
Chapter 3

Operations: Foundations and Processes

Abstract We introduce the conceptual and theoretical foundations of our prescrip-

tive paradigm for robust decisions. Whereas decision-making is an event,

executive decision management is a life-cycle of a complex of five spaces. The

five spaces are: The Problem Space, Solution Space, Operations Space, Perfor-

mance Space and the Commitment Space. Consistent with the prescriptive nature of

our paradigm, we concentrate on actionable processes and procedures within each

of those five spaces. The goal of our prescriptive paradigm is to enable systematic

design of robust decisions. The key sociotechnical processes are robust design

synthesis, Design of Experiments (DOE) using gedanken experiments, Gage

R&R, making uncertainty tractable with spanning set of uncertainty regimes, and

the process to represent system behavior phenomenologically.

3.1 Introduction

This chapter completes the conceptual progression begun in Chaps. 1 and 2. With

this chapter, we will have covered the ground of the conceptual foundations, key

processes, and the unique operating conditions of executive-management decisions.

In this chapter, we show how to operationalize executive-management decisions

while adhering to the principles stipulated in Chap. 1 and also relative to other

methods described in Chap. 2. We show why our methodology is distinctive. We

pay particular attention to the neglected area of designing diverse decision alterna-

tives. Namely, we answer the questions of: what other choices do I have? And

unconstrained “what-if?” hypothetical alternatives. We show how to design deci-

sions that are robust under uncertainty conditions, even when uncertainty variables

are not removed. We also prescribe how to specify uncertainty regimes that can

span the entire uncertainty space. We demonstrate how to predict decisions’ out-
comes and their standard deviations under any uncertainty regime. And finally, we

show how to analyze the quality of the data that is used and how to analytically

evaluate the quality of the sociotechnical system that implements a decision.

Using illustrative examples, we describe the key processes, of each of the life-

cycle’s spaces. In Chaps. 1 and 2, we introduced the theoretical foundations for

executive-management decisions. We surveyed the decision literature and intro-

duced the subject and the practice of executive-management decisions. We argued
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why our paradigm is distinct from other methods. We stated that our focus is on

executive decisions—a distinctive class of generally ill-structured sociotechnical

and managerial problems and opportunities that arise from messy and wicked

situations. After considering these problems in a life-cycle context, we partitioned

executive-management decisions into an end-end process of five spaces—the

problem, solution, operations, performance and commitment spaces (Fig. 3.1).
In this chapter, we concentrate on how to operationalize our approach to

executive-management decisions in each of these five spaces. The object is to

operationalize problems’ resolutions in ways that will meet a DMU’s intentions

and ex post inform the DMU and decision-maker of the quality of execution.

Quality evaluation is an analytic process not the usual qualitative evaluation

using ordinal measures. We propose to approach the operational tasks very delib-

erately and systematically, steps by step.

First to refresh our memory, we restate our first-principles we derived in Chap. 1.

Second, we identify the operational center of gravity for each of the spaces in the

decision life-cycle. The operational centers of gravity highlight the central

governing concepts for the working processes in each space. Third, we will show

that the working processes fulfill the requirements for rigor and systematicity of our

executive decision methodology (Table 3.1).

Our detailed analyses in Chap. 1 on the dynamics of ill-structured, messy, and

wicked executive- management decision-situations enabled us to distill the funda-

mental factors and key principles required by our methodology throughout the

decision’s life-cycle. They are:

• Abstraction. Reduce complexity to reduce needless imposed cognitive load by

abstracting,

• Actionability. Make abstraction actionable by concentrating on essential

variables,

Fig. 3.1 Five spaces of the executive decision life-cycle
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• Explorability. Enable unconstrained exploration of the Solution Space by

providing the capability to design decision alternatives that can cover any region

in the solution space under any uncertainty regime.

• Robustness. Make results highly insensitive to uncontrollable conditions by

robust engineering, Robustness is the property of a decision that will perform

well even when the uncertainty conditions are not removed. The decision is

highly immune to uncertainty (Klein 2001).

• Repeatability, Reproducibility and Reflection. Ensure and sustain quality

performance by repeatable and reproducible processes, and drive improvements

through disciplined reflection.

The center of gravity of each space is identified in Fig. 3.1. In the Problem Space,

it is sense making. That is develop a meaningful interpretation, of the decision-

situation, in order to appropriately frame the problem/opportunity. The key disci-

plinary science in this space is cognitive psychology applied to the problem at hand.

In the Solution Space, the center of gravity is design, viz. engineering design of

decision alternatives from which a preferred one can be chosen or additional better

ones constructed. The key discipline in this space is robust engineering design. In

the Operations Space, the center of gravity is production, viz. developing

Table 3.1 Our instantiation of the canonical form: a systematic process

Process phases Our systematic process

Characterize

Problem Space

Sense making—uncomplicate cognitive load ☑
Frame problem/opportunity and clarify boundary conditions ☑
Specify goals and objectives ☑
Specify essential variables

Managerially controllable variables

Managerially uncontrollable variables

☑

Engineer

Solution Space

Specify subspaces of solution space

Alternatives space and uncertainty space
☑

Specify entire solution space ☑
Specify base line and uncertainty regimes

Do-nothing case and choice-decision

Estimate base line and dispel bias

☑

Explore

Operations Space

Specify

Sample orthogonal array

Do-nothing case and choice decision-alternative

☑
☑

Predict outcomes ☑
Design and implement robust alternative

Design and implement any what-if alternative
☑
☑

Evaluate

Performance Space

Evaluate performance: analyze 4R

Robustness, repeatability, reproducibility, reflect
☑
☑

Enact

Commitment Space

Decisive executive

Approval of plan

Commit funds, equipment, organizations

☑
☑
☑

☑ indicates required in the process
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phenomenological models of the sociotechnical system that enacts decisions. The

strategy is to use of gedanken experiments, thought experiments (e.g. Brown and

Yiftach 2014, Sorensen 1992). The key discipline in this space is the Design of

Experiments (DOE) engineering method to discover the phenomenological behav-

ior of socio-technical systems (e.g. Otto and Wood 2001; Montgomery 2001).

Finally, the Outcomes Space’s center of gravity is measurements, viz. measuring

and evaluating inputs and outcomes, analyzing operational quality, and improving

performance of the sociotechnical systems that enact decisions. The strategy is to

concentrate on robustness of outcomes, gage reproducibility and repeatability

(Gage RR) of the operational sociotechnical systems, and making improvements

and learning by reflecting on what has been measured.

The remainder of this chapter is devoted to the operationalization of each space

of the executive-management decision life-cycle (Fig. 3.2). We concentrate on the

know-why and the know-how of our systematic process (Table 3.1). We will narrate

processes descriptively and prescriptively, and illustrate them with examples. We

are motivated that our processes rise to solid standards of rigor. Inevitably some

statistics creeps into the narratives. But, we will use prose to explain the math and

its meaning in the context of executive-management decisions.

3.2 Problem Space

A surprise has come to the attention of executive-management DMU. In this section

we discuss how to decode a surprise as a trigger that initiates an executive decision-

situation life-cycle. A surprise signals the presence of an event that cannot be

ignored. It is a call to action. A meaningful explanation of the decision situation

and its causes are needed by the DMU to succinctly articulate the problem, to

specify goals and objectives that will drive the design of decision alternatives

(Fig. 3.2).

The key questions the DMUmust address in the problem-space are: First, what is

going on? The answer to this question is provided by sense-making of the decision

situation. Second, what is the problem? The answer to this question frames the

goals      
objectives

complementary 
mental models

Decision Making Unit

sense makingdecision 
situation

surprise!
problem?
opportunity?

analysis

Fig. 3.2 Schematic of the problem space
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situation as a problem or an opportunity. And the third question: What do we want?

Clear goals and concrete objectives answer this question.

A DMU can be easily overwhelmed by the complexity and uncertainty of the

decision situation. The operating principle, in this space, is abstraction to reduce

the apparent complexity and the cognitive load on the DMU. The principle obliges

the DMU to represent the situation in an uncomplicated way in order to facilitate

the formulation of a response. We will show how to do this.

3.2.1 The Decision Making Unit (DMU)

. . . most decisions derive from thought and conversation rather than computation. (Ron

Howard)1

Executives very rarely work alone to single handedly perform every analysis,

task or enact every process during the decision life-cycle. There is too much to do,

not enough time, too much data to process, too many people to direct and too much

uncertainty. This is a typical and realistic description of the conditions that define

bounded rationality. As a result, in practice, executives assign much of the analyses

and key deliberations to staffs, direct reports, and experts. With the executive, this

working group forms a team to make better decisions. We call this organizational

ensemble, a decision-making unit, a DMU. Executive level decision situations

frequently requires special expertise. In those cases, experts are invited to partici-

pate as temporary adjunct members. DMU members, because they are also exec-

utives or senior managers, also have staffs, organizations, and experts they can

assign for special work. This extended network effectively expands an executive’s
and organizational cognitive aperture, implementation, and execution resources.

The DMU and its adjuncts serve as sociotechnical mechanisms during the

executive-management decision life-cycle. DMU’s exist for “participants

[to] develop a shared understanding of the issues, generate a sense of common

purpose, and gain commitment to move forward (Phillips 2007, 375)”.

In the problem space, the DMU’s key responsibilities are sense-making and

specifying the goals and objectives of the decision situation. This process is

mediated by DMU members’ mental models, which must to be harmonized.
Harmonized does not mean made identical. Traditional thinking emphasizes “the

creation of appropriately shared mental models of the system” (Fischhoff and

Johnson 1997, 223) for a group to do its work efficiently and effectively

(e.g. Jones and Hunter 1995). However, our experience and current research reveal

a more comprehensive and complete view of the meaning of shared mental models
(e.g. Banks and Millward 2000; Mohammed et al. 2010). Shared does not neces-

sarily mean identical or same; but consistent, aligned, and complementary. Each

DMU member must understand the game plan. No one wants a basketball team of

players who see the game as consisting entirely of free throws.

1E.A. Howard (2007), 7.
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In Chap. 1, we discussed complexity, uncertainty, disciplinary, organizational

factors, and their interactions as contributing to the difficulty of executive-

management decision situations. Given the diversity of the disciplinary domains,

required expertise, and the varied organizations that DMUmembers are responsible;

the mental models must be consistent, complementary, compatible, and aligned. An

executive from the manufacturing function, is unlikely to have the same mental

model of executives from the technology, r&d, or sales functions. Given clearly

articulated goals and an understanding of their meaning, they must frame differen-

tiated but complementary models that enable commitment to move forward while

simultaneously preserving individual pathways to action and the attainment of

organizational goals and objectives (Castro 2007). Yaniv (2011) reports that

group heterogeneity attenuates bias and has positive framing effects. Banks and

Millward (2000) cogently argue the case of aligned complementary mental models

by describing the task of navigating a US warship as a distributed task. Notably, no

single person completes this task single handedly, the location of the boat is not

bound by a single individual. The ship’s navigation must “move through the system

of individuals and artefacts.” Consistent, complementary, compatible, and aligned

mental models are required for distributed processing systems like a DMU.

Scholars call this concept TeamMental Models or TMMs (Mohammed et al. 2010).

Phillips (2007) calls these DMU-like meetings “decision conferencing”. The

membership, scripts, principles, mechanics for facilitating these meetings, even

physical space and sitting arrangements are variously described by scholars (e.g.

Rouwette et al. 2002; Andersen et al. 1997; Phillips 2007). We defer those topics to

these scholars’ publications. In the discussions that follow, we concentrate on

content intensive operations that are specific to our paradigm.

3.2.2 Sense Making and Framing

A problem is an obstacle, impediment, difficulty, challenge, or any situation that

insists on a resolution. Problems are stubborn things. They cannot be left unattended.

They do not go away, they must be resolved. They need a solution, which dissolves

the difficulty and makes a meaningful contribution towards a known purpose or goal.

A problem implies an undesirable situation, which is coupled with uncertainty,

conjoined with deficiency, doubt or inconsistency that can prevent an intended

outcome from taking place satisfactorily (Ackoff 1974). The first part views a

problem as difficulties to overcome. The second part considers a problem as an

opportunity to exploit, a prospect to contribute to the achievement of a goal. Oppor-

tunities and problems are merely decision situations that demand executive attention.

We do not distinguish between a problem and an opportunity. They are two sides of

the same coin, a situation. If interpreted and addressed as an opportunity, it can have

an upside; or if otherwise, it is a difficulty to be resolved, dissolved, or ameliorated. In

either case, we want to be better off than before. Whether a decision situation is a

problem or an opportunity depends how it is posed and described to a concerned

observer. Keeney (1994) argues for framing the opportunity side by concentrating on
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providing value. He defines value as what decision makers care about. He writes that

the “idea is to create an alternative that gets you what you want and at the same time

makes others better off”. Henceforth, we will use the term problem with the under-

standing that we mean a problem or opportunity.

The need for executive attention is triggered by a surprise, which signals the

need to uncover and decode the conditions that caused it (Fig. 3.2). The imperative

is to answer: “what is going on?” and “what do I have to do? (Weick et al. 2005;

412).” Frequently, triggers are the result of an executive initiated study for staff

work, which results in counter intuitive information. Other triggers are: stochastic

surprises, reviews of new data that challenge the validity of mental or operational

models (Bredehoeft 2005), or unanticipated outcomes of known initiatives by

nature of their effects, and inconsistent content or timing (Allen et al. 2010). Or

even simply not knowing how to respond (Horwitz 2003). In other words, they are

situations of cognitive dissonance, in which the “. . . world is perceived to be

different from the expected state of the world, or when there is no obvious way to

engage the world” (Weick et al. 2005, 409). People and organizations prefer an

orderly and readily explainable world so they know what to do, explain action and

reestablish predictability, stability and system homeostaticity. These imperatives

drive the need for sense making.

To these ends “top managers need to provide cognitive leadership—i.e. create a

common frame of reference for key employees—to assure the growth of the

organization can be interpreted through this selection process (Murmann 2003,

229).” These are prerequisites for the organization to move forward with confidence

(Phillips 2007). Regan-Cirincione (1994) shows that an able group facilitator and

leader can make a group outperform its most skilled member of the group and

improve the accuracy of the group’s judgement. Moreover, scholars have shown

that there is a causal linkage between success and failure in business problem-

solving and the frequency of diagnosis and the extent to which they precede action

(e.g. Schulz-Hardt et al. 2006; Brodbeck et al. 2007; Lipshitz and Bar-Ilan 1996).

The case for appropriate situational analyses and sense making is very compel-

ling. Amajor pitfall is to interpret a significant event too narrowly. This can cause
half measures or unsustainable ameliorations to important problems. This is par-

ticularly urgent for unexpected signals from pressing, messy and wicked situations.

The executive and the decision-making unit must “look past the surface details in a

problem to focus on the underlying principles or big ideas embedded in the

situation” (Etmer et al. 2008; 31). However, it is also dangerous to interpret the
situation too broadly. This can result in vague, ambiguous, or conflated views of

the situation. This can drive unimportant, irrelevant information, and noise to be

included in framing the problem. This has the pernicious effect of adding complex-

ity and complicating the cognitive load for all concerned. Executives and the DMU

need to focus on the essential causes of the event, their context, cause-and-effect

relationships; ignoring gratuitous details, in order to develop a meaningful inter-

pretation that makes sense without injecting noisy information. Interpretation

requires a synthesis process that puts key relevant causes together into a meaningful

whole. This synthesis is a creative act that considers what is needed to satisfy the

goals of the organization and how to put together what is observed and analyzed
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into a coherent concept that is actionable. The ethos is identical to the engineering

design process. This kind of design thinking is critical to sense making.

