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Abstract. We introduce a language, PSL, designed to capture high level
proof strategies in Isabelle/HOL. Given a strategy and a proof obligation,
PSL’s runtime system generates and combines various tactics to explore a
large search space with low memory usage. Upon success, PSL generates
an efficient proof script, which bypasses a large part of the proof search.
We also present PSL’s monadic interpreter to show that the underlying
idea of PSL is transferable to other ITPs.

1 Introduction

Currently, users of interactive theorem provers (ITPs) spend a lot of time itera-
tively interacting with their ITP to manually specialise and combine tactics. This
time consuming process requires expertise in the ITP, making ITPs more eso-
teric than they should be. The integration of powerful automatic theorem provers
(ATPs) into ITPs ameliorates this problem significantly; however, the exclusive
reliance on general purpose ATPs makes it hard to exploit users’ domain specific
knowledge, leading to combinatorial explosion even for conceptually straight-
forward conjectures.

To address this problem, we introduce PSL, a programmable, extensible,
meta-tool based framework, to Isabelle/HOL [22]. We provide PSL (available on
GitHub [18]) as a language, so that its users can encode proof strategies, abstract
descriptions of how to attack proof obligations, based on their intuitions about
a conjecture. When applied to a proof obligation, PSL’s runtime system creates
and combines several tactics based on the given proof strategy. This makes it
possible to explore a larger search space than has previously been possible with
conventional tactic languages, while utilising users’ intuitions on the conjecture.

We developed PSL to use engineers’ downtime: with PSL, we can run an
automatic proof search for hours while we are attending meetings, sleeping, or
reviewing papers. PSL makes such expensive proof search possible on machines
with limited memory: PSL’s runtime system truncates failed proof attempts as
soon as it backtracks to minimise its memory usage.

Furthermore, PSL’s runtime system attempts to generate efficient proof
scripts from a given strategy by searching for the appropriate specialisation and
combination of tactics for a particular conjecture without direct user interaction.
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Thus, PSL not only reduces the initial labour cost of theorem proving, but also
keeps proof scripts interactive and maintainable by reducing the execution time
of subsequent proof checking.

In Isabelle, sledgehammer adopts a similar approach [2]. It exports a proof
goal to various external ATPs and waits for them to find a proof. If the external
provers find a proof, sledgehammer tries to reconstruct an efficient proof script
in Isabelle using hints from the ATPs. sledgehammer is often more capable than
most tactics but suffers from discrepancies between the polymorphic higher-order
logic of Isabelle and the monomorphic first-order logic of most backend provers.
While we integrated sledgehammer as a sub-tool in PSL, PSL conducts a search
using Isabelle tactics, thus avoiding the problems arising from the discrepancies
and proof reconstruction.

The underlying implementation idea in PSL is the monadic interpretation of
proof strategies, which we introduce in Sect. 6. We expect this prover-agnostic
formalization brings the following strengths of PSL to other ITPs such as Lean
[14] and Coq [28]:

– runtime tactic generation based on user-defined procedures,
– memory-efficient large-scale proof search, and
– generation of efficient proof scripts for proof maintenance.

2 Background

Interactive theorem proving can be seen as the exploration of a search tree.
Nodes of the tree represent proof states. Edges represent applications of tactics,
which transform the proof state. Tactics are context sensitive: they behave dif-
ferently depending on information stored in background proof contexts. These
proof contexts contain such information as the constants defined and auxiliary
lemmas proved prior to the current step. Since tactic behaviour depends on the
proof context, it is hard to predict the shape of the search tree in advance.

Fig. 1. External and internal view of proof search tree
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The goal is to find a node representing a solved state: one in which the proof
is complete. The search tree may be infinitely wide and deep, because there are
endless variations of tactics that may be tried at any point. The goal for a PSL
strategy is to direct an automated search of this tree to find a solved state; PSL
will reconstruct an efficient path to this state as a human-readable proof script.

Figure 1 shows an example of proof search. At the top, the tactic erule
conjE is applied to the proof obligation w ∧ x ⇒ y ∧ z ⇒ z. This tactic invoca-
tion produces two results, as there are two places to apply conjunction elimi-
nation. Applying conjunction elimination to w ∧ x returns the first result, while
doing so to y ∧ z produces the second result. Subsequent application of proof
by assumption can discharge the second result; however, assumption does not
discharge the first one since the z in the assumptions is still hidden by the con-
junction. Isabelle’s proof language, Isar , returns the first result by default, but
users can access the subsequent results using the keyword back.

