for all y 2 K and all � 2 �0; 1Œ,

hT.x C �.y � x//; y � xi … �C.x/ n f0g
implies hT.x/; y � xi … �C.x/ n f0gI

(c) weakly Cx-upper sign continuous if for all y 2 K and all � 2 �0; 1Œ,

hT.x C �.y � x//; y � xi … � int.C.x//

implies hT.x/; y � xi … � int.C.x//:

Definition 5.3 Let K be a nonempty convex subset of X. An operator T W K !
L.X;Y/ is said to be v-hemicontinuous if for every x; y 2 K and � 2 Œ0; 1�, the
mapping � 7! hT.x C �.y � x//; y � xi is continuous at 0C.

Remark 5.1 It is easy to see that the v-hemicontinuity of T implies strong Cx-upper
sign continuity provided that the set-valued map C is closed; as well as weak Cx-
upper sign continuity of T provided that the set-valued mapW W K ! 2Y defined by
W.x/ D Y n f� int.C.x//g, is closed.

If X D Y D R and K D C.x/ D Œ0;1Œ for all x 2 K, then any positive
mapping T W K ! L.X;Y/ is weakly Cx-upper sign continuous while it is not v-
hemicontinuous. In this case, the concept of weak Cx-upper sign continuity reduces
to the upper sign continuity introduced by Hadjisavvas [13].

Example 5.6 Let X D R,K D Œ0; 1�, Y D R2,C.x/ D R
2C for all x 2 K the constant

natural ordering cone, and T.x/ D .1; 2jxj/. Then the operator T is strongly Cx-
upper sign continuous, Cx-upper sign continuous as well as weakly Cx-upper sign
continuous.

Lemma 5.1 Let K be a nonempty convex subset of X and T W K ! L.X;Y/ be an
operator. Then

(a) Sol(MSVVIP)d � Sol(SVVIP)d if T is strongly Cx-upper sign continuous;
(b) Sol(MVVIP)d � Sol(VVIP)d if T is Cx-upper sign continuous;
(c) Sol(MWVVIP)d � Sol(WVVIP)d if T is weakly Cx-upper sign continuous.

Proof (a) Let Nx 2 Sol(MSVVIP)d. Then

hT.y/; y � Nxi 2 C.Nx/; for all y 2 K:

Since K is convex, Nx C �.y � Nx/ 2 K for all � 2 �0; 1Œ. Therefore, in particular, we
have

hT.Nx C �.y � Nx//; Nx C �.y � Nx/� Nxi 2 C.Nx/;
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equivalently,

� hT.Nx C �.y � Nx//; y � Nxi 2 C.Nx/:
Since C.Nx/ is a convex cone, we have

hT.Nx C �.y � Nx//; y � Nxi 2 C.Nx/:
By strong Cx-upper sign continuity of T, we obtain

hT.Nx/; y � Nxi 2 C.Nx/:
Hence, Nx 2 Sol(SVVIP)d.

Since W.x/ D Y n f�C.x/ n f0gg and W.x/ D Y n f� int.C.x//g are cones, the
proof of the part (b) and (c) lies on the lines of the proof of part (a). ut

In view of Remark 5.1 and Lemma 5.1, we have the following result.

Lemma 5.2 Let K be a nonempty convex subset of X and T W K ! L.X;Y/ be
v-hemicontinuous. Then

(a) Sol(MSVVIP)d � Sol(SVVIP)d provided that the set-valued map C is closed;
(b) Sol(MWVVIP)d � Sol(WVVIP)d provided that the set-valued map W W K !

2Y defined by W.x/ D Y n f� int.C.x//g, is closed.
As we have seen in Examples 5.4 and 5.5 that Sol(MVVIP) ª Sol(VVIP)

and Sol(MWVVIP) ª Sol(WVVIP). Therefore, Giannessi [11] showed that this
insufficient character of VVIP can be weakened by performing a perturbation on
VVIP as follows: find Nx 2 K such that there exists " 2 �0; 1Œ and

hT.Nx C �.y � Nx/; y � Nxi … �C.Nx/ n f0g; (5.10)

for all y 2 K and all � 2 �0; "Œ. It is called perturbed vector variational inequality
problem (in short, PVVIP).

In a similar way, we define perturbed strong vector variational inequality problem
and perturbed weak vector variational inequality problem as follows:

• Perturbed Strong Vector Variational Inequality Problem (in short,
PSVVIP): Find Nx 2 K such that

hT.Nx C �.y � Nx/; y � Nxi 2 C.Nx/; (5.11)

for all y 2 K and all � 2 �0; "Œ:
• Perturbed Weak Vector Variational Inequality Problem (in short,

PWVVIP): Find Nx 2 K such that

hT.Nx C �.y � Nx/; y � Nxi … � int.C.Nx//; (5.12)

for all y 2 K and all � 2 �0; "Œ:
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The set of solutions of PSVVIP, PVVIP and PWVVIP are denoted by
Sol(PSVVIP)d, Sol(PVVIP)d and Sol(PWVVIP)d, respectively.

Proposition 5.1 Let K be a nonempty convex subset of X. Then
Sol(MVVIP)d � Sol(PVVIP)d, Sol(MSVVIP)d � Sol(PSVVIP)d and
Sol(MWVVIP)d � Sol(PWVVIP)d.

Proof Let Nx 2 K be a solution of MVVIP. Then

hT.y/; y � Nxi … �C.Nx/ n f0g; for all y 2 K: (5.13)

Since K is convex, x� D Nx C �.z � Nx/ 2 K for all z 2 K and all � 2 Œ0; 1�. Taking
y D x� with " 2 �0; 1Œ and � 2 �0; "Œ, we have

hT.x�/; x� � Nxi … �C.Nx/ n f0g:

Since x� � Nx D �.z � Nx/, we have

hT.x�/; z � Nxi … �C.Nx/ n f0g; for all z 2 K and � 2 �0; "Œ:

Thus, Nx 2 Sol(PVVIP)d.
Similarly, we can easily show that Sol(MSVVIP)d � Sol(PSVVIP)d and

Sol(MWVVIP)d � Sol(PWVVIP)d. ut
We introduce the following set-valued maps:

• SS.y/ D fx 2 K W hT.x/; y � xi 2 C.x/g;

• MS.y/ D fx 2 K W hT.y/; y � xi 2 C.x/g;

• S.y/ D fx 2 K W hT.x/; y � xi … �C.x/ n f0gg;

• M.y/ D fx 2 K W hT.y/; y � xi … �C.x/ n f0gg;

• SW.y/ D fx 2 K W hT.x/; y � xi … � int.C.x//g;

• MW .y/ D fx 2 K W hT.y/; y � xi … � int.C.x//g.
From the above definition of set-valued maps, the following result can be easily

derived.

Proposition 5.2

(a) Sol(SVVIP)d D
\

y2K
SS.y/ and

Sol(MSVVIP)d D
\

y2K
MS.y/;
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(b) Sol(VVIP)d D
\

y2K
S.y/ and Sol(MVVIP)d D

\

y2K
M.y/;

(c) Sol(WVVIP)d D
\

y2K
SW.y/ and Sol(MWVVIP)d D

\

y2K
MW.y/.

Proposition 5.3

(a) If the set-valued map C W K ! 2Y is closed, then for each y 2 K, MS.y/ is a
closed set.

(b) If the set-valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is
closed, then for each y 2 K, MW.y/ is a closed set.

(c) If the set-valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is
concave, then for each y 2 K, MW.y/ is a convex set.

Proof

(a) Let y 2 K be arbitrary and fxng be a sequence in MS.y/ such that xn ! x 2 K.
Then hT.y/; y � xni 2 C.xn/. Since T.y/ 2 L.X;Y/,

hT.y/; y � xni ! hT.y/; y � xi

and hT.y/; y � xi 2 C.x/ because C is a closed set-valued map. Hence, x 2
MS.y/, and thus,MS.y/ is closed.

(b) Let y 2 K be arbitrary and fxng be a sequence in MW.y/ such that xn ! x 2 K.
Then hT.y/; y � xni 2 W.xn/. Since T.y/ 2 L.X;Y/,

hT.y/; y � xni ! hT.y/; y � xi

and hT.y/; y � xi 2 W.x/ because W is a closed set-valued map. Hence, x 2
MW.y/, and thus,MW.y/ is closed.

(c) Let x1; x2 2 MW.y/. Then

hT.y/; y � x1i 2 W.x1/ and hT.y/; y � x2i 2 W.x2/:

By concavity ofW, for all � 2 Œ0; 1�, we have

hT.y/; y � .�x1 C .1� �/x2/i D � hT.y/; y � x1i C .1 � �/ hT.y/; y � x2i
2 �W.x1/C .1 � �/W.x2/

� W.�x1 C .1 � �/x2/:

Therefore, �x1 C .1 � �/x2 2 MW .y/, and hence,MW.y/ is convex. ut
Remark 5.2 In addition to the hypothesis of Proposition 5.3 (a) (respectively, (b)),
if we further assume that the operator T W K ! L.X;Y/ and the pairing h:; :i
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are continuous, then SS.y/ (respectively, SW.y/) is closed for all y 2 K. We
note that the pairing h:; :i W L.X;Y/ 	 X ! Y is continuous if X and Y are
Hausdorff topological vector spaces and L.X;Y/ is equipped with �-topology (see,
Lemma C.1).

Proposition 5.4 Let K be a nonempty convex subset of X. The set-valued maps S
and SW are KKM-maps.

Proof Let Ox be a point in the convex hull of any finite subset fy1; y2; : : : ; ymg of
K. Then Ox D Pm

iD1 �iyi for some nonnegative real number �i, 1 � i � m, withPm
iD1 �i D 1. If Ox … Sm

iD1 S.yi/, then

hT.Ox/; yi � Oxi 2 �C.Ox/ n f0g; for each i D 1; 2; : : : ;m:

Since �C.Ox/ is a convex cone and �i � 0 with
Pm

iD1 �i D 1, we have

mX

iD1
�ihT.Ox/; yi � Oxi 2 �C.Ox/ n f0g:

It follows that

0 D hT.Ox/; Ox � Oxi D
*

T.Ox/;
mX

iD1
�iyi �

mX

iD1
�i Ox
+

D
*

T.Ox/;
mX

iD1
�i.yi � Ox/

+

D
mX

iD1
�i hT.Ox/; yi � Oxi 2 �C.Ox/ n f0g:

Thus, 0 2 �C.Ox/ n f0g, a contradiction. Therefore, we must have

co .fy1; y2; : : : ; ymg/ �
m[

iD1
S.yi/;

and hence, S is a KKM map on K.
By using the similar argument, we can easily prove that SW is a KKM map on K.

ut
Remark 5.3 The above argument cannot be applied for SS. In general, SS is not a
KKM map. Consider, for instance, X D R, K D Œ0; 1�, Y D R2, C.x/ D R2C for all
x 2 K, and T.y/ D .�1; y/. Then for y1 D 0, y2 D 1, we have SS.y1/ D fy 2 K W
.y;�y2/ 2 R2Cg and SS.y2/ D fy 2 K W .y � 1; y � .1 � y// 2 R2Cg. It follows that
y D 0:5 2 co.fy1; y2g/, but y … SS.y1/[ SS.y2/.
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5.2 Existence Results for Solutions of Vector Variational
Inequalities Under Monotonicity

Let X and Y be topological vector spaces such that the pairing h:; :i is continuous,
and K be a nonempty subset of X. Let T W K ! L.X;Y/ be an operator and
C W K ! 2Y be a set-valued map such that for all x 2 K, C.x/ is a closed
convex pointed cone. We further assume that int.C.x// ¤ ; wherever int.C.x//
is involved.

Definition 5.4 Let x 2 K be an arbitrary element. An operator T W K ! L.X;Y/ is
said to be:

(a) Cx-monotone on K if for every y 2 K, we have

hT.x/ � T.y/; x � yi 2 C.x/I

(b) strongly Cx-pseudomonotone on K if for every y 2 K, we have

hT.x/; y � xi 2 C.x/ implies hT.y/; y � xi 2 C.x/I

(c) Cx-pseudomonotone on K if for every y 2 K, we have

hT.x/; y � xi … �C.x/ n f0g implies hT.y/; y � xi … �C.x/ n f0gI

(d) weakly Cx-pseudomonotone on K if for every y 2 K, we have

hT.x/; y � xi … � int.C.x// implies hT.y/; y � xi … � int.C.x//:

If C.x/ D P is a fixed closed convex pointed cone with int.P/ ¤ ;, then
Cx-monotone operator, strongly Cx-pseudomonotone operator,Cx-pseudomonotone
operator and weakly Cx-pseudomonotone operator are called P-monotone oper-
ator, strongly P-pseudomonotone operator, P-pseudomonotone and weakly P-
pseudomonotone operator, respectively.

It can be argued directly from Definition 5.4 that

monotone

strongly
pseudomonotone

pseudomonotone
weakly 

pseudomonotone
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Example 5.7 Let X D K D R, Y D R2 and C.x/ D R2C for all x 2 K. Let
T W K ! L.X;Y/ be defined by

T.x/.t/ D hT.x/; ti D .x; x2/t; for all x 2 X and all t 2 X:

If hT.y/; y�xi 2 � int
�
R
2C
�
, then .y; y2/.y�x/ D .y.y�x/; y2.y�x// 2 � int

�
R
2C
�
,

and so, y.y � x/ < 0 and y2.y � x/ < 0. This implies that y < x and y > 0, and thus
x > 0. Hence, hT.x/; y � xi D .x; x2/.y � x/ D .x.y � x/; x2.y � x// 2 � int

�
R
2C
�
.

This shows that T is weakly Cx-pseudomonotone.
The following example shows that weakly Cx-pseudomonotonicity does not

imply Cx-monotonicity.

Example 5.8 Let X D Y D R
2, K D Œ�1; 1� 	 Œ�1; 1� � R

2. The vectors of R2 are
denoted by x D .x1; x2/. Let C W K ! 2Y be defined by

C.x/ D

8
ˆ̂
<

ˆ̂
:

C1 D f.y1; y2/ 2 Y W y1 � 0; y2 � 0g; if x1 � 0; x2 � 0; x ¤ .0; 0/;

C2 D f.y1; y2/ 2 Y W y1 � 0; y2 � 0g; if x1 < 0; x2 > 0; x D .0; 0/;

C3 D f.y1; y2/ 2 Y W y1 � 0; y2 � 0g; if x1 � 0; x2 � 0; x ¤ .0; 0/;

C4 D f.y1; y2/ 2 Y W y1 � 0; y2 � 0g; if x1 > 0; x2 < 0;

and let T W K ! L.X;Y/ be defined by

hT.x/; yi D
�Z x1

0

y1tdt;
Z x2

0

y2tdt

	

D 1

2

�
x21y1; x

2
2y2
�
:

Then T is weakly Cx-pseudomonotone on K, but not Cx-monotone.
From the definition of different kinds of pseudomonotonicity of T, we have

following lemma.

Lemma 5.3 Let K be a nonempty convex subset of X and x 2 K be an arbitrary
element. Then the following statements hold.

(a) Sol(SVVIP)d � Sol(MSVVIP)d if T W K ! L.X;Y/ is strongly Cx-
pseudomonotone.

(b) Sol(VVIP)d � Sol(MVVIP)d if T W K ! L.X;Y/ is Cx-pseudomonotone.
(c) Sol(WVVIP)d � Sol(MWVVIP)d if T W K ! L.X;Y/ is weakly Cx-

pseudomonotone.

The following existence results for a solution of vector variational inequalities
are the extension of the classical existence result for a solution of scalar variational
inequality problem due to Browder [5] and Hartman and Stampacchia [14].

Theorem 5.2 Let K be a nonempty compact convex subset of X and W W K ! 2Y

be a set-valued map defined by W.x/ D Y n f� int.C.x//g such that the graph G.W/
of W is closed in K 	 Y. For each x 2 K, suppose that T W K ! L.X;Y/ is weakly
Cx-pseudomonotone and weakly Cx-upper sign continuous. Then Sol(WVVIP)d is
nonempty.
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Proof By Lemmas 5.1 (c) and 5.3 (c), Sol(MWVVIP)d D Sol(WVVIP)d. Hence,

\

y2K
SW.y/ D

\

y2K
MW.y/:

By Proposition 5.4, SW is a KKM map, and so is MW because SW.y/ � MW.y/ for
all y 2 K by weakly Cx-pseudomonotonicity of T. By Proposition 5.3 (b),MW.y/ is
a closed subset of a compact set K, and hence MW.y/ is compact for all y 2 K. By
Fan-KKM Lemma 1.14, we have

\

y2K
SW.y/ D

\

y2K
MW.y/ ¤ ;:

Hence, Sol(WVVIP)d is nonempty. ut
The following example due to Ansari et al. [4] illustrates Theorem 5.2.

Example 5.9 Let X D R, Y D R2, K D Œ0; 1� and C.x/ D R
2C for all x 2 K. Let

T W K ! L.X;Y/ be defined by

T.x/.t/ D hT.x/; ti D .x; x2/t; for all x 2 X and all t 2 X:

Then T is weakly Cx-upper sign continuous and weakly Cx-pseudomonotone. Note
that

hT.x/; y � xi D .x; x2/.y � x/ D .x.y � x/; x2.y � x//:

It is easy to see that the set fx 2 K W hT.y/; y � xi … � int.C.x//g D Œ0; y� is
closed. Since K is compact, all the conditions of Theorem 5.2 hold. Therefore,
Sol(WVVIP) is nonempty. It can be easily checked that x D 0 is the only
solution of WVVIP as well as of MWVVIP, that is, Sol(WVVIP) = Sol(MWVVIP)
= f0g.

Analogously, we have the following existence result for a solution of VVIP in
the setting of a compact convex subset of a topological vector space.

Theorem 5.3 Let K be a nonempty compact convex subset of X. For each x 2
K, suppose that T W K ! L.X;Y/ is Cx-pseudomonotone and Cx-upper sign
continuous such that the set

M.y/ D fx 2 K W hT.y/; y � xi … �C.x/ n f0gg

is closed. Then Sol(VVIP)d is nonempty.

Remark 5.4 Since the mapping SS is not a KKM mapping, we cannot use a similar
argument for SVVIP.

Fang and Huang [9] considered the following definition of pseudomonotonicity
to establish the existence of solutions of SVVIP.
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Definition 5.5 Let C W K ! 2Y be a set-valued map such that for each x 2 K,
C.x/ is a closed convex pointed cone in Y, and let x 2 K be an arbitrary element.
An operator T W K ! L.X;Y/ is said to be Cx-pseudomonotoneC if for all
y2K,

hT.x/; y � xi … �C.x/ n f0g implies hT.y/; y � xi 2 C.x/:

If C.x/ D P is a fixed closed pointed convex cone in Y for all x 2 X, then
Cx-monotonicityC is called P-monotonicity.

It is easy to see that the Cx-pseudomonotonicityC is stronger than the Cx-
pseudomonotonicity.

Example 5.10 ([9]) Let X D Y D R2, K D C.x/ D R
2C for all x 2 K, and

T W K ! L.X;Y/ be defined by

T.x/ D ..x1 C 1; x2 C 2/; .x1 C 1; x2 C 2// ; for all x D .x1; x2/ 2 K:

Let x D .x1; x2/, y D .y1; y2/ 2 K and

hT.x/; y � xi D ..x1 C 1/Œy1 C y2 � .x1 C x2/�; .x2 C 2/Œy1 C y2 � .x1 C x2/�/

… �R
2C n f0g:

The above relation implies that y1 C y2 � x1 C x2. It follows that

hT.y/; y � xi D ..y1 C 1/Œy1 C y2 � .x1 C x2/�; .y2 C 2/Œy1 C y2 � .x1 C x2/�/

2 R
2C:

Hence, T is Cx-pseudomonotoneC.
The next result provides the existence of a solution of SVVIP under Cx-

pseudomonotonicityC of T.

Theorem 5.4 Let K be a nonempty compact convex subset of X and C W K ! 2Y be
a closed set-valued map such that for each x 2 K, C.x/ is a closed convex pointed
cone in Y. For each x 2 K, suppose that T W K ! L.X;Y/ is Cx-pseudomonotoneC
and strongly Cx-upper sign continuous. Then Sol(SVVIP)d is nonempty.

Proof By Cx-pseudomonotonicityC of T, we have

Sol(VVIP)d � Sol(MSVVIP)d:

By Lemma 5.1, Sol(MSVVIP)d � Sol(SVVIP)d � Sol(VVIP)d. Therefore,

Sol(VVIP)d � Sol(MSVVIP)d � Sol(VVIP)d;
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and thus, Sol(VVIP)d D Sol(MSVVIP)d, that is,

\

y2K
S.y/ D

\

y2K
MS.y/:

By Proposition 5.4, S is a KKM map. By Cx-pseudomonotonicityC of T, S.y/ �
MS.y/ for all y 2 K. Thus, MS is a KKM map. By Proposition 5.3 (a), MS.y/ is a
closed subset of a compact set K, and hence MS.y/ is compact for all y 2 K. By
Fan-KKM Lemma 1.14, we have

\

y2K
S.y/ D

\

y2K
MS.y/ ¤ ;:

Hence, Sol(SVVIP)d is nonempty. ut
Remark 5.5 Fang and Huang [9] proved Theorem 5.4 in the setting of a closed
bounded convex subset of a reflexive Banach space X but for a fixed closed convex
pointed cone.

From now onward, we present existence results for a solution of SVVIP, VVIP
and WVVIP in the setting of Banach spaces.

Theorem 5.5 Let X and Y be Banach spaces and K be a nonempty weakly compact
convex subset of X. Let the set-valued map W W K ! 2Y be defined by W.x/ D
Y n f� int.C.x//g such that the graph G.W/ of W is weakly closed in K 	 Y. For
each x 2 K, suppose that T W K ! L.X;Y/ is weakly Cx-pseudomonotone and
v-hemicontinuous on K. Then Sol(WVVIP)d is nonempty.

Proof By Lemmas 5.2 (b) and 5.3 (c),

\

y2K
SW.y/ D

\

y2K
MW.y/:

Following the similar argument as in the proof of Theorem 5.2 and Proposition 5.4,
we see thatMW is a KKM map.

We claim that for each y 2 K, MW .y/ is a weakly closed subset of K. For any
y 2 K, let fx˛g be a net in MW .y/ such that x˛ converges weakly to Ox 2 K. Since
x˛ 2 MW.y/, we have

hT.y/; y � x˛i 2 Y n f�(C.x˛//g; for all ˛:

Since T.y/ 2 L.X;Y/, by Theorem C.11, T.y/ is continuous from the weak
topology of X to the weak topology of Y. We achieve that the net fhT.y/; y � x˛ig
converges weakly to fhT.y/; y � Oxig 2 Y. So, we obtain that .x˛; hT.y/; y � x˛i/
converges weakly to .Ox; hT.y/; y � Oxi/ 2 G.W/, since G.W/ is weakly closed.
Therefore,
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hT.y/; y � Oxi 2 W.Ox/ D Y n f� int.C.Ox//g;

so that Ox 2 MW.y/. Consequently,MW.y/ is a weakly closed subset of K.
Since K is weakly compact subset of a Banach space X and MW.y/ is a weakly

closed subset of K, we have that MW .y/ is a weakly compact subset of K for all
y 2 K. Rest of the proof follows on the lines of the proof of Theorem 5.2. ut
Example 5.11 In continuation of Example 5.8, for any x D .x1; x2/ 2 K, y D
.y1; y2/ 2 K, it is clear that

t 7! hT.ty C .1 � t/x/; y � xi
D
�R ty1C.1�t/x1

0
.y1 � x1/tdt;

R ty2C.1�t/x2
0

.y2 � x2/tdt
�

D 1
2

�
.y1 � x1/Œty1 C .1 � t/x1�2; .y2 � x2/Œty2 C .1 � t/x2�2

�

is continuous at 0C; so, T is a v-hemicontinuous operator. By Theorem 5.5, the
WVVIP for the corresponding T and K has a solution. Indeed, it can be verified
that Nx D .0; 1/ 2 K is a solution of WVVIP, since C.Nx/ D C1 (as in Example 5.8)
and

hT.Nx/; y � Nxi D
�Z 0

0

.y1 � 0/tdt;
Z 1

0

.y2 � 1/tdt

	

D 1

2
.0; .y2 � 1// … � int.C.Nx//; for all y D .y1; y2/ 2 K:

By Proposition 5.4, S.y/ WD fx 2 K W hT.x/; y � xi … �C.x/ n f0gg is a KKM map.
Therefore, analogously to Theorem 5.5, we have the following existence result for
a solution of VVIP.

Theorem 5.6 Let X and Y be Banach spaces and K be a nonempty weakly compact
convex subset of X. For each x 2 K, suppose that T W K ! L.X;Y/ is Cx-
pseudomonotone and v-hemicontinuous such that the set

M.y/ D fx 2 K W hT.y/; y � xi … �C.x/ n f0gg

is weakly closed. Then Sol(VVIP)d is nonempty.
By using the similar argument as in the proof of Theorems 5.4 and 5.5, we can

easily prove the following result on the existence of a solution of SVVIP.

Theorem 5.7 Let X and Y be Banach spaces, K be a nonempty weakly compact
convex subset of X and C W K ! 2Y be a closed set-valued map such that for
each x 2 K, C.x/ is a closed convex pointed cone in Y. For each x 2 K, suppose
that T W K ! L.X;Y/ is Cx-pseudomonotoneC and v-hemicontinuous on K. Then
Sol(SVVIP)d is nonempty.
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Remark 5.6

(a) Since every nonempty, closed, bounded and convex subset of a reflexive Banach
space is weakly compact, we can considerK as a nonempty closed, bounded and
convex subset of a reflexive Banach space X in Theorems 5.5, 5.3 and 5.7.

(b) When C.x/ is a fixed closed convex pointed cone with nonempty interior and T
is a Cx-monotone operator, then Theorem 5.5 is considered in [21].

(c) When Y D R, L.X;Y/ D X� and C.x/ D RC for all x 2 K, then
Theorems 5.5, 5.3 and 5.7 are same and established in [24].

Let X and Y be Banach spaces. A mapping g W X ! Y is said to be completely
continuous if the weak convergence of any sequence fxng to x in X implies the strong
convergence of fg.xn/g to g.x/ in Y.

We denote by Lc.X;Y/ the set of all completely continuous mappings from X to
Y. Obviously, Lc.X;Y/ � L.X;Y/.

Huang and Fang [15] proved Theorem 5.5 for T W K ! Lc.X;Y/.

Definition 5.6 The operator T W K ! L.X;Y/ is said to satisfy the L-condition on
K if and only if the following condition holds:

mX

iD1
�ihT.yi/; yii �

mX

iD1
�ihT.yi/; Oxi 2 C.Ox/;

for any finite subset fy1; y2; : : : ; ymg of K, Ox D Pm
iD1 �iyi, with �i � 0, 1 � i � m,

and
Pm

iD1 �i D 1.
We note that the particular form of the above condition is used in [25].
We derive the following existence results for solutions of WVVIP and MWVVIP

under L-condition.

Proposition 5.5 Let X, Y, K, C, W, and G.W/ be the same as in Theorem 5.5.
Suppose that T W K ! L.X;Y/ satisfies L-condition on K. Then MWVVIP has a
solution.

Proof We first claim that MW is a KKM map on K. To this end, let Ox 2
co .fy1; y2; : : : ; ymg/ � K. Then Ox D Pm

iD1 �iyi for some nonnegative real number
�i, 1 � i � m, with

Pm
iD1 �i D 1. If Ox … Sm

iD1MW .yi/, then

hT.yi/; yi � Oxi 2 � int.C.Ox//; for each i D 1; 2; : : : ;m:

Since �C.Ox/ is a convex cone and �i � 0 with
Pm

iD1 �i D 1, we have

mX

iD1
�ihT.yi/; yi � Oxi 2 � int.C.Ox//: (5.14)
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Moreover, since T satisfies L-condition on K,

mX

iD1
�i hT.yi/; yii �

mX

iD1
�i hT.yi/; Oxi 2 C.Ox/: (5.15)

It follows from (5.14) and (5.15) that 0 2 int.C.Ox//, a contradiction. Hence,

Ox 2
m[

iD1
MW .yi/;

and so MW is a KKM map on K. From the proof of Theorem 5.5, we derive that
MW.y/ is a weakly compact subset of K for all y 2 K. By Fan-KKM Lemma 1.14,
we have

\

y2K
MW.y/ ¤ ;;

that is, Sol(MWVVIP)d is nonempty. ut
Since �C.x/ is a convex cone, analogously we can prove the following result.

Proposition 5.6 Let X, Y, K and C be the same as in Theorem 5.3. Suppose that
T W K ! L.X;Y/ satisfies L-condition on K such that the set

M.y/ D fx 2 K W hT.y/; y � xi … �C.x/ n f0gg

is weakly closed. ThenMVVIP has a solution.
In Theorem5.5, we can replace the weakCx-pseudomonotonicity by L-condition.

Theorem 5.8 Let X, Y, K, C, W, and G.W/ be the same as in Theorem 5.5. Suppose
that T W K ! L.X;Y/ is v-hemicontinuous and satisfies L-condition on K. Then
WVVIP has a solution.

Proof The result follows from Proposition 5.5 and Lemma 5.2 (b). ut
Theorem 5.9 Let X, Y, K and C be the same as in Theorem 5.3. Suppose that
T W K ! L.X;Y/ is v-hemicontinuous and satisfies L-condition on K. Then VVIP
has a solution.

Proof The result follows from Proposition 5.6 and Lemma 5.2 (a). ut
To consider the unbounded case, we need the following coercivity conditions.

Definition 5.7 The operator T W K ! L.X;Y/ is said to satisfy

(a) strongly v-coercive condition C1 if there exist a weakly compact subset B of X
and Qy 2 B \ K such that

hT.x/; Qy � xi … C.x/; for all x 2 K n BI
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(b) strongly v-coercive condition C2 if there exist a weakly compact subset B of X
and Qy 2 B \ K such that

hT. Qy/; Qy � xi … C.x/; for all x 2 K n BI

(c) v-coercive condition C1 if there exist a weakly compact subset B of X and Qy 2
B \ K such that

hT.x/; Qy � xi 2 �C.x/ n f0g; for all x 2 K n BI

(d) v-coercive condition C2 if there exist a weakly compact subset B of X and Qy 2
B \ K such that

hT. Qy/; Qy � xi 2 �C.x/ n f0g; for all x 2 K n BI

(e) weakly v-coercive condition C1 if there exist a weakly compact subset B of X
and Qy 2 B \ K such that

hT.x/; Qy � xi 2 � int.C.x//; for all x 2 K n BI

(f) weakly v-coercive condition C2 if there exist a weakly compact subset B of X
and Qy 2 B \ K such that

hT. Qy/; Qy � xi 2 � int.C.x//; for all x 2 K n B:

We now present some existence results for solutions of WVVIP and VVIP
defined on a closed (not necessarily bounded) convex subset K of a Banach space X.

Theorem 5.10 Let X and Y be Banach spaces and K be a nonempty closed convex
subset of X. Let W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g such
that the graph G.W/ of W is weakly closed in K 	 Y. Suppose that T W K !
L.X;Y/ is weakly Cx-pseudomonotone and v-hemicontinuous on K. In addition,
assume that T satisfies weakly v-coercive condition C1. Then WVVIP has a
solution.

Proof Let Qy 2 K, and let the weakly compact subset B of X satisfy weakly v-
coercive condition C1.

We claim that the weak closure SW. Qy/w of SW. Qy/ is a weakly compact subset of
K. If SW. Qy/ 6� B, then there exists x 2 SW. Qy/ such that x 2 K n B. It follows that

hT.x/; Qy � xi … � int.C.x//;

which contradicts weakly v-coercive condition C1. Therefore, we have SW. Qy/ �
B; hence, SW. Qy/w is a weakly compact subset of K. By Fan-KKM Lemma 1.14,
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we have

\

y2K
SW. Qy/w ¤ ;:

Again, by weak Cx-pseudomonotonicity of T, SW.y/ � MW.y/ for all y 2 K,
and so that SW.y/

w � MW.y/
w D MW .y/ for all y 2 K, since MW.y/ is

weakly closed as proved in Theorem 5.5. Consequently,
T

y2K MW.y/ ¤ ;. As in
Theorem 5.5,

\

y2K
SW.y/ D

\

y2K
MW.y/ ¤ ;:

Hence, Sol(WVVIP)d is nonempty. ut
Example 5.12 ([30]) In continuation of Example 5.11, we consider the following
unbounded set

K D f.x1; x2/ 2 X W x1 � 1 � x2 � x1 C 1 and x2 � 0g � R
2:

Let the operator T and the mapping C be the same as in Example 5.11. Consider the
compact set B D Œ�1; 2� 	 Œ0; 1� � R2 and Qy D .�1; 0/ 2 B \ K. We have

hT.x/; Qy � xi D
�Z x1

0

.�1 � x1/tdt;
Z x2

0

.�x2/tdt

	

D 1

2

�
.�1 � x1/x

2
1;�x32

� 2 � int.C.x//;

for all x 2 K n B, where x D .x1; x2/. Hence, B and Qy satisfy weakly v-coercive
condition C1. By Theorem 5.10, we know that there exists a solution Nx 2 K of
WVVIP. Indeed, we can verify that Nx D .�1; 0/ 2 K is a solution of WVVIP.

Remark 5.7 When Y D R, L.X;Y/ D X� and C.x/ D RC for all x 2 K, then
Theorem 5.10 is considered in [27].

Analogously, we have the following existence result for a solution of VVIP
without boundedness assumption on the underlying set.

Theorem 5.11 Let X and Y be Banach spaces and K be a nonempty closed convex
subset of X. For each x 2 K, suppose that T W K ! L.X;Y/ is Cx-pseudomonotone
and v-hemicontinuous on K such that the set

G.y/ D fx 2 K W hT.y/; y � xi … �C.x/ n f0gg

is weakly closed. In addition, assume that T satisfies v-coercive condition C1. Then
VVIP has a solution.
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The following result provides the existence of a solution of MWVVIP defined on
a noncompact set, but under weakly v-coercivity condition C2.

Proposition 5.7 Let X, Y, K, C, W, and G.W/ be the same as in Theorem 5.10.
Suppose that T W K ! L.X;Y/ satisfies L-condition and weakly v-coercive
condition C2. ThenMWVVIP has a solution.

Proof Let Qy 2 K and weakly compact subset B � X satisfy v-coercive condition
C2. By employing the same argument as in Proposition 5.5 and Theorem 5.5,
respectively, we see that MW is a KKM map on K and MW.y/ is a weakly compact
subset of K for all y 2 K. Now, we claim thatMW. Qy/ � B. If there exists x 2 MW . Qy/
such that x 2 K n B, then

hT. Qy/; Qy � xi … � int.C.x//;

which contradicts v-coercive condition C2. Therefore, MW. Qy/ � B; hence, MW . Qy/
is a weakly compact subset of K. By Fan-KKM Lemma 1.14, we have

\

y2K
MW.y/ ¤ ;I

so, Sol(MWVVIP)d is nonempty. ut
By using a similar argument as in the proof of Proposition 5.7 and Proposi-

tion 5.6, we obtain the following existence result for a solution of MVVIP defined
over a noncompact set, but under the v-coercive condition C2.

Proposition 5.8 Let X, Y, K, C and MW be the same as in Theorem 5.11. Suppose
that T W K ! L.X;Y/ satisfies L-condition and weakly v-coercive condition C2.
ThenMVVIP has a solution.

If we add the v-hemicontinuity in Proposition 5.7 and 5.8, we derive the existence
results for a solution ofWVVIP and VVIP defined over a noncompact set by solving
the correspondingWMVVIP and MVVIP, respectively.

Theorem 5.12 Let X, Y, K, C, W, and G.W/ be the same as in Proposition 5.7.
Suppose that T W K ! L.X;Y/ is v-hemicontinuous such that both L-condition and
weakly v-coercive condition C2 hold on K. ThenWVVIP has a solution.

Proof The result follows from Proposition 5.7 and Lemma 5.2 (b). ut
Analogously, by using Proposition 5.8 and Lemma 5.2 (a), we derive the

following existence result for a solution of VVIP.

Theorem 5.13 Let X, Y, K and C be the same as in Proposition 5.8. Suppose that
T W K ! L.X;Y/ is v-hemicontinuous such that both L-condition and v-coercive
condition C2 hold on K and the set

M.y/ D fx 2 K W hT.y/; y � xi … �C.x/ n f0gg

is weakly closed. Then VVIP has a solution.
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In Theorem 5.10, if we replace weakly v-coercive condition C1 by weakly v-
coercive condition C2, then the existence theorem for a solution of WVVIP can be
obtained as follows.

Theorem 5.14 Let X, Y, K, C, W, and G.W/ be the same as in Proposition 5.7.
For each x 2 K, suppose that T W K ! L.X;Y/ is weakly Cx-pseudomonotone and
v-hemicontinuous on K, and assume in addition that T satisfies weakly v-coercive
condition C2 on K. ThenWVVIP has a solution.

Proof Let Qy 2 K, and let weakly compact subset B of X be such that T
satisfies weakly v-coercive condition C2. By the same argument as in the proof
of Theorem 5.5, we can derive that MW is a KKM map on K and, for each y 2 K,
MW.y/ is a weakly compact subset of K. It can be checked that MW . Qy/ � .K \ D/
is a weakly compact subset of K. By Fan-KKM Lemma 1.14, we get

\

y2K
SW.y/ D

\

y2K
MW.y/ ¤ ;:

Therefore, Sol(WVVIP)d is nonempty. ut
By using Theorem 5.3, we have following existence result for a solution of VVIP.

Theorem 5.15 Let X, Y, K and C be the same as in Theorem 5.3. For each x 2 K,
suppose that T W K ! L.X;Y/ is Cx-pseudomonotone and v-hemicontinuous on K
such that the set

M.y/ D fx 2 K W hT.y/; y � xi … �C.x/ n f0gg

is weakly closed. Further, assume that T satisfies v-coercive condition C2 on K.
Then VVIP has a solution.

Now we use the scalarized coercivity condition to derive the existence results for
a solution of WVVIP. We set

CC D co.fC.x/ W x 2 Kg/;

and note that

C�C D fl 2 Y� W hl; yi � 0 for all y 2 CCg ;

int.C�C/ D fl 2 Y� W hl; yi > 0 for all y 2 int.CC/g ;

where Y� denotes the topological dual of Y. Let s 2 int.C�C/ and T W K ! L.X;Y/
be an operator. We define the operator Ts W K ! X� by

hTs.x/; yi D hs; hT.x/; yii; for all x 2 K and all y 2 X;

where X� denotes the topological dual of X.
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In order to solve WVVIP over an unbounded domain, we need the following
coercivity conditions.

Definition 5.8 Let X and Y be Banach spaces and K be a nonempty closed convex
subset of X. Let C W K ! 2Y be a set-valued map such that CC is a closed convex
pointed cone with int.CC/ ¤ ;. An operator T W K ! L.X;Y/ is said to be:

(a) v-coercive if there exist x0 2 K and s 2 C�C n f0g such that

hTs.x/; x � x0i
kx � x0k ! 1; as x 2 K; kxk ! 1:

(b) weakly v-coercive if there exist x0 2 K and s 2 C�C n f0g such that

hTs.x/; x � x0i ! 1; as x 2 K; kxk ! 1:

Remark 5.8

(a) It is clear that if T is v-coercive, then it is weakly v-coercive.
(b) If Y D R, C.x/ D RC for all x 2 K and T W K ! X�, Definition 5.8 collapses

to the following definitions:

(i) T is coercive if

hT.x/; x � x0i
kxk ! 1; whenever x 2 K and kxk ! 1:

(ii) T is weakly coercive if

hT.x/; x � x0i ! 1; whenever x 2 K and kxk ! 1:

(c) Suppose that T is v-coercive, then

hs; hT.x/� T.x0/; x � x0ii ! 1:

Thus, the definition of v-coerciveness of T is equivalent to one used in [7]. If
C W K ! 2Y is a constant mapping and s 2 int.C�C/, then the definition of
v-coerciveness of T is considered in [8].

Recall that a mapping H W X ! X� is said to be pseudomonotone if for every
pair of points x 2 K, y 2 K, we have

hH.x/; y � x/ � 0 implies hH.y/; y � xi � 0:

Proposition 5.9 Let X and Y be Banach spaces and K be a nonempty closed convex
subset of X. Let C W K ! 2Y be a set-valued map such that CC is a closed convex
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pointed cone with int.CC/ ¤ ;. Suppose that T W K ! L.X;Y/ is weakly CC-
pseudomonotone and there exists s 2 int.C�C/ such that

hs; yi � 0; for all y … � int.CC/: (5.16)

Then the operator Ts is pseudomonotone on K.

Proof Let x; y 2 K be such that hTs.x/; y � xi � 0. If hT.x/; y � xi 2 � int.CC/,
then since s 2 int.C�C/,

�hTs.x/; y � xi > 0;

which contradicts to the assumption. Thus, we have

hT.x/; y � xi … � int.CC/:

By weak CC-pseudomonotonicity of T, hT.y/; y � xi … � int.CC/. From (5.16), it
follows that

hs; hT.y/; y � xii � 0; that is, hTs.y/; y � xi � 0:

Therefore, Ts is pseudomonotone on K. ut
Remark 5.9 Proposition 5.16 also holds in the setting of Hausdorff topological
vector spaces (see [30]).

Under the assumption of weak v-coercivity of T, we have the following existence
theorem for a solution of WVVIP.

Theorem 5.16 Let X, Y, K, C, and W be the same as in Theorem 5.10; in addition,
let X be reflexive and CC be closed convex. Suppose that T W K ! L.X;Y/ is weakly
CC-pseudomonotone, v-hemicontinuous, and is weakly v-coercive with respect to
an s 2 int.C�C/ on K such that hs; yi � 0 for all y … � int.CC/. ThenWVVIP has a
solution.

Proof For s 2 int.C�C/, suppose that there exists an Nx 2 K which is a solution of the
following variational inequality problem, denoted by (VIP)s: find Nx 2 K such that

hTs.Nx/; y � Nxi � 0; for all y 2 K:

If

hT.Nx/; y � Nxi 2 � int.C.Nx//; for some y 2 K;

then

hT.Nx/; y � Nxi 2 � int.CC/I
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thus, hTs.Nx/; y�Nxi < 0, which contradicts the fact that Nx solves (VIP)s. Consequently,
we have

hT.Nx/; y � Nxi … � int.C.Nx//; for all y 2 K;

that is, Nx is a solution of WVVIP. So. it is sufficient to prove that there exists a
solution of (VIP)s for some s 2 int.C�C/ where s satisfies the weak v-coercivity of
the operator T.

Let Br denote the closed ball (under the norm) of X with center at zero and radius
r. In the special case where Y D R, C.x/ D RC for all x 2 K \ Br, Proposition 5.9
and Theorem 1.41, guarantee the existence of a solution xr for (VIP)s, that is,

xr 2 K \ Br; hTs.xr/; y � xri � 0; for all y 2 K \ Br:

Choose r � kx0k, where x0 satisfies the weak v-coercivity of T. Then

hTs.xr/; x0 � xri � 0: (5.17)

We observe that fxr W r > 0g must be bounded. Otherwise, we can choose r large
enough so that the weak v-coercivity of T implies that

hTs.xr/; x0 � xri < 0;

which contradicts (5.17). Therefore, there exists r such that kxrk < r. Now, for each
x 2 K, we can choose " > 0 small enough such that xr C ".x � xr/ 2 K \ Br. Then

hTs.xr/; xr C ".x � xr/� xri � 0:

Dividing by " on both sides of the above inequality, we obtain

hTs.xr/; x � xri � 0; for all x 2 K;

which shows that xr is a solution of (VIP)s. By the above observation, xr is a solution
of WVVIP. ut

We note that it is possible to impose other topologies on X so that the conclusion
of theorems in this section still hold. For example, we may consider the weakest
topology � on X such that for all l 2 L.X;Y/, l is continuous. With suitable
modification of the statements of the results of this section, we can obtain some
existence results for a solution of WVVIP.

As an application of above results, we provide some existence results for
solutions of generalized vector complementarity problems.

Let X and Y be Banach spaces and K be a convex pointed cone in X. Let C W K !
2Y be a set-valued map such that for all x 2 K, C.x/ is a closed convex pointed cone
with int.C.x// ¤ ;. Let T W K ! L.X;Y/ be an operator. The generalized vector
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complementarity problem (in short, GVCP) is to find Nx 2 K such that

hT.Nx/; Nxi … int.C.Nx// and hT.Nx/; yi … � int.C.Nx//; for all y 2 K: (5.18)

Such problem is an extension of the vector complementarity problem (in short,
VCP) studied in [8], where Y is an ordered Banach space induced by a constant
positive cone P. When Y D R, GVCP coincides with the generalized complemen-
tarity problem (in short, GCP), that is, to find Nx 2 K such that

hT.Nx/; Nxi D 0 and T.Nx/ 2 K�; (5.19)

where K� is the dual cone of K. This problem was introduced by Karamardian
[17]. He proved that both variational inequality problem and complementarity
problem have the same solution if the underlying set K is a closed convex cone;
see [17, Lemma 3.1]. Chen and Yang [8] showed the equivalence between WVVIP
and GVCP with underlying space Y being an ordered Banach space; See [8,
Proposition 4.2], and its remark.

Ansari et al. [4], Huang and Fang [16] and Yin et al. [29] consideredmore general
forms of vector complementarity problem and established some existence results for
solutions of such problems by proving their equivalence with corresponding vector
variational inequality problems.

The following lemma gives the equivalence relation betweenWVVIP and GVCP.

Lemma 5.4 Let X and Y be Banach spaces and K be a closed convex pointed cone
in X. Let C W K ! 2K be a set-valued map such that for all x 2 K, C.x/ is a closed
convex pointed cone in X. Let T W K ! L.X; y/ be a nonlinear operator. Then the
following statements hold.

(a) If Nx is a solution of WVVIP, then it is a solution of GVCP.
(b) If Nx is a solution of GVCP, and we assume in addition that

hT.Nx/; Nxi 2 �C.Nx/; (5.20)

then Nx is a solution of WVVIP.

Proof

(a) Since Nx is a solution of WVVIP, we have

hT.Nx/; y � Nxi … � int.C.Nx//; for all y 2 K: (5.21)

First, we take y D 0. Then (5.21) becomes

hT.Nx/; Nxi … int.C.Nx//: (5.22)
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Next, for each z 2 K, replace y by z C Nx 2 K in (5.21), we have

hT.Nx/; zi D hT.Nx/; .z C Nx/ � Nxi … � int.C.Nx//: (5.23)

Relations (5.22) and (5.23) show that Nx is a solution of GVCP.
(b) If Nx solves GVCP, then

hT.Nx/; yi … � int.C.Nx//; for all y 2 K: (5.24)

By (5.20) and (5.24), we have

hT.Nx/; y � Nxi … � int.C.Nx//; for all y 2 K:

Thus, Nx is a solution of WVVIP. ut
For all x 2 K, when C.x/ is a fixed closed convex pointed cone with nonempty

interior, Lemma 5.4 is considered in [8].
By Lemma 5.4 and by existence results for a solution of WVVIP, we have the

following existence results for a solution of GVCP.

Theorem 5.17 Let X and Y be Banach spaces and K be a closed convex pointed
cone in X. Let C and W be the same as in Theorem 5.10. Suppose that T W K !
L.X;Y/ is v-hemicontinuous on K. Then GVCP has a solution under each of the
following conditions:

(i) T is weakly C-pseudomonotone and satisfy v-coercive condition C1;
(ii) T satisfies both L-condition and v-coercive condition C2 on K;
(iii) T is weakly C-pseudomonotone and satisfies v-coercive condition C2.

Proof

(i) The result follows from Lemma 5.4 and Theorem 5.10.
(ii) The result follows from Lemma 5.4 and Theorem 5.12.
(iii) The result follows from Lemma 5.4 and Theorem 5.14. ut

Under the assumption of the weak v-coercivity of T, we have the following
existence result for a solution of GVCP.

Theorem 5.18 Let X, Y, K, C, and W be the same as in Theorem 5.16. Suppose
that T W K ! L.X;Y/ is weakly CC-pseudomonotone and v-hemicontinuous. Then
GVCP has a solution under each of the following conditions:

(i) T is weakly v-coercive with respect to an s 2 int.C�C/ on K such that hs; yi � 0

for all y … � int.CC/;
(ii) T is v-coercive with respect to an s 2 int.C�C/ on K such that hs; yi � 0 for all

y … � int.CC/.
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Proof

(i) The result follows from Lemma 5.4 (i) and Theorem 5.16.
(ii) It clearly follows from (i). ut

5.3 Existence Results for Solutions of Vector Variational
Inequalities Without Monotonicity

The following example due to Huang and Fang [15] shows that the operator T in
WVVIP is not Cx-monotone, even then the correspondingWVVIP has a solution.

Example 5.13 Let X D R, K D Œ�
=2; 
=2�, Y D R2 and C.x/ D R2C for all
x 2 K. Let T W K ! L.X;Y/ be defined by

T.x/ D �
sin x cos x; sin2 x � x

�
; for all x 2 K:

Then T is continuous, but not Cx-monotone on K. However, 0 is a solution of the
correspondingWVVIP.

The above example motivates us to present some existence results for solutions
of vector variational inequality problems without any kind of monotonicity assump-
tion.

Theorem 5.19 Let X and Y be Hausdorff topological vector spaces and K be a
nonempty convex subset of X. Let C W K ! 2Y be a set-valued map such that for all
x 2 K, C.x/ is a closed convex pointed cone with int.C.x// ¤ ;, and W W K ! 2Y

be defined by W.x/ D Y n f� int.C.x//g such that the graph of W is closed in
K 	 Y. Let T W K ! L.X;Y/ be an operator such that for all y 2 K, the mapping
x 7! hT.x/; y�xi is continuous. Assume that for a nonempty compact convex subset
D � K with each x 2 K, there exists y 2 D such that hT.x/; y � xi 2 � int.C.x//.
Then there exists a solution Nx 2 K of WVVIP.

Proof Let A WD f.x; y/ 2 K 	 K W hT.x/; y � xi … � int.C.x//g. Then, it is clear that
.x; x/ 2 A for all x 2 K. We show that for all y 2 K, the set Ay WD fx 2 K W .x; y/ 2
Ag is closed. To this end, let fx˛g be a net in Ay converging to some x 2 K. Since
.x˛; y/ 2 A for each ˛, we have

hT.x˛/; y � x˛i … � int.C.x˛//;

equivalently,

hT.x˛/; y � x˛i 2 Y n f� int.C.x˛//g :
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By assumption hT.x˛/; y � x˛i converges to hT.x/; y � xi. Since the graph of W is
closed in K 	 Y, we have

hT.x/; y � xi 2 Y n f� int.C.x//g ; equivalently, hT.x/; y � xi … � int.C.x//:

Thus, x 2 Ay, and consequently, Ay is closed.
Finally, we show that for each x 2 K, the set Ax WD fy 2 K W .x; y/ … Ag is

convex. To this end, let y1; y2 2 Ax and �1 � 0; �2 � 0 with �1 C �2 D 1. As C.x/
is a convex cone, we have

hT.x/; �1.y1 � x/i 2 � int.C.x// and hT.x/; �2.y2 � x/i 2 � int.C.x//

which imply by the convexity of int.C.x// that

hT.x/; �1y1 C �2y2 � .�1 C �2/xi D hT.x/; �1y1 C �2y2 � xi 2 � int.C.x//I

hence, �1y1 C �2y2 2 Ax, and therefore, Ax is convex.
By invoking Lemma 1.17, there exists Nx 2 K such that fNxg 	K � A. This implies

that Nx 2 K and

hT.Nx/; y � Nxi … � int.C.Nx//; for all y 2 K

from which the result follows. ut
Lai and Yao [18] proved above theorem in the setting of Banach spaces X and Y

and compactness assumption on K.
In a similar manner as the proof of Theorem 5.19, we derive the following

existence result for a solution of VVIP.

Theorem 5.20 Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X and C W K ! 2Y be a set-valued map such that
for all x 2 K, C.x/ is a closed convex pointed cone. Let T W K ! L.X;Y/ be an
operator such that for all y 2 K, the set fx 2 K W hT.x/; y � xi … �C.x/ n f0gg is
closed. Assume that for a nonempty compact convex subset D � K with each x 2 K,
there exists y 2 D such that hT.x/; y� xi 2 �C.x/n f0g. Then there exists a solution
Nx 2 K of VVIP.

Proof Let A D f.x; y/ 2 K 	 K W hT.x/; y � xi … �C.x/ n f0gg. Then it is clear
that .x; x/ 2 A for all x 2 K. Since C.x/ is a convex cone, by using the similar
argument as in the proof of Theorem 5.19, we can show that for each x 2 K, the set
Ax WD fy 2 K W .x; y/ … Ag is convex. Rest of the proof lies on the lines of the proof
of Theorem 5.19. ut

Fang and Huang [9] proved Theorem 5.20 for a fixed cone C and in the setting
of a compact convex subset K of a Banach space X, but by using the method of
partition of unity. They presented the following example to show that the condition
“the set fx 2 K W hT.x/; y � xi … �C n f0g is closed for all y 2 K” is
nontrivial.
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Example 5.14 Let X D R, K D Œ0; 1�, Y D R2, C.x/ D R2C for all x 2 K and
f1; f2 W K ! R be continuous increasing functions such that f1.x/ > 0 and f2.x/ > 0
for all x 2 K, and

T.x/ D . f1.x/; f2.x// ; for all x 2 K:

Then, obviously, T W K ! L.X;Y/ is continuous and Cx-monotone. It can be easily
seen that for each y 2 K, fx 2 K W hT.x/; y � xi 2 �R

2C n f0gg D �y; 1� and so is
open in K, and hence, its complement is closed.

The following result provides the existence of a solution of SVVIP without any
kind of monotonicity assumption.

Theorem 5.21 Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X and C W K ! 2Y be a closed set-valued map such
that for all x 2 K, C.x/ is a closed convex pointed cone. Let T W K ! L.X;Y/
be an operator such that the mapping x 7! hT.x/; y � xi is continuous, and for
all x 2 K, the set fy 2 K W hT.x/; y � xi … C.x/g is convex. Assume that for a
nonempty compact convex subset D � K with each x 2 K, there exists y 2 D such
that hT.x/; y � xi … C.x/. Then there exists a solution Nx 2 K of SVVIP.

Proof Let A WD f.x; y/ 2 K 	 K W hT.x/; y � xi 2 C.x/g. Then it is clear that
.x; x/ 2 A for all x 2 K. Since C is a closed set-valued map, its graph must be
closed. Therefore, by using similar argument as in the proof of Theorem 5.19, we
can show that for each y 2 K, the set Ay WD fx 2 K W .x; y/ 2 Ag is closed. Rest of
the proof lies on the lines of the proof of Theorem 5.19. ut
Remark 5.10

(a) It can be easily seen that if the set K is compact in Theorems 5.19 – 5.21, then
the last assumption in these theorems is satisfied.

(b) If we consider L.X;Y/ as a topological vector space under the �-topology and
T W K ! L.X;Y/ is a continuous operator, then the mapping x 7! hT.x/; y � xi
is continuous in Theorems 5.19 and 5.21.

Indeed, by Lemma C.1, h:; :i is continuous. Since T is continuous, for each
y 2 K, the mapping x 7! hT.x/; y � xi is continuous as it is a composition of
two continuous functions.

Corollary 5.1 Let X and Y be Banach spaces and K be a nonempty convex subset of
X. Let T W K ! L.X;Y/ be a continuous operator, C W K ! 2Y be a set-valued map
such that for all x 2 K, C.x/ is a closed convex pointed cone with int.C.x// ¤ ;,
and W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g such that the graph G.W/
of W is closed in K 	 Y. Assume that for a nonempty compact convex subset D � K
with each x 2 K, there exists y 2 D such that hT.x/; y�xi 2 � int.C.x//. Then there
exists a solution Nx 2 K of WVVIP.

Proof In view of Theorem 5.19, it suffices to check that for each y 2 K, the mapping
x 7! hT.x/; y � xi is continuous. To this end, let y 2 K be arbitrary but fixed and let
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Ty W K ! Y be defined by

Ty.x/ D hT.x/; y � xi; for all x 2 K:

Let fx˛g be any net in K converging to some x 2 K. By the assumption, we have

kT.x˛/ � T.x/kL.X;Y/ ! 0:

Since the net fx˛g is convergent, it is bounded. Therefore,

jhT.x˛/� T.x/; y � x˛ij � kT.x˛/ � T.x/kL.X;Y/ky � x˛kX ! 0;

and hence, hT.x˛/ � T.x/; y � x˛i converges to 0 in Y.
On the other hand, as T.x/ 2 L.X;Y/, we have hT.x/; y � x˛i converges to

hT.x/; y � xi in Y. Consequently, the net

Ty.x˛/ D hT.x˛/; y � x˛i D hT.x˛/� T.y/; y � x˛i C hT.y/; y � x˛i

converges to hT.x/; y� xi D Ty.x/ in Y. Hence, the operator Ty is continuous. Thus,
the result follows from Theorem 5.19. ut

By using Theorem 5.21 and argument similar to Corollary 5.1, we have the
following result.

Corollary 5.2 Let X and Y be Banach spaces and K be a nonempty convex subset
of X. Let T W K ! L.X;Y/ be a continuous operator such that for all x 2 K, the set
fy 2 K W hT.x/; y � xi … C.x/g is convex. Let C W K ! 2Y be a closed set-valued
map such that for all x 2 K, C.x/ is a closed convex pointed cone. Assume that for
a nonempty compact convex subset D � K with each x 2 K, there exists y 2 D such
that hT.x/; y � xi … C.x/. Then there exists a solution Nx 2 K of SVVIP.

5.4 Applications to Vector Optimization

Since the invention of vector variational inequalities in 1980 by F. Giannessi, the
theory of vector variational inequalities became a powerful tool to study vector
optimization problems (VOP); See, for example, [1–3, 11, 12, 19, 20, 22, 23, 26]
and the references therein. In most of the papers appeared in the literature, the VOP
is studied by using Stampacchia vector variational inequality problems. In 1998,
Giannessi [11] established the necessary and sufficient conditions for a point to be
an efficient solution of VOP for differentiable and convex functions are that the
point to be a solution of Minty vector variational inequality problem. It was the first
paper in which a direct application of Minty vector variational inequality problem
to vector optimization problems is given. Later, Yang et al. [26] extended the results
of Giannessi [11] for differentiable but pseudoconvex functions.
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In this section, we present some necessary and sufficient conditions in terms
of Stampacchia vector variational inequality problems or Minty vector variational
inequality problems, for an efficient, weak efficient, properly efficient (in different
sense) solutions of vector optimization problems

5.4.1 Relations Between Vector Variational Inequalities
and Vector Optimization

Let X and Y be topological vector spaces and K be a nonempty subset of X. Let
C W K ! 2Y be a set-valued map such that for all x 2 K, C.x/ is a closed convex
pointed cone. We further assume that int.C.x// ¤ ; wherever int.C.x// is involved.
Let f W K ! Y be a vector-valued function. Recall the vector optimization problem
(VOP):

minimize f .x/; subject to x 2 K: (VOP)

Definition 5.9 Let K be a nonempty convex subset of X and f W K ! Y be
a Gâteaux differentiable function with Gâteaux derivative Df . Let x 2 K be an
arbitrary element. Then f is said to be:

(a) Cx-convex if for all y 2 K,

f .y/� f .x/ � hDf .x/; y � xi 2 C.x/I

(b) strictly Cx-convex if for all y 2 K,

f .y/ � f .x/ � hDf .x/; y � xi 2 int.C.x//I

(c) strongly Cx-pseudoconvex if for all y 2 K,

hDf .x/; y � xi 2 C.x/ implies f .y/ � f .x/ 2 C.x/I

(d) Cx-pseudoconvex if for all y 2 K,

hDf .x/; y � xi … �C.x/ n f0g implies f .y/ � f .x/ … �C.x/ n f0gI

(e) weakly Cx-pseudoconvex if for all y 2 K,

hDf .x/; y � xi … � int.C.x// implies f .y/� f .x/ … � int.C.x//:

If C.x/ is a fixed closed convex pointed cone P with int.P/ ¤ ;, then Cx-
convexity, strictly Cx-convexity, strongly Cx-pseudoconvexity, Cx-pseudoconvexity
and weakly Cx-pseudoconvexity are called P-convexity, strictly P-convexity,
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strongly P-pseudoconvexity, P-pseudoconvexity and weakly P-pseudoconvexity,
respectively.

The following results provide the relation between the solutions of VVIP and
VOP.

Theorem 5.22 Let K be a nonempty convex subset of X and f W K ! Y be a
Gâteaux differentiable vector-valued function with Gâteaux derivative Df .

(a) If Nx 2 K is a dominated strongly efficient solution of VOP, then it is a solution
of SVVIP (5.1) with T.Nx/ D Df .Nx/.

(b) If for all x 2 K, f is strongly Cx-pseudoconvex and Nx is a solution of SVVIP (5.1)
with T.Nx/ D Df .Nx/, then Nx is a dominated strongly efficient solution of VOP.

Proof

(a) Let Nx 2 K be a dominated strongly efficient solution of VOP. Then

f .y/ � f .Nx/ 2 C.Nx/; for all y 2 K:

Since K is convex, Nx C �.y � Nx/ 2 K for all � 2 Œ0; 1�, and therefore, we have

f .Nx C �.y � Nx//� f .Nx/ 2 C.Nx/; for all � 2 Œ0; 1�:

Since C.x/ is a closed cone for all x 2 K, we have

f .Nx C �.y � Nx// � f .Nx/
�

2 C.Nx/; for all � 2 �0; 1�:

By the definition of Gâteaux derivative, we have

hDf .Nx/; y � Nxi D lim
�!0C

f .Nx C �.y � Nx//� f .Nx/
�

2 C.Nx/:

Thus, Nx 2 K is a solution of SVVIP (5.1) with T.Nx/ D Df .Nx/.
(b) Let Nx be a solution of SVVIP (5.1) with T.Nx/ D Df .Nx/. Then

hDf .Nx/; y � Nxi 2 C.Nx/; for all y 2 K:

By using strongCx-pseudoconvexity of f , we obtain the desired conclusion. ut
If Nx 2 K is a dominated efficient solution of VOP, then Nx may not be a solution

of VVIP (5.2) with T.Nx/ D Df .Nx/ as shown in the following example.

Example 5.15 Let X D R, K D Œ�1; 0�, Y D R2 and C.x/ D R2C for all x 2 K. Let
f W K ! L.X;Y/ be defined by

f .x/ D .x; x2/; for all x 2 K:
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Then every Nx 2 K is an efficient solution of VOP. But Nx D 0 is not a solution of
VVIP (5.2) with T.Nx/ D Df .Nx/. Indeed, let Nx D 0. Then, for y D �1, we have

hDf .Nx/; y � xi D .�1; 0/ 2 �R
2C n f0g:

Hence, Nx D 0 is not a solution of VVIP (5.2) with T.Nx/ D Df .Nx/.
However, by using the Cx-pseudoconvexity, we obtain the following result.

Theorem 5.23 Let K be a nonempty convex subset of X and f W K ! Y be a
Gâteaux differentiable vector-valued function with Gâteaux derivative Df . If for all
x 2 K, f is Cx-pseudoconvex and Nx 2 K is a solution of VVIP (5.2) with T.Nx/ D
Df .Nx/, then it is a dominated efficient solution of VOP.

Theorem 5.24 Let K be a nonempty convex subset of X and f W K ! Y be a
Gâteaux differentiable vector-valued function with Gâteaux derivative Df .

(a) If Nx 2 K is a dominated weakly efficient solution of VOP, then it is a solution of
WVVIP (5.3) with T.Nx/ D Df .Nx/.

(b) If for all x 2 K, T is weakly Cx-pseudoconvex and Nx 2 K is a solution of
WVVIP (5.3)with T.Nx/ D Df .Nx/, then it is a dominated weakly efficient solution
of VOP.

Proof

(a) Let Nx 2 K be a dominated weakly efficient solution of VOP. Then,

f .y/� f .Nx/ … � int.C.Nx//; for all y 2 K:

Since K is convex, Nx C �.y � Nx/ 2 K for all � 2 Œ0; 1�, and therefore, we have

f .Nx C �.y � Nx//� f .Nx/ … � int.C.Nx//; for all � 2 Œ0; 1�;

that is,

f .Nx C �.y � Nx// � f .Nx/ 2 W.Nx/ D Y n f� int.C.Nx//g ; for all � 2 Œ0; 1�:

Since W.x/ is a closed cone for all x 2 K, we have

f .Nx C �.y � Nx//� f .Nx/
�

2 W.Nx/; for all � 2 �0; 1�:

Then

hDf .Nx/; y � Nxi D lim
�!0C

f .Nx C �.y � Nx//� f .Nx/
�

2 W.Nx/;
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and hence,

hDf .Nx/; y � Nxi … � int.C.Nx//; for all y 2 K:

Therefore, Nx 2 K is a solution of WVVIP (5.3) with T.Nx/ D Df .Nx/.
(b) It directly follows from the definition of weakly Cx-pseudoconvexity of f . ut
Theorem 5.25 Let K be a nonempty convex subset of X and f W K ! Y be Gâteaux
differentiable with Gâteaux derivative Df such that .�f / is Cx-strictly convex for all
x 2 K, that is,

f .y/ � f .x/ � hDf .x/; y � xi 2 � int.C.x//; for all y 2 K: (5.25)

Then every dominated weak efficient solution of VOP is a solution of VVIP (5.2)
with T.Nx/ D Df .Nx/.
Proof Assume that Nx is a dominated weakly efficient solution of VOP but not a
solution of VVIP (5.2) with T.Nx/ D Df .Nx/. Then there exists y 2 K such that

hDf .Nx/; y � Nxi 2 �C.Nx/ n f0g: (5.26)

Combining (5.25) and (5.26), we obtain

f .y/ � f .Nx/ 2 � int.C.Nx//;

a contradiction to our assumption that Nx is a dominated weak efficient solution of
VOP. Hence, Nx is a solution of VVIP with T.Nx/ D Df .Nx/. ut
Corollary 5.3 Let K be a nonempty convex subset of X and f W K ! Y be Gâteaux
differentiable with Gâteaux derivative Df such that .�f / is Cx-strictly convex for all
x 2 K. Then every dominated efficient solution of VOP is a solution of VVIP (5.2)
with T.Nx/ D Df .Nx/.
Theorem 5.26 Let K be a nonempty convex subset of X. For all x 2 K, let f W K !
R` be strictly Cx-convex function. Then every dominated weakly efficient solution of
VOP is a dominated efficient solution of VOP.

Proof Assume that Nx is a dominated weakly efficient solution of VOP, but not
dominated efficient solution of VOP. Then there exists y 2 K such that

f .y/� f .Nx/ 2 �C.Nx/ n f0g: (5.27)

Since f is strictly Cx-convex, we have

hDf .Nx/; y � Nxi � f .y/C f .Nx/ 2 � int.C.Nx//: (5.28)
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By combining (5.27) and (5.28), we obtain

hDf .Nx/; y � Nxi 2 � int.C.Nx//:

Thus, Nx is not a solution of WVVIP with T.Nx/ D Df .Nx/. By using Theorem 5.24 (a),
we see that Nx is not a dominated weak efficient solution of VOP, a contradiction to
our assumption. ut

Finally, we present the relationship between a solution of VVIP (5.2) and a
dominated properly efficient solution (in the sense of Henig) of VOP.

Theorem 5.27 Let K be a nonempty convex subset of X and f W K ! Y be Gâteaux
differentiable with Gâteaux derivative Df . If Nx 2 K is a dominated properly efficient
solution (in the sense of Henig) of VOP, then it is a solution of VVIP (5.2) with
T.Nx/ D Df .Nx/.
Proof Since Nx 2 K is a dominated properly efficient solution of VOP, there is a
set-valued map D W K ! 2Y such that for all x 2 K, D.x/ is a convex cone and
C.x/ n f0g � int.D.x//, and

f .y/ � f .Nx/ … �D.Nx/ n f0g; for all y 2 K:

Since � int.D.x// � �D.x/ n f0g, we have

f .y/ � f .Nx/ … � int.D.Nx//; for all y 2 K:

As in the proof of Theorem 5.24 (a), it follows that

hDf .Nx/; y � Nxi … � int.D.Nx//; for all y 2 K:

Since C.x/ n f0g � int.D.x// for all x 2 K, we obtain the desired result. ut

5.4.2 Relations Between Vector Variational Inequalities
and Vector Optimization in Finite Dimensional Spaces

Throughout this section, unless otherwise specified, we assume thatK is a nonempty
convex subset of Rn.

Let us write down the formulation of (Stampacchia) vector variational inequality
problems and Minty vector variational inequality problem in finite dimensional
setting.

For each i D 1; 2; : : : ; `, let Ti W K ! Rn be a vector-valued function such that
T D .T1;T2; : : : ;T`/ W K ! R`�n is a matrix-valued function. For abbreviation,
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we put

hT.x/; vi` WD .hT1.x/; vi; : : : ; hT`.x/; vi/ ; for all x 2 K and all v 2 R
n:

The (Stampacchia) vector variational inequality problems and Minty vector varia-
tional inequality problems can be written in the following forms:

• (VVIP): Find Nx 2 K such that

hT.Nx/; y � Nxi` … �R
`C n f0g; for all y 2 K: (5.29)

• (WVVIP): Find Nx 2 K such that

hT.Nx/; y � Nxi` … � int
�
R
`C
�
; for all y 2 K; (5.30)

• (MVVIP): Find Nx 2 K such that

hT.y/; y � Nxi` … �R
`C n f0g; for all y 2 K: (5.31)

• (MWVVIP): Find Nx 2 K such that

hT.y/; y � Nxi` … � int
�
R
`C
�
; for all y 2 K: (5.32)

If T.x/ D rf .x/ D .rf1.x/; : : : ;rf`.x//, then the inclusion relations (5.29)
and (5.30), (5.31) and (5.32) reduce to the following inclusion relations, respec-
tively:

�hrf1.Nx/; y � Nxi; : : : ; hrf`.y/; y � Nxi� … �R
`C n f0g; for all y 2 K;

�hrf1.Nx/; y � Nxi; : : : ; hrf`.y/; y � Nxi� … � int
�
R
`C
�
; for all y 2 K;

�hrf1.y/; y � Nxi; : : : ; hrf`.y/; y � Nxi� … �R
`C n f0g; for all y 2 K;

and

�hrf1.y/; y � Nxi; : : : ; hrf`.y/; y � Nxi� … � int
�
R
`C
�
; for all y 2 K:

If each component fi W K ! R of a vector-valued function f D .f1; f2; : : : ; f`/ W
K ! R` is convex, then f is R`C-convex. Therefore, all the results in the previous
subsection hold if we consider each fi is convex.

