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Abstract. This research describes a study into the ability of a state
of the art reinforcement learning algorithm to learn to perform multi-
ple tasks. We demonstrate that the limitation of learning to performing
two tasks can be mitigated with a competitive training method. We show
that this approach results in improved generalization of the system when
performing unforeseen tasks. The learning agent assessed is an altered
version of the DeepMind deep Q–learner network (DQN), which has been
demonstrated to outperform human players for a number of Atari 2600
games. The key findings of this paper is that there were significant degra-
dations in performance when learning more than one game, and how this
varies depends on both similarity and the comparative complexity of the
two games.
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1 Introduction

Reinforcement Learning is a distinct area within the broader fields of machine
learning and artificial intelligence, utilising learning through action principles
against its understanding of the environment, in order to choose the best course
of action given some interpreted state, to achieve maximum long term reward
[11]. Iteratively the reinforcement learning approach investigates its available
actions and after some period of searching, refines a course of actions to achieve
its objective. Recent progress in the application of reinforcement learning with
deep networks has led to the DeepMind deep Q–learner network (DQN) [8],
which can autonomously learn to play Atari video games [1,7] at or above the
level of expert humans [10]. This system was able to consistently and con-
temptibly outperform a skilled human player across a variety of games with
different game objectives, and was shown to learn the same high level strategies
adopted by expert human players. As a result the DQN is considered to be the
state of the art approach for reinforcement learning.

While DQNs were demonstrated to outperform human players at Atari
games, one limitation is that the DQN agents received specialist training on
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a single game. Whereas human agents are able learn and play multiple games.
The problem of interest in our research is the ability of a DQN agent to perform
multiple tasks, which we will assess through its ability to learn multiple Atari
games.

Previous research into reinforcement learning agents performing multiple
tasks has created the technique known as distilling, which was first presented
by [2] and later adapted by [3] for neural networks. Using this approach DQN
agents are first trained on individual games and then fused together to form one
agent which applies to both games [9].

Recent work has demonstrated that when learning two tasks sequentially a
DQN will suffer from catastrophic forgetting [4]. Where the process of learning a
second task will destroy the network weights associated with the first task. This
issue with sequential learning can be mitigated using elastic weight consolidation,
where weights that are important for performing the first task are protected from
large alterations when learning the second task [4].

The training method we propose is to simultaneously learn two games, effec-
tively ‘competing’ for representational space within the neural network. This
differs from the original DeepMind DQN [8] where the entire representational
space of the neural network was specialized for a single game.

An interesting research question is how the representational space of the
neural network will be allocated in a competitive learning environment; will the
representational space be shared or segregated for the two tasks? An example of
this being how well can the DQN agent perform at both Breakout, and Space
Invaders; where one game is required to avoid falling objects, and another is
required to hit and return falling objects. Our hypothesis is that the DQN will
suffer significantly when learning competing tasks. The full extent of this detri-
ment to performance being a function of the differences in the tasks at hand.
A corollary supposition being that the architecture will increasingly segregate
expressive power across the network for the alternate tasks as a function of the
perceived differences in action for reward. This supposition is corroborated by
success of the distilling approach [9] where a fuzed network is formed from two
individual networks.

Another hypothesis is that a DQN agent that is trained in a competitive
environment will generalise to new unforeseen tasks better than a specialist
DQN agent that is trained on a single task.

Our contribution is an evaluation of one DQN agent acting on two environ-
ments, and this differs from [9] where two agents learning on separate environ-
ments are combined, and [4] where one agent acts and learns on a sequence of
environments.

2 Methodology and Experimentation

The data used for training and testing was presented in [7,8] in which Atari
2600 games are used for DQN performance evaluation. For the purposes of this
research pairs of games were selected according to different concepts of which
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Fig. 1. The competitive reinforcement learning paradigm of interpreting the optimal
action to receive reward for the current state, adapted from [11]

two are shown here; a pair of similar games i.e. functionally similar objectives
and reward schemes, and a pair of high performing games i.e. those which the
original code base easily converged on a suitable reward strategy. A common
learning agent was then expected to learn both environment pairs competitively
as depicted in Fig. 1. A baseline of performance was completed to ensure that
the changes made to the code to assess multiple games did not alter its ability
to converge to a similar performance as per the original research.