Isabelle represents this non-deterministic behaviour of tactics using lazy
sequences: tactics are functions of type thm -> [thm], where [·] denotes a (possi-
bly infinite) lazy sequence [25]. Figure 1b illustrates how Isabelle internally han-
dles the above example where ++ stands for the concatenation of lazy sequences.
Each proof state is expressed as a (possibly nested) implication which assumes
proof obligations to conclude the conjecture. One may complete a proof by
removing these assumptions using tactics. Tactic failure is represented as an
empty sequence, which enables backtracking search by combining multiple tac-
tics in a row [30]. For example, one can write apply(erule conjE,assumption)
using the sequential combinator, (comma) in Isar ; this tactic traverses the tree
using backtracking and discharges the proof obligation without relying on the
keyword back.

The search tree grows wider when choosing between multiple tactics, and
it grows deeper when tactics are combined sequentially. In the implementation
language level, the tactic combinators in Isabelle include THEN for sequential
composition (corresponding to , in Isar), APPEND for non-deterministic choice,
ORELSE for deterministic choice, and REPEAT for iteration.

Isabelle/HOL comes with several default tactics such as auto,simp,induct,
rule, and erule. When using tactics, proof authors often have to adjust tactics
using modifiers for each proof obligation. succeed and fail are special tactics:
succeed takes a value of type thm, wraps it in a lazy sequence, and returns it
without modifying the value. fail always returns an empty sequence.

3 Syntax of PSL

The following is the syntax of PSL. We made PSL’s syntax similar to that of
Isabelle’s tactic language aiming at the better usability for users who are familiar
with Isabelle’s tactic language.
strategy := default | dynamic | special | subtool | compound

default := Simp | Clarsimp | Fastforce | Auto | Induct
| Rule | Erule | Cases | Coinduction | Blast
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dynamic := Dynamic (default )
special := IsSolved | Defer | IntroClasses | Transfer

| Normalization | Skip | Fail | User <string >
subtool := Hammer | Nitpick | Quickcheck
compound := Thens [strategy ] | Ors [strategy ] | Alts [strategy ]

| Repeat (strategy ) | RepeatN (strategy )
| POrs [strategy ] | PAlts [strategy ]
| PThenOne [strategy ] | PThenAll [strategy ]
| Cut int (strategy )

The default strategies correspond to Isabelle’s default tactics without argu-
ments, while dynamic strategies correspond to Isabelle’s default tactics that are
specialised for each conjecture. Given a dynamic strategy and conjecture, the
runtime system generates variants of the corresponding Isabelle tactic. Each of
these variants is specialised for the conjecture with a different combination of
promising arguments found in the conjecture and its proof context. It is the pur-
pose of the PSL runtime system to select the right combination automatically.

subtool represents Isabelle tools such as sledgehammer [2] and counterex-
ample finders. The compound strategies capture the notion of tactic combina-
tors: Thens corresponds to THEN, Ors to ORELSE, Alts to APPEND, and Repeat
to REPEAT. POrs and PAlts are similar to Ors and Alts, respectively, but they
admit parallel execution of sub-strategies. PThenOne and PThenAll take exactly
two sub-strategies, combine them sequentially and apply the second sub-strategy
to the results of the first sub-strategy in parallel in case the first sub-strategy
returns multiple results. Contrary to PThenAll, PThenOne stops its execution as
soon as it produces one result from the second sub-strategy. Users can integrate
user-defined tactics, including those written in Eisbach [13], into PSL strategies
using User. Cut limits the degree of non-determinism within a strategy.

In the following, we explain how to write strategies and how PSL’s runtime
system interprets strategies with examples.

4 PSL by Example

Example 1. For our first example, we take the following lemma from an entry
[23] in the Archive of Formal Proofs (AFP):

lemma dfs app: "dfs g (xs @ ys ) zs = dfs g ys (dfs g xs zs )"

where dfs is a recursively defined function for depth-first search. As dfs
is defined recursively, it is natural to expect that its proof involves some sort
of mathematical induction. However, we do not know exactly how we should
conduct mathematical induction here; therefore, we describe this rough idea as
a proof strategy, DInductAuto, with the keyword strategy, and apply it to
dfs app with the keyword find proof as depicted in Fig. 2. The find proof
command tells PSL’s runtime system to interpret DInductAuto. For example, it
interprets Auto as Isabelle’s default tactic, auto.
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Fig. 2. Screenshot for Example 1.

