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Abstract. We propose a metaheuristics-based approach to the opti-
mal design of multi-product batch plants, with a particular application
example of chemical-engineering systems. Our hybrid approach combines
two metaheuristics: Ant Colony Optimization (ACO) and Simulated
Annealing (SA). We develop a sequential implementation of the pro-
posed method and we parallelize it on Graphics Processing Units (GPU)
using the CUDA programming environment. We experimentally demon-
strate that the results of our hybrid metaheuristic approach (ACO+SA)
are very near to the global optimal solutions, but they are produced
much faster than using the deterministic Branch-and-Bound approach.

Keywords: Hybrid metaheuristics · Ant Colony Optimization · Simu-
lated Annealing · GPU computing · CUDA · Parallel metaheuristics ·
Combinatorial optimization · Multiproduct batch plant design

1 Motivation and Related Work

A heuristic for an optimization problem is an algorithm that explores not all possi-
ble states of the problem, but rather the most likely ones. Purely heuristics-based
solutions may be inconsistent, therefore, metaheuristics are used that usually per-
form better than simple heuristics [14]. A metaheuristic is a generic algorithmic
template that can find high-quality solutions of optimization problems [4] exploit-
ing a trade-off of local search and global exploration. Metaheuristics find good-
quality solutions for optimization problems in a reasonable amount of time, but
there is no guarantee that the optimal solution is always reached [26].

In this paper, we consider a challenging area of optimisation – optimal design
of multiproduct batch plants, e.g., in the chemical industry for producing phar-
maceuticals, polymers, food etc. There has been an active research on efficiently
solving such and similar problems. The classical n-queens problem was addressed
using the Ant Colony Optimization (ACO) [17,24] and its combination with a
Genetic Algorithm (GA) [2]. Paper [21] solves process engineering problems by
the Differential Evolution (DE) algorithm and demonstrates its advantages over
the exact optimization by Branch-and-Bound (B&B) and using a GA. In [13],
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a particle swarm algorithm and a GA are exploited for multiproduct batch plant
design. Paper [10] develops a multiobjective GA which demonstrates high flex-
ibility and adaptability for various engineering problems. The problem of the
optimal design of batch plants with imprecise demands on product amounts is
addressed in [3] by integrating an analytic hierarchy process strategy for the
analysis of the GA Pareto-optimal solutions. Paper [19] uses ACO and SA to
solve a stochastic facility layout problem in which product demands are normally
distributed random variables.

In order to reduce the run time of metaheuristics-based approaches, their
implementation on different parallel architectures has been studied. In particular,
Graphics Processing Units (GPU) are widely used by employing the CUDA
platform [20]. GPU were used for solving the classical TSP problem by simulated
annealing [27] and by an ant system [8]. The problem of scheduling transit stop
inspection and maintenance was studied by using Harmony Search and ACO [16],
with alternative implementations on CPU and GPU.

Our contribution in this paper is two-fold: (1) we develop a novel, hybrid app-
roach which combines two metaheuristics – Ant Colony Optimization (ACO) [11]
and Simulated Annealing (SA) [18], and (2) we implement it on a CPU-GPU
system using CUDA and we show that it is preferable to the Branch-and-Bound
approach used in our previous work [7]. Section 2 describes the mathematical
problem formulation, Sect. 3 – the methodology of our hybrid ACO+SA app-
roach, and Sect. 4 – its parallelization. Section 5 reports our experimental results,
and Sect. 6 concludes the paper.

2 Problem Formulation

Our application use case is optimizing a Chemical-Engineering System (CES) – a
set of equipment (tanks, filters, dryers etc.) which manufacture some products.
A CES consists of a sequence of I processing stages; i-th stage is equipped
with equipment units from a finite set Xi, with Ji being the number of equip-
ment units variants in Xi. All equipment unit variants of a CES are described
as Xi = {xi,j}, i = 1, I, j = 1, Ji, where xi,j is the main size j (working vol-
ume, working surface) of the unit suitable for processing stage i. A CES variant
Ωe, e = 1, E (where E =

∏I
i=1 Ji is the number of all possible variants) is an

ordered set of available equipment unit variants. The goal is finding the optimal
number of units at processing stages and their sizes while the input data are:
demand for each product of assortment, production horizon, available equipment
set, etc. Each variant Ωe of a system must be in an operable condition (com-
patibility constraint), i.e., it must satisfy the condition of a joint action for its
processing stages expressed by function S: S(Ωe) = 0 if the compatibility con-
straint is satisfied. An operable variant of a CES must also satisfy a processing
time constraint : T (Ωe) ≤ Tmax, where Tmax is the total available time (horizon).