2.1 Alterations to the Deep Q-Learner Code

Due to the fundamental requirement to maintain similarity in learning approach
with the original code base, a large portion of the code was necessarily kept
identical to that provided [5]. However, some code alterations were made to
functions responsible for training and testing of the architectures, and in some
cases significant code changes were required to allow dual game learning. Fun-
damentally, the code base initialises two game environments and then alternates
between their episodes to build the training database with equal weighting. The
issue then arises where the two games selected do not necessarily have the same
scoring range.

During the evaluation of performance for the delayed reward phase of learn-
ing, each competitive game is processed equally as was done in the original
code. The total reward of each game is then normalized by the maximum score
respectively observed as to remove bias on games with higher possible scores
and accumulated for the decision as to improvement in the agent. This allows
relative improvement of one game to supersede a smaller relative decrease in
performance of another.

3 Experimental Results

The following section details the analysis results for the two presented scenar-
ios consisting of a pair of similar games, and a pair of high performing games.
The results presented show the relative performance decrease caused by com-
peting environment learning as well as how well the learnt competitive agent
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then performed against unseen games. All comparisons are made relative to the
performance measured by the original research presented by Mnih et al. [8].

3.1 Similar Games

Initially we will discuss the competitive training of two similar games within
a common DQN architecture. It is noted that a neural network architecture
is required to express a high level functional description of a task within the
sequence of neurons of the network, and the success or otherwise in terms of
performance lies in its ability to capture that high level function. Within this
research, the fundamental question is how competing tasks affect that ability. As
such, the first scenario to be applied in this competitive sense is the simultaneous
learning of the classic game Space Invaders and a very similar game called Demon
Attack. Both games require the player at the bottom of the screen to fire upwards
to destroy descending targets, whilst avoiding being hit by return fire coming
down the screen from only a subset of those targets. The motion of the targets
and the absence of shields in Demon Attack are the only discernable differences
between the games.

Under this applied competitive scenario it is hypothesised that there will be
only a minor decrease in performance overall, due to the fact that the network is
only required to represent some small high level differences between the games
within the nodes of the network. The original code base was able to get a score
of 121.5% that of human level performance for Space Invaders, and 294.2% for
Demon Attack.

The scenario consisting of competitively playing the similar games of Space
Invaders and Demon Attack within a single DQN architecture has been run,
and the resulting performance against these two games is shown below in Figs. 2
and 3 respectively, at discrete stages of the learning process.

The network was able to achieve a mean score of 846.3 in the game Space
Invaders whilst also achieving an average score of 4684.3 at Demon Attack. This
is a reduction of approximately half for both games, 42.8% and 48.2% of the
original scores respectively. Additionally the DQN agent was still able to beat the
human score in Demon Attack by a reasonable margin (138%); however the agent
was not able to beat the score of a human player in the game Space Invaders,
only managing to achieve 51% that of the human. Despite this reduction in
performance for these specific games, it is expected that the ability to generalise
the solution to other games is improved given more diverse sampling of inputs.

A comparison against other games which are compatible with the network
are provided in Table 1. Here we are interested in the generalisability of an agent
to perform an unforeseen task; the ability to receive reward on games that it was
not trained on. Table 1 shows the generalisability of the competitive DQN agent
(trained on Space Invaders and Demon Attack) has increased from the origi-
nal specialist DQN agent (trained on Space Invaders). In many cases dramatic
increases were observed, the largest was over 15000 times better performance.
The remaining games also displayed significant improvement due to the com-
petitive training method, at the expense of performance on the game of Space
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Fig. 2. Measured performance of the game Space Invaders across the competitive Rein-
forcement Learning process of Space Invaders and Demon Attack

Fig. 3. Measured performance of the game Demon Attack across the competitive Rein-
forcement Learning process of Space Invaders and Demon Attack

