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Abstract. Contextual information plays an increasingly crucial role in
concurrent applications in the times of mobility and pervasiveness of
computing. Context-Oriented Programming languages explicitly treat
this kind of information. They provide primitive constructs to adapt the
behaviour of a program, depending on the evolution of its operational
environment, which is affected by other programs hosted therein inde-
pendently and unpredictably. We discuss these issues and the challenges
they pose, reporting on our recent work on MLCoDa, a language specifi-
cally designed for adaptation and equipped with a clear formal semantics
and analysis tools. We will show how applications and context interac-
tions can be better specified, analysed and controlled, with the help of
some experiments done with a preliminary implementation of MLCoDa.

1 Introduction

Today there is a growing trend in having software systems able to operate every
time and everywhere, and applications are working side by side, either in a coop-
erative or in a competitive way. Ubiquitous and pervasive computing scenarios
are typical of the Internet of Things (IoT), a cyber-physical communication
infrastructure, made of a wide variety of interconnected and possibly mobile
devices. As a consequence, modern software systems have to cope with chang-
ing operational environments, i.e. their context. At the same time, they must
never compromise their intended behaviour and their non-functional require-
ments, typically security or quality of service. Thus, programming languages
need effective mechanisms to become context-aware, so as to detect the changes
in the context where the application is plugged in, and to properly adapt to
them, with little or no user involvement. Accordingly these mechanisms must
maintain the functional and non-functional properties of applications after the
adaptation steps. For example, suppose you want to have just a quick look at
your mail and at your social platforms when in a hotel: you would like to con-
nect in a secure way, but without bothering with all the details of the wireless
connection, ideally in a fully transparent manner.

The context is crucial for adaptive software and typically it includes differ-
ent kinds of computationally accessible information coming from both outside
(e.g. sensor values, available devices, and code libraries offered by the environ-
ment), and from inside the application boundaries (e.g. its private resources, user
profiles, etc.). The literature proposes many different programming languages
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that support dynamic adjustments and tuning of programs, e.g. [17,18,20,24–
26] (a detailed discussion on the great deal of work in this area is in [13,23]). In
this field, Context Oriented Programming (COP) [1,9,15,16] offers a neat sepa-
ration between the working environment and the application. Indeed, the COP
linguistic paradigm explicitly deals with contexts, by providing programming
adaptation mechanisms to support dynamic changes of behaviour, in reaction
to changes in the context (see [2,23] for an overview). In this paradigm, pro-
gramming adaptation is specified using behavioural variations, chunks of code
that can be automatically selected depending on the current context hosting the
application, dynamically modifying its execution.

To address adaptivity we defined MLCoDa [3,10,11,13], a core of ML with
COP features. It has two tightly integrated components: a declarative constituent
for programming the context and a functional one for computing. The bipartition
reflects the separation of concerns between the specific abstractions for describ-
ing contexts and those used for programming applications [22]. The context in
MLCoDa is a knowledge base implemented as a (stratified, with negation) Dat-
alog program [19,21]. Applications inspect the contents of a context by simply
querying it, in spite of the possibly complex deductions required. The behavioural
variations of MLCoDa are a sort of pattern matching with Datalog goals as selec-
tors. They are a first class, higher-order construct that can then be referred to by
identifiers, and used as parameters in functions. This fosters dynamic, composi-
tional adaptation patterns, as well as reusable, modular code. The selection of a
goal is done by the dispatching mechanism that inspects the actual context and
makes the right choices. Note that the choice depends on both the application
code and the “open” context, unknown at development time. If no alternative
is viable then a functional failure occurs, as the application cannot adapt to the
current context. Non-functional failures are also possible, when the application
does not meet some requirements, e.g. about quality of service or security.

The execution model of MLCoDa assumes that the context is the interface
between each application it hosts and the system running it. Applications inter-
act with the system using a predefined set of APIs that provide handles to
resources and operations on them. Also, they interact with each other via the
context. The system and the applications do not trust each other, and may act
maliciously, e.g. one application can alter some parts of the context so driving
another in an unsafe state. The application designer would like to detect both
functional and non-functional failures as early as possible, and for that MLCoDa

has a two-phase static analysis, one at compile and one at load-time [4,11,13,14],
briefly summarised below. The static analysis takes care of failures in adaptation
to the current context (functional failures), dealing with the fact that appli-
cations operate in an “open” environment. Indeed, the actual value and even
the presence of some elements in the current context are only known when the
application is linked with it at run time. The first phase of our static analysis is
based on a type and effect system that, at compile time, computes a safe over-
approximation of the application behaviour, namely an effect. Then the effect
is used at load time to verify that the resources required by the application are
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available in the actual context, and in its future modifications. To do that, the
effect of the application is suitably combined with the effect of the APIs pro-
vided by the context that are computed by the same type and effect system. If an
application passes this analysis, then no functional failure can arise at run time.
The results of the static analysis also drive an instrumentation of the original
code, so as to monitor its execution and block dangerous activities [4].

