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Abstract. We present a framework for processing formulas in auto-
matic theorem provers, with generation of detailed proofs. The main
components are a generic contextual recursion algorithm and an exten-
sible set of inference rules. Clausification, skolemization, theory-specific
simplifications, and expansion of ‘let’ expressions are instances of this
framework. With suitable data structures, proof generation adds only
a linear-time overhead, and proofs can be checked in linear time. We
implemented the approach in the SMT solver veriT. This allowed us to
dramatically simplify the code base while increasing the number of prob-
lems for which detailed proofs can be produced, which is important for
independent checking and reconstruction in proof assistants.

1 Introduction

An increasing number of automatic theorem provers can generate certificates,
or proofs, that justify the formulas they derive. These proofs can be checked by
other programs and shared across reasoning systems. Some users will also want
to inspect this output to understand why a formula holds. Proof production is
generally well understood for the core proving methods and for many theories
commonly used in satisfiability modulo theories (SMT). But most automatic
provers also perform some formula processing or preprocessing—such as clausifi-
cation and rewriting with theory-specific lemmas—and proof production for this
aspect is less mature.

For most provers, the code for processing formulas is lengthy and deals with
a multitude of cases, some of which are rarely executed. Although it is crucial for
efficiency, this code tends to be given much less attention than other aspects of
provers. Developers are reluctant to invest effort in producing detailed proofs for
such processing, since this requires adapting a lot of code. As a result, the granu-
larity of inferences for formula processing is often coarse. Sometimes, processing
features are even disabled to avoid gaps in proofs, at a high cost in proof search
performance.

Fine-grained proofs are important for a variety of applications. We propose
a framework to generate such proofs without slowing down proof search. Proofs
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are expressed using an extensible set of inference rules (Sect. 2). The succe-
dent of a rule is an equality between the original term and the translated term.
(It is convenient to consider formulas a special case of terms.) The rules have a
fine granularity, making it possible to cleanly separate theories. Clausification,
theory-specific simplifications, and expansion of ‘let’ expressions are instances
of this framework. Skolemization may seem problematic, but with the help of
Hilbert’s choice operator, it can also be integrated into the framework. Some
provers provide very detailed proofs for parts of the solving, but we are not aware
of any publications about practical attempts to provide easily reconstructible
proofs for processing formulas containing quantifiers and ‘let’ expressions.

At the heart of the framework lies a generic contextual recursion algorithm
that traverses the terms to translate (Sect. 3). The context fixes some vari-
ables, maintains a substitution, and keeps track of polarities or other data. The
transformation-specific work, including the generation of proofs, is performed by
plugin functions that are given as parameters to the framework. The recursion
algorithm, which is critical for the performance and correctness of the gener-
ated proofs, needs to be implemented only once. Another benefit of the modular
architecture is that we can easily combine several transformations in a single
pass, without complicating the code unduly or compromising the level of detail
of the proof output. For very large inputs, this can improve performance.

The inference rules and the contextual recursion algorithm enjoy many desir-
able properties (Sect. 4). The rules are sound, and the treatment of binders is
correct even in the presence of name clashes. Moreover, with suitable data struc-
tures, proof generation adds an overhead that is proportional to the time spent
processing the terms. Checking proofs represented as directed acyclic graphs
(DAGs) can be performed with a time complexity that is linear in their size.
Detailed proofs of the metatheory are included in a technical report [2], together
with more explanations and examples.

We implemented the approach in veriT (Sect. 5), an SMT solver that is com-
petitive on problems combining equality, linear arithmetic, and quantifiers [3].
Compared with other SMT solvers, veriT is known for its very detailed proofs
[5], which are reconstructed in the proof assistants Coq [1] and Isabelle/HOL
[6] and in the GAPT system [10]. As a proof of concept, we implemented a
prototype checker in Isabelle/HOL.

