
Technological Aspects of the Hybrid
Parallelization with OpenMP and MPI

Oleg Bessonov(B)

Institute for Problems in Mechanics of the Russian Academy of Sciences,
101, Vernadsky ave., 119526 Moscow, Russia

bess@ipmnet.ru

Abstract. In this paper we present practical parallelization techniques
for different explicit and implicit numerical algorithms. These algorithms
are considered on the base of the analysis of characteristics of modern
computer systems and the nature of modeled physical processes. Limits
of applicability of methods and parallelization techniques are determined
in terms of practical implementation. Finally, the unified parallelization
approach for OpenMP and MPI for solving a CFD problem in a regular
domain is presented and discussed.

1 Introduction

Previously, only distributed memory computer systems (clusters) were available
for parallel computations, and the only practical way of parallelization was the
MPI distributed-memory approach (provided a user was privileged enough to
have an access to such a system). Currently multicore processors have become
widely available, and parallelization is no more an option as before. Users have
to parallelize their codes because there is no other way to fully utilize the com-
putational potential of a processor. Besides, cluster nodes are now built on mul-
ticore processors too. Thus, the shared-memory OpenMP approach as well as
the hybrid OpenMP/MPI model become important and popular.

The progress in the computer development can be illustrated by comparing
solution times of the CFD problem [1] with 106 grid points and 106 time-steps:

– 2005, 1-core processor – 280 h;
– 2009, 4-core processor – 30 h;
– 2011, cluster node with two 6-core processors – 11 h;
– 2013, cluster node with two 10-core processors – 4.5 h;
– 2015, 4 cluster nodes with two 10-core processors – 1.5 h.

We can see the acceleration by two orders of magnitude. This has become
possible both due to the development of computers and implementation of new
parallel methods and approaches.

In previous papers [1–3] we have analyzed parallelization methods from the
mathematical, convergence and efficiency points of view. In this work we will
consider practical parallelization techniques taking into account characteristics
and limitations of modern computer systems as well as essential properties of
modeled physical processes.
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 101–113, 2017.
DOI: 10.1007/978-3-319-62932-2 9

102 O. Bessonov

2 Parallel Performance of Modern Multicore Processors

Modern multicore microprocessors belong to the class of throughput-oriented
processors. Their performance is achieved in cooperative work of processor cores
and depends both on the computational speed of cores and on the throughput
of the memory subsystem. The latter is determined by the configuration of inte-
grated memory controllers, memory access speed, characteristics of the cache
memory hierarchy and capacity of intercore or interprocessor communications.

For example, a typical high-performance processor used for scientific or tech-
nological computations has the following characteristics:

– 6 to 12 computational cores, with frequencies between 2.5 and 3.5 GHz;
– peak floating point arithmetic performance 300–500 GFLOPS (64-bit);
– 4 channels of DDR4-2133/2400 memory with peak access rate 68–77 GB/s;
– hierarchy of cache memories (common L3-cache, separate L2 and L1);
– ability to execute two threads in each core (hyperthreading).

Many scientific or technological application programs belong to the memory-
bound class, i.e. their computational speed is limited by the performance of the
memory subsystem. Thus, with increasing the number of cores, it is necessary
to make the memory faster (frequency) and/or wider (number of chsannels).

Importance of the memory subsystem can be illustrated by running several
applications on computers with different configurations (Fig. 1): 8-core (3.0 GHz)
and 6-core (3.5 GHz) processors with 4 memory channels (68 GB/s), and 6-core
processor with 2 channels (34 GB/s). All processors belong to the same family
Intel Core i7-5900 (Haswell-E). The first computer system has faster memory
than two others. Application programs used in the comparison are the following:

– Cylflow: Navier-Stokes CFD code [1] (regular grid, 1.5 M grid points);
– CG AMG: Conjugate gradient solver with the multigrid preconditioner [2]

(Cartesian grid in the arbitrary domain, sparse matrix, 2 M grid points);
– CG Jacobi: Conjugate gradient solver with the explicit Jacobi precondi-

tioner [2] (the same grid).

