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Abstract. We propose a deductive reasoning approach to the automatic
verification of temporal properties of pointer programs, based on cyclic
proof. We present a proof system whose judgements express that a pro-
gram has a certain temporal property over memory state assertions in
separation logic, and whose rules operate directly on the temporal modal-
ities as well as symbolically executing programs. Cyclic proofs in our
system are, as usual, finite proof graphs subject to a natural, decidable
soundness condition, encoding a form of proof by infinite descent.

We present a proof system tailored to proving CTL properties of non-
deterministic pointer programs, and then adapt this system to handle
fair execution conditions. We show both systems to be sound, and pro-
vide an implementation of each in the Cyclist theorem prover, yielding
an automated tool that is capable of automatically discovering proofs of
(fair) temporal properties of heap-aware programs. Experimental eval-
uation of our tool indicates that our approach is viable, and offers an
interesting alternative to traditional model checking techniques.

1 Introduction

Program verification can be described as the problem of deciding whether a given
program exhibits a desired behaviour, often called its specification. Temporal
logic, in its various flavours [24] is a very popular and widely studied specification
formalism due to its relative simplicity and expressive power: a wide variety of
safety (“something bad cannot happen”) and liveness properties (“something
good eventually happens”) can be captured [20].

Historically, perhaps the most popular approach to verify temporal proper-
ties of programs has been model checking : one first builds an abstract model that
overapproximates all possible executions of the program, and then checks that
the desired temporal property holds for this model (see e.g. [10,12,15]). How-
ever, this approach has been applied mainly to integer programs; the situation for
memory-aware programs over heap data structures becomes significantly more
challenging, mainly because of the difficulties in constructing suitable abstract
models. One possible approach is simply to translate such heap-aware programs
into integer variables, in such a way that properties such as memory safety or
termination of the original program follows from a corresponding property in
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its integer translation [12,15,22]. However, for more general temporal proper-
ties, this technique might produce unsound results. In general, it is not clear
whether it is feasible to provide suitable translations from heap to integer pro-
grams for any temporal property; in particular, numerical abstraction of heap
programs often removes important information about the exact shape of heap
data structures, which might be needed to prove some temporal properties.

Example 1. Consider a “server” program that, given an acyclic linked list with
head pointer x, nondeterministically alternates between adding an arbitrary num-
ber of “job requests” to the head of the list and removing all requests in the list:
while(true){

if(*) {

while(x!=nil) { temp:=x.next; free(x); x:=temp; }

} else {

while (*) { y:=new(); y.next:=x; x:=y; }

} }

Memory safety of this program can be proven using a simple numeric abstrac-
tion recording emptiness/nonemptiness of the list. Proving instead that it is
always possible for the heap to become empty, expressed in CTL as AGEF (emp),
requires a finer abstraction, recording the length of the list. However, such an
abstraction is still not sufficient to prove the property that the heap is always
a nil-terminating acyclic list from x to nil, expressed in CTL as AG(ls(x, nil))
(where ls is the standard list segment predicate of separation logic [26]), because
the information about acyclicity is lost.

Thus, although it is often possible to provide numeric abstractions to suit
specific programs and temporal properties, it is not clear that this is so for
arbitrary programs and properties.

In this paper, we instead approach the above problem via the main (per-
haps less fashionable) alternative to model checking, namely the direct deductive
verification of pointer programs. We formulate a cyclic proof system manipulat-
ing temporal judgements about programs, and employ automatic proof search
in this system to verify that a program has a given temporal property. Given
some fixed program, the judgements of our system express a temporal property
of the program when started from any state satisfying a precondition written
in a fragment of separation logic, a well-known language for describing heap
memory [26]. The core of the proof system is a set of symbolic execution rules
that simulate program execution steps. To handle the fact that symbolic execu-
tion can in general be applied ad infinitum, we employ cyclic proof [6,7,9,29],
in which proofs are finite cyclic graphs subject to a global soundness condition.
Using this approach, we are frequently able to verify temporal properties of heap
programs in an automatic and sound way without the need of abstractions or
program translations. Moreover, our analysis has the added benefit of producing
independently checkable proof objects.

Our proof system is tailored to CTL program properties over separation
logic assertions; subsequently, we show how to adapt this system to handle fair-
ness constraints, where nondeterministic branching may not unfairly favour one



Automatically Verifying Temporal Properties of Pointer Programs 493

branch over another. We have also adapted our system to (fair) LTL properties,
though we do not present this adaptation in this paper due to space constraints.

We provide an implementation of our proof system as an automated verifica-
tion tool within the Cyclist theorem proving framework [9], and evaluate its
performance on a range of examples. The source code, benchmark and executable
binaries of the implementation are publicly available online [1]. Our tool is able
to discover surprisingly complex cyclic proofs of temporal properties with times
often in the millisecond range. Practically speaking, the advantages and disad-
vantages of our approach are entirely typical of deductive verification: on the
one hand, we do not need to employ abstraction or program translation, and we
guarantee soundness; on the other hand, our algorithms might fail to terminate,
and (at least currently) we do not provide counterexamples in case of failure.
Thus we believe our approach should be understood as a useful complement to,
rather than a replacement for, model checking.

The remainder of this paper is structured as follows. Section 2 introduces
our programming language, the memory state assertion language, and temporal
(CTL) assertions over these. Section 3 introduces our proof system for verifying
temporal properties of programs, and Sect. 4 modifies this system to account for
fair program executions. Section 5 presents our implementation and experimental
evaluation, Sect. 6 discusses related work and Sect. 7 concludes.