By adopting the new framework, we were able to remove large amounts of
complicated code in the solver, while enabling detailed proofs for more transfor-
mations than before. The contextual recursion algorithm had to be implemented
only once and is more thoroughly tested than any of the monolithic transfor-
mations it subsumes. Our empirical evaluation reveals that veriT is as fast as
before even though it now generates finer-grained proofs.

1.1 Conventions

Our setting is a many-sorted classical first-order logic as defined by the SMT-
LIB standard [4]. A signature Σ = (S ,F ) consists of a set S of sorts and
a set F of function symbols. Nullary function symbols are called constants.
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We assume that the signature contains a Bool sort and constants true, false :
Bool, a family (� : σ × σ → Bool)σ∈S of function symbols interpreted as equal-
ity, and the connectives ¬, ∧, ∨, and −�→. Formulas are terms of type Bool, and
equivalence is equality (�) on Bool. Terms are built over symbols from F and
variables from a fixed family of infinite sets (Vσ)σ∈S . In addition to ∀ and ∃, we
rely on two more binders: Hilbert’s choice operator εx.ϕ and a ‘let’ construct,
let x̄n � s̄n in t, which simultaneously assigns n variables.

We use the symbol = for syntactic equality on terms. We reserve the names
a, f, p, q for function symbols; x, y for variables; r, s, t, u for terms (which may
be formulas); ϕ,ψ for formulas; and Q for quantifiers (∀ and ∃). We use the
notations ān and (ai)n

i=1 to denote the tuple, or vector, (a1, . . . , an). We write
[n] for {1, . . . , n}.

Given a term t, the set of its free variables is written FV (t). The notation
t[x̄n] stands for a term that may depend on x̄n; t[s̄n] is the corresponding term
where the terms s̄n are substituted for x̄n. Bound variables in t are renamed to
avoid capture. Following these conventions, Hilbert choice and ‘let’ are charac-
terized by

|= ∃x. ϕ[x] −�→ ϕ[εx.ϕ] (ε1)
|= (∀x. ϕ � ψ) −�→ (εx.ϕ) � (εx.ψ) (ε2)

|= (let x̄n � s̄n in t[x̄n]) � t[s̄n] (let)

Substitutions ρ are functions from variables to terms such that ρ(xi) �= xi for at
most finitely many variables xi. We write them as {x̄n 	→ s̄n}. The substitution
ρ[x̄n 	→ s̄n] maps each variable xi to the term si and otherwise coincides with ρ.
The application of a substitution ρ to a term t is denoted by ρ(t). It is capture-
avoiding; bound variables in t are renamed as necessary. Composition ρ′ ◦ ρ is
defined as for functions (i.e., ρ is applied first).

2 Inference System

The inference rules used by our framework depend on a notion of context defined
by the grammar Γ ::= ∅ | Γ, x | Γ, x̄n 	→ s̄n. Each context entry either fixes
a variable x or defines a substitution {x̄n 	→ s̄n}. If a context introduces the
same variable several times, the rightmost entry shadows the others. Abstractly,
a context Γ fixes a set of variables and specifies a substitution subst(Γ) defined
by subst(∅) = {}, subst(Γ, x) = subst(Γ)[x 	→ x], and subst(Γ, x̄n 	→ t̄n) =
subst(Γ) ◦ {x̄n 	→ t̄n}. In the second equation, the [x 	→ x] update shadows any
replacement of x induced by Γ. We write Γ(t) to abbreviate the capture-avoiding
substitution subst(Γ)(t).

Transformations of terms (and formulas) are justified by judgments of the
form Γ � t � u, where Γ is a context, t is an unprocessed term, and u is the
corresponding processed term. The free variables in t and u must appear in the
context Γ. Semantically, the judgment expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ. Crucially, the substitution applies only on the
left-hand side of the equality.
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The inference rules for the transformations covered in this paper are pre-
sented below.