In addition to the formal aspects of MLCoDa, a main feature of our approach
is that a single and fairly small set of constructs is sufficient enough for becoming
a practical programming language, as shown in [7]. MLCoDa can easily be embed-
ded in a real programming eco-system as .NET, so preserving compatibility with
future extensions and with legacy code developed within this framework. Being
part of a well supported programming environment minimises the learning cost
and lowers the complexity of deploying and maintaining applications. In [7] a
prototypical implementation of MLCoDa is presented as an extension of the (ML
family) functional language F#. Indeed, no modifications at all were needed to
the available compiler and to its runtime. The F# metaprogramming facilities
are exploited, such as code introspection, quotation and reflection, as well as all
the features provided by .NET, including a vast collection of libraries and mod-
ules. In particular, we used the Just-In-Time mechanism for compiling to native
code. As a consequence, MLCoDa is implemented as a standard .NET library. In
the path towards the implementation a crucial role has been played by the for-
mal description of the language and by its formal semantics, which highlight and
explain how the two components of MLCoDa interact. Furthermore they helped
in identifying and describing the crucial parts of the implementation toolchain,
compilation, generated code and runtime structures.

Here, we will survey on some applications we developed in MLCoDa to assess
our language, showing how context interactions can be better specified, analysed
and controlled. We also discuss some extensions that will make our language
more expressive and applicable. The next section introduces MLCoDa, with the
help of our first case study. Two more case studies are summarised in Sect. 3.
Section 4 shortly illustrates the Just-In-Time compiler of MLCoDa. In Sect. 5 we
conclude and discuss the planned extensions, in particular those required to
handle many applications running concurrently.

2 A First Example: An e-Healthcare System

Here, we illustrate the main features of MLCoDa by considering an e-healthcare
system with a few aspects typical of the Internet of Things. A more detailed
description of this case study is in [7], and its full executable definition is in
https://github.com/vslab/fscoda.

In our scenario each physician can retrieve a patient’s clinical record using a
smartphone or a tablet, which also tracks the current location. Got the relevant
data, the doctor decides which exams the patient needs and the system helps
scheduling them. In addition, the system checks whether the doctor has the
competence and the permission to actually perform the required exam, otherwise

https://github.com/vslab/fscoda
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it suggests another physician who is enabled to, possibly coming from another
department. Moving from a ward to another, the operating context changes
and allows the doctor to access the complete clinical records of the patients
therein. The application must adapt to the new context and it may additionally
provide different features, e.g. by disabling rights to use some equipment and by
acquiring access to new ones. Indeed, location-awareness of devices is exploited
to tune access policies.

The e-healthcare context. We consider below a small part of the context, in
particular that for storing and making some data available about the doctors’
location, information on their devices, the patients’ records and the ward med-
ical equipment. Some basic data are represented by Datalog facts, and one can
retrieve further information using the inference machinery of Datalog, which uses
logical rules, also stored in the context.

For example, the fact that Dr. Turk is in the cardiology ward is rendered as

physician_location("Dr. Turk" "Cardiology").

The following inference rule permits to deduce that the clinical data of patients
can be accessed by the doctors in the same department where patients are.
It states that the predicate on the left hand-side of the implication operator
:- holds when the conjunction of the predicates (physician_location and
patient_location) in the right hand-side yields true, i.e. when the physician
and patient’s location coincide.

physician_can_view_patient(Physician, Patient) :-
physician_location(Physician, Location),
patient_location(Patient, Location).

The MLCoDa context is quite expressive and can model fairly complex situations.
Typically, some medical exams can only be performed after some others. To
compute this list of exams, all the dependencies among them are to be considered.
This could be expressed by the following recursive rules:

patient_needs_result(Patient, Exam) :-
patient_has_been_prescribed(Patient, Exam).

patient_needs_result(Patient, Exam) :-
exam_requirement(TargetExam, Exam),
patient_needs_result(Patient, TargetExam).