As we have seen in Example 5.15, an efficient solution of VOP may not be a
solution of VVIP (5.2) with T.Nx/ D Df .Nx/. However, Giannessi [11] showed that
every efficient solution of VOP is a solution of MVVIP (5.8) with T.Nx/ D Df .Nx/ and
vice-versa if the underlying objective function is convex. It is further generalized by
Yang et al. [26] for pseudoconvex functions and obtained the following result.
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Theorem 5.28 (Giannessi) For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be
pseudoconvex and differentiable on an open set containing K such that for all x 2 K,
rf .x/ D .rf1.x/; : : : ;rf`.x// D T.x/. Then Nx 2 K is an efficient solution of VOP
if and only if it is a solution of MVVIP (5.31).

Proof Let Nx 2 K be a solution of MVVIP but not an efficient solution of VOP. Then
there exists z 2 K such that

f .z/ � f .Nx/ D . f1.z/ � f1.Nx/; : : : ; f`.z/ � f`.Nx// 2 �R
`C n f0g: (5.33)

Since K is convex, z.�/ WD �z C .1 � �/Nx 2 K for all � 2 Œ0; 1�. Also since each
fi is pseudoconvex, it follows from Theorem 1.21 that each fi is both semistrictly
quasiconvex and quasiconvex. Thus, by (5.33), we have

f .z.�// � f .Nx/ D . f1.z.�// � f1.Nx/; : : : ; f`.z.�// � f`.Nx//
2 �R

`C n f0g; for all � 2 �0; 1Œ; (5.34)

that is,

f .z.�// � f .z.0// D . f1.z.�// � f1.z.0//; : : : ; f`.z.�// � f`.z.0/// 2 �R
`C n f0g;

(5.35)

for all � 2 �0; 1Œ, and so,
fi.z.�// � fi.z.0// � 0; for all � 2 �0; 1Œ; (5.36)

with strict inequality holds for some k such that 1 � k � `.
By Mean Value Theorem, there exist �i 2 �0; 1Œ such that

d

d�
fi.z.�i// D fi.z.�// � fi.z.0//

�
:

Thus,

hrfi.z.�i//; z � Nxi D fi.z.�// � fi.z.0//

�
� 0; (5.37)

for all � 2 �0; 1Œ and for each i D 1; 2; : : : ; ` with strict inequality holds for some
1 � k � `. Thus,

�hrf1.z.�1//; z � Nxi; : : : ; hrf`.z.�`//; z � Nxi� 2 �R
`C n f0g;

that is,

hrfi.z.�i//; z � Nxi � 0; for each i D 1; 2; : : : ; `; (5.38)

and one of which becomes a strict inequality.
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Suppose that �1; �2; : : : ; �` are all equal. Then by (5.38) and the fact that z.�i/�
Nx D �i.z � Nx/, we have

hrfi.z.�i//; z.�i/� Nxi D �ihrfi.z.�i//; z � Nxi � 0;

for all �i 2 �0; 1Œ and for each i 2 I with one of which becomes a strict inequality.
Therefore,

�hrf1.z.�1//; z.�1/ � Nxi; : : : ; hrf`.z.�`//; z.�`/ � Nx/i� 2 �R
`C n f0g

which contradicts to our supposition that Nx is a solution of MVVIP (5.31).
Consider the case when �1; �2; : : : ; �` are not equal. Let �1 ¤ �2.
If �1 < �2, then by inequality (5.38) and using the fact that z.�2/ � z.�1/ D

.�2 � �1/.z � Nx/, we have

hrf2.z.�2//; z.�2/� z.�1/i D .�2 � �1/hrf2.z.�2//; z � Nxi � 0; (5.39)

with strict inequality for k D 2. Since each fi is pseudoconvex, by Theorem 1.27,
rfi is pseudomonotone, and thus, we have

hrf2.z.�1//; z.�2/� z.�1/i � 0

with strict inequality for k D 2. Thus,

hrf2.z.�1//; z � Nxi � 0;

with strict inequality for k D 2.
If �1 > �2, then again by using the same argument as above, we have

hrf1.z.�1//; z.�1/ � z.�2/i D .�1 � �2/hrf1.z.�1//; z � Nxi � 0;

with strict inequality for k D 1. Since each rfi is pseudomonotone, we have

hrf1.z.�2//; z.�1/ � z.�2/i � 0;

and therefore,

hrf1.z.�2//; z � Nx/i � 0;

with strict inequality for k D 1.
For the case �1 ¤ �2, let N� D minf�1; �2g. Then, we have

hrfi.z. N�//; z � Nxi � 0; for i D 1; 2:
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By continuing this process, we can find �� 2 �0; 1Œ such that

hrfi.z.�
�//; z � Nxi � 0; for i D 1; 2; : : : ; `;

with strict inequality for some k such that 1 � k � `. Multiplying above inequality
by �� and using the fact that Nx � z.��/ D ��.z � Nx/, we obtain

hrfi.z.�
�//; Nx � z.��/i D ��hrfi.z.�

�//; z � Nxi � 0; for i D 1; 2; : : : ; `;

with strict inequality for some k such that 1 � k � `, that is,

�hrf1.z.�
�//; z.��/� Nxi; : : : ; hrf`.z.�

�//; z.��/ � Nxi� 2 �R
`C n f0g

which contradicts to our supposition that Nx is a solution of MVVIP (5.31).
Conversely, let Nx 2 K be a solution of VOP. Assume contrary that there exists

Oy 2 K such that

hF.Oy/; Oy � Nxi` D �hrf1.Oy/; Oy � Nxi; : : : ; hrf`.Oy/; Oy � Nxi� 2 �R
`C n f0g; (5.40)

that is,

hrfi.Oy/; Nx � Oyi � 0; for each i D 1; 2; : : : ; `;

with one of which inequality becomes strict. Since each fi is pseudoconvex, we
deduce that for each i 2 I ,

fi.Nx/ � fi.Oy/: (5.41)

Let j 2 I be such that hrfi.Oy/; Nx � Oyi > 0. Since each fi is pseudoconvex, therefore
by Theorem 1.21, it is quasiconvex as well as semistrictly quasiconvex. Thus, by
Theorem 1.18, we have

fj.Nx/ > fj.Oy/: (5.42)

Combining (5.41) and (5.42), we have

. f1.Oy/ � f1.Nx/; : : : ; f`.Oy/� f`.Nx// 2 �R
`C n f0g

which is a contradiction to our assumption. ut
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Chapter 6
Linear Scalarization of Vector Variational
Inequalities

This chapter deals with linear scalarization techniques for vector variational inequal-
ity problems and Minty vector variational inequality problems. Such concepts
are important for deriving numerical algorithms for solving vector variational
inequalities.

For each given ` 2 N, we denote by R`C the non-negative orthant of R`, that is,

R
`C D ˚

x D .x1; x2; : : : ; x`/ 2 R
` W xi � 0; for i D 1; 2; : : : ; `

�
;

so that R`C has a nonempty interior with the topology induced in terms of
convergence of vectors with respect to the Euclidean metric. That is,

int.R`C/ D ˚
x D .x1; x2; : : : ; x`/ 2 R

` W xi > 0; for i D 1; 2; : : : ; `
�
:

We denote by T
`C and int.T`C/ the simplex of R

`C and its relative interior,
respectively, that is,

T
`C D

(

x D .x1; x2; : : : ; x`/ 2 R
`C W kxk D

X̀

iD1
xi D 1

)

;

and

int.T`C/ D
(

x D .x1; x2; : : : ; x`/ 2 int.R`C/ W kxk D
X̀

iD1
xi D 1

)

:

e denotes the unit vector in R`, that is, e D .1; 1; : : : ; 1/.
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Let K be a nonempty convex subset of Rn. For each i D 1; 2; : : : ; `, let Ti W K !
Rn be a vector-valued function such that T D .T1;T2; : : : ;T`/ W K ! R`�n is a
matrix-valued function. For abbreviation, we put

hT.x/; vi` WD .hT1.x/; vi; : : : ; hT`.x/; vi/ ; for all x 2 K and all v 2 R
n:

Let us define the vector variational inequality problem and weak vector varia-
tional inequality problem in these settings.

• Vector Variational Inequality Problem (in short, FVVIP): Find Nx 2 K such that
for all y 2 K

hT.Nx/; y � Nxi` WD .hT1.Nx/; y � Nxi; : : : ; hT`.Nx/; y � Nxi/ … �R
`C n f0g: (6.1)

• Weak Vector Variational Inequality Problem (in short, FWVVIP): Find Nx 2 K
such that for all y 2 K

hT.Nx/; y � Nxi` WD .hT1.Nx/; y � Nxi; : : : ; hT`.Nx/; y � Nxi/ … �int.R`C/: (6.2)

We denote the solution set of FVVIP and FWVVIP by Sol(FVVIP) and
Sol(FWVVIP), respectively.

Let W D .W1;W2; : : : ;W`/ 2 R`C n f0g be arbitrary. The weighted variational
inequality problem (in short, WVIP) consists of finding Nx 2 K w. r. t. the weight
vectorW D .W1;W2; : : : ;W`/ 2 R`C n f0g such that

W � hT.Nx/; y � Nxi` WD
X̀

iD1
WihTi.Nx/; y � Nxi � 0; for all y 2 K: (6.3)

The solution set of WVIP is denoted by Sol(WVIP).
If W 2 T`C, then the solution of WVIP is called normalized. The set of

normalized solutions of WVIP is denoted by Sol(WVIP)n.
The following lemmas show the relationship among Sol(FVVIP), Sol(FWVVIP)

and Sol(WVIP).

Lemma 6.1 For any given weight vector W D .W1;W2; : : : ;W`/ 2 int.R`C/
(respectively, W D .W1;W2; : : : ;W`/ 2 R`C n f0g), Sol(WVIP) � Sol(FVVIP)
(respectively, Sol(WVIP) � Sol(FWVVIP)).

Proof Let Nx 2 Sol(WVIP) w. r. t. the weight vector W 2 int.R`C/ (respectively,
W 2 R`C n f0g) but Nx … Sol(FVVIP) (respectively, Nx … Sol(FWVVIP)). Then, there
would exist some y 2 K such that

hT.Nx/; y � Nxi` D †T1.Nx; y � Nxi; : : : ; hT`.Nx; y � Nxi 2 �R
`C n f0g; for all y 2 K

�
hT.Nx/; y � Nxi` D †T1.Nx; y � Nxi; : : : ; hT`.Nx; y � Nxi 2 �int.R`C/; for all y 2 K

�
:
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SinceW 2 int.R`C/ (respectively,W 2 R`C n f0g), we have

W � hT.Nx/; Nx � yi` D
X̀

iD1
WihTi.Nx/; y � Nxi > 0;

that is,

W � hT.Nx/; y � Nxi` < 0;
which contradicts our assumption that Nx 2 K is a solution of WVIP. Hence, Nx 2 K
is a solution of FVVIP (respectively, FWVVIP). ut
Lemma 6.2 If Nx is a solution of FWVVIP, then there exists a weight vector W D
.W1;W2; : : : ;W`/ 2 R

`C n f0g such that Nx 2 Sol(WVIP) w. r. t. W.

Proof Let Nx 2 Sol(FWVVIP). Then,

fhT.Nx/; y � Nxi` W y 2 Kg \ f�int.R`C/g D ;:
So, by a separation theorem, there existsW 2 R

`C n f0g such that

inf
y2K W � hT.Nx/; y � Nxi` � sup

v2�int.R`
C
/

W � v:

This implies that W 2 R`C n f0g. Then, the right-hand side of the above inequality
is 0, and therefore,W � hT.Nx/; y � Nxi` � 0 for all y 2 K. Hence, Nx 2 K is a solution
of WVIP. ut

By combining Lemma 6.1 and L:5.6.2, we have the following relations in terms
of Cheng [2] and Lee et al. [4].

Remark 6.1

(a)
[

W2int.R`
C
/

Sol(WVIP) � Sol(VVIP) � Sol(WVVIP)

D
[

W2R`
C

nf0g
Sol(WVIP).

(b) Since the solution set Sol(WVIP) of the WVIP w. r. t. the weight vector W 2
R
`C n f0g is equal to the solution set of the WVIP w. r. t. the weight vector ˛W,

for any ˛ > 0, the above inclusion can be rewritten as

[

W2int.T`i
C
/

Sol(WVIP) � Sol(VVIP) � Sol(WVVIP) D
[

W2T`i
C

Sol(WVIP):

(c) Cheng [2] and Lee et al. [4] studied the nonemptyness, compactness, convexity
and connectedness of the solution set Sol(WVIP).
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As we have seen in Chap. 5, theMinty vector variational inequalities are useful to
establish the existence of a solution for (Stampacchia) vector variational inequalities
and also have their own importance while dealing with vector optimization prob-
lems. Therefore, we consider the following Minty weighted variational inequality
problem.

Let W D .W1;W2; : : : ;W`/ 2 R`C n f0g be arbitrary. The Minty weighted
variational inequality problem (in short, MWVIP) consists in finding Nx 2 K w.
r. t. the weight vectorW D .W1;W2; : : : ;W`/ 2 R`C n f0g such that

W � hT.y/; y � Nxi` WD
X̀

iD1
WihTi.y/; y � Nxi � 0; for all y 2 K: (6.4)

The solution set of MWVIP is denoted by Sol(MWVIP).
It can be easily seen that the solution set Sol(MWVIP) is convex for every W 2

R`C n f0g.
The following lemmas show that the relationship among Sol(FVVIP),

Sol(FWVVIP) and Sol(WVIP).

Lemma 6.3 For any given weight vector W D .W1;W2; : : : ;W`/ 2 int.R`C/
(respectively, W D .W1;W2; : : : ;W`/ 2 R`C n f0g), Sol(MWVIP) � Sol(FMVVIP)
(respectively, Sol(MWVIP) � Sol(FMWVVIP)).

Proof Let Nx 2 Sol(MWVIP) w. r. t. the weight vector W 2 int.R`C/ (respectively,
W 2 R`C n f0g) but Nx … Sol(FVVIP) (respectively, Nx … Sol(FWVVIP)). Then, there
would exist some y 2 K such that

hT.Nx/; y � Nxi` 2 �R
`C n f0g; for all y 2 K

�
hT.Nx/; y � Nxi` 2 �int.R`C/; for all y 2 K

�
:

SinceW 2 int.R`C/ (respectively,W 2 R`C n f0g), we have

W � hT.Nx/; Nx � yi` D
X̀

iD1
WihTi.Nx/; y � Nxi > 0;

that is,

W � hT.Nx/; y � Nxi` < 0;

which contradicts our assumption that Nx 2 K is a solution of WVIP. Hence, Nx 2 K
is a solution of FVVIP (respectively, FWVVIP). ut
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In general, we have

[

W2int.R`
C
/

Sol(WMVIP) � Sol(MVVIP) � Sol(MWVVIP)

D
[

W2R`
C

nf0g
Sol(MWVIP):

Definition 6.1 LetW D .W1;W2; : : : ;Wn/ 2 R`Cnf0g be a weight vector. Amatrix-
valued function T D .T1;T2; : : : T`/ W K ! R`�n is said to be

(a) weighted monotone w. r. t. the weight vector W if for all x; y 2 K, we have

W � hT.x/ � T.y/; x � yi` � 0;

and weighted strictly monotone w. r. t. the weight vector W if the inequality is
strict for all x ¤ y;

(b) weighted pseudomonotone w. r. t. the weight vector W if for all x; y 2 K, we
have

W � hT.x/; y � xi` � 0 ) W � hT.y/; y � xi` � 0;

and weighted strictly pseudomonotone w. r. t. the weight vector W if the second
inequality is strict for all x ¤ y;

(c) weighted maximal pseudomonotone w. r. t. the weight vector W if it is weighted
pesudomonotone and for all x; y 2 K, we have

W � hT.z/; z � xi` � 0 8z 2 �x; y� ) W � hT.x/; y � xi � 0; (6.5)

and weighted maximal strictly pseudomonotone w. r. t. the weight vector W if it
is weighted strictly pseudomonotone and (6.5) holds.

It can easily seen that if each Ti is monotone, then T is weighted monotone w. r.
t. the any weight vectorW 2 R`C n f0g.
Definition 6.2 Let W D .W1;W2; : : : ;Wn/ 2 R

`C n f0g be a weight vector. A
matrix-valued function T D .T1;T2; : : : ;T`/ W K ! R`�n is said to be weighted
hemicontinuous w. r. t. the weight vector W if for all x; y 2 K and � 2 Œ0; 1�, the
mapping � 7! P`

iD1Wi � hTi.x C �.y � x//; y � xi is continuous.
If each Ti is continuous, then T is continuous, and hence, T is hemicontinuous.

Proposition 6.1 Let W D .W1;W2; : : : ;Wn/ 2 R`C n f0g be a weight vector and
T D .T1;T2; : : : ;T`/ W K ! R

`�n be weighted hemicontinuous and weighted
pseudomonotone w. r. t. the weight vector W D .W1;W2; : : : ;Wn/ 2 R

`C n f0g.
Then, T is weighted maximal pseudomonotone w. r. t. the same weight vector
W D .W1;W2; : : : ;Wn/ 2 R

`C n f0g.
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Proof Assume that for all x; y 2 K,

W � hT.z/; z � xi` � 0; for all z 2 �x; y�:

Then,

W � hT.x C �.y � x//; y � .x C �.y � x//i` � 0; for all � 2 �0; 1�

which implies that

W � hT.x C �.y � x//; y � xi` � 0; for all � 2 �0; 1�:

By the weighted hemicontinuity of T, we have

W � hT.y/; y � xi` � 0:

Hence, T is weighted maximal pseudomonotone w. r. t. the weight vectorW. ut
The following lemma can be viewed as a generalization of the Minty lemma

(see, [3]).

Lemma 6.4 Let W D .W1;W2; : : : ;Wn/ 2 R
`C n f0g be a weight vector and T D

.T1;T2; : : : ;T`/ W K ! R`�n be weighted maximal pseudomonotone w. r. t. the
weight vector W D .W1;W2; : : : ;Wn/ 2 R`C nf0g. Then, Sol(WVIP) = Sol(MWVIP).

Proof It is obvious that Sol(WVIP) � Sol(MWVIP) by the weighted pseudomono-
tonicity of T.

Let Nx 2 Sol(MWVIP), then

W � hT.y/; y � Nxi` � 0; for all y 2 K:

Since K is convex, we have �Nx; y� � K, and therefore,

W � hT.z/; z � Nxi` � 0; for all z 2 �Nx; y�:

By the weighted maximal pseudomonotonicity of T, we have

W � hT.Nx/; y � Nxi` � 0; for all y 2 K:

This shows that Nx 2 Sol(WVIP), and hence, Sol(WVIP) = Sol(MWVIP). ut
Remark 6.2 In view of Proposition 6.1 and Lemma 6.4, we have that if T is
weighted hemicontinuous and weighted pseudomonotone w. r. t. the same weight
vectorW D .W1;W2; : : : ;Wn/ 2 R

`C n f0g, then Sol(WVIP) = Sol(MWVIP).
However, Charitha et al. [1] proved that Sol(WVIP) = Sol(MWVIP) if each Ti,

i D 1; 2; : : : ; ` is continuous and monotone.
We now have some existence results for solutions of WVIP.
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Theorem 6.1 Let W D .W1;W2; : : : ;Wn/ 2 R`C n f0g be a weight vector and K be
a nonempty convex subset of Rn. Let T D .T1;T2; : : : ;T`/ W K ! R`�n be weighted
maximal pseudomonotone w. r. t. W D .W1;W2; : : : ;Wn/ 2 R`C n f0g. Assume that
there exist a nonempty, closed and compact subset D of K and Qy 2 D such that for
each x 2 K nD, W � hT.x/; y� xi` < 0. Then, there exists a solution Nx 2 K of WVIP.

Proof For each x 2 K, define set-valued maps F;G W K ! 2K by

F.x/ D fy 2 K W W � hT.y/; y � xi` < 0g

and

G.x/ D fy 2 K W W � hT.x/; y � xi` < 0g:

Then, it is clear that for each x 2 K,G.x/ is convex. By weighted pseudomonotonic-
ity of T, we have F.x/ � G.x/ for all x 2 K.

For each y 2 K, the complement of F�1.y/ in K is

ŒF�1.y/�c D fx 2 K W W � hT.y/; y � xi` � 0g

is closed in K, and hence, F�1.y/ is open in K. Therefore,F�1.y/ is compactly open.
Assume that for all x 2 K, F.x/ is nonempty. Then all the conditions of

Theorem 1.36 are satisfied, and therefore, there exists Ox 2 K such that Ox 2 G.Ox/. It
follows that

0 D W � hT.Qx/; Qx � Qxi < 0;

a contradiction. Hence, there exists Nx 2 K such that F.Nx/ D ;. This implies that for
all y 2 K,

W � hT.y/; y � Nxi` � 0;

that is, there exists Nx 2 K w. r. t. the weight vector W D .W1;W2; : : : ;W`/ 2
R`C n f0g such that

W � hT.y/; y � Nxi` � 0; for all y 2 K:

By Lemma 6.4, Nx 2 K is a solution of WVIP. ut
Remark 6.3 In view of Remark 6.2, the assumption that T is weighted maximal
monotone in Theorem 6.1 can be replaced by weighted hemicontinuous and
weighted pseudomonotone w. r. t.W.

Remark 6.4 In Theorem 6.1, if T is weighted maximal strictly pseudomonotone
w. r. t. W, then solution of WVIP is unique.
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Indeed, assume that there exist two solutions x0 and x00 of WVIP. Then, we have

W � hT.x00/; x0 � x00i` � 0:

By the weighted strictly pseudomonotonicity of T, we have

W � hT.x0/; x0 � x00 � i` > 0; i.e. W � hT.x0/; x00 � x0i` < 0;

that is, x0 is not a solution of WVIP, a contradiction.
Now we present the definition of weighted B-pseudomonotonicity.

Definition 6.3 Let W D .W1;W2; : : : ;Wn/ 2 R`C n f0g be a weight vector. A
matrix-valued function T D .T1;T2; : : : ;T`/ W K ! R`�n is said to be weighted
B-pseudomonotonew. r. t. the weight vector W if for each x 2 K and every sequence
fxmgm2N in K converging to x with

lim sup
m!1

W � hT.xm/; x � xmi` � 0;

we have

lim sup
m!1

W � hT.xm/; y � xmi � W � hT.x/; y � xi; for all y 2 K:

Theorem 6.2 Let W D .W1;W2; : : : ;Wn/ 2 R`C n f0g be a weight vector and K be
a nonempty convex subset of Rn. Let T D .T1;T2; : : : ;T`/ W K ! R`�n be weighted
B-pseudomonotone w. r. t. W such that for each A 2 F .K/, x 7! W � hT.x/; y � xi`
is lower semicontinuous on coA. Assume that there exist a nonempty, closed and
compact subset D of K and Qy 2 D such that for all x 2 K nD, W � hT.x/; Qy� xi` < 0.
Then, there exists a solution Nx 2 K of WVIP.

Proof For each x 2 K, let G W K ! 2K be defined by

G.x/ D fy 2 K W W � hT.x/; y � xi` < 0g:

Then, for all x 2 K, G.x/ is convex. Let A 2 F .K/, then for all y 2 coA,

ŒG�1.y/�c \ coA D fx 2 coA W W � hT.x/; y � xi` � 0g

is closed in coA by lower semicontinuity of the map x 7! W � hT.x/; y � xi` on coA.
Hence G�1.y/

T
coA is open in coA.

Suppose that x; y 2 coA and fxmgm2N is a sequence in K converging to x such that

W � hT.xm/; .˛x C .1 � ˛/y/ � xmi` � 0; for all m 2 N and all ˛ 2 Œ0; 1�:
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For ˛ D 0, we have

W � hT.xm/; x � xmi` � 0; for all m 2 N;

and therefore,

lim sup
m!1

W � hT.xm/; x � xmi` � 0:

By the weighted B-pseudomonotonicity of T, we have

lim sup
m!1

W � hT.xm/; y � xmi` � W � hT.x/; y � xi`: (6.6)

For ˛ D 1, we have

W � hT.xm/; y � xmi � 0; for all m 2 N;

and therefore,

lim sup
m!1

W � hT.xm/; y � xmi` � 0: (6.7)

From (6.6) and (6.7), we get

W � hT.x/; y � xi` � 0;

and thus y … G.x/.
Assume that for all x 2 K, G.x/ is nonempty. Then all the conditions of

Theorem 1.36 are satisfied. The rest of the proof follows the lines of the proof of
Theorem 6.1. ut

Some existence results for solutions of WVIP have been studied in [4] under
strong monotonicity and Lipschitz continuity of each Ti and in [1] under continuity
and monotonicity each Ti.
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Chapter 7
Nonsmooth Vector Variational Inequalities

We have seen in Chap. 5 that if the objective function of a vector optimization
problem is smooth (that is, differentiable), then its solution, namely, weak efficient
solution, strong efficient solution, efficient solution, properly efficient solution, can
be characterized by the corresponding vector variational inequality problems. If
the objective function is not smooth but it has some kind of directional derivative,
namely, (upper or lower) Dini directional derivative, Clarke directional derivative,
Dini-Hadamard directional derivative, etc., then the vector variational inequality
problems studied in Chap. 5 would not be useful, and therefore, we need to define
different kinds of vector variational inequality problems by means of bifunctions,
called nonsmooth vector variational inequality problems. In the formulation of
nonsmooth vector variational inequality problems, we consider different kinds of
directional derivatives as a bifunction. For a comprehensive study of different kinds
of directional derivatives and nonsmooth (scalar) variational inequalities, we refer
the recent book [2]. Some recent papers on this topic are [1, 5, 7–9].

In this chapter, we define different kinds of nonsmooth vector variational
inequality problems by means of a bifunction. Several existence results for solutions
of these nonsmooth vector variational inequality problems are studied. We give
some relations among different kinds of solutions of nonsmooth vector optimization
problems and nonsmooth vector variational inequality problems.

7.1 Formulations and Preliminary Results

Throughout the section, unless otherwise specified, we assume that K is a nonempty
convex subset of Rn and C D R

`C. Let h D .h1; h2; : : : ; h`/ W K 	 Rn ! R`

be a vector-valued function such that for each fixed x 2 K, h.xI d/ is positively
homogeneous in d, that is, h.xI˛d/ D ˛h.xI d/ for all ˛ > 0.
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We consider the following nonsmooth vector variational inequality problems:

• Strong h-Vector Variational Inequality Problem (h-SVVIP): Find Nx 2 K such that

h.NxI y � Nx/ D �
h1.NxI y � Nx/; : : : ; h`.NxI y � Nx/� 2 C; for all y 2 K: (7.1)

• h-Vector Variational Inequality Problem (h-VVIP): Find Nx 2 K such that

h.NxI y�Nx/ D �
h1.NxI y�Nx/; : : : ; h`.NxI y�Nx/� … �C n f0g; for all y 2 K: (7.2)

• Weak h-Vector Variational Inequality Problem (h-WVVIP): Find Nx 2 K such that

h.NxI y� Nx/ D �
h1.NxI y� Nx/; : : : ; h`.NxI y� Nx/� … �int.C/; for all y 2 K: (7.3)

As we have seen in Chap. 5, the Minty vector variational inequality problems
are closely related to the (Stampacchia) vector variational inequality problems,
therefore, we also consider the following Minty nonsmooth vector variational
inequality problems.

• Minty Strong h-Vector Variational Inequality Problem (h-MSVVIP): Find Nx 2 K
such that

h.yI Nx � y/ D �
h1.yI Nx � y/; : : : ; h`.yI Nx � y/

� 2 �C; for all y 2 K: (7.4)

• Minty h-Vector Variational Inequality Problem (h-MVVIP): Find Nx 2 K such that

h.yI Nx� y/ D �
h1.yI Nx� y/; : : : ; h`.yI Nx� y/

� … C n f0g; for all y 2 K: (7.5)

• Minty Weak h-Vector Variational Inequality Problem (h-MWVVIP): Find Nx 2 K
such that

h.yI Nx � y/ D �
h1.yI Nx � y/; : : : ; h`.yI Nx � y/

� … int.C/; for all y 2 K: (7.6)

The set of solutions of h-SVVIP, h-VVIP, h-WVVIP, h-MSVVIP, h-MVVIP and
h-MWVVIP are denoted by Sol(h-SVVIP), Sol(h-VVIP), Sol(h-WVVIP), Sol(h-
MSVVIP), Sol(h-MVVIP) and Sol(h-MWVVIP), respectively.

Let f D . f1; f2; : : : ; f`/ W Rn ! R` be avector-valued function and

DCf .xI d/ D �
DCf 1.xI d/; : : : ;DCf `.xI d/

�
;

where DCf i.xI d/ denotes the upper Dini directional derivative of fi at x in the
direction d.

When h.xI �/ D DCf .xI �/, then h-SVVIP, h-VVIP, h-WVVIP, h-MSVVIP,
h-MVVIP and h-MWVVIP become the following nonsmooth vector variational
inequality problems.
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• (DC-SVVIP): Find Nx 2 K such that

DCf .NxI y � Nx/ 2 C; for all y 2 K: (7.7)

• (DC-VVIP): Find Nx 2 K such that

DCf .NxI y � Nx/ … �C n f0g; for all y 2 K: (7.8)

• (DC-WVVIP): Find Nx 2 K such that

DCf .NxI y � Nx/ … �int.C/; for all y 2 K: (7.9)

• (DC-MSVVIP): Find Nx 2 K such that

DCf .yI Nx � y/ 2 �C; for all y 2 K: (7.10)

• (DC-MVVIP): Find Nx 2 K such that

DCf .yI Nx � y/ … C n f0g; for all y 2 K: (7.11)

• (DC-MWVVIP): Find Nx 2 K such that

DCf .yI Nx � y/ … int.C/; for all y 2 K: (7.12)

Similarly, we can defineDC-SVVIP,DC-VVIP,DC-WVVIP,DC-MSVVIP,DC-
MVVIP and DC-MWVVIP by consideringDCf .xI �/ in place of h.xI �/ in h-SVVIP,
h-VVIP, h-WVVIP, h-MSVVIP, h-MVVIP and h-MWVVIP, respectively.

If we consider (upper or lower) Dini directional derivative as a bifunction h.xI d/,
with x referring to a point in R

n and d referring to a direction from R
n, then

(7.1), (7.2), (7.3), (7.4), (7.5) and (7.6) are equivalent to (7.7), (7.8), (7.9), (7.10),
(7.11) and (7.12), respectively. In general, if we treat any generalized directional
derivative as a bifunction h.xI d/ with x referring to a point in R

n and d referring to
a direction fromR

n, then the corresponding nonsmooth vector variational inequality
problems can be defined in the same way.

Definition 7.1 A vector-valued bifunction h D .h1; h2; : : : ; h`/ W K 	 Rn ! R` is
said to be:

(a) strongly C-pseudomonotone if for all x; y 2 K,

h.xI y � x/ 2 C implies h.yI x � y/ 2 �CI

(b) C-pseudomonotone if for all x; y 2 K,

h.xI y � x/ … �C n f0g implies h.yI x � y/ … C n f0gI
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(c) weakly C-pseudomonotone if for all x; y 2 K,

h.xI y � x/ … �int.C/ implies h.yI x � y/ … int.C/I

(d) C-properly subodd if

h.xI d1/C h.xI d2/C � � � C h.xI dm/ 2 C;

for every di 2 R
n with

Pm
iD1 di D 0 and for all x 2 K.

If m D 2, the definition of proper suboddness reduces to the definition of
suboddness.

Example 7.1 The function h W R 	 R ! R2, with h.x; d/ D .x;�x � d/ is strongly
R2C-pseudomonotone, R2C-pseudomonotone and weakly R2C-pseudomonotone, but
h is not R2C-properly subodd.

Definition 7.2 A vector-valued bifunction h D .h1; h2; : : : ; h`/ W K 	 Rn ! R` is
said to be C-upper sign continuous (respectively, strongly C-upper sign continuous
and weakly C-upper sign continuous) if for all x; y 2 K and � 2 �0; 1Œ,

h.x C �.y � x/I x � y/ … C n f0g implies h.xI x � y/ … C n f0g
�
respectively; h.x C �.y � x/I x � y/ 2 �C implies h.xI x � y/ 2 �C

and h.x C �.y � x/I x � y/ … int.C/ implies h.xI x � y/ … int.C/
�
:

Definition 7.3 A vector-valued bifunction h D .h1; h2; : : : ; h`/ W K 	 Rn ! R` is
said to be v-hemicontinuous if for each fixed d 2 Rn and for all x; y 2 K,

lim
�!0C

h.x C �.y � x//I d/ D h.xI d/:

It can be easily seen that if each component hi, i D 1; 2; : : : ; `, of h is
hemicontinuous, that is,

lim
�!0C

hi.x C �.y � x//I d/ D hi.xI d/;

then h is v-hemicontinuous.

Remark 7.1 If h is v-hemicontinuous, then it is strongly C-upper sign continuous
and weakly C-upper sign continuous as C and R` n fint.C/g are closed sets.
Example 7.2 The function h W R 	 R ! R2, which is defined by h.xI d/ D�jxj � x2 � d; exp.x/ � d�, is strongly R2C-upper sign continuous.
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The following result provides the relationship between nonsmooth vector vari-
ational inequality problems and Minty nonsmooth vector variational inequality
problems.

Lemma 7.1 Let h W K 	 Rn ! R` be C-pseudomonotone (respectively, strongly
C-pseudomonotone and weakly C-pseudomonotone) and C-upper sign continuous
(respectively, strong C-upper sign continuous and weakly C-upper sign continuous)
such that for each fixed x 2 K, h.xI �/ is C-properly subodd and positively
homogeneous. Then Nx 2 K is a solution of h-VVIP (respectively, h-SVVIP and
h-WVVIP) if and only if it is a solution of h-MVVIP (respectively, h-MSVVIP and
h-MWVVIP) .

Proof The C-pseudomonotonicity of h implies that every solution of h-VVIP is a
solution of h-MVVIP.

Conversely, let Nx 2 K be a solution of h-MVVIP. Then

h.yI Nx � y/ … C n f0g; for all y 2 K: (7.13)

SinceK is convex, we have y� WD NxC�.y�Nx/ 2 K for all � 2 �0; 1Œ, therefore, (7.13)
becomes

h.y�I Nx � y�/ … C n f0g:

Since Nx � y� D �.Nx � y/ and h.xI �/ is positively homogeneous, we have

h.y�I Nx � y/ … C n f0g:

Thus, the C-upper sign continuity and the C-proper suboddness of h imply that
Nx 2 K is a solution of h-VVIP.

Similarly, we can prove Sol(h-SVVIP)D Sol(h-MSVVIP) and Sol(h-WVVIP)D
Sol(h-MWVVIP). ut
Example 7.3 Let X D R, K D Œ0; 1�, Y D R2, and C D R2C. Consider the function
h.xI d/ D �

x2d; jxjd�. Note that h is strongly R2C-pseudomonotone, strongly R2C-
upper sign continuous, R2C-properly subodd and positive homogeneous in the
second variable. The element Nx D 0 is the only solution of the strong h-vector
variational inequality problem h-SVVIP as well as the only solution of the Minty
strong h-vector variational inequality problem h-MSVVIP.

In general, Sol(h-SVVIP) ¤ Sol(h-MSVVIP), Sol(h-VVIP) ¤ Sol(h-MVVIP)
and Sol(h-WVVIP)) ¤ Sol(h-MWVVIP).

To overcome this deficiency, we define the following perturbed h-vector varia-
tional inequality problems.

• "-Perturbed Strong h-Vector Variational Inequality Problem ("-h-PSVVIP): Find
Nx 2 K for which there exists N" 2 �0; 1Œ such that

h.Nx C ".y � Nx/I y � Nx/ 2 �C; for all y 2 K and all " 2 �0; N"Œ: (7.14)



280 7 Nonsmooth Vector Variational Inequalities

• "-Perturbed h-Vector Variational Inequality Problem ("-h-PVVIP): Find Nx 2 K
for which there exists N" 2 �0; 1Œ such that

h.Nx C ".y � Nx/I y � Nx/ … C n f0g; for all y 2 K and all " 2 �0; N"Œ: (7.15)

• "-Perturbed Weak h-Vector Variational Inequality Problem ("-h-PWVVIP): Find
Nx 2 K for which there exists N" 2 �0; 1Œ such that

h.Nx C ".y � Nx/I y � Nx/ … int.C/; for all y 2 K and all " 2 �0; N"Œ: (7.16)

Proposition 7.1 Let h D .h1; h2; : : : ; h`/ W K 	 R
n ! R

` be C-pseudomonotone
(respectively, strongly C-pseudomonotone and weakly C-pseudomonotone) and
C-properly subodd such that it is positively homogeneous in the second argument.
Then Nx 2 K is a solution of "-h-PVVIP (respectively, "-h-PSVVIP and "-h-
PWVVIP) if and only if it is a solution of h-MVVIP (respectively, h-MSVVIP and
h-MWVVIP).

Proof Let Nx be a solution of h-MVVIP. Then

h.yI Nx � y/ … C n f0g; for all y 2 K: (7.17)

Since K is convex, we have

x" WD Nx C ".z � Nx/ 2 K; for all z 2 K and all " 2 Œ0; 1�:

Taking y D x" with N" D 1 and " 2 �0; N"Œ in (7.17), we have

h.x"I Nx � x"/ … C n f0g:

Since Nx � x" D ".Nx � z/ and h.xI :�/ is positively homogeneous, we have

h.x"I Nx � z/ … C n f0g; for all z 2 K and all " 2 �0; N"Œ : (7.18)

Since .z � Nx/C .Nx � z/ D 0 and h is C-properly subodd, we have

h.x"I z � Nx/C h.x"I Nx � z/ 2 C: (7.19)

Combining (7.18) and (7.19), we obtain

h.x"I z � Nx/ … C n f0g; for all z 2 K and all " 2 �0; N"Œ:

Therefore, Nx 2 K is a solution of "-h-PVVIP.
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Conversely, suppose that Nx 2 K is a solution of "-h-PVVIP, but not a solution of
h-MVVIP. Then there exists z 2 K such that

h.zI Nx � z/ 2 C n f0g:

Since K is convex, we have

x" WD Nx C ".z � Nx/ 2 K; for all " 2 Œ0; 1�:

Since x" � z D .1 � "/.Nx � z/ and h.xI �/ is positively homogeneous, we have

h.zI Nx � z/ D 1

1 � "h.zI x" � z/ 2 C n f0g; for all " 2 �0; 1ŒI

thus,

h.zI x" � z/ 2 C n f0g; for all " 2 �0; 1Œ:

By C-pseudomonotonicity of h, we obtain

h.x"I z � x"/ 2 �C n f0g; for all " 2 �0; 1Œ:

Since z � x" D .1 � "/.z � Nx/ and h.xI �/ is positively homogeneous, we have

h.x"I z � Nx/ 2 C n f0g; for all " 2 �0; 1Œ;

which contradicts our supposition that Nx is a solution of "-h-PVVIP.
The rest of the part can be proved in a similar way. ut

7.2 Existence Results for Solutions of Nonsmooth Vector
Variational Inequalities

We first present an existence result for a solution of h-VVIP without using any kind
of monotonicity.

Theorem 7.1 Let K be a nonempty compact convex subset of Rn. Let h D
.h1; h2; : : : ; h`/ W K ! R` be a vector-valued function such h.xI 0/ D 0 and h.xI �/
is positively homogeneous for each fixed x 2 K, and the set fx 2 K W h.xI y � x/ 2
�C n f0gg is open in K for every fixed y 2 K. Then h-VVIP has a solution Nx 2 K.

Proof Suppose that h-VVIP has no solution. Then for every Nx 2 K, there exists
y 2 K such that

h.NxI y � Nx/ 2 �C n f0g: (7.20)
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For every y 2 K, define the set Ny by

Ny D fx 2 K W h.xI y � x/ 2 �C n f0gg: (7.21)

By assumption, the set Ny is open in K for each y 2 K. Therefore, from (7.20),
fNy W y 2 Kg is an open cover of K. Since K is compact, there exists a finite subset
fy1; y2; : : : ; ykg of K such that

K D
k[

iD1
Nyi :

Thus, there exists a continuous partition of unity fˇ1; ˇ2; : : : ; ˇkg subordinated to
fNy1 ;Ny2 ; : : : ;Nykg such that for all x 2 K,

• ˇj.x/ � 0, j D 1; 2; : : : ; k
•
Pk

jD1 ˇj.x/ D 1

• ˇj.x/ D 0 whenever x … Nyj , and ˇj.x/ > 0 whenever x 2 Nyj

Let p W K ! Rn be defined by

p.x/ D
kX

jD1
ˇj.x/yj; for all x 2 K:

Since each ˇi is continuous, we have p is continuous. Let� D co.fy1; y2; : : :, ykg/ �
K. Then� is a simplex of the finite dimensional space and p maps� into itself. By
Brouwer’s Fixed Point Theorem 1.39, there exists Ox 2 � such that p.Ox/ D Ox.

Define q W K ! R` by

q.x/ D h.xI x � p.x// D
kX

jD1
ˇjh.xI x � yj/; for all x 2 K: (7.22)

For any given x 2 K, let J D f j W x 2 Nyjg D f j W ˇj.x/ > 0g. Obviously, J is
nonempty. It follows from (7.21) and (7.22) that

q.x/ D
X

j2J
ˇj.x/h.xI yj � x/ 2 �C n f0g; for all x 2 K:

Since Ox 2 � � K is a fixed of p, from (7.21), we have

q.Ox/ D h.OxI Ox � Ox/ D 0 2 �C n f0g;

a contradiction. Hence, h-VVIP has a solution Nx 2 K. ut



7.2 Existence Results for Solutions of Nonsmooth Vector Variational Inequalities 283

The following result provides the existence of a solution of h-MWVVIP
and h-WVVIP in the setting of compact convex set but under weakly
C-pseudomonotonicity.

Theorem 7.2 Let K � Rn be a nonempty, convex and compact set and h D
.h1; h2; : : : ; h`/ W K ! R` be a positively homogeneous in the second argument,
C-properly subodd and weakly C-pseudomonotone vector-valued function such that
for all i 2 I D f1; 2; : : : ; `g and for each fixed x 2 K, hi.xI �/ is continuous. Then
h-MWVVIP has a solution Nx 2 K.

Furthermore, if h is weakly C-upper sign continuous, then Nx 2 K is a solution of
h-WVVIP.

Proof For all y 2 K, we define two set-valued maps S;M W K ! 2K by

S.y/ D fx 2 K W h.xI y � x/ … �int.C/g

and

M.y/ D fx 2 K W h.yI x � y/ … int.C/g :

We show that S is a KKM map. Let Ox 2 co
�fy1; y2 : : : ; ypg

�
, then Ox D Pp

kD1 �kyk
with �k � 0 and

Pp
kD1 �k D 1. If Ox … Sp

kD1 S.yk/, then

h.OxI yk � Ox/ 2 �int.C/; for all k D 1; 2; : : : ; p:

Since �C is a convex cone and �k � 0 with
Pp

kD1 �k D 1, we have

pX

kD1
�kh.OxI yk � Ox/ 2 �int.C/: (7.23)

Since

pX

kD1
�k.yk � Ox/ D

pX

kD1
�kyk �

pX

kD1
�k Ox D Ox � Ox D 0;

by C-proper suboddness of h, we have

pX

kD1
h.OxI�k.yk � Ox// 2 C:

By positive homogenuity of h, we have

pX

kD1
�kh.OxI yk � Ox/ 2 C;



284 7 Nonsmooth Vector Variational Inequalities

which contradicts (7.23). Therefore, co
�fy1; y2; : : : ; ypg

� � Sp
kD1 S.yk/. Hence, S is

a KKM map.
The weak C-pseudomonotonicity of h implies that S.y/ � M.y/ for all y 2 K;

hence,M is a KKM map.
We claim that M.y/ is a closed set in K for all y 2 K. Indeed, let fxmg be a

sequence inM.y/ which converges to x 2 K. Then

h.yI xm � y/ … int.C/; that is, h.yI xm � y/ 2 R
` n fint.C/g:

SinceR`nfint.C/g is a closed set and each hi.xI �/ is continuous,we have h.yI x�y/ …
int.C/, and hence, x 2 M.y/. Thus,M.y/ is closed in K.

Further, since K is compact, it follows that M.y/ is compact for all y 2 K. Then,
by Fan-KKM Lemma 1.14,

\

y2K
M.y/ ¤ ;;

that is, there exists Nx 2 K such that

h.yI Nx � y/ … int.C/; for all y 2 K:

Thus, Nx 2 K is a solution of h-MVVIP.
By Lemma 7.1, Nx 2 K is a solution of h-WVVIP. ut

Definition 7.4 A vector-valued function h D .h1; h2; : : : ; h`/ W K ! R` is said to
be C-pseudomonotoneC if for all x; y 2 K,

h.xI y � x/ … �C n f0g implies h.yI x � y/ 2 �C:

Clearly, C-pseudomonotonicityC is stronger than C-pseudomonotonicity.

Example 7.4 Let X D R, K D Œ�2; 2�, Y D R2, and C D R2C. The function
h W K 	 R ! R2, defined by h.xI d/ D �

x � d; x2 � d�, is R2C-pseudomonotone, but
not R2C-pseudomonotoneC.

We have the following existence result for a solution of h-SVVIP under
C-pseudomonotonicityC assumption.

Theorem 7.3 Let K � Rn be a nonempty, convex and compact set and h D
.h1; h2; : : : ; h`/ W K ! R` be a positively homogeneous in the second argument,
C-properly subodd and C-pseudomonotoneC vector-valued function such that for
all i 2 I D f1; 2; : : : ; `g and for each fixed x 2 K, hi.xI �/ is continuous.
Furthermore, if h is strongly C-upper sign continuous, then h-VVIP has a solution.

Proof For all y 2 K, we define set-valued maps S;M W K ! 2K by

S.y/ D fx 2 K W h.xI y � x/ … �C n f0gg
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and

M.y/ D fx 2 K W h.yI x � y/ 2 �Cg :

By C-pseudomonotonicityC, Sol(h-VVIP) � Sol(h-MSVVIP). From Lemma 7.1,
Sol(h-MSVVIP) � Sol(h-SVVIP) � Sol(h-VVIP). Thus, Sol(h-VVIP) � Sol(h-
MSVVIP) � Sol(h-VVIP), and hence, Sol(h-VVIP) D Sol(h-MSVVIP), that is,

\

y2K
S.y/ D

\

y2K
M.y/:

We prove that S is a KKM map. Let Ox 2 co
�fy1; y2; : : : ; ypg

�
, then Ox D Pp

kD1 �kyk
with �k � 0 and

Pp
kD1 �k D 1. If Ox … Sp

kD1 S.yk/, then

h.OxI yk � Ox/ 2 �C n f0g; for all k D 1; 2; : : : ; p:

Since �C is a convex cone and �k � 0 with
Pp

kD1 �k D 1, we have

pX

kD1
�kh.OxI yk � Ox/ 2 �C n f0g: (7.24)

Since

pX

kD1
�k.yk � Ox/ D

pX

kD1
�kyk �

pX

kD1
�k Ox D Ox � Ox D 0;

by C-proper suboddness of h, we have

pX

kD1
h.OxI�k.yk � Ox// 2 C:

The positive homogenuity of h in the second argument implies that

pX

kD1
�kh.OxI yk � Ox/ 2 C;

which contradicts (7.24). Therefore, co
�fy1; y2; : : : ; ypg

� � Sp
kD1 S.yk/. Hence, S is

a KKM map.
By C-pseudomonotonicityC of h implies that S.y/ � M.y/ for all y 2 K; hence,

M is a KKMmap. Since �C is closed and each hi.xI �/ is continuous, it can be easily
seen that M.y/ is closed subset of a compact set K, and hence, compact. Therefore,
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by Fan-KKM Lemma 1.14,

\

y2K
S.y/ D

\

y2K
M.y/ ¤ ;;

that is, there exists a solution of h-VVIP. ut
Definition 7.5 Let K be a nonempty convex subset of Rn. A vector-valued function
h D .h1; h2; : : : ; h`/ W K ! R` is said to be

(a) strongly proper C-quasimonotone� if for every finite set fy1; y2; : : : ; ypg in K
and x 2 co

�fy1; y2; : : : ; ypg
�
, there exists i 2 f1; 2; : : : ; pg such that h.xI yi �

x/ 2 C;
(b) proper C-quasimonotone� if for every finite set fy1; y2; : : : ; ypg in K and x 2

co
�fy1; y2; : : : ; ypg

�
, there exists i 2 f1; 2; : : : ; pg such that h.xI yi � x/ …

�C n f0g;
(c) weakly proper C-quasimonotone� if for every finite set fy1; y2; : : : ; ypg in K and

x 2 co
�fy1; y2; : : : ; ypg

�
, there exists i 2 f1; 2; : : : ; pg such that h.xI yi � x/ …

� int.C/.

Example 7.5 Let X D R, K D Œ0; 1�, Y D R2, and C D R
2C. The function h W K 	

R ! R2, defined by h.xI d/ D �
x;

p
x � jdj�, is strongly proper C-quasimonotone�.

Theorem 7.4 Let K � R
n be a nonempty, convex and compact set and

h D .h1; h2; : : : ; h`/ W K ! R
` be a C-properly subodd and strongly proper

C-quasimonotone� vector-valued function such that for all i 2 I D f1; 2; : : : ; `g
and for each fixed x 2 K, hi.xI �/ is continuous and h.xI 0/ D 0 for all x 2 K. Then
h-SVVIP has a solution Nx 2 K.

Proof For all y 2 K, we define a set-valued map S W K ! 2K by

S.y/ D fx 2 K W h.xI y � x/ 2 Cg :

Since h.xI y�y/ D h.xI 0/ D 0 2 C for each y 2 K, y 2 S.y/, and thus, S.y/ ¤ ;. We
show that S is a KKM map. Let Ox 2 co

�fy1; y2; : : : ; ypg
�
such that Ox … Sp

kD1 S.yk/.
This implies that

h.OxI yk � Ox/ … C; for all k D 1; 2; : : : ; p:

This contradicts the strong proper C-quasimonotonicity� of h. Hence, S is a KKM
map.

Since h.xI �/ is continuous and C is closed, it can be easily seen that S.y/ is a
closed subset of a compact set K, and hence, S.y/ is compact for all y 2 K. Then,
by Fan-KKM Lemma 1.14,

\

y2K
S.y/ ¤ ;;
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that is, there exists Nx 2 K such that

h.NxI y � Nx/ 2 C; for all y 2 K:

Thus, Nx 2 K is a solution of h-SVVIP. ut
Similarly, we can prove the following results.

Theorem 7.5 Let K � Rn be a nonempty, convex and compact set and
h D .h1; h2; : : : ; h`/ W K ! R` be a C-properly subodd and weakly proper
C-quasimonotone� vector-valued function such that for all i 2 I D f1; 2; : : : ; `g
and for each fixed x 2 K, hi.xI �/ is continuous and h.xI 0/ D 0 for all x 2 K. Then
h-WVVIP has a solution Nx 2 K.

Theorem 7.6 Let K � Rn be a nonempty, convex and compact set and h D
.h1; h2; : : : ; h`/ W K ! R` be a C-properly subodd and proper C-quasimonotone�
vector-valued function such that for all i 2 I D f1; 2; : : : ; `g and for each fixed
x 2 K, the set fx 2 K W h.xI y � x/ … �C n f0gg is closed and h.xI 0/ D 0 for all
x 2 K. Then h-VVIP has a solution Nx 2 K.

7.3 Nonsmooth Vector Variational Inequalities
and Nonsmooth Vector Optimization

The optimization problem may have a nonsmooth objective function. Therefore,
Crespi et al. [3, 4] introduced Minty variational inequality for scalar-valued func-
tions defined by means of lower Dini directional derivative. More recently, the
same authors extended their formulation to the vector case in [5]. They have also
established the relations between a Minty Vector Variational Inequality problem (in
short, MVVIP) and solutions of VOP (both ideal and weak efficient but not efficient)
solution. Crespi et al. [5] used the scalarization method to obtain their results. The
similar VVIP is also considered by Lalitha andMehta [8] and proved some existence
results. They also provided some relationships between the solutions of VOP and
this kind of VVIP.

In this section, we propose some relations between vector optimization and
vector variational inequalities when the objective functions are not necessarily
smooth.

Throughout this section, unless otherwise specified, we assume that K is
nonempty convex subset of Rn, C D R`C and h D .h1; h2; : : : ; h`/ W K 	 Rn ! R`

is a vector-valued function.

Definition 7.6 A vector-valued function f D . f1; f2; : : : ; f`/ W K ! R` is said to
be

(a) C-h-convex if for all x; y 2 K,

f .y/� f .x/� h.xI y � x/ 2 CI
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(b) strictly C-h-convex if for all x; y 2 K, x ¤ y,

f .y/� f .x/ � h.xI y � x/ 2 int.C/I

(c) strongly C-h-pseudoconvex if for all x; y 2 K,

f .y/ � f .x/ … C implies h.xI y � x/ … C;

equivalently,

h.xI y � x/ 2 C implies f .y/� f .x/ 2 CI

(d) C-h-pseudoconvex if for all x; y 2 K,

f .y/ � f .x/ 2 �C n f0g implies h.xI y � x/ 2 �C n f0gI

equivalently,

h.xI y � x/ … C n f0g implies f .y/� f .x/ … �C n f0gI

(e) weakly C-h-pseudoconvex if for all x; y 2 K,

f .y/� f .x/ 2 � int.C/ implies h.xI y � x/ 2 � int.C/;

equivalently,

h.xI y � x/ … � int.C/ implies f .y/ � f .x/ … � int.C/:

Obviously, strictly C-h-convexity implies C-h-convexity, and C-h-convexity
implies C-h-pseudoconvexity.

If h.xI d/ D DCf .xI d/ (respectively, DCf .xI d/) upper (respectively, lower) Dini
directional derivative of a function f at x in the direction d, then C-h-convexity is
called C-DC-convexity (respectively, C-DC-convexity), and so on.

Example 7.6 Let X D R, K D Œ0; 1�, Y D R2, and C D R2C. Let the function
h W K 	 R ! R2, be given as h.xI d/ D ��x2;�jxj � jdj�. Furthermore, let f W
K ! R2 be defined by f D �

x2; jxj�. Then f is C-h-convex, but not strictly C-h-
convex. Moreover, f is strongly C-h-pseudoconvex and C-h-pseudoconvex, but f is
not weakly C-h-pseudoconvex.

The following result provides the relation among the weakly efficient solution of
VOP and the solutions of h-WVVIP and (DC-WVVIP).

Theorem 7.7 Let f W K ! R` be a vector-valued function. Then the following
statements hold.

(a) Every strongly efficient solution of VOP is a solution of DC-SVVIP (7.7).



7.3 Nonsmooth Vector Variational Inequalities and Nonsmooth Vector. . . 289

(b) If f is strongly C-h-pseudoconvex, then every solution of h-SVVIP is a strongly
efficient solution of VOP.

Proof

(a) Let Nx be a strongly efficient solution of VOP. Then

f .y/ � f .Nx/ 2 C; for all y 2 K:

Since K is a convex set, we have Nx C �.y � Nx/ 2 K for all � 2 Œ0; 1�; thus,
f .Nx C �.y � Nx//� f .Nx/

�
2 C; for all � 2 �0; 1Œ:

Taking the limit sup as � # 0, we obtain

DCf .NxI y � Nx/ D lim sup
�#0

f .Nx C �.y � Nx// � f .Nx/
�

2 C; for all y 2 K:

Hence, Nx is a solution of DC-SVVIP (7.7).
(b) Assume that Nx 2 K is a solution of DC-SVVIP (7.7) but not a strongly efficient

solution of VOP. Then there exists y 2 K such that

f .y/� f .Nx/ … C:

Since f is strongly C-h-pseudoconvex, we have

h.NxI y � Nx/ … C;

contradicting our assumption that Nx is a solution of h-SVVIP. ut
Since R` n f� int.C/g is a closed convex cone, in a similar way, we can prove the

following result.

Theorem 7.8 Let f W K ! R` be a vector-valued function. Then the following
statements hold.

(a) Every weakly efficient solution of VOP is a solution of DC-WVVIP (7.9).
(b) If f is weakly C-h-pseudoconvex, then every solution of h-WVVIP is a weakly

efficient solution of VOP.

Theorem 7.9 Let f W K ! R` be a C-h-pseudoconvex vector-valued function. Then
every solution of h-VVIP is an efficient of VOP.

Proof It lies on the lines of the proof of Theorem 7.7 (b), therefore, we omit it. ut
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Theorem 7.10 Let f W K ! R` be a vector-valued function such that .�f / is strictly
C-h-convex, that is,

� . f .y/� f .x// � h.NxI y � Nx/ 2 int.C/; for all x; y 2 K: (7.25)

Then every weakly efficient solution of VOP is a solution of h-VVIP.

Proof Assume that Nx is a weakly efficient solution of VOP but not a solution of
h-VVIP. Then there exists y 2 K such that

h.NxI y � Nx/ 2 C n f0g: (7.26)

Combining (7.26) and (7.25), we obtain

f .y/� f .Nx/ 2 � int.C/;

a contradiction to our assumption that Nx is a weakly efficient solution of VOP. Hence,
Nx is a solution of h-VVIP. ut
Theorem 7.11 If f W K ! R` is strictly C-DC-convex function, then every weakly
efficient solution of VOP is an efficient solution of VOP.

Proof Assume that Nx is a weak efficient solution of VOP, but not an efficient solution
of VOP. Then there exists y 2 K such that

f .y/ � f .Nx/ 2 �C n f0g: (7.27)

Since f is strictly C-DC-convex, we have

DCf .NxI y � Nx/� f .y/C f .Nx/ 2 �int.C/: (7.28)

By combining (7.27) and (7.28), we obtain

DCf .NxI y � Nx/ 2 �int.C/:

Thus, Nx is not a solution ofDC-WVVIP (7.9). By using Theorem 7.8 (a), we see that
Nx is not a weak efficient solution of VOP, a contradiction to our assumption. ut
Theorem 7.12 For each i D 1; 2; : : : ; `, let fi W K ! R be DC-pseduoconvex and
lower semicontinuous. If Nx 2 K is a solution of DC-VVIP, then it is an efficient
solution of VOP.

Proof Suppose that Nx 2 K is not an efficient solution of VOP. Then there exists
Oy 2 K such that fi.Oy/ < fi.Nx/ for some i and fj.Oy/ � fj.Nx/ for all j ¤ i. By DC-
pseudoconvexity of fi, DCf i.NxI Oy� Nx/ < 0. By Remark 1.18 (b), fj is quasiconvex for
all j ¤ i, and hence, DCf j.NxI Oy � Nx/ � 0 for all j ¤ i. Thus, Nx 2 K is not a solution
of DC-VVIP. ut
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The following result, due to Ansari and Lee [1], provides the relationship
between a solution of an h-MVVIP and an efficient solution of VOP. It can be treated
as a nonsmooth version of Theorem 5.28.

Theorem 7.13 For each i 2 I , let fi W K ! R be upper semicontinuous and DC-
pseudoconvex. For each i 2 I D f1; 2; : : : ; `g and for all x 2 K, let hi.xI �/ be
positively homogeneous and subodd such that hi.xI �/ � DCfi.xI �/. Then Nx 2 K is a
solution of h-MVVIP if and only if it is an efficient solution of VOP.

Proof Let Nx 2 K be a solution of h-MVVIP but not an efficient solution of VOP.
Then there exists z 2 K such that

f .Nx/� f .z/ 2 C n f0g: (7.29)

Set z.�/ WD �Nx C .1 � �/z for all � 2 Œ0; 1�. Since K is convex, z.�/ 2 K for all
� 2 Œ0; 1�. Also since each fi isDC-pseudoconvex, it follows from Lemma 1.4 that fi
is quasiconvex and semistrictly quasiconvex. By using quasiconvexity, semistrictly
quasiconvexity and (7.29), we get

fi.Nx/ � fi.z.�// 2 C n f0g; for all � 2 �0; 1Œ:

That is,

fi.Nx/ � fi.z.�//; for all � 2 �0; 1Œ and all i D 1; 2; : : : ; `; (7.30)

with strict inequality holds in (7.30) for some k such that 1 � k � `.
By Diewert Mean-Value Theorem 1.31, there exists ˛i 2 �0; 1Œ such that

fi.z.�//� fi.Nx/ � DCfi .z.˛i/I z.�/� Nx/ ; for all � 2 �0; 1Œ and all i 2 I : (7.31)

Combining inequalities (7.30) and (7.31), we obtain

DCfi.z.˛i/I z.�/ � Nx/ � 0; for all � 2 �0; 1Œ and all i D 1; 2; : : : ; `;

with strict inequality holds for some k such that 1 � k � `. Since, for each fixed
x 2 K, hi.xI �/ � DCfi.xI �/, we have

hi.z.˛i/I z.�/ � Nx/ � 0; for all � 2 �0; 1Œ and all i D 1; 2; : : : ; `;

where strict inequality holds for some k such that 1 � k � `. By using the positive
homogeneity of hi in the second argument, we get

hi.z.˛i/I z.�/ � Nx/ D hi.z.˛i/I�Nx C .1 � �/z � Nx/ D .1 � �/hi.z.˛i/I z � Nx/
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and so,

hi.z.˛i/I z � Nx/ � 0; for all i D 1; 2; : : : ; `; (7.32)

where strict inequality holds for some k such that 1 � k � `. By the suboddness of
hi in the second argument, we have

hi.z.˛i/I Nx � z/ � 0; for all i D 1; 2; : : : ; `; (7.33)

where strict inequality holds for some k such that 1 � k � `.
Suppose that ˛1; : : : ; ˛` are all equal. Then by (7.33), the positive homogeneity

of hi in the second argument, and the fact that

Nx � z.˛i/ D .1 � ˛i/.Nx � z/;

we have

hi.z.˛i/I Nx � z.˛i// � 0; for all i D 1; 2; : : : ; `;

where strict inequality holds for some i, that is,

�
h1.z.˛1/I Nx � z.˛1//; : : : ; h`.z.˛`/I Nx � z.˛`//

� 2 C n f0g;

which contradicts to our assumption that Nx is a solution of (h-MVVIP).
Consider the case when ˛1; ˛2; : : : ; ˛` are not equal. Let ˛1 ¤ ˛2.
If ˛1 < ˛2, then by the positive homogeneity and the suboddness of hi.xI �/, we

get

h1.z.˛1/I z.˛2/� z.˛1// D .˛2 � ˛1/h1.z.˛1/I Nx � z/;

and by using (7.33), we obtain

h1.z.˛1/I z.˛2/� z.˛1// D .˛2 � ˛1/h1.z.˛1/I Nx � z/ � 0; (7.34)

where strict inequality holds for k D 1.
Since each fi is DC-pseudoconvex and hi.xI �/ � DCfi.xI �/, by Lemma 1.5, fi is

hi-pseudoconvex; further, by Lemma 1.7 (b), hi is pseudomonotone. Therefore, we
have

h1.z.˛2/I z.˛2/� z.˛1// � 0; (7.35)

where strict inequality holds for k D 1 by virtue of Lemma 1.6. The positive
homogeneity of hi.xI �/ implies that

.˛2 � ˛1/h1.z.˛2/I Nx � z/ � 0;
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where strict inequality holds for k D 1. Since ˛2 � ˛1 > 0, we have

h1.z.˛2/I Nx � z/ � 0;

with strict inequality for k D 1.
If ˛1 > ˛2, then by the positive homogeneity and the suboddness of hi.xI �/, we

get

h2.z.˛2/I z.˛1/� z.˛2// D .˛1 � ˛2/h2.z.˛2/I Nx � z/;

and by using (7.33), we obtain

h2.z.˛2/I z.˛1/� z.˛2// D .˛1 � ˛2/h2.z.˛2/I Nx � z/ � 0; (7.36)

with strict inequality for k D 2.
As above, each hi is pseudomonotone; therefore,

h2.z.˛1/I z.˛1/� z.˛2// � 0; (7.37)

with strict inequality for k D 2 by virtue of Lemma 1.6 Again as above, by using
the positive homogeneity of hi.xI �/, we get

h2.z.˛1/I Nx � z/ � 0;

with strict inequality for k D 2.
For the case ˛1 ¤ ˛2, let N̨ D maxf˛1; ˛2g. Then we have

hi.z. N̨ /I Nx � z/ � 0; for all i D 1; 2:

By continuing this process, we can find ˛� 2 �0; 1Œ such that

hi.z.˛
�/I Nx � z/ � 0; for all i D 1; 2; : : : ; `;

with strict inequality for some k such that 1 � k � `. By multiplying the above
inequality by 1 � ˛�, we obtain

hi.z.˛
�/I Nx � z.˛�// � 0; for all i D 1; 2; : : : ; `;

with strict inequality for some k such that 1 � k � `. Thus,

�
h1.z.˛

�/I Nx � z.˛�//; : : : ; h`.z.˛�/I Nx � z.˛�//
� 2 C n f0g;

which contradicts our supposition that Nx is a solution of h-MVVIP.
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Conversely, suppose that Nx 2 K is an efficient solution of VOP, but not a solution
of h-MVVIP. Then there exists z 2 K such that

h.zI Nx � z/ 2 C n f0g;

that is,

hi.zI Nx � z/ � 0; for all i 2 I ;

with strict inequality holds for some i. Since hi.zI / � DCfi.zI �/ for all i 2 I ,

DCfi.zI Nx � z/ � 0; for all i 2 I ;

with strict inequality holds for some i. Since each fi is DC-pseudoconvex, we have

fi.Nx/ � fi.z/; for all i 2 I :

Let j 2 I be such thatDCfj.zI Nx� z/ > 0: Since fj is upper semicontinuous andDC-
pseudoconvex, it follows from Lemma 1.4 that fj is quasiconvex; hence, it follows
from Theorem 4 in [6] that fj.Nx/ > fj.z/. Thus, f .z/ � f .Nx/ 2 �C n f0g; hence, Nx is
not an efficient solution of VOP. This contradiction proves our result. ut

The following result gives the relation between a solution of h-VVIP and a
properly efficient solution (in the sense of Henig) of VOP.

Theorem 7.14 If Nx 2 K is a properly efficient solution (in the sense of Henig) of
VOP, then it is a solution of DC-VVIP.

Proof Since Nx 2 K is a properly efficient solution (in the sense of Henig) of VOP,
there is convex cone D in R` such that C n f0g � int.D/, and

f .y/� f .Nx/ … �D n f0g; for all y 2 K:

Since � int.D/ � �D n f0g, we have

f .y/ � f .Nx/ … � int.D/; for all y 2 K:

Since K is a convex set, we have Nx C �.y � Nx/ 2 K for all � 2 Œ0; 1�; thus,
f .Nx C �.y � Nx// � f .Nx/

�
2 R

` n f� int.D/g; for all � 2 �0; 1Œ:

Since R` n f� int.D/g is a closed convex cone, by taking the limit sup as � # 0, we
obtain

DCf .NxI y� Nx/ D lim sup
�#0

f .Nx C �.y � Nx// � f .Nx/
�

2 R
` n f� int.D/g; for all y 2 K:
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Therefore,

hDCf .Nx/; y � Nxi … � int.D/; for all y 2 K:

Since C n f0g � int.D/ for all x 2 K, we obtain the result. ut
Theorem 7.15 ([10]) If Nx 2 K is a properly efficient solution (in the sense of
Geoffrion) of VOP and for each i D 1; 2; : : : ; `, DCf i.NxI �/ is finite on K � Nx, then
Nx 2 K is a solution of DC-VVIP.

Proof Let Nx 2 K be a properly efficient solution (in the sense of Geoffrion) of VOP.
Suppose on contrary that there exists d 2 Rn such that d 2 K � Nx, DCf i.NxI d/ < 0

and DCf j.NxI d/ � 0, j ¤ i. We choose v 2 K such that d D v � Nx. Since K is
convex, we can choose a sequence ftng of positive real numbers such that tn # 0,
Nx C tn.v � Nx/ 2 K for all n and

DCf i.NxI d/ D lim
n!1

fi.Nx C tn.v � Nx// � fi.Nx/
tn

:

Since DCf i.NxI d/ < 0,

lim
n!1

fi.Nx C tn.v � Nx// � fi.Nx/
tn

< 0;

and hence, there exists a natural number N such that for all n � N,

1

tn
Œfi.Nx C tn.v � Nx//� fi.Nx/� < 0;

that is, fi.Nx C tn.v � Nx// < fi.Nx/. Since Nx is an efficient solution VOP, choosing a
subsequence of the sequence fNx C tn.v � Nx/g, if necessary, we may assume that

I WD f j W fj.Nx C tn.v � Nx// > fj.Nx/g

is constant for all n � N. So, for all j 2 I, we have

lim sup
n!1

fj.Nx C tn.v � Nx//� fj.Nx/
tn

� 0:

Since DCf j.NxI d/ � 0 for all j 2 I, we have

lim sup
n!1

fj.Nx C tn.v � Nx//� fj.Nx/
tn

D 0;
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for all j 2 I. So, choosing a subsequence of ftng, if necessary, we may assume that

lim
n!1

fj.Nx C tn.v � Nx//� fj.Nx/
tn

D 0;

for all j 2 I. So, for all j 2 I, we have

fi.Nx/� fi.Nx C tn.v � Nx//
fj.Nx C tn.v � Nx// � fj.Nx/ D

1
tn
Œfi.Nx/� fi.Nx C tn.v � Nx//�

1
tn
Œfj.Nx C tn.v � Nx//� fj.Nx/�

! C1 as n ! 1;

which contradicts to the proper efficiency (in the sense of Geoffrion) of Nx. ut
Remark 7.2 Since proper efficiency in the sense of Benson and in the sense of
Geoffrion are equivalent when C D R`C, Theorem 7.15 also holds for proper
efficiency in the sense of Benson.

Corollary 7.1 ([11, Theorem 4]) For each i D 1; 2; : : : ; `, let fi W K ! R be
convex and differentiable. If Nx 2 K is a properly efficient solution (in the sense of
Benson) of VOP, then it is a solution of r-VVIP.