We propose a procedure shown schematically in Fig. 3.3 and specified algorith-

mically in Fig. 3.4. This process generally takes more than one iteration. At each

iteration, it is useful to group the most important and significant causes into

thematic groups. The design of a decision should not just address the trigger

situations but its thematic causes. In medicine, a thematic cause is recognized as

a pathology. Like physicians, executives must not just address symptoms at the

exclusion of root causes. Two aspirins will not remedy a pathology. Our process

concentrates on critical decision variables, the essential variables. Unnecessarily
broadening exploration, with excessive iterations, is not useful either. But what is a

practical stopping rule? A useful heuristic is to constrain the scope of the explana-

tion at the jurisdictional boundaries of the executive’s superior or nearest peers.

Why? This allows the decision makers to broaden their field of vision and enable

fact-finding and negotiations with their peers. This process brackets the problem
and specifies its boundaries.

…
trigger event

… causecause cause…cause

cause cause cause causecause

…
alternative
interpretation

synthesis

problem
alternative
interpretation

… alternative
interpretation ▪

▪
goals
objectives

cause

Fig. 3.3 Partition and synthesis of a trigger event

determine causes, partition, and synthesize.
interpret synthesis and infer meaning.
big picture and problem makes sense?

no

executive attention
what is going on? what do we need to do.
engage members of decision unit.

trigger 
event

document problem in prose.
explain significance of problem.

yes

problem framing done. 
specify overarching goals.
specify measurable objectives.

rethink partition and reinterpret 
more meaningful understanding
reflect about interpretation

Fig. 3.4 Procedure for problem space
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This heuristic provides guidelines for deciding what is integral to the problem

and what can be excluded from consideration. The stopping rule prevents “boil the

ocean” of unsolvable problems; such as “save the Amazon forest”, though noble,

their scope and scale make them intractable and not actionable. Another pitfall is to

be overwhelmed by the causes and associated information after some iterations. As

we discussed, the analysis gets more complex at each iteration. Facts and informa-

tion become more abundant and therefore more difficult to digest and put into a

coherent picture. Recall our principles—synthesis follows partitions, and the prin-

ciple of uncomplicating complexity. Synthesis and abstraction are ways to synthe-

size partitions and reduce complexity such that the result is cognitively

uncomplicated. The synthesis must be thematically driven so that the new whole

makes sense and is meaningful. The culmination of these efforts result in the

aufgehoben moment in the process. This is the “ah-ha” moment when there is a

crystallization that reveals new clarity of a coherent and meaningful story. This is

the insight that can explain and interpret “what is going on” by pulling the right

pieces into a coherent whole (Fig. 3.3). The iteration-exit condition (Fig. 3.4),

delimits the scope and tightens the meaning of the problem.

Executive-management decisions have the complex systems property that there is

more than a single satisfactory resolution to a complex, difficult, and risky problem.

Solutions are not necessarily unique. Unlike the roots of a quadratic equation, for

which solutions are unique. A developed synthesis, from multiple causes, is not the

only one possible. There are other coherent, and legitimate interpretations that can

differ due to organizational and stakeholders’ differences. There is substantial

plasticity in the synthesis, which are socially constructed, embedded in specific

organizational situations and particular mix of disciplinary domains.

As a last step, document the problem in prose. In our teaching and management

experience, we find that prose documentation is one of the most effective ways to

enforce clarity. These documents are also carriers of knowledge for those who have a

need to know. Carlile (2002, 2004) calls these documents “boundary objects”. They

travel across human and organizational boundaries to transmit information and

knowledge. Gerstner, IBM CEO, insisted on prose documentation as a prerequisite

to all management meetings with him. His guidelines were simple and effective:

maximum of ten pages written in narrative prose; without complicated graphs, tables,

numbers, or equations. These and long difficult explanations were to be attached as

appendices, for which there were no page limitations. Any interpretation and con-

clusions inferred from graphs and complicated information required terse and clear

summaries within the ten pages of prose. FOS was a format many executives found

useful. FOS stood for facts, opinions, and so-what’s. Present the facts, offer your

opinion, and finally explain what all this means to the deciding executive by

presenting an action plan. The FO part, of FOS, addresses the question of “what is

going on”. FOS is, in effect, a dialed-down version of the scientific method.
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3.2.3 Specifying Goals and Objectives

The next step is to address the goals and objectives, i.e. “what is it we want?” What

we want must be driven by goals and objectives. A goal is a what. An objective is a
how. The difference is between means and ends. A goal is thus superordinate. An

objective is subordinate and should be measurable. “Top managers cannot possess

all the knowledge that the various individuals in and organization have about their

task environment. It is more effective to specify goals and selection criteria and

allow lower-level employees to find the best solution to their particular task

(Murmann 2003; 290).” A goal is what you want to achieve, in qualitative terms.

Consider for example, the personal goal: “to become an educated person”. The goal

expresses a need, a want. Implied is a commitment of time, money, and other costs

to achieve the intended goals. Objectives could be, “earn a college degree, learn two

foreign languages, and play a musical instrument by age 25”. The objectives should

be measurable and used as indicators of progress or failure towards a goal.

In subsequent chapters, we will discuss many business examples of goals and

objectives. In the ADI case study, the surprise was the plunge in stock price from

$24 to $6 (Chap. 5 and 6). This was serious, but the more ominous threat was the

possibility that the company could be acquired on the cheap. It became a goal of

the ADI company to avoid a hostile takeover. A key objective was to increase the

market value of the firm so that it would not be affordable to potential buyers. Thus

enabling the achievement of the specified goal of maintaining ownership of

the firm.

Goals and objectives are necessarily contextually positioned in an organizational

structure. They are recursive. An objective at one level of the organization becomes
the goal at the next level of the organization (Fig. 3.5). At the executive manage-

ment level, the goals are prescribed by the set {g1, g2}. The objectives to attain

these goals have been specified as {o1, o2, o3, o4}. Applying the management

principle of excluded reductionism (Ropohl 1999) of complex organizational struc-

tures, the objectives are partitioned to managers x, y, and z as objectives. The

objectives {o1, o2} are delegated as goals to manager x, who then specifies

objectives {o11, o22, o21, o22} to meet its goals. Manager y’s goal and objectives

executive manager goals
objectives

g1, g2
o1, o2, o3, o4

goals
objectives

o1, o2
o11, o12, o21, o22

goals
objectives

o4
o41, o42, o43, o44

manager y1 manager y2
goals
objectives

o31
o311, o312, o313

goals
objectives

o3
o31, o32, o33

goals
objectives

o32, o33
o321, o32, o331, o332

manager x manager y manager z

Fig. 3.5 Relationship of goals and objectives—hierarchy and inheritance
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are {o3} and {o31, o32, o33}, respectively. Similar explanations apply for manager

z. Manager y partitions and delegates its objectives as goals to manager y1 and

manager y2. For example, manager y1’s goal and objectives are {o31} and {o311,
o312, o313}. In turn, manager y2’s goal and objectives are {o32, o33} and {o321,
o322, o32, o332}.

To guide setting goals and specifying objectives, we find it useful to apply

Keeney (1992, 1994) and Smith’s (1989) guidelines for conceptualizing business

problems and specifying solution objectives (Appendix 3.1 and 3.2). Focus on

values, opportunity, and closing aspirational gaps. In Fig. 3.5, the distribution of

goals and objectives illustrate the properties of recursive hierarchy and heredity.
We can express the goal and objectives setting process by the recursive expressions

(3.1) and (3.2) that reflect the hierarchical and the hereditary property, respectively.

goals level iþ1ð Þ⇛[nobjectives
�� ��

level iþ1ð Þ⇛indicates“derive” ð3:1Þ
[iobjectives level ið Þ⫆[mgoals

�� ��
level iþ1ð Þ⫆ indicates“span” ð3:2Þ

3.3 Solution Space

In the solution space, the problem has been clearly defined, Goals and objectives

have been specified. The next step is to develop a series of decision alternatives

from which a choice alternative, which satisfices intended goals and objectives, can
be designed. This process is schematically shown in Fig. 3.6 (Table 3.1).

Specifying alternatives is the “most creative part” of the executive-management

decision life cycle (Howard and Matheson 2004, 27). The goal of developing

alternatives is to determine whether different executive-management decisions

and sociotechnical systems can outperform current outcomes. This necessarily

requires the ability to predict outcomes of decision alternatives. Predictions must

depend on rational methods and repeatable practices. Otherwise, predictions

become guesses. Guesses are not very persuasive or convincing. Rational methods

result in representations of problems and potential solutions, which can be more

objectives

Decision Making Unit

robust design alternativesdecision specifications

essential variables

goals

complementary 
mental models

Fig. 3.6 Schematic of the solution space
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readily accepted as meaningful. Alternatives do not appear out of thin air, they must

be defined and then constructed. This construction process is one of synthesis;

alternatives must be designed.

The operating principle for this phase is to design of decision alternatives that

can span the entire solution space anywhere in the uncertainty space. This imposes

four design requirements. The DMU must design decision alternatives that:

• can explore anywhere in the Solution Space within the entire space of uncon-

trollable conditions,

• are robust under uncontrollable conditions even when these conditions are not

removed,

• are systematically designed artefacts of technical and social processes, and have

been subjected to debiasing procedures.

Decision alternatives that can meet these requirements requires knowledge of

the problem domain and the behavior of sociotechnical systems that generate the

intended outputs. Given the complexity of messy and wicked executive-

management decisions, how do you represent the operational structure and behav-

ior of these sociotechnical systems? Scholars and practitioners consider this as one

of the most challenging problems in management decision (von Winterfeldt and

Edwards 2007). These are the topics we will address next.

3.3.1 A New Strategy: Induction, Phenomenology

Inductive inference is the only process known to us by which essentially new knowledge

comes into the world . . . Experimental observations are only experience carefully planned

in advance, and designed to form a secure basis of new knowledge; that is they are

systematically related to the body of knowledge already acquired. (R.A. Fisher)2

. . . inductive reasoning is more strict that deductive reasoning since in the latter any item of

data may be ignored, and valid inferences may be drown from the rest;; . . . where as in

inductive inference the whole of data must be taken into account. (R.A. Fisher)3

Scholars suggest two distinct strategies to develop engineering design alterna-

tives (Otto and Wood 2001, 894). One is the analytical model development based

on ex ante analytical frameworks and models. The other is the empirical develop-

ment based on experiments that reveals an ex post model. This experimental

method is how Watson and Crick determined the structure of the DNA and won

them the Nobel Prize. The structure of the DNA revealed itself. This is the

conceptual basis of our paradigm, the structure of the socio-technical system, we

are dealing with, will reveal itself by means of experiments. This strategy is an

exemplar of our principle of uncomplicating complexity.

2R.A. Fisher (1971), 7–8.
3R.A. Fisher (1955a, b), 7–8.
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The most widely used conventional strategy is to model decisions using ex ante
postulated analytical representations. Then use these representations to make pre-
dictions and analyze how well they can generate the intended outputs. The chal-

lenge, for this kind of modeling, is for experts “to specify the [mathematical]

relationship of the system variables (Howard and Matheson 2004, 28)”. Because

they have domain knowledge to identify the variables, executive and practitioners

can develop models that have satisfactory fidelity of the problem and of the

sociotechnical systems. These models represent an explicit representation of the
behavior of the sociotechnical machinery that will enact a decision specifications.
von Winterfeldt and Edwards (2007) specify eight mathematical structures to

model the system behavior to predict and analyze variables that have an influence

the outputs (Appendix 3.3). This repertoire of structures exhibit mathematical rigor

and precision, but the authors are largely silent about verisimilitude, i.e. the ques-

tion of model fidelity. We overcome this conceptual lacuna with our executive-

management decision paradigm.

We elect to use and entirely different strategy from that of an ex ante and a priori
formulation of closed-form analytic representations. We exercise a strategy that

does not presume to know a priori the explicit analytic representation of the

sociotechnical system. Our strategy is an experimental one. The idea is to estimate

predictions by gedanken experiments (e.g. Hopp 2014) rather than mathematical

equations and estimates of probabilities. Unlike the analytical approach which

presumes mathematical expressions of variables to make predictions, we determine
ex post the sociotechnical system behavior from experimental outputs. We do not
need to know the analytical representation of the machinery of the sociotechnical
systems. Clearly, we still need to know the causal variables that influence the

outputs, but we do not need “to specify the relationship of the system variables

(Howard and Matheson 2004, 28)” using equations. We can estimate the perfor-

mance of alternatives by gedanken experiments to determine a phenomenological

model. Phenomenology is the scientific methodology which describes and helps

explain observed experiences. Appearance reveals and explains reality (Smith

2013). This is the conceptual basis of our executive-management decision

paradigm.

3.3.2 Essential Variables

We now turn our attention on the variables that influence the intended outcomes of

executive- management decisions.

From an executive-management perspective, it is natural that the variables be

partitioned into two classes—managerially controllable variables and managerially

uncontrollable variables. (The literature also calls the variables—inputs, factors, or

parameters. We will use these terms interchangeably.) There are many possible

variables that management can control, so a critical question is: how are these

variables identified? Heinz von Foerster (1981) and von Foerster and Poerksen

(2002) argue forcefully and convincingly that for complex sociotechnical systems,
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this task is impossible without observers’ prior knowledge and experience. To

manage and operate complex sociotechnical systems the role of the observer is

essential to identify the most sensitive variables that influence the behavior of such

a system. Achterbergh and Vriens (2009) call these variables essential variables.

They coined the term essential variables in the context of controllable variables.

Variables that directly influence the intended outputs, which by definition, deter-

mine the variety of the operational sociotechnical system that will implement the

decision specification. Variety is defined as the number of states a system can take

(Ashby 1957). Clearly the variety of a socio-technical system must exceed that of

the external environmental conditions to enable the system to cope with it (Ashby

1957). It follows that the uncontrollable variables that are relevant to the decision

situation must be also addressed. For, they too influence the behavior of the

sociotechnical system and the quality of outputs. For this reason, we include

uncontrollable variables as essential variables. Naturally, prior knowledge from

the observers is also mandatory to be able to identify them.

3.3.2.1 Controllable Variables

Controllable variables are the variables that management can directly control and

have a direct impact on the outputs. Executives have the power and the resources to

use these controllable factors to meet goals and objectives. Controllable variables

can be continuous or categorical. For example, closing or not closing a manufactur-

ing plant is a categorical variable. On the other hand, the number of new employees

to be hired is generally a continuous variable. Discrete settings, of a variable’s
value, are called levels. For example, the hiring level can be specified as 10% higher

than the current employee population, 5% lower, or it can remain exactly at the

same level. The desirability of higher or lower levels is very much dependent on

context. If the firm is on a growth spurt and under favorable market conditions of

booming demand, then 10% higher is better, and 5% lower is worse. But if the firm

is in an unprofitable down market with uncompetitive products, then 10% higher

unprofitability is worse, but 5% lower unprofitability is better.

This points out a defining property, of decision variables, known as their

characteristic. Variables can be characterized into one of three types. Those for

which more of their output is better, less of their output is better, or exact value of
an output is better. As illustrated in the previous examples, the desirability of

“more” or “less” is determined in the solution context.

From a managerial perspective, the DMU needs to address these key questions:

• What is the characteristic of the variable and its output?

• How many levels for each variable? How to specify the levels?

• How many controllable variables do we need?

• How do I identify a meaningful set of the uncontrollable variables?