The first rule means that the prescription of an exam implies that the involved
patient needs the results of the test. The second rule says that whenever a patient
needs an exam, so are also needed all the screenings the exam depends on.
Datalog can conveniently model recursive relations like the dependency among
exams, which may require involved queries with standard relational databases.

The next rule dictates that a patient has to do an exam if the two clauses in
the right hand-side are true. The first has been already discussed above, while
the second clause says that a patient should not do an exam if its results are
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already known (in the rule below the operator \+ denotes the logical not, dealt
with in our version of Datalog [8]).

patient_should_do(Patient, Exam) :-
patient_needs_result(Patient, Exam),
\+ patient_has_result(Patient, Exam).

In addition, we can declaratively describe physical objects in quite a similar,
homogeneous manner. The following (simplified) rule specifies when a device
can display a certain exam, by checking whether it has the needed capabilities:

device_can_display_exam(Device, Exam) :-
device_has_caps(Device, Capability),
exam_view_caps(Exam, Capability).

By listing a set of facts, we can easily assert the capabilities of a device, e.g.

device_has_caps(’iPhone 5’, ’3D acceleration’).
device_has_caps(’iPhone 5’, ’Video codec’).
device_has_caps(’iPhone 5’, ’Text display’).
device_has_caps(’Apple Watch’, ’Text display’).

Adaptation constructs. Now we focus on context-dependent bindings and behav-
ioural variations. These adaptation constructs allow specifying program behav-
iour, which depends on the context in our e-healthcare system. When entering
a ward, the patients’ records under treatment can be displayed on the doctor’s
personal device. Moreover, the e-healthcare system computes the list of the clin-
ical exams a patient should do and that the doctor can perform. The following
code (in a F#-like syntax) shows how the adaptation constructs are used to
implement these functionalities. The display function, given a doctor phy and
a patient pat, prints the information about the patient’s exams on the screen.

1 let display phy pat =
2 match ctx with
3 | _ when !- physician_can_view_patient(phy, pat) ->
4 match ctx with
5 | _ when !- patient_has_result(pat, ctx?e) ->
6 printfn "%s sees that %s has done:" phy pat
7 for _ in !-- patient_has_result(pat, ctx?exam) do
8 display_exam phy ctx?exam
9 | _ ->

10 printfn "%s sees that %s has done no exam" phy pat
11

12 let next_exam = "no exam" |- True
13 let next_exam = ctx?exam |-
14 (physician_exam(phy, ctx?exam),
15 patient_active_exam(pat, ctx?exam))
16 printfn "%s can submit %s to %s" phy pat next_exam
17 | _ ->
18 printfn "%s cannot view details on %s" phy pat
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Behavioural variations change the program flow according to the current
context. They have the form match ctx with | _ when !- Goal -> expression,
where the sub-expression match ctx with explicitly refers to the context; the part
| _ when !- Goal introduces the goal to solve; and -> expression is the sub-
expression to evaluate when the goal is true.

Using the outermost behavioural variation (starting at line 2), we check
whether the doctor phy is allowed to access the data of the patient pat, when
the goal physician_can_view_patient(phy, pat) at line 3 holds.

With the nested behavioural variation (line 4), we check if the patient has
got the results of some exams, using the predicate patient_has_result. If
this is the case, the for construct extracts the list of exam results from the
context (line 7). The statement for _ in !-- Goal do expression iterates
the evaluation of expression over all the solutions of the Goal. It works as
an iterator on-the-fly, driven by the solvability of the goal in the context. The
predicate patient_has_result at line 7 contains the goal variable ctx?exam:
if the query succeeds, at each iteration ctx?exam is bound to the current value
satisfying Goal. A goal variable is introduced in a goal, defining its scope, using
the syntax ctx?var_name.

Finally, through let x = expression1 |- Goal [in] expression2 (the
context dependent binding), the function display shows an exam that the physi-
cian phy can do on the patient pat. At lines 12–13 we declare by cases the
parameter next_exam, referred to in line 16. Only at run time when the actual
context is known, we can determine which case applies and which value will be
bound to next_exam when the parameter is used. If the goal in lines 14–15 holds,
then next_exam assumes the value retrieved from the context, otherwise it gets
the default value "no exam".