The interpretation of Dynamic(Induct) is more involved: the runtime gener-
ates tactics using the information in dfs app and its background context. First,
PSL collects the free variables (noted in italics above) in dfs app and applica-
ble induction rules stored in the context. PSL uses the set of free variables to
specify two things: on which variables instantiated tactics conduct mathematical
induction, and which variables should be generalised in the induction scheme.
The set of applicable rules are used to specify which rules to use. Second, PSL
creates the powerset out of the set of all possible modifiers. Then, it attempts
to instantiate a variant of the induct tactic for each subset of modifiers. Finally,
it combines all the variants of induct with unique results using APPEND. In this
case, PSL tries to generate 4160 induct tactics for dfs app by passing several
combinations of modifiers to Isabelle; however, Isabelle cannot produce valid
induction schemes for some combinations, and some combinations lead to the
same induction scheme. The runtime removes these, focusing on the 223 unique
results. PSL’s runtime combine these tactics with auto using THEN.

PSL’s runtime interprets IsSolved as the is solved tactic, which checks
whether any proof obligations are left or not. If obligations are left, is solved
behaves as fail, triggering backtracking. If not, is solved behaves as succeed,
allowing the runtime to stop the search. This is how DInductAuto uses IsSolved
to ensure that no sub-goals are left before returning an efficient proof script. For
dfs app, PSL interprets DInductAuto as the following tactic:

(induct1 APPEND induct2 APPEND...) THEN auto THEN is solved

where induct ns are variants of the induct tactic specialised with modifiers.
Within the runtime system, Isabelle first applies induct1 to dfs app, then

auto to the resultant proof obligations. Note that each induct tactic and auto
is deterministic: it either fails or returns a lazy sequence with a single element.
However, combined together with APPEND, the numerous variations of induct
tactics en masse are non-deterministic: if is solved finds remaining proof oblig-
ations, Isabelle backtracks to the next induct tactic, induct2 and repeats this
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process until either it discharges all proof obligations or runs out of the variations
of induct tactics. The numerous variants of induct tactics from DInductAuto
allow Isabelle to explore a larger search space than its naive alternative, induct
THEN auto, does. Figure 3a illustrates this search procedure. Each edge and
curved square represents a tactic application and a proof state, respectively,
and edges leading to no object stand for tactic failures. The dashed objects rep-
resent possible future search space, which PSL avoids traversing by using lazy
sequences.

Fig. 3. Proof search tree for some induct

The larger search space specified by DInductAuto leads to a longer search
time. PSL addresses this performance problem by tracing Isabelle’s proof search:
it keeps a log of successful proof attempts while removing backtracked proof
attempts. The monadic interpretation discussed in Sect. 6 let PSL remove failed
proof steps as soon as it backtracks. This minimises PSL memory usage, making
it applicable to hours of expensive automatic proof search. Furthermore, since
PSL follows Isabelle’s execution model based on lazy sequences, it stops proof
search as soon as it finds a specialisation and combination of tactics, with which
Isabelle can pass the no-proof-obligation test imposed by is solved.

We still need a longer search time with PSL, but only once: upon success,
PSL converts the log of successful attempts into an efficient proof script, which
bypasses a large part of proof search. For dfs app, PSL generates the following
proof script from DInductAuto.

apply (induct xs zs rule: DFS.dfs.induct) apply auto done

We implemented PSL as an Isabelle theory; to use it, PSL users only have to
import the relevant theory files to use PSL to their files. Moreover, we have
integrated PSL into Isabelle/Isar, Isabelle’s proof language, and Isabelle/jEdit, its
standard editor. This allows users to define and invoke their own proof strategies
inside their ongoing proof attempts, as shown in Fig. 2; and if the proof search
succeeds PSL presents a proof script in jEdit’s output panel, which users can copy
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to the right location with one click. All generated proof scripts are independent
of PSL, so users can maintain them without PSL.

Example 2. DInductAuto is able to pick up the right induction scheme for rela-
tively simple proof obligations using backtracking search. However, in some cases
even if PSL picks the right induction scheme, auto fails to discharge the emerg-
ing sub-goals. In the following, we define InductHard, a more powerful strategy
based on mathematical induction, by combining Dynamic (Induct) with more
involved sub-strategies to use external theorem provers.

strategy SolveAllG = Thens[Repeat(Ors[Fastforce,Hammer]),IsSolved]
strategy PInductHard = PThenOne[Dynamic(Induct),SolveAllG]
strategy InductHard = Ors[DInductAuto, PInductHard]

PSL’s runtime system interprets Fastforce and Hammer as the fastforce
tactic and sledgehammer, respectively. Both fastforce and sledgehammer try
to discharge the first sub-goal only and return an empty sequence if they cannot
discharge the sub-goal.