TautT if |=T Γ(t) � u
Γ � t � u

Γ � s � t Γ � t � u
Trans if Γ(t) = t

Γ � s � u
(
Γ � ti � ui

)
n
i=1

Cong

Γ � f(t̄n) � f(ūn)

Γ, y, x 	→ y � ϕ � ψ
Bind if y /∈ FV (Qx. ϕ)

Γ � (Qx. ϕ) � (Qy. ψ)

Γ, x 	→ (εx.ϕ) � ϕ � ψ
Sko∃

Γ � (∃x. ϕ) � ψ

Γ, x 	→ (εx.¬ϕ) � ϕ � ψ
Sko∀

Γ � (∀x. ϕ) � ψ
(
Γ � ri � si

)
n
i=1 Γ, x̄n 	→ s̄n � t � u

Let if Γ(si) = si for all i ∈ [n]
Γ � (let x̄n � r̄n in t) � u

• T relies on an oracle T to derive arbitrary lemmas in a theory T . In practice,
the oracle will produce some kind of certificate to justify the inference. An
important special case, for which we use the name Refl, is syntactic equality.

• Trans needs the side condition because the term t appears both on the
left-hand side of � (where it is subject to Γ’s substitution) and on the right-
hand side.

• Cong can be used for any function symbol f, including the logical connectives.
• Bind is a congruence rule for quantifiers. The rule also justifies the renaming

of the bound variable. The side condition prevents an unwarranted variable
capture. In the antecedent, the renaming is expressed by a substitution in the
context.

• Sko ∃ and Sko ∀ exploit (ε1) to replace a quantified variable with a suitable
witness, simulating skolemization. We can think of the ε expression in each
rule abstractly as a fresh function symbol that takes any fixed variables it
depends on as arguments.

• Let exploits (let) to expand a ‘let’ expression. The terms r̄n assigned to the
variables x̄n can be transformed into terms s̄n.

The antecedents of all the rules inspect subterms structurally, without modifying
them. Modifications to the term on the left-hand side are delayed; the substi-
tution is applied only in Taut. This is crucial to obtain compact proofs that
can be checked efficiently. By systematically renaming variables in Bind, we can
satisfy most side conditions trivially.

Judgments can be encoded into a well-understood theory of binders: the
simply typed λ-calculus. This provides a solid basis to reason about them, and
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to reconstruct proofs expressed in the inference system. We refer to our technical
report [2] for details.

The set of rules can be extended to cater for arbitrary transformations that
can be expressed as equalities, using Hilbert choice to represent fresh symbols if
necessary. The usefulness of Hilbert choice for proof reconstruction is well known
[7,19,21], but we push the idea further and use it to simplify the inference system
and make it more uniform.

Example 1. The following derivation tree justifies the expansion of a ‘let’
expression:

Cong

� a � a

Refl

x 	→ a � x � a
Refl

x 	→ a � x � a
Cong

x 	→ a � p(x, x) � p(a, a)
Let

� (let x � a in p(x, x)) � p(a, a)

Skolemization can be applied regardless of polarity. Normally, we skolemize
only positive existential quantifiers and negative universal quantifiers. However,
skolemizing other quantifiers is sound in the context of proving. The trouble is
that it is generally incomplete, if we introduce Skolem symbols and forget their
definitions in terms of Hilbert choice. To paraphrase Orwell, all quantifiers are
skolemizable, but some quantifiers are more skolemizable than others.

3 Contextual Recursion

We propose a generic algorithm for term transformations, based on structural
recursion. The algorithm is parameterized by a few simple plugin functions
embodying the essence of the transformation. By combining compatible plugin
functions, we can perform several transformations in one traversal. Transforma-
tions can depend on some context that encapsulates relevant information, such
as bound variables, variable substitutions, and polarity. Each transformation can
define its own notion of context.

The output is generated by a proof module that maintains a stack of deriva-
tion trees. The procedure apply(R, n, Γ, t, u) pops n derivation trees D̄n from
the stack and pushes the tree of Γ � t � u obtained by applying rule R to D̄n.
The plugin functions are responsible for invoking apply as appropriate.

