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Series Preface

Applications and modelling and their learning and teaching in schools and universi-
ties have become a prominent topic in the last decades in view of the growing 
worldwide relevance of the usage of mathematics in science, technology and every-
day life. There is consensus that modelling should play an important role in math-
ematics education, and the situation in schools and universities is slowly changing 
to include real-world aspects, frequently with modelling as real-world problem- 
solving, in several educational jurisdictions. Given the worldwide impending short-
age of students who are interested in mathematics and science, it is essential to 
discuss accelerating possible changes of mathematics education in school and ter-
tiary education towards the inclusion of real-world examples and the competencies 
to use mathematics to solve real-world problems.

This innovative book series established by Springer, International Perspectives 
on the Teaching and Learning of Mathematical Modelling, aims at promoting aca-
demic discussion on the teaching and learning of mathematical modelling at various 
educational levels all over the world. The series will publish books from different 
theoretical perspectives from around the world, dealing with teaching and learning 
of mathematical modelling in schooling and at tertiary level. This series will also 
enable the International Community of Teachers of Mathematical Modelling and 
Applications (ICTMA), an International Commission on Mathematical Instruction- 
affiliated study group, to publish books arising from its biennial conference series. 
ICTMA is a unique worldwide group where not only mathematics educators deal-
ing with education at school level are included but also applied mathematicians 
interested in teaching and learning modelling at tertiary level are represented as 
well. Four of these books published by Springer have already appeared.

The planned books will display the worldwide state of the art in this field, most 
recent educational research results and new theoretical developments and will be of 
interest for a wide audience. Themes dealt with in the books will be teaching and 
learning of mathematical modelling in schooling and at tertiary level including the 
usage of technology in modelling, psychological, social and cultural aspects of 
modelling and its teaching, modelling competencies, curricular aspects, modelling 
examples and courses, teacher education and teacher education courses. The book 
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series aims to support the discussion on mathematical modelling and its teaching 
internationally and will promote the teaching and learning of mathematical model-
ling and research of this field all over the world in schools and universities.

The series is supported by an editorial board of internationally well-known 
scholars, who bring in their long experience in the field as well as their expertise to 
this series. The members of the editorial board are Maria Salett Biembengut (Brazil), 
Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia), 
Toshikazu Ikeda (Japan), Mogens Niss (Denmark) and Jinxing Xie (China).

We hope this book series will inspire readers in the present and the future to 
promote the teaching and learning of mathematical modelling all over the world.

Hamburg, Germany
Gabriele KaiserGloria Ann Stillman

Ballarat, Australia

Series Preface
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Chapter 1
Crossing Boundaries in Mathematical 
Modelling and Applications Educational 
Research and Practice

Gloria Ann Stillman, Werner Blum, and Gabriele Kaiser

Abstract This chapter gives an overview on the current state-of-the-art on the 
teaching and learning of mathematical modelling and applications and its contribu-
tion to educational research and practice which is reflected in the various contribu-
tions in this book. Several chapter authors use the opportunity to strengthen and 
build our research practices by reaching out to others in educational research, 
beyond the boundaries of our community, and those in fields other than education. 
By researchers recognising boundaries in applications and modelling research that 
limit our vision and what we are currently able to do, a more entrepreneurial view 
of research groups could lead to the brokerage of knowledge in multidisciplinary or 
multi-community teams to work on some of the more perplexing research questions 
that have faced our research community. Fluid social alliances in research groups 
that coalesce and then disperse could result in a much wider dissemination of 
knowledge both to, and from, our community in the future.
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1.1  Introduction

This volume includes a selection of chapters arising from presentations at the 17th 
International Conference on the Teaching of Mathematical Modelling and 
Applications (ICTMA17) which took place in Nottingham, England, in 2015, 
addressing the theme of Modelling perspectives: Looking within and across bound-
aries. Mathematical modelling and applications have the potential to appeal to a 
wider audience than they currently do within the field of mathematics education 
research. Thus, the book is intended to provide a stimulus to consider new approaches 
drawing on related research in mathematics education and associated domains. 
Mathematical modelling and applications have inherent qualities fostering multidis-
ciplinary work (Andresen and Petersen 2011) that is required for effective problem- 
solving in many areas (English and Gainsburg 2016). This book is therefore an 
opportunity to strengthen and build our research community by reaching out to 
others in educational research, beyond the boundaries of our community, and those 
in other fields.

In a research community that values authenticity (Galbraith 2013) and real-world 
aspects in mathematics education at all levels of education (Blum et al. 2007), there 
are boundaries coming from the subject researched that should not be crossed. 
There are, however, boundaries that are artificial and should be crossed. As 
FitzSimmons and Mitsui (2013) point out, “different communities of practice have 
different knowledge bases which may prevent the effective communication between 
them, so that [these] boundaries need to be crossed” (p. 99). A teacher in a class-
room deals with multiple audiences (students, administrators, parents) and a differ-
ent set of tasks (preparing learning activities, facilitating learning, reporting what is 
learnt in a prescribed manner) from those a researcher does collecting data for a 
research project or a mathematical modeller in industry, for example, collecting 
information about constraints for a client brief. The teacher, researcher and mathe-
matician are from distinct communities of practice and social worlds with different 
viewpoints, but all could be involved in the resolution of the same scientific prob-
lem, for example, when modelling how a modeller gets at the nub of a problem so 
the essence of a real-world situation becomes tractable mathematically.

“Boundary recognition involves making difference which may have previously 
been implicit, explicit” (Garraway 2010, p. 220). Researchers having a disposition 
to recognise such boundaries could lead to entrepreneurial research groups broker-
ing knowledge in multidisciplinary or multi-community teams working on some of 
the most intractable research questions that have faced our research community 
(e.g. how to facilitate development of problem formulation abilities). According to 
Star and Griesemer (1989), “consensus is not necessary for cooperation nor for the 
successful conducting of work” (p. 388). However, as objects and methods can have 
different meanings in different social worlds, tensions can be generated by trying to 
ensure integrity of information and reconciling meanings if cooperation is desired, 
or needed, to advance scientific knowledge. To manage such diversity of viewpoints 
and simultaneously cooperate, boundary objects are used (Star and Griesemer 
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1989) as a means of translation between worlds. Despite having different meanings 
(e.g. a table of values; see Psycharis and Potari this volume) in the different worlds 
(e.g. in the classroom versus in a fuel depot), the structure of the boundary object is 
common enough to be recognised in the different worlds and become a means of 
translation between worlds (Star and Griesemer 1989). Boundaries then convey 
Star’s (2010) idea of being indicators of a shared space where different groups work 
on the resolution of a problem confronting different communities of practice. In this 
way, knowledge is propagated through fluid social alliances in research groups that 
coalesce and then disperse, seeding knowledge growth in several different social 
worlds or communities of practice rather than the knowledge being isolated within 
one community.

1.2  New Approaches from Crossing Boundaries in Research, 
Teaching and Practice

New approaches arise in research, teaching and modelling practice from crossing 
boundaries. In the first part of this book, the included chapters are indicative of the 
broad spectrum of innovation this can bring.

Even though mathematical modelling has been one of the competencies in the 
mathematics educational standards in Germany for more than 10 years and there 
have been several efforts to implement modelling and real-world applications in 
schooling (Greefrath and Vorhölter 2016), mathematical modelling still plays a 
minor role in German classrooms. The chapter by Alfke, a teacher researcher, is thus 
of paramount interest to advocates, in many parts of the world, of the inclusion of 
mathematical modelling in curriculum documents and its incorporation into every-
day classroom practice. Alfke reports first results of a research study aimed at sup-
porting students’ mathematical modelling competency by the use of increasing 
learning aids in a self-regulated classroom learning environment, in keeping with 
the tenets of quality mathematics teaching (Blum 2008). The theoretical background 
of the work draws from the learning sciences, scaffolding and differentiated instruc-
tion (Pea 2004; Jain et al. 2006) and science educational research (Schmidt-Weigand 
and Di Fuccia 2014) where this type of increasing learning aid has been applied to 
fostering autonomous, cooperative learning and on encouraging problem-solving 
competence and specialised self-awareness. Increasing scaffolds are offered to stu-
dents in the form of aid cards to support their working on a problem, thus freeing up 
the teacher for more targeted differentiation in the classroom. Thirty seventh- graders 
were video- and audio-recorded while working on complex modelling problems 
supported by increasing learning aids and a diagram of the modelling cycle, 
enhanced to indicate potential areas of difficulty or blockages to progress, as a meta-
cognitive aid. First results point to the use of increasing learning aids for supporting 
modelling activities increasingly independent from the teacher.

1 Crossing Boundaries in Mathematical Modelling and Applications Educational…
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Aymerich, Gorgorió and Albarracín undertake an interesting diagrammatic anal-
ysis of the solution paths of students engaged in mathematical and statistical model-
ling. They report on the solutions of 22 groups of Year 10 students to a model-eliciting 
activity, in the tradition of Lesh and Harel (2003), involving interpretation of data. 
Student groups were asked to see what could be ascertained about the structure of a 
company based on their mathematical/statistical analysis of data related to salary 
distribution within the company. In order to analyse student work and characterise 
models constructed, the authors developed a schematic visualisation tool for these 
models. The graphs displayed the variety of solutions and the complexity of output 
from the groups. A graph displayed the mathematical objects present in the solution 
at each of its nodes, as well as the concepts and procedures involved in the develop-
ment of the model with segments connecting the concepts displaying relationships 
detected. This analysis tool distinguished significant differences between student 
responses. It complements other tools for analysing students’ model creation pro-
cess developed, for example, by Stillman (2002) who extended the response map-
ping technique of Collis and Watson (1991) to analyse contributors (in terms of 
cues, concepts and procedures) to lowering rates of success on applications and 
modelling tasks used in assessment. This tool has since been modified by Matsuzaki 
(2011) to incorporate display of the influences of prior knowledge, related to math-
ematics and to reality, on model construction.

Buchholtz broaches the subject of how teachers can promote mathematising by 
means of mathematical city walks, a kind of mathematics trail excursion crossing 
the boundary between inside and outside classroom practice. Tasks have to be care-
fully selected to match students’ cognitive skills and to include basic ideas specific 
to mathematical topics. In the chapter, Buchholtz analyses an example of a task 
according to the basic ideas contained therein, potential difficulties and possible 
solutions. He suggests that such tasks in a mathematical city walk can be used diag-
nostically as well as to provide practice in applying known mathematics and moti-
vating students to engage in real-world applications.

One approach to facilitating a stronger presence of modelling in the learning of 
mathematics is to look for openings in current curricula and teacher practice to 
make a platform to build on what is already being done, or has the potential to be 
done, with existing goals, levers and constraints (Burkhardt 2014). Caron and 
Pineau use this approach to work with mathematics and physics teachers, to trans-
form a rich application problem into an engaging activity that allows students to 
experience some elements of the modelling process while learning or applying spe-
cific strategies, concepts and skills, useful for laying bare the underlying structure 
of the situation (Jensen et  al. 2017). The development and first validation of the 
activity in a transitional mathematics class in a technical engineering school allowed 
Caron and Pineau to test the extent to which teachers and students could cross the 
boundaries between application and modelling and between mathematics and phys-
ics. The crossing into physics, however, proved to be more difficult to implement 
than expected.

Mathematical models impact all levels of society, and so mathematical model-
ling is being seen as an important topic in mathematics education. Representations 

G.A. Stillman et al.
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of mathematical modelling processes are increasingly being used in curriculum 
documents on national (e.g. Common Core State Standards for Mathematics, 
Council of Chief State School Officers 2010) and transnational levels (e.g. in PISA, 
OECD 2013). In their chapter, Doerr, Ärlebäck and Misfeldt critically discuss the 
dominance of the single image of mathematical modelling that is shown by the 
modelling cycle and offer alternative representations to more fully capture multiple 
aspects of modelling in mathematics education. They suggest that a complex pro-
cess such as mathematical modelling should be conveyed in policy and curriculum 
documents by multiple images. These could accommodate aspects such as student 
modelling activities that move beyond creating descriptive models validated by 
comparison to empirical data, to working with a full range of models including 
models with explanatory power, models with social and political implications and 
models using computational media.

The notion of productive modelling oriented noticing is proposed by Galbraith, 
Stillman and Brown within an anticipatory metacognition framework for the imple-
mentation of successful modelling. Productive modelling oriented noticing involves 
modellers noticing what is, or is not, important in order to generate strategies for 
responding to, or initiating, activities necessary for successful engagement in mod-
elling. Galbraith et  al. address the question: How does “noticing” feature as an 
enabler and a displayer of modelling ability? Based on student work at an extracur-
ricular modelling event, they identify global and specific noticing of a strategic and 
explanatory nature, which provides evidence of anticipatory aspects of mental activ-
ity taking place during modelling, and illustrate a coding system for identifying and 
labelling components of productive modelling oriented noticing.

Crossing the boundaries between mathematical modelling and statistics educa-
tion is the aim of the chapter by Kawakami. He views the learning process as com-
bining distribution-related models: firstly, a model from the “modelling world” 
constructed in students’ internal world corresponding to an image of a particular 
data distribution and, secondly, a model of the real distribution constructed in the 
students’ external world and generated by the collection and visual arrangement of 
real data. These models are combined and reconstructed into a coherent whole to 
include statistical and contextual elements by comparing, contrasting and coordi-
nating between these models. The chapter examines how primary students com-
bined distribution-related models in experimentation that included conjecturing and 
validation. Although the reported findings are limited to a small sample, they pro-
vide empirical evidence that experimentation can foster students’ model develop-
ment of distribution. The trigger for combining students’ models can be the phase 
of model validation in experimentation.

The boundary Manouchehri and Lewis propose to cross is that between the reali-
ties of the researcher and the researched, in this case beginning modellers at school. 
Students’ interpretations and expectations of what counts as a precise and adequate 
method are key players in whether the modelling cycle is revisited or refined. 
Explanations offered by researchers for beginning modellers’ reluctance to seek and 
produce refined models rarely account for epistemological elements that influence 
students’ choices including the criteria they consider when validating their  solutions. 

1 Crossing Boundaries in Mathematical Modelling and Applications Educational…
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Manouchehri and Lewis draw from data collected in three interrelated research 
projects about intermediate and high school students’ mathematical practices to 
problematise two implementation issues for mathematical modelling in schools:

 1. The gap between students’ intuitions regarding variables they legitimately con-
sider as prior constraints, based on their real-life experiences, and the conflict 
their choices create when asked to consider conventional mathematics to solve 
the same problems; and

 2. The complexity of converging intuitive and analytical domains of students’ work 
so as not to devalue their intuitions.

Mousoulides, Nicolaidou and Evagorou cross community boundaries to address 
an important issue, namely, designing teacher professional development learning 
communities to better understand, analyse and support teachers in the development 
of modelling tasks and the teaching of mathematical modelling. Their study exam-
ined the impact of a three-tiered professional learning community (students, teach-
ers and parents, researchers and teacher educators) on teachers’ knowledge and 
skills in designing and implementing inquiry-based modelling problems in their 
classrooms. Results confirmed that teachers improved their knowledge and peda-
gogical approaches to modelling changing from a focus on the minutia of day-to- 
day implementation difficulties to appreciating the substantive contribution of 
model-eliciting activities in developing students’ mathematical constructs. Teachers 
gradually improved their self-confidence in teaching more complex modelling- 
based tasks and became more motivated in designing modelling activities. As well 
as participation in the learning community improving teachers’ knowledge and 
pedagogical approaches, attitudes and self-confidence, it also increased the com-
munication and collaboration between all the different groups in the professional 
learning community.

The chapter by Palharini, Tortola and Almeida crosses boundaries within math-
ematics itself which most would not anticipate to be a passage to new ideas for 
teaching modelling and proof. The authors describe a study that aims to investigate 
whether it is possible to consider the recurrence process inside a mathematical mod-
elling activity as a mathematical proof. The study refers to the work of Ludwig 
Wittgenstein, on proof by recurrence. Palharini et al. base their arguments on the 
analysis of two mathematical modelling activities: one at tertiary level and one for 
basic education in Brazil. A qualitative approach and an interpretative analysis of 
Wittgenstein’s writings are used to make inferences from written data and data col-
lected through audio-recordings from students for the first activity but from sug-
gested solutions in the textbook for the second activity. Their analysis indicates that 
mathematical modelling activities, in a sense, could lead to the need for mathemati-
cal proof, particularly proof by recurrence.

The chapter by Perrenet, Zwaneveld, van Overveld (†) and Borghuis is a mean-
ingful contribution to the literature on engineering education in the work with mod-
els and modelling. The assessment of models in terms of criteria and purposes is 
described. The usefulness of purposes and criteria for models differentiating 
between understanding and misunderstanding is illuminated clearly in the chapter. 
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The study, in providing a model for assessing the usefulness of models in terms of 
purposes and criteria for the model, opens a new field of research for all modelling 
investigations not just engineering education.

Rosa and Orey focus on a combination of emic (local), etic (global) and dialogi-
cal (glocal) approaches to ethnomodelling, adding to their previous theorising with 
respect to modelling research (e.g. Rosa and Orey 2013). Ethnomodelling is the 
study of mathematical ideas and procedures developed, used, practised and present 
in diverse situations found in the daily lives of distinct cultural groups such as roof-
ing contractors. Implementation of the dialogical perspective is emphasised by Rosa 
and Orey. In the dialogical approach to ethnomodelling research, the use of both 
approaches can deepen our understanding of important issues in scientific research 
and investigation. Many local mathematical practices have disappeared because of 
the intrusion or imposition of foreign (etic) knowledge value systems and technolo-
gies that emerged from the development of concepts promising short-term gains or 
solutions to problems faced by the members of these distinct cultural groups with-
out considering emic knowledge that could solve these very same problems. The 
application of ethnomathematical techniques and the tools of modelling allow us to 
see a different reality and give us insight into the mathematics all of us perform in a 
holistic manner.

A recent innovation in upper secondary classrooms is the flipped classroom 
where there is a swapping of classroom and homework activities through the use of 
electronic technologies and, in some cases, an expansion of the curriculum (Bishop 
2013). From an intensive survey of the literature, Stillman concludes that meta- 
analyses of findings from flipped classroom studies in mathematics classrooms to 
date need to be treated with caution, until the teachers and students involved develop 
mindsets that maximise and integrate the learning potential of both the out-of- 
classroom and in-classroom learning environments. However, rather than a flipped 
classroom approach being used as a means to cover the curriculum, it can be used 
to enrich the curriculum. Exploring the latter approach, Stillman examines the ques-
tion of whether a flipped classroom approach to teaching could provide both vicari-
ous experiences and fostering of critical thinking skills associated with modelling. 
A local secondary school implementation is used to illustrate how the approach 
could build meta-knowledge about mathematical modelling and facilitate associ-
ated critical thinking skills, such as anticipating and visualisation, to expand the 
learning experiences of secondary mathematics students.

As metacognitive competencies are an essential component of modelling compe-
tency, Vorhölter looks at finding a method or instrument to reliably measure meta-
cognitive modelling competencies of larger groups of students. Techniques currently 
being used with smaller samples are considered too costly in terms of both time and 
money for use with large cohorts. Results are presented of a design-based process 
aimed at the development of a questionnaire for measuring metacognitive model-
ling competencies. Selected items of the questionnaire are presented and discussed. 
Preliminary results point to fostering of metacognitive competencies in modelling 
being possible by using special examples and metacognitive means.
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1.3  Researching Boundaries in Mathematical Modelling 
Education

Researching boundaries in mathematical modelling education both in the sense of 
being at the periphery or edge of current practice and Star’s (2010) notion of a 
shared space where different groups (e.g. archaeologists, history, technology and 
mathematics teachers and secondary students—see Sala et al. later) work on solving 
a shared problem are impetuses for deepening our research base and establishing 
research evidence for bringing new ideas into future classroom practice or to show 
where there are current gaps.

Alpers carries out a textbook analysis of items in statics in engineering texts to 
identify what part of the modelling cycle could be found in solved examples and 
students’ solutions. His aim is to try to reveal where engineering students are given 
opportunities in their tertiary courses to develop the necessary competencies needed 
to model when problem-solving in their future careers. Two textbooks were anal-
ysed and two well-performing students solved a sample of 25 items that cover dif-
ferent areas of statics. The results and analysis are presented with examples from the 
textbooks, and the main conclusion is that not all aspects of the modelling cycle can 
be found in the solved examples or students’ solutions. Among other difficulties, the 
problems examined were already clarified from the outset, and no assumptions or 
simplifications were needed, and hardly any considerations needed to be made to 
validate the real model. This points to a change of textbooks being decisive for stu-
dents’ learning.

There has been recent emphasis on educating future teachers in how to enhance 
their professional reflection so as to increase competency. Within the seminar for 
pre-service teachers, “Modelling Days”, at Kassel University, a focus on reflection 
was promoted explicitly. Borromeo Ferri reports on an explorative study where the 
goal was to investigate pre-service teachers’ levels of reflectivity after conducting 
modelling activities with high school students. Analysis of written reflections 
showed different levels of reflectivity, with high levels rarely being reached. In con-
ducting the study, a new model of levels of reflectivity for teacher education and 
teacher training in mathematical modelling was developed by adapting the model of 
Hatton and Smith (1995).

The benefits of student engagement with real-world contexts seem to be well 
accepted by the mathematical modelling and applications community. Yet, concerns 
related to difficulties necessarily arising through engagement with the messy real 
world in mathematics classes (Sullivan et al. 2003) continue to be raised. Brown 
presents a qualitative analysis from a study of Year 9 students to illustrate how 
engagement with context offers opportunities to demonstrate and deepen genuine 
mathematical understanding of rate of change. Genuine collaboration and inter-
thinking (Mercer and Howe 2012) when students work as groups, rather than just 
being in groups working, were found to facilitate the development of mathematical 
understanding, clearly enabled by the real-world context. The illustration and ana-
lytical tools from this study may act as a boundary device (Garraway 2010) that 
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enables the passage of knowledge between those who write about the value (or 
otherwise) of using real-world contexts in the classroom.

An online questionnaire was conducted by Cabassut and Ferrando on an explor-
atory voluntary sample to gain insight into the difficulties encountered in the teach-
ing of mathematical modelling in France and Spain. The timing of the data collection 
was prior (1 year) to the introduction of a new French curriculum for primary and 
lower secondary education in 2016, introducing modelling as a main mathematical 
activity and compulsory practical interdisciplinary projects. With respect to per-
ceived difficulties, different conceptions were used to construct four clusters of 
respondents, from those having positive and confident conceptions to those who 
were negative and lacked confidence. In order to offer training and resources effec-
tively in response to the expressed difficulties, the roles of country, age, gender or 
school level need to be clarified further in semi-structured interviews.

Research has shown that problem posing, as the “inverse activity” of problem- 
solving, can positively affect students’ problem-solving skills (Silver 1994). The 
research by De Bock and colleagues to date has focussed on finding ways to improve 
beginner modellers’ proficiency in moving from understanding a problem situation 
to a mathematical model. Extending on the problem-posing idea, De Bock, Veracx 
and Van Dooren look at the potential of a specific problem-posing variant, “inverse 
modelling”, that is the selection of a real-world situation given a mathematical 
model, to progress modelling. They examined two groups of 11th grade students, 
one first receiving a modelling task and then an inverse-modelling task and the other 
receiving both tasks in reverse order. Results indicated that inverse modelling did 
not have an overall positive effect on modelling with accuracy scores for modelling 
significantly improving only after inverse modelling with affine functions with neg-
ative slope. However, the researchers question the ecological validity of their 
approach of multiple-choice items and suggest using a future research design in 
which students are invited to think freely about situations in their own environment 
that can be modelled with specific types of functions.

Durandt and Jacobs report preliminary results of the thinking and planning strat-
egies of 38 South African Grade 10–12 mathematics pre-service teachers, who were 
exposed to mathematical modelling for the first time. Participants worked in eight 
groups on a textbook-based traffic flow model-eliciting activity. The open-ended 
nature of the task, handling intra-group dynamics, the construction of appropriate 
equations and the interpretation of findings were the most pressing challenges for 
the beginning modellers. Participants’ attitudes towards modelling, attained via a 
post-questionnaire, were very positive, and they all appreciated the exposure to 
mathematics in a real-world setting. Findings with respect to the pre-service teach-
ers’ planning strategies, experiences and attitudes will contribute to a set of guide-
lines aimed at the integration of mathematical modelling into the pre-service 
education of future mathematics teachers at the university in question.

The notion of mathematical literacy (or numeracy) has gained momentum inter-
nationally recently through the influence of the Programme of International Student 
Assessment (PISA) (OECD 2013) and national concerns in some countries about 
the ability of their citizens to use mathematics effectively in personal, civic and 
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work life. Accordingly, it might be expected that responses to these concerns should 
be reflected in relevant curriculum documents for compulsory schooling. Frejd and 
Geiger present a content analysis of a sample of 12 national curricula documents in 
relation to mathematical literacy and numeracy. The analysis showed that there was 
not a common definition of mathematical literacy across the analysed documents 
and that the idea of mathematical literacy is represented in a quite limited fashion.

Gallart, Ferrando, García-Raffi, Albarracín and Gorgorió present a tool for ana-
lysing the work of secondary students when they solve a type of Fermi problem. The 
authors note that previous research has related to representing the processes of mod-
elling these Fermi problems (Ärlebäck and Bergsten 2010), so they concentrate on 
the products of Fermi problems instead. The tool is based on the characterisation of 
the concepts, procedures and languages used to construct models aligning with the 
characterisation of models by Lesh and Harel (2003). It was used with two groups 
of upper secondary students, each group from a different school working on two 
Fermi problems. The study shows the proposed analytical tool is useful to describe 
the models produced by students and to distinguish different aspects between the 
models produced by students with, and without, previous modelling experience.

Kreckler defines global modelling competence as the ability to undertake a full 
modelling process and to possess the meta-knowledge of the procedure. A 4-h 
teaching unit to foster global modelling competence in regular school lessons was 
developed. The unit was tested with 332 German secondary school students (tenth 
grade). The goal of this empirical study was to increase global modelling compe-
tence independent of influencing factors such as the topic for the teaching unit, 
student gender and mathematics assessment grades. The study resulted in a signifi-
cant increase in global modelling competence independent of grade and topic, but 
no significant changes could be identified concerning motivation.

In previous work, Ärlebäck and Frejd (2013) have attempted to formulate a com-
mognitive perspective (Sfard 2008) of mathematical modelling and models to pro-
vide a framework for analysing communication in modelling, taking into 
consideration social (i.e. group) and cognitive (i.e. individual) dimensions. Park 
uses a commognitive framework in combination with Stillman et al.’s (2007) block-
ages framework, in the study she reports, to examine pre-service secondary mathe-
matics teachers’ conception of mathematical modelling and content knowledge 
when engaging in mathematical modelling activities within a group. As the group 
comprised only three students, what these particular students’ conceptions and con-
tent knowledge were is of less interest than the validity of the combination of ana-
lytical tools for the purposes proposed. This combination does appear to be 
fit-for-purpose but full evaluation awaits wider testing and empirical use.

Psycharis and Potari use activity theory (Engeström 2001) and the construct of 
boundary crossing (Engeström et al. 1995) to study the process of teachers’ profes-
sional learning when they link mathematics teaching to the workplace through mod-
elling. Transforming authentic workplace situations in the classroom for engaging 
students in mathematical modelling is complex. Learners need support to develop 
critically and mathematically informed models of complex realities, to construct 
and deconstruct real and mathematical models of complex situations, and to 
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 understand how the structure of models of workplace realities relates to the models 
of their mathematical counterparts. In particular, Psycharis and Potari analyse 
teachers’ boundary crossings between two activity systems to advance their learn-
ing: mathematics teaching and a workplace, a fuel depot. Results indicate that col-
laborative task design and reflection helped teachers combine elements from the 
workplace into mathematics teaching. Different ways of linking reality and mathe-
matics teaching were identified in the modelling process in which the teachers 
engaged.

Saeki, Kaneko and Saito used a multidisciplinary team including a general edu-
cational consultant and an art expert to investigate how pre-service teachers 
responded to a meta-question asking them to locate geometric figures hidden in the 
composition of four replicas of Renaissance paintings at an Art museum. To fulfil 
the meta-question, students presented a demonstration to an audience of museum 
visitors. The purpose of the study was (1) to investigate how teacher education stu-
dents critiqued and meta-validated models connecting paintings and the mathemati-
cal world and (2) to analyse the students’ decision-making. Students were given a 
physical device, a lens, to help them locate various figures said to be used by paint-
ers to compose elements of paintings and to verify the models they proposed. To 
locate and explain why the particular figure might have been used, students were 
expected to research extra-mathematical knowledge themselves. The pre-service 
teachers’ critique and meta-validation of the models they constructed for their 
decision- making resulted from both mathematical considerations and extra- 
mathematical considerations. They benefitted from the input from different knowl-
edge communities—the consultant on interdisciplinary integration and the art 
expert.

A multidisciplinary team was also the knowledge community involved in the 
study reported by Sala, Font, Giménez and Barquero. The aim was to promote 
inquiry and student modelling competencies and to investigate how interaction 
between multiple disciplines could enhance modelling and inquiry processes. A 
teaching sequence based on an archaeological context, the ruins of a Roman theatre 
discovered in Badalona (Catalonia), was designed and implemented with 12- to 
14-year-old students in secondary school. The initial historical situation was pre-
sented by archaeologists from the local museum, and students visited the site with 
their teachers. Historical documents about Roman ruins also were made available so 
the students had access to domain knowledge from several domain experts. 
Mathematical modelling appeared as a central tool in the teaching and learning 
processes which are evaluated by the authors. A constant dialectic between mathe-
matics and history was required to facilitate evolution of the modelling process. It 
also enabled validation of the modelling.

Van Reeth and De Bock present an interesting survey on the phenomenon of 
“over reliance on linearity”, a topic the second author has been studying for some 
time. This time, the focus is the teaching and practice of economic modelling. There 
is a widespread use of linearity in economics education and practice which the 
authors illustrate by discussing the treatment, in major economic textbooks, of 
demand and supply functions and of the Phillips curve modelling the relationship 
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between unemployment and inflation. This raises the mathematical points of when 
it is a good idea in any context to approximate a non-linear function with a linear 
function and how to decide the length of the interval in which it is acceptable. In this 
instance, it is important to establish where the boundary between mathematics and 
economics is determined and for what purpose (educational or practical). Typically, 
the phenomenon of overreliance on linearity is described only incidentally in eco-
nomics education research studies which focus more on other concerns. The study 
by De Bock et al. (2014), in which tertiary students’ over reliance on linearity in 
economic thinking was the main research focus, is discussed in some detail.

1.4  Pedagogical Issues for Teachers and Teacher Educators 
Using Mathematical Modelling and Applications

Given the interests of the ICTMA research community, it is no surprise that peda-
gogical issues for teachers and teacher educators using mathematical modelling and 
applications in their teaching are always areas of motivation and study for the 
research community. The first two chapters in this part of the book arose from two 
of the plenaries that were presented in Nottingham.

In their chapter, Burkhardt and Swan (†) set out their views, based on over 
30-years of experience at the Shell Centre, on methods and challenges in teaching 
students the strategies and skills needed to model real problems using mathematics 
and approaches to helping education systems make this happen in classrooms. They 
conclude that substantial progress has been made on understanding the methods and 
challenges of teaching modelling and applications but much less with systems tak-
ing responsibility to make this happen in everyday classrooms. Examples from a 
sequence of modelling projects are used to illustrate design principles that have 
proved powerful for materials to support teaching and professional development in 
the area of modelling and applications. Barriers in school systems to the implemen-
tation of important improvements like modelling are discussed and how they might 
be tackled to bring systemic change.

Drawing on empirical and theoretical research studies, Frejd discusses similari-
ties and differences between working with mathematical modelling in “school” and 
mathematical modelling as a “professional task” in the workplace. The extent of 
major differences between modelling work in educational and workplace contexts 
indicates that mathematical modelling in school will remain an unreachable goal in 
terms of coherence to professional practice according to Frejd. He suggests using 
innovative teaching methods, such as simulation, gaming and role playing, to bridge 
the gap between modelling as a professional activity and as a school activity. He 
then turns the spotlight on simulations of workplaces and role playing for the 
remainder of the chapter.

Guerrero-Ortiz and Mena-Lorca take the first steps in a Chilean university to 
help bridge the silos of expertise that so often hinder students’ integration of 
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 knowledge across what appear to be compatible disciplines of mathematics and the 
sciences (English 2016). Their focus is on the separation at tertiary level between 
the teaching of modelling and models in mathematics and scientific disciplines. The 
differences result from what is considered a model and the goals of teaching model-
ling in the different disciplines. The science lecturers emphasised establishing rela-
tionships between mathematical and extra-mathematical knowledge so models and 
output could be understood and interpreted. For the mathematics lecturer, models 
were a tool to study mathematical characteristics of objects, where extra- 
mathematical knowledge was not considered. There was thus a tension between 
how tertiary students in this context were taught about models in mathematics and 
how they would apply them in the sciences. Lovric (2017) points out that tensions 
as identified here should not be viewed as barriers, but as opportunities to facilitate 
enriching the teaching of both mathematics and the sciences as modelling tasks are 
designed. This is the next step for Guerrero-Ortiz and Mena-Lorca.

The pedagogical potential of interpreting students’ modelling from the perspec-
tive of interactive translations among plural worlds as opposed to mathematical 
modelling as involving transitions only between two fixed worlds—a real world and 
a mathematical world—is explored by Ikeda and Stephens. Experimental lessons 
for Japanese Year 10 students exemplify benefits of the plural interacting worlds 
perspective as (a) enabling teachers to direct attention to intermediate models that 
can help the building of further abstract models and (b) focusing teacher attention 
on meaningful contradictions supporting student verification, critique or modifica-
tion of their original models.

Lamb, Matsuzaki, Saeki and Kawakami address the vexed question of appropri-
ate teacher assistance for struggling modellers. They show, by use of the Dual 
Modelling Cycle Framework, how students who have difficulties finding a solution 
to one modelling task are introduced to a second similar simpler modelling task in 
a second modelling cycle so success there can lead to a transition back to the first 
modelling cycle where the modelling can be progressed. The authors therefore add 
to the corpus of work on the use of the Dual Modelling Cycle Framework (e.g. 
Matsuzaki and Saeki 2013) where the utility of the framework for different student 
groups in different educational contexts has been demonstrated.

The issue of educating practising teachers to implement mathematical modelling 
in their classroom in a long-term professional development programme brings chal-
lenges for both the teachers participating in the professional development and the 
teacher educators conducting professional development. In the study by Manouchehri 
of a professional development programme in the USA to prepare teachers to meet 
the expectation of the Common Core State Standards for Mathematics that they help 
school learners develop mathematical modelling skills (Council of Chief State 
School Officers 2010), teachers’ level of comfort with mathematical modelling 
increased as time progressed. In contrast, teacher concerns persisted about the man-
agement of the short- and long-term demands of the curriculum, preparing students 
for skills-based standardised tests and guiding student discussions without infring-
ing their autonomy. Concurrently, teacher educator challenges included managing 
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teachers’ diverse mathematical backgrounds and limiting direct instruction of 
mathematics.

Framing mathematical content (e.g. the velocity concept) that has arisen from the 
modelling of a phenomenon in its historical development is advocated by Moeller 
as a means to develop teacher competence as a teacher of modelling. A scheme to 
develop the velocity concept giving adequate attention to it being a historical mod-
elling of a phenomenon is proposed for students, and it is suggested as being essen-
tial subject matter in pre-service teacher courses. Such preparation would allow 
future teachers to draw on the history of science so as to maximise educational 
possibilities of a historically developed modelling of a phenomenon such as 
velocity.

Teacher assistance for low-achieving students, students with learning difficulties 
and special needs, is the issue that concerns Reilly and Scott-Wilson, Wessels, and 
Wessels and Swart. The use of applications and mathematical modelling for stu-
dents of all abilities has been approached in past ICTMA publications (e.g. Swan 
1991), but these authors specifically focus on students with special learning needs. 
Inclusive task design so all students can access and show mastery of appropriate 
skills is the focus of the chapter by Reilly. A mathematical application task for Year 
7 students is used to illustrate the design principles chosen to achieve this goal. The 
study shows task adaptation criteria allowed all students to work towards the over-
arching goal with students making individual progress. On the other hand, the effi-
cacy of students with disabilities learning through mathematical modelling tasks, 
given that typically they learn at a slower rate and are already developmentally 
behind their peers, is explored by Scott-Wilson et al. Findings of Scott-Wilson’s 
doctoral study included evidence of engagement and meaningful mathematical 
learning. In addition, extra benefits from the programme for students with disabili-
ties were development of literacy, social skills practice during collaboration and 
social negotiations and support for development of potentially more robust thinking 
operations.

Stender, Krosanke and Kaiser focus on the issue of identifying appropriate 
teacher interventions for scaffolding when students are solving complex, realistic 
problems over an extended period of time so as to preserve student autonomy and 
independence in the direction and conduct of the modelling. This chapter supple-
ments previous work by Kaiser and Stender (2013) in this area. Empirical work 
emphasises the importance of adequate diagnostic work preceding adaptive assis-
tance. The intervention, “present status of work”, is a powerful scaffolding measure 
at the beginning of every intervention in complex modelling processes, because it 
has the potential for a positive impact on the solution process in several aspects.

Vos and Roorda address the issue of student development of their treatment of 
real-world context over time through solving, or attempting to solve, contextualised 
tasks that integrate mathematical and real-world context aspects. Busse’s frame-
work of ideal types of students’ treatment of context in real-world tasks (Busse 
2011) was useful to analyse students’ different approaches to tasks. The use of the 
framework in the analysis of data showed how students’ preferences for particular 
approaches to context develop and that contexts and mathematics are not disjoint 
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spheres but show complementarity, leading to integration for many students, but it 
takes time: at least 1 year.

Identification of aspects of creativity in pre-service teachers’ mathematical mod-
elling processes and products is the focus of Helena Wessel’s research report. The 
research confirmed that pre-service teachers’ intuitive notions of what creativity is 
coincided with indicators for creativity (fluency, flexibility, novelty and usefulness) 
described in the literature. The pre-service teachers’ solutions to the modelling task 
used in the study elicited flexibility as well as novel and useful models, but the stu-
dents’ fluency in terms of variety of approaches was restricted as the task was not 
mathematically challenging enough for the participants. This outcome indicates the 
importance of careful matching of tasks to a specific cohort as the potential for 
mathematical modelling to foster creativity can be task dependent.

Authenticity of students’ experience of modelling in Dutch schools is the focus 
issue for Zwaneveld, Perrenet, van Overveld (†) and Borghuis. These authors exam-
ine the authenticity of textbook tasks as genuine mathematical modelling in terms 
of having a modelling purpose and students needing to perform characteristic mod-
elling activities. Two Dutch mathematics textbooks for upper secondary schools, 
that were examined by the team of researchers, had hardly any genuine mathemati-
cal modelling tasks (based on these criteria), although modelling is explicitly men-
tioned in the formal curriculum. This points to the influence of textbooks being a 
critical consideration for student learning and implementation of the intended cur-
riculum in the classroom.

1.5  Influences of Technologies on Modelling 
and Applications

There is a long tradition in the ICTMA book series from Berry et al. (1984) onwards 
of presenting examples (e.g. Clements 1986) and issues (e.g. Maass and Schlöglmann 
1991) related to the use of technological resources in the teaching and learning of 
mathematical modelling and the influences these might have on teaching with mod-
elling and applications. Given the nature of modelling and early computing power, 
simulations were often used and still are. Digital technologies in the form of soft-
ware or small applets are becoming ubiquitous in society and in many educational 
contexts as a means of data collection, generation and analysis and for delivery of 
curriculum or as collaborative communicative tools.

Frejd and Arlebäck present a classroom activity using a simulation provided by 
a commercial game app for smartphones and tablets as the focus. Harnessing the 
potential of mobile technologies and apps and other new technologies in the digital 
landscape for mathematics education has been advocated for some time now as an 
opportunity to cater to the tastes of digital natives (e.g. LaPointe 2008; Kyriakides 
et al. 2016). An analysis focusing on the interplay between the designed interven-
tion environment and students’ work from two upper secondary classes identified 
affordances of the technological environment (Gibson 2015) to inform the re-design 
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of the modelling activity. Results provide the basis for a discussion of the role of 
mobile technology and simulation apps within classroom teaching and learning of 
mathematical modelling and the future development of principles to design and 
implement modelling activities using game apps.

Greefrath and Siller consider theoretically, and by illustration, the added benefits 
of integration of digital tools in modelling and simulations, thus continuing the 
theme above. A qualitative, empirical study complements the theory by examining 
the activities of Year 10 students using GeoGebra to work on a modelling task 
requiring deterministic simulation. The students used the tools differently for 
researching, constructing, drawing, calculating, measuring, experimenting and 
visualising. Tools were employed primarily between the situation model, real 
model, mathematical model and the mathematical results and between the situation 
model and the mathematical model in the modelling cycle. They were not used 
while interpreting and validating the mathematical results. The study showed that 
the general modelling cycle used (Blum and Leiss 2007) was sufficient for describ-
ing use of digital tools while modelling. It appears that a special modelling cycle 
that represents technology as a separate area of activities (e.g. Daher and Shahbari 
2015), or restricting its use between the mathematical model and the mathematical 
solution (e.g. Greefrath and Siller 2010), does not describe the modelling processes 
sufficiently.

The influence of mathematical modelling on South African engineering diploma 
students’ visualisation when solving differential equations with a computer algebra 
system was investigated by Kotze, Jacobs and Spangenberg. Participants comprised 
80 second year vocational engineering diploma students at a comprehensive univer-
sity. Students’ abilities to make contextual connections between different represen-
tations through a model-eliciting task were assessed using content analysis. By 
reversing the curricular approach, most participants constructed a meaningful dif-
ferential equation that deepened understandings of the world in which they mod-
elled. In the normal curriculum approach, students usually struggle to interpret 
numerical tables and computer graphs derived from symbolic differential equations 
and often leave interpretative questions unanswered. The modelling environment 
stimulated development of adequate schema through experimentation with paper- 
and- pen and computer algebra technologies.

How 14-year-old Israeli students participated in collaborative learning processes 
and developed skills in analysis of models was investigated by Naftaliev, while they 
worked on one modelling activity, a foot race, presented digitally as three different 
interactive diagrams. Three interactive diagram settings were designed as an anima-
tion of multi-process motion, but each differed in its pedagogical function. The 
interactive diagrams draw on purposely designed representations that can be used 
by modellers to illustrate real motion to give insight into the connections between 
the model and reality and important mathematical concepts. The students explored 
sets of characteristics of the mathematical models in the diagrams to analyse related 
phenomena presented as a real model and to develop meaning of the mathematical 
models regarding the phenomenon. Shared knowledge was developed when  students 
engaged in a reflective activity concerning other group members’ reasoning and 
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instruments involved in the collaborative process. Analysis showed choosing and 
combining models from different interactive diagrams was based on personal choice 
to anchor the inquiry in the more familiar ones.

Ortega and Puig present modelling teaching material for a Year 11 class to model 
a real-life phenomenon: a basketball rebounding and falling. The teaching material 
uses electronic tablet apps to collect and process real data in the classroom. The 
research study was aimed at analysing which phases of the modelling cycle were 
influenced by the qualitative analysis of characteristics of the phenomenon, the 
associated families of functions and the students’ prior knowledge of these. After 
analysing a classroom implementation, the authors confirmed previous findings by 
Puig and Monzó (2013) that a qualitative analysis of the phenomenon and the fami-
lies of functions and the students’ prior knowledge about these functions are key 
elements in managing and controlling the modelling process, especially when 
choosing the model and interpreting results in terms of the real phenomenon.

Digital technologies as the means of delivery or as cognitive collaborative com-
municative tools can enable expansion across geographical boundaries and over-
come lack of provision locally as Borba and Gadanidis (2008) have pointed out in 
their survey paper. In this vein, Orey and Rosa describe how a group of mixed- 
ability tertiary students used long-distance education technologies to develop math-
ematical models in relation to their experience with nationwide protests in Brazil 
related to a rise in bus fares. Mathematical modelling as a teaching tool focused on 
the development of a critical and reflective efficacy engaging students in a contex-
tualised teaching-learning process that allowed them to become involved in the con-
struction of solutions of social significance, aiming at democratising mathematics 
through the development of the modelling process in virtual learning 
environments.

1.6  Assessment of Mathematical Modelling in Schools 
and Universities

Modes of assessment in mathematical modelling fall into two categories: (1) a 
holistic approach, where the modeller works (individually or in groups) on a com-
plete modelling problem, and (2) an atomistic approach, where the modeller is 
asked to demonstrate separate competencies (e.g. making assumptions) needed for 
only part of the modelling cycle (Blomhoej and Jensen 2003). The assessment of 
modelling competencies has been a strong area of focus since the 1990s in an effort 
to develop reliable and valid modes of assessment, balancing what can be known 
from holistic and atomistic modes (Kaiser and Brand 2015).

Biccard and Wessels demonstrate how the six instructional design principles for 
model-eliciting activities (Lesh et al. 2000) can be reworded to serve as principles for 
assessing modelling abilities of students working in groups. The six principles form 
a framework for a holistic evaluation of group modelling. A design research study 
investigated the modelling competencies of a group of Year 7 students, holistically. 
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The group as a whole was assessed, not individual students. It was found that the six 
reworded principles allowed evaluation of significant aspects of model- eliciting 
activities such as model construction, reality integration, quality of documentation, 
self-evaluation, development of prototypes for thinking and generalisation.

In contrast, Djepaxhija, Vos and Fuglestad take what they consider a holistic/
atomistic approach using a multiple-choice test, similar to the one developed by 
Haines et al. (2000) at the tertiary level, but designed for pairs of Year 9 students and 
only to assess mathematising competencies. Three PISA-released items were used 
to develop six tasks. This chapter is a report of the validity study of these tasks 
where the task format has the specific feature of centring around a holistic model-
ling problem while asking for a separate mathematising competency related to that 
problem. The students were well able to distinguish between the holistic modelling 
problem and the atomistic part of the task. They were able to handle the format, and 
their actions in response to the tasks were the intended mathematising activities.

1.7  Applicability at Different Levels of Schooling

Researching or demonstrating the applicability of applications and modelling as an 
educational experience, or a means of approaching curriculum content through well 
documented implementation examples, is important to provide continued support 
for adoption of applications and modelling in schooling.

Grafenhofer and Siller add to the literature on interdisciplinary (e.g. Brinkmann 
and Brinkmann 2007) and multidisciplinary approaches in modelling (e.g. Andresen 
and Petersen 2011) when they discuss the use of an interesting modelling problem 
about setting up a network system for refuelling hydrogen cars in Germany. Groups 
of students from three secondary schools attempted to solve the problem over three 
to four modelling days. The activities of four different student groups were analysed 
focussing on extra-mathematical knowledge used when the students were working 
in an interdisciplinary context (mathematics, physics, chemistry). The outcome was 
that students spent much of their time (over 1 day) understanding the underlying 
phenomena. The students’ interdisciplinary processes and preparations by teachers 
had no detectable influence on the modelling conducted. Students tended to find 
their own way by using their real-life extra-mathematical knowledge and experi-
ences in other subjects such as geography and economics rather than the ones tar-
geted. This investigation suggests that teachers have to pay attention to how 
questions are posed and student prior experience at integrating knowledge in the 
targeted disciplines in interdisciplinary approaches to modelling if they want to 
influence the direction of student modelling and to reduce time spent by student 
groups merely understanding the context.

A research project conducted by Spooner in New Zealand demonstrates that it is 
possible for authentic mathematical modelling, based on the characteristics and 
behaviours of a professional modelling team, to be carried out at secondary school 
level. From the author’s previous opportunity to work as a member of a professional 
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modelling team, an authentic mathematical modelling experience for secondary 
school students was developed and researched. Classroom activities were created 
and trialled with a group of 16- and 17-year-old students. The activities used took 
the form of messy real-world situations. No manipulation of the situation was car-
ried out to make the model more accessible. The structure of the activity was in the 
prompts given by the teacher to direct students through the stages of the process. 
Data collected from the learning activities showed all aspects of the mathematical 
modelling process were taught to, and learnt by, the group with the exception of 
refining the model.

1.8  Conclusion

As the most obvious output from the ICTMA research community is this series of 
volumes produced biennially, it is important that the lines of connection between 
the studies and theorising in the present volume to previous work and that of others 
researching similar and related ideas outside the community be established and 
demonstrated. In a similar fashion, many chapters in this volume have demonstrated 
the deliberate crossing by researchers of boundaries at the periphery of what has 
been researched previously or the inclusion of members of different communities 
into multidisciplinary research teams to bring a different lens on what is being 
researched. The identification of boundary objects or boundary devices in some of 
the work in this volume could lead to more productivity within research teams oper-
ating or formed on this basis.
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Chapter 2
Mathematical Modelling with Increasing 
Learning Aids: A Video Study

Deike S. Alfke

Abstract This study aims at supporting learners’ competency of mathematical 
modelling in ordinary mathematics lessons by using increasing learning aids in a 
self-regulated learning environment. The study intends to evaluate the feasibility of 
the approach by carrying out a case study. Thirty seventh-graders were video- and 
audio-recorded while working on complex modelling problems supported by 
increasing learning aids and a diagram of the modelling cycle enhanced to indicate 
potential areas of difficulty or blockages to progress as a metacognitive aid. First 
results point out that the usage of increasing learning aids for solving mathematical 
modelling problems supports modelling activities. In this chapter, an overview on 
the modelling tasks is presented, with one task presented in detail. General results 
and results for one specific group will be reported.

Keywords Increasing learning aids • Aid cards • Teacher’s support • Video study • 
Self-regulated learning • Mathematics education • Metacognitive prompts • 
Modelling cycle

2.1  Introduction

For mathematical modelling, the competencies as well as the use of modelling 
activities in mathematics education, is a nationally and internationally highly dis-
cussed topic of didactics of mathematics (Kaiser et  al. 2011, 2015; Kaiser and 
Sriraman 2006; Maaß 2006). The competency of mathematical modelling is one of 
the six central competencies in the German mathematics educational standards 
already having been implemented for more than 10 years. Thus, this competency 
has to be acquired by students during their school career. According to Blum (2011), 
research shows that students display various difficulties when solving modelling 
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problems. Furthermore, an imbalance exists between the amount of the teacher’s 
support and the students’ ability to work independently (Blum 2015). The qualita-
tive empirical study reported in this chapter addresses this imbalance. It aims at 
supporting the competency of mathematical modelling in mathematics education 
using increasing learning aids in a self-regulated learning environment and intends 
to evaluate the efficiency of the approach.

2.2  Theoretical Background and Research Focus

In this section, the theoretical framework of the project is presented. It includes the 
historical background and the framework of increasing learning aids. At the end of 
the section, the research focus is given.

Increasing learning aids are a form of scaffolding (Van de Pol 2010) and primar-
ily follow the taxonomy of assistance by Zech (2002) based on the principle of 
minimal aid by Aebli (1985). The approach of increasing learning aids, with refer-
ence to task-oriented issues, has been developed within natural science education by 
Joseph Leisen (1999).

On the one hand, increasing learning aids in natural science education aim at 
fostering autonomous, cooperative learning of students, and on the other hand, on 
encouraging problem-solving competence and specialised self-awareness related to 
the field (Wodzinski et al. 2006). By providing these increasing scaffolds, the for-
mat of the problems offers students different aids for their working process in the 
form of aid cards. Every aid card comprises two parts, a prompting part suggesting 
general-strategic learning behaviour and a solution part giving single solution steps. 
As the form of scaffolding is these pre-created cards with hints or questions, in addi-
tion to aiding learning, the form of help is such that students can access if, and 
when, needed; that is, they are not dependent on the teacher being available to offer 
support at the time they need it. This way, students learn to control their learning 
process and to assume responsibility for it. Thus, the principle of adaptive instruc-
tion by Weinert (1996) takes effect. The increasing learning aids are an example of 
internal differentiation. They offer an approach to respond to heterogeneity. While 
students usually work in pairs, the teacher is given space for individual advice and 
support if unexpected difficulties occur. The aid cards contain general-strategic as 
well as content-specific learning aids and have the following functions: focusing, 
paraphrasing, visualising, elaboration of sub-aims, activation of background knowl-
edge and verification. All in all, these increasing learning aids have a rather closed 
character.

So far, this kind of increasing support has been primarily applied in natural sci-
ence education for task-oriented problem-solving exercises (Schmidt-Weigand 
et al. 2012), but there is nearly no existing research about increasing learning aids 
in mathematics education and their efficiency in self-regulated learning environ-
ments. This empirical feasibility study aims to close this gap by adapting the 
approach of increasing learning aids from natural science education to the specific 
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requirements of mathematical modelling. The intention is to investigate whether 
students can be supported in solving complex modelling problems by increasing 
learning aids and how students use increasing learning aids when solving mathe-
matical modelling problems. Following Kaiser et al. (2013) and Maaß (2006), com-
plex modelling problems are based on a real complex problem for which students 
have to find the mathematics themselves in order to solve the problem.

2.3  Methods

In this section, the methods used are described. The project follows a qualitative 
design in which the theory of cognitive apprenticeship (Collins et al. 1989) serves 
as the basis for the designed learning environment.

The teaching unit was implemented between November 2014 and April 2015 in 
two seventh-grade classes with 59 students (37 female and 22 male), aged 12 and 
13 years old, at a German grammar school in Hamburg. Not all students took part in 
the research project. The teaching unit comprises six lessons of 90 min each, which 
were held during regular mathematics lessons. The first phase of the unit lasted two 
lessons. It started with an introduction to mathematical modelling in which the 
teacher solved a modelling problem for the students and externalised her thinking 
processes which she usually carries out internally. Based on this activity, the stu-
dents acquired meta-knowledge about the modelling cycle and the provided aid 
topics by going through a worked example where an ideal group of students solves 
a modelling problem and uses the increasing learning aids. Thus, the students in 
class learnt how to use the prompts, the aid cards and when most likely to ask for 
the teacher’s assistance. During the following phase, the students worked on four 
complex modelling problems in groups of three for about 60–70 min during four 
lessons. Scaffolding was provided during these lessons by the increasing learning 
aids. For the students, it was supposed to be a group decision when, and to what 
extent, they sought assistance, but it was also possible for individuals to do so. As 
the students worked more independently, the support of the learning aids was 
expected to fade, as they consulted different and particularly fewer learning aids 
(including the aid cards) and less teacher support. The teacher mentored the stu-
dents throughout the entire working process adapting her assistance to the students’ 
needs (van de Pol 2010).

The focus of the research lies on the handling of the learning aids by the students 
and whether the aid cards and the teacher’s support were effective, especially con-
cerning increasing support in mathematical modelling. The study focused on an 
external as well as an internal perspective. The external perspective was mainly 
surveyed by video-recording and audio-recording in order to analyse classroom 
activities in more detail. Due to organisational reasons, five groups of three students 
were video- and audiotaped in each class during their working process; thus there 
were 30 students in ten groups in total who took part in the study. The students in 
these ten groups worked together for the whole unit and were determined and  
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chosen by the teacher researcher, who taught both classes in mathematics during the 
entire school year. The study included groups of the same and of different gender as 
well as heterogeneous and more or less homogenous groups. Besides the video- and 
audio-recordings, data for this analysis include the students’ posters of the solved 
modelling problems and their scripts written during modelling. To evaluate the 
internal perspective of the students, post-task interviews were conducted. Only the 
students of four out of the five groups in each class could be interviewed due to 
organisational reasons. In order to take student mathematical modelling competen-
cies and their changes into account, the teaching unit was framed by a pre- and a 
post-modelling test.

2.4  Concept of Increasing Learning Aids

In this section, the increasing learning aids, as developed for mathematical model-
ling, are introduced with their components. Increasing learning aids in mathemati-
cal modelling are a form of scaffolding to assist students in their learning process.

The study uses the modelling cycle by Kaiser and Stender (2013) enhanced by 
the metacognitive prompts as shown in Fig. 2.1. Initially, the modelling cycle with 
metacognitive prompts, A–H, is used in order to focus students on their difficulty. 
These prompts are supplied for all stages and transitions of the modelling cycle and 
are given in the form of questions. The prompts with letters B, C, D, H and I indicate 
topics for problems in the real world, whereas the letters E, F and G indicate prob-
lems within mathematics. As lack of progress can occur at any time, prompt A is not 
attached to any stage or transition as are the other prompts. Therefore, there are nine 

Fig. 2.1 Modelling cycle (Kaiser and Stender 2013) with topics of aid cards
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different aid topics. For every aid topic, a card box has been developed. Every card 
box contains general-strategic, content-related and content aids, which increase the 
offered support step by step and build on each other. The students use the aid cards 
in the given order according to the needed degree of assistance. The more cards they 
use, the more intense the help becomes. The last card of every card box recom-
mends asking the teacher for assistance as a final aid.

A problem is identified by using the modelling cycle with the aid topics, in order 
to be able to consult one of the nine card boxes with learning aids given for every 
identified problem. So, for example, if a group has difficulties in understanding or 
simplifying the real situation, the modelling cycle gives as corresponding heading 
and question next to the transition ‘understand/simplify’. Therefore, the students 
know that they should consult card box C for assistance. Not only are the aid cards 
strongly related to the specific modelling examples dealt with in class; but also they 
offer more general support related to modelling strategies such as the usage of the 
modelling cycle as a metacognitive orientation, affective support and finally refer-
ences to problems previously dealt with. The students, as novice modellers, were 
introduced into mathematical modelling, the modelling cycle and the card boxes 
used in this study at the beginning of the teaching unit.

The implemented kind of teacher’s assistance follows the Zech taxonomy (2002) 
based on the principle of minimal aid, that is, support is predominantly given if the 
teacher is asked for advice. The teacher first gives general-strategic help, for exam-
ple, when approaching the group table, she asks the students to present the state of 
their work, and later she might assist the group in finding the right card box to use 
in case the students cannot identify their problem by themselves. Thus, the increase 
of the learning aids is formed by the successively growing level of support within 
one topic for help. This applies to all the specific card boxes and the teacher’s 
support.

The aids were developed by the researcher and teacher jointly with the research 
group of the supervisor of the study. During a development phase possible areas of 
difficulty, of blockages and of progress were anticipated, thus one for almost every 
phase and for every transition of the modelling cycle. In order to evaluate the effi-
ciency of the approach a pilot study was conducted, the aid topics (and also the aid 
cards mentioned below) were revised based on the reactions of the students and 
mathematics educators from the already mentioned research group.

2.5  Tasks

In this section, the topics of the tasks used in this study are given. Following this, 
one of the modelling problems is presented in detail. The students were given four 
complex modelling problems. The problems dealt with realistic topics in the stu-
dents’ field of experience: the reduced lifetime of smokers (recently worked on in 
biology), salvage of a boulder from the river Elbe in Hamburg (on the shore of the 
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river where students live), the dimensions of a clog and the time needed to queue for 
a ride at the funfair in Hamburg. The level of mathematics required in solving these 
tasks is related to content from previous years of schooling; hence, any difficulties 
could not be attributed to lack of relevant mathematical knowledge. One of the 
modelling problems, for which first results will be given below, is presented in more 
detail: The Wild Mouse at the funfair in Hamburg. Almost every child who visits this 
funfair knows The Wild Mouse, and so the students know The Wild Mouse or have 
even ridden it. The task is shown in Fig. 2.2.

A roller coaster with five cars can be seen in the large picture. Therefore, five 
wild mice are driving on the tracks at the same time. There is also a sign that can 
be seen through a magnifying glass. The sign tells the customer that the ride is still 
100 m away. In the small picture, there are four cars in the transition zone. Three 
to four people are sitting in each car. The students have to find out whether the 
child and his father will make it onto a ride with The Wild Mouse before the funfair 
closes.

Fig. 2.2 Modelling task The Wild Mouse. THE WILD MOUSE XXL has only been on the funfair 
in Hamburg since summer 2013. They speed downwards on the tracks from 30 m high with up to 
60 km/h. But don’t worry: the average speed is 16.2 km/h and therefore a lot slower. On a track 
length of 585 m, you will ride down three steep slopes with water fountains in the valleys which 
will give you a little refreshment. As every year, you stroll along the streets on the summer fair with 
your father. And you have already wanted to try out the even faster new WILD MOUSE last year. 
But last year, the queue was extremely long, and your dad did not want to wait that long. He put 
you off until next year. And that is now! As you reach THE WILD MOUSE you start complaining: 
‘Oh no! The queue is at least a hundred meters long. Look at them: The people are waiting way 
down at the 100-metre-sign’. ‘The fair will close in about half an hour. We won’t make that in 
time’, your father replies. ‘Oh no! Please, let’s try it! Look, there are five cars on the track at the 
same time and four cars are waiting over there. And look how fast they are!’ Will it be worth 
waiting?
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2.6  First Results

At first, an overview of the use of the increasing learning aids in one class using the 
modelling problem, The Wild Mouse, is given. Then, as an example, the intense 
work of one learning group working on The Wild Mouse and using increasing learn-
ing aids will be presented.

2.6.1  General Results

An overview of the application of the use of increasing learning aids in one class 
using the modelling problem, The Wild Mouse, is shown in Fig. 2.3. In the first row, 
the existing aid cards for this modelling problem are displayed. The 24 general- 
strategic aids, which are the same cards for every modelling problem, are shaded in 
light grey. The 15 content-related and the content aids, which are different for every 
modelling problem, are shaded in dark grey. The last card of each box is indicated 
with an L. As mentioned above, the last card recommends asking the teacher for 
advice as a last aid. However, the teacher was also asked for advice on other occa-
sions. Sometimes cards for alternative aids for one problem are given, for example, 
if students have difficulties in simplifying the real situation, they choose card box 
C. Part C1 gives the general-strategic aid to look again at the text and the illustra-
tion. It supports by stating two questions: ‘Where can you find really important 
information? (Part C2A)’ and ‘How can you use this information? (Part C2B)’. If 
the students cannot answer these questions, they can use the indicated cards, in this 
case C2A and C2B. The use of the aid cards for each of the five videotaped groups 
is shown in the rows underneath. The legend in the second table explains the letters 

aid
–

group

A
1

A
2

A
L

B
1

B
2

B
3

B
L

C
1

C
2
A

C
2
B

C
L

D
1

D
2

D
3

D
L

E
1

E
2

E
3

E
L

F
1

F2 F
3

F
L

G
1

G
2

G
3

G
4

G
L

H
1

H
2

H
L

I1 I2 I3
A

I3
B

I4
A

I4
B

I5 IL

1 s5 o1 s2 t4 u6 u7 t3 s8 t9 t10
2 o3 s4 t5 o1 o2 o6 u7 s8 t9 t10
3 o1 o2

u6
s4 t5 u3 t7

4 t1 o2 s3 o6
o10
s12

t11 o4 o5
o7

u9 u8 t13
t14

5 o1 o2 s3 s5 u4

Legend
general-strategic aid
contend-related/content aid
successfully used card without a following card for the specific problem s
successfully used card with a following card for the specific problem o
unsuccessfully used card u
teacher was asked for assistance t
order of cards used xi

Fig. 2.3 Application of increasing learning aids
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used, s, o, u and t. The subscript indicates the order in which the cards were used by 
the groups. As stated above, the decision to use a learning aid was supposed to be 
made by the group; but it was also possible to decide this individually.

The chart provides evidence that all the groups used aid cards. Every group used 
at least one aid card successfully in their work. Some aid card topics were used 
more successfully than others. In the process of understanding the problem and 
making assumptions, for example, the use of aid cards of topic C was more success-
ful than the use of aid cards of topic G that offers support in calculating problems. 
Some aid card topics A, B and I were not used in this modelling problem. The cards 
of topics B and I were mostly used in the first two modelling problems, whereas this 
was the last modelling problem. However, the following points are also evident: The 
students did not always ask the teacher for advice in the case when an aid card did 
not help enough. In addition, they did not always fetch the next aid card of a topic 
in the case of insufficient help by the current card. Observation showed students did 
not always use increasing learning aids if they could not progress.

2.6.2  Results of an Individual Group

In this section, an excerpt from the transcript of group 4 will give insight into the 
working process of one group. Some results of the working process will be pre-
sented afterwards. The three girls were simplifying the situation and were making 
assumptions. The girls had read the task silently, and each one had marked passages 
of the text. They had framed the problem of the task together and had collected 
important information from the text. After about 7 min of independent work and a 
5-min discussion about the task problem and the important information given, they 
decided to use an aid card. Their problem is connected to the relevance of the three 
steep drops in the track.

S1: But we have to include the three steep drops in our calculation.
S3: No, I think the steep drops with fountains means the water splashes out of the 

sides.
S2: Yes, but steep drops/
S3: Because the water splashes out of the sides. (She gestures with her hands up.) 

Steep drops. The section where the drop is. You know?
S1: Yes, but/
S3: Everything is included she said.
S2: Shall I get an aid card?
S3: Yes, no, we need to find out what we have. (S1 and S3 look at the modelling 

cycle with the topics of the aid cards.) We need, we have, (She reads.) ‘You’ve 
got difficulties making assumptions. Simplify the situation. You’ve got diffi-
culties simplifying the real world’s situation’.

S1: Yes.
S2: Yes, I’d better fetch support cards C1 and 2. (She gets up and goes to fetch an 

aid card.)
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S1: Yes, 1 and 2.
S2: C, isn’t it?
S1: Yes.
S3: Yes. (She writes.) The highest point of the tracks. Aid card/
S2: Well, the first card says: ‘Look at the text and the pictures again. Where can 

you find particularly important information? How can you use the given 
information?’

S3: We’ve got that.
S2: (She returns with two aid cards, sits down and reads.) ‘Card 2A: The cars, 

important information: The cars have an average speed of 16.2 km/h. The 
tracks are 585 m long. The queue is 100 m long’.

S3: Oh, where does it say that?
S2: (She reads.) ‘The fairground closes in about half an hour. There are five cars 

on the track at the same time and four cars in the transition area’.
S3: Oh! I’ve got an idea!
S2: (She reads.) ‘Four persons can sit in each car. Additional information: The 

cars of the Wild Mouse can go as fast as 60 km/h’.
S3: That’s a good card. Let’s keep this one.
S2: Shall I take the other one back?
S3: I would say yes.

It is evident that the girls made a conscious decision to use the increasing learn-
ing aids in the form of an aid card. The girls identified their problem by using the 
modelling cycle and the possible problems connected to it. One girl took the first 
two cards of aid card topic C deliberately. Another girl read card 1 of the topic 
aloud. The girls reflected on the general-strategic help briefly, and they continued to 
part 2A immediately. Part 2A was also read aloud. The comments of the girls show 
that they grasped the given information, analysed and used it. This aid card solved 
their problem. The two cards of aid topic C, which they had taken, simplified the 
situation, and it was exactly this information which helped the girls to make their 
final assumptions. These assumptions helped to make a real model and developed a 
mathematical model of the situation in order to finally calculate a realistic number 
of people waiting in the queue.

2.7  Final Remarks

First results of the study show that it is helpful to use increasing learning aids for 
mathematical modelling problems due to the following reasons: Every aid topic was 
used successfully at least in one of the four modelling problems. Aid cards helped 
to overcome students’ difficulties and barriers and sometimes even made the teach-
er’s support superfluous. This fostered the independent work of the students. 
Furthermore, it makes sense to use increasing learning aids, because they helped the 
students to progress in solving the modelling problems at several steps of their 
working process.
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Following these first results, a further, and particularly more detailed, examina-
tion of the collected material will be undertaken. The research questions, whether 
students can be supported in solving complex modelling problems by increasing 
learning aids and how students approach increasing learning aids when solving 
mathematical modelling problems, will be answered by means of qualitative social 
research (Kuckartz 2014). Therefore, incidents playing a decisive role will be tran-
scribed and evaluated. The collected material and the modelling tests will be taken 
into consideration as well. It is also intended to provide material with increasing 
learning aids that can be used in mathematics education. The learning aids idea 
already requires expansion; therefore, exercises will be developed connecting com-
plex modelling problems with textbook or test exercises. In addition, the concept is 
meant to be implemented in various school grades.
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Chapter 3
Modelling with Statistical Data: 
Characterisation of Student Models

Àngels Aymerich, Núria Gorgorió, and Lluís Albarracín

Abstract This chapter reports on the solutions of 22 groups of Year 10 students 
(15–16  years old) to a model-eliciting activity involving interpretation of data, 
namely, lists of salaries from five companies. Students were asked to see what could 
be ascertained about the structure of the company based on their mathematical or 
statistical analysis of the data. The students had no previous modelling experience 
but some understanding of statistics. Solutions based on the concepts and the pro-
cesses involved in the models are represented in a graph. This analysis tool allowed 
distinguishing of significant differences between students’ responses. Results show 
a wide range of concepts and mathematical procedures were used. The activity pro-
moted mathematical modelling and could be the first of a didactic sequence aimed 
at working on data distribution and dispersion.

Keywords Model-eliciting activities • Secondary education • Statistics • 
Visualisation tool

3.1  Introduction

This chapter presents an exploratory study with the aim of determining whether 
students of Obligatory Secondary Education (15–16 years old) would create math-
ematical models as defined by Lesh and Harel (2003) during the execution of an 
activity in the field of statistics. The data provided to the students involved salary 
distributions from different companies, which gave a realistic context to the task. 
The students were then asked to describe the type of company these distributions 
corresponded to. This activity combines mathematical and statistical modelling pro-
cesses. Modelling is considered as both a learning means and aim and statistics as a 
tool for understanding the world. In addition, statistics invites the students to 
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combine different calculus and data processing techniques to develop their reason-
ing and explanation potential, allowing them to extract conclusions applicable to 
everyday life.

The type of analysis we suggest is based on the definition of mathematical model 
offered by Lesh and Harel (2003) and is centred on determining which concepts and 
procedures make up the students’ models. In order to analyse the students’ work and 
characterise the models they obtained, we have developed a visualisation tool for 
these models in the form of diagrams. Specifically, the diagrams allow us to easily 
visualise the wide variety of proposals collected and the complexity of some of the 
working teams’ output.

3.2  Theoretical Framework: Mathematical Modelling 
and Statistics

Although many definitions of models are available in the literature, we use that 
given by Lesh and Harel (2003) from the field of mathematics education. These 
authors consider that models are conceptual systems used to construct, describe or 
explain other systems. Models include both (a) a conceptual system for describing 
or explaining the relevant mathematical objects, relations, actions or patterns and 
(b) the accompanying procedures for generating useful constructions, manipula-
tions or predictions. Therefore, mathematical modelling can be understood as the 
creation of complex structures or systems (that have interrelated integrating ele-
ments) created on the basis of interaction cycles. These systems allow for the under-
standing of reality by its simplification. Models can be exported to different real-life 
situations, and they can be generalised and validated. This modelling cycle requires 
feedback from reality and applicability, as well as effectiveness in solving the situ-
ation (Blum and Leiss 2007).

Modelling presents two educational branches: firstly, as a vehicle to convey cer-
tain mathematical content and secondly, as a content in itself, in order to encourage 
and motivate students to face mathematical problems related to the everyday world 
(Julie and Mudaly 2007). In the latter case, mathematical modelling not only entails 
having knowledge of mathematics but also mastering the mathematisation process 
and identifying real-life situations that can be mathematised. This learning process 
is geared towards applying mathematics to different situations with real-life con-
texts and adopting new learning outcomes as consolidated knowledge (Siller and 
Kuntze 2011).

A field in which the task of connecting to reality is most evident is statistics, in 
addition to measure activities. For instance, the NCTM standards recommend 
emphasising statistics and probability as essential facts to promote reasoning and 
the integration of citizens that participate in today’s society (NCTM 2000, p. 4). 
However, despite curricular recommendations, statistics is usually taught in a tech-
nical manner in Spain. As argued by Batanero (2000):
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The new primary and secondary education curricula include general recommendations on 
the teaching of statistics. However, in practice, few teachers teach this topic and in other 
cases it is touched upon very briefly, or in an excessively formal manner. (p. 6)

Statistics didactics have not received the same attention as other mathematical 
contents, but the notion of statistical culture or literacy is starting to be introduced 
as a necessity for citizens of our society. This statistical culture has two main com-
ponents: (a) people’s ability to interpret and critically evaluate statistical informa-
tion, which they may encounter in diverse contexts, and (b) their ability to discuss 
or communicate their reactions to such statistical information, such as their under-
standing of the meaning of the information, their opinions or their concerns (Gal 
2002). From this perspective, and following other authors’ recommendations (e.g. 
Doerr and Lesh 2011; Kazak 2009), we understand that the use of statistical activi-
ties in the classroom may be helpful in modelling tasks. This is due to statistics 
being inseparable from its context, and it is possible to offer the students projects 
and activities which have significant contexts.

3.3  Methodology

3.3.1  Design of the Activity

In this chapter, we will study the output of Year 10 students (15–16 years old) in a 
classroom activity designed to promote modelling using statistical data. Our study 
is exploratory and is based on a qualitative analysis. We worked with 72 students 
(three natural groups, called G1, G2 and G3) from a school in a town close to 
Barcelona at the beginning of the course and without any previous modelling expe-
rience and with basic statistical notions. The students were mainly grouped into 
teams of three, since we believe teamwork allows for the construction of mathemat-
ical models in collaboration with one another. The first author guided the activity in 
the classroom.

The activity proposed had to be complex enough for the students to create mod-
els that were also complex enough, following the guidelines of model-eliciting 
activities (Lesh 2010). We highlight the following considerations introduced to the 
design of the activity:

• Model-eliciting activities were not to be developed to be instructional ‘treatments’ 
whose worth depends on their use inducing significant learning gains in students.

• Average-ability students often make significant conceptual adaptations related to 
powerful mathematical concepts during 60–90 min model-eliciting activities.

• Students whose model development work is most impressive in the preceding 
situations often do not have outstanding academic records on problem sets of the 
type emphasised in traditional textbooks and tests.

We chose to adapt an activity from the project NRICH, giving two different dis-
tributions and asking to determine what type of distribution had been used. We 
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contextualised the different distributions following an idea by Levitt and Dubner 
(2005) that suggested determining the type of company according to its distribution 
of salaries. The problem statement of the activity used is the following:

The data collected is made up of 22 audio-recordings of the work developed by 
each team in the classroom, as well as the final reports given by each of the 22 work-
ing teams.

3.3.2  Data Analysis

The analysis developed is based on determining the mathematical objects, such as 
concepts and procedures developed by the students in the class activity, as well as 
the relationships they establish during the activity with one another while trying to 
find the salary structure of each company. After that we constructed a graph for each 
of the solutions, displaying the mathematical objects present in the resolution at 
each node, as well as the concepts and procedures involved in the development of 
the model. In addition, the segments connecting the concepts display the relation-
ships detected during the activity. Table 3.1 shows the mathematical objects most 

Table 3.1 Most used mathematical objects by the students during the activity

Symbol Mathematical objects Frequency

N Number of elements in the distribution (used) 16
∑xi Sum of values in the distributions (salaries) 5

x Average of each distribution 14

X Average of averages 2

m Minimum of the distribution 12
M Maximum of the distribution 16
I Intervals 5

x xi − Difference between each element and the distribution average 3

Dxi Difference between each consecutive element 2

Salaries and Companies
In the following table, we find a list of salaries from five different 
companies:

 (a) Analyse the data so that you can obtain an idea of the structure of each 
company. Write out your conclusions and the methods you used.

 (b) This analysis should provide you with criteria to classify the different 
companies. Classify them and argue why each of them fulfils the criteria 
established.
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used by the students in this activity (due to space constraints). This list is a result in 
itself as it shows a wide range of concepts and procedures that support the models 
generated by the students.

Figure 3.1 shows one of the diagrams from the final output of a team who sepa-
rated the company’s data into different parts. In the text, the students wrote: “1) We 
have ordered the numbers from large to small, 2) We have subtracted each salary 
from the previous salary.” The solution obtained by these students gives effective 
structural information, since they classified the data into different levels, defined by 

Fig. 3.1 A sketch of the work of group G2_g07
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intervals (I). Specifically, they arranged the salaries in decreasing order and grouped 
them into intervals. However, their intervals were not chosen intuitively; they calcu-
lated consecutive differences (Dxi) between salaries and introduced a new interval 
of data every time they identified a significant jump from one salary to the next. In 
the lower part of Fig. 3.1, we can observe the structure proposed for the company 
with a first owner, a second owner, three department directors, 40 employees and 
three low-skilled workers.

For each solution, we have generated a graph including the mathematical objects 
used in the developed model and their connections during the solving process. The 
radius of each circle is proportional to the number of times the object is referred to 
(also the colour intensity), and the number in each edge indicates the number of 
times that connected objects are related during problem solving. In the right part of 
each graph, we place the concepts (in blue) and procedures (in green) that emerge 
during the discussion that are proposed but not used in the final model developed by 
students.

The graph generated for G2_g07 group is shown in Fig. 3.2, where it is also 
evident that the students have used other concepts such as the number of people 
in the company (N) and the maximum (M) and minimum salaries. Among other 
procedures proposed, but not used, we highlight the processes of ordering from 
minor to major (θ), of comparing with other real and known companies (ER) and 
the discussion of external variables that may lead to such a distribution (Var). 
This is how we developed the analysis of the students’ solutions and products and 
created the diagrams that describe each of the generated models when attempting 

Fig. 3.2 Graph elaborated on the basis of the resolution of group G2_g07
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to explain the structure of companies. We display the results of our analysis in 
Sect. 3.4.

3.4  Results

3.4.1  Relevant Concepts Detected and Complexity

Some of the models proposed by the students are based on concepts that they devel-
oped for the activity. An example of this is the work of group G03_g01 (Fig. 3.3), 
who based their model on calculating the average of the differences between each 
data item and the total group average. The latter concept clearly includes the main 
ideas that characterise standard deviation.

On the other hand, the complexity of the models produced by the students can be 
measured by the number of mathematical objects used to develop their solutions. 
Table 3.2 shows that four of the productions analysed are based on two or fewer 
objects, nine of the groups used three objects and nine groups used four or more 
objects. These results show that this activity allows the students to independently 
develop concepts relevant to statistics while elaborating high-level mathematical 
models with a high conceptual complexity.

Fig. 3.3 Diagram of the model produced by group G03_g01
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3.4.2  Variety of Resulting Models

Figure 3.4 gathers six of the diagrams resulting from the analysis of the students’ 
productions during the activity, showing the structural variety of the proposed mod-
els. We can see that some groups work on the basis of different concepts and proce-
dures but do not relate them. Others establish relationships between all the concepts 
used, while others base their solution on a small number of concepts and procedures 
which they modify. The latter case yields diagrams in which some mathematical 
objects are only related to one other of the objects used.

3.4.3  Responding to a Different Perspective

The proposed activity contains two questions geared to encourage students to 
approach the main activity – to classify companies according to their salary distri-
bution – from different perspectives. However, we observed that the students did not 
directly respond to questions (a) and (b). Specifically, in 18 out of 22 products ana-
lysed, the students focussed on determining the type of company that corresponded 
to each distribution. This can be observed in the diagrams, since they only include 
one mathematical model to respond to both activities. In previous research, we have 
found situations in which students change the objectives of the activity to approach 
them to what they consider most natural for the corresponding context, as explained 
in Albarracín and Gorgorió (2013).

3.5  Discussion

Using the visualisation proposed for the students’ models in the form of diagrams 
that derive from the definition provided by Lesh and Harel (2003), we have searched 
for patterns in these models. On an initial review of the data, the models proposed 

Table 3.2 Number of mathematical objects used by each group

1 2 3 4 5 6 or more

G1_g03 G2_g06 G1_g01 G1_g05 G2_g07 G1_g04
G3_g08 G3_g09 G1_g02 G3_g01 G3_g04 G1_g07

G1_g06 G3_g05 G3_g03
G2_g01 G3_g07
G2_g02
G2_g03
G2_g04
G3_g02
G3_g03
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by the students may not seem very different in structure. However, using the afore-
mentioned visualisation, we have been able to distinguish significant differences 
between them. We were especially able to detect differences in relations between 
the participating mathematical objects, the concepts that appeared and the proce-
dures used by the students. These graphs gave us a perspective of the complexity of 
the models developed by the students.

It is noted that this activity has promoted the appearance of important mathemat-
ical ideas that the students had not worked on previously, such as the concept of 
normality, present in many discussions but without taking shape in the last models. 
Another important concept that appears – that is also difficult to deal with in depth – 
is that of data dispersion. It was observed that students used different types of dia-
grams to represent the latter and some teams even elaborated their own methods to 
determine it. The developed analysis has allowed us to visualise the models gener-
ated by the students with a high level of detail, and this complements other tools for 
analysing students’ model-creating process, such as that proposed by Matsuzaki 
(2011).

Fig. 3.4 A sample of six diagrams obtained from the analysis

3 Modelling with Statistical Data: Characterisation of Student Models



46

On the other hand, the model-eliciting activity allows for different modifications 
that will lead to working on different concepts, only changing the type of data 
offered. There are several ways of modifying this activity to obtain data that will 
allow us to promote modelling processes more effectively. An option would be to 
increase the amount of data in order to avoid modellers searching for data elements 
one by one. Alternatively, there could be more data available, and the students’ task 
would be to choose which items are necessary to complement their model in order 
to identify the structure of the company and its categorisation (hours worked, the 
company sector, etc.). Providing companies with different numbers of workers 
could be an obstacle, since on the one hand the modelling should be as realistic as 
possible; however, the number of workers is, to many, already a criterion strong 
enough to make a classification. The data could be entered in the problem formula-
tion such as the number of workers and the same average salary to force students to 
search for other criteria. It would also be interesting to use activities that present 
equivalent mathematical procedures but include new contexts to promote the use of 
different solution strategies, as studied in Albarracín and Gorgorió (2014).

3.6  Conclusions

Based on the results of our study and following the definition of Lesh and Harel 
(2003), students create models with different levels of complexity to give answers 
to the questions posed to them in the activity. Some of the models studied can be 
applied to real-life situations similar to that which was proposed, where the same 
mathematical concepts and procedures may intervene and questions arise of a simi-
lar modelling level of difficulty. However, this study does not guarantee that the 
students will be able to solve these alternative activities. In our study, only two 
groups used a single mathematical object to generate the model on which they based 
their solution. Other groups used a larger number of concepts to construct their 
models, but we understand that the key indicator is the number of related concepts 
that allow for establishing a model. It is necessary to carry out new studies in this 
direction.

We observe how the activity proposed created the need to quantify the difference 
or similarity of salaries. It can therefore be a good activity to introduce all the con-
tent related to dispersion and the different ways of measuring it. During the resolu-
tion process, students are informally discussing a large number of statistical concepts 
(such as the normality of a distribution). From this point of view, this activity could 
be the first of a didactic sequence aimed at working on data distribution and 
dispersion.

À. Aymerich et al.
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Chapter 4
How Teachers Can Promote Mathematising 
by Means of Mathematical City Walks

Nils Buchholtz

Abstract By using mathematical city walks, teachers can promote competences in 
mathematising. In this out-of-school activity, the independent setting up of mathe-
matical models is practised based on meaningful reality-based tasks. It is crucial 
that the tasks are appropriately selected for the cognitive skills of the students and 
include basic ideas specific to mathematical topics. The chapter analyses an exam-
ple of a task according to basic ideas contained, potential difficulties and possible 
solutions. Based on the reconstructed basic ideas, teachers can also use the tasks of 
a mathematical city walk diagnostically. For this purpose, students can be inter-
viewed in a diagnostic interview about their solution approaches.

Keywords Mathematising • Tasks • Basic ideas • Math trails • Percentage • 
Diagnostic dimension

4.1  Introduction

Students are often faced with specific challenges and difficulties when solving real- 
world application tasks in mathematics education as the fundamental step between 
the reality context of a task and its mathematical solution – the so-called mathema-
tising – requires skills in putting up adequate mathematical models and interpreting 
the outcomes from using a model in relation to the problem situation (Blum 2007; 
Galbraith et al. 2007; Turner et al. 2015). The mediation of these central skills is one 
of the tasks of teachers when dealing with modelling activities, but its instructional 
implementation can run the risk to be limited to the use of deficient embedded word 
problems following the strategy: “Ignore the context, just extract all data from the 
text and calculate something according to a familiar schema” (Blum 2015, p. 79). 
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In the worst case, tasks can even neglect an autonomous mathematisation (e.g. if 
mathematical models are already pre-made and only their fit in practical situations 
has to be evaluated). To avoid this, teaching mathematising requires, however, not 
only the ability to develop suitable learning environments and to select appropriate 
tasks but also a specific diagnosis to assess the skills of the students in this area 
properly (Borromeo Ferri and Blum 2010).

This chapter presents possibilities for the promotion of mathematising specifi-
cally by out-of-school activities and their respective requirements for teachers. For 
this purpose, the chapter is based on the development of meaningful reality-based 
tasks of a mathematical city walk for percentage calculations in Hamburg – a spe-
cial type of a math trail (Shoaf et al. 2004). One focus of the chapter is the didactical 
considerations for the development, selection and use of appropriate reality-based 
tasks, if such teaching projects are planned in mathematics lessons. A second focus 
is the diagnostic dimension of such non-formal learning opportunities. The chapter 
illustrates exemplarily, by an analysis of a student solution, how teachers can use the 
respective tasks to identify errors and misconceptions of students in order to develop 
appropriate individual support measures.

4.2  Theoretical Embedding

For the field of mathematical modelling, already different approaches exist to 
describe the relevant skills of teachers (e.g. Blum 2015; Doerr 2007; Kaiser et al. 
2010). Borromeo Ferri and Blum (2010) describe a four-dimensional model of 
teacher competences for teaching mathematical modelling, which includes (1) a 
theoretical dimension and (2) a task dimension, that comprises skills that teachers 
must have in order to assess the potential of modelling tasks (e.g. in terms of mul-
tiple solutions or the cognitive challenge of the content). The model also includes 
(3) a curricular dimension about knowledge for planning and implementation of 
modelling in the classroom and (4) a diagnostic dimension of teacher competences 
that refers to the assessment of student achievements in the field of modelling. This 
fourth dimension includes, for example, not only an awareness of the various sub- 
steps in the modelling cycle but also the assessment and evaluation of student solu-
tions in terms of their technical adequacy, conformity and accuracy. In addition, 
knowledge about learning disabilities and anticipation of possible errors related to 
modelling belongs to this dimension. When teaching mathematising, especially 
knowledge in the area of tasks (see Sects. 4.3 and 4.4) and the diagnostic dimension 
(see Sect. 4.5) is required.

The transformation of reality-related contexts into mathematical structures, con-
cepts or models – the so-called “mathematising” (Freudenthal 1983) – occurs not 
only in complex modelling processes but also in much more elementary tasks such 
as simple measuring. In educational standards and international assessment studies 
like PISA, mathematising is accordingly seen as a central aspect of mathematical 
modelling; however, even simple translation processes between an  extra- 
mathematical situation and mathematical models are recognised (see Turner et al. 
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2015). When students mathematise, they have to enable content-specific images that 
are related to the context in which the mathematisation takes place.

These content-specific images are described within the German mathematics 
education discussion as so-called Grundvorstellungen or basic ideas (vom Hofe 
1998; Kleine et  al. 2005) or internationally as concept images (Tall and Vinner 
1981). Basic ideas can be understood both as distinct individual patterns for the 
acquiring of a mathematical concept and ideas for operating with mathematical con-
tent. Basic ideas build on known facts or contexts and support the development of 
visual representations for the internalisation of a mathematical concept and so 
enable learners to apply concepts to reality by recognising mathematical structures 
in real contexts (vom Hofe 1998). So, especially for mathematising, basic ideas play 
a decisive role.

To exemplify and specify the subject-specific context of mathematisation, three 
basic ideas of percentage calculation are described (see Hafner 2011):

 1. The ratio- or of-hundred idea: The proportion p% is transferred to a (fictional) 
situation with 100 units. Here, the percent sign is linguistically interpreted as “… 
of hundred”, that is, of 100 units, p units are referred to.

 2. The hundredth- or operator idea: The specified p% is seen as a hundredth frac-
tion p/100 and multiplicative operator. For a fixed percentage, each percentage is 
calculated by multiplying the variable reference with the constant hundredth 
fraction.

 3. The unit- or quasi-cardinal idea: By an assignment of the size range of the refer-
ence variable to a notional size range of percentages, one can calculate percent-
ages. Percentages are in this case treated as an independent entity with the unit 
%. The whole corresponds to 100%, equivalent to one hundredth being 1 %. In 
particular, p% of the whole corresponds to p times the hundredth part of the 
whole.

Teachers need “to accurately gauge the difficulties and cognitive demands of the 
tasks and the prior knowledge of their students” (Brunner et al. 2013, p. 230). For 
this, basic ideas have a specific diagnostic use in mathematics education: When it 
comes to the learning of mathematical content or processes like mathematising, 
basic ideas can be used from a normative point of view for a didactic description of 
mathematical tasks. They describe in this case what students should ideally learn 
based on a task. So when selecting or developing appropriate tasks, teachers can 
consider the extent to which a cognitive challenge is ensured by the integration of 
different basic ideas and to which extent students are able to set up mathematical 
models (i.e. the task dimension of teacher competence). On the other hand, basic 
ideas can also be used in a descriptive way for a description of individual images 
and strategies of the students. Interpretively, they describe what students actually 
imagine when working on tasks and how these ideas influence their solution of the 
tasks. By studying the solution strategies of students, teachers can gain insight into 
the formation of specific basic ideas by individual students and thus diagnose 
 mathematising competences (i.e. diagnostic dimension of teacher competence) in 
order to provide individual learning support (cf. Brunner et al. 2013).
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4.3  The Mathematical City Walk

Mathematical city walks are a special type of math trails. Shoaf, Pollak and 
Schneider describe them as walks to discover mathematics:

A math trail can be almost anywhere – a neighborhood, a business district or shopping mall, 
a park, a zoo, a library, even a government building. The math trail map or guide points to 
places where walkers formulate, discuss, and solve interesting mathematical problems. 
(Schoaf et al. 2004, p. 6)

They have been known since the 1980s and exist as an out-of-school leisure activity 
for families and persons interested in mathematics (Blane and Clarke 1984). The 
range of mathematical content in math trails can extend from primary to secondary 
education and so accordingly the complexity and difficulty of the selected tasks. A 
central idea of the math trails is that students solve mathematical tasks and problems 
on specific objects in the city or in the surroundings by estimation or measurement 
of realistic sizes (see Ludwig and Jesberg 2015). However, the mathematics required 
for the tasks of math trails often varies greatly. But in this special form of mathemat-
ical modelling, in particular, methods of simplifying and mathematising play a cen-
tral role that represent cognitive hurdles for many students. It therefore seems 
advisable to promote mathematising via mathematical city walks exclusively in 
only one content-specific area, which should have played a central role in the class-
room before, and to adapt the tasks to the cognitive abilities of the students (also 
with regard to a manageable processing time).

The mathematical city walk for percentage calculation in Hamburg has been 
tested with a class of seventh-graders of a Hamburg Gymnasium. The class con-
sisted of 25 pupils, 9 of them girls and 16 boys. The class did not have much experi-
ence with modelling tasks, but percentages had recently been taught in class. The 
city walk consists of four tasks with respective subtasks, comprising concepts and 
basic ideas of the percentage calculation (see Fig. 4.1 for an example). The tasks are 
designed to ensure that the students have to carry out concrete measurements and 
identify required quantities on the objects autonomously in groups of threes. They 
process the mathematisation by a meaningful assignment of determined variables 
into a mathematical model. At each individual station of the trail, the groups are 
allowed a processing time of 20 min (so the walk takes about 90 min in total, which 
is two teaching lessons). Each group is equipped with a tape measure and a folder 
in which the tasks are collected. All solutions to the tasks must be recorded on a 
group worksheet and submitted for a later consideration of the learning process.

The process of mathematising within the tasks takes place in comparatively 
small steps and the developed mathematical models are of low complexity. On the 
one hand, this is done to support independent mathematising piece by piece (the 
students are grade 7), and, on the other hand, this keeps the processing time of the 
tasks generally quite short. For an overview, the following important criteria for 
tasks which teachers should consider when planning a mathematical city walk are 
summarised.
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The tasks of a mathematical city walk:

• Relate to content previously treated in class,
• Take into account different basic ideas of the topic,
• Encourage students to mathematise independently,
• Are characterised by a sufficient degree of openness (from the number of possi-

ble approaches for determining a particular solution up to the number of possible 
solutions),

• Are related to the associated objects and should not be solvable without them,
• Can be solved by determining sizes on the spot,
• Have a realistic problem orientation,
• Have differentiating features, such as a stepped task format,
• Promote collaborative work,
• Should not exceed the processing time of 20 min,
• Should be accessible within 10-min walk.

In the following example, the task, Art Gallery, as well as its requirements with 
respect to mathematising, will be analysed. Attention is paid to the basic ideas con-
tained in the task and the anticipation of learning difficulties or potential errors. 
Such task analyses are important for teachers in the area of knowledge of tasks, 
referring to the second dimension of the framework of Borromeo Ferri and Blum 
(2010).

Fig. 4.1 Task Art Gallery
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4.4  Task Analysis

In the task, Art Gallery, the students have to measure the sizes of the ramps on the 
platform of the Hamburg Art Gallery so that the slope of the ramps can be deter-
mined in percent (see Fig. 4.1).

First, the students have to estimate, measure or count floor tiles or step lengths to 
make a comparison between the lower and upper sections of the ramps on the plat-
form, which have the same dimensions. To determine the slope of the ramp in the 
third task, the students are to determine in the second task the height difference that 
is overcome by the ramps. This perpendicular distance (75 cm) can be best mea-
sured by means of the stairs; however, the students might also come up with the idea 
to take the sloping side of the stairs (104 cm) as a measure to look for the height of 
the ramp, in particular if the meaning of the term “perpendicular” is still unclear (cf. 
Fig. 4.2). The third task involves identifying the length of the ramp and finding a 
method for calculating the slope, the actual mathematisation. Since the exact dis-
tance (1152.25 cm) is not directly measurable, we are content with determining the 
horizontal distance of the ramp from the ground tiles (11.5 m = 1150 cm). The dif-
ference between the two sizes is small and can be revisited in grade 8 during the 
treatment of the Pythagoras theorem. Also an interpretation of the result with regard 
to the problem is demanded. One possible approach for a mathematisation can be 
seen in setting up a relational equation (75 cm/1150 cm equals the sought percent-
age/100 %) or using the formula to calculate the percentage (p = (75 × 100)/1150). 
Both approaches are mainly based on the ratio- or of-hundred idea (see Sect. 4.2), 
in which the difference in height must be understood as a certain hundredth part of 
the horizontal distance. If the sizes were determined correctly, the result is a slope 
of about 6.5%; in the case of erroneously using 104 cm, the result is a slope of about 
9%. With regard to the problem for wheelchairs, it can be stated that driving onto 
the ramps would not be safe in either case, although in the first safe driving on the 

Fig. 4.2 Relevant measures of the ramps of the task, Art Gallery
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ramps would certainly still be possible. Possible learning difficulties for an adequate 
mathematisation might occur by the difficult assignment of determined variables 
into a mathematical model by the already mentioned incorrect determination of the 
height and when it comes to dealing with the various units m and cm. Another pos-
sible source of error is if the students already interpret the ratio of height and the 
horizontal distance (0.065) as a percentage (0.065%).

4.5  Diagnostic Use of Tasks

Looking at the diagnostic dimension of teacher competences for teaching mathe-
matical modelling (see Sect. 4.2), teachers can obtain valuable information about 
the students’ competences in mathematising from an analysis of the solutions of the 
students and a comparison between the basic ideas intended by the tasks and the 
solutions of students (see Hafner and vom Hofe 2008). For this purpose, solutions 
can be examined according to possible misconceptions in order to derive appropri-
ate supporting measures. In the following, one example of a students’ solution of 
the task, Art Gallery, is analysed in this way.

4.5.1  Sarah’s Solution

In order to find a reasonable solution, Sarah mathematised by making a sketch of the 
situation in which she entered the measured dimensions for the variables (Fig. 4.3). 
Unfortunately, the quantities (height and horizontal distance) are interchanged in 
her solution and furthermore measured in different units (m and cm), which results 
in a calculation error. The notation of 77.5 ÷ 11.5 indicates – despite the mathemati-
cal errors – that Sarah wanted to set up a ratio equation by comparing two deter-
mined distances to each other. Looking closer at the mathematisation, it is noticeable 
that she obviously was uncertain about which determined size had to be divided by 
which. Together with the other students of her group, Sarah has finally agreed on the 
proper mathematical model but has operated with incorrect units. The result 6.73 for 
the percentage of the slope is coincidently correct in this case because the quotient 
of height and horizontal distance (0.0673) needs to be multiplied by 100 to specify 
the percentage of the slope (6.73%). Sarah’s answer to the task however is related to 
the problem and interprets the mathematical result correctly. This re-translation of 
mathematical results with regard to a real solution actually shows the progress of 
Sarah in the acquisition of mathematisation competence.
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4.5.2  Diagnostic Interview

Findings from the New Zealand Numeracy Development Projects recommend the 
use of diagnostic interviews, in which the students are asked about their solutions 
(cf. Ministry of Education 2008; see also Hafner and vom Hofe 2008). With these 
kinds of interviews, at least partially, insights into the development of competences 
in the field of mathematisation can be gained. However, a considerable number of 
such interviews based on diagnostic findings can be conducted for individual cases 
only. A list of diagnostic questions that teachers might use follows:

• Can you describe the task in other words?
• What can you find out from this task, anyway?
• Can you explain your steps to solve the problem?
• Are there also other solutions?
• Which variables play a role in the calculation?
• How did you determine these sizes? In what unit are they given?
• How are the variables brought together in your calculation?
• Can you describe your calculation in words?

The diagnostic interview with Sarah and the other students of their group revealed 
that Sarah had difficulties with mathematical quantities. Only with a strong focus on 
her sketch and a lot of help could she identify and explain her calculation approach:

T: OK, why is this supposed to be calculated that way?
S: Because 77.5 is this lower surface [sic], and 11.5 is this area [sic]. 11.5 divided 

by 77.5 would make no sense, we tried that. [...] That is why we then exchanged 
the values. [...]

T: So why did you divide the sizes at all?

Fig. 4.3 Sarah’s solution of the task, Art Gallery
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S: I always memorised, that if you have to calculate percentages, you have to 
divide the sizes.

T: That’s right. But do you remember why you have to do that?
S: (points to the base of the triangle)
 This is the basic value, I think, because that’s down here. [...] This is the per-

centage (points to the height). And that I have to divide.
T: Aha. What do I have to divide by what? Percentage by basic value or basic 

value by a percentage?
S: Percentage by basic value! For example, if one has 12% slope, that is 12 m 

divided by 100 m.

The interview revealed that Sarah principally has an understanding of the con-
cept of percentage as a ratio, as she refers to her prior content knowledge and has 
the ability to assign the sizes in the sketch to her calculation. However, there are still 
uncertainties with the mathematical terminology. Sarah’s individual image of per-
centage seems to be a ratio, but from her comments, it becomes clear that this con-
ceptual understanding could be memorised without understanding the background 
for the assignment of sizes and their dimension. Sarah’s competences in the field of 
mathematisation must therefore be promoted conceptually, for example, by explain-
ing other solutions of the students. In particular, further exercises for the compre-
hension of the concept of percentage calculation can also be useful here.

4.6  Conclusion

The results of the mathematical city walk revealed difficulties the students had with 
the tasks, but they are encouraging from the diagnostic point of view. The diagnostic 
interview with Sarah was useful and revealed some of her misconceptions, which 
can be subsequently worked on. Obviously, it is very difficult for students in grade 
7 to deal with reality-based tasks when mathematical approaches need to be set up 
autonomously; an experience that is also shared by Blum (2007). The tasks of the 
mathematical city walk therefore can provide the students at least a learning oppor-
tunity for mathematising. Teachers should seek to integrate this central mathemati-
cal activity in mathematics lessons more often and need to select tasks and look at 
solutions thoughtfully. By using a mathematical city walk, it is possible to create 
incentives for autonomous mathematising based on real-world problems in a delim-
ited thematic context.
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Chapter 5
L’Hospital’s Weight Problem: Testing 
the Boundaries Between Mathematics 
and Physics and Between Application 
and Modelling

France Caron and Kathleen Pineau

Abstract Although this classical optimisation problem can be considered an appli-
cation, some of the difficulties it brings to students have to do with modelling. We 
show how an activity, designed from this problem and trialled in a transitional math-
ematics course of a technical engineering school in Montreal, allows students to 
experience, within the goals and practical boundaries of the course, some elements 
of the modelling process and to develop skills useful for that purpose. As such, it 
can serve as inspiration for gradually introducing modelling considerations in 
content- driven mathematics courses that do not traditionally allot time for exploring 
open situations. The crossing into physics, despite the strong potential envisioned at 
the design stage, proved to be more difficult to implement.
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5.1  Introduction

Modelling has been a topic of growing interest in mathematics education research, 
since before it was even mentioned explicitly in the mathematics curriculum 
(Lingefjärd 2007). Although some national school curricula or specific university 
courses or programmes now clearly refer to modelling as an objective or as an 
approach to the learning of mathematics, there is still substantial effort required to 
make it a reality in most mathematics classes, as “the majority of the teachers have 
yet to experience the role of a modeller and hence have difficulty acknowledging the 
potentials of the use of modelling tasks in their classrooms” (Ng 2013, p. 339). This 
is even more of a challenge in courses that are essentially content driven and for 
which the learning objectives and time constraints appear to prevent students from 
entering any rich modelling activity, let alone approaching an open-ended situation. 
In these courses, introducing problems where the concepts that have just been taught 
can be applied directly seems to be the best a teacher can do in order to connect 
mathematics with some of their uses in the ‘real world’.

With the teaching of functions, this interest in short application problems, com-
bined with the presence of technology, tends to reduce modelling to curve-fitting 
exercises in many school curricula. If such an approach can help select among pos-
sible function candidates for a given relationship within a given domain, it also runs 
the risk of implicitly promoting “subversion of reality by choices available on the 
menus of calculators” (Galbraith 2007, p.81). More generally, restricting modelling 
to the empirical paradigm may well miss on the essential aspects of a given reality, 
its underlying structure with the key relations and interactions at play. Although 
such a paradigm can assist in making predictions, it does little to deepen under-
standing of a situation; for that, one has to turn to the theoretical paradigm (Maull 
and Berry 2001), by studying the underlying processes and by identifying appropri-
ate laws and principles, which may come from another discipline and from which a 
model can be built and later validated with data. Maull and Berry noted that students 
tend to approach a problem with the empirical paradigm, even when a theoretical 
approach would be accessible and more appropriate.

To allow for a better representation and a stronger presence of modelling in the 
learning of mathematics, one can either promote major curricular changes and hope 
that teachers will embrace and implement these changes as soon as they are made 
effective – the ‘big bang’ approach, as labelled by Burkhardt (2014) – or look for 
openings in today’s curriculum and teachers’ practices to find ways in which to 
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build gradually on what is already done or could be done with existing goals, levers 
and constraints. The activity presented here fits this second approach: by working 
with teachers of mathematics and physics, a rich application problem was trans-
formed into an engaging activity that allows students to experience some elements 
of the modelling process (Blum et  al. 2002) while learning or applying specific 
strategies, concepts and skills, useful for getting to the underlying structure of the 
situation. The collaborative effort that took place could be associated to a design 
research approach, where there was a clear intention of understanding the teachers’ 
needs and institutional constraints. The development and first validation of the 
activity within a class of transitional mathematics in a technical engineering school 
allowed us to test to which extent teachers and students could cross, in such context, 
the boundary between application and modelling and the one between mathematics 
and physics.

5.2  Origin of the Activity

The activity was designed as part of a larger project initiated in 2007 by three 
Montreal school boards (Caron and Savard 2012). Faced with a lack of learning 
activities for a new applied stream of secondary school mathematics in Québec, 
pedagogical counsellors turned to École de technologie supérieure (ÉTS) to col-
laborate on the design of hands-on activities for the concepts and skills to be learned.

ÉTS is a technical engineering school whose programmes are offered in the form 
of cooperative education and are tailored to persons holding a technical college 
diploma in engineering technology. The school relies on senior lecturers in the 
Department of General Studies to administer its common core courses and ensure, 
through transitional courses, the meeting of requirements by all students, who come 
from diverse scientific backgrounds. The close proximity of lecturers in mathemat-
ics, physics, chemistry and computer science within the department was key in 
developing hands-on learning activities.

The interdisciplinary and inter-level collaboration developed further with the 
progressive entry of college (cegep) teachers. From the initial goal of motivating 
students for mathematics and sciences, the project added to its objectives the sup-
port of secondary-tertiary transition. This allowed some of the activities, such as 
L’Hospital’s Weight Problem, to also be used in cegep courses and in the transitional 
mathematics course offered at ÉTS.

5 L’Hospital’s Weight Problem: Testing the Boundaries Between Mathematics…
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5.3  L’Hospital’s Weight Problem

This problem was initially presented in 1691 by Johann Bernoulli to the Marquis de 
L’Hospital as an introduction to differential calculus.

The potential of this problem for use in a contemporary calculus class was 
explored by Van Maanen (1991) and, later with the use of a symbolic calculator, by 
Drijvers (1996, 1999). Van Maanen’s classroom experiment was conducted using 
one physical apparatus for the class and fixed values for the parameters of the prob-
lem (length of the strings and distance between the end points). Drijvers returned to 
the problem (1996) to show the rich learning activities one can approach with a 
CAS calculator. By observing how students struggled in solving the generalised 
form of the problem, he attributed the obstacle they faced to their difficulties in 
discerning between variables and parameters (Drijvers 1999).

Although the problem itself can be considered an application, in the sense of 
Stillman (2008), both these experiments suggest that modelling is at the core of 
some of the difficulties experienced by the students and that some form of scaffold-
ing should be considered to allow students to benefit from the rich learning potential 
of the problem.

L’Hospital’s Weight Problem
A string is tied to a pulley and attached on the left of a horizontal bar. Another 
string, attached to the right end of the bar, passes through the pulley and ends 
with a weight. Knowing the lengths of the strings and the distance between 
the two end points of these strings on the horizontal bar, the problem is to 
predict the equilibrium position of the weight.
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5.4  Developing Strategies and Skills for Modelling

In keeping with the learning objectives of the applied stream for secondary schools, 
the problem was transformed into a hands-on activity where all students could inter-
act with their own apparatus and use measuring tools to assist them in mathematis-
ing the system.

As it developed, the transitional mathematics course at ÉTS became the field 
where the activity would be first experimented, near the end of the semester, in two 
sections of about 40 students, grouped in teams of two or three. Within this context, 
the learning goals for the activity were to consolidate knowledge and the use of 
trigonometry, functions and the recently encountered derivative while developing 
skills for constructing and validating equations to model a system, playing with 
variables, parameters and composition of functions. The learning activity comprises 
the following phases:

 1. Students become familiar with the components of the apparatus through explora-
tion and assess the dependencies between the different lengths and angles.

 2. Using geometry and trigonometry, they construct equations that encode the rela-
tionships between the different lengths and angles.

 3. They test the validity of their mathematical model by measuring the various 
lengths on the apparatus.

 4. Using their validated formulas, they predict the equilibrium position of the 
weight for a new parameterisation of the apparatus, by looking for the maximum 
on a graph of a function and by using differential calculus.

 5. They check how well they predicted the weight’s position by setting the appara-
tus to the given parameters and measuring.

 6. They refer back to their initial exploration and assess the extent to which the 
equations reflect the dependencies that they had anticipated.

An additional phase was initially included, where the same problem was to be 
approached with the vector analysis of forces, as is typically done in physics. But it 
was tried only with the first group and then dropped, due to lack of time, heteroge-
neity in students’ prior knowledge and the perceived distance with the content cov-
ered in the course.

Although empirical data is used and the goal seems to be for students to predict, 
the modelling performed, even without vector analysis, does not reduce to a curve- 
fitting exercise. Rather than being confined to the empirical paradigm (Maull and 
Berry 2001), the model aimed at by the activity embraces the theoretical paradigm, 
as students must analyse the situation and call upon known concepts and properties 
to build their model, understand the situation and explain their results.

The interaction with the physical apparatus offers major benefits with respect to 
modelling. First, it provides a learning environment that enables students to explore 
and anticipate the behaviour of the system, to formulate their model and to interpret 
and validate the formulas they build. Second, with the possibility of changing both 
the length of the two strings and the distance between their end points, it lends itself 
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to testing various configurations. These benefits could be realised with a simulator, 
but the physical apparatus offers additional advantages. It confronts the differences 
between the results produced by a mathematical model and the measurements on 
the “real thing”. In addition, with the effort required to change the lengths involved 
(by undoing the screws, adjusting the length and redoing the screws), as opposed to 
simply moving the pulley and observing the resulting position of the weight, it helps 
distinguish between parameters and variables.

Built on our own representation of the modelling process described in Blum 
et al. (2002), Fig. 5.1 illustrates in three shades of grey the phases that are experi-
enced by students during the activity. A lighter shade is used for a phase where 
students are less autonomous. For instance, although they are free to explore the 
situation, they are guided in structuring it with questions such as “Does the equilib-
rium position of the pulley change when you change: a) the length of the string that 
holds the pulley? b) the length of the string that holds the weight? c) the distance 
between the fixed end-points of the two strings?” Yet, they get to experience, within 
a qualitative version of the empirical paradigm, a systematic analysis of the distinct 
role of the parameters, a strategy that they could reinvest in a future situation. 
Similarly, as will be shown in Sect. 5.5, the mathematisation part is also assisted 
with strong scaffolding. This is not only to prevent students from getting lost in the 
amount of variables and equations, but it also aims at having them learn how simple 
relations can be combined to build a rather elaborate model, a necessary skill to 
enter the theoretical paradigm for modelling a complex situation and gain a deeper 
understanding of the interactions at play.

Fig. 5.1 Phases of the modelling process addressed by the activity
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5.5  Integrating Scaffolding

In providing scaffolding for building the model, we did not try to comply with 
Aebli’s “principle of minimal support” (cited in Kaiser and Stender 2013). As the 
teacher of mathematics expressed genuine concern that a greater degree of model-
ling freedom could lead students away from the concepts and skills aimed at by the 
activity or prevent them from completing the task within the allotted time, we rather 
looked to provide support that would allow most teams, while retaining some 
responsibility in the modelling process, to evolve on their own in the direction that 
served the mathematical concepts at the core of the lesson, to assess the value of 
their progress and to correct their work if required. The support provided by the 
workbook, the apparatus and the teammates was accompanied with teacher inter-
ventions, on an as-per-needed basis.

A partially defined model with a schematic representation of the situation was 
given for students to complete. The intention was to have students experience how 
a relatively complex model can be built from combining simple relations, through 
arithmetic operations and variable substitution (or function composition). Figure 5.2 
shows an example of the model completed by a team, with a rather creative (if not 
rigorous) use of references.

We also provoked, explicitly in the workbook, regular confrontations between 
models and apparatus. In particular, the activity has students frequently move back 
and forth, through mathematisation and interpretation, between their real model (as 
expressed in their qualitative description of the system) and their mathematical 
model.

Fig. 5.2 Completing the model
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5.6  Some Experimental Results

In the last 4 years, the activity has been used in the transitional mathematics course 
at ÉTS and, more recently, adapted versions in cegep and secondary classes. We 
report on the initial experiment at ÉTS. Photos and videos were taken in two classes 
of about 40 students and added to the qualitative data from the completed work-
books. A questionnaire was also distributed to collect information on students’ per-
ception of the activity.

Of the students, 77% declared having enjoyed the activity “a lot”, while 23% 
said they enjoyed it “a little”. Their appreciation had to do with the “concrete” char-
acter of the situation, the discovery of a “real-life application of calculus”, a “differ-
ent approach than the one seen in physics” and the “progressive learning” provided 
by the scaffolding in the workbook, with a “possibility to review and understand, to 
validate and self-correct”. The derivative, the trigonometric ratios and the relation-
ships between variables, parameters and functions were the main topics that the 
students felt they understood better after the activity.

Most teams correctly assessed in qualitative terms the relationships between the 
different variables and parameters. However, a few teams reviewed their initial 
appreciation of these relationships after having built and worked with their mathe-
matical model.

We were struck by how often, throughout the activity, students took the initiative 
of returning to the apparatus in order to get a better appreciation of the dynamics 
involved (Fig. 5.3), and this, in addition to the planted provocations.

We expected the construction of the equations would be greatly facilitated by the 
schematic representation of the system and the organisation of the partially defined 
model. Yet, this apparently simple exercise clearly marked a moment of revelation 

Fig. 5.3 Exploring the apparatus by playing with the pulley
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for some students, as they worked their way through the different substitutions 
(Fig. 5.4). In answer to the appreciation questionnaire, one student stated that he had 
learned with the activity how to “play with and construct complex and universal 
formulas”.

In trying to have them maintain a critical perspective on the modelling, students 
were asked to explain where the differences between the values predicted by the 
model and the measurements came from. It is interesting to note that all of them 
pointed the finger at the data collection (measurements, instruments), ignoring the 
fact that the model assumes many ideal conditions that cannot be met: a weightless 
pulley, no friction, etc. This is not surprising, as the structuration and the mathe-
matisation had been done essentially from a geometric viewpoint.

5.7  Crossing Disciplinary Boundaries

At the border of secondary and post-secondary instruction, L’Hospital Weight 
Activity also sits at the boundary of mathematics and physics. The contribution of a 
physicist to the design brought forward the value of crossing into physics, and the 
vector analysis of forces, as this perspective added to the explanatory value of the 
modelling activity. Reconciling the equations generated by this approach with those 
that come from calculus also offers moments of intense algebraic manipulations.

The physics approach extended the duration of the activity beyond what could be 
afforded in the transitional mathematics course at ÉTS. In addition, as vectors are 
not part of the content covered in the course and not all students can be expected to 
have prior knowledge of them, the integration of the analysis of forces was not per-
ceived as sustainable.

Fig. 5.4 Substituting variables in composing functions
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With secondary schools, the connection of the problem with physics clearly 
worked against its use, as physics can rarely be assumed to be a course shared by all 
students of a given class. The removal of the physics portion eventually led some 
secondary teachers to try the activity, in its pre-calculus version, and use it for some 
of their groups.

In its first implementation in the science programme at one of the cegeps, the 
interdisciplinary learning potential of the problem was tackled by the physics and 
the mathematics teachers who decided to divide the modelling activity into sections 
to be handled in their respective courses. As the laboratory portion of the activity 
typically falls under the responsibility of the physics teacher, the apparatus was not 
used in the mathematics classes where it would have served a clear purpose in antic-
ipating relationships and validating equations. In trying to have the activity serve as 
an application in both disciplines of concepts that had just been taught, a delay 
occurred that hindered the synergy that could have otherwise developed. There is 
now a will to establish more and stronger connections between the two disciplines 
in future implementations of the activity.

5.8  Conclusion

In summary, the collaboration of teachers of mathematics with a colleague of phys-
ics led to the design of a mathematics learning activity, usable in today’s classes, 
that not only supports the learning of specific math concepts but also opens to the 
development of modelling skills. Despite the richness of the interdisciplinary col-
laboration at the design stage and the promising avenues it opens, the crossing into 
physics at the classroom level appears to depend on the concurrent contribution of a 
physics class taken by all students.

Scaffolding was key to enabling the progress of students in their modelling of the 
situation, along the axes of interest for the course and within its practical boundar-
ies. One could envision such a scaffolding to fade out, if the students were exposed 
to more activities of that nature. Even if the activity did not have the openness typi-
cally associated with a modelling task, its outcome confirmed our intuition that the 
first-time experience of building an elaborate mathematical model by combining 
simpler relations and the constant movement between a situation and its model lay 
important foundations for the development of modelling skills. Recognising the 
value of such steps could help cross the boundary between research and practice in 
mathematics education.
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Chapter 6
Representations of Modelling in Mathematics 
Education

Helen M. Doerr, Jonas B. Ärlebäck, and Morten Misfeldt

Abstract Mathematical models have a substantial impact at all levels of society, 
and hence mathematical modelling stands as an important topic in mathematics 
education. Mathematical modelling has a particular pedagogical/didactical dis-
course as modelling continues to garner attention in educational research. 
Diagrammatic representations of mathematical modelling processes are increas-
ingly being used in curriculum documents on national and transnational levels. In 
this chapter, we critically discuss one of the most frequently used representations of 
modelling processes in the literature, namely, that of the modelling cycle, and offer 
alternative representations to more fully capture multiple aspects of modelling in 
mathematics education.

Keywords Modelling cycle • Modelling competences • Technology • Social- 
critical education • Mathematical modelling • Prescriptive models

6.1  Introduction

Both in society more broadly and in the workplace in particular, mathematical 
models are used to control processes, to design products, to monitor and influence 
economic systems, to enhance human agency, and to structure and understand the 
natural world. Given the widespread use and impact of mathematical models (Niss 

H.M. Doerr (*) 
Mathematics Department, Syracuse University, 215 Carnegie Hall,  
Syracuse, NY 13244, USA
e-mail: hmdoerr@syr.edu 

J.B. Ärlebäck 
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
e-mail: jonas.bergman.arleback@liu.se 

M. Misfeldt 
Department of Learning and Philosophy, Aalborg University Copenhagen,  
AC Meyers Vænge 15, 2450 Copenhagen, Denmark
e-mail: misfeldt@learning.aau.dk

mailto:hmdoerr@syr.edu
mailto:jonas.bergman.arleback@liu.se
mailto:misfeldt@learning.aau.dk


72

2015), it is not surprising to find mathematical modelling competencies as an edu-
cational goal in various curriculum standards documents on national and transna-
tional levels. Prominent examples are the PISA 2012 framework and the recently 
adopted Common Core State Standards in Mathematics (CCSSM) in the United 
States (Council of Chief State School Officers [CCSSO] 2010). The 2012 PISA 
framework defines mathematical literacy as “an individual’s capacity to formulate, 
employ, and interpret mathematics in a variety of contexts. It includes reasoning 
mathematically and using mathematical concepts, procedures, facts and tools to 
describe, explain, and predict phenomena” (OECD 2013, p. 25, italics added). In 
CCSSM, modelling with mathematics is one of eight standards for mathematical 
practices that teachers should seek to develop in their students at all grade levels, 
K-12. Modelling is described in terms of what students are able to do:

Mathematically proficient students can apply the mathematics they know to solve problems 
arising in everyday life, society and the workplace. …[They] are comfortable making 
assumptions and approximations to simplify a complicated situation, realizing that these 
may need revision later. They are able to identify important quantities in a practical situa-
tion map their relationships using such tools as diagrams, two-way tables, graphs, flow-
charts, and formulas. They can analyse those relationships mathematically to draw 
conclusions. They routinely interpret their mathematical results in the context of the situa-
tion and reflect on whether the results make sense, possibly improving the model if it has 
not served its purpose. (CCSSO 2010, p. 7)

Both the PISA (OECD 2013) and the CCSSM (CCSSO 2010) standards docu-
ments include representations of mathematical modelling that are intended to con-
vey to stakeholders and practitioners the key elements involved in learning to do 
mathematical modelling and in learning about mathematical models and their role 
in society. As images of modelling, these representations necessarily convey some 
important aspects of modelling, but as with all images and representations, other 
important aspects of modelling are pushed into the background or left out in some 
way. Hence, our concern with the dominance of particular images of modelling is 
with the influence that dominant images will have as modelling is taken up by writ-
ers of curriculum materials, by textbook authors, by teachers, by teacher educators 
and others involved in professional development and by developers of large-scale 
and high-stakes assessments. One of the most frequently used representations of 
mathematical modelling in curricular documents and in the research literature is 
that of the modelling cycle. Our goal in this chapter is to critically examine the ques-
tion of what important aspects of modelling are pushed to the background or omit-
ted by widely used representations of the modelling cycle.

6.2  The Modelling Cycle

We begin our analysis of the cyclic representations of modelling with the PISA 
framework (OECD 2013), followed by the CCSSM (CCSSO 2010) and then the 
research literature. The PISA document situates modelling in real-world contexts, 
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noting that this includes four contexts: personal, societal, occupational and scien-
tific. Mathematical concepts, knowledge and skill are drawn upon in order to engage 
in the four processes of formulating the model, employing mathematical skills to 
obtain mathematical results, interpreting those results in context and evaluating the 
goodness of the solution (Fig. 6.1).

In the CCSSM (CCSSO 2010), modelling is both a standard of mathematical 
practices at all grade levels and a content standard in high school (grades 9 through 
12). As with the PISA framework (OECD 2013), modelling is about analysing 
empirical situations: “Quantities and their relationships in physical, economic, pub-
lic policy, social, and everyday situations can be modelled using mathematical and 
statistical methods” (CCSSO 2010, p. 72), as shown in Fig. 6.2. The vision of mod-
elling includes both descriptive models (such as graphs of observations) and ana-
lytic models that seek to explain phenomena. Computational technology (such as 
graphing utilities, spreadsheets, computer algebra systems, dynamic geometry soft-
ware) plays a role in “varying assumptions, exploring consequences, and comparing 

Fig. 6.1 Representation of modelling in the 2012 PISA framework (OECD 2013, p. 26)

Fig. 6.2 Representation of modelling in the Common Core (CCSSO 2010, p. 72)
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predictions with data” (CCSSO 2010, p. 72). The CCSSM elaborates each of these 
modelling processes, including a clarification that “compute” does not mean to 
“calculate” per se, but rather means to analyse, to perform operations on relation-
ships between variables and to draw conclusions.

In the research literature on modelling, there are several variants of the model-
ling cycle, such as the widely cited image of Blum and Leiß (2007) shown in 
Fig. 6.3. A similar image has been developed by Blomhøj and Jensen (2007), where 
modelling competency is defined as “someone’s insightful readiness to carry 
through all parts of a mathematical modelling process in a certain context” (p. 48). 
All representations of modelling have their strengths and weaknesses, a point also 
made by Blum (2015). There are some striking similarities among many of these 
cyclic representations, even when the specific words chosen to describe the subpro-
cesses of modelling differ. All of these representations capture some sense that a 
mathematical model is a simplified version of some aspect of the real world that is 
formalized in mathematics for the purpose of solving a problem situation in the real 
world.

Given the recent manifestations and importance of these representations of mod-
elling in curriculum standards documents for policy-makers, curriculum develop-
ers, teachers and researchers, we put forward four important aspects of mathematical 
modelling that are not well captured by the images we have shown: the non-linearity 
of modelling, the role of multiple models and pre-existing models within modelling 
activity, the social and critical aspects of modelling and the role of computational 
media in modelling.

Fig. 6.3 The modelling cycle depicted by Blum and Leiß (2007, p. 225)
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6.3  The Non-linearity of the Modelling Process

These widely used representations of mathematical modelling processes share the 
same problem: they provide a useful analytical abstraction of the processes involved 
when engaged in the creative thinking when an individual (or a group of individu-
als) maps a real problem situation onto some subset of mathematics for some par-
ticular purpose. However, all the individual differences that occur when students 
engage in doing mathematical tasks make the transition from an abstract analytical 
representation of modelling to a more normative tool for planning teaching and 
learning of modelling at best problematic. Teaching approaches that would guide 
students through predetermined boxes would be inadequate for embracing the 
multitude of learning pathways that are known to occur in the classroom (Borromeo 
Ferri 2007; Lesh and Doerr 2012). In her work, for example, Borromeo Ferri 
illustrates both the non-linearity (in terms of following steps or sub-competencies 
shown in the modelling cycles) and the differences between two pupils in their 
individual modelling routes or pathways, as shown in Fig. 6.4.

Just as importantly, when digital technologies are introduced into modelling 
tasks, the non-linearity of students’ actual modelling pathways becomes more 
dynamic and stochastic. As illustrated by Lesh and Doerr (2012), students’ actual 
modelling activity does not move in a linear path through the boxes and subpro-
cesses of the modelling cycle. As students work, they “bounce around” as they 
attend to different aspects of the problem situation (sometimes re-defining the prob-
lem), their mathematical work (revising the relationships between objects), the data 
and their representations (selecting new objects to represent) and their interpreta-
tions of their outcomes in terms of perceived criteria (Doerr and Pratt 2008). We 
suggest that an image of moving between “nodes” or multiple paths in a network (as 
shown in Fig. 6.5) might offer teachers and researchers new ways of thinking about 
both teaching and researching mathematical modelling.

Fig. 6.4 Individual modelling pathways (Borromeo Ferri 2007, p. 2087)
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6.4  The Role of Multiple Models or Pre-existing Models

As noted earlier, models serve many purposes in society and the workplace. Models 
sometimes serve descriptive purposes, where the modeller wants to describe or pre-
dict the behaviour of some real phenomena. Both the PISA framework (OECD 
2013) and the CCSSM (CCSSO 2010) point to the role of graphs in describing 
physical phenomena. However, as Hestenes (2010) and others have pointed out, 
models often need to serve explanatory purposes. To accomplish this, the modeller 
may need to draw on multiple models within the modelling process or on other pre- 
existing models, whose structure may need to be explored and understood. Consider, 
for example, the well-known problem of modelling light intensity as a function of 
distance from a light source. The graph of this relationship can readily be found to 
follow an inverse square relationship, but this leaves an important question unan-
swered: why is this an inverse square relationship? A graph is descriptive but not 
explanatory. To understand why light behaves in this way, another model is needed, 
namely, the geometry of the sphere (see Ärlebäck and Doerr 2015). Most represen-
tations of the modelling cycle do not include how these two models (one descriptive 
and the other explanatory) are brought together in the modelling process.

Fig. 6.5 The nodes of the modelling process (Doerr and Pratt 2008, p. 264)
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6.5  The Social and Critical Aspects of Modelling

We know from the work of Barbosa (2006), Niss (2015) and many others that mod-
els are projected back into the world. Recent years have provided us with numerous 
examples in governance and finance, as well as in science and engineering. For 
example, macroeconomic models of the development of state finances and welfare 
increasingly control political decision-making. New public management structures 
that encourage people to deliver more work and output on certain measurable 
parameters can be seen as the result of underlying models on how to increase worker 
productivity. In finance, the complexity of the models that govern the stock exchange 
(Johansen and Sørensen 2014), and the large losses that occurred as a consequence 
of these models, places new kinds of responsibilities on the mathematicians and 
financial analysts for the major economic losses that occurred during the dramatic 
events in the financial crisis. Our claim here is simple: models have a huge impact 
on our world; but the social and critical aspects of the role of models in such areas 
as governance, management and finance are not captured by the modelling cycle. As 
Barbosa (2006) noted, “mathematical models are not neutral descriptions about an 
independent reality” (p. 294). Barbosa described the kinds of critical mathematical 
modelling activity that occurs when pupils investigate a real social problem as 
“quite removed from the characterization of modelling as involving diagrammatic 
representations” (p. 294). Rosa and Orey (2015) have recently put forward a repre-
sentation (Fig. 6.6) that captures some of the dynamic and humanized aspects of 

Fig. 6.6 Representation of socio-critical modelling (Rosa and Orey 2015, p. 394)
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modelling, capturing the role of the individual modeller, the transformative nature 
of the pedagogy involved and the orientation towards action as models are projected 
back into a social context.

6.6  The Role of Digital Technologies

Some attempts to characterize the role of computational media have aimed at aug-
menting the modelling cycle (Greefrath et al. 2011). For instance, the representation 
shown in Fig. 6.7 depicts the “computer model” as distinctly separated from the 
mathematical model and suggests a sense in which technology becomes a medium 
for helping in the process of moving from mathematical problem (model) to 
mathematical results.

The interplay between the world and the mathematics that are shown in the mod-
elling cycle (Figs. 6.1, 6.2 and 6.3) might have described the mathematical model-
ling done in an era when many crucial insights were gained from the interplay 
between mathematical analysis and real-world experiments. However, advances in 
computational media have changed this situation because a new kind of “experi-
mental” work is now done through computational models of various phenomena. 
Moreover, these computational models often involve mathematics (particularly in 
the case of stochastic phenomena) that is simply not possible with the closed form 
solutions suggested by the image of the modelling cycle. Validation of such compu-
tational models is often far more complex than a mapping back to the problem 
situation would suggest. With computational media we often have several 
types of models involved in much modelling work. Indeed, we have only to look at 
the role of mathematical modelling in biology to see the role that computational 
experiments play. One representation that captures this interplay between physical 
phenomena (or empirical data), simulation (or computational data) and analysis (or 
explanatory theory) is shown in Fig. 6.8.

Research has shown that modern mathematical software can be a powerful tool 
in supporting a multitude of mathematical work processes and can act as a tool 

Fig. 6.7 Modelling cycle augmented with technology (Greefrath et al. 2011, p. 316)
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towards enhancing the mathematical abilities of their users (Guin et  al. 2005; 
Laborde 2005). But computational media have also been described as a new 
 “universe” for mathematical activity, in the sense of a new type of mathematical 
reality. This has been articulated as computational media offering mathematical 
“microworlds” for students to tinker with in order to develop their mathematical 
curiosity and start mathematical investigations. Hence, modern computational 
media allow for new mathematical venues to be investigated and also allow profes-
sional mathematicians to investigate types of mathematical realities that previously 
were inaccessible (Borwein and Devlin 2009). Furthermore, the computational 
speed of computers allows mathematical models to project their results back into the 
world in real time, hence shaping the real world. In other words, computational 
media both empower the mathematical processes involved in modelling activities by 
providing new “worlds” to explore and potentially shape the world we try to model. 
These different roles can be summed up in a representation focusing on the roles of 
computational media in modelling activities rather than the modelling process as 
such, if we think of them as overlapping spheres of influence, as shown in Fig. 6.9.

6.7  Conclusion: The Necessity of Multiple Representations

The issue addressed in this chapter is the dominance of the one single image of math-
ematical modelling that is shown by the modelling cycle in international and national 
curriculum documents such as PISA (OECD 2013) and the Common Core Standards 
(CCSSO 2010). As noted earlier, any one representation of modelling has its strengths 

Fig. 6.8 The interplay of phenomena, simulation and analysis (Doerr 1997, p. 269)

6 Representations of Modelling in Mathematics Education



80

and weaknesses, and hence we argue that we need multiple representations and 
images to capture and convey the richness of modelling for mathematics education 
for policy-makers, curriculum developers and teachers. Curriculum materials that 
would guide students through predetermined steps in a modelling cycle would be 
inadequate for conveying to teachers the non-linearity of the multiple learning pathways 
that would occur in a classroom. Similarly, modelling activities for students need to 
move beyond creating descriptive models that can be validated by comparison to 
empirical data to working with a full range of models including those with explanatory 
power, those with social and political implications and those using computational 
media. Representations of these aspects of modelling imply modelling tasks that 
explore and bring to bear existing models, that are socially relevant and engage 
students in action as the models are projected back into the world and that open up 
new realms of mathematical venues. Our recommendation is not that we should 
improve or revise the modelling cycle to encompass these important aspects of mod-
elling. Rather, we suggest that a complex process such as mathematical modelling 
should be conveyed in policy and curriculum documents by multiple images that 
accommodate the aspects addressed in this chapter and through future research.
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Chapter 7
The Primacy of ‘Noticing’: A Key 
to Successful Modelling

Peter Galbraith, Gloria Ann Stillman, and Jill P. Brown

Abstract The notion of productive modelling-oriented noticing (pMON) is pro-
posed within an anticipatory metacognition framework for the implementation of 
successful modelling. pMON involves modellers noticing what is important (or not) 
in order to generate strategies for responding to, or initiating, activities necessary 
for successful engagement in modelling. In this chapter, we address the question: 
How does ‘noticing’ feature as an enabler and a displayer of modelling ability? 
From student work at an extra-curricular event, we identify global and specific 
noticing of a strategic and explanatory nature, which evidences anticipatory aspects 
of mental activity taking place during modelling, and illustrate a coding system for 
identifying and labelling components of pMON.

Keywords Noticing • Anticipatory metacognition • Productive modelling-oriented 
noticing • Global noticing • Specific noticing

7.1  Background

The term ‘noticing’ in education (e.g. Choy 2016;  Jacobs et  al. 2010; Santagata 
2011; Star and Strickland 2008) has commonly been applied to how teachers iden-
tify, interpret and act upon classroom events to enhance student learning. Star and 
Strickland (2008) assert that learning from teaching depends on teachers’ ability to 
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‘notice’, by identifying what is (and therefore what is not) noteworthy and impor-
tant. Previously, Sternberg and Davidson (1983) noted that gifted professionals such 
as doctors and lawyers had an ability to sift through information, selecting the rel-
evant from the irrelevant, as a basis for subsequent actions. Jacobs et al. (2010) go 
further in stating that ‘noticing’ is an essential competence needed within any 
profession.