The repetitive application of sledgehammer would be very time consuming.
We mitigate this problem using Ors and PThenOne. Combined with Ors, PSL
executes PInductHard only if DInductAuto fails. When PInductHard is called,
it first applies Dynamic(Induct), producing various induction schemes and mul-
tiple results. Then, SolveAllG tries to discharge these results in parallel. The
runtime stops its execution when SolveAllG returns at least one result repre-
senting a solved state. We apply this strategy to the following conjecture, which
states the two versions of depth-first search programs (dfs2 and dfs) return the
same results given the same inputs.

lemma "dfs2 g xs ys = dfs g xs ys "

Then, our machine with 28 cores returns the following script within 3 minutes:

apply (induct xs ys rule: DFS.dfs2.induct)
apply fastforce
apply (simp add: dfs_app)
done

Figure 3b roughly shows how the runtime system found this proof script.
The runtime first tried to find a complete proof as in Example 1, but without
much success. Then, it interpreted PInductHard. While doing so, it found that
induction on xs and ys using DFS.dfs2.induct leads to two sub-goals both of
which can be discharged either by fastforce or sledgehammer. For the second
sub-goal, sledgehammer found out that the result of Example 1 can be used as
an auxiliary lemma to prove this conjecture. Then, it returns an efficient proof
script (simp add: dfs app) to PSL, before PSL combines this with other parts
and prints the complete proof script.
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Example 3. In the previous examples, we used IsSolved to get a complete proof
script from PSL. In Example 3, we show how to generate incomplete but useful
proof scripts, using Defer. Incomplete proofs are specially useful when ITP users
face numerous proof obligations, many of which are within the reach of high-level
proof automation tools, such as sledgehammer, but a few of which are not.

Without PSL, Isabelle users had to manually invoke sledgehammer several
times to find out which proof obligations sledgehammer can discharge. We devel-
oped a strategy, HamCheck, to automate this time-consuming process. The fol-
lowing shows its definition and a use case simplified for illustrative purposes.

strategy HamCheck = RepeatN(Ors[Hammer,Thens[Quickcheck,Defer]])
lemma safe trans: shows
1:"ps safe p s " and 2:"valid tran p s s’ c " and 3:"ps safe p s’ "
find proof HamCheck

We made this example simple, so that two sub-goals, 1:"ps safe p s ” and
3:"ps safe p s’ ”, are not hard to prove; however, they are still beyond the
scope of commonly used tactics, such as fastforce.

Generally, for a conjecture and a strategy of the form of RepeatN
(strategy), PSL applies strategy to the conjecture as many times as the num-
ber of proof obligations in the conjecture. In this case, PSL applies Ors [Hammer,
Thens [Quickcheck, Defer]] to safe trans three times.

Note that we integrated quickcheck and nitpick into PSL as assertion tac-
tics. Assertion tactics provide mechanisms for controlling proof search based
on a condition: such a tactic takes a proof state, tests an assertion on it, then
behaves as succeed or fail accordingly. We have already seen one of them in
the previous examples: is solved.

Ors [Hammer, Thens [Quickcheck, Defer]] first applies sledgehammer. If
sledgehammer does not find a proof, it tries to find counter-examples for the sub-
goal using quickcheck. If quickcheck finds no counter-examples, PSL interprets
Defer as defer tac 1, which postpones the current sub-goal to the end of the
list of proof obligations.

In this example, sledgehammer fails to discharge 2:"valid tran p s s’ c ”.
When sledgehammer fails, PSL passes 2 to Thens [Quickcheck, Defer], which
finds no counter-example to 2 and sends 2 to the end of the list; then, PSL
continues working on the sub-goal 3 with sledgehammer. The runtime stops
its execution after applying Ors [Hammers,Thens [Quickcheck, Defer]] three
times, generating the following proof script. This script discharges 1 and 3, but
it leaves 2 as the meaningful task for human engineers, while assuring there is
no obvious counter-examples for 2.

apply (simp add: state_safety ps_safe_def)
defer apply (simp add: state_safety ps_safe_def)
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5 The Default Strategy: try hard.

PSL comes with a default strategy, try hard. Users can apply try hard as a
completely automatic tool: engineers need not provide their intuitions by writing
strategies. Unlike other user-defined strategies, one can invoke this strategy by
simply typing try hard without find proof inside a proof attempt. The lack
of input from human engineers makes try hard less specific to each conjecture;
however, we made try hard more powerful than existing proof automation tools
for Isabelle by specifying larger search spaces presented.