Identifying the controllable variables. Corporate problems, proposed solutions,

and their consequences depend on the behavior of corporate business systems and
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processes. To find the requisite controllable variables, we must focus on the

essential variables they can directly control to affect the system behavior and the

outputs that are important to the executives. Therefore, goals and objectives must

be considered to determine the controllable variables that are to be chosen. Once

goals and objectives are specified, executives and the DMU’s must filter through

layers of a problem situation in order to determine the key essential controllable

variables. And as a first step to conceptualize the ill-defined issues of a problem,

they must draw on their previous knowledge and personal experiences (e.g. von

Foerster 1981; von Foerster and Poerksen 2002; Etmer et al. 2008). Clearly one

ignorant of domain knowledge will not be able to specify the control variables.

Prior knowledge on the part of the executive and DMU members, means that for

a given decision situation, the controllable factors must be specified at a consistent

level of abstraction and scale of their mental capacities to meet the objectives that

have been specified. Scale is a system descriptor that determines the level of

abstraction and detail that are visible and consistent to the DMU. At a higher

scale, less detail is visible and fewer descriptions of the systems processes are

necessary for the observer. At a lower scale, more detailed and textured descriptions

of the system behavior are visible and required (Bar-Yam 2003). Paraphrasing

Simon (2000, 9), looking from the top downwards, at a large scale, we can say

that the behavior of the units at any given scale does not depend on the details of the

structures of the lower scale below, but only upon the steady state behavior, where

the detail can be replaced by a few aggregated variables. The decision situation, the

goals and objectives, and prior knowledge enable the appropriate scale for the

definition of decision alternatives (von Foerster 1981; von Foerster and Poerksen

2002).

Given a consistent level of abstraction for the decision maker and the decision-

making unit, the variables must be specified to meet the objectives that are being

studied. The variables must be actionable and consistent with the principle of

excluded reductionism, (Ropohl 1999) and Ashby’s (1957) principle of requisite

variety, we discussed previously. DMU members are experts. As experts, the exper-

tise they bring to the discussion is invaluable. Experts are able to perceive the “deep

structure” of a problem or situation (Chi 2006, 23) and “scan the problem features for

regularities, incorporate abstraction, integrate multiple cues, and accept natural var-

iation in patterns to invoke aspects of the relevant concept” (Feltovich et al. 2006, 55).
“Experts are good at picking out the right predictor variables and at coding them in a

way that they exhibit a conditionally monotonic relationship with the criterion”

(Dawes 1979, 574). It is entirely appropriate and necessary to have the DMU

membership identify the essential controllable variables and specify their levels.

Setting the levels of the variables. In general, we recommend a three-point

specification for the controllable variables. More than three levels may be necessary

for complex and complicated problems. Two levels would work almost as well, at a

cost of detail of the outputs, e.g. determining whether there is a curvature. Of the

three kevels, we require that one level be the point that marks the current opera-

tional condition, assuming no change. This the “business-as-usual” (BAU) condi-

tion. This establishes a base line. The “maximum effort” level is that at which
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management is still in control, but at the edge of impossibility. Operating at the

highest level should be a “stretch”, i.e. doable with a maximum strong effort, but

not impossible. This could be the current operating BAU-level, if currently oper-

ating under those conditions. To determine the maximum requires domain expertise

and deep operational knowledge of the firm’s business processes. The “minimum

effort” level should be at a level of performance, which is adjacent to

not-acceptable. It could be the BAU level of performance or less. Note that the

“maximum effort” may, in fact, be a small number. For example, consider the

controllable variable “scrap and rework” in manufacturing. Ideally that level should

be zero, which requires a maximum and heroic effort. Why three points? This is a

compromise between just two points and four or five or more points. With two

points we cannot get a picture of any potential curvatures in the response. But there

are many cases where two levels are appropriate. With more than three points, we

risk making the cognitive load intractable.

As we shall see, r&d budget is a controllable variable in one of our case studies.
Top management of the ADI company can choose to invest in r&d at three levels.

Level 1 is lowest acceptable level of $747.8M, at the current level (BAU, level 2)

of $753.3M, and at a more intense level 3 of $760.4M. These r&d levels are at the

discretion of the senior management of the firm; therefore, r&d budget is a

controllable variable.

But how many variables are needed? For complex systems and complicated

decision situations, decision makers should consider only as many variables as they

can cognitively address (Bar-Yam 2003). This is what is meant by requisite variety.

The chosen variables must be appropriate to the cognitive level of abstraction that

the decision maker can handle. And it must also be consistent with the decision

objectives, and the maximum variety of the decision situation the sociotechnical

system is able to handle (Ashby 1957). The requisite variety of the controller must

be larger than that of the controlled system. Research shows that, in general, the

number of variables is not large. Klein (1999) reports that in high stress environ-

ments, like in fire-fighting or combat, line officers “rely on just a few factors—

rarely more than three.” Isenberg (1988) writes that “. . . senior managers I studied

were preoccupied with a very limited number 4 of quite general issues, each of

which subsumed a large number of specific issues.” A study on the number of

factors to predict heart failure identified five factors (Skånér et al. 1988; Hoffman

et al. 1986). Another study of a $150M investment of a pesticide product-

development and manufacturing decision shows that seven variables were used

for the decision (Carl-Axel and von Holstein 2004). Corner and Corner (1995) in a

large survey of strategy decisions report that, in 73% of the cases they studied, use

less than nine attributes (decision variables), and that only six alternatives are

considered. These studies support Miller’s (1956) “magical” 7 � 2. In summary,

we propose the following rules for identifying controllable variables:

4Italics are ours.
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• domain knowledge and expertise is mandatory,

• specify only as many controllable variables as the decision-maker needs and can

address, a useful rule-of-thumb is Miller’s 7 � 2,

• ensure the variables are at a consistent scale and level of abstraction,

• specify three levels for each of the variables,

the highest level as one that requires maximum effort, but at the edge of

impossibility,

the lowest level that is the minimum level of acceptable performance, but at

the edge of doability.

3.3.2.2 No Free Lunch

As in nature, in business and organizational management, it is not possible to get

something for nothing. This is colloquially articulated as the axiom of “There is no

free lunch.” It follows that the set of controllable and uncontrollable factors of a

decision specification must reflect the spirit of this reality. Otherwise, the ensemble

of variables are meaningless. The DMU can simply specify that all controllable

variables be exercised at the levels that achieve all the objectives without regard to

cost or effort. It would be like trying to design a frictionless machine, a money

pump, or a perpetual motion machine. In one of our case studies, we discuss r&d
budget as a controllable variable. This variable reflects the need to commit of

resources to meet an objective. At the same time, the customer’s budget flexibility
to pay for project overruns was specified as an uncontrollable variable. This case

reflects the need to identify resources as an important factor that influences intended

outcomes. In every decision, the no-free-lunch rule must be reflected.

3.3.2.3 Uncontrollable Variables

Uncontrollable variables are secular variables that management cannot control, or

are so costly to control that they are, in effect, uncontrollable. But nevertheless

uncontrollable variables can have a direct and strong influence on the outcome

objectives of the decision. Uncontrollable variables are the key sources of uncer-

tainty and risk. As in controllable variables, the questions on the number of vari-

ables and their levels apply here as well. Domain experience and expertise are

required to identify and use them. Their number must be cognitively manageable.

Lempert (2002) reports that in a policy study for climate-abatement strategies that

from a set of 60 possible uncontrollable variables, only 6 were found to produce

meaningful scenario differences. The levels for the uncontrollable variables repre-

set the extreme but realistic conditions of the secular variables that can influence

the outcomes (e.g. Otto and Wood 2001).

Consider for example, a case which we will discuss in later chapters. A consult-

ing firm is performing a special risky project, which very likely require the client to

make potentially costly repairs to the sociotechnical system in question. Whether
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the client has budget flexibility, and, how much, to handle potential cost overruns is

an unknown to the consulting manager. Budget flexibility is thus an uncontrollable

variable. The lowest cost level for the client, is the condition that the client will

accept no overruns, causing the consulting firm to bear all costs. The highest cost

level for the client is the condition that the client will pay for all overruns to keep

the project from failing. These unknowns represent uncertainties to the consulting

firm, and two levels is acceptable.

3.3.2.4 Social Process for Identifying Essential Variables

The solution space is also a social space. The DMU is a social organization tasked

with the responsibility of identifying the essential variables for decision situations

in its jurisdiction. We will now sketch a process to obtain an integrated and

harmonious perspective from the participants (Rentsch et al. 2008). It is a proce-

dure that improves individual judgements by providing complementary knowledge

and information from each member in the DMU. Harmony here is used to mean the

absence of mental dissonance or cognitive conflict. It is not meant to mean that the

DMU holds hands as a group and sing Kumbaya. Harmony is desirable because it

promotes a complementary mental model that enriches the ones carried individu-

ally but which collectively forms an integrated whole. Complementary does not

mean identical mental models, but it does mean consistent. The social goal is

consensus so that the diverse actions from executives with diverse responsibilities

will deal with their distinct domain so that the whole will make sense. For example,

the executive from finance is unlikely to have a mental model that identical to that

of a technology executive. But their mental models must cohere as a whole. The

goal is to cultivate a consensual sense-making to improve alignment of goals and

objectives, and coherent action. Complementary mental models cannot be imposed,

they are cultivated.

With a small group of 10–20 people, the social process is straightforward.

Without great difficulty, an experienced group facilitator can readily obtain a set

of 7 � 2 controllable variables. In this case, the process we will sketch may not be

necessary. However, if the group is large, the procedures to be described next, we

have found to be effective.

In the prescription that follows, we concentrate on controllable variables. It

works equally well for uncontrollable variables. The process is an adaptation of

the Language Processing (LP) Method of Shiba and Walden (2001). LP is a

refinement of the well-known JK method to gather and organize ideas from a

group of experts (Kawakita 1991; Ulrich 2003). We have used this process in

many different decision situations; for engineering design problems, strategy for-

mulation, financial investment strategy, public sector social creativity and innova-

tion workshops, issue definition, and so on.

The social process has seven steps. All steps must be performed in silence. No

talking is permitted to avoid discussions that inject bias and disrupt individual

reflective thinking.
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Step 1 Specify the goals and objectives. A goal is superordinate, it is thematic

(Sect. 3.2). They are the “what”. Objectives are the “how and by how much”. Goals

and objectives must make sense to all participants.

Step 2 Write the controllable variables.
Each group person writes a controllable

variable on a 3 � 5 post-it ® card. Each

person can write as many as desired. Paste

all cards on the conference table or a wall so

that they can be easily read by all. The wall

is now dense with cards. The variables, on

the cards, will not be of equal importance,

nor be at same level of abstraction. Some

will be trivial, others inappropriate, and

many will be subordinate elements of other

variables. Down selection will be necessary to organize and cull the proposed set of

variables.

Step 3 Down-select variables. Begin by

giving each person α number of dots to

paste on cards, where 1 � α � k and

k � 15–25% of the group size. Each

person is permitted to paste one or more

dots on a card, as they wish, until their

dots are exhausted. This forces making

choices and judging the importance each

person attaches to a variable. Cards that

have no dots or have the least number of

dots can be discarded. Continue until there are approximately 40–60

cards left.

Step 4 Group variables. All cards will be at
random locations. Instruct the group that

each person must move cards close to other

cards they judge to have some kind of

affinity. The affinity criteria are personal

and forbidden to be communicated. The

silence rule applies. Any card can be

moved an unlimited number of times.

Proceed until all card movement stops and

sets of grouped cards appear. There will be a

few singletons that have no affinity to any group. That is permitted. The final

grouping represents the closest group’s mental model that is closely aligned with

individual mental model.
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Step 5 Name each group. Each group is

given a thematic name that characterizes

and reflects the collective character of the

cards in the group. As a result of the repeated

movement of card to ones that have some

affinity, the group will now represent a

decision factor. The next step is to show

the relationships among the groups

(factors) in such a way that it provides a

whole system view of the ensemble.

Step 6 Show relationships among groups.
Develop a system interpretation of the

ensemble of groups by making logical

connections among the groups. This will

require a disciplined discussion. The

connections will appear as a network of

groups. Follow this with an interpretation

of the network with a system narrative that

is consistent with the goals and the logic of

the variables.

Step 7 Review and reflect on the process and its results.

3.3.3 Subspaces of Solution Space

The outputs of the solution space is the Cartesian product of two spaces, Eq. (3.3),

In the next two sections, we show how to construct the controllable space and the

uncontrollable space to obtain the output space.

controllable spaceð Þ � uncontrollable spaceð Þ ¼ output space½ �: ð3:3Þ

3.3.3.1 Controllable Space: Alternatives Space

Decision alternatives must be managerially actionable. The elemental building
blocks of the alternatives are the set of the n controllable variables {Cij} for

i ¼ 1,2, . . . ,n, at each of their three levels j ¼ 1,2,3.

Consider a simple example. Assume we have four controllable variables, C1, C2,
C3, and C4. (C for controllable). For variable C1 (level 1), we denote as C11; i.e. C1

(level 1) ¼ C11, C1 (level 2) ¼ C12, and C1 (level 3) ¼ C13. The same naming
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convention apply for C2, C3, and C4. We can array this as in Table 3.2 with 4 � 3

elemental blocks from which alternatives are built.

Table 3.3 shows the entire complete set of actionable decision alternatives

without uncertainty. It is the full factorial set obtained from Table 3.2, i.e. all

possible combinations of the elements in Table 3.2. Each row of Table 3.3 repre-

sents a decision alternative, as a 4-tuple of configurations of the controllable vari-

ables, e.g. alternative 3 is represented as (C11, C21, C31, C41) with output y3.
Notably, Table 3.3 shows how the complexity of the variety of actionable

alternatives has been discretized into a finite set. The set is still large, and can get

very large very rapidly as the number of controllable variables increase. But we will

show how it can reduced to a manageable set. In this case, for 4 variables at 3 levels,

the full factorial is comprised of 34 ¼ 81 alternatives as shown in Table 3.3. The

number of alternatives increase exponentially by the number of factors, Eq. (3.4),

number of alternatives ¼ nf ð3:4Þ

where n is the number of levels of the variables and f is the number of factors.

Consider another example to illustrate how this combinatorial complexity rises.

For 6 variables with 3 levels each, we have 36 ¼ 729 alternatives. For 11 variables

of 2 levels, we have 211¼ 2048 alternatives. This volume of alternatives is too large

to analyze. This is a serious challenge, we can represent the entire space of

alternatives, but it is still too large for it to be practical. In the Operations Space

(Sect. 4), we show how to uncomplicate this complexity.

The purpose of decision alternatives is to estimate how they will perform in

order to select one that will satisfice the stated goals and objectives. The outputs of

each alternative is shown by the column identified as output, yi¼ f(alternative i) in
Table 3.3. But this output is under ideal conditions without any uncertainty, which

is not realistic. How to address this question is the topic of discussion in the next

paragraph, Sect. 3.2.2.

3.3.3.2 Uncontrollable Space: Uncertainty Space

All the alternatives will operate under some uncertainties. As in the case of

controllable variables, we need to discretize the uncertainty space to make it

manageable. As in the case of controllable variables, we use the uncontrollable

variables to represent the space of uncertainty. As a simple example, say we have

three uncontrollable variables,U1,U2, andU3. (U for uncontrollable). The subscript

Table 3.2 Controllable

variables C1, C2, C3, and C4 at

three levels each

C1 C2 C3 C4

Level 1

Level 2

Level 3

C11

C12

C13

C21

C22

C23

C31

C32

C33

C41

C42

C43
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notation s identical to that of controllable variables. The space of uncertainty is

determined, Table 3.4.