Invaders. Hence, by sacrificing some performance, in this case approximately
half, the overall ability to play many games is substantially improved. The only
exceptions to this being the games Breakout and Freeway, which showed no abil-
ity to play the game by either network. As such the primary hypothesis of this
research has been shown through this example, that competitive training of a
DQN agent would result in better general performance at unseen tasks, at the
expense of specific ability at a single trained task. Further to this, it is noted the
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Table 1. Comparison of game scores obtained by different agents for several Atari
games. The first column is a expert human agent. The second column is original spe-
cialist DQN agent when applied to the game it specializes in. The third column is a
specialist Space Invaders DQN agent when applied to unforeseen games. The forth col-
umn is a competitive DQN agent (trained on Space Invaders and Demon Attack) when
applied to other games. The fifth column is the performance of the competitive DQN
compared to the original DQN. The sixth column is improvement of the competitive
DQN over the specialist DQN in being able to generalise to unforeseen games.

Game Human Original DQN
(±σ)

Specialist DQN
(±σ)

Competitive
DQN (±σ)

Performance
(% Original)

Generalisability
(% Increase)

Asteroids 13157 1629 (±542) 0.0 (±0.0) 188.7 (±255.6) 11.6% 100.0%

Atlantis 29028 85641 (±17600) 4050.0 (±1234.8) 5066.7 (±1411.1) 5.9% 25.1%

Bowling 154.8 42.4 (±88) 23.9 (±8.7) 29.9 (±0.6) 70.5% 24.9%

Breakout 31.8 401.2 (±26.9) 0.0 (±0.4) 0.0 (±0.2) 0.0% 0.0%

Demon attack 3401 9711 (±2406) 103.0 (±54.3) 4684.3 (±2547.3) 48.2% 4447.9%

Freeway 29.6 30.3 (±0.7) 0.0 (±0.0) 0.0 (±0.0) 0.0% 0.0%

Name this game 4076 7257 (±547) 287.0 (±269.9) 718.7 (±390.6) 9.9% 150.4%

Q’bert 13455 10596 (±3294) 1.7 (±9.1) 260.8 (±47.7) 2.5% 15549.8%

Space invaders 1652 1976 (±893) 1785.0 (±607.6) 846.3 (±279.7) 42.8% −52.6%

Up’n down 9082 8456 (±3162) 1239.3 (±745.2) 2039.0 (±763.8) 24.1% 64.5%

Fig. 4. Network analysis of estimated game reward using the t-SNE technique for the
Neural Network trained competitively for the games Space Invaders and Demon Attack

increased ability at some of these games could be due to some small similarity
in game play to both Space Invaders and Demon Attack. For example Atlantis;
but other games such as Bowling or Q’bert which have no similarity to either
game showed significant improvement due to competitive learning.

A corollary hypothesis specific to this example of Similar Games was that
the representative space of the network was capable of capturing the required
information to play each game due to the similarity of the games. Figure 4 shows
that the network has in fact retained the ability to predict high reward states
of the game, where the state information contained within the screen has been
clustered by similarities, and predictive of reward according to the clustered
region. This corresponds to the findings of the original DQN network, except
what is also shown is that the network representation has also segregated between
the two games, as seen in Fig. 5, where the graphical representations shown have
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Fig. 5. Network analysis of game type using the t-SNE technique for the Neural Net-
work trained competitively for the games Space Invaders and Demon Attack

Fig. 6. High reward states for the games Space Invaders and Demon Attack trained
under competitive DQN conditions, showing the similarity in game state for the high
predicted reward

been generated using the visualization techniques presented by Van der Maaten
and Hinton [6] as per the original research.

The final observation to note from the analysis of the competitive training
of similar games is that qualitative similarities between the games has also been
clustered, shown in Fig. 4 by the blue circle, according to similar predictions of
reward as shown in Fig. 6, where the network has determined a game strategy of
clearing an area on the left of screen and attacking from one side to minimise the
chance of being hit by return fire. Given this similar strategy being applicable to
both games, it is not surprising that the network was able to perform relatively
well in both cases.