Thus, designing an optimal CES is formulated as follows [5,6]: find a variant
Ω∗ ∈ Ωe, e = 1, E of a CES, that minimizes the objective function – equip-
ment costs Cost(Ωe), and both compatibility and processing time constraint are
satisfied:
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Ω∗ = argmin Cost(Ωe), e = 1, E (1)

Ωe = {x1,j1 , x2,j2 , . . . , xI,jI |ji = 1, Ji, i = 1, I}, e = 1, E (2)

xi,j ∈ Xi, i = 1, I, j = 1, Ji (3)

S(Ωe) = 0, e = 1, E (4)

T (Ωe) ≤ Tmax, e = 1, E (5)

The search space can be represented as a tree of height I (Fig. 1). Each tree level
corresponds to one processing stage of the CES, each edge corresponds to a selected
equipment variant taken from the set of possible variants Xi at stage i. Each node
ni,k at the tree layer Ni = {ni,1, ni,2, . . . , ni,k}, i = 1, I, k = 1,Ki,Ki =

∏i
l=1(Jl)

corresponds to a variant of equipment units for stages 1 to i.

Fig. 1. The search tree for a CES with 4 stages.

Figure 1 shows an example CES consisting of 4 stages (I = 4), where each
stage can be equipped with 2 devices (J1 = J2 = J3 = J4 = 2), i.e., the number
of all possible system variants is 24 = 16.

3 Hybrid Metaheuristic Approach

Our approach to the optimal design of multi-product batch plants is based on
two metaheuristics: Simulated Annealing (SA) and Ant Colony Optimization
(ACO). SA is widely used for solving optimization problems [18,26]; its key
advantage is escaping from local optima by allowing hill-climbing moves to find
a global optimum. SA can deal with arbitrary systems and objective functions;
it often finds an optimal solution and generally finds a good-quality solution.

Before searching for a solution using SA, we need a feasible initial solution.
For classical optimization problems, e.g., Traveling Salesman Problem (TSP), it
is possible to use a random initial solution. However, for our problem described
in Sect. 2, random initialization is unacceptable, because the compatibility (4)
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and processing time (5) constraints must be satisfied. Our search for a feasi-
ble initial solution is a Constraint Satisfaction Problem (CSP) [23] without cost
optimization, which consists in finding an operable variant of a CES, satisfying
(4) and (5). For solving it, we use the Ant Colony Optimization (ACO) meta-
heuristic [15] that provides good-quality results in many applications, including
CSP [24].

3.1 Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) metaheuristic can be viewed as a multi-
agent system in which agents (ants) interact with each other in order to reach
a global goal [26]. It is inspired by the behaviour of ant colonies: while walking
from food source to the nest and vice versa, ants deposit a chemical substance
called pheromone on their path. Pheromone is used as a communication medium
among ants and guides them to find the shortest path from the nest to food:
ants follow, with some probability, the pheromone deposited by previous ants.

1 AntColonyOptimization(){

2 isFound = false; /* repeat while solution not found */

3 while(!isFound){

4 Initialize(); /* initialize pheromone value */

5 foreach(ant in swarm){/* for each ant in colony */

6 ConstructSolution(); }

7 if(isFound) return; /* if solution is found, then end */

8 PheromoneUpdate(); /* update pheromone */

9 EvaporatePheramone(); }

Listing 1. The pseudocode of ACO algorithm.