The following example shows that the Corollary 7.1 cannot be extended to
efficient solutions of VOP even though each fi is convex.

Example 7.7 LetK D Œ�1; 0� and f .x/ D .x; x2/. Then Nx D 0 is an efficient solution
of VOP, but it is not a solution of the following r-VVIP: Find Nx 2 K such that for
all y 2 K,

.hrf1.Nx/; y � Nxi; hrf2.Nx/; y � Nxi/ D .y � Nx; 2Nx.y � Nx// … �R
2C n f0g:

We notice that Nx D 0 is not a properly efficient solution (in the sense of Benson) of
VOP.
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Chapter 8
Generalized Vector Variational Inequalities

When the objective function involved in the vector optimization problem is not
necessarily differentiable, then the method to solve VOP via corresponding vector
variational inequality problems is no longer valid. We need to generalize the vector
variational inequality problems for set-valued maps. There are several ways to
generalize vector variational inequality problems discussed in Chap. 5. The main
objective of this chapter is to generalize the vector variational inequality problems
for set-valued maps and to present the existence results for such generalized vector
variational inequality problems with or without monotonicity assumption. We also
present some relations between a generalized vector variational inequality problem
and a vector optimization problem with a nondifferentiable objective function.
Several results of this chapter also hold in the setting of Hausdorff topological vector
spaces, but for the sake of convenience, our setting is Banach spaces.

8.1 Formulations and Preliminaries

When the map T involved in the formulation of vector variational inequality
problems and Minty vector variational inequality problems is a set-valuedmap, then
the vector variational inequality problems and Minty vector variational inequality
problems, discussed in Chap. 5, are called (more precisely, Stampacchia) general-
ized vector variational inequality problems andMinty generalized vector variational
inequality problems, respectively.

Let X and Y be Banach spaces and K be a nonempty convex subset of X. Let
T W K ! 2L.X;Y/ be a set-valued map with nonempty values, and C W K ! 2Y be
a set-valued map such that for all x 2 K, C.x/ is a closed convex pointed cone. We
also assume that int.C.x// ¤ ; wherever int.C.x// the interior of the set C.x/ is
involved in the formulation of a problem. For every l 2 L.X;Y/, the value of l at x
is denoted by hl; xi.
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We consider the following generalized vector variational inequality prob-
lems (SGVVIP) and Minty generalized vector variational inequality problems
(MGVVIP).

(GSVVIP)s:

Find Nx 2 K such that there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi 2 C.Nx/; for all y 2 K: (8.1)

(GSVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/
satisfying

h N�; y � Nxi 2 C.Nx/: (8.2)

(MGSVVIP)g:

Find Nx 2 K such that for all y 2 K and all � 2 T.y/, we have

h�; y � Nxi 2 C.Nx/: (8.3)

(MGSVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists � 2 T.y/
satisfying

h�; y � Nxi 2 C.Nx/: (8.4)

(GVVIP)g:

Find Nx 2 K such that for all N� 2 T.Nx/, we have

h N�; y � Nxi … �C.Nx/ n f0g; for all y 2 K: (8.5)

(GVVIP)s:

Find Nx 2 K such that there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi … �C.Nx/ n f0g; for all y 2 K: (8.6)

(GVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/
satisfying

h N�; y � Nxi … �C.Nx/ n f0g: (8.7)

(MGVVIP)g:

Find Nx 2 K such that for all y 2 K and all � 2 T.y/, we have

h�; y � Nxi … �C.Nx/ n f0g: (8.8)
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(MGVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists � 2 T.y/
satisfying

h�; y � Nxi … �C.Nx/ n f0g: (8.9)

(GWVVIP)g:

Find Nx 2 K such that for all N� 2 T.Nx/, we have

h N�; y � Nxi … � int.C.Nx//; for all y 2 K: (8.10)

(GWVVIP)s:

Find Nx 2 K such that there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi … � int.C.Nx//; for all y 2 K: (8.11)

(GWVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/
satisfying

h N�; y � Nxi … � int.C.Nx//: (8.12)

(MGWVVIP)g:

Find Nx 2 K such that for all y 2 K for all � 2 T.y/, we have

h�; y � Nxi … � int.C.Nx//: (8.13)

(MGWVVIP)w:

Find Nx 2 K such that for all y 2 K, there exists � 2 T.y/
satisfying

h�; y � Nxi … � int.C.Nx//: (8.14)

In (GSVVIP)w, (GVVIP)w, and (GWVVIP)w, N� 2 T.Nx/ depends on y 2 K; Also,
in (MGSVVIP)w, (MGVVIP)w, and (MGWVVIP)w, � 2 T.y/ depends on y 2 K.

We denote by Sol(GSVVIP)dg, Sol(GSVVIP)ds , Sol(GSVVIP)dw,
Sol(MGSVVIP)dg, Sol(MGSVVIP)dw, Sol(GVVIP)

d
g, Sol(GVVIP)

d
s , Sol(GVVIP)

d
w,

Sol(MGVVIP)dg, Sol(MGVVIP)dw, Sol(GWVVIP)dg, Sol(GWVVIP)ds ,
Sol(GWVVIP)dw, Sol(MGWVVIP)dg, and Sol(MGWVVIP)dw, the set of solutions of
(GSVVIP)g, (GSVVIP)s, (GSVVIP)w, (MGSVVIP)g, (MGSVVIP)w, (GVVIP)g,
(GVVIP)s, (GVVIP)w, (MGVVIP)g, (MGVVIP)w, (GWVVIP)g, (GWVVIP)s,
(GWVVIP)w, (MGWVVIP)g, and (MGWVVIP)w, respectively.

If for all x 2 K, C.x/ D D is a fixed closed convex pointed cone with int.D/ ¤ ;,
then the solution set of (GSVVIP)g, (GSVVIP)s, (GSVVIP)w, (MGSVVIP)g,
(MGSVVIP)w, (GVVIP)g, (GVVIP)s, (GVVIP)w, (MGVVIP)g, (MGVVIP)w,
(GWVVIP)g, (GWVVIP)s, (GWVVIP)w, (MGWVVIP)g, and (MGWVVIP)w, are
denoted by Sol(GSVVIP)g, Sol(GSVVIP)s, Sol(GSVVIP)w, Sol(MGSVVIP)g,
Sol(MGSVVIP)w, Sol(GVVIP)g, Sol(GVVIP)s, Sol(GVVIP)w, Sol(MGVVIP)g,
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Sol(MGVVIP)w, Sol(GWVVIP)g, Sol(GWVVIP)s, Sol(GWVVIP)w,
Sol(MGWVVIP)g, and Sol(MGWVVIP)w, respectively

Remark 8.1 It is clear that

(a) Sol(GSVVIP)dg � Sol(GSVVIP)ds � Sol(GSVVIP)dw;
(b) Sol(MGSVVIP)dg � Sol(MGSVVIP)dw;
(c) Sol(GVVIP)dg � Sol(GVVIP)ds � Sol(GVVIP)dw;
(d) Sol(MGVVIP)dg � Sol(MGVVIP)dw;
(e) Sol(GWVVIP)dg � Sol(GWVVIP)ds � Sol(GWVVIP)dw;
(f) Sol(MGWVVIP)dg � Sol(MGWVVIP)dw;
(g) Sol(GSVVIP)dg � Sol(GVVIP)dg � Sol(GWVVIP)dg;
(h) Sol(GSVVIP)ds � Sol(GVVIP)ds � Sol(GWVVIP)ds ;
(i) Sol(SGVVIP)dw � Sol(GVVIP)dw � Sol(GWVVIP)dw;
( j) Sol(MGSVVIP)dg � Sol(MGVVIP)dg � Sol(MGWVVIP)dg;
(k) Sol(MGSVVIP)dw � Sol(MGVVIP)dw � Sol(MGWVVIP)dw.

Definition 8.1 Let K be a nonempty convex subset of X and x 2 K be an arbitrary
element. The set-valued map T W K ! 2L.X;Y/ is said to be

(a) strongly generalized Cx-upper sign continuous if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi 2 C.x/ implies that there exists � 2 T.x/

such that h�; y � xi 2 C.x/I

(b) strongly generalized Cx-upper sign continuousC if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi 2 C.x/ implies that h�; y � xi 2 C.x/ for all � 2 T.x/I

(c) strongly generalized Cx-upper sign continuousC if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that h��; y � xi 2 C.x/

implies that there exists � 2 T.x/ such that h�; y � xi 2 C.x/I

(d) strongly generalized Cx-upper sign continuous
C
C if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that h��; y � xi 2 C.x/

implies that h�; y � xi 2 C.x/ for all � 2 T.x/I
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(e) generalized Cx-upper sign continuous if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … �C.x/ n f0g implies that there exists � 2 T.x/ such that

h�; y � xi … �C.x/ n f0gI

(f) generalized Cx-upper sign continuousC if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … �C.x/ n f0g implies that h�; y � xi … �C.x/ n f0g
for all � 2 T.x/I

(g) generalized Cx-upper sign continuousC if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … �C.x/ n f0g implies that there exists � 2 T.x/ such that

h�; y � xi … �C.x/ n f0gI

(h) generalized Cx-upper sign continuous
C
C if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … �C.x/ n f0g implies that h�; y � xi … �C.x/ n f0g
for all � 2 T.x/I

(i) weakly generalized Cx-upper sign continuous if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … � int.C.x// implies that there exists � 2 T.x/ such that

h�; y � xi … � int.C.x//I

( j) weakly generalized Cx-upper sign continuousC if for all y 2 K,

there exists �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … � int.C.x// implies that h�; y � xi … � int.C.x//

for all � 2 T.x/I
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(k) weakly generalized Cx-upper sign continuousC if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … � int.C.x// implies that there exists � 2 T.x/

such that h�; y � xi … � int.C.x//I

(l) weakly generalized Cx-upper sign continuous
C
C if for all y 2 K,

for all �� 2 T.x C �.y � x// for � 2 �0; 1Œ such that
h��; y � xi … � int.C.x// implies that h�; y � xi … � int.C.x//

for all � 2 T.x/:

Example 8.1 Let X DR, Y DR
2, K D �0; 1� and C.x/DR

2C for all x2K. Consider
the map T.x/ WD ˚

.y1; y2/ 2 R
2 W jy1j � x; jy2j � x

�
. Then T is strongly generalized

Cx-upper sign continuous, strongly generalized Cx-upper sign continuousC,
generalized Cx-upper sign continuous, generalized Cx-upper sign continuousC,
weakly generalized Cx-upper sign continuous, and weakly generalized Cx-
upper sign continuousC. However, T is not strongly generalized Cx-upper
sign continuousC, strongly generalized Cx-upper sign continuousC

C, generalized
Cx-upper sign continuousC, generalized Cx-upper sign continuousC

C, weakly
generalized Cx-upper sign continuousC, or weakly generalized Cx-upper sign
continuousC

C (Fig. 8.1).

Definition 8.2 Let K be a nonempty convex subset of X. A set-valued map T W
K ! 2L.X;Y/ is said to be generalized v-hemicontinuous if for all x; y 2 K, the
set-valued map F W Œ0; 1� ! 2Y , defined by F.�/ D hT.x C �.y � x//; y � xi, is
upper semicontinuous at 0C, where hT.x C �.y � x//; y � xi D fh�; y � xi W � 2
T.x C �.y � x//g.

Fig. 8.1 Relations among different kinds of generalized Cx-upper sign continuities. The similar
diagram also holds for weak as well as for strong cases
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Lemma 8.1 Let K be a nonempty convex subset of X and x 2 K be an arbitrary ele-
ment. If the set-valued map T W K ! 2L.X;Y/ is generalized v-hemicontinuous, then
it is strongly generalized Cx-upper sign continuous as well as weakly generalized
Cx-upper sign continuous.

Proof Let x be an arbitrary but fixed element. Suppose to the contrary that T is
not weakly generalized Cx-upper sign continuous. Then for some y 2 K and all
�� 2 T.x C �.y � x//, � 2 �0; 1Œ, we have

h��; y � xi … � int.C.x// (8.15)

implies

h�; y � xi 2 � int.C.x//; for all � 2 T.x/:

Since T is generalized v-hemicontinuous, the set-valued map F W Œ0; 1� ! 2Y ,
defined in Definition 8.2, is upper semicontinuous at 0C, and F.0/ D hT.x/; y�xi �
� int.C.x//, we have that there exists an open neighborhoodV D �0; ıŒ� Œ0; 1� such
that F.�/ D hT.x C �.y � x//; y � xi � � int.C.x// for all � 2 �0; ıŒ, that is, for
all �� 2 T.x C �.y � x// and all � 2 �0; ıŒ, we have h��; y � xi 2 � int.C.x//, a
contradiction of (8.15). Hence, T is weakly generalized Cx-upper sign continuous.

SinceW.x/ D Y n fC.x/g is an open set for all x 2 K, the proof for strong case is
similar, and therefore, we omit it. ut
Remark 8.2 The generalized v-hemicontinuity does not imply the generalized Cx-
upper sign continuity.

Definition 8.3 Let K be a nonempty convex subset of X and T W K ! 2L.X;Y/

be a set-valued map with nonempty compact values. Then T is said to be H -
hemicontinuous if for all x; y 2 K, the set-valued map F W Œ0; 1� ! 2Y , defined by
F.�/ D H .T.x C �.y � x//;T.x//, is H -continuous at 0C, whereH denotes the
Hausdorff metric on the family of all nonempty closed bounded subsets of L.X;Y/.

Lemma 8.2 Let K be a nonempty convex subset of X and x 2 K be an arbitrary
element. If the set-valued map T W K ! 2L.X;Y/ is nonempty compact valued and
H -hemicontinuous, then it is strongly generalized Cx-upper sign continuousC as
well as weakly generalized Cx-upper sign continuousC.

Proof Let x be an arbitrary but fixed element and suppose that T is strongly
generalized Cx-upper sign continuousC. Let x� WD x C �.y � x/ for all y 2 K
and � 2 �0; 1Œ. Assume that for all y 2 K and all �� 2 T.x�/, � 2 �0; 1Œ, we have

h��; y � xi 2 C.x/:

Since T.x�/ and T.x/ are compact, from Lemma 1.13, it follows that for each fixed
�� 2 T.x�/, there exists �� 2 T.x/ such that

k�� � ��k � H .T.x�/;T.x//:
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Since T.x/ is compact, without loss of generality, we may assume that �� ! � 2
T.x/ as � ! 0C. Since T isH -hemicontinuous,H .T.x�/;T.x// ! 0 as � ! 0C.
Thus,

k�� � �k � k�� � ��k C k�� � �k
� H .T.x�/;T.x//C k�� � �k ! 0 as � ! 0C:

This implies that �� ! � 2 T.x/. Since C.x/ is closed, we have that there exists
� 2 T.x/ such that h�; y � xi 2 C.x/ for all y 2 K. Hence, T is strongly generalized
Cx-upper sign continuousC.

Since W.x/ D Y n f� int.C.x//g is closed for all x 2 K, by using the similar
argument, it is easy to show that T is weakly generalizedCx-upper sign continuousC.

ut
Remark 8.3 The H -hemicontinuity does not imply the generalized Cx-upper sign
continuityC.

Lemma 8.3 Let K be a nonempty convex subset of X and T W K ! 2L.X;Y/ be a
set-valued map with nonempty values. Then

(a) Sol(MGSVVIP)dw � Sol(GSVVIP)ds if T is strongly generalized Cx-upper sign
continuous;

(b) Sol(MGVVIP)dw � Sol(GVVIP)ds � Sol(GVVIP)dw if T is generalized Cx-upper
sign continuous;

(c) Sol(MGWVVIP)dw � Sol(GVVIP)ds � Sol(GWVVIP)dw if T is weakly
generalized Cx-upper sign continuous.

Proof (a) Let Nx 2 Sol(MGSVVIP)dw. Then for all y 2 K, there exists � 2 T.y/ such
that

h�; y � Nxi 2 C.Nx/:

Since K is convex, for all � 2 �0; 1Œ, y� WD xC �.y� Nx/ 2 K. Therefore, for y� 2 K,
there exists �� 2 T.y�/ such that

h��; Nx C �.y � Nx/� Nxi 2 C.Nx/;

equivalently,

� h��; y � Nxi 2 C.Nx/:

Since C.x/ is a convex cone, we have

h��; y � Nxi 2 C.Nx/:
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By strong generalized Cx-upper sign continuity of T, there exists N� 2 T.Nx/ such that
˝ N�; y � Nx˛ 2 C.Nx/; for all y 2 K:

Hence, Nx 2 Sol(GSVVIP)ds .
Since W.x/ D Y n f�C.x/ n f0gg and W.x/ D Y n f� int.C.x//g are cones, the

proof of the part (b) and (c) lies on the lines of the proof of part (a). ut
Similarly, we can prove the following lemma.

Lemma 8.4 Let K be a nonempty convex subset of X and T W K ! 2L.X;Y/ be a
set-valued map with nonempty values. Then

(a) Sol(MGSVVIP)dg � Sol(GSVVIP)dg if T is strongly generalized Cx-upper sign

continuousC
C;

(b) Sol(MGSVVIP)dg � Sol(GSVVIP)ds if T is strongly generalized Cx-upper sign
continuousC;

(c) Sol(MGSVVIP)dw � Sol(GSVVIP)dg if T is strongly generalized Cx-upper sign
continuousC;

(d) Sol(MGVVIP)dg � Sol(GVVIP)dg if T is generalized Cx-upper sign continu-

ousC
C;

(e) Sol(MGVVIP)dg � Sol(GVVIP)ds if T is generalized Cx-upper sign continu-
ousC;

(f) Sol(MGVVIP)dw � Sol(GVVIP)dg if T is generalized Cx-upper sign
continuousC;

(g) Sol(MGWVVIP)dg � Sol(GWVVIP)dg if T is weakly generalized Cx-upper sign

continuousC
C;

(h) Sol(MGWVVIP)dg � Sol(GWVVIP)ds if T is weakly generalized Cx-upper sign
continuousC;

(i) Sol(MGWVVIP)dw � Sol(GWVVIP)dg if T is weakly generalized Cx-upper sign
continuousC.

We introduce the following set-valued maps:

• SSg.y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi 2 C.x/g;

• SSw.y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi 2 C.x/g;

• MS
g.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi 2 C.x/g;

• MS
w.y/ D fx 2 K W 9� 2 T.y/ satisfying h�; y � xi 2 C.x/g;

• Sg.y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg;

• Sw.y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg;
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• Mg.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg;

• Mw.y/ D fx 2 K W 9� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg;

• SWg .y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi … � int.C.x//g;

• SWw .y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … � int.C.x//g;

• MW
g .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … � int.C.x//g;

• MW
w .y/ D fx 2 K W 9� 2 T.y/ satisfying h�; y � xi … � int.C.x//g.

From the above definition of set-valued maps, the following result can be easily
derived.

Proposition 8.1

(a) Sol(GSVVIP)dg D
\

y2K
SSg.y/ and Sol(GSVVIP)

d
w D

\

y2K
SSw.y/;

(b) Sol(MGSVVIP)dg D
\

y2K
MS

g.y/ and Sol(MGSVVIP)dw D
\

y2K
MS

w.y/;

(c) Sol(GVVIP)dg D
\

y2K
Sg.y/ and Sol(GVVIP)dw D

\

y2K
Sw.y/;

(d) Sol(MGVVIP)dg D
\

y2K
Mg.y/ and Sol(MGVVIP)dw D

\

y2K
Mw.y/;

(e) Sol(GWVVIP)dg D
\

y2K
SWg .y/ and Sol(GWVVIP)dw D

\

y2K
SWw .y/;

(f) Sol(MGWVVIP)dg D
\

y2K
MW

g .y/ and Sol(MGWVVIP)dw D
\

y2K
MW

w .y/.

Proposition 8.2

(a) If the set-valued map C W K ! 2Y is closed, then for each y 2 K, MS
g.y/ is a

closed set.
(b) If the set-valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is

closed, then for each y 2 K, MW
g .y/ is a closed set.

(c) If K is compact and the set-valued map T W K ! 2L.X;Y/ is nonempty compact
valued and the set-valued map C W K ! 2Y is closed, then for each y 2 K,
MS

w.y/ is a closed set.
(d) If K is compact and the set-valued map T W K ! 2L.X;Y/ is nonempty

compact valued and the set-valued map W W K ! 2Y, defined by W.x/ D
Y n f� int.C.x//g, is closed, then for each y 2 K, MW

w .y/ is a closed set.
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(e) If the set-valued map T W K ! 2L.X;Y/ is lower semicontinuous and the set-
valued map C W K ! 2Y is closed, then for each y 2 K, SSg.y/ is a closed
set.

(f) If the set-valued map T W K ! 2L.X;Y/ is lower semicontinuous and the set-
valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is closed, then
for each y 2 K, SWg .y/ is a closed set.

(g) If the set-valued map W W K ! 2Y, defined by W.x/ D Y n f� int.C.x//g, is
concave, then for each y 2 K, MW

g .y/ is a convex set.
(h) If the set-valued map C W K ! 2Y is concave, then for each y 2 K, MS

g.y/ is a
convex set.

Proof The proof of part (a) is similar to that of (b), therefore, we prove only part
(b).

(b) For any fixed y 2 K, let fxmg be a sequence inMW
g .y/ such that fxmg converges

to x 2 K. Since xm 2 MW
g .y/, for all � 2 T.y/, we have

h�; y � xmi 2 W.xm/ D Y n f�int.C.xm//g; for all m:

Since � 2 L.X;Y/, � is continuous, and so, the sequence fh�; y � xmig converges to
h�; y � xi 2 Y. Since W is closed, so its graph G.W/ is closed, and therefore, we
have .xm; h�; y � xmi/ converges to .x; h�; y � xi/ 2 G.W/. Thus,

h�; y � xi 2 W.x/ D Y n f� int.C.x//g;

so that x 2 MW
g .y/. Consequently,M

W
g .y/ is a closed subset of K.

The proof of part (c) is similar to that of (d), therefore, we prove only part (d).
(d) For any fixed y 2 K, let fxmg be a sequence inMW

w .y/ such that fxmg converges
to x 2 K. Since xm 2 MW

w .y/, there exists �m 2 T.y/ such that

h�m; y � xmi 2 W.xm/ D Y n f�int.C.xm//g; for all m:

Since T.y/ is compact, we may assume that f�mg converges to some � 2 T.y/.
Besides, since K is compact, fxmg is bounded. Therefore, h�m � �; y� xmi converges
to 0, but h�; y�xmi converges to h�; y�xi 2 Y due to � 2 L.X;Y/. Hence, h�m; y�xmi
converges to h�; y�xi 2 Y. Therefore, .xm; h�m; y�xmi/ converges to .x; h�; y�xi/ 2
G.W/ since G.W/ is closed. Thus, for � 2 T.y/,

h�; y � xi 2 W.x/ D Y n f� int.C.x//g;

so that x 2 MW
w .y/. Consequently,M

W
w .y/ is a closed subset of K.

The proof of part (f) is similar to that of (e), therefore, we prove only part (e).
(e) For any fixed y 2 K, let fxmg be a sequence in SSg.y/ converging to x 2 K.

By lower semicontinuity (see Lemma 1.9) of T, for any � 2 T.x/, there exists
�m 2 T.xm/ for all m such that the sequence f�mg converges to � 2 L.X;Y/. Since
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xm 2 SSg.y/ for all m, we have

h�m; y � xmi 2 C.xm/:

Moreover,

kh�m; y � xmi � h�; y � xik D kh�m; y � xmi � h�m; xi C h�m; xi � h�; y � xik
D kh�m; x � xmi C h�m; y � xi � h�; y � xik
D kh�m; x � xmi C h�m � �; y � xik
� k�mk kx � xmk C k�m � �k ky � xk:

Since f�mg is bounded in L.X;Y/, fh�m; y � xmig converges to h�; y � xi. By the
closedness of C, we have h�; y � xi 2 C.x/. Hence, x 2 SSg.y/, and therefore, SSg.y/
is closed.

(g) Let y 2 K be any fixed element and let x1; x2 2 MW
g .y/. Then for all � 2 T.y/,

we have

h�; y � x1i 2 W.x1/ and h�; y � x2i 2 W.x2/:

By concavity ofW, for all � 2 Œ0; 1�, we have

h�; y � .�x1 C .1 � �/x2/i D � h�; y � x1i C .1 � �/ h�; y � x2i
2 �W.x1/C .1 � �/W.x2/

� W.�x1 C .1 � �/x2/:

Therefore, �x1 C .1 � �/x2 2 MW
g .y/, and hence,M

W
g .y/ is convex.

Similarly, we can prove part (h). ut
Remark 8.4 The set-valued maps Sg, Sw, Mg, and Mw fail to have the property that
Sg.y/, Sw.y/, Mg.y/, andMw.y/ are closed for all y 2 K.

Example 8.2 Consider X D Y D R, K D �0; 1�, C.x/ D RC for all x 2 K and
T.x/ D Œ0; 1�. Then the set

Sg.y/ D fx 2 K W 8� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg
D fx 2 �0; 1� W x � yg

is not closed.

Proposition 8.3 Let K be a nonempty convex subset of X. The set-valued maps Sw
and SWw are KKM-maps.
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Proof Let Ox be in the convex hull of any finite subset fy1; y2; : : : ; ypg of K. Then
Ox D Pp

iD1 �iyi for some nonnegative real number �i, 1 � i � p, with
Pp

iD1 �i D 1.
If Ox … Sp

iD1 Sw.yi/, then for all � 2 T.Ox/, we have

h�; yi � Oxi 2 �C.Ox/ n f0g; for each i D 1; 2; : : : ; p:

Since �C.Ox/ is a convex cone and �i � 0 with
Pp

iD1 �i D 1, we have

pX

iD1
�ih�; yi � Oxi 2 �C.Ox/ n f0g:

It follows that

0 D h�; Ox � Oxi D
*

�;

pX

iD1
�iyi �

pX

iD1
�i Ox
+

D
*

�;

pX

iD1
�i.yi � Ox/

+

D
pX

iD1
�i h�; yi � Oxi 2 �C.Ox/ n f0g:

Thus, we have 0 2 �C.Ox/ n f0g, a contradiction. Therefore, we must have

co.fy1; y2; : : : ; ypg/ �
p[

iD1
Sw.yi/;

and hence, Sw is a KKM map on K.
Since �C.x/ is a convex cone, by using the similar argument, we can easily prove

that SWw is a KKM map on K. ut
Remark 8.5 The above argument cannot be applied for SSg and SSw. In general, SSg
and SSw are not KKM maps.

Example 8.3 Let X D K D R, Y D R
2 and let the operator T W K ! 2L.X;Y/ be the

single-valued map T.x/ WD .x;�x/. Then the sets SSg and SSw coincide, and it can be
easily seen that they are not KKM maps: Consider, for instance, the points y1 D 0

and y2 D 1. Then SSg.y1/ D SSw.y1/ D f0g and SSg.y2/ D SSw.y2/ D f0; 1g. However,
1
2

2 co .y1; y2/ and SSg
�
1
2

� D SSw
�
1
2

� D ˚
0; 1

2

�
, but 1

2
… f0; 1g.

8.2 Existence Results under Monotonicity

Let X and Y be Banach spaces and K be a nonempty convex subset of X. Let T W
K ! 2L.X;Y/ be a set-valued map with nonempty values, and C W K ! 2Y be a
set-valued map such that for all x 2 K, C.x/ is a closed convex pointed cone with
int.C.x// ¤ ;.
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Definition 8.4 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be

(a) strongly generalized Cx-monotone on K if for every y 2 K and for all � 2 T.x/,
� 2 T.y/, we have

h� � �; x � yi 2 C.x/I

(b) strongly generalized Cx-monotoneC onK if for every y 2 K and for all � 2 T.x/,
there exists � 2 T.y/ such that

h� � �; x � yi 2 C.x/I

(c) strongly generalized Cx-monotoneC onK if for every y 2 K and for all � 2 T.y/,
there exists � 2 T.x/ such that

h� � �; x � yi 2 C.x/I

(d) strongly generalized Cx-pseudomonotone on K if for every y 2 K and for all
� 2 T.x/ and � 2 T.y/, we have

h�; y � xi 2 C.x/ implies h�; y � xi 2 C.x/I

(e) strongly generalized Cx-pseudomonotoneC on K if for every y 2 K and for all
� 2 T.x/, we have

h�; y � xi 2 C.x/ implies h�; y � xi 2 C.x/; for some � 2 T.y/I

(f) strongly generalized Cx-pseudomonotoneC on K if for every y 2 K, we have for
some � 2 T.x/,

h�; y � xi 2 C.x/ implies h�; y � xi 2 C.x/; for all � 2 T.y/:

Definition 8.5 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be

(a) generalized Cx-monotone onK if for every y 2 K and for all � 2 T.x/, � 2 T.y/,
we have

h� � �; x � yi … �C.x/ n f0gI

(b) generalized Cx-monotoneC on K if for every y 2 K and for all � 2 T.x/, there
exists � 2 T.y/ such that

h� � �; x � yi … �C.x/ n f0gI
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(c) generalized Cx-monotoneC on K if for every y 2 K and for all � 2 T.y/, there
exists � 2 T.x/ such that

h� � �; x � yi … �C.x/ n f0gI

(d) generalized Cx-pseudomonotone on K if for every y 2 K and for all � 2 T.x/
and � 2 T.y/, we have

h�; y � xi … �C.x/ n f0g implies h�; y � xi … �C.x/ n f0gI

(e) generalized Cx-pseudomonotoneC on K if for every y 2 K and for all � 2 T.x/,
we have

h�; y � xi … �C.x/ n f0g implies h�; y � xi … �C.x/ n f0g;

for some � 2 T.y/;
(f) generalized Cx-pseudomonotoneC on K if for every y 2 K, we have

for some � 2 T.x/; h�; y � xi … �C.x/ n f0g
implies h�; y � xi … �C.x/ n f0g; for all � 2 T.y/:

When we replace C.x/ n f0g by int.C.x// in the above definitions, then T is called
weakly generalized Cx-monotone, weakly generalized Cx-monotoneC, weakly gen-
eralized Cx-monotoneC, weakly generalized Cx-pseudomonotone, weakly general-
ized Cx-pseudomonotoneC, and weakly generalized Cx-pseudomonotoneC, respec-
tively.

The following example shows that the weakly generalized Cx-pseudo-
monotonicity does not imply weakly generalized Cx-monotonicity.

Example 8.4 Let X D Y D R, C.x/ D Œ0;1/ for all x 2 X, and let T W R ! 2R

be defined as T.x/ D � � 1; x� for all x 2 R. Then it is easy to see that T is weakly
generalized Cx-pseudomonotone but not weakly generalized Cx-monotone.

From the above definition, we have the following diagram (Fig. 8.2).
The implications in the following lemma follow from the definition of different

kinds of monotonicities, and therefore, we omit the proof.

Lemma 8.5 Let K be a nonempty subset of X and T W K ! 2L.X;Y/ be a set-valued
map with nonempty values. Then

(a) Sol(GSVVIP)dw � Sol(MGSVVIP)dw if T is strongly generalized Cx-
pseudomonotoneC;

(b) Sol(GSVVIP)dw � Sol(MGSVVIP)dg if T is strongly generalized Cx-pseudo-
monotoneC;

(c) Sol(GVVIP)dw � Sol(MGVVIP)dw if T is generalized Cx-pseudomonotoneC;
(d) Sol(GVVIP)dw � Sol(MGVVIP)dg if T is generalized Cx-pseudomonotoneC;
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GM GPM GPM + GM+

GM+ GPM + GPM +
+ GM+

+

Fig. 8.2 Relations among different kinds of generalized Cx-monotonicity. GM and GPM stand for
generalized Cx-monotonicity and generalized Cx-pseudomonotonicity, respectively

(e) Sol(GWVVIP)dw � Sol(MGWVVIP)dw if T is weakly generalized Cx-
pseudomonotoneC;

(f) Sol(GWVVIP)dw � Sol(MGWVVIP)dg if T is weakly generalized Cx-
pseudomonotoneC.

Next we give the first result on the existence of a solution of (GWVVIP)w.

Theorem 8.1 Let X and Y be Banach spaces and K be a nonempty compact convex
subset of X. Let C W K ! 2Y be a set-valued map such that for each x 2 K, C.x/ is
a proper, closed and convex (not necessarily pointed) cone with int.C.x// ¤ ;; and
let W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g, such that the graph G.W/
of W is closed in X 	 Y. Let x 2 K be arbitrary and suppose that T W K ! 2L.X;Y/

is weakly generalized Cx-pseudomonotoneC and weakly generalized Cx-upper sign
continuousC on K. Then there exists a solution of (GWVVIP)w.

Proof Define set-valued maps SWw ;M
W
g W K ! 2K by

SWw .y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … �int.C.x//g;
and

MW
g .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �int.C.x//g;

for all y 2 K. Then by Proposition 8.3, SWw is a KKM map on K. By generalized
Cx-pseudomonotonicityC of T, SWw .y/ � MW

g .y/ for all y 2 K. Since SWw is a KKM
map, so isMW

g . Also,

\

y2K
SWw .y/ �

\

y2K
MW

g .y/:

by Lemma 8.4 (i),

\

y2K
MW

g .y/ �
\

y2K
SWw .y/;
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and thus,

\

y2K
SWw .y/ D

\

y2K
MW

g .y/:

By Proposition 8.2 (b) and the assumption that the graph G.W/ of W is closed,
MW

g .y/ is closed for all y 2 K. Since K is compact, so is MW
g .y/ for all y 2 K. By

Fan-KKM Lemma 1.14, we have

\

y2K
SWw .y/ D

\

y2K
MW

g .y/ ¤ ;:

Hence, there exists Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi … � int.C.Nx//:

The proof of theorem is complete. ut
Remark 8.6 We note that the assumptions of Theorem 8.1 imply that, in case of
an infinite-dimensional space Y, the cone C.x/ cannot be pointed for each x 2 K.
Indeed, the assumptions imply that Y n f� int.C.x//g is closed for each x 2 K;
hence int.C.x// is open. Since Y is infinite-dimensional, int.C.x// contains a whole
straight line. That is, there exist y; z 2 Y such that y C tz, y � tz 2 int.C.x// for all
t 2 R. By convexity, 0 2 C.x/ which gives .1=t/y C z, .1=t/y C z 2 C.x/ for all
t > 1. Since C.x/ is closed, z 2 C.x/ and �z 2 C.x/. Consequently, C.x/ cannot be
pointed.

Analogously to Theorem 8.1, we have the following existence result for a
solution of (GVVIP)w.

Theorem 8.2 Let X, Y, K, C and W be the same as in Theorem 8.1. Let x 2 K be
arbitrary and suppose that T W K ! 2L.X;Y/ is generalized Cx-pseudomonotoneC
and generalized Cx-upper sign continuousC on K such that the set MW

g .y/ D fx 2
K W 8� 2 T.y/ satisfying h�; y � xi … � int.C.x//g is closed for all y 2 K. Then
there exists a solution of (GVVIP)w.

Remark 8.7 Theorem 8.1 and 8.2 also hold when K is nonempty weakly compact
convex subset of a Banach space X.

Since SSw is not a KKM map, the argument similar to Theorem 8.2 cannot be
used for proving the existence of a solution of (GSVVIP)w. Therefore, we define the
following concept of pseudomonotonicity.

Definition 8.6 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be generalized Cx-pseudomonotone� on K if for every y 2 K and
for all � 2 T.x/ and � 2 T.y/, we have

h�; y � xi … �C.x/ n f0g implies h�; y � xi 2 C.x/:
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We use the above definition of pseudomonotonicity and establish the following
existence result for a solution of (GSVVIP)w.

Theorem 8.3 Let X, Y, K and C be the same as in Theorem 8.1. In addition, we
assume that the graph of C is closed. Let x 2 K be arbitrary and suppose that
T W K ! 2L.X;Y/ is generalized Cx-pseudomonotone� and strongly generalized
upper sign continuousC on K. Then there exists a solution of (GSVVIP)w.

Proof Define set-valued maps Sw;MS
g W K ! 2K by

Sw.y/ D fx 2 K W 9� 2 T.x/ satisfying h�; y � xi … �C.x/ n f0gg;

and

MS
g.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi 2 C.x/g;

for all y 2 K. Then by Proposition 8.3, Sw is a KKM map on K. By generalized
Cx-pseudomonotonicity� of T, Sw.y/ � MS

g.y/ for all y 2 K. Since Sw is a KKM
map, so isMM

g . Also,

\

y2K
Sw.y/ �

\

y2K
MS

g.y/:

By using strongly generalized Cx-upper sign continuityC of T and Lemma 8.4 (b),
we have

\

y2K
MS

g.y/ D Sol(MGSVVIP)dg � Sol(GSVVIP)ds

� Sol(GVVIP)ds � Sol(GVVIP)dw

D
\

y2K
Sw.y/;

and thus,

\

y2K
Sw.y/ D

\

y2K
MS

g.y/:

Since the graph G.C/ of C is closed and K is compact, we have that MS
g.y/ is

compact for all y 2 K. By Fan-KKM Lemma 1.14, we have

\

y2K
Sw.y/ D

\

y2K
MS

g.y/ ¤ ;:
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Hence, there exists Nx 2 K such that for all y 2 K, there exists � 2 T.Nx/ satisfying
h�; y � Nxi … �C.x/ n f0g:

This completes the proof. ut
To give the existence results for solutions of (GWVVIP)w defined on a closed (not

necessarily bounded) convex subset K of a Banach space X, we need the following
coercivity conditions.

Definition 8.7 The set-valued map T W K ! 2L.X;Y/ is said to be

(a) weakly generalized v-coercive on K if there exist a compact subset B of X and
Qy 2 B \ K such that for every � 2 T.x/,

h�; Qy � xi 2 � int.C.x//; for all x 2 K n B: (8.16)

(b) generalized v-coercive onK if there exist a compact subset B of X and Qy 2 B\K
such that for every � 2 T.x/,

h�; Qy � xi 2 �C.x/ n f0g; for all x 2 K n B: (8.17)

Theorem 8.4 Let X, Y, C, W and G.W/ be the same as in Theorem 8.1, and K
be a nonempty closed convex subset of X. Let x 2 K be an arbitrary element and
suppose that T W K ! 2L.X;Y/ is weakly generalized Cx-pseudomonotoneC, weakly
generalized Cx-upper sign continuousC and weakly generalized v-coercive on K
and it has nonempty values. Then (GWVVIP)w has a solution.

Proof Let SWw and MW
g be the set-valued maps defined as in the proof of Theo-

rem 8.1. Choose a compact subset B of X and Qy 2 B \ K such that for every
� 2 T.x/, (8.16) holds.

We claim that the closure cl
�
SWw .Qy/

�
of SWw .Qy/ is a compact subset ofK. If SWw .Qy/ 6�

B, then there exists x 2 SWw .Qy/ such that x 2 KnB. It follows that, for some � 2 T.x/,

h�; Qy � xi … � int.C.x//;

which contradicts (8.16). Therefore, we have SWw .Qy/ � B; hence, cl
�
SWw .Qy/

�
is a

compact subset of K.
As in the proof of Theorem 8.1, by Fan-KKM Lemma 1.14, we have

\

y2K
cl
�
SWw .Qy/

� ¤ ;:

Again, as in the proof of Theorem 8.1, MW
g .y/ is closed for all y 2 K. By

weakly generalized Cx-pseudomonotonicityC of T, SWw .y/ � MW
g .y/ for all y 2 K.

Therefore,

cl
�
SWw .Qy/

� � MW
g .y/; for all y 2 K:
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Consequently,
\

y2K
MW

g .y/ ¤ ;:

Furthermore, as in the proof of Theorem 8.1, we have
\

y2K
SWw .y/ D

\

y2K
MW

g .y/ ¤ ;:

Hence, (GWVVIP)w has a solution. ut
Analogous to Theorem 8.4, we can prove the following existence result for a

solution of (GVVIP)w.

Theorem 8.5 Let X, Y, C, W and G.W/ be the same as in Theorem 8.2, and K be a
nonempty closed convex subset of X. Let x 2 K be an arbitrary element and suppose
that T W K ! 2L.X;Y/ is nonempty valued, generalized Cx-pseudomonotoneC,
generalized Cx-upper sign continuousC and generalized v-coercive on K such that
the set

Mg.y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg

is closed for all y 2 K. Then (GVVIP)w has a solution.

Definition 8.8 The set-valued map T W K ! 2L.X;Y/ is said to be

(a) weakly generalized d-coercive on K if there exist a point Qy and a number d > 0
such that for every � 2 T.x/,

h�; Qy � xi 2 � int.C.x//; if x 2 K and kQy � xk > dI

(b) generalized d-coercive on K if there exist a point Qy and a number d > 0 such
that for every � 2 T.x/,

h�; Qy � xi 2 �C.x/ n f0g; if x 2 K and kQy � xk > d:

Now we present an existence theorem for a solution of problem (GWVVIP)w
under weakly generalized Cx-pseudomonotonicityC assumption.

Theorem 8.6 Let X, Y, C, W and G.W/ be the same as in Theorem 8.1. Let K
be a nonempty convex subset of X and T W K ! 2L.X;Y/ be a weakly generalized
Cx-pseudomonotoneC, weakly generalized Cx-upper sign continuousC on K with
nonempty compact values. Suppose that at least one of the following assumptions
holds:

(i) K is weakly compact.
(ii) X is reflexive, K is closed, and T is generalized d-coercive on K.

Then (GWVVIP)w has a solution.
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Proof Let SWw be the set-valued map defined as in the proof of Theorem 8.1. Define
a set-valued mapMW

w by

MW
w .y/ D fx 2 K W 9� 2 T.y/ satisfying h�y � xi … � int.C.x//g;

for all y 2 K. In order to prove the theorem under assumptions (i) it suffices to
follow the proof of Theorem 8.1.

As in the proof of Theorem 8.1, SWw is a KKM map. By weakly generalized Cx-
pseudomonotoneC, SWw .y/ � MW

w .y/ for all y 2 K, and so MW
w is a KKM-map. As

in the proof of Proposition 8.2 (d), we can easily show thatMW
w .y/ is weakly closed

for all y 2 K.
Let us now consider the case (ii). Let Br denote the closed ball (under the norm)

of X with center at origin and radius r. IfK\Br ¤ ;, part (i) guarantees the existence
of a solution xr for the following problem, denoted by (GWVVIP)rw:

find xr 2 K \ Br such that for all y 2 K \ Br;

there exists �r 2 T.xr/ satisfying h�r; y � xri … �int.C.xr//:

We observe that fxr W r > 0g must be bounded. Otherwise, we can choose r large
enough so that r � kQyk and d < kQy � xrk, where Qy satisfies the weakly generalized
d-coercivity of T. It follows that, for every �r 2 T.xr/,

h�r; y0 � xri 2 �int.C.xr//;

that is, xr is not a solution of problem (GWVVIP)rw, a contradiction. Therefore, there
exist r such that kxrk < r. Choose for any x 2 K. Then we can choose " > 0 small
enough such that xr C ".x � xr/ 2 K \ Br. If we suppose that for every �r 2 T.xr/,

h�r; x � xri 2 �int.C.xr//;

then

h�r; xr C ".x � xr/ � xri D "h�r; x � xri 2 �int.C.xr//;

that is, xr is not a solution of (GWVVIP)rw. Thus, xr is a solution of (GWVVIP)w.
ut

Analogous to Theorem 8.6, we have the following existence result for a solution
of (GVVIP)w.

Theorem 8.7 Let X, Y, C, W and G.W/ be the same as in Theorem 8.2. Let K be a
nonempty convex subset of X and T W K ! 2L.X;Y/ be nonempty valued, generalized
Cx-pseudomonotoneC and generalized Cx-upper sign continuousC on K such that
the set

SMg .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … �C.x/ n f0gg
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is weakly closed for all y 2 K. Suppose that at least one of the following assumptions
holds:

(i) K is weakly compact.
(ii) X is reflexive, K is closed, and T is generalized d-coercive on K.

Then (GVVIP)w has a solution.
In order to derive the existence results for solution of (GWVVIP)w and

(GWVVIP)s by the way of solving an appropriate Stampacchia generalized (scalar)
variational inequality problem (in short, GVIP), we use the following scalarization
technique.

Let s 2 Y� and T W K ! 2L.X;Y/ be a set-valued map with nonempty values. We
define a set-valued map Ts W K ! 2X

�

by

hTs.x/; yi D hs;T.x/; yi; for all x 2 K and y 2 X:

Also, set

H.s/ D fy 2 Y W hs; yi � 0g:

Then for all s 2 Y�, H.s/ is a closed convex cone in Y.
Recall that a set-valued map Q W X ! 2X

�

is said to be generalized
pseudomonotone on X if for every pair of points x; y 2 X and for all u 2 Q.x/,
v 2 Q.y/, we have

hu; y � xi � 0 implies hv; y � xi � 0:

Also, a set-valued map Q W X ! 2X
�

is said to be generalized pseudomonotoneC on
X if for every pair of points x; y 2 X and for all u 2 Q.x/, we have

hu; y � xi � 0 implies hv; y � xi � 0; for some v 2 Q.y/:

Obviously, every generalized pseudomonotone set-valued map is generalized
pseudomonotoneC.

Proposition 8.4 Let X and Y be Banach spaces and K be a nonempty closed
convex subset of X. Suppose that T W K ! 2L.X;Y/ is strongly generalized
H.s/-pseudomonotone (respectively, strongly generalized H.s/-pseudomonotoneC)
for some s 2 Y� n f0g. Then the mapping Ts is generalized pseudomonotone
(respectively, generalized pseudomonotoneC) on K.

Proof For any x; y 2 K, let

h�s; y � xi � 0; for all �s 2 Ts.x/: (8.18)

Then hs; h�; y � xii � 0 for all � 2 T.x/. Therefore, h�; y � xi 2 H.s/ for all
� 2 T.x/. If T is strongly generalized H.s/-pseudomonotone, then we must have
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h�; y � xi 2 H.s/ for all � 2 T.y/, and thus hs; h�; y � xii � 0 for all � 2 T.y/.
Hence, for all �s 2 Ts.y/,

h�s; y � xi � 0; (8.19)

that is, Ts is generalized pseudomonotone on K. Analogously, if T is strongly
generalized H.s/-pseudomonotoneC, (8.18) implies (8.19) for some �s 2 Ts.y/ and
Ts is generalized pseudomonotoneC on K. ut
Theorem 8.8 Let X and Y be Banach spaces and K be a nonempty compact convex
subset of X. Let C W K ! 2Y be defined as in Theorem 8.1 such that C�C n f0g ¤ ;.
Let x 2 K be arbitrary and suppose that T W K ! 2L.X;Y/ is weakly generalized Cx-
upper sign continuous and weakly generalized H.s/-pseudomonotone on K for some
s 2 C�C where H.s/ ¤ Y, and has nonempty values. Then the following statements
hold.

(a) There exists a solution of (GWVVIP)w.
(b) If for each x 2 K, the set T.x/ is convex and weakly compact in L.X;Y/, then

there exists a solution of (GWVVIP)s.

Proof

(a) Since H.s/ ¤ Y, we note that int H.s/ D s�1..0;1//. To see this, consider the
following argument. It is clear that s�1..0;1// � int.H.s//.

Conversely, let y 2 int.H.s//. Then there exists r > 0 such that Br.y/ �
H.s/, where Br.y/ denotes the ball with center at y and radius r. Hence,
hs; y C rzi � 0 for all kzk < 1. If hs; yi D 0, then from the above
inequality we conclude that hs;wi � 0 for all w 2 Y or Y � H.s/ which
is a contradiction. Therefore, hs:wi > 0 and y 2 s�1..0;1//. Consequently,
int.H.s// D s�1..0;1//.

As s 2 C�C n f0g, the mapping Ts is generalized pseudomonotone on K
due to Proposition 8.4. Beside, since T is weakly generalized Cx-upper sign
continuous, so is Ts. Now, in the special case where Y D R, C.x/ D RC for all
x 2 K. Theorem 8.1 guarantees the existence of a solution Nx 2 K of (GVIP)sw,
that is, for all y 2 K, there exists �s 2 Ts.Nx/ satisfying

h�s; y � Nxi � 0: (8.20)

Consequently, for every y 2 K, there exists N� 2 T.Nx/ such that

hs; h N�; y � Nxii � 0;

hence, h N�; y � Nxi … �int.H.s//. Since s 2 C�C, �int.H.s// 
 �int.CC/ 

� int.C.Nx//, so that

h N�; y � Nxi … � int.C.Nx//:
Therefore, Nx is a solution of (GWVVIP)w.
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(b) Let, in addition, the set T.Nx/ be convex and compact. Then Ts.Nx/ is obviously
convex in X�. We show that Ts.Nx/ is also compact.

Let fz˛g be a net in Ts.Nx/. Then there exists a net f�˛g in T.Nx/ such that

hz˛; xi D hs; h�˛; xii; for all x 2 X:

Since T.Nx/ is compact, there exists a subnet of f�˛g which is converging to some
� 2 T.Nx/. Without loss of generality, we suppose that �˛ converges to �. Fix any
x 2 X. Then we can define

hl; ui D hs; hu; xii; for all u 2 L.X;Y/;

hence, l 2 L.X;Y/�. Therefore, there exists Nz 2 X� such that

lim
˛

hz˛; xi D lim
˛

hl; �˛i D hl; �i D hs; h�; xii D hNz; xi;

that is, Nz 2 Ts.Nx/. Thus, Ts.Nx/ is compact set in X�.
By (8.20) and the well known minimax theorem [4], we have

max
�s2Ts.Nx/

min
y2K h�s; y � Nxi D min

y2K max
�s2Ts.Nx/

h�s; y � Nxi � 0:

Hence, there exists �s 2 Ts.Nx/ such that

h�s; y � Nxi � 0; for all y 2 K;

that is, there exists � 2 T.Nx/ such that

hs; h�; y � Nxii � 0; for all y 2 K:

Analogously, it follows that

h�; y � Nxi … � int.C.Nx//; for all y 2 K:

Therefore, Nx is a strong solution of (GWVVIP)w. ut
In order to solve (GWVVIP)w with an unbounded domain, we need the following

coercivity conditions. We first note that

C�C D fl 2 Y� W hl; yi � 0 for all y 2 CCg;

and

int.C�C/ D fl 2 Y� W hl; yi > 0 for all y 2 CCg;

where CC D co.fC.x/ W x 2 Kg/.
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Definition 8.9 Let X and Y be Banach spaces and K be a nonempty closed convex
subset of X. Let C W K ! 2Y be a set-valued map such that C�C n f0g ¤ ;. A
set-valued map T W K ! 2L.X;Y/ is said to be

(a) generalized v-coercive if there exist x0 2 K and s 2 C�C n f0g such that

inf
�2Ts.x/

h�; x � xoi
kx � x0k ! 1; as x 2 K; kxk ! 1:

(b) weakly generalized v-coercive if there exist y 2 K and s 2 C�C n f0g such that

inf
�2Ts.x/

h�; x � yi ! 1; as x 2 K; kxk ! 1:

It is clear that if T is generalized v-coercive, then it is weakly generalized v-
coercive.

Under the assumption of the weak generalized v-coercivity of T, we have the
following existence theorem for solutions of (GWVVIP)w and (GWVVIP)s.

Theorem 8.9 Let X, Y and C be the same as in Theorem 8.8 and, in addition, X be
reflexive. Let K be a nonempty convex closed subset of X. Suppose that T W K !
2L.X;Y/ is weakly generalized H.s/-upper sign continuous, weakly generalized H.s/-
pseudomonotone, and weakly generalized v-coercive with respect to an s 2 C�C nf0g
on K, where H.s/ ¤ Y, and has nonempty values. Then the following statements
hold.

(a) There exists a solution of (GWVVIP)w.
(b) If, for each x 2 K, the set T.x/ is convex and weakly compact in L.X;Y/, there

exists a solution of (GWVVIP)s.

Proof If, for the given s 2 C�C n f0g, there exists Nx 2 K which is a solution of
(GVIP)w, that is, for all y 2 K, there exists �s 2 Ts.Nx/ satisfying

h�s; y � Nxi � 0:

Then as in the proof of Theorem 8.8, assertions (a) and (b) are true. So, for the proof
of this theorem, it is sufficient to prove that there exists a solution of (GVIP)w.

Let Br denote the closed ball (under the norm) of X with center at origin and
radius r. In the special case where Y D R, C.x/ D RC for all x 2 K \ Br,
Proposition 8.4 and Theorem 8.1 with Remark 8.7 guarantee the existence of a
solution xr for the following problem, denoted by (GVIP)rw:

Find xr 2 K \ Br such that for all y 2 K \ Br;

there exists �s 2 Ts.Nx/ satisfying h�s; y � Nxi � 0;
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ifK\Br ¤ ;. Choose r � kx0k, where x0 satisfies the weak generalized v-coercivity
of T. Then for some � 0

s 2 Ts.Nx/, we have

h� 0
s; y � Nxi � 0: (8.21)

We observe that fxr W r > 0g must be bounded. Otherwise, we can choose r large
enough so that the weak generalized v-coercivity of T yields

h�s; x0 � Nxi < 0; for all �s 2 Ts.Nx/;

which contradicts (8.21). Therefore, there exists r such that kx0k < r. Now, for each
x 2 K, we can choose " > 0 small enough such that xr C ".x � xr/ 2 K \ Br. Then

h�s; xr C ".x � xr/� Nxi � 0; for some �s 2 Ts.Nx/:

Dividing by " on both sides of the above inequality, we obtain

h�s; x � xri � 0; for all x 2 K;

which shows that xr is s solution of (GVIP)sw and the result follows. ut
We now obtain similar results in the case of weak generalized H.s/-

pseudomonotonicity.

Theorem 8.10 Let X, Y and C be the same as in Theorem 8.8. Let K be a nonempty
convex subset of X and T W K ! 2L.X;Y/ be a weakly generalized H.s/-upper
sign continuous, weakly generalized H.s/-pseudomonotonemapping with nonempty
compact values on K with respect to s 2 C�C n f0g where H.s/ ¤ Y. Suppose that at
least one of the following conditions hold:

(i) K is weakly compact.
(ii) K is closed, T is weakly v-coercive on K with respect to the same s 2 C�C n f0g,

and X is reflexive.

Then the following statements hold.

(a) There exists a solution of (GWVVIP)w.
(b) If, for each x 2 K, the set T.x/ is convex, there exists a solution of (GWVVIP)s.

Proof We first note that, in case (i), the existence of a solution to the (GVIP)w
defined in (8.20) is guaranteed by Theorem 8.6 (a). In addition, under assumptions
of (ii), the set Ts.x/ is also convex and sequential compact. Therefore, in order to
prove this theorem it suffices to follow the proofs of Theorems 8.8 and 8.9 with the
corresponding modifications, respectively. ut
Remark 8.8 Let X and Y be Banach spaces and K be a closed convex pointed cone
in X. Let C W K ! 2Y be such that for all x 2 K, C.x/ is a closed convex pointed
cone with int.C.x// ¤ ;. Let T W K ! 2L.X;Y/ be a set-valued map with nonempty
values. The generalized vector complementarity problem (in short, GVCP) is to find
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.Nx; N�/ 2 K 	 T.Nx/ such that

h N�; Nxi … int.C.Nx// and h N�; yi … � int.C.Nx//; for all y 2 K:

It can be shown that if (GWVVIP)s has a solution, then (GVCP) has a solution.
Then by using Theorems 8.9 and 8.10, we can derive existence results for solutions
of (GVCP). For further details, we refer [5].

Definition 8.10 Let x 2 K be an arbitrary element. A set-valued map T W K !
2L.X;Y/ is said to be

(a) generalized Cx-quasimonotone on K if for every y 2 K and for all � 2 T.x/ and
all � 2 T.y/, we have

h�; y � xi … �C.x/ implies h�; y � xi … � int.C.x//I

(b) generalized Cx-quasimonotoneC on K if for every y 2 K and for all � 2 T.x/,
we have

h�; y � xi … �C.x/ implies h�; y � xi … � int.C.x//; for some � 2 T.y/:

Daniilidis and Hadjisavvas [2] established some existence results for a solu-
tion of (GWVVIP)w under generalized Cx-quasimonotonicity or generalized Cx-
quasimonotonicityC.

Now we establish some existence results for solutions of (GSVVIP)s, (GVVIP)s
and (GWVVIP)s.

Definition 8.11 Let T W K ! 2L.X;Y/ be a set-valued map. A single-valued map
f W K ! L.X;Y/ is said to be a selection of T if for all x 2 K, f .x/ 2 T.x/. It is
called continuous selection if, in addition, f is continuous

Lemma 8.6 If u is a selection of T, then every solution of SVVIP (5.1), VVIP (5.2)
and WVVIP (5.3) (all these defined by means of f ) is a solution of (GSVVIP)s,
(GVVIP)s and (GWVVIP)s, respectively.

Proof Assume that Nx 2 K is a solution of SVVIP (5.1), that is,

h f .Nx/; y � Nxi 2 C.x/; for all y 2 K:

Let N� D f .Nx/. Then, N� 2 T.Nx/ such that

h N�; y � Nxi 2 C.x/; for all y 2 K:

Thus, Nx 2 K is a solution of (GSVVIP)s.
Similarly, we can prove the other cases. ut
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Lemma 8.7 Let f W K ! L.X;Y/ be a selection of T W K ! 2L.X;Y/ and x 2 K
be an arbitrary element. If T is (respectively, strongly and weakly) generalized Cx-
pseudomonotone, then f is (respectively, strongly and weakly) Cx-pseudomonotone.

Theorem 8.11 Let X and Y be Banach spaces and K be a nonempty compact
convex subset of X. Let C W K ! 2Y be a set-valued map such that for each x 2 K,
C.x/ is a proper closed convex (not necessarily pointed) cone with int.C.x// ¤ ;;
and let W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g, such that the graph
G.W/ of W is closed in X 	 Y. For arbitrary x 2 K, suppose that T W K ! 2L.X;Y/

is nonempty valued, weakly generalized Cx-pseudomonotoneC and has continuous
selection f on K. Then there exists a solution of (GWVVIP)s.

Proof By the hypothesis, there is a continuous function f W K ! L.X;Y/ such that
f .x/ 2 T.x/ for all x 2 K. From Lemma 8.7, f is weakly Cx-pseudomonotone. Then
all the conditions of Theorem 5.2 are satisfied. Hence, there exists a solution of the
following WVVIP: Find Nx 2 K such that

h f .Nx/; y � Nxi … � int.C.Nx//; for all y 2 K:

By Lemma 8.6, Nx is a solution of (GWVVIP)s.
Similarly, by using Lemmas 8.6 and 8.7, and Theorem 5.3, we can establish the

following result.

Theorem 8.12 Let X and Y be Banach spaces and K be a nonempty compact
convex subset of X. Let C W K ! 2Y be a set-valued map such that for each x 2 K,
C.x/ is a proper closed convex (not necessarily pointed) cone with int.C.x// ¤ ;;
and let W W K ! 2Y be defined by W.x/ D Y n f� int.C.x//g, such that the
graph G.W/ of W is closed in X 	 Y. Let x 2 K be arbitrary and suppose that
T W K ! 2L.X;Y/ is nonempty valued, generalized Cx-pseudomonotoneC and has
continuous selection f on K such that the set

MW
g .y/ D fx 2 K W 8� 2 T.y/ satisfying h�; y � xi … � int.C.x//g

is closed for all y 2 K. Then there exists a solution of (GVVIP)s.

Remark 8.9 If K is compact and T W K ! 2L.X;Y/ is continuous, then T has a
continuous selection, see, for example [3].

8.3 Existence Results Without Monotonicity

Let X and Y be two Banach spaces, K � X be a nonempty, closed and convex set,
and C � Y be a closed, convex and pointed cone with int.C/ ¤ ;.

Recall that a mapping g W X ! Y is said to be completely continuous if the weak
convergence of xn to x in X implies the strong convergence of g.xn/ to g.x/ in Y.
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Definition 8.12 Let K be a nonempty, closed and convex subset of a Banach space
X and Y be a Banach space ordered by a closed, convex and pointed cone C with
int.C/ ¤ ;. A set-valued map T W K ! 2L.X;Y/ is said to be

(a) completely semicontinuous if for each y 2 K,

fx 2 K W h�; y � xi 2 � int.C/ for all � 2 T.x/g

is open in K with respect to the weak topology of X;
(b) strongly semicontinuous if for each y 2 K,

fx 2 K W h�; y � xi 2 � int.C/ for all � 2 T.x/g

is open in K with respect to the norm topology of X.

Remark 8.10

(a) Let K be a nonempty, bounded, closed and convex subset of a reflexive Banach
space X and Y be a Banach space ordered by a closed, convex and pointed cone
C with int.C/ ¤ ;. Let T W K ! L.X;Y/ be completely continuous. Then T is
completely semicontinuous.

(b) LetK be a nonempty, compact and convex subset of a Banach spaceX and Y be a
Banach space ordered by a closed, convex and pointed cone C with int.C/ ¤ ;.
Let T W K ! L.X;Y/ be continuous. Then T is strongly semicontinuous.

(c) When X D Rn, complete continuity is equivalent to continuity, and complete
semicontinuity is equivalent to strong semicontinuity.

Next we state and prove the existence result for a solution of (GWVVIP)s with
C.x/ is a fixed pointed solid closed convex cone in Y.

Theorem 8.13 Let K be a nonempty, bounded closed and convex subset of a
reflexive Banach space X and Y be a Banach space ordered by a proper closed
convex and pointed cone C with int.C/ ¤ ;. Let T W K ! 2L.X;Y/ be a completely
semicontinuous set-valued map with nonempty values. Then there exists a solution
of (GWVVIP)s for a fixed pointed solid closed convex cone C in Y, that is, there
exist Nx 2 K and � 2 T.Nx/ such that

h�; y � Nxi … � int.C/; for all y 2 K:

Proof Suppose that the conclusion is not true. Then for each Ox 2 K, there exists
y 2 K such that

h O�; y � Oxi 2 � int.C/; for all O� 2 T.Ox/: (8.22)

For every y 2 K, define the set Ny as

Ny D fx 2 K W h�; y � xi 2 � int.C/ for all � 2 T.x/g :
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Since T is completely semicontinuous, the set Ny is open in K with respect to the
weak topology of X for every y 2 K.

We assert that fNy W y 2 Kg is an open cover of K with respect to the weak
topology of X. Indeed, first it is easy to see that

[

y2K
Ny � K:

Second, for each Ox 2 K, by (8.22) there exists y 2 K such that Ox 2 Ny. Hence
Ox 2 Sy2K Ny. This shows that K � S

y2K Ny. Consequently,

K D
[

y2K
Ny:

So, the assertion is valid.
The weak compactness of K implies that there exists a finite set of elements

fy1; y2; : : : ; ymg � K such that K D Sm
iD1 Nyi . Hence there exists a continuous (with

respect to the weak topology of X) partition of unity fˇ1; ˇ2; : : : ; ˇmg subordinated
to
˚
Ny1 ;Ny2 ; : : : ;Nym

�
such that ˇj.x/ � 0 for all x 2 K, j D 1; 2; : : : ;m,

mX

jD1
ˇj.x/ D

1 for all x 2 K, and

ˇj.x/

� D 0; whenever x 62 Nyj ;

> 0; wheneverx 2 Nyj :

Let p W K ! X be defined by

p.x/ D
mX

jD1
ˇj.x/yj; for all x 2 K: (8.23)

Since ˇi is continuous with respect to the weak topology of X for each i, p is
continuous with respect to the weak topology of X. Let� WD co.fy1; y2; : : : ; ymg/ �
K. Then � is a simplex of a finite dimensional space and p maps � into itself. By
Brouwer’s Fixed Point Theorem 1.39, there exists Qx 2 � such that p.Qx/ D Qx. For
any given x 2 K, let

k.x/ D ˚
j W x 2 Nyj

� D ˚
j W ˇj.x/ > 0

�
:

Obviously, k.x/ ¤ ;.
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Since Qx 2 � � K is a fixed point of p, we have p.Qx/ D Pm
jD1 ˇj.Qx/yj and hence

by the definition of Ny, we derive for each Q� 2 T.Qx/

0 D hQ�; Qx � Qxi
D h Q�; Qx � p.Qx/i

D
*

Q�; Qx �
mX

jD1
ˇj.Qx/yj

+

D
X

j2k.x0/
ˇj.x0/h Q�; Qx � yji 2 int.C/

which leads to a contradiction. Therefore, there exist Nx 2 K and � 2 T.Nx/ such that

h�; y � Nxi … � int.C/; for all y 2 K:

This completes the proof. ut
The proof of the following result can be easily derived on the lines of the proof

of Theorem 8.13.

Theorem 8.14 Let K be a nonempty, compact and convex subset of a Banach space
X and Y be a Banach space ordered by a proper closed convex and pointed cone C
with int.C/ ¤ ;. Let T W K ! 2L.X;Y/ be strongly semicontinuous with nonempty
values. Then there exist Nx 2 K and � 2 T.Nx/ such that

h�; y � Nxi … � int.C/; for all y 2 K:

Nowwe establish an existence theorem for a solution of (GWVVIP)g under lower
semicontinuity assumption on the underlying set-valued map T.

Theorem 8.15 Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X and the set-valued map T W K ! 2L.X;Y/ be lower
semicontinuous such that the set

Ax WD fy 2 K W h�; y � xi 2 � int.C.x// for all � 2 T.x/g

is convex for all x 2 K. Let the set-valued map W W K ! 2Y, defined by W.x/ D
Y n f� int.C.x//g for all x 2 K, be closed. Assume that for a nonempty compact
convex set D � K with each x 2 D n K, there exists y 2 D such that for any
� 2 T.x/, h�; y � xi 2 � int.C.x//. Then (GWVVIP)g has a solution.

Proof Let

A D f.x; y/ 2 K 	 K W h�; y � xi … � int.C.x// for all � 2 T.x/g:
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Clearly, .x; x/ 2 A for all x 2 K. For each fixed y 2 K, let

Ay WD fx 2 K W .x; y/ 2 Ag
D fx 2 K W h�; y � xi … � int.C.x// for all � 2 T.x/g:

Then by Proposition 8.2 (f), Ay is closed. By hypothesis, for each fixed y 2 K, the
set Ax WD fy 2 K W .x; y/ … Ag is convex.

By Lemma 1.17, there exists Nx 2 K such that fNxg 	 K � A, that is, Nx 2 K such
that h�; Nx � yi … � int.C.Nx//, for all � 2 T.Nx/ and y 2 K. ut

8.4 Generalized Vector Variational Inequalities and
Optimality Conditions for Vector Optimization Problems

Throughout this section, unless otherwise specified, we assume thatK is a nonempty
convex subset of Rn and f D . f1; f2; : : : ; f`/ W Rn ! R` be a vector-valued function.
The subdifferential of a convex function fi is denoted by @fi.

Corresponding to K and @fi, the (Stampacchia) generalized vector variational
inequality problems and Minty generalized vector variational inequality problems
are defined as follows:

(GVVIP)`g:

Find Nx 2 K such that for all y 2 K and all N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g,

h N�; y�Nxi` WD �h N�1; y�Nxi; : : : ; h N�`; y�Nxi� … �R
`Cnf0g: (8.24)

(GVVIP)`s :

Find Nx 2 K such that there exist N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g, such that for all y 2 K

h N�; y�Nxi` WD �h N�1; y�Nxi; : : : ; h N�`; y�Nxi� … �R
`Cnf0g: (8.25)

(GVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist N�i 2 @fi.Nx/,
i 2 I D f1; 2; : : : ; `g, satisfying

h N�; y�Nxi` WD �h N�1; y�Nxi; : : : ; h N�`; y�Nxi� … �R
`Cnf0g: (8.26)

(MGVVIP)`g:

Find Nx 2 K such that for all y 2 K and all �i 2 @fi.y/, i 2 I D
f1; 2; : : : ; `g,

h�; y�Nxi` WD �h�1; y�Nxi; : : : ; h�`; y�Nxi� … �R
`Cnf0g: (8.27)
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(MGVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist �i 2 @fi.y/,
i 2 I D f1; 2; : : : ; `g,

h�; y�Nxi` WD �h�1; y�Nxi; : : : ; h�`; y�Nxi� … �R
`Cnf0g: (8.28)

(GWVVIP)`g:

Find Nx 2 K such that for all y 2 K and all N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g,

h N�; y � Nxi` WD �h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R
`C
�
:

(8.29)

(GWVVIP)`s :

Find Nx 2 K such that there exist N�i 2 @fi.Nx/, i 2 I D
f1; 2; : : : ; `g, such that for all y 2 K

h N�; y � Nxi` WD �h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R
`C
�
:

(8.30)

(GWVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist N�i 2 @fi.Nx/,
i 2 I D f1; 2; : : : ; `g, satisfying

h N�; y � Nxi` WD �h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R
`C
�
:

(8.31)

(MGWVVIP)`g:

Find Nx 2 K such that for all y 2 K and all �i 2 @fi.y/, i 2 I D
f1; 2; : : : ; `g,

h�; y � Nxi` WD �h�1; y � Nxi; : : : ; h�`; y � Nxi� … �int
�
R
`C
�
:

(8.32)

(MGWVVIP)`w:

Find Nx 2 K such that for all y 2 K, there exist �i 2 @fi.y/,
i 2 I D f1; 2; : : : ; `g, such that

h�; y � Nxi` WD �h�1; y � Nxi; : : : ; h�`; y � Nxi� … �int
�
R
`C
�
:

(8.33)

We denote the solution sets of the above mentioned problems (GVVIP)`g,
(GVVIP)`s , (GVVIP)`w, (MGVVIP)`g, (MGVVIP)`w, (GWVVIP)`g, (GWVVIP)`s ,
(GWVVIP)`w, (MGWVVIP)`g and (MGWVVIP)`w by Sol(GVVIP)`g, Sol(GVVIP)

`
s ,

Sol(GVVIP)`w, Sol(MGVVIP)`g, Sol(MGVVIP)`w, Sol(GWVVIP)`g, Sol(GWVVIP)`s ,
Sol(GWVVIP)`w, Sol(MGWVVIP)`g and Sol(MGWVVIP)`w, respectively.

As in Remark 8.1, we have

(a) Sol(GVVIP)`g � Sol(GVVIP)`s � Sol(GVVIP)`w;
(b) Sol(GWVVIP)`g � Sol(GWVVIP)`s � Sol(GWVVIP)`w;
(c) Sol(GVVIP)`g � Sol(GWVVIP)`g;
(d) Sol(GVVIP)`s � Sol(GWVVIP)`s ;
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(e) Sol(GVVIP)`w � Sol(GWVVIP)`w;
(f) Sol(MGVVIP)`g � Sol(MGWVVIP)`g;
(g) Sol(MGVVIP)`w � Sol(MGWVVIP)`w.