Table 3.5 which shows the entire complete set of uncertainty conditions. This is

the full factorial set obtained from Table 3.4, the entire set of uncertainty condi-

tions. The complexity of the uncertainties has been discretized into a small set. For

3 variables at 3 levels, we have 33 ¼ 27 alternatives (Table 3.5).

Table 3.3 All alternatives in the controllable space, and their outputs. Under NO uncertainty

(C1, C2, C3, C4) yα ¼ f(alternative α) 1 � α � 81

alternative 1 (C11, C21, C31, C41) y1

alternative 2 (C11, C21, C31, C41) y2

alternative 3 (C11, C21, C31, C41) y3

alternative 4 (C11, C21, C31, C41) y4

. . . . . ., . . ., . . ., . . . . . .

alternative 66 (C13, C22, C31, C43) y66

. . . . . ., . . ., . . ., . . . . . .

alternative 79 (C13, C23, C33, C11) y79

alternative 80 (C13, C23, C33, C42) y80

alternative 81 (C13, C23, C33, C43) y81

Table 3.4 Uncontrollable

variables U1, U2, and U3 at

three levels each

U1 U2 U3

Level 1

Level 2

Level 3

U11

U12

U13

U21

U22

U23

U31

U32

U33

Table 3.5 Entire set of uncertainties (uncontrollable space)

Uncertainties 1–9 Uncertainties 10–18 Uncertainties 19–27

1 (U11, U21, U31) 10 (U12, U21, U31) 19 (U13, U21, U31)

2 (U11, U21, U32) 11 (U12, U21, U32) 20 (U13, U21, U32)

3 (U11, U21, U33) 12 (U12, U21, U33) 21 (U13, U21, U33)

4 (U11, U22, U31) 13 (U12, U22, U31) 22 (U13, U22, U31)

5 (U11, U22, U32) 14 (U12, U22, U32) 23 (U13, U22, U32)

6 (U11, U22, U33) 15 (U12, U22, U33) 24 (U13, U22, U33)

7 (U11, U23, U31) 16 (U12, U23, U31) 25 (U13, U23, U31)

8 (U11, U23, U32) 17 (U12, U23, U32) 26 (U13, U23, U32)

9 (U11, U23, U33) 18 (U12, U23, U23) 27 (U13, U23, U23)
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3.3.4 Output Space ¼ All Alternatives Under All
Uncertainties

Recall that the output space is the Cartesian product of two mutually exclusive sets,

controllable spaceð Þ� uncontrollable spaceð Þ¼ output space½ � e:g:Table3:5 ð3:5Þ
controllable spaceð Þ ¼ alternative1; . . . ;alternativeað Þ e:g:Table3:3 ð3:6Þ

uncontrollable spaceð Þ ¼ uncertainty1; . . . ; uncertaintyuð Þ e:g: Table3:5 ð3:7Þ
thus alternative1; . . . ; alternativeað Þ � uncertainty1; . . . ; uncertaintyuð Þ
¼ outputsab½ � ¼ matrix of alloutputs under alluncertainties ð3:8Þ

Schematically, the output matrix looks like Table 3.6:

Each matrix entry, such as output 32, represents the DOE predicted output from

alternative 3 under uncertainty condition 2. The schematic is filled as in Table 3.7.

The remainder of this section is to show how to derive the outputs.

The universe of alternatives under certainty is the set {alternative α}, where
1 �α� 81 at each of 27 uncertainty conditions. Therefore, the universe of alterna-

tives under uncertainty is the set of 81 alternatives under the 27 uncertainty

conditions. Thus the number of alternatives under uncertainty is 43 x 33 ¼ 2187.

This set is shown as follows in shorthand in Table 3.7. We have discretized the

complexity of the entire set of alternatives under the entire set of uncertainties by

the Cartesian product of two discrete sets.

We have discussed three important points.

• How to represent the entire set of decision alternatives under certainty Eq. (3.8).

• How to represent the entire set of uncertainty conditions (Table 3.5).
• How the Cartesian product of the alternatives and the uncertainty space produce

the set of alternatives within every uncertainty condition (Table 3.7).

Clearly the complexity of the output set {yua} is sizeable.

In the next section we will show how to reduce the size of this set, how to

estimate the outcomes for this reduced set, and how to construct the optimally

robust decision alternative (Klein 2001).

Table 3.6 Schematic of the output space

uncertainty 1 uncertainty 2 uncertainty 3 . . . uncertainty u

alternative 1 output 11 output 12 output 13 . . . output 1u

alternative 2 output 21 output 22 output 23 . . . output 2u

alternative 3 output 23 output 32 output 33 . . . output 2u

. . . . . . . . . . . . . . . . . .

alternative a output a1 output a2 output a3 . . . output au
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3.3.5 Base Line¼ Do-Nothing-Different Case¼ Business As
Usual (BAU)

We need alternatives to find better prospects for the organization. Any improve-

ment requires a reference point to evaluate results. It is natural and convenient to

establish the reference point as the current state of the controllable variables and the

uncontrollable variables. This is reasonable and practical. There is data on organi-

zational performance and information on the uncontrollable variables. This is

the current state of the decision specification; it is also the condition should the

decision-makers choose to do nothing different. Taking no new action leaves the

organization to run “business as usual”. This is the origin for using the expression

business-as-usual (BAU). It can be said that the idea of executive decisions is to

improve on BAU or to confirm BAU as suitable.

However going forward, we cannot assume the uncontrollable environment will

remain unchanged while doing nothing. Therefore, in addition to the base-line’s
specification, we need to complete four additional tasks, viz. specifying the:

(i) current state of the controllable variables, (ii) current state of the controllable

variables designing, (iii) one or more specifications of favorable states of uncon-
trollable states, and (iv) one or more specifications of less favorable states of

uncontrollable states. More or less favorable conditions are defined relative to the

actual state of uncontrollable conditions. In the paragraphs that follow, we will

show how to do these tasks. We will use Tables 3.2, 3.3, 3.4, 3.5 for a hypothetical

example.

Assume the four controllable variables—C1, C2, C3, and C4—are used to

characterize the actual state (Table 3.3). And that, the current state is specified by

C1 at level 3, C2 at level 2, C3 at level 1, and C4 at level 3, i.e. (C13, C22, C31, C43)
specifies the actual state of the executive- management decision. This is alternative
66 in Table 3.3.

Specify the configuration of the actual state of uncontrollable variables. Hypo-
thetically for example, consider the set of uncontrollable variables as described in

Table 3.4. The uncertainty-state of the actual decision situation is an element in

Table 3.5. Suppose the actual uncertainty state is represented by uncontrollable

variables U1 at level 2, U2 at level 1, and U3 at level 2, i.e. (U12, U21, U32). This is
uncertainty condition #11 in Table 3.5. Specification of this actual condition poses

no difficulty it is self-evident by observation from the DMU. The next two tasks are:

• first is the specification of one or more favorable uncontrollable conditions, and
• second is the specification of one ormore less favorable uncontrollable conditions.

More or less favorable conditions are relative to the actual state of uncontrollable
conditions. Suppose the less favorable uncontrollable condition is (U11, U22, U31)
and the more favorable uncontrollable condition is (U13, U22, U32). We can line up

the set of uncontrollable conditions facing the BAU decision alternative from least

favorable, to BAU, to most favorable as: {(U11, U22, U31), (U12, U21, U32), (U13,
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U22, U32)}. In summary, putting it altogether, the BAU uncontrollable situations are

represented by Table 3.8.

The number of uncontrollable environments is not limited to three as shown in

Table 3.8. Many more can be described. For example, in addition to those in

Table 3.8, one could specify a much more favorable state, and a very unfavorable
state. As a practical matter, do not recommend more than five states because it

encumbers the cognitive load and makes the set uncontrollable excessively com-

plicated. In this example, the DMU must record three results to complete the table.

“Actual performance” data can be easily obtained from actual business records. The

other performance data are provided by each member of the DMU working

independently. It is not advisable to exert peer pressure, foment herd instincts, to

produce a false convergence. The task of each DMU member is to fill each of the

cells marked by “enter your forecast” with a value that represents their best

professional judgment. Each DMU member is permitted and encouraged to consult

their staffs, non-DMU colleagues, or subject matter experts to arrive at their fore-

casts. But DMU members are prohibited from communicating with each other.

Research findings show that knowing others’ preferences degrades the quality of

group decisions (e.g Mojzisch and Schulz-Hardt 2010). The rule of non-disclosure

of individual forecasts is supported by research.

There is no such thing as a “right” or “wrong” forecast. It is a forecast, a

professionally informed judgement; it is what the literature calls “judgmental

forecasting” (e.g. Fildes et al. 2009; Wright and Rowe 2011). DMU members

must not automatically make symmetric intervals centered on “actual” for the

“more favorable configuration” and the “less favorable configuration” of the

uncontrollable environment. There is no logical reason to suppose they should be;

but they can be for special and explainable situations.

The DMU facilitator averages the input for each uncontrollable environment to

produce the forecasts for each of the “current,” “worst,” and “best” forecasts. This

average represents the forecast of the DMU as a group. Averaging is a specific

method of combining forecasts (e.g. Armstrong 2001; Makridakis 1989;

Makridakis and Winkler 1983). Averaging of independent forecasts is recognized

in the literature as a valid method of group-based judgmental forecasting. The

requirement is that the forecasts must be arrived independently and using a sys-

tematically developed and documented procedure than can be replicated consis-

tently (Armstrong 2001). Hibon and Evgenious (2005) are less sanguine and report

Table 3.8 BAU baseline

BAU

Controllable variables Uncontrollable environments

Actual configuration

(C13, C22, C31, C43)
Less favorable

configuration

Actual

configuration

More favorable

configuration

(U11, U22, U31) (U12, U21, U32) (U13, U22, U32)

Enter your forecast BAU Actual Enter your forecast
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that special experiments reveal that combining is inferior to the best alternative, but

acknowledge that “[A] limitation of this study is on how to choose among methods

or combinations in an optimal way (Hibon and Evgenious 2005, 23)”. This is a

severe limitation. As such their findings are not actionable and thus of limited

practical use. Therefore, we concentrate on the reasons that make combing effec-

tive. There are practical reasons why combining forecasts is useful. Combining

reduces errors from bias and flawed assumptions. “Combining forecasts improves

accuracy to the extent that the component forecasts contain useful and independent

information (Armstrong 2001).” These key questions of debiasing, useful and

independent information are addressed in the next Sect. 3.3.6.

3.3.6 Debiasing Social Process

Granger the 2003 Nobel laureate in economics observed that “aggregating forecasts

is not the same as aggregating information . . . (Wallis 2011, 15).” Kerr and Tindale

(2011) confirm the view that information exchange among group members

strengthens benefits beyond averaging. Scholars’ findings reveal a series of crucial
points that must be considered in the forecasting social-process. The importance of

non-disclosure has already been pointed out (Mojzisch and Schulz-Hardt 2010). We

have also addressed the pivotal role of an able facilitator during the social process

(Regan-Cirincione 1994). Schulz-Hardt’s et al. (2006) work finds that group dis-

cussions that go beyond anonymous Delphi type meetings, but also encourage face-

to-face discussions improve the quality of the group members’ judgements. Signif-

icantly, Wright and Rowe (2011) and Russo and Schoemaker (1992) find that of

dissenting discussions are very effective in forecasting group meetings. Especially

when openly exercised by a heterogeneous group (Yaniv 2011). Constructive

dissent, with meaningful new information and informed judgments, is useful. In

fact counterfactual thinking foments creative thinking in problem solving

(e.g. Markman et al. 2007).

In this section, we try to put these findings to work in a forecasting social-process

geared to debiasing mental models and improving group and individual perfor-

mance. We discuss what kinds of information are needed to debias mental models,

what is the debiasing social process, and what are the requirements on the compo-

sition of the DMU membership. In addition to the information, we present our

facilitated social process combined with information to improve the accuracy of the

group’s judgements. Regan-Cirincione’s (1994) work shows this kind of integrated

process is effective in producing forecasting quality.

We begin with counter-argumentation (Russo and Schoemaker 1992) as the

central debiasing social process. Counter-argumentation is designed to mitigate

the danger of group think (Janis 1992; Carroll et al. 1998), narrow framing (Tversky

and Kahneman 1974; Russo and Schoemaker 1989), and false anchoring (Baron

2000). Counter-argumentation procedures reduce systematic biases by insisting on

explicit, but anonymous, articulation of the reasons why a forecast derived from
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mental models might be correct and why it might not be correct (Fischhoff 1999;

Russo and Schoemaker 1992; Arkes 2001; Koriat et al. 1980). The strategy is to

search for disconfirmatory information in group decisions to debias and improve

accuracy (Kray and Galinsky 2003). Our debiasing approach insists on counter-

argumentation without disclosure or discussion of the forecast figures so that

“concentering” (Roth 1995) takes place without peer pressure, which can drive a

false convergence (Mest and Plummer 2003; Hanson 1998; Boje and Mirninghan

1982). Counter-argumentation also improves the DMU’s effectiveness in problem

solving by enriching and complementing team members’ individual mental models

(Mohammed et al. 2010; Mohammed and Dumville 2001; Kray and Galinsky 2003;

Lerner and Tetlock 2003). Winquist and Larson (1998) show that information

pooling of fresh information, which is shared, improves decision quality and the

ability to conceptualize alternatives.

Emphasizing the reasons for both having strong confidence on the forecasts and

its weakness, combining anonymity, and discussions on rationale and logic (rather

than numbers), all together puts a premium on information, knowledge and mean-

ing. All these are important because they can positively influence accuracy (e.g.

Ashton 1985; Dawes and Mulford 1996; Winquist and Larson 1998). Another vital

aspect of counter-argumentation cannot be overlooked. The diversity of the group

doing the decision analysis (Yaniv 2011; Cummings 2004; Cummings and Cross

2003) is important so that rich, subtle and nuanced arguments are brought to the

table. To these ends, our debiasing processes are an adaptation of Lerner and

Tetlock’s (2003) framework, which considers all these factors (Appendix 3.4).

Leading management consultants use a similar approach to debias and enrich

information exchange (Sorrell et al. 2010). Debiasing is designed to “activate

integratively-complex thought that reduces biases” (Appendix 3.4). The frame-

work: also “predicts that integratively-complex and open-minded thought is most

likely to be activated when decision makers learn prior to forming any opinions that

they will be accountable to an audience (a) whose views are unknown, (b) who is

interested in accuracy, (c) who is reasonably well informed, and (d) who has

legitimate reason for inquiring into the reasons behind participants’ judgments/

choices (Lerner and Tetlock 2003).”

We introduce accountability into “integratively-complex and open-minded”

thought process by means of counter-argumentation and learning through feedback.

For the BAU case, we have two forecasting rounds. Counter-argumentation is done

at the end of the first round before moving to the next one. The first round includes a

discussion session where the counter-arguments are disclosed (without attribution)

and openly discussed. We then proceed to the second round of BAU forecasting.

We ask the participants to record their individual confidence level at the end of each

round because we would like to know the effect on confidence resulting from the

new information disclosed during counter-argumentation. This is why complemen-

tary, heterogeneous knowledge and DMU membership is important (Mohammed

et al. 2010; Banks and Millward 2000). At no time are the actual forecast figures

permitted to be disclosed or discussed to anyone in the group.
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Documented rationales, in support or in doubt, of individual forecasts are

anonymously disclosed to the DMU. This is followed by a discussion for each

documented rationale. Because the rationales are anonymous, there is less posturing

and defensiveness than expected from these type of discussions. The goal is for the

DMU members to learn from each other, each other’s reasons, and less about the

actual forecast numbers. Using the documented rationales as a whole, we ask that

each person review, reflect, and adjust their individual forecasts in light of new

information. The adjustments are done individuality, for which the no-discussion

rule still applies.