It is seen from Fig. 1 that there is the saturation of the memory subsystem in
all cases. For the CFD code, it is less visible: 4-channel computers look similarly,
while the 2-channel system is 1.3 times slower. For the multigrid solver, some
difference between first two systems appears, and the third one is about two times
slower. For the explicit solver, effect is more significant: the 8-core computer
additionally gains owing to its faster memory and larger cache, while the 2-
channel system additionally loses. The maximum of performance is achieved in
this case if only part of processor cores are active (5, 4 and 3 cores, respectively).

On two-processor configurations, the number of memory channels and their
integral capacity is doubled. Due to this, performance of most memory-bound
programs can be almost doubled (see example of 1.95-times increase in [3]).

On the other hand, hyperthreading usually doesn’t help to such programs.
In fact, for the above applications, running twice the number of threads with
the active hyperthreading reduces performance by about 10%.

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 103

 0

 8

 16

 24

 0 2 4 6 8

Cylflow

8c 4ch
6c 4ch
6c 2ch

 0

 10

 20

 30

 0 2 4 6 8

CG AMG

8c 4ch
6c 4ch
6c 2ch

 0

 20

 40

 60

 80

 0 2 4 6 8

CG Jacobi

8c 4ch
6c 4ch
6c 2ch

Fig. 1. Parallel performance of application programs (iterations per second) as a func-
tion of the number of threads on computers with different memory configurations

3 Properties of Explicit and Implicit Algorithms

There are two main classes of computational algorithms: explicit, with computa-
tions like x = Ay (multiplication of a matrix by a vector), and implicit, that look
as Ax = y or Ax ≈ y (exact or approximate solution of a linear system). Here
vectors x and y represent some physical quantities in the discretized domain,
and matrix A corresponds to the discretization stencils applied to them.

In the analysis of explicit and implicit algorithms we will consider the lowest
level of the computational method. For example, the explicit time integration
scheme is an explicit algorithm per se, while the implicit integration scheme may
be either resolved by an immediate implicit method, or solved by means of some
iterative method employing any sort of the iterative scheme at the lower level.

Explicit algorithms act locally by stencils of the limited size and propagate
information with low speed (one grid distance per iteration). Thus, they require
O(n) iterations for full convergence where n is the diameter of the domain (in
terms of grid distances). On the other hand, implicit algorithms operate globally
and propagate information much faster (approximate methods) or even instantly
(direct solvers). For example, the Conjugate gradient method with the Modified
Incomplete LU decomposition as a preconditioner needs O(

√
n) iterations [4].

Applicability of the methods depends on the nature of underlying physical
processes. For example, incompressible viscous fluid flows are driven by three
principal mechanisms with different information propagation speeds:

– convection: slow propagation, Courant condition can be applied CFL = O(1)
(one or few grid distances per time-step); using an explicit time integration
scheme or an iterative solver with few iterations;

– diffusion: faster propagation (tens grid distances per time-step), well-condi-
tioned linear system; using an iterative solver with explicit iterations or an
Alternating direction implicit (ADI) solver;

– pressure: instant propagation, ill-conditioned linear system; using an iterative
solver with implicit iterations or multigrid or a direct solver.

Parallel properties of computational methods strongly depend on how
information is propagated. Iterations of explicit algorithms can be computed

104 O. Bessonov

independently, in any order, thus giving the freedom in parallelization. In con-
trast, implicit iterations have the recursive nature and can’t be easily paral-
lelized.

Below we will consider parallelization approaches for several variants of com-
putational algorithms of the explicit, implicit and mixed type.

3.1 Natural Parallelization of Explicit Algorithms

The simplest way of parallelizing an explicit method is to divide a computational
domain (geometric splitting) or a matrix A (algebraic splitting) into several parts
for execution in different threads. It can be easily implemented in Fortran with
the OpenMP extension. For example, one-dimensional geometric splitting by the
last spatial dimension can be programmed with the use of !$OMP DO statement.