The following example shows that Sol(GVVIP)`w � Sol(GVVIP)`s may not be
true.

Example 8.5 [7] Let K D ˚
.x1; x2/ 2 R2 W x1 � 0; � p�x1 � x2 � 0

�
and

f1.x1; x2/ D
q
x21 C x22 C x2; for all .x1; x2/ 2 K;

f2.x1; x2/ D x2; for all .x1; x2/ 2 K:

If .x1; x2/ D .0; 0/, then

@f1.x1; x2/ D f.�1; �2/ 2 R
2 W �21 C �22 � 1g C f.0; 1/g

D f.�1; �2/ 2 R
2 W �21 C .�2 � 1/2 � 1g:

If .x1; x2/ ¤ .0; 0/, then

@f1.x1; x2/ D

8
<̂

:̂

0

B
@

x1
q
x21 C x22

;
x2

q
x21 C x22

C 1

1

C
A

9
>=

>;
:

It can be easily checked that for all .�1; �2/ 2 @f1.0; 0/, there exists .x1; x2/ 2 K
such that

.�1x1 C �2x2; x2/ 2 �R
2C n f0g;

and that for all .x1; x2/ 2 K, there exists .�1; �2/ 2 @f1.0; 0/ such that

.�1x1 C �2x2; x2/ … �R
2C n f0g:

Hence, .0; 0/ 2 Sol(GVVIP)`w, but .0; 0/ … Sol(GVVIP)`s .
Moreover, Sol(GVVIP)`s D ˚

.x;�p�x/ W x < 0� and Sol(GVVIP)`w D˚
.x;�p�x/ W x � 0

�
.

Proposition 8.5 For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. Then
Sol(GVVIP)`w � Sol(MGVVIP)`g � Sol(MGVVIP)`w.

Proof Let Nx 2 K be a solution of (GVVIP)`w. Then for all y 2 K, there exist N�i 2
@fi.Nx/, i D 1; 2; : : : ; `, such that

�h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �R
`C n f0g: (8.34)
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Since each fi is convex, @fi, i 2 I , is monotone, and therefore, we have

h�i � N�i; y � Nxi � 0; for all �i 2 @fi.y/ and for each i 2 I : (8.35)

From (8.34) and (8.35), it follows that for all y 2 K and all �i 2 @fi.y/, i 2 I ,

�h�1; y � Nxi; : : : ; h�`; y � Nxi� … �R
`C n f0g:

Thus, Nx 2 K is a solution of (MGVVIP)`g. ut
The converse of the above proposition may not be true, that is,
Sol(MGVVIP)`g ª Sol(GVVIP)`w.

Example 8.6 Let K D ��1; 0� and f1.x/ D x, f2.x/ D x2. Since .x; 0/ 2 �R
2C nf0g

for all x 2 � � 1; 0Œ, we have 0 … Sol(GVVIP)`w.
But, since .x; 2x2/ … �R

2C nf0g, we have 0 2 Sol(MGVVIP)`g. Moreover, we can

easily verify that Sol(GVVIP)`w D � � 1; 0Œ and Sol(MGVVIP)`g D � � 1; 0�.
The following result provides the relationship between the solutions of

(MGWVVIP)`g and (GWVVIP)`g.

Theorem 8.16 For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. Then
Nx 2 K is a solution (GWVVIP)`w if and only if it is a solution of (MGWVVIP)`w.

Proof Let Nx 2 K be a solution of (GWVVIP)`w. Then for any y 2 K, there exist
N�i 2 @fi.Nx/, i D 1; 2; : : : ; `, such that

�
h N�1; y � Nxi; : : : ; h N�`; y � Nxi

�
… �int

�
R
`C
�
: (8.36)

Since each fi is convex, @fi (i 2 I ) is monotone, and therefore, we have

h�i � N�i; y � Nxi � 0; for all y 2 K; �i 2 @fi.y/ and for each i 2 I : (8.37)

From (8.36) and (8.36), it follows that for any y 2 K and any �i 2 @fi.y/, i 2 I ,

�
h�1; y � Nxi; : : : ; h�`; y � Nxi

�
… �int

�
R
`C
�
:

Thus, Nx 2 K is a solution of (MGWVVIP)`g. Since Sol(MGWVVIP)`g �
Sol(MGWVVIP)`w, Nx 2 K is a solution of Sol(MGWVVIP)`w.

Conversely, let Nx 2 K be a solution of (MGWVVIP)`w. Consider any y 2 K and
any sequence f˛mg & 0 with ˛m 2 �0; 1�. Since K is convex, ym WD NxC ˛m.y� Nx/ 2
K. Since Nx 2 K is a solution of (MGWVVIP)`w, there exist �mi 2 @fi.ym/, i 2 I ,
such that

�h�m1 ; ym � Nx/i; : : : ; h�m` ; �.ym; Nx/i
� … �int

�
R
`C
�
:
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Since each fi is convex and so it is locally Lipschitz (see Theorem 1.16), and hence,
there exists k > 0 such that for sufficiently large m and for all i 2 I ,

�
��mi

�
� � k.

So, we can assume that the sequence
˚
�mi
�
converges to N�i for each i 2 I . Since the

set-valued map y 7! @fi.y/ is closed (see Lemma 1.8), �mi 2 @fi.ym/ and ym ! Nx as
m ! 1, we have N�i 2 @fi.Nx/ for each i 2 I . Therefore, for any y 2 K, there exist
N�i 2 @fi.Nx/, i 2 I , such that

�h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �int
�
R
`C
�
:

Hence, Nx 2 K is a solution of (GWVVIP)`w. ut
Next theorem provides the necessary and sufficient conditions for an efficient

solution of VOP.

Theorem 8.17 ([6]) For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex.
Then Nx 2 K is an efficient solution of VOP if and only if it is a solution of
(MGVVIP)`w.

Proof Let Nx 2 K be a solution of (MGVVIP)`w but not an efficient solution of VOP.
Then there exists z 2 K such that

�
f1.z/� f1.Nx/; : : : ; f`.z/� f`.Nx/

� 2 �R
`C n f0g: (8.38)

Set z.�/ WD �z C .1 � �/Nx for all � 2 Œ0; 1�. Since K is convex, z.�/ 2 K for all
� 2 Œ0; 1�. Since each fi is convex, we have

fi.z.�// D fi.�z C .1 � �/Nx/ � �fi.z/C .1 � �/fi.Nx/; for each i D 1; 2; : : : ; `;

that is,

fi.Nx C �.z � Nx// � fi.Nx/ � �Œfi.z/ � fi.Nx/�;

for all � 2 Œ0; 1� and for each i D 1; 2; : : : ; `. In particular, for � 2 �0; 1Œ, we have
fi.z.�// � fi.Nx/

�
� fi.z/� fi.Nx/; for each i D 1; 2; : : : ; `: (8.39)

By Lebourg’s Mean Value Theorem 1.32, there exist �i 2 �0; 1Œ and �i 2 @fi.z.�i//
such that

h�i; z � Nxi D fi.z.�// � fi.Nx/; for each i D 1; 2; : : : ; `: (8.40)

By combining (8.39)–(8.40), we obtain

h�i; z � Nxi � fi.z/ � fi.Nx/; for each i D 1; 2; : : : ; `: (8.41)
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Suppose that �1; �2; : : : ; �` are all equal. Then it follows from (8.38) and (8.41)
that Nx is not a solution of (MGVVIP)`w. This contradicts to the fact the Nx is a solution
of (MGVVIP)`w.

Consider the case when �1; �2; : : : ; �` are not equal. Let �1 ¤ �2. Then
from (8.41), we have

h�1; z � Nxi � f1.z/� f1.Nx/ (8.42)

and

h�2; z � Nxi � f2.z/ � f2.Nx/: (8.43)

Since fi and f2 are convex, @f 1 and @f 2 are monotone, that is,

h�1 � ��
2 ; z.�1/ � z.�2/i � 0; for all ��

2 2 @f 1.z.�2//; (8.44)

and

h��
1 � �2; z.�1/ � z.�2/i � 0; for all ��

1 2 @f 2.z.�1//: (8.45)

If �1 > �2, then by (8.44), we obtain

0 � h�1 � ��
2 ; z.�1/� z.�2/i D .�1 � �2/h�1 � ��

2 ; z � Nxi;

and so,

h�1 � ��
2 ; z � Nx/i � 0 , h�1; z � Nxi � h��

2 ; z � Nxi:

From (8.42), we have

h��
2 ; z � Nxi � f1.z/ � f1.Nx/; for all ��

2 2 @f 1.z.�2//:

If �1 < �2, then by (8.45), we have

0 � h��
1 � �2; z.�1/� z.�2/i D .�1 � �2/h��

1 � �2; z � Nxi;

and so,

h��
1 � �2; z � Nxi � 0 , h��

1 ; z � Nxi � h�2; z � Nxi:

From (8.43), we obtain

h��
1 ; z � Nxi � f2.z/ � f2.Nx/; for all ��

1 2 @f 2.z.�1//:
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Therefore, for the case �1 ¤ �2, let N� D minf�1; �2g. Then, we can find N�i 2
@fi.z. N�// such that

h N�i; z � Nxi � fi.z/ � fi.Nx/; for all i D 1; 2:

By continuing this process, we can find �� 2 �0; 1Œ and ��
i 2 @fi.z.��// such that

�� D minf�1; �2; : : : ; �`g and

h��
i ; z � Nxi � fi.z/ � fi.Nx/; for each i D 1; 2; : : : ; `: (8.46)

From (8.38) and (8.46), we have ��
i 2 @fi.z.��//, i D 1; 2; : : : ; `, and

�h��
1 ; z � Nxi; : : : ; h� �̀; z � Nxi� 2 �R

`C n f0g:

By multiplying above inclusion by ���, we obtain
�h��

1 ; z.�
�/� Nxi; : : : ; h� �̀; z.��/ � Nxi� 2 �R

`C n f0g:
which contradicts to our supposition that Nx is a solution of (MGVVIP)`w.

Conversely, suppose that Nx 2 K is an efficient solution of VOP. Then we have
�
f1.y/� f1.Nx/; : : : ; f`.y/� f`.Nx/

� … �R
`C n f0g; for all y 2 K: (8.47)

Since each fi is convex, we deduce that

h�i; Nx � yi � fi.Nx/� fi.y/; for all y 2 K; �i 2 @fi.y/ and i 2 I :

Also, we obtain

h�i; y � Nxi � fi.y/� fi.Nx/; for all y 2 K; �i 2 @fi.y/ and i 2 I : (8.48)

From (8.47) and (8.48), it follows that Nx is a solution of (MGVVIP)`w. ut
Theorem 8.17 is extended for Dini subdifferential by Al-Homidan and Ansari

[1].

Theorem 8.18 [6] For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. If
Nx 2 K is a solution (GVVIP)`w, then it is an efficient solution of VOP and hence a
solution of (MGVVIP)`w.

Proof Since Nx 2 X is a solution of (GVVIP)`w, for any y 2 K, there exist N�i 2 @fi.Nx/,
i D 1; 2; : : : ; `, such that

�h N�1; y � Nxi; : : : ; h N�`; y � Nxi� … �R
`C n f0g: (8.49)

Since each fi is convex, we have

h N�i; y � Nxi � fi.y/� fi.Nx/ for any y 2 K and all i 2 I : (8.50)
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By combining (8.49) and (8.50), we obtain

�
f1.y/� f1.Nx/; : : : ; f`.y/ � f`.Nx/

� … �R
`C n f0g; for all y 2 K:

Thus, Nx 2 K is an efficient solution of VOP. ut
From Theorem 8.18, we see that (GVVIP)`w is a sufficient optimality condition

for an efficient solution of VOP. However, it is not, in general, a necessary optimality
condition for an efficient solution of VOP.

Example 8.7 Let K D Œ�1; 0� and f .x/ D .x; x2/. Consider the following
differentiable convex vector optimization problem:

minimize f .x/; subject to x 2 K; (VOP)

Then Nx D 0 is an efficient solution of VOP and Nx D 0 is a solution of the following
(MVVIP): Find Nx 2 K such that for all y 2 K,

�hrf1.y/; y � Nxi; hrf2.y/; y � Nxi� D �
y � Nx; 2y.y � Nx/� … �R

2C n f0g:

However, Nx D 0 is not a solution of the following (VVIP): Find Nx 2 K such that for
all y 2 K,

�hrf1.Nx/; y � Nxi; hrf2.Nx/; y � Nxi� D �
y � Nx; 2Nx.y � Nx/� … �R

2C n f0g:

The following result presents the equivalence between the solution of
(GWVVIP)`w and a weakly efficient solution of VOP.

Theorem 8.19 For each i 2 I D f1; 2; : : : ; `g, let fi W K ! R be convex. If Nx 2 K
is a weakly efficient solution of VOP if and only if it is a solution of (GWVVIP)`w.

Proof Suppose that Nx is a solution of (GWVVIP)`w but not a weakly efficient solution
of VOP. Then there exists y 2 K such that

�
f1.y/� f1.Nx/; : : : ; f`.y/ � f`.Nx/

� 2 �int
�
R
`C
�
: (8.51)

Since each fi, i 2 I , is convex, we have

h�i; y � Nxi � fi.y/ � fi.Nx/; for all �i 2 @fi.Nx/: (8.52)

Combining (8.51) and (8.52), we obtain

�h�1; y � Nxi; : : : ; h�`; y � Nxi� 2 �int
�
R
`C
�
; for all �i 2 @fi.Nx/

which contradicts to our supposition that Nx is a solution of (GWVVIP)`w.
Conversely, assume that Nx 2 K is a weakly efficient solution of VOP but

not a solution of (GWVVIP)`w. Then by Theorem 8.16, Nx is not a solution of
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(MGWVVIP)`w. Thus, there exist y 2 K and �i 2 @fi.y/, i 2 I , such that

�h�1; y � Nxi; : : : ; h�`; y; Nxi
� 2 �int

�
R
`C
�
: (8.53)

By convexity of fi, i 2 I , we have

0 > h�i; y � Nxi � fi.y/� fi.Nx/: (8.54)

From (8.53) and (8.54), we then have

�
f1.y/� f1.Nx/; : : : ; f`.y/ � f`.Nx/

� 2 �int
�
R
`C
�
:

which contradicts to our assumption that Nx is a weakly efficient solution of VOP. ut
The following example shows that the weakly efficient solution of VOP may not

be a solution of (GWVVIP)`g.

Example 8.8 ([7]) Let K D � � 1; 0� and

f1.x/ D x; f2.x/ D
�
x2; x < 0
x; x � 0:

Then sol(GWVVIP)`g D �� 1; 0Œ, but the set of weakly efficient solution of VOP is
� � 1; 0�.

The relations between a properly efficient solution in the sense of Geoffrion and
a solution of (GVVIP)`w is studied in [6].
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Chapter 9
Vector Equilibrium Problems

Motivated by various applications of multi-criteria decision making, extensions
of scalar equilibrium problems, discussed in Chap. 1, for the vector case were
proposed. Among them, the most investigated problems are vector optimization and
vector saddle point. In 1956, Blackwell [27] considered matrix games with vector
payoffs and proved the existence theorem for such problems. Since then, many
researchers studied vector non-cooperative games in finite- and infinite-dimensional
spaces. In 1980, Giannessi [51] extended the variational inequality problem for
vector-valued functions known as “vector variational inequality problem” (in short,
VVIP) with further applications. Vector equilibrium problems (in short, VEPs) can
be viewed as further and natural extension of the previous concepts. It is a unified
model of several known problems, namely, vector variational inequality problems,
vector optimization problems, vector saddle point problems and Nash equilibrium
problems for vector-valued functions. The theory of VVIPs and VEPs has been
developing extensively since the early ninety’s. In particular, a number of various
kinds of these problems were proposed and the corresponding existence results both
on bounded and on unbounded sets were established. The mathematical theory of
VEPs is presented in this chapter.

9.1 Introduction

Let K be a nonempty convex subset of a topological vector space X and Y be an
ordered topological vector space with a proper closed convex cone C such that
int.C/ ¤ ;. Throughout the chapter, we denote by 0 the zero element of a vector
space. Let f W K 	 K ! Y be a bifunction such that f .x; x/ �C 0 for all x 2 K.
There are several possible ways to extend the equilibrium problem (in short, EP)
for vector-valued bifunctions. Here, we present main three formulations of such
extensions, are called vector equilibrium problems (in short, VEPs).
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The weak vector equilibrium problem (in short, WVEP) is to find Nx 2 K such that

f .Nx; y/ 6<C 0; for all y 2 K: (9.1)

The vector equilibrium problem (in short, VEP) is to find Nx 2 K such that

f .Nx; y/ 6�C0 0; for all y 2 K: (9.2)

The strong vector equilibrium problem (in short, SVEP) is to find Nx 2 K such
that

f .Nx; y/ �C 0; for all y 2 K: (9.3)

The sets of solutions of problems WVEP, VEP, and SVEP are denoted by
S.WVEP. f ;C//, S.VEP. f ;C//, and S.SVEP. f ;C//, respectively.

It is clear that

S.WVEP. f ;C// � S.VEP. f ;C// � S.SVEP. f ;C//;

but the converse need not be true.
Other problems closely related to VEPs are the following problems, calledMinty

vector equilibrium problems (in short, MVEPs) or dual vector equilibrium problems
(in short, DVEPs).

TheMinty weak vector equilibrium problem (in short, MWVEP) is to find Nx 2 K
such that

f . y; Nx/ 6>C 0; for all y 2 K: (9.4)

The Minty vector equilibrium problem (in short, MVEP) is to find Nx 2 K such
that

f .y; Nx/ 6�C0 0; for all y 2 K: (9.5)

TheMinty strong vector equilibrium problem (in short, MSVEP) is to find Nx 2 K
such that

f .y; Nx/ �C 0; for all y 2 K: (9.6)

The sets of solutions of MWVEP, MVEP, and MSVEP are denoted by
S.MWVEP. f ;C//, S.MVEP. f ;C//, and S.MSVEP. f ;C//, respectively.

Obviously,

S.MWVEP. f ;C// � S.MVEP. f ;C// � S.MSVEP. f ;C//;

but the converse assertions are not true.
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The examples of VEPs are vector optimization problems, vector variational
inequality problems, vector saddle point problems, noncooperative equilibrium
problem with vector payoff, etc.

Example 9.1

(a) (Vector optimization Problem) Let ' W K ! Y be a vector-valued function.
Set

f .x; y/ D '.x/ � '.y/; for all x; y 2 K:

Then the above mentioned VEPs reduce to the corresponding VOPs, and
provide, respectively, weak efficient, efficient, and strong efficient solutions of
VOP.

(b) (Vector Variational Inequalities) Let T W K ! L.X;Y/ be a nonlinear
operator. Set

f .x; y/ D hT.x/; y � xi; for all x; y 2 K:

Then VEPs are equivalent to the corresponding VVIPs.
(c) (Vector Saddle Point Problems) Let K1 and K2 be nonempty subsets of X and

L W K1 	 K2 ! Y be a vector-valued function. The weak regular saddle point
problem [70] is to find Nx D .Nx1; Nx2/ 2 K1 	 K2 such that

L.Nx1; y2/ 6>C L.y1; Nx2/; for all .y1; y2/ 2 K1 	 K2: (9.7)

If we replace 6>C by 6�C0 (respectively, by �C) in (9.7), then above problem is
called regular saddle point problem (respectively, strong regular saddle point
problem).

The weak vector saddle point problem is to find Nx D .Nx1; Nx2/ 2 K1 	 K2 such
that

L.Nx1; y2/ 6>C L.Nx1; Nx2/ 6>C L.y1; Nx2/; for all .y1; y2/ 2 K1 	 K2: (9.8)

If we replace 6>C by 6�C0 (respectively, by �C) in (9.8), then the weak vector
saddle point problem is called vector saddle point problem (respectively, strong
vector saddle point problem).

Clearly, every solution of the regular saddle point problem (respectively,
weak regular saddle point problem) is a solution of saddle point problem
(respectively, weak saddle point problem), but converse is not true since 6>C

is not transitive. Set K D K1 	 K2 and define f W K 	 K ! Y by

f ..x1; x2/; .y1; y2// D L.y1; x2/ � L.x1; y2/;

for all .x1; x2/; .y1; y2/ 2 K1 	K2. Then VEPs are equivalent to the correspond-
ing regular saddle point problems.
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(d) (Noncooperative Vector Equilibrium Problem) For each i D 1; 2; : : : ;m,
let Ki be a nonempty subset of a topological vector space Xi, K WD Qm

iD1 Ki

and X D Qm
iD1 Xi. For each i D 1; 2; : : : ;m, let 'i W K ! Y be a

vector-valued function. For each x D .x1; x2; : : : ; xm/ 2 K, we denote by
xi D .x1; x2; : : : ; xi�1; xiC1; : : : ; xm/ 2 Q

j¤i Kj and write x D .xi; xi/ 2
Ki 	Qj¤i Kj D Qm

iD1 Ki. The noncooperative vector equilibrium problem [71]
or Nash equilibrium problem with vector payoff is to find Nx D K such that for
each i D 1; 2; : : : ;m,

'i.Nxi; Nxi/ 6�C0 'i.yi; Nxi/; for all yi 2 Ki: (9.9)

If we replace 6�C0 in (9.9) by 6>C (respectively, by �C), then noncooperative
vector equilibrium problem is called noncooperative weak vector equilibrium
problem (respectively, noncooperative strong vector equilibrium problem).

If we consider

f .x; y/ D
mX

iD1


'i.yi; x

i/� 'i.xi; x
i/
�
; for all x; y 2 K;

then noncooperative vector equilibrium problem (respectively, noncooperative
weak vector equilibrium problem and noncooperative strong vector equilibrium
problem) is equivalent to VEP (respectively, WVEP and SVEP).

When f .x; y/ D g.x; y/ C h.x; y/ for all x; y 2 K with g; h W K 	 K ! Y such
that g.x; x/ �C 0 and h.x; x/ D 0 for all x 2 K, then WVEP can be written as to find
Nx 2 K such that

g.Nx; y/C h.Nx; y/ 6<C 0; for all y 2 K: (9.10)

The set of solutions of WVEP (9.10) is denoted by S.WVEP.g; h;C//. Let l W K 	
K ! Y be a vector-valued bifunction. We also consider the following more general
problem known as implicit weak vector variational problem (for short, IWVVP)
which contains WVEP (9.1) and (9.10) as special cases: Find Nx 2 K such that

l.Nx; Nx/C g.Nx; Nx/ 6>C l.Nx; y/C g.Nx; y/; for all y 2 K: (9.11)

Similarly, we can define implicit vector variational problem and implicit strong
vector variational problem by replacing 6>C by 6�C0 and by �C, respectively,
in (9.11).

Let T;G W K ! L.X;Y/ be nonlinear operators. Set

l.x; y/ D hT.x/; y � xi and g.x; y/ D hG.x/; y � xi; for all x; y 2 K:

Then IWVVP reduces to the problem of finding Nx 2 K such that

hT.Nx/C G.Nx/; y � Nxi 6<C 0; for all y 2 K: (9.12)
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It is known as strongly nonlinear weak vector variational inequality problem (in
short, SNWVVIP) considered and studied in [3]. For Y D R and C D RC,
SNWVVIP is studied by Mosco [81].

When K D X, Y D R and C D RC, IWVVP reduces to the problem of finding
Nx 2 X such that

l.Nx; Nx/C g.Nx; Nx/ � l.Nx; y/C g.Nx; y/; for all y 2 X; (9.13)

which is known as the implicit variational problem (for short, IVP). It includes
variational and quasi-variational inequalities [18], fixed point problem and saddle
point problem, Nash equilibrium problem of non-cooperative games as special
cases. The existence of solutions of IVP was studied by Mosco [81], while Dolcetta
and Matzeu [37] discussed its duality and applications.

9.2 Existence Results

Throughout this section, unless otherwise specified, we assume thatK is a nonempty
convex subset of a topological vector space X and .Y;C/ is an ordered topological
vector space with a proper, closed and convex cone C. Whenever int.C/ is involved
in the formulation of a problem, we further assume that int.C/ ¤ ;.
Definition 9.1 Let K be a nonempty subset of X. A vector-valued bifunction f W
K 	 K ! Y is said to be:

(a) C-monotone if for all x; y 2 K, we have

f .x; y/C f .y; x/ �C 0I

(b) C-pseudomonotone if for all x; y 2 K, we have

f .x; y/ >C 0 implies f .y; x/ <C 0;

equivalently,

f .y; x/ 6<C 0 implies f .x; y/ 6>C 0I

(c) strictly C-pseudomonotone if for all x; y 2 K, x ¤ y, we have

f .x; y/ 6<C 0 implies f .y; x/ <C 0;

equivalently,

f .y; x/ 6<C 0 implies f .x; y/ <C 0I
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(d) C-quasimonotone if for all x; y 2 K, we have

f .x; y/ >C 0 implies f .y; x/ �C 0;

equivalently,

f .y; x/ 6�C 0 implies f .x; y/ 6>C 0I

(e) maximal C-pseudomonotone if it is C-pseudomonotone and, for all x; y 2 K, we
have

f .u; x/ 6>C 0 for all u 2 �x; y� implies f .x; y/ 6<C 0;

where �x; y� denotes the line segment joining x and y with the endpoint y.

Obviously, C-monotonicity implies C-pseudomonotonicity and C-pseudo-
monotonicity implies strictly C-pseudomonotonicity as well as C-quasimono-
tonicity. The reverse assertions may not be true.

Lemma 9.1 If f W K 	K ! Y is C-pseudomonotone, C-hemicontinuous in the first
argument and explicitly C-quasiconvex in the second argument such that f .x; x/ �C

0 for all x 2 K, then it is maximal C-pseudomonotone.

Proof We first prove that for all x; y 2 K and all u 2 �x; y�,

f .u; x/ 6>C 0 implies f .u; y/ 6<C 0:

Let f .u; x/ 6>C 0 for all u 2 �x; y�. Assume contrary that f .Oz; y/ <C 0 for some
Oz 2 �x; y�.

We consider two cases:

CASE 1. If f .Oz; x/ �C 0, then f .Oz; x/ >C f .Oz; y/. By explicitly C-quasiconvexity,
we have f .Oz; Oz/ <C f .Oz; x/. Then f .Oz; Oz/ �C 0 implies that f .Oz; x/ >C 0 which
contradicts to our supposition that f .Oz; x/ 6>C 0 for all Oz 2 �x; y�.

CASE 2. If f .Oz; x/ 6�C 0, then by Lemma 2.5, there exists c 6�C 0 such that
f .Oz; y/ �C c and f .Oz; x/ �C c. From C-quasiconvexity of f .x; :/, we deduce that
f .Oz; Oz/ �C c implying that c �C 0. This contradicts the fact that c 6�C 0.
Hence, f .u; y/ 6<C 0 for all z 2 �x; y�. By C-hemicontinuity of f .:; y/, we have
f .x; y/ 6<C 0. Hence, f is maximal C-pseudomonotone. ut

Lemma 9.2 Let f W K 	 K ! Y be maximal C-pseudomonotone. Then
S.WVEP. f ;C// D S.MWVEP. f ;C//.

Proof The inclusion S.WVEP. f ;C// � S.MWVEP. f ;C// directly follows from
the C-pseudomonotonicity of f .

Let Nx 2 S.MWVEP. f ;C//, then

f .y; Nx/ 6>C 0; for all y 2 K:
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Now fix y 2 K arbitrarily. Then �Nx; y� � K, and therefore,

f .u; Nx/ 6>C 0; for all u 2 �Nx; y�:

By the definition of maximal C-pseudomonotone of f , we have f .Nx; y/ 6<C 0. Since
y 2 K was arbitrary, Nx 2 S.MWVEP. f ;C//. ut

From Lemma 9.1 and 9.2, we have the following result.

Lemma 9.3 Let f W K 	 K ! Y be C-pseudomonotone, C-hemicontinuous in
the first argument and explicitly C-quasiconvex in the second argument such that
f .x; x/ �C 0 for all x 2 K. Then S.WVEP. f ;C// D S.MWVEP. f ;C//.

9.2.1 Existence Results for Solution of Weak Vector
Equilibrium Problems

Theorem 9.1 Let f W K 	 K ! Y be satisfy the following conditions:

(i) For all x 2 K, f .x; x/ �C 0;
(ii) For all y 2 K, G.y/ WD fx 2 K W f .y; x/ 6>C 0g is closed in K;
(iii) For all x 2 K, H.x/ WD fy 2 K W f .x; y/ <C 0g is convex;
(iv) f is maximal C-pseudomonotone;
(v) There exist a nonempty closed and compact subset D of K and an element

Qy 2 D such that f .z; Qy/ <C 0 for all z 2 K n D.

Then there exists a solution Nx 2 D of WVEP (9.1).

Proof Define set-valued maps S;T W K ! 2K by

S.y/ D fx 2 K W f .x; y/ 6<C 0g; for all y 2 K;

and

T.y/ D clKS.y/; for all y 2 K:

By (i), S.y/ is nonempty for all y 2 K and so is T.y/. S is a KKM-map, that
is, for every finite subset fy1; y2; : : : ; ymg of K there holds co.fy1; y2; : : : ; ymg/ �Sm

iD1 S.yi/. Indeed, assume contrary that x 2 co.fy1; y2; : : : ; ymg/, but x … S.yi/
for all i D 1; 2; : : : ;m. Then yi 2 H.x/ for all i D 1; 2; : : : ;m. By condition (iii),
f .x; x/ <C 0 which contradicts condition (i). Hence S is a KKM-map.

Since S.y/ � T.y/ for all y 2 K, T is a KKM-map with closed values and S.Qy/
is contained in the compact set D by condition (v). Thus clK.S.Qy// � D because
D is closed in K, also clK.S.Qy// D T.Qy/. Therefore, T.Qy/ � D. By Fan-KKM
Lemma 1.14, there exists Nx 2 D such that Nx 2 T.y/ for all y 2 K. By condition
(ii), G.y/ is closed in K for all y 2 K, and from the C-pseudomonotonicity of f , we



346 9 Vector Equilibrium Problems

have S.y/ � G.y/, and thus, T.y/ � clK.S.y// � G.y/. Therefore, we obtain that
Nx 2 G.y/ for all y 2 K, that is,

f .y; Nx/ 6>C 0; for all y 2 K:

By Lemma 9.2, Nx 2 D is a solution of WVEP (9.1). ut
Remark 9.1

(a) The condition (ii) of Theorem 9.1 holds if for all x 2 K, the function y 7! g.x; y/
is C-lower semicontinuous on K; See, Proposition 2.25.

(b) The condition (iii) of Theorem 9.1 holds if for all x 2 K, the function y 7!
f .y; x/ is C-quasiconvex; See, Proposition 2.15.

From Theorem 9.1 and Lemma 9.3, we obtain the following result.

Theorem 9.2 Let the bifunction f W K 	K ! Y satisfy the following conditions:

(i) For all x 2 K, f .x; x/ 6>C 0;
(ii) For all x 2 K, the function y 7! f .x; y/ is C-hemicontinuous and C-lower

semicontinuous on K;
(iii) For all x 2 K, the function y 7! f .x; y/ is explicitly C-quasiconvex on K;
(iv) f is C-pseudomonotone;
(v) There exist a nonempty closed and compact subset D of K and an element

Qy 2 D such that f .z; Qy/ <C 0 for all z 2 K n D.

Then there exists a solution Nx 2 D of WVEP (9.1).

Proof Define set-valued maps S;M W K ! 2K by

S.y/ D fx 2 K W f .x; y/ 6<C 0g; for all y 2 K;

and

M.y/ D fx 2 K W f . y; x/ 6>C 0g; for all y 2 K:

By (i) and C-hemicontinuity of y 7! f .x; y/, M.y/ is nonempty and closed for all
y 2 K. In view of Remark 9.1, by the same argument as in the proof of Theorem 9.1,
S is a KKM-map. By C-pseudomonotonicity of f , S.y/ � M.y/ for all y 2 K. Hence
M is a KKM-map with closed values. By condition (v), M.Qy/ is contained in the
compact set D, and thus, M.Qy/ is compact. Therefore, by Fan-KKM Lemma 1.14,
there exists Nx 2 D such that Nx 2 S.y/ for all y 2 K, that is,

f .y; Nx/ 6>C 0; for all y 2 K:

By Lemma 9.2, Nx 2 D is a solution of WVEP (9.1). ut
Bianchi, Hadjisavvas and Schaible [23, 60, 61] established some existence results

for a solution of WVEP (9.1) under C-quasimonotonicity.
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Now we present some existence results for a solution of WVEP (9.1) without any
kind of C-monotonicity.

Theorem 9.3 Let K be a nonempty convex subset of a topological vector space X.
Let f W K 	 K ! Y be a vector-valued bifunction such that the following conditions
hold.

(i) For all y 2 K, x 7! f .x; y/ is C-upper semicontinuous on each nonempty
compact subset of K;

(ii) For all A 2 F .X/ and each x 2 co.A/, y 7! f .y; x/ is C-quasiconvex;
(iii) For all x 2 K, f .x; x/ 6<C 0;
(iv) There exist a nonempty closed compact subset D � K and Qy 2 D such that

f .x; Qy/ <C 0 for all x 2 K n D.

Then there exists a solution Nx 2 D � K of WVEP (9.1).

Proof For all y 2 K, define

G.y/ D fx 2 D W f .x; y/ 6<C 0g:

Since for each y 2 K, x 7! f .x; y/ is C-upper semicontinuous on each nonempty
compact subset of K, we have that each G.y/ is closed. Since every element Nx 2T

y2K G.y/ is a solution of WVEP (9.1), we have to prove that
T

y2K G.y/ ¤ ;.
Since D is compact, it is sufficient to show that the family fG.y/gy2K has the finite
intersection property.

Let fy1; y2; : : : ; ymg be a finite subset of K. Let us note that A WD
co.fy1; y2; : : : ; ymg/ is a compact convex subset of K. We define a set-valued map
S W A ! 2A by

S.y/ D fx 2 A W f .x; y/ 6<C 0g; for all y 2 A:

By condition (iii), S.y/ is nonempty.
In view of condition (ii), it can be easily seen that S is a KKM-map. Clearly,

S.y/ � G.y/ for all y 2 A.
We note that for each y 2 A, clA.S.y// is closed in A and is therefore also

compact. By Fan-KKM Lemma 1.14,
T

y2A clA.S.y// ¤ ;. We can choose Nx 2T
y2A clA.S.y//, and note that Qy 2 A and S.Qy/ � D by (iv). Thus, Nx 2 clA.S.Qy// �

clK.S.Qy// D clD.S.Qy// � D. Since Nx 2 Tm
jD1 clA.S.yj// and for each j D 1; 2; : : : ;m;

clA.S.yj// D clA
�fx 2 A W f .x; yj/ 6<C 0g�

D fx 2 A W f .x; yj/ 6<C 0g;

we have f .Nx; yj/ 6<C 0 for all j D 1; 2; : : : ;m, and hence, Nx 2 Tm
jD1G.yj/. Therefore,

fG.y/gy2K has the finite intersection property and the proof is finished. ut
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Definition 9.2 Let g; h W K 	K ! Y be vector-valued bifunctions. Then g is called
C-pseudomonotone with respect to h if for all x; y 2 K, we have

g.x; y/C h.x; y/ 6<C 0 implies g.y; x/� h.x; y/ 6>C 0:

The following existence results for a solution of WVEP (9.10) under C-
pseudomonotonicity is established by Bianchi et al. [23] (see also [3] for moving
cone).

Theorem 9.4 Let g; h W K 	 K ! Y be satisfy the following conditions:

(i) For all x 2 K, g.x; x/ �C 0;
(ii) For all y 2 K, the function x 7! g.x; y/ is C-hemicontinuous;
(iii) For all x 2 K, the function y 7! g.x; y/ is C-convex and C-lower

semicontinuous;
(iv) g is C-pseudomonotone w. r. t. h;
(v) For all x 2 K, h.x; x/ D 0;
(vi) For all y 2 K, the function x 7! h.x; y/ is C-upper semicontinuous;
(vii) For all x 2 K, the function y 7! h.x; y/ is C-convex;
(viii) There exist a nonempty closed compact subset D � K and Qy 2 D such that

g.z; Qy/C h.z; Qy/ <C 0 for all x 2 K n D.

ThenWVEP (9.10) has a solution.

Proof For all y 2 K, define two set-valued maps S;M W K ! 2K by

S.y/ D fx 2 K W g.x; y/C h.x; y/ 6<C 0g

and

M.y/ D fx 2 K W g.y; x/� h.x; y/ 6>C 0g:

Then by conditions (i) and (v), S.y/ is nonempty for all y 2 K. Since g.x; :/ and
h.x; :/ are C-convex, S.y/ is convex. It can be easily proved that S is a KKM-map
(see the proof of Theorem 9.1). Let T W K ! 2K be defined as T.y/ D clKS.y/ for all
y 2 K. Then T is also a KKM-mapwith closed values and by condition (viii), T.Qy/ is
contained in the compact set D. Then by Fan-KKM Lemma 1.14, there exists Nx 2 D
such that Nx 2 T.y/ for all y 2 K. Since the sum of two C-lower semicontinuous
functions is C-lower semicontinuous, we have M.y/ is closed in K for all y 2 K.
By C-pseudomonotonicity of g w. r. t. h, T.y/ � M.y/ for all y 2 K. Therefore, we
obtain that Nx 2 M.y/ for all y 2 K, that is,

g.y; Nx/ � h.Nx; y/ 6>C 0; for all y 2 K:

For a fixed y 2 K, we set yt D ty C .1 � t/Nx for t 2 �0; 1Œ. Then

g.yt; Nx/ � h.Nx; yt/ 6>C 0; for all t 2 �0; 1Œ;
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and consequently,

.1 � t/g.yt; Nx/C tg.yt; y/ 6>C .1 � t/h.Nx; yt/C tg.yt; y/:

Since g.x; x/ �C 0 for all x 2 K and g.x; :/ is C-convex, we have

0 �C g.yt; yt/ �C tg.yt; y/C .1 � t/g.yt; Nx/:

Note that for a; b 2 Y with a 6>C b and a �C 0, we have b 6<C 0. Therefore, we
conclude that

tg.yt; y/C .1 � t/h.Nx; yt/ 6<C 0:

From conditions (v) and (vii), we have h.Nx; yt/ �C t h.Nx; y/, and thus,

g.yt; y/C .1 � t/h.Nx; y/ 6<C 0; for all t 2 �0; 1Œ:

By condition (ii), we deduce that g.Nx; y/ C h.Nx; y/ 6<C 0. Since y was arbitrary, the
result is completed. ut

Next, we present an existence result for a solution of WVEP (9.10) without any
kind of C-monotonicity assumption.

Theorem 9.5 Let K be a nonempty convex subset of a Hausdorff topological vector
space X. Assume that the bifunctions g; h W K 	 K ! Y satisfy the following
conditions:

(i) For all x 2 K, h.x; x/ D 0;
(ii) For all x; y 2 K, g.x; y/C h.x; y/ <C 0 implies h.y; x/ <C 0;
(iii) For each fixed y 2 K, x 7! h.x; y/ is C-quasiconcave and C-upper

semicontinuous on K.
(iv) For each fixed y 2 K, x 7! g.x; y/ is C-upper semicontinuous on K.
(v) There exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B satisfying
g.x; Qy/C h.x; Qy/ <C 0.

ThenWVEP (9.10) has a solution.

Proof Assume that the conclusion of this theorem is not true. Then for each x 2 K,
the set

fy 2 K W g.x; y/C h.x; y/ <C 0g ¤ ;:

For all x 2 K, define two set-valued maps S;T W K ! 2K by

S.x/ D fy 2 K W g.x; y/C h.x; y/ <C 0g
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and

T.x/ D fy 2 K W h.y; x/ >C 0g:

Clearly, for all x 2 K, S.x/ ¤ ;. Let fy1; y2; : : : ; ymg be a finite subset of S.x/ and
�i � 0 for all i D 1; 2; : : : ;m with

Pm
iD1 �i D 1: Then

g.x; yi/C h.x; yi/ <C 0; for all i D 1; 2; : : : ;m:

By condition (ii), we have h.yi; x/ >C 0 for all i D 1; 2; : : : ;m. Since h.:; x/ is
C-quasiconcave, we have h

�Pm
iD1 �iyi; x

�
>C 0, and hence,

Pm
iD1 �iyi 2 T.x/.

Therefore, co.S.x// � T.x/, for all x 2 K.
Since g.:; y/ and h.:; y/ are C-upper semicontinuous and so is g.:; y/ C h.:; y/.

Therefore, the complement of S�1.y/ in K,

ŒS�1.y/�c D fx 2 K W g.x; y/C h.x; y/ 6<C 0g

is closed in K. Hence S�1.y/ is open in K. Since S.x/ ¤ ; for all x 2 K, we have

K D
[

y2K
S�1.y/ D

[

y2K
intKS�1.y/:

By condition (v), for each x 2 K n D, there exists Qy 2 B such that

x 2 S�1.Qy/ D intKS
�1.Qy/:

Hence, all the conditions of Theorem 1.35 are satisfied, and therefore, there exists
Nx 2 K such that Nx 2 T.Nx/, that is, h.Nx; Nx/ >C 0, which is a contradiction. This
completes the proof. ut

For further existence results for solutions of WVEP (9.10), we refer [3, 10, 23,
64, 94] and the references therein.

9.2.2 Existence Results for Strong Vector Equilibrium
Problems

In this section, we present some existence results for a solution of the strong vector
equilibrium problem (in short, SVEP) (9.3).

Flores-Bazán and Flores-Bazán [48] obtained the following abstract result in the
setting of finite dimensional Euclidean space Rn but for moving cone.
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Theorem 9.6 Let K be a nonempty compact convex subset of a Hausdorff topolog-
ical vector space X, Y be a topological vector space and W be a nonempty subset
of Y. Let f W K 	 K ! Y be a vector-valued bifunction satisfying the following
conditions:

(i) For all x;2 K, f .x; x/ 2 W;
(ii) For all x;2 K, f .x; y/ 2 W implies f .y; x/ 2 �W;
(iii) For all x;2 K, the set fy 2 K W f .x; y/ 2 �Wg is closed;
(iv) For all x;2 K, the set fy 2 K W f .x; y/ … Wg is convex;
(v) For all x; y;2 K, f .x; y/ 2 �W implies f .y; x/ 2 W.

Then the solution set of the following abstract vector equilibrium problem (in short,
AVEP):

find Nx 2 K such that f .Nx; y/ 2 W; for all y 2 K; (9.14)

and that of the following dual abstract vector equilibrium problem (in short,
DAVEP):

find Nx 2 K such that f .y; Nx/ 2 �W; for all y 2 K (9.15)

are nonempty and both coincide, and they are closed.

Proof We first find Nx 2 K such that

Nx 2
\

y2K
fx 2 K W f .y; x/ 2 �Wg :

To this end, we set

S.y/ D fx 2 K W f .y; x/ 2 �Wg :

By condition (ii), for each y 2 K, S.y/ is a closed subset of a compact set K, and
hence it is compact. By using similar argument as in the proof of Theorem 9.1 and
using conditions (i) and (iv), we conclude that S is a KKMmapping. Hence, by Fan-
KKMLemma 1.14, there exists Nx 2 K such that Nx 2 Ty2K S.y/, that is, f .y; Nx/ 2 �W
for all y 2 K, in other words, the second problem has a solution. By condition (v),
we conclude that such a solution is also a solution of the first problem. Since every
solution of the first problem is a solution of the second problem by condition (ii),
we conclude that both solution sets coincides. The closedness is a consequence of
condition (iii). ut

By using Theorem 9.6, Flores-Bazán and Flores-Bazán [48] characterized the
solution set of SVEP (9.3) in terms of its asymptotic cone.

Farajzadeh et al. [46] further considered abstract vector equilibrium problems
and proved the following result without compactness assumption on the set K.
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Theorem 9.7 Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X, and W be a nonempty set in Y. Let f W K 	 K ! Y be
a vector-valued bifunction such that the following conditions hold:

(i) For all finite subsets A of K and all y 2 co.A/, there exists y 2 A such that
f .x; y/ 2 W;

(ii) For all y 2 K, the set fx 2 K W f .x; y/ 2 Wg is closed;
(iii) There exists a nonempty compact subset B of K and a nonempty compact

convex subset D of K such that for each x 2 K nB, there exists Qy 2 D such that
f .x; Qy/ … W.

Then the solution set of AVEP (9.14) is nonempty and compact.

Proof Define a set-valued mapping S W K ! 2K by

S.y/ D fx 2 K W f .x; y/ 2 Wg :

It can be easily seen that S is a KKM mapping by using condition (i). By applying
conditions (ii) and (iii), we deduce that

T
y2D S.y/ is a closed subset of B. Then,

by Fan-KKM Lemma 1.14,
T

x2K S.x/ ¤ ;. This means that the solution set of
AVEP (9.14) is nonempty. By (ii), the solution set of AVEP (9.14) is closed subset
of the compact set B and hence compact. ut

Farajzadeh et al. [46] also used the scalarization method to prove the existence
of a solution of AVEP (9.14).

Definition 9.3 Let y 2 K be any fixed element and f W K 	 K ! Y be a vector-
valued bifunction. A function x 7! f .x; y/ is said to be C-upper sign continuous if
for every x 2 K,

f .u; y/ �C 0; for all u 2 �x; yŒ ) f .x; y/ �C 0;

where �x; yŒ denotes the open line segment joining x and y.
If x 7! f .x; y/ is C-hemicontinuous, that is, the restriction of f to line segments

in K is C-continuous, then x 7! f .x; y/ is C-upper sign continuous. Even this fact is
true when x 7! f .x; y/ is C-upper hemicontinuous.

Definition 9.4 A bifunction f W K 	 K ! Y is said to be

(a) strong C-pseudomonotone if for all x; y 2 K,

f .x; y/ 6�C 0 ) f .y; x/ �C0 0I

(b) strong C-quasimonotone if for all x; y 2 K,

f .x; y/ 6�C 0 ) f .y; x/ �C 0I
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(c) strong properly C-quasimonotone if for every finite set fx1; x2; : : : ; xmg � K
and for all x 2 co.fx1; x2; : : : ; xmg/, there exists i 2 f1; 2; : : : ;mg such that
f .xi; x/ �C 0.

It is clear from the definition that strong C-pseudomonotonicity of f implies
strong C-quasimonotonicity. But in general there is no relationship between
strong properly C-quasimonotonicity and strong C-quasimonotonicity or strong
C-pseudomonotonicity.

The following proposition is a vector version of Proposition 1 in [20]. It provides
a criteria for the strong properly C-quasimonotonicity of a bifunction.

Proposition 9.1 Let f W K 	 K ! Y be a vector-valued bifunction such that
f .x; x/ D 0 for all x 2 K. If one of the following conditions holds:

(i) the set fx 2 K W f .x; y/ 6�C 0g is convex, or
(ii) the set fy 2 K W f .x; y/ �C0 0g is convex and f is strong C-pseudomonotone,
then, f is strong properly C-quasimonotone.

Proof Assume contrary that f is not strong properly C-quasimonotone. Then there
exist a finite set fx1; x2; : : : ; xmg � K and Qx 2 co .fx1; x2; : : : ; xmg/ such that
f .xi; Qx/ 6�C 0 for all i D 1; 2; : : : ;m.

Suppose that (i) holds. Then we have f .Qx; Qx/ 6�C 0, and so 0 D f .Qx; Qx/ 6�C 0 a
contradiction. Hence f is strong properly C-quasimonotone.

Suppose that (ii) holds. Then by C-pseudomonotonicity of f , we have
f .Qx; xi/ �C0 0. By the first condition in (ii), we deduce 0 D f .Qx; Qx/ 6�C 0 a
contradiction. Then f is strong properly C-quasimonotone. ut
Remark 9.2

(a) For each fixed x 2 K, if the mapping y 7! f .x; y/ is C-convex, then the set
fy 2 K W f .x; y/ �C0 0g is convex for all x 2 K.

Indeed, let � 2 �0; 1Œ and f .x; yi/ �C0 0 for all i D 1; 2. Since C is a pointed
convex cone, we have

�f .x; y1/C .1 � �/f .x; y2/ �C0 0: (9.16)

By (9.16) and C-convexity of y 7! f .x; y/, we obtain

f .x; ty C .1 � t/z/ 2 Cnf0g C C � Cnf0g;

that is, f .x; ty C .1 � t/z/ �C0 0.
(b) If Yn.�C/ is convex and f is C-concave in the first variable, then (i) of

Proposition 9.1 holds. The proof is straight forward by using Yn.�C/ C C �
Yn.�C/.
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The sets of local solutions for SVEP (9.3) andMSVEP (9.6) are denoted by SK;loc
and SMK;loc, respectively, and defined as follows:

SK;loc D fx 2 K W there exists an open neighborhood V of x such that

f .x; y/ �C 0 for all y 2 V \ Kg;

S
M
K;loc D fx 2 K W there exists an open neighborhood V of x such that

f .y; x/ �C 0 for all y 2 V \ Kg:

Obviously, S.SVEP. f ;C// � SK;loc and S.MSVEP. f ;C// � SMK;loc.
The following lemma provides a relationship between the solution sets SMK;loc and

S.SVEP. f ;C//. Furthermore, it is a vector version of Lemma 2.1 in [21].

Lemma 9.4 Let K be a nonempty convex subset of X and f W K 	 K ! Y be a
vector-valued bifunction such that the following conditions hold:

(i) f .x; x/ �C 0 for all x 2 K;
(ii) For each fixed y 2 K, the mapping x 7! f .x; y/ is C-upper sign continuous;
(iii) If f .x; y/ 6�C 0 and f .x; z/ �C 0, then f .x; u/ 6�C 0 for all u 2 �y; zŒ.
Then SMK;loc � S.SVEP. f ;C//.

Proof Let z 2 SMK;loc. In order to show that z 2 S.SVEP. f ;C//, we assume contrary
that there exists y 2 K such that

f .z; y/ 6�C 0: (9.17)

From the definition of SMK;loc, there exists an open neighborhood V of z such that
f .v; z/ �C 0 for all v 2 K \ V . Since V � z is a neighborhood of 0, there exists
t0 2 �0; 1Œ such that t.y � z/ 2 V � z for all 0 < t � t0. Let Ny WD z C t0.y � z/
and yt WD .1 � t/z C tNy 2 Œz; Ny� for t 2 Œ0; 1�. Then yt 2 K \ V , since yt D
.1 � t/z C tz C t t0.y � z/ D z C t t0.y � z/ and t t0.y � z/ 2 V � z. Hence (9.17)
implies that f .yt; z/ �C 0 and by condition (i), f .z; z/ D 0. Now we will show
that f .u; Ny/ �C 0 for all u 2 �z; NyŒ. Indeed, if f .u; Ny/ 6�C 0 for some u 2 �z; NyŒ, then as
f .u; z/ �C 0, we deduce from (iii) that f .u; v/ 6�C 0 for all v 2 �z; NyŒ and in particular
f .u; u/ D 0 6�C 0. Hence 0 … C which contradicts the fact that 0 2 C since C is a
pointed cone. Therefore, f .u; Ny/ �C 0 for all u 2 �z; NyŒ. Thus by (ii), we have

f .z; Ny/ 2 C: (9.18)

Since f .z; z/ D 0 and f .z; y/ 6�C 0, it follows from (iii) that f .z; y/ 6�C 0 which
contradicts (9.18). ut

The following example shows that the condition (iii) in Lemma 9.4 is essential.
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Example 9.2 Let X D Y D R, K D Œ�1; 1�, C D Œ0;1/ and f W Œ�1; 1�	 Œ�1; 1� !
R be defined as

f .x; y/ D
�

0; if .x; y/ 2 f0g 	 � 1
2
; 1
2

�
or x D y;

�1; otherwise:

It is clear that f .x; x/ D 0 for all x 2 K, and if f .u; y/ � 0 for all u 2 �x; yŒ, then u D 0

for all u 2 �x; yŒ, which is impossible. This shows that the mapping x 7! f .x; y/ is
C-upper sign continuous for each fixed y 2 K. Since f

�
1
4
; 1
3

�
< 0 and f

�
3
4
; 1
3

�
< 0,

we can easily see that f
�
u; 1

3

�
< 0 does not hold for all u 2 � 1

4
; 3
4
Œ, for example, take

u D 1
3

2 � 1
4
; 3
4
Œ, and so the example does not fulfill the condition (iii) of Lemma 9.4.

Moreover, the conclusion of Lemma 9.4 is not true for this example, since x0 D 0 is
a solution of SVEP. f ;C/ defined over

� 1
2
; 1
2

�
and S.SVEP. f ;C// D ;.

The following example illustrates that SMK;loc is a singleton, while the set
S.SVEP. f ;C// is uncountable.

Example 9.3 Let X D R, K D Œ0; 1�, C D f.x; y/ 2 R2 W x � 0; y � 0g; Y D R2,
and f W K 	 K ! R2 be defined by f .x; y/ D .x; y/.

It is easy to verify that f satisfies all the assumptions of Lemma 9.4 and SMK;loc D
f0g, S.SVEP. f ;C// D K.

Remark 9.3

(a) If f is C-convex in the second variable, then condition (ii) in Lemma 9.4 holds.
Indeed, let f .x; y/ 6�C 0 and f .x; z/ �C 0. Since YnC and �C are cone, we have
tf .x; u/ 6�C 0 and .1 � t/f .x; z/ �C 0 and also from .YnC/ � C � YnC, we get

tf .x; u/C .1 � t/f .x; z/ 6�C 0: (9.19)

Since .YnC/ � C � YnC, we obtain

f .x; ty C .1 � t/z/ 6�C 0; for all t 2 Œ0; 1�:

This shows that condition (ii) of Lemma 9.4 holds.
(b) Lemma 9.4 improves and extends Lemma 2.4 in [63] and Lemma 2.1 in [21] to

vector-valued bifunctions.
(c) If for all x; y 2 K, f .x; y/ 6�C0 0 implies f .y; x/ �C 0, then we obtain the inclu-

sion S.SVEP. f ;C// � S.MSVEP. f ;C//. Therefore, under this assumption,
we have S.SVEP. f ;C// D SMK;loc D S.SVEP. f ;C//. Thus, if Y D R and C D
Œ0;1/, we deduce Proposition 2.5 in [63]. Moreover, if f is C-quasimonotone
and f .x; y/ D 0 implies f .y; x/ D 0, then S.SVEP. f ;C// � S.MSVEP. f ;C//.
Hence we obtain the C-quasimonotone version of Proposition 2.5 in [63] for the
vector case.

We have the following existence result for a solution of S.MSVEP. f ;C//.



356 9 Vector Equilibrium Problems

Theorem 9.8 Let K be a nonempty convex subset of a Hausdorff topological vector
space X and f W K 	 K ! Y be a vector-valued bifunction such that f .x; x/ D 0 for
all x 2 K. Assume that the following conditions hold:

(i) For each A 2 F .K/ and for all x 2 co.A/, there exists y 2 A such that
f .y; x/ �C 0;

(ii) For all x 2 K, the set fy 2 K W f .x; y/ �C 0g is closed in K;
(iii) There exist a nonempty compact subset D and a nonempty compact convex

subset B of K such that for all y 2 KnD, there exists Qx 2 B such that f .Qx; y/ 6�C

0.

Then the solution set S.MSVEP. f ;C// of MSVEP (9.6) is nonempty and compact.

Proof Define a set-valued mapping T W K ! 2K by

T.x/ D fy 2 K W f .x; y/ �C 0g; for all x 2 K:

Then T is a KKM mapping. Indeed, let A 2 F .K/ and x 2 co.A/. Then by (i),
there is a y 2 A such that f .y; x/ �C 0 and so x 2 T.y/. This shows that x 2 co.A/.
Since f .x; x/ D 0, we have x 2 T.x/. Consequently, co.A/ � S

x2A T.x/. So T is
a KKM mapping. It is obvious that the solution set S.MSVEP. f ;C// equals to the
set

T
x2K T.x/. Since T is a KKM mapping and B is compact and convex, then by

Lemma 1.14, we deduce that
T

x2B T.x/ is nonempty. By (ii) and (iii), it is a closed
subset of D and so is compact. ut

The following lemma provides a relationship among strong C-quasimonoton-
icity, strong properly C-quasimonotonicity and SMK;loc. Also, it is a vector version of
Lemma 4.2 in [21] without assuming that f is quasiconvex in the second variable.

Lemma 9.5 Let K be a nonempty convex subset of X and f W K 	 K ! Y be strong
C-quasimonotone bifunction. If for each x 2 K, the set fy 2 K W f .x; y/ �C 0g
is closed in K and convex, then either f is strong properly C-quasimonotone or
S
D
K;loc ¤ ;.

Proof If f is not strong properly C-quasimonotone, then there exist a finite set
fx1; x2; : : : ; xmg � K and Nx 2 co.fx1; x2; : : : ; xmg/ such that f .xi; Nx/ �C 0 for all
i D 1; 2; : : : ;m. Since the set Ai D fy 2 K W f .xi; y/ �C 0g is closed in K for all
i D 1; 2; : : : ;m and Nx … Sm

iD1 Ai, there exists an open neighborhoodV of Nx such that

f .xi; y/ 6�C 0; for all y 2 K \ V; i D 1; 2; : : : ;m;

and so by strong C-quasimonotonicity of f , we have

f .y; xi/ �C 0; for all i D 1; 2; : : : ;m and y 2 K \ V:
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Since the set fy 2 K W f .x; y/ �C 0g is convex for all x 2 K, we get

f .y; Nx/ �C 0; for all y 2 K \ V:

Therefore, Nx 2 SMK;loc. ut
We now present the following existence result for a solution of SVEP under

strong C-quasimonotonicity assumption.

Proposition 9.2 Let K be a nonempty convex subset of X and f W K 	 K ! Y be a
strong C-quasimonotone bifunction satisfying the conditions of Lemma 9.4 and 9.5
and condition (iii) of Theorem 9.8. Then S.SVEP. f ;C// ¤ ;.
Proof If f is strong C-properly quasimonotone, then the result deduces from
Theorem 9.8 through Lemma 9.4. Otherwise, we obtain the result from Lemma 9.4
and 9.5. ut

Next we present existence result for a solution of SVEP without strong C-
quasimonotonicity assumption.

Proposition 9.3 Let K be a nonempty convex subset of X. Assume that f W K	K !
Y satisfies condition (iii) of Lemma 9.4. Let x0 2 K be a local solution of SVEP in
a neighborhood V of x0. If there exists Ny 2 K \ int.V/ such that f .x0; Ny/ �C 0, then
x0 2 S.SVEP. f ;C//.

Proof Assume contrary that there exists z 2 K such that f .x0; z/ 6�C 0. Then by
condition (iii) of Lemma 9.4, note that f .x0; Ny/ �C 0, we have

f .x0; u/ 6�C 0; for all u 2 �Ny; zŒ;

and so this is a contradiction by using Ny 2 K \ int.V/ and x0 is a local solution of
SVEP in the neighborhood V of x0. ut

Rest of this subsection, we assume that X is a Hausdorff locally bounded
topological vector space, K is a nonempty unbounded convex subset of X and
f W K 	 K ! Y is a vector-valued bifunction.

Assumption 9.5 There exists an open bounded neighborhood V of 0 such that

8x 2 KnV ; 9y 2 K \ V satisfying f .x; y/ 6�C 0:

This coercivity condition extends the coercivity condition considered in [21] in
the setting of reflexive Banach spaces.

The next result extends Proposition 2.2 in [21] and it provides a necessary
condition for boundedness of the solution set of SVEP.

Proposition 9.4 Let f W K	K ! Y be a vector-valued bifunction such the following
conditions hold:

(i) f .x; x/ D 0 for all x 2 K;
(ii) For each fixed y 2 K, the set fx 2 K W f .x; y/ �C 0g is convex;
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(iii) If f .x; y/ 6�C 0 and f .x; z/ �C 0, then f .x; u/ 6�C 0 for all u 2 �y; zŒ.
If the solution set S.SVEP. f ;C// of SVEP (9.3) is nonempty and bounded, then
Assumption 9.5 holds.

Proof Suppose that the Assumption 9.5 does not hold. Let V be an arbitrary open
bounded, balanced neighborhood of 0 and x0 2 S.SVEP. f ;C//. Consider positive
integer m0 such that x0 2 m0 V . Let m > m0 and Wm D V C V C � � � C V

„ ƒ‚ …
m

. Since

Assumption 9.5 is not true andWm is bounded, there exists xm 2 K n Wm such that

f .xm; y/ �C 0; for all y 2 K \ Wm: (9.20)

Since .m � 1/V � Wm and xm … Wm, we have

t0 D supft 2 Œ0; 1� W x0 C t.xm � x0/ 2 .m � 1/Vg < 1: (9.21)

Therefore, for all positive number t0 with t0 C t0 < 1, we deduce that

zm D x0 C .t0 C t0/.xm � x0/ … .m � 1/V: (9.22)

We claim that zm 2 Wm \ K. Indeed, we can choose small positive number t such
that t.xm � x0/ 2 V and t < 2.1� t0/. By (9.21), there exists t1 such that t0 � t

2
< t1

and

zm D x0 C .t1 C t/.xm � x0/ 2 .m � 1/V C V � Wm:

Since x0 2 S.SVEP. f ;C//, the convexity of the set fx 2 K W f .x; y/ �C 0g
and (9.20) imply that

f .zm; y/ 2 C; for all y 2 K \ Wm: (9.23)

By (9.23) and Proposition 9.3, we obtain zm 2 S.SVEP. f ;C//. Hence, the sequence
fzmg is unbounded, which contradicts the boundedness of S.SVEP. f ;C//. ut

Nowwe give necessary and sufficient conditions for nonemptiness of the solution
set of SVEP (9.3).

Theorem 9.9 Let f W K 	 K ! Y be a strong C-pseudomonotone bifunction such
that the following conditions hold:

(i) For all x 2 K, f .x; x/ D 0;
(ii) For all y 2 K, the mapping x 7! f .x; y/ is C-upper sign continuous;
(iii) For each x 2 K, the set fy 2 K W f .x; y/ �C 0g is convex and closed in K;
(iv) If f .x; y/ 6�C 0 and f .x; z/ �C 0, then f .x; u/ 6�C 0 for all u 2 �y; zŒ.
If S.SVEP. f ;C// is nonempty and bounded, then Assumption 9.5 holds. Moreover,
if Assumption 9.5 holds with bounded open neighborhood V and f jco.K \ W/, the
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restriction of f to co.K\W/, satisfies conditions (i) and (iii) of Theorem 9.8 for every
bounded neighborhood W with int.W/ 
 V. Then S.SVEP. f ;C// is nonempty,
compact and convex.

Proof Suppose that the Assumption 9.5 does not hold. Let V be a bounded open
balanced neighborhood of 0, x0 2 S.SVEP. f ;C// and m0 positive integer such that
x0 2 m0 V . Let m > m0 and Wm D V C V C � � � C V

„ ƒ‚ …
m

. Since Assumption 9.5 does

not hold and Wm is a bounded neighborhood of 0, there exists xm 2 K n Wm such
that

f .xm; y/ �C 0; for all y 2 K \ Wm: (9.24)

Since C is pointed, we have C \ .�Cnf0g/ D ;, and therefore,

f .xm; y/ 6�C0 0; for all y 2 K \ Wm: (9.25)

The strong C-pseudomonotonicity of f implies that

f .y; xm/ �C 0; for all y 2 K \ Wm: (9.26)

Since f is strong C-pseudomonotone and x0 2 S.SVEP. f ;C//, we have

f .y; x0/ �C 0; for all y 2 K: (9.27)

Since .m � 1/V � Wm and xm … Wm, we have

t0 D supft 2 Œ0; 1� W x0 C t.xm � x0/ 2 .m � 1/Vg < 1:

Therefore, for all positive number t0 such that t0 C t0 < 1, we deduce

zm D x0 C .t0 C t0/.xm � x0/ … .m � 1/V:

By using (9.26) and (9.26), we obtain

f .y; zm/ �C 0; for all y 2 Wm \ K;

as the set fy 2 K W f .x; y/ �Cg is convex. Consequently, zm 2 SMK;loc. Therefore, by
Lemma 9.4, we have zm 2 S.SVEP. f ;C//. Hence, the sequence fzmg is unbounded,
which contradicts the boundedness of S.SVEP. f ;C//.

Conversely, let Assumption 9.5 hold with an open neighborhood V and W be
an open bounded balanced neighborhood of 0 containing V . Since the mapping
f jco.K \ W/ satisfies all the conditions of Theorem 9.8, there exists a solution Nx
of SVEP defined over co.K \ W/. If Nx is an element of W, then by Proposition 9.3
Nx 2 S.SVEP. f ;C//. Otherwise, by Assumption 9.5, there exists y 2 V such that
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f .Nx; y/ 6�C 0. Since f .Nx; Nx/ D 0 2 �C, by condition (iv), we have, f .Nx; u/ 6�C 0 for
all u 2 �Nx; yŒ which contradicts that Nx is a solution of SVEP defined over co.K \W/.
Therefore, Nx 2 S.SVEP. f ;C//.

Now we show that S.SVEP. f ;C// is a compact subset of K. To see this, let
x˛ 2 S.SVEP. f ;C// and x˛ ! x. Then f .x˛; y/ �C 0 for all y 2 K and all
˛. Since C is pointed, we have by f .x˛; y/ 6�C0 0 for all y 2 K and all ˛. The
strong C-pseudomonotonicity of f implies that f .y; x˛/ �C 0 for all y 2 K and
all ˛. Since x˛ ! x and the set fy 2 K W f .x; y/ �C 0g is closed in K for all
x 2 K, we get f .y; x/ �C 0 for all y 2 K. This means that x 2 S.MSVEP. f ;C//
and by Lemma 9.4, we have x 2 S.SVEP. f ;C// as S.MSVEP. f ;C// � S

M
K;loc.

Consequently, S.SVEP. f ;C// is closed in K. It follows from condition (iii) of
Theorem 9.8 that S.SVEP. f ;C// is a subset of the compact subset D of K.
Moreover, strong C-pseudomonotonicity of f and convexity of the set fy 2 K W
f .x; y/ �C 0g for all x 2 K imply that S.SVEP. f ;C// is convex. ut

Assumption 9.5 entails the boundedness of the solution set but the following
coercivity condition allows that the solution set to be unbounded.

Assumption 9.6 There exists an open bounded neighborhood V of 0 such that for
all x 2 KnV and for all W 2 B with W 
 V containing x, there exists y 2 int.W\K/
satisfying f .x; y/ �C 0, where B is a base at 0 consists of neighborhoods of 0 for
topological vector space X.

Theorem 9.10 Let f W K 	 K ! Y be a strong C-pseudomonotone bifunction
such that f .x; x/ D 0 for all x 2 K. If S.SVEP. f ;C// is nonempty, then the
Assumption 9.6 holds. Moreover, if f satisfies conditions (ii) and (iii) of Lemma 9.4,
Assumption 9.6 with bounded open neighborhood V of 0, and conditions (i)–(iii) of
Theorem 9.8 hold for f jco.K \ W/ and for every W 2 B with int.W 
 V/, then
S.SVEP. f ;C// is nonempty.

Proof Suppose that x0 2 S.SVEP. f ;C//. Then f .x0; y/ �C 0 for all y 2 K. Since C
is pointed, we have f .x0; y/ 6�C0 0 for all y 2 K. The strong C-pseudomonotonicity
of f implies that f .y; x0/ �C 0 for all y 2 K. Then the Assumption 9.6 trivially
holds for y D x0 and for every x 2 KnV , where V is an arbitrary bounded open
neighborhood of 0 such that x0 2 V:

To see the converse, let W 2 B. By Theorem 9.8, there exists a solution Nx of
SVEP. f ;C/ defined over co.K \ W/. In the case that Nx 2 V , by our assumption
V � int.W/ and Proposition 9.3, we obtain Nx 2 S.SVEP. f ;C//. If Nx 62 V , by
Assumption 9.6, there exist y 2 int.W \ K/ such that f .Nx; y/ �C 0. Proposition 9.3
implies that Nx 2 S.SVEP. f ;C//. ut

We deal with the strongC-quasimonotone bifunctions and establish the following
existence results for a solution of SVEP in the presence of Assumption 9.5 and 9.6,
respectively. The first theorem is a vector version of Theorem 4.1 in [21].

Theorem 9.11 Let f W K 	 K ! Y be a strong C-quasimonotone bifunction
satisfying the conditions of Lemma 9.4 and for each x 2 K, the set fy 2 K W
f .x; y/ �C 0g is closed and convex. If the set S.SVEP. f ;C// is bounded and
S.MSVEP. f ;C// is nonempty, then the Assumption 9.5 holds. Moreover, if f
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satisfies Assumption 9.5 with an open bounded balanced neighborhood V of 0, and
the condition (iii) of Theorem 9.8 for f jco.K \ W/ and for every W 2 B with
int.W/ 
 V. Then S.SVEP. f ;C// is nonempty.

Proof There exists an integerm0 > 1 such that the set S.SVEP. f ;C// is a subset of
K \ .m0 � 1/V , where V is a bounded open balanced neighborhood of 0. Assume
that the Assumption 9.5 does not hold. Then for every m > m0, there exists xm 2
KnK \ Wm such that

f .xm; y/ �C 0; for all y 2 K \ Wm: (9.28)

whereWm D V C V C � � � C V„ ƒ‚ …
m

.

We show that f .xm; y/ �C0 0 whenever y 2 K \ Wm. Indeed, assume that
f .xm; y/ D 0 for all y. By (9.28), f .xm; y/ �C. Let z 2 KnWm such that f .xm; z/ 6�C 0.
From assumption (iii) of Lemma 9.4, we obtain

f .xm; .1 � t/y C tz// 6�C 0; for all t 2 �0; 1Œ:

Using .1�t/yCtz ! y if t ! 0C and y 2 K\Wm, there exists t (small enough) such
that .1� t/yC tz/ 2 Wm, which is a contradiction of (9.28). Therefore, f .xm; y/ �C0

for all y 2 K \ Wm. Since C is pointed, f .xm; y/ 6�C 0 for all y 2 K \ Wm. Thus by
strong C-quasimonotonicity of f , we have

f .y; xm/ �C 0; for all y 2 K \ Wm: (9.29)

Let x0 be a point in S.MSVEP. f ;C//. It follows from x0 2 .m � 1/V and xm 2
KnWm (for m sufficiently large) that there exists a positive number t 2 �0; 1Œ such
that

zm D .1 � t/xm C tx0 … .m � 1/V; for all zm 2 Wm \ K:

From (9.28), x0 2 S.MSVEP. f ;C// and the convexity of the set fy 2 K W f .x; y/ �C

0g, we have

f .y; zm/ �C 0; for all y 2 K \ Wm: (9.30)

Hence, zm 2 SMK;loc and so by Lemma 9.4, zm 2 S.SVEP. f ;C//. Therefore, the
sequence fzmg is unbounded which contradicts the boundedness of S.SVEP. f ;C//.