2 Programs and Assertions

In this section we introduce our programming language, our language of asser-
tions about memory states (based on a fragment of separation logic) and our
language for expressing temporal properties of programs, given by CTL over
memory assertions.

Programming language. We use a simple language of while programs with
pointers and (de)allocation, but without procedures. We assume a countably
infinite set Var of variables and a first-order language of expressions over Var.
Branching conditions B and commands C are given by the following grammar:

B ::= E = E | E �= E | ∗
C ::= x := [E] | [E] := E | x := alloc() | free(E) | x := E |

skip | if B then C else C fi | while B do C od | C;C | ε

where x ∈ Var and E ranges over expressions. We write ε for the empty command,
∗ for a nondeterministic condition, and [E] for dereferencing of expression E.

We define the semantics of the language in a stack-and-heap model employ-
ing heaps of records. We fix a set Val of values, and a set Loc ⊂ Val of address-
able memory locations. A stack is a map s : Var → Val from variables to val-
ues. The semantics [[E]]s of expression E under stack s is standard; in particular,
[[x]]s = s(x) for x ∈ Var. We extend stacks pointwise to act on tuples of terms. A
heap is a partial, finite-domain function h : Loc ⇀fin (Val List), mapping finitely
many memory locations to records, i.e. arbitrary-length tuples of values; we write
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dom(h) for the set of locations on which h is defined. We write e for the empty
heap, and � to denote composition of domain-disjoint heaps: h1 �h2 is the union
of h1 and h2 when dom(h1) ∩ dom(h2) = ∅ (and undefined otherwise). If f is a
stack or a heap then we write f [x 	→ v] for the stack or heap defined as f except
that f [x 	→ v](x) = v. A paired stack and heap, (s, h), is called a (memory) state.

A (program) configuration γ is a triple 〈C, s, h〉 where C is a command, s a
stack and h a heap. If γ is a configuration, we write γC , γs, and γh respectively
for its first, second and third components. A configuration γ is called final if
γC = ε. The small-step operational semantics of programs is given by a binary
relation � on program configurations, where γ � γ′ holds if the execution of
the command γC in the state (γs, γh) can result in the program configuration γ′

in one step. We write �∗ for the reflexive-transitive closure of �. The special
configuration fault is used to denote a memory fault, e.g., if a command tries
to access non-allocated memory. For brevity, we omit the operational semantics
here, since it is essentially standard.

An execution path is a (maximally finite or infinite) sequence (γi)i≥0 of con-
figurations such that γi � γi+1 for all i ≥ 0. If π is a path, then we write πi for
the ith element of π. A path π starts from configuration γ if π0 = γ.

Remark 1. In temporal program verification, it is relatively common to consider
all program execution paths to be infinite, and all temporal properties to quantify
over infinite paths. This can be achieved either (i) by modifying programs to
contain an infinite loop at every exit point, or (ii) by modifying the operational
semantics so that final configurations loop infinitely (i.e. 〈ε, s, h〉 � 〈ε, s, h〉).

Here, instead, our temporal assertions quantify over paths that are either
infinite or else maximally finite. This has the same effect as directly modifying
programs or their operational semantics, but seems to us slightly cleaner.

Memory state assertions. We express properties of memory states (s, h) using
a standard symbolic-heap fragment of separation logic (cf. [2]) extended with
user-defined (inductive) predicates, typically needed to express data structures
in the memory. We omit the schema for inductive predicates and their interpre-
tations here, since they are identical to those used, e.g., in [7–9,27].

Definition 1. A symbolic heap is given by a disjunction of assertions each of
the form Π : Σ, where Π is a finite set of pure formulas of the form E = E or
E �= E, and Σ is a spatial formula given by the following grammar:

Σ ::= emp | E 	→ E | Σ ∗ Σ | Ψ(E),

where E ranges over expressions, E over tuples of expressions and Ψ over pred-
icate symbols (of arity matching the length of E in Ψ(E)).

Definition 2. Given a state s, h and symbolic heap Π : Σ, we write s, h |= Π :
Σ if s, h |= 	 for all pure formulas 	 ∈ Π, and s, h |= Σ, where the relation
s, h |= A between states and formulas is defined by
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s, h |= E1 = E2 ⇔ [[E1]]s = [[E2]]s
s, h |= E1 �= E2 ⇔ [[E1]]s �= [[E2]]s

s, h |= emp ⇔ dom(h) = ∅

s, h |= E �→ E ⇔ dom(h) = {[[E]]s} and h([[E]]s) = [[E]]s
s, h |= Ψ(E) ⇔ ([[E]]s, h) ∈ [[Ψ ]]

s, h |= Σ1 ∗ Σ2 ⇔ h = h1 � h2 and s, h1 |= Σ1 and s, h2 |= Σ2

s, h |= Ω1 ∨ Ω2 ⇔ s, h |= Ω1 or s, h |= Ω2

Note that the semantics of a predicate symbol, [[Ψ ]] ⊆ Val List × Heaps, is typi-
cally obtained from an inductive definition of Ψ in a standard way (see e.g. [6]).

Temporal assertions. We describe temporal properties of our programs using
temporal assertions, built from the memory state assertions given above using
standard operators of computation tree logic (CTL) [11], where the temporal
operators quantify over execution paths from a given configuration.