Listing 1 shows the pseudocode of the ACO algorithm for our problem. The
number M of ants is the algorithm parameter which determines the trade-off
between the number of iterations and the breadth of the search per iteration:
the larger the number of ants per iteration, the fewer iterations are needed [25].
All ants behave in a similar way: each ant moves from the top of the tree in
Fig. 1 to the bottom. Once an ant selected a node r = ni,j at level i, it can pick
the next child node s = ni+1,j . The tour of an ant ends at the last tree level I;
each path corresponds to a potential solution of the problem. The ant transition
from node r to s is probabilistically biased by two values: pheromone trail τrs

and heuristic information ηrs, as follows: prs = τα
rs · ηβ

rs/
∑

k∈Cr
(τα

rk · ηβ
rk), where

Cr is the set of child nodes for r [12,24,26]. The factors α and β influence the
pheromone value and heuristic value respectively. These parameters control the
relative importance of the pheromone trails and the heuristic information.

Our approach to calculating heuristic information is based on the fact that
a CES with bigger units is usually more expensive, but it has a bigger batch
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size of products and so produces faster than a CES with smaller units. This is
favourable for satisfying the time constraint (5). Therefore, we make a unit which
satisfies the compatibility constraint (4) for the beginning part of the CES and
a larger basic size more preferable than a unit with the unsatisfied compatibility
constraint and smaller basic size. We use the following rule for the pheromone
update (line 8): τrs = τrs + Q/

∑M
m=1 Lm, where Q is some constant and Lm is

the tour length of the m-th ant, M is the swarm size. The smaller is the value of
Lm the larger is the value added to the previous pheromone value. We use Lm

as a fitness value that indicates how close is a given solution to achieving the
required goals. Listing 2 shows our approach to computing the fitness value L[m]
(line 2). Function NumberS() (lines 4–8) counts the number of stages of the
beginning part of the CES, composed of devices for stages 1 to i (lines 6–7), for
which (4) is satisfied. We add 1 to NumberS() if constraint (5) is satisfied (line 2).
Therefore, the minimal fitness value is 0 (no constraint is satisfied), the maximal
value is I + 1 (all constraint are satisfied, the problem is solved). We use the
maximal fitness value as constant Q: Q = I + 1. With time, the concentration
of pheromone decreases due to evaporation. The evaporation (Listing 1 line 9) is
performed at a constant rate after the completion of each iteration. It allows the
ant colony to avoid an unlimited increase of the pheromone value and to forget
poor choices made previously [25]. We implement this as follows: τrs = τrs · ρ,
where ρ ∈ [0, 1] is the trail persistence parameter.

1 ...

2 L[m] = NumberS(W[m]) + (T(W[m]) <= Tmax ? 1 : 0);

3 ...

4 int NumberS(W){

5 count = 0;

6 for (i = 1; i <= I; i++){ /* check constraint (4) */

7 if(PartS(W, i) == 0) count++; }

8 return count; }

Listing 2. Pseudocode of the fitness value computing for ACO.

3.2 Simulated Annealing (SA)

The basic idea of SA is to use random search which accepts not only changes
that improve the objective function, but also some changes that are not ideal,
in order to escape local minima. A parameter t called temperature governs the
search behaviour.

Listing 3 shows a pseudocode of our SA version that performs two loops:
the inner loop (line 4) to search for a neighbouring solution, and the outer
loop (line 3) to decrease the temperature in order to reduce the probability
of accepting the non-improving neighbouring solutions in the inner loop. W is
a vector of length I, each element W[i] specifying the device variant at each
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1 SimulatedAnnealing(){

2 t = Tinit; W = Winit;/* initialize temperature and guess */

3 while(t > Tfinal) {/* loop until t don’t reaches Tfinal */

4 for(l = 0; l < Lmax; l++) { /* repeat Lmax times */

5 Wcand = Perturb(W); /* construct neighbour solution */

6 /* check compatibility and processing time constraints */

7 if (S( Wcand ) == 0 && T( Wcand ) <= Tmax ){

8 deltaCost = Cost(Wcand) - Cost(W);

9 if (deltaCost < 0){ /* if new solution is better */

10 W = Wcand;} /* accept the new solution */

11 else {

12 r = rand(0, 1); /* generate a random number */

13 p = exp (-deltaCost / t); /* calculate probability */

14 if (p > r) {

15 W = Wcand; }}}} /* accept the new solution */

16 t = sigma * t; }} /* decrease the temperature value */

17 Perturb(W){

18 stage = (int) rand(1, I); /* select random stage */

19 W[stage] = (int) rand(1, J[stage]);/* select random unit */

20 return W; }

Listing 3. The pseudocode of SA algorithm.