For the second part, if f is strong properly C-quasimonotone, we get the result
arguing as in proof of the converse part of Theorem 9.8. If f is not strong
properly C-quasimonotone, from Lemma 9.5, SMK;loc ¤ ; and so by Lemma 9.4,
S.MSVEP. f ;C// ¤ ;. ut

The following theorem is a vector version of Theorem 4.2 in [21].
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Theorem 9.12 Let f W K 	 K ! Y be a strong C-quasimonotone bifunction.
If S.MSVEP. f ;C// is nonempty, then the Assumption 9.6 holds. Conversely, if f
satisfies the conditions of Lemma 9.4 and 9.5, and Assumption 9.6 for a bounded
neighborhood V of 0, and moreover condition (iii) of Theorem 9.8 for f jco.K \ W/
holds for every bounded neighborhood W with int.W/ 
 V, then S.SVEP. f ;C// is
nonempty.

Proof We only prove the converse part. For this, if f is strong properly C-
quasimonotone, we get S.SVEP. f ;C// ¤ ;, by arguing as in Theorem 9.10. If f is
not strong properly C-quasimonotone, then form Lemma 9.5, we have SMK;loc ¤ ;
and so by Lemma 9.4, S.SVEP. f ;C// ¤ ;. ut

Farajzadeh et al. [46] described the definition of C-pseudomonotonicity and
C-upper sign continuity in terms of �C or 6�C0 . They used the usual technique of
Fan-KKM lemma and derived the existence results for a solution of SVEPs. While,
Gong [53] used separation theorem for convex sets and established some existence
results for a solution of SVEPs. The arc-wise connectedness and closedness of the
solution set of a SVEP are also discussed. They also presented a necessary and
sufficient condition for the solution of SVEPs. Fang and Huang [45] discussed
the relationship between a SVEP and a minimal element problem. The iterative
algorithm for finding a solution of SVEPs is studied by Wang and Li [96].

The existence of solutions of VEP (9.2) has been investigated in [26, 30, 31, 42,
80]. While, Capătă and Kassay [32] studied the existence of solutions of implicit
vector variational problems.

9.2.3 Existence Results for Implicit Weak Vector Variational
Problems

Throughout this subsection, unless otherwise specified, we assume that K is a
nonempty convex subset of a topological vector space X and .Y;C/ is an ordered
topological vector space with a proper closed convex pointed cone C such that
int.C/ ¤ ;.
Definition 9.7 (C-Diagonally Convex Function) A bifunction f W K 	 K ! Y
is called C-diagonally convex if for any finite set fx1; x2; : : : ; xmg � K and any
x0 D Pm

iD1 �ixi, where �i � 0 for all i D 1; 2; : : : ;m and
Pm

iD1 �i D 1, we have

f .x0; x0/ 6>C

mX

iD1
�if .x0; xi/:

The bifunction f is called C-diagonally concave if �f is C-diagonally convex.

Definition 9.8 (Strongly C-Diagonally Convex Function) A bifunction f W K 	
K ! Y is called strongly C-diagonally convex if for any finite set fx1; x2; : : : ; xmg �
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K and any x0 D Pm
iD1 �ixi, where �i � 0 for all i D 1; 2; : : : ;m and

Pm
iD1 �i D 1,

we have

f .x0; x0/ �C

mX

iD1
�if .x0; xi/:

The bifunction f is called strongly C-diagonally concave if �f is strongly C-
diagonally convex.

Remark 9.4

(a) If l W K 	 K ! Y is C-diagonally convex (concave) and g W K 	 K ! Y is
stronglyC-diagonally convex (concave) , then lCg is also C-diagonally convex
(concave).

(b) When Y D R and C D RC, the definition of C-diagonal convexity (concavity)
reduces to the definition of diagonal convexity (concavity) of a function.

We present the following existence result for solutions of IWVVP.

Theorem 9.13 Let l; g W K 	 K ! Y be vector-valued bifunctions. Assume that the
following conditions hold:

(i) l is C-diagonally convex;
(ii) g is strongly C-diagonally convex;
(iii) For each A 2 F .K/, l and g are C-continuous on co.A/;
(iv) For each A 2 F .K/ and each x; y 2 co.A/ and every net fx˛g˛2� in K

converging to x with

l.x˛; x˛/C g.x˛; x˛/ 6>C l.x˛; �y C .1 � �/x/C g.x˛; �y C .1 � �/x/;

for all ˛ 2 � and all � 2 Œ0; 1�, we have

l.x; x/C g.x; x/ 6>C l.x; y/C g.x; y/I

(v) There exist a nonempty closed compact subset B of K and Qy 2 B such that
l.x; x/C g.x; x/ >C l.x; Qy/C g.x; Qy/ for all x 2 K n B.

Then the IWVVP (9.11) has a solution Nx 2 B.

Proof For all y 2 K, define a set-valued map T W K ! 2K by

T.y/ D fx 2 K W l.x; x/C g.x; x/ 6>C l.x; y/C g.x; y/g:

Clearly, for all y 2 K, T.y/ is nonempty, since y 2 T.y/ by the properness of C. By
conditions (i) and (ii), T is a KKM-map. We also have

(a) T.Qy/ � B, so that clK .T.Qy// � clK.B/ D B, and hence, clK .T.Qy// is compact in
K;
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(b) For each A 2 F .K/ with Qy 2 A and y 2 co.A/,

T.y/\ co.A/ D fx 2 co.A/ W l.x; x/C g.x; x/ 6>C l.x; y/C g.x; y/g

is closed in co.A/ by condition (iii);

(c) For each A 2 F .K/ with Qy 2 A, let x 2
�
clK
�T

y2co.A/ T.y/
�� \ co.A/, then

x 2 co.A/ and there is a net fx˛g˛2� in
T

y2co.A/ T.y/ such that x˛ ! x. For
each y 2 co.A/, since �y C .1 � �/x 2 coA for all � 2 Œ0; 1�, we have x˛ 2
T.�y C .1 � �/x/, for all ˛ 2 � and all � 2 Œ0; 1�. This implies that

l.x˛; x˛/C g.x˛; x˛/ 6>C l.x˛; �y C .1 � �/x/C g.x˛; �y C .1 � �/x/

for all ˛ 2 � and all � 2 Œ0; 1�. By condition (v), we have

l.x; x/C g.x; x/ 6>C l.x; y/C g.x; y/:

It follows that x 2 �Ty2co.A/ T.y/
� \ co.A/. Hence

0

@clK

0

@
\

y2co.A/
T.y/

1

A

1

A \ co.A/ D
0

@
\

y2co.A/
T.y/

1

A \ co.A/:

By Lemma 1.18, we have
T

y2K T.y/ ¤ ;. Hence, there exists Nx 2 T
y2K T.y/, and

therefore,

l.Nx; Nx/C g.Nx; Nx/ 6>C l.Nx; y/C g.Nx; y/; for all y 2 K;

from which it follows that Nx is a solution of IWVVP (9.11). ut
When l.x; y/ D f .y/ and g.x; x/ D 0 for all x; y 2 K, we have the following

result.

Theorem 9.14 Let � W K ! Y be a vector-valued function and f W K 	 K ! Y be
a vector-valued bifunction. Assume that the following conditions hold.

(i) For all x 2 K, y 7! f .x; y/C �.y/ is C-quasiconvex;
(ii) For each A 2 F .K/, � is C-lower semicontinuous on co.A/;
(iii) For each A 2 F .K/ and for each y 2 co.A/, x 7! f .x; y/ is C-upper

semicontinuous on co.A/;
(iv) For each A 2 F .K/ and each x; y 2 co.A/ and every net fx˛g˛2� in K

converging to x with

�.x˛/� �.�y C .1 � �/x/ 6>C f .x˛; �y C .1 � �/x/;

for all ˛ 2 � and all � 2 Œ0; 1�, we have

�.x/� �.y/ 6>C f .x; y/I
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(v) There exist a nonempty closed and compact subset B of K and Qy 2 B such that
�.x/� �.Qy/ >C f .x; Qy/ for all x 2 K n B.

Then there exists Nx 2 B such that

'.Nx/� '.y/ 6>C f .Nx; y/; for all y 2 K:

Proof It is on the lines of the proof of Theorem 9.13. ut

9.3 Duality of Implicit Weak Vector Variational Problems

Let h W X ! Y and � 2 L.X;Y/. The vector conjugate function [101] denoted by
h�
sup, of h at � is defined by

h�
sup.�/ D Supint.C/fh�; yi � h.y/ W y 2 Xg:

Let y 2 X. The vector biconjugate function denoted as h��
sup, of h at y is defined

by

h��
sup.y/ D Supint.C/

[n
h�; yi � h�

sup.l/ W � 2 L.X;Y/
o
:

Note that both h�
sup and h��

sup are set-valued maps and h�
sup W L.X;Y/ ! 2Y , h��

sup W
X ! 2Y . Throughout this section, we assume that h�

sup.�/ ¤ ; and h��
sup.y/ ¤ ;.

We now define the dual problem of (9.11), denoted by DIWVVP, as follows: Find
Nx 2 X, ��� 2 @wl.Nx; Nx/ and Ny 2 g�

sup.Nx; ��/ satisfying h��; Nxi � g.Nx; Nx/ D Ny such that

Ny � h��; Nxi 6>C g�
sup.Nx; �/ � h�; Nxi; for all � 2 L.X;Y/: (9.31)

It is called the dual implicit weak vector variational problem (in short, DIWVVP)
and .Nx; ��/ is called a solution of DIWVVP. The following two results show the
relationships between solutions of IWVVP and DIWVVP.

Theorem 9.15 Assume that l.y; :/ and g.y; :/ are C-convex for each fixed y 2 X. If
Nx is a solution of IWVVP (9.11) and g.Nx; :/ W x 7! g.Nx; x/ is externally stable, then
there exists �� 2 L.X;Y/ such that .Nx; ��/ is a solution of DIWVVP (9.31).

Proof Let Nx be a solution of IWVVP (9.11). Then

g.Nx; Nx/C l.Nx; Nx/ 6>C g.Nx; z/C l.Nx; z/; for all z 2 X:

Let 0� be the zero operator from X to Y. Then

h0�; gi 6>C Œg.Nx; z/C l.Nx; z/� � Œg.Nx; Nx/C l.Nx; Nx/� ; for all z 2 X:
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By the definition of @wl.y; z/, we have

0� 2 @w.g.Nx; Nx/C l.Nx; Nx//:

It follows from [100] that

@w.g.Nx; Nx/C l.Nx; Nx// � @wg.Nx; Nx/C @wl.Nx; Nx/:

Hence,

0� 2 @wg.Nx; Nx/C @wl.Nx; Nx/;

or equivalently, there exists �� 2 L.X;Y/ such that

�� 2 @wg.Nx; Nx/\ .�@wl.Nx; Nx//:

Then from Lemma 2.16, we obtain

h��; Nxi � g.Nx; Nx/ 2 g�
sup.Nx; ��/; (9.32)

h���; Nxi � l.Nx; Nx/ 2 l�sup.Nx;���/:

As g.Nx; :/ W x 7! g.Nx; x/ is externally stable,

g.Nx; Nx/ 2 g��
sup.Nx; Nx/ D Supint.C/fh�; Nxi � g�

sup.Nx; �/ W � 2 L.X;Y/g:

Thus,

g.Nx; Nx/ 6<C h�; Nxi � g�
sup.Nx; �/; for all � 2 L.X;Y/:

From (9.32), there exists Ny 2 g�
sup.Nx; ��/ such that

h��; Nxi � g.Nx; Nx/ D Ny;

that is,

g.Nx; Nx/ D h��; Nxi � Ny:

So,

h��; Nxi � Ny 6<C h�; Nxi � g�
sup.Nx; �/; for all � 2 L.X;Y/:

Ny � h��; Nxi 6>C g�
sup.Nx; �/ � h�; Nxi; for all � 2 L.X;Y/:

Thus .Nx; ��/ is a solution of DIWVVP (9.31). ut
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Theorem 9.16 Assume that l.y; :/ and g.y; :/ are C-convex for each fixed y 2 X. If
.Nx; ��/ is a solution of DIWVVP (9.31) and

@w.g.Nx; Nx/C l.Nx; Nx// D @wg.Nx; Nx/C @wl.Nx; Nx/; (9.33)

then Nx is a solution of IWVVP (9.11).

Proof This is obtained by inverting the reasoning in the proof of Theorem 9.15 step
by step. ut

For details regarding condition (9.33), see [100].

Remark 9.5 Theorems 9.16 and 9.16 are extensions of Theorem 1 in [37] for vector-
valued bifunctions.

Indeed, let Y D R and C D RC. Then DIWVVP reduces to find Nx 2 X, �� 2 X�
such that ��� 2 @l.Nx; Nx/ and

g�.Nx; ��/� h��; Nxi � g�.Nx; �/ � h�; Nxi; for all � 2 X�;

where @l.Nx; Nx/ and g�.Nx; ��/ are convex subdifferential and convex conjugate
functions, respectively. This is a dual problem of IVP which was studied by Dolcetta
and Matzeu [37].

9.4 Gap Functions and Variational Principles

Let X and Y be topological vector spaces, and C � Y be a pointed, proper, closed
convex cone with int.C/ ¤ ;. Let K be a nonempty convex subset of X and f W
K 	K ! Y be a vector-valued bifunction such that f .x; x/ D 0 for all x 2 K. Let us
recall a vector optimization problem for a set-valued map F W X ! 2Y , denoted by
SVVOP,

min
x2K F.x/I (9.34)

which consists in finding Nx 2 K for which there exists Ny 2 F.Nx/ such that Ny 2
minC F.K/, that is, F.Nx/\ minC F.K/ ¤ ;, where

min
C

F.K/ D fx 2 F.K/ W there exists no y 2 F.K/ such that y �C0 xg
D fx 2 F.K/ W .F.K/� x/\ .C0/ D ;g

and F.K/ D S
x2K F.x/. If we replace the acronym min by w � min, we obtain,

so called, weak vector optimization problem for a set-valued map, denoted by
SVWVOP.
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By means of a gap function, one can convert vector equilibrium problems into
a vector optimization problem for set-valued maps or for single-valued maps. It
plays a vital role to design the algorithms for finding the approximate solutions of
vector equilibrium problems. The variational principles are more general than the
gap functions, in the sense that variational principles provide the characterizations
of solutions of vector equilibrium problems by means of solving the zero inclusion
problems for set-valued maps. The set-valued maps involved in the formulations
of variational principles depend on the data of vector equilibrium problems, but
not on their solution sets. Ansari et al. [9, 11] suggested several set-valued gap
functions and variational principles for weak vector equilibrium problems (in short,
WVEPs). These set-valued gap functions enable one to convertWVEPs into a vector
optimization problem for set-valued maps. Konnov [70] modified the approach of
[9, 11] and presented a gap function which allows one to reduce WVEPs to a vector
optimization problem for single-valued maps. Ceng et al. [34] also studied the gap
functions and variational principles for VEPs andWVEPs. Mastroeni et al. [79] used
the image space approach [52] to discuss the gap functions for VEPs. Zhang et al.
[104] introduced a scalar-valued gap function for WVEPs. Mirazaee and Soleimani-
damaneh [80] studied set-valued gap functions for VEPs and investigated their
differential properties using Hadamard directional differentials. Altangerel et al. [2]
proposed some variational principles for vector equilibrium problems by using so-
called Fenchel duality. They gave the characterizations of the solutions of VEPs by
means of solving a set-valued vector optimization problem, where set-valued map
is defined on the basis of Fenchel duality depending on the data, but not on the
solutions set of VEPs. Li et al. [76] established two set-valued gap functions for a
vector equilibrium problem by virtue of conjugate dual problems. Sun and Li [90]
used weak and strong duality results to suggest gap functions for vector equilibrium
problems.

9.4.1 Gap Function for Vector Equilibrium Problems

Let X and Y be topological vector spaces, and C � Y be a pointed, proper, closed
convex cone with int.C/ ¤ ;. Let K be a nonempty convex subset of X and f W
K 	 K ! Y be a vector-valued bifunction such that f .x; x/ D 0 for all x 2 K.

We define the following gap function associated with a vector equilibrium
problem.

Definition 9.9

(a) A set-valued map G W X ! 2Y is said to be a gap function for VEP (9.2) if the
following conditions hold:

(i) Nx 2 S.VEP. f ;C// if and only if 0 2 G.Nx/,
(ii) 0 2 max

x2K G.x/;
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(b) A set-valued map Gw W X ! 2Y is said to be a gap function for WVEP (9.1) if
the following conditions hold:

(i) Nx 2 S.WVEP. f ;C// if and only if 0 2 Gw.Nx/,
(ii) 0 2 w � max

x2K Gw.x/;

We associate with the VEP (9.2), the following set-valued map G W K ! 2Y

defined by

G.x/ WD min
y2K f .x; y/; (9.35)

and to the WVEP (9.1), the set-valued map Gw W K ! 2Y defined by

Gw.x/ WD w � min
y2K f .x; y/ (9.36)

Theorem 9.17

(a) The set-valued map G.x/ WD min
y2K f .x; y/ is a gap function for VEP (9.2).

(b) The set-valued map Gw.x/ WD w�min
y2K f .x; y/ is a gap function forWVEP (9.1).

Proof For the sake of simplicity, we prove only (b). Case (a) is analogous.We prove
(i) and (ii) of Definition 9.9 (b).

.i/ Nx 2 S.WVEP. f ;C// , f .Nx; y/ 6<C 0 for all y 2 K

, 0 2 w � min
C

f f .Nx; y/ W y 2 Kg
(taking into account that f .Nx; Nx/ D 0/

, 0 2 Gw.Nx/:

.ii/ 0 2 w � max
x2K Gw.x/ , z 6>C 0 for all z 2 Gw.x/ and all x 2 K: (9.37)

Let x 2 K and z 2 Gw.x/, then f .z; y/ � z 6<C 0 for all y 2 K. In particular, for
y WD z, we obtain �z 6<C 0 which leads to (9.37). ut
Remark 9.6 [25]

(a) G.x/\ .C0/ D ; for all x 2 K.
Indeed, assume that for some Ox 2 K, G.Ox/\ .�.C0// ¤ ;. Then there exists

Oy 2 C0 such that Oy 2 min
y2K f .Ox; y/, that is, . f .Ox;K � Oy// \ .�.C0// D ;. Since

f .x; x/ D 0 for all x 2 K, 0 2 f .Ox;K/, and therefore, .�Oy/ \ .�.C0// D ;, a
contradiction.

(b) Nx 2 S.VEP. f ;C// if and only if G.Nx/\ C ¤ ;.
Indeed, since G is a gap function by Theorem 9.17, we have Nx 2

S.VEP. f ;C// if and only if 0 2 G.Nx/. Then by part (a), G.Nx/\ C ¤ ;.
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9.4.2 Variational Principle for Weak Vector Equilibrium
Problems

Extending the terminology of Auchmuty [17] and Blum and Oettli [28], we say
that a variational principle holds for WVEP (9.1) if there exists a set-valued map
F W K ! 2Y , depending on the data of WVEP (9.1) but not on its solution set such
that the solution set of WVEP (9.1) coincides with the solution set of the following
vector optimization problem for set-valued map F, denoted by SVVOP,

w � min
x2K F.x/; (9.38)

that is, to find Nx 2 K for which there exists Ny 2 F.Nx/ such that Ny 2 w � minC F.K/,
that is, F.Nx/ \ w � minC F.K/ ¤ ;, where w � minC F.K/ D fx 2 F.K/ W
there is no y 2 F.K/ such that y <C xg and F.K/ D S

x2K F.x/.
In order to formulate first variational principle, we define a set-valued map ˚ W

K ! 2Y as follows:

˚.x/ D w � min
C

f .x;K/; for all x 2 K: (9.39)

Let dom .˚/ WD fx 2 K W ˚.x/ ¤ ;g.
Lemma 9.6 For each x 2 K,

z 2 ˚.x/ implies z 6>C 0: (9.40)

Proof Assume contrary that there exists z 2 ˚.x/ such that z >C 0. Then there
exists y 2 K such that

f .x; y/ D z >C 0 D f .x; x/;

which is a contradiction, since f .x; y/ 2 w � minC f .x;K/. ut
We associate to WVEP (9.1) with the following set-valued weak vector optimiza-

tion problem (in short, SVWVOP) for set-valued map ˚ :

w � max
x2K ˚.x/; (9.41)

that is, to find Nx 2 K for which there exists Ny 2 ˚.Nx/ such that Ny 2 w � maxC ˚.K/,
that is, ˚.Nx/ \ w � maxC ˚.K/ ¤ ;, where w � maxC ˚.K/ D fa 2 ˚.K/ W
there is no b 2 ˚.K/ such that b > ag and ˚.K/ D S

x2K ˚.x/. We denote by
S.SVWVOP˚/ the solution set of SVWVOP (9.41).

Theorem 9.18

(a) Nx 2 K is a solution of WVEP (9.1) if and only if 0 2 ˚.Nx/.
(b) S.WVEP. f ;C// � S.SVWVOP˚/.
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Proof

(a) Suppose Nx solves WVEP (9.1). Then

f .Nx; y/ 6<C 0; for all y 2 K:

Assume that 0 62 ˚.Nx/, then there exists z 2 K such that

f .Nx; z/ <C 0;

which is a contradiction.
Conversely, let 0 2 ˚.Nx/. Assume that Nx does not solve WVEP (9.1), then

there exists y 2 K such that f .Nx; y/ <C 0. This implies that 0 62 ˚.Nx/, a
contradiction. This proves the first part of the theorem.

(b) Let Nx 2 S.WVEP. f ;C//. Then, 0 2 ˚.Nx/ due to part (a). It now follows
from (9.41) that Nx 2 S.SVWVOP˚/, as desired.

ut
We remark that the inclusion in Theorem 9.18 (b) can be strict as the following

example shows.

Example 9.4 Let X D Y D R and C D Œ0;1/. Let

f .x; y/ D sin.x � y/; for all x; y 2 R:

Then for all x 2 R, f .x;R/ D Œ�1; 1�. Hence for all x 2 R, ˚.x/ D f�1g. It is clear
that S.WVEP. f ;C// D ; and S.SVWVOP˚/ D R.

In order to formulate second variational principle, we define set-valued maps
S W K ! 2K and � W K ! 2Y by

S.x/ WD fy 2 K W �. f .x; y// � �. f .x; z// for all z 2 Kg;
�.x/ WD f .x; S.x//:

Lemma 9.7 For each x 2 K,

z 2 �.x/ implies z �C 0: (9.42)

Proof By definition, if z 2 �.x/, then there exists y 2 K such that z D f .x; y/. Since
y 2 S.x/, we have

�. f .x; y// � �. f .x; x// D 0:

From (2.31), it follows that z D f .x; y/ �C 0. ut
We now define the following SVVOP for set-valued map � :

max
x2K �.x/; (9.43)
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that is, to find Nx 2 K for which there exists Ny 2 �.Nx/ such that Ny 2 maxC �.K/,
that is, �.Nx/ \ maxC �.K/ ¤ ;. We denote by S.VWVOP� / the solution set of
problem (9.43).

Theorem 9.19

(a) Nx 2 K is a solution of WVEP (9.1) if and only if 0 2 �.Nx/.
(b) If the solution set of WVEP (9.1) nonempty, then S.WVEP. f ;C// D

S.VWVOP� /.

Proof

(a) Suppose Nx solves WVEP (9.1). Then

f .Nx; y/ 6<C 0; for all y 2 K;

or, due to (2.31),

�. f .Nx; y// � 0; for all y 2 K:

Therefore,

�. f .Nx; Nx// D 0 � �. f .Nx; y//; for all y 2 K;

and we conclude that Nx 2 S.Nx/. It follows that

0 D f .Nx; Nx/ 2 �.Nx/:

Conversely, let 0 2 �.Nx/. Assume that Nx does not solve WVEP (9.1), then
there exists y 2 K such that f .Nx; y/ <C 0. Now, the relation (2.31) gives
�. f .Nx; y// < 0 and

�. f .Nx; y0// � �. f .Nx; y// < 0; for all y0 2 S.Nx/:

Again, from (2.31), we have

f .Nx; y0/ <C 0; for all y0 2 S.Nx/;

that is, 0 62 �.Nx/, a contradiction. This proves part (a) of the theorem.
(b) Let S.WVEP. f ;C// ¤ ;. Take any Nx 2 S.WVEP. f ;C//, then 0 D f .Nx; Nx/ 2

�.Nx/ due to (a). From (9.42), we have that for each x 2 K and for all z 2 �.x/,

z �C f .Nx; Nx/ D 0:

If there exists z0 2 �.x/, z0 ¤ 0 such that z0 �C 0, then we must have

z0 �C 0 and z0 �C 0;
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that is, 0 ¤ z0 2 C\ .�C/. This contradicts that C is a pointed cone. Therefore,
Nx 2 S.VWVOP� /.

Conversely, take any Nx 2 S.VWVOP� /. By the definition, there exists Ny 2
�.Nx/ such that Ny 2 maxC �.K/. From (9.42), it follows that Ny �C 0. Assume,
for contradiction, that 0 … �.Nx/; then Ny ¤ 0. Since S.WVEP. f ;C// ¤ ;, there
exists x� 2 S.WVEP. f ;C//, but 0 2 �.x�/ due to (a). Therefore, there exists
0 2 �.K/, 0 ¤ Ny and Ny �C 0. This contradicts that Ny 2 maxC �.K/. Thus,
assertion (b) is true.

ut
We remark that in Theorem 9.19 (b), it is possible that S.WVEP. f ;C// is empty

and S.VWVOP� / is not empty by considering Example 9.4.

9.4.3 Variational Principle for Minty Weak Vector Equilibrium
Problems

This subsection deals with the variational principle for Minty weak vector equilib-
rium problem (in short, MWVEP) defined by (9.4).

We define a set-valued map ˚� W K ! 2Y by

˚�.x/ D w � max
C

f .K; x/; for all x 2 K; (9.44)

where w � max
C

f .K; x/ D fy 2 f .K; x/ W there is no z 2 f .K; x/ such that z >C yg.
We associate with WVEP the following SVVOP:

w � min
x2K ˚

�.x/; (9.45)

that is, to find Nx 2 K for which there exists Ny 2 ˚�.Nx/ such that Ny 2 w�minC ˚�.K/,
that is, ˚�.Nx/\ w � minC ˚�.K/ ¤ ;.

We denote by S.DSVWVOP˚�/ the solution set of the problem (9.45). Note that,
in the sense of vector optimization for set-valued maps, WVOP (9.41) and (9.45) are
dual to each other. Therefore, SVVOP (9.45) is closely related to MWVEP (9.4).
Similar to the proof of Theorem 9.18 we can get the following characterization of
the solutions for MWVEP (9.4).

Proposition 9.5

(a) Nx 2 K is a solution of MWVEP (9.4) if and only if 0 2 ˚�.Nx/.
(b) S.MWVEP. f ;C// � S.DSVWVOP˚�/.

Definition 9.10 A bifunction f W K 	 K ! Y is called C-bi-pseudomonotone if f
and �f both are C-pseudomonotone.
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Example 9.5 Let X D Y D R2, K D Œ0; 1�	 Œ0; 1� and C D R2C. Define bifunctions
f1; f2 W K 	 K ! Y by

f1.x; y/ D �
x1 � y1; x

2
2 � y22

�

and

f2.x; y/ D .x2.x1 � y1/; y2.x2 � y2// ;

where x D .x1; x2/ and y D .y1; y2/. Then f1 and f2 are C-bi-pseudomonotone.
Since f1.x; y/ C f1.y; x/ D 0 for all x; y 2 K, f1 is also C-monotone. But f2 is not
C-monotone, because for x D .1; 1/, y D �

1
2
; 1
2

�
, we have

f2.x; y/C f2.y; x/ D
�
1

4
;�1
4

	

6�C 0:

Now, we can derive the following existence results for solutions of WVEP.

Corollary 9.1 Let K be a nonempty convex subset of a Hausdorff topological vector
space X and f W K 	 K ! Y be a vector-valued bifunction such that f .x; x/ D 0 for
all x 2 K.

(a) If f is C-pseudomonotone and Nx 2 S.WVEP. f ;C//, then 0 2 ˚�.Nx/.
(b) If 0 2 ˚�.Nx/, Nx 2 K, and either �f is C-pseudomonotone, or f .x; �/ is

explicitly C-quasiconvex and f .�; y/ is C-hemicontinuous for all x; y 2 K, then
Nx 2 S.WVEP. f ;C//.

(c) If f is C-pseudomonotone, then S.WVEP. f ;C// � S.DSVWVOP˚�/.

Corollary 9.2 Let K be a nonempty convex subset of a Hausdorff topological vector
space X and f W K 	 K ! Y be a vector-valued bifunction such that f .x; x/ D 0 for
all x 2 K. Suppose that at least one of the following conditions hold:

(i) f is C-bi-pseudomonotone; or
(ii) f is C-pseudomonotone, f .x; �/ is explicitly C-quasiconvex and f .�; y/ is C-

hemicontinuous for all x; y 2 K.

Then Nx 2 K solvesWVEP (9.1) if and only if 0 2 ˚�.Nx/.
By analogy with the second variational principle from Sect. 9.4.2, we define the

following variational principle for MWVEP. We also present another set-valued
vector optimization problem, which guarantees for the solution sets of WVEP (9.1)
and SVVOP to coincide. From now on, unless otherwise specified, we suppose that
Y is a locally convex Hausdorff topological vector space. We define set-valued maps
S� W K ! 2K and �� W K ! 2Y by

S�.x/ WD fy 2 K W ��. f .y; x// � ��. f .z; x// for all z 2 Kg
��.x/ WD f .S�.x/; x/;
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where

��.y/ WD min
�2B h�; yi; for all y 2 Y;

and B is a base for C�.
Define the following SVVOP for set-valued map ��:

min
x2K �

�.x/; (9.46)

that is, to find Nx 2 K for which there exists Ny 2 ��.Nx/ such that Ny 2 minC ��.K/,
that is, ��.Nx/\ minC ��.K/ ¤ ;. We denote by S.DSVWVOP��/ the solution set
of the problem (9.46).

Proposition 9.6

(a) Nx 2 K is a solution of MWVEP (9.4) if and only if 0 2 ��.Nx/.
(b) If the solution set of MWVEP (9.4) is nonempty, then S.MWVEP. f ;C// D

S.DSVWVOP��/.

In view of the above proposition, we have the following characterization of the
solutions for WVEP (9.1).

Corollary 9.3 Assume that the assumptions of Corollary 9.2 hold.

(a) Nx 2 K is a solution of WVEP (9.1) if and only if 0 2 ��.Nx/.
(b) If the solution set of WVEP (9.1) is nonempty, then S.WVEP. f ;C// D

S.DSVWVOP��/.

9.4.4 Variational Principle for WVEP. f ;h/

Let h W K 	 K ! Y be a vector-valued bifunction such that

(i) h.x; x/ D 0 for all x 2 K,
(ii) h.x; y/ >C 0 for all x ¤ y, x; y 2 K:

Consider the following WVEP associated to the function f C h: find Nx 2 K such
that

f .Nx; y/C h.Nx; y/ 6<C 0; for all y 2 K: (9.47)

We denote by S.WVEP. f C h;C// the solution set of WVEP (9.47).
To obtain the equivalence of S.WVEP. f ;C// and S.WVEP. f C h;C//, we need

the following additional condition on h:

(iii) For all x; y 2 K and ˛ 2 Œ0; 1�, the function �.˛/ D h.x; ˛y C .1 � ˛/x/ is
homogenous with a degree � > 1, that is, �.˛/ D ˛��.1/.
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Proposition 9.7 Suppose that f .x; �/ is C-convex for each x 2 K and h satisfies
(i)–(iii). Then S.WVEP. f ;C// D S.WVEP. f C h;C//,

Proof Suppose Nx solves WVEP (9.1). If Nx … S.WVEP. f C h;C//, then there is
y 2 K such that

f .Nx; y/C h.Nx; y/ <C 0;

hence that

f .Nx; y/ <C �h.Nx; y/ <C 0;

a contradiction to the supposition that Nx solves WVEP (9.1).
Suppose Nx solves WVEP (9.47). Assume contrary that Nx … S.WVEP. f ;C//, then

there is y 2 K such that f .Nx; y/ <C 0. Set y˛ D ˛y C .1 � ˛/Nx. For each ˛ 2 �0; 1Œ,
we have

f .Nx; y˛/C h.Nx; y˛/ <C ˛f .Nx; y/C .1 � ˛/f .Nx; Nx/C ˛�h.Nx; y/
D ˛f .Nx; y/C ˛�h.Nx; y/:

Hence, there exists ˛0 2 �0; 1Œ such that

f .Nx; y/C ˛��1h.Nx; y/ <C 0;

when ˛ 2 �0; ˛0Œ. It follows that

f .Nx; y˛/C h.Nx; y˛/ �C0 ˛. f .Nx; y/C ˛��1h.Nx; y// <C 0;

a contradiction, since y˛ 2 K. ut
By combining Theorem 9.3 and Proposition 9.7, we have the following existence

result for a solution to WVEP (9.47).

Theorem 9.20 Assume that the assumptions of Theorem 9.3 and Proposition 9.7
hold. Then there exists a solution to WVEP (9.47).

Remark 9.7 In Banach spaces, it suffices to suppose that k�.˛/k � ˛�k�.1/k.
In order to formulate variational principle, we define a set-valued map G W K !

2Y by

G.x/ WD w � minf f .x; y/C h.x; y/ W y 2 Kg;

where h is the same as defined above and can be termed as a perturbation bifunction.
We associate to WVEP (9.47) with the following SVWVOP for set-valued map G:

w � max
x2K G.x/: (9.48)
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We denote by S.SVWVOPSG/ the solution set of SVWVOP (9.48).
Using Theorem 9.19 with f WD f C h, we obtain the following result.

Proposition 9.8

(a) Nx 2 K is a solution of WVEP (9.47) if and only if 0 2 G.Nx/.
(b) If the solution set of WVEP (9.47) is nonempty, then S.WVEP. f C h;C// �

S.SVWVOPSG/.

By combining Propositions 9.7 and 9.8, we obtain the following result.

Theorem 9.21 Assume that the assumptions of Proposition 9.7 hold.

(a) Nx 2 K is a solution of WVEP (9.47) if and only if 0 2 G.Nx/.
(b) If the solution set of WVEP (9.47) is nonempty, then S.WVEP. f C h;C// �

S.SVWVOPSG/.

Consider another SVVOP whose solution set coincides with the solution set of
WVEP. Let Y be a locally convex space and C� be the dual cone of C. In order to
formulate second variational principle, we define set-valued maps S W K ! 2K and
˚ W K ! 2Y by

S.x/ WD fy 2 K W �. f .x; y/C h.x; y// � �. f .x; z/C h.x; z// for all z 2 Kg;
˚.x/ WD f .x; S.x//C h.x; S.x//:

We now define the following SVVOP for set-valued map ˚ :

max
x2K ˚.x/: (9.49)

We denote by S.SVVOPS˚/ the solution set of problem (9.49).
Applying Theorem 9.19 with f D f C h, we obtain the following result.

Proposition 9.9

(a) Nx 2 K is a solution of WVEP (9.47) if and only if 0 2 ˚.Nx/.
(b) If the solution set of WVEP (9.47) is nonempty, then S.WVEP. f C h;C// D

S.SVVOPS˚/.

By combining Propositions 9.7 and 9.9, we have the following result.

Theorem 9.22 Assume that the assumptions of Proposition 9.7 hold.

(a) Nx 2 K is a solution of WVEP (9.47) if and only if 0 2 ˚.Nx/.
(b) If the solution set of WVEP (9.47) is nonempty, then S.WVEP. f ;C// D

S.SVVOPS˚/.
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9.5 Vectorial Form of Ekeland’s Variational Principle

An existence result for an approximate minimizer of a lower semicontinuous and
bounded below function is given by Ekeland in 1972 [39] (see also, [40, 41]),
now known as Ekeland’s variational principle (in short, EVP). It is appeared
as one of the most useful tools to solve the problems in optimization, optimal
control theory, game theory, nonlinear equations, dynamical systems, etc; See for
example [14–16, 43, 57, 91] and the references therein. In [29, 83], Blum, Oettli
and Théra provided the existence results for a solution of an equilibrium problem
in the setting of complete metric spaces, and showed that their existence result is
equivalent to Ekeland-type variational principle for bifunctions, Caristi-Kirk fixed
point theorem for set-valued maps [33] and a maximal element theorem. For further
details on Ekeland’s variational principle for bifunctions, we refer [1, 5–7] and the
references therein. Ansari [4], Araya et al. [13] and Bianchi et al. [24] extended
the EVP for vector-valued bifunctions, see also [47]. By using the vectorial form
of EVP, the existence of solutions of WVEP is studied by these authors. Araya
[12] considered vectorial form of Ekeland’s variational principle, vectorial form
of Caristi’s fixed point theorem and vectorial form of Takahashi’s minimization
theorem, and established the equivalence among these results. Some examples to
illustrate these results are also presented in [12].

In this section, we first establish Ekeland-type variational principle for vector-
valued bifunctions in the setting of complete metric spaces. Then by using this
result, we derive the existence of solutions of weak vector equilibrium problems.
Some equivalent results to the vectorial form of Ekeland-type variational principle
are also presented.

9.5.1 Vectorial Form of Ekeland-Type Variational Principle

We present the following vectorial form of Ekeland-type variational principle for
vector-valued bifunctions in the setting of complete metric spaces.

Theorem 9.23 Let .X; d/ be a complete metric space, Y be a locally convex
Hausdorff topological vector space, C be a pointed, proper, closed and convex cone
in Y with int.C/ ¤ ;, and e 2 Y be a fixed vector such that e 2 int.C/. Let
f W X 	 X ! Y be a vector-valued bifunction such that the following conditions
hold.

(i) f .x; x/ D 0 for all x 2 X;
(ii) f .x; y/C f .y; z/ 2 f .x; z/C C for all x; y; z 2 X;
(iii) For each fixed x 2 X, the function f .x; �/ W X 7! Y is .e;C/-lower

semicontinuous and C-bounded below.



9.5 Vectorial Form of Ekeland’s Variational Principle 379

Then for every " > 0 and for every Ox 2 X, there exists Nx 2 X such that

(a) f .Ox; Nx/C "d.Ox; Nx/e 2 �C
(b) f .Nx; x/C "d.Nx; x/e … �C for all x 2 X, x ¤ Nx.
Proof For the sake of convenience, we set d".x; y/ D .1="/d.x; y/. For all x 2 X,
define

S.x/ D fy 2 X W x D y or �e . f .x; y//C d".x; y/ � 0g

and set

V.x/ WD inf
y2S.x/ �e . f .x; y// ;

where �e is same as defined in Definition 2.30. Clearly, x 2 S.x/, and so S.x/ is
nonempty for all x 2 X. Also, V.x/ � 0 for all x 2 X. Since f .x; �/ is .e;C/-lower
semicontinuous and C-bounded below, Lemma 2.14 (a) implies that �e . f .x; �// is
lower semicontinuous and bounded below. Since d".x; �/ is lower semicontinuous,
S.x/ is closed for all x 2 X.

Let x0 D Ox 2 X. Since �e . f .x; �// is bounded below, we have

V.x0/ D inf
y2X �e . f .x0; y// > �1:

Let m 2 N and assume that xm�1 has been defined with V.xm�1/ > �1. Choose
xm 2 S.xm�1/ such that

�e . f .xm�1; xm// � V.xm�1/C 1

m
:

Let y 2 S.xm/ n fxmg, then

�e . f .xm; y//C d".xm; y/ � 0: (9.50)

Since xm 2 S.xm�1/, we have

�e . f .xm�1; xm//C d".xm�1; xm/ � 0: (9.51)

Adding (9.50) and (9.50), we obtain

�e . f .xm�1; xm//C �e . f .xm; y//C d".xm�1; xm/C d".xm; y/ � 0:

Using the triangle inequality for metric d", we obtain from above inequality

�e. f .xm�1; xm//C �e. f .xm; y//C d".xm�1; y/ � 0: (9.52)
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By condition (ii) and using Theorem 2.7 (e) and ( f), we have

�e . f .xm�1; y// � �e . f .xm�1; xm//C �e . f .xm; y// : (9.53)

Combining (9.52) and (9.53), we obtain

�e . f .xm�1; y//C d".xm�1; y/ � 0;

and so y 2 S.xm�1/ which implies that S.xm/ � S.xm�1/. Therefore, we obtain

V.xm/ D inf
y2S.xm/

�e . f .xm; y// � inf
y2S.xm�1/

�e . f .xm; y//

� inf
y2S.xm�1/

Œ�e . f .xm�1; y//� �e . f .xm�1; xm//�

D V.xm�1/� �e . f .xm�1; xm// � � 1

m
:

Thus, for y 2 S.xm/ n fxmg, from (9.50) and by definition of V , we have

d".xm; y/ � ��e . f .xm; y// � �V.xm/ � 1

m
! 0 as m ! 1:

This shows that d".xm; y/ ! 0 as m ! 1. Since xm 2 S.xm/, the diameter of S.xm/,
ı.S.xm// ! 0 as m ! 1. By Cantor’s intersection theorem, there exists exactly

one point Nx 2 X such that
1\

mD0
S.xm/ D fNxg.

This implies that Nx 2 S.x0/ D S.Ox/, that is,

�e . f .Ox; Nx//C d".Ox; Nx/ � 0; that is, �e . f .Ox; Nx// � �d".Ox; Nx/:

From Theorem 2.7 (g), we have

f .Ox; Nx/ 2 �d".Ox; Nx/e � C; that is, f .Ox; Nx/C d".Ox; Nx/e 2 �C:

and so (a) holds.
Moreover, Nx also belongs to all S.xm/ and, since S.Nx/ � S.xm/ for all m, we have

S.Nx/ D fNxg:

It follows that x … S.Nx/ whenever x ¤ Nx implying that

�e . f .Nx; x//C d".Nx; x/ > 0 or �e . f .Nx; x// > �d".Nx; x/:

From Theorem 2.7 (g), we have

f .Nx; x/ … �d".Nx; x/e � C;
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that is,

f .Nx; x/C d".Nx; x/e … �C; for all x 2 X and x ¤ Nx;

that is, (b) holds. ut
Remark 9.8

(a) If .X; d/ is a metric space (not necessarily, complete), 4 is a quasi-order on X
defined as

x 4 y if and only if x D y or �e . f .x; y//C d".x; y/ � 0;

and the set S.x/ D fy 2 X W x 4 yg is 4-complete, even then the conclusion of
Theorem 9.23 holds.

(b) If X is replaced by a nonempty closed subset K of X, even then the conclusion
of Theorem 9.23 holds.

(c) The conclusion (b) of Theorem 9.23 implies that

f .Nx; x/C "d.Nx; x/e … � int.C/; for all x 2 X:

Indeed, from (b) we have

f .Nx; x/C "d.Nx; x/e … � int.C/; for all x 2 X; x ¤ Nx:

Suppose that f .Nx; Nx/C"d.Nx; Nx/e 2 � int.C/. Since f .Nx; Nx/ D 0 by condition (i) of
Theorem9.23, d.Nx; Nx/ � 0 and e 2 int.C/, we obtain f .Nx; Nx/C"d.Nx; Nx/e 2 int.C/,
a contradiction of our supposition.

Corollary 9.4 Let .X; d/, Y, C, and e be the same as in Theorem 9.23 and let � W
X ! Y be a .e;C/-lower semicontinuous and C-bounded below function. For every
given " > 0, there is a Ox 2 X such that �.x/ � �.Ox/ … "e � C for all x 2 X, then
there exists Nx 2 X such that

(a) �.x/� �.Nx/ … �"e � C for all x 2 X
(b) �.x/� �.Nx/C "d.Nx; x/e … �C for all x 2 X, x ¤ Nx.
Proof Set f .x; y/ D �.y/ � �.x/ for all x; y 2 X. Then all the conditions of
Theorem 9.23 are satisfied and hence there exists Nx 2 X such that

�.Nx/� �.Ox/C "d.Ox; Nx/e 2 �C;

and

�.x/� �.Nx/C "d.Nx; x/e … �C; for all x 2 X; x ¤ Nx;

that is, (b) holds.
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Since d.Ox; Nx/ � 0 and e 2 int.C/, we have "d.Ox; Nx/ 2 int.C/. Then (9.5.1) implies
that

�.Nx/� �.Ox/ 2 � int.C/ � C � � int.C/: (9.54)

By hypothesis, Ox satisfies

�.x/� �.Ox/ … �"e � C; for all x 2 X: (9.55)

We claim that �.x/� �.Nx/ … �"e � C, for all x 2 X.
Suppose to the contrary that

�.x/� �.Nx/ 2 �"e � C; for some x 2 X: (9.56)

Then from (9.54) and (9.56), we have

�.x/� �.Nx/ 2 �"e � int.C/ � C � �"e � C;

contradicting (9.55). Hence (a) holds. ut
If C D RC and Y D R, then from Theorem 9.23, we have the following

Ekeland’s variational principle for bifunctions.

Corollary 9.5 Let .X; d/ be a complete metric space. Let f W X 	 X ! R be a
real-valued function such that the following conditions hold:

(i) f .x; x/ D 0 for all x 2 X;
(ii) f .x; z/ � f .x; y/C f .y; z/ for all x; y; z 2 X;
(iii) For each fixed x 2 X, the function f .x; �/ W X 7! R is lower semicontinuous and

bounded below.

Then for every " > 0 and for every Ox 2 X, there exists Nx 2 X such that

(a) f .Ox; Nx/C "d.Ox; Nx/ � 0

(b) f .Nx; x/C "d.Nx; x/ > 0, for all x 2 X, x ¤ Nx.

9.5.2 Existence of Solutions for Weak Vector Equilibrium
Problems Via Vectorial Form of EVP

Throughout this subsection, unless otherwise specified, we assume that Y, C, and e
are the same as in the previous subsection and .X; d/ is a complete metric space.

Definition 9.11 Let f W K 	 K ! Y and " 2 Y be given. A point Nx 2 K is called an
"-equilibrium point of f if

f .Nx; y/C "d.Nx; y/ … � int.C/; for all y 2 K:
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Theorem 9.24 Let K be a nonempty compact (not necessarily convex) subset of X,
f W K 	K ! Y satisfy conditions (i)–(iii) of Theorem 9.23 and for each fixed y 2 K,
the map x 7! f .x; y/ be .e;C/-upper semicontinuous. Then there exists a solution
Nx 2 K of WVEP (9.1).

Proof By Theorem 9.23 along with Remark 9.8 (c), for each m 2 N, there exists
xm 2 K such that

f .xm; y/C 1

m
d.xm; y/e … � int.C/; for all y 2 K;

that is, for each m 2 N, xm 2 K is an "-equilibrium point of f for " D 1
me. By

Theorem 2.7 ( j), we have

�e . f .xm; y//C 1

m
d.xm; y/ � 0; for all y 2 K and all m 2 N:

Since K is compact, we can choose a subsequence fxmkg of fxmg such that xmk ! Nx
as m ! 1. Then by .e;C/-upper semicontinuity of f .�; y/ on K, we have �e ı f .�; y/
is upper semicontinuous and thus

�e . f .Nx; y// � lim sup
k!1

�

�e . f .xmk ; y//C 1

mk
d.xmk ; y/

	

� 0; for all y 2 K:

Hence, again by Theorem 2.7 ( j),

f .Nx; y/ … � int.C/; for all y 2 K

and thus Nx is a solution of WVEP (9.1). ut
When K is not necessarily compact, we have the following existence result for a

solution of WVEP (9.1).

Theorem 9.25 Let .X; k � k/ be a Banach space equipped with the weak topology,
K a nonempty closed subset of X, f W K 	 K ! Y satisfy conditions (i)–(iii) of
Theorem 9.23 and for each fixed y 2 K, the map x 7! f .x; y/ be .e;C/-upper
semicontinuous. Let the following coercivity condition hold:

there exists r > 0 such that for all x 2 K n Kr, there exists y 2 K with kyk < kxk satisfying
f .x; y/ 2 �C, where Kr D fx 2 K W kxk � rg.

Then there exists a solution Nx 2 K of WVEP (9.1).

Proof For all x 2 K, define

S.x/ D fy 2 K W kyk � kxk and �e . f .x; y// � 0g:

Then for all x 2 K, S.x/ ¤ ;, and for each x; y 2 K, y 2 S.x/ implies that
S.y/ � S.x/. Indeed, for z 2 S.y/, we have kzk � kyk � kxk. Condition (iii) in
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Theorem 9.23 implies that

�e . f .x; z// � �e . f .x; y//C �e . f .y; z// � 0:

Since �e ı f .x; �/ is lower semicontinuous on K, S.x/ is closed for all x 2 K. Also,
since Kkxk is weakly compact, S.x/ is weakly compact subset of Kkxk for all x 2 K.
Then by Theorem 9.24, there exists Nxr 2 Kr such that

f .Nxr; y/ … � int.C/; for all y 2 Kr: (9.57)

Assume that there exists x 2 K such that f .Nxr; x/ 2 � int.C/. Set a D min
y2S.x/ kyk

(the minimum is achieved because S.x/ is nonempty and weakly compact and the
norm is continuous). We consider the following two cases:

CASE 1: When (a � r). Assume that y0 2 S.x/ such that ky0k D a. Then ky0k D
a � r and �e . f .x; y0// � 0. Since f .Nxr; x/ 2 � int.C/, we have �e ..Nxr; x// < 0 by
Theorem 2.7 ( j) and thus

�e . f .Nxr; x//C �e . f .x; y0// < 0: (9.58)

By condition (iii), we obtain

�e . f .Nxr; y0// � �e . f .Nxr; x//C �e . f .x; y0// : (9.59)

Combining (9.58) and (9.59), we get

�e . f .Nxr; y0// < 0 ) f .Nxr; y0/ 2 � int.C/

contradicting (9.57).
CASE 2: When (a > r). Assume that y0 2 S.x/ such that ky0k D a. Then

ky0k D a > r and by coercivity condition we can choose an element y1 2 K such
that ky1k < ky0k D a and satisfying f .y0; y1/ 2 �C, that is, �e . f .y0; y1// � 0.
Therefore, y1 2 S.y0/ � S.x/ contradicting ky1k < a D min

y2S.x/ kyk. Thus, there is no
x 2 K such that F.Nxr; x/ 2 � int.C/, that is, Nxr is a solution of WVEP (9.1). ut

The following results can be easily derived from Theorems 9.24 and 9.25,
respectively, by taking f .x; y/ D �.y/ � �.x/ for all x; y 2 K, where � W K ! Y
be a vector-valued function. These results are the vectorial form of the Weierstrass
existence theorem.

Corollary 9.6 Let K be a nonempty compact subset of X and � W K ! Y be .e;C/-
lower semicontinuous and C-bounded below. Then there exists Nx 2 K such that
�.y/� �.Nx/ … � int.C/ for all y 2 K.
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Corollary 9.7 Let .X; k � k/ be a Banach space equipped with the weak topology, K
a nonempty closed subset of X and � W K ! Y be .e;C/-lower semicontinuous and
C-bounded below. Assume that the following coercivity condition holds:

there exists r > 0 such that for all x 2 K n Kr, there exists y 2 K with kyk < kxk satisfying
�.y/� �.x/ 2 �C, where Kr D fx 2 K W kxk � rg.

Then there exists Nx 2 K such that �.y/� �.Nx/ … � int.C/ for all y 2 K.

Definition 9.12 We say that x0 2 X satisfies Condition (A) if and only if every
sequence fxmg � X satisfying f .x0; xm/ 2 �C for all m 2 N and f .xm; x/ C
1
md.xm; x/e … � int.C/ for all x 2 X and all m 2 N, has a convergent subsequence.

Theorem 9.26 Let .X; d/ be a complete metric space, and f W X 	 X ! Y satisfy
condition (i)–(iii) of Theorem 9.23 and .e;C/-upper semicontinuous in the first
argument. If some x0 2 X satisfies Condition (A), then there exists Nx 2 X such
that f .Nx; x/ … � int.C/ for all x 2 X.

Proof From Theorem 9.23 along with Remark 9.8 (c), for each m 2 N, there exists
xm 2 X such that

f .xm; x/C 1

m
d.xm; x/e … � int.C/; for all x 2 X; (9.60)

and

f .Ox; xm/C 1

m
d.Ox; xm/e 2 �C: (9.61)

In view of Theorem 2.7 (g), (9.60) and (9.60) can be rewritten, respectively, as

�e . f .xm; x// � � 1

m
d.xm; x/; for all x 2 X; (9.62)

and

�e . f .Ox; xm// � � 1

m
d.Ox; xm/: (9.63)

Since d.Ox; xm/ � 0, we have

�e . f .Ox; xm// � 0 , f .Ox; xm/ 2 �C; for all m 2 N:

From Condition (A), there exists a subsequence of fxmg converges to some Nx 2 X.
Then by using the upper semicontinuity of �e. f .�; x// and (9.62), we obtain

�e . f .Nx; x// � 0; for all x 2 X:



386 9 Vector Equilibrium Problems

Again by applying Theorem 2.7 ( j), we get

f .Nx; x/ … � int.C/; for all x 2 X:

This completes the proof. ut
Remark 9.9 If we replace X by a nonempty closed subset K of X in Definition 9.12
and Theorem 9.26, then the conclusion of Theorem 9.26 also holds and gives the
existence of a solution of WVEP.

9.5.3 Some Equivalences

We establish some equivalences among Ekeland-type variational principle for
vector-valued bifunctions, existence of solutions for WVEP, Caristi-Kirk type fixed
point theorem, and Oettli and Théra type theorem.

Theorem 9.27 Let .X; d/, Y, C, and e be the same as in Theorem 9.23. Let
f W X 	 X ! Y be a vector-valued bifunction satisfying the conditions (i)–(iii)
of Theorem 9.23. Then the following statements are equivalent:

(a) (VECTORIAL FORM OF EKELAND-TYPE VARIATIONAL PRINCIPLE). For
every Ox 2 X, there exists Nx 2 X such that

Nx 2 OS WD fx 2 X W f .Ox; x/C d.Ox; x/e 2 �C; x ¤ Oxg

and

f .Nx; x/C d.Nx; x/e … �C; for all x 2 X and x ¤ Nx: (9.64)

(b) (EXISTENCE OF SOLUTIONS FOR WVEP). Assume that

�
for every Qx 2 OS with f .Qx; y/ 2 � int.C/ for all y 2 X; there exists x 2 X
such that x ¤ Qx and f .Qx; x/C d.Qx; x/e 2 �C:

(9.65)
Then there exists Nx 2 OS such that f .Nx; x/ … � int.C/ for all x 2 X.

(c) (CARISTI-KIRK TYPE FIXED POINT THEOREM). Let ˚ W X ! 2X be a set-
valued map such that

�
for every Qx 2 OS; there exists x 2 ˚.Qx/ satisfying
f .Qx; x/C d.Qx; x/e 2 �C:

(9.66)

Then there exists Nx 2 OS such that Nx 2 ˚.Nx/.
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(d) (OETTLI AND THÉRA TYPE THEOREM) Let D be a subset of X such that

�
for every Qx 2 OS n D; there exists x 2 X
such that x ¤ Qx and F.Qx; x/C d.Ox; x/e 2 �C:

(9.67)

Then there exists Nx 2 OS \ D.

Proof (a) ) (d): Let (a) and the hypothesis of (d) hold. Then (a) gives Nx 2 OS such
that

f .Nx; x/C d.Nx; x/e … �C; for all x 2 X and x ¤ Nx:

From (9.67), we have Nx 2 D. Hence Nx 2 OS \ D, and (d) holds.
(d) ) (a): Let (d) hold. For all Ox 2 X, define

� .Ox/ D fx 2 X W f .Ox; x/C d.Ox; x/e 2 �C; x ¤ Oxg:

Choose D WD fOx 2 X W � .Ox/ D ;g. If Ox … D, then from the definition of D, there
exists x 2 � .Ox/. That is, for Ox … D, there exists x 2 X such that

x ¤ Ox and f .Ox; x/C d.Ox; x/e 2 �C:

Hence (9.67) is satisfied, and by (d), there exists Nx 2 OS\D. Then � .Nx/ D ;, that is,
F.Nx; x/C d.Nx; x/e … �C for all x ¤ Nx. Hence (a) holds.

(b) ) (d): Suppose that both (b) and the hypothesis of (d) hold. Assume, for
contradiction, that Qx … D for all Qx 2 OS satisfying f .Qx; y/ 2 � int.C/ for all y 2 K.
Then by (9.67), for all Qx 2 OS

there exists x 2 X such that x ¤ Qx and f .Qx; x/C d.Qx; x/e 2 �C: (9.68)

Hence (9.65) is satisfied and by (ii), there exists Nx 2 OS such that

f .Nx; x/ … � int.C/; for all x 2 X: (9.69)

We claim that f .Nx; x/ C d.Nx; x/e … �C for all x 2 X, x ¤ Nx which leads to a
contradiction of (9.68). Assume, contrary that, there exists x 2 X such that x ¤ Nx
and

f .Nx; x/C d.Nx; x/e 2 �C; that is; f .Nx; x/ 2 �d.Nx; x/e � C (9.70)

Since e 2 int.C/ and d.Nx; x/ � 0, we have

d.Nx; x/e 2 int.C/ (9.71)
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Combining (9.70) and (9.71), we obtain

F.Nx; x/ 2 � int.C/� C � � int.C/

a contradiction of (9.69).
(d) ) (b): Suppose that both (d) and the hypothesis of (b) hold. Choose D WD

fQx 2 X W f .Qx; y/ … � int.C/ for all y 2 Xg. Then by hypothesis (9.65), for every
Qx 2 OS with f .Qx; y/ … � int.C/ for all y 2 X, there exists x 2 X such that x ¤ Qx and
f .Qx; x/ C d.Qx; x/e 2 �C, that is, for every Qx 2 OS n D, there exists x 2 X such that
x ¤ Qx and f .Qx; x/C d.Ox; x/e 2 �C. Then by (d), there exists Nx 2 OS\D. This implies
that Nx 2 OS and f .Nx; y/ … � int.C/ for all y 2 X. Hence (b) holds.

(c) ) (d): Let (c) and the hypothesis of (d) hold. Define a set-valued map ˚ W
X ! 2X by

˚.Qx/ D fx 2 X W x ¤ Qxg:

Assume, for contradiction, that Qx … D for all Qx 2 OS. By (9.67), for every Qx 2 OS n D,
there exists x 2 X such that x ¤ Qx and f .Qx; x/ C d.Ox; x/e 2 �C, that is, for every
Qx 2 OS, there exists x 2 ˚.Qx/ satisfying f .Qx; x/ C d.Ox; x/e 2 �C. Then (c) implies
that there exists Nx 2 OS such that Nx 2 ˚.Nx/. But this is clearly impossible from the
definition of ˚ . Hence Qx 2 D for some Qx 2 OS, and (d) holds.

(d) ) (c): Suppose that both (d) and the hypothesis of (c) hold. Choose D WD
fQx 2 X W Qx 2 ˚.Qx/g. By (9.66), for every Qx 2 OS, there exists x 2 ˚.Qx/ satisfying
f .Qx; x/ C d.Qx; x/e 2 �C, that is, for every Qx 2 OS n D, there exists x 2 X such that
x ¤ Qx satisfying f .Qx; x/ C d.Qx; x/e 2 �C. Then by (d) furnishes some Nx 2 OS \ D.
From the definition of D, we have Nx 2 ˚.Nx/. Hence (c) holds. ut

9.6 Sensitivity Analysis of Vector Equilibrium Problems

In this section, we present some results on parametric optimization for equilibrium
problems. Parametric optimization investigates how changes in the data change
the optimal solution and the value of the optimal solution. This is especially
important as most data of optimization problems are indeed uncertain (for instance
due to measurement errors, numerical rounding errors, etc). Then one would like
to know how small changes in the data affect the obtained optimal solution.
Two main questions arising in this regard are about continuity properties of
certain maps, which give insight into the problem’s stability, and differentiability
properties, which can describe the sensitivity of the solution. As an example of
parametric scalar optimization problems, consider the weighted sum scalarization
with parameters w in Chap. 4.
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Let 	, X be topological vector spaces. Moreover, let a set-valued map A W 	 !
2X and a real-valued function f W 	 	 X ! R be given. A parametric scalar
optimization is given as

minimize f .t; x/;

subject to x 2 A.t/:
(P1.t/)

Then '.t/ WD infx2A.t/ f .t; x/ is called optimal value function and the set S.t/ WD
fx 2 A.t/ W f .t; x/ D '.t; x/g is the optimal set mapping. A stability analysis aims
at the question whether the solution of the original problem (P1.t/) for some fixed
t 2 	 depends on the input data. Sensitivity analysis, on the other hand, tries to
answer the question how small changes in the input data affect the optimal solution.
Although the optimal value function '.t/ is often not differentiable at all t 2 	,
sometimes directional differentiability can be shown. For a detailed analysis to
parametric optimization, we refer to [58].

For a set-valued setting, let 	, X be topological vector spaces and Y be a
Hausdorff topological vector space. Furthermore, let the set-valued maps A W 	 !
2X and F W 	 	 X ! 2Y be given. A parametric set optimization problem is given
by

minimize F.t; x/;

subject to x 2 A.t/:
(P2.t/)

For an overview on sensitivity analysis for set-valued optimization problems, see,
for instance, [65, Chap. 13].

9.6.1 "-Weak Vector Equilibrium Problems

The concept of "-solution is very adaptable in the cases where feasible regions are
nonconvex or nonclosed sets. In fact, the original problems are the special cases of
"-approximate problems such as the famous Ekeland’s variational principle, which
is an "-solution rule for optimization problem. The concept of "-solution is also
the basis of numerical computing, for example, stability, well-posedness and so on.
The interesting example of the "-equilibrium problem is the generalized game for
"-strategy in economics.

The notion of approximate solutions adapted in this subsection follows from the
concept of "-efficiency originally introduced in multiple objective programming by
Loridan [77]. Later, White [98] introduced six alternative definitions of "-efficient
solutions and established the relationships between these concepts. "-efficiency for
more general vector optimization problems are considered in [77, 82]. Tammer [92,
93] studied the existence of "-solution for (vector) variational inequality problem,
and generalized Ekeland’s variational principle.



390 9 Vector Equilibrium Problems

Kimura et al. [68] considered an "-weak vector equilibrium problem (in short, "-
WVEP) and studied several existence results for its solution. They also investigated
continuity properties (upper semicontinuity and lower semicontinuity) of the solu-
tion map for "-WVEP. Qiu and Yang [85] studied a more general form of "-WVEP
and proved the equivalence between the solution sets of WVEP (9.1) and their "-
WVEP. Wei-zhong et al. [97] considered "-WVEP with constraints and obtained
some necessary and sufficient conditions for its solution.

Since the vector equilibrium problem is a very general mathematical model
covering vector optimization, vector variational inequalities and so on as special
cases, the main motivation of this subsection is to consider "-WVEP and present the
existence results for its solution. We also study the behavior (upper semicontinuity
and lower semicontinuity) of the solution map of the "-WVEP.

We observe that the results in this subsection can be employed to study the
behavior of solution maps of "-vector optimization problems, "-vector variational
inequalities, "-generalized games and so on.

Throughout this subsection, unless otherwise specified, let X be a Hausdorff
topological vector space and Y be a topological vector space. Let K be a nonempty
subset of X and C � Y be a solid, pointed convex cone. Let f W X 	 X ! Y
be a vector-valued bifunction. For fixed " 2 int.C/, the "-weak vector equilibrium
problem (in short, "-WVEP) is to find Nx 2 K such that

f .Nx; y/C " … � int.C/; for all y 2 K: (9.72)

The set of solutions of the "-WVEP (9.72) is denoted by S.WVEP.K; f ; "//.
Let ˝ W int.C/ ! 2X be a set-valued map such that ˝."/ is the solutions set of

"-WVEP for " 2 int.C/, that is,

˝."/ D fx 2 K W f .x; y/C " … � int.C/ for all y 2 Kg:

Qiu and Yang [85] considered the following "-weak vector equilibrium problem:
For each " 2 int.C/ and e � 0, find Nx 2 K such that

f .Nx; y/C " e … � int.C/; for all y 2 K: (9.73)

We denote by S.WVEP.K; f ; "; e// the set of solutions of the "-WVEP (9.73).
If e D 1, then "-WVEP (9.73) reduces to "-WVEP (9.72). When e D 0, then

"-WVEP (9.73) becomes WVEP (9.1).

Proposition 9.10 [85] Let " 2 int.C/ be a fixed vector. Then

\

e>0

S.WVEP.K; f ; "; e// D S.WVEP.K; f //:

Proof Let Nx 2 S.WVEP.K; f //, then

f .Nx; y/ … � int.C/; for all y 2 K: (9.74)
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If there exists e0 > 0 such that Nx … S.WVEP.K; f ; "; e0//, then there is y0 2 K such
that f .Nx; y0/C "e0 2 � int.C/, that is, f .Nx; y0/ 2 � int.C/ � "e0 � � int.C/ which
contradicts (9.74). Hence, Nx 2 Te>0 S.WVEP.K; f ; "; e//.

Now we prove that
T

e>0 S.WVEP.K; f ; "; e// � S.WVEP.K; f //. Suppose that
Nx 2 T

e>0 S.WVEP.K; f ; "; e//, but Nx … S.WVEP.K; f //. Then there is Oy 2 K such
that f .Nx; Oy/ 2 � int.C/. Consequently, there exists a neighborhood U of 0 such that
f .Nx; Oy/C U � � int.C/. Since " 2 int.C/, there is e0 > 0 such that " e0 2 U. Then
we have

f .Nx; Oy/C " e0 2 � int.C/;

that is, Nx … S.WVEP.K; f ; "; e0// which contradicts our supposition. This completes
the proof. ut

We remark that "-WVEP is closely related to the following weak vector
equilibrium problem (in short, WVEP) which is to find Nx 2 cl .K/ such that

f .x; y/ … � int.C/; for all y 2 K: (9.75)

Let S.WVEP.cl .K/; f // denote the solution set of WVEP (9.75), that is,

S.WVEP.cl .K/; f // D fx 2 cl .K/ W f .x; y/ … � int.C/ for all y 2 Kg:

If K is closed, then WVEP (9.75) reduces to WVEP (9.1) studied in Sect. 9.1. We
may regard solutions of "-WVEP as approximate solutions of WVEP (9.75). We
remark that S.WVEP.cl .K/; f // ¤ ; does not imply˝."/ ¤ ; for all " 2 int.C/.

Example 9.6 Let X D R, Y D R2, C D R
2C, and K D

�
0;



2

�
. Let f W X 	 X ! Y

be defined by

f .x; y/ D ��jx � tan yj;�jx2 � tan yj� :

Then 0 2 S.WVEP.cl .K/; f // but˝."/ D ; for each " > 0.
Kimura et al. [68] established several existence results for solutions of "-weak

vector equilibrium problems (in short, "-WVEP). First we derive that ˝."/ is
nonempty for " 2 int.C/ under suitable conditions.

Theorem 9.28 Let K be a nonempty subset of X such that cl .K/ is compact,
and f W X 	 X ! Y be C-lower semicontinuous on X 	 X. Assume that
S.WVEP.cl .K/; f //� WD fx 2 cl .K/ W f .x; y/ … � int.C/ for all y 2 cl .K/g ¤ ;.
Then "-WVEP has at least one solution for each " 2 int.C/.

Proof Let " 2 int.C/ and x 2 S.WVEP.cl .K/; f //�. Then by C-lower semiconti-
nuity of f , for each y 2 cl .K/, there are neighborhoods Uy of x and Vy of y such
that

f .u; v/ 2 . f .x; y/ � "/C int.C/; for all .u; v/ 2 Uy 	 Vy:
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Since
S

y2cl .K/
Vy � cl .K/ and cl .K/ is compact, we can choose yi 2 cl .K/, i D

1; 2; : : : ;m, such that
mS

iD1
Vyi � cl .K/. Then for U WD

mT

iD1
Uyi , we have

f .u; y/ 2
m[

iD1
.. f .x; yi/ � "/C int.C// ; for all u 2 U and y 2 cl .K/:

Hence,

f .u; y/C " 2
m[

iD1
. f .x; yi/C int.C// ; for all u 2 U and y 2 cl .K/:

Since x 2 S.WVEP.cl .K/; f //� and y1; y2; : : : ; ym 2 cl .K/, we have

. f .x; yi/C int.C// \ .� int.C// D ;; for all i D 1; 2; : : : ;m;

from which it follows that
 

m[

iD1
. f .x; yi/C int.C//

!

\ .� int.C// D ;:

Consequently,

f .u; y/C " … � int.C/; for all u 2 U and y 2 cl .K/:

Moreover,K\U ¤ ; because x 2 cl .K/. Let Nx 2 K\U . Then f .Nx; y/C" … � int.C/
for all y 2 cl .K/. In particular, Nx 2 ˝."/. Therefore, "-WVEP has at least one
solution. ut
Remark 9.10 Theorem 9.28 says that if K is a nonempty compact subset of X and
f W K 	 K ! Y is C-lower semicontinuous, then every solution of WVEP (9.1) is a
solution of "-WVEP (9.72) for each " 2 int.C/.

Example 9.7 Let f W R 	 R ! R2 be defined by

f .x; y/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�y

x
;�1

�
; if x � y > 0;

�
x

y
;�2

	

; if y > x > 0;

.x C y;�3/ ; if 0 > x C y;

.0;�4/ ; otherwise;

C D R
2C and K D .�1; 1/. Then 1 2 S.WVEP.cl .K/; f //�, that is,

S.WVEP.cl .K/; f //� ¤ ;, cl .K/ is compact, and f is C-lower semicontinuous
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on R	R. Thus, "-WVEP has at least one solution for each " > 0 by Theorem 9.28.

Actually, Nx D 1� "

2
is a solution of "-WVEP.