Definition 3. CTL assertions are described by the grammar:

ϕ ::= P | error | final | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ
| EFϕ | AFϕ | EGϕ | AGϕ | E(ϕUϕ) | A(ϕUϕ)

where P ranges over memory state assertions (Definition 1).

Note that final and error denote final, respectively faulting configurations.

Definition 4. A configuration γ is a model of the CTL assertion ϕ if the rela-
tion γ |= ϕ holds, defined by structural induction as follows:

γ |= P ⇔ γs, γh |= P
γ |= error ⇔ γ = fault
γ |= final ⇔ γC = ε

γ |= ϕ1 ∧ ϕ2 ⇔ γ |= ϕ1 and γ |= ϕ2

γ |= ϕ1 ∨ ϕ2 ⇔ γ |= ϕ1 or γ |= ϕ2

γ |= ♦ϕ ⇔ ∃γ′. γ � γ′ and γ′ |= ϕ
γ |= �ϕ ⇔ ∀γ′. γ � γ′ implies γ′ |= ϕ

γ |= EFϕ ⇔ ∃γ′. γ �∗ γ′ and γ′ |= ϕ
γ |= AFϕ ⇔ ∀π starting from γ. ∃γ′ ∈ π. γ′ |= ϕ
γ |= EGϕ ⇔ ∃π starting from γ. ∀γ′ ∈ π. γ′ |= ϕ
γ |= AGϕ ⇔ ∀γ′. if γ �∗ γ′ then γ′ |= ϕ

γ |= E(ϕ1Uϕ2) ⇔ ∃π starting from γ. ∃i ≥ 0. πi |= ϕ2 and ∀j : 0 ≤ j < i. πj |= ϕ1

γ |= A(ϕ1Uϕ2) ⇔ ∀π starting from γ. ∃i ≥ 0. πi |= ϕ2 and ∀j : 0 ≤ j < i. πj |= ϕ1

Judgements in our system are given by P � C : ϕ, where P is a symbolic
heap, C is a command sequence and ϕ is a temporal assertion.

Definition 5 (Validity). A CTL judgement P � C : ϕ is valid if and only if,
for all memory states (s, h) such that s, h |= P , we have 〈C, s, h〉 |= ϕ.
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3 A Cyclic Proof System for Verifying CTL Properties

In this section, we present a cyclic proof system for establishing the validity of
our CTL judgements on programs, as described in the previous section.

Our proof rules for CTL judgements are shown in Fig. 1. The symbolic execu-
tion rules for commands are adapted from those in the proof system for program
termination in [7], accounting for whether a diamond ♦ or box � property is
being established. The dichotomy between ♦ and � is only visible for the non-
deterministic components of a program. In the specific case of our language, the
nondeterministic constructs are (i) nondeterministic while; (ii) nondetreministic
if; and (iii) memory allocation; it is only for these constructs that we need a spe-
cific rule for each case, as shown in our symbolic execution rules. Incidentally,
the difference between E properties and A properties is basically the same as
the difference between ♦ and �, but extended to execution paths rather than
individual steps.

We also introduce faulting execution rules to allow us to prove that a program
faults. The logical rules comprise standard rules for the logical connectives and
standard unfolding rules for the temporal operators and inductive predicates in
memory assertions. For brevity, we omit here the somewhat complex unfolding
rule for inductive predicates, but similar rules can be found in, e.g., [7–9,27].

Proofs in our system are cyclic proofs: standard derivation trees in which
open subgoals can be closed either by applying an axiom or by forming a back-
link to an identical interior node. To ensure that such structures correspond to
sound proofs, a global soundness condition is imposed. The following definitions,
adaptations of similar notions in e.g. [6–9,27], formalise this notion.

Definition 6 (Pre-proof). A leaf of a derivation tree is called open if it is
not the conclusion of an axiom. A pre-proof is a pair P = (D,L), where D is a
finite derivation tree constructed according to the proof rules and L is a back-link
function assigning to every open leaf of D a companion: an interior node of D
labelled by an identical proof judgement.

A pre-proof P = (D,L) can be seen as a finite cyclic graph by identifying
each open leaf of D with its companion. A path in P is then a path in this graph.
It is easy to see that a path in a pre-proof corresponds to one or more paths in
the execution of a program, interleaved with logical inferences.

To qualify as a proof, a cyclic pre-proof must satisfy a global soundness
condition, defined using the notion of a trace along a path in a pre-proof.

Definition 7 (Trace). Let (Ji = Pi � Ci : ϕi)i≥0 be a path in a pre-proof P.
The sequence of temporal formulas along the path, (ϕi)i≥0, is a �-trace (♦-trace)
following that path if there exists a formula ψ such that, for all i ≥ 0:

– the formula ϕi is of the form AGψ (EGψ) or �AGψ (♦EGψ); and
– ϕi = ϕi+1 whenever Ji is the conclusion of the consequence rule (Cons).

We say that a trace progresses whenever a symbolic execution rule is applied. A
trace is infinitely progressing if it progresses at infinitely many points.
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Fig. 1. Proof rules for CTL judgements. We write ©ϕ to mean “either �ϕ or ♦ϕ”.

We also take account of precondition traces arising from inductive predicates
in the precondition, as employed in [7]. Roughly speaking, a precondition trace
tracks an occurrence of an inductive predicate in the preconditions of the judge-
ments along the path, progressing whenever the predicate occurrence is unfolded.
Again, see [7–9,27] for similar notions.

Definition 8 (Proof). A pre-proof P is a proof if it satisfies the following
global soundness condition: for every infinite path (Pi � Ci : ϕi)i≥0 in P, there
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is an infinitely progressing �-trace, ♦-trace or precondition trace following some
tail (Pi � Ci : ϕi)i≥n of the path.