3.2 High Performing Games

Consider the case of two high performing games; games in which the origi-
nal DQN easily learnt an optimal strategy and dramatically beat the scores
of a human player. These games are performing at this high standard due to
the inherent simplistic state-action relationship. Two such games being Boxing
and Robotank, where the original code base was able to get a score of 1707.9%
that of human level performance for Boxing, and 509.0% for Robotank. Under
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this condition of competitive training for the games Boxing and Robotank it is
hypothesised that after competitive training a moderate decrease in performance
will be observed, as there is still considerable space within the architecture to
represent and interpret the state of the two games. However their actions space
is significantly different as are the input signals, for example the game Boxing
requires the DQN to position the player at a distance to the opponent by moving
along two axes, and strike at an opportune moment to minimise the number of
hits taken and maximise hits landed. The response has translational invariance,
i.e. indifferent to where on the image the players may be, with the exception of
being near the edge which restricts movement. In contrast, the game Robotank
pans left and right in order to find the enemy based on a radar guidance of enemy
locations, and fire upon them without being destroyed, i.e. quickly lining up the
target with the crosshairs. These are very different game objectives, particularly
when considering the previous scenario discussed. Given this, the hypothesis is
that the network will be required to prioritise areas of the architecture towards
specific tasks, effectively dividing up the expressive power of the network, and
as a result, the performance of each game and the rate of convergence to an
optimal solution will suffer.

Again the scenario consisting of competitively playing the games Boxing and
Robotank within a single DQN architecture has been run, and the resulting
performance against these two games are shown below in Figs. 7 and 8.

Fig. 7. Measured performance of the game Boxing across the competitive Reinforce-
ment Learning process of Robotank and Boxing

The network was able to achieve a score of 73.7 in the game Boxing whilst
also achieving a score of 1.4 at Robotank. What is of interest here is that the
score achieved for Boxing is actually higher than what was reported by the origi-
nal research, suggesting that the competitive training has actually improved the
network at its ability to play Boxing. However the difference in score is within
the confidence interval and hence is not a statistically significant difference. In
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Fig. 8. Measured performance of the game Robotank across the competitive Reinforce-
ment Learning process of Robotank and Boxing

contrast to this, the score achieved at the game Robotank has suffered consid-
erably; an approximate reduction of 97%. As was seen in previous analysis, the
ability to determine a strategy is critical to overall reward obtained by the net-
work. Comparing the game play of this competitively trained network against
Robotank and Boxing has shown that the same optimal strategy of pushing the
opponent into a corner for Boxing is found, and hence the high reward obtained.
However, this has resulted in a strategy for Robotank of simply going around
in circles and firing repeatedly, with no attempts to line up a target, with the
opponents eventually landing a hit. This is a poor strategy and results in the
exceedingly low score. What this suggests is that the network has been unable
to learn different strategies for these games, and perhaps that it is unable to
differentiate between the two states, or that the short term reward of the game
Boxing has dominated over the slightly longer term reward mechanism of Rob-
otank. Despite this reduction in performance for Robotank, it is again expected
that the ability to generalise the solution to other games is improved given more
diverse sampling of inputs.

A comparison against all other games are provided in Table 2. What the
analysis of the remaining games, not seen during training for the competitive
case of the high performing games Boxing and Robotank, has shown is a highly
polarized generalisability. In many cases, a dramatic improvement in the ability
of the network to gain reward was found; for example the games Atlantis, Battle
Zone, Bowling, Crazy Climber, Gravitar, James Bond, Private Eye, Tutankham
and Wizard of Wor. In contrast, the games Beam Rider, Centipede, Double Dunk,
Frostbite, H.E.R.O., Kung Fu Master, Name This Game, Q’Bert and Seaquest
all showed solid decreases in generalisability, with the remaining games showing
minor change to generalisability. What is immediately noticed from this list is
the fact that these games are fundamentally different, neither the improved or
detrimental generalisability cases follow a pattern, simply that the learnt strategy
of pushing to one side of the screen and pushing the fire button either applies
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Table 2. Comparison of game scores obtained by the competitively learnt agent against
Boxing and Robotank with the original single game learning scenario of Boxing

Game Human Original DQN
(±σ)

Specialist DQN
(±σ)

Competitive
DQN (±σ)

Performance
(% Original)