Additionally, in terms of the attributes of a community of practice, Wenger and 
Wenger (2015) point out that skilled ‘noticing’ should be nurtured in novices, as 
well as being exhibited by masters – in our case within the field of mathematical 
modelling. In developing insights to enhance teaching, a central aspect is to identify 
how students perform when faced with unfamiliar modelling situations. This pro-
vides data on associated competencies (or lack of them) displayed in extended mod-
elling settings involving the world outside the classroom. In focusing on student 
noticing and related decision-making within modelling activity, our approach is dif-
ferent from the way that ‘noticing’ research has been typically conducted, where the 
emphasis has been on teacher behaviour across a range of topics in classroom set-
tings. Of course, observations and evaluation of student activity are designed to 
contribute to the developing corpus of knowledge used to inform modelling peda-
gogy. We commence by locating ‘noticing’ within metacognitive activity.

7.1.1  Anticipatory Metacognition

Metacognition is of central concern in the research and practice of mathematical 
modelling with experts and novices acknowledging the importance of reflection on 
actions when addressing a real-world problem (Lambert et al. 1989). The focus of 
such reflection can be checking the accuracy of mathematics, evaluating a solution 
against contextual implications or examining decisions made at some intermediate 
stage of the modelling process (Stillman 2011), that is, reflection on the mathemat-
ics employed and the modelling undertaken. These metacognitive abilities remain 
crucial especially for beginners. A new development arising from our previous work 
is the construct of anticipatory metacognition. Anticipatory metacognition shifts the 
emphasis towards reflection that points forward to actions not yet undertaken, that 
is, recognising (noticing) possibilities of what ‘might be’. These reflections can 
emerge as a consequence of prior progress (or lack of it), so they might not all be 
identifiable at the outset of modelling. Included is an aspect not provided for when 
a modelling problem is presented to, rather than chosen by, a group of students – the 
‘noticing’ involved in recognising a situation has modelling potential and the iden-
tification of an associated and relevant mathematical question to pursue. Anticipatory 
metacognition encompasses three distinct dimensions (Fig. 7.1): meta- metacognition 
(see Stillman 2011), implemented anticipation (see Niss 2010; Stillman and Brown 
2014) and modelling-oriented noticing (Galbraith 2015). We focus on the last of 
these here.
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7.1.2  Modelling-Oriented ‘Noticing’

In a broad sense, modelling-oriented noticing involves ‘noticing’ how mathemati-
cians as well as educators act when operating within the field of modelling, from 
both mathematical and pedagogical points of view (Galbraith 2015). The former 
‘noticing’ provides a means for studying aspects central to modelling such as prob-
lem recognition and posing as well as in the conduct of modelling proper. Novices, 
as learners of modelling, also engage in these activities, for discerned ‘noticing’ is 
needed to select, develop and document modelling products appropriately. The ped-
agogical viewpoint (the one closest to teacher noticing literature, e.g. Santagata 
2011) involves a mentor role: observing how students operate when working on 
modelling problems and focusing on identifying, interpreting and acting on emerg-
ing events as deemed necessary. In the present case, the emphasis is on the first of 
these – monitoring and observing student decision-making during modelling activ-
ity in a collaborative team context. The characteristics identified, when distilled, 
contribute to the goal of enhancing the quality of mentor activity.

However, successful carrying out of tasks requires more than mere ‘noticing’, in 
the same way that successful metacognitive monitoring of previous work requires 
appropriate follow-up. Discernment of the relevance of what is noticed is also 
essential. In a different context, Choy (2016) combined Santagata’s notion of notic-
ing (2011) and Sternberg and Davidson’s (1983) processes of insight to characterise 
what he calls productive mathematical noticing that takes such relevance into 
account – applied within a conventional classroom. Developing a parallel but differ-
ent structure for the modelling context, we define productive Modelling-Oriented 
Noticing (pMON) as the process of modellers noticing in a productive manner what 
is important and what is not in order to generate strategies for responding to, or 
initiating, activities necessary for successful engagement while carrying out a mod-
elling activity.

The context of our work involves the development of skills of mathematical 
modelling as real-world problem-solving. This is a necessary ability for individuals 
to possess, in order to apply their mathematical knowledge in personal, work-related 
and civic situations – as specifically declared a curriculum goal in several countries 
(e.g. ACARA 2016). The educational challenge contains both a task and a person 

Fig. 7.1 Dimensions of anticipatory metacognition
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dimension, as there is a difference between helping students to solve individual 
modelling problems and the greater challenge of nurturing the development of an 
effective problem-solver over time – one who has developed and honed this pMON 
quality. An effective modeller is someone who can successfully engage with the 
modelling cycle, identifying cues and evidence that are present before and that 
emerge during an activity, and can act upon these appropriately (Stillman 2004). 
Their relevance is noticed, that is, metacognitive knowledge is generated with 
respect to task and strategy characteristics and cognitive goals. In this sense, 
enhanced ‘noticing’ is an attribute of emerging proficiency, and the identification 
and documentation of its characteristics are important for both research and prac-
tice. In this chapter, while continuing to recognise and value the role of ‘noticing’ in 
general teacher activity, we focus, as foreshadowed above, on the ‘noticing’ attri-
butes of students. The question we address is: How does ‘noticing’ feature as an 
enabler and a displayer of modelling ability?

7.2  Extracurricular Modelling Event

The setting for our observations has been a 2-day modelling challenge sponsored 
annually by AB Paterson College, Queensland, Australia. Typically, in the upper 
secondary level (years 10–11) of the event, groups of 20 students mentored by a 
modelling expert were divided into five teams of four students drawn from a mix of 
schools located in south-east Queensland and Singapore. The authors of this chapter 
were group mentors at this event. The teams were assigned so members came from 
different schools.

During an introductory 2-h session, students were introduced by their mentors to 
the cyclic modelling process in part through its application to a real-life problem 
selected by the mentor. After student teams had worked on the problem, it was 
addressed interactively with the group as a whole with contributions from the stu-
dents. The student teams then used the time until early afternoon on day 2 (approx. 
9 h) to identify, address and report on a modelling problem through a written poster 
and an oral presentation. The task of identifying the context and the specific 
problem(s) on which to work was the teams’ own, as was the choice to do further 
work in their own time.

7.3  Data Collection

For the introductory modelling task, the scripts of teams were digitally photo-
graphed as was the board work of the team that presented their solution to the entire 
group. The work of teams was photographed and videotaped at various intervals 
over the 2 days as they explored possibilities for a situation to model, collected data 
once a problem was found, constructed posters to display their modelling solution 
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and presented their modelling to their group and mentor. Students gave their post-
ers, PowerPoint presentations and rough working to their mentors for further analy-
sis. The poster summarising the modelling outcome for each team, as well as the 
team presentation to the whole group, provided structural data about the substantive 
modelling. Additionally, students progressively completed open questionnaire items 
about their approach to aspects of their chosen task, as they reached different stages. 
The content of the written products, and observation of student activity, provided 
evidence of the approach, structure and detail of ‘noticing’ as displayed and recorded 
by the students during respective phases of the modelling process.

For the detailed analysis that follows, two teams of four, Gold and Silver, were 
selected from the 2012 Challenge. Each team was mixed gender with two year 10 
and two year 11 students. Students were from Australia (3) and Singapore (5). 
Experience of similar activities varied from frequently, to occasionally, to never 
having done such activities in mathematics classes.

7.4  Analysis

In order to generate initial coding categories for pMON, the PowerPoint presenta-
tion and poster from a team of four students from the 2009 Challenge investigating 
inundation of the Gold Coast was subjected to macro and micro qualitative analy-
sis (see Galbraith 2011 for a full description of this modelling project). Figure 7.2 
shows the categories and definitions that resulted from this process. In reflecting on 
the instances of ‘noticing’ embedded in the data, sub-families were identified which 
we label, respectively, as (1) Global Noticing (GN) and (2) Specific Noticing (SN).

Global Noticing is the noticing needed for alertness in respect of the total model-
ling process, for example, how the process is activated and sustained throughout the 
different modelling phases. It involves awareness of information (present or identi-
fied as necessary) and what is needed to proceed productively towards an outcome. 

Fig. 7.2 Categorisation with definitions of subcategories of productive modelling-oriented 
noticing

7 The Primacy of ‘Noticing’: A Key to Successful Modelling



88

Specific Noticing is the noticing that a modeller is called upon to do as a conse-
quence of specific decision-making in the choice of a particular mathematical 
model, its formulation, solution, interpretation and evaluation. Both global noticing 
(GN) and specific noticing (SN) can be expressed as strategic noticing (s) or explan-
atory noticing (e) coded as GNs, GNe, SNs and SNe.

This coding scheme will now be used in a detailed analysis of data from the 2012 
Challenge. Firstly, student contributions that took place during the whole group 
introduction to modelling facilitated by mentors will be discussed, illustrated and 
interpreted. This task has been chosen for present purposes mainly on the basis that 
students were able to reach a team solution quickly – so the nature of modelling was 
understood in the same way by all participants. Secondly, we discuss and illustrate 
aspects of ‘noticing’ that characterised student work in different modelling phases 
using data from the work of the two teams mentioned above. In this part of the chal-
lenge, teams chose their problem or situation to model according to their own inter-
ests and anticipated collective ability to solve in the given time frame. The description 
and analysis are restricted, because of space considerations, to examining alertness 
to taking control of the modelling process at a macro level and noticing related to 
problem finding and problem posing and decision-making related to formulation at 
the micro level.

7.4.1  Productive Noticing During Introductory Modelling Task

For the 2012 Challenge, mentors used as the introductory modelling task, Aerial 
Car, based on a newspaper report by Shamroth Reiff (2000). (Note: The top dia-
gram is artistic not realistic as is common in newspapers, but there were photo-
graphs of the scene provided to students as well.)

Aerial Car
According to the New Hampshire Sunday News May 7, 2000, two sleeping 
residents of East Derry had the most fortunate escape on Easter Sunday 2000. 
A car came crashing through the roof of their upstairs bedroom and landed on 
their bedroom dresser. The car was being driven along Hampstead Road at 
3:35 am by a young woman when the car left the road and careered through a 
neighbouring property before ascending a slope of grade 20% then becoming 
airborne. The car flew over three parked cars travelling a horizontal distance 
of 48.62 m before crashing through the roof. The point of impact on the roof 
was about 30 cm lower than the point of take-off as the house was on lower 
ground.

(continued)
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When using this real situation as the basis for modelling, the modeller must first 
pose a problem in a way that can be mathematised. Those with a penchant for exact-
ness in mathematics might ask: What speed was she travelling? From a real-life 
modelling perspective, a better question is: ‘Was she speeding?’ Having separately 
identified projectile motion as an appropriate model, most teams began without any 
correction for air resistance (for such a large object), with most choosing to work 
out the speed of her car when it became airborne. After solution development, one 
team was asked to appoint a spokesperson to present their solution to the entire 
group. He clearly articulated strategic and explanatory noticing and inferences the 
group had made in deciding on their global approach to the task. He started by 
pointing out that his team had assumed that the driver had not accelerated once her 
car had left the road as that would affect their conclusion (GNe). He also sketched 
his group’s interpretation of the situation, explaining they intended to use projectile 
motion which in ‘theory’ modelled the trajectory of the car in the air by a parabola. 
However, this was not the ‘real’ trajectory, which would mean the car travelling 
with their calculated launch speed fell short (SNe). He added the ‘real’ trajectory for 
this speed (Fig. 7.3a) explaining that if they found the speed for their simple model 
was above or near the speed limit, there would be no need to refine their approach 
to modelling the car’s actual path as they would be already able to answer the ques-
tion. She would be deemed to be speeding (SNs). The teams were showing evidence 
of pMON as they had been able to sift through all the information given (other 
newspaper detail and photographs), to discern what was relevant, to relate it to pre-
vious experiences of using projectile motion and to combine this metacognitive 

(Used with permission) 
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knowledge so as to anticipate a ‘sense of direction’ (Treilibs 1979) for their model-
ling (GNs). This was then followed through in implementation (Fig. 7.3b, c). This 
sense of direction was serviced by reflection on where activities were leading in 
terms of potential contributions to an appropriate solution (anticipatory metacogni-
tive activity).

7.4.2  Macro-analysis of pMON in Self-Chosen Modelling 
Projects

Following the introductory activity described above, students were provided with 
scaffolding devices in the form of a diagram summarising the modelling process 
and a guide to making a report. However, one team, Silver, produced their own set 
of questions to guide their modelling poster design. The teams then independently 
began problem finding and problem posing following a team’s brainstorming of 
possible situations of interest to them.

Gold team was interested in the notion of ‘wealthiness’ put forward by a male 
year 11 Australian student who was considering economic modelling as a future 
career. Their initial ideas for a situation to model included changes over time in (a) 
wealth in the percentage of a population and (b) different areas of the world and (c) 
the purchasing power of a population that could be considered wealthy. This discus-
sion led to initial questions: How wealthy can a specific person or country become? 
What are the most ideal conditions to heighten wealth? An Internet search produced 
a paper by Sala-i-Martin and Mohapatra (2002/2003) on the distribution of income 
in the G20 countries. The team finally settled on studying the income distribution in 
Australia and India with the guiding question: How wealthy can you get? All team 
members thus had noticed enough about fiscal issues in the region where they lived 
to feel confident in choosing this phenomenon to model.

Choosing a situation for modelling requires group-initiated proactive reflections 
about potential situations, such that the group becomes convinced that the situation 
chosen can generate a problem that can be modelled mathematically in the time 
frame, given the expertise of its members. More is needed than suggesting possible 
situations that are of interest. The task ahead must be anticipated, and considered 
globally, as evidenced in the Silver team’s brainstorming and eventual choice. 

Fig. 7.3 Modelling the Aerial Car scenario
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Initially, Silver team was interested in how different caffeine-containing foods 
affect mental capacity and appeared set to conduct an empirical experiment. One of 
the foods they looked at was chocolate. In their Internet searching, they were sur-
prised to find BBC News articles (e.g. Pritchard 2012) dealing with an occasional 
note in a medical journal (Messerli 2012) about chocolate consumption, cognitive 
function and Nobel laureates. They therefore decided to focus their investigation on 
the modelling of chocolate consumption. Their initial thinking was recorded as:

When people in a country get wealthier, their purchasing power increases, and they are 
more willing and able to buy chocolate products whenever they want them. A higher choco-
late consumption level may result in extra calories-intake, leading to more people being 
obese. (Notes – Silver team, November 22)

In terms of Global Noticing to select a phenomenon they could potentially 
model, the team needed to anticipate that they knew enough about the mathematical 
structure of the intended model, at an appropriate level to achieve their objective. 
This reflection required judgments about access to mathematical tools (including 
digital tools) that would allow them to model the chosen problem. This is evident in 
notes (in extract following) that the team recorded about their intentions to investi-
gate what they later termed a myth: ‘as people become wealthier they would become 
more obese’ (poster, Day 2). They decided to investigate this at the level of a coun-
try’s average chocolate consumption and obesity proportion. The codes in the 
extract identify evidence of Global Noticing as the team demonstrated alertness of 
how the modelling process would be activated and sustained throughout different 
modelling phases. They also showed awareness of information (identified as neces-
sary) and what was needed to proceed productively towards an outcome.

What variables are there?
The gross domestic product (GDP) per capita; Chocolate consumption rate; Obesity 
proportion.

What data do we need?
GDP per capita of selected countries. The proportion of obese people in the selected coun-
tries. The amount of chocolate consumed per country for a particular year.

What mathematics do we need?
We use tables and graphs to represent the data we find. Visually from the graph we find the 
best fit trend line and get the equation of it. We then use the data to generate a regression 
based on the line and produce an equation to model the data. Using the equation, we can 
predict the amount of chocolate consumption, then compare it with more data to test and 
refine our model. (GNs)

Do we know how to solve this mathematical model?
Yes. To find if there is a relationship between the GDP per capita and the amount of choco-
late consumed, we substitute the GDP per capita into the equation we found from the graph 
(Chocolate consumption against the GDP per capita) and compare the result in the actual 
data. We repeat this with the graph of the proportion of obese people in a country against 
the chocolate consumption to find the relationship between these two variables. (GNs)

What does this output mean mathematically? In the real context?
If the calculated results are close to the actual data of the countries, it would prove that there 
is indeed a relationship between the amount of chocolate consumed, the GDP per capita and 
also the proportion of obese people in a country. (GNe) (Notes – Silver team 22 November)
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7.4.3  Micro-analysis of pMON in Team Projects

At the micro level, we look for instances of noticing related to problem finding and 
problem posing and decision-making related to formulation locally. The rationales 
(see Fig. 7.4) of the cases chosen for elaboration indicate that the students have 
identified an issue they deem significant. The modelling intentions (Fig. 7.4) are 
relevant to satisfy interest (Gold team) and curiosity (Silver team). From a mathe-
matical perspective, both teams added a second criterion for their choice of 
question(s) to pose: The mathematics involved needed to be complex (Gold team), 
and the question had to be ‘able to be modelled using the mathematical modelling 
method’ (Silver team) (Questionnaire data).

The initial assumptions (Fig. 7.5) of both teams involved only strategic Specific 
Noticing (SNs). They contain anticipatory elements that include simplifications 
basic to model creation (e.g. third assumption for Silver). In implementing proposed 
formulations, pragmatic decisions were made when limits of technological tools, or 
insufficient data, were realised. For the Gold team, this meant an adjustment to their 
mathematical model, providing an example of explanatory Specific Noticing (SNe).

Contextually, there is a tendency for incomes in a country to be distributed in a manner such 
that most of the population belongs to the middle income group with only the minority 
being at each end. This is reflected in a lognormal distribution curve that is skewed to the 
right, as opposed to a standard [normal] distribution curve, which is symmetrical. However, 
due to the limits of calculator technology, it was unable to directly model the data from the 
lognormal density function. Instead, since the data fits a lognormal density function it can 
fit a standard density function if the ‘disposable income’ values are ‘logarithmised’. (Poster, 
Gold Team)

a) In all areas of the world, each country is unique and differs in
wealthiness [sic]. In each region there is a certain amount of
income that each part of the population earns. Australia and
India were chosen as the two countries whose wealth would be
analysed and compared. The data that were collected to be
modelled are based primarily on income distribution over time
(equalised disposable income versus percentage of population)
to determine income equality in the countries and estimate their
future wealth.

b) People have the mindset that as people 
get wealthier they would consume more 
chocolate, which would in turn cause 
obesity. So, as people become wealthier 
they would become more obese. However, 
we wanted to test whether this myth is 
true.

Fig. 7.4 Rationale for choice of modelling topic by (a) Gold team and (b) Silver team

Gold Team: 
1. Socio-economic status does 
not change over the time domain.
2. Political status of the countries 
we are collecting data on remains 
the same (e.g., market/demand 
economies/mass production, 
poverty, human rights).

Silver Team:
1. The amount of exercise done remains constant.
2.The intake of other food besides chocolate remains the same. 
3. The price of chocolate does not change as people’s income changes.
4. People’s age group is not taken into account.
5. The type of chocolate consumed remains constant.
6. The countries selected are representative of global rate.
7. People’s preference for eating chocolate remains the same over the
years.

Fig. 7.5 Initial assumptions made by Gold team and Silver team
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The Silver team, on the other hand, found there was insufficient data for their model 
construction, but decided to continue with their proposed model, compromised by 
data drawn from different years, rather than 1 year as had been originally intended.

7.5  Conclusion

In considering the data emerging from student activity in the modelling challenge, 
it is clear that goal-directed ‘noticing’ preceded decision-making and production. 
We refer again to the anticipatory aspects of mental activity that take place during 
modelling. It is clear that both global and specific noticing focus heavily not only on 
current or recent activity (so that checking of work remains important) but also on 
future aspects perceived to be related to the task being undertaken. Anticipatory 
metacognitive activity both directs the global implementation of the modelling and 
impacts on how a specific formulation and mathematisation remain relevant (or not) 
for the task assigned to it.
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Chapter 8
Combining Models Related to Data 
Distribution Through Productive 
Experimentation

Takashi Kawakami

Abstract This chapter illustrates how students combined distribution-related mod-
els using a case study involving 31 year 5 students (10–11-year-olds) in a Paper 
Helicopter Eperimentation. Through the experimental activities that included con-
jecturing and validation, the students grasped relevant statistical and/or contextual 
elements from models of real distribution constructed in their external world and 
contrasted and coordinated these elements with their distribution-related models 
constructed in their internal world (modelling world). The approach of combining 
distribution-related models through experimentation establishes an alternative way 
of utilising ideas of models and modelling in mathematics education in statistics 
instruction.

Keywords Distribution • Experimentation • Combining distribution-related mod-
els • Statistics • Context • Statistical reasoning • Paper helicopter experimentation • 
Primary school students

8.1  Introduction

Recent research by the International Community of Teachers of Mathematical 
Modelling and Applications (ICTMA) and elsewhere has increasingly emphasised 
the need to cross the boundaries between mathematical modelling and statistics 
education (e.g. Engel and Kuntze 2011; Makar and Confrey 2007). Data-based 
modelling has been highlighted and demonstrated as a powerful vehicle for devel-
oping primary to tertiary students’ fundamental statistical ideas, such as data, 
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variability, and distribution (e.g. Engel and Kuntze 2011; English 2012; Lehrer and 
Schauble 2004). Limited research exists, however, on how students can create and 
develop models and in statistics instruction use the modelling approach, especially 
at the primary level (English 2012; Kawakami 2015). Distribution is at the heart of 
statistics and is a fundamental component of statistical reasoning. The necessity of 
fostering young students’ informal views of distribution arises because of the diffi-
culties of developing an aggregate view of distribution (Garfield and Ben-Zvi 2008). 
This chapter proposes strategies that foster primary school students’ modelling 
activities on distribution through autonomous experimentation.

8.2  Theoretical Framework

8.2.1  Using Model and Modelling Ideas in Teaching 
and Learning Statistics

Several researchers have highlighted differences in the nuances and emphases of 
models and modelling between mathematics education and statistics education 
(Engel and Kuntze 2011; Garfield and Ben-Zvi 2008). In mathematics education, 
models that have to be built, for example, to solve real-world tasks using mathemat-
ics and to construct new mathematical knowledge, are emphasised (Ikeda and 
Stephens 2015). Although the objective of building models and the nuance of mod-
els depend on the standpoint taken (e.g. pragmatic or scientific/humanistic), the 
process of mathematising real-world situations is common. In contrast, in statistics 
education, models that have been built, for example, to measure and explain varia-
tion, are often emphasised (Garfield and Ben-Zvi 2008). Engel and Kuntze (2011) 
highlighted that “a core concept in statistical modelling is the signal-noise meta-
phor” (p. 400). Modelling in statistics instruction (usually at secondary level) typi-
cally involves activities of statistical model selection (e.g. regression models, 
time-series models, normal distribution) and calibration (model-to-data fitting). In 
the whole process, “consideration of variation” is crucial (Wild and Pfannkuch 
1999, p. 226).

This study employs the ideas of models and modelling in mathematics education 
in primary statistics education. Specifically, the researcher intended to explore stu-
dents’ development of statistical ideas and representations as models, through a 
modelling process (Kawakami 2015). Students are encouraged to create, verify, 
modify, and apply their own models in solving tasks with real data and to handle 
variation, such as data modelling (English 2012; Lehrer and Schauble 2004).
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8.2.2  Combining Distribution-Related Models

In statistics, data variation is organised “under the key notion of distribution” 
(Lehrer and Schauble 2004, p.  638). Distribution is a complex and multifaceted 
entity. Bakker and Gravemeijer (2004) demonstrated the various aspects of distribu-
tion, such as centre, spread, density, and skewness. Prodromou and Pratt (2006) 
emphasised the balance between two distribution perspectives: data-centric and 
modelling perspectives. A data-centric perspective means “distribution is seen as a 
collection of data results” (p.  70). In contrast, in a modelling perspective, “data 
distributions are seen as variations from the ideal model” (p. 71) (e.g. normal or 
binomial theoretical distributions). In addition, statistical investigation requires 
developing models with statistical and real contextual elements (Wild and Pfannkuch 
1999). These studies support encouragement of students to create their own models 
of distribution in exploring real-world contexts and to develop models of probability 
distribution as the final outcome.

In research on modelling instruction, specifically from a cognitive perspective, 
the iterative nature of modelling connects and overlaps models (Ärlebäck and Doerr 
2015; Lesh and Doerr 2000). This study adapts the modelling epistemology and 
views the learning process as combining distribution-related models (see Fig. 8.1). 
In the process, two models are emphasised. First, the “modelling world” is con-
structed in students’ internal world and is corresponded to an image of a particular 
data distribution. Second, a model of the real distribution is constructed in the stu-
dents’ external world (i.e. the real world) and is generated by the collection and 
arrangement of real data. These models are combined and reconstructed into a 
coherent whole to include statistical and contextual elements by comparing, con-
trasting, and coordinating between these models. Ideally, combined models form 
aggregate views of data by selecting and connecting the relevant elements of the 
distribution and associating these elements with the real context behind the data.

8.2.3  Adopting Experimental Activities

Several studies have suggested that the use of experimentation in modelling that 
includes conjecturing and validation offers rich opportunities for students to develop 
their models and ideas (e.g. Carreira and Baioa 2011; Halverscheid 2008). 

Fig. 8.1 (a) Conceptualisation of combining models (b) Conceptualisation of combined models
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Halverscheid (2008) asserted that the experimentation becomes the real-world con-
text. In their study, Carreira and Baioa (2011) observed that “to investigate through 
experimentation reflects on mental actions and on past and subsequent learning of 
mathematical ideas and becomes a way to develop understanding of mathematical 
models” (p.  214). Hence, experimentation fosters the process of combining 
distribution- related models (Fig. 8.1). This study applies experimentation as a peda-
gogical approach to teaching statistics through modelling and elaborates the four- 
step experimentation process. In the process, students (1) create and express 
distribution-related models as images, (2) conduct experiments, (3) compare and 
contrast distribution-related models as images and as real results, and (4) conjecture 
once again about modifying and improving their own distribution-related models.

8.3  The Study

This chapter addresses the following research question: How do students combine 
distribution-related models in experimentation that included conjecturing and vali-
dation? To investigate this question, student work in a series of statistics lessons 
with experimental activities (Kawakami 2013) from a modelling perspective is con-
sidered. The 10–11-year-old participants comprised 31 year 5 students (21 males 
and 10 females). The lessons took place in a private primary school in Tokyo. 
Although the students had learnt about mathematical average, they were inexperi-
enced with statistical enquiry and the histogram before the lessons. In the lessons, 
they learnt about the mean as a representative value, the range, and using dot plots.

8.3.1  Design

8.3.1.1  The Paper Helicopter Experimentation (PHE)

The Paper Helicopter Experimentation (PHE) (Fig. 8.2), though simple, is a “statis-
tically rich” activity that originated from the field of quality engineering (Box 
1992). It focuses on measuring the flight times of paper helicopters dropped from a 
certain height. The PHE has been adopted in primary and secondary statistics edu-
cation, and it is in the Japanese year 7 mathematics textbook (12–13-year-olds) for 
the introduction of using a representative value and histogram. Ainley et al. (2000) 
adopted the PHE activity to examine students’ understanding of the utility of graphs, 
where year 3 students (8–9-year-olds) changed and examined the blade length 
parameters of the helicopter using a scatter graph to induce the longest flight time. 
There are similarities here with The Paper Airplane Problem (see Lesh 2003). In 
contrast, this study focuses on the following opportunities through the PHE: to (a) 
form and validate conjectures about flight-time distribution and (b) explore chang-
ing conditions of the experiment.
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8.3.1.2  Tasks and Outline of Lessons

Three tasks were presented in a series of five 45-min lessons. The main task was 
Task 1: “Compare the helicopter with 5-cm blades and 10-cm blades. Which do you 
think will have a longer flight time?” For this task, the students performed the first 
experiment, collected two data sets of flight times, and arranged them in dot plots 
(taking around 90 min). Data were converted into 0.01 bps for easier data manage-
ment. Although the students drew a conclusion by calculating the mean of the flight 
times, they noted “We cannot judge which paper helicopter will have a longer flight 
time based only on these results” due to many variations in the first experiment’s 
results. Therefore, the teacher set up Task 2: “What can you do to reduce the varia-
tion of the data?” In Task 2, the students used the four-step experimental approach 
to the activities (for around 100 min). Firstly, the students conjectured what would 
influence the data variation and drew sketches of a distribution of either helicopter’s 
flight time. Secondly, they conducted the second experiment and arranged two data 
sets of flight time in dot plots (Fig. 8.3). Here, they focused on the concentration of 
data and called it the “clump area”. Thirdly, they verified their initial conjectures 
(source and result) by comparing with the real distribution. Fourthly, based on the 
validation, they conjectured possible variation sources in the data of the second 
experiment and made conjectures and drew sketches of the distribution for future 
refined experiments. Finally, the teacher set up Task 3: “Refer to the results of Task 
2 and answer Task 1”.

Fig. 8.2 (a) The paper helicopter (b) Student dropping a helicopter and student measuring its 
flight time with a stopwatch

Fig. 8.3 Sample of flight-time data of 5 and 10-cm bladed helicopters in the second experiment 
(5-cm blades, n = 30; 10-cm blades, n = 34)
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8.3.2  Data Collection and Analysis

The data collection comprised video-recordings, lesson artefacts, and field notes. 
The artefacts for analysis included students’ sketches and descriptions of a hypo-
thetical distribution. The analysis tracked their initial and final conjectured models in 
Task 2 and examined the elements of distribution (e.g. centre, spread, density, shape) 
and/or the context used and the connections of these elements to illustrate how the 
students’ original models were maintained or modified after experimentation.

Students’ models of distribution in each conjecture were categorised into four 
types including elements of distribution (see Table 8.1). Furthermore, the analysis 
summarised changes in students’ models from initial conjecture to the final one. 
Finally, the work of two students showing successful change type were selected to 
illustrate in more depth how students combined distribution-related models through 
experimentation.

8.4  Results

This section illustrates the findings for the research question about students’ model 
combination, describing the results of the whole group and illustrating with two cases.

8.4.1  Changes in Students’ Models Through Experimentation

Table 8.1 shows the results of 31 students’ models in initial and final conjectures. 
Overall, 19 students could connect the elements of distribution in the final conjec-
ture, whereas only nine students did so in the initial conjecture. For Model B in each 

Table 8.1 Types of students’ conjectures (N = 31)

Model Conjecture type Example of students’ conjectures

Total conjectures 
(n)
Initial Final

A No elements of distribution 
and context

Enumerating dots/no description of 
graph

5 1

B Separated elements of 
distribution and/or context

Describing thin distribution, although 
describing “the spread is large”

17 11

C Connected elements of 
distribution

Describing a unimodal distribution in 
which the mean is peak

7 16

D Connected elements of 
distribution and context

Linking the shape of distribution and 
the source of variation

2 3
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case, although almost all students used informal language to describe the distribu-
tion (e.g. “variation”, “cluster”, “clump”, and “spread out”), they did not reflect 
them explicitly in the features of distribution (e.g. shape). Concerning Model C in 
initial conjectures, five students linked the centre and the density of the distribution 
(e.g. drawing a unimodal distribution in which the mean is the peak), but only two 
students connected the shape of distribution and the mean. However, for Model C, 
in the final conjectures, nine students linked explicitly the shape of the distribution 
and other features (e.g. mean, frequency, and range). A decrease in occurrence of 
Model A and Model B and an increase in Model C indicate that the exploration and 
its expression of features in empirical distribution (e.g. Fig. 8.3) facilitated students’ 
multifaceted views of distribution. For Model D, in each conjecture, all students 
explained the distribution features linking measurement error, such as the accurate 
use of a stopwatch.

Table 8.2 shows how 31 students changed their models related to distribution 
through the experimental activities. Seven types of changes were distinguished, and 
from these, 17 students maintained their models, whereas 14 changed theirs. 
However, because few types 2 and 3 included additional distribution features, we are 
uncertain if these students could develop their model; therefore, they may require 
further consideration. In types 6 and 7, all students, (n = 10), could focus on the dis-
tribution shape in the final conjecture. However, only one student connected the fea-
tures and context more. It appears that for types 6 and 7, students could  successfully 
combine distribution-related models through experimentation. The next section 
focuses on two cases to analyse the trigger of combining distribution-related models 
and focusing on the context, leading to rational views of distribution.

8.4.2  Case Studies

8.4.2.1  Type 6: Yuri’s Case

In Task 2, Yuri initially conjectured the following sources of variation: “difference 
in the length of dropping”, “accurate use of the stopwatch”, and “angle of blades”. 
However, she did not relate explicitly possible sources of variation to the dots in the 
dot plots. Her initial conjecture of flight-time distribution of 10-cm bladed 

Table 8.2 Change types of 
students’ conjectures 
(N = 31)

Type Model change Frequency

1 Model A → Model A 1
2 Model B → Model B 8
3 Model C → Model C 6
4 Model D → Model D 2
5 Model A → Model B 4
6 Model B → Model C 9
7 Model B → Model D 1
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helicopter in Model B had some bumps (Fig. 8.4a). She informally used the terms 
“variation” and “cluster” and explained about her conjecture as follows: “I think the 
difference between values will decrease a little (i.e., the dots will cluster in an 
area)”. She started to reason about spread and density but could not connect these 
elements explicitly. In her initial conjecture and real distribution comparison, she 
focused on the distribution features of a 5-cm bladed helicopter’s flight time, where 
the data were closer together around the value “130 (1.3 seconds)”. She, then, mod-
elled the distribution by using the notion of distribution shape and characterising it 
as “closer together” and “clump” (Fig. 8.4b). She idealised the dots in her mind and 
verified her initial model in terms of density with “It was an expected result. We 
could make an exact measure, since the use of the stopwatch was accurate”. Thus, 
she connected shape with density and became aware of the context. In validation, 
she conjectured “individuals who measure using stopwatches” as the source of data 
variation in the second experiment and the flight-time distribution of a 10-cm bladed 
helicopter in Model C (Fig. 8.4c). She connected shape and density by applying an 
informal notion of a distribution shape (i.e. “I think the dot plot will be just mountain- 
shaped”) and charted mountain-shaped plots. However, she did not identify her 
model’s context.

8.4.2.2  Type 7: Ayu’s Case

In Task 2, Ayu was initially aware of the context behind the data, since she related 
possible sources of data variation concerning flight data (e.g. “timing of stop-
watches”, “make of helicopter”, and “angle of blades”) to the values in the dot plots. 
Her initial conjecture of distribution for Model B had some bumps (Fig. 8.5a). She 
added the following supplemental explanation to the distribution sketch: “Although 
all values will not be equal, as people experiment by themselves, the data will come 
close to some values” and “although only at most three values were equal in the last 
experiment, about four values will be equal next time”. She began reasoning about 
centre, spread, and context but could not connect these elements explicitly. In her 
initial conjecture and real distribution comparison, she explored the distribution 
features and modelled the shape of the distribution (Fig. 8.5b). Although she also 
considered the difference between her image model and real distribution with, “I 
thought the dots would clump more, the dots clumped only a little. I think the timing 
error was large”. Thus, she connected shape, density, and context. Based on the 

Fig. 8.4 (a) Yuri’s Model B in the initial conjecture of distribution (b) Yuri’s model of real distri-
bution from the second experiment (c) Yuri’s Model C in the final conjecture of distribution
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validation, she considered “the use of stopwatches” as the variation source in the 
second experiment and conjectured the flight-time distribution of a 5-cm bladed 
helicopter again in Model D (Fig. 8.5c). She related the variation source (i.e. timing) 
to distribution and explained her following conjecture: “I think the dots will clump 
around a value [more]  than the last experiment. All values will not be equal, as 
people experiment by themselves”. She connected statistical elements and context 
as well as centre and shape.

8.5  Discussion and Conclusion

This chapter has addressed some aspects of students’ development of distribution- 
related models based on rational distribution features using the PHE. Half of the 
students clearly developed their views of distribution, and the highest number of 
students took more rational views of distribution (see Table 8.2). Although 12 stu-
dents did not relate with distribution elements in the final conjecture, the number not 
doing this decreased from in the initial conjecture (see Table  8.1). Although the 
reported findings are limited to a small sample, they provide empirical evidence that 
experimentation can foster students’ model development of distribution. 
Nevertheless, nine students maintained Model A or Model B throughout the experi-
mentation (see Table 8.2). This result confirms the difficulty of developing aggre-
gate views of distribution (Garfield and Ben-Zvi 2008), indicating more research is 
needed into developing students’ statistical reasoning about distribution.

Two case studies provided empirical evidence that isolated statistical and/or con-
textual elements in the students’ distribution-related models formed by initial con-
jectures were able to be coordinated in their models by re-conjecturing after trial 
and validation. In Yuri’s case, in the validation, she newly adopted a relevant statisti-
cal element (shape) from the distribution-related model in her external world into 
one in her internal world, resulting in coordinated statistical elements in her final 
model (Fig. 8.4c). However, Yuri could not construct explicitly the combined model 
with statistical and contextual elements because of her inexperience in correlating 
the variation sources to the graph, in contrast to Ayu’s case. On the other hand, Ayu 
created a distribution-related model that had contextual and statistical elements in 
her internal world at the initial conjecture, but these were separated (Fig. 8.5a). The 
PHE’s simple and observable activities also encouraged her to become aware of 

Fig. 8.5 (a) Ayu’s Model B in the initial conjecture of distribution (b) Ayu’s model of real distri-
bution from the second experiment (c) Ayu’s Model D in the final conjecture of distribution
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data variation and its source. In the validation, Ayu abstracted the real distribution 
shape and idealised the whole (Fig. 8.5b). Then, she newly adopted a relevant sta-
tistical element (shape) from the distribution-related model in her external world 
into one in her internal world, thus coordinating statistical and contextual elements 
(Fig. 8.5c).

The trigger for combining students’ models can be the phase of model validation 
in experimentation. Both students recognised real distribution as a model of the 
experimental phenomenon (population distribution) by comparing their conjectures 
with the real distribution and resolving their conflict. Their real distribution models 
in the external world drew out analogies about the relationship between the distribu-
tions elements, which was lacking in their internal world models. There appeared to 
be the nature of models “as entities for comparing and contrasting and for drawing 
out analogies” in mathematics education (Ikeda and Stephens 2015, p.  354). In 
addition, these distribution generalisations could have been influenced productively 
by their prior knowledge (Stillman 2000). Authentic context in experimentation 
might reinforce their prior knowledge that flight-time distribution grows into nearly 
normal distribution through sophisticated experiments. These episodes strengthen 
the experimentation effects in the development of mathematical ideas indicated in 
previous literature (Carreira and Baioa 2011; Halverscheid 2008), demonstrating 
that these extend to the development of statistical ideas. In statistics education, con-
jecturing and validation about distributions are useful to guide students to look at 
aggregate features of distributions (e.g. Bakker and Gravemeijer 2004); therefore, 
this chapter suggests the possibility of a modelling approach combining students’ 
distribution-related models through experimentation.
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Chapter 9
Reconciling Intuitions and Conventional 
Knowledge: The Challenge of Teaching 
and Learning Mathematical Modelling

Azita Manouchehri and Stephen T. Lewis

Abstract In this chapter we present illustrative examples from school learners’ 
modelling efforts to highlight how knowledge of extra-mathematical contexts can 
influence students’ mathematical practices during various phases in the mathemati-
cal modelling cycle. We propose that future research may need to focus on how to 
constructively utilize students’ intuitions drawn from their personal and cultural 
backgrounds to advance their modelling cognition.

Keywords Epistemology • Intuition • Modelling • Validation • Reflection • 
Cognition

9.1  Introduction

The goal of improving mathematical modelling skills among school learners has 
been a major global source of scholarly efforts in mathematics education (Cai et al. 
2014). There is agreement that successful modelling hinges upon the ability to pro-
duce increasingly more precise and generalized solutions through iterative reflec-
tion and validation actions (Blum 1991). As such, an individual’s interpretation and 
expectation of what counts as a precise and adequate method becomes a key player 
in whether the modelling cycle is revisited or refined. While past research has con-
sidered the type of learner deficiencies that interfere with precise modelling (e.g. 
background knowledge, reading skills, errors), explanations offered for learners’ 
reluctance to seek and produce refined models rarely account for epistemological 
elements that influence their choices including the criteria they consider when vali-
dating the solutions they produce. We argue that unpacking these issues is central to 
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advancement of the field and merits careful consideration. In establishing this point, 
we will draw from data collected over the course of 4 years and through three inter-
related research projects on intermediate and high school learners’ mathematical 
practices to problematize two issues associated with implementation of mathemati-
cal modelling in schools: (1) the chasm between learners’ intuitions regarding vari-
ables they legitimately consider as prior constraints, based on their real-life 
experiences, and the conflict their choices create when confronted with the demand 
that conventional mathematics be considered in solving the same problems and (2) 
complexity of converging intuitive and analytical domains of children’s work in a 
manner that learners’ intuitions are not dismissed. It is our contention to argue that 
difficulties associated with “reflecting” and “validating” processes might be due to 
learners’ extra-mathematical knowledge gained through personal and cultural prac-
tices in which their lives are grounded.

9.2  Background Literature

Blum and Leiβ (2007) provide an overview of the mathematical modelling cycle, 
where a problem situation has to first be understood by the modeller and a situation 
model is constructed with support from the data presented in the problem. Through 
simplifying and structuring, a real model, or a simplistic representation of the situ-
ation with more precise details (p. 226), is established and mathematized for ana-
lytical purposes, and through the use of mathematical tools, a solution is generated, 
and the results are matched against the real-world situation allowing for validation 
and refinement of this model (p. 227). Findings of some studies highlight that learn-
ers do not volunteer, without specific intervention, reflecting, validating and gener-
alizing attempts (Galbraith and Stillman 2006; Verschaffel and De Corte 1997). 
Others have noted learners’ inability to consider real-life knowledge as a barrier to 
their successful modelling practices. For instance, in a study of elementary school 
learners’ work on application problems, Verschaffel and De Corte (1997) indicated 
that students tended to neglect real-world knowledge and other appropriate consid-
erations when solving modelling problems. They associate erroneous decisions stu-
dents make about modelling contexts with this gap in their knowledge (p.  589). 
Other challenges in producing mathematical models have been tied to learners’ ten-
dency to focus on isolated parts of a problem instead of viewing it globally 
(Mousoulides et al. 2010) and their inability to connect mathematical concepts to 
real-world situations (Kehle and Lester 2003).

While the literature provides insight into the competencies learners need to 
develop to be successful in solving modelling problems, it is less clear how model-
ling behaviours might be nurtured in ways that students’ voices are taken into 
account when extending their mathematization processes. Assuming the absence of 
knowledge of the real world on the part of the learners might be less than accurate 
when judging children’s understandings or how they mathematize what they assume 
as authentic questions regarding real-life events. Attempts at altering children’s 
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modelling practices without maintaining a responsive stance towards their priorities 
and intuitions might fail to nurture modelling as an intellectualized disposition that 
potentially anchors their decision-making in real-life and instead may be reduced to 
a set of procedures that students will learn to mimic to satisfy what they perceive to 
be mandatory academic expectations for success.

9.3  Context and Background

Our program of research combines and augments data across three different proj-
ects. Collectively, all three projects aim to examine mathematical practices of school 
learners as they solve different types of problems from various mathematical areas 
with the intent to gain an understanding of their mathematical choices and ways 
those understandings interact with instruction. Through our first project, we col-
lected a large data bank of school learners’ work through written responses they 
provided to selected problems (project A). Approximately 1,000 students from 28 
different school districts in two major states in the USA were sampled in this study 
(Tague 2015). The second project documents, using individual and group inter-
views, sources that seemingly contributed to students’ written responses (project B) 
(Manouchehri and Zhang 2015; Zhang and Manouchehri 2016). The third project 
involves the use of teaching experiments to explore ways that learners’ practices, as 
identified in previous cycles of study, might be altered in the presence of particular 
scaffolding techniques, interventions and semiotic tools (project C) (Manouchehri 
et al. 2014). Both projects B and C rely on work with approximately 120 children 
enrolled in grades 8–12. The project activities consist of individual or teamed inter-
views with students along with short- and long-term teaching experiments that 
attempt to access their interpretations of, and responses to, tasks and ways that they 
shift, or refuse to shift, their approaches in the presence of designed interventions.

The problems used in these studies, collectively, elicit learners’ modelling and 
modelling with mathematics processes. Two questions guide our data collection and 
analysis across the three studies: (1) What factors influence student choices of math-
ematical tools when confronted with a variety of problems ranging from application 
to modelling contexts? (2) How do learners rationalize their choices?

A major dimension of our analysis concerns understanding the role of learners’ 
intuitions in how they tackle and move through the modelling cycle. This consider-
ation is significant as Dixon and Moore (1996) characterize intuitive understanding 
of a problem as a representation that is distinct from the representation of the formal 
solution procedure for solving a problem. In this sense, intuition is not a special 
mechanism, but a form of reasoning guided by people’s interactions with the envi-
ronment. As such, intuition is a product of prior experience and reason where 
hypotheses are examined by performing probabilistic judgements. It is sensible to 
imagine that these intuitive understandings can influence individuals’ understand-
ing of, and interactions with, the modelling process.

9 Reconciling Intuitions and Conventional Knowledge: The Challenge of Teaching…
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In coding the data, we seek occasions in which the use of intuitive understanding 
and reasoning becomes paramount and directly shapes the learners’ mathematical 
work manifested in how they interpret the problem, mathematize the context, solve 
and validate their responses. Results highlight that how children perceive, interpret 
and then mathematize towards solving a problem is closely linked to their primary 
and secondary intuitions (Fischbein 1993). While primary intuitions are grounded 
in life experiences, secondary intuitions are developed through schooling and the 
result of repeated exposure to particular practices, some of which are in sharp con-
trast with the type of thinking demanded in the modelling process (Manouchehri 
and Zhang 2015). In revealing the problematic nature of this issue, in the next sec-
tion, we will provide illustrative examples to point out the relevance of children’s 
thinking in the ways that they draw on extra-mathematical knowledge when 
responding to tasks. We will show how learners go about authenticating tasks using 
their experiences, which often counter conventional interpretations of valid 
responses. Our goal in this paper is not to report on findings of any one of the three 
projects, as a unit, but to outline what we have learned through 4 years of research 
using multiple cycles of investigation about key features that have challenged our 
thinking regarding ways to nurture modelling skills among school learners.

9.4  Modelling and Intuitions

9.4.1  Risk Analysis

Fischbein (1993) articulated that, “sometimes, the intuitive background manipu-
lates and hinders the formal interpretation or the use of algorithmic procedures” 
(p. 14). In turn, intuitive acceptance shapes whether one accepts a certain solution 
or interpretation without explicit or detailed justification. Accordingly, these inter-
pretations and intuitions directly influence the children’s mathematizing, validating 
and refining efforts. The following section provides an illustrative example of this 
point.

Risk Analysis Problem
Suppose you have $1000 and wish to invest the entire amount on two business 
proposals you were given…What factors do you consider in order to decide 
how much to invest in each business venture? What questions do you ask to 
decide what to do?

The conversation depicted below occurred between the first author and two 
ninth-grade students, Jasmine and Tonya around this problem during a teamed inter-
view in project B. The goal of the interview was to document variables the learners 
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considered and the type of tools they used in responding to a task that required risk 
analysis. The dialogue depicts the robustness of children’s convictions when defin-
ing and justifying their choices. Furthermore, it problematizes the task of altering 
children’s personal values.

Jasmine: Do I know them? (She means the investing outlets.)
Interviewer: Does it make any difference to you?
Tonya: Sure, if they are friends, then I will give the money to the one I like 

best. If family then they get my money?
Interviewer: But what if there are risks involved? What if one of them has a higher 

risk of you losing your investment?
Tonya: Same difference (Jasmine nods in agreement).
Interview: So, suppose these people are neither friends nor family members. 

Assume that you are investing your money determined to make 
money. What then?

Tonya: How do we know these are legitimate businesses? How do we know 
they are not gonna take the money and run?

Interviewer: (pause) Good point, good point… so, how do you go about deter-
mining whether these are legitimate ventures? What data do you 
look for?

Jasmine: Ask around and find out from people we trust what they know about 
them.

Interviewer: What else? What specific information would you ask for? Suppose 
they are both legitimate…what then?

Tonya: How long they have been in business? Who their clients are, stuff 
like that.

Interviewer: What if they have been in business the same amount of time? Or, 
what if they are both new business proposals?

Jasmine: Best not to invest in new business…I personally go for the older, 
established one…that is, if I had the money to invest (Tonya nods in 
agreement). First of all, in real life, you always must know the per-
son; otherwise there is not much you can do if you lose money. If 
you know them, then you can go and make arrangements to at least 
get your money back later.

Notice that in structuring her questions, the interviewer attempted to gauge the 
learners’ thinking on factors that would be appropriate to consider so as to provide 
them with an analytical structure they could use in sequencing their analysis. We 
draw attention to the fact that students remained strongly tied to their views about 
the desire to invest with someone that they knew and trusted. Although aspects of 
the problem could be classified as inauthentic (Vos 2011) such as not actually hav-
ing $1000 to invest, students still clung heavily to their framing notions and consid-
ered variables in a very personal, realistic and valid way. They continued to defend 
their choices about how they would invest their money. As such when attempting to 
promote mathematization, the interviewer’s suggestions were rejected.
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9.4.2  The Wage Problem

In examining mathematical modelling and application tasks, students draw on 
extra-mathematical knowledge and personal life experiences. These domains of 
knowledge authenticate (Niss 1992; Vos 2011) tasks and shape how students enter 
and navigate the modelling process. Niss (1992) characterizes an authentic extra- 
mathematical situation as one that is embedded in practices or subject areas outside 
of mathematics that deals with problems or issues recognized as being genuine to 
those working within it. Vos (2011) expands the notion of authenticity by including 
the stakeholders’ relationship to that context and considers aspects of modelling 
tasks that are constructed for educational purposes to be inauthentic, since students 
may have little to no stake in determining a correct or viable answer in the contex-
tual domain of the problem (p. 721). The general concern deriving from this prin-
ciple is how to manage tasks if they are indeed authenticated by students based on 
their relative intuitions about the context at large. The following example offers an 
illustration of this challenge.

Table 9.1 Responses and explanations to the wage problem

Number of 
responses Final response Explanation

75 Not enough information We don’t know how many hours
83 $300 You earn $1,200 a month
62 $750 You can work 100 h a week and earn 

$750
58 It depends on the number of hours 

worked
48 There is no difference; they are the 

same
Working 40 h a week gives you the 
same amount

The Wage Problem
Suppose you have two job options: One pays you $7.50 an hour and the other 
one gives a fixed amount of $300 a week. Which option would you take?

We administered this question to approximately 500 students enrolled in grades 
5 through 8 in 23 different schools across two large states in the USA (project A). In 
asking the question, we had intended to evaluate students’ conditional reasoning 
and decision-making under hypothesis. The central mathematical idea was for stu-
dents to recognize “hours of work per week” as the primary variable and then to 
examine conditions under which either option may be considered better. Table 9.1 
indicates the breakdown of student responses for this task.

Interviews with students in project B revealed that those who had selected $300 
a week as the optimal option had assumed hourly pay to mean having to work less 
than 40 h a week. They also argued that the expectation to work more than 40 h a 
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week would not hold since it would obligate the employer to provide health insur-
ance to them which many businesses tried to avoid.

Those who had claimed there was not enough information to answer the question 
reasoned that knowledge about distance from work to home, and whether they 
would be given the option to set their own work hours (night shifts; hours per day), 
could have made a job option more appealing even if the pay were less. Some stu-
dents argued that since transportation was key in whether they could make it to 
work, then the primary consideration for them was the location of the workplace, 
for example, whether a bus route ran between their home and place of employment. 
The individuals who had identified $7.50 an hour argued that since they did not wish 
to work for more than 40 h a week, and they could potentially be asked to do so with 
the first option ($300 a week), this motivated their selection of the hourly pay option.

These responses showcase that students considered the problem as real, and as 
such a barrier that was faced was in structuring a real model from the situation model 
that they had constructed (Blum and Leiβ 2007). They recognized the need to con-
sider factors such as health insurance, distance to work and transportation, among 
others. These responses support that students are capable of thinking deeply about 
real-world contexts, making assumptions about those contexts and applying their 
experiences to answer questions posed about them. Even though their final answers 
may be considered as incorrect, the learners did, in fact, transform the problem into 
a more realistic version than was originally presented and solved it accordingly.

9.4.3  The Gasoline Problem

Greer et al. (2007) found that students distinguish between mathematical problems 
and real-world contexts based on how the tasks are presented. For example, in solv-
ing application word problems, students in their study exhibited the tendency to 
disregard answers they deemed problematic to the real-world situation. The authors 
argued that students may not exhibit mathematical behaviours if they do not deem 
the situation to be mathematical in its nature. The authors’ points are profound, and 
the following illustration serves to expand on their notion.

The Gasoline Problem
You just won a “gasoline for life” prize. Should you take the option of a lump 
sum of $250,000 instead? (NCTM 2011)

The Gasoline Problem has been proposed as a recommended activity to be used 
in high school classrooms by a nationally recognized professional network. The 
authors had predicted that in solving this problem, students would rely on their own 
personal circumstances to make assumptions regarding the problem. To funnel stu-

9 Reconciling Intuitions and Conventional Knowledge: The Challenge of Teaching…



114

dent thinking, the authors also outlined suggestions for how teachers could gauge 
students’ responses around issues of interest including considering the geographic 
location of their residence and whether they would have access to public transporta-
tion, whether they had to endure a daily long commute or if they were to take a long 
trip over the summer. The authors claimed that these questions could help student 
focus on determining a model suitable for answering the question.

During one teaching experiment episode in project C, we posed this question to 
a group of high school students with the intent to see the extent in which their 
responses matched those anticipated by the curriculum developers and also the util-
ity of suggestions for shaping their work. The range of responses students provided 
deviated from the anticipated range and are illustrated below:

• $250,000 “cause I can buy the things I need right now or like pay for my tuition 
and dorm. For all 4 years in advance”.

• $250,000 “cause I can start investing it now and will be making more money that 
way”.

• Who knows where I will be 10 years? I take the cash.
• $250,000 now. I won’t get to drive till I am 16 and even then I probably won’t 

have money to buy a car – So even assuming that I will get one say in 7 years, I 
am almost sure that by then, we will have solar cars and no need for fuel.

In considering students’ responses, it is obvious that the means by which stu-
dents prioritized and organized variables was not compatible with those considered 
to be central to the problem developers. Corresponding to the modelling cycle, this 
highlights that organizing variables within a context and establishing a real model 
are heavily influenced by the particular views students hold about the situation 
under study. Note that in their responses, learners had relied on their intuitions about 
future outcomes and their experiences. Due to these issues, they were reluctant to 
further engage in considering factors that the curricular authors had proposed to be 
pursued. Indeed, even in the presence of the instructor’s persistence that the students 
must consider alternative approaches, they refused to do so as they viewed them 
unnecessary. Despite our efforts at problematizing the task, the students assumed it 
was resolved. What if questions we posted failed to receive attention or establish 
serious intellectual engagement on their part?

We note here that the students’ responses are both valid and sophisticated. For 
example, the students considered the issues of the time value of money, which is a 
distinguishing characteristic of lump sums versus annuity relative to finance, where 
individuals attempt to value a future cash flow based on current dollars. Thus, their 
perspectives are not only drawn from their realities and experiences but also reflect 
sophisticated mathematical ideas that could be pursued.
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9.5  Discussion

Mathematics is often characterized as a discipline that is culture-free, in which 
statements have unambiguous meanings, and, due to its preference for specific 
structured reasoning and symbolism, has also been described as a universal lan-
guage (Devlin 2000). It is assumed that problems have common interpretations, 
language used in describing a phenomenon is shared, and individuals study and 
interpret the subject similarly. There is, however, mounting evidence that the knowl-
edge that students bring with them to school are powerful influences on how they 
interpret and view problems or go about solving them (Mousoulides et al. 2010). We 
support these claims and further highlight the intense connections among analytical, 
relational and intuitive reasoning used in mathematical work. While students’ per-
spectives rely on relational understanding, they are real in the sense that they refer-
ence tangible needs. As such, an important issue facing the mathematics education 
community is conceptualizing how instruction may address these intuitions and 
assist students in acquiring analytical competencies needed in modelling 
processes.

Schwarzkopf (2007) argued that in order for learners to be successful in solving 
modelling problems, teachers need to find ways to help their students balance the 
visible real-world into mathematical forms. This implies that modelling in its for-
mal sense may not be inherent, but may need to be structured in a way that promotes 
engagement in the process. Ultimately, this means that activities need to be devel-
oped for instructional purposes that consider the cognitive processes that students 
need so as to re-engage them in tasks when their determined solutions may not be 
adequate in their prediction or utility. We further stress that success of the attempts 
at improving mathematical modelling skills among students is closely linked to 
bridging the gap between students’ “realities,” “intuitions” and the desired con-
straints in mathematical modelling processes. Learners’ intuitions and experiences 
impact how they assess accuracy of the responses they obtain and thus influence 
whether they revisit their so-called “incorrect” answers. The process of reflection is 
ignited by detecting an anomaly of some sort in the solution or in the model. If the 
gap between what is real in mathematics and what is real in real-life is such that 
even unreasonable answers are perceived as legitimate, then from the learners’ per-
spective there is no need for reflection. From an epistemological standpoint in asso-
ciation with mathematical modelling, the successfulness of re-engaging in the 
problem is linked to bridging these gaps in realities.
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Chapter 10
A Modelling Perspective in Designing Teacher 
Professional Learning Communities

Nicholas Mousoulides, Marilena Nicolaidou, and Maria Evagorou

Abstract The chapter addresses a professional learning community development 
approach, namely, a multi-tiered research design which involves a modelling 
approach to learning. The chapter describes how a models and modelling perspec-
tive was employed in developing a teacher learning community and how it was used 
to better understand, analyse, and support the nature and development of teacher 
knowledge. Results have revealed that teachers improved their knowledge and ped-
agogical approaches to modelling. Changes in their attitudes, self-confidence, and 
motivation, and in their collaboration with other teachers, were also evident. We 
conclude that such an approach, although very demanding both in skills and compe-
tences, might serve in establishing and supporting a teacher learning community.

Keywords Teacher professional development • Learning community • Model- 
eliciting activity • Multi-tiered research design • Technological tools • Attitudes and 
beliefs

10.1  Introduction and Theoretical Framework

The purpose of this chapter is to address how a models and modelling perspective 
(English and Mousoulides 2015; Lesh and Doerr 2003) was used in the develop-
ment of a teacher professional learning community. By adopting a multi-tiered 
research design, involving a models and modelling approach to learning, we aimed 
to understand the nature and development of mathematics teacher knowledge, and 
what it means for a teacher to develop mathematics content, pedagogy, and an 
understanding of how students develop their mathematical ideas when working with 
inquiry-based modelling problems.
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Increasingly, researchers are realizing that it is crucial to work collaboratively 
with teachers and their students in the reality of their own classrooms, in an attempt 
to better inform practice (Ball 1996; Robutti et al. 2016). Such collaborative para-
digms include design studies, which are process oriented, and theory driven, such as 
the multi-tiered teaching experiments, and professional development approaches 
that involve content-based collaborative inquiry (Robutti et al. 2016). In the latter, 
the professional learning communities that are developed could better support 
teachers’ shift and professional development to reform-oriented approaches, 
through a focus on their students’ developments and understandings (Lave and 
Wenger 1991).

The goal in a learning community is to advance the collective knowledge and in 
that way to support the growth of individual teacher knowledge and skills (Robutti 
et al. 2016). A successful and productive learning community must have four dis-
tinct characteristics, namely:

 (a) Diversity of expertise and experiences among its members, who are valued for 
their contributions and given support to develop

 (b) A shared vision of continually advancing the collective (and individual) knowl-
edge and skills

 (c) An emphasis on the development of participants’ metacognitive abilities, reflec-
tive thinking, and the notion of learning how to learn

 (d) Mechanisms for sharing what is learned (Lave and Wenger 1991)

The learning community developed in our study was organized around a three- 
tiered research paradigm (see Fig. 10.1) that mainly addresses the development of 
teachers. The research paradigm also addresses the development of researchers, par-
ents, and students, in an attempt to examine how the collaborative environment 
developed for both classroom practitioners and researchers served in generating 
meaningful change within modelling learning contexts (Lesh and Kelly 2000). 
Parents were engaged in the professional learning community, as a larger study 
(within which the present study is situated) aimed to investigate the ways engaging 
parents in such settings could further facilitate the introduction of inquiry-based 
approaches in the teaching and learning of mathematics and science. Specifically, 
the collaboration aimed at designing and implementing teaching and learning 

Researchers and Teacher Educators construct, revise and refine models based on
teachers’, parents’ and students’ modelling behaviours

Teachers construct, revise, and 
refine models based on 

students’ modelling behavior

Parents construct, revise, and
refine models based on their

children’s modelling behavior,
and interaction with teachers

Students construct, revise,
and refine models based on

mathematical constructs

Fig. 10.1 Tiers of the learning community development
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 experiences (involving the construction and application of models) that maximize 
learning at each level. The collaboration also focused on the documentation and 
analysis of learning, together with reflection on learning.

As students are engaged in complex modelling situations (e.g. providing mathe-
matically based arguments to validate a statement (young people involved in car 
accidents during weekends are usually drunk) or investigating the reasons a person 
is gaining weight, although he/she is doing sports on a daily basis) that repeatedly 
challenge them to reveal, test, refine, and revise important aspects of mathematical 
constructs (e.g. various concepts from statistics and algebra), teachers are focused 
on their own thought revealing problems that focus their attention on their students’ 
modelling behaviour (Cai et al. 2014). Further, as the teachers revise and refine their 
models, this in turn affects the students’ models and vice versa. At the same time, 
researchers (and parents) are focused on the nature of teachers’ and students’ devel-
oping knowledge and abilities which in turn are constantly affecting each other 
(English and Mousoulides 2015; Mousoulides 2013).

10.2  The Present Study

10.2.1  Purpose

The purpose of the study was to examine the impact of a multi-tiered professional 
learning community on teachers’ knowledge and skills in designing and implement-
ing inquiry-based modelling problems in their classrooms. We hypothesized that a 
collaborative modelling-based professional learning community would have a posi-
tive impact on teachers’ mathematical knowledge, attitudes, and motivation, and 
their pedagogical approaches in teaching modelling problems.

10.2.2  Participants and Procedures

Four mathematics teachers (three females and one male) teaching in fifth- and sixth- 
grade classrooms in one urban-situated school agreed to participating in the study 
presented in this chapter. All participants held master’s degrees in mathematics edu-
cation. Other participants of the learning community developed were the students, 
the parents (around 40% of parents actively participated in the learning commu-
nity), two mathematics inspectors who served as teacher trainers (together with the 
researchers), and the members of the research team in the MASCIL project. The 
project focuses its actions on designing and carrying out activities to support teach-
ers in implementing inquiry-based teaching as well as connecting mathematics and 
science education to the world of work. Due to the emphasis of the chapter and page 
limitations, only the results related to the teachers are presented here.
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The overview of the design of the learning community is presented in Fig. 10.2. 
In a period of 3 months, the teachers (and parents) participated in five 3-h work-
shops on mathematical modelling, inquiry-based learning (IBL), and world of work 
(WoW) and appropriate pedagogical approaches on mathematical modelling and 
problem-solving.

Teachers and parents were invited to participate in a collaborative design 
approach to develop and implement a number of model-eliciting activities (see Lesh 
and Doerr 2003) in their classrooms. Two thematic areas emerged, namely, car 
accidents and road safety and health and exercise. Over the course of the next 
2 months, teachers worked collaboratively with researchers, parents, and teacher 
educators to develop lesson plans and learning activities for the two thematic areas 
and to implement the activities in their classrooms. Participants met weekly, com-
municated via email and via a blog, to develop five 80-min lesson plans for each 
thematic area. Further, two interactive applets were also designed to support and 
facilitate students’ work in the two thematic areas. A screenshot of the applet 
designed for the ‘car accidents and road safety’ activity is presented in Fig. 10.3.

Workshops for 
parents and teachers

on IBL & WoW

Emerging Themes
related for students’
lives, WoW & IBL

Development of 
activities, lesson 

plans, and software

1st implementation 
in two classes 

1st revision of 
materials

2nd implementation 
in two more classes

2nd revision of 
materials

Fig. 10.2 Stages of the learning community design

Fig. 10.3 Screenshot of the Car Accidents and Road Safety applet
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The implementation of the first thematic area activities took place in two classes 
in the school. Other teachers, teacher trainers, some parents, and the research team 
observed each lesson, debriefed and analysed teacher approaches and student work 
immediately following each observed lesson, and reflected on their understandings 
throughout the process. Following each lesson implementation, an individual inter-
view with the teacher that implemented the lesson was carried out by the research 
team. Revised activities were then tried out in other classrooms, followed by inter-
views (see above) and final modifications in the activities. Following a similar track, 
the second activity was also delivered in all participating classes. The study pre-
sented here is informed by data from the 2014 to 2015 school calendar year.

10.2.3  Data Sources and Analysis

Extensive field notes from lesson observations and group discussions were col-
lected. All discussions through the planning stages, observations, debriefing meet-
ings, lesson implementations, and lesson revisions were videotaped and transcribed. 
Data were triangulated with individual and group interviews and written reflections 
from each participating teacher.

A grounded theory approach to qualitative data collection and analysis was 
adopted (Corbin and Strauss 2008). Data analysis involved applying the constant 
comparative method. As Corbin and Strauss (2008) proposed, three approaches 
were used for data coding: (a) open coding, for examining, comparing, conceptual-
izing, and categorizing the data; (b) axial coding, for making connections between 
the categories revealed from open coding; and (c) selective coding, for selecting the 
core category and relating it to other categories and for validating the relationships 
between categories.

Three themes were revealed through coding and categorizing patterns in teach-
ers’ discourse and teaching practice. The first theme, teacher knowledge and peda-
gogical approaches to modelling, emerged as teachers gradually adopted and used 
more appropriate teaching methods and sought to assist students in improving their 
models and solutions. The second theme, teacher attitudes, self-confidence, and 
motivation, emerged as an outcome of participants’ responses in interviews and in 
their reflections. The third theme, communication and collaboration, emerged both 
in group and individual interviews, as well as in the collaborative lesson plan design, 
and the use of email and the blog.

10.3  Results

The results are presented with regard to the three themes that emerged, namely, (a) 
teacher knowledge and pedagogical approaches to modelling; (b) teacher attitudes, 
self-confidence, and motivation towards teaching modelling; and (c) communica-
tion and collaboration.
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10.3.1  Teacher Knowledge and Pedagogical Approaches 
to Modelling

Throughout the design, implementation, and modification of the activities, partici-
pants (researchers, teachers, and inspectors) identified a number of changes in 
teacher knowledge and pedagogical approaches. Results revealed that teachers syn-
thesized their own and each other’s prior knowledge, experiences, and resources in 
teaching and learning modelling activities. Teachers engaged in recursive interac-
tions between their shared and prior experiences in teaching mathematics, using an 
inquiry-based approach. For instance, teachers’ discourse (during lesson planning 
and reflective meetings that took place after lesson implementations) gradually 
improved, both in terms of the mathematical knowledge used and discussed and the 
appropriate pedagogical approaches used in the implementations. In these observa-
tions, discussions, and interviews, the following sub-themes emerged: (i) types and 
quality of questions, (ii) time allocated for student work and (iii) better feedback to 
student teams.

10.3.1.1  Types and Quality of Questions and Time Allocated 
for Student Work

Gradually teachers moved from addressing more closed (and answer oriented) 
questions to students to more open and inquiry-oriented ones that required concep-
tual understanding. This was evident not only in the observations that took place but 
also during the discussions. Throughout the implementation, all four teachers man-
aged to provide more time for their students’ individual and group work, devote less 
time for guidelines and instructions, and better facilitated orchestrated discussions 
between student teams, rather than addressing questions to individual students. The 
following exchange also reflects that shift:

Mary: I am always concerned with the questions I ask. I try to engage all, not just 
few, students, which is not easy.

Nina: Well, your questions [today] were appropriate; demanding and challeng-
ing. I believe they helped your students.

Mary: Well, I tried to do so. I was also stressed about time.
Harry: Yes, but I believe you provided enough time for each question, and your 

questions were clever […] they helped them [students] to progress through 
the task.

10.3.1.2  Better Feedback to Student Teams

Provided feedback significantly improved, as teachers focused on noticing impor-
tant elements and aspects of students’ work and addressed crucial suggestions for 
the improvement of student models. The following exchange shows how one teacher 
changed the way he provided feedback to his students:

N. Mousoulides et al.
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Harry: It is now [working with modelling problems] more difficult to reply 
[provide feedback] to your students.

Researcher: Why it is more difficult?
Harry: There are not simple answers …I cannot just say ‘Ok’ and move one 

or say ‘Think again’. I have to listen carefully to what students say, 
and try to find aspects of their work that can be improved. This is 
difficult.

Researcher: Do you feel that you have improved your feedback to students?
Harry: Absolutely. Do you not agree? [laughs] I actually listen to them now 

[…] it is not just crosstalk. Also, students learnt that they have to 
discuss with me, not just give me a number.

10.3.2  Teacher Attitudes, Confidence, and Motivation 
Towards Teaching Modelling

The second theme is related to the teacher affective domain and specifically to 
teachers’ (1) confidence to teach modelling activities, (2) motivation to integrate 
modelling in their day-to-day teaching, and (3) gradually more positive attitudes 
and task value for modelling tasks. Throughout the study, in various instances teach-
ers reported that modelling tasks are good vehicles to teach and learn mathematics. 
During the group interviews and discussions, a tendency for participants to integrate 
modelling tasks in their day-to-day teaching practice was revealed. An increase in 
their level of confidence was also evident. The following remark expresses partici-
pants’ shared views about modelling and their willingness to teach more modelling- 
oriented in their lessons: ‘Is teaching modelling demanding? A lot! But I feel I can 
handle it now, and it is what kids need […] work with real problems with their 
peers’. Further, it was a shared understanding among participants that their engage-
ment in the learning community was beneficial, and gradually they could see them-
selves becoming more independent in working with modelling tasks. The following 
exchange (from an interview at the end of the study) shows how two teachers 
changed the way they felt about modelling throughout the course of the study:

Researcher: So, will you continue using modelling tasks after the end of the 
project?

Anne: You can bet! [laughs] We spent so much time to learn to work like 
this, so I am not going to leave it! Honestly, I like modelling. It is not 
easy but it is rewarding. The students also enjoy it a lot.

Researcher: What do you mean by ‘not easy’?
Anne: You have to prepare a lot. Many different and diverse questions 

might appear. I remember at the beginning I was even scared, espe-
cially when I had visitors (researchers, parents) in classroom. It is 
totally different now.

10 A Modelling Perspective in Designing Teacher Professional Learning Communities



124

Mary: I also feel the same way. I keep facing difficulties and sometimes I 
am not sure how to help my students overcoming a constraint, but I 
will continue working with modelling problems. I am more confi-
dent, but not 100%!

Participants sought an equilibrium in their teaching, by using modelling activi-
ties through adopting one (or more) inquiry-based instructional method(s). Teachers 
also expressed positive attitudes and task value for modelling tasks. Both in indi-
vidual and group interviews, teachers appeared motivated to more frequently use 
modelling in their lessons. Quite often, all teachers referred to the great benefits (for 
students) from using modelling tasks in their lessons, albeit mentioning the various 
systemic and other constraints (e.g. time-consuming, or modelling is not included in 
the assessment). The following exchange shows the willingness of one teacher to 
keep working with modelling: ‘It is amazing how students work. They like the prob-
lems and I like watching them be so engaged in mathematics. […] You have to 
promise [points to one researcher] that you will include our school in any similar 
future projects on modelling!’

10.3.3  Communication and Collaboration

One of the core ideas when designing a professional learning community is the 
development of a culture of communication and collaboration between the partici-
pants. Our results revealed that there was (1) a constant and productive collabora-
tion between teachers and (2) a fruitful communication of teachers with researchers 
and teacher trainers. Collaboration and communication between teachers improved 
both in quantity and in quality. Teachers collaboratively prepared, tested, and revised 
the lesson plans and communicated to each other on a daily basis, during and after 
school time. Further, there was a clear shift from discussing ‘simple’ issues (e.g. 
time devoted in each task) to sharing challenging questions, to designing extensions 
to tasks, and to co-teaching modelling activities. Similarly, the topics and questions 
teachers addressed to researchers shifted towards more insightful and reflective 
ones. Teachers’ questions moved from more ‘procedural’ (e.g. organize students’ 
groups, how to use the applet) to more ‘conceptual’ (e.g. develop a rubric for assess-
ing student work, alternative teaching methods, classroom management during stu-
dent presentations).

There is also evidence that participants, and especially teachers, recognized that 
it was crucial to work together to achieve their collective purpose of learning. The 
classroom observations, the group interviews, the collaborative designs, and the 
interactions with many others (e.g. parents, inspectors, and researchers) assisted 
teachers in reflecting on their collaboration. The following exchange (from a group 
interview at the end of the study) shows some aspects:

Nina: You cannot imagine [refers to the two researchers] how much time 
we spent every afternoon and night discussing with Anne.

Researcher: Is that a good thing?
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Nina: Not for our families! [laughs]
Researcher: For you?
Nina: Much more than good! I feel it is usual to talk to Anne and Mary on 

a daily basis and work together. You know, this is not the case for our 
school [..] not only our school, but in schools in general. I like it, 
really!

[…]
Anne: It is not only that we work together, which is nice of course. Every 

day I have questions, important questions I want to discuss with 
others.

10.4  Discussion

In the study presented in this chapter, participating teachers were engaged in the 
design and modification of their modelling learning context through their selection 
and design of collaborative modelling activities, co-planned lessons, observations, 
and collaborative analysis of their students’ models. This teacher-driven and 
modelling- based professional learning community offered unique opportunities for 
participants to collaborate, synthesize, and integrate appropriate pedagogies and 
teaching methods in the teaching and learning of mathematical modelling and 
problem- solving. Gradually teachers lessened their focus on difficulties in imple-
menting modelling in their day-to-day mathematics teaching. As they investigated 
how various approaches to teaching complex problems engaged their students, and 
assisted them in building better and more refined models, their confidence in teach-
ing complex problem-solving rose, and they appreciated the contribution of model- 
eliciting activities in developing students’ mathematical constructs (English and 
Mousoulides 2015).

While the majority of teachers were very confident in their ability to teach math-
ematics (all had a master’s degree in mathematics education), they were signifi-
cantly less confident in teaching modelling activities and more complex inquiry-based 
problems – a trend that clearly pointed to the need to focus training and collabora-
tion on building skills, expanding resources, and enhancing teachers’ sense of 
 efficacy and confidence and, therefore, motivation to work with modelling activi-
ties. Results revealed that teachers gradually improved their self-confidence in 
teaching more complex and modelling-based tasks, and they became more moti-
vated in designing modelling activities, a very demanding and difficult task (Cai 
et al. 2014; English and Mousoulides 2015).

The learning community served as a structure that promoted a more collabora-
tive culture. Teachers’ willingness to collaborate did not stop at the classroom door, 
but teachers joined forces with researchers and parents to fruitfully collaborate in 
better implementing the modelling activities and to analyse students’ models and 
developments. We can claim that the powerful collaboration that was established 
characterizes the professional learning community, and it was a systematic process 
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in which teachers worked together (and with researchers and parents) to analyse and 
improve their classroom practice (Lave and Wenger 1991). This process, in turn, is 
expected to head to higher levels of student developments in modelling and 
problem-solving.

10.5  Conclusion

The notion of learning communities, including teachers and other significant groups, 
like parents, inspectors, and researchers, will grow as we try to address the profes-
sional needs of teachers, the demanding nature of teaching and learning in and 
through modelling, and the communication and collaboration with people from 
diverse backgrounds and views, and share what one learns with others. The example 
presented here showed that teachers’ participation in the learning community con-
tributed in improving teachers’ knowledge and pedagogical approaches, resulted in 
more positive attitudes and increased self-confidence, and increased the communi-
cation and collaboration between them. Clearly, more research on teachers’ devel-
opment as they construct knowledge and skills for teaching modelling and 
inquiry-based learning is needed in order to illustrate ways that professional learn-
ing communities can meet the learning needs of teachers so that teachers can meet 
the learning needs of their students.
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Chapter 11
Mathematical Modelling and Proof 
by Recurrence: An Analysis 
from a Wittgensteinian Perspective
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Abstract This chapter describes a study that aims to investigate the question: Is it 
possible to consider the recurrence process inside a mathematical modelling activity 
as a mathematical proof? The study is based in the writings of Ludwig Wittgenstein, 
in particular, on the subject of proof by recurrence. We based our arguments on the 
analysis of two mathematical modelling activities. A qualitative approach and an 
interpretative analysis of Wittgenstein’s writings were used to infer points from 
written data and data collected through audio-recordings. Our analysis indicated 
that mathematical modelling activities, in a sense, may lead to the need for mathe-
matical proof, particularly proof by recurrence.
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11.1  Introduction

Discussions regarding mathematical modelling as a way to deal with mathematics 
are important and necessary to strengthen mathematical modelling in the context of 
mathematics education, since the development of modelling activities encourages 
the exercise of specific procedures and promotes the study of various mathematical 
subjects.

Blum et al. (2002) discussed the research goals of the ICMI study for applica-
tions and modelling in mathematics education and identified several mathematical 
modelling issues and challenges. Even now some of these points need our attention, 
for example:

What parts of mathematics, if any, are less likely to be represented in applications and 
modelling? What parts of applications and modelling, if any, are less likely to be repre-
sented in mathematics? What is the meaning and role of abstraction, formalization and 
generalization in applications and modelling? What is the meaning and role of proof and 
proving in applications and modelling? Are there common features of proving and model-
ling? (p.159)

According to Almeida (2014), reflections on mathematical modelling and philoso-
phy ‘may possibly clarify something in regards to the lack of unanimity about the 
modelling activity or the almost inherent complexity of the modelling process, 
about the place of mathematics in modelling activities’ (p. 100). It is at this last 
aspect that this chapter is directed, that is, about the place of mathematics in model-
ling activities; in particular, the aim of this research is to answer the question: Is it 
possible to consider the recurrence process inside a mathematical modelling activity 
as a mathematical proof?

11.2  Mathematical Modelling: A Way to Deal 
with Mathematics

Around the world mathematical modelling is designed from different perspectives, 
as indicated by Kaiser and Sriraman (2006), which indicate different contexts and 
different interpretations of what is named mathematical modelling. According to 
Galbraith (2012), these interpretations are presented in two different settings, 
namely, as an object of study and as a way of teaching and learning mathematics. 
These two sets of mathematical modelling approaches are classified in accordance 
with the objective that we take to address it, respectively, ‘modelling as content’ and 
‘modelling as a vehicle’ (Galbraith 2012).

By considering modelling as content, Galbraith (2012) refers to an activity that 
‘sets out to enable students to use their mathematical knowledge to solve real prob-
lems, and to continue to develop this ability over time’ (p. 13). In this case, the focus 
is on modelling itself and how to learn to do it and how to use the procedures of 
modelling and to use mathematics to solve the problems which the modeller faces. 
On the other hand, mathematical modelling may be used as a vehicle, where ‘some 
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parts of a modelling process, or aspects related to modelling, are used to enhance 
the learning of mathematical concepts that form part of the curricular mathematics 
included in syllabuses’ (p. 13).

An idea that can be associated with mathematical modelling is to analyse and 
interpret, through mathematics, situations that are around us (Lingefjärd 2007). In 
recent years, this idea has been implemented inside classrooms to contribute to 
mathematics teaching and learning. One of the teacher’s main objectives is to con-
front students with problem situations and, while they are seeking solutions, to pro-
mote mathematical discussions regarding mathematical or modelling content. To 
develop modelling activities, it is important to identify which mathematical content 
is necessary to solve the problem. These choices depend, among other factors, on 
the characteristics stated in the problem, on the abilities of the modeller and on the 
modelling tools at his/her disposal Almeida (2014). However, in different activities 
some mathematical characteristics are recurrent, such as the mathematical recur-
rence (Matheus and Reed 2007). It is used in the works of Yanagimoto (2003) to 
estimate the number of bluegills in Lake Biwa, in Japan, Bassanezi (2004) to study 
the population dynamics of Nile Tilapia and Almeida et al. (2012a) to determine the 
amount of mercury released for the environment, among others.

We focus our discussion on the use of recurrence in mathematical modelling 
activities, and we propose this examination from a Wittgensteinian perspective, 
mainly considering that in mathematics education, particularly in modelling, differ-
ent uses of mathematics can be seen as different language games as stated by 
Wittgenstein (1996). Wittgenstein was particularly interested in the philosophies of 
mathematics, breaking with an absolutist view of mathematics, as defended by the 
philosophical currents of logicism, intuitionism and formalism (Gerrard 1991; 
Putnam and Conant 1997; Wright 1980), since such a view sets aside specificities of 
mathematical uses in different political, social and cultural contexts. The philosoph-
ical examination of the language uses, in particular of mathematical language, its 
rules, proofs and propositions, appears in the articulations between the 
Wittgensteinian perspective and mathematics education (Duarte and Taschetto 
2014; Gottschalk 2014). Specifically, in modelling, some researchers have signalled 
the use of different models in different language games (Almeida 2014; Almeida 
et al. 2012b) and in mathematics teaching and learning (Souza and Barbosa 2014).

11.2.1  Wittgenstein’s Perspective About Proof by Recurrence

Ludwig Wittgenstein was an Austrian philosopher with great importance in the lin-
guistic turn of the twentieth century. Books such as Philosophical Grammar 
(Wittgenstein 1974), Philosophical Remarks (Wittgenstein 1975) and Philosophical 
Investigations (Wittgenstein 2012) discuss the construction of a new perspective for 
language, as opposed to a merely representative function.

Part of Wittgenstein’s writings is dedicated to mathematics and, in particular, the 
role of mathematical proofs. According to Wright (1980), ‘no question receives 
more attention in RFM than that of the nature of the distinction between calculation, 
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or proof in general, and experiment’1 (p. 318). For Wittgenstein (1996), ‘the proof...
is a single pattern, at one end of which are written certain sentences and at the other 
end a sentence (which we call the “proved proposition”)’ (p. 48). Regarding the 
proposition and its meaning, Wittgenstein (2003) notes that a proposition is all that 
can be true or false, in a particular language system: ‘It is only in a language that 
something is a proposition. Understanding a proposition is to understand a lan-
guage’ (p. 97).

The proposition and its proof are related in a logical and unique way. In many 
situations, what we have in mathematics are not proofs but a hypothesis that must 
be verified and validated. However, only a proof establishes connections between 
the hypothesis and its validity. The importance of proof is in ‘showing us’ things as 
they really are. ‘A proof ought to show not merely that this is how it is, but this is 
how it has to be’ (Wittgenstein 1996, p. 149). In particular, Wittgenstein presents 
reflections regarding proof by recurrence and touches on the validity of this process 
as a procedure related with mathematical proof.

As we say the proof by recurrence shows that algebraic equations are valid for all cardinal 
numbers; for now, it doesn’t matter if the expression is a good or bad choice; what matters 
is that you have the same meaning clearly defined in all cases.

And is it not clear that proof by recurrence actually show the same for all “proved” 
equations?

And does not mean that between the proof by recurrence and the proposition, that it 
proves, there is always the same (internal) relationship?

Anyway, it is clear that there must be such proof by recurrence or, rather, an interactive 
one. (A proof communicates the insight that “it is the way it should be for every number”). 
(Wittgenstein 2003, p. 325)

The proof by recurrence procedure may be associated with the axiomatic method of 
the mathematician Giuseppe Peano (1858–1932) and his infinite sets, as well as the 
principle of finite induction (Fig. 11.1). Thus, the proof by recurrence may be con-
sidered as a mathematical proof, the iteration, that shows one term depending on 
another, generates a chain of propositions culminating with ‘and so on’. Wittgenstein 
raises the validity of ‘and so on’: How can we infer from two or three cases an infi-
nite class of validity? ‘The connection with the most finite domains is entirely clear. 
In a finite domain, it would certainly be a proof that f(x) is valid for all values of x, 
and that is why we say in the arithmetic case that f(x) is valid for all numbers’ 
(Wittgenstein 2003, p. 326).

1 RFM refers to the work Remarks on the Foundations of Mathematics.

First Principle of Induction Let p(n) be a propositional function whose universe is the integer set greater 
than or equal to a given integer a. Suppose we can prove that p(a) is true; if r ≥ a and p(r) is true, then p(r+1) 
is also true. Then, p(n) is true for all n ≥ a.
Second Principle of Induction Let p(n) be a propositional function whose universe is the integer set greater 
than or equal to a given integer a. Suppose that we can prove p(a) is true; if r > a and p(k) is true, and for all k
such that a ≤ k < r, then p(r) is also true. Then, p(n) is true for all n ≥ a.

Fig. 11.1 Principle of finite induction by Domingues and Iezzi (2003, pp. 31–32)
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According to Wittgenstein (2003), ‘the only time that it is unwise to call some-
thing “proof” is when the grammar of the word “proof” does not conform with the 
grammar of the object under consideration’ (p. 333). It is in the grammar of the 
considered object that it is possible to validate the proof, where we should consider 
the mathematical proposition and the propositions associated with it. In this way, 
proof by recurrence may represent the proved proposition via an internal relation-
ship, and the connections between the hypothesis and the concept, and between the 
proposition and its foundations. In Wittgenstein’s words, ‘We can always write a 
proof by recurrence as a limited series with “and so on” without it loses none of its 
rigor’ (Wittgenstein 2003, p. 344). Considering Wittgenstein’s philosophy on proof 
by recurrence, we analyse mathematical modelling activities.

11.3  Methodological Procedures

To investigate if mathematical modelling activities may allow procedures related to 
the proof by recurrence, we analysed two situations from a bigger collection: the 
activity Concentration of the Contraceptive Pill in the Body (see more details in 
Palharini et al. 2015), developed during a mathematical modelling course by three 
Brazilian students who were in the second year of a mathematics degree, and It Is 
Time to Turn Off the Lights activity from Almeida et al. (2012a), a Brazilian book 
that addresses modelling in the classroom.

Concentration of the Contraceptive Pill in the Body
Composition (coated tablet):

Each coated tablet contains 0.100  mg levonorgestrel and 0.020  mg 
ethinylestradiol.

After single-dose administration, maximum blood concentration of levonorg-
estrel is achieved within 1–2.5 h, and ‘steady state’ is reached after 19 days 
of continuous use. After a single dose, maximum ethinylestradiol concen-
tration in the serum is reached within 1–2 h and ‘steady state’ after 6 days 
of continuous use. The plasma elimination half-life of levonorgestrel with 
ethinylestradiol is from 8 to 13 h.

Hypothesis:

 (1) The contraceptive half-life is 12 h; (2) the pill is ingested each 24 h; and 
(3) adequate contraceptive use is to administer equal doses, every day, for 
21 consecutive days.
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Concentration of the Contraceptive Pill in the Body presents information regard-
ing modelling activity developed in the classroom by a group of three students, 
named as A, B and C, from a total of four groups. From such modelling activity, to 
support our analysis, we used data collection including audio-recording of the 
classes, written data and solution of students’ modelling activity.

The analysis was conducted by three researchers from the set of data collected 
through empirical research, mainly considering records and audio of the students 
during modelling activity and the suggestions for the modelling activity develop-
ment in the book, Mathematical Modelling in Basic Education (Almeida et  al. 
2012a). These methodological procedures were considered to support an interpreta-
tive analysis based in the writings of Ludwig Wittgenstein.

11.4  An Analysis of the Recurrence Process in Mathematical 
Modelling

From the empirical data shown in Fig. 11.2, students tried assuming a hypothesis 
and tried to formulate a mathematical model using the initial concentration of 
salts in the pill, Q(0) = 0.12, where Q is the amount, in milligrammes, of the salt 

It Is Time to Turn Off the Lights
Metallic mercury contained in the lamp, in its gaseous form, is toxic for 
humans and for the environment. When lamps are thrown in landfills, it con-
taminates the soil, water resources, fauna and local flora, reaching the food 
chain. If the lamps were handled or disposed of incorrectly, they may break 
and release mercury vapour – around 20 mg per lamp.

Considering this problem and the way the lamps out of use are discarded 
in a public institution, a group of students, motivated by a story from a local 
newspaper, decided to investigate this theme in mathematics class.

According to a newspaper article, around 3000 fluorescent lamps were out 
of use in a deposit, with the risk of breakdown and release of mercury into the 
environment. In addition, around 420 lamps would be forwarded for this 
deposit every month.

To investigate the problem, consider that 3000 lamps broken and the other 
420 sent monthly also suffer damage and release mercury into the 
environment.

Hypothesis:
(1) Each fluorescent lamp has 20 mg of mercury; (2) there are, initially, 

3,000 lamps out of use in the deposit. (3) 420 new lamps are deposited in the 
same deposit monthly; (4) all lamps are broken as soon as they arrive in the 
deposit, releasing mercury; and (5) the mercury half-life is approximately 
2 months.
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concentration in the body. It is only in the language regarding the half-life of the 
drug that Q(0), Q(1), Q(2)...Q(n) are considered propositions (Fig. 11.2). According 
to Wittgenstein (2003, p. 97), ‘to understand a proposition is to understand a lan-
guage. A proposition is a sign on a system of signs’.

By formulating the model, for the concentration in the body of a dose of the pill 
Q(n) = Q(0)(1/2)n, or for n doses Q(n) = Q(0)(1 − 0, 25n + 1/0, 75), considering a dose 
each 24 h, students used mathematics as a guide that indicates propositions. This 
guide was indicated when the students argue that:

Student A: For the model to work it is necessary to take the medicine at the right 
time every day, if the person takes it after or before the time, the model 
does not work.

The construction of a mathematical model that considers n doses each 24 h is 
stated by student B as:

Student B: Now I will do the modelling to find a model for n pills taken from the 
Q(0) = 0.12 mg. We will do a recurrence modelling to find our model. 
…In Q(2) all this here will suffer the decay in the organism... . If we 
do Q(3) we will have ¼ of Q(2) + Q(0) ... . We can generalise, who 
will be the Q(n), will be Q(0) times that sum here, which is a finite GP 
[Geometric Progression] right?

When they are trying to generalise, from a simple case to a more general case, 
the recurrence procedure is used. This procedure was used to obtain a rule that 
directs its use and shows how the situation must be (Wittgenstein 1996).

With the obtained rule students may calculate the salt concentration at any time. 
However, to obtain this rule, another mathematical tool is necessary, to consider the 
sum of a finite geometric progression as C points out:

Student C: We try to put it as an infinite sum of a GP and never validated, so we 
arrived at the sum of a finite geometric progression ... . In the other 
way it would never work, because it is not infinite, there is a period 
that we are taking this pill; it is for 21 days.

Fig. 11.2 Students’ records
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Thus, within these considerations, the students of the group generalised a math-
ematical model using a recurrence process and communicated it to the other 
students.

The second modelling activity analysed in this chapter is from Almeida et al. 
(2012a). From this source, we have the information: each fluorescent lamp has 
20 mg of mercury; with 3000 initial lamps out of use, 60,000 mg of mercury is in 
the environment; and 420 lamps are broken monthly, this is, 8400 mg more of mer-
cury. Assuming this hypothesis, one of the ways to estimate the mercury concentra-
tion in the environment, at any time, is stated in Fig. 11.3.

Both modelling activities (Concentration of the Contraceptive Pill in the Body 
and It Is Time to Turn Off the Lights) allow a mathematical analysis that may lead 
the modeller to the use of a recurrence process. Considering our question: ‘Is it pos-
sible to consider the recurrence process inside a mathematical modelling activity as 
a mathematical proof?’, we may note that the students’ recurrence process develop-
ment is not mathematically as sophisticated as the induction process (Fig. 11.1). 
Students A, B and C start from a situation where Q(0) is valid, given the nature of 
what they comprehend of the real data studied and the hypothesis made, by the 
students, considering the real data. They surmise the iteration that generates the 
propositions Q(1), Q(2), …, to Q(n).

Wittgenstein (2003) argues about the validity of iteration showing one term 
depending on another, what generates the chain of propositions, that is, the validity 
of the ‘and so on’, the inaccessibility of making conjectures unto infinity. However, 
when we are engaged in a mathematical modelling activity, we have to consider a 
finite domain. For example, the use of the contraceptive pill is made in a finite num-
ber of days, for 21 days uninterrupted. Even when we thought about the lamps that 
every month are breaking in the deposit, we know that sooner or later, this will end. 
Indeed, this mathematical modelling practice corroborates with Wittgenstein (2003) 
when he says that the connection with most finite domains is entirely clear.

During the iteration between one and another proposition, it is necessary to con-
sider some mathematical artifices to simplify the expression for n doses of the drug 
or the amount of mercury at any time. A system of rules is required that allows the 
modeller to define, and redefine, the initial proposition from a set of hypotheses to 
a final proposition, what demonstrates an internal relationship with the hypothesis 

Fig. 11.3 Recursive process to formulate a model adapted from Almeida et al. (2012a)
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adopted. Even when the modeller redefines the proposition, we may say that he/she 
is not falling into the trap of making a serious reduction and/or simplification.

In this calculus, the “proof” has a fixed meaning. If now I call the inductive calculus a proof, 
it is not a proof that spares me to check if the steps in the chain of equations were made in 
accordance with these particular rules (or paradigms). If they are gone, I say the last equa-
tion of the chain is proved or that the chain of equations is correct. (Wittgenstein 2003, 
p. 337)

Wittgenstein (1996) indicates on the basis of the proposition:

The proof belongs to the background of the proposition. To the system in which the propo-
sition has an effect. ... Every empirical proposition may serve as a rule if it is fixed, like a 
machine part, made immovable, so that now the whole representation turns around it and it 
becomes part of the coordinate system, independent of the facts. (p. 437)

When we discussed about proofs in mathematical modelling activities, doubts 
arise regarding their validity. This may occur due to the origin of the initial proposi-
tion, an empirical proposition and mathematical model; such is often related with an 
experiment. However, regarding mathematical proof, an initial proposition may be 
an empirical one. Thus, in mathematical modelling activity, the modeller does not 
worry with the validity of the proof.

In Wittgenstein’s writings (1996, 2012) regarding proof by recurrence, one of the 
main obstacles is having to conjecture unto infinity, this is what he named ‘and so 
on’, because inside the different situations, with which we find ourselves, we do not 
deal with infinite domains. The empirical propositions are about facts, whereas infi-
nite domains exist only in our language, through grammatical propositions2, as in 
the case of mathematical language. According to Lingefjärd (2007), in mathemati-
cal modelling, we often need to analyse and interpret, through mathematics, situa-
tions that are around us; most of these situations have finite domains, and thus we 
do not fall into ‘the trap’ of conjecture unto infinity. To deal with this kind of con-
jecture, it is necessary to appeal to grammatical propositions, defined by Wittgenstein 
(1996) as those used in mathematical language.

11.5  Discussion and Implications for Teaching and Learning

Concerned with the use of mathematics in mathematical modelling, we proposed to 
investigate the question ‘Is it possible to consider the recurrence process inside a 
mathematical modelling activity as a mathematical proof?’ We based our reflections 
in Wittgenstein’s writings regarding mathematical proof, in particular proof by 
recurrence. This perspective helps us to support the analysis of a mathematical mod-
elling activity performed by students and a mathematical modelling activity 
suggested by modelling literature. We conclude that students, engaged in 

2 Propositions resulting from conventions crystallised into linguistic expressions are defined by 
Wittgenstein (1996, 2012) as grammatical propositions.
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mathematical modelling activities, used mathematical processes that correspond to 
proof by recurrence, as indicated in mathematical language. On the one hand, we 
note that the use of this procedure was made without the students’ knowledge that 
they were doing a mathematical proof. However, students used a recurrence process 
closely connected with the principle of finite induction. From this activity, teachers 
could suggest different modelling activities related to other infinite processes to 
teach, introduce or remind students regarding the sum of an infinite series and about 
mathematical propositions that make a series convergent or divergent depending on 
characteristics of the series and its limit value, using, again, aspects from formal 
mathematics.

By reflecting on modelling as content and as vehicle, as denoted by Galbraith 
(2012), we now focus on the contributions of mathematical modelling and proof by 
recurrence for teaching and learning mathematics. According to the author, model-
ling as content should propose empowering students to use their mathematical 
knowledge to solve real problems and to further develop this capability. The fact 
that the use of proof by recurrence, in mathematical modelling, can take place with-
out the knowledge that the modeller is using a formal mathematical process for 
justification of propositions leads us to consider the second genre for modelling as 
stated by Galbraith (2012), that is, modelling as vehicle. In this context, parts of the 
modelling process are used to enhance learning mathematical concepts or processes 
that are part of the course included in mathematical programmes. In particular, 
regarding proof by recurrence, Wittgenstein’s writings (1996) help us to understand 
the dynamic of this kind of proof and what we have to consider to validate a proof, 
mainly, the nature of the propositions used. Generally, proofs in mathematical mod-
elling depend on the conditions stated in the problem-situation addressed, the 
empirical propositions assumed and the abilities of the modellers, among other fac-
tors that make possible the use of mathematical language in the solution of mathe-
matical proofs.

From this study, we saw in the philosophy, particularly in the philosophies of 
mathematics – that consider the foundations of mathematics and the specificities of 
different contexts – as Wittgenstein philosophy, a way to investigate proof in model-
ling activities, how students use mathematical language in mathematical proofs 
when day-to-day situations are the beginning of the activity and the transition, made 
by them, between propositions that are valid within mathematics and its interpreta-
tion in the real world.
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Chapter 12
Quality Criteria for Mathematical Models 
in Relation to Models’ Purposes: Their 
Usefulness in Engineering Education

Jacob Perrenet, Bert Zwaneveld, Kees van Overveld, and Tijn Borghuis

Abstract A taxonomy of eight quality criteria for mathematical models was devel-
oped for the common basic modelling course in the innovated BSc curriculum of 
Eindhoven University of Technology. First year engineering students of all disci-
plines reflected on their group modelling projects, indicating how their models could 
be improved, using the criteria. The students were also asked to indicate the purpose(s) 
of their models from a list of 16 purposes. This study explores the usefulness of the 
purposes and criteria, defined as relevance combined with understandability. 
Optimisation proved to be the most relevant purpose, followed by analysis, predic-
tion (what), and verification. Specialisation, genericity, scalability, distinctiveness, 
and convincingness criteria proved useful; but audience, impact, and surprise did not.

Keywords Engineering • Explorative research • Group projects • Model purposes 
• Model quality criteria

12.1  Introduction

For many years, the Eindhoven University of Technology (TU/e) offered about a 
dozen engineering Bachelor programmes (e.g. in biomedical engineering, software 
science, applied physics, and applied mathematics). Only in applied mathematics 
did mathematical modelling have a prominent position (Perrenet and Adan 2011). 
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In 2012, the totally innovated Bachelor college started, comprising all engineering 
Bachelor programmes as majors. The students were offered much more freedom to 
fill their programmes, but a set of basic courses, including modelling, became man-
datory for all.

The aim of the modelling course is learning how to convert a non-mathematical 
problem into a form which can be tackled using mathematical tools, without losing 
sight of the original question. Starting with a generic introduction, the course offered 
four variants for specific disciplinary groups: dynamical systems (wherein time is 
the most important factor), data modelling (with acquired data as a starting point), 
process modelling (concerning systems with distinct states), and modelling from 
scratch (not directly related to a specific discipline). The education period takes 
about 10  weeks with lectures, take-home assignments, intermediate tests, and a 
group project (with five students per group).

We will focus on the generic introduction of 7 weeks, developed by the late Kees 
van Overveld, in consultation with Tijn Borghuis, and with representatives of all 
TU/e disciplines to make the content useful for all students. Much was constructed 
especially for this course. In this explorative study, we will zoom in on the topic of 
modelling criteria in relation to modelling purposes. We explore the usefulness of 
those criteria for the engineering students as apparent from their reflection on their 
modelling activities.

12.2  Theory

In ICTMA publications, respectively, general mathematical education literature, 
much has been published about the structure of the mathematical modelling process 
and its quality, that is, the steps to be performed and their order. Examples are Blum 
and Leiß (2006), Girnat and Eichler (2011), Blomhøj and Hoff Kjeldsen (2006), and 
Borromeo Ferri (2006). This structure is often represented by a modelling cycle (see 
Perrenet and Zwaneveld 2012). Less attention has been given to the quality of the 
successful result: a working model, that is, a model and its interpretation, with vali-
dation and verification. Only a few lists of quality criteria for a working model can 
be found in literature. An example is Meyer’s list (1984): accuracy (is the model’s 
output correct?), descriptive realism (is the model based on assumptions which are 
correct?), precision (are the model’s predictions definite numbers, functions, geo-
metrical figures? or are those a range of numbers, etc.?), robustness (is the model 
immune to errors in input data?), generality (is the model applicable to a wide range 
of applications), and fruitfulness (are the conclusions useful, inspiring, or pointing 
the way to another good model?). A second example is Agoshkov’s list (2002): 
adequacy (the extent of qualitative or quantitative agreement between the model and 
the modelled system concerning its properties), sufficient simplicity (balanced 
between giving reasonably accurate results that fulfil the stated purpose and econ-
omy in terms of costs), completeness (yielding the best possibility of obtaining 
desired outcomes), productivity (ease of measurement of input data), robustness 
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(stability with respect to errors in input data), and clearness (direct, clear, substantial 
sense of a model’s components).

The purpose of a model has not received much attention in modelling education 
research. Van Overveld and Borghuis (2013) developed a taxonomy of quality crite-
ria that relates to the lists mentioned before but takes into account the purpose of a 
model as well. In ‘one model performs better than another’, ‘better’ should include 
‘with respect to the models’ purpose’. They distinguish the following purposes 
(with typical questions added):

 – Explanation: Why …? How come …?
 – Prediction 1 (when): When …?
 – Prediction 2 (what): What …? What if …?
 – Compression: Can these data be summarised in less data or in formulas?
 – Inspiration: Maybe X could be tried…? Maybe Y could be true …?
 – Communication: How to inform a specific audience?
 – Unification: How to capture the similarity of phenomena from different domains?
 – Abstraction: How to capture the essence of a phenomenon leaving out details?
 – Analysis: What are the properties of the system under study?
 – Verification: Is it true that … (statement about the modelled system)? (+ give 

argument)
 – Exploration: What are the options …? In what ways can we connect A to B?
 – Decision: Which of these is the best option (a closed set of alternatives)?
 – Optimisation: What is the best value for these parameters or dimensions?
 – Specification: What external properties should some artefact have? What should 

it do?
 – Realisation: What internal properties should some artefact have? How should it 

do it?
 – Steering and control: What (real time, online) interventions should this system 

do?

Three independent dimensions of the modelling process – beginning (definition 
stage) or end (conclusion stage), inside (model, modelled system) or outside (stake-
holders, context), and qualitative or quantitative perspective  – produce an eight- 
criteria taxonomy (Table 12.1).

Van Overveld and Borghuis stress that a complete taxonomy requires properties 
where all possible values can be enumerated. They develop operationalisations for 
all criteria. We will illustrate that here with two examples, impact and convincing-
ness. Impact needs four quantities to express it as a number: r1, the profit or income 
in the present situation, without the model outcome; r2, the profit or income with the 
model outcome in place; c1, the cost of ownership in the current situation; and c2, the 
cost of ownership with the model outcome in place. For all quantities, the same 
timescale is taken (e.g. lifetime or yearly amounts). The quantity ρ = ((r2 − r1) − (c2 
− c1))/(|r2 − r1| − |c2 − c1|) is a number between −1 and 1. Positive values mean a 
beneficial contribution; negative values mean that the impact is adverse. The abso-
lute value |ρ| indicates the size of the impact.
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Table 12.1 Taxonomy of quality criteria

Dimension Criterion

Stage
Inside or 
outside Perspective Description Name

Define Stakeholders 
and context

Qualitative To which extent is 
the approach capable 
to handle various 
types of modelled 
systems or purposes?

Genericity

Define Stakeholders 
and context

Quantitative To which extent can 
some characteristic 
dimensions of the 
problem increase, 
where the model still 
functions?

Scalability

Define Model and 
modelled 
system

Qualitative To which extent does 
the model/model 
outcome require 
specialised 
knowledge on behalf 
of the problem 
owner?

Specialisation

Define Model and 
modelled 
system

Quantitative What size of 
intended audience 
does the model 
address?

Audience

Conclude Stakeholders 
and context

Qualitative How plausible are 
the assumptions of 
the model?

Convincingness

Conclude Stakeholders 
and context

Quantitative How similar can 
alternatives be in 
order for the model 
to allow distinction 
between these 
alternatives?

Distinctiveness

Conclude Model and 
modelled 
system

Qualitative What is the extent to 
which the model 
outcome may bring 
unforeseen new 
ideas?

Surprise

Conclude Model and 
modelled 
system

Quantitative What is the extent to 
which the model 
outcome can affect 
the stakeholders?

Impact

J. Perrenet et al.
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Convincingness hinges on plausibility of assumptions. This can be related to an 
ordinal scale, from high to low, as follows:

5. Assumptions are logically deducible from other non-problematic assumptions.
4. There is a law or theory in a well-accepted discipline (physics, economics, etc.), 

such that the current assumption is an instance of that law or theory.
3. There is a plausible formal model system to which the current system may be 

compared.
2. There is an empirical model supporting the assumption and a similarity argument.
1. The model behaviour is consistent with intuition.

For details, see Van Overveld and Borghuis (2013). Van Overveld and Borghuis 
conclude with combining the purposes and the criteria. The relevance of the various 
criteria is related to the purpose(s) of a model (see Table 12.2). For example, if the 
purpose is communication, the criterion audience (how large can the intended audi-
ence be?) is very relevant; if the purpose is inspiration, it is not.

Our explorative research questions concerning purposes and criteria are the 
following:

• To what extent are the criteria useful for students, that is, relevant as well as 
understood?

• To what extent are the purposes useful for students, that is, relevant as well as 
understood?

12.3  Methods

12.3.1  Participants and Materials

Our experimental subjects are 212 groups of first and second year engineering stu-
dents of various disciplines. The tasks used are embedded in regular education. In 
the beginning of their project reports, the students had to state their modelling 
purpose(s). At the end, they had to reflect as groups on their modelling project struc-
tured by the following task.

Criteria Reflection Task 

 1. Necessity for improvement: In the lectures a set of criteria was presented 
to compare models. From the perspective of the model’s purpose, on which 
of those criteria ought the model be improved, according to your opinion 
and why?

 2. Possibility for improvement: For which of those eight criteria do you have 
ideas about how to actually improve your model? Describe these ideas 
briefly.

12 Quality Criteria for Mathematical Models in Relation to Models’ Purposes: Their…
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12.3.2  Variables for Analysis

Usefulness is a two-sided concept for criteria as well as for purposes. Firstly, a pur-
pose (criterion) should be relevant for the modelling problems the students meet. 
Secondly, the students should understand the concept. To account for both sides, we 
define the usefulness of a criterion (purpose) as the frequency of that criterion (pur-
pose) mentioned with understanding by the students minus the frequency mentioned 
with misunderstanding. In both definitions, frequency is the number out of all 
reports (212). A relatively large positive score signifies usefulness; a low or even 
negative score signifies non-usefulness (because of low relevance and/or low under-
standing). As an indicator, we use that a purpose or criterion is mentioned in relation 
to the context of the problem; from the description of the relation in the report text, 
understanding or misunderstanding is deduced; mixed understanding- 
misunderstanding is considered as misunderstanding.

12.4  Results

12.4.1  Example Problem with Scoring of Student Group 
Answers

We present an example of a modelling assignment, completed with a scored exam-
ple of student group answers to the purpose and criteria questions. Notation is as 
follows: ‘------’ is used for omitted text, ‘CAPITALISED’ for use with understand-
ing, and ‘underlined’ for use with misunderstanding.

Assignment: Dynamic Modelling Project, Virus Infection 

When a virus enters a human body, it may replicate fast at first; our immune 
system will react only after a threshold has been passed. If the body cannot 
cope with the virus growth, we need to administer an antiviral drug, in due 
course and in adequate amounts. Here is room for choices to be made. The 
possibilities also depend on the patient. Construct a model that indicates the 
results of a treatment as chosen by the specialist or general practitioner. Show 
how a responsible decision can best be made. Determine responsibility and 
what is best. Keep in mind that a model suitable for an adult may be inade-
quate for a child or infant.

Example of student group answers to assignment questions with scoring embedded:
Purposes: The purpose of our model is to ANALYSE the disease. By analysing how the 

virus behaves there can be control of the outcomes by using medication. To OPTIMISE and 
CONTROL the amount of medication prescribed is also one of the purposes. The amount 
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of medication can be controlled by following the advice our model offers. Optimising the 
amount of medication leads to curing the infected and not spending too much money on medication. ------

Possibilities for improvement: Our model could be improved for the categorisations: 
GENERICITY, scalability, ------. Our model can be improved in genericity because our 
model is now only for “normal” people. If more human aspects are taken into account, the 
model can be used for special cases as well. Our model does for instant [sic] not take in 
account that some people might be allergic to the medicine. ------ The scalability can be 
improved because we have no limit on the amount of medication. This is not realistic. There 
must be a state in which the person gets an overdose. We did not take that into account, so 
our scalability is too large for the model to be realistic in all situations. ------

It should be noted that we did not include the reference to a criterion’s operation-
alisation (Sect. 12.2) as a requirement nor as a proof for understanding. We observed 
that students almost never used these operationalisations.

12.4.2  Validity and Reliability

Did we measure what we intended to measure? Firstly, it should be noted that we 
only analysed limited sections of the project reports, that is, those sections that were 
expected to contain the answers to the specific questions related to purpose and 
criteria according to the prescribed report format. If a question was not answered 
where it should be, the immediate context was scanned, but not the whole report. A 
small chance remains that the answers or other signs of specific understanding or 
misunderstanding were present elsewhere. Secondly, as our indicators for useful-
ness are compound variables, scores sometimes might be ambiguous. However, if 
necessary, this will be solved by a division into understanding and 
misunderstanding.

Did we measure well what we measured? Scoring was mainly done by the first 
author. While the scoring of purposes posed few problems, the scoring of criteria 
was harder. In about 20% of the cases, the main rater had doubts; in those cases, 
discussion followed with the other authors until consensus was reached. Hence, 
drawing conclusions should be handled with care.

12.4.3  Results for Purposes

Figure 12.1 shows for all purposes the frequency of use (out of 212) with under-
standing and, below the axis, with misunderstanding. The data for quasi-use (other 
purposes) and non-use (no purposes) is included. The purpose of optimisation is 
clearly useful, followed by analysis, prediction what,1 and verification. All other 

1 ‘Prediction’ was used often without further specification, but as the second variant of prediction 
did not play any role, we did not see this as a sign of misunderstanding.
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purposes were barely useful. Generally, when used, purposes were used with under-
standing: relevance is nearly equal to usefulness (total bar length is nearly equal to 
bar length above the axis). Also, the frequencies of cases where no purposes were 
mentioned or where other (quasi-)purposes were mentioned were substantial. 
Quasi-purpose examples are ‘determine’, ‘calculate’, and ‘investigate’.

12.4.4  Results for Criteria

Figure 12.2 shows for all criteria the frequency of use (out of 212) with understand-
ing and, below the axis, with misunderstanding. The data for no criteria and quasi- 
criteria are included. The criterion of convincingness is clearly useful, followed by 
genericity, distinctiveness, specialisation, and scalability. Surprise appears to be 
barely useful and audience and impact appear to be not even useful. Compared to 
the purposes results, there is much more misunderstanding. Audience was often 
misunderstood as being equal to specialisation and impact as meaning ‘influence’. 
Scalability in general is useful, but it showed some confusion with genericity or was 
mistaken for ‘measurable on a scale’; distinctiveness was mistaken for ‘correctness’ 
sometimes or ‘like in reality’. The frequency of cases where no criteria were men-
tioned is substantial. No other (quasi-) criteria were mentioned.

12.5  Conclusions and Discussion

We will summarise our results:

 – Only 4 of the 16 purposes presented are useful: especially optimisation and also 
analysis, prediction 2 (what), and verification.

Fig. 12.1 Usefulness of purposes, split-up into understanding and misunderstanding
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 – When purposes are mentioned, it is with understanding most of the time.
 – With a substantial frequency, other purposes than the presented ones are men-

tioned, such as determine, calculate, and investigate.
 – With a substantial frequency, no purpose is mentioned at all.
 – Five of the eight criteria are useful: especially convincingness and also generic-

ity, distinctiveness, specialisation, and scalability. The other three criteria appear 
to be barely useful (i.e. surprise) or even not useful (audience and impact).

 – When criteria are mentioned, it is sometimes with misunderstanding, such as 
audience as equal to specialisation, scalability as equal to genericity, impact as 
meaning influence, scalability as meaning measurable on a scale, and distinctive-
ness as meaning correctness or meaning like in reality.

 – No other criteria than the presented ones are mentioned.
 – With a substantial frequency, no criterion is mentioned at all.

The results should not be generalised without further research. Generalisation to 
higher technical education appears justified. In higher (non-technical) science and 
mathematics education, modelling is less prominent, and when present the spectrum 
of purposes and criteria would be different. The purpose of explanation, for exam-
ple, would be more important. To what extent these purposes and criteria might be 
used at secondary level is another question. The chapter by Zwaneveld et al. (in 
press) explores this for the purposes. The result that there is more misunderstanding 
of criteria than of purposes might be explained by the fact that purposes are asked 
for in the beginning of the report, and criteria at the end, so possibly without tutor 
feedback. Also, the criteria were new for staff. Misunderstanding of criteria mainly 
falls into two categories: (1) blurring the quantitative and the qualitative aspect (e.g. 
specialisation and audience) and (2) blurring with familiar concepts that have simi-
lar names (e.g. impact and influence).

Fig. 12.2 Usefulness of criteria, split-up in understanding and misunderstanding
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As there were no specific instructions to staff members of the various depart-
ments creating the assignments, one might suppose that optimisation, and the other 
useful purposes first came to mind when constructing an assignment. Especially 
concerning optimisation and also analysis, one might suppose they are in the kernel 
of engineering.

As the relevance of criteria is related to the purpose concerned, one might predict 
from Table 12.1 (Sect. 12.3) that the relevance of audience and surprise would be 
low and the relevance of genericity, scalability, convincingness, and distinctiveness 
would be high, as they are. However, it would not predict high relevance for spe-
cialisation and low relevance for impact. Maybe Table 12.1 (from Van Overveld and 
Borghuis 2013) can be improved, for example, one could defend that specialisation 
is relevant for optimisation after all (to facilitate discussion with the client) and that 
audience and specialisation are relevant for specification. In our exploration only 
frequencies of use of purposes and criteria were counted. It might be interesting to 
analyse the data further by constructing an empirical table like Table 12.1 contain-
ing the related use of purposes and criteria by the students.

Our final conclusion is that the quality criteria for models related to their purpose 
(Van Overveld and Borghuis 2013) are interesting but for optimal use in higher 
education some fine-tuning is necessary still; as for the students, some terms are still 
ambiguous and some criteria overlap. The relations between criteria and purposes 
require further research.
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Chapter 13
Ethnomodelling as the Mathematization 
of Cultural Practices

Milton Rosa and Daniel Clark Orey

Abstract In this chapter, we share how we have come to use a combination of emic 
(local), etic (global) and dialogical (glocal) approaches in our work in ethnomodel-
ling. The acquisition of both emic and etic knowledge presents us with an alternative 
goal for the implementation of ethnomodelling research. Emic knowledge is essential 
for creating an intuitive understanding of mathematical ideas, procedures and prac-
tices developed by members of distinct cultural groups. Etic knowledge is essential 
for cross-cultural comparisons, based on the components of ethnology. The imple-
mentation of a dialogical perspective is a third approach for ethnomodelling research 
that uses both emic and etic knowledge traditions through processes of dialogue and 
interaction. Finally, ethnomodelling is defined as the study of mathematical phenom-
ena within a culture because it is a social construct and is culturally bound.

Keywords Etic • Emic • Dialogical • Ethnomodelling • Ethnomathematics • 
Mathematization

13.1  Introduction

When investigating forms of knowledge possessed by the members of distinct cul-
tural groups (emic),1 we are able to find unique mathematical ideas, procedures and 
practices that are considered different forms of mathematics. This information can 

1 The concepts of emic and etic were introduced by the linguist Pike (1954) who drew upon an 
analogy with two linguistic terms: (a) phonemic, which are the sounds people use in a particular 
language, and (b) phonetic that relates to general aspects and the actual vocal sounds produced in 
language.
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be used to both express and explore the relationships between culture and mathe-
matics. Any outsider’s (etic) understanding of cultural traits2 is based on the many 
particular interactions and interpretations that emphasize inessential features of cul-
tural groups as well as the misinterpretation of unique and culturally mathematical 
forms of knowledge. The challenge that arises from this understanding is how cul-
turally bound mathematical ideas are better understood without letting the culture of 
the investigators and educators interfere with the culture of the members of the 
cultural group under study. This is not easy and may only happen when the mem-
bers of cultural groups under study share the same interpretation of their culture 
(emic) as opposed to an outsider’s interpretation (etic). On the other hand, an insid-
er’s (emic) view of cultural traits is based on factors such as cultural and linguistic 
backgrounds, the historical-social context and moral values that combine to influ-
ence mathematical ideas, procedures and practices developed by the people of their 
own culture and context.

Over time, different cultural groups shared, developed and evolved different 
ways of doing mathematics in order to understand and comprehend their own cul-
tural, social, political, economic and natural environments (Rosa and Orey 2010). 
Each cultural group has developed often unique and distinct ways to mathematize 
their own realities (D’Ambrosio 2001). In this context, mathematization is the pro-
cess in which members of distinct cultural groups come up with different mathemat-
ical tools that help them organize, analyse, solve and model specific problems 
located in the context of their own real-life contexts (Rosa and Orey 2012). These 
tools allow them to identify and describe specific mathematical ideas, procedures or 
practices by schematizing, formulating and visualizing problems in different ways, 
discovering relations and regularities and translating real-world phenomena to aca-
demic mathematics through the process of mathematization. As increasingly diverse 
elements engage with each other, it is important to search for alternative method-
ological approaches in order to record mathematical ideas, procedures and practices 
that occur in different cultural contexts. One alternative methodological approach to 
this is ethnomodelling, which is considered as the practical application of ethno-
mathematics (Rosa and Orey 2010). This need for culturally bound forms of math-
ematical modelling is deeply rooted in the theory of ethnomathematics.

13.2  Ethnomodelling

Ethnomodelling is the study of mathematical ideas and procedures developed, used, 
practiced and presented in diverse situations found in the daily life of the members 
of distinct cultural groups. This allows those engaged in this process to study 

2 Cultural traits are systems of knowledge that consist of patterns, traditions, meanings, beliefs, 
values, actions, experiences, attitudes, hierarchies, religion, notions of time, norms, roles, spatial 
relations, concepts of the universe, artefacts, mentifacts, sociofacts and symbols acquired by a 
group of people, which are diffused and shared from generation to generation (D’Ambrosio 2001).
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mathematics as a system regarding their own contextual reality in which there is an 
equal effort to create an understanding of all components of these systems as well 
as the interrelationship among them. It is a tool towards the development of peda-
gogical actions found in an ethnomathematics program (Rosa and Orey 2012). It is 
necessary to reveal a diversity of sophisticated mathematical practices developed in 
distinct cultural contexts, which allows students to work with authentic situations 
and real-life problems such as geometric principles in craftwork, architectural con-
cepts and practices in the activities and artefacts of many local cultures. Many of 
these notions relate to numerically based relations found in measuring, calculating, 
gaming, divining, navigating and astronomy and modelling (Eglash et al. 2006).

In this process, the term translation is used to describe the process of modelling 
local cultural systems (emic) which may have global Western-academic representa-
tions (etic) (Rosa and Orey 2010). An effective use of ethnomathematics also applies 
modelling in order to establish relations between local conceptual frameworks 
(emic) and the mathematics embedded in relation to local designs. More often than 
not, local designs have been analysed, interpreted and valued from a Western view 
(etic). One example of this practice might include the applications found in the sym-
metry and classifications in crystallography to indigenous textile patterns. In some 
cases, the translation of mathematical procedures and practices into the language of 
Western or Academic mathematics is as direct and simple as found in counting sys-
tems and calendars. However, there are cases in which mathematical ideas and pro-
cedures are embedded in processes such as in iterations found in beadwork or in 
Eulerian paths in sand drawings. It is this act of translation that is best referred to as 
ethnomodelling in that the mathematical knowledge can be seen as arising from 
emic (local) rather than etic (global) origins (Eglash et al. 2006).

Ethnomodelling takes into consideration diverse processes found in the develop-
ment of local forms of mathematical knowledge, which include the unique aspects 
as well as patterns of creativity and invention. Thus, it has become impossible to 
imprison the development of mathematical knowledge in only one form of reality 
because the members of distinct cultural groups interact in  local and globalized 
contexts, which can provide different representations of real-world phenomena 
(Rosa and Orey 2012). In this regard, mathematics is no longer conceived as a uni-
versal language. From our perspective, it may be a language, but one that has a 
variety of regional dialects, accents and diverse forms of vocabulary, unique to the 
culture it is used in and reflecting the problems that it came from. The dynamic 
processes found in the production of a diversity of mathematical ideas, procedures 
and practices operate in the register of interpretative singularities that regard possi-
bilities for a symbolic construction of knowledge in different cultural groups (Rosa 
and Orey 2010).

Emic constructs are the accounts, descriptions and analyses expressed in terms 
of the conceptual schemes and categories regarded as meaningful and appropriate 
by the members of the cultural group under study. Etic constructs are the accounts, 
descriptions and analyses of mathematical ideas, procedures and practices expressed 
in terms of conceptual schemes and categories regarded as meaningful by the com-
munity of scientific observers and investigators (Lett 1996). Thus, the issue is 
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whether it is necessary to understand cultural specificity against the background of 
universal and generic theories and methods (etic knowledge) or whether this behav-
iour can only be understood within its cultural context and therefore requires cultur-
ally specific theories and concepts (emic knowledge). Thus, any theories and 
methods seem to be susceptible to cultural differences and to demand a cultural 
contextualization.

13.3  Mathematical Phenomena and Their Ethnomodels

Many investigators and educators have made extensive use of mathematical proce-
dures ranging from statistical methods for the interpretation of patterns in behaviour 
to mathematical representations in the processes of local conceptual and logical 
systems such as in workplaces. For example, Duarte (2004) investigated the unique-
ness of mathematical knowledge produced by workers (emic) through the study of 
mathematical ideas and practices that they develop in home construction sites. In 
this study, there was a reflection on the mathematical knowledge possessed by the 
members of this working class in order to legitimate and validate their knowledge 
and determine the pedagogical and curricular implications that are inferred in the 
process of production of this knowledge. In this context, mathematical modelling is 
considered a pedagogical tool and by others as a way to understand anthropological 
and archaeological perspectives of mathematics. Others still have decried the use of 
the mathematical and, in particular, statistical and quantitative modelling as funda-
mentally in opposition to a humanistic approach to understanding human behaviour 
and the knowledge that takes into account the contingency and historical embedded-
ness which in turn decries universality. Traditional mathematical modelling prac-
tices have not fully taken into account widespread implications of diverse aspects of 
human social behaviour.

These social and cultural components are extremely critical and emphasize the 
“unity of culture, viewing culture as a coherent whole, a bundle of [mathematical] 
practices and values” (Pollak and Watkins 1993, p. 490) that often appears incom-
patible with the rationality and the elaboration of traditional mathematical model-
ling processes. This approach relates to the socio-critical perspective of modelling 
in which pedagogical goals are rooted in the critical and reflective understanding of 
the surrounding world (Sriraman and Kaiser 2006). However, in the context of 
diverse mathematical forms of knowledge, what is meant by social and cultural 
components varies widely and ranges from viewing mathematical practices as 
learned and transmitted to and from members of diverse groups to the mathematical 
practices viewed as abstract symbolic systems with a deep internal history and logic 
that provides a symbolic system to its mathematical structure (D’Ambrosio 2001). 
Mathematical knowledge developed by members of distinct cultural groups often 
consists of abstract symbol systems and is the consequence of social, historical and 
cultural events that people have developed, accumulated, diffused and learned 
through history.
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Cognitive aspects needed in this framework become primary decision-making 
processes by which members either accept or reject an ethnomodel as part of their 
own repertoire of mathematical knowledge. The conjunction of these two scenarios 
appears to be adequate in relation to the depth needed to encompass a full range of 
cultural mathematical phenomena. There appears to be a level of cognition that we 
all share, to varying degrees, with the members of our own and other cultural groups. 
This level includes cognitive models that we elaborate on a non-conscious level, 
which serve to provide an internal organization of mathematical phenomena in 
order to provide the basis upon which diverse mathematical practices take place. 
However, according to Eglash et al. (2006), this representation arises through the 
formulation of abstract and conceptual structures that form a sense of organization 
for external phenomena we encounter. Cultural constructs provide us with represen-
tations for systems taken from reality.

The implications for this form of modelling are that these models engage cultural 
constructs and are symbolic systems organized by an internal logic of the members 
of cultural group themselves. Models built without a first-hand sense for the world 
being modelled should be viewed with suspicion. Thus, investigators and educators, 
if not blinded by their own cultural backgrounds, are influenced by the paradigm in 
which they are immersed, which includes all prior history, theory and ideology they 
have absorbed. If they are aware of this, they might develop an informed sense of 
distinction that makes a difference from the point of view of mathematical knowl-
edge of the work being modelled. They will in the end be better able to explain to 
outsiders (etic, glocal) what matters to insiders (emic, local). Moreover, local users 
of mathematics communicate directly their uses and worldviews without the help of 
outsiders.

13.3.1  Ethnomodel of the Mathematization of the Gable

Informants from a roofing contractor cultural group can easily describe the practices 
acquired for the construction of a roof gable, which is the most commonly used type 
of pitched roof construction. After choosing the type of tile such as red roofing tiles 
or shingles to begin the construction of the roof, it is necessary that roofing contrac-
tors calculate the slopes (pitches) of the beams that form the triangles in the gable. 
In general, the “roof is constituted by the composition of inclined planes. The sim-
plest roof is the one that has only two inclined planes. It is called the gable roof” 
(Moreira and Pardal 2012, p. 41). Gabled roofs often possess a ridge near or at the 
centre and slope in two directions. It is simple and common in design and economi-
cal to construct and can be used on any type of structure and in any type of 
climate.

Roofing contractors use triangles because they are stable and rigid and have 
immobility. Hence, the main objective of the roof is to provide protection from sea-
son change because they must be strong enough to withstand high winds and shed 
moisture and often snow and ice quickly. Roof slope and rigidness are for shedding 
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water and any excess weight provided by snow and ice and bearing any extra addi-
tional weight. For example, in the case of many roof styles and the amount of rain 
in Brazil, foremen calculate the slope (pitch) of the roof by applying a ratio between 
the height and the length of the gable, which is expressed as a percentage. For 
example, the percentage of the slope (trim) for the roof to the tiles is at least 30 % 
so that rainwater (snow and ice are not a problem in Brazil) will drain quickly. 
Figure 13.1 shows the scheme of a gable used in Brazilian roof constructions.

According to this procedure, for each metre (100  cm) that runs horizontally, 
there is a vertical rise of 30 cm. Thus, if the length of the gable is L = 8 m, roofing 
contractors mentally perform the percentage calculation by using a = 4 m, which is 
half of that measure. Then, they multiply this result by the percentage of the slope 
of the roof. For example, 30 % of 4 m corresponds to the height of 1.20 m. This 
procedure represents an emic (local) view of this mathematical practice. Conversely, 
framers have used the Pythagorean theorem (etic, global) to cut roof rafters, and 
roofers apply formulas to determine the amount of roofing material needed. For 
educational and pedagogical purposes, mathematics educators perceive the con-
struction of gable roofs as the placement of two right triangles together.

An emic observation of this mathematical practice sought to understand it in the 
context of how Brazilians build gabled roofs from the perspective of internal dynam-
ics and relations as influenced within the culture of roofers. On the other hand, an 
etic perspective provides cross-cultural contrasts and comparative perspectives by 
using aspects of academic mathematics that translate this practice to create a new 
understanding of investigators and educators from different cultural backgrounds. It 
is also important to understand the dialogical (glocal) relationship between these 
two approaches because the informal calculation (emic knowledge) of the height 
(trim, flow) of the gable does not preclude the use of the Pythagorean theorem (etic 
knowledge) by these professionals. Thus, the members of this specific cultural 
group strive to compare, interpret and explain the mathematical knowledge they 
observe and are experiencing. According to Rosa and Orey (2010), in order for eth-
nomodelling to be successful, it is necessary to value and link distinct forms of 
mathematical knowledge by applying a dialogical approach in this process.

Fig. 13.1 Scheme of a 
gable used in Brazilian 
roof constructions
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13.4  Dialogical (Glocal) Approach in Ethnomodelling 
Research

In any new analogies regarding ethnomodelling, it may be possible to state that 
emic perspectives are concerned with the differences that make mathematical prac-
tices unique from the insider’s viewpoint. We argue that emic ethnomodels are 
grounded in what matters in the mathematical world of those being modelled. 
Conversely, etic ethnomodels are built on data gleaned from an outsider’s view. Etic 
ethnomodels represent how modellers think the world works through systems taken 
from reality, while emic ethnomodels represent how people living in such a context 
think these systems work in their own reality. It is important to emphasize how etic 
approaches play an important role in ethnomodelling research, yet at the same time, 
emic approaches should be taken into consideration in this process. However, the 
focus of this analysis is emic if the mathematical ideas, procedures and practices are 
unique to a subset of cultures rooted in diverse ways in which etic activities are car-
ried out in specific cultural settings. According to Pike (1954), while emic and etic 
perspectives are often thought of as creating conflicting dichotomies, they were 
originally conceptualized as two complementary viewpoints.

In this regard, rather than posing a dilemma, the use of both approaches actually 
deepens understanding of important issues in scientific research and investigations. 
A suggestion for dealing with this dilemma is to use a combined emic-etic approach, 
rather than simply applying emic or etic dimensions to study or examine mathemati-
cal procedures and practices employed by members of distinct cultural groups. This 
requires investigators to attain the emic knowledge developed by members of cul-
tural groups under study, which encourages them to put aside any perceived or 
unperceived cultural biases so that they may be able to become familiar with the 
cultural differences that are relevant to the members of these groups (Berry 1999). 
For example, the objective of the study conducted by Bortoli and Marchi (2013) 
with 34 students in the second school year, in a high school, in Caxias do Sul, in the 
state of Rio Grande do Sul, Brazil, was to investigate trigonometric knowledge 
applied in right triangles and its connection to mathematical knowledge used in civil 
construction. Different classroom activities were planned in order to encourage stu-
dents to research, explore and interpret trigonometric knowledge by interviewing 
professionals who work in civil construction.

Thus, one of the nine groups of students decided to work with trigonometric rela-
tions involved in the construction of the roof gable in a house from foremen’s view-
points. By conducting interviews with foremen, students in this group found out 
about why the roof has different angulation (trim) according to the materials used in 
the roofing as well as aesthetics the customers want in their houses. According to the 
information obtained by the foremen, students in this group determined that the trim 
of the Roman roof tile (one of the different types of roof tiles in Brazil) is 40 %, 
which means that, for each metre (100 cm) that runs horizontally, there is a vertical 
rise of 40 cm. Thus, they applied the method used by the foremen to determine the 
height of the roof. For example, if the length of a house is 10 m, then they divide the 
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length by 2 and multiplied the result by the percentage of the trim of the Roman roof 
tile. Figure 13.2 shows the foremen’s procedure used by the students. Subsequently, 
students in this group perceived the relation between mathematical knowledge of 
the foremen with the academic method to determine the height of the roof by apply-
ing trigonometric knowledge associated with the definition of tangent (Fig. 13.3).