Example 2. Consider the server-like program in Example 1 in the Introduction.
We can show that, given that the heap is initially a linked list from x to nil, it
is always possible for the heap to become empty at any point during program
execution. Writing C for our server program, this property is expressed as the
judgement ls(x, nil) � C : AGEF (emp).

Figure 2 shows an outline cyclic proof of this judgement in our system (we
suppress the internal judgements for space reasons, but show the cycle structure
and rule applications). Note that the back-links depicted in blue do not form
infinite loops as they all point to a companion that eventually leads to a (Check)
axiom. The red back-links do give rise to infinite paths; one can see that the
pre-proof qualifies as a valid cyclic proof since there is an infinitely progressing
�-trace along every infinite path.

(Check)···· (EF)

···· (Wh)

···· (EF)

[A]···· (If*�1)
···· (EF)

···· (Wh)

···· (EF)

[B]

[A]···· (If*�1)
···· (EF)

[A]

(Ex Falso)

◦

[A]···· (Cons)

···· (Assign)

···· (EF)

···· (Free)
···· (EF)

···· (Load)
···· (EF)

[A]···· (Cons)

···· (Assign)

···· (EF)

···· (Free)
···· (EF)

[A]···· (Cons)

···· (Assign)

···· (EF)

[D]···· (Cons)

···· (Assign)

(AG)

···· (Free)

(AG)

···· (Load)

(AG)
◦
(ls L.Unf.)

◦

[F]
(Cons)

◦
(Wh)

····
(AG)

[D]

[B]···· (Wh*�2)
···· (EF)

[C]

[C]···· (Cons)

···· (Assign)

···· (EF)

···· (Store)
···· (EF)

···· (New)

···· (EF)

[C]···· (Cons)

···· (Assign)

···· (EF)

···· (Store)
···· (EF)

[C]···· (Cons)

···· (Assign)

···· (EF)

[E]···· (Cons)

···· (Assign)

(AG)

···· (Store)

(AG)

···· (New)

(AG)
◦ [F]

(Wh*�)
◦
(AG)

[E]
(If*�)

◦
(AG)

◦

(Ex Falso)

◦
(Wh)

····
(AG)

[F]

[A] = ls(x, nil) � whilex �= nil do . . . od : EF (emp) [D] = ls(x, nil) � whilex �= nil do . . . od : AGEF (emp)

[B] = ls(x, nil) � whilex = x do . . . od : EF (emp) [E] = ls(x, nil) � while ∗ do . . . od : AGEF (emp)

[C] = ls(x, nil) � while ∗ do . . . od : EF (emp) [F] = ls(x, nil) � whilex = x do . . . od : AGEF (emp)

Fig. 2. Single threaded monolithic server example (Color figure online)

We now show that our proof system is sound.

Lemma 1. Let J = (P � C : ϕ) be the conclusion of a proof rule R. If J is
invalid under (s, h), then there exists a premise of the rule J ′ = P ′ � C ′ : ϕ′ and
a model (s′, h′) such that J ′ is not valid under (s′, h′) and, furthermore,
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1. if there is a �-trace (ϕ,ϕ′) following the edge (J, J ′) then, letting ψ be the
unique subformula of ϕ given by Definition 7, there is a configuration γ such
that γ �|= ψ, and the finite execution path π′ = 〈C ′, s′, h′〉 . . . γ is well-defined
and a subpath of π = 〈C, s, h〉 . . . γ. Therefore length(π′) ≤ length(π). More-
over, length(π) < length(π′) when R is a symbolic execution rule.

2. if there is a ♦-trace (ϕ,ϕ′) following the edge (J, J ′) then, letting ψ be the
unique subformula of ϕ given by Definition 7, there is a smallest finite execu-
tion tree κ with root 〈C, s, h〉, each of whose leaves γ satisfies γ �|= ψ. More-
over, κ has a subtree κ′ with root 〈C ′, s′, h′〉 and whose leaves are all leaves of
κ. Therefore height(κ′) ≤ height(κ). Moreover, height(κ′) < height(κ) when
R is a symbolic execution rule.

Theorem 1 (Soundness). If P � C : ϕ is provable, then it is valid.

Proof. (Sketch) Suppose for contradiction that there is a cyclic proof P of J =
P � C : ϕ but J is invalid. That is, for some stack s and heap h, we have
(s, h) |= P but 〈C, s, h〉 �|= ϕ. Then, by local soundness of the proof rules, we
can construct an infinite path (Pi � Ci : ϕi)i≥0 in P of invalid judgements. Since
P is a cyclic proof, by Definition 8 there exists an infinitely progressing trace
following some tail (Pi � Ci : ϕi)i≥n of the path.

If this trace is a �-trace, using condition 1 of Lemma 1, we can construct an
infinite sequence of finite paths to a fixed configuration γ of infinitely decreasing
length, contradiction. A similar argument related to the height of computation
trees applies in the case of a ♦-trace. A precondition trace yields an infinitely
decreasing sequence of ordinal approximations of some inductive predicate, also
a contradiction; see [7] for details.

The inductive-coinductive dichotomy shows nicely in our trace condition.
Coinductive (G) properties need to show that something happens infinitely often
whereas inductive (F ) properties have to show that something cannot happen
infinitely often. Both cases give us a progress condition: for coinductive proper-
ties, we essentially need program progress on the right of the judgements. For
inductive properties, we need an infinite descent on the left of the judgements
(or for the proof to be finite).