This sort of parallelization is very convenient and is almost automatic. How-
ever, it has a natural limitation: with larger number of threads, subdomains
become narrow. This can increase parallelization overheads due to load disbal-
ances and increased costs of accesses to remote caches across subdomain bound-
aries.

For this reason, two-dimensional splitting may become attractive. OpenMP
has no natural mechanism for such splitting. Nevertheless, the nested loops can
be easily reorganized by the appropriate remap of control variables of two outer
loops (Fig. 2). Here, all changes of the original code are shown by capital letters.

The difference between one- and two-dimensional splittings is the placement
of data belonging to subdomains. In the first case, each part of data is a single
continuous 3-dimensional array. In the second case, data look as a set of 2D
arrays, decoupled from each other. The size of each array is N ×M/P , where N
and M are dimensions, and P is the splitting factor in the second dimension. For
N = M = 100 and P = 4 this corresponds to 2500 data elements, or 20 KBytes.

!$OMP DO PRIVATE(IR,IZ)
DO IP=0,15

IR=IP/4+1
IZ=IP-IR*4+1
do k=NR(IR),MR(IR)

do j=NZ(IZ),MZ(IZ)
do i=1,nx

w3(i,j,k)= . . .
enddo i

enddo j
enddo k

ENDDO IP
!$OMP END DO

z
ϕ

r

0

1

2

3

4

5

7

8

9

10

11

12

13

14

15

6

Fig. 2. Parallelization with the two-dimensional splitting

The main problem of split data is associated with the streamlined prefetch:
this mechanism is efficient if arrays are long and continuous, and in the case

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 105

of piecewise-continuous arrays it stops after the end of each piece of data thus
taking additional time for restart and reducing the overall efficiency of prefetch.

For the same reasons, it is not possible to efficiently implement 3-dimensional
splitting by the similar way: the size of each piece of data would be N/P , or
only 200 Bytes (for the above parameters).

Additional problem appears in the case of a Non-uniform memory computer
(NUMA), consisting of two or more processor interconnected by the special
links. Each processor controls its own part of memory. Logically, each thread
can transparently access any memory location in a system, but remote accesses
are much slower than local ones. For this reason, all data should be divided
between processors as accurately as possible.

However, data are allocated in a particular processor’s memory by pages of
the typical size 4 KBytes. Therefore, some data on a boundary between subdo-
mains always fall into the remote memory area (on average, half the page size).
For the 1D splitting, this is much less than the size of a boundary array (N ×M ,
or 80 KBytes for the above parameters). In case of the 2D splitting, most bound-
ary arrays are of the size N (only 800 Bytes). Thus, a significant part of each
array would fall into the remote memory.

Therefore, for NUMA, splitting should be arranges such that interprocessor
communications occur only across boundaries in the last spatial dimension. For
the same reason it is not reasonable to use large pages (2 MBytes).

3.2 Parallelization Properties of Implicit Algorithms

Most often implicit algorithms are used as preconditioners for the Conjugate
gradient (CG) method [3]. Typically, such preconditioners are built upon variants
of the Incomplete LU decomposition (ILU) applied to sparse matrices. This
decomposition looks as a simplified form of the Gauss elimination when fill-in of
zero elements is restricted or prohibited.

Within the CG algorithm, this preconditioner is applied at each iteration in
the form of the solution of a linear system LUx = y , that falls into two steps:
Lz = y and Ux = z .

These steps are recursive by their nature. There is no universal and efficient
method for parallelizing ILU. One well-known approach is the class of domain
decomposition methods [5], where the solution of the original global linear system
is replaced with the independent solutions of smaller systems within subdomains,
with further iterative coupling of partial results. However, this approach is not
enough efficient because it makes the convergence slower or impossible at all.