The results of the study conducted by Bortoli and Marchi (2013) showed that 
students in this group were able to understand the connection between the local 
knowledge (emic) and the academic knowledge (etic) through a dialogical interac-
tion. For example, one of the students in this group stated: “I was able to perceive 
the relation between the mathematical knowledge used by these professionals with 
mathematics applied in the schools”. Usually, in ethnomodelling research, an emic 
analysis focuses on a single cultural perspective and employs both descriptive and 
qualitative methods to study a mathematical idea, procedure or practice of interest. 
Its focus becomes the study within a cultural context in which investigators examine 
internal logic found in the cultural system itself. In this regard, meaning is gained 
relative to the context and, therefore, not easily transferable to other contextual 
settings.

In contrast, an etic analysis is comparative and examines cultural practices by 
using standardized methods. The etic approach tries to identify lawful relationships 
and causal explanations valid across different cultures. Thus, if investigators and 
educators wish to make statements about universal or etic aspects of mathematical 
knowledge, these statements need to be phrased in abstract ways (Rosa and Orey 
2010). While traditional concepts of emic and etic aspects are important approaches 
for understanding, and comprehending, cultural influences on ethnomodelling, we 

Fig. 13.2 Foremen’s procedure used by the students

Fig. 13.3 Academic procedure used by the students
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propose a dialogical view in this process (Rosa and Orey 2010), which makes use of 
“acts of translation between emic and etic perspectives” (Eglash et al. 2006, p. 347). 
In the ethnomodelling process, cultural specificity may be better understood with 
the background of communality and the universality of theories and methods and 
vice versa. It is important to analyse the insights that have been acquired through 
subjective and culturally contextualized methods. The rationale behind an emic-etic 
dilemma is that mathematical phenomena can only be fully understood within the 
cultural context they were developed.

13.5  Final Considerations

Many local mathematical practices have disappeared because of the intrusion or 
imposition of foreign (etic) knowledge value systems and technologies through the 
process of colonization and global capitalism. This foreign knowledge emerged 
from the development of concepts that promised short-term gains or solutions to 
problems faced by the members of distinct cultural groups without considering 
emic knowledge that solves these very same problems. The tragedy of the impend-
ing disappearance of local knowledge is equally obvious when a diversity of skills, 
technologies, cultural artefacts, problem-solving strategies and techniques and 
expertise are lost to all of us before being archived, understood and/or saved.

Defined in this manner, the usefulness of both emic and etic distinctions is evi-
dent in ethnomodelling research. Investigators and educators have been accultur-
ated to some particular cultural worldview; we all therefore need a means for 
distinguishing between answers we derive as acculturated members of my group 
and the answers we derive as observers of our group. Culture is a blueprint that 
specifies a plan of action by utilizing the research provided by both approaches, 
which helps to gain a more complete understanding of the member of the cultural 
group under study.

On the other hand, mathematical ideas, procedures and practices used outside of 
school may be considered a modelling process rather than a mere set of techniques 
to manipulate numbers and procedures. The application of ethnomathematical tech-
niques and the tools of modelling allow us to see a different reality and give us 
insight into the mathematics we all perform in a holistic manner. Ethnomodels are 
cultural artefacts and pedagogical tools used to facilitate the understanding and 
comprehension of systems taken from the reality of members of distinct cultural 
groups (Rosa and Orey 2010). Thus, the pedagogical approach that connects the 
cultural aspects of mathematics with its academic aspects is ethnomodelling, a pro-
cess of translation and elaboration of problems and questions taken from systems 
that are part of any given cultural group.
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Chapter 14
Enabling Anticipation Through Visualisation 
in Mathematising Real-World Problems 
in a Flipped Classroom

Gloria Ann Stillman

Abstract Meta-analyses of findings from flipped classroom studies in mathematics 
classrooms to date need to be treated with caution until the teachers and students 
involved develop mindsets that maximise and integrate the learning potential of 
both the out-of-classroom and in-classroom learning environments. Rather than a 
flipped classroom being used as a means to get through the curriculum, it can be 
used to enrich the curriculum. The question addressed is: Could a flipped classroom 
provide both vicarious experiences and fostering of critical thinking skills associ-
ated with modelling? A local secondary school implementation is used to illustrate 
how the approach could build meta-knowledge about mathematical modelling and 
facilitate associated critical thinking skills such as anticipating and visualisation to 
expand the learning experiences of secondary mathematics students.

Keywords Flipped classroom • Critical thinking skills • Anticipating • Visualisation 
• Mathematisation

14.1  Introduction

The provision of vicarious experiences of real-world situations in upper secondary 
school to enrich students’ understanding of the world is often considered a luxury a 
teacher in a classroom must forego in order to cover the core of the curriculum in 
the limited time available (Stillman 2007). According to the National Council of 
Teachers of Mathematics Principles to Action, on the contrary, there should be evi-
dence of connections being made between “mathematics and the real world” (2014, 
p.  4). In conjunction with this, a second purpose for the teacher is to enable 
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opportunities for students to develop ways of thinking commensurate with model-
ling situations in their social and physical worlds.

A recent innovation in upper secondary classrooms is the flipped classroom 
where there is a swapping of classroom and homework activities through the use of 
electronic technologies and, in some cases, an expansion of the curriculum (Bishop 
2013). In the example to be examined in this chapter, the teachers used video tech-
nology to present skill work and use of mathematical techniques, sometimes embed-
ded in real-world scenarios, for students to view before class as assigned homework. 
In-class time was spent on providing teacher support as students worked on problem- 
solving activities.

The question arises: Could a flipped classroom provide the ideal situation for 
exacerbating the perceived restrictions on modelling or applications in the upper 
secondary school through judicious use of video clips furnishing both vicarious 
experiences (e.g. construction of ramps for wheelchairs on a lecture hall to meet 
building code standards) and the intentional fostering of the critical thinking skills 
associated with modelling? As an example of the latter, the teacher might plan to 
include in the video deliberate exposing of actions to assist students in mathematis-
ing a real-world problem situation such as explicitly demonstrating and anticipating 
the effects of confounding variables in the situation in finding a “sense of direction” 
(Treilibs 1979) in mathematising to model the situation adequately (e.g. required 
length of the ramp covering a car park entrance). This entails the teacher anticipate 
potential situational pitfalls needing consideration and from these select those that 
have the most dramatic effect to capitalise on use of the visual medium (Mayer 
2005) to enhance critical thinking. This aligns with Brown’s conclusion from her 
doctoral work that teachers “need to better understand the cognitive role of visuali-
sation in modelling”, noting that students in her upper secondary study were reluc-
tant visualisers (2015, p. 440). It seems self-evident that the medium of video should 
be used to promote students’ appreciation of how “visualisation can support their 
mathematisation” in modelling (Brown 2015, p. 440).

14.2  The Flipped Classroom

14.2.1  What Is It?

Baker (2000) and Lage and colleagues (e.g. Lage et al. 2000) were the first to pub-
lish on the flipped or inverted classroom (as it is also called). “Inverting the class-
room means that events that have traditionally taken place inside the classroom now 
take place outside the classroom and vice versa” (Lage et al. 2000, p. 32). After 
surveying existing research on flipped classrooms, Bishop (2013) defined it as “an 
educational technique that consists of two parts: interactive group learning activities 
inside the classroom, and direct computer-based individual instruction outside the 
classroom” (p. 6). The interactive classroom activities require human interaction, 
whereas the explicit instruction methods can be automated through technology. 
Bishop (2013) sees this as enabling “a unique combination of learning theories once 
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thought to be incompatible—active, problem-based learning activities founded 
upon constructivist schema and instructional lectures derived from direct instruc-
tion methods founded upon behaviourist principles” (p. iii). However, it is not 
merely a matter of assigning explicit instruction methods automated by technology 
to homework activities, whilst the classroom centres on student-centred interactive 
learning experiences, but rather there is an opportunity to expand the curriculum 
(Bishop 2013). Furthermore, “emphasis on students becoming the agents of their 
own learning” enables a “shift from teacher-driven instruction to student-centred 
learning” (Hamdan et  al. 2013, p. 4) as is necessary to bring modelling into the 
classroom.

This role, as a potential enabler of teacher change (i.e. one of Burkhardt’s change 
levers) that frees up time and works to “enable people like themselves to achieve 
these goals in their own classrooms” (Burkhardt 2006, p. 192), is what is attractive 
about the flipped classroom in the context of a curriculum innovation (mathematical 
modelling) perceived as being too time consuming (Stillman 2007). Also it is sug-
gested that benefits of the flipped classroom are actually benefits of active learning 
which was not occurring in these classrooms previously, and this is being investi-
gated by Yong et al. (2015). Thus, the major gains might be in allowing students to 
be involved in more collaborative learning environments and learning experiences 
aligned with such learning environments such as modelling that provide contexts 
for the development of critical thinking skills. In environments already involving a 
large amount of active learning, it might be more sensible to be measuring student 
performance and affect to ensure there is no loss of advantage through use of the 
flipped classroom model which frees up even more classroom time for collaborative 
activity, rather than to be measuring performance expecting gains.

14.2.2  Research in Mathematics Classrooms on Flipped 
Classroom

Research to date on the use of flipped classrooms in high school and senior second-
ary schooling is not extensive as the initial uptake and reports of practice have 
mainly been in tertiary education (see Bishop 2013). Despite reported widespread 
teacher interest in the Flipped Learning Ning, hosted by the University of Northern 
Colorado (Hamdan et al. 2013), and other such electronic communities, there are 
only a small, but growing, number of examples of published studies of flipped math-
ematics classrooms in schools.

14.2.2.1  Student Performance

Bormann (2014) identified the opportunity for students to be involved in a learning 
environment that can lead to higher achievement as a major affordance of the flipped 
classroom as a learning model. Fulton (2012) reported how Byron Public High 
School in Minnesota adopted the flipped classroom model in mathematics in 2009 
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when faced with low student numbers passing state mathematics testing, but by 
2011 nearly 75% of students passed the state test, and by 2012, 86.6% of senior 
students had completed four or more credits in mathematics. Gains in performance 
were also evident at Niagara Falls High School (Western New  York Regional 
Information Centre 2013) in algebra II and trigonometry classes on mastery tests. 
On the other hand, when Clark (2013) implemented the flipped classroom model in 
year 9 algebra 1 classes for 7 weeks at a public high school, student scores on end 
of unit tests did not differ significantly from those in a traditional lecture style class 
taking the same tests. Similarly, there was no significant difference when Saunders 
(2014) investigated the effects of the flipped classroom learning model on student 
achievement in two year 11 mathematics classes.

14.2.2.2  Student Engagement

The opportunity for students to be involved in a more engaging learning environ-
ment is another major affordance of the flipped classroom learning model (Bormann 
2014). A learning environment is more engaging if it deepens students’ interaction 
with the content both physically and cognitively (Butt 2014). This was not always 
supported in the studies surveyed, but there was support in secondary mathematics 
classroom studies. At Byron Public High School, by 2011 teachers were reporting 
increased engagement in mathematics classes (Fulton 2012). Students in Clark’s 
study (2013) reported improved engagement in the flipped classroom classes “due 
to the interesting and meaningful activities completed throughout the study” (p. 91). 
Factors that were reported positively affecting engagement for the majority of par-
ticipants included instruction quality, particularly strategic use of real-world activi-
ties and technology to enhance this, promotion of strong peer connections through 
collaboration and communication, classroom organisation and management pro-
moting collaborative learning through projects and hands-on activities.

14.2.2.3  Fostering Students’ Critical Thinking Skills

Bormann (2014) identified the opportunity “to provide more meaningful activities 
that put in place the critical thinking skills related to their content areas” (p. 13) as 
a benefit and major affordance of the flipped classroom that prepared students for 
future learning or work. However, Saunders’ study (2014) in two secondary math-
ematics classes showed no significant gain in student critical thinking skills; but the 
thinking skills associated with modelling and application were not those investi-
gated. Modelling activities were used in testing the effects of the flipped classroom 
model in undergraduate engineering in a numerical methods course (Bishop 2013). 
Modelling activities were used with the students undertaking the flipped classroom 
instruction because Bishop felt they would counteract shortcomings in other inter-
active student-centred learning methods such as a negative effect on objective 
knowledge outcomes but positive influences on skills. Examination scores of 
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students involved in the flipped classroom model and the teacher-centred lecture 
programme were not significantly different; however, on the course evaluation, the 
comparison group rated their progress on “learning to apply course material (to 
improve thinking, problem solving and decisions)” more highly than students in the 
flipped classroom group (p. 65). The difference was statistically significant. There 
was no statistical difference between ratings of progress towards “learning to anal-
yse and critically evaluate ideas, arguments, and points of view” (p. 65). (See Sect. 
14.2.3 for possible reasons for these outcomes.)

14.2.2.4  Teacher Practice

Teacher practice in the studies surveyed varied widely, and, to a certain extent, this 
variation accounts for the mixed results as there is really a failure to implement the 
model fully in some studies.

In the Clark (2013) case study of 42 year 9 students in algebra I classes (7 weeks), 
students were expected to prepare for class by watching videos, listening to podcasts, 
reading articles, viewing presentations and contemplating questions outside class. 
All resources were original teacher products uploaded to the class learning manage-
ment system. Completion of notes was taken as an indicator of evidence of being 
adequately prepared for class. Inside the classroom students participated in hands-on 
activities, real-world applications and sometimes completed independent practice.

On the other hand, Muir (2016) reports a case study involving two experienced 
Australian senior secondary mathematics teachers in Tasmania. One teacher had 
been flipping his classrooms for 3 years, whilst this was the first year for the other 
teacher. Both created their own skills-based video tutorials available on each 
school’s learning management system. Students preferred the teacher-prepared 
materials over other online tutorials, and teachers indicated in an interview that they 
thought it was important to make their own. Video tutorials were completed out of 
class, whilst in-class time was used for individual work from a textbook and a mas-
tery test before proceeding to the next topic. Whole class teaching was minimised. 
The approach emphasised students developing the capacity to tackle standard exer-
cises, and both teachers focussed on mastering content. Clearly, these implementa-
tions have not focussed on active learning where students develop critical thinking 
skills with challenging learning experiences such as modelling tasks. Instead, class 
time was optimised to cover the prescribed curriculum and prepare for assessment 
using textbook tasks.

14.2.3  Flipped Mathematics Classrooms with Real-World 
Applications and Modelling

Two flipped classroom studies to date have involved modelling activities, an intro-
ductory differential equations course at a liberal arts college (Yong et al. 2015) and 
a numerical methods course in an undergraduate engineering course (Bishop 2013). 
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At the secondary school level, there were several reports of in-class time being spent 
solving real-world applied mathematical problems (e.g. Clark 2013), however.

Modelling activities were incorporated into the numerical methods course for 
students undertaking the flipped classroom model of instruction in the study by 
Bishop (2013) in an endeavour to increase the educational effectiveness of the 
student- centred approach for the flipped classroom group. Examination perfor-
mance was similar for the two groups, but the flipped classroom group’s results 
were significantly lower on homework quizzes. The flipped classroom students 
were unhappy to be in an experimental group that had an increased workload, so 
they neglected homework that they perceived to contribute little to final results. 
Students’ opinions of the modelling activities were mixed but more negative than 
positive. Bishop (2013) recommended changes to his implementation such as ear-
lier introduction of the modelling activities, tighter integration between these and 
other assigned work and several shorter modelling activities instead of a few long 
ones. The other tertiary study (Yong et al. 2015) used part of the extra class time in 
the flipped classroom section of a differential equations course to devote to getting 
a start on modelling tasks such as setting up a profitable, sustainable, fishery man-
agement strategy. Video lectures were assigned as homework to the flipped class-
room section but were also available to the control section who attended lectures in 
class and completed all homework out of class. All tasks were the same. There was 
no significant difference in achievement on a content test or attitude test between the 
two sections, but results for the second year of the project when students in the 
flipped classroom worked on more-ambitious modelling tasks in-class are yet to be 
released. Attitudes to real-world tasks were positive.

As was typical of the studies in secondary school, the Clark study (2013) has no 
detail of the real-world applications students used during class time when partici-
pating in the flipped classroom model of instruction. The students perceived that 
they were already using real-life applications in their classes when the study began 
as, on a pre-survey, 28 (out of 42) agreed or strongly agreed their “learning activities 
focused on real life applications and improved [their] learning” (p. 70). In the post- 
survey, this had risen to 35 (out of 42). From the qualitative data, Clark concluded 
that activities involving real-world applications supported increased student engage-
ment and performance.

14.3  Leveraging a Flipped Classroom Implementation 
for Modelling and Applications

14.3.1  The Flipped Classroom Implementation

The implementation that is the subject of this analysis occurred in a large metropoli-
tan school in Victoria, Australia. The quotations come from emails or a 3-h conver-
sation with the two mathematics teachers involved and two university academics, 
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one of whom is the chapter author. The two teachers, Ned and Joe (pseudonyms), 
are highly experienced mathematics teachers who felt they were “time poor” in their 
year 11 and 12 mathematics classes with “very little time to apply and reflect”. Ned 
had experimented previously with year 9 students when “supportable devices” in 
the form of phones were first available.

As the instructional model for the year 11 implementation, which began in 2015, 
was meant to facilitate student ownership of their learning, it was structured as 
follows:

Joe: so they view the videos or view material before [emphasis] the class and then they 
come into the classroom and the idea is that their homework is to watch videos rather than 
doing problems so they can spend all the class time doing problems with our assistance is 
the idea, is the model.

The teachers made instructional videos involving narration of self-explanations 
(Chi et al. 1994) of the concepts and processes in real-time solving of worked-out 
examples (Paas and Van Merriënboer 1994) covering linear, quadratic and higher- 
order polynomial functions with “a couple of little ones that were more application, 
practical”. More applications were planned for later as “they’re the ones that take all 
the time to do”. As there is a lot of content in year 11 mathematics, the intention 
was:

Ned: We thought it might be a way of splitting up the content to get the kids to almost teach 
themselves. We’re there now to take that skill set that they have got and to apply that to 
more in-depth problems but we have had a few hurdles on the way.

Teething problems with their flipped classroom approach were identified with the 
researchers as they reflected on the implementation of the modules for the topics 
mentioned above. These included changing student mindsets; adjusting for indi-
vidual pacing, ideal chunk size for videos and number of examples per chunk; own-
ership or access to a supportable device at home; and production time for more 
practical application videos to complement the instructional skill/process videos.

As both teachers wanted “to get more value for what we’re doing”, the research-
ers suggested that the videos would be an ideal vehicle for promotion of applica-
tions and modelling particularly in association with preparation for, or in conjunction 
with, school-based assessment and a renewed emphasis, as from the next year, on 
modelling in the assessment of the Victorian senior secondary curriculum for 2016–
2020 (VCAA 2015):

Joe: Applications and modelling, that could be something we could focus on a little bit to 
get our kids more involved in the maths than they are doing at the moment; because at the 
moment, our videos have really been instructional and not, ah modelling...

The researchers suggested extra value could be added to the videos for applications 
or modelling in their flipped classroom model to enrich the curriculum rather than 
merely covering the curriculum. The videos could be used firstly as a means to 
engage students in mathematics classes by exposing them to various real-world cur-
rent problems such as cleanup of a chemical spill (Yong et al. 2015) where they 
come to realise they can use their mathematics to understand and address such 
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problems and, secondly, for enhancing critical thinking skills related to modelling 
successfully. Both involve teacher anticipation.

The first involves selection of a variety of situations (e.g. trajectory of a dig in 
volleyball) which the teachers themselves know are student interests. Once a suit-
able context is selected, instructional videos for homework could be assigned for 
particular mathematical techniques to ensure that the students have the mathemati-
cal skill set that could arise in handling the situation as there are particular elements 
of the situation they need to be able to mathematise and model. At the same time, 
they should not be held up prematurely in reaching a solution by lack of technical 
knowledge or unfamiliarity with how to handle particular mathematical dilemmas 
that might arise in the solution of any models. In addition, pedestrian solutions to 
the situation could result if the teacher did not convey that students who want to be 
innovative in their handling of the situation should do so. So, the practical videos 
can be used as a means to broaden student understanding of context in a way that 
text and talking cannot (e.g. the changing in speed and motion of an athlete over a 
100 m sprint).

Secondly, promotion of anticipating in students as they model the situation can 
be facilitated by teachers through their own use of anticipation of ways to tackle the 
situation, as well as potentialities and constraints in the situation. In the past, sec-
ondary mathematics students have been criticised for not being able to keep track of 
all constraints in a real-world situation and were seen as lacking flexibility in deal-
ing with them (Masingila et al. 1996). By raising some of the potentials and con-
straints of the situations, students could become aware that real situations are not as 
neat and tidy as what they encounter in textbook tasks. The key would be for the 
teacher to be able to showcase several ideas in the video without explicitly tele-
graphing privileging of a particular sense of direction.

Combining both of these elements, practical videos dedicated to the develop-
ment of meta-knowledge about modelling in its own right as content could be used 
to show how a particular sense of direction was gained by the teacher in their own 
modelling of a real-world situation. The pedagogical intention of such a video 
would be the exposing of the teacher’s critical thinking during modelling so stu-
dents view how others model.

14.3.2  An Example: The Ramp Video

One of the practical video examples from this flipped classroom implementation 
concerned the design of access ramps to buildings. Ned’s intention in making the 
video was “to pose a problem that would be confronted often in building and design 
and show how mathematics is an important part of the problem solving process”. 
The mathematical concept applied was gradient, and the problem-solving aspect 
was “thinking about utilising space effectively”. Students were given two home-
work videos on the gradient topic: an instructional video teaching the skills involved 
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in finding the gradient and one related to the necessity for parallel ramps in a con-
fined space to meet building regulations (see Fig. 14.1).

From a modelling perspective, the ramp video triggers questions that viewers can 
pose such as: Can parallel ramps really be set up in this space? If not, what other 
solutions would apply? If the intention is to stimulate anticipation when mathema-
tising by students in later real-world problem solving, then in the particular context 
the modeller might ask: If I use this model will it do the job? Has it been used 
before? How? Where might I find out? By self-questioning such as this, through 
recalling images from this prior vicarious experience with the ramp video, the mod-
eller might develop a sense of direction for the modelling applied in a different situ-
ation. For the task to involve modelling, it is not only seeing if conversion of existing 
stairs to a ramp complies (Fig. 14.1a, b) or calculating the length of a ramp that does 
comply (Fig.  14.1d) but also bringing in the constraints of the situation such as 
heights that cannot be varied (Fig.  14.1c), access points and available width 
(Fig. 14.1e) so that a ramp can realistically be constructed for community members 
unable to walk the stairs. This could mean thinking laterally such as using parallel 
ramps (Fig. 14.1f) if space permits.

This well-selected example involves several natural decision points where prog-
ress and interim mathematical results could be checked such as feasibility being 
subjected to a sense of the actual length and its relationship to access points of other 
infrastructure as modelled by the teacher in the video (Fig.  14.1e). By mentally 
working forward following their anticipated path, students can project feedback 
about adequacy of particular decisions back to previous decision points before act-
ing on them or to revise those decisions if acted upon.

Fig. 14.1 Screenshots (a)–(f) from ramp video dealing with gradient for flipped classroom (Used 
with permission of photographer)
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14.4  A Final Word

Despite mixed results on effectiveness in secondary mathematics classrooms, on 
balance, the flipped classroom model appears to have potential that is worthy of 
further development and research as a means to leverage more time in the classroom 
for engaging in richer experiences that give more than lip service to mathematical 
modelling activity (Yong et al. 2015). Meta-analyses of the findings from the studies 
to date need to be treated with care until the teachers and students engaged in the 
flipped classroom have developed mindsets that maximise and integrate the learning 
potential of both the out-of-classroom and in-classroom learning environments 
(Bishop 2013; Mayer 2009). Building meta-knowledge about mathematical model-
ling and facilitating critical thinking skills such as anticipating (Niss 2010; Stillman 
and Brown 2014) and visualisation in modelling (Brown 2015) seem ideal candi-
dates for expanding the learning experiences of secondary mathematics students 
whose teachers have felt the continual pressure of lack of time to cover anything 
other than developing mathematical concepts and techniques. The current interest in 
this model is an opportunity not to be lost.

References

Baker, J. (2000). The “classroom flip”: Using web course management tools to become the guide 
on the side. In J. A. Chambers (Ed.), Selected papers from the 11th international conference 
on college teaching and learning (pp. 9–17). Jacksonville: Jacksonville Community College.

Bishop, J.L. (2013). A controlled study of the flipped classroom with numerical methods for engi-
neers. Doctor of Philosophy in Engineering Education dissertation, Utah State University.

Bormann, J.  (2014). Affordances of flipped learning and its effects on student engagement and 
achievement. A graduate review in partial fulfilment of Master of Arts, University of Northern 
Iowa.

Brown, J. P. (2015). Visualisation tactics for solving real world tasks. In G. A. Stillman, W. Blum, 
& M.  S. Biembengut (Eds.), Mathematical modelling in education research and practice: 
Cultural, social and cognitive influences (pp. 431–442). Cham: Springer.

Burkhardt, H. (2006). Modelling in mathematics classrooms: Reflections on past developments 
and the future. ZDM Mathematics Education, 38(2), 178–195.

Butt, A. (2014). Student views on the use of a flipped classroom approach: Evidence from Australia. 
Business Education & Accreditation, 6(1), 33–34.

Chi, M. T., Leeuw, N., Chiu, M. H., & La Vancher, C. (1994). Eliciting self-explanations improves 
understanding. Cognitive Science, 18(3), 439–477.

Clark, K.R. (2013). Examining the effects of the flipped model of instruction on student engage-
ment and performance in the secondary mathematics classroom: An action research study. 
Doctoral dissertation, Capella University Proquest UMI No. 3592584.

Fulton, K. (2012). Inside the flipped classroom. The Journal, 39(3), 18–20. Retrieved from http://
thejournal.com/articles/2012/04/11/the-flippedclassroom.aspx.

Hamdan, N., McKnight, P., McKnight, K., & Arfstrom, K.M. (2013). A review of flipped learn-
ing. Retrieved from the Flipped Learning Network http://flippedlearning.org/cms/lib07/
VA01923112/Centricity/Domain/41/LitReview_FlippedLearning.pdf

Lage, M. J., Platt, G. J., & Treglia, M. (2000). Inverting the classroom: A gateway to creating an 
inclusive learning environment. The Journal of Economic Education, 31(1), 30–43.

G.A. Stillman

http://thejournal.com/articles/2012/04/11/the-flippedclassroom.aspx
http://thejournal.com/articles/2012/04/11/the-flippedclassroom.aspx
http://flippedlearning.org/cms/lib07/VA01923112/Centricity/Domain/
http://flippedlearning.org/cms/lib07/VA01923112/Centricity/Domain/


173

Masingila, J. O., Davidenko, S., & Pruis-Wisniowska, E. (1996). Mathematics learning and prac-
tice in and out of school. Educational Studies in Mathematics, 31, 175–200.

Mayer, R. E. (2005). Multimedia learning: Guiding visuospatial thinking with instructional ani-
mation. In P. Shah & A. Miakye (Eds.), The Cambridge handbook of visuospatial thinking 
(pp. 477–508). New York: Cambridge University Press.

Mayer, R. E. (2009). Multimedia learning. Cambridge: Cambridge University Press.
Muir, T. (2016). No more ‘What are we doing in maths today?’ Affordances of the flipped class-

room approach. In B.  White, M.  Chinnappan, & S.  Trenholm (Eds.), Proceedings of 39th 
annual conference of MERGA (pp. 485–492). Sydney: MERGA.

National Council of Teachers of Mathematics. (2014). Principles to action: Ensuring mathemati-
cal success for all. Reston: National Council of Teachers of Mathematics.

Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. 
Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modelling 
competencies (pp. 43–59). New York: Springer.

Paas, F. G. W. C., & Merriënboer, J. J. G. V. (1994). Variability of worked examples and trans-
fer of geometrical problem-solving skills: A cognitive load approach. Journal of Educational 
Psychology, 86(1), 122–133.

Saunders, J.  (2014). The flipped classroom: The effects on student academic achievement and 
critical thinking skills in high school mathematics. Doctoral Dissertation. No. 936. Digital 
Commons at Liberty University.

Stillman, G. (2007). Upper secondary perspectives on applications and modelling. In W. Blum, 
P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics 
education (pp. 463–468). New York: Springer.

Stillman, G., & Brown, J. (2014). Evidence of “Implemented Anticipation” in mathematising by 
beginning modellers. Mathematics Education Research Journal, 26(4), 763–789.

Treilibs, V. (1979). Formulation processes in mathematical modelling. (Unpublished Master of 
Philosophy). University of Nottingham, UK.

Victorian Curriculum and Assessment Authority (VCAA). (2015). Victorian certificate in educa-
tion mathematics study design 2016–2018. Melbourne: VCAA.

Western New York Regional Information Center. (2013). Niagara Falls High School math score to 
“FLIP’ over. Retrieved from http: www. Elb.org/WNYRIC.aspx? Article ld=171.

Yong, D., Levy, R., & Lape, N. (2015). Why no difference? A controlled flipped classroom study 
for an introductory differential equations course. Primus, 25(9–10), 907–921.

14 Enabling Anticipation Through Visualisation in Mathematising Real-World…

http://elb.org/WNYRIC.aspx


175© Springer International Publishing AG 2017
G.A. Stillman et al. (eds.), Mathematical Modelling and Applications, 
International Perspectives on the Teaching and Learning of Mathematical 
Modelling, https://doi.org/10.1007/978-3-319-62968-1_15

Chapter 15
Measuring Metacognitive Modelling 
Competencies

Katrin Vorhölter

Abstract Following the discussion about modelling competency as well as respec-
tive research results, metacognitive competencies are considered to be an essential 
component of modelling competency. Until now, there is no method or instrument 
to reliably measure metacognitive modelling competencies of larger groups of stu-
dents. In this chapter, different methods for measuring metacognitive modelling 
competencies are discussed. In addition, results of a design-based process aiming 
for the development of a questionnaire for measuring metacognitive modelling 
competencies as well as selected items of the questionnaire are presented.

Keywords Metacognition • Metacognitive strategies • Modelling competencies

15.1  Introduction

Metacognitive competencies have already, for a long time, been of major interest in 
general education and educational psychology. In recent years, the issue of meta-
cognitive competencies and their promotion has become even more and more 
important in teaching, especially in mathematics teaching. In the last decade, the 
topic metacognition and its role in modelling processes has gained significant 
importance. Within the international community on mathematical modelling and 
due to the work of Maaß (2006) and Stillman (2011) in the last decade, the topic 
metacognition and its role in modelling processes has gained significant impor-
tance. Maaß (2006) defines metacognitive competencies as a sub-competence of 
modelling competencies; Stillman (2011) focuses on metacognitive barriers in the 
modelling process and the question of how to overcome them. Nevertheless, until 
now it could not be clarified how metacognitive competencies can be described 
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theoretically, particularly with regard to the question which domain-specific meta-
cognitive competencies are important for the students’ modelling process and how 
these metacognitive competencies can be measured. In this chapter, first steps to 
developing an instrument for measuring students’ metacognitive modelling compe-
tencies are presented.

15.2  Metacognition in Modelling Processes

Working on modelling problems autonomously and successfully is challenging for 
students all over the world. The difficulties can be explained by the complexity of 
the problems that requires competencies on different levels. Referring to Blum 
(2015, pp.  77–78), “modelling competency in a comprehensive sense means the 
ability to construct and to use or apply mathematical models by carrying out appro-
priate steps as well as to analyse or to compare given models”. In this sense, model-
ling competencies not only comprise the sub-competencies referring to single 
phases of the modelling process, but overall modelling competencies are needed in 
addition, such as cognitive skills and competencies that allow one to work on a 
modelling problem successfully and in a goal-oriented way (i.e. competency to 
structure a problem, to use heuristics and to work together in one group) (Kaiser 
2007). According to Maaß (2006) and Blum (2011), metacognitive competencies 
are an essential facet of modelling competence as well. Thus, in the following a 
definition of metacognition in modelling processes and empirical results concerning 
the relevance of metacognition in modelling processes are given.

15.2.1  Definition of Metacognition

The concept of metacognition was introduced in the 1970s by John Flavell (1979) 
and Ann Brown (1978). Over the years, metacognition has become a fuzzy concept. 
Schneider and Artelt (2010, p. 149) define metacognition as 

people’s knowledge of their own information-processing skills, as well as knowledge about 
the nature of cognitive tasks, and of strategies for coping with such tasks. Moreover, it also 
includes executive skills related to monitoring and self-regulation of one’s own cognitive 

activities. 

In this definition, metacognition is separated into metacognitive knowledge and 
metacognitive skills (often called metacognitive strategies): The former refers to 
declarative meta-knowledge that is taken as explicit knowledge or as knowledge to 
be made explicit. It is subdivided into knowledge of the characteristics of tasks, 
knowledge of appropriate strategies and knowledge of persons’ own skills and com-
petencies as well as those of other persons involved. Metacognitive skills consist of 
planning, monitoring and regulating the work as well as evaluating the whole 
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process (e.g. Schneider and Artelt 2010; Veenman et al. 2006). As Veenman (2005) 
points out, the use of metacognitive knowledge depends on different motivational, 
cognitive and depositional aspects. Therefore, these aspects need to be taken into 
account when analysing metacognitive knowledge, although they may not easily be 
evaluated empirically. Another influencing factor for the usage of metacognition is 
the difficulty of the task: only tasks estimated on an intermediate difficulty level 
provoke the usage of metacognitive strategies (Hasselhorn 1992).

Referring to the distinction described above, metacognitive modelling compe-
tencies can also be divided into metacognitive knowledge and metacognitive strate-
gies. However, until now it has not been researched how metacognitive competencies 
can be described theoretically.

15.2.2  Relevance of Metacognition in Modelling Processes

Looking at empirical findings concerning metacognition and mathematical learning 
in general and the role of metacognition in problem-solving processes, the role of 
metacognition is stated ambiguously. In their overview of theoretical and empirical 
work on metacognition in mathematics education from the previous four decades, 
Schneider and Artelt (2010) emphasised the importance of metacognition in math-
ematics education. They not only summarised the results of different studies that 
gave evidence of the positive correlation between metacognition and mathematical 
performance; but also they presented findings from intervention studies that suc-
ceeded in fostering students’ metacognition and mathematical performance. In con-
trast, Lesh and Zawojewski (2007), in giving an overview about research on 
metacognition in problem-solving processes, questioned whether performance 
improvement was due to metacognition or to the students learning mathematics 
concepts better or differently. In addition, they gave examples when metacognition 
(or teachers’ request for using metacognition) can be obstructive rather than 
helpful.

However, according to Blum (2011, p.  22), “there are many indications that 
meta-cognitive activities are not only helpful but even necessary for the develop-
ment of modelling competency”. For example, the relevance of metacognition in 
modelling processes is emphasised by the respective studies of Stillman et al. (2007) 
(for an overview about the current state of the art, see Stillman 2011). Especially the 
complete lack of (or only a very low level of) meta-knowledge about the modelling 
process can result in considerable problems when dealing with modelling tasks. 
Problems occur as well in the transitions between the various stages of the model-
ling process as in dissolving cognitive blockages while performing modelling tasks 
(Maaß 2006; Stillman 2011). To overcome such difficulties, the modelling cycle can 
be used as a metacognitive tool (Blum 2011, 2015). In contrast, Schukaljow and 
Leiss (2011), for example, did not find any significant correlation between cognitive 
and metacognitive self-reported strategies (in general or task orientated) on the one 
hand and mathematical modelling competence on the other hand.
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Empirical research (Cohors-Fresenborg et al. 2010) further shows that, in par-
ticular, procedural aspects of metacognition have a significant influence on learning 
success; it is therefore proposed to focus on the promotion of procedural metacogni-
tion instead of declarative meta-knowledge. Especially planning of the solution pro-
cess is essential for performing complex tasks successfully as Schoenfeld (1992) 
and Verschaffel (1999) point out. Mevarech and Kramarski (1997) indicate that 
reciprocal asking and answering of metacognitive questions by students while 
working on a complex task can improve mathematical performance as well as meta-
cognitive competencies at the same time. This finding is confirmed by the conclu-
sion of Goos (1998): collaborative interactions deliver metacognitive benefits. 
Adaptive support by the teacher is indispensable for bringing students onto a meta- 
level. Hence, strategic interventions are most adequate (Blum 2011; Kaiser and 
Stender 2013). Not only metacognitive strategies referring to planning, monitoring 
and regulating the modelling process are of great importance for solving modelling 
problems; but also Blum (2015) points out that reflecting on one’s own activities is 
crucial for transferring knowledge and skills from one task to another.

15.3  Measuring Metacognitive Modelling Competencies

15.3.1  Methods for Measuring Metacognitive Competencies

In order to measure procedural metacognitive modelling competencies, there exist 
two possibilities: On the one hand, online methods like thinking aloud, observa-
tions, eye movement or log file registration enable process diagnostics concurrent 
with task performance. Thus, a deeper look into metacognitive behaviour of stu-
dents without disturbing and influencing the subject too much is possible. But these 
methods cost a lot of time and money. Therefore, they can only be used for small 
samples (Veenman 2011). Especially the method of thinking aloud is often used for 
measuring metacognitive activities. Thinking-aloud protocols are considered to be 
fairly reliable, because thinking or doing, respectively, and verbalising are happen-
ing almost simultaneously. Furthermore, the pure verbalisation of metacognitive 
activities does not include any interpretations by the students. However, methods 
like thinking aloud and observation only lead to reliable results if students are able 
and motivated to verbalise all their thinking: neither activities and behaviours that 
are automatised and therefore do not occupy space in the working memory nor 
thoughts during phases of single work can be measured (Schellings et al. 2013). It 
is in the nature of online methods that data measured with the help of such instru-
ments are bound to a given task.

On the other hand, offline methods like prospective or retrospective interviews or 
questionnaires can be used for measuring. In these cases, the results rely on the 
students’ self-reports. This method bears the risk that strategies may be used uncon-
sciously or their use may be forgotten by the students. Furthermore, the item 
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 formulation may remind the students of the usefulness of certain strategies. 
Consequently, they will answer according to their metacognitive knowledge and not 
on the basis of their behaviour. In contrast to observations and thinking-aloud pro-
tocols, processes which were not verbalised for different reasons can be measured 
with the help of questionnaires or interviews (Schellings et  al. 2013; Veenman 
2011).

As questionnaires are less labour intensive, they are often used for measuring 
metacognitive activities. Over the years, the validity of online and offline methods 
has been compared in several studies, many of these comparing thinking aloud to 
questionnaires (Schellings et al. 2013). Usually, the correlation is not very high, and 
therefore self-reports are qualified as less valid; the students’ ability of reporting 
their applied strategies is doubted. However, Schellings et al. (2013) provide two 
different explanations concerning the low correlation between thinking aloud and 
questionnaires: The first assumption is that the compared measuring methods aim at 
different learning strategies. The second assumption refers to the fact that normally 
thinking aloud is task bound, whereas questionnaires often measure general learn-
ing strategies. Therefore, they developed a three-point-frequency questionnaire 
based directly on a taxonomy for coding thinking-aloud protocols. Twenty ninth- 
graders were asked to study a text, thinking aloud simultaneously. After studying 
the text, they were given the questionnaire. The overall correlation between the 
questionnaire and the thinking-aloud protocols was higher than in other studies 
(Schellings et al. 2013).

Thus, the development of questionnaires seems to be promising if you want to 
develop an instrument for evaluating the effectiveness of a learning environment for 
promoting students’ metacognitive modelling competencies. In order to measure 
applied strategies, the students should be asked to fill out the questionnaire just after 
working on a modelling task.

15.3.2  Results of Studies Aiming at Development 
of a Questionnaire for Measuring Metacognitive 
Modelling Competencies

In order to develop items for measuring metacognitive strategies for modelling, dif-
ferent studies have been conducted. The first studies were aimed at reconstructing 
metacognitive skills that are important for solving modelling tasks. This was done 
in two different ways.

Firstly, videotapes of the working processes of several groups of students were 
analysed by coding metacognitive knowledge and strategies that could be recon-
structed by the students’ verbal expressions or their behaviour. In doing so, qualita-
tive content analysis, according to Mayring (2014), was used. Thus the elaborated 
coding guideline gave an overview on the strategies that could be observed. 
Concerning metacognitive skills, the following strategies were observed:
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• Competencies for orienting and planning the solution process

 – P1: Subdivide the solution process into several steps.
 – P2: Allocate parts of work to different persons.
 – P3: Structure the solution process according to the time available.
 – P4: Choose useful solution strategies.

• Competencies for monitoring and, if necessary, regulating the working process

 – M1: Identify different kinds of red-flag situations.
 – M2: Notice incomprehension.
 – M3: Keep track of the time available.
 – M4: Check the work habits.
 – M5: Reconsider solution strategies.

• Competencies for evaluating the modelling process in order to improve it

 – E1: Evaluate the strategies used.
 – E2: Reflect on the working habit.
 – E3: Validate the solution (cf. Schroeder 2014).

By analysing the videotapes, it became obvious that some students used metacogni-
tive skills but did not express them explicitly; so after some time, they expressed the 
results of the use of special metacognitive strategies in different ways. Unfortunately, 
we were not able to figure out when exactly these strategies have been used.

As mentioned above, retrospective observations can ignore the usage of meta-
cognitive strategies. Therefore, based on the coding guideline as well as based on 
the conceptualisation of existing metacognitive questionnaires for other domains 
(like Lingel et al. 2014; Rakozky and Klieme 2005), 27 items divided into the sub-
processes of planning, monitoring, regulating and evaluating have been developed 
and tested. According to the fact that metacognitive strategies are only used when 
they are helpful (i.e. the task is not too easy and the students are motivated to use 
them; see Sect. 15.2.1), students are asked as well to judge their motivation and the 
difficulty of the task on a four-point scale. The items were given to 66 students of 
grade nine from five different classes.

For testing the questionnaire, the students were introduced to a modelling cycle 
(see Kaiser and Stender 2013) and then they worked in groups on a modelling task. 
The working process was videotaped. After working on the task, the students were 
asked to fill in the questionnaire. While filling in the questionnaire, they were 
allowed to speak to each other and discuss the items. Furthermore, four pairs of 
students were asked to explain their answers to the items during an interview. 
Moreover four experts rated the students’ metacognitive behaviour with the help of 
the questionnaire as well as the videotapes.

Frequency distributions and item difficulties of the students’ self-reports as well 
as of the experts’ ratings were calculated. The results vary widely (for further infor-
mation, see Janetzko 2014). Correlations between self-reports and expert ratings 
were low. With the help of the interviews, some reasons for low correlations were 
reconstructed:
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• Those students with low metacognitive skills aligned their answers with the stu-
dents who have higher metacognitive skills. Assumingly, this will not occur if 
students would not be allowed to discuss their answers with each other.

• Students claim that they monitor their working process but did not verbalise 
anything. This is a well-known problem (see Sect. 15.3.1) that can hardly be 
solved. But it becomes obvious that students’ self-reports are of great impor-
tance, because pure observations of metacognitive skills cannot adequately cap-
ture those skills.

• Some formulations were simply not understood by the students. Especially the 
terminology of the modelling process was not familiar to them. So students have 
to become acquainted with the terminology beforehand.

• The difference between some items was not recognised by the students. So these 
items have to be combined or the difference has to be made more explicit.

• Sometimes the students did not know how to answer because some strategies 
they had only used on their own and did not share with the group. Others they 
had used only because a group member suggested doing so. So the items must 
clearly differentiate between the use of strategies in the whole group and strate-
gies that were used for the monitoring and regulation of one’s own behaviour.

Consequently, the questionnaire has been reworked in the outlined way paying spe-
cial attention to the item formulation. Items with a very high average size as well as 
those that were similar were reformulated and made more explicit. Especially it has 
been differentiated between single strategy use and strategies used in the whole 
group (e.g. see Sect. 15.3.3). Furthermore, the introduction of the modelling cycle 
as a metacognitive tool to the students has been reviewed.

15.3.3  Items for Measuring Metacognitive Strategies

For measuring metacognitive strategies, the reviewed questionnaire consists of 39 
five-point Likert items, divided into four parts. Contrary to the division of metacog-
nitive strategies into the processes of orientating/planning, monitoring/regulating 
and evaluating, the items have been aligned in the order of their appearance during 
an ideal modelling process. Thereby, students were guided to recapitulate their 
working process. Beneath the three phases of at the beginning, during and after 
working on the task, the students are asked to judge their motivation to work on the 
task and the task difficulty at the end of the questionnaire.

The phase before the working process is measured by six items. All these items 
are primarily related to the first step of the modelling cycle, which contains develop-
ing a real model by understanding and simplifying the problem. Most items relate 
to metacognitive strategies for orienting and planning. The items refer to reading 
and understanding the task, capturing needed information as well as possible interim 
goals and agreeing on a common approach. Depending on the results mentioned 
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above, the items contain single processes (Table 15.1, item 1.1) and group processes 
(Table 15.1, item 1.2). Strategies that should be used on one’s own as well as shared 
in the group were mentioned twice, one time as a single and one time as a group 
process. Having the goal in mind of developing a task-bound questionnaire that is 
applicable to different modelling tasks, some items were generalised.

The second part of the questionnaire refers to the phase of working on the prob-
lem (from developing a real model to validating the real results) and therefore 
merely relates to metacognitive strategies for monitoring and regulating the work-
ing process. As regulation can only occur when monitoring has been applied, these 
processes were combined in one section. This section can be divided into items that 
aim at processes which happen without the occurrence of a problem (13 items) and 
those metacognitive strategies that are helpful (or restraining) if a problem occurs 
(12 items). The first 13 items not only refer to strategies for monitoring and regulat-
ing (Table  15.1, item 2.1) but also to those for planning the working process 
(Table 15.1, item 2.2). Altogether students have to give information about their own 
behaviour as well as about the cooperation in the group during the time of working 
on the modelling problem. Filter questions were subsequently used for items con-
cerning the occurrence of problems. After these filter questions, possible questions 
on regulating strategies are posed (Table 15.1, item 2.3 and item 2.4). In this part of 
the questionnaire as well as in the first part, formulations were tested several times, 
and formulations were divided into single and group processes.

The third part of the questionnaire consisting of seven items refers to the phases 
after working on the modelling problem. Primarily the items of this group relate to 
metacognitive strategies of evaluating the whole process. Using these strategies is – 
similar to validating results of modelling problems – often forgotten or there is not 
enough time to do it. As pointed out in Sect. 15.2.2, it is very important to learn 

Table 15.1 Selected items of the questionnaire

Item 
no. Item description

Relation to the coding 
guideline

1.1 At the beginning of the working process, I captured 
important information out of the task

1.2 At the beginning of the working process, we tried to get aware 
of possible steps

P1

2.1 I normally knew what was missing to get a solution M2
2.2 We allocated work P2
2.3 If we made no progress, we tried to find where exactly our 

problem is
M1

2.4 If our (interim) result seemed strange, I checked our 
assumptions

M1

3.1 When we had a solution, I was wondering if there is a better 
solution

E3

3.2 When we had a solution, we were wondering what we can do 
better next time

E2
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through reflection and to overcome some kinds of behaviour that are restricting the 
quality of a learning process. These items aim at assessing if students reflected on 
the solution (Table 15.1, item 3.1) and if they had drawn any conclusions for the 
next working process (Table 15.1, item 3.2). Students evaluate only self-acting, if 
they came to a solution and had enough time left. In order to measure only the evalu-
ation done during working time, another filter question is posed in the 
questionnaire.

15.4  Conclusions

Although different studies have already pointed out the importance of metacogni-
tive modelling competencies for solving modelling problems successfully, research 
about metacognitive modelling competencies is still at its beginning. With regard to 
the evaluation of learning environments to promote metacognitive modelling com-
petencies, it is especially necessary to develop instruments for measuring those 
competencies. Concerning metacognitive skills, there are existing different methods 
of measuring that have different advantages and disadvantages.

In order to develop a task-bound questionnaire for measuring metacognitive 
strategies that is applicable to different modelling tasks, two studies have been car-
ried out. The results presented above clearly indicate that a questionnaire seems to 
be a possible instrument for measuring metacognitive modelling competencies. 
However, other aspects have to be taken into account. This includes not only the 
item formulation but also the particular circumstances under which the students are 
asked to fill in the questionnaires. In order to reconsider the reliability and validity 
of the revised questionnaire presented in extracts above, the questionnaire has to be 
tested once more.
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Chapter 16
The Mathematical Modelling Competencies 
Required for Solving Engineering Statics 
Assignments

Burkhard Alpers

Abstract Engineers set up and work with mathematical models when solving engi-
neering problems. For doing this successfully, mathematical modelling competen-
cies are essential. Yet, it is open where in the engineering curriculum these 
competencies are acquired. In this chapter I investigate whether, and how, mathe-
matical modelling competencies are addressed when students work on statics tasks 
appearing in one of the fundamental classes in many engineering study courses. As 
a theoretical framework for capturing modelling competencies, all assignments in 
two widely used statics textbooks were analysed relearning opportunities for mod-
elling. It turned out that important subprocesses like understanding the situation and 
making assumptions and simplifications, interpretation or validation of results are 
not at all or only scarcely addressed.

Keywords Modelling competencies • Statics assignments • Engineering • 
Modelling cycle • Mathematical competence • Engineering curriculum

16.1  Introduction

Since engineers set up and work with mathematical models describing certain situ-
ations of interest, it seems to be quite obvious that mathematical modelling compe-
tencies should play a major role in engineering education. Therefore, these 
competencies have been included in the Curriculum Document of the Mathematics 
Working Group of the European Society for Engineering Education (Alpers et al. 
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2013). It is open, however, where in engineering study courses the competencies 
should be acquired. In application subjects like statics or control theory, important 
modelling quantities are introduced (like force, torque, stress), and ways to set up 
models and to compute interesting quantities in these models are presented such 
that students at least “experience” mathematical modelling. But only by actively 
working on assignments can students acquire competence. It is the goal of this 
chapter to investigate for one fundamental application subject, statics, whether 
usual assignments are adequate for this purpose.

As a theoretical framework for conceptualising modelling competencies, I basi-
cally use the so-called modelling cycle (Blum and Leiß 2007) which is described in 
the next section. I chose two widespread textbooks on engineering statics that con-
tain assignments for which sample solutions are available. For each competency 
identifiable in the modelling cycle, I analysed whether and how it is addressed when 
working on the assignments. In order to check empirically whether the solutions in 
the books match with “good” student solutions, I had two very successful students 
work on selected tasks and explain their thinking processes in detail. I describe the 
results of the document analysis and the students’ work in Sect. 4. In Sect. 5 I dis-
cuss the results, relate them to the research literature and outline potential educa-
tional consequences.

16.2  Theoretical Framework

Kaiser and Brand (2015) provide an overview of different conceptualisations of 
modelling competencies during the last 30 years. Often, a more elaborated specifi-
cation of these competencies has been based on the so-called modelling cycle which 
is a well-accepted idealisation of the modelling process. Figure  16.1 depicts an 
example of such a cycle as it was set up by Blum and Leiß (2007) (for similar 
cycles, see the overview in Frejd 2014). In the first step, a person working on solv-
ing a realistic problem tries to understand the problem situation and where the 

rest of the world
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6. Validating
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Fig. 16.1 Modelling cycle after Blum and Leiß (2007) and Borromeo Ferri and Blum (2010)
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problem really is (1). This leads to a “situation model”. Then, the situation is struc-
tured and simplified (2) to capture only presumably essential features which results 
in a “real model” where the problem is formulated. Then, in a process of mathemati-
sation (3), the real model (and problem) is turned into a mathematical model (and 
problem), and the problem is solved by working mathematically (4). The results are 
interpreted in the real model (5) leading to “real results”. These are then investigated 
regarding their sense-making in the situation model, that is, they are validated (6). 
In activity (7) (not explained in Blum and Leiß 2007 but in Borromeo Ferri and 
Blum 2010), the results are exposed to those who are interested, that is, they are 
documented and presented.

Maaß (2006) added so-called metacognitive modelling competencies compris-
ing an awareness of the overall process and the position and meaning of the subpro-
cesses when doing modelling. In Kaiser and Brand (2015), this is also termed 
“overall modelling competency” (“ability to carry out complete modelling tasks, 
metacognitive abilities, mainly monitoring the modelling process”, p.  141). For 
investigating whether and how a learning activity addresses the acquisition of mod-
elling competencies, it is therefore well grounded in the research literature to search 
for instances of the seven subprocesses mentioned above as well as reflections on 
the overall process.

16.3  Method of Investigation

I performed a content analysis as outlined in Robson and McCartan (2016, pp. 349–
359), starting from the research question: Are mathematical modelling competen-
cies addressed in statics tasks? As a sample, I chose two widely used statics 
textbooks, one from Germany (Gross et al. 2013; corresponding book of assign-
ments: Hauger et al. 2012) and the German edition of a US textbook by Hibbeler 
(2012). Both textbooks are available in the 12th print edition from which I conclude 
that they are heavily used by lecturers. The book by Hauger et al. (2012) contains 
83 tasks with sample solutions, the book by Hibbeler 1091 (!) tasks with sample 
solutions on the book’s companion website. Many of Hibbeler’s tasks are very small 
computational tasks, and there are also several quite similar tasks for training. The 
units of analysis are the single steps in the solutions. For analysing the content, I 
used as categories the subprocesses of the modelling cycle as described in the previ-
ous section. I investigated the sample solutions twice, first for understanding the 
procedure and secondly to find occurrences of subprocesses of the modelling cycle. 
I was also open for detecting other categories not covered by those subprocesses. I 
did not have another researcher check the way I mapped the solution steps to sub-
processes of the modelling cycle since the latter have been used in many studies 
without any problems reported regarding the coding.

Moreover, I let two very successful students prepare and explain solutions to 25 
selected assignments, 12 from Hauger et al. (2012) and 13 from Hibbeler (2012) in 
order to check whether successful students work on the tasks in the way the book 
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authors assume them to do. I compared their solutions with the sample solutions and 
performed interviews for clarification. The 25 tasks cover all areas in statics and all 
kinds of occurring mathematical models, as far as they have been dealt with in the 
statics education of the students. Moreover, they address interesting aspects discov-
ered in the content analysis and include a design task taken from the book by 
Hibbeler.

16.4  Results

In the sequel, I describe whether and how the competencies are addressed in the 
assignments. If I found an interesting deviation of the students’ solutions from the 
sample solutions of the author, I will point this out. Since there were no tasks 
addressing the reflection of the whole modelling process, I omit the “overall model-
ling competency”.

16.4.1  Constructing a Situation Model

In the set of assignments provided by Hauger et al. (2012), there is no real situation 
addressed that needs clarification. The tasks “live” in their own world of mechanics. 
The Beam Task is a typical example where the drawing already uses the “graphical 
language” of mechanics with special symbols for bearings and loads.

In the textbook by Hibbeler (2012), often relations to underlying real situations 
are given. There is, for example, a photo of a pile of planks carried by two metal 
beams representing a constant line load (p. 185), and in an example (p. 189), a heap 
of gravel is shown that is modelled as a linearly decreasing line load. This gives 

Beam Task (After Hauger et al. 2012, p. 27)

a a 2a
 

A beam is supported by a fixed and a movable bearing and loaded as shown 
in the figure. Determine the internal shear force and bending moment 
function.
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readers an impression where such load functions might occur. In the assignments to 
be done by the students, however, there is no requirement for understanding a real 
situation and problem. The problems are already clearly stated, and often a drawing 
showing the essential properties of the situation is provided.

It is fair to state that in the textbook by Hibbeler (2012), there are a few more 
open tasks of a constructive nature (design tasks) like the Bridge Task. In design 
tasks like this, there are many possible solutions. Students are assumed to start with 
an initial design, check the restrictions on forces and improve the design iteratively 
using their knowledge on how the design variables influence the forces and the 
costs. Although this task offers good learning opportunities regarding mechanical 
concepts (distribution of force along connected pins) and resembles real design, the 
situation and problem are again clearly stated.

16.4.2  Constructing a Real Model

Constructing a real model means to simplify and to structure a problem. But again, 
in both textbooks the real models are already given in the assignments with simpli-
fications already made as can be seen in the Beam Task where a body is already 
idealised as a beam and the loads are simplified as being linear or linearly decreas-
ing. Simplifications are provided either directly (by statements like “weight, radius, 
etc. is neglectable”) or indirectly via code words like “smooth surface” (i.e. friction 
can be neglected), “homogeneous” (i.e. the centre of volume can be considered 
instead of the centre of mass) or “thin” (i.e. the surface can be considered instead of 
the volume). The authors expect students to translate such words. Yet, the two stu-
dents working on a selection of tasks which also contained such code words ignored 

Bridge Task (After Hibbeler 2012, p. 367, Shortened)

A

b

P

B
l

 

Construct a truss for a bridge consisting of joints and pins that can carry the 
given load. Costs for pins and joints are given as well as restrictions on forces 
in pins. Make it cheap!
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them completely. When questioned, they stated that they expect everything impor-
tant to be mentioned explicitly in the task with at least a symbol given (if not a 
concrete value). Unless the latter is the case, quantities are of no relevance. This 
expectation is probably based on their experience with such tasks.

The real models that are given in the assignments often use a kind of “graphical 
language”, as is the case in the Beam Task. There are conventions for objects like 
beams, pins, joints or bearings and for loads as well (point loads, line loads, etc.) in 
two- or three-dimensional space. In order to understand the real models, students 
must be able to “read” and understand this graphical language. This situation is 
similar to the one Biehler et al. (2015) found when investigating the foundations of 
electrical engineering.

16.4.3  Setting Up Free-Body Diagrams

The analysis of assignments revealed the overwhelming role of creating so-called 
free-body diagrams (FBDs) in the solution process. Therefore, I suggest in Fig. 16.2 
to refine the general modelling cycle for usage in statics assignments by inserting 
another stage “free-body diagrams” and a subprocess “subdividing and translating” 
which will be explained below.

In this step a part of the mechanical configuration is “cut-free”, and all forces or 
torques that are applied are added to the drawing as well as all important geometric 
information. For doing this, the graphical language of statics has to be translated 
into forces and torques. In the Framed Drum Task, the upper left drum can be cut- 
free (as shown in the right-hand side of the drawing which is not part of the task 
description but placed there for space reasons). The reason for cutting free parts is 
that one can then set up equations of equilibrium for such parts and use these to 
compute unknown quantities (mostly forces or torques) from known ones. Therefore, 
when choosing a part to be cut-free, students already have in mind how they can use 
the resulting system of equations. There is no clear split between the “rest of the 
world” and the mathematical domain here.

3

2a

3

Real model
& problem

Free Body 
Diagrams

Math. model
& problem

2a: Sub-dividing and translating
3: Mathematizing

Fig. 16.2 Refinement of the modelling cycle
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Framed Drum Task (After Hauger et al. 2012, p. 24)

A

R

R

 

Two cylindrical drums (weight m) are fixed by a u-shaped frame (weight M). 
Determine all contact forces. What is the meaning of the ratio M/m regarding 
the contact force in A?

A similar situation can be found in assignments involving infinitely small sections, 
for example, when computing the mass of an inhomogeneous object (with variable 
density). It is preferable to choose only one dimension infinitely small because the 
subsequent integration then requires only one-dimensional integration. So again, an 
anticipation of the solution process is at least very helpful when choosing a body to 
cut-free.

16.4.4  Setting Up a Mathematical Model

The process of setting up mathematical models is called “mathematising”, and it is 
often a challenging task (cf. the examples in Niss 2010). In statics, the important 
modelling quantities like force and torque and the main principles for setting up 
relations (like equilibrium) are already treated and exemplified in the textbook. So, 
the remaining task consists of using the quantities and applying the principles cor-
rectly and effectively. This mainly includes:

• Setting up equations (scalar/vectorial ones), as in the Framed Drum Task above. 
In vectorial models, unit vectors are set up in assumed directions of forces or 
torques.

• Setting up functions in order to determine internal forces and moments as in the 
Beam Task above where one sets up a complete line load function first.

• Setting up inequalities in static friction models.
• Setting up formulae or functions for virtual work or potential energy.
• In infinitely small FBDs, determine the property of interest and build the 

integral.
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16.4.5  Solving the Mathematical Problem

Many mathematical problems turned out to be predominantly of a geometric nature 
where students have to recall and use the whole “repertoire” of geometric proper-
ties, theorems and operations (sine rule, cosine rule, Pythagoras, scalar and cross 
product, etc.), and choose among a huge set of possible equations to find a subset 
which enables them to compute unknown geometric quantities from known ones. 
Further mathematical problem solving procedures recognised in the analysis are:

• Computing definite integrals in models with infinitely small objects,
• Performing integration to get from line load to shear force and bending moment.
• Using “classical calculus” to compute minima of energy functions,
• Decomposing bodies into components (centre of area, volume, mass),
• Solving sometimes larger systems of equations by smartly going through them.

In the German “tradition”, the assignments rather use symbols than concrete 
values, whereas in the US “tradition”, the provision of values seems to be usual. If 
symbols are used, then a proficiency with symbolic manipulations is required.

16.4.6  Interpreting the Results in the Real Model

There were only two types of assignments in both books where students were 
explicitly asked for interpretation as part of a “standard routine”: In truss analysis it 
was required to state whether a member is under tension or pressure; in equilibrium 
analysis using potential energy functions, students had to distinguish between stable 
and unstable equilibrium. In both cases the sign of numerical results had to be inter-
preted properly. The Framed Drum Task was the only example for a required inter-
pretation which was not part of a “standard routine”. The result has a symbolic 
representation, and it is of interest when this can become negative because then the 
frame would tip over. Both students who worked through a selection of the tasks felt 
only obliged to interpret the results if this was called for.

In the sample solutions of the authors, several additional interpretations can be 
found which are not required explicitly in the tasks. The signs of numerical values 
can be interpreted in order to check whether the configuration is really static. 
Sometimes it is interesting whether a quantity does or does not occur in a solution 
in order to check for independence. This kind of interpretation is easier when work-
ing symbolically since otherwise one has to go through the whole computation. If in 
a symbolical solution functions with restricted domains of definition occur, the 
meaning needs to be interpreted. If a mathematical procedure provides several solu-
tions, these also have to be interpreted. An interpretation of the assumed behavior is 
often required in assignments dealing with friction where several objects are 
involved. There, it has to be determined which parts will slide or roll under which 
conditions. A special requirement for interpretation can be found in design tasks 
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like the Bridge Task. After having produced and investigated an initial design, the 
results have to be interpreted in order to make adequate changes for improving the 
design.

16.4.7  Validating the Results in the Situation Model

Since in the assignments the real model is already given, there is no reason to ques-
tion potential assumptions and simplifications. Therefore, validation is mainly 
restricted to investigating whether the results make sense in the real model. By 
investigating the sign of a symbolic expression as in the Framed Drum Task, one can 
check whether the static model is valid after all. If a symbolic result is available, one 
can also investigate extreme situations, e.g. in the Framed Drum Task: What hap-
pens if the weight M of the frame is more and more increased? Then, at some stage 
the contact force should become positive. Sometimes the sign of a result can be used 
for validation purposes if it is obvious from the mechanical configuration whether a 
member is under pressure or tension. Moreover, in tasks involving static friction, 
one can check whether the inequality between normal force and adhesive force is 
fulfilled such that no movement occurs. Otherwise, “validation” consists of compar-
ing one’s own final solution with the one provided.

16.4.8  Exposing the Results

Since the real model is already given in the tasks under investigation, students do 
not have to reason about and justify any assumptions or simplifications in their 
exposition. It is essentially expected from the authors that the well-known proce-
dures are performed and documented, and corresponding drawings of geometric 
relationships and free-body diagrams are provided. At the end a short interpretation 
should be given if applicable. The two students who worked on a selection of tasks 
met these expectations.

16.5  Discussion and Conclusions

The investigation has shown that only a subset of the competencies required in the 
modelling cycle are addressed in the statics assignments in both analysed textbooks 
which are quite different in style otherwise. Particularly with regard to the earlier 
phases where the situation and the problem have to be clarified and assumptions and 
simplifications are made, there are no learning opportunities since the real model is 
already given. Even the attempt to include an element of simplification by using 
code words like “smooth” does not fulfil this purpose since students ignore them 
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because they are accustomed to being provided with all relevant information. 
Regarding the later phases of the modelling cycle, these are also only scarcely 
addressed. I found two types of tasks with sign interpretation which was part of 
“routine procedures”, but otherwise only one task required a non-routine interpreta-
tion. Even the well-performing students working on sample tasks did not feel 
obliged to interpret results without being asked. Moreover, there is hardly any rea-
son for questioning and validating the real model if this is already provided in the 
task.

One of the most important competencies needed for successful work on the stat-
ics assignments was the ability to set up free-body diagrams by decomposing the 
configuration and translating the graphical language of mechanics into forces and 
torques to be included in the FBD. When deciding on which part of a configuration 
to “cut-free”, students already have to anticipate later mathematical work such that 
there is no strict separation between the “rest of the world” and “mathematics”. 
Biehler et al. (2015) found a similar situation for tasks in the foundations of electri-
cal engineering where application subject and mathematics were rather intertwined. 
This does not seem to be restricted to engineering education since Niss (2010) illus-
trated with several examples that an anticipation of usable mathematical concepts is 
important for successful modelling work: “implemented anticipation of relevant 
future steps, projected ‘back’ onto the current actions” (p. 55).

The mathematical models that have to be constructed use the quantities and prin-
ciples that are developed in the textbooks and are illustrated there with several 
examples. This could be called “modelling with well-known quantities according to 
well-known principles”. Regarding the mathematical work in the models, the role of 
geometric argumentations was significant. At this stage the mathematical work is 
disconnected from the application and happens purely in the domain of mathemat-
ics. The essential role of geometry distinguishes the use of mathematics in engineer-
ing statics tasks from that in the foundation of electrical engineering as described in 
Biehler et al. (2015).

Otherwise, the results are consistent with the findings by Biehler et al. (2015) 
with respect to the foundations of electrical engineering. They also confirm the 
results of the study by Gainsburg (2013) who investigated when (during university 
studies and professional work) students/engineers acquire modelling competencies. 
She found that neither the students nor the novices or veterans had an explicit under-
standing of the modelling process and that the instructors assumed that modelling is 
rather learned in practice “as a byproduct of extended participation in engineering 
work rather than from direct, explicit instruction for novices” (p.  272). 
Correspondingly, she found aspects of modelling competencies which were dealt 
with in isolation and not addressed as part of the cycle.

The investigation shows that one cannot rely on modelling competencies being 
acquired in statics. Further research is necessary in order to investigate other sub-
jects of the engineering curriculum like design in order to find out about learning 
opportunities for acquiring modelling competencies. Based on the current insights, 
it seems still necessary to address modelling in mathematics, possibly by turning 
statics tasks into rich modelling tasks (cf. Alpers 2016 for an example).
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Chapter 17
Pre-service Teachers’ Levels of Reflectivity 
After Mathematical Modelling Activities 
with High School Students

Rita Borromeo Ferri

Abstract Recently there has been a push to train teachers in how to enhance their 
professional reflection to increase competency, because they do not tend to receive 
feedback on their teaching from colleagues or students following their teaching 
practice. Within the seminar, “Modelling Days,” at Kassel University, the focus on 
reflection was promoted explicitly. The explorative study presented in this chapter 
had the goal to investigate pre-service teachers’ levels of reflectivity after modelling 
activities with high school students. The analysis of 12 written reflections showed 
different levels of reflectivity, with high levels rarely being reached. The develop-
ment of a new model on levels of reflectivity, which originated from Hatton and 
Smith’s model, is a further result of the empirical study.

Keywords Mathematical modelling activities • Theory • Reflectivity competency • 
Teacher education

17.1  Introduction and Background of the Study

Mathematical modelling has become a compulsory part of curricula in several coun-
tries in the past 20 years. The necessity to develop programmes for pre- and in- 
service teacher education for the learning and teaching of mathematical modelling 
is strongly recommended and still required (Cai et al. 2014). Best practice examples 
of modelling courses, however, have different foci (for an overview, see Cai et al. 
2014) and always show that teachers need time to understand the complexity of 
mathematical modelling for themselves. The concept of a modelling course which 
offers a balance between theory and practice can be very successful with regard to 
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accessing knowledge needed for teaching modelling (Borromeo Ferri and Blum 
2009). There are no well-defined competency criteria which teachers should have to 
teach modelling in school and to fill the gap Borromeo Ferri and Blum (2009) have 
created a model of required teacher competencies. The model consists of four 
dimensions which can also be used for planning modelling courses for pre- and in- 
service teacher education. These dimensions are (1) theoretical, (2) task, (3) instruc-
tional and (4) diagnostic.

The dimensions will not be described here in detail (for that, see Borromeo Ferri 
2014). A central goal in the modelling course is to support the pre-service teachers 
in the development of their reflective competency. This means that teachers should 
be able to reflect on their teaching (Part II of the course) with regard to using the 
knowledge learned within the theoretical Part I of the modelling course (e.g. differ-
ent phases of the modelling process or diagnosis and intervention in critical situa-
tions). So Part I and Part II constitute the “Modelling Days” at Kassel University 
mentioned above by providing a theory-practice balance in the course. Evaluations 
of this course in the last few years have shown that the opportunities to work practi-
cally in Part II was regarded as very helpful for the students’ future work at school 
and particularly for teaching modelling. So in Part II, pre-service teachers worked 
as a team of two for three full days together with a group of five high school stu-
dents. At the beginning of the Modelling Days, groups of learners could choose 
between one and three complex modelling problems (e.g. traffic lights versus round-
abouts  – what is the best/optimal arrangement for the traffic?). The pre-service 
teachers chose a group of learners, and then they commenced their investigation of 
the modelling problem. At the end of the Modelling Days, the learners presented 
their results.

After Part II, the pre-service teachers had to submit a written reflection (15–20 
pages) based on criteria determined by the lecturer. Some criteria refer to aspects 
which have to be included at the beginning of the reflection such as theoretical back-
ground on modelling, modelling cycle(s), background of teacher interventions (see 
Leiß 2007; Zech 1998) and descriptions of the student group as they worked with 
the subject matter analysis of the complex modelling problem they had chosen. As 
teacher intervention while modelling was the focus, the pre-service teachers learnt 
about different types of interventions: (1) motivational intervention, (2) feedback 
intervention, (3) strategic intervention, (4) content-strategic intervention and (5) 
content-related intervention (Zech 1998). During the 3  days working with high 
school students, the pre-service teachers had to observe the learners as well as them-
selves with the focus on student progress and problems encountered by the high 
school students while modelling. In connection with this, the pre-service teachers 
were expected to reflect on which kind of intervention they gave and especially 
what effect their intervention caused on the modelling process of the students.

The goal of this explorative qualitative study was to analyse pre-service teachers’ 
levels of reflectivity and their reflectivity competency by especially focusing on 
both the theoretical and practical aspects of modelling. Learning how to reflect on 
one’s own teaching is a central part of teacher professional development, so the goal 
was to gain more insight into teachers’ competency on the one hand and to  formulate 

R. Borromeo Ferri



203

implications for teacher education on mathematical modelling on the other hand. In 
the following section, a theoretical background of reflectivity competency within 
pre-service teacher education will be discussed, then the design and results of the 
study are described, and finally a short discussion closes this chapter.

17.2  Theoretical Background: The Role of Reflections 
in Teacher Education

Reflections are used in schools and in universities as a documentation tool for criti-
cal argumentations mostly with practical experiences. The role of fostering reflectiv-
ity competency in teacher education is mentioned, although there is still little 
empirical research in this area (Abels 2010). Abels emphasized the needs for more 
research concerning the following three aspects: (1) definition of reflectivity compe-
tency, (2) practical implementation in teacher education and (3) research methods 
for investigating the effectiveness of the concepts. In 1995, Hatton and Smith’s 
research attempted to gain more insight into reflectivity competency of pre-service 
teachers. Their study was embedded in teacher education with a focus on pre- service 
teachers undertaking their 4-year Bachelor of Education degree at the Faculties of 
Arts, Science, Economics and Education. The written reflections of 34 pre-service 
teachers were analysed concerning the central goal of investigating the nature of 
reflection in teaching and to define specific forms of reflection. The result of this 
analysis was the identification of four types of writing, three of which were different 
kinds of reflection: (1) descriptive writing, (2) descriptive reflection, (3) dialogic 
reflection and (4) critical reflection. Type 1 is not reflective at all, but type 2 does 
attempt to provide reasons based often on personal judgement or on pre-service 
teachers’ reading of literature. Type 3 is a form of discourse with oneself, an explora-
tion of possible reasons. Type 4 is defined as involving giving reasons for decisions 
and events, taking account of broader contexts (Hatton and Smith 1995, pp. 40–45).

Hatton and Smith (1995), in their own work, were able to reconstruct that most 
of the pre-service teachers wrote descriptive reflections at the beginning of their 
composition, but then in their writing process changed more to dialogic reflections. 
Critical reflections were reached very seldom. In this context, Hatton and Smith 
(1995) tried to investigate the difference between reflection in action and reflection 
on action. Reflection in action means the immediate analysis of one’s behaviour in 
the relevant situation and reflection on action happens retrospectively after the 
action and is aimed at thinking about doing changes in the behaviour in the near 
future. For Hatton and Smith, reflection in action is the most demanding level of 
reflection, but on the basis of their data, they could not reconstruct which type of 
reflection was being used by the pre-service teachers. Hatton and Smith’s model 
formed the basis for analysis in several other studies (e.g. Abels 2010), but there are 
also similar models developed for investigating levels of reflectivity (see van Manen 
1977; Zeichner and Liston 1985) of pre-service and in-service teachers.
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For the study presented in this chapter, the model of Hatton and Smith (1995) 
provided the basis for developing a new model of reflectivity for data within the 
mathematical modelling context. To meet the needs of this context, the new model 
should facilitate the analysis of the theory-practice balance of the modelling course 
to obtain more knowledge about pre-service teachers’ reflectivity competency. On 
the basis of the theoretical background of reflectivity competency within teacher 
education, the central research questions for the current study were:

• How can levels of reflectivity be described and conceptualized for developing a 
new model of reflectivity for pre-service and in-service teacher education in 
mathematical modelling?

• Which levels of reflectivity do pre-service teachers’ show within their written 
reflections when connecting their theoretical knowledge on mathematical model-
ling with practical experiences of teaching and coaching high school students 
during modelling activities?

17.3  Design and Methodology of the Study

The course, “Modelling Days,” is a well-evaluated modelling course for pre-service 
teachers in their final semester at the University of Kassel and was developed in its 
structure, content, methods and assessment by the author of this paper and was 
based on former experiences at the University of Hamburg (Kaiser and Schwarz 
2010). As described in the introduction, the course is divided into two parts in order 
to enable an appropriate theory-practice balance. In detail, Part I consists of 12 ses-
sions of 90 min and Part II of three full school days (8 a.m.–1 p.m.) working with 
high school students (aged 16–17 years). After each day, the lecturer and the pre- 
service teachers had a collective reflection about the modelling activities of the 
learners and about the interventions they had given. Two months after the course, 
the pre-service teachers had to submit their written reflections (15–20 pages), which 
are also the basis for the grading of the course.

All participants agreed that their reflections could be used for this explorative 
study. The data were collected in the course in 2012 from 34 participants, who chose 
this course in their final semester of university (fourth year). For the data analysis 
and model development, an initial sample of 12 written reflections from pre-service 
teachers who taught the same modelling problem in Part II (see introduction) was 
used in order to compare them by the task used. As an appropriate method within 
the field of qualitative research, grounded theory was used (Strauss and Corbin 
1990) because it offers good possibilities for exploring new phenomena and allows 
for generating new pieces of a theory. Data are analysed using a coding procedure 
(see Table 17.1) and afterwards conceptualized and composed in a new way. The 
construction of the coding schema depends on the theoretical sensitivity a researcher 
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has. This means that previous knowledge, including knowledge about the literature 
in this field, has a substantial influence on building codes. Also in the present study, 
theoretical approaches have been analysed beforehand, in particular concerning 
existing models of reflectivity or types of writing. However, in combination with the 
required aspects, the lecturer gave to the pre-service teachers’ instructions for writ-
ing their reflection (see introduction), including the depth and the level of reflectiv-
ity to be reconstructed.

17.4  Results of the Study

17.4.1  Characterizations of Reflection, Level of Reflectivity 
and Reflectivity Competency

The following three aspects are presented on the basis of the theoretical background, 
which gave orientation for the model development:

Reflection: Critical conflict with own behaviour/action in self-experienced peda-
gogical situations with the goal to learn from these situations and to develop 
alternatives.

Levels of reflection: These describe the depth of consciousness of critical conflict 
of own behaviour/actions according to different stages of reflection.

Reflectivity competency: The ability of a (pre-service) teacher to think about and 
to critically analyse his/her own behaviour/actions in self-experienced pedagogical 
situations and to learn from these situations consciously.

Table 17.1 Categories for classifying in the model of reflectivity

Category Topic

1 Modelling (theoretical and practical references to mathematical modelling)
2 Teacher interventions (teacher’s behaviour during modelling activities of learners)
3 Teamwork (illustrations about teacher’s work with the other team partner)
4 External circumstances (all information about organizational matters in classroom 

or school)
5 Goals and motivation (illustration about teacher’s own motivation and about 

learners’ motivation while modelling)
6 Own development and perception (all illustrations about learners’ and teacher’s own 

perceptions)
7 Appraisal and final results of learners’ work (all illustrations about the final result of 

the modelling problem)
8 Whole working process (all illustrations about teacher’s own working process 

concerning the modelling problem in Part I and of the learners’ working process)
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17.4.1.1  Model of Reflectivity for Teacher Education and Training 
in Mathematical Modelling

On the basis of the coding procedure, it became evident that categories 1, 2 and 8 
(see Table 17.1) were mentioned most within the reflections. Because of the devia-
tion of the present data of this study in contrast to the goals and procedures which 
were used for developing models of reflectivity in other studies (e.g. Abels 2010; 
Hatton and Smith 1995), a modified model was developed for the final data analysis 
and for operationalization, which is also a result of the empirical study (see 
Table 17.2).

The teachers’ reflections were analysed on the basis of the categories (Table 17.1) 
and classified according to the levels of reflections (Table 17.2). Every single pas-
sage was analysed for the different levels by two coders. The Cohen’s kappa was 
0.73, which is satisfactory. Level 0 was given if a category was only descriptive or 
if a category was not mentioned within the reflection. Also, if there were only refer-
ences to theory without connections to their own practical experiences during the 
Modelling Days, the passage was classified with level 0 and not with level 3. 
Similarly, to the model of Hatton and Smith (1995), the developed model is hierar-
chical. If a person wrote reflections on a high level, descriptive passages also became 
apparent, which were dependent on the context, but overall the amount of the 
remaining passages was high. To make the levels more concrete, prototype exam-
ples are given for all levels in Table 17.3.

17.4.2  High-Level, Middle-Level and Low-Level Reflections 
on Mathematical Modelling

All written reports demonstrated clear evidence of reflections by the pre-service 
teachers in their final year. The proportions of coded units in total of all reflections 
had a strong tendency to level 0 and level 1, with 33.6% coded as descriptive writing 
and 39.5% coded as justified reflection. Of the coded units, 15% were deliberative 
reflections, 6.2% were theory-based reflections, and only 5.4% were perspective 

Table 17.2 Model of reflectivity for teacher education and teacher training in mathematical 
modelling

Level Name Description

0 Descriptive writing Description of the situation without justification
1 Justified reflection Justification of own actions
2 Deliberative 

reflection
Legitimation of own behaviour, description of alternatives of 
own behaviour and self-criticism

3 Theory-based 
reflection

Inclusion of theoretical concepts and special literature

4 Perspective reflection Taking different positions, consideration of a wider context

R. Borromeo Ferri



207

reflections. On the basis of the analysed data, it became clear that there were high- 
level, middle-level and low-level reflections on teaching and learning of mathemati-
cal modelling, with the majority of reflections being low-level reflections. Low-level 
reflections are those which were classified overall as level 0 or 1. These reflections 
are mostly descriptions of several situations. For the most part, these pre-service 
teachers did not give reasons why certain situations arise and are not able to express 
alternative actions or to include theoretical aspects. A high-level reflection includes 
all the points which are missing in the low-level reflections, and in addition it con-
siders different perspectives in a wider context. The overall level of a reflection 
refers to the frequency of passages belonging to specific levels. For a high-level 
reflection, the majority of passages would belong to levels 3 and 4, independent of 
the length of the written work of the pre-service teachers, which ranged between 15 
and 37 pages.

Pre-service teachers’ reflections which demonstrated a capacity to recognize 
their own behaviour and actions while teaching modelling but failed to continuously 
link theory with practice were classified as middle-level reflections (level 2). The 
levels of reflection concerning the categories (Table 17.1) show how teachers are 
able to connect theory on mathematical modelling with practical experiences in 
their reports. In particular, within high-level reflections, this connection is illus-
trated very well. Still one central question arises: How exactly does the transfer of 
theoretical aspects on mathematical modelling into practice happen? A follow-on 
question to this is, of course, how sustainable is it. The latter cannot be answered 
here, but the written reflections make clear that this transfer is a challenge for pre- 
service teachers on the one hand, but shows their needs and their success when 
teaching mathematical modelling on the other hand.

Table 17.3 Prototype examples of reflectivity levels

Level Name Prototype examples of the teacher’s work

0 Descriptive 
writing

“After I had a discussion with the learners, they worked further on 
the problem”

1 Justified 
reflection

“The learners were again confused with all the numbers and 
assumptions, so I decided to make them reflect upon their previous 
approach”

2 Deliberative 
reflection

“I recognized that my interventions were short over the 3 days. 
Mostly my interventions consisted of one sentence, an exception or 
a question”

3 Theory-based 
reflection

“I told my group that another group got results between 9000 and 
25000, whereby this was clearly a content-related intervention (see 
Zech 1998) because I gave the learners concrete ideas for the 
solution”

4 Perspective 
reflection

“I had the feeling that Laura and Jenny stagnated in their modelling 
process. So I conducted a content-strategic intervention, which was 
appropriate in my opinion. I learned so much about me and my 
reactions and their effects on learners’ modelling process. The 
possibility to reflect myself and to write it down was not easy, but 
helped me for my future work”
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In Table 17.4, examples are presented of a low-level and a high-level reflection 
concerning category 2 (teacher intervention) and the theory-practice balance. The 
first example of the low-level reflection (level 0) shows the way this teacher reflected 
throughout his written work. Although the connection to theory on teacher interven-
tions was mentioned in his text, there was no transfer to his own teaching of model-
ling. The second example of the low-level reflection (level 1) shows that the teacher 
was indeed able to classify his interventions sometimes, but formulating concrete 
alternatives to his own behaviour or ideas for changing actions in the future was not 
found in his reflections. Both examples of high-level reflections illustrate the link 
from practice to theory and clearly show reflection in action (“I conducted an inter-
nal analysis”). Authors of high-level reflections independently described their pro-
cedure during the 3 days: They made protocols immediately after their interventions 
to analyse the effect of their interventions for those learners’ modelling process. 
This is a clear sign of reflection in action, which they used directly for thinking 
about their actions. In combination with elaborate reflection on action, they often 
reached levels 3 and 4.

17.5  Discussion and Conclusion

The goal of this exploratory study was to analyse pre-service teachers’ levels of 
reflectivity after modelling activities with learners in the context of the course, 
Modelling Days, at Kassel University. In particular, the Hatton and Smith (1995) 
model gave orientation for developing a new model of reflectivity with a focus on 
mathematical modelling, which was used for analysing the data of 12 written reflec-
tions. The results show, on average, that the reflectivity competency of pre-service 
teachers was not high and that increasing their competency should be fostered and 
integrated as a part of courses on teaching and learning of mathematical 
modelling.

Table 17.4 High-level and low-level reflections

High-level reflection Low-level reflection

Level 3 Level 0
“The learners talked about their next steps and 
sometimes needed technical help. So they demanded 
reactions from me which is called a responsive 
intervention (see Dann et al. 1999 p. 122)”.

“In Part I of the course, we learned 
about the theory of teacher intervention 
while modelling. My group worked 
hard, so I did not help them very 
much”.

Level 4 Level 1
“The learners agreed that their four possible results 
were not satisfying, although we only had less time 
on this day. So, I conducted an internal analysis of the 
situation which pushed me to a content intervention 
(Leiß 2007). I offered the learners to think about 
mixing the results they got so far”.

“I gave organizational interventions to 
inform the learners in which working 
phase they are…Content interventions 
were rare, because the group was very 
good”.
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In order to promote the pre-service teachers’ professional development in gen-
eral, but in particular on mathematical modelling, the opportunity to let them write 
these reflections seems to be productive. To critically reflect on one’s own behaviour 
or to make a transfer and a connection between the theory and practice of mathe-
matical modelling, and vice versa, was a challenge as well as a learning process for 
the pre-service teachers. Most of the pre-service teachers in the study were writing 
reflections of this nature for the first time, because they had not learnt it in their 
general education courses. So, the teachers engaged in a learning experience on 
several levels. It would be interesting to observe whether these reflectivity levels 
would increase within a second reflection.

For implementation of mathematical modelling in everyday teaching, we need 
teachers who have acquired theoretical knowledge and practical experiences and 
have reflected themselves already at university. So, a further research question could 
be: Are teachers, who participated in the course, Modelling Days, and were pro-
moted to reflect, more able to successfully implement modelling in their teaching 
than teachers who did not get this experience? There are a lot of factors which influ-
ence the inclusion or exclusion of mathematical modelling by teachers in their daily 
work all over the world, but we as researchers and teacher educators in this field 
should provide teachers with the knowledge, motivation and opportunities for deep 
thinking about this topic and with themselves – reflection is one possible way.

Theoretical concepts about teaching and learning of mathematical modelling became so 
clear during my work with the learners and with my reflections. Concerning modelling, I 
was very doubtful before, but you have to make the experience – theoretically and practi-
cally, this is the key point. (Olga, 7th semester, pre-service teacher for mathematics and 
sports for secondary school)
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Chapter 18
Context and Understanding: The Case 
of Linear Models

Jill P. Brown

Abstract The benefits of student engagement with real-world contexts seem to be 
well accepted by the mathematical modelling and application ‘community’. Yet 
concerns related to difficulties necessarily arising through engagement with the 
messy real world continue to be raised. This chapter presents a qualitative analysis 
from a study of Year 9 students and illustrates how engagement with context offers 
opportunities to demonstrate and deepen genuine mathematical understanding of 
rate of change. Genuine collaboration and interthinking were found to facilitate the 
development of mathematical understanding clearly enabled by the real-world 
context.

Keywords Context • Interthinking • Mathematical understanding • Metacognitive 
activity • Rate of change • Real world

18.1  Introduction

Perceptions of the relationship between real-world contexts and teaching and learn-
ing of mathematics are varied and often contradictory. Within the mathematical 
modelling and application ‘community’, dealing with context is seen as an essential 
element of being able to do mathematics (e.g. Stillman 2002; Villa-Ochoa and 
Berrio 2015). At times, context is portrayed as a hindrance to learning (Pfannkuch 
2011) or framed as a problematic recontextualisation (Jablonka 2007). Within the 
community, it is well understood that there are differing definitions of modelling 
and certainly differing emphases in our research which is generally seen as produc-
tive (Blum et al. 2007); however, such diversity is at times presented as problematic 
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(e.g. Williams and Goos 2013). Others are yet to be convinced of the value of stu-
dent engagement with real-world contexts in mathematics.

This chapter focuses on illustration and development of understanding related to 
linear functions used in modelling real situations as it addresses this dilemma. The 
research question addressed is: How does context feature as an enabler and dis-
player of mathematical understanding? More specifically, how does student engage-
ment with context, in conjunction with student noticing of mathematical knowledge 
that is unknown, fragile or partially formed, allow the ‘development’ of this math-
ematical knowledge through engagement with the task context? Metacognitive 
activity and Mercer’s (2000) interthinking proved to be useful tools in analysing 
students’ collaborative activity.

18.2  Context

Real-world problems are by their very nature interesting. Two Colombian studies 
illustrate the situation where a very familiar context was of interest to students. 
Quiroz et al. (2015) used school flooding due to the overflowing of a nearby river, 
whereas Villa-Ochoa and Berrio (2015) used local coffee farming. Engagement of 
Year 10 students with a flooding context allowed “students to see themselves as citi-
zens that can read, think, reflect and propose solutions in their own context” (Quiroz 
et al. p. 239). Similarly, the context of coffee farming highlighted that not only do 
applications and modelling allow students to recognise uses of mathematics but also 
to appreciate the importance of non-mathematical knowledge in solving real-world 
tasks.

In other cases, the interest in the context comes from the task setter and may or 
may not evolve into student interest. For example, Brown (2013a) implemented The 
Letters Task in two Grade 6 classrooms, intending the context would be real and of 
interest to these students. However, when implemented the context was perceived as 
a wrapper for the mathematics (Stillman 2002) and subsequently was thrown away 
by the student cohort with the intended real-world task degenerating into solving a 
difficult division problem in the eyes of the students. In a revised task, context could 
no longer be ignored, and students proceeded to engage with a much more interest-
ing problem, albeit still having difficulties.

Stillman’s analysis (2002) of senior secondary students’ responses to application 
tasks included consideration of how contextual demand of tasks impacted on the 
mathematical demands of the tasks and how this facilitated or impeded student 
progress on such tasks. She found contextual demand was a gatekeeper to the math-
ematics of the task or overwhelmed mathematical demand; cognitive demand was 
sometimes mediated by mathematical expediency and also adapting of familiar 
methods to meet the mathematical demand of the task. The Year 11 students in 
Stillman’s study worked independently in a clinical setting. As the students in the 
study reported here worked collaboratively in a classroom setting, it will be interest-
ing to confirm if similar findings are evident.
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18.3  Methods

An extended task involving linear models was undertaken by a class of 24 Year 9 
students. The students (approx. 14 years old) had access to TI-graphing calculators 
and laptop computers during task implementations. The study reported here is part 
of a larger study (Brown 2013b) where student data were collected from this class 
during four extended tasks and a lesson sequence on linear functions during one 
school year. Analysis presented here relates to data from the third task. This task 
was implemented to conclude the lesson sequence on linear functions. A mainly 
qualitative approach was used in the study in order to best provide a comprehensive 
picture of what was occurring in the classroom. Following Stake (1995), a case 
study using an instrumental approach was undertaken. Data sources included audio- 
and video-recordings, student scripts and observational notes.

Students worked on the task in pairs for two consecutive lessons on day 1 and, in 
a third lesson, 2 days later (150 min total), when pairs collaborated as groups of 
four. There were five different parallel versions of the task, involving either the cost 
of running small village health clinics or the cost of installing safe drinking water 
wells. The tasks were designed by the classroom teacher, Peter, with the intention 
that the task context was important and of interest. The different versions were to 
allow student pairs who worked in relative isolation from others with the same ver-
sion of the task for the first two lessons to collaborate with those who worked on the 
same version (e.g. Health Clinic in Mali). Task implementation occurred when the 
school had a week focused on ‘classroom outreach’, as part of which the school 
donated money to clinics overseas. In addition, the context was personal for Peter, 
as he had previously worked in Africa as a geologist prior to his teaching career. 
One student pair, Kit and Rani, was video- and audio-recorded over the three 
 lessons. Ben and Ken were audio-recorded on day 1. On day 2, Ken was absent, and 
Ben was audio-recorded in his new group with Amy and Anna. A third pair, Kate 
and Meg, was also audio-recorded over the three lessons. All recordings captured 
contributions of other students as the class worked though the task. Student scripts 
were collected.

18.4  Analysis Framework

These data have previously been analysed using a framework of affordances with a 
focus on understanding (linear) functions in a technology-rich teaching and learning 
environment (Brown 2013b). Now these are reconsidered with a focus on identify-
ing the impact of context on understanding. The intention is that in crossing bound-
aries (Garraway 2010) and revisiting the data from a different perspective, more can 
be learned. The aim of data analysis is to determine if the use of context allows one 
to more clearly ascertain the level or depth of student’s mathematical understand-
ing. The collaborative nature of task solving as an enabler of deepening current 
understanding during task solution is also investigated.
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In the middle section of the task, students were provided with linear models for 
costs at two different health clinics (or water wells). They then generated a table of 
costs for each, examined the table to determine where costs were approximately the 
same and generated an additional table ‘zooming in’ with their calculators to deter-
mine more accurately where costs were equivalent. Next came the question of most 
interest here. Students were asked for each health clinic: What is the cost for treat-
ing each patient? In the Water Well Task, the parallel question was: What is the cost 
for each metre of well depth?

In responding to these two questions, students have to mathematise the context. 
It is not possible to understand what the question is asking without doing so. If the 
students had been asked ‘what is the gradient’ or ‘what is the rate of change’ for a 
particular linear model, it is probable (as evidenced by lesson sequence data prior to 
this task) they could do so. However, the question posed by the task required stu-
dents to firstly recognise that the cost per additional patient is the rate of change of 
the linear cost model. In situations such as this where students engage with context, 
their mathematical understanding becomes apparent (to themselves or to a teacher 
or researcher). The mathematical understanding evident through interaction with 
the context falls into three broad categories. These are (i) lacking, (ii) apparent fra-
gility and (iii) apparent sound understanding. In situations where understanding is 
either lacking or fragile, the question arises: When does student interaction with the 
context allow students to progress in their mathematical understanding?

In analysing student scripts, it became clear that correct written responses often 
showed no evidence of actual mathematical understanding. Given the collaborative 
environment, a student recording a correct response may or may not have a sound 
understanding of the relevant mathematics – rate of change of a linear model. In 
contrast, an incorrect response, even where no details were shown, could be used to 
determine what understanding students had in the moment. The video- and audio- 
recordings proved invaluable in ascertaining how students interacted with the con-
text to determine their written response.

Interthinking has been used by Stillman et al. (2015) in analysing mathematical 
modelling by senior secondary students. Interthinking is described by Hunter as 
“pulling students into a shared communicative space” (2012, p. 3), whereby they 
articulate their thinking, reasoning and beliefs about mathematics and the task con-
text and use their own articulation as well as that of others within their groups in 
task solving. Group contributions including “erroneous thinking, doubt, confusion 
and uncertainty” (p.  3) have potential to contribute to collective understanding. 
Mercer (2000) notes that both dissension and consensus can be a catalyst for prog-
ress, as negotiation leads to articulation of thinking and reasoning.

In focussing on collaborative metacognitive activity during problem-solving, 
Goos et al. (2002) searched for patterns of social interaction that led to metacogni-
tive activity. The relevant metacognitive acts addressing particular aspects of the 
solution coded in the transcripts included assessment of execution or appropriate-
ness of a strategy, a result, knowledge or understanding. Subsequently, Galbraith 
(2013) categorised as metacognitive impasse incidents when no amount of reflective 
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thinking or strategic effort was successful in releasing a blockage in the solution 
process. These italicised categories will be used to examine collaborative activity 
during interthinking from the video- and audio-transcripts.

18.5  Analysis of Data

Fifteen students successfully recorded a correct response; however, from their 
scripts, it was not clear in most cases how the solution was determined. As noted, 
the written scripts provided little explanation of student thinking. The exceptions 
were Kate and Meg. Meg wrote, “for each additional patient it costs $19.75, because 
it’s the gradient and that means it’s the rate it goes up by”. Kate also made her 
method clear – she calculated y(2) – y(1) and wrote “each additional patient cost 
$17.50”. Thirteen students simply recorded a correct numerical response. In some 
cases the audio record confirmed this was an indication that the mathematisation of 
the task context was fully understood. At least five students calculated C(1) (i.e. cost 
for one patient or metre of well); however for one (Kit) this value was not recorded 
as her (final) solution. Video evidence confirmed that this was an initial interpreta-
tion by some students, but engagement in group interthinking as they tried to make 
sense of the particular contextual interpretation this involved led to revisions of their 
thinking until they came to a meaningful contextual understanding that they were 
able to connect to a full mathematical understanding. Another incorrect approach 
taken was to find C(10) ÷ 10 as shown by Kit and Rani.

18.5.1  Contextual Demand as Gatekeeper on Mathematisation

When Kit and Rani reached question 7a (What is the cost for each metre of well 
depth in Gondar?), both read the question, Kit then looked at the model they were 
given for well costs in Gondar: COST = 250 + 17.50*metres drilled. Using her cal-
culator she found 250 + 17.5 × 1 = 267.50. Kit’s initial interpretation was to find the 
cost of drilling 1  m. She recorded $267.50 and then noticed Rani had recorded 
$42.50 [i.e. C(10)÷10]. In the ensuing discussion, it is clear neither student under-
stood the connection between the context and the mathematical model or what 
mathematical concepts such as gradient represented.

Kit:  How do you know that?
Rani:  It is the same thing as that one but plus 1 not plus 10 … [points to her table 

showing C(10) = 425.] Plus 1, instead of 10. Isn’t it just for 1 metre? … 
What did you get?

Kit:  But I got $267.50 which seems a bit sort of wrong. [Assessment of interim 
result]

Rani:  That seems a bit big doesn’t it? [for] only 1m? [Assessment of interim 
result Rani]
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Kit:  It would be less that that. [Assessment of interim result Kit]
Rani:  Because half would have been less than that and that would be 5 [Meaning 

C(10) ÷ 2 = C(5)]. Can’t you just divide that by ten? [meaning C(10) ÷10] 
… Can’t you just divide that by ten? To get one? [Assessment of appropri-
ateness of strategy, Treating cost function as C(n)  =  Mn assuming a 
 proportional model]

Kit:  I don’t think it is actually all even. [Assessment of appropriateness of strat-
egy. She doesn’t think it is a proportional model showing mathematical 
understanding.]

Rani:  What do you mean?
Kit:  Well see it goes $42 and 50 cents. … It is low. Oh, okay. [She crosses out 

$267.50 and replaces it with $42.50.] It is low.
Rani:  We can check with the other guys later. We just got to finish first.
Kit:  Right. [pause] I think it is sort of wrong. [Assessment of interim result/ 

Appropriateness of strategy] [Reads related question for the second water 
well] …

Rani:  I don’t think we are going to get it out. [Assessment of chances of success] 
Do you know what you are doing?…Do you know what you are doing?… 
Did you skip (b)?

Kit:  Yes. [Nothing is recorded for b.] [Metacognitive impasse]

In assessing their understanding and strategic resources to progress, it becomes 
obvious to them that they have met a metacognitive impasse. Although they indicate 
they will consult the boys, the boys are uncooperative and remain at the front of the 
room whereas they are sitting at the back. They eventually decide to stop working 
and not consult the other group as their previous overtures to do so were rebuffed.

18.5.2  Collaborative Engagement with Context: Development 
of Understanding

When undertaking genuine collaborative work on the task and engaging with the 
context, Kate and Meg were able to show progression in their mathematical under-
standing of the model, even though their initial encounter with the question What is 
the cost for each additional patient? may have resulted in a blockage.

18.5.2.1  First Encounter: Context as Blockage

Meg’s initial interpretation appeared to be that they were required to show the costs 
for consecutive numbers of patients beginning with one patient. Kate contextualised 
this within the domain they have just been exploring to identify where two clinics 
had the same costs.

Meg:  What do they mean, What is the cost for treating each additional patient at 
Timbuktu? [pause] Do you just go one? … Would you just go 1, 2, 3, 4, 5, 
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like so we can find out the additional ones? Instead of like doing 50, 90 and 
stuff? [50 and 90 refer to the number of patients given in the original prob-
lem statement]

Kate:  Just go 120, 121, 122. Umm, I have no idea. [Assessment of resources 
(knowledge)]

Meg:  What will we do? [Assessment of resources (strategy)]
Kate:  I don’t know. … [pause] I don’t get this question. [Assessment of 

understanding]
Meg:  No. Let’s just skip it. [Long pause] [Metacognitive impasse]

The girls decided to leave the question for the time being. In assessing their 
understanding and strategic resources, it became obvious to them they had met a 
metacognitive impasse as occurred with Kit and Rani.

18.5.2.2  Second Encounter: Negotiating Contextual Meaning

They return to the question in the third lesson when they are joined by Di and Ann. 
Meg asks: “What about that one?” During the initial exchange, Meg seems to be 
quite willing to accept Di’s interpretation to find C(1) the cost of treating one patient.

Di:  [Reads] What is the cost for treating each additional patient? You just, ooh.
Meg:  So you times it by one? [meaning let the number of patients be one]
Di:  Yes, you times it by one, because there is only one patient. Then just get the 

difference between each cost. [Di calculated C(1) for each clinic.]
Meg:  Ooh. Thanks. What is this? One? All right. Cool. Okay.

Although appearing to accept Di’s interpretation, Meg was unable to draw Kate 
into the same meaning as she articulated her thinking whilst working through the 
calculations.

Meg:  I think you just, I am going to put in just one. [Hesitantly following Di’s 
advice]. … Okay, 19.75 × 1 + 115, [pause] whatever.

Kate:  How come you are doing it times 1?
Meg:  Umm, because when you find each additional patient after, like from 

[pointing to 115 which is the fixed cost for the model], you go up by one.
Kate:  [Unconvinced] Oh yeah.
Meg:  It is hard to explain. Each time it goes up by. Each time it adds on to the 

115.

As Meg was having difficulty communicating her understanding to Kate, she 
directed Kate to ask Ana from another group. Kate asked, “Well okay, so basically 
n [her symbol for number of patients] is just 1”. Unfortunately Ana confirmed Di’s 
misinterpretation as Ana and her partner had calculated the cost for one patient 
“because there is only one patient”. It appeared to this point that all the coming 
together of the groups had achieved was the spreading of misinterpretation of the 
context. However, suddenly, Meg articulates a new interpretation when she realised 
that previously, she was considering she had to find the cost one at a time, whereas 
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now she interpreted it as for ‘each additional one’. Kate asked for clarification 
(what) and explanation (why) and challenged Meg to articulate her reasoning.

Meg:  Wouldn’t it be 20? [New information]
Kate:  What? [Clarification question]
Meg:  I thought it asked to do one, but [it actually asks] to do each additional one. 

So what if you times it by two and then take away what you got for one. 
[i.e., [C(2) – C(1)]. Like then it is about 20. It will go up by 20 each time 
you treat somebody.

Kate:  Why 20? [Explanation question]
Meg:  Because you times. If you treated 2 patients you add. Yeah you get how much 

it would cost and then you take that away from one [i.e., [C(2) – C(1)].
Kate:  Wait, what are you saying? You go 19.75 ×1 + 115. [pause] You do that, 

right? … Then what? [Clarification question]
Meg:  Then there is like one, and then there is like two. And there is like the dif-

ference. I think the difference there is like 20. … That is how many if you 
treat two patients. That is how much it costs. … when you get up to three 
it goes up by another 20. Yeah I think [Assessment of interim result]

The pair continued this approach and found C(2) = 154.5, followed by C(2) – 
C(1)  =  154.5–134.75  =  19.75. However, Kate clearly indicated she still did not 
really understand even after they have worked through the calculations together.

Kate:  Yeah. But what is the answer? Is it that thing?
Meg:  Yeah. 154.5. Yes, it is kind of like, no wait, [long pause]. I got 19.75 for 

that.
Kate:  Maybe you did it wrong.
Meg:  Oh no. It is [pause] Oh no, it is 19.75. … I was [incoherent] yes, I know. 

Yes!

18.5.2.3  Coming to Know: Realisation of Meaning

By asking herself the reason the numerical answer was 19.75, Kate suddenly had 
an “Aha moment” (Mason et al. 1982) when she connected the contextual meaning 
of $19.75 as the additional cost per patient at the clinic to the mathematical objects 
she had previously been dealing with, namely, C = 19.75n + 115 which was how 
she had symbolised the given model for the weekly operational cost in Timbuktu. 
She thus engaged in articulating her sense-making for gradient, making her full 
mathematical understanding of the concept apparent. Kate chides herself for not 
having made this meaningful connection, but it soon became apparent that Kate’s 
understanding was rather fragile.

Kate:  How come it is 19.75? Oh my god! That is the gradient it goes up by each 
time. [New Information] So it is 19.75. So it is like it is just b that lifts it 
up?

Meg:  That is the gradient?
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Kate:  Yes, the gradient goes up by, each time it goes up by 19.75! Oh my god!! 
… Yeah, der, because it is ax. [laughs] Der. [laughs]

Meg:  Yeah I know. [laughs]
Kate:  [working on calculations] [long pause] Meg? … Is what I did here right? 

Or wrong?
Meg:  Nah, it is wrong.
Kate:  Oh what? Because if you take that from that, it is 19.75 anyway.
Meg:  Each additional patient costs 19.75, because that is what the gradient is. 

The gradient is, whenever you go up by one, no across, then you treat one 
more patient.

Kate:  Yeah I know, I get it.
Meg:  So it is 19.75
Kate:  For each additional patient. So it is not that [C(1) = 134.75]?
Meg:  No, that is just how much it costs to treat one patient.
Kate:  Yeah, Okay. So this one (7b, C = 17.50n + 390) would just be 17.50.

The interthinking that has been manifested whilst the pair articulated their differ-
ent understandings of the contextual and mathematical meanings in their ‘shared 
communicative space’ has allowed this group to progress their mathematical under-
standing from engaging with the task context until the mathematics also had mean-
ing for them.

18.5.3  Full Immediate Meaning of Mathematisation 
of the Context

Ben and Ken were working on The Village Health Clinic in Angola Task when they 
reached Q7a. In this first encounter with the question, the boys’ full understanding 
of the gradient as a means of mathematising the context was evident as Ben’s imme-
diate reaction shows. ‘We have already answered this question [Q7a]. Oh no we 
haven’t its [records $14.00 and then immediately records $12.50 for the second 
clinic.]’ Ben returned to the question in the third lesson when he was joined by Amy. 
In this second encounter with the question, the contextual meaning is also apparent. 
Both clearly considered it a trivial question, with Amy facetiously suggesting it was 
the hardest question.

18.6  Discussion

Three broad categories of mathematical understanding were evident through inter-
action with the context. These were (i) a lack of mathematical understanding, (ii) 
apparent fragility of mathematical understanding and (iii) apparent sound under-
standing. These were manifested in the three scenarios as: contextual demand as 
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gatekeeper on mathematisation [(i)], collaborative engagement with 
context→development of mathematical understanding [(i)→(ii)→(iii)] and full 
immediate meaning of mathematisation of the context [(iii)]. Using metacognitive 
acts as a tool for analysis allowed this researcher a window into the interthinking of 
the second group in particular, where a true collaborative communicative space was 
evident.

The articulating of their thinking by Kit and Rani as they conducted multiple 
metacognitive assessments of interim results and of appropriateness of strategies 
clearly indicates neither fully understood the contextual meaning of cost per metre 
of well depth. Furthermore, it is clear neither student understood the connection 
between the context and the mathematical model nor what particular mathematical 
concepts such as gradient represent. Rani did not understand her mathematisation 
as proportional thinking although Kit indicated that she understood that the relation-
ship was not proportional, when she said it is not ‘all even’. This pair did not really 
use interthinking to bring more meaning. Their lack of engagement with the context 
and/or lack of mathematical understanding could be the barriers. In assessing their 
understanding and strategic resources to progress, it became obvious to them they 
had arrived at a metacognitive impasse where no amount of reflective thinking or 
strategic effort would be successful in releasing their blockage. For this pair the 
contextual demand was a gatekeeper on mathematisation.

In stark contrast, collaborative engagement with the context enabled Meg and 
Kate to shift from an apparent similar starting point to that of Kit and Rani. Meg and 
Kate provide a paradigmatic example of how interthinking can be used to advance 
understanding. They progressed from their first encounter, context as blockage to a 
second encounter, negotiating contextual meaning, and finally their third encounter, 
coming to know – realisation of meaning. When undertaking genuine collaborative 
work on the task and engaging with the context, students were able to show progres-
sion in their mathematical understanding of the model, even though their initial 
encounter may have resulted in a blockage. The interthinking that was manifested 
whilst the pair articulated their different understandings of the contextual and math-
ematical meanings in their ‘shared communicative space’ allowed progression of 
their mathematical understanding from engaging with the task context until the 
mathematics also had meaning for them. Ben and Ken’s immediate understanding 
of both the mathematics and Ben and Amy’s link with the context made it unneces-
sary for them to engage in collaborative discussion.

18.7  Conclusion

The analysis presented here clearly showed that engagement with the real-world 
context offered opportunities to develop mathematical understanding. However, 
articulation of thinking, including metacognitive assessments, was not sufficient to 
realise this potential. Genuine collaborative work involving interthinking and 
engaging with the task context was necessary to develop mathematical reasoning. 
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Audio- and video-recording seems essential to ascertain the interthinking and hence 
development of mathematical understanding. It is hoped the illustration from this 
study will act as a boundary device (Garraway 2010) that enables the passage of 
knowledge between insiders and outsiders of the ICTMA community with respect 
to the value of using real-world context in the classroom.
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Abstract An exploratory research study based on an online questionnaire in order 
to better understand difficulties encountered in teaching of mathematical modelling 
in France and Spain is presented. This questionnaire takes into account biographical 
variables, mathematics and modelling conceptions of pre-service teachers, teachers, 
researchers and education inspectors, from primary to tertiary education. Regarding 
difficulties, heterogeneous conceptions are revealed, and the analysis constructs 
four clusters, from positive and confident conceptions to negative and lacking con-
fidence. In some cases, the roles of some biographical variables are indicated such 
as country, age, gender or school level that need to be clarified by future semi- 
structured interviews in order to offer training and resources in response to the 
expressed difficulties.

Keywords Modelling • Teaching difficulties • France Spain comparison • Beliefs

19.1  Context of the Study

A new curriculum (Ministère 2015) in France for primary and lower secondary edu-
cation is discussed. It started in 2016 when modelling became one of the six main 
components of mathematical activity and practical interdisciplinary teaching through 
collective projects became compulsory. In this context, it is interesting to look for 
results of research about the difficulties of implementing modelling activities in 
France in order to produce resources and training to prepare for the new curriculum. 
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We did not find such research except Cabassut and Villette (2011) who studied dif-
ficulties met by teachers attending a training course on mathematical modelling. This 
study sought to determine an overview of difficulties felt by French educators to 
teach mathematical modelling, from primary school to tertiary education.

19.2  Theoretical Background and Design 
of the Questionnaire

Two previous questionnaires,  Maass and Gurlitt (2009) and Borromeo Ferri and 
Blum (2013), focusing on the teaching of modelling were used. Teacher interviews 
from a previous project – LEMA project described in Cabassut and Mousoulides 
(2009), and a review of literature on the difficulties in the teaching of modelling are 
specified in Cabassut and Ferrando (2015). These enable identification of variables 
influencing the teaching of modelling.

Regarding biographical variables, Borromeo Ferri and Blum (2013) show differ-
ences between teachers studying mathematics as a  subject or not. Cabassut and 
Villette (2011) identify country, age and type of school as split variables. Kuntze 
(2011) and Borromeo Ferri and Blum (2013) show the influence of experience in 
teaching. Dorier and García (2013) point to the importance of initial training.

Regarding conceptions and practice about mathematics, we follow Cabassut and 
Villette (2011), Lee (2012), and Maaβ and Gurlitt (2009). Conceptions and practice 
about modelling were based on Borromeo Ferri and Blum (2013). We used a frame-
work suggested by Philipp (2007) about conceptions and another by Kaiser (2006) 
and Mischo and Maass (2013) about beliefs on modelling. Consideration was also 
given to self-confidence and self-efficacy, as developed by Bandura (1997), helping 
to express teachers’ practice.

Regarding difficulties with modelling, we follow Borromeo Ferri and Blum 
(2013), Schmidt (2011), Engeln et al. (2013) and Cabassut and Villette (2011). To 
better understand the specificity of the French situation, we chose a comparative 
approach (Cabassut 2007) involving a comparison with Spain. This country has a 
regional organization contrasting with the central organization in France. In addi-
tion, teachers’ education and training, resource production, syllabus construction 
and school organization are different.

The questionnaire on difficulties on modelling is composed of 85 multiple- choice 
questions with 67 four-point Likert scales: 8 on biography, 23 on mathematics’ con-
ception and practice, 25 on modelling conception and practice and 37 on modelling 
difficulties split into six parts: time, assessment, lesson organization, context, stu-
dent’s involvement and resources. It is an online questionnaire, advertised through 
different national networks, and was completed between February and March 2015 
by 231 people, including 124 French and 107 Spanish people. This sample was not 
constructed on a representative basis but on an exploratory one: people answered the 
questionnaire voluntarily. An exploratory approach, according to Tukey (1977), 
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means a representative sample is not needed. In any case, our sample included pre-
service teachers, teachers, mathematics education researchers, education inspectors, 
resource writers and teacher trainers. You will find the questionnaire at the following 
link http://ir.uv.es/fepai/modellingquestionnaire.

19.3  Method of Analysis of Results

The statistical analysis was carried out with SPAD software which provides fre-
quency tables, cross tabulation and cluster analysis. The variables were the different 
answers to the questions. In the cluster analysis, the active variables to build the 
clusters were the 37 variables on modelling difficulties. To interpret the clusters 
produced by the software, an active variable was considered as a splitting variable 
if it was an answer for which the percentage of answers in the cluster was very dif-
ferent from the whole population. Every cluster will be described with these split-
ting variables. The other variables (biography, mathematics conception and practice, 
modelling conception and practice) are illustrative variables. For every cluster, 
some were split variables when the percentage of the answer in the cluster was very 
different from the whole population. The split variables of every cluster helped to 
describe the cluster. The splitting and split variables enabled explanation of the 
heterogeneity and differences that were not shown by aggregated statistics indica-
tors. From the LEMA research (Cabassut and Villette 2011), we kept the split and 
splitting variables for our questionnaire.

19.4  Results

19.4.1  Frequency Analysis

Biographical variable percentages were 46% Spanish people versus 54% French 
people and 52% men versus 48% women. For age, people were separated into two 
categories (younger, older) with a sample median value of 42 which gave 49% of 
people as older and 51% younger. The same process was applied for the number of 
years of service in the profession: the median value was 15 from which two catego-
ries (less experienced, more experienced) were produced resulting in 44% of people 
classified as more experienced and 56% as less experienced. For type of job, there 
were 2% noospherian people (supervisor, inspector, etc.), 23% primary school 
teacher, 23% secondary school teacher and 23% tertiary education teacher. 
Regarding the nature of the studies they have followed, 25% of respondents had 
education studies, 58% mathematics studies and 15% sciences studies.

With respect to modelling or mathematics teaching, 57% considered their teach-
ing conditions as difficult, 80% understood the meaning of “modelling problem” 
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and 58% considered they used in their teaching problems that were simultaneously 
open, complex, related to the real world, solved with mathematics and an inquiry- 
based approach (this corresponds to the definition of modelling given in the design 
of the questionnaire and based on our review of literature). Furthermore, we found 
that 67% of people were motivated to teach modelling.

A frequency table analysis of the modelling difficulties enabled sorting by the 
difficulties expressed by more than 50% of the people. The main difficulties were 
related to time, student involvement and resources. For 70% of the respondents, it is 
difficult to estimate how long it takes to solve a modelling task. For 58%, it took too 
much time to prepare modelling tasks for teaching. In addition, 54% of respondents 
thought that most students do not know how to work out modelling tasks. For 55%, 
modelling tasks required a lot of extra things that teachers could obtain only at great 
expense. Lastly, 51% of respondents thought that teachers do not have enough 
materials for modelling tasks.

It was also possible to identify positive aspects through the frequency table anal-
ysis; these were related to evaluation, lesson organization and student involvement. 
Firstly, 77% thought that modelling tasks promote greatly student autonomy. 
Secondly, 57% felt able to support students in developing competencies in arguing 
related to modelling tasks. Thirdly, 56% felt able to use students’ mistakes to facili-
tate their learning in modelling. Fourthly, 50% of respondents considered that mod-
elling tasks promote, at the same time, both low achievers and high achievers.

19.4.2  Cluster Analysis

A cluster analysis produced four clusters. The first cluster (74 individuals, 32% of the 
sample) represented people who had difficulties in mathematics and modelling and 
were negative towards modelling. In this cluster, much more than in the whole popu-
lation, they did not feel able to design modelling lessons that could help students 
overcome difficulties in all modelling steps, to support students in developing com-
petencies in arguing related to modelling tasks, to develop detailed criteria for assess-
ing and grading students’ solutions to modelling tasks, to effectively assess students’ 
progress as they worked on modelling tasks, to use students’ mistakes to facilitate 
their learning in modelling, to design their own modelling tasks and to adapt tasks 
and situations in textbooks to provide realistic open problems. Much more than in the 
whole population, they agreed with the following statements about modelling tasks: 
it is difficult to assess the presentation of a solution; it is difficult to differentiate what 
is correct from what is not correct; assessment takes too much time; it is difficult to 
assess group work, the solutions found by the pupils or the students are not compa-
rable; the presentation of the solutions is complex; these require complex operations 
that primary school children cannot cope with; most students do not know what to 
work out by modelling tasks; it is difficult to manage group work; and modelling 
lessons are unpredictable.
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To describe this cluster with illustrative variables, we meet tertiary education 
people and trainers much more than in the whole population. Much more than in the 
whole population, they have difficulties in mathematics teaching (not only in mod-
elling teaching) to use small group work and to assess it, to use an inquiry-based 
approach, to use open problem-solving and to have heterogeneity; they consider it 
important in mathematics teaching to apply official curriculum or training pro-
grams; they rarely use modelling problems, problems to be solved with an inquiry- 
based approach, or authentic problems from reality; and they disagree that a 
modelling problem at school is an open problem.

It seems surprising to find tertiary education or trainee people over-represented. 
Is it because these people have a demanding theoretical conception of modelling? Is 
it because they receive university students with a low level in mathematics and in 
problem-solving? These people seem to consider small group work, an inquiry- 
based approach and open problem-solving as a difficulty for mathematics teaching 
not specific to modelling. As a follow-up, we will interview representatives of this 
cluster to answer these questions.

The second cluster (46 individuals, 20%) represented people who were positive 
towards modelling and generally did not feel difficulties about modelling. In this 
cluster, much more than in the whole population, they disagreed that, in a modelling 
task, it is difficult to assess group work; that most students do not know how to work 
out modelling tasks; that when teaching modelling, not enough time is left for other 
learning content; that it is difficult to manage group work by modelling task; that the 
pupils or students are hard to discipline during modelling activities; that in a model-
ling task, it is difficult to assess the presentation of a solution of a modelling task; 
that when pupils or students work on a modelling problem, the environment in the 
class becomes harder; that modelling tasks require complex operations which pri-
mary school children cannot cope with; that it takes too much time to assess model-
ling tasks; that the lessons are unpredictable by modelling; that in a modelling task, 
it is difficult to differentiate what is correct from what is not correct; that the presen-
tation of the solutions is complex; and that working on modelling tasks in the class-
room is very time-consuming. They felt able to design modelling lessons that help 
students overcome difficulties in all modelling steps, to develop detailed criteria 
(related to the modelling process) for assessing and grading students’ solutions to 
modelling tasks, to effectively assess students’ progress as they work on modelling 
tasks, to support students in developing competencies in arguing in relation to mod-
elling tasks, to design their own modelling tasks as teachers and to adapt tasks and 
situations in text books to provide realistic open problems.

To describe this cluster with illustrative variables, much more than in the whole 
population, there were Spanish people, people motivated to teach modelling and 
people who considered it easy in mathematics teaching (not only in modelling 
teaching) to use small group work and to assess it, to use an inquiry-based approach 
and to have heterogeneity; they often used modelling problems, complex problems, 
an inquiry-based approach and open problems; they considered it as important to 
use open problems and to work in small groups. This was the only cluster where a 
country (Spain) was over-represented. There was a similar result in the study by 
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Cabassut and Villette (2011). Is there a cultural or institutional explanation why 
Spanish people are more positive towards modelling? Future interviews will try to 
explain this. It would be interesting to clarify by interviewing cluster representatives 
about the relation between the lack of difficulties for modelling and the practice and 
importance of small group work, the inquiry-based approach and open and complex 
problems in mathematics teaching.

The third cluster (85 individuals, 37% of answers) represented people who were 
positive about modelling and neutral on difficulties. In this cluster, much more than 
in the whole population, they felt able to use students’ mistakes to facilitate their 
learning in modelling and to support students in developing competencies in arguing 
in relation to modelling tasks, and they agreed that modelling tasks promote greatly 
students’ autonomy and that students acquire a lot of knowledge about the use of 
mathematics in modelling tasks. Much more than in the whole population, they were 
neutral to feel able to design modelling lessons that help students overcome difficul-
ties in all modelling steps (e.g. problems in validating), to adapt tasks and situations 
from textbooks to provide realistic open problems and to develop detailed criteria 
(related to the modelling process) for assessing and grading students’ solutions to 
modelling tasks. Alternatively, they were neutral about the following statements: 
most students do not know how to work out modelling tasks; it takes too much time 
to assess modelling tasks; and the lessons are unpredictable with modelling.

To describe this cluster with illustrative variables, much more than in the whole 
population, there were men, teachers, secondary school teachers and people who 
have studied mathematics, who knew what modelling meant and who considered 
that a modelling problem at school is related to the real world. In comparison with 
the previous cluster, we observed that secondary school teachers and people who 
had studied mathematics were over-represented in this cluster. Are the secondary 
school teachers more neutral on difficulties because the implementation in the sec-
ondary class is balanced between difficulty and easiness? Why are men over- 
represented? Interviews will try to explicate these over-representations.

The fourth cluster (24 individuals, 11.5% of sample) represented people who 
were neutral towards modelling and its difficulties. Much more than in the whole 
population, these were neutral on the following statements: modelling tasks pro-
mote greatly students’ autonomy; most students do not know what to work out by 
modelling tasks; students acquire a lot of knowledge about the use of mathematics 
in modelling tasks; I feel able to support students in developing competencies in 
arguing related to modelling tasks; students recognize that often, there is not only 
one right solution; the pupils or students are hard to discipline during modelling 
activities; students have difficulty with the fact that there are many different solu-
tions for modelling tasks; modelling tasks promote at the same time both less pow-
erful and more powerful students; I feel able to use students’ mistakes to facilitate 
their learning in modelling; in a modelling task, it is difficult to assess the presenta-
tion of a solution of a modelling task; when pupils or students work on a modelling 
problem, the environment in the class becomes harder; in a modelling task, it is 
difficult to differentiate what is correct from what it is not correct; when teaching 
modelling, I am not left enough time for other learning content; I feel able to design 
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modelling lessons that help students overcome difficulties in all modelling steps; the 
solutions found by the pupils or the students are not comparable; in a modelling 
task, it is difficult to assess group work; students can use the openness of the tasks 
to handle them well; and it is difficult to manage group work for modelling tasks.

To describe this cluster with illustrative variables, much more than in the whole 
population, there were trainee, primary school teachers, people who did not know 
what “modelling problem” meant, people who did not use the Internet to find mod-
elling problems and people who were neutral to be motivated to teach modelling. 
Perhaps trainees are over-represented because they have not enough experience to 
analyse modelling teaching. For primary school teachers, their neutrality is more 
surprising. Is it because they do not know the concept of modelling? Is it because 
they are less used to have feedback on such practices? Future interviews will help to 
explain this.

19.4.3  Conjectures from Chi-Squared Test

Use of Chi-squared tests helped to identify whether there was a significant relation 
between two variables. Clearly, this allowed us to find some differences related to 
country or gender. We observed that women felt less able than men to design model-
ling lessons that help students overcome difficulties in all modelling. Regarding the 
country, Spanish people felt more able than French people to design modelling les-
sons that helped students overcome difficulties in all modelling steps. In the LEMA 
cluster analysis of Cabassut and Villette (2011), we found also that Spanish teachers 
were more positive about modelling than other teachers. This cultural fact is diffi-
cult to explain. There was no significant difference between countries and biograph-
ical variables. We also observed some differences in relation to modelling difficulties: 
people who had difficulties in their mathematics teaching with an inquiry-based 
approach also had difficulties with modelling in relation to time, evaluation, lesson 
organization and resources; people who had difficulties in their mathematics teach-
ing with small groups also have difficulties with modelling in relation to evaluation, 
resources and students involvement; and people who have difficulties in their math-
ematics teaching with open problems also have difficulties with modelling in rela-
tion to students’ involvement. Some of these significant results (e.g. about country 
variable) have to be explained further by interviews. In the following table, we 
provide the data from the chi square analysis (Table 19.1).

19.5  Conclusion and Perspective

In the studied population, we have pointed out heterogeneity about position on 
modelling and on difficulties to teach modelling. The majority of people were posi-
tive about modelling. Some difficulties about modelling can be explained more 
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generally by difficulties in mathematics teaching. For some people though, difficul-
ties were specific to modelling, especially those related to time, students’ involve-
ment and resources. Cluster analysis or chi-squared test results suggest that some 
variables (gender, country, difficulties in mathematics teaching, type of school, type 
of education and type of job) could play a role in the difficulties to teach 
modelling.

In a follow-up study, SPAD software will be used to select ideal examples from 
different clusters. For every ideal example, we will conduct an additional clarify-
ing semi-structured interview, as described in Cabassut and Ferrando (2015), to 
confirm the previous conjectures suggested by cluster analysis and chi-squared 
tests. We propose also to have confirmatory analysis on national representative 
samples. The samples could be based on the type of school because in France, 
resources and training productions are strongly related to the type of school (pri-

Table 19.1 Results of χ2 analysis

Variables df χ2

Significance 
level

Gender 2 15.75 0.000
I feel able to design modelling lessons that help students 
overcome difficulties in all modelling steps
Country 2 19.13 0.000
I feel able to design modelling lessons that help students 
overcome difficulties in all modelling steps
Inquiry-based approach is difficult in mathematics teaching 4 17.35 0.002
The work on modelling task in the classroom is very 
time-consuming
Inquiry-based approach is difficult in mathematics teaching 4 12.11 0.017
I don’t feel able to develop detailed criteria related to the 
modelling process
Inquiry-based approach is difficult in mathematics teaching 4 11.00 0.027
Modelling tasks are unpredictable
Inquiry-based approach is difficult in mathematics teaching 4 19.45 0.001
I don’t feel able to design modelling tasks
Small group work is difficult in mathematics teaching 4 20.63 0.000
It is difficult to assess the presentation of a solution of a 
modelling task
Small group work is difficult in mathematics teaching 4 14.83 0.005
I don’t feel able to develop detailed criteria related to the 
modelling process
Small group work is difficult in mathematics teaching 4 11.65 0.020
Most of the students do not know what to work out by 
modelling tasks
Open problem-solving is difficult 4 14.67 0.005
Students have difficulty with the fact that there are many 
different solutions by modelling tasks

Note. df means the number of degrees of freedom
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mary, secondary or tertiary education). In the comparison between France and 
Spain, we found that Spanish people felt more able to design modelling lessons 
that help students overcome difficulties in all modelling steps. For the other ques-
tions, we did not find strong evidence of the role of country variable. Perhaps the 
comparison with other countries or the additional clarifying semi-structured inter-
views could change this point of view.

It is important to clearly identify specificities of each country and commonalities 
in order to avoid generalizations that can hinder the use of modelling. Our study 
could lead to the design of specific material to prepare teachers to overcome diffi-
culties related with the use of modelling in classrooms. For example, in the fre-
quency analysis, we observed that time was the main domain of difficulties: time 
necessary to prepare teaching of modelling, yearly time planning of this teaching, 
time for modelling assessment, and time management of modelling activities for 
teachers and for students. This means that for resources available to teachers (by 
considering teachers’ training as one of these resources), time is one of the topics to 
be investigated.
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Chapter 20
How Students Connect Mathematical Models 
to Descriptions of Real-World Situations

Dirk De Bock, Nele Veracx, and Wim Van Dooren

Abstract Research has shown that problem posing, in a sense the “inverse  
activity” of problem-solving, can positively affect students’ problem-solving skills. 
We report the design and results of an empirical study in which the potential posi-
tive effect of a specific problem-posing variant, “inverse modelling”, (i.e. the selec-
tion of a real-world situation given a mathematical model), on modelling was 
investigated. Eighty 11th grade students were randomly divided into two equal-
sized subgroups, one first receiving a modelling task and then an inverse-modelling 
task. The other subgroup received both tasks in reverse order. Results indicated that 
inverse modelling did not have an overall positive effect on modelling: Only for 
affine functions with negative slope, accuracy scores for modelling significantly 
improved after inverse modelling.

Keywords Affine model • Inverse modelling • Inverse proportional model • 
Modelling skills • Problem posing • Proportional model

20.1  Theoretical and Empirical Background

The initial idea for this chapter was found in the literature on problem posing. Since 
the middle of the 1980s, problem posing has received ample attention in the inter-
national mathematics education literature (see, e.g. Brown and Walter 1983), lead-
ing to vast amounts of research-based findings nowadays (a recent state of the art of 
research on mathematical problem posing can be found in Singer et  al. 2015). 
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Basically, problem posing involves the generation of new problems or the reformu-
lation of given problems and can be seen, at least in some sense, as the “inverse 
activity” of problem-solving. The literature on problem posing is extensive and 
mentions several potentialities of this activity on students’ learning. In the context 
of this chapter, it is however impossible and also needless to review this literature in 
detail, so we limit ourselves to a discussion of some important characteristics and 
perspectives, especially those that are relevant for our research action.

First, although problem posing seems to be the “inverse activity” of problem- 
solving, it can also be an integral part of it and as such exert a direct positive impact 
on the problem-solving process and outcome. For instance, asking a student to 
reformulate a problem in his or her own words can help the student to better under-
stand the problem. Also, in another sense, problem posing can be a valuable heuris-
tic tool for problem-solving. As already recommended by Pólya (1945), in order to 
solve a challenging problem, it can be helpful to look for an analogous problem that 
is easier to solve, in the expectation that solving this easier problem may be useful 
for solving the original problem.

A second potential advantage of problem posing is that it can foster mathemati-
cal creativity (Silver 1997). Although it is by no means easy to define mathematical 
creativity (Sriraman 2009), it seems an important aspect of mathematics learning. 
There is a parallel with language learning in which the creative interaction of stu-
dents with language is stimulated by asking them to write stories or essays. Problem 
posing, the invention of new problems, can be seen as a quite similar activity in 
mathematics education (Ellerton 1986).

Third, problem posing is seen as a tool to appeal to students with diverse talents 
and interests. Problems can indeed be created from students’ own experiences fol-
lowing their personal interests. According to some authors, problem-posing tasks 
are also less “intimidating” than problem-solving tasks (Brown and Walter 1983). A 
problem that has been created by a student is seldom right or wrong; there is always 
room for discussion and interpretation. Some researchers even state that problem 
posing can help some students to overcome mathematical fear or anxiety (Moses 
et al. 1990).

Fourth, and probably the most important in the context of this research, problem 
posing can positively affect students’ problem-solving skills on later tasks (Silver 
1994). Problem-posing tasks, as well as other types of alternative tasks such as clas-
sification tasks (Van Dooren et  al. 2010), can stimulate students to think more 
deeply about underlying mathematical concepts and relations. In such tasks, stu-
dents are not prompted to immediately start calculating or applying formulas. As 
such, they are less inclined (and in some cases even unable) to fall back on routine 
behaviour (De Bock et al. 2007) and instead think more thoroughly about the kind 
of mathematics that is applicable. So, problem posing can change the focus of stu-
dents’ mathematical thinking.

In recent years, the mainstream of mathematics education problem-posing 
research was enriched from the perspective of modelling. Authentic real-world math-
ematical modelling includes, among other things, that even in schools, modellers 
themselves are allowed to find the problem situation and to pose the problem(s). 
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From this viewpoint, problem posing (i.e. the specification or  formulation of the 
problem) in a real-world situation occurs when a problem is formulated in such a 
manner that it is amenable to mathematical analysis in the sense that mathematisa-
tion leads to mathematical models that are solvable. Over the past few years, several 
members of the International Community of Teachers of Mathematical Modelling 
and Applications (ICTMA), names including, among others, C. Bonotto, A. Downton, 
L. English and G. A. Stillman, have argued that a modelling view on problem posing, 
which is not the generally held view on problem posing in mathematics education 
research, is an important component of teaching and learning mathematics and also 
an essential part of mathematical modelling (Downton 2013).