Generalisability
(% Increase)

Alien 6875 3069 (±1093) 140.0 (±0) 130.0 (±23.3) 4.2 % −7.1 %

Amidar 1676 739.5 (±3024) 34.8 (±7.5) 2.1 (±0.3) 0.3 % −94.0 %

Asteroids 13157 1629 (±542) 0.0 (±0) 0.0 (±0.0) 0.0 % -

Atlantis 29028 85641 (±17600) 1793.3 (±488.4) 2786.7 (±1096.9) 3.3 % 55.4 %

Bank heist 734.4 429.7 (±650) 0.0 (±0) 0.7 (±2.5) 0.2 % 100.0 %

Battle zone 37800 26300 (±7725) 3666.7 (±3507) 6666.7 (±3526.6) 25.3 % 81.8 %

Beam rider 5775 6846 (±1619) 748.3 (±123.2) 452.3 (±176.5) 6.6 % −39.6 %

Bowling 154.8 42.4 (±88) 0.8 (±1.6) 5.6 (±1.9) 13.1 % 595.8 %

Boxing 4.3 71.8 (±8.4) 78.7 (±15.8) 73.7 (±9.7) 102.6 % −6.4 %

Breakout 31.8 401.2 (±26.9) 0.4 (±0.9) 0.2 (±0.6) 0.0 % −53.8 %

Centipede 11963 8309 (±5237) 8388.2 (±3484.6) 3874.9 (±1941.6) 46.6 % −53.8 %

Chopper command 9882 6687 (±2916) 666.7 (±260.4) 526.7 (±216.4) 7.9 % −21.0 %

Crazy climber 35411 114103 (±22797) 3.3 (±18.3) 2123.3 (±750.9) 1.9 % 63600.0 %

Demon attack 3401 9711 (±2406) 111.3 (±37.8) 66.7 (±17.1) 0.7 % −40.1 %

Double dunk −15.5 −18.1 (± − 2.6) −23.5 (±1) −21.4 (±1.5) −18.2 % 8.8 %

Enduro 301.6 301.8 (±24.6) 0.0 (±0) 0.3 (±1.6) 0.1 % 100.0

Fishing derby 5.5 −0.8 (±19) −99.0 (±0) −98.4 (±0.9) −12200.0 % 0.6 %

Freeway 29.6 30.3 (±0.7) 0.0 (±0) 0.0 (±0.0) 0.0 % -

Frostbite 4335 328.3 (±250.5) 83.0 (±13.2) 0.0 (±0.0) 0.0 % −100.0 %

Gopher 2321 8520 (±3279) 16.7 (±37.9) 16.7 (±34.9) 0.2 % 0.0 %

Gravitar 2672 306.7 (±223.9) 6.7 (±36.5) 55.0 (±115.5) 17.9 % 725.0 %

H.E.R.O 25763 19950 (±158) 92.5 (±47) 0.0 (±0.0) 0.0 % −100.0 %

Ice hockey 0.9 −1.6 (±2.5) −21.2 (±3.5) −22.4 (±2.4) −1302.1 % −5.8 %

Jamesbond 406.7 576.7 (±175.5) 6.7 (±17.3) 35.0 (±37.5) 6.1 % 425.0 %

Kangaroo 3035 6740 (±2959) 0.0 (±0) 0.0 (±0.0) 0.0 % -

Krull 2395 3805 (±1033) 622.3 (±227.2) 549.3 (±304.7) 14.4 % −11.7 %

Kung fu master 22736 23270 (±5955) 126.7 (±161.7) 13.3 (±50.7) 0.1 % −89.5 %

Montezuma’s R 4367 0 (±0) 0.0 (±0) 0.0 (±0.0) - -

Ms Pacman 15693 2311 (±525) 374.3 (±212.8) 328.7 (±309.1) 14.2 % −12.2 %

Name this game 4076 7257 (±547) 1789.3 (±658.1) 333.0 (±212.1) 4.6 % −81.4 %

Private eye 69571 1788 (±5473) −599.3 (±308.7) 6.7 (±25.4) 0.4 % 101.1 %

Q’bert 13455 10596 (±3294) 136.7 (±32.7) 2.5 (±7.6) 0.0 % −98.2 %

River raid 13513 8316 (±1049) 402.7 (±54.5) 244.0 (±50.9) 2.9 % −39.4 %

Road runner 7845 18257 (±4268) 0.0 (±0) 823.3 (±135.7) 4.5 % 100.0

Robotank 11.9 51.6 (±4.7) 10.9 (±3.5) 1.4 (±1.8) −97.2 % −86.8 %

Seaquest 20182 5286 (±1310) 125.3 (±35.2) 12.0 (±12.4) 0.2 % −90.4 %

Space invaders 1652 1976 (±893) 180.0 (±15.3) 155.7 (±68.7) 7.9 % −13.5 %

Tennis −8.9 −2.5 (±1.9) −24.0 (±0) −16.8 (±2.4) −572.0 % 30.0 %

Time pilot 5925 5947 (±1600) 733.3 (±590.9) 1066.7 (±1166.3) 17.9 % 45.5 %

Tutankham 167.6 186.7 (±41.9) 0.1 (±0.4) 15.9 (±9.2) 8.5 % 23799.9 %

Up’n down 9082 8456 (±3162) 623.3 (±268.5) 670.0 (±548.7) 7.9 % 7.5 %

Venture 9083 8457 (±3163) 0.0 (±0) 0.0 (±0.0) 0.0 % -

Video pinball 9084 8458 (±3164) 0.0 (±0) 8166.3 (±8100.1) 96.6 % 100.0

Wizard of wor 9085 8459 (±3165) 273.3 (±267.7) 483.3 (±136.7) 5.7 % 76.8 %

Zaxxon 9086 8460 (±3166) 0.0 (±0) 0.0 (±0.0) 0.0 % -

to the specific game to some extent, or it does not. To further analyse what