Note that it may happen that no goal is satisfied in a context while executing
a behavioural variation or resolving a parameter. This means that the application
in not able to adapt, either because the programmer assumed at design time the
presence of functionalities that the current context lacks, or because of design
errors. We classify this new kind of runtime errors as adaptation failures. For
example, the following function assumes that given the identifier of a physician,
it is always possible to retrieve the physician’s location from the context using
the physician_location predicate:

let find_physician phy =
let loc = ctx?location |-

physician_location(phy, ctx?location) in
loc

The context-dependent binding may find no solution for the goal, e.g. when
find_physician is invoked on a physician whose location is not in the context.
If this is the case, the current implementation throws a runtime exception.

let find_physician phy =
try

let loc = ctx?location |-
physician_location(phy, ctx?location) in loc
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with e -> printfn "WARNING: cannot locate %s:\n%A" phy e
"unknown location"

As described in [11], we may adopt a more sophisticated approach where for
statically determining whether the adaptation might fail and reporting it before
running the application.

Finally, the interaction with the Datalog context is not limited to queries: it
is possible indeed to program the modifications to the knowledge base on which
it performs deduction, by adding or removing facts with the tell and retract

operations, as in:

tell <| patient_has_result("Jordan", "CT scan")

Some execution examples. We now show how the functions defined above give
different results when invoked in different contexts, parts of which are only
described intuitively. For instance, in a context where Dr. Turk is not in the
same ward as Bob, the result of the invocation display "Dr. Turk""Bob"

is Dr. Turk cannot view details on Bob. This is because physicians are
only allowed to see data about the patients in the department where
they are. Indeed, the behavioural variation introduced at line 3 on
physician_can_view_patient finds out that accessing data is not allowed.
If instead Dr. Cox is in the same department where Bob is, the call
display "Dr. Cox""Bob" correctly prints the details about Bob (actually
stored in the Datalog knowledge base):

Dr. Cox sees that Bob has done no exam
Dr. Cox can submit Bob to Blood test

In this case the outermost behavioural variation (starting at line 2) confirms
that Dr. Cox can view the data. The nested one (starting at line 4), driven by
patient_has_result, finds no exam for Bob, hence the function displays the
no-exam message (line 10). Furthermore, the program finds out that Dr. Cox
could do a blood test on Bob, as he is enabled to; then it additionally finds out
that Bob needs no pre-screening and so that exam can be done immediately,
because the predicate at line 15 holds.

Suppose now to have a slightly more complex situation, in which the context
itself is modified. Patient Jordan has already performed an EEG test, and doctors
prescribed her a CT and nothing else. Dr. Kelso is in Jordan’s room, is enabled
to do only CT tests and carries a device on which he can visualise the results.
In this context, the invocation display "Dr. Kelso""Jordan" outputs

Dr. Kelso sees that Jordan has done: EEG
Dr. Kelso can submit Jordan to CT scan

Differently from the case above, Jordan has already performed an exam, listed
by the iteration construct. Once Dr. Kelso have performed a CT scan on Jordan,
the context has to be accordingly changed, by asserting the fact

tell <| patient_has_result("Jordan", "CT scan")
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Now the query display "Dr. Kelso""Jordan" has a different output in the
modified context: besides displaying a longer list of exam results, the application
shows Dr. Kelso that Jordan needs him to perform no other exam:

Dr. Kelso sees that Jordan has done: EEG, CT scan
Dr. Kelso can submit Jordan to no exam

Suppose now that Dr. Cox moves to Jordan room and checks her medical report,
but he has a device that cannot show CT images. The display_exam function
warns the doctor and possibly presents the results in a more limited form, e.g.
a static thumbnail. So, the result of the query display "Dr. Cox""Jordan" is

Dr. Cox sees that Jordan has done: EEG, CT scan
(current device cannot display the exam data)

Dr. Cox can submit Jordan to no exam

3 Further Case Studies

The following case studies illustrate how MLCoDa can be used to specify small-
sized real context-aware applications. Afterwards, we outline some internals of
our preliminary compiler.

Fsc-Rover. We now briefly describe the implementation in MLCoDa of a small
rover robot, endowed with two wheels, engine control, foto and video camera
and a distance sensor, done by Riccardo Rolla, a master student of our research
group (see https://github.com/riccardorolla/rpi-iot-fscoda). The rover moves in
a building, and detects the objects therein and some of their features. Also, it
interacts with other applications that use the information it collects, by exchang-
ing messages on the Internet. The rover can perform either its actions, called
local, or actions issued by other applications, called remote. Each kind of action
has a different set of parameters and the rover has to identify the right values
for them, by inspecting the properties of the objects in the context.