Research at different levels of schooling has however shown that the step from a 
modeller’s understanding of a problem situation into a mathematical model(s) is far 
from an obvious one (Verschaffel et al. 2000). The general aim of our research is to 
find ways to make modellers in training more proficient in taking that step. For 
some problem types, such as division with remainder problems, problem-posing 
activities have been shown to have a positive impact on taking that step (e.g. Chen 
et al. 2007). Inspired by the positive outcomes of the research on problem posing 
and on other alternative tasks in mathematics education, we started thinking about 
an inverse activity of modelling, namely, the reformulation of a given mathematical 
model into a real-world situation. We called this activity “inverse modelling”, and 
the aim of the current study was to test the potential beneficial effects of such 
“inverse modelling” on modelling (in its restricted sense, namely, the formulation of 
a real-world situation into a mathematical model). In operational terms, our research 
question can be stated as follows: Does the prior confrontation of student modellers 
with an “inverse modelling” activity have a beneficial effect on their modelling 
capacities?

20.2  Method

Eighty 11th graders, most of them aged 16–17, from different secondary schools in 
Flanders (Belgium) participated in this study. Solving realistic problems and the 
applicability of basic functions, including those that were involved in this study (see 
next paragraph), received quite some attention in the participants’ previous mathe-
matics courses. All participants followed general education with 3 or 4 h of mathe-
matics per week which is the minimum for general education in Flanders. It was a 
deliberate choice to work with students who are not in the top streams of education 
for mathematics because we wanted to avoid ceiling effects. The eighty participants 
were randomly divided into two equal-sized subgroups. Both subgroups were con-
fronted with a multiple-choice test consisting of a modelling part and an “inverse- 
modelling” part, but Subgroup 1 received the modelling part first followed by the 
“inverse-modelling” part. Subgroup 2 received the two parts in the reverse order.

The modelling part consisted of eight items in which a real-world situation was 
described in words and participants had to connect them with an appropriate model 
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that could be either proportional (i.e. of the form y = ax), affine with positive slope 
(y = ax + b with a > 0), affine with negative slope (y = ax + b with a < 0) or inverse 
proportional (y = a/x). Each model was appropriate for two of the eight given items 
or situations. The four types of models were used previously by Van Dooren et al. 
(2013), but in contrast with that study, models were always given in a formula rep-
resentation. The choice of a formula representation was deliberate. Research has 
shown that formulas are more difficult for students than, for example, graphs or 
tables (see, e.g. De Bock et al. 2015). This is not surprising because a formula is a 
more formal or abstract representation. By choosing formulas, we also hoped to 
avoid ceiling effects and obtain more variation in our results which facilitates inter-
pretation. Figure 20.1 shows an example item from the modelling part of the test. 
Test items were specifically constructed for this study, and situations were chosen 
so that there was always a clear and strong fit with the provided models, although 
we are aware that models never perfectly fit to a realistic situation. We are also 
aware that these tasks are not very “rich”, nor open-ended, as generally recom-
mended for authentic modelling activities, and, more particularly, we acknowledge 
that mathematical modelling involves much more than connecting a situation with a 
formula from a list of given formulas, but for the internal validity of our research, 
we preferred to use this type of clean, closed-form items.

The “inverse-modelling” part also consisted of eight items, but the participants 
now had to connect one of the four types of models with a description in words of a 
real-world situation for which that model was appropriate. In Fig. 20.2, an example 
item of the “inverse-modelling” part is shown. In both subgroups, the same realistic 
situations were used, so differences between subgroups could not result from the 
situations that were used. To prevent that students’ choice of a specific model (given 
a situation) of their choice for a situation (given a model) would depend on their 
familiarity with the situation (and thus not only on an underlying mathematical 
model), we used two parallel versions of both the modelling and “inverse- modelling” 
part. So, we tried to neutralize the effect of specific contexts as much as possible. 
So, the same context (e.g. about mobile phones) could appear with a certain model 
in one version of the test but with another model in the other version of the test. Data 
were analysed by a repeated measures logistic regression analysis, using the gener-
alized estimating of equations (GEE) procedure within SPSS (Liang and Zeger 

For a fundraising event, an action committee wants to peel a full container of potatoes. This
job will take them several hours. Which formula properly denotes the relation between the
number of committee members who collaborate and the time needed to finish this job?

y = ax
y = ax + b, a > 0
y = ax + b, a < 0
y = a/x

Fig. 20.1 Example item from the modelling part (inverse proportional situation)

D. De Bock et al.



237

1986). This procedure allows analysis of repeated (and thus possibly correlated) 
categorical observations within series of individuals and to appropriately correct for 
inferences that can be drawn from such correlated measures. Given the dichotomous 
nature of the dependent variable (i.e. a particular response alternative is chosen or 
not), a logistic regression, modelling the probability that a correct response is given, 
depending on the type of model (proportional, inverse proportional or affine with 
positive or negative slope) and the condition (first modelling and then inverse mod-
elling or vice versa), is appropriate.

20.3  Results

First, we briefly discuss the results on both the modelling and the “inverse- 
modelling” task in the whole sample. Table 20.1 shows the accuracy rates for the 
modelling task. These results are disappointing. Although for all types of situations 
the appropriate model was most frequently chosen, only half or less than half of the 
participants made that correct choice. Unexpectedly, the modelling task appeared 
too difficult for most of the participants. Given the rather low difficulty level of the 
task, we rather had feared to be confronted with ceiling effects, and we made choices 
in our design accordingly. Possible explanations relate to the fact that participants 
were rather weak in mathematics and that they were not sufficiently prepared to this 
task: The test was taken unannounced, and no specific teaching had preceded the 
test. Also, the fact that participants were 11th graders, while in Flanders the subject 
matter about basic functions and their properties and applications is part of the 
mathematics curriculum in grades 9–10, may have negatively affected the results.

Choose which one of the following descriptions best fits the formula y = ax + b, a < 0 .
A taxi company charges for a night ride a fixed fee upon departure and an amount 
for each kilometre driven. The formula properly denotes the relation between the 
total price of the night ride and the number of kilometres driven.
A group of friends participates in a gambling game. When they win some money it 
will be shared equally among the friends. The formula properly denotes the relation 
between the number of friends and the amount of money each person will receive.

The formula properly denotes the 
relation between the amount of minced meat that Jennifer buys and the price she has 
to pay.
Thom has a mobile phone subscription, but uses prepaid reloadable cards. Per 
minute talked the uploaded sum decreases by a fixed amount. The formula properly 
denotes the relation between the number of minutes talked and the remaining sum 
on the card.

Fig. 20.2 Example item from the “inverse-modelling” part
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Surprisingly, the inverse proportional situations were modelled correctly in 50 % 
of the items wherein such situation was given, which is more than all other types of 
situations. This result was also unexpected because other studies have reported stu-
dents’ difficulties with decreasing functions in general and with inverse propor-
tional functions in particular (see, e.g. De Bock et al. 2015). The regression analysis 
indeed revealed a significant effect of the “model” variable (p = 0.031), and pair-
wise comparisons showed that the differences in accuracy scores between the 
inverse proportional model and the proportional and the affine model with negative 
slope were significant (p = 0.026 and p = 0.007, respectively). Also interestingly, 
40% of the affine situations with positive slope were modelled proportionally. This 
relatively high percentage confirms students’ well-documented “overreliance on 
proportionality” (see, e.g. Van Dooren et al. 2008), in particular their difficulties to 
discriminate between proportional and affine increasing functions (De Bock et al. 
2015). An additional error analysis revealed that participants’ overuse of propor-
tionality in affine situations with positive slope was significantly higher than their 
overuse of proportionality in the two types of decreasing situations (p = 0.000 and 
p = 0.001 for the affine decreasing and inverse proportional situations).

The accuracy rates, for the “inverse-modelling” task, are shown in Table 20.2. 
Also, these results are disappointing. Possibly the same explanations can be given 
as for the weak results on the modelling task. Furthermore, the high reading load for 
this part – participants had to read and understand 8 × 4 = 32 descriptions in words 
of real-world situations – may also have negatively affected the results. Similar to 
the results on the modelling task, for all models the appropriate situation was most 
frequently chosen, but again and unfortunately, less than half of the participants 
made that correct choice. Moreover, we observed no clear trends in these results. On 
the basis of the results for the modelling task, one could have expected that the stu-
dents would confuse proportional and positive affine situations, but this was not 
confirmed by these results.

Second and most importantly, we discuss the potential beneficial effect of 
“inverse modelling” on modelling. Therefore, we compare in Tables 20.3 and 20.4 
the accuracy rates on the modelling task for the two subgroups, subgroup 1 who 
started with the modelling task and subgroup 2 who was first confronted with an 
“inverse-modelling” task. At first glance, it appears that the “inverse- modelling” 
task had little or no positive effect on the accuracy scores of the modelling task. For 

Table 20.1 Accuracy rates (in bold) and other choices (both in %) on the modelling task in the 
whole sample

(Chosen) model
P IP A+ A−

(Given) situation P 39 33 21 8
IP 22 50 19 9
A+ 40 13 41 6
A− 16 31 16 36

Proportional (P), inverse proportional (IP), affine with positive slope (A+) and affine with negative 
slope (A−) situations and models
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proportional and inverse proportional models, the trend was even negative. This was 
confirmed by the results of the regression analysis that did not reveal a main effect 
of the “condition” variable. So, on the basis of these results, our research question 
should be answered negatively: “Inverse modelling” does not have an overall posi-
tive effect on students’ modelling capacities.

Although less important, we note that there was a significant interaction effect 
between “condition” and “model” (p = 0.002). Pairwise comparisons revealed that 
this interaction effect was due to the accuracy rates for the two types of decreasing 
models. There was a significant increase of the accuracy rates for the negative affine 
model (p = 0.006), but a significant decrease of the accuracy rates for the inverse 
proportional model (p = 0.031) as a consequence of doing the inverse-modelling 
task first.

Table 20.2 Accuracy rates (in bold) and other choices (both in %) on the inverse modelling task 
in the whole sample

(Chosen) situation
P IP A+ A−

(Given) model P 37 18 29 16
IP 21 36 20 23
A+ 19 17 41 23
A− 14 11 31 43

Proportional (P), inverse proportional (IP), affine with positive slope (A+) and affine with negative 
slope (A−) models and situations

Table 20.3 Accuracy rates (in bold) and other choices (both in %) on the modelling task in 
Subgroup 1

(Chosen) model
P IP A+ A−

(Given) situation P 40 33 21 6
IP 24 58 16 3
A+ 38 15 41 6
A− 16 43 15 26

Proportional (P), inverse proportional (IP), affine with positive slope (A+) and affine with negative 
slope (A−) situations and models

Table 20.4 Accuracy rates (in bold) and other choices (both in %) on the modelling task in 
Subgroup 2

(Chosen) model
P IP A+ A−

(Given) situation P 38 34 20 9
IP 20 41 23 16
A+ 43 10 41 6
A− 16 19 18 48

Proportional (P), inverse proportional (IP), affine with positive slope (A+) and affine with negative 
slope (A−) situations and models
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For the sake of completeness, we also compare in Tables 20.5 and 20.6 the accu-
racy rates for the “inverse-modelling” task in the two subgroups. Once again, no 
clear trend was revealed: Accuracy rates increase or decrease, dependent on the type 
of model involved. Also, the regression analysis did not reveal a main “condition” 
effect, but there was an interaction between “condition” and “model” (p = 0.041). 
Pairwise comparisons revealed that only the improvement of the accuracy scores for 
the negative affine model type was significant (p = 0.028).

20.4  Conclusions and Discussion

This study did not reveal an overall positive effect of “inverse modelling” on model-
ling. Only for affine functions with negative slope were accuracy scores for model-
ling significantly improved after inverse modelling. Possible explanations are that 
both tasks were too difficult for the participants, who were weak performers in 
mathematics, who had met the relevant subject matter one or 2 years earlier in their 
mathematics curriculum and who were not at all prepared for this type of task. In 
particular, an “inverse-modelling” task, in this study operationalized by asking par-
ticipants to link descriptions in words of realistic situations to mathematical models, 
is very likely a kind of task they were never confronted with in their preceding 

Table 20.5 Accuracy rates (in bold) and other choices (both in %) on the inverse modelling task 
in Subgroup 1

(Chosen) situation
P IP A+ A−

(Given) model P 44 14 31 11
IP 15 40 20 25
A+ 20 21 35 24
A− 16 9 24 51

Proportional (P), inverse proportional (IP), affine with positive slope (A+) and affine with negative 
slope (A−) models and situations

Table 20.6 Accuracy rates (in bold) and other choices (both in %) on the inverse modelling task 
in Subgroup 2

(Chosen) situation
P IP A+ A−

(Given) situation P 30 23 26 21
IP 28 33 20 20
A+ 18 13 48 23
A− 13 14 39 35

Proportional (P), inverse proportional (IP), affine with positive slope (A+) and affine with negative 
slope (A−) models and situations
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school careers. Moreover, the reading load for the “inverse-modelling” task was 
high.

We think it would be premature to already abandon the idea of “inverse model-
ling”. Although the results of this study are not encouraging, “inverse modelling” 
may have some potential for the development of students’ modelling capabilities, 
and this might be shown in follow-up research. So, it could be considered to rerun 
the current study on a larger scale – the current sample of 80 students spread over 
two conditions was rather small – and, more importantly, under improved condi-
tions, for example, by using “easier” function representations (graphs or tables 
instead of formulas), by briefly revising the relevant subject matter and by first solv-
ing and discussing an example item together with the participants. For such follow-
 up research, the reported study may serve as a pilot study.

Since just confronting students with an “inverse-modelling” task in a multiple- 
choice testing context will probably not suffice to obtain really convincing positive 
results, it could also be considered to conduct more “ecologically valid” research. 
Instead of confronting students with “real” situations that were constructed by the 
researchers, we could think about a research design in which students are invited to 
think freely about situations in their own environment that can be modelled with 
specific types of functions. Such open-ended tasks are more likely to elicit deeper 
thinking processes about the link between functions and real-life situations, whereas 
the multiple-choice format may have elicited superficial thinking and even guess-
ing, in some students.
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Chapter 21
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Abstract This chapter reports on the thinking and planning strategies of a group of 
38 third year mathematics student teachers (preparing to teach Grades 10–12), who 
were exposed to mathematical modelling for the first time. Participants, in eight 
comparable groups, attempted a textbook-based traffic flow model-eliciting  
activity. The open-ended nature of the task, handling intra-group dynamics, 
 construction of appropriate equations and interpretation of findings were the most 
pressing challenges. Participants’ attitudes towards modelling, attained via a  
post-questionnaire, were very positive, and all appreciated the mathematics-in-
the-real-world exposure. Findings of students’ planning strategies, experiences  
and attitudes contributed to a set of guidelines aimed at the integration of mathemat-
ical modelling into the pre- service education of mathematics teachers.
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21.1  Context and Purpose

Mathematics teachers’ knowledge involves components such as knowledge of 
mathematics, of mathematical representations, of students and of teaching and 
decision- making (Fennema and Franke 1992). According to Shulman (1986), these 
components emphasise mathematical content knowledge (MCK) and pedagogical 
content knowledge (PCK). Mathematical concept formation and learning initially 
depend on the classroom environment and learner activities, with teachers’ atti-
tudes, knowledge, judgements and beliefs impacting on these. Chapman (2002, 
p. 177) confirms ‘It has become an accepted view that it is the [mathematics] teach-
er’s subjective school-related knowledge that determines for the most part what 
happens in the classroom’. Teacher education programmes therefore have a huge 
role to play in steering and shaping prospective teachers’ subjective school-related 
knowledge.

Authentic problem-solving is increasingly used in enhancing learners’ mathe-
matical competencies and mathematics teachers’ PCK and MCK (Buchholtz and 
Mesrogli 2013). The relationship between mathematical modelling and authentic 
learning has been proven (Kang and Noh 2012). South Africa’s Curriculum and 
Assessment Policy Statement (CAPS) (Department of Basic Education 2011, p. 8) 
for Grade 10–12 mathematics specifies ‘Mathematical modeling is an important 
focal point of the curriculum. Real life problems should be incorporated into all 
sections whenever appropriate’. Various researchers (e.g. Ikeda 2013; Ng 2013) 
caution against the unpreparedness of mathematics teachers in teaching modelling, 
recommending formal exposure to it during their pre-service education.

The first goal of this study is to investigate the thinking and planning strategies 
of a group of mathematics pre-service teachers, who are exposed to a model- eliciting 
activity. A second goal is to explore their experiences of, and attitudes towards, 
modelling. Findings will contribute to a set of guidelines aimed at the integration of 
mathematical modelling into the pre-service education of Grade 10–12 mathemat-
ics teachers.

21.2  Literature Perspectives

A review of the literature indicates a disagreement about the potential influence that 
teacher education has on teacher learning (Boaler 2000; Lampert 2009). Some crit-
ics question whether teachers learn anything of value during their pre-service edu-
cation, while others claim that the effects of these programmes have been reversed 
once teachers enter more predictable school settings. The authors are of the opinion 
that the pre-service education of mathematics teachers, especially in the current 
South African school context, has a fundamental influence on their MCK and 
PCK. Aligned with this assumption, the theoretical framework that underlies this 
inquiry relates to two complementary sets of perspectives. The first is the Learning 
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to Teach Secondary Mathematics (LTSM) framework (Peressini et al. 2004). LTSM 
declares that how a learner acquires a particular set of knowledge and skills and the 
specific teaching context in which it happens fundamentally influence what is even-
tually learned (Greeno et al. 1996). LTSM assumes that teachers’ initial knowledge, 
beliefs and attitudes interact with their work in practice. This implies, in the words 
of Adler (2000), that mathematics teacher education is ‘usefully understood as a 
process of increasing participation in the practice of teaching, and through this par-
ticipation, a process of becoming knowledgeable in and about teaching’ (p. 37). The 
second set of perspectives is underlined by the zone of proximal development 
(ZPD), originally defined by Vygotsky (1978) as ‘the distance between the actual 
developmental level as determined by independent problem solving and the level of 
potential development as determined through problem solving under adult guidance 
or in collaboration with more capable peers’ (p. 33).

A model is a visualisation of something that cannot be directly observed via a 
description or a resemblance (Kang and Noh 2012). Whereas the end-product is 
known as a model, the cognitive activities preceding it which involve and require 
reasoning can be labelled as modelling. This cyclical process involves a provisional 
model and a series of interactive activities that should be continually tested and 
refined in order to improve or verify it (Kang and Noh 2012). Mathematical model-
ling as a process of generating mathematical representations in attempting to solve 
real-life problems consists of four sequential phases (Balakrishnan et  al. 2010), 
namely, ‘mathematisation’ (representing a real-world problem mathematically), 
‘working with mathematics’ (using appropriate mathematics to solve the problem), 
‘interpretation’ (making sense of the solution in terms of its relevance and appropri-
ateness to the real-world situation) and ‘reflection’ (examining the assumptions and 
subsequent limitations of the suggested solution) (p. 251). Researchers (Kang and 
Noh 2012) acknowledge three different levels of modelling tasks. Traditional 
problem- solving fits the description of a so-called level 1 problem. Such problems 
are already carefully defined, no additional data is required to formulate a model 
and the problems require specific mathematical procedures. Problems at level 2 
have a slight vagueness as insufficient information needed to successfully complete 
the task is given. Level 3 problems are the most authentic and open-ended type, 
characterised by unstructuredness and a challenging level of complexity (Ng 2013).

Since 2011, modelling is a prescribed Grade 10–12 mathematics theme, accord-
ing to the CAPS document (2011). Suitable model-eliciting tasks, with a focus on 
the process and not necessarily the product (Kang and Noh 2012), are exactly the 
kind of exposure that students require in striving to attain the envisaged learning 
outcomes. Research in Singapore (Ng 2013) and South Africa (Julie 2002) reveal 
that teachers’ lack of prior experience in problem-solving and their (sometimes too 
conventional) beliefs about mathematics are major obstacles, when they are exposed 
to modelling activities. According to Ng (2013), ‘The teachers generally perceive 
mathematics to be formula-based involving linear track solutions’ (p.  346) and 
imply that they are mostly challenged by model-eliciting tasks. In this regard, pre- 
service teacher education programmes have a pertinent responsibility to fulfil.
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21.3  Research Design

21.3.1  Research Paradigm

The constructivist-interpretivist paradigm enabled the researchers to collect data on 
the lived experiences of the participants, via their individual and/or shared exposure 
to, and involvement in, a modelling task (Creswell 2013). The inquiry also incorpo-
rated a quantitative dimension from a post-positivist stance (Heppner and Heppner 
2004). This dimension enabled the researchers to measure participants’ attitudes 
towards mathematical modelling.

21.3.2  The Model-Eliciting Experiment

An in-class experiment was conducted in May 2014 involving 38 third year math-
ematics pre-service teachers. They were exposed to a modelling-eliciting activity in 
groups, and afterwards, their views of their group’s problem-solving strategies, as 
well as their lived experiences and attitudes towards modelling, were gained. The 
experiment was conducted during one time slot (of almost 2 h) in the timetable. The 
participants had little formal mathematics teaching experience (approximately 
5 weeks of school practice) and had not been exposed to model-eliciting tasks nor 
to the teaching of such tasks. Proportional stratified sampling was employed to ran-
domly assign them to one of eight groups (of four to six members), in such a way 
that each group at least had a high(er), a moderate and a low(er) achiever (based on 
their mathematics marks in the module). The session began with a brief presentation 
on the goal and nature of the experiment, focussing on modelling, phases of a typi-
cal modelling cycle and the ethical measures taken to safeguard the confidentiality 
of collected data and the anonymity of each participant. Individual written partici-
pant consent was obtained, also in respect of their individual feedback, the next day.

A modelling task typically requires participants to ask relevant questions, to 
identify variables and their relations to a real-world situation, to represent the latter 
in mathematical ‘language’ and to propose and to validate a solution (Niss et al. 
2007). The eventual purpose of the data collected via the experiment was to deduce 
an initial set of guidelines aimed at the integration of modelling into the formal 
education of mathematics teachers at the university in future. The authors shared the 
views of Niss et al. (2007) that a carefully selected model-eliciting task also requires 
cognitive, meta-cognitive and affective competencies. A level 3 open-ended model-
ling task would put these abilities of participants more deliberately to the test. A task 
on traffic flow, an adaption of a textbook problem (Stewart et al. 2012, p. 661), was 
thus chosen. It involved traffic flow data on a busy section of a city’s street network. 
Participants were requested to recommend the best location for a day-care centre for 
toddlers.
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The information in the task is offered in an ambiguous manner and did not 
explicitly suggest a specific approach nor a well-rehearsed mathematical pathway, 
presenting it as a level 3 modelling problem according to Kang and Noh (2012). In 
order to provide possible solution strategies, participants were expected to carefully 
examine task constraints and systematically analyse information. Taking into 
account the complexity of the task, the inexperience of the pre-service teachers and 
the relatively limited time, groups were not expected to come up with well-defined 
solutions nor to provide their views on the representativity, validity and applicabil-
ity of their ‘answers’. Groups were merely required to report on the strategies and 
methods that they employed. The experiment and group interactions were carefully 
monitored, and each group recorded their strategies, processes and suggested solu-
tions on a predesigned worksheet. The researchers initially also planned that each 
group should critique their suggested solutions. As the experiment unfolded, it was 
realised this was definitely a bridge too far.

21.3.3  Collection and Analysis of Data

The day after the experiment, individual participant feedback was collected. A self- 
designed questionnaire was used for this purpose. Section A contained demographi-
cal items (gender, ethnical group, home language, age and their performance in 
mathematics at school) used to construct a participant profile. Two additional items 

Traffic Flow Task
The Department of Town and Regional Planning would like to receive a rec-
ommendation on the best location for a day-care centre for toddlers. Provide 
the department with a plan on how they can select the best location. You need 
to explain the method you used as the department would like to apply this 
method to other areas. Data collected from the local traffic department gives 
information on a section of the city’s street network (one-way streets and how 
many cars enter or leave this section of the city via the indicated street in a 
certain 1-h period):

Both the first and second streets are one-way streets from north to south. 
Third Avenue is a one-way street from west to east, but Fourth Avenue is a 
one-way street from east to west. Street corners are identified at Third Avenue 
and First Street, Third Avenue and Second Street, First Street and Fourth 
Avenue and Second Street and Fourth Avenue. One hundred eighty cars enter 
First Street. Seventy cars enter Second Street. Two hundred cars leave First 
Street. Thirty cars leave Second Street. Two hundred cars enter Third Avenue. 
Four hundred cars enter Fourth Avenue. Twenty cars leave Third Avenue. Two 
hundred cars leave Fourth Avenue.
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gained information on participants’ experience of mathematics at school and the 
reason(s) they were studying towards becoming mathematics teachers.

Section B used selected items from the Attitudes Towards Mathematics Inventory 
(ATMI, Schackow 2005). The original focus of the ATMI, namely, to detect partici-
pants’ attitudes towards mathematics as a subject, was geared towards mathematical 
modelling, but the items were kept intact. Two of the ATMI’s dimensions are, 
namely, enjoyment (whether mathematical problem-solving is and the modelling 
challenge was enjoyable, ten items) and self-confidence (expectations about doing 
well in modelling and how easily the task was performed, 15 items). Participants 
provided Likert scale-type responses to each of the 25 items, ranging from 1 
(strongly disagree) through 3 (neutral) to 5 (strongly agree). Responses were 
summed, yielding total scores of maximum 50 and 75 for the enjoyment and self- 
confidence dimensions, respectively. ATMI data were captured and analysed via the 
Statistical Package for the Social Sciences (SPSS, version 22). A pilot study (involv-
ing three mathematics students, who were not participants) contributed to the ques-
tionnaire’s face and content validity. Cronbach’s alpha coefficients were hence 
calculated, and the coefficients for the enjoyment dimension (0.745), the self- 
confidence dimension (0.922) and the total ATMI (0.917) revealed high internal 
consistency.

Section C included four open-ended questions, detecting participants’ experi-
ences of the model-eliciting task and of modelling in general. The last question 
requested concrete suggestions on how participants might be supported during their 
education in becoming effective modellers and teachers of modelling. Feedback 
was analysed via the constant comparative method, a directed form of content anal-
ysis (Durandt and Jacobs 2013). Appropriate participant views per category, by 
quoting their direct words, have been integrated into the findings. Particular strate-
gies to enhance the trustworthiness of the qualitative component of the research, in 
accordance with Creswell (2013), involved transferability measures (a thorough 
description of the experiment’s planning and implementation, properties of the par-
ticipants and the data collection instrument), dependability measures (a dense 
description of the content analysis method) and credibility measures (a proper inter-
rogation and triangulation of the findings by both researchers), while the original 
records were maintained for follow-up purposes.

21.4  Findings and Discussion

The majority of the participants were male (63%), black (76%), indigenous lan-
guage speaking (74%) and 23 years or younger (61%) and scored 60% or more for 
mathematics in the examination designed for their final year of high school (79%). 
Their answers to the question: ‘What is the main reason(s) underlying your decision 
to become a mathematics teacher?’ echoed their sentiments to sustain a relationship 
with the subject mathematics. Main categories of responses were an interest in 
mathematics and the resulting curiosity and challenges it generates and the 

R. Durandt and G.J. Jacobs



249

opportunity to make a difference to learners in disadvantaged communities (who 
lack good mathematics education) and to positively contribute to South Africa’s 
educational challenges.

Using Sweeting’s (2011) categorisation (pp.  53–54), positive scores on the 
enjoyment dimension (out of 50) have a minimum of 40 and on the self-confidence 
(out of 75) dimension a minimum of 60. A positive total for the two dimensions (out 
of 125) would thus be minimum 100. Table 21.1 provides a breakdown of partici-
pants’ ATMI scores on the two dimensions as well as the total scores.

The researchers expected the majority of the participants (as they do want to 
become mathematics teachers) to portray a relatively positive disposition towards 
mathematical modelling. More than four fifths of them (84.2%) seem to have 
enjoyed the model-eliciting task, while the activity also boosted the self-confidence 
of three quarters (75.6%) of the group. The score distribution on the total ATMI is 
sufficient reason to describe six out of seven participants’ attitude towards model-
ling as positive to strongly positive. Although the ATMI is a self-rating survey 
(which is a limiting factor), the strong relationship between a positive attitude 
towards, and achievement in, mathematics has been documented (Sweeting 2011).

Although the first phase of the modelling cycle (mathematisation) as described 
by Balakrishnan et al. (2010) was fairly well mastered by participants, the second 
phase (working with mathematics) resulted in a number of difficulties. During the 
first phase, all eight groups succeeded in representing the traffic flow problem math-
ematically. Five groups used more than one format to present the data in a 
 mathematical context. All eight groups also used illustrations (e.g. illustrated in 
Fig. 21.1a) together with either a histogram (one group) or a double bar graph (one 
group) or two-way tables (three groups). In phase two, most groups experienced 
difficulty in introducing variables and in matching them to unknown quantities. 
Initially, the majority of groups introduced two variables, one for the number of cars 
entering and another for the number of cars leaving the city’s street network. They 
only realised later that the number of cars entering an intersection (from various 
directions) must equal the number of cars leaving that intersection. In setting up 
their mathematical models, four variables (e.g. x, y, w and z) were required. The 
variables represent the number of cars (from all four directions) travelling along a 
specific street. Most groups felt really challenged working with four variables. The 
researchers had to intervene and guided most groups in setting up a first and even a 

Table 21.1 Distribution of ATMI scores

ATMI dimension
N %

ATMI dimension
N %Enjoyment (mean = 44.7) Self-confidence (mean = 64.3)

46–50 13 34.2 68–75 12 32.4
40–45 19 50.0 60–67 16 43.2
36–39 6 15.8 59 or lower 9 24.3
Total (mean = 109.0) 113–125 13 35.1

100–112 18 48.6
75–99 6 16.2
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second equation. All groups could thereafter formulate the third and fourth equa-
tions (e.g. illustrated in Fig. 21.1b). Another complication in the second modelling 
phase was finding appropriate mathematics to solve the equations. Four of the 
groups attempted to solve the system of linear equations; but only one group eventu-
ally provided a probable solution, while another group introduced a more sophisti-
cated mathematical strategy, involving matrices. As a result most groups could not 
straightforwardly make sense of the solution and got stuck moving from the second 
phase to the third and fourth phases of the modelling cycle.

A further interrogation of their submitted worksheets revealed that half of the 
groups made a recommendation as to the most appropriate location of the day-care 
centre. One group argued in favour of the intersection with the highest traffic flow 
(being more convenient for working parents), while two groups supported exactly 
the opposite (an intersection with the lowest traffic volume). Another group juxta-
positioned convenience (for parents) versus safety (for toddlers) and thus recom-
mended a medium busy intersection. Only three groups found time to critique their 
solutions (models) and also made suggestions to improve their own models.

Participants described their lived experiences and also made suggestions on 
enhancing their ability to approach (and perhaps even solve) model-eliciting tasks 
effectively in future. Their experiences were dominated by the overwhelming open- 
ended nature of the modelling task and its consequential challenges. Participants 
reported that group members struggled to agree on an idea and to get everyone’s 
point of view across. Most groups found it extremely difficult to mathematise the 
task. Even after formulating and attempting to solve the equations, the interpreta-
tion of their findings was still a bit confusing as some participants were not con-
vinced about their validity. Despite the challenging nature of the task, participants 
acknowledged the opportunity to experience mathematics in the real world. A num-
ber of suggestions to assist pre-service mathematics teachers in becoming good 
modellers and effective modelling teachers were made. The crux revolves around a 
need for guidelines on how to approach model-eliciting tasks, more frequent expo-
sure to modelling activities (and to examples and their solutions), more group work 
opportunities and more time on tasks and even to present a lesson on mathematical 
modelling themselves.

Fig. 21.1 A selected group strategy on (a) mathematisation and (b) working with mathematics
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21.5  Conclusion

The literature is filled with references to the positive relationship between mathe-
matical modelling and authentic learning (e.g. Buchholtz and Mesrogli 2013). 
Mathematical modelling has been a theme in South Africa’s Curriculum and 
Assessment Policy Statement for Mathematics in the Further Education and Training 
(Grade 10–12) phase since 2011. Not only the underpreparedness of mathematics 
teachers to teach but also to grasp modelling is a global phenomenon (see, e.g. Ng 
and Lee 2015). Several calls for the exposure of mathematics pre-service teachers 
to modelling tasks during their pre-service education have been made (e.g. Tan and 
Ang 2013). Not only are prospective mathematics teachers expected to model math-
ematical modelling; but also, they should be able to cultivate a climate conducive 
towards modelling in their classrooms.

In this study, a group of third year mathematics pre-service teachers was exposed 
to a model-eliciting task. The thinking and planning strategies of these pre-service 
teachers in attempting the task and thereafter their lived experiences and attitudes 
towards modelling were explored. The inquiry revealed that it was not only a very 
challenging task for the participants, but also it was indeed very difficult for them to 
link the ‘world out there’ (reality) to the mathematics of the classroom. The real 
dilemma was captured in their search to find appropriate mathematics (mathemati-
sation) to solve the problem. Although their first exposure to modelling might have 
been extremely perplexing, the participants also regarded it as thought provoking, 
inspiring and motivational. The words of one of the most eager participants perhaps 
capture the group’s attitude towards modelling appropriately: ‘We want more, 
although we realise that it won’t come easy’.

In preparing prospective mathematics teachers more optimally to grasp and also 
to teach modelling, several suggestions were made by the participants. The sugges-
tions will be converted into guidelines focused on enhancing prospective mathemat-
ics teachers’ abilities to attempt and eventually solve model-eliciting tasks 
effectively in future. The researchers are of the opinion that, based upon the Learning 
to Teach Secondary Mathematics (LTSM) framework, in conjunction with the zone 
of proximal development (ZPD), mathematics pre-service teachers should formally 
acquire modelling knowledge and skills during their formal education. This should 
ideally happen in teaching contexts (situations), which not only let them experience 
for themselves that mathematical modelling but also mathematics teaching is not a 
formula-dependent, linear-track endeavour but indeed much more authentic, open- 
ended and, from time to time, even thrilling.
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Chapter 22
Exploring the Notion of Mathematical 
Literacy in Curricula Documents

Peter Frejd and Vincent Geiger

Abstract The notion of mathematical literacy has gained momentum internation-
ally recently through the influence of international assessment regimes such as the 
Programme of International Student Assessment (PISA) and national concerns 
about the ability of citizens to use mathematics effectively in personal, civic and 
work life. Accordingly, it is to be expected that these concerns should be reflected 
in relevant curriculum documents. This chapter presents a content analysis of a 
sample of 12 national curriculum documents in relation to mathematical literacy. 
The analysis shows that there does not appear to be general agreement about the 
definition of mathematical literacy within the analysed documents and that the idea 
of mathematical literacy is represented in a limited fashion.

Keywords Mathematics education • Mathematical literacy • Numeracy • Curricula 
documents • Content analysis

22.1  Introduction

Members of the International Community of Mathematics and its Applications have 
been responsible for generating a significant corpus of literature related to mathe-
matical modelling (Geiger and Frejd 2015). However, less attention has been paid 
by this group to research related to mathematical literacy – another theme within the 
field of mathematics education that focuses on the use of mathematics in the real 
world, that is, a perspective within applications of mathematics.
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The notion of mathematical literacy (known as numeracy in some international 
contexts) has been promoted through increasing international attention to the results 
of the Programme for International Student Assessment (PISA), sponsored by the 
OECD. Within the PISA framework, mathematical literacy is defined as:

an individual’s capacity to formulate, employ, and interpret mathematics in a variety of 
contexts. It includes reasoning mathematically and using mathematical concepts, proce-
dures, facts and tools to describe, explain and predict phenomena. It assists individuals to 
recognise the role that mathematics plays in the world and to make the well-founded judg-
ments and decisions needed by constructive, engaged and reflective citizens. (OECD 2009, 
p. 5)

This definition positions the application of mathematics as an essential capability 
for participatory and productive citizenship. Further, the statement emphasises the 
critical aspect of applying mathematics to the real world when making decisions 
and judgments.

While PISA’s definition is the most widely recognised, other descriptions of 
mathematical literacy are embedded in curriculum documents across the world and 
implemented for different purposes in a variety of ways (Geiger et al. 2015; Jablonka 
2003; Niss and Jablonka 2014). Such differences appear to be associated with cul-
tural influences and economic and sociopolitical priorities within nations (Jablonka 
2003; de Lange 2003). Different curriculum documents also make note of a varying 
range of basic skills, mathematical concepts and critical capabilities needed for 
engagement in everyday life and the workplace. Because of the complexity of this 
situation, Niss and Jablonka (2014) argue that more empirical research is needed in 
order to document the range of variations in implementing mathematical literacy.

The aim of this chapter is to provide insight into the commonalities and differ-
ences between interpretations of mathematical literacy internationally. In address-
ing this aim, we will attend to the following research questions that guided our 
study.

• How frequently are terms related to mathematical literacy present in curricula 
documents across the world?

• How do curriculum documents describe the nature of mathematical literacy?

22.2  Mathematical Literacy

What the term mathematical literacy means varies between the policy documents of 
educational jurisdictions and also across international assessments such as 
PISA. Numeracy, for example, may either be conceptualised as the use of basic 
arithmetic procedures or in terms of problem-solving within authentic contexts 
(Geiger et  al. 2015). Additionally, there exist several closely connected notions, 
such as numeracy, quantitative literacy, critical mathematical literacy, mathemacy 
and matheracy (Geiger et  al. 2015; Niss and Jablonka 2014; Stacey and Turner 
2015), that add complexity to any discussion in this area. A complicating factor in 
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attempting to outline the characteristics of mathematical literacy in school curricula 
is that the term is not found in all languages. In Swedish, for example, the words 
litterat (literate) and illitterat (illiterate) do exist, but they are not frequently used in 
everyday conversations and, in particular, are not used in relation to mathematics.

To deal with this complexity, a number of authors have attempted to identify the 
fundamental characteristics or constituent aspects of mathematical literacy (e.g. 
Jablonka 2003; Geiger et al. 2015). Jablonka (2003), for example, draws on the lit-
erature of mathematics education to identify five perspectives that “attempt to cate-
gorise different and, in some cases, conflicting ingredients of mathematical literacy” 
(p.  80): developing human capital, maintaining cultural identity, pursuing social 
change, creating environmental awareness and evaluating mathematical applica-
tions. Developing human capital addresses the need for ‘all’ to have the capability to 
use academic mathematical knowledge in out-of-school situations, whereas main-
taining cultural identity links to the capability to use informal mathematical knowl-
edge in social and cultural activities. Pursuing social change is a category of 
mathematical literacy related to an ability to analyse, with mathematics, different 
aspects of social realities to contribute to and make impact on political debate as an 
informed and critical citizen. The widespread discussions of global environmental 
problems give rise to creating environmental awareness, which is related to the abil-
ity to work in an interdisciplinary manner and to include the use of technology. 
Evaluating mathematical applications is an important aspect of mathematical liter-
acy that includes assessing the reliability and limits of mathematical models.

An alternative view is offered by Geiger et al. (2015), who identified five aspects 
of mathematical literacy (numeracy) research: critical views of numeracy, numer-
acy in the workplace, the role of technology in numerate activity and statistical and 
financial literacy. The term, critical views of numeracy, relates to the capacity of 
numerate citizens to participate in society in ways that promote equity, ethical con-
duct and the greater good – an aspect clearly related to Jablonka’s (2003) category 
of pursuing social change. Numeracy in the workplace is aligned with Jablonka’s 
(2003) broader category of developing human capital. The use of technology is a 
vital part of workplace practice and is increasingly integral to classroom teaching 
and learning practice in mathematics, as described in the role of technology in 
numerate activity. The last aspect of Geiger et al.’s (2015) portrayal of numeracy 
relates to statistical and financial literacy. Statistical literacy concerns capabilities 
related to interpreting, evaluating and communicating statistical information. The 
ability to carry out financial transactions and make financial decisions is integral to 
financial literacy. Thus, while there are commonalities in these two perspectives on 
mathematical literacy, there are also characteristics that do not overlap.

Despite different perspectives, the underlining goal of the mathematical literacy 
agenda is to promote “awareness of the usefulness of and the ability to use mathe-
matics in a range of different areas” (Niss and Jablonka 2014, p. 391). It is important 
to acknowledge, however, that the focus of this goal is “the general public rather 
than with specialized academic training while at the same time stressing the 
 connection between mathematical literacy and democratic participation” (Niss and 
Jablonka 2014, p. 392).
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In summary, there is no broadly accepted definition for mathematical literacy 
(and related notions). However, most understandings of mathematical literacy 
coalesce around a focus on building a capacity to use mathematics to participate 
effectively in society and to contribute in a productive and critical manner.

22.3  Methodology

This study is based on a content analysis of curriculum documents from a range of 
nations, conducted in order to draw conclusions about the relative visibility and 
meaning of mathematical literacy internationally. Our approach to the content anal-
ysis has two aspects. First, we document the frequency of the term mathematical 
literacy (and associated expressions). Second, we discuss a range of descriptions for 
mathematical literacy in different curricula including one example where the char-
acteristics of mathematical literacy receive explicit attention in all subjects across 
the curriculum and the other where it is embedded in curriculum documents but not 
explicitly named.

Curriculum documents were analysed because these should include terms and 
expressions that convey expectations of key student learning outcomes, that is, 
words that act as signals for what is intended to be taught and learned (Nöth 1990). 
How teachers, teacher educators, textbook authors and others, with interests in the 
outcomes of education, interpret the meaning and importance of such signals will 
impact on what is taught in classrooms. The frequency and placement of these sig-
nal words in curriculum documents may also be considered a way of measuring how 
important they are for a subject.

We followed Robson’s (2002) guidelines for conducting a content analysis. In 
this approach, research questions are first established and relevant documents are 
selected. It is then important to define the recording unit and construct categories for 
the analysis, before carrying out the analysis. Consistent with this approach, we 
selected the 12 curriculum documents from the Swedish National Center for 
Mathematics Education that were available in English (as both authors are English 
speakers). This sample is presented in Table 22.1.

We then defined recording units and constructed categories for our content anal-
ysis. In attending to the first research question about the frequency of terms associ-

Table 22.1 Sample curricula

Country Year No. of pages Country Year No. of pages

Australia 2014 272 Norway 2013 14
China 2004 115 Singapore 2013 40 + 42
Finland 2004 11 South Africa 2004 518 + 306 + 164
India 2006 12 + 10 Sweden 2011 14
Japan 2008 33 England 2013 47 + 9
Korea 2007 59 USA 2010 93
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ated with mathematical literacy, we defined the recording units, literacy and 
numeracy as key words. In the second research question, related to the nature of 
mathematical literacy, we drew on Jablonka’s (2003) and Geiger et  al.’s (2015) 
attempts to characterise the field of mathematical literacy to generate the following 
list of categories with key words, out-of-school context, critical citizenships, cul-
tural identity, interdisciplinary practices and the use of technology, to develop the 
analytic scheme. Descriptors of these aspects are displayed in Table 22.2. To carry 
out the analysis, the sample curricula were exported into Nvivo, a qualitative data 
analysis computer application, to establish word frequencies and to assist with other 
aspects of the analysis.

22.4  Results

Results are presented in two subsections: Sect. 4.1 addresses the frequency of the 
mathematical literacy and the alternate term numeracy and Sect. 4.2 addresses 
descriptions of mathematical literacy/numeracy.

22.4.1  The Frequency of Mathematical Literacy 
and Numeracy

The results of the frequency analysis showed that the expression mathematical 
literacy was not found in any curricula. However, the words financial literacy 
were found in curriculum documents from England (Department for Education 

Table 22.2 The analytic scheme

Mathematical literacy 
and its characteristics

Does the curriculum include 
descriptions Key words

Mathematical literacy Of the words mathematical literacy, 
numeracy, quantitative literacy, etc.

Literacy and numeracy

Out-of-school context Of using mathematics in out-of-school 
contexts (across cultures) such as in 
everyday practices, workplace, etc.

Every day, workplace, 
daily living and life

Critical citizenships Of aims for critical citizenships, like 
analysing critical aspects of societal 
realities

Citizen, politics and 
society

Cultural identity Of the awareness of informal 
mathematical knowledge in social and 
cultural activities

Culture

Interdisciplinary 
practices

That relate to work interdisciplinary Interdisciplinary and 
cross-curricular

The use of technology Of the use of technology Technology, digital tools 
and ICT
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2013) in a section describing the purpose of studying mathematics. The term 
numeracy, on the other hand, was identified in five different curricula as displayed 
in Table 22.3.

The Australian curriculum uses the term numeracy more frequently than curri-
cula from other nations. The second most frequent use of the term numeracy is in 
the South African curriculum, where it is usually expressed in qualified terms such 
as emergent numeracy. The only other occurrences of the term numeracy occurred 
in the curricula of Norway (2), Singapore (2) and the USA (1).

22.4.2  Descriptions of Mathematical Literacy/Numeracy

An examination of the various definitions of numeracy embedded within curricula 
of relevant countries revealed considerable variation.

The Australian Curriculum (ACARA 2014) explicitly emphasises numeracy as a 
general capability to be developed in all subjects and each subject syllabus. Our 
Nvivo analysis also revealed that numeracy was found 81 times in the mathematical 
syllabus. The development of students’ numeracy capabilities is described as:

they develop the knowledge and skills to use mathematics confidently across all learning 
areas at school and in their lives more broadly. Numeracy involves students in recognising 
and understanding the role of mathematics in the world and having the dispositions and 
capacities to use mathematical knowledge and skills purposefully. (ACARA 2014, p.13)

In terms of the aspects of numeracy identified by Jablonka (2003) and Geiger et al. 
(2015), this definition highlights the role of mathematics in out-of-school contexts 
(real-world contexts) as central to being numerate. Additionally, in other parts of the 
document, there is reference to capabilities aligned with notions of critical citizen-
ship, cultural identity and the use of technology.

The South African curriculum documents include the terms emergent numeracy 
and numeracy in the section for kindergarten but nowhere else. In this document, it 
is stated that teaching and learning should promote the holistic development of the 
child, which includes “emergent numeracy [that] includes cognitive development 
(problem-solving, logical thought and reasoning)” (Department of Basic Education 
2004, p. 13). Despite its use, however, South African curriculum documents do not 
explicitly define the meaning of numeracy.

Norwegian and Singaporean curriculum documents also make limited reference 
to numeracy. The Norwegian curriculum describes numeracy as:

Table 22.3 Frequency of the word numeracy

Country Frequency of numeracy Country Frequency of numeracy

Australia 81 Singapore 2
South Africa 7 USA 1
Norway 2

P. Frejd and V. Geiger
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Numeracy in Mathematics involves the use of symbolic language, mathematical concepts, 
methods of approach and varied strategies to solve problems and explore mathematics by 
taking a point of departure in practical day-to-day situations and mathematical problems. 
(Utdanningsdirektoratet 2013, p. 5)

In this respect, numeracy is described as a skill related to how mathematics is used 
in out-of-school contexts. The utilisation of mathematics, however, also is related to 
its strategic employment and not just the use of basic skills.

The Singaporean primary syllabus uses the phrase “basic pre-numeracy skills such 
as matching, sorting and comparing” (Ministry of Education 2013, p. 10). This refer-
ence is related to the use of only basic mathematical skills and is not connected to 
mathematics in context. The reference to numeracy in curriculum documents from 
the USA (NGA and CCSSO 2010), on the other hand, is only within the reference list.

For completeness, we also examined an example of a curriculum in which 
numeracy is not mentioned explicitly but where statements related to learning out-
comes align with underpinning aspects of the notion of numeracy. The Swedish 
curriculum in mathematics for grades preschool to grade 9 is structured around five 
general abilities (problem-solving, conceptual understanding, procedural fluency, 
reasoning mathematically and communicate mathematically) for students to develop 
across six core content areas (understanding and use of numbers, algebra, geometry, 
probability and statistics, relationships and change and problem-solving). An analy-
sis based on the identified key words revealed a connection to mathematical literacy 
across a number of aspects of mathematical literacy. For example, reference to out- 
of- school contexts appears several times in the official English translation of the 
curriculum in statements such as ‘teaching in mathematics should aim at helping the 
pupils to develop knowledge of mathematics and its use in everyday life’ (Skolverket 
2011, p. 59). Elsewhere, the statement “knowledge of mathematics gives people the 
preconditions to make informed decisions in the many choices faced in everyday 
life and increases opportunities to participate in decision-making processes in soci-
ety” (p.  59) suggests that students may, through appropriate teaching activities, 
develop critical citizenship. The aspect of mathematical literacy described as cul-
tural identity is found in relation to the history of mathematics, with statements like 
“mathematics has a history stretching back many thousands of years with contribu-
tions from many cultures” (p. 59).

22.5  Discussion and Conclusion

This study demonstrates that there is no general agreement upon the definition or 
role of mathematical literacy/numeracy internationally and its prominence in cur-
riculum documents varies significantly across our sample. Within the Australian 
curriculum, numeracy is explicitly signalled as the responsibility of all teachers, not 
just mathematics teachers. Other countries, however, pay attention to mathematical 
literacy in less prominent ways. In the case of South Africa, numeracy is seen as a 
general goal in mathematics education, but no definition is provided. Within 
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Singaporean curriculum documents, pre-numeracy skill is considered a basic capa-
bility that young children should acquire before they enter primary education. In 
Norway, numeracy relates to both a basic arithmetic skill and the ability to use 
mathematics in complex problems set in different contexts. Numeracy, as an idea 
within curriculum documents, is clearly less important in documents from the USA 
as the referral is only from the reference list. While these countries name mathemat-
ical literacy/numeracy specifically, others, such as Sweden, have aspects of mathe-
matical literacy implicitly embedded (e.g. out-of-school context, critical citizenships, 
cultural identity and the use of technology) in curriculum documents.

While mathematical literacy/numeracy is defined within the curriculum docu-
ments of most countries within our sample, descriptions tend to be limited to the 
notion of out-of-school context with little explicit reference to additional aspects 
such as those identified by Geiger et  al. (2015) or Jablonka (2003). However, a 
closer examination of the relevant documents, for example, in the Swedish curricu-
lum, shows that a wider range of aspects of numeracy (out-of-school context, criti-
cal citizenship, cultural identity and the use of technology) are implicit and so less 
obviously embedded. The presence of these aspects, even if implicit, must challenge 
teachers to develop learning activities that address goals such as critical citizenship 
and what mathematics is actually used in everyday situations.

The notion of mathematical literacy, and related terms, is a relatively new area of 
research (Geiger et al. 2015). This chapter has provided evidence that this issue is 
complex, as both the definition and role of mathematical literacy in teaching and 
learning, as outlined by curriculum documents internationally, are not consistent or 
coherent across different national curriculum documents. How the differing 
approaches are used across the world in addressing the use of mathematics to sup-
port participatory, functional and critical citizenship – mathematical literacy – is 
worthy of further research.
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Chapter 23
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Solve Fermi Problems
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Abstract In this chapter, we present a tool for analysing the work of secondary- 
level students from two different schools when they solve a type of Fermi problem. 
The tool is based on the characterisation of the concepts, procedures and language 
used to construct the models. Our results show that the proposed tool is useful to 
describe the models and to distinguish different aspects between the models pro-
duced by students without any previous modelling experience and those obtained by 
students who were already acquainted with working on modelling activities.
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23.1  Introduction

In recent years, there has been rising interest in the introduction of various types of 
activities involving mathematical modelling tasks in the classroom (Blum 2003; 
Vorhölter et al. 2014). In our previous work, we have used Fermi Problems involv-
ing Big Numbers (FPiBN); these entail a contextualisation of the problem and 
require students to introduce elements of modelling in its resolution (Albarracín and 
Gorgorió 2013). In this study, we used problems that focus on estimating the num-
ber of people or objects that could fit within a defined space. We observed that the 
students’ output from this type of open-ended task can be varied and can result in a 
wide range of solution strategies (Albarracín and Gorgorió 2014). This poses a 
classroom-management challenge for teachers (Gallart et al. 2015b) because, when 
students deal with contextualised problems that involve real-life situations or phe-
nomena, “all mathematical competences are activated during the modelling pro-
cess” (Gallart et al. 2015a). For this reason, we hereby present an analytical tool to 
characterise the mathematical models that students have come up with when solving 
such problems.

We tested the applicability of our analytical tool by studying the results obtained 
by students aged 15–16  years old after working on a sequence of FPiBN.  Two 
groups of students took part in this study. The first group had already worked on 
modelling problems in teams the previous year and had even presented and dis-
cussed them in class. On the other hand, the second group had no previous model-
ling experience whatsoever. The results of our study led us to the identification of 
distinguishing elements between both groups of students according to their model-
ling experience.

23.2  Mathematical Modelling and Fermi Problems

In this study, we adopt the definition of mathematical model, as proposed by Lesh 
and Harel (2003). These authors consider that models are conceptual systems used 
to construct, describe or explain other systems and include a conceptual system and 
the accompanying procedures. From this definition, we understand that the creation 
of mathematical models with the purpose of describing or representing a certain 
phenomenon or reality in an abstract way is a complex process. Indeed, mathemati-
cal models include different elements that shape them, such as mathematical con-
cepts, symbolic representations of reality or diagrams, as well as the procedures 
related to their use, mathematical or not.

The way students elaborate mathematical models in order to solve problems has 
been an object of discussion, and different points of view are held on this topic 
(Borromeo Ferri 2006). However, it is generally accepted that modelling processes 
are cyclic in nature. Therefore, the process is repeated in different iterations that 
improve previously found models and solutions, adapting to the needs of the 
 formulation of each problem. Students’ progress during the modelling process has 
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already been studied in depth (e.g. Blum and Leiss 2007; Haines and Crouch 2010; 
Matsuzaki 2011, among others). However, their final models have not yet received 
as much attention. In our work we focus in the final product obtained by the students 
when they solve Fermi problems. We particularly focus our attention on the con-
cepts and procedures used in their solutions and also in language use.

Many everyday life situations require estimation to gain answers to questions. 
Estimation is useful in situations in which we do not have access to the resources to 
give a more precise answer, because we do not have all the information we need or 
because the effort of offering an exact answer is excessive or unnecessary (Neunzert 
2013). So-called Fermi problems are a specific type of activity that requires the 
simplification and mathematisation of a reality that involves estimation. The defini-
tion of Fermi problem by Ärlebäck (2009) is as follows: “Open, non-standard prob-
lems requiring the students to make assumptions about the problem situation and 
estimate relevant quantities before engaging in, often, simple calculations” (p. 331). 
Efthimiou and Llewellyn (2007) characterise Fermi problems from their particular 
formulation, as always seemingly diffuse, providing little concrete information and 
few relevant features to direct the solution process. A detailed analysis of the situa-
tion presented is needed to break up a Fermi problem into simpler ones that lead to 
the answer to the original question.

Ärleback and Bergsten (2010) used an analytical tool, a modelling activity dia-
gram, to analyse student’s productions when they faced Fermi problems. The 
authors observed that “the processes involved in a modelling cycle were richly rep-
resented in groups’ solutions” (p. 597) prompting the authors to suggest realistic 
Fermi problems as a means to introduce modelling in schools. Ärlebäck (2011) 
states that working on Fermi problems may be useful for introducing modelling into 
classrooms for several reasons: (1) They are accessible to students of different edu-
cational levels and are not dependent on a specific type of previous mathematical 
knowledge; (2) they force students to structure the information relevant to the prob-
lem; (3) they require students to elaborate a resolution strategy specific to the con-
text; (4) since they do not provide numerical data, the students have to estimate 
several amounts for themselves; and (5) they promote discussion between students.

These reasons led us to consider that Fermi problems, and specifically FPiBN, 
offer the chance to study students’ modelling work, regardless of whether they have 
previous modelling experience or not. We have previously observed (Ferrando et al. 
2017) that the students without experience can develop mathematical models at dif-
ferent abstraction levels that explain the contexts provided in FPiBN, and therefore 
students should be able to solve FPiBN by developing their own methods.

23.3  Objectives of the Study

In this chapter, we study the work done by fourth-year secondary school students 
(16 years old) in the solution of two large quantity estimation problems in the class-
room. Both were designed as part of a series of problems with the aim of providing 
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situations for the students to develop their own mathematical models and adapt 
them to new situations with different levels of complexity. The aims of our study 
were the following:

 1. To analyse the mathematical models produced by students when solving FPiBN 
by using a tool for model characterisation based on Lesh and Harel’s (2003) defi-
nition of mathematical model.

 2. To identify the elements that differentiate the models obtained by students with 
previous modelling experience and those of students that have none.

23.4  Methods

23.4.1  Design of the Research Study

In order to design the problem sequence used in this study, we considered the inte-
grating elements of modelling-eliciting activities. Following the recommendations 
of Wessels (2014), we have tried to include complex activities, far from conven-
tional problems in Spain and not related to previously defined solution procedures 
that also involve different real-life situations.

The FPiBN sequence used consists of a series of Fermi problems that tackle the 
same issue – from a strictly mathematical sense – since all problems require the 
students to estimate the number of people or objects that can be placed over a cer-
tain surface area. The design of the activity is based on a first problem that allows 
for fieldwork without leaving the school, allowing the students to develop solution 
methods to be carried out in situ. Following this, the students are asked to attempt a 
few problems that cannot be solved by experimentation using tools that are within 
their reach, which brings about the need to transfer the solution strategies of the first 
problem to other contexts. In this study, we focus on the analysis of the students’ 
work for two problems of the sequence. Problem A is to be solved in the school 
playground, and problem B is to be worked on later in the classroom. The formula-
tions of these problems are the following:

Problem A: To organise the school year-end festival, it could be nice to bring 
up a music band and organise a concert in the schoolyard. In this situation, a 
good question is: How many tickets can we sell to fill the yard during the 
concert?

Problem B: How many trees are there in Central Park?1

1 This corresponds to the famous park that is in New York City, far away from Valencia or 
Barcelona.
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The work done in the classroom was divided between heterogeneous groups. The 
students worked in groups of three or four people for several sessions. The experi-
ence, we present, has been carried out with a group of 24 students in the fourth year 
of secondary school from an educational centre in Valencia (referred to as group E1) 
and another group of 22 students from a school in the province of Barcelona at the 
same educational level (group E2). Group E1 was divided into seven teams and E2 
into six. Our results consist of the written solution processes of problems A and B 
from six teams of students without previous modelling experience and from seven 
teams who had dealt with modelling activities before (group E1).

23.4.2  Analysis

In order to analyse the mathematical models generated by the students, we present 
a tool for the qualitative characterisation of the essential features that define these 
models. In addition, this tool might provide us with an objective idea of the com-
plexity of the representation of the situation studied.

Following Lesh and Harel (2003), we consider a mathematical model to be 
formed by concepts and procedures that are interconnected. At the same time, sym-
bols, diagrams and language use can help to convey the mathematical model by 
adding to the conceptual load of the model. Specifically, we distinguish two kinds 
of processes. Firstly, we distinguish the processes that allow us to obtain quantita-
tive information of the studied reality or phenomenon which are an essential part of 
the solution process and that modelling tasks are focussed on studying. Secondly, 
we distinguish the mathematical procedures that aid in the development of the solu-
tion and reach a mathematical solution that can be contrasted with the reality 
studied.

Our analysis tool is centred upon the qualitative determination of the following 
elements in the models the students created:

• Concepts (mathematical concepts, relationships between them, patterns, etc.)
• Procedures (for data collection about the studied phenomenon and on the math-

ematical work required to obtain results)
• Languages (symbolic, written, sketches, diagrams, etc.)

In this study, we have used this analytical tool in order to characterise the models 
proposed by the students from the two experimental groups when working on prob-
lems A and B.

23.5  Results on Concepts

Two fundamental concepts have been identified regarding the conceptual systems of 
both problems: the notion of population density understood as the number of ele-
ments comprised within a certain spatial extent and the iteration of a unit, based on 
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determining the surface area taken up by an element (person or tree) and then divid-
ing the total surface by the selected unit. One of the teams in group E2, however, 
used an alternative concept involving the arrangement of people over a grid. 
Figure 23.1 shows the scheme used by the students as explanation (see Fig. 23.1).

Table 23.1 shows the results obtained in the analysis of the conceptual systems 
used by the students. We must point out that one of the teams in group E2 (novice 
modellers) did not solve problem B. It is worth noting that the students of group E1 
(experienced modellers) predominantly used the concept of population density to 
solve the first problem. On the other hand, they used this concept less in problem B, 
in which they showed difficulties when applying population density to trees. This 
was due to the difficulty of expressing the concept of trees per square metre in deci-
mal values.

In our concept analysis, we also observed that some student teams especially 
included an element that adds complexity to their models. They found that part of 
the surface in their problems is unusable. They considered that not all the available 
space in the playground can be taken up by concert attendees and not all the surface 
of Central Park is covered by trees. In Table 23.2 we show how many working teams 
have taken into account the aforementioned complex elements, for each of the 
problems.

The solutions of group E1 for both problems significantly contrast with those of 
group E2 with respect to concepts used, since the latter use the notion of population 
density less and only two of the teams without modelling experience considered 
usable space as a refinement to the conceptual basis of their models.

Fig. 23.1 Resolution of 
problem A carried out by a 
team from group E2

Table 23.1 Conceptual systems used by groups E1 and E2

Problem
Density Iteration Grid Total
E1 E2 E1 E2 E1 E2 E1 E2

A 6 3 1 2 0 1 7 6
B 3 3 4 2 0 0 7 5

Table 23.2 Complex elements detected

Problem
Unusable space Do not consider unusable space
E1 E2 E1 E2

A 7 2 0 5
B 5 1 2 4
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23.6  Results on Procedures

Regarding the procedures related to data collection, the most used methods are the 
calculation of surface areas and estimations. The former may be carried out on the 
basis of measurements (experimental in situ measurements or with digital tools 
such as Google maps) and in some cases by decomposing the surface into simpler 
geometrical figures and afterwards applying known formulas. Secondly, as an 
example of estimation, we could take the estimate calculation of the surface area of 
a tile or the proportion of unusable surface in a larger area.

In situ measurements are obviously only possible in the resolution of problem A, 
but it is interesting to observe the differences between the resolutions of both groups. 
All teams in group E1 performed their measurements with a tape measure except 
one of them who calculated the surface area by counting tiles. This group claimed 
explicitly that the strategy used was “counting tiles”, but they did not explain how 
they did it. They just claimed, at the end of the resolution of the problem, that “one 
tile corresponds to a square metre”. In group E2, however, we found two examples 
of alternative procedures. One of the teams arranged the concert attendees along the 
vertical and horizontal of the playground (Fig. 23.1), and the other proposed to cal-
culate and approximate the playground’s surface area by counting in footsteps.

In problem B, the calculation of the surface area is carried out, in all cases, by 
performing measurements with Google Earth tools. In the resolution of this prob-
lem, we do not find important differences in the procedures carried out by both 
groups in obtaining the total area of Central Park. However, they did use different 
procedures to find the surface area covered in trees. Whilst some of the teams calcu-
lated the treeless area (more or less precisely), other teams made estimations.

We found differences in data processing-related procedures used by different 
teams. These procedures were, however, based on equivalent conceptual systems. 
Specifically, some of the students argued that they used population density to find 
the number of people in problem A, or trees in problem B, by multiplying it by the 
(usable) surface area. An illustrative example was the procedure developed by a 
team in group E1 who calculated the usable area by subtracting surface area of sev-
eral elements from the total area and multiplying the answer by the population den-
sity obtained from experimenting, which happens to be three people per square 
metre.

With the measure of the total space that can be used by peoople and supposing 
that in 1m  three people can fit, we w2 iill multiply this space by three people:
5100 314 240 200− − − – 88 4240

3 12720

2

2

− =
=>

m

personsper m persons approx.

This procedure was used by four out of the seven teams in group E1 in problem 
A but was used by only two out of six teams in group E2. Other procedures used to 
find the total number from population density were the use of proportions or reason-
ing based on the equivalence of fractions. Both these methods are minor in problem 
A (only one team of group E1 used it) and appear in three solutions for problem B.
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The students that used conceptual systems related to unit iterations based their reso-
lution on the surface area taken up by each person or tree and obtained the total amount 
by dividing the area of the premises by the surface area corresponding to the unit.

23.7  Results on Language Use

When focussing our attention on the language used by the students in both prob-
lems, we observed some notable differences between both groups. Some students in 
group E1 (who already had experience in the resolution of modelling problems) 
used pre-algebraic notation (see Fig. 23.2). This allowed them to obtain formulas 
that could be generalised (two out of seven teams in group E1 for problem A). 
However, we did not find this type of pre-algebraic language in the work of group 
E2.

Literal language was used by all teams in the solution of both problems. It was 
however used exclusively in 5 of the 12 solutions of problem B, whilst only one of 
the teams in group E1 solved problem A using only literal language. The rest of the 
solutions combined literal language with arithmetic language and, in some cases, 
with graphic language (diagrams) as in Fig. 23.3. Table 23.3 shows the frequency of 
the different types of language use detected for each problem. As indicated in this 
table, not all uses of pre-algebraic language allowed for generalisations.

23.8  Discussion

As noted in Gallart et al. (2015a), studies centred upon analysing different stages of 
the modelling cycle (e.g. Blum and Leiss 2007) provide tools to evaluate the perfor-
mance of students when facing modelling tasks based on the identification of the 
competencies that are activated during each of the stages of the solution process. In 
this chapter, we present as an alternative a tool to characterise the final mathematical 
models produced by the students, using the definition of mathematical model of Lesh 
and Harel (2003). The basis of the tool is the determination of conceptual systems, 
procedures and language types used by the students. From this perspective, we regard 
the tool proposed in this chapter as complementary to the analysis of the stages of the 
modelling cycle since it may allow researchers to develop an analysis of the output of 
modelling tasks. On the other hand, this analysis tool can be easily adapted to aid the 
evaluation of classroom modelling activities, as well as to come up with solution 
guidelines to help teaching staff in the preparation stage of such activities.

Formula. Total area – non used area . number of people/m2

Fig. 23.2 Solution to problem A provided by a team of group E1
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23.9  Conclusions

On the basis of our analytical results, we can state that Fermi problems require stu-
dents to elaborate models with a high level of detail. When analysing the characteri-
sation of the mathematical models collected from our classroom experience, we 
observe differences that can be linked to the learning of modelling processes (Gallart 
et al. 2015a). In previous studies, we have already analysed solution proposals of 
FPiBN (Albarracín and Gorgorió 2013, 2014). The tool presented in this chapter 
represents a step forward in the direction of characterising not only initial strategies 
but also the final products of the solution. Moreover, the analysis tool leads us to 
confirm the complexity of FPiBN, since their solution led students to use indirect 
arguments to find the solutions. Maaβ (2006, p. 115) notes that: “Modelling prob-
lems are authentic, complex and open problems which relate to reality”. Problem- 
solving and divergent thinking are required in solving them. Our analysis shows that 
FPiBN fit perfectly with this definition.

Specifically, the descriptive level attained allowed us to detect differences that 
showed that students with previous modelling experience tended to formulate mod-
els based on more complex concepts, using more rigorous measurement procedures 
and more elaborate mathematical languages, such as algebraic representations that 

Fig. 23.3 Solution to problem B provided by a team of group E1

Table 23.3 Types of language used in the solutions

Problem

Literal 
(exclusively)

Use of 
graphics

Arithmetic 
language

Pre-algebraic 
language

E1 E2 E1 E2 E1 E2 E1 E2

A 1 0 3 2 4 6 2 0
B 4 1 2 0 3 4 2a 2a

Note. aThe numbers marked correspond to use of algebraic language not allowing generalisation

23 Design and Implementation of a Tool for Analysing Student Products When They…



274

allow for the generalisation of models. We also observed differences regarding the 
conceptual systems used in the solution of both problems. Possibly, this may be due 
to the fact that working with population densities is more natural when dealing with 
a mass of people – that can conceptually fill or leave vacant a given volume – that 
are not a static mass, like trees are. However, we consider the proposed tool has 
room for improvement, especially with regard to the graphics and language used in 
problem solution. We consider the graphic products of the students deserve a more 
specific treatment than what we have developed in this study.
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Chapter 24
Implementing Modelling into Classrooms: 
Results of an Empirical Research Study

Jana Kreckler

Abstract A four-lesson teaching unit to foster global modelling competence (i.e. the 
ability to undertake a full modelling process and to possess the meta-knowledge of the 
procedure) in regular school lessons was developed and tested in an empirical study 
with 332 tenth grade German secondary school students. The goal of the study was to 
increase global modelling competence independently of influencing factors such as 
chosen topic of the teaching unit, gender and student report grades. Concerning 
increase in global modelling competence and motivation of students, hypotheses were 
formulated and analysed in a pre-post-designed research study. The results show a 
significant increase in the global modelling competence independent of grade and 
topic. Concerning motivation, no significant changes could be identified. The chapter 
is based on Kreckler (Standortplanung und Geometrie: Mathematische Modellierung 
im Regelunterricht. Springer Fachmedien, Wiesbaden, 2015).

Keywords Global modelling competence • Empirical study • Teaching unit • 
Secondary school • Competence increase • Motivation • Sustainability • Influencing 
factors

24.1  Introduction

Mathematical modelling is one of the important mathematical competences that 
students should gain and develop in school. This is, amongst others, explicitly men-
tioned in the German education standards (KMK 2003). To many teachers, it is 
unclear how to put this into practice and they feel insecure about teaching model-
ling. It is, therefore, essential to find appropriate didactical concepts and teaching 
units to effectively facilitate the modelling competences of our students in school.
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A didactical concept to foster modelling competences in regular school lessons 
was developed and tested in an empirical study with 332 students of tenth grade in 
German secondary schools. The goal of the study was to develop a teaching unit 
which helps to increase the global modelling competence independently of influ-
encing factors such as the chosen topic of the teaching unit and individual factors 
such as gender and report grades of the participating students. Based on the defini-
tion of modelling competence by Blomhøj and Jensen (2003), the focus of the study 
was laid on the global modelling competence, which was defined as the ability to 
undertake a full modelling process (i.e. to solve given modelling tasks) and to pos-
sess the meta-knowledge of the procedure. A four-lesson teaching unit was devel-
oped with a holistic and self-dependent approach based on results of the projects 
DISUM (Blum and Leiß 2007) and ERMO (Brand 2014), amongst others.

Concerning increase in the global modelling competence and motivation of the 
students during the four-lesson teaching unit, two hypotheses were formulated and 
analysed in a pre-post-designed research study. A follow-up test was also under-
taken 3 months after the teaching unit to test the sustainability of the acquired mod-
elling competence. The global modelling competence of the students was rated by 
an evaluation scheme of Siller et al. (2015). The theoretical background, the design 
and the results of the study will be presented in detail in the following sections.

24.2  Theoretical Background

When talking about mathematical modelling, we mean to understand, structure and 
solve real-world problem situations using mathematical tools and to recognize 
mathematics in reality (Blum and Leiß 2006). Mathematical modelling competence 
is demanded to be taught in schools by the curricula in many countries around the 
world. In the research study described in this chapter, we follow the definition of 
Blomhøj and Jensen (2003) who define “By mathematical modelling competence 
we mean being able to autonomously and insightfully carry through all aspects of a 
mathematical modelling process in a certain context” (p. 126). Mathematical mod-
elling competence can be divided into different sub-competences, often represented 
in so-called modelling cycles (see Blum and Leiß 2005). These sub-competences 
include to understand, simplify, mathematize and solve a given modelling problem, 
as well as to interpret and validate the obtained solution with reality.

In the research study described in this chapter, the main focus lay on the global 
modelling competence which was defined to be the ability to undertake a full model-
ling process and to possess the meta-knowledge of the procedure (Kreckler 2015). 
The modelling tasks developed for this study were designed following the quality 
features formulated by Blomhøj and Kjeldsen (2006) who state that a good model-
ling task should be understandable and reasonable, give an appropriate challenge 
for independent work, be authentic and include authentic data and be open for inter-
esting modelling results. It is, therefore, important that the tasks are real problems 
which were posed outside of school and that the data given is authentic, that is not 
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made up by the teacher. To be open for different modelling results, it is also impor-
tant for tasks to be formulated in an open way, such that different approaches can be 
chosen and lead to the use of different mathematical tools and solutions.

Looking at the implementation of modelling problems in regular school lessons, 
two main approaches can be identified (Blomhøj and Jensen 2003). In the holistic 
approach, the students work on complete modelling tasks, running through a full 
modelling process to find a solution. In the atomistic approach on the other hand, 
students work on separate tasks concerning the subprocesses of a modelling pro-
cess. Here, the sub-competences are practised individually.

Concerning the implementation of modelling problems, different research stud-
ies analysing the effects of modelling can be found. In a study by Gialamas et al. 
(1999), 97 students of 11th grade were divided into two groups, where one of the 
groups experienced lessons including modelling problems. The results showed sig-
nificantly higher achievements of the modelling group with respect to both reality- 
related and pure mathematical tasks. Similar results were obtained by Dunne and 
Galbraith (2003) who undertook a small case study with 23 students of eighth grade 
over a period of 1 year. As in the study of Gialamas et  al., the modelling group 
achieved higher results than the group which had not been working on modelling 
tasks.

In another study, the DISUM project (Blum and Leiß 2007), the benefit of self- 
dependent activities when working on modelling problems was empirically shown, 
as well as a supporting effect of a strategic instrument called solution plan. A solu-
tion plan was given to the students which helped them to solve modelling problems 
more efficiently. It is, therefore, essential to construct teaching units which give the 
students the opportunity to work self-dependently, that is, independently of the 
teacher. If problems arise when working on the tasks, different aids can support the 
learning process.

An empirical comparison of the holistic and the atomistic approach was under-
taken in the project ERMO (Brand 2014). The holistic group showed significantly 
higher achievements concerning both the competence fields “simplify/mathema-
tize” and “complete modelling”. Since in the research study (Kreckler 2015) 
described in the following sections the focus lays on the global or complete model-
ling competence, a holistic approach was chosen for the design of the teaching unit 
which will be described in the following.

24.3  Aims and Design of the Study

The aims of the designed teaching unit included:

 1. To integrate real-world problems into an ordinary mathematics class;
 2. To increase global modelling competence independently of influencing factors 

such as the chosen topic of the teaching unit, gender and report grades;
 3. To increase motivation with the help of real-world problems.

24 Implementing Modelling into Classrooms: Results of an Empirical Research Study
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With the development of a teaching unit that can act as a template to teach modelling 
for different topics and age groups, it was also aimed to overcome teacher- based 
difficulties such as large preparation times and insecurities concerning the imple-
mentation of modelling into classrooms. Due to another often mentioned obstacle, 
the lack of time to do modelling, a short four-lesson teaching unit was designed.

24.3.1  Teaching Unit

To fulfil the three aims named above, authentic modelling tasks from the field of 
location theory (a branch of the mathematical research field of optimization) were 
chosen for implementation of the teaching unit in the framework of this study. To 
foster the global modelling competence of the participating students, holistic mod-
elling tasks and self-dependent activities, that is group work, were used. This was 
based on, amongst others, the results of the projects mentioned above. Instructions 
and support were given step by step, from a guided to self-dependent learning.

Internal differentiation in class was realized by means of individual support 
given by the teachers who acted according to the principle of minimal help. This 
meant the teacher would interact and help the students only when they could not 
proceed on their own accord. Assistance was then given in a minimal way, starting 
with motivational help only. If this was not sufficient, the type of aid was increased 
slowly following the assistance levels formulated by Zech (1996), where the type of 
help increases from motivational help, feedback and general strategic help to more 
specific aid with regard to content.

The teaching unit designed consisted of four school lessons (length 45 min each) 
and was divided into two blocks of two lessons (see Fig. 24.1). In each block, stu-
dents worked on a task sheet consisting of one complete modelling task. The teach-
ing unit started with a very short introduction about the terms modelling and 
modelling problem. The students were then divided into groups of three to four 
students to work on the given modelling problem of the first task sheet. The model-
ling problem given in the first task sheet was accompanied by instructions of how to 
proceed in a modelling process to solve the problem. At the end of the first two- 
lesson block, a class discussion took place. Different approaches and results of the 
modelling tasks as well as the procedure to obtain a solution were discussed.

The second two-lesson block was structured in a similar way. Again, the students 
worked in groups on the modelling problem of the second task sheet, and in the end, 

Fig. 24.1 Structure of 
teaching unit (TS task 
sheet, IN introduction, GW 
group work, D discussion)
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a class discussion led to a summary of approaches, results and important steps in a 
modelling process. In contrast to the first task sheet, the second task sheet did not 
include instructions, only a modelling problem to be solved. The modelling 
 procedure learned from the first task sheet needed to be applied here. Figure 24.1 
gives an overview of the structure of the teaching unit.

The format of the two task sheets was developed in such a way that it can be used 
as a template for other real-world problems. Task sheet 1 always consists of one 
authentic modelling task as well as instructions on how to solve the modelling task 
step by step. The guidance given follows the steps of a modelling process and gives 
hints and tips concerning the specific problem:

 1. Define simplified assumptions to construct a real model. Tips: […]
 2. Mathematize the real model. Choose an appropriate mathematical description of 

the problem situation.
 3. Solve the problem in your mathematical model. Tips: […]
 4. Describe the strategy you used to solve the problem.
 5. Interpret your mathematical result relating to the original problem.
 6. Illustrate strengths and weaknesses of your model. Make suggestions for possi-

ble improvements.

Task sheet 2 also consists of one authentic modelling task, but no instructions or 
hints to solve the problem are given. This means that the students need to adapt and 
apply the procedure of how to solve a modelling problem (learned in task sheet 1) 
to a new problem on their own accord.

24.3.2  Study Design and Procedure

After developing the four-lesson teaching unit, two hypotheses were formulated:

 1. The global modelling competence of the students increases due to the four- lesson 
teaching unit, independently of gender, report grades and topic.

 2. The motivation of the students increases due to the four-lesson teaching unit.

In order to analyse these hypotheses, a pre-post-designed research study was chosen 
to measure the changes in motivation and the global modelling competence. An 
overview of the setup of the study design is given in the following.

To guarantee uniform implementation of the teaching unit by teachers, teacher 
professional development was provided at the beginning of the study. This prepared 
the teachers in a didactical, mathematical and organizational way for the realization 
of the teaching unit and the corresponding tests. The teachers then carried out a 
pretest, the four-lesson teaching unit and a post-test with their students. Afterwards, 
they met again for a review, to discuss the implementation and possible problems 
that appeared. Three months after the teaching unit, the students undertook a fol-
low- up test to test the sustainability of the acquired global modelling competence.

24 Implementing Modelling into Classrooms: Results of an Empirical Research Study
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The participants of the study consisted of 10 schools, 14 teachers and a total of 
332 students of tenth grade (aged 15 and 16), 155 male and 177 female students. 
The data collected included gender and the last report grade in mathematics of each 
student, a motivation questionnaire in the pre- and post-test and the global model-
ling competence in the pre-, post- and follow-up test.

The teaching unit was undertaken using two different topics. One half of the 
teachers implemented the teaching unit with the topic of “sales territories” (task 
sheet 1, sales territory of supermarkets in Kaiserslautern; task sheet 2, primary 
schools in Mannheim); the other half of the teachers used a topic of “bus and train 
stops” (task sheet 1, planning bus stops in Kaiserslautern; task sheet 2, train jour-
neys more attractive with additional stops).

The two task sheets of the first topic “sales territories” will now be described in 
more detail.

Task Sheet 1: Sales Territories of Supermarkets in Kaiserslautern

In the city of Kaiserslautern, the sales territories of the supermarkets in the 
town centre are analysed in the context of a market research study. In the town 
centre, there are six supermarkets, which are marked A, B, C, D, E and F in 
the given map. The sales territory of a supermarket x is defined as the area of 
all customers, which will probably go shopping at supermarket x. You are now 
asked to divide the given map into the sales territories of the six supermarkets. 
Proceed step by step!

Following this modelling task, the instructions shown in Sect. 24.3.1 were given, 
as well as a map of the town centre with the marked supermarkets.

Task Sheet 2: Primary Schools in Mannheim

The urban administration of Mannheim assigns a primary school to each 
schoolchild depending on their place of residence. Each child should visit the 
primary school closest to its home. In the given map of Mannheim, three 
schools A, B and C are marked. A characteristic feature of the town centre of 
Mannheim is that the streets are all parallel and perpendicular to each other. 
Task: Divide the town centre of Mannheim into school districts, indicating 
which residents are allocated to which school.

All tasks are formulated in an open way and are authentic real-world problems.
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24.3.3  Test Instruments

As the main focus of the study lies on the global modelling competence, a holistic 
approach was also chosen to test its change due to the teaching unit. The students 
were asked to solve one modelling task each in the pre-, post- and follow-up test:

 1. Pretest: Ice cream seller at the beach
 2. Post-test: Rescue helicopters
 3. Follow-up test: Cell towers

The pretest took place in the preceding lesson of the four-lesson teaching unit and 
marked the student’s individual starting level of the global modelling competence. 
The post-test took place in the lesson after the teaching unit, while the follow-up test 
happened 3 months after the teaching unit took place. Each time, the students were 
given a modelling problem to solve by themselves within 30 min. One task is given 
in the following.

Table 24.1 Competence level model

Level
Modelling competence
Meyer (2007) Siller et al. (2015)

1 Execution of an action, 
largely without reflective 
understanding

Implementing a representational change between context 
and mathematical representation. Using familiar and 
directly recognizable standard models for describing a 
given situation with appropriate decision.

2 Execution of an action by 
default

Describing the given situation by mathematical standard 
models and mathematical relationships. Recognizing and 
setting general conditions for the use of mathematical 
standard models.

3 Execution of an action after 
insight

Applying standard models to novel situations, finding a 
suitable fit between mathematical model and real situation.

4 Independent process control Complex modelling of a given situation; reflection of the 
solution variants or model choice and assessment of the 
accuracy or adequacy of underlying solution methods.

Rescue Helicopters

In the German Alps, one rescue helicopter is responsible for the five skiing 
regions Hochschwarzeck, Berchtesgaden, Obersalzberg, Rossfeld and Jenner. 
(A map was given to the students.) Since rescue missions need to be fast and 
efficient, a strategic reasonable location needs to be found for the base of the 
rescue helicopter. Where should the rescue helicopter be positioned? Explain 
your approach comprehensively.

The solutions of the students were classified by means of the four-step compe-
tence model of Siller et al. (2015), which is based on the general formulations of 
Meyer (2007); see Table 24.1. The achieved level of competence in each test was 

24 Implementing Modelling into Classrooms: Results of an Empirical Research Study



284

then compared for all students individually. An additional Level 0 “No constructive 
solution approach, no (reasonable) solution” was added in this research study to be 
able to calculate the change in the global modelling competence for all student solu-
tions handed in.

To analyse the change in motivation before and after the four-lesson teaching 
unit, a motivation questionnaire by Kuhn (2010) was used. This questionnaire con-
sists of several items which can be divided into three clusters, intrinsic motivation 
(nine items), self-concept (nine items) and correspondence to reality (eight items), 
and is rated on a scale from 1 (totally true) to 6 (not true). In the study described in 
this chapter, five additional items were added to the post-test:

 1. How interesting were the modelling problems?
 2. How difficult were the modelling problems?
 3. How realistic were the modelling problems?
 4. In your opinion, what did you learn while working on the modelling problems?
 5. Should tasks and topics as discussed during the last four lessons become part of 

mathematics lessons on a regular basis or would you reject this? Give reasons for 
your choice.

Questions 1–3 could be answered on a scale from 1 (very interesting/difficult/real-
istic) to 5 (not interesting/difficult/realistic at all). Questions 4 and 5 required an 
answer in a written sentence.

24.4  Results

All student solutions of the pre-, post- and follow-up tests were classified by two 
independent persons. Using these ratings, the inter-rater reliability was calculated. 
The values of the percentage agreement as well as Cohen’s kappa confirmed a uni-
form evaluation (see Table 24.2).

To verify hypothesis 1, which states that the global modelling competence 
increases due to the four-lesson teaching unit, a t-test was undertaken. The signifi-
cance test with paired samples, a significance level of α = 1% and a critical value of 
t1−α,q = 2.326 (q > 120), delivered very significant results. The empirical values of t 
(pre-post, t = 21.115; pre-follow-up, t = 17.425) showed a significant increase in the 
global modelling competence from pre-, to post- and follow-up test. The increase of 
the global modelling competence from pre- to post-test can also be seen in more 
detail in Table 24.3. An increase in the competence level by −1 represents students 
who became worse by one competence level, 0 represents students who kept a con-

Table 24.2 Values of 
inter-rater reliability

Test % agreement Cohen’s kappa

Pretest 89 0.715
Post-test 93 0.872
Follow-up 
test

88 0.712
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stant level and increases of 1, 2 and 3 represent those students who became better by 
the respective number of competence levels.

Comparing the increase of each student from pre- to follow-up test, a sustainable 
increase could be identified. A total of 171 students (70.1%) was able to maintain their 
competence level even 3 months after the four-lesson teaching unit had taken place.

Concerning the increase in the global modelling competence of each student, 
three influencing factors (gender, topic of the teaching unit and last report grades in 
mathematics) were also analysed. No differences were seen concerning topic 1 and 
topic 2, as well as the report grades. Concerning the gender of the students, minor 
differences could be identified. Still, the distributions of their increase in the global 
modelling competence look alike (see Fig. 24.2).

Analysing the changes in motivation of the students from pre- to post-test, the 
t-test and a regression analysis with the coefficient of determination R2 showed no 
significant changes. Hence, no increase or decrease in motivation was detectable. 
Finally, the open question asked in the post-test, if tasks and topics discussed during 
the last four lessons should become part of mathematics lessons on a regular basis, 
was answered with “yes” by nearly two thirds of the students (63.5%).

24.5  Summary

A four-lesson teaching unit to foster global modelling competence in tenth grade 
was developed based on a holistic and self-dependent approach. The teaching unit 
was analysed in an empirical research study with 332 students of tenth grade. The 

Table 24.3 Increase of 
global modelling competence 
from pre- to post-test

Increase Quantity Percentage

−1 6 2.1
0 71 24.6
1 144 49.8
2 65 22.5
3 3 1.0

Fig. 24.2 Comparison of the increase in the global modelling competence for the genders
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focus of the study was on the global modelling competence as well as the motiva-
tion of the students. Hypothesis 1 was confirmed, that is, the global modelling com-
petence increased (sustainably) due to the four-lesson teaching unit (concerning 
problems from the authentic field of location theory). The increase took place inde-
pendently of the influencing factors grade and topic, while minor differences could 
be identified concerning the gender of the students. Hypothesis 2 was not confirmed; 
no significant changes in motivation were detectable. Further questions in the post- 
test showed that the authentic topics of the teaching units undertaken in the study 
were interesting and realistic in the opinion of the students. Additionally, nearly two 
thirds of the students wanted to participate in modelling tasks more often.

References

Blomhøj, M., & Jensen, T.  H. (2003). Developing mathematical modelling competence: 
Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 
22(3), 123–139.

Blomhøj, M., & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work. 
Zentralblatt für Didaktik der Mathematik, 38(2), 163–177.

Blum, W., & Leiß, D. (2005). “Filling Up” – The problem of independence – Preserving teacher 
interventions in lessons with demanding modelling tasks. In M.  Bosch (Ed.), CERME 4–
Proceedings of the Fourth Congress of the European Society for Research in Mathematics 
Education (pp. 1623–1633). Sant Feliu de Guíxois: FUNDEMI IQS – Universitat.

Blum, W., & Leiß, D. (2006). Beschreibung zentraler mathematischer Kompetenzen. In W. Blum, 
C.  Drüke-Noe, R.  Hartung, & O.  Köller (Eds.), Bildungsstandards Mathematik: konkret 
(pp. 33–50). Berlin: Cornelsen Scriptor.

Blum, W., & Leiß, D. (2007). Investigating quality mathematics teaching: The DISUM project. In 
C. Bergsten & B. Grevholm (Eds.), Proceeding of MADIF-5 (pp. 3–16). Linköping: SMDF.

Brand, S. (2014). Erwerb von Modellierungskompetenzen – Empirischer Vergleich eines holis-
tischen und eines atomistischen Ansatzes zur Förderung von Modellierungskompetenzen. 
Wiesbaden: Springer Fachmedien.

Dunne, T., & Galbraith, P. (2003). Mathematical modelling as pedagogy – Impact of an immersion 
program. In Q. Ye, W. Blum, K. Houston, & Q. Jiang (Eds.), Mathematical modelling in educa-
tion and culture (pp. 16–30). Chichester: Horwood.

Gialamas, V., Karaliopoulou, M., Klaoudatos, N., Matrozos, D., & Papastavridis, S. (1999). Real 
problems in school mathematics. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference 
of the international group for the Psychology of Mathematics Education (Vol. 3, pp. 3–25). 
Haifa: Technion.

KMK. (2003). Bildungsstandards im Fach Mathematik für den mittleren Schulabschluss. 
Kultusministerkonferenz.

Kreckler, J.  (2015). Standortplanung und Geometrie: Mathematische Modellierung im 
Regelunterricht. Wiesbaden: Springer Fachmedien.

Kuhn, J.  (2010). Authentische Aufgaben im theoretischen Rahmen von Instruktions- und Lehr- 
Lern- Forschung: Effektivität und Optimierung von Ankermedien für eine neue Aufgabenkultur 
im Physikunterricht. Wiesbaden: Vieweg + Teubner.

Meyer, H. (2007). Leitfaden Unterrichtsvorbereitung. Berlin: Cornelsen Scriptor.

J. Kreckler



287

Siller, H.-S., Bruder, R., Hascher, T., Linnemann, T., Steinfeld, J., & Sattlberger, E. (2015). 
Competency level modelling for school leaving examination. In K. Krainer & N. Vondrová 
(Eds.), Proceedings of the ninth Conference of the European Society for Research in 
Mathematics Education (pp.  2716–2723). Prague: Charles University in Prague, Faculty of 
Education and ERME.

Zech, F. (1996). Grundkurs Mathematikdidaktik. Weinheim: Beltz Verlag.

24 Implementing Modelling into Classrooms: Results of an Empirical Research Study



289© Springer International Publishing AG 2017 
G.A. Stillman et al. (eds.), Mathematical Modelling and Applications, 
International Perspectives on the Teaching and Learning of Mathematical 
Modelling, https://doi.org/10.1007/978-3-319-62968-1_25

Chapter 25
A Commognitive Perspective on Pre-service 
Secondary Teachers’ Content Knowledge 
in Mathematical Modelling

Joo Young Park

Abstract This exploratory study examined three pre-service secondary mathemat-
ics teachers’ content knowledge and views associated with mathematical modelling 
revealed through engaging in mathematical modelling activities. Using a commog-
nitive approach on mathematical modelling, pre-service teachers’ written tasks and 
discourses were analysed. Data sources were audiotaped discourses among the par-
ticipants, observation field notes, written tasks, open-ended questionnaires, and 
reflective journals. Findings suggested that pre-service teachers’ content knowledge 
in the modelling allowed them to fully engage in modelling discourses in verifying 
a model mathematically as well as critically reflecting on solutions. These pre- 
service teachers’ view on modelling was consistent with a pragmatic perspective.

Keywords Commognition • Pre-service teachers • Subject content knowledge • 
Modelling competencies • Views on mathematical modelling • Modelling process

25.1  Introduction

The Common Core State Standards for Mathematics (CCSSM) in the USA 
(NGACBP and CCSSO 2010) calls for emphasis on mathematical modelling. The 
modelling standard appears in each of the other five high school standards of math-
ematical content and is one of the eight standards for mathematical practice. 
Although curricula can provide students with opportunities to learn mathematical 
modelling, it is indisputable that how students acquire modelling skills relies on the 
quality of classroom instruction. Studies have suggested that teachers require, 
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besides other aspects, knowledge about several steps of the modelling process; oth-
erwise the criteria of quality teaching of modelling cannot be fulfilled (Blum 2011; 
Borromeo Ferri 2014). Hence, mathematics teacher educators are challenged with 
preparing teachers to understand the intricacies of mathematical modelling.

Within CCSSM, modelling is defined as “the process of choosing and using 
appropriate mathematics and statistics to analyse empirical situations, to understand 
them better, and to improve decisions” (NGACBP and CCSSO 2010, p. 72). Among 
studies on teachers’ conception of mathematical modelling, Kaiser and Maaβ (2007) 
found that some teachers viewed mathematical modelling as the process of creating 
opportunities for developing solutions, while others focused on the establishment of 
formulas. These different conceptions can lead to a particular emphasis on how mod-
elling is taught in classrooms (Kaiser and Maaβ 2007).

As curriculum reform has also called for fostering collaborative learning envi-
ronments to support students’ learning mathematics, modelling can be used as a 
way to facilitate this type of learning environment (Escalante 2010; NCTM 2000). 
A commognition framework (Sfard 2008) has been shown to provide a lens for ana-
lysing inter-intrapersonal communication in both social and cognitive dimensions 
of modelling (Ärlebäck and Frejd 2013).

This exploratory case study is an attempt to understand the nature of future 
teachers’ knowledge in the domain of mathematical modelling as well as their views 
on modelling by providing them with opportunities for experiencing mathematical 
modelling activities within a collaborative group. The underlying questions for this 
study are:

 1. How is the pre-service mathematics teachers’ content knowledge on mathemati-
cal modelling manifested while engaging in modelling activities within a group?

 2. How do pre-service mathematics teachers describe mathematical modelling and 
the role of modelling from a pedagogical perspective?

25.2  Theoretical Framework

25.2.1  Mathematical Modelling and Modelling Process

A framework developed by Galbraith and Stillman (2006) was designed to assess 
the modelling process, implementation and assessment of mathematical modelling 
tasks in the secondary classroom. This framework comprises elements of modelling 
activities that correspond to the respective stages of the modelling process for guid-
ing teachers, researchers, and curriculum designers to anticipate possible student 
blockages as they transit between the stages of the modelling process (Galbraith and 
Stillman 2006; Stillman et al. 2007).

The following is the framework for identifying potential sites for student block-
ages in transitions in the modelling process (Galbraith and Stillman 2006, p. 147):
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 1. Messy Real-World Situation → Real-World Problem Statement

 1.1 Clarifying context of problem
 1.2 Making simplifying assumptions
 1.3 Identifying strategic entities
 1.4 Specifying the correct elements of strategic entities

 2. Real-World Problem Statement → Mathematical Model

 2.1 Identifying dependent and independent variables for inclusion in an alge-
braic model.

 2.2 Realizing independent variable must be uniquely defined.
 2.3 Representing elements mathematically so formulae can be applied.
 2.4 Making relevant assumptions.
 2.5 Choosing technology/mathematical tables to enable calculation.
 2.6 Choosing technology to automate application of formulae to multiple cases.
 2.7 Choosing technology to produce graphical representation of model.
 2.8 Choosing to use technology to verify algebraic equation
 2.9 Perceiving a graph can be used on function graphers but not data plotters to 

verify an algebraic equation.

 3. Mathematical Model → Mathematical Solution

 3.1. Applying appropriate symbolic formulae
 3.2. Applying algebraic simplification processes to formulae to produce more 

sophisticated functions
 3.3. Using technology/mathematical tables to perform calculation
 3.4. Using technology to automate extension of formulae application to multiple 

cases
 3.5. Using technology to produce graphical representations
 3.6. Using correctly the rules of notational syntax (whether mathematical or 

technological)
 3.7. Verifying of algebraic model using technology
 3.8. Obtaining additional results to enable interpretation of solutions

 4. Mathematical Solution → Real-World Meaning of Solution

 4.1. Identifying mathematical results with their real-world counterparts
 4.2. Contextualizing interim and final mathematical results in terms of RW situ-

ation (routine complex versions)
 4.3. Integrating arguments to justify interpretations
 4.4. Relaxing of prior constraints to produce results needed to support a new 

interpretation
 4.5. Realizing the need to involve mathematics before addressing an interpretive 

question

 5. Real-World Meaning of Solution → Revise Model or Accept Solution

 5.1. Reconciling unexpected interim results with real situation

25 A Commognitive Perspective on Pre-service Secondary Teachers’ Content…
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 5.2. Considering real-world implications of mathematical results
 5.3. Reconciling mathematical and real-world aspects of the problem
 5.4. Realizing there is a limit to the relaxation of constraints that is acceptable 

for a valid solution
 5.5. Considering real-world adequacy of model output globally

This framework was used for unpacking pre-service teachers’ content knowledge in 
mathematical modelling while engaging in the modelling process.

25.2.2  Forms of Teachers’ Knowledge in Modelling 
Competencies

According to Shulman (1986), teachers’ knowledge areas are content knowledge, 
pedagogical content knowledge, general pedagogical knowledge, and knowledge of 
educational contexts, values and philosophies. This chapter focuses on content 
knowledge pertaining to mathematical modelling. The mathematical content knowl-
edge of pre-service mathematics teachers, elaborated by Bromme (1992) and 
Weinert (2001) based on Shulman’s (1986) framework, includes the required cogni-
tive activities such as modelling and mathematical content areas such as algebra or 
statistics (Kaiser et al. 2010). For each phase of the modelling process, the follow-
ing kinds of modelling competencies are distinguished (Kaiser et al. 2010): sub- 
competencies for carrying out a single phase of a modelling process like structuring 
a real-world situation including developing a mathematical model, or validation of 
a solution, and competence to reflect critically about already executed modelling. 
Groshong and Park (2016) suggest that teachers’ content knowledge in mathemati-
cal modelling consists of components of mathematical knowledge such as the 
breadth of mathematical content and skills as well as the application of necessary 
mathematics needed to solve mathematical modelling tasks and modelling knowl-
edge such as the scope of extra-mathematical knowledge required to solve mathe-
matical modelling tasks, knowledge of monitoring progression through the various 
modelling subprocesses and awareness of various mathematical modelling 
approaches.

25.2.3  The Commognitive Approach to Studying Learning

The commognition framework (Sfard 2008) provides a socio-cognitive lens to 
examine the learning processes. Within the framework, learning is viewed as a 
change in one’s mathematical discourse, and participants’ discourses are character-
ized by word use, visual mediators, routines, and endorsed narratives (Sfard 2008). 
Word use refers to participants’ use of mathematical vocabulary in their discourses. 
Visual mediators are “visual objects that are operated upon as a part of the process 
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of communication” (p. 133). The visual objects in mathematical discourse include 
graphs, symbols and diagrams. Routines are “a set of meta-rules that describe a 
repetitive discursive action” (p. 208). Narratives refer to any sequences of spoken or 
written utterances about mathematical objects and relations between objects that 
participants consider as true or false. Endorsed narratives are narratives that partici-
pants consider as true, which include definitions, axioms and theorems. With the 
commognitive approach, teachers’ content knowledge in mathematical modelling 
was examined through analysis of the participants’ discourses in each phase of the 
modelling process identified in the Galbraith and Stillman (2006) framework.

25.3  Methods

25.3.1  Procedure

Using the commognition framework, participants’ written tasks and discourses 
were examined during the modelling process. The participants for this study were 
pre-service secondary mathematics teachers (Jesse, Steve, and Mary) who enrolled 
in a required junior-level mathematics course in the undergraduate STEM (science, 
technology, engineering, and mathematics) education programme. As a new pro-
gramme, only three students enrolled in the course. Mary and Steve are mathemat-
ics majors, whereas Jesse is an interdisciplinary science major. Participants were 
juniors in the programme. The content course focused on functions and mathemati-
cal modelling. The class met twice a week for 75 min. Students worked on eight 
mathematical modelling tasks on functions during the course. The tasks were 
selected from Gould et al. (2012). This handbook was designed for teachers’ math-
ematical modelling instruction aligned with CCSSM (NGACBP and CCSSO 2010). 
The pre-service teachers engaged in mathematical modelling activities as a group 
and created modelling tasks for lesson plans as a final project. The lesson plans are 
not part of the analysis for this study.

Data sources for this study were audiotaped discourses among the participants, 
observation field notes, written tasks, open-ended questionnaires, and reflective 
journals. Participants’ written reports on modelling tasks also served as artefacts to 
be examined in detail for aspects of the modelling process discussed in class. All 
audiotaped data were transcribed for analysing discourses to examine the partici-
pants’ content knowledge in modelling as they passed through each modelling 
phase. After completing the modelling tasks, the pre-service teachers completed 
open-ended questionnaires and reflective journals about their modelling experi-
ences and views on teaching and learning mathematical modelling at the end of the 
semester. The following are some of the questions on the open-ended questionnaires 
and the reflective journal prompts: How do you define mathematical modelling? 
What is the purpose of teaching mathematical modelling? What is the goal of your 
mathematical modelling lesson? Describe the characteristics of the modelling tasks 
you designed.
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25.3.2  Modelling Task

The data comes from analysis of students’ work on a modelling task Bending Steel 
(Gould et al. 2012). The task consists of a leading question and a sequence of ques-
tions. Students worked on the Bending Steel task after having the mathematical 
modelling introduced and working on two exemplary modelling tasks at the begin-
ning of the semester.

Bending Steel
Railroads are a common source of transportation around the world. Because 
the tracks are made of metals (often steel), they expand and contract due to 
change in temperature and various problems arise. Suppose a section of track 
is fastened down at both ends. The natural process of heating and cooling 
causes the track to expand and contract. If the track length increases, but is 
nailed down at both ends, then the tracks should rise off the ground. The 
tracks may also expand outward along the ground, but this lesson focuses on 
the case where they expand upward. How can railroad designers design tracks 
that stay safely on the ground in all types of weather?

Bending Steel Sample Questions
The world’s longest railroad sections are about 120  m in length, or about 
400 ft, with the typical length in the USA less than 100 ft. Suppose in your 
city that temperature changes on average about 45 °F (25 °C) from a cold, 
winter day to a warm, summer day. If the track is 120 m in the winter, the 
climbing temperature and heat during the summer cause the tracks to swell 
and increase in length. The linear expansion coefficient, α, for steel is approx-
imately 0.000002 m per degree change in temperature (°C). Use this informa-
tion to determine how much the track expands in length between winter and 
summer. Convert your answer to feet and then to inches.

 (B) Draw a model of how you think the 400 ft track would look if its length 
expanded by the amount you found in question 1. Label all the known 
lengths.

 (C) What mathematical shape does your model most closely replicate? Use 
the properties of that shape to determine how high off of the ground the 
tracks rise in the summer. Is the result surprising or what you expected?

 (D) Based on real-life, physical models, it seems reasonable to model track 
expansion as the arc of a circle. Draw an arced model below, labelling the 
original straight length (a chord) and the new curved length. Extend the 
arc to draw the circle that contains it. Label the unknown radius, r, and 
central angle, θ, of the circle.

 (E) Using the identified values for the radius, r, and central angle, θ, that are 
required for an arced model of this situation, how high off the ground 
would the tracks rise? Is the result surprising or what you expected?
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25.4  Analysis and Results

25.4.1  Pre-service Teachers’ Content Knowledge 
in Mathematical Modelling

The following are excerpts from the transcripts of pre-service teachers’ conversa-
tion during modelling. With the commognition framework (Sfard 2008), pre-service 
teachers’ modelling process was analysed based on their use of words, visual medi-
ators, routines and endorsed narratives in mathematical and modelling discourse. 
The narratives were those discussed or endorsed during the modelling process. Each 
transition from one modelling phase to another was identified based on Galbraith 
and Stillman’s (2006) framework as seen in Tables 25.1, 25.2, 25.3, and 25.4.

In each transition during the modelling process, the mathematical routines were 
closed (Sfard 2008) by Mary’s endorsed narrative. Jesse and Steve’s narratives 
mainly reaffirmed or repeated routines. Jesse and Steve had difficulties in identify-
ing variables and finding an appropriate mathematical model related to trigonomet-
ric functions and the arc length during the transition from real-world problem 
situation to mathematical model. Mary’s endorsed narratives were based on her 
mathematical reasoning, and she was more flexible than the others in her use of 
mathematics in verifying solutions mathematically and critically reflecting on found 
solutions and models. Mary revised her model or equation through the instructor’s 
prompting question (e.g. arcsine function in Table 25.2), but she was able to prog-
ress through the various modelling subprocesses. Galbraith and Stillman’s (2006) 
framework was applied to identify teachers’ content knowledge displayed in each 
phase of the modelling process; however, the participants did not go through all 
subprocesses of each modelling phase for the Bending Steel task nor should they as 
which are relevant depends on the task and its implementation (Stillman et al. 2007).

Table 25.1 Real-world problem statement → mathematical model

Modelling process Words and visual mediators Routines
Endorsed 
narratives

2.3 Representing 
elements 
mathematically so 
formulae can be  
applied

Steve: “curve”, “the height” 
will be “measured” on the “a 
half of the arc”

Steve: Measured 
somewhere on the half 
of the ground

Instructor: Great

Jesse: “triangle”, <visual 
mediator>

Mary: Like a rubber 
ruler, bend it in the 
middle

Jesse: A half of 
the arc, divide 
by 2

Mary: “in the middle”, 
“isosceles”

Instructor: Does your 
model look like a 
familiar mathematical 
shape?

Mary: In the 
middle, isosceles

<Visual mediator>
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25.4.2  Pre-service Teachers’ Conception of Mathematical 
Modelling

From the participants’ completed open-ended questionnaires and reflective jour-
nals, the themes of narratives were revealed in terms of their conceptions of math-
ematical modelling, views on modelling tasks and role of mathematical modelling 
from a pedagogical perspective. Excerpts from the participants’ completed ques-
tionnaire and journals are displayed in Table 25.5.

All three participants’ conception of mathematical modelling involved a real- 
world situation/problem. The pre-service teachers’ views on modelling were consis-
tent with a pragmatic perspective (Pollak 1969), which focuses on the developing 

Table 25.2 Mathematical model → mathematical solution

Modelling process
Words and visual 
mediator Routines

Endorsed 
narratives

3.1 apply appropriate 
symbolic formulae

Mary: I do not know 
about “y”, “formula”

Instructor: What do you 
know about each 
variable?

<Visual mediator> Mary: that’s why we 
need one more equation

Mary [revised the 
formula]

Instructor: Do you want 
to try to use a different 
function?
Steve: The height goes up 
by 1.768 ft

Mary: The height 
is about 1.8 ft

Table 25.3 Mathematical solution → real-world meaning of solution

Modelling process
Words and 
visual mediator Routines Endorsed narratives

4.1 Identifying 
mathematical results 
with their real-world 
counterpart

Mary: “a huge 
number”. Since 
“x” is being 
squared and 
added 800x

Mary: It is not 
that far off

Since “x” is being squared and 
added 800x, for even a little 
expansion, it causes a great 
increase in height [from Mary’s 
written task].

4.2 Contextualizing 
interim and final 
mathematical results in 
terms of RW situation

Mary: The 
length 
increases by 
1,000 but then 
the height 
increases a half 
of foot

Mary: The arc will look a lot 
closer to the axis than what we 
have drawn. The smaller the arc 
is the more like a triangle it 
looks [sic]. Versus, if the arc is 
bigger, and there is a triangle, 
that’s where the missing space 
is.

4.3 Integrating 
arguments to justify 
interpretations
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Table 25.4 Real-world meaning of solution → revise model or accept solution

Modelling process
Words and visual 
mediators Routines Endorsed narratives

5.2 Considering 
real-world 
implications of 
mathematical results

“The arc”, 
“triangle”, 
“triangular 
model”, “the arc 
model”

Instructor: 
Which of the 
models do you 
think works 
better and why?

Steve: More accurate.

5.3 Reconciling 
mathematical and 
real-world aspects of 
the problem

“Curvature” of the 
circle, “straight”

Steve: Easier. Mary: It is not rising up like a 
triangle, that is not how nature 
works, nature works like round 
figures. The triangle will go 
above the circle. It would not 
be inside the circle. Because 
the curvature of the circle 
makes up a lot more feet than 
the line. Line is more direct.

Table 25.5 Pre-service teachers’ views on modelling

Questions Excerpts from participants’ responses to journals and a questionnaire

Conception of 
modelling

Real-world situation that can be described using mathematical 
languages. (Jesse)
Representing graphical or numerical equation that can assist you to 
solve real-life problem. (Steve)
Mathematical representation of data or situation that simplifies 
real-world problem. (Mary)

Views on mathematical 
modelling tasks

Modelling tasks required high-ordered thinking and outside box. 
(Jesse)
Good modelling problems give freedom for students to make their 
own assumptions like real-life problems instead of giving all 
information or mathematical equations. (Steve)
It has to be realistic. (Steve)
Open-ended and challenging. (Mary)
Requires deep understanding of mathematics and go through 
modelling process. (Mary)

The goal of teaching 
mathematical modelling

Learn how to do mathematical modelling, they see how mathematics 
fits into their daily lives, how you can solve problems quickly and 
efficiently through mathematical angle. (Jesse)
Use their knowledge in a different situation to solve a real-world 
problem. The goal is for students to find mathematics in order to 
solve a real-world problem and discover relations as well as come up 
with a model to represent the problem. (Steve)
Help people to solve real-world problems since you have to make 
your assumptions and decisions in life, not like mathematics 
textbooks. (Mary)

25 A Commognitive Perspective on Pre-service Secondary Teachers’ Content…



298

ability of learners to apply mathematics to solve practical real-life problems (Kaiser 
and Sriraman 2006). The participants’ common goal of teaching modelling was 
helping students to learn how to do mathematical modelling and solve real-world 
problems, which is a similar approach to the modelling as content approach where 
modelling is content in its own right (Galbraith and Stillman 2006). The purposes of 
the approach are to develop students’ abilities to apply mathematics to problems in 
their world taking mathematics beyond the classroom and to use the real-world 
context as a key component (Galbraith and Stillman 2006).

As the participants started with a structured series of questions before encounter-
ing the messy real-world situation with the leading question of the Bending Steel 
task, the analysis for this study did not capture how pre-service teachers use contex-
tual knowledge to simplify from the messy real-world situation to real-world prob-
lem statement. The commognitive perspective highlights how cognitive and social 
aspects are manifested in modelling activities. Participants’ word use and endorsed 
narratives indicate their lack of modelling experience when simplifying a model 
from the real-world situation and verifying a model mathematically. Generalization 
of the results from this study is neither intended nor possible; however, the study 
gives insights into  the nature of pre-service teachers’ mathematical modelling 
knowledge and conceptions of mathematical modelling and demonstrates  a new 
linking of analytical tools. Further study will examine how pre-service teachers’ 
pedagogical content knowledge of content and students and its relationship with 
other areas of teachers’ knowledge of mathematical modelling are manifested dur-
ing their modelling instruction.

References

Ärlebäck, J. B., & Frejd, P. (2013). Modelling from the perspective of commognition-an emerging 
framework. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathemati-
cal modelling: Connecting to research and practice (pp. 47–56). Dordrecht: Springer.

Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In 
G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning 
of mathematical modelling (pp. 15–30). Dordrecht: Springer.

Borromeo Ferri, R. (2014). Mathematical modelling—the teacher’s responsibility. In A. Sanfratello 
& B. Dickmann (Eds.), Proceedings of conference on mathematical modelling (pp. 26–31). 
New York City: Teachers College of Columbia University.

Bromme, R. (1992). Der Lehrer als Experte. Zur Psychologie des professionellen Lehrerwissens. 
Göttingen: Hans Huber.

Escalante, C. (2010). Secondary teachers learn and refine their knowledge during modeling 
activities in a learning community environment. In R. Lesh, P. L. Galbraith, C. R. Haines, & 
A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 459–469). 
New York: Springer.

Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transi-
tions in the modelling process. ZDM Mathematics Education, 38(2), 143–162.

Gould, H., Murray, D. R., Sanfratello, A., & Columbia University, & Consortium for Mathematics 
and Its Applications (U.S.). (2012). Mathematical modeling handbook (pp. 115–122). Bedford: 
COMAP.

J.Y. Park



299

Groshong, K., & Park, J. (2016). Examining secondary mathematics teachers’ mathematical mod-
eling content knowledge. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings 
of the 38th annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (pp. 1682–1688). Tucson: University of Arizona.

Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classrooms – problems 
and opportunities. In W.  Blum, P.  L. Galbraith, H.-W.  Henn, & M.  Niss (Eds.), Modelling 
and applications in mathematics education: The 14th ICMI study (pp. 99–108). New York: 
Springer.

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling. 
ZDM Mathematics Education, 38(3), 302–210.

Kaiser, G., Schwarz, B., & Tiedemann, S. (2010). Future teachers’ professional knowledge on 
modelling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ 
mathematical modeling competencies (pp. 433–444). New York: Springer.

National Council of Teachers of Mathematics. (2000). Principles and standards for school math-
ematics. Reston: NCTM.

National Governors Association Center for Best Practices, Council of Chief State School Officers 
[NGACBP & CCSSO]. (2010). Common core state standards for mathematics. Washington, 
DC: National Governors Association Center for Best Practices, Council of Chief State School 
Officers.

Pollak, H. (1969). How can we teach applications of mathematics? Educational Studies in 
Mathematics, 2, 393–404.

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and 
mathematizing. Cambridge: Cambridge University Press.

Shulman, L.  S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4–14.

Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in imple-
menting mathematical modelling in the secondary classroom. In J.  Watson & K.  Beswick 
(Eds.), Proceedings of 30th annual conference of Mathematics Education Research Group of 
Australasia (pp. 688–707). Adelaide: MERGA.

Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. 
Salganik (Eds.), Defining and selecting key competencies (pp. 45–66). Göttingen: Hogrefe.

25 A Commognitive Perspective on Pre-service Secondary Teachers’ Content…



301© Springer International Publishing AG 2017 
G.A. Stillman et al. (eds.), Mathematical Modelling and Applications, 
International Perspectives on the Teaching and Learning of Mathematical 
Modelling, https://doi.org/10.1007/978-3-319-62968-1_26

Chapter 26
Mathematics Teachers’ Learning 
at the Boundaries of Teaching and Workplace

Giorgos Psycharis and Despina Potari

Abstract This chapter describes how novice and experienced mathematics teach-
ers integrate authentic workplace contexts into mathematics teaching. This goal was 
inspired by the European MaSciL project and introduced to the teachers in the con-
text of a masters programme in mathematics education. Under an Activity Theory 
perspective, we use the notions of activity system and boundary crossing to study 
the process of teachers’ professional learning. In particular, we analyse teachers’ 
boundary crossings between two activity systems: mathematics teaching and work-
place. Results indicate that collaborative task design and reflection made teachers 
combine elements from the workplace into mathematics teaching. Different ways of 
linking reality and mathematics teaching were identified in the modelling process in 
which the students were asked to be engaged.

Keywords Activity system • Boundary crossing • Workplace mathematics • 
Teacher education • Professional learning

26.1  Introduction

The introduction of teaching innovations is a central feature of mathematics teacher 
education programmes. Watson and Mason (2007) report innovations in such pro-
grammes that engage prospective and practicing teachers in using research to 
design, analyse, try out and reflect on the use of tasks with learners. An emerging 
research area is the exploitation of realistic contexts in mathematics teacher educa-
tion and the modelling process (e.g. Doerr 2007; Daher and Shahbari 2015). The 
workplace has not yet been such a context for many research studies, but those that 
exist indicate potential benefits for teachers of linking the workplace to education. 
For instance, Nicol (2002) found that a teacher education programme including 
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visits to workplace sites helped prospective teachers keep mathematics contextual-
ised when designing student activities. To this end, Triantafillou et al. (2016) studied 
how practicing teachers integrated workplace activity into mathematics teaching 
identifying facilitating or hindering factors. Approaches of this type introduce new 
sites of activity that challenge teachers to move within and between different prac-
tices, involving them in crossing boundaries created by different contexts (Akkerman 
and Bakker 2011). A key challenge then is to support teachers make links between 
these contexts and address their professional learning. Research focusing on the use 
of mathematics in the workplace indicates that school mathematics practices and 
workplace practices differ substantially (Hoyles et  al. 2010). Nevertheless, the 
workplace context has potential for offering authentic situations that provoke 
problem- solving and modelling (Wake 2014).

Our study is inspired by the philosophy of the MaSciL project,1 which provides 
the context for introducing innovative teaching approaches to teachers. Project 
MaScil aims to promote the integration of inquiry-based learning (IBL) and the 
world of work (WoW) into teacher education and professional development. The 
actions taken to achieve these goals included task design based on non-routine 
workplace situations, the development of communities of teachers and teachers’ 
engagement in designing, implementing and reflecting on mathematics teaching. In 
this chapter, we use the Activity Theory (ΑΤ) and the construct of boundary cross-
ing to study the process of teachers’ professional learning when they are challenged 
to link mathematics teaching to the workplace through modelling.

26.2  Theoretical Considerations

In this section, we first discuss our perspective on the relation between workplace 
and modelling and then provide a short description of the main constructs we use 
from AT and boundary crossing.

26.2.1  Workplace and Modelling

Workplace contexts offer rich situations for mathematical modelling. Kaiser et al. 
(2013) describe a variety of modelling activities that have been designed and used 
in upper secondary mathematics classrooms on the basis of realistic everyday and 
workplace contexts. Professionals in workplace settings are involved in modelling, 
problem-solving and mathematical processes especially in situations where 

1 MaSciL: Mathematics and Science for Life project (see www.Mascil-project.eu) was funded by 
the European Union seventh Framework Programme (FP7/2007–2013) under grant agreement no. 
320693. This chapter reflects only the authors’ views, and the European Union is not liable for any 
use that may be made of the information contained herein.
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instruments and technological devices break down (Pozzi et  al. 1998). Trial and 
error, logical exclusion, reasoning and justification, visual inspection and self-mon-
itoring are some examples of processes that are central in workplace mathematical 
activity (Triantafillou and Potari 2010). In these processes, professionals’ actions 
are mediated by a number of conventions and inscriptions (Noss 2002). Although 
the variety of processes and tools used and developed in a workplace are essential 
elements of the modelling process, transforming authentic workplace situations in 
the classroom for engaging students in mathematical modelling is a complex pro-
cess. Wake (2015) considers, from an epistemological point of view, the differences 
between modelling in the workplace and modelling in the mathematics classroom. 
He points out that in the workplace, a focus on context often deprives the visibility 
of the underlying mathematics, while the opposite occurs in school. Thus, in the 
modelling cycle, the initial stage of developing a model of the reality is crucial, and 
it requires a particular attention to mathematics teaching. Wake (2015) elaborates 
further how to facilitate the coupling of reality and mathematics in classroom con-
texts by suggesting that learners need support to develop critically and mathemati-
cally informed models of complex realities, to construct and deconstruct real and 
mathematical models of complex situations and to understand how the structure of 
models of workplace realities relate to the models of their mathematical counter-
parts. This perspective is also in the philosophy of MaSciL where teachers are 
encouraged to attribute to their students the role of the professional who faces a 
complex reality. In our study, we are interested in the interplay between workplace 
and mathematics teaching in the teachers’ attempt to integrate workplace into their 
didactical designs, classroom implementations and reflections. The chapter is pri-
marily focused on the teachers’ moves horizontally back and forth in workplace 
situations or contexts so as to see how they can be represented mathematically (hori-
zontal mathematisation). Existing research in mathematics teacher education and 
modelling shows that, although teachers’ understanding of mathematical modelling 
can evolve through designing, implementing and reflecting on modelling activities, 
the link between mathematical modelling and ‘real-life’ contexts in teachers’ work 
requires more research (Anhalt and Cortez 2016).

26.2.2  Activity Theory and Boundary Crossing

The activity system is a basic concept of AT in Engeström’s (2001) approach. It is 
collective and tool-mediated, and it needs a motive and an object. Individual and 
group actions are studied and interpreted against the background of entire activity 
systems. Activity systems are transformed through contradictions when a new ele-
ment comes from the outside. Transformations of activity systems are related to 
interventions that take place and describe phenomena of developmental character. 
In our study, the focus is on developments in teachers’ mathematics teaching in the 
context of teacher education. Under Engestrom’s (1999) perspective, teachers’ pro-
fessional learning can be seen as expansive learning emerging “as practitioners 
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struggle through developmental transformations in their activity systems” (p.  7). 
This learning approach entails a re-conceptualisation of development as a horizon-
tal movement across borders.

Figure 26.1 shows a representation of a third-generation activity in the form of 
two interacting activity systems. The two triangles indicate the basic dimensions of 
the second-generation AT with elements: the subject and the object of the activity 
that is constructed through the mediation of tools, the community in which the sub-
ject participates and its rules and the division of labour. Object 1 moves from an 
unreflected and situational given goal to a collectively meaningful object con-
structed by the activity system (object 2) and to a potentially shared or jointly con-
structed object (object 3). In the present study, we distinguish two activity systems: 
the system of mathematics teaching in which the teachers have been involved and 
the system of the workplace supported by the MaSciL philosophy.

The third-generation of AT considers learning emerging in dynamic movements 
between interacting activity systems. This draws our attention to the metaphor of 
boundary crossing (Suchman 1994). We adopt the view of Akkerman and Bakker 
(2011) for boundaries as “sociocultural differences that give rise to discontinuities 
in action and interaction” (p. 139). People who cross boundaries are often called 
boundary crossers, while a boundary object is a single object that has different 
meanings in several intersecting worlds but retains a common essence. Boundary 
crossing has been conceived as the efforts of individuals or groups at boundaries to 
establish or restore continuity in action or interaction across practices (cf. Bakker 
and Akkerman 2014). Boundary crossing between activity systems has been seen as 
a way to address learning through four learning mechanisms: identification, coordi-
nation, reflection and transformation (Akkerman and Bakker 2011). These mecha-
nisms concern the different ways in which learning can occur when people interact 
with, move across and participate in different practices:

 1. Identification: Boundary crossing can lead to a renewed insight into what the 
different practices concern.

 2. Coordination: Boundary crossing can also lead to establishing minimal routine 
exchanges between two practices so as to facilitate transitions.

Fig. 26.1 Interacting activity systems (Engeström 2001, p. 136)
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 3. Reflection: Reflection involves going deeper into the specificities of two prac-
tices and learning to consider one practice by taking on the perspective of the 
other practice.

 4. Transformation. Transformation leads to changes in practices or even the cre-
ation of a new practice that stands between the established ones.

Little attention has been given to how boundary crossing can be embedded into 
mathematics teacher education as a way to study teachers’ professional learning at 
the boundaries of multiple practices except for the Wake et al. (2016) study. In the 
present study, we analyse the interaction of two activity systems focussing more 
closely on boundary crossing between these systems in order to study the teachers’ 
professional learning in relation to integrating workplace contexts into mathematics 
teaching.

26.3  Methodology

26.3.1  The Participants

The study participants were mathematics teachers following a masters course that is 
part of a 2-year masters programme in mathematics education at the University of 
Athens. Experienced and novice mathematics teachers participated in the course. 
The experienced teachers came from lower and upper secondary schools, and their 
teaching experience ranged from 2 to 20 years. The novice teachers were mainly 
offering private tuition to students to help them with school mathematics. During 
two academic years (2013–2015), we (as teacher educators) introduced the work-
place as a context for task design in the spirit of MaSciL. We encouraged teachers 
to use MaSciL classroom tasks or develop their own as part of their teacher educa-
tion activities. Twenty teachers (13 novice and 7 experienced) worked in groups of 
two to four with MaSciL tasks or others in the same spirit.

26.3.2  The Course and Tasks

The course lasted 13 weeks with weekly sessions of 4 h. The main goals were to 
support teachers to link research findings and actual teaching, exploit different 
resources (e.g. digital tools, videos) in their didactical designs and explore the role 
of context and tools in students’ conceptual understanding. In the course, we ini-
tially introduced IBL and WoW (e.g. by presenting research findings from the cor-
responding literature) and engaged teachers in the cycle of 
design-implementation-analysis-reflection. This cycle began with selecting a 
MaSciL task or designing an IBL task connected to the WoW. Then participating 
teachers were asked to read research papers in mathematics education related to 
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IBL, WoW and students’ understanding of specific mathematics concepts related to 
the task. After this, teachers used the task in the classroom and analysed students’ 
modelling process with an emphasis on the role of the workplace context and tools. 
Finally, teachers reflected on task design and use in teaching and linked emergent 
issues with existing research. Teachers’ designs were discussed during the course 
and the analysis of the interventions, and teachers’ reflections were presented in the 
final course session.

Here our focus is on one teacher group. It consisted of two experienced teachers 
(Elie and Natasa) and one novice (Manos) who designed the task Fuel Station in the 
context of the course. In this task, the students take the role of a worker (Giorgos) 
who supervises a fuel supply company’s filling of cylindrical tanks with petrol at a 
fuel station (Fig. 26.2). In this scenario, an employee from the fuel delivery com-
pany fills an empty petrol tank and claims that the amount needed to fill that tank 
was 7000 l. This is the value that also appears on the supply company’s counter. 
Giorgos must then verify whether this amount is correct by immersing a scaled (in 
cm) stick from the top of the tank and taking a measure corresponding to the liquid 
level. The students explore how Giorgos can do the calculation.

26.3.3  Data Collection and Analysis

The data consisted of (1) teachers’ written accounts/journals in which they described 
their design rationales and implementation experiences, (2) produced artefacts 
(worksheets, microworlds, etc.), (3) teachers’ PowerPoint presentations, (4) selected 
videos of discussions that took place in the courses and (5) selected teacher inter-
views. For the analysis, we adopted first a broad, data-grounded approach (Strauss 
and Corbin 1998) focussed on the group’s actions and goals related to each activity 
system. At a second level, we looked for emerging interactions of these systems and 
of their objects taking into account boundary crossing and the corresponding learn-
ing mechanisms.

Fig. 26.2 The cylindrical 
tank at the fuel station

G. Psycharis and D. Potari



307

26.4  Results

26.4.1  The Two Activity Systems

In Table 26.1, we present an analysis of the two activity systems in which the teacher 
educators intentionally encouraged the teachers to engage.

26.4.2  Boundary Crossing in the Group

The teachers referred mainly to the elements of the activity system of the work-
place. The group’s attention was primarily on the ways that an authentic situation 
could be transformed into a school task. Manos proposed the initial idea for Fuel 
Station, as he had been working part-time at a fuel station at the time. As he put it in 
his interview:

I knew that the exact amount of fuel in the station is measured through the use of a scaled 
stick and ready-made table of values providing the output given the input … We needed to 

Table 26.1 Analysis of the activity systems of mathematics teaching and the workplace

Elements Mathematics teaching The workplace

Subject Teachers (the members of 
the group)

Workers (employees at a fuel station)

Object Design and implement a 
classroom intervention 
integrating IBL/WoW

Carrying out efficiently their professional tasks 
(e.g. serve clients with fuel)

Tools Curriculum, textbooks, 
teachers’ and classmates’ 
experiences, MaSciL tasks 
and MaSciL philosophy

Artefacts developed and used in the workplace 
(e.g. scaled stick for measuring fuel)

Community Community of teachers Workplace community
Rules Teachers design tasks on 

the basis of their teaching 
expertise.

Tasks fulfil needs of the workplace at an 
operational level.

Tasks are mainly of closed 
type and used for 
practising specific skills.

Tasks are often based on black-boxing 
processes. It is difficult to unpack the hidden 
mathematics.

Students mainly listen to the 
teacher, respond to their 
questions and work 
individually.

Workers work individually/collaboratively to 
achieve a context-bounded outcome.

Division of 
labour

The teacher designs 
lessons individually by 
implementing the 
curriculum. This work is 
not shared with others.

The workers’ goal-oriented activity is focussed 
on performing assigned tasks. The workplace 
production is evaluated by their supervisor(s).

26 Mathematics Teachers’ Learning at the Boundaries of Teaching and Workplace
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find ways to connect this reality to the school mathematics…Our intention was to see if a 
design based on an authentic practice would work in a 9th grade class. (Manos’s 
interview)

The teachers decided to implement their task in lower secondary schools where the 
group’s practicing teachers were working at that time. Thus, an additional challenge 
to be addressed was how to connect the authenticity of the situation to students’ 
prior knowledge. For this, they first analysed task potential to support the connec-
tion to the workplace and explored the mathematics underlying the filling of a cylin-
drical tank (i.e. in terms of functional dependency). The teachers simplified the real 
context by engaging students in a task where they had to explore how the volume of 
a cylindrical tank in a vertical position changes in relation to its height. They 
expected this real model was easier for the students to mathematize as they had the 
relevant mathematical knowledge (e.g. calculation of volume of a cylinder, propor-
tional relations). Then, they challenged the students to consider the same problem 
when the cylindrical tank was horizontal as in the authentic situation. For this they 
simulated the situation using digital tools (i.e. GeoGebra files) to allow students’ 
experimentation with the real phenomenon. In this context, students were able to 
change tank height with a slider, while the tool gave the corresponding volume val-
ues. Students had to choose pairs of height-volume values from the screen and insert 
into a table on their worksheet. Then, still working with paper and pencil, they 
placed the corresponding points in a co-ordinate system and sketched a graph 
describing the functional relation. In a subsequent task, the graph was automatically 
provided by the software, and students compared it with their own. Figure  26.3 
shows the graph in relation to the variation of petrol height in GeoGebra for a given 
radius and length of cylindrical tank.

Reference to the workplace activity dominated the group’s reflections and dis-
cussions during the design process. Manos, acting as boundary crosser between 
workplace and teaching, challenged the others’ views regarding workplace prac-
tices and possible connections to school mathematics. Emerging tensions concerned 
the different goals underlying workplace actions and those in the school classroom 

Fig. 26.3 The mathematical model in GeoGebra
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and the difficulty of students’ and teachers’ familiarity with the authentic context. 
In their attempts to connect the mathematics within fuel stations to school-based 
mathematics, the teachers recognised a need to find detailed information about the 
original workers’ practices and the difficulty of conceptualising the specificities of 
the situation. Further, they appreciated the role of personal workplace experience in 
the design process, as Manos noted: “If I did not have the experience of working in 
the fuel station, the activity would not have been successful…It is important to be 
close to the workplace, to know the subject of the work very well” (Manos’s inter-
view). The teachers also recognised the complexity of adapting the problem for the 
school level by including and excluding real context elements (e.g. excluding refer-
ence to physics or chemistry inherent in the situation). Additionally, they appreci-
ated the importance of engaging students in solving workplace problems by use of 
school mathematics. In their initial attempts to couple school mathematics and real-
ity in the modelling process, they provided a simplified situation model (vertical 
cylinder) that allowed students to work with known mathematics. Then, a model 
closer to the authentic situation (horizontal cylinder) brought a new iteration of 
modelling. This time, the dynamic manipulation of parameters involved in the prob-
lem (length, height and radius) supported students in approaching the mathematical 
model experimentally in close relation to reality.

For this group, boundary crossing was characterised by contradictions between 
activity systems leading to adaptations of the didactic tools (e.g. tasks) from the 
activity system of the workplace to that of mathematics teaching. In the reflection 
phase of their activity, the teachers referred to the role of the workplace in their 
teaching as can be seen in this excerpt:

The calculations (i.e., in the table used by workers) have been carried out taking into 
account elements of physics and chemistry. We chose not to include these elements in the 
activity. We were interested in the mathematical part. Thus, we did not say anything about 
the table during the implementation. We just informed the students that checking the vol-
ume of fuel in the stations is carried out through the sticks. Therefore, we introduced 
authenticity and workplace practice in our design without revealing all the tools used in the 
workplace. We wanted the challenge – namely the tools through which the employee can 
find out the volume – to emerge through school mathematics. (Manos’s interview)

Here the teachers used the ready-made table of values as a boundary object inter-
secting the world of the workplace and teaching. In the workplace, the table is used 
as a black box to carry out calculations in a routine way. In contrast, the teachers 
considered the table in the classroom as a mathematical representation. They 
engaged students in calculating the requested values through mathematical prac-
tices involving different function representations (i.e. graph, table). There was a 
dominance of mathematics teaching over the workplace, since contradictions were 
resolved by the rules of the dominant activity system and not according to reality. 
This seems related to teachers’ familiarity with school mathematics, limited experi-
ences in integrating the workplace into mathematics teaching and construction of 
the mathematical model requiring knowledge beyond lower secondary. However, 
the analysis indicated that the teachers constructed a hybrid situation where school 
mathematics appears to play a complementary role to workplace mathematics.

26 Mathematics Teachers’ Learning at the Boundaries of Teaching and Workplace
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26.4.3  Teachers’ Professional Learning

The analysis above focussed on the interactions and the corresponding contradic-
tions among the activity systems of workplace and teaching. The teachers’ starting 
point in the group was Manos’s work experience at a fuel station. Although the 
teachers’ engagement in exploring the connection between workplace practices and 
school mathematics was primarily characterised by contradictions, they were able 
to progressively make links between activity in the workplace and mathematics 
teaching and enrich students’ modelling experiences. It seems that the object of the 
teachers’ activity was re-conceptualised and expanded, as it was more focussed on 
the ways that innovative workplace practices could be linked to school mathematics 
and integrated into classroom teaching. With regard to teachers’ learning, the analy-
sis showed that different kinds of learning processes were at stake at the boundary 
crossings between classroom teaching and workplace. Identification was evident 
when the teachers recognised the intersecting practices of the workplace and class-
room teaching. Coordination took place through their recognition of the need to 
keep a balance between the authenticity of the workplace and the mathematical 
inquiry in the classroom. Reflection was indicated by the fact that the teachers 
looked differently at workplace practices by taking into account the ways by which 
these practices can be exploited in mathematics teaching. Regarding transforma-
tion, the analysis indicated the emergence of hybrid practices (i.e. teaching charac-
terised by a merging of workplace practices and school practices) in the hope of 
being better shaped in the future.