We conducted a Judgement Day style evaluation [3] of try hard against
selected theory files from the AFP, coursework assignments and exercises [1],
and Isabelle’s standard library. Tables 1, 2 and 3 show that given 300 s for each
proof goal try hard solves 1115 proof goals out of 1526,while sledgehammer
found proofs for 901 of themusing the same computational resources and re-
constructed proofs in Isabelle for 866 of them. This is a 14% point improvement
of proof search and a 16% point increase for proof reconstruction. Moreover, 299
goals (20% of all goals) were solved only by try hard within 300 s. They also
show that a longer time-out improves the success ratio of try hard, which is
desirable for utilising engineers’ downtime.

Table 1. The number of automatically proved proof obligations from assignments. TH
and SH stand for the number of obligations discharged by try hard and sledgehammer,
respectively. TH\SH represents the number of goals to which try hard found proofs but
sledgehammer did not. POs stands for the number of proof obligations in the theory file.
x(y) for SH means sledgehammer found proofs for x proof obligations, out of which it
managed to reconstruct proof scripts in Isabelle for y goals. We omit these parentheses
when these numbers coincide. Note that all proofs of PSL are checked by Isabelle/HOL.
Besides, sledgehammer inside PSL avoids the smt proof method, as this method is not
allowed in the Archive of Formal Proofs.

assignments [1] POs TH SH TH\SH TH SH TH\SH
time out - 30s 30s 30s 300s 300s 300s

assignment 1 19 17 14(13) 4 18 14(13) 5

assignment 2 22 21 5 16 22 5 17

assignment 3 52 30 27 8 35 27 10

assignment 4 82 66 61 10 71 61 10

assignment 5 64 36 41(39) 6 55 44(42) 17

assignment 6 26 11 12(11) 2 14 13(12) 3

assignment 8 52 36 45(39) 1 40 46(39) 0

assignment 9 61 31 32(30) 6 35 32(30) 6

assignment 11 26 14 15 1 20 17 3

sum 404 262 252(241) 54 310 259(246) 71
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Table 2. The number of automatically proved proof obligations from exercises.

exercises [1] POs TH SH TH\SH TH SH TH\SH
time out - 30s 30s 30s 300s 300s 300s

exercise 1 15 12 8 4 12 8 4

exercise 2 7 4 3 2 5 3 2

exercise 3 42 27 26(25) 5 29 27(26) 5

exercise 4 23 11 15 0 17 15 2

exercise 5a 13 9 11 0 11 11 0

exercise 5b 83 65 74 1 74 74 1

exercise 6 4 1 2 0 1 3 0

exercise 7a 3 0 0 0 0 0 0

exercise 7b 9 5 6 1 8 6 2

exercise 8a 10 7 7 1 7 7 1

exercise 8b 26 11 9 4 12 12 2

exercise 9 31 14 17 3 19 17 3

exercise 10 15 5 5(4) 1 6 6(5) 1

exercise 11 10 4 6 0 9 6 3

exercise 12 30 8 10 1 12 10 3

sum 321 183 199(197) 23 222 205(203) 29

Table 3. The number of automatically proved proof goals from AFP entries and
Isabelle’s standard libraries.

theory name POs TH SH TH\SH TH SH TH\SH
time out - 30s 30s 30s 300s 300s 300s

DFS.thy [23] 51 24 28 6 34 29 7

Efficient Sort.thy [27] 75 27 28(26) 8 33 31(28) 9

List Index.thy [20] 105 48 72(70) 12 67 75(72) 14

Skew Heap.thy [21] 16 8 6(5) 4 12 8(7) 5

Hash Code.thy [10] 16 7 4 4 11 4 7

CoCallGraph.thy [4] 141 88 78(71) 29 104 79(73) 33

Coinductive Language.thy [29] 139 57 69(68) 11 106 70(69) 43

Context Free Grammar.thy [29] 29 26 2 26 29 2 27

LTL.thy [26] 97 56 61 15 78 65(62) 15

HOL/Library/Tree.thy 124 93 70(68) 32 101 73(70) 32

HOL/Library/Tree Multiset.thy 8 8 1 7 8 1 7

sum 801 442 419(404) 154 583 437(417) 199
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try hard is particularly more powerful than sledgehammer at discharging
proof obligations that can be nicely handled by the following:

– mathematical induction or co-induction,
– type class mechanism,
– specific procedures implemented as specialised tactics (such as transfer and
normalization), or

– general simplification rules (such as field simps and algebra simps).