Readers familiar with Hoare-style proof systems might wonder about relative
completeness of our system, i.e., whether all valid judgements are derivable if all
valid entailments between formulas are derivable. Typically, such a result might
be established by showing that for any program C and temporal property ϕ,
we can (a) express the logically weakest precondition for C to satisfy ϕ, say
wp(C,ϕ), and (b) derive wp(C,ϕ) � C : ϕ in our system. Relative completeness
then follows from the rule of consequence, (Cons). Unfortunately, it seems certain
that such weakest preconditions are not expressible in our language. For example,
in [7], the multiplicative implication of separation logic, —∗, is needed to express
weakest preconditions, whereas it is not present in our language due to the
problems it poses for automation (a compromise typical of most separation logic
analyses). Indeed, it seems likely that we would need to extend our precondition
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language well beyond this, since [7] only treats termination, whereas we treat
arbitrary temporal properties. Since our focus in this paper is on automation,
we leave such an analysis to future work.

4 Fairness

An important component in the verification of reactive systems is a set of fair-
ness requirements to guarantee that no computation is neglected forever. These
fairness constraints are usually categorised as weak and strong fairness [20].
However, since weak fairness requirements are usually restricted to the parallel
composition of processes, a property that our programming language lacks, we
limit ourselves to the treatment of strong fairness.

Definition 9 (Fair execution). Let C be a program command and π =
(πi)i≥0 a program execution. We say that π visits C infinitely often if there
are infinitely many distinct i ≥ 0 such that πi = 〈C, , 〉. A program execution
π is fair for commands Ci, Cj if it is the case that π visits Ci infinitely often if
and only if π visits Cj infinitely often. Furthermore, π is fair for a program C
if it is fair for all pairs of commands Ci, Cj such that C contains a command of
the form if ∗ then Ci else Cj fi or while ∗ do Ci od Cj.

Note that every finite program execution is trivially fair. Also, for the pur-
poses of fairness, we consider program commands to be uniquely labelled (to
avoid confusion between different instances of the same command).

We now modify our cyclic CTL system to treat fairness constraints. First,
we adjust the interpretation of judgements to account for fairness, then we lift
the definition of fairness from program executions to paths in a pre-proof.

Definition 10 (Fair CTL judgement). A fair CTL judgement P �f C : ϕ
is valid if and only if, for all memory states (s, h) such that s, h |= P , we
have 〈C, s, h〉 |=f ϕ, where |=f is the satisfaction relation obtained from |= in
Definition 4 by interpreting the temporal operators as quantifying over fair paths,
rather than all paths. For example, the clause for AG becomes

γ |=f AGϕ ⇔ ∀ fair π startingfrom γ. ∀γ′ ∈ π. γ′ |=f ϕ.

Definition 11. A path in a pre-proof (Ji = Pi �f Ci : ϕi)i≥0 is said to visit C
infinitely often if there are many distinct i ≥ 0 such that JiC = C. A path in a
pre-proof is fair for commands Ci, Cj if it is the case that (Ji)i≥0 visits Ci infi-
nitely often if and only if (Ji)i≥0 visits Cj infinitely often. Finally, the path is fair
for program C iff it is fair for all pairs of commands Ci, Cj such that C contains
a command of the form if ∗ then Ci else Cj fi or while ∗ do Ci od Cj.

Given these new definitions, the global soundness condition of our proofs is
restricted to account only for fair paths in a pre-proof.
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Definition 12 (Bad pre-proof). A pre-proof P is bad if there is an infinite
path in P such that the rule (Wh*♦1)/(If*♦1) is applied infinitely often and
(Wh*♦2)/(If*♦2) is applied only finitely often, or vice versa.

Definition 13 (Fair proof). A pre-proof P is a fair cyclic proof if it is not bad,
and for every infinite fair path (Pi �f Ci : ϕi)i≥0 in P, there is an infinitely
progressing �-trace, ♦-trace or precondition trace following some tail (Pi �f

Ci : ϕi)i≥n of the path.

Proposition 1 (Decidable soundness condition). It is decidable whether a
pre-proof is a valid fair cyclic proof.

Proof. (Sketch) To check that a pre-proof P is not bad, we construct two Büchi
automata; the first one AB1 accepts all infinite paths in P such that the rule
((Wh*♦1))/(If* ♦1) is applied infinitely often. The second Büchi automata AB2

accepts all infinite paths such that the rule (Wh*♦2)/(If* ♦2) is applied infinitely
often. We then check that the following relation holds of the languages accepted
by each automata: L(AB1) ⊆ L(AB2) and L(AB2) ⊆ L(AB1), where language
inclusion of Büchi automata is decidable.

Moreover, to check that there exists an infinitely progressing trace along every
infinite path of P we construct two automata over strings of nodes of P. The fair
automata AFair that accepts all infinite fair paths in P is a Streett automata
with acceptance condition formed of conjuncts of the form (Fin(i) ∨ Inf(j)) ∧
(Fin(j) ∨ Inf(i)) for each pair of fairness constraints (i, j). The trace automata
ATrace is a Büchi automata that accepts all infinite paths in P such that an
infinitely progressing trace exists along the path (cf. [5]). P is then a valid cyclic
proof if and only if ATrace accepts all strings accepted by AFair. We are then
done since Streett automata can be transformed into Büchi automata [21] and
inclusion between Büchi automata is decidable.