3.1 The Generic Algorithm

The algorithm performs a depth-first postorder contextual recursion on the term
to process. Subterms are processed first; then an intermediate term is built from
the resulting subterms and is processed in turn. The context Δ is updated in
a transformation-specific way with each recursive call. It is abstract from the
point of view of the algorithm. The plugin functions are divided into two groups:
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ctx let, ctx quant, and ctx app update the context when entering the body of a
binder or when moving from a function symbol to one of its arguments; build let,
build app, build app, and build var return the processed term and produce the
corresponding proof as a side effect.

function process(Δ, t)
match t
case x:
return build var(Δ, x)

case f(t̄n):
Δ̄′

n ← (ctx app(Δ, f, t̄n, i))n
i=1

return build app
(
Δ, Δ̄′

n, f, t̄n, (process(Δ′
i, ti))n

i=1

)

case Qx. ϕ:
Δ′ ← ctx quant(Δ, Q, x, ϕ)
return build quant(Δ, Δ′, Q, x, ϕ, process(Δ′, ϕ))

case let x̄n � r̄n in t′:
Δ′ ← ctx let(Δ, x̄n, r̄n, t′)
return build let(Δ, Δ′, x̄n, r̄n, t′, process(Δ′, t′))

3.2 ‘Let’ Expansion

The first instance of the contextual recursion algorithm expands ‘let’ expressions
and renames bound variables systematically to avoid capture. Skolemization
and theory simplification, presented below, assume that this transformation has
been performed. The context consists of a list of fixed variables and variable
substitutions, as in Sect. 2. The plugin functions are as follows:

function ctx let(Γ, x̄n, r̄n, t)
return Γ, x̄n 	→ (process(Γ, ri))n

i=1

function ctx app(Γ, f, t̄n, i)
return Γ

function build let(Γ, Γ′, x̄n, r̄n, t, u)
apply(Let, n+1, Γ, let x̄n � r̄n in t, u)
return u

function build app(Γ, Γ̄′
n, f, t̄n, ūn)

apply(Cong, n, Γ, f(t̄n), f(ūn))
return f(ūn)

function ctx quant(Γ, Q, x, ϕ)
y ← fresh variable
return Γ, y, x 	→ y

function build quant(Γ, Γ′, Q, x, ϕ, ψ)
y ← Γ′(x)
apply(Bind, 1, Γ, Qx. ϕ, Qy. ψ)
return Qy. ψ

function build var(Γ, x)
apply(Refl, 0, Γ, x, Γ(x))
return Γ(x)

The ctx let and build let functions process ‘let’ expressions. In ctx let, the
substituted terms are processed further before they are added to a substitution
entry in the context. In build let, the Let rule is applied and the transformed
term is returned. Analogously, the ctx quant and build quant functions rename
quantified variables systematically. This ensures that any variables that arise in
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the range of the substitution specified by ctx let will resist capture when the
substitution is applied. Finally, the ctx app, build app, and build var functions
simply reproduce the term traversal in the generated proof; they perform no
transformation-specific work.

Example 2. Following up on Example 1, assume ϕ = let x � a in p(x, x). Given
the above plugin functions, process(∅, ϕ) returns p(a, a). It is instructive to study
the evolution of the stack during the execution of process. First, in ctx let, the
term a is processed recursively; the call to build app pushes a nullary Cong step
with succedent � a � a onto the stack. Then the term p(x, x) is processed. For
each of the two occurrences of x, build var pushes a Refl step onto the stack.
Next, build app applies a Cong step to justify rewriting under p: The two Refl

steps are popped, and a binary Cong is pushed. Finally, build let performs a
Let inference with succedent � ϕ � p(a, a) to complete the proof: The two
Cong steps on the stack are replaced by the Let step. The stack now consists
of a single item: the derivation tree of Example 1.