Everyone is reminded that we are not seeking consensus numbers, but improved

judgment in light of new and complementary information and to improve tacit

knowledge (e.g. Polanyi 2009; Erden et al. 2008). There is no evaluative appraisal

implied or penalty imposed just because the forecasts differ from person to person.

The differences reflect distinct domain expertise and tacit knowledge each individ-

ual brings to their forecasts. The revised forecasts are used to calculate the averages,

as discussed in the previous section, Sect. 3.3.5. Figure 3.6 shows typical results of

this debiasing procedure.

The forecasts from round 1 (without debiasing) and round 2 (after debiasing) for

the actual (or current), worst, and best uncontrollable situations (Fig. 3.7). In the

current situation (the left hand panel), the mean has not changed but the variation is

less. In the worst uncontrollable situation (the middle panel) the mean is not as bad

as initially judged and the variation has diminished substantially. In the best

uncontrollable situation (right hand panel of Fig. 3.7), the mean is not as good as

initially estimated, but the variation has declined substantially. This suggests to us

that debiasing has introduced new information and knowledge to each DMU

member and that the judgments have improved.

We have operationalized Nobel-laureate Granger’s requirement for aggregating

information (Wallis 2011) and have prescribed a debiased, social process as well.
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Fig. 3.7 Improved forecasts before and after debiasing
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3.4 Operations Space

3.4.1 New Strategy: Gedanken Experiments to Uncover
System Behavior

We now focus our attention on the operations space. Figure 3.8 is a schematic of

this space.

The key questions in the operations space are: “How do we determine the

behavior of the socio-technical organization that will implement a decision’s
specifications?” The complex, messy, and wicked nature of the situation and the

socio-technical systems responsible for implementing solutions, surfaces the next

crucial questions: “How do we determine the system behavior of the decision

specification?” What is the quality of implementation? What is the quality of the

DMUs estimates? Decisions’ processes are not like technical systems, which can be

ex ante characterized by means of the physical sciences and its equations to model

them with accuracy and precision. Through very detailed and comprehensive

surveys supported by interviews, a complex enterprise can be modeled. But this

is a labor intensive and protracted process. The model for the ADI company, which

we will use as a case study to illustrate our paradigm, has over 200 loops of

interactions and over 600 variables. It took months for MIT faculty members to

model, calibrate, and run simulations for analyses and to gain meaningful and

useful insights. The question is then: “is there a way to obtain the same result in a

substantially more efficient way?” We answer is in the affirmative. This is what this

book is about. But how?

First, by eschewing the traditional thinking of developing ex ante analytic

models. Second, by insisting on a fresh strategy. One that does not presume to

know the explicit analytic equations that represent the sociotechnical system’s
machinery. Unlike the conventional approach that presumes knowledge of mathe-

matical expressions among variables to represent sociotechnical systems’ behavior,
we use experiments. Using gedanken experiments, we observe and measure the

behavior and output from the sociotechnical system. Ex post we infer system-

behavior patterns from the outcomes of alternatives from gedanken experiments

Decision Making Unit

gedanken experimentsalternatives outputsessential variables sociotechnical system

Fig. 3.8 Schematic of the operations space
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that reveal a phenomenological representation of the system. Phenomenology is a

scientific methodology to describe and explain observations. Appearance reveals

and explains reality (Smith 2013; Otto and Wood 2001).

Using what kind of experiments? Gedanken (thought) experiments

(e.g. Sorensen 1992; Brown and Yiftach 2014). Gendanken experiments are struc-

tured tests designed to answer or raise questions about a hypothesis without the need
for physical equipment. But whose results can be observed and measured.

An experiment is a test (e.g. Montgomery 2001). An experiment is a well-

structured and purposeful procedure to investigate a principle, hypothesis, or

phenomenon. The principles, hypotheses, or phenomena can be about nature,

systems, processes, philosophy, and so on. Our experiments concentrate on the

behavior of corporate systems and processes resulting from potential decisions

specifications. The goals of our experiments are to understand and to determine

the behavior and performance of the sociotechnical systems that operationalize a

decision specification.

The vast majority of experiments are performed with physical apparatus,

e.g. Michelson and Morely’s celebrated inquiry about the speed of light (Michelson

and Morley 1887). CERN’s experiments to find the Higgs boson. But many equally

insightful experiments can be performed without any physical artifacts, like

Galileo’s gedanken experiment on the speed of falling objects, Maxwell’s demon,

Schr€odinger’s cat, Einstein’s falling elevator, and so on. These are famous examples

of gedanken experiments.

Galileo’s experiment, on the question whether heavier objects will fall faster

than lighter ones, is an exemplar of gedanken experiments. Contrary to apocryphal

accounts, he did not drop objects from the Tower of Pisa. He supposedly arrived at

his legendary scientific conclusion by reasoning. He imagined dropping a heavy

and light object that are “bundled” together. If a heavier object falls faster than

lighter ones, than the bundle would fall faster than the heavy object alone. But since

the bundle contains a lighter object, the lighter object should slow down the fall of

the bundle. The bundle cannot fall faster and slower. By the principle of the

excluded middle, they fall at the same speed. With no physical equipment, he

proved that heavy and light objects will fall at the same speed.

Gendanken experiments are structured tests designed to answer or raise questions

about a hypothesis without the need for physical equipment. But whose results can be

observed and measured. The experiments about such questions are framed and

manipulated by “varying and tracking the relations among variables” (Hopp 2014,

250). Gedanken experiments are performed using mental models that require
experts’ domain expertise and tacit knowledge (e.g. Polanyi 2009; Erden et al.

2008). Tacit knowledge is layered on detailed cumulative understanding of the

particulars, experience, failures, and effective practice. Tacit knowledge is not

something that can be acquired from books, manuals and the like. Driving is tacit

knowledge, heart surgery is tacit knowledge, and so is piloting an F-35 fighter jet.

This kind of knowledge is acquired by doing. Which is why use of gedanken

experiments us so useful to seasoned scientists and engineers. Our executive-

management decision-paradigm uses gedanken experiments, as well as, real tests,

for confirmatory and disconfirmatory data to analyze outcomes and execution quality.
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3.4.2 Operations Space: Conceptual Framework

Regardless of the type of experimental assets that are used, physical or intellectual;

given the objectives of our investigation, the fundamental questions that need to be

addressed are:

• What kind of experiments do I need?

• What is a sufficient and comprehensive number of experiments?

• How will the findings improve my understanding of the problem?

• Is there a science to address this?

The science to address these questions is called Design of Experiments (DOE).

DOE answers these questions by first positing that a system or a process can be

represented by a simple, abstract, and uncomplicated construct shown in Fig. 3.9.

The input variables of the system or process, {C1, . . . , Cp} are managerially

controllable by the experimenter and {U1, . . . ,Uq} are managerially uncontrollable.

The response, output, is given by yα ¼ f(C1, . . . ,Cp, U1, . . . ,Uq). In our use of the

DOE, the experiments are gedanken experiments about decision alternatives.

The gedanken experiments are about sociotechnical systems and processes and

the organizational units to implement the decision specifications committed by the

decision-maker. The arrows pointing up represent the methods and mechanisms

used by the organizational units to execute and implement. The key methods are

DOE, Measurement System Analysis (MSA) (AIAG 2002), debiasing procedures,

evaluation methods for decision outcomes and implementation quality.

DOE is an experimental strategy to determine the kind of experiments and the

sufficient number required to systematically make inferences and predictions about

the behavior of a system. DOE allows the experimenter to determine the phenom-
enological behavior of the system/process. The idea is to use the set of responses

from the experiments to fit a relationship over the design space of controllable and

uncontrollable variables (also called factors) (Otto and Wood 2001).

controllable variable  C1
controllable variable  C2

controllable variable  Cn

uncontrollable variables

U1 U2 U3 …     Uq

…

…
methods and mechanisms

Design of Experiments (DOE)
Measurement System Analysis (MSA)
Debiasing
Decision analysis evaluation

output/response  ym

…output/response  y1
sociotechnical  
systems & processes

Fig. 3.9 Schematic of gedanken experiments for executive-management decision
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“A well-organized experiment, followed by thorough data analysis . . . can

provide answers to the following important questions:

• Which are the most important factors affecting the performance characteristics?

• How do the performance characteristics change when the factors are varied?

• What is the joint influence of factors on the performance characteristics?

• Which is the optimal combination of factor values?” (Vucjkov and Boyadjieva

2001).

DOE presents methods to answer the questions of the kind of experiments that

can be constructed, the ways to analyze them, and how to make reasoned and

informed predictions about the output y. A key feature of the DOE methodology is

that it provides methods to determine the smallest number of experiments that will

satisfy the criteria of sufficiency, comprehensiveness, and ability to predict out-

comes and variances over the entire space of alternatives under uncertainty.

3.4.3 Design of Experiments (DOE)

The genesis of modern experimental methods is recent. We follow Montgomery

(2001), Wu and Hamada (2000) to punctuate the historical development of DOE

into stages of progressively more sophisticated methodologies and increasing

applications in different domains of inquiry. (Appendix 3.1 shows a sample of

typical engineering problems studied using DOE.) We extend this progression by

including our executive-management decision paradigm as the most recent new

advance in DOE. We will discuss the reasons why this is a frame-breaking and

challenging undertaking.

Stage 1 is the agricultural era. As the inventor of the DOE methodology

(Fisher 1966, Box 1978), Fisher’s interest was in producing high yield

crops under different controllable and uncontrollable variables of water,

fertilizer, rain, sunshine, and other factors. He systematically formulated experi-

ments, which specified crop treatments with different combinations of variables at

different values. Some plots were fertilized others not, some were irrigated more

intensely than others, and so on. Of course, they were all subjected to many

different uncontrollable conditions; such as rain, sunshine, and so forth. As one

would expect, the set of possible treatments became very large, and the variety of

uncontrollable conditions were many. The combinatorial explosion of controllable

and uncontrollable factors grew very large. (His term, “treatments”, is till used

today as a synonym for “experiments”.) To address this complexity, Fisher devised

methods to reduce the number of experiments to merely a fraction of the total

possible experiments. And to analyze experimental results, he created the Analysis

of Variance (ANOVA) as a new statistical method to study the joint effect many
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factors. Fisher also articulated the renown experimental principles of randomiza-

tion, replication, and blocking. His work stands as a landmark in original and

practical thinking.

Stage 2 is the industrial era ushered by Box and Wilson (1951), statistician

and chemist, respectively. They recognized that unlike protracted agricul-

tural experiments; chemical and process types of experiments can produce

results with much greater immediacy. Learning from immediate results, they were

able to rapidly plan an improved next experiment. Armed with this insight and more

sophisticated statistical methods, they developed the Response Surface Methodol-

ogy (RSM). RSM is a sequential procedure. The objective is to move incrementally

from the current operating region to an optimum. The investigator begins with

simple models, and as knowledge about the solution space improves, more

advanced models are used to explore the regions of interest and to determine the

extremum. Box and Wilson’s (1951) innovation was to demonstrate the efficacy of

Fisher’s method in another domain of inquiry.

Stage 3 is the product and manufacturing quality era. Taguchi (1987,

1991) introduced the DOE and the concept of robustness for use in

product design and manufacturing. A product or a process is robust when:

• the performance, its response or output, is highly insensitive to uncontrollable or

difficult to control environmental factors even they are not removed,

• the performance is insensitive to variations transmitted from uncontrollable

variables of the exterior environment.

Using Taguchi’s innovations in DOE methods, robustness is achieved through

robust product design (e.g. Phadke 1989; Taguchi and Clausing 1990; Fowlkes and
Creveling 1995; Vucjkov and Boyadjieva 2001; Otto and Wood 2001). The design

engineer specifies settings of controllable variables that drive the mean response to

a desired value, while simultaneously reducing variability around this value. It is

rare that both of these objectives can be met simultaneously; the designer must

make an artful compromise. Taguchi defined the signal-to-noise ratio heuristics that

simplify this task. He further simplifies the task of designing treatments by provid-

ing another innovation, the specifications of a comprehensive set of pre-defined

treatments in the form of orthogonal arrays, also called Taguchi arrays. These
arrays are sample subsets of the entire set of experiments from which one can

predict the outcome of any experiment. These arrays vastly reduce the number of
alternatives that need to analyzed and considered. It is a breakthrough complexity-
reduction mechanism.

We saw in Sect. 3.1, the number of alternatives rises as the exponent of the

number of factors, and by including uncertainty, the complexity escalates further.

Table 3.9 shows the growth of combinatorial complexity and the dramatic effi-

ciency of the Taguchi arrays sampling. Using these arrays, the one can predict the
results of any other alternative in the entire space. For example, with 10 variables,
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one of which is specified at 2 levels, and 9 of which are specified at 4 levels, a

sample set of 32, as defined by a Taguchi array, suffices to predict outcomes over

the entire space of 262,146. Sampling efficiency is, therefore, 1�[(32)/
(262,146)] ¼ 99.998+%. We will use this approach to address the combinatorial

complexity of alternatives in Chap. 9. Table 3.9 presents more detail.

Consider the first entry in Table 3.9. In this case, we have 4 controllable vari-

ables at 3 levels each. The full factorial set consists of 34 ¼ 81 experiments.

However, with a sample of 9 experiments, we can predict the outcomes for the

entire 81 experimental constructs (Table 3.10). The sampling efficiency is [1�
(81/9)] ¼ 88.889%. This sample of 9 experiments is known as the L9(3

4
) array.

L stands for Latin square, or orthogonal array, 3 is the number of levels of the

variables, and the superscript 4 stands for the number of variables.

Table 3.9 Sampling efficiency of Taguchi arrays

Total

variables

Mix of

variables

At number

of levels

Number of

combinations

Sufficient

sample size

Sampling

efficiency %

4

6

4

6

3 levels

5 levels

34 ¼ 81

56 ¼ 15,625

9

25

88.889

99.840

8 ¼ 1 + 7 1

7

2 levels

3 levels

21 + 37 ¼ 2189 18 99.178

10 ¼ 1 + 9 1

9

2 levels

4 levels

21 + 49 ¼ 262,146 32 99.988

11

15

11

15

2 levels

2 levels

211 ¼ 2048

215 ¼ 32,768

12

16

99.414

99.951

16 ¼ 3 + 13 3

13

3 levels

2 levels

23 + 311 ¼ 1,594,331 36 99.998

13 ¼ 1 + 12 1

12

2 levels

5 levels

21 + 511¼ 48,828,127 50 99.999

Table 3.10 Nine

experiments suffice to predict

the full factorial of

81 experiments

L9(3
4)

Variables

(C1, C2, C3, C4)

alternative 1 (C11, C21, C31, C41)

alternative 2 (C11, C22, C32, C42)

alternative 3 (C11, C23, C33, C43)

alternative 4 (C12, C21, C32, C43)

alternative 5 (C12, C22, C33, C41)

alternative 6 (C12, C23, C31, C42)

alternative 7 (C13, C21, C33, C42)

alternative 8 (C13, C22, C31, C43)

alternative 9 (C13, C23, C32, C41)
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These ideas have been successfully applied in a wide variety of engineering

applications, e.g. Wu and Wu (2000), Clausing (1994), Phadke (1989) and Taguchi

et al. (2000). Specific examples of applications are in Appendix 3.3.