The following example shows that the assumption ‘cl .K/ is compact’ is essential
along with other assumptions in Theorem 9.28.

Example 9.8 Let f W R 	 R ! R2 be defined by f .x; y/ D .�1;�jx � yj/, K D
Œ�1; 1� and C D R2C. Then S.WVEP.cl .K/; f //� D ; and also for each " 2 .0; 1/,
˝."/ D ;.
Corollary 9.8 Let K be a nonempty subset of X such that cl .K/ is compact,
and f W X 	 X ! Y be C-lower semicontinuous on X 	 X such that for
some x 2 S.WVEP.cl.K/; f //, f .x; �/ is C-upper semicontinuous on bd .K/, where
S.WVEP.cl .K/; f // WD fx 2 cl .K/ W f .x; y/ … � int.C/ for all y 2 Kg ¤ ;. Then
"-WVEP has at least one solution for each " 2 int.C/.

Proof Let Nx 2 S.WVEP.cl.K/; f // such that f .Nx; �/ is C-upper semicontinuous on
bd .K/. Then Nx 2 cl .K/ and

f .Nx; y/ … � int.C/; for all y 2 K: (9.76)

We want to show that Nx 2 S.WVEP.cl .K/; f //�. Suppose to the contrary that there
exists Oy 2 bd .K/ such that

f .Nx; Oy/ 2 � int.C/:

By C-upper semicontinuity of f .Nx; �/ at Oy 2 bd .K/, there exists a neighborhood V
of Oy such that

f .Nx; v/ 2
�
f .Nx; Oy/
2

� int.C/

	

; for all v 2 V :

Since Oy 2 bd .K/, V \ K ¤ ;. Therefore, there exists y0 2 V \ K ¤ ; such that

f .Nx; y0/ 2
�
f .Nx; Oy/
2

� int.C/

	

� � int.C/:

This contradicts to (9.76). Hence,

f .Nx; y/ … � int.C/; for all y 2 bd .K/;

that is,

f .Nx; y/ … � int.C/; for all y 2 cl .K/:

Therefore, Nx 2 S.WVEP.cl.K/; f //�, that is, S.WVEP.cl.K/; f //� ¤ ;. The result
follows from Theorem 9.28. ut
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Theorem 9.29 Let K be a nonempty subset of X such that cl .K/ is compact convex,
and f W X	X ! Y be C-lower semicontinuous on X	X such that f .x; x/ … � int.C/
for all x 2 X. Assume that the following conditions hold:

(i) f .x; �/ is C-quasiconvex on X for each x 2 X;
(ii) f .�; y/ is C-upper semicontinuous on X for each y 2 X.

Then "-WVEP has at least one solution, that is, ˝."/ is nonempty for each " 2
int.C/.

Proof For each y 2 cl .K/, let

G.y/ WD fx 2 cl .K/ W f .x; y/ … � int.C/g:

First, we show that G.y/ is a KKM-map. Suppose to the contrary that there exist
�i 2 Œ0; 1�, xi 2 cl .K/, for i D 1; 2; : : : ;m, such that

mX

iD1
�ixi DW x …

m[

iD1
G.xi/:

Then,

f .x; xi/ 2 � int.C/; for all i D 1; 2; : : : ;m:

Moreover, x 2 cl .K/ because of the convexity of cl .K/. Hence, by C-
quasiconvexity of f .x; �/, we have

f .x; x/ D f

 

x;
mX

iD1
�ixi

!

2 � int.C/;

which contradicts to the fact that f .x; x/ … � int.C/ for all x 2 X.
By C-upper semicontinuity of f on X and Proposition 2.22, A WD fy 2 X W

f .x; y/ 2 � int.C/g is an open subset of X. Then G.y/ D cl .K/ \ .Ac/ is a closed
subset of X. Therefore,G.y/ is closed for each y 2 K. Since cl .K/ is compact, G.y/
is compact for each y 2 K. Thus, by Fan-KKM Lemma 1.14, we have

S.WVEP.cl.K/; f //� D
\

y2K
G.y/ ¤ ;:

Therefore, by Theorem 9.28, "-WVEP has at least one solution. ut
Remark 9.11 Theorem 9.29 is the only one of the variations of Theorem9.28. Using
various existence results for VEP, we may obtain conditions of nonemptiness of
S.VEP.cl.K/; f //�. Then we can easily derive some existence results for "-WVEP.
If we assume closedness of C, we may utilize existence results for WVEP presented
in Sect. 9.1.
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Next result shows that the nonemptiness of the set of solutions of "-WVEP
implies the nonemptiness of the set of solutions of WVEP under mild conditions.

Theorem 9.30 Let K be a nonempty subset of X such that cl .K/ is compact.
Assume that the following conditions hold.

(i) f .�; y/ is C-upper semicontinuous on X for all y 2 X;
(ii) ˝."/ ¤ ; for all " 2 int.C/.

Then the solution set S.WVEP.K; f // of WVEP is nonempty.

Proof Let f"�g � int.C/, "� ! 0 and x� 2 ˝."�/. Then by compactness of cl .K/,
we assume, without loss of generality, that x� ! x and x 2 cl .K/. Suppose to
the contrary that f .x; y/ 2 � int.C/ for some y 2 K. Then by condition (i) (see
Proposition 2.25), there is a �0 such that for all � � �0

f .x�; y/ 2 f .x; y/ � " � int.C/;

that is, f .x�; y/C " 2 � int.C/. This contradicts to the fact that x� 2 ˝."�/. Hence,
f .x; y/ … � int.C/ for all y 2 K and thus x 2 S.WVEP.K; f //. ut

We now show that the solution mapping˝ of "-WVEP is upper semicontinuous
on int.C/ under some suitable conditions.

Theorem 9.31 Let K be a nonempty compact subset of X and f W K 	 K ! Y be
a vector-valued function such that f .�; y/ is C-upper semicontinuous on K for all
y 2 K. If˝."/ is nonempty for each " 2 int.C/, then˝ is upper semicontinuous on
int.C/.

Proof Let "� ! " and x� 2 ˝."�/. Since K is compact, we may assume, without
loss of generality, that x� ! x 2 K. Suppose to the contrary that x … ˝."/. Then
there exists y 2 K such that f .x; y/C " 2 � int.C/. Since Y is a topological vector
space, there exists a neighborhoodU of 0 such that

f .x; y/C "C U C U � � int.C/:

Then

f .x; y/C "C U C U � int.C/ � .� int.C/ � int.C// � � int.C/:

Since "� ! ", x� ! x and ˝."/ is nonempty for each " 2 int.C/, there exists a O�
such that for every � � O�,

f .x�; y/C "� 2 � int.C/:

This contradicts to the fact that x� 2 ˝."�/. Hence, x 2 ˝."/. Therefore, by
Lemma 1.9,˝."/ is upper semicontinuous on int.C/. ut

From Theorems 9.29 and 9.31, we can easily obtain the following corollary.
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Corollary 9.9 Let K be nonempty compact convex subset of X and f W K 	 K ! Y
be C-lower semicontinuous such that f .x; x/ … � int.C/ for all x 2 K. Assume that
the following conditions hold:

(i) f .x; �/ is C-quasiconvex for each x 2 K;
(ii) f .�; y/ is C-upper semicontinuous for each y 2 K;

Then˝ is upper semicontinuous on int.C/ [ f0g.
We now establish that the solution mapping˝ of "-WVEP is lower semicontin-

uous on int.C/ under suitable assumptions.

Theorem 9.32 Let K be a nonempty compact convex subset of X and f W K	K ! Y
satisfy the following conditions:

(i) f .x; �/ is C-lower semicontinuous for each x 2 K;
(ii) f .�; y/ is strictly C-quasiconcave for each y 2 K;
(iii) ˝."/ is nonempty for each " 2 int.C/.

Then˝ is lower semicontinuous on int.C/.

Proof Let " 2 int.C/. Let V be an open subset of X with V \˝."/ ¤ ;. Suppose
that x 2 V \˝."/ and that Ox 2 ˝.˛ � "/, where ˛ 2 �0; 1Œ. We choose x0 2 �x; OxŒ\V .
Obviously, Ox 2 ˝."/. From condition (ii), we have

f .x0; v/ … �" � cl .C/; for all v 2 X:

Since �" � cl .C/ is a closed set, for each v 2 X, there exists a positive number
tv > 0 such that

f .x0; v/ � tv � " … �" � cl .C/:

Since K is compact, from condition (i) and by Lemma 2.12, we obtain the C-
compactness of

S
v2X f .x0; v/. Clearly, f .x0; v/� tv � "C int.C/ is a neighborhood of

f .x0; v/ and
[

v2X

˚
f .x0; v/ � tv � "C int.C/

� �
[

v2X
f .x0; v/:

Hence, there exist v1; v2; : : : ; vm 2 K such that

m[

iD1

˚
f .x0; vi/� tvi � "C int.C/

� �
[

v2X
f .x0; v/: (9.77)

Since f .x0; vi/ � tvi � " … �" � cl .C/, i D 1; 2; : : : ;m, there exist corresponding
numbers t1; t2; : : : ; tm 2 �0; 1Œ such that

f .x0; vi/� .tvi C ti/ � " … �" � cl .C/; for all i D 1; 2; : : : ;m:
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Let � D minft1; t1; : : : ; tmg. Then by Proposition 2.9,
 

m[

iD1
f .x0; vi/� .tvi C �/ � "

!
\�

� " � cl .C/
�

D ;:

From (9.77), we have

f .x0; v/ � � � " 2
 

m[

iD1
f .x0; vi/� .tvi C �/ � "

!

; for all v 2 X:

Accordingly,

f .x0; v/ � � � " … �" � int.C/; for all v 2 X;

that is,

x0 2 ˝..1 � �/ � "/:

Therefore, x0 2 ˝."0/ for all "0 2 .1��/"Cint.C/. Thus,˝ is lower semicontinuous
on int.C/. ut
Theorem 9.33 Let K be a nonempty compact convex subset of X and f W K	K ! Y
satisfy the following conditions:

(i) f .x; �/ is C-lower semicontinuous for all x 2 K;
(ii) f .�; y/ is strictly .�C/-properly quasiconvex for all y 2 K;
(iii) ˝."/ is nonempty for each " 2 int.C/.

Then˝ is lower semicontinuous on int.C/.

Proof Let O" 2 int.C/ be arbitrary but fixed and V be an open set with V\˝.O"/ ¤ ;.
Let Ox 2 V \˝.O"/. Then we show that there exist Nx 2 V and � > 0 such that for all
" 2 .1 � �/O"C int.C/, we have

f .Nx; y/C " … � int.C/; for all y 2 K:

We note that .1 � �/O"C int.C/ is a neighborhood of O".
First we select Nx 2 V in the following way. Let ˛ 2 �0; 1Œ, x0 2 ˝.˛ O"/ and

Nx 2 V \ fx 2 K W x D �Ox C .1 � �/x0; 0 < � < 1g :

Next we find corresponding � 2 �0; 1 � ˛Œ. Because of the way in selecting Nx, we
have

f .Nx; y/ 2 f .Ox; y/C int.C/;
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or

f .Nx; y/ 2 f .x0; y/C int.C/:

Let K0 WD fy 2 K W f .Nx; y/ … f .x0; y/C int.C/g. By condition (i) and Proposi-
tion 2.22, A WD fy 2 K W f .Nx; y/ 2 f .x0; y/ C int.C/g is an open subset of X.
Then Ac D fy 2 K W f .Nx; y/ … f .x0; y/ C int.C/g is a closed subset of K. Hence
K0 D .K \ Ac/ is a closed set, that is, compact set. From Proposition 2.11, we
have f .Nx; v/ 2 f .Ox; v/ C int.C/ for all v 2 K0. Thus, for each v 2 K0, there exists
�v 2 �0; 1 � ˛Œ such that

f .Nx; v/ 2 f .Ox; v/C �v � O"C int.C/:

Hence,

MNx � MOx C
[

v2K0

.�v � O"C int.C//;

where MNx and MOx denote
S

v2K0

f f .Nx; v/g and
S

v2K0

f f .Ox; v/g, respectively. From

compactness of K0 and condition (i),MNx is C-compact by Lemma 2.12. In addition,

[

v2K0

f�v � O"C int.C/g D
[

v2K0

f�v � O"g C int.C/ D
[

v2K0

f�v � O"g C int.C/C int.C/;

and MOx CS
v2K0 .�v � O"C int.C// is an open covering of MNx. So we can choose a

finite subset f�v1; �v2 ; : : : ; �vmg � f�v W v 2 K0g such that

MNx � MOx C
m[

iD1
.�vi � O"C int.C// :

Putting � D minf�v1; �v2 ; : : : ; �vmg, we have

MNx � MOx C � � O"C int.C/:

Hence,

MNx � � � O" � MOx C int.C/: (9.78)

Since Ox 2 ˝.O"/, we have
�
MOx C O"

�
\ .� int.C// D ;:
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Hence, by Proposition 2.9,

�
MOx C O"C int.C/

�
\ .� int.C// D ;:

Therefore, by (9.78), we obtain

�
MNx C .1 � �/O"�\ .� int.C// D ;:

On the other hand for each v 2 .K n K0/, we have

f .Nx; v/ 2 f .x0; v/C int.C/:

Since x0 2 ˝.˛ O"/, we get

f .Nx; v/C ˛ O" … � int.C/:

Also, since ˛ < .1 � �/, we have
0

@
[

v2.KnK0/

f f .Nx; v/C .1 � �/O"g
1

A \ � int.C/ D ;;

from which it follows that
 
[

v2K
f f .Nx; v/C .1 � �/O"g

!

\ � int.C/ D ;:

Let U D .1 � �/O"C int.C/. Then U is an open set containing O". For every " 2 U ,
[

v2K
f f .Nx; v/C .1 � �/O"g C int.C/ �

[

v2K
f f .Nx; v/C "g:

Therefore by Proposition 2.9, we obtain

 
[

v2K
f f .Nx; v/C "g

!

\ � int.C/ D ;;

from which it follows that f .Nx; v/C " … � int.C/ for all v 2 K, that is, Nx 2 ˝."/ for
all " 2 U . Hence,˝ is lower semicontinuous at O". Since O" was arbitrary,˝ is lower
semicontinuous on int.C/. ut

We remark that from the proof of Theorem 9.33, one can see that the condition
(ii) in Theorem 9.33 can be replaced by the condition that ˝."/ 6D ; for some net
f"�g � int.C/ such that "� ! 0.

From Theorems 9.29 and 9.33, we obtain the following result.
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Corollary 9.10 Let K be a nonempty compact convex subset of X and f W K 	K !
Y be C-lower semicontinuous such that f .x; x/ … � int.C/ for all x 2 K. Assume
that the following conditions hold:

(i) f .x; �/ is C-quasiconvex for all x 2 K;
(ii) f .�; y/ is strictly .�C/-properly quasiconvex for all y 2 K;
(iii) f .�; y/ is C-upper semicontinuous for all y 2 K

Then˝ is continuous on int.C/.
From Theorems 9.31 and 9.33, we have the following corollary.

Corollary 9.11 Let K be a nonempty compact convex subset of X and f W K 	K !
Y be C-lower semicontinuous such that the following conditions hold:

(i) f .�; y/ is C-upper semicontinuous for all y 2 K;
(ii) f .�; y/ is strictly .�C/-properly quasiconvex for all y 2 K;
(iii) ˝."/ is nonempty for each " 2 int.C/.

Then˝ is continuous on int.C/.

9.6.2 Parametric Weak Vector Equilibrium Problems

In this subsection, we consider the parametric weak vector equilibrium problems (in
short, PWVEPs) which are more general than "-weak vector equilibrium problems
studied in the previous subsection. We focus on the stability properties, such
as upper semicontinuity and lower semicontinuity of the solution mappings for
PWVEPs. Bianchi and Pini [22] studied upper hemicontinuity of the solution
mapping for PWVEPs. They also studied Hölder continuity of the solution mapping
for PWVEPs when the underlying bifunction satisfies some strong monotonicity
assumption. Kimura and Yao [67] established some existence results for solutions
of PWVEPs by using well-known Fan-KKM lemma. They also studied the upper
semicontinuity and lower semicontinuity of the solution map of the PWVEPs.
Gong [54] also studied sufficient conditions for the upper semicontinuity and
lower semicontinuity of the solution map of the PWVEPs. Xu and Li [99] used
scalarization method to study the lower semicontinuity of the solution map for
parametric vector equilibrium problems (in short, PVEPs) However, Salamon and
Bogdan [86, 87, 89] gave some sufficient conditions for closedness of the solution
map of the PWVEPs and the solution map of the PVEPs. Zhang et al. [103]
further studied lower semicontinuity of the solution map for PVEPs. Huang et
al. [62] considered a more general form of PWVEP, called parametric implicit
weak vector equilibrium problem, and established some sufficient conditions for
the upper semicontinuity and lower semicontinuity of the solution map of their
problem. Li and Li [75] obtained an explicit expression of the contingent derivative
of the solution map for the PWVEPs. By using a nonlinear scalarization function,
Chen and Li [35] studied the Hölder continuity of the solution map. Fan et al. [44]
perturbed bifunction involved in the formulation of PWVEP and gave sufficient
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conditions for lower / upper semicontinuity and Hölder continuity of the solution
map for the PWVEP. Most of the results presented in this subsection are taken from
[67].

Let K be a nonempty subset of a Hausdorff topological vector space X and Y
be a topological vector space with a solid pointed convex cone C � Y. Let �
and 	 be two (index sets) nonempty subsets of two Hausdorff topological spaces,
respectively. Let f W � 	K	K ! Y be a parameterized vector-valued trifunction and
A W 	 ! 2K nf;g be a constraint mapping. The parametric weak vector equilibrium
problem (in short, PWVEP) is defined as follows: For given p 2 � and � 2 	, find
Nx 2 A.�/ such that

f . p; Nx; y/ … � int.C/; for all y 2 A.�/: (9.79)

The solution mapping ˝ of PWVEP is a set-valued map from � 	 	 to 2K

defined by

˝. p; �/ D fx 2 A.�/ W f . p; x; y/ … � int.C/ for all y 2 A.�/g : (9.80)

When A is a constant mapping, say A.�/ D K for all � 2 	, then we have the
following form of PWVEP, and it is denoted by WVEPp. For given p 2 � , find
Nx 2 K such that

f . p; Nx; y/ … � int.C/; for all y 2 K: (9.81)

If A is a constant mapping, say A.�/ D K for all � 2 	, and f . p; x; y/ D g.x; y/
for all p 2 � , x; y 2 K, where g W K 	 K ! Y is a vector-valued bifunction, then
PWVEP reduces WVEP studied in Sect. 9.1. In addition, if f . p; x; y/ D g.x; y/C "

for all p 2 � , x; y 2 K, and for any given " 2 int.C/, then PWVEP becomes the
"-WVEP which is defined as follows: For a given " 2 int.C/, find Nx 2 K such that

g.Nx; y/C " … � int.C/; for all y 2 K:

The solution map for "-WVEP involving g W K 	 K ! Y is defined by

S."/ D fx 2 K W g.x; y/C " … � int.C/ for all y 2 Kg: (9.82)

Throughout this subsection, unless otherwise specified, K, X, Y, C, � and	 are
the same as above, and further we assume that A W 	 ! 2K n f;g is a constraint
mapping and f W � 	K 	K ! Y be a parameterized vector-valued trifunction such
that f . p; x; x/ … � int.C/ for all p 2 � and x 2 K.

We establish some existence results for solutions of PWVEP.

Theorem 9.34 Let

(i) A.�/ be closed and convex for all � 2 	,
(ii) fx 2 A.�/ W f . p; x; y/ 2 � int.C/g be open for all y 2 A.�/,
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(iii) fy 2 A.�/ W f . p; x; y/ 2 � int.C/g be convex for all y 2 A.�/,
(iv) for each � 2 	, there exist a compact set B� � K and Oy 2 A.�/\B� such that

f . p; x; Oy/ 2 � int.C/ for all x 2 A.�/ n B�.

Then PWVEP has at least one solution for each p 2 � and � 2 	.
Proof Let G W A.�/ ! 2A.�/ be defined by

G.y/ WD fx 2 A.�/ W f . p; x; y/ … � int.C/g; for all y 2 A.�/;

where p 2 � and � 2 	 are fixed. Since f . p; x; x/ … � int.C/, G.y/ is nonempty
for all y 2 A.�/. Condition (ii) implies that G.y/ is closed for each y 2 A.�/.

By condition (iv) and closedness of G.y/ for each y 2 A.�/, for corresponding
Oy 2 A.�/\ B�, G.Oy/ is compact.

Finally, we show that G is a KKM-map. Suppose to the contrary that there exists
�i 2 Œ0; 1�, xi 2 A.�/, i D 1; 2; : : : ;m, such that

mX

iD1
�ixi DW x …

m[

iD1
G.xi/:

Since xi 2 A.�/, i D 1; 2; : : : ;m, by the convexity of A.�/, we have x 2 A.�/.
Hence, f . p; x; xi/ 2 � int.C/, i D 1; 2; : : : ;m. This implies that

f

 

p; x;
mX

iD1
�ixi

!

D f . p; x; x/ 2 � int.C/;

because of condition (iii). This contradicts the fact that f . p; x; x/ … � int.C/ for all
p 2 � .

By applying Fan-KKM Lemma 1.14, we get

˝. p; �/ D
\

y2A.�/
G.y/ ¤ ;;

for each p 2 � and � 2 	. ut
The following result is an easy consequence of Theorem 9.34.

Corollary 9.12 Let K be a nonempty compact subset of a Hausdorff topological
vector space X, and let

(i) A.�/ be compact convex for all � 2 	;
(ii) f . p; �; y/ be C-upper semicontinuous on A.�/ for all p 2 �; y 2 A.�/;
(iii) f . p; x; �/ be C-quasiconvex on A.�/ for all p 2 �; x 2 A.�/.

Then PWVEP has at least one solution for each p 2 � and � 2 	.
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Theorem 9.35 Let

(i) cl .A.�// be compact and convex for all � 2 	,
(ii) f . p; �; y/ be C-upper semicontinuous on cl .A.�// for all p 2 � and y 2

cl .A.�//,
(iii) f . p; x; �/ be C-quasiconvex on cl .A.�// for all p 2 � and x 2 cl .A.�//,
(iv) f . p; �; �/ be C-lower semicontinuous on X 	 X for all p 2 � ,
(v) for some Op 2 � and � 0 � � , f . p; x; y/ 2 f . Op; x; y/ C int.C/ for all p 2 � 0

and .x; y/ 2 K 	 K.

Then PWVEP (9.79) has at least one solution for each p 2 � 0 and � 2 	.
Proof For Op 2 � of condition (v) and each fixed � 2 	, let G W A.�/ ! 2A.�/ be
defined by

G.y/ WD fx 2 cl .A.�// W f .Op; x; y/ … � int.C/g; for each y 2 A.�/:

Then by Corollary 9.12,

S D
\

y2cl .A.�//
G.y/ ¤ ;; for each � 2 	:

Let p 2 � 0, � 2 	 and x 2 S. Then by condition (v), f . p; x; y/ … �cl .C/ for all
y 2 cl .A.�//. Since .�cl .C//c is a neighborhood of f . p; x; y/ for all y 2 cl .A.�//
and .�cl .C//c C C D .�cl .C//c, by condition (iv), for each y 2 cl .A.�//, there is
a neighborhood U.x;y/ of .x; y/ such that

f . p; u; v/ 2 .�cl .C//c; for all .u; v/ 2 U.x;y/:

Let U.x;y/ D Wy 	 Vy, where Wy and Vy denote neighborhoods of x and y, respec-
tively. Since cl .A.�// is compact, we can choose a finite subset fy1; y2; : : : ; ymg of
cl .A.�// such that

m[

iD1
Vyi � cl .A.�//:

LetW D
mT

iD1
Wyi . Then for any w 2 W , we have

f . p;w; y/ 2 .�cl .C//c; for all y 2 cl .A.�//:

Hence,

f . p;w; y/ … � int.C/; for all y 2 cl .A.�//:
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Since W is a neighborhood of x and x 2 cl .A.�//, W \ A.�/ ¤ ;. Thus, for all
x0 2 W \ A.�/

f . p; x0; y/ … � int.C/; for all y 2 cl .A.�//:

Therefore,

f . p; x0; y/ … � int.C/; for all y 2 A.�/:

Consequently, x0 2 ˝. p; �/, that is, ˝. p; �/ ¤ ;. ut
Example 9.9 Let f W � 	 K 	 K ! Y, where � , K, Y are R. Let � 0 and 	 be
RCC D ft 2 R W t > 0g, Op D 0 and A.�/ D fx 2 Q W 0 < x < 2C �g and C D RC.
Let

f . p; x; y/ D .y2 � 2/2 � .x2 � 2/2 C p:

Then PWVEP (9.79) has at least one solution for each p 2 � 0 and � 2 	.
Corollary 9.13 Let K be a nonempty subset of a Hausdorff topological vector
space X such that cl .K/ is compact and convex. Let g W X 	 X ! Y be C-lower
semicontinuous on X 	 X such that the following conditions hold.

(i) g.x; x/ D 0 for all x 2 X.;
(ii) g.x; �/ is C-quasiconvex on X for all x 2 X;
(iii) g.�; y/ is C-upper semicontinuous on X for all y 2 X.

Then "-WVEP (9.72) has at least one solution for each " 2 int.C/.

Proof Putting, � D f0g [ int.C/, � 0 D int.C/, 	 D f0g, A.�/ D K, f . p; x; y/ D
g.x; y/C p, p 2 int.C/, and Op D 0 in Theorem 9.35, we get the conclusion. ut

We now investigate conditions under which the solution mapping of PWVEP
is upper semicontinuous. From Lemma 1.10, we establish the following upper
semicontinuity property of the solution mapping˝ for PWVEP.

Theorem 9.36 Let � and 	 be nonempty closed subsets of two Hausdorff spaces,
respectively. Assume that

(i) A is continuous and compact-valued,
(ii) f is C-upper semicontinuous on � 	 K 	 K,
(iii) ˝. p; �/ ¤ ; for each p 2 � and � 2 	.
Then˝ is upper semicontinuous on � 		.
Proof Let p 2 � and � 2 	. By condition (ii), ˝. p; �/ is closed for all . p; �/ 2
� 	 	. By condition (i), A.�/ is compact for each � 2 	. Hence, ˝. p; �/ is
compact. We can apply Lemma 1.10. Let . p�; �˛/ ! . p; �/ and x˛ 2 ˝. p�; �˛/,
then for each ˛

f . p˛; x˛; y˛/ … � int.C/; for all y˛ 2 A.�˛/: (9.83)
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Since A is upper semicontinuous, without loss of generality , we can assume x˛ ! x
for some x 2 A.�/.

Suppose to the contrary that x … ˝. p; �/. Then there exists y 2 A.�/ such that

f . p; x; y/ 2 � int.C/:

By condition (ii), there exists a neighborhood U of . p; x; y/ such that

f . p0; x0; y0/ 2 � int.C/; for all . p0; x0; y0/ 2 U:

Let U WD P 	 X 	 Y. Since A is continuous and so lower semicontinuous, and
y 2 Y \ A.�/, that is, Y \ A.�/ ¤ ;, there exists L which is a neighborhood of �
such that

Y \ A.�0/ ¤ ;; for all �0 2 L:

Since . p˛; �˛; x˛/ ! . p; �; x/, there exists ˛0 such that

. p˛; �˛; x˛/ 2 P 	 L 	 X; for all ˛ � ˛0:

Hence, for each ˛ � ˛0, there exists y˛ 2 Y \ A.�˛/ such that

f . p˛; x˛; y˛/ 2 � int.C/:

This contradicts to (9.83). Hence x 2 ˝. p; �/. Thus,˝ is upper semicontinuous at
. p; �/. Since . p; �/ 2 � 		 was arbitrary,˝ is upper semicontinuous on � 		.

ut
For fixed � 2 	, we have the following result.

Corollary 9.14 Assume that

(i) A.�/ be compact for all � 2 	,
(ii) f .�; �; y/ be C-upper semicontinuous on � 	 K for all y 2 A.�/;
(iii) ˝. p; �/ ¤ ; for all p 2 � and � 2 	.
Then˝.�; �/ is upper semicontinuous on � for each fixed � 2 	.
Corollary 9.15 Let K be a nonempty compact subset of a Hausdorff topological
vector space X, � be a topological space, f W � 	 K 	 K ! Y be a vector-valued
bifunction such that f . p; x; x/ … � int.C/ for all p 2 � and x 2 K, and˝ W � ! 2K

be a set-valued map defined by

˝. p/ D fx 2 K W f . p; x; y/ … � int.C/; for all y 2 Kg:

Assume that the following conditions hold.

(i) f .�; �; y/ is C-upper semicontinuous on � 	 K for all y 2 K;
(ii) ˝. p/ ¤ ; for each p 2 � .

Then˝ is upper semicontinuous on � .
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Now we investigate conditions under which the solution map of PWVEP (9.79)
is lower semicontinuous.

Theorem 9.37 Assume that

(i) A is continuous at �0 and A.�0/ is compact convex;
(ii) f is C-lower semicontinuous on P	K 	K for a certain neighborhood P of p0;
(iii) f . p0; �; y/ is strictly .�C/-properly quasiconvex on K for fixed p0 2 � and

each y 2 X;
(iv) for fixed p0 2 � and �0 2 	,˝. p0; �0/ contains at least two points.

Then˝ is lower semicontinuous at . p0; �0/.

Proof Let V � X such that V\˝. p0; �0/ ¤ ;. Then there exists x 2 V\˝. p0; �0/.
Since ˝. p0; �0/ has at least two elements, we can choose Nx 2 ˝. p0; �0/ n fxg.
Because of the convexity of A.�0/ and condition (iii), ˝. p0; �0/ is convex. Then
there is an � 2 �0; 1Œ such that x0 WD .1 � �/x C �Nx belongs to V . From condition
(iii), for each y 2 A.�0/,

f . p0; x
0; y/ 2 f . p0; x; y/C int.C/;

or

f . p0; x
0; y/ 2 f . p0; Nx; y/C int.C/:

Thus by Proposition 2.10, we have

f . p0; x
0; y/ … �cl .C/; for all y 2 A.�/;

because fx; Nxg � ˝. p0; �0/. Hence for each y 2 A.�0/, there exists a neighborhood
Wy of f . p0; x0; y/ such that Wy \ .�cl .C// D ;. By condition (ii), for each y 2
A.�0/, there exists a neighborhood U of . p0; x0; y/ such that

f . Qp; Qx0; Qy/ 2 Wy C C; for all . Qp; Qx0; Qy/ 2 U:

Let U WD Py 	 Xy 	 Yy where Py, Xy and Yy are neighborhoods of p0, x0 and y,
respectively. Since

S

y2A.�0/
Yy � A.�0/ and A.�0/ is compact, then there is a finite

subset fy1; y2; : : : ; ymg � A.�0/ such that

m[

iD1
Yyi � A.�0/:

Let P WD
mT

iD1
Pyi , Q WD

mT

iD1
Xyi and Y WD Sm

iD1 Yyi . Then for each Qp 2 P and

Qx0 2 Q

f . Qp; Qx0; Qy/ 2
m[

iD1
.Wyi C C/; for all Qy 2 Y:
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Now
mS

iD1
Wyi \ .�cl .C// D ;, that is,

mS

iD1
Wyi � .�cl .C//c. Therefore, by

Proposition 2.10, we have

m[

iD1
.Wyi C C/ D

m[

iD1
Wyi C C � .�cl .C//c:

Hence, for each Qp 2 P and Qx0 2 Q

f . Qp; Qx0; Qy/ … � int.C/; for all Qy 2 Y: (9.84)

SinceY � A.�0/ is an open neighborhood of A.�0/ and A is upper semicontinuous
at �0, there is a neighborhoodL1 of �0 such that

A.�0/ � Y for all �0 2 L1:

Since both of V andQ are neighborhoods of x0, V \Q ¤ ;. Let NV WD V \Q. Since
x0 2 NV \ A.�0/, NV \ A.�0/ ¤ ;. As A is lower semicontinuous at �0, there is a
neighborhoodL2 of � such that

A.�00/\ NV ¤ ;; for all �00 2 L2:

Let L WD L1\L2. Then A. Q�/ � Y for all Q� 2 L andQ � NV\A. Q�/ ¤ ;. Therefore,
from (9.84), we have that for each . Qp; Q�/ 2 P 	 L which is an open set containing
. p0; �0/, there is x� 2 A. Q�/\ NV such that

f . Qp; x�; u/ … � int.C/; for all u 2 A. Q�/;

that is, x� 2 ˝. Qp; Q�/ \ V ¤ ;. Hence,˝ is lower semicontinuous at . p0; �0/. ut
Corollary 9.16 Assume that

(i) A is continuous and convex-valued;
(ii) f is C-lower semicontinuous on � 	 K 	 K;
(iii) f . p; �; y/ is strictly .�C/-properly quasiconvex on K for all p 2 � and y 2 K;
(iv) ˝. p; �/ contains at least two points for each p 2 � and � 2 	.
Then˝ is lower semicontinuous on � 		.
Remark 9.12 The lower semicontinuity of the solution map˝ cannot be guaranteed
if f is real-valued continuous and A is constant (see [50, p.151]). Stronger condition
is needed, for example,˝ is single-valued or conditions (iii) and (iv) hold.

Example 9.10 Let X D R2, � D Œ�1; 2�, 	 D f0g, A.0/ D K D f.x1; x2/ W
x1 C x2 D 1; x1 � 0; x2 � 0g, C D RC. Let f W � 	 X 	 X ! R be defined by

f . p; x; y/ D .�.1C p/y1 � y2/ � .�.1C p/x1 � x2/ :
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Then A is constant, f is continuous on � 	 X 	 X and

˝. p; 0/ D
8
<

:

f.0; 1/g; if p 2 Œ�1; 0/;
K; if p D 0;

f.1; 0/g; if p 2 .0; 2�:

It is easy to see that˝ is not lower semicontinuous at .0; 0/.
In the following result we do not assume that ˝. p; �/ contains at least two

points.

Theorem 9.38 Let

(i) A be continuous and A.�/ be convex for all � 2 	,
(ii) f be C-lower semicontinuous on � 	 K 	 K,
(iii) f . p; �; y/ be strictly .�C/-properly quasiconvex on K for all p 2 � and y 2 K;
(iv) there exist � 0 � � and Op 2 � such that for any p 2 � 0,

f . p; x; y/ 2 f . Op; x; y/C int.C/; for all x; y 2 K;

(v) ˝. p; �/ ¤ ; for each p 2 � and � 2 	.
Then˝ is lower semicontinuous on � 0 		.
Proof Let p 2 � 0, � 2 	, and V be an open set satisfying V \ ˝. p; �/ ¤ ;. Let
x 2 V \˝. p; �/. Then by condition (iv), there exists Np 2 � such that

f . p; x; y/ 2 f . Op; x; y/C int.C/; for all x; y 2 K:

Suppose that Nx 2 ˝. Op; �/ which is nonempty by condition (iv) and that x0 2 V \
fu 2 A.�/ W u D �x C .1 � �/Nx; 0 < ˛ < 1g. By condition (iv), Nx 2 ˝. p; �/.
Because of the way in selecting x0, by condition (iii), we have

f . p; x0; y/ 2 f . p; x; y/C int.C/;

or

f . p; x0; y/ 2 f . Op; x; y/C int.C/:

Therefore, f . p; x0; y/ … �cl .C/ for all y 2 A.�/. Then for each y 2 A.�/, there
exists a neighborhoodWy of f . p; x0; y/ such thatWy \ .�cl .C// D ;. By condition
(ii), for each y 2 A.�/, there exists a neighborhood Uy of . p; x0; y/ such that

f . Qp; Qx0; Qy/ 2 Wy C C; for all . Qp; Qx0; Qy/ 2 Uy:

Let Uy WD Py 	 Xy 	 Yy, where Py;Xy and Yy are neighborhoods of p; x0 and y,
respectively. Since A.�/ is compact, there exists a finite subset fy1; y2; : : : ; ymg of
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A.�/ such that
mS

iD1
Yyi � A.�/. Let P D

mT

iD1
Pyi , Q D

�
mT

iD1
Xyi

	

\ V and Y D
mS

iD1
Yyi . Then for each . Qp; Qx; Qy/ 2 P 	 Q 	 Y

f . Qp; Qx; Qy/ … � int.C/:

In addition,Y is a neighborhood of A.�/ andQ is an open set with Q \ A.�/ ¤ ;.
Since A is continuous, by the same argument as that in the proof of Theorem 9.37
we can show that there is a neighborhoodL of � such that

A. Q�/ � Y and A. Q�/ \ Q ¤ ;; for all Q� 2 L:

Hence, for each . Qp; Q�/ 2 P 	 L which is an open set containing . p; �/, there exists
Nx 2 Q \ A. Q�/ such that

f . Qp; Nx; Qy/ … � int.C/; for all Qy 2 A. Q�/;

that is, Qx 2 ˝. Qp; Q�/ \ V ¤ ;. Hence, ˝ is lower semicontinuous at . p; �/. Since
. p; �/ was arbitrary,˝ is lower semicontinuous on � 0 		. ut

By using similar argument as in the proof of Theorem 9.37, we can prove the
following result.

Theorem 9.39 Assume that

(i) A.�/ is compact and convex for all � 2 	;
(ii) f .�; x; �/ is C-lower semicontinuous on � 	 K for all x 2 K;
(iii) f . p; �; y/ is strictly .�C/-properly quasiconvex on K for all p 2 � and y 2 K;
(iv) ˝. p; �/ contains at least two points for each p 2 � and � 2 	.
Then˝.�; �/ is lower semicontinuous on � for each � 2 	.

By the same argument as that in the proof of Theorem 9.38, we can prove the
following result.

Theorem 9.40 Assume that

(i) A.�/ is compact and convex for all � 2 	;
(ii) f .�; x; �/ is C-lower semicontinuous on � 	 K for all x 2 K;
(iii) f . p; �; y/ is strictly .�C/-properly quasiconvex on K for all p 2 � and y 2 K;
(iv) there exist � 0 � � and Op 2 � such that for any p 2 � ,

f . p; x; y/ 2 f . Op; x; y/C int.C/; for all x; y 2 KI

(v) ˝. p; �/ ¤ ; for each p 2 � and � 2 	.
Then˝.�; �/ is lower semicontinuous on � 0 for each � 2 	.
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By combining results for upper semicontinuous and lower semicontinuous cases,
we can derive the following results concerning the continuity of the solution map of
PWVEP.

Theorem 9.41 Assume that

(i) A is continuous and A.�/ is compact and convex for all �;
(ii) f is C-lower semicontinuous and C-upper semicontinuous on � 	 K 	 K;
(iii) f . p; �; y/ is strictly .�C/-properly quasiconvex on K for all p 2 � and y 2 K;
(iv) ˝. p; �/ ¤ ; for each p 2 � and � 2 	.
Then˝ is continuous on � 		.
Proof By Theorem 9.36, ˝ is upper continuous on � 	 	. Let p 2 � and � 2
	. If ˝. p; �/ is a singleton, then ˝ is continuous at . p; �/ because ˝ is upper
semicontinuous on � 		. If˝. p; �/ has at least two points, then by Theorem 9.37,
˝ is continuous at . p; �/. Hence,˝ is continuous on � 		. ut
Theorem 9.42 Let K be a nonempty compact subset of a Hausdorff topological
vector space X. Assume that

(i) A.�/ is compact and convex for all � 2 	;
(ii) f is C-upper semicontinuous on � 	 K for all y 2 A.�/;
(iii) f .�; x; �/ is C-lower semicontinuous on � 	 K for all x 2 K;
(iv) f . p; �; y/ is strictly .�C/-properly quasiconvex on K for each p 2 � and y 2 K;
(v) ˝. p; �/ ¤ ; for each p 2 � and � 2 	.
Then˝.�; �/ is continuous on � for each � 2 	.
Proof By Corollary 9.14, ˝.�; �/ is upper semicontinuous on � for each � 2 	.
Let p 2 � and � 2 	. If ˝. p; �/ is a singleton, then ˝ is continuous at . p; �/
because ˝ is upper semicontinuous on � .�; �/ for each � 2 	. If ˝. p; �/ has at
least two points, then by Theorem 9.39, ˝.�; �/ is continuous at . p; �/ for each
� 2 	. Hence,˝.�; �/ is continuous on � 		. ut
Theorem 9.43 Assume that

(i) A is continuous and convex-valued;
(ii) f is C-lower semicontinuous and C-upper semicontinuous on � 	 K 	 K;
(iii) f . p; x; �/ is C-quasiconvex on A.�/ for each p 2 �; x 2 A.�/;
(iv) f . p; �; y/ is strictly .�C/-properly quasiconvex on K for each p 2 � and y 2 K.

Then˝ is continuous on � 		.
Proof By Theorem 9.36,˝. p; �/ is nonempty for each p 2 � and � 2 	. Hence,
by Theorem 9.41,˝ is continuous on � 		. ut
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Theorem 9.44 Let K be a nonempty compact subset of a Hausdorff topological
vector space X. Let g W K 	 K ! Y be a vector-valued bifunction such that the
following conditions hold.

(i) g.x; x/ D 0 for all x 2 K
(ii) g.�; y/ is C-upper semicontinuous for all y 2 X;
(iii) S."/ is nonempty for all " 2 int.C/.

Then S is upper semicontinuous on int.C/.

Proof Let � D int.C/, 	 D f0g, A.0/ D K and f ."; x; y/ D g.x; y/ C ".
Then f .�; �; y/ is C-upper semicontinuous on � 	 K. The result then follows from
Corollary 9.14. ut
Theorem 9.45 Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X. Let g W K 	 K ! Y be a vector-valued bifunction
such that the following conditions hold.

(i) g.x; x/ D 0 for all x 2 K;
(ii) g.x; �/ is C-lower semicontinuous for all x 2 K;
(iii) g.�; y/ is strictly .�C/-properly quasiconvex for all y 2 K;
(iv) S."/ is nonempty for each " 2 int.C/.

Then, S is lower semicontinuous on int.C/.

Proof Let � 0 D int.C/, 	 D f0g, A.0/ D K, f ."; x; y/ D g.x; y/ C ", � D
f0g [ int.C/ and 0 D Op. The conclusion follows from Theorem 9.40. ut

9.6.3 Parametric Strong Vector Equilibrium Problems

Gong et al. [53, 55, 56] considered parametric strong vector equilibrium problems
and studied the upper semicontinuity and lower semicontinuity of the solution map
for such class of problems.

Let K be a nonempty subset of a Hausdorff topological vector space X. Let Y
be a topological vector space with a closed pointed convex cone C � Y. Let �
and 	 be two (index sets) nonempty subsets of two Hausdorff topological spaces,
respectively. Let f W � 	 K 	 K ! Y be a parameterized vector-valued trifunction,
and A W 	 ! 2K n f;g be a constraint mapping. The parametric strong vector
equilibrium problem (in short, PSVEP) is defined as follows: For given p 2 � and
� 2 	,

find x 2 A.�/ such that
f . p; x; y/ 2 C; for all y 2 A.�/:

(9.85)

The solution map S of PSVEP is a set-valued map from � 		 to 2K defined by

S. p; �/ D fx 2 A.�/ W f . p; x; y/ 2 C for all y 2 A.�/g: (9.86)
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We observe that the cone C may have empty interior, see Example 9.11. If A is
a constant mapping, say A.�/ D K for all � 2 	, and f . p; x; y/ D g.x; y/ for all
p 2 �; x; y 2 K, where g W K 	 K ! Y is a vector-valued bifunction, then PSVEP
reduces to the following strong vector equilibrium problem (SVEP, in short) studied
in Sect. 9.1 (see also [53]):

find x 2 K such that
g.x; y/ 2 C; for all y 2 K:

(9.87)

Throughout this subsection, unless otherwise specified, we assume that K is a
nonempty subset of a Hausdorff topological vector space, Y is a locally convex
space with a closed pointed convex cone C � Y, and � and 	 are two nonempty
sets in two Hausdorff spaces, respectively. Let A W 	 ! 2K n ; be a constraint
mapping and f W � 	 K 	 K ! Y be a vector-valued trifunction with f . p; x; x/ 2 C
for all p 2 � and x 2 K.

We present some existence results for solutions of PSVEP (9.85).

Theorem 9.46 Assume that

(i) A.�/ is a compact and convex set for each � 2 	;
(ii) f . p; �; y/ is C-upper semicontinuous on A.�/ for each p 2 �; y 2 A.�/;
(iii) f . p; x; �/ is C-properly quasiconvex on A.�/ for each p 2 �; x 2 A.�/.

Then PSVEP has at least one solution for each p 2 � and � 2 	.
Proof By condition (i) and (ii), we can see that for each p 2 �; y 2 A.�/, the set
fx 2 A.�/ W f . p; x; y/ 2 Cg is closed. In view of Corollary 3 in [49], PSVEP has at
least one solution for each p 2 � and � 2 	. ut
Example 9.11 Let �;	 D N, X D R, A.m/ D Œ0;m�, and Y D `2. Let C be the
nonnegative cone of Y. Let

f . p; x; y/ D .g1.x; y/; : : : ; gm.x; y/; : : :/C .ıp.1/; : : : ; ıp.m/; : : :/;

where

gm.x; y/ D .x � y/ym
1

m
; for each m 2 N;

and

ıp.m/ D
�
1; if p D m;
0; if p ¤ m:

Hence from Theorem 9.46, we see that PSVEP has at least one solution. For each
p 2 � and � 2 	, � 2 S. p; �/

We now investigate conditions under which the solution map of PSVEP is upper
semicontinuous.
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Theorem 9.47 Assume that

(i) A is continuous with compact values;
(ii) f is C-upper semicontinuous on � 	 K 	 K;
(iii) S. p; �/ ¤ ; for each p 2 � and � 2 	.
Then S is upper semicontinuous on � 		.
Proof Let p 2 � and � 2 	. By condition (ii), S. p; �/ is closed for each . p; �/ 2
� 		. By condition (i), A.�/ is compact for each � 2 	. Hence S. p; �/ is compact.
Therefore, we can apply Lemma 1.10. Let . p˛; �˛/ ! . p; �/ and x˛ 2 S. p˛; �˛/.
Then for each ˛, we have

f . p˛; x˛; y/ 2 C; for all y 2 A.�˛/: (9.88)

Since A is upper semicontinuous, without loss of generality, we may assume that
x˛ ! x for some x 2 A.�/.

Assume to the contrary that x … S. p; �/. Then there exists y 2 A.�/ such that

f . p; x; y/ … C:

By condition (ii), there exists a neighborhoodU D P 	 X 	Y of . p; x; y/ such that

f . p0; x0; y0/ … C; for all . p0; x0; y0/ 2 U; (9.89)

where P , X , and Y are open neighborhoods of p, x and y, respectively.
Since A is lower semicontinuous and y 2 Y \ A.�/, i.e., Y \ A.�/ ¤ ;, there

exists L which is an open neighborhood of � such that

Y \ A.�0/ ¤ ;; for all �0 2 L:

Since . p˛; �˛; x˛/ ! . p; �; x/, there exists ˛0 such that

. p˛; �˛; x˛/ 2 P 	 L 	 X ; for all ˛ � ˛0:

Hence for each ˛ � ˛0, there exists y˛ 2 Y \ A.�˛/. Thus, for each ˛ � ˛0, we
have

. p˛; x˛; y˛/ 2 U:

By (9.89), we get

f . p˛; x˛; y˛/ … C:

This contradicts to (9.88). Hence x 2 S. p; �/. Thus S is upper semicontinuous at
. p; �/. Since . p; �/ 2 � 		 is arbitrary, S is upper semicontinuous on � 		. ut
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The following result is a consequence of Theorems 9.46 and 9.47.

Theorem 9.48 Let K be a nonempty compact subset of a Hausdorff topological
vector space X. Assume that

(i) A is continuous;
(ii) A.�/ is a compact and convex set for each � 2 	;
(iii) f is C-upper semicontinuous on � 	 K 	 K;
(iv) f . p; x; �/ is C-properly quasiconvex on A.�/ for each p 2 � , x 2 A.�/.

Then PSVEP has at least one solution for each p 2 � and � 2 	, and S is upper
semicontinuous on � 		.

Next, we investigate conditions under which the solution map of PSVEP (9.85)
is lower semicontinuous.

Theorem 9.49 Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Assume that

(i) A is continuous on 	;
(ii) A.�/ is a compact and convex set for each � 2 	;
(iii) for each p 2 � , � 2 	, and y 2 A.�/, f . p; �; y/ is strictly .�C/-quasiconvex

on K;
(iv) f is C-pseudocontinuous on � 	 K 	 K;
(v) S. p; �/ has at least two points for each p 2 � and � 2 	.
Then S is lower semicontinuous on � 		.
Proof Let p 2 � , � 2 	. Let V be an open set of K with S. p; �/ \ V ¤ ;. Let
x1; x2 2 S. p; �/with x1 ¤ x2 and x1 2 V. We choose x0 2 .x1; x2/ D ftx1C.1�t/x2 W
0 < t < 1g with x0 2 V. By condition (iii),

f . p; x0; y/ 2 C n f0g; for all y 2 A.�/:

By condition (iv), for each y 2 A.�/, there exist open neighborhoodsPy of p, Uy of
x0, and Vy of y such that

f .q; u; v/ 2 C; for all .q; u; v/ 2 Py 	 Uy 	 Vy: (9.90)

Since A.�/ is compact, there exist y1; y2; : : : ; ym 2 A.�/ such that

m[

iD1
Vyi � A.�/: (9.91)

Let P D
mS

iD1
Pyi , U D

mS

iD1
Uyi . Then (9.90) and (9.91), we have

f .q; u; v/ 2 C; for all .q; u; v/ 2 P 	 U 	
 

m[

iD1
Vyi

!

: (9.92)
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Since x0 2 A.�/ \ V \ U and A is continuous, there exists an open neighborhood
Ml of � such that

.V \ U/\ A.�/ ¤ ;; for all � 2 Ml: (9.93)

Since A is continuous, there exists an open neighborhoodMu of � such that

m[

iD1
Vyi � A.�/; for all � 2 Mu:

Hence by (9.92), for each � 2 Mu, we have

f .q; u; v/ 2 C; for all q 2 P ; u 2 U ; v 2 A.�/: (9.94)

Let M D Mu \ Ml. Then by (9.93) and (9.94), for each .q; �/ 2 P 	 M, we
obtain

V \ S.q; �/ ¤ ;:

Therefore, S is lower semicontinuous on � 		. ut
Theorem 9.50 Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Assume that

(i) A is continuous on 	;
(ii) A.�/ is a compact and convex set for each � 2 	;
(iii) For each p 2 �; � 2 	, and y 2 A.�/; f . p; �; y/ is strictly .�C/-quasiconvex

on K;
(iv) f is C-pseudocontinuous on � 	 K 	 K;
(v) S0. p; �/ D fx 2 K W f . p; x; y/ 2 C n f0g for all y 2 A.�/g ¤ ; for each p 2 �

and � 2 	.
Then S is lower semicontinuous on � 		.
Proof Let p 2 � , � 2 	, and x 2 S0. p; �/. If S. p; �/ ¤ fxg, by Theorem 9.49, S
is lower semicontinuous at . p; �/. Hence we may assume that S. p; �/ D fxg. Let U
be an open set of K with U \ S. p; �/ ¤ ;, i.e., x 2 U. Since x 2 S0. p; �/, we have

f . p; x; y/ 2 C n f0g; for all y 2 A.�/:

Hence by conditions (ii) and (iv), there exist open neighborhoods P ;U , and V of
p; x, and A.�/, respectively, such that

f .q; u; v/ 2 C; for all .q; u; v/ 2 P 	 U 	 V:
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Therefore by condition (i), there exists a neighborhood M of � such that for each
� 2 M, U \ U \ A.�/ ¤ ; and

f .q; u; v/ 2 C; for all q 2 P ; u 2 U ; v 2 A.�/:

Clearly, U \ U ¤ ;. Hence for each q 2 P and � 2 M, we have

U \ S.q; �/ ¤ ;:

Consequently, S is lower semicontinuous at . p; �/. Since . p; �/ is arbitrary, S is
lower semicontinuous on � 		. ut
Corollary 9.17 Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Assume that

(i) A is continuous on 	;
(ii) A.�/ is a compact and convex set for each � 2 	;
(iii) for each p 2 �; � 2 	, and y 2 A.�/; f . p; �; y/ is strictly .�C/-quasiconvex

on K;
(iv) f is C-pseudocontinuous on � 	 K 	 K;
(v) for each p 2 � and � 2 	, either S0. p; �/ ¤ ; or S. p; �/ has at least two

elements.

Then S is lower semicontinuous on � 		.
By combining results for upper semicontinuity and lower semicontinuity, we can

easily derive the results concerning the continuity of the solution map of PSVEP.

9.6.4 Well-Posedness for Parametric Weak Vector Equilibrium
Problems

The concept of well-posedness is one of the approaches to study sensitivity analysis,
stability, approximation and numerical analysis of solutions to nonlinear problems.
There are several notions of well-posedness related to optimization problems, see,
for example, [8, 38, 72, 78, 102, 105, 106] and the references therein. These notions
of well-posedness can be divided mainly into three categories, namely, Tykhonov
type [95], Levitin-Polyak type [73] and Hadamard type [59]. Generally speaking,
in the study of Tykhonov well-posedness of a problem one introduces the notion
of “approximate sequence” for the solution and requires some convergence of such
sequences to a solution of the problem; Levitin-Polyak well-posedness of a problem
means the convergence of the approximating solution sequence to the problem
with some constraints; while, Hadamard well-posedness of a problem means the
continuous dependence of the solutions on the data or on the parameter of the
problem; See, for example, [8, 38, 72, 78, 102, 105, 106] and the references therein.
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Kimura et al. [69] studied the parametric well-posedness for parametric weak
vector equilibrium problems and showed that under suitable conditions, the well-
posedness defined by approximating solutions net is equivalent to the upper
semicontinuity of the solution map of perturbed problem. They also studied the
relationship between well-posedness and parametric well-posedness. Bianchi et
al. [25] studied two kinds of well-posedness for vector equilibrium problems.
The first notion is linked to the behaviour of suitable maximizing sequences,
while the second one is defined in terms of Hausdorff convergence of the map
of approximate solutions. They also compared them, and, in a concave setting,
they gave sufficient conditions on the data in order to guarantee well-posedness.
Li and Li [74] discussed two types of Levitin-Polyak well-posedness for weak
vector equilibrium (in short, WVEP) for moving cone, and investigated criteria
and characterizations for them. By using nonlinear scalarization function and a
gap function for WVEP, they considered a general optimization problem. Then
they proved the equivalence between the Levitin-Polyak well-posedness for the
optimization problem and Levitin-Polyak well-posedness for the WVEP. Salamon
[88] studied and analyzed the Hadamard well-posedness for parametric strong
vector equilibrium problems. Peng et al. [84] studied the generalized Hadamard
well-posedness and generic Hadamard well-posedness of WVEPs by considering
the perturbation of vector-valued functions and as well as of feasible sets.

Throughout this subsection, we let K be a nonempty subset of a Hausdorff
topological vector space X and Y be a topological vector space with a solid pointed
convex cone C � Y. Let � be (index set) nonempty subset of a Hausdorff
topological space. Let f W � 	 K 	 K ! Y be a parameterized vector-valued
trifunction. The solution map S. p/ of WVEPp (9.81) is a set-valued map from � to
2K defined by

S. p/ D fx 2 K W f . p; x; y/ … � int.C/ for all y 2 Kg: (9.95)

Based on [57, Definition 3.4.2, p.119] or [36, Definition 4.74, p.230], we define
the parametric (uniquely) well-posedness for parametric weak vector equilibrium
problem (9.81).

Definition 9.13 Let p 2 � and fp�g � � be a net converging to p. A net fx�g � K
is said to be an approximating net for WVEPp (9.81) corresponding to fp�g if there
exists a net f"�g � int.C/ converging to 0 such that

f .p�; x�; y/C "� … � int.C/; for all y 2 K:

Definition 9.14 The family fWVEPp W p 2 � g is said to be parametrically well-
posed if

(a) the solution set S. p/ of WVEPp is nonempty for all p 2 � ;
(b) for given p 2 � and fp�g � � with p� ! p, every approximating net for

WVEPp corresponding to fp�g has a subnet converging to some point of S. p/.
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As a special case, we have the following definition.

Definition 9.15 The family fWVEPp W p 2 � g is said to be parametrically unique
well-posed if

(a) there exists a unique solution xp to WVEPp for all p 2 P;
(b) for given p 2 � and fp�g � � with p� ! p, every approximating net for

WVEPp corresponding to fp�g converges to xp.
Let ˘ W � 	 .int.C/[ f0g/ ! 2K be a set-valued map defined by

˘. p; "/ D fx 2 K W f . p; x; y/C " … � int.C/ for all y 2 Kg; (9.96)

that is, ˘. p; "/ is an "-solution set of WVEPp (9.81).

Proposition 9.11 Let K be a nonempty compact subset of a Hausdorff topological
vector space X, and let S and ˘ be set-valued maps defined by (9.95) and (9.96),
respectively. Assume that the following conditions hold:

(i) f .�; �; y/ is C-upper semicontinuous on � 	 K for each y 2 K:
(ii) S. p/ is nonempty for each p 2 � .

Then S is upper semicontinuous at p 2 � and also ˘ is upper semicontinuous at
. p; 0/ for each p 2 � .

Proof Let p 2 � . Assume contrary that for any neighborhood P of p, there is
p˛ 2 P such that S. p˛/ 6� V for some neighborhood V of S. p/. Then there is
x˛ 2 S. p˛/ \ Vc for all ˛. Since K is compact, without loss of generality, we may
assume that x˛ ! x for some x 2 K \ Vc. Therefore,

f . p; x; y/ 2 � int.C/; for some y 2 K:

By the condition (i), we have

f . p˛; x˛; y/ 2 � int.C/; for all ˛ � ˛0 and for some ˛0: (9.97)

On the other hand, from x˛ 2 S. p˛/, we have

f . p˛; x˛; y/ … � int.C/; for all ˛:

This contradicts (9.97). Hence S is upper semicontinuous on � .
Next, suppose that � 0 D � 	 .int.C/ [ f0g/ and that f 0 W � 0 	 K 	 K ! Y is

defined by

f 0. p0; x; y/ D f . p; x; y/C ":

Then we have f 0.�; �; y/ is C-upper semicontinuous on � 0 	 K for each y 2 K and
˘. p; "/ is nonempty for each p 2 � and " 2 int.C/ [ f0g. By the condition (i)



9.6 Sensitivity Analysis of Vector Equilibrium Problems 419

(with S replaced by ˘ ), ˘ is upper semicontinuous at . p; "/ for each p 2 � and
" 2 int.C/ [ f0g. Hence,˘ is upper semicontinuous at . p; 0/ for each p 2 � . ut

Bednarczuk [19] first defined the well-posedness as upper semicontinuity of its
"-solution mapping at 0 whenever there exists at least one solution. We discuss this
concept for WVEPp (9.81) as follows.

Lemma 9.8 Assume that S. p/ is nonempty compact for each p 2 � . Then the
family fWVEPp W p 2 � g is parametrically well-posed if and only if ˘ is upper
semicontinuous at . p; 0/ for each p 2 � .

Proof Suppose ˘ is upper semicontinuous at . p; 0/. Note that ˘. p; 0/ D S. p/ is
compact. By Lemma 1.10, for each fp�g � � with p� ! p, f"�g � int.C/[f0g with
"� ! 0 and fx�g � K with x� 2 ˘. p�; "�/, we have fx�g � fx�g such that x� ! x
for some x 2 S. p/. Hence for each fp�g � � with p� ! p, every approximating
net for WVEPp (9.81) corresponding to fp�g has a subnet converging to some point
of S. p/. Therefore, the family fWVEPp W p 2 � g is parametrically well-posed.

Conversely, suppose that the family fWVEPp W p 2 � g is parametrically
well-posed. Let fp�g � � with p� ! p, f"�g � int.C/ [ f0g with "� ! 0
and fx�g � K with x� 2 ˘. p�; "�/. Then fx�g is an approximating net for
WVEPp (9.81) corresponding to fp�g. Hence x� ! x for some x 2 S. p/. Therefore,
by Lemma 1.10,˘ is upper semicontinuous at . p; 0/. ut

When A.�/ D K for all � 2 	, Theorem 9.35 reduces to the following result.

Theorem 9.51 Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and � be a nonempty set. Let f W � 	 K 	 K ! Y
be a vector-valued trifunction such that f . p; x; x/ … � int.C/ for all p 2 � and
x 2 K. Assume that the following conditions hold.

(i) f . p; �; y/ is C-upper semicontinuous on K for all p 2 � and y 2 K;
(ii) f . p; x; �/ is C-quasiconvex on K for all p 2 � and x 2 K.

ThenWVEPp (9.81) has at least one solution for each p 2 � .

Lemma 9.9 Let K be a nonempty compact convex subset of X and � be a nonempty
set. Let f W � 	 K 	 K ! Y be a vector-valued trifunction such that f . p; x; x/ …
� int.C/ for all p 2 � and x 2 X. Assume that

(i) for each p 2 � , there exists yp 2 K such that

f . p; x; yp/ 2 � int.C/; for all x 2 K n fypgI

(ii) for each p 2 � , S. p/ ¤ ;.
ThenWVEPp (9.81) has a unique solution for each p 2 � .

Proof By condition (i), every y 2 K n fypg cannot be an element of S. p/ for each
p 2 � . By condition (ii), S. p/ ¤ ; for each p 2 � . Therefore, yp 2 S. p/ and
y … S. p/ for all y 2 K n fypg. Thus, WVEPp (9.81) has a unique solution for each
p 2 � . ut
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Example 9.12 Let � D K D Œ0; 1�, Y D R2 and C D R2C. Let f W � 	 K 	 K ! Y
be defined by

f . p; x; y/ D ��.x � p/2 C .y � p/2
�
�

cos

�

 � 2

4
C p

	

; sin

�

 � 2
4

C p

		

:

Then f satisfies conditions (i) and (ii) of Lemma 9.9. Hence, for each p 2 � ,
WVEPp (9.81) has a unique solution. Indeed, for each p 2 � , S. p/ D fpg.
Lemma 9.10 [66] Let K and D be nonempty compact convex sets in two topological
vector spaces, respectively. If a vector-valued bifunction f W K	D ! Y satisfies the
following conditions (i) and (ii) or (i)0 and (ii)0,

(i) f .�; y/ is C-lower semicontinuous and C-quasiconvex on K for every y 2 D,
(ii) f .x; �/ is C-upper semicontinuous and .�C/-properly quasiconvex on D for all

x 2 K,
(i)0 f .�; y/ is C-lower semicontinuous and C-properly quasiconvex on K for every

y 2 D,
(ii)0 f .x; �/ is C-upper semicontinuous and .�C/-quasiconvex on D for every x 2 K,

then there exists .x; y/ 2 K 	 D such that

f .x; y/� f .u; y/ … int.C/; for all u 2 K;
f .x; v/ � f .x; y/ … int.C/; for all v 2 E:

(9.98)

A point .x; y/ 2 K 	 D is said to be C-saddle point of f on K 	 D if it
satisfies (9.98).

Example 9.13 Let g W R2 ! R be a real-valued function defined by

g.u; v/ D �u2 � v2;

and C D f.z1; z2; z3/ W z1 > 0g [ f0g be an ordering cone of Y D R
3. Let K D Œ0; 1�

and D D Œ0; 1� and f W K 	 D ! Y be defined by

f .x; y/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.x; y; g.x; y//; if .x; y/ 2 .K n f1g/	 D;�

x; y;�4
3

	

; if .x; y/ D .1; 0/;
�

x; y;�3
2
.y C 1/

	

; otherwise.

Then f satisfies the conditions (i) and (ii) of Lemma 9.10. Hence, it has at least one
C-saddle point on K 	 D. In fact, .1; 0/ 2 K 	 D is a C-saddle point of f on K 	 D.

Lemma 9.11 Let K be a nonempty compact convex subset of a Hausdorff topologi-
cal vector space X and � be a nonempty set. Let g W K ! Y be strictly .�C/-proper
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quasiconvex, C-upper semicontinuous on K, and g.Nx/ … g.Ox/ � int.C/ for some
Nx ¤ Ox 2 K. Then there exists x0 2 K such that g.x0/ 2 g.Ox/C int.C/.

Proof Since g is strictly .�C/-properly quasiconvex on K, we have

g.Nx0/ 2 .g.Nx/C int.C//[ .g.Ox/C int.C// ;

where Nx0 D Nx C Ox
2

. Hence g.Nx0/ … �cl .C/. Let " 2 int.C/. Then h .g.Nx0/ � g.Ox// DW
˛ > 0, where

h.z/ WD inf ft 2 R W z 2 t � " � int.C/g ; for z 2 Y:

Thus g.Nx0/ … g.Ox/C 1

2
˛"� int.C/. Clearly, g.Ox/C 1

2
˛"� int.C/ is a neighborhood

of g.Ox/ and
�

g.Ox/C 1

2
˛" � int.C/

	

� int.C/ D g.Ox/ C 1

2
˛" � int.C/. Since g is

.�C/-convex on K, there is a neighborhood U of Ox such that

g.x/ 2 g.Ox/C 1

2
˛" � int.C/; for all x 2 U :

Therefore, we can choose x0 2 U \ fu 2 X W u D �Ox C .1 � �/Nx0; 0 < � < 1g.
Then g.x0/ 2 .g.Ox/C int.C// \

�
1

2
˛" � int.C/

	

. Thus, g.x0/ 2 g.Ox/C int.C/. ut

Theorem 9.52 Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X, � be a nonempty set and f W � 	 K 	 K ! Y be a
vector-valued trifunction such that f . p; x; x/ D 0 for all p 2 � and x 2 K. Assume
that

(i) f . p; �; y/ is C-upper semicontinuous and strictly .�C/-properly quasiconvex on
K for each p 2 � and y 2 K;

(ii) f . p; x; �/ is C-lower semicontinuous and C-quasiconvex on K for each p 2 �

and x 2 K.

ThenWVEPp (9.81) has a unique solution for each p 2 � .

Proof Let p 2 � . Then by Lemma 9.10, there exists .x; y/ 2 K 	 K such that

f . p; x; y/� f . p; u; y/ … � int.C/; for all u 2 K; (9.99)

f . p; x; v/ � f . p; x; y/ … � int.C/; for all v 2 K: (9.100)

From (9.99), we have

f . p; u; y/ … f . p; x; y/C int.C/; for all u 2 X: (9.101)



422 9 Vector Equilibrium Problems

Taking v D x, (9.100) implies f . p; x; y/ … int.C/. Suppose f . p; x; y/ ¤ 0. Then

f . p; y; y/ D 0 … f . p; x; y/� int.C/:

By Lemma 9.11, there exists x0 2 X such that

f . p; x0; y/ 2 f . p; x; y/C int.C/;

which contradicts to (9.101). Thus, f . p; x; y/ D 0. Suppose that x ¤ y. Then,
f . p; y; y/ D 0 and by Lemma 9.11, there exists x0 2 X such that

f . p; x0; y/ 2 f . p; x; y/C int.C/:

This contradicts to (9.101). Thus,

x D y DW Ox:

Then by (9.100), we have

f . p; Ox; v/ � f . p; Ox; Ox/ … � int.C/; for all v 2 X;

that is,

f . p; Ox; v/ … � int.C/; for all v 2 X:

Therefore, Ox 2 S. p/ and thus S. p/ ¤ ; for each p 2 � . By (9.101), we have

f . p; u; Ox/ … int.C/; for all u 2 X:

Therefore, by Lemma 9.11, we have

f . p; u; Ox/ 2 � int.C/; for all u 2 X n fOxg:

Thus, by Lemma 9.9, fOxg D S. p/, that is, WVEPp (9.81) has a unique solution. ut
Theorem 9.53 Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and � be a topological space. Let f W � 	 K 	 K ! Y
be a vector-valued trifunction such that f . p; x; x/ D 0 for all p 2 � and x 2 K.
Assume that the following conditions hold.

(i) f .�; �; y/ is C-upper semicontinuous on � 	 X for all y 2 K;
(ii) f . p; �; y/ is strictly .�C/-properly quasiconvex on X for each p 2 � and y 2 K;
(iii) f . p; x; �/ is C-lower semicontinuous and C-quasiconvex on K for each p 2 �

and x 2 K.

Then fWVEPp W p 2 � g is parametrically unique well-posed.
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Proof By Theorem 9.52, WVEPp (9.81) has a unique solution xp for all p 2
� . Note that for each y 2 K the map . p; "; x/ 7! f . p; x; y/ C " is C-upper
semicontinuous on � 	Y	K. Hence by Corollary 9.15,˘ is upper semicontinuous
on � 	 .int.C/[ f0g/. Clearly, S. p/ is compact for each p 2 � . Therefore, by
Lemma 9.8, fWVEPp W p 2 � g is parametrically unique well-posed. ut
Corollary 9.18 Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X, � be a nonempty subset of a Hausdorff space and
f W � 	 K 	 K ! Y be a vector-valued trifunction such that f . p; x; x/ … � int.C/
for all p 2 � and x 2 K. Assume that the following conditions hold.

(i) f .�; �; y/ is C-upper semicontinuous on � 	 K for each y 2 K;
(ii) S. p/ ¤ ; for each p 2 � .

Then fWVEPp W p 2 � g is parametrically well-posed.
Proof By Corollary 9.15, ˘ is upper semicontinuous on � 	 .int.C/ [ f0g/. By
condition (i), S. p/ is closed for each p 2 � . Since K is compact, S. p/ is compact
for each p 2 � . Therefore, by Lemma 9.8, fWVEPp W p 2 � g is parametrically
well-posed. ut
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Chapter 10
Generalized Vector Equilibrium Problems

We have seen in Chaps. 8 and 9 that the vector optimization problems can be
solved by using generalized vector variational inequality problems (in short,
GVVIPs), and that the vector equilibrium problems (in short, VEPs) contain vector
variational inequality problems and vector optimization problems as special cases.
The vector equilibrium problems with set-valued maps are called generalized vector
equilibrium problems (in short, GVEPs). There are several possible ways to extend
vector equilibrium problems for set-valued maps in such a way that they contain
GVVIPs as special cases; See, for example [5, 6, 11, 19–23, 29, 30, 37, 47, 48, 51, 52]
and the references therein. During the last two decades, several existence results for
solutions of GVEPs and their special cases, namely, weak form of generalized vector
variational inequality problems, weak form of implicit vector variational inequality
problems, etc., have been discussed. The basic tools to prove the existence results
for solutions of GVEPs are Browder type fixed point theorems, Kakutani fixed
point theorem, coincidence theorems, KKM type theorems, intersection theorems
and maximal element theorems; See, for example, [4–11, 19–25, 27, 29, 41, 47–
49, 51, 60, 63] and the references therein. The connectedness of the solution set
of generalized vector equilibrium problems is studied by Chen et al. [17], Han
and Huang [35] and Liu et al. [50]; See also references therein. The duality for
generalized vector equilibrium problems is defined by using a rule that says that
“dual of the dual is the primal”, and it has been discussed in [7].