Example 3. We return to our server program from Examples 1 and 2. Suppose
we wish to prove, not that it is always possible for the heap to become empty,
i.e. AGEF (emp), but that the heap will always eventually become empty, i.e.
AGAF (emp). Our server program in fact does not satisfy this property, because
the program can always choose to execute the second inner loop infinitely often,
adding job requests to the list forever. However, it does satisfy this property
under the assumption of fair execution, which prevents the second loop from
being executed infinitely often without executing the first loop.

Figure 3 shows the proof of this property in the adaptation of our system
that is aware of fairness constraints as described above. Adding the fairness con-
straints relaxes the conditions under which back-links can be formed. This relaxed
condition can be seen in back-links depicted in green as they cause an infinite
path with no valid trace to be formed. Yet, because this infinite path is unfair, it
is not considered in the global soundness condition. Our pre-proof qualifies as a
valid cyclic proof since along every fair infinite path there is either a �-trace or
a precondition trace progressing infinitely often.
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(Ex Falso)

◦

(Check)···· (AF)

[A]···· (Cons)

···· (Assign)

···· (AF)

···· (Free)
···· (AF)

···· (Load)
···· (AF)

(Wh)

···· AF

[A]

[F]

[C]···· (Cons)

···· (Assign)

···· (AF)

···· (Store)
···· (AF)

···· (New)

···· (AF)

(Wh*�)

···· AF

[C]
(If*�)

···· AF

(Wh)

···· AF

[B]

(Ex Falso)

◦

[C][A]
(If*�)

···· AF

[A]

[B]···· (Cons)

[A]···· (Cons)

···· (Assign)

···· (AF)

···· (Free)
···· (AF)

···· (Load)
···· (AF)

[A]···· (Cons)

···· (Assign)

···· (AF)

···· (Free)
···· (AF)

[A]···· (Cons)

···· (Assign)

···· (AF)

[D]···· (Cons)

···· (Assign)

(AG)

···· (Free)

(AG)

···· (Load)

(AG)

······
(Wh)

····
(AG)

[D]

[C]

[C]

[C]···· (Cons)

···· (Assign)

···· (AF)

···· (Store)
···· (AF)

[C]···· (Cons)

···· (Assign)

···· (AF)

[E]···· (Cons)

···· (Assign)

(AG)

···· (Store)

(AG)

···· (New)

(AG)
[E] [F]

(Wh*�)
◦
(AG)

◦
(If*�)

◦
(AG)

◦
(Wh)

◦
(AG)

[F]

[A] = ls(x, nil) � whilex �= nil do . . . od : AF (emp) [D] = ls(x, nil) � whilex �= nil do . . . od : AGAF (emp)

[B] = ls(x, nil) � whilex = x do . . . od : AF (emp) [E] = ls(x, nil) � while ∗ do . . . od : AGAF (emp)

[C] = ls(x, nil) � while ∗ do . . . od : AF (emp) [F] = ls(x, nil) � whilex = x do . . . od : AGAF (emp)

Fig. 3. Single threaded monolithic server example

Theorem 2 (Soundness). If P �f C : ϕ is provable, then it is valid.

Proof. (Sketch) Suppose for contradiction that there is a fair cyclic proof P of
J = P �f C : ϕ but J is invalid. That is, for some stack s and heap h, we have
(s, h) |= P but 〈C, s, h〉 �|=f ϕ. Then, by local soundness of the proof rules, we
can construct an infinite path (Pi �f Ci : ϕi)i≥0 in P of invalid sequents. By
Definition 13 we know that said infinite path is a fair path (as any unfair path
has been ruled out by requiring that P is not a bad pre-proof according to Defini-
tion 12). Since the path is an infinite fair path, by Definition 13 we also know that
there is an infinitely progressing �-trace, ♦-trace or precondition trace following
some tail of the path. Showing that the existence of an infinitely progressing
trace along the path leads to a contradiction follows the same argument as in
Sect. 3.

5 Implementation and Evaluation

We implement our proof systems on top of the Cyclist theorem prover [9], a
mechanised cyclic theorem proving framework. The implementation, source code
and benchmarks are publicly available at [1] (under the subdirectory titled as
the present paper).
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Our implementation performs iterative depth-first search, aimed at closing
open nodes in the proof by either applying an inference rule or forming a back-
link. If an open node cannot be closed, we attempt to apply symbolic execution; if
this is not possible, we try unfolding temporal operators and inductive predicates
in the precondition to enable symbolic execution to proceed. Forming back-
links typically requires the use of the consequence rule (i.e. a lemma proven on
demand) to re-establish preconditions altered by symbolic executions (as can be
seen in Figs. 2 and 3). When all open nodes have been closed, a global soundness
check of the cyclic proof is performed automatically. Entailment queries over
symbolic heaps in separation logic, which arise at backlinks and when applying
the (Check) axiom or checking rule side conditions, are handled by a separate
instantiation of Cyclist for separation logic entailments [9].

We evaluate the implementation on handcrafted nondeterministic and non-
terminating programs similar to Example 1. Our test suite can be seen as an
adaptation of the common model checking benchmarks presented in [14,15] for
the verification of temporal properties of nondeterministic programs. Roughly
speaking, operations/iterations on integer variables in the original benchmarks
are replaced in favour of operations/iterations on heap data structures.