For ill-conditioned linear systems associated with the action of pressure in
the incompressible fluid it is important to retain convergence properties of the
preconditioning procedure. This can be achieved by finding some sort of paral-
lelization potential, either geometric or algebraic.

For domains of regular shape it is natural to discover a sort of the geomet-
ric parallelization. For example, Cartesian discretization in a parallelepiped pro-
duces a 7-diagonal matrix, that looks as a specific composition of three 3-diagonal
matrices corresponding to three directions. It can be seen that the procedure of

106 O. Bessonov

twisted factorization of a 3-diagonal system can be naturally generalized to two
or three dimensions [4]. Figure 3(a, b) shows factors of the LU-decomposition of
a 5-diagonal matrix that corresponds to a 2D domain. Illustration of the com-
putational scheme for three dimensions is shown on Fig. 3(c): the domain is split
into 8 octants, and in each octant elimination of non-zero elements for the first
step Lz = y is performed from the corner in the direction inwards. For the
second step Ux = z data within octants are processed in the reverse order.

Thus, LU-decomposition in a 3D parallelepipedic domain can by parallelized
by 8 threads with small amount of inter-thread communications and without
sacrifying convergence properties of the iterative procedure.

Additional parallelization within octants can be achieved by applying the
staircase (pipelined) method [6,7]. Here, each octant is split into two halves in
the direction j (Fig. 3, d), and data in each half are processed simultaneously for
different values of the index in the direction k (this looks like a step on stairs).

This method needs more synchronizations between threads, and its applica-
tion is limited by the factor of 2 or (at most) 4. Thus the resulting parallelization
potential for a parallelepipedic domain is limited by 16 or 32 threads.

0 1
4 5 1 3

5 7

4 5
6 7 k

j

0 1 3 2
8 9 11 10 2 6

10
14

8 9 11 10
12 13 15 14

a b c d

Fig. 3. Nested twisted factorization: factors of a 2D LU-decomposition (a, b); example
of the parallel elimination of non-zero elements in a 3D domain (c); illustration of the
staircase method (d)

For general domains and non-structured grids there is no more geometric
symmetry. Thus the only way of parallelization is to find an algebraic potential.
The idea is again to use twisted factorization. Figure 4 (left, center) shows factors
of the LU-decomposition of a banded sparse matrix. Each factor consists of two
parts, and most calculations in each part can be performed in parallel.

Unfortunately, this way allows to parallelize the solution for only two threads.
Additional parallelization can be achieved by applying a variant of the pipelined
approach, namely the block-pipelined method [8]. The idea of the approach is
to split each part of a factor into pairs of adjacent trapezoidal blocks that have
no mutual data dependences and can be processed in parallel (Fig. 4, right). As
a result, parallelization of the Gauss elimination will be extended to 4 threads.

Performance of the block-pipelined method depends on the sparsity pattern
of a matrix. If the matrix contains too few non-zero elements, the overall effect
of the splitting may happen to be low because of synchronization overheads.

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 107

Fig. 4. Twisted factorization of a sparse matrix (left, center); splitting of a subdiagonal
part of a factored matrix into pairs of blocks in the block-pipelined method (right)

The above examples demonstrate complexity of parallelization of implicit
algorithms that strongly depend on the property of fast propagation of informa-
tion in underlying physical processes.

3.3 Peculiarities of the Multigrid

There exists a separate class of implicit methods, multigrid, which possess very
good convergence and parallelization properties. Multigrid solves differential
equations using a hierarchy of discretizations. At each level, it uses a simple
smoothing procedure to reduce corresponding error components.

In a single multigrid cycle (V-cycle, Fig. 5), both short-range and long-range
components are smoothed, thus information is instantly transmitted throughout
the domain. As a result, this method becomes very efficient for elliptic problems
that propagate physical information infinitely fast.