The generalized vector equilibrium problems related to a set-valued bifunction
provide only the weak form of the corresponding GVVIPs. Therefore, several
authors considered the generalized vector equilibrium problems for a vector-valued
trifunction. Such problems include the strong form of corresponding GVVIPs. See,
for example, [12, 13, 18, 28, 32, 36, 64] and the references therein.

Most of the results on the existence of solutions for GVEPs require either
compactness or some kind of coercivity condition in the setting of topological vector
spaces. However, the boundedness is assumed in the setting of reflexive Banach
spaces. Recession method that was initiated by Flores-Bazán and Flores-Bazán [26]
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for vector equilibrium problems, does not require boundedness, compactness or
any kind of coercivity condition to prove the necessary and/or sufficient conditions
for the solution set of GVEPs to be nonempty and bounded/compact. This topic is
mainly studied in [3, 42, 57, 59] and the references therein.

Sometime an exact solution of GVEPs may not exist if the data of the problem
is not sufficient. In such cases, we study the approximate solutions or "-solutions of
GVEPs. Kimura and Yao [38, 39] considered "-generalized vector (weak/strong)
equilibrium problems and studied the existence of solutions of these problems.
They also studied the behavior of the solution maps of these problems. Namely,
they studied the upper semicontinuity and lower semicontinuity of solution maps of
these problems. The study of behavior of solution maps plays an important role in
stability and sensitivity analysis for generalized vector equilibrium problems. Gong
[31] and Qu and Cheng [56] used vectorial form of Ekeland’s variational principle
for set-valued maps to study the existence of solutions of "-generalized vector
weak/strong equilibrium problems. The parametric generalized vector equilibrium
problems are more general than those of "-generalized vector equilibrium problems.
Several authors considered parametric generalized vector equilibrium problems (in
short, PGVEPs) and studied the behavior of their solution maps; See, for example,
[1, 2, 14–16, 33–35, 43–46, 54, 55, 58, 59, 61, 62] and the references therein.

The main motivation of this chapter is to study the mathematical theory of
generalized vector equilibrium problems, namely, existence results for solutions
with or without monotonicity, duality and sensitivity analysis.

10.1 Introduction

Let K be a nonempty subset of a topological vector space X, Y be a topological
vector space with an ordering cone C such that int.C/ ¤ ; and F W K 	 K ! 2Y be
a set-valued map with nonempty values. The generalized weak vector equilibrium
problems (in short, GWVEPs) are defined as follows:

find Nx 2 K such that F.Nx; y/ 6� � int.C/; for all y 2 K (10.1)

and

find Nx 2 K such that F.Nx; y/\ .� int.C// D ;; for all y 2 KI (10.2)

the latter problem can also be written in the following form:

find Nx 2 K such that F.Nx; y/ � Y n .� int.C//; for all y 2 K:

The set of solutions of generalized weak vector equilibrium problems (10.1)
and (10.2) are denoted by Sol(GWVEP) and Sol(GWVEP)�, respectively. Clearly,
Sol(GWVEP)� � Sol(GWVEP).
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The generalized vector equilibrium problem (in short, GVEP) is to find Nx 2 K
such that

F.Nx; y/ 6� �C n f0g; for all y 2 K: (10.3)

We denote by Sol(GVEP) the set of solutions of GVEP (10.3).
The generalized strong vector equilibrium problems (in short, GSVEPs) are

defined in the following ways:

find Nx 2 K such that F.Nx; y/ � C; for all y 2 KI (10.4)

and

find Nx 2 K such that F.Nx; y/ \ C ¤ ;; for all y 2 K: (10.5)

The set of solutions of problems (10.4) and (10.5) are denoted by Sol(GSVEP) and
Sol(GSVEP)�, respectively. Clearly, a solution of problem (10.4) is a solution of
problem (10.5).

These problems contain corresponding generalized vector variational inequality
problems as special cases, and can be used to study vector optimization problems for
nondifferentiable (in some sense) or/and nonconvex vector optimization problems.
Several other formulations of GVEPs are studied in [6, 19, 23, 52, 53].

We denote by hu; xi the evaluation of u 2 L.X;Y/ at x 2 X. Let T W K !
2L.X;Y/ be a set-valued map with nonempty values. Let F.x; y/ D hT.x/; y � xi D
fhu; y � xi W u 2 T.x/g. Then the GVEPs reduce to the weak form of the
corresponding generalized vector variational inequality problems, namely, the
generalized weak vector equilibrium problems reduce to the following weak form
of generalized weak vector variational inequality problem:
(GVVIP)w: Find Nx 2 K such that for all y 2 K, there exists N� 2 T.Nx/ satisfying

h N�; y � Nxi … � int.C/: (10.6)

For other special cases of GVEPs, see [5, 8] and the references therein.

10.2 Generalized Abstract Vector Equilibrium Problems

Let X be a locally convexHausdorff topological vector space, Y and Z be topological
vector spaces, A � X be a nonempty convex compact set, B � Z be a nonempty
convex set, and P � Y. Let F W A 	 B ! 2Y be a set-valued map with nonempty
values. We consider the following generalized abstract vector equilibrium problems
(in short, GAVEPs):

find Nx 2 A such that F.Nx; y/\ P ¤ ;; for all y 2 B; (10.7)
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and

find Nx 2 A such that F.Nx; y/ � P; for all y 2 B: (10.8)

With P WD Y n.� int.C// it is obvious that (10.7) contains (10.1), and with P WD C it
is obvious that (10.8) contains (10.4). Using the lower inverse F�.P/ and the upper
inverse FC.P/ of the set-valued map F, which are defined as

F�.P/ WD f.x; y/ 2 A 	 B W F.x; y/\ P ¤ ;g;

FC.P/ WD f.x; y/ 2 A 	 B W F.x; y/ � Pg;

both GAVEP (10.7) and (10.8) can be written as

find Nx 2 A such that .Nx; y/ 2 F�1.P/; for all y 2 B; (10.9)

with F�1 WD F� for (10.7) and F�1 WD FC for (10.8).
In order to obtain existence results for problem (10.9), we introduce another set-

valued map G W A 	 B ! 2Y , and a set Q � Y. Again, we write G�1 for G� or GC.
Let T W B ! 2A be an upper semicontinuous mapping with nonempty, closed and
convex values.

Theorem 10.1 Let F�1.P/ and G�1.Q/ have the following properties:

(i) .x; y/ 2 F�1.P/ for all y 2 B and x 2 T.y/;
(ii) fx 2 A W .x; y/ … G�1.Q/g is open in A for all y 2 B;
(iii) fy 2 B W .x; y/ … F�1.P/g is convex for all x 2 A;
(iv) F�1.P/ � G�1.Q/;
(v) for every x 2 A, .x; y/ 2 G�1.Q/ for all y 2 B implies .x; y/ 2 F�1.P/ for all

y 2 B.

Then there exists Nx 2 A such that .Nx; y/ 2 F�1.P/ for all y 2 B.

Proof In view of (v) it suffices to find Nx 2 A such that .Nx; y/ 2 G�1.Q/ for all y 2 B.
If such an Nx does not exist, then the compact set A is covered by the sets

V.y/ WD fx 2 A W .x; y/ … G�1.Q/g; for all y 2 B;

which are open by (ii). Let V.y1/;V.y2/; : : : ;V.ym/ be a finite subcover of A, and
let ˇ1.�/; ˇ2.�/; : : : ; ˇm.�/ be a continuous partition of unity subordinate to this open
cover. The functions ˇi W A ! R are continuous, nonnegative, add up to unity,
and from ˇi.x/ > 0 follows x 2 V.yi/. Then p.x/ WD Pm

iD1 ˇi.x/yi defines
a continuous function p W A ! B. The set-valued map T. p.�// W A ! 2A

is upper semicontinuous with nonempty, closed and convex values. Hence, by
Kakutani Fixed Point Theorem 1.38, T. p.�// has a fixed point Ox 2 T. p.Ox//. Let
I WD fi W ˇi.Ox/ > 0g. Then for all i 2 I, Ox 2 V.yi/, hence .Ox; yi/ … G�1.Q/ and thus
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.Ox; yi/ … F�1.P/ by (iv). Then from p.Ox/ 2 co.fyi W i 2 Ig/ and (iii) it follows that

.Ox; p.Ox// … F�1.P/. Since Ox 2 T. p.Ox//, this contradicts (i). ut
Remark 10.1 Note that the condition (iv) may be considered as an abstract mono-
tonicity requirement.

Let us single out two prototypical cases of Theorem 10.1. First we consider the
case G.x; y/ WD F.x; y/; Q WD P. Then condition (iv) and (v) of Theorem 10.1 are
automatically satisfied, and we obtain

Theorem 10.2 Let F�1.P/ have the following properties:

(i) .x; y/ 2 F�1.P/ for all y 2 B and x 2 T.y/;
(ii) fx 2 A W .x; y/ … F�1.P/g is open in A for all y 2 B;
(iii) fy 2 B W .x; y/ … F�1.P/g is convex for all x 2 A.

Then there exists Nx 2 A such that .Nx; y/ 2 F�1.P/ for all y 2 B.
Now we turn to the case Z WD X, B WD A, T WD I the identity map, G.x; y/ WD

F.y; x/. Then we obtain

Theorem 10.3 Let for all x; y 2 A the following properties hold:

(i) .y; y/ 2 F�1.P/;
(ii) fz 2 A W .x; z/ … F�1.Q/g is open in A;
(iii) fz 2 A W .x; z/ … F�1.P/g is convex;
(iv) .x; y/ 2 F�1.P/ implies .y; x/ 2 F�1.Q/;
(v) for every u 2 �x; yŒ, .u; x/ 2 F�1.Q/ and .u; y/ … F�1.P/ imply .u; z/ 2

F�1.int.Q// for all z 2 �x; yŒ;
(vi) fz 2 Œx; y� W .z; y/ … F�1.P/g is open in Œx; y�;
(vii) .y; y/ … F�1.int.Q//.

Then there exists Nx 2 A such that .Nx; y/ 2 F�1.P/ for all y 2 A.

Proof The result follows from Theorem 10.1 upon choosing G.x; y/ WD F.y; x/ and
T WD I the identity map. It only remains to verify condition (v) of Theorem 10.1.
To this end, let x 2 A with .y; x/ 2 F�1.Q/ for all y 2 A. Assume contrary that
.x; y/ … F�1.P/ for some y 2 A. By (i), y ¤ x. From (vi), there exists u 2 �x; yŒ
such that .u; y/ … F�1.P/. Since .u; x/ 2 F�1.Q/, we obtain from (v) that .u; u/ 2
F�1.int.Q//, contradicting (vii). ut
Remark 10.2 Observe that we may use two different inverses for F�1.P/ on one
hand and F�1.Q/, F�1.int.Q// on the other hand.

Wang et al. [60] used Brouwer fixed point theorem to prove the existence results
for solutions of GSVEP (10.4). They also discussed the closedness and the convexity
of the solution set.

The structure of Theorems 10.2 and 10.3 is perhaps better understood by
considering a special case. Let C � Y be a proper closed convex cone (not
necessarily pointed) with nonempty interior.
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We turn first to Theorem 10.2. We choose P WD Y n .� int.C//, and F�1 WD F�.
Then

.x; y/ … F�1.P/ , F.x; y/ � � int.C/:

Thus we obtain from Theorem 10.2, the following result.

Corollary 10.1 Let F W A 	 B ! 2Y be a set-valued map such that the following
conditions hold.

(i) F.x; y/ 6� � int.C/ for all y 2 B and x 2 T.y/;
(ii) fx 2 A W F.x; y/ � � int.C/g is open in A for all y 2 B;
(iii) fy 2 B W F.x; y/ � � int.C/g is convex for all x 2 A.

Then there exists Nx 2 A such that F.Nx; y/ 6� � int.C/ for all y 2 B.
Now we turn to Theorem 10.3. We choose P WD Y n .� int.C//, Q WD Y n int.C/

and F�1 WD F�. Then

.x; y/ … F�1.P/ , F.x; y/ � � int.C/;

.x; y/ … F�1.Q/ , F.x; y/ � int.C/;

.x; y/ … F�1.int.Q// , F.x; y/ � C;

and F.y; y/ � C implies F.y; y/ 6� � int.C/, provided F.y; y/ ¤ ;. Thus, from
Theorem 10.3, we obtain the following result.

Corollary 10.2 Let F W A	A ! 2Y nf;g be such that, for all x; y 2 A, the following
properties hold:

(i) ; ¤ F.y; y/ � C;
(ii) fz 2 A W F.x; z/ � int.C/g is open in A;
(iii) fz 2 A W F.x; z/ � � int.C/g is convex;
(iv) F.x; y/ 6� � int.C/ implies F.y; x/ 6� int.C/;
(v) for every u 2 �x; yŒ, F.u; x/ 6� int.C/ and F.u; y/ 6� � int.C/ imply F.u; z/ 6�

int.C/ for all z 2 �x; yŒ;
(vi) fz 2 Œx; y� W F.z; y/ � int.C/g is open in Œx; y�.
Then there exists Nx 2 A such that F.Nx; y/ 6� � int.C/ for all y 2 A.

Concerning the assumption of Corollary 10.2, we observe the following:

• The condition (ii) is satisfied if the set-valued map F.x; �/ is upper semicontinu-
ous.

• The condition (vi) is satisfied if the mapping F.�; y/ is upper semicontinuous
along line segments in A.

• The condition (iii) is satisfied if for every u 2 A, the mapping t.�/ WD F.u; �/ has
the property that

t.�x C .1 � �y/ � �t.x/C .1 � �/t.y/� C; for all x; y 2 A and � 2 Œ0; 1�:
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• The condition (v) is satisfied if for every u 2 A the mapping t.�/ WD F.u; �/ has
the property that t.x/ ¤ ; for all x 2 A and

t.�x C .1 � �y/C C 
 �t.x/C .1 � �/t.y/; for all x; y 2 A and � 2 Œ0; 1�:

Indeed, let a 2 t.x/, a … int.C/, and b 2 t.y/, b 2 � int.C/. Let z WD �x C
.1� �/y with 0 < � < 1. Setting c WD �aC .1� �/b it follows from .1� �/b 2
� int.C/ and �a … int.C/ that c … C. Since t.z/ ¤ ;, from (10.2), there exists
d 2 t.z/ such that c � d 2 C, hence d … C. Thus t.z/ … C, and (v) is true.

For further details, we refer to [6].

Theorem 10.4 Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and W be a nonempty subset of a topological vector
space Y. Let F W K 	 K ! 2Y be a set-valued map with nonempty values such that
the following conditions:

(A0) F.x; x/ � W for all x 2 K;
(A1) For all x; y 2 K, F.x; y/ � W implies F.y; x/ � �W;
(A2) For all x 2 K, the set f� 2 K W F.x; �/ � �Wg is closed;
(A3) For all x 2 K, the set f� 2 K W F.x; �/ 6� Wg is convex;
(A4) For all x; y 2 K, F.�; x/ � �W for all � 2 �x; y� implies F.x; y/ � W, where

�x; y� denotes the line segment joining x and y but not containing x.

Then the solution set to the problem

find Nx 2 K such that F.Nx; y/ � W; for all y 2 K (10.10)

and that of the problem

find Nx 2 K such that F.y; Nx/ � �W; 8y 2 K; (10.11)

are nonempty, closed and both coincide.

Proof We first find Nx 2 K such that

Nx 2
\

y2K
fx 2 K W F.y; x/ � �Wg :

To that end, we shall use the famous Fan-KKM Lemma 1.14. Set

G.y/ D ˚
x 2 K W F.y; x/ � �W

�
:

Assumption (A2) implies that for each y 2 K, G.y/ is a closed subset of a compact
set K and hence G.y/ is compact. In order to apply the Fan-KKM Lemma 1.14, we
need to prove that for any finite subset fy1; y2; : : : ; ymg of K, co.fy1; y2; : : : ; ymg/ �Sm

iD1G.yi/. If y D Pm
iD1 ˛iyi 62 Sm

iD1G.yi/ for some ˛i � 0, i D 1; 2; : : : ;m,
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Pm
iD1 ˛i D 1, then y 62 G.yi/ for all i D 1; 2; : : : ;m. Thus for each i D 1; 2; : : : ;m,

F.yi; y/ 6� �W which implies F.y; yi; / 6� W by assumption (A1). Thus F.y; y/ 6� W
because of assumption (A3), which contradicts assumption (A0). This proves that
for any finite subset fy1; y2; : : : ; ykg of K, co.fy1; y2; : : : ; ykg/ � Sk

iD1G.yi/. Hence
by Fan-KKM Lemma 1.14, there exists Nx 2 K such that Nx 2 T

y2K G.y/, that is,
F.y; Nx/ � �W for all y 2 K, in other words, the second problem has a solution.

For any y 2 K, �Nx; y� � K. Therefore, F.z; Nx/ � �W for all z 2 �Nx; y�. By
assumption (A4), F.Nx; y/ � W. Hence every solution of the second problem is a
solution of the first problem. By assumption (A1), every solution of the first problem
is a solution of the second problem. Hence, we deduce that the solution sets of both
the problems coincide. The closedness is a consequence of (A2). ut

Since a nonempty closed convex bounded subset of a reflexive Banach space is
weakly compact, we have the following corollary.

Corollary 10.3 Let K be a nonempty closed, convex and bounded subset of a
reflexive Banach space X and W be a nonempty subset of a normed space Y. Let
F W K 	 K ! 2Y be a set-valued map with nonempty values such that the following
conditions:

(B0) F.x; x/ � W for all x 2 K;
(B1) For all x; y 2 K, F.x; y/ � W implies F.y; x/ � �W;
(B2) For all x 2 K, the set f� 2 K W F.x; �/ � �Wg is (sequentially) weakly closed;
(B3) For all x 2 K, the set f� 2 K W F.x; �/ 6� Wg is convex;
(B4) For all x; y 2 K, F.�; x/ � �W for all � 2 �x; y� implies F.x; y/ � W, where

�x; y� denotes the line segment joining x and y but not containing x.

Then the solution set to the problem (10.10) and (10.11) are nonempty, weakly
closed and both coincide.

10.3 Existence Results for Generalized Vector Equilibrium
Problems

In this section, we present several existence results for solutions of GWVEPs with or
without monotonicity condition. We first use Corollary 10.3 to derive the existence
results for solutions of GWVEP (10.2) and then existence results for solutions of
GSVEP (10.4).

Definition 10.1 Let K be a nonempty convex subset of a Banach space X and C be
a proper closed convex cone in Y. A set-valued map S W K ! 2Y n f;g is said to
be weakly lower semicontinuous at x 2 K if for any y 2 S.x/ and for any sequence
fxmg in K converges weakly to x, there exists a sequence fymg in S.xm/ converges
strongly to y.

S is weakly lower semicontinuous on K if it is weakly lower semicontinuous at
each point of K.



10.3 Existence Results for Generalized Vector Equilibrium Problems 437

We now adapt the abstract Corollary 10.3 to problem (10.2) and we give simpler
verifiable conditions on F ensuring the validity of all assumptions imposed in
Corollary 10.3.

Let K be a nonempty closed convex bounded subset of a reflexive Banach space
X and C be a proper closed convex cone in a normed space Y such that int.C/ ¤ ;.
Let F W K 	 K ! 2Y n f;g have the following properties:
. f0/ For all x 2 K, F.x; x/ � l.C/ WD C \ .�C/;
. f1/ For all x; y 2 K, F.x; y/\ .� int.C// D ; implies F.y; x/\ int.C/ D ;;
. f2/ For all x 2 K, the mapping F.x; �/ W K ! 2Y n f;g is C-convex;
. f3/ For all x; y 2 K, the set f� 2 Œx; y� W F.�; y/ \ .� int.C// D ;g is closed;
. f4/ For all x 2 K, F.x; �/ is weakly lower semicontinuous.

Remark 10.3

(a) One can check immediately that the C-convexity of F.x; �/ implies that for all
x 2 K, the set

f� 2 K W F.x; �/ 6� Y n .� int.C//g

is convex. Hence condition (B3) (with W D Y n .� int.C//) of Corollary 10.3
holds.

(b) It can be easily seen that the weakly lower semicontinuity of F.x; �/ asserts the
(sequential) weak closedness of

f� 2 K W F.x; �/ � Y n .� int.C//g

for all x 2 K. Thus condition (B2) (withW D Y n .� int.C//) of Corollary 10.3
is satisfied.

(c) Assumptions . f0/, . f2/ and . f3/ imply that, given any x 2 K,

0 2 F.y; x/C .Y n .� int.C// for all y 2 K implies

F.x; y/\ .� int.C// D ;; for all y 2 K: (10.12)

Hence condition (B4) (with W D Y n .� int.C//) of Corollary 10.3 holds.
Indeed, for every y 2 K consider xt D x C t.y � x/ for t 2 �0; 1Œ. Clearly

xt 2 K. The C-convexity of F.xt; �/ implies

tF.xt; y/C .1 � t/F.xt; x/ � F.xt; xt/C C � C:

Since 0 2 F.xt; x/ C .Y n .� int.C//, there exists �.xt; x/ 2 F.xt; x/ such that
�.xt; x/ 62 int.C/. From a previous inclusion one has

tF.xt; y/ � �.1 � t/�.xt; x/C C � .Y n .� int.C//C C � Y n .� int.C//:
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It turns out that F.xt; y/ � Yn.� int.C// or, equivalently,F.xt; y/\.� int.C// D
;. Letting t # 0, we obtain by assumption . f3/, F.x; y/\ .� int.C// D ;. Since
y was arbitrary, the desired result is proved.

The following result shows that (10.12) also holds if we replace the C-convexity
of F.x; �/ by the explicitly ı-quasiconvexity for each x 2 K.

Proposition 10.1 Assume that the set-valued map F W K 	 K ! 2Y n f;g satisfies
assumption . f0/ and . f3/ such that F.x; �/ is explicitly ı-C-quasiconvex for each
x 2 K. Then (10.12) holds.

Proof For a given x 2 K, let

0 2 F.y; x/C .Y n .� int.C///; for all y 2 K: (10.13)

Suppose there exists y 2 K such that F.x; y/ \ .� int.C// ¤ ;. . f3/ can be written,
in an equivalent way, as
. f3/ W for all x; y 2 K, the set f� 2 Œx; y� W F.�; y/ \ .� int.C// ¤ ;g is open (in
Œx; y�).

Since x 2 f� 2 Œx; y� W F.�; y/ \ .� int.C// ¤ ;g WD M, there exists ˛ 2 �0; 1Œ
such that

z WD x C ˛.y � x/ D ˛y C .1 � ˛/x 2 M;

that is,

z 2 Œx; y� and F.z; y/ \ .� int.C// ¤ ;: (10.14)

Now by explicitly ı-C-quasiconvexity of F.z; �/, we have

F.z; y/ � F.z; z/C C � C � W WD Y n .� int.C//

which implies that

F.z; y/\ .� int.C// D ;;

a contradiction of (10.14). Therefore, we can only have

F.z; x/ � F.z; z/C C � C � W;

that is,

F.z; x/\ .� int.C// D ;: (10.15)

Relations (10.14) and (10.15) imply

ŒF.z; y/ � F.z; x/� \ .� int.C// ¤ ;:
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By explicitly ı-C-quasiconvexity of F.z; �/, we have

F.z; x/ � F.z; z/C int.C/ � C C int.C/ � int.C/

which contradicts (10.13). Hence F.x; y/ � Y n .� int.C// for all y 2 K. ut
Theorem 10.5 Let K be a nonempty closed, convex and bounded subset of a
reflexive Banach space X and C be a proper closed convex cone in a normed space Y
such that int.C/ ¤ ;. Let F W K	K ! 2Y be a set-valued map with nonempty values
such that the conditions . f0/� . f4/ hold. Then the solution set to GWVEP (10.2) is
nonempty and weakly closed.

In view of Proposition 10.1, condition . f2/ in Theorem 10.5 can be replaced by
following condition:

. f22/ F.x; �/ is explicitly ı-C-quasiconvex for each x 2 K.

For the existence of a solution of strong GVEP, the basic assumptions on the
set-valued map F W K 	 K ! 2Y n f;g are listed below:

( f 0
1) For all x; y 2 K, F.x; y/ � C implies F.y; x/ � �C;

( f 0
2) For all x 2 K, the mapping F.x; �/ W K ! 2Y n f;g is properly C-quasiconvex;

( f 0
3) For all x; y 2 K, the set f� 2 Œx; y� W F.y; �/ � Cg is closed;

( f 0
4) For all x 2 K, F.x; �/ is weakly lower semicontinuous on K.

Remark 10.4

(a) One can check that the proper C-quasiconvexity of F.x; �/ implies that the set

f� 2 K W F.x; �/ 6� Cg

is convex for all x 2 K. Hence condition (B3) (with W D C) of Corollary 10.3
is satisfied.

(b) It can be easily seen that the weakly lower semicontinuity of F.x; �/ asserts the
weak closedness of

f� 2 K W F.x; �/ � �Cg

for all x 2 K. Thus condition (B3) (withW D C) of Corollary 10.3 is satisfied.
(c) Similar to Part (c) of Remark 10.3, one can prove, under assumptions . f0/, . f 0

3/

and C-convexity of F.x; �/, that given any x 2 K,

0 2 F.y; x/C C for all y 2 K implies F.x; y/\ .Y n C/ D ; for all y 2 K:
(10.16)

Hence condition (B4) (with W D C) of Corollary 10.3 holds.

We obtain the following result from Corollary 10.3 by specializingW D C.

Theorem 10.6 Let K � X be a nonempty weakly compact convex set and F W
K 	 K ! 2Y n f;g be a set-valued map satisfying conditions . f0/ � . f 0

4/ such
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that for all x 2 K, F.x; �/ is C-convex. Then the solution set Sol(GSVEP) of the
problem (10.4) is nonempty and weakly compact.

Proof The weak compactness is obtained as usual. To prove the nonemptiness of
Sol(GSVEP), we show that the assumption of Corollary 10.3 are satisfied when
specialized to W D C. This was proved in Remark 10.4. ut

To study the existence results for solutions of GWVEP (10.1) under some kind
of monotonicity, we consider the following generalized weak vector equilibrium
problem, which is closely related to the GWVEP (10.1) and can be termed as the
dual of GWVEP (10.1) (in short, DGWVEP):

Find Nx 2 K such that F.y; Nx/ 6� int.C/; for all y 2 K: (10.17)

The solution set of DGWVEP is denoted by Sol(DGWVEP).

Definition 10.2 Let C be a closed convex solid cone in Y. A set-valued map F W
K 	 K ! 2Y n f;g is said to be

(a) C-pseudomonotone if for all x; y 2 K, we have

F.x; y/ 6� � int.C/ implies F.y; x/ 6� int.C/I

(b) maximal C-pseudomonotone if it is C-pseudomonotone and for all x; y 2 K,

F.z; x/ 6� int.C/ for all z 2 �x; y� implies F.x; y/ 6� � int.C/:

We mention the following lemma which provides the relationship between
Sol(GWVEP) and Sol(DGWVEP).

Lemma 10.1 If F is maximal C-pseudomonotone, then Sol(GWVEP) =
Sol(DGWVEP).

Proof By C-pseudomonotonicity of F, we have the inclusion Sol(GWVEP) �
Sol(DGWVEP).

Let Nx 2 Sol(DGWVEP). Then F.y; Nx/ 6� int.C/ for all y 2 K. For any y 2 K,
�Nx; y� � K. Therefore, F.z; Nx/ 6� int.C/ for all z 2 �x; y�. Since F is maximal C-
pseudomonotone, we have F.Nx; y/ 6� � int.C/. Hence Nx 2 Sol(GWVEP). ut
Lemma 10.2 Let K be a nonempty convex subset of a topological vector space
X, C be a proper closed convex solid cone in a topological vector space Y and
F W K 	 K ! 2Y n f;g be a set-valued map. Then
(a) Sol(GWVEP) � Sol(DGWVEP) if F is C-pseudomonotone;
(b) Sol(DGWVEP) � Sol(GWVEP) if F.x; x/ � C, the set-valued map y 7! F.x; y/

is explicitly ı-C-quasiconvex, and the set-valued map x 7! F.x; y/ is u-
hemicontinuous for all x; y 2 K.
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Proof

(a) It directly follows from the C-pseudomonotonicity of F.
(b) Let Nx 2 Sol(DGWVEP). Assume contrary that Nx … Sol(GWVEP). Then there

exists y 2 K such that

F.Nx; y/ � � int.C/:

By u-hemicontinuity of F.�; y/, it follows that, for some ˛ 2 �0; 1Œ,

F.x˛; y/ � � int.C/; (10.18)

where x˛ D ˛y C .1 � ˛/Nx. By explicit ı-C-quasiconvexity of F, we now have
either

F.x˛; y/ � F.x˛; x˛/C C � C

or

F.x˛; Nx/ � F.x˛; x˛/C C � C:

The first relation contradicts (10.18). Thus, we must have F.x˛; Nx/ � C, hence,

F.x˛; Nx/� F.x˛; y/ � int.C/:

Again by explicit ı-C-quasiconvexity of F, we have

F.x˛; Nx/ � F.x˛; x˛/C int.C/ � int.C/;

which contradicts our assumption that Nx is a solution of DGWVEP (10.17).
ut

Theorem 10.7 Let X and Y be Hausdorff topological vector spaces, K be a
nonempty compact convex subset of X and C be a proper closed convex and solid
cone in Y. Let F W K 	 K ! 2Y n f;g be a set-valued map such that following
conditions hold.

(i) For each x 2 K, F.x; x/ � C;
(ii) F is C-pseudomonotone and F.x; �/ is explicitly ı-C-quasiconvex for each x 2

K;
(iii) For each y 2 K, F.�; y/ is u-hemicontinuous;
(v) For each y 2 K, U.y/ WD fx 2 K W F.y; x/ � int.C/g is open.
Then there exists Nx 2 Sol(GWVEP).

Proof For all y 2 K, define set-valued maps S1; S2 W K ! 2K by

S1.y/ D fx 2 K W F.x; y/ 6� � int.C/g
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and

S2.y/ D K n U.y/:

Then S1 is a KKM map. Indeed, let u 2 co.fy1; y2; : : : ; ymg/ for any finite subset
fy1; y2; : : : ; ymg of K. Assume, for contradiction, that

u …
m[

iD1
S1.yi/:

Then u 2 K and

F.u; yi/ � � int.C/; for all i D 1; 2; : : : ;m:

Since F.x; �/ is explicit ı-C-quasiconvex, we have

F.u; yi/ � F.u; u/C C � C; for some i;

which is a contradiction.
By C-pseudomonotonicity of F, we have S1.y/ � S2.y/ for all y 2 K. Since S1 is

a KKM-map, so is S2.
Since for all y 2 K, U.y/ is open and thus S2.y/ is closed subset of a compact set

K and hence compact. Thus, by Fan-KKM Lemma 1.14, we have

Sol(DGWVEP) D
\

y2K
S2.y/ ¤ ;:

From Lemma 10.2, we have Sol(DGWVEP) � Sol(GWVEP). Consequently, there
exists Nx 2 Sol(GWVEP), as required. ut

By adopting the technique of Theorem 10.7, Farajzadeh et al. [25] proved the
existence of solutions of GVEP (10.3) under the upper sign continuity but used a
different form of C-pseudomonotonicity.

Definition 10.3 (v-Coercivity) A set-valued map S W K ! 2Y is said to be v-
coercive on K if there exist a compact subset B of X and Qy 2 B \ K such that
K n B � U.Qy/.

We now have the following result for existence of solutions of GWVEP (10.1) in
the unbounded case.

Theorem 10.8 Let X, Y, C and F be the same as in Theorem 10.7. Let K be a
nonempty closed convex subset of X. In addition, suppose that F is v-coercive on K.
Then there exists Nx 2 Sol(GWVEP).

Proof Let S1 and S2 be the same as in the proof of Theorem 10.7. Choose compact
subset B of X and Ny 2 B \ K such that K n B � U.Qy/.
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Since K n B � U.Ny/, we have S2.Ny/ � K \ B. Hence, S2.Ny/ is a compact subset
of K. Thus, as in the proof of Theorem 10.7, we have

Sol(GWVEP) D
\

y2K
S2.y/ ¤ ;:

From Lemma 10.2, we have Sol(DGWVEP) � Sol(GWVEP). Consequently, there
exists Nx 2 Sol(GWVEP), as required. ut
Remark 10.5

(a) The assertion of Theorems 10.7 and 10.8 remains valid if we replace the
condition of explicit ı-C-quasiconvexity of F with the following condition:

The set fy 2 K W F.x; y/ � � int.C/g is convex for each x 2 K:

(b) The topologies on X and Y need not be equivalent. For instance, if X and Y are
normed spaces, we can use the weak topology on X and the norm topology on
Y.

Konnov and Yao [41] proved above mentioned results in the setting of moving
cones.

When F.x; �/ is not necessarily explicitly ı-C-quasiconvex but only C-
quasiconvex, we have the following existence result for solutions of GWVEP
in the unbounded case.

Theorem 10.9 Let K be a nonempty convex subset of a Hausdorff topological
vector space X and C be a proper closed convex cone in a topological vector space
Y such that int.C/ ¤ ;. Let F W K ! 2Y be set-valued map with nonempty values
such that the following conditions hold.

(i) F.x; x/ � C for all x 2 K;
(ii) F is C-quasiconvex and maximal C-pseudomonotone;
(iii) For each y 2 K, the set-valued map x 7! F.x; y/ is upper semicontinuous with

compact values on K;
(iv) There exist a nonempty compact convex subset D of K and an element Qy 2 D

such that F.z; Qy/ � � int.C/ for all z 2 K n D.

Then there exists Nx 2 Sol(GWVEP).

Proof For each y 2 K, we define set-valued maps S;T W K ! 2K by

S.y/ D fx 2 K W F.y; x/ 6� int.C/g

and

T.y/ D fx 2 K W F.x; y/ 6� � int.C/g:
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By condition (i), T.y/ is nonempty for all y 2 K. Also, T.y/ is closed for each
y 2 K. Indeed, let fx�g�2	 be a net in T.y/ such that fx�g converges to x. Then
we have F.x�; y/ 6� � int.C/ for each y 2 K, that is, there exists z� 2 F.x�; y/
such that z� … � int.C/ for all � 2 	. Let A D fx�gSfxg. Then A is compact and
z� 2 F.A; y/ which is compact by condition (iii). Therefore, fz�g has a convergent
subnet with limit z. Without loss of generality, we may assume that fz�g converges
to z. Then by the upper semicontinuity of F.�; y/, we have z 2 F.x; y/. Consequently,
z 2 F.x; y/ and z … � int.C/, i.e., F.x; y/ 6� � int.C/. Hence x 2 T.y/ and so T.y/
is closed as claimed.

Since F is C-quasiconvex, it is easy to see that T is a KKM-map (see for example,
the proof of Theorem 10.7). Then T is a KKM-map with closed values and T.Qy/ is
contained in a compact setD by condition (iv) and hence T.Qy/ is compact. It follows
from Fan-KKMLemma 1.14 that there exists Nx 2 D such that Nx 2 T.y/ for all y 2 K.
By C-pseudomonotonicity of F, we have T.y/ � S.y/ for all y 2 K. Therefore, we
obtain that Nx 2 S.y/ for all y 2 K, that is, F.y; Nx/ 6� int.C/ for all y 2 K. By
Proposition 10.3, Nx 2 D is a solution of GWVEP (10.1). ut

Theorem 10.9 is studied by Ansari et al. [7] for the moving cone.
Now we establish existence results for a solution of GWVEP (10.1) in the setting

of topological vector spaces but by using a Browder type fixed point theorem for
set-valued maps.

Theorem 10.10 Let K be a nonempty convex subset of a Hausdorff topological
vector space X and C be a proper closed convex cone in a topological vector space
Y such that int.C/ ¤ ;. Let F W K	K ! 2Ynf;g be a C-pseudomonotone set-valued
map such that the following conditions hold:

(i) For each x 2 K, F.x; x/ � C;
(ii) For each x 2 K, the set-valued map y 7! F.x; y/ is C-quasiconvex-like and

explicitly ı-C-quasiconvex;
(iii) For each x 2 K, the set-valued map y 7! F.x; y/ is upper semicontinuous with

compact values;
(iv) For each y 2 K, the set-valued map x 7! F.x; y/ is u-hemicontinuous;
(v) There exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B such that
F.x; Qy/ � � int.C/.

Then the solution set Sol(GWVEP) of GWVEP (10.1) is nonempty and compact
subset of B.

Proof Define set-valued maps S;T W K ! 2K by

S.x/ D fy 2 K W F.y; x/ � int.C/g

and

T.x/ D fy 2 K W F.x; y/ � � int.C/g;
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for all x 2 K. Then by C-pseudomonotonicity of F, S.x/ � T.x/ for all x 2 K.
Also, for each x 2 K, T.x/ is convex. To see this, let y1; y2 2 T.x/. Then for

each x 2 K, F.x; y1/ � � int.C/ and F.x; y2/ � � int.C/. Since the set-valued map
y 7! F.x; y/ is C-quasiconvex-like, for all ˛ 2 Œ0; 1�, we have either

F.x; ˛y1 C .1 � ˛/y2/ � F.x; y1/� C � � int.C/ � C � � int.C/;

or

F.x; ˛y1 C .1 � ˛/y2/ � F.x; y2/� C � � int.C/� C � � int.C/:

In both the cases, we get F.x; ˛y1C.1�˛/y2/ � � int.C/. Hence, ˛y1C.1�˛/y2 2
S.x/, and therefore, T.x/ is convex.

For each y 2 K, S�1.y/ D fx 2 K W F.y; x/ � int.C/g is open in K, equivalently,
the complement ŒS�1.y/�c D fx 2 K W F.y; x/ 6� int.C/g is closed in K. Indeed, let
fx�g�2	 be a net in ŒS�1.y/�c such that fx�g converges to x. Then we have F.y; x�/ 6�
int.C/ for each y 2 K, that is, there exists z� 2 F.y; x�/ such that z� … int.C/ for
all � 2 	. Let A D fx�gSfxg. Then A is compact and z� 2 F.y;A/ which is
compact by condition (iii). Therefore, fz�g has a convergent subnet with limit z.
Without loss of generality, we may assume that fz�g converges to z. Then by the
upper semicontinuity of F.y; �/, we have z 2 F.y; x/. Consequently, z 2 F.y; x/ and
z … int.C/, i.e., F.y; x/ 6� int.C/. Hence x 2 ŒS�1.y/�c and so ŒS�1.y/�c is closed.

We verify that T has no fixed point. Assume contrary that T has a fixed point
x 2 K. Then x 2 T.x/, that is, F.x; x/ � � int.C/. By condition (i), F.x; x/ � C.
Therefore, F.x; x/ � � int.C/ \ C D ;, a contradiction. Indeed, if there were a
v 2 � int.C/\C, then 0 D �vCv 2 int.C/CC � int.C/. This implies that C D Y
because int.C/ 3 0 is an absorbing set in Y, which contradicts the assumption that
C is proper. Therefore, T has no fixed point.

Since T has no fixed point, we reach to a conclusion that either S or T would not
satisfy at least one of the hypotheses of Corollary 1.3. But, as we have seen above
that S and T satisfy all the hypotheses of Corollary 1.3 except S.x/ is nonempty for
all x 2 K. Hence, there must be a Nx 2 K such that S.Nx/ D ;, that is,

F.y; Nx/ 6� int.C/; for all y 2 K:

By Lemma 10.2, we have

F.Nx; y/ 6� � int.C/; for all y 2 K;

as desired. ut
Definition 10.4 Let C be a closed convex solid cone in Y. A set-valued map F W
K 	 K ! 2Y n f;g is said to be C-quasimonotone if for all x; y 2 K, we have

F.x; y/ 6� �C implies F.y; x/ 6� int.C/:
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We now provide existence results for a solution of GWVEP under C-
quasimonotonicity, which strictly contains the class of C-pseudomonotone
set-valued maps.

Lemma 10.3 Let K be a nonempty convex subset of a topological vector space X
and C be a proper, closed and convex cone in a topological vector space Y such
that int.C/ ¤ ;. Let F W K 	 K ! 2Y n f;g be a C-quasimonotone, explicitly C-
quasiconvex-like set-valued map such that F.�; z/ is u-hemicontinuous for any z 2 K.
Then for each pair of points x 2 K, y 2 ri .K/, at least one of the following must
hold:

(a) F.y; x/ � int.C/ implies F.x; y/ � � int.C/,
or

(b) F.x; z/ 6� � int.C/ for all z 2 K.

Proof Let F.y; x/ � int.C/ for some x 2 K, y 2 ri .K/, and let there exist z 2 K such
that F.x; z/ � � int.C/. Since yC .z� y/ WD z 2 K, it follows from the definition of
relative algebraic interior point that there is " > 0 such that �y�".z�y/; yC".z�y/Œ�
K. Then for any ˇ with 0 < ˇ < 1, we have

�ˇ D ˇ.y � ".z � y//C .1 � ˇ/.y C ".z � y// D y C .2ˇ � 1/".y � z/ 2 K:

Therefore by choosing ˇ with 1
2
< ˇ < 1 and letting " to be sufficient small if

necessary, we conclude that there exists �0 2 �0; 1Œ such that y C �.y � z/ 2 K for
all � 2 �0; �0Œ.

By u-hemicontinuity of F.�; x/, it follows that, for some ˛ 2 �0; 1Œ,

F.z˛; x/ � int.C/;

where z˛ WD y C ˛.y � z/ 2 K. Since F is C-quasimonotone, we have

F.x; z˛/ � �C:

Since z˛ D .1 C ˛/y � ˛z, we have y D ˇz C .1 � ˇ/z˛ 2 �z˛; zŒ with ˇ D
˛

1C˛ : Besides, y 2 �z˛; zŒ and F is explicitly C-quasiconvex-like. In case F.x; z˛/ �
� int.C/, it follows that either

F.x; y/ � F.x; z/� C � � int.C/;

or

F.x; y/ � F.x; z˛/ � C � � int.C/:

Otherwise, if F.x; z˛/ 6� � int.C/, then F.x; z˛/ � F.x; z/ 6� � int.C/, and we must
have

F.x; y/ � F.x; z˛/ � int.C/ � � int.C/:
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In all the cases, we obtain the desired result. ut
Theorem 10.11 Let K be a nonempty convex subset of a Hausdorff topological
vector space X such that ri .K/ ¤ ;, and C be a proper closed convex cone in a
topological vector space Y such that int.C/ ¤ ;. Let F W K 	 K ! 2Y n f;g be a
C-quasimonotone set-valued map satisfying the following conditions:

(i) For each x 2 K, F.x; x/ � C;
(ii) For each x 2 K, the set-valued map y 7! F.x; y/ is explicitly C-quasiconvex-

like and explicitly ı-C-quasiconvex;
(iii) For each x 2 K, the set-valued map y 7! F.x; y/ is upper semicontinuous with

compact values;
(iv) For each y 2 K, the set-valued map x 7! F.x; y/ is u-hemicontinuous;
(v) There exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B \ ri .K/ such
that F.x; Qy/ � � int.C/.

Then there exists a solution Nx 2 K to GWVEP (10.1).

Proof Define S;T W K ! 2K n f;g by

S.x/ D fy 2 ri .K/ W F.y; x/ � int.C/g

and

T.x/ D fy 2 ri .K/ W F.x; y/ � � int.C/g;

for all x 2 K:
From Lemma 10.3 it follows that, for each x 2 K, either S.x/ � T.x/, or

F.x; y/ 6� � int.C/; for all y 2 K:

From the proof of Theorem 10.10, we see that

• for each x 2 K, T.x/ is convex
• for each y 2 K, S�1.y/ is open in K
• T has no fixed point

It follows that there exists Nx 2 K such that S.Nx/ D ;, i.e.,

F.y; Nx/ 6� int.C/; for all y 2 ri .K/:

Take any z 2 K and y0 2 ri .K/ and suppose that

F.z; Nx/ � int.C/:
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Then by u-hemicontinuity of F.�; Nx/, there is an y 2 �z; y0Œ� ri .K/ such that

F.y; Nx/ � int.C/;

a contradiction. Hence,

F.y; Nx/ 6� int.C/; for all y 2 K:

By Lemma 10.2 (b), we have

F.Nx; y/ 6� � int.C/; for all y 2 K;

as desired. ut
Ansari et al. [8] considered the GWVEP for moving cone and derived the

existence results for solutions under Cx-quasimonotonicity.

10.3.1 Existence Results Without Monotonicities

Now we provide an existence result of a solution to GWVEP without any kind of
monotonicity assumption.

Theorem 10.12 Let K be a nonempty convex subset of a Hausdorff topological
vector space X and C be a proper closed convex cone in a topological vector space
Y such that int.C/ ¤ ;. Let F W K ! 2Y be set-valued map with nonempty values
such that the following conditions hold.

(i) F.x; x/ 6� � int.C/ for all x 2 K;
(ii) F is C-quasiconvex-like;
(iii) For each y 2 K, the set-valued map x 7! G.x; y/ is upper semicontinuous with

compact values on K;
(iv) There exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B such that
F.x; Qy/ � � int.C/.

Then the solution set Sol(GWVEP) of GWVEP (10.1) is nonempty and compact
subset of B.

Proof For all y 2 K, define Q.y/ D fx 2 K W F.x; y/ 6� � int.C/g. Then the solution
set Sol(GWVEP) D T

y2K Q.y/. As in the proof of Theorem 10.9, Q.y/ is closed
for each y 2 K.

Now we prove that the solution set Sol(GWVEP) is nonempty. Assume contrary
that Sol(GWVEP) D ;, if possible. Then, for each x 2 K, the set

S.x/ D fy 2 K W x … Q.y/g D fy 2 K W F.x; y/ � � int.C/g ¤ ;:
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Also, from the proof of Theorem 10.10, S.x/ is convex for each x 2 K.
Thus S W K ! 2K defines a set-valued map such that for each x 2 K, S.x/ is

nonempty and convex. Now for each x 2 K, the set

S�1.y/ D fx 2 K W y 2 S.x/g
D fx 2 K W F.x; y/ � � int.C/g
D fx 2 K W F.x; y/ 6� � int.C/gc
D ŒQ.y/�c

is open in K. From Assumption (iv), for each x 2 K n D, there exists Qy 2 B such
that F.x; Qy/ � � int.C/, that is, x … Q.Qy/. By Corollary 1.3, there exists a point
Nx 2 S.Nx/, that is, F.Nx; Nx/ � � int.C/, which contradicts to assumption (i). Hence
the solution set Sol(GWVEP) is nonempty. We conclude the proof by noting that
Sol(GWVEP) D T

y2K Q.y/ being a closed subset of the compact set D is compact
and this completes the proof. ut

10.4 Duality

We adopt the following rule to obtain the dual formulations of GWVEP (10.1):

Interchange arguments of the underlying set-valued map and change the sign on the right-
hand side of the inclusion.

Then such a dual will satisfy the following fundamental duality property:

the dual of the dual is the primal.

However in addition to this property, it also satisfy some other properties similar to
those in optimization, for example, the solution set of dual problem coincide with
the solution set of the primal problem under certain monotonicity and convexity
conditions.

Throughout this section, unless otherwise specified, we assume that X and Y are
topological vector spaces and K is a nonempty convex subset of X. We denote by
F.K;Y/ the family of all set-valuedmaps from K	K to 2Y . Let C be a proper closed
convex cone with int.C/ ¤ ;. For a given set-valued map F 2 F.K/, by using above
rule, we define the dual form of GWVEP (10.1) in the following way and it is called
dual generalized weak vector equilibrium problem (in short, DGWVEP):

Find Nx 2 K such that F.y; Nx/ 6� int.C/; for all y 2 K: (10.19)

The solution set of DGWVEP (10.19) is denoted by Sol(DGWVEP). Then clearly
the dual of DGWVEP is GWVEP.

Konnov and Schaible [40] introduced this kind of duality concept for equilibrium
problems. By extending the terminology of Konnov and Schaible [40], Ansari et al.
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[7] (see also [9]) gave some dual formulations of the GWVEP and proved that the
solution set of the dual problem coincide with the solution set of the primal GWVEP
under certain pseudomonotonicity assumption. By using the dual formulations of
GWVEP, they established some existence results for solutions of GWVEP (10.1).
Ansari et al. [7] considered the moving cone in the formulation of GWVEP (10.1).
However, in this section in particular and in this book in general, we consider the
fixed proper closed convex cone.

10.4.1 Generalized Duality

With the help of an operator ˚ from F.K;Y/ into itself, we propose the following
dual generalized weak vector equilibrium problem, denoted by DGWVEP˚ :

Find Nx 2 K such that ˚.F.Nx; y// 6� � int.C/; for all y 2 K;

and ˚ is called duality operator. In fact, the operator ˚ is nothing but a set of
fixed rules applied to GWVEP, rather than a set-valued map. We see that under
certain conditions, the dual of DGWVEP˚ is the primal GWVEP and the solution
set Sol(DGWVEP)˚ of DGWVEP˚ coincides with the solution set Sol(GWVEP)
of the primal GWVEP.

For simplicity, we set

G.y; x/ D �˚.F.x; y//;

then DGWVEP˚ can be written as the following problem:

Find Nx 2 K such that G.y; Nx/ 6� int.C/; for all y 2 K: (10.20)

The set of all solutions of problem (10.20) is denoted by Sol(DGWVEP)G.

Proposition 10.2 If

˚ ı ˚.F.x; y// D F.x; y/; for all x; y 2 K;

or equivalently,

˚.�G.y; x// D F.x; y/; for all x; y 2 K;

then the dual of DGWVEP (10.19) is GWVEP (10.1).

Proof It is straightforward. ut
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Definition 10.5 LetK be a nonempty convex subset of a topological vector space X,
C be a proper closed convex cone in a topological vector space Y such that int.C/ ¤
;, and F;G W K 	 K ! 2Y be set-valued maps. Then F is said to be

(a) G-C-pseudomonotone if for all x; y 2 K,

F.x; y/ 6� � int.C/ implies G.y; x/ 6� int.C/I

(b) maximal G-C-pseudomonotone if it is G-C-pseudomonotone and for all x; y 2
K,

G.z; x/ 6� int.C/ for all z 2 �x; y� implies F.x; y/ 6� � int.C/:

The following results give the equivalence between Sol(GWVEP) and
Sol(DGWVEP)G.

Proposition 10.3 If F is maximal G-C-pseudomonotone, then Sol(GWVEP) =
Sol(DGWVEP)G.

Proof It lies on the lines of the proof of Lemma 10.1. ut
Proposition 10.4 Let F;G 2 F.K;Y/ such that

(i) for all x 2 K, F.x; x/ � C,
(ii) F is explicitly ı-C-quasiconvex and G-C-pseudomonotone,
(iii) for all x; y 2 K, F.x; y/ � int.C/ implies G.x; y/ � int.C/,
(iv) for all y 2 K, the set-valued map x 7! F.x; y/ is u-hemicontinuous.

Then Sol(GWVEP) = Sol(DGWVEP)G.

Proof It lies on the lines of the proof of Lemma 10.2. ut
Theorem 10.13 Let K be a nonempty and convex subset of a Hausdorff topological
vector space X and Y be a topological vector space. Let F;G 2 F.K;Y/ such that
the following conditions hold.

(i) F is G-C-pseudomonotone;
(ii) For each x 2 K, F.x; x/ 6� � int.C/;
(iii) For each x 2 K, there exists y 2 K such that G.y; x/ � int.C/;
(iv) For each x 2 K, the set fy 2 K W F.x; y/ � � int.C/g is convex;
(v) For each y 2 K, Q.y/ D fx 2 K W G.y; x/ 6� int.C/g is closed in K;
(vi) There exist a nonempty compact convex subset B of K and a nonempty compact

subset D of K such that for each x 2 K n D, there exists Qy 2 B such that
x 2 intKfx 2 K W F.x; Qy/ � � int.C/g:

Then GWVEP (10.1) has a solution.

Proof Suppose that the conclusion of this theorem is not true. Then for each x 2 K,
the set

fy 2 K W F.x; y/ � � int.C/g ¤ ;:
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We define a set-valued map S W K ! 2K by

S.x/ D fy 2 K W F.x; y/ � � int.C/g for all x 2 K:

By (v), S.x/ is convex for all x 2 K. By G-C-pseudomonotonicity of F, we have

ŒS�1.y/�c D fx 2 K W F.x; y/ 6� � int.C/g
� fx 2 K W G.y; x/ 6� int.C/g
D Q.y/:

It follows that the complement of Q.y/ in K, ŒQ.y/�c � S�1.y/ for all y 2 K. By
(v), Q.y/ is closed in K for all y 2 K: Hence ŒQ.y/�c is open in K and therefore
ŒQ.y/�c � intKS�1.y/ for all y 2 K. By (iii), for each x 2 K, there exists y 2 K such
that G.y; x/ � int.C/. Hence it follows that

K D
[

y2K
ŒQ.y/�c D

[

y2K
intKS�1.y/:

Finally by (vi), for each x 2 K n D there exists Qy 2 B such that x 2 intKS�1.Qy/:
Hence S satisfies all the conditions of Theorem 1.35. Therefore there exists x� 2 K
such that x� 2 S.x�/, that is, F.x�; x�/ � � int.C/. However this contradicts to
assumption (ii). Hence the result is proven. ut
Remark 10.6

(a) If F is C-quasiconvex-like, then condition (iv) of Theorem 10.13 is satisfied (see
the proof of Theorem 10.10).

(b) If X is a metrizable locally convex space, for each y 2 K, G.y; �/ is upper
semicontinuous with compact values, then condition (v) of Theorem 10.13 is
satisfied (see the proof of Theorem 10.10).

(c) The conclusion of Theorem 10.13 still holds if we replace condition (iii) by the
maximal G-C-pseudomonotonicity of F.

Indeed, if condition (iii) does not hold, then there exists Nx 2 K such that
G.y; x/ 6� int.C/ for all y 2 K. The maximal G-C-pseudomonotonicity of F
implies that Nx 2 K is a solution of the GWVEP (10.1).

Next we discuss condition (iii).

Example 10.1 Let K D Œ0; 1�, C D Œ0;1Œ and F;G W K 	 K ! R be defined by

F.x; y/ D
8
<

:

1 � .y=x/; if y 2 Œ0; 1�; 0 < x < 1;
y � 1; if y 2 Œ0; 1�; x D 1;

�y; if y 2 Œ0; 1�; x D 0;
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and

G.x; y/ D x � y; for all x; y 2 Œ0; 1�:

Then all the conditions of Theorem 10.13 except (iii) are satisfied. To see that (iii)
is not satisfied, note that G.y; 1/ D y � 1 � 0 for all y 2 Œ0; 1�. In this example
GWVEP (10.1) has no solution.

Hence Theorem 10.13 is not always true without condition (iii). If condition (iii)
is not satisfied, then an assumption stronger thanG-C-pseudomonotonicity of F will
guarantee the existence of a solution of GWVEP (10.1).

10.4.2 Additive Duality

In this subsection, we consider the case where

˚.F.x; y// D �G.y; x/ D �.F.y; x/C H.y; x//;

for some H 2 F.K;Y/ and specialize the results of previous section. In other words,
we study the following additive dual problem, denoted by DGWVEPH :

Find Nx 2 K such that F.y; Nx/C H.y; Nx/ 6� int.C/; for all y 2 K: (10.21)

In other words, to define the additive dual problem, we add H.y; x/ on the left-
hand side of the dual of primal problem, that is, DGWVEP. We denote by
Sol(DGWVEP)H the set of solutions of DGWVEPH .

Proposition 10.5 If

H.x; y/C H.y; x/ � � int.C/; for all x; y 2 K;

then the additive dual problem of DGWVEPH is GWVEP (10.1).

Proof SinceG.y; x/ D F.y; x/CH.y; x/, DGWVEPH can be written as to find Nx 2 K
such that

G.y; Nx/ 6� int.C/; for all y 2 K: (10.22)

By the rule of additive duality, the additive dual of (10.22) is

G.Nx; y/C H.y; Nx/ 6� � int.C/; for all y 2 K;

and therefore,

F.Nx; y/C H.Nx; y/C H.y; Nx/ 6� � int.C/:
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Since H.x; y/C H.y; x/ � � int.C/ for all x; y 2 K, we have

F.Nx; y/ 6� � int.C/:

This completes the proof. ut
Definition 10.6 Let F;H 2 F.K;Y/. The set-valued map F is called

(a) .H/-C-pseudomonotone if for all x; y 2 K,

F.x; y/ 6� � int.C/ implies F.y; x/C H.y; x/ 6� int.C/I

(b) maximal .H/-C-pseudomonotone if it is .H/-pseudomonotone and for all x; y 2
K,

F.z; x/C H.z; x/ 6� int.C/ for all z 2 �x; y� implies F.x; y/ 6� � int.C/:

Proposition 10.6 If F is maximal .H/-C-pseudomonotone, then
Sol(GWVEP) = Sol(DGWVEP)H.

Proposition 10.7 Let F;H 2 F.K;Y/ such that

(i) for all x 2 K, F.x; x/ � C,
(ii) F is explicitly ı-C-quasiconvex and .H/-C-pseudomonotone,
(iii) for all x; y 2 K, F.x; y/ � int.C/ implies F.x; y/C H.x; y/ � int.C/,
(iv) for all y 2 K, the set-valued map x 7! F.x; y/ is u-hemicontinuous.

Then Sol(GWVEP) = Sol(DGWVEP)H.

10.4.3 Multiplicative Duality

In order to define the multiplicative dual problem, we multiply by H.y; x/ for some
H 2 F.K;Y/, on the left-hand side and by int.C/ on the right-hand side of the
dual problem of primal problem, that is, DGWVEP. In other words, we consider the
following multiplicative dual problem, denoted by DGWVEPm.H/:

Find Nx 2 K such that F.y; Nx/ 	 H.y; Nx/ 6� int.C/ 	 int.C/; for all y 2 K:
(10.23)

The set of all solutions of DGWVEPm.H/ is denoted by Sol(DGWVEP)m.H/. “m” in
m.H/ refers to “multiplicative”.

Proposition 10.8 If

H.x; y/ 	 H.y; x/ � int.C/ 	 int.C/; for all x; y 2 K;
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then the multiplicative dual problem of DGWVEPm.H/ is GWVEP (10.1).

Proof Let G.y; x/ D F.y; x/	 H.y; x/, then DGWVEPm.H/ can be written as to find
Nx 2 K such that

G.y; Nx/ 6� int.C/ 	 int.C/; for all y 2 K: (10.24)

By the rule of multiplicative duality, the multiplicative dual of (10.24) is

G.Nx; y/ 	 H.y; Nx/ 6� �.int.C/ 	 int.C// 	 int.C/; for all y 2 K;

and therefore,

F.Nx; y/ 	 H.Nx; y/ 	 H.y; Nx/ 6� � int.C/ 	 int.C/ 	 int.C/:

Since H.x; y/ 	 H.y; x/ � int.C/ 	 int.C/ for all x; y 2 K, we have

F.Nx; y/ 6� � int.C/:

This completes the proof. ut
Definition 10.7 Let F;H 2 F.K;Y/. The set-valued map F is called

(a) m.H/-C-pseudomonotone if for all x; y 2 K,

F.x; y/ 6� � int.C/ implies F.y; x/ 	 H.y; x/ 6� int.C/ 	 int.C/I

(b) maximal m.H/-C-pseudomonotone if it is m.H/-C-pseudomonotone and for all
x; y 2 K,

F.z; x/ 	 H.z; x/ 6� int.C/ 	 int.C/ for all z 2 �x; y� implies

F.x; y/ 6� � int.C/:

Proposition 10.9 If F is maximal m.H/-pseudomonotone, then
Sol(GWVEP) = Sol(DGWVEP)m.H/.

Proposition 10.10 Let F;H 2 F.K;Y/ such that

(i) for all x 2 K, F.x; x/ � C,
(ii) F is explicitly ı-C-quasiconvex and m.H/-pseudomonotone,
(iii) for all x; y 2 K, F.x; y/ � int.C/ implies F.x; y/ 	 H.x; y/ � int.C/ 	 int.C/,
(iv) for all y 2 K, the set-valued map x 7! F.x; y/ is u-hemicontinuous.

Then Sol(GWVEP) = Sol(DGWVEP)m.H/.
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10.5 Recession Methods for Generalized Vector Equilibrium
Problems

As we have seen in the previous sections of this chapter and in Chap. 9 that most of
the existence results for solutions of GVEPs and VEPs require the compactness (in
topological vector space setting)/boundedness (in reflexive Banach space setting)
or some kind of coercivity condition. Flores-Bazán and Flores-Bazán [26] studied
the existence of solutions for VEPs under the asymptotic analysis, where neither
compactness on K nor any coercivity condition is assumed. They gave some
characterizations of nonemptiness of the solution set and also presented several
alternative necessary and/or sufficient conditions for the solution set to be nonempty
and compact.

Ansari and Flores-Bazán [3] extended the ideas of Flores-Bazán and Flores-
Bazán [26] for GVEPs. By using recession method, they provided several alternative
necessary and sufficient and/or sufficient conditions for the solution set of GVEPs
to be nonempty and bounded. Lee and Bu [42] also considered GWVEP (10.2) in
the setting of finite-dimensional Euclidean space but for a moving cone. They used
asymptotic cone of the solution set of GWVEP (10.2) to give conditions under which
the solution set is nonempty and compact. Sadeqi and Alizadeh [57] improved some
results given in [3]. Wang [59] further studied the equivalent characterizations of
the solution set of GSVEP (10.5) to be nonempty and bounded based on asymptotic
cone theory. In this section, we gather the results that appeared in the above cited
references.

Let K be a nonempty closed convex subset of a reflexive Banach space X and Y
be a normed space with an ordered cone C, that is, a proper, closed and convex cone
such that int.C/ ¤ ;. Let F W K 	 K ! 2Y n f;g be a set-valued map. The basic
assumptions on F are the following:

Assumption 10.8

. f0/ For all x 2 K, F.x; x/ � l.C/ WD C \ .�C/;

. f1/ For all x; y 2 K, F.x; y/\ .� int.C// D ; implies F.y; x/\ int.C/ D ;;

. f2/ For all x 2 K, the set-valued map F.x; �/ W K ! 2Y n f;g is C-convex;

. f3/ For all x; y 2 K, the set f� 2 Œx; y� W F.�; y/\ .� int.C// D ;g is closed;

. f4/ For all x 2 K, the set-valued map F.x; �/ W K ! 2Y n f;g is weakly lower
semicontinuous.

We introduce the following cones in order to deal with the unbounded case, that
is, when K is an unbounded set,

R0 WD
\

y2K

˚
v 2 K1 W 0 2 F.y; z C t v/C W for all t > 0 and z 2 K

such that F.y; z/ � �C
�
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and

R1 WD
\

y2K
fv 2 K1 W 0 2 F.y; y C t v/C W for all � > 0g ;

whereW D Y n .� int.C// and K1 denotes the recession cone of K.
We note that the sets R0 and R1 are nonempty (because of assumption . f0/) closed

cone but not necessarily convex. Clearly, R0 � R1.
The proof of the following result is straightforward, and therefore it is omitted.

Proposition 10.11 Let K be a nonempty closed convex subset of X and let (10.12)
hold. Then

R11 WD
\

y2K
fv 2 K1 W 0 2 F.y; y C t v/C .Y n .� int.C/// for all t > 0g

�
\

y2K
fv 2 K1 W F.y C t v; y/ \ .� int.C// D ; for all t > 0g :

Remark 10.7 In view of above proposition and Remark 10.3 (c), we have R11 D R0
if the conditions . f0/, . f2/ and . f3/ hold. However, Sadeqi and Alizadeh [57] proved
that R11 � R0 if . f0/, . f1/, . f2/ and . f4/ hold.

Remark 10.8 If F W K 	 K ! 2Y n f;g is a set-valued map satisfying assumption
(f0) such that for all x 2 K, F.x; �/ W K ! 2Y n f;g is C-convex, then the conclusion
of Proposition 10.11 also holds.

Indeed, let v 2 R11 andW D Y n .� int.C//. Then v 2 K1, and for all y 2 K and
all t > 0, there exists �.y; y C t v/ 2 F.y; y C t v/ such that �.y; y C t v/ 2 �W. On
the other hand, for any y 2 K and t > 0, the C-convexity of F.y C t v; �/ implies

1

2
F.y C t v; y C t v C t v/C 1

2
F.y C t v; y/ � F.y C t v; y C t v/C C � C:

Thus

1

2
F.y C t v; y/ � �1

2
�.y C t v; y C 2t v/C C � W C C � W:

Hence F.y C t v; y/ � W. Since y 2 K and t > 0 were arbitrary, we conclude the
proof.

Theorem 10.14 Let K be a nonempty closed convex subset of X and F W K 	 K !
2Y n f;g be a set-valued map satisfying conditions . f0/, . f1/, . f2/ and . f4/. Then

�
Sol(GWVEP)�

�
1 � R1 �

\

y2K
fx 2 K W F.x; y/\ .� int.C// D ;g1

�
\

y2K
fx 2 K W F.y; x/\ .int.C// D ;g1 :
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If, in addition, there exists x� 2 K such that F.y; x�/ � �C for all y 2 K, then
.Sol(GWVEP)�/1 D R1.

Proof As before, set W WD Y n .� int.C//. Let us prove the first inclusion. Let
v 2 .Sol(GWVEP)�/1. Then there exist �m # 0, um 2 Sol(GWVEP)� such that
�mum * v. For y 2 K arbitrary, we have F.um; y/ � W for all m 2 N. By
assumption (f1), we have F.y; um/ � �W for all m 2 N. Let us fix any t > 0.
For m sufficiently large, C-convexity of F.y; �/ implies

.1 � t�m/F.y; y/C t�mF.y; um/ � F.y; .1� t�m/y C t�mum/C C:

Hence

0 2 F.y; .1� t�m/y C t�mum/C W C C � F.y; .1� t�m/y C t�mum/C W:

From assumption . f4/, it follows that 0 2 F.y; y C t v/C W. This proves v 2 R1.
The proof of the second inclusion is as follows. Let v 2 K1 such that 0 2

F.y; yCt v/CW for all t > 0 and all y 2 K. By Proposition 10.11, F.yCt v; y/ � W
for all t > 0 and all y 2 K. For any fixed y 2 K, set xm WD y C m v 2 K for
all m 2 N. Then F.xm; y/ � W for all m 2 N. By choosing �m D 1

m , we have
�mxm D y

m C v ! v as m ! C1, that is, v 2 fx 2 K W F.x; y/ � Wg1. Since y
was arbitrary, the proof of the second inclusion is complete.

The last inclusion is a consequence of assumption . f1/.
Let us prove the last part of the theorem. By our hypothesis, there exists x� 2 K

such that F.y; x�/ � �C for all y 2 K. Let v 2 R1. Then for all y 2 K and for all
t > 0, 0 2 F.y; x� C t v/ C W. By Proposition 10.11, F.x� C t v; y/ � W. Thus
for all t > 0, x� C t v 2 Sol(GWVEP)�. Hence v 2 .Sol(GWVEP)�/1 and thus
R1 � .Sol(GWVEP)�/1. Consequently, R1 D .Sol(GWVEP)�/1. ut
Theorem 10.15 Let K be a nonempty closed convex set in X and F W K 	 K !
2Y n f;g be a set-valued map satisfying Assumption 10.8. If,
(C1) for every sequence fxmg in K, kxmk ! C1 such that xmkxmk * v with v 2 R1

and for all y 2 K there exists my such that F.xm; y/ � Y n .� int.C// for all
m � my, there exists u 2 K such that kuk < kxmk and F.xm; u/ � �C for
m 2 N sufficiently large,

thenGWVEP (10.2) admits a solution. Indeed, Sol(GWVEP)� is a nonempty weakly
closed set.

Proof For every m 2 N, set Km WD fx 2 K W kxk � mg. We may assume, without
loss of generality, thatKm ¤ ; for allm 2 N. Let us consider the following problem:

Find Nx 2 Km such that F.Nx; y/ � Y n .� int.C//; for all y 2 Km: (10.25)

Taking into account Remark 10.3, we apply Theorem 10.4 (withW D Yn.� int.C//)
to conclude that problem (10.25) admits a solution, say xm 2 Km for all m 2 N.
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If kxmk < m for some m 2 N, then we claim that xm is also a solution to
problem (10.2). Suppose to the contrary that xm is not a solution to problem (10.2).
Then there exists y 2 K with kyk > m such that F.xm; y/ 6� Y n .� int.C//. We
choose z 2 K with z 2 �xm; yŒ and kzk < m. Writing z D ˛xm C .1 � ˛/y for some
˛ 2 �0; 1Œ, then by C-convexity of F.xm; �/, we have

˛F.xm; xm/C .1 � ˛/F.xm; y/ � F.xm; z/C C:

This implies that

.1 � ˛/F.xm; y/ � W C C � W:

It follows that F.xm; y/ � W D Y n.� int.C//, which contradicts to our supposition.
Hence xm is a solution to problem (10.2).