Our test suite comprises the following programs:

(i) Examples discussed in the paper are named Exmp;
(ii) Fin-Lock - a finite program that acquires a lock and, once obtained,

proceeds to free from memory the elements of a list and reset the lock;
(iii) Inf-Lock wraps the previous program inside an infinite loop;
(iv) Nd-In-Lock is an infinite loop that nondeterministically acquires a lock,

then proceeds to perform a nondeterministic number of operations before
releasing the lock;

(v) Inf-List is an infinite loop that nondeterministically adds a new element
to the list or advances the head of the list by one element on each iteration;

(vi) Insert-List has a nondeterministic if statement that either adds a single
elements to the head of the list or deletes all elements but one, and is
followed by an infinite loop;

(vii) Append-List appends the second argument to the end of the first argument;
(viii) Cyclic-List is a nonterminating program that iterates through a non-

empty cyclic list;
(ix) Inf-BinTRee is an infinite loop that nondeterministically inserts nodes

to a binary three or performs a random walk of the three;
(x) The programs named with Branch define a somewhat arbitrary nesting of

nondeterministic if and while statements, aimed at testing the capability
of the tool in terms of lines of code and nesting of cycles;

(xi) Finally we also cover sample programs taken from the Windows Update
system (Win Update), the back-end infrastructure of the PostgreSQL
database server (PostgreSQL) and an implementation of the acquire-
release algorithm taken from the aforementioned benchmarks (Acq-Rel).

We show the results of the evaluation of the CTL system and its extension to
consider fairness constraints in Table 1. For each test, we report whether fairness
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constraints were needed to verify the desired property and the time taken in
seconds. The tests were carried out on an Intel x-64 i5 system at 2.50 GHz.

Our experiments demonstrate the viability of our approach: our runtimes
are mostly in the range of milliseconds and show similar performance to existing
tools for the model checking benchmarks. Overall, the execution times in the
evaluation are quite varied as they depend on a few factors such as the complex-
ity of the program in question and temporal property to verify, but sources of
potential slowdown can be witnessed by different test cases. Even at the level
of pure memory assertions, the base case rule (Check) has to check entailments
P |= Q between symbolic heaps, which involves calling an inductive theorem
prover; this is reasonably fast in some cases, but very costly in others (e.g. the
Append-List example). Another source of slowdown is in attempting to form
back-links too eagerly (e.g. when encountering the same command at two dif-
ferent program locations); since we check soundness when forming a back-link,
which involves calling a model checker (cf. [9]), this too is an expensive operation,
as can be seen in the runtimes of test cases with suffix Branch.

Note that despite the encouraging results, the implementation is not without
limitations as it might, in some cases, fail to terminate and produce a valid proof.
Generalising, our proof search tends to fail either when the temporal property
in question does not hold, or when we fail to establish a sufficiently general
“invariant” to form backlinks in the proof.

6 Related Work

Related work on the automated verification of temporal program properties can
broadly be classified into two main schools, model checking and deductive ver-
ification. In recent years, model checking has been the more popular of these
two. Although earlier work in model checking focused on finite-state transi-
tion systems (e.g. [11,25]), recent advances in areas such as state space restric-
tion [3], precondition synthesis [12], CEGAR [15], bounded model checking [10]
and automata theory [13] have enabled the treatment of infinite transition sys-
tems.

The present paper takes the deductive verification approach. A common lim-
itation of early proof systems for various temporal logics is their restriction to
finite state transition systems [4,18,19]. In the realm of infinite state systems,
previous proof systems for verifying temporal properties of arbitrary transition
systems [23,30] have shed some light on the soundness and relative complete-
ness of deductive verification. However, these early systems have typically relied
upon complex verification conditions that are seemingly difficult to fully auto-
mate, arguably the most cited argument against deductive verification. In con-
trast, our proof system can handle infinite state, non-terminating programs, even
under fairness restrictions, and we provide an implementation and evaluation,
showing that it can indeed work in practice.

Of particular relevance here are those proof systems for temporal properties
based on cyclic proof. Our work can be seen as an extension of the cyclic termi-
nation proofs in [7] to arbitrary temporal properties. In [4], a procedure for the
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Table 1. Experimental results.

Program Precondition Property Fairness Time (s)

Exmp ls(x,nil) AGEF emp No 2.43

Exmp ls(x,nil) AGAF emp Yes 4.29

Exmp ls(x,nil) AGAF (ls(x,nil)) No 0.26

Exmp ls(x,nil) AGEG (ls(x,nil)) No 0.44

Exmp ls(x,nil) AF emp Yes 0.77

Exmp ls(x,nil) AFEG emp Yes 0.86

Fin-Lock lock �→ 0 * ls(x,nil) AF (lock �→ 1 * emp) No 0.20

Fin-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→1 * emp) No 0.62

Fin-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→ 1 * emp ∧ ♦lock �→ 0) No 0.24

Inf-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→ 1 * emp) No 1.52

Inf-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→ 1 * emp ∧ ♦lock �→ 0)) No 3.26

Inf-Lock del = false : lock �→ 0 * ls(x,nil) AG (del != true ∨ AF (lock �→ 1 * emp)) No 3.87