Stage 4 is what this book is about. Leveraging the aforementioned

achievements, we apply DOE to the practice of executive-management

decisions. But we must do more than that. We must do so in a comple-

mentary, meaningful and insightful way. This is a challenging undertaking. For

example, in each of the previous stages, scientists and engineers have taken the lead

in the innovations of DOE. To inform them, they had the singular advantage of

well-established science, its laws, and theorems for sense making, framing, and

problem solving.

The practice and the discipline of executive-management does not have these

advantages to nearly the same extent. The problems and opportunities facing

executive-management tend to be ill structured, messy, and wicked. The field of

executive-management decisions is a sociotechnical discipline. The interplay

between social and technical variables create a set of unique dynamics. We must

integrate and synthesize findings from thinkers in complex systems, cognitive

psychology, organizational theory, economics and managerial practice. To under-

stand and appreciate the significance of DOE in decision theory and practice, we

must first develop some strong intuition about the methodology. This the subject of

the remainder of this chapter.

3.4.3.1 DOE Foundations

DOE has three pillars: Analysis of Variance (ANOVA), regression analysis, and the

principles of DOE (e.g. Vucjkov and Boyadjieva 2001; Wu and Hamada 2000).

ANOVA is a statistical method to quantitatively derive from a multivariate

experimental data the relative contribution that each controllable variable, interac-

tion, or error together make to the overall measured response. Common practice is

to present the results of an experiment using an ANOVA table as shown below for

two factors A and B (Table 3.11) (Montgomery 2001).

The second pillar is regression analysis. Regression analysis is a powerful

method for model building because experimental data can often be modeled by a

Table 3.11 Analysis of Variance table for two-factor fixed effects model

Source DOF

Sum of

squares Mean square F

A a � 1 SSA MSA ¼ SSA/(a � 1) F ¼ MSA/MSE

B b � 1 SSB MSB ¼ SSB/(b � 1) F ¼ MSB/MSE

A � B (a � 1)(b � 1) SSAB MSAB ¼ SSAB/(a � 1)(b � 1) F ¼ MSAB/MSE

Error ab(n � 1) SSE MSE ¼ SSE/(ab)(n � 1)

Total abn � 1 SST
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general linear model (also called the regression model). Given response (output) y
is related to p variables x1, . . . , xp as y¼ Σβixi + ε. If we have N observations y1, . . . ,
yN , then the model takes the linear polynomial form of yi¼ β0 + β1x1 + . . . + βpxp + εi,
with i ¼ 1, . . . ,N. These N equations are then y ¼ X β + ε in matrix form. X is the

N�(p + 1) model matrix. Since the experiment gives us only a sample, we want

ŷ¼Xbβ and from the least squares estimate we obtainbβ¼ X0Xð Þ21
X0yand using the R2

statistic we can determine the proportion of total variation explained by the fitted

regression model Xbβ. And using the F statistic we can get the p values for the

explanatory variables x1, . . . , xp. (e.g. Vucjkov and Boyadjieva 2001; Wu and

Hamada 2000). (We will discuss this topic in more detail in the Results Space, Sect.

5 and show how it is used in case study applications in later chapters.)

The third pillar is the set of principles first formulated by Fisher (1966). They are

randomization, replication, and blocking. Randomization is a fundamental princi-

ple of any statistical analysis. It refers to both the allocation of experimental assets,

as well as, the time and sequence in which treatments are performed. Randomiza-

tion minimizes the impact of systematic bias that may exist. Replication is a distinct

concept about repeated measurements of a single experiment. It refers to

performing the same experiment and taking measurements for each. Replication

permits us to determine repeatability and reproducibility of experiments. Blocking

is a way to control for factors that are not considered critical to the response of the

experiment, e.g. the time or day when the experiment is performed or the supplier of

materials.

3.4.3.2 Advantages of DOE

There are many practical attributes that make DOE useful and practical. The salient

ones are discussed next. Demonstrably Effective DOE methods are widely

researched, reviewed in refereed journals, and documented in the literature. Wu

and Hamada (2000) present 80 examples in their book. Frey et al. (2003) identify a

very wide variety of applications in engineering and science. Antonsson and Otto

(1995) use Taguchi methods of DOE in product design. Clausing (1994) based on

his experience in Xerox presents examples how Taguchi methods was used at

different phases of the product development life cycle. Fowlkes and Creveling

(1995) do the same based on their experiences in Kodak. Taguchi et al. (2000) and

Wu and Wu (2000) present data, models, and analysis from numerous successful

industry experiments. Appendix 3.1 contains a sample of DOE applications in

engineering with pointers to references.

Addresses Key Difficulties DOE’s statistical methods overcome many difficulties

facing an experimenter. The key difficulties are noise, complexity, interactions, and

causation versus correlation (Box et al. 2005). Noise is a major source of uncer-

tainty. DOE clearly separates controllable variables from uncontrollable variables

(noise variables) to analyze the effect of the interactions among the controllable and

aleatory variables on the output. The ANOVA table reports the factor interactions

(Sect. 5.2). To address complexity, accumulated empirical evidence has distilled
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three very practical principles for the analysis of factorial effects; they are the

hierarchy, sparsity, and heredity principles (Wu and Hamada 2000). Hierarchy
means that the n factor effects dominate n + 1 factor interactions, n � 1. Sparsity
asserts that the number of important variables in a factorial experiment is small.

This is important because DOE naturally reduces complexity. Heredity is the

observation that for an interaction to be significant, at least one of its parent should

be significant. For causation and correlation, “interplay between theory and prac-

tice” must come together (Box et al. 1978). Experimenters must rely on domain

knowledge working principles to construct relationships among variables.

“Black-box” Approach A distinctive DOE advantage is its phenomenological

approach to the analysis of systems and processes. The systems under investigation

are considered as a “black box” and provided the inputs and variables are known,

we can characterize the behavior of the system, ex post, by analyzing its output. The
ability to view systems phenomenologically as a black-box combined with the

ability to consider the effect of uncontrollable variables gives us the ability to

make predictions about the performance of complex systems. And very signifi-

cantly, we can design and build systems or processes to be robust against noise,

i.e. against the effect of uncontrollable conditions. These black-box”benefits are

particularly useful when the experimenter may not know or be able, ex-ante,
express the behavior of the product or system with equations. Using DOE methods

the experimenter can, ex-post, empirically derive a transfer function that represents

the behavior of the system over the solution space. All these are significant and

practical advantages in the study and solving challenging executive-management

decision situations.

3.4.3.3 New Idea: DOE for Executive-Management Decisions

Applications of DOE for management decisions made at senior-corporate executive

levels is barely visible in the literature. The role of experiments in business looks

narrowly limited to product screening concepts and product testing during the early

phases of product development. This is useful and traditional. To our knowledge,

these methods do not explore the entire solution space under all uncertainty

conditions; the large majority of “what-if” questions remain a mystery. Work on

a problem of optimal scheduling of earth-moving equipment using simulations with

a queueing model is reported (Smith et al. 1995). There the objective is to find the

optimal setting of variables to optimize their output. They do not appear to exploit

uncontrollable variables, so the system effects under uncertainty remain largely

unexplored. Marketing scholars test a variety of the mix of product, price, promo-

tion, and place (Kotler and Keller 2009) for consumer products (Almquist and

Wyner 2001). But the use of uncontrollable variables is not discussed and therefore

the effect of uncertainty is indeterminate. Thomke (2001, 2003a, b) argues that

experiments using prototypes, computer simulations, and field tests of service

offerings should be integrated into a company’s business process and management

system. We impose the following challenging requirements to extend and
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complement, to a new level, the usefulness of these ideas. The design decision

alternatives must be:

• the result of explorations of the entire solution space anywhere in the entire
space of uncertainty, i.e. uncontrollable conditions,

• robust under uncontrollable conditions even when these conditions are not

removed,

• artefacts of technical and social processes, which have been systematically

designed, and

• have been subjected to debiasing procedures.

These requirements are new and novel to executive-management decisions and

address a significant void in research and the practice.

A goal of this research is to address this void. There is an abundance of research

literature on DOE applications in engineering, manufacturing, and the sciences, but

their absence, in managerial applications, is conspicuous. This can be explained by

the fact that the traditional applications are in disciplines rooted in the sciences,

engineering, or operations research. Experimenters, in these disciplines, have the

benefit of the laws of physics and their analytic equations to guide them in

identifying variables and framing their experiments. Students of corporate deci-

sions do not have these advantages to nearly the same extent, which is why the

science of DOE is so new and practical for executive-management.

3.4.3.4 Our Use of DOE

Our strategy is to approach executive-management decisions as engineers of

complex sociotechnical systems. We use product development as analogous to

engineering decisions. The former is about physical products, the latter is about

intellectual artifacts. Like engineered products, executive-management decisions

must be systematically planned, designed, and operated to perform to specifica-

tions. These considerations and the advantages of DOE, motivate us to use DOE to

frame our executive-management decision-decisions and design decision alterna-

tives. To address uncertainty, the DOE methodology unambiguously distinguishes

controllable and uncontrollable variables. It also provides us with methods to

analyze their interactions and effects on the system that generates the output.

3.5 Performance Space

3.5.1 New Strategy: Robustness, Repeatability,
Reproducibility, Reflection

There are four key questions in the performance space (Fig. 3.10). One, the

structure of the decision specifications. Two, the production quality of the
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sociotechnical processes that enact decision specifications, i.e. the consistency and

trustworthiness of the production system. Three, quality of the input data and the

forecasting quality from the DMU. And four, the ability to learn from good and bad

outcomes by reflecting on the experiences throughout the life cycle. The machinery

we will use to answer these questions are the ANOVA statistics, DOE main effects

and standard deviations response tables, and Gage RR statistics Measurement

System Analysis (MSA).

3.5.2 Analyzing Data: Analysis of Variance (ANOVA)

Our gedanken experiments uses of a number of controllable input-variables that

interact with a number of uncontrollable variables. DMU, adjunct experts, members

and their organizations identify these variables. The questions of interest are:

• which controllable variables are most important? What are the intensities of their

contributions to the outcomes?

• do the controllable variables explain sufficiently the observed outputs? I.e. is

there additional important information that was missed?

• are we learning from what we are doing and from the results we are getting?

ANOVA is a statistical method to quantitatively estimate the % contribution that

each controllable variable, interaction, and error makes to the outputs (responses)

that are being measured (e.g. Box et al. 1978; Montgomery 2001; Levine et al.

2001). The intensity of each contribution is determined by the relative contribution

to the variation of each controllable variable, interaction, and error to the total

variation observed from the measurements. Variation is obtained from the sum of
squares analysis and they are reported in an ANOVA table (e.g. Table 3.12).

Knowing the % contribution, each controllable variable or interaction makes to

the output, is important because it gives the decision-maker insight into the relative

importance of each controllable factors to the output. In our field experiments (Part

III of this book) a senior executive noted, “[I] always thought this factor was

Decision Making Unit

robustness
repeatability
reproducibility

Measurement System 
Analysis (MSA)

outcomes sociotechnical 
systems/processes

σσ 2
total

σ 2
part σ 2

meas.sys= +
σ 2

part σ 2
repeat= + σ 2

reprod+

chosen
alternative

Fig. 3.10 Schematic of the performance space
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important, but for the first time, I am told how important. And with numbers no

less.” In our Japanese experiment, we found that one variable, which the decision-

maker agonized intensely about, turned out to have negligible effect on the final

result. Knowing the % contribution of the interactions is significant because if

the interactions are small, it informs the decision-makers that they can think about

the controllable variables additively. The allocation of company resources to the

implementation of corporate decisions can now be made in a way that is consistent

with the contribution that a controllable factor can make to the outcome.

A typical ANOVA table is, for example, Table 3.12 taken from our case study in

Chap. 6.

“Source” is the column that identifies a controllable variable, interaction, or

error. The controllable variables are all present here, r&d, yield, cogs, price. The
term yield*cogs is the interaction between these two variables.

DF (or DOF) means degrees of freedom. One can think of DF as the number of

equations needed to solve for unknowns. The number of equations represents their

capacity to solve for the variables. Similarly, DF represents the capacity of a

variable (or an experimental design) to produce additional information. Statisticians

estimate a statistic by using different pieces of information, and the number of

independent pieces of information they use to calculate a statistic is called the

degrees of freedom. For controllable and uncontrollable variables with n levels, the
DF is n-1.

Sum of Squares Total (SST) represents the total variation among all the obser-

vations around the grand mean. The sum of squares, SS, due to a factor A (SSA)
represents the differences the various level of factor A and the grand mean. Seq SS
measures the SS when each variable is considered in the sequence they are listed

under the column with the heading of “Source”.

Adjusted SS (Adj SS)measures the amount of additional variation in the response

that is explained by the specific variable, given that all other variables have already

been considered. Hence, the value for the Adj SS does not depend on the order in

which they are presented in the Source column. The Seq SS and Adj SS are identical
when the model is balanced. Balance is a combinatorial property of the model. For

any pair of columns in the array that is formed for all the experiments, all factor-

level combinations occur an equal number of times (e.g. Wu and Hamada 2000). By

Table 3.12 Example of ANOVA table

Source DF Seq SS Adj SS Adj MS F P

r&d 2 712 712 356 8.63 0.003

Yield 2 21,686 21,686 10,843 262.82 0.000

cogs 2 20,733 20,733 10,367 251.28 0.000

price 2 58,059 58,059 29,030 703.65 0.000

yield*cogs 2 257 257 128 3.11 0.072

Error 16 660 660 41

Total 26 102,107

S ¼ 6.42305, R-Sq ¼ 99.35%, R-Sq(adj) ¼ 98.95%

3.5 Performance Space 147

https://doi.org/10.1007/978-3-319-63026-7_6


definition, orthogonal arrays are balanced, so the Seq SS and the Adj SS columns

display identical values. This will be the case for all our experiments because we

will be using orthogonal arrays exclusively. Our orthogonal arrays are always

balanced. We note that the SS’s for yield*cogs is small relative to the other vari-

ables. Its contribution to the outcomes is very small, 227/102,107 ¼ 0.0022.

(Adj MS) ¼ (Adj SS)/(DF) for a particular variable. For example for r&d, Adj
MS ¼ ½ � 712. It is the variance of the measurements for a particular variable. We

obtain its % contribution through a simple division of its Adj MS by the sum of the

individual elements.

F(A) is: F(controllable variable A) ¼ (Adj MS of variable A)/(Adj MS error).
This is also called the variance ratio and used to test the statistical significance of
the variable A.

• For F < 1, the experimental error is bigger than the effect of the variable.

The effects of the variable cannot be discriminated from the error contribution.

The particular variable is therefore statistically insignificant as a predictor of the

output. In Table 3.12 all variables are statistically significant with p< 0.05, they
are good predictors of the output. If p << 0.05, then the variables are strong
predictors of the output being studied.

• For F ~ 2, the controllable variable has a modest effect on the output.

• For F > 4, the controllable variable effect is much stronger than the effect of

error and is therefore statistically significant and a good predictor of the output.

• For F > 5, the controllable variable effect is dominates the effect of error and is

therefore statistically very strong predictor of the output.

R-Sq (R2 or R-squared) is the percent of variance explained by the model. It is

the fraction by which the variance of the errors is less than the variance of the

dependent variable. Or, how good the fit, of the data points is for the regression line,

or how well the controllable variables explain the outputs.