3.3 Skolemization

Our second transformation, skolemization, assumes that ‘let’ expressions have
been expanded and bound variables have been renamed apart. The context is
a pair Δ = (Γ, p), where Γ is as defined in Sect. 2 and p is the polarity (+,
−, or ?) of the term being processed. The main plugin functions are those that
manipulate quantifiers:

function ctx quant((Γ, p), Q, x, ϕ)
if (Q, p) ∈ {(∃,+), (∀,−)} then

Γ′ ← Γ, x 	→ sko term(Γ, Q, x, ϕ)
else

Γ′ ← Γ, x

return (Γ′, p)

The polarity is updated by ctx app, which is not shown. For example,
ctx app((Γ, −), ¬, ϕ, 1) returns (Γ, +), because if ¬ϕ occurs negatively in a
larger formula, then ϕ occurs positively. The plugin functions build app and
build var are as for ‘let’ expansion.

Positive occurrences of ∃ and negative occurrences of ∀ are skolemized. All
other quantifiers are kept as they are. The sko term function returns an applied
Skolem function symbol following some reasonable scheme; for example, outer
skolemization [20] creates an application of a fresh function symbol to all vari-
ables fixed in the context. To comply with the inference system, the application of
Sko ∃ or Sko ∀ in build app instructs the proof module to systematically replace
the Skolem term with the corresponding ε term when outputting the proof.
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3.4 Theory Simplification

All kinds of theory simplification can be performed on formulas. We restrict our
focus to a simple yet quite characteristic instance: the simplification of u+0 and
0 + u to u. We assume that ‘let’ expressions have been expanded. The context
is a list of fixed variables. The plugin functions ctx app and build var are as for
‘let’ expansion; the remaining ones are presented below.

function ctx quant(Γ, Q, x, ϕ)
return Γ, x

function build quant(Γ, Γ′, Q, x, ϕ, ψ)
apply(Bind, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

function build app(Γ, Γ̄′
n, f, t̄n, ūn)

apply(Cong, n, Γ, f(t̄n), f(ūn))
if f(ūn) has form u + 0 or 0 + u

then
apply(Taut+, 0, Γ, f(ūn), u)
apply(Trans, 2, Γ, f(t̄n), u)
return u

else
return f(ūn)

The quantifier manipulation code, in ctx quant and build app, is straight-
forward. The interesting function is build app. It first applies the Cong rule
to justify rewriting the arguments. Then, if the resulting term f(ūn) can be
simplified further into a term u, it performs a transitive chain of reasoning:
f(t̄n) � f(ūn) � u.

3.5 Combinations of Transformations

Theory simplification can be implemented as a family of transformations, each
member of which embodies its own set of theory-specific rewrite rules. If the
union of the rewrite rule sets is confluent and terminating, a unifying implemen-
tation of build app can apply the rules in any order until a fixpoint is reached.
Moreover, since theory simplification modifies terms independently of the con-
text, it is compatible with ‘let’ expansion and skolemization. This allows us to
perform arithmetic simplification in the substituted terms of a ‘let’ expression
in a single pass.

The combination of ‘let’ expansion and skolemization is less straightforward.
Consider the formula ϕ = let y � ∃x. p(x) in y → y. When processing the subfor-
mula ∃x.p(x), we cannot (or at least should not) skolemize the quantifier, because
it has no unambiguous polarity; indeed, the variable y occurs both positively and
negatively in the ‘let’ expression’s body. We can of course give up and perform
two passes: The first pass expands ‘let’ expressions, and the second pass skolem-
izes and simplifies terms. There is also a way to perform all the transformations
in a single instance of the framework, described in our report [2].

3.6 Scope and Limitations

Other possible instances of contextual recursion are the clause normal form
(CNF) transformation and the elimination of quantifiers using one-point rules.
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CNF transformation is an instance of rewriting of Boolean formulas and can
be justified by a TautBool rule. Tseytin transformation can be supported by
representing the introduced constants by the formulas they represent, similarly
to our treatment of Skolem terms. One-point rules—e.g., the transformation of
∀x. x � a −�→ p(x) into p(a)—are similar to ‘let’ expansion and can be repre-
sented in much the same way in our framework.