26.5  Conclusions

In this chapter, we asked if and how novice and experienced teachers were able to 
integrate innovative practices such as the workplace into mathematics teaching. In 
the course, we stimulated boundary crossing in the hope of propelling transforma-
tion, in the form of practice integration. The results show that the teachers experi-
enced tensions or contradictions in integrating the workplace into teaching. 
Mathematics teaching practices dominated workplace practices and school mathe-
matics complemented workplace-related mathematics. The coupling of reality and 
mathematics that Wake (2015) considers important in integrating workplace into 
mathematics teaching was approached by teachers through simplification of the 
authentic situation and the simulation of it with the use of digital tools. However, the 
boundary crossing from one context to the other was facilitated by a boundary 
crosser (Manos) who supported further elaboration of the real context and offered 
insights on how to integrate authentic workplace artefacts into the group’s didactical 
designs. Concerning their professional learning, we identified all learning types in 
teachers’ activity. Identification, coordination and reflection were evident in 
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teachers’ attempts to keep a balance between elements of workplace in teaching. 
Transformation was indicated by teachers’ attempts to bring together the objects in 
the different activity systems, leading to the integration of these practices into a 
whole. From a methodological perspective, we have exemplified the potential of AT 
and boundary crossing taking into account the complexity of teacher education and 
other professional settings.
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Chapter 27
Case Study of Pre-service Teacher Education 
for Mathematical Modelling and Applications 
Connecting Paintings with Mathematics

Akihiko Saeki, Masafumi Kaneko, and Daisuke Saito

Abstract The purpose of this chapter is firstly to investigate how graduate teacher 
education students critiqued and validated mathematical models through connect-
ing paintings and the mathematical domain and secondly to analyse the students’ 
decision-making. A meta-question posed by the researchers for the students was to 
find geometric figures which may be hiding behind paintings in order to explain 
them to an audience of the Otsuka Museum of Art. Students’ critique and validation 
of the achieved mathematical models for their decision-making resulted from inter-
disciplinary or extra-mathematical considerations. To realise the meta-question, stu-
dents performed their demonstration to an audience with a diversity of knowledge 
and skills.

Keywords Pre-service teacher education • Interdisciplinary knowledge • Validation 
• Painting • Decision-making

27.1  Introduction

Mathematical modelling and applications focus on problem-solving that connects 
mathematics with the extra-mathematical domain. The relations and boundaries on 
contexts of each domain are important. Internationally, mathematical modelling and 
applications have been discussed for more than three decades, and the importance 
of teaching mathematical modelling has been emphasised. One active area of 
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research is in-service and pre-service teacher education (Blum 2015; Kaiser and 
Schwarz 2006). Cai et al. (2014) noted that “there is no doubt that teachers play an 
important role in fostering students’ learning of mathematical modeling and stu-
dents’ learning of mathematics through engagement in mathematical modeling” 
(p.  148). From the perspective of teacher education on mathematical modelling, 
Freudenthal (1973) and Pollak (1979) mentioned that teachers should be well- 
acquainted with real-world knowledge about modelling contexts and with the asso-
ciated pedagogical understanding and open-endedness of modelling tasks. Cai et al. 
(2014), in summarising previous research literature into teacher education in math-
ematical modelling, focussed on characteristics of teacher education programmes 
and “interdisciplinary or extra-mathematical knowledge requirements for success-
fully teaching mathematical modelling” (pp. 162–163) finding little such research 
into the latter.

As a follow-up of pre-service teacher education research, we reviewed chapters 
in Stillman et al. (2013) and Stillman et al. (2015) (e.g. Biembengut 2013; Hagena 
2015; Tan and Ang 2013; Villarreal et al. 2015; Widjaja 2013; Winter and Venkat, 
2013), but there was no teacher education research into interdisciplinary or extra- 
mathematical knowledge requirements for mathematics and the arts. Widjaja (2013) 
and Tan and Ang (2013), for example, conducted pre-service teacher education 
studies into modelling activities for pre-service teachers who had no previous 
knowledge of mathematical modelling. Widjaja (2013) investigated pre-service 
teachers’ awareness of mathematical modelling through the task of Re-designing a 
Parking Lot. Tan and Ang (2013) found that the experience and knowledge gained 
can help them explicate aspects and nuances of the modelling process with respect 
to novel modelling tasks.

In our study to be reported here, we conducted a pre-service teacher education 
programme in mathematical modelling and applications for graduate students who 
were interested in mathematics education or would like to become mathematics 
teachers. This programme consisted of 11 lessons (90 min each) over 6 weeks in late 
2013 to mid-January 2014 and included eight graduate students. All students had no 
previous knowledge of mathematical modelling and applications. In addition, they 
had no experience with lessons that integrated mathematics with other subjects. The 
purpose of this programme was for participants to gain informal knowledge of 
mathematical modelling through the activity of connecting between paintings and 
the mathematical domain and to translate their informal knowledge into formal 
knowledge by the tutors’ instruction. A meta-question1 we provided for students 
was “To find geometric figures which may be hiding behind paintings in order to 
explain them from an artistic and a mathematical viewpoint to an audience of the 
Otsuka Museum of Art2”.

1 Niss (2015) did not define it, but seems to call a first problem “meta-question”.
2 The Otsuka Museum of Art is a “Ceramic board masterpiece art museum” with the largest exhibi-
tion space in Japan. This museum displays faithfully reproduced paintings to their original colours 
and size on large ceramic boards. There are more than 1,000 replicas of priceless masterpieces of 
Western art, from ancient murals to modern paintings. See http:// www.o-museum.or.jp/english/

A. Saeki et al.
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For this programme, we formed an instructional team of two university teachers, 
one teacher consultant from Tokushima prefectural general education centre and 
one specialist and some staff from the museum. The four paintings which the gradu-
ate students tackled were the School of Athens painted by Raphael Santi and the 
Annunciation, Last Supper and Mona Lisa, all painted by Leonardo da Vinci. 
Towards the end of the programme, an approximately 1-h guided tour “Art Meets 
Mathematics!” was conducted twice at the museum by the student groups.

The purpose of this chapter is (a) to investigate how graduate students critiqued 
and validated the achieved mathematical models through connecting between paint-
ings and the mathematical domain and (b) to clarify their decision-making through 
our analysis.

27.2  Practical Frameworks and Method

In order to achieve the purpose of this chapter, we implemented three frameworks 
in the pre-service teacher education programme of mathematical modelling and 
applications.

27.2.1  Connecting Between Paintings and the Mathematical 
Domain

The great artist Leonardo da Vinci chided that “Let no man who is not a 
Mathematician read the elements of my work” (Prolegomena and General 
Introduction to the Book on Painting, I:3). We therefore chose four paintings of the 
Renaissance because geometric figures such as the golden triangle, golden rectan-
gle, root rectangles (see Fig. 27.1a) and so on are more likely to lie hidden in them 
as these devices are claimed to have been used by the painters of the era (see 
Posamentier and Lehmann 2012), and Phi (used to designate the golden ratio) 
“aroused the interest of many mathematicians…during the Renaissance” (Huntley 
1970, p. 25).

At the beginning of the programme, we provided students with an application 
task to find geometric figures which may be hiding behind paintings by use of a 
hand-held geometrical lens (see Fig. 27.1). Even if students derive some mathemati-
cal answers, they have no chance to validate them directly. This is because they 
cannot ask the painters of the Renaissance about their solutions and little is docu-
mented (Posamentier and Lehmann 2012). We hypothesised that students would 
critique and validate their achieved mathematical models by themselves using some 
interdisciplinary or extra-mathematical knowledge such as historical facts, arts, the 
history of Christianity or cultures. We thought this task would lead to independent 
modelling experience.

27 Case Study of Pre-service Teacher Education for Mathematical Modelling…
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27.2.2  Presentation to a Diverse Audience

To realise the meta-question, students have to perform their demonstration to an 
audience with a diversity of knowledge and skills. Consequently, students needed a 
broad knowledge about the mathematical domain and extra-mathematical domain 
in advance, and this might need to be learnt. We also hypothesised that the presenta-
tion with a correspondingly diverse audience would foster students’ abilities for 
critique and validate the mathematical models. As regards the demonstration of 
paintings by the mathematical viewpoint, we used a hand-held geometrical lens as 
a tool for verification of the geometric figures shown in Fig.  27.1, because we 
assumed that some in the audience would not be good at mathematics.

27.2.3  Instructional Team of Pre-service Teacher Education 
Programme

We formed our instructional team to support the preparation of the situation to be 
modelled at the beginning of this programme for students and to facilitate the mod-
elling and application activity of students as mentioned above. The mentors in this 
team consisted of the university teachers who are researchers in mathematics educa-
tion, the general education centre teacher consultant who conducted the class that 
integrated mathematics with paintings at a junior high school and a specialist from 
the Otsuka Museum of Art who is the expert about paintings. The university teach-
ers supported students to gain informal knowledge of mathematical modelling 
through the activity connecting between the paintings and the mathematical domain 
and to translate their informal knowledge into formal knowledge mainly. The 
teacher consultant supported students to interpret the paintings from a mathematical 
viewpoint. The specialist from the museum supported students to interpret the 
paintings from an artistic viewpoint. In addition, all mentors facilitated  

Fig. 27.1 Schematic diagram of the geometrical lens showing (a) the transparency and (b) the 
lens in use
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mathematical modelling and applications activities of mathematisation, de- 
mathematisation and validation depending on the needs of the student.

27.3  Elements of the Pre-service Teacher Education 
Programme

This programme of 11 lessons was separated into four stages.

27.3.1  Content of Each Stage

27.3.1.1  First Stage: Acquisition of Basic Knowledge (Three Lessons)

The teacher consultant explained the content of his previous teaching on paintings 
and mathematics in junior high school. He also taught the usage of the geometrical 
lens (see Fig.27.1a, b). The university teachers confirmed geometric figures and 
mathematical content: the golden ratio, silver ratio, golden rectangle and so on (2 
December 2013). The specialist from the Otsuka Museum of Art explained writings 
about the personality of painters and the background of Renaissance art (18 
December 2013).

27.3.1.2  Second Stage: Developing Content for Demonstration 
to an Audience (Two Lessons)

The students in each group attempted to find geometric figures in every one of these 
paintings. After finding any, each group discussed the content for the demonstration 
to an audience. As needed, each group accessed some books, articles, the Internet 
and so on (18 December 2013).

27.3.1.3  Third Stage: Mock Demonstration and Revising (Two Lessons)

Each group conducted a mock demonstration in front of their instructional team 
twice. After the mock demonstrations, they revised their content of the demonstra-
tion taking on-board some feedback from the instructional team, especially from the 
staff of the museum (20 December 2013).

27 Case Study of Pre-service Teacher Education for Mathematical Modelling…
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27.3.1.4  Fourth Stage: Demonstration and Reflection (Four Lessons)

The guided tour on the four paintings was held for an audience at the museum (13 
January 2014). After the guided tour, students reflected on the whole 11 lessons. 
The university teachers translated students’ informal knowledge of mathematical 
modelling and applications into formal knowledge (16 January 2014).

27.3.2  Content of the Demonstration on the Last Supper

From the analysis of responses to a free description-type questionnaire completed 
by the audience, it became clear that the aim of the guided tour “Art Meets 
Mathematics!” was accomplished (Saeki et al. 2016).

In this section, we focus on the students’ demonstration related to the Last 
Supper. Students explained the situation of this painting with regard to the conster-
nation of the apostles when they heard Jesus saying, “One of you is going to betray 
me”. They explained that this painting is drawn in a one-point perspective. Next, 
they asked the audience to find geometric figures in the Last Supper using the geo-
metrical lens. Then they illustrated a silver rectangle, a vanishing point and root 
triangles with the copies of this painting (See Fig. 27.2).

They asked the audience to find a geometric figure around Jesus in the painting. 
Some audience members answered, “It is an equilateral triangle”. The students 
accepted their answer and confirmed with an equilateral triangle-shaped teaching 
tool near Jesus in the painting. Next, they explained their exploration of the reason 
Jesus was drawn in an equilateral triangle. Firstly, the students noted the historical 
fact that Leonard da Vinci painted only visible objects and thus did not want to paint 
a halo. They introduced this notion using the Holy Mother of the Cave in the same 
exhibit hall in the museum. Secondly, they explained their supposition that Leonardo 
da Vinci tried to express holiness with an equilateral triangle for Jesus and the 

Fig. 27.2 Silver rectangle 
(Figs. 27.2 and 27.3 are 
copied pictures from the 
sketchbook which students 
used for their 
demonstration. We have 
emphasised lines and 
figures)
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 meaning of the Trinity (see Fig. 27.3). Finally, the students explained that the eye of 
Judas and the right temple of Jesus and a plate between them made the 3, 4 and 5 
sides of a right triangle.

27.4  Analysis of Students’ Decision-Making 
on the Equilateral Triangle

In this section, we clarify the reason that the students decided a suitable symbol of 
Jesus’ holiness is an equilateral triangle and analyse the reasons for their decision- 
making through their preparation for the demonstration at the second and third 
stages of the pre-service teacher education programme. In order to explain what was 
happening in terms of modelling in their preparation for the demonstration, we use 
the modelling cycle and subprocesses that were highlighted by Niss (2015) (see 
Fig. 27.4). For this analysis and identification, we used videos of the students’ activ-
ities in these lessons, artefacts, an interview protocol (18 December 2013) and 
responses of the students to a free description-type questionnaire from the third 
stage of this programme (20 December 2013).

The meta-question we provided for students was, “To find geometric figures 
which may be hiding behind paintings in order to explain them from an artistic and 
a mathematical viewpoint to the visitors of the Otsuka Museum of Art”. This meta- 
question corresponds to one in the extra-mathematical domain shown in Fig. 27.4.

Preparing for their meta-question, they drew lines on a copy of the Last Supper 
accordingly along designs of the table and found that the lines crossed at one point. 
Through this work, they wondered if any other figures surrounded Jesus (see 
Fig. 27.3). Then, they came up with a question: “What kind of geometric figure is 
there around Jesus?” We named this question as Q1, corresponding to one of the 
idealised situation cum questions in Fig. 27.4.

Fig. 27.3 The equilateral 
triangle and the Trinity
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Mathematising Q1, students found these lines are symmetrical by measuring 
with a ruler. Then they assumed a triangle existed around Jesus. After this, they 
came up with a question: “What kind of triangle?” We decided this question, Q2, 
corresponds to one of the mathematised situation cum questions in Fig. 27.4.

For the mathematical treatment of Q2, they drew a triangle around Jesus on the 
copy of the painting and measured the lengths of all sides of this triangle. Then, they 
decided the triangle was equilateral, not a scalene triangle nor an isosceles triangle, 
as forming the mathematical answer.

De-mathematising the mathematical answer of the mathematical treatment, they 
raised another question: “Why did Leonard da Vinci try to use the equilateral tri-
angle as a symbol of Jesus?” We labelled this question, Q3, as the “new” idealised 
question that corresponded to the idealised situation cum questions in Fig. 27.4. The 
students tackled Q3 using Internet content concerning Christianity and equilateral 
triangles and found the Trinity is regarded as important in Christianity. Then, stu-
dents decided it was a valid historical fact that Leonard da Vinci had a policy that he 
did not want to paint a halo as was explained by the specialist in the museum. 
Additionally, they might have thought that the religious fact that the number three is 
important in Christianity is valid as explained by the teacher consultant.

One student, from the group whose work we analysed, described that “We think 
that we should be able to explain ‘Mathematics hides in art’ as well as ‘Mathematics 
hiding in art supports art’” in the student free response questionnaire. We decided 
this comment indicates meta-decision-making.

27.5  Discussion

We conducted a pre-service teacher education programme in mathematical model-
ling and applications connecting between paintings and mathematics for graduate 
students. As described previously, the meta-question produced three subsequent 

Fig. 27.4 The modelling cycle (Niss 2015, p. 68)
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questions, Q1, Q2 and Q3. Through analysis of the students’ decision-making, we 
found two points. Firstly, in Q3, students invented their own supposition – “Leonard 
da Vinci used the equilateral triangle as a symbol of Jesus” – with the Trinity, a 
historical fact and a religious fact. We thought that Q3 was a trigger for students’ 
critical thinking. Secondly the Trinity, the historical facts and the religious facts are 
not direct validation of the model of Q3, but a broad-spectrum validation for their 
decision-making. Through their activity of validation of Q3 for their decision- 
making, students constructed rich and fruitful contexts of the interdisciplinary or 
extra-mathematical domain: the Trinity, the historical fact about the no halo policy 
of Leonardo da Vinci and the religious fact regarding the importance of the number 
three. Before this programme, students had no knowledge of this extra- mathematical 
domain. In addition, they were not Christians. However, to realise the meta- question, 
students performed their demonstration before an audience with a diversity of 
knowledge and skills. We thought that this meta-question motivated the students to 
acquire a broad spectrum of knowledge of the extra-mathematical domain. Students 
tackled the meta-question through the activity of connecting the paintings and the 
mathematical domain. Consequently, we considered that students grasped informal 
knowledge of mathematical modelling subprocesses as shown by Niss (2015), such 
as mathematisation, de-mathematisation, validation and so on.

At the end of the fourth stage of this programme, the university teachers explic-
itly taught knowledge of the mathematical modelling cycle and subprocesses. 
Furthermore, we used the example of the Last Supper and explained their decision- 
making on the equilateral triangle according to the modelling cycle. The actual task 
is more of an application of mathematics than full modelling, but it shared some 
aspects which allowed us as educators to talk about the full modelling cycle. After 
this explanation, all students reflected on their activity through the modelling cycle 
noting which aspects were shared with modelling. As a result of analysing the stu-
dent free response questionnaire by a Grounded theory approach (Corbin and 
Strauss 2008), it became clear that all students were motivated to develop mathe-
matical modelling and applications materials connecting mathematics and an inter-
disciplinary domain (Saeki et al. 2016). Consequently, we considered that students 
have grasped the formal knowledge of mathematical modelling and applications 
through this programme.

27.6  Conclusion

Decision-making and validating is one of the ten skills categorised by the Assessment 
and Teaching of 21st Century Skills Project (ATC21S), namely, “critical thinking, 
problem-solving and decision-making” (Binkley et al. 2012, p. 18). We successfully 
conducted a pre-service teacher education programme in mathematical modelling 
and applications connecting between paintings and mathematics for graduate stu-
dents. All students had no previous knowledge of mathematical modelling and 
applications. In addition, they had no experience with lessons that integrated 
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mathematics with other subjects. However, students’ critique and validation of the 
achieved mathematical models for their decision-making resulted from interdisci-
plinary or extra-mathematical considerations. To realise the meta-question, students 
performed their demonstration to an audience with a diversity of knowledge and 
skills. So, we advocate the necessity and importance of further research for teacher 
education on mathematical modelling and applications with mathematical ideas in 
interdisciplinary contexts. We see our result from this study as a small step of math-
ematical modelling and applications incorporating STEAM, that is, STEM with art 
(Sousa and Pilecki 2013). As future work, we will analyse the transformation of the 
students’ demonstrations from their first mock ones to those of the guided tours, and 
we will analyse other groups’ demonstrations.
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Chapter 28
Inquiry and Modelling in a Real 
Archaeological Context

Gemma Sala Sebastià, Vicenç Font Moll, Joaquim Giménez Rodríguez, 
and Berta Barquero Farràs

Abstract This chapter focuses on studying the potentialities of interdisciplinary 
approaches for mathematical modelling. The research presents the design of a 
teaching sequence based on an archaeological context—the ruins of a Roman the-
atre discovered in Badalona (Catalonia)—implemented with 12–14-year-old stu-
dents in their 2015 course. The aim was to promote inquiry and student modelling 
competences and to investigate how making multiple disciplines interact could 
enhance modelling and inquiry processes. An initial historical situation involving 
the students was presented to deal with a problem integrating an interdisciplinary 
approach. Mathematical modelling appeared as a central tool in the teaching and 
learning processes. Furthermore, a constant dialectic between mathematics and his-
tory was required to facilitate evolution of the modelling process.

Keywords Inquiry competence • Modelling competence • Interdisciplinary 
approach • Task design • Teaching devices • Mathematics and history

28.1  Introduction

This chapter focuses on the design, implementation and analysis of a teaching 
sequence based upon an archaeological context—the ruins of a Roman theatre dis-
covered in Badalona (Catalonia, Spain). The sequence was implemented in the 
2014–2015 course with 12–14-year-old students. A starting situation led to the for-
mulation of a specific research question that was at the core of the students’ research. 
They had to mobilise their inquiry and modelling competences in order to answer 
the questions proposed using an interdisciplinary approach, in the same way as 
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previous work such as Sala et al. (2015) and García and Ruíz-Higueras (2010) has 
shown.

Our design was concerned with integrating the students’ work with the subjects 
of mathematics and history in an interdisciplinary way. The context of the starting 
situation (and the generating questions)—an archaeological problem—is a novelty 
because in general, these kinds of proposals, to promote inquiry and/or modelling, 
are based in a context in the scientific world. Moreover, most of the proposals focus 
on procedural models that involve numbers (like statistics, exponential or economic 
models), whereas the focal point of our teaching sequence is a geometrical model. 
According to the current curricula guidelines (e.g. DECRET 187/2015) about the 
necessity of integrating mathematical modelling into daily classroom practice at 
preschool, primary and secondary school education, the features of the proposal 
presented in this chapter allow students inexperienced in modelling to start model-
ling without qualms.

There is a common agreement, shared by researchers and new curricula trends 
(Stohlmann et  al. 2016), about the need to introduce students to a mathematical 
activity oriented to applied problems and modelling. Nevertheless, there still exists 
a substantial gap between these ideals and innovative approaches and everyday 
teaching practices. In particular, different local implementations of modelling activ-
ities can be highlighted (such as Burkhardt 2011), but its long-term dissemination 
remains a big problem to be faced. In such a framework, we assume that it is pos-
sible to use local contextual experiences coming from other disciplines such as 
archaeological experiences that promote a permanence and evolution of mathemati-
cal practices overcoming the usual ‘applicationism’ (Barquero et al. 2013), instead 
of fostering real mathematical modelling practices.

28.2  Theoretical Framework

In the design of the sequence of tasks, different approaches interact. On the one 
hand, the mathematical and didactic design quality is justified based on the three 
criteria of didactic ‘suitability’ proposed by the onto-semiotic approach, EOS 
(Godino et al. 2007): (a) emotional suitability, (b) epistemic suitability and (c) eco-
logical suitability. The aim is to design a sequence of tasks in which these different 
suitability criteria are included. For instance, emotional suitability can be justified 
for the task sequence by the fact that students work with data and evidence—real 
Roman ruins—from their very close context, in their city and next to their school. 
The mathematical quality (the epistemic suitability) can be justified based on the 
view that the implementation allows students to trigger relevant processes of math-
ematical activity, in particular processes of mathematical modelling. In turn, eco-
logical suitability is justified by the curricula of these secondary school students 
having a competency-based approach, where the teaching and learning processes 
provided by the curricula should promote competences to deal with complex and 
varied real-life situations.
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These curricula guidelines are in the same directions as recommendations from 
other countries and international organisations such as the National Research 
Council in the USA (NRC 1996). For instance, according to the NRC, teachers 
should support the development of abilities of inquiry. These inquiry abilities are 
hardly ever related to modelling perspectives, but sometimes it is difficult to find the 
differences between both processes (Artigue and Blomhoj 2013). Recent discourse 
on inquiry in mathematics education focuses on the use of methods and mathemati-
sation processes, promoting the construction of mathematical hypotheses and mod-
els, and the need for arguing, valuing and controlling in an appropriate way to solve 
a contextual problem (Elbers 2003). From our viewpoint, placing mathematical 
modelling processes at the core of activities involves promoting other kinds of pro-
cesses important in a rich and functional mathematical activity (understood as 
mathematical richness of quality processes).

On the other hand, a way to achieve a high epistemic suitability is to design the 
sequence of tasks using the notion of research and study path (SRP) (Chevallard 
2015) as a didactic device to facilitate the inclusion of mathematical modelling in 
educational systems and, more importantly, to explicitly situate mathematical mod-
elling problems in the centre of teaching and learning processes (Barquero et al. 
2008). We assume and use the structure of SRP as the main theoretical construct to 
design the didactic sequence we will present in this chapter:

 1. The starting point of a SRP will be a ‘lively’ generating question with real inter-
est for the community of study (students, teachers and researchers).

 2. During a SRP, the study of the generating question will evolve and open many 
other ‘derived questions’. The study of all these questions will lead to successive 
temporary responses, which would be tracing out the possible ‘routes’ to be fol-
lowed in the effective experimentation of the SRP.

 3. The teacher will thus have to assume a (possibly) new role of acting as the leader 
of the study process, instead of lecturing the students.

 4. An important dialectic between mathematics and history that will be integrated 
in the SRP is the task of posing questions and that of the continuous search for 
answers.

 5. Against the temptation of imposing some answers that are acceptable within the 
educational institution only, the group of students needs to be invited to defend 
the successive answers they provide.

 6. The dialectics between the media and ‘milieu’ will also be essential to control 
not only what exiting resources and answers are available ‘outside’ the class-
room (in the media) but also what tools will help us to validate and integrate 
them in our study.

Last, but not least, in some previous task designs, we had used historical contexts 
to develop inquiry and student modelling competences. These have involved local 
historical contexts such as the study of Iberic ruins to give opportunities to introduce 
algebraic formulae (Vilatzara Group 2003), finding coins leading to the introduction 
of numerical systems with 10–11-year-old students (Sala et al. 2013) and the study 
of the consequences of the War of the Spanish Succession and an inquiry into the 
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geometry of some Roman ruins (Sala 2016). We have found that all of these have 
promoted inquiry attitudes.

28.3  Conditions for the Design and Implementation 
of Teaching Sequence

28.3.1  Research Questions

We have designed the teaching sequence presented here intending to develop spe-
cific student competences: the competence of inquiry and the competence of math-
ematical modelling. In addition, it is a special sequence because there are several 
disciplines and subjects linked: Roman history and mathematics. This kind of 
sequence is an appropriate way to promote the target competences to be developed 
by students. Moreover, through its implementation, we aimed to study the condi-
tions that could help students to progress and the institutional limitations and con-
straints that appear; therefore, our main research questions were:

Could a teaching sequence based on the study of an archaeological problem in a context 
very close to students (in their city) promote student competence development in inquiry 
and mathematical modelling?
Which features and conditions of this kind of teaching sequence facilitate student progress? 
Which were the observed limitations and constraints in the implementation that could 
prevent student progress?

28.3.2  Teaching Sequence Design and Implementation

The sequence of tasks started with a problematic and real situation—called the gen-
erating situation S0—very close to a real extra-mathematical context. This initial 
problematic situation, which was introduced to the students by the teacher, was a 
relevant archaeological discovery in their city, Badalona (a city next to Barcelona, 
in Catalonia): some Roman ruins that could have been a public building. Nowadays 
in Badalona, many Roman ruins can be visited, and it is a known fact that archae-
ologists have found some evidence of the ancient population of Badalona. Thus, the 
teaching sequence was named ‘What are these ruins hiding? Investigating the 
Roman ruins of Baetulo’ (Baetulo is the Roman old name of Badalona).

The experimentation took place at secondary school level, in a high school called 
Betulia’s School. The designed sequence was tested with a group of 30 students 
(12- to14-year-old). During all sessions, students worked in the same inquiry teams. 
At the beginning of each session, the teams had to deliver a report of all work done 
during previous sessions, and there was one team in charge of explaining and 
defending its report. It was a way to compare and discuss the work done during the 
entire process and, particularly, a way for the study community to formalise all the 
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questions treated and their successive partial answers. This allowed them to agree 
on how to continue with the study process.

The teaching sequence was oriented by the idea of reproducing the way research-
ers in archaeology act. Inspired by the research of Padrós and Moranta (2001), 
archaeologists of the Museum of Badalona explained their investigation about cer-
tain ruins, found some years ago in the centre of the town, in order to discover with 
which kind of building it could be identified. They summarised their research pro-
cess with the most important details and their conclusions: the construction investi-
gated could have been an ancient public building, for instance, a theatre.

The students worked in teams and had to investigate—from real data, archaeo-
logical reports, canons of Roman architects—what kind of building the discovered 
Roman ruins could be and its characteristics. They visited the place of the discovery 
and took photographs and measurements. The current constructions in the zone, 
houses and streets followed a curious curved shape—easily perceptible in the map 
of the zone (see Fig. 28.1a, b). This fact indicated that all these constructions were 
built on top of the ancient constructions or structures. As some research revealed, 
one of the most important discoveries was a part of a curved Roman wall, a metre 
and half high (see Fig. 28.1b). The teaching sequence was based on this.

The starting situation, S0, invited the students to think of these ruins and in their 
context. This situation also led to the formulation of the initial and generating 
question:

Q0: Can the ruins found be a public building? And which kind of public building 
could it have been?

The students knew it was a partial curved Roman wall discovered by the archae-
ologists as this was given to them at the beginning of the activity; the shape of this 
wall could determine the kind of building that it had been part of. They had to find 
information about all the types of Roman buildings, their shape and their functions. 

Fig. 28.1 (a) Area study (Google maps) (b) Detail of the study area; the arrow indicates the partial 
Roman wall discovered (Padrós and Moranta 2001)
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Fortunately, there were few buildings that had an almost curved shape in one of their 
parts of the perimeter, namely, theatres, amphitheatres and Roman circuses. This 
meant the main question Q0 must be used to derive some other questions, before the 
students could formulate their hypothesis about which kind of building the ruins were:

Q1: Which Roman building (theatre, circus, amphitheatre, etc.) shape would con-
cur with the shape of the part of the Roman wall found?

Q2: What would be the geometrical shape of the whole Roman wall of which the 
experts had discovered a portion?

The students were organised into cooperative work groups, inquiry teams, of 
three students to study the questions derived from Q0, that is, Q1 and Q2. From the 
beginning an inquiry guide was prepared to help students and certain devices that 
allowed an appropriate work progression. The inquiry guide was designed based on 
the reports of real investigations carried out by the Badalona Museum professional 
archaeologist team. This followed a sequenced process introduced by the teachers, 
which can be differentiated into three stages.

In the first stage, the teacher of history and the first author of the chapter intro-
duced the problem and the starting situation S0 to the students. All the sources, 
devices designed, links recommended and the worksheets that they had to follow, 
were available in the blog designed by the authors: http://ruinesdebaetulo.blogspot.
com/. In these first sessions the students started to inquire and search information to 
understand the context of the problem. Next, they could formulate their preliminary 
hypothesis and conjectures about which kind of public building the ruins could have 
been. During this stage, they worked basically with the information about the shape 
and use of Roman public buildings and the specific archaeological information 
about the discovery of a Roman wall, helped by indications in the map of the area.

In the second stage, there were different teachers involved in guiding all the ses-
sions (teachers of mathematics, technology, history and Catalan literature). At this 
stage students carried out developing their research to answer the generating ques-
tion and their derived questions. They dealt with real data given by a blog; each 
group had a specific worksheet with some indications, small tasks to introduce the 
mathematical work and some questions to help progress their inquiry properly. 
They produced different materials as a result to study, work and deal with the 
information.

At this time, students were wondering how they could know the shape of the 
whole Roman wall from the shape of the partial wall discovered. This is a difficult 
mathematical problem to resolve—to find the geometrical curve from a part of it—
because there could be many solutions. However, the dialogue with history limits 
the possible answers because the Roman buildings only had three relevant shapes: 
ellipse (amphitheatre), circle (circus) or semi-circle (theatre). Due to the contribu-
tion of the historical information, the problem became achievable at the students’ 
level of mathematical knowledge.

A session was held in a square next to the school to discover what kind of curve 
fitted the discovered wall. The students could work with an exact representation of 
the part of the Roman wall. They did their fieldwork guided by the teacher of math-
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ematics and a co-author of the chapter. They could experiment with different 
 materials to construct a circle and an ellipse with the same dimensions as the partial 
wall. At the end of the session, they could check what the shape of the whole Roman 
wall was. This location allowed the students to appreciate the likely real dimensions 
of the Roman building.

After this session, they constructed their theatre model following the canon of 
Vitruvius (an important Roman architect) on how to build Roman theatres. They 
conducted this task using the software GeoGebra. In order to verify the correctness 
of their construction and hypothesis, they exported their model as a file image and 
pasted it onto the map of the area studied (Fig. 28.2).

In the third stage, they could share their doubts with other groups and ask Mrs. 
Padrós, an important archaeologist from the Museum of Badalona, from their visit 
to the authentic ruins. During this interview, students could contrast and validate 
their results about the model selected. This is another example of how the contribu-
tion of the history provided students, on one hand, with a way to validate mathemat-
ical results with the real world and, on the other hand, to know the experts’ work and 
to notice that it was very similar to the process of inquiry they followed. After this 
session, they also were able to work on maps with other examples of Roman the-
atres in Spain and check how the same geometrical model also fits these. At the end 
of this stage, the students wrote a final report of their inquiry describing their pro-
cess, the mathematical tools used, the result of verifying their hypothesis, new 
opened questions, etc. Teachers indicated the required structure of this report via a 
document that students had to follow. Due to the evidence provided in the written 
reports of each team, teachers could follow progress and assess inquiry and model-
ling competences.

Fig. 28.2 Example of 
image of the theatre model 
constructed using 
GeoGebra, embedded on 
the map with the ruins 
marked
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28.4  Results and Discussion

In the first stage of the sequence, when the teacher introduced the starting situation 
S0, which generated the whole study, the initial questions emerged from the real 
world in a historical context, closely linked to the students’ everyday context. This 
is an important aspect that had strong influence in the students’ motivation to carry 
on the process of the inquiry to know more about their ancestors. Similar findings 
have been found by others (e.g. Rivera et al. 2015; Stillman et al. 2013).

The historical context also made easier the generation of derived questions that 
allowed progress in the process of modelling. The mathematical world was con-
stantly in dialogue with the real-historical world, which enhanced the apprehension 
of many derived questions in the sense of the SRP proposal (Barquero et al. 2013). 
Thus, the archaeological context guided the inquiry and allowed settling on the 
problem, posing more specific questions, and the pursuit of answers which guided 
evolution of the SRP. For instance, when students reported about question Q1, they 
did not consider all geometrical curve shapes that exist—only the circle and the 
ellipse—because the historical meanings (that the inquiry teams constantly checked 
for available answers outside the classroom) indicated that Roman buildings had 
only three possible shapes. This simplified, for instance, the process of selection of 
variables, construction of models and selection of the most appropriate models, 
which correspond to the first steps in the modelling process.

In the second stage, when the students were dealing with question Q2, they would 
have to solve a very difficult problem if they had to consider the mathematical con-
text only—to find the whole curve from a part of it; however, due to elements from 
interaction with the historical context, they followed the modelling process to find 
the curve considering the only ones that could be possible. The activities to choose 
the mathematical model that fitted the part of the Roman wall (a circle, in this case) 
were restricted to two options: they assessed with an ellipse and with a circle. In the 
end, they found the radius of the part of the wall, which was an arc of a circle. Thus, 
the RSP designed and explained in this chapter offered the capacity of broadening 
and articulating different mathematical models and hence gave momentum to the 
internal dynamics of mathematical processes. In our case, we started with firstly a 
conic-shaped model related to Roman buildings that evolved into a GeoGebra con-
structing model based on an applied mathematical model. This resulted in Vitruvian 
constructions for Roman buildings to develop a conjecture for solving the main 
question in a research-inquiry approach.

The historical elements (i.e. authentic ruins, the plan of the Roman findings, the 
Vitruvius canon) provided several tools of validation that normally the mathemati-
cal context does not contain. For instance, when the students had built the geometri-
cal model of the theatre (with GeoGebra) following the Roman canon for this type 
of building, they could check if their scale model fitted with the ruins area on the 
city map. Also, working with real data and real dimensions (in the fieldwork session 
in the square near the school) facilitated student understanding of the problem con-
text (cf Rivera et al. 2015). Due to this session, the students could build the model 
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of the Roman theatre following the instructions in the Vitruvius canon with mean-
ing. In addition, in the third stage, when the students talked with the museum 
archaeologist, they were able to verify that their inquiry and modelling processes 
were very close to the process followed by the archaeology experts.

Students showed difficulties in using and matching tools from different subjects 
(history and mathematics) in their project work. A new limitation appeared that, 
although some teams did very precise calculations in their inquiry, they did not 
integrate their results into the conclusions of their final report. However, the design 
of the sequence and all the didactic devices incorporated are crucial to properly 
facilitate the tasks in order to promote the student inquiry and modelling compe-
tences development.

Despite expecting some difficulties to appear, like in other modelling experi-
ences (Stillman et al. 2013), because of the constraints due to the novelty of the 
general proposal (such as very open tasks at the beginning causing student confu-
sion and demotivation), it was useful for students wondering and posing questions 
that normally they did not do when faced with other kinds of mathematical exercises 
more traditionally. For instance, they had to decide what was the goal task, what was 
the important information and how to organise themselves, amongst other things. 
However, when they noticed that the historical context could give them much useful 
information in order to find answers, they had their confidence reinforced in them-
selves and their motivation revived.

A facilitating condition in the implementation was that teachers accepted a dif-
ferent role as guides of the study process, promoting progressive student autonomy. 
Thus, we are able to highlight the increasing autonomy assumed by students during 
the SRP despite that, at the beginning, they showed some objections mainly due to 
unfamiliarity with these kinds of tasks. This assumption of autonomy is an essential 
condition to develop an authentic mathematical modelling activity. In this sense, we 
also observed the importance of always keeping in mind the starting and generating 
question, which was the thread through the entire study process. The students iden-
tified this in their final reports. Finally, our research allowed and described condi-
tions that facilitate functional teaching of mathematics based on modelling and 
inquiry in extra-mathematics contexts (in this case an archaeological context) so 
that secondary school teachers (of multiple subjects), with pertinent (and necessary) 
training, will be able to face the challenge of interdisciplinary teaching.

28.5  Conclusions

The research presented in this chapter describes some of the characteristics of the 
teaching sequence of ‘What are these ruins hiding? Investigating the Roman ruins of 
Baetulo’, which was designed giving an especial role to inquiry, modelling and the 
interdisciplinary approach. The historical context contributed to giving students 
motivation in order to carry on the sequence because it provided them with informa-
tion to make the problem easier and to generate new questions. We found evidence 
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that the process of mathematical modelling is accelerated when the problem is 
located in a historical context because this context supplies them with specific infor-
mation. The historical context promotes the inquiry and contributes to making spe-
cific a general mathematical problem in order to facilitate solution. Moreover, the 
historical elements and the contact with experts from another discipline bring stu-
dents valuable tools of validation that normally the mathematical context does not. 
The dialogue between the two disciplines involved made the mathematical question 
easier to treat because it limited the possible solutions. Considering the historical 
context to find solutions and to generate questions, the modelling of a difficult math-
ematical problem became achievable for the mathematical level of the students.
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Chapter 29
Students’ Overreliance on Linearity 
in Economic Applications: A State of the Art

Daam Van Reeth and Dirk De Bock

Abstract Students’ overreliance on linear models is well-known and has been 
investigated empirically in a variety of mathematical subdomains, at distinct educa-
tional levels and in different countries. We present a state of the art of students’ 
overreliance on linearity in economic applications. We illustrate the widespread but 
sometimes debatable use of linearity in economics, discussing the treatment of 
demand and supply functions and of the Phillips curve in major economic text-
books. Next, we provide an overview of instances of, and comments on, this phe-
nomenon in the economic education research literature. Typically, the phenomenon 
is described in the margin of economic studies whose primary focus is elsewhere. 
Finally, a study having students’ overreliance on linearity as its main research focus 
is discussed in some detail.

Keywords Demand and supply behaviour • Learning macroeconomics • Learning 
microeconomics • Non-linearity • Overreliance on linearity • Phillips curve

29.1  Students’ Overreliance on Linearity

As a major mathematical model underlying various phenomena in real-life and in 
science, linearity rightfully receives a lot of attention in mathematics education 
worldwide. However, students’ growing experience with linear reasoning and 
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their increasing familiarity with linear models during their school careers may 
have a serious drawback: It may lead to a tendency to use linearity “anywhere” 
and thus also in situations that are not linear at all (Freudenthal 1983). For exam-
ple, many students believe that if the radius of a circle is doubled, its area is dou-
bled too (De Bock et al. 1998) or that the probability to get at least one six in two 
dice rolls is two sixths (Van Dooren et al. 2003). In the mathematics education 
literature, this phenomenon has sometimes been referred to as the “illusion of 
linearity”. During the last decades, it has been investigated empirically in a variety 
of mathematical subdomains, at distinct educational levels and in countries having 
different educational traditions (see, e.g. Van Dooren and Greer 2010). More 
recently, students’ overreliance on linearity was also investigated in physics (De 
Bock et al. 2011).

Students’ overreliance on linearity in the social sciences has been rarely the 
focus of systematic empirical research. Perhaps the most quantitative of all social 
sciences is economics. Economists continuously use linear and different types of 
non-linear models to describe phenomena in their field of knowledge. The tendency 
to over-rely on linear models is therefore likely to occur in this domain too. An 
anecdotal but frequently-cited example in that respect refers to a statement of Prince 
Filip, currently the Belgian King. During a trade mission in China in 2005, the 
Prince expressed his optimism about the Chinese economy that, at that time, grew 
at a yearly rate of 14%. He stated: “It means that people’s income will double in the 
next 7 years…” (Huylebrouck 2005). Likely, the Prince thought that he just had to 
multiply 14 by 7, which gives 98%. A growth of 98% is about 100, thus a doubling. 
It is an example of linear reasoning in an economic situation of “compound growth”, 
a context in which exponential reasoning is more appropriate.

Below, we present a state of the art of the overreliance on linearity in economics 
and in economics education. First, we present the results of a small-scale analysis of 
how two important economic models – demand and supply functions as models for 
the corresponding consumers’ and producers’ behaviour and the Phillips curve, 
modelling the relationship between unemployment and inflation – are represented 
in major textbooks in this field. Although it is debatable to represent these models 
linearly, the analysis shows that textbooks often opt for this type of representation. 
Second, we present the results of a search of the economic (education) research lit-
erature conducted in order to find cases in which linear relations were inadequately 
assumed to grasp economic situations. These cases were typically mentioned in the 
margin of studies whose primary focus was elsewhere. In one study (De Bock et al. 
2014), students’ overreliance on linearity was the main research focus. The design 
and results of that study will be discussed in some detail.
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29.2  The Widespread Use of Linearity in Economics 
Education

In a wide variety of circumstances economists faced with a non-linear function or a 
function without a closed-form representation, resort to linear approximations of 
the function under study (Hirschhorn 1986, p. 75). This can be acceptable if the 
function is not “too non-linear” and if its region is not too large, constraints that are 
likely to apply in many economic situations. But although the choice of a linear 
model or “first-order approximation” might be adequate in several situations, it can 
also lead to an oversimplification of a situation, resulting in wrong conclusions or a 
poor understanding of a phenomenon under study. This could especially be true in 
economics education. Ask any undergraduate economics student to draw a demand 
and supply figure representing a market, and chances are high he will make a dia-
gram with a negative-sloped linear demand curve and a positive-sloped linear sup-
ply curve, which assures a unique equilibrium. Ask him if a hyperbolic or even an 
S-shaped demand curve could do the job as well, and he will very likely be surprised 
by your question. This observation illustrates how an overwhelming or oversimpli-
fied use of linear relationships in economics education can trouble the deeper under-
standing of important economic concepts. A more thorough understanding of the 
consequences of overreliance on linearity in economics is therefore absolutely 
appropriate at this stage. To gain more insight into the presumed dominance of the 
linear representation in economics education, we analyse in detail two major eco-
nomic topics that are covered in any textbook. The market for goods and services 
represented by demand and supply functions is an example from microeconomic 
theory, while the relationship between unemployment and inflation, represented by 
the Phillips curve, is an example founded in macroeconomic theory.

There are very relevant didactical reasons to prefer a purely linear representation 
for depicting a market situation. The simplicity of representing the market by two 
intersecting straight lines avoids distracting students by complexities that are not 
relevant in order for an economic principle to be learned. Furthermore, it allows 
teachers to easily compute exercises and draw graphs, all of which becomes much 
more complex when non-linear functions are used. In reality, however, producers 
and consumers will usually not behave linearly. A €1 reduction in price for a box of 
chocolates will have a different impact if the price goes down from €20 to €19 or, 
alternatively, from €4 to €3. Besides, assuming a linear consumer demand would 
imply that, above a certain price level, the quantity demanded would become zero 
and even negative above a yet higher price. To producers, a linear supply would 
imply that they are not faced with any capacity constraints and thus could go on 
producing an indefinite quantity. For these reasons, other curves, for example stan-
dard hyperbola branches, having no intersection points with the axes, might be more 
suitable candidates for modelling consumers’ and producers’ behaviour mathemati-
cally (Ping 2008).

Similar arguments can be given for the Phillips curve, a single-equation empiri-
cal model describing the inverse relationship between rates of unemployment and 
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corresponding rates of inflation that result within an economy. This relationship is 
often represented by a decreasing straight line. However, such a linear relationship 
between the two variables would imply that for different levels of unemployment, 
governments could always create lower unemployment at exactly the same cost of 
higher inflation (and vice versa). Every 1% reduction in unemployment would thus 
be traded off against the same increase in inflation. In reality, however, measures to 
fight high or low unemployment rates are likely to have a very different impact on 
inflation. With high unemployment, there is plenty of surplus labour that could be 
employed easily without the need to raise wages (and create inflation) very much. 
But as labour becomes scarcer, firms will find they have to offer increasingly higher 
wages to obtain the labour they require (Sloman and Garratt 2010, p.  366). 
Consequently, the Phillips curve could be more properly modelled by a decreasing 
concave-up curve (Debelle and Vickery 1998).

In Table 29.1 we summarize how both of these concepts are discussed in eight of 
the world’s best sold economics textbooks and in two Dutch textbooks for the ter-
tiary level. It should be clear from the above discussion that there is no theoretical 
reason or ground to prefer a linear representation over a non-linear one for either 
one of these concepts. Quite on the contrary: In most cases a non-linear representa-
tion probably reflects reality much better. Therefore, the decision to visualize these 
concepts in economics textbooks as linear or non-linear is purely the result of the 
author’s personal preferences and his (didactical) views on the best possible way to 
teach students the principles of economics. The data in the table show for each book 
how many of the officially numbered graphs in the chapters that treat the particular 
topic are entirely linear. For instance, 25 out of 27 graphs (or 92.6%) that explain 
demand and supply in the book by Mankiw and Taylor (2014) include linear func-
tions only, and all of the seven graphs that illustrate the Phillips curve are linear.

From Table 29.1, it can be concluded that overall, about two thirds of all the 
graphs related to demand and supply use linear functions only. There are important 
differences between the textbooks though. Of the nine textbooks that discuss 
demand and supply, a first group of five books use linear functions in at least 80% 
of the graphs. Two of them (Hubbard and O’Brien 2006; De Borger and Van Poeck 
2009) even include exclusively graphs with linear functions. Very appropriately, the 
translated Dutch title of the latter book is, in fact, “Economics in a straight line”. Of 
the second group of four textbooks, two have a very strong focus on non-linear 
functions with only about 20% of the graphs showing a linear demand or supply 
(Parkin 2010; Lipsey and Chrystal 2007). The other two textbooks have a more or 
less balanced use of linear and non-linear curves. Through a contents analysis, we 
can also roughly distinguish the two different approaches. While the first five text-
books use non-linear demand curves only to explain a couple of specific situations 
related to the interpretation of the elasticity of demand, the second group of four 
textbooks explains demand and supply as much as possible from a non-linear point 
of view and only occasionally turns to a linear approach, for example whenever it 
enables to make things clearer or it allows easier calculations. We think the latter 
approach is preferable. Since, as we can see from the chapter numbers mentioned in 
the table, demand and supply are usually one of the first topics discussed in an eco-
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Table 29.1 Graphic representation of “demand and supply functions” and the “Phillips curve” in 
major economic textbooks

Textbook
Treatment of demand and 
supply functions % linear

Treatment 
of the 
Phillips 
curve % linear

Economics (Mankiw 
and Taylor 2014)

Chapters 3 and 4: 25 (27) 92.6 Chapter 34: 
7 (7)

100.0
Non-linear functions are used 
to explain the different values 
for the price elasticity of 
demand and to explain how 
the price elasticity of supply 
can vary

Microeconomics 
(Besanko and 
Braeutigam 2011)

Chapters 2 and 5: 24 (30) 80.0 / /
Only to illustrate the link 
between the choice of the 
consumer and his demand 
function, a non-linear 
approach is used a couple of 
times in Chap. 5

Microeconomics (Parkin 
2010)

Chapters 3 and 4: 4 (18) 22 / /
Only for calculating the 
elasticity of demand and for 
clarifying the relationship 
between the elasticity of 
demand and total revenue a 
linear demand curve is used

Essentials to economics 
(Sloman and Garratt 
2010)

Chapters 2 and 3: 8 (16) 50.0 Chapter 11: 
0 (3)

0.0
The concept of demand and 
supply is introduced in a 
non-linear way, but the further 
analysis of these functions – 
e.g. shifts in demand, or price 
elasticities – is always 
explained in a linear way

Managerial economics 
(Png and Lehman 2007)

Chapters 2 and 3: 13 (14) 92.9 / /
Only to explain the 
calculation of the price 
elasticity of demand, a 
non-linear function is used 
once

Economics (Lipsey and 
Chrystal 2007)

Chapters 3 and 4: 4 (24) 16.7 Chapter 24: 
0 (4)

0.0
For two occasions linear 
functions are used: to explain 
elasticity of supply and 
demand and to explain the 
difference between short-run 
and long-run demand curves

(continued)
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nomics course, a consistent use of linear functions from the first graphs on makes 
students much more receptive to the illusion of linearity. If, however, students are 
first taught that demand curves are non-linear in principle and that only for didacti-
cal purposes a linear approach is used every now and then, they will be much warier 
of the risks of linear reasoning. Finally, we noted that practically all of the textbooks 
consistently use the word demand “curve” or supply “curve”, even when using a 
linear function. This is sometimes explicitly mentioned and motivated. For instance, 
Sloman and Garratt (2010, p. 32) write: “The term demand ‘curve’ is used even 
when the graph is a straight line! In fact, when using demand curves to illustrate 
arguments we frequently draw them as straight lines – it’s easier”.

Just like for the analysis of demand and supply, the textbooks show a slight pref-
erence for a linear approach in their discussion of the Phillips curve, a much nar-
rower topic than demand and supply. Almost 60% of all the graphs related to the 
Phillips curve are of a linear nature. However, in each of the five textbooks that treat 
this concept, all graphs were either linear or non-linear, with three books opting for 
a linear approach and two books preferring a non-linear approach. As a result of 
these unambiguous choices, it is hard to evaluate or compare the motives for either 
choice in more detail. We do notice, however, that the two textbooks choosing a 
non-linear Phillips curve (Sloman and Garratt 2010; Lipsey and Chrystal 2007) also 
made a similar choice for the way demand and supply are presented.

Table 29.1 (continued)

Textbook
Treatment of demand and 
supply functions % linear

Treatment 
of the 
Phillips 
curve % linear

Macroeconomics 
(Blanchard 2006)

/ / Chapters 8 
and 9: 1 (1)

100.0

Microeconomics 
(Hubbard and O’Brien 
2006)

Chapters 3 and 6: 19 (19) 100.0 / /

Economie (Decoster 
2010)

Chapters 3 and 4: 9 (19) 47.4 Chapter 23: 
2 (2)

100.0
The concept of demand and 
supply is introduced in a 
non-linear way, while in the 
further analysis, a balanced 
mixture of linear and 
non-linear functions is used

Economie in rechte lijn 
(De Borger and Van 
Poeck 2009)

Chapter 2: 15 (15) 100.0 / /

Overall 121/182 66.5 10/17 58.8
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29.3  Research Experiments on Students’ Overreliance 
on Linearity in Economic Applications

29.3.1  Examples from Various Economic Studies

Christandl and Fetchenhauer (2009) conducted a series of experiments to examine 
the accuracy of estimations of long-term economic growth both by experts and lay-
people, the factors that influence the accuracy of their estimations and the proce-
dures they use to make the estimations. For an annual growth rate of more than 1%, 
this long-term growth level was clearly underestimated by both groups, but the 
underestimation was lower for experts than for laypeople. The authors discuss sev-
eral causes for the underestimation of the actual economic growth, which essen-
tially can be modelled by an exponential function. A detailed review would lead us 
too far, but relevant in the context of this chapter is the fact that one third of the 
participants underestimated long-term economic growth on the basis of a linear 
model by simply multiplying the time in years by the annual growth rate and thus 
totally ignoring exponential effects. The authors state (p. 391): “Linear functions 
are used as a default for situations that require a non-linear approach as long as it is 
not clear which approach needs to be applied to a particular situation”.

Linear reasoning in a context where exponential reasoning is more suitable was 
also found by Christandl and Gärling (2011), who conducted a series of laboratory 
experiments with undergraduates on consumers’ ability to accurately estimate 
future price increases in an inflationary economic context. Consumers strongly 
tended to apply a linear model to extrapolate future prices, and that model was only 
abandoned when clear counterevidence was provided, definitely showing its inade-
quacy in this context.

Whereas Christandl and Fetchenhauer (2009) and Christandl and Gärling (2011) 
focused on people’s underestimation of exponential relationships in macroeco-
nomic contexts, Stango and Zinman (2009) investigated this phenomenon in rela-
tion to household finance. They apply the term “exponential growth bias” to 
characterize the pervasive tendency to linearize exponential functions when assess-
ing them intuitively, a bias that can explain two facts in household finance: the ten-
dency to underestimate an interest rate given other loan terms and the tendency to 
underestimate a future value given other investment terms. The authors argue that 
this bias affects households’ financial decisions: More biased households will bor-
row more, save less and favour shorter maturities. New empirical evidence was 
found by constructing a household-level measure of payment/interest bias and cor-
relating it with a wide range of household financial outcomes using nationally rep-
resentative data in the USA.

Hsee et al. (2003) investigate the impact of a medium – for example, points or 
money – on people’s decisions when they are faced with options entailing different 
outcomes. In a laboratory study with university students, the authors demonstrate 
that the presence of a medium can alter people’s decisions because the medium cre-
ates an illusion of advantage to an otherwise not so advantageous option. One of the 
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presented illusions is called the “illusion of linearity”, the effect that occurs because 
the medium masks an otherwise concave down effort-outcome return relationship 
by a linear relationship. The authors argue that their work has real economic impli-
cations for how points influence consumer choice and how money influences human 
behaviour.

29.3.2  A Systematic Empirical Study in Economics Education

Recently, students’ overreliance on linearity in the domains of micro- and macro-
economics was investigated in a systematic way. For a full report of this study, we 
refer to De Bock et al. (2014); in this overview we limit ourselves to some key ele-
ments. The authors’ research question was: Does improper linear reasoning play an 
important role in business economics students’ reasoning about micro- and macro-
economic situations? Because mathematics education research had revealed that 
problem formulation can influence students’ tendency to over-rely on linearity, they 
decided to add an additional research question: Does improper linear reasoning by 
business economics students about micro- and macroeconomic statements depend 
on the way these statements are formulated?

A written test was taken by 92 third year Bachelor students in business econom-
ics, aged 20+, at a Belgian university campus. The test consisted of ten statements 
that the participants had to evaluate as being correct or incorrect (examples are 
given in Table 29.2). The theory underlying each statement was addressed in courses 
that participants had followed during their university training so far. Half of the 
statements were drawn from the subdomain of microeconomics; the other half were 
drawn from the subdomain of macroeconomics. Within each of these subdomains, 
there was one statement for which linear reasoning – defined in its narrow “y = ax” 
sense – was appropriate, and there were four items for which such reasoning was 
not appropriate. They were named the linear and the non-linear items. Half of the 
non-linear items (in each subdomain) were formulated in a “k times A, thus k times 
B” format, which is the most natural and straightforward form of “y = ax” reason-
ing. The other half of the non-linear items were formulated in an “A + k%, thus B + 
k%” format (which is mathematically equivalent with a multiplication by 1 + k/100). 
Participants’ answers were statistically analysed by means of two repeated mea-
sures logistic regression analyses. The first logistic regression was carried out for all 
experimental items with linearity and economic subdomain as explanatory vari-
ables. The second logistic regression was carried out for all non-linear items with 
item format and economic subdomain as explanatory variables.

The first regression analysis revealed a significant linearity main effect. Linear 
items elicited more correct answers than non-linear items (respectively, 85.3% and 
71.2%). This result is in line with results found in the domain of mathematics. The 
economic subdomain variable too had a main effect on the percentage of correct 
answers. The number of correct answers was significantly larger for the micro- than 
for the macroeconomic items (respectively, 77.8% and 70.2%). This result is prob-
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ably due to the more general and more abstract nature of the subdomain of macro-
economics. The second logistic regression analysis revealed a significant item 
format main effect. Participants performed better (and thus were less inclined to 
accept an inappropriate linear reasoning) for non-linear items in an “A + k%, thus B 
+ k%” than for non-linear items in a “k times A, thus k times B” format (respectively, 
80.4% and 62.0% correct answers).

Table 29.2 Examples of items as used in the test

Microeconomics
Linear item

Peter wants to celebrate his 18th birthday. He plans to have an unforgettable evening party, and 
he wants to take care of everything to the last detail. In order to reduce his costs, he asks guests 
for a contribution of 10 euros. He was expecting 20 guests, but twice as many come. The total 
contribution that he will receive from his guests will therefore be twice as large as he had 
expected.
Example of a non-linear item/“k times A, thus k times B” format

Last year three classmates had a mobile phone. We define the utility of that group as the number 
of possibilities these classmates have to communicate with each other by mobile phone. This 
year the number of classmates owning a mobile phone doubled. Accordingly the utility of the 
group that already had a mobile phone last year (approximately) doubled too.
Example of a non-linear item/“A + k%, thus B + k%” format

Before 2008 farmers in the European Union were obliged to leave 10% of their land fallow. The 
aim was to avoid overproduction. As a consequence of that 10% fallow rule, agricultural 
production decreased by (approximately) 10%.
Macroeconomics
Linear item

Today, the exchange rate of the euro and the dollar is 1 US dollar = 1 euro. A Dutch company 
buys a boat in the USA for 500,000 dollars. One month later a Belgian company buys the same 
boat at the same price in dollars, but the rate of the dollar has risen to 1 US dollar = 1.1 euro. 
Both companies pay in dollars to the manufacturer in the USA. The dollar became 10% more 
expensive, so the cost in euros for the Belgian company is also 10% higher than for the Dutch 
company.
Example of a non-linear item/“k times A, thus k times B” format

In a certain country a flat tax rate of 20% is applied to all incomes. To bring in more money the 
government thinks about an increase in the flat tax rate. Next year income tax will be increased 
from 20 to 40%. This means that in the future, the government will (approximately) double its 
revenue from income tax.
Example of a non-linear item/“A + k%, thus B + k%” format

After an economic crisis a country enjoys a period of economic growth. The first year after the 
crisis, the economy is growing by 5% and consequently the total income of the households 
increases by 5%. Because of that larger income, the total expenditure of the households also 
increases by (approximately) 5%.
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29.4  Conclusions and Discussion

Although research on students’ overreliance on linearity in the domains of econom-
ics and economics education is still rare, the phenomenon is acknowledged by sev-
eral scholars in these fields. Moreover, a small-scale textbook analysis showed that 
linear quantifications are, at least to some extent, induced by current educational 
practices. More quantitative but also qualitative research is needed to unravel the 
nature of students’ overreliance on linearity in economics. Why do tertiary level 
students, who have already thoroughly studied the relationships in question, still 
succumb to the charms of linear quantifications? Does the intuitive or heuristic 
character (Kahneman 2002) of the linear model play a major role or can this phe-
nomenon only be explained by school-related practices? Or, do even tertiary level 
students in economics still have substantial gaps in their economic (pre)
knowledge?

Besides the call for more empirical research, also some theoretical work would 
be useful. When people use linearity to grasp real-world situations that are only 
approximately linear, at best they obtain reasonable approximations of what really 
happens. However, when the real-world situation is not linear at all, vast under- or 
overestimations are the result. Some people are aware they simplify reality, others 
are not. Research has already shown that people’s (over)use of linearity affects their 
personal economic and financial decision-making (Stango and Zinman 2009). 
Nevertheless, a more comprehensive view of the individual and societal impact of 
the (over)use of linear models in different kinds of non-linear (or only approxi-
mately) micro- and macroeconomic situations, related to people’s economic and 
financial literacy, would be welcomed.
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Chapter 30
Teaching Modelling and Systemic Change
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Abstract In this chapter, we set out our views, based on over 30 years of experi-
ence, on two related areas: methods and challenges in teaching students the strate-
gies and skills needed to model real problems using mathematics, and approaches 
to helping education systems make this happen in the classrooms for which they are 
responsible. We believe that substantial progress has been made with the first of 
these but much less with the second. We use examples from a sequence of model-
ling projects to illustrate design principles that we have found powerful for materi-
als to support teaching and professional development. We then discuss barriers in 
school systems to the implementation of important improvements like modelling, 
and how they might be tackled.

Keywords Design principles • Design strategies • Design tactics • Professional 
development • Strategic design • Teaching materials

30.1  Introduction

We begin with a little history that sets the context for the style of work we have 
developed over the last 35 years. The Shell Centre ‘Brief’ that one of us (HB) agreed 
with the university when he became Director in 1976 was broad, simple – and chal-
lenging: To work to improve the teaching and learning of mathematics regionally, 
nationally and internationally. The goal was, and is, to work directly to transform 
practice in classrooms through design and development research, with an ‘engineer-
ing research’ approach based on:

• Finding and analysing promising situations for student investigation,
• Designing new processes, products, and experiences for teachers and learners,
• Developing these products to work well in large-scale use,
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• Articulating values and principles that underpin these designs,
• Analysing ‘designs in action’,
• Revising and refining theories and designs in the light of these experiences.

The importance of design for this strategy was clear. After a search for people with 
the unusual design research skills to forward this brief, the other author (MS) was 
appointed in 1979 to lead this aspect of the work.

A series of modelling-focused projects has followed over the years, building on 
work from 1964 onwards, described in The Real World and Mathematics (Burkhardt 
1981, illustrated by MS). We start by describing the structure of the Testing Strategic 
Skills (TSS) project, in order to show the diverse aspects of design that need to be 
addressed if an innovation is to meet the ‘brief’ above, that is to fit the complex 
needs of an education system (in this case, England’s).

30.1.1  ‘The Box Model’ of Gradual Improvement

This initiative was developed in the 1980s by the Shell Centre team with the largest 
UK examination board. We persuaded the board to improve the match between its 
broad list of ‘knowledge and abilities to be tested’ and what was actually assessed 
in this high-stakes mathematics examination for age 16. An unusual strategic design 
feature was the gradual change approach that was adopted. One new task type was 
introduced each year, with one task on the examination, representing 5% of the 
2-year mathematics syllabus and about 3 weeks teaching. Care was taken to remove 
from the syllabus some topics that took a comparable amount of classroom time.

The Shell Centre developed the support, which comprised:

• Five examples of the new type of task, along with scoring guidance and exam-
ples of student work at various levels – five exemplars were needed to show the 
variety to be expected in the ‘live’ examination;

• Teaching materials for 3  weeks’ teaching in the form of a teacher guide and 
copyable worksheets;

• Materials to support five sessions of in-school do-it-yourself professional devel-
opment (these included lesson videos and software ‘microworlds’);

all brought together in a box of materials for purchase by schools, hence the project 
name. The materials were designed and developed in classroom trials until feedback 
showed that they enable typical teachers to prepare their students for this new type 
of task.

The first year’s change was the introduction of 15-min tasks that assess nonrou-
tine problem solving in pure mathematics. The following year’s module, The 
Language of Functions and Graphs (Swan et al. 1985), focuses on representational 
skills for modelling real-world situations with Cartesian graphs or with algebra – 
graph interpretation, model critique, and formulation are all included. Figure 30.1 
shows two task exemplars. Note the absence of numbers, designed to ensure stu-
dents’ focus on qualitative understanding.
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This approach proved popular with teachers. They enjoyed the 3 weeks of new 
teaching, pedagogically challenging but well-supported. They were equally glad to 
get back to more familiar ground for a while thereafter but said they looked forward 
to the next year’s module. The model died through a government reorganization of 
assessment  – such unintended consequences are a common feature of 
reorganizations.

30.1.2  A 30-Year Development Programme

Following Testing Strategic Skills, the Numeracy Through Problem Solving project 
(NTPS, Shell Centre 1987–1989) developed five modules, each supporting com-
plete 3-week small-group modelling projects. Among the projects that followed 
were Extended Tasks for GCSE Mathematics, World Class Arena, Bowland Maths, 
and our US-based Mathematics Assessment Project (MAP, 2010–2014). We describe 
aspects of these in what follows.

While these teaching materials supported teachers in making the shifts of peda-
gogy that modelling demands, there was also parallel development of materials- 
based professional development, focused on helping teachers more broadly with the 
new pedagogical and mathematical challenges. Bowland Maths included such a 
component which was built on later in PRIMAS (Promoting Inquiry in Mathematics 
and Science) and the Mathematics Assessment Project, while Lessons for 
Mathematical Problem Solving LeMAPS (Lesson Study in Mathematical Problem 
Solving) has developed the “lesson study” approach pioneered in Japan. Impact on 
classrooms remains the core goal of Shell Centre projects, now part of a broader 
range of research across Nottingham’s Centre for Research in Mathematics 
Education, directed by another pioneer in the teaching of modelling, Geoff Wake.

In this chapter, we shall illustrate design principles and tactics with examples 
from this work. However, the inevitable space constraints of print limit how much 
we can show, particularly of the visual aspects that are so important in  understanding 
design.1 To support the interested reader, fuller exemplification is given, section by 
section, at ictma17.mathshell.org, where fuller descriptions of various Shell Centre 

1 Hence the decision to make Educational Designer an e-journal.

Translating between the graphs and physical situations

How does the speed of the ball
change as it flies through the air?

Which sport will produce a speed v time graph like this?

Fig. 30.1 From The Language of Functions and Graphs examination module
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modelling projects can also be found. The complete materials can be found at www.
mathshell.com.

In the next section, we present a picture of what modelling in middle and high 
school classrooms can look like by describing the design of modelling activities on 
three timescales: a single lesson, a four-lesson ‘case study’, and a 3-week modelling 
project. In Sect. 30.3, we discuss the pedagogical challenges and how they may be 
tackled. Section 30.4 looks at the challenges of designing support for the teaching 
of modelling. Section 30.5 addresses the system-level challenges that, despite the 
obvious importance of and rhetorical support for modelling, have prevented it hap-
pening in most classrooms, discussing how the research community could rebalance 
its work to contribute more effectively to the large-scale implementation of model-
ling in classrooms around the world.

30.2  Modelling: What Does It Look Like in Secondary 
Classrooms?

We begin with a brief look at some aspects of the modelling process. There are 
many versions of the modelling diagram in this book. We include one from the first 
publication we developed together, as author and artist (Burkhardt 1981). See 
Fig. 30.2.

In teaching modelling, the focus is on active student engagement in mathemati-
cal aspects of the situation that may help understanding and better decision-making. 
This should encompass reasoning mathematically and using mathematical con-
cepts, procedures, facts, and tools in describing, explaining, and predicting phenom-

Fig. 30.2 The modelling cycle from Burkhardt (1981)
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ena. In particular, the verbs ‘formulate’, ‘solve’, and ‘interpret’ point to the three 
processes in which students engage as active problem solvers. Formulation is usu-
ally the core challenge in modelling.

This much is common ground among the chapters of this book – but unfamiliar 
turf for both teachers and students in most classrooms. How can we make it acces-
sible and enjoyable? We begin to explain our approach by outlining a few 
examples.

30.2.1  How Many Teachers? A One-Lesson Modelling Task

There are about 60 million people in the UK.
About how many school teachers do we need?

Tasks like this and the ability to make rough estimates are the essence of modelling. 
The centrality of proportional relationships, direct and inverse, is typical.

A group of students, working through discussion,2 converged on the following 
assumptions and reasoning. (They did not use the symbols, but corresponding words.)

• Identifying significant variables and making assumptions

Variable Symbol Assumed value

Population p 60,000,000
Years in school t 12 years
Lifetime n 80 years
Class size c 25

• Identifying relationships and calculating intermediate variables >> a solution

Fraction of population at school f = t/n 1/8
School population s = p*f 7,500,000
Number of teachers needed T = s/c 300,000

From this outline you can see the modelling reasoning, along with some errors. A 
Bowland Maths (Swan and Pead 2008) unit, You Reckon, focuses on ‘Fermi prob-
lems’3 like this.

A bank manager says that an armed youth stole a bag containing £5000 in £1 coins and ran 
away.

The insurance company is suspicious, and wants you to investigate. Could the bank 
manager be lying? Explain your reasoning carefully! Tell the insurers exactly what assump-
tions you made.

2 The video is on the website ictma17.mathshell.org – for the interested reader to analyse.
3 So-called after the great physicist who loved such ‘back of the envelope calculations’.
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30.2.2  Reducing Road Accidents: A Four-Lesson 
Modelling Task

In this Bowland Maths ‘case study’ (Swan and Pead 2008), students examine police 
reports, photographs, and a map on 120 road accidents, seeking to identify possible 
causes and propose cost-effective remedies to the town government. The key tool 
provided is a computer database of casualty reports along with a variety of ways to 
present the data (see Fig. 30.3). Students explore the data, choosing subsets ‘fil-
tered’ to focus on specific variables. They try to find patterns in the accident loca-
tions, times, weather conditions, vehicle usage, and so on.

The students are also given costs for various measures that reduce accidents: 
pedestrian crossings, road humps, and cycle lanes. The student reports, as in 
Fig. 30.4, showed a high level of engagement and of analytic modelling – some in 
the form of PowerPoint presentations for ‘the council’. The unit was popular with 
both teachers and students.

Fig. 30.3 The graphical database

Fig. 30.4 A sample group report
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30.2.3  Numeracy Through Problem Solving: 3-Week 
Modelling Projects

The Numeracy Through Problem Solving project developed five modules: Design a 
Board Game, Produce a Quiz Show, Plan a Trip, Be a Paper Engineer, and Be a 
Shrewd Chooser (Shell Centre 1987–1989). The rationale was the teaching, learn-
ing, and assessment of mathematical literacy á la PISA – but here through tackling 
substantial real problems more seriously than is usual in school. The goal was that 
students see themselves as consultant designers, planners, and decision-makers who 
put their designs and plans into action. Each module was designed to take 10–20 h 
over 3–6 weeks, depending on the depth the teacher chose to address the issues 
involved.

The examination board provided certification at three levels: basic, standard, and 
extension. Basic level was teacher-assessed using tasks built into the modules at 
each stage, with written examinations papers for the higher levels. This model pro-
vided an opportunity to assess problem solving with ‘controlled transfer distance’, 
since all students had the same preparatory experience: working through the mod-
ule. Standard level assessed transfer to closely related situations (e.g. other board 
games for Design a Board Game), while extension level assessed modelling in 
other real-world contexts requiring similar mathematics  – that is, more distant 
transfer. The common design, set out in detail in the student booklet, supports four 
stages of student work in small groups over about 3 weeks of daily mathematics 
lessons:

Stage 1: Looking at existing examples. Students analyse existing products or pro-
cesses (e.g. for Design a Board Game, we provide five badly designed board 
games for them to play, analyse, and critique). This process familiarizes the 
 students with the essentials of the challenge. In this way, they identify criteria 
and possible structures for successful products.

Stage 2: Planning an approach. Students brainstorm ideas, select one to work on, 
study the techniques they need, and plan their work.

Stage 3: Carrying out the plan. Students work through their plan and then make a 
prototype product.

Stage 4: Presenting and evaluating the product. Students present the product or 
enact the process. The groups test and evaluate each other’s work.

In each case, key critical guidance is delayed until the students have (or have not) 
themselves recognized a need (e.g. for parental permission letters in Plan a Trip). 
The core goal, that the activities actually happen, is normally achieved: the games 
are made and played; the TV-like game shows for each group take place, with the 
rest of the class as participants and audience; the class goes on the trip to a place 
they together chose and planned; and so on. When interviewed afterwards, students 
in the trial made clear that the contrast with their other mathematics lessons was 
stark and welcome.
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Mathematically, though all modules involve a broad spectrum of mathematical 
reasoning, Design a Board Game emphasizes geometry and probability, Produce a 
Quiz Show demands real-time scheduling and statistical fairness of questions, Plan 
a Trip is all about money, time, and distance, while Be a Shrewd Chooser focuses 
on money and data handling. We will look in a bit more detail at Be a Paper 
Engineer, which combines three-dimensional geometry and algebra. It realizes this 
design strategy in the following way:

In Stage 1, students share the work of making 30 boxes, envelopes, and pop-up 
cards from two-dimensional ‘nets’ provided on card or paper. They bring examples 
from home as well. They then classify them all according to elements in their design.

In Stage 2, students select a type of box or card they are interested in and explore 
the mathematical principles involved in more depth. They tackle a series of 
 investigations and challenges and write up their findings. Figure 30.5 above shows 
two of the questions that students investigate (the answers, shown here, are not 
given to the students!). The left-hand figure is essentially two-dimensional (viewed 
from the side), and the answers, arrived at by most students, are standard parallelo-
gram theorems that are normally taught directly, rather than devised by investiga-
tion. In the three-dimensional right-hand example, it is challenging to show that, for 
the pop-up to work, the three lines must intersect on the fold line.

This investigative stage raises all the questions the student groups will need to 
think through in formulating their model in Stage 3:

• Identify specific questions: ‘How can I make a card that pops up like this?’
• Make simplified drawings: ‘Let’s simplify this card so we can see its structure.’
• Represent mathematically: ‘How can we draw this 3D shape in 2D?’
• Identify significant variables: ‘Which lengths/angles are important here?’
• Generate relationships: ‘For the card to work, how must the lengths be related?’

Fig. 30.5 Be a Paper Engineer investigations
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In Stage 3, making their own originals, students brainstorm ideas, and then each 
makes a rough version, followed by a final version of the object they choose – that 
is, the solving phase of modelling: making and carrying out a plan and then monitor-
ing progress.

In Stage 4, going into production, students devise step-by-step instructions for 
making their product – then test the instructions by asking someone else to follow 
them. This involves interpreting results (e.g. ‘Can you interpret John’s instructions 
for making the box?’) and evaluating the solution (e.g. ‘Can you reconstruct the 
card from John’s instructions?’). All the products are then put on display for the 
class to analyse and evaluate.

Numeracy Through Problem Solving modules were adopted with great enthusi-
asm in a substantial number of classrooms but not in the majority of the examination 
board’s schools. The issues that led to this include:

• Teacher expectations. Teachers found that the modules took them outside what 
they understood to be mathematics  – some saw it as a fine cross-curricular 
activity.

• Demand on class time. Five modules of 10–20 h were too much for many teach-
ers, unwilling to lose time from consolidation and practice of procedures.

• Pedagogy was very different from the standard ‘demonstrate and practise’ 
approach.

• No high-stakes examination. Unlike the Testing Strategic Skills modules, which 
were part of a change in the examination that all students take at age 16, the 
NTPS assessment was separate and different in kind.

As a result, teachers tended to use the modules mainly with ‘low attainers’. The 
roots of the scheme in ‘numeracy’, its emphasis on practical activity, and ‘the class-
room time taken from preparing for the exam’ made some teachers reluctant to use 
it with more able students – though trials had shown the challenges the modules 
present to all students and the quality of work high performers can produce. The 
development of an optional GCSE syllabus based on the modules largely met the 
last bullet point and increased uptake.

30.3  Pedagogies for Modelling

The main approaches to teaching mathematics may be grouped as in Fig. 30.6. To 
teach modelling effectively requires a collaborative pedagogy, with the students tak-
ing responsibility for their learning and teachers adopting new roles, facilitative 
rather than directive. The ‘adaptive expertise’ that this requires takes most mathe-
matics teacher into territory outside the comfort zone of their well-practised mode 
of working. Recognizing the need, we have developed ways of supporting this kind 
of teaching, more recently under the title of ‘formative assessment’, through materi-
als both for lessons and for professional development activities.
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In the Mathematics Assessment Project (2010–2015), we faced the challenge of 
seeing how far teaching materials could enable typical teachers of mathematics in 
supportive school environments to move to high-quality formative assessment of 
the kind that the research review of Black and Wiliam (1998) had shown to be so 
effective in advancing student learning. Formative assessment can be described as 
“students and teachers, using evidence of learning to adapt teaching and learning to 
meet immediate needs minute-to-minute and day-by-day” (Wiliam and Thompson 
2007).

The project developed 20 formative assessment lessons (‘FALs’) for each US 
grades 6 through 10. There are two quite different types (see Fig. 30.7): about a third 
of the lessons are on problem solving, mostly modelling, while the rest are focused 
on concept development. The distinction is important because the foci and the qual-
ity criteria are different. Modelling looks for power in terms of understanding the 

Fig. 30.6 Alternative pedagogies

Fig. 30.7 Alternative 
lesson goals
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practical situation, choosing and using whatever mathematical tools you find useful 
for this. Concept development is focused on understanding a specific piece of math-
ematics; practical contexts can illustrate and thus reinforce this. It is important that 
both teacher and students understand this distinction – a student model using ele-
mentary mathematics can be, and often is, more powerful than one that tries to use 
more advanced concepts.

Both kinds of ‘FAL’ proved popular, with over seven million lesson downloads 
from map.mathshell.org, and effective in forwarding both student learning and 
teacher pedagogy. We shall illustrate the design of the modelling FALs using Cats 
and Kittens (see Fig. 30.8), as the example. The mathematical challenge is mainly 
in the complexity of the situation and the data and in finding a representation to 
handle it.

In a prior lesson, the problem is presented to the students who tackle it individu-
ally and unaided. This enables the teacher to assess the student work,4 looking for 
common issues, then to prepare qualitative feedback. To help the teacher, each FAL 
has a ‘common issues’ table, as in Table 30.1. Note that the suggested teacher inter-
ventions are in the form of questions or general suggestions, so that the student still 
‘owns’ the solution.

The main lesson structure is typically as follows: After a bridging introduction, 
the teacher reintroduces the main task. Students respond to the prepared questions 
by reviewing and revising their individual solutions. In the next phase, the students, 

4 Not to score it! Research and our student interviews clearly show that getting numerical scores 
terminates student interest in understanding and improving their, and others’, reasoning.

Fig. 30.8 Cats and Kittens – the task
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working in small groups, compare their approaches – particularly, in this problem, 
the representations they have devised. From this discussion, they produce a poster 
showing a joint solution, completing the inherent peer assessment. The posters are 
displayed promoting an intergroup discussion. Groups compare approaches, justi-
fying their own and recognizing others. Each group now analyses and critiques 
sample student work we provided (see Fig.  30.9). This leads them to discuss 
approaches they may not have considered. The groups then work to improve their 
solutions to the problem. Whole class discussion follows, seeking to combine a 

Table 30.1 Common issues for Cats and Kittens

Issue Suggested questions

Has difficulty starting Can you describe what happened in the first 5 months?
Does not develop a suitable 
representation

Can you make a diagram or table to show what is 
happening?

Work is unsystematic Could you start by looking at the litters from the first cat? 
What would you do after that?

Develops a partial model Do you think the first litter of kittens will have time to 
grow and have litters of their own?

Does not make clear or reasonable 
assumptions

What assumptions have you made? Are all your kittens 
born at the beginning of the year?

Makes a successful attempt How could you check this using a different method?

Fig. 30.9 Sample student work for critiquing
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review of what has been learned with discussion of the processes, assumptions and 
their implications, and alternative representations, their strengths and weaknesses.

From a design perspective, using sample student work can be powerful in many 
ways:

• To encourage a student that is stuck in one line of thinking to consider others.
• To enable students to make connections.
• To compare alternative representations, including more powerful ones.
• To compare hidden assumptions and their effect.
• To encourage metacognitive behaviour.
• To draw attention to common errors.
• To encourage criticality without fear of criticism.
• To become more aware of valued criteria for assessment.

Strategically, it moves students into ‘teacher roles’ (Burkhardt et al. 1988) – a design 
tactic that reliably increases the depth of classroom discussions and of learning.

30.4  Support for Teaching Modelling

So far we have described how teaching materials can be designed and developed to 
help teachers face the challenges of teaching their students not just to learn standard 
models but to become active modellers. This support needs to be complemented by 
effective professional development, for which there are alternative designs, 
including:

• ‘Training’ models based on transmission of information by an ‘expert’. These are 
useful mainly for raising awareness of needs and opportunities; teachers find 
there is a gulf between the advice and their day-to-day classroom practice that is 
difficult to bridge. We see this as an ‘inappropriate design load’.

• ‘Experiential course’ models provide a sequence of sessions, mediated by a pro-
vider, that offer teachers opportunities to explore ideas in their own classrooms 
and report back.

• ‘Embedded’ professional learning communities move from a finite treatment 
approach to one of long-term development through shared activities. Teachers 
take over responsibility for setting their own ‘action research’ goals, collabora-
tively and systematically studying them in their own and each other’s classrooms, 
often with outside support from materials and/or invited experts.

For teaching modelling, there is a mismatch between the numbers of teachers 
needing professional development support and of those who have the expertise to 
lead that support. We have worked to see how far materials can fill the need – an 
interesting design challenge. We have designed experiential professional develop-
ment sessions to complement our teaching materials, first in the Testing Strategic 
Skills modules, more recently as part of our work on Bowland Maths and subse-
quent US and European projects. The Bowland Professional Development Modules 
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(Swan and Pead 2008) each focused on a specific pedagogical challenge that teach-
ing modelling involves:

• Tackling unstructured problems: Do I stand back or intervene and tell them what 
to do?

• The projects and mathematics: Where is the maths?
• Fostering and managing collaborative work: How can I get them to stop talking 

and start discussing?
• Using technology effectively: How can I get them to stop playing and start 

thinking?
• Questioning and reasoning: How can I ask questions that improve thinking and 

reasoning?
• Assessing modelling processes: How do I assess progress?
• Involving students in self and peer assessment: How can students help each other 

to progress?

Each module has the same three-part ‘sandwich’ structure:

• Introductory session: Teachers work on problems provided, discussing specific 
pedagogical challenges that are the focus of the module. They then watch a video 
of other teachers using these problems and together plan a lesson using given 
materials.

• Into the classroom: Teachers all teach the planned lesson in their own 
classroom.

• Follow-up session: Teachers describe and reflect on what happened, discuss 
video extracts, and plan strategies for future lessons.

As with the materials, the lessons are based on a variety of modelling task types:

• Plan and organize. Find optimum solution subject to constraints.
• Design and make. Design an artefact or procedure, and test it.
• Model and explain. Invent, interpret, and explain models.
• Explore and discover. Find relationships and make predictions.
• Interpret and translate. Deduce information and move between representations 

of data.
• Evaluate and improve. Review and improve an argument, a plan, or an artefact.

We have space here to illustrate two of these (see Fig. 30.10).
Examples of the core task-type model and explain include:

Explore and discover tasks include computer-based microworlds like that in 
Fig. 30.3.

Heat Kills Toddlers. Babies must never be left in  locked cars on hot days. 
They quickly dehydrate. Explain why toddlers dehydrate more rapidly 
than adults.

Traffic Jam. In a 12-mile traffic jam on a two-lane freeway, how many cars are 
there? If drivers have a 2-s reaction time, how long will it take to clear?
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30.5  The System-Level Challenge

We now know how to enable typical teachers to teach much better mathematics, 
notably modelling, much more effectively. So why doesn’t it happen in classrooms?

It is easy to identify some direct causes. Policy initiatives are often misguided – for 
example, reducing class size ignores the research evidence and is a uniquely expen-
sive move. Initiatives are usually badly designed by policy makers, with outcomes 
far from their intentions – for example, short tests with artificial tasks aim to reduce 
testing time but lead to many wasted days of ‘test prep’ that do not help students 
learn mathematics. Mistakes in design like this lead to unintended consequences 
that are not only predictable but often predicted – and usually avoidable.

But from a system perspective, this analysis is too easy – because politicians and 
policy makers are part of the system we seek to improve. Yet the situation is different 
in other research-based fields, like engineering or medicine. All healthcare systems 
have economic and other challenges for politicians to manage, but they do not inter-
fere at a technical level – imagine a health minister deciding “We are going to move 
over to all-acupuncture-based health care”. It just doesn’t happen – but things like 
“You can’t solve problems until you’ve mastered a lot of maths” are commonplace. 
Making education more like medicine in this sense would be a big step forward. 
How might we tackle this challenge? What are the barriers and affordances we face? 
What are the most promising things to try, short term and longer term? That is the 
focus of this final section; without proven well-engineered answers to these ques-
tions, the potential of most children will remain unrealized.

30.5.1  The Big Picture

In mathematics, modelling is generally accepted as important. Everyone recognizes 
that all real improvement in student learning depends on what happens in class-
rooms. But education systems are complex, with players at different levels having 

Fig. 30.10 Tasks for professional development
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different pressures and priorities. Politicians’ priority is to stay in power and thus, 
short term, to avoid negative reactions to any initiatives. There is a fundamental 
‘timescale mismatch’ here – ministers of education know they will have moved to 
other roles long before the impact of any initiative can be evaluated, so plausibility 
to influential non-expert opinion is their key need. Superintendents and school prin-
cipals face daily urgencies that demand their attention. Pressures are passed down 
the line by these ‘powers’ to teachers who are expected to deliver, with support that 
fails to match what the new demands really require – the teachers are then blamed 
for perceived failures. (The problem is exacerbated because teachers’ representa-
tives never say, as doctors’ do all the time: ‘We don’t know how to do that yet’ or ‘It 
will take these resources and this time to achieve that’.) Parents, not surprisingly, are 
mostly puzzled bystanders who regard their own school experience as the proper 
norm.

Finding ways of making a change that is positive for all these groups is a huge 
design challenge  – and one that policy makers do not even recognize as such. 
Consequently, the challenges of large-scale improvement are underestimated. The 
potential contribution of good engineering (Burkhardt 2006) is ignored. The very 
concept of alternative models of change is still seen as novel. As a result, there is no 
established way to design, develop, and implement improvement. However, from 
our experience some things are clear.

30.5.2  Strategic Design

We now know quite a lot about strategic design (Burkhardt 2009), those aspects of 
design that concern the ‘fit’ of an initiative to the system it aims to serve. All key 
constituencies need to accept, and preferably to support, the change and what it 
requires of them. Experience suggests that this needs a coherent combination of 
incentives that make the change valuable for those involved, pressure to carry 
through the new challenges it presents, and well-engineered support that enables 
them and their colleagues to do so and to do it well. Alignment among these three 
elements is vital – but rare. Too often, for example, a desirable change in curriculum 
(incentive) is implemented without changing the high-stakes test (pressure) and 
with teaching materials and/or professional development (support) that are not good 
enough to enable typical teachers to achieve the changes that are involved. However 
good some of these elements may be, poor quality in others will undermine the 
change. Poor strategic design is a major cause of the low impact, with outcomes far 
from intentions, that is so common.
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30.5.3  Issues and Opportunities

Any initiative needs to make choices and, as with any design challenge, there are 
trade-offs (Burkhardt 2009). Here we list a few of the issues that should be consid-
ered in designing an improvement initiative.

• Pace of change is a variable that is rarely considered in the design of initiatives 
in education. Yet it should be obvious that a policy initiative that asks large num-
bers of professionals across a complex system to change their well-established 
practice in challenging ways will take time. We believe that carefully paced grad-
ual change with well-aligned support, exemplified by ‘the Box Model’ outlined 
in Sect. 30.1.1, is much the fastest approach in the medium term. (The gradual 
improvement approach is, of course, standard in medicine.) So far policy makers, 
at least in the UK and the USA,5 prefer ‘Big Bang’ approaches, seeking to ‘fix’ 
a perceived problem; the outcome is invariably disappointing, combining disrup-
tion with little change at classroom level.

• Ambition v robustness in planning an improvement initiative is a related issue. 
Shall we take a big step, trying to move to where we want to go? In which case, 
few will follow. Or shall we take a small ‘digestible’ step? In which case, it 
seems a lot of effort for a small gain. (Gradual change models combine the vir-
tues of both, with small steps moving over time towards the ‘ideal’ – which will 
surely change over time.)

• The development process needs to be formative, so that the final product is better 
than the first draft design. For this, the trialling process must be iterative, ending 
with teachers and students that are reasonably representative of those the strategic 
design aims to serve. The feedback needs to be rich, detailed, and structured 
enough to tell the design team what happened and thus reliably to guide revision.

• Engines for further improvement need to be built into any initiative. Even the 
most successful implementation will decline in quality over time. Nonroutine 
problems will become routine. Practical considerations, often about costs, will 
‘simplify’ a rich examination with several components into a more routine test. 
To counter this ‘downward drift’, a structure for ongoing improvement is critical 
to survival.

• Methodology. The methods we have used in Shell Centre work (Burkhardt 2006) 
are fairly standard in engineering and medicine. They may be summarized as:

 research > design > development > robust product. 
 The process in more detail is to create designs from research insights and prior 

examples; circulate draft designs for comment and discussion; prepare a draft 
version for trialling; observe the trials, getting structured rich, detailed, descrip-
tive feedback from observers; revise the draft, guided by the feedback; iterate the 
trials and revision until outcomes match (perhaps revised) goals; release to the 
user community; and monitor.

5 Some of the countries in East Asia that anglophone policy makers most admire, like Singapore, 
take a more measured approach, with serious engineering of the initiative and the support.
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• Cost. This process is more expensive than the ‘authoring’ model, mostly used in 
education, which relies on the authors’ communicating their experience to other 
users in writing with a minimal development process. Shell Centre lessons cost 
around $30,000 each, which may seem expensive. Strategically, this is not so. 
Even to revise the whole curriculum (~15,000 h) every decade in this way would 
cost less than 1% of the cost of running the education system in a reasonably 
large country.

We illustrate these general points with a specific case: the design challenges of com-
bining high-quality and high-stakes in testing; though a rare combination, it can be 
done (ISDDE 2012) and is a crucial part of getting important elements of curricu-
lum like modelling implemented in classrooms on a large scale. What You Test Is 
What You Get. The key design questions include: Does this test assess the intended 
curriculum in a balanced way? Does it encourage good teaching? Does it produce 
reasonably reliable scores? Usually, in test design, only the last is taken seriously6 – 
as a result, the effects of large-scale testing on the teaching and learning of model-
ling have usually been disastrous.

How has this situation arisen and been justified? The psychometrician’s view that 
‘tests are just measurement’ ignores the dominant influence of high-stakes test tasks 
on teaching and learning activities in most classrooms. But this fallacy is used to 
justify cheap tests that ‘correlate well with other measures’. Criterion-based testing 
has a similar effect. Both drive you to test bits of mathematics separately, which 
tells you nothing on how well the student can construct the chains of reasoning that 
doing mathematics actually involves.

30.5.4  Systemic Barriers and Levers

Changing education on a large scale in the way we have discussed here is not easy – 
indeed it remains an unsolved problem in most countries. What are the strategic 
barriers and what promising ways are there to get around them?

30.5.4.1  Policy

There are some things that increase the probability of influencing policy decisions. 
Work with policy makers, where you can get access to them. The core objective is 
to get them to see educational initiatives as serious design and engineering problems 
that cannot be resolved just through discussion, but need expert design input from 
conception to delivery. To summarize, the key issues to get discussed are alternative 

6 But with different criteria in different subjects. For essays in the humanities, substantial ‘mark-
remark’ variation is accepted; mathematics is proud of its scoring ‘accuracy’, which is only 
achieved by excluding tasks that demand substantial chains of autonomous student reasoning, as is 
essays – or in assessing modelling.
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models for implementing the change, its strategic design, which teams have the 
skills and capacity for the detailed design and engineering, and a selection process. 
To satisfy the different needs and timescales of politicians and educational improve-
ment, the design should be long-term but with visible short-term achievements.

30.5.4.2  Research

Reviewing the nature and effectiveness of research in education is sobering 
(Schoenfeld 2002; Burkhardt 2016). How well do we perform? In serving ourselves, 
the research community does pretty well. Papers get written and published, gradu-
ate students get PhDs, and academic staff are appointed and promoted. But when 
policy makers think they have a problem in education, do they (as in medicine) turn 
first to the research community? Rarely. What is needed to have more impact? The 
key elements in successful research-based fields of practice, like medicine or engi-
neering, are (Burkhardt and Schoenfeld 2003) a body of generally accepted knowl-
edge, a system for turning research insights into effective tools and processes, and 
rich evaluative feedback to guide the next stage of research and development.

Education has none of these in full working order. Why not? A key factor is the 
academic value system, which favours new ideas over reliable research, new results 
over replication, disputation over consensus building, small studies over team 
research, first author over team member, and journal papers over tools for improv-
ing practice. These priorities are the reverse of what is needed to drive system 
improvement.

30.5.4.3  Progress

What changes might meet the challenge? We believe that moving forward at system 
level will require a practice-focused research enterprise that:

• Builds collaborations for tackling big issues, which need big projects;
• Focuses on developing and evaluating specific well-engineered exemplars;
• Does evaluation-in-depth – on what happens as well as student test outcomes;
• Builds bodies of reliable results with evidence of their range of validity;
• Identifies and publicizes successes.

That is the next step towards a ‘big education’ effort that matches the challenges we 
face. We have recently moved to develop ‘system change’ level tools that guide 
improvement programmes. But in this new and crucial domain, all is still to play for.
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Chapter 31
Mathematical Modelling as a Professional 
Activity: Lessons for the Classroom

Peter Frejd

Abstract This chapter presents a discussion about similarities and differences 
between working with mathematical modelling in ‘school’ and mathematical mod-
elling as a ‘professional task’ in the workplace based on empirical and theoretical 
research studies. Issues discussed concern goals; technology; division of labour, 
communication and collaboration; model construction, including the application 
and adaption of predefined models; projects; and risks involved in using the models. 
Based on this discussion and examples from innovative teaching practices, 
approaches to simulate modelling as a ‘professional activity’ in educational settings 
are explored and exemplified with a role-play activity.

Keywords Modelling • Modeller • School activity • Professional activity • 
Innovative teaching methods • Role-play

31.1  Introduction

Mathematical modelling and models are used for various purposes in school and in 
society. Descriptions from mathematics syllabuses across the world indicate that the 
use of modelling activities in the mathematics classroom may contribute to develop-
ing students’ understanding of how and why mathematics is used in the everyday 
and in the workplace, at least if the modelling problems are chosen adequately (e.g. 
Brasil 1997; Department of Basic Education 2004; Department for Education 2013; 
NGAC 2010; Ministry of Education 2013; Skolverket 2012). While mathematical 
modelling has been described as “the most important educational interface between 
mathematics and industry” (Li 2013, p. 51), there are indications, however, that it is 
not emphasised in current teaching practices at upper secondary school (e.g. the 
preface in Stillman et al. 2015) nor is the coordination between school and working 
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life strong enough (Damlamian et  al. 2013). There is an international consensus 
among researchers in mathematics education that “an agenda for action is needed 
containing short- and long-term activities that strengthen the relation between 
industry and mathematics education at school” (Kaiser et al. 2013b, p. 269).

To identify activities that strengthen the connection between industry and school 
as well as the teaching of mathematical modelling, it has been suggested (e.g. 
Drakes 2012) to ‘mirror’ or simulate parts of expert modellers’ working practice in 
teaching practices. This would involve, for example, spending a large proportion of 
learning/teaching time on formulating the problem and validating the solution, 
activities currently not given much space in teaching practice. Drakes (2012) also 
argues that “students would ... benefit from seeing real modelling done by experts. 
Seeing experts deal with being stuck is informative, and helps change the belief that 
experts simply rely on intuition” (p. 207). Other researchers suggest activities that 
include a more complete simulation with realistic characteristics of some workplace 
practice for students to become proficient modellers (e.g. Burghes 1984; Heilio 
2013). As an example, Heilio (2013) argues:

For successful transfer of mathematical knowledge to client disciplines the theme of math-
ematical modelling is a crucial educational challenge. The lectures, books and laboratory 
exercises are necessary, but the actual maturing into an expert can only be achieved by 
‘treating real patients’. (p. 224)

As described in the quotation above, the transfer between mathematics used in dif-
ferent workplaces and mathematics taught and learned at school is not always 
straightforward. Mathematics at the workplace can be more complex and includes 
specific technologies, social, political and cultural dimensions not found in educa-
tional settings (Damlamian et al. 2013; Noss and Hoyles 1996; Wedege 2010).

Drawing on empirical and theoretical research studies, this chapter will discuss 
similarities and differences between working with mathematical modelling in 
‘school’ and mathematical modelling as a ‘professional task’ in the workplace. 
Based on this discussion and examples from innovative teaching practices, 
approaches to simulate modelling as a ‘professional activity’ in educational settings 
will be explored.

31.2  Working with Modelling in School and as a Professional 
Task in the Workplace: Similarities and Differences

The literature discussed in this section is deliberately selected to demonstrate simi-
larities and differences between the two practices rather than for the purpose of 
presenting a comprehensive and exhaustive review. There is a diversity of theoreti-
cal perspectives on mathematical modelling as a school activity in mathematics 
education literature (e.g. Blum et  al. 2007; Garcia et  al. 2006; Geiger and Frejd 
2015; Jablonka and Gellert 2007; Kaiser and Sriraman 2006). This plurality is natu-
ral considering the different social and cultural realities in which research is being 
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carried out with different objectives and in different traditions. In addition, this 
shows that there are many different teaching approaches related to modelling.

One way to characterise teaching connected with applications and modelling is 
based on the classification of the variety of approaches developed by Kaiser and 
Sriraman (2006), illustrating various perspectives that are strongly influenced by 
particular theoretical backgrounds (Table 31.1).

The amount of available literature focussing on school modelling is plentiful, but 
research literature focussing on how professional modellers work is more limited 
(e.g. Gainsburg 2007a, b; Spandaw 2011; Willemain 1995). In this chapter, the 
descriptions of modelling as a professional activity draw mainly on results from 
Frejd and Bergsten (2016)  and to some extent on Drakes (2012) and Gainsburg 
(2003). This sample of literature focusses on individual modellers, who explicitly 
would argue that mathematical modelling is central for their profession.

To structure the discussion, I will set up three phases to compare: pre-modelling, 
modelling and post-modelling (cf. Frejd and Bergsten 2016). The first phase, pre- 
modelling, concerns the goal of the activity and who delivers the tasks. The second 
phase, modelling, relates to the actual activity ‘how students and modellers work’, 
and finally, the third phase, post-modelling, concerns how the models will be imple-
mented and what risk there is involved in using the models.

31.2.1  Pre-modelling

A modelling activity in a mathematics classroom can serve two aims: Either to 
develop modelling competencies and give students experience in developing mod-
els or to develop a broader mathematical ability (i.e. as a didactical tool to learn 
mathematics and embed mathematics that has already been learned) (e.g. Blum and 
Niss 1991). Teachers or researchers usually set the modelling problems for the stu-
dents, and there is a diversity of knowledge taught such as elementary arithmetic 
with base ten blocks (Speiser and Walter 2010) or exponential and power functions 
with algal bloom problems (Geiger 2013).

According to Frejd and Bergsten (2016), mathematical modellers in the work-
place receive orders or problems from clients, who may come from government 

Table 31.1 Aims of mathematical modelling teaching approaches according to Kaiser and 
Sriraman (2006)

Name of approach Aims

Realistic or applied modelling Solving real-world problems
Contextual modelling Subject-related and psychological goals
Educational modelling Modelling as a didactical tool
Socio-critical and sociocultural 
modelling

Critical understanding of the surrounding world

Epistemological modelling Theory-oriented goals
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bureaus, other companies or employers and supervisors within the firm. The goals 
of modelling as a professional activity include description and simulation of a phe-
nomenon for prediction (to make prognoses about the future), design (improving 
objects) or construction (objects). The models are developed to serve as a basis for 
decision-making (Frejd and Bergsten 2016).

Table 31.2 indicates some differences between school and professional model-
ling activities in terms of aims. The goals to simulate and predict relate to prescrip-
tive modelling (Niss 2015), which is not a frequent activity in today’s classrooms 
according to Niss. “In prescriptive modelling the ultimate aim is to pave the way for 
taking actions based on decisions resulting from a certain kind of mathematical 
considerations, in other words ‘to change the world’ rather than only ‘to understand 
the world’” (Niss 2015, p. 69). However, there exist examples where students make 
models in the classroom for decision-making. Galbraith (2013), for example, reports 
about a 12-year-old girl who made a mathematical model in the classroom that con-
vinced her parents that she could buy and take care of a pony.

31.2.2  Modelling

31.2.2.1  School Activity

Modelling as a school activity takes different forms depending on how modelling is 
conceptualised and realised in curricula documents, textbooks and assessment 
modes, as well as depending on teachers’ and students’ views of the notion of math-
ematical modelling. Other factors impacting are, of course, the social, cultural and 
historical dimensions in which teaching and learning takes place. To capture some 
characteristics of modelling as a school activity, the discussion of the selected sam-
ple of literature draws on Kaiser and Sriraman’s (2006) categories presented in 
Table 31.1.

A realistic or applied approach to modelling may be characterised by students 
often working in teams trying to solve ‘realistic’ problems, such as designing a wind 
park, pricing for internet booking of flights or location of bus stops (Kaiser et al. 
2013a). It may take the students from 1 day to several weeks to complete the tasks 
using different resources finishing by presenting a poster, a PowerPoint or a written 
report. The aims are to develop abilities such as collaboration, communication and 
solving realistic problems.

The current teaching practice in Sweden commonly relates to contextual model-
ling, to solve word problems. The situation in Sweden may be characterised by 

Table 31.2 Differences in pre-modelling as a school versus a professional activity

School activity Professional activity

The models are developed to serve as a basis to learn 
modelling or to broaden mathematical ability

The models are developed to serve as 
a basis for decision-making

Teachers provide the problem Clients provide the problem
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students solving textbook tasks individually. In an analysis of textbooks for upper 
secondary school, it was concluded that models and modelling do not play a central 
role and modelling problems for students to solve relate predominantly to adapting 
and using predefined models (Frejd 2013a).

Educational modelling focusses on modelling as a tool to promote learning of 
mathematics and concept development. This approach has different goals from the 
other approaches, namely, to structure the learning process and develop understand-
ing of concepts, even if the activity as such can be in the format of any of the other 
approaches. This perspective puts the educational goals into the foreground and 
issues such as how modelling tasks are assessed in relation to learning objectives in 
curricular documents is a central part of the modelling activity (examples of differ-
ent modes of modelling assessment are found in Frejd 2013b).

A news clip from Brazil about distributing 5 kg of seeds to farmers was a starting 
point for a modelling activity in Barbosa (2006), categorised as socio-critical and 
sociocultural modelling. Students in grade 7 in a rural area of Brazil were organised 
in groups to discuss whether families had different needs and therefore should 
receive different quantities. These discussions facilitated a critical awareness among 
the students about the role of mathematics and modelling in society.

Epistemological modelling is often related to the Anthropological Theory of 
Didactics (Chevallard 1991). One example is found in Garcia et al. (2006). Based 
on theoretical tools from Anthropological Theory of Didactics, they reformulated 
the mathematical modelling process in this theory and applied the developed theo-
retical approach to analyse a teaching sequence about ‘savings plans’ for a trip. 
They concluded that the analysis gave valuable information about the characteris-
tics of the modelling process in terms of a set of praxeologies (a theoretical term for 
‘know-how’ and ‘know why’).

31.2.2.2  Professional Activity

Modelling as professional activity may be characterised in different ways. In Frejd 
and Bergsten’s (2016) case study of nine professional modellers, three differently 
structured modelling activities were identified: data-generated modelling, theory- 
generated modelling and model-generated modelling. For seven of the nine partici-
pants, the activity of data-generated modelling played a prominent role in their 
work. The other two model constructors were mainly engaged in theory-generated 
modelling. Model-generated modelling was a common activity among all partici-
pants in their working practice. In Frejd and Bergsten (2016), the different struc-
tures of the three modelling activities are visualised by diagrams, modelling activity 
schemes. These activities will now be briefly described.

In data-generated modelling, the modeller first receives the problem from a cli-
ent. There is communication between the modeller and the client about clarifying, 
adapting and reformulating the problem. Larger projects often include interdisci-
plinary competencies, which require communication between experts. The data are 
treated as a fundamental aspect of the modelling activity and therefore have a  central 
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position in the process, influencing how the model is going to be developed and 
impacting on the specific problem formulation. The data are also used to identify 
processes, variables, conditions and constraints of the phenomena together with 
computer support. However, constraints, processes and facts are also found in dis-
cussions with clients and experts.

The identified variables and processes are then formulated in mathematical terms 
and computer codes. The model is calibrated with data within a computer environ-
ment, and computer support is also used for the evaluation/simulation process when 
inputs and outputs are tested, validated and compared with given data, outcomes of 
experiments or expert opinions. The expert opinions and clients’ interests must be 
taken into consideration in the process of determining an acceptable or reasonable 
solution.

The problems in theory-generated modelling are provided by clients and consist 
of sets of (theorised) equations such as differential equations. To solve the problem, 
modellers reformulate it and set up mathematical models of equations with approxi-
mations. The modellers often communicate with other experts and work collabora-
tively to develop an optimal way to solve a problem. After the reformulation of the 
given task, the modeller translates the mathematical model to a computer model, 
solves the computer model and interprets and evaluates the result and finally evalu-
ates the validity of the computer model. Similarly to the case of the data-generated 
modelling, the clients’ main interest in an acceptable solution is its usefulness, 
whereas the communication with other experts is more focussed on the effectiveness 
of the models (cf. Jablonka 1997).

The activity to apply already-developed models on a problem, model-generated 
modelling, is a part of all modellers’ working practice. Reasons for applying 
already-developed models may be time constraints and that there exist models that 
take care of types of standardised problems. The identification of how existing mod-
els can be adapted draws on working experience or is an outcome of communication 
with other experts. The modellers reported in  Frejd and Bergsten (2016) also 
emphasised the use of computers and dedicated software that include some types of 
established models. Based on the evaluation and validation of the outcome of the 
application, these standardised models might be adapted and applied again. 
Communication with other experts and clients about the usefulness and the effec-
tiveness of the applied model may take place as a consequence of the validation 
process. Finally, the issue that concerns what constitutes an acceptable solution is 
similar to the data-generated or theory-generated modelling.

The aims of the three modelling activities are summarised in Table 31.3. Other 
key aspects found in the three activities relate to communication, collaboration and 
the use of computer support. Communication and collaboration between clients, 
operators and other experts are vital parts of the modelling work that concern issues 
such as clarifying the problem and identifying solution strategies in discussions 
about the usefulness and the effectiveness of the model and in the process of deter-
mining a reasonable solution. Computer support also influences the modelling 
activity to a large extent, for example, in terms of identifying variables and  processes, 
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calibrating the model, solving computer models, simulating different processes and 
evaluating and validating the outcome.

31.2.2.3  Professional Versus School Activity

There seem to be several similarities between modelling as a professional activity 
and a school activity, such as collaboration, communication and adaption and devel-
opment of models. However, there are also differences identified.

Much of the professional modellers’ work is based on knowledge and experi-
ences reaching far beyond what can be found in a secondary mathematics class-
room. In the professional activity, computer support and programming play a major 
role in the development of models which is also the case for the evaluation or simu-
lation process when inputs and outputs are tested, with software that is not fre-
quently found in educational settings. The division of labour in school is used to 
support students’ learning in relation to learning objectives, while in the profes-
sional activity the division of labour is based on individual skills or the distribution 
of work. From the three types of modelling activities discussed above, model- 
generated modelling seems to be the activity (in a very simplified form) which most 
resembles activities in schools. For example, in textbook descriptions of modelling 
in upper secondary school in Sweden, the use of already-defined models is empha-
sised as a central aspect of modelling (Frejd 2013a). Examples and projects, found 
in research literature in mathematics education, that include parts of data-generated 
modelling, in a simplified version, are common (e.g. Blum et al. 2007). Theory- 
generated modelling, however, presents more of a demanding task for teachers to 
implement in school mathematics.

Table 31.3 Mathematical modelling as a professional activity (Frejd and Bergsten 2016, p. 29)

Name of 
activity Aims

Data-generated 
modelling

The work of gathering, interpreting, synthesising and transforming data as 
the underlying base for identifying variables, relationships and constraints 
about a phenomenon used in the development process.

Theory- 
generated 
modelling

The work of setting up new equations based on already ‘theorised’ and 
established physical equations, followed by the activation of computer 
resources for computational purposes to solve the new equations with the aim 
being to obtain information about the ‘theorised’ equations.

Model- 
generated 
modelling

Models are constructed by identifying situations on which some mathematics 
or established mathematical models can be directly applied.
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31.2.3  Post-modelling

There are also major differences between the professional and the educational con-
texts in terms of objectives and consequences of the modelling activity (cf. Wake 
2014, p. 272). For example, in the classroom mathematical models constructed by 
students are seldom put to use in a context of practice or in other ways that involve 
risks. In professional practice, however, the situation is different as there are risks 
when models are put into practice; people may, for example, lose money or be 
injured. According to a finance modeller in the case study by Frejd and Bergsten 
(2016, p. 23), there is a range of potential risks involved when using models, not 
only due to a ‘blind’ trust in the model:

Of course there are risks of using models and sometimes one talks about model risks and 
that is exactly that you have missed something, that you use the model in a context where it 
should not be used. Or you use it even if the conditions are not fulfilled, or that the assump-
tions maybe worked when you made the model […] the customer has paid money today to 
get it back as a pension after twenty years and when you get there, no money is left.

There may also be ethical problems due to the new information that the use of the 
models may present such as some farmers might be banned from raising some types 
of animals if the maximum time on animal transportations were to be regulated, an 
outcome described by the biology modeller, after optimising travelling time to dif-
ferent slaughter houses.

31.2.4  Summary of Similarities and Differences

Based on the literature review, differences between mathematical modelling in 
school and professional practice are identified in how modellers, teachers and stu-
dents work within terms of the goal of the modelling activity, the risks involved in 
using the models, the use of technology, division of labour and the construction of 
mathematical models. In addition, similarities are identified, described as important 
aspects of modelling work in the different practices, such as communication, col-
laboration, projects and the use of applying and adapting predefined models.

These major differences between modelling work in educational and workplace 
contexts seem to indicate that mathematical modelling in school will remain an 
unreachable goal in terms of coherence to professional practice. However, this com-
ment could be made also about mathematics in general. In order not to lose key 
elements of modelling as a professional activity, the results presented here point to 
the necessity of having access to knowledge about how professional modellers 
work. While modelling as it shows in the workplace can never be fully ‘mapped’ 
into the mathematical classroom, it may nevertheless be possible to simulate such 
activity.
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31.3  Innovative Teaching Methods: Simulation, Gaming 
and Role-Playing

Using innovative teaching methods, such as simulation, gaming and role-playing, 
might be a way to bridge the gap between modelling as a professional activity and 
as a school activity. However, the terminology – simulation, gaming and role-play – 
is mixed and confused in literature (Armstrong 2003). To clarify this, van Ments 
(1999, p. 3) describes simulation as “a simplified reproduction of part of a real or 
imaginary world”, whereas gaming is “a structured system of competitive play that 
incorporates the material to be learned”. Finally, role-play is “a make-believe repre-
sentation of some real-life event, carried out in order to help participants [who play 
a role] get better at managing the event itself” (McGuire and Priestley 1981, p. 87).

The descriptions above of the terminology may be used as working definitions. 
Nevertheless, from the point of view of a critique, many questions must be addressed, 
such as: How simplified may the reproduction be and still be a simulation? and 
What is not a real or imaginary world or can anything be simulated? Closely related 
to simulations is the notion of authenticity. Vos (2011) discusses authenticity in 
relation to simulation of professional modelling practices. She defines authenticity 
as a social construct for which the community agrees on its qualifications and 
defines four criteria for a modelling task to be authentic:

• The task should not be created for educational purposes.
• It should have some connection to out-of-school practice.
• It should be binary in the sense that all, or aspects of the problem, or the way of 

working is either authentic or not.
• The task should be actor independent, meaning the task should be certified by 

expert actors (stakeholders, modelling researchers) and be authentic to ‘all’ 
actors (students and teachers) involved in the activity.

Drawing on the description of authenticity by Vos (2011), together with innova-
tive teaching methods, in particular simulation (reproducing realistic aspects of 
working practice) and role-playing (playing the role of professional modellers) 
seem to have potential for reducing the gap between modelling in school and mod-
elling at the workplace. Gaming as a structured system of competitive play (van 
Ments 1999) is another method that can be used. However, this chapter will only 
discuss and present examples of teaching practice that focus on simulations, in Sect. 
31.3.1, and role-playing, in Sect. 31.3.2.
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31.3.1  Examples of Simulations of Professional Modelling 
Practice

An extracurricular activity is presented by Vos (2015), with the aim of enculturation 
of students into modelling as a professional practice. Students from upper second-
ary school visited the Science Park of the University of Amsterdam where they had 
the opportunity to meet a manager working for the National Dutch Railway 
Company through live video conferencing. This was the introduction of a simula-
tion activity where the managers gave the students a modelling problem to design a 
railway timetable. The problem included both simplifications and constraints such 
as some trains did not stop at all stations; passengers should have the right to access 
a train within a maximum waiting time and have time for transit; and there should 
be a safety distance between departing and arriving trains. To solve the problem, the 
students learned about graph theory and used ICT, a software that was specially 
designed for the extracurricular activity and simulated the software that the mod-
ellers used originally. Most aspects of the activity may be described as a simulation 
of a realistic scenario, but some aspects may be described as authentic. For example, 
the students tried to solve one single complex problem during a full day without 
finding a reasonable solution and thereby associated doing research with frustration. 
This experience was also certified by a researcher at the university who described 
his own struggling and his need for endurance while doing research. Another 
authentic aspect found in Vos (2015) was the enlightenment of students of the use of 
mathematics in extra mathematical contexts, such as improving real timetables for 
railway companies.

A second example of a simulation activity is found in Edwards and Morton’s 
(1987) study of a boardroom meeting between a management panel and a modelling 
team. The students in the modelling team had worked on a project for some time (a 
whole term or 1 week) and were expected to present their findings, with the sugges-
tion that they needed more money to continue their research. Whether the students 
would receive any money depended on the outcome of the meeting. To reduce the 
gap between education and workplace practice and make the simulation activity 
more authentic, non-mathematical experts were invited. For example, a sheep 
farmer was invited when a group of students were going to present their work on a 
sheep farm model. This action made the students adapt their language and explain 
and defend their model to a client that was not necessarily familiar with the mathe-
matics used, which is common in modelling as a professional practice (Frejd and 
Bergsten 2016). Nevertheless, it is stated by Edwards and Morton (1987) that the 
farmer was not impressed by the mathematics but fascinated by the work the stu-
dents had done.
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31.3.2  Role-Playing

31.3.2.1  General Aspects of Role-Playing

The students in Edwards and Morton’s (1987) paper seem to play the role of model-
ling experts. Role-playing has been known as an activity for education since 1940 
(Williams 2014). It has gained momentum in different subjects and occurs most 
frequently in the humanities (van Ments 1999) but also in business (Armstrong 
2003) and healthcare education (Nestel and Tierney 2007). Role-playing empha-
sises decision-making (e.g. Belova et al. 2013), which is a central aim within pro-
fessional modelling (Frejd and Bergsten 2015). Research literature about 
role-playing in mathematics education tends to focus on primary school education, 
while research into role-play and mathematics with older students seems to be non- 
existent (Williams 2014). There are research results indicating that role-playing in 
mathematics education is an activity that facilitates students’ learning. Williams 
(2014, p. 3) describes the relevance of role-play to the learning of mathematics in 
the primary classroom as follows:

that role play is useful for mathematical learning and that it is possible to engage in complex 
mathematics through role play. I argue that the potency of role play is its ability to suspend 
disbelief and engage children as participants in a community of learners. My study also 
concludes there is potential for developing children’s mathematical awareness and meta-
cognition through reflecting on role play.

Arguments are put forward that role-playing is powerful, is motivating, provides 
meaningful contexts and increases students’ skills in collaboration and communica-
tion (Griffiths 2010; Ginsburg 2009; van Ments 1999; Williams 2014). In addition, 
in tackling mathematical content within role-play, children have been observed to 
think mathematically and engage in activities of gathering, ordering and analysing 
information as well as making conjectures (Williams, 2014). All these aspects are 
emphasised as central aspects also in professional modelling practice (Drakes 2012; 
Frejd and Bergsten 2016; Gainsburg 2003).

The basic idea with role-playing is:

to give students the opportunity to practice interacting with others in certain roles. The situ-
ation is defined by producing a scenario and a set of role-descriptions. The scenario gives a 
background to the particular problem or environment and indicates the constraints which 
operate. The role-descriptions give profiles of the people involved. (van Ments 1999, p. 9)

Implementing role-play activities into mathematics education requires the 
teacher to consider several issues. Table 31.4 gives some guidelines of how to teach 
with the use of role-playing.
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31.3.2.2  A Role-Play Activity Emphasising Aspects of Modelling 
as a Professional Activity

In a case study by Frejd (2013a), modellers suggested that mathematics teachers 
could invite people from the workplace (or other organisations) to present how they 
work to increase the motivation for the study of mathematics. To invite a person 
from the workplace, like a manager from a railway company (Vos 2015), to the 
mathematical classroom to set the scene for the role-play activity could serve three 
purposes. First, the person may act as the client; second, he/she may certify the 
authenticity of the modelling problem; and third, the person can explain how math-
ematical models are used in his/her profession.

In modelling as a professional activity, the models are developed to serve as a 
basis for decision-making. One example could be to invite a local politician with the 
following problem (within a Swedish context):

Wolves
“The long-term goal of the predator policy in Sweden is to achieve and con-
serve a healthy population of wolf, bear, wolverine, lynx and golden eagles” 
(p. 14). “The aim is to create a good balance between the predator population 
and the impact it causes on business, public and individual interests” (p. 16) 
(Swedish Ministry of the Environment 2012/2013; SOU 2012/2013:191, my 
translation).

How many wolves should we have in Sweden?

Table 31.4 Guidelines for teaching role-playing

Guidelines Explanations

1. Objectives Define why you want to include role-playing in mathematics 
education. What content should be covered? How much time 
should be spent? What do you expect of your students?

2. Choose context and roles Decide on a problem in relation to the chosen content and the 
setting of the activity. Define the goals of the characters and 
prepare background information about them.

3. Introduction Explain to the students why they take on this role-playing 
exercise and stress what you expect them to learn. Introduce the 
problem, the characters and the setting.

4. Student preparation/
research

The students will need time to get into their roles and learn 
about their characters as well as get more information in 
relation to the problem.

5. The role-play The actual activity.
6. Debriefing The teacher may offer an opportunity to ask the students what 

they have learned during the lessons and give comments and 
corrections of errors that have occurred during the role-play.

7. Assessment Assessment modes for the activity depend on the goal of the 
activity and many types of assessment modes may be used in 
relation to modelling activities (see, e.g. Frejd 2013b).

Retrieved from: http://serc.carleton.edu/introgeo/roleplaying/howto.html
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31.3.2.3  The Wolves Example: Methodology

The Wolves example, inspired by the work of the biology modeller in Frejd and 
Bergsten (2016), is developed from a government proposal (SOU 2012/2013:191) 
about sustainable predator policy. The problem can be regarded as a problem 
“clearly not created for educational purposes” (Vos 2011, p. 721). This means that 
the problem was originally developed for out-of-school purposes; it is authentic to 
anyone, which can be certified by different stakeholders and modellers (Vos 2011).

One idea could be to split the teaching group into smaller teams and let them 
choose to play the characters of modelling experts associated with the Swedish 
Association for Hunting or associated with the Swedish University of Agricultural 
Sciences, with an aim to develop a model to be used for making a decision on how 
many wolves there should be in Sweden. The two consultation bodies have clearly 
different views on how many wolves there should be in Sweden as described in the 
government proposal (SOU 2012/2013: 191). The Swedish Association for Hunting 
argues for 200 wolves, whereas the Swedish University of Agricultural Sciences 
argues for 1250–2000 (SOU 2012/2013:191).

Collaborative or cooperative group work is a common school practice in many 
subjects, but role-playing as a part of mathematics education where team members 
have specific characters seems not to be frequently used. That is the case at least in 
the Swedish upper secondary school (Frejd 2015). Placing the students in teams 
could, to some extent, divide the workload between them and define more specific 
characters to play, thus making a division of labour. One student may search for 
historical data on the wolf population and aspects that effect the population like 
inbreeding, poaching, the amount of prey, etcetera. Another student may search for 
data on the impact that population growth has on business, public and individual 
interests and what it costs. A third student may focus on the mathematical relations, 
and a fourth student prepares the report and the presentation. However, what is sig-
nificantly important is the collaboration and communication with the aim that all 
students learn about all parts of the issue discussed. The modelling work of the 
students may include aspects of data-generated modelling, theory-generated model-
ling and model-generated modelling. The students are involved in the data- generated 
modelling when they identify the data and parameters, variables, constants and pro-
cesses to develop models and maybe they also consider the quality of data. The 
involvement of statistical data may be displayed and analysed with the use of tech-
nology, which is an essential part of modelling in workplace practice. Aspects of 
theory-generated modelling could also be a part of the students’ work if the students 
read something about predator-prey relations and about differential equations. 
These differential equations could, for example, be visualised (and solved) with 
technology. To apply already-defined models, model-generated modelling, is a part 
of modelling work and may include some economic models, statistical models or 
differential equations, to name but a few.

The end of the project may be organised as a political debate inspired by Edwards 
and Morton’s (1987) idea to “simulate a boardroom meeting between a manage-
ment panel (a mixture of technical and non technical managers) and a modelling 
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team” (p. 53). The goal of the political debate for the client, the politician, is to 
make a decision on the number of wolves, based on the modelling teams’ (stu-
dents’) oral and visual (e.g. PowerPoint) presentations as well as based on their 
written project report. The political panel may include the politician, experts and 
teachers. This will imply that the students need to communicate and adapt their 
language, which was an important part of the modellers’ workplace, as well as 
explain the mathematical models they have used.

Regarding the assessment of the activity, it is necessary for the teacher to be 
explicit about the meaning and the goal of modelling and its relation to assessment 
criteria. In the example above the teacher may gather information about the stu-
dents’ performances from multiple resources, such as written reports, oral presenta-
tions and students’ abilities to play the role of a certain character.

31.4  Conclusions

I end this chapter by revisiting the title, Mathematical modelling as a professional 
activity – Lessons for the classroom, and conclude that this chapter explored two 
issues: first, what lessons for the classroom can we as educators and teachers learn 
from professional modellers and their way of working with mathematical modelling 
and, second, in what way is it possible to design lessons for the classroom that 
might allow the practice of professional modellers.

There are several principles that teachers may rely on in their mathematics teach-
ing practice, depending on what they see as the goals of mathematics teaching and 
what use of mathematics they consider important for students to learn. One such 
principle is that modelling ability is developed through the practice of doing model-
ling as a professional practice (Burghes 1984; Heilio 2013), meaning the students 
should be exposed to ‘realistic’ modelling problems in their education. The question 
is: How realistic, in terms of similarities to the professional practice, can we be in a 
classroom situation at upper secondary school, due to the differences presented in 
Sect. 31.2.4? The knowledge required for modelling as a professional practice is not 
accessible in upper secondary school, because the modellers’ work is based on col-
laboration with other experts, knowledge of advanced mathematics, specialised 
knowledge of other fields, the use of technology and programming and years of 
modelling experience. Other differences identified relate to the goal with mathemat-
ical modelling, the risks involved in using the models and the division of labour. 
These differences show that modelling in professional practice can never be fully 
‘transposed’ into the mathematical classroom. Nevertheless, it is possible to simu-
late parts of the modelling activity as a professional practice in the classroom. These 
activities can emphasise aspects not only identified as similarities such as commu-
nication, collaboration and projects but also other aspects of modelling such as 
explorative modelling or to analyse (given) models (cf. Barbosa 2009; Doerr and 
Pratt 2008; Jablonka 1996) that concern the importance of having an awareness of 
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assumptions, quality of data and risks linked to the models such as ‘blind’ uses of 
mathematical models.

One teaching and learning activity that could have a potential to simulate model-
ling as a professional practice is role-play. It can provide meaningful context-related 
professional practice to be used in the classroom and increase students’ skills in 
collaboration and communication (Griffiths 2010; Ginsburg 2009; van Ments 1999; 
Williams 2014) if it is designed and implemented properly. However, according to 
Williams (2014) the focus of research literature is on role-playing in primary math-
ematics education. There is thus a need for doing research into role-play and math-
ematics with older students. Therefore, I end this chapter with a sample of issues to 
be addressed in research regarding role-play and modelling, as starting points for 
future research studies:

 1. What challenges and opportunities are there of using role-play for teaching and 
learning modelling?

 2. To what extent is it possible to simulate professional modelling practice with the 
use of role-play?

 3. How does role-play in a modelling context impact on attitudes, motivations and/
or beliefs about mathematics?

 4. How can assessment of modelling be organised in the activity of role-play?
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Chapter 32
Modelling Task Design: Science Teachers’ 
View

Carolina Guerrero-Ortiz and Jaime Mena-Lorca

Abstract A seminar was organised to promote interdisciplinary work between 
teachers from different departments at a university in order to design pedagogical 
situations to teach mathematical modelling in the first years of higher education. 
This chapter presents the views of teachers from different disciplines related to 
skills needed to work with models in physics, biology and mathematics. The partici-
pants discussed how models are present in their courses. They also highlight the 
students’ skills that are relevant to success in working with models in sciences. The 
main findings were that interpreting graphs and structuring a model with informa-
tion from other models are considered relevant competences by the sample of sci-
ence teachers. The discussion on designing teaching activities also revealed the 
university teachers’ conceptions regarding mathematical modelling and models.

Keywords Interdisciplinary • Modelling • Models • Mathematics and science 
teachers

32.1  Introduction

Models and modelling are central elements that join and structure mathematical and 
science knowledge but unfortunately there is a separation in teaching the topics 
associated with them (Hestenes 2010). In the context of science education, Kapur 
(1982) discusses the mathematics courses students must take and highlights the dif-
ferences in how they work with models. He states that, while models in science are 
seen from the heart of the discipline itself, projecting strategies for interpretation 
and explanation, in mathematics courses, the teaching is oriented towards the 
application of techniques and memorisation of procedures, creating obstacles for 
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students when they study subjects relevant to their profession. This aspect repre-
sents a challenge in mathematics education, but where should the study of mathe-
matical models and content of the discipline converge? This brings us to the dilemma 
that represents learning applications and mathematical modelling: Must we attend 
to the demands of the discipline or should we put more focus on in-depth learning 
of modelling within the requirements of mathematical rigour? As mentioned by 
Kapur, knowing mathematical models is neither sufficient to learn to model nor is it 
sufficient to fulfil the requirements for working with models in the context of the 
sciences. One question that emerges is how models are used in the context of learn-
ing the sciences. The present study contributes to the research in this area by giving 
a perspective on how some university teachers in different sciences use mathemati-
cal models in their classes and what skills they expect from their students.

Several aspects contribute to increasing the gap between teaching sciences and 
mathematics. One is the curriculum where the development of modelling skills is 
not favoured. This aspect leads mathematics teachers to experience difficulties in 
implementing modelling activities (Kawasaki and Moriya 2011). Consequently, by 
studying the subjects of mathematics in the early years of higher education, students 
do not acquire the skills to work with mathematical models in the context of sci-
ences or the skills to relate mathematical and scientific concepts. Moreover, math-
ematics courses are traditionally structured to obey the mathematical paradigm, 
emphasising learning and understanding of mathematics properties and their foun-
dation, instead of focusing on developing mathematics skills and tools that students 
will need to succeed in learning in science courses. As Frejd (2012) concludes, more 
research is necessary to know what types of modelling activities are done in the sci-
ences. This is why we seek to identify, in the context of designing teaching activi-
ties, what is the view of science teachers regarding the use of models in their courses. 
In addition, what are their interests related to working with models in advanced 
courses? The answers to these questions are relevant, since the construction and use 
of mathematical models forms part of the foundation of developing knowledge in 
the sciences. In addition, understanding the sciences implies that students are able 
to create and interpret several models used in their discipline. By knowing what the 
sample teachers expect of students about working with models in their courses, we 
identify some additional aspects that should be considered in the design of model-
ling tasks.

Many researchers have proposed ways to teach models in the sciences or math-
ematics, but few studies have considered the transition from studying mathematics 
to studying science courses (Bock and Bracke 2013). Ashmann et al. (2006) state 
that one of the goals to be achieved is:

enhancing science and mathematics content understanding and problem-solving skills, 
understanding the connections between the two disciplines, developing pedagogical con-
tent knowledge that enables a diverse student population to achieve a depth of conceptual 
understanding, developing forms of authentic assessment, and implementing teaching prac-
tices consistent with the standards movement. (p. 191)
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Assuming that task design should be developed in an interdisciplinary way, taking 
into account the learning needs related to building and interpreting mathematical 
models to work not only in mathematics, we conducted a seminar aiming to reflect 
on the design of pedagogical situations that support students in transitioning from 
studying mathematics to studying the subjects corresponding to their degree tracks.

32.2  Conceptual Framework

The term “model” can be understood in different ways among different disciplines. 
In physics, we may refer to a model when we talk about the atomic structure of 
materials or we may refer to it when representing the motion of a body. Models can 
be pictorial, graphical, numerical or algebraic. They may be present in verbal, visual 
or mathematical form. Their representation determines the type of information that 
the model offers. Models also have different functions as descriptors, means of 
explanation and prediction, strongly depending on the discipline in question. A 
model can be static, dynamic, deterministic, stochastic, qualitative or quantitative 
(Justi and Gilbert 2003). Depending on the discipline and the goal, one may give 
more or less importance to the accuracy between the model and the corresponding 
target. A model can be too simple or too complex in relation to the context of use. 
Some characteristics of the context can be emphasised and others ignored in order 
to build a model. Models in the sciences are different depending on the system that 
they embody. A model can be a tool to make inferences regarding a phenomenon; 
while empirical data and the interpretation supported by the model can be comple-
mentary (Hestenes 2010).

Working with models in the sciences means making connections between extra- 
mathematical and mathematical knowledge, bringing to light different uses and 
meanings given to mathematical objects. Along this line, Michelsen (2006) pointed 
out that in mathematics students think of a graph as a representation of a function 
most often considering one variable. In the sciences however, a graph represents a 
relationship between quantities, and the dependence between two or more variables 
is more evident. Regarding variables, Michelsen (2006) highlights that in mathe-
matics the variable has several meanings, but students frequently think of a variable 
as a symbol to be manipulated. In the sciences, a variable is most often considered 
a name for a changing quantity or a value that in many cases can be measured. In 
this case, a variable is more related to the functional relationship between varying 
quantities. To build or to analyse models means to abstract the most relevant infor-
mation on the situation and separate it or add it to a mathematical expression. This 
in turn requires understanding and insight (Kapur 1982).
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32.3  Methodology

One way to have an approach to understand how models are used in teaching sci-
ences is by observing what modelling means for science teachers and what they 
expect from students in their courses, where the teacher’s conceptions about models 
and the nature of learning mathematics play an important role (Ernest 1989; Frejd 
2012). This leads us to frame the study in the context of qualitative research, specifi-
cally a case study (Stake 1999). The data analysed comes from the discussion held 
during a task design seminar, which involved the participation of four professors 
and researchers in mathematics, physics and biology-physiology. The focus is on 
these topics because of the different uses of models seen in some of the most com-
monly used textbooks in higher education (e.g., Guyton and Hall 2006; Leithold 
1998; Young and Freedman 2009). In physics, building mathematical models is 
more favoured, whereas in physiology more attention is placed on interpreting mod-
els, and in mathematics courses, modelling and models appear with classical prob-
lems to show how to apply some mathematical concepts. The analysis is centred on 
how these professors work with their models and therefore what they understand the 
models to be. An initial analysis was done by a researcher that did not participate in 
the seminar, and it was later validated by researchers specialised in mathematical 
modelling.

The seminar took place during a semester at a Chilean university, where there is 
a growing interest in the design of interdisciplinary activities for teaching mathe-
matics. Two aspects were addressed: (1) the participants shared their views on mod-
els and how they use mathematical models in science courses and (2) they worked 
together on designing learning tasks. The results of the first phase of research are 
presented here; this consisted of the observation of the current use of models by the 
participants. The second part of the research is currently in development; it consists 
of implementing and testing the activities.

The following section focuses on discussions held by a physicist (Kim), a biolo-
gist (Saúl) and a mathematician (Peter). They are all teachers with at least 5 years of 
teaching experience. These participants were chosen for the analysis because they 
were more involved in explaining the way models are used in their classes. They 
also expressed their views regarding the students’ skills that should be encouraged 
in order to be able to solve problems and answer questions in non-mathematical 
contexts. Discussions at the seminar were videotaped and transcripts were written 
up for analysis. Sets of paragraphs related to models and their uses were set as refer-
ence units. The researchers took part as moderators and occasionally asked ques-
tions to encourage the professors to explain their ideas regarding what they would 
like students to do in their classes in relation to models, what types of models are 
used in their classes and what is required from students when working with 
models.
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32.4  Data Analysis

This section describes the teachers’ views of working with models. Saúl focussed 
on the use of models in the context of a physiology course, Kim made references to 
modelling in the context of teaching physics and Peter described the general context 
of a mathematics course and the role of modelling in it.

Saúl noted that in his discipline, it is important that students develop the ability 
to interpret and match relationships between the information provided by different 
graphical models. He considered the graph as a relationship between quantities 
(Michelsen 2006). With questions of the sort: What does the graph represent about 
the pressure and volume related to the process of respiration (Fig. 32.1a)? And, what 
information can be obtained about blood flow (Fig. 32.1b)? He explained that his 
students should be able to identify a relationship between trans-pulmonary pressure 
(which is the difference between the pressure in the alveoli and the pressure on the 
outer surfaces of the lungs) and the change in lung volume. He also pointed to how 
the information about the blood flux should be interpreted from a graph. When the 
transversal area of the artery is small (left side of Fig.  32.1b), blood velocity is 
higher, and blood pressure is also higher. When the transversal area increases (mid-
dle part of Fig. 32.1b), pressure and volume decrease. This fact may be explained by 
making reference to the continuity equation in fluid mechanics, which states that at 
two points in the same pipe, the volume of fluid passing through must be equal even 
if the diameter of the pipe changes; therefore, the fluid velocity is different at each 
point. Also, supported in Fig. 32.1b, Saúl highlighted that students have to be able 
to make predictions when regular conditions in the body change, for example, what 
happens if the blood flux is turbulent.

In the cases described by Saúl, identifying the dependency between the informa-
tion provided by the graphs is a relevant factor for success in the task. It is evident 
how knowledge regarding change, volume and pressure is represented by means of 
a graphical model (Michelsen 2006). The model works as a tool to relate informa-
tion and make assumptions. From Saúl’s arguments, we identified three approaches 
to the use of models: for interpreting, for establishing relationships between infor-
mation provided by graphs and as a means of prediction. He is focused on develop-
ing the ability to understand and interpret the information provided by models. The 
models that he refers to are represented by graphs, which are usually found in text-
books. He also states that students frequently encounter difficulties in working with 
graphs and in making sense of the information provided by them.

Kim was interested in explaining some phenomena by using models from phys-
ics. Her point was to show the students how the models appear. She used pictorial 
illustrations to represent a movement phenomenon. She considered models as a 
means of explanation and prediction (Justi and Gilbert 2003). She started describing 
a situation: “if we have a particle on a curve ... Where the speed is tangent to the 
path, so it does not deviate from the path, some force must act on it that is directed 
toward the centre”. In order for the particle to remain on the path, there must be an 
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equilibrium between forces: µmg =
mv

R
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. She proceeded to do some algebraic

operations to explain that the maximum velocity of the moving particle on  
a curve (Fig.  32.2a) should be v R2 = µg .  As can be seen, there are several  
mathematics and physics concepts involved, such as the sum of forces
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0,  and work with vectors. These concepts

have to be put together in order to obtain an answer in a physics context. The role of 
time as an implicit variable in plotting orbits to describe the behaviour of some 
phenomenon also arises (Fig. 32.2b).

Kim also stated that building mathematical models experimentally can be useful 
to show some regularities in the behaviour of phenomena. To support her statement, 
she described how a mathematical model is built by identifying that the period in a 
ballistic pendulum is linearly dependant on the distances L and D (Fig. 32.2c). Her 
interest was to highlight the linear behaviour by using the logarithm as a mathemati-
cal tool.

In this case, it can be seen that work with models is associated with a process of 
building mathematical models as a means of explaining the behaviour of some phe-
nomena and demonstrating physics laws. The models are presented in pictorial, 
graphical and algebraic ways. Building mathematical models in physics involves 
making connections between the structures of knowledge represented by each 
model.

Peter described how models are presented in his courses. He was focussed on 
how mathematics can be applied in solving problems. Models are considered as an 
application of mathematical concepts (Ernest 1989). In the case of functions and 

Fig. 32.1 (a) Relationship between trans-pulmonary pressure and volume. (b) Blood pressure, 
velocity and transversal area (Guyton and Hall 2006, p. 472) (Used with permission.)
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Regarding the second task, Peter stated that three representations should be pre-
sented so that students are able to understand the problem. He wrote the function 
P(x) =  (60 + x)(70−5x) and plotted the graph associated with it. In doing so, he 
highlighted that students should be able to identify relevant issues in the parabola, 
such as vertex and the relationship between the vertex and solutions of the equation. 
He noted that his interest was in studying the second-degree equation and its inter-
pretation as a known mathematical object, focussing on its properties. Peter also 
stressed that students should be able to understand the symbolism of mathematical 
language in order to work with mathematics and to apply their mathematical knowl-
edge to solve problems: “I try to make this mix of theory, demonstration and appli-
cation, but not much demonstration because they don’t have the mind set for that”.

Peter presented a hypothetical context as a means of building a mathematical 
model and then addressed the study of the objects derived from it. Models are seen 
as a tool to study mathematical characteristics of the objects, where extra- 
mathematical knowledge is not considered. Reflection on the validity of the model 
and its limitations was not considered.

With these examples, we have shown different ways in which the sample of uni-
versity teachers of sciences and mathematics uses models and the mathematical 
activity that they promote. There is an evident gap between the skills that are 
required in each case. In the sciences, interpreting a model and understanding con-
cepts related to the discipline are complementary. In physics, concepts related to the 
movement of a body (Newton laws) and mathematical concepts and skills (repre-
sentation and manipulation of relevant information in algebraic form) are mobilised 

Fig. 32.2 (a) Analysing the movement of a car. (b) Considering the time as an implicit variable. 
(c) Linear relationship between the period on a pendulum and the length T = kl0.49

“I take a sphere and make a hole, then the question is how much is the 
volume?”

“There is a farm and in it there are 60 trees. These trees produce 70 fruits 
each tree. If I plant more trees, the number of fruits per tree decreases by five. 
How many trees should I plant to obtain the largest production?”

integral calculus for engineering students, Peter mentioned some examples that he 
uses in his courses:
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simultaneously. In physiology, interpreting the information provided by graphs 
acquires relevance through knowledge of the body’s homeostasis mechanism. In 
contrast, in mathematics, almost all of the work is developed in the world of math-
ematics, and more relevance is given to the study and analysis of the mathematical 
characteristics of the objects.

There are also evident differences in the goals of working with models. In teach-
ing mathematics, in this case, work with models means introducing some 
 mathematical concepts. The context is usually simplified in advance by this teacher, 
and the students’ work is far from science concepts and decision-making. In physi-
ology, working with models means obtaining information from the graph and giving 
meaning to it in order to explain some aspects of the body’s mechanisms. However, 
students rarely build mathematical models, and the teacher reported not knowing 
how graphical models in the books are built as they are obtained through experi-
ments. In physics, the approach given to the study of models depends on whether it 
is theoretical or experimental physics. In the first case, the teacher stated that work-
ing with models means finding explanations for the behaviour of certain phenom-
ena. In experimental physics, she argued that using experimentation to demonstrate 
why a phenomenon can be described by a specific mathematical model is an impor-
tant point.

The expectations of the teachers regarding their students’ capabilities with mod-
els are strongly motivated by their beliefs about teaching and learning (Ernest 1989; 
Frejd 2012). The following statement represents a part of the comments of the sci-
ence teachers showing the importance of establishing relationships between math-
ematical and extra-mathematical knowledge: “To interpret a model it is necessary to 
know something about mathematics and a lot of the relationships between mathe-
matical models and the context”.

There were differences between the participants’ ideas of what a model is. For 
Saúl, it can be seen that a graph is a model, from which qualitative information can 
be extracted, as shown in Fig. 32.1b. In the case of Kim, the situation is similar, but 
graphs are analysed in more detail and explicit formulas arise. Peter considers math-
ematical expressions and uses them to make graphs, as another form of representa-
tion. In showing how models are taught in mathematics courses, the gap between 
learning mathematics and learning the sciences is more evident. In mathematics, 
modelling is related to the development of algorithmic methods, while in the sci-
ences, modelling is close to qualitative techniques for interpretation and 
explanation.

Thus, the particular teachers’ views on working with models and the relevant 
abilities needed for success in each course were evident in their discussions of how 
to design teaching tasks. Of course, the results presented here are one interpretation 
based in sample teachers’ comments of how models are present in science and 
mathematics courses and what kind of skills are necessary to work with them. No 
general conclusions can be derived from the results.
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32.5  Conclusions

The results of the present study show some aspects that might need to be considered 
in supporting the design of teaching activities that help students link knowledge 
from mathematics courses to other sciences. From here, it should be taken into 
account how students deal with the relationships encapsulated by the models pre-
sented in the sciences and the (mental) models they have built on their way through 
mathematics courses. Accordingly, these teachers agree that models in physics and 
physiology have a more pragmatic character in the sense that necessarily undertakes 
some processes to obtain answers and solve problems more efficiently. Different 
approaches to working with mathematical models, together with the pragmatic 
character they acquire in practice, should be considered as a way to converge the 
learning of mathematics and the sciences. As Frejd highlighted in Chap. 31 (this 
volume), we must look at how, and for what purposes, experts use mathematical 
models in their fields of work in order to find ways that help us develop the neces-
sary skills in higher education students.

Given the big differences between the skills that are promoted by working with 
models in mathematics and the skills required to work with models in the sciences, 
more seminars like the one reported here should be conducted in order to build a 
structure of knowledge that allows us to design teaching activities to bridge the gap 
between the teaching of these disciplines. One of the main objectives to be addressed 
is to implement changes in early mathematics courses, taking a similar approach, to 
help students develop the skills needed to work with models in advanced courses. 
An example of what kind of discussion could be approached is by observing the

differential equations 
dN

dt
aN

N

k
H= −






 −1  and 

dN

dt
aN cN H= − −2 .  Although

mathematically both have the same meaning, in practice they can represent different 
information in a context of population growth.

In designing teaching activities, it also should be taken into account that in biol-
ogy the results come from the qualitative interpretation of graphical models. To 
explain the behaviour of phenomena, graphical and numerical models are manipu-
lated. These models have been obtained experimentally and generally the students 
work with models that are presented in a textbook. In physics, mathematical results 
are compared with observations. To explain the behaviour of phenomena, known 
algebraic models are manipulated, and it is sometimes necessary to structure the 
knowledge provided by different systems.

In addition to the material produced, we trust that this seminar can generate 
changes in the teachers’ beliefs about teaching and learning mathematics and their 
own role in teaching practices. In regard to this, Haines (2011) pointed out that 
teachers should be “in touch with the real world” (p. 350). We add that teachers 
should also be in touch with the content that is taught in other courses where stu-
dents have to put into practice their abilities to work with models and modelling. In 
response to this, the participants of the seminar are now testing some teaching activ-
ities involving work with mathematics and analysing some physics experiments 
where interpreting a plot is a relevant skill to be strengthened.
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Chapter 33
Modelling as Interactive Translations Among 
Plural Worlds: Experimental Teaching Using 
the Night-Time Problem

Toshikazu Ikeda and Max Stephens

Abstract This case study examines the advantages in interpreting students’ model-
ling from the perspective of interactive translations among plural worlds. This per-
spective has greater pedagogical potential than a simplified perspective which treats 
mathematical modelling as involving transitions only between two fixed worlds – a 
real world and a mathematical world. Experimental lessons with the Night-Time 
Problem for Japanese 10th grade students were held over a period of 100 min, using 
a structured investigation. As a result, the following two advantages are exemplified. 
The first enables a teacher to direct attention to intermediate models which can help 
students build further abstract models, and the second focusses attention on mean-
ingful contradictions to help students to verify/critique/modify their original 
models.

Keywords Model • Modelling • Plural worlds • Interactive translation • Night time 
• Experimental lesson

33.1  Background

Different instructional approaches to modelling have been analysed and classified 
on an international level (e.g., Blum and Niss 1989; Kaiser 1991; Kaiser and 
Sriraman 2006; Lesh et al. 1986). Among these, we focus on two fundamental tra-
ditional trends, namely, a pragmatic and a scientific/humanistic trend (Kaiser 1991). 
In the case of the pragmatic trend, people mathematize in order to enable formal 
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processing using mathematical systems, and it is mathematization aimed at the cre-
ation of mathematical models that is emphasized. A dualism between the real world 
and the mathematical world underlies this approach. On the other hand, in the case 
of the scientific/humanistic tendency, the emphasis is placed not on a mathematical 
model, but on the model as a medium for promoting mathematization. As Freudenthal 
(1991) noted:

According to my terminology, a model is just the – often dispensable – intermediary by 
which a complex reality or theory is idealized or simplified in order to become accessible 
to more formal mathematical treatment. … I lay so much stress on the role of the model as 
an intermediary because people are all too often unaware of its indispensability. Much too 
often mathematical formulas are applied like recipes in a complex reality that lacks any 
intermediate model to justify their use. (p. 34)

Both cases have in common the idea that a model functions as a space for think-
ing that enables problems to be contemplated in a separate space. However, the 
intermediate model for Freudenthal seems to be a model built between a real world 
and purely mathematical world in order to overcome the difficulty of mathematiza-
tion. This distinguishes Freudenthal’s usage from the idea of a pragmatic trend in 
which mathematical modelling is interpreted in terms of two fixed worlds (dual-
ism). The idea of an intermediate model leads us into a new perspective where 
mathematical modelling is interpreted as an interactive translation, not between 
fixed two worlds (between a real world and mathematical world), but actually 
among plural worlds.

Therefore, how can we identify plural worlds about students’ activities in model-
ling, how do students really perform regarding interactive translations (changed rep-
resentations), and what are the advantages to interpret students’ activity in modelling 
as interactive translations among these plural worlds? This chapter uses the Night- 
Time Problem to concretize these interactive mathematical translations among plu-
ral worlds and illustrates these through actual students’ responses during a modelling 
lesson.

33.2  Design of the Study

At first, we adopt the stance that mathematical modelling can be interpreted as inter-
active translations, not between fixed two worlds, but among plural worlds. How 
can we distinguish these different worlds? If we can represent an original action (or 
operation) with a new action (or operation) explained with elicited properties, we 
can interpret that two corresponding actions (original and new) each exist in differ-
ent worlds. For that we need a concrete illustration.
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33.2.1  A Concrete Approach to Interactive Translations 
Among Plural Worlds

In our concrete approach, we propose to introduce Japanese 10th grade students to 
the Night-Time Problem (Ikeda 2013), in which night time y (hours) at latitude x (° 
N) can be estimated and investigated by observation in the real world, and then by 
using a globe, by drawing/measuring geometrical figures, by constructing a for-
mula, and by creating a graph involving x and y. Potentially five different worlds can 
be applied. In the first case, students encounter the simple question, why does the 
daytime at higher northern latitude become so long close to midsummer? Or con-
versely, why does the length of summer night time decrease as latitude north 
increases? Students can consider this problem by manipulating a model globe. 
Manipulation in a concrete operational world can assist students to translate from a 
real world into the geometrical operational world. Our goal is to analyse the Night- 
Time Problem using plural worlds or perspectives and to assist students to translate 
from one to the other. In our concrete example, students will analyse three specific 
cases, namely, the length of night time at latitude 66.6° N (latitude of the midnight 
sun), at latitude 0° (equator) and at latitude 33.3° N (half in between) all at the same 
time, close to midsummer.

At the beginning, students may rely on a simple proportional model in a graphi-
cal representational world and give a prediction of 6 h. This simple graphical/pro-
portional representation allows them to consider visual images of the mathematical 
relationships. In order to check this answer, two types of ideas or approaches can be 
used by the teacher. One is to draw a geometrical model with a side view in order to 
set out the positional relation between globe and the supposed sun by taking account 
of the fact that the axis of the Earth is tilted. Then, by drawing a side view of the 
Earth, students can be asked to predict the answer by measuring the ratio between 
the length of night time and daytime in this geometrical operational world. Then by 
using the internet, students can use data from the real world to check the actual 
length of night time. Even at this stage, two types of contradictions can occur: the 
first between a graphical/proportional representation of the world and a geometrical 
operational world and the other between a graphical representational world and 
real world data. By limiting the problem to two fixed worlds (a real world and math-
ematical world), these two types of contradictions cannot be identified and utilized 
by the teacher in responding to students’ different approaches.

However, there is still a contradiction between the result derived from the geo-
metrical model and the actual length of night time. This may cause students to 
modify their model in two ways. The first arises from a comparison between a geo-
metrical operational world and a concrete operational world. The second arises 
from a comparison between a concrete operational world and the real world. 
Translation from three dimensions into two dimensions can help to focus on the first 
comparison; and idealization from the real world into the concrete operational 
world can help to focus on the second comparison. Comparing these two results 
derived from two different representations can help to facilitate important  interactive 
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translations between plural worlds. Clarifying these two types of comparison based 
on the distinction among plural worlds is crucial for how the teacher assists stu-
dents’ approaches, with the aim of shifting the model from a side view figure to one 
based on a circle viewed from the North Pole, taking into account the tilt of the 
Earth’s axis as 23.4°.

In order to represent the general night time according to the north latitude, it is 
necessary to develop and become familiar with a functional model using trigonom-
etry. This is the symbolic operational world which allows us to consider the phe-
nomenon algebraically. At first, by reflecting on and utilizing the solution methods 
in the concrete operational world, we can make a geometric model as base. In 
Fig. 33.1 (left), P is north latitude θ, ∠QOR = 23.4° because of midsummer and 
∠ORP = ∠R. By considering the circle so that PR becomes the radius as shown in 
Fig. 33.1 (right), night time is formulated as 2/15⋅β (=24 × 2β/360) where cos β is 
RQ/RS = RQ/PR. By the way, as tan θ is RO/PR and tan 23.4° is RQ/RO from 
Fig. 33.1 (left), the following relation is derived.

 
cos tan tan .β θ= = ⋅ = ⋅ ( )RQ

PR

RO

PR

RQ

RO
23 4

 

Therefore, night time y (hours) is formulated by using north latitude x (°) as 
follows:

 
y x= ( ) ⋅{ }−2

15
23 41cos tan . tan

 

A benefit of using technology to explore the behaviour of this trigonometric 
function is that its graph provides a simultaneous correlate to the Night-Time 
Problem in southern latitudes as well as understanding that a difference of one 
degree in latitude in high-latitude countries such as Norway and Sweden has greater 
impact on the hours of night time than in lower latitude countries such as Japan.

Fig. 33.1 Formulation of the night-time function
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33.2.2  Experimental Teaching for 10th Grade Using  
the Night- Time Problem

The following case study is intended to illustrate how a teacher and students can 
approach mathematical modelling, as a series of interactive translations among plu-
ral worlds, by exploring how each representation brings its own affordances and 
constraints. A teaching experiment was conducted with 10th grade students at a 
public high school in Yokohama City, Japan. Twenty eight high school students 
indicated their intention to attend the lesson in Yokohama National University. The 
experimental lesson, based on the Night-Time Problem, took place for 100 min and 
consisted of the following three phases (P1, P2, P3).

P1: To understand the reasons underlying the phenomenon of the midnight sun and 
compare it with the night time at latitude 33.3°N, midway between 0° N and 
66.6°N. (Latitude 33.3° N actually corresponds to that of Kochi City in Japan 
and 66.6° N is close to that of Bergen City in Norway which will be featured later 
in the study.) Simple feelings about the real world and insights derived from 
manipulating the globe are expected to be derived from the students.

P2: To consider how to verify any predictions proposed by the students. An investi-
gation by drawing/measuring a geometrical model or checking the real night 
time at latitude 33.3°N in Japan is expected to be carried out by students.

P3: To examine and to build up the further geometrical model by reflecting the 
result of P2.

33.2.3  Analysis of Interactive Translations Among Plural 
Worlds

Until now, trigonometric functions have not been taught to Grade 10 students in 
Japan. Therefore, this experimental lesson illustrates how students can translate 
interactively among four worlds, namely, using data from the real world, a concrete 
operational world based on manipulating a globe, a graphical representational 
world which allows them to consider a visual image of the variables involved and a 
geometrical operational world which allows them to consider by drawing and mea-
suring. The aim of the lesson is to illustrate how deliberately planned interactive 
translations among four worlds can lead students to consider more deeply and to 
develop more accurate or more general models. Specifically, we need to analyse 
how students translate interactively among four worlds and their willingness to 
develop further models.

The following four questions were presented to students by the teacher in order 
to analyse their interactive translations among four worlds:

Q1 posed during P1: How many hours of night time do you estimate at latitude 
33.3°N?
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Q2 posed before P2: How could you check your estimate of the night time at lati-
tude 33.3°N?

Q3 posed before P3: If your expected result was mismatched with the result of 
another world, what might be the reason?

Q4 posed after P3: What further problems do you want to consider next?

33.3  Implemented Teaching with the Night-Time Problem

Actual teaching took place according to the following three parts: (1) presenting the 
situation generating this real-world problem and explanation about the reason for 
the midnight sun, (2) considering the night time of latitude 33.3°N and (3) reconsid-
ering any mismatches between results by drawing/measuring the side view figure 
and the real night time of latitude 33.3°N.

33.3.1  Situation Generating a Real World Problem

The following situation utilizing several photos (Fig. 33.2) was presented to stu-
dents at the introduction:

Fig. 33.2 Bergen City in Norway (at 10:41) on 19 June

We went to Bergen city in north Europe at midsummer. Bergen city is located 
at latitude 60° N in Norway as shown in Fig. 33.2 (left). We arrived late in the 
evening of 19 June and had a dinner at 9:30 pm. After dinner, we went out 
from the restaurant and were surprised to see that sun had not set yet as shown 
in Fig. 33.2 (right). The time by my watch had passed 10:30 pm. Why is day-
time so long here in Bergen? In Japan, it is pitch-dark at 10:30 pm. I heard 
from someone about the Midnight Sun at higher Northern latitudes. But I 
don’t understand why.
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After presenting the situation above, the teacher asked students to explain why a 
midnight sun happens at higher northern latitudes. Students worked together with a 
friend next to them by manipulating the globe. Students observed the positional 
relation between the globe and the supposed sun at midsummer (Fig. 33.3 left) and 
prepared a geometrical figure to explain why the midnight sun phenomenon hap-
pens (Fig. 33.3 right). Manipulation in this concrete operational world assisted stu-
dents to translate from a real world into the geometrical operational world. It also 
confirmed that analysing the Night-Time Problem using multiple representations is 
possible.

After sharing the reason for the midnight sun in a class, the teacher asked the 
students: “Above what degree of latitude North does the Midnight Sun happen?” By 
starting from the fact that the axis of the Earth is tilted at 23.4° away from the North 
Pole, two pairs of students explained the answer. As the result, they concluded that 
the midnight sun happens from latitude 66.6°N at midsummer when there are zero 
hours of night time.

33.3.2  Considering Night Time of Latitude 33.3 ° N

Next, the teacher asked the students: “What degree of latitude North allows the 
night time to be 12 hours?” Students answered easily that the night time in areas 
close to the equator (where latitude is 0 °) is 12 h. So, the teacher asked further 
“How many hours of night time will be in other areas, for example, in places 
between 66.6°N degree and the Equator?” In this phase, question 1 “How many 
hours do you estimate the night time at latitude 33.3°N?” is asked for students. Most 
students (22 students, 78.6%) answered 6 h by making the assumption that there is 
a simple linear relationship between length of night time and latitude north. The 
teacher invited one of those who answered 6 h to explain their reason. The student 
drew a straight line in a graph and gave this as the reason.

Fig. 33.3 Explanation of midnight sun by a student
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At this stage, the teacher posed question 2: “How could you check your answer 
about the night time at latitude 33.3°N?” A summary of students’ ideas on how to 
check their initial estimates is given in Table 33.1.

Half the students wrote “Consider by drawing the figure” and 32% of students 
wrote “Measuring the night time at latitude 33.3°N in the real world”. Among stu-
dents who wrote “Considering by drawing the figure”, only nine students could 
propose any concrete solution method such as “Check the ratio of the length of 
night time at latitude 33.3°N to the length of equator radius in the side view figure. 
If the ratio is ½, it is ok”. On the other hand, three students (10.7%) wrote a rough 
direction toward a solution and two students (7.1%) wrote quite simple ideas such 
as “measuring a length” or “drawing a figure”.

In the lesson, the teacher picked up two types of answers in order, namely, 
“Considering by drawing the figure” and “Measuring the night time at latitude 
33.3°N in Japan” and let students explain them. Two types of comparisons occurred: 
the first between a graphical/proportional representation of the world and a geo-
metrical operational world and the other between a graphical representational 
world and real-world data. These two types of comparisons cannot be utilized by 
the teacher in responding to students’ different approaches unless the teacher helps 
students to identify multiple perspectives.

33.3.3  Reconsidering Mismatch Between Result by Drawing/
Measuring Side View Figure and Real Night Time 
of Latitude 33.3° N

After sharing both ideas of comparisons, the teacher let students draw the side view 
figure of the Earth and had them measure or calculate the ratio of night-time length 
to 1 day time (or half day time). Although there was a little variability among stu-
dents’ results, most students had an answer around 8.5 h. At this stage, the teacher 
guided students to an alternative method, namely, by checking the real night time at 
latitude 33.3°N in Japan. By using internet data for Kochi City, which has latitude 
33.3°N, students found that night time in midsummer for Kochi City is actually 9 h 
40 min. Students encountered a mismatch between 8.5 h (derived from measuring 
or calculating the ratio by drawing the side view figure) and 9 h 40 min (derived 
from the real time in the internet). This prompted students to reflect and re-examine 
the implicit factors that may have been overlooked. At this stage, Question 3 was 

Table 33.1 Summary of students’ ideas on how to check their initial estimates

Responses of students
Number of students 
(percentage)

Considering by drawing the figure 14 (50.0%)
Measuring the night time at latitude 33.3°N in the real world 9 (32.1%)
No answer 5 (17.9%)
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posed by the teacher: “If your result is mismatched with the result of another world, 
what is a possible reason?” The results of students’ ideas are as shown in Table 33.2.

Nearly half the students (13 students, 46.4%) identified the need to consider the 
problem not from the side view figure of the Earth, but viewed from a circle from 
the North Pole. However, the remaining half could not see the point being made. 
Eight students (28.6%) referred to the reason that the Earth is not a complete sphere 
and five students (17.9%) had no idea about this question. From this result, we can 
see that students modified their model in two ways. The first arose from a compari-
son between a geometrical operational world and a concrete operational world. 
The second arose from a comparison between a concrete operational world and 
real-world data. Translation from three dimensions into two dimensions could help 
students to focus on the first comparison; and idealization from the real world into 
the concrete operational world could help them to focus on the second comparison. 
Utilizing these plural representations assisted students’ modelling activities. Finally, 
the teacher asked a student who reconsidered the problem by viewing a circle from 
the North Pole to explain the reason for the mismatch. This student explained that 
the ratio of the length of night time to the length of night and daytime is different 
from the ratio of the night angle to the angle of 1 day (360°) as shown in Fig. 33.4 
(left). This student drew a circle of centre O with diameter AC in the side view of 
the Earth and measured ∠DOE (141°) of night time (Fig. 33.4 right). This supported 
an answer of 9 h 24 min. Most students seemed to understand why there was the 
mismatch and the necessity to shift the model from the side view figure into the 
circle viewed from the North Pole.

At the end of the lesson, the teacher asked students what kinds of problems could 
be considered next. Table 33.3 shows the categories of problems suggested and the 
number of problems in each category of problem. Seventy-five percent of students 
were able to write at least one problem to be considered next. It is clear that develop-
ing a more general model about the Night-Time Problem could be promoted through 
a lesson based on the same context in an upper grade where students could see how 
a generalized solution becomes more precise by applying trigonometric methods 
(Ikeda and Stephens 2011).

Table 33.2 Students’ reasons to explain the mismatch

Responses of students
Number of students 
(percentages)

Don’t rely on a side view figure of the Earth, but view the circle 
from the North Pole

13 (46.4%)

The Earth is not a complete sphere 8 (28.6%)
No answer 5 (17.9%)
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33.4  Conclusion

This chapter proposes a perspective in which modelling is interpreted as interactive 
translations among plural worlds and how the utilization of models in plural worlds 
is intended to assist students to make progress in mathematical modelling. We con-
cretized the interactive translations among plural worlds using the Night-Time 
Problem. From this case study, we have argued that plural worlds are not simply the 
result of arbitrarily changing mathematical representations, but arise fundamentally 
as a result of comparisons and contradictions between competing perspectives. How 
these comparisons or contradictions can deepen students’ modelling activities is 
only possible if we see the modelling process as operating in plural worlds and not 
simply from two fixed worlds (a real world and mathematical world). These provide 
indispensable clues to promote modelling activities.

Table 33.3 Categories of problems that students posed at the end of lesson

Three categories of problems
Number of problems 
(percentage)

Problems concerned with generalization 23 (67.6%)
How many hours of night time are there at other northern latitudes? 3
What is the northern latitude where the night time is 6 h? 3
How can we graph the relationship between night time and northern 
latitude? What kinds of function generally?

7

How does night time change in the course of a year? 6
How about the night time in southern latitudes? 4
Problems concerned with solution methods 5 (14.7%)
It is not clear why the mismatch happened. 3
Is there any method to consider the night time only in the side view 
figure of the Earth?

2

Problems concerned with error 6 (17.6%)
Is there any other factor which caused the error? 2
How can we treat the error? 4

Fig. 33.4 A student considers the circle viewed from the North Pole
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However, when a teacher analyses a prospective modelling task, it is necessary 
to identify in advance what these different worlds are in order to be effective in 
promoting students’ modelling. In other words, it is important to identify the affor-
dances and constraints that make each world meaningful or not for students. Those 
that are not meaningful for students should be postponed or omitted. Those that give 
rise to comparisons and contradictions clearly have greater potential for deepening 
modelling.
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Chapter 34
The Dual Modelling Cycle Framework: 
Report on an Australian Study

Janeen Lamb, Akio Matsuzaki, Akihiko Saeki, and Takashi Kawakami

Abstract The aim of this study was to investigate how 23 students from one Year 6 
class in an Australian primary school engaged with two modelling tasks using the 
dual modelling cycle framework. This framework is designed to assist students who 
do not find a solution to a modelling task by introducing a second similar yet sim-
pler modelling task in a second cycle. Students participated in 2 × 60 min lessons 
over 2 days. Results indicate they benefitted from the modelling approach theorised 
by the Dual Modelling Cycle Framework. While students demonstrated an inability 
to find a solution for the first task, they were fully engaged in Task 2. They enjoyed 
this cognitively demanding yet stimulating approach that provided all students with 
opportunities to participate in an orchestrated discussion where they were able to 
find solutions for Task 1 and justify their findings using evidence from their con-
crete models.

Keywords Dual Modelling Cycle Framework (DMCF) • Oil Tank Task • Toilet 
Paper Tube Task • Primary school
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34.1  Introduction

The Australian Curriculum Mathematics is designed to develop capabilities neces-
sary for all Australian school-age students to fully engage in daily life (ACARA 
2015, para. 1). In order to achieve this, “The curriculum focuses on developing 
increasingly sophisticated and refined mathematical understanding, fluency, logical 
reasoning, analytical thought and problem-solving skills” (para. 2). With this cur-
riculum, there have been calls for teachers to change their pedagogical approach to 
embrace the intent of the Australian Curriculum Mathematics (Galbraith 2013). The 
work by Stillman and Galbraith (1998) continues to be relevant to supporting such 
a change as they argue for an emphasis on context to ensure sense making is pro-
moted, and it is here that the lesson launch is important (Jackson et al. 2012). In 
addition, tasks need to be cognitively demanding (Lampert et al. 2013) yet suitable 
for the differentiated classroom (Boaler and Staples 2008). Pulling aspects of the 
lesson together is a skillful orchestration of the discussion (Stein et al. 2008) where 
students are “pressed” to make connections while justifying their perspectives with 
evidence. While recognising these and other previous research, Galbraith (2013) 
called for an emphasis on mathematical modelling as one way to create balance 
within conventional classroom mathematics, in an effort to support Australian 
teachers as they go about implementing the Australian Curriculum Mathematics.

34.2  Theoretical Framework

Mathematical modelling is widely used with realistic problem-solving contexts as a 
way to empower modeller independent use of mathematical knowledge in thought-
ful and creative ways. This approach requires opportunities for multiple solution 
paths with the orchestration of discussion around the best solution in comparison to 
the conventional approach to mathematics problem-solving that looks at the solu-
tion. This approach has been captured by the cognitive theoretical framework devel-
oped by Blum and Leiß (2007, p. 225) where modellers move through a cycle of 
steps that requires them to access both the real and mathematical worlds. This single 
modelling cycle is sufficient if modelling is proceeding successfully. While many 
researchers draw on this model, research does indicate that students will move 
between the real and mathematical worlds while in the process of finding a solution 
(e.g., Stillman and Galbraith 1998; Matsuzaki 2007, 2011). When this process stalls 
and modellers do not know how to proceed to find a solution, one way forward is for 
them to be guided to a similar yet simpler modelling task that will aid the develop-
ment of a solution for the original problem. In this chapter, we explore a theoretical 
extension to Blum and Leiß’s (2007) model with a view to facilitating the teaching 
of mathematical modelling that considers a diversity of modeller abilities. Here 
Saeki and Matsuzaki’s (2013) extended theoretical modelling framework, the Dual 
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Modelling Cycle Framework (DMCF) (see Fig.  34.1), is designed to cater for a 
diversity of learners.

The theoretical propositional basis of the DMCF is that it requires two tasks, the 
initial task, Task 1, which is located in the first modelling cycle, and Task 2, which 
is located in the second modelling cycle. When students cannot progress their solu-
tion to Task 1, they are guided by their teacher to move to cycle 2 where they are 
introduced to a similar, yet simpler task (Polya 1945). The selection of the second 
task is critical as its role is specifically designed to develop student understanding 
that will assist with the solution of Task 1. The intention with the DCMF is therefore 
that by moving from the initial modelling task, Task 1, to a similar and simpler 
modelling task, Task 2, they are more likely to experience success in both modelling 
cycles.

Research by Matsuzaki and Saeki (2013) identified that teachers play an impor-
tant role in facilitating switching between cycles and tasks to ensure successful 
outcomes for all students. Their research implemented experimental modelling les-
sons with undergraduate students in Japan that led to the identification of three 
stages in the DMCF: (1) transition from the first modelling cycle to the second 
modelling cycle, (2) modelling within the second modelling cycle, and (3) transi-
tion from the second modelling cycle back to the first modelling cycle. Kawakami 
et al. (2012, 2015) moved the use of the DMCF from undergraduate students to Year 
5, elementary school students in Japan. It was the use of the DMCF in the elemen-
tary setting that captured the interest of Australian researchers, as this framework 
was seen as a way to assist teachers to implement the Australian Curriculum 
Mathematics answering Galbraith’s (2013) call for greater use of mathematical 
modelling and at the same time cater for a wide diversity of student ability (Lamb 
et al. 2014). The research questions that guide this research are: How do students in 
this Australian school, who are experiencing difficulty with Task 1, respond when 
their teacher switches to Task 2? And, how does this influence student modelling 
response to Task 1?

Fig. 34.1 Dual modelling cycle framework (Saeki and Matsuzaki 2013, p. 94)
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34.3  Research Design

One primary school in Brisbane, Australia, participated in the DMCF project. 
Although this school was a sample of convenience, it is also typical of most primary 
schools within Brisbane with year levels from Prep to Year 6. Participants described 
in this paper involved 23 students (age 11 or 12). The students participated in two 
lessons (60  min  ×  2) over 2  days in the second week of their school year. All 
researchers named on this chapter attended the lessons. These two lessons were 
designed to cycle through the three stages of the DMCF identified by Matsuzaki and 
Saeki (2013). The tasks the students completed are outlined in Fig. 34.2, and these 
tasks were the same tasks that had been completed previously in the Japanese 
studies.

The tasks were designed to assist in developing student understanding of the 
geometric structure of an ordinary helix on the outside of a cylinder (see Fig. 34.2 
below). The delivery of the lessons used the following structure as in the Japanese 
studies (Matsuzaki and Saeki 2013; Kawakami et al. 2012, 2015). Initially a picture 
of oil tanks was shown where the tanks had differing diameters and a spiral staircase 
from the ground to the top. The photograph included several fire trucks with firemen 
and engineers in discussion at the foot of the oil tanks. The context was presented as 
the firemen needing to know which spiral stair would get them to the top first, as 
they needed to climb to the top of one of the tanks as quickly as possible to cool 
them because they were in danger of exploding. It was clear to all that there were 
several types of oil tanks with their heights equal but their diameters different. The 
students were asked, “Were the lengths of the spiral stairs on these oil tanks the 
same or not?” It was explained that the angle of the spiral stairs around each tank 
climbed at 40°. Task 1  in Fig. 34.2.2 was then presented and those participating 
were asked to produce 2D drawings of the 3D model. Following this modelling, 
Task 2, the Toilet Paper Tube Task, was introduced. The purpose of this task was to 
model the oil tank, but this model permitted the toilet paper tube to be cut up along 
the slit to assist in identifying a second 2D model. After this task, the students were 
asked to again consider Task 1.

Collected data included lesson video-recordings, iPad audio-recordings of each 
group’s discussion, each student’s worksheets, lesson artefacts and field notes. 
Lesson artefacts included digital images of student modelling, while field notes 
were kept by researchers noting any critical insights or issues as they emerged 
throughout the lessons. These data were analysed in two ways. First the analysis 
looked for evidence of student independent engagement with each modelling cycle, 
their transition to the second modelling cycle and how the second modelling situa-
tion informed the first, and if this led to enhanced potential in mathematical profi-
ciency. Second, the predicted models that the student would draw for Task 1 were 
the rectangular model and the parallelogram models, with the expectation that most 
will draw the rectangular model as this had been the case when Japanese students 
had attempted this task (see Kawakami et al. 2015). Analysis of Task 2 was expected 
to focus on the parallelogram model where student mathematics to explain the rela-
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tionship between the parallelogram model and the rectangular model would be 
drawn out.

34.4  Results and Discussion

34.4.1  Student Experiences with the Modelling Tasks

While the 23 Year 6 students enthusiastically engaged with Task 1, only 11 students 
drew the anticipated model, the rectangular model. This result meant that the 
researchers had to modify their analysis protocol for Task 1. For the 11 rectangular 
models, each was drawn with a curved line to represent the stairs. See Table 34.1 for 
models A and B being variations in the rectangular model. Note Model A did not 
indicate reaching the top of the oil tank and Model B did not accurately represent 
the transition of the wrap around spiral stairs from front to back. The remaining 12 
students reproduced the 3D model (Models C and D) suggesting that they did not 
know how to produce 2D drawings from the 3D models. Our initial interpretation of 
Models C and D was that the students had reproduced the problem. On greater 
reflection, this model and that of Model D, do include a 2D net of the oil tank, but 
also include additional features. Clear evidence of the front and back view of the 
stairs in Model D suggests students’ earlier learning of orientation where they have 
been required to visualise and draw the view from the top, front, back and sides of 
various shapes. This finding resulted in a reclassification where Models C and D 
were classified as examples of an orientation model which we consider is in the grey 
zone incorporating some aspects of the 2D model and some aspects of an orientation 
model. Nonetheless, it was evident that these models were not going to assist the 
students to provide a solution to the problem as all students had experienced some 
form of difficulty with Task 1. The teacher then intentionally switched the students 
over to Task 2, the similar but simpler task.

Oil Tank Task (TASK1)

There are several types of oil tanks. Their heights are equal 
but their lengths of diameters are different. Is the length of 
the spiral stairs on these oil tanks equal or not? As the angle 
of the spiral stairs climbed at 40 for each.

Toilet Paper Tube Task (TASK2)

It is impossible to open along the actual spiral stair of the oil tank. We 
can use a toilet paper tube as a similar shape to an oil tank as it can be 
opened along its slit to show the 2D shape. Consider what the shape of 
an opened toilet paper tube would be.

10m

5m

10m

10m

40° 40°

Fig. 34.2 Teaching material based on DMCF (Kawakami et al. 2015, p. 197)
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As a result of Task 1, part of the intentional switching to Task 2 was to get the 
students to predict, through visualisation, what a toilet paper tube would look like 
when cut along the slit. A toilet paper tube was selected as it is a similar shape to the 
oil tank, and the slit can readily represent the spiral stairs assisting visualisation. 
Also, it is easy to cut the toilet paper along the slit to disclose the shape.

Table 34.2 displays the variety of students’ 2D models. Again, the students did 
not provide the models predicted by the researchers, and as a consequence, the 
analysis had to change again. Worthy of note is that three students drew models that 
were a combination of 2D and 3D models. The model displayed in Table 34.2 seems 
to indicate that the students have provided a side view producing a further orienta-
tion model. The 3D model is close to the parallelogram model but the student has 
drawn it in 3D. Both these models were analysed as being within the grey zone 
incorporating 2D and orientation features.

No students used mathematics to establish the relationship between the Oil Tank 
Task and Toilet Paper Tube Task. To assist in finding the relationship between these 
tasks the students were given two toilet paper tubes and asked to cut one toilet tube 
straight up from bottom to top to confirm the rectangle model of the oil tank and to 
cut around the slit of the second toilet paper tube to confirm the parallelogram 
model. These activities concluded the first lesson.

The second lesson commenced by reinforcing the rectangle and parallelogram 
models from the day before by using large concrete materials to model the oil tanks. 
One model was cut straight up from bottom to top to produce the rectangle model 
and the other along the slit to produce the parallelogram model. Following this 
activity, the students were intentionally switched back to Task 1 and asked, “Are the 
staircases the same length or not?” In trying to solve this problem, it was noted in 
the researchers’ field notes that the students enthusiastically engaged in collabora-
tively constructing models to represent the 5 m and 10 m diameter oil tanks. When 
they cut these models up they were able to provide evidence they needed to convinc-
ingly argue through an orchestrated discussion, that the staircases on the tanks were 
the same length. Following this realisation the students were again stretched by 
being asked to explain the relationship between the rectangle and parallelogram 
models. Using the concrete models created at the beginning of the lesson, the stu-
dents were able to overlay the parallelogram model of the 5 m diameter oil tank over 
the 10 m diameter model to prove that the staircases were the same. They were also 
able to prove empirically this result using the rectangle models by cutting and mov-
ing sections so that the stairs aligned. Moreover, a discussion was then made pos-

Table. 34.1 Student Task 1, drawings of 3D model of the oil tanks – Models A, B, C and D

2D models Orientation models

Model A Model B Model C Model D
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sible where students could argue why both the rectangle and parallelogram models 
produce the same result. The models displayed in Fig. 34.3 were used to assist in 
this explanation process.

34.5  Conclusions

There are several important findings related to the use of the Dual Modelling Cycle 
Framework. First, very few students were able to correctly complete either Task 1 
or Task 2 by producing mathematically correct models. This result is different from 
the Japanese students who were able to draw on their findings from Task 1 to sup-
port their solution for Task 2 (see Kawakami et al. 2015). As we worked very hard 
to understand the models produced by the participating students, we developed new 
categories to allocate to student work. We believe that the students’ previous study 
of 2D and 3D shapes has been influenced by work with orientation where the stu-
dents have been required to visualise and draw the view of different shapes from the 
top, front, back and sides. This realisation lead to the reclassification of responses as 
representative of the new categorisation in our analysis protocol, the orientation 
model in the grey zone where students’ responses seemed to incorporate some 
aspects of the 2D model and some aspects of the orientation model. We believe that 
this finding also supports the work of Stillman and Galbraith (1998) where they 

Table 34.2 Toilet paper tube models for Task 2

2D
2D and 
3D 3D

Parallelogram 
model

Close to 
parallelogram model

Rectangle 
model Other

Grey 
zone Other

3 12 1 1 3 2

Fig. 34.3 Models to explain the same outcome (Saeki et al. 2016, p. 1748)
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argue that Australian teaching of mathematics places a heavy emphasis on context. 
This emphasis on context was naturally continued by the students in this study 
where many elected to not only draw the net but also include features of the oil tank 
from different orientations, see for example Models C and D. This finding contrasts 
significantly with the Japanese approach to teaching mathematics where the focus 
is very much on the mathematics of the tasks with less focus on the context.

Second, when the students were intentionally switched to Task 2, as is the intent 
of the DMCF, again their prior experiences of orientation influenced their work. 
These cognitively demanding tasks (Lampert et al. 2013) resulted in teaching that 
focussed student attention on concrete models using toilet paper tubes where they 
successfully produced both the rectangle and parallelogram models. This approach 
captured every student’s interest (Boaler and Staples 2008) and gave them the 
understanding and the confidence to return to Task 1 and respond to the question, 
“Were the lengths of the spiral stairs on these oil tanks the same or not?” The teach-
er’s intentional switching back to Task 1, when the students had a fuller understand-
ing of the two models to solve this task, resulted in their being able to provide 
evidence for their solution and make connections between the models in an orches-
trated discussion as described by (Stein et al. 2008). The students were able to per-
suasively present their arguments that the staircases were the same length using 
evidence from their concrete models.

Third, we can confirm that the DMCF supports students who do not know how 
to solve an initial modelling task, but were able to advance their modelling of this 
task by modelling a similar but simpler task, Task 2. As a result of the students 
engaging with both tasks they developed a more enlightened mathematical under-
standing of an ordinary helix on the outside of a cylinder than they would have by 
doing only one of the two tasks. This approach to promote switching between Task 
1 and Task 2 allowed students to solve Task 1, the Oil Tank Task.

The success experienced by students in this research by moving between Tasks 1 
and 2 has led us to recommend the DMCF as a suitable mathematical modelling 
framework that should be introduced to Australian teachers as a way to address the 
diversity of modeller abilities and at the same time, realise the intent of the Australian 
Curriculum Mathematics.
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Chapter 35
Implementing Mathematical Modelling: 
The Challenge of Teacher Educating

Azita Manouchehri

Abstract This chapter reports efforts to assist a group of intermediate and high 
school mathematics teachers in developing knowledge of mathematical modelling 
and its implementation in the school curriculum. Over nine academic months, the 
teachers engaged in 25 h of professional development during which they worked on 
modelling tasks and discussed implementation issues. Results indicate that teach-
ers’ level of comfort with mathematical modelling increased though they remained 
concerned about how to manage short- and long-term demands of curriculum, pre-
pare students for skills-based standardized tests, and guide learners’ discussions 
without violating their autonomy. Challenges faced by the teacher educators 
included managing teachers’ diverse mathematical backgrounds and limiting direct 
instruction on mathematics.

Keywords Professional development • Teacher knowledge • Design

35.1  Introduction

The expectation that teachers will help school learners develop mathematical mod-
elling skills has gained visibility in the United States with the adoption of Common 
Core State Standards of Mathematics (CCSSM) (National Governors Association 
Center for Best Practices & Council of Chief State School Officers 2010). Arguably, 
one of the least understood expectations among the set of CCSSM Standards (Gould 
2013), and one of the most conceptually demanding domains of knowledge to nur-
ture due to its complexity (Meyers 1984), mathematics teacher educators face the 
challenge of preparing teachers to first develop an understanding of the intricacies 
of mathematical modelling and then helping them define ways to implement it 
effectively. While currently prominent in the United States, this challenge has been 
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recognized by the international research community for quite some time (e.g. 
Lingefjärd 2000). Scholars concerned with teaching and learning of mathematical 
modelling continue to insist on the need to explore models and programmes that 
might assist teachers to meet implementation challenges (Doerr 2007) as well as 
documenting conditions that such efforts might impose on teacher educators (Cai 
et al. 2014). The work reported resides at the intersection of these two domains of 
need.

In this chapter, efforts towards designing mathematical modelling experiences 
for a cohort of 25 intermediate and secondary mathematics teacher leaders from 
eight different low-performing school districts will be described and analysed. 
Factors considered when selecting tasks for use with the participants, a few of the 
tasks used, and particular issues teachers faced as they engaged in learning about the 
modelling process and implementing modelling tasks in their classrooms will be the 
focus. Lastly, challenges faced in our work as teacher educators will be identified 
and suggestions offered for future research.

35.2  Context and Participants

The teacher participants in this work were members of a larger group of 85 teacher 
leaders spanning grades K-10 involved in a professional development (PD) pro-
gramme that aimed to enhance mathematics learning in low-performing school dis-
tricts across the states of Ohio and Michigan. The larger project, Mathematics 
Coaching Program (Brosnan 2016), provides free content-specific PD for teacher 
leaders (coaches) hired by school districts and offers monthly PD sessions (2 days a 
month) for a period of nine academic months during which the participants engage 
in mathematics activities that facilitate learning inquiry-based instruction and ways 
of assisting classroom teachers in developing such pedagogies. We worked with 
6–10 grade level teachers some of whom also had instructional responsibilities that 
consisted of teaching two or three sections of classes and spent the remaining work 
hours coaching other mathematics teachers in their schools. This group asked if 
specific sessions could be designed for them during which they could focus solely 
on mathematical modelling and its implementation.

In preparation for our work, a questionnaire was administered asking partici-
pants to first express their perceptions of mathematical modelling and then to offer 
examples of modelling tasks that were suitable for classroom use at different grade 
levels. The results indicated that the teachers had a fragile understanding of mathe-
matical modelling as either a content strand or a conceptual domain. Consistent 
with Gould’s report (2013), a majority of the teachers interpreted mathematical 
modelling as solving application problems, building physical models, or using rep-
resentational media for illustrating concepts. Only three individuals offered exam-
ples that resembled modelling tasks (population growth model, calculating amount 
of mortgage in the presence of various interest rates, and determining optimal travel 
route). The remaining examples were standard textbook applications in which the 
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major demand was using specific algorithms. The questionnaire results were critical 
in establishing conceptual goals for the programme we planned to implement. Due 
to teacher leaders being able to meet for only approximately 3 h a month, sessions 
and their content were planned to accommodate for this constraint.

35.3  Task Selection: Conceptual, Analytical, and Pedagogical 
Considerations

Researchers have identified a number of skills that teachers must possess in order to 
effectively implement mathematical modelling and navigate student learning in 
modelling tasks. A key ingredient includes knowledge about modelling tasks along 
with the type of mathematical and extra-mathematical knowledge needed for imple-
menting them (Blum 2011, 2015). Additionally, pedagogical skills such as scaffold-
ing techniques that ensure successful extended student engagement in modelling 
cycles (Blum 2015), ways to manage students’ progression towards development of 
increasingly more sophisticated models (Doerr and Lesh 2011), understanding and 
responding to students’ work, and the diverse approaches they may use to solve 
problems (Doerr 2007) have been identified as pivotal to effective incorporation of 
mathematical modelling in educational settings. Niss and colleagues (2007) further 
proposed that educational programmes designed for teachers must embody model-
ling experiences that match those expected of them to teach. In light of these recom-
mendations, our fundamental goals for the participants included:

 1. Developing a deeper understanding of the mathematical modelling process and 
its intricacies,

 2. Experiencing how inquiry instruction interacts with learning of mathematical 
modelling,

 3. Developing an understanding of connections among various subject areas and 
how they may come to aid in development of models that respond to conditions 
of the task,

 4. Discriminating between mathematical modelling as a process and solving rou-
tine application problems,

 5. Distinguishing between models as objects and mathematical models,
 6. Understanding how productive mathematical thinking could be nurtured through 

use of modelling tasks.

Acknowledging that the development of mathematical modelling knowledge for 
teaching demands substantial experience with both content and the model building 
process (Lingefjärd 2007), we had to set boundaries for what the tasks, collectively, 
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would meet. Following the recommendations of Meyers (1984) as a starting point, 
we wanted:

 1. The level of tasks to be accessible for all teachers,
 2. Problems to be independent so that the teachers would have an opportunity to 

work on a variety of modelling tasks,
 3. To include a variety of subject matter (physics, biology, social sciences) and 

mathematical tools,
 4. To use the type of task situations that often do not reach school curriculum,
 5. To focus on mathematical modelling as opposed to the frequently used data 

modelling tasks (e.g. Doerr and Lesh 2011).

Most importantly, we wanted the tasks, collectively, to provide the teachers with 
authentic modelling experiences. Considering this, task selection and design became 
a critical part of our work. Although we found model-eliciting activities (Lesh et al. 
2003) and their associated principles to be foundational to the design process, since 
our primary concern was expanding teachers’ knowledge of mathematical model-
ling for teaching, we conceptualized additional criteria to accommodate for the 
teachers’ particular needs as identified by recent research on teachers’ perceptions 
of, and experiences with, modelling contexts (Gould 2013; Lingefjärd 2000, 2007). 
We considered it important that the problems selected for the PD sessions be use-
able and relevant, extendible, and revealing.

Usability and relevance of tasks used during the sessions would enable teachers 
to connect what they experienced and learned during PD to their classroom work 
(Sowder 1998). Since the teachers were non-homogeneous in terms of not only their 
mathematical background but also the courses and grade levels they taught, we 
wanted problems to elicit extendibility that would allow teachers to experience how 
the same task could be refined and restated to address a larger scope of mathemati-
cal tools and accommodate different student populations. Lastly, we wanted tasks to 
be revealing in three distinct ways. First, the tasks were to allow teachers to experi-
ence the full mathematical modelling cycle as an iterative process of interpreting, 
refining, and validating in an effort to reveal how more precise models could be 
constructed by accounting for more variables. Second, the tasks had to confront 
teachers’ thinking in order to reveal aspects that were challenging for them during 
the modelling process so as to allow us to create continuity and coherence towards 
planning PD activities for future work. Third, tasks had to reveal connections among 
various content standards currently in place in the United States (National Governors 
Association Center for Best Practices & Council of Chief State School Officers 
2010). With mathematical, pedagogical, and research objectives in place, we con-
sulted several sources. See Table A.1 (Appendix) for sample tasks and associated 
objectives that were used during the sessions.

Lastly, in operationalizing the activities and guiding teachers’ development, we 
based our instruction on Blum and Leiβ’s (2007) modelling cycle; the model was 
used as a means to frame teachers’ thinking about the  modelling process. We 
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hypothesized that such grounding would serve three purposes: (1) providing teach-
ers a cognitive tool to monitor their own modelling practices so as to self-regulate 
their actions, (2) creating a communication tool that allowed the group a common 
language through which they could initiate and expand discourse surrounding 
teaching and learning of mathematical modelling, and (3) equipping teachers with a 
pedagogical tool for gauging and assessing learners’ work.

Teachers were emailed one task per month approximately 2 weeks prior to each 
PD session. This allowed time for them to think about and examine the tasks. 
Teachers were encouraged to implement them in classrooms and to bring examples 
of student work to the sessions. The teachers were also introduced to the modelling 
cycle (Blum and Leiβ 2007) during the first session. This cycle was revisited each 
month and in analysing teachers’ and their students’ work. Each PD session was in 
two parts. During the first part, teachers shared their work on the assigned tasks, 
compared and contrasted answers, and engaged in refining their solutions. This pro-
vided us with the opportunity to challenge their artefacts (Lesh and Doerr 2003). 
These discussions also granted us the space to introduce how different mathematical 
tools the teachers might not have considered, either independently or collectively, 
could be used to construct more robust models. The second part of a session was 
devoted to discussion of issues teachers raised from either their task implementation 
or the implementation attempts of teachers they coached.

All sessions were videotaped and transcribed. Each PD session was divided 
according to discussion foci. Particular themes pertaining to issues teachers raised 
or elements with which they struggled were noted and traced throughout the data. In 
tracing teacher growth of mathematical modelling competencies, four indicators 
were relied on: (1) sustained time on task, (2) number of self-initiated attempts at 
validating models, (3) number of self-initiated attempts at generalizing solutions, 
and (4) frequency of reflective actions exhibited in tackling tasks. These criteria 
were selected from the literature on modelling (Blum 2015) and inquiry-based 
instruction (Pollak 2003). Our discussion of the teachers’ work, challenges they 
experienced and articulated, and dilemmas we encountered in the PD is based on 
our analysis of group deliberations.

35.4  Results

35.4.1  Teachers’ Challenges

Analysis of the content of the discussions during the PD sessions, along with the 
data collected from surveys at the beginning and end of the year, revealed growth in 
teachers’ knowledge of mathematical modelling. Further, three prominent sets of 
challenges teachers faced surfaced: mathematical, pedagogical, and 
epistemological.
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35.4.1.1  Mathematical Challenges

Modelling tasks are by definition vague. An integral component of modelling activi-
ties is the generation of what if and what if not questions about the problem and its 
mathematical model(s) (Pollak 2003). There are no precise rules in mathematical 
modelling and no correct answers (Swetz and Hartzler 1991). Model adequacy is 
based on how accurately it describes and predicts the behaviour of the real system. 
This feature of the modelling process distinguishes it from other forms of mathe-
matical work and is most challenging for students and teachers (Lingefjärd 2000).

Teachers were uncomfortable making assumptions or isolating specific variables 
to reduce parameters when confronted with the modelling process. Similar to the 
report by Lingefjärd (2000), the teachers struggled to select from among variables 
they deemed as appropriate to solve the problem. As a result, they were compelled 
to suggest that a problem could not be solved due to the large number of variables 
needing consideration. Teachers also struggled with whether they should use a for-
mula in solving a problem or in model building processes if they were unable to 
explain or to derive it. Once teachers believed a model to be intuitively sensible, 
they were reluctant to refine the model to make it more precise. This issue was par-
ticularly paramount when the context demanded a certain degree of intuitive or 
experiential knowledge or when the need for precision was not immediately appar-
ent. Past experiences, such as usefulness of approximations and importance of esti-
mating, hindered teachers’ desire to consider alternative interpretations of the givens 
of a task. Thus, helping them understand when to estimate or be precise became a 
challenge. Such efforts were not always successful. Although teachers complied 
with our requests, they were not particularly convinced of their relevance.

35.4.1.2  Pedagogical Challenges

It is well accepted that knowledge of learners’ thinking, their approaches, conceptions, 
and misconceptions is an important part of mathematical knowledge to teach (e.g. 
Doerr 2007). Schoenfeld (2010) referenced this domain of knowledge as teachers’ 
vision: the ability to anticipate potential student approaches and plan for dealing with 
those approaches to ultimately guide students towards desired learning objectives.

During the first four PD sessions, teachers repeatedly displayed the desire to know 
what to anticipate of students’ work. They were curious to know what would be dif-
ficult or easy for students and concerned about how much information they would 
need to provide so as to structure learners’ work. We were pressed for explanations 
on how to implement modelling tasks in the context of mathematical topics they 
were teaching each month. They were also sceptical of how modelling tasks could 
assure that students mastered the skills they were expected to cover. These concerns 
echo two major tensions associated with teaching of mathematical modelling in edu-
cation. On the one hand, they highlight the chasm associated with distinct goals of 
mathematical modelling as a vehicle and modelling as content (Kaiser and Maaβ 
2007). On the other hand, they reveal the need for offering venues for assisting teach-
ers to develop an understanding of how to balance short- and long-term outcomes of 
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a modelling-based curriculum in the presence of high-stakes testing and also assess-
ing learners’ performance (Schmidt et al. 2011). Blum (2015) previously identified 
the absence of coherent and substantial modelling resources as a major barrier to 
teachers’ implementation efforts. Our participants’ concerns further punctuate the 
need for systemizing efforts towards development of materials that enable teachers to 
manage, effectively, short- and long-term goals of their required curriculum.

35.4.1.3  Epistemological Challenges

The literature characterizes mathematical modelling to consist of cycles of analyti-
cal work (see, e.g. Borromeo Ferri 2006), including:

 1. Examining the situation and setting up a problem to be solved,
 2. Identifying variables in the situation and selecting those that are essential,
 3. Creating a model that best describes the relationships among the variables using 

geometric, graphical, tabular, algebraic, or statistical representations,
 4. Formulating conclusions,
 5. Interpreting the results for accuracy and relevance,
 6. Refining the model through validating its potential to account for all relevant 

variables,
 7. Testing model generalizability to other similar situations.

The process of developing useful models often involves a series of iterative test-
ing and revision cycles (Blum 1991). These descriptions clearly distinguish mathe-
matical modelling from solving application problems in which task parameters are 
frequently well-defined, relevant theories are established and reinforced, and perti-
nent concepts to be used are easily identifiable. In mathematical modelling, the 
individuals draw from previous experiences and knowledge in an attempt to seek 
algorithms relevant to the task. Unlike applications, modelling tasks do not have 
correct answers; the adequacy of a constructed model is evaluated based on its accu-
racy, descriptive realism, precision, robustness, and generalizability (Meyers 1984).

These criteria stress the importance of iterations in modelling as means to increase 
sophistication by accounting for the greatest number of variables. Assessment of 
many criteria can be subjective since task interpretation and what is perceived as a 
realistic solution rely heavily on the modeller’s judgement (Pollak 2003). “What is 
usually missing is the understanding of the original situation, the process of deciding 
what to keep and what to throw away, and the verification that the results make sense 
in the real world” (Pollak, p. 650). In making these decisions, personal experiences 
of modellers shape how individuals interpret and solve a task. The use of classroom-
taught mathematical concepts may not be seen as necessary. Additionally, miscon-
ceptions about the real-world phenomenon studied can influence what modellers 
consider and what is perceived as plausible. Participants struggled throughout the 
year to reconcile these epistemological tensions, as both mathematical modellers 
and teachers of mathematical modelling. The tension associated with mathematical 
modelling teaching in the presence of these obstacles is particularly real to teachers 
when assessing appropriateness of their interventions. This issue, raised in the past 
(e.g. Niss et al. 2007), persists as one needing further inquiry.
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35.4.2  Reflections on Teacher Educator Efforts 
and Challenges

Aside from having to reconcile the real tensions that the teachers experienced and 
expressed throughout the year, the teacher educators faced two specific challenges: man-
aging the teachers’ diverse mathematical backgrounds and the amount of instruction to 
be provided so as not to compromise the spirit of inquiry we had hoped to establish.

35.4.2.1  Managing Diverse Mathematical Backgrounds

We deliberately chose a task sequence that would allow all teachers to engage in mod-
elling and provide an opportunity for all teachers to learn new mathematics. Many 
tasks spanned the content of algebra, geometry, probability and statistics, and calculus. 
However, creating a harmonious climate for mathematical modelling and for collab-
orative learning was difficult at the beginning. Teachers with lower mathematical 
backgrounds assumed their ideas too trivial to be shared. Frequently when the 
approaches used demanded mathematics beyond the level/concepts they taught, teach-
ers became disengaged and reluctant to re-engage with the task to increase its effi-
ciency. On the other hand, teachers with more advanced mathematical backgrounds 
were compelled to rely on algorithms and procedures they knew and not to consider 
alternative representational modes that were appropriate to be used in the model build-
ing process.

35.4.2.2  Avoiding Show and Tell

One of our major objectives was to demonstrate how inquiry instruction interacted 
with mathematical modelling that learners are expected to do. As such, our intent 
was to create the same climate during the PD sessions that we hoped teachers would 
enact in their classrooms. Although we had anticipated and planned for occasions to 
provide instruction on how specific mathematical concepts and tools could be used 
during the modelling process, the need for presenting explicit guidance became 
paramount throughout. The need for intervention ranged from guiding teachers 
through what variables to include or exclude to reduce task complexity, disregard-
ing superficial and intuitive responses, to judging robustness of models they pre-
sented. It was particularly challenging to resolve the chasm between teachers’ 
collective agreements on their intuitive responses to tasks and the need to engage 
them in refining and validating modelling phases. Teacher tolerance for large error 
margins due to estimation hindered attempts to establish more precise task solu-
tions. These challenges might not be unique to mathematical modelling but they 
interfered with a productive modelling process.
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35.4.3  Teachers’ Reactions

On an end-of-the-year survey, teachers were asked to identify their gains from the 
experiences during the year. Similar to Maaß and Gurlitt’s (2011) work with 
European teachers, the teachers expressed greater self-efficacy towards teaching 
mathematical modelling and greater understanding of its process. The teachers 
became more aware of how modelling tasks interacted with the curriculum and ways 
these could be used to enhance learners’ mathematical thinking. Due to experience 
in using different subject areas to solve the same mathematical task, the teachers 
claimed feeling greater comfort with how to introduce different representations 
throughout the year so that these would serve as problem-solving heuristics during 
learners’ modelling process. A deeper understanding of the role and importance of 
precision when working on mathematical modelling and model building tasks was 
gained. Significant positive changes in sustained time on task, number of self-initi-
ated attempts at validating models, and number of self-initiated attempts towards 
generalizing solutions indicate greater maturity in their modelling practices. While 
results are promising, quantifying teachers’ growth was not possible due to lack of 
instruments allowing tracing the development of modelling cognition over time.

35.5  Final Comments

In our work, tasks were designed and sequenced in a manner that would raise teach-
ers’ knowledge of modelling as both a content strand and a vehicle for teaching 
mathematics (Kaiser and Maaß 2007). This selection and sequencing was informed 
by our knowledge of mathematics, perception of mathematical needs of teachers, 
and the sorts of tasks that could facilitate coherent professional growth. We acknowl-
edge our choices are vulnerable since curriculum development was neither a focus 
of our research nor one which was informed by literature. Published reports of 
efforts towards meeting these same goals are limited, particularly if these experi-
ences are not embedded in university coursework. Further, scholarly elaborations 
are needed in unpacking how the mathematical coherence and continuity that teach-
ers need when managing short- and long-term curricular obligations might be met. 
This demands more theoretical and empirical accounts of teacher educators’ 
decision- making, as identified by Cai et al. (2014).

Data indicated that teachers became more comfortable with modelling processes, 
as learners, over the course of the year. The problem sequence used as well as the 
detailed mathematical discussions during sessions appears to have contributed to 
what teachers claimed to have gained mathematically. Inclusion of the modelling 
cycle in guiding participants’ thinking, both as learners and teachers of mathemat-
ics, also appeared effective since teachers frequently referenced it to reason and 
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argue, to articulate their own actions or characterize students’ modelling efforts. 
These results propose two venues for further inquiry. First, additional research is 
needed to better articulate ways the demands of mathematical modelling-based 
instruction might be gauged with a greater focus on the quality of mathematics 
shared or gained longitudinally. This might assist in developing a research-based 
teacher learning trajectory specific to mathematical modelling. Second, detailed 
theoretical descriptions of how teachers might be guided in developing pedagogical 
tools for navigating classroom implementation and assessment of effectiveness of 
their own practices merit attention.

 Appendix

(continued)

Table A.1 Tasks and objectives

Task Objectives

Rainfall problem
(Bocci, F. (2012). European Journal of Physics, 33, 1321. 
doi:10.1088/0143-0807/33/5/1321)
It is about to rain; you have to walk about 1 km between 
your car and class. You don’t have an umbrella but decide 
to take a chance and walk the distance. Suppose that it now 
starts to rain heavily and you don’t turn back; how wet you 
will get? What do you have to do to avoid getting too wet?

Making assumptions
Full modelling cycle
Use of trigonometry and calculus

Basketball problem
(Barrett, G., Bartkovich, K., & Compton, H. (1999). 
Contemporary pre-calculus through applications (2nd ed., 
p. 275). New York: Glencoe/McGraw-Hill)
As the star player of a basketball game stands at the free 
throw line, the announcer states that he had hit 78 % of his 
free throws that year. The star player misses the first shot 
and makes the second. Later in the game he is fouled for 
the second time. As he moves to the free throw line, the 
announcer states that he had made 76 % of his free throws 
so far that year. Can you determine how many free throws 
this player had attempted and how many he had made that 
year?

Precision and accuracy
System of linear inequalities

Spaghetti problem
(D’Andrea, C., & Gomez, E. (2006). The broken spaghetti 
noodle. The American Mathematical Monthly, 113(6), 
555–557)
If a piece of spaghetti is broken at two randomly chosen 
points, what is the probability that the three pieces, placed 
end-to-end, can form a triangle?

Probability theory
Geometric modelling
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Table A.1 (continued)

Task Objectives

Financing college education
(Dossey et al., (2003). Mathematics methods and modelling 
for today’s mathematics classroom (p. 97). Pacific Grove, 
CA: Thomson Learning)
You plan to invest part of your pay check to finance your 
children’s education. You want enough money in the account 
to be able to draw $1,000 a month, every month for 8 years 
beginning 20 years from now. The account pays 0.5% interest 
each month. (a) How much money will you need 20 years 
from now to finance one child’s education? Assume you stop 
investing when your first child begins college. (b) How much 
must you deposit each month over the next 20 years

Dynamic systems
Finding equilibrium points

Population growth in China
(Reading source: http://content.time.com/time/world/
article/0,8599,1912861,00.html)
What considerations needed to be made to implement the 
one-child policy in China in 1980 and then to relax the 
one-child policy in 2013 (families can have two children if 
one parent is an only child)?

Population growth
Analytic solutions

Ping-pong ball problem
(Starfield, A.M., Smith, K.A., & Bleloch, A.L. (1990). How 
to model it: Problem solving for the computer age. 
New York: McGraw-Hill)
How many ping-pong balls would fit in your living room?
Extensions: How many miniature footballs would fit in 
your living room?

Full modelling cycle
Refining models
Precision

Establishing a new international airline hub
(Reading source: http://en.wikipedia.org/wiki/Airline_hub)
Airline hubs are airports that an airline uses as a transfer 
point to get passengers to their intended destination. 
Suppose you are approached by a newly established airline 
and asked to offer them a plan for which hubs to use. What 
considerations need to be made to determine the location 
of an international airport hub in the United States?

Defining variables
Strategy development
Data- based decision- making
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Chapter 36
The Velocity Concept: The History of Its 
Modelling Development

Regina Dorothea Moeller

Abstract In mathematics education, there are applications of physics that refer to 
the real world. These applications have a long history of being mathematically mod-
elled and can be considered as one of the central cross-curricular topics. They often 
involve several mathematical fields and sometimes show a long process of model-
ling activities. One of these applications is the velocity concept. Its genesis refers to 
a centuries-old search within the context of motion and for more than 150 years has 
shown new technical applications.

Keywords Phenomena • Velocity concept • Teacher education • Physics

36.1  Introduction

The subject of modelling processes in mathematics classes, especially at the sec-
ondary level, appears with a strong interest for its realization only during the last 
20 years or so (Blum 2008). This recent development has enormous benefits towards 
a broader understanding of mathematics, its various applications together with their 
teaching strategies. Along with this process, teachers have undergone a change in 
their attitudes towards mathematics and its modelling procedures and also in their 
pedagogical content knowledge (Kuntze et al. 2013, p. 322).

This pedagogical development in modern mathematics classes, with a strong 
emphasis in some parts of western education, happened on top of a modelling pro-
cess that was initiated about 300  years ago. It has shaped our understanding of 
today’s reality enormously and also the role that mathematics plays in it. In the past, 
scientists used mathematical models long before the establishment of didactics of 
mathematics as an independent science that publicized the need to put a focus on 
modelling. Galileo Galilei was one of the first who perceived that the complexity of 

R.D. Moeller (*) 
Erziehungswissenschaftliche Fakultät, Fachgebiet: Mathematik und Mathematikdidaktik, 
Educational Sciences, sector: mathematics and mathematics eduaction,  
Nordhäuser Straße 63, Erfurt 99089, Germany
e-mail: regina.moeller@uni-erfurt.de

mailto:regina.moeller@uni-erfurt.de


434

reality needed to be simplified in order to be able to describe it with mathematical 
tools. Von Weizsäcker (1964, p. 107) pinpoints this idea:

Galilei took a big step, daring to describe the world the way we do not experience it. He 
installed rules which in the form he expressed them we never experience it in real life. 
Therefore these simple mathematical rules could never be confirmed by a single observa-
tion. Thus he opened a way for a mathematical analysis which divides the complexity of 
reality into single elements.

Consequently, Galilei chose already those quantities which were substantial to 
describe real processes and constructed mathematical relationships which imitated 
his observations most closely – that is, he modelled.

Realizing this historical development influenced the scientific world in such a 
strong manner, it seems necessary to make students aware of this thinking process 
and reflect about its impact in mathematics classes. Classroom work using elemen-
tary model representations constitutes a phenomenological acquaintance which can 
be undergone with one of the early scientific conceptions, that is velocity. Students 
come with their everyday perceptions into class – they run in sports classes, they see 
cars moving and they cycle themselves. These experiences can be used as 
Freudenthal (1973) has pointed out. One can start with a small aspect of reality, that 
is, with a “text problem” or otherwise with an inverse modelling, to show the benefit 
of mathematics and to discover a piece of mathematics. He considered thought 
experiments for students as a means to invent a “piece of mathematics”. To observe 
and analyse their behaviour and to deduct pieces of information from the thought 
experiment would be a useful and, at the same time, a responsible project of math-
ematical didactics. By undertaking this classroom endeavour, mathematics is linked 
with the “experienced reality of the learners … which becomes the skeleton onto 
which mathematics develops” (Freudenthal 1973, p. 77). Also Klein focussed on the 
content and its understanding in a similar way. For an inspiring and descriptive les-
son, it is always necessary to build on the perceptions and experiences of the stu-
dents. Klein (1939, p.  227) says: “one needs to build onto the concrete visual 
perception and only slowly bring forth logical elements into the focus”.

One could even say that today’s focus on modelling procedures hinders a per-
spective that entails a rather rich view on how mathematics has been used to model 
reality for a long period of time. As Clements (1989, pp. 23ff) emphasizes, there is 
a strong separation between the mathematics used and the issues to be modelled. 
Especially within this context, he distinguished between experienced modellers and 
those who are learning to model. Also, Noss and Hoyles (1996) pointed out there is 
a difference in the level of abstraction within each context to be modelled. These 
different levels of abstraction can already be regarded as parts of modelling proce-
dures. The final outcome may suggest a separation of abstract mathematics from the 
concrete real world. It also makes apparent that the modelling cycle with its distinc-
tion between mathematics and reality, or even the rest of the world, is not always a 
valid interpretation (Möller 2014).

This chapter emphasizes a specific conceptual example that offers a window into 
the historical modelling scene. The definition of the concept of velocity was made a 
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long time ago in the centre of a very significant modelling process between reality 
and the two involved subject matters of mathematics and what we call physics today 
(earlier it was natural philosophy). This modelling outcome has been taken as a 
natural view of reality with respect to velocity which, in everyday life (in contrast to 
the concept of speed which has a rather colloquial meaning), is usually not recog-
nized as the end product of a modelling process. In school, there is not much in- 
depth teaching of this concept, neither in mathematics nor in physics classes. In 
physics classes, one waits for the quantities length and time span and the repertoire 
of the function concept to introduce the formula v = s/t at once without a lot of 
experiments. In mathematics classes at the secondary level, the subject matter of 
analysis is in focus and velocity problems are looked upon as pure applications. To 
date, this concept has not been given the importance that it deserves in the history 
of science nor under the focus of modelling and educational possibilities.

This situation is not much different in other European mathematics classes from 
the German situation. For example, the Dutch curriculum shows a similar approach 
to the German one: on the secondary level with the tools of notions of limit. In 
France, there is a similar situation since at the end of primary classes, the velocity 
concept is a matter of application. All in all, the concept of velocity is not looked 
upon as a historically developed modelling of a phenomenon.

Given the rich historical background which is taken unconsciously for granted, it 
is most fruitful to look carefully at how the concept of velocity is introduced in 
today’s mathematics classes even at the elementary level. It is argued that the way 
velocity is shown in textbooks does justice neither to the learning of the students nor 
to the understanding of the concept of velocity. Indeed, some aspects of teaching 
methods could even hinder a clear understanding of the modelling perspectives 
involved.

36.2  Actual Phenomenon in Elementary Mathematics Class

Text problems, like the one shown in Fig. 36.1 accompanied by a small text like 
“Situations with velocity – create tables like the one which is shown!” (taken from 
a mathematics textbook), underpinned with pictures suggesting movement, can 
often be found in German fourth grade classes. It is the first time students read about 
velocity, and it therefore stands as a classroom introduction to this phenomenon.

Several pictures are given that show people or machines such as cars or trains 
each with information about the respective velocity such as the train covers 100 km 
in an hour. The assigned task is to fill out tables in which the students write the dis-
tances for different time spans: 1 h, 2 h and so forth. (Obviously the numbers in the 
table do not refer exactly to the examples but only show some kind of proportional-
ity.) Above the assigned tasks, one can read the title velocities. One can observe at 
once that like in other cases in which an introduction into the field is in the focus of 
interest – here a start with a series of different observable motions and a lead to the 
question of how they can be quantified – there is an emphasis on the computational 
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aspect under which the ideas that have led to the possible computations have disap-
peared (Doorman and van Maanen 2009). Instead of an approach pinpointing the 
quantities in question, there is a given table to be filled out by the students.

This kind of problem can be considered as an anticipation. There are at least 
three other kinds of anticipation tasks at the elementary level: one refers to the ratios 
such as a half, one quarter and three quarters, and the second refers to the decimals 
within the context of quantities. The third is the appearance of tables in application 
problems. In these problems, prices of products are given – like 1 kg of apples cost 
75 c – and the question is how much is paid for 2 kg/3 kg/5 kg. These three kinds of 
anticipations occur in mathematics classes because of the application principle. 
Students see these kinds of numbers and kinds of questions in their daily life, and 
mathematics classes respond to this phenomenon by introducing these numbers and 
tables without giving a rigid mathematical reasoning.

What kind of anticipation is made when students solve this kind of velocity prob-
lem? Since the students are to fill out tables, which are a representation of functions, 
one could argue that functions have arrived in elementary mathematics classes due 
to Felix Klein (1905) who made functions a subject matter in mathematics classes 
at the secondary level. It also could be understood as an example of an (anti-)didac-
tical inversion (Freudenthal 1983, p. 305 ff.). In any case, it is obvious that this is 
not following the historical development, and it is not showing an elementary 
approach which is possible at this stage of mathematics classes. Since this kind of 
velocity problem is not really an application task, as only tables need to be filled out, 
one could argue that such tasks give a mathematical way to compute velocities 
which the students can observe in their daily lives because our modern world pres-
ents this phenomenon.

Having in mind the way quantities are introduced in mathematics classes at the 
elementary level (Griesel 1984, i.e. finding representatives, studies of comparisons 
with chosen measurement objects and afterwards with agreed-upon measurement 
objects, learning the standardized measurement unity and finally solving applica-
tion problems), the velocity problems focussed on do not show any such procedure 
although velocity is the first composed quantity that students encounter. Since 

Fig. 36.1 Velocity 
problem
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velocity is a mathematical concept, one should expect a sequence of steps that lead 
to a definition. A possible approach would be the didactical triangle of Bruner 
(1960) in which he argues for an approach that encompasses the enactive, iconic 
and symbolic level. Alternatively, another didactical theory of learning concepts is 
given by Vollrath (1984) who outlines in general what kind of steps lead to an under-
standing of mathematical concepts.

Another concern is the fact that the concept of velocity can be looked upon as a 
real mathematical modelling procedure (Blum and Leiß 2007) where observable 
movements can be measured in two dimensions: length and time span. It could be 
arranged as a project for students in which the definition of velocity is the end prod-
uct of their investigative endeavour. This point also leads to the question: why does 
a fundamental phenomenon like the concept of velocity lack any modelling approach 
in textbooks? It comes to mind that Newton might not have thought primarily of 
velocity as a function since he was still following Galilei’s proportional theory. 
Indeed, did he define velocity within a text written in Latin?

36.3  The Historical Process of Modelling

The concept of velocity is one with a long tradition, similar to the history of calculus 
(e.g. Doorman and van Maanen 2009). The concept arose out of the concept of 
movement which already the Greek philosophers were aware of.

Although a lot of the work of Archimedes (287–212 BC) concerning mechanics 
has been transmitted to us over the centuries and gives an idea of his wide-ranging 
mathematical understanding, we have no clear idea what he understood by velocity. 
On the other hand, verified work has been passed on to us of Aristotle (384–322 BC) 
investigating the phenomenon of motion qualitatively and verbally (Aristotle 2015). 
Aristotle distinguished three types of motion: motion in undisturbed order, such as 
the celestial spheres, the “earthly” motion of objects rising and falling and the vio-
lent motion of bodies that needs an impulse (cf. Hund 1996, p. 29). Although his 
remarks touched the phenomenon of velocity, his conceptions were proved wrong 
later on (Hund 1996, p. 30): “Aristotle came close to the concept of velocity when 
in the sixth book, the words ‘faster’ (longer distance in the same time, same route in 
shorter time) and the ‘same speed’ are explained.”

Before the next step on the journey to velocity was carried out by Galilei (1564–
1642), Nicole of Oresme (1330–1382) used a graphic representation of changing 
qualities. Moving towards a functional terminology of velocity, Oresme (ca. 1320–
1382) sought the help of experiments to assign a rate of change to certain intensities 
and concluded: “All things are measurable with the exception of numbers” (Pfeiffer 
and Dahaene-Dalmedico 1994, p. 228ff.). The difficulties mathematicians had at 
that time are well summarized in this source.
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As Weisheipl (1985) points out, Galilei (1564–1642) struggled with the 
Aristotelian concept of nature which he thought of as an active principle: “Nature is 
a source not only of activity but also of rest” (Weisheipl 1985, p. 22). This view has 
an impact on his understanding of motion. He still pondered over the idea of 
Parmenides, “all change is illusion”, and that of Heraclitus, “everything is flux”. 
Galilei’s work can be understood as being at the brink of the Aristotelian view of 
nature coming to the understanding that one cannot always refer to intuitive conclu-
sions based on immediate observation because they sometimes are misleading (cf. 
Einstein and Infeld 1938). Later, Galilei used experiments to argue for the statement 
that there is a quadratic dependency between the distance travelled and the falling 
time of an object.

Finally, Galilei succeeded in a better understanding of the concept of velocity, as 
he did not rely on his direct perception, as noted by Einstein and Infeld (1938, 
p. 17):

The means of scientific evidence was invented by Galilei and used for the first time. It is one 
of the most significant achievements, which boosts our intellectual history .... Galilei 
showed that one cannot always refer to intuitive conclusions based on immediate observa-
tion because they sometimes lead to the wrong track.

It was Galilei who decided to consider mechanics as part of mathematics (Koyré 
1998, p. 73). The consequence of this decision was to substitute reality of daily 
experiences for an only imagined reality of geometry. This can be considered as a 
modelling of reality. Later Newton (1642–1727) defined velocity in his Principia 
using the concept of force that initiates motion. He formulated the principle of iner-
tia as: “Every body preserves in its state of rest or of uniform motion in a straight 
line, unless it is compelled to change that state by forces impressed upon it” 
(Weisheipl 1985, p. 69).

Newton introduced the concepts of absolute time and absolute space and opened 
up the exact relationship between force and motion: The power does not get the 
motion upright (Aristotle), but it causes its change (acceleration) (Newton 2016). 
While Aristotle argued by observation, Newton made an abstraction, as he looked 
upon length and time as not necessarily bounded materially (Newton 2016). Leibniz 
(1646–1716), with his focus on variables, developed the differential and integral 
calculus also considering the idea of (planetary) movements. His version of the 
dependency of force and mass is what we normally learn in mathematics classes.

In today’s linguistic usage, we understand motion as a change in position in the 
(Euclidean) space over a certain period of time. Lengths and time periods are condi-
tions for the quantification of such motions. On this basis, the (average) velocity is 
defined as the quotient of the distance travelled and the time required. Even Piaget 
(1996, p. 69) referred to this circular argument: “Speed is defined as a relationship 
between space and time – but time can be measured solely on the basis of a constant 
velocity”. For him, the concepts of space, time and speed are mutually dependent.
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36.4  Mathematical Aspects of the Velocity Concept

The reasoning of Aristotle and Galilei was based on their observations of linear 
motions. However, both had also planetary motions in mind. For motions on a 
curved path, two different aspects are needed: the direction and the quantity of a 
velocity vector. It is this distinction which led, in modern terms, to a vector descrip-
tion and thus to a further clarification of the concept of velocity, which is thus a 
generalization of the concept of velocity on a straight line. Solid bodies moving on 
a straight line have the same speed, in the same direction and the same quantity. 
Since then, the following statement is true: the change in force and velocity are vec-
tors with the same direction (Einstein and Infeld 1938, p. 38). We note an idea of 
congruence, because all statements that apply to velocities along curved paths must 
also apply to linear trajectories.

The cause of this observation is given by an idealized thought experiment, which 
confirmed the theory (cf. Einstein and Infeld 1938, pp. 25 ff.); this is yet another 
idea that came into effect only at the time of Galilei. Since then, the mathematical 
language has been used in physics to reason for not only qualitative but also quanti-
tative conclusions. As soon as one engages in quantitative calculations, one deals 
with quantities. With respect to the concept of velocity, there are the dimension (the 
quotient of distance and time) and the measured value (an element of real numbers), 
which are a combined physical quantity.

Griesel (1973, p. 55 ff.) analysed the subject matter of quantities at the primary 
level (length, weight, time periods) as technical background for the didactics of 
quantities. This presentation, however, does not fit the quantity of velocity (and is 
not mentioned there) because it requires a description as an element of a vector 
space, which can be higher than one-dimensional. However, Freudenthal (1973, 
p. 188) argued that one can interpret measure indications as function symbols, an 
idea that was not previously addressed in classes. Another functional aspect occurs 
in two ways with the concept of velocity: The distance-time function taking into 
consideration the difference quotients to the average speed and the transition to dif-
ferential quotient to instantaneous velocities that are themselves functions again, 
namely, the velocity-time functions.

It has taken over 2000 years for the concept of velocity to be defined consistently 
out of the concept of motion – in today’s usage, this is an act of mathematical mod-
elling. It is therefore a prime example of a mathematical and interdisciplinary con-
cept development, with both mathematical and physical – mechanical – representations 
throughout history. The intuitive conclusions drawn by Aristotle led to difficulties 
and proved much later untenable. Only an idealized thought experiment led eventu-
ally to a verifiable physical theory. The concept of velocity is an example of math-
ematical modelling of qualitative knowledge and observation with more potential as 
there are quantitative statements and other insights. The knowledge of such phe-
nomena, the resulting misconceptions and the trodden paths of knowledge are 
essential components of mathematics education and exemplify scientific 
processes.
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The genesis of the concept also shows a potential for didactical perspectives of 
mathematics education. Despite the scarce representation of this topic in mathemat-
ics classes (in many curricula of the German provinces, e.g. the concept of velocity 
is only mentioned once at the secondary level), there is a diversity of ideas which 
can be reflected.

36.5  Didactic Consequences for Mathematics Classes

The genesis of the concept of velocity was influenced by its interdisciplinary char-
acter for centuries. The later development of Leibniz using variables in formulas has 
influenced our learning in mathematics and physics classes. Taking this into account, 
mathematics education should not neglect the role that mathematics has played in 
shaping the explanation of the world of physics of today. Both subjects have influ-
enced each other’s individual conceptions. It is therefore a question of epistemo-
logical knowledge and, consequently, not only the task of physics education to 
define velocity or to avoid it in the classroom at all, for instance. In mathematics 
teaching, the teaching of the velocity concept possesses a great potential with sev-
eral important functions:

 1. Since it is a conception of highly relevant historical influence, it needs to be 
understood in the classroom as such. That means there is no need to use tables or 
other teaching materials or devices in order to be able to quickly come to answers. 
Instead one can use pupils’ everyday experiences. That puts their experiences 
into the middle of the learning process and “picks them up where they stand”.

 2. Doing this there is a high motivation for the students to think about it. Time is 
needed for the students to verbalize their understanding of motion, of quickness 
and later of velocity. In light of the use of language in mathematics classes, 
Vygotsky (1986) elaborated on the relationship between everyday experiences 
and logical reasoning. Everyday experiences may interfere with scientific rea-
soning which, in the case of the concept of velocity, occurred historically for 
quite some time because of the lack of understanding of the invisible forces. It is 
therefore necessary for pre-service and in-service teachers to learn to make a 
distinction between the appearance of motions and their scientific reasoning.

 3. Taking into account that under the current relations of applications of mathemat-
ics education, the concept of velocity is a prime example of mathematical model-
ling of the everyday phenomena of motions which can be quantified normatively, 
allowing measurements and calculations. According to the current understand-
ing, these are necessarily factual and methodological skills.

 4. Basic everyday experiences relate to the phenomenon of velocity and can be 
used at several grade levels by taking up Vollrath’s idea and taking seriously 
measurement processes as a basis of experience (Vollrath 1980). This can be 
addressed in propaedeutic (i.e. pre-theoretical) form at the primary level and in a 
quantitative manner at secondary levels.
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 5. As the first combined quantity, the concept of velocity can be addressed in lower 
secondary education on many occasions. Before coming to the usual “algorith-
mization” (Doorman and van Maanen 2009), teaching this concept allows for 
teaching the fundamental idea of measuring. This is a valuable and vital contri-
bution to the implementation of the rules in the educational standards and curri-
cula and guiding principles would be met. The implementation of the items listed 
would be an important part in promoting mathematics education.

This discussion of the velocity concept in the context of the stage scheme (cf. 
Vollrath 1984) shows the potential that this concept already has in mathematics 
education. From this rather elaborated standpoint, the potential for the interdisci-
plinary character can be developed further in more detail.

The four steps in the concept development mentioned above could enlighten 
teacher education students in their knowledge of this topic and also give them an 
appropriate background to approach the topic in an ethical attitude (Ernest 2012). It 
is essential for their teaching to have a solid grip on knowledge and the cultural heri-
tage of the subject matter they are to teach.
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Chapter 37
Developing a Mathematical Modelling Task 
for All Students

Edel Reilly

Abstract This chapter describes an authentic mathematical modelling task 
designed by a learning support teacher for a Year 7 pre-algebra class co-taught with 
a regular Year 7 grade mathematics teacher. The task integrated two parts of the Year 
7 mathematics curriculum: area and percent. Students were asked to calculate the 
cost of decorating (flooring and painting) the inside of their dream house. Using 
prices from a local building supply store, students had to decide what type of floor-
ing and wall covering they could afford. Using a constructivist framework, this 
chapter provides an overview of authentic task development and the role such tasks 
play for students who struggle with mathematics, particularly students with special 
needs.

Keywords Constructivism • Authentic tasks • Students with special needs • 
Instruction

37.1  Introduction

Today’s mathematics teachers face a bewildering range of learners in every class: 
students identified as gifted learners or needing learning support, students who have 
not been identified as needing support but who struggle with many mathematical 
concepts, and learners who have a variety of learning styles and abilities. As each 
mathematics lesson builds on the previous one, mathematics teachers aim to reach 
all students; but with so many different levels of mathematical abilities in one class, 
teachers often feel lost. Mathematics teachers need strategies to help them reach all 
students in today’s inclusive classrooms. The diversity of the student population and 
the expectation that all students can achieve high standards require a shift in 
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instructional practices and design. In order for students with disabilities, as well as 
all students who struggle with mathematics, to be successful, they need access to 
meaningful and rigorous curricula that meet high standards.

Classrooms that have students who struggle in mathematics tend to focus on 
computational skills and recollection of mathematical facts. In a small Australian 
study, Vincent and Stacey (2008) found that in some of the best-selling mathematics 
textbooks, “the balance is too far towards repetitive problems of low procedural 
complexity that require little more than using procedures” (p. 102). Many textbooks 
are designed to walk students through the problem-solving process without allow-
ing much room for students’ exploring their own approach to solving problems. 
Students can then become reliant on these step-by-step processes which remove the 
students’ creativity for problem-solving. In many instances, the problems provided 
for students to solve have little or no connection with the students’ everyday lives, 
and so students’ struggles are compounded as they work to decipher what the prob-
lems are asking, to identify a solution strategy, and to evaluate the appropriateness 
of their answers.

Being able to answer the age-old question “When are we ever going to need 
this?” is something that comes to mind when one starts to think about meaningful 
and challenging problems to which all students can relate. While there is no denying 
that class time needs to be devoted to making sure students master the fundamentals 
of the mathematics (basic facts, computations, algorithms, or formulas), time also 
needs to be spent on activities that allow students to practise the mathematics they 
are learning in meaningful ways. The fourth mathematical practice standard from 
the Common Core State Standards (CCSSM) calls for students to be able to “apply 
the mathematics they know to solve problems arising in everyday life, society, and 
the workplace” (National Governors Association Center for Best Practices & 
Council of Chief State School Officers 2010). This certainly follows from the work 
of Lesh et al. (2002) who point out that problems need to go beyond short answers 
to specific questions. Activities should be posed as open-ended problems that are 
designed to challenge students to solve complex, real-world problems (Vos 2013).

37.2  Theoretical Framework

37.2.1  Constructivism

Constructivists argue that students construct knowledge out of experiences. The 
theory of constructivism is grounded in the pioneering work of the educational theo-
rist Jean Piaget (1972, 1990). Piaget argued that when people have new experiences, 
they either assimilate those experiences into their current framework for under-
standing the world or they change that framework to accommodate the new experi-
ence they have had (Auger and Rich 2007). Building from a constructivist 
framework, then, teachers need to provide students with learning experiences to 
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help them gain knowledge. This means teachers need to shift their role from that of 
lecturer to facilitator (Brewer and Daane 2002). Teachers need to help students 
engage in meaningful learning activities in order for the students to construct an 
understanding of the world. It is thus not enough to tell students what a mathemati-
cal concept is. Instead, teachers must provide students with an opportunity to work 
with a mathematical concept in order to construct a full understanding of that 
concept.

“The challenge in teaching is to create experiences that engage the student and 
support his or her own explanation, evaluation, communication, and application of 
the mathematical models needed to make sense of these experiences” (Math Forum 
2015). As students develop mathematical models, they are able to construct person-
ally meaningful understandings of the mathematical concepts they are studying. 
This makes the use of modelling in mathematics an effective way for teachers to 
apply constructivist theories in the classroom.

37.2.2  Modelling with Mathematics

According to Lesh et al. (2002), modelling with mathematics includes “simulations 
of real life problem solving situations (that) require more than a few minutes to 
complete” (p. 41). All students can benefit from working on real-world mathemati-
cal problems as these applications make the mathematical concepts more meaning-
ful. For instance, being asked to find the perimeter of a rectangle whose length is 5 
and width is 4 is a common question in a middle school mathematics class working 
on a measurement unit, but the real-life application of these mathematical ideas is 
different. There are instances when one would need to find the perimeter of a rect-
angle, and so students need to be taught why such a task is valuable. So a mathemat-
ics teacher could contextualize that problem by saying a person might decide they 
want a garden, and so the size of the piece of land to be devoted to the garden has to 
be considered as well as the amount of fence needed to keep unwanted animals from 
eating the vegetables. In the real world, consideration also has to be given to the cost 
of purchasing the fencing which in many cases might determine the final size of the 
garden. Cost will also be impacted by the type of fencing to be used. It is this appli-
cation of the mathematical concept being studied that the mathematical practice 
“model with mathematics” is addressing. All students given access to information 
need to be able to make assumptions, analyse relationships, and draw conclusions.

37.2.3  Authentic Tasks for All Students

When looking at authentic tasks and why they should be used, Kramarski et  al. 
(2002) defined authentic tasks as conveying common contexts “for which there is no 
ready-made algorithm” (p.  226). Students need to be able to see where the 
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mathematics they study fits into the world in which they live. When completing an 
authentic task, all students should not be providing the same answer. Students 
should be able to make decisions about what they are presenting as the product of 
their task. Kramarski et al. go on to discuss the need for school mathematics to pre-
pare students for the economic demands of society.

McDuffie et al. (2011) argue that mathematical learning tasks need to be designed 
so that all students, even students with special learning needs, can master appropri-
ate skills. In many cases, published instructional materials need to be adapted so 
that they can be used for teaching meaningful and relevant mathematics to all stu-
dents. McDuffie et al. have identified several criteria for adaptation that make tasks 
meaningful. Of relevance here are use of a familiar context, supplementing founda-
tional gaps, and incorporating overarching goals.

Use of a Familiar Context Capturing and maintaining the attention of all students 
is critical for any teacher in any discipline. Beswick (2011) lists several reasons for 
paying attention to context. These include a utilitarian purpose of meeting the eco-
nomic needs of society and helping students understand those societal needs. In 
addition to societal needs, appropriate context also helps students understand math-
ematical concepts, develops an appreciation for the nature of mathematics, and 
improves disposition towards learning mathematics. Using appropriate context is 
particularly important for teachers who have students who struggle as these students 
often lack the intrinsic motivation to study a concept long enough to understand it 
(Sartawi et al. 2012).

All students need to be actively engaged in learning. Sometimes this is difficult 
for students with disabilities or unmotivated learners. Teachers need to carefully 
guide class discussions about topics being presented. Strategically seating students 
in the classroom can play an important role in ensuring lively discussions. Students 
should be encouraged to talk to their shoulder partner or their elbow partner so that 
everyone has the opportunity to make their own connections or share their thoughts. 
Group discussions can help students make suitable connections to the mathematics 
problems. Learning needs to be made more student-centred and less teacher- centred. 
Finding meaningful contexts in which to place mathematics lessons requires plan-
ning on the teacher’s part. All students need opportunities to see that concepts stud-
ied in mathematics class have relevance and value beyond school.

Supplementing Foundational Gaps The amount of prior knowledge students have 
is instrumental in their gaining understanding of new topics. It is important to build 
on prior knowledge for students who struggle with mathematics in order to help 
them gain better understanding of new concepts. In addition, when students are 
asked to apply mathematics in authentic settings, teachers can provide more effec-
tive and meaningful feedback (Fyfe et  al. 2012). It is through this feedback that 
teachers can fill in any foundational gaps in the students’ understanding of 
concepts.

Incorporating Overarching Goals Teachers should work to focus lessons on essen-
tial questions and big ideas. When a class is co-taught by a regular education teacher 
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and a learning support teacher, it is important that all students in the class be helped 
to work towards those essential questions. Each student needs to be able to answer 
those questions, and while all students might not be at the same place at the end of 
the unit, all students need to have made adequate progress towards their goals (Voltz 
et al. 2010). According to Small (2010), two widely held beliefs continue to domi-
nate mathematics instruction: that all students should work on the same problem at 
the same time and that each mathematics question should have a single answer. 
Teachers have to find a way to meet the needs of a broader range of students with 
varied and rich activities while at the same time meeting a standards-based curricu-
lum. Modelling and application tasks are such activities.

37.3  Methodology

The purpose of the study was to determine the effect that adaptation of an authentic 
task, in the sense described above, had on students with learning support and those 
who struggle with mathematics. A qualitative approach was used in this action 
research. An authentic mathematics task (Fig. 37.1) was designed for students in a 
Year 7 pre-algebra class. The task was broken into three parts and guidance pro-
vided along the way. The purpose of the task was to help students connect mathe-
matical formulas to a real-world application. There were 15 students assigned to the 
class. Six students in the class had individualized educational plans due to a learning 
disability, and an additional five students were identified as performing below basic 
level according to their most recent standardized state assessment.

37.3.1  Data Collection

For the task, students were asked to research and compare costs of decorating a new 
home. Following completion of three subtasks, students were asked to fill out an 
open-ended survey where they were asked several questions regarding their experi-
ence with the activity. In addition to the survey, students were also asked to submit 
their plans. A rubric was created to evaluate the students’ work. Since the class 
consisted of students who struggled with mathematics and students who were closer 
to grade level, the rubric focused on the mathematical tasks rather than the number, 
size, or shape of the rooms. The rubric required students to round their prices to the 
nearest cent. Students were also graded on two worksheets they were given to keep 
track of the prices for the wall coverings and the floor coverings. Another section of 
the rubric focused on students’ understanding of the money saved with help that was 
supplied by parents. Students had to demonstrate that they knew how to find a dis-
count using a given percentage. They were also required to show for which room 
donated cans of paint were to be used. Students needed to subtract these savings 
from the total before adding 6% sales tax. Finding the tax was another area that was 
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graded and addressed on the rubric. Even though each project varied, the overall 
goal was understanding the mathematics it took to complete the task at hand, and 
that is what the students were evaluated on in order to meet the purpose of the 
research, that is, to determine the effect this authentic task had on students with 
learning support and those who struggle with mathematics.

37.3.2  Task Implementation

The first part of the project began with a whole class discussion about the costs of 
decorating a home. Following this discussion, the students were assigned to work 
with a partner on the essential question: What mathematics concepts are needed to 
work through the task? At this point students began to ask, “How do we find out how 
big each room is so we know how much carpet to get?” Students discussed area and 
how to calculate it. They sketched various floor plans and discussed ways to find the 
area of rooms that were not always rectangular. Rather than the teachers provide 
them with a worksheet, the students themselves thought about different shaped 
rooms and then found the area of them (see Fig. 37.2a). Following the sharing of 
examples of floor plans, students created wall designs with windows and doors (see 
Fig. 37.2b).

Fig. 37.1 Furnishing Your Dream Home
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Students were given the opportunity to share their own thoughts on how many 
windows and doors they could include. They also viewed other students’ creations. 
More importantly, this sharing of plans encouraged students to think carefully about 
the kind of home design they wanted for their own assignment. Students at different 
ability levels could create different house plans allowing all students to find the area 
for their own distinct layouts.

Once students were comfortable finding the area of polygons on floor and wall 
plans, they were introduced to the second part: designing their own house plan. 
Students were asked to draw floor plans for each room in their house. They had to 
find the floor area of each room in order to calculate how much flooring material 
would be needed. Based on their ability level and the work done previously on find-
ing area, students came up with a variety of floor plans.

In order to have realistic prices, students used data from the website of a local 
home improvement store to select preferred type of flooring for each room. This 
information was then used to calculate the cost of flooring for each room (see 
Fig. 37.3). At this point, a discussion occurred regarding what it meant to find the 
cost of flooring and paint. Students had already discussed the idea of different types 
of flooring and paint. In order to help manage the choices, students were given four 
types of carpet to choose from (Frieze, Fashion Forward, Textured, and Berber) and 
four types of non-carpet floor covering (vinyl tile, commercial vinyl tile, luxury 
vinyl plank, and luxury vinyl tile). The students discussed the prices of flooring and 
paint using the original designs they had created during the initial discussion of 

Fig. 37.2 Sample (a) student created floor plans to find area (b) wall plans including windows and 
doors
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finding area. Discussion also included carpet preferences: For example, while 
Berber carpet was the cheapest per square foot, is it a carpet you would like to have 
in your bedroom? For each floor covering selected and number of gallons of paint 
identified, students had to calculate the total cost and then add 6% tax. They were 
given two tables to complete in order to manage their numbers—one for finding 
flooring costs and the second for calculating painting costs.

As with any real-world project, things happen that change costs, so for the third 
part of the task, students were informed that their parents had offered to pay for 35% 
of the flooring of one room. Students had to select the room their parents would help 
pay the cost to cover. This gave students an opportunity to continue to work with 
percent and to perhaps consider if it would be worth choosing a more expensive 
floor covering since now they would have a little more money in their budget. 
Another assignment addition was that the students were to receive, from a friend, 
two gallons of interior wall paint donated to the project. They had to decide for 
which room the paint could be used and to calculate new costs with the parent help 
and paint donation.

37.4  Findings

Results from the students’ survey show that all students liked the initial class discus-
sion where they were given the opportunity to talk about the purpose of the task. 
Students mentioned that, while they had been in home improvement stores so they 
were familiar with the context, they had not given any consideration to the variety 
of materials that are available to customers. All students agreed that they would 
never consider what they are studying in their mathematics classes as something 
that is needed in the future without the opportunity to work on a project like this. 
Students also reported that they liked the individual nature of the task. It was 

Fig. 37.3 Sample price 
listing for one floor plan
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important to them that they had the opportunity to design a floor plan and calculate 
the costs that were different from everyone else’s. The students liked the opportu-
nity to be able to look at what others were doing and to see the differences in the 
design and product choices being made. Finally, students felt that working on their 
own design, as they worked towards the overarching goal of the lesson, allowed for 
them to receive more individualized instruction from their teachers, supplementing 
any foundational gaps. Since everyone was working on a different plan, teachers 
would go from student to student providing assistance when needed rather than a 
large group lecture which, these students pointed out, does not often work for them.

Three different levels of student work are provided from the plans and analysis of 
the other work submitted so evidence can be gleaned for what was able to be 
achieved on the task by students with learning support and those who struggle with 
mathematics. Figure 37.4a shows work from a regular student in the class. While 
there were some minor mathematical errors in her work mostly to do with rounding, 
she demonstrated a good grasp of the concepts being studied. She was willing to 
include more than just rectangular-shaped rooms in the master bedroom and the 
kitchen, and she also included an additional room, the office, which was not required 
for the project. Figure 37.4b is a plan from a student who was identified as needing 
learning support. While the student did not include all the required rooms in the 
plan, she was able to demonstrate her understanding of finding area. She also suc-
cessfully calculated the cost of flooring and painting the rooms she had designed. 
One room had a compound shape, and the student calculated its area correctly. The 
final plan (Fig. 37.4c) came from a Year 8 learning support student in the Year 7 
class. While there were some mathematical errors throughout her project, she was 
still able to correctly calculate the cost of decorating her house. Her diagrams dem-
onstrate that she was willing to try some rooms that were not rectangular in shape 
although the irregular shape she chose was similar for each room that had that shape.

37.5  Conclusion

According to Felton et al. (2015), “modeling helps learners develop habits of mind” 
(p. 343). When given the opportunity to talk about the mathematics needed for a 
particular task, all students are taking ownership of their learning. This is 

Fig. 37.4 Sample plans from (a) student 1 (b) student 2 (c) student 3

37 Developing a Mathematical Modelling Task for All Students



452

particularly beneficial for struggling learners as talking can give them the confi-
dence to pursue the task by making the context more familiar. Rather than being 
given a worksheet of various rectangular shapes and being asked to find the area, the 
students in this class created their own shapes for which they would find the area. 
These shapes had a real-world context; students had a reason to calculate their areas. 
Having students research flooring and paint prices meant they saw real-world appli-
cations of the mathematics curriculum their school district follows. As students 
were progressing through the tasks, the teacher was able to fill in any concepts that 
were missing from the students’ mathematical background. As the students were 
selecting what to work on themselves, those students who did not need teacher 
assistance had the opportunity to be creative when furnishing their house. Students 
who struggled with the mathematical concepts did not have to complete the same 
design as their more capable peers. Instead, struggling students could create a 
design that was manageable for them and which they could calculate with teacher 
assistance. The key to an assignment like this is that while all students worked 
towards the overarching goal of the lesson, each student could make individual 
progress. The use of the task adaptation criteria of McDuffie et  al. (2011) has 
afforded this outcome for this study as evidenced above.
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Chapter 38
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Abstract The impact of learning via mathematical modelling tasks on students 
with disabilities in a remote part of Australia was studied to answer the question: 
Can students with disabilities learn through mathematical modelling tasks? Daily 
mathematics lessons were substituted with a set of modelling tasks for 1 month. A 
design-based research methodology with a neo-Vygotskian design philosophy and 
Feuerstein’s theory of structural cognitive modification was coupled to three inten-
sive case studies to monitor how these students with disabilities responded to mod-
elling tasks. Findings showed evidence of engagement and meaningful mathematical 
learning. “Hidden benefits” of modelling for students with disabilities were the 
development of literacy, social skills practice around collaboration and social nego-
tiations, and support for the development of potentially more robust thinking 
operations.
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38.1  Introduction

The intention of this study is to open the discourse on what an appropriate mathe-
matical modelling pedagogy (Jacobs and Durandt 2017) looks like for students with 
disabilities. As teachers go about developing their unit plans term by term, creating 
and implementing mathematical modelling tasks are not typically at the forefront of 
their minds when it comes to students with disabilities. This is hardly surprising in 
the wake of the strong emphasis on explicit instruction for students with disabilities 
(Ellis 2005; Mitchell 2014). To some extent, it is to be expected when considering 
the conspicuous gap in research on the application and usefulness of modelling for 
students with disabilities. The current philosophy of inclusion and social justice in 
schools makes it an opportune time to reflect on what it is about modelling, or stu-
dents with disabilities, that warrants these visible silences in practice and research.

Before continuing, it is worthwhile addressing the documented challenge of the 
vast scope of strengths and vulnerabilities, diagnoses, and educational profiles that 
emerge when researching and writing about students with disabilities (Norwich 
2013). The high levels of diversity amongst this cohort make it difficult to synchro-
nise local and global data into a more coherent and comparative understanding of 
mathematical development for students with disabilities. This study focused on stu-
dents with disabilities who met the outcomes of a diagnosed cognitive impairment 
and low adaptive functioning in several areas and who need an individual educa-
tional adjustment plan and intensive support to access the curriculum. These criteria 
are taken from the policy documentation of the Northern Territory Education 
Department (Department of Education and Child Services 2012), where the study 
took place, and are arguably still very wide for clinical research applications. On the 
other hand, they authentically reflect the complexity of fitting students with disabili-
ties into preset categories for research purposes.

38.2  Theoretical Orientation

The Elements for Inclusion stipulated by the United Nations Educational, Scientific 
and Cultural Organization (UNESCO 2005) influenced the design of the study. 
When comparing UNESCO’s Elements of Inclusion (i.e. all students having access 
to formal curricular activities, engaging in collaborative learning, achieving in sub-
jects, and having their barriers to access identified and addressed) to the current 
modelling opportunities for students with disabilities, it becomes clear that these 
inclusion criteria are being obscured by the lack thereof. In the interest of social 
justice, there is a call for a new dialogue – an epistemological space that responsibly 
connects students with disabilities with modelling tasks at a developmentally sensi-
tive level.

According to authors of modelling (Blomhøj and Jensen 2003; Doerr and Pratt 
2008), modelling is about interpreting and finding solutions to everyday life 
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 situations mathematically through building and testing models. A complex problem 
is placed in a culturally meaningful real-life setting. Learners work collaboratively 
to identify the problem; imagine, create, and implement a solution; and then evalu-
ate and modify it through feedback. The primary objective is to use contextualised 
mathematics tasks that are experientially real to learners as a stimulus from which 
to generate formalised and decontextualised mathematical principles. The intention 
of the study was to introduce learning through modelling tasks, which is considered 
to be different from using word problems (Schroeder and Lester 1989). Using word 
problems is understood to involve the teaching of decontextualised mathematical 
procedures beforehand, followed by a contextualised scenario which must be solved 
by producing a right answer using the learnt skills, given rules, and practised opera-
tions. In contrast, the approach to modelling used in this study allowed no teaching 
beforehand. Learners were given the problem and had to learn the mathematics 
through solving the problem. They had to draw on their own strengths and intuition, 
develop their own strategies, and adjust them following conversations with peers 
while working together in small groups, and feedback from presenting their ideas to 
other groups, to find a suitable solution.

The design of the modelling tasks and the expectations for the learners and the 
nature of their models were influenced by authors who have investigated early mod-
ellers and the qualities of the models produced by this cohort (Brown and Stillman 
2017; English 2006; Lehrer and Schauble 2000). These authors agree that early 
modellers or young modellers will produce models that will express idiosyncratic 
and unstable conceptual systems, influenced by personal experience. For example, 
Lehrer and Schauble (2000) describe how typically “beginner” models will be more 
fragmented and one sided, ignoring rival models, missing important objects and 
their relations, and reverting to familiar personal aspects. Moreover, they argue that 
early models may include physical models using concrete objects or representative 
models such as drawings and maps rather than hypothetical-deductive models 
(Lehrer and Schauble 2000). Where complex tasks are structurally quite long to 
decompose, modelling for developmentally young learners can still include a form 
of scaffolding to guide the learners through the task deconstruction process, without 
overriding their intuition or imposing strategies onto them Paolucci and Wessels 
(2017). On balance, considering the developmental level of the students, far more 
elementary, emergent and early forms of models, which differ in nature, content, 
and process to their more sophisticated adult counterparts, were anticipated. The 
focus of early modellers is on the progressive development of models and their 
associated mathematical, cognitive, and social abilities instead of on mastery. 
Moreover, whereas a recognised goal in modelling is to produce a model that is 
generalisable and reusable, the goal of this study was to go beyond prototypes, for 
example, by designing a grid reference as a type of generalisable product, to embody 
Brown and Stillman’s (2017) interpretation of modelling as an approach to life – not 
only handling a mathematical problem but as a way of, and tool in, understanding 
the world. Zawojewski (2010) reminds us that mathematical content and the devel-
opment of higher-order thinking should be considered as developing interactively. 
Feuerstein’s theory of structural cognitive modifiability (Feuerstein et al. 2010) was 
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used to identify which cognitive operations may need strengthening to assist learn-
ers to participate in modelling tasks.

38.3  The Study

The research was conducted in a remote setting in the Northern Territory of Australia 
in a middle years’ state school for students from Year 7 to Year 9, where the unit for 
students with disabilities occupied a wing of the school. The development of the 
study was strongly influenced by the Index for Inclusion (Booth and Ainscow 2002). 
The first three stages of the Index for Inclusion, namely, researching existing knowl-
edge and deepening the inquiry, getting to know various aspects of the school and 
the community in-depth before deciding on priorities for development, and then 
matching these priorities to the school’s developmental plans, were developed over 
2 years before the implementation in the classroom. The primary research question 
was investigating if there was evidence of mathematical learning taking place when 
students with disabilities engage in modelling tasks. Simply put, could students with 
disabilities learn through mathematical modelling tasks or not? Data for students 
with disabilities in respect to modelling is so scarce and for learning taking place 
through direct teaching so strong (Ellis 2005) that it could not be assumed at the 
start of the research that learners would in any way benefit educationally from math-
ematical modelling. This information had to be established as a baseline through the 
research. Moreover, considering that students with disabilities typically learn at a 
slower rate than their mainstream peers and that they are commonly already devel-
opmentally behind in their mathematical milestones, it was thought unethical to 
introduce a long study which may compromise their learning should the modelling 
tasks not suit their needs. For this reason, the school agreed to one unit or a 5-week 
investigation period (half a term). For a month, learners worked on three modelling 
tasks each day during their usual mathematical lesson (varying between 40 and 
80 min per day). Students spent approximately 6 days on each task, working through 
the cycles of feedback and refinement. The study adhered to ethical requirements 
that were developed collaboratively by an Indigenous community advocacy group, 
a government school-based ethics group and an academic ethics review committee. 
An Indigenous disability advocate was asked to work directly with the students and 
to mediate between the students and the teacher to control for teacher-student power 
imbalances.

While the students with disabilities were working on the modelling tasks, the 
teacher-researcher was working through the usual cycles of a design-based research 
(DBR) of design, implementation, reflection, and adjustment and deriving broader 
principles for practices such as described in Reeves’ (2006) work. The DBR pro-
cesses were coupled to three in-depth case studies allowing for a detailed descrip-
tion of the students’ responses to modelling tasks. Specific attention was given to 
designing and differentiating modelling tasks to support the learners’ strengths and 
to create tasks which were developmentally appropriate, age appropriate, and 
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 culturally sensitive. Care was taken to identify and address barriers to learning 
before and during the investigation. For this purpose, the modelling tasks were eval-
uated through external collaboration and consultation with a fellow disability prac-
titioner, a cultural advisor, a disability advisor, and a mathematics education expert 
during the design phase before implementation.

The class consisted of eight students with disabilities who participated in the 
modelling tasks. From these, a subset of three cases was selected on the basis of 
maximum variance in terms of range of disabilities (autism spectrum disorder, foe-
tal alcohol spectrum disorder, and global developmental delay), in addition to cog-
nitive impairment, in terms of gender (male and female), and in terms of mathematical 
attainment (high and low performers in mathematics at school). Indigenous students 
were included in the study, with an ethical agreement to focus only on matters 
related to disability. Given that a qualitative research methodology was used, sub-
jective research bias was covered through aspects such as collaborative monitoring, 
seeking negative evidence, and triangulation. Data were collected and triangulated 
through interviews with the students, work samples, and voice and video-recordings 
of the learners participating in their groups. Data from the case studies were anal-
ysed with respect to pre-determined questions: What evidence of learning can be 
found in the analysis of learners’ reasoning and representations over time? What 
strengths and assets emerge from the learners during the activities? What barriers 
emerge and how were these addressed? Which of the primary cognitive functions as 
identified by Feuerstein emerge and which remain absent? This was coupled with 
data from the student interviews on how much learning the students themselves 
thought they were gaining from the tasks, and lastly, the modelling activities were 
assessed against a current programme evaluation model.

38.4  The Modelling Tasks

In accordance with the Vygotskian/neo-Vygotskian ideals, the three modelling 
tasks were developed with two aspects in mind, namely, helping learners acquire the 
appropriate mathematical content and strengthening vulnerable cognitive opera-
tions that will assist in mathematical learning. The mathematical content was taken 
from the Year 1 to 3 descriptors of the Australian Curriculum: Mathematics (ACARA 
2010) based on the school data that all students in the study tested at a Year 1 level 
for mathematics, except for one student who tested at a Year 3 level. The mathemati-
cal units taught by the school for the period of the study were location, direction, 
and shape. Learners worked in small groups of two to three for each task.

For the first task, students planned a Scavenger Hunt. This task involved deciding 
on a treasure within a specific budget and finding a suitable location to place the 
treasure at school, representing the information in a basic map, and then working 
out directions from their current location to the selected treasure spot. Cognitive 
operations listed under Feuerstein et al.’s (2010) elaboration phase were included 
such as being able to think forward by planning all aspects of the hunt and using 
logical evidence as support for their plans. For the second task, students were given 
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a combination lock with a dial designed to look like a bomb. Their task was to 
Diffuse the Bomb by working out the code that unlocked the mechanism. The code 
was the numbers on the dial, the direction of the turns, and the number of turns to 
get to the numbers while demonstrating the meaning and importance of words such 
as “clockwise” and “anticlockwise” and being able to identify and describe one-half 
and one-fourth turns. All operations under the input phase of Feuerstein et al. (2010) 
were addressed, including being accurate in their recording of the data and being 
able to use more than one source of information simultaneously by combining num-
bers, the distance of each turn, and the number of turns. The third task, Mystery 
Location, was to create a map of the school from an aerial view of the site in Google 
Earth, first by building a top view representation of the school with blocks and then 
by drawing it. Students presented their designs from their groups and then selected 
the most accurate representation of the school by debating choices with others. The 
next step was to overlay the selected map with a grid reference system of their own 
design. Students were asked to use coordinates to show key positions around the 
school and then give the coordinates of particular locations of their choosing to the 
other team. Based on the grid reference system and the coordinates provided, the 
second team had to work out the “mystery” locations and fly a remote controlled 
helicopter there. All Feuerstein et al.’s (2010) cognitive operations from the output 
phase were included. Examples include being able to consider another person’s 
point of view in the debate on which map to choose, giving thoughtfully worded 
responses to justify their own choice of design, and persevering with all tasks.

Several authors such as Lesh and Doerr (2003) discuss modifying versions of 
modelling cycles for students. In the study, students participated in an adapted ver-
sion of the typical phases of modelling of creating and testing a model of a given 
situation, receiving feedback on it, and revising it based on the feedback. To illus-
trate their learning, students had to develop a model, namely, directions to a trea-
sure, instructions on how to disable the bomb, and a grid reference system, and then 
present their model to the second group. They worked in small groups of two to 
four, solving the problems together. The tasks were open ended, but some scaffold-
ing was provided in the third task by directing learners to first build models of the 
school layout with blocks. The adaptation was that the second group’s enactment of 
their directions provided them with feedback on the accuracy of their model. If the 
second group could not find the treasure or unlock the combination, the first group 
had to consider whether their model contained inaccuracies that needed correction 
and make the necessary adjustments or whether the second group was not following 
the given model and provide them with appropriate feedback.

38.5  Discussion

The discussion focuses on firstly evidence for the primary research question that 
students are learning mathematics aligned with the national curriculum standards 
and secondly student development of more robust cognitive structures and essential 
literacy and life skills.
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38.5.1  Evidence of Mathematical Learning

Modelling is about the learning of mathematics. The first recognition was that learn-
ers engaged with the tasks. Evidence of mathematical learning was taking place 
insofar as students were achieving the specific learning objectives matched to their 
measured levels and slightly above. For example, Fig. 38.1 shows that a student 
whose initial data placed her at a Year 1 phase met the outcomes for this stage by 
using directional words and phrases. The next step for the student is to include dis-
tance in her model. Additional examples in the main study (Scott-Wilson 2014) 
showed students meeting Year 2 and Year 3 criteria partially or fully as seen in their 
directions for the combination lock, students’ attempts to create a top view of the 
school, and in their own grid reference designs.

38.5.2  Learning Through Mathematical Modelling

The first indicator that students are beginning to model according to authors such as 
Lehrer and Romberg (1996) is that they develop referents that are separate from the 
object(s) in reality. In each of the tasks, learners in this study produced a product 
that described and contained elements of the real world, but that was separate from 
it. As predicted by Lehrer and Schauble (2010), their products were not delivered as 
a sophisticated hypothetical-deductive explanation but as physical objects such as 
representing a bird’s eye view of the school by building the model with blocks, then 
by drawing it, and finally by creating a grid reference. Through a Vygotskian lens 
(Vygotsky 1931), the social interactions and the products or early models being 
produced by these activities were exposing them to a range of psychological tools 
through various sign and symbol systems, including drawings, maps, grids, spoken 
and written language, figurative language, and mathematical symbols. These devel-
opments support a well-recognised aspect in literature, namely, that in creating 
these referents or emergent models, students acquired familiarity of multiple repre-
sentations of the same information to show their thinking processes.

Modelling is a social initiative. In this context, learners particularly struggled 
with the notion of “interthink” (Mercer 2002) – using dialogue to produce models 
together. At the beginning, they typically tried to solve the problem on their own and 
then called for the teacher-researcher to explain their individual solutions to her, 
looking for confirmation. Throughout the process, learners were actively encour-
aged to take their ideas back to their team and to present it there and were given 
pointers on how they could possibly work together. For example, learners were 
reminded that to work out the dialling code for the combination number lock, one 
learner could turn the dial and report the numbers, another watching the back of the 
device to see at which point it unlocked the rotor, and the third one recording results. 
For Vygotsky (1931), collaborative processes are important precedents of cognitive 
development as these lay the groundwork for intellectual adaptation. As the study 
progressed, early markers showed a shift in that students were beginning to engage 
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in meaning making processes and were trying to co-construct cultural knowledge 
and practices with others from the group. To illustrate, the student in the extract 
below is beginning to work with his peers, asking them questions and assimilating 
their responses.

Student B: Where is the garden (of the school on Google Earth)?
Peer: Look at the date. That was 2011. Even my home looks very different 

now to then.

Once their model had been created in their groups, students had to share it with 
the other groups, which meant considering the views of other classmates at an even 
broader level and justifying their own thinking to a wider audience, thereby devel-
oping communication skills such as negotiating and dealing with disagreements.

Student A: I have a question. Where is the assembly hall?
Member of another group: It did not fit in the picture so we left it out.
Student A: I can see the picture perfectly in the other picture. So 

that picture looks a bit better than that one. The assem-
bly hall is a big thing.

Member: It is our group’s turn not your group’s turn.
Teacher: No, that group has the right to question your group.
Student A: So where is the assembly hall?
Member: [Getting upset] It’s none of your business.

Vygotsky (1931) argued that higher functions of thinking begin in the group life 
of children in the form of arguments and that reflective behaviour is generated in 
students as a result of arguments. He believed that as students increasingly inter-
nalise these types of experiences they develop authentic thinking. Part of the argu-
mentation process is recognising that ideas need to be revisited and re-edited as 
errors become obvious. As explained earlier, given that the learners were not strong 
in language, at times, learners acted out the instructions of others, instead of talking 
about their ideas in front of the class. To illustrate, learners had to give their model 
of the combination lock code to the other group and then watch as the other group 
enacted the model by turning the dials. As the other group got stuck and could not 
open the lock, learners had to consider whether the other group was indeed follow-
ing the instructions correctly or whether their model contained possible errors. One 
group edited their model of the instructions three times before the other group was 
successful in “disarming the bomb”.

Fig. 38.1 Example of student work meeting mathematical outcomes differentiated to her data
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A significant spin-off for learners trying to represent, then share their models 
with others, was language development. Spelling and writing progressed as students 
were recording their mathematical ideas through writing (see Fig. 38.1). Students 
also engaged with the symbolic representations of mathematical ideas, trying to 
make sense of given symbolic representations, or to represent their own thinking 
symbolically, in simulated physical and lived environments, for example, following 
directions around the school. This attempt to connect everyday activities to mathe-
matical challenges embodies some of Brown and Stillman’s (2017) desire to see 
modelling extending into, and becoming an approach in, and to life.

Student following a clue: Miss, it says turn 90° [ninety degrees] right. That’s 
funny. We should turn 900 times right! What the heck?

Figure 38.2 shows that, aside from reaching mathematical objectives, the stu-
dents’ emergent ability to work with multiple sources of information simultane-
ously was being developed and strengthened. From a Feuerstein et  al. (2010) 
perspective, these types of developments are evidence of the strengthening of vul-
nerable cognitive functions which in time will support further mathematical learn-
ing. This aligns with Zawojewski’s (2010) ideal of working with content and 
cognition interactively.

38.6  Conclusion

Evidence from this study suggests that modelling activities afford students with dis-
abilities learning of mathematical concepts when tasks are differentiated to match 
their measured level of performance. At the same time, the qualitative nature of this 
research implies that the results cannot be generalised. The main premise of this 
chapter was to argue the case that instead of being dismissive of modelling as a 
learning approach for students with disabilities, it would be worthwhile to concep-
tualise and research a mathematical space alongside direct teaching that allows stu-
dents with disabilities curricular access to modelling activities with a real-world 
application. Social justice requires a continual interplay between working with indi-
viduals by strengthening their modelling capacity in its social, cognitive form, and 

Fig. 38.2 Student’s work showing progression in strengthening cognitive function of combining 
multiple pieces of data simultaneously: (a) no record of data, (b) two pieces of data combined, (c) 
three pieces of data combined (number on dial, direction of turn, amount of turn)
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symbolic forms, and it requires challenging the larger education system to research 
and adopt a broader framework of intervention which include an appropriate model-
ling pedagogy for students with disabilities.
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Chapter 39
Scaffolding Complex Modelling Processes: 
An In-Depth Study

Peter Stender, Nadine Krosanke, and Gabriele Kaiser

Abstract The support of students during their work on complex modelling prob-
lems is an ambitious process, especially if the students work as autonomously as 
possible. Scaffolding as a theoretical construct to describe how teachers should act 
in these situations, so that students can solve the problem as independently as pos-
sible, has proven to be adequate for empirical studies. In the research project pre-
sented, the activities analysed were those of future teachers working as tutors 
supporting students working on complex problems over 3 days. The tutors were 
educated beforehand in pre-service teacher seminars and had learned special scaf-
folding measure activities for this small group work. Based on an analysis of video-
taped modelling processes, examples of successful and unsuccessful teacher 
activities are analysed. Finally, examples of appropriate strategic scaffolding mea-
sures are presented.

Keywords Complex modelling problems • Modelling days • Scaffolding • 
Scaffolding measure • Teacher intervention • Minimal support • Adaptivity

39.1  Introduction

Already for decades, the competency to solve real-world problems with mathemat-
ics is emphasised as one of the core competencies in mathematics education in 
many curricula around the world, and various approaches for the implementation of 
mathematical modelling in schools are proposed. Although there exists consensus 
on the relevance of mathematical modelling in schools, modelling examples still do 
not play a high role in everyday teaching in many parts of the world, amongst other 
reasons, due to the fact that teaching and learning processes become more difficult 
and less predictable and the design of the learning environment is more ambitious 
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(for an overview, see Kaiser 2016). Especially, when complex, authentic modelling 
problems are treated, the role of the teacher becomes highly demanding. It is still an 
open question, how the teacher can, and will, support students within their model-
ling processes, especially when independent working of the students is to be fos-
tered as called for in many curricula. As previous studies have shown, adaptive 
support by teachers guiding the students on their own way can seldom be identified 
in classrooms (Leiss 2007).

In the following, we will describe a study, in which students solved complex 
modelling problems within a learning environment fostering their independency. 
The students tackled the problem together with other students working in small 
groups, only tutored by (future) teachers, educated for adaptive support. As the the-
oretical framework for the present study, the scaffolding approach has been chosen, 
which seems to be especially appropriate for the kind of adaptive teacher activities 
necessary for independent modelling activities.

39.2  Theoretical Background of the Study

39.2.1  Scaffolding as Theoretical Basis of the Study

The concept of scaffolding was originally introduced by Wood et al. (1976), who 
described it as a form of fostering a problem-solving process of a single child by a 
single tutor. As the aim of this scaffolding process, they described that the child 
solved a problem as independently as possible and received support from an expe-
rienced person only in situations where independent work due to non-existing 
knowledge or skills of the child was not possible. Within a problem-solving phase, 
the tutor intensified or reduced her interventions, depending on the child’s ability to 
work further on independently or not (Wood et al. 1976, p. 92).

The term scaffolding has been extended and adapted over time in a variety of 
ways, which is described in the extensive survey paper by Van de Pol et al. (2010) 
with an overview on the current discussion on scaffolding. Their model relies on 
three important aspects of scaffolding, namely, contingency (responsiveness, tai-
lored, adjusted, differentiated or calibrated support), fading (gradual withdrawal of 
the scaffolding) and transfer of responsibility to the learner, while diagnostic strate-
gies play an important role in the whole process. The development of the ability to 
take over responsibility only develops over a longer period of time, and according 
to this, fading should be seen as a long-term process.
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39.2.2  Teacher Activities to Promote Independent Student 
Activities

An approach developed by Zech (1996) within the problem-solving discussion pro-
posed a step-by-step approach to support students with minimal help at five differ-
ent levels:

 1. Students are motivated only in a general way.
 2. Positive feedback is given based on successful intermediate results.
 3. Strategic support is given which takes the form of hints that refer on how to pro-

ceed without addressing content-related issues.
 4. Content-related strategic support is offered; these are interventions, which also 

relate to the procedure, but content-related issues are involved.
 5. A content-related intervention is completely related to the content of the task and 

contains the core of the solution.

In this differentiation, the first two supportive measures mainly encourage the 
students, while the last three interventions give support related to solution methods 
or the content of the task. Of these three interventions, the strategic support plays a 
prominent role as the students are only supported to find a way to go on, but the 
solution itself must still be developed by the students themselves. The use of strate-
gic support is for the intention of partly independent work by the students and is one 
possible approach to realise the aspects of scaffolding (fading and transfer of 
responsibility) and even contingency if the strategic supports rely on subtle 
diagnosis.

39.2.3  Mathematical Modelling in School

As already mentioned, mathematical modelling plays an important role in mathe-
matics education all over the world. There exist various conceptions of mathemati-
cal modelling; in this study, we understand mathematical modelling as comprising 
the following important steps from the real-world situation into the mathematics: a 
real-world problem is coming up, which has to be understood and simplified. This 
leads to a real-world problem, which is then translated into a mathematical model. 
Mathematical work within the mathematical model leads to mathematical results, 
which are translated back into the real world. The real-world result is validated, 
whether the result answers the original problem adequately or not. If this is not the 
case, the modelling cycle has to be carried out again until a satisfactory solution is 
produced. This approach can be visualised with a modelling cycle (Fig. 39.1), which 
can serve a metacognitive means for classroom activities.

While working through the modelling cycle different sub-competencies are 
needed (for a detailed description, see Kaiser and Brand 2015), amongst others:

39 Scaffolding Complex Modelling Processes: An In-Depth Study



470

• Competence to understand a real-world situation,
• Competence to develop a real-world model,
• Competence for establishing a mathematical model out of a real model,
• Competence to solve mathematical problems within a mathematical model,
• Competence to interpret mathematical results in a real-world model or a real- 

world situation,
• Competence to validate the solution in the real-world model or the real situation 

and, if necessary, do another loop in the modelling process.

In addition, the metacognitive competence to understand your own work and to 
control your own work is central. For acquiring these competences, it is essential 
that students work independently on their own. However, when students begin mod-
elling independently, the task to do everything on their own is too complex, so 
monitoring by a teacher is indispensable. The previously described approaches to 
scaffolding are an important concept for the implementation of this kind of 
support.

39.3  Research Aim, Design of the Study and Modelling 
Problem Used

The aim of this study is to identify empirically appropriate teacher interventions for 
scaffolding in situations where teachers are tutoring students who are solving com-
plex, realistic modelling problems. As the research environment, the so-called 
‘modelling’ days were established, in which the students work independently sup-
ported by tutors. The ‘modelling days’ are a learning environment where students 
(15 years old) work for 3 days on one single modelling problem chosen by them-
selves, and the work takes place in small groups of students. Two future teachers 
having been educated in special master seminars acted as tutors for two groups.

Fig. 39.1 Modelling cycle (Kaiser and Stender 2013, p. 227)
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In the in-depth study presented here, students and teachers worked on the follow-
ing problem: Roundabout Versus Traffic Light. At what kind of an intersection can 
more cars pass a crossing? This problem allows different approaches. If there are 
any intersections nearby the school, traffic counts at these crossings could be done, 
but analytical considerations can also be carried out, which was suggested in the 
observed learning groups. Two fundamentally different assumptions for the work on 
the problem can be made:

• The maximum number of cars passing the intersection or roundabout depends on 
how fast the vehicles drive through the intersection area.

• The maximum number of cars passing the intersection or roundabout depends on 
how fast the vehicles drive into the intersection area.

In a first approach, it makes sense to assume the maximal possible symmetry in 
the situation, that is, from all directions come the same number of cars and the driv-
ers want to go in all directions with equal probability, with velocities and accelera-
tions being the same for all cars. The crossing is a simple four-road intersection, 
where the traffic light gives way only for one direction at a time. The restrictive 
assumptions can be reduced during the modelling process, to obtain a more sophis-
ticated solution.

For the case of the traffic lights using the first approach, students have to identify 
the possible ways through the intersection and then calculate the time a car needs to 
pass the crossing in three different directions that means with different radii of cur-
vature. These calculations are mostly done with constant speed in the first approach 
considering acceleration in further work. Students may then calculate the average 
time to drive through the intersection based on three times calculated before. Using 
this average time and estimated times for red, yellow and green phases, the number 
of cars passing the intersection in a certain time is calculated and seen as the capac-
ity of the intersection.

In the second approach focusing on the time until a car is entering the intersec-
tion, one has to calculate the starting time of a whole queue of cars, when the traffic 
light switches to green, which leads to the number of cars that can enter the intersec-
tion during one green phase. This calculation deals with constant and accelerated 
movements and the time a car has to wait until the necessary distance to the car 
before occurs. One also needs to take into account that the cars at the end of the line 
drive with constant speed according to the speed limit after a phase of acceleration. 
The processes in the roundabout are quite complex and can be simulated, which 
leads to a deeper understanding of the roundabout process (for further details, see 
Stender and Kaiser 2016).
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39.4  Methods

In an in-depth study (Beutel and Krosanke 2012), the entire working process of one 
group of students was analysed and reconstructed. The reconstruction provided 
important knowledge about the students’ solving process and about teachers’ behav-
iour in modelling processes. The effects of interventions in the context of the com-
plete modelling process were analysed, distinguishing short-term and long-term 
effects. Based on transcribed video-recordings, the material was analysed using the 
methodological approach of qualitative content analysis (Mayring 2015).

The segmentation of the entire solution process at various levels, which is the 
result of the analyses, has been visualised over time (see exemplarily in Fig. 39.2). 
To ensure reliability of the methodical approach two researchers coded the material 
separately and discussed non-conformities.

The main categories of analysis were developed inductively and deductively 
(these are shown in the seven rows of Fig. 39.2):

• Thematic topics related to the modelling problem (code: paraphrase of the work);
• Type of intersection the students are working on (codes: students are working on 

the traffic light or on the roundabout or on both comparing them);
• Subtopic (code: according to subtopic coding scheme developed inductively);
• Phases of the modelling cycle (codes: six phases of the modelling cycle);
• Timeline in minutes (Fig. 39.2 shows an example lasting 12 min);
• Working behaviour (codes: independent student activities, reluctant participa-

tion, nonworking phases);

Fig. 39.2 Visualisation of the reconstructed modelling process
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• Classification of the intervention (code: according to coding scheme of interven-
tion, e.g. invasive or responsive, non-verbal intervention, motivational help, 
feedback help, general-strategic help, content-oriented strategic help, content 
help, organisational matters, discipline problems);

• Intervention as a trigger of metacognitive processes such as procedural and/or 
declarative (not included in the visualisation shown in Fig. 39.2).

The visualisation helps to identify specific characteristics of the solving process by 
considering only one level of the reconstruction at a time. On the other hand, the 
different levels can be considered at the same time to identify interactions between 
the students’ modelling process and tutors’ behaviour. Due to the restriction of the 
observation to only one small group of students with five students, the generalis-
ability of the results is limited.

39.5  Results

In the following, we will concentrate on the interactions between students’ solution 
processes and tutors’ behaviour.

39.5.1  Effects of Tutors’ Interventions on the Working 
Behaviour of Students

The analyses show that non-verbal interventions had no negative impact on the way 
students work in the group. This means that just the fact that tutors looked for the 
kind of work the students were doing without speaking to them, but noticed by the 
student, did not disturb the students’ work.

Mostly success can be observed, that is, students take up their work again after a 
standstill; however, several special incidents happened. For example, in the middle 
of the second day of modelling, a long period of nonworking occurred, which arose 
after a special intervention. The students had completed their first modelling cycle, 
and the tutor wanted them to validate their solution and to start a new modelling 
cycle. The tutor therefore pointed to the validation phase in a modelling diagram 
hanging on the wall telling them that they were in that phase of the modelling pro-
cess and asked them to think about the results once more and then start again. This 
intervention was followed by long nonworking phases of the students and a domi-
nance of intervention phases compared to independent activities. Apparently, the 
students were not able to improve their model by going through the modelling cycle 
another time or were not motivated enough to restart the modelling process, maybe 
because they felt their previous work was not valued enough. This incident high-
lights that restarting a modelling cycle after validating the results achieved is a com-
plex phase within modelling activities and needs sensitive teacher interventions. 
Furthermore, this incident shows that considering only the working behaviour 
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directly after an intervention as an indicator of successful assistance is not differen-
tiated enough. It must be taken into account that interventions may have as a long- 
term process other effects, showing the success of minimal and adaptive support 
over time. In the following, we report the effects of teacher interventions differenti-
ating between short-term and long-term effects of the tutors’ interventions.

39.5.2  Short-Term and Long-Term Effects of Interventions

Two interventions that took place within the first hour of the modelling process 
observed seem adequate for the analysis of long-term and short-term effects. The 
students were working on understanding the modelling problem and on making 
assumptions about the flow of traffic at crossroads. The analysis of the incident 
shows that the students were unable to assess whether they were allowed to make 
assumptions and, accordingly, for which variables of the specific modelling prob-
lem it was adequate to make assumptions.

Eric: Are we allowed to come up with numbers? (all students looking to the 
tutor)

Tutor: Yes. So what kind of numbers do you want to come up with?
Eric: Oh, well – there is an intersection and from the right the cars come from 

the countryside driving into the town. That are eight percent. Okay?
Tutor: If you all agreed on it this is okay in the first run.
Eric: Yes (nodding).
Tutor: You together have to decide that.
Eric: So eight percent (addressing his group)  – even it’s not so good for 

calculation?
Anna: No.

This dialogue led to various assumptions by the students. Analysis of students’ 
activities immediately after this intervention showed the response could be assessed 
as successful, because the students continued to work and developed assumptions 
which they could not have made before. Finally, the students’ assumptions led to a 
real-world model, which was too complex to solve, so the concentration on work 
decreased and the intervention was rated as unsuccessful. This last nonworking 
phase led to another intervention: The students presented their work, and the tutor 
expounded the problems of the students’ assumptions, not by rating them but in a 
way that the students were in need of an explanation of the assumptions made. This 
is what we call a strategic intervention and in terms of scaffolding transfers respon-
sibility of the work to the students. Within this explanation, the students realised 
that their assumptions had a high complexity and were thus encouraged by the tutor 
to simplify them further. Due to this intervention, reasonable assumptions of the 
general conditions at one crossroad were developed, but the students also estimated 
the number of cars that pass through the roundabout per minute. As this influential 
factor needs to be calculated and not estimated, this was not yet an adequate 
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simplification of the real situation and led to a phase of uncertainty. The effect of 
this intervention can again be rated differently, namely, as success in the short term 
but with problematic long-term consequences. From the perspective of scaffolding, 
the students took over responsibility and worked independently for a while, so this 
strategic help was successful with respect to scaffolding.

There are also interventions which were completely ignored in the short term by 
the students but were taken up in the long run. For example, prepared material for 
the simulation of the roundabout was handed out by the tutor, but the students did 
not use it immediately. After a short while, the material was used independently and 
the results were very important for the modelling process. This intervention had 
hardly any short-term effects but had a long-term success.

To summarise, these results indicate that the success of teachers’ interventions 
can be evaluated differently considering short- or long-term developments. The 
tutors have to consider these different aspects while intervening, which points to the 
difficulty of real adaptive interventions. In an attempt to develop a definition of suc-
cess of interventions at different levels, metacognitive processes, which have been 
triggered by an intervention, have proven to be important. Effects at the declarative 
level (concerning learning strategies, person and task characteristics) as well as at 
the procedural level of metacognition can be identified. Strategic interventions are 
mostly the trigger of such processes, but they can also be an effect of content-related 
help and feedback. If feedback was identified as the trigger of metacognitive pro-
cesses, feedback had been given in combination with a content-related help.

39.5.3  Improvement of the Competence ‘Simplifying’

The students dealt with complex modelling problems for the first time, that is, they 
were modelling novices. This meant, amongst other things, that they were not used 
to dealing with complex modelling problems. As already mentioned, they had espe-
cially no experience with adequate simplifying. Many difficulties in understanding 
which assumptions and simplifications were adequate and which were not can be 
identified. After the interventions described in Sect. 39.5.2, 11 other interventions 
concerning simplifying could be identified. In more than half of these interventions, 
only already existing assumptions were presented, and no new ones were devel-
oped. Even in other interventions observed, mainly no simplifying activities could 
be identified. However, on the second day, the students gained competency in sim-
plifying and to know which assumptions may be adequate during a modelling pro-
cess. For example, the assumption of how many cars can pass the roundabout per 
minute, which had been used on the first day, was explicitly rejected on the second 
day. To conclude, low external influence – that is, only strategic help by the tutor – 
and a long time of working autonomously on one problem seem to be adequate to 
increase the competency to simplify in the group and thus the transfer of responsi-
bility to the students was successful.
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39.5.4  Focus on the Intervention: ‘Present Status of Work’

The intervention to present the status of the work and the results is the intervention, 
which was identified as given the most in the present study. As in previous studies 
(Kaiser and Stender 2013), its high potential for students’ metacognitive activities 
and for teachers was confirmed. One consequence of this particular kind of inter-
vention can be the promotion of reflecting and structuring the current results and 
current activities. Success was identified in terms of progress in the modelling pro-
cess by the following effects: the solution of a partial problem, the realisation of the 
importance of obtained results and thus their inclusion into the modelling process 
and the verbalisation of previously intuitive insights. For example, the students for-
mulated the result of their mathematical simulation of traffic flow on a roundabout, 
which is essential for the solution process, within the intervention present status of 
work for the first time. In another situation, the students tried to use their previous 
results to solve the interim problem: ‘How many cars can pass through the round-
about per minute?’ After a long time of nonworking, the intervention present status 
of work helped the students to remember an important result, which had already 
been obtained earlier. A short time later, the students were able to solve their interim 
problem adequately.

39.6  Conclusion

To summarise, the study presented confirms the usefulness of special kinds of inter-
vention as a diagnostic tool for teachers. The study confirms the high relevance of 
diagnosis activity in order to give adaptive assistance to the students’ problems. The 
importance of diagnosis-based support could be identified in exemplary interven-
tions. For example, a wrong diagnosis led to the breakdown of the work by the 
students, although the work may have made sense in terms of working indepen-
dently. In addition, a misdiagnosis may lead to an inadequate assistance by the tutor, 
which might cause much confusion with negative impact on the working behaviour 
or may lead to boredom by students, because the tutor refers to aspects already 
considered sufficiently by the students. In conclusion, the intervention ‘present sta-
tus of work’ can be considered by teachers as a powerful scaffolding measure at the 
beginning of every intervention in complex modelling processes, because it has the 
potential for a positive impact on the solution process in various respects.
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Chapter 40
Long-Term Development of How Students 
Interpret a Model: Complementarity 
of Contexts and Mathematics

Pauline Vos and Gerrit Roorda

Abstract When students engage in rich mathematical modelling tasks, they have to 
handle real-world contexts and mathematics in chorus. This is not easy. In this chap-
ter, contexts and mathematics are perceived as complementary, which means they 
can be integrated. Based on four types of approaches to modelling tasks (ambiva-
lent, reality bound, mathematics bound or integrating), we used task-based inter-
views to study the development of students’ approaches while the students moved 
from grade 11 to 12. Our participants were ten Dutch students. We found that their 
approaches initially were either ambivalent, reality bound or mathematics bound. In 
subsequent interviews, the preference was maintained, and in the end, the approaches 
of four students were integrating. Both a reality bound and a mathematics bound 
preference could lead to a more advanced integrating approach.
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40.1  Introduction

In mathematical modelling, students have to deal with real-world contexts on the 
one hand and mathematics on the other hand. The variety of prompts within a task 
activates students’ knowledge of the context or their knowledge of mathematics or 
both. As a result, students’ thinking and acting will be very dynamic and diverse.

Borromeo Ferri (2010) studied patterns in students’ approaches to modelling 
problems, finding that students followed their own modelling routes. Borromeo 
Ferri related students’ modelling routes to their learning styles, which revealed an 
underlying preference to task approaches. Busse (2011) also studied patterns in 
students’ approaches to modelling tasks. He found four different types of approaches 
of how students dealt with the real-world context within a modelling task. Students’ 
approaches could be ambivalent, reality bound, mathematics bound or integrating. 
For example, an approach was considered reality bound, if only extra-mathematical 
concepts and methods were applied. An approach was considered mathematics 
bound if the real-world context was treated as a mere decoration, and the task was 
solved exclusively by mathematical methods.

These four types of approaches that Busse identified are ideal types. Ideal types 
are intellectual constructions emerging from interpretative research, whereby cate-
gories are developed to describe and analyse phenomena in reality (Bikner-Ahsbahs 
2015). In his study, Busse determined a hierarchy between the ideal types, with 
ambivalent at the lowest cognitive level, reality bound and mathematics bound at an 
intermediate level and integrating at the highest level. There is not a hierarchy 
between reality bound and mathematics bound (see Fig. 40.1). Both Busse (2011) 
and Borromeo Ferri (2010) found that patterns in problem solving could differ 
between students and between tasks. Therefore, the four ideal types are neither attri-
butes of a student nor of a task, but they are a characterisation of how a particular 
student deals with a particular task.

Fig. 40.1 Ideal types of 
dealing with a real-world 
context within a modelling 
task (Busse 2011)
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Our study takes a longitudinal perspective on modelling. Instead of researching 
students at just one moment in their educational career, we were interested in their 
growth or lack thereof. The deeper aim of this research is to obtain a better insight 
into how students deal with real-life contexts and mathematics, what blockages and 
opportunities occur when students move from contexts to mathematics and back 
and how students develop modelling competencies. To study this, we assumed that 
Busse’s ideal types are a characterisation of how a particular student deals with a 
particular task at a particular moment in time. By keeping task and students as con-
stants, and having time as independent variable, we had as research question: how 
do students’ problem-solving approaches when characterised by Busse’s ideal types 
develop over time?

In mathematical modelling tasks, the dynamics of dealing with real-life contexts 
and mathematics occurs in particular during the phase of mathematising and the phase 
of interpreting. The study presented here only deals with the activity of interpreting.

40.2  Theoretical Background

Pollak (1979) conceptualised how mathematical modelling is an activity that takes 
place in two disjoint spheres: in mathematics and ‘the rest of the world’. With ‘the 
rest of the world’, he meant all outside mathematics including nature, society, 
everyday life and other scientific disciplines. Other authors followed this descrip-
tion (e.g. Blum 2002). However, this distinction can be challenged, because math-
ematics can be found scattered within nature, society, everyday life and other 
scientific disciplines. So, it may not always be possible to clearly distinguish 
between the different spheres. Also, if in modelling we move between the two 
spheres, where are we when we are in a transition between the two? Below, we 
discuss the nature of this distinction.

In this chapter, we will speak of contexts instead of ‘the rest of the world’. By 
contexts, we mean the real-life situations described in mathematical modelling 
tasks. A context can be more or less close to reality, and this context may be recog-
nised and understood by students in different ways.

Pollak’s (1979) original terminology suggests a dichotomy of contexts and math-
ematics, that is, contexts and mathematics are mutually exclusive and cannot overlap. 
This dichotomy is confirmed by Busse’s (2011) findings, in which some students were 
more mathematics bound, while others were more reality bound. However, the higher-
achieving students were able to integrate mathematics and contexts. This observation 
is confirmed by Vos and Roorda (2007), who used the term reconciliation of mathe-
matics and context for a similar case, in which one of the smarter students manages to 
see the context through the mathematics and vice versa. Thus, a distinction between 
mathematics and contexts requires the option that they can be integrated.

In this chapter, we take contexts and mathematics as being complementary. 
Complementarity is a notion with origins in the work by Niels Bohr, who worked on 
a dilemma in physics, needing to integrate two conceptions of light: one as a particle 

40 Long-Term Development of How Students Interpret a Model: Complementarity…



482

and the other one as a wave. The two notions offer different ways of understanding 
light; they are not mutually exclusive, and they can support each other. As such, 
complementarity differs from notions such as dichotomy or duality. In the educa-
tional setting of mathematical modelling, complementarity of mathematics and con-
texts means that the two are different, but that they can be integrated and then 
strengthen each other. This fits Busse’s (2011) ideal types, in which the highest 
cognitive level is termed integrating.

40.3  Methods

We carried out a longitudinal multiple case study with a detailed analysis of work 
by individual students (Yin 2003). While the students moved from grade 11 to grade 
12, we administered three task-based interviews (Goldin 2000) at successive 
moments. In each interview, we used several tasks which were not shown to the 
students beforehand. The tasks were rotated between interviews, and not all tasks 
were used in all interviews. The study described in this chapter was part of a larger 
study (Roorda 2012; Roorda et al. 2015). It is based on one task, which deals with 
derivatives and interpreting these within a context. More details about the task are 
described below.

The first interview was held in the third month in grade 11, a few weeks after the 
mathematics teacher had introduced derivatives. Interview 2 was held 6  months 
later, and Interview 3 was held a year later. Between the first and the final interview, 
derivatives were a recurring topic in mathematics lessons and for some students in 
their elective subjects (physics or economics) as well. We observed that the curricu-
lum between interviews focused primarily on calculations and did not contain inter-
pretation tasks such as the one used in the interview. To enable comparison across 
interviews, exactly the same task was used, as small changes in a task can yield 
large differences in students’ approaches. The time interval of 6 months was consid-
ered sufficient to limit inter-interview effects.

40.3.1  The Task

We adapted a task from Kaiser-Messmer (1986), which is set in the context of cars, 
petrol consumption and the distance driven. Central is a function V(a) for the vol-
ume of petrol (in litres) that depends on the travelled distance a (in km). The word 
for distance in Dutch is afstand; hence, a is used for this variable. The task is rich in 
resources: there are different mathematical representations (graph, table), and stu-
dents can address different aspects of the derivative: the average rate of change on 
an interval (with data from the table), the rate of change in a point, a tangent, slope, 
limits and so forth. Also, students can reason about the real-life context: the average 
petrol consumption over a distance of h kilometres.
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Differences from the original task from Kaiser-Messmer (1986) are as follows: 
(1) To make the task more realistic, we added details to the context by describing a 
system for measuring the petrol consumption. (2) We added a table to increase vari-
ety in mathematical representations. (3) We removed a second question about the 
interpretation of the limit for h → 0 of the same difference quotient, because this 
would give a cue about h possibly being small. This would hinder us from observing 
students’ spontaneous reflections about limits.

The Petrol Task has a number of specific features. (1) Function V(a) is not given as 
a formula with variable a, from which volume V can be calculated. (2) The task is 
about interpretation and not about standard mathematical activities such as calculating 
or solving. (3) One can give an interpretation of the difference quotient without knowl-

Petrol
In a car, a measuring system was installed, which measures the petrol consump-
tion of the car every 10 km. During a trip of 500 km, the measurements were 
written down. In the table, you see some of the measurements during this trip. 
The travelled distance is a (in km) and the petrol consumption is V (in litres).

a (km) 10 20 30 50 100 200 300 400 500

V (litres) 1.3 2.7 4.0 6.4 10.3 18.3 26.6 31.2 39.7

The measurement points were plotted into a graph by drawing a smooth line 
through the points.

 

What is the meaning of 
V a h V a

h

+( ) − ( )
 in this situation? (h is a value, which 

you can choose.)
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edge of the derivative. (4) The task context can be regarded as realistic (recognisable, 
possibly existing in real life) but inauthentic (there is no evidence of an actually exist-
ing car with such a measuring system). (5) The formula (a difference quotient) has h 
as additional variable (or parameter) to V and a; therefore, three symbols need to be 
considered, while the table and the graph suggest only two dimensions.

40.3.2  Participants, Interview Protocol and Data Analysis

We selected ten pre-university students (six boys, four girls), who took mathematics 
at an advanced level. The mathematics teacher had indicated one student as weak, 
four as average and five as good. In our study, weak students are underrepresented 
because we looked for students who most likely would move up from grade 11 to 
grade 12 without delay. The study was carried out at two schools to reduce inter- 
student communication about the tasks between interviews. The students’ pseud-
onyms are Andy, Bob, Casper, Dorien and Elly from School I and Karin, Maaike, 
Nico, Otto and Piet from School II.

The interview started by asking the student to solve the task. During the solving, 
the interviewer did not interfere. If a student was silently thinking for over a minute, 
he or she was asked for an explication. To enhance the reasoning and interpretation 
process, the interviewer would ask students about the effect of the size of h in the 
formula. This hint could offer students the opportunity to reason about a limit. The 
interviewer would not use words that directed towards mathematical concepts, such 
as ‘derivative’, ‘differentiation’, ‘rate of change’, ‘tangent’ or ‘slope’. By avoiding 
these words, we did not lead students to more mathematics than the task already did. 
In case a student would reason completely in terms of the situation (cars, petrol 
consumption, distance travelled), an additional question was whether the student 
had seen the formula (i.e. a difference quotient) before.

Both authors independently analysed the transcripts of the interviews and the 
written answers to the task, thereafter reaching an agreement on labelling students’ 
problem-solving approaches using Busse’s ideal types. We identified utterances as 
being more reality bound, when a student spoke about average consumption. We 
identified utterances as being more mathematics bound, when a student spoke about 
aspects of the derivative, such as rates of change, slope and decreasing difference 
intervals. Additionally, we coded students’ expressions on a simple scale: accurate 
and clear – somewhat accurate or clear – unclear.

40.4  Results

Below we report on four students and their approaches to the Petrol Task in the three 
subsequent interviews. We selected these because of their illuminating differences. 
The approaches of the six others are reported in detail in Roorda (2012). At the end 
of this paragraph, we synthesise the findings across all ten students.
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40.4.1  The Case of Nico

In the first interview, Nico started by saying: “So, the steeper the line goes, the more 
is his petrol consumption per kilometre”. This was a correct interpretation of the 
graph, but not of the difference quotient. Thereafter, he interpreted V(a+h) as multi-
plication Va+Vh. He remarked that he had no idea about the meaning of h. When 
prompted by the interviewer for a meaning of the formula, he said: “It is the average 
consumption of the car, of course, what else would you want to calculate?”, but he 
did not link this correct statement to the formula.

In Interview 2, Nico started by thinking that V(a) is a multiplication, but then 
corrected himself spontaneously and recognised that V(a) is the petrol consumption 
after a km, and rewrote the formula into V(a) + V(h) − V(a)/h, then V(h)/h and then 
wrote: V with 1 unit h on average. He explained this as the consumption after 1 km. 
After being prompted to further explain, he took numbers: at 100 km the consump-
tion is 10 l. The value 10/100 is 0.1 litre per kilometre, and according to Nico, this 
was the average consumption. When the interviewer asked about the effect of the 
size of h in the formula, Nico reasoned that it does not matter, because h/h is equal 
to 1.

In Interview 3, Nico used the table to calculate 39.7/500 and 1.3/10 (these num-
bers are V(500)/500 and V(10)/10) and said that the consumption is not constant, 
“otherwise the graph would be straight”. He went on to interpret the difference 
quotient as: the consumption at h divided by h. Thereafter, he said that it was about 
a route: “It is the extra distance h that one travels, and that divided by h (…), so h is 
the consumption per kilometre h. So the formula means what the consumption is in 
kilometres h on a certain kilometre [points at different points in the graph] on that 
route. Approximately I think”. He then wrote: the consumption per kilometre during 
distance h.

We interpreted Nico’s utterances in all interviews as being reality bound, because 
he mainly talked in terms of consumption and distances. We interpreted his explana-
tion in Interview 3 as being reality bound and quite clear and correct.

40.4.2  The Case of Elly

In Interview 1, Elly wondered what h could be: “I don’t understand at all what my 
h is”. She inserted numbers by taking a = 10 and h = 4 and said: “It will become 10 
+ 4 – 10 divided by 4, but what this means, no idea”. She clearly could not interpret 
the function notation. In Interview 2, Elly said: “I don’t understand what this h is, 
and why you can choose it”. She used numbers from the table and wrote: 1.3(10 + 
10)−1.3(10)/10. She obtained 1.3 and said: “I get a number I already had”. Again, 
she could not interpret the function notation. In the final interview, Interview 3, she 
changed the h in the formula into an x and said: “Then I will not think all the time 
that h is the height or something”. She wrote 1.3 (10 + 3)−1.3 (10)/10 and said:  
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“I don’t get what they want with this formula.... what it means, and for what you can 
use it. No idea”.

In all interviews, Elly interpreted the notation V(a+h) as multiplication Va+Vh. 
Not once did she relate the formula to a rate of change, nor to an average petrol 
consumption. In all interviews, we considered her as mathematics bound, unclear 
and inaccurate.

40.4.3  The Case of Bob

In Interview 1, Bob took a = 40 and said: “Here you could have the consumption 40 
and here the consumption 40 plus a certain value”. He then said that the formula 
was about the average consumption in litres per kilometre.

In Interview 2, Bob took the petrol consumption at distances 200 and 300 and 
said: “It is the petrol consumption between two points of the distance travelled…. 
how much he used while driving those 100 km”. He said that the formula is like 
Vend – Vstart divided by the travelled distance: “Yes, in fact this is the average con-
sumption per km”.

In Interview 3, Bob first interpreted the formula as V(h)/h, but changed this 
because already a km has been travelled. He drew a line with points 0, a and a + h 
and indicated that it is the consumption between a and a + h: “It is the consumption 
per kilometre within this piece”. When prompted to explain the role of h, he said: “I 
think it often is 1, then you will have the consumption on one moment, that is more 
precise (..) for example you take a = 400 then you will know how much he uses from 
400 to 401, that is approximately the consumption on 400. That has something of a 
limit from mathematics in it, then you can make h smaller like 0.001 or 
something”.

In all interviews, Bob’s approach to the task was reality bound, as he used terms 
such as average consumption per kilometre and litres per kilometre. From the first 
interview onwards, he interpreted the formula as a difference of consumption 
between two points, and from the second interview onwards, this difference was 
divided by the distance. In Interview 3, he related the formula to limits, which we 
interpreted as – somewhat – integrating.

40.4.4  The Case of Dorien

In Interview 1, Dorien recognised the formula: “We did this in the chapter on deriv-
atives (..) with adding small values, first 0,3 and then 0,03 and then you came closer 
every time”. She thought the formula was about litres of petrol used, but she could 
not explain this.

In Interview 2, Dorien said: “With this formula I had to calculate the slope, and 
later also thederivative. This formula was used for the proof for another, faster 
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 formula, and then we had to use the other one, and not this one anymore”. She 
explained that the formula has to do with limits, by saying: “I recognize it from how 
the formula is built, that h was first larger, and then you could make it smaller and 
then you reached a limit, and that was a number that you never reached, that was 
the slope in one point”. She also said that the formula is “how much litre is used per 
km”, explaining: “If you take for example 300 and 400, then you will know the slope, 
and that is how many litres is used per kilometre”, and she drew Fig. 40.2.

In Interview 3, Dorien first said that the formula is about limits and that she is a 
little allergic to them. She learnt them before they did the derivative. She explained 
that the formula is a Δy/Δx. She also explained it as a derivative, which can calcu-
late how many litres are used per kilometre. It is “some kind of speed of petrol con-
sumption in fact, in litres per kilometre”. She also connected the formula to gradients 
and explained the limiting process: “If you take h smaller and smaller, then h 
becomes nearly zero. That is called a limit, and it became more precise. I know 
exactly that it was on that page, it was the first paragraph”.

In the first interview, Dorien’s approach was mathematics bound, and she could 
not explain the formula well within the context. From the second interview onwards, 
her approach was integrating, explaining the formula both mathematically and 
within its context.

40.4.5  Synthesis of Results

Table 40.1 gives an overview of students’ approaches to the Petrol Task in the three 
sequential interviews. The first two students, Andy and Nico (see Sect.  40.4.1), 
maintained a reality bound approach throughout all interviews, and their statements 
became more accurate and clear. The next four students, Elly (see Sect. 40.4.2), 
Maaike, Casper and Piet, maintained a mathematics bound approach throughout all 

Fig. 40.2 Dorien’s 
illustration of a  
slope into the graph  
in Interview 2
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Table 40.1 Results of students’ approaches being reality bound or mathematics bound

Andy Nico Elly Maaike Casper Piet Karin Bob Otto Dorien

Interview # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Reality bound o + * o o * o * o * * o o * *
Mathematics 
bound

o o o + + + + * + * * o + o + * o + *

* Accurate and clear
+ somewhat accurate or clear
o unclear

interviews. From these, Casper and Piet became more accurate and clear. The next 
two students, Karin and Bob (see Sect. 40.4.3), started with reality bound approaches, 
and these became integrating. The final two students, Otto and Dorien (see Sect. 
40.4.4), started with mathematics-bound approaches, and these became more inte-
grating in Interview 3.

Table 40.1 shows that in the first interview, all students’ approaches are either 
mathematics bound or reality bound, with the exception of Otto (not reported here): 
his approach is ambivalent. In the subsequent interviews, the students maintain their 
preference, and their statements become more accurate and clear. In the final inter-
view, four students have somewhat – integrating approaches.

40.5  Conclusion and Discussion

Our study was guided by the research question: How do students’ problem-solving 
approaches when characterised by Busse’s ideal types (ambivalent, reality bound, 
mathematics bound or integrating) develop over time? Our results show that the 
approaches to the Petrol Task can be associated with all four ideal types and that 
students’ approaches can develop from one ideal type to another. In the course of a 
year, while the students followed the same curriculum about derivatives, the devel-
opment of their approaches followed different paths. Not one student had a mathe-
matics bound approach in one interview and reality bound in a subsequent interview, 
or vice versa. All students’ approaches were first either reality bound, mathematics 
bound or ambivalent. An integrating approach could be observed with students, who 
earlier had a mathematics bound or a reality bound approach. This confirms Busse’s 
hierarchy, in which integrating has a higher cognitive level than both mathematics 
bound and reality-bound approaches (see Fig. 40.1). An integrating approach was 
independent of the initial preference.

We cannot confirm Busse’s hierarchy with ambivalent approaches at the lowest 
level. The weakest student in our study, Elly, had a mathematics bound preference, 
albeit unclear and inaccurate. She took V(a+h) as multiplication in all interviews, 
and this inability to recognise a function notation probably hindered her progress in 
learning about derivatives. This may explain the absence of growth in her approaches 
to the Petrol Task.
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Also, we see that in the first and second interview, not one approach is integrat-
ing. We see students grow: their vocabulary becomes more accurate, they become 
more flexible in using different mathematical representations and their confidence 
grows. After the introduction of derivatives, it takes the best students, Bob and 
Dorien, a year to reach the integrating level. This confirms that it is not easy for 
students to integrate contexts and mathematics in modelling tasks and that learning 
to integrate these takes time: at least a year.

Busse’s (2011) ideal types proved extremely useful to analyse students’ different 
approaches to tasks and how their preferences develop. Also, the ideal types can 
assist teachers to analyse students’ approaches and develop instructional methods to 
encourage the uptake of complementary approaches. The framework shows that 
contexts and mathematics are not disjoint spheres, but that students can integrate 
these.
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Chapter 41
Exploring Aspects of Creativity 
in Mathematical Modelling

Helena M. Wessels

Abstract The demands of the twenty-first century require a new focus on identifi-
cation and nurturing of mathematical creativity, an important key to personal and 
global success. This chapter reports on an investigation of student teachers’ notions 
of creativity and how creativity can be fostered in school students, as well as an 
analysis of the creativity evident in their group solutions to a mathematical model-
ling problem. A questionnaire, a mathematical modelling problem and interviews 
were used to generate data analysed qualitatively. The findings show participants’ 
intuitive conceptions of creativity are in line with the main aspects of creativity 
discussed in the literature – fluency, flexibility, novelty and usefulness – and that 
creativity in the solving of the modelling task was influenced by suitability of the 
task for the specific cohort.

Keywords Creativity • Mathematical modelling tasks • Student teachers • Task 
suitability

41.1  Introduction

The demands of the twenty-first century require a new focus on the identification 
and nurturing of mathematical creativity, which can be regarded as an important key 
to personal and global success (Marshak 2003). References to the necessity of 
developing creativity can be found in mathematics curricula all over the world, and 
many teachers would like to develop mathematical creativity in learners, but do not 
always have a clear conception of what this construct entails and how to develop it. 
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Some questions then come to mind: What are student teachers’ notions of mathe-
matical creativity and how can it be developed? How creative are student teachers 
themselves when they are solving mathematical problems?

41.2  Theoretical Orientation

Sternberg (2006) attributes the initial development of the field of creativity to efforts 
of Guilford (1950) and Torrance (1974). Creativity most commonly is associated 
with creations in art, music and science, not with mathematics. Mathematical cre-
ativity was however already mentioned for the first time in 1902 by Poincaré 
(Sriraman 2004) but it is only in recent decades that research on the topic started 
emerging (Manuel 2009).

Definitions of creativity abound. Four themes in definitions of creativity emerge 
in the literature (Fetterly 2010): process and product, individual and societal, origi-
nality and utility and radical novelty and orthodox novelty (Gardner 1993; Plucker 
and Beghetto 2004; Sternberg and Lubart 2000; Wu and Chiou 2008). Runco (1993, 
1999) refers to creativity as a multifaceted construct which includes convergent and 
divergent thinking as well as a questioning attitude, problem posing, problem- 
solving, motivation, self-expression and self-confidence. Sheffield (2000) offers 
seven criteria for the identification of creativity: depth of understanding, fluency, 
flexibility, originality or novelty, elaboration or elegance, generalisation and reason-
ing and extensions. Other definitions address the process or product of creativity 
and in most of these three major components surface: fluency, flexibility and origi-
nality (Torrance 1974). In the field of mathematics, views of creativity refer to a 
thinking process revealed in the three products mentioned above: fluency, flexibility 
and novelty (Sriraman 2005). Fluency is related to the number of different correct 
answers, solutions or new questions posed; flexibility is linked to different catego-
ries of answers and the ability to change focus to other solution paths during 
problem- solving; and originality or novelty is the uniqueness of solutions or ques-
tions posed. A fourth component of creativity, usefulness or utility, is included in 
definitions of Anabile (1996), Feist (1998) and Sternberg and Lubart (2000). 
Usefulness refers to “the relevance, adaptability and reusability of solutions in other 
real world situations” (Wessels 2014, p. 6).

Several authors link creativity and problem-solving or modelling (Biembengut 
and Vieira 2013; Burghes 2015). Chamberlin and Moon (2005 p. 38) describe cre-
ativity as the “domain-specific thinking processes” used in nonroutine problem- 
solving in their article on the use of model-eliciting activities as a tool to develop 
creativity. Silver (1997) argues that it can be productive to regard creativity as a 
means to foster more creative approaches to mathematics, specifically through 
problem-posing and problem-solving tasks. Sriraman (2005) also alludes to the link 
between mathematical creativity and problem-solving, referring to novel, unusual 
and insightful outcomes resulting from problem-solving. In a mathematical model-
ling approach, complex open-ended tasks are used, which presents an ideal oppor-
tunity to foster creative thinking in learners. Dan and Xie (2011) found in their 
research that there was a strong positive correlation between mathematical model-
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ling skills and creative thinking levels, while Mann (2006) argues that the solving of 
open-ended contextual problems points to mathematical creativity. Wessels (2011, 
2014) points out that creative thinking enables multiple entry points into mathemati-
cal modelling problems as well as to a variety of solution strategies on different 
levels. Solving such complex, open-ended problems support the development of 
fluency, flexibility and novelty in learners, as well as their consideration of the use-
fulness of solutions. Since model-eliciting activities promote fluency, flexibility, 
novelty and consideration of usefulness, these activities can be used as an ideal tool 
in developing mathematical creativity.

41.3  Method

The purpose of the study was twofold: to explore student teachers’ theoretical and 
pedagogical conceptions of creativity and identifying aspects of creativity in their 
mathematical modelling processes and products. The research was conducted dur-
ing the researcher’s visit to a European university as part of a staff exchange oppor-
tunity. All ethical requirements were adhered to.

41.3.1  Participants

A convenience sample at a large European university was used in this mixed method 
study. Twenty-six masters students (student teachers), enrolled for a seminar on 
mathematical modelling, voluntarily participated in the first session of the semester. 
Topics in the seminar included theory about aims of modelling, modelling compe-
tencies, characteristics of modelling problems, appropriate teacher interventions 
and assessment of modelling. The student teachers all prepared to teach mathemat-
ics as a subject in school grades ranging from grades 1 to 13, in primary and second-
ary school as well as in special and vocational schools.

41.3.2  Instruments

Three instruments were used: a questionnaire individually completed, a mathemati-
cal modelling problem solved in groups and focus group interviews. The question-
naire collected biographical data of participants and their notions of creativity, as 
well as how to identify and develop it. The mathematical modelling task, Making 
Money (see Appendix), was used to explore aspects of creativity in student teachers’ 
solution processes and final models. The task is about an entrepreneur who had nine 
vendors selling popcorn and cold drinks at a play park during summer. 
Recommendations had to be made about which six vendors she should rehire for the 
next summer, based on their sales and the number of hours they worked during slow, 
steady and busy shifts over 3 months. Semi-structured group interviews probed par-
ticipants’ experiences during the solving of the mathematical modelling problem.
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41.3.3  Data Collection

Data were generated in three phases: the questionnaire and modelling task were 
administered on the same day, and 1 week later, group interviews were conducted. 
The questionnaire was in English and was administered during the first contact ses-
sion of the seminar on mathematical modelling. Only one student in the group of 26 
had been involved in mathematical modelling before enrolling for the modelling 
seminar. As the researcher was not fluent in the mother tongue of the participants, 
the seminar lecturer and a PhD student in mathematics education were available to 
interpret when needed. In the first session, the questionnaire was completed indi-
vidually after which participants solved the mathematical modelling problem, 
Making Money, in five groups. Although an attempt was made to group students 
according to the grades which they were preparing to teach in, it was not possible 
due to the variety of school types and grades students were preparing to teach in. 
Students in one group also insisted to solve the problem in their group of friends. 
Four of the five groups were audio- and videotaped while solving the mathematical 
modelling problem. One group gave consent only for audiotaping. Videotaped focus 
group interviews were conducted in English 1 week after the first round of data col-
lection. Only three groups consented to be interviewed. During the interviews stu-
dents’ experiences while solving the modelling problem were explored as well as 
the influence of these experiences on their views of the suitability of modelling 
tasks for school learners with regard to mathematical level and context.

41.3.4  Analysis and Results

41.3.4.1  Analysis of the Questionnaire

A framework comprising the four criteria for mathematical creativity from the lit-
erature guided the analysis of the questionnaire and student teachers’ mathematical 
models. The section of the questionnaire that explored participants’ notions of cre-
ativity comprised the following four questions:

Q1: What is mathematical creativity?
Q2: Do you regard yourself as mathematically creative? Motivate your answer.
Q3: How would you know whether a learner is mathematically creative?
Q4: How can mathematical creativity be developed in school learners?

Responses to these open-ended questionnaire items were categorised according 
to emerging themes and compared with the four criteria for mathematical creativity. 
In the discussion of the analysis of the questionnaire, examples of participant 
responses for each category are given in brackets.

Participants’ responses to Q1 (What is mathematical creativity?) could, with the 
exception of three anomalous responses, be categorised according to the four crite-
ria for creativity: fluency (responses referred to different solutions, quantity of solu-

H.M. Wessels



495

tions), flexibility (responses referred to varying approaches, translating of a problem 
to another context, using different representations, etc.), originality (responses 
referred to new approaches, own approach, etc.), and usefulness (using mathematics 
to solve real-world problems, making sense).

In Q2, Do you regard yourself as mathematically creative?, more than half of the 
students answered ‘yes’. In one group, students might have influenced each other as 
four out of the five student teachers put their cross on the line between the yes and 
the no, and one of them also ticked ‘yes’. In another group, two student teachers 
also indicated an answer between ‘yes’ and ‘no’.

Most of the student teachers’ answers about their own creativity implicitly refer 
to fluency, flexibility and novelty. Almost all student teachers who do not regard 
themselves as creative or gave an ‘in-between’ answer (halfway between ‘yes’ and 
‘no’), in some way, indicated that they are not fluent, referring to solving tasks in 
only one way, or not being able to think of more than one way to solve a task. One 
student teacher who gave an ‘in-between’ answer commented that creativity is 
dependent on the topic and the task. Of those who regard themselves as creative, six 
referred to fluency (coming up with different answers to solve a problem) and five 
to novelty (referring to new ideas, own ideas). One student referred to flexibility, 
saying that when she cannot find a result with a procedure, she would try another 
way. Not surprisingly, there were no references to the usefulness of processes or 
products of creativity because school and university students are not often chal-
lenged to consider the relevance, adaptability and reusability of their solutions for 
other real-world situations.

The four criteria for creativity were also alluded to in participants’ responses to 
Q3, How would you know whether a learner is mathematically creative?, but four 
additional categories emerged in the analysis: the use of mathematical knowledge 
(can use knowledge from different parts of mathematics/only uses knowledge which 
is part of the issue/using knowledge from previous lessons), kind of tasks (through 
problem-solving tasks, thinking tasks or challenging problems/using open tasks – 
no prescribed method given, etc.), classroom discourse (able to describe solution/
talk to others, explain their work), and personal abilities, characteristics and dispo-
sitions. Responses in the last category include references to objectivity (when you 
can get a distance to the problem), cognitive engagement (when he thinks the task 
over), confidence (when he confidently starts working on the solution of the prob-
lem), motivation (if the person is motivated), perseverance (does  not give up), 
assisting others (can explain to learners who do not understand other ways how a 
task can be solved), and enjoyment (enjoy solving the task).

Categories that emerged in responses to Q4, How can mathematical creativity be 
developed in school learners?, include references to tasks (open tasks, modelling 
tasks, understanding tasks), teaching (general teaching, broaden thinking, no pre-
scribed methods, give freedom and more time for learners to create own solutions, 
non-judgemental, appreciate efforts, emphasize connections, motivate learners), 
classroom organisation and management (learning environment, group work, dis-
course), and curriculum (mathematical creativity as topic in schools, special educa-
tion, theatre courses).
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41.3.4.2  Analysis of Modelling Process and Solutions for Task

Analysis of solutions to the mathematical modelling problem explored aspects of 
mathematical creativity in student teachers’ modelling processes and products. To 
ensure reliability of analysed data, two PhD students checked the researcher’s trans-
lations and interpretations of participants’ written work as well as of discussions 
during the interviews.

The solutions to the modelling problem were analysed to establish how the 
thinking and interpretations of the five groups differed (Table 41.1). Solutions and 
solution paths were also scrutinised to determine elements of creativity in the pro-
cesses and products of the modelling activity.

Solution paths were quite similar with all groups calculating income generated 
per hour: some for different shifts and others for different months. In some cases, 
average income generated per hour was calculated for individuals or overall, while 
some groups calculated both. Two of the three groups who participated in the inter-
views confirmed that they had just one idea to start with, while the other group had 
two ideas, but after some time, they discarded one idea. This points to low creativity 
regarding fluency, even though one group were somewhat more fluent than the other 
two. The five groups all developed their original ideas in different ways, showing 
flexibility. Groups 1, 3 and 4 used novel ideas: group 1 used weighting to rank the 
employees, while group 3 used formulas and graphs to determine full-time and part- 
times employees. Group 4 used a colour-coded table and detailed case studies of all 
nine current employees to determine positions for the next year. All groups created 
useful models for determining positions for the next season.

Table 41.1 Description of solution strategies and recommendations of the five groups

Group Solution strategies

1 Average hours in different shifts; income/h for different shifts; total average income/h; 
weighted average, rankings

2 Income/h for different shifts – months separately; average income/h for different shifts; 
total average income/h; full time, best overall turnover and very good in slow and 
steady; part time, good overall turnover in busy and steady

3 Income/h for months separately and overall; formulas, graphs and regression lines; 
consider only busy and slow shifts; full time, highest hourly income; part time, less 
hours worked, still passable turnover

4 Average income/h in different shifts; total average income/h; colour coding in table; 
case studies of all ten workers to motivate choices for full and part time

5 Income/h in different shifts; total average income/h; full time, highest average; part 
time, next 3
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41.4  Discussion of Findings

The purpose of this study was to investigate student teachers’ notions of creativity 
as well as their own creativity that was evident in their solutions to a mathematical 
modelling task. Analysis of the open-ended responses to the questionnaire provided 
useful insights into their conceptions of the construct of creativity, and analysis of 
their solutions to the mathematical modelling problem highlighted the importance 
of task selection in the fostering and identification of mathematical creativity.

Although creativity as a topic was not formally covered in any of their courses, 
student teachers’ intuitive notions of what creativity is coincided with indicators for 
creativity described in the literature and my chosen framework (Sriraman 2004; 
Torrance 1974; Sternberg and Lubart 2000). Student teachers implicitly or explic-
itly referred to the four main aspects of creativity found in the literature, fluency, 
flexibility, novelty and less so to usefulness, in their descriptions of what they under-
stand creativity to be and their motivations why they regard themselves as creative 
or not. The participants added cognitive, motivational and teaching aspects to these 
indicators for identification of creativity in learners and for developing creativity in 
the classroom. These findings correspond with a study by Aljughaiman and Mowrer- 
Reynolds (2005) in which teachers referred, amongst others, to original ideas, 
inventiveness (novelty), problem-solving and divergent thinking (fluency and flexi-
bility) and aesthetic and linguistic products (usefulness) in their definitions of cre-
ativity. Cognitive, creative and motivational aspects including solving complex 
problems and creating elegant solutions, flexible thinking and using a wide range of 
mathematical strategies in nonroutine ways, determination in performing diffi-
cult tasks and willingness to face learning challenges are also alluded to in Amit’s 
(2014) discussion of what academic talent comprises.

In solving the modelling problem, Making Money, all five groups combined the 
two data sets of hours worked and money generated. Participants’ fluency was not 
high, although one group was somewhat more fluent than the others. All five groups 
demonstrated flexibility by elaborating on their initial strategies to come up with a 
final strategy to determine candidates for part-time and full-time employment for 
the next season. Three groups applied different novel ways to construct their final 
models, while all five groups generated adaptable useful models, although one 
group’s model was mathematically complicated and would have been difficult for 
the entrepreneur to use if she was not well educated in mathematics.

In a research study with undergraduate students described elsewhere (Wessels 
2014), the Making Money task was solved by 48 groups of student teachers prepar-
ing to teach 6- to 9-year-old learners. Solutions were analysed for creativity using 
the four main characteristics of creativity. Levels of student teachers’ creativity in 
this study varied widely, ranging from models that were not useful, displaying little 
creativity, to very useful sophisticated models that were adaptable in other 
contexts.

Reasons for the difference in findings lie in sample size as well as the mathemati-
cal background, maturity and experience of the participants. Furthermore, the spe-
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cific modelling task has been more suitable for school students and undergraduate 
student teachers than for postgraduate student teachers, as the level of mathematics 
that the postgraduate students had been exposed to was much higher than that of the 
other cohorts. The last cohort confirmed in the interviews that the task was not 
mathematically challenging for them but that interpreting their mathematical solu-
tion in the real-world situation was more challenging than they expected  – they 
found it difficult to recommend which vendors should be rehired for the next sea-
son. The groups also expressed their surprise that all groups did not recommend the 
same vendors for part-time and full-time employment in the next season.

The scope of this study was limited by the fact that data collection had to take 
place during the exchange opportunity of the researcher to the host university and 
the choice of modelling problem that student teachers had to solve was therefore 
limited by the time available to collect data. The sample size was determined by the 
number of students in the seminar on mathematical modelling of the host lecturer at 
the university. The fact that the researcher has a limited command of the mother 
tongue of participants slowed down communication and analysis of data. This prob-
lem was mitigated through the assistance of PhD students with interpretation and 
translation. The fact that there was no time for the different groups to present their 
solution processes and models to the other groups deprived participants of the 
opportunity to develop an understanding of other possible solution paths and mod-
els and therefore limited the benefits of the task for this cohort.

41.5  Conclusion

Student teachers’ intuitive notions of creativity displayed conceptions of all four 
main characteristics of mathematical creativity described in the literature. Their 
solutions to the modelling task elicited flexibility as well as novel and useful mod-
els, but their fluency was restricted as the task was not mathematically challenging 
enough.

Mathematics teachers’ awareness of the importance of creativity in mathematics 
and how it can be identified and developed in learners needs to be raised. An aware-
ness and appreciation for mathematical creativity are crucial in preparing students 
to become citizens equipped for the challenging world when they finish school. The 
development of mathematical creativity is often hampered by typical textbook tasks 
that do not allow for creativity. More challenging tasks that have the potential to 
elicit creativity are needed. Mathematical modelling problems have potential to fos-
ter creativity (Chamberlin and Moon 2005), but careful problem selection for a 
specific cohort or grade is crucial as creativity can be task dependent (Leikin and 
Lev 2007). Creativity can also be hampered by instruction favouring taught proce-
dures and not independent thinking and self-constructed strategies. If teachers are 
more aware of, and knowledgeable about, what mathematical creativity entails and 
how it can be fostered, they might be able to “view creativity not as the domain of 
only a few exceptional individuals but rather as an orientation or disposition toward 
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mathematical activity that can be fostered broadly in the general school population” 
(Silver 1997, p. 79).

 Appendix: Model-Eliciting Task: Making Money

During the last summer holidays, Maya started a concession business at Wild Days 
Amusement Park. Her vendors carried popcorn and drinks around the park, selling 
wherever they can find customers. Maya needs help deciding which workers to 
rehire next summer.

Last year Maya had nine vendors. This summer, she can have only six – three full 
time and three part time. She wants to rehire the vendors who will make the most 
money for her, but she does not know how to compare them because they worked 
different numbers of hours. Also, when they worked makes a big difference. After 
all, it is easier to sell more on a crowded Friday night than a on a rainy afternoon.

Maya reviewed her records from last year. For each vendor, she totalled the num-
ber of hours worked and the money collected – when business in the park was busy 
(high attendance), steady and slow (low attendance) (see table). Please evaluate how 
well the different vendors did last year for the business and which three should she 
rehire full time and which three she should rehire part time.

Write a letter to Maya giving your results. In your letter, describe how you evalu-
ated the vendors. Give details so Maya can check your work, and give a clear expla-
nation so she can decide whether your method is a good one for her to use.

 
(Source: Lesh et al. 1997, p. 67)
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Chapter 42
Mathematical Modelling in Dutch Textbooks: 
Is It Genuine Mathematical Modelling?

Bert Zwaneveld, Jacob Perrenet, Kees van Overveld, and Tijn Borghuis

Abstract In this chapter, we analyse the two most frequently used Dutch mathe-
matics textbooks for upper secondary schools in order to determine to what extent 
the tasks in these textbooks meet the criteria we have set for genuine mathematical 
modelling: does a modelling task have a modelling purpose, and do the students 
have to perform characteristic modelling activities? The criterion of having a mod-
elling purpose stems from a modelling course in tertiary education by the last two 
authors. For the characteristic modelling activities, we used the research of the first 
two authors. Only a very small percentage of the analysed tasks meets the criteria. 
So, there is hardly any genuine mathematical modelling in the two textbooks, 
although it is explicitly mentioned in the formal curriculum.

Keywords Genuine mathematical modelling • Dutch secondary mathematics text-
books • Modelling purposes • Characteristic modelling activities • Problem solving 
and mathematical modelling • Conceptual development and mathematical modelling

42.1  Introduction

In this chapter, we focus on mathematical modelling in upper secondary education. 
After a global overview of the relevant theoretical frameworks, we restrict ourselves 
to the Dutch situation. As a starting point, we take how modelling is formulated in 
the examination programme for mathematics, subsequently called the curriculum.1 
We explore, describe and analyse how the two most frequently used textbooks 

1 In the Netherlands, the Dutch government establishes what is called the examination programme: 
the content of the central examination.
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implement the modelling part of the curriculum. We focus on the modelling pur-
poses of the tasks and on the modelling activities of the students. For the analysis, 
we use two sources: the modelling education at Eindhoven University of Technology 
of Van Overveld and Borghuis (2013) for the modelling purposes and a paper of 
Perrenet and Zwaneveld (2012) for modelling activities. In Sect. 42.2.2, we describe 
these two sources in more detail.

42.1.1  Modelling in the Dutch Mathematics Curriculum

In Fig.  42.1, we present the relevant part of the Dutch mathematics curriculum. 
Modelling purposes are not mentioned in Fig. 42.1 and also not in the further speci-
fications which we have left out. Besides the research skills of Fig. 42.1, there are 
many ‘pure math’ objectives in the curriculum. It mentions explicitly that these 
objectives are examined in combination with the research skills of Fig. 42.1.

We shall describe how mathematical modelling is implemented in order to draw 
conclusions about the question: To what extent do Dutch students in upper second-
ary education have to perform genuine mathematical modelling activities? We 
define genuine mathematical modelling by performing one or more of the character-
istic modelling activities to context-based problems with one or more modelling 
purposes. This definition is the result of several theoretical frameworks, as described 
in the next section.

As an example, which comes close to what we mean by ‘genuine modelling’, we 
present a slightly adapted part of a task in one of the textbooks. One less important 
task is omitted. The purposes are analysis and explaining. The modelling activities 
are interpreting, mathematising (conceptualising is almost completely done by the 
authors), iterating and solving.

Sub-domain A2: Research skills
2. The candidate can analyse a given problem situation and translate it into a 
mathematical model, use mathematical solving techniques within this model, and 
give meaning to the resulting solutions in terms of the problem situation.

Fig. 42.1 The part of the mathematical curriculum about modelling (Examenprogramma wiskunde 
2007 [translated from Dutch])
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Mathematics A, Volume 6, Section 5-4, Setting Up Formulas, Task 26 
[Translated from Dutch]

In 1977, researchers found a small group of long-eared owls in a village in 
Limburg. Following this group, it turned out that these owls early in spring sit 
and that the young fly from half July. From counts held end of June each year, 
one saw that the population grew. The results of the counts are set in a co-
ordinate system with single-logarithmic axes and draw a as fitting as possible 
line through the measuring points.

Figure 1 (a) The researchers concluded that the number of long-eared owls increased each 
year with a stable percentage. Why could they draw this conclusion? 
(b) Give a formula by which the number of long-eared owls R can be calculated t years after 
1977 and calculate also the percentage of the yearly increase. 
(c) End of June 1991, one counted 205 long-eared owls. Show that this is less what could 
be expected by the formula of part b. 
The explanation of the biologists was that the number of breeding places was too restricted 
for the increasing number of owls. One researcher suggested that the number of long-eared 
owls from 1989 was well predictable by the formula R = a – b ⋅ 0 , 6t, R the number of long-
eared owls and t the number of years after the end of June 1989. He chose a and b so that 
the formula resulted in178 owls in 1989 and 205 owls for 1991. 
(d) Calculate a and b using the data of 1989 and 1991

42 Mathematical Modelling in Dutch Textbooks: Is It Genuine Mathematical Modelling?
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42.2  Theory

From a theoretical point of view, we consider the following points relevant for the 
implementation of modelling in a curriculum: the relationship between problem 
solving and modelling, the integration of mathematical conceptual development and 
modelling and the demands of modelling tasks. We give a summary of our eclectic 
choice.

42.2.1  Problem Solving and Mathematical Modelling

During the second half of the last century, problem solving mainly focused on solv-
ing purely mathematical problems; see, for instance, the work of Pólya, Silver and 
Schoenfeld. In the 1970s, there was a shift towards the teaching of mathematics 
with context-based problems, which led to applying mathematical concepts and 
techniques to these problems, but also to modelling. This was started mainly by 
Freudenthal and is now well known as realistic mathematics education (Wijaya 
et al. 2015). In the last decades, the focus is more and more on problem solving by 
mathematical modelling. Lesh and Zawojewski (2007) argued that in the twenty- 
first century, citizens and workers are confronted with complex systems, like new 
technologies for communication, co-operation and conceptualisation. They plead 
the teaching should not be about modelling as such, but conceptual development 
integrated into problem solving should be central.

English and Sriraman (2010) concluded that there is a lot of research in problem 
solving, related to modelling, but for several reasons, mainly lack of coherence 
between these studies, there is not much progress. They concluded that there are, 
roughly speaking, three approaches to problem solving: content-driven problem 
solving (mathematics first, application later), problem-driven concept development 
(mathematical content is developed during problem solving) and heuristics/strategy- 
driven problem solving (isolated courses in problem solving). Van Streun (1987) 
investigated in his dissertation two approaches which he called: math first, then 
applying (closely related to content-driven problem solving) and conceptual devel-
opment and modelling integrated (closely related to problem-driven concept devel-
opment). His conclusion was that in the latter approach, the students learned 
mathematics better. English and Sriraman concluded that none of these three 
approaches apart is successful, and recommend, besides a combination of these 
approaches, an approach in problem solving, where mathematical modelling is 
dominant.

B. Zwaneveld et al.
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42.2.2  Conceptual Development and Mathematical Modelling

Lesh et al. (2003) argued that the cognitive processes during mathematical model-
ling are similar to those when learning mathematics: conceptualising, describing, 
explaining, visualising, sorting, representing, refining, modifying, integrating, 
extending, building upon existing knowledge as well as switching between concrete 
and abstract, simple and complex, intuitive and formal and situated and decontextu-
alised. They also placed problem solving and modelling opposite to each other. In 
problem solving, there is almost always one answer, the solving process runs 
through succeeding stages and the explanation comes after the process. During a 
mathematical modelling process, the reasoning, explaining and predicting happen, 
mostly, in an interactive and iterative way.

Here is an example of the integration of mathematical conceptual development 
and modelling. Primary schoolchildren had to decide where the English government 
should establish a settlement in Australia in the seventeenth century; they had five 
options, and for each possible location, there were data available about the environ-
ment and infrastructure. The children developed the idea of ranking the five loca-
tions based on weights they gave to the data of each location. Gravemeijer (2007) 
calls this emergent modelling:

a model is the result of an organizing activity. It is in the process of structuring a problem 
situation that the model emerges. Within this perspective, the model and the situation mod-
eled co-evolve and are mutually constituted in the course of modeling activity. Thus, when 
we characterize modeling as a process of mathematization by which the situation is being 
structured in terms of mathematical relationships, the distinction between the model and the 
situation modeled dissolves.

42.2.3  Demands for Modelling Tasks

We refer to two issues of The International Journal on Mathematics Education 
about mathematical modelling (former ZDM), issues 38(2) and 38(3), published in 
2006, which precede the work of English and Sriraman. The editors of these issues, 
Kaiser et al. (2006, p. 82), admit that “obviously the theory of teaching and learning 
of mathematical modelling is far from complete” and focus towards a didactical 
theory for mathematical modelling. The papers from these two issues about the 
main components of the modelling process, the criteria for ‘authentic’ modelling 
problems, the key elements in modelling competency and the principles for design-
ing modelling problems are relevant to our analysis.

42 Mathematical Modelling in Dutch Textbooks: Is It Genuine Mathematical Modelling?
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42.2.4  Purposes of Modelling

Van Overveld and Borghuis (2013) in their lecture notes about mathematical model-
ling for all first-year Bachelor students at Eindhoven University of Technology 
stress the importance of the purposes of modelling. They list as purposes: explana-
tion, prediction 1 (when?) and 2 (what?), compression, inspiration, communication, 
unification, abstraction, analysis, verification, exploration, decision, optimisation, 
specification, realisation and steering and control. An example of compression is the 
work of Kepler who compressed the data of Tycho Brahe into his laws of the move-
ments of the planets. An example of unification is the work of Newton who unified, 
for instance, the fall of an apple and the movements of the planets into his universal 
law of gravitation. More about these modelling purposes one can find in Perrenet 
et al. (2017) in this volume (see Chap. 12).

42.2.5  Modelling Activities

The curriculum excerpt of Fig. 42.1 mentions four steps of a modelling process: 
analysing, translating into mathematics, using solving techniques and giving mean-
ing. These are comparable to the modelling activities of Perrenet and Zwaneveld 
(2012): conceptualising, mathematising, solving and interpreting. They also men-
tion five other modelling activities: verifying, validating, iterating, communicating 
and reflecting. Of these activities, only verifying and communicating are not men-
tioned in the specifications of the research skills of Fig. 42.1.

42.2.6  Research Question

From the mentioned papers about modelling, we conclude that teaching and learn-
ing modelling are very complex, because a lot of aspects have to be taken into 
account, like the teaching objectives, for example both conceptual development and 
modelling, and the choice of the problem situations; important criteria are the pres-
ence of a modelling purpose, the modelling activities the students have to perform, 
and the supporting tools. The most important tool for supporting the teaching and 
learning in mathematics classes is the mathematics textbook. In the context of the 
Dutch curriculum, authors of these textbooks can, roughly speaking, choose a 
design where the mathematical concepts are applied to problem situations or where 
conceptual development and mathematical modelling are integrated. But students 
have to learn genuine mathematical modelling. Our research question is as follows: 
To what extent is mathematical modelling in Dutch textbooks genuine mathematical 
modelling, that is performing one or more characteristic modelling activities to 
context- based problems which have one or more modelling purposes?
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42.3  Methods

42.3.1  Selection of the Learning Materials

In the Dutch secondary school system, one of the streams is pre-university educa-
tion. Students in the last 3 years have to choose one out of four profiles. We restrict 
this analysis to the textbooks for students with profile Economy and Society, because 
the central examination here is the only one where all the five assignments are about 
a given context-based problem situation.

The two most frequently used mathematics textbooks in the Netherlands (about 
90% of the schools use one of these books) are Number and Space (in Dutch: Getal 
en Ruimte, further abbreviated as GR) and Modern Mathematics (in Dutch: Moderne 
Wiskunde, further abbreviated as MW). We used in this study the tenth edition 
(2013) of both GR and MW. Both textbooks present the mathematical concepts and 
accompanying skills as described in the curriculum. In GR, it is mostly the mathe-
matical concepts that are presented first, afterwards they are applied to a variety of 
context-based problems. In MW, the mathematical concepts are mostly integrated 
into context-based problems. We took a sample consisting of every second task of 
all the context-based tasks of GR and MW.

42.3.2  Analysis of the Selected Learning Materials

To analyse how mathematical modelling occurs in these textbooks, we first scored 
the tasks on the nine characteristic activities mentioned by Perrenet and Zwaneveld 
(2012). Then we scored these tasks according to the purposes mentioned by Van 
Overveld and Borghuis (2013). The first author interpreted and scored all the mod-
elling tasks with respect to characteristic modelling activities and modelling pur-
poses. For the tasks he was not sure, about a quarter of the tasks, the second author 
also scored these independently. After discussion, we agreed with respect to the 
modelling activities. The fourth author was consulted when clarification of the pur-
poses was necessary. Here, we also agreed.

42.3.3  An Example of the Scoring

We scored the Day Proceeds task as: purposes are explaining (subtask a), analysing 
(subtasks b and c), and optimising (subtask d); the characteristic modelling activi-
ties are conceptualising (subtasks a, b and e), mathematising (subtasks a and b) and 
solving (subtasks c, d and e).

42 Mathematical Modelling in Dutch Textbooks: Is It Genuine Mathematical Modelling?
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42.4  Results

There are about 1000 tasks in the textbooks, of which 542 tasks are context based. 
With respect to the occurrence of the characteristic modelling activities, we identify 
conceptualising, mathematising, solving, interpreting, verifying, validating, reflect-
ing, iterating and communicating. In Table 42.1, we present the number of occur-
rences in the 542 analysed tasks.

About 500 of the analysed tasks have, at times, no characteristic modelling activity, 
sometimes one up to six. We counted 992 times a characteristic modelling activity.

In Table 42.2, we present how frequently the characteristic modelling activities 
occur in each task. For instance, about 55% of the tasks have exactly one modelling 
purpose, while tasks with 0, 5, 6, 7, 8 or 9 activities hardly occur.

Next, we analyse to what extent the purposes occur. We only established: expla-
nation, prediction 1 (when?), prediction 2 (what?), analysis, optimisation and deci-
sion. None of the other possible purposes are identified. See Table 42.3.

Table 42.1 Occurrence of 
the characteristic modelling 
activities in the 542 analysed 
tasks

Characteristic modelling activity Number Percentage

Conceptualising 172 32
Mathematising 169 31
Solving 526 97
Interpreting 96 18
Verifying 9 2
Validating 13 2
Iterating 3 1
Communicating 1 0
Reflecting 3 1
Total number 992

Day Proceeds
A manufacturer sells 400 items per day for € 28 per item. If he lowers the 
price to € 20 then the sale increases to 1200 items. He assumes € 1500 fixed 
costs. The variable costs are € 16 per item. The price p in euros is a linear 
function of the sold number q.

 (a) Show that it follows that p = −0.01 q + 32.
 (b) Give the formula of the day proceeds R in euros as a function of q.
 (c) Calculate algebraically for which price R is equal to €24,000.
 (d) Calculate algebraically the maximal profit W per day in euros. How much 

is the price then?
 (e) As a consequence of a reorganisation the fixed costs per day change, 

while all other data stays the same. What are these fixed costs per day if 
the maximal profit is € 6000 per day?

B. Zwaneveld et al.
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We also analyse how often a task has 0, 1, 2 or 3 modelling purposes. More than 
three do not occur. In Table 42.4, we present these results. For instance, about 35% 
of the analysed tasks have exactly one modelling purpose. Note that 228 tasks have 
one or more modelling purposes.

42.5  Conclusions and Discussion

Our first conclusion, based on Table 42.1, is that in almost 100% of the context- 
based tasks solving, for example applying mathematical concepts and techniques, is 
by far the main activity; conceptualising and mathematising follow with about 30% 
for each. Interpreting gets some attention: 18%. All the other five modelling activi-
ties hardly occur or are fully absent. From Table 42.2, we see that about 70% of the 
tasks have 1 or 2 modelling activities, about 30% have 3 or 4 of these activities, 5 or 
6 activities hardly occur and 0 or more than 6 never occur.

Our second conclusion is about the presence of modelling purposes. Table 42.3 
shows that analysis and explanation occur mostly: 15% and 13%, respectively. They 

Table 42.2 Frequencies and percentages of the number of characteristic modelling activities per 
task

Number of modelling activities 0 1 2 3 4 5 6 7, 8, 9 Total

Frequency 2 297 74 129 35 4 1 0 542
Percentage 0 55 14 24 7 1 0 0 100

Table 42.3 Modelling purposes occurring in the 542 analysed tasks

Purpose Frequency Percentage

Explanation 70 13
Prediction 1 16 3
Prediction 2 8 2
Analysis 81 15
Optimisation 47 9
Decision 43 8
Compression, inspiration, communication, unification, abstraction, 
verification, exploration, specification, realisation, steering and 
control

0 0

Total 265

Table 42.4 Frequencies and percentages of the number of modelling purposes

Number of modelling purposes 0 1 2 3 ≥4 Total

Frequency 314 193 33 2 0 542
Percentage 58 36 6 0 0 100

42 Mathematical Modelling in Dutch Textbooks: Is It Genuine Mathematical Modelling?
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are followed by optimisation and decision, both about almost 10%. Predictions 1 
(when?) and 2 (what?) have an occurrence of less than 5%. The other ten modelling 
purposes do not occur at all. From Table 42.4, we conclude that about 60% of the 
context-based tasks do not have a modelling purpose.

Our answer to the research question, in short To what extent is mathematical 
modelling in Dutch textbooks genuine mathematical modelling? is that many of the 
tasks do not meet the criteria: characteristic modelling activities to problem situa-
tions with a modelling purpose. This is comparable to the conclusion of Wijaya 
et al. (2015, p. 60) about the Indonesian situation in secondary education:

the mathematical procedure to be applied is more or less given and students do not have to 
identify an appropriate mathematics procedure to solve the tasks and consequently they are 
not getting enough experience to develop their ability to transform a context-based task into 
a mathematical problem.

Vos (2013, p. 487) observed a comparable result in the Dutch examination papers: 
“More than 90% of the tasks merely asked for calculations leading to a number 
answer”. The students’ activities were loosely related to the given non- mathematical 
problem. She used the adjectives mechanistic and reproductive for the mathematis-
ing activity. Also, from the point of view that conceptual development and model-
ling should be integrated, the results are not very hopeful. Dividing the 228 analysed 
tasks with a modelling purpose into categories, genuine modelling (more than four 
characteristic modelling activities), no modelling (0 or 1 activity) and a ‘grey area’ 
in between (two, three or four activities), we get Table 42.5. We characterise the 
grey area as ‘small modelling’: there is a modelling purpose, and there are charac-
teristic modelling activities, but mostly the mathematical model is given or very 
obvious, for example. a linear or exponential function. Conceptualising is missing.

From the high percentages of the solving activity in both textbooks, we conclude 
that in these textbooks, practicing mathematical skills is more important than con-
ceptual development integrated with mathematical modelling. But one cannot 
expect that all the context-based tasks will be tasks evoking genuine mathematical 
modelling. We guess that the ratio between conceptual development, practising 
mathematical skills and mathematical modelling should be like 1:2:1.

One should take into account that in secondary mathematics education where 
problem solving is a main didactical characteristic, and learning to model a main 
educational objective, the authors have to find the balance between the teaching of 
the mathematical concepts and techniques of the curriculum and the teaching of 
mathematical modelling. Modelling tasks in school have always two kinds of goals: 
the modelling purpose of the task and the educational goals (Vos 2011). Table 42.5 
can also be interpreted, more positively, as there is in about one third of the context- 

Table 42.5 Three categories of the 228 modelling tasks with a modelling purpose

Modelling category

0 or 1 characteristic 
activity: ‘no 
modelling’

2, 3, or 4 characteristic 
activities: ‘grey area’ or 
‘small modelling’

More than four 
characteristic activities: 
‘genuine modelling’

Percentage (%) 33 66 1
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based tasks conceptual development without modelling activities, but about two 
thirds of the tasks combine conceptual development with a restricted number of 
modelling activities.

42.6  A Recommendation for Textbook Improvement

We recommend to improve the position of mathematical modelling by using more 
the design of MW rather than GR. Start each chapter with a modelling problem, by 
which the students can also experience what mathematical concepts and skills will 
be treated. At the end of a chapter, as part of the mixed tasks, many problems might 
be presented with a specific focus on genuine modelling as such: students learn that 
the purpose of a modelling activity directs the modelling process, and they experi-
ence the relevance and importance of the characteristic modelling activities. In 
between, the students learn the concepts and techniques, they practise these and 
they apply these, every time both in purely mathematical- and context-based tasks.
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Chapter 43
Initial Results of an Intervention Using 
a Mobile Game App to Simulate a Pandemic 
Outbreak

Peter Frejd and Jonas B. Ärlebäck

Abstract This chapter presents the design and results from the first iteration of a 
classroom activity using the context and simulation provided by a commercial game 
app for smartphones and tablets. The aim was to study students’ experiences of an 
intervention entailing the game app in order to inform a more mature design with 
the long-term goal of being able to develop principles to design and implement 
modelling activities using game apps. An analysis focusing on the interplay between 
the designed intervention environment and students’ work from two upper second-
ary classes resulted in information in terms of affordances to inform the redesign. In 
addition, students experienced the activity as interesting and engaging, but with 
significant gender differences. The results inform a discussion of the role of new 
technology and simulation within classroom teaching and learning of mathematical 
modelling.

Keywords Modelling • Simulation • Technology • Mobile app • Game

43.1  Introduction

Scientific and technological inventions have fundamentally changed the way we 
live our lives and modernised our society. Mathematics is one discipline where new 
technological advances in particular have affected ways of working. It is now pos-
sible to do more advanced and complex calculations, visualisations and simula-
tions – often needed when mathematics is applied to solve realistic or authentic 
real-world problems, a generic problem-solving process we refer to as modelling.

In industry and academia, professional modellers often use different types of 
digital technology (programming, computer-aided computation and ICT tools) in 
their work to run simulations to investigate the behaviour of evolving models, their 
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limitations and flaws (Frejd and Bergsten 2016). Furthermore, a more frequent use 
of simulations in connection with different types of modelling activities has been 
advocated in school settings (Neunzert 2013). Recent technological advances result-
ing in faster computers and easy-to-work-with interfaces now offer real possibilities 
to integrate simulations as an integral component of modelling activities in schools. 
In particular, this has the potential to be realised through the use of the steadily 
increasing number of easy accessible applications to mobile devices (apps). The use 
of simulations and games on mobile devices with “experimentally” realistic fea-
tures seem to engage students in learning (Wijers et al. 2010). However, research on 
the use of applications to mobile devices in mathematics education is still sparse, 
and more empirical, as well as theoretical, studies are called for (Drijvers 2012). 
This chapter is intended to contribute to this line of research, in that we seek to 
investigate how educators can make use of new technologies to include simulations 
as a more integrated and realistic part of modelling activities in schools to support 
students’ learning and doing modelling.

43.2  Theoretical Framework

In this chapter we use Gibson’s (1979) notion of affordances as the framework for 
describing and analysing the potential for students’ actions in learning environ-
ments. Although affordances are widely used in research literature, there exist mul-
tiple definitions and an agreed and shared definition of affordances is hard to find 
(Brown et al. 2004; Hammond 2010; Scarantino 2003). According to Gibson (1979), 
affordances are relationships between objects and individuals in an environment 
that facilitate interactivity. Affordances mediate the opportunities for what might 
happen (happenings) or what an individual will be triggered to do with a particular 
intention (doings) in an activity within an environment (Scarantino 2003). However, 
affordances of themselves do not automatically imply that the happenings and 
doings will occur. The individual’s abilities such as skills, motivations and metacog-
nition are also conditions for some happenings and doings to be realised. Scarantino 
(2003) differentiates between surefire affordances and probabilistic affordances. 
Surefire affordances are guaranteed to trigger certain happening and doings, whereas 
probabilistic affordances have a likelihood to trigger their associated happenings 
and doings with a given probability (p < 1).

Gibson (1979) used a specific type of linguistic form to refer to affordances, 
achieved by adding the extension “-ability” to a given verb phrase: [verb phrase]-
ability. For example, in the context of ICT, a software environment may provide 
affordances, such as Data display-ability (offerings of plots of numerical data) and 
Function view-ability (offerings of particular views of functions) (Brown 2015). 
However, as Hammond (2010) points out, one might argue that in an ICT context 
the two affordances above may be related to either symbolic properties in the envi-
ronment or physical properties. According to Hammond, “affordances arise because 
of real physical and symbolic properties of objects. Affordances provide both 
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opportunities and constraints” (2010, p. 216). Here, physical properties are similar 
to hardware and concrete objects in an environment, whereas symbolical properties 
capture higher-level software instantiations in terms of interfaces and texts.

We are motivated by Hammond (2010) who argues that “there is a strong case for 
using the term affordances in discussing ICT ... [as] Gibson gives distinctive insights 
into the relationship of tool and user and points us to the right question: how do user 
and tool come together?” (p. 215). This will inform us about students’ experiences 
with a game app and so is useful for identifying principles for design and implemen-
tation of modelling activities. We follow Scarantino (2003) who proposes the fol-
lowing conceptualisation of affordance bearers which stresses the temporal aspect 
of the manifestation of affordances: “given background circumstances C, an organ-
ism O can at t engage in an event that qualifies as a doing or happening M and 
involves X, then X is at t an affordance-bearer with manifestation M relative to O in 
circumstances C” (p. 958, italics in original).

43.3  Aim and Research Questions

The aim of this chapter is to present the results from the first iteration of a teaching 
experiment centred around students engaged in group work with a game app to 
develop principles to design and implement modelling activities. Departing from 
the circumstances, a prototype classroom activity C, we sought to improve the 
design so that it is more likely that the happenings and doings M triggered by the 
perceiving of affordances offered in C support students’ learning towards desig-
nated learning objectives. In other words, we wanted to investigate students’ experi-
ences of working with the game app within the intervention environment and to 
compare those experiences with the corresponding intended outcomes for the 
designed prototype. Our hypothesis in the redesign process was that alignment of 
students’ impressions and experiences with the designed intervention would 
increase the chances of students’ productively perceiving affordances. To gain 
insight into how to improve the intervention prototype accordingly, we address the 
following research questions:

 1. What are students’ first impressions of the intervention prototype in terms of 
students’ expressed experiences, and what do they suggest to be changed for the 
redesign?

 2. What areas of mathematics and mathematical content do students associate with 
the activity?

43.4  Methodology

For the design, implementation and redesign of the intervention in the teaching 
experiment, we adopted an Educational Design Research (EDR) paradigm, that is 
“the systematic analysis, design and evaluation of educational interventions with 
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the dual aim of generating research-based solutions for complex problems in educa-
tional practice, and advancing our knowledge about the characteristics of these 
interventions and the processes of designing and developing them” (Plomp 2013, 
p. 16). This choice provided us with both guidance for intervention design and con-
nected with our overall goal of identifying principles to design and implement mod-
elling activities using game apps. The EDR-based methodological approach 
systematically analyses, designs and evaluates interventions (Plomp 2013). To 
begin we briefly describe the game apps, Plague and Infection, the two free games 
for mobile devices used in our study.

43.4.1  The Game

The goal of both games, Plague and Infection, is to create and manipulate a virus 
and try to evolve it into a pandemic. Ultimately, the goal of the games is to wipe out 
the world population as fast and effectively as possible. The two games are for all 
practical purposes identical in design, function, controls and game interface, so we 
illustrate using Plague. When starting a new game, one needs to select a plague type 
and the difficulty level to play the game and to name the virus. The game simulation 
begins when a player places an infected patient zero in the country where the out-
break will take place.

The taskbar at the bottom of the screen in Fig. 43.1a provides the gamer with 
statistics such as how many people are infected and the number diseased at any 
given time. There is also a news banner and calendar at the top of the screen in 
Fig. 43.1a making it possible to track elapsed time and dates. In addition, there is 
information which tells the gamer about the progress of a cure that is being devel-
oped as well as the number of so-called DNA points collected. DNA points essen-
tially form the game’s currency which is gathered in different ways during the game, 
for example, by touching the circular symbols in the world map in Fig. 43.1a.

Fig. 43.1 Screen shots: (a) the World tab, (b) the Disease tab for evolving the disease
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At the bottom of the screen, the gamer can also access the Disease and World 
tabs. In the Disease tab, see Fig. 43.1b, DNA points can be used to alter and manip-
ulate the virus. Circumstances may be altered and evolved, such as virus transmis-
sion, symptoms induced and resistance to drug treatments. The alterations affect 
virus infectivity, severity and lethality. The gamer has to develop a strategy to make 
the virus widespread and to alter it in order to make it as lethal as possible to win the 
game (i.e. wipe out all human life worldwide). The World tab gives the gamer infor-
mation about how the virus is spreading and how the cure being developed pro-
gresses and data on the number of infected and diseased persons.

43.4.2  Design of the Intervention Prototype

To design the intervention prototype, an epistemological analysis of the game app 
was carried out based on the learning goals in the Swedish mathematics curricula. 
We focused on the goals: use digital tools, use of mathematics for exploring realistic 
scenarios, interpret and use different representations of data such as tables and 
graphs and investigate the role of exponential functions in a given context (Skolverket 
2012), which we consider important components of classroom teaching and learn-
ing of mathematical modelling involving exponential phenomena using technology 
and simulation. Departing from these learning objectives, we then turned to identi-
fying affordances of the environment (C) provided by the game app (X) that poten-
tially would provide the opportunity for an individual (O) to interact in the 
manifestations (M) of the enactment of these affordances realising the intended 
learning outcomes. Based on the authors’ experimenting and experiences with the 
game app the following affordances related to the efficient use of the app for model-
ling were identified:

• Simulate with-ability (an opportunity to simulate a realistic scenario)
• Multi-solution-possibility (opportunities for students to get different outcomes)
• Interactivity (opportunities for hands-on activities)
• Data-generate-ability (opportunities to use different data such as time, number 

of infected, number of deaths)
• Plot-ability (opportunities to get plots of data)
• Multi-analyse-ability (opportunities for data to be analysed in different ways 

dependent on curricular goals such as learning exponential functions (exponen-
tial analyse-ability) and logistic growth (logistic growth analyse-ability)

• Efficient-time solve-ability (an opportunity to complete the game in approxi-
mately half an hour)

In addition, taking the relative complexity of the game app as well as potential 
variation in student familiarity with this type of game into account, the intervention 
prototype (C) was designed to include two game-related resources for students: a 
manual describing the game and how to play it and instructions for the actual class-
room activity.
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The manual consisted of a two-page handbook with historical facts about pan-
demics that have swept over the world, descriptions of how to download the games 
and basic information and strategies on how to play. The main intended function of 
the manual was to prepare students before the activity in the classroom, so they 
would be familiar with the game and have more time for collecting and analysing 
data in class.

The instructions also included historical facts about pandemics to set the scene, 
but foremost imperatives to structure the activity, for example, play the game at the 
easiest level; take data points in terms of number of infected and dead in the world 
every other week; record the data in an Excel spreadsheet, play until you win or 
lose; and draw a graph of how the number of infected and dead evolved as the game 
progressed. In addition, the instructions contained 11 tasks for students to investi-
gate and address. Examples of student tasks were: Draw a sketch of the graph of 
number of dead and infected and describe the spread of the plague. Are the number 
of infected decreasing and if so why? Are there any connections between the graphs? 
Describe the spread of the plague during month 0–6 and 7–12. When is the risk 
greatest to get infected? Instructions were also provided to assist students with little 
experience in using Excel to explore a data set with how to use it for making tables 
and graphs.

43.4.3  Implementation of Intervention Prototype

The intervention prototype was implemented and evaluated in two upper secondary 
classrooms (grade 10) in May and June 2014. The students were given the manual 
a couple of days before the implementation and asked to familiarise themselves 
with the game. The students were also instructed to bring tablets or mobile phones 
to class on the day of the implementation. The teachers for the two classes indepen-
dently prepared the activity by bringing laptops with Excel and the instructions to 
their classrooms. After a short introduction to the activity by the teacher, the stu-
dents followed the instructions and worked in pairs to collect data that they analysed 
using Excel. The students then worked with the questions in the instructions. At the 
end of the 90-min activity, the students individually completed an evaluation form.

43.4.4  Evaluation Instrument

To evaluate the intervention prototype, the students were given an evaluation form 
at the end of the class. The instrument consisted of 29 items divided into three items 
(short answers) about background information (gender and type of device used), 
eight items (Likert scale) relating to students’ previous experiences of mobile apps 
used in education, four items (Likert scale) about students’ expressed experiences 
about working on the activity and ten items (Likert scale) focusing on the clarity of 
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the instructions. The Likert scales used were five-point scales ranging from strongly 
disagree (1) to strongly agree (5). There were an additional four open questions: 
What mathematics do you think this activity includes? What have you experienced 
as positive/negative with the activity? What do you think should be changed next 
time? as well as a question asking for any other comments or thoughts about the 
intervention prototype. In this chapter, we report from the four Likert questions 
about how the students expressed their experiences of engaging in the intervention 
prototype and the three open questions above. The fourth question did not provide 
any further insights in relation to the other questions.

43.5  Results and Analysis

The analysis of the 16 female and 14 male students’ answers in the two classes on 
the evaluation form regarding their expressed experiences about the activity in the 
intervention prototype being fun, interesting, easy and engaging is summarised in 
Table 43.1. All 30 students answered all questions except one male student who did 
not provide an answer to the question of whether he thought the activity Pandemic 
was easy.

From Table  43.1 one can generally conclude that female students’ expressed 
experiences of the activity Pandemic was less fun, less interesting, less easy and less 
engaging (mean scores ranging between 2.50 and 2.75) compared to the male stu-
dents’ expressed experiences (mean scores ranging between 4.07 and 4.36). 
Independent t-tests show that the differences in the scores between female and male 
students are statistically significant in all four questions (Fun: t(28)  =  −3.70, 
p = 0.001; Interesting: t(28) = −3.38, p = 0.001; Easy: t(27) = −4.59, p = 0.000; and 
Engaging: t(28) = −3,94, p = 0.000). Viewing the categories in Table 43.1 as trig-
gers potentially affecting the probabilities for realising happenings and doings 
related to probabilistic affordances, this shows a discrepancy between affective ten-
dencies towards the activity in the prototype which needs to be considered in the 
redesign if all students are to productively engage in modelling.

The students’ answers to the first three open questions were generally short and 
unambiguous. Hence, the answers could easily be grouped into categories based on 

Table 43.1 Students’ expressed experiences about the activity

Gender
I think the activity pandemic was:
Fun Interesting Easy Engaging

Female Mean (M) 2.69 2.75 2.56 2.50
Std. deviation 1.621 1.183 1.315 1.366

Male Mean (M) 4.36 4.07 4.46 4.14
Std. deviation 0.745 0.917 0.776 0.864

Total Mean (M) 3.47 3.37 3.41 3.27
Std. deviation 1.525 1.245 1.452 1.413
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the topics raised. If a student’s answer entailed more than one topic, it was coded to 
belong to multiple categories. The result of this grouping is summarised in 
Table 43.2.

The areas of mathematics and the mathematical content the students associated 
with the activity in the intervention prototype mainly related to statistics manifested 
in the categories statistics, diagram and tables (see Table 43.2). These categories 
can be viewed as pointing to a descriptive statistic apply-ability, providing opportu-
nities in the intervention prototype for triggering happenings and doings related to 
teaching and learning objectives in statistics. Other categories we associated with 
affordances are plot-ability (draw diagrams with ICT), function view and interpret- 
ability (identify type of function and interpret functions) and model use-ability (the 
use of models). However, only one student explicitly related exponential functions 
as mathematical content in the activity, which was one of the learning objectives of 
the intervention prototype that would be a desired outcome as a modelling activity.

The category summarising most of the answers to the question: What have you 
experienced as positive/negative with the activity? was fun, which included state-
ments about finding the activity engaging and exciting. Fun, alongside the catego-
ries everything was good, easy and boring, relates to students’ general willingness 
to engage in the activity.

Some of the categories capture the students’ experiences in relation to symbolic 
properties of the game app. For example, six students stressed the relation to real 

Table 43.2 Students answers to the first three open questions summarised in categories

Questions Categories with frequencies of responses

What mathematics do you think this 
activity includes? (n = 19)

11 statistics 3 nothing
10 diagrams 3 draw diagrams with 

ICT
6 tables 2 interpret diagrams
5 graphs of functions (1 
related to exponential 
graphs)

1 I don’t know
1 use of models

What have you experienced as positive/
negative with the activity? (n = 23)

16 fun 5 the app in itself
14 too many data points and 
too little time

5 more instructions

11 everything was good 4 to use excel
6 relation to real life 3 no clear aims with 

the activity
6 different activity 2 easy
6 boring 1 difficult to get going

1 group work
What do you think should be changed 
next time? (n = 18)

Shorten the time with the game
Nothing should be changed
Should not be used
The teacher should be more detailed when 
introducing the activity

P. Frejd and J.B. Ärlebäck



525

life in that the activity entailed dealing with a context they considered to be from 
outside the classroom of mathematics relating to how diseases spread. We identified 
and refer to this as a creating reality-ability affordance. A physical property of the 
game app articulated was that the app consumed too much battery. Five students’ 
answers expressed frustration and discontent related to properties of the app in itself 
that it was difficult to pause the simulation in order to record data, as well as finding 
the sound of the game annoying and tiring.

Looking at the intervention prototype more broadly, but in terms of qualities that 
would affect the utility of the learning activity for modelling, the students expressed 
use of Excel as a good experience as well as being positive to engaging in group 
work (collaborative learning-ability). Five students expressed negative or mixed 
feelings about the challenge to come up with a game strategy needed to win the 
game. Others (n = 14) expressed the opinion that they were instructed to get too 
many data points and that there was too little time to finish the activity in the desig-
nated time.

The students’ answers to the question: What do you think should be changed next 
time? were in line with many of the comments in the answers depicted above and 
did not present any further information on our goal of elaborating principles for a 
modelling app implementation.

43.6  Conclusions, Discussion and Implications

Overall, students were positive towards the intervention prototype in terms of the 
activity being fun, interesting, easy and engaging. This signals a general willingness 
to engage in a modelling activity where the use of the app is an integrated part. 
However, a significant divide and difference between female and male students’ 
experiences were noted. These findings are in line with results from previous studies 
on students’ attitudes towards using simulations and games on mobile devices 
(Wijers et  al. 2010) and that technology, in particular, engages boys’ interest 
(Schreiner and Sjøberg 2004). One potential reason for the difference expressed 
with respect to gender might be how the game context was used in the activity, with 
the aim to terminate humanity. A way to try and come to terms with this aspect in 
the redesign could be to clarify the aim with the activity and stress aspects of model-
ling: for the students to explore how mathematical models are used to predict how 
infectious viruses spread around the world and what assumptions and parameters 
are used to calculate the effects of mass vaccination programmes. In addition, 
emphasising that the playing time is secondary in relation to learning objectives 
may trigger happenings and doings associated with the intended modelling goal 
manifested in the model use-ability, exponential function apply-ability or refocus 
the activity stressing descriptive statistic apply-ability.

The intervention prototype stressed efficient-time solve-ability (playing time is 
approximately half an hour per game), but the result indicated that data collecting 
was experienced as tedious and boring. Engaging students in solving complex 
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authentic modelling problems (creating reality-ability) in collaboration with others 
(collaborative learning-ability) requires students to reflect and discuss different 
strategies (multi-analyse-ability) and solutions (multi-solution-possibility), which 
capture some key ideas about work habits for modelling in the workplace (Frejd and 
Bergsten 2016). For the activity to be more authentic, we could increase the stu-
dents’ autonomy and in the redesign let the students decide and make decisions on 
how much data to collect, which is a central aspect of modelling activities. Other 
affordances stressed in the intervention prototype such as simulate with-ability (an 
opportunity to simulate a realistic scenario), interactivity (opportunities for hands-
 on activities), data-generate-ability (opportunities to use different data such as time, 
number of infected, number of deaths) and plot-ability (opportunities to get plots of 
data) are not only central within this particular design but also more generally 
emphasise the connection between modelling, new technologies and simulation.

Recent advances in technology and students’ increased access to digital tools 
have changed the possibilities to engage in realistic simulations (apps) and have 
added new dimensions to the teaching and learning of modelling. Based on our 
results, we suggest that the affordances identified and discussed in this chapter 
could be used as a first set of tentative principles for designing and implementing 
modelling activities using game apps. However, more research is needed to further 
develop these principles so that the potential and role of new technology and simu-
lation can be explored and put to productive use within everyday classroom teach-
ing and learning of mathematical modelling.
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Chapter 44
Modelling and Simulation with the Help 
of Digital Tools

Gilbert Greefrath and Hans-Stefan Siller

Abstract This chapter undertakes a theoretical and empirical examination of mod-
elling with digital tools in mathematics instruction. First, modelling processes that 
integrate the use of digital tools are considered from a theoretical point of view. 
With the help of several significant examples, the varying added benefits of digital 
tools in modelling and simulations are clarified and put into perspective within the 
theoretical discussion. The relationship between modelling and simulation is also 
clarified. To complement the theoretical discussion, a qualitative, empirical study, 
examining what activities students actually perform when using a digital tool, 
Geogebra, for working on modelling tasks and where these activities are located 
within the modelling cycle is reported.

Keywords Technology • Digital tools • Computer • Qualitative empirical research

44.1  Introduction

Mathematical models and simulations in mathematics instruction have gained 
importance, due to, amongst other things, the current prioritisation in educational 
standards, the continuing development of digital tools and the increased use of mod-
els and simulations to solve real-world problems. They have been a growing subject 
of attention and didactic discussion, because many problems facing the world today 
are becoming more and more complex, increasing the need for mathematical 
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models in order to obtain the most objective possible decision criteria. Simulations 
become especially important thanks to the relatively inexpensive and sufficient 
computer capacities that are available. In our view, another reason is that (simple) 
simulations are generally more cost-effective than real experiments. Yet, it is also 
possible to test scenarios that could, or should, never occur in reality, for example, 
the spreading of oil in the Atlantic or the effects of a major nuclear disaster in 
Tokyo. This approach can also be used effectively for educational purposes without 
such simulations actually going as far as the complex issues of the real world. The 
usefulness and necessity of simulations in the context of mathematical modelling 
can already be shown on a small scale.

Modelling activities in mathematics instruction are also subject to the influence 
of digital tools. Digital tools can be of great assistance for teachers and learners 
alike, particularly in connection with real-world problems and the discussion of 
those. Simulations are also of interest in the context of using digital tools for model-
ling in mathematics instruction. “Simulation, the creation of an analogue of a real 
world situation, is increasingly used in many areas of education and training. 
Aircraft simulators for pilot training, business games for managers, ... are all exam-
ples of simulations” (Clements 1984, p. 319).

A simulation thus serves to investigate an operation, a process or an experiment 
with the help of mathematical models. To this end, technical, biological or eco-
nomic content is modelled and simulated with the help of mathematical models – 
usually in conjunction with a digital tool. This means that simulations are inseparably 
linked to mathematical modelling. The topic of modelling and simulation is thus of 
great interest for mathematical didactics, particularly because it testifies to the 
social relevance of mathematics.

44.2  Theoretical Framework

44.2.1  Modelling with Digital Tools

The German educational standards for mathematics at primary and secondary level 
and for higher education entrance qualification describe mathematical modelling as 
a competency. Digital tools can support various processes of, and for, modelling. 
This is described in more detail in the German educational standards (KMK 2015). 
The potential of digital tools is emphasised there. Particular value is seen:

• In the discovery of mathematical relationships...
• In promoting the understanding of mathematical relationships, not least by 

means of diverse visualisation possibilities.
• In the reduction of schematic processes and the processing of large amounts of data.
• In the ... reflected use of control options. (p. 13)
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Concerning the discovery of mathematical relationships, digital tools are especially 
important in mathematical experiments. Such experiments are carried out on a real 
or mathematical model, say, in connection with population developments, traffic 
situations or the functioning of technical devices.

44.2.1.1  Example Rescue Helicopter

For the best-possible stationing of a rescue helicopter (Greefrath and Weitendorf 
2013, p. 198), data based on the accident frequency in a certain area can be acquired 
with the help of a spreadsheet, and a suitable site for the helicopter can first be found 
experimentally. With the help of dynamic geometry software, the real-world situa-
tion can be translated into a geometric model. For the case of a helicopter and three 
accident sites, we can fall back on known geometric objects. Continuous models, in 
which each site is suitable as the helicopter site, and combinatorial models, in which 
only certain sites are permissible, can be distinguished for several sites (Ortlieb 
et al. 2009, p. 88).

Digital tools can be used to create different representations, it is possible to 
switch between representations relatively simply, and several, interactively linked 
representations can be generated on the display simultaneously (Weigand and Weth 
2002, pp. 36–37).

It is possible to reduce schematic processes, especially in conjunction with com-
puter algebra systems (CAS) as seen in this next example.

44.2.1.2  Example Milk Packaging

When making calculations in the context of optimal packaging problems, a milk 
package, for example (Böer 1993), rational functions arise, in which the zeros of 
the first derivative can no longer be determined exactly with the methods of school 
mathematics without the aid of digital tools. In this case, a CAS can be used to 
determine and visualise the derivative function and to calculate its zeros. 
Furthermore, the calculations can also be performed graphically and numerically. 
In addition, it is possible to discuss the complex, real-world issue – say, taking the 
flap of the packaging into account  – in the mathematics classroom (cf. Deuber 
2005).

The verification and control of solutions obtained is an essential mathematical 
activity. Digital tools can support these control processes, for example, with the help 
of graphic visualisations of numerical calculations, when solving equations, in 
terms of conversions or when working with discrete and functional models.
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44.2.1.3  Example Bacterial Growth

In the growth of a bacterial culture, the increase in bacteria over a period of time can 
be assumed to be proportional to the existing population and to the time elapsed, at 
least neglecting further interactions with the outside world or the limits of the 
growth process due to physical conditions. The extent to which this theoretical 
model can be applied to a real growth process can be checked graphically or analyti-
cally by calculating a regression line.

The various functions of digital tools in mathematics instruction are applied to 
modelling problems at different steps in the modelling cycle. Control processes, for 
example, are generally assigned to the last step of the modelling cycle. Calculations 
are made with the help of the generated mathematical model, which is usually a 
function, for example, in analysis. Some of the potential uses of digital tools in a 
modelling process are shown in Siller and Greefrath (2011); as in Geiger (2011, 
p. 312), the view on how technology can be utilised at several steps in a modelling 
cycle can be found. In addition to this integrated presentation of the use of digital 
tools in modelling, the literature also has modelling cycles that represent technology 
as a separate area between the mathematical model and mathematical results (Daher 
and Shahbari 2015; Maki and Thompson 2015; Savelsbergh et al. 2008; Siller and 
Greefrath 2010).

Regardless of this depiction of the integration of digital tools into the modelling 
cycle, there are still many open questions concerning the use of digital tools in mod-
elling, as Niss et al. (2007) show in detail:

• How should technology be used at different educational levels?
• What implications does technology have for the range of applications and mod-

elling problems that can be introduced?
• How is the culture of the classroom influenced by the presence of technological 

devices?
• When does technology potentially kidnap learning possibilities, e.g. by render-

ing a task trivial, and when can it enrich them? (Niss et al. 2007, p. 24)

44.2.2  Simulations

Simulations are an opportunity to answer questions about real-world problems. In 
some cases, they are the only way to handle a problem. They can be carried out using 
real, mathematical models or computer models. Simulations are used to collect data 
that can be applied for a variety of purposes. One possibility is to obtain information 
about the simulated system. Another is to use the data to optimise the model used. 
This can be achieved by comparing the data acquired from the simulation with the 
real data. In such cases, the simulation is a part of the modelling cycle for the develop-
ment of a suitable model of a real situation (Sonar 2001). This is depicted in Fig. 44.1.
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The various activities described within the modelling cycle become especially 
clear in simulations aided by digital tools. Simulations involve experimentation 
with mathematical models – usually in conjunction with a digital tool. Yet simula-
tions can also promote the construction of models in the same way. Simulations can 
support the design of various, elaborate models, particularly when an associated 
reference to reality is examined (cf. Siller 2015). In such cases, a real situation is 
selected as a starting point, and a mathematical description of the situation is gener-
ated for further investigation with the help of models.

44.2.2.1  Example Mountain Ascent

The calculation of an energy-optimised mountain ascent (Bracke et al. 2015) first 
requires a model of the terrain, which must be generated from available data points. 
Since we are starting with an extraordinarily large volume of data, we must consider 
how the digital tool will process these data and whether a prior reduction of the data 
points is necessary and sensible for further work. In the case of an energy-optimised 
climb, the path on the collected terrain model can be implemented by further math-
ematical considerations, so that alternatives can be simulated on this basis.

Extra-mathematical issues, real-world circumstances in particular, can be inte-
grated into mathematics instruction by modelling activities supported by a simula-
tion. In the process, learners acquire not only mathematical skills but also such 
interaction with mathematics also develops their ability to interpret and assess. 
Mathematical discussion of real-world problems is also integrated.

Fig. 44.1 Simulation as part of the modelling cycle (Sonar 2001)

44 Modelling and Simulation with the Help of Digital Tools



534

The mathematical models used in simulations can be viewed as a simplified rep-
resentation of reality taking only a few, primarily objective (sub)aspects into 
account. This interpretation permits a diverse variety of model variants. Two model 
types can be identified as being particularly important, the descriptive model and the 
normative model. Descriptive models describe, explain or predict (real) processes. 
With them, we attempt to generate a representation of aspects of reality that is as 
accurate as possible under certain perspectives. In contrast, normative models stipu-
late certain facts or processes to the user. Descriptive models are highly suitable for 
learning mathematics and modelling, because they are always designed with spe-
cific intentions in mind. In any case, the mutual relations between mathematics and 
the rest of the world are at the heart of every modelling project (Pollak 1979). It is 
indispensable that we take up a real-world issue and engage ourselves with it.

In order to create a simulation, decisions must be made as to the type of simula-
tion. These decisions concern time dependency and predictability. If a time depen-
dency is considered, we refer to it as a dynamic simulation. Since the focus is on a 
time-dependent change, we can refer to such simulations as “carrying out experi-
ments with models of dynamic systems” (Krüger 1974, p. 24). For example, we can 
take the flow of traffic on a street with several traffic lights and consider the optimi-
sation of light changes as a function of time. There are also simulations in which 
time does not pay a role. These are called static simulations. Another characteristic 
of simulations is their predictability. If a simulation is employed to find a value 
several times in a row with randomly varying results, we call it a stochastic simula-
tion. In contrast to these stochastic simulations, random aspects do not arise in 
deterministic simulations. For example, if we investigate the movements of a fair-
ground ride, which always run identically under the same starting conditions, this 
would be an example of a deterministic simulation (cf. Greefrath and Weigand 
2012).

44.3  Design of the Study

44.3.1  Research Issues and Instruments

On the basis of the theoretical background, the following research issues were 
examined:

• At which steps in the modelling cycle can digital tools be employed?
• What activities are performed with the digital tools in the modelling process?

To investigate the solution processes of students, an open Pirate Task created by 
Laakmann (2005, p. 86) with a reference to the real world was used:
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Pirate Task 

On a foggy November morning a patrol boat sets sail from the safe harbour, 
to track pirates. The conditions for this are very bad, because the estimated 
visibility is only about 500 m. Nevertheless, the commander orders the boat to 
head Northeast. The boat leaves the port at 7 o’clock in the morning. At the 
same time a pirate ship with a mast height of about 45 m sets sail toward the 
Southeast. It has a speed of about 10 knots. As the patrol boat is leaving the 
port, the pirate ship is located 7 km to the north of the port and 2 km to the east 
of the port. The patrol boat makes approximately 15 knots and is one and a 
half times as fast as the pirate ship. Will the pirate ship be spotted?

This task can be solved in different ways. In this case, the added benefits of using 
digital tools are apparent. For example, the task can be handled with the help of 
dynamic geometry software, a spreadsheet or a computer algebra system. The 
resulting mathematical models differ, resulting in different perspectives that must 
be taken into account (Siller and Greefrath 2010).

44.3.2  Participant Selection and Study Implementation

For the study, students were selected who had already worked with the dynamic 
geometry software, Geogebra, in the classroom for three lessons before the study 
started. The qualitative study was carried out at a secondary school in Münster 
(Germany) at the end of year 10. Four pairs of students were observed as they per-
formed their tasks. Every student pair worked in a separate room with a researcher 
and a video camera. The students were instructed to solve the problem using 
Geogebra without any further aid. The students’ efforts were recorded using a video 
camera.

44.3.3  Data Analysis

To evaluate the observations, the videos of the observations were completely tran-
scribed. The transcripts contain all verbal exchanges. The subsequent coding pro-
cess took place in several steps. The first step was to develop the categories. To do 
this, conceptual terms were assigned to the individual statements of the students in 
the context of open coding. These terms were discussed and modified over several 
rounds (Strauss and Corbin 1990). The objective was a description of the solution 
process independently of the concrete task at hand for the students so that these 
categories could be reapplied to later studies and solution phases compared on the 
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basis of these categories. The second step was to confirm and verify the categories. 
The following categories were developed for when digital tools were used on the 
basis of the material available:

• Draw: drawing simple geometric objects into a coordinate system (e.g. points, 
lines, sections, circles)

• Visualise: drawing in or moving points or segments in order to represent previ-
ously found values graphically (e.g. moving points in order to create a segment 
of previously determined length)

• Construct: drawing more complex geometric objects and configurations, using 
intermediate steps/auxiliary lines to do so (e.g. angle bisectors)

• Measure: finding the distances between points, the lengths of segments, the sizes 
of angles or the gradients of lines and segments

• Experiment: changing the parameters, conditions or assumptions of a drawing 
and observing the effects

• Calculate: making calculations with a handheld device or a software-based 
computer

• Researching: researching information on the internet (e.g. the meaning of the 
word “node”) (Vehring 2012)

The partial competencies of modelling in the cycle of Blum and Leiss (2007) were 
used as the basis for categories for the solution processes within the modelling cycle 
to address the second research issue.

44.4  Results of the Study

With the help of the categories for the solution process within the modelling cycle, 
the individual modelling paths of the student pairs could be plotted. At the same 
time, the categories could be used to find the corresponding activity for the use of 
digital tools. The results of the student pairs thus showed the modelling path of the 
pair within the modelling cycle including the use of digital tools.

Figure 44.2 shows the path of student pair A. The other three student pairs had 
similar paths. Digital tools were employed primarily between the situation model, 
real model, mathematical model and the mathematical results in the modelling 
cycle. In addition, tools were also used directly between the situation model and the 
mathematical model, where there is actually no direct connection shown in this 
modelling cycle.
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44.5  Discussion

The study is a contribution to the discussion of how modelling with digital tools can 
be investigated and illustrated best. The observations show that digital tools can 
indeed be utilised at different steps in the modelling cycle. However, if we took into 
account only the partial competencies described in the modelling cycle with respect 
to the ascertained use of digital tools, it was shown that the students did not use the 
tools while interpreting and validating the mathematical results, for example, using 
another visualisation or checking the results by repeating the steps. Of course, it is 
not to be expected that the students will go through the steps in the order of the 
modelling cycle, but we assume that all partial competencies are necessary for the 
solution. There could be a number of reasons for the missing interpreting and vali-
dating with digital tools, which could be associated with the students themselves or 
the selected tasks.

The study shows that the modelling cycle used describes the utilisation of digital 
tools in modelling processes meaningfully, as does that of Geiger (2011). A model-
ling cycle that represent technology as a separate area (cf. Siller and Greefrath 
2010), locating it exclusively between the mathematical model and the mathemati-
cal solution, does not describe these modelling processes sufficiently. The learners 
use the tools in very diverse ways for researching, constructing, drawing, calculat-
ing, measuring, experimenting and visualising. To reinforce these activities in the 
classroom, we recommend as well, the use of simulations that naturally link model-
ling with the use of digital tools. However, further research with a broader range of 
data and other example problems are required.

Fig. 44.2 Modelling path and digital tool use, student pair A
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45.1  Introduction

Engineering students are increasingly being exposed to a technology-rich environ-
ment where conceptual knowledge and technological skills need to be integrated. To 
interpret and analyse computer-generated graphics are vital skills in engineering 
applications but demand conceptual understanding (Hjalmarson et al. 2008). When 
foundational mathematics relies extensively on paper-and-pencil graphs, students 
develop “traditional symbolic lenses” (Nardi 2014, p. 208) and often lack “visual 
literacy” (Natsheh and Karsenty 2014, p. 119). The transition from paper-and-pen 
techniques to a computer algebra system (CAS) is a nontrivial process, and visuali-
sation cannot simply be assumed. In particular, engineering students in Singapore 
are able to solve difficult differential equations (DE) symbolically but fail to vali-
date CAS solutions (Soon et al. 2011). In their study these authors used a mathemat-
ical modelling approach to emphasise the real-world contexts of DE through 
visualisation with non-stereotyped problems. Stillman et al. (2013, p. 22) point out 
that for engineering students, redesigning tasks so as to make modelling more visi-
ble can be useful and important in making “students more successful modellers and 
designers” and more appreciative of the applicability of modelling activities.

School curricula in South Africa do not promote visualisation opportunities and/
or the use of CAS calculators. This can cause visualisation deficits for engineering 
students when first exposed to a CAS environment. As observed in Singapore (Soon 
et al. 2011), many engineering diploma students almost thoughtlessly jump straight 
into a CAS task and fail to (1) relate DE as models of real-world phenomena, (2) 
connect and contextualise numerical and graphical representations with symbolic 
equivalents and (3) interpret and reflect on computer-generated tables and graphs. 
These failures are compounded when analytical approaches are taught in isolation 
from other equivalent representations, an unfortunate stereotype that still prevails in 
South Africa. This chapter explores the influence of a researcher designed model-
ling task, that is in the form of a model-eliciting activity (MEA) (Lesh and Doerr 
2003), on engineering diploma students’ visualisation when solving DE using 
CAS. The following research question was posed: What is the influence of a first- 
time encountered mathematical modelling task on the development of engineering 
diploma students’ visualisation when solving DE using CAS?

45.2  Theoretical Perspectives

45.2.1  Visualisation with Cognitive Technology

Scholars have attached different meanings to the concept of visualisation. In generic 
terms, visualisation is the act of forming a mental image (Zimmerman and 
Cunningham 1991). For centuries, teachers have produced visual images to illus-
trate and explain mathematical concepts. Since the mid-1980s, the notion of visuali-
sation became strongly associated with representations of computer objects. 
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Emergent technologies in mathematics education spurred momentum into the 
research of the cognitive value afforded by visualisation. The centrality of visuali-
sation must therefore go beyond the mere perceptual and also involve a deep 
engagement with the conceptual (Arcavi 2003). Tools such as paper-and-pen and 
CAS are cognitive technologies since it can help to transfer internal images created 
in the mind to external images that can then be analysed and reflected upon. The 
end product of visualisation is not the visual object itself, but the meaning-making 
of the underlying concept. It is believed that visualisation of conceptually rich 
images is cognitively more demanding than analytical procedures (Arcavi 2003). 
For this reason, many school students are reluctant visualisers and find it difficult 
to reconcile mental images with digital images (Brown 2015). In-depth under-
standing and proper mathematical meaning comes with fluency between different 
presentations of a concept. This study adopts the definition of Arcavi (2003, 
p. 217); visualisation is

the ability, the process and the product of creation, interpretation, use of and reflection upon 
pictures, images, diagrams, in our minds, on paper or with technological tools, with the 
purpose of depicting and communicating information, thinking about and developing previ-
ously unknown ideas and advancing understandings.

45.2.2  Theoretical Lens

APOS theory is used in this study as the theoretical lens to analyse the development 
of visualisation in a modelling task. According to Buchholtz (2013, p. 103), theory 
as a lens enables researchers to “view” or to “observe” in order to formulate per-
spectives accordingly. Dubinsky and McDonald (2001, p. 276) developed APOS 
theory which refers to the mental construction of “actions, processes, objects and 
schemas” in order to make sense of phenomena. They showed how APOS theory 
can be used in a cooperative technology-rich environment and found that the ability 
of students to mentally construct concepts through actions, processes, objects and 
schemas can indicate their success or failure of making sense of situations. 
According to Dubinsky and McDonald, when one student can progress to a certain 
point and another student cannot, APOS theory can direct the researcher to the men-
tal construction of actions, processes, objects and schemas that the first student 
apparently has made but the other student has not.

APOS theory appraises learning of new mathematical concepts through actions 
on existing processes, objects and schemas. When actions make sense and become 
meaningful, students can internalise such actions and construct new internal pro-
cesses. Consequently, new objects can be formed through the encapsulation or con-
version of these internal processes. All these actions, processes and objects are 
reorganised to form a new mental schema. Following Piaget, Dubinsky and 
McDonald (2001) acknowledge that the learning of new mathematical concepts also 
requires existing schemas in order to construct new schemas. A new process can 
therefore be constructed out of existing ones by either coordinating two or more 
processes or through the reversal of a process.
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45.3  Empirical Design and Method

The study is exploratory in design, and qualitative content analysis was used to 
analyse documents with process coding (Saldaña 2009). Data were themed with 
process coding in search of actions, processes, objects and consequences thereof. 
The extent to which processes and objects were connected and the role these con-
nections played in the modelling of schema were analysed. Content analysis 
revealed how processes unfolded; this was complemented with the researchers’ field 
notes to understand why certain actions and decisions were taken.

45.3.1  Engineering Mathematics and Current Curricular 
Approach

Engineering Mathematics 1 and Engineering Mathematics 2 are compulsory mod-
ules in the National Diploma of Engineering offered at universities of technology 
and comprehensive universities (offering both diplomas and degrees) in South 
Africa. These modules focus predominantly on paper-and-pen techniques and 
require students to use a standard (non-graphic) calculator; moreover, group work is 
not promoted. Unlike at most other institutions in South Africa, the University of 
Johannesburg’s (UJ) offering of Engineering Mathematics 3 not only comprises 
theory lectures but also involves a weekly Mathematica session of 150  min. 
Engineering departments are particularly appreciative for students’ competencies in 
Mathematica acquired in Engineering Mathematics 3. Students first learn the 
Mathematica syntax and programming principles which can then be applied to 
solve DE with the Euler and Runge-Kutta methods from first principles. The 
Mathematica curriculum is shaped by routines requiring students to solve a given 
DE; numerical tables and graphs are then generated and compared with analytical 
solutions. Engineering programmes do not include statistics or regression analysis.

45.3.2  Participants

The participants in this inquiry were a cohort of 80 Engineering Mathematics 3 
students at UJ. Recent Mathematica test scores were analysed to purposively group 
five to six students together. The task required prerequisite knowledge and skills and 
was therefore performed towards the end of semester one of 2015 when students 
were better acquainted with Mathematica and DE theory (Galbraith and Stillman 
2006). The task took place during the weekly Mathematica session, and this was the 
first time these students had encountered mathematical modelling at university.
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45.3.3  The Task

A National Geographic article1 was used to develop a population model; data were 
provided for the twentieth century (see Table 45.1). As this was an open-ended task, 
any mathematics, software, textbooks and internet sources could be used. The task 
aimed to introduce students to new model-eliciting processes to potentially assist in 
their understanding and visualisation of DE as concrete models of real-world phe-
nomena (and not made up by the lecturer). New processes were intended to supple-
ment the limited processes of the current curriculum. Groups had to (1) develop a 
DE that models the world population over the last century, (2) validate the model, 
(3) recommend a more appropriate initial condition (the population in 1900) and (4) 
predict the world population in the year 2020. These subtasks involve “a complete 
modelling cycle, including formulating the problems mathematically, integrating 
real-world data and mathematical manipulation” (Soon et al. 2011, p. 1026) as well 
as “the opportunity to use visual images generated by technological tools” (Brown 
2015, p. 432). Group reports were collected; these included paper-and-pen docu-
ments and electronic documents.

45.4  Findings and Discussion

45.4.1  Analysis of a Single Case

Group 14’s solution (Fig. 45.1) is used as an exemplar to formulate perspectives on 
visualisation in the sense of Arcavi (2003). In a first attempt to construct a model, 
this group mathematised the real-world data of Table 45.1 visually. This required 
the given data (object 1) to be translated (action 1) to a graph (object 2) using tech-
nology (process 1). To perform action 1, two internalised processes must be evoked: 
(1) programming the given data (Fig. 45.1a) as a Mathematica matrix and (2) using 
Mathematica syntax and commands to generate a graph with an applicable incre-
ment and interval. When actions on these existing processes are meaningful, a new 

1 http://ngm.nationalgeographic.com/2011/01/seven-billion/kunzig-text

Table 45.1 World population data between 1900 and 2000

t (in years) Population P (in millions) t (in years) Population P (in millions)

1900 1,650* 1960 3,040
1910 1,750 1970 3,710
1920 1,860 1980 4,450
1930 2,070 1990 5,280
1940 2,300 2000 6,080
1950 2,560 2020 ??

Note: The asterisk (*) indicates an uncertainty about the accuracy of this data point
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process is internalised and its end product is the graph in object 2 (Fig. 45.1b). This 
intrinsically visual model now had to be mathematised symbolically (process 2).

To this end, students have to conjure up a repertoire of existing objects (e.g. 
exponential function) and extract the existing processes from which each object was 
formed. The process to construct (action 2) the symbolic exponential function P = 
keat (Fig.  45.1c) therefore involves reflection on the qualitative properties of the 
visual model created in object 2. This decision-making process is evident when 
Group 14 listed their options, namely, a linear, quadratic or exponential function. 
They argued in favour of the exponential model since it “would be more realistic, 
population cannot go up on the other side” [referring to the shape of a parabola]. 
Their argumentation was visually induced to sustain the appropriateness of the 

Fig. 45.1 Model development and justification of Group 14. (a) Object 1. (b) Object 2. (c) Object 
3. (d) Symbolic DE model. (e) Given vs modelled data: graphs. (f) Given vs modelled data: table. 
(g) Check new IC and population in 2020. (h) Verify population in 2020
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visual model true to the context of the real-world data (Lesh and Doerr 2003). To 
develop (action 3) the symbolic DE (Fig. 45.1d), this group evoked two internalised 
processes, namely, differentiation and separation of the variables (process 3). 
Although the symbolic derivation of Fig. 45.1d may seem trivial, these students did 
not necessarily reconcile the formula P = A ekt with the population growth model 
dP/dt = k P. A probable explanation could be that students are inexperienced in (1) 
manipulating from the specific to the general (Lesh and Doerr 2003) and (2) contex-
tualising the process (of differentiating P = A ekt) with the object (the resulting DE). 
At this juncture, Group 14 has used the real-world data to construct, debate, select, 
manipulate and purposefully control processes and objects to generate a general DE 
model. They felt confident (schema 1) that “this corresponds to the population stan-
dard equation” (Fig. 45.1d).

APOS theory asserts two criteria for a new process to be constructed from exist-
ing ones. Firstly, through the coordination of two or more processes and secondly 
through the reversal of a process. Both these criteria were realised in Group 14’s 
solution. The coordination of theory and technology induced new processes in the 
construction of the model. Instead of being given a DE model as source, students 
had to reverse the process. In this task, the source was the real-world data in 
Table 45.1 that had to be converted into a DE model. “When the roles of source 
register and target register are inverted within a semiotic representation conversion 
task, the problem is radically changed for students” (Duval 2006, p. 122). This task 
involved the construction of the DE model, the reversal of solving a DE which is the 
focus of the curriculum. Group 14 captured the essence of Arcavi’s (2003) defini-
tion of visualisation: they could use paper-and-pen techniques and technological 
tools to employ new actions and new processes, create new objects and rearrange 
these to form a new sense-making mental schema: how to construct a DE model 
from real-world data.

The integration and rearrangement of processes are however not the only require-
ments of visualisation in the sense of Arcavi (2003). It is now argued that the reflec-
tion upon effective communication and understanding of graphs and tables in the 
context of the model must also be demonstrated (Nardi 2014). To this effect, three 
more subtasks were included: validating the model, suggesting a more appropriate 
initial condition (IC) and predicting the population in 2020. Bearing in mind that the 
solution of a DE depends on the IC, the data from Table 45.1 had to be used with 
caution due to the uncertainty expressed about the population count in 1900. Group 
14 intentionally omitted this circumspect IC and used another data point 
P(1910) = 1750 (Fig. 45.1d) to calculate the integration constant c. In fact, they 
stated that one can “substitute any coordinate from the table”. This group followed 
internalised processes requiring only one more data point to calculate the growth 
parameter k in the DE dP/dt = k P. In principle, each data point employed would 
result in a different k-value, thus producing each time a different model. The avail-
ability of ten data points (from Table 45.1) was a novel situation for students who 
are accustomed to solve DE where only two data points are provided. Group 14 
decided to experiment with different data points and “tried many equations”, itera-
tively generating different graphs “over and over” (Fig. 45.1d, e). For each k-value 
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computed, the resulting model was plotted in Mathematica together with the real- 
world data. When an inadequate overlap between the proposed model and the real- 
world data was observed, the process was repeated. Eventually, they chose the more 
distant data point P(2000) = 6080 (Fig.  45.1d) and discovered that an improved 
model would largely depend on the choice of data points. Their experimentation 
with the parameter k was a new and challenging process through which students 
witnessed graphically how sensitive models are to changes in parameters. 
Mathematica-generated graphs afforded students to visually compare “multiple 
models for the same data” (Brown 2015, p. 432) that served as visual proof for get-
ting closer to a more appropriate fit. Figure 45.1d–f shows the detailed symbolical, 
numerical and graphical validation of Group 14. Their best model is seen in 
Fig. 45.1e which suggests an improved initial population of 1542 million people in 
the year 1900 (Fig.  45.1f). This involved another reversal of the usual process. 
Instead of using a given IC, this group intentionally circumvented the flawed IC to 
extrapolate it from their model. Their results were presented, validated and unam-
biguously communicated with “substantial intermediate work” (Nardi 2014, p. 217). 
Mathematica codes were cross-checked with paper-and-pen calculations (Fig. 45.1f–
h) to estimate the population in 2020 as 8,021 million people. The relevance of their 
model is confirmed with “the answer makes sense” (schema 2). For this group, cur-
ricular boundaries were challenged through modelling processes that were empow-
ered by Mathematica technology, thus enabling them to forge new understandings 
about DE as real-life phenomena. After all, “knowing routines for solving differen-
tial equations symbolically … is a very different process from being able to visual-
ize a solution or a family of solutions” (Dubinsky and Tall 1991, p. 237).

It could be argued that a more sophisticated regression procedure would produce 
a more accurate model. However, even within the curricular limitations, the evolv-
ing actions and processes that led to the symbolic formation of the model afforded 
these students the opportunity to explore the volatility of model building in a con-
textually rich task. In the study of DE, students learn to appreciate that numerical 
solutions are approximations, produced by Mathematica as discrete data points. 
When these data points are compared with the continuous analytical solution, there 
might not necessarily be a perfect overlap between solutions since numerical 
 solutions ultimately depend on the step size and particular algorithm used. Perhaps 
in conformity with this notion, Group 14 did not problematise the discrete real-
world data points in Fig. 45.1e that did not perfectly fit their (continuous) model. 
For them, the essential qualitative features of the real-world data could be accom-
modated in their model.

45.4.2  Group Results

It is encouraging that 7 of the 15 groups could successfully (1) generate new pro-
cesses and new objects on paper and with technology; (2) make use of symbolic, 
numeric and graphic representations to contextually validate the real-world data; (3) 
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present their results via multiple representations; (4) suggest an improved IC to the 
DE model; and (5) extrapolate the model via multiple representations to predict the 
population in the year 2020. Whereas most students usually answer the interpreta-
tive questions incorrectly or leave them unanswered in the normal curriculum 
approach, this task provided learning opportunities for acquiring visually advanced 
understandings (Arcavi 2003) that enabled these groups to interpret, reflect on and 
communicate the reality of the real-world problem which they modelled.

Group 10 was visually unaware of the lack of fit of their exponential model. They 
used the first two data points in Table 45.1 to calculate the growth parameter k. Due 
to the close proximity of the two selected data points, the model followed a trajec-
tory that deviated from the real-world data over time. This group could not success-
fully combine the graphs to be displayed simultaneously (Brown 2015) due to a 
programming error. Due to a lack of such graphical evidence, they could not vali-
date the appropriateness of their two-point symbolic model. This underscores the 
power of technological affordances in the visualisation and endorsement of the 
symbolic model in the modelling task.

Five groups plotted the real-world data in Excel to find a trend line that best fits 
the data. With the click of the right mouse button, three of these five groups obtained 
the exponential model P = 1447 e0.0136 t which was subsequently differentiated. 
Essentially, the most demanding part of the modelling cycle was outsourced to 
Excel. This was an unexpected strategy since Excel is not used in the Mathematica 
sessions. Two possible scenarios come to mind: as many as 10 % of registered stu-
dents for this module came from other African countries, it is therefore possible that 
these international students’ knowledge of Excel and/or regression analysis benefit-
ted certain groups. Alternatively, the first year Computer Skills module introduces 
students to Excel where they learn how to chart data. Nevertheless, with a mere 
mouse click, these groups allowed technology to symbolise the model and thereby 
forfeited the prospect of doing important mathematical work inspired by visual rea-
soning. It is noteworthy that only one of the three groups who tendered a trend line- 
generated model could fully reflect on the symbolic meaning of their model. 
Evidently, the model P = 1447 e0.0136 t would imply a new updated IC P(0) = 1447 
but the original (flawed) IC P(0) = 1650 was retained. Two of the groups who 
 generated an Excel trend line opted for a quadratic model “because in the exponen-
tial model, some values [data points] were excluded by the computer, the polyno-
mial however included all the given data [points] into the plot” (Group 13). Such 
opposing degrees of interpretation illustrate the cognitive incoherence imposed by 
technology which undermines symbolic understandings and, in turn, affect the con-
textual relevance of the model. This is in line with Nardi (2014) who states that once 
a visual representation has been created, one cannot assume that its meaning is 
transparent or that its understanding is coordinated (Nardi 2014).
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45.5  Conclusion

The aim of this chapter was to explore the first-time impact of a task in the form of 
a MEA on the visualisation of engineering diploma students modelling in a CAS 
environment. When students come from visually deprived teaching and learning 
backgrounds into a technology-rich setting, they are often underprepared for the 
cognitive challenges imposed by visualisation. Visualisation in the modelling task 
was theoretically underpinned by students’ actions, processes, objects and schemas. 
A limitation of the study is that only one task was assessed. Still, students could 
experience the crucial interplay between theoretical and technological processes 
when constructing a DE. While the real-world data prompted visual mathematising, 
paper-and-pen processes supported opportunities for visual exploration. Through 
trial-and-error, manipulations were performed with paper-and-pen and connected 
with CAS objects, thus awarding both cognitive technologies equal status. Students’ 
understanding of DE was advanced when potential models were questioned and 
visualisation supported the mathematisation process (Brown 2015). In the absence 
of paper-and-pen work, students were unaware of contradictions and conflicting 
models which undermined the sense-making of the real-world context. During the 
MEA, a sense-making process evolved in the work of students who displayed a 
higher tolerance towards model acceptance in response to rigorous visual valida-
tion. The task created opportunities to contextualise the role of DE for future engi-
neers, in particular, opportunities to develop and enhance visualisation, especially 
where cognitive processes are outsourced to CAS.

References

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational 
Studies in Mathematics, 52, 215–241.

Brown, J. P. (2015). Visualisation tactics for solving real world tasks. In G. A. Stillman, W. Blum, 
& M.  S. Biembengut (Eds.), Mathematical modelling in education research and practice: 
Cultural, social and cognitive influences (pp. 339–349). Cham: Springer.

Buchholtz, N. (2013). The eyes to see: Theoretical lenses for mathematical modelling research. In 
G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: 
Connecting to research and practice (pp. 101–106). Dordrecht: Springer.

Dubinsky, E., & McDonald, M. S. (2001). APOS: A constructivist theory of learning in under-
graduate mathematics education research. In D. Holton (Ed.), The teaching and learning of 
mathematics at university level – an ICMI study (pp. 275–282). Dordrecht: Kluwer Academic.

Dubinsky, E., & Tall, D. (1991). Advanced mathematical thinking and the computer. In D. Tall 
(Ed.), Advanced mathematical thinking (pp. 231–248). Dordrecht: Kluwer Academic.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathemat-
ics. Educational Studies in Mathematics, 61(1–2), 103–131.

Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transi-
tions in the modelling process. ZDM Mathematics Education, 38(2), 143–162.

H. Kotze et al.



551

Hjalmarson, M.  A., Wage, K.  A. & Buck, J.  R. (2008). Translating information from graphs 
into graphs: Systems and signals. Retrieved from http://mathed.asu.edu/crume2008/
Proceedings/Hjalmarson%20LONG.pdf. Accessed 7 May 2014.

Lesh, R. A., & Doerr, H. M. (Eds.). (2003). Beyond constructivism: Models and modeling perspec-
tives on mathematics problem solving, learning and teaching. Mahwah: Erlbaum.

Nardi, E. (2014). Reflections on visualisation in mathematics and mathematics education. In M. N. 
Fried & T.  Dreyfus (Eds.), Mathematics & mathematics education: Searching for common 
ground (pp. 193–220). Dordrecht: Springer.

Natsheh, I., & Karsenty, R. (2014). Exploring the potential role of visual reasoning tasks among 
inexperienced solvers. ZDM Mathematics Education, 46(1), 109–122.

Saldaña, J. (2009). The coding manual for qualitative researchers. Los Angeles: SAGE.
Soon, W., Lioe, L. T., & McInnes, B. (2011). Understanding the difficulties faced by engineering 

undergraduates in learning mathematical modelling. International Journal of Mathematical 
Education in Science and Technology, 42(8), 1023–1039.

Stillman, G. A., Kaiser, G., Blum, W., & Brown, J. P. (2013). Teaching mathematical modelling: 
Connecting to teaching and research practices – the impact of globalisation. InTeaching math-
ematical modelling: Connecting to research and practice (pp. 1–26). Dordrecht: Springer.

Zimmermann, W., & Cunningham, S. (1991). Editors’ introduction: What is mathematical visual-
ization? In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning 
mathematics (pp. 1–7). Washington, DC: Mathematical Association of America.

45 Mathematical Modelling for Engineering Diploma Students: Perspectives…

http://mathed.asu.edu/crume2008/Proceedings/
http://mathed.asu.edu/crume2008/Proceedings/


553© Springer International Publishing AG 2017 
G.A. Stillman et al. (eds.), Mathematical Modelling and Applications, 
International Perspectives on the Teaching and Learning of Mathematical 
Modelling, https://doi.org/10.1007/978-3-319-62968-1_46

Chapter 46
Interactive Diagrams Used for Collaborative 
Learning Concerning Mathematical Models 
of Motion

Elena Naftaliev

Abstract This chapter investigates how students addressing the same modelling 
activity presented as three different interactive diagrams (IDs) participated in col-
laborative learning processes and developed modelling analysis competency. Three 
ID settings were designed as an animation of multiprocess motion but differed in 
their pedagogical functions. The students explored sets of characteristics of the 
mathematical models in the diagrams to analyse related phenomena presented as a 
real model and develop meaning of the mathematical models regarding the phenom-
ena. Shared knowledge was developed when students engaged in a reflective activ-
ity concerning other group members’ reasoning and instruments involved in the 
collaborative process. Analysis showed choosing and combining models from dif-
ferent IDs reflected personal choice to anchor the inquiry in more familiar IDs.

Keywords Interactive diagrams • Collaborative learning • Mathematical models of 
motion • Animation

46.1  Introduction

In recent years, modelling competencies and their promotion have been discussed 
widely by mathematics educators and researchers (Kaiser and Brand 2015). Niss 
and Højgaard (2011) defined modelling competency as the ability to analyse and 
build mathematical models concerning other areas. This competency involves, on 
the one hand, model analysis ability  – the ability to “de-mathematize” existing 
mathematical models, that is, being able to interpret model elements and results in 
terms of the real situation which they are supposed to model. On the other hand, the 
competency also involves being able to perform active modelling in given contexts, 
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that is, “mathematizing and applying it to situations beyond mathematics itself” 
(p. 58). Active modelling contains a range of different sub-competencies and is usu-
ally illustrated by a modelling cycle which presents the steps, the sub-competencies 
and the order in the process. One version of the cycle is presented in Fig. 46.1.

Modelling activities in mathematical education are usually characterized as inde-
pendent activities in which students solve a modelling problem on their own 
(Stender and Kaiser 2015). The implementation of independent modelling activities 
is an ambitious educational purpose with many difficulties. Little empirical knowl-
edge about efficient ways of supporting students in independent modelling pro-
cesses exists (Kaiser and Brand 2015). To resolve the issues related to the successful 
engagement with modelling activities, we need innovative methods in pedagogical 
practices and research on the issue (Stillman et al. 2015).

To help learners construct mathematical representations of reality, the teaching- 
learning processes need to include the development of tools that will serve them in 
practice. Two approaches to teaching-learning mathematical modelling are (1) to 
learn by constructing models and (2) to learn by using models (Schwartz 2007), but 
the two perspectives should not be seen as being in contrast with each other. Students 
who do not have experience with mathematical models will probably not benefit 
greatly from constructing their own models, if indeed they can learn to do so at all 
(Schwartz 2007). At first, learners tend to explore models by modifying their param-
eters. Next, they are asked to modify the models themselves, providing them with 
the original and many similar models with which to work. Finally, students may be 
asked to devise models of phenomena independently. Pedagogic artistry, or the art 
of executing the teaching-learning process well, lies in helping students move 
through this sequence in ways that are appropriate to their current understanding of 
mathematical modelling.

Modelling activities in mathematics have changed in the last decades due to tech-
nology development. Sriraman and Lesh (2006) took a critical view about concep-
tions of mathematical modelling in the modern era and argued for the need to 
develop new research initiatives with students in experiments involving the simula-
tions of complex systems. Using technology to develop interactive curriculum 
materials, such as interactive textbooks, provides a captivating, engaging tool which 

Fig. 46.1 Modelling cycle (Kaiser and Stender 2013)
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encourages learners to explore mathematical models and to devise their own models 
as suggested by the learning sequence in Schwartz (2007). It is especially important 
that, while students learn about dynamic processes, such as motion, and about the 
mathematical models of the processes, the materials be represented in a similarly 
dynamic way by animations and interactive models in order to reinforce their 
knowledge development (Schwartz 2007; Yerushalmy and Naftaliev 2011).

Current technology allows a variety of interactive tools, examples and represen-
tations to design interactive diagrams (IDs), which are small units of multimodal 
interactive text (in e-textbooks or other materials) and are important elements in 
e-textbooks. For example,1 an ID focused on motion may include the following 
components: a wide range of real and mathematical models of motions and a wide 
repertoire of linking tools and choices of activation of the models. The findings of 
our previous research show that similar modelling activities with different IDs, 
which were designed for different pedagogical functions, should be considered as 
different learning settings (Naftaliev and Yerushalmy 2011, 2013, 2017; Yerushalmy 
and Naftaliev 2011). This research aims to investigate how students who had been 
asked to address similar modelling activities presented by different IDs participate 
in collaborative learning processes and develop model analysis competency.

46.2  Semiotic Analysis for Pedagogical Functionality of ID 
Functions

There are profound differences between the traditional paper page in mathematics 
textbooks and the new page that derives its principles of design and organization 
from the screen and the affordances of technology. This issue requires scholars to 
develop a lens for analysing pedagogical design and teaching-learning processes 
with IDs. Naftaliev and Yerushalmy (2017) have developed and elaborated a semi-
otic framework for the pedagogical functionality of IDs that allows an informed 
discussion of the subject. There are three functions of IDs in the framework: the 
presentational function, the orientational function and the organizational function. 
The presentational function focuses on what and how this is being illustrated by the 
ID. The reader may act within the context of the given example and change it or 
create other similar examples. Three types of examples are widely used: random, 
specific and generic. The orientational function relates to the type of relationships 
that the text design attempts to set between the viewer and the text. IDs can function 
both as schematic and as accurate metric representations in the sense that they can 
reveal their details.

The organizational function looks at the system of relations defining wholes and 
parts and specifically at how the elements of text combine. IDs can be designed to 

1 http://visualmath.haifa.ac.il/en/linear_functions/raste_of_change_of_linear_functions/200_meter_ 
dash
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function in three different ways: illustrating, elaborating and guiding. Illustrating 
IDs are simply operated unsophisticated representations. They are intended to orient 
the student’s thinking to the structure and objectives of the activity by usually offer-
ing a single representation and relatively simple actions. For example, an illustrat-
ing ID may have a limited degree of intervention by activation of controls in the 
animation (Table  46.1). At any time in the animation (see column 3), users can 
freeze the positions on the track, continue the run or initialize the race. Elaborating 
IDs provide the means that students may need to engage in activities that lead to the 
formulation of a solution and to operate at a metacognitive level. The important 
components in the design of the elaborating IDs are rich tools and linked represen-
tations that enable various directions in the search for a solution. For example, the 
same animation that serves as an illustrating ID can be part of an elaborating ID 
when set within other tools and representations. The ID provides four adjacent, 
linked representations: a table of values that represents distance and time, a two- 
dimensional graph of distance over time, a one-dimensional graph which traces the 
objects’ positions at each time unit and an animation (Table 46.1). The variety of 
linked representations and rich tools in this elaborating ID enables various options 
in viewing the ID: as a schematic and/or as a metric diagram, as discrete informa-
tion and/or as a continuous flow of information. The term guiding IDs is used in 
relation to guided inquiry. Guiding IDs are designed to call for action in a specific 
way that supports the construction of the principal ideas of the activity and may 
serve to balance constraints and open-ended explorations and support autonomous 
inquiry. In addition to providing resources that promote inquiry, they also set the 

Table 46.1 Comparative view on the IDs’ design

Video clip
Illustrating ID

Elaborating ID Guiding ID

Video clip, real model and its components
Video clip ✓ x x x
Animation x ✓ ✓ ✓
“Run”, “stop” ✓, ✓ ✓, ✓ ✓, ✓ ✓, x
Choose components x ✓ ✓ ✓
Timer ✓ x ✓ x
Examples Generic Generic Generic (motionless 

component)
Mathematical models
1D graph x ✓ x
2D graph x ✓ (schematic 

and/or metric)
✓ (schematic)

Table of values x ✓ x
Links between the 
models

x ✓ ✓ (partial)
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boundaries and provide a framework for the process of working with the task. For 
example, the guiding ID (Table 46.1) was designed around a known conflict about a 
time-position graph describing a “motionless” situation over continuously running 
time. The ID consists of two representations of the motion: an animation and a hot- 
linked position-time graph. The graph and the animation are only partially linked: 
motion occurs simultaneously on the animation and on the graph, but there is no 
colour match, so the identification process requires extracting data from the anima-
tion and the graph in order to link them. The following constraints contribute to 
making the task an interesting challenge: a given set of objects running at different 
types of motion which included motionless object, schematic representations, con-
tinuous motion that cannot be stopped but rather viewed continuously and partial 
links between representations.

46.3  Research Design

The activity, which asked the students to analyse a motion situation, was first illus-
trated by a video clip and subsequently as an illustrating, elaborating or guiding 
ID. Each ID includes a real model, an animation of simultaneous multi-motion and 
two IDs include mathematical models of the motion (Table 46.1). On both the video 
clip and the animation, users could watch at all times locations on the runway, con-
tinue the run or initialize the motion. The three IDs varied by the design choices 
concerning what was included in the given example and how it was represented and 
controlled. Regarding what to include in the example, the animation was designed 
around simultaneous multiprocess motions, to include motion situations known to 
be challenging, such as nonconstant rate-of-change and “no motion” situations, as 
well as surprising situations such as an “unexpected win”. Considerations of how to 
design these choices were driven by the semiotic functions framework. Comparative 
decisions were made about the variety and type of models, the control features, and 
the linking features to support development of modelling sub-competencies by stu-
dents (Tables 46.1 and 46.2).

The activities with guiding and elaborating IDs include mathematical and real 
models and ask for exploration of the models and links between them (Table 46.2). 
The elaborating ID enables interaction between the students and the various math-
ematical and real models and so supports the process of learning by experimenting 
with the models. The design of the guiding ID creates opportunities to interpret the 
given mathematical and real models by supporting the processes of identifying the 
visual and kinematic conflict around motionless situation and resolving it. The illus-
trating ID invites the students to interact with the given real model and to devise 
mathematical models of the phenomena independently (Table 46.2). The activity 
with the video clip requires engagement in the full-scale modelling process. If the 
activities with the elaborating and guiding IDs support development of model anal-
ysis ability, the activities with illustrating ID and video activity invite interaction 
with the phenomena and performance of active modelling in the given contexts.
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The study generated 16 interviews with 12 students: 12 personal interviews and 
4 group interviews. The 14-year-old students volunteered to participate in after- 
school meetings. Each interviewee met the interviewer twice. The first meeting 
included an individual interview. The second meeting was a group interview. All 
interviews were video-recorded. Each participant followed a three-step procedure 
that enabled examining and tracking the role of IDs in the students’ knowledge 
development process concerning mathematical models of motion. At the first stage, 
the students were given a preliminary task presented as a video clip and designed to 
evaluate their knowledge and solution techniques. At the second stage, the students 
were given a task that was presented as an ID. At the third stage, the three students 
who had been asked to address similar tasks that included different IDs shared their 
work and participated in a group discussion. The students were asked to describe the 
technique they used in their solution and to be involved in a conversation regarding 
other students’ techniques. The students could use all the diagrams they worked 
with in the previous stages.

The students’ personal engagement processes as they interacted with the IDs are 
discussed in previous work (Naftaliev and Yerushalmy 2013; Yerushalmy and 
Naftaliev 2011). This chapter focuses on the collaborative learning concerning 
mathematical models of motion.

Table 46.2 Comparative view of the modelling cycles and required task sub-competences

Video Illustrating ID

Guiding ID Elaborating ID

Based on Kaiser and Stender (2013)
Grey items indicate given components in the activities
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46.4  The Social Construction of Knowledge in a New 
Pedagogical Setting

This section includes an analysis of one group’s engagement processes to present 
the social construction of knowledge in a new pedagogical setting. The group (Elad, 
Helena and Or) had one student for each of the three types of IDs: illustrating, 
elaborating and guiding. At the first stage, in their individual work with the video 
activity, the learners put emphasis on getting the story right, which required attend-
ing to details such as the runners’ body motion: “When they ran, they moved their 
body a little bit back and their feet a little bit forward and… this maybe gave them, 
I think, more acceleration. And in the end the one that was on the left won. They all 
made almost the same movements; just that there were some that started running 
and some that jumped out later and some that jumped a little sooner”. The video clip 
kept the students too close to the situation and prevented them from thinking in the 
abstract.

At the second stage, Elad, the student who worked with the illustrating ID, 
started by activating the animation. Throughout the process, he stopped the anima-
tion several times. During each pause, Elad examined the runners’ respective posi-
tions and described the changes in speed. Elad described each runners’ changes in 
speed with reference to their relative positions at specific moments. He mistakenly 
interpreted continuous change of speed by comparing relative positions. For exam-
ple, he argued that passing another runner must have meant speeding up, whereas, 
in reality, the runner maintained a constant speed. To cope with the challenge, Elad 
resorted to a failed attempt at drawing graphs by himself to complete the diagram. 
Helena, working with the elaborating ID, started by activating the representation 
and tools in the ID. She learned about the wide variety of options and representa-
tions available in the ID, but there was no evidence showing developing knowledge 
concerning mathematical models of motion processes. Or, working with the guiding 
ID, began his work by identifying a visual and kinematic conflict: while all seven 
dots moved on the graphs, one of the dots in the animation stopped and remained 
still. To resolve this conflict, he focused on discrete events much like Elad, using 
discrete events to match the motions described in the animation and graph extract-
ing discrete motion characteristics such as average speed, time and distance. He 
successfully matched the dots yet failed to resolve the conflict.

At the third stage, in the group discussion, Or decided to open the conversation 
with the question which remained unsolved in his individual work (Fig. 46.2). He 
demonstrated the problem while activating the guiding ID with which he worked. 
Elad and Helena were intrigued by the question, and it became the goal of their col-
laborative work. They began by familiarizing themselves with the options of the ID 
and examples presented in it to resolve the conflict. When they were unsuccessful 
resolving the conflict using the guiding ID and realized their diagrams were differ-
ent, Helena suggested using representations and tools from her elaborating ID to 
accomplish the goal they defined for themselves. Each time, she suggested adding 
only one option from the elaborating ID. They used it firstly to develop meaning 
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regarding the motion presented in the elaborating ID.  Then, they used the ideas 
which they developed to resolve the conflict using the guiding ID. The following 
presents the process which took place in the last step of their work in which they 
successfully resolved the conflict.

Following a suggestion from Helena, the students activated the animation with 
traces, resulting in the generation of a 1D graph of the motion (Fig. 46.3). While 
running the animation and generating of a 1D graph, they read the race from the 
traced motion using the size of the spaces between the traces as a gauge for speed:

Helena: Press on traces. You see! Where they are stopping?
Or: Ahh… Yes, it describes every time point.
Elad: It describes the steps, the distance of the steps.
Helena: Here, you see the black starts [green] to advance more.
Elad: Pink starts with greater steps. If the traces describe the steps then here he 

starts to slow down as the time goes on and here it stays at the same 
speed.

Helena: And the black [green] is really fast.
Elad: But in the end he speeds a bit. The black [green] almost doesn’t, he starts 

with slowness, as the time goes on, his steps only enlarge.
Helena: The red doesn’t change… and the red. At the same speed.

Fig. 46.2 “…has anyone 
solved it?”

Fig. 46.3 2D and 1D 
(traces) graphs recorded 
while running the 
animation
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Elad: And the red, like I told you in the beginning, remember? That the red is 
always at the same distance, at the same speed, the same steps. And the 
blue at the beginning until the middle at the same speed, same steps and 
towards the end he starts to slow down.

Following the interpretation of the 1D graph as describing speed, the students 
checked whether this option was available in the guiding ID. Once they verified it 
was not, they returned to work with the elaborating ID. They began by interpreting 
the 2D graph based on the 1D graph in static mode with which they became familiar. 
In the end, they were able to describe the speed by using only the 2D graph.
Helena: Wait, in his [Or’s] diagram there is it [the traces]? Check.
Or: Check. …No.
Helena: It’s interesting what happened with the pink in his [Or’s] diagram 

[Guiding ID].
Or: I think that this [the Elaborating ID] is the best.
Helena: The red is running at the same speed. The black in the beginning runs 

really slow, and then he ups his speed more and more [they closed the 1D 
graph and continued work only with the 2D graph]. The blue runs really 
quick and then he starts to slow down. The pink runs fast, in the middle 
he slows down and then in the end again he runs fast.

Once they have succeeded in interpreting the 2D graph in the elaborating ID, 
they were able to resolve the conflict they had about the motionless process pre-
sented by the guiding ID:
Or: Yes. So, as the line is steeper, then his speed is... ehh... it is steep and… 

that’s it, I see that in the end it turns into a straight line, plane, something 
like this. That means that he slowed the speed and even stopped in place.

Elad: If this shows distance, then it means that the distance here does not change.
The episode describes the students’ exploration concerning the description of 

speed in the mathematical models in four stages: (1) analysis of a dynamic mode of 
1D graph which was linked to the running animation, (2) analysis of a static mode 
of 1D graph, (3) analysis of shapes of 2D graphs and (4) analysis of a motionless 
process represented by 2D graph.

46.5  Discussion

The chapter focuses on the role of similar modelling activities presented by differ-
ent IDs in supporting students’ collaborative work. It describes their development of 
model analysis competency. This is especially relevant when they explore models in 
relation to new mathematical concepts with which they are not familiar. Students do 
need to have enough experience with models to understand the point of 

46 Interactive Diagrams Used for Collaborative Learning Concerning Mathematical…



562

mathematical modelling, that is, its “language” (Schwartz 2007). Once such repre-
sentations exist in the cognitive “baggage” of learners, they also become a tool for 
mathematical modelling (Wilensky 1999).

The students explored sets of model characteristics in the IDs to analyse the 
related phenomena presented as a real model and developed meaning of the math-
ematical models regarding the phenomena. They interpreted the real and mathemat-
ical models by using the elaborating ID, pointing to the speed, time and distance as 
continuous variables. Then they used the ideas which they had developed to analyse 
the characteristics of motion presented in the guiding ID. At the end of the discus-
sion, the mathematical models in static mode prompted them to mentally recreate 
and describe the motion processes.

The development of shared knowledge occurred when the students engaged in a 
reflective activity concerning other members’ reasoning and instruments involved in 
the collaborative process. As a result of the collaboration, students generated an 
interactive text: they posed a new question, decided what component from what ID 
to bring to discussion, decided on the sequence between the components, defined 
the role of each component and created a representation of the data. All this was 
done to accomplish the goal they posed to themselves, thus building meaning con-
cerning mathematical models of motion. The analysis clarified that choosing and 
combining representations from similar tasks, which were designed as different 
IDs, reflected students’ personal choices to anchor their inquiry in the more familiar 
ones. The interactive texts became an instrument supporting development of shared 
knowledge concerning the mathematical models and characteristics of the kine-
matic phenomena.
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Chapter 47
Using Modelling and Tablets in the Classroom 
to Learn Quadratic Functions

Miriam Ortega and Luis Puig

Abstract In this chapter, we present teaching material to work with a quadratic 
function and the meaning of its parameters through the mathematical modelling of 
a real-life phenomenon: the relation between the time and the height of a ball during 
a complete vertical rebound and fall. The teaching material uses electronic tablets to 
collect and process real data in the classroom. After analysing a year 11 implemen-
tation, we note that a qualitative analysis of the phenomenon and the families of 
functions and the students’ prior knowledge about these functions are key elements 
to manage and control the modelling process, especially, to choose the model and to 
interpret the results in terms of the phenomenon. Considering the limitations of the 
first design of the teaching material, we present the elements that we have incorpo-
rated into a new design in order to improve it.

Keywords Modelling process • Problem-solving • Function • (Upper) secondary 
education • Real data • Technological tool

47.1  Introduction

Many investigations in mathematics education (e.g. Almeida and da Silva 2015; 
Villa-Ochoa and Berrío 2015) point out the importance of introducing modelling in 
education to show the relation between mathematics and the real world to students. 
Despite all of this research, the use of modelling in classrooms is still a pending 
issue (Blomhøj 2013). This is due to a lack of resources and support material for 
teachers and the necessity to change their model to manage teaching practices in 
classrooms, among other issues.
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Another factor that allows students to relate mathematics to “reality” is the use 
of real data. As Stacey et al. (2000) suggested in the discussion document of the 
ICMI Study, The Future of the Teaching and Learning of Algebra, it is important to 
introduce the use of real data in classrooms in order to help students to manipulate 
algebraic expressions. One means of doing this is through the use of technology 
(Brown 2004). In particular, the National Council of Teachers of Mathematics tools 
and technology principle (2014) states that “an excellent mathematics program inte-
grates the use of mathematical tools and technology as essential resources to help 
students learn and make sense of mathematical ideas, reason mathematically, and 
communicate their mathematical thinking” (p. 4). Geiger (2011) affirmed that the 
use of technological tools enriches the modelling process, as mathematical routines 
and processes, students and technology are engaged in partnership while solving a 
problem. Therefore, the incorporation of technological tools into the classroom to 
solve modelling tasks is an interesting element to consider.

In this chapter, we show the design of teaching material to work with the qua-
dratic function through the mathematical modelling process using real data obtained 
with electronic tablets. Subsequently, the results of the implementation are pre-
sented and an improved design is suggested as a consequence of reflecting upon the 
results of this evaluation and the limitations observed in the first design.

47.2  Background

From an educational perspective, Julie and Mudaly (2007) identified two different 
points of view of how mathematical modelling can be used in education: as content 
itself or as a vehicle to promote and motivate students to learn other mathematical 
content. In our case, we use mathematical modelling as a vehicle to support the 
students’ learning of the concepts of families of functions and the meaning of the 
parameters through the modelling process. A modelling process can be represented 
using a cycle, not for indicating the way in which the students follow the process but 
to schematise the different phases through which the students can pass. One of the 
cycles that give a general vision of the phases that can be followed to model a phe-
nomenon is the one suggested by Blum (2011). For that reason, we will use it to 
design specific questions to guide the students through the modelling process 
towards the acquisition of this content.

On the other hand, taking a definition of problem that includes what Butts (1980) 
called a “problematic situation”, a modelling process can be conceived as a particu-
lar case of a problem-solving process. For that reason, the students will need to be 
competent not only in modelling but also in problem-solving. Schoenfeld (1985) 
established what he called “components of knowledge and behaviour” that explain 
the performances of students in problem solving, including among these compo-
nents the management and control of the process. Puig (1996) proposed a compe-
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tence model for problem-solving, in which management and control elements were 
included. He argued that for being competent, it is not enough to be aware of the 
need for managing the process, but it is necessary to know how to manage the spe-
cific process of a class of problems. In a later study, Puig and Monzó (2013) affirmed 
that a qualitative analysis of the phenomenon and the families of functions that 
might model the phenomenon is key to manage the process of solving a modelling 
problem, so we included these metacognitive elements in the design of the materials 
to lead the students through the modelling process. This is in keeping with the work 
of many other researchers who have incorporated metacognitive aspects into the 
design of modelling support materials such as task booklets (see, e.g. Stillman 
2011).

Therefore, our research aim is to analyse which phases of the modelling cycle are 
influenced by the qualitative analysis of the characteristics of the phenomenon, the 
families of functions and the students’ prior knowledge of these.

47.3  Materials and Method

47.3.1  Design of the Teaching Experiment

We present here the teaching material for the study of the family of quadratic func-
tions through mathematical modelling of a physical phenomenon and the use of 
electronic tablets, characterised by the inclusion of management and control ele-
ments of the modelling process and the use of real data obtained directly in the 
classroom using the tablets. The phenomenon studied is the relation between the 
time and the height of a ball dropped from a certain height, restricting the model to 
the first rebound and the subsequent drop of the ball, that is, from the moment that 
the ball touches the ground for the first time until it touches it again. As can be seen 
in the statement, taking into account the modelling cycle of Blum (2011), the real 
situation is given already simplified because the variables that should be studied, the 
time and height of the ball, are specified in the statement.

From the perspective of kinematics, this is a case of uniformly accelerated recti-
linear motion. This is because, if friction is neglected, the ball is subjected to only 

Bounce of a Ball
A ball is dropped vertically from a certain height, and when it touches the 
ground, it bounces several times until it stops. We want to study the relation 
between the height and the time of the ball in each moment considering only 
the first rebound and subsequent drop, that is, from the moment that the ball 
touches the ground for the first time until it touches it again.
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the action of gravity and it starts from rest. As a consequence, the phenomenon is 
described by a quadratic function when the variables distance and time are related. 
The function describing such motion is y(t) = y0 + v0 · (t – t0) + 1/2 · g · (t − t0)2 where 
y is the distance travelled by the ball, t is the time in each instant and y0, v0 (null in 
our case), g and t0 are constants. Our students are not expected to find the function 
expressed in this canonical form but to find that the function that models the data is 
a quadratic.

The teaching experiment was carried out in a natural group of 16 year 11 stu-
dents. They had not dealt with modelling problems before, but they had previous 
knowledge about families of functions and the meaning of the parameters acquired 
in previous courses by using new technologies.

With regard to the implementation of the material, first the students had to answer 
several questions related to the characteristics of the phenomenon studied. After 
that, they had to reproduce the phenomenon in classroom and record a video of it 
using iPads® in order to take real data to find a model that describes the phenome-
non and to answer questions to study it in more detail.

The experiment was carried out in a total of three sessions of 55 min each. In 
particular, during the first and the second session, the teaching material was imple-
mented in the classroom, and, in the last one, four interviews were conducted by the 
researchers. During the teaching sessions, the students were working in pairs 
because, according to Schoenfeld (1985), this encourages the verbalisation of what 
they are doing, thinking or wanting to do.

In the first session, the students were given a worksheet to study qualitatively the 
phenomenon and the family of functions that could model the phenomenon before 
representing it and collecting the data. In particular, they were asked to draw a 
sketch of the graph that they expected to model the phenomenon, to choose the 
 family of functions that best fits the graph from a given list and to explain the rea-
sons for their choice. This previous qualitative analysis of the phenomenon and the 
families of functions is a metacognitive element that we included in the design to 
lead the students through the modelling process. Subsequently, they simulated the 
phenomenon studied and recorded it using Video Physics® (see photo Fig. 47.1a), 
which allowed them to obtain a set of points, where the coordinates represented the 
relation between the time and height of the ball in each instant.

In the second session, the students had to introduce the coordinates of the points 
into the app Data Analysis® in order to choose the function that fitted best to them 
from a given list of possible function models, y = A x2 + b x + c , y = A x2 + b x , y = 
mx + b, etc. (Fig. 47.1b), and to obtain a model of the phenomenon. Moreover, they 
were given another worksheet with more questions concerning the calculation of the 
domain of the function (items 5 and 6, Fig. 47.2) and the interpretation of some data 
in relation to the phenomenon studied (item 7, Fig. 47.2) in order for the students to 
analyse some of the characteristics of the function and to validate the adequacy of 
the model chosen. Specially, in item 5, they were asked to calculate some images of 
the function where values for the independent variable were outside the domain, and 
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in item 6, they were asked to explain if the images obtained showed what really 
happened, to make the students realise that the regression function only represents 
the function that models the phenomenon in the interval in which it has been defined, 
that is, during the first rebound and subsequent fall. These metacognitive elements 
were included to make the students think about the qualitative analysis of the phe-
nomenon and the families of functions. To answer these questions, they could use 
the app Free GraCalc®, which functions in a similar manner to a graphing 
calculator.

Finally, in the last session, two pairs of students were selected, considering the 
results obtained from the analysis of their answers and their performance in the 
previous two sessions, to participate in a case study. Specially, we designed a diag-
nostic interview with the aim of finding out the origin of the students’ performances 
but incorporating several teaching elements to make the students think more care-
fully about some of their answers.

All the teaching experiment was conducted based on the reinterpretation made 
by Roth and Radford (2011) of Vygotsky’s zone of proximal development idea that 
goes further than what Freudenthal (1983) called the “process of guided reinven-
tion”. It was done in order to guide the students through questions and suggestions 
for the acquisition of the knowledge related to the particular characteristics of the 
function and the phenomenon studied and the meaning of the parameters involved.

Fig. 47.1 Sequence of screenshots of (a) Video Physics® and (b) Data Analysis®

47 Using Modelling and Tablets in the Classroom to Learn Quadratic Functions



570

47.3.2  Data Collection and Data Analysis

Data collection was carried out in pairs because this was how the students worked 
during the whole teaching experiment. Therefore, the nature of the data came from 
students’ collaborative work.

Firstly, data collected from teaching sessions in the classroom were obtained 
from worksheets, tablets and classroom diaries in which we recorded questions that 
students asked during the teaching experiment and other aspects that could be inter-
esting for the research purpose. Regarding the analysis of the data, first we pro-
ceeded to extract the information from the data collection instruments in order to 
put it together. In particular, we wrote a text for each pair of students considering the 
information from all the sources. After that, we extracted the pieces of text in which 
it was noticeable that the students used their prior knowledge about the families of 
functions and the qualitative analysis to model the phenomenon. Finally, we catego-
rised these elements according to the phases of the modelling cycle in which the 
students used them or referred to them.

Secondly, data from interview sessions were obtained using a video camera, 
which allowed us to obtain not only the conversation between interviewer and stu-
dents but also the students’ actions and gestures. To analyse these data, first we 
obtained the written protocol by transcribing the interviews and adding comments 
about gestures and images of the videos. Later, we made comments on the written 
protocol interpreting the meaning of the discourse to make sense of all the data col-
lected. Afterwards, we organised the comments to make a rational reconstruction, 
that is, a narration of the students’ behaviour with the aim of making sense of the 
whole text (Puig 1996). This allowed us to elaborate a listing of observations pair by 
pair according to the influence of the qualitative analysis and other elements on the 
students’ performances. Finally, we categorised these elements according to the 
phases of the modelling cycle in which the students used them.

Once we obtained the categorisation pair by pair of the phases in which students’ 
prior knowledge and qualitative analysis of the phenomenon influences the model-

Fig. 47.2 Questions related to function domain (items 5 and 6) and data interpretation in real situ-
ation (item 7)
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ling process, from both teaching experiment and interviews, we proceeded to 
observe if there were results that appear in most of pairs studied and then we elabo-
rated a listing of them.

47.4  Results and Discussion

After analysing the data, we found that the qualitative analysis of the phenomenon 
and the families of functions and the students’ prior knowledge about the families 
of functions and the meaning of the parameters are crucial elements in two key 
moments: when the students have to choose the function to model the phenomenon 
and during the interpretation of the characteristics of the function in relation with 
the phenomenon.

As can be seen in Fig. 47.3, when asked to select the function to model the phe-
nomenon from the given list in Data Analysis®, the students of pair 2 chose the 
quadratic function f(x) = a x2 + b x + c. In order to know the reason of their choosing, 
during the interview, we asked them why they had selected that one, so they 
explained that they knew that the graph had a parabolic shape because they had 
studied carefully the phenomenon before taking the data, so “x would have a 
square”. Therefore, they based their answer on the previous qualitative analysis to 
recognise the shape of the graph that the phenomenon would have. In addition, they 
used their knowledge about families of functions to relate the graph of the parabola 
to the characteristic of having an x2 in its algebraic expression as the term with 
maximum exponent. These were not the only pair who used their knowledge about 
the characteristics of the families of function to choose the algebraic expression that 
they thought would model the phenomenon. For instance, as the transcript shows, 
during interview, students of pair 3 explained that they chose f(x) = a x2 + b x + c 
because “it is not a straight line, it is a parabola, so the formula will be that”.

Moreover, the students of pair 1 not only used the qualitative analysis to choose 
the function but also their prior knowledge about the meaning of the parameters of 
the quadratic function. In particular, when they were asked why they chose the func-
tion f(x) = ax2 + bx + c in Data Analysis® instead of f(x) = a x2 + b x, they explained 
that it was because the graph that they had drawn “didn’t cross the (0,0)”, referring 

Fig. 47.3 Pair 2’s model
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to the sketch of the graph that they had drawn on the first worksheet and using their 
knowledge about the meaning of the parameter c in this formula for the function.

We also could observe the influence of the qualitative analysis of the phenome-
non and the students’ prior knowledge during the interpretation phase of the func-
tion chosen as a model in most of the cases. In examining the responses to item 7b 
(Fig. 47.2), it is possible to see how students explained that the ball reaches the 
maximum height “in the midpoint between the two times obtained in the previous 
exercise” which are the moments when the ball touches the ground, “because it is 
an approximate place where the vertex of the parabola would be”. So, they used 
their knowledge about the qualitative properties of the function to relate the maxi-
mum height of the ball to the vertex of the parabola, the highest point of the func-
tion. Moreover, they consider the property of symmetry of the quadratic function 
because they take into account that the vertex is the point between two points that 
have the same height. Furthermore, many students used what they did during the 
previous qualitative analysis to justify their answers, while they were interpreting 
the function in relation to the phenomenon. For example, students of pair 8 explained 
in item 6b (Fig. 47.2) that “as we had seen on the beginning [referring to the qualita-
tive analysis of the phenomenon] that it has to be a parabola that started a little after 
zero, it has no sense to calculate the images of big values like f(100) or images of 
values close to zero like f(0,11)”.

47.5  Discussion of Elements to Improve the First Design

As a consequence of the observation made during the experiment and the results 
obtained, we found certain elements that it is possible to change in order to obtain 
an improved design that allows us to analyse whether the qualitative analysis and 
the students’ prior knowledge influence other phases of the modelling process in 
future implementations.

First of all, we have found a lack of information about the students’ prior knowl-
edge of the characteristics of families of functions and the meaning of the parame-
ters in the first worksheet, which has not allowed us to know in detail the origin of 
their answers. This has led us to include some questions during the interviews to 
find out more information about these, but this is useful only in the case of the stu-
dents interviewed. For instance, we could not determine the reasons that led stu-
dents to draw the graph in a certain form and position with respect to the axes. 
Similarly, we could find out which algebraic expressions were known by them and 
which graphical representations. We also observed a lack of information from the 
second worksheet, which had not allowed us to know if the students’ prior knowl-
edge and the qualitative analysis influenced other phases of the modelling process.

Secondly, it should be pointed out that the technological tool does not always 
help in the mathematical reasoning of the students as we mentioned in the introduc-
tion because sometimes it helps so much the students that it allows them to obtain 
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what they want without having thought very much about it. That is, the students 
transfer some competences to the technological tool used. This occurs in particular 
when the app Data Analysis® provides directly the regression function and the stu-
dents do not necessarily have to reflect on the meaning of all the parameters related 
to the graph. In this case, they only need to reflect on the meaning of the parameter 
c of the function y = ax2 + bx + c because the app gives the option to choose between 
y = ax2 + bx + c and y = ax2 + bx.

47.6  Incorporation of New Elements into the Design

Taking into account the results and as a consequence of reflecting upon the observa-
tion in the classroom, we decided to incorporate some new elements into the design 
of the teaching materials.

On the one hand, we have incorporated more questions where the students can 
explain and justify the decisions that they make. At the same time, this will allow us 
as researchers to obtain more information about the elements that influence their 
answers. For example, after having drawn the sketch of the graph in the first work-
sheet, we ask why the graph has that shape and why it is in this position with respect 
to the axis in order to know the elements that make them give a particular answer. 
We also incorporated a question to determine which algebraic expressions they 
know and their graphical representations. In the second worksheet, we added new 
questions that point to metacognitive elements to guide the students through the 
modelling process but what also will allow us to know if they use the qualitative 
analysis of the phenomenon and their prior knowledge in other phases of the pro-
cess. For instance, a question has been included to know in factors their choice of 
function as a model is based.

On the other hand, we set other questions in order to require students to interpret 
the meaning of the parameters in relation to the graph to find the function. For that 
purpose, we have included a question where the students will have to use another 
app, Desmos®, to represent the points obtained and to transform the function y = x2 
to fit them from observing the effect of the different values of the parameters a, b 
and c of the function in the canonical form y = a(x − b)2 + c in the graph. Moreover, 
we have incorporated other questions to make the most of the learning opportunities 
that emerge as a consequence of the nature of the activity to work other content and 
taking into account the possibilities that the tablets offer. Specially, we have posed 
a question to ensure the students obtain the function using Data Analysis® as well, 
which gives them a function in the canonical form y = a x2 + b x + c, and to make 
them compare both functions and, consequently, the values of the parameters of 
both of them. With this task, the students can learn the algebraic transformations 
between canonical forms with sense, not as a mechanical task on how they usually 
do and verify the model that they have obtained by using Desmos®.
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47.7  Conclusion

In this chapter, we have presented the results of implementing a teaching material to 
work the quadratic function through mathematical modelling of a real phenomenon 
and using electronic tablets. With respect to the research aim, we have confirmed, as 
Puig and Monzó (2013) suggested previously, that the qualitative analysis of the 
phenomenon and the families of functions are key elements throughout the model-
ling process. Specially, we have observed that the qualitative analysis as well as the 
students’ prior knowledge are crucial in the phases of the modelling cycle (Blum 
2011) in which the students have to choose the function used as a model and to 
interpret the model in relation to the phenomenon. Therefore, these metacognitive 
elements can help the students through the modelling process, and it is necessary to 
incorporate them in the design of tasks of similar nature.

Taking into account the observation in the classroom and the results of the imple-
mentation of the first design, we have incorporated new items to give the students 
the possibility of explaining their answers in more detail and to make the most of the 
opportunity to work with algebraic transformations between canonical forms of the 
same function and the meaning of the parameters of a specific canonical form with 
sense, not as a mechanical transformation out of context. This will allow us in future 
implementations to obtain more information about how students use their prior 
knowledge of the characteristics of families of functions and qualitative analysis of 
the phenomenon being studied to answer the questions and, as a consequence, anal-
yse if these elements influence other phases of the modelling process, which is the 
main objective of our study.
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Chapter 48
Mathematical Modelling in a Long-Distance 
Teacher Education in Brazil: Democratizing 
Mathematics

Daniel Clark Orey and Milton Rosa

Abstract This chapter describes how a group of mixed ability students used long- 
distance education technologies to develop mathematical models in relation to their 
experience with nationwide protests related to sudden and steep rises in transporta-
tion costs during June 2013 in Brazil. Mathematical modelling became a teaching 
methodology that focused on the development of a critical and reflective efficacy 
engaging students in a contextualized teaching-learning process that allowed them 
to become involved in the construction of solutions of social significance. Pertinent 
theories related to critical mathematical modelling in the context of long-distance 
technologies are outlined. This approach allows for the democratization of higher 
education in Brazil by democratizing mathematics through the development of the 
modelling process in virtual learning environments.

Keywords Critical and reflective dimension •  Critical and reflective mathematical 
modelling • Long distance education • Teacher education • Technology • Virtual 
learning ernvironment

48.1  Introduction

Nationwide, Brazil is in the process of upgrading teacher competencies and the 
training of new teachers on a massive scale that is making a difference in the quality 
of life in many schools and communities. To increase access to a wider audience, we 
make use of freeware and Moodle as the platform; this has enabled the Universidade 
Aberta do Brazil (Brazilian Open University) system to democratize and increase 
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access to higher education. The study of new educational and methodological pro-
posals promotes social change resulting from contemporary scientific and techno-
logical development.

The need to update and upgrade professional development for teachers on a mas-
sive national scale created new institutional solutions, methods, and resources in 
order to meet the demand for specialized teacher education programs such as  in 
mathematics. Long-distance teacher education programs for prospective teachers in 
Brazil are offered in regions that traditionally have had limited to no access to higher 
education and professional development opportunities. These programs were devel-
oped because traditional face-to-face teacher training programs could not meet the 
tremendous immediate need or allow people the time required by traditional instruc-
tion to earn degrees.

This context allowed the Universidade Federal de Ouro Preto (UFOP), which is the 
Federal University of Ouro Preto, to offer seminars in mathematical modelling in long-
distance mathematics at the undergraduate level. These courses are entirely developed 
in environments mediated by technology and the Internet. Freitas (2016) stated that 
these virtual learning environments help to provide the development of students’ criti-
cal and reflective dimensions during the conducting of the mathematical modelling 
process. These environments enable the development of relevant discussions on themes 
chosen by the students for the elaboration of their modelling projects.

The development of the activities in these courses was conducted by using the 
interactional tools among teachers, tutors, and students found on the Moodle plat-
form. In this regard, the Centro de Educação Aberta e a Distância (CEAD), which 
is the Open and Distance Educational Centre at the Universidade Federal de Ouro 
Preto, has come to integrate instruction, technology, digital media, content, and 
pedagogical methods in order to reach a diversity of students. At just this university 
alone, there are over 2000 students enrolled in four undergraduate major courses 
including Mathematics, Geography, Pedagogy, and Public Administration. 
Enrollment represents 16% of UFOP students who live in three states: Bahia, Minas 
Gerais, and São Paulo in 33 long-distance learning centers named polos that are 
attached to the university.

48.2  The Role of Long-Distance Education

In Brazil, pushback in regard to long-distance education is evident, especially in 
relation to its implementation in higher education. The Brazilian Open University 
was developed with the mission of providing access to higher education to a popula-
tion of prospective learners who have not traditionally had access to higher educa-
tion. Article 80 of Law No. 9394/1996, which is the guidelines and basis for Brazilian 
education, states that the government must encourage the development and diffu-
sion of distance education programs at all educational levels.

Over the past few decades, and in many diverse locations in Brazil, distance 
education has grown quickly. Beginning initially with the use of mail-order courses, 
it transitioned to include radio and television. Once associated with mail and printed 
materials, it facilitated the dissemination and democratization of access and has 
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now moved to the Internet and includes a diversity of MOOC offerings. It has 
become a key element in democratization and now allows access to education and 
professional development opportunities once only given in face-to-face and in elite 
contexts. In Brazil, it has allowed a portion of the population that traditionally was 
denied access to participate in public education and to advance.

In long-distance education and virtual learning environments, students and 
teachers are in different both temporal and physical locations (Moore and Kearsley 
2005). Although this modality of education might hinder traditional teacher-student 
relationships, strangely enough it allows students who had never had access to pro-
fessors or teachers to gain intimate and close contact with their instructors. Long- 
distance technologies and technological resources answer the need of a population 
who deserve initial or continuing education opportunities. Long-distance education 
allows for both educators and learners to break barriers related to time and space by 
promoting interactivity and information dissemination. Many long-distance educa-
tion environments are open systems composed of flexible mechanisms for participa-
tion and decentralization, with control rules discussed by the community and 
decisions taken by interdisciplinary groups (Rosa and Orey 2007).

This approach allows interactions between teachers who prepare instructional 
materials and strategies, with tutors, who, in our case, provide hands-on face-to-face 
assistance at polos. In this educational modality, tutors are tasked to assist students 
in their activities and tasks, guiding them in their doubts, helping them learn to use 
search tools and libraries, and offering help in writing and basic mathematics skills. 
This assistance is very important during the development of the modelling process. 
These interactions are triggered by lessons that are delivered on platforms that 
enable the use of technology and the teaching and learning of specific mathematics 
content in the elaboration of mathematical models. These features have enabled the 
development of a variety of educational methodologies that utilize web interaction 
channels and aim to provide needed support in the achievement of mathematical 
modelling curricular activities.

48.3  Critical and Reflective Dimension of Mathematical 
Modelling

In the last three decades, critical and reflective mathematical modelling as a method 
for teaching and learning mathematics has been a central theme in mathematics 
education. In teacher education programs, this is a way to rebuild or restore part of 
the fragmented knowledge students acquired during their previous mathematics 
learning experiences. The critical and reflective dimension of mathematical model-
ling has become one of the most important lines of research for processes of math-
ematics teaching and learning in Brazil. This supports forms of teaching and 
learning of mathematics aimed at solving real-world problems that makes use of 
critical mathematical modelling as a methodology that values and enables connec-
tions between mathematics and reality.
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However, this aspect is not always reflected in the teaching practices of educa-
tors. Much of the literature related to mathematical modelling and its socio-critical 
perspectives contributes to the development of both critical and reflective teachers 
and presents us with opportunities for the meaningful learning of mathematical con-
cepts by students in virtual learning environments (Rosa and Orey 2015), which 
allows for the exploration of issues related to the context and interest of students 
and, thus, provides meaning for mathematical content under study.

By using critical-reflective mathematical modelling processes, educators encour-
age the examination of a variety of ways in which students develop and use certain 
mathematical procedures so that they learn to identify and propose solutions to 
problems faced in everyday life. This process of collecting and organizing data in 
order to develop an opinion is crucial to the development of an informed, active, and 
critical citizenship. One of the necessary pedagogical practices for transforming the 
nature of mathematical teaching is the deployment and implementation of this per-
spective in long-distance mathematics undergraduate courses. Interpreting and 
understanding these phenomena are due to the power provided by critical-reflective 
mathematical modelling, which occurs through the analysis of the applications of 
mathematical concepts during the development of mathematical models in the vir-
tual learning environments. Because the solution for modelling a problem situation 
includes the understanding of how ideas and mathematical concepts are designed in 
the preparation, analysis, and resolution of models, the process of developing math-
ematical models is not a neutral activity. It is important that mathematical results 
obtained in this process are linked to the reality of the learners themselves (Barbosa 
2006).

During the process of elaborating a model, it is necessary to describe, analyze, 
and interpret phenomena present in reality in order to generate critical and reflective 
discussions about different processes for the resolution of models, which are pre-
pared by learners. Thus, it is important to enable true reflections of reality, which 
become a transformative action that allows students to practice both explaining and 
sharing understandings and develop abilities to organize, manage, and find solutions 
to problems that present themselves (Rosa and Orey 2015). Both critical and reflec-
tive data-focused discussion triggers a cycle of acquisition of mathematical knowl-
edge from reality through the process of mathematical modelling. In this process, 
students develop skills that help them to process information and define essential 
strategies to perform actions that aim to transform reality. This kind of discussion 
provokes students the ability to comprehend and debate the implications of mathe-
matical results, which flow from the resolution of problem and situations (Rosa and 
Orey 2015).

In this regard, critical and reflective mathematical modelling is considered as an 
artistic, indeed a poetic process, because during the elaboration of a model,  modelers 
develop a certain creative sense of intuition or creativity that enables the interpreta-
tion of data. Hence, students experience and work in a motivating virtual learning 
environment so that they are able to develop and exercise their creativity, reflection, 
and criticality during the modelling process of generation, analyses, and production 
of knowledge. Mathematical modelling in a virtual learning environment becomes 
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a place in which students are invited to inquire, investigate, and work with real 
problems as well as use the mathematics they know, as a language for understand-
ing, simplifying, and solving these situations in an interdisciplinary fashion by 
using technological tools available in this environment (Freitas 2016).

The Brazilian National Curriculum for Mathematics developed in 1998 states 
that students need to develop their own autonomous competencies to solve prob-
lems, make decisions, work collaboratively, and effectively communicate their 
ideas. This approach helps students face challenges posed by society by turning 
them into flexible, adaptive, reflective, critical, and creative citizens. This aspect 
emphasizes the role of mathematics in society by highlighting the necessity to ana-
lyze the role of critical thinking in relation to the nature of mathematical models as 
well as the function of modelling that solves everyday challenges (Rosa and Orey 
2015).

Therefore, when Brazil erupted in protests in June 2013, it seemed the perfect 
opportunity to use the crisis related to transportation in order to develop mathemati-
cal modelling curricular activities. By having 31 polos with diverse student popula-
tions and distinct social contexts, it seemed a rich opportunity to work with the 
critical and reflective dimension of mathematical modelling. This approach helped 
students’ development of creativity and criticality that allowed them to apply differ-
ent tools to focus on the problem and data in their own context to solve problems 
faced in their daily lives in order to elaborate mathematical models related to pro-
posed transportation themes.

48.4  Mathematical Modelling in Virtual Learning 
Environments

Mathematics is often referred to as a language, but it seems that it has become a 
language taught almost entirely focusing on its grammar and without giving leaners 
the opportunity to communicate mathematically. It is not until learners reach 
advanced mathematics that the few who survive this process are afforded the oppor-
tunity to engage in communicating and creating new ideas using the beauty and 
power found in the language of mathematics. It is no wonder then that most people 
detest mathematics. To them mathematics is stuck in endless skill drills in the use of 
mechanical and mathematical grammar without being able to write or communicate 
in this synthetic but powerful language.

In Brazil, a strong culture of inquiry has developed in the mathematics education 
community by using critical and reflective mathematical modelling in which 
 students are encouraged to reflect upon, engage in, debate, and dialogue to resolve 
problems they find in their own contexts. For example, data gleaned from a course 
offered to mathematics majors in mathematical modelling used this historic event 
regarding the 2013 Brazilian nationwide demonstrations. This context allowed 150 
students in ten polos in the states of Minas Gerais and São Paulo to develop their 
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competency in the mathematical modelling process in the virtual learning environ-
ment. This approach also helped them to study in depth the rise in bus fares in their 
communities in Brazil as well as to share their findings with fellow students, faculty, 
and tutors.

In this context, in June 2013, early in the seminar on mathematical modelling, 
Brazil erupted in mass demonstrations against the growing problem of corruption 
and overspending in relation to preparation for the 2014 World Cup tournament. 
Just in the small college town of Ouro Preto, 10,000 people marched from the uni-
versity campus to the main square of the city. What sparked this national mass 
movement was a sudden spike in fares in urban transportation systems. What may 
seem to those who do not use mass transit as something minor (20 cent rise) created 
a difficult problem for many who live in the large metropolises of São Paulo, Rio de 
Janeiro, Salvador, Brasilia, Fortaleza, and Belo Horizonte. Some long daily com-
mutes became R&30 (about US&12) round-trips five or six times a week and for 
many became untenable.

Normally, a week is devoted to bringing consensus with students and generating 
a number of themes, and to make use of this particular historic circumstance, the 
instructor consulted with the tutors and students, and together they agreed that 
transportation would be the theme. Eight polos were participating in the seminar. 
The instructor asked the tutors at each polo to organize students into smaller work-
ing groups of four or five students. Over a period of 5 weeks, students were led 
through the steps. The work groups were required to post evidence of their work 
online and on YouTube. Synchronous virtual classes were held. Mathematical mod-
elling lessons were transmitted through videoconferences. Lessons were organized 
and activities and projects were posted in the Moodle platform. Discussion forums 
were conducted in order to prepare students to develop the modelling process. By 
the end of the 16-week seminar, four synchronous meetings were developed in 
order to discuss the elaboration of mathematical models by each group of students. 
The course calendar, the description of the seminar, the terms of the proposed activi-
ties, and the dates and times of synchronous activities were published in the virtual 
learning environment. Every 2  weeks, there were activities and questions to be 
worked on by the students and sent to the tutors and the professor through links in 
the Moodle platform.

For example, one group in one of the polos that had students attending from 5 
(five) different towns decided to problematize the situation of public transportation 
in these locations. In order to do so, they posed the following research question: 
What is the fair price of a bus ticket by considering the per capita income of the 
population of each town? Therefore, during the development of the modelling pro-
cess, this group of students interviewed people in each town to obtain information 
about the percentage of their salary they spend in public transportation and about 
the services provided by the bus companies such as delays, mechanical problems, 
and longtime travel. They also interviewed public officers to obtain information 
about the per capita income as well as the percentage of the population of each town 
that uses public transportation.

D.C. Orey and M. Rosa



583

Thus, based on the results of the interviews, students started the mathematization 
process by finding out that people spent, approximately, 7% of the per capita income 
of each town in public transportation. They were also able to determine that, approx-
imately, 30% of the population used public transportation. In this context, in order 
to elaborate the mathematical model that represented this problem situation, stu-
dents also considered that people, in Brazil, may use public transportation 2 (two) 
times a day (to go to work and to return home) and 24 days a month by only consid-
ering working days from Monday to Friday. Consequently, students determined the 
following mathematical model:
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This group of students applied this mathematical model to understand the public 
transportation in one of the towns in this polo in which the bus ticket cost R$ 2.50. 
Buses were available from 5 a.m. to 11 p.m. with high frequency in the schedule, 
except on the weekends and holidays; however, customers complained that there 
was a long travel time from one bus stop to another. The per capita income of this 
town was 2.70 minimum salaries, which was at that time R$ 678.00; thus, students 
determined that 2.70 × 678.00 = 1830.60. By applying the formula, they found out 
that
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Students in this group concluded that the bus tickets’ fares were compatible with 
the per capita income of the town; however, the transportation service provided to 
the population needed improvement. Public transportation is necessary, but this 
need does not generate the imposition of excessive tariffs, which are disproportion-
ate to the service provided to the population in this town. At the end of the model-
ling process, each group of students filmed the presentation of their project and 
posted it on YouTube with the link for everyone to see on the Moodle platform.

This example emphasizes the role of mathematics in society by claiming that it 
is necessary to develop student reasoning about the nature of mathematical models 
and its function in order to help them to critically and reflectively analyze, under-
stand, and comprehend phenomena in the surrounding world (Kaiser and Sriraman 
2006). It also shows that although geographically distant from the students during 
the development of the course, the professor and tutors effectively used Moodle, 
YouTube, and other freeware tools to be connected. Pedagogical and didactic strate-
gies were used to promote tutorial interactions with professors, tutors, and learners, 
in order to contribute to the process of teaching and learning mathematical model-
ling. The resources used were found in the discussion forums and videoconferences, 
which made possible the development of dialogue between all participants in the 
virtual learning environment.
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This virtual learning environment allows for the development of discussion 
forums concerning teaching practices in the critical mathematical modelling pro-
cess and the elaboration of questions about the pedagogical and technical aspects of 
this process. It also allows for the integration of students, tutors, and professors to 
deliver messages, the provision of summaries of content of the course, conduction 
of technological and pedagogical monitoring such as sending messages to all par-
ticipants and participation in discussion forums, and technical support for students 
and tutors and access reports in the virtual learning environment. Consequently, 
students’ engagement with a sociocultural context helped them to be more involved 
in meaningful dialogue and activities. Thus, context allows the use of a dialogical 
constructivism because the source of knowledge is based on social interactions 
between students and environments in which cognition is the result of cultural arti-
facts in these interactions (Rosa and Orey 2007).

This critical-reflective dimension of mathematical modelling has provided us 
with concrete opportunities for our students to discuss the role of mathematics as 
well as the nature of their models and can be understood as a language used to study, 
understand, and comprehend problems faced by their own community. Hence, 
mathematical modelling is used to analyze, simplify, and solve daily phenomena in 
order to predict results or modify the characteristics of these phenomena (Rosa and 
Orey 2015). Similarly, in accordance with Freitas (2016), an important proposition 
of mathematical modelling is to favor the development of a sense of data-based 
criticality and reflection by the students through the elaboration of projects that 
demonstrated their applicability in problem situations in everyday life.

Developing strategies through technological tools provided by this virtual learn-
ing environment encourages students to explain, understand, manage, analyze, and 
become critically reflective on all parts of this system. This approach optimizes 
pedagogical conditions for teaching and learning so that students understand a par-
ticular phenomenon in order to act effectively and transform it according to the 
needs of their own community. Due to perceived needs of the students during the 
course, the professor created supplemental materials and short video lessons in 
order to lead students step by step in the modelling process, so they were able to 
improve their performance in carrying out the modelling-proposed activities. 
Therefore, it is important to highlight the design of the use of digital technologies in 
the development of this long-distance course such as the use of videoconferences 
and discussion forums, which are not frequently present in face-to-face environ-
ments. Hence, the virtual learning environment helped the professor to guide the 
selection of techniques and procedures students used during the conducting of the 
modelling process.

For example, videoconferences enabled the integration of students, tutors, and 
the professor for socialization and clarification of questioning that allowed for the 
development of a collaborative environment for sharing experiences on the pro-
posed themes and promoted students attendance in the polos to conduct their mod-
elling projects. Freitas (2016) stated that the use of a videoconference is effective 
because it has sufficient teaching resources for conducting synchronous classes. In 
this perspective, knowledge is translated in a dialogical way so these technological 
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tools can be used as instruments to help students to critically think about problems 
they face daily.

In addition to promoting interaction, the professor prepared teaching materials as 
well as posted information about the structure and policies of the activities available 
in this environment, leading students toward an understanding of critical and reflec-
tive dimensions of mathematical modelling, which exposes them to a wide variety 
of themes and techniques. According to Rosa and Orey (2015), as part of this pro-
cess, questionings in the virtual learning environment through postings on the 
forums and the use of videoconferences help students to discuss, explain, reflect, 
and make predictions about the phenomena under study through the elaboration of 
models that represent these situations. In this context, “critical thinking of the stu-
dents is emphasized as central goal of teaching. Therefore reflexive discussions 
among the students within the modelling process are seen as an indispensable part 
of the modelling process” (Kaiser and Sriraman 2006, p. 306).

Thus, the purpose of this modelling process becomes the ability to develop criti-
cal and reflective skills that enable teachers and students to analyze and interpret 
data together, to formulate and test hypotheses, and to develop and verify the effec-
tiveness of mathematical models. In so doing, the reflections become a transforming 
action, seeking to reduce the degree of complexity of reality by choosing a system 
that can represent it (Rosa and Orey 2015). For example, the results of the study 
conducted by Freitas (2016) showed that this active, interactive, and collaborative 
participation in the virtual learning environment made possible the development of 
discussions in the forums that allowed students to clarify any questions regarding 
the tasks and the development of models as well as in encouraging them to develop 
an autonomy to prepare their own projects.

48.5  Final Considerations

The study of new methodological proposals becomes relevant because it originates 
with the ideas regarding social changes resulting from ongoing continuous contem-
porary scientific and technological developments. In order to enable teaching meth-
ods by using structured learning materials and existing technological resources, 
long-distance learning was developed, which is a form of planned learning that 
normally occurs outside of traditional school and learning environments (Moore 
and Kearsley 2005).

Over the last three decades, critical mathematical modelling, as a teaching and 
learning methodology, has been one of the central themes in mathematics education 
in Brazil and has come to offer a way to rebuild or restore what has become for 
many, a fragmented and meaningless mathematical knowledge. Mathematical mod-
elling then becomes a teaching methodology that engages our students in a contex-
tualized teaching and learning process and which can allow them to become involved 
in the construction of solutions of social significance (Rosa and Orey 2015).
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This critical dimension of mathematical modelling is based on the comprehen-
sion and understanding of reality, which allows students to learn how to reflect, 
analyze, and take action on their reality using technological tools provided in a 
virtual learning environment. Thus, with discussion forums and videoconferences, 
professors, students, and tutors are empowered to critically analyze interactions 
enabled by these tools, which contributed to the critical-reflective development of 
the elaboration of mathematical models in this virtual learning environment.
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Chapter 49
Six Principles to Assess Modelling Abilities 
of Students Working in Groups
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Abstract This chapter sets out how the six instructional design principles for 
model-eliciting activities (MEAs) can be reworded and may serve as principles for 
assessing modelling abilities of students working in groups. The chapter explores 
some modelling assessment ideas and explains how the six principles form a frame-
work for a holistic evaluation of group modelling. A design research study investi-
gated the modelling competencies of grade 7 students working in a group. The 
assessment unit was that of the group as a whole and not of individual students. It 
was found that the six principles reworded as an assessment framework enabled the 
authors to evaluate significant aspects of model-eliciting activities such as model 
construction, reality integration, quality of documentation, self-evaluation, develop-
ment of prototypes for thinking and generalisation.

Keywords Assessing competencies • Modelling • Design principles • Design 
research • Primary school students

49.1  Introduction

Mathematics education has much to gain from including mathematical modelling 
activities in the classroom. According to Niss et al. (2007, p. 19), modelling can 
make “fundamental contributions” to a student’s development of mathematical 
competencies. Measuring mathematical modelling is a much more complicated task 
as it involves not only the solution but also logical reasoning, linguistic competency 
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and previous knowledge of the students and their attitudes (Lingefjard and Holmquist 
2005). Assessing or measuring student abilities or understandings is undertaken for 
different reasons and to meet various needs and designed in accordance with instruc-
tional principles. The various dimensions of modelling as an integrated whole, as 
well as the process and the products of modelling, need to be assessed. To meet this 
need, we sought a framework that encompassed the broad aims of teaching model-
ling and the specific competencies of the modelling cycle.

Modelling can be considered as mathematical learning through problem con-
texts. According to Gijbels et al. (2005, p. 31), “many educators and researchers 
have advocated new modes of assessment to be congruent with the education goals 
and instructional principles of problem based learning”. Since the goals and instruc-
tional principles of modelling are different from traditional teaching, a new assess-
ment framework is needed. According to Cohen (1987), when instruction and 
assessment are aligned, results are greatly improved. It is therefore important in 
assessing modelling to align the instructional principles to assessment. This chapter 
intends to meet some of these aims and to assist in providing an assessment frame-
work for model-eliciting tasks that take place in group situations. Model-eliciting 
tasks are formulated in such a way that the students have to produce a model in 
response to the task. The model goes beyond a short response to very specific ques-
tions (Lesh and Doerr 2003). We considered it important to find assessment guide-
lines for group work situations since this is the authentic modelling environment.

49.2  Dimensions of Modelling Assessment

Biggs (1996) suggests a model of instruction that includes students being placed in 
situations that are likely to elicit the necessary learning and that assessment tasks 
address the same performances that are stated in the curriculum. Students should be 
evaluated in an authentic assessment environment (Baxter and Shavelson, cited in 
Gijbels et al. 2005). An assessment framework needs the following characteristics 
or features:

• To be aligned with teaching principles,
• To reveal both strengths and weaknesses in student thinking,
• To be based on authentic tasks in an authentic environment.

We wanted to develop a framework that could advance the goals of modelling and 
problem-centred learning. Problem-centred learning is mathematical learning that 
takes place through solving rich contextual problems. From a modelling perspec-
tive, the following principles are relevant:

• Assessment for modelling is to be aligned with modelling teaching (instruc-
tional) principles. The assessment of modelling would parallel the aims of 
modelling.

• Assessment is to be based on a holistic approach to modelling. This means the 
entire process and products of modelling should be included in the framework.
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Frejd (2013) noted that assessment in modelling can be distinguished as forma-
tive or summative. We decided that a formative assessment framework would enable 
us to focus on the student group as a unit of analysis. An evaluation of previous 
work on modelling assessment provided a starting point for the development of such 
an assessment framework. Modelling competencies have been measured in studies 
using multiple-choice questions (Kaiser 2007). This enables one to assess individ-
ual modelling competencies. Clatworthy (1989) developed an assessment rubric 
that was used in a modelling course to assess modelling competence and provided 
each student with feedback which assisted in developing positive attitudes. 
Clatworthy concluded that the development of reliable methods for assessing mod-
elling remained a challenge. In a study by English and Fox (2005), a tool was devel-
oped for a single modelling problem to describe student modelling; whilst in another 
study (English 2007), cycles of mathematical development displayed by a group of 
students at primary school level were addressed. Chan et  al. (2012) developed a 
rubric to assess modelling competencies. Their specific task instruction was aligned 
to the rubric. We wanted to start with principles that could be a generic starting point 
for modelling assessment and the starting point for the development of task-specific 
rubrics.

Jensen (2007) suggested a multidimensional approach to assessing mathematical 
modelling competencies. Jensen proposed that the three dimensions provide vocab-
ulary for discussing quality in performance and as such offer a more valid but less 
reliable alternative to mark schemes. However, we felt that these three dimensions 
may be too broad to use for single modelling activities. Niss (1992, p. 355) sug-
gested that we ought to assess students’ work on the entire process of modelling in 
all its phases. Many of the studies above focussed on individual phases of the mod-
elling cycle or individual competencies. In an endeavour to merge the above assess-
ment ideals, a qualitative, multidimensional approach informed by instructional 
principles that would provide the necessary vocabulary to discuss quality perfor-
mance or evaluate the entire modelling process was deemed necessary. We wanted 
a framework that allowed us to unpack a group’s entire modelling experience. More 
significantly, such a framework could allow one to develop assessment protocols 
(e.g. rubrics) for modelling that teachers could use in the classroom at a later stage. 
Frejd (2013), in his extensive literature review on assessing mathematical model-
ling, found that very few studies involved theoretically based case studies. We hope 
to add to the growing literature on framework-based case studies.

49.2.1  Six Principles for Instructional Design and Modelling 
Assessment

Whilst selecting tasks for the study, six principles of instructional design (Lesh et al. 
2000) were found to be used extensively in task design. These principles enable the 
transformation of existing problems into model-eliciting activities (MEAs) or the 
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creation of new model-eliciting tasks. These principles ensure that tasks qualify as 
MEAs. The six principles are the reality principle, the model construction principle, 
the self-evaluation principle, the model-documentation principle, the simple proto-
type and the model generalisation principle.

The instructional design principles can be reworded so that they assess groups 
working on modelling tasks. These questions, rewritten as assessment guidelines or 
principles, can be transferred into a mathematics classroom since they allow teach-
ers or researchers to focus on the essential products and processes of modelling. 
Reworded, the six principles for assessing modelling are:

 1. To what extent does the group make sense of the real-life situation?
 2. To what extent does the group construct a model?
 3. To what extent does the group judge that their ideas, responses and models are 

good enough?
 4. What is the quality of the documentation that the group produces when 

modelling?
 5. To what extent does the group produce a solution that is a metaphor (a prototype) 

for interpreting other situations?
 6. To what extent does the group develop a shareable, generalisable model?

A study by Yildirim et al. (2010) used four of the six design principles to assess 
engineering students’ modelling abilities in actual teamwork situations. The authors 
designed a five-point scale rubric for principles 3, 4, 5 and 6. We wanted to include 
all the principles in the evaluation process so our research question (and the focus 
of this chapter) is: How can the six instructional design principles for model- 
eliciting activities be used to assess students working in a group?

49.3  The Study

Design research was the overarching methodology followed in this study (Biccard 
2010). This means that a three-phase teaching experiment (Bakker 2004) was fol-
lowed: a planning phase where the tasks and instruments were prepared, a cyclical 
teaching experiment where students solved the tasks and a retrospective analysis 
after each cycle that allowed the researcher to analyse the data and prepare for the 
next teaching phase. Twelve students were purposively selected for the study and 
worked in three groups of four students. They were selected based on their school 
results. For this chapter, only the results of one group working on one task are pre-
sented and discussed. The group chosen fared better than the other groups at solving 
the modelling problems. They comprised students whose results for mathematics 
were above average for the previous year. Student ages ranged from 11 to 13 years. 
They worked once a week (after school hours) for 60–90  min. Over a 12-week 
period, they worked on three MEAs. These students had not been exposed to model-
ling problems before. All contact sessions were audio-recorded and transcribed. The 
transcriptions were analysed and coded according to the six principles. Groups 
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worked with minimal researcher (Author 1) intervention. The researcher interacted 
with groups periodically to question them on what they were doing but not to direct 
them. At the end of each task, students presented their solutions to the other groups. 
These sessions were video-recorded. The tasks used were sourced from existing 
modelling literature and related to proportional reasoning. In the transcripts, R 
stands for researcher, whilst other letters are identity codes for the four students in 
the group: T, A, J and S.

49.4  The Results

The results presented are from the recorded transcripts of one group as they worked 
through the Sears Catalogue MEA (adapted from Lesh et al. 2000). An outline of 
this task is provided for readers who are unfamiliar with the task.

49.4.1  To What Extent Did the Group Make Sense of the Real- 
Life Situation?

The modelling task elicited student thinking about real life and mathematics. 
Knowing what real-life knowledge can be woven into a model is a complex process. 
Students may benefit from more experience in their day-to-day mathematics of 
working with real situations. Students are required to translate real ideas and pro-
cesses into mathematical entities. Mathematisation, therefore, lies at the heart of 
modelling.

Sears Catalogue
Hello, my name is Sipho and I need some help with a problem. My parents are 
really unreasonable. My sister, Karabo, is 10 years older than me. When she 
was in Grade 7 her pocket money was ZAR30 per month. I also get ZAR30 
per month. With ZAR30 I cannot buy as much as she could 10 years ago. To 
prove this I collected some information about prices now and 10 years ago. 
What I need from you:

Use my price information to determine how much pocket money today 
would be the same as ZAR30 10 years ago. Write a report for me to give to 
my parents, describe your method and your conclusions. Show that you accu-
rately figured out how much money gives me the same spending power as 
ZAR30 did 10 years ago. Explain your method so other children in similar 
situations can use it to figure out what their allowances should be. Remember, 
my parents do not like emotional or illogical arguments.
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The group integrated their own knowledge into their understanding of the prob-
lem and the need to produce a model for the parents:
T: Think of the tuckshop, for a hot dog. It used to be ZAR4-50 and now it’s nearly 

ZAR10.
[...]

T: I don’t think a parent wants to come home each month and calculate prices 
from 1999 and 2009 just to get the amount that the child must get?

In discussing one of their ideas, one student considered that it may not be “fair” 
to the sister:
T: If I was the sister and I had to find out [that they calculated an amount that was 

too high], I would kill you if it was wrong.
When selecting which data to use from the catalogues, they looked at what it is 

that children do/should buy with pocket money:
S: No, this is a need and not a want.
J: So maybe we should look at only the stuff that a child should buy, because I 

think the parents should buy the stationery; the child shouldn’t buy stationery 
with his pocket money. Maybe he wants to buy games and trainers, the nice 
stuff?
[...]

J: We should scratch those [needs] out.

Making sense of a real-life situation affects different modelling competencies. 
Here they used their real-life experiences to simplify the problem and to justify 
which data they would be using in generating the model. This also assisted them in 
validating their model in the presentation sessions. Their real-life knowledge 
assisted them in advancing and refining their thinking about the situation. Just talk-
ing about the real situation without making an impact on the model is not 
sufficient.

49.4.2  To What Extent Did the Group Construct a Model?

Modelling tasks require that students develop a simplified model to explain their 
thinking about another situation. Jablonka (1997, cited in Frejd 2013) found the 
most crucial part of assessing modelling lies in the quality of the mathematical 
model. As with all MEAs, the group underwent several reformulations and revisions 
as their thinking about the problem matured. Their initial formulation was to look 
for a pattern:

S: How do you start this?
T: Maybe we should find a pattern?
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J: Maybe we should look at the difference at the stationery store and see a 
pattern.

A: Is there a pattern?
They went through several formulations and revisions before deciding on their 

model (Fig. 49.1). A second model was also produced (Method 2), and they could 
not decide which model to use – so they opted for averaging the results from both 
models. Their model explains their assumptions and simplifying procedures and 
also gives an example of how they worked. The model should describe, explain or 
predict elements of the real situation through a process of extracting essential fea-
tures that can be mathematised.

49.4.3  To What Extent Did the Group Judge That Their Own 
Ideas, Responses and Models Were Good Enough?

The focus of this question is on the level of metacognition in terms of the students 
judging their own ideas. The students’ ability to judge their own ideas and responses 
means that they are able to move themselves ahead since modelling is characterised 
by a feeling of uncertainty because there are too many roads to follow (Blomhøj and 
Jensen 2007). Whilst three group members were working on an early idea, one 
group member saw the flaw in their argument:
J: I don’t understand? Did you start with a price from 1999, and then times it by 

2 and then times it by 3 and then minused the times by 2 from the times by 3 
and you came up with ZAR1 again … but that’s an obvious answer!

J: We used a whole paper just for this, an obvious answer!
However, having taken this route and having seen the error in their reasoning, they 
were able to refine their thinking and move towards their next model. In their pre-
sentations, the researcher questioned the large difference in their answers from their 
two methods:
R: Didn’t it worry you that the one method gave you so much more than the 

other?

Fig. 49.1 Model development.
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J: No, this list [method 1] is based on wants and wants cost more than needs.
Focussing on their own self-evaluation allowed us insight into their mathematical 
thinking as well as tracking their progress through model development.

49.4.4  What Was the Quality of the Documentation That 
the Group Produced When Modelling?

The group produced rough working sheets whilst solving the task as well as presen-
tation sheets for their oral presentations. There were no prescriptions as to what had 
to be included in these sheets or their format. The working sheets were messy and 
haphazard. The group seemed to think that only the final solution was important, 
placing less value on their working sheets compared to their presentation sheets. 
Working sheets did not always show the progression of group ideas nor did they 
contain sufficient evidence of some group competencies. The presentation sheets 
contained only what the group had filtered for use in the presentation. Lesh et al. 
(2000) remind us that objects, relationships, operations, principles and representa-
tional systems will be revealed through MEAs. Students may represent these in a 
variety of ways. Capturing all these is problematic during classroom modelling ses-
sions, but can be elicited from groups when they present their solutions.

Smith (cited in Derry et  al. 1998) describes three types of products produced 
when students work in groups: tangible, intangible and ephemeral. These descrip-
tions remind us that various forms of representation are necessary for modelling, 
from temporary sketches or conversations to the rough notes, tables and data to the 
final model. These products are valuable to students, teachers and researchers in the 
modelling process as they leave “auditable trails of documentation” (Lesh and 
Doerr 2003, p. 31) that can be used to assess the modelling process and the model 
itself. This group was strong verbally and produced written documents only when 
directly requested to, for example, a letter to the parents. Many of their products 
were relegated to “rough work”. This may be due to their previous experiences in 
mathematics classrooms where expectations are for a final answer only.

49.4.5  To What Extent Did the Group Generate an Effective 
Prototype?

This section relates to the group’s ability to extract from their modelling process the 
essence of the mathematical structure of the problem. The group was using very 
simple ideas in their solution processes; nevertheless, these simple ideas were well 
understood by the students and could be used by them. The mathematisation pro-
cess that they followed in creating two methods for the problem is similar to the 
suggested products set out in Lesh et al. (2000). Simplicity of computation must not 
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be confused with simplicity of mathematising. Iversen and Larson (2006) found that 
students use simple mathematics in complex ways. “Group decisions about what to 
do and where to go utilizing only incomplete information and extensive use of heu-
ristics and simple but robust concepts and procedures” (Lesh et al. 2008, p. 125) is 
the norm whilst working on modelling tasks. Lesh et al. (2000) state that the situa-
tion (and therefore the student’s response) should focus on the important idea and 
should not involve unnecessary complexity. In the Sears Catalogue problem, the 
central idea is that of reasoning proportionally from price indexes to their effect on 
the spending power of money over 10  years. During their presentation of their 
model, the group used simple concepts to build a significant prototype of the con-
cept “average difference”. This becomes the prototype that they may use when con-
fronted with structurally similar problems in the future:
S: We took all the “wants” on the list from one store and we found the difference 

between the two prices [1999 and 2009]. We added them together and worked 
out an average which was ZAR142-75.

A: But we worked on his needs and worked on a different method.
J: We took ZAR30 and saw what we could buy [in 1999]. Then we looked at how 

much do you need to buy the same amount in 2009. Then we worked out the 
average difference between the two.

49.4.6  To What Extent Did the Group Develop a Shareable, 
Generalisable Model?

Modelling involves more than finding the solution to a given situation. In the task 
instructions, a reusable or generalisable model is required which means the mathe-
matical model should be usable in similar situations or using other data. Student 
abilities to create a generalisable model mean that they are working at higher 
abstraction levels. It means that students have fully understood the real situation, 
have mathematised the problem with the mathematical knowledge and concepts that 
they have at their disposal and are now able to place and “run” their model in unfa-
miliar conditions. This group remained aware of the need for a generalisable model; 
however, they struggled to produce one:
T: I wouldn’t want to get ZAR30 if my sister got it [ten years ago].
A: It’s not only him, it’s for anyone else.
In their letter to the parents, they also stated: “The method we have come up with 
can be used on any prices of items”.

The generalisable model relies on the quality of the situation model. When this 
model is weak or not fully understood, then the task of creating a generalisable 
model becomes more difficult. For this task, the group worked deeply in the situa-
tion model but they were not confident about their situation model. They also 
excluded large parts of the data in their situation model, which may have contrib-
uted to their difficulty in producing a generalisable model. When asked during the 
presentation sessions about their generalisable model, they were able to explain the 
qualitative modelling process they went through.
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49.5  Discussion and Conclusion

The six instructional design questions were used to gauge group modelling abilities. 
This assessment framework provides a holistic, integrated and practical approach to 
assess students’ modelling abilities. It also provides an avenue for developing fur-
ther research on student modelling abilities. The framework could also be formative 
in that it may guide a novice teacher to what to look for when groups of students 
solve MEAs.

The six principles’ framework assisted us in gauging milestones in the group’s 
modelling development. The questions cover areas such as reality, construction, 
reflection, representations, constructing prototypes and generalisability. Moreover, 
using these principles allows one to weave metacognitive competencies and cogni-
tive competencies together and to focus on what students working in groups are 
achieving holistically in their modelling endeavours. Although we focussed on 
group modelling, it may be possible to evaluate individual modelling abilities using 
this framework. Further research could focus on producing a rubric from each of 
these questions.

The framework provides a suitable way to unpack the entire modelling episode 
to assess a group’s entire modelling process and the product produced. The ques-
tions are broad enough to be applicable to all modelling problems, not only in terms 
of student assessment but also for practitioner reflection. The questions form a 
bridge between tasks and assessment of these. The six areas may provide alternative 
lenses to assess modelling as well as vocabulary for teachers and researchers to 
converse about modelling assessment. Furthermore, the framework can be seen as a 
“bottom-up” assessment approach  – it is designed for classroom use but could 
extend to inform professional development, curricular change and research in math-
ematical modelling. Further research into these six areas of modelling ability and 
how to assess these abilities in groups and individuals is necessary.
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Chapter 50
Assessing Mathematizing Competences 
Through Multiple-Choice Tasks: Using 
Students’ Response Processes to Investigate 
Task Validity

Brikena Djepaxhija, Pauline Vos, and Anne Berit Fuglestad

Abstract In this chapter, we report on multiple-choice tasks for assessing mathe-
matizing competences of grade 9 students. The task format is complex, consisting 
of two layers. In the first layer, students are asked to consider a holistic modelling 
problem. In the second layer, they are asked for an atomistic competence (making 
assumptions, assigning variables, etc.) related to the same modelling problem. We 
conducted a qualitative study to investigate the validity of these tasks based on stu-
dents’ response processes. Eight students worked in pairs solving the tasks collab-
oratively. The results show that all students were able to handle the layered task 
format. They reflected meta-cognitively on the holistic modelling problem, but none 
of them started solving it in itself. All students considered the remainder of the task, 
which made them focus on a specific mathematizing activity.

Keywords Assessment • Holistic assessment • Mathematizing • Lower secondary 
students • Multiple-choice tasks • Task format • Task validity • Validity based on 
response processes

50.1  Introduction

Assessment is an inseparable part of education. Assessment is needed for reporting 
students’ learning outcomes to parents, policy makers, teachers, school leaders and 
students themselves. Also, assessment is used in educational research. For the 
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assessment of mathematical modelling education, different modes of assessment 
have been developed: project-based assessment, written tests, portfolio, contests 
and so forth (Frejd 2013). These modes draw on two different approaches: (1) a 
holistic approach, which asks students to accomplish a complete modelling prob-
lem, and (2) an atomistic approach, which asks students for separate competences 
needed to accomplish only part of the modelling.

The assessment of modelling competences is still considered a challenge (Niss 
et al. 2007), and since the 1990s, research has been carried out to develop reliable 
and valid modes of assessment, looking for a balance between holistic and atomistic 
modes (Kaiser and Brand 2015). On the one hand, holistic modes such as project- 
based assessments are time-consuming and raise questions on reliability of results 
(Vos 2007). Written tests with holistic modelling problems raise questions on valid-
ity of results, for example, when students ‘get stuck’ in the beginning of the model-
ling process, they cannot carry out the subsequent activities, which then cannot be 
captured for evaluation (Stacey and Turner 2015). On the other hand, atomistic 
modes of assessment fail to capture the complexity of modelling competences. For 
example, it is possible to assess a specific modelling activity, but it is not possible to 
capture how students connect this activity to other modelling activities (Reit and 
Ludwig 2015). Along these lines, holistic assessment is considered as ideal but 
complex, while atomistic assessment is considered as limited but practical and 
informative (Haines and Crouch 2010). Generally, a balance between the  two 
approaches is recommended for the assessment of modelling (Blomhøj and Jensen 
2003).

Our research builds on Haines et al. (2000), who developed a test for students in 
higher education consisting of multiple-choice tasks. They identified distinct mod-
elling competences and developed multiple-choice tasks that assessed these sepa-
rately. Students’ overall score on all tasks aimed to report on their achievement and 
progress in modelling at large. The multiple-choice test was fruitfully used in 
research (Frejd and Ärlebäck 2011).

In our research, we studied the feasibility of a similar multiple-choice test, but 
then fitting students at the level of grade 9. In the design of tasks, we focused on the 
first activities that one undertakes in modelling. We will indicate these activities by 
the umbrella term mathematizing, which are activities between facing a modelling 
problem, and making a translation to a mathematical model in order to reach a solu-
tion for the problem.

Because the new multiple-choice tasks aim to assess mathematizing compe-
tences, we call these tasks mathematizing multiple-choice tasks (MMC-tasks). The 
format of an MMC-task is characterized by two ‘layers’. See MMC-task format. In 
the first layer, the MMC-task contains a holistic modelling problem. To make it 
stand out visually, it is written within a box. The second layer of the MMC-task 
contains: (1) instructions to focus and reflect metacognitively on the modelling 
problem, (2) an atomistic question to ask students for a specific mathematizing 
competence, and (3) a number of alternatives.
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At the second layer, we used two instructions surrounding the modelling problem. 
These instructions are: Consider the problem below (read it well!) and Think about 
yourself and how you can solve this problem. The two instructions aim to guide 
students not to solve the modelling problem but to focus and reflect metacognitively 
about it. The instructions also aim to give students time to recognize that to solve the 
MMC-task, they only need to answer the atomistic question by selecting one of the 
alternatives.

50.2  Theoretical Framework

50.2.1  Mathematizing Competences

Blum and Leiss (2005) describe mathematical modelling with an idealized modelling 
cycle consisting of subsequent activities: understanding, simplifying/structuring, 
mathematizing, working mathematically, interpreting and validating. Borromeo Ferri 
(2006) has argued that it can be difficult to distinguish among these activities, because 
these differ between students and tasks. Therefore, in the present chapter, we use the 
term mathematizing to describe the transformation activities from ‘the modelling 
problem’ to ‘the mathematical model’. Thus, mathematizing comprises all activities 
before a student starts on the purely mathematical work. In our research, we focus on 
four observable mathematizing activities: (1) making assumptions, (2) asking clarify-
ing questions, (3) assigning variables, parameters and constants, and (4) formulating 
mathematical statements (creating a formula, expressing a range for a variable, etc.). 
These four activity categories were also discerned in Haines et al. (2000).

Different authors have defined modelling competences referring to a cyclic rep-
resentation of the modelling process (Blomhøj and Jensen 2003; Maaß 2006; Niss 
et al. 2007). In their definitions of modelling competences, the terminology con-
verges to cognitive competences. However, other competences, such as  metacognitive 
competences, are also needed in modelling, as pointed out by Maaß (2006).  

MMC-task format
Consider the problem below (read it well!).

 Modellingproblem problemsituation holistic question= +  

Think about yourself and how you can solve this problem.
Atomistic question asking for a specific mathematizing competence

 (A) Alternative 1
 (B) Alternative 2
 (C) Alternative 3etc.
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Thus, we use a broad definition of modelling competences: they comprise students’ 
abilities to consciously carry out all modelling activities. With the focus on mathe-
matizing competences in the present chapter, we define these as students’ ability to 
consciously carry out all activities needed to construct a mathematical model for a 
given modelling problem.

50.2.2  Response Processes Validity

Tasks developed for an assessment must be valid and reliable: they must assess what 
they intend to assess, and the results produced must be consistent, repeatable and 
independent. In this chapter, we focus on validity only. For studying validity, 
Krathwohl (1998) distinguishes a range of sources, such as the content (does the 
task assess the proper content?), relations to other variables (is the task similar to 
other tasks with the same intent?), the consequence of assessment (does the task 
have other consequences than the intended ones?), face validity (does the task 
appear to be valid?) and response processes (do students display the intended men-
tal processes, abilities and skills?).

For researching the validity of the MMC-tasks, we opted to study it qualitatively, 
based on students’ response processes. By observing students while working on the 
tasks, we could generate evidence concerning the fit between students’ actual and 
the expected performance (Krathwohl 1998). For researching task validity, 
Pellegrino et al. (2001) suggest examining different parts of a task. In the case of the 
MMC-task, we opted to investigate two aspects: (1) the instruction clarity and (2) 
the task assessing purpose. Within the MMC-tasks, the instructions are statements 
that are meant to activate metacognitive processes while solving the task. Therefore, 
we investigated whether these instructions were clear and promoted the intended 
processes. Also, we investigated whether the MMC-tasks in themselves assessed the 
intended mathematizing competences. The research question was: To what extent 
are the MMC-tasks valid regarding instructions clarity and task assessing purpose?

50.3  Methods

The study was operationalized by studying students while working in pairs on 
MMC-tasks. The participants in the study were eight grade 9 students (approx. 
15 years old) from a lower secondary school in Albania. The students were average 
achievers in mathematics according to their teacher. The students participated vol-
untarily, and they will be identified by pseudonyms (Eva and Iris, Rea and Tom, Tea 
and Emma, Max and Ben).

A two-step method was used to investigate students’ response processes: obser-
vation followed by a retrospective report (Ericsson and Simon 1993). In the obser-
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vation phase, the students worked in pairs solving MMC-tasks collaboratively. In 
the retrospective report phase, which took place immediately after students’ work 
on each task, students described what they did while working on the MMC-task. 
Both phases of data collection were video recorded. After transcribing, the data 
were analysed for clarity of instructions and task assessing purpose.

We designed six MMC-tasks. For the modelling problem in the first layer, we 
used PISA problems for mathematics, because these are problems with a real world 
origin, and they have been designed to match 15-year-old students (OECD 2014). 
The three PISA problems were: Rock Concert, Pizzas, and Distance, and each was 
used to develop two MMC-tasks. The multiple-choice alternatives were developed 
based on students’ answers from an empirical study, in which grade 9 students were 
observed while working on these three PISA problems (Djepaxhija et al. 2015). The 
mathematizing competences addressed by the six resulting MMC-tasks were: 
assumption making (two MMC-tasks), asking clarifying questions (one MMC- 
task), assigning variables, parameters and constants (two MMC-tasks), and formu-
lating mathematical statements (one MMC-task). Two MMC-tasks are displayed in 
this chapter. The MMC-task Rock Concert aims to assess students’ competence on 
assigning variables, parameters and constants. The MMC-task Pizzas aims to assess 
students’ competence on formulating mathematically a model that fits the problem 
(find the relations between the variables, parameters and constants and then express 
it through a mathematical statement).

Because of the work intensity in the interview (students had to solve the tasks 
together and to report retrospectively), we could only administer three tasks per 
student pair. Therefore, we distributed the six tasks over two sets. Each set com-
prised three different PISA problems and addressed three different mathematizing 
competences. Each set was taken by four students.

Rock Concert
Consider the problem below (read it well!).

For a rock concert, a rectangular field of size 100 m by 50 m was reserved for the 
audience. The concert was completely sold out and the field was full with all the fans 
standing. Which is the total number of people attending the concert?

Think about yourself and how you can solve this problem.
Pick out two pieces of information that you need to answer the problem.

 (A) There will be 12 rock stars performing.
 (B) The field size is 5000 square metres.
 (C) The price of the ticket is 1000 ALL.
 (D) The density of the fans in the field is four persons per square metre.
 (E) The average age of fans is 30 years old.
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50.4  Results

Below, we report on all twelve cases (four student pairs, each working on three 
MMC-tasks). Selected episodes are related to the two aforementioned tasks.

50.4.1  Clarity of the Instructions

Students were introduced to the MMC-tasks through a sheet of paper with the task 
written on it. In all cases, they started to read individually, and in silence. An exam-
ple of this is the following episode with the reactions of Tom and Rea to the MMC- 
task Pizzas:

[Tom and Rea are given the task]
Both: …silence… [Tom and Rea are reading in silence and individually]
Tom: I am yet at the first sentence to get more from it…can we draw these ones 

[two pizzas]
Rea: Yes we can draw…make them with the same thickness.

Pizzas
Consider the problem below (read it well!).

A pizzeria serves two round pizzas of the same thickness in different sizes. The 
smaller one has a diameter of 30 cm and costs 300 ALL. The larger one has a diam-
eter of 40 cm and costs 400 ALL. Which pizza is better value for money?

Think about yourself and how you can solve this problem.
Which one of the following options would you choose to answer the 
problem?

 (A) I would compare the prices of the pizzas. Then I would choose the pizza 
which has the cheaper price.

 (B) I would compare the diameters of the pizzas. Then I would choose the 
pizza which has the bigger diameter.

 (C) I would divide the pizzas’ diameters by their prices. Then I would choose 
the pizza which gives me more for less money.

 (D) I would calculate the area of both pizzas. I would divide the pizzas’ areas 
by their prices. Then I would choose the pizza which gives me more for 
less money.

 (E) I would calculate the volume of both pizzas. I would divide the pizzas’ 
volumes by their prices. Then I would choose the pizza which gives me 
more for less money.
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Tom: Yes they can both have it x.
Rea: Write on it [on the small pizza] the diameter 30 cm and 300 ALL…and 

40 cm and 400 ALL [on the big pizza].
Tom and Rea start by reading in silence and individually. Thereafter, Tom stresses 

that he is reading slowly in order to get more information from the text. Then, he 
asks Rea if they can visualize the features of the pizzas, which they cooperatively 
do. Tom’s insistence on the reading process can be interpreted as his attempt to 
become familiar with the modelling problem (in the first layer) before moving to the 
next step on the task. The students’ sketch of the pizzas can be interpreted as their 
attempt to check and show the quality of their reading process.

The above episode is illustrative of what we met in all data. The instruction 
Consider the problem below (read it well!) prompts reactions such as: reading in 
silence and individually, insistence on the reading (and re-reading) to get familiar 
with the problem, and listing of features of the modelling problem.

The second instruction Think about yourself and how you will solve this problem 
also triggers a reaction of silence, as shown in the following episode of Tea and 
Emma:

[students read the second instruction]
Both: …silence…
Emma: Let’s think for a while…

[then Emma and Tea start investigating the alternatives]
Emma and Tea fall silent yet again after reading the instruction Think about 

yourself and how you will solve this problem. This silence is broken by Emma who 
openly asks her friend to think individually for a while. Thereafter, they start inves-
tigating the alternatives. From the silence, we cannot observe whether they are 
reflecting metacognitively, but when they start to investigate the multiple-choice 
alternatives, Emma and Tea have realized that they are not going to solve the model-
ling problem (in the first layer) but they will consider the remainder of the task.

In the data of all twelve cases, the instruction Think about yourself and how you 
will solve this problem generates silence, and thereafter they all start dealing with 
the multiple-choice alternatives (see next section). Not one of the students starts 
solving the modelling problem in the first layer of the MMC-task. All of them con-
sider the question and the alternatives asking for a mathematizing competence in 
second layer. We consider this as a hint towards students’ metacognitive reflection 
on the intentions of the task.

50.4.2  Assessing Purpose of the MMC Task

After reading the instructions and the modelling problem, all students considered 
the question that refers to a specific mathematizing competence and investigate the 
given alternatives. The following episode shows Ben and Max’s work on the task 
Rock Concert:
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Max: …we should consider that the 12 rock stars performed there. It means that 
we can find how many people are in the field using the area and the density 
and then we subtract the 12 rock stars to find the number of fans.

Ben: No, it does not mean that, because here [in the problem] it is not given that 
the stage is inside the field…it is not reasonable to consider the first alterna-
tive [alternative A] because it says that the field is reserved for the fans only.

In this episode, Max invites Ben to consider the constant ‘12 rock stars’ (alterna-
tive A), and he anticipates the role of this constant to the mathematical model to be 
constructed (subtracting the number of rock stars from the number of people in the 
field). Simultaneously, he brings in the relevance of ‘the area of the field’ and ‘the 
density of people in the field’. However, Ben disagrees by pointing out that the con-
stant ‘12 rock stars’ does not fit to the problem as ‘the field is reserved only for the 
fans’.

The episode shows how students focus on the mathematizing activity of assign-
ing variables, parameters and constants, as intended. They investigate the relevance 
of a given constant in connection to the problem and the mathematical model to be 
constructed using both their mathematical and extra-mathematical knowledge. 
Below, we offer an episode, in which Eva and Iris discuss the multiple-choice alter-
natives in the MMC-task Pizzas:
Eva: About the alternative A, to compare the prices of the pizzas, the one that has 

lower price has also smaller size, the diameter is smaller. The one that that 
has higher price has also bigger size, the diameter is bigger…the same for 
the alternative B, the one that has bigger diameter has also higher price, and 
the one that has smaller diameter…

Iris: … has also lower price. While we found the alternative C as more logical 
because comparing the diameter to the price we can choose a sizeable pizza 
and with a reasonable price.

Eva: If we divide the pizzas’ diameters by their prices, we can find how much it 
[the unit of each] does cost …and we can find which pizza gives us more for 
less money…the alternative D, since it is a situation we meet in our every-
day life to find the area, and thereafter to divide it by the price, will be 
impractical…the same to the alternative E to find the volume.

Iris: We think it is the alternative C.
In this episode, Eva and Iris consider the alternatives one by one. Eva, who is 

leading the thoughts, starts by rejecting alternatives A and B, because these state-
ments neglect the price-size relation. The girls select alternative C, because here the 
relation price-size is considered. According to them, a division between ‘the diam-
eter and the price’ for both pizzas will give them ‘how much the unit of each pizza 
costs’, which then can be used for a decision. Eva excludes alternatives D and E, 
because according to her, these mathematical statements do not fit to the real con-
text of the problem.

This episode provides evidence that Eva and Iris focus on the mathematizing 
activity of formulating a mathematical model. They are using both their extra- 
mathematical and mathematical knowledge to investigate the relevance of different 
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mathematical operations in connection to the context of the problem. Moreover, this 
episode shows metacognitive reflection when they think about their own thinking in 
a pizzeria context. They recognize their different ways of thinking under different 
circumstances.

In all twelve cases (six MMC-tasks, each carried out by two pairs of students), 
the students’ responses show that the MMC-tasks made them focus on the mathe-
matizing activity, which was intended to be assessed. All pairs of students investi-
gated one by one the given alternatives. They used their extra-mathematical and 
mathematical knowledge to investigate the alternatives’ relevance for this specific 
activity. In addition, they also investigated the alternatives’ relevance in connection 
to the modelling problem and to the mathematical model to be constructed.

50.5  Conclusion and Implications

In this chapter, we reported on a validity study of six MMC-tasks that we developed 
to assess mathematizing competences. The MMC-task format has the specific fea-
ture of centring around a holistic modelling problem, while asking atomistically for 
a separate mathematizing competency related to that problem. We investigated 
whether grade 9 students were able to cope with this format by analysing students’ 
response processes on: (1) the clarity of instructions and (2) the task assessing pur-
pose. The results show that students were well able to distinguish between the holis-
tic modelling problem (first layer) and the atomistic part of the task (second layer). 
They could handle the format of an MMC-task, and the activities prompted by the 
tasks were the intended mathematizing activities.

It is evident that the instruction, Consider the problem below (read it well!), 
prompted students to focus on the reading process of the modelling problem. This 
instruction is an effective entry for students to engage in the task. It is also evident 
that the instruction, Think about yourself, and how you can solve this problem, 
works as intended. In some cases, it made students reflect metacognitively immedi-
ately after they read it. In most cases, there was no such clear evidence, but we 
observed students reflect metacognitively later while dealing with the remainder of 
the task. In none of the cases did the students start to solve the modelling problem 
(at the first layer). They all considered the question and the alternatives asking for a 
mathematizing competence.

The results show that the MMC tasks can validly assess grade 9 students’ math-
ematizing competences. As intended, they made students work on a specific math-
ematizing activity atomistically. The students understood that they were asked to 
select the best alternative, which would lead towards an appropriate mathematical 
model for the problem. They investigated the relevance of each alternative in con-
nection to the modelling problem and to the mathematical model to be constructed. 
Students’ responses show that they used both their extra-mathematical and mathe-
matical knowledge while dealing with the MMC-task. The students found the scope 
of the choices (given alternatives) sufficient. None of them suggested a new alterna-

50 Assessing Mathematizing Competences Through Multiple-Choice Tasks: Using…



610

tive that would help them to answer the task. These results show a balanced focus of 
students on the process and on the product of the MMC-task, which indicates that 
they have a notion for the holistic elements of an MMC-task as well.

The validity of the MMC-tasks that we developed offers opportunities for the 
future. The format can be used to develop more MMC-tasks, which then can be used 
in tests similar to the test developed by Haines et  al. (2000), to assess students’ 
mathematizing competences. Also, the study shows that the MMC-tasks generated 
meaningful discussion among the students on how they can mathematize a real- 
world problem. Thus, the MMC-tasks can be used within classroom practice. 
Students’ group work on such tasks, whether or not guided by a teacher, can foster 
meaningful learning about specific mathematizing activities, as part of solving 
modelling problems. Discussing MMC-tasks in groups can assist the development 
of students’ competences to carry out single steps in the mathematizing process. An 
atomistic approach to the modelling, as prompted in the MMC-tasks, fits our target 
group, who are beginners in modelling. At the same time, the MMC-tasks include a 
holistic modelling problem, and as such they convey a clear message that atomistic 
activities are part of a larger whole.
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Chapter 51
How to Build a Hydrogen Refuelling Station 
Infrastructure in Germany: 
An Interdisciplinary Project Approach 
for Mathematics Classrooms

Irene Grafenhofer and Hans-Stefan Siller

Abstract This chapter is based upon an interdisciplinary modelling project about 
alternative energies carried out with high school students. In this project, we focus 
on modelling a road map for hydrogen refuelling stations that can differ in condi-
tions (costs, energy demand, etc.), precision of the model and variety of (mathemat-
ical) tools students choose. We use hydrogen, which is a current topic in European 
politics, in our study as a matter for (mathematical) discussion and modelling with 
students in an interdisciplinary context. This qualitative study explores this mathe-
matical modelling problem related to the interdisciplinary learning environments 
with a focus on time reduction for students’ research. We also investigated the influ-
ences the interdisciplinary context has for using extra-mathematical knowledge to 
solve this problem.

Keywords Interdisciplinary modelling project • Real-life context • Extra- 
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51.1  Introduction

The acceptance of integrating modelling into the classroom among (aspiring) math-
ematics teachers is classified as high (cf. Siller et al. 2012). Here we want to con-
sider one important aspect of these modelling experiences – the extra-mathematical 
context or real-life background where students try to find their solution. We refer 
here to the model of the modelling process as suggested by Blum and Leiß (2007) 
and to the indication of extra-mathematical knowledge within this model by 
Borromeo Ferri (2011). A study by Siller and Meckel (2015) showed that 43% of 
the whole modelling project time goes into researching the real-life background 
(e.g. geographical knowledge) that is significant and worth studying more precisely. 
So, in our qualitative study, we want to focus on extra-mathematical knowledge that 
is used when students are working in an interdisciplinary context (e.g. mathematics, 
physics and chemistry). There are a lot of possibilities of interdisciplinary teaching 
strategies (cf. Stadler 1999); for example, one given topic is taught in two or more 
academic subjects. That means, you learn the same thing from a different point of 
view. Furthermore, interdisciplinary teaching also can mean that you do some prep-
aration in one subject to integrate these ideas into another one. This is important 
when you, for instance, need some chemical information about hydrogen to solve a 
mathematical problem. In our study, we used the topic of alternative energy that has 
an obvious interdisciplinary background in mathematics, physics and chemistry. 
Considering this background, we want to examine if the given problem – alternative 
energy with focus on hydrogen – in combination with this interdisciplinary teaching 
helps students to obtain extra-mathematical information to solve the problem.

51.2  Setting and Methodology of the Study

The qualitative study concerning mathematical modelling introduced here was con-
ducted as part of modelling days (3–4 days) at three secondary level II schools (two 
secondary schools and one vocational school) in Rhineland-Palatinate (Germany). 
Here, students occupied themselves independently in an interdisciplinary context 
(mathematics, physics and chemistry) with the subject of alternative energy by 
modelling a comprehensive, cost-optimized hydrogen refuelling station network in 
Germany.

In the process of our study, we consider four different student groups: two groups 
(eight ninth and tenth grade students divided into two groups) whose teaching staff 
had explicitly emphasized the interdisciplinary aspect and had thus generated refer-
ences for physics and chemistry suitable to the subject of hydrogen and its use as a 
fuel. Therefore, all students of ninth and tenth grade were divided into three big 
groups (mathematics, physics and chemistry groups), where they had to obtain 
information about hydrogen from a mathematical, physical and chemical point of 
view and its use as an alternative energy. For our study, we focused only on the 
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mathematical group. Following this, the students gave some presentations for 
exchange of ideas. Afterwards, they worked again in groups with the possibility to 
talk to other students who were specialized in one field. At the end, they presented 
their models and solutions (Fig. 51.1). In the other student groups (nine 11th grade 
students divided into two groups), we saw the students’ interdisciplinary activities 
without specific evidence of the integration of other academic subjects. So, these 
students did not have any instruction in physics and chemistry and worked for 
around 3 days on their own.

During these modelling days, two research questions were investigated:

• In which way can we integrate and organize the given problem – looking for an 
optimal network of hydrogen stations in Germany in an interdisciplinary learn-
ing environment?

• Which influences from this interdisciplinary environment can we find in stu-
dents’ solutions?

For answering the research questions, we especially focused on the organization for 
the interdisciplinary learning environment. First, we had to choose the topic, planned 
how to give instructions to the groups and chose which questions they should 
answer. Afterwards, we observed the students during the extra-mathematical prepa-
ration and followed the solution process of each group. We conducted some inter-
views with students, and to gain more detail, we collected ideas, citations, notes and 
finished models by the students (Fig. 51.1). Then we compared each group to the 
others, in order to find out how they differed from each other and if we can identify 
influences resulting from the interdisciplinary teaching.

51.3  Problem Statement

The reduction of carbon dioxide emissions through alternative energy is a current 
topic in European energy policy, which can be found at the European Commission 
homepage. Primarily, hydrogen as a carbon-dioxide-neutral energy supply is, 
amongst other things, a source of hope in this context, because hydrogen can be 
produced from various energy sources (sun and wind energy, petroleum, natural 
gas, etc.). Meanwhile, many companies are bringing their hydrogen cars into mass 

Fig. 51.1 Methodology of the study
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production, and initial sales figures (early 2015) bear witness to potential great cus-
tomers’ interest (cf. Frankfurter Allgemeine 2015). Hydrogen cars not only have a 
larger range than traditional electrical cars, but also, they can be refuelled within a 
few minutes. However, conversion to hydrogen also requires a change to the refuel-
ling station infrastructure, and consideration must be given to how such a hydrogen 
refuelling station network would look like, which is cost-effective all over Germany 
and for companies, so that the end customer is not deterred from buying due to the 
lack of refuelling stations as occurred during the introduction of e-cars. Below, such 
a refuelling station network is modelled and the implementation introduced as part 
of the modelling days. The following task was issued:

51.4  Understanding and Reduction of the Problem

We put ourselves in the position of a hydrogen-car owner for a better understanding 
of the problem. Vehicle owner A lives in the vicinity of German city B, which could 
also be located in the area surrounding Germany. He can drive, at most, 400 km with 
his fully fuelled hydrogen car and would like to reach as many cities in Germany as 
possible. In this connection, vehicle owner A always takes the quickest connecting 
routes, namely, the motorways. Owner A drives to the first big city, which is already 
150 km away on federal highways, and can only refuel on the connecting routes 
between cities. From the perspective of a new hydrogen refuelling station operator, 
it is desirable to reach as many customers as possible. That means locating in the 
vicinity of large cities, if possible drawing on the existing rest-stop infrastructure to 
reduce costs, and providing a comprehensive refuelling station network with a mini-
mum number of refuelling stations.

51.4.1  Data Collection and Initial Assumptions

The initial modelling approach, which we presented above, delivers a very simpli-
fied real model for developing a refuelling network in Germany. The conception for 
realizing the model is refined through extensive data collection and the assumptions 
resulting from it. First, important information that must be clarified in preparation 
by the students is itemized:

What Does an Optimal Network of Hydrogen Refuelling Stations for 
Germany Look Like?
A hydrogen car drives its electrical motor with hydrogen, which is the reason 
for only water steam arising. Hydrogen is thus an energy source with 0% CO2 
emission and is highly interesting from a political perspective in Germany 
with reference to the promised energy transition. A nationwide, cost- optimized 
network of refuelling stations is necessary to supply hydrogen (at the moment, 
somewhat more than ten pilot refuelling stations exist in Germany).
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• Germany’s large cities and the largest airports are possible initial locations.
• Their connection routes are considered taking Germany’s motorway network 

and existing motorway refuelling stations into account.
• At first, only Euclidean distances should be worked with, because it is assumed 

that the approach to already existing refuelling rest stops or additional large cit-
ies is sufficient. This assumption should be challenged during the validation 
process.

• A maximum range of about 150  km must be guaranteed on these motorway 
routes. This is especially true, when you consider that approach ways are also 
necessary before driving onto the motorway and that more fuel is consumed on 
the latter. Since calculations are being made with Euclidean distances and motor-
ways do not run directly along the quickest path between cities, a refuelling sta-
tion should cover a 75 km radius.

• Additional cities such as those lying on Germany’s outer border (Dresden, 
Aachen, Passau, Kiel, etc.) must be included primarily in regard to the goal of 
total coverage.

• Initial estimates relative to the market penetration of hydrogen cars vary in the 
lower, single-digit percent range (Welcome to HyWays project n.d.).

• On the homepage of the Heute-Mobil automobile club, you can look up the num-
ber of refuelling stations in the metropolitan areas of the ten largest cities in 
Germany (2013 status). For example, Berlin has 254 refuelling stations, 2% of 
which would be about five hydrogen refuelling stations in Berlin that are already 
in operation or under construction. This way, the number of refuelling stations in 
each large city can now be estimated.

Based on the research, the following assumptions can now be formulated, which 
can be drawn upon for realizing refuelling station plans. These can also be used to 
validate and evaluate student assumptions and results:

 1. Germany’s ten largest cities and the six largest airports (e.g. Munchen FH) are 
selected as the initial locations.

 2. Motorways between these locations are interpreted as Euclidean distances.
 3. Dynamic geometry software (e.g. GeoGebra) should be used to represent the 

map of Germany.
 4. Each hydrogen refuelling station covers a circle with 75 km radius.
 5. The refuelling stations should supply car drivers all over Germany.
 6. The market penetration of hydrogen cars will be 2% in the year 2020.
 7. Large cities need more than one refuelling station depending on population density.

51.4.2  Mathematical Approach via a Facility-Location 
Problem

In the present problem, we have two or more cities from where we want to reach a 
refuelling station as quickly as possible. These cities are always given as points 
Sxm(am1, am2 ) on a digitized map (with am1: x coordinate of the mth city, am2: y coor-
dinate of the mth city), on the connecting line of which the location X(x1,x2) is 
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sought that minimizes the distance to one of the two cities. This can be solved geo-
metrically or computationally for the connection of two or more cities. 
Mathematically, a facility-location problem is involved here, an optimization prob-
lem of which the calculation for arbitrarily many cities will now be briefly intro-
duced (cf. Hamacher 1995).

The Euclidean distance between a city and an arbitrary location can be calculated

with
 
l S X a x a x2 11 11

2

12 12

2

xm ,( ) = −( ) + −( ) .
 
For this, the minimumof the follow-

ing facility-location function is to be determined, which seeks a location that mini-
mizes the maximum distance to the sites: g(X) ≔ max1 ≤ m ≤ Ml2(Sxm, X). The following 
facility-location problem results from the goal of minimizing the maximum distance 
min g(X) := max1 ≤ m ≤ Ml2(Sxm, X)  . For the geometrical determination of an opti-
mal location between two cities, the solution is obtained by constructing the route
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,  via the perpendicular bisector of the segment

joining the given points, because the location thus lies exactly in the middle with 
equal separation between the two cities. Geometrical determination of the optimal 
location for three cities proceeds using the same principle via the intersection of 
perpendicular bisectors of the segments joining adjacent cities to constructing the 
circumcentre.

We now consider the following problem as an example: it is desired to find the 
optimal location between Nuremberg (Nürnberg), Leipzig and Dresden. The coor-
dinates generated from the geometrical solution are now compared to possible loca-
tions in reality on the corresponding motorway, for example, in Google Maps. Thus, 
only the Bayreuth (X1) and the motorway interchange in Hof (X2) locations are eli-
gible. We define the set of possible locations as C:= {X1(684.477, 5535.756), 
X2(707.37, 5577.55)}. The cities for which the optimum centre location should now 
be found are Sx:= {Nuremberg Sx1(650.51, 5479.78), Leipzig Sx2(718.47, 5691.06), 
Dresden Sx3(811.49, 5656.19)}. Now the Euclidean separations of the cities and the 
possible locations are each calculated: l2(Sx2, X1) ≈ 159 km and l2(Sx3, X1) ≈ 175 km.

Thus, the maximum Euclidean distance for the Bayreuth and Hof location is

 
g X l S X1 2 xm 1, =max 65.5;159; 75 =175 km( ) = ( ) { }: max 1

 

 
g X l S X2 2 2 97 2 114 130 5 130 5( ) = ( ) = { } =: max max . . .xm , ; ; km

 

From this, the minimum as a result of the facility-location problem yields minX ∈ 

Cg(X) ≔ {175; 130.5} = 130.5 km = l2(Sx3, X2)
The optimum location would thus be Hof with a maximum Euclidean distance of 

130.5 km.
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51.4.3  Representation in Dynamic Geometry Software

The way this initial real model is visualized must be considered next. All of the 
geographical data is illustrated with a dynamic geometry software program (here 
GeoGebra) below (assumption 3). The coordinates of the ten largest cities (assump-
tion 1) are first input as points. Then, the connecting routes between all of them are 
input (assumption 2). Circles where the radii can be arbitrarily selected are subse-
quently drawn around the locations. Since Euclidean distances are significantly 
smaller than those via the street network, 75 km was therefore selected as the radius 
(assumption 4). Thus the area coverage of the first refuelling stations on the con-
necting routes and across Germany can be roughly estimated (Fig. 51.2). Locations 
between two cities are then generated by forming central vertical lines. Now, you 
attempt heuristically to “drive off” all of the important connecting routes on the 
motorways and to create as few locations as possible over the range.

It can be easily seen in the Berlin-Munich connection that a good approximation 
to further large cities or existing refuelling stations results (here Nuremberg, Hof 
and Leipzig) with the help of the intersection points of the central vertical lines with 
the Berlin-Munich route or by solving a facility-location problem (see mathematical 
approach). The street network (motorway A9) is now compared to these via Google 
Maps and the corresponding locations selected. Coverage is made visible by draw-
ing the circles with a radius of 75 km (assumption 5). This procedure is now con-
ducted for all of the main connections (Fig.  51.2). Cities near the border (e.g. 
Aachen, Kiel, Dresden, etc.) are subsequently checked with reference to reachabil-
ity and integrated into the list of locations, if necessary. Finally, the market penetra-
tion and population density are incorporated (assumptions 6 and 7). After that, five 
refuelling stations are calculated for Berlin, four for Hamburg, and so on, and miss-
ing refuelling stations are added. The result in GeoGebra from the preceding con-
siderations is illustrated in Fig. 51.3.

51.4.4  Comparison with Already Existing Plans

Using this heuristic approach, about 50 refuelling stations are a possible result 
(Fig. 51.3) for nationwide expansion, taking already existing refuelling stations into 
consideration (2015 status). The Clean Energy Partnership also published a map, 
which suggests 50 new refuelling stations. The locations deviate only a little from 
Fig. 51.3. Apparently, the heuristic procedure of approaching with Euclidean dis-
tances and optimizing via facility-location problems is completely adequate for 
arriving at a plausible initial result.

51 How to Build a Hydrogen Refuelling Station Infrastructure in Germany…



622

51.5  Student Solutions and Discussion

At the beginning the students tried to find out more about the topic by posing the 
following questions in their real-life background. First, they thought about everyday 
life (e.g. of commuters) and asked themselves: Who will drive hydrogen cars? 
Where will people drive hydrogen cars? As a second step, they tried to find out more 
about the market situation of hydrogen cars in different ways by posing other 
questions:

Fig. 51.2 Pre-existing locations, locations under construction and new locations
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• They studied car-selling platforms: Are there any used cars offered and what do 
they cost? Can we conclude any demand from that?

• They had a look at the prices of different new and used hydrogen cars, which 
leads to the questions: Who could afford it? Thus, how many buyers can we 
expect in which time period?

• The students searched for companies that sell these cars: How many types are on 
the market? What can we conclude from these facts?

This process took more than 1 day for all groups, which is comparable to the study 
by Siller and Meckel (2015). Regarding the extra-mathematical context, all groups 

Fig. 51.3 New locations
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(two with the interdisciplinary context and two groups without it) searched for 
answers by studying economic and geographical contexts and the situation of popu-
lation density, like we have shown in our model previously. Two groups with the 
interdisciplinary background preferred this geographical way, because the students 
had learnt how to create an optimal geographical network for companies in Germany 
in geography half a year ago. So, instead of ideas coming from the interdisciplinary 
background, they took this information into account. A reason for this motivation 
might be that the learning environment in geography had a greater influence in 
keeping the knowledge in mind and using it in different fields. There are a lot of 
reasons why teaching environments are more or less efficient (cf. Klieme et  al. 
2006). In fact, we did not consider this in our study. Another group (without the 
interdisciplinary background) tried to find out more about the profitability of hydro-
gen refuelling stations, by calculating the time period of the return on invested capi-
tal that was a topic in an economic subject and can also result from various reasons 
as above.

Considering our first research question, we can say that the topic of alternative 
energy can be integrated very well into interdisciplinary teaching, but what we had 
expected in the interdisciplinary groups was thinking about issues such as proper-
ties of hydrogen, using (existing) hydrogen pipes for distribution or the different 
types of refuelling stations that was taught by the teachers. Instead, we have learned 
from this that it is important to connect science subjects and to do so more often. We 
can also see that very open questions like in this modelling project lead to interest-
ing solutions (as also shown in Siller 2015). However, if we want to influence solu-
tions with certain ideas, we have to pose very precise questions. Concerning our 
second research question, we can clearly see in these students’ models that the inter-
disciplinary processes and preparations had no influence on the modelling processes 
of these two particular groups.

51.6  Conclusion

What we can learn from this study is that it is hard to predict the (mathematical) 
outcome of a modelling and interdisciplinary activity at school. Even if we try to 
influence the modelling process with specific interdisciplinary learning environ-
ments, students try to find their own – perhaps more comfortable or realistic – way 
for them, by using their real-life extra-mathematical knowledge. In our case, stu-
dents mentioned that they were influenced by knowledge from other subjects they 
were interested in. So, they found more connections to geography. In fact, it is really 
hard for students to find connections between science subjects like mathematics, 
physics and chemistry. The possible reason for this lack of students’ capability 
could be the missing interdisciplinary activities in these subjects (cf. Maier 2006) 
and the complexity of science topics like alternative energy. Hence, for the next time 
we should integrate more subjects, teachers should be asked about their knowledge, 
which can be used for the problem to give students more possibilities and to reduce 
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the time for researching the background. Furthermore, if we want to integrate mod-
elling activities into regular classes, we have to consider time problems. As we saw 
here in this study, it takes a long time thinking about the extra- mathematical context, 
which is impossible during normal classroom lessons that take about 45  min. 
Therefore, we have to think about reorganizing these modelling processes, for 
instance, by connecting subjects in an interdisciplinary way or separating tasks into 
small “pieces”. As a result of this study, next we want to find out how we can ensure 
interdisciplinary activities happen in combination with modelling at school during 
regular lessons and which influences these opportunities for interdisciplinary 
instruction have on students’ modelling processes.
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Chapter 52
Authentic Mathematical Modelling 
Experiences of Upper Secondary School: 
A Case Study

Kerri Spooner

Abstract The purpose of the research project presented in this chapter was to see if 
it was possible for authentic mathematical modelling, based on the characteristics 
and behaviours of a real-world modelling team, to be carried out at secondary school 
level. From the author’s previous opportunity to work as a member of a professional 
modelling team, an authentic mathematical modelling experience for secondary 
school students was developed and researched. Classroom activities were created 
and trialled with a group of 16- and 17-year-old New Zealand students. Data were 
collected from the learning activities. The results demonstrated that an authentic 
experience of the process of mathematical modelling is possible at secondary school.

Keywords Authentic mathematical modelling experience • Modelling process • 
Realistic learning experiences • Real-world modelling team • Secondary school 
students

52.1  Background

An opportunity for the author to explore authentic mathematical modelling as a 
member of a professional mathematical modelling team was used to develop and 
research a realistic mathematical modelling experience for secondary school stu-
dents. This experience encompassed activities representative of the process a real- 
world modelling group would engage in. The study addressed the question: Is it 
possible for authentic mathematical modelling, based on the characteristics and 
behaviours of a real-world modelling team, to be carried out at secondary school 
level? In this chapter, mathematical modelling, the current situation of modelling in 
secondary schools, what the research from this study shows about the potential 
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situation and how this can impact on the likely understanding and capabilities of 
secondary school students entering university will be discussed.

Mathematical modelling is the process by which we represent a situation in use-
ful mathematical terms (Dym 2004; Wake 1997). It involves moving from reality to 
mathematics. Modelling is process orientated with the objective being to find math-
ematics that makes sense of the situation (Stillman et al. 2016). A formed mathe-
matical model is a description of the behaviour of real devices, objects and situations 
written in the language of mathematics (Dym 2004; Wake 1997). The broad stages 
of an authentic mathematical modelling experience are forming a modelling group; 
establishing a shared understanding of the problem; undertaking necessary research 
of the context and what is known; defining a mathematical direction for the model; 
identifying the essential aspects of the situation; mathematically interpreting the 
essential aspects of the situation for the model; constructing equations or other 
mathematical representations of the model; critiquing, modifying and refining the 
model mathematically and otherwise; applying the model; repeating the cycle to 
improve the model; and reporting on the model (Dym 2004; Tam 2011; Treilibs 
et al. 1980).

Modelling differs from applications in that it is more open and complex. 
Applications tend to be object orientated, involving examples of contexts where the 
mathematics to apply is already predetermined and some can use artificial contexts 
(Stillman et al. 2016). To further complicate matters, the term modelling is used in 
different ways in education. Stillman et al. (2008) classified some approaches being 
currently coined as mathematical modelling. These are the use of contextualised 
examples, curve fitting, modelling as vehicle and modelling as content. All of the 
approaches, except for modelling as content, overlooked the complete mathematical 
modelling process and ignored the contextual background when generating a solu-
tion and/or the mathematics to be used in the solution was predetermined  – all 
behaviours that are needed for an authentic mathematical modelling experience 
(Stillman et al. 2016). In contrast, modelling as content better reflects the principles 
of realistic authentic modelling. Here the objective is to go through the full process 
of modelling, determine the mathematics needed for the solution and ensure that the 
solution is located within the context of the problem (Stillman et al. 2008, 2016). 
Teaching based on this is known by researchers as “the realistic perspective on the 
teaching and learning of mathematical modelling” (Blomhøj 2009, p. 3).

Only recently, as late as the 1970s, has a move to formalise mathematical model-
ling in education occurred (Dindyal and Kaur 2010; Kaiser et al. 2010). Now in the 
twenty-first century, most parts of the world have curriculum statements and 
resources available (Blum et al. 2007; Frejd 2013). The 2007 New Zealand curricu-
lum, for example, states “‘forming and using a model’; ‘relating findings to a con-
text’ and ‘problems are situations that provide opportunities to apply knowledge or 
understanding of mathematical concepts and methods. Situations will be set in real- 
life or mathematical contexts’” (New Zealand Qualifications Authority 2013) as 
evidence that aspects of modelling are now part of that curriculum. Sweden’s  current 
curriculum document captures the essence of modelling and states “Interpret a real-
istic situation and design a mathematical model, as well as use and assess a model’s 
properties and limitations” (Skolverket 2012, p. 2).
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Although research has been done on the teaching of mathematical modelling at 
secondary school level (Frejd 2013; Blum et al. 2007), little has been conducted in 
New Zealand. Most of the research in New Zealand has been done on modelling 
eliciting activities (MEAs). (See Yoon et al. (2010) for an example.) Outside of New 
Zealand, work has begun on the impact of authenticity of tasks on mathematical 
modelling development (Palm 2007), educational gains from authentic modelling 
(Boaler 2001), influence on learning from different styles of teaching modelling 
(Lege 2007), competencies involved in the modelling process (Maaß 2006), block-
ages students experience working with modelling (Galbraith and Stillman 2006) 
and related challenges for teaching of mathematical modelling (Ikeda 2007; Kaiser 
et al. 2006). Some key findings to come out of this research are a task should be as 
authentic as possible (Alsina 2007; Palm 2007), students need to be actively model-
ling (Lege 2007) to be aware of student difficulties with the modelling process 
(Maaß 2006) and working in groups helps develop modelling abilities (Maaß 2006).

There are curriculum statements, resources and research to support the teaching 
of mathematical modelling but what is happening in our classrooms? Ikeda (2007) 
overviewed case studies in eight different countries and observed that there is a lack 
of “doing” modelling at secondary school. Biembengut and Hein (2010) stated in 
Brazil “despite the growing interest in modelling we see that many math teachers 
still do not use mathematical modelling as a classroom teaching practice” 
(Biembengut and Hein 2010, p.  482). In New Zealand, fragments of modelling 
occur in classrooms. What is being done would not necessarily be classified as 
authentic modelling nor satisfy MEA criteria (Caroline Yoon, conversation Auckland 
University 2016). Teaching experience within the New Zealand educational system 
supports this as there is limited exposure in New Zealand to mathematical model-
ling and its processes. Students tend to be exposed to “parts” (e.g. curve fitting) as 
opposed to the “whole” process.

This is not to say that mathematical modelling is not being taught. Most of the 
records of examples, including those for New Zealand (Caroline Yoon, conversation 
Auckland University 2016), are reported as part of academic research projects and 
teaching experiments. See Ang (2013), Biembengut and Hein (2010), Maaß (2006), 
Yanagimoto and Yoshimura (2013) and Yoon et al. (2010) for some cases.

One main reason modelling is not being embraced by mainstream mathematics 
teachers is the teacher belief that modelling is too difficult and hard to manage in the 
classroom (Armstrong and Bajpai 1988; Maaß 2005; Schmidt 2011). There is a 
need to address teaching styles and peer group attitudes that are more conducive to 
modelling (Borba 2011; Maaß 2005; Schmidt 2011). Lack of teacher experience 
with modelling (Biembengut and Hein 2010; Ikeda 2007) and lack of time to effec-
tively teach modelling (Ang 2013; Biembengut and Hein 2010; Schmidt 2011) also 
have a significant impact.
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52.2  The Research Project

In 2011, the author had the opportunity to work in a real-world mathematical mod-
elling team (RMT) at the Centre for Maths in Industry, Massey University, Albany, 
New Zealand, where a genuine mathematical modelling process was experienced 
first-hand. This led to asking if this experience was possible to be reproduced for a 
secondary school student. Encouraged by Maaß’s (2006) research project showing 
students as young as 13 years old modelling, a research project based on realistic 
mathematics education theory (Cobb et  al. 2008; De Lange 1996; Gravemeijer 
1994) was developed. The purpose of the project was to determine if authentic mod-
elling based on the characteristics of a real-world modelling team was possible at 
secondary school. The project involved creating a student hypothetical learning tra-
jectory (HLT) for the process of mathematical modelling. The HLT was developed 
by analysing the key components of the RMT modelling process experienced, 
exploring what these significant parts would look like to a 16–18-year-old second-
ary school student and then designing and developing classroom learning activities 
to experience these components. The activities were trialled with a Year 12 average- 
ability class of eighteen 16- and 17-year-old New Zealand students. The mathemati-
cal goal of the activities was for students to experience, remember and be able to 
recreate, in basic form, the processes involved in the mathematical modelling of a 
real situation, with particular focus on identifying the essential aspects for model 
formation.

A conjectured learning process was developed as part of the HLT. It describes 
the thinking and learning the students might engage in for the different stages of the 
mathematical modelling process. The different stages being: forming a group, 
establishing a shared understanding, defining a task, recognising and identifying the 
essential aspects of the situation, forming the model, testing the model and improv-
ing the model and overall process. These are considered to produce a realistic learn-
ing experience being developed from analysing the observed key components and 
behaviours of the RMT, features of research developed mathematical models and 
research and literature supporting these stages (Dym 2004; Tam 2011; Treilibs et al. 
1980). The conjectured learning process for the stage, recognise and identify the 
essential aspects of the situation, for example, was defined as identifying what we 
know about a situation, identifying what we want to find out about a situation, rec-
ognising and identifying important factors (essential aspects) of a situation, using 
lists to identify important factors, identifying and classifying factors as important 
and unimportant and recognising assumptions.

Three mathematical modelling classroom activities were developed based on the 
main points emerging from literature and the developed HLT. Modelling was to be 
executed in groups of three using real situations relevant to the students. A mini-
mum of 5 hours was allocated with the teacher acting as a facilitator to guide the 
groups.

Each classroom activity had its own goals and problem situation. The contexts 
(dropping a phone, kicking a goal, visibility of light from a lighthouse) were chosen 
for their relevance to students’ personal life. The context of the first activity was 
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chosen specifically for its significance to a student with the view of providing moti-
vation to engage in the modelling process. In addition, the second and third activi-
ties were selected based on the teacher’s knowledge of a range of different possible 
models for the situations. The guidance given by the teacher during the activities 
was based on the processes and behaviours of the RMT observed and documented 
by the researcher.

The activities differed from MEA-type activities currently being used in New 
Zealand. MEAs are set up with careful thought to allow for easier formulation of the 
model in contrast to these activities. Even though MEAs are set in reality, the 
prompting and questioning are fictional and can be contrived. They are structured 
and manipulated to have the elements necessary for model construction, generalisa-
tion and ease of interpretation present in the activity (Lesh and Doerr 2003). In 
contrast, the activities the author used took the form of messy real-world situations. 
No manipulation of the situation was carried out to make the model more accessi-
ble. The structure of the activity was in the prompts given by the teacher to direct 
students through the stages of the process. It is believed these qualities ensured the 
authenticity of the experience.

52.2.1  Classroom Implementation

The activities were trialled with the author/researcher as the teacher. The context of 
the first activity was chosen as a relevant topic of concern for the students and there-
fore engaging. It was anticipated that one lesson would be spent using this topic, 
with the focus being on the process and not on producing a specific solution to the 
problem.

The context for the second activity was chosen as the author was familiar with dif-
ferent models and their development for the best position to take the kick when 
kicking a rugby goal. This placed the author in a good position to be able to provide 
guidance for this context. Members of the class were rugby players meaning the 
context was familiar and relevant. The aim of the activity was to go through the 
discussion cycle for all stages of the process. Groups would also work indepen-
dently between discussions with the teacher providing guidance on the process 

Activity 1: “You’ve dropped your phone. Arrgghhh….. Will it break?”
Goals:

• To introduce the process of mathematical modelling
• To set up student modelling groups (SMG) for the sequence of planned 

learning activities
• To establish how these groups will operate
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where appropriate. Again the focus was on the process not on the actual solution. It 
was planned to spend three lessons on this situation.

Activity 3 is an assessment using the problem situation: “You are sailing to the 
Great Barrier Island and have just passed Tiri-tiri Matangi Island. Tiri-tiri Matangi 
is home to what was the last manned lighthouse in Auckland’s Hauraki Gulf. The 
lighthouse is 21 m in height with its base standing 91 m above sea level. As you pass 
you wonder how far out to sea the light from Tiri-tiri Matangi will stay in sight?” 
The assessment asks how a student would go about forming a model to provide a 
solution for the problem. The assessment then presents different parts of models that 
could be used to form a solution and asks students to critique the models, thinking 
about what assumptions have been made, how the model might work and what 
might be done next. The last part of the assessment asks students to talk about what 
aspects they liked and did not like about the modelling activities. The assessment 
was to determine how much of the “process” of mathematical modelling the stu-
dents had internalised and to see what solutions the students would come up with.

Activity 2: “Your rugby team has just scored a try. You are responsible 
for taking the conversion. Where on the field will you place the ball for 
the kick?”
Goals:

• To mimic as closely as possible the experience of being a member of a 
mathematical modelling team

• To experience the process of attempting to develop a mathematical model 
(solution)

• To experience and gain knowledge of some of the tools of mathematical 
modelling, in particular, but not limited to, software, tables, physical laws 
and known mathematics

Activity 3: Tiri-tiri Matangi Light
Goals:

• To determine how much of the process of mathematical modelling the stu-
dents assimilated

• To understand what parts students found easy or difficult
• To find out whether they can identify the underlying ideas about the pro-

cess of mathematical modelling
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52.3  Data Collection and Analysis

Data were collected from students writing diaries, sitting the assessment and under-
taking interviews that were conducted between 4 and 6 weeks after the completion 
of classroom learning activities. Diaries were written in the last 5 min of each lesson 
to provide a written first-person account or record of what was taught or occurred in 
each lesson. The assessment provided information on students’ recall of the process, 
application of mathematical modelling and aspects they did and did not enjoy. The 
interviews provided information on what was learnt and could be recalled at a later 
date.

The HLT provided the framework to analyse the data. It was analysed first by 
individually analysing the diaries, assessment and interviews for statements and 
evidence of aspects and stages of the process of mathematical modelling. The data 
from the diaries were then looked at collectively to establish an account of what was 
taught during the lessons. The data from the assessment and interviews were also 
collectively examined to establish what was learnt by the group from the activities. 
Table 52.1 shows the evidence collected for the experience of recognise and identify 
the essential aspects of the situation stage of the mathematical modelling process 
collected from the diaries, assessments and interviews. The number(s) in brackets 
refer to the student who provided the evidence.

52.4  Results

The data collected showed that collectively all aspects of the mathematical model-
ling process were taught to, and learnt by, the group. All features were mentioned 
across all three forms of data collection. Techniques for, and benefits of, effectively 
working in a group were experienced by all students. “Working in groups pooling 
ideas was beneficial and made the process easier” and “I learnt how to get along in 
a team” are comments reflective of student evidence. Half of the students recog-
nised understanding the background and context of a problem is important with a 
typical comment being, “Research and discussion part of your model as it gives you 
the foundations of your model”. Defining the problem was not strongly recalled 
with only 17% mentioning this in interviews. Processes associated with identifying 
essential aspects were mentioned in their dairies and assessment by 82% of stu-
dents. All students recalled strategies for identifying essential aspects in the inter-
views. There was evidence that all students acquired strategies for formulating a 
model with students mentioning, recalling and discussing approaches in the dairies, 
assessment and interviews. They enjoyed this stage, though 50% revealed they 
found it difficult with one student commenting that it “was like figuring out all the 
ingredients to make a cake just not knowing how to put them all together to actually 
make the cake”. Testing the model provided motivation for developing the model. It 
was observed that ideas for testing the model came easily to students. A useful 
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model needing to reflect reality was noted by 65% of students, suggesting they 
comprehended the importance of the context in modelling. Interview data indicated 
students saw modelling as a team activity where members contributed individually 
and communally. No evidence was found for improving the model.

52.5  Discussion

The allocated time did not allow for students to improve their models indicating 
more time is needed for the full process. The 16- and 17-year-old students were able 
to recognise and use strategies to identify essential aspects of a situation confirming 
the teaching sequence and discussion cycle for identifying essential aspects of the 
situation were successfully implemented. Once essential aspects were identified, 
students had difficulty in forming models. Defining the problem was not strongly 
recalled, possibly due to this part of the process being teacher led and the problem 
definitions accepted as a group.

Limitations of the data included the possibility that students wrote or told the 
researcher what they thought she wanted to hear instead of their honest thoughts. 
Even though the author’s goal as a teacher is always to provide an environment of 
free expression, students are aware of the authority a teacher’s position carries.

What are the implications for tertiary education? The evidence-based recom-
mendation is for first year modelling courses to be instituted that provide an experi-
ence of the whole process of modelling. If this is administratively too difficult, it is 
suggested that there be a move towards more broad, open-ended modelling prob-
lems. Full “modelling days” could be set aside as part of course requirements. A 
colleague from Auckland University has instigated this approach with the formal 
exposure of the modelling processes being covered in lectures prior to the model-
ling day. Teaching tools and guidance are needed for identifying essential aspects of 
the situation. Special attention, including good guidelines and time, is needed in 
providing instruction for forming models.

52.6  Conclusion

There appears to be a gap in authentic modelling experiences for secondary students 
in New Zealand. Modelling that is being done is mainly for research purposes and 
is not necessarily considered to be authentic or realistic. The purpose of this study 
was to determine if it was possible for secondary students to experience authentic 
modelling based on the behaviours and characteristics of a real-world modelling 
team as a way to fill this gap. The participants in this study were average-ability 16- 
and 17-year-old New Zealand students. They worked in groups as they took part in 
two authentic open-ended teaching activities and an assessment designed to experi-
ence the process of mathematical modelling. Data for research were collected in the 

52 Authentic Mathematical Modelling Experiences of Upper Secondary School…



636

form of diaries, assessments and interviews. Though these findings cannot be 
extrapolated to make conclusions for all students of diverse abilities, and different 
backgrounds without further studies, the main findings of this study showed an 
authentic modelling process is achievable within the restricted secondary school 
classroom environment. The classroom activity developed and trialled was effective 
for teaching the process of mathematical modelling. Students were able to recog-
nise and use strategies to identify the essential aspects of the situation although 
there were gaps in students’ abilities to construct models. It is recommended that a 
minimum of 7 hours of curriculum time is needed to allow for a full experience of 
the process of modelling. An implication of the study for tertiary education is the 
recommendation for first year mathematical modelling courses to include experi-
ences of the whole process of mathematical modelling.
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