R-Sq(adj) or (R2 adjusted) is the standard error of the regression rather than the

standard deviation of the errors. R-Sq(adj) compares the descriptive power of

regression models that include many predictors. Every predictor added to a model

increases R-Sq and never decreases it. Adding more useless variables to a model,

R-Sq(adj) will decrease, but adding useful variables, adjusted R-squared will

increase. In our example, it does not appear that we have useless variables.

It is good practice to examine the residuals from the ANOVAmodel to convince

ourselves that they are random normal with a mean of zero. A residual is simply

expressed by the equation: residual ¼ [(observed value)�(predicted value)]. Ide-
ally the residuals are always zero, but there are always aleatory factors that cause

observed values to diverge from predictions. Although their presence is inevitable,

we would like them to be randomly distributed. This indicates that they are not

carriers of input information from factors that have not been considered. Random

normal residuals increase our confidence in the validity of the choice of controllable

and uncontrollable variables, as well as, how they represent the sociotechnical

system behavior.

Showing the residuals graphically is a simple and effective way to analyze the

distribution of the residuals. We like the half-normal plot as in the plot of residuals
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in Fig. 3.11. The x-axis shows the range of the values of the residuals. The sloping

diagonal line is a logarithmic plot of a cumulative normal distribution with mean

zero and standard deviation (SD) of the residuals. The dots are the residuals. If all

the residuals lie on the line, they are normally distributed. Or if they are close. Close
can be determined by the “fat pencil” test. In other words, if the residuals are

covered within the diameter of a “fat pencil,” the distribution can be judged to be

normal. This is MIT’s Roy Welsch “fat-pencil” test. The box in the chart shows

some statistics that can tell us more definitively whether the residuals are normal

with mean zero. In this case, for a sample of 27 numbers, the mean is 3.789561 �
10�14, which is a very small number—close to zero. The standard deviation is

acceptable given the Anderson-Darling (AD) statistic, we reject the hypothesis

that they are not random. The value p > 0.05 supports this fact. We conclude that

the residuals are normal. This may appear confusing, but it becomes clearer when

one considers that the null hypothesis H0 is that the residuals are normal, so that is

p > 0.05.

3.5.3 Analyzing Performance: Response Tables

From the ANOVA data, we can determine whether we have chosen the appropriate

variables and the extent to which they contribute to the intended outcomes. In

addition, we know that at the scale they are chosen, whether we have not omitted

any other key variables. The next questions are:

• Can we predict the outcomes of designed alternatives? For any “what-if?”

question. For any alternative, under any uncertainty conditions? If so, how?

The answers are affirmative and we will show how this is accomplished. In

addition to the ANOVA table, using our orthogonal arrays, we are able to obtain the

Response Tables and the Tables for the standard deviations. For example

Table 3.13, which we will discuss in detail in Chap. 6. Here we sketch how the

Response Tables are used to design an alternative.
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Fig. 3.11 A statistically

significant residual plot
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We focus on the LHS of the Table 3.13, the response table for the output Market

Value-of-the-Firm, MVF. Under the “Level” column, listing levels “1”, “2”, and

“3” for the controllable variables are shown. For example, cogs at level 2 is

determined to have value 753.4. In this example, level 2 is the existing operating

condition, the (BAU) level. The controllable variables are expenditures for r&d,
manufacturing yield, cost to the company of the goods sold (cogs), and price at

which they are sold.

Delta is the maximum distance between any two levels; for example for the

variable yield, 70.6 ¼ (782.6�712.1). Rank is simply an ordering of Delta from

high to low. Rank tells us which variable has the greatest influence on the output. In

this case, it is price with a Delta ¼ 113.3.

The standard deviations are calculated from the output data, for each variable at

a level, to obtain the response table for the standard deviations. We get the RHS

plots in Fig. 3.12.

We can design alternatives to meet any specification, by inspection of Table 3.13

data on the RHS and LHS. For example, suppose that r&d is not a problem, and the

Table 3.13 Response tables for variables’ means and standard deviations

Response table-means Response table-St deviations

Level r&d Yield cogs Price Level r&d Yield cogs Price

1 759.7 720.9 782.6 690.7 1 105.1 102.0 104.2 98.8

2 746.4 749.4 753.4 753.4 2 100.8 100.2 104.4 101.9

3 742.0 777.9 712.1 804.0 3 101.2 104.8 98.3 106.3

Delta 17.8 57.0 70.6 113.3 Delta 4.32 4.63 6.11 7.52

Rank 4 3 2 1 Rank 4 3 2 1

Fig. 3.12 Graphs of response tables for variables’ means and standard deviations
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objective is to maximize yield, have the lowest cogs, and raise price; the alternative
can be specified as:

• C((r&d(level-1), yield(level-3), cogs(level-3), price(level-3)), or more simplified

as

• (r&d-1, yield-3, cogs-3, price-3), or even simpler as C(1,3,3,3).
In this case price(level-3) produces a salutary positive effect on profit—the

higher price combined with the lower cost, i.e. hitting both the “top-line” and the

cost-line. This is an aggressive strategy. But we must ask: what is the risk? The C
(r&d-1, yield-3, cogs-3, price-3) strategy implies standard deviations SD(r&d-
1, yield-3, cogs-3, price-3) for those controllable variables. In other words, the

decision specification C(1,3,3,3) will result in the highest standard deviations for
controllable levels r&d, yield and price (right hand panel of Fig. 3.12). Higher

standard deviations means a large spread in the outcomes. This means more risk.

Suppose we design a decision-specification that is less aggressive, i.e. C

(2,3,3,2). We elect r&d-2 because from the upper left hand panel of Fig. 3.12, we

observe that the impact of r&d is low on the outputs. This is shown by Delta in the

r&d column of Table 3.13. We keep price at level-2 because we choose to only

have lower cogs and exert its effect on profit and cogs has the lowest SD. Compared

to the C(1,3,3,3) alternative, the standard deviations, for r&d and price, are less in
alternative C(2,3,3,2). Alternative C(2,3,3,2) is less risky than C(1,3,3,3). It is
robust, which is a less risky decision and which still optimizes yield and cogs. It
is the better decision.

Using orthogonal arrays, we can predict the outcomes of any specific alternative
under any uncertainty condition, e.g. for the Business-As-Usual (BAU), the

do-nothing-different, behavior of the firm, under nine different uncontrollable
(uncertainty) conditions. We show DOE predicted output of market-value-of-the-
firm (MVF) for BAU under these nine uncontrollable uncertainty conditions

(Fig. 3.13). As expected the BAU in the current environment is bracketed by the

best SD (2 2,1) andworst environments SD(1,1,2). (This example comes fromPart II.)
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Fig. 3.13 Predicted MVF for BAU(2,2,2,2) under nine uncertainty conditions
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Using orthogonal arrays, we can predict the outcomes for a range of alternatives
under a specific condition. For example, we now illustrate the case of nine alterna-
tives (including BAU) under a single environment—the worst. The DOE predicted

output of nine alternatives for raising the market-value-of-the-firm (MVF) under the
worst environment SD(1,1,2) shown in Fig. 3.14. The best alternative is specified as
C(1,3,1,3) because it maximizes MVF. The worst alternative is specified as C
(3,1,3,1) it produces the lowest MVF. As expected the BAU is bracketed by the

best and worst alternatives. (This example comes from the case studies in Part II).

We find the transfer function and can also plot the graphical relationship

between two interacting variables, e.g. Fig. 3.15.
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Fig. 3.15 Surface plot of predicted market-value-of-the-firm using as function of price and the

cogs (cost of goods sold)
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Fig. 3.14 Predicted market-value-of-the-firm using nine alternative decision alternatives, includ-

ing BAU, under single worst uncertainty condition
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3.5.4 Analyzing Sociotechnical System Quality: Gage R&R

The discussions in Sect. 5.1 have centered on the use of DOE methods to construct

decision alternatives (DOE experiments/treatments) and predict performance.

Experiments depend on data. How do we know the data are “good enough”?

What is good enough? Why or why not? What can we learn from this additional

knowledge? Why is it important? These are the questions we explore and discuss in

the context of executive-management decisions. The discussions are grounded on

the science and practice of Measurement Systems Analysis (AIAG 2002).

Good-enough means that the data are accurate and precise. “Accurate” means

that the data is located where it is supposed to be relative to a reference value. The

reference point is the intended output. “Precise” means that repeated readings under

different conditions produce data are close to each other. Accuracy and precision

can be determined by the statistical property of variation. Given that variations will

be present, we need to know the sources of these variations. Knowing the origins of

variations, we can think about how to take corrective action, if necessary. Who and

what are contributing to these variations? The variation can be inherent in the data

itself, the people who are taking the measurements, or they can be due to measuring

instrument quality. Gage R&R (Gage Repeatability and Reproducibility) methods

(e.g. Breyfogle 2003; Montgomery 2001) from Measurement Systems Analysis

(e.g. AIAG 2002; Creveling et al. 2003) give us the machinery to perform for this

analysis.

The genesis of Measurement System Analysis (MSA) is in manufacturing for the

production of physical objects. MSA is a statistical method to assess the perfor-

mance of a measurement system. The concept reflects its roots in manufacturing. A

measurement system is defined as:

• “the equipment, fixtures, procedures, gages, instruments, software, environment,

and personnel that together make it possible to assign a number to measured

characteristic or response (Creveling et al. 2003)”.

Gage R&R is a MSA method to study the components’ variability in a measure-

ment system (e.g. AIAG 2002; Montgomery 2001). Gage R&R is a widely used in

engineering and production management (Wang 2004; Foster et al. 2011). We will

show that the concept of a measurement system, conceptually remapped to the

engineering of executive-management decisions is very meaningful and useful. All

this is somewhat abstract, so we will sketch the key ideas using Fig. 3.16, explain

the statistics, and discuss the mapping to decision engineering. To make these ideas

more intuitive, we begin by discussing the Gage R&R idea in a hypothetical

manufacturing production environment.

Consider the manufacturing line of bolts (Fig. 3.16) as a direct analogy of a

DMU forecasting outputs of decision alternatives, and the orthogonal arrays as

DMU productions. The measurement in question is the diameter of the bolts.

Variation in the diameter is an indicator of the quality of the production system,

the people, and the measurement instruments. These variations need to be
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understood and interpreted to determine the quality of the production system. There

are three sources of variations, they are:

• Part-part is the variability in measurements across different parts from the same

batch. In this example, this is the variation in the diameter measurements of the

bolts. Ideally, we want this variation to dominate all the remaining variations. In

other words, the variations introduced by people and the measuring instruments

are to be small.

• Reproducibility is the variability in measurements obtained when parts are

measured by different operators. That is to say, for a given part, are different

people making the measurements able to reproduce a measurement?

• Repeatability is the variability in measurements obtained when parts from the

same batch are measured by the same person, i.e. is an operator able to repeat the

measurement value for a given bolt?

• Gage R&R is the sum of reproducibility and repeatability. This sum is the overall

measurement variation.

The sources of variations in measurements are mathematically related as shown

in Fig. 3.17.

A simple sum expresses this relationship.

σ2total ¼ σ2part þ σ2meas:sys: ¼ σ2part þ σ2rpt þ σ2rpd: ð3:9Þ

3.5.5 MSA and Executive-Management Decisions

What does MSA have to do specifically, in detail, with executive-management

decisions? A lot. Recall that we consider an organization’s sociotechnical

Fig. 3.16 Sources of variability for measurements
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systems as a decision factory, a manufacturing production system. A decision
specifies how an organizations and associated sociotechnical systems must behave

so they will generate the intended outcomes in the outcomes space. Which is why

we consider organizations as production or manufacturing systems. They are

factories of sociotechnical systems and machinery designed to recognize meaning-

ful opportunities and problems, to analyze, engineer solutions, execute, and gain

additional knowledge from its outputs. We measure the quality of this decision-

specification execution system using Gage R&R.

The analogy is an isomorphic mapping (Table 3.14). The fidelity of the analogy

is remarkably high. Decision specifications, the intellectual non-physical artefact, is

mapped to parts, physical artefacts. Measurements become forecasts of decision

outcomes. Operators who are doing the measuring with instruments are mapped to

the DMU who are making the forecasts of outcomes.

ASQC and AIAG provide guidelines for measurement system statistics (AIAG

2002). A useful and accepted AIAG guideline is that the Gage R&R variation

should be <10% and the part-part should be >90%. This makes sense for a mass

production environment where the ideal is to have identical parts, i.e. without any

variations so that the variations are all isolated in the measurement system. Specif-

ically, the AIAG and ASQ guidelines stipulate that σ2part¼ 90% and that the rest be

equally divided between σ2rpt and σ
2
rpd, i.e. 5% each. The 90-5-5 are indicators of a

quality manufacturing line (Fig. 3.18). It is important to note that these guidelines

are based on decades of manufacturing experience of American industry, which

without exaggeration has produced billions of parts. The heuristic has a strong and a

long history of empirical evidence. Therefore, we can, with confidence, adopt this

quality heuristic for measuring the executive-management sociotechnical systems.

Table 3.14 Adaptation of gage R&R to DOE-based decision analysis

Manufacturing model Mapping Our DOE decision analysis paradigm

Parts  ! Decision alternatives

Measurements  ! Forecasts of decision alternatives’ outcomes

Operators  ! Participants making the forecasts

partσ2

σ2
rptactual variation 

part-part
variation across parts

σ2
total

repeatability
variation by 
one operator for a given part

overall 
variation in 
measurements

σ2
meas. sys.

measurement
system variation
Gage R&R

σ2
rpd

reproducibility
variation from
different operators for a given part

=
+

+

Fig. 3.17 Graphical illustration of the various variations’ relationship
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However, this 90-5-5 GR&R distribution sets a very high bar for executive-

management decisions. This is discussed next.

The AIAG and ASQ standard is defined on the assumption that the parts are

identical, but because people, technical systems, and processes are imperfect, there

are variations in the final measurement. MSA seeks to determine the sources of

these variations to enable management to take corrective action (Eq. 3.9). Our

approach reverses the logic. We start with “parts”, i.e. gedanken experimental

results. Unlike manufacturing, these “parts” are specifically designed to be differ-

ent. We then ask, does our measurement system detect this intentional variation? In

other words, is σ2part very large as it must be by design? And are σ2rpt and σ2rpd
small, i.e. the DMU members and their sociotechnical systems capable? But we are

not satisfied with this only.

As another test of the DMU and their sociotechnical capability of producing

quality forecasts, we designed special verification experiments: does our measure-

ment system detect the variations of a DMU member for different forecasts? And

does the measurement system pick the variations from different DMU members for

the same forecast? In other words, do σ2rpt and σ2rpd data reveal these facts? If the
data to all these questions support repeatability and reproducibility, then there is

support for the quality of the sociotechnical system.

3.5.6 Reflection and Learning

Reflection is thinking about experiences ex ante, ex post or ex inter, directed at

learning for better decisions for the next decision situation and experience. To us

“experiences” are the DMU’s work leading to the outputs and ex post reviews, as
well as, discussions of the in-process outputs and end-process outputs. “Reflection

is not a casual affair” (Rogers 2002, 855). It is not wooly or undisciplined rumina-

tion. “Reflection is a systematic, rigorous, way of thinking, with its roots in

scientific inquiry” (Rogers 2002, 845).

σ2
rpt

σ2
rpd

σ2
part

5%

σ2
meas. sys.

overall 
variation in 
measurements

measurement
system variation
Gage R&R

repeatability
variation by 
one operator 
for a given part

actual 
variation 
part-part
variation across parts

σ2
total

90%

5%

reproducibility
variation from
different operators 
for a given part

Fig. 3.18 AIAG recommended distribution for measurement system quality
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Why reflect at all? Reflecting is an inherent human quality—to learn from

experiences, to improve subsequent experiences. Knowledge must be experienced.