Nd-Inf-Lock lock �→ 0 AF(lock �→ 1) Yes 0.15

Nd-Inf-Lock lock �→ 0 AGAF (lock �→ 1) Yes 0.25

Inf-List ls(x,nil) AG ls(x,nil) No 0.21

Inf-List ls(x,nil) AGEF x = nil No 4.39

Inf-List ls(x,nil) AGAF x = nil Yes 8.10

Insert-List ls(three,zero) EF ls(five,zero) No 0.14

Insert-List ls(three,zero) AF ls(five,zero) Yes 0.26

Insert-List ls(n,zero) AGAF n != zero Yes 17.21

Append-List ls(y,x) * ls(x,nil) AF (ls(y,nil)) No 12.67

Cyclic-List cls(x,x) AG cls(x,x) No 0.88

Cyclic-List cls(x,x) AGEG cls(x,x) No 0.34

Inf-BinTree x != nil : bintree(x) AGEG x != nil No 0.72

AFAG Branch x �→ zero AFAG x �→ one No 1.80

EGAG Branch x �→ zero EGAG x �→ one No 0.23

EGAF Branch x �→ zero EGAF x �→ one No 15.48

EG⇒ EF Branch p = zero ∧ q = zero : ls(zero,n) EG(p != one ∨ EF q = one) No 1.60

EG⇒ AF Branch p = zero ∧ q = zero : ls(zero,n) EG(p != one ∨AF q = one) Yes 5.33

AG⇒EG Branch p = zero ∧ q = one : ls(zero,n) AG(p != one ∨ EG q = one) No 0.36

AG⇒ EF Branch p = zero ∧ q = one :u ls(zero,n) AG(p != one ∨ EF q = one) No 1.53

Acq-rel ls(zero,three) AG(acq = 0 ∨ AF rel != 0) No 1.25

Acq-rel ls(zero,three) AG(acq = 0 ∨ EF rel != 0) No 1.25

Acq-rel ls(zero,three) EF acq != 0 ∧ EF AG rel = 0 No 0.33

Acq-rel ls(zero,three) AF AG rel = 0 Yes 0.42

Acq-rel ls(zero,three) EF acq != 0 ∧ EF EG rel = 0 No 0.25

Acq-rel ls(zero,three) AF EG rel = 0 Yes 0.33

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp AGAF w = true ∧ s = s’ ∧ flag = f’ : emp No 0.27

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp AGEF w = true ∧ s = s’ ∧ flag = f’ : emp No 0.26

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp EFEG w = false ∧ s = s’ ∧ flag = f’ No 0.44

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp EFAG w = false ∧ s = s’ ∧ flag = f’ No 0.77

Win Update W != nil : ls(W,nil) AGAF W != nil : ls(W,nil) No 1.50

Win Update W != nil : ls(W,nil) AGEF W != nil : ls(W,nil) No 1.00

Win Update W != nil : ls(W,nil) EFEG W = nil : emp No 3.60

Win Update W != nil : ls(W,nil) AFEG W = nil : emp Yes 3.70

Win Update W != nil : ls(W,nil) EFAG W = nil : emp No 3.15

Win Update W != nil : ls(W,nil) AFAG W = nil : emp Yes 4.16
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verification of CTL* properties is developed that employs a cyclic proof system
for LTL as a sub-procedure. A subtle but important difference when compared to
our work is the lack of cut/consequence rule (used e.g. to generalise precondition
formulas or to apply intermediary lemmas). A side benefit of this restriction is
a simplification of the soundness condition on cyclic proofs.

A cyclic proof system for the verification of CTL* properties of infinite-state
transition systems is presented in [30]. Focusing on generality, this system avoids
considering details of state formulas and their evolution throughout program
execution by assuming an oracle for a general transition system. The system
relies on a soundness condition that is similar to Definition 8, but does not track
progress in the same way, imposing extra conditions on the order in which rules
are applied. The success criterion for validity of a proof also presents some differ-
ences; it relies on finding ranking functions, intermediate assertions and checking
for the validity of Hoare triples, and it is far from clear that such checks can be
fully automated. In contrast, we rely on a relatively simple ω-regular condition,
which is decidable and can be automatically checked by Cyclist [5,9,29].

7 Conclusions and Future Work

Our main contribution in this paper is the formulation, implementation and
evaluation of a deductive cyclic proof system for verifying temporal properties of
pointer programs, building on previous systems for separation logic and for other
temporal verification settings [4,7,30]. We present two variants of our system and
prove both systems sound. We have implemented these proof systems, and proof
search algorithms for them, in the Cyclist theorem prover, and evaluated them
on benchmarks drawn from the literature.

The main advantage of our approach is that we never obtain false positive
results. This advantage is not in fact exclusive to deductive verification: some
automata-theoretic model checking approaches are also proven to be sound [32].
Nonetheless, when compared to such approaches, our treatment of the tempo-
ral verification problem has the advantage of being direct. Owing to our use of
separation logic and a deductive proof system, we do not need to apply approxi-
mation or transformations to the program as a first step; in particular, we avoid
the translation of temporal formulas into complex automata [33] and the instru-
mentation of the original program with auxiliary constructs [13].

One natural direction for future work is to develop improved mechanised tech-
niques, such as generalisation/abstraction, to enhance the performance of proof
search in our system(s). Another possible direction is to consider larger classes
of programs. In particular, concurrency is one very interesting such possibility,
perhaps building on existing verification techniques for concurrency in separa-
tion logic (e.g. [31]). A different direction to explore is the enrichment of our
assertion language, for example to CTL* [17] or μ-calculus [16]. The structure of
CTL* formulas and their classification into path and state subformulas suggest a
possible combination of our CTL system with an LTL system to produce a proof
object composed of smaller proof structures (cf. [4,30]). The encoding of CTL*
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into μ-calculus [16] and the applicability of cyclic proofs for the verification of
μ-calculus properties (see e.g. [28]) hint at the feasibility of such an extension.
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