stage of the problem solution (1)–(5). At each iteration of the inner loop, we
generate a new candidate solution Wcand in the neighbourhood of the current
feasible solution (line 5) using our procedure Perturb() (lines 17–20): we select
a random stage (line 18) in the feasible solution, for which we select a random
unit (line 19) from the equipment set accessible for this stage. Thus at each
iteration we change only one unit in the feasible solution at a stage. We avoid
getting trapped in a local optimum by randomly generating neighbours and
accepting a solution that worsens the value of the objective function with certain
probability [22] which depends on the change of the objective function ΔE and
parameter t: the acceptance probability p decreases over time as t decreases.
Consequently, SA first performs a wide investigation of the solution space and
then restricts the solution space gradually, converging to the best solution. We
initialize W with an initial feasible solution Winit obtained as the result of ACO,
and the temperature t with initial value Tinit (line 2). We choose Tinit as a
difference between the cost of the most expensive and the cheapest CES variant,
as recommended in [1]. The transition probability p (line 13) is determined by
p = exp(−ΔE/(kB · t)), where kB is the Boltzmann’s constant, E is the change
of the energy level [28]. We use kB = 1 and γ = 1 [28]. Thus, the probability
becomes p = exp (-deltaCost / t) (line 13).

A finite-time implementation of SA is obtained by generating a sequence of
homogeneous Markov chains of finite length Lmax which depends on the size of
the problem [1]. The iterations at a given value of t repeat Lmax times (line 4).
We compute Lmax as the total size of equipment set, i.e., Lmax =

∑I
i=1 Ji,
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where Ji is the number of equipment units variants for stage i. By permuting
the feasible solution, we select at each iteration a random unit (line 19) in one
random stage (line 18). Temperature t is decreased at the end of each iteration
using a cooling schedule defined by an initial temperature Tinit, a rule for
reducing t, and a final temperature Tfinal which is fixed at a small value chosen
as the smallest possible difference in cost between two neighboring solutions; in
our case, we use for Tfinal the price of the cheapest unit. We use (line 16) the
fast cooling rule t = σ · t [26], where 0.8 ≤ σ ≤ 0.99 as recommended in [1].

4 Parallelization for GPU

Figure 2 illustrates our parallel implementation of the hybrid (ACO+SA) app-
roach described in Sect. 3 on a system comprising a CPU and a GPU.

Fig. 2. The hybrid algorithm structure.

Application code consists of a sequential code (host code for CPU) that
invokes parallel execution of hundreds or thousands of threads on the device
(GPU), where all threads execute the same kernel code. The implementation
consists of the following five steps (from left to right in Fig. 2):

1. CPU reads the input data (number of CES stages I, number of accessible
equipment set Ji, production horizon Tmax etc.) from a file, initializes the
metaheuristics’ parameters for ACO and SA, sends this data to GPU, and
starts on the GPU the kernel function for ACO.

2. The ACO kernel on the GPU searches for the first feasible solution – the
initial CES-variant, as described is Sect. 3.1. We use the Multiple Ant Colonies
approach [9]: all colonies work as threads in parallel to solve the problem
independently. If some thread finds a solution then all threads terminate.
With an increasing number of threads, the probability of finding a solution
increases, and therefore the search time is typically reduced.

3. CPU receives the obtained solution, distributes it between threads as an initial
solution for SA, and starts the SA kernel function on the GPU.
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4. The SA kernel on the GPU searches in each thread for the optimal solution
with the initial solution found by ACO, i.e., we do not try to reduce the
time of one iteration, but rather increase the number of iterations executed
simultaneously. Each thread executes an independent instance of SA, thus,
the chance of the algorithm to converge to the global optimum increases, even
if all instances use the same initial solution. A larger number of threads does
not reduce the run time of the algorithm, but rather increases the probability
that some thread eventually finds a nearly optimal solution.

5. CPU receives the SA solutions obtained by the GPU threads and chooses the
best among them – this is the final solution of our problem.