Survival drives this instinct. The possibilities of improved effectiveness are strong

and natural drivers that motivate reflection and learning. Sch€on’s (1983) segments

reflection into reflection-in-action and reflection-on-action. Reflection-in-action is

learning by doing, ex inter learning. Reflection-on-action is ex post learning.

Reflection is not navel-gazing, it requires systematic disciplined processes, close

cousins of the scientific method. Dewey (1933), Rogers (2002) and Moon (2013)

discuss various strategies for systematic reflection. Reflection can be taught. While

solitary reflection is useful, carried out in a sociotechnical community environment

is far more effective. It stimulates personal and organizational learning (e.g. Kolb

1984, McLeod 2013).

Without reflection, two malevolent laws of organizations begin to take root. Phil

Kotler (1980) names them as the Law of Slow Learning and the Law of Fast

Forgetting. Without reflection, people increasingly do things by rote, numb to the

changes and uncertainties in the exterior environment. As a result, they add less and

less to the organization’s body of effective knowledge. This is organizational slow-
learning. Lack of reflection makes people think less and less about business

processes and forget that processes were predicated on epistemological and onto-

logical assumptions about their effectiveness. This is organizational fast-forgetting.

He, as does Kolb (1984), argues that these two laws are perniciously mutually

reinforcing in the absence of reflection.

3.6 Commitment Space

The hallmark of decisive executive is their ability to cross the Rubicon. Executives

must commit themselves to a course of action (Fig 3.19). In Sect. 1.62 we discussed

decisiveness as a principle of executive decision-making. And in Appendix 1.5 we

summarized the 15 types of indecisiveness and indecisions. Our paradigm, facili-

tates commitment, by making the outcome more immune to uncontrollable condi-

tions. Besides decisiveness, commitment requires the following:

Decision Making Unit

sociotechnical 
systems 
& processes

commitment plan, schedule  
& resources 

outcomes
chosen
alternative

$$$$

Fig. 3.19 Schematic of the commitment space
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• Concurrence from the executive to whom the executive must answer to.

• A Plan with milestones and work products that mark the achievements of

milestones.

• Consistent with robustness, it must contain risk analyses that include uncontrol-

lable variables.

• Resources, funds, physical assets (plant, equipment), and people to execute.

• Interlock with organizations for which there are upstream and downstream

dependencies.

• Required financial information.

3.7 Chapter Summary

• The processes of executive-management decisions take place in five

sociotechnical operational spaces. They are the Problem Space, the Solution

Space, the Operational Space, the Performance Space, and the Commitment

Space. Collectively, they form the five phases of the executive-management

decision life-cycle all directed at the singular goal of designing robust decisions

and sociotechnical systems that support its implementation and execution.

• The Problem Space deals with sense-making of the decision situation triggered

by a problem or opportunity. The trigger, frequently as a surprise, signals the

presence of a new decision situation. The situation needs to be interpreted for

significance and meaning. The operating principle is abstraction to reduce

cognitive load of the DMU. The principal processes are to understand the

decision situation using an uncomplicated, but accurate, representation of the

problem/opportunity. The goal is to cultivate complementary and consistent

mental models by the DMU. This enables the appropriate framing of the decision

situation and the specification of goals and objectives.

• The Solution Space concentrates on the design of decision alternatives. This is a

very challenging and creative part of the decision life-cycle. The operating

principle is to make the goals and intended outcomes actionable by the

sociotechnical organizational systems. The goals are to design actionable solu-

tions that are robust. The design processes must address the entire set of

possibilities in the solution space, under any uncertainty conditions.

• To systematically design alternatives requires identifying the essential variables.

Essential variables are either managerially controllable variables or manageri-

ally uncontrollable variables. Managerially controllable variables are those

which directly influence the intended outcomes and which can be manipulated

by executives. Uncontrollable variables are those that managers cannot control.

The uncontrollable variables shape the uncertainty conditions under which the

decision will operate. Uncontrollable variables must not be omitted because they

interact with the controllable variables to affect intended outcomes.

• The normative axiom of “There Is No Free Lunch” applies to the controllable

variables. The spirit of this axiom must be reflected directly in the set of

158 3 Operations: Foundations and Processes



controllable variables. Otherwise, exercising all controllable variables to the

fullest benefit would entail no cost and there would be no need to make

decisions.

• A fundamental sociotechnical process is debiasing forecasts and aligning mental

models. We prescribed a social process that includes counter-argumentation that

encourages dissent based on information, not actual numerical quantities. The

process results in DMU members’ mental models that are complementary, more

complete, and aligned. The goal is not for the DMU to have identical mental

models. The process helps improve the decision deliberations throughout the

decision life cycle.

• The Operations Space deals with the execution of decision-specifications. The

operating principle is to enable unconstrained explorability, i.e. the ability to

explore the entire solution set under any uncertainty condition. We can estimate

the performance of alternatives by experiments to reveal a phenomenological

model of the sociotechnical system. This strategy is grounded on the DOE

methodology. The experiments are gedanken experiments. In our paradigm,

the fundamental objective of decisions is robustness.

• The Performance Space concentrates on the quality of the implementation and

execution of the decision specification. Recall that we consider the

sociotechnical system, which implements and executes decisions, as a produc-

tion system, the manufacturing arm. The key measurements are robustness,

repeatability, and reproducibility. The measurement science is Gage repeatabil-

ity, and reproducibility (Gage R&R).

• The Commitment Space addresses the need for a decisive executive that will

commit scare resources at the time decision making is required.

• The innovation of our operational approach is to depart from conventional

strategies. We eschew the traditional way of thinking, which insists on ex ante
analytic models. We do not presume to know a priori the explicit mathematical

equations that represent the decision’s sociotechnical machinery. We adopt a

fresh strategy. We use gedanken experiments rather than equations and proba-

bilities to infer a phenomenological representation of the system. The inference

is drawn from the results and data of the gedanken experiments. The system

behavior is revealed ex post, not specified ex ante using equations about pre-

sumed system behavior. This is a phenomenological approach. Phenomenology

is a scientific methodology to describe and explain observations. Appearance

reveals and explains reality.

Appendix 3.1 Keeney’s Techniques for Identifying
Objectives

The table below is taken directly from Keeney’s (1996) article on this subject. This
is not a recipe for finding the objectives for a decision problem, but it is an approach

to explore the thinking of the decision maker.
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Type of Objective Questions

Wish list • What do you want? What do you value?

• What should you want?

Alternatives • What is the perfect alternative, a terrible alternative, some reasonable

alternative?

• What is good about each?

Problems and

shortcomings

• What is right or wrong with your organization?

• What needs fixing?

Consequences • What has occurred that was good or bad? What might occur that you

care about?

Different

perspectives

• What are your aspirations?

• What limitations are placed upon you?

Strategic objectives • What are your ultimate objectives?

• What are your values that are absolutely fundamental?

Generic objectives • What objectives do you have for your customers, employees, your

shareholders, yourself?

• What environmental, social, economic, or health and safety objectives

are important?

Structuring

objectives

• Follow means-ends relationships: why is that objective important, how

can you achieve it?

• Use specification: what do you mean by this objective?

Quantifying

objectives

• How would you measure achievement of this objective?

• Why is objective A three times as important as objective B?

Appendix 3.2 Smith’s Approach to Conceptualizing

Objectives

The table below is an extension from Smith’s article (1989) on conceptualization of
objectives. All eight conceptualizations are different types of “gaps.” To show what

we mean, we restate his examples as a “gap statement.” Discovering corporate gaps

is where we begin in our field experiments with our executive interviews. Simul-

taneously we try to learn as much as possible about the conditions and historical

situations that led to these identified gaps. From this we distill corporate objectives

we want to study. Then the background of the gap becomes what we call “the

decision situation,” which gives the context of the corporate problem and objectives

senior executives want to achieve. This is a way to frame a decision situation.

Example Description Conceptualization Gap Statement

“Sales are $150,000

under budget.”

Comparing existing

and desired states

Gap Specification Same

“It‘s tough competing,

given our limited

experience in this

market.”

Identifying factors

inhibiting goal

achievement

Difficulties and

Constraints

“The differences

between our experi-

ence and what is

required are ...

(continued)
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Example Description Conceptualization Gap Statement

“We need to convince

management that this

is a profitable

market.”

Stating the final ends

served by a solution

Ultimate Values and

Preferences

“We need to show +x

% more profitability

to our management.”

“This year’s sales tar-
get of $5.2 million

must be met.”

Identifying the partic-

ular goal state to be

achieved

Goal State

Specification

“Current sales are

$xM, a shortfall of

$YM from target of

$5.2M.”

“We have to hire more

salespeople.”

Specifying how a

solution might be

achieved

Means and Strategies “We are short of +xx

sales people.”

“The real problem is

our ineffective pro-

motional material.”

Identify the cause

(s) of the problematic

state

Causal diagnosis “Our promotional

material is ineffec-

tive in the following

areas because ....”

“Our product is

6 years old; our com-

petitors out-spend us

on advertising; etc.”

State facts and beliefs

pertinent to the

problem

Knowledge

specification

“Our product is

6 years old; competi-

tors out-spend us on

advertising by x%

per y unit sales ...;

etc.”

“Since the market

isn’t growing, we’re in
a zero-sum game with

our competition.”

Adopting an appro-

priate point-of-view

on the situation

Perspective “We need to gain

share of x% from our

competitors ...”

Appendix 3.3 Eight Analytic Structures

von Winterfeldt and Edwards (2007) specify eight mathematical structures to

model the system behavior to predict and analyze variables that have an influence

the outputs. These approaches are not limited to mathematical structures. They are

also very effective in qualitative analyses as well. Our descriptions that follow are

presented in this spirit.

Means-Ends Networks

This process can start at any level of a problem or opportunity, say at level n. To
build the means-ends chain, ask the question: “why?” Viz. why is this objective

important? Itemize the reasons and now you have the n � 1 level of the network.

Next from the n level, ask the question: “how?” Namely, how will this objective be

accomplished? Itemize the answers and now you have the n + 1 level of the

network. Proceed iteratively, up or down or both, until you have found the appro-

priate level at which to address the opportunity/problem. Clearly the process can

produce very complex networks.

Objectives Hierarchies

Objectives hierarchies are simple two-column tables. On the left hand column list

your itemized list of objectives. On the right hand column, for each objective, list
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the measures to achieve the objective. For example, for the objective to: “Improve

customers’ service economics”, the right hand column can show, for example,

“reduce consulting fees.” Or “provide the first 50 h of consulting for free”. Com-

plete the table and you have an objective hierarchy.

Consequence Tables

Consequence tables are also two column tables. On the left hand side list the

fundamental objectives and the right hand side specify the measures. (This is almost

identical to Objective hierarchies.) Complete the table in this manner and you have

a consequence table.

Decision Trees

Decision trees begin with a decision node, N0, normally depicted by a square.

Emanating from the N0 node are the various links identifying alternative decisions,

say d1, d2, and d3, that can be made. Each of these links terminate in a chance node,
normally identified by a circle. To each d1, d2, d3 link, a probability can be

assigned. Links emanate from each of these circles to potential outcomes with an

associated payoff. Suppose that from d1 we have 2 links to outcome o11 and o12;

from d2 we have outcomes 021, 022, and 023. And from d3, we have outcome o31

and o32. The expected value of the outcome o32 is the product of the probability of

d3 and payoff o32. This a schematic description of a decision-tree of 3 layers. A

decision tree becomes very bushy when it has many levels.

Influence Diagrams

Influence diagrams are the inventions of Howard (2004) who coined the term

“decision analysis”. An influence diagram is graphical representation of the deci-

sion in question. The diagram is represented with the following elements: decision
nodes as rectangles, the outcomes and their value represented as octagons or

rectangles with rounded corners, and functional arrows to show the variable-
nodes on which values depend. Clearly, a functional arrow must exist between a

decision (rectangle) and outcomes (octagon or rounded-corner rectangle). Using

these geometric illustrations a network that represents the causal relationships of a

decision can be illustrated.

Event Trees

Event trees are built from the “bottom up”. The consequences of an event are

identified in a step-wise feed forward successively branching out as in the decision

tree approach. Event trees are often used to determine probabilities of failures and

other undesirable events. This a “bottom up” approach.

Fault Trees

This is a so-called “top down” approach. This is the opposite approach of event

trees, which uses a “bottom-up approach”. The idea of a fault tree is to start with a

fault. A fault can be understood as an engineering failure or a serious deleterious

sociotechnical outcome. The fault tree is constructed starting with fault and iden-

tifying the reasons leading to the fault. Reasons can be conjunction or disjunction.

The process proceeds iteratively down using the same logic.
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Belief Networks

A belief network is a directed acyclic network/graph, with an associated set of

probabilities. The graph consists of nodes and links. The nodes represent variables.

Links represent causal relationships between variables. In general, a belief in a

statement/hypothesis S, involving variables, that depend on some prior related

knowledge K. Our belief in S, given we know something about K, forms a belief

function P(S|K). Bayes theorem give us a way to determine the value of this

expression. Thus associated probabilities and prior knowledge gives us a way to

reason about uncertainty. Modeling a problem this way involves many nodes that

are linked, forming a Bayesian Belief Network.

Appendix 3.4 Debiasing Logic

This debiasing procedure is from Lerner and Tetlock (2003).

reinforcement of biases 
likely

yes

yes

Do the forecasters learn of accountability before 

encoding forecasting variables, controllable and 

uncontrollable, factors and levels? 

no
anchoring bias likely

no
confirmatory bias 

likely

yes
false convergence 

likely

simplistic thinking, i.e. 
discarding useful cues 

likely

no

no

Do the forecasters learn of accountability before 

committing to a forecast? 

Are the senior executives’ and peer forecasters’ 
preferences for the treatment configurations 

known? 

Are the senior executives’ and peer forecasters 
interested in the “accuracy” and quality of 
the forecasts? 

yes

yes

no

Do the senior executives’ and peer forecasters 
have a legitimate reason for requesting 

forecasting rationales?

Integratively-complex 

and open-minded thinking
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Appendix 3.5 Examples of Engineering Applications Using

DOE

Engineering problems Reference

• Chemical vapor deposition process

• Tuning computing systems

• Design of accelerometer

• Paper feeder w/o misfeeds and multifeeds

• Waste water treatment plant

• Camera zoom shutter design

• Capstan roller printer

• Numerically controlled machine

• V-process casting Al-7%Si Alloy

• Development of a filter circuit

• Gold plating process

• Optimization of inter-cooler

• Replenisher dispenser

• Warfare Receiver System

• Body panel thick variation

• Tensile strength of air bag

• Electrostatic powder coating

• Chemical reaction experiment

• Task efficiency

• Injection molding shrinkage

• Carbon electrodes study

• Clutch case study

• Medical serum

• Multicycle chemical process

• Yield of chemical process

• Impeller machine for jet turbines

• Medical serum

Phadke (1989)

Phadke (1989)

Antonsson and Otto (1995)

Clausing (1994)

Clemson et al. (1995)

Fowlkes and Creveling (1995)

Fowlkes and Creveling (1995)

Wu and Wu (2000)

Kumar et al. (2000)

Wu and Wu (2000)

Wu and Wu (2000)

Taguchi et al. (2000)

Taguchi et al. (2000)

Taguchi et al. (2000)

Roy (2001)
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