Furthermore, careful observation of PSL indicates that PSL can handle the
so-called “hidden fact” problem in relevance filtering. Hidden facts are auxiliary
lemmas that are useful to discharge a given proof obligation but are not obviously
relevant. For example, a hidden fact may share no constants with the proof
obligation, because it is related only via an intermediate fact. With PSL, a user
can write a strategy that applies rewriting before relevance filtering to reveal
more information. This information allows the relevance filter to find useful facts
that were previously hidden. For example, the following strategy “massages”
the given proof obligation before invoking the relevance filter of sledgehammer:
Thens [Auto, Repeat(Hammer),IsSolved].

For 3 theories out of 35, try hard discharged fewer proof obligations, even
given 300 seconds of time-out. This is due to the fact that PSL uses a slightly
restricted version of sledgehammer internally for the sake of the integration with
other tools and to avoid the smt method, which is not allowed in the AFP. In
these files, sledgehammer can discharge many obligations and other obligations
are not particularly suitable for other sub-tools in try hard. Of course, given
high-performance machines, users can run both try hard and sledgehammer in
parallel to maximise the chance of proving conjectures.

6 Monadic Interpretation of Strategy

The implementation of the tracing mechanism described in Sect. 4 is non-trivial:
PSL’s tracing mechanism has to support arbitrary strategies conforming to its
syntax. What is worse, the runtime behaviour of backtracking search is not
completely predictable statically since PSL generates tactics at runtime, using
information that is not available statically. Moreover, the behaviour of each tactic
varies depending on the proof context and proof obligation at hand.

It is likely to cause code clutter to specify where to backtrack explicitly with
references or pointers, whereas explicit construction of search tree [17] consumes
too much memory space when traversing a large search space. Furthermore,
both of these approaches deviate from the standard execution model of Isabelle
explained in Sect. 2. This deviation makes the proof search and the efficient
proof script generation less reliable. In this section, we introduce our monadic
interpreter for PSL, which yields a modular design and concise implementation
of PSL’s runtime system.
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Program 1. Monad with zero and plus, and lazy sequence as its instance.
signature MONAD0PLUS =

sig

type ’a m0p;

val return : ’a -> ’a m0p;

val bind : ’a m0p -> (’a -> ’b m0p) -> ’b m0p;

val mzero : ’a m0p;

val ++ : (’a m0p * ’a m0p) -> ’a m0p;

end;

structure Nondet : MONAD0PLUS =

struct

type ’a m0p = ’a Seq.seq;

val return = Seq.single;

fun bind xs f = Seq.flat (Seq.map f xs);

val mzero = Seq.empty;

fun (xs ++ ys) = Seq.append xs ys;

end;

Monads in Standard ML. A monad with zero and plus is a constructor class1

with four basic methods (return, bind, mzero, and ++). As Isabelle’s implemen-
tation language, Standard ML, does not natively support constructor classes, we
emulated them using its module system [19]. Program 1 shows how we represent
the type constructor, seq, as an instance of monad with zero and plus.

The body of bind for lazy sequences says that it applies f to all the elements
of xs and concatenates all the results into one sequence. Attentive readers might
notice that this is equivalent to the behaviour of THEN depicted in Fig. 1b and
that of Thens shown in Fig. 3. In fact, we can define all of THEN, succeed, fail,
and APPEND, using bind, return, mzero, and ++, respectively.

Monadic Interpretation of Strategies. Based on this observation, we formalised
PSL’s search procedure as a monadic interpretation of strategies, as shown in
Program 2, where the type core strategy stands for the internal representation
of strategies. Note that Alt and Or are binary versions of Alts and Ors, respec-
tively; PSL desugars Alts and Ors into nested Alts and Ors. We could have defined
Or as a syntactic sugar using Alt, mzero, Fail, and Skip, as explained by Martin
et al. [11]; however, we prefer the less monadic formalisation in Program 2 for bet-
ter time complexity.

eval deals with all the atomic strategies, which correspond to default ,
dynamic , and special in the surface language. For the dynamic strategies,
eval expands them into dynamically generated tactics making use of contextual
information from the current proof state. PSL combines these generated tactics

1 Constructor classes are a class mechanism on type constructors such as list and
option, whereas type classes are a class mechanism on types such as int and double.
Commonly used constructor classes include functor, applicative, monoid, and arrow.
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Program 2. The monadic interpretation of strategies.
interp :: core_strategy -> ’a -> ’a m0p

interp (Atom atom_str) n = eval atom_str n

interp Skip n = return n

interp Fail n = mzero

interp (str1 Then str2) n = bind (interp str1 n) (interp str2)

interp (str1 Alt str2) n = interp str1 n ++ interp str2 n

interp (str1 Or str2) n = let val result1 = interp str1 n

in if (result1 != mzero) then result1 else interp str2 n end

interp (Rep str) n = interp ((str THEN (Rep str)) Or Skip) n

interp (Comb (comb, strs)) n = eval_comb (comb, map interp strs) n

Program 3. The writer monad transformer as a ML functor.
functor writer_trans (structure Log:MONOID; structure Base:MONAD0PLUS) =