Host Code. The host starts its work by loading the input data from a file.
The number of threads is a program launch parameter taken as a command-
line argument. The host sends data to the GPU and starts the kernel ACO()
that implements the ACO-algorithm. A CUDA kernel launch is asynchronous,
i.e. it returns control to the CPU immediately after starting the kernel. Using
cudaDeviceSynchronize(), the CPU waits until the GPU terminates and
receives the results from it.

Kernel Code for ACO. Listing 4 shows our parallel implementation of ACO,
where each thread simulates the work of one ant colony. For all threads, ini-
tially, all edges are assigned small random pheromone values from interval [0, 1]
(lines 4–5). The global flag isFound and the local iteration counter iterCounter
are used to control threads. The flag is changed by a thread using atomicAdd()
if this thread has found a feasible solution (line 21). The local iteration counter
is used by each thread as a nonstop operation protection: if ants in this thread
cannot find the solution after maxIterNumber iterations (which is possible for
stochastic algorithms) then the thread terminates. After initialization, each ant
m in swarm M generates a path (lines 9–17). Here, Want is a local two-dimensional
array of length M, each element of which is a vector of length I specifying the
device variant at each stage of the solution.

We do not discuss the kernel code of SA – it largely follows Listing 3.

5 Experimental Results

Our experiments are conducted on a heterogeneous system comprising: (1) a
CPU: Intel Xeon E5-1620 v2, 4 cores with Hyper-Threading, 3.7 GHz with 16 GB
RAM, and (2) a GPU: NVIDIA Tesla K20c with altogether 2496 CUDA cores
and 5 GB of global memory. We use Ubuntu 16.04.2, NVIDIA Driver version
367.57, CUDA version 8.0 and GNU C++ Compiler version 5.4.0.

As our test case, we evaluate the design of a CES consisting of 16 processing
stages with 2 to 12 variants of devices at every stage (total 216 to 1216 CES
variants). In our previous work [6,7], we used the Branch-and-Bound (B&B)
algorithm to find the global optimal solution. Here we solve the same problem
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1 __global__ void ACO(){ /* obtaining thread identifier */

2 threadID = blockDim.x * blockIdx.x + threadIdx.x;

3 if(threadID < numThreads){ /* pheromone initialization */

4 for (i = 1; i <= I; i++) {

5 for (j = 1; j <= J[i]; j++){tau[i][j] = curand(0, 1);}}

6 iterCounter = 0; /* while solution is not found */

7 while (isFound == 0 && iterCounter < maxIterNumber)){

8 /* generate path for each ant m in swarm M */

9 for(m = 1; m <= M && isFound == 0; m++){sum = 0.0;

10 for (i = 1; i <= I - 1; i++){

11 for (j = 1; j <= J[i]; j++){

12 eta[i][j] = (S(Want[m], i + 1) ? 1:0) + X[i][j];

13 sum += pow(tau[i][j], alpha) * pow(eta[i][j], beta);}

14 r = curand(0, 1); sump = 0.0;

15 for (j = 1; j <= J[i]; j++){

16 p = pow(tau[i][j],alpha) * pow(eta[i][j],beta) / sum;

17 sump += p; if(sump > r) {Want[m][i] = j; break; }}}}

18 /* calculate new pheromone values */

19 for(m = 1; m <= M && isFound == 0; m++){

20 L[m] = NumberS(Want[m],I) + (T(Want[m]) <= Tmax ? 1:0);

21 if (L[m] == Q) {atomicAdd(isFound, 1); bestAntId = m;}

22 for (i = 1; i <= I; i++) {

23 for (j = 1; j <= J[i]; j++) {dtau[i][j] = 0.0; }}

24 for (i = 1; i <= I; i++){

25 idx = Want[m][i]; dtau[i][idx] += Q / L[m]; }

26 /* pheromone update and evaporation */

27 for (i = 1; i <= I; i++){

28 for (j = 1; j <= J[i]; j++){

29 tau[i][j] = tau[i][j] * rho + dtau[i][j]; }}}

30 iterCounter++; }

31 /* save feasible solution and its thread identifier */

32 if(bestAntId != -1) {Wfirst[threadID] = Want[bestAntId];

33 threadIdx[threadID] = threadID; }}}

Listing 4. The kernel pseudocode for ACO.

on the same test system using our hybrid metaheuristic approach (ACO+SA),
and we compare the results with the solution obtained by B&B. Since both SA
and ACO are probability-based algorithms, their results will be different if run
multiple times on the same instance of a problem; therefore, we run each instance
for 100 times and we take the average of the measured values.