Besides getting a formal executable specification of a rover, differently from
the other case studies this one makes it evident that the context provides effective
support to uniformly handle both local and remote activities. The control loop
of the rover, shown below, is really quite standard: it repeats the following until
no-request is found

– Add to the rover program all the remote actions read from the context;
– Execute asynchronously local and remote actions;
– Collect and process data and store the results in the context;
– Send responses to remote applications.

while (not (get_detected "exit")) do
for _ in !-- request(ctx?idchat,ctx?cmd) do

array_cmd <- array_cmd |> Array.append [|ctx?cmd|]
for _ in !-- next(ctx?cmd) do

array_cmd <- array_cmd |> Array.append [|ctx?cmd|]

https://github.com/riccardorolla/rpi-iot-fscoda
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listresult <- Async.Parallel
[for c in array_cmd -> execute c]

|> Async.RunSynchronously
for r in listresult do

match r with
|cmd,res -> for _ in !-- result(cmd,ctx?out) do

retract <| Fsc.Facts.result(cmd, ctx?out)
tell <| Fsc.Facts.result(cmd, res)

....
match ctx with
| _ when !- (request(ctx?idchat,ctx?cmd),result(ctx?cmd,ctx?out))

-> do
let result=send_message ctx?idchat ctx?cmd)
retract<|Fsc.Facts.request(ctx?idchat, ctx?cmd)

| _ -> printfn "no request"
....

run()

The query request(ctx?idchat,ctx?cmd) extracts information from
the context to assemble the list of commands to be executed. This is done by
checking for messages arriving at the context from the Internet. The tag idchat
identifies a remote application. Note that both rover commands and results are
modelled as suitable facts inside the context through the tell and retract

operations. The function run sets up the context, e.g. it turns on/off the video
camera and the distance sensor. Its code not displayed here also invokes a con-
figuration function that sets the sequence of local actions.

The behaviour of the rover also depends on the obstacles identified by the
camera in the current environment. The following function is used to detect the
nature of the obstacles by inspecting the context. The idea is that the objects
are suitable facts in the context and that object recognition in the current image
depends on the parameters of confidence of objects, such as size, rotation, etc.

let infoimage = get_out "discovery" |> imagerecognition
for tag in infoimage.tags do

discovery tag.name tag.confidence
for _ in !-- recognition(ctx?obj,ctx?value) do

FSEdit editor. Here, we briefly survey the implementation of FSEdit, a context-
aware text editor implemented in MLCoDa. This case study was a workbench
for testing how our implementation deals and interacts with pure F# code, in
particular against the standard GUI library provided by .NET. Besides playing
with contexts, this case study also helped finding some little flaws in the way
our compiler treated some pieces of code using the object oriented features of
F#. Furthermore, it also allowed us to identify some programming patterns that
may be considered as idiomatic of MLCoDa programs (see below).

The editor supports three different execution modes: rich text editor, text
editor and programming editor. A context switch among the different modes
changes the GUI of the editor, by offering e.g. different tool-bars and menus.
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In the first mode, the GUI allows the user to set the size and the face of a font;
to change the color of text; and to adjust the alignment of the paragraphs. In the
second mode, the editor becomes very minimalistic and allows the user to edit
pure text files, where no information of the text formatting can change. Finally,
in the programming mode, the editor shows file line numbers and provides a
simple form of syntax highlighting for C source files.

The context of FSEdit contains the current execution mode and other infor-
mation that directly depend on it, as shown by the predicates below:

tokens(TS) :- tokens_(TS), execution_mode(programming).

file_dialog_filter(F) :- execution_mode(M),
file_dialog_filter_(F,M).

For example, the predicate tokens only holds in the programming mode and
returns the keywords of the programming language selected by the user to per-
form syntax highlighting. For simplicity, the editor currently supports the C
programming language only. The second piece of information is about the kind
of files supported by the editor in the different modes. For instance, *.rtf files in
rich text mode, *.txt files in text mode and *.c in programming mode.