struct

type ’a m0p = (Log.monoid * ’a) Base.m0p;

fun return (m:’a) = Base.return (Log.mempty, m) : ’a m0p;

fun bind (m:’a m0p) (func: ’a -> ’b m0p) : ’b m0p =

Base.bind m (fn (log1, res1) =>

Base.bind (func res1) (fn (log2, res2) =>

Base.return (Log.mappend log1 log2, res2)));

val mzero = Base.mzero;

val (xs ++ ys) = Base.++ (xs, ys);

end : MONAD0PLUS;

either with APPEND or ORELSE, depending on the nature of each tactic. eval -
comb handles non-monadic strategy combinators, such as Cut. We defined the
body of eval and eval comb for each atomic strategy and strategy combinator
separately using pattern matching. As is obvious in Program 2, interp separates
the complexity of compound strategies from that of runtime tactic generation.

Adding Tracing Modularly for Proof Script Generation. We defined interp
at the constructor class level, abstracting it from the concrete type of proof
state and even from the concrete type constructor. When instantiated with
lazy sequence, interp tries to return the first element of the sequence, working
as depth-first search. This abstraction provides a clear view of how compound
strategies guide proof search while producing tactics at runtime; however, with-
out tracing proof attempts, PSL has to traverse large search spaces every time it
checks proofs.

We added the tracing mechanism to interp, combining the non-deterministic
monad, Nondet, with the writer monad. To combine multiple monads, we emu-
late monad transformers using ML functors: Program 3 shows our ML functor,
writer trans, which takes a module of MONAD0PLUS, adds the logging mecha-
nism to it, and returns a module equipped with both the capability of the base
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monad and the logging mechanism of the writer monad. We pass Nondet to
writer trans as the base monad to combine the logging mechanism and the
backtracking search based on non-deterministic choice. Observe Programs 1, 2
and 3 to see how Alt and Or truncate failed proof attempts while searching for
a proof. The returned module is based on a new type constructor, but it is still
a member of MONAD0PLUS; therefore, we can re-use interp without changing it.

History-Sensitive Tactics using the State Monad Transformer. The flexible run-
time interpretation might lead PSL into a non-terminating loop, such as REPEAT
succeed. To handle such loops, PSL traverses a search space using iterative deep-
ening depth-first search (IDDFS). However, passing around information about
depth as an argument of interp as following quickly impairs its simplicity:

interp (t1 CSeq t2) level n = if level < 1 then return n else ...
interp (t1 COr t2) level n = ...

where level stands for the remaining depth interp can proceed for the current
iteration.

We implemented IDDFS without code clutter, introducing the idea of a
history-sensitive tactic: a tactic that takes the log of proof attempts into account.
Since the writer monad does not allow us to access the log during the search
time, we replaced the writer monad transformer with the state monad trans-
former, with which the runtime keeps the log of proof attempt as the “state”
of proof search and access it during search. By measuring the length of “state”,
interp computes the current depth of proof search at runtime.

The modular design and abstraction discussed above made this replacement
possible with little change to the definition of interp: we only need to change
the clause for Atom, providing a wrapper function, iddfc, for eval, while other
clauses remain intact.

inter (CAtom atom_str) n = iddfc limit eval atom_str n

iddfc limit first reads the length of “state”, which represents the number of
edges to the node from the top of the implicit proof search tree. Then, it behaves
as fail if the length exceeds limit; if not, it executes eval atom str n.2

7 Related Work

ACL2 [9] is a functional programming language and mostly automated first-
order theorem prover. ACL2 is known for the so-called waterfall model, which
is essentially repeated application of various heuristics. Its users can guide proof
search by supplying arguments called “hints”, but the underlining operational
procedure of the waterfall model itself is fixed. ACL2 does not produce efficient
proof scripts after running the waterfall algorithm.

2 In this sense, we implemented IDDFS as a tactic combinator.
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PVS [24] provides a collection of commands called “strategies”. Despite
the similarity of the name to PSL, strategies in PVS correspond to tactics in
Isabelle. The highest-level strategy in PVS, grind, can produce re-runnable proof
scripts containing successful proof steps only. However, scripts returned by grind
describe steps of much lower level than human engineers would write manually,
while PSL’s returned scripts are based on tactics engineers use. Furthermore,
grind is known to be useful to complete a proof that does not require induction,
while try hard is good at finding proofs involving mathematical induction.