We consider now the case kxmk D m for all m 2 N. We may assume, up to a
subsequence, that xmkxmk * v for v 2 K. Then v ¤ 0 and v 2 K1. For any fixed
y 2 K and t > 0, we have F.xm; y/ � W for all m 2 N sufficiently large (m > kyk).
By . f1/, F.y; xm/ � Y n .int.C// for all m sufficiently large. For every t > 0 and all
m sufficiently large, C-convexity of F.y; �/ implies

�

1 � t

kxmk
	

F.y; y/C t

kxmkF.y; xm/ � F

�

y;

�

1 � t

kxmk
	

y C t

kxmkxm
	

C C:

Hence

0 2 F

�

y;

�

1 � t

kxmk
	

y C t

kxmkxm
	

C .Y n .int.C///C C:

Thus, by assumption . f4/, 0 2 F.y; yCt v/CW. This proves v 2 R1. By assumption,
there exist u 2 K such that kuk < kxmk and F.xm; u/ � �C for m sufficiently large.
We claim that xm is also a solution to GWVEP (10.2). Suppose contrary that xm
is not a solution of GWVEP (10.2). Then there exists y 2 K, kyk > m such that
F.xm; y/ 6� Y n .� int.C// D W. Since kuk < kxmk, we can find z 2 �u; yŒ such that
kzk < m. Thus for some ˛ 2 �0; 1Œ, by C-convexity of F.xm; �/, we have

˛F.xm; u/C .1 � ˛/F.xm; y/ � F.xm; z/C C � W C C:

This implies that

.1 � ˛/F.xm; y/ � W;

a contradiction to our supposition. Thus, xm is a solution to GWVEP (10.2). ut
Example 10.2 Let K D R and C D R2C. Then the function F.x; y/ D .y � x; x � y/
does not satisfy condition (C1) while Sol(GWVEP)� D R.
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We now establish a couple of necessary and sufficient conditions for the
nonemptiness of Sol(GWVEP)� for a class of set-valued maps defined on K � R,
which apply to the previous example.

(C2) For every sequence fxmg in K with jxmj ! C1, xmjxmj ! v, v 2 R1, and for
all y 2 K there exists my such that F.xm; y/ � Y n .� int.C// for all m � my,
there exist u 2 K and Nm such that juj < jx Nmj and F.x Nm; u/ � Y n .int.C//.

(C3) For every sequence fxmg in K with jxmj ! C1, there exist m0 and u 2 K
such that F.xm; u/ � Y n .int.C// for all m � m0.

Theorem 10.16 Let K � R be a closed convex set and F W K ! 2Y n f;g be a
set-valued map satisfying Assumption 10.8. Then Sol(GWVEP)� is a closed convex
set, and the following three assertions are equivalent.

(a) Sol(GWVEP)� is nonempty;
(b) (C2) is satisfied;
(c) (C3) is satisfied.

Proof The closedness of Sol(GWVEP)� is obtained as before. We reason as follows
to prove the convexity: take x1; x2 2 Sol(GWVEP)�, x1 < x2, and x 2 �x1; x2Œ.
Then if y 2 K, y > x, we write x WD ˛x1 C .1 � ˛/y and use the C-convexity
of F.x; �/ to obtain F.x; y/ � Y n .� int.C//. In case y 2 K, y < x, we write
x D ˛x2C.1�˛/y and proceed as before to conclude again F.x; y/ � Yn.� int.C//.
Thus x 2 Sol(GWVEP)�, proving the convexity of Sol(GWVEP)�.

We now prove the equivalences.
(c) ) (b): It is obvious.
(a) ) (c): It follows by taking as u any element in Sol(GWVEP)�.
(b) ) (a): We proceed as in the proof of Theorem 10.15 until being in the case

when the sequence fxmg � K satisfies m D jxmj ! C1, xmjxmj ! v 2 R0 and for all
y 2 K, my exists such that F.xm; y/ � Y n .� int.C// for all m � my. By condition
(C2), there exist u 2 K and Nm such that juj < jx Nmj and F.x Nm; u/ � Y n .int.C//.
We also have F.x Nm; u/ � Y n .� int.C// because of the choice of x Nm. We claim that
such x Nm is a solution to GWVEP (10.2). It only remains to check that F.x Nm; y/ �
Y n .� int.C// for all y 2 K with jyj > Nm. In the case when x Nm 2 Œu; y� or x Nm 2 Œ y; u�,
the C-convexity of F.x Nm; �/ implies, for some ˛ 2 Œ0; 1�,

˛F.x Nm; u/C .1 � ˛/F.x Nm; y/ � F.x Nm; x Nm/C C:

Then

.1 � ˛/F.x Nm; y/ � C � ˛F.x Nm; u/ � Y n .� int.C//;

proving the claim. If on the contrary u 2 Œy; x Nm� or u 2 Œx Nm; y�, for some ˛ 2 Œ0; 1�,
we have as before

˛F.x Nm; y/C .1 � ˛/F.x Nm; x Nm/ � F.x Nm; u/C C:
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It follows that

.1 � ˛/F.x Nm; y/ � Y n .� int.C//:

This completes the proof of the claim and therefore Sol(GWVEP)� ¤ ;. ut
Now for the strong generalized vector equilibrium problem (10.4), we consider

the following cones:

R0
0 WD

\

y2K
fv 2 K1 W 0 2 F.y; y C t v/C C for all t > 0 and z 2 K

such that F.y; z/ � �Cg

and

R0
1 WD

\

y2K
fv 2 K1 W 0 2 F.y; y C t v/C C for all t > 0g:

Theorem 10.17 Let K � X be a nonempty closed convex set and F W K 	 K !
2Y n f;g be a set-valued map such that the following conditions hold.
(i) For all x 2 K, F.x; x/ � l.C/ WD C \ .�C/;
(ii) For all x; y 2 K, F.x; y/ � C implies F.y; x/ � �C;
(iii) For all x 2 K, the mapping F.x; �/ W K ! 2Y n f;g is C-convex and properly

C-quasiconvex;
(iv) For all x; y 2 K, the set f� 2 Œx; y� W F.y; �/ � Cg is closed.
(v) For all x 2 K, F.x; �/ is weakly lower semicontinuous on K.
Then Sol(GSVEP) is a nonempty and weakly closed set if and only if the following
condition holds:

(C4) For every sequence fxmg in K, kxmk ! C1, xmkxmk * v with v 2 R0
1 and for

all y 2 K, there exists my such that F.xm; y/ � C for all m � my, there exist
u 2 K and Nm such that kuk < kx Nmk and F.x Nm; u/ � �C.

Proof To prove (C4) is sufficient for Sol(GSVEP) ¤ ;, a reasoning similar to the
proof of Theorem 10.15 is applied. Instead of considering (10.25), we consider the
following problem:

Find Nx 2 Km such that F.Nx; y/ � C; for all y 2 Km: (10.26)

Such a problem admits a solution by Lemma 10.6, say xm 2 Km, for all m 2 N. If
kxmk < m for some m 2 N, we show that xm is also a solution to GSVEP (10.4). In
fact, for any fixed y 2 K with kyk > m, we take z 2 K with z 2 �xm; yŒ and kzk < m.
Writing z WD ˛xm C .1 � ˛/y for some ˛ 2 �0; 1Œ, we have

˛F.xn; xm/C .1 � ˛/F.xm; y/ � F.xm; z/C C:
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This implies that

.1 � ˛/F.xm; y/ � C;

proving the desired result.
We consider now the case kxmk D m for all m 2 N. We may assume, without

loss of generality, that xmkxmk * v. Then v 2 K1. For any fixed y 2 K, F.xm; y/ � C
for all m 2 N sufficiently large (m > kyk). For every t > 0 and all m sufficiently
large, C-convexity of F.y; �/ implies

�

1 � t

kxmk
	

F.y; y/C t

kxmkF.y; xm/ � F

�

y;

�

1 � t

kxmk
	

y C t

kxmkxm
	

C C:

Hence

0 2 F

�

y;

�

1 � t

kxmk
	

y C t

kxmkxm
	

C C:

Thus, by weakly lower semicontinuity of F.x; �/, we have 0 2 F.y; z C t v/ C C.
This proves v 2 R0

1. Now, we can use condition (C4) to ensure the existence of
u 2 K and Nm such that kuk < kx Nmk and F.x Nm; u/ � �C. Similarly as in the proof
of Theorem 10.15, one can check that x Nm is also a solution of GSVEP (10.4). The
weakly closedness of Sol(GSVEP) follows as usual.

The “necessity” of (C4) is shown by taking element in Sol(GSVEP) as the point
u required in condition (C4). ut

For algorithmic purposes it desirable to know a priori when the solution set is
bounded, in this case arises the next condition (vi) giving rise to the characterization
expressed in Theorem 10.17:

(vi) Any sequence xm 2 K with kxmk ! C1 such that for all y 2 K, there exists
my such that

F.xm; y/ � C when m � my;

admits a subsequence fxmkg such that
n

xmkkxmkk
o
converges strongly.

Remark 10.9 When Y is a finite dimensional space, a condition implying condition
(C4) (with v 2 R0

1) described in the preceding theorem is R0
1 � �R0

1 (in particular if
R0
1 D f0g), since in this case, for all v 2 R0

1,

0 2 F.y; y C t v/C C; for all t 2 R and all y 2 K:

Indeed, (C4) is satisfied by taking u D xm � kxmkv. Notice that xmkxmk ! v implies
kuk < kxmk for all m sufficiently large.
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10.6 "-Generalized Weak Vector Equilibrium Problems

In this section, we extend the "-weak vector equilibrium problems for set-valued
maps and study the behavior of their solution map.

Throughout this section, unless otherwise specified, let X and Y be topological
vector spaces and K be a nonempty subset of X. We denote the zero vector of Y
by 0. LetC be a proper closed convex cone with int.C/ ¤ ; and F W X	X ! 2Ynf;g
be a set-valued map.

For fixed " 2 int.C/, the "-generalized weak vector equilibrium problem (in
short, "-GWVEP) is to find Nx 2 K such that

F.Nx; y/C " 6� � int.C/; for all y 2 K: (10.27)

Let ˝ W int.C/ ! 2X be a set-valued map such that ˝."/ is the solution set of
"-GWVEP (10.27) for " 2 int.C/, that is,

˝."/ D fx 2 K W F.x; y/C " 6� � int.C/ for all y 2 Kg:

Let

Sol(GWVEP)# D fx 2 cl .K/ W F.x; y/ 6� � int.C/ for all y 2 Kg:

For fixed " 2 int.C/, we also consider the following form of "-generalized weak
vector equilibrium problem (in short, "-GWVEP): Find Nx 2 K such that

�
F.Nx; y/C "

�\ � � int.C/
� D ;; for all y 2 K: (10.28)

Let � W int.C/ ! 2X be a set-valued map such that �."/ is the solution set of
"-GWVEP (10.28) for " 2 int.C/, that is,

�."/ D ˚
x 2 K W �F.x; y/C "

�\ � � int.C/
� D ; for all y 2 K

�
:

Let

Sol(GWVEP)�# D ˚
x 2 cl .K/ W F.x; y/\ � � int.C/

� D ; for all y 2 K
�
:

We may regard solutions of "-GWVEP as approximate solutions of GWVEP. If K is
closed, then Sol(GWVEP)# = Sol(GWVEP) and Sol(GWVEP)�# = Sol(GWVEP)�.

It is easy to see that Sol(GWVEP)�# � Sol(GWVEP)# and �."/ � ˝."/

for each " 2 int.C/. The purpose of this section is to establish relationships
between˝."/ and Sol(GWVEP)# as well as between �."/ and Sol(GWVEP)�# for
" 2 int.C/. We establish some existence results for solutions of "-generalized weak
vector equilibrium problems. We also investigate continuity properties, namely,
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upper semicontinuity, lower semicontinuity and continuity, of the solution maps
˝;� W int.C/ ! 2X .

We observe that the results in this section can be employed to study the behavior
of solution maps of parametric vector optimization, parametric vector variational
inequality problems, parametric vector equilibrium problems and so on.

10.6.1 Existence Results

In this subsection, we establish some existence results for solutions of "-generalized
weak vector equilibrium problems for " 2 int.C/ under suitable conditions.

Theorem 10.18 Let K be a nonempty subset of X such that cl .K/ is compact, and
let F W X	X ! 2Y nf;g be C-lower semicontinuous at every .x; y/ 2 X	X. Assume
that

Sol(GWVEP)## WD fx 2 cl.K/ W F.x; y/ 6� � int.C/ for all y 2 cl.K/g ¤ ;:

Then "-GWVEP (10.27) has at least one solution for each " 2 int.C/.

Proof Let " 2 int.C/, x 2 Sol(GWVEP)##, and � WD 1

2
". Then

F.x; y/ 6� � int.C/; for all y 2 cl .K/;

that is, for each y 2 cl .K/, there exists �.x; y/ 2 Y such that

�.x; y/ 2 F.x; y/\ � � int.C/
�c
:

By C-lower semicontinuity of F, for each y 2 cl .K/, there exist corresponding
neighborhoods U y of x and Vy of y such that

F.u; v/\ �
�.x; y/ � �C int.C/

� ¤ ;; for all .u; v/ 2 U y 	 Vy:

Since cl .K/ is compact, there exist y1; y2; : : : ; ym such that
Sm

iD1 Vyi 
 cl .K/,
where Vy1 ;Vy2 ; : : : ;Vym are corresponding neighborhoods of y1; y2; : : : ; ym. Let
U D Tm

iD1 U yi and

A WD
m[

iD1
�.x; yi/C " � �C int.C/:

Then for each u 2 U and y 2 cl .K/,

�
F.u; y/C "

� \ A ¤ ;: (10.29)



10.6 "-Generalized Weak Vector Equilibrium Problems 465

Note that �.x; yi/C " � � D �.x; yi/C � … �C for each i D 1; 2; : : : ;m. Then

�
�.x; yi/C �C C

� \ � � C
� D ;; i D 1; 2; : : : ;m: (10.30)

By (10.29) and (10.30), for each u 2 U and y 2 cl .K/,

F.u; y/C " 6� �C:

Since x 2 cl .K/, there exists Ox 2 K \ U such that

F.Ox; y/C " 6� �C; for all y 2 K:

Thus ˝."/ ¤ ;. Therefore, "-GWVEP (10.27) has at least one solution for each
" 2 int.C/. ut
Example 10.3 Let X D R, K D

i
0;



2

h
and Y D R

2. Furthermore, let C D
f.u; v/ 2 Y W u � 0; v � 0g. Then int.C/ D f.u; v/ 2 Y W u > 0; v > 0g. Let

F.x; y/ D co ..�1;�1 � y/; .cos x � 1; sin x � 1 � y// :

Then Sol(GWVEP)## D f0g, i.e., Sol(GWVEP)## ¤ ;, and cl .K/ D
h
0;



2

i
is

compact. F is C-lower semicontinuous at .x; y/ for each x 2 X and y 2 X. Hence
˝."/ ¤ ; for each " 2 int.C/.

Next we establish an existence result for a solution of "-GWVEP (10.28).

Theorem 10.19 Let K be a nonempty subset of X such that cl .K/ is compact, and
let F W X 	 X ! 2Y n f;g be C-upper semicontinuous at every .x; y/ 2 X 	 X and
F.x; y/ is C-compact for every .x; y/ 2 X 	 X. Assume that

Sol(GWVEP)�## WD fx 2 cl .K/ W F.x; y/\ .� int.C// D ;
for all y 2 cl .K/gg ¤ ;:

Then "-GWVEP (10.28) has at least one solution for each " 2 int.C/.

Proof Let " 2 int.C/, x 2 Sol(GWVEP)�## and � WD 1

2
". Then

F.x; y/\ � � int.C/
� D ;; for all y 2 cl .K/:

Let y 2 cl .K/. Then F.x; y/ � � C int.C/ is a neighborhood of F.x; y/. By C-
compactness of F.x; y/, there exist z1; z2; : : : ; zm 2 F.x; y/ such that

G.x; y/ WD
m[

iD1
zi � �C int.C/ 
 F.x; y/:
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Note that G.x; y/C int.C/ D G.x; y/. By the same way, for each y 2 cl .K/, we can
choose a neighborhood G.x; y/ of F.x; y/ and corresponding zy1; z

y
2; : : : ; z

y
m.y/ such

that

F.x; y/� �C int.C/ 
 G.x; y/ D
m.y/[

iD1
zyi � �C int.C/;

where m.y/ is corresponding natural number to y. By C-upper semicontinuity of F,
for each y 2 cl .K/ there exist neighborhood U y of x and Vy of y such that

F.u; v/ � G.x; y/; for all u 2 U y for all y 2 Vy:

Clearly,
S

y2cl .K/ Vy 
 cl .K/. Hence by compactness of cl .K/, there exist
y1; y2; : : : ; yk 2 cl .K/ such that

k[

jD1
Vyj 
 cl .K/:

Let U D Tk
jD1 U yj . Then for each y 2 cl .K/

F.u; y/ �
k[

jD1
G.x; yj/; for all u 2 U : (10.31)

Since z
yj
i … � int.C/ for each j D 1; 2; : : : ; k and i D 1; 2; : : : ;m.yj/,

z
yj
i C " � � D z

yj
i C � … �C;

we have

z
yj
i C � … �C; for all j D 1; 2; : : : ; k; and i D 1; 2; : : : ;m.yj/: (10.32)

Hence,

0

@
k[

jD1
G.x; yj/C "

1

A
\� � C

� D ;:

Furthermore by (10.31) for each u 2 U and y 2 cl .K/,

F.u; y/C " �
k[

jD1
G.x; yj/C ":
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Accordingly, for each u 2 U and y 2 cl .K/,
�
F.u; y/C "

�\ � � int.C/
� D ;:

Since x 2 cl .K/, there exists Ox 2 K \ U . Hence
�
F.Ox; y/C "

�\ � � C
�
; for all y 2 K:

Thus �."/ ¤ ;. Therefore, "-GWVEP (10.28) has at least one solution for each
" 2 int.C/. ut

10.6.2 Upper Semicontinuity of ˝ and �

In this subsection, we show that the solution mappings˝ of "-GWVEP (10.27) and
� of "-GWVEP (10.28) are upper semicontinuous on int.C/.

Theorem 10.20 Let K be a nonempty compact subset of X and F W X	X ! 2Ynf;g
be a set-valued map such that F.x; y/ is .�C/-compact for each .x; y/ 2 X 	 X and
for every fixed y 2 X, F.�; y/ is .�C/-upper semicontinuous. Assume that ˝."/ is
nonempty for each " 2 int.C/. Then˝ is upper semicontinuous on int.C/.

Proof Since K is compact, it suffices to show that ˝ has closed graph. Let "� ! "

and x� 2 ˝."�/. Since K is compact, we can assume, without loss of generality,
that x� ! x 2 K. Suppose to the contrary that x … ˝."/. Then there exists y 2 K
such that

A WD F.x; y/C " � � int.C/:

Then for each z 2 A, there exists a neighborhood Vz of z such that Vz � � int.C/.
Let ez 2 Vz \ .z C int.C//. Then ez � int.C/ is a neighborhood of z such that ez �
int.C/ � � int.C/. Obviously,

S
z2A.ez � int.C// 
 A. Therefore by compactness

of F.x; y/, there exist z1; z2; : : : ; zm 2 A such that

B WD
m[

iD1
.ezi � int.C// 
 A:

By .�C/-upper semicontinuity of F.�; y/, there exists a neighborhood U of x such
that

F.u; y/C " � B � int.C/ D B; for all u 2 U :

Let k 2 int.C/. Then for each ez1 ; ez2 ; : : : ; ezm , there exist corresponding positive
numbers t1; t2; : : : ; tm > 0 such that

ezi C tik 2 Vzi ; i D 1; 2; : : : ;m:



468 10 Generalized Vector Equilibrium Problems

Let t D minft1; t2; : : : ; tmg. Then B � B C tk and "C tk � int.C/ is a neighborhood
of ". Let E WD "C tk � int.C/. We have

F.u/C "0 � B C tk � int.C/ D B C tk; for all u 2 U and "0 2 E :

Then

F.u/C "0 � � int.C/; for all u 2 U and "0 2 E :

This contradicts to the facts that "� ! ", x� ! x, and x� 2 ˝."�/. Hence x 2 ˝."/.
Therefore˝ is upper semicontinuous on int.C/. ut
Theorem 10.21 Let K be a nonempty compact subset of X and F W X 	 X !
2Y n f;g be a set-valued map such that for every fixed y 2 X, F.�; y/ is .�C/-upper
semicontinuous. Assume that�."/ is nonempty for each " 2 int.C/. Then� is upper
semicontinuous on int.C/.

Proof Since K is compact, it suffices to show that � has closed graph. Let "� ! "

and x� 2 �."�/. Since K is compact, we can assume, without loss of generality,
that x� ! x 2 K. Suppose to the contrary that x … �."/. Then there exist y 2 K and
z 2 Y such that

z 2 �F.x; y/C "
�\ �� int.C/

�
:

Hence there exists a positive number t > 0 such that z C 2t" 2 � int.C/. Since
z C t" � int.C/ is a neighborhood of z, by .�C/-upper semicontinuity of F.�; y/,
there exists a neighborhood U of x such that

�
z C t" � int.C/ � int.C/

� \ �
F.u; y/C "

� ¤ ;; for all u 2 U :

Hence for each u 2 U and "0 2 .1C t/"C int.C/, we have

�
F.u; y/C "0� \ � � int.C/

� ¤ ;:

This contradicts to the facts that "� ! ", x� ! x, and x� 2 �."�/. Hence x 2 �."/.
Therefore � is upper semicontinuous on int.C/. ut

10.6.3 Lower Semicontinuity of ˝ and �

In this subsection, we establish that the solution mappings˝ of "-GWVEP (10.27)
and � of "-GEVEP (10.28) are lower semicontinuous on int.C/ under suitable
assumptions.
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Theorem 10.22 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) ˝."/ is nonempty for each " 2 int.C/;
(ii) F.�; y/ is strictly C-quasiconcave on X for each y 2 X;
(iii) F.x; �/ is C-lower semicontinuous on X for each fixed x 2 X.

Then˝ is lower semicontinuous on int.C/.

Proof Suppose " 2 int.C/. Let V be an open set of X with V \ ˝."/ ¤ ; and
x 2 V \˝."/. Let Ox 2 ˝.˛"/ where ˛ 2 �0; 1Œ. Then

F.Ox; y/C ˛" … � int.C/; for all y 2 K:

Therefore,

F.Ox; y/C ˛"C .1 � ˛/" … � int.C/; for all y 2 K;

that is, Ox 2 ˝."/. Now we choose

x0 2 V \ fx� 2 K W x� D �x C .1 � �/Ox; � 2 �0; 1Œ g:

Then by condition (ii),

F.x0; y/C " 6� �C; for all y 2 K: (10.33)

Let y0 2 K arbitrary but fixed. Hence by (10.33), we can choose a point z.y0/ 2 Y
such that

z.y0/ 2 �F.x0; y0/C "
� \ �

.�C/c
�
:

Since z.y0/ … �C, there exists a positive number tz.y0/ > 0 such that

z.y0/� tz.y0/" … �C:

Because
�
z.y0/ � tz.y0/"C int.C/

�
is a neighborhood of z.y0/,

�
z.y0/ � tz.y0/"C int.C/

� \ �
F.x0; y0/C "

� ¤ ;:

Note that
�
int.C/ C int.C/

� D int.C/. Therefore by condition (iii), there exists a
neighborhood Uy0 of y0 such that

�
F.x0; v/C "

� \ �
z.y0/ � tz.y0/"C int.C/

� ¤ ;; for all v 2 Uy0 :
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Now since y0 2 K is arbitrary, for each y 2 K there exist corresponding z.y/ 2�
F.x; y/C "

� \ �
.�C/c

�
and tz.y/ > 0 such that

.z.y/ � tz.y/"C int.C/
� � �

.� int.C//c
�

and also there exists a corresponding neighborhood Uy of y such that

F.x0; vy/\ �
z.y/ � tz.y/"C int.C/

� ¤ ;; for all vy 2 Uy:

Since K is compact, there exist y1; y2; : : : ; ym 2 K such that

m[

iD1
Uyi 
 K:

Then for each y 2 K, we have

m[

iD1

�
z.yi/ � tz.yi/"C int.C/

� \ F.x0; y/C " ¤ ;:

Since for each i 2 f1; 2; : : : ;mg, z.yi/ � tz.yi/" … �C, there exist corresponding
positive numbers �1; �2; : : : ; �m > 0 such that

z.yi/� .tz.yi/ C �i/" … �C:

Let � D minf�1; �2; : : : ; �mg. Then for each y 2 K, we have

m[

iD1

�
z.yi/ � .tz.yi/ C �/"C int.C/

� \ �
F.x0; y/C .1 � �/"

� ¤ ;:

Since

m[

iD1

�
z.yi/� .tz.yi/ C �/"C int.C/

� � .�C/c;

we have x0 2 ˝�.1� �/"�. Note that �.1� �/"C int.C/
�
is a neighborhood of " and

for each � 2 int.C/

F.x0; y/C .1 � �/"C � 6� �C:

Therefore,

V \˝.�/ ¤ ;; for all � 2 �.1 � �/"C int.C/
�
:
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Hence ˝ is lower semicontinuous at ". Since " 2 int.C/ was arbitrary, ˝ is lower
semicontinuous on int.C/. ut
Theorem 10.23 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) �."/ is nonempty for each " 2 int.C/;
(ii) F.x; y/ is C-compact for every .x; y/ 2 X 	 X;
(iii) F.�; y/ is strictly C-properly quasiconcave on X for each fixed y 2 X;
(iv) F.x; �/ is C-upper semicontinuous on X for each fixed x 2 X.

Then � is lower semicontinuous on int.C/.

Proof Suppose " 2 int.C/. Let V be an open set in X such that V \ �."/ ¤ ; and
let x 2 V \ �."/. Let Ox 2 �.˛"/ where ˛ 2 �0; 1Œ. Obviously, Ox 2 �."/. We choose
x0 2 V \ .x; Ox/. Then by condition (iii), we have

�
F.x0; y/C "

�\ � � C
� D ;; for all y 2 X:

Let y 2 X arbitrary but fixed. Then for each z 2 F.x0; y/ there exists a
corresponding positive number tz > 0 such that

z � .1 � 2tz/" … �C:

Note that z � .1 � tz/"C int.C/ is a neighborhood of z C " and that
S

z2F.x0;y/

�
z �

.1� tz/"C int.C/
� 
 F.x0; y/. By condition (ii), there exist z1; z2; : : : ; zm 2 F.x0; y/

such that

Ay WD
m[

iD1

�
zi � .1 � tzi/"C int.C/

� 
 F.x0; y/:

Let �y D minftz1 ; tz2 ; : : : ; tzmg. Then
�
Ay � �y"

�\ � � C
� D ;:

By condition (iv), there exists a neighborhood Vy of y such that

F.x0; v/ � Ay; for all v 2 Vy:

Then for each v 2 Vy,

�
F.x0; v/C .1 � �y/"

�\ � � C
� D ;:

Since y is arbitrary, for each y 2 X we can choose corresponding �y and Vy.
Because X is compact, there exist Vy1 ;Vy2 ; : : : ;Vyk such that

Sk
jD1 Vyj 
 X. Let
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� D minf�y1 ; �y1 ; : : : ; �ykg. Then for each y 2 X,

�
F.x0; y/C .1 � �/"� \ �� C

� D ;:

Accordingly for each � 2 .1 � �/" C int.C/, x0 2 �.�/. Hence � is lower
semicontinuous at ". Since " was arbitrary, � is lower semicontinuous on int.C/.

ut

10.6.4 Continuity of ˝ and �

By employing results established in Sects. 10.6.2 and 10.6.3, we immediately have
the following results for continuity of˝ and � .

Theorem 10.24 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) ˝."/ is nonempty for each " 2 int.C/;
(ii) F.x; y/ is .�C/-compact for every .x; y/ 2 X 	 X;
(iii) F.�; y/ is strictly C-properly quasiconcave on X for each fixed y 2 X;
(iv) F.�; y/ is .�C/-upper semicontinuous on X for each fixed y 2 X;
(iv) F.x; �/ is C-lower semicontinuous on X for each fixed x 2 X.

Then˝ is continuous on int.C/.

Proof The result follows from Theorems 10.20 and 10.22. ut
Theorem 10.25 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) �."/ is nonempty for each " 2 int.C/;
(ii) F.x; y/ is .�C/-compact for every .x; y/ 2 X 	 X;
(iii) F.�; y/ is strictly C-properly quasiconcave on X for each fixed y 2 X;
(iv) F.�; y/ is .�C/-upper semicontinuous on X for each fixed y 2 X;
(iv) F.x; �/ is C-upper semicontinuous on X for each fixed x 2 X.

Then � is continuous on int.C/.

Proof The result follows from Theorems 10.21 and 10.23. ut
The problems and results of this section were considered and established by

Kimora and Yao [38] for moving cones.

10.7 "-Generalized Strong Vector Equilibrium Problems

In this section, we consider the "-generalized strong vector equilibrium problems
and study the behavior of their solution map.
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Throughout this section, unless otherwise specified, let X and Y be topological
vector spaces and K be a nonempty subset of X. We denote the zero vector of Y
by 0. LetC be a proper closed convex cone with int.C/ ¤ ; and F W X	X ! 2Ynf;g
be a set-valued map.

For fixed " 2 int.C/, the "-generalized strong vector equilibrium problem ("-
GSVEP) is to find x 2 K such that

�
F.x; y/C "

� \ C ¤ ;; for all y 2 K: (10.34)

Let � W int.C/ ! 2X be the set-valued map such that �."/ is the solution set of
"-GSVEP (10.34) for " 2 int.C/, that is,

�."/ D fx 2 K W �F.x; y/C "
�\ C ¤ ; for all y 2 Kg:

Let

Sol(GSVEP)�# D fx 2 cl .K/ W F.x; y/\ C ¤ ; for all y 2 Kg:

We also consider the following "-generalized strong vector equilibrium problem
("-GSVEP) for each " 2 int.C/ which is to find x 2 K such that

F.x; y/C " � C; for all y 2 K: (10.35)

Let Ã W int.C/ ! 2X be the set-valued map such that Ã."/ is the solution set of
"-GSVEP (10.35) for " 2 int.C/, that is,

Ã."/ D fx 2 K W F.x; y/C " � C for all y 2 Kg:

Let

Sol(GSVEP)# D fx 2 cl .K/ W F.x; y/ � C for all y 2 Kg:

It is easy to see that Sol(GSVEP)# � Sol(GSVEP)�# and Ã."/ � �."/ for each
" 2 int.C/. We remark that if the mapping F is single-valued, then Sol(GSVEP)# D
Sol(GSVEP)�# and Ã."/ D �."/ for each " 2 int.C/. When K is closed, then
Sol(GSVEP) D Sol(GSVEP)# and Sol(GSVEP)� D Sol(GSVEP)�#.

The purpose of this section is to establish relationships between �."/ and
Sol(GSVEP)�# as well as between Ã."/ and Sol(GSVEP)# for " 2 int.C/. We also
investigate continuity properties of the solution mappings�;Ã W int.C/ ! 2X .

10.7.1 Existence Results

We derive that�."/ is nonempty for " 2 int.C/ under suitable conditions.
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Theorem 10.26 Let K be a nonempty subset of X such that cl .K/ is compact and
F W X 	 X ! 2Y n f;g be C-lower semicontinuous at every .x; y/ 2 X 	 X. Assume
that

Sol(GSVEP)�## WD fx 2 cl .K/ W F.x; y/\ C ¤ ; for all y 2 cl .K/g ¤ ;:

Then "-GSVEP (10.34) has at least one solution for each " 2 int.C/.

Proof Let " 2 int.C/, x 2 Sol(GSVEP)�## and � WD 1

2
". Then

F.x; y/\ C ¤ ;; for all y 2 cl .K/;

that is, for each y 2 cl .K/, there exists �.x; y/ 2 Y such that

�.x; y/ 2 F.x; y/\ C:

By C-lower semicontinuity of F, for each y 2 cl .K/, there exist corresponding
neighborhoods U y of x and Vy of y such that

F.u; v/\ �
�.x; y/ � �C int.C/

� ¤ ;; for all .u; v/ 2 U y 	 Vy:

Since cl .K/ is compact, there exist y1; y2; : : : ; ym such that
Sm

iD1 Vyi 
 cl .K/,
where Vy1 ;Vy2 ; : : : ;Vym are corresponding neighborhoods of y1; y2; : : : ; ym. Let
U D Tm

iD1 U yi and

A WD
m[

iD1
.�.x; yi/C " � �C int.C//:

Then for each u 2 U and y 2 cl .K/, we have

�
F.u; y/C "

� \ A ¤ ;: (10.36)

Note that �.x; yi/C " � � D �.x; yi/C � 2 int.C/ for each i D 1; 2; : : : ;m. Then
for each u 2 U , we obtain

�.x; yi/C �C int.C/ � int.C/; i D 1; 2; : : : ;m: (10.37)

By (10.36) and (10.37), for each u 2 U and y 2 cl .K/, we have

�
F.u; y/C "

� \ �
int.C/

� ¤ ;:

Since x 2 cl .K/, there exists Ox 2 K \ U and hence

�
F.Ox; y/C "

�\ �
int.C/

� ¤ ;; for all y 2 K:
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Thus �."/ ¤ ;. Therefore "-GSVEP (10.34) has at least one solution for each
" 2 int.C/. ut
Corollary 10.4 Let K be a nonempty subset of X such that cl .K/ is compact and
F W X	X ! 2Y n f;g be C-lower semicontinuous at every .x; y/ 2 X	X and F.x; �/
is .�C/-upper semicontinuous on bd .K/ for some x 2 Sol(GSVEP)�#, where

Sol(GSVEP)�# WD fx 2 cl .K/ W F.x; y/\ C ¤ ; for all y 2 Kg ¤ ;:

Then "-GSVEP (10.34) has at least one solution for each " 2 int.C/.

Proof Let Ox 2 Sol(GSVEP)�# for which F.Ox; �/ is .�C/-upper semicontinuous on
bd .K/. Suppose to the contrary that there exists Oy 2 bd .K/ such that

F.Ox; Oy/\ C D ;;

that is,

F.Ox; Oy/ � �
Y n C

� � int.C/:

Then by .�C/-upper semicontinuity of F.x; �/ on bd .K/, there exists a neighbor-
hood V of Oy such that

F.Ox; v/ � �
Y n C

� � int.C/ � �
Y n C

�
; for all v 2 V :

However Oy 2 bd .K/, that is, V\K ¤ ;. Let y0 2 V\K. Then F.Ox; y0/\C D ;. This
contradicts to the fact that Ox 2 Sol(GSVEP)�#. Hence Ox 2 Sol(GSVEP)�. Therefore
by Theorem 10.26, "-GSVEP (10.34) has at least one solution for each " 2 int.C/.

ut
Next we establish an existence result for solutions of "-GSVEP (10.35).

Theorem 10.27 Let K be a nonempty subset of X such that cl .K/ is compact and
F W X	X ! 2Y nf;g be C-upper semicontinuous at every .x; y/ 2 X	X and F.x; y/
is C-compact for every .x; y/ 2 X 	 X. Assume that

Sol(SGVEP)## WD fx 2 cl .K/ W F.x; y/ � C for all y 2 cl .K/g ¤ ;:

Then "-GSVEP (10.35) has at least one solution for each " 2 int.C/.

Proof Let " 2 int.C/, x 2 Sol(SGVEP)## and � WD 1

2
". Then F.x; y/ � C for all

y 2 cl .K/. Let y 2 cl .K/. Then F.x; y/ � �C int.C/ is a neighborhood of F.x; y/.
By C-compactness of F.x; y/, there exist z1; z2; : : : ; zm 2 F.x; y/ such that

G.x; y/ WD
m[

iD1
.zi � �C int.C/ 
 F.x; y/:
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Note that G.x; y/C int.C/ D G.x; y/. By the same way, for each y 2 cl .K/ we can
choose a neighborhood G.x; y/ of F.x; y/ and corresponding zy1; z

y
2; : : : ; z

y
m.y/ such

that

F.x; y/� �C int.C/ 
 G.x; y/ D
m.y/[

iD1
.zyi � �C int.C//;

where m.y/ is the natural number corresponding to y. By C-upper semicontinuity of
F, for each y 2 cl .K/, there exist neighborhood U y of x and Vy of y such that

F.u; v/ � G.x; y/; for all u 2 U y for all v 2 Vy:

Clearly,
S

y2cl .K/ Vy 
 cl .K/. Then by C-compactness of cl .K/, there exist
y1; y2; : : : ; yk 2 cl .K/ such that

k[

jD1
Vyj 
 cl .K/:

Let U D Tk
jD1 U yj . Then for each y 2 cl .K/,

F.u; y/ �
k[

jD1
G.x; yj/; for all u 2 U :

Therefore, for each u 2 U and y 2 cl .K/,

F.u; y/C " �
k[

jD1
G.x; yj/C ":

Note that

z
yj
i C � 2 int.C/; for all j D 1; : : : ; k; and i D 1; 2; : : : ;m.yj/:

Therefore for each x,

k[

jD1
G.x; yj/C " � int.C/:

Hence for each u 2 U and y 2 cl .K/,

F.u; y/C " � int.C/:
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Since x 2 cl .K/, there exists Ox 2 K \ U . Then

F.Ox; y/C " � int.C/; for all y 2 K:

Thus Ã."/ ¤ ;. Therefore "-GSVEP (10.35) has at least one solution for each
" 2 int.C/. ut
Corollary 10.5 Let K be a nonempty subset of X such that cl .K/ is compact and
F W X	X ! 2Y nf;g be C-upper semicontinuous at every .x; y/ 2 X	X and F.x; y/
is C-compact for every .x; y/ 2 X 	 X. Assume that Sol(SGVEP)# WD fx 2 cl .K/ W
F.x; y/ � C for all y 2 Kg ¤ ; such that F.x; �/ is .�C/-lower semicontinuous on
bd .K/ for some x 2 Sol(SGVEP)#. Then "-GSVEP (10.35) has at least one solution
for each " 2 int.C/.

10.7.2 Upper Semicontinuity of � and Ã

In this subsection, we show that the solution mappings � of "-GSVEP (10.34)
and Ã of "-GSVEP (10.35) are upper semicontinuous on int.C/ under suitable
assumptions.

Theorem 10.28 Let K be a nonempty compact subset of X and F W X	X ! 2Ynf;g
be a set-valued map such that the following conditions hold:

(i) �."/ is nonempty for each " 2 int.C/;
(ii) F.x; y/ is .�C/-compact for each .x; y/ 2 X 	 X;
(iii) For every fixed y 2 X, F.�; y/ is .�C/-upper semicontinuous.

Then � is upper semicontinuous on int.C/.

Proof Since K is compact, it suffices to show that � has closed graph. Let "� ! "

and x� 2 �."�/. Since K is compact, we can assume, without loss of generality,
that x� ! x 2 K. Suppose to the contrary that x … �."/. Then there exists y 2 K
such that

A WD �
F.x; y/C "

�\ C D ;:

Since C is closed, for each z 2 A, there exists a neighborhoods Vz of z such that
Vz � �

Y n C
�
. Let ez 2 Vz \ .z C int.C//. Then ez � int.C/ is a neighborhood of

z such that ez � int.C/ � �
Y n C

�
. Obviously,

S
z2A.ez � int.C// 
 A. Then by

.�C/-compactness of F.x; y/, there exist z1; z2; : : : ; zm 2 A such that

B WD
m[

iD1
.ezi � int.C// 
 A:
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By condition (iii), there exists a neighborhood U of x such that

F.u; y/C " � B � int.C/ D B; for all u 2 U :

Let k 2 int.C/. Then for each ez1 ; ez2 ; : : : ; ezm , there exist corresponding positive
numbers t1; t2; : : : ; tm > 0 such that

ezi C tik 2 Vzi ; i D 1; 2; : : : ;m:

Let t D minft1; t2; : : : ; tmg. Then B � B C tk and "C tk � int.C/ is a neighborhood
of ". Let E WD "C tk � int.C/. We have

F.u; y/C "0 � B C tk � int.C/ D B C tk; for all u 2 U and "0 2 E :

Let U D Tm
iD1Uzi \ U . Then

F.u; y/C "0 � �
Y n C

�
; for all u 2 U and "0 2 E :

This contradicts to the fact that "� ! ", x� ! x, and x� 2 �."�/. Hence x 2 �."/.
Therefore� is upper semicontinuous on int.C/. ut
Theorem 10.29 Let K be a nonempty compact subset of X and F W X 	 X !
2Y n f;g be a set-valued map such that for every fixed y 2 X, F.�; y/ is .�C/-lower
semicontinuous. Assume thatÃ."/ is nonempty for each " 2 int.C/. ThenÃ is upper
semicontinuous on int.C/.

Proof Since K is compact, it suffices to show that Ã has closed graph. Let "� ! "

and x� 2 Ã."�/. Since K is compact, we can assume, without loss of generality,
that x� ! x 2 K. Suppose to the contrary that x … Ã."/. Then there exist y 2 K and
z 2 Y such that

z 2 �F.x; y/C "
�\ �

Y n C
�
;

that is, there exists a positive number t > 0 such that

z C 2t" 2 Y n C:

Since z C t" � int.C/ is a neighborhood of z, by .�C/-lower semicontinuity of
x 7! F.x; y/, there exists a neighborhood U of x such that

�
z C t" � int.C/ � int.C/

� \ �
F.u; y/C "

� ¤ ;; for all u 2 U :

Then for each u 2 U and "0 2 .1C t/" � int.C/, we have

�
F.u; y/C "0� \ �

Y n C
� ¤ ;:
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This contradicts to the facts that "� ! ", x� ! x, and x� 2 Ã."�/. Hence x 2 Ã."/.
Therefore,Ã is upper semicontinuous on int.C/. ut
Remark 10.10 In Theorems 10.28 and 10.29, if the sets Sol(GSVEP)�# and
Sol(GSVEP)# are nonempty, then the problems are kind of well-posed, i.e., every
approximating net has subnet converging to a point of the solution set: For every
"� 2 int.C/ with "� ! 0 and x� 2 �."�/ (respectively, Ã."�/) has a subnet
fxg � fx�g with x ! Ox for some Ox 2 Sol(GSVEP)�# (respectively, Sol(GSVEP)#).
Especially, if the solution set are singleton, every approximating net converges to
the solution.

10.7.3 Lower Semicontinuity of � and Ã

We next establish that the solution mapping � of "-GSVEP (10.34) and Ã of "-
GSVEP (10.35) are lower semicontinuous on int.C/ under suitable assumptions.

Theorem 10.30 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) �."/ is nonempty for each " 2 int.C/;
(ii) F.�; y/ is strictly .�C/-quasiconvex on X for each y 2 X;
(iii) For every fixed y 2 X, F.x; �/ is C-lower semicontinuous.
Then � is lower semicontinuous on int.C/.

Proof Suppose " 2 int.C/. Let V be an open set in X with V \ �."/ ¤ ; and
x 2 V \�."/. Let Ox 2 �.˛"/ where ˛ 2 �0; 1Œ. Then

�
F.Ox; y/C ˛"

�\ C ¤ ;; for all y 2 K:

Therefore,

�
F.Ox; y/C ˛"C .1 � ˛/"� \ C ¤ ;; for all y 2 K;

that is, Ox 2 �."/. Now we choose

x0 2 V \ ˚
x� 2 K W x� D �x C .1 � �/Ox; � 2 �0; 1Œ � :

Then by condition (ii), we have

�
F.x0; y/C "

� \ �
int.C/

� ¤ ;; for all y 2 K: (10.38)

Let y0 2 K be arbitrary but fixed. Then by (10.38), we can choose a point z.y0/ 2 Y
such that

z.y0/ 2 �F.x0; y0/C "
�\ �

int.C/
�
:
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Since z.y0/ 2 int.C/, there exists a positive number tz.y0/ > 0 such that

z.y0/ � tz.y0/" 2 int.C/:

Because
�
z.y0/ � tz.y0/"C int.C/

�
is a neighborhood of z.y0/, we obtain

�
z.y0/ � tz.y0/"C int.C/

� \ �
F.x0; y0/C "

� ¤ ;:

Note that
�
int.C/ C int.C/

� D int.C/. Therefore by condition (iii), there exists a
neighborhood Uy0 of y0 such that

�
F.x0; v/C "

� \ �
z.y0/ � tz.y0/"C int.C/

� ¤ ;; for all v 2 Uy0 :

Since y0 2 K is arbitrary, for each y 2 K there exist corresponding z.y/ 2 �
F.x; y/

C "
�\ �

int.C/
�
and tz.y/ > 0 such that

z.y/ � tz.y/"C int.C/ � int.C/

and also there exists a corresponding neighborhood Uy of y such that

F.x0; vy/\ �
z.y/ � tz.y/"C int.C/

� ¤ ;; for all vy 2 Uy:

Since K is compact, there exist y1; y2; : : : ; ym 2 K such that

m[

iD1
Uyi � K:

Hence for each y 2 K, we have

 
m[

iD1
z.yi/� tz.yi/"C int.C/

!

\ �
F.x0; y/C "

� ¤ ;:

Since for each i 2 f1; 2; : : : ;mg, z.yi/ � tz.yi/" 2 int.C/, there exist corresponding
positive numbers �1; �2; : : : ; �m > 0 such that

z.yi/� .tz.yi/ C �i/" … �C:

Let � D minf�1; �2; : : : ; �mg. Then for each y 2 K, we have

m[

iD1

�
z.yi/ � .tz.yi/ C �/"C int.C/

� \ �
F.x0; y/C .1 � �/"

� ¤ ;:
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Since

m[

iD1

�
z.yi/� .tz.yi/ C �/"C int.C/

� � int.C/;

we have x0 2 ��.1��/"�. Note that �.1��/"Cint.C/
�
is a neighborhoodof " and for

each � 2 int.C/,
�
F.x0; y/C.1��/"C��\� int.C/� ¤ ;. Then x0 2 �..1��/"C�/.

Therefore,

V \�.�/ ¤ ;; for all � 2 �.1 � �/"C int.C/
�
:

Hence � is lower semicontinuous at ". Since " 2 int.C/ is arbitrary, � is lower
semicontinuous on int.C/. ut
Theorem 10.31 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) Ã."/ is nonempty for each " 2 int.C/;
(ii) F.x; y/ is C-compact for every .x; y/ 2 X 	 X;
(iii) F.�; y/ is strictly C-properly quasiconvex on X for each y 2 X;
(iv) For every fixed y 2 X, F.x; �/ is C-upper semicontinuous.
Then Ã is lower semicontinuous on int.C/.

Proof Suppose " 2 int.C/. Let V be an open set of X with V \ Ã."/ ¤ ; and
x 2 V \ Ã."/. Let Ox 2 Ã.˛"/ where ˛ 2 �0; 1Œ. Obviously, Ox 2 Ã."/. We choose
x0 2 V \ .x; Ox/. Then by condition (iii), we have

F.x0; y/C " � int.C/; for all y 2 X:

Let y 2 X be arbitrary but fixed. Then for each z 2 F.x0; y/, there exists
corresponding positive number tz > 0 such that

z C .1� 2tz/" 2 int.C/:

Note that z C .1 � tz/"C int.C/ is a neighborhood of z C " and that
S

z2F.x0;y/

�
z C

.1�tz/"Cint.C/
� 
 F.x0; y/. By assumption (ii), there exist z1; z2; : : : ; zm 2 F.x0; y/

such that

Ay WD
m[

iD1

�
zi C .1 � tzi/"C int.C/

� 
 F.x0; y/C ":

Let �y D minftz1 ; tz2 ; : : : ; tzmg. Then Ay � �y" � int.C/. By condition (iv), there
exists a neighborhood Vy of y such that

F.x0; v/C " � Ay; for all v 2 Vy:
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Therefore, for each v 2 Vy, we obtain

F.x0; v/C .1 � �y/" � int.C/:

Since y is arbitrary, for each y 2 X we can choose corresponding �y and Vy.
Because K is compact, there exist Vy1 ;Vy2 ; : : : ;Vyk such that

Sk
jD1 Vyj 
 K. Let

� D minf�y1 ; �y2 ; : : : ; �ykg. Hence for each y 2 X, we have

F.x0; y/C .1 � �/" � int.C/:

Accordingly for each � 2 .1 � �/" C int.C/, x0 2 Ã.�/. Hence Ã is lower
semicontinuous at ". Since " is arbitrary,Ã is lower semicontinuous on int.C/. ut

10.7.4 Continuity of � and Ã

By employing results established in Sects. 10.7.2 and 10.7.3, we immediately have
the following results for continuity of � and Ã.

By combining Theorems 10.28 and 10.30, we obtain the following result.

Theorem 10.32 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) �."/ is nonempty for each " 2 int.C/;
(ii) F.x; y/ is .�C/-compact for every .x; y/ 2 X 	 X;
(iii) F.�; y/ is .�C/-upper semicontinuous on X for each y 2 X;
(iii) F.�; y/ is strictly C-properly quasiconvex on X for each y 2 X;
(iv) For every fixed y 2 X, F.x; �/ is C-lower semicontinuous.
Then � is continuous on int.C/.

From Theorems 10.29 and 10.31, we have following result.

Theorem 10.33 Let K be a nonempty compact convex subset of X and F W X	X !
2Y n f;g be a set-valued map such that the following conditions hold:
(i) Ã."/ is nonempty for each " 2 int.C/;
(ii) F.x; y/ is .�C/-compact for every .x; y/ 2 X 	 X;
(iii) F.�; y/ is strictly .�C/-properly quasiconvex on X for each y 2 X;
(iii) F.�; y/ is .�C/-lower semicontinuous on X for each y 2 X;
(iv) For every fixed y 2 X, F.x; �/ is C-upper semicontinuous.
Then Ã is continuous on int.C/.
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Appendix A
Set-Valued Maps

Let X and Y be two nonempty sets. A set-valued map or multivalued map or point-
to-set map or multifunction T W X ! 2Y from X to Y is a map that associates with
any x 2 X a subset T.x/ of Y; the set T.x/ is called the image of x under T. The set
Dom.T/ D fx 2 X W T.x/ ¤ ;g is called the domain of T. Actually, a set-valued
map T is characterized by its graph, the subset of X 	 Y defined by

Graph.T/ D f.x; y/ W y 2 T.x/g:

Indeed, if A is a nonempty subset of the product space X 	 Y, then the graph of a
set-valued map T is defined by

y 2 T.x/ if and only if .x; y/ 2 A:

The domain of T is the projection of Graph.F/ on X. The image of T is a subset of
Y defined by

Im.T/ D
[

x2X
T.x/ D

[

x2Dom.T/
T.x/:

It is the projection of Graph.T/ on Y. A set-valued map T from X to Y is called
strict if Dom.T/ D X, that is, if the image T.x/ is nonempty for all x 2 X. Let K
be a nonempty subset of X and T be a strict set-valued map from K to Y. It may be
useful to extend it to the set-valued map TK from X to Y defined by

TK.x/ D
�
T.x/; when x 2 K;
;; when x … K;

whose domain Dom.TK/ is K.
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Let T be a set-valued map from X to Y and K � X, then we denote by TjK the
restriction of T to K.

Definition A.1 Let T W X ! 2Y be a set-valued map. For a nonempty subset A of
X, we write

T.A/ D
[

x2A
T.x/:

If A D ;, we write T.;/ D ;. The set T.A/ is called the image of A under the
set-valued map T.

Theorem A.1 Let fA˛g˛2	 be a family of nonempty subsets of X and T W X ! 2Y

be a set-valued map.

(a) If A1 � A2 then T.A1/ � T.A2/;

(b) T

 
[

˛2	
A˛

!

D
[

˛2	
T .A˛/;

(c) T

 
\

˛2	
A˛

!

�
\

˛2	
T .A˛/;

(d) T .X n A1/ 
 T.X/ n T .A1/.

Definition A.2 Let T1 and T2 be two set-valued maps from X to Y.

• The union of T1 and T2 is a set-valued map .T1 [ T2/ from X to Y defined by

.T1 [ T2/.x/ D T1.x/ [ T2.x/; for all x 2 X:

• The intersection of T1 and T2 is a set-valued map .T1 \ T2/ from X to Y defined
by

.T1 \ T2/.x/ D T1.x/ \ T2.x/; for all x 2 X:

• The Cartesian product of T1 and T2 is a set-valued map .T1	T2/ from X to Y	Y
defined by

.T1 	 T2/.x/ D T1.x/ 	 T2.x/; for all x 2 X:

• If T1 is a set-valued map from X to Y and T2 is another set-valued map from Y to
Z, then the composition product of T2 by T1 is a set-valued map .T2 ı T1/ from X
to Z defined by

.T2 ı T1/.x/ D T2.T1.x//; for all x 2 X:
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Theorem A.2 Let T1 and T2 be set-valued maps from X to Y and A be a nonempty
subset of X. Then

(a) .T1 [ T2/.A/ D T1.A/[ T2.A/;
(b) .T1 \ T2/.A/ � T1.A/\ T2.A/;
(c) .T1 	 T2/.A/ � T1.A/ 	 T2.A/;
(d) .T2 ı T1/.A/ D T2.T1.A//:

Definition A.3 If T is a set-valued map from X to Y, then the inverse T�1 of T is
defined by

T�1. y/ D fx 2 X W y 2 T.x/g; for all y 2 Y

Further, let B be a subset of Y. The upper inverse image T�1.B/ and lower inverse
image T�1C .B/ of B under F are defined by

T�1.B/ D fx 2 X W T.x/ \ B ¤ ;g

and

T�1C .B/ D fx 2 X W T.x/ � Bg:

We also write T�1.;/ D ; and T�1C .;/ D ;. It is clear from the definition of inverse
of T that .T�1/�1 D T and y 2 T.x/ if and only if x 2 T�1. y/.

We have the following relations between domain, graph and image of T and T�1.

Dom.T�1/ D Im.T/; Im.T�1/ D Dom.T/ and

Graph.T�1/ D f. y; x/ 2 Y 	 X W .x; y/ 2 Graph.T/g:

Theorem A.3 Let fB˛g˛2	 be a family of nonempty subsets of Y, A � X and B � Y.
Let T W X ! 2Y be a set-valued map.

(a) If B1 � B2, then T�1.B1/ � T�1.B2/;
(b) A � T�1C .T.A//;
(c) B � T.T�1C .B//;

(d) T�1C

 
[

˛2	
B˛

!

�
[

˛2	
T�1C .B˛/;

(e) T�1C

 
\

˛2	
B˛

!

D
\

˛2	
T�1C .B˛/;

(f) T�1.T.A// � A;
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(g) T�1
 
\

˛2	
B˛

!

�
\

˛2	
T�1 .B˛/;

(h) T�1
 
[

˛2	
B˛

!

D
[

˛2	
T�1 .B˛/.

Theorem A.4 Let T1;T2 W X ! 2Y be set-valued maps such that .T1 \ T2/.x/ ¤ ;
for all x 2 X and B � Y. Then

(a) .T1 [ T2/�1.B/ D T�1
1 .B/[ T�1

2 .B/;
(b) .T1 \ T2/�1.B/ � T�1

1 .B/\ T�1
2 .B/;

(c) .T1 [ T2/�1C .B/ D T�1
1C.B/\ T�1

2C.B/;
(d) .T1 \ T2/�1C .B/ � T�1

1C.B/ [ T�1
2C.B/;

Theorem A.5 Let T1 W X ! 2Y and T2 W Y ! 2Z be set-valued maps. Then for any
set B � Z, we have

(a) .T2 ı T1/
�1
C .B/ D T�1

1C
�
T�1
2C.B/

�
;

(b) .T2 ı T1/
�1 .B/ D T�1

1

�
T�1
2 .B/

�
.

Theorem A.6 Let T1 W X ! 2Y and T2 W X ! 2Z be set-valued maps. Then for any
sets B � Y and D � Z, we have

(a) .T1 	 T2/
�1
C .B 	 D/ D T�1

1C.B/\ T�1
2C.D/;

(b) .T1 	 T2/
�1 .B 	 D/ D T�1

1 .B/\ T�1
2 .D/.

For further details and applications of set-valued maps, we refer to [1–8] and the
references therein.



Appendix B
Some Algebraic Concepts

Let K and D be nonempty subsets of a vector space X. The algebraic sum and
algebraic difference of K and D are, respectively, defined as

K C D D fx C y W x 2 K and y 2 Dg

and

K � D D fx � y W x 2 K and y 2 Dg:

Let � be any real number, then �K is defined as

�K D f�x W x 2 Kg:

We pointed out that K C K D 2K is not true in general for any nonempty subset
K of a vector space X.

Definition B.1 Let X be a vector space. The space of all linear mappings from X to
R is called algebraic dual of X and it is denoted by X0.

Definition B.2 A subset K of a vector space X is called

• balanced if it is nonempty and ˛K � K for all ˛ 2 Œ�1; 1�;
• absolutely convex if it is convex and balanced;
• absorbing or absorbent if for each x 2 X, there exists � > 0 such that �x 2 K for

all j�j � �. Note that an absorbing set contains the zero of X.

Theorem B.1 Let X and Y be vector spaces and f W X ! Y be a linear map.

(a) If K is a balanced subset of X, then f .K/ is balanced.
(b) If K is absorbing and f is onto, then f .K/ is absorbing.
(c) Inverse image under f of absorbing or balanced subsets of Y are absorbing or

balanced, respectively, subset of X.

© Springer International Publishing AG 2018
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Definition B.3 Let K be a nonempty subset of a vector space X.

• The set cor.K/ D fy 2 K W for every x 2 X there is a N� > 0 with y C �x 2
C for all � 2 Œ0; N��g is called the algebraic interior of K (or the core of K) .

• The set K is called algebraic open if K D cor.K/.
• The set of all elements of X which neither belong to cor.K/ nor to cor.X n K/ is

called the algebraic boundary of K.
• An element x 2 X is called linearly accessible from K if there exists y 2 K,

y ¤ x, such that �y C .1 � �/x 2 K for all � 2 .0; 1�.
The union of K and the set of all linearly accessible elements from K is called
the algebraic closure of K and it is denoted by

lin.K/ D K [ fx 2 X W x is linearly accessible from Kg:

The set K is called algebraic closed if K D lin.K/.
• The set K is called algebraic bounded if for every y 2 K and every x 2 K, there

is a N� > 0 such that y C �x … K for all � � N�.
These algebraic notions have a special geometric meaning. Take the intersections

of the set K with each straight line in the vector space X and consider these
intersections as subsets of the real line R. Then the set K is algebraic open if these
subsets are open;K is algebraic closed if these subsets are closed; and K is algebraic
bounded if these subsets are bounded.

Lemma B.1 ([9, Lemma 1.9]) Let K be a nonempty convex subset of a vector
space X.

(a) x 2 lin.K/, y 2 cor.K/ ) f�y C .1 � �/x W � 2 Œ0; 1�g � cor.K/;
(b) cor.cor.K// D cor.K/;
(c) cor.K/ and lin.K/ are convex;
(c) If cor.K/ ¤ ;, then lin .cor.K// D lin.K/ and cor .lin.K// D cor.K/ .

Lemma B.2 ([9, Lemma 1.11]) Let K be a convex cone in a vector space X with a
nonempty algebraic interior. Then

(a) cor.K/[ f0g is a convex cone,
(b) cor.K/ D K C cor.K/.

Lemma B.3 A cone C in a vector space X is reproducing if cor.C/ ¤ ;.
Proof Since cor.C/ is nonempty, we let x 2 cor.C/ and take any y 2 X. Then there
is a N� > 0 with x C N�y 2 C implying

y 2 1

N�C �
�
1

N�x
�

� C � C:

So, we get X � C � C and together with the trivial inclusion C �C � X, we obtain
the assertion. ut
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Given x and y in a vector space X, we denote by Œx; y� and �x; yŒ the closed and
open line segments joining x and y, respectively.

Definition B.4 Let K be a nonempty convex subset of a vector space X. A point
x 2 K is said to be relative algebraic interior point of K if for any u 2 X such that
x C u 2 K, there exists " > 0 such that �x � �u; x C �uŒ� K. The set of all relative
algebraic interior points of K is denoted by relint.K/. We note that if 0 < ˛ < �,
then �x � ˛u; x C ˛uŒ� �x � �u; x C �uŒ.



Appendix C
Topological Vector Spaces

Definition C.1 (Directed Set) A set 	 together with a reflexive and transitive
ordering relation 4 such that every finite set of 	 has an upper bound in 	 (that
is, for ˛; ˇ 2 	, there is a � 2 	 such that ˛ 4 � and ˇ 4 � ) is called a directed
set.

Definition C.2 Let X be a topological space and,	 and � be any index sets.

(a) A collection F D fO˛g˛2	 of subsets of X is said to be a cover of X ifS
˛2	O˛ D X; If each member of F is an open set, then F is called an open

cover of X;
(b) A subcollection C of a cover F of X is said to be a subcover if C is itself a

cover of X; If the number of members of C is finite, then C is called a finite
subcover.

(c) A collection C D fUˇgˇ2� of subsets of X is said to be a refinement of the
cover F D fO˛g˛2	 of X if C is an open cover of X and for each member
Uˇ 2 C , there is O˛ 2 F such that Uˇ � O˛ .

Note that an open subcover is a refinement, but a refinement is not necessarily an
open cover.

Definition C.3 An open cover F D fO˛g˛2	 of a topological space X is said to
be locally finite if each point of X has a neighborhood which meets only finitely
many O˛.

Definition C.4 A Hausdorff space X is said to be paracompact if every open cover
of X has a locally finite open refinement.

Definition C.5 Let X be a topological space and f W X ! R. The support of f is the
set Supp. f / WD cl.fx 2 X W f .x/ ¤ 0g/.

Since a finite cover is necessarily locally finite, it follows that every open cover
of a compact space has locally finite open refinement.

© Springer International Publishing AG 2018
Q.H. Ansari et al., Vector Variational Inequalities and Vector Optimization,
Vector Optimization, DOI 10.1007/978-3-319-63049-6

495



496 C Topological Vector Spaces

Definition C.6 (Partition of Unity) Let X be a topological space. A family fˇgi2I
of continuous functions defined from X into Œ0;1/ is called a partition of unity
associated to an open cover fUigi2I of X if

(i) for each x 2 X, ˇi.x/ ¤ ; for only finitely many ˇi;
(ii)

X

i2I
ˇi.x/ D 1 for all x 2 X.

Theorem C.1 ([10, pp. 68]) A Hausdorff space X is paracompact if and only if
every open cover of X has a continuous locally finite partition of unity.

We note that every compact Hausdorff space is paracompact and everymetrizable
space is paracompact.

Definition C.7 A subset in a topological space is precompact (or relatively com-
pact) if its closure is compact.

Note that every element in Rn has a precompact neighborhood.

Definition C.8 ([11, 12]) Let X be a Hausdorff topological vector space and L be
a lattice with least one minimal element, denoted by 0. A mapping ˚ W 2X ! L is
said to be a measure of noncompactness provided that the following conditions hold
for all M;N 2 2X:
(i) ˚.M/ D 0 if and only ifM is precompact;
(ii) ˚.cl.M// D ˚.M/;
(iii) ˚.M [ N/ D max f˚.M/; ˚.N/g :

It follows from condition (iii) that ifM � N, then ˚.M/ � ˚.N/.

Definition C.9 A net in a topological space X is a mapping ˛ 7! x˛ from a directed
set 	 into X; we often write fx˛g˛2	, fx˛ W ˛ 2 	g, or simply fx˛g.

We say that a net fx˛g˛2	 converges to x 2 X if for any neighborhood V of x,
there exists an ˛ (an index ˛) such that xˇ 2 V for all ˇ < ˛. The point x is called a
limit of the net fx˛g. When a net fx˛g converges to a point x, we denote it by x˛ ! x.

We say that x is a cluster point of the net fx˛g if for any neighborhoodV of x and
for any index ˛, there exists ˇ < ˛ such that xˇ 2 V .

Definition C.10 A vector space X with a topology T under which the mappings

.x; y/ 7! x C y from X 	 X ! X

and

.˛; x/ 7! ˛x from R 	 X ! X

are continuous, is called a topological vector space.
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Theorem C.2 Let X be a vector space and B be a family of subsets of X such that
the following conditions hold.

(i) Each U 2 B is balanced and absorbing;
(ii) For any given U1;U2 2 B, there exists U 2 B such that U � U1 \ U2;
(iii) For any given U 2 B, there exists V 2 B such that V C V � U.

Then there is a unique topology T on X such that .X; T / is a topological vector
space and B is a neighborhood base (or local base) at 0.

Theorem C.3 Let X be a topological vector space.

(a) The closure of a balanced set A � X is balanced.
(b) The closure of a convex set A � X is convex.
(c) The interior of a convex set A � X is convex.

Theorem C.4 Let X be a topological vector space and K be a subset of X.

(a) If K is balanced and 0 2 int.K/, then its interior is also balanced.
(b) Any superset of an absorbing set is absorbing. So if K is absorbing then so is

its closure. The interior of an absorbing set is not generally absorbing;
(c) If K is open, then so is its convex hull.

Theorem C.5 Let X be a topological vector space and U be a neighborhood of its
zero element 0. Then �U is a neighborhood of 0 for all nonzero real �.

Definition C.11 A topological vector space X is said to be locally bounded if there
is a bounded neighborhood of 0.

Trivially, every normed space is locally bounded. A well-known example of a
locally bounded topological vector space is Lp for 0 < p < 1 which is not normable
(see [13]).

Theorem C.6

(a) Every neighborhood of zero in a topological vector space X is absorbing.
(b) Every neighborhood of zero in a topological vector space X includes a closed

balanced neighborhood of zero.

Theorem C.7 Let X be a topological vector space with its zero element is denoted
by 0 and K be a nonempty subset of X. Then

cl.K/ D fK C U W U is a neighborhood of 0g:

In particular, cl.K/ � K C U for any neighborhood U of 0.

Proposition C.1 ([14, Proposition 15]) For each i D 1; 2; : : : ;m, let Ki be a com-
pact convex subset of a Hausdorff topological vector space X. Then co

�Sm
iD1 Ai

�
is

compact.

Corollary C.1 ([14, Corollary 1]) In a Hausdorff topological vector space, the
convex hull of a finite set is compact.
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Definition C.12 A topological vector space X with its topology T is said to be
locally convex if there is a neighborhood base (local base) at zero consisting of
convex sets. The topology T is called locally convex.

Theorem C.8 Let T be a locally convex topology on X. Then there exists a local
base B whose members have the following properties:

(i) Every member of B is absolutely convex and absorbing;
(ii) If U 2 B and � > 0, then �U 2 B.

Conversely, if B is a filter base on X which satisfies conditions (i) and (ii), then there
exists a unique locally convex topology T on X such that B is a local base at zero
for T .

Definition C.13 ([15, pp. 188]) Let X and Y be vector spaces. A bilinear functional
or bilinear form B W X 	 Y ! R, .x; y/ 7! B.x; y/ is a map which is linear in either
argument when the other is held fixed.

A pairing or pair is an ordered pair .X;Y/ of linear spaces together with a fixed
bilinear functional B. Usually, B.x; y/ will be denoted by hx; yi.

If X is a linear space and X0 its algebraic dual then the natural pairing of X and
X0 is that arising from the (natural or canonical) bilinear functional on X	X0, which
sends .x; x0/ into x0.x/, that is, hx; x0i D x0.x/.

If X and Y are any two paired vector spaces, then we also have the natural pairing
in the following sense: If y is any fixed element of Y, then the map y0 W X ! R,
x 7! hx; yi is obviously a linear functional on X, that is, y0 2 X0.

It is clear that

hx; yi D 0; for all x 2 X implies y D 0

equivalently,

y ¤ 0 implies that there is some x 2 X such that hx; yi ¤ 0:

Definition C.14 Let X be a vector space. A semi-norm on X is a function p W X !
R such that the following conditions hold:

(i) p.x/ � 0 for all x 2 X;
(ii) p.�x/ D j�jp.x/ for all x 2 X and � 2 R;
(iii) p.x C y/ � p.x/C p. y/ for all x; y 2 X.

Theorem C.9 ([14, Corollary, p. TVS II.24]) Let X be a topological vector space
with its topology T . Then T is defined by a set of semi-norms if and only if T is
locally convex.

Definition C.15 ([15, pp. 189]) Let X and Y be vector spaces. The map x 7!
jhx; yij D py.x/ determines a semi-norm on X for all y 2 Y. The topology generated
by the family of semi-norms fpy W y 2 Yg is the weakest topology on X and it
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is called weak topology on X determined by the pair .X;Y/, and it is denoted by
�.X;Y/.

Remark C.1 Clearly, �.X;Y/ is a locally convex topology on X and also it is a
Hausdorff topology.

Let X and Y be Hausdorff topological vector spaces and L.X;Y/ denote the
family of continuous linear functions from X to Y. Let � be the family of bounded
subsets of X whose union is total in X, that is, the linear hull of

SfU W U 2 �g is
dense in X. Let B be a neighborhood base of 0 in Y, where 0 is the zero element of
Y. When U runs through � , V through B, the family

M.U;V/ D
(

� 2 L.X;Y/ W
[

x2U
h�; xi � V

)

is a neighborhood base of 0 in L.X;Y/ for a unique translation-invariant topology,
called the topology of uniform convergence on the sets U 2 � , or, briefly, the �-
topology (see [16, pp. 79–80]).

Lemma C.1 ([16]) Let X and Y be Hausdorff topological vector spaces and
L.X;Y/ be the topological vector space under the �-topology. Then the bilinear
mapping h:; :i W L.X;Y/ 	 X ! Y is continuous on L.X;Y/ 	 X.

We now present an open mapping theorem due to Brezis [17].

Theorem C.10 ([17, Théorème II.5]) Let X and Y be two Banach spaces and T W
X ! Y be a continuous linear surjective mapping. Then there exists a constant
c > 0 such that BcŒ0� � T.B1Œ0�/, where BcŒ0� denotes the closed ball of radius c
around 0 in Y and B1Œ0� is the closed unit ball in X.

Remark C.2 From Theorem C.10, we see that T W X ! Y is an open mapping.
Indeed, let U be an open subset of X. We show that T.U/ is open. Let y 2 T.U/,

where y D T.x/ for some x 2 U. Let r > 0 such that BrŒx� � U, i.e., xCBrŒ0� � U.
Then we have y C T.BrŒ0�/ � T.U/. Due to Theorem C.10, we obtain BrcŒ0� �
T.BrŒ0�/, and consequently, BrcŒy� � T.U/.

Theorem C.11 ([18, Chapter 6, Theorem 1.1]) If X and Y are Banach spaces and
T W X ! Y is a linear operator, then T is bounded if and only if it is continuous
from the weak topology of X to the weak topology of Y.

Definition C.16 Let .X; d/ be a metric space and A be a nonempty subset of X. The
diameter of A, denoted by ı.A/, is defined as

ı.A/ D supfd.x; y/ W x; y 2 Ag:

We close this subsection by presenting the following Cantor’s intersection
theorem.

Theorem C.12 (Cantor’s Intersection Theorem) Let .X; d/ be a complete metric
space and fAmg be a decreasing sequence (that is, AmC1 � Am) of nonempty closed
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subsets of X such that the diameter of Am ı.Am/ ! 0 as m ! 1. Then the

intersection
1T
mD1

Am contains exactly one point.
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