As said before, the execution mode affects the behaviour of the editor. For
instance, in the following piece of code we invoke the syntax highlighter proce-
dure when the user changes the text, if the editor is in the right mode.

let textChanged (rt : RichTextBox) = // dlet
let def_behaviour () = ... // code not shown

let f_body = def_behaviour () |- True // Basic behaviour

let f_body = (f_body ; syntaxHighlighter rt) |-
execution_mode("programming")

f_body

As anticipated, this code snippet is interesting because it shows an idiomatic
use of the context dependent binding. Indeed, there are two definitions of the
identifier f_body: the first one represents the basic behaviour of the editor that
is independent of the context; the second one extends the basic behaviour with
the features that are to be provided when the editor is in the programming
mode. Notice in particular the use of f_body on the right-hand side in the last-
but-one line of the snippet. Although it may seem a recursive definition it is not;
it is instead an invocation of f_body defined in the previous line, i.e. the one
specifying the basic behaviour of the editor.

4 A Glimpse on MLCoDa Compiler

The MLCoDa compiler ypc is based on the integration of the functional language
F# with a customised version of YieldProlog1 serving as Datalog engine.
1 Available at https://github.com/vslab/YieldProlog.

https://github.com/vslab/YieldProlog
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Our compiler ahead-of-time compiles each Datalog predicate into a .NET
method, whose code enumerates one by one the solutions, i.e. the assignments
of values to variables that satisfy the predicate. In this way, the interaction and
the data exchange between the application and the context is fully transparent
to the programmer because the .NET type system is uniformly used everywhere.

The functional part of MLCoDa that extends F# is implemented through
just-in-time compilation. To do that, a programmer annotates these extensions
with custom attributes, among which the most important is CoDa.Code. When
a function annotated by it is to be executed, the MLCoDa runtime is invoked
to trigger the compilation step. Since the operations needed to adapt the appli-
cation to contexts are transparently handled by our runtime support, the com-
piler fsharpc works as it is. Actually, CoDa.Code is an alias for the standard
ReflectedDefinitionAttribute that marks modules and members whose
abstract syntax trees are used at runtime through reflection. Of course MLCoDa

specific operations are only allowed in methods marked with this attribute; oth-
erwise an exception is raised when they are invoked.

5 Conclusions, Discussion and Open Problems

We have surveyed the COP language MLCoDa and we have reported on the exper-
iments carried on some case studies. These proved MLCoDa expressive enough
to support the designer of real applications, although admittedly simplified in
some details. The formal description of the dynamic and the static semantics
of MLCoDa drove a preliminary implementation of a compiler and of an analy-
sis tool. Especially, we found that the bipartite nature of MLCoDa permits the
designer to clearly separate the design of the context from that of the appli-
cation, yet maintaining their inter-relationships. This is particularly evident in
the rover case study of Sect. 3, where the context provides the mechanism to
virtualise and abstract from the communication infrastructure, thus making the
logic of the control of the rover fully independent from the actual features of the
communication infrastructure.

At the same time, the people working with MLCoDa asked for more func-
tionalities to make MLCoDa more effective, and below we discuss some lines of
improvement, both pragmatic and theoretical.

Non-functional properties. A crucial aspect that arose when designing the
e-healthcare system concerns context-aware security and privacy, which we
approached still from a formal linguistic viewpoint. We equipped MLCoDa with
security policies and with mechanisms for checking and enforcing them [4]. It
turns out that policies are just Datalog clauses and that enforcing them reduces
to asking goals. As a matter of fact, the control of safety properties, like access
control or other security policies, requires extensions to the knowledge base and
to its management that are not too heavy. We also extended the static analysis
mentioned above to identify the operations that may violate the security poli-
cies in force. Recall that this step can only be done at load time, because the
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execution context is only known when the application is about to run, and thus
our static analysis cannot be completed at compile time. Yet we have been able
to instrument the code of an application, so as to incorporate in it an adap-
tive reference monitor, ready to stop executions when a policy to be enforced is
about to be violated. When an application enters a new context, the results of
the static analysis mentioned above are used to suitably drive the invocation of
the monitor that is switched on and off upon need.

Further work will investigate other non-functional properties that however
are of interest in real applications. A typical example is quality of service, which
requires enriching both our logical knowledge base and our applications with
quantitative information, in primis time. Such an extension would also provide
the basis for evaluating both applications and contexts. For instance, statistical
information about performance can help in choosing the application that better
fits our needs, as well as statistical information on the usage of contexts or
reliability of resources therein can be used for suggesting the user the context
that guarantees more performance. A further approach to statically reason about
resource usage, typically acquisition and release, is in [5].