SEPIA [8] is an automated proof generation tool in Coq. Taking existing
Coq theories as input, SEPIA first produces proof traces, from which it infers
an extended finite state machine. Given a conjecture, SEPIA uses this model
to search for its proof. The authors of SEPIA chose to use breadth-first search
(BFS) to find shorter proofs. For PSL we could emulate the BFS strategy within
the IDDFS framework. However, our experience tells us that the search tree tends
to be very wide and some tactics, such as induct, need to be followed by other
tactics to complete proofs. Therefore, we chose IDDFS for PSL. Both SEPIA and
PSL off-load the construction of proof scripts to search and try to reconstruct
efficient proof scripts. Compared to SEPIA, PSL allows users to specify their own
search strategies to utilize the engineer’s intuition, which enables PSL to return
incomplete proof scripts, as discussed in Sect. 4.

Martin et al. first discussed a monadic interpretation of tactics for their lan-
guage, Angel, in an unpublished draft [12]. We independently developed interp
with the features discussed above, lifting the framework from the tactic level
to the strategy level to traverse larger search spaces. The two interpreters for
different ITPs turned out to be similar to each other, suggesting our approach
is not specific to Isabelle but can be used for other ITPs.

Similar to Ltac [6] in Coq, Eisbach [13] is a framework to write proof methods
in Isabelle. Proof methods are the Isar syntactic layer of tactics. Eisbach does
not generate methods dynamically, trace proof attempts, nor support parallelism
natively. Eisbach is good when engineers already know how to prove their con-
jecture, while try hard is good when they want to find out how to prove it.

IsaPlanner [7] offers a framework for encoding and applying common pat-
terns of reasoning in Isabelle, following the style of proof planning [5]. IsaPlan-
ner addresses the performance issue by a memoization technique, on the other
hand try hard strips off backtracked steps while searching for a proof, which
Isabelle can check later without try hard. While IsaPlanner works on its own
data structure reasoning state, try hard managed to minimize the deviation
from Isabelle’s standard execution model using constructor classes.

8 Conclusions

PSL improves proof automation in higher-order logic, allowing us to exploit both
the engineer’s intuition and various automatic tools. The simplicity of the design
is our intentional choice: we reduced the process of interactive proof development
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to the well-known dynamic tree search problem and added new features (efficient-
proof script generation and IDDFS) by safely abstracting the original execution
model and employing commonly used techniques (monad transformers).

We claim that our approach enjoys significant advantages. Despite the sim-
plicity of the design, our evaluations indicate that PSL reduces the labour cost
of ITP significantly. The conservative extension to the original model lowers the
learning barrier of PSL and makes our proof script generation reliable by min-
imising the deviation. The meta-tool approach makes the generated proof script
independent of PSL, separating the maintenance of proof scripts from that of
PSL; furthermore, by providing a common framework for various tools we sup-
plement one tool’s weakness (e.g. induction for sledgehammer) with other tools’
strength (e.g. the induct tactic), while enhancing their capabilities with runtime
tactic generation. The parallel combinators reduce the labour-intensive process
of interactive theorem proving to embarrassingly parallel problems. The abstrac-
tion to the constructor class and reduction to the tree search problem make our
ideas transferable: other ITPs, such as Lean and Coq, handle inter-tactic back-
tracking, which is best represented in terms of MONAD0PLUS.
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A Appendix: Details of the Evaluation

All evaluations were conducted on a Linux machine with Intel (R) Core (TM)
i7-600 @ 3.40 GHz and 32 GB memory. For both tools, we set the time-out of
proof search to 30 and 300 s for each proof obligation.

Prior to the evaluation, the relevance filter of sledgehammer was trained on
27,041 facts and 18,695 non-trivial Isar proofs from the background libraries
imported by theories under evaluation for both tools. Furthermore, we forbid
sledgehammer inside PSL from using the smt method for proof reconstruction,
since the AFP does not permit this method.

Note that try hard does not use parallel strategy combinators which exploit
parallelism. The evaluation tool does not allow try hard to use multiple threads
either. Therefore, given the same time-out, try hard and sledgehammer enjoy
the same amount of computational resources, assuring the fairness of the evalu-
ation results.

The evaluation tool [16] and results [15] are available at our websites. We
provide the evaluation tool and results in the following websites:

– http://ts.data61.csiro.au/Downloads/cade26 evaluation/
– http://ts.data61.csiro.au/Downloads/cade26 results/

http://ts.data61.csiro.au/Downloads/cade26_evaluation/
http://ts.data61.csiro.au/Downloads/cade26_results/
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