Some transformations, such as symmetry breaking [9] and rewriting based
on global assumptions, require a global analysis of the problem that cannot be
captured by local substitution of equals for equals. They are beyond the scope of
the framework. Other transformations, such as simplification based on associa-
tivity and commutativity of function symbols, require traversing the terms to be
simplified when applying the rewriting. Since process visits terms in postorder,
the complexity of the simplifications would be quadratic, while a processing that
applies depth-first preorder traversal can perform the simplifications with a lin-
ear complexity. Hence, applying such transformations optimally is also outside
the scope of the framework.

4 Theoretical Properties

The first two metatheoretical results below concern the soundness of the infer-
ence rules and the correctness of the recursion algorithm that generates proofs
in that system. The other results have to do with the cost of proof generation
and checking.

Theorem 1 (Soundness of Inferences). If judgment Γ � t � u is derivable
using the inference system with theories T1, . . . ,Tn, then |=T1 ∪ ··· ∪Tn ∪ � ∪ ε ∪ let

Γ(t) � u.

Theorem 2 (Total Correctness of Recursion). For the instances presented
in Sect. 3, the contextual recursion algorithm always produces correct proofs.

Observation 3 (Complexity of Recursion). For the instances presented in
Sect. 3, the ‘process’ function is called at most once on every subterm of the
input.

As a corollary, if all the operations performed in process excluding the recur-
sive calls can be accomplished in constant time, the algorithm has linear-time
complexity with respect to the input. There exist data structures for which the
following operations take constant time: extending the context with a fixed vari-
able or a substitution, accessing direct subterms of a term, building a term from
its direct subterms, choosing a fresh variable, applying a context to a variable,
checking if a term matches a simple template, and associating the parameters of
the template with the subterms. Thus, it is possible to have a linear-time algo-
rithm for ‘let’ expansion and simplification. On the other hand, skolemization is
at best quadratic in the worst case.
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Observation 4 (Overhead of Proof Generation). For the instances pre-
sented in Sect.3, the number of ‘apply’ calls is proportional to the number of
subterms in the input.

Notice that all arguments to apply must be computed regardless of the apply
calls. If an apply call takes constant time, the proof generation overhead is linear
in the size of the input. To achieve this performance, it is necessary to use sharing
to represent contexts and terms in the output.

Observation 5 (Cost of Proof Checking). Checking an inference step can
be performed in constant time if checking the side condition takes constant time.

The above statement may appear weak, since checking the side conditions
might itself be linear, leading to a cost of proof checking that can be at least
quadratic in the size of the proof. Fortunately, most of the side conditions can be
checked efficiently. For example, simplification proofs can be checked in linear
time because subst(Γ) is always the identity. Moreover, certifying a proof by
checking each step locally is not the only possibility. An alternative is to use an
algorithm similar to the process function to check a proof in the same way as it
has been produced, exploiting sophisticated invariants.

5 Implementation

The ideas presented in this paper have been implemented in two tools. We imple-
mented the contextual recursion algorithm and the transformations described in
Sect. 3 in the SMT solver veriT [8], showing that replacing the previous ad hoc
code with the generic proof-producing framework had no significant detrimen-
tal impact on the solving times. In addition, we developed a prototypical proof
checker for the inference system described in Sect. 2 using Isabelle/HOL [18], to
convince ourselves that veriT’s output can easily be reconstructed.

5.1 Isabelle

The Isabelle/HOL proof assistant is based on classical higher-order logic (HOL),
a variant of the simply typed λ-calculus. The proof checker is included in the
development version of Isabelle.1

Derivations are represented by a recursive datatype in Standard ML,
Isabelle’s primary implementation language. A derivation is a tree whose nodes
are labeled by rule names. Rule TautT also carries a theorem that represents
the oracle |=T , and rules Trans and Let are labeled with the terms that occur
only in the antecedent (t and s̄n). Judgments Γ � t � u are translated to HOL
equalities t′ � u′, where t′ and u′ are HOL terms in which the context Γ is
encoded using λ-abstractions and (for substitutions) applications. For example,

1 http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/
veriT Preprocessing.thy.

http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_Preprocessing.thy
http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_Preprocessing.thy
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the judgment x, y 	→ g(x) � f(y) � f(g(x)) is represented by the HOL equality
(λx. (λy. f y) (g x)) � (λx. f (g x)).