Coherency of the context and interference. Other issues concern the context, in
particular the operations to handle it and to keep it coherent. When developing
and testing the e-healthcare system discussed in Sect. 2, it was necessary to
extend the Datalog deduction machinery in order to get the entire list of the
solutions to a given query.

Pursuing coherency at any cost can instead hinder adaptation, e.g. when
an application e can complete its task even in a context that became partially
incoherent. This is a pragmatically very relevant issue. Consider for example the
case when a resource becomes unavailable, but was usable by e in the context
when a specific behavioural variation started. At the moment we implemented
our language in a strict way that prevents e even to start executing. For sure this
guarantees that no troubles will arise, but also precludes to run an application
that only uses that resource when available, e.g. at the very beginning, and never
again, so no adaptation error will show up at run time. While a continuous run
time monitoring can handle this problem, but at a high cost, finding a sound and
efficient solution to this issue is a hard challenge from a theoretical point of view.
Indeed, it involves a careful mix of static analysis and of run time monitoring of
the applications that are executing in a context. Also, “living in an incoherent
context” is tightly connected with the way one deals with the needed recovery
mechanisms that should be activated without involving the users.

Concurrency. The above problem is critical in the inherently concurrent systems
we are studying. Indeed, an application does not perform its task in isolation,
rather it needs some resources offered by a context where plenty of other appli-
cations are running therein (often competing for those resources). For instance,
the implementation of the rover described in Sect. 3 posed concurrency issues,
because the control activity of the robot is performed in parallel with the collec-
tion and analysis of data coming from the context. The current ad hoc solution
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exploits the management of threads offered by the operative system, and it is
not yet fully integrated in MLCoDa.

A first extension of MLCoDa with concurrency is in [12], where there is a
two-threaded system: the context and the application. The first virtualises the
resources and the communication infrastructure, as well as other software com-
ponents running within it. Consequently, the behaviour of a context, describing
in particular how it is updated, abstractly accounts for all the interactions of the
entities it hosts. The other thread is the application and the interactions with
the other entities therein are rendered as the occurrence of asynchronous events
that represent the relevant changes in the context. A more faithful description of
concurrency requires to explicitly describing the many applications that execute
in a context, that exchange information using it and that asynchronously update
it. This is the approach followed in [6]. Nonetheless, the well known problem of
interference now arises, because one thread can update the context possibly mak-
ing unavailable some resources or contradicting assumptions that another thread
relies upon. Classical techniques for controlling this form of misbehaviour, like
locks, are not satisfying, because they contrast with the basic assumption of hav-
ing an open world where applications appear and disappear unpredictably, and
freely update the context. However, application designers are only aware of the
relevant fragments of the context and cannot anticipate the effects a change may
have. Therefore, the overall consistency of the context cannot be controlled by
applications, and “living in an incoherent context” is unavoidable. The semantics
proposed in [6] addresses this problem using a run time verification mechanism.
Intuitively, the effects of the running applications are checked to guarantee that
the execution of the selected behavioural variation will lead no other application
to an inconsistent state, e.g. by disposing a shared resource. Dually, also the
other threads are checked to verify that they are harmless with respect to the
application entering in a behavioural variation.

Recovery mechanisms. We already mentioned briefly the need of recovery mech-
anism when run time errors arise, in particular when adaptation failures pre-
vent an application to complete its task. Recovery mechanisms are especially
needed to adapt applications that raise security failures, in case of policy viola-
tions. Recovery should be carried on with little or no user involvement, and this
imposes on the system running the applications to execute parts of their code
“atomically.” A typical way is to consider those pieces of code as all-or-nothing
transactions, and to store auxiliary information for recovering from failures. If
the entire transaction is successfully executed, then the auxiliary information
can be disposed, otherwise it has to be used to restore the application in a con-
sistent state, e.g. the one holding at the start of the transaction. To this end, we
plan to investigate recovery mechanisms appropriate for behavioural variations,
to allow the user to undo some actions considered risky or sensible, and force
the dispatching mechanism to make different, alternative choices.

However, in our world the context might have been changed in the meanwhile,
and such a state might not be consistent any longer. A deep analysis is therefore
needed of the interplay between the way applications use contextual information
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to adapt or to execute, and the highly dynamic way in which contexts change.
A possible line of investigation can be giving up with the quest for a coherent
global context, while keeping coherent portions of it, i.e. local contexts where
applications run and, so to speak, posses for a while.
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