the competitive training of two dissimilar, but high performing games, consider
the visualisation of the network as shown in Figs. 9 and 10 for displaying the
estimated reward for the given game state, and the game itself respectively.

Comparing the high reward states in Fig. 9 with the network differentiation
of the respective games in Fig. 10, the reason for the disparate performance
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Fig. 9. Network analysis of estimated game reward using the t-SNE technique for the
Neural Network trained competitively for the games Boxing and Robotank

Fig. 10. Network analysis of game type using the t-SNE technique for the Neural
Network trained competitively for the games Boxing and Robotank

becomes clear. The node activations for Boxing show disparate levels of reward
respective of different states of the game. The game Robotank does not display
this, all game states are representing mid to low reward levels. This is a critical
component of the networks ability to play any game, the ability to actively pursue
high reward states over low reward states; without this, the game is essentially
playing with random actions.

4 Conclusions

We have adapted the original state-of-the-art DQN [8] to simultaneously learn
two competing tasks. Considering the case of learning two similar games, it was
found that the network could learn to gain reward at both tasks, however this
ability rapidly diminished for dissimilar games, even simple ones. The ability to
learn multiple examples was completely eroded when considering difficult tasks.
Further to this, it was found that a fundamental limitation of this approach was
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the nature of the game, where the performance of the network relied on the
ability to determine a strategy, and strategies which were not conducive to both
games resulted in weaker performance.

A major aspect of this research is related to the ability of a reinforcement
learning agent to perform multiple tasks well. We have demonstrated that,
despite how well a specialist DQN agent performs at a singular specific task,
it shows limited ability to generalize to unforeseen tasks. This ability to gener-
alize learning to unforeseen tasks can be improved by competitively training the
DQN agent on two tasks simultaneously.

What was largely seen through the analysis of the ability to generalise to
unseen tasks, was that training against multiple objectives resulted in improved
performance at those unseen tasks, at the expense of performance against specif-
ically trained tasks. In each case of game scenarios applied to the network, be
it Similar, High Performing games, the network segmented its representational
space between the games. Further to this, that segmentation became more pro-
nounced as the difficulty of the training scenario increased, with an increased
partitioning clearly observed. What this shows is that the network is devot-
ing representative power to each task, and as hypothesised, that representative
power is being saturated as the difficulty increases.
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