Because reconstruction is not verified, there are no guarantees that it will
always succeed, but when it does, the result is certified by Isabelle’s LCF-style
inference kernel [11]. We hard-coded a few dozen examples to test different cases,
such as this one: Given the HOL terms

t = ¬ ∀x. p ∧ ∃x. ∀x. q x x u = ¬ ∀x. p ∧ ∃x. q (εx.¬ q x x) (εx.¬ q x x)

and the ML tree

N (Cong, [N (Bind, [N (Cong, [N (Refl, []),N (Bind, [N (Sko All, [N (Refl, [])])])])])]))

the reconstruction function returns the HOL theorem t � u.

5.2 veriT

We implemented the contextual recursion framework in the SMT solver veriT,2

replacing large parts of the previous non-proof-producing, hard-to-maintain
code. Even though it offers more functionality (proof generation), the preprocess-
ing module is about 20% smaller than before and consists of about 3000 lines of
code. There are now only two traversal functions instead of 10. This is, for us, a
huge gain in maintainability.

We were able to reuse its existing proof module and proof format [5]. A proof
is a list of inferences, each of which consists of an identifier, the name of the rule,
the identifiers of the dependencies, and the derived clause. The use of identifiers
makes it possible to represent proofs as DAGs. We extended the format with the
inference rules of Sect. 2. The rules that augment the context take a sequence of
inferences—a subproof —as a justification. The subproof occurs within the scope
of the extended context.

In contrast with the abstract proof module described in Sect. 3, veriT leaves
Refl steps implicit for judgments of the form Γ � t � t. The other infer-
ence rules are generalized to cope with missing Refl judgments. In addition,
when printing proofs, the proof module can automatically replace terms in the
inferences with some other terms. This is necessary for transformations such as
skolemization and ‘if–then–else’ elimination. We must apply a substitution in
the replaced term if the original term contains variables. In veriT, efficient data
structures are available to perform this.

The implementation of contextual recursion uses a single global context, aug-
mented before processing a subterm and restored afterwards. The context con-
sists of a set of fixed variables, a substitution, and a polarity. In our setting, the
substitution satisfies the side conditions by construction. If the context is empty,
the result of processing a subterm is cached. For skolemization, a separate cache
is used for each polarity. No caching is attempted under binders.

2 http://matryoshka.gforge.inria.fr/pubs/processing/veriT.tar.gz.
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Invoking process on a term returns the identifier of the inference at the root
of its transformation proof in addition to the processed term. These identifiers
are threaded through the recursion to connect the proof. The proofs produced
by instances of contextual recursion are inserted into the larger resolution proof
produced by veriT.

Transformations performing theory simplification were straightforward to
port to the new framework: Their build app functions simply apply rewrite rules
until a fixpoint is reached. Porting transformations that interact with binders
required special attention in handling the context and producing proofs. For-
tunately, most of these aspects are captured by the inference system and the
abstract contextual recursion framework, where they can be studied indepen-
dently of the implementation.

Some transformations are performed outside of the framework. Proofs of
CNF transformation are expressed using the inference rules of veriT’s under-
lying SAT solver, so that any tool that can reconstruct SAT proofs can also
reconstruct these proofs. Simplification based on associativity and commutativ-
ity of function symbols is implemented as a dedicated procedure, for efficiency
reasons. It currently produces coarse-grained proofs.

To evaluate the impact of the new contextual recursion algorithm and of pro-
ducing detailed proofs, we compare the performance of different configurations
of veriT. Our experimental data is available online.3 We distinguish three con-
figurations. Basic only applies transformations for which the old code provided
some (coarse-grained) proofs. Extended also applies transformations for which
the old code did not provide any proofs, whereas the new code provides detailed
proofs. Complete applies all transformations available, regardless of whether
they produce proofs.

More specifically, Basic applies the transformations for ‘let’ expansion,
skolemization, elimination of quantifiers based on one-point rules, elimination
of ‘if–then–else’, theory simplification for rewriting n-ary symbols as binary, and
elimination of equivalences and exclusive disjunctions with quantifiers in sub-
terms. Extended adds Boolean and arithmetic simplifications to the transfor-
mations performed by Basic. Complete performs global rewriting simplifica-
tions and symmetry breaking in addition to the transformations in Extended.

The evaluation relies on two main sets of benchmarks from SMT-LIB [4]
without bit vectors and nonlinear arithmetic (currently not supported by veriT):
the 20 916 benchmarks in the quantifier-free (QF) categories, and the 30 250
benchmarks labeled as unsatisfiable in the non-QF categories. Our experiments
were conducted on servers equipped with two Intel Xeon E5-2630 v3 processors,
with eight cores per processor, and 126 GB of memory. Each run of the solver
uses a single core. The time limit was set to 30 s, a reasonable value for interactive
use within a proof assistant.

3 http://matryoshka.gforge.inria.fr/pubs/processing/.

http://matryoshka.gforge.inria.fr/pubs/processing/
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The table below shows the number of problems solved in total by each con-
figuration.

Without proofs With proofs

Old code New code Old code New code

Basic 42 235 42 258 42 104 42 118

Extended 42 324 42 389 N/A 42 271

Complete 42 585 42 613 N/A N/A

These results indicate that the new generic contextual recursion algorithm
and the production of detailed proofs do not impact performance negatively com-
pared with the old code and coarse-grained proofs. Moreover, allowing Boolean
and arithmetic simplifications leads to some improvements. We expect that gen-
erating proofs for the global transformations would lead to substantial improve-
ments on quantifier-free problems.

6 Related Work

Most automatic provers that support the TPTP syntax for problems generate
proofs in TSTP format [24]. Like a veriT proof, a TSTP proof consists of a
list of inferences. TSTP does not mandate any inference system; the meaning
of the rules and the granularity of inferences vary across systems. For example,
the E prover [22] combines clausification, skolemization, and variable renaming
into a single inference, whereas Vampire [15] appears to cleanly separate pre-
processing transformations. SPASS’s [25] custom proof format does not record
preprocessing steps; reverse engineering is necessary to make sense of its output,
and optimizations ought to be disabled [6, Sect. 7.3].

Most SMT solvers can parse the SMT-LIB [4] format, but each solver has
its own output syntax. Z3’s proofs can be quite detailed [17], but rewriting
steps often combine many rewrites rules. CVC4’s format is an instance of LF
[13] with Side Conditions (LFSC) [23]; despite recent progress [12,14], neither
skolemization nor quantifier instantiation are currently recorded in the proofs.
Proof production in Fx7 [16] is based on an inference system whose formula
processing fragment is subsumed by ours; for example, skolemization is more ad
hoc, and there is no explicit support for rewriting.

7 Conclusion

We presented a framework to represent and generate proofs of formula processing
and its implementation in veriT and Isabelle/HOL. The framework centralizes
the delicate issue of manipulating bound variables and substitutions soundly and
efficiently, and it is flexible enough to accommodate many interesting transfor-
mations. Although it was implemented in an SMT solver, there appears to be
no intrinsic limitation that would prevent its use in other kinds of first-order, or
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even higher-order, automatic provers. The framework covers many preprocessing
techniques and can be part of a larger toolbox.

Detailed proofs have been a defining feature of veriT for many years now.
It now produces more detailed justifications than ever, but there are still some
global transformations for which the proofs are nonexistent or leave much to be
desired. In particular, supporting rewriting based on global assumptions would
be essential for proof-producing inprocessing, and symmetry breaking would be
interesting in its own right.
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