Figure 3 shows how the run time of the (ACO+SA) parallel program depends
on the number of threads. We run our CUDA-based implementation with the
number of threads from 100 to 2500 with step 100, for the CES example of
16 processing stages with 10 variants of units. We observe that the run time
is decreasing with the increasing number of threads. While on 100 threads, the
ACO takes 91% of the total run time, the portion of ACO decreases to only about
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10% on more than 2000 threads. This is because, with more threads, ACO finds
a solution faster with a higher probability, whereas using more threads for SA
can improve the quality of solution, but not the speed.

Figure 4 shows the deviation of the observed objective value (CES cost) by
our hybrid algorithm, calculated as |observed − expected|/expected · 100%. As
the expected value we use the global optimal value obtained by the B&B algo-
rithm. On 100 threads, the deviation is about 0.38% and then it decreases to
almost 0% for more than 2000 threads, so we achieve an almost optimal solution.

Figure 5 shows the deviation (vertical axis has a logarithmic scale) of solu-
tions obtained by our hybrid (ACO+SA) algorithm (sequential on CPU, parallel
on GPU using up to 2500 threads) from the global optimum obtained by sequen-
tial B&B. We observe that our parallel hybrid algorithm produces a nearly global
optimal solution (for problem size 216–916 the deviation is 0%, and for problem
size 1016–1216 the deviation is less than 0.01%). The deviation obtained by our
sequential algorithm is less than 1% for small size problem 216, but it increases
to about 14% for the problem size of 1216. This is because the sequential imple-
mentation performs only a single run of the SA: for small problem sizes, the
probability of finding a good solution is higher than for larger problem sizes.

Figure 6 shows the program run time (vertical axis has a logarithmic scale)
of our hybrid approach vs. B&B depending on the problem size. The program
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run time of B&B increases exponentially: while for problem size 216 the run
time is less than 1 s, for size 1216 the run time of B&B becomes prohibitively
long at about 134 h. The run time of the sequential implementation of our hybrid
algorithm is less than 0.1 s for the smallest problem, and it increases to about 580
sec for our maximal problem size. The run time of the parallel implementation
smoothly increases from 5 to 227 sec. The parallel implementation is slower
than the sequential implementation for smaller problem sizes (216 to 916), but
for larger problem sizes (1016 to 1216) it is faster than the sequential version by
about 2.6–2.8 times. At first glance, the speedup of 2.7 times compared to the
sequential case is small, but the quality of the solutions obtained by the parallel
implementation is significantly higher: the deviation from the global optimum for
the parallel implementation is less than 0.01% against more than 10% deviation
for the sequential version. This good quality of solutions is achieved by the
independent runs of SA: for a larger number of threads the probability that
one of the threads finds a nearly optimal solution is higher, because running
a parallel algorithm on 2500 threads is equivalent to the launch of sequential
algorithm 2500 times and the choice of the best among the found solutions.
The parameters of metaheuristic algorithms influence both the run time and the
quality of solutions. Empirically we have found that α = 0.4 and β = 0.6 with
the colony size M = 100 are good values for our application: they were selected
after numerous experiments. In our experiments, we use ρ = 0.9 and the cooling
rule constant σ = 0.9, also chosen empirically for our problem.

6 Conclusion

Our contribution is the novel hybrid (ACO+SA) metaheuristic approach to solv-
ing the optimization problem for multiproduct batch plants design and its paral-
lel implementation on a CPU-GPU platform. We have found out that increasing
the number of threads accelerates finding the solution with ACO and increases
the reliability and quality of the solutions obtained by SA. We compare our
results with the global optimal solution obtained by the B&B method. Our exper-
iments confirm that our parallel hybrid approach obtains good-quality solutions
which are very near to the global optimal values obtained by a deterministic
algorithm like B&B, but our approach finds the solution much faster.
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