1 Pre-smooth x1 = S1 (x0, b)
2 Residual b1 = b − Ax1

3 Restriction b̃1 = R b1
4 Next level Ãx̃2 ≈ b̃1
5 Prolongation x2 = P x̃2

6 Correction x3 = x1 + x2

7 Post-smooth x0 = S2 (x3, b)

1

2

3

...

last

1 2 3

1 2 3

1 2 3

1 2 3

4

4

4

4

exact

5 6 7

5 6 7

5 6 7

5 6 7V-cycle

Fig. 5. Multigrid algorithm (left) and illustration of V-cycle (right) (Color figure
online)

At the same time, multigrid can be efficiently and massively parallelized
because processing at each grid level is performed in the explicit manner, and
data exchanges between subdomains are needed only at the end of a cycle.

Here we consider the Algebraic multigrid (AMG) approach [2,9] which is
based on matrix coefficients rather than on geometric parameters of a domain.
This approach is applied in frame of Cartesian discretization in the arbitrary

108 O. Bessonov

domain. The resulting sparse matrices are stored in the Compressed Diagonal
Storage (CDS) format [2] that is more efficient for processing on modern through-
put processors than the traditional Compressed Row Storage (CRS).

The main computational operations in an AMG cycle are smoothing (itera-
tion of the Gauss-Seidel or SOR method), restriction (fine-to-coarse grid conver-
sion by averaging) and prolongation (coarse-to-fine conversion by interpolation).

Formally, iteration of the Gauss-Seidel method looks as an implicit procedure:
(D + L)xk+1 = b − Uxk (here D, L and U are diagonal, subdiagonal and
superdiagonal parts of the matrix A in the equation Ax = b). In order to
avoid recursive dependences, the multicolor grid partitioning can be applied.
For discretizations with 7-point stencils, two-color scheme is sufficient (red-black
partitioning). With this scheme, the original procedure falls into two explicit
steps: D(1)x

(1)
k+1 = b(1) − Ux

(2)
k and D(2)x

(2)
k+1 = b(2) − Lx

(1)
k+1 (superscripts (1)

and (2) refer to red-colored and black-colored grid points, respectively).
To ensure consecutive access to data elements, it is necessary to reorganize all

arrays, i.e. to split them into “red” and “black” parts. After that, any appropriate
parallelization can be applied, either geometric or algebraic. In particular, the
algebraic splitting by more than 200 threads was implemented for Intel Xeon
Phi manycore processor [2].

Similarly, the restriction (averaging) procedure can be parallelized. Imple-
mentation of the prolongation procedure is more difficult because different inter-
polation operators should be applied to different points of the fine grid depending
on their location relative to the coarse grid points.

The above considerations are applied to the first (finest) level of the multigrid
algorithm. Starting from the second levels, all discretization stencils have 27
points, and 8-color scheme becomes necessary. As a result, computations become
less straightforward, with a proportion of indirect accesses.

On coarser levels of the algorithm, the number of grid points becomes not
sufficient for efficient parallelization on large number of threads. This effect is
most expressed at the last level. Usually, the LU-decomposition or the Conju-
gate gradient is applied at this level. However, these methods either can’t be
parallelized or involve very large synchronization overheads.

To avoid this problem, a solver based on the matrix inversion can be used.
Here, the original last-level sparse matrix is explicitly inverted by the Gauss-
Jordan method at the initialization phase. The resulting full matrix is used at
the execution phase in the simple algorithm of matrix-vector multiplication. This
algorithm is perfectly parallelized and doesn’t require synchronizations.

Efficiency and robustness of the multigrid algorithm is higher if it is used
as a preconditioner in the Conjugate gradient method. In this case, it becomes
possible to use the single-precision arithmetic for the multigrid part of the algo-
rithm without loosing the overall accuracy. Due to this, the computational cost
of the algorithm can be additionally decreased because of reduced sizes of arrays
with floating point data and corresponding reduction of the memory traffic.

Thereby, the multigrid method is very efficient and convenient for paralleliza-
tion. However, it is very complicated and difficult for implementation, especially

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 109

for non-structured grids. Its convergence is not satisfactory in case of regular
anisotropic grids (though it can be overcome by so-called semi-coarsening [9]
when the grid becomes non-structured). In some cases, the behaviour of the
method becomes uncertain. Finally, there is no reliable theory and procedure
for systems of equations. Thus it is not a universal solution, and applicability of
traditional methods remains wide.

3.4 Methods of Separation of Variables and ADI

For solving well-conditioned linear systems, the Alternating direction implicit
(ADI) method can be used. If the original matrix is presented as A = I+L, where
I is the unit matrix and ||L|| � 1, then it can be approximately decomposed as
(I + L) ≈ (I + Lx)(I + Ly)(I + Lz). The final procedure looks as the solution of
several 3-diagonal systems. Also, 3-diagonal systems appear in the direct method
of separation of variables for solving the pressure Poisson equation [1].

Parallelization of the solution of a 3-diagonal linear system can be done by
applying the twisted factorization for 2 threads, or two-way parallel partition [1]
for 4 threads (Fig. 6, left). In the latter method, twisted factorization is applied
separately to the first and second halves of a matrix. After two passes (forward
and backward) the matrix has only the main diagonal and the column formed
due to fill-in. To resolve this system, additional substitution pass is needed.

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7

Fig. 6. Illustration of the two-way parallel partition method: matrix view for 4 threads
(after the first and the second passes) and for 8 threads (after the second pass)

The two-way parallel partition method can be naturally extended for 8
threads (Fig. 6, right). After two passes of the twisted factorization, the matrix
has in this case more complicated structure with 3 partially filled columns. Three
equations of the matrix form the reduced linear system (its elements are shown
by bold points) that should be resolved before the substitution pass.

110 O. Bessonov

20 21 22 23

20
21
22
23

Fig. 7. Two variants of the splitting of a computational domain: 4 × 16 and 16 × 4

Computational expenses of this method increase rapidly with the number of
threads. Also, there is the sharp increase of the number of exchanges in case of
the distributed memory (MPI) parallelization. Therefore, the reasonable level of
parallelization for 3-diagonal matrices is limited by 4 or (at most) by 8 threads.

Such limitations can restrict the total level of parallelization. If it is necessary
to solve 3-diagonal linear systems in two outer directions with the limit of 4
threads (in each direction), then the total limit will be 4 × 4 = 16. To override
this, we can use different splittings for different parts of the algorithm. For
example, if the splitting of a computational domain is 4 × 16, all parts of the
algorithm can be parallelized except the 3-diagonal systems in the last direction
(Fig. 7, left). For solving them, we will use another splitting 16×4 (Fig. 7, right).

For both variants of splitting in this example, there are groups of 4 threads
that share the same data (as indicated by shaded rectangles on Fig. 7). Switching
from the first splitting to the second one looks like a transposition of data.
For the shared memory environment, no real transposition occurs and data are
simply accessed in another order. However, for the distributed memory, costly
data transfers would take place. For this reason, such groups of subdomains
should never be split between cluster nodes. As a consequence, the level of the
distributed memory parallelization is limited by the level of parallelization of a
3-diagonal linear system in the last direction, i.e. by 4 or 8 cluster nodes.

The maximal reasonable level of parallelization of the above approach for
two-dimensional splitting is between 32 × 4 = 128 and 32 × 8 = 256, depending
on the parallelization scheme for 3-diagonal systems and taking into account the
reasonable limitation of 32 threads for each direction.

4 Unified ParallelizationApproach for OpenMP and MPI

In the comparison of parallelization environments, it is important to pay atten-
tion on the basic characteristics of a distributed memory computer system:

– internode communication speed: O(1) GB/s;
– memory access rate: O(10) GB/s;
– computational speed: O(102) GFLOPS, or O(103) GB/s.

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 111

In fact, not all computations require memory accesses, thus the computa-
tional speed expressed in memory units is close to O(102) GB/s. Nevertheless, it
is clear that the memory subsystem is one order of magnitude slower than the
processor, and communications are two orders of magnitude slower.

Therefore exchanges in the MPI model should be kept to a minimum and
allowed only on boundaries between subdomains. This applies also to the use of
MPI in a shared memory (or multicore) computer though to the less extent. It
means that transmission of full (3D) data arrays by MPI should be avoided.

For clusters, it is optimal to use the hybrid parallelization with OpenMP and
MPI. Programming with MPI requires serious reorganization of the code: it is
necessary to change the natural allocation of data, replacing each monolithic data
array with several subarrays in accordance with the splitting and re-adjusting the
addressing scheme. These subarrays should be logically overlapped, i.e. contain
additional layers (e.g. ghost elements for calculating derivatives). Such complica-
tions, together with the need to organize explicit data exchanges between cluster
nodes, make development and debug of a code much more difficult. At last, it
may become necessary to develop and support two (or more) versions of a code.

These complications can be partly avoided if the splitting between cluster
nodes is done only by the last spatial direction. Then, only the numeration in this
direction has to be changed. For example, if a 3D domain of the size L×M ×N
is split into 4 subdomains by the last dimension such as K = N/4, each MPI
process will have to allocate data arrays of the dimensions (L,M,0:K+1). Here,
bounds of the last index are expanded to support overlap in such a way, that the
slice K of the array in a process corresponds to the slice 0 in the next process,
and the same applies to the slices K+1 and 1 in these processes (Fig. 8, left).

0

1

2

3

0 1 2 3

Fig. 8. Illustration of the allocation of a data array in MPI processes: independent
subarrays with overlapped areas (left); subsets in the unified address space (right)

As a next step, we can organize the unified address space for the MPI-
parallelized program. The simple way is to logically allocate full data array in
each MPI process rather than its selected part as in the above example (Fig. 8).
This will not lead to the unnecessary occupation of memory because in modern
processors only those memory pages are physically allocated which are accessed
in a program. In this scheme, addressing of array elements remains unchanged.

In case of dynamic memory allocation, we can avoid logical allocation of
full arrays: in Fortran it is possible to allocate an array in a particular process

112 O. Bessonov

indicating exact bounds of the last index, e.g. ALLOCATE (X(L,M,2*K:3*K+1)).
This example corresponds to the process 2 on Fig. 8 (right).

With unified address space, character of the two-dimensional splitting of the
computational domain and structure of DO-loops in the hybrid OpenMP/MPI
parallelization become very similar to those of the pure OpenMP approach: it
is enough to remap bounds of control variables of two outer loops (as shown
on Fig. 2) and, after completion of loops, perform exchanges with neighbour
processes for sending (receiving) boundary elements of data arrays. Thus, the
only difference is that some subdomain boundaries by the last spacial direction
become the internode boundaries that require MPI communications.

In order to simplify and unify the computational code, it is worth to orga-
nize special “high level” routines for doing exchanges rather than to calls MPI
functions directly. Depending on a process number, these routines can determine
addresses of data to be transmitted and directions of transmissions. Depending
on the total number of MPI processes, they can decide whether the particular
data transmission should take place at all. Thus, the code becomes invariant
with respect to the number of processes and to the fact of the use of MPI itself.

By avoiding explicit calls of MPI functions, the principal parts of a program
become MPI-independent and it becomes possible to compile these parts by any
compiler which is not necessarily integrated into an MPI environment. Only a
collection the above “high level” routines (grouped into a separate file) works
with MPI and should be compiled in the appropriate environment. For conve-
nience, several variants of a file with these routines can be made (for a single-node
run without MPI, for 2 nodes, for 4 nodes etc.). By this way, the unified approach
for pure OpenMP and for hybrid OpenMP/MPI model is established.

This approach was used for the hybrid parallelization of the CFD code for
modeling incompressible viscous flows in cylindrical domains (see [1] for the
OpenMP-only version). Below are parameters of a problem for solving on four
cluster nodes with two 10-core processors each, 80 cores (threads) total:

– problem size 192 × 160 × 160 (ϕ, z, r);
– general splitting 4 × 20 (z, r), size of a subdomain 192 × 40 × 8;
– specific splitting 20 × 4 (for solving 3-diagonal systems in the last direction),

size of a subdomain 192 × 8 × 40.

These splitting parameters correspond to the requirements set out in
Subsects. 3.1 and 3.4.

In order to run the above problem correctly, all necessary MPI and OpenMP
parameters should be set, such as OMP NUM THREADS environment variable
for parallelization within a cluster node, number of nodes and their list in the
“mpirun” directive, appropriate binding of threads to processor cores in the
“taskset” utility etc.

5 Conclusion

In this paper we have considered different practical and technological questions
of the parallelization for shared and distributed memory environments. Most

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 113

examples were done for the geometric approach of parallelization but in many
cases they can be extended to the algebraic and other sorts of decomposition.

Special attention was paid on methods with limited parallelization poten-
tial that is associated with the essential properties of underlying processes,
namely fast propagation of physical information relative to the temporal scale of
a numerical method. It is clear that explicit methods while possessing good par-
allelization properties are not enough efficient for solving such problems. Thus
implicit methods remain very important despite they are not always convenient
for optimization in general and for parallelization in particular. For this reason,
approaches for low and medium scale parallelization are still in demand.

Acknowledgements. This work was supported by the Russian Foundation for Basic
Research (projects 15-01-06363, 15-01-02012). The work was granted access to the
HPC resources of Aix-Marseille Université financed by the project Equip@Meso (ANR-
10-EQPX-29-01) of the program Investissements d’Avenir supervised by the Agence
Nationale pour la Recherche (France).

References

1. Bessonov, O.: OpenMP parallelization of a CFD code for multicore computers:
analysis and comparison. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp.
13–22. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23178-0 2

2. Bessonov, O.: Highly parallel multigrid solvers for multicore and manycore proces-
sors. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 10–20. Springer,
Cham (2015). doi:10.1007/978-3-319-21909-7 2

3. Bessonov, O.: Parallelization properties of preconditioners for the conjugate gradient
methods. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 26–36. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39958-9 3

4. Accary, G., Bessonov, O., Fougère, D., Gavrilov, K., Meradji, S., Morvan, D.:
Efficient parallelization of the preconditioned conjugate gradient method. In:
Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 60–72. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03275-2 7

5. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston
(2000)

6. Bastian, P., Horton, G.: Parallelization of robust multi-grid methods: ILU-
factorization and frequency decomposition method. SIAM J. Stat. Comput. 12,
1457–1470 (1991)

7. Elizarova, T., Chetverushkin, B.: Implementation of multiprocessor transputer sys-
tem for computer simulation of computational physics problems (in Russian). Math.
Model. 4(11), 75–100 (1992)

8. Bessonov, O., Fedoseyev, A.: Parallelization of the preconditioned IDR solver for
modern multicore computer systems. In: Application of Mathematics in Technical
and Natural Sciences: 4th International Conference. AIP Conference Proceedings,
vol. 1487, pp. 314–321 (2012)

9. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309
(2001)

http://dx.doi.org/10.1007/978-3-642-23178-0_2
http://dx.doi.org/10.1007/978-3-319-21909-7_2
http://dx.doi.org/10.1007/978-3-642-39958-9_3
http://dx.doi.org/10.1007/978-3-642-03275-2_7

	Technological Aspects of the Hybrid Parallelization with OpenMP and MPI
	1 Introduction
	2 Parallel Performance of Modern Multicore Processors
	3 Properties of Explicit and Implicit Algorithms
	3.1 Natural Parallelization of Explicit Algorithms
	3.2 Parallelization Properties of Implicit Algorithms
	3.3 Peculiarities of the Multigrid
	3.4 Methods of Separation of Variables and ADI

	4 Unified ParallelizationApproach for OpenMP and MPI
	5 